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Analysis of a Multivibrator

A theoretical analysis of the action of a fundamental
multivibrator has been undertaken along the lines of Van der
Pol's analysis.®* A more exact approximation to the transfer
chafacteristic has been used and an exact solution of the
equations has been found in the case where the shunt capacities
of the tube can be neglected. The analytical solution then
allows one to localize the type of aistortion in the "square
wave" output and to suggest better circuits for the production
of rectangular waves.

Experimentally several circuits are presented in which
the ultimate limit to the "squareness" of the square waves is

limited only by the shunt capacities of the tubes.

% Van der Pol, Phil. Mag. 2, pp. 978-992 (1926).
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Analysis of a Multivibrator

I. Introduction

In electronics extensive use is being made of relaxation
oscillations for the production of continuous "square waves." By
"square wave" is meant almost any sort of voltage wave that has
periodic-abrupt discontinuities, and hence a high harmonic content.

For example, the fact that it is possible to synchronize a harmonic

of the square wave with a sine wave (subhafmonic resonance) is made
use of in the controllof low frequencies with an accurately calibrated
crystal oscillator. Also accurate television image formation and
scannihg is made possible by the use of relaxation oscillators.

Since the requirements of relaxation oscillators are becoming
more exacting, a more accurate theory of the production of relaxation
oscillations is required. Theré has been a large amount of work done
on this subject and the allied subject of the non-linear theory of
electric o=cillations by Van der Pol(l) and collaborators in which they
are concerned with the nature of relaxation oscillations and their
synchronizations with sinusoidal oscillations. In the following work
the nature of the relaxation oscillations will be discussed in more
detail with what is hoped to be a more exact description of the phenom-
enon.

The multivibrator is a particular type of relaxation oscillator

(1) Non Linear Theory of Electric Oscillations, Balth Van der Pol,
I.R.E. 22, pp. 1051-1086 (1934).



and is chosen because of its simplicity and fundamental nature. Its

circuit diagram is as follows:

Basic Multivibrator Circuit:

Fig .

The symmetrical arrangement detracts from the general solution
of the problem, but does not detract from the general nature of the

problem.

(2) Qualitative Operation of Multivibrator
Suppose initially that both tubes are conducting equally. Then
the plate voltages and the grid voltages are equal. If now the grid

voltage of tube T; is made slightly negetive, the plate voltage of Tl



will go slightly positive because the tube is made less conducting

and there is, therefofe, less voltage drop in the plate resistor.

This positive pulse will be transmitted through the coupling condenser
to the grid of T, which makes T, more conducting and consequently makes
the plate voltage of T; more negative. This negative pulse on the
_plate of T; is treansmitted through the other coupling condenser to the
grid of Tl’ Thus a negative pulse on the grid of Ty causes a negative
pulse on the grid of Ty, or the action of the circuit is regenerative
and the grid of T goes as far negative as the ultimate conductivity
of the tubes will allow (i.e., Tq con-conducting, T, conducting). This
equilibrium position is, however, only transient equilibrium for the
grid voltages tend to approach zero voliage as their equilibrium value
either by charging or discharging their respective coupling condensers.
As the>érid voltages approach zero, Ty from the negative side and T,
from the positive side, there will be a point reached where the tube Tq
begins to conduct and the tube T; becomes less conducting. But whenever
the tubes are conducting the circuit is regenerative and the voltages
go to their extremes. Thus if the grid voltage of Ty is approaching
zero from the negative side it will be thrown as far positive as
possible. Likewise, the grid of T, wiil be thrown as far negative as
possible because it is approaching zero from the positive side. As
before a relaxation period will set in until the tube currents begin

to change and another "flip-over" occurs. Summing up it may be said



that the equilibrium values of the plate voltages are the extreme
values while the equilibrium values of the grid voltages are zero.
Since these two equilibrium values are mutually incompatible the

plate voltages exchange their extreme values at the end of each relax-
ation cycle of the grid voltages. In this manner continuous relaxation
oscillations of high harmonic content are generated.

The method of attack then consists of performing a circuit
analysis using the complete set of voltage-current characteristics of
the tubes. It is customary in circuit analysis to "linearize" the
problem by restricting the amplitude to small quantities (i.e. using
only a small portion of the tube characteristic). This leads to sinu-
soidal oscillations as the primary or ideal solution of the problen.
In this case, however, the relaxation nature of the problem disappears
if the amplitudes are restricted. Hence it is necessary to retain
large ampliéudes and to look for other primary or ideal solutions.
That this can be done will be demonstrated, but the necessary genersl-
ization, which in the case of sinusoidal oscillations is the principle

of superposition, is still lacking.

