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ABSTRACT

Solid-state defects have emerged as leading candidates for quantum network nodes
due to their compatibility with scalable device engineering and local nuclear spins
for quantum processing. Rare-earth ions in crystalline hosts are particularly attrac-
tive due to their long optical and spin coherence times at cryogenic temperatures.
However, until recently, detection and utilization of single rare-earth ions in quan-
tum technologies has been hindered by their inherently weak optical transitions.
In this thesis I present progress towards realizing a novel quantum network node
architecture using single 171Yb3+ ions in YVO4, coupled to a nanophotonic cavity.

First, we demonstrate coherent operation of single 171Yb3+ ions as optically ad-
dressed qubits. To do this, we leverage first order insensitivity of optical and spin
transitions to electric and magnetic fields, thereby protecting the qubits from envi-
ronmental noise. We demonstrate initialization, high fidelity control and readout
of a hyperfine spin qubit with long quantum storage times. We also characterize
the optical transitions and find a lifetime-limited echo coherence, thereby enabling
a coherent spin-photon interface.

Next, we focus on realizing an auxiliary quantum register. The high-fidelity spin
control of our 171Yb3+ qubit is leveraged to access local nuclear spins. These spins
comprise a dense ensemble which serves as a deterministic quantum resource. We
utilize Hamiltonian engineering to generate tailored interactions, enabling polariza-
tion, coherent control and preparation of many-body nuclear spin states. Finally,
we implement a spin-wave based memory protocol and demonstrate storage and
retrieval of quantum states.

Moving beyond a single quantum node, in the final section of this thesis we will
realize a small-scale quantum network using this platform. As a first step we
demonstrate time-resolved quantum interference between photons emitted by ions in
two separate devices. Then, we demonstrate a novel heralded entanglement protocol
which incorporates optical dynamical decoupling and frequency erasure via precise
photon detection. This protocol counteracts both static and dynamic inhomogeneity
in the ions’ optical transition frequencies, thereby enabling entanglement generation
between any pair of qubits in a scalable fashion.

These results showcase single rare-earth ions as a promising platform for the future
quantum internet.
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C h a p t e r 1

INTRODUCTION

Over the past 100 years, the development and impact of quantum physics on society
has been accelerating at an unprecedented rate.

The first quantum revolution, led by pioneers like Heisenberg and Schrodinger1
caused a paradigm shift in our understanding of the physical world, enabling a
comprehensive description of matter and light at the most fundamental level. This
propelled the development of technologies like the laser, transistor, magnetic reso-
nance imaging (MRI) and atomic clocks.

We are currently in the midst of a second quantum revolution [1] where technologies
that exploit the full power of quantum mechanics will be leveraged to perform useful
tasks. Its distinguishing characteristic is the utilization of quantum entanglement
in many-body quantum systems which can be engineered and controlled at an un-
precedented level (the entanglement frontier [2]). The most promising applications
include computation, simulation, communication, sensing and metrology.

For example, the discovery of quantum algorithms which leverage entanglement and
superposition to achieve exponential speedup over their classical counterparts [3]
have spurred the development of quantum computers [4]. A number of promising
platforms have emerged based on trapped ions, atoms and superconducting qubits.
A major goal is to achieve the fault-tolerance threshold where error correcting codes
applied to many physical qubits can implement a logical qubit with reduced error
rate [5, 6].

Another application leverages the no cloning theorem2 to share a random key be-
tween two parties in a provably secure manner [7, 8]: quantum key distribution [9].
Sending keys over global length scales will require robust, macroscopic entangle-
ment distribution.

Finally, in the context of metrology, entanglement enables the estimation of physical
parameters with improved sensitivity [10]. This approach has been applied to
gravitational wave detection [11], atomic clocks [12, 13] and magnetometry [14] (to

1Max Planck, Albert Einstein, Niels Bohr, Louis de Broglie, Max Born, Paul Dirac, Wolfgang
Pauli, and Richard Feynman.

2It is impossible to make an identical copy of an unknown quantum state.
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name but a few examples). Ultimately, the Heisenberg limit dictates that estimation
error scales inversely with the number of entangled quantum probes.

A common feature in all three of these fields is the requirement to scale both the
number of qubits and physical extent of quantum systems in order to realize useful
technologies. The concept of a quantum internet was proposed to overcome these
challenges [15]. In this thesis I will present progress towards a novel quantum
network implementation consisting of single rare earth ions in a solid state host,
coupled to nanophotonic cavities; this will be used as a test-bed for the future
quantum internet.

1.1 Outline of This Thesis
The remainder of this chapter will provide an introduction to the field of quantum
networking and an overview of the current state of the art with a particular focus on
solid state systems and single rare-earth ions.

In Chapter 2, I will provide an introduction to the 171Yb3+ platform utilized in this
thesis, including the energy level structure, nuclear spin environment and coupling
to nanophotonic cavities.

In Chapter 3, I present results demonstrating single 171Yb3+ ions as good optically-
addressed qubits with stable optical transitions, coherent optical and spin control
and a long-lived quantum memory.

In Chapters 4 and 5, I will lay the groundwork for utilizing the nuclear spin environ-
ment around the 171Yb3+ as a quantum resource. This will involve first developing
a comprehensive understanding of ytterbium-vanadium interactions followed by the
development of a novel quantum storage scheme which utilizes dynamic Hamilto-
nian engineering to implement coherent quantum information transfer.

Chapter 6 presents experimental results of this quantum storage protocol, demon-
strating that vanadium nuclear spins can be utilized as a deterministic quantum
memory.

In Chapter 7, I will change focus and start working towards remote quantum net-
working protocols. In this chapter I demonstrate indistinguishable emission from
two 171Yb3+ ions in separate devices via Hong-Ou-Mandel interferometry.

In Chapters 8, 9, and 10, I present a novel scheme for heralding remote entangle-
ment between optically-addressed qubits. I provide a detailed description of a new
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setup that I built for these experiments. Finally, I also present experimental results
demonstrating entanglement between two remote 171Yb3+ ions.

The final chapter will conclude with a discussion of new experiment directions,
some of which we are actively pursuing, and future opportunities/challenges for this
platform.

1.2 Applications and Progress in Quantum Networking

Node

Channel

Photon

Figure 1.1: Quantum networks consist of nodes which can store and process quantum
information and quantum channels (usually implemented via itinerant photons)
which interconnect the nodes.

The quantum internet [15] was proposed as a method to overcome the scaling
challenges associated with local quantum systems. Quantum networks consist of
nodes which can store and process quantum information and quantum channels
which interconnect the nodes in a manner that preserves quantum coherence (Figure
1.1). This enables generation of non-local entanglement without the need for direct
(local) interaction. Whereas the Hilbert space size of classically connected quantum
nodes would scale as ∼ 𝐴2𝑁 (where there are 𝐴 nodes, each with 𝑁 qubits), it would
scale as ∼ 2𝐴𝑁 for a fully connected quantum network. In this sense, a quantum
network can be considered as a non-local quantum many body system with tailorable
topology defined by the quantum interconnects.

Since this proposal, many implementations, platforms and applications of quantum
networking have been studied. A recent review paper [16] categorized different
approaches to quantum networking in terms of technological functionality, breaking
development into four stages:
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1. Prepare and measure networks;

2. Entanglement distribution networks;

3. Quantum memory networks;

4. Fault tolerant networks.

The first stage consists of nodes which can exchange qubits; however, both transmis-
sion and measurement are not deterministic. Such networks are useful for quantum
key distribution (QKD) [7] and have been implemented commercially. The sec-
ond stage involves deterministic or heralded entanglement distribution where an
entangled state is known to exist without needing to collapse its wave-function (ap-
plications include device-independent QKD [17]). The third stage adds quantum
memory functionality to each node combined with a universal local gate-set on the
node qubit(s). This stage will enable advanced applications such as extending the
baseline of telescopes [18] and enhancing the stability of a distributed set of atomic
clocks [19]. In the final stage, each node consists of a local quantum computer which
can process and store information fault-tolerantly. This is the holy-grail of quan-
tum networking and will enable the implementation of fully distributed quantum
processing and simulation [20, 21].

State of the art quantum memory networks have been experimentally implemented
and used to realize non-local quantum gates [22, 23], entanglement distillation3 [24,
25], deterministic teleportation [26–28], verifiable blind quantum processing [29]
and preparation of tripartite GHZ states [30] useful for quantum secret sharing [31].

However, the quality of qubit control, storage and entanglement generation needs
to be addressed in order to access the advanced applications associated with these
networks (and ultimately build fault tolerant networks). This motivates the search
and development of novel quantum networking platforms.

3Entanglement distillation is the process by which a higher fidelity entangled state can be
generated from two lower fidelity entangled pairs. It relies on local operations at each node combined
with classical communication (LOCC).
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1.3 Large Scale Quantum Networking: The Quantum Repeater
While there have been demonstrations of advanced quantum networking protocols
over small distances, expanding these to global length scales is an outstanding
challenge and even the most basic (prepare and measure) quantum networks have
not been realized over such large scales.

The fundamental issue is an exponential decrease in entanglement rate with increas-
ing channel length (𝐿):

𝑅 ∝ 1
𝐿
𝑒−𝐿/2𝐿0 (1.1)

where 𝐿0 is the attenuation length of the fiber and 𝑅 is the entanglement rate [32]
(Figure 1.2a).

3

1

2

a

b

Figure 1.2: Quantum repeater schematic. a) Using direct entanglement generation
schemes the entanglement rate exponentially decreases with channel length. b) A
schematic of an 𝑛 = 2 quantum repeater. Entanglement is generated simultaneously
between adjacent segment of length 𝐿link, a series of nested entanglement swapping
operations (1–3) lead to entanglement of end nodes with rate inversely proportional
to channel length.



6

To overcome this challenge, the quantum repeater protocol has been proposed [33].
The protocol operates as follows:

1. A single quantum channel is divided into 2𝑛 elementary segments of length
𝐿link with 2𝑛 − 1 intermediate quantum repeater nodes.

2. Each repeater node consists of two qubits which are entangled with adjacent
nodes, thereby establishing a set of 2𝑛 entanglement links.

3. The entanglement links are purified to achieve the required link fidelity.

4. Pairs of adjacent entanglement links are combined via entanglement swapping
at every second node, leading to links of distance 2𝐿link. The entanglement
swapping operation involves a Bell-state measurement (BSM) of the two
qubits within a repeater node.

5. The process of entanglement purification and subsequent entanglement swap-
ping is repeated in a nested-fashion with exponentially increasing entangle-
ment lengths achieved after each round.

6. In total, 𝑛 nested purification and entanglement swapping steps are performed
culminating in a link with length 𝐿.

By entangling the individual elementary links simultaneously, the quantum repeater
protocol can beat the exponential scaling of the direct approach, leading to an
entanglement time of:

𝑅 ∝ 1
𝐿
𝑒−𝐿link/2𝐿0 (1.2)

where 𝐿 is the total channel length and 𝐿link is the length of an elementary repeater
link. We can see that this scales polynomially with 𝐿. See Figure 1.2b for a
schematic of this protocol with 𝑛 = 2.

We also note that there are some more advanced one-way quantum repeater proposals
that rely on photonic cluster state transmission between adjacent nodes [34].

The functionality and requirements for implementing a quantum repeater are slightly
less strict than for the end nodes discussed in the previous section. It turns out that
these requirements can be satisfied using atomic ensembles [35] and their application
for the quantum repeater protocol is motivated by an enhanced atomic cooperativity
with light fields.
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However, one important distinction between ensemble and single-qubit based re-
peater nodes needs to be highlighted. Specifically, it is impossible to perform a
deterministic bell state measurement (BSM) using linear optics with these ensem-
bles [36]. The time required to transfer classical messages, signalling BSM success
for ensemble-based quantum repeaters will scale as 𝐿/𝑐. Hence, given the finite co-
herence time of matter qubits, the entangled state fidelity will scale as F ∝ 𝑒−𝐿/𝑐𝑇2 .
In order to mitigate this detrimental exponential scaling with channel length, it is
preferred to encode the repeater node qubits using single atoms/ions.

1.4 Requirements for Quantum Network Nodes
From the previous two sections we can see that building application-oriented quan-
tum network nodes and establishing long-range entanglement are somewhat different
(if complementary) goals. Hybrid approaches to quantum networking use two dif-
ferent physical systems for the end nodes and repeater nodes, combined with a
transduction protocol to convert quantum information between these systems [37–
39]. However, there are inherent advantages in system complexity and efficiency
associated with developing a single platform that is useful for both applications.

The subsequent list and Figure 1.3 summarize the requirements for a quantum
memory network node which is also compatible with the requirements of a long-
range quantum repeater:

• A qubit which can be initialized, controlled and read-out with high fidelity.

• A quantum memory (usually the qubit itself) which can robustly store quantum
information during entanglement generation and subsequent processing.

• A coherent photonic interface which couples the qubit to optical photons for
remote entanglement4.

• Auxiliary qubits + Bell-state measurement functionality with the primary
qubit. These enable multi-node entanglement and entanglement swapping5.

The goal of my PhD has been to demonstrate all of these key areas of functionality
in a novel quantum networking platform.

4Ideally these photons should be in the low-loss telecom band to minimize transmission losses.
5If the auxiliary qubits have an optical interface, then a BSM is sufficient to implement the

quantum repeater protocol. However, if they do not, we additionally need a SWAP gate between the
primary and auxiliary qubits.
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Auxiliary Qubits:
• secondary storage/processing

Optically-interfaced Qubits:
• initializable
• high-fidelity manipulation
• long-term storage Photonic Qubits:

• near infrared
• indistinguishableSpin-spin

interface

SWAP,
Bell-state

measurement

efficient,
coherent

Spin-photon
interface

Figure 1.3: Quantum repeater nodes require a qubit with quantum memory and a
coherent optical interface, they also require at least one auxiliary qubit with Bell
state measurement functionality (a SWAP gate is also necessary if the auxiliary
qubit doesn’t have an optical interface).

1.5 Cavity QED in Quantum Networking
Optical photons are ideal carriers of quantum information between remote quantum
network nodes due to their inherently weak interaction with the environment. Un-
fortunately, this also impedes our ability to coherently interface them with matter
qubits.

One solution is working with atomic ensembles with a collectively enhanced light-
matter interaction strength [35]; however, there are considerable challenges associ-
ated with realizing multi-qubit registers with universal quantum control.

Cavity quantum electrodynamics (CQED) is an alternative approach which generates
an enhanced light-matter interaction by confining optical fields in resonators with
high quality factor and small mode volumes. The study of CQED and its application
to novel matter systems has been instrumental in the development of experimental
implementations of quantum networking.

The nature of light-matter interaction is characterized by four key parameters:
• 𝑔, the interaction strength between the atom and cavity mode,

• 𝜅, the energy loss rate from the cavity,

• Γ, the atomic decay rate,

• 𝛾, the transition line-width.

See Figure 1.4 for a schematic.
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Figure 1.4: Cavity QED parameters. Atom has free-space decay rate Γ and line-
width 𝛾 and is coupled to the cavity mode with interaction strength 𝑔. The cavity
mode decays with over-all rate 𝜅 which can be divided into emission into a detected
1D waveguide mode 𝜅in and loss to other channels 𝜅𝑠.

The strong coupling regime is characterized by 𝑔 dominating all other rates, i.e.,
𝑔 > {𝜅, Γ, 𝛾}. Strong coupling in the optical frequency domain has been achieved
with trapped atoms [40], ions [41], and quantum dots6 [43, 44]. In this regime
reversible transfer of excitations between the atom and cavity can be achieved
(vacuum Rabi oscillations).

Many solid-state quantum networking platforms operate in the so-called ‘bad cavity
regime,’7 characterized by a dominant cavity decay rate 𝜅 ≫ 𝑔 > Γ [45]. In this
context any photon occupation of the cavity mode will quickly dissipate, and the
coupling of the atom to the cavity effectively adds another decay pathway to the
atom with rate 4𝑔2/𝜅. The Purcell factor is defined as the ratio of this enhanced
rate to the intrinsic atomic decay rate: 𝐹𝑝 = 4𝑔2/𝜅Γ. Cavities are often engineered
such that their dominant energy decay pathway is into a specific 1D waveguide
mode. Hence atomic emission is funneled into a quantum channel: precisely the
functionality required for quantum networking. An added benefit of this regime is
the reduced ion lifetime, which is particularly important for the detection of single
rare-earth ions. This regime has been demonstrated in many quantum networking
platforms [46–54].

Another crucial parameter in the context of CQED is the cooperativity: C = 4𝑔2/𝜅𝛾
which quantifies the ratio between coherent atom-cavity interaction and other de-
phasing mechanisms. For radiatively broadened8 systems Γ/𝛾 = 1; however, in the

6Despite not operating in the optical regime, it would be remiss not to mention the pioneering
experiments by Haroche in a discussion of cavity QED [42].

7Quantum dots are a notable exception.
8This condition is often referred to as fourier, transform or lifetime limited.
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context of solid state emitters, dephasing mechanisms often dominate and Γ < 𝛾.
In this case, the bad-cavity regime can be subdivided into two further categories:
C < 1 and C > 1. The benefits of the bad cavity regime mentioned in the previous
paragraph are universal (regardless of C). When C > 1, coherent atom-cavity inter-
actions enables additional quantum network node functionality, including the ability
to mediate spin-spin interactions via the photonic mode [55], the perfect absorption
of optical photons [56, 57] and the ability to generate deterministic interactions with
and between itinerant photons [58, 59].

As we will see later in the thesis, the generation of remote entanglement relies on
the coherent emission of photons, entangled with the internal state of an emitter.
One might assume that this precludes the use of the C < 1 bad cavity regime
when generating remote entanglement; however, this is not the case. It turns out,
that if photonic emission occurs within a short window (𝛿𝑡 < 1/𝛾) after optical
excitation, the post-selected photons will be coherent. However since this is a non-
deterministic process, the ratio Γ/𝛾 will limit the entanglement heralding rate [60].
Operating in the C > 1 regime would enable an increased entanglement efficiency
(and potentially even deterministic entanglement generation if system losses are
minimized).

1.6 Solid State Systems for Quantum Networking
In this section I will review platforms that have been proposed and, in many cases,
have demonstrated the necessary quantum node functionality described in Section
1.4. While there has been considerable interest and progress in the development of
single trapped ion [61–63] and atom [64–66] quantum networks, in this thesis we
are going to focus on solid state systems for the following reasons:

• Solid state systems can be integrated with devices including nanophotonic
cavities and microwave circuits. Fabrication of these devices is often readily
scalable using established nanofabrication techniques.

• Qubits’ microscopic environment is resource-rich containing nuclear spins,
electronic spins, and phonons which can be leveraged as quantum resources.

• Defects can be doped or implanted into these materials, often with determin-
istic positioning, without the need for complex trapping infrastructure.

Initial efforts in solid-state quantum networking focused on quantum dots and nitro-
gen vacancy centers in diamond. Both of these platforms were used to demonstrate
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two-node entanglement at a fairly early stage [67, 68]; however, progress has been
hindered for different reasons. Quantum dots have very strong optical coupling
leading to high entanglement rates [69], though, their noisy nuclear spin environ-
ment has limited the implementation of a quantum memory with coherence time
longer than a few microseconds [70]. Nitrogen vacancy centers, on the other hand,
have an excellent intrinsic quantum memory (∼ 1 s coherence time [71]) and access
to a large resource of 13C nuclear spins (these can implement large registers with
> 10 qubits [72] and coherence times > 1 minute [73]). However, their optical
transitions are considerably weaker; furthermore, transition enhancement using the
CQED protocols discussed previously has been hindered by a first order DC Stark
sensitivity leading to reduced optical coherence properties when incorporated into
nanostructures [74]. Despite this limitation, NV centers have recently been used to
implement state of the art three node quantum networks [30, 75].

Motivated by the early success of these solid state platforms, in recent years, there
has been an explosion in the study of novel optically addressed solid-state qubits,
with the goal of finding a platform that can simultaneously be incorporated into
nanophotonic cavities and satisfies the requirements for a quantum network node. I
will attempt to summarize these platforms:

Group IV defects in diamond such as SiV (both negatively [76] and neutrally [77]
charged), SnV− [78, 79], GeV− [80] and PbV− [81] centers lead to an interstitial
defect with centrosymmetric site symmetry and no 1st order DC stark shift. The
SiV− is the most developed of these platforms, but requires cooling to millikelvin
temperatures (in dilution fridges) to prevent phonon transitions between two orbital
branches separated by ∼ 50GHz [82]. There has been recent progress using strained
sites with increased orbital splitting [83] to relax the operating temperature require-
ments. Using heavier interstitial elements like the SnV− center leads to a larger
spin-orbit interaction and higher operating temperature (1.7K); however, this also
requires increased strain to enable efficient spin driving [79].

Interest in SiC as a host material has been motivated by its compatibility with
advanced CMOS fabrication techniques [48, 84, 85]. A range of defects and
vacancies have been explored in this material with the neutral divacancy [86] and
silicon vacancy [87] being the most actively studied. These have both demonstrated
millisecond-level spin coherence times and stable optical transitions. Emerging
defects like the nitrogen vacancy [88], Cr4+ ion [89] and V4+ ion [90] have also been
studied, with the latter exhibiting transitions in the telecom O band.
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Recently, there has been significant interest in so-called ‘radiation damage centers’
in silicon which boast telecom O-band transitions. Of all solid state host materials,
silicon is the easiest to nano-fabricate, so identification of a good quantum emitter
would lead to rapid scalability. There have been several studies of G centers
as single photon sources [50, 91]; however, they lack a ground state spin. T
centers are emerging as a promising candidate [92] as they have a ground state spin;
however, their optical transitions are relatively weak compared to other diamond-
based defects9 (lifetimes are typically ∼ 1 𝜇s). There have been DFT-based studies
to idenitfy novel defects in silicon which simultaneously satisfy the requirements of
a ground state spin and fast telecom transition with no DC stark sensitivity [93].

Molecular qubits have demonstrated a bottoms-up approach with the potential for
microscopic configurability [94, 95]. This field started three decades ago with the
detection of single dye molecules in organic host matrices [96] which have been
explored as single photon sources and coupled to cavities with high cooperativity
[97]. However, their application to quantum networking has been hindered by the
lack of an optically addressed spin. Two platforms recently emerged that could
overcome this challenge: chromium bonded to organic ligands demonstrated 10 𝜇s
coherence times, albeit with poor optical properties [98]. Europium molecular
crystals demonstrate exceptionally narrow optical line-widths (5-30kHz) but lack
an electronic spin, necessitating storage in nuclear spin states that couple weakly to
microwave control fields [99].

Motivated by their extensive utilization in condensed matter physics, 2D materials
have been explored as single photon sources [100]. In particular, hexagonal boron
nitride (hBN) has a wide bandgap and hosts optically addressable spin qubits like the
𝑉−
𝐵

defect [101]. This defect has demonstrated radiatively-limited optical transitions
[102] and can be coupled to nanophotonic devices [103]; however, spin coherence
times are fairly low (∼ 4 𝜇s) due to the noisy boron nuclear spin bath [104, 105]. Of
particular interest are techniques to deterministically place defects in 2D materials
[106].

Rare earth ions will be discussed in detail in the next section of this thesis and are
just mentioned here for completeness.

I would also point the interested reader to the following review articles for a more
comprehensive overview of these solid state platforms [107–109].

9Still faster than rare-earths though!
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1.7 Overview of Rare Earth Ions
This thesis will explore the use of single rare-earth ions as quantum network nodes.
In this section I will introduce the reader to some basic properties and aspects
of rare-earth ion physics. A more detailed discussion of our specific platform is
provided in Chapter 2, the reader is also directed to these textbooks [110, 111] and
review papers [112, 113] for a more comprehensive overview.

Electronic Configuration and Energy Levels
Rare-earth elements comprise the Lanthanide series in the periodic table, they are
usually found in solids in the trivalent state with electron configuration given by
[Xe]4fN consisting of a Xenon core and partially filled 4f shell (Figure 1.5). The 4f
orbitals are closer to the nucleus compared to the filled 5s and 5p orbitals and hence
do not contribute significantly to bond formation. As a result, the 4f electrons are
shielded from the crystalline environment and the properties of inter-4f-transitions
are largely independent of the host material (at least compared to other solid state
defects). This has motivated the exploration and use of a wide variety of different
solid-state hosts.

5s + 5p

4f +

Rare-earth

elements

Figure 1.5: Rare-earth elements comprise the Lanthanide series of the periodic
table. They are commonly found in solids in the 3+ charge state where unfilled 4f
electronic orbitals are shielded by filled 5s and 5p orbitals.

The energy level structure of the 4f electrons can be understood by a hierarchy of
different interactions (listed in order of decreasing strength) [111]:

• Free ion Hamiltonian,

• Crystal field interaction,

• Hyperfine interaction,

• Superhyperfine interaction.
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The free ion Hamiltonian consists of energy terms independent of the crystalline host
(i.e., kinetic energy, coulomb attraction to the nucleus, spin-orbit interaction and
coulomb repulsion of the electrons). Energy levels can be derived using Hartree-
Fock and yield levels that are labelled 2𝑆+1𝐿𝐽 (where 𝑆, 𝐿 and 𝐽 are the spin, orbital
and total angular momenta). These levels have (2𝐽 + 1) degeneracy and are spread
by frequencies ∼ 300 THz (i.e., optical frequencies).

The crystal field interaction breaks the degeneracy of these multiplets leading to
so-called crystal field levels (with ∼ 10 THz splittings). For rare-earth ions with
odd numbers of electrons, Kramers’ theorem states that the resulting energy levels
will have a minimum twofold degeneracy (in the absence of magnetic fields). Site
symmetry determines the number of crystal field levels and corresponding transition
selection rules. We prefer to work with Kramers ions since they have electronic-
like spin transitions. These can be driven more easily and quickly with microwave
fields10, compared to nuclear spin transitions in non-Kramers ions, and thus can lead
to more reliable qubits.

For rare-earth ions with a nuclear spin, the hyperfine interaction with the electronic
spin will break the degeneracy imposed by Kramers’ theorem leading to 2(2𝐼 + 1)
hyperfine levels (some of which may be degenerate). This splitting is usually on the
scale of ∼ 1 GHz.11

Finally, for nuclear-spin-rich hosts, the hyperfine interaction with lattice nuclear
spins can yield spectrally resolvable transitions dependent on the surrounding nu-
clear spin states. This is termed superhyperfine structure and is usually in the range
of 10 kHz–1 MHz.

This rich energy level structure consisting of optical transitions for photonic inter-
faces, electronic transitions that can be driven strongly and nuclear spin states for
long-term storage make rare-earth ions a versatile platform for quantum information
applications.

10ns–𝜇s timescales
11For rare-earth ions with nuclear spin greater than 1/2 the nuclear quadrupole interaction will

also add an energy term (∼ 10 MHz).
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Spin Properties
For large temperatures, the spin relaxation rate in Kramers rare-earth ions scales as
𝑇9 and is limited by two-phonon Raman processes [114]. In order to mitigate this
effect, experiments are performed at cryogenic temperatures ≤ 4 K12. At sufficiently
low temperatures, the spin relaxation rate becomes limited by spin exchange with
other rare-earth ions, this can be mitigated by using more dilute ensembles or
optically polarizing the spin bath [115].

Under these conditions, the coherence properties of spin transitions are usually
limited either by interactions with nuclear spins or paramagnetic defects in the
host lattice. The most common host materials (YVO4, YAG, Y2SiO5) have dense
nuclear spin baths, additionally, they contain Yttrium which is difficult to purify and
often contains non-negligible quantities of paramagnetic rare-earth impurities (see
Appendix A). As a result, there has been considerable recent effort to identify and
work with magnetically quiet hosts [116]. Paramagnetic defects can also be frozen-
out (their spin bath dynamics can be suppressed) by operating at large magnetic
fields and low temperatures [117].

The longest coherence times measured in any optically-addressed solid state platform
were achieved with Europium nuclear spins in Y2SiO5 with 𝑇2 = 6 hours [118].

Optical Properties
4f-4f optical transitions of rare-earth ions are quite weak, with lifetimes in the
range of ∼ 100 𝜇s to ∼ 10 ms. In free-space these transitions would be parity-
forbidden, but, in the presence of a crystal field they become perturbatively allowed13.
Furthermore, due to the isolated nature of 4f electrons, these optical transitions are
highly radiative with coherence properties often limited by the spin coherence14.

The final key advantage of rare-earth ions is that they often have considerably
narrower optical ensemble inhomogeneities compared to other solid state systems
(frequency distributions as narrow as ∼ 10 MHz were observed in Nd:YLiF4 [120]).
In the context of remote entanglement heralding between single ions, we will see
that this narrow inhomogeneity enables the preparation of entangled states between
any pair of ions using measurement-based frequency erasure.

12For 171Yb studied in this work, experiments were performed at 0.5 K, coherence and lifetimes
were robust up to 1 K.

13Interestingly, in some rare-earth ions the strength of weakly allowed electronic dipole transitions
is comparable to magnetic dipole transitions [119].

14As we will see, the optical linewidth of the single ions in this work might be limited by electric
field fluctuations; this is likely due to nearby interfaces associated with the nanophotonic cavity.
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Applications of Rare-earths in Quantum Information
In this subsection I will summarize quantum information-related applications of
rare-earth ions focusing on the utilization of ensembles. A detailed discussion of
progress with single rare-earth ions is presented in the next subsection.

Rare-earth ion ensembles have found extensive application as photonic quantum
memories. Under ideal operating conditions, these memories should perfectly ab-
sorb a photon, store it for some duration (which could either be pre-determined
or dynamically selected) and subsequently re-emit the photon with high efficiency
whilst preserving the original quantum state [121]. Some key demonstrations in-
clude multi-mode storage [122], high efficiency storage [123] (69%), long storage
times up to 20 ms [124] and on-demand recall using spin-wave memories [125]. Fur-
thermore, there have been recent demonstrations of remote entanglement between
pairs of ensemble-based memories [126, 127]. A related topic is the proposed ap-
plication of rare-earth ion spin ensembles as memories for superconducting qubits.
Information would be stored as a delocalized spin excitation in a similar manner to
the optical quantum memories [128].

Motivated by the progress in superconducting qubit-based quantum computing,
microwave to optical transduction aims to convert single photons between between
the microwave and optical frequency domains (with high efficiency and low added
noise), thereby enabling large-scale quantum networking of superconducting qubits.
For transduction mediated by rare-earth ion ensembles, the basic idea is to use a
Raman scattering protocol in a three-level system, combined with ensemble strong
coupling to both optical and microwave resonators [129]. There have been a number
of experimental demonstrations using this approach [39, 130–132]. More recently,
there have been efforts to utilize stoichiometric crystals (where the rare earth ion
is fully concentrated in the crystal lattice). In this context, microwave photons
would couple to a collective ferromagnetic (or antiferromagnetic) resonance of the
electronic spin ensemble [133, 134].
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Progress with Single Rare-earth Ions
The first detection of single rare earth ions in a crystal was performed with Pr3+ ions
in yttrium aluminium garnet (YAG) [135], this was achieved using an upconverted
readout scheme, whereby population in an excited 4f2 level was transferred to a 4f5d
state, from where fast, parity-allowed emission at ultraviolet wavelengths enabled
efficient detection. However, the incoherent nature of this photon emission process
meant that it could only be used for readout and precluded a coherent spin-photon
interface. Nevertheless, this enabled a range of optical and spin coherence properties
of these ions to be studied [136], and a demonstration of nanometer-precision
implantation [137]. We note that a similar approach was also used to detect single
Pr3+ ions in LaF3 [138] and to detect and measure coherence properties of single
Ce3+ ions in YAG [139–142], including demonstration of coupling to individual
nuclear spins [143].

Around a similar time, a very different approach utilizing photoionization was
pursued to demonstrate detection of single Erbium ions in silicon. After optical
excitation on a coherent 4f–4f transition, the ion can undergo non-radiative relaxation
causing a nearby charge trap to ionise, this process was detected using a single
electron transistor [144]. This approach has been leveraged to perform spectroscopy
[145, 146] and characterize the relaxation and optical coherence properties of single
Er ions [147–149]. It has also been used to detect interacting Erbium ion pairs
[150] and to perform atomic-scale mapping of electric and strain fields [151].
However, demonstrating a spin memory and correlating the electrical detection with
fluorescence detection remain outstanding challenges.

The first demonstration of single ion detection using photoluminescence on the
coherent inter-4f optical transitions was performed with Pr3+ ions in Y2SiO5 [152]
using an anomalously fast transition with 2 𝜇s lifetime (detection using a slower
transition with ∼ 100 𝜇s lifetime was also demonstrated [153]), these measurements
were performed using bulk samples.

The first demonstrations of Purcell-enhanced detection of single rare-earth ions cou-
pled to nanophotonic cavities (using the coherent 4f–4f transitions) were demon-
strated by our lab using single Nd3+ ions in YVO4 [154] and the Thompson Lab
at Princeton using single Er3+ ions in Y2SiO5 [46]. In order to demonstrate a
coherent qubit, our lab switched to studying 171Yb in YVO4, which has ground
state and optical clock transitions15, using this platform we demonstrated coherent

15Which are robust against the noisy magnetic environment in the YVO4 crystal.
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optical transitions, spin memory and single-shot readout of the spin state [155].
Concurrently, the Thompson lab demonstrated similar spin functionality using the
Er3+:YSO platform [156] and parallelized measurement of six Er3+ ions in a single
device combined with independent spin control [157]. Both labs also used these plat-
forms to study interactions with environmental nuclear spins, we realized a quantum
register using four local Vanadium ions [158] while the Thompson lab demonstrated
quantum control of an impurity hydrogen nuclear spin (a proton) [159].

There is a specific focus in the community on single Erbium ions due to their in-
trinsic telecom transitions. However, a major limitation of the Er3+:YSO platform
is the presence of a 1st order DC stark shift, which has lead to poor optical coher-
ence in nano-fabricated platforms (in fact, this sensitivity has been used recently
to demonstrate Stark tuning of individual emitters [160]). This has motivated sys-
tematic studies of new host materials for Er ions with low magnetic noise and no
DC stark sensitivity [116], single Er ions have also been detected in MgO [119],
Si [53, 161], LiNbO3[162, 163] (which has also been demonstrated as a host for
single Yb ions [164]) and CaWO4 [165]. The latter result is particularly notable
as it demonstrated coherent optical and spin transitions (measured via time-delayed
two-photon interference and spin dynamical decoupling, respectively.)

It is worth noting that there are three different approaches currently pursued by the
community for fabricating optical cavities and Purcell-enhancing single rare-earth
ions, these each have their respective advantages/disadvantages:

1. Monolithic nanophotonic cavities fabricated directly from the host crystal
using focused ion beam milling [166] (the approach utilized in this thesis). The
modal field maximum is removed from nanophotonic interfaces maximizing
optical coherence; however the fabrication process needs to be re-optimized
for different host materials.

2. Hybrid approaches where the cavity is fabricated from silicon [46, 167] or
GaAs [168] and transferred onto a pristine crystal surface, enhancement occurs
via an evanescently decaying field. This approach is easily translated to
different host materials; however, since it preferentially enhances ions close
to the crystal surface it might cause a limitation to coherence properties.

3. Macroscopic Fabry-Perot cavities [169]. As with approach (1) this enables
enhancement of ions that are removed from interfaces. However, ensuring
narrow cavity line-widths requires vibration isolation in cryostats which is
quite challenging [170].
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Of all these platforms, the two which are most promising as quantum network
nodes (i.e. have demonstrated the most comprehensive range of functionality) are
171Yb:YVO4 and Er:CaWO4. The next step in the development of these platforms is
to demonstrate basic quantum networking protocols involving remote entanglement
generation. This will be discussed further (and demonstrated) in the second half of
this thesis.

Finally, I would also like to note a novel (and recently developed) approach to
detect single Er ion spins in CaWO4 [171]. In this work a 7GHz spin transition
was Purcell-enhanced, the microwave fluorescence was detected using a microwave
single photon detector and g(2) autocorrelation and spin coherence measurements
were performed.
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C h a p t e r 2

OVERVIEW OF EXPERIMENTAL PLATFORM

2.1 Introduction
The specific rare-earth ion platform investigated in this thesis is the 171Yb3+ ion
doped into YVO4 (see Figure 2.1). It is a Kramers rare-earth ion (odd number of
electrons), having an electronic spin 1/2 ground state. This enables fast control of
spin qubits using magnetic dipole like transitions.

Furthermore, 171Yb3+ is the only Kramers rare-earth ion with a nuclear spin of 1/2
[110]. This leads to the simplest possible hyperfine energy level structure consisting
of four states associated with each crystal field level (see the following section for
more detail). The mixing of nuclear and electronic degrees of freedom via the
hyperfine interaction, leads to clock transitions with reduced sensitivity to magnetic
field noise (we note that there are several other solid state systems that also use clock
transitions to reduce noise sensitivity [95, 118, 172, 173]).

These properties make 171Yb3+ a promising rare-earth ion to study and utilize in
quantum technologies, over the past few years it has been studied in a range of host
materials [173–177] with several demonstrations of single-ion addressability [155,
164].

Our choice of host material (yttrium orthovanadate, YVO4) is motivated by two
considerations. First, the local Y site symmetry (which the Yb substitutes) is non-
polar (𝐷2𝑑) which precludes a first order DC Stark shift and reduces the sensitivity of
optical transitions to electric field noise. Second, Yb3+ has a relatively large optical
dipole moment in this host (compared to other rare-earth ions/host materials) with
𝑓 = 5.4 × 10−6 (|𝜇 | = 1.06 × 10−31 C·m) for the main transition used in this
thesis. The radiative lifetime of this transition is 267 𝜇s [175]. While this is still
prohibitively long to address single ions directly, it relaxes the requirements on
device fabrication (i.e., requires lower Purcell factor devices to achieve a specific
lifetime compared to other hosts).

We also note that there are established methods for fabricating nanophotonic devices
in this material [166], demonstrated previously in our research group.

The wavelength of the optical transitions used in this work is 984.5 nm. This near-
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infra-red portion of the spectrum incurs fiber transmission losses of approximately
2 dB/km. While this is better than diamond-based defects (e.g., 637 nm for NV
centers), for minimal losses over long distances we would want to operate in the
telecom band (1260–1675 nm). Luckily frequency conversion between these wave-
lengths is fairly straightforward [178–183], we note that this is not demonstrated in
this work and is left for future projects.

There are two potential downsides to this host material choice. First, its large
concentration of (Vanadium) nuclear spins which generate magnetic field noise
with 2 G standard deviation [158]. It is for this reason that the clock transitions
mentioned previously are crucial for coherent operation of this qubit. In fact, as we
will see in Chapters 4 and 5, there are benefits to operating with this dense nuclear
spin environment as it provides a deterministic quantum resource.

The second downside is that Yttrium is hard to purify and often contains substantial
concentrations of Lanthanide elements. The YVO4 material used in this thesis has
a 140ppb concentration of Yb3+ of which 20ppb is 171Yb3+ (a full characterization
of impurities in these crystals can be found in Appendix A). While this concen-
tration was suitable for the work considered here, being able to operate with lower
concentrations would be beneficial for improving spin lifetimes.

In this section we will provide a detailed description of the energy levels and
transitions associated with 171Yb3+:YVO4, the nuclear spin environment and an
overview of the nanophotonic cavities/device platform used to address single rare-
earth ions.

2.2 171Yb:YVO4 Energy Level Structure
The energy level structure of 171Yb:YVO4 at zero magnetic field is shown in Figure
2.2.

The free ion energy levels under consideration are shown in Figure 2.2a and consist of
two sets of degenerate multiplets: the ground state has 𝐽 = 7/2 with 8 levels and the
excited state has 𝐽 = 5/2 with 6 levels. When embedded in a crystal, the degeneracy
of these levels is lifted into so-called crystal field levels (Figure 2.2b) leading to four
doubly-degenerate levels in the ground state and three doubly-degenerate levels in
the excited state.

In this work we focus on the lowest ground state and lowest excited state crystal
field levels (2𝐹5/2(0) and 2𝐹7/2(0)) which are separated by an optical transition at
984.5 nm [184]. Operating with the lowest ground state level prevents decay via
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Yb VY O

Figure 2.1: The crystal structure of YVO4, Yb substitutes for Y in a single site with
non-polar (𝐷2𝑑) symmetry.

thermal processes/spontaneous emission. Thermal excitation is inhibited by working
at cryogenic temperatures. This also prevents the excited state level, 2𝐹5/2(0), from
thermalizing with any other excited state levels; however, decay from this state
can occur to all four ground state levels. In fact, the branching ratio to 2𝐹7/2(0)
is only 𝛽 = 0.45. The optical cyclicity of this transition is improved via Purcell
enhancement: since the cavity is only resonant with the 2𝐹5/2(0) ↔2 𝐹7/2(0) and
not with any other crystal field transitions.

