The Absorption Spectrum of Chlorine Fluoride in the Region $\lambda_{4650-5200 ;}$

The Electron Diffraction Investigation of Chlorino Fluoride end Chlorine Trifluoride

\author{

- Thesis by Austin Levy Wahrhaftig
}

In Partial Fulfilment of the Requiremente for the Degree of Doctor oi Fhilosophy

Califormia Institute of Technology
Fass.dena, California
1941
Page
I. Introduction.
II. Preparation of Chlorine Fluoride and

II. Preparation of Chlorine Fluoride andChlorine Trifluoride.1 Chlorine Trifluoride.
III. The Chlorine Fluoride Spectrun Experimental Frocedure Description of Bands.6

IV. The Chlorine Fluoride Spectrum
Analysis of the rotational Structure. 11
V. The Chlorine Fluoride Spectrum-
Analysis of the Vibrational Structure Determination of the Vibrational Constants.32

VI. The Chlorine Fluoride Spectrum-

Determination of the Rotational Constants. 40
VII. The Chlorine Pluoride Spectrum- -
Determination of the Dissociation Energy The Fotential Curves.48

VIII. The Chlorine Fluoride Spectrum-
Some Applications. 57
IK. The Chlorine Trifluoride Spectrum. 61
X. The Dlectron Diffraction Investigation of Chlorine Fluoride and Chlorine Trifluoride.62
XI. The Absorption Spectrum of Liquid Hydrogen Fluoride and its Aqueous Solution in the Region $\lambda \boldsymbol{\lambda} 800-11000.70$
XII. Summary.
XIII. Fhysical Constants.
XIV. Reforences.
XV. Propositions.

Illustrations

Figure Page1. Apparatus for the Preparation of ChlorineFluoride and Chlorine Trifluoride2 a.
2. Absorption Cell and Associated Apparatus 6a
3. The Spectrum of Chlorine Fluoride 11.
4. A Microphotometer Trace of the Spectrum of Chlorine Fluoride 11b
5. Determination of the Convergence Limit ofthe $v^{\prime} \leftarrow 0$ progression of Chlorine Fluoride49a
6. Potential Curves of Chlorine Fluoride 55a.
7. Comparison of $k_{e}^{\prime \prime}, r_{e}^{\prime \prime}$, and $D_{0}^{\prime \prime}$ for theHalogen Kolecules57b8. The Radial Distribution Punction and theReduced Theoretical Intensity Curves forChlorine Trifluoride67.
Tables
Table1. Molting Foints and Boiling Pointe2. Yields Obtained in the Freparations ofChlorine Fluoride and Ohlorine Trifluoride
3. Fine Structure of Bands $6 \leftarrow 0$ and $7 \leftarrow 0$ ofChlorine Fluoride.
4. Fine Structure of Bands $8 \leftarrow 0$ end $8 \leftarrow 1$ of Chlorine Fluoride 19
5. Fine Structure of Band $9 \leftarrow 0$ I of Chlorine Fluoride 20
6. Fine Structure of Band $10 \longleftarrow 0$ and $10 \leftarrow 1$ of Ohlorine Pluoride
7. Fine Structure of Bands $14 \leftarrow 0$ and $15 \leftarrow 0$ of Chlorine Fluoride
8. Comprison of the $\Delta_{2} F_{0}^{\prime \prime}(J)$ Values for the Various Bands of Chlorine Fluoride418212223

Tables

Tables
Page
9. Comparison of the $\Delta_{2} F_{1}^{\prime \prime}(J)$ values 24
10. Fine Structure of Bends $(3 \leftarrow 0)^{i}$ and $(10 \leftarrow 0)^{i}$ of Ohlorine Fluoride

25
11. Comparison of the $\Delta_{2} F_{0}{ }^{\prime \prime}(J)$ values 26
12. Band Origins of the Chlorine Fluoride Band System 29
13. Diffuse Fine Structure of the $11 \leftarrow 0$ Band 31
14. Band Heads of the Unresolved Chlorine Fluoride Bands 31
15. Deslandres Tablo of the Chlorine Fluoride Bands 33
16. Isotope Epect in Chlorine Fluoride 39
17. Rotational Constants of Chlorine Fluoride 44
18. Comparison of the $B^{\prime \prime}-E^{\prime}$ Velues of Chlorine Fluoride

46
19. Values of Various oectroscopic Constants for the Halogen Kolecules $57 a$
20. Electron Diffraction Investigation of Chlorine Fluoride
21. Zlectron Diffraction Investigation of Ohlorine Trifluoride

The Absorption Spectrum of Chlorine Fluoride
in the Region $\lambda \lambda 4650-5200$

I. Introduction

Fluorine is the strongest oxidizing agent known ${ }^{\text {l }}$, so its properties are of very great interest to the chemist. Yet, there is very little accurate information aveilable as to its thermodynamic constents. All attempts to obtain the absorption spectrum of fluorine have yielded only a continuum , while the bands obtained in emjssion surely do not involve the ground state ${ }^{3}$. Hence, it was decided to investigate the abm sorption spectrum of chlorine fluoride, itself a. Very interesting molea cule, in the hope of obtaining more information about fluorine. As all the halogens except fluorine have a relatively simple band system near the blue region of the spectrum, there seemed to be an excellent chance that resolvable structure might be obtained.

In the preperation of chlorine fluoride, chlorine trifluoride is also obtained. This also was investigated spectroscopically, but nothing of interest was found.

II. Preparation of Chlorine Fluoride and Chlorine Trifluoride

Chlorine fluoride was prepared by the method of Ruff ${ }^{4}$, direct combination of chlorine and fluorine. The method is simpleanchlorine and fluorine are passed into a reaction vessel at $250^{\circ} \mathrm{C}$., using an exm cess of fluorine, so that all the chlorine reacts to give chlorine fluorm ide and chlorine trifluoride. The products and the excess fluorine are then separated by fractional condensation. There are, however, certain experimental difficulties. The great reactivity of the flvorine and the even greater reactivity of the chlorine fluoride and chlorine trifluoride
require that the apparatus be made entirely from copper and quartz, with no wax or grease in immediate contact with the products; and the impurities in the fluorine, carbon and silicon tetrafluorjdes, are difficult to remove.

In these experiments, the fluorine was obtained by the electrolysis of molten potassium hydrogen fluoride in a generator which was kindly made available by Professor Yost. Several different preparations of the chlorine fluoride were made, in between which it was necessery to regenera.te the charge in the generator, replacing the hydrogen fluoride decomposed by the electrolysis. It was found that a method much faster and cheaper than putting in a new charge or regenerating the old by the method of Simons ${ }^{5}$ is to distil anhydrous hydrogen fluoride into the melt. Anhydrous hydrogen fluoride of quite good purity cen now be obtained conm mercially, and to carry out the distillation it is necessary only to lead a tube from the tank to near the bottom of the melt, the hydracen fluoride being absorbed very rapidly and smoothly, without excessive evolution of heat. In this menner a regeneration can be carried out in a few hours instead of a day or more. Another advantace is that more hydrogen fluoride can be distilled in than corresponds to the formula $K H F_{z}$, and so a greatar quantity of fluorine can be obtained before regeneration is again necessary. After treatnent in this way, fluorine is obtained within fif~ teen minutes of the start of the electrolysis. However, the electrolysis whe always allowed to proceed for at least two hours before the start of the reaction, in order to eliminate silicon and oxygen compounds from the melt。

The apparatus used to prepsre the chlorine fluoride is diagramed in Figure 1. From the fluorine generator A, the gas flows through the traps B, C, and D into the fumace E. Trap B, of copper, is filled with fused potassiun fluoride to remove hydrogen fluoride from the fluorine.

Figure 1.

Apparatus for the Freparation
of Chlorine Fluoride and Chlorine Trifluoride

Traps C and D, of copper with thinmalled monel tubing lesds are cooled to about -75° and $-150^{\circ} \mathrm{C}$, respectively, trap C by a dry-ice alcohol bath, trap D by a liquid propane bath. The temperature of the latter, determined by means of a five-junction copper-constantin thermocouple, was held in the range -140° to -160° by blowing liquid air throuch a spiral of copper tubing inmersed in the liquid propane. The reaction vessel E, a copper block bored out, with copper tubes silver soldered in place as indicated in Figure 1 , was heated electrically by a heater wound about it. The temperature, measured by a themometer, was held between 250° and 275° during 2.11. preparations.

The chlorine used was commercial tank chlorine which is believed to be reasonably pure. It was bubbled twice through concentrated C.P. sulfuric acid, passed through a colum containing tightly packed glass wool, and then led into the reaction vessel throuch a copper tube. The rate of flow of the chlorine was determined by its rate of bubbling through one of the sulfuric acid traps.

For ease in disassembling, the reaction vessel outlet was fitted with a copper standard teper ($\boldsymbol{F}^{\boldsymbol{T}} 7 / 25$), and the next two traps, F and G, were constructed of fused quartz with similar tapers. Trap F wes cooled in a dry-ice alcohol bath to about -75°; trap G was kept at about -150° in the some manner as trap D. It was found necessary to use a small anount of lubricant on the tapered joints. Nothing that was tried was very satisfactory, but graphite bound together with apiezon grease and applied to the slightly wermed taper was found to hold up for a week or so.

The freezing points and boiling points of the substances which need to be considered in this preparation are listed in Table 1.
4.

Table 1

	Melting point, 0_{C}	Boiling point, ${ }_{\mathrm{C}}^{2}$
HF	-92	19.4
ClF_{3}	-83	1.3
ClO_{2}	-59	$9.9^{73 /}$
Cl_{2}	-102	-34
SiF_{4}	--	$-95^{76}($ sub1. $)$
ClF	-154	-100
CF_{4}	--	-130
$\mathrm{~F}_{2}$	-223	-188

It is seen that the impurities present in the fluorine are largely removed in traps A, B, and C. Thus, provided a sufficient excess of fluorine is present, the only substances issuing from the reaction vessel are chlorine trifluoride, chlorine fluoride, and fluorine. The first of these is condensed in trap F, the second in $\operatorname{trap} G$, and the last is not condensed.

The fluorine generator current was held at about 10.5 amperes, which at 100% efficiency corresponds to 4.9 liters of fluorine per hour. The efficiency of the generator is unknown, but Ruff has reported 50% to 83%. The rate of flow of reactants, the length of the run, and the estinated amount of products collected are given in Table 2.

Table 2

Prep.	Rate F_{z} flow 100% eff. 1. gas/hr.	Rate Cl_{2} flow 1. gas/hr.	Time prod. collected, hrs	Amount of ClF coll. ml. li. q	Amount of $\mathrm{ClF}_{3} \mathrm{coll}$. ml. liq.
I	4.9	$11 / 2$	$63 / 4$		15
			5	7	
II	4.9	$21 / 4$	4	not estimated, but$\mathrm{ClF}<\mathrm{ClF}_{3}$	
III	4.9	$23 / 4$	4	12	16

At the conclusion of a preparation, the quartz traps were dism assembled from the apparatus and their outlets closed with sealed off quartz tapers. The traps containing the chlorine fluoride and the chlorine trifluoride were kept in liquid air and dry-ice alcohol baths, respectively, until completion of the experiments,

Before being used, the products were distilled in an all-quartz system, approximately the first and last 15% of the distillate being discarded.

It is believed that the purity of the products was reasonably good. The most likely impurities in the chlorine fluoride are the carbon and silicon tetrafluorides. Both of these are present in the fluorine as it comes from the generator, but should be largely removed in trap D, as previously mentioned. Also, carbon tetrafluoride could be obtained by the action of the chlorine fluoride on the lubricant on the tapered joints, and silicon tetrafluoride could be obtained by the action of the chlorine fluoride on the quartz. The rate of both these reactions was observed to be very slow. In any case, no trouble from any unknown absorption was experienced in photographing the spectrum. Also, the electron diffraction investigation (discussed in a later section of this thesis) gave no indication of the presence of silicon tetralluoride, which would show up plainly if present in large anount, more than fifteen percent.

In the course of the spectroscopic investigation, chlorine dioxide was found to be present in both the chlorine fluoride and the chlorine trifluoride. This will be discussed later. Any other impurities which might have gotten into the chlorine trifluoride have boiling points sufe ficiently different from the boiling point of the chlorine trifluoride to be removed by the simple distillation,

III. The Chlorine Fluoride Spectrum

Experimental Procedure
Description of Bands
The absorption spectrum of chlorine fluoride was studied under both low and high dispersion. The absorption cell, used for all photographs, was a three meter length of brass tubing, of twelve millimeter internal diameter. The windows of fused quartz were clamped onto the ends of the tube using copper gaskets.

The apparatus used to evacuate the cell and to introduce the chlorine fluoride is shown in Figure 2. Valve A is a special needle valve, designed primarily for use on the electron diffraction machine. It is so constructed that nothing but copper comes into contsct with the gas. The needle of copper with a spherical end of $3 / 16^{\prime \prime}$ radius is forced against a narrow seat about $3 / 16^{\prime \prime}$ in diameter by a strone spring. A $0.006^{\prime \prime}$ copper diaphram $11 / 2^{\prime \prime}$ in diameter permits a $1 / 16^{\prime \prime}$ motion of the needle,

The pressure gauge B, also constructed so that nothing but copper comes in contact with the ge.s, has a $0.0015^{\prime \prime}$ copper diaphram $33 / 4^{\prime \prime}$ in diameter on which rests a steel needle, the upper part of which is visible through a glass tube. The gauge was used as a null indicator, the air pressure above the diaphran being adjusted to balance the chlorine fluoride pressure below. The sensitivity of the gauge is low; also the diaphram showed considerable hysteresis, but it was adequate for adjusting the pressure in the cell to within half a centimeter of the desired value.

The valve C is a comercial stainless steel needle valve, placed so the packing gland is on the pump side of the line. It was entirely satisfactory, save that the packing had to be replaced once. The solid sodium hydroxide in the trap D, placed there to protect the pump and the mercury manometer F, was not very satisfactory, as the rate of reaction

Figure ?
of the solid dry sodium hydroxide with the chlorine fluoride was slow. The chlorine fluoride that did get through the sodiun hydroxide reacted with the pump oil. This was no doubt rather hard on the pump, but did keep the chlorine fluoride out of the laboratory, where it could have caused far more danage.

The entire system was reasonably vacuum tight, considering the fact that most of the connections were made by standard brass couplings. When evecuated to the limit of the rather old mechanical pump used, a pressure of about two millimeters, the pressure would rise to perhaps one and one-half centimeters in an hour. As the exposure times never ran much longer than this, and as only the moisture in the air could cause trouble, such a leak was of no consequence.

The experimental procedure was to evacuate the system completely with the chlorine fluoride cooled in liquid air. Then, velve C was closed and the liquid air removed until the pressure had reached the desired Value, when valve A was closed and the liquid air again placed around the chlorine fluoride, The exposures were then taken as quickly as possible,
 fluoride to come into contact with the sodium hydrowide in trap D. Then, after ten or fifteen minutes, valve E was opened and the system punped out.

The light source used was a five hundred watt projection lamp focused into the tube by a short focus lense. At the exit end of the cell a lens and plane mirror served to focus the light on the slit of the low dispersion prism instrument, while a lens only was needed to focus the light on the slit of the grating. With unfogged windows, exposure times of two minutes and thirty minutes were needed on the prisn and grating instrunents, respectively, at $\lambda 4800$. However, the quartz windows were attacked fairly rapidly; the light by causing dissociation of the chlor-
ine fluoride greatly increasing the rate of the reaction. The window at the exit end of the absorption cell remained in a usable condition for perhaps ten hours, but the window at the source end became badly fogged after only two or three hours. During several of the exposures a filter consisting of a ten centimeter layer of a ten percent solution of potasm sium ferrocyanide was placed before the cell to cut out radiation of wave lengths shorter than $\lambda 4400$, but this had very little if any effect on the fogging of the windows.

The low dispersion studies were made on a Littrow quartz spectrograph with Eastman 40 and Eastman IF plates. The dispersion obtained was about $64 \mathrm{~cm}^{-1}$ per mm . at $\lambda 4000$; the slit width was 0.0 hm. for most plates, O. Olmm. for several. An iron spectrum was placed below and above the abo sorption spectra on each plate. The region $\lambda \lambda 3500=7000$ was investigated and in the region $\lambda \lambda 3500-4830$ a large number of band heads* were observed. The long wave length heads were weak with an atmosphere pressure of chlorine fluoride in the cell, but the strength of the absorption increased rapidly on going to shorter wave lengths, so that in the shortest wave length region exanined a fraction of a millimeter pressure was sufficient. Largely due to the decrease in output of the source at shorter wave lengths, the exposures time had to be increased from onewalf minute at $\lambda \boldsymbol{d} 6000$ to fi.fteen minutes at $\lambda 3500$.

Measurements were made on one low dispersion plate on which four spectra had been taken, the fixst with a chlorine fluoride pressure of 50 cm , and an exposure of 1 minute, the others at 50 en. and 4 minutes, 3 mm , and 4 minutes, and 0.3 mm , and 13 minutes, respectively. Fifty eight band heads were measured. With a few exceptions, four measurements from at least two of the above spectra were made on each band head.
*On pp.13-16 of this thesis a short description of some of the spectroscopic nomenclature is given.

Similar measurements were made on thirty-one selected iron lines, The wave lengths of the iron lines were obtained from the M.I.T. Wavelength Tables ${ }^{6}$. The reciprocals of the wave lengths were calculated, the correction to vacuum as given by the International Critical Tables ${ }^{7}$ applied, a lineax interpolation formula obtained, and a correction curve plotted in the usual way.

