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ABSTRACT

The interactions of cavitating bubbles with elastic and viscoelastic materials play a
central role in many biomedical applications. This thesis makes use of numerical
modeling and data-driven approaches to characterize soft biomaterials at high strain
rates via observation of bubble dynamics, and to model burst-wave lithotripsy, a
focused ultrasound therapy to break kidney stones.

In the first part of the thesis, a data assimilation framework is developed for cavitation
rheometry, a technique that uses bubble dynamics to characterize soft, viscoelastic
materials at high strain-rates. This framework aims to determine material properties
that best fit observed cavitating bubble dynamics. We propose ensemble-based data
assimilation methods to solve this inverse problem. This approach is validated with
surrogate data generated by adding random noise to simulated bubble radius time
histories, and we show that we can confidently and efficiently estimate parameters of
interest within 5% given an iterative Kalman smoother approach and an ensemble-
based 4D-Var hybrid technique. The developed framework is applied to experimental
data in three distinct settings, with varying bubble nucleation methods, cavitation
media, and using different material constitutive models. We demonstrate that the
mechanical properties of gels used in each experiment can be estimated quickly
and accurately despite experimental inconsistencies, model error, and noisy data.
The framework is used to further our understanding of the underlying physics and
identify limitations of our bubble dynamics model for violent bubble collapse.

In the second part of the thesis, we simulate burst-wave lithotripsy (BWL), a non-
invasive treatment for kidney stones that relies on repeated short bursts of focused
ultrasound. Numerical approaches to study BWL require simulation of acoustic
waves interacting with solid stones as well as bubble clouds which can nucleate
ahead of the stone. We implement and validate a hypoelastic material model, which,
with the addition of a continuum damage model and calibration of a spherically-
focused transducer array, enables us to determine how effective various treatment
strategies are with arbitrary stones. We present a preliminary investigation of the
bubble dynamics occurring during treatment, and their impact on damage to the
stone. Finally, we propose a strategy to reduce shielding by collapsing bubbles
ahead of the stone via introduction of a secondary, low-frequency ultrasound pulse
during treatment.
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C h a p t e r 1

INTRODUCTION

1.1 Motivation

In biomedical sciences, numerical and modeling approaches to study biological
systems often present significant challenges due to their multiscale nature and the
interaction of various materials ranging from liquids and soft tissue to elastic solids.
Many applications in the medical field involve the—often nonlinear—dynamical
behavior of these materials in high strain-rate and/or high stress regimes. One
example where such strain-rates and stresses are generated is during cavitation of
single or clouds of bubbles. Treatments making use of focused ultrasound, shock
waves, or laser surgery can cause nucleation of bubble clouds which collapse rapidly,
deforming the surrounding material at high rates and inducing very high pressures
at the bubble nucleation site. Understanding the interaction of such cavitating gas
bubbles with viscoelastic materials and stiff elastic solids is thus valuable in various
applications in the biomedical field.

In this thesis, we present numerical and data-driven methods for the modeling of
multiphase physics involving cavitating bubble dynamics in and near elastic and
viscoelastic materials. In the first part, we make use of data assimilation with
bubbles cavitating in a viscoelastic hydrogel to estimate its mechanical properties.
This method to characterize soft materials can aid in the modeling of biomaterials
in settings where high strain rates occur. In the second part, we implement a
numerical framework for the direct numerical simulation of acoustic wave–bubble–
stone interactions. This is used to simulate burst-wave lithotripsy, a treatment to
break kidney stones through exposure to repeated bursts of focused ultrasound. In
particular, this framework enables a better understanding of the impact and dynamics
of bubbles that can form near the stone during treatment.

1.2 Inertial Microcavitation Rheometry

Across various engineering disciplines, particularly in medicine and the biomedi-
cal field, knowing the mechanical properties of soft materials such as hydrogels,
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polymers, and biomaterials is of great importance (Chaudhuri et al., 2016; Lee
and Mooney, 2012; Storrie and Mooney, 2006; Solomon and Jindal, 2007). This
includes applications where high strain rates occur in biological tissue, for exam-
ple during impact and blast exposure (Bar-Kochba et al., 2016; Sarntinoranont et
al., 2012; Meaney and Smith, 2011; Nyein et al., 2010; Ramasamy et al., 2011),
therapeutic ultrasound (Maxwell, Cain, Duryea, et al., 2009; Xu et al., 2007; Man-
cia, Vlaisavljevich, Xu, et al., 2017; Mancia, Vlaisavljevich, Yousefi, et al., 2019;
Vlaisavljevich, Lin, Warnez, et al., 2015; Bailey, Khokhlova, et al., 2003) or laser
surgery (Brujan and Vogel, 2006; Vogel et al., 2008). However, measuring the
mechanical properties of soft, viscoelastic materials at these high strain rates (ex-
ceeding 103 s−1)) is challenging, in particular due to the high compliance of these
materials (Arora, Narani, and McCulloch, 1999) and the strain rate dependence of
their properties (Brujan and Vogel, 2006). At high strain rates, impact (Taylor, 1948;
Allen, Rule, and Jones, 1997) or Kolsky bar tests (Chen and Song, 2010) can be
used, but neither is adequate for soft materials, as they rely on high loading rates and
applied stresses, incompatible with the high compliance of viscoelastic materials
of interest (Hu, Zhao, et al., 2010; Hu, You, et al., 2012). Thus, measuring the
mechanical properties of soft, viscoelastic materials at high strain rates remains a
challenging goal of rheometry.

To this end, methods relying on cavitation in these soft materials have been devel-
oped. The bubble dynamics that occur when a bubble collapses in a soft material are
sensitive to the material’s properties, and thus observation of these dynamics can be
exploited to characterize these properties. The first such method, called the Cavita-
tion Rheology Technique (CRT), was introduced by Zimberlin, Sanabria-DeLong,
et al. (2007). They make use of needle-induced cavitation, where a cavity is created
in a gel at the tip of a needle by introducing pressurized air. The elastic modulus of
the gel is deduced by determining the critical pressure where rapid deformation of
the gel occurs. This technique has been studied extensively, and used, for example,
to determine the mechanical properties of polymers and biomaterials in the eye and
skin (Barney et al., 2020; Zimberlin, Sanabria-DeLong, et al., 2007; Zimberlin,
McManus, and Crosby, 2010; Cui et al., 2011; Chin et al., 2013; Bentz, Walley,
and Savin, 2016). An extension of this method, which does not rely on determining
the critical pressure, but instead tracking the volume expansion of the cavity, was
introduced by Raayai-Ardakani, Chen, et al. (2019) and Raayai-Ardakani and Co-
hen (2019) and used to characterize biological tissue (Mĳailovic et al., 2021; Van
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Sligtenhorst, Cronin, and Brodland, 2006). While effective for smaller strain rates,
these methods cannot reach the high strain rate regime of interest to the biomedical
applications described above (Chockalingam et al., 2021).

To this end, Estrada et al. (2018) proposed a high-strain rate rheometer to estimate
the viscoelastic properties of polyacrylamide gels through observation of the bubble
radius time history during a laser-generated cavitation event in a sample of the
material. Cavitation occurring in liquids and soft materials on exposure to tensile
waves of sufficient amplitude will induce very high strain rates in the material, within
the regime of interest. The technique, called Inertial Microcavitation Rheometry
(IMR), compares bubble radius time-histories obtained through high-speed imaging
of laser-induced cavitation (LIC) in the material of interest, to simulated radius vs.
time curves. Using an adequate theoretical cavitation model derived from literature
on cavitation in a fluid (Akhatov et al., 2001; Epstein and Keller, 1972; Flynn, 1975;
Fujikawa and Akamatsu, 1980; Keller and Kolodner, 1956; Keller and Miksis,
1980; Nigmatulin, Khabeev, and Nagiev, 1981; Prosperetti, 1991; Prosperetti,
Crum, and Commander, 1988; Prosperetti and Lezzi, 1986), an array of simulations
are run with varying material properties and the difference with experimental data is
minimized through least-squares fitting to determine parameters which best match
the experiment. In this way, properties of the material can be inferred through
observation of these cavitating bubbles. Estrada et al. (2018) demonstrate that they
can adequately infer the shear modulus and viscosity of polyacrylamide gels with
varying stiffness using this method. This technique can achieve a broad range of
strain rates, from 𝑂 (103)𝑠−1 to 𝑂 (108)𝑠−1. It is the first reliable technique for
rheometry of soft materials in this regime. The method is minimally invasive and
the setup relatively straightforward, making it broadly applicable to an array of gels
or other soft materials with high compliance. The experimental setup, as well as
representative bubble images captured by the high-speed camera which are used to
determine bubble radius time-histories are shown in figure 1.1.