Focusing on these two crystal field levels, Figure 2.2c shows the hyperfine structure
resulting from the interaction between the Yb electronic and nuclear spins. The
effective spin-1/2 Hamiltonian for the 2F7/2(0) 171Yb3+ ground state is given by
[175]:

𝐻̂eff = 𝜇𝐵B · g · Ŝ + ÎYb · A · Ŝ (2.1)

where B is the magnetic field, Ŝ and ÎYb are vectors of 171Yb electron and nuclear
spin-1/2 operators, respectively, and we neglect the nuclear Zeeman term. The
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ground state g tensor is given by [185]:

g =
©­­«
𝑔𝑥 0 0
0 𝑔𝑥 0
0 0 𝑔𝑧

ª®®¬ =
©­­«
0.85 0 0

0 0.85 0
0 0 −6.08

ª®®¬ , (2.2)

which is a uniaxial tensor with the extraordinary axis parallel to the 𝑐-axis of the
crystal and the two ordinary axes aligned with the crystal 𝑎-axes. The ground state
A tensor is given by [175]:

A = 2𝜋 ×
©­­«
0.675 0 0

0 0.675 0
0 0 −4.82

ª®®¬ GHz (2.3)

with the same principal axes. The excited state spin Hamiltonian has the same form
but with different uniaxial tensors [175]:

g =
©­­«
1.7 0 0
0 1.7 0
0 0 2.51

ª®®¬ , A = 2𝜋 ×
©­­«
3.37 0 0

0 3.37 0
0 0 4.86

ª®®¬ GHz. (2.4)

The principal axes of the excited state tensors are the same as the ground state
tensors. (Note here that we have taken the convention ℏ = 1 and neglected the
nuclear Zeeman interaction).
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Figure 2.2: Energy level structure of 171Yb3+:YVO4. a) Free ion energy levels
with degenerate 𝐽 = 5/2 and 𝐽 = 7/2 multiplets. b) Crystal field splitting into
doublets. We utilize the lowest excited and ground state levels separated by 984.5
nm. c) Hyperfine level structure of these two doublets. Yellow levels have no
1st order sensitivity to magnetic fields, red (blue) transitions are polarized parallel
(perpendicular) to the crystal 𝑐 axis. Microwave transitions with magnetic field
polarization along the 𝑐 axis are labelled in black.



24

Denoting the ground state electron spin as |↓𝑔⟩ and the ground state nuclear spin as
|⇓𝑔⟩, the ground state energy levels have the following form:

|1𝑔⟩ =
1
√

2

(
|↑𝑔⇓𝑔⟩ + |↓𝑔⇑𝑔⟩

)
|0𝑔⟩ =

1
√

2

(
|↑𝑔⇓𝑔⟩ − |↓𝑔⇑𝑔⟩

)
|aux⟩ = |↑𝑔⇑𝑔⟩ , |↓𝑔⇓𝑔⟩

(2.5)

where the |aux⟩ state is doubly degenerate. Note that |0𝑔⟩ and |1𝑔⟩ have no 1st order
sensitivity to magnetic fields, i.e., ⟨0𝑔 | 𝑆𝑥/𝑦/𝑧 |0𝑔⟩ = ⟨1𝑔 | 𝑆𝑥/𝑦/𝑧 |1𝑔⟩ = 0. This means
that the |0𝑔⟩ ↔ |1𝑔⟩ transition at 675 MHz is a clock transition; indeed, this is why
we use it as our qubit. The transition can be driven with an oscillating z-directed
magnetic field1 since ⟨0𝑔 | 𝑆𝑧 |1𝑔⟩ ≠ 0.

To predict the sensitivity of our qubit transition to magnetic fields, we consider
second-order effects which generally scale as ∼𝑔2/Δ𝐸 , where Δ𝐸 is the energy
separation between a pair of unperturbed eigenstates. By taking into account the
fact that 𝑔𝑧 is roughly 7 times larger than 𝑔𝑥 , 𝑔𝑦 and 𝑆𝑧 terms in 𝐻̂eff mix |0𝑔⟩ and |1𝑔⟩
with small Δ𝐸 whereas 𝑆𝑥 and 𝑆𝑦 mix the 171Yb qubit states and |aux⟩ with large
Δ𝐸 , we identify that perturbations along the 𝑧 axis (crystalline 𝑐 axis) dominate.
Hence we can approximate this second order detuning with magnetic field as:

Δ =
𝑔2
𝑧 𝜇

2
𝐵
𝐵2
𝑧

2𝜔01ℏ2 (2.6)

where 𝜔01 is the frequency of the |0𝑔⟩ ↔ |1𝑔⟩ transition. This is why, experi-
mentally, we primarily care about cancelling residual fields along the 𝑧 direction to
optimize qubit coherence.

The expressions for the excited state energy levels (in terms of nuclear and electronic
spins) can be found in [175]. For the purposes of this discussion it is sufficient to
note that |0𝑒⟩ and |1𝑒⟩ also have no 1st order sensitivity to magnetic fields.

This also means that any optical transitions connecting |0𝑔⟩, |1𝑔⟩ to |0𝑒⟩, |1𝑒⟩ will
also be insensitive to magnetic field noise (i.e., the 𝐴 and 𝐸 transitions).

Considering the optical transitions in Figure 2.2c, the three transitions highlighted
in red (A, E, I) are polarized parallel to the 𝑐 axis of the crystal. The blue transitions
(C, F, G, H) are polarized perpendicular to the 𝑐 axis.

1Throughout this thesis we adopt a convention that 𝑧 is parallel to the crystalline 𝑐 axis.
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Note that experimentally we observe a small splitting of both the doubly-degenerate
|aux⟩ and |aux𝑒⟩ energy levels, typically around 0–40 MHz. We attribute this to local
strain in the crystal which reduces the site symmetry. As a result the 𝐹 transition
(which we use during our initialization protocol) is split into two distinct frequencies
which we label 𝐹1 and 𝐹2.

2.3 Nuclear Spin Environment
The 171Yb3+ ion substitutes for yttrium in a single site of the YVO4 crystal. The
local crystalline environment consists of 89Y, 51V and 16O ions. Naturally abundant
V and Y contain 99.8% 51V and 100% 89Y isotopes with nuclear spins of 7/2 and
1/2, respectively. Hence each 171Yb ion experiences a near-identical nuclear spin
environment2.

Note that there is a stark difference between this nuclear spin environment compared
to most other solid state platforms. The most commonly studied regime consists
of a localized electronic spin coupled to a sparse, non-interacting nuclear spin
bath (Figure 2.3a). In this case, individual spins are spectrally resolvable via their
different hyperfine interaction strengths with the central electronic spin and can be
used as independent qubits, this regime occurs with 13C nuclear spins in diamond
coupled to NV [186–192] and SiV centers [193], hydrogen nuclei coupled to Er ions
in Y2SiO5 [159] and 29Si nuclear spins coupled to vacancies in SiC [194], Ce ions
in Y2SiO5 [143], donors in silicon [195] and gate-defined quantum dots [196]. An
alternative regime is encountered with InGaAs strain-defined quantum dots where
a highly delocalized electronic spin (spanning ∼ 10 nm) is homogeneously coupled
to a large number (typically ∼ 105) of dense, interacting, indistinguishable nuclear
spins [197–201] (Figure 2.3c). High fidelity initialization and quantum control of
such a large many-body system is difficult and utilizing nuclear spins as a quantum
resource in this regime is an outstanding challenge.

Our system realizes an intermediate regime where a highly localized electronic spin
is coupled to a dense, confined, nuclear spin ensemble consisting of ∼ 10 nuclear
spins (Figure 2.3b). This yields a deterministic quantum resource with nuclear spin
positions and interactions prescribed by the lattice. Furthermore, due to the small
number of spins this is a highly controllable quantum many-body system (as we will
see later in this thesis)3.

2Naturally abundant oxygen contains a negligible fraction of nuclear spinful isotopes.
3Note that this regime has been partly explored in the context of rare-earth ion ensembles

coupling to local nuclear spins.[54, 202].
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Figure 2.3: Different nuclear spin bath regimes encountered in solid state platforms.
a) A sparse nuclear spin bath is coupled to a localized electronic spin. Nuclear
spins can be spectrally resolved and used as independent qubits. b) A dense nuclear
spin bath is coupled to a localized electronic spin (our regime). Leading to a
confined, deterministic many-body system. c) A dense nuclear spin bath coupled to
a delocalized electronic spin yields a complex, large many body system.
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Figure 2.4: Vanadium nuclear spin environment. a) V spins around the Yb are
arranged in equidistant shells. The second shell contains 4 spins and is termed
the register. All other spins belong to the bath. b) Zero field nuclear quadrupole
structure of I=7/2 Vanadium register spins consisting of four quadratically spaced
doublets.
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51V with nuclear spin 7/2 has the largest magnetic dipole moment and zero-field
structure due to a quadrupole interaction with the lattice electric field [203], we will
therefore focus our subsequent discussion exclusively on this ion/isotope.

The resulting zero-field energy level structure of the 51V spins is given by:

𝐻̂V = 𝑄𝐼2
𝑧 (2.7)

where 𝑄/2𝜋 = 171 kHz measured using nuclear magnetic resonance (NMR) on
bulk YVO4 crystals [203] and 𝐼𝑧 is the 51V nuclear spin-7/2 spin operator along the
𝑐 ≡ 𝑧 axis. This leads to four quadratically-spaced, doubly degenerate energy levels,
{|±𝑚𝐼⟩} ={|±1/2⟩, |±3/2⟩, |±5/2⟩, |±7/2⟩}, and three magnetic-dipole allowed
transitions 𝑎, 𝑏, 𝑐 (Figure 2.4b).

The local 51V ions surrounding the 171Yb qubit experience a frozen-core detuning,
likely due to a modification of the electric field environment. They are arranged in
shells of equidistant nuclear spins. Due to symmetry, all nuclear spins within a given
shell have equal frequency detuning and are indistinguishable from the perspective
of interaction with the Yb (see Section 4.2 for more discussion).

The positions of the six nearest 51V ions are tabulated in Table 2.1, where r = [𝑥 𝑦 𝑧]
is the 171Yb–51V position vector with magnitude 𝑟 and direction cosines {𝑙, 𝑚, 𝑛}.
Their positions are also depicted in Figure 2.4a.

51V ion # Shell 𝑟 (Å) 𝑥 (Å) 𝑦 (Å) 𝑧 (Å) 𝑙 𝑚 𝑛

1 1st 3.1 0 0 -3.1 0 0 -1
2 1st 3.1 0 0 3.1 0 0 1
3 2nd 3.9 0 -3.6 1.6 0 -0.91 0.40
4 2nd 3.9 0 3.6 1.6 0 0.91 0.40
5 2nd 3.9 -3.6 0 -1.6 -0.91 0 -0.40
6 2nd 3.9 3.6 0 -1.6 0.91 0 -0.40

Table 2.1: Positions and direction cosines of local Vanadium nuclear spins.

We divide these spins into two distinct classes, register spins and bath spins. Specif-
ically, the register spins comprise the second shell. They are distinguished by two
factors: first their frozen core detuning spectrally resolves them from other bath
spins (𝑄/2𝜋 = 165 kHz, Figure 2.4b). They are also distinguished by the nature
of their interaction mechanism with Yb, this will be discussed in more detail in
Chapter 4. We will see in Chapter 5 how we can use these spins as a many-body
quantum register.
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We also note that the 51V ions have a uniaxial g-tensor with form [204]:

gV =
©­­«
𝑔𝑣𝑥 0 0
0 𝑔𝑣𝑥 0
0 0 𝑔𝑣𝑧

ª®®¬ (2.8)

with 𝑔𝑣𝑥 = 0.6 and 𝑔𝑣𝑧 = 1.6 [158].

2.4 Purcell Enhancement and Devices
As discussed previously, the weak dipole moments and long lifetimes of the 4f-4f
transitions make it difficult to address single rare-earth ions (REIs). For comparison,
other solid state platforms such as nitrogen vacancy centers and InGaAs quantum
dots have lifetimes of ∼ 10 ns and ∼ 0.5 ns whereas REIs typically have lifetimes
between 0.1 − 10 ms.

The accepted approach to resolve this issue (which has been adopted by many labs
studying single rare-earth ions) is to couple them to an optical cavity [46, 53, 154,
162, 164, 169]. By engineering the photonic environment around the emitter, we
can preferentially enhance its coupling to a specific optical mode, thereby enabling
a faster channel for extracting photons from the emitter compared to ‘natural’ decay
into free-space radiation modes.

Understanding the coupling of a single atom to a cavity is described by cavity quan-
tum electrodynamics. Many textbooks/course notes cover this topic (for example
[205] and [206]) while here I will provide quick overview; a more detailed discussion
is presented in section 8.5.

The three key processes needed to understand an atom coupling to a cavity are as
follows:

1. Unitary dynamics associated with a two level system coupling to an optical
mode via an electric-dipole-like transition.

2. Dissipative dynamics associated with the two level system radiating into free-
space optical modes.

3. Dissipative dynamics associated with radiation leakage out of the cavity.
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The first item is described via the Jaynes Cummings Hamiltonian:

𝐻̂ = ℏ𝑔(𝑎̂𝜎̂+ + 𝑎̂†𝜎̂−) (2.9)

where 𝑎̂, 𝑎̂† are bosonic annihilation/creation operators for the cavity mode, 𝜎̂+,

𝜎̂− are raising/lowering operators for the two level system and 𝑔 =

√︃
𝜇2𝜔

2𝜖𝜖0ℏ𝑉
with

𝜇 the transition dipole moment, 𝜖𝜖0 the permittivity of the medium surrounding
the emitter, 𝜔 the transition frequency and 𝑉 the optical mode volume. We have
assumed that the ion is resonant with the cavity and moved into a rotating frame for
both the emitter and cavity mode.

The second item can be described by Lindbladian dynamics, i.e., a master equation
with the following form:

¤𝜌 = Γ

(
𝜎̂−𝜌𝜎̂+ − 1

2
{
𝜎̂+𝜎̂−, 𝜌

})
(2.10)

where Γ is the optical decay rate, Γ =
𝜔3𝑛𝜇2

3𝜋ℏ𝑐3𝜖0
.

The third item can be described by a second master equation:

¤𝜌 = 𝜅

(
𝑎̂𝜌𝑎̂† − 1

2
{
𝑎̂+𝑎̂†, 𝜌

})
(2.11)

where 𝜅 is energy decay rate of the cavity (i.e., 𝑄 = 𝜔/𝜅).

See Figure 2.5b for an illustration of these different rates where we have separated
cavity dissipation into two separate channels, 𝜅s is associated with light scattered
into unobserved optical modes, 𝜅in corresponds to light coupled to a 1D waveguide
(optical fiber), these are connected to the overall cavity decay rate via: 𝜅 = 𝜅s + 𝜅in.4

The relative magnitudes of 𝜅, 𝑔 and Γ determine which regime of cavity QED we
are operating in. All examples in this thesis will be in the ‘bad cavity regime’ where
𝜅 dominates over all other rates: 𝜅 ≫ 𝑔 > Γ. In this regime, any photon occupation
of the cavity mode will quickly dissipate, hence the coupling of the atom to the
cavity effectively adds another decay pathway.

If we solve the dynamics associated with these processes we find that the atomic
decay rate is modified from Γ to Γ+ 4𝑔2

𝜅
. The ratio of these two rates is 1+𝐹𝑝 where

4Note that, in principle, coupling to the waveguide is a coherent (non-dissipative) process. This
is why photonic emission into the waveguide can be used as a channel for mediating long-range
spin entanglement. In section 8.5 we will use an alternative formalism where the decay into the
waveguide is separated from the scattered light and treated using unitary dynamics.
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Figure 2.5: Device and cavity QED a) SEM image of the nanophotonic cavity milled
from the YVO4 host crystal (grey) with a surrounding gold coplanar waveguide
(yellow). Light impinges vertically onto the chip, the angled coupler reflects it into
the waveguide mode. The cavity mode is highlighted in red in the center of the
nanobeam. b) Schematic of rates relevant for ion-cavity coupling. c) Schematic of
coplanar waveguide on chip. The magnetic field direction is indicated with a red
arrow, the devices sit in the gaps between the ground plane and center strip.

𝐹𝑝 =
4𝑔2

𝜅Γ
is termed the Purcell factor [45]. By substituting expressions for 𝜅, 𝑔, Γ

we can derive 𝐹𝑝 = 3
4𝜋2𝑄

(𝜆/𝑛)3
𝑉

. As we can see, reducing the lifetime of our emitter
boils down to fabricating cavities with a small mode volume and large quality factor.

Note, for multi-level systems there is a subtlety in the definition of the Purcell
factor. In this case, 𝛽 3

4𝜋2𝑄
(𝜆/𝑛)3
𝑉

=
4𝑔2

𝜅Γ
where 𝛽 is the branching ratio. Both 4𝑔2

𝜅Γ
and

3
4𝜋2𝑄

(𝜆/𝑛)3
𝑉

can be termed the Purcell factor.

The optical cavities used in this thesis are nanophotonic cavities directly fabricated
from the YVO4 host crystal using focused ion beam milling (see Figure 2.5a). This
process is detailed in [166]; briefly, it involves first milling a suspended triangular
nanobeam via a series of angled cuts. Subsequently, a photonic crystal is fabricated
via a series of periodic cuts orthogonal to the beam. The period of the cuts is
quadratically tapered towards the center of the beam to define a TM cavity mode
with electric field along the 𝑐 axis of the crystal. There are more mirror periods
on one side of the tapered region compared to the other, this leads to preferential
emission of cavity light into one side of the suspended waveguide. A 45 degree
angled cut at the end of the waveguide couples light into free space (via total internal
reflection) in a direction travelling orthogonally to the chip surface. These cavities
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have a quality factor of ∼ 10, 000 and a mode volume of approximately (𝜆/𝑛)3.

The first cavity used in this work was fabricated by Jake Rochman; it has survived
for 5 years and has been used for three separate projects with negligible degradation,
a testament to the robustness of these devices. We fabricated a second cavity more
recently for the entanglement project using the same recipe.

The cavity QED parameters for the best coupled ions in the first device are: 𝑔 =

2𝜋 × 23.5 MHz, 𝜅 = 2𝜋 × 31 GHz, Γ = 3.7 kHz leading to a lifetime reduction of
122. The ratio 𝜅in/𝜅 ≈ 0.12, meaning that approximately 12% of light in the cavity
couples into the waveguide mode.

In addition to reducing the lifetime of the emitter there are two additional benefits to
the Purcell enhancement. First, it leads to preferential emission of photons into the
cavity mode: 𝛽𝐹𝑝/(1 + 𝛽𝐹𝑝) ≈ 0.99 of emitted light goes into the cavity. Second,
it enhances the cyclicity of cavity coupled transitions, the branching ratio of the
|0𝑒⟩ state decay via the A transition is 𝛽𝐴 ≈ 0.35, in the cavity this is boosted to
(1 + 𝐹𝑝)𝛽𝐴/(1 + 𝛽𝐴𝐹𝑝) ≈ 0.999.

We note that since the cavity mode is polarized along the 𝑐 axis of the crystal,
𝐴, 𝐸 and 𝐼 transitions are Purcell enhanced whereas 𝐶, 𝐹, 𝐺, and 𝐻 are not. These
transitions can then be used for different applications. Cyclic transitions are good
for qubit readout as we can repeatedly excite the ion and detect photons without
deteriorating the qubit populations. Un-enhanced transitions (in combination with
an enhanced transition, forming a Λ system) are useful for qubit initialization as
discussed in Section 3.3.

In addition to the optical cavities, we fabricate a coplanar waveguide (CPW) on the
surface of the chip (gold-colored regions in Figures 2.5a and c). The nanophotonic
cavities are fabricated in the slots between the ground planes and center strip of
the waveguide. This exposes them to an RF magnetic field perpendicular to the
chip’s surface (parallel to 𝑐), this is the correct polarization for driving the ground
state qubit transition between |0𝑔⟩ ↔ |1𝑔⟩ (transition 𝑔) and also the excited state
transition between |0𝑒⟩ ↔ |1𝑒⟩ (transition 𝑓 ).

More detail regarding the experimental setup for single ion measurements presented
in this thesis can be found in [155]. The experimental setup for two device mea-
surements is described in Chapter 9.
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C h a p t e r 3

SINGLE 171YB:YVO4 QUANTUM NODES

3.1 Detection and Verification of Single Ions
To detect single ions we first perform resonant photoluminescence (PL) spec-
troscopy. We apply a long (10 𝜇s) laser pulse which drives any ions’ optical
transitions to saturation. We subsequently detect emitted photons which are tem-
porally resolved from the laser excitation. We sweep the laser frequency in an 800
MHz range around the optical 𝐴 transition and plot the integrated (and normalized)
PL counts at each frequency (Figure 3.1a). The spectrum shows a set of clustered
peaks, the isolated peak labelled ‘Ion 1’ is a single 171Yb ions which is studied
further in this section.

Figure 3.1b shows a histogram of photon emission times after the optical excitation.
We see a mono-exponential decay with lifetime of 2.18±0.04 𝜇s. This corresponds
to a lifetime reduction of 𝛽𝐹𝑃 = 122 and a Purcell factor of 350. The single photon
coupling rate is 𝑔 = 2𝜋 × 23.5 MHz. Based on these results, the probability that the
ion emits into the cavity mode is 99.2%.

Finally, to verify that this is indeed a single ion, we perform a pulsed g(2) auto-
correlation measurement [207]. This yields a value of 𝑔(2) (0) = 0.015 ± 0.002.
The slight bunching feature observed around 0 time delay indicates that there is
some degree of correlation between photon emission events after near-consecutive
excitations. This could be due to imperfect hyperfine initialization combined with
spin pumping dynamics. Essentially, the combination of laser excitation and spin
thermalization lead to an effective hyperfine relaxation rate. A photon detection
indicates that the ion is currently in the |1𝑔⟩ state, and there will be an elevated
probability of detection within the relaxation timescale.

3.2 Optical Control and Coherence
Next, we demonstrate the ability to coherently control the optical 𝐴 transition. We
apply an optical pulse of varying duration and plot the integrated photon emission
in Figure 3.2a. We see a Rabi oscillation with Rabi frequency equal to Ω = 2𝜋 ×
3.9 MHz. The solid curve corresponds to a simulation which includes optical decay,
quasi-static frequency fluctuations and pure dephasing, parameters for the simulation
were independently measured using the subsequently described experiments. The
model fits remarkably well to the data with no free parameters.
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Figure 3.1: Verification of single 171Yb:YVO4. a) A pulsed luminescence mea-
surement centered on the A transition. The isolated peak labelled Ion 1 is a single
ion investigated in this chapter. b) Optical lifetime of a single ion obtained by
time-resolving the photoluminescence. Fit is to a mono-exponential decay with
lifetime 𝑇1 = 2.18 ± 0.04 𝜇s. c) Pulsed g(2) autocorrelation measurement with
g(2) (0) = 0.015 ± 0.002 verifies that this is a single ion.

Next, we use the optical Rabi experiment to calibrate an optical 𝜋/2 pulse and
perform a Ramsey coherence measurement (Figure 3.2b). This data is integrated for
approximately one hour and yields a Gaussian decay with timescale𝑇∗

2 = 320±10 ns
corresponding to a FWHM linewidth of 1.7 MHz. We note that this is considerably
broader than the transform limited linewidth of 99 kHz, equivalently, the Ramsey
coherence is much shorter than the lifetime limit: 𝑇∗

2 ≪ 2𝑇1 = 4.36𝜇𝑠.

The Gaussian decay envelope in the Ramsey measurement indicates that frequency
fluctuations may be quasi-static. Therefore, in Figure 3.2c we add a single optical
𝜋 pulse to rephase contribution from quasi-static frequency variation (i.e., perform
an optical echo). The resulting coherence time of 3.4 ± 0.1 𝜇s is much closer to the
lifetime limit, we predict an excess pure dephasing rate of 69 ± 9 kHz. The ability
to extend the optical coherence in this manner will be leveraged in Section 10.2 to
obtain a considerably increased two-ion entanglement rate.
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Finally, we explore the temporal correlations in ion emission frequency. To do this,
we first perform an optical Ramsey measurement as described previously, then we
apply a weak frequency-selective probe pulse and count any photons emitted after
the probe, this experiment is repeated many times. Each Ramsey measurement
will only be accepted if the number of probe photons in a 3.5 ms window centered
at some fixed separation 𝜏sep exceeds a certain threshold (in this case 𝑁 > 2).
When 𝜏sep = 0 we observe an extended Ramsey decay timescale of 𝑇∗

2 = 0.77 ±
0.05 𝜇s (Figure 3.2d). This verifies the presence of temporal frequency correlations,
note that in this case the Ramsey measurement was performed with a 1 MHz
detuning. We plot the Ramsey decay timescale as a function of the offset (𝜏sep)
between the measurement and probe acceptance window. Assuming that the optical
detuning Δ(𝑡) is a Gaussian stochastic process we expect the frequency correlation
to decay according to𝐶ΔΔ(𝑡) = ⟨Δ(𝑡)Δ(0)⟩ ∝ 𝑒−𝑡/𝜏𝑐 . Figure 3.2d shows an extracted
correlation timescale of 9 ± 1 ms.

Based on our modelling of the nuclear spin environment (see Chapter 4) the contri-
bution to optical linewidth due to interactions with local nuclear spins is ∼ 40 kHz.
Furthermore, due to the low doping concentration of 171Yb, spin-spin interaction
strength is ∼ 50Hz. We therefore postulate that the optical linewidth is limited by
electric field fluctuations combined with a DC stark shift. This could either be a
quadratic shift as predicted by the ideal site symmetry, or a small residual linear
shift caused by reduced site symmetry from local strain. Further experiments are
required to ascertain the DC stark susceptibility and source of optical linewidth
broadening.

3.3 Spin Initialization and Readout
Since experiments are performed at 0.5K, the equilibrium population is distributed
between |1𝑔⟩, |0𝑔⟩ and |aux⟩ levels in the ratio 1:1.1:2.6. Initialization starts by
pumping population out of the |aux⟩ state into the qubit manifold. This is achieved
by applying alternating 2.5 𝜇s pulses to the 𝐹1 and 𝐹2 transitions, followed by a
2.5 𝜇s wait for optical decay. This process is repeated 200 times. We measure the
initialization fidelity by comparing the photon count rate from the |1𝑔⟩ and |0𝑔⟩ states
right after initialization with the count rates achieved after the ions have thermalized
(see discussion of spin 𝑇1 times in Section 3.5). We extract an initialization fidelity
into the qubit manifold of 95 ± 5%.
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Figure 3.2: Optical control and coherence of single 171Yb:YVO4. a) Optical Rabi
oscillation on the 𝐴 transition with Rabi frequency Ω = 2𝜋 × 3.9 MHz. b) Optical
Ramsey coherence measurement yields 𝑇∗

2 = 320±10 ns and a 1.7 MHz line-width.
c) Echo coherence time of 𝑇2 = 3.4 ± 0.1 𝜇s is nearly lifetime limited with an
excess pure dephasing rate of 69 ± 9 kHz. d) Post-selected Ramsey measurements:
Ramsey photon counts are accepted conditional on emission after a weak, frequency-
selective probe. The separation between the probe and Ramsey measurement is
varied yielding a frequency correlation timescale of 9 ± 1 ms.
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Next, we pump population out of the |1𝑔⟩ state into |0𝑔⟩. Note that since there are no
two-photon Λ transitions connecting these levels at B=0, we employ a three-photon
scheme. More precisely, we optically excite |1𝑔⟩ population into |0𝑒⟩ via a 𝜋 pulse
on the 𝐴 transition. Then we apply a microwave 𝜋 pulse on the excited state spin
transition thereby transferring |0𝑒⟩ to |1𝑒⟩. Population from the |1𝑒⟩ state decays to
|0𝑔⟩ via the cavity enhanced 𝐸 transition. This process is repeated 15 times.

To estimate the fidelity, we read out the |1𝑔⟩ population by applying a single optical 𝜋
pulse and collecting photons. We subtract dark counts and contributions from other
ions by temporally resolving the photon count distribution and only considering the
portion that decays at the pre-determined ion optical lifetime. We compare this to
the |0𝑔⟩ population by applying a qubit 𝜋 pulse followed by the same single optical
𝜋 pulse photon measurement. With these results we estimate a qubit initialization
fidelity of 0.9976 ± 0.0003. We also estimate a single photon detection efficiency
of (9.81±0.07) ×10−3 and a dark count rate of 16.3±0.5 Hz. We measure the dark
count rate with all laser pulses far-detuned from any Yb optical transitions, this lets
us further distinguish two separate dark count contributions: an off resonant rate of
8.0±0.2 Hz coming from laser leakage or ambient light, and a resonant contribution
of 8.3 ± 0.5 Hz likely coming from off-resonant excitation of long-lived ions.

The cyclicity of the optical 𝐴 transition is measured to be 0.9978, during typical
experiments, we can leverage this to read out the qubit with a higher efficiency.
First we read out the |1𝑔⟩ state by applying a train of 100 optical 𝜋 pulses to the 𝐴

transition, each followed by a 10 𝜇s photon counting time. We then apply a qubit
𝜋 pulses and repeat the process to read out the |0𝑔⟩ state. We assign the qubit state
to |0𝑔⟩ (|1𝑔⟩) if we get 0 (≥ 1) photons during the first readout and ≥ 1 (0) photons
during the second readout. The resulting readout efficiency is 59%. However, this
yields a lower readout fidelity compared to the single optical 𝜋 pulse case, primarily
due to spin relaxation during the readout process. We estimate the readout infidelity
by noting that it will be several orders of magnitude larger than the initialization
infidelity. We prepare |0𝑔⟩ and |1𝑔⟩ states and measure their populations, this yields
𝐹|1𝑔⟩ = 0.961 ± 0.002 and 𝐹|0𝑔⟩ = 0.977 ± 0.001. We can use these measurements
to calculate a correction matrix for the readout process:(

𝑃|1𝑔⟩

𝑃|0𝑔⟩

)
=

(
1.048 −0.025
−0.048 1.025

) (
𝑃̃|1𝑔⟩

𝑃̃|0𝑔⟩

)
(3.1)

where 𝑃|0𝑔⟩, 𝑃|1𝑔⟩ are the actual qubit populations for the |0𝑔⟩ and |1𝑔⟩ states
respectively, and 𝑃̃|0𝑔⟩, 𝑃̃|1𝑔⟩ are the corresponding measured qubit populations.
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3.4 Spin Control and Randomized Benchmarking
We demonstrate coherent spin control by initializing the qubit as described in the
previous section, applying a microwave pulse of variable duration and frequency and
then reading out the qubit population. Figure 3.3a shows the experimental results
with a characteristic Rabi chevron. We typically operate experiments with Rabi
frequencies in the range Ω = 2𝜋 × (5 − 10) MHz. We use the spin Rabi oscillation
to calibrate 𝜋 and 𝜋/2 pulses.

We characterize our single qubit gate fidelity using randomized benchmarking [208],
which provides a value independent from state preparation or measurement (SPAM)
errors. We apply randomly sampled single qubit Clifford gates constructed using
𝜋 and 𝜋/2 rotations around the 𝑥 and 𝑦 directions followed by the single-gate
inverse operation. When the number of gates, 𝑀gate, increases, the sequence error
accumulates and the probability of returning to the initial |0𝑔⟩ state reduces according
to an exponential decay:

𝑃 = 0.5 + 𝑃0𝑑
𝑀gate . (3.2)

When ensemble-averaged over a sufficiently large number of random gate sets (in our
case 100), 𝑓 = 1

2 (1+ 𝑑) becomes a reliable estimate of the average single-qubit gate
fidelity. Measurement results are presented in Figure 3.3b, leading to an extracted
average single qubit gate fidelity of 𝑓 = 0.99975 ± 0.00004.
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Figure 3.3: Spin control. a) Spin Rabi oscillation dependence on pulse duration and
frequency b) Randomized benchmarking yields an average single qubit gate fidelity
of 0.99975 ± 0.00004.
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3.5 Spin Coherence and Lifetime
Figure 3.4a shows a Ramsey coherence measurement on the qubit transition with
1 MHz detuning. The solid line is the result of a Monte Carlo simulation of the
local Vanadium nuclear spin environment (see Section 6.4 for more details). The
decay timescale is approximately 8 𝜇s; however, this is not a trivial Gaussian or
exponential decay profile due to the discrete nature of the spin bath and also the
asymmetric frequency distribution (due to the quadratic magnetic field sensitivity).
Note that the model is fitted to the data with one free parameter: the nuclear spin
z-directed g factor which is estimated to be 𝑔𝑣𝑧 = 1.6.

The nuclear spin environment that limits the Ramsey coherence is slowly fluctuating
and we can therefore use dynamical decoupling to extend the spin coherence. Figure
3.4b shows the result of a Hahn-echo experiment with coherence time 43 ± 1 𝜇s.
More generally, we can use sequences with larger numbers of 𝜋 pulses, e.g., the Carr-
Purcell-Meiboom-Gill sequence (CPMG) [209, 210]. We investigate the increase
in spin coherence time with increasing number of 𝜋 pulses (𝑁) in Figure 3.4c. We
extract a power-law dependence of the form 𝑇2 ∝ 𝑁0.70±0.01. This indicates a noise
spectral density of the form 𝑆(𝜔) ∝ 𝜔−2.3±0.1, which agrees well with the expected
𝑆(𝜔) ∝ 𝜔−2 for coupling to a dipolar spin bath approximated by a classical source
of Ornstein-Uhlenbeck noise [211].

To extend the coherence time even further, we operate with a fixed pulse separation
and measure the coherence time by increasing the number of dynamical decoupling
periods in a floquet fashion. The inter-pulse separation is chosen to be 2𝜏 = 5.8 𝜇s
and satisfies two requirements: 1) It avoids accidental driving of the local nuclear
spin environment as discussed in Section 4.6 and 2) it is as small as possible to filter
out the 1/𝜔2 noise identified earlier. We also switch from using a CPMG sequence
to an XY8 sequence [212, 213]. This is because CPMG is only robust to pulse
errors for superposition states prepared parallel to the 𝜋 pulse Rabi axis, whereas
XY8 is robust to pulse errors for any prepared superposition state. Therefore, XY8
coherence times are more experimentally useful as they robustly preserve coherence
for any quantum state. We measure an XY8 coherence time of 21.2 ± 0.7 ms,
combined with the spin relaxation time measurements we can extract a pure spin
dephasing rate of 38 ± 2 Hz.

It is currently unknown what causes excess dephasing in the dynamically-decoupled
spin coherence times. One possibility is interactions between nuclear spins which
would cause a time-varying nuclear Overhauser field. These interactions could
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either be direct nuclear magnetic dipole-dipole interactions or interactions that are
enhanced by the presence of the Yb (see Chapter 4 for more details). However, we
note the presence of a frozen-core effect which prevents Vanadium ions at different
distances from the Yb from exchanging spin excitations. For instance, the two Vana-
dium ions closest to the Yb (Shell 1 in Figure 2.4a), which are primarily responsible
for the Ramsey decay, cannot interact with any other more distant V ions due to a
relative frequency shift. Furthermore, due to the local symmetry, any spin exchange
between these two V ions preserves the total magnetic field at the Yb location.
Therefore magnetic field fluctuations due to these two ions are doubly forbidden.
An alternative explanation is the presence of paramagnetic defects in the crystal, for
example other rare earth ions or quadruply ionized Vanadium (V4+) [214], identify-
ing the limitation in these coherence measurements is a topic of current experimental
investigation via DEER (double electron-electron resonance )sequences [213] and
will be verified via correlated-cluster-expansion (CCE) simulations [215].

Finally, we also characterize the spin population relaxation rates. We measure the
qubit lifetime by initializing, waiting for a variable time and then reading out the
difference in population between the |0𝑔⟩ and |1𝑔⟩ states. As shown in Figure 3.4e,
this yields 𝑇1 = 53 ± 3 ms. We also measure the decay rate to the |aux⟩ state
by measuring the time-dependence of the combined |0𝑔⟩ and |1𝑔⟩ population, this
yields a decay time of 26 ± 2 s. Spin lifetime measurements were performed at
cryostat temperatures up to 1.2 K. We observed less than a factor of two change in
the decay rate on the |0𝑔⟩ ↔ |1𝑔⟩ transition over this range, indicating that this is
unlikely to be dominated by a phonon-assisted process that would be expected to
scale strongly with temperature [114]. Instead, we postulate a direct spin-spin relax-
ation mechanism mediated by magnetic dipole-dipole interactions with other 171Yb
ions in the crystal. This is expected to be a significant effect in this system due to
the narrow inhomogeneous line-widths of the spin transition at zero field (<1 MHz).
Furthermore, the large difference between the |0𝑔⟩ ↔ |1𝑔⟩ and |0𝑔⟩ , |1𝑔⟩ ↔ |aux⟩
relaxation rates is in agreement with the 𝑔4 scaling for this mechanism (corre-
sponding g-factors for these two transitions are -6.08 and 0.85, respectively). More
measurements are necessary to further investigate the underlying relaxation mecha-
nism, for example we are currently evaluating crystals from alternative vendors with
lower doping concentrations which should hopefully lead to longer qubit relaxation
times. Alternatively, polarization of the entire 171Yb ensemble could also be used
to extend this relaxation timescale [115].
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Figure 3.4: Spin coherence and lifetime. a) Spin Ramsey measurement with 1
MHz detuning. Solid line is a Monte-Carlo simulation modelling different local
nuclear spin configurations. The decay timescale is approximately 8 𝜇s. b) Spin
echo yields a coherence decay with timescale 43 ± 1 𝜇s c) CPMG measurements
with increasing numbers of 𝜋 pulses (N) yield an improvement in coherence time
that scales as 𝑁0.70±0.01. d) XY8 coherence measurement performed with a fixed
pulse spacing of 5.8𝜇𝑠 measured by increasing the number of dynamical decoupling
periods yields 𝑇2 = 21.2 ± 0.7 ms., e) Qubit transition lifetime measurement yields
𝑇1 = 53 ± 3 ms.
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C h a p t e r 4

NUCLEAR SPIN INTERACTIONS

4.1 Introduction
Solid-state nuclear spins surrounding individual, optically addressable qubits [216,
217] provide a crucial resource for quantum networks [30, 33, 73, 218–220], com-
putation [54, 112, 191, 192, 221, 222] and simulation [223]. While hosts with
sparse nuclear spin baths are typically chosen to mitigate qubit decoherence [109],
developing coherent quantum systems in nuclear spin-rich hosts enables exploration
of a much broader range of materials for quantum information applications.

As discussed previously, the 51V5+ lattice ion nuclear spins surrounding the 171Yb
ion generate a noisy magnetic field environment due to their large magnetic moment
and high spin (I=7/2). Coherent 171Yb qubit operation is enabled by magnetically-
insensitive transitions, leading to long coherence times (21 ms) and high gate fi-
delities (0.99975) (see Sections 3.4 and 3.5). Whilst decoupling from sources of
magnetic noise achieves an excellent operating regime for the 171Yb qubit, the 51V
nuclear spins could also provide a readily accessible resource for quantum informa-
tion storage due to their inherently weak interactions with the environment.

Critically, interfacing with these nuclear spins whilst preserving high qubit coher-
ence necessitates a comprehensive understanding of Yb-nuclear spin interactions
which will be the focus of this section.

4.2 Intuitive Understanding and Basic Model (Theory)
In this section we provide a basic perturbation theory model for the Yb–V interac-
tions.

At zero field, the 171Yb |0𝑔⟩, |1𝑔⟩ states have no intrinsic magnetic dipole moment
and thus dipole-dipole interactions with 51V register spins are forbidden to first order.
Therefore, one might assume a direct second-order interaction with the register spins
dominates. It turns out, this is not entirely correct.

Instead, a weak 171Yb dipole moment is induced by a random magnetic field orig-
inating from the bath (the nuclear Overhauser field, with 𝑧 component 𝐵OH

𝑧 ). This
weak induced dipole moment can then mediate a 171Yb–51V register interaction. It
turns out that this mechanism dominates over direct second order interactions with
the register spins. A schematic of this process is shown in Figure 4.1.
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Figure 4.1: Dominant mechanism for Yb interaction with the nuclear spin register. A
weak dipole moment is induced on the Yb via two magnetic field sources: a random
Overhauser field generated by the bath spins and any externally applied field(s).
This induced dipole moment mediates an electronic-nuclear magnetic dipole-dipole
interaction between Yb and the register. Since the Overhauser field fluctuates in
time its contribution to the interaction cannot be used for coherent quantum control.