On plotting the positions of the band heads on a wave number scale it was seen that there were at least four progressions, and the general appearance was that of a polyatomic rather than a diatomic molecule. At the suggestion of Dr. Eyster, the above bands were compared with the chlorine dioxide bands in this region, the vibrational structure of which has been thoroughly investigated by Urey and Johnston ${ }^{8}$. It was found that fifty-seven of the fifty-eight bands measured were reported by them, the mean deviation between their results and the results of this investigation being about seven wave numbers. The remaining band head, at $21.140 \operatorname{cm}^{-1}(\boldsymbol{\lambda} 4729)$, wes later found to be of chlorine fluoride. As reported by Urey and Johnston, the chlorine dioxide absorption is very strong in the near ultramiolet but becomes weak as one goes into the blue region of the spectrum. They found it necessary to use pressures ranging from 0.2 to 600 mm . in absorption cells 30 and 60 cm . in length. As the difference in boiling points of chlorine dioxide and chlorine fluoride is very large (see Table I), it seems impossible that a large concentration of the former could be present in the latter after distillation. It seems more likely that the amount of chlorine dioxide was very snall, probably less than one percent, this percentage being more than enough to account for the observed absorption. The presence of chlorine dioxide causes no trouble in the spectroscopic investigation, as the bands due to it are easily identified on the high dispersion plates, but the appearance of the low dispersion bands has been treated
in some detail here for use later in reçard to the investigation of chlorine fluoride and chlorine trifluoride by the electron diffraction method, in which it is not usually possible to determine the presence of or the effect of impurities.

The high dispersion studies were made in the second order of a twenty-one foot concave grating, using Eastman 40 plates. The absorption cell was used exactly as in the low dispersion work. A very large number of bands were found, most of them with very complicated, only partially resolved, fine structure, and hence due to chlorine dioxide; also several bands obviously resulting from a diatomic molecule of low moment of inertia were observed. The region about these, $\lambda \lambda$ 3990-5380, was then intensively studied. The pressure of gas used varied from 60 to 80 cm . It would have been advantageous to use a higher pressure or a longer path length, but neither was feasible. Exposure times varied from one-half to two hours, depending principally on the condition of the windows, The slit width used was 0.035 or 0.040 mm , , and the dispersion obtained was approximately $5 \mathrm{~cm}^{-1}$ per mm . An iron arc comparison spectrum was placed on either side of each chlorine fluoride spectrum.

A beautiful progression of five bends, degraded to the red, was found, with sharp heads at $4901,4868,4812,4761$ and $4728 \AA$. The fine structure in these bands is clearly resolved. The bands at 4901, 4.868 and $4761 \AA$ seen to consist of doublets whose separation increeses as one goes further away from the band heads. The bands at $\lambda 4812$ and $\lambda 4728$ consist of single lines heving a spacing uniformly increesing with distence from the origin, but the spacing in the $\lambda 4812$ bend is twice that in the $\lambda 4.728$ band.

Between the head at $\lambda 4728$ and $\lambda 4680$ there is a region of broad diffuse lines in which there are faintly visible three diffuse band heads but no corresponding fine structure. Then at about 4662, 4654, 4649 and
and $4647 \AA$ there are four more bend heads which plainly converge to a limit very near the last mentioned head. The first three of these last mentioned heads have plainly resolved fine structure, but it was possible to measure the lines of the first two only. A contact print of the ebove region is given in Figure 3; e. microphotometer trace of part of the region is given in Figure 4.

The region beyond $\lambda 4647$ was carefully examined for more diatonic bands, but none could be found. A large number of bends of chlorine dioxide were found to the violet of $\lambda 4600$, but their intensityy de.. creases rapidly with increasing wave lencth, so that ro bands arising from chlorine dioxide could be detected to the red of $\lambda 4620$. It can be definttely said that there are no bends of chlorine fluorice in the region $\lambda \lambda 4600-1647$ of intensity at a.1l comparable to the bands in the recion 4001-4.728.

On the long wave side of $\lambda 4901$ the bends soon become indistinct. The intensity of absorption rapidly decreases and the bends begin to everlap badly. Beyond $\lambda 5250$ the absorption lines fade out completely with the path length and pressure used. Two bands were analysed in this region, their heads being at λ_{4907} and $\lambda 4987$.

IV. The Chlorine Fluoride Spectrum
 Analysis of the Rotational Structure

The first step in the analysis was to make high-contrast enlargements of the chlorine fluorine bands and to pick out the obviovs branches. This was very easy in the bands shown in Figure 3. It can easily be seen that the bands consist of single P and R branches, which give the bands at $\lambda 4868$ and 4761 a doublet appearance and which overlep in the band at $\lambda 4812$.

After picking out the branches of several bands, the positions of all the lines on the plates in the vicinity of the bands so treated vere

Figure 4
measured. lieasurements were made on two plates, the region λ_{4654} to $\lambda 4900$ being measured on one (the plate shown in Figure 3) and the region $\lambda 4900$ to $\lambda 5032$ on the other. Three settings were made on each line of the absorption spectrum and the iron arc spectrum.

The accuracy of these neasurements varied greatly. On most strong sharp absorption lines and on the the iron arc comparison lines the maximum difference between any two of the three measurements made on each line wes 0.002 cm . corresponding to a probable error of less than $0.1 \mathrm{~cm}^{-1}$. But very few of the lines measured were both strong and sharp, so that differences between successive measurements of two and three times the above figure were not uncommon. The calculations of the frequencies from the comparator readings were made in the way described for the low dispersion plates. The doviation curves were smooth and had a. probable error less than $0.05 \mathrm{~cm}^{-1}$. Hence, it is believed that the probable error in measurement of strong sharp lines is $0.1 \mathrm{~cm}^{-1}$, of most of the remaining lines $0.2 \mathrm{~cm}^{-1}$, while for some of the weakest lines (Principally from the "isotope" bands) and for overlapping lines there may be errors of $0.5 \mathrm{~cm}^{-1}$. It might be noted here that the slit width corresponds to $0.2 \mathrm{~cm}^{-1}$ and that the theoretical resolving power of the grating in this region for an infinitely narrow slit is $0.11 \mathrm{~cm}^{-1}$.

The rotational analysis was now carried out in the usual way. For convenience in the description to follow, the numbering of the bends $2 s$ finally decided upon will be used, the reasons for this choice of numbering being given later. The connection between this numbering and the wave lengths previously given for certain band heads may be seen by a glance at Figure 4. It is evident that this being the absorption seectrum of a cold gas, the set of bands $6 \leftarrow 0,7 \leftarrow 0,8 \leftarrow 0,9 \leftarrow 0$, and $10 \leftarrow 0$ must be a progression arłising from a common initial state and hence there must be a numbering for each of these bands such that the $\Delta_{2} F^{\prime \prime \prime}(J)$'s are the same for all bands.

Throughout this paper the standard spectroscopic norenclature is used ${ }^{9}, 0,9$ We will here digress to sumarize the more importent definitions and formulas used in the following discussion.

$$
\begin{equation*}
T=T_{e}+G+F, \quad T_{e} \gg G \gg F_{s} \tag{1}
\end{equation*}
$$

where T is the total energy of the molecule expressed in wove number units, and T_{e}, G, and F are the electronic, vibrational, and rotational energies, respectively, of the molecule. Then for a diatomic molecule, $G=G(v)$ is a function of a vibrational quantum number v, and $F=F_{V(J)}$ is a function of a rotational quanturn number J, and also of the value of v. Both $F_{v(J)}$ and $G(\nabla)$ depend on the electronic state of the molecule. The two states involved in any given transition, in this case two electronic levels, are designated by applying primes to all quantities referring to the upper or higher energy state, double primes to all quantities referring to the lower state.

$$
\begin{gather*}
\text { It is in general found that:- } \\
G_{(V)}=w_{e}\left(v+\frac{1}{2}\right)-w_{e} x_{e}\left(v+\frac{1}{2}\right)^{2}+w_{e} y_{e}\left(v+\frac{1}{2}\right)^{3}+\ldots \tag{2}\\
w_{e} \gg w_{e} x_{e} \gg w_{e} V_{e} \\
F_{V(J)}=B_{V} J(J+I)-D_{V} J^{2}(J+1)^{2}+\ldots \ldots \ldots \ldots \tag{3}\\
B_{V} \gg D_{V} \\
B_{V}=B_{e}-\alpha_{e}\left(v+\frac{1}{2}\right)+\ldots \ldots \ldots \ldots \ldots \ldots . \\
B_{e} \gg \alpha_{e} \\
D_{V}=D_{e}+\beta_{e}\left(V+\frac{1}{2}\right)+\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \tag{4}\\
D_{e} \gg \beta_{e}
\end{gather*}
$$

For the frequencies emitted or absorbed,

$$
\begin{equation*}
V=T^{\prime}-T^{\prime \prime}=T_{e}^{\prime}-T_{e}^{\prime \prime}+G_{\left(V^{\prime}\right)}^{p}-G_{\left(V^{\prime \prime}\right)}^{\prime \prime}+F_{V^{\prime}\left(J^{\prime}\right)}^{\prime}-F_{V^{\prime \prime}\left(J^{\prime \prime}\right)}^{\prime \prime} \tag{5}
\end{equation*}
$$

where the selection rules are that $\Delta \nabla=\nabla^{\prime}=\nabla^{\prime \prime}=$ any integer and $\Delta J=J^{\prime}-J^{\prime \prime}= \pm 1$, or 0 in general, but in certoin special cases $\Delta J= \pm$ I only.

Thus a given band system arises from the totelity of transitions between two electronic levels of the molecule. Each band of the band system consists of all the transitions involving $\not A$ single vibrational levels in the upper and lower electronic states and so can be denoted by two quantum numbers, $V^{\text {: }}$ and $\mathrm{F}^{\prime \prime}$, the transition giving rise to an absorption band being represented by $\mathrm{v}^{\text { }} \longleftarrow \mathrm{\nabla}^{\prime \prime}$. Each line of a given band then involves x de= finite rotational levels in the initial and final states, but because of the selection rule on J it is more convenient to give only the quantum number of the lower state together with the value of ΔJ.

It is usual to consider the rotational structure, resulting from $F_{V^{\prime}}^{\text {(}}\left(J^{r}\right)-F_{V^{\prime \prime}}^{\prime \prime}\left(J^{\prime \prime}\right)$ as superimposed upon the vibrational structure. The latter is described by

$$
\begin{array}{r}
V_{0}=V_{e}+w_{e}^{w^{\prime}}\left(v^{\prime}+\frac{1}{2}\right)-\omega_{e}^{\prime} x_{e}^{\prime}\left(v^{\mathbf{y}}+\frac{1}{2}\right)^{2}+w_{e}^{\mathbf{y}} y_{e}^{2}\left(v^{\prime}+\frac{1}{2}\right)^{3}+ \\
 \tag{6}\\
-\left[w_{e}^{\prime \prime}\left(v^{\prime \prime}+\frac{1}{2}\right)-w_{e}^{\prime \prime} x_{e}^{\prime \prime}\left(v^{\prime \prime}+\frac{1}{2}\right)^{2}+\ldots \ldots \ldots \ldots\right]
\end{array}
$$

where $V_{e}=T_{e}^{q}-T_{e}^{\prime \prime}$ is the origin of the band system and the values of V_{0} given by the equation are the band origins, the positions of lines resulting from an imasinary transition ($v^{2}-\mathrm{V}^{\prime \prime}$) in which $\mathrm{F}^{\mathrm{y}}\left(\mathrm{J}^{r}\right)^{=F^{\prime \prime}}\left(\mathrm{J}^{\prime \prime}\right)^{\circ}$ The rotational structure of a band is then given by

$$
V=V_{0}+F_{V^{\prime}\left(J^{\prime}\right)}^{\prime}-F_{V^{\prime \prime}\left(J^{\prime \prime}\right)}^{\prime \prime} \text { A set oi lines in which } \Delta J=J^{\prime}-J^{\prime \prime}=+1
$$

is called an R branch, a set in which $\Delta J=0$ a Q branch, and a set in which $\Delta J=-1$ a P branch. As no Q branch was observed in these experiments no more consideration will be given here to the case $\Delta J=0$ 。 Thus, we can write:-

$$
\begin{align*}
& \text { R branch: }-V=V_{0}+F^{8}(J+1)^{-F^{\prime \prime}}(J) R_{(J)} \\
& \text { P branch:- } V=V_{0}+F^{8}(J+1)-F_{(J)}^{\prime \prime}=P_{(J)} \tag{7}
\end{align*}
$$

The quantities obtained by direct measurement of the spectrographic plate are $R_{(J)}$ and $P_{(J)}$. To obtain from these information about
the rotetional constants of the molecule one calculates the quantity

$$
\Delta_{2} F_{\nabla(J)}=F_{\nabla(J+1)}-F_{\nabla(J-1)} \text {. It is at once evident from equation }
$$

(7) that

$$
\begin{align*}
& \Delta_{2} F_{V(J)}^{\prime \prime}=F_{V(J+1)}^{\prime \prime}-F_{V(J-1)}^{\prime \prime}=P_{(J+1)}-R_{(J-1)} \\
& \Delta_{2} F_{V(J)}^{\prime}=F_{V(J+1)}{ }^{\prime} F_{V(J-1)}^{\prime}=P_{(J)}-R_{(J)} \ldots \ldots \ldots \tag{8}
\end{align*}
$$

As the values of the $\Delta_{2} F_{\nabla(J)}$ vary quite appreciably with $v_{\text {, }}$ it is apparent that if the same $\Delta_{2} F_{V(J)}{ }^{\prime}$ s are obtained by the analysis of several different bands, these bands must have one state in cormon.

Using equation (3) but neglecting D_{V}, we may write more explicit expressions for $R_{(J)}$ and $P_{(J)}$:-

$$
\begin{align*}
& R_{(J)}=V_{0}+2 B^{\prime}+\left(3 B^{\prime}-B^{\prime \prime}\right) J+\left(B^{\prime}-B^{\prime \prime}\right) J^{2} \\
& P_{(J)}=V_{0}-\left(B^{\prime}+B^{\prime \prime}\right) J+\left(B^{\prime}-B^{\prime \prime}\right) J^{2} \quad \ldots \ldots \tag{9}
\end{align*}
$$

If $B^{\prime}-B^{\prime \prime}$ is appreciably different from zero, it will be observed that there exists either a minimum in the values for $P_{(J)}$ or a maximum in the velues for $R_{(J)}$, the former signifying that $B^{\prime}-B^{\prime \prime}$ is greater than zero and giving a band described as shaded or degraded toward the violet, the latter signifying that $B^{\prime}-B^{\prime \prime}$ is less than zero and giving a band des. cribed as shoded toward the red. This maximura or minimum is known as the band head and is the most prominent feature on a plate taken with low dispersion. The distance between the band origin and the band head is small if $\mathrm{B}^{\prime}-\mathrm{B}^{\prime \prime}$ is greatly different from zero, as is the case in these bands, and can often be neglected in qualitative considerations of vibrational structure.

It is usual to arrange the band heads or band origins into progressions, a progression being a group of bands having a comon upper or lower vibrational level. From equation (6) it is seen that the band origins for a progression having a comnon lower state ($\mathrm{v}^{\prime \prime}$ const.) must satisfy and equation:-

$$
\boldsymbol{V}=V_{0}+\boldsymbol{w}_{e}{ }_{e}\left(v^{\prime}+\frac{1}{2}\right)-\boldsymbol{w}^{\prime} e^{x^{\prime}} e^{\left(V^{\prime}+\frac{1}{2}\right)^{2}+\boldsymbol{\omega}^{\prime}} e_{e}^{y^{\prime}} e^{\left(V^{v}+\frac{1}{2}\right)^{3}+\ldots \ldots \ldots}
$$

where V_{0} is a constent for a given progression.
We have so far ignored the fact that chlorine has two isotopes, $C 1^{55}$ and $C 1^{37}$, so that the spectrum observed actually arises from two molecules, $C 1{ }^{35} F$ and $C 1{ }^{37} F$. The electronic terms $T_{e}{ }_{e}$ and $T^{\prime \prime} e^{\text {, depend- }}$ ing on the nuclear charges and the electron interactions are practically identical for the two molecules, but the vibrational and rotational energies, depending on the reduced masses of the molecules, will be different. To distinguish between the two sets of bands and the two sets of constants obtained therefrom, the usual convention is followed in applying the superscript i to every symbol having to do with the less abundent molecule. Since the ratio of $C 1^{37} \mathrm{~F}$ to $\mathrm{Cl}{ }^{35} \mathrm{~F}$ is 1 to 3 , relatively few bends of the isotopic molecule were found.

To return to the ClF spectrun, it was found that the rotational
fines of seven of the bends in the region studied could be numbered so as to give the same $\Delta_{2} \mathrm{~F}^{\prime \prime}$ is. Since at room temperature the number of molecules in states having $v^{\prime \prime}>0$ decreases very rapidly as $v^{\prime \prime}$ increases, the state these seven bands have in common must be the lower state. The experimental values for $R_{(J)}$ and $P_{(J)}$ for these bands, called $7 \leftarrow 0$, $8 \leftarrow 0,9 \leftarrow 0,10 \longleftarrow 0,14 \longleftarrow 0$ and $15 \longleftarrow 0$, are given in Tables 3 to 7 along with the values of $\Delta_{2} F^{\prime}(J)=R_{(J)}-P_{(J)}$. In Table 8, are given the values of $\Delta_{2} F^{\prime \prime \prime}(J)$ for these bands and their average. It is seen that the agreement is quite satisfactory for the middle range of \mathcal{J} values. For small J, say $J<4$ the lines involved come very near the band heads and so are difficult to measure because of the crowding tom gether occurring there. Also the intensity becomes low as J approaches O. For high J the intensity again approaches zero, so that the last lines messured in a branch are ${ }_{n}^{\text {miccurate. }}$. In bend $8 \leftarrow 0$ the overlapping of P and R branches give an additional error, which is discussed in some detail later.

Overlapping the $6 \longleftarrow 0$ band is another band, the $10 \longleftarrow 1$ band, having the same $\Delta_{2}{ }^{\mathrm{F}}$ (J) as the $10 \longleftarrow 0$ band. At a slightly longer wave length another band, the $8 \longleftarrow 1$ band, was found having the same $\Delta_{2}{ }^{F^{\prime}}(\mathrm{J})$ as the $8 \longleftarrow 0$ band. The $8 \longleftarrow I$ band is also like the $8 \leftarrow 0$ band in having the lines of the F and R branches overlapping. On comparing the $\Delta_{2} F^{\prime \prime}(J)$ for the bands $10 \longleftarrow 1$ and $8 \leftarrow 1$ it is found that they 0.1 so agree within experimental error. The values for $P_{(J)}, R_{(J)}$ and $\Delta_{2} F^{\prime}(J)$ for the bend $\boldsymbol{\sigma} \longleftarrow 1$ are given in Table 4 where the $\Delta_{2^{F}}{ }_{(J)}$ may be compared with those for the $8 \longleftarrow 0$ band. The $10 \leftarrow 1$ band is similarly treated in Table 6 , and in Table 9 the $\Delta_{2} F^{\prime \prime}$ (J) are compared for these two bands.