Results obtained in well-characterized polyacrylamide hydrogels by Estrada et al.
(2018) are promising. However, there are a few areas where their method could be
improved. First, the computational cost of the least-squares fitting approach used is
not easily scalable, particularly to the estimation of additional parameters, as may
be necessary given other material models. Only two parameters (shear modulus
and viscosity) are estimated by Estrada et al. (2018), which already required 𝑁2

simulations, with 𝑁 the number of guesses per parameter. Unless a good estimate
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Figure 1.1: Sketch of the IMR experimental setup (A) and time-history of
representative captured bubble images (B). Reprinted from Estrada et al. (2018)
with permission from Elsevier, © 2018.

for each parameter is known apriori, 𝑁 must be relatively large to obtain a precise
estimate, with its size growing by an order of magnitude with each added significant
figure. If material models require a third parameter to estimate, the number of
simulations rises to 𝑁3, and so on for each additional parameter. In the case tested
where only two parameters are estimated, in a material that has been extensively
studied, this is tractable. However, scaling to other methods may prove difficult.

Second, the reliance of IMR on laser-induced cavitation introduces some uncertainty
in the parameter estimation. The physics of laser nucleation are not captured in the
model used, particularly in the initial growth phase. Thus, Estrada et al. (2018) fit
radius curves starting at the maximum bubble radius. This is a reasonable approach
to avoid the complicated growth phase, and some uncertainty cannot be avoided
unless a new bubble-dynamics model is used that captures plasma generation by
the laser. However, IMR would benefit from a framework that better quantifies this
uncertainty during parameter estimation and provides additional information as to
the expected error in obtained estimates.

1.3 Data Assimilation

The fundamental idea behind data assimilation (DA) is to combine a mathematical
model for a phenomenon with data, or observations, in order to best determine its
state and predict its behavior. In many cases, such as those explored in this thesis, we
begin with a forward model for the system. That is, we derive a mathematical model
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which, given a system at time 𝑡, will predict its state at time 𝑡 + 1. This model can
be analytical, or a simulation tool providing an approximate solution. At each time
when data (experimental or otherwise) is available, it is used to correct and improve
the state prediction. This is often done sequentially, where the model forecast and
data-informed correction are applied in turn at each time, but can also be used to
determine the initial state of a system and estimate particular parameters. Data
assimilation can thus be considered a framework to solve inverse problems, where
data is combined with a mathematical model to estimate unknown parameters in the
initial condition of a dynamical system (Sanz-Alonso, Stuart, and Taeb, 2023; Law,
Stuart, and Zygalakis, 2015; Schillings and Stuart, 2017). Most DA methods are
designed to account for uncertainty in both the model and data, which makes them
versatile and adaptable to contexts with noisy data or using reduced-order models.

Applications of data assimilation are plentiful and span many disciplines. One
example is the state estimation for guidance, navigation and control of aircraft,
spacecraft, and other vehicles. Here, observation data from various onboard in-
struments can be combined online with modeled attitude and position for precise
determination of the state of the craft or vehicle (Lefferts, Markley, and Shuster,
1982; Kim et al., 2007; Madyastha et al., 2011; Venhovens and Naab, 1999; Wenzel
et al., 2006; Antonov, Fehn, and Kugi, 2011). Another is atmospheric and oceano-
graphic modeling, for example for weather forecasting where sparse data points (e.g.,
pressure, temperature, and wind measurements) are combined with fluid dynamics
models to best predict weather and atmospheric conditions. This problem is a great
example of how useful DA can be. Indeed, precise direct modeling of weather
conditions on an atmospheric scale is not feasible given current (or near-future)
computing power. On the other hand, only limited data points can be obtained at
weather tracking stations or using weather balloons. Neither modeling tools nor
data alone are sufficient to accurately predict future weather conditions. However,
combining reduced-order fluid dynamical models with sparse atmospheric measure-
ments in a data assimilation framework is a powerful tool for atmospheric modeling
and weather prediction. In fact, many modern DA methods have emerged from
atmospheric sciences and weather forecasting, where it is widely used (Houtekamer
and Zhang, 2016; Leeuwen, 2009; Lorenc, 1986; Bengtsson, Snyder, and Nychka,
2003; Evensen and Van Leeuwen, 1996). The DA methods used in this thesis are
all extensions or variations on perhaps the most well-known and widely used DA
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method, which was foundational to the field of data assimilation: the Kalman filter
(Kalman, 1960; Kalman and Bucy, 1961).

The Kalman Filter and Kalman Smoother To describe the Kalman filter, we
begin by defining the linear dynamics model

𝑥𝑘+1 = 𝐹𝑥𝑘 + 𝜂𝑘 (1.1)

where 𝐹 ∈ R𝑑×𝑑 is a linear operator for the state transition model, which maps a
state 𝑥 ∈ R𝑑 from time 𝑘 to 𝑘 + 1, and 𝜂𝑘 ∼ N(0, Σ) is the model error, assumed
Gaussian with mean 0 and variance Σ. The state is viewed as a random variable
𝑥𝑘 ∼ N(𝑚𝑘 , 𝐶𝑘 ) with mean 𝑚𝑘 and covariance 𝐶𝑘 . The estimate of the state at a
time 𝑘 is thus the mean of this random variable 𝑥𝑘 . The state transition model 𝐹 is
generally based on a mathematical model for the evolution of the dynamical system,
and must, in this case, be linear to be represented in matrix form.

We also define a linear observation model

𝑦𝑘+1 = 𝐻𝑥𝑘+1 + 𝜈𝑘+1, (1.2)

where 𝐻 ∈ R𝑛×𝑑 is the linear observation operator, which maps the state 𝑥𝑘+1
to measurement space, where 𝑦𝑘+1 ∈ R𝑛 is the observation (data) at time 𝑘 + 1.
𝜈𝑘 ∼ N(0, Γ) is the measurement noise, again assumed Gaussian with mean 0 and
variance Γ. The Kalman filtering process, which estimates the optimal (estimation
variance minimizing) state at step 𝑘 + 1 given the dynamical system described by
equations (1.1) and (1.2) can be broken down into a forecast step and an analysis
step. We track the random Gaussian state variable 𝑥𝑘 via its mean𝑚𝑘 and covariance
𝐶𝑘 at any given time 𝑘 . The mean and covariance are forecast and updated using
the following. We note that only the final formulas used in the Kalman filter are
reported here. A clear and thorough example of their full derivation can be found
in Sanz-Alonso, Stuart, and Taeb (2023).

Forecast Step Since the state is represented by a Gaussian random variable (which
is independent of the model error noise 𝜂, and the forecast operator is linear, we can
write

𝑚𝑘+1 = 𝐹𝑚𝑘 (1.3)

𝐶𝑘+1 = 𝐹𝐶𝑘𝐹
𝑇 + Σ, (1.4)

(1.5)
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where ·̂ represents forecast variables. Here, we simply propagate the mean and
covariance of our state through the forecast operator.