171Yb–51V Interactions
The magnetic dipole-dipole interaction between the 171Yb qubit and a single 51V
ion can be described by the following Hamiltonian:

𝐻̂𝑑𝑑 =
𝜇0

4𝜋

[
𝝁Yb · 𝝁V

𝑟3 − 3(𝝁Yb · r) (𝝁V · r)
𝑟5

]
(4.1)

where 𝝁Yb = −𝜇𝐵g · Ŝ, 𝝁V = 𝜇𝑁gV · Î (note that S and I are vectors of 171Yb
and 51V spin operators, respectively), 𝜇𝐵 is the Bohr magneton, 𝜇𝑁 is the nuclear
magneton, 𝜇0 is the vacuum permeability and r is the 171Yb–51V displacement
vector with magnitude 𝑟. Due to the highly off-resonant nature of the 171Yb–51V
interaction, a secular approximation would be appropriate. To first order; however,
all secular terms involving the 171Yb qubit basis are zero, i.e., ⟨0𝑔 | 𝐻̂𝑑𝑑 |0𝑔⟩ = 0,
⟨1𝑔 | 𝐻̂𝑑𝑑 |1𝑔⟩ = 0.
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To proceed, we consider second-order effects which generally scale as ∼𝑔2/Δ𝐸 ,
where Δ𝐸 is the energy separation between a pair of unperturbed eigenstates. By
taking into account the fact that 𝑔𝑧 is roughly 7 times larger than 𝑔𝑥 , 𝑔𝑦 and 𝑆𝑧 terms
in 𝐻̂𝑑𝑑 mix |0𝑔⟩ and |1𝑔⟩ with small Δ𝐸 whereas 𝑆𝑥 and 𝑆𝑦 mix the 171Yb qubit
states and |aux𝑔⟩ with large Δ𝐸 , we restrict our consideration to the 𝑆𝑧 terms in 𝐻̂𝑑𝑑:

𝐻̂𝑑𝑑 ≈ 𝜇0𝜇𝐵𝜇𝑁𝑔𝑧

4𝜋𝑟3 𝑆𝑧
[
3𝑙𝑛𝑔𝑣𝑥 𝐼𝑥 + 3𝑚𝑛𝑔𝑣𝑥 𝐼𝑦 + (3𝑛2 − 1)𝑔𝑣𝑧 𝐼𝑧

]
(4.2)

where {𝑙, 𝑚, 𝑛} are direction cosines of the 171Yb–51V displacement vector. Note
that the 𝑆𝑧 operator is the electron spin-1/2 operator defined as 𝑆𝑧 = 1/2( |0𝑔⟩ ⟨1𝑔 | +
|1𝑔⟩ ⟨0𝑔 |) in the basis of the hybridized eigenstates of the 171Yb qubit.

Nuclear Overhauser Field
As introduced in the Section 2.3, we can divide the 51V spins into two ensembles:
register spins and bath spins. The bath spins comprise 51V ions which are not driven
by the 171Yb qubit for the following two reasons:

1. Ions which are not driven due to position: certain ions (such as 1 and 2
in Table 2.1) only interact via an Ising-type 𝑆𝑧 𝐼𝑧 Hamiltonian. Hence the
171Yb qubit cannot be used to drive transitions between the 51V 𝑧-quantized
quadrupole levels.

2. Ions which are not driven due to detuning: As discussed in Section 2.3 and
experimentally demonstrated in Section 6.2, more distant spins are spectrally
separated from the nearby ions comprizing the register.

We assume that the bath spins are in an infinite-temperature mixed state: 𝜌V =

IV/𝑇𝑟{IV}, where I𝑣 is the identity matrix in the Hilbert space for the bath spins. In
the mean field picture, their effect on the 171Yb can be approximated as a classical
fluctuating magnetic field, commonly termed the nuclear Overhauser field [224].
As mentioned previously, since 𝑔2

𝑧 ≫ 𝑔2
𝑥,𝑦, the 𝑧-component of the Overhauser field

is dominant, given by

𝐵OH
𝑧 =

∑︁
i∈bath

𝜇0𝜇𝑁𝑔𝑣𝑧

4𝜋(𝑟 (𝑖))3 (3(𝑛
(𝑖))2 − 1)𝑚 (𝑖)

𝐼
, (4.3)

where 𝑟 (𝑖) and 𝑛(𝑖) are the distance and 𝑧-direction cosine between the 171Yb and
𝑖th bath spin, and 𝑚

(𝑖)
𝐼

∈ {−7/2,−5/2, ..., 5/2, 7/2} is the nuclear spin projection
at site 𝑖. Note that 𝐵OH

𝑧 is randomly fluctuating due to the stochastic occupation of
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the 8 possible |𝑚𝐼⟩ states; however, it is quasi-static on the timescale of our control
sequences, hence we do not label the time dependence.

Crucially, the nuclear Overhauser field generates some weak mixing between |0𝑔⟩
and |1𝑔⟩ leading to perturbed eigenstates |0̃𝑔⟩ and |1̃𝑔⟩ which have a small, induced,
𝑧-directed dipole moment. These states have the form

|0̃𝑔⟩ = |0𝑔⟩ −
𝛾𝑧 (𝐵OH

𝑧 + 𝐵RF(𝑡))
2𝜔01

|1𝑔⟩

|1̃𝑔⟩ = |1𝑔⟩ +
𝛾𝑧 (𝐵OH

𝑧 + 𝐵RF(𝑡))
2𝜔01

|0𝑔⟩ (4.4)

where 𝛾𝑧 = 𝑔𝑧𝜇𝐵 is the longitudinal gyromagnetic ratio of the 171Yb qubit and
𝜔01/2𝜋 = 675 MHz is the unperturbed 171Yb |0𝑔⟩ ↔ |1𝑔⟩ transition frequency.
Here we have added the effect of an externally applied, 𝑧-directed, RF magnetic
field 𝐵RF(𝑡) with amplitude 𝐵RF which will be used in the next chapter to mediate
a coherent interaction with the nuclear spins. In addition, these fields induce a
detuning of the 171Yb |0𝑔⟩ ↔ |1𝑔⟩ transition, which can be calculated using second-
order perturbation theory as Δ(𝑡) = 𝛾2

𝑧 (𝐵OH
𝑧 + 𝐵RF(𝑡))2/2𝜔01.

Interaction with Register Ions
The second nearest shell of four 51V ions (ions 3–6 in Table 2.1) comprise the
register. These four ions are equidistant from the 171Yb and interact via both an
𝑆𝑧 𝐼𝑧 term and 𝑆𝑧 𝐼𝑥 or 𝑆𝑧 𝐼𝑦 terms. To identify an effective interaction Hamiltonian
in the perturbed basis {|0̃𝑔⟩ , |1̃𝑔⟩}, we consider only secular matrix elements of 𝐻̂𝑑𝑑

(equation (4.2)):

ˆ̃𝐻𝑑𝑑 = ⟨0̃𝑔 | 𝐻̂𝑑𝑑 |0̃𝑔⟩ |0̃𝑔⟩ ⟨0̃𝑔 | + ⟨1̃𝑔 | 𝐻̂𝑑𝑑 |1̃𝑔⟩ |1̃𝑔⟩ ⟨1̃𝑔 | (4.5)

where

⟨0̃𝑔 | 𝐻̂𝑑𝑑 |0̃𝑔⟩ = −
𝜇0𝜇𝑁𝛾

2
𝑧 (𝐵OH

𝑧 + 𝐵RF(𝑡))
8𝜋𝑟3𝜔01

[
3𝑙𝑛𝑔𝑣𝑥 𝐼𝑥 + 3𝑚𝑛𝑔𝑣𝑥 𝐼𝑦 + (3𝑛2 − 1)𝑔𝑣𝑧 𝐼𝑧

]
⟨1̃𝑔 | 𝐻̂𝑑𝑑 |1̃𝑔⟩ = +

𝜇0𝜇𝑁𝛾
2
𝑧 (𝐵OH

𝑧 + 𝐵RF(𝑡))
8𝜋𝑟3𝜔01

[
3𝑙𝑛𝑔𝑣𝑥 𝐼𝑥 + 3𝑚𝑛𝑔𝑣𝑥 𝐼𝑦 + (3𝑛2 − 1)𝑔𝑣𝑧 𝐼𝑧

]
.

Hence the effective interaction between the 171Yb qubit and the four register spins,
𝐻̂int =

∑
𝑖∈register

ˆ̃𝐻(i)
𝑑𝑑

, can be described by

𝐻̂int =
ˆ̃𝑆𝑧 (𝐵OH

𝑧 + 𝐵RF(𝑡))
∑︁

𝑖∈register

(
𝐽
(𝑖)
𝑥 𝐼

(𝑖)
𝑥 + 𝐽

(𝑖)
𝑦 𝐼

(𝑖)
𝑦 + 𝐽

(𝑖)
𝑧 𝐼

(𝑖)
𝑧

)
(4.6)
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with

𝐽
(𝑖)
𝑥 =

3𝜇0𝜇𝑁𝛾
2
𝑧𝑔𝑣𝑥𝑙

(𝑖)𝑛(𝑖)

4𝜋(𝑟 (𝑖))3𝜔01

𝐽
(𝑖)
𝑦 =

3𝜇0𝜇𝑁𝛾
2
𝑧𝑔𝑣𝑥𝑚

(𝑖)𝑛(𝑖)

4𝜋(𝑟 (𝑖))3𝜔01

𝐽
(𝑖)
𝑧 =

𝜇0𝜇𝑁𝛾
2
𝑧𝑔𝑣𝑧 (3(𝑛(𝑖))2 − 1)

4𝜋(𝑟 (𝑖))3𝜔01

and
ˆ̃𝑆𝑧 =

1
2
( |1̃𝑔⟩ ⟨1̃𝑔 | − |0̃𝑔⟩ ⟨0̃𝑔 |).

Finally, we perform local basis transformations of each 51V ion to further simplify
the Hamiltonian form. Specifically, we apply the following unitary rotation:

𝐻̂int → 𝑈𝐻̂int𝑈
†

𝑈 =
∏

𝑗∈register
exp[𝑖𝜃 ( 𝑗) 𝐼 ( 𝑗)𝑧 ],

where 𝜃 ( 𝑗) = tan−1(𝑚 ( 𝑗)/𝑙 ( 𝑗)), which leads to

𝐻̂int =
ˆ̃𝑆𝑧 (𝐵OH

𝑧 + 𝐵RF(𝑡))
∑︁

𝑖∈register

[
𝑎𝑥 𝐼

(𝑖)
𝑥 + 𝑎𝑧 𝐼

(𝑖)
𝑧

]
(4.7)

with 𝑎𝑥 =

√︃
(𝐽 (𝑖)𝑥 )2 + (𝐽 (𝑖)𝑦 )2 and 𝑎𝑧 = 𝐽

(𝑖)
𝑧 . Note that the coupling coefficients 𝑎𝑥

and 𝑎𝑧 are homogeneous (i.e., independent of site index 𝑖) since the four register
spins are equidistant from the central 171Yb and have directional cosine factors with
equal magnitude.

Hereafter we simplify our notation and use |0𝑔⟩ and |1𝑔⟩ without tildes to represent
the weakly perturbed eigenstates in the presence of any small magnetic field.

Full System Hamiltonian
Combining the various energy and interaction terms, the full system Hamiltonian
(in a 171Yb frame rotating at 𝜔01/2𝜋 = 675 MHz) becomes:

𝐻̂full =
𝛾2
𝑧

(
𝐵OH
𝑧 + 𝐵RF(𝑡)

)2

2𝜔01

ˆ̃𝑆𝑧+∑︁
𝑖∈register

𝑄

(
𝐼
(𝑖)
𝑧

)2
+ ˆ̃𝑆𝑧 (𝐵OH

𝑧 + 𝐵RF(𝑡))
∑︁

𝑖∈register

[
𝑎𝑥 𝐼

(𝑖)
𝑥 + 𝑎𝑧 𝐼

(𝑖)
𝑧

]
.

(4.8)
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4.3 Schrieffer-Wolff Transformation (Theory)
While the preceding section provides a sufficient description for modelling interac-
tion with the register, there are various mechanisms which it does not capture, for
instance:

• direct second order interactions with the register,

• the quantum state of the spectator nuclear spins,

• Yb-mediated interactions between different nuclear spins.

In this section I will present an analysis of the Yb-V interactions using the Schrieffer-
Wolff transformation [225, 226] which provides a more rigorous way to derive the
results of the preceding section and also enables modelling of all these additional
effects.

The Schrieffer-Wolff transformation is a method in perturbation theory which en-
ables the adiabatic elimination of fast degrees of freedom. Essentially, it expresses
the Hamiltonian 𝐻̂ = 𝐻̂0 + 𝑉̂ in a dressed basis which is diagonal in the perturbation
𝑉̂ . Consider an unperturbed Hamiltonian 𝐻0 which consists of slow and fast degrees
of freedom (𝐴 and 𝐵, respectively) such that 𝐻̂0 = 𝐻̂𝐴 + 𝐻̂𝐵. I.e., if 𝐻̂𝐴 (𝐻̂𝐵) has
eigenstates |𝛼⟩ (|𝛽⟩) with energies 𝐸𝛼 (𝐸𝛽) then the energy difference between any
pair of 𝐴 eigenstates is much lower than the energy difference between any pair of
𝐵 eigenstates.

Utilizing the Schrieffer Wolf transformation up to second order, we can derive a
Hamiltonian that is diagonal in the fast degree of freedom with elements |𝛽⟩ ⟨𝛽 | 𝐻𝛽

eff
where:

𝐻
𝛽

eff = ⟨𝛽 | 𝐻̂0 + 𝑉̂ |𝛽⟩ +
∑︁
𝛽′

⟨𝛽 | 𝑉̂ |𝛽′⟩ ⟨𝛽′| 𝑉̂ |𝛽⟩
𝐸𝛽 − 𝐸𝛽′

. (4.9)

Applying this to our system Hamiltonian we identify the fast degrees of freedom as
the Yb terms, the slow degrees of freedom are the Vanadium terms and the pertur-
bation consists of all magnetic-dipole-dipole interactions and the nuclear Zeeman
interaction of external magnetic fields with the Yb.

We can then write the effective system Hamiltonian as:

𝐻̂eff =
∑︁

𝑖∈register
𝑄

(
𝐼
(𝑖)
𝑧

)2
+

ˆ̃𝑆𝑧
2

(
𝛾𝑧√
𝜔01

𝐵RF(𝑡) +
√
𝜔01

𝛾𝑧

∑︁
𝑖

[
𝑎
(𝑖)
𝑥 𝐼

(𝑖)
𝑥 + 𝑎

(𝑖)
𝑧 𝐼

(𝑖)
𝑧

] )2

(4.10)
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where we note that the index 𝑖 now runs over all nuclear spins (not just the register),
hence the coupling coefficients 𝑎

(𝑖)
𝑥 and 𝑎

(𝑖)
𝑧 are now no longer homogeneous and

depend on the nuclear spin index, 𝑖.

Note that if we were to take the equation for the Overhauser field (Equation (4.3)),
substitute it into this result and take the dominant terms, we would arrive at equation
(4.8).

4.4 Nuclear Spin Coherence (Theory)
It turns out that interaction between the Yb ion and V nuclear spins also acts as a
source of decoherence for the nuclear spins.

a

171Yb
51V

BK
BK

BK
BK

171Yb

BOH
BOH

BOHBOH

b

Figure 4.2: Sources of decoherence for the V register. a) The Overhauser field
generated by bath spins causes frequency shifts via the nuclear Zeeman interaction.
b) The Yb dipole moment (induced by the bath) also generates a magnetic field
termed the Knight field. This field fluctuates with the Overhauser field and is
amplified by approximately 3×, hence this source of decoherence dominates.

Specifically, the bath-induced 171Yb dipole moment generates a randomly fluctuating
magnetic field (termed the Knight field [224]) at each 51V ion, with 𝑧 component
given by:

𝐵K,𝑧 = ∓𝑔𝑣𝑧𝜇𝑁𝐵OH
𝑧 𝐴𝑧 (4.11)

with

𝐴𝑧 =
𝜇0𝛾

2
𝑧 (1 − 3𝑛2)

8𝜋𝑟3𝜔01
.

Here, the − and + cases in equation (4.11) correspond to 171Yb in |1𝑔⟩ and |0𝑔⟩,
respectively. We note that 𝐴𝑧 corresponds to an effective local field amplification
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factor with value 𝐴𝑧 ≈ 3.1 for the register spins.

The second source of decoherence for the register spins is the nuclear Zeeman
interaction with the Overhauser field from the bath: Since the energy levels are
quantized along the 𝑧-axis, magnetic fluctuations along the 𝑧-direction dominate,
which can be captured by the following Hamiltonian

𝐻̂nz =
∑︁

𝑖∈register
𝜇𝑁𝑔𝑣𝑧𝐵

OH
𝑧 (r𝑖) 𝐼 (𝑖)𝑧 (4.12)

where 𝐵OH
𝑧 (r𝑖) is the 𝑧-component of the Overhauser field evaluated at the position

of the 𝑖th register ion, r𝑖.

We note that since the local field amplification factor 𝐴𝑧 is greater than 1, the Knight
field is the dominant source of decoherence. Luckily, as we will see in Section
6.5, we can effectively cancel this interaction by driving the Yb. Specifically, by
applying periodic 𝜋 pulses to the 171Yb, we flip its state between |0𝑔⟩ and |1𝑔⟩,
thereby switching the sign of the Knight field. This leads to the cancellation of
51V phase accumulation between successive free evolution periods, in a process
analogous to motional narrowing, resulting in a longer coherence time.

Finally, it is also interesting to note the difference in spatial correlation of these two
fields at each of the register ion positions. This is depicted in Figure 4.2. Since the
register is embedded in a dense nuclear spin environment the Overhauser field is
highly uncorrelated. The Knight field, on the other hand, is perfectly correlated due
to the symmetry of the four register ion positions relative to the Yb.
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4.5 Summary of System Parameters
Table 4.1 summarizes physical and experimental parameters relevant to the joint
171Yb–51V register system, relevant for Chapters 4, 5, and 6:

Physical parameter description Symbol Value
171Yb qubit frequency 𝜔01 2𝜋 × 675 MHz

171Yb electronic 𝑔-factors {𝑔𝑥 , 𝑔𝑦, 𝑔𝑧} {0.85, 0.85, − 6.08}
171Yb qubit drive Rabi frequency Ω 2𝜋 × 10 MHz
51V electric quadrupole parameter Q 2𝜋 × 165 kHz
51V register transition frequencies {𝜔𝑎, 𝜔𝑏, 𝜔𝑐} 2𝜋 × {330, 660, 991} kHz

51V register nuclear 𝑔-factors {𝑔𝑣𝑥 , 𝑔𝑣𝑦, 𝑔𝑣𝑧} {0.6, 0.6, 1.6}
Overhauser field mean value 𝐵OH

𝑧 0 G
Overhauser field standard deviation std[𝐵OH

𝑧 ] 1.9 G
51V register coupling coefficients {|𝑎𝑥 |, |𝑎𝑧 |} 2𝜋 × {6.1 , 22} kHz/G

RF amplitude for swap gate 𝐵RF 1.6 G
Spin exchange rate for swap gate 𝐽ex 2𝜋 × 11 kHz
Knight field amplification factors {|𝐴𝑥,𝑦 |, |𝐴𝑧 |} {6.7, 3.1}

RF amplitude for 51V direct driving 𝐵osc
𝑧 1.9 G

51V direct drive Rabi frequency Ω𝐷 2𝜋 × 7.7 kHz

Table 4.1: System parameters relevant for interaction with vanadium nuclear spin
ensemble.

4.6 CPMG Spectroscopy (Experiment)
The first sign of interaction with nuclear spins was observed while performing
time-resolved Carr-Purcell-Meiboom-Gill (CPMG) coherence measurements [209,
210]. Specifically, we apply an 8𝜋 pulse CPMG sequence and sweep the inter-pulse
separation 2𝜏. The experimental results are shown in Figure 4.3a and b.

There are two features worth noting here: first an underlying stretched exponential
decay with a timescale of ∼ 10 𝜇s1. This is due to dynamics of a dipolar spin
bath with noise spectral density of the form 𝑆(𝜔) ∝ 𝜔−2.3 as discussed in Section
3.5. Second, there are pronounced, periodic dips in the coherence at specific pulse
separations.

We perform a simulation of the CPMG sequence using the model of Yb–V interac-
tions described in Section 4.2 (Figure 4.3c) and find a very close correspondence
with the experimental data (Figure 4.3b). Based on the simulation we find that the
three labelled dips correspond primarily to interaction with the 𝑎, 𝑏 and 𝑐 transitions
of the V spins.

1Note: this decay timescale is in units of pulse separation, 2𝜏, not coherence time.
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Figure 4.3: Time resolved CPMG measurements. a) and b) Experimental results
showing the qubit coherence as a function of pulse separation for an 8𝜋 pulse CPMG
sequence. c) Simulations of the same sequence. The labels indicate resonances with
the 𝑎, 𝑏 and 𝑐 transitions of surrounding Vanadium nuclear spins.

An intuitive explanation of this phenomenon is as follows: the Overhauser field
induces a dipole moment on the Yb. Applying periodic 𝜋 pulses repeatedly flips
the Yb state, leading to the generation of a toggling magnetic field at each V ion
location with period 2𝜏. This field drives a given quadrupolar transition of the V
ions when the pulse spacing satisfies the condition: 𝜔𝑎/𝑏/𝑐 = 𝑀𝜋/𝜏 where 𝑀 is
an odd integer. Under these resonance conditions there exists a Fourier harmonic
of the toggling field that is resonant with (and can drive) the nuclear spins. As the
nuclear spins undergo Rabi oscillation they become entangled with the Yb state,
thus appearing as a source of decoherence.

Note that this effect is caused by the 𝑆𝑧 𝐼𝑥 interaction between the Yb and V spins.
In Chapter 5 we will consider the interplay between these dipole-dipole interactions
and periodic pulsed control of the Yb in a much more formal context using average
Hamiltonian theory. We also note that the CPMG results can also be treated using
the filter function formalism described in detail in [227]. Since we already have
simulations which adequately reproduce the data we will not go into more detail on
this formalism here.
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In section 3.5 we demonstrated long spin coherence times (21 ms), these measure-
ments were performed by choosing a pulse separation which optimally decouples
from any V transition resonances (arrow, Figure 4.3b) and probing the coherence
by varying the number of dynamical decoupling periods.

4.7 Hartmann-Hahn Spectroscopy (Experiment)
We also use Hartmann-Hahn (HH) double resonance [228] to perform spectroscopy
of the nuclear spin environment. This method enables spin exchange between two
systems with different transition frequencies by resonantly driving a qubit with a
Rabi frequency that matches the energy level splitting of the environmental nuclear
spins. In our case, we resonantly drive the 171Yb at 675 MHz to generate a pair
of dressed states |±⟩ = 1√

2

(
|0𝑔⟩ ± 𝑖 |1𝑔⟩

)
with splitting Ω which we sweep over a

range ≈ 2𝜋×(0–2.3) MHz (Figure 4.4). The 171Yb qubit is initialized into the |−⟩
dressed state by a 𝜋/2 pulse preceding the driving period. If resonant with a nuclear
spin transition, the 171Yb qubit undergoes spin exchange at a rate dictated by the
interaction strength. Finally we read out the 171Yb |+⟩ dressed state population to
determine whether spin exchange has occurred.

Figure 4.4b shows experimental results of HH spectroscopy where we vary both
the HH drive Rabi frequency (Ω) and also the HH pulse duration (𝑡). The counts
plotted on the colour-bar are proportional to the |+⟩ dressed state population. We
find three clear resonances at evenly spaced pulse amplitudes 0.15, 0.30 and 0.45
corresponding to the 𝑎, 𝑏 and 𝑐 51V transitions; notably, unlike CPMG, the HH
sequence only has one harmonic leading to a single resonant interaction per transi-
tion. Note the lack of oscillations when varying the pulse duration, 𝑡, on resonance
with either of the three transitions: this is because the spin exchange is driven by
the randomized, Overhauser field induced 171Yb dipole moment. For this reason,
the HH sequence cannot be used to generate a coherent interaction with the nuclear
spins. In the case of no driving (Ω = 0), the signal rapidly saturates as 𝑡 increases
as a result of Ramsey dephasing of the initial state. However, as Ω exceeds the
171Yb spin line-width (∼ 50 kHz [155]), this effect diminishes due to the emergence
of spin-locking effects and consequently leads to an increased saturation timescale
when not resonant with the 51V transitions. The resolution of this measurement is
also limited by the 171Yb spin line-width, and we therefore cannot resolve separate
resonances associated with the register and bath transitions as observed in Chapter
6. The results agree well with simulations (Figure 4.4c) indicating that interactions
with the 51V quadrupolar structure dominate these measurements.
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Figure 4.4: Hartmann Hahn spectroscopy. a) Hartmann Hahn (HH) sequence used
to perform spectroscopy of the nuclear spin environment. During the HH pulse
(red), the 171Yb |0𝑔⟩ ↔ |1𝑔⟩ qubit transition is driven resonantly for duration 𝑡

with 𝑦-phase leading to a pair of dressed states, |±⟩ = 1√
2
( |0𝑔⟩ ± 𝑖 |1𝑔⟩), separated

by energy splitting equal to the Rabi frequency, Ω. An initial −𝑥-phase 𝜋/2 pulse
prepares the 171Yb qubit in the |−⟩ dressed state. When the Rabi frequency of
the HH pulse is tuned to equal one of the 51V transition frequencies, the 171Yb is
transferred into the |+⟩ dressed state as a result of resonant population exchange
(green arrows). The |+⟩ state population is mapped to |1𝑔⟩ with a final 𝑥-phase 𝜋/2
pulse for readout. b) HH spectroscopy experimental results. To identify nuclear
spin resonances, both the HH pulse amplitude and duration are varied. The three
evenly-spaced horizontal resonance features occurring at pulse amplitudes of 0.15,
0.3, and 0.45 (in arbitrary units, a.u.) correspond to interaction with the 𝜔𝑎, 𝜔𝑏 and
𝜔𝑐 transitions, respectively. In the no driving (Ω = 0) case, the sequence probes
the decoherence dynamics of the prepared |−⟩ state, i.e., it measures the Ramsey
coherence time. c) HH spectroscopy simulation results. Simulation results agree
well with the experiment, corroborating that 171Yb–51V interactions are dominant
in our system.
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C h a p t e r 5

NUCLEAR SPIN STORAGE PROTOCOL AND PULSE
SEQUENCE DESIGN

5.1 Introduction
As outlined in Section 1.4, auxiliary quantum storage at each node is critically im-
portant for building long-range quantum networks, this can be used to implement
the quantum repeater and other advanced networking protocols. In the context of
nitrogen vacancy centers in diamond, 13C nuclear spins have been utilized for high
fidelity, versatile long-term storage for precisely these applications. One might
assume that we could therefore utilize equivalent protocols to store quantum infor-
mation on the 51V nuclear spins surrounding our Yb qubits; however, this is not the
case for two key reasons.

First, at zero field, the 171Yb |0𝑔⟩, |1𝑔⟩ states have no intrinsic magnetic dipole
moment and thus interactions with 51V register spins are forbidden to first order.
Furthermore, as introduced in Section 4.2, a weak 171Yb dipole moment is induced
by a random magnetic field originating from the bath (the nuclear Overhauser field,
with 𝑧 component 𝐵OH

𝑧 ), giving rise to a 171Yb–51V register interaction of the form:

𝐻̂int =
ˆ̃𝑆𝑧𝐵OH

𝑧

∑︁
𝑖∈register

(
𝑎𝑥 𝐼

(𝑖)
𝑥 + 𝑎𝑧 𝐼

(𝑖)
𝑧

)
. (5.1)

Note that 𝐵OH
𝑧 varies randomly in time as the bath changes state in a stochastic

fashion, rendering this second order interaction Hamiltonian unreliable for register
quantum state manipulation.

Second, the four register ions are spectrally indistinguishable, meaning that we
cannot interact with a single isolated nuclear spin. This prevents us from using
individual nuclear spins as qubits (the regime which has been extensively stud-
ied/utilized for 13C in diamond). Thus, we need to explore methods of quantum
storage using collective states of all four register spins.

It turns out that collective modes of dense nuclear spin ensembles have been pro-
posed as a basis for quantum storage in the context of quantum dots [229]. However,
experimental realizations of these protocols have thus far remained elusive, limited
by the large number of nuclear spins addressed by a single quantum dot (typically
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∼ 105) and the associated complex polarization dynamics. Realizing this protocol
for our system would require a coherent spin-exchange interaction (as will be de-
scribed in the next section), which unfortunately, is not natively present in our Yb–V
interaction Hamiltonian.

The focus of this chapter will be to describe how we can, in fact, generate a deter-
ministic 171Yb–51V spin exchange interaction via Hamiltonian engineering which
will subsequently be utilized for implementing auxiliary quantum state storage.

Unlike conventional, disordered nuclear spin based quantum memories [143, 187–
190, 193–196], this approach is deterministic and reproducible, ensuring identical
quantum registers for all 171Yb3+ qubits. This provides a framework for utilizing
the complex structure of dense nuclear spin baths, paving the way for building
large-scale quantum networks using single rare-earth ion qubits [152, 154, 155,
157, 230].

5.2 Nuclear Spin Storage Protocol
As originally proposed for quantum dots [229], single spin excitations of a polarized
nuclear spin ensemble can be used for quantum information storage. These states
are often termed spin waves or nuclear magnons and can be generated by spin-
preserving exchange dynamics. Specifically, preparing these collective nuclear spin
states relies, first, on initializing the thermal register ensemble into a pure state,
|0𝑣⟩ = |↓↓↓↓⟩, where {|↑⟩ , |↓⟩} = {|±5/2⟩ , |±7/2⟩} is a two-level sub-manifold of
the nuclear spin-7/2 51V ion (Figure 5.1a,b).

Next, with access to coherent exchange dynamics of the formℏ𝛼ex
∑

𝑖

(
ˆ̃𝑆−𝐼 (𝑖)+ + ˆ̃𝑆+𝐼 (𝑖)−

)
and 171Yb initialized in |1𝑔⟩, the system undergoes time evolution given by:

|𝜓(𝑡)⟩ = |1𝑔⟩ |0𝑣⟩ cos(𝐽ex𝑡/2) − 𝑖 |0𝑔⟩ |𝑊𝑣⟩ sin(𝐽ex𝑡/2) (5.2)

where the spin-exchange frequency is given by 𝐽ex = 2
√
𝑁𝛼ex (with 𝑁 = 4 being the

number of V spins in the register) and |𝑊𝑣⟩ [231] is given by

|𝑊𝑣⟩ =
|↑↓↓↓⟩ + |↓↑↓↓⟩ + |↓↓↑↓⟩ + |↓↓↓↑⟩

2
(5.3)

(Figure 5.1c). Note that this state consists of a single spin excitation equally delocal-
ized across the four register spins, this is due to coupling homogeneity as determined
by the lattice geometry and naturally realizes an entangled four-body W-state.1 Note

1Note that even if the spins were not homogeneously coupled, this storage protocol could be
used. However, the contributions of the different single spin excitations in the W state would no
longer be equally weighted, see [229] for details.
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also that the spin-exchange rate is collectively enhanced by a factor of
√
𝑁 , leading

to faster dynamics for larger numbers of participating spins. When we fix 𝑡 = 𝜋/𝐽ex

we can perfectly transfer a single excitation from the 171Yb to the register.

If the 171Yb qubit is initialized into |0𝑔⟩ there are no spin excitations in the system
and the 51V register remains in |0𝑣⟩.

Crucially, these dynamics realize a quantum swap gate between a target state pre-
pared by the 171Yb qubit, |𝜓⟩ = 𝛼 |0𝑔⟩ + 𝛽 |1𝑔⟩, and the |0𝑣⟩ state of the 51V register,
leading to (

𝛼 |0𝑔⟩ + 𝛽 |1𝑔⟩
)
|0𝑣⟩ → |0𝑔⟩ (𝛼 |0𝑣⟩ + 𝛽 |𝑊𝑣⟩) . (5.4)

After waiting for a period of time, the stored quantum state can be retrieved by
applying a second swap gate (Figure 5.1d). Note that the spin-wave like state |𝑊𝑣⟩
of the nuclear ensemble is being utilized as a constituent of the quantum memory
basis.

We also note that in this protocol it is possible to transfer a second spin excitation
to the register. More specifically, the spin-preserving exchange interaction couples
the state |1𝑔⟩ |𝑊𝑣⟩ to |0𝑔⟩ |2𝑣⟩, where |2𝑣⟩ is a 51V state with two spins in |↑⟩. To
avoid undesired excitation to states outside of the effective {|0𝑣⟩ , |𝑊𝑣⟩} manifold,
we always prepare the 171Yb qubit in |0𝑔⟩ before retrieving stored states from the
51V register. Hence the swap gate realized by this interaction operates on a limited
basis of states.

To realize this storage protocol we require 171Yb–51V spin-exchange interactions that
are independent from the random, bath-induced dipole moment (equation (5.1)), the
next section describes how we generate such interactions.
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Figure 5.1: Illustration of quantum storage protocol. a) Energy levels of register
nuclear spins, with effective spin-1/2 manifold highlighted. b) Nuclear spins are
polarized into the uppermost quadrupole level (spin down). c) States used as
quantum memory basis: the fully polarized state |0𝑣⟩ and the W-state |𝑊𝑣⟩ consisting
of a single spin excitation equally delocalized across all four nuclear spins. d)
Quantum memory protocol demonstrating the storage (and retrieval) of a quantum
state 𝛼 |0𝑔⟩ + 𝛽 |1𝑔⟩ on the nuclear spins as 𝛼 |0𝑣⟩ + 𝛽 |𝑊𝑣⟩
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5.3 ZenPol Pulse Sequence
We consider a system of a single 171Yb qubit coupled to four neighbouring nuclear
spin-7/2 51V ions. This hybrid spin system is described by the effective Hamiltonian
(setting ℏ = 1):

𝐻̂ = Δ(𝑡) ˆ̃𝑆𝑧 +
∑︁

𝑖∈register
𝑄(𝐼 (𝑖)𝑧 )2 +

∑︁
𝑖∈register

ˆ̃𝑆𝑧
[
𝐵OH
𝑧 + 𝐵RF(𝑡)

] [
𝑎𝑥 𝐼

(𝑖)
𝑥 + 𝑎𝑧 𝐼

(𝑖)
𝑧

]
(5.5)

where Δ(𝑡) = 𝛾2
𝑧 (𝐵OH

𝑧 + 𝐵RF(𝑡))2/2𝜔01 is the effective energy shift due to both
𝑧-directed nuclear Overhauser (𝐵OH

𝑧 ) and external RF (𝐵RF(𝑡)) magnetic fields,
𝜔01/2𝜋 = 675 MHz is the 171Yb qubit transition frequency, 𝛾𝑧/2𝜋 = −8.5 MHz/G
is the 171Yb ground-state longitudinal gyromagnetic ratio, 𝑄/2𝜋 = 165 kHz is the
51V register nuclear quadrupole splitting, ˆ̃𝑆𝑧 is the 171Yb qubit operator along the
𝑧-axis, 𝐼𝑥,𝑧 are the 51V spin-7/2 operators along the 𝑥- and 𝑧-axis, and 𝑎𝑥,𝑧 are the
effective coupling strengths between 171Yb and 51V along the 𝑥- and 𝑧-axes. See
Section 4.2 for a detailed derivation of this effective Hamiltonian.

Coherent polarization transfer between the 171Yb and 51V and can be achieved
via periodic driving of the 171Yb qubit. Specifically, periodic pulsed control can
dynamically engineer the original Hamiltonian (equation (5.5)) to realize effective
spin-exchange interaction between 171Yb and 51V ions of the form,

∑
𝑖

ˆ̃𝑆+𝐼 (𝑖)− + ˆ̃𝑆−𝐼 (𝑖)+ ,
in the average Hamiltonian picture [213, 232]. One example of such a protocol
is the recently developed PulsePol sequence [233]; however, it relies on states
with a constant, non-zero magnetic dipole moment and therefore cannot be used
in our system since the 171Yb qubit has no intrinsic magnetic dipole moment.
Motivated by this approach, we have developed a variant of the PulsePol sequence
that accompanies a square-wave RF magnetic field synchronized with the sequence
(Figure 5.2a).

The base sequence has a total of 8 free-evolution intervals with equal duration
(𝜏/4) defined by periodically spaced short pulses and is repeatedly applied to 171Yb.
Following the sequence design framework presented in [232], we judiciously choose
the phase and ordering of the constituent 𝜋/2 and 𝜋 pulses such that the resulting
effective interaction has spin-exchange form with strength proportional to the RF
magnetic field amplitude (𝐵RF), whilst decoupling from interactions induced by the
nuclear Overhauser field (𝐵OH

𝑧 ). We also design the sequence to cancel detuning
induced by both of these fields and to retain robustness against pulse rotation errors
to leading order. We term this new sequence ‘ZenPol’ for ‘zero first-order Zeeman
nuclear-spin polarization.’
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Figure 5.2: ZenPol sequence detail. a) ZenPol sequence with the toggling-frame
transformation of the ˆ̃𝑆𝑧 operator for the 171Yb qubit. The Overhauser- and RF-
induced interactions are determined by the toggling-frame transformations of ˆ̃𝑆𝑧
which are given by ˆ̃𝑆𝑥 𝑓 OH

𝑥 + ˆ̃𝑆𝑦 𝑓 OH
𝑦 and ˆ̃𝑆𝑥 𝑓 RF

𝑥 + ˆ̃𝑆𝑦 𝑓 RF
𝑦 , respectively (see yellow

and purple lines). b) ZenPol sequence filter functions corresponding to the Fourier
transforms of 𝑓 OH

𝑥 (yellow) and 𝑓 RF
𝑥 (purple). For a sequence with fixed 𝜏, the peak

positions determine the resonant frequencies at which 171Yb–51V interactions can
occur. Note that the incoherent Overhauser-induced interactions occur at even-𝑘
resonances and are spectrally separated from the coherent RF-induced interactions
occurring at odd-𝑘 resonances.
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To understand how the ZenPol sequence works, one can consider a toggling-frame
transformation of the 171Yb qubit operator along the quantization axis ( ˆ̃𝑆𝑧,tog(𝑡)):
we keep track of how this operator is transformed after each preceding pulse. For
example, the first 𝜋/2 pulse around the 𝑦-axis transforms ˆ̃𝑆𝑧 into − ˆ̃𝑆𝑥 and the
subsequent 𝜋 pulse around the 𝑦-axis transforms − ˆ̃𝑆𝑥 into + ˆ̃𝑆𝑥 . Over one sequence
period, the toggling-frame transformation generates a time-dependent Hamiltonian
𝐻̂tog(𝑡) that is piecewise constant for each of 8 free-evolution intervals, which can
be expressed as

𝐻̂tog(𝑡) = Δ(𝑡)
[
𝑓 OH
𝑥 (𝑡) ˆ̃𝑆𝑥 + 𝑓 OH

𝑦 (𝑡) ˆ̃𝑆𝑦
]
+

∑︁
𝑖∈register

𝑄(𝐼 (𝑖)𝑧 )2+∑︁
𝑖∈register

𝐵OH
𝑧

[
𝑓 OH
𝑥 (𝑡) ˆ̃𝑆𝑥 + 𝑓 OH

𝑦 (𝑡) ˆ̃𝑆𝑦
] [

𝑎𝑥 𝐼
(𝑖)
𝑥 + 𝑎𝑧 𝐼

(𝑖)
𝑧

]
+∑︁

𝑖∈register
𝐵RF

[
𝑓 RF
𝑥 (𝑡) ˆ̃𝑆𝑥 + 𝑓 RF

𝑦 (𝑡) ˆ̃𝑆𝑦
] [

𝑎𝑥 𝐼
(𝑖)
𝑥 + 𝑎𝑧 𝐼

(𝑖)
𝑧

]
.

(5.6)

Here, 𝑓 OH
𝑥,𝑦 (𝑡) describes the time-dependent modulation of the 171Yb qubit operator

along the 𝑧 axis ( ˆ̃𝑆𝑧,tog(𝑡) = 𝑓 OH
𝑥 (𝑡) ˆ̃𝑆𝑥+ 𝑓 OH

𝑦 (𝑡) ˆ̃𝑆𝑦) (Figure 5.2a). Note that 𝑓 OH
𝑧 (𝑡) =

0 for all intervals. Since the externally-applied square-wave RF field is constant for
each half-sequence period, we can replace 𝐵RF(𝑡) with the amplitude 𝐵RF and
transfer the time dependence to 𝑓 OH

𝑥,𝑦 by applying sign flips, thus leading to redefined
modulation functions 𝑓 RF

𝑥,𝑦 (Figure 5.2a).

The spin-7/2 51V ion exhibits three distinct transitions at frequencies 𝜔𝑎,𝑏,𝑐 (Figure
5.1a). In the following, we consider an effective spin-1/2 system for the 51V ions us-
ing the𝜔𝑐 manifold, {|↑⟩ = |±5/2⟩, |↓⟩ = |±7/2⟩}, with ˆ̃𝐼𝑥 = 1

2 ( |↑⟩ ⟨↓| + |↓⟩ ⟨↑|) , ˆ̃𝐼𝑦 =
1
2𝑖 ( |↑⟩ ⟨↓| − |↓⟩ ⟨↑|) and ˆ̃𝐼𝑧 = 1

2 ( |↑⟩ ⟨↑| − |↓⟩ ⟨↓|). In a rotating frame with respect
to the target frequency 𝜔𝑐, the nuclear spin operators become ˆ̃𝐼𝑥 → ˆ̃𝐼𝑥 cos(𝜔𝑐𝑡) +
ˆ̃𝐼𝑦 sin(𝜔𝑐𝑡) and ˆ̃𝐼𝑧 → ˆ̃𝐼𝑧. Thus, the leading-order average Hamiltonian, 𝐻̂avg =

1
2𝜏

∫ 2𝜏
0 𝑑𝑡 𝐻̂tog(𝑡), in the rotating frame is given by:

𝐻̂avg =
∑︁

𝑖∈register

𝑎𝑥
√

7
2𝜏

∫ 2𝜏

0
𝑑𝑡

{
𝐵OH
𝑧

[
𝑓 OH
𝑥 (𝑡) ˆ̃𝑆𝑥+ 𝑓 OH

𝑦 (𝑡) ˆ̃𝑆𝑦
] [

ˆ̃𝐼 (𝑖)𝑥 cos(𝜔𝑐𝑡)+ ˆ̃𝐼 (𝑖)𝑦 sin(𝜔𝑐𝑡)
]
+

𝐵RF
[
𝑓 RF
𝑥 (𝑡) ˆ̃𝑆𝑥+ 𝑓 RF

𝑦 (𝑡) ˆ̃𝑆𝑦
] [

ˆ̃𝐼 (𝑖)𝑥 cos(𝜔𝑐𝑡)+ ˆ̃𝐼 (𝑖)𝑦 sin(𝜔𝑐𝑡)
] }

.