18
Table 3

J	$6 \leftarrow 0$				$7 \leftarrow 0$			
	${ }^{R}(J)$	${ }^{\prime}(J)$	$4 \mathrm{~F}^{\prime}(\mathrm{J})$	$\frac{\Delta_{2}{ }^{F \prime}(J)}{J+1 / 2}$	${ }^{R}(J)$	$\left.{ }^{(} \mathrm{J}\right)$	$\Delta_{2}{ }^{\prime}(J)$	$\frac{\Delta_{2}{ }^{1}(J)}{J+1 / 2}$
0								
1						20618.65	.	
2		20393.00			20620.02	617.06	2.96	1.184
3	20395.23	391.19	4.04	1.154	618.65	615.21	3.44	0.983
4	393.91	388.66	5.25	. 167	617.06	512.37	4.69	1.042
5	392.15	386.03	6.12	. 113	615.21	609.45	5.76	. 047
ε	390.02	382.46	7.56	. 163	612.93	605.93	7.00	. 076
7	387.16	373.93	8.23	.097	610.17	601.80	8.37	. 116
8	384.01	374.67	9.34	. 099	606.66	597.44	9.22	. 085
9	380.50	369.71	10.78	. 114	602.78	592.58	10.20	. 073
10	376.33	364.52	11.71	. 115	598.49	587.25	11.24	. 070
11	371.78	358.87	12.81	. 123	593.52	581.29	12.23	. 063
12	366.51	352.20	13.81	. 105	588.18	574.88	13.30	. 064
13	361.25	345.87	15.38	. 139	582.68	567.81	14.87	. 101
14.	355.28	338.84	16.36	. 128	575.40	560.25	26.15	. 114
15	348.78	331.21.	17.57	. 134	569.55	----	---	---
16	(342.47)	323.23	---	----	562.21	544.54	17.67	. 070
17	334.37	(314.4.3)	- ---	-----	554.42	535.60	18.82	. 075
18	326.28	305.80	20.48	1.107	546.10	526.28	19.82	. 071
19	318.15	296.46	21.69	. 112	537.20	516.23	20.97	. 075
20	309.38	286.54	22.35	. 115	527.86	505.92	21.94	. 070
21	300.24	275.99	24.25	. 128	518.08	495.21	22.88	. 064
22	390.47	265.18	25.29	. 124	507.88	483.76	24.12	. 072
23	280.32	254.29	26.03	. 108	497.00	471.37	25.13	. 069
24	268.33	242.16	27.17	. 109	485.75	459.49	26.26	. 071
25	258.05	220.83	28.22	. 107	473.75	446.81	26.94	. 056
28	248.30	---.		---	461.58	433.28	28.30	. 067
27	234.38	205.85	30.53	1.109	448.80	419.54	22.25	. 064
28					435.68	405.41	30.27	. 062
20					421.74			
30					407.70			

Table 4

J	$8 \longleftarrow 0$			$8 \leftarrow 1$			$\begin{gathered} \Delta_{2} F^{\prime \prime}(J) \\ \text { Ave. } \end{gathered}$	$\frac{\Delta_{2} F^{\prime}(J)}{J+1 / 2}$
	${ }^{R}(J)$	$\left.{ }^{(} \mathrm{J}\right)$	$4 F^{\prime}(J)$	$\mathbb{R}^{(J)}$	$P^{(J)}$	$4 F^{\prime}(J)$		
\bigcirc	20821.53		2.17					
1	20821.53	20819.36	2.17		20045.92		2.17	1.447
2	820.73	817.73	3.00	20047.11	20044.62	2.49	2.74	1.096
3	819.36	815.72	3.64	045.99	042.48	3.51	3.58	1.022
4	817.73	813.23	4.50	044.62	039.88	4.74	4.62	1.027
5	815.72	810.09	5.63	042.48	036.82	5.66	5.64	1.025
6	813.23	806.41	6.82	039.88	033.18	6.70	6.76	1.040
7	810.09	802.34	7.75	036.82	029.27	7.55	7.65	1.020
δ	806.41	797.77	8.64	033.18	024.51	8.67	8.66	1.019
9	902.34	792.54	9.80	029.27	019.66	0.61	9.70	1.021
10	797.77	786.75	11.02	C24.51	014.09	10.42	10.72	. 021
11	792.54	780.66	11.88	019.66	008.13	11.53	11.70	. 017
12	786.75	774.00	12.75	014.09	001.48	12.61	12.68	. 014
13	780.66	766.81	13.85	008.13	19994.32	13.81	13.83	. 024
14	774.00	759.04	14.96	001.48	986.78	14.70	14.83	. 023
15	766.81	750.78	16.03	19994.32	978.58	15.74	15.89	. 025
16	759.04	742.04	17.00	986.78	969.91	16.87	16.94	. 027
17	750.78	732.53	18.25	978.58	960.79	17.79	18.02	. 030
18	742.04	722.91	19.13	969.91	951.22	18.68	18.91	. 022
19	732.53	712.52	20.03	960.79	94C. 85	19.94	19.98	. 025
20°	722.91	701.71	21.20	951.22	930.30	20.92	21.06	. 027
21	712.52	690.26	22.26	940.85	919.23	21.62	21.89	. 018
22	701.71	678.42	23.29	930.30	907.50	22.80	23.04	. 024
23	690.26	665.91	24.35	819.23	895.02	24.21	24.28	. 033
24	678.42	653.29	25.13	907.50	882.51	24.99	25.06	. 023
25	665.91	639.51	26.40	895.02			25.40	. 035
26	653.29	625.45	27.34	882.51			27.84	. 050
27	639.51	611.09	28.42				28.42	. 033
28	625.45	596.53	28.92				28.92	. 015
29	611.09							
30	596.53	564.18	32.35				32.35	. 061
31.		547.63						
32	564.18	530.53	33.65				33.65	. 035
33	547.63	512.82	34.81				34.81	. 039
34	530.53	494.27	76.26				36.26	. 051
35	512.82	475.27	37.55				37.55	. 058
36	494.27	455.98) 38.28				38.28	. 049

Table 5

J	$9 \longleftarrow 0$			
	$\mathrm{R}_{(J)}$	${ }^{P}(J)$	$\Delta_{2}{ }^{\prime \prime}{ }^{\prime}(J)$	$\frac{\Delta_{2}{ }^{F^{\prime}}(J)}{J+1 / 2}$
0				
1	20997.53	20995.68	1.85	1.233
2	996.85	20993.92	2.93	1.172
3	995.69	991.84	3.85	1.100
4.	893.92	980.49	4.43	0.984
5	991.84	986.41	5.43	. 987
6	988.92	932.70	6.22	. 956
7	985.67	978.37	7.30	. 973
8	981.73	973.67	8.06	. 948
9	977.38	968.22	9.16	. 964
10	872.48	962.16	10.32	. 982
11	966.78	955.86	10.92	. 949
12	960.89	948.87	12.02	. 961
13	954.30	941.17	13.13	. 972
14	94.7 .09	933.13	13.96	. 962
15	939.35	924.39	14.96	. 965
16	931.09	915.16	15.93	. 965
17	922.38	905.46	16.92	. 966
18	912.87	895.13	17.74	. 958
19	902.85	884.28	18.57	. 952
20	892.45	872.79	19.66	. 959
21	881.41	880.91	20.50	. 953
22.	869.77	848.30	21.47	. 954
23	857.53	835.22	22.31	. 94.9
24	844.71			
25	831.51	807.44	24.07	0.944
26				
27		777.13		
28	788.05	761.06	26.99	0.947
29	772.38	744.55	27.83	0.943
30	756.20	727.41	28.79	0.944
31	739.34	709.77	29.57	0.939
32				
33	703.39	671.88	31.51	0.941

21.

Table 6

J	$10 \longleftarrow 0$			$10 \leftarrow 1$			$\Delta_{2} \boldsymbol{A}^{\prime}(J)$	$\frac{\Delta_{2} F^{\prime}(J)}{J+1 / 2}$
	${ }^{\mathrm{R}}(\mathrm{J})$	P(J)	$\Delta_{2}{ }^{\prime \prime}(J)$	${ }^{R}(J)$	${ }^{2}(\mathrm{~J})$	$\Delta_{2}{ }^{\prime}(J)$		
0								
1	21146.05							
2	145.23	21142.96	$2: 27$				2.27	0.908
3	143.85	140.69	3.16				3.16	0.003
4	141.92	133.07	3:85	20368.58			3.85	0.856
5	139.53	134.60	4.93	365.86			4.93	0.896
6	136.53	130.78	5.75	362.62	20357.50	5.12	5.75	0.885
7	132.96	126.29	6.67		352.80		6.67	0.889
8	128.65	121.20	7.47	355.20	347.66	7.54	7.50	0.882
9	123.92	115.46	8.46	351.05	342.47	8.58	8.51	0.896
10	118.54	109.30	9.24		336.08		9.24	0.880
11	112.57	102.40	10.17	339.49	329.12	10.37	10.27	0.893
12	106.01	094.99	11.02	333.13	321.86	11.27	11.14	0.891
13	098.91	085.79	12.12	326.28	314.43	11.85	11.99	0.888
14	091.18	078.31	12.87	(20318.15)	20305.80	(12.35)	12.87	0.887
15	082.90	059.07	13.83	310.25	296.46	13.79	13.81	0.891
16	073.87	059.18	14.68	301.52	(286.54)	(14.98)	14.68	0.390
17	064.32	018.82	15.50	292.10	(276.99)	(15.11)	15.50	0.886
18	054.00	037.82	16.18	282.12			16.18	0.874
19	043.32	026.30	17.02	271.65	(254.29)	(17.36)	17.02	0.873
20	031.97	013.90	18.07	260.38	(242.16)	(18.22)	18.07	0.881
21	010.78	001.15	18.63	248.34	(229.83)	18.51	18.57	0.864
22	007.22	20987.59	12.63	235.80	216.11	19.69	15.66	0.874
23			-	222.75			---	
24	20980.04	958.86	21.18	209.55	188.23	21.32	21.25	0.867
25	965.41	943.68	21.73	195.22	173.22	22.00	21.87	C. 858
25	950.32	927.68	22.64	179.94	157.32	22.62	22.63	0.354
27	934.38	910.87	23.51		140.93		23.51	0.855
28	917.93	893.98	23.95				23.95	0.840
29	900.88	875.68	25.20				25.20	0.854
30								
31	884.41	837.66	26.75				25.75	0.849

22.

Ta.ble 7

	$14 \longleftarrow 0$				$15 \leftarrow 0$			
J	$R_{(J)}$	$F_{(0)}$	$\Delta_{2} F^{\prime}(J)$	$\frac{\Delta_{2}{ }^{\prime}(J)}{J+1 / 2}$	${ }^{R}(J)$	(J)	$4 F^{1}(J)$	$\frac{\Delta_{2} \mathrm{~F}^{\prime}(J)}{J+1 / 2}$
0								
1								
2	2/444.15							
3	442.35	21410.42	1.93	0.551	21475.86	21474.27	1.59	0.454
4	439.48	21437.10	2.33	0.523	472.83	470.85	1.98	0.440
5	21435.90	433.03	2.87	0.522	469.08	466.57	2.51	0.456
6	431.62	428.38	3.23	0.497	464.48	461.55	2.93	0.451
7	426.49	422.51	3.98	0.531	458.86	455.74	3.12	0.416
8	420.58	416.15	4.43	0.521	452.52	448.01	3.61	0.425
9	414.05	408.60	5.45	(0.574)	445.57	441.38	4.29	0.452
10	406.25	401.20	5.05	(0.481)				
11	398.45	392.36	6.09	0.550		423.88		
12	398.37	383.03	6.34	0.507				
13	379.64	372.78	6.86	0.508				
14	369.44	361.83	7.61	0.525				
15	357.78	350.15	7.61	0.491				
16	245.35	337.35	8.00	0.485				
17	332.50	323.79	8.71	0.498				
18	319.21	309.60	8.61	0.51 .9				
18	305.11	294.62	10.49	0.538				
20		278.71						
21		262.19						

Table 8

J	$\Delta_{2} F^{\prime \prime}(J)$								$\frac{\Delta_{2}{ }^{\text {In }}(J)}{J+1 / 2}$
	$6 \longleftarrow 0$	$7<0$	$8 \leftarrow 0$	$9 \longleftarrow 0$	$10 \leftarrow 0$	$14 \longleftarrow 0$	$15 \leftarrow 0$	Ave	
1	.		3.80					3.80	2.5333
2			5.81	5.69	5.36			5.620	2.2480
3		7.65	7.50	7.36	7.16	7.05		7.344	2.0982
4	9.20	9.20	9.27	9.28	0.25	9.32	9.29	9.258	2.0573
5	11.45	11.13	11.32	11.22	11.14	11.09	11.28	11.232	2.0421
6	13.22	13.41	13.38	13.47	13.24	13.39	13.34	13.350	2.0538
7	15.35	15.49	15.46	15.25	15.33	15.47	15.57	15.417	2.0556
8	17.45	17.59	17.55	17.45	17.50	17.89	17.48	17.558	2.0656
9	19.39	19.41	19.66	19.57	19.35	19.38	---	19.460	2.0484
10	21.63	21.49	21.68	21.52	21.52	21.69	21.69	21.602	2.0573
11	23.53	23.61	23.77	23.61	23.55	23.22	----	23.548	2.0476
12	25.91	25.71	25.73	25.61	25.78	25.67		25.735	2.0588
13	27.77	27.93	27.71	27.76	27.70	(27.54)		27.774	2.0573
14	30.04	-	29.88	29.91	29.84	(29.49)		29.917	2.0623
15	31.97	31.86	31.96	31.93	31.99	(32.09)		31.942	2.0607
16	---	33.95	34.28	33.89	34.08	(33.97)		34.050	2.0636
17	---	35.93	36.13	35.96	36.05	(35.75)		36.017	2.0581
18	37.91	38.10	38.26	38.10	38.02	(37.88)		38.078	2.0582
19	39.74	40.18	40.33	40.08	40.10	(40.50)		40.086	2.0556
20	42.16	42.08	42.27	41.94	42.17	(42.92)		42.129	2.0548
21	44.21	44.10	44.49	44.15	44.38	---		44.266	2.0588
22	45.95	46.22	46.61	46.19	---			46.242	2.0552
23	43.31	48.39	48.42	----	48.36			48.370	2.0583
24	50.49	50.19	50.75	50.09	--.			50.380	2.0563
25	---	52.47	52.97	---	52.38			52.600	2.0627
26	54.25	54.21	54.82	54.33	54.54			54.440	2.0543
27	---	56.17	56.76	---	56.34			56.423	2.0517
28		-..--	--	---	58.70			58.700	2.0596
29			61.27	60.64	---			60.955	2.0662
30			63.46	52.61	63.22			63.096	2.0687
31			66.00	---				66.00	2.0952
32			---					---	---
33			69.91					69.91	2.0868
34			72.36					72.35	2.0973
35			74.54					74.54	2.0997

Table_e

J	$\Delta_{5}{ }^{\text {II }}(\mathrm{J})$			$\frac{\Delta_{2}{ }^{1 \prime}}{3}+(J)$
	$8 \leftarrow 1$	$10-1$	Ave.	
1				
2				
3	7.23	.	7.23	2.066
4	9.17	,	9.17	2.038
5	11.44	11.08	11.26	2.047
6	13.21	13.06	13.14	2.022
7	15.37	14.96	15.16	2.021
8	17.16	---	17.10	2.019
9	19.09	19.12	18.10	2.010
10	21.14	(21.93)	21.14	2.013
11	23.03	--...	23.03	2.003
12	25.34	25.06	25.20	2.016
13	27.31	27.33	27.32	2.024
14	29.55	20.82	29.68	2.047
15	31.57	(31.61)	31.57	2.037
16	33.53	(33.26)	33.53	2.032
17	35.56	--..	35.56	2.032
18	37.73	---	37.73	2.030
19	39.55	(39.98)	39.55	2.028
20	41.56	(41.82)	41.56	2.027
21	43.72	44.27	41.00	2.056
22	4.5 .83	-	45.83	2.037
23	47.85	47.57	47.71	2.030
24		49.53	40.53	2.022
25		52.23	52.23	2.018
26		54.29	52.20	2.040

Table 10

J	$(8 \longleftarrow 0){ }^{i}$				$(10 \leftarrow 0)^{i}$			
	${ }^{R}(J)$	${ }^{5}(J)$	$\Delta_{2} \mathrm{~F}^{\prime}(\mathrm{J})$	$\frac{\Delta_{2}{ }^{F^{\prime}}(J)}{J}+J^{2}$	${ }^{R}(\mathrm{~J})$	$F_{(J)}$	$\angle F^{\prime}(J)$	$\frac{\Delta_{2}{ }^{F \prime}(J)}{J+1 / 2}$
1								
2								
3		20804.10						
4		801.61						
5	20804.10	798.44	5.66	1.029				
6	801.61	795.05	6.56	1.009		21119.54		
7	798.44	790.88	7.56	1.008				
8	795.05				21116.98			
9	790.88	781.44	9.44	0.994		103.93		
10		775.86				097.59		
11	781.44	769.85	11.59	1.008	100.49	090.66	9.83	0.855
12	775.85	753.34	12.52	1.002	21093.88			.
13	769.85				086.45	074.80	11.65	0.863
14	763.34	74.8 .84	14.50	1.000		065.24		
15		740.61			070.42	056.94	13.48	0.870
16	748.84				061.38	047.18	14.20	0.861
17	740.61				051.69	036.51	15.18	0.867
18					041.53			
19					030.98			

Table 11

J	$\Delta_{2}{ }^{\text {F }}$ (${ }^{\text {J }}{ }^{\text {i }}$			$\frac{\Delta 2^{F^{\prime \prime}}(J)^{i}}{J+1 / 2}$
	$(8 \leftarrow 0)^{i}$	$(10<0)^{l}$	Ave.	
0				
1				
2				
3				
4				
5				
6	13.22		13.22	2.034
7			----	
8	17.00		17.00	2.000
9	19.19	19.39	19.29	2.030
10	21.03	---	21.03	2.003
11	--..	-	---	--
12	---	25.69	25.69	2.055
13	27.02	27.64	27.33	2.024
14	29.24	20.51	29.38	2.026
15	----	---	--m-	--
16		33.91	33.91	2.055

The above bands account for all the strong lines and some of the weaker ones in the region studied, but leave unexplained the vast majority of weak lines. However, so far only the molecule C135 has been considered; the $\mathrm{Cl}^{37} \mathrm{~F}$ molecule will also give rise to a band system, identical in appearance with the $01^{35} \mathrm{~F}$ system and describable in the same manner but with slightly different constants.
we consider here the change in the rotational constants. The value for B_{e} is given by ${ }^{11}:-$

$$
\begin{equation*}
B_{e}=\frac{h}{8 \pi^{2} c / / r_{e}^{2}} \tag{10}
\end{equation*}
$$

It is convenient to define a quantity ρ :-

$$
\begin{equation*}
\rho=\sqrt{\frac{M}{M^{i}}} \tag{11}
\end{equation*}
$$

Then, it is seen that $B_{e}^{i}=\rho^{2} B_{e}$. A more complete treatment ${ }^{12}$ in dicates that $\alpha_{e}^{i}=\rho^{3} \alpha_{e}, D_{e}^{i}=\rho^{4} D_{e}$, and $\beta_{e}^{i}=\rho^{5} \beta_{e}$. .Te so obtain:

$$
\begin{aligned}
B_{v}^{i} & =B_{e}^{i}-\alpha_{e}^{i}(v+1 / 2)=\rho^{2} B_{e}-\rho^{3} \alpha_{e}(v+1 / 2) \\
& =\rho^{\dot{2}_{B}}-\rho^{2}(\rho-1) \alpha_{e}(v+1 / 2)
\end{aligned}
$$

In the next section of this thesis it is calculated that $\rho=0.99055$. Hence the second term on the right in the above equation is very small compared to the first and we can say $B_{V}^{i}=\rho^{2} B_{V}$, or

$$
\begin{equation*}
\Delta_{2} F^{i}(J)=\rho^{2} \Delta_{2} F^{\prime}(J) \tag{12}
\end{equation*}
$$

Using the values of $\Delta_{2} F^{i}$ calculatod in this manner as an aid, it was possible to pick out the isotope bands corresponding to two of the bands previously found, namely, the $10 \leftarrow 0$ and $8 \longleftarrow 0$ bands. The lines belonging to these isotope bands, labeled $(10 \leftarrow 0)^{i}$ and $(8 \sim 0)^{i}$, are listed in Table 10 along with the values of $\Delta_{2} F^{\prime \prime}(J)$.