Analysis Step Once the forecast step is done, we introduce our measurement 𝑦𝑘+1
to correct the forecast state statistics. This yields

𝑚𝑘+1 = 𝑚𝑘+1 + 𝐾𝑘+1(𝑦𝑘+1 − 𝐻𝑚𝑘+1) (1.6)

𝐶𝑘+1 = (𝐼 − 𝐾𝑘+1𝐻)𝐶𝑘+1, (1.7)

where

𝐾𝑘+1 = 𝐶𝑘+1𝐻
𝑇 (𝐻𝐶𝑘+1𝐻𝑇 + Γ)−1 (1.8)

is called the Kalman gain, and the vector 𝑦𝑘+1 − 𝐻𝑚𝑘+1 in equation (1.6) is called
the innovation. The Analysis step can also be re-framed from an optimization per-
spective, which will be particularly useful when comparing it to other DA methods.
We can re-write this analysis step as the minimization of a cost function 𝐽𝐾𝐹 :

𝑚𝑘+1 = argmin𝑥𝐽𝐾𝐹 (𝑥), (1.9)

where
𝐽𝐾𝐹 (𝑥) =

1
2
∥𝑦𝑘+1 − 𝐻𝑥∥2Γ +

1
2
∥𝑥 − 𝑚𝑘+1∥2

𝐶𝑘+1 |
. (1.10)

This cost function helps understand the Kalman filter analysis intuitively. The first
term minimizes the difference between the state vector mapped to measurement
space and the observation, weighed by the measurement noise covariance. The
second term minimizes the difference between the state vector with the projected
state vector given the physical model, weighed by the model error covariance.

Another class of DA methods are smoothers. The difference between filtering and
smoothing is that in filtering, data is incorporated into the state estimate sequentially
at each time step. In this sense, it is often referred to as an ‘online’ method, as
the estimate is adjusted at each time. By contrast, smoothing is done ‘offline,’
incorporating data from multiple time steps to adjust the state estimate. In filtering,
only data from time 𝑘 is used to estimate 𝑥𝑘 . In smoothing, data from multiple times
(e.g., 𝑘 to 𝑘 +𝑛) is used to estimate this same state. The Kalman smoother is a simple
extension of the Kalman filter, best understood in the optimization framework, where
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the cost function is modified to account for data at multiple times, yielding

𝐽𝐾𝑆 (𝑋) =
1
2
∥𝑥0 − 𝑚0∥2𝐶0

+

1
2

𝑁−1∑︁
𝑘=0
∥𝑦𝑘+1 − 𝐻𝑥𝑘+1∥2Γ +

1
2

𝑁−1∑︁
𝑘=0
∥𝑥𝑘+1 − 𝐹𝑥𝑘 ∥2

𝐶𝑘+1 |
,

(1.11)

where 𝑋 = {𝑥0, ..., 𝑥𝑁 } represents the time-series of the state from time 0 to 𝑁 . This
cost function minimizes once again the difference with both data and forecast state,
but this time over a series of times 0 to 𝑁 , and the state at all times is estimated.

1.4 The DA-IMR Approach

We propose a data assimilation approach to inertial microcavitation rheometry.
The goal of IMR, namely estimation of the mechanical properties of a viscoelastic
material by observation of bubble dynamics, is posed as an inverse problem that is
solved using data assimilation. In this framework, we require a bubble dynamics
solver for our operator 𝐹 in the dynamical model given in equation (1.1), and the
state 𝑥 will be comprised of all dependent variables of this solver. The data 𝑦 is
simply the bubble-radius observations, and the observation operator 𝐻 maps this
observed radius to the state space. The key to using data assimilation to estimate
material properties is then simply to append these unknown properties to the state
vector 𝑥, with an initial estimate at initial time for 𝑥0. As long as the dynamics of
the bubble radius evolution are sensitive to changes in these properties, they will
be estimated at each step in the filtering. This represents the basis of DA-IMR, our
data assimilation approach to inertial microcavitation rheometry.

The goal of DA-IMR is twofold. First, this method can vastly improve the effi-
ciency of IMR. IMR requires least-squares fitting of a large number of curves to
experimental data and thus requires 𝑁 𝑖 bubble collapse simulations, where 𝑖 is the
number of parameters to estimate and N the number of values to test per parameter.
This quickly becomes intractable in order to achieve large precision or to estimate
many parameters. Second, DA can provide interesting insight into both modeling
and experimental error in the estimation process. Tracking covariances associated
with the forecast and analysis steps can provide insight into both model uncertainty
and experimental error which could be present. Furthermore, the ability of filters to
estimate parameters online means that we can obtain time-dependent information
about this uncertainty.
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However, an issue appears in order to use Kalman filtering (KF) or smoothing (KS)
for this application. As described in section 1.3, the operators 𝐹 and 𝐻 used in
the forecast and analysis steps of the KF and KS must be linear. This poses no
issue for the observation operator 𝐻 here, as the radius is a dependent variable of
our model, and thus 𝐻 will simply be a one-to-one map of the radius to itself. To
capture bubble dynamics in a viscoelastic material, however, our dynamical model
will need to be nonlinear. Indeed, capturing these dynamics with a sufficient level of
accuracy usually requires solving a system of at least 2 nonlinear ordinary differential
equations (for bubble radius and pressure), and 2 partial differential equations (for
temperature and vapor concentration in the bubble). These models will be described
in Chapter 2, but the issue in the context of Kalman filtering is their nonlinearity,
which means they cannot be represented by an operator 𝐹 in matrix form. This
means a different approach is required to update the Covariance matrix at each step.
A simple approach to deal with weakly nonlinear systems is the so-called extended
Kalman filter (Jazwinski, 2007; Gelb, 1974; Ghil et al., 1981). This method simply
linearizes the dynamics about the mean, using the Jacobian matrix to represent 𝐹 and
calculate the Kalman gain. However, this method is inadequate for highly nonlinear
dynamics, as is the case of our bubble dynamics system (Julier and Uhlmann, 2004).

Instead, we turn to a class of methods called ensemble methods, which are widely
used in problems with high-dimensional systems and nonlinear dynamics. The driv-
ing idea behind ensemble methods is to represent the statistics of the state empirically
by randomly sampling 𝑞 realizations of the state from a given distribution. We thus
create an ensemble, the statistics of which can be empirically determined. The
mean and covariance of this ensemble are used as a surrogate measure of the state
estimate and error covariance. This removes the need to update the covariance with
a linear forecast operator, as the covariance is simply calculated empirically from
the ensemble, each element of which can be updated with any dynamical model.
The particular methods used in DA-IMR, which will be detailed in Chapter 2, are
Ensemble Kalman methods, which are ensemble-based extensions of the Kalman
filter and smoother described in section 1.3, making use of this empirical sampling
(Evensen, 1994; Evensen, 2003; Evensen, 2004; Houtekamer and Derome, 1995;
Houtekamer and Mitchell, 1998; Anderson and Anderson, 1999).
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1.5 Burst-Wave Lithotripsy

The second part of this thesis, in Chapters 4 and 5, focuses on a different biomedical
application: the treatment of kidney stone disease with lithotripsy. Renal calculi
occur in millions of patients around the world every year, with the number of
individuals affected in the United States rising above 10% of the population in the
past decade (Scales et al., 2012; Hill et al., 2022). Various treatments exist to
break and remove kidney and urinary stones. While surgical removal is effective,
it presents complication risks, is expensive, and can be difficult depending on the
stone location. Instead, an effective and safe non-invasive treatment can create
better outcomes for patients. Extracorporeal Shock-wave lithotripsy (SWL) is a
common, non-invasive treatment for kidney stone disease. In SWL stones are
subject to multiple rounds of focused shock waves to break them into smaller pieces
that can then be passed naturally (Chaussy, Brendel, and Schmiedt, 1980; Chaussy,
Schmiedt, et al., 1982; Chaussy and Fuchs, 1989; Sackmann et al., 1988). SWL
is applied non-invasively under local or general anesthesia to avoid pain for the
patient, and 𝑂 (1000) shocks are delivered at a rate of approximately 1 Hz. Various
studies have examined treatment parameters such as shock wave rate, lithotripter
technology, and shock wave amplitude variation (Lingeman et al., 2009; Jendeberg
et al., 2017).