(5.7)

Here, various terms are excluded as they time average to zero (rotating-wave approx-
imation). The

√
7 prefactor comes from mapping the original spin-7/2 operators



60

to the effective spin-1/2 ones. Additionally, the energy shift induced by 𝐵OH
𝑧 and

time-dependent 𝐵RF is cancelled. The Fourier transforms of the modulation func-
tions 𝑓𝑥,𝑦 (𝑡), termed the filter functions [227], directly reveal resonance frequencies
at which equation (5.7) yields non-zero contributions (Figure 5.2b). Resonant in-
teractions with strength proportional to the nuclear Overhauser field are achieved at
sequence periods 2𝜏 which satisfy 1

2𝜏 =
𝜔𝑐

2𝜋×2 ,
𝜔𝑐

2𝜋×4 ,
𝜔𝑐

2𝜋×6 , · · · ; interactions propor-
tional to the RF field occur at sequence periods satisfying 1

2𝜏 =
𝜔𝑐

2𝜋×1 ,
𝜔𝑐

2𝜋×3 ,
𝜔𝑐

2𝜋×5 , · · · .
Critically, these two sets of resonances occur at different values of 2𝜏, hence we
can preferentially utilize the coherent, RF-induced interactions whilst decoupling
from those induced by the randomized Overhauser field. We also note that the 𝜔𝑎

transition cannot be independently addressed by the ZenPol sequence due to the
multiplicity of the three 51V transitions determined by the quadratic Hamiltonian
(𝜔𝑎 = 𝜔𝑏/2 = 𝜔𝑐/3).

To achieve a targeted interaction with the 𝜔𝑐 transition, we use the RF-driven
resonance identified at 1

2𝜏 =
𝜔𝑐

2𝜋×5 by setting the free-evolution interval to 𝜏
4 =

5𝜋
4𝜔𝑐

. Under this resonance condition, the average Hamiltonian (equation (5.7)) is
simplified to

𝐻̂avg =
√

7

(
1 +

√
2

5𝜋

)
𝑎𝑥𝐵

RF ×
∑︁

𝑖∈register

(
( ˆ̃𝑆𝑥 + ˆ̃𝑆𝑦) ˆ̃𝐼 (𝑖)𝑥 + (− ˆ̃𝑆𝑥 + ˆ̃𝑆𝑦) ˆ̃𝐼 (𝑖)𝑦

)
=
√

7

(√
2 + 2
5𝜋

)
𝑎𝑥𝐵

RF
∑︁

𝑖∈register

(
ˆ̃𝑆′𝑥 ˆ̃𝐼 (𝑖)𝑥 + ˆ̃𝑆′𝑦 ˆ̃𝐼 (𝑖)𝑦

)
= 𝑏 (5,𝜔𝑐)𝐵

RF
∑︁

𝑖∈register

(
ˆ̃𝑆′+ ˆ̃𝐼 (𝑖)− + ˆ̃𝑆′− ˆ̃𝐼 (𝑖)+

)
.

Here, going from the first to the second line, we change the local 171Yb basis by
rotating 45 degrees around the 𝑧-axis such that ˆ̃𝑆′𝑥 = ( ˆ̃𝑆𝑥 + ˆ̃𝑆𝑦)/

√
2, ˆ̃𝑆′𝑦 = (− ˆ̃𝑆𝑥 +

ˆ̃𝑆𝑦)/
√

2, and from the second to the third line, ˆ̃𝑆′± = ˆ̃𝑆′𝑥±𝑖 ˆ̃𝑆′𝑦 and ˆ̃𝐼± = ˆ̃𝐼𝑥±𝑖 ˆ̃𝐼𝑦 are used.
We define the coefficient 𝑏 (𝑘,𝜔 𝑗 ) which determines the interaction strength for the
𝑘 th resonance addressing transition 𝜔 𝑗 (for example, 𝑏 (5,𝜔𝑐) =

√
7(
√

2 + 2)𝑎𝑥/10𝜋).
Hereafter, we omit the primes on the 171Yb qubit operators for the sake of notational
simplicity. The same analysis can be performed for other transitions, yielding a
similar spin-exchange Hamiltonian, albeit with different interaction strength given
by 𝑏 (𝑘,𝜔 𝑗 )𝐵

𝑅𝐹 .

Combining this effective Hamiltonian with the dynamics discussed in the previ-
ous section, we identify the spin-exchange rate to be 𝐽ex = 2

√
𝑁𝐵RF𝑏 (𝑘,𝜔 𝑗 ) =

4𝐵RF𝑏 (𝑘,𝜔 𝑗 ) .
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We note that while the nuclear spin can stochastically occupy either the {|+𝑚𝐼⟩} or
{|−𝑚𝐼⟩} manifold of states, our protocol is insensitive to this sign. We emphasize
that the ZenPol sequence operates at zero magnetic field where a long 171Yb coher-
ence time can be maintained; it is insensitive to the presence of random noise from
the bath; and is also robust against pulse rotation errors.
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C h a p t e r 6

NUCLEAR SPIN REGISTER EXPERIMENTAL RESULTS

6.1 Introduction
In this section we will present experimental results implementing the protocols
discussed in the previous chapter. This will involve first performing spectroscopy of
the nuclear spin environment and identifying transitions associated with the isolated
register and more distant bath ions. Next, we will polarize the register ions, thereby
preparing them into the initial state |0𝑣⟩. We will examine various aspects of the
spin exchange dynamics between this polarized ensemble and the Yb qubit. We
will then demonstrate quantum information storage in the register ensemble and
examine different methods of extending the register coherence time. Finally, we
will demonstrate preparation and measurement of joint Yb-V Bell states, which
serve as vital components of the quantum repeater protocol.

6.2 ZenPol Spectroscopy
We use the ZenPol sequence to perform spectroscopy of the 171Yb nuclear spin
environment. Figure 6.1 shows a ZenPol spectrum obtained by initializing the
171Yb into |0𝑔⟩, applying an 𝑀 = 30 period ZenPol sequence with variable inter-
pulse spacing (𝜏/4) followed by 171Yb population readout. We anticipate resonant
interactions when the following condition is satisfied:

1
2𝜏

=
𝜔 𝑗

2𝜋𝑘
, (6.1)

where 𝜔 𝑗 with 𝑗 = 𝑎, 𝑏, 𝑐 is the frequency of a given nuclear spin transition.

As a result of the engineered, coherent, RF-induced exchange interaction, we find
that the |0𝑔⟩ population decreases at 𝜏 values corresponding to the odd-𝑘 51V
resonances (red line, Figure 6.1). Even-𝑘 resonances are also observed even in the
absence of the RF field, and are associated with incoherent interaction generated by
the random nuclear Overhauser field (blue line, Figure 6.1). As discussed previously,
since the coherent, RF-induced interactions are spectrally resolved (occur at different
pulse spacing) we can mitigate the effect of incoherent interaction by only working
with the odd 𝑘 resonances. The addressed transition and resonance orders are
labelled above each resonance dip. Note the degeneracy for certain resonances
resulting from 𝜔𝑎 = 𝜔𝑏/2 = 𝜔𝑐/3 due to the quadratic Hamiltonian.
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Figure 6.1: ZenPol sequence spectroscopy, using 𝑀 = 30 and 𝐵RF = 0.6 G. 171Yb–
51V resonance is achieved for a given 51V transition, 𝜔 𝑗 , when 1/2𝜏 = 𝜔 𝑗/2𝜋𝑘 with
integer 𝑘 . We use the isolated, RF-induced 𝜔𝑐 (𝑘 = 5) and 𝜔𝑏 (𝑘 = 3) transitions
to interact with the nuclear spins of neighbouring 51V ions (dashed boxes). Split-
resonance features are attributed to two distinct 51V ensembles: the four 51V register
spins experience a frozen-core detuning relative to the more distant bath.

In particular, we note that all odd-𝑘 resonances are split near each isolated 51V tran-
sition (dotted boxes, Figure 6.1). For example, resonance frequencies of {660 kHz,
685 kHz} and {991 kHz, 1028 kHz} are identified around the 𝜔𝑏 (𝑘 = 3) and
𝜔𝑐 (𝑘 = 5) transitions, respectively. In both cases, the higher-frequency resonance
agrees well with values extracted using NMR on YVO4 crystals [203]. We there-
fore postulate the presence of two nuclear spin ensembles: a distant large ensemble
with unperturbed frequency (constituents of the bath) and a local ensemble with a
frequency shift due to the modified electric field distribution in the vicinity of the
171Yb ion (the register). The line-widths of the register resonances are limited by
that of the filter function.
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6.3 Nuclear Spin Polarization

Polarization of the nuclear spin register relies on repeated application of the ZenPol
sequence, resonant with a targeted transition, interleaved with re-initialization of the
171Yb qubit leading to unidirectional transfer of 51V population.

Polarization dynamics are explored using the PROPI method (polarization readout
by polarization inversion) [234]. This sequence uses the back-action of the 51V spins
on the 171Yb to measure the register polarization after successive ZenPol polarization
cycles. For instance, when polarizing into |↑⟩ = |±5/2⟩ on the 𝜔𝑐 transition, the
171Yb is initialized into |1𝑔⟩ and undergoes spin exchange with any 51V population
in |↓⟩ = |±7/2⟩. The 171Yb |0𝑔⟩ population after interaction is therefore related to
the residual 51V |↓⟩ population. As presented in Figure 6.2a, we measure the 171Yb
population after each of 20 consecutive polarization cycles and observe a saturation
after 10 cycles, indicating that the 171Yb polarization has been transferred to the
51V register. The high-contrast signal obtained in this measurement is enabled by
alternating the 51V polarization direction, i.e., periods of polarization into |↑⟩ are
interleaved with periods of polarization into |↓⟩. This mitigates the need to wait for
slow register thermalization (𝑇 (0)

1 = 0.54 𝑠, see Section 6.6) between consecutive
experiment repetitions. These measurements are repeated with ZenPol sequences
on the 𝜔𝑏 transition, demonstrating similar levels of polarization saturation after
approximately 10 cycles (Figure 6.2b).

These results inform the design of polarization sequences used in subsequent single-
spin excitation experiments where 40 polarization cycles interleaved between the
𝜔𝑏 and 𝜔𝑐 transitions are sufficient to polarize the register into |0𝑣⟩ = |↓↓↓↓⟩. Based
on simulations discussed in Section 6.4 we estimate this protocol achieves ≈ 84%
single spin polarization fidelity into the |↓⟩ state. Note that we do not use the ZenPol
sequence to directly polarize the 𝜔𝑎 transition due to spectral overlap with 𝜔𝑏 and
𝜔𝑐, i.e., an attempt to use ZenPol on 𝜔𝑎 would lead to unintentional population
redistribution on 𝜔𝑏 and 𝜔𝑐. We postulate that the high degree of polarization
can still be achieved even in the absence of direct 𝜔𝑎 transition control due to two
factors:
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1. The thermalization timescale of the 𝜔𝑎 transition is significantly shorter than
the interrogation time. Specifically, our experiments typically run for several
minutes whereas the 𝜔𝑎 thermalization rate is likely similar to 𝑇

(0)
1 = 0.54 s.

Thus, undesired population in the |±1/2⟩ level can still pumped to |±7/2⟩
once it relaxes to |±3/2⟩.

2. Once successfully initialized into the 𝜔𝑐 manifold the probability of shelving
into the |±1/2⟩ level is small as it necessitates two consecutive decays on
the 𝜔𝑏 and 𝜔𝑎 transitions, both of which are considerably slower than our
experiment/polarization repetition rate (20 ms).

We tried to improve the polarization fidelity by incorporating driving on the 𝜔𝑎

transition (using the method in Section 6.5) during the polarization protocol, thus
leading to fast population exchange between |±1/2⟩ and |±3/2⟩. However, there was
no improvement to the contrast of the resulting spin exchange oscillations thereby
indicating that shelving into |±1/2⟩ is not a limiting factor in our experiments.

We also note that pumping into dark states (such as the other single-spin excitation
states, {|𝛼𝑣⟩ , |𝛽𝑣⟩ , |𝛾𝑣⟩} identified in Section 6.6) is unlikely to be a limiting factor
in the polarization fidelity. This is because our density matrix coherences decay on
a considerably shorter timescale (𝑇∗

2 = 58 𝜇s) than the wait time between ZenPol
polarizing cycles (170 𝜇s). This leads to a sufficiently long time for population
to be redistributed between dark states and bright, polarizable states during the
polarization sequence.

Finally, we perform pump-probe spectroscopy where, after polarizing the register
ensemble, we probe the nuclear spins using a ZenPol sequence with variable 𝜏 (as
in Section 6.2). As we can see in Figures 6.2c and d (which compare ZenPol spectra
with/without polarization), the 𝜔𝑏 and 𝜔𝑐 register transitions nearly completely
disappear. Note that the resonances at 685 kHz and 1028 kHz are unaffected,
corroborating the existence of two distinct 51V ensembles.
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Figure 6.2: Polarization of multi-level nuclear register spins. a) Polarization readout
by polarization inversion (PROPI) experiments for the 51V register𝜔𝑐 transition. The
PROPI sequence performs a repeated swap operation based on the ZenPol sequence,
periodically interleaved with 171Yb qubit readout and re-initialization into |1𝑔⟩. A
total of 20 polarizing cycles are applied to the 𝜔𝑐 transition to polarize the 51V
register into |±5/2⟩. As a result of register polarization, the 171Yb population in
|1𝑔⟩ increases over time, indicating the accumulation of the 51V population in |±5/2⟩
(left panel). We observe that the register polarization saturates after approximately
10 cycles. Subsequently, we perform repolarization cycles where 171Yb is initialized
into |0𝑔⟩ and 51V register spins are transferred to |±7/2⟩ with similar saturation
timescale (right panel). b) Equivalent measurements for the 𝜔𝑏 transition. The 51V
register is polarized into |±5/2⟩ (|±3/2⟩), left panel (right panel). c) and d) After
polarizing the 𝑏 and 𝑐 transitions, ZenPol spectroscopy reveals a near complete
suppression of the register resonances and no change in the bath resonances. Purple
lines are unpolarized spectra for reference.
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6.4 Coherent Spin Exchange
After initializing all four register 51V spins into a polarized state |0𝑣⟩ = |↓↓↓↓⟩, the
ZenPol sequence (Figure 6.3) can also induce coherent oscillations of a single spin
excitation between the 171Yb qubit and the polarized 51V ensemble.

M
171Yb 

control 
pulses

RF

x451V171YbZenPol sequence

BRF

Figure 6.3: Engineered spin-exchange interactions via the ZenPol sequence.
Equidistant 𝜋/2 and 𝜋 pulses combined with a square-wave RF magnetic field
with amplitude 𝐵RF are applied to the 171Yb qubit. The sequence has period 2𝜏 and
is repeated 𝑀 times.

Figure 6.4a shows the 171Yb population as a function of sequence period, 𝑀 , when
the single-spin exchange is targeted at the 𝜔𝑐 transition (by fixing the ZenPol period
to 2𝜏 = 5.048 𝜇s). With 171Yb initialized in |1𝑔⟩, the quantum state evolves
according to:

|𝜓(𝑡𝑀)⟩ = |1𝑔⟩ |0𝑣⟩ cos(𝐽ex𝑡𝑀/2) − 𝑖 |0𝑔⟩ |𝑊𝑣⟩ sin(𝐽ex𝑡𝑀/2) (6.2)

with spin-exchange rate 𝐽ex = 4𝑏 (5,𝜔𝑐)𝐵
RF (red, Figure 6.4a) and interrogation

time 𝑡𝑀 = 2𝜏𝑀 . Note that when 𝐽ex𝑡𝑀 = 𝜋, the sequence realizes a swap gate
(black arrow), whereby a single-spin excitation is completely transferred to the
register, i.e., |1𝑔⟩ |0𝑣⟩ → |0𝑔⟩ |𝑊𝑣⟩. Furthermore, 𝐽ex can be accurately controlled
by varying 𝐵RF, allowing for swap gate fidelity optimization. By contrast, with
171Yb initialized in |0𝑔⟩, exchange interactions are forbidden and thus oscillations
are suppressed (blue, Figure 6.4a).

In the following subsections we will examine different aspects of these spin exchange
dynamics and provide detail on the simulations which we use to interpret our
experimental results and extract the degree of register polarization.
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Figure 6.4: Spin exchange between 171Yb and 51V ions. a) The 171Yb qubit and 51V
register spins are initialized into |1𝑔⟩ and |0𝑣⟩ (≡ |↓↓↓↓⟩), respectively. Our pulse
sequence induces resonant spin exchange on the 𝜔𝑐 transition leading to oscillation
between |1𝑔⟩ |0𝑣⟩ ↔ |0𝑔⟩ |𝑊𝑣⟩ where |𝑊𝑣⟩ is a spin-wave like W-state (red markers).
Oscillation envelope beating arises from a residual |±5/2⟩ initial population. With
171Yb in |0𝑔⟩ oscillations are suppressed (blue markers). A ZenPol sequence with
𝑀 = 10 periods (𝑡𝑀 = 50 𝜇s) realizes a swap gate (black arrow). b) Spin-exchange
dynamics with a single 51V nuclear spin. Three 51V spins are shelved in |±3/2⟩
and a single spin is prepared in |↑⟩ = |±5/2⟩, leading to a reduced 𝜔𝑐 transition
spin-exchange frequency. In a,b, equal values of 𝐵RF = 1.6 G are used and solid
lines are from simulations with phenomenological decay constants.
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Collective Enhancement of Exchange Rate
The spin-exchange rate is collectively enhanced by a factor of

√
𝑁 , where 𝑁 is the

number of indistinguishable spins forming the register. We verify this by controlling
the number of spins in the 𝜔𝑐 transition manifold and measuring the effect on 𝐽ex.

Specifically, the ability to shelve population in different quadrupole levels enables
the operation of the 51V register with an alternative set of many-body states: |0′𝑣⟩
and |1′𝑣⟩. For this experiment we polarize the 51V spins down the energy ladder on
the 𝜔𝑏 and 𝜔𝑐 transitions leading to polarization primarily into the |±3/2⟩ level,
with a small residual population in |±1/2⟩. For the purpose of this analysis we
will assume perfect polarization into |±3/2⟩; however we note that 𝜔𝑎 transition
polarization would be required for this.

We prepare the register |1′𝑣⟩ state by injecting a single spin excitation on the 𝜔𝑏 tran-
sition (i.e., from |±3/2⟩ → |↑⟩ = |±5/2⟩), this is achieved using the corresponding
ZenPol resonance at 𝜔𝑏, 𝑘 = 3:

|1′𝑣⟩ =
1
2

(����↑, 3
2
,
3
2
,
3
2

〉
+

����32 , ↑, 3
2
,
3
2

〉
+

����32 , 3
2
, ↑, 3

2

〉
+

����32 , 3
2
,
3
2
, ↑

〉)
. (6.3)

Here we omit the± sign in the state label for simplicity. Subsequently, we prepare the
171Yb in |0𝑔⟩ and induce a spin exchange oscillation between |↑⟩ and |↓⟩ = |±7/2⟩
via a ZenPol sequence resonant with the 𝜔𝑐 transition. The resulting time evolution
is given by:

|𝜓(𝑡)⟩ = |0𝑔⟩ |1′𝑣⟩ cos
(
𝐽′ex𝑡

2

)
− 𝑖 |1𝑔⟩ |0′𝑣⟩ sin

(
𝐽′ex𝑡

2

)
(6.4)

where
|0′𝑣⟩ =

1
2

(����↓, 3
2
,
3
2
,
3
2

〉
+

����32 , ↓, 3
2
,
3
2

〉
+

����32 , 3
2
, ↓, 3

2

〉
+

����32 , 3
2
,
3
2
, ↓

〉)
(6.5)

and 𝐽′ex = 2𝑏 (5,𝜔𝑐)𝐵
RF. Notice that the spin-exchange oscillation rate, 𝐽′ex, no longer

has a
√
𝑁 rate enhancement; this is because every ket in the |1′𝑣⟩ and |0′𝑣⟩ states

contains only a single spin in the 𝜔𝑐-transition manifold.

Experimental results for this protocol are shown in Figure 6.4b, where we find that the
resulting exchange frequency is reduced by a factor of≈

√
4 compared to the standard

initialization method.1 Based on this experimental result and our understanding of
the YVO4 lattice structure, this verifies our hypothesis that the register consists of the
second-nearest shell of four equidistant 51V ions. This assumption is also supported
by close agreement between experiment and numerical simulation.

1Note that the measurements in Figures 6.4a and b are performed with the same value of 𝐵RF
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We note that using the
{
|0′𝑣⟩ , |1′𝑣⟩

}
manifold of states for information storage

would have several benefits. For instance, direct microwave driving of the register
𝜔𝑐 transition would lead to Rabi oscillation between |0′𝑣⟩ and |1′𝑣⟩ and could therefore
be used to realize local gates in this basis. Additionally, a second spin excitation is
not allowed in this scheme, therefore the ZenPol sequence reproduces a complete
two-qubit swap gate regardless of the 171Yb state. For these reasons, we believe
that there may be some advantages to working with the {|0′𝑣⟩, |1′𝑣⟩} manifold if
the state initialization fidelity into |±3/2⟩ can be improved via direct 𝜔𝑎 transition
polarization. We leave this for future work.

Interaction Frequency
Analogous to the Rabi oscillation of a two-level system, the oscillation frequency
and contrast of these spin exchange oscillations also depend on the detuning of the
ZenPol sequence relative to the 51V transition. Specifically, we expect the following
relations:

𝐽ex(𝛿) =
√︁
𝐽ex(0)2 + 𝛿2 (6.6)

𝐶 (𝛿) = 𝐽ex(0)2

𝐽ex(0)2 + 𝛿2 . (6.7)

Here 𝐽ex and𝐶 are the spin-exchange frequency and oscillation contrast, respectively,
and 𝛿 is the detuning of the ZenPol sequence resonance relative to a target nuclear
spin transition. We polarize the register into |0𝑣⟩ and measure the frequency detuning
dependence of the spin-exchange oscillations in Figure 6.5b. These results agree
well with the corresponding simulations shown in Figure 6.5a.
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Figure 6.5: Spin-exchange dynamics near the 𝜔𝑐 transition at 𝑘 = 5, probed as a
function of sequence resonance frequency 𝜔 and the number of ZenPol periods,
𝑀 . a) Simulation results. b) Measured spin-exchange dynamics showing good
agreement with the numerical simulation in a.
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Polarization
We demonstrate the effect of incomplete register polarization on the spin-exchange
oscillation by varying the number of polarization cycles on the𝜔𝑏 and𝜔𝑐 transitions
prior to each experiment (Figure 6.6a). As expected, we see that coherent spin-
exchange oscillations emerge as an increasing number of polarization cycles are
applied.
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Figure 6.6: Spin exchange dynamics. a) Experimental results of ZenPol spin-
exchange with varying degree of 51V register polarization. As the number of
polarization cycles used to prepare |0𝑣⟩ = |±7/2⟩⊗4 increases, the subsequent spin-
exchange oscillations become more pronounced. b) Experimental demonstration
of tunable spin-exchange rate by varying 𝐵RF. When increasing 𝐵RF from 0.8 G
to 2.0 G, we observe a corresponding linear increase in the spin-exchange rate.
In all cases, numerical simulations (solid lines) show reasonable agreement with
the experimental data (markers). A simulation result without a phenomenological
exponential decay (dashed line) displays a discrepancy, which needs further inves-
tigation.
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Exchange Rate
We also demonstrate control of the spin exchange frequency by varying the RF
magnetic field amplitude (𝐵RF). Figure 6.6b shows the spin-exchange dynamics
for four different values of 𝐵RF = 0.8 G, 1.2 G, 1.6 G and 2.0 G. The inset plots
extracted spin exchange frequencies 𝐽ex for a range of different 𝐵RF demonstrating
linear dependence as expected. This leads to accurate control of the engineered
interaction strength enabling optimization of the swap gate.

Simulating Spin Exchange
We simulate our coupled spin system using the effective Hamiltonian derived in
Section 4.2; however, we add three additional terms:

1. Nuclear Zeeman interactions of the 51V register spins with the Overhauser
field from the bath: Since the energy levels are quantized along the 𝑧-axis,
magnetic fluctuations along the 𝑧-direction dominate, which can be captured
by the following Hamiltonian

𝐻̂nz =
∑︁

𝑖∈register
𝜇𝑁𝑔𝑣𝑧𝐵

OH
𝑧 (r𝑖) 𝐼 (𝑖)𝑧 (6.8)

where 𝐵OH
𝑧 (r𝑖) is the 𝑧-component of the Overhauser field evaluated at the

position of the 𝑖th register ion, r𝑖.

2. Nuclear magnetic dipole-dipole interactions of the register spins:

𝐻̂ndd =
∑︁

𝑖, 𝑗∈register
𝑖< 𝑗

𝜇0

4𝜋

[
𝝁(𝑖)
𝑉

· 𝝁( 𝑗)
𝑉

𝑟3
𝑖 𝑗

−
3(𝝁(𝑖)

𝑉
· r𝑖 𝑗 ) (𝝁( 𝑗)

𝑉
· r𝑖 𝑗 )

𝑟5
𝑖 𝑗

]
(6.9)

with r𝑖 𝑗 the displacement vector between 51V register spins at sites 𝑖 and 𝑗 .

3. 171Yb-enhanced register spin-spin interactions: These terms are derived by
considering second-order perturbations using the Schrieffer-Wolff transfor-
mation (see Section 4.3). For example, the dominant Ising-type terms take
the form

𝐻̂edd =
∑︁

𝑖, 𝑗∈register

1
2𝜔01

[(
3𝑛2 − 1

) 𝜇0𝜇𝑁𝛾𝑧𝑔𝑣𝑧

4𝜋𝑟3

]2 ˆ̃𝑆𝑧 𝐼 (𝑖)𝑧 𝐼
( 𝑗)
𝑧 , (6.10)

where 𝑟 and 𝑛 are the magnitude and 𝑧-direction cosine of the 171Yb–51V
register ion displacement vector. However, we note that the ZenPol sequence
cancels these interactions to first order.
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By simulating 171Yb Ramsey coherence times we extract 𝑔𝑣𝑧 ≈ 1.6. We note that
estimation of the bare 51V coherence time indicates a potential discrepancy in this
value by up to 25%, discussed further in Section 6.5; however, this has a negligible
impact on the ZenPol sequence simulations. We obtain an estimate for 𝑔𝑣𝑥 ≈ 0.6 by
calibrating the RF field amplitude and comparing with the experimental results of
direct 51V spin driving in Figure 6.9.

We compute the nuclear Overhauser field 𝐵OH
𝑧 according to equation (4.3) by ran-

domly sampling the bath states for each Monte-Carlo simulation repetition. We
include a simple model of the bath dynamics by incorporating stochastic jumps of
the bath spins on magnetic-dipole allowed transitions.

We simulate the register spin dynamics in a reduced Hilbert space by considering
only the 𝜔𝑐 manifold. This enables fast simulation of all four register spins plus the
171Yb qubit transition (Hilbert space with dimension 32). Imperfect polarization of
the 51V register into |↓⟩ = |±7/2⟩ is categorized into two distinct types:

1. Imperfect polarization within the𝜔𝑐 transition, i.e., a small residual population
𝜖1 in |↑⟩ = |±5/2⟩.

2. Imperfect polarization outside the 𝜔𝑐 manifold, i.e., a small residual popula-
tion 𝜖2 in |±1/2⟩ and |±3/2⟩.

This leads to a |↓⟩ population of 1− 𝜖1 − 𝜖2. We incorporate incomplete polarization
by sampling different register initial states for each Monte-Carlo repetition. For case
1, this involves occasionally initializing a given 51V ion into |↑⟩, while for case 2
this involves reducing the Hilbert space dimension by removing the 51V ion from
the simulation. We note that our assumption of a mixed 51V register initial state is
justified by the relatively short density matrix coherence decay time (𝑇∗

2 = 58 𝜇s).
In experimental sequences we wait for 1.7 ms after 51V register polarization which
ensures this condition is met. We also take into account finite pulse duration effects
by modeling the ZenPol sequence using 25 ns 𝜋/2 and 50 ns 𝜋 pulses.

As shown in Figure 6.6b, the spin-exchange oscillations from numerical simulation
(red dashed line) exhibit slower decay than the measured experimental results (red
markers). We add a phenomenological exponential decay envelope, 𝑐𝑒−𝑀/𝜏𝑀 , to the
simulation results where 𝑐 and 𝜏𝑀 are free parameters, and 𝑀 is the ZenPol sequence
period. The additional decay could be caused by heating due to the RF field,
excess 171Yb dephasing or additional register spin interactions which we have not
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considered here. We fit this model by optimizing multiple parameters: 𝜖1, 𝜖2, 𝐵RF, 𝑐
and 𝜏𝑀 . The resulting values of 𝜖1 and 𝜖2 are 0.12 and 0.04, respectively, indicating
≈ 84% polarization into |↓⟩; the RF magnetic field amplitude is 𝐵RF ≈ 1.6 G and the
phenomenological exponential decay parameters are 𝑐 = 0.8 and 𝜏𝑀 = 90 leading
to a close fit with the experimental results (red solid line, Figure 6.4a and Figure
6.6b). Additional simulation results following this methodology with varying 𝜏 are
presented in Figure 6.5.

Finally, we model the results with a single-spin excitation in the 𝜔𝑐-manifold by
including the |±3/2⟩ level in the simulation (Figure 6.4b). The initial state used in
this simulation is partially polarized between the |±3/2⟩ level with population 1− 𝜖

and the |±1/2⟩ level with population 𝜖 . We use the same value of 𝐵RF = 1.6 G as
in Figure 6.4a, and optimize the polarization level leading to 1− 𝜖 = 0.8. The close
correspondence between the measured and simulated oscillation profiles suggests
that the register does indeed consist of the second shell of four homogeneously
coupled 51V ions.

6.5 Quantum Information Storage
To evaluate the performance of the 51V register as a quantum memory, we char-
acterize its information storage times under various conditions. Specifically, we
first transfer a superposition state from the 171Yb qubit, 1√

2

(
|0𝑔⟩ + 𝑖 |1𝑔⟩

)
, to the

51V register via the ZenPol-based swap gate. Subsequently, the transferred state
1√
2
( |0𝑣⟩ + |𝑊𝑣⟩) is stored for a variable wait time, 𝑡. Finally, we swap the state

back to the 171Yb and measured along the 𝑥-axis, thereby probing the coherence
of the retrieved state. The full pulse sequence for this experiment (including Yb
initialization and register polarization) is depicted in Figure 6.7.

Ramsey Coherence Time
First consider the case where we leave the system unperturbed during the wait time
𝑡, which is equivalent to a Ramsey coherence measurement. Figure 6.8a shows the
experimental result where the coherence undergoes Gaussian decay with a 1/𝑒 time
of 𝑇∗

2 = 58 ± 4 𝜇s, predominantly limited by local magnetic field noise from two
sources: a fluctuating 171Yb dipole moment (171Yb Knight field) and the nuclear
Overhauser field (as described in Section 4.4).
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Figure 6.7: Pulse sequence detail for quantum information storage and retrieval ex-
periments. After initializing the Yb into the qubit manifold, the nuclear spin register
is polarized via repeated unidirectional spin exchange on the 𝑏 and 𝑐 transitions,
interleaved with Yb qubit initialization. Subsequently, the Yb qubit is prepared in
a superposition state which is swapped onto the register, stored for duration 𝑡 and
then swapped back. Finally, the Yb coherence is read out.

Decoupling from Knight Field
In Figure 6.8b, we decouple the V register from the Knight field by applying
periodic 𝜋 pulses to the 171Yb. This flips its state between |0𝑔⟩ and |1𝑔⟩, thereby
switching the sign of the Knight field and leading to the cancellation of 51V phase
accumulation between successive free evolution periods, in a process analogous
to motional narrowing [235]. This leads to an increased 1/𝑒 coherence time of
𝑇∗

2 = 225 ± 9 𝜇s.

Decoupling from Overhauser Field
In Figure 6.8c, we further extend the coherence time by performing dynamical
decoupling on the 51V register to mitigate the decoherence effect of the nuclear
Overhauser field. Specifically, during the wait time, 𝑡, we apply two 𝜋 pulses to
the nuclear spins’ 𝑐 transition (in addition to the Yb 𝜋 pulses used to decouple
the Knight field). This leads to a significantly extended 1/𝑒 coherence time of
𝑇2 = 760 ± 14 𝜇s. A detailed explanation of how we drive the nuclear spin 𝑐

transition for this dynamical decoupling sequence is provided later in this section.
Note that even numbers of 51V 𝜋 pulses are necessary to return the register to the
{|0𝑣⟩ , |𝑊𝑣⟩} manifold prior to state retrieval.
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Figure 6.8: Quantum information storage in the nuclear spin-wave register. a)
Ramsey coherence measurement with no decoupling during the wait time, 𝑡. Fast
oscillations are observed at the 51V 𝜔𝑐/2𝜋 = 991 kHz frequency (inset) and the
coherence is derived from the oscillation contrast. The coherence is normalized to
have maximum value 1 when in a perfect superposition state and at 𝑡 = 0 is limited
by the swap gate fidelity. The resulting 1/𝑒 coherence decay time is measured to be
58 ± 4 𝜇s. Note that the wait time excludes the swap gate duration. b) Coherence
time extension via motional narrowing of the 171Yb Knight field. By applying 𝑥-axis
𝜋 pulses spaced by 2𝑡𝑤 = 6 𝜇s to the 171Yb qubit, the coherence time of the 51V
register is extended to 225±9 𝜇s. c) Further coherence enhancement via dynamical
decoupling of the 51V register. In addition to the 𝜋 pulses acting on 171Yb, two 𝜋

pulses are applied to the 51V register with a variable inter-pulse delay time, 2𝑡D.
This rephases contributions to the detuning from the nuclear Overhauser field and
leads to an extended memory time of 760 ± 14 𝜇s.
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Coherence Simulation
We numerically simulate the register coherence times using the method outlined in
Section 6.4. When limited by the 171Yb Knight field, simulation yields a Gaussian
decay with a 1/𝑒 coherence time of 33 𝜇s (equivalent to experimental results in
Figure 6.8a). We also predict an upper bound for the coherence time when de-
coupled from the 171Yb Knight field by turning off Hamiltonian terms associated
with equation (4.11), yielding an extended Gaussian decay of 417 𝜇s (equivalent to
experimental results in 6.8b). These simulated values are consistent with the corre-
sponding experimental results (58 ± 4 𝜇s and 225 ± 9 𝜇s, respectively) to within a
factor of two. We note that this could indicate an error in our estimation of 𝑔𝑣𝑧 by
up to 25%, potentially caused by a small discrepancy in the position of the two 51V
bath spins closest to 171Yb. Further analysis of these parameters is left for future
work.

Nuclear Spin Driving
Performing dynamical decoupling on the register requires selective driving of the
froze-core 51V nuclear spins without perturbing the bath and is achieved through
a two-fold mechanism. First, with the 171Yb qubit in |0𝑔⟩ we apply a sinusoidal
𝑧-directed RF magnetic field at𝜔𝑐/2𝜋 = 991 kHz through the coplanar waveguide to
induce an oscillating 171Yb magnetic dipole moment (Figure 6.9a). This generates
an 𝑥 or 𝑦-directed field component at each 51V spin, where the driving Hamilto-
nian is given by 𝐻̂drive = 𝜇𝑁𝑔𝑣𝑥𝐴𝑥,𝑦𝐵

osc
𝑧 sin(𝜔𝑐𝑡)𝐼𝑥,𝑦 with 𝐴𝑥 = −3𝑙𝑛𝜇0𝛾

2
𝑧 /8𝜋𝑟3𝜔01

and 𝐴𝑦 = −3𝑚𝑛𝜇0𝛾
2
𝑧 /8𝜋𝑟3𝜔01. The lattice symmetry of the host leads to equidis-

tant spacing of the four proximal 51V spins from the central 171Yb qubit allowing
homogeneous coherent driving of all register spins.

In this direct driving scheme, we note that the effect of 𝐵osc
𝑧 is amplified by a factor

of |𝐴𝑥,𝑦 | ≈ 6.7 for the frozen-core register spins at a distance of r = 3.9 Å. Crucially,
the amplification factor scales as 𝐴𝑥,𝑦 ∝ 1/𝑟3 with distance 𝑟 from the 171Yb qubit,
leading to a reduced driving strength for distant 51V bath spins. Moreover, the
transition frequency of the bath, 𝜔bath

𝑐 /2𝜋 = 1028 kHz, is detuned by 37 kHz from
that of the register, 𝜔𝑐/2𝜋 = 991 kHz, further weakening the bath interaction due to
off-resonant driving provided that the Rabi frequency is less than the detuning.

In a rotating frame at frequency 𝜔𝑐, the driving Hamiltonian 𝐻̂drive gives rise to
Rabi oscillation dynamics of the register spins within the 𝜔𝑐 manifold, {|↑⟩ =

|±5/2⟩ , |↓⟩ = |±7/2⟩}. To calibrate 51V 𝜋 pulse times, we initialize the register into
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|0𝑣⟩ = |↓↓↓↓⟩, drive the register for variable time, and read out the |0𝑣⟩ population
by preparing the 171Yb qubit in |1𝑔⟩ and applying a swap gate to the 𝜔𝑐 transition. If
the final 51V spin state is in |↓⟩ (|↑⟩) the swap will be successful (unsuccessful) and
the 171Yb qubit will end up in |0𝑔⟩ (|1𝑔⟩). Using this method, we induce resonant
Rabi oscillations of the register at a Rabi frequency of Ω𝐷 = 2𝜋 × (7.65 ± 0.05)
kHz (blue markers, Figure 6.9c) which exhibit exponential decay on a 280 ± 30 𝜇s
timescale, limited by dephasing caused by the fluctuating 171Yb Knight field. This
can be decoupled using motional narrowing techniques whereby we periodically
apply 𝜋 pulses to the 171Yb every 6 𝜇𝑠 during the drive period. In order to drive
the 51V spins in a phase-continuous manner, we compensate for the inversion of the
171Yb magnetic dipole moment after each 𝜋 pulse by applying a 𝜋 phase shift to
the sinusoidal driving field (Figure 6.9b). This leads to an extended 1/𝑒 Gaussian
decay time of 1040 ± 70 𝜇s (red markers, Figure 6.9c).

The arrow in Figure 6.9c indicates the 69 𝜇s 51V 𝜋 pulse time used for dynamical
decoupling. In contrast to the spin-preserving exchange interaction, this direct
drive protocol provides independent, local control of the four 171V spins with no
constraints on the number of excitations, thereby coupling the 51V register to states
outside the two-level manifold spanned by |0𝑣⟩ and |𝑊𝑣⟩. For example, at odd
multiple 𝜋 times, we find

|0𝑣⟩ → |↑↑↑↑⟩

|𝑊𝑣⟩ →
(|↓↑↑↑⟩ + |↑↓↑↑⟩ + |↑↑↓↑⟩ + |↑↑↑↓⟩)

2
,

both of which contain more than a single excitation. For this reason, we use an
even number of 51V 𝜋 pulses in our decoupling sequences to always return the 51V
register to the memory manifold prior to state retrieval.
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Figure 6.9: Direct 51𝑉 nuclear spin driving. a) To directly drive the 51V nuclear spin
𝜔𝑐 transition, a sinusoidal 𝑧-directed RF magnetic field, 𝐵osc

𝑧 sin(𝜔𝑐𝑡), is applied to
the system at a frequency of 𝜔𝑐/2𝜋 = 991 kHz (Drive Protocol 1). This induces an
oscillating magnetic dipole moment on the 171Yb qubit which in turn generates an
amplified transverse driving field at each 51V. Consequently, the four 51V register
spins undergo independent Rabi oscillation. b) To improve the nuclear spin control
fidelity, a train of equidistant 𝜋 pulses are applied to the 171Yb during the driving
period, thereby cancelling dephasing due to the 171Yb Knight field (Drive Protocol
2). Each 𝜋 pulse is accompanied by a 𝜋 phase shift of the sinusoidal field to
ensure phase continuity of the nuclear Rabi driving. c) Measured 51V register
Rabi oscillations using the aforementioned schemes. The black arrow at 𝑡 ≈ 69 𝜇s
indicates the 51V 𝜋 pulse time.
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6.6 𝑇1 Relaxation
We measure the population decay of both the |0𝑣⟩ and |𝑊𝑣⟩ states (timescales 𝑇 (0)

1
and 𝑇

(𝑊)
1 , respectively) by preparing the 51V register in the appropriate state and

waiting for a variable time, 𝑡, before swapping to the 171Yb for readout.