In Table 11 the values for $\Delta_{2} F^{\prime \prime}(\underset{J}{U})$ obtained from the two bands are compared.

Next the positions of the band origins were determined. It is seen from Equation 9 that

$$
R_{(J-1)}+F_{(J)}=2 V_{0}+2\left(B^{\prime}-B^{\prime \prime}\right) J^{2} \ldots \ldots(13) .
$$

Hence if one picks out an approximate value for $B^{\prime}-B^{\prime \prime}$, say $\overline{B^{\prime}-B^{\prime \prime}}$, and plots the quantity $R_{(J-1)}+P_{(J)}-2 \overline{\left(B^{\prime}-B^{\prime \prime}\right)} J^{2}$ ageiast J^{2}, one will obtain a straight line whose intercept on the ordinate axis is $2 V_{0}$ while the slope of the line will give the correction which must be applied to the approximate value of $B^{\prime}-B^{\prime \prime}$ to obtain the true value of $B^{\prime}-B^{\prime \prime}$. The terms involving D have been neglected in the above. They cause the line obtained to be slightly curved and introduce a slight correction into the values for $B^{\prime}-B^{\prime \prime}$, but do not affect the extrapolated value of $2 \boldsymbol{V}_{0}$. As it was only desired here to obtain V_{0} accurately, the terns in D were ignored.

The results of such calculations are given in Table 12. In the third column of the table is listed V_{0}, the band origin, as found by extrapolation of $R^{R}(J-1)+F_{(J)}-2\left(\overline{B^{1}-B^{I I}}\right) J^{2}$ to $J=0$; in the fourth and fifth columen are listed the approximate value of $\overline{B^{\prime}-3^{\prime \prime}}$ used in the calculation and the actual value of $3^{\prime}-3^{\prime \prime}$ when corrected for the slope of the resulting curve. When measured, the value of Z (band head) is given for later reference. It is estimated that the probable error in V_{0} in the bands listed is $\pm 0.05 \mathrm{~cm}^{-1}$, except for the $15 \longleftarrow 0$ and $10 \longleftarrow 1$ bands and the isotope bands where the number of points available for the extrapolation was very small, so that the probable error is perhaps four times the above figure. Similarly, the probable error in $B^{\prime}-B^{\prime \prime}$ is estirated to be $0.002 \mathrm{~cm}^{-1}$, save for the bends listed above where it is several times laiger.
29.

Band	∇ band head	bend origin	$\left(\overline{\left.B_{S}^{\prime}-B_{m} \bar{d}\right)^{\prime \prime}}\right.$	$\begin{aligned} & B^{\prime}-B^{\prime \prime} \\ & (\text { corrected) } \end{aligned}$
$6 \longleftarrow 0$	20396.45	20395.82	0.24	0.233
$7 \leftarrow 0$	620.02	619.32	. 24.5	. 243
$8 \longleftarrow 0$	821.53	820.37	. 26	. 258
$9 \sim 0$	997.53	996.94	. 275	. 272
$10 \leftarrow 0$	21146.05	21145.54	.30	. 288
$14 \longleftarrow 0$	---	445.87	. 40	. 384
$15 *$ C	---	479.95	. 40	. 407
$8 \leftarrow 1$	20047.1	20047.04	. 25	. 259
$10 \longleftarrow 1$	---	372.07	. 29	. 287
$(3-0)^{i}$	--	803.50	. 25	. 248
$(10 \leftarrow 0)^{i}$	--	134.31	. 30	. 295

It has been mentioned that in between bands $10 \longleftarrow 0$ and $14 \longleftarrow 0$ there is a region of broad diffuse lines. Some of these lines come from the band $14 \leftarrow 0$, in which the lines are sharp near the head (or origin) but begin to become diffuse in both branches at about $\mathrm{J}^{\prime \prime}=14$. However, it is seen from Table 7 that the perturbation causing this broadening does not cause any great displacements of line position. There are three more band heads in this region which have not been mentioned yet; those designated $11 \leftarrow 0,12 \leftarrow 0$, and $13 \leftarrow 0$. These can be seen in Figures 3 and 4 . In two of the bands, $12 \leftarrow 0$ and $13 \longleftarrow 0$, there is not a trace of observable structure, even the heads being too diffuse to measure on the comparator. The band $11 \leftarrow 0$ has a little structure for as can be seen from Figure 3 and 4, there is a branch of very diffuse lines converging to a head. On a fourfold enlargement these lines have a definite doublet structure, indicating they consist of smeared together P and R branch lines. The centers of these as determined by measurement on the comparator are given in Table 13. It is seen that in the band $11 \leftarrow 0$ thers is some regu larity, but there is considerable perturbation in the positions of several of the lines.

The positions of the band heads of these three diffuse bands were found from measurenents on a microphotoneter plete containing traces of chlorine fluoride sectrum and of the adjoining iron arc spectrum. The plate microphotometered having previously been mes sured on the comparator, the interpolation formula and correction curve then obtained were used to calculate the frequencies from the measurements on the trace.
31.

Table 13

m^{*}	\mathbb{Z}	$\Delta \boldsymbol{Z}$
1	21236.9	4.6
2	232.3	6.2
3	226.1	5.9
4	220.3	7.2
5	213.1	8.6
6	204.5	
7	$-\cdots$	
8	187.1	13.3
8	173.8	9.1
10	164.7	9.3
11	155.4	

*This numberine is arbitrary.

Table 14

Band	$V_{\text {band head }}$
$11 \leftarrow 0$	21255.5
$12 \leftarrow 0$	338.3
$13 \leftarrow 0$	398.4
$16 \leftarrow 0$	499.8
$17 \leftarrow 0$	507.8

Also measured in the same way were two bands, $16 \leftarrow 0$ and $17 \leftarrow C$, to the high-frequency side of the $15 \ll 0$ band. The positions of these last five bands heads are given in Table 14. The probable error in these values is $\pm 2 \mathrm{~cm}^{-1}$, the error coming almost entirely from the possible orror in the choice of the point on the trace to be talen as the band head. It is of course imposaible to find the band origins for these bands, but it is seen from Table 12 that the separation of band head and band origin is of the order of one wave number for the other bands of the progression. Hence, within experimental error, the band origin and band head may be talcen as coincident for the bands listod in Table 14.
V. The Chlorine Fluoride Syectrum Analysis of the Vibrational Structure Determination of the Vibrational Constants.

An analysis of the vibrational structure of the band system may now be carried out, using tho eccurate values for the bend origins previously obtained. It is et once apparont from the values of V_{0} ond from the rotational analysis that the bends can be arranged into tho V^{\prime} regressions, one consisting of 12 bends, the other of two bends. There are also two isotopic bends which belone to tho first of these progressions. Then the Deslandres table for the bends must be as siven in Table 15, where for the rresent the numbering of the bands is to be telyen as tontative.
33.

Table 15

$V^{\prime} V^{\prime \prime}$	0			$/$
6	20395.82	ΔG	$\Delta^{2} G$	20047.04
7	810.32		22.45	
8	820.37	201.05	24.48	
		175.37	${ }^{(773.33)}$	
9	996.94	148.50	27.97	
10	21145.54		38.6	20372.07
		110.0	(773.47)	
11	255.5	82.8	27.2	
12	338.3		22.7	
		60.1		
13	398.4		12.6	
		47.5		
14	445.87		13.4	
15	479.95	31.08	14.3	
		19.8	11.8	
16	499.8			
17	507.8	8.0		

Isotope bands

V^{\prime}	$V^{\prime \prime}$
8	20808.60
	$-\cdots$
10	21134.31

Since most of the molscules in a gas are in their lowest vibrational level, it is expected that the lowest level abserved has $\mathrm{v}^{\prime \prime}=0$. This is found to be the case in almost all studies of the ebsorption spectra of other molecules. Since a rather long v^{\prime} rogression is observed for chlorine fluoride, the Condon parabola ${ }^{13}$ must be of the open type. This in turn requires that is the lowest vibrational level in the ground state does not give rise to the strong observed v^{\prime} progressions, it must give rise to a continuum at shorter wave lengths.

Because of the chlorine dioxide bands, it is impossible to say that such continuum is absent. However, it can be said that there are no bends of chlorino iluoride to the short wavo length side of $\boldsymbol{\lambda} 4650$ With intensity as much as onewtenth the intensity of the $10 \leftarrow 0$ band. From the approximate value of $\boldsymbol{\omega}_{e}=\mathcal{G}_{(1)} \mathcal{G}_{(0)}=773.40 \mathrm{~cm}^{-1}$, it is calculated from the Boltzman expression that the ratio of the number of molecules in a given level to the number in the next higher level is for low $\mathrm{v}^{\prime \prime}$ roughly forty to one. The intensity of an electronic bend is the product of two factors, the population of the initial state and the transition probability between the initial and firal states. TherePore, it is necessary that if a level exists corresponding to $v^{\prime \prime}-1$, the transition probability for the band $10 \longleftarrow-1$ must be only onefour hundredth of the transition probability for the band $10 \leftarrow 0$. This is a very large ratio for adjacent bands in the Deslandres table, especially as the vibrational frequency in the ground state is fairly high so that the amplitude of oscillation does not change much with $\mathrm{v}^{\prime \prime}$ for $v^{\prime \prime}$ small. Ience it may be concluded that although the numbering in the ground state might possibly be wrong, the chance that such is the case is negligibly small. Additional evidence in favor of the conclusion
that the selected numbering in the lower state is correct is obtained from the potential curves for the chlorine fluoride molecule which are discussed in a later section of this thesis.

The bands $v^{\prime} \leftarrow 1$ are perhaps one-fifth as strong as the bands $v^{\prime} \leftarrow 0$. This indicates that the transition probabilities for the former bands are eight times as large as the transition probabilities for the latter bands, a not unreasonable factor. Very weak lines were observed in the region in which bands having $\mathrm{v}^{\prime \prime}=2$ would appear, but these lines might equally well arise from transitions $v^{\prime} \leftarrow 1$ with v^{\prime} equal to or less than six.
"ith the numbering of the lower state fixed, the isotopic shift can now be used to determine the absolute numbering of levels in the upper state. It is first necessary to fit an equation of the form of equation 7 to the progression $v^{\prime \prime}=0$. It is clear from the first and second differences given in Table 15 that no simple quadratic or cubic in $\left(v^{\prime}+1 / 2\right)$ will fit all the bands of this progression. This is to be expected, for the perturbation which destroys the rotational structure for the bands $11 \leftarrow 0,12 \leftarrow 0$ and $13 \leftarrow 0$ surely also affects the vibrational levels. Such a perturbation usually requires that the levels above the perturbation region be fitted by on equation appreciably different from the equation fitting the levels below the perturbed region. It is evident from Table 15 that only the bands $6 \leftarrow 0$ to $10 \leftarrow 0$ cen be fittod by a simplo equation.

It is necessary here to write the equations for the vibrational isotope effect. We start with Equation 7:-

$$
\begin{align*}
V= & V_{e}+w_{e}^{\prime}\left(V^{\prime}+1 / 2\right)-w_{e}^{\prime} x_{e}\left(V^{\prime}+1 / 2\right)^{2}+w_{e}^{\prime} y_{e}^{\prime}\left(V^{\prime}+1 / 2\right)^{3}+\ldots \\
& -\left[\dot{\omega}_{e}^{\prime \prime}\left(V^{\prime \prime}+1 / 2\right)-w_{e}^{\prime \prime} x_{e}^{\prime \prime}\left(V^{\prime \prime}+1 / 2\right)^{2}+\ldots \ldots \ldots \ldots\right] \cdot \tag{14}
\end{align*}
$$

It is well known that

$$
\begin{equation*}
\omega_{e}=\frac{1}{2 \pi c} \sqrt{\frac{\pi_{e}}{M}} \tag{15}
\end{equation*}
$$

where k_{e} is the bond force constant. Hence it is seen that for the isotopic molecule, $W_{e}^{i}=\rho W_{e}$, where ρ is as defined before; it can also be show that the dependence of the other vibrational constents on ρ is: $W_{e}^{i} x_{e}^{i}=\rho^{2} W_{e}^{x_{e}}$ and $W_{e}^{i} y_{e}^{i}=\rho^{3} W_{e} y_{e}$. The positions of the band origins for the isotopic molecules will then be given by:

$$
\begin{aligned}
V^{i} & =V_{e}+\rho W_{e}^{\prime}\left(v^{\prime}+1 / 2\right)-\rho^{2} W_{e}^{\prime} x_{e}^{\prime}\left(v^{\prime}+1 / 2\right)^{2}+\rho^{3} W_{e}^{\prime} y_{e}^{\prime}\left(v^{\prime}+1 / 2\right)^{3}+ \\
& -\left[\rho w_{e}^{\prime \prime}\left(v^{\prime \prime}+1 / 2\right)-\rho^{2} W_{e}^{\prime \prime x_{e}^{\prime \prime}}\left(v^{\prime \prime}+1 / 2\right)^{2}+\ldots \ldots \ldots\right](16)
\end{aligned}
$$

The isotopic displacement is:

$$
\begin{align*}
& V-V^{i}-(1-\rho) \boldsymbol{W}_{e}^{\prime}\left(v^{\prime}+1 / 2\right)-\left(1-\rho^{2}\right) w_{e}^{\prime} x_{e}^{\prime}\left(v^{\prime}+1 / 2\right)^{2} \\
&+\left(1-\rho^{3}\right) w_{e}^{\prime} y_{e}^{\prime}\left(v^{\prime}+1 / 2\right)^{3}+\ldots \ldots . \\
&-\left[(1-\rho) w_{e}^{\prime \prime}\left(v^{\prime \prime}+1 / 2\right)-\left(1-\rho^{2}\right) w_{e}^{\prime \prime} x_{e}\left(v^{\prime \prime}+1 / 2\right)^{2}+\ldots .\right] \ldots(17) \tag{17}
\end{align*}
$$

As ρ is usually very nearly equal to one, the only exceptions being the molecules containing hydrogen or deuterium, the approximation may be made that:

$$
\begin{align*}
& 1-\rho^{2}=(1-\rho)(1+\rho)=2(1-\rho) \\
& 1-\rho^{3}=(1-\rho)\left(1+\rho+\rho^{2}=3(1-\rho)\right. \tag{18}
\end{align*}
$$

Equation 17 cen then be simplified:-

$$
\begin{aligned}
& V-z^{\prime}=(1-\rho)\left\{w_{e}^{\prime}\left(v^{\prime}+1 / 2\right)-2 w_{e}^{\prime} x_{e}^{\prime}\left(v^{\prime}+1 / 2\right)^{2} \ldots\right. \\
&+3 w_{e}^{\prime} e^{y^{\prime}}\left(v^{\prime}+1 / 2\right)^{3}+\ldots . . \\
&-\left[w_{e}^{\prime \prime}\left(v^{\prime \prime}+1 / 2\right)-2 \omega_{e}^{\prime \prime x_{e}^{\prime \prime}}\left(v^{\prime \prime}+1 / 2\right)^{2} \neq \ldots .0\right] \ldots \ldots(19)
\end{aligned}
$$

As bands were found involving only two vibration levels in the lower electronic state, the values of $\boldsymbol{W}_{e}{ }^{\prime \prime} x_{e}$ " cannot be obtained, but only $G^{\prime \prime}(1)-G^{\prime \prime}(0)=W_{e}^{n}-2 \boldsymbol{w}_{e}^{\prime \prime x_{e}}{ }^{\prime \prime}$. ."e wish to examine the isotope shift in the progression $V^{\prime \prime}=0$, so that the quantity desired is as seen from equation $19,1 / 2 \omega^{\prime \prime} e_{e}-1 / 2 \omega^{\prime \prime} e_{e} x_{e}$. As $\omega_{e} x_{e}$ is only about one percent of \boldsymbol{W}_{e}, the approximation can evidently be made that

$$
\begin{aligned}
& 1 / 2 \omega_{e}^{\prime \prime}-1 / 2 \omega_{e}^{\prime \prime} e_{e}^{\prime \prime}=1 / 2\left(G^{\prime \prime}(1)-G^{\prime \prime}(0)+1 / 2 w_{e}^{\prime \prime} x_{e}^{\prime \prime}\right. \\
& \approx 1 / 2\left[G^{\prime \prime}(1)^{-} G^{\prime \prime}(0)\right]=386.70 \mathrm{~cm}^{-1}
\end{aligned}
$$