II. Circuit Analysis and the Relaxation Equation
(a) Circuit Analysis

There will be two equivalent circuits of the following type:
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The other equivalent circuit will have the subscripts 1 and

R interchanged. For the node voltages the circuit equations become:

Let D=4 .
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Solving these for the grid voltages,
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Agssuming that the currents i, and i, depend only on the grid
voltages (use of pentodes) then the equations (2) and (3), if they
could be solved simultaneously, would represent a complete solution
of the symmetrical multivibrator., It is possible to neglect the grid
current ig if a resistance is placed in series with the grid electrodes.
This changes the high frequency response but for many frequencies the
plate voltage wavé form will be improved (more nearly square). The
effect of grid current flow during the posifive swing of the grid
voltage will be discussed in an approximete manner later. ©Setting the

grid currents equal to zero, the following equations result. Assume

Ty and T; are identical. Let:

I
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Likewise (3) becomes:

d T AT ‘92 47 . (1)
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In order to take into account the actual plate current of the
tubes, several grid transfer characteristics of pentodes were taken
with a 5 megohm resistor placed in series with the control grid electrode.

This insures that there will be no grid current flow for positive grid

voltages. Since the tubes were pentodes, the anode current is a function



only of the grid voltage for sufficiently high plate voltages. A

typical curve is the following:

Zp(m'd') VS, 6’5 (Ve.\fa)

FI'(ar 3

The zero of grid voltage can be selected by properly choosing
the bias voltage applied to that electrode. The value of the satura-
tion current i, is constant for all plate voltages sufficiently high
(greater than 100 v.) and depends only on the constant value of screen

voltage.



As an analyticel spproximation to this transfer characteris-

tic the following equetion is chosen.

L d

) 0 /T ~/
b =lz +tan ' Boy) . g2)

fhe graph of which is the following:

Flg4.

This does not have the proper curvature in many regions of
the actual charecteristic but it preserves the genersl nature of the

transfer characteristics. TFurthermore it has the theoreticel advantage



10

of having an algebraic derivetive. From eq. (7) and eq. (/2)

there results:

[(?/): . 2
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Now it can be shown (see appendix) that for general initisl
conditions, the oscillatory energy of the system will adjust itself

either through addition to or dissipation of the initial energy so



11

that in the steady state the grid voltages change in exactly opposite

phase.

U= - N (XY

Thus fhe equation governing the steady state oscillations is

given by

d U 4\ du
Hdr“’(/_/wrzr‘)dr tU=0- 09
It should be noticed that only the steady state solution of
this equation is desired since the initial trensients are not governed
by (19) but by éhe similteneous set ﬂlG) and (17).
The essential feature of equation (19) is the coefficient of
the dissipative term 1 -Eff};F-. For small values of u it is nega-
tive which means that the damping of the oscilletion is negative or
energy is being added to the system thus tending to meke the value of
u larger. .But for large velues of u the coefficient is positive and
the demping is poéitive or the amplitude u is decreasing. Thus oscilla-
tions teke place in such a way that energy flows into the system when
it gives signs of dying out (small amplitude) and energy flows out of
the system when the amplitude gets too large. The maximum emplitude
of oscillation adjusts itself so that the energy inteke per cycle just
balances the energy outflow per cycle. These oscillations are charac-

teristic of relaxation oscillations and have been discussed by
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3 . . s o . 4
Van der Pol(o) and others. A recent article by Levinson and Smlth(‘)
gives en excellent description of the oscillations and gives the
conditions necessary for a unique periodic solution of a generalized

equation of relaxation oscillations.

U
dT.z + f(UJdr) ;,[_U' + g(ll) -

(b) Particular Solutions of the Relaxation Equation

The pioneer work in the solution of equation (20) seems to
have been undertsken by Ven der Pol who used the method of isoclines
as a graphicel method for obtaining the solution. He oximates
the grid tramsfer characteristic by e third degree parabola and hence
gets for the coefficient of the damping term a second degree parabola.

The equation he discusses is:

4
y dV

SE-c(1-NGF +v=0_ @

The transfer characteristic of the problem at hand does not
permit the use of this equation elthough it is well suited to en
analysis of smaller amplitudes. Using the method of successive approx-

imations Appleton and Greaves(s) have given the solution of the

(3) Van der Pol, Phil. Mag. 2, pp. 978-992 (1926).

(4) Levinson end Smith, Relaxation Oscillstions, Duke Math. Journ.
9, pp. Z82-403 (June 1942).

(5) Appleton and Greaves, Phil. Mag. 45, pp. 401-414 (1923).
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following equation:

B )

57.2{4— f(v“)c%%/#* wr=0 .. .. (22
where f(v) is expanded in a power series. So far this seems to be
the only successful method of getting exact analytical solutions,

a thoﬁgh recently Shohat(a) has given a new method of successive
approximations applied to this equation giving similar results.