The |0𝑣⟩ state exhibits slow exponential decay with 1/𝑒 time constant 𝑇 (0)
1 = 0.54±

0.08 s (Figure 6.10b). There are two contributions which could be limiting this
decay:

1. Resonant population exchange between the register spins and unpolarized
frozen-core ‘dark spins.’ For instance, the two nearest 51V ions (ions 1 and
2 in Table 2.1) may interact resonantly with the neighbouring register spins.
However, we cannot detect or polarize these dark spins since they only interact
with the 171Yb via Ising-like 𝑆𝑧 𝐼𝑧 terms.

2. Off-resonant population exchange between the register and detuned unpolar-
ized bath spins.

As for the |𝑊𝑣⟩ state, it exhibits a Gaussian decay with a much faster 1/𝑒 time constant
of 𝑇 (𝑊)

1 = 39.5 ± 1.3 𝜇s (Figure 6.10a). This can be explained by considering the
effect of dephasing on the register spins. Specifically, the |𝑊𝑣⟩ state which our
171Yb qubit interacts with is given by

|𝑊𝑣⟩ =
1
2
( |↑↓↓↓⟩ + |↓↑↓↓⟩ + |↓↓↑↓⟩ + |↓↓↓↑⟩) .

Crucially, there are three additional orthogonal states required to span the 51V
register single excitation subspace:

|𝛼𝑣⟩ =
1
2
( |↑↓↓↓⟩ + |↓↑↓↓⟩ − |↓↓↑↓⟩ − |↓↓↓↑⟩)

|𝛽𝑣⟩ =
1
2
( |↑↓↓↓⟩ − |↓↑↓↓⟩ + |↓↓↑↓⟩ − |↓↓↓↑⟩)

|𝛾𝑣⟩ =
1
2
( |↑↓↓↓⟩ − |↓↑↓↓⟩ − |↓↓↑↓⟩ + |↓↓↓↑⟩) .

We assume uncorrelated noise at each of the four 51V spins and apply a pure-
dephasing master equation model. In the single excitation subspace, this becomes:

¤𝜌 = 2Γ [D (|↑↓↓↓⟩ ⟨↑↓↓↓|) + D (|↓↑↓↓⟩ ⟨↓↑↓↓|) (6.11)

+D (|↓↓↑↓⟩ ⟨↓↓↑↓|) + D (|↓↓↓↑⟩ ⟨↓↓↓↑|)] 𝜌 (6.12)
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where the dephasing channel (Lindbladian) is given by

D (𝑎̂) 𝜌 = 𝑎̂𝜌𝑎̂† − 1
2
{𝑎̂†𝑎̂, 𝜌} (6.13)

and Γ is the dephasing rate on the 𝜔𝑐 transition of a single 51V spin. We solve this
equation for different initial states 𝜌(0). When 𝜌(0) = |0𝑣⟩ ⟨0𝑣 |, dephasing does
not contribute to 𝑇

(0)
1 , i.e., 𝜌(𝑡) = 𝜌(0). However, when 𝜌(0) = |𝑊𝑣⟩ ⟨𝑊𝑣 | the state

evolves according to

𝜌(𝑡) = |𝑊𝑣⟩ ⟨𝑊𝑣 | 𝑒−2Γ𝑡 + 1
4

(
1 − 𝑒−2Γ𝑡

)
I(SEM) (6.14)

where I(SEM) is the single excitation manifold identity operator:

I(SEM) = |𝑊𝑣⟩ ⟨𝑊𝑣 | + |𝛼𝑣⟩ ⟨𝛼𝑣 | + |𝛽𝑣⟩ ⟨𝛽𝑣 | + |𝛾𝑣⟩ ⟨𝛾𝑣 | ,

i.e., dephasing leads to decay of |𝑊𝑣⟩ into I(SEM) at rate 2Γ. For completeness we
also consider the decay of the off-diagonal coherence term 𝜌01 = ⟨0𝑣 | 𝜌 |𝑊𝑣⟩ and
find that

𝜌01(𝑡) = 𝜌01(0)𝑒−Γ𝑡 . (6.15)

Essentially, the pure dephasing model predicts 𝑇∗
2 = 2𝑇 (𝑊)

1 for our system.

We verify that dephasing is the main source of |𝑊𝑣⟩ population decay by demon-
strating lifetime extension using the same motional narrowing approach employed
to improve the coherence time. Specifically, during the wait time, we apply a se-
ries of 𝜋 pulses to the 171Yb separated by 6 𝜇s leading to an extended lifetime of
𝑇
(𝑊)
1 = 127 ± 8 𝜇s (Figure 6.10a). We note that both the bare and motionally-

narrowed 𝑇
(𝑊)
1 and 𝑇∗

2 times are close to the 𝑇∗
2 = 2𝑇 (𝑊)

1 limit identified above. We
further extend the𝑇 (𝑊)

1 lifetime to 640±20 𝜇s using two 51V 𝜋 pulses applied during
the wait time, thereby achieving dynamical decoupling from the nuclear Overhauser
field.

Finally we note that if 𝑇 (𝑊)
1 is limited by the 171Yb Knight field as a common noise

source, there may be some discrepancy in the predictions of this model due to a
high degree of noise correlation between the four 51V register spins arising from
lattice symmetry. However, when performing motional narrowing we decouple the
171Yb Knight field and are likely limited by the, considerably less correlated, local
Overhauser field. Further exploration of these correlated/uncorrelated fields is left
for future work.
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Figure 6.10: 51V spin register population relaxation. a) Measured relaxation
timescales, 𝑇 (𝑊)

1 , of the entangled register state, |𝑊𝑣⟩, under various conditions.
Top: with no dynamical decoupling we obtain 𝑇

(𝑊)
1 = 39.5 ± 1.3 𝜇s (blue trace),

limited by dephasing of the entangled |𝑊𝑣⟩ state. Middle: the 𝑇 (𝑊)
1 lifetime can be

extended by motionally narrowing the 171Yb Knight field leading to an extended
1/𝑒 lifetime of 𝑇

(𝑊)
1 = 127 ± 8 𝜇s (red trace). Bottom: further extension of

the 𝑇
(𝑊)
1 lifetime via dynamical decoupling leads to 𝑇

(𝑊)
1 = 640 ± 20 𝜇s (yellow

trace). b) The polarized register state |0𝑣⟩ relaxation timescale is measured to be
𝑇
(0)
1 = 0.54 ± 0.08 s, likely limited by incoherent population transfer to the bath.
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6.7 Population Basis Measurements
We develop a sequential tomography protocol [25] to read out the populations of the
joint 171Yb–51V density matrix 𝜌 in the effective four-state basis, {|0𝑔0𝑣⟩, |0𝑔𝑊𝑣⟩,
|1𝑔0𝑣⟩, |1𝑔𝑊𝑣⟩}. This is achieved using two separate sequences: Readout sequence
1 and Readout sequence 2, applied alternately, which measure the {|0𝑔0𝑣⟩, |0𝑔𝑊𝑣⟩}
and {|1𝑔0𝑣⟩, |1𝑔𝑊𝑣⟩} populations, respectively. As shown in Figure 6.11a, these
sequences are distinguished by the presence (absence) of a single 𝜋 pulse applied
to the 171Yb qubit at the start of the sequence. This is followed by a single optical
readout cycle on the A transition; results are post-selected on detection of a single
optical photon during this period. Hence the presence (absence) of the first 𝜋

pulse results in |0𝑔⟩ (|1𝑔⟩) state readout after post selection. Furthermore, in all
post-selected cases the 171Yb qubit is initialized to |1𝑔⟩ by taking into account
this conditional measurement outcome. Subsequently, an unconditional 𝜋 pulse
is applied to the 171Yb, preparing it in |0𝑔⟩ and a swap gate is applied, thereby
transferring the 51V state to the 171Yb. Finally, we perform single-shot readout of
the 171Yb state according to the protocol developed in [155]. Specifically, we apply
two sets of 100 readout cycles to the A transition separated by a single 𝜋 pulse
which inverts the 171Yb qubit population. The 51V state is ascribed to |𝑊𝑣⟩ (|0𝑣⟩) if
≥ 1 (0) photons are detected in the second readout period and 0 (≥ 1) photons are
detected in the third. We summarize the possible photon detection events and state
attributions in Figure 6.11b.

We demonstrate this protocol by characterizing the state preparation fidelities of the
four basis states. The measured histograms are presented in Figure 6.11c alongside
the respective gate sequences used for state preparation. The resulting uncorrected
(corrected) preparation fidelities for these four basis states are:

F|0𝑔0𝑣⟩ = 0.79 ± 0.01 (0.82 ± 0.02),
F|0𝑔𝑊𝑣⟩ = 0.50 ± 0.02 (0.64 ± 0.02),
F|1𝑔0𝑣⟩ = 0.79 ± 0.01 (0.82 ± 0.02),
F|1𝑔𝑊𝑣⟩ = 0.50 ± 0.02 (0.64 ± 0.02).

We note that the reduced fidelity of |0𝑔𝑊𝑣⟩ and |1𝑔𝑊𝑣⟩ relative to |0𝑔0𝑣⟩ and |1𝑔0𝑣⟩
arises from the swap gate used for the |𝑊𝑣⟩ state preparation. The procedure for
correcting readout infidelity is described in Appendix B.
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Figure 6.11: Population measurement histograms for register fidelity characteriza-
tion. a) Sequential tomography protocol for characterizing 171Yb–51V populations
in the basis spanned by {|0𝑔0𝑣⟩, |0𝑔𝑊𝑣⟩, |1𝑔0𝑣⟩, |1𝑔𝑊𝑣⟩}. b) Table summarizing
the post-processing criteria for state attribution. c) Reconstructed population dis-
tributions for estimating state preparation fidelity. The four basis states, {|0𝑔0𝑣⟩,
|0𝑔𝑊𝑣⟩, |1𝑔0𝑣⟩, |1𝑔𝑊𝑣⟩}, are independently prepared (see the insets of each subplot).
Subsequently, the sequential tomography protocol for state readout (RO) is applied
iteratively, alternating between Readout 1 and 2 sequences to fully reconstruct the
population probability distributions.
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6.8 Bell State Preparation and Measurement
We benchmark our multi-spin register by characterizing fidelities of 171Yb–51V
Bell state generation and detection, serving as a vital component of the quantum
repeater protocol [33]. In particular, the maximally entangled Bell state |Ψ+⟩ =

1√
2

(
|1𝑔⟩ |0𝑣⟩ − 𝑖 |0𝑔⟩ |𝑊𝑣⟩

)
can be prepared by initializing the system in |1𝑔⟩ |0𝑣⟩

and applying a √swap gate based on the ZenPol sequence satisfying 𝐽ex𝑡𝑀 = 𝜋/2
(equation (6.2)). The Bell state coherence is evaluated by waiting for a free evolution
time 𝑡, during which a parity oscillation occurs between |Ψ+⟩ and its conjugate,
|Ψ−⟩ = 1√

2

(
|1𝑔⟩ |0𝑣⟩ + 𝑖 |0𝑔⟩ |𝑊𝑣⟩

)
at the 𝜔𝑐 transition frequency [236] (Appendix

C). Finally the coherence is measured via a second √swap gate which maps the
parity to 171Yb population. Figure 6.12a shows the measured parity oscillations
decaying with a 1/𝑒 time of 𝑇∗

2,Bell = 8.5 ± 0.5 𝜇s, limited by the 𝑇∗
2 dephasing time

of the 171Yb qubit [155]. To improve the coherence, we apply an XY-8 decoupling
sequence [212] to the 171Yb which simultaneously extends the Yb coherence time
and motionally narrows the Knight field. This leads to an enhanced value of
𝑇∗

2,Bell = 239 ± 6 𝜇s (Figure 6.12b); now limited by the Overhauser field interacting
with the 51V register.

In order to estimate the Bell state preparation fidelity, defined as F = ⟨Ψ+ |𝜌 |Ψ+⟩,
we perform a sequential tomography protocol [25] to reconstruct the density matrix
𝜌 in the effective manifold spanned by four states {|0𝑔0𝑣⟩ , |0𝑔𝑊𝑣⟩ , |1𝑔0𝑣⟩ , |1𝑔𝑊𝑣⟩}
(Figure 6.11 and Appendix C). Taking into account errors in state readout, we
obtain a corrected Bell state fidelity of 0.76±0.01, as summarized in Figure 6.12c
(the uncorrected fidelity is measured to be 0.61±0.01). We speculate that this is
limited by incomplete register initialization, imperfect Hamiltonian engineering and
dephasing during Bell state generation (see Appendix C for a detailed explanation
of fidelity estimation).

6.9 Register Reproducibility
We stress that utilizing the dense, lattice nuclear spins ensures near identical reg-
isters for all 171Yb ions. Figure 6.13 shows ZenPol spectra near the 𝜔𝑐 transition,
collectively enhanced spin-exchange oscillations and motionally-narrowed 𝑇∗

2 times
for three 51V registers coupled to three different 171Yb ions. The 171Yb optical and
microwave frequencies were re-calibrated for each ion; however, all aspects of the
experimental sequences related to register control and readout were identical. This
demonstrates that the 4-spin V register is a deterministic quantum resource.
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Figure 6.12: Characterization of maximally entangled 171Yb–51V register Bell state.
a) Parity oscillations between |Ψ+⟩ and |Ψ−⟩ revealing the Bell state coherence time
with a 1/𝑒 decay timescale of 𝑇∗

2,Bell = 8.5 ± 0.5 𝜇s. b) During the parity oscilla-
tion, we apply an XY-8 decoupling sequence to the 171Yb qubit. This leads to a
significantly extended Bell state coherence time of 𝑇∗

2,Bell = 239 ± 6 𝜇s. c) Recon-
structed Bell state density matrix. Diagonal entries representing populations are
extracted through a sequential tomography protocol. Off-diagonal matrix elements
representing coherences are obtained from the parity oscillation contrast. Note that
all density matrix values have been corrected to account for readout error, yielding
a fidelity of 0.76 ± 0.01.
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Figure 6.13: Experimental demonstration of deterministic nuclear spin register. To
demonstrate the deterministic nature of the nuclear spin register, we perform the
same measurements on two additional 171Yb ion qubits present in the device: Ion 2
(red) and Ion 3 (yellow). Results for Ion 1 (blue) are reproduced from the previous
figures for ease of comparison. a) ZenPol spectra near the 𝜔𝑐 (𝑘 = 5) resonance
of the 51V register spins. Notice that for all three ions, the bath and register
transitions are identified at the same resonance frequencies of 𝜔bath

𝑐 /2𝜋 = 1028 kHz
and 𝜔𝑐/2𝜋 = 991 kHz, respectively. b) Dynamically engineered spin-exchange
dynamics between the 171Yb qubit and 51V register. Using constant ZenPol square-
wave RF amplitude we obtain equal spin-exchange rates for all three ions. c)
Characterization of 51V register coherence times with decoupling from the 171Yb
Knight field. The 1/𝑒 coherence times are measured to be 225 ± 9 𝜇s, 273 ± 12 𝜇s
and 261 ± 9 𝜇s for Ions 1, 2 and 3, respectively.
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C h a p t e r 7

HONG-OU-MANDEL INDISTINGUISHABILITY
MEASUREMENTS

7.1 Introduction
In the second half of this thesis we will work towards preparation of remote entangled
states of two ions in two separate devices. This process relies on coherent emission
of single photons, entangled with the internal state of the ion [237]. These photons
need to be interfered and measured in a basis which projects the two ions into an
entangled state (entanglement swapping [238]). Coherently measuring two photons
in this manner is commonly referred to as ‘which-path-erasure’ [239] and requires
the two photons to be mutually indistinguishable.

In this section we examine two-photon indistinguishably using a Hong-Ou-Mandel
(HOM) interference experiment [240]. When two perfectly indistinguishable pho-
tons impinge on two ports of a beamsplitter, interference of their quantum wave-
functions leads to their emergence from the same output port. By monitoring the
two output ports we therefore expect to measure bunching in the auto-correlation of
detection times from any single detector and anti-bunching in the cross-correlation
between the two detectors. The number of two-photon coincidences measured
between the two output ports is therefore used as a measure of the photon distin-
guishability. This effect was first demonstrated in photons generated via spontaneous
parametric down-conversion (SPDC) [240], but has since been observed in emission
from trapped atoms [241], ions [242], quantum dots [243–245], molecules [246]
and solid state emitters [247–250].

The degree of indistinguishability is limited by various factors [251]:

1. static frequency difference between the two photons (Δ𝜔0),

2. a variable frequency difference between the two photons, linked to emitter
dephasing (𝛿𝜔),

3. the wavepacket shape of the two photons,

4. the polarization of the photons.

Regarding (1), a static frequency difference will cause temporal oscillation in the
HOM interference (commonly referred to as ‘quantum beating’ [252, 253]). Specif-
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ically, an oscillation between bunching and antibunching with detection time dif-
ference. Since this is a coherent phenomenon, this form of distinguishability is not
detrimental and can be accommodated in entanglement protocols, we therefore use
the contrast of this oscillation as a revised definition of indistinguishability.

Regarding (2), variation in the photon emission frequency across multiple experi-
mental repetitions leads to a Gaussian decay in the indistinguishability with relative
measurement time. Generally, the Gaussian decay time constant is inversely pro-
portional to the root-mean-square frequency fluctuation.

Regarding (3), photons generated via spontaneous emission will have an exponen-
tially decaying spatio-temporal wavepacket shape, indistinguishability is caused by
different decay time constants. Interestingly, even with dramatically different decays,
two photons will still appear indistinguishable for sufficiently short detection time
differences. Usually, variation in emission frequency dominates over this effect.

Regarding (4), photons are always emitted in a definite polarization state, unitary
transformations (implemented with waveplates) can be used to match the photon
polarizations at the beamsplitter.1

The results presented in this section are the first demonstration of HOM interference
from two separate rare-earth ions, and serve as a crucial demonstration of mutual
photonic coherence, a pre-requisite for the subsequent entanglement experiments.

7.2 Experimental Setup
The setup used for this experiment is explained in detail in Chapter 9. Specific
aspects relevant to the following discussion are as follows:

We utilize two separate devices located in the same cryostat. We study one ion in
each device, their optical frequency difference is 32.9 MHz (Figure 9.1). Light from
the two devices exits the cryostat in two separate optical fibers which are combined
on a polarizing beamsplitter (PBS), such that they exit in the same spatial mode, but
with orthogonal polarizations.2 Subsequently the light passes through a half wave
plate which rotates the polarization by 45◦ before passing through a second PBS,
the two output ports of this PBS are fiber coupled and sent to two separate single
photon detectors (Figure 7.1).

1The specific experimental setup used (elaborated in section 7.2) uses polarizing beamsplitters
and ensures that photons incident on the same detector always have the same polarization.

2The polarization of light in each of the two fibers prior to the PBS is adjusted to optimize the
transfer of light from each device into the same spatial mode afterwards.
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7.3 Theory
This section presents theoretical detail for the HOM measurement depicted in Figure
7.13. The photons we consider travel in a 1D waveguide (optical fiber). Electromag-
netic fields in this waveguide can be described via a set of continuum operators. For
example, single-frequency operators {𝑎̂𝜔} that satisfy [𝑎̂𝜔, 𝑎̂†𝜔′] = 𝛿(𝜔 −𝜔′) [255].
Note, however, that emitters will generate photons in a specific spatio-temporal
mode with wavepacket given by:

𝜁0(𝑧, 𝑡) =
1

√
𝑇1

H(𝑡)𝑒−
𝑡

2𝑇1
−𝑖(𝜔𝑡−𝑘𝑧+𝜙) (7.1)

where H(𝑡) is the Heaviside step function and the photon is emitted at 𝑡 = 0 [256].
We can simplify our analysis considerably by describing our 1D electromagnetic
fields with a mode set that includes this specific mode. This process is termed
‘discretizing the continuum’ and involves defining a new set of operators 𝐴𝑘 (with
associated spatio-temporal modes 𝜁𝑘 (𝑧, 𝑡)) that satisfy [𝐴𝑘 , 𝐴𝑘 ′

†] = 𝛿𝑘,𝑘 ′ , whereby
𝐴0 is our emission mode of interest.

Crucially, the field operator in this new basis is defined according to:

𝐸̂+(𝑧, 𝑡) =
∑︁
𝑘

𝜁𝑘 (𝑧, 𝑡)𝐴𝑘 (7.2)

which provides a simple approach to extract photodetection probabilities [257].

Now consider the polarizing beamsplitter in Figure 7.1. We define two electric
field operators for the orthogonally polarized input channels, 𝐸̂+

𝐴
(𝑧, 𝑡) (horizontal)

and 𝐸̂+
𝐵
(𝑧, 𝑡) (vertical), where modes 𝐴̂0 and 𝐵̂0 are populated by Ion 1 and Ion 2,

respectively. The electric field operators for the two photodetection channels are
𝐸̂+
𝐶
(𝑧, 𝑡) and 𝐸̂+

𝐷
(𝑧, 𝑡) for transmission and reflection, respectively. The half wave

plate and PBS transform the input channels into the output channels according to:

𝐸̂+
𝐶 (𝑧, 𝑡) = cos(2𝜃)𝐸̂+

𝐴 (𝑧, 𝑡) + sin(2𝜃)𝐸̂+
𝐵 (𝑧, 𝑡)

𝐸̂+
𝐷 (𝑧, 𝑡) = − cos(2𝜃)𝐸̂+

𝐵 (𝑧, 𝑡) + sin(2𝜃)𝐸̂+
𝐴 (𝑧, 𝑡)

(7.3)

where 𝜃 is the rotation angle of the half wave plate. Note, when 𝜃 = 𝜋/8, the
input mode contributions to the output mode are balanced, this is the condition for
optimum HOM visibility.

3For more detail, there are many textbooks/papers that comprehensively cover this topic [251,
254].



91

The joint photon detection probability (probability of detecting a photon at time 𝑡

in detector 𝐶 and 𝑡′ in detector 𝐷) is given by:

𝑃(𝑡, 𝑡′) = ⟨0| 𝐴̂0𝐵̂0𝐸̂
−
𝐶 (𝑡)𝐸̂

−
𝐷 (𝑡′)𝐸̂+

𝐶 (𝑡)𝐸̂
+
𝐷 (𝑡′) 𝐴̂

†
0𝐵̂

†
0 |0⟩

=
1
4

[
|𝜁 (1)0 (𝑡)𝜁 (2)0 (𝑡′) |2 + |𝜁 (1)0 (𝑡′)𝜁 (2)0 (𝑡) |2 − 2ℜ𝔢{𝜁 (1)0 (𝑡)𝜁 (1)0 (𝑡′)𝜁 (2)0 (𝑡)𝜁 (2)0 (𝑡′)}

]
∝ 𝑒−𝑡/𝑇

(1)
1 𝑒−𝑡

′/𝑇 (2)
1 + 𝑒−𝑡

′/𝑇 (1)
1 𝑒−𝑡/𝑇

(2)
1 − 2𝑒−

𝑡+𝑡′
𝜏 cos((𝜔1 − 𝜔2) (𝑡 − 𝑡′))

(7.4)

where, for simplicity, we have dropped the positional coordinate and 𝜁
(𝑖)
0 , 𝜔𝑖 and

𝑇
(𝑖)
1 are the wavepacket, frequency and lifetime of ion 𝑖, respectively. 𝜏 is defined

according to 1/𝜏 = 1/𝑇 (1)
1 + 1/𝑇 (2)

1 .

Finally, we define the photon arrival time difference Δ𝑡 = 𝑡′− 𝑡 and marginalize over
the remaining temporal degree of freedom to arrive at the coincidence probability:

𝑃(Δ𝑡) =𝜂𝐵𝐶𝜂𝐴𝐷𝑒−Δ𝑡/𝑇
(2)
1 + 𝜂𝐴𝐶𝜂𝐵𝐷𝑒−Δ𝑡/𝑇

(1)
1

− 2
√︃
𝜂𝐵𝐶𝜂𝐴𝐷𝜂𝐴𝐶𝜂𝐵𝐷𝑒−Δ𝑡/2𝜏𝑒−Δ𝑡

2𝜎2
cos(Δ𝜔0Δ𝑡).

(7.5)

Note here that we have introduced efficiencies 𝜂𝐴𝐶 and 𝜂𝐴𝐷 which are the proba-
bilities for photons originating from Ion 1 to reach detectors 𝐶 and 𝐷, respectively.
Similarly, 𝜂𝐵𝐶 and 𝜂𝐵𝐷 are the probabilities for photons originating from Ion 2 to
reach detectors 𝐶 and 𝐷, respectively. We have also assumed that the measurement
window size is much larger than either of the two ions’ lifetimes. Furthermore, we
have taken an ensemble average over frequency differences between the two ions,

𝜎 is given by: 𝜎 =

√︃
1/(𝑇∗(1)

2 )2 + 1/(𝑇∗(2)
2 )2, where 𝑇

∗(𝑖)
2 is the optical Ramsey

coherence time for ion 𝑖. Δ𝜔0 is the static frequency difference between the two
ions.

Note that the condition for perfect HOM interference is given by:

𝜂𝐴𝐶

𝜂𝐴𝐷
=

𝜂𝐵𝐶

𝜂𝐵𝐷
(7.6)

experimentally, this condition is obtained by choosing an appropriate half wave plate
angle. If we assume some imperfection in this condition we can account for this with
a parameter 𝛼 according to 𝜂𝐴𝐶𝜂𝐵𝐷 = 𝛼𝜂𝐴𝐷𝜂𝐵𝐶 . The visibility of the two-photon
correlation measurement is then given by:

𝑉 (Δ𝑡) = 2
√
𝛼𝑒−Δ𝑡/2𝜏𝑒−Δ𝑡

2𝜎2

𝑒−Δ𝑡/𝑇
(2)
1 + 𝛼𝑒−Δ𝑡/𝑇

(1)
1

. (7.7)
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This is also termed the photon indistinguishability. Note that if 𝛼 = 1 we have
perfect indistinguishability at Δ𝑡 = 0.

Note, when modelling the two-photon coincidences we also consider the effect of
dark counts on either of the two detectors. We assume that dark count rates are
sufficiently small that the probability of coincidences due to a double dark count
are negligible. Instead, the dominant contribution occurs when a dark count is
measured at one detector and an ion count is measured at the other detector. We
also take into account the effect of a finite window size. These expressions are not
written out here for conciseness.

7.4 Experimental Results
This section presents experimental results summarized in Figure 7.1. The setup is
described in Section 7.2 whereby the half-waveplate angle is optimized to ensure
the ratio of probabilities matches equation (7.6). We measure the resulting balance
ratio 𝛼 = 0.993. The two ions’ optical frequency difference is 32.9 MHz.

Figure 7.1a shows a normalized histogram of coincidences between the two de-
tectors with a bin size of 160 ns. Since this is much larger than the inverse of
the optical frequency difference, we obtain an average count rate and the photons
appear distinguishable. In other words, by measuring imprecisely we do not erase
frequency information.

Figure 7.1b shows the same measurement with a 3 ns window size where the window
positions are chosen to coincide with the trough of each oscillation. In this case,
a conventional Hong-Ou-Mandel result is obtained. Figure 7.1c shows the central
region with |Δ𝑡 | < 200 ns, we can clearly observe an oscillation between bunching
and antibunching at 32.9 MHz.

In Figure 7.1d we consider the HOM visibility when averaged over a window which
extends from −𝑊/2 < Δ𝑡 < 𝑊/2. We plot the average visibility against the window
size, 𝑊 . For the smallest window size (𝑊 = 6 ns) we obtain a visibility of 96± 4%.
Given the measured imbalance (𝛼 = 0.993), the bin size (3 ns) and the optical
frequency 32.9 MHz, we expect the maximum possible measured visibility to be
97.95%. This agrees well, given the measurement error.



93

-200 -150 -100 -50 0 50 100 150 200
Time difference (ns)

0

100

200

300

C
oi

nc
id

en
ce

s

-6 -4 -2 0 2 4 6
Time difference ( s)

0

10

20

30

C
oi

nc
id

en
ce

s

0 1000 2000
Window size(ns)

0.2

0.4

0.6

0.8

1

Vi
si

bi
lit

y

a

b

c

d

PBS

λ/2

A B

C
D

-6 -4 -2 0 2 4 6
Time difference ( s)

0

10

20

30

C
oi

nc
id

en
ce

s

Figure 7.1: Hong-Ou-Mandel two photon interference. Photons from two ions in
two separate devices interfere via a polarizing beamsplitter (PBS). Two single photon
detectors on the PBS output ports are used to study time-resolved coincidences. a)
Coincidences are binned with 160 ns window size, thereby rendering the photons
distinguishable. b), c) Coincidences are binned with a 3 ns window size leading
to frequency erasure. In (c) we see the emergence of quantum beats at the optical
frequency difference. In (b) we plot the counts at the trough of each oscillation,
thereby obtaining a ‘conventional’ Hong-Ou-Mandel anti-bunching feature. d) The
average interference visibility plotted vs acceptance window size. For the smallest
window size of 6 ns, a 96% visibility is achieved.
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C h a p t e r 8

TWO ION ENTANGLEMENT OVERVIEW AND THEORY

8.1 Introduction
As discussed in Section 1.2, distributing entanglement between remote qubits is a
critical component of future long-range quantum networks [16].

To date, several quantum networking platforms have achieved this milestone: trapped
atoms [64, 258], trapped ions [61, 62], quantum dots [68, 69] and nitrogen vacancy
centers in diamond [67, 218, 259]. While initial demonstrations were limited to two
node entanglement, recent results using NV centers have demonstrated entanglement
of three remote nodes [30, 75]. Note that there have also been demonstrations
of heralded entanglement between a pair of silicon vacancy centers in diamond;
however, these were within the same cavity [260].

In the next three chapters of this thesis we develop protocols and experimentally
demonstrate remote entanglement between two single rare-earth ion qubits. To do
this, we will leverage a variety of properties that were previously demonstrated,
including long spin coherence times (Section 3.5), coherent optical transitions (Sec-
tion 3.2) and two-photon interference (Section 7.4).

There are three main challenges that need to be addressed in order to demonstrate
entanglement using our platform:

1. low photon detection efficiencies (typically around 1%),

2. non-transform-limited optical linewidths (≈ 10× broader),

3. static disorder (inhomogeneity) in the optical transition frequencies (200
MHz).

To overcome these challenges we develop a single-photon entanglement heralding
protocol which will be elaborated in this chapter. This protocol incorporates a novel
type of dynamical decoupling (which we term dynamic rephasing). It is designed
to mitigate the effect of stochastic phase accumulation associated with random
photon emission during entanglement heralding, it also enables lifetime limited
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entanglement rates and fidelities even in the presence of non-transform limited line-
widths. Relaxing the photonic coherence requirements for entanglement heralding
will enable the re-evaluation of a broad range of solid state emitter platforms which
were previously discarded due to excessive spectral diffusion.

Furthermore, the narrow optical inhomogeneous line-widths of rare-earth ions pro-
vides us with a unique advantage in addressing static disorder. This is because,
generally, frequency information can be erased if photons are detected with a tim-
ing resolution much smaller than the inverse of the optical frequency difference.
Compared to other solid state platforms, rare-earth ions are the only system compat-
ible with the timing resolution of commercially available single photon detectors.
Our platform can uniquely leverage frequency erasure for scalable entanglement
distribution between any pair of emitters.

In Chapter 9 we will present details of the experimental setup used for these mea-
surements, in Chapter 10 we present the experimental results.

8.2 Single Photon Entanglement Protocols
Nearly all remote entanglement protocols consist of two key ingredients:

• the ability to entangle the internal spin state of an atom/ion with an itinerant
photon;

• entanglement swapping, where a measurement of the photon(s) projects the
ions/atoms into an entangled state.

There are many different proposed protocols [32]; however, for the purposes of
this discussion I will focus on just two: the Barrett-Kok [261] and single photon
[262, 263] schemes, these are the most commonly encountered. They involve
entanglement of each atom with a photonic qubit in the {|0⟩ , |1⟩} Fock basis.
Subsequently, photons emitted from each device travel to a central location where
the two optical paths are combined on a beamsplitter and measured in a manner that
erases ‘which-path’ information (i.e., a Bell state measurement).1

The Barrett Kok scheme starts with both ions prepared in the |+𝑋⟩ state:

|𝜓⟩ = 1
2

[
|0𝑔0𝑔⟩ + |1𝑔0𝑔⟩ + |0𝑔1𝑔⟩ + |1𝑔1𝑔⟩

]
(8.1)

1There are several different optical measurement setups used in these experiments, they are
elaborated in Section 9.5.
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both ions are optically excited, detection of a single photon would herald2
1√
2
( |0𝑔1𝑔⟩+

|1𝑔0𝑔⟩). However, since most commercial detectors are not photon number resolv-
ing (and the photon detection process is usually quite inefficient) there is still a
possibility of being in |1𝑔1𝑔⟩. To remove this component, a spin 𝜋 pulse is applied
to both ions and the optical excitation + photon heralding steps are repeated. How-
ever, this scheme is usually quite inefficient as the entanglement rate scales with the
detection efficiency squared (𝜂2).

The single photon protocol provides a more efficient scheme for entanglement
generation and will be the approach pursued in this thesis. The protocol looks like
the first half of the Barrett-Kok scheme; however, we start with a direct-product
state of a slightly different form [264]:

|𝜓⟩ =
(√

1 − 𝛼 |0𝑔⟩ +
√
𝛼 |1𝑔⟩

) (√
1 − 𝛼 |0𝑔⟩ +

√
𝛼 |1𝑔⟩

)
= (1 − 𝛼) |0𝑔0𝑔⟩ +

√︁
𝛼(1 − 𝛼)

[
|1𝑔0𝑔⟩ + |0𝑔1𝑔⟩

]
+ 𝛼 |1𝑔1𝑔⟩

(8.2)

where 𝛼 can be chosen freely between 0 and 1, it quantifies the strength of super-
position for each of the single-ion states. As before, excitation and detection of a
single photon carves out the optically dark component (removes |0𝑔0𝑔⟩). The |1𝑔1𝑔⟩
component is treated as an infidelity in the entangled state, note that it is suppressed
by a probability factor 𝛼 relative to the Bell state and leads to a maximum entangled
state fidelity of F = 1 − 𝛼. Hence, by choosing sufficiently small 𝛼 we can make
this component negligible. The entanglement heralding rate is given by R = 2𝜂𝛼,
since 𝜂 is typically quite small, this can be a considerable improvement over the
Barrett-Kok scheme. Crucially, this determination relies on the choice of 𝛼 which
should be minimized so that it does not dominate over other sources of error in the
system. Specifically, if the maximum permitted infidelity is greater than the photon
detection efficiency then it makes sense to use this approach.3

The single photon protocol has been applied to a wide variety of platforms [68, 126,
259, 265].

2Note, that if measuring with two detectors, one would expect the Bell state phase to depend on
which detector clicked. The heralded Bell states for different detection scenarios are discussed in
Section 9.5.

3For our devices 𝜂 ∼ 0.01 and typical fidelities are F ∼ 0.75.
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8.3 Coherence in Entanglement Heralding
In this section we provide more detail on the basic single photon protocol which
was introduced in the previous section, discuss the impact of phase and optical
decoherence on the entangled state and propose two alternative sequences which
overcome limitations associated with this decoherence.

Ramsey Protocol
The most basic entanglement sequence is presented in Figure 8.1a. Each ion is
initialized into the |0𝑔⟩ state, a microwave pulse prepares a weak superposition with
a small probability, 𝛼, of being in the optically bright |1𝑔⟩ state. The resulting two
ion state is:

|𝜓⟩ = (1 − 𝛼) |0𝑔0𝑔⟩ +
√︁
𝛼(1 − 𝛼)

[
|1𝑔0𝑔⟩ + |0𝑔1𝑔⟩

]
+ 𝛼 |1𝑔1𝑔⟩ . (8.3)

Subsequently, each ion is resonantly optically excited and the entangled state is
heralded on the detection of a single photon with a detection time 𝑡0. The resulting
heralded density matrix is given by [264]:

𝜌 = (1 − 𝛼) |𝜓(𝑡0)⟩ ⟨𝜓(𝑡0) | + 𝛼 |1𝑔1𝑔⟩ ⟨1𝑔1𝑔 | (8.4)

where:

|𝜓̃(𝑡0)⟩ =

𝑒−𝑡0/2𝑇

(1)
1√︃

𝑇
(1)
1

𝑒−𝑖(𝜔1𝑡0+𝜙) |1𝑔0𝑔⟩ +
𝑒−𝑡0/2𝑇

(2)
1√︃

𝑇
(2)
1

𝑒−𝑖(𝜔2𝑡0) |0𝑔1𝑔⟩
 (8.5)

with |𝜓(𝑡0)⟩ = |𝜓̃(𝑡0)⟩ /
√︁
⟨𝜓̃(𝑡0) |𝜓̃(𝑡0)⟩. 𝜔1, 𝜔2 and 𝑇

(1)
1 , 𝑇 (2)

1 are the optical
frequencies and lifetimes of the two ions, respectively. We define 𝜙 = 𝜙1 − 𝜙2,
where 𝜙𝑖 corresponds to the phase of the excitation laser at ion 𝑖 combined with the
phase of the subsequently emitted photon as it travels to the detector. This will be
discussed more in Section 9.6.

Assuming that the two ions have the same optical lifetime (𝑇 (1)
1 = 𝑇

(2)
1 = 𝑇1), that the

optical phase is zero (𝜙 = 0) and that 𝛼 is sufficiently small such that the infidelity
due to |1𝑔1𝑔⟩ ⟨1𝑔1𝑔 | can be ignored, this protocol heralds the preparation of a pure
state:

|𝜓(𝑡0)⟩ =
1
√

2

[
|1𝑔0𝑔⟩ + |0𝑔1𝑔⟩ 𝑒−𝑖Δ𝜔𝑡0

]
(8.6)

where Δ𝜔 = 𝜔2 − 𝜔1 4.
4A note on rotating frames: throughout this and the next section, we will assume that we are

working in a rotating frame for the ground state spin transition (i.e., |0𝑔⟩ and |1𝑔⟩ have 0 energy) and
that we are operating in the lab frame for the excited state level (i.e., |0𝑒⟩ has energy ℏ𝜔). We will
ignore spin dephasing for simplicity. We will assume that the laser excitation phase is 0 at the start
of the heralding window for each ion.
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Now we note two things. First, the Bell State phase will depend on the optical
frequency difference and the photon detection time. This is addressed in Section
8.4.

Second, variations in the optical frequency difference will cause uncertainty in the
heralded phase. Typically, the optical frequency distribution will be Gaussian in
nature: Δ𝜔 = Δ𝜔0 + 𝛿𝜔, where Δ𝜔0 is a static frequency splitting and 𝛿𝜔 is a
stochastic, Gaussian-distributed frequency with std(𝛿𝜔) = 𝜎𝜔 and ⟨𝛿𝜔⟩ = 0. Much
like a Ramsey experiment, this variation leads to a Gaussian decay of the entangled
state coherence with photon detection time:

𝐶 (𝑡0) = 2ℜ
{
⟨0𝑔1𝑔 | 𝜌 |1𝑔0𝑔⟩

}
= cos(Δ𝜔0𝑡0)𝑒−𝑡

2
0𝜎

2
𝜔/2. (8.7)

Assuming that the spectral diffusion of the two ions’ optical transitions are un-

correlated, we can derive the relation: 𝜎𝜔 =

√︃
2/(𝑇∗(1)

2 )2 + 2/(𝑇∗(2)
2 )2 where 𝑇

∗(𝑖)
2

is the optical Ramsey coherence time for the 𝑖th ion. This yields an unfortu-
nate trade-off in systems which do not have lifetime limited coherence (i.e., where
𝑇∗

2 < 2𝑇1). Either one can accept photon counts for the entire optical emission pe-
riod, this maximizes the entanglement heralding rate, but limits the heralded fidelity
to (F −0.5) ∼ 𝑇∗

2 /2𝑇1. Alternatively, one can accept photons only within the optical
coherence time, but this limits the entanglement rate to R ∼ 𝑇∗

2 /2𝑇1. Usually, one
opts for the latter case.

Precompensated Phase Accumulation
Next, we apply the concept of dynamical decoupling to the entanglement heralding
pulse sequence, as we will see, if the optical frequency difference is quasi-static
on the timescale of an experiment sequence the trade-off described in the previous
section is not necessarily fundamental.