The error in $\mathscr{V}-\boldsymbol{V}_{i}^{i}$ arising from this assumption is at most $0.1 \mathrm{~cm}^{-1}$.
"Ie might now calculate ρ. From a summary by Hahn ${ }^{14}$ we have for the atomic weights:- $F^{19}=19.0045, \quad C 1^{35}=34.9803, \quad C 1^{37}=36.9779$, (Aston scale, $0^{16}=16.0000$). Thus, in atomic weight units,

$$
\mu_{\mathrm{A}}=\frac{(34.9803)(19.0045)}{53.9848}=12.3140, M_{\mathrm{A}}^{i}=12.5529
$$

and $\rho=\sqrt{\frac{\mathscr{M}}{M^{i}}}=0.99045$. Substituting the numerical values just obtaine in equation 19, we have

$$
\begin{array}{r}
V-V^{i}=0.00955\left\{\boldsymbol{\omega}^{\prime} e_{e}\left(v^{\prime}+1 / 2\right)-2 \omega^{\prime} e^{x^{\prime}} e^{\left(v^{\prime}+1 / 2\right)^{2}+}\right. \\
3 \boldsymbol{\omega}^{\prime} e_{e}^{y^{\prime}} e_{e}^{\left.\left(v^{\prime}+1 / 2\right)^{3}-386.70\right\}}
\end{array}
$$

It was found that no quadratic in $\left(V^{\prime}+1 / 2\right)$ would fit the progression of bands $G<0$ to $10 \leftarrow 0$ in a satisfactory manner, but that with the addition of a cubic term the experimental data could be fitted fairly well over a considerable range of $\boldsymbol{w}^{\prime} e^{x} e_{e}$ and $\boldsymbol{w}^{\prime} e^{y \prime} e^{\prime}$. As the isotope shift calculated might depend on the choice made, three different equations were fitted to the band origins. The isotope shifts were then calculated, using each equation with several choices for the V ' numbering. The three equations, the equations for the isotopic shift
obtained therefrom, and a comparison of tho values calculated from the several equations with the experimental values are given in Table 16. The isotopic shifts are given not only for the V^{\prime} numbering finally chosen but also for the cases where the number assigned a given band is increased or decreased by one. It is to be noted that the change or variable required for such a new choice of $V^{\prime}\left(V^{\prime}=\bar{V}^{\prime}-1\right.$ in order to increase the number on each band by one) must be made in equation 14, the equation for the band origins, and then a new equation 20 for the isotope shift calculated; the change of variable cannot be made directly in equation 20 .

Equation 21 is the best quadratic in $\left(V^{\prime}+1 / 2\right)$ through the experimental points, and equation 2la is the corresponding equation for the isotope shift. It is seen that there are deviations from the experimental values of over a wave number, many tines any possible ex- " perimental error. Equation 22, with a large negative value for $W^{\prime} e^{y}{ }^{\prime} e^{\prime}$, fits the data very well, but has a negative value for $\omega^{\prime} e^{x \prime} e^{\text {. This }}$ last means that the spacing of the vibrational levels for low V^{\prime} would be contrary to the spacing generally observed. As one purpose of this equation is to give reasonable extrapolation to $V^{\prime}-1 / 2$, a third equation, equation 23, was arbitrarily selected as a compromise between equations 21 and 22. This equation fits the data in a satisfactory manner and also has a value for $\omega^{\prime} e^{x^{\prime}} e^{\text {of }}$ the same order of magnitude as is usually found.

It is seen by an inspection of the isotope shifts as given in Table 16 that all three equations give essentially the same result. The nurnbering chosen yields very satisfactory agreement with experiment for $V^{\prime}=8$, but poor agreement for $V^{\prime}=10$. If the number assigned to each band is increased by one, then satisfactory agreement is obtained

for $v^{\prime}=11$ but very poor agreement for $v^{\prime}=9$. If v^{\prime} is decreased by one, the agreement is entirely unsatisfactory; similarly if v^{\prime} is increased by two the agreement is not satisfactory.

There are two reasons for choosing the v^{\prime} given rather then v^{\prime} increased by one. First, the numbering chosen does give slightly better agreement than the alternative given. Second, and more important, the data on the $(8 \leftarrow 0)^{i}$ band are more complete and are believed to be more reliable than the date on the $(10 \leftarrow 0)^{i}$ band. Fence, the numbering giving best agreement with the data on the $(8<0)^{i}$ band was selllected.

although the

It might be pointed out that $\boldsymbol{A}^{\prime}{ }^{\prime}$ numbering is uncertain by 1 , the quantities useful in thermodynamic calculations and hence of interest to the chemist, the dissociation energy $D_{0} ", \mathcal{W}_{e} ", W_{e}^{" x_{e}}{ }_{e}$, $B_{e}{ }^{\prime \prime}$, all relate to the lower state and are independent of the numbering in the upper state.
VI. The Chlorine Fluoride Spectrum Determination of the Rotational Constants.

The rotational constants of chlorine fluoride can now be obtained. Substituting Equation 3 in Equation 8 it is Pound that

$$
\begin{aligned}
\Delta_{2} F_{v(J)} & \left.=F_{v(J+1)}-F_{v(J}-1\right) \\
& =\left(4 B_{V}-6 D_{V}\right)(J+1 / 2)-8 D_{v}(J+1 / 2)^{3}
\end{aligned}
$$

Hence, if the values of $\Delta_{2} F_{V(J)}$ are known, $\frac{\Delta 2 F_{V}(J)}{(J+1 / 2)}$ can be calculated and plotted against $(J+1 / 2)^{2}$, and a straight line fitted to the points. Then, the value of the ordinate at $(J+1 / 2)^{2}=-3 / 4$ gives $4 B_{v}$ and the slope of the line gives $8 \mathrm{D}_{\mathrm{v}}$. Actually, in these experiments the ex-
trapolation was made to $(J+1 / 2)^{2}=0,6 D_{v}$ being negligible in comporison with $\operatorname{LB}_{\mathrm{V}}$.

The $\Delta_{2} F_{v(J)}^{\prime \prime}$ and $\Delta_{2} F_{v(J)}^{\prime}$ values obtained from the analysis of the various bands have already been tabulated in Tables 3 through 11. From these, or from the average $\Delta_{2} F$ where several bands have a common state, the $\Delta_{2}{ }^{F}(J)$ values were calculated. The results of these $J+I / 2$
calculated are also given in Tables 3 trrough 1l. On plotting the $\frac{\Delta_{2} F(J)}{J+1 / 2}$ it was found that the data in general were too scattered and were not available for sufficiently high values of J to permit the determination of D_{v} with any accurecy.

Data is available for only two levels of the lower state $v^{\prime \prime}=0$ and 1. Here, as suggested by Herzberg ${ }^{15}$, a theoretical value for D_{v} from the equation $D_{C}=\frac{4 B_{e}^{3}}{\omega_{e}^{2}} \cdots$ was used in calculating B_{v}. While $W_{e}^{\prime \prime}$ is not knorm, the error introduced by using $\sigma_{(1)}{ }^{-a_{(0)}}$ (in its place is small, as is also tho error introduced by neglecting β_{e} and so asssuming $D_{v}=D_{e}$. A preliminary estinate of B_{e}, made by a very rough extrapolation of $\Delta_{2} F^{\prime \prime}\left({ }^{\prime} J\right)$ and $\Delta_{2} F^{\prime \prime}{ }_{I}(J)$, yielding $B_{e}^{\prime \prime}=0.52$, we have $D^{\prime \prime}=\frac{4(0.52)^{3}}{(773)^{2}}=0.94 \cdot 10^{-6}$

Using $8 D^{\prime \prime}$ as the slope, the best straight line through the experimental $\Delta_{2} F^{\prime \prime}$ values was then drown. The intercepts on the $\frac{\Delta_{\mathbf{2}} F^{\prime \prime}}{J+1 / 2}$ axis were $4 B_{0}^{\prime \prime}=2.061,4 B_{1}^{\prime \prime}=2.036$. From these, making an estimate of the probable error, we obtain:-

$$
\begin{aligned}
& B_{0}^{\prime \prime}=0.5152 \pm 0.0005 \mathrm{~cm}^{-1} \\
& B_{1}^{\prime \prime}=0.5090 \pm 0.0015 \mathrm{~cm}^{-1}
\end{aligned}
$$

The rotational constants in the ground state of CIF are therefore

$$
\begin{aligned}
& B_{e}^{\prime \prime}=0.5183 \pm 0.0010 \mathrm{~cm}^{-1} \\
& \alpha_{e}^{\prime \prime}=0.0062 \pm 0.0017 \mathrm{~cm}^{-1}
\end{aligned}
$$

From these the internuclear distance can be $d_{n} e^{t}$ ermined by the use of equation 10. We find

$$
\begin{gathered}
r_{e}^{\prime \prime}=1.6255 \pm 0.002 \quad 10^{-8} \mathrm{~cm} \\
r_{0}^{\prime \prime}=1.6304 \pm 0.001 \quad 10^{-8} \mathrm{~cm}
\end{gathered}
$$

The data for the isotopic bands are too few to permit a very accurate determination of $B_{0}{ }^{\prime \prime}$. However, taking
$D_{0}{ }^{\prime i}=\rho^{4} D_{0}^{\prime \prime}=0.90 \cdot 10^{-6}$, wa obtain from the experimental data $430_{0}^{112}=2.03$,

$$
B_{0}^{11}{ }^{i}=0.5075 \pm 0.005 \mathrm{~cm}^{-1} \text {, in satisfactory agree- }
$$

ment with $\rho^{2} B_{0}^{\prime \prime}=0.5050 \mathrm{~cm}^{-1}$.
To obtain the rotational constants in the upper state, the values of $\frac{\Delta_{2}{ }^{F} v^{\prime}(J)}{}$ were plotted against $(J+1 / 2)^{2}$. Let us first consider $J+\sqrt{2}$
those levels with $v^{\prime}=6$, to 10 . These levels are in the region of large anharnonicity of the potential function, as is evidenced by the equation necessery to fit the band origins, Equation 23. Hence it is not to be expected that the values for D_{v} will be even approximately equal to $D_{e}=\frac{4 B_{e}^{3}}{\boldsymbol{\omega}_{e}^{2}}$. The method used to obtain D_{v}^{\prime} and B_{v}^{\prime} was to first draw through the experimental value for $\frac{\Delta_{2} F^{\prime}}{J+1 / 2}$ a straight line that seemed reasonable and determine a tentative B_{v} and D_{v}. From these $\dot{B}_{v} B_{e}$ was calculated and then a D_{e}, using Equation 26 and $\boldsymbol{\omega}_{e}^{\prime}$ from Squation 23. The values for D_{V} were then plotted against V and a smooth curve taken.

It was found that the sign of D_{8}^{\prime} was opposite to the sign for
D_{v}^{\prime} Ior $v^{\prime} \neq 8$; this arises from the overlapping of the F and R branches in this band, so that a mean value was measured on the comparator. Enough data is available on this band to make quite a good determination of B_{8}^{\prime} without assuming a D_{8}^{\prime} and it is seen that this value agrees well with the B_{v} 's for the other bands

The curve taken appears quite arbitrary, as an attempt was made to weight the various points on a basis of how definitely the $\frac{\Delta_{2}{ }^{F}(J)}{J+1 / 2}$ values determined the slope of the line through them. Using the smoothed values of D_{v}, the final values of B_{v} were obtained. These calculations are summarized in Table 17. In the second and third columns are the tentative values of B_{v} and D_{v} selected, in the fourth coluran the smoothed value of D_{v}, and in the fifth column the final values of B_{v}. Also listed are the values of B_{v} and D_{v} as calculated for $v=-1 / 2$, that is, B_{e} and D_{e}. From B_{e}^{\prime}, we calculate $r_{e}^{\prime}=1.02 \mathrm{~A}$. There is no method of estimating the departure from linearity of the desendence of B_{v}^{\prime} on $v^{\prime}+1 / 2$, so no estimate can be made as to the accuracy of B_{e}^{\prime} and r_{e}^{\prime}. In fact, all that can be said is that the B_{e}^{\prime} and r_{e}^{\prime} given represent the experimental data over the limited range $6 \leqslant v^{\prime} \leqslant 10$. The estimated probable error in the B_{v} values is $\pm 0.001 \mathrm{~cm}^{-1}$, except for $v^{\prime}=8$, where the error might be larger.

Taking $D_{v}{ }^{i}=\rho^{4} D_{V}{ }^{\prime}$, it is found that $B_{8}{ }^{i}=0.253, B_{10} 0^{i}=0.219$. From the B_{v}^{\prime} of Table 17 we have $\rho^{2} B_{B^{\prime}}^{\prime}=0.250$ and $\rho^{2}{ }_{3}{ }_{10}^{\prime}=0.222$, which is satisfactory agreement.

There is no simple way of predicting D_{v} 'for the levels with $v^{\prime}=14$ and 15. From the few values of $\frac{\mathcal{A}_{2}{ }^{\prime}}{J+1 / 2}$, available for these bands it is estimated that
44.

Table 17

*See discussion in text on pe. 45 ,

$$
\not_{B}^{v_{v}^{\prime} \mathrm{calc}}{ }^{\prime}=0.372-0.0138\left(v^{\prime}+1 / 2\right)
$$

45.

$$
\begin{aligned}
& B_{14}^{\prime}=0.132 \pm 0.003 \mathrm{~cm}^{-1} \\
& B_{15}^{\prime}=0.112 \pm 0.005 \mathrm{~cm}^{-1}
\end{aligned}
$$

For convenience, these also are listed in Table 17. One sees that B_{V} ' is now very rapidly approaching zero. This can be explained classically as resulting from the vibrational energy of the molecule being very near the dissociation limit, so that the particle spends a large part of its tine at large r where the potential energy changes very slowly with r.

The results of these calculations of B_{v} values are in agreement with the values for $B^{\prime}=B^{\prime \prime}$ obtained in the determination of the band origins. The values of $B^{\prime}-B^{\prime \prime}$ found in this manner, tabulated in Table 12 are given again in Table 18, where they are compared with the difference of B^{\prime} and $B^{\prime \prime}$ as obtained from the extrapolation of $\frac{\Delta_{2}{ }^{F}}{J+1 / 2}$. In view of the probable error previously assigned to the quantities listed, the agreement is entirely satisfactory.

It has been mentioned several times previously that in the bands $8 \leftarrow 0, \quad(8 \leftarrow 0)^{i}$ and $8 \leftarrow 1$ the F and R branch lines overlap. The reasons for and results of this overlapping are here described. Let us calculate the sefaration of the lines $R(J+n)$ and ${ }^{(J)}(J)$. Frora Equations 9 we obtain

$$
\begin{align*}
R_{(J+n)}-F_{(J)} & =23^{\prime}+\left(3 B^{\prime}-B^{\prime \prime}\right)(J+n)+\left(B^{\prime}-B^{\prime \prime}\right)(J+n)^{2}+\left(B^{\prime}+B^{\prime \prime}\right) J-\left(B^{\prime}-B^{\prime \prime}\right) J^{2} \\
& =(2 J+n+1)\left[2 B^{\prime}+n\left(B^{\prime}-B^{\prime \prime}\right)\right] \quad \ldots \ldots \ldots \ldots \ldots(27) \tag{27}
\end{align*}
$$

If these lines of the P and R branches exactly coincide, it is evident that we must have $B^{\prime}=\frac{n}{n+2} B$. Then this relationship is approximately satisfied, say

$$
\begin{aligned}
& B^{\prime \prime}=\frac{n+2}{n} B^{\prime}-\alpha, \text { then } \\
& R_{(J+n)}-F_{(J)}=n \alpha(2 J+n+1) \ldots \ldots \ldots \ldots(28) .
\end{aligned}
$$

From tho rotational analysis it is found that $B^{\prime} \approx \frac{1}{2} B^{\prime \prime}$ and $n=2$ for the
45.

Band		the	Table 18 $(\mathrm{~T}+\mathrm{l} / 2)$ Values	From V_{0} calc.
	B'	B^{1}	$3^{\prime \prime}-3^{\prime}$	$B^{\prime \prime}-B^{\prime}$
$6 \leftarrow 0$	0.515	0.280	C. 235	0.233
$7 \leftarrow 0$. 515	. 270	. 245	. 243
$8 \leftarrow 0$. 515	. 254	. 261	. 258
$9 \longleftarrow 0$. 515	. 243	. 272	. 272
$10 \leftarrow 0$. 515	. 224	. 291	. 288
$14 \leftarrow 0$. 515	. 132	. 383	. 384
$15 \leftarrow 0$. 515	. 112	. 403	. 407
$8 \leftarrow 1$	0.509	. 254	. 255	. 254
$10 \leftarrow 1$. 509	. 224	. 285	. 287
$(8 \leftarrow 0)^{i}$. 508	0.253	. 255	. 248
$(10 \leftarrow 0)^{i}$. 508	. 219	. 289	. 295

bands mentioned above. It is obvious that this relation cannot hold exactly for both the bands $8 \leftarrow 0$ and $8 \longleftarrow 1$, for they have the same B^{\prime} and different $B^{\prime \prime}$. On examining the photographic plates it was observed that the lines of the band $3 \leftarrow 1$ were quite narrow, only slightly broader than normal single lines of the same intensity, but that the lines of the band $8 \leftarrow 0$ were very much broadened, the lines for high $J(J>30)$ having a width of about one wave number. This is exactly what one calculates from the values of B found. We have

$$
\begin{aligned}
& B_{8}^{\prime}=0.251 \mathrm{~cm}^{-1} \\
& B_{0}^{\prime \prime}=0.515 \\
& B_{1}^{\prime \prime}=0.509
\end{aligned}
$$

It is seen that $B_{1}^{\prime \prime}$ is exactly twice B_{Q}^{\prime} within less than experimental error. For the $8-0$ band we calculate from Pquation 28, putting $n=2$ and $J=30$,

$$
R_{(J+2)}-P_{(J)}=2 \alpha(2 J+3)=2(-.007)(63)=-0.9
$$

If $R(J+1)^{-P}(J)$ is calculated from Equation 3 without neglecting the terms involving D^{\prime} and $D^{\prime \prime}$, it is found that even if $B^{\prime}=n \quad n$, $n+2$ $R_{(J+n)}-P_{(J)}$ is not equal to zero but is a function of $D^{\prime} D^{\prime \prime}$ and terms in J up to J^{3}. This separation is negligible for small J and need not be considered here, but if it would cause the coinciding lines to be separated if the bands could be followed out to $\mathrm{J}=40$.