While SWL avoids the need for surgery and is generally effective, the shock waves
generated have very high pressure magnitudes, which can cause damage to sur-
rounding tissue, internal bleeding, and other adverse effects in patients (Evan et al.,
1998; McAteer and Evan, 2008; Bailey, Pishchalnikov, et al., 2005; Janetschek
et al., 1997). Burst-wave lithotripsy (BWL) was developed as an alternative, to
improve comminution and mitigate risks associated with SWL. Instead of shock
waves, BWL uses repeated short bursts of ultrasound (Maxwell, Cunitz, et al.,
2015). The frequency is 𝑂 (100) kHz, with pulses of 10 to 20 cycles of ultrasound
occurring at a pulse repetition frequency (PRF) of 1 to 10 Hz. In BWL, peak pos-
itive pressures are greatly reduced compared to SWL, where pressure magnitudes
can reach up to 100 MPa. During treatment, this peak pressure is generally limited
so that negative pressure magnitudes need not exceed 7 MPa to minimize the risk
of cavitation-induced injury. An added advantage is that BWL does not require
anesthesia, as patients tolerate the procedure well (Harper, Metzler, et al., 2021).
Figure 1.2 compares the SWL and BWL waveforms, highlighting the difference in
pressure amplitude between the treatments.
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Figure 1.2: Comparison of typical SWL (top) and BWL (bottom) focal pressure
waveforms. Reprinted from Maxwell, Cunitz, et al. (2015) with permission from
Wolters Kluwer Health, © 2015.

Experimental studies of BWL, both in-vitro (Maxwell, Cunitz, et al., 2015) and in-
vivo in a pig model (Maxwell, Wang, et al., 2019), have shown that it can break stones
effectively. Maxwell, Cunitz, et al. (2015) fractured stones of various compositions,
including stones known to be difficult to break with SWL, and compared treatment
efficacy at various frequencies. Notably, they observed the comminution of stones
into smaller fragments at higher frequencies. Compared to SWL, BWL thus leads
to a more uniform fragment size that can be controlled by ultrasound frequency.
A schematic of the experimental setup used by Maxwell, Cunitz, et al. (2015),
taken from their paper, is shown in figure 1.3. Sapozhnikov, Maxwell, and Bailey
(2021) and Bailey, Maxwell, et al. (2022) have shown that higher frequencies of
ultrasound can enhance stone comminution for smaller calculi, further pointing to
the fact that this frequency-dependence may be exploited to adapt BWL to stone
size. More recently, clinical trials have shown promise in treating human patients
(Harper, Metzler, et al., 2021). In a trial on 19 patients, Harper, Lingeman, et al.
(2022) successfully fragmented 91 % of treated stones, achieving a median stone
comminution of 90 % of stone volume.

These results show that BWL can be very effective. Studies have looked at the
structure of elastic waves in stones during treatment experimentally (Maxwell,
MacConaghy, et al., 2020), and developed models to predict maximum stress in
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Figure 1.3: Schematic of the experimental setup for in-vitro BWL used by
Maxwell, Cunitz, et al. (2015) and representative of the setup used for most
experimental studies of BWL. Reprinted from Maxwell, Cunitz, et al. (2015)
with permission from Wolters Kluwer Health, © 2015.

the stone in idealized settings (Sapozhnikov, Maxwell, and Bailey, 2021). However,
as a novel treatment, many questions remain as to the mechanisms of stone frag-
mentation during BWL. A complicating factor is that high pressure magnitudes near
the proximal surface of the stone can induce cavitation, resulting in bubble clouds
forming between the transducer and the stone.

1.6 Bubble Formation during BWL

As mentioned, a remaining challenge of BWL is the propensity for cavitation to
occur, particularly near the stone’s proximal surface. In SWL it is generally accepted
that cavitation, while undesirable from the point of view of injury, is important for
complete stone comminution. While stress waves generated by the focused shock
alone tend to result in large fragments, bubble-collapse-induced erosion produces
much smaller ones. Inter-pulse times of 0.5 to 1s in SWL ensure that cavitation
bubbles induced in each pulse are largely dissolved by the following one

Some approaches have tried to exploit this stone-erosion potential of bubble cloud
collapse by designing a two-frequency waveform aimed at nucleating and controlling
the collapse of bubble clouds on kidney stones (Ikeda et al., 2006; Yoshizawa et
al., 2009; Matsumoto and Yoshizawa, 2005; Brujan and Matsumoto, 2012). This
method, sometimes called cavitation control lithotripsy (CCL), employs an initial
focused ultrasound pulse with very high frequency (usually 1 to 5 MHz) to create
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a localized bubble cloud. A second pulse at or around 545 khz trails the high
frequency pulse, and forces the bubble cloud to collapse near the stone surface,
delivering high pressures to erode the stone in the process. This approach exploits
cloud cavitation to erode the stone. While the pressure magnitudes used for CCL
are marginally higher than those of BWL — Yoshizawa et al. (2009) report peak
positive focal pressure of 16 MPa — it is an efficient method to deliver very high
localized pressure on the stone surface, which can reach 𝑂 (1 GPa) as the bubble
cloud collapses (Shimada, Kobayashi, and Matsumoto, 1999).

By contrast to SWL and CCL, the resonating stress waves associated with the
ultrasound wavelength appear to be sufficient to produce small enough fragments
in burst-wave lithotripsy without relying on cavitation-induced damage (Maxwell,
Cunitz, et al., 2015; Maxwell, MacConaghy, et al., 2020; Chen, Samson, et al.,
2020; Raskolnikov, Bailey, and Harper, 2022). In developing treatment protocols, it
is therefore generally sought to avoid cavitation through pausing treatment to allow
bubbles to dissolve, or to utilize interleaved pulses of lower-amplitude ultrasound to
induce bubble coalescence and dissolution (Duryea, Roberts, et al., 2014; Duryea,
Cain, et al., 2015; Duryea, Tamaddoni, et al., 2015; Tamaddoni, Roberts, Duryea,
et al., 2016; Tamaddoni, Roberts, and Hall, 2019). Apart from minimizing the risk
of injury, minimizing cavitation is important in BWL because the short inter-pulse
times do not allow the full dissolution of bubbles from pulse to pulse. The continual
presence of bubbles on the proximal surface of the stone can then lead to a substantial
shielding of the stone from the incident acoustic energy (Maeda, Maxwell, et al.,
2018).

To better understand the mechanisms of stone comminution during BWL, a tool
capable of simulating the response to BWL of an arbitrary stone, while modeling
the dynamics of bubbles that may shield the stone during treatment, would be
valuable.

1.7 Fluid-Solid Solver

To accurately simulate ultrasound–bubble cloud interactions, and cavitation of bub-
bles which may be present during treatment, a high-order accurate multi-phase
compressible flow solver is required. To this end, we use an interface capturing
method with the so-called 5-equation multiphase flow model of Kapila et al. (2001),
solved with a WENO shock-capturing finite volume scheme. This is paired with
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an HLL-type Riemann solver and total-variation diminishing time-stepping. The
solver used, now open source, is the Multi-component Flow Code (MFC). Also
implemented is a model to propagate spherical acoustic waves, as generated by the
transducer during BWL. Previous numerical studies with this solver have examined
the energy shielding effects of bubbles by using a subgrid bubble model and calcu-
lating the scattering of acoustic energy (Maeda, Maxwell, et al., 2018; Maeda and
Colonius, 2018; Maeda and Colonius, 2019). However, these did not include a solid
mechanics model or any way to determine the elastic response of the stone to the
ultrasound.

Various approaches exist to pair a solid-mechanical model with a fluid dynamics
solver. A difficulty in this case is that modeling the response of a solid generally
requires tracking material deformation. However, the Eulerian framework used
in MFC and other structured-grid CFD solvers does not track strains, and thus
the stresses in the solids cannot be calculated using typical stress-strain relations.
To address this problem and maintain a single-framework, monolithic solver, we
adopt a hypoelastic material model following Rodriguez and Johnsen (2019). This
approach is capable of modeling solid mechanics in a fully Eulerian framework by
taking appropriate derivatives of constitutive stress-strain relations. To determine
elastic stresses in this framework, we only require strain derivatives, which are
straightforward to calculate in an Eulerian framework where velocity is tracked
at each point in the domain. Thus, such a hypoelastic solver can naturally be
implemented in a CFD solver such as MFC, without the need to switch the frame
of reference used. Details on the hypoelastic approach and its implementation are
discussed in Chapter 4, in section 4.1.1. There, we also detail the addition of a
continuum damage model following Cao et al. (2019). This model makes use of the
stresses obtained in the stone via the hypoelastic model to calculate a damage field,
which tracks the accumulation of high stresses over time in the stone. Thus, the
full interaction of ultrasound waves with gas bubbles and a submerged stone can be
modeled to better understand mechanisms key to improving the efficacy of BWL.