This sequence is depicted in Figure 8.1b and starts as before with the preparation of
a superposition state followed by optical excitation; however, this time 𝛼 is chosen
such that (1 − 𝛼) ≪ 1. Under this condition we can ignore the |0𝑔0𝑔⟩ component.
After optical excitation, the un-normalized quantum state is given by5:

|𝜓⟩ =
√︁
𝛼(1 − 𝛼)

[
|0𝑒0𝑔⟩ + |0𝑔0𝑒⟩

]
+ 𝛼 |0𝑒0𝑒⟩ . (8.8)

5Another note on rotating frames: in this section it seems like I have chosen the laser to have
0 phase at the start of both the rephasing period and heralding periods. In reality, this is not a
requirement, as any laser phase imparted to the state after the first optical 𝜋 pulse is subsequently
removed by the second optical 𝜋 pulse (within the composite pulse). Hence the only laser phase that
impacts the final entangled state is the final optical 𝜋 pulse. Without loss of generality, we can set
the laser phases to be zero at this singular point as in the previous section.
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Next, the quantum state evolves for a pre-determined duration, 𝜏0, during which
optical phase is accumulated at a rate given by Δ𝜔 = Δ𝜔0 + 𝛿𝜔.

|𝜓⟩ =
√︁
𝛼(1 − 𝛼)

[
|0𝑒0𝑔⟩ + |0𝑔0𝑒⟩ 𝑒(−𝑖(Δ𝜔0+𝛿𝜔)𝜏0)

]
+ 𝛼 |0𝑒0𝑒⟩ 𝑒−𝑖𝜔2𝜏0 (8.9)

Next, we apply a 𝜋 pulse which exchanges the states |0𝑒⟩ and |0𝑔⟩. This leads to the
following state:

|𝜓⟩ =
√︁
𝛼(1 − 𝛼)

[
|0𝑔0𝑒⟩ + |0𝑒0𝑔⟩ 𝑒−𝑖𝛿𝜔𝜏0

]
+ 𝛼 |0𝑔0𝑔⟩ 𝑒−𝑖𝛿𝜔2𝜏0 (8.10)

where 𝛿𝜔2 is the detuning of the 2nd ion from its respective driving laser and we
have assumed that the frequency difference between the two driving lasers is set
to Δ𝜔0. Note that the |0𝑔⟩ ↔ |0𝑒⟩ transition (marked in green in Figure 8.1) is
forbidden for our system at B=0. We therefore utilize a composite pulse consisting
of an optical 𝜋 pulse on the 𝐴 transition, followed by a spin dynamical decoupling
sequence with an odd number of periods6 and finally a second optical 𝜋 pulse on the
𝐴 transition. Finally, we herald the preparation of an entangled state by detecting a
single photon at time 𝑡0:

|𝜓(𝑡0)⟩ =
1
√

2

[
|0𝑔1𝑔⟩ + |1𝑔0𝑔⟩ 𝑒−𝑖[𝛿𝜔(𝜏0−𝑡0)−Δ𝜔0𝑡0]

]
. (8.11)

The coherence of the resulting entangled state is now maximized when the photon
emission satisfies 𝑡0 = 𝜏0, i.e., C(𝑡0) = cos(Δ𝜔0𝑡0)𝑒−(𝑡0−𝜏0)2𝜎2

𝜔/2. While the coher-
ence still decays with rate 𝜎𝜔/

√
2, by shifting the point of maximum coherence to

𝑡0 > 0 we can now herald with a two-sided acceptance window (i.e., both before and
after this point). This enables us to boost the entanglement rate by a factor of two
compared to the previous protocol whilst still maintaining the same fidelity. Note
that any optical decay during the first evolution of duration 𝜏0 will lead to infidelity
in the entangled state; however, this can be mitigated by choosing 𝜏0 to be much less
than the optical lifetime.

Dynamic Rephasing
The critical issue with the previous sequence is that optical dephasing is pre-
compensated with an evolution period of fixed duration 𝜏0, whereas dephasing
occurs for a subsequent random duration 𝑡0. It is therefore impossible to perfectly
rephase the entangled state for all photon emission times.

6During the dynamical decoupling sequence 𝜋 pulses are applied simultaneously to the ground
and excited state spin transitions. In principle, the dynamical decoupling sequence could be replaced
with a single ground state 𝜋 pulse; however, with a relatively high optical 𝜋 pulse infidelity, this
sequence acts to reduce gate error in the population basis.
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The final pulse sequence we consider (depicted in Fig 8.1c), overcomes this issue
by reversing the order of the phase compensation and entanglement heralding steps.
It then uses the photon emission time (measured during the preceding heralding
period) to dynamically adjust the duration of the rephasing period.

More precisely, the sequence heralds an entangled state using the standard Ramsey
method described at the beginning of this section. The total optical heralding
window has duration 𝜏𝑅, therefore, at the end of the window the quantum state has
accumulated phase for duration 𝑡0 in the excited state and duration 𝑡𝑠 = 𝜏𝑅 − 𝑡0 in
the ground state:

|𝜓(𝑡0)⟩ =
1
√

2

[
|1𝑔0𝑔⟩ + |0𝑔1𝑔⟩ 𝑒−𝑖(Δ𝜔0+𝛿𝜔)𝑡0

]
. (8.12)

Note, for simplicity we are going to ignore any ground state (spin) dephasing when
writing the quantum states. Next, a dynamical decoupling sequence consisting of
three ground state spin 𝜋 pulses is applied and the ions are subsequently optically
excited. The ions are left in the excited state for a duration 𝑡0 before being transferred
to the ground state with a second optical 𝜋 pulse leading to:

|𝜓(𝑡0)⟩ =
1
√

2

[
|0𝑔1𝑔⟩ + |1𝑔0𝑔⟩ 𝑒−𝑖Δ𝜔0𝑡0

]
. (8.13)

Note, for this protocol to work, the experiment control electronics must process
the photon detection, ascertain the arrival time 𝑡0 and select a matching wait time
between the two optical 𝜋 pulses.7 Finally, there is also a wait period of duration
𝑡𝑠 to rephase the spin coherence. The entangled state coherence is now 𝐶 (𝑡0) =

cos(Δ𝜔0𝑡0), where Δ𝜔0 is frequency difference between the two excitation lasers
(which is also equal to the unperturbed ion frequency difference). Crucially, this is
no longer limited by the optical Ramsey coherence time.

There are two main factors limiting the coherence of the resulting entangled state:
optical decay during only the rephasing period and any pure (Markovian) dephasing
during both the heralding and rephasing periods. Including these factors, the coher-
ence is given by: 𝐶 (𝑡0) = cos(Δ𝜔0𝑡0)𝑒−𝑡0 (2𝛾𝑑+1/𝑇1) . Where 𝛾𝑑 is the pure dephasing
rate (in this case assumed equal for the two ions).

In principle, the limitation imposed by optical decay is not fundamental. If our
optical cavity were narrow enough, we could operate in a regime where the 𝐴

7While, in principle, a single spin 𝜋 pulse between the heralding and optical rephasing periods
would be sufficient for this protocol to work, the dynamical decoupling sequence provides time for
the necessary real-time processing with minimal loss of coherence.
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transition is cavity enhanced with short lifetime, whereas the 𝐸 transition is not
enhanced and has long lifetime. Heralding would occur on the 𝐴 transition and
rephasing could then be performed on the 𝐸 transition. Note that this would require
an improvement in cavity quality factor by approximately 10 times and is therefore
outside the scope of this work.

a

b

Spin pulses: Optical pulse:

3Composite pulse:

Heralding:

Rephasing:

Photon detection

3Photon detection

c

Ramsey protocol

Pre-compensated phase accumulation

Dynamic rephasing

Photon detection

Maximal coherence
when t0 = 0

Maximal coherence
when t0 = τ0

Maximal
coherence for all t0

Figure 8.1: Entanglement protocols explored in this thesis. a) A basic single-
photon Ramsey protocol. After preparation of a weak spin superposition of each
ion (probability 𝛼 in |1𝑔⟩), each ion is optically excited and entanglement is heralded
on a single photon detection. The |0𝑔0𝑔⟩ component is carved out and the |1𝑔1𝑔⟩
component is treated as an infidelity b) A dynamical decoupling protocol with a
period of duration 𝜏0 that pre-accumulates optical phase before the entanglement
heralding window. Maximal entangled state coherence is achieved when 𝑡0 = 𝜏0
but the portion of photonic emission that can be used to herald entanglement is
still limited by 𝑇∗

2 c) The dynamic rephasing protocol where rephasing occurs after
heralding of the entangled state. In this sequence the rephasing period has duration
exactly matching the photon emission time 𝑡0 for each experiment. The entangled
state coherence is maximized regardless of emission time.
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8.4 Frequency Erasure
As introduced in section 7.1, remote entanglement protocols generally require the
measurement of indistinguishable photons in order to project qubits into an entangled
state.

However, since the photons emitted by our two ions have different frequencies, this
is not the case. In all of the experimental protocols discussed in the previous section,
the entangled state phase will depend on the photon measurement time 𝑡0 and an
optical frequency difference.8 Without a method to counteract this stochastic phase,
the entangled state coherences will average to 0 over multiple experiment repetitions
and the state will appear classical.

There are several different methods proposed/implemented by the community to
overcome such limitations:

1. The photon acceptance window could be reduced to less than 1/Δ𝜔0. This is
an acceptable method for small frequency differences9.

2. Defects with a first order DC Stark sensitivity can be tuned into resonance
with each other via electric fields [266].

3. Photons at different frequencies can be spectrally overlapped using an electro-
optic-modulator (EOM) which acts like a frequency beamsplitter [260].

4. In cases where PPLN waveguides are used to convert photon frequencies into
the telecom band, inhomogeneity of optical frequencies can be compensated
during the conversion process using different pump tones for each emitter
[183, 267, 268].

5. If the photon is measured with a precision much greater than the inverse of
the optical frequency difference, (𝛿𝑡 ≪ 1/Δ𝜔0), then we can infer the Bell
state phase from the photon arrival time. This phase can be corrected on an
experiment-by-experiment basis via a differential 𝑧 rotation by angle −Δ𝑡𝜔0

(i.e., by applying a unitary gate 𝑈̂ = I ⊗ 𝑒𝑖Δ𝑡𝜔0𝜎𝑧/2). This approach was first
proposed for trapped ions [269] and has been used to prepare entangled states
of SPDC-generated photons [270].

8For the first two protocols, this is Δ𝜔, the difference between the two ions’ frequencies, for the
final protocol it is the optical drive frequency difference (Δ𝜔0).

9In our case this would cause a dramatic reduction in entanglement rate.
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In this thesis we utilize the final approach, for which our solid state system is
uniquely suited. We have an optical inhomogeneous line-width of 200 MHz, which
is considerably narrower than many solid state platforms (e.g., ∼ 1 GHz for bulk
NV centers and ∼ 15 GHz for implanted SiV centers). Hence, even in the most
extreme case where our emitters are separated by 500 MHz (see Section 10.7),
the photon detection timing resolution requirement is Δ𝑡 ≪ 2 ns which is within
the specification of commercial single photon detectors (SNSPD jitter is usually
< 100 ps). Hence, for our platform we can deterministically entangle any pair of
ions with maximal efficiency without needing to operate in narrow regions of the
inhomogeneous spectrum, or utilize inefficient EOMs for frequency shifting.

8.5 Comprehensive Modelling Framework
To model the entanglement measurements we will utilize a Schrodinger picture
master equation formalism. This will enable us to include various sources of deco-
herence and relaxation on both the optical and spin transitions through appropriately
chosen Lindbladian superoperators.

Within this formalism, the process of photon detection to herald entangled states
can be encoded via quantum jumps in a stochastic time evolution. Deriving the
appropriate form of these quantum jump operators is nontrivial, and will be the
focus of this section.

Initially, let us consider a single ion (labelled 𝑖) coupled to a cavity. The ion has
optical transition frequency 𝜔𝑖, the cavity has frequency 𝜔𝑐 and bosonic creation
operator 𝑎̂†. Additionally, the cavity is coupled to a waveguide which supports an
infinite set of 1D continuum mode operators 𝑏̂†

𝑖
(𝜔) which satisfy the commutation

relation [𝑏̂𝑖 (𝜔), 𝑏̂†𝑖 (𝜔′)] = 𝛿(𝜔 − 𝜔′) [255]. We will treat this as a closed system
with Hamiltonian:

𝐻 =
ℏ𝜔𝑖

2
𝜎̂

(𝑖)
𝑧 + ℏ𝜔𝑐 𝑎̂

†𝑎̂ +
∫

𝑑𝜔

[
ℏ𝜔𝑏̂

†
𝑖
(𝜔)𝑏̂𝑖 (𝜔)

]
+ ℏ

√︂
𝜅

2𝜋

∫
𝑑𝜔

[
𝑎̂†𝑏̂𝑖 (𝜔) + 𝑎̂𝑏̂

†
𝑖
(𝜔)

]
+ ℏ𝑔

[
𝑎̂†𝜎̂−

𝑖 + 𝑎̂𝜎̂+
𝑖

]
.

(8.14)

First, we adiabatically eliminate the cavity mode 𝑎̂, and move into a rotating frame
at 𝜔𝑖 for the atom and at 𝜔 for each of the continuum modes. This enables us to
re-write the system Hamiltonian as [271]:

𝐻 =

∫
𝑑𝜔

−ℏ𝑔
√︁
𝜅/2𝜋

𝑖𝜅
2 + (𝜔 − 𝜔𝑐)

𝜎̂−
𝑖 𝑏̂

†
𝑖
(𝜔)𝑒𝑖(𝜔−𝜔𝑖)𝑡 + H.C. (8.15)
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Next, assume the ion is resonant with the cavity (𝜔𝑖 = 𝜔𝑐) and that its emission
line-width is much less than 𝜅. We Fourier transform the continuum operators to
obtain 𝑏̂𝑖 (𝑡) = 1√

2𝜋

∫
𝑑𝜔𝑏̂𝑖 (𝜔)𝑒−𝑖(𝜔−𝜔𝑖)𝑡 that annihilate single photons in temporal

modes at time 𝑡. The resulting Hamiltonian is:

𝐻 = 𝑖ℏ

√︂
4𝑔2

𝜅
𝜎̂−
𝑖 𝑏̂

†
𝑖
(𝑡) + H.C. (8.16)

An infinitesimal time evolution for duration 𝛿𝑡 under this Hamiltonian is given by:

𝑈̂ (𝑡 + 𝛿𝑡, 𝑡) = 𝑒

√︃
4𝑔2
𝜅

[
𝜎̂−
𝑖
𝑏̂
†
𝑖
(𝑡)−𝜎̂+

𝑖
𝑏̂𝑖 (𝑡)

]
𝛿𝑡
. (8.17)

Assuming an infinitely cold bath (all continuum modes in the ground state), this can
be expanded to first order in 𝛿𝑡 to give [272]:

𝑈̂ (𝑡 + 𝛿𝑡, 𝑡) = Î +
√︂

4𝑔2

𝜅
𝜎̂−
𝑖 𝑏̂

†
𝑖
(𝑡)𝛿𝑡 − 2𝑔2

𝜅
𝜎̂+
𝑖 𝜎̂

−
𝑖 𝛿𝑡. (8.18)

Now, considering two ions each with its own cavity and respective set of 1D waveg-
uide modes. We can derive a two-ion evolution operator (expanded up to O(𝛿𝑡))
given by:

𝑈̂ (𝑡 + 𝛿𝑡, 𝑡) =Î +
√︂

4𝑔2

𝜅
𝜎̂−

1 𝑏̂
†
1(𝑡)𝛿𝑡 +

√︂
4𝑔2

𝜅
𝜎̂−

2 𝑏̂
†
2(𝑡)𝛿𝑡 +

4𝑔2

𝜅
𝜎̂−

1 𝜎̂
−
2 𝑏̂

†
1𝑏̂

†
2(𝑡)𝛿𝑡

2

− 2𝑔2

𝜅
𝜎̂+

1 𝜎̂
−
1 𝛿𝑡 −

2𝑔2

𝜅
𝜎̂+

2 𝜎̂
−
2 𝛿𝑡

(8.19)

where, for simplicity, we have assumed 𝑔 and 𝜅 are the same for both devices.

Note, in this formalism we have assumed that the entire cavity emission is concen-
trated in the waveguide mode. In reality, the cavity can have multiple loss paths:
𝜅 = 𝜅wg + 𝜅s where 𝜅wg is the energy loss rate into the waveguide and 𝜅s is the rate
of energy scatter into other modes. Furthermore, due to detection inefficiency only
a fraction (𝜂) of light in the waveguide will be detected. The total probability to
detect a photon emitted by the atom is given by 𝑝det = 𝜅wg𝜂/𝜅. All scattered and
undetected light can be treated using a Lindbladian master equation which traces
over (ignores) the radiation modes. Only the detected fraction needs to be treated
using unitary time evolution according to Equation (8.19).
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We time-evolve the density matrix according to:

𝜌(𝑡 + 𝛿𝑡) − 𝜌(𝑡)
𝛿𝑡

= − 𝑖

ℏ

[
𝐻̂, 𝜌

]
+

∑︁
𝑖

(
L̂𝑖𝜌L̂†

𝑖
− 1

2

{
L̂†

𝑖
L̂𝑖, 𝜌

})
− 2𝑔2𝑝det

𝜅

{
𝜎̂+

1 𝜎̂
−
1 , 𝜌

}
− 2𝑔2𝑝det

𝜅

{
𝜎̂+

2 𝜎̂
−
2 , 𝜌

}
+ 4𝑔2𝑝det𝛿𝑡

𝜅

[
𝜎̂−

1 𝑏̂
†
1(𝑡) + 𝜎̂−

2 𝑏̂
†
2(𝑡)

]
𝜌

[
𝑏̂1(𝑡)𝜎̂+

1 + 𝑏̂2(𝑡)𝜎̂+
2
]

(8.20)

where 𝐻̂ describes internal atomic unitary dynamics (driving, etc.). We have
simplified this equation by noting that the quantum state will eventually be projected
onto a single photon subspace.

In a quantum jump picture, we can interpret this time evolution as consisting of
anti-hermitian evolution (𝜎̂+

𝑖
𝜎̂−
𝑖

) where the atom has not emitted a photon into the
waveguide and quantum jumps (𝜎̂−

𝑖
𝑏̂
†
𝑖
(𝑡)) which populate temporal photonic modes

at time 𝑡.

We also define the following set of Lindbladian operators:

Undetected optical emission on the 𝐴 transition is described by:

L1 =

√︂
4𝑔2(1 − 𝑝det)

𝜅
+ Γ |1𝑔⟩ ⟨0𝑒 | (8.21)

where Γ is the un-enhanced optical decay rate. Optical emission on the 𝐸 transition
is described by:

L2 =

√︂
4𝑔2

𝜅
+ Γ |0𝑔⟩ ⟨1𝑒 | . (8.22)

Ground state spin relaxation is defined by these two super-operators:

L3 =

√︂
Γ𝑠

2
|0𝑔⟩ ⟨1𝑔 | ,

L4 =

√︂
Γ𝑠

2
|1𝑔⟩ ⟨0𝑔 |

(8.23)

where Γ𝑠 is the spin relaxation rate, note that we operate in the high temperature
limit where the thermalized occupation of the two qubit states is equal.

Pure dephasing on the optical transition is defined according to:

L5 =

√︂
𝛾𝑑

2
(
|0𝑒⟩ ⟨0𝑒 | + |1𝑒⟩ ⟨1𝑒 | − |0𝑔⟩ ⟨0𝑔 | − |1𝑔⟩ ⟨1𝑔 |

)
(8.24)
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where 𝛾𝑑 is the optical dephasing rate. Note that this operator is constructed to
ensure that the ground state spin levels and excited state spin levels, respectively,
experience common-mode noise cancellation due to any optical frequency variation.

Similarly, pure dephasing on the spin transition is defined according to:

L6 =

√︂
𝛾𝑠

2
(
|0𝑔⟩ ⟨0𝑔 | + |0𝑒⟩ ⟨0𝑒 | − |1𝑔⟩ ⟨1𝑔 | − |1𝑒⟩ ⟨1𝑒 |

)
(8.25)

where 𝛾𝑠 is the spin dephasing rate. These Lindblad terms are duplicated for the
two ions.

Next we consider the projective measurement of a photon on a detector at time 𝑡0.
Our detector can measure in two orthogonally polarized modes (𝑐𝐻 , 𝑐𝑉 ) with equal
efficiency. A single photon detection leads to a classical superposition of these two
measurement cases, the density matrix after a collapse at time 𝑡0 is given by:

𝜌 =
1
2

[
𝑐𝐻 (𝑡0)𝜌(𝑡0)𝑐†𝐻 (𝑡0) + 𝑐𝑉 (𝑡0)𝜌(𝑡0)𝑐†𝑉 (𝑡0)

]
. (8.26)

We can use standard quantum optics techniques to propagate the temporal detection
modes through our measurement setup to the respective cavities. Considering
the case of a time-delayed Mach-Zehnder interferometer with delay time Δ𝑡 =

(𝐿𝑉 − 𝐿𝐻)/𝑐, as shown in Figure 9.5c and discussed in Section 9.5, we can write
the two detection operators as:

𝑐𝑉 (𝑡0) = 𝑏̂2(𝑡0 −
𝐿𝑉

𝑐
)𝑒−𝑖𝜔2 (𝑡0−

𝐿𝑉
𝑐
) − 𝑏̂1(𝑡0 −

𝐿𝑉

𝑐
)𝑒−𝑖𝜔1 (𝑡0−

𝐿𝑉
𝑐
) ,

𝑐𝐻 (𝑡0) = 𝑏̂2(𝑡0 −
𝐿𝐻

𝑐
)𝑒−𝑖𝜔2 (𝑡0−

𝐿𝐻
𝑐
) + 𝑏̂1(𝑡0 −

𝐿𝐻

𝑐
)𝑒−𝑖𝜔1 (𝑡0−

𝐿𝐻
𝑐
)

(8.27)

where 𝑏̂1 and 𝑏̂2 are temporal photon mode operators in the waveguide just outside
cavity 1 and cavity 2, respectively (as defined previously). Note that we have also
transformed these operators into a frame rotating at each ion’s emission frequency
(𝜔1 and 𝜔2, respectively). 𝐿𝑉 and 𝐿𝐻 correspond to the distance travelled by
photons in the two arms of the interferometer.

Combining these measurement operators with Equation (8.20) we see that photon
detection at time 𝑡0 can be expressed as a quantum jump on the atomic state using
the following two jump operators:



107

𝑆𝑉 = 2𝑔
√︂

𝑝det𝛿𝑡

𝜅

(
𝜎̂−

1 + 𝜎̂−
2 𝑒

𝑖[𝜙+(𝜔2−𝜔1) (Δ𝑡−𝑡0)]
)
,

𝑆𝐻 = 2𝑔
√︂

𝑝det𝛿𝑡

𝜅

(
𝜎̂−

1 − 𝜎̂−
2 𝑒

𝑖[𝜙−(𝜔2−𝜔1)𝑡0]
) (8.28)

where 𝑆𝑉 collapses the atomic state at time 𝑡0 − 𝐿𝑉

𝑐
and 𝑆𝐻 collapses the atomic

state at 𝑡0 − 𝐿𝐻

𝑐
. Note that we have implicitly assumed that photons emitted from the

two ions travel the same distance prior to arriving at the interferometer, to account
for variations in optical phase associated with this path difference we add the phase
factor 𝑒𝑖𝜙.

Finally, we also consider the possibility of dark counts. Any experiments where > 1
photons are detected will be rejected and furthermore we assume that the detector
dead-time is sufficiently short relative to average photon measurement rates that
we can ignore its effect. We model a non-uniform dark count rate as 𝑅(𝑡). The
density matrix at time t, conditioned on a single photon detection within a window
𝛿𝑡 centered at time time 𝑡0 is then given by:

𝜌(𝑡 |𝑡0) = 𝑅(𝑡0)𝛿𝑡𝑒L𝑡 [𝜌(0)] + 𝑒L(𝑡−𝑡0) [𝑆𝐻𝑒L𝑡0 [𝜌(0)]𝑆†
𝐻
]+

𝑒L(𝑡−𝑡0+Δ𝑡) [𝑆𝑉𝑒L(𝑡0−Δ𝑡) [𝜌(0)]𝑆†
𝑉
] (8.29)

where L[𝜌] is the no-jump component of time evolution defined in equation (8.20)
applied to both ions, i.e.:

L[𝜌] = − 𝑖

ℏ

[
𝐻̂, 𝜌

]
+

∑︁
𝑖

(
L̂𝑖𝜌L̂†

𝑖
− 1

2

{
L̂†

𝑖
L̂𝑖, 𝜌

})
−2𝑔2𝑝det

𝜅

{
𝜎̂+

1 𝜎̂
−
1 , 𝜌

}
− 2𝑔2𝑝det

𝜅

{
𝜎̂+

2 𝜎̂
−
2 , 𝜌

}
.

(8.30)
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C h a p t e r 9

TWO ION ENTANGLEMENT EXPERIMENTAL SETUP

In this chapter we provide a detailed overview of the experimental setup used for
two device measurements. A basic schematic is presented in Figure 9.2. Two
nanophotonic devices are installed in the same He-3 cryostat. Device 1 is the same
device studied in Chapter 3. Most entanglement experiments presented in this thesis
concern Ion 1 in Device 1 and Ion 2 in Device 2, separated by ∼ 30 MHz (Figure
9.1). In section 10.7 we demonstrate entanglement of Ions 1 and 3 in the same
device, separated by ∼ 470 MHz.
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Ion 1

Ion 2

Ion 3 ~470MHz
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Figure 9.1: PL scans of ions in two devices used for Hong-Ou-Mandel and entan-
glement experiments. Ions 1 and 2 are in separate devices and are detuned by 30
MHz. Ions 1 and 3 are in the same device and detuned by 470 MHz.
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This setup enables the following functionality which will be discussed further in the
subsequent sections:

1. Laser setups for driving the ions’ optical transitions. This is for initialization,
entanglement and readout.

2. Microwave setups for driving the ions’ spin transitions. An excited state
transition is used during the initialization process, the ground state transition
drives our qubit.

3. A detection setup which combines light from the two devices and routes it to
single photon detectors for entanglement heralding and readout.

4. A phase stabilization setup which ensures that the relative optical path tra-
versed by light from each of the two devices (𝜙) does not vary.

Detection
setup

Microwave control
setup 1

0.5K

Microwave control
setup 2

Laser control
setup 2

Laser control
setup 1

1%

99%

SNSPD 1

SNSPD 2

Device 2

Device 1

1%

99%

Figure 9.2: Experimental setup for the two ion measurements. Two devices are
installed in a 0.5 K He-3 cryostat. Each device has a corresponding microwave
setup for spin driving and an optical setup for initialization/readout. Single photons
from ions inside the devices are routed to a detection setup which combines the
optical paths before sending the photons to superconducting nanowire single photon
detectors (SNSPDs). The SNSPDs are also installed in the 0.5K cryostat.
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9.1 Cryogenics and Devices
The devices used in this experiment are discussed in Section 2.4. The detection
efficiency for photons emitted in Device 1 is 0.98%, whereas photons emitted in
Device 2 are detected with 0.48% efficiency. The discrepancy in detection efficiency
is attributed to a lower free-space coupling efficiency for Device 2. All experiments
were performed in a He-3 cryostat (Bluefors LD) at 500mK. The cryogenic setup is
mostly explained in [155]; however, it was duplicated for this experiment in order
to accommodate the second device within the same cryostat. The basic elements of
the setup are as follows:

• Optical signals are fed in/out of the fridge via 1060XP fiber; once inside
the cryostat an aspheric lens doublet focuses light onto the device surface.
XYZ nanopositioners (Attocube) move the lens doublet relative to the device
surface. This enables us to locate the individual nanophotonic resonators and
optimize coupling.

• Nitrogen gas condensation is used to tune the cavity resonance to coincide
with the ions’ optical transitions. Nitrogen gas is frozen into a copper pipe
inside the cryostat. The pipe is directed towards a device chip. A heater
clamped to the pipe is used to sublimate the nitrogen which re-freezes onto
the cavity thereby red-shifting the resonance. By controlling the amount of
heating the cavity resonance can be precisely tuned. There is no discernible
cross-talk between the two setups during this process.

• Superconducting coils are used to apply magnetic fields along the crystal’s
𝑐 quantization axis. These are used to cancel earth’s magnetic field and any
residual fields present in our setup. Operating at the zero-field condition is
required to maximize spin coherence.

• Coax lines with 0dB attenuators on each plate (for thermalizing the central
conductor) are used to feed microwave signals to the still plate. The device is
wire-bonded to a PCB launch board which connects to these coax lines.

• Superconducting nanowire single photon detectors (SNSPDs) are mounted on
the same plate as the devices. An L-R shunt on the 4K plate enables automatic
un-latching of the detectors. The detectors are biased through 10kΩ resistors
with isolated voltage sources (SRS SIM 960). A bias tee (Minicircuits ZFBT-
4R2GW+) is used to separate the low frequency biasing path from the high
frequency detection path, photon signals are amplified with two low noise
amplifiers (Minicircuits ZFL-1000LN+) in series.
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9.2 Optical Control
The optical control setup is shown in Figure 9.3. All lasers are ultimately refer-
enced to a Fabry-Perot cavity (Stable Laser Systems). The main experiment laser
(Ti:Sapph, M2 Solstis titanium sapphire laser) and phase stabilization laser (ECDL
1, Moglabs Cateye external cavity diode laser) are both referenced to the cavity via
Pound-Drever-Hall (PDH) locking [273] using two different modulation frequen-
cies. The two initialization lasers (ECDL 2 and ECDL 3, Toptica DL Pro) are
referenced to the Ti:Sapph laser via an offset frequency lock.

Prior to PDH locking, the Ti:Sapph is modulated with a 10 GHz phase EOM. The
negative 1st order sideband is locked to the cavity. The laser frequency can then be
tuned within the bandwidth of the EOM by adjusting the sideband frequency. Note
that light used in the locking setup is picked-off prior to this EOM, hence these (and
the PDH) sidebands are not present in the experiment. The Ti:Sapph laser is used
to address the A transition of all three ions studied in this experiment. It is first
split into two paths (via BS1), one for each of the two devices. Each path then goes
through an acousto optic modulator (AOM) setup (A3 and A4), these each contain
two AOMs (Gooch and Housego, AOMO 3200-1113) in double-pass configuration
which are used to generate laser pulses with short rise/fall times (20ns) and high
extinction ratio (120dB). Furthermore, each setup can tune the laser frequency in a
∼ 400 MHz bandwidth. This is used to shift the central laser tone in order to address
Ion 1 in Device 1 and Ion 2 in Device 2.

The laser path going to Device 1 contains an additional 2-tone modulation setup
(A5) which is used to entangle Ion 1 and Ion 3 in the same device. Specifically, it
contains a single AOM in double-pass configuration (see Figure 9.3c) where both
the 0th and -1st order sidebands are accepted. It is aligned to balance the power in
these two sidebands. Light entering this setup is resonant with Ion 1, the setup is
driven at (𝜔1 − 𝜔3)/2. This leads to the 0th sideband addressing Ion 1 and the -1st

sideband addressing Ion 3. Crucially, because these tones are generated by a single
modulator, they are (passively) phase stable, this is crucial for the entanglement
experiments discussed in Section 10.7. When we want to drive/read-out Ion 1 in
isolation we simply do not drive setup A5. When we want to drive/read-out Ion 3 in
isolation we reduce the drive frequency of A4 such that the output light is 40MHz
closer to Ion 3, setup A5 is then driven at a lower frequency ((𝜔1−𝜔3−40)/2 MHz)
such that -1st sideband is still resonant with Ion 3; however, the 0th sideband is no
longer resonant with Ion 1. In fact, we choose the 40MHz frequency shift such that
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the 0th sideband avoids exciting any ions in the device.

While the two tones generated by A5 are passively phase stable, for entanglement
experiments involving two separate devices, we also need the two optical paths
originating from the Ti:Sapph and going to Device 1 and Device 2 to be phase-
stable relative to each other. The phase stabilization process is described in detail in
Section 9.6. It relies on a measurement of the relative optical path phase difference
using a separate laser (ECDL 1), which is also split into the two device excitation
paths at BS1. In order to control whether we generate pulses of light at the exper-
iment wavelength (984.5 nm) or at the phase stabilization wavelength (987.9 nm),
we introduce two additional single-pass AOM shutters (A1 and A2) which select
whether we send light from the Ti:Sapph or ECDL 1.

We also use two additional lasers (ECDL 2 and ECDL 3) to address the F transitions
of ions in Device 1 and Device 2, respectively. Setups A6 and A7 are used to generate
pulses and tune each laser on resonance with the required transition. Specifically,
ECDL 3 needs to address the 𝐹1 and 𝐹2 transition of Ion 2, which are separated by
8 MHz. ECDL 2 needs to address the 𝐹1 and 𝐹2 transitions of Ions 1 and 3 which
are separated by ∼ 500 MHz. In order to achieve this large spread of frequencies
we use three AOMs in double-pass configuration (depicted in Figure 9.3b) which
enables a 600 MHz tuning range. The two ECDL initialization paths are combined
with their respective Ti:Sapph laser paths via BS2 and BS3 before being sent to the
two devices.
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Figure 9.3: Laser setup for the two ion measurements. a) A Titanium Sapphire
laser (used to address the ions’ A transitions at 984.5 nm) and an external cavity
diode laser (ECDL 1, used for phase stabilization at 987.9 nm) are both locked to
a stable reference cavity using Pound-Drever-Hall (PDH) locking. These lasers are
each gated with a single AOM shutter before being combined and split into two
paths on a 50:50 beamsplitter. These paths ultimately reach device 1 and device 2,
respectively. Each path has a 2x double-pass AOM shutter setup (labelled as 2x2
AOM shutter) for frequency tuning and fast, high-extinction pulse generation, one
path has an additional 2-tone modulation setup for generating phase-locked laser
tones. Two additional lasers (ECDL 2 and ECDL 3) are offset-frequency locked to
the Ti:Sapph and modulated with AOM shutters, they are used for intialization of
device 1 and 2, respectively. The use of a 3x2 shutter after ECDL 2 enables greater
frequency tuneability. b) 3x double pass aom setup provides a high extinction ratio
and large frequency tuneability (600 MHz). c) 2-tone modulation setup generates
two phase-locked laser tones separated by 468 MHz.
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9.3 Microwave Control
See Figure 9.4 for a schematic of the setup described in this section. Microwave
tones at 3.37 GHz, used to drive the excited state spin transition, are generated
with an RF signal generator (SRS SG380), gated with a microwave switch (Minicir-
cuits ZASWA-2-50DRA+) and amplified (Minicircuits ZHL-16W-43-S+). Control
pulses at the 675 MHz ground state qubit transition frequency are generated via
heterodyne mixing: an IF tone at 275 MHz generated by the experiment control
electronics (see Section 9.4) is mixed with a local oscillator at 950 MHz (Holzworth
HS 9002A). The image is filtered out using a combination of bandpass and low
pass filters. The ground state pulses are amplified (Amplifier Research 10U1000
for Device 1 and Minicircuits ZHL-20W-13SW+ for Device 2) and combined with
the excited state pulses using a diplexer (Marki DPXN2) before being sent to the
device.

AWG

950 MHz

3.37 GHz

Diplexer
LO

RFIF

To device

Figure 9.4: Microwave setup for spin driving. Qubit pulses at 675 MHz are generated
with a heterodyne mixing scheme where a 275 MHz IF tone from an AWG is mixed
with a 950 MHz local oscillator. A bandpass filter is used for image rejection. A
second source at 3.37 GHz is used to drive an excited state spin transition during
initialization, this is gated with a microwave switch. Both signals are independently
amplified and subsequently combined on a diplexer before being sent to the device.
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9.4 Real-time Signal Processing
There are several types of real-time experiment flow control and feedforward re-
quired for these measurements. These are listed below:

1. The ion state should only be read out when a photon is successfully detected.
Without this, each entanglement attempt + associated readout would take
several milliseconds which would make the experiments prohibitively long.

2. The wait time during the optical rephasing period needs to equal the previously
measured photon emission time.

3. A relative phase shift of−𝑡0Δ𝜔0 is applied between the two devices’ microwave
driving quadratures between entanglement heralding and readout (see Section
8.4).

4. The phase of optical drive used to excite the ions needs to counteract any
phase drift between the two optical paths associated with the two devices.

In early stages of this experiment the real-time flow control (Item 1) and the feed-
forward required to correct stochastic phase (Item 3) were implemented via a field
programmable gate array (FPGA, Red Pitaya STEMlab). At the time, we were
entangling two ions in the same device separated by ≈ 470 MHz (see Section 10.7),
the 60MHz analog to digital converter (ADC) bandwidth was insufficient given
the optical frequency difference. Instead, SNSPD detection signals were sent to a
time to amplitude converter (Ortec 566) which converts the arrival time difference
between two pulses into the amplitude of a fixed duration output pulse. The 14 bit
resolution of the Red Pitaya’s ADC was then sufficient to achieve ≈ 150 ps timing
resolution. The FPGA was then used to select and play a specific waveform on an
arbitrary waveform generator (Tektronix 5204 AWG) via the pattern jump input.

Ultimately, this solution was quite cumbersome and required frequent calibration
of the analogue time to amplitude converter’s response. Hence, we switched to
using a Quantum Machines Operator X system (subsequently referred to as OPX).
This system has 10 analogue output channels with 350MHz bandwidth and 14 bit
resolution, 10 TTL output channels and 2 analogue input channels with 350 MHz
bandwidth (14 bit resolution).

The two SNSPDs used in these experiments are connected to the two analogue inputs
of the OPX. One directly, the other via the high-frequency port of a 10 MHz diplexer.
The low frequency port is connected to an avalanche photodiode (APD, see Section
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9.6). This lets us use one analogue input for both phase stabilization and photon
detection (since these operations are never performed simultaneously). Despite the
350 MHz input bandwidth, the OPX has a high resolution timetagging capability
with resolution <50 ps (this is achieved by using the vertical 14 bit resolution and
fitting the photon pulse waveforms) which is sufficient for these experiments.

The OPX requires approximately 400ns between photon detection and performing
some real-time experiment control based on the measured time. Critically, this is
shorter than our spin coherence time (we can apply dynamical decoupling during the
wait). It is also shorter than our optical transition frequency correlation timescale
which is necessary for the dynamic rephasing.

9.5 Detection and Time-delayed Interferometer
This section describes the detection setup. Its role is to combine the optical modes
from the two devices and measure incident photons in a manner which projects the
two ions onto an entangled state.

Figure 9.5a shows a schematic of the setup. Light from the two devices impinges
on a polarizing beamsplitter (PBS1). Two electronic polarization controllers (OZ
Optics EPC) are used to ensure that the incident light from Device 1 (Device 2)
transmits through (reflects from) the PBS with maximal efficiency. Light from the
two devices are now in the same spatial mode, albeit with orthogonal polarizations.

Light passes through an AOM (A8) which routes the light between a high sensitivity
avalanche photodiode (APD) or a mode combiner/SNSPD setup. The APD is used
to measure the relative optical phase as described in Section 9.6. There are three
possibilities for the mode combiner + SNSPD setup which are described next.

Case 1 is depicted in Figure 9.5b. It consists of a single SNSPD, note that the SNSPD
we use is polarization insensitive, therefore it measures light from either device with
equal efficiency. This setup is used for the single device entanglement measurements
presented in 10.7. Since photons emitted from Ions 1 and 3 in Device 1 will have the
same polarization, measuring them in this fashion will project an entangled state.
Note, however, that this setup cannot be used to prepare entangled states between the
two devices since the SNSPD measurement is equivalent to classically combining
two orthogonal measurements, i.e.:

𝜌 → ⟨𝐻, 𝑡0 | 𝜌 |𝐻, 𝑡0⟩ + ⟨𝑉, 𝑡0 | 𝜌 |𝑉, 𝑡0⟩ (9.1)

where |𝐻, 𝑡0⟩ is a photon with horizontal polarization at time 𝑡0 in the temporal
continuum basis.
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Case 2, depicted in Figure 9.5c, provides a method of entangling ions in two separate
devices using only one detector. This setup was used to obtain the results in Chapter
10 before we installed a second SNSPD in the experimental setup. The input state
to the interferometer is:

|𝜓⟩ = 1
√

2
( |0𝑔1𝑔⟩ |𝑉⟩ + |1𝑔0𝑔⟩ |𝐻⟩ 𝑒𝑖Δ𝜔0𝑡0) (9.2)

where the photons are labelled according to their polarization state. A half wave
plate is used to rotate the photon polarizations by 45 degrees such that the two output
modes of PBS 2 contain a combination of photons from each of the two devices.
After passing through PBS 2 the quantum state can be written as:

|𝜓⟩ = 1
2
( |0𝑔1𝑔⟩ + |1𝑔0𝑔⟩ 𝑒𝑖Δ𝜔0𝑡0) |𝑉⟩ + 1

2
( |0𝑔1𝑔⟩ − |1𝑔0𝑔⟩ 𝑒𝑖Δ𝜔0𝑡0) |𝐻⟩ (9.3)

where the vertically polarized photon |𝑉⟩ populates the lower arm of the Mach-
Zehnder (MZ) interferometer and the |𝐻⟩ photon populates the upper arm of the
interferometer. Photons propagating in the lower arm are coupled into optical fiber
and delayed by a time Δ𝑡 = (𝐿𝑉 − 𝐿𝐻)/𝑐 which is chosen to satisfy Δ𝑡 = 𝜋/Δ𝜔0.
After recombining on PBS 3 the quantum state is given by:

|𝜓⟩ = 1
2
( |0𝑔1𝑔⟩ + |1𝑔0𝑔⟩ 𝑒𝑖Δ𝜔0𝑡0) |𝑉⟩ + 1

2
( |0𝑔1𝑔⟩ − |1𝑔0𝑔⟩ 𝑒𝑖Δ𝜔0 (𝑡0+Δ𝑡)) |𝐻⟩

=
1
2
( |0𝑔1𝑔⟩ + |1𝑔0𝑔⟩ 𝑒𝑖Δ𝜔0𝑡0) ( |𝐻⟩ + |𝑉⟩)

(9.4)

where |𝐻⟩ and |𝑉⟩ are now the same spatial mode but orthogonally polarized. The
photons are now coupled to the same SNSPD and detected. Note that according to
the transformation in Equation (9.1) the resulting state will now be:

|𝜓⟩ = 1
√

2
( |0𝑔1𝑔⟩ + |1𝑔0𝑔⟩ 𝑒𝑖Δ𝜔0𝑡0) (9.5)

as required.