It is evident that the quantity determined by measurement on a band with overlapping F and R branch lines is actually $\frac{R(J+n)+F(J)}{2}$. Fron Equation 28, we see that for $n=2, R_{(J+n)}-P_{(J)}$ approaches zero as J approaches $-3 / 2$, and will be very small at $J=0$. Hence it is ex ected that any quantity involving $R_{(J)}$ or $F_{(J)}$ which is extrapolated to $J=O$ will give very nearly the true value. However, any quantity
determined from the rate of change of the $R_{(J)}$ or $P_{(J)}$, that is, any quantity derived from the slope of a curve of a function of $R_{(J)}$ and $P(J)$ plotted against J is likely to be in great error. Thus it was found that the values of B^{\prime}, and $B^{\prime \prime}$ and V_{0} cotained for the bands mentioned were consistent with the results on the other bands, but the values for D^{\prime}, obtained from the slopes of curves were meaningless. In calculating $\Delta_{2} \mathrm{~F}^{\prime \prime}$ o values, where data is available fron seven bands, it is seen from Table 8 that the $\Delta_{2} \mathbb{F}^{\prime \prime \prime}{ }_{0}$ obtained from band $3 \leftarrow 0$ do not deviate systeratically for low J from the $\Delta_{2} F_{0}$ " obtained from the other bands, but that for high J there is a considerable deviation. Hence, the $\Delta_{2^{F}}{ }_{0}^{\prime \prime}(J)$ obtained from the band $8 \leftarrow 0$ for J Greater then 28 were ignored in calculating $B_{0}{ }^{\prime \prime}$.

As a check on the correctness of the analysis we might see how well Badger's rule on the relation of internuclear distance for frequency holds in this molecule. The rule states that

$$
r_{e}=\left(\frac{C_{i j}}{k_{e}}\right)^{1 / 3}+d_{i j},
$$

where for C1F, a molecule composed of one atom from the first row and one atom from the second row of the periodic table, $\left(C_{i j}\right)^{1 / 3}=0.535$ and $d_{i j}=0.01$. It has been shom earlier in this paper that

$$
\begin{aligned}
\boldsymbol{w}_{e}^{\prime \prime} \approx 773.40 \mathrm{~cm}^{-1} & w_{e}^{\prime}=313.5 \\
r_{e}^{\prime \prime} \approx 1.63 & r_{e}^{\prime}=1.92
\end{aligned}
$$

From Equation 15, we obtain, introducing appropriate values for the constants and the reduced mass

$$
\begin{aligned}
& \pi_{e}=4 \pi^{2} \mu c^{2} w_{e}^{2}=.725 \omega_{e}^{2} \\
& \pi_{e}^{\prime \prime}=0.433 \cdot 10^{+6} \text { dymes cm. } \pi_{e}^{\prime}=0.0712 \cdot 10^{6}
\end{aligned}
$$

and bence we calculate

$$
r_{e}^{\prime \prime} \operatorname{colc}=1.64_{5} \quad r_{e}^{\prime} \text { calc. }=2.23
$$

The aereenent is very good in the ground state. In tho axcited state, tho agreement is very poor, but as hes boen remorkod previously, no real significance can be given to the values of $\boldsymbol{W}_{e}^{\prime}$ and B_{e}^{\prime} (or r_{e}^{\prime}), as there is no reason to beliove thet the extrapolations from $v^{\prime}=6$ to $v^{\prime}=-1 / 2$ are the correct one. The large difference between r_{e} 'and r_{e}^{\prime} calc. leads one to believe that at least one of the extranolations is bady off. It wovil surely be possible to find values for W_{e}^{\prime} and \mathcal{B}_{e}^{\prime} consistant with the spoctroscopic data and satiseying Badger's rule, but for such values to have meaning it would be necessary to show the solution unique. As there is no great interest in the values of 3_{e}^{\prime} and ω_{e}^{\prime}, it was not thought worthmile to ottempt this.
VII. The Onlorinc Fluorido Spectrun. Detormination of the Dissociation Energy and Potential Curve.

The dissociation energy of a molecule, a quantity of very great interest to the chemist, can under favorable circumstances be determined With very grest accuracy spectroscopically. The dissociation energy D_{0} is defined to be the onergy required to soparate into two normal atoms a molecule in its lowest vibrational level. If a ($v^{\prime}-0$) progression is observed which permits a reasonable extrapolation to a convergence limit, at which the molecule in the excited state dissociates into atome, it is scen that if the energies relative to the nomal atoms of the products of this dissociation are known tho dissociation limit can be directly obtained.

In CIF, the convorgence, limit is easily obtained. Following $\Delta G_{V+k_{2}}^{\prime} \equiv G_{V+1}^{\prime}-G_{v}^{\prime}$ for
the usual proceedure, the ($v^{\prime} \leftarrow 0$) progression is plotted against v^{\prime}. A plot of the valuss of the $\Delta_{u^{\prime}}^{\prime} v+1 / 2$ Obtained from Table 15 acainst v^{\prime}
is given in Figure 5. The experimental points are represented by circles, the size of the larger circles representing the probable error in those points, the smaller circles representing a probable error of $0.1 \mathrm{~cm}^{-1}$. The curve drawn for $v^{\prime}<9$ is the one calculated from Equation 23. For $9<v^{\prime}<12$, the perturbations in the vibrational levels are too large to yermit any reasonable curve to be drawn, but for $v^{\prime}>12$ a straight line fits all the points within experimental error. It is seen that this line cuts the axis $\Delta G=0$ at $v^{\prime}=13.6$. From this it will be concluded that the $17 \leftarrow 0$ band is the last band of the progression. Allowing for the rather large possible error in the measurement of the bend head on the microphotometer trace and for the distance between band origin and band head, it maj be written

$$
V_{\text {conv. 1in }}=21,507.8 \pm 2 \mathrm{~cm}^{-1}
$$

The positions of the bend origins of the $V^{\prime} \leftarrow 0$ progression lotted against v^{\prime} are also given in Figure 5. Here the curve was drawn to correspond to Equation 23 for $v^{\prime}<10$, and to fit the experimental points for $\mathrm{v}^{\prime}>10$.

There appears to be a very faint narrow region of absorption immediately to the violet, of the $17 \leftarrow 0$ band which might possibly correspond to another band. It is too weal to say definitely it is real, so the evidence given by the ΔG_{V+1} plot is taken and this possible band is neglected. In any case, it is separated from the $17 \leftarrow 0$ band by less than $2 \mathrm{~cm}^{-1}$, the probable error given for the convergence limit.

Ve can immediately obtain D_{0}^{\prime} and also D_{θ}^{\prime}, the latter being the dissociation energy in the upper state measured from the minimum of the potential curve. Using Equation 23 to obtain the value of \mathscr{V} extrapolated to $v^{\prime}=-1 / 2$ we obtain

$$
D_{e}^{\prime}=21507.8-18561.6=2946 \mathrm{~cm}^{-1} .
$$

Figure 5.

Determination of the Convergence Limit
50.

$$
D_{0}^{\prime}=21507.8-18561.6+1 / 2(313.5)-1 / 4\left(2.2-1 / 8(.4)=2790 \mathrm{~cm}^{-1}\right.
$$

As has been mentioned before, the extropolation to $v^{\prime}=-1 / 2$ is quite arbitrary, so that the above figure might be greatly in error. A reasonable value for the robable error in D^{\prime} is $50 \mathrm{~cm}^{-1}$.

To obtain $D_{0}^{\prime \prime}$ (and $D_{e}^{\prime \prime}$) it is necessary to know the products of the dissociation at the convergence limit. No attempt will be made in this thesis to discuss the electronic levels and their dissociation products, for that in itself is a subject for an entire thesis. The assumption will be made that chlorine fluoride electronic states resemble the iodine chloride states and, less closely, the chlorine, bromine and iodine states. wulliken has given a general discussion of the halogen spectra, in which he concludes that the absorption in the visible region is due to a ${ }^{3} \mathbb{T}_{0}^{+} \leftarrow \mathbb{N a}^{+}$transition, with the ${ }^{3} \pi_{0}^{+}$level an example of Hund's case 0 coupling. The ${ }_{5}^{+}$ground state is formed from two normal atons, both in the $2 P_{3 / 2}$ state, while the ${ }^{3} \pi_{0}+$ is formed from one normal atom in the $2 / 2$ state, and one excited atom in the $2 F 1 / 2$ state. There also exists a ${ }^{3} \Pi$, statewhich lies below the ${ }^{3} \Pi 0_{0}^{+}$state and which is formed from two normal atoms in the $2 F_{3 / 2}$ state. The transition $/ T_{1}^{3}{ }^{1} \Sigma^{+}$ gives bands having E, Q and R branches while the transition ${ }^{3} \Pi_{0}^{+} \leftarrow{ }^{\prime} \Sigma^{+}$ gives bands having only P and R branches.

In all visible and infra-red halogen spectra, the only states of the halogen atoms which need be considered are the two parts of the ${ }^{2}$ ground states, 2.11 other states having far too high term values. All the halogen atom doublets are inverted $\left({ }^{2} p_{3 / 2}\right.$ lower than $\left.{ }_{2} 1 / 2\right)$, with separations $I-7598, \quad B r-3685, C 1-881$ and $F-107 \mathrm{~cm}^{-1}$.

The spectra of all interhalogen compounds studied, are quite similar to the halogen spectra. Here again, in ICl, Brown and Gibson find two
band systems corresponding to a ${ }^{3} \Pi_{1} \leftarrow{ }^{\prime} \Sigma^{+}$and to a ${ }^{3} \Pi_{0}^{+} \leftarrow \Sigma^{+}$ transition, the former having F, Q and R branches, the latter only F and R branches. Also there is very good evidence that the dissociation products of the ${ }_{1}^{3} \prod_{1}^{+}$excited state are a normal ${ }^{2}{ }_{5} / 2$ iodine atom and an excited ${ }^{2} P_{1 / 2}$ chlorine atorn. It is observed in the ICl spectrum that the bands in the ${ }^{3} \pi_{0}^{+} \leftarrow \bar{Z}^{+}$system become very diffuse for $v^{\prime}>4$. This Brow and Gibson ascribe to the intersection of the potential curve of the ${ }^{3} \Pi_{0}^{+}$state by a repulsive 0^{+}state arising from two normal ${ }^{2} F_{3 / 2}$ 18
atoms. Van Vleck concurs with this explanation of the experimental observations, both as to the general nature of the states of the halogen and interhalogen molecules and as to the nature of the perturbation in the ${ }^{3} \Pi_{0}^{+}$state. The spectrum of iodine bromide has also been investigated by Brown, who reports the spectrum to be sinilar in all particulars including the perturbation of certain levels in the ${ }^{3} \Pi_{0}^{+}$state, to the iodine chloride spectrum. As in the halogen and iodine chloride spectra, the two upper states have different convergence limits, their separation in $I B r$ corresponding to the ${ }^{2} P_{3 / 2}-{ }^{2}{ }_{1 / 2}$ seraration in bromine.

It is evident that the chlorine fluoride transition reported in this thesis resembles closely the ${ }^{3} \pi \mathrm{O}^{+}{ }^{+}{ }^{\top}{ }^{+}$transitions in the halogen and interhalogen wolecules. If a second band system had been observed in OIF with a convergence limit separated from the observed convergence limit by the ${ }^{2} P_{3 / 2}-{ }^{2} F_{1 / 2}$ separation in either chlorine or fluorine, the above assignment could be made with certainty. Although this was not ooserved (unfortunately, no serious attempt was made to locate it), the following points of similarity between the chlorine fluoride states and spectrum and the halogen states and spectra cen be made:-
(1) The chlorine fluoride bands have only F and R branches, as do the halogen and other interhalogen ${ }^{3} \Pi \sigma_{0}^{+} \leftarrow{ }^{\prime} \Sigma$ bands. If one only assumes the ground state of CIF to be ${ }^{\prime} \Sigma^{+}$the lack of a a branch

- requires that the upper state be an 0^{+}state.
(2) In the chlorine fluoride spectrum, as in the ${ }^{3} \Pi_{0}{ }^{+} \leftarrow \quad$ ' \sum band spectrum of iodine chloride and iodine bromide there is a perturbation of certain of the vibrational levels of the upper state.
(3) In the upper state of chlorine fluoride as in the ${ }^{3} \Pi_{0}^{*}$ state of of the halogen and other interhalogen molecules, the energy of dissociation is low compared to the energy of dissociation of the ground state. There is a corresponding large increase of $r_{e}{ }^{\prime}$ over $r_{e}{ }^{\prime \prime}$.
Since there is no reason to believe chlorine fluoride different from the other molecules mentioned, there is surely no doubt but that the chlorine fluoride upper state is a ${ }^{3} T_{0}^{+}$state, which dissociates into one ${ }^{2} P_{3 / 2}$ and one ${ }^{2} P_{1 / 2}$ atom.

It is still necessary to decide which of the two atoms in chlorine fluoride goes into the ${ }^{2} y_{1}$, state on the dissociation of the upper state. It seems reasonable to assume the products are $01\left({ }^{3} p_{3} / 2\right)$ and $F\left({ }^{2} P_{I / 2}\right)$ for the following two reasons:-
(1) In iodine chloride and iodine bromide the dissociation of the ${ }^{3} \prod_{0}^{+}$state gives the lovest possible energy state for the divided system with one atom excited, namely, $I\left({ }^{2} F_{3 / 2}\right)$ and 01 or $\operatorname{Br}\left({ }^{2} 1 / 2\right)$. In 01F the energy of the divided system is lowest with $\mathrm{Cl}\left({ }^{2} \mathrm{P}_{3 / 2}\right)$ and $\mathrm{F}\left({ }^{2} \mathrm{P}_{1 / 2}\right)$.
(2) The two ${ }^{3} \Pi_{0}{ }^{+}$states of $01 P$ formed from ${ }^{2} p_{1 / 2}+{ }^{2} P_{3 / 2}$ will have the same symmetry. For large internuclear distance the separation is the difference in the doublet separations of chlorine and
fluorine, $474 \mathrm{~cm}^{-1}$. This is quite small, so that as the atoms approach one another there will be resonance between the states resulting in first approximation from $C 1\left({ }^{2} \mathbb{P}_{3 / 2}\right)+F\left({ }^{2} \mathrm{~F} 1 / 2\right)$ and Cl $\left({ }^{2} P_{1 / 2}\right)+\mathbb{F}\left({ }^{2} P_{3 / 2}\right)$. This resonance will cause a separation of these states, causing the former (the lower) to be deepened and the latter to be raised. It has been observed by Mulliken that in halogens the dissociation energy of the \mathbb{T}_{0}^{+}state (where, of course, this resonance cannot exist, there being only one σ state) is of the same order of magnitude as the doublet splitting in the halogen atom. So we find:-

:	F	$C 1$	$B r$	I
$D_{0}^{\prime}=$	\cdots	3150	3730	6850
$2_{P_{1 / 2}}-{ }^{2} P_{3 / 2}=$	407	881	3685	7598

In chlorine fluoride $D_{0}^{\prime}=2790$, just slightly smaller than in chlorine. If the chlorine fluoride state observed rises from excited chlorine, this D_{0} corresponds to the uper of the two possible states, for which the potential curve has been raised by its interaction with the other chlorine fluoride state so decreasing the depth of the minimum. But then, the observed D_{0} is much larger than one would expect from the above data on the halogens. On the other hand, if the chlorine Pluoride state observed arises from excited fluorine, this D_{0}^{\prime} is for the lower of the two possible states. Here, neglecting resonance, a D_{0}^{\prime} somewhat less then $3000 \mathrm{~cm}^{-1}$ would be expected, while the resonance would increase this depth somewhat. This could easily give a dissociation energy comoarable to the observed one. In iodine chloride, D^{\prime} is only $1060 \mathrm{~cm}^{-1}$ for the ${ }^{3} \prod_{0}^{+}$state, only one-fourth the expected value, so the validity of the quantitative comparison just made is
very doubtful. On the other hand, iodine chloride is known to give excited chlorine on dissociation. Hence, as the depth of the minimum in chlorine fluoride is as deep ar deeper than expected it seems certain that the upper state involved in the observed transitions is the lower of the two states postulated.