Refering back to equation (19) it will be seen that the term
thet is responsible for the relaxation haﬁure of the oscillations is
the first degree term.

If the circuit could be afranged to heve the shﬁnt Qapacity
of the tubes Cj and Oy extremely small, the constent K would be essen-
tially zero. If it is seﬁ equal to zero, the equation to be solved is
then:

(F_J# dU

fvad) dr T 4 =0

(23)

- 0
This equation, however, has an exact solution which may be

seen if it is put into the form:

l%a’ - l/ﬁ%*'cziza :fodr.... (2 4)

By Pierce; Eq. &5

(6) J. Shohdt, Journ. of App. Phys. 14, pp. 40-48 (1943)
(7) Pierce, A Short Table of Integrals, Ginn end Compsny.
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4
U[BU+W ]2 -7
B[ul(wal) = C Y - )

The quantity B may be determined by observing that the magni-
tude of the charge on the condensers C cannot change during the "flip-
over." Thus the voltage ve, - Vg, must remain the sanc for Tr= OiS,
where § - 0. But the value (u,) of u, where the "flqaovef" occurs

du _

is determined by setting =@ in eq. (23). This gives

U, =+ -1 ... ... . (6

Let us suppose that when 7= Q0 + 8, u=B., Then at ¥=0 - &,

u = -ug. To express Vay = Vg in terms of Ver and Vg, s set Cp = Cg =0
in equations 1, and 1lp; eliminate dval, leaving:
dt

Vi = Yy = B =Rl (v5) —(1+ )y, . . @7)

]

Making use of the definitions of a and b:

Ry - 4 wtE
Vs~ Ve, = MM Lan'a + ¥+ 55 ~ R,,e,,] 28

Since this is to remain the same before snd after "flip-over"
the constant terms and factors can be dropped. This gives, remembering
thet u = -v, the function Z(u), which is to remasin the same before

and after "flip-over."
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W =_4tan’u -u .. .... (29

The condition thus reduces to:

Z(-U)=Z(B) ... ......(30

ors |

B+u, t (B-t*u,)
J+Bu, — “4Z C e L (3))

Thie is the transcendental equation which must be solved
for B, Remember that B } 0, and that equation (12) is restricted
to O.Ql ig L ip. Hence the smallest positive solution of (31) is the
required value of B. The graphicel solution, remembering that B is

a function of b only, is shown below:
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The wave forms on the plate can then be found by means of

equation (1g).and (1p).

Vo = E=RoL(m) + 5(%) .. .. (32

(¢) Wave Shapes, Theoretical and Experimental

The wave shapes on the grid and plate of the tubes are cal-
culated from equations (25) and (32), and are compared with the
observed oscillograph tracings for various experimental conditions.
If the parameter K in equation (19) is set equal to zero, the wave
shapes on the grids are seen to depend only on the parameter b which
in this case becomes

- \gm
B,

The grid and plate waves are calculated for b = 25, and b = §
in order to show the effect of this parsmeter b on the solution of
equation (23). The plate and grid resistors were then chosen to
give the same values of this parameter and the wave shapes were photo-

grephed. The timing sweep on the oscilloscope is rather definitely

non-linear and hence the epparent increase in time between "flip-overs."
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Grid (Calc) 4=28 ; K=0




Grid(Cal) 4=8, K=o

Grid (Obs) A= ; K=o
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Plate (Calc)y H=28 ) K=o

Uy

(0} .8 L6 2.4 3.2 4.0 4.8

Plate(0bs) 4=25 ) K=o

'8 4,

F7'3 /o
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R = /8 b,
P‘drCCCdlc.) %:'\5—_) K=o

Fig 12

Plate (Obs) 4 =5, K=o

Fi.s /3
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From these photographs it can be seen that the theory
brings out the general relaxation nature ;f the multivibrator.
Thus solutions of equation (23) represent the ideal relaxation oscil-
lator in which the shunt capacities, represented by the parameter K,

are neglected.

(d) Calculation of the Multivibrator Period.

Since the observed wave shapes agree with the theoretical,
it is of considerable interest to celculate the period of the oscil-
letions and check this experimentally. If T is the period then it
can be found by noting that 7" = %g-when u = ug. Hence equation (25)
can be solved explicitly for the period. The result is:

T= 2l + S5 ) o

For a given value of b the period in reduced time units (pT)

cen be found by first determining the value of B(b) from its graph
and then solving equation (33) for pI. This has been plotted in

Fig. 1§

ITI. Experimental Check of Period
The following circuit arrangement was set up in order that
the veriation of the multivibrator period with circuit parameters

could be observed,
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MULTIVIBRATOR
B =217

Frq 14

(2) Experimental Considerations

The tubes, Tj and Ty, were especially selected for their
identical characteristics (same i, and same gp) insofer es it was
possible. Since this was never exactly possible, whenever gp appears
as a measured quantity it is the average for the two tubes at the
bias voltage chosen for each tube. The static characteristics of the
tubes were measured within 2% and the slope of the grid transfer
characteristics was then plotted as a function of the stetic grid

voltage. Hence for a given setting of the grid bias on the tubes,
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the corresponding mutuel conductence, gp, can be found. This will
be necessary in some later work.