1.8 Contributions and Outline

In this thesis, we first present the development of a data assimilation framework
for the characterization of soft, viscoelastic materials via observation of bubble
collapse (DA-IMR). This includes the implementation of a hybrid DA method
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which is particularly effective for parameter estimation in this context. We show its
successful application to data from various experiments using different constitutive
models, demonstrating the accuracy and versatility of material property estimation
with DA-IMR. Beyond parameter estimation, we gain insight into the limitations
of the physical models used when violent bubble collapse occurs, particularly with
high energy laser-induced cavitation. We then present the implementation of a
comprehensive numerical framework for high-fidelity direct numerical simulations
of acoustic wave–bubble–stone interactions. This framework is used to investigate
bubble dynamics and stone damage in burst-wave lithotripsy. The reduction of
stress and damage in stones during BWL when bubbles are present is quantified, and
strategies to mitigate bubble shielding and improve treatment efficacy by modulating
the frequency of individual transducer elements are proposed.

Chapter 2 details the development of the DA-IMR framework. A reduced-order
spherical bubble dynamics model, and various ensemble-based data assimilation
methods used in conjunction with this model are presented. Surrogate bubble
radius time history data is generated via numerical simulations of inertial bubble
collapse, and used to compare the performance of each data assimilation method. We
conclude on the most accurate and efficient methods in the context of soft material
characterization, and validate the DA-IMR framework with these DA methods.

In Chapter 3, this framework is tested on experimental cavitation data in three
subsequent studies. We begin by applying DA-IMR on the laser-induced cavitation
data of Estrada et al. (2018), which serves as a benchmark for our method with
experimental data. Then, we apply DA-IMR to results with laser-induced cavitation
(LIC) in gels with seed particles, which expands the stretch-ratio regime where DA-
IMR can be used. The DA methods not only estimate the mechanical properties of
the gel, but show the limitations of the physical model used for violently cavitating
bubbles. Finally, the method is tested with ultrasound-induced cavitation data,
which we show avoids some of the issues observed with bubble nucleation physics
in LIC.

Next, in Chapter 4, we shift to direct numerical simulations of acoustic wave–
bubble–stone interactions. This chapter describes the developed framework in detail,
including all the implementations to make BWL simulations possible. We begin by
describing the multiphase flow solver used for the interactions of acoustic waves with
liquids and gas bubbles. Then, we present the hypoelastic model implemented into
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this solver to simulate the elastic response of solids, and validate it against analytical
and experimental results. Additionally, we present the addition of a continuum
damage model, the calibration of a virtual transducer array to mimic experimental
conditions with a much smaller simulated acoustic source, and the acceleration of
our code using GPUs to enable simulations at high enough resolutions to capture
all scales required in BWL simulations. Example simulations are performed to
study the ultrasound frequency–dependence of maximum stress in stones of various
shapes and sizes.

In Chapter 5, this numerical framework is used to study bubble dynamics and
damage in the stone during BWL. We begin by quantifying the damage mitigation in
the stone due to bubble shielding, showing the significant impact that bubble clouds
can have on treatment efficacy. We then study the dynamics of characteristic bubble
clouds when exposed to spherically focused ultrasound acoustic fields generated by a
virtual BWL transducer array. We show that modulating the ultrasound frequency of
individual transducer elements by introducing a secondary low-frequency wave can
cause bubbles to collapse ahead of the stone. Applying this to full BWL simulations
with bubble clouds present in front of a model kidney stone, we explore strategies
to maximize the efficiency and efficacy of single BWL pulses in the presence of
bubbles.

Finally, in Chapter 6, we summarize the conclusions of this thesis and provide
guidance on potential future efforts to expand on the work presented.
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C h a p t e r 2

DATA ASSIMILATION FOR INERTIAL MICROCAVITATION
RHEOMETRY

Part of this chapter is adapted from sections 1-4 of Spratt, Rodriguez, Schmidmayer,
et al. (2021). We begin by describing the material–bubble-dynamic model used for
inertial microcavitation rheometry throughout Chapter 2 and Chapter 3, with slight
modifications to the viscoelastic material model where needed. Then, we present
three data assimilation methods and details of their implementation for our problem.
Finally, we compare each method using synthetic data, generated by adding random
noise to results from our spherical bubble dynamics model. Thus, we can gauge the
relative performance of each method in the absence of modeling uncertainties. We
show that two of the tested methods can predict material parameters accurately, and
are thus chosen as candidates to use with experimental data in Chapter 3.

2.1 Bubble Dynamics Model

A physical model for the dynamics of collapsing bubbles is required to character-
ize the viscoelastic properties of surrounding materials. Many spherical bubble
dynamics models exist. Of particular relevance here are those for cavitation in
soft materials (Gaudron, Warnez, and Johnsen, 2015; Yang and Church, 2005) and
specific numerical methods for solving them (Warnez and Johnsen, 2015; Barajas
and Johnsen, 2017). We use the model of Estrada et al. (2018), which adopts ap-
proximations validated in previous spherical-bubble models (Prosperetti and Lezzi,
1986; Prosperetti, Crum, and Commander, 1988; Akhatov et al., 2001; Epstein and
Keller, 1972; Keller and Miksis, 1980; Preston, Colonius, and Brennen, 2007). Key
assumptions of this model are that the motion of the bubble and its contents are
spherically symmetric, the bubble pressure is spatially uniform (homobaricity), the
temperature of the surrounding material is constant, and that there is no mass trans-
fer of the non-condensible gas across the bubble wall. While the effects of vapor
mass transfer may be negligible in the regime of interest to this chapter (Barajas and
Johnsen, 2017), we opt to include these in the present model formulation as they are
important in other regimes where this method may be applied (Preston, Colonius,
and Brennen, 2007).
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The Keller–Miksis equation models the radius evolution (Keller and Miksis, 1980),(
1 −
¤𝑅
𝑐

)
𝑅 ¥𝑅 + 3

2

(
1 −

¤𝑅
3𝑐

)
¤𝑅2 =

1
𝜌

(
1 +
¤𝑅
𝑐

) (
𝑝𝑏 −

2𝑠
𝑅
+ 𝑆 − 𝑝∞

)
+ 1
𝜌

𝑅

𝑐

¤(
𝑝𝑏 −

2𝑠
𝑅
+ 𝑆

)
,

(2.1)

where 𝑅 is the bubble radius, 𝑐 the material speed of sound, 𝜌 the material den-
sity, 𝑝𝑏 the bubble internal pressure, 𝑠 the bubble-wall surface tension, 𝑆 the stress
integral (see (2.7)), and 𝑝∞ the far-field pressure. The Rayleigh-Plesset equation
(Rayleigh, 1917; Plesset, 1948; Plesset, 1949; Plesset and Prosperetti, 1977) is often
used for spherical bubble dynamics. However, it assumes incompressibility of the
surrounding material, whereas the Keller-Miksis equation relaxes the incompress-
ibility assumption near the bubble wall, taking into account the speed of sound of
the surrounding material. These effects prove to be important in the context of IMR,
though values for the Mach number are not expected to exceed ¤𝑅/𝑐 ≈ 0.3 (Akhatov
et al., 2001), and thus the Keller-Miksis equation is used.