The final detection setup considered (case 3, Figure 9.5d) uses two SNSPDs. A half
waveplate rotates the photon polarizations by 45 degrees (as before), this time the
output ports of PBS 2 are coupled to the two detectors. This setup was used for the
Hong-Ou-Mandel measurements discussed in Chapter 7. While the experimental
results presented in this thesis were obtained using the MZ interferometer, we are
currently running entanglement experiments in this configuration. In this case one
detector heralds the |𝜓+⟩ type entangled state: 1/

√
2( |0𝑔1𝑔⟩ + |1𝑔0𝑔⟩ 𝑒𝑖Δ𝜔0𝑡0), the

other detector heralds the |𝜓−⟩ type entangled state: 1/
√

2( |0𝑔1𝑔⟩ − |1𝑔0𝑔⟩ 𝑒𝑖Δ𝜔0𝑡0).
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Since the two detectors send electrical signals to different OPX inputs, the differ-
ent entangled state phases can be identified and compensated in the subsequent
microwave control (via a conditional 𝜋 differential 𝑧 rotation).

Case 1: 1x SNSPD

Case 2: MZ Interferometer

Case 3: 2x SNSPDs

Device 1

Device 2

PBS 1
Mode combiner

+
SNSPD setupH

V

APDA8 POL
a

b

c

d

PBS 2

λ/2

λ/2

PBS 2 PBS 3

delay line

pol. control

pol. control

H

V

LH

LV

Figure 9.5: Detection setup detail. a) Light from two separate devices is combined on
a polarizing beamsplitter (PBS). The polarization in each path is optimized to ensure
maximum transmission/reflection into the same spatial mode, albeit with orthogonal
polarization states. The light passes through an acousto-optic modulator which
routes the 0th order to a polarizer (POL) and avalanche photodiode (APD), used
for heterodyne phase measurements; the 1st order is routed to one of three different
measurement setups depicted in the subsequent subfigures. b) For entanglement
measurements with two ions in the same device, a single SNSPD is sufficient. c)
For entangling two ions in two separate devices a single detector can still be used,
but requires a time-delayed Mach-Zehnder interferometer prior to the detector. d)
For the Hong-Ou-Mandel indistinguishability measurements, two separate detectors
are required. The half wave plate is used to balance the likelihood of photons from
each device reaching either of the two detectors.



119

9.6 Optical Phase Stabilization
The single photon entanglement heralding protocol prepares a Bell state with phase
that depends on the relative optical paths between the excitation laser and detector
for each of the two devices (𝜙), see [263] and Equation (8.5). To ensure preparation
of a deterministic Bell state, this phase must be actively stabilized.

A simplified version of the experimental setup relevant to this section is presented in
Figure 9.6a. The experiment laser (𝜆1) is gated by a single acousto-optic modulator
shutter (A1) and split by a beamsplitter (BS1) into two paths. Each path travels
through a high-extinction AOM shutter setup (A3 and A4, respectively), which
additionally impart a relative optical frequency shift (Δ𝜈) and phase (ΔΦ), these
can be controlled via the frequency and phase of the microwave tones driving
the acousto-optic modulators. A polarizing beamsplitter (PBS1) recombines the
two paths and a final AOM shutter (A8) routes the light towards a single photon
detector (SNSPD) or avalanche photodiode (APD). The optical devices have not
been included in this diagram for simplicity.

To ensure a fixed Bell State phase, the relative optical phase 𝜙 = 2𝜋 × (𝐿2 − 𝐿1)/𝜆1

must be static (where 𝐿1 and 𝐿2 are the optical path lengths travelled by laser pulses
and photons associated with device 1 and device 2, respectively). This is achieved
by, first, measuring the relative optical phase, then during the subsequent optical
excitation of the two ions, the relative driving phase of A3 and A4 (ΔΦ) is adjusted
to compensate.

The optical phase is measured using a secondary laser (𝜆2) which is detuned from
the optical cavity resonance by 3.4 nm, this minimizes device heating during the
phase measurement and obviates the need for additional qubit initialization between
phase measurement and entanglement heralding. Not only does this reduce the time
per entanglement attempt (thereby increasing the entanglement rate), but it also
ensures minimal wait time between the phase measurement and subsequent optical
excitation, thereby minimizing the impact of optical phase drift.

The phase is measured using heterodyne beat-note detection. A 10 𝜇s long pulse of
light at wavelength 𝜆2 is generated by A2. A3 and A4 are used to impart a 5 MHz
relative frequency shift between light travelling in the two paths. A8 routes light to
the APD which is connected to an analog input of the OPX. The OPX measures this
beatnote and demodulates it with a 5 MHz carrier tone to extract an instantaneous
optical phase (𝜙). This measurement is performed with 1.7 nW of light incident on
the APD, a Fourier spectrum of the beatnote yields a signal to noise ratio of 18.
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Since the two path lengths associated with the two devices are quite imbalanced
(𝐿2 − 𝐿1 ≈ 3 m), even if the optical phase at the locking wavelength (𝜆2) is
stabilized, any variation in optical frequency difference between the locking and
measurement lasers will cause a variation in the optical phase at the measurement
wavelength. Specifically, this residual phase variation is given by:

𝜙𝜆2 − 𝜙𝜆1 =

(
2𝜋
𝜆2

− 2𝜋
𝜆1

)
(𝐿2 − 𝐿1) (9.6)

To ensure that the phase stability at the locking wavelength is transferred to the
measurement wavelength, both lasers are independently referenced and stabilized
to a fabry-perot cavity via pound-drever-hall (PDH) locking [273].

To verify the optical phase stability at the experiment wavelength (𝜆1), we perform
a secondary heterodyne beatnote measurement (probe). However, this time, we use
A1 to generate a pulse at 𝜆1 and we use A3 and A4 to impart a 26 MHz frequency
shift which matches the frequency difference of the optical transitions of the two
ions in our experiment.1 We apply this measurement pulse with a time delay of
30 𝜇s relative to the phase stabilization pulse, this approximately matches the time
delay between stabilization and entanglement heralding in the main experiment.
The whole experiment is repeated every 68.5 𝜇s. We use the APD to measure the
instantaneous optical phase at the measurement wavelength. See Figure 9.6a (inset)
for the pulse sequence. This experiment is repeated multiple times, and the Fourier
transform of the resulting time-dependent optical phase provides the phase noise
frequency spectrum.

We now consider three distinct cases. In the first panel of figure 9.6b we see the
noise spectrum when the phase correction is turned off (i.e., no phase stabilization).
In the second panel, optical phase correction during the 𝑖th probe (ΔΦ𝑖) is chosen
to counteract the phase measured during the previous stabilization pulse (𝜙𝑖), i.e.,
ΔΦ𝑖 = −𝜙𝑖. In the final case (bottom panel), we also consider a linear extrapolation
of the phase trajectory, we calculate the phase difference between consecutive stabi-
lization pulses, and apply this as an additional correction: ΔΦ𝑖 = −𝜙𝑖−𝛼(𝜙𝑖−𝜙(𝑖−1)),
note the scaling factor 𝛼 < 1 accounts for the time-separation between stabilization
and probe pulses being less than the separation between consecutive probe pulses.
Note the reduction in integrated phase noise between each of these three cases.

1Note that over long periods of time (weeks) the ion frequency difference changes, the optical
frequency here matched the ion frequency difference at time of measurement.
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To quantify the phase stability at the measurement wavelength, Figure 9.6c shows a
histogram of optical phases accumulated over 20 minutes of integration time, using
the linearly extrapolated correction. The resulting standard deviation (𝜎 = 0.037 ×
2𝜋 rad) corresponds to a limitation in the entangled state fidelity of F < 0.987.

Finally, we also verify the phase stability when measuring with the SNSPD. We
attenuate the probe pulses to the single-photon level and use A8 to route them to the
SNSPD. We integrate the beatnote over 1 minute and histogram the resulting single
photon arrival times in Figure 9.6d, the resulting contrast is 0.944, thereby verifying
that timing jitter in the SNSPD measurement is not a significant limitation in these
experiments.
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Figure 9.6: Optical phase stabilization for two-ion entanglement. a) Phase stabi-
lization setup. Light from the stabilization laser passes through two arms of the
interferometer. Each arm involves an AOM setup that shifts the light frequency by
a different amount. After subsequent recombination, an APD measures the beat-
note and extracts a relative phase. During a subsequent ion excitation pulse with
the experiment laser, the AOM phase is adjusted to compensate for the previously
measured phase, thereby counteracting any phase drift. b) Fourier spectra of the
optical phase noise without phase correction, with a 0th order correction and with a
linearly extrapolated correction. c) Histogram of optical phases measured with the
experiment laser over 20 minutes. The RMS phase fluctuation is 0.037 × 2𝜋 rad
d) Experiment laser beatnote with a frequency matching the ion optical frequency
difference, integrated over 1 minute and detected with the SNSPD.
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C h a p t e r 10

TWO ION ENTANGLEMENT EXPERIMENTAL RESULTS

10.1 Detailed Experimental Protocol
In this section we provide a detailed description of the protocol used to implement
the dynamic rephasing entanglement experiments described in Section 8.3. An
overview of the sequence is presented in Figure 10.1, it is split into 4 segments:

1. |aux⟩ initialization prepares the ion into the qubit manifold.

2. The entanglement sequence initializes the qubit measures the optical phase,
𝜙, and performs a single entanglement attempt.

3. Dynamic rephasing is performed only if a photon is detected.

4. Readout is also only performed if an entanglement attempt is successful.

If 50 consecutive entanglement attempts fail, the |aux⟩ initialization step is repeated.
The total time spent per entanglement attempt is 81 𝜇s.

Note, throughout this section reference should be made to the energy level diagram
and transition labels in Figure 2.2.

Entanglement 
sequence: 

n

Readout

> 50 
attempts?

n

y

yPhoton
detection?

Dynamic 
rephasing

t0

initialization

1.2 ms 3.9 ms57 µs 26 µs

Figure 10.1: Experiment sequence. Dynamic rephasing and readout are only per-
formed when the entanglement is successfully heralded. If there are 50 failed
entanglement heralding attempts, the ion is initialized back into the qubit manifold.
The duration for each step has been noted.
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|aux⟩ Initialization
Figure 10.2 depicts this part of the sequence. 2.5 𝜇s long pulses are alternately
applied to the 𝐹1 and 𝐹2 transitions of each ion. These are repeated 200 times.
Subsequently we wait for 240 𝜇s to allow any long-lived photo-luminescence to
decay (associated with other ions overlapping with the 𝐹 transitions). Ultimately,
all population is transferred from the |aux⟩ state into the qubit manifold.

F₁
200

240 µs
F₂

F₁
F₂

Ion 1

Ion 2

2.5 µs

2.5 µs

2.5 µs

2.5 µs

Figure 10.2: |aux⟩ initialization. Optical pulses applied to the 𝐹 transitions of both
ions initialize them into the qubit manifold.

Entanglement Sequence
This part of the sequence is depicted in Figure 10.3. The sequence starts by
initializing the qubit into the |0𝑔⟩ state1. This is achieved by applying consecutive
𝜋 pulses to the optical 𝐴 transition and excited state microwave 𝑓 transition. Any
population in |1𝑔⟩ is transferred to |1𝑒⟩ from where it decays to |0𝑔⟩. this process is
repeated 12 times simultaneously to both ions to maximize the initialization fidelity.

Subsequently, the optical phase between the two device paths (𝜙) is measured using
the heterodyne beatnote method that was described in Section 9.6, all subsequent
optical pulses applied to Ion 1 have been phase-shifted to compensate for this drift
(ΔΦ 𝑧 rotation applied to Ion 1 𝐴 transition drive). Next, a weak superposition of
|0𝑔⟩ and |1𝑔⟩ states is prepared by applying a 0.18𝜋 pulse to the qubit transition,
𝑔 (to both ions). Note that the rotation angle is selected to balance the infidelity
associated with |1𝑔1𝑔⟩ at large angles and the infidelity associated with dark counts
that dominates at small angles, see Section 10.6 for more detail. Subsequently, both
ions are optically excited and entanglement is heralded if a single photon is detected
in a window of duration 𝜏𝑅 = 3 𝜇s. Finally, two spin 𝜋 pulses are applied, separated

1Note that this is required after every failed entanglement attempt, this is because undetected
photon emissions scramble the ground state qubit phase, hence, after a failed attempt, unitary
operations cannot be used to return the qubit to |0𝑔⟩.
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by 5.8 𝜇s. This dynamical decoupling sequence provides sufficient time for the
OPX to determine whether entanglement was successfully heralded2.

A
12

gIon 1
f

A
gIon 2
f

Heterodyne phase 
measurement

Single photon
detection

10 µs

τR

Xπ

Xπ

X0.18π

Xπ

X0.18π

Xπ

Xπ Yπ

Xπ Yπ

5.8 µs

Xπ

Xπ

ZΔΦ

Figure 10.3: Entanglement sequence. The qubits are initialized and the relative
optical phase is measured and corrected. Subsequently, a weak superposition of
|0𝑔⟩ and |1𝑔⟩ is prepared and the qubits are optically excited. Photon detections
within a window of duration 𝜏𝑅 are used to herald entanglement. A spin dynamical
decoupling sequence provides sufficient time for the OPX to determine whether to
proceed to the dynamic rephasing step.

Dynamic Rephasing
Conditioned on a photon detection during the heralding window, the sequence
proceeds to the dynamic rephasing step depicted in Figure 10.4. One more dynamical
decoupling period is applied, then the spin is rephased for a duration 𝜏𝑅 − 𝑡0 (where
𝑡0 is the photon detection time), this duration corresponds to the time spent in the
ground state manifold during the preceding entanglement heralding window. Next,
the optical coherence is rephased by optically exciting the ions, waiting for 𝑡0 and
then applying a second optical 𝜋 pulse to return the ion to the ground state3. Then,
the phase of Ion 1’s qubit drive is shifted by Δ𝜔0𝑡0 as described in Section 8.4.
Finally, three more dynamical decoupling periods are applied, where 𝜋 pulses are
simultaneously applied to the ground and excited states.

The role of this dynamical decoupling sequence is to mitigate error introduced by
imperfect optical 𝜋 pulses during the preceding optical rephasing step. Specifically,

2Note that using an even number of 𝜋 pulses ensures that, if unsuccessful, the subsequent qubit
initialization step will start with most population already in the |0𝑔⟩ state.

3Note that the two optical pulses are applied about the +𝑋 and −𝑋 axes, the flipped Rabi vector
acts to cancel any pulse area errors.
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any population left in |0𝑒⟩ will decay to |1𝑔⟩ if we wait for a duration longer than the
optical lifetime. While this will not improve the entangled state coherence4, it will
improve the fidelity of the 𝑧 basis measurement. Note, however, that we cannot wait
sufficiently long (∼ 10 𝜇s) without the spin decohering, qubit dynamical decoupling
fixes this. Applying excited state 𝜋 pulses ensures that the residual excited state
population will decay to the correct state even when a ground state 𝜋 pulse has
exchanged the |0𝑔⟩ and |1𝑔⟩ populations5.

A
3

gIon 1

f

Xπ
ZΔω0t0

-Xπ
Xπ

5.8 µs

Xπ

Xπ

A
gIon 2

f

Xπ -Xπ
XπXπ

Xπ

2.9 µs 2.9 µs

t0τR-t0

Figure 10.4: Dynamic rephasing sequence. The spin is rephased for a duration of
𝜏𝑅 − 𝑡0 where 𝜏𝑅 is the heralding window size and 𝑡0 is the photon detection time.
The optical coherence is rephased for a duration 𝑡0. A 𝑧 rotation applied to Ion 1’s
ground state drive corrects the stochastic photon-emission induced phase.

Readout
Finally, the two qubits are read out using the sequence depicted in Figure 10.5. 100
optical 𝜋 pulses are applied to Ion 2, each followed by a 6 𝜇s photon detection
window. the process is repeated for Ion 1 with a 10 𝜇s detection window. Ground
state 𝜋 pulses applied to both ions exchange the |0𝑔⟩ and |1𝑔⟩ populations and then
the readout pulses are repeated.

Table 10.1 summarizes the photon counts required for the four different population
assignments. All other cases are discarded. The two-qubit readout efficiency is ap-
proximately 18%. Note that we use the convention |Ion 2, Ion 1⟩ when representing
population assignments throughout this chapter.

4The emission would cause a stochastic phase on the entangled state.
5This is because |0𝑒⟩ only decays to |1𝑔⟩ and |1𝑒⟩ only decays to |0𝑔⟩.
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Assignment Read Period 1 Read Period 2 Read Period 3 Read Period 4
|0𝑔0𝑔⟩ 0 0 ≥ 1 ≥ 1
|0𝑔1𝑔⟩ 0 ≥ 1 ≥ 1 0
|1𝑔0𝑔⟩ ≥ 1 0 0 ≥ 1
|1𝑔1𝑔⟩ ≥ 1 ≥ 1 0 0

Table 10.1: Population assignments based on different photon detection possibilities
(how many photons were detected in each read period). Read periods are depicted
in Figure 10.5.
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Read 1 Read 2 Read 3 Read 4

Figure 10.5: Readout pulse sequence. Each Ion is optically excited 100 times,
photons are counted after each excitation period. The |0𝑔⟩ and |1𝑔⟩ populations are
then exchanged and the readout process is repeated.

10.2 Dynamical Decoupling and Photonic Coherence
This section presents experimental results for the three entanglement protocols
discussed in Section 8.3.

Figure 10.6a shows the entangled state coherence as a function of photon mea-
surement time for the Ramsey entanglement protocol. The plotted result has been
corrected for readout infidelity according to the procedure described in Section 3.3,
but applied to the two qubit measurement. The measurement is fitted to a decaying
oscillation with a Gaussian envelope with form:

𝐶 (𝑡0) = 𝐴 cos(Δ𝜔𝑡0 + 𝜙)𝑒−𝑡20/𝜏2
, (10.1)

The oscillation frequency of Δ𝜔 = 30.8 ± 0.2 MHz matches the two ions’ optical
frequency difference and the Gaussian decay timescale of 𝜏 = 160 ± 40 ns matches
well with the predicted value of 180 ± 9 ns for two ions experiencing uncorrelated
optical spectral diffusion. The oscillation contrast is 𝐴 = 0.35 ± 0.03, which limits
the entangled state fidelity to F < 0.83. A detailed discussion of limitations to this
coherence is given in section 10.6.
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The second protocol we consider involves pre-compensated phase accumulation for
a duration 𝜏0 prior to entanglement heralding. Figure 10.6b shows the resulting
entangled state coherence for three different values of 𝜏0 = 150, 450, 750 ns. The
fraction of optical emission which yields a coherent entangled state is still limited by
the optical frequency stability (i.e., the optical Ramsey coherene time); however, the
photon emission time corresponding to maximal coherence can now be controlled
and matches 𝜏0. This enables us to herald with a window size that is twice as large
compared to Figure 10.6a, and also avoid regions of the photon emission which
overlap with laser reflections.

The final protocol involves rephasing the optical coherence for a duration 𝑡0 after
heralding an entangled state. Experimental results are shown in Figure 10.6c. The
fraction of photonic emission which heralds a coherent entangled state is consider-
ably increased. The experimental results are fitted to:

𝐶 (𝑡0) = 𝐴 cos(Δ𝜔0𝑡0 + 𝜙)𝑒−𝑡0/𝜏 (10.2)

where Δ𝜔0 is now fixed to the laser frequency difference, 𝐴 = 0.62 ± 0.02 and
𝜏 = 1070 ± 50 ns are extracted from the fit. For two ions with optical lifetimes
𝑇
(1)
1 and 𝑇

(2)
1 and pure optical dephasing rates of 𝛾

(1)
𝑑

and 𝛾
(2)
𝑑

we would expect
the exponential decay timescale to satisfy 1/𝜏 = 𝛾

(1)
𝑑

+ 𝛾
(2)
𝑑

+ 1/(2𝑇 (1)
1 ) + 1/(2𝑇 (2)

1 )
which is estimated to be 970 ± 30 ns (parameter values can be found in table 10.2).
This simple model matches reasonably well with the experimental result; for a
more comprehensive analysis see section 10.6 where the experimental results are
compared to an ab-initio model.

Crucially, we can see that the coherence decay of the entangled state is now limited by
the ions’ optical lifetimes, even though the transitions are not Fourier limited. To our
knowledge, this has not been demonstrated in any other entanglement experiments.
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Figure 10.6: Photon detection time resolved coherence of different entanglement
protocols. Detailed pulse sequences for all protocols can be found in Figure 8.1.
a) Basic Ramsey protocol, note one-sided decay with 𝑇∗

2 -dependent timescale. b)
Precompensated rephasing protocol with three different phase compensation time
periods: 𝜏0 = 150, 450, 750 ns. Note the corresponding shift in rephasing time.
Coherence decay is now two-sided but still limited by 𝑇∗

2 . c) Dynamic rephasing
protocol: the coherence decay now depends on the ion lifetime.
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10.3 Feedforward for Frequency Erasure
In order to ensure deterministic preparation of a specific Bell state, we need to correct
the stochastic phase associated with the random photon emission time (𝑡0) in each
experiment (see Section 8.4 and [269]). This phase is given byΔ𝜔0𝑡0 for the dynamic
rephasing protocol where Δ𝜔0 is the laser drive frequency difference. Without this
correction, if averaged over multiple experiment repetitions, the density matrix will
be identity in the single excitation subspace 𝜌 = 1/2( |0𝑔1𝑔⟩ ⟨0𝑔1𝑔 | + |1𝑔0𝑔⟩ ⟨1𝑔0𝑔 |),
this is a classically correlated state, not a quantum entangled state. This is depicted in
the upper panel of Figure 10.7 where we see the coherence oscillating at 30.3 MHz,
if one ignored the photon arrival time the resulting average coherence would be 0.
Correcting this stochastic phase for ions in two separate devices is quite a simple
task. One simply needs to change the phase of the X and Y spin driving quadratures
for one of the two devices. This performs a differential z-rotation thereby applying a
phase shift to the resulting Bell state measurements. The z-rotation angle is chosen
to precisely counteract the stochastic phase, i.e., −Δ𝜔0𝑡0. When we repeat the
experiment with this phase correction (Figure 10.7, lower panel), we see that the
fast oscillation has indeed been counteracted and the coherence will average to a
non-zero value. The gradual decay in coherence is due to the combination of optical
dephasing and 𝑇1 decay that was discussed previously.
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Figure 10.7: Upper panel shows the coherence of the entangled state vs photon
arrival time. Note that the Bell State oscillates between |𝜓+⟩ and |𝜓−⟩ at the static
optical drive frequency difference. In the lower panel, the photon measurement time
is fed-forward and used apply a differential z-rotation before readout. The entangled
state is now deterministically |𝜓+⟩.



131

10.4 Quantum State Tomography
The goal of this section is to measure the density matrix for our two-qubit entangled
state, thereby enabling us to verify entanglement and extract useful parameters such
as the fidelity of the entangled state. Most generally, an N-qubit state is described
by a Hermitian, positive semi-definite density matrix with unit trace. This leads to
4𝑁 − 1 real degrees of freedom required to fully describe the quantum system.

The most straightforward approach toward measuring the density matrix is to per-
form a linear tomographic reconstruction. This relies on the expansion of an N-qubit
density matrix in the Pauli basis:

𝜌 =
1

2𝑁
∑︁

𝑖, 𝑗 ,𝑘,...∈{I,𝑥,𝑦,𝑧}
𝑟𝑖, 𝑗 ,𝑘,...𝜎̂𝑖 ⊗ 𝜎̂𝑗 ⊗ 𝜎̂𝑘 ⊗ ... (10.3)

where 𝜎̂𝑖, 𝑖 ∈ {I, 𝑥, 𝑦, 𝑧} are the identity and x,y,z Pauli operators. 𝑟𝑖, 𝑗 ,𝑘,... are real
numbers with 𝑟0,0,0... = 1. The values of 𝑟𝑖, 𝑗 ,𝑘 ... can be obtained by performing
corresponding N-qubit Pauli measurements, i.e., 𝑟𝑖, 𝑗 ,𝑘 ... = ⟨𝜎̂𝑖 ⊗ 𝜎̂𝑗 ⊗ 𝜎𝑘 ...⟩. The
issue with this measurement method is that experimental noise/error will lead to
unphysical density matrices that are not positive semi-definite [274].

To resolve this issue, we adopt an alternative approach for estimating the density
matrix of our system: maximum likelihood tomography [275]. To do this, we
first create a parameterization {𝑡𝑖} for physical density matrices. Then we define a
likelihood function L which encodes the likelihood of a specific set of observations,
given an assumed model (i.e., density matrix that depends on {𝑡𝑖}). We then
use standard optimization techniques to find the set of {𝑡𝑖} which maximize the
likelihood function given our experimental observations.

More specifically, we read out our entangled state in 9 two-qubit Pauli bases: {𝜎𝑖 ⊗
𝜎𝑗 } where 𝑖, 𝑗 ∈ {𝑥, 𝑦, 𝑧}. Each measurement basis yields four photon count
numbers 𝑁

(𝑖 𝑗)
00 , 𝑁

(𝑖 𝑗)
01 , 𝑁

(𝑖 𝑗)
10 , 𝑁

(𝑖 𝑗)
11 where 00, 01, 10, 11 correspond to readout of

the four 2-qubit measurement basis eigenstates (0 indicates |0𝑔⟩, 1 indicates |1𝑔⟩).
Figure 10.8a shows the resulting populations for the 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧 measurement
bases, the other 6 bases (𝑥𝑦, 𝑦𝑥, 𝑧𝑦, 𝑦𝑧, 𝑧𝑥, 𝑥𝑧) are not shown but are included in
the maximum likelihood reconstruction that follows.

We assume that the results of each measurement basis are multinomially distributed,
i.e., have a likelihood function given by [248]:

L (𝑖 𝑗) =
𝑁 (𝑖 𝑗)!

𝑁
(𝑖 𝑗)
00 !𝑁 (𝑖 𝑗)

01 !𝑁 (𝑖 𝑗)
10 !𝑁 (𝑖 𝑗)

11 !

[
𝑛
(𝑖 𝑗)
00

]𝑁 (𝑖 𝑗 )
00

[
𝑛
(𝑖 𝑗)
01

]𝑁 (𝑖 𝑗 )
01

[
𝑛
(𝑖 𝑗)
10

]𝑁 (𝑖 𝑗 )
10

[
𝑛
(𝑖 𝑗)
11

]𝑁 (𝑖 𝑗 )
11

(10.4)
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where 𝑁 (𝑖 𝑗) =
∑

𝑎∈{00,01,10,11} 𝑁
(𝑖 𝑗)
𝑎 , and {𝑛(𝑖 𝑗)𝑎 } are the predicted populations of

each measurement basis eigenstate according to the model density matrix 𝜌. For
example, if we were to measure the 00 eigenstate in the 𝑥𝑥 basis, the value of
𝑛
(𝑥𝑥)
00 = Tr{|00⟩ ⟨00|𝑈†

𝑥𝑥𝜌𝑈𝑥𝑥} where 𝑈𝑥𝑥 rotates both qubits into the 𝑥 basis.

In order to account for readout infidelity, we need to define predicted population
measurements {𝑝 (𝑖 𝑗)𝑎 } which are going to be some linear transformation of the
ideal populations {𝑛(𝑖 𝑗)𝑎 } with 𝑎 ∈ {00, 01, 10, 11}. This is encoded with a readout
transformation matrix: ©­­­­­«

𝑝
(𝑖 𝑗)
11

𝑝
(𝑖 𝑗)
10

𝑝
(𝑖 𝑗)
01

𝑝
(𝑖 𝑗)
00

ª®®®®®¬
= 𝑅

©­­­­­«
𝑛
(𝑖 𝑗)
11

𝑛
(𝑖 𝑗)
10

𝑛
(𝑖 𝑗)
01

𝑛
(𝑖 𝑗)
00

ª®®®®®¬
(10.5)

where 𝑅𝑙,𝑚 is the probability of measuring state 𝑙, given that the two qubits were
perfectly prepared in state 𝑚, and 𝑙, 𝑚 ∈ {00, 01, 10, 11}.

𝑅 can be derived from the single qubit readout fidelities 𝐹 (𝑖)
|0⟩ (𝐹 (𝑖)

|1⟩ ), these are given
in Table 10.2 and correspond to the probability of measuring Ion 𝑖 in |0𝑔⟩ (|1𝑔⟩)
when it is perfectly prepared in |0𝑔⟩ (|1𝑔⟩). The expression for 𝑅 is then:

𝑅 =

©­­­­­­­«

𝐹
(2)
|1⟩ 𝐹

(1)
|1⟩ 𝐹

(2)
|1⟩

(
1 − 𝐹

(1)
|0⟩

) (
1 − 𝐹

(2)
|0⟩

)
𝐹
(1)
|1⟩

(
1 − 𝐹

(2)
|0⟩

) (
1 − 𝐹

(1)
|0⟩

)
𝐹
(2)
|1⟩

(
1 − 𝐹

(1)
|1⟩

)
𝐹
(2)
|1⟩ 𝐹

(1)
|0⟩

(
1 − 𝐹

(2)
|0⟩

) (
1 − 𝐹
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) (
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|0⟩(

1 − 𝐹
(2)
|1⟩

)
𝐹
(1)
|1⟩

(
1 − 𝐹

(2)
|1⟩

) (
1 − 𝐹

(1)
|0⟩
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With this readout correction, the predicted 00 measured population in the 𝑥𝑥 basis
becomes:

𝑝
(𝑥𝑥)
00 =𝑇𝑟{|00⟩ ⟨00|𝑈†

𝑥𝑥𝜌𝑈𝑥𝑥}𝑅00,00 + 𝑇𝑟{|01⟩ ⟨01|𝑈†
𝑥𝑥𝜌𝑈𝑥𝑥}𝑅00,01+

𝑇𝑟{|10⟩ ⟨10|𝑈†
𝑥𝑥𝜌𝑈𝑥𝑥}𝑅00,10 + 𝑇𝑟{|11⟩ ⟨11|𝑈†

𝑥𝑥𝜌𝑈𝑥𝑥}𝑅00,11
(10.6)

similar expressions are used for the other populations and other readout bases, but
are not listed here for brevity. We use a redefined likelihood function:

L (𝑖 𝑗) =
𝑁 (𝑖 𝑗)!

𝑁
(𝑖 𝑗)
00 !𝑁 (𝑖 𝑗)

01 !𝑁 (𝑖 𝑗)
10 !𝑁 (𝑖 𝑗)

11 !

[
𝑝
(𝑖 𝑗)
00

]𝑁 (𝑖 𝑗 )
00

[
𝑝
(𝑖 𝑗)
01

]𝑁 (𝑖 𝑗 )
01

[
𝑝
(𝑖 𝑗)
10

]𝑁 (𝑖 𝑗 )
10

[
𝑝
(𝑖 𝑗)
11

]𝑁 (𝑖 𝑗 )
11

.

(10.7)
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We assume that 𝑁 is sufficiently large that we can approximate this as a normal
distribution:

L (𝑖 𝑗) ∝
∏

𝑎∈{00,01,10,11}
𝑒

[
𝑛̃
(𝑖 𝑗 )
𝑎 −𝑝

(𝑖 𝑗 )
𝑎

]2
2𝑛̃(𝑖 𝑗 )𝑎

(
1−𝑛̃(𝑖 𝑗 )𝑎

)
𝑁 (𝑖 𝑗 )

(10.8)

where 𝑛̃
(𝑖 𝑗)
𝑎 are normalized measured populations, i.e., 𝑛̃(𝑖 𝑗)𝑎 = 𝑁

(𝑖 𝑗)
𝑎 /𝑁 (𝑖 𝑗) .

The likelihood function for all 9 measurement bases is simply the product of these
individual basis likelihood functions:

L =
∏

𝑖∈{𝑥,𝑦,𝑧}

∏
𝑗∈{𝑥,𝑦,𝑧}

L (𝑖 𝑗) . (10.9)

Finally, we take the log-likelihood, leading to:

L = −
∑︁

𝑖∈{𝑥,𝑦,𝑧}

∑︁
𝑗∈{𝑥,𝑦,𝑧}

∑︁
𝑎∈{00,01,10,11}


[
𝑛̃
(𝑖 𝑗)
𝑎 − 𝑝

(𝑖 𝑗)
𝑎

]2

2𝑛̃(𝑖 𝑗)𝑎

(
1 − 𝑛̃

(𝑖 𝑗)
𝑎

)
𝑁 (𝑖 𝑗)

 . (10.10)

In order to extract a density matrix for this system we use the convex optimization
package CVX in Matlab [276] to maximize the log-likelihood. The result of this
optimization is presented in Figure 10.8b. The resulting density matrix fidelity is
extracted by computing 𝑇𝑟{𝜌 |𝜓+⟩ ⟨𝜓+ |} and yields F = 0.723 ± 0.007. This result
is obtained with a 500 ns acceptance window size leading to an entanglement rate of
3.1 Hz. The dependence of fidelity and rate on window size is depicted in Figures
10.8c and d.

The error estimate in this fidelity is extracted using a bootstrapping protocol, whereby
we use our predicted density matrix to generate 1000 simulated sets of experimental
results. Each set involves the 9 measurement bases and the 4 populations associated
with each measurement basis are randomly sampled according to the multinomial
distribution. For each of these simulated experiments we perform the maximum
likelihood analysis to compute a new density matrix and associated fidelity. The
error estimate is the standard deviation of these 1000 simulated fidelities.
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Figure 10.8: Maximum likelihood quantum state tomography of the two-ion entan-
gled state. a) Population histogram results for the two-qubit XX, YY and ZZ basis
measurements. b) Combining the results in (a) with population measurements in
XY, YX, ZY, YZ, ZX and XZ bases we perform maximum likelihood quantum state
tomography to extract this density matrix. The photon acceptance window was set
to 500 ns leading to an entanglement rate of 3.1 Hz and fidelity of 0.723± 0.007. c)
Fidelity vs photon acceptance window size, ranging from 0.758 to 0.588 for window
sizes from 100 ns to 2900 ns. d) Entanglement rate vs photon acceptance window
size ranging from 0.73 Hz to 9.4 Hz for window sizes from 100 ns to 2900 ns.
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10.5 Entangled State Storage Time
Next, we verify the coherence time of the resulting entangled state. To do this,
we insert an XY-8 dynamical decoupling sequence [212, 213] after entanglement
heralding and before the state measurement.

We apply this dynamical decoupling sequence to both devices simultaneously as
described in Section 3.5 with a 5.8 𝜇s wait time between the consecutive 𝜋 pulses.

We measure the entangled state coherence decay as we increase the number of
dynamical decoupling periods. The experimental result is presented in Figure 10.9
and yields an exponential decay with coherence time of 9.1 ± 0.4 ms.

The coherence times of each ion, when measured independently, are 21.2 ± 0.7 ms
and 16.9 ± 0.7 ms. Assuming the noise sources are uncorrelated we would expect
the relationship 1/𝑇 (Bell)

2 = 1/𝑇 (1)
2 + 1/𝑇 (2)

2 = 9.4 ± 0.3 ms. This matches well with
the experimental result.
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Figure 10.9: Coherence time of the two ion entangled state. After heralding the
preparation of an entangled state, coherence is extended by simultaneously applying
an XY-8 decoupling sequence to both qubits. The resulting coherence time is
9.1 ± 0.4 ms.
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10.6 Simulation and Fidelity Limitations
All previously presented results in this section involved free-parameter fits to the
experimental data (e.g., in Figure 10.6c, the oscillation envelope was fitted to a
decaying exponential with amplitude and decay time constant being free parame-
ters). In this section we implement an ab-initio model of the entanglement protocol
(described in Section 8.5), verify that the model reproduces the experimental results
and then use the model to infer dominant limitations on the entangled state fidelity.

First, we perform independent measurements of various ion parameters, summarized
in Table 10.2. We also measure various properties of our experimental setup relevant
to the model, summarized in Table 10.3.

Ion 1 Ion 2
Optical lifetime 2.18 ± 0.04 𝜇s 0.945 ± 0.007 𝜇s

Single photon efficiency (9.81 ± 0.07) × 10−3 (4.76 ± 0.05) × 10−3

Qubit initialization fidelity 0.9976 ± 0.0003 0.9954 ± 0.0008
Resonant uniform dark count rate 8.3 ± 0.5 Hz 7.5 ± 0.5 Hz

Optical Ramsey coherence 310 ± 20 ns 220 ± 10 ns
Optical line-width (FWHM) 1.7 ± 0.1 MHz 2.4 ± 0.1 MHz

Optical echo coherence 3.4 ± 0.1 𝜇s 1.75 ± 0.04 𝜇s
Optical pure dephasing rate 69 ± 9 kHz 66 ± 12 kHz

Qubit lifetime 53 ± 3 ms 23 ± 1 ms
Qubit XY8 coherence 21.2 ± 0.7 ms 16.9 ± 0.7 ms

Spin pure dephasing rate 38 ± 2 Hz 37 ± 3 Hz
|0⟩ readout fidelity 0.977 ± 0.001 0.967 ± 0.001
|1⟩ readout fidelity 0.961 ± 0.002 0.929 ± 0.002

Table 10.2: Summary of ion properties relevant for modelling two-ion entanglement.
Note that when the optical 𝑇2 for Ion 2 was measured, the lifetime was 0.988 ±
0.004 𝜇s.

Parameter Value
Off-resonant uniform dark count rate 8.0 ± 0.2 Hz

Optical phase stability (𝜎) 0.037 × 2𝜋 rad
Mach Zehnder (MZ) delay 19.6 ns

MZ intensity imbalance (delayed/undelayed) 0.79

Table 10.3: Summary of two ion entanglement setup properties.
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Note that we consider two qualitatively different sources of dark counts:

1. Off resonant dark counts are not associated with fluorescence from our sample,
these could be caused by laser leakage through our AOM shutter setups or
ambient light.

2. Resonant dark counts are associated with undesired fluorescence from our
samples. These are typically caused by excitation of weakly coupled ions in
the cavity. These ions have longer optical lifetime and can also be treated as
an approximately uniform contribution.

Note that the Mach-Zehnder (MZ) fiber delay line (introduced in Section 9.5) was
re-spliced with a different length of fiber whenever the ion frequency difference
changed significantly. The delay listed here was used while the optical frequency
difference was ∼ 26 MHz which may not have been the case for all data presented
in this thesis. The MZ imbalance quantifies the ratio in transmission efficiency
for light travelling in the un-delayed/delayed arms of the MZ interferometer. This
difference is due to the additional fiber-coupling losses for light that passes through
the delayed portion of the interferometer. This imbalance does not directly impact
the fidelity of the entangled state.

We now use these parameters to implement the model described in Section 8.5.
In order to model the optical Ramsey dephasing we perform multiple Monte-Carlo
repetitions of our simulation, with different optical frequencies sampled from a
Gaussian distribution with FWHM given in Table 10.2. The spin Ramsey dephasing
is modelled by sampling different nuclear spin bath eigenstates and calculating the
resulting Overhauser field at the Yb location (see Section 4.2). The results of this
model are presented in Figure 10.10.

The grey line in 10.10a plots the modelled entangled state coherence as a function of
photon detection time. The shaded grey region indicates a 67% confidence interval
for the model. The confidence interval is derived by repeatedly running the simula-
tion with input parameters that are sampled from their respective error distribution
(see Tables 10.2 and 10.3). The blue markers are experimental results, equivalent to
those presented in Figure 10.7 (lower panel), but over a larger integration range. We
attribute the discrepancy between data and simulation to systematic drifts in system
properties between calibration and running the experiment. Given the relatively
long data taking time (∼ 24hrs), such drifts are inevitable. Figure 10.10b plots the
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simulated histograms when measuring the entangled state in the 𝑋𝑋 , 𝑌𝑌 and 𝑍𝑍

bases, these can be compared to the experimental results in Figure 10.8a.