Since it proves to be extremely difficult to analyse the
action of the circuit when the series grid resistance T is included,
the experimental conditions are chosen as an optimum between two
opposing tendencies. First, for a given period (T) of the multivibra-
tor the time constant rcg, where ¢g is the grid to cathode capacity,
nust be about 100 times smaller than the period T. This insures that
there is no time lag between the actual voltage on the grid and the
voltege applied to the grid. The other condition that must be satis-
fied is that r must be about 100 times larger than Rg, the grid
resistor, in order to prevent grid current during the positive swing
from short circuiting Rg. These two conditions require r to be both
large and smell at the same time, so actually there is only a limited
range of multivibrator frequencies over which equation (33) can be
checked within 2% or 3%.

ilatched pairs of condensers were obteined by measuring a
large number of Western Electric condensers to better than 1% on a
decade bridge. The standard capacitance box was internally consistent
to better then 1%.

The resistors Rp and Rg were made verisble and could be
measured to better than 1% on a Wheatstone bridge each time they were

adjusted.
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The frequency measurements were mede by comparing on an
oscilloscope the multivibrator wave with a sine wave from a Western
Electric 12A oscillator. The dial of this oscillator was checked
ageinst the 60 cycle line voltage and found accurate to 1%. To correct
for the drift, the 60 cycle point was checked frequently throughout the
set of measurements.

it will be remembered also that, in order to meke the plate
current only a function of the grid voltage, the voltage on the plate
must be greater than 100 volts. This meant that the plate resistors
Rp must be maede smaller than 10,000 ohms.,

In the experimental test Cp and Cg were chosen as negligible

and were placed equel to zero in the theory. Hence b and p become

,b:'—"!“—"" N )
Rszp)C

G
A= T, T ' | 3
RP+R3 e e (38

The observed frequencies were recorded with C = 0.0576 u.f.,
Rp verying from 1,500 ohms to 10,000 ohms, Rg varying from 600 to
9000 ohms, The series grid resistor r was set equal to 1 megohm, and
the bias of the tubes was selected to give an average mutual conductance

around 2200 umhos.
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(b) Experimentel Date

The experimental points (pT) were then plotted ageinst b
in Fig, /& The velue of b, however, was found using gy =
5000 umhos instead of 2200 umhos as experimentally determined. It
must be remembered that the analytical approximation used for the
transfer ghéracteristic does not have the proper curvature in many
regions end in particular the region of "flip-over." Nevertheless if
the value of gm.is increased by a constant factor, the theoretical
trensfer characteristic can be made to approximate very closely the
actuel transfer characteristic in the region of "flip-over." Thus
there is a fairly good confirmation of the preceding theory. Had a
better epproximation to the transfer characteristic been used, it is
conceivable that en exact check would be found,

The various conditions tﬁat were tried are indicated in the

following table.

Table 1. Experimental Multivibrator Period

a. oSeries grid resistor = 1 megohm

b. Measured mutual conductence = 2400 umhos

c. DMutual conductence used in calculating b = 5000 umhos
d. Coupling condenser = 0.0876 u farads

Ry (ohms) Ry (ohms) f(cps) pT , b
10000 2000 215 4,25 23.7
10000 5600 285 3.91 18.1

6250 5600 400 5.67 14.8

6250 3960 500 3.40 12.18

5300 3960 575 3.6 11.3
10000 1000 880 1.79 4,588
10000 1200 755 2.06 556
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10000 1400 670 R %8 6.14
10000 1600 610 2.46 6.90
10000 1800 560 R.63 7.68
10000 2000 520 2.78 8.58&
10000 2200 495 2.88 2.00
10000 2400 470 2.98 9.68
10000 2800 425 5.19 10.24
10000 8200 395 .88 12.10
10000 600 870 8.46 13.20
10000 4000 330 8.56 14,30
10000 5000 310 5.74 16.70
10000 7000 k30 4.09 20.60
10000 9000 215 4.25 R%.70
8000 9000 Qa0 4.10 21.20
6000 9000 297 5.90 18.00
4000 9000 380 3.52 13.90
3000 9000 445 6.6 11.30
2000 9000 570 .77 8.18
1500 9000 695 R.49 6.42
5000 1000 1620 1.79 4.16
5000 800 1975 1.52 8.45
5000 600 2460 1.26 2.67
5000 585 470 1.26 R.62
11000 12000 171 4.42 28.8
11000 12000 128 4.64 34.8
11000 24000 106 4.68 o87.6
11000 32000 85 4.76 41.0
11000 89000 73 4.77 42.7

5 megohm series grid resistor used on lower freqguencies

11000 89000 71 4,97 4.7
11000 82000 84 4,82 41.0
11000 55000 o4 4.88 45,9
11500 535000 49.6 5.28 47.6

Series grid resistor changed to 100,000 ohms to get higher
frequencies. Coupling condenser reduced to 0.0110 u.f.