Under the model assumptions, no mass or energy conservation equations are needed
outside the bubble. Furthermore, the conservation of momentum simplifies to an
ordinary differential equation for the bubble pressure
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where 𝜅 is the specific heat ratio of vapor, 𝐾 the thermal conductivity, 𝑇 the gas
temperature,𝐶𝑝 the specific heat, 𝐷 the binary diffusion coefficient, and 𝑘𝑣 the vapor
mass fraction. Subscripts 𝑔, 𝑣, and 𝑚 refer to gas, vapor, and mixture properties,
respectively. Applying conservation of energy in the bubble interior yields an
equation for the bubble temperature:
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where 𝑣𝑚 is the radial mixture velocity and 𝜌𝑚 the mixture density. The boundary
condition 𝑇 (𝑅) = 𝑇∞ follows from the model assumptions. The radial mixture
velocities are computed as
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with associated kinematic boundary condition
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Fick’s law describes the mass diffusion process in the bubble. Casting the conser-
vation of mass inside the bubble in terms of the mixture density, the vapor mass
fraction inside the bubble is
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Under the assumption of equilibrium phase change at the bubble wall, the associated
boundary condition at the wall is 𝑝𝑣,𝑠𝑎𝑡 (𝑇 (𝑅)) = R𝑣𝑘 (𝑅)𝜌𝑚 (𝑅)𝑇 (𝑅), where 𝑝𝑣,𝑠𝑎𝑡
is the saturation pressure of the vapor and R𝑣 is the gas constant of the vapor.

Equations (2.1), (2.2), (2.3), and (2.6) form a system of equations, which is evolved
in time with an implicit Runge–Kutta algorithm that uses the trapezoidal rule and
backwards differentiation at each step (TR–BDF2) (Hosea and Shampine, 1996;
Shampine and Reichelt, 1997; Shampine, Reichelt, and Kierzenka, 1999). The
partial differential equations for temperature and vapor mass fraction are discretized
in space via a uniform grid and computed using second-order-accurate central finite
differences. Estrada et al. (2018) showed that the finite-deformation neo-Hookean
Kelvin–Voigt model can adequately represent the material response at high strain
rates in problems of interest, and that a more complicated model did not improve the
goodness of fit of simulated radius curves with experimental data. In this framework,
the material is modeled with a parallel spring (neo-Hookean elastic response with
shear modulus𝐺) and dashpot (linear viscous response with viscosity 𝜇). The stress
integral in (2.1) is
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where 𝑅0 is the equilibrium bubble radius (Gaudron, Warnez, and Johnsen, 2015).
Details on the derivation of this spherical bubble dynamics model, and comparison
with the model of Preston, Colonius, and Brennen (2007), are shown in Appendix
A.

2.2 Data Assimilation Methods

Two difficulties that drive the choice of data assimilation method are the nonlinearity
of the dynamics and large state vector required to discretize the partial differential
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equations adequately. The former rules out the standard linearized Kalman fil-
ter (EKF) (Kalman, 1960) and the latter renders its direct nonlinear extensions
(e.g., the unscented Kalman filter, UKF) computationally prohibitive. Instead,
ensemble-based methods (Evensen, 1994) are considered. They combine computa-
tional efficiency with nonlinear dynamics by approximating the state covariance via
statistics of a finite (and typically small) ensemble. We consider three specific en-
semble methods: an ensemble Kalman filter (EnKF), an iterative ensemble Kalman
smoother (IEnKS), and a hybrid ensemble-based 4D–Var method.

The discretized equations of section 2.1 are rewritten as a nonlinear operator 𝐹, and
we define the linear observation function 𝐻 that maps the state 𝒙 to measurement
space. This yields the discrete-time dynamical system

𝒙𝑘+1 = 𝐹 (𝒙𝑘 ) + 𝜼𝑘 , (2.8)

𝒚𝑘 = 𝐻 (𝒙𝑘 ) + 𝝂𝑘 , (2.9)

where

𝒙𝑘 ∈ R𝑑 , 𝒚𝑘 ∈ R𝑛,
𝜼𝑘 ∼ N(0, Σ) , 𝝂𝑘 ∼ N(0, Γ),
𝐹 : R𝑑 → R𝑑 , 𝐻 : R𝑑 → R𝑛.

𝒙𝑘 is the 𝑑-dimensional state at time 𝑘 comprised of all the dependent variables plus
the unknown parameters

𝒙 = {𝑅, ¤𝑅, 𝑝𝑏, 𝑆,T,C, log(Ca), log(Re)}, (2.10)

which are the bubble-wall radius, velocity, bubble pressure, stress integral, the
discretized temperature and vapor concentration fields inside the bubble, and the
log-Cauchy and log-Reynolds numbers, respectively. The Cauchy and Reynolds
numbers are here defined as

Ca ≡ 𝑝∞
𝐺

, Re ≡
√
𝜌𝑝∞𝑅max

𝜇
. (2.11)

These quantities appear in the nondimensionalized model equations of section 2.1
for the surrounding material and the shear modulus 𝐺 and viscosity 𝜇, our material
properties of interest, can be computed via (2.11). When the state vector is stepped
forward in time with equation (2.8), the forecast operator 𝐹 simply maps log(Ca)
and log(Re) to themselves, as they are constant in the physical model. Appending
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them to the state vector enables the estimation of these parameters within the data
assimilation framework in a straightforward way. We note that the logarithm of
these parameters is taken to avoid negative (and thus non-physical) values of the
Cauchy and Reynolds numbers (Ca and Re) occurring during the analysis step of
the assimilation algorithms (described in sections 2.2.1, 2.2.2, and 2.2.4).

The variable 𝒚𝑘 is the 𝑛-dimensional observation (data) at time 𝑘 . 𝜼𝑘 is the unknown
process noise (or model error) added to 𝐻 (𝒙𝑘 ) to retrieve 𝒚𝑘 . It is assumed to be
Gaussian with zero mean and standard deviation Σ. Similarly, 𝝂𝑘 is the assumed
Gaussian measurement noise added to 𝐹 (𝒙𝑘 ) to obtain 𝒙𝑘+1, with zero mean and
unknown standard deviation Γ. Throughout this study, the only available measure-
ment is the bubble radius. This means that 𝒚𝑘 is comprised of a single element:
the bubble radius. The observation operator 𝐻 is then the linear map from the state
vector to its first element 𝑅. In the following, the linear operator 𝐻 is sometimes
represented as the matrix 𝑯 for clarity (𝑯𝒙 = 𝐻 (𝒙)).

The following methods estimate the full state vector 𝒙 (including parameters of
interest log(Ca) and log(Re)) based on observations of 𝒚. The EnKF and IEnKS are
online (or quasi-online) methods—they optimize the value of 𝒙 at each time through
the simulation. The IEnKS is deemed quasi-online because it uses data from a few
future times as well. The estimation trails the simulation time by a fixed number of
time steps called the lag. Alternatively, the En4D–Var is an offline method, which
only optimizes the initial condition for 𝒙, taking into account data from the entire
time domain.

2.2.1 The Ensemble Kalman Filter

The ensemble Kalman filter (Evensen, 1994) represents the probability density
function (PDF) for the state of the dynamics through the statistics of an ensemble
of 𝑞 state vectors. It does not require an adjoint, or deriving a tangent linear
operator to the physical model (Evensen, 2003; Evensen, 2009a; Evensen, 2009b).
Starting with suitably randomized initial conditions, each ensemble member is
propagated through the physical model, and the predictions are then corrected using
the ensemble statistics. The ensemble is initialized with a guess for the initial
condition 𝒙0 as the mean, and a given covariance corresponding to the expected
error covariance. In practice, each ensemble member is independently sampled from
a normal distribution with mean 𝒙0 and the assumed covariance matrix. Several
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initialization strategies exist depending on the system and its dynamics. In the
present case, the nonlinear dynamics render a systematic approach difficult. Instead,
the ensemble is initialized with a covariance corresponding to our best estimate based
on simulations, and adjusted through trial and error to optimize results. An ensemble
size of 𝑞 = 48 is used for the tests. This has been shown to give accurate results while
keeping computational costs modest. Indeed, in testing with the current framework,
larger ensemble sizes led to negligible improvement in parameter estimation but
significantly increased the cost of tested DA methods. At any given time, the
estimated value for the state vector is then taken to be the ensemble average.