In Section 8.2 we introduced the concept of the single photon protocol and identified
the parameter 𝛼 which characterizes the strength of superposition prepared between
the |0𝑔⟩ and |1𝑔⟩ states at the start of the sequence. An intuitive understanding of this
parameter’s effect on the entangled state is as follows. For small 𝛼 the probability of
getting a photon from the ions is suppressed. As 𝛼 → 0 the likelihood of heralding
based on a dark count increases, this leads to an ion state that is mostly |0𝑔0𝑔⟩ which,
in turn, reduces the fidelity. Note that imperfect qubit initialization can also dominate
as 𝛼 → 0, in this case photon detection would herald a classically correlated state
𝜌 = 1/2( |0𝑔1𝑔⟩ ⟨0𝑔1𝑔 | + |1𝑔0𝑔⟩ ⟨1𝑔0𝑔 |). For large 𝛼, the infidelity associated with
the |1𝑔1𝑔⟩ component of the entangled state increases. Due to these sources of
infidelity, there exists an intermediate value at which the fidelity is optimized. This
is depicted in Figure 10.10c which plots the simulated entangled state fidelity for
different 𝜋 pulse fractions ( 𝑓 ) used to prepare the weak superposition. These are
related to 𝛼 according to 𝛼 = sin( 𝑓 𝜋/2)2. We use 𝑓 = 0.18 in the experiment which
leads to a simulated entangled state fidelity of F = 0.703 ± 0.008.

Next we investigate the limitations to the entangled state fidelity using this model,
these results are summarized in Table 10.4 which lists various sources of infidelity,
the impact of each item is quantified in two different ways, first the resulting im-
provement in fidelity if only that source were removed and, second, the fidelity if all
other sources were neglected and that source were exclusively present.6

Source of Error F if Removed F if Exclusively Present
Dark Counts 0.763 0.910
Initialization 0.727 0.917

Emission during rephasing 0.751 0.917
Optical dephasing 0.717 0.965

Spin dephasing + relaxation 0.715 0.993
Qubit gates 0.718 0.982

Optical gates 0.759 0.916
Optical phase stability 0.715 0.985

Lifetime + efficiency imbalance 0.709 0.998

Table 10.4: Summary of limitations to entangled state fidelity. With all sources of
error included, the simulation fidelity is F = 0.703 ± 0.008.

6All fidelities are quoted at a value of 𝛼 which maximizes the resulting fidelity. This varies
depending on the sources of error that are/are not included.



139

The largest sources of infidelity in our current experiments come from dark counts,
undetected emission during the rephasing period and optical control infidelities.
Dark counts can be improved by moving to purer crystals with a lower background
concentration of Yb ions; in fact, some of my colleagues have already started
exploring crystals grown by a different vendor with approximately 10× lower con-
centration. Undetected emission during rephasing can be mitigated by rephasing
the optical coherence on a transition that is not Purcell enhanced, which will require
an improvement in cavity Q factor by roughly 10×. Optical control infidelities can
be improved by using a larger optical Rabi frequency, this will mitigate the impact
of emission and detuning during the optical 𝜋 pulses; however, it might also lead to
stronger excitation of background ions, hence, this should be considered in combina-
tion with purer crystals. Qubit initialization is also a significant, if slightly smaller,
source of infidelity, with higher Q-factor devices and shorter optical lifetimes we
can hope to improve this metric.
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Figure 10.10: Simulation results. a) Entangled state coherence vs detection time,
blue marks are experimental data, grey region corresponds to our model (67%
confidence interval). The discrepancy between data and simulation is likely due to
systematic error from a gradual drift of experiment parameters on timescales shorter
than our data acquisition. b) Modelled histograms associated with 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧

population measurements. c) Modelled dependence of entangled state fidelity on 𝜋

pulse area used to prepare weak superposition states at start of the sequence. The
dashed line corresponds to the value used in experiments.
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10.7 Entangling Two Ions in The Same Cavity
In this section we extend the previously described protocol to enable the prepa-
ration of entangled states between ions in the same cavity. Generation of local
entanglement has applications in Heisenberg-limited quantum sensing [10], and
coherence protection of quantum states [277, 278]. Furthermore, these protocols
can be adapted to perform two-qubit Bell state measurements on Yb ions in the
same cavity [279, 280], which serve as a critical component of advanced quantum
networking protocols [281].

There are a few differences in using the previously described protocol to herald an
entangled state between two ions in the same device. First, the requirement for
phase stability is considerably relaxed. This is because photons emitted by each of
the two ions travel in the same optical mode, so any change in optical path length
will be cancelled in a common-mode fashion. Hence we do not perform any active
phase stabilization.

Consequently, this requires the two optical tones used to drive the ions to be pas-
sively phase-stable too. This is ensured by using a single AOM to generate them.
Specifically, an AOM is driven at half the optical frequency difference (in this case
468/2 MHz), we accept both the 0th and 1st diffraction orders. After double-passing
the required two tones are generated. More detail on this is presented in Section 9.2.

The final difference relates to the differential z-rotation used to correct the stochastic
nature of the Bell State phase (discussed in Section 10.3). For ions in the same device
we only have global microwave control, this is because the spin inhomogeneity is
much smaller than the typical Rabi frequencies used in our experiments (5 MHz).
To solve this issue we utilize the AC Stark shift, which will be discussed in the next
section.

For these experiments we use two ions in Device 1: Ion 1 which was previously
used for the two device entanglement experiments, and Ion 3 which is 468 MHz
lower in frequency. Throughout this section we will use an |Ion 3, Ion 1⟩ labelling
convention for states.
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AC Stark Shift
In order to apply a differential z-rotation to the two ions we leverage the optical
inhomogeneity to implement a differential AC-stark shift [282]. We use a similar
protocol as detailed in [157] and follow their derivation of this phase shift.

To illustrate this effect, let us consider the |1𝑔⟩ and |0𝑒⟩ levels of a single ion,
in isolation. If driven with a detuned optical tone, the resulting Hamiltonian in
the laser’s rotating frame will be H = Ω/2( |0𝑒⟩ ⟨1𝑔 | + |1𝑔⟩ ⟨0𝑒 |) − Δ |0𝑒⟩ ⟨0𝑒 |.
Where Δ is the ion-laser detuning and Ω is the optical Rabi frequency. If we now
consider the case of optical spontaneous emission we can write an additional anti-
hermitian contribution to this Hamiltonian corresponding to the situation where no
quantum jumps occur (this is a valid approximation for sufficiently large detuning)
H̃ = Ω/2( |0𝑒⟩ ⟨1𝑔 | + |1𝑔⟩ ⟨0𝑒 |) − (Δ + 𝑖Γ/2) |0𝑒⟩ ⟨0𝑒 |, where Γ is the optical decay
rate.

By diagonalizing this Hamiltonian we find that the ground state has shifted in
frequency/energy by an amount:

Δ𝜔AC =
Ω2

4
Δ

Δ2 + Γ2/4
. (10.11)

Now introducing the second ground state energy level (|0𝑔⟩) and assuming that the
optical frequency is sufficiently detuned from the 𝐸 transition to have minimal effect
we see that the effective ground state spin Hamiltonian becomes:

H = −𝜔01 |0𝑔⟩ ⟨0𝑔 | +
Ω2

4
Δ

Δ2 + Γ2/4
|1𝑔⟩ ⟨1𝑔 | (10.12)

where 𝜔01 is the bare spin transition frequency.

Now we note several key things. First, the energy shift of the |1𝑔⟩ state is proportional
to Ω2, i.e., the laser intensity. This enables us to precisely control the amount of
frequency shift.

Second, it also depends on the detuning Δ, i.e., positive/negative detuning will lead
to an increases/decreases in the ground state transition frequency (respectively).
Since the optical inhomogeneity is relatively large (the two ions we consider here
are detuned by 468 MHz), we can achieve dramatically different AC stark shifts for
the two ions. We label the AC-Stark induced spin detuning as Δ𝜔(1)

𝐴𝐶
and Δ𝜔

(3)
𝐴𝐶

for
Ions 1 and 3, respectively.

Experimentally, we are going to use this differential frequency shift to accumulate a
differential phase on our two qubits. This requires a sequence which simultaneously
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cancels any detuning caused by magnetic field noise whilst accumulating AC Stark
phase. We use an XY-8 dynamical decoupling sequence with detuned AC-stark
pulses applied during the inter-pulse wait times (see Figure 10.11a). Note, however,
that if we applied the light pulses during every wait period, the phase accumulation
from consecutive free evolution times would cancel. We therefore apply the light
pulses in alternate periods, thereby ensuring accumulation of the AC Stark phase.
More precisely, after 4 complete XY-8 periods the accumulated differential phase is
given by:

Δ𝜙AC = 16𝜏𝑠 (Δ𝜔(1)
𝐴𝐶

− Δ𝜔
(3)
𝐴𝐶

) (10.13)

where 𝜏𝑠 is the wait time between consecutive 𝜋 pulses. For these experiments
we apply an AC Stark tone which is detuned by Δ = −47.5 MHz from Ion 1 and
Δ = +420.5 MHz from Ion 3.

First, we measure the AC Stark shift applied to each ion independently by preparing
a superposition state |+𝑋⟩, applying the AC Stark sequence with a variable optical
pulse intensity, and then reading out the 𝑋 and 𝑌 spin quadratures. This lets us
extract a phase rotation angle 𝜙AC = tan−1(⟨𝜎𝑦⟩/⟨𝜎𝑥⟩) for each ion. The solid line
in Figure 10.11c shows the difference between these phases (i.e., Δ𝜙AC = 𝜙

(1)
AC−𝜙

(3)
AC)

for different optical pulse intensities. For the largest intensity in this plot the AC
Stark frequency shift is -9.5 kHz for Ion 1 and 1.1 kHz for Ion 3.

Next, we demonstrate the effect of this pulse sequence on the entangled Bell states.
We herald a Bell state using the dynamic rephasing protocol, then we apply an AC
stark sequence thereby causing a differential 𝑧 rotation on the two ions, the resulting
Bell State is:

|𝜓⟩ = |0𝑔1𝑔⟩ + |1𝑔0𝑔⟩ 𝑒𝑖(Δ𝜔0𝑡0+Δ𝜙AC) . (10.14)

Finally, we read out the entangled Bell State coherence. Figure 10.11b shows the
resulting entangled state coherence plotted against photon arrival time for four AC
stark intensities. We can clearly see an increasing phase shift in the Bell state parity
oscillation as the AC Stark intensity increases. We correlate this phase shift with
the single ion results in Figure 10.11c where the markers correspond to the Bell
state phase measurements. We see that there is a close correspondence between the
single ion and Bell state results.

We use this differential 𝑧 rotation to correct the stochastic phase associated with
the random photon detection time. Specifically, in each experimental repetition we
choose an AC stark intensity such that the condition Δ𝜙AC = −Δ𝜔0𝑡0 is satisfied.
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This leads to the preparation of a deterministic Bell state. The tomography results
presented in the subsequent section have been performed on Bell states prepared in
this manner.
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Figure 10.11: AC Stark shift for differential Z rotations of two ions in the same
device. a) A dynamical decoupling sequence with embedded AC-Stark pulses is
applied between entangled state preparation and measurement. This applies a phase
shift to the prepared Bell state which is proportional to the intensity of the AC
Stark pulse. b) The phase shift for a specific AC Stark intensity is extracted by
correlating the entangled state phase with photon detection time. The AC Stark
intensity increases in ascending order of figures in this column. c) The phase
shift extracted from the Bell State measurements is plotted against AC Stark pulse
intensity (markers). The solid line corresponds to the expected AC Stark phase
obtained from single ion measurements.
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Entangled State Tomography
In order to extract a density matrix for the two ion entangled state we perform the
same set of experiments/analysis presented in Section 10.4.

The main difference is that we do not have independent local control of the two
qubits, hence measuring in certain two-qubit Pauli bases is non-trivial (for instance
𝜎̂𝑧 ⊗ 𝜎̂𝑦).

These basis rotations can be generated via global control combined with a differential
z-rotation. For instance, applying the following sequence of pulses:(𝜋

4

)
𝑌
𝑈

(1)
−𝜋/2,𝑍𝑈

(3)
𝜋/2,𝑍

(𝜋
4

)
𝑋

(10.15)

followed by population basis readout will lead to a measurement in the 𝑧 basis for
ion 1 and 𝑥 basis for ion 3. Here,

(
𝜋
4
)
𝛼

corresponds to a global 𝜋/4 pulse applied
about the 𝛼 axis. 𝑈 (𝑖)

𝛼,𝑍
is a rotation about the 𝑧 axis by angle 𝛼 for qubit 𝑖.

Since the spin frequency difference between the two ions studied is relatively large
(1 MHz) we implemented the differential Z rotation gate here via a 250 ns wait.
Note that the fidelity of this approach is limited by the spin Ramsey coherence time,
this is why we did not use it in the previous section, where a complete 2𝜋 differential
𝑧 rotation is required. 500 ns of wait time would have lead to a significant reduction
in entangled state fidelity.

The results of this tomography are presented in Figure 10.12. The extracted Fidelity
is 0.682 ± 0.006.
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Figure 10.12: Density matrix of the two ion entangled state in a single device. The
photon acceptance window corresponds to the first 400 ns of emission and leads to
a fidelity of 0.682 ± 0.006 and 3.0 Hz rate.
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C h a p t e r 11

OUTLOOK

In this section I provide an outlook on the next stages of this experiment. I will
compare our results to other quantum networking platforms and highlight improve-
ments which can be used to achieve state of the art entanglement rates and fidelities.
I will also propose some future directions (both related and unrelated to quantum
networking). We are already actively pursuing some of these ideas.

11.1 Quantum Networking
Comparison to Other Platforms
Table 11.1 provides a comparison of experimentally demonstrated entanglement
rates, fidelities and spin coherence times for several different platforms1.

Platform Fidelity Rate Spin Coherence
Rare-earths2[155, 158] 0.72 3.1 Hz 21 ms (760 𝜇s nuclear)
NV Centers[30, 71, 73] 0.8 10 Hz 1 s (120 s nuclear)

SiV Centers[83, 193, 260] 0.71 0.9 Hz 10 ms/2 s (7 ms nuclear)
Quantum Dots[69, 70] 0.62 7.3 kHz 3 𝜇s

Trapped Ions[62] 0.94 200 Hz 2 ms
Trapped Atoms[23, 281] 0.79 6 Hz 20 ms

Table 11.1: Comparison of experimentally demonstrated rates and fidelities for
different quantum network nodes.

Note that the silicon vacancy results mentioned here correspond to entangling two
centers in the same device, whereas all other platforms have demonstrated remote
entanglement generation. Furthermore, the two coherence times quoted (10 ms and
2 s) correspond to the electronic spin and 29Si nuclear spin, respectively; these are
strongly coupled spins and cannot be used as independent quantum memories.

It is also worth noting two areas of development in trapped atom and ion-based
quantum networking. First, dual-species quantum nodes, which can leverage optimal
properties of one atomic species for storage and computation, and another species for

1In obtaining this table I have tried to be as comprehensive as possible; however, it is often hard
to provide an apples-to-apples comparison. The pedantic reader should follow the references and
check my interpretation of the corresponding experimental results

2This work.
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quantum communication [63, 283]. Second, the potential for leveraging Rydberg
interactions for high fidelity quantum processing in neutral atom-based network
nodes [284].

While rare-earth ions and silicon vacancy centers currently have slightly lower rates
and fidelities compared to other platforms, the development and optimization of
these systems is still at a relatively early stage and there is considerable room for
improvement. As discussed in Section 1.6, NV centers have been hindered by a
dramatic reduction in coherence properties when incorporated into nanostructures.
Quantum dots have been limited by low spin coherence times due to a noisy nuclear
spin bath. It is difficult to envisage large improvements in the performance of these
two platforms.

Improving the Rare-Earth Ion Platform
The average time per entanglement attempt is currently limited by three factors:
24 𝜇s is spent on |aux⟩ initialization, 33 𝜇s on qubit initialization and 10 𝜇s on
phase stabilization. The single photon detection efficiency (𝜂) is currently lim-
ited by: 𝜅in/𝜅 ∼ 0.1, 25% device to fiber coupling efficiency, 65% optical setup
efficiency and 85% SNSPD detection efficiency. I believe that a factor of 10 in-
crease in entanglement rate should be achievable for this platform with the following
improvements:

• Operating with two ions that have the same lifetime to enable heralding with
a larger fraction of the optical emission.

• Fabricating devices with larger 𝜅in/𝜅.

• Reducing the optical lifetime to reduce the initialization time.

• Redesigning the fiber-to waveguide coupling scheme (for instance using a
tapered fiber approach [285]).

Limitations to the entanglement fidelity were discussed in Section 10.6. To sum-
marize, there are three technical improvements which, if combined, would increase
the entangled state fidelity to 0.86. First, reducing the dark count rate from weakly
excited ions, this could be achieved by moving to purer samples. Second, improving
the optical control fidelity by using larger Rabi frequencies. Finally, if the cavity
line-width could be reduced to 4 GHz then dynamic rephasing could be performed
on a non-purcell-enhanced transition (the 𝐸 transition), thus removing the limitation
imposed by 𝑇1 decay, this would also increase the entanglement rate.
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Multipartite Entangled State Generation
The single photon protocol presented in this thesis can be naturally extended to
prepare multi-qubit W states. Consider the case of three ions. After preparing a
weak superposition of all three ions the quantum state would be3:

|𝜓⟩ = (1 − 𝛼)3/2 |000⟩ + (1 − 𝛼)
√
𝛼 ( |100⟩ + |010⟩ + |001⟩)

+ 𝛼
√

1 − 𝛼 ( |011⟩ + |101⟩ + |110⟩) + 𝛼3/2 |111⟩ .
(11.1)

After subsequent excitation, detection of a single photon and dynamic rephasing the
state would be:

|𝜓⟩ = 1
√

3

(
|100⟩ + |010⟩ 𝑒−𝑖Δ𝜔

(12)
0 𝑡0 + |001⟩ 𝑒−𝑖Δ𝜔

(13)
0 𝑡0

)
(11.2)

where Δ𝜔
(𝑖 𝑗)
0 is the static frequency difference between ions 𝑖 and 𝑗 and 𝑡0 is the

photon detection time (note that we are ignoring contributions from |110⟩-type and
|111⟩ states as they are suppressed by a probability factor of at least 𝛼).

Finally, we would need to compensate for two independent stochastic phases:
Δ𝜔

(12)
0 𝑡0 and Δ𝜔

(13)
0 𝑡0 ; this could be implemented by some combination of AC

Stark shifting and phase shifts to the microwave drive depending on which ions are
in the same/different nodes. Finally, we would prepare the following W state:

|𝜓⟩ = 1
√

3
( |100⟩ + |010⟩ + |001⟩) . (11.3)

The entanglement heralding rate using this protocol would be R = 3𝜂𝛼 and the
entangled state fidelity would be F = (1 − 𝛼)2.

While the W state presented here has somewhat limited use in a quantum network
setting, we are also developing protocols to prepare 3-qubit GHZ states using a
two-photon detection protocol. Such a state would be useful for quantum secret
sharing [31].

3Using an |Ion 1, Ion 2, Ion 3⟩ convention.
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Teleportation of Quantum States
While deterministic quantum teleportation would require improving and incorpo-
rating the nuclear spin memory into entanglement experiments (see the next section
for more discussion), probabilistic quantum teleportation can already be achieved
using the resources demonstrated in this thesis. The protocol we have in mind would
be executed as follows.

We would start by preparing Ion 1 in |𝜓⟩ = 𝑎 |0𝑔⟩ + 𝑏 |1𝑔⟩, where 𝑎 and 𝑏 encode
the state we wish to teleport onto Ion 2. Ion 2 is prepared in |𝜓⟩ = 1/

√
2( |0𝑔⟩ + |1𝑔⟩)

such that the combined quantum state is4:

|𝜓⟩ = 1
√

2

(
𝑎 |0𝑔0𝑔⟩ + 𝑎 |0𝑔1𝑔⟩ + 𝑏 |1𝑔0𝑔⟩ + 𝑏 |1𝑔1𝑔⟩

)
. (11.4)

After optical excitation and heralding based on a single photon detection at time 𝑡0we prepare the state:

𝜌 =
1

1 + 2𝑏2 |𝜓(𝑡0)⟩ ⟨𝜓(𝑡0) | +
2𝑏2

1 + 2𝑏2 |1𝑔1𝑔⟩ ⟨1𝑔1𝑔 | (11.5)

where
|𝜓(𝑡0)⟩ = 𝑎 |0𝑔1𝑔⟩ + 𝑏 |1𝑔0𝑔⟩ 𝑒𝑖Δ𝜔𝑡0 . (11.6)

We then apply a ground state 𝜋 pulse, optically excite for a second time and herald
based on a second photon detection, which is measured at time 𝑡1. This removes the
|1𝑔1𝑔⟩ component leaving us with the following pure state:

|𝜓⟩ = 𝑎 |1𝑔0𝑔⟩ + 𝑏 |0𝑔1𝑔⟩ 𝑒𝑖Δ𝜔(𝑡0−𝑡1) . (11.7)

Now we perform the dynamic rephasing protocol, with a rephasing time of 𝑡0 − 𝑡1.
We also correct the stochastic phase by performing a differential z-rotation by an
angle −Δ𝜔0(𝑡0 − 𝑡1). The result is a pure state:

|𝜓⟩ = 𝑎 |1𝑔0𝑔⟩ + 𝑏 |0𝑔1𝑔⟩ . (11.8)

Note that if we chose 𝑎 = 𝑏 = 1/
√

2 then we would be implementing a variant of
the Barrett-Kok protocol. Next, we apply a 𝜋/2 pulse to Ion 1’s ground state leading
to the following state:

|𝜓⟩ = |0𝑔⟩ (𝑏 |1𝑔⟩ + 𝑎 |0𝑔⟩) + |1𝑔⟩ (𝑏 |1𝑔⟩ − 𝑎 |0𝑔⟩). (11.9)

We perform single shot readout of the Ion 1 state, if measured in |1𝑔⟩ we perform
a 𝑧 rotation on Ion 2 by 𝜋 (implemented by a phase shift of the microwave drive).
This yields the following state for Ion 2:

|𝜓⟩ = 𝑎 |0𝑔⟩ + 𝑏 |1𝑔⟩ (11.10)
4Using an |Ion 1, Ion 2⟩ convention.
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hence we successfully teleported from Ion 1 to Ion 2. The main issue with this
protocol is that it relies on two photon detections, hence it is quite inefficient and
also non-deterministic (we would need to prepare multiple copies of the same initial
state). A nice benefit is that phase-stabilization of the optical paths would no longer
be required.

Additional Quantum Node Functionality
There are two aspects of this platform that I believe could be leveraged to implement
some novel quantum networking protocols. First, despite the Ramsey-limited coop-
erativity being relatively low (C ≈ 0.06), the cooperativity calculated using the pure
dephasing rate (i.e., ignoring quasi-static frequency variation) is C̃ ≈ 3. It is due to
C̃ > 1 that we were able to demonstrate lifetime-limited entanglement heralding.

It is worth considering if any other quantum networking protocols which would usu-
ally require C > 1 can be adapted to leverage the C < 1, C̃ > 1 regime demonstrated
here. For instance, one could envisage performing photon-mediated quantum gates
involving photon reflections from the cavity, such as those implemented in [23], but
where the ion frequency is tracked in real time and used to dynamically adjust the
photon frequency.

The second opportunity is to leverage the presence of several spectrally resolvable
emitters in each node. In the most basic setting, one could envisage performing
multiplexed entanglement generation between pairs of ions in separate nodes. This
would lead to an entanglement rate improvement which scales linearly with the
number of ion pairs. If deterministic local gates could also be performed between
pairs of ions in the same cavity, this could become a useful resource for entanglement
distillation [25]. Such interactions could either be implemented via direct magnetic
dipole-dipole interactions of the spins (might be a bit tricky due to the dilute nature
of our sample with an average interaction strength of 50 Hz), or via cavity mediated
interactions [55] (which are also challenging to implement due to their fidelity
scaling as (1 − F ) ∼ 1/

√
C).

An interesting protocol which could potentially combine both of these research
directions involves using additional spectator qubits in each node to achieve a cavity-
mediated interaction strength that scales as (1 − F ) ∼ 1/C [286]. I would be very
interested to see if this protocol could be adapted to leverage the C̃ > 1 regime
present in our platform.
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11.2 Nuclear Spins
The Vanadium nuclear spin ensemble surrounding our Yb qubits is a deterministic
many-body resource. It is a unique feature of our platform compared to other solid
state systems and provides many opportunities for novel scientific exploration.

Improving the Register
In order to utilize this register in quantum networking protocols we need to improve
the fidelity of the swap gate (which is currently only 68% in the population basis).
We also need to increase the nuclear spin storage time and, ideally, increase the
number of qubits.

Improving the fidelity is difficult as our simulations do not reproduce the experi-
mentally observed results (without the phenomenological decay constant discussed
in Section 6.4). As a first step, we need to expand our model to try and identify
the dominant infidelity. Some additional aspects that could be considered include:
mixing of the |aux⟩ state with the qubit states, pumping of the nuclear spin ensem-
ble into incoherent classically correlated states, or some additional uncharacterized
interactions (such as exchange interactions between Yb and V).

One limitation which we do predict is the imperfect register initialization: currently
the single-spin preparation fidelity is 84%, leading to only 50% initialization fidelity
into |↓↓↓↓⟩. In the next section we will see how sensing of the nuclear spin ensemble
combined with post-selection can be used to improve this fidelity.

Increasing the coherence time can be achieved through improved dynamical de-
coupling of the register. Specifically, by reducing the duration and increasing the
number of Vanadium 𝜋 pulses. There are two technical challenges associated with
this. First, the low-frequency RF tones used for vanadium driving tend to heat up
our device (when applied through the coplanar waveguide), this could be resolved by
using a superconducting waveguide or an off-chip RF coil. The second challenge is
more fundamental: due to the relatively small detuning between the register and bath
(37 kHz), if we drive the register too strongly, we will also drive the bath spins. This
will cause a fluctuation in the Overhauser field, thereby rendering the dynamical
decoupling sequence ineffective. One approach to resolve this issue would involve
operating with a Rabi frequency where a 𝜋 pulse on the register would lead to a 2𝜋
rotation of the bath, thereby leaving the Overhauser field unperturbed.

Finally there are two different methods we could use to expand the number of
qubits stored in the bath: First, assuming the two vanadium spins closest to the Yb
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(Shell 1) are detuned from the more distant bath nuclei, they could be used as an
additional isolated qubit system. The main challenge is the Ising-type interaction
with Yb (𝑆𝑧 𝐼𝑧), though there are protocols like the DDRF sequence [72] which
could be used. The second opportunity would involve encoding multiple qubits in
the (relatively large) Hilbert space of the four register spins. This could either involve
the 𝑎 or 𝑏 transitions or higher spin excitations within the 𝑐 manifold. For instance,
one could consider adapting protocols proposed for multimode superconducting
qubit quantum memories [128].

Preparing GHZ States
Joint 171Yb-V GHZ states have the form:

|GHZ⟩ = 1
√

2

(
|0𝑔⟩ |↑↑↑↑⟩ + |1𝑔⟩ |↓↓↓↓⟩

)
(11.11)

and are an important class of highly entangled quantum states with applications in
quantum metrology, storage, and benchmarking. Under free evolution, a defining
characteristic of this state is a parity oscillation frequency that is enhanced by the
number of participating spins (in this case phase accumulates at 4𝜔𝑐, in the Yb
rotating frame).

In our system, GHZ states can be prepared in a fairly straightforward manner by first
polarizing the register and then applying the gate sequence shown in Figure 11.1a.

This sequence requires a controlled rotation of the Vanadium spins conditioned on
the Yb state. It turns out that vanadium driving sequence introduced in Section
6.5 already fulfills this requirement: the phase of the driving field (and hence Rabi
vector orientation) will depending on the Yb state.

We have performed a preliminary experimental demonstration of this state prepa-
ration by measuring a 4𝜔𝑐 parity oscillation as shown in Figure 11.1b. Fourier
transforming this oscillation reveals the presence of four distinct frequency harmon-
ics at 𝜔𝑐, 2𝜔𝑐, 3𝜔𝑐 and 4𝜔𝑐 (Figure 11.1c). This is due to imperfect preparation
of the initial register state and closely correlates to our anticipated 84% single spin
initialization fidelity.

We have been exploring methods of using the parity oscillation frequency as a
method to sense the number of spins in the 𝑐 manifold and subsequently purify the
initialization of our register ensemble.

Decoherence Protected Subspaces
We also note the existence of a class of GHZ states that are intrinsically pro-
tected from common-mode noise. These states rely on spins with opposite Zeeman
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Figure 11.1: Preparation and measurement of GHZ states in Vanadium register
ensemble. a) Gate sequence for preparing GHZ states utilizes controlled rotations
of the V spins by 𝜋/2 about the ±𝑋 axes, conditioned on the Yb state. Under
subsequent free evolution a parity oscillation is expected at 4𝜔𝑐. b) The GHZ state
is prepared, after waiting for a variable time, 𝑡, the parity is read out by using a
similar sequence. c) Fourier transform reveals harmonics at 𝜔𝑐, 2𝜔𝑐, 3𝜔𝑐 and 4𝜔𝑐

the multiple harmonics are due to imperfect polarization of the register.

sensitivity having equal and opposite detuning under an applied magnetic field.
Specifically, remembering that the nuclear quadrupole levels are twofold degenerate
(i.e., |↓⟩ contains both |+7/2⟩ and |−7/2⟩ states) we can see that the GHZ state:

|GHZ⟩ = 1
√

2
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(11.12)

will not accumulate phase generated by correlated noise.

While this will not lead to an improvement in register coherence time (since the
Overhauser field is highly uncorrelated), it does provide a novel and highly useful
approach to cancel the Knight field: due to the symmetry of our system the Knight
field at each Vanadium location is identical (common-mode). Hence, the Yb qubit
can be operated5 without affecting the coherence of the GHZ state, which is critical
functionality for an auxiliary quantum node memory.

We are currently working on protocols to prepare such GHZ states and use them for
quantum information storage.

5I.e., initialized, entangled, and read out.
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A p p e n d i x A

IMPURITIES IN YVO4 CRYSTALS

The nominally undoped YVO4 crystal boules used in these projects were grown
by Gamdan Optics using the Czochralski method. Impurities were characterized
using glow discharge mass spectrometry (GDMS), EAG Laboratories. The results
are presented in Figure A.1. The Yb concentration corresponds to 140ppb of all
isotopes, assuming natural abundance of different isotopes this corresponds to 20ppb
171Yb3+.

Element Concentration Element Concentration
[ ppm wt ] [ ppm wt ]

Li 0.41 Ag < 0.5
Be < 0.01 Cd < 1
B < 0.05 In Binder
O Matrix Sn < 1
F < 1 Sb < 1

Na 0.19 Te < 0.5
Mg 0.10 I < 1
Al 2.0 Cs < 5
Si 13 Ba < 0.05
P 0.38 La 2.0
S 4.3 Ce 0.24
Cl 0.24 Pr < 0.05
K < 0.5 Nd < 0.05

Ca 0.53 Sm < 0.05
Sc < 0.05 Eu < 0.5
Ti 0.03 Gd 0.41
V Matrix Tb < 0.05
Cr < 0.1 Dy < 0.05
Mn < 0.05 Ho 0.42
Fe 1.5 Er 0.40
Co < 0.01 Tm < 0.05
Ni 0.26 Yb 0.14
Cu < 0.5 Lu < 0.05
Zn < 0.5 Hf < 0.05
Ga < 0.1 Ta < 50
Ge < 0.5 W 0.14
As < 0.1 Re < 0.05
Se < 0.5 Os < 0.05
Br < 1 Ir < 0.1
Rb < 0.1 Pt < 0.5
Sr < 0.5 Au < 0.5
Y Matrix Hg < 0.5
Zr 0.91 Tl < 0.05
Nb < 0.05 Pb < 0.1
Mo 0.37 Bi < 0.1
Ru < 0.1 Th < 0.01
Rh < 0.5 U 0.10
Pd < 0.5

Figure A.1: Concentration of impurities present in YVO4 used in this work.
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A p p e n d i x B

V REGISTER READOUT CORRECTION

Since 171Yb readout fidelity is > 95% [155], the dominant error introduced dur-
ing the population basis measurements arises from the swap gate. We measure
its fidelity in the population basis by preparing either the |0𝑔0𝑣⟩ state (zero spin
excitations) or the |1𝑔0𝑣⟩ state (single spin excitation) and applying two consecu-
tive swap gates such that the system is returned to the initial state. By comparing
the 171Yb population before (𝑝pre) and after (𝑝post) the two gates are applied, we
can extract fidelity estimates independently from the 51V state initialization. As-
suming the swap and swap-back processes are symmetric, we obtain a gate fidelity
Fsw =

√︁
(1 − 2𝑝post)/(1 − 2𝑝pre). This quantity is measured for zero spin excitations

leading to Fsw,0 = 0.83 and with a single spin excitation leading to Fsw,1 = 0.52.

When measuring the joint 171Yb–51V populations {𝑝00, 𝑝01, 𝑝10, 𝑝11} we can use
these fidelities to extract a set of corrected populations {𝑐00, 𝑐01, 𝑐10, 𝑐11} according
to the method described in [67, 287] using

©­­­­­«
𝑐11

𝑐10

𝑐01

𝑐00

ª®®®®®¬
= 𝐸−1

©­­­­­«
𝑝11

𝑝10

𝑝01

𝑝00

ª®®®®®¬
, (B.1)

where

𝐸=
1
2

©­­­­­«
1+Fsw,1 1−Fsw,0 0 0
1−Fsw,1 1+Fsw,0 0 0

0 0 1 + Fsw,1 1−Fsw,0

0 0 1 − Fsw,1 1+Fsw,0

ª®®®®®¬
.

We use a similar approach to correct the √swap gate used to read out the Bell state
coherence.
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A p p e n d i x C

V REGISTER BELL STATE FIDELITY ESTIMATION

Here we derive an expression for the 171Yb–51V Bell-state coherence 𝜌01 = ⟨1𝑔0𝑣 | 𝜌 |0𝑔𝑊𝑣⟩
in terms of the parity oscillation contrast with a correction factor. In particu-
lar, when reading out this coherence, we apply a √swap gate which maps |Ψ+⟩
= 1√

2
( |1𝑔0𝑣⟩ − 𝑖 |0𝑔𝑊𝑣⟩) to |0𝑔𝑊𝑣⟩ and |Ψ−⟩ = 1√

2
( |1𝑔0𝑣⟩ + 𝑖 |0𝑔𝑊𝑣⟩) to |1𝑔0𝑣⟩. Note

that reading out the 171Yb state is sufficient to distinguish the |Ψ+⟩ and |Ψ−⟩ states
in this measurement. We can account for the readout fidelity of the |Ψ±⟩ states
by using a

√︁
Fsw,1 factor (Appendix B), i.e., if the state |Ψ+⟩ (|Ψ−⟩) is perfectly

prepared, 171Yb will be measured in state |0𝑔⟩ (|1𝑔⟩) with probability 1
2 (1+

√︁
Fsw,1).

To span the 171Yb–51V Hilbert space, we also need to consider the effect of the
readout √swap gate when the system is initialized into the other two states: |1𝑔𝑊𝑣⟩
or |0𝑔0𝑣⟩. To this end, we assign imperfect readout probabilities of 𝑞11 and 𝑞00 for
|1𝑔𝑊𝑣⟩ and |0𝑔0𝑣⟩, respectively. Specifically, we can represent the dependence of
the parity readout on the input state using the following matrix relation:

(
𝑝1,Yb

𝑝0,Yb

)
= MswapMwait

©­­­­­«
𝑝11

𝑝Ψ+

𝑝Ψ−

𝑝00

ª®®®®®¬
(C.1)

with

Mswap =

(
𝑞11

1
2 (1 −

√︁
Fsw,1) 1

2 (1 +
√︁
Fsw,1) 1 − 𝑞00

1 − 𝑞11
1
2 (1 +

√︁
Fsw,1) 1

2 (1 −
√︁
Fsw,1) 𝑞00

)
,

Mwait =

©­­­­­«
1 0 0 0
0 cos2(𝜔𝑐𝑡/2) sin2(𝜔𝑐𝑡/2) 0
0 sin2(𝜔𝑐𝑡/2) cos2(𝜔𝑐𝑡/2) 0
0 0 0 1

ª®®®®®¬
.

Here 𝑝1,Yb and 𝑝0,Yb are the probabilities of measuring the 171Yb qubit in |1𝑔⟩
and |0𝑔⟩, respectively, and 𝑝Ψ± = ⟨Ψ± | 𝜌 |Ψ±⟩ are the probabilities of being in
the |Ψ±⟩ Bell states. The contrast 𝐶parity of the parity oscillation between |Ψ+⟩
and |Ψ−⟩ is extracted by measuring the difference in the 171Yb |1𝑔⟩ populations
measured at 𝑡 = 0 and 𝑡 = 𝜋/𝜔𝑐, allowing us to estimate the Bell state coherence
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as |𝜌01 | = 𝐶parity/2
√︁
Fsw,1. This implies that uncorrected and corrected Bell state

coherence values differ by a factor of
√︁
Fsw,1 = 0.72. Using the results presented in

Figure 6.12b we obtain corrected and uncorrected estimates for |𝜌01 | of 0.352±0.004
and 0.254 ± 0.003, respectively.

We also measure the Bell state populations using the method described in Section
6.7. The corresponding uncorrected (corrected) populations for the four basis states,
denoted 𝑝𝑖 𝑗 (𝑐𝑖 𝑗 ) are:

𝑝00 ≡ ⟨0𝑔0𝑣 | 𝜌 |0𝑔0𝑣⟩ = 0.16 ± 0.01 (𝑐00 = 0.07 ± 0.02),
𝑝01 ≡ ⟨0𝑔𝑊𝑣 | 𝜌 |0𝑔𝑊𝑣⟩ = 0.32 ± 0.01 (𝑐01 = 0.41 ± 0.02),
𝑝10 ≡ ⟨1𝑔0𝑣 | 𝜌 |1𝑔0𝑣⟩ = 0.40 ± 0.02 (𝑐10 = 0.41 ± 0.02),

𝑝11 ≡ ⟨1𝑔𝑊𝑣 | 𝜌 |1𝑔𝑊𝑣⟩ = 0.12 ± 0.01 (𝑐11 = 0.11 ± 0.01).

To extract the Bell state fidelity and uncertainty, we perform a maximum likelihood
analysis of the population and parity oscillation measurements, adopting a similar
approach as in [67]. The population measurement involves a series of 𝑛 experiments
with outcomes distributed between the four population states: {𝑛00, 𝑛01, 𝑛10, 𝑛11}
where 𝑛 = 𝑛00 + 𝑛01 + 𝑛10 + 𝑛11. The likelihood function for the uncorrected
populations, {𝑝00, 𝑝01, 𝑝10, 𝑝11} has multinomial form:

L
(
{𝑝𝑖 𝑗 }|{𝑛𝑖 𝑗 }

)
=

𝑛!
𝑛00!𝑛01!𝑛10!𝑛11!

𝑝
𝑛00
00 𝑝

𝑛01
01 𝑝

𝑛10
10 𝑝

𝑛11
11 (C.2)

where we have assumed a prior uniform over the physical values of {𝑝𝑖 𝑗 }, i.e.,
0 ≤ 𝑝𝑖 𝑗 ≤ 1 and

∑
𝑝𝑖 𝑗 = 1. The likelihood function for the corrected populations,

{𝑐00, 𝑐01, 𝑐10, 𝑐11}, is obtained by substituting equation (B.1) into equation (C.2)
and assuming a prior uniform over the physical values of {𝑐𝑖 𝑗 }, i.e., 0 ≤ 𝑐𝑖 𝑗 ≤ 1
and

∑
𝑐𝑖 𝑗 = 1. Corrected populations are obtained by maximizing this likelihood

function. The error for a specific population (say 𝑐00) is obtained by marginalizing
L

(
{𝑐𝑖 𝑗 }|{𝑛𝑖 𝑗 }

)
over the other three (𝑐01, 𝑐10, 𝑐11) and taking a 68% symmetric

confidence interval.

We extract a likelihood function for the coherence by considering the following
model:

𝑦𝑖 = 0.5 +
√︁
Fsw,1𝜌01 cos(𝜔𝑐𝑡𝑖) + 𝜖𝑖 (C.3)

where {𝑡𝑖, 𝑦𝑖} are the parity oscillation data at the 𝑖th point, 𝜌01 is the corrected
coherence, Fsw,1 is the parity oscillation correction factor associated with the swap
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gate infidelity, and 𝜖𝑖 is the experimental error assumed to be normally distributed
with 𝜇 = 0 and unknown 𝜎. The likelihood function is given by

L (𝜌01, 𝜎 |{𝑡𝑖, 𝑦𝑖}) =
∏
𝑖

1
√

2𝜋𝜎
exp

−
(
𝑦𝑖 − 0.5 −

√︁
Fsw,1𝜌01 cos(𝜔𝑐𝑡𝑖)

)2

2𝜎2

 .
(C.4)

We obtain a likelihood for the corrected coherence, L (𝜌01 |{𝑡𝑖, 𝑦𝑖}) by marginalizing
over 𝜎.

The likelihood function for the fidelity is obtained by taking a product of the like-
lihood function for the populations with the likelihood function for the coherence
and evaluating a contour integral at constant F , given by

L (F ) =
∫
F
L

(
{𝑐𝑖 𝑗 }|{𝑛𝑖 𝑗 }

)
L (𝜌01 |{𝑡𝑖, 𝑦𝑖}) 𝑑𝜌01

∏
𝑖 𝑗

𝑑𝑐𝑖 𝑗 . (C.5)

The Bell state fidelity is extracted by maximizing this likelihood and the error is
evaluated as a symmetric 68% confidence interval.
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