1200 9000 4365 2.04 5.8
1200 5000 7620 1,98 4.8%
8000 5000 1240 5.61 15.4
4000 5000 3180 .21 11.1

This data is plotted in Fig. /¥ where it is compared

with the theory.
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IV, Effect of Shunt Capacity on Wave Forms,
(2) Wave Forms
In this section the effect of the second order term (K # 0)

in equation (19) will be approximated. The equation is then:

4\ dU
/{drl (/ /[+U*)dT +U=0 .... (9

In order to facilitate the analysis, the effect of the first

order term will be approximeted as follows:
For large values of b the amplitude B of the grid wave can

be approximated from equation (51). Thus:

B =74
Tor:
vE >> |

Hence in equation (56), if u is not near the "flip over"
‘region, for large values of b, its order of magnitude is b. Also for
large values of b, and u # u,, the damping term approaches 1. Thus
equation (36) can be approximated, except in the region of "flip-over®

by

/{ajt.i+a“‘7? +U=0 . . . . (38)

This gives as a solution, K << 1.
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R

-7
U=HE€ +BE e L. (39

When u is near zero the coefficient of the second term may

be approximated by -b, assuming b >> 1. Thus near u = 03

d'U
/(d —~de +U =0 .. . .40

Again for K<< 1, the solution is:

S

7 7
=Ce +De” . . .. @

From equation (41) it can be seen that energy is injected into
the oscillating circuit during the "flip-over" period, which in these
reduced time units is equal to K/b. From equation (39) the dissipa-
tion of energy takes place as follows: The second term represents the
form of the grid voltage while it is approaching its maximum amplitude.
This approach to meximum requires a time K. Finally the first term of
equation‘(SQ) represents the form of the grid voltage wave after it has
reached its maximum amplitude. This continues on until the next "flip-

over" is reached. The complete wave form is then somewhat as follows:



et
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Under the various experimentel conditions tabulated below,

the following photographs were taken.

Grid 4=206 ; K=oo72
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Fig 18

Fig 19
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CGrid H$=5.63;Kk=2333

Fig 20

a0 O

Grid 4563 ) K=0045

Fiq 21
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" K= 0,00498
Grid B =37/ J K=o.0co4g
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(b) Experimental Period when Shunt Capacity is Included.

It is concéivable that the major correction to a multi-
vibrator period when the shunt capacities Cp and Cg are included
would be in a redefinition of the quantities p and b. Experimentally,
it is desirable to keep Cg, the grid to cathode capacity, as smell as
possible in 6rder thet r, the series grid resistor, may be as large
as possible and still have a smell time constant rCg. Hence the
effect of the shunt cepacity was determined solely from Cp, the plate
to ground capacity. Returning to the original definitions of p and b,

if Cg <<C

p= ’
C[Ry +R,(1+&)] - - - .. (42)

A
4 =

;—?';-I-P!:(H——él) N C )

If the experimental date (pT) is compared with the same theory
(Eq. 33) using as before gp = 5000 umhos it is seen to check fairly

well.
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Table 2. Experimental Data Including Shunt Capacity

éag Series grid resistor = 100,000 ohms
b) Mutuel conductance used in calculating
b = 5000 umhos.

(Obs)  (Calc)

Rp(ohms) Rg(ohms) C(uf) Cp(uf)  f(cps) b pL o
10000 '7000 .0576 00945 48 18.7 3.75 3.87
10000 7000 1233 .00945 121 19.7 3.78 3.96
10000 10000 12358 .00945 98.9 24.1 3.98 4,18

Changed series grid resistor to & megohm
10000 10000 0.1233 .00945 92.4 k4.1 = 4.23 4,18

Changed series grid resistor to 1 megohm

10000 10000 0.1288 .00945 94 4.1 4.16 4.18
10000 10000 0576 .00945 120 k3.1 4.24 4.14
10000 7000 .0876 .00945 236 18.7 3.94 5.90
10000 7000 .1238 .00945 115 19.7 5.98 5.96
10000 5000 1233 .00945 140 16.9 3.687 5.70