𝒙𝑘 =
1
𝑞

𝑞∑︁
𝑗=1

𝒙 ( 𝑗)
𝑘
. (2.12)

The filter is broken down into a forecast and an analysis step. In the forecast
step, the physical model is used to step the state forward in time with (2.8). Each
representation of the state vector 𝒙 ( 𝑗)

𝑘
in the ensemble at time 𝑘 is propagated through

𝐹 with 𝒙̂ ( 𝑗)
𝑘+1 = 𝐹 (𝒙 ( 𝑗)

𝑘
). Next, in the analysis step, if an experimental measurement

𝒚𝑘+1 is available at the current time step 𝑘+1, then it is used to correct the forecast. As
described in the dynamical system equations, each ensemble member is mapped to
measurement space 𝐻 (𝒙𝑘+1). The analysis proceeds by minimizing a cost function
involving the difference between 𝐻 (𝒙) and the data point 𝒚, while accounting for
measurement noise and model error. This cost function is similar to that of the
Kalman filter and is given by

𝐽 (𝒙) = 1
2
∥𝒚𝑘 − 𝐻 (𝒙)∥2𝑹 +

1
2
∥𝒙 − 𝒙𝑘 ∥2C𝑘

(2.13)

=
1
2
[𝒚𝑘 − 𝐻 (𝒙)]T𝑹−1 [𝒚𝑘 − 𝐻 (𝒙)] +

1
2
[𝒙 − 𝒙̂𝑘 ]TC−1

𝑘 [𝒙 − 𝒙𝑘 ], (2.14)

where 𝑹 is the measurement noise covariance matrix, which is an input to the
algorithm, and C𝑘 is the ensemble covariance at time step 𝑘 . A key difference with
the Kalman filter is that this covariance is calculated empirically in this case. It is
defined as

C𝑘 = 𝑨𝑘 (𝑨𝑘 )T, (2.15)

where 𝑨𝑘 is the state perturbation matrix

𝑨𝑘 =
1√︁
𝑞 − 1

[
𝒙 (1)
𝑘
− 𝒙𝑘 , ... , 𝒙 (𝑞)𝑘 − 𝒙𝑘

]
. (2.16)
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In fact, the minimization does not make use of the covariance matrix directly, but
instead uses the state perturbation matrix and scaled output perturbation matrix
𝑯𝑨𝑘 defined as

𝑯𝑨𝑘 =
1√︁
𝑞 − 1

[
𝒚 (1)
𝑘
− 𝒚𝑘 , ... , 𝒚

(𝑞)
𝑘
− 𝒚𝑘

]
. (2.17)

The optimization is carried out by finding the minimizer 𝒙𝑘 satisfying

𝒙𝑘 = 𝒙̂𝑘 + 𝑨𝑘 · 𝒘𝑘 , (2.18)

with 𝒘𝑘 a correction coefficient. This restricts the solution to the subspace spanned
by the scaled perturbation matrix around the prior estimate 𝒙̂𝑘 . The optimization
can be restated as

𝒘𝑘 = argmin
𝒘∈R𝑞

𝐽 (𝒘), (2.19)

where

𝐽 (𝒘) = 1
2
∥𝒘∥2 + 1

2
∥𝒚𝑘 − 𝐻 (𝒙̂𝑘 ) − 𝑯𝑨𝑘 (𝒘)∥2𝑹 . (2.20)

The solution is unique, and using the Woodbury matrix identity to write the inversion
in measurement space, can be written as

𝒘𝑘 = (𝑯𝑨𝑘 )T [𝑹 + (𝑯𝑨𝑘 ) (𝑯𝑨𝑘 )T]−1(𝒚𝑘 − 𝐻 (𝒙̂𝑘 )). (2.21)

Performing this inversion in the measurement space is in most cases more computa-
tionally efficient. Here this is clear, as the measurement space is comprised of only
one variable (the bubble radius). Once the minimizer is found and the analysis step
complete, covariance inflation is applied to the ensemble to correct for the (typical)
underestimation of the variance with finite (typically small) ensembles (see section
2.2.3 for details on covariance inflation). Finally, the forecast step can be repeated.
Figure 2.1 shows a flow chart of the EnKF method for a visual representation of the
steps described above. This flow chart will remain the same for the IEnKS method
described in section 2.2.2, with changes to the analysis step only.
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Figure 2.1: Flowchart of the Ensemble Kalman Filter as applied in the frame-
work of inertial microcavitation rheometry.

2.2.2 The Iterative Ensemble Kalman Smoother

Minimizing deviation from data not just at the current estimation step, but at future
times, can help to smooth out estimation and focus on longer-term trends. The
IEnKS uses information from one or multiple future time steps in its assimilation,
and can thus be an effective tool. While the ensemble initialization and forecast
step are the same as that of the EnKF, the difference in the analysis step is twofold.
First, the cost function is modified to minimize difference with data at a single or
multiple future times (Evensen and Leeuwen, 2000). The assimilation thus trails
the simulation by a number of time steps (called the lag). Second, it is no longer
minimized analytically but iteratively using a Gauss–Newton algorithm.

The IEnKS method used here is from Bocquet and Sakov (2013a) and Sakov, Oliver,
and Bertino (2012). Bocquet and Sakov (2013b) have shown it to be effective for
state and parameter estimation problems with highly nonlinear dynamics. Its cost
function can take two forms referred to as ‘single data assimilation’ (SDA) or
‘multiple data assimilation’ (MDA) (Bocquet and Sakov, 2013a). The IEnKS–SDA
cost function penalizes difference with measurements at a single time step 𝑘 + 𝐿,
where 𝐿 corresponds to the lag of the smoother. It is given by

𝐽 (𝒙) = 1
2
∥𝒚𝑘+𝐿 − 𝐻 ◦ 𝐹𝑘→(𝑘+𝐿) (𝒙)∥2𝑹 +

1
2
∥𝒙 − 𝒙̂𝑘 ∥2C𝑘

, (2.22)
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where 𝐻 ◦ 𝐹 denoted the composition of 𝐻 and 𝐹.

On the other hand, the IEnKS–MDA cost function minimizes this difference over a
data assimilation window (DAW) from 𝑘 + 1 to 𝑘 + 𝐿, and is expressed as

𝐽 (𝒙) = 1
2

𝐿∑︁
𝑖=1

𝛽𝑖∥𝒚𝑘+𝑖 − 𝐻 ◦ 𝐹𝑘→(𝑘+𝑖) (𝒙)∥2𝑹 +
1
2
∥𝒙 − 𝒙̂𝑘 ∥2C𝑘

, (2.23)

where 𝛽𝑖 are weights attributed to given time steps with
∑
𝛽𝑖 = 1. Again, a solution

of the form 𝒙 = 𝒙̂𝑘 + 𝑨𝑘 ·𝒘 is sought, but a Gauss–Newton method is used (Bocquet
and Sakov, 2013a). The minimizer 𝒘 is found by iterating following

𝒘 (𝑖+1) = 𝒘 (𝑖) −H−1
(𝑖) Δ𝐽(𝑖) (𝒘 (𝑖)), (2.24)

where 𝑖 is the iteration number, andH is the approximate Hessian

H( 𝑗) = (𝑞 − 1)𝑰 + 𝑯𝑨T
( 𝑗)𝑹

−1𝑯𝑨( 𝑗) , (2.25)

where 𝑰 is the 𝑞 × 𝑞 identity matrix. The gradient is given by

Δ𝐽( 𝑗) = −𝑯𝑨T
( 𝑗)𝑹

−1 [𝒚𝑘+𝐿 − 𝐻 ◦ 𝐹𝑘+𝐿←𝑘 (𝒙𝑘 )] + (𝑞 − 1)𝒘 ( 𝑗) . (2.26)

For the smoother, 𝑯𝑨 is more complicated than it is for the filter as it involves
differences with measurements at future time steps. This quantity is akin to a
tangent linear operator from ensemble to measurement space and has to be estimated.
Following Bocquet and Sakov (2013a), a finite-difference estimate is used:

𝑯𝑨( 𝑗) ≈
1
𝛼
𝐻 ◦ 𝐹𝑘+𝐿←𝑘 (𝒙 ( 𝑗)𝑘 1T + 𝛼𝑨𝑘 )

(
𝑰 − 1 · 1T

𝑞

)
, (2.27)

with scaling factor 𝛼 ≪ 1 and 1 = (1 · · · 1)T a vector of length 𝑞. The iteration
is repeated until a threshold 𝒘 (𝑖+1) − 𝒘 (𝑖) < 𝜖 , or a fixed number of iterations is
reached. Once the optimal value 𝒘opt is obtained, 𝒙opt = 𝒙̂ + 𝑨𝑘 · 𝒘opt is calculated
and a new ensemble 𝑬𝑘 is sampled at time step 𝑘 with

𝑬𝑘 = 𝒙opt1T +
√︁
𝑞 − 1𝑨𝑘H−1/2

opt 𝑰. (2.28)

This completes the analysis step. When using the MDA variant, the Hessian and
gradient of 𝐽 are found with

H( 𝑗) = (𝑞 − 1)𝑰 +
𝐿∑︁
𝑖=1

𝑯𝑨T
𝑖 𝛽𝑖𝑹

−1𝑯𝑨𝑖 (2.29)

Δ𝐽( 𝑗) = −
𝐿∑︁
𝑖=1

𝑯𝑨T
𝑖 𝛽𝑖𝑹

−1 [𝒚𝑘+𝑖 − 𝐻 ◦ 𝐹𝑘+𝑖←𝑘 (𝒙𝑖)] + (𝑞 − 1)𝒘 ( 𝑗) . (2.30)
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2.2.3 Covariance Inflation

While the EnKF and IEnKS may converge, ensemble methods are subject to intrinsic
sampling error (Bocquet, 2011; Luo and Hoteit, 2011). This sampling error results
from the finite ensemble size 𝑞 used to represent the statistics of a system of
often much higher dimension. As Leeuwen (1999) explains, the EnKF tends to
underestimate error variances, particularly for small ensemble sizes. There exist
different ways to address this sampling error, but a simple approach is covariance
inflation (Whitaker and Hamill, 2012), where we correct

𝒙 ( 𝑗) = 𝒙 + 𝛼(𝒙 ( 𝑗) − 𝒙) + 𝝀( 𝑗) . (2.31)

Here, 𝒙 denotes the ensemble average, as defined in (2.12), after the analysis step.
Parameters 𝛼 and 𝝀 correspond to multiplicative and additive inflation parameters,
respectively.

There exist many schemes for multiplicative inflation, the most simple of which is
picking a scalar 𝛼 (usually 1.005 ≤ 𝛼 ≤ 1.05). This can work well but requires
extensive tuning to optimize the value for each run or data set. Instead, Whitaker
and Hamill (2012) propose a scheme they call ‘Relaxation to Prior Spread’ (RTPS).
Here, the value for 𝛼 is found at each time step using

𝛼𝑖 = 1 + 𝜃
(
𝜎𝑏
𝑖
− 𝜎𝑎

𝑖

𝜎𝑎
𝑖

)
, (2.32)

where 𝜎𝑎
𝑖

and 𝜎𝑏
𝑖

are the prior and posterior ensemble standard deviation for the 𝑖𝑡ℎ

element of the state vector (𝛼 is a vector here), and 𝜃 is a scalar (usually 0.5 ≤ 𝜃 ≤
0.95). As this expression for 𝛼 shows, this scheme inflates the covariance more in
regions where the analysis led to a large correction. Whitaker and Hamill (2012)
test this method and compare it to other approaches, showing that it performs well
by adequately preventing underestimation of error variances and better converging
on accurate estimates. We tested this covariance inflation scheme, and similarly
found that it performs as well or better than a simple scalar 𝛼 for data assimilation
in our context. After some tuning across data sets, this RTPS model was used with
𝜃 = 0.7. Additive covariance inflation was not found to significantly affect results
and introduced some stability issues with larger magnitudes of 𝝀. Therefore, 𝝀 = 0
is used.
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2.2.4 A hybrid Ensemble-based 4D–var Method

As with ensemble Kalman methods, ensembles can be used with 4D-Var to estimate
covariance empirically, thus reducing computational cost (Gustafsson and Bojarova,
2014; Liu, Xiao, and Wang, 2008; Caya, Sun, and Snyder, 2005; Trémolet, 2007).
The present method (En4D-Var) is a fully offline extension of the IEnKS–MDA
method. Again, the ensemble is initialized in the same way as EnKF, but the cost
function is here

𝐽 (𝒙) = 1
2

∑︁
𝑘

𝛽𝑘 ∥𝒚𝑘 − 𝐻 ◦ 𝐹𝑘←0(𝒙)∥2𝑹 +
1
2
∥𝒙 − 𝒙̂𝑘 ∥2C0

. (2.33)

The difference with the IEnKS–MDA cost function is the data assimilation window
size. Rather than minimizing over a few time steps forward and then stepping
through time, the minimization is done over the entire time domain and only the
initial state vector is corrected. Each new iteration is initialized with the corrected
initial state (including parameters to estimate). The same minimization procedure
as described in section 2.2.2 is used. When the minimization has converged, a final
simulation is run with the forecast model only. In cases where only a few iterations
are necessary, this method reduces computational cost as compared to the IEnKS-
MDA. The time dimension is still fully included, but each point in time is only
assimilated once per iteration. Furthermore, this retains the advantage of ensemble
methods. As opposed to classical 4D–Var, there is no need to linearize the state
function and find the tangent linear adjoint operator. This novel adaptation of the
IEnKS method is well suited to the present problems given that our interest is the
estimation of material properties which are, at the outset, assumed to be constant.

Whether online or offline, the structure of all the presented methods provides a
significant computational advantage, as compared to the least squares fitting used
by Estrada et al. (2018). For simple least squares fitting, a large array of cases with
varying 𝐺 and 𝜇 need to be simulated. This requires 𝑁𝐺 × 𝑁𝜇 simulations, where
𝑁𝐺 and 𝑁𝜇 are the number of shear moduli and viscosities to test. To obtain precise
estimates (to several decimal points), these must be large. On the other hand, only
an initial guess for these parameters is needed in the data assimilation methods
presented. Here, the cost will increase with increasing ensemble size 𝑞 (at different
rates depending on the method), as each ensemble member is stepped through time
independently. However, a small value of 𝑞 = 48 is shown to suffice for the present
estimation, resulting in low computational time while providing good parameter
estimates for most methods, as shown in sections 2.3.1 and 3.1.2. This advantage
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becomes even more apparent if the method is scaled to estimate more parameters.
For least squares fitting, the number of simulations to run would be multiplied by the
number of values 𝑁 to test for each new parameter, quickly becoming unfeasible for
precise estimation. On the other hand, these data assimilation methods would incur
a minimal added computational cost associated with the added state variable. In
this chapter, we only estimate two parameters given our constitutive material model,
namely 𝐺 and 𝜇, found through estimation of log(Ca) and log(Re). However, we
will see examples in Chapter 3 where we estimate up to 4 material parameters given
a different viscoelastic model. There, the number of simulations to run with simple
least-squares fitting would be

∏4
𝑖=1 𝑁𝑖, with each 𝑁𝑖 the number of guesses for each

parameter 𝑖 to estimate. In contrast, the added computational cost for any of the
data assimilation methods presented is negligible, as we are simply adding a single
additional element to the state vector which has 𝑂 (100) elements.

2.3 Framework Validation with Surrogate Data

2.3.1 Parameter Estimation Results

Synthetic data where the true shear modulus and viscosity are known is generated
from the model (section 2.1) and used to test the data assimilation methods in a
setting where there is no modeling error. Bubble radius time-history data from
the simulation is sampled every 3.7 µs to match the 270,000 frames per second
image capture rate in available experiments. Random Gaussian noise is added to
these samples to mimic experimental data. The standard deviation of this noise
is set at 𝜎 = 0.02, which is greater than the estimated noise in the experiments.
Two polyacrylamide gels were examined