Having decided on the dissociation products of the upper state as being $\operatorname{Cl}\left({ }^{2} P_{3 / 2}\right)+F\left({ }^{2} P_{1 / 2}\right)$, the dissociation energy of the ground state, measured from the first vibrational level, $v^{\prime \prime}=0$, is easily obtained: -

$$
\begin{aligned}
& \left.D_{0}^{\prime \prime}=Z_{\text {conv }} \operatorname{lin} \cdot{ }^{2} \mathrm{~F}_{1 / 2}-^{2} \mathrm{~F}_{3 / 2}\right) \text { in } F \\
& D_{0}^{\prime \prime}=21101 \pm 2 \mathrm{~cm}^{-1}
\end{aligned}
$$

Also of interest is the dissociation encrgy $D_{e} "$ of the ground state as measured from the minimum of the potential curve. It is evident that it is obtained from D_{0} " by adinn to the latter the zero point energy. Hencem, Equation 2 we have

$$
D_{e}^{\prime \prime}=D_{0}^{\prime \prime}+1 / 2 \omega_{e}^{\prime \prime}-1 / 4 \omega_{e}^{" x_{e}}{ }_{e}^{\prime \prime}+1 / 8 \omega_{e}^{" y_{e}}{ }_{e}^{\prime \prime}+
$$

a.ll that is obtained by the analysis of the spectrum is $\mathcal{G}_{(1)}{ }^{-G}(0)=$
 $\omega^{\prime \prime} x_{e}^{\prime \prime}$, an empiricel equation of Birge ${ }^{20}$ is used $\quad \frac{a_{e}}{B_{e}}=1.4 \frac{\omega_{e} x_{e}}{\omega_{e}}$ On calculating the velues of the constant in the oxpression for the halogons it is found to be appreciably smaller than 1.4 , namely 0.98 for Cl_{2}, 1.01 for $B r_{2}, 1.15$ for $I C 1$, and 1.16 for I_{2}. As a reasonm able extrapolation for $C 1 F$ the value 0.95 is taken. Taking $d_{e}{ }^{\prime \prime}$ and
 Substituting in the equation for $\mathcal{G}_{(1)^{-G}}{ }^{(}(0)$ we obtain

$$
\begin{aligned}
& w_{e}^{\prime \prime x_{e}}{ }^{\prime \prime}=9.0 \mathrm{~cm}^{-1} \\
& \boldsymbol{w}_{e}^{\prime \prime}=793.2 \mathrm{~cm}^{-1}
\end{aligned}
$$

and the dissociation onergy is:-

$$
D_{e}^{\prime \prime}=21495 \pm 3 \mathrm{cmi}^{-1}
$$

It is now possible to draw a roasonable approximation to the potential curves of the chlorine fluoride molocule. These are given in Figure 6. The curves for ${ }^{\prime} \Sigma^{+}$and ${ }^{3} \Pi_{o}^{+}$states are obtained using the horse function calculated from the values of B_{e}, W_{e} and D_{e}. The repulsive 0^{+}state, j.s arbitrarily drawn as all that is known for it is its horizontal asymptote and the approximate location of its intersection with the ${ }^{3} T_{0^{+}}^{+}$curve. The first two vibrational levels are drawn in the lower state, and the vibrational levels $v^{\prime}=C$ and $v^{\prime}=10$ are indicated in the upper state. It is seen by application of the Franck-Condon principle that the most intense transitions from $v^{\prime \prime}=0$ should be to around $v^{\prime}=5$, and from $v^{\prime \prime}=1$ to about $v^{\prime}=3$. From tho observod spectrum the barids $(10 \longleftarrow 0)$ and $(8 \leftarrow 1)$ are estirated to be the most intense bands of their respective v^{\prime} progressions. This deviation is not surprising in view of the large deviations of the upper stete $G_{(v)}$ from the simple quadratic in $v+1 / 2$ given by the Norse potential curve. It is seen that if the vibrational quantum numbers assigned to the lower state bands are increased by one this deviation of the expected intensities from the observed intensities would be increased, for the effect of the new numbering would be to increase the internuclear distance at which transitions would be most likely to take place.

While the postulated perturbation of the $3 \prod_{0}^{+}$state gives a quite reasonable explanation of the diffuseness of the bands $11 \leftarrow 0$, $12 \leftarrow 0$ and $13 \leftarrow 0$, it does not explain why tho lines of $l f \leftarrow 0$, sharp near the origin, become diffuse for J greater than 14. The

The Fotential Curves of Chlorine Fluoride
Dissociation Froducts
-Upper asymptote--Cl $\left({ }^{2} P_{3 / 2}\right)+F\left({ }^{2} P_{1 / 2}\right)$
Lower asymptote $--C l\left({ }^{2} F_{3 / 2}\right)+F\left({ }^{2}{ }_{3 / 2}\right)$
Vibrational levels indicated are
Lower state--v" = 0, 1
Upper state---v' $=6,10$
diffuseness cannot be causod by dissociation by rotation, for the rotational energy levels affected start thirty wave numbers below the dissociation linit. On the other hand, the effect of rotation on the effective potential curve for vibration is such that on the high energy side of a region of perturbation one expects the levels with low J, not those with high J, to be perturbed. No other explanation has been found for this observation which is in any way satisfactory. This completes the discussion of the CIF spectrus To sumarize the con-clu:sions:-
(1) The band system observed results from a $\Pi_{0}^{+} \Pi^{+}$' $^{+}$transition, the upper state belonging to Hund's case c. The upper state is perturbed by a repulsive O^{+}state.
(2) The dissociation products are:-

$$
\begin{aligned}
& { }^{1}{ }_{4}^{+} \text {ground state and the } 0^{+} \text {repulsive state:- } \\
& \qquad C l^{C 1}\left({ }^{2} F_{3 / 2}\right)+F\left({ }^{2} P_{3 / 2}\right), \\
& { }^{3} T_{0}^{+} \text {state:- } C 1\left({ }^{2} P_{3 / 2}\right)+F\left({ }^{2} P_{1 / 2}\right)
\end{aligned}
$$

(3) The constents for the ground state, determined from the levels

$$
\begin{aligned}
& v^{\prime \prime}=0,1, \text { are:- } \\
& D_{0}^{\prime \prime}=21101 \pm 2 \mathrm{~cm}^{-1}=2.616 \mathrm{volts} \\
& D_{e}^{\prime \prime}=21495 \pm 3 \mathrm{~cm}^{-1}=2.665 \mathrm{volts} \\
& B_{e}^{\prime \prime}=0.5183 \pm 0.001 \mathrm{~cm}^{-1} \\
& \alpha_{e}^{\prime \prime}=0.0062 \pm 0.002 \mathrm{~cm}^{-1} \\
& G_{(1)}^{\prime \prime}-G_{(0)}^{\prime \prime}=773.4 \mathrm{~cm}^{-1} \\
& W_{e}^{\prime \prime} \approx 793.2 \mathrm{~cm}^{-1} \quad W_{e}^{\prime \prime} e_{e}^{\prime \prime} \approx 9.9 \mathrm{~cm}^{-1} \\
& r_{e}^{\prime \prime}=1.6255 \pm 0.002 \AA \\
& r_{0}^{\circ}=1.6304 \pm 0.001 \AA
\end{aligned}
$$

(4) The constants for the excited state below the perturbation region, determined from the bands ($v^{\prime} \leftarrow 0$) with $6 \leqslant v^{\prime} \leqslant 10$, ($8 \leftarrow 1$), $(10 \leftarrow 1), \quad(8 \leftarrow 0)^{i}$, and $(10 \leftarrow 0)^{i}$ are:-

$$
B_{e}=0.372 \mathrm{~cm}^{-1} \quad r_{e}=1.92 \mathrm{~cm}^{-1}
$$

$$
\alpha_{e}=0.0138 \mathrm{~cm}^{-1}
$$

For the progression $v^{\prime} \leftarrow 0$,
$V=18561.65+313.484\left(v^{\prime}+1 / 2\right)-2.217\left(v^{\prime}+1 / 2\right)^{2}-0.400\left(v^{\prime}+1 / 2\right)^{3}$ $W_{e}^{\prime}=313.484 \mathrm{~cm}^{-1}, \quad w_{e}^{\prime} x_{e}^{\prime}=2.217 \mathrm{~cm}^{-1}, \quad w_{e_{e}^{\prime}}^{\prime}=-0.400 \mathrm{~cm}^{-1}$
$V_{\epsilon}=18956 \mathrm{~cm}^{-2}$
(5) The remaining constants for the upper state, determined from the bands of (4) and also the bends ($v^{\prime} \leftarrow 0$) with $11 \leqslant v^{\prime} \leqslant 17$ are:-

$$
\begin{aligned}
& V_{\text {conv. lim. }}=21507.8 \pm 2 \mathrm{~cm}^{-1} \\
& D_{0}^{\prime}=2790 \pm 50 \mathrm{~cm}^{-1}=0.346 \mathrm{volts} \\
& { }^{1} D_{e}^{\prime}=2946 \pm 50 \mathrm{~cm}=0.365 \mathrm{volts} \\
& 3_{14}^{\prime}=0.132 \mathrm{~cm}^{-1}, \quad B_{15}^{1}=0.112 \mathrm{~cm}^{-1}
\end{aligned}
$$

VIII. The Chlorine Fluoride Spectrum

Some Applications
It is of interest to compare the constants of the chlorine fluoride molecule with the constents for the other halogen and interhalogen nolecules. In Table 19 are listed the values of the dissociation energy, $D_{0} "$, the vibrational constant, $\boldsymbol{W}_{e}{ }^{\prime \prime}$, the force constant, $\pi_{e}^{\prime \prime}$, and the internuclear distance $r_{e}^{\prime \prime}$, for the sevoral molecules. Also given are the molecular weights and the reduced masses in atomic weight units. In Figure 7, $\pi_{e}^{\prime \prime}, r_{e}^{\prime \prime}$ and $D_{0}^{\prime \prime}$ are plotted against the molecular weight.

Table 19.

	Do'solts)	$\omega_{0}^{\prime \prime}\left(\mathrm{cm}^{-1}\right)$	$\begin{gathered} k_{e^{10^{-7}}} \\ d y m e s ~ c m . \end{gathered}$	$r e^{\prime \prime}\left(\begin{array}{l}\text { A }\end{array}\right)$	$\begin{gathered} \text { Molecular } \\ \text { it. } \end{gathered}$	μ
F_{2}	-			1.44	38	9.5
O1F	2.616	793.2	4.59	1.625	54.5	12.4
Ol_{2}	2.481	564.9	3.32	1.989	71	17.7
3 rOl	2.26	(430)	2.68	--..--	115.5	24.6
Br_{2}	1.971	323.2	2.45	2.284	160	40.0
ICl	2.153	384.2	2.36	2.321	162.5	27.8
IBr	1.818	268.4	2.00	-----	207	49.0
I_{2}	1.542	214.4	1.74	2.667	254	63.5

Some regularity is seen in the values for k, but the values for r_{e} appear to be rather erratic. No attempt has been made to determine possible explanations for the observed values.

It is seen that all the values for D_{0} " lie fairly near a straight line. However, it is probably more reasonable to draw a smooth curve through the points for iodine, bromine, and chlorine, Then, the deviations from this curve for the interhalogen compounds can be interpreted in terms of difference in electronegativity of the two halogen atoms. So, in iodine bromide and bromine chloride, this difference is small, while in iodine chloride it is much larger, in agreement with prediction. Fiowever, the point for chlorine fluoride deviates only slightly from the curve, decidedly not in accordence with former ideas 22 .

It has been reported by Ruff and Laass ${ }^{23}$ that the heat of formation of chlorine fluoride is 25.7k cal. per mole. This they determined from the heats of the reactions of chlorine fluoride, fluorine, and chlorine with hydrogen. They report:-

$$
\begin{aligned}
\mathrm{ClF}+\mathrm{H}_{2} & =\mathrm{HCl}+\mathrm{HF}+58.6 \mathrm{kcal} \\
1 / 2 \mathrm{~F}_{2}+1 / 2 \mathrm{H}_{2} & =\mathrm{HF}+62.3 \mathrm{kcal} \\
1 / 2 \mathrm{Cl}_{2}+1 / 2 \mathrm{H}_{2} & =\mathrm{HCl}+22.0 \mathrm{kcal}
\end{aligned}
$$

Hence, $1 / 2 \mathrm{~F}_{2}+1 / 2 \mathrm{Cl}_{2}=01 \mathrm{~F}+25.7 \mathrm{kcal}$. In a later paper, Ruff and Kenzel ${ }^{24}$ reporting a more accurate determination of the above heats of reaction calculate $\Delta H=-27.4 \mathrm{kcal}$. for the formation of chloxine fluoride. Since this heat of reaction will be practically independent of temperature, it may be combined with the spectroscopic values for the energy of dissociation of chlorine and chlorine fluoride to obtain the energy of dissociation of fluorine. From Herzberg ${ }^{25}$, we obtain

$$
\mathrm{Cl}_{2}=201, \quad D_{0}=57190 \mathrm{cal}
$$

From this research,

$$
C 1 F=C l+F, \quad D_{0}=60307 \mathrm{cal}
$$

Combining these last three equations with the proper factors we ob-tain:-

$$
F_{2}=2 F, \quad D_{0}=8.6 \mathrm{kcal} . \quad(0.37 \mathrm{volts})
$$

This is of a different order of magnitude from all values previously reported. From the continuum observed in the absorption spectrum of Pluorine it has been calculated that D_{0} is $2.8 \mathrm{volts}^{26}$, or 64.6 kcal . It is seen from Figure 7 that any reasonable extrapolation of the D_{0} curve will give a value between 2.5 and 2.9 volts.

The work of Ruff and his colleborators on chlorine fluoride appears to be well done. Their work on the heat of reaction of hydrogen and fluorine agrees well with other determinations. The spectroacopic value for the dissociation energy of chlorine is certainly correct, the chlorine spectrum having been thoroughly studied. The dissociation energy of chlorine fluoride obtained in this investigation can at most be high by the doublet separation in chlorine, or low by the doublet separation in fluorine. These possible corrections are far too small to account for the discrepancy, being only 2.52 and 1.16 kcal., respectively.

It is true that there is ngerinite reason why one should be able to extrapolate froin the other halogens to obtain a dissociation energy for fluorine; it is also true that one cannot usually make an entirely definite calculation of the dissociation limit from measurements on a continuum, but it is difficult to believe that eithor of these methods could be off by the extent indicated by the difference between 2.8 volts and 0.37 volts. Hence, the conclusion is reached
that the value of Ruff for the heat of formation of chlorine fluoride is far too large, the error probably being caused by too low a value for the heat of the reaction:-

$$
\mathrm{H}_{2}+\mathrm{ClF}=\mathrm{HCl}+\mathrm{HF}
$$

This conclusion is also reached by an examination of the heats of formation of iodine chloride, iodine bromide and iodine chloride, respectively 4.0, 1.7 and 0.7 kcel . er mole.

There seems to be no other way of obtaining a reasonable value for the heat of formation of chlorine fluoride. There is no other chemical evidence available to fermit a simple determination of this quantity. The electronegativity of fluorine was selected by Fauling ${ }^{27}$ to fit the previous values for the heat of formation of chlorine fluoride and the dissociation onergy of fluorine; the electronegativity values as presently assigned cannot be used. It perhaps would be possible to find unique solutions for the electronegativity of fluorine and the heat of formation of chlorine fluoride consistent with the data on other fluorine compounds.

If the value for the heat of formation of chlorine fluoride is calculated using the dissociation energy of pluorine obtained from the absorption continuum, it is found thet $\Delta H_{C l F}=+0.6$ kcal. This too is certainly incorrect, for chlorine and iluorine form en explosive mixture.

Hence, it appears that the value reported by Ruff for the heat of formation of chlorine fluoride is too high by a rather large amount, and the value given by Nartenberg ${ }^{26}$ for the dissociation energy of fluorine is also at least slightly too high. It can be definitely said only that

$1 / 2 D_{0} F_{2}+\left(-\Delta H_{C 1 F}\right)=31.712$
where $-4 H_{O 1 F}=$ the heat of formation of chlorine fluoride in kcal. per mole (at $0^{\circ} \mathrm{K}$, but also at room tem erature with very little error). $D_{O_{2}}=$ the dissociation enerey of fluorine.
IX. The Chlorine TriPluoride Spectrum

An attempt to find some absorption bands of chlorine trifluoride was made. The chlorine trifluoride was prepered as described in the Section II of this thosis. The quartz priom seoctroneter ves used with Eastman 40 plates. The 3 meter absorption cell and auxiliary system was exactly as described for chlorine fluoride.

Pressures from five to seventy centineters were usod; the necessary exposure times varied from onemale to ton minutes. Under these conditions, no bands wero found in the region $\lambda 4800$ to $\lambda 5550$. To the red side of $\lambda 5550$ the sensitivity of the Eastman 40 plates usea droped off racilly. As the color of the gas was vory pale yellow, it was not thought worth while to look for absopetion in this latter region.

To the violet of $\lambda 4800$ the chlorine dioxide bends described in Bection III of this thosis were found. The intensity of these bands was too ereat to gemit decision as to the gresenco or absence of absorption by chlorine trifluoride.

It is found on comparine low dispersion plates of chlorine fluoxide and chlorine trifluoride taken undor similer conditions that the intensity of the chlorine dioxide bends are approximately the same on cach.

Thus it may bo concluded that the amount of chlorine dioxide in the chlorino trifluoride is tho samo as the amount of the chlorine dioxide in chlorine pluoride, nancly, one percent or less ses decided in Section -II of this thesis.
.hile it would be interesting to dotermine the frequencies and, is possible, the moments of inertis of chlorine trifluoride, to do so would be quite dipeicult. It would be nocessery to eliminato all quarta srom tho systom. Lithium fluoride could probably be usod for windows on the absorption cell. It is possiblo that all tho obsorved yellow color of the chlorine trimluoride arose from the chlorine dioxide, so that the fomor compound might not absorb in the near ultraviolet. In that case the Raman guoctrum of the chlorino trifluoride micht be obtainable, provided only it did not react with the quartz of the Raman tube too rapidly.
K. The Electron Diperection Investication of Ohlonine Fluoride and Chlorine Prifluonide*

The intemuclear distence in chlorine Pluoride as determined secctroscopically has been givon orrier in this thesis (Bection VI). In chlorine tripluoride, it is expected that the chlorine-mporine distance will be appreciably greator than in chlorine fluorido, but there is no method of predicting the amount of Icngthoning or the bond ancles to be oxpected. Fere is described on independent determination of the chlorine-fluorine distance in chlorine fluoride and an examination of the possible structures of chlorine trifluoride by the eloctron diffrection method.

* iith Dr. Verner F. H. Schomaker.

The electron diffraction apparatus used in this investigation has been described by Brockway ${ }^{28}$. The camera distence was about 11 cm . and the wave length of the electrons, determined in the usual wey ${ }^{28}$ from transmission photographs of góld foil $\left(a_{0}=4.070\right)$, was approximately $0.06 \AA$.

The chlorine fluoride and chlorine trifluoride semples used were portions of these compounds prepared for the spectroscopic investigation as described in Section II of this thesis. The samples were distilled shortly before use in a quartz system and kept in quartz traps. The valve described in Section II as value A of Figure 2 was used to control the introduction of the gas into the electron diffraction machine.