V. Linearized Solution and First Order Approximation
(2) TWave Forms
By referring to the graph of B(b) it is seen that the
amplitude of the grid voltage approaches zero as b approaches 1.
However, if shunt capacity is included the second order term requires
that sine waves be produced of vanishing emplitude. That this
provés to be true will be obvious after considering the first order

approximation worked out by Appleton and Greaves(a ) using the method

(8) Appleton and Greaves, Phil. Mag., 45, pp. 401-414 (1923).
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of successive approximations. The equation discussed in this paper,

where f(v) is an arbitrary power series is:

4
Ll + f)dl +r=0 . . (4

In equation (36) let:
U=VEITU =vey .. (45)
W 40

, /- a
f(v):—;f((,+fyi) ... (47

Expending f(v) there results:

£r) = ____ + 5 (H—E)Zf ——-(i+e) ) (48)

Appleton end Greaves give as the solution:

U= \/?[Z\Sin w.,’f%i-;—é;o(foswor—— C033cq7)]_ _(49)

where

w°&=;‘?,—(l“8§k) s 5% = = % .(49a)



A plot of this function is as follows:
2=13,; K=0.0458

Experimentally the wave shape on the grid is as follows:
4 =13 ; K=0.0485

&4

Fryg 28



If observations are made on the wave form just before

oscilletion stops, b = 1, a sine wave results. From equation (49)

U =2vET SingE . .. .. (50

This shows that as long as there is some shunt capacity (K = finite),

as b o 1 the wave form will approach a sine wave whose limiting

3
frequency is given by:s

, J
L=crme - - - ..

The observed wave form is the following.

* S:O in redvced Thime onits (Pt)~‘
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(b) Experimental Check of Limiting Frequency (fg)

For reasons stated before the grid to ground cspacitance,
Cg, is kept as small as possible. In this case using equations

(4) end (5), equation (51) becomes:

_ / .[g.
fo= smRerRcy Vo - - - - (92

where also

A= = =/ . 5°3)
R (T + £ S

In order to check these equations it was found necessary
to insert a 100,000 ohm series grid resistor r because grid current
flow effectively lowered the measured value of the grid resistor Rg.
This meant, however, that siﬁce the ng time constant corresPoﬁded
to 1 megacycle, the only frequencies that could be checked were
those up to 10,000 c.p.s. if accuracy within a few per cent was
desired.

As before the resistances Rg and Rp represent the average
of the grid and plate resistors respectively. The grid resistors
and the plate resistors were repeatedly set equal to within 2 % or

% %. Similarly the capacitance readings C and Cp are the average
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of condensers that are equal within 2% or 3%. The value of gy
recorded is the averesge mutuel conductance of the tubes for the

bies et which they were operated. No correctioné to gp were
necessary here because the theoretical aspproximation is sufficiently
accurate. Frequencies were measured as before by comparing the
multivibrator wave with the Western Electric 13 A oscillastor. The

data is tabulated as follows:

Table 3. Limiting Frequencies

(obs) (calec) (obs)

Eg(ohms) Eg(ohms) E(uf) Eg(uf) Eg(umhos) fQ(Cps) fg(Cps) b
1110 1275 .1233 .1210 2320 1070 1068 0.966
1110 1175 .0576 L0621 2350 2450 465 0.932
1110 882 1233 .0521 2350 1930 1940 0.932
1110 1944 .0576 +1.210 2360 1270 1270 0.940
1110 1285 545 .045 2325 240 2382 0.944
1110 733 « 545 .1210 2330 640 639 0.939
1110 3705 .0110 .0521 330 3170 3225 0.955
1110 1209 .0110 .00945 2550 11800 13800 0.963

The experimental and theoretical values of fy check within
5% up to epproximstely 10,000 cycles per second where it will be
remembered thét the grid capacity and series grid resistance time
constant tends to meke the observed frequency come out low. This
effect is directly observsble by adding, say, 20 u.u.f. to the grid
capacity and noticing that the frequency drops 700 cycles.

The parameter b, which should equal 1 at this limiting fre-

quency, comes out consistently low by 5 or 6%. Possibly further
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experimentation would clear up this point. However, as it stands

the theory checks within 5 or 6% with the experimental values.

V1. Effect of Grid Current

While the introduction of series grid resistors to prevent
grid current flow is e useful device at the lower frequencies (up to
10,000 c.p.s8.), if higher frequencies are desired this resistance must
be omitted in order to maintain a steep wave front. The original
analysis cannot be carried through because the grid voltagesare no
longer equal and opposite in phase.

The effect of grid current flow in the grid circuit is to
lower (Rg), the grid resistor, to about 500 ohms during the positive
swing of the grid. In the plate circuit the flow of grid current changes
the transfer characteristic so that it is not as symmetrical about the
bias voltage. These factors increase the frequency of the multivibrator
over that calculated in the previous theory. The grid wave forms are
changed in a somewhat predictable manner. For instance, for large
values of the parameter b (b > 10) the grid current cuts off the posi-

tive swing of the grid voltage. Thus:



Grid

/:7'3 26

Since the grid resistor effectively is much smaller than
the plate resistor due to grid current flow, the exponential dis-

tortion is larger. Hence:

P\d"@.
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For smell values of b, the flow of grid current does not
affect the grid circuit as much as the plate circuit. The effect
is to change the grid transfer characteristic from the one assumed

here to that assumed by Van der Pol with the result that the grid wave

forms are as follows:

Fig 28

(9)

This is seen to be of the form calculated by Van der Pol.

The exponential distortion of the plate voltage for smeall b

wn

is reduced because the plate resistors:are smaller. The plate current

distortion, however, is just as large. Hence

To
o

(9) Relaxation Oscillations, Phil. Mag. (7) 2, p. 986 (1926).
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Plate

VII. Practical Results
(a) Distortions

Since the multivibrator is used to produce "square waves"
it is important to examine the wave form on the plate of the tubes
in order to determine what factors make the wave depart from a true
rectangular shape. Aside from the ultimate limit to squareness caused
by the shunt capacities and the lead inductences, there are two other
sources of distortion. First, the flow of current through the conden-
sers (C) results in an exponential beginning of the wave. ©Secondly,
the flow of current through the vacuum tube just before "flip-over"
occurs gives rise to the final curvature of the wave. These distortions

can be minimized by a proper choice of circuit constants. In general
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it can be said that the sharper the transfer characteristic (large
gm) the more quickly will the "flip-over" take place. To be more
specific, the parameter b must be much greater than 1. This means
that the "flip-over" region is only a small part of the actusl grid
swing.

To correct for the exponential distortion the grid resistor
(Rg) must be lerge compared with the plate resistor (Rp). If this is
not feasible, the cathode current may be used by inserting a small
resistor in the cathode circuit. Also, cathode followers may be in-
serted after each tube. Still another method is to introduce another
tube in such a way that there is no condenser connection to the plate
from which the output signal is taken. These methods will be illus-
trated below.

To eliminate the distortion due to plate current flow before
"flip-over", it is necessary to increase the mutual conductance (gp)
of the transfer characteristi€.. One method of doing this is to make
use of the discontinuous properties of trigger circuits. W. Nottingham(lo)

has suggested a circuit which has the following "transfer characteristic.”

()0) Class Notes (1940).
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/‘7330

TR G o p - - — =

This may be used to give an effective (gy) which is essen-
tially infinite (1limited only by the tube capacities).
(b) Practical Circuits

1. Multivibrator Utilizing Cathode Followers




2. liodified Nottingham Trigger Circuit

Fig 32

The operation is based on the regeneration introduced by the
25 ohm cathode resistor. When the voltage input (e) is sufficiently
positive the bias on the 6ACT7 will be positive and current will flow,
thus biasing the 6L6 to cut-off. The voltage of the point (&) is

then, say, 400 volts. As (e) is made less positive and finally negative
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there comes a point, namely the cut-off;point of the 6AC7, when the
B6AC7 conducts less. But in doing so the 6L6 conducts more and by
virtue of the 25 ohm cathode resistor more bias appears on the 6AC7.
Thus the regeneration introduced by this resistor caused an extremely
sharp cut-off. The voltage at the point (A) now drops to around 300
volts. As (e) is made more negative nothing happens. However, if

(e) is noﬁ made less negative and then positive, when (e) reaches the
former discontinuity nothing happens since the bias across the 25 ohm
resistor is different. The return to the initial staté does teke
place when (e) is equal to [:25 gﬁiﬁeﬁ£6 - Eg (Cut off 6AC7{]. When
This point is reached the action is again regenerative in that the
bias across the 25 ohm resistor changes in the same direction that (e)

is changing. The cycle is then complete. The hysteresis loop of the

voltage at the point‘(A) is as follows:




46

A BAG7 may be used to savantage in place of the 6L6 if the

resistors are increased.

3. Super-Regenerative Multivibrator.
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The advantages of this circuit are fourfold. First, because
of the sharp cut-off trigger circuit (6AC7 - 6AG7), the pulse con-
tains no distortions due to plate current flow before "flip-over".
Secondly, there is no distortion of the output from the flow of
current in the condensers (C). Thirdly, the size of the pulse on the
grid of the second 6AC7 is independent of the frequency (value of R)
within limits. This allows the circuit to be used at higher freguen-
cies. Lastly, the frequency is not deternined by the cut-off charsc-
teristic of the second 6AC7 since the circuit is regenerative without
this tube. This tube merely serves to switch the equilibrium positions
of the first regenerative unit. The result is a square wave where
sharpness is solely determined by the shunt capacities of the tubeé.