Fhotographs of chlorine Pluoride were taken with the tem erature of the liquid sample ranging from the temperature of liquid air to $-105^{\circ} \mathrm{C}$; the photographs of chlorine trifluoride were taken with the temperature of the Iiquid sample rancing from $-75^{\circ} \mathrm{C}$ to $+12^{\circ} \mathrm{C}$. The boiling points and freezing points of these substencos are listed in Table 1. Immediately before each set of photographs was taken a small amount of the sample was distilled off in order to remove any highly volatile substances formed as the result of reaction of the sample with the quartz of the trap or the lubricant on the tapers. It is believed that neither sample contained a lerge amount of impurity. Both the chlorine fluoride and the chlorine tripluoride contained some chlorine dioxide, but the amount of this lattor substance, as stated earlier in this thesis, is believed to have been rresent to the extent of one percent or less, a negligible anount. The photooraphs of chlorine fluoride have a simple diatomic pattern, indicating the ansence of large amounts of the tetrafluorides of carbon and
silicon. These latter impurities are surely not resent in the chlorine trifluoride because of the very large differences in boiling points.

Chlorine Fluoride.

The photographs of chlorine fluoride, as has been mentioned, show the simple diatomic pattern. Seven measureble rings were observed, for which the measured so values corresponding to the maxima and minime are civen in Table 20. Two sets of measunements are listed, set A the average of measurements on three photographs, set B the cyerage of dessuremonts on nine hotographe. Tho neasuroments of set B wero made nino months aftor those of set A . In the last colum or Table 20 ore given tho valuos of r, the intomuclear aistance in chlorine fluorHo, as obtained by comparine the obsorved s with the s values calculatod for $r=1$. Tho velues for r determined from the innomost and outerinost foatures in on electron diffraction photograph are often uncliable. Neglocting those extreme valiues, one obtains the avorages given in Teble 20 for each of the sets of measuroments, or combining the two,

$$
r_{0}=1.63 \pm 0.01 \AA
$$

This is to be compared with the rosult of the spectroscopic invostigation, where it was found for the lowest vibrational level in the ground state, $r_{0}=1.6304 \pm 0.001$. The agreement is excellent.

Onporine Tripluoride.

The photographs of chlorine trifluoride ars quite setisfectory, having seven measureable rings. The measured q_{0} values $\left(q=\frac{10}{\pi} \mathrm{~s}\right)$ aro given in Table 21. The ostimated intensities of the various maxine and minima are given in the column headed I, end tho corrosponding
65.

Table 20

65.

Table 21

Niax	Yin	q_{0}	1	C_{k}	$9 / 90$
	2 a	7.46	-20	20	---
23		12.9	19	18	\cdots
	2 b	14.8	-2	2	--
2 b		17.2	4	4	---
	3	21.4	-20	17	(1.029)
3		27.0	20	15	1.007
	4.	32.5	-20	$+14$	1.000
4.		38.1	23	14	0.992
	5	44.2	-13	(6)	---
5		50.7	15	(6)	---
	6	57.4	-20	6	0.994
6		62.5	20	5	0.998
	7	67.7	-18	3	0.997
7		73.3	19	3	0.996
	8	78.6	-16	2	---
8		83.8	$+16$	1	---
				Average $=$	0.998
1*		2.40	30	30	
	5*	43.4		-3	
		45.0		-3	
5*		49.6		2	
		51.4		4	

*Values used in calculating the radial distribution function.
coefficients of the radial distribution function 29 are listed in the column headed c_{k}. In the lower part of the table are given the values of q_{0} and I assuned for the first maximum as used in the radial distribution function. The fifth minimum and maximum were each rerresented by the two peaks listed in the lower section of the table as it was possible thereby to better represent the nature of the observed features of the photographs. The calculated radial distribution curve, R.D. of Figure 8, has strong peaks at r equal to 1.69 and $2.31 \AA_{\mathrm{A}}$, and small peaks, which may or may not have significance, at $2.69,3.36$ and 3.66 A . The last peak listed cannot have significance for any structure having the three fluorine atoms about a central chlorine atom.

It is obvious that the distances 1.69 and 2.31 must correspond to chlorine-fluorine and fluorine-fluorine distances, respectively, giving a bond angle of 87°. Reduced theoretical curves were calculated for symmetrical pyramidal structures with $\mathrm{F}-\mathrm{OI}-\mathrm{F}$ bond angles of $84^{\circ}, 85.5^{\circ}, 87^{\circ}, 83.5^{\circ}$ and 90°. These are the curves marked A in Figure 8. The curves were calculated using the equation

$$
I_{(q)}=\frac{Z_{O 1}}{I_{\mathrm{OIF}}} \sin \frac{\pi}{10} q I_{01 F}+\frac{Z_{\mathrm{F}}}{I_{\mathrm{F}-\mathrm{F}}} \frac{\frac{z_{\mathrm{F}}-f_{\mathrm{F}}}{Z_{\mathrm{F}}}}{\frac{z_{\mathrm{CI}}-f_{\mathrm{Cl}}}{Z_{\mathrm{OI}}}} \sin \frac{\pi}{10} q I_{\mathrm{FF}}
$$

where $I_{i j}$ is the distance between the i th and jth atoms, Z_{i} is the atomic number of the ith atom, f_{i} is the X-ray scattering factor as calculated by Pauling and Sherman, and $q=\frac{10}{\pi} s=\frac{40}{\lambda} \sin \varphi / 2$, $\varphi=$ scattering angle.

The appearance of the photographs is best re resented by the cuve A-87, with $A-85.5$ only slightly less satisfactory . The doublet apyearm ance of the second maximum, represented by measurements $2 a$ and $2 b$ in

Curve DD - The radial distribution function for ClP_{3}
Curves A, B, C-Reduced thoorctical intensity curves for ClF
A--Symaetrical pyramidal model with indicated F-Cl-F bond angle.

B-Asymmetrical pyramidel model-
two $F-C 1-F$ bond angles $=87^{\circ}$
one $F-C 1-F$ bond angle $=105^{\circ}$
O--Flanar model--two P-Cl-F bond angles $=87^{\circ}$.

Table 21, is definitely not indicated by the curves $\mathrm{A}-90^{\circ}$ or $\mathrm{A}-88.5^{\circ}$ curve. The appearance of the fifth maximum on the photographs indicates this feature is broad, with the peek displaced to large q. This excludes the $A-84^{\circ}$ structure.

From these and other less obvious deviations of observed and calculated curves, it can be said that if chlorine trifluoride has the symetricel pyramidal structure, the F-O1-F bond angle is $86.5^{\circ} \pm$ 1.5°.

However, there is no simple theoretical reason which requires that the structure of chlorine trifluoride have the above symmetry. It might be assumed that one of the two subsieiary peaks in the radial distribution function, at 2.69 or $3.36 \AA$, has meaning. Thus one obtains the unsymetrical pyramidal structure (B) having two F-Cl-F angles of 87°, giving a 174° angle between the outer fluorines. In both these structures the 01-F distances are .11 assuned to be $1.69 \AA$ The reduced theoretical curves for these structures, labeled B and C are given in Figure 7. The second maximum on curve B does not agree with the photographs, nor does the fifth minimura and maximum on curve O. However, the deviations are small and it is not possible at present to exclude all the non-symmetrical structures which aight be obtained by slight modification of models B or C.

In the last column of Table 21 are given the values for q / q_{0}; as it is equal to one within experimental error, the radial distribution function peaks give the correct internuclear distances.

The final result then is:-
If the chlorine trifluoride molecule has a three-fold axis, the $C l-F$ distance is $1.69 \pm 0.01 \AA^{\circ}$ and the $F-01-F$ bond angle is $86.5 \pm 1.5^{\circ}$.

If the chlorine trifluoride molecule does not have a threemold axis, the mean of the CI-F distances is $1.69 \AA^{\circ}$, and there are at least two F-F distances of approxinately $2.31 \AA$.

It is seen that the effect of having three fluorine atoms bonded to one chlorine atom is to increase the C1-F distance from 1.63 to $1.69 \AA$, or $0.06 \AA$, which is a reasonable amount. The bond angle, only 37, is rather surprising. However, the bond orbitals for this case have not been studied sufficiently for one to say what is a reasonable value for the bond angle.

Acknowledgements

I wish to thank Professor R. M. Badger for the many helpful suggestions he has made and the continued interest he has shown in my work. I am indebted to Dr. I. R. Zurawalt, Dr. I. H . Eyster and Mr. R. S. Rasmussen for much helpful discussion. The assistance given by Dr. V. F. H. Schomaker was largely responsible for the completion of the electron diffraction work. Wuch valuable advice on the handing of fluorine was obtained from Professor D. M. Yost, who also kindly loaned the fluorine generator used in this research. The standard tapers of copper prepared by Hr . Alex Logatcheff greatly expedited the experimental work.

Summary

Chlorine fluoride and chlorine trifluoride have been prepared, their absorption spectra in the region $\lambda_{4} \lambda_{400}-5500$ examined, and their molecular structures investigated by the electron diffraction method.

Ohlorine fluoride gives a band system with single P and R branches resulting from a ${ }^{3} \mathbb{T}_{0}^{+} \leftarrow{ }^{\prime} \Sigma^{+}$transition with the convergence limit for the progression $v^{\prime} \leftarrow 0$ at $21507.8 \pm 2 \mathrm{~cm}^{-1}$. The dissociation products are probably $C 1\left({ }^{2} P_{3 / 2}\right)+F\left({ }^{2} P_{1 / 2}\right)$. The values of the various spectroscopic constants are:-

$$
\begin{array}{ll}
D_{0}^{\prime \prime}=21101 \pm 2 \mathrm{~cm}=2.616 \mathrm{volts}, & D_{0}^{\prime}=2946 \pm 50 \mathrm{~cm}^{-1}=0.365 \mathrm{volts} \\
D_{e}^{\prime \prime}=21495 \pm 3 \mathrm{~cm}^{-1}=2.665 \mathrm{volts}, & D_{e}^{\prime}=2700 \pm 50 \mathrm{~cm}^{-1}=0.346 \mathrm{volts} \\
z_{e}^{\prime \prime}=0.5183 \pm 0.001 \mathrm{~cm}^{-1}, & B_{e}^{\prime}=0.372 \mathrm{~cm}^{-1} \\
\alpha_{e}^{\prime \prime}=0.0062 \pm 0.002 \mathrm{~cm}^{-1}, & \alpha_{e}^{\prime}=0.0138 \mathrm{~cm}^{-1} \\
x_{e}^{\prime \prime}=1.6255 \pm 0.002 \AA, & r_{e}^{\prime}=1.92 \mathrm{~cm}^{-1} \\
r_{0}^{\prime \prime}=1.6304 \pm 0.001 \AA & \\
w_{e}^{\prime \prime}=793.2 \mathrm{~cm}^{-1}, & w_{e}^{\prime}=313.484 \mathrm{~cm}^{-1} \\
w_{e}^{x} x_{e}^{\prime \prime}=9.9 \mathrm{~cm}^{-1}, & w_{e}^{\prime} x_{e}^{\prime}=2.217 \mathrm{~cm}^{-1} \\
& w_{e}^{\prime} y_{e}^{\prime}=-0.400 \mathrm{~cm}^{-1}
\end{array}
$$

Chlorine trifluoride has no absorption bands of appreciable intensity in the region $\lambda \lambda 4800-5550$.

The electron diffraction investigation of chlorine fluoride yields $r=1.53 \pm 0.01 \hat{\AA}$, in excellent agreement with the spectroscopic value.

The electron diferaction investigation of chlorine trifluoride indicates that if the structure of the molecule is symetrical pyram-
idal, the C1-F distance is $1.69 \pm 0.01 \AA$ and the $P-C 1-F$ angle is $86.5^{\circ} \pm 1.5^{\circ}$. If the structure does not have the above symmetry, the mean of the $01-F$ distance is $1.69 A^{\circ}$ and there are at least two $F-F$ distances equal to about $2.31 \AA$.

The absorption spectrum of liquid hydrogen fluoride and of its aqueous solution have been investigated in the region $\lambda^{\boldsymbol{\lambda}} 8000-$ 11000.

Physical Constants

The values for the physical constants used in this thesis were taken from Herzberg ${ }^{9}$. He gives:-

Conversion factors:-

Unit	cm^{-1}	erg molecule	cal mole	electron-
Cm^{-1}	1	$1.9863 .10^{-16}$	2.8581	$1.2398 .10^{-4}$

l ers per
molecule
$5.0344 .10^{15} \quad 1.4389 .10^{16} \quad 5.2416 .10^{11}$

| 1 cal per | | | |
| :--- | :--- | :--- | :--- | :--- |
| mole | 0.34988 | $5.9498 .10^{-17}$ | $4.3378 .10^{-5}$ |

1 electron volt
3066.0
$1.6022 .10^{-12}$
23,053
1

$$
M=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \quad \text { reduced mass } .
$$

$M_{A}=$ reduced mass in atomic weight units.
$k_{e}=4 \pi^{2} \mu_{0}^{2} \omega_{e}^{2}=5.8894 \cdot 10^{-2} \mu_{A} \omega_{e}^{2}$ dyne cm.
$B_{e}=\frac{h^{2}}{8 r^{2} c \mu_{e}^{2}}=\frac{27.994 \cdot 10^{-40}}{I_{e}}$

References

1. W. M. Latimer, "Oxidation Eotentials", Erentice-Hal1 (1938) p. 46 .
2. Max Bodenstein and Helmut Jockusch, Zeit. f. anorg. U. allgem. Chemie, 231, 24 (1937). Wartenberg, Sprenger and Taylor, Zeit. f. Physik. Chem. Bodenstein Faestband, p. 61, (1931).
3. Gale and Monk, Astroph. Journal, $\frac{59}{}, 125$ (1924); 69, 77 (1929). Fhys. Rev., 29, 211 (1927); 33, $1 \overline{14}$ (1929).
4. O. Ruff and H. Krug, Zeit. f. anorg. u. allgem. Cheraie, 190, 270 (1930).
5. J. Simons, J. Amer. Chem. Soc., 46, 2175 (1924).
6. Nassachussetts Institute of Technology Wavelength Tables, John ,iley and Sons (1939).
7. International Critical Tables (NoGraw-Hill) (1930) Vol. 7, p. 5.
8. H. C. Urey and H. Johnson, Rhys. Rev., 38, 2131 (1931).
9. G. Herzbers, Nolecular Spectra and Molecular Structure, Vol. I, Diatomic Molecules, Prentice-Fall (1939).

9a. R. S. Kulliken, Phys. Rev., 36, 611 (1930).
10. \because. Jevons, Report on Band Spectra of Diatomic Nolecules, (Physical Society, London, 1932) .
11. Reference 9, page 114.
12. Reference 9, page 154; reierence 10, page 212.
13. Reference 0 , page 213; reference 10 , page 55.
14. Hahn, Ber. Deutsch. Chem. Ges., 71A, 1 (1938).
15. R. M. Badger, J. Chem. Phys., 3, 710 (1935).
16. R. S. Mulliken, Fhys. Rev., 36, 699 (1930).
17. A. G. Brown and G. ב. Gibson, Phys. Rev., 40, 529 (1932).
18. J. H. Van Vleck, Phys. Rev., 40, 544 (1932).
19. W. G. Brown, Phys. Rev., 42, 355 (1932).
20. Reference 9, page $114 ;$ reference 10 , page 29.

References

21. Reference 9, page 450 ; reference 10, page 205.
22. Fauling, "The Nature of the Chemical Bond", Cornell University Press (1939) p. 49.
23. O. Ruff and Fa. Laass, Zeit.f. anorg. U. allgem. Chemie., 183, 214 (1929).
24. C. Ruff and i. lenzel, Zeit. f. anorg. u. allgem. Chemie., 198, 375 (1931).
25. Reference 9, page 485.
26. Wartenberg, S renger and Taylor, Zeit. f. Physik. Ohem., Bodenstein-Festband, p. 61.(1931).
27. Reference 22, page 58.
28. I. O. Brockway, Rev. Mod. Phys. 8,231 (1936).
29. L. Eauling and L. O. Brockway, J. Amer. Onem. Boc., 57, 2687 (1935).

Iropositions

1. It is much simpler to regenerate the charge in a fluorine gonerator by distilline in anhydrous hydrogon Pluoride thon to use the mothods previously sugerested.
2. Using the olectron diepraction value for the $\vec{F}-\mathrm{F}$ distance in chlorine trifluoride, it can be argued that the structure of this molocule is very likely not symnetrical pyramidal.
3. The application of tho Franck-Condon Pinciple to values of $r^{\prime}-r^{\prime \prime}$ celculated from B_{v} ' values as is done by i. S. Brown and G. E. Gibson ${ }^{1}$ in their discussion of the iodins chloride spectrum is without neaning. Their interpetation of the system III bends as a segarate system is unnocossery and surely incorrect.
4. Thys. Rev. 40,522 (1.032).
5. A consideration of the mork of Badger on tho spectrum of methyl alcohol vapor in the photographic inframod and the work of Bordon and Barier ${ }^{2}$ on the far insra-rod absorption indicato that it would be of interest to reezaminc the syectrum in the photographic regIon with the gas at verious temperatures, and also porhaps with a. longer absorption path.
6. J. Chem. Thys., 4, 8 (1936)
7. J. Chem. Phys., $\hat{0}, 553$ (1032).
8. A simplo mechanism can be postulated for the polywurization of cyclopropene.
9. A vacum tube amplifier can be dosigned to operste a mechanical rocorder directly from a thermocouple without the uso of any gelvanometer. It should be possible to obtain just as great sensitivity as is possible with any other method.
10. The absorption spectrum of cyclopropene in the photographic infrared is interesting in that the "ethylene band" does not appear, but
two strong bands are observed at longer weve lengths. 1. E. H. Byster. J. Chem. Ehys., 6, IO (1938).
11. A consideration of the relative rates of the forwari and reverse reactions in tho equilibrium

M(with internal H bond $)=W$ (no internal H bond)
leads to an explanation of the observation that fivemembered rings containing a hydrogen bond are more stable than six membered rings containing a hydrocen bond.
9. One should not bo surprised, as are Buswoll, Naycook, and. Rodebush ${ }^{1}$, at the lack of an association bond in tho absorption spectrum of hydrogen fluoride in carbon tetrachloride solution.

13\% Ohlorine Trifluoride, the perfect oxidant for rocket engines.
9-1. J. Chem. Phys. \&8, 362 (1940)