In conclusion, the author wishes to express his appreciation
to Dr. W. H. Pickering for suggesting the problem, znd for his advice

and interest throughout the rest of the work.
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Appendix I. Proof that u+ v - 0 as 77 » .

Ju ., du 4 dv_g .. ..
RGFa+df U+ 5m 37 =0 i

dv  do 4. dU _
Rara*tdr 9 * g dr =0

Let:

U+V'=2R U-U=28 - « . - (3

Solve (3) for u and v and substitute into (1) and (2). This gives:

R_,dS +dR dS dR _ds) |,
/"é{i_ Karstdr tqr RS H(SR) dr ~dr] ¥

a7 KT Tqr TrerrrldT TdT

W IR _ydS dR_dS p_g 4 A [d8+¢3]

Experimentally there is né question of whether or not a
unique periodic solution of (1) and (2) exists. However, mathemati-
cally it might be proved by reducing (1) and (2) to three first order
equations and then applying some generalizations given by Lefshetz.(l)
Here it will be assumed that u and v have unique single-valued

(1) Existence of Periodic Solutions for Certain Differential Equations
S. Lefshetz, Proc, Nat!l Academy of Science 29, pp. 29-32 (1943).
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solutions. Thus from equation (3) R and S are single-valued func-

tions of 7T

Consider (1) and (2) solved for u and v, then define:

P(T)::/—l—éﬂ[ / +———L——1J--(e)

I+ (S-R* * |+(S+R)

_ A )
AN = 3 [/Jr(s—R)’L B /+(3+R)‘J B

Mo =] - £ ] o

+(S-R)?* 1 +(S+R)*

hdding end subtracting equations (4) and (5), and making use of (6),

(7) and (8), there results:

jﬁ+P(> +R=QmES - . .

2
KES + MogE +5 ==QFE - - -

The object now is to prove that R 9- 0. Notice that in equa-

tion (9) each term may be thought of as a force by using a dynamical

analogy. The first term represents the inertial force, the second the

resistance force, and the third the restoring force. On the other

side there is an applied force.
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To prove the theorem use the first integral of the system,
namely the 'energy integral". Multiply (9) by dR end integrate. The

result is:

-
W-‘:ELKC#E +§’-R1: V\[+ l [ Qmjf_ jf-P(r)(d_R)]dr (11)

W then is the 'energy' associatea with the R coordinate of the system
and is equal to the initisl 'energy' plus that added by the Q(7°)
integral minus that dissipated by the resistance P(77).

In a similar fashion the 'energy' integral of (10) is:

2 i ] r 2
U= ‘ZLK(%TS) *55 = Q “fo[O(’)j-‘;S&‘ivaMm(%g) Jdr (12)

U has a similar interpretstion for the coordinate S. The total

'energy' of the system is:

H=U+wW - - . . . .@
H=H - j[M +P(C, )] Scr

The dissipation function for this system is then:

F=MET+PEY - - - - o
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Thus:

-
H:H-/Fdr R € )

But for large 7, H does not approach a constant.

lim HS; ConsT. coe - e -~ (17)

T—>o

This would mean that the steady state solution of (9) and
(10) was sinusoidal, and it is easily seen that = sinusoidal solution,
in general, does not satisfy the equations. Furthermore, since the
‘energy' fluctuations A H must be bounded, it follows that the 'energy’
must oscillate about some value. This means that the dissipation

function F must oscillate about zero for large 77. But from equation

(8):

10 DY BN

Q 2
and (grf;?) and ( g%) are essentially positive; M(7") changes sign

depending on the magnitude of R and S. Also since R and S are single-

valued functions of 77, M(7) must chenge sign as 7  incresses. Thus -

L
F is made up of an oscillating function /M ( ;L_S) and a non-oscillating

-~
function P ( },;_R—)i

But the dissipation function must oscillate about zero for
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large 7°. Hence for large 7 :

Po)(4B) >0 - - - - - G

Using (18):
Q]_E_ e« o s+« o (20)
_+0

Thus:

2
d—R ——— 0 . e - = -« - (21)

d7*

Using (7) equation (9) approaches:

pe 24RS __.dS .. . .
[}+(S~R)1Hl +(s+R)] dT

But this is not the solution for S since equation (10) approaches

Qd_b d_kﬁ_ = . - . - 23
Kapa + Mgy +5=0 )

Hence:

F\D_.;..O v % a = =, = l24)

since this solves (22) and satisfies (1) and (2). But R=u+ v,
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1ence for large values of 7.

== - - - - oL ()

Q.EID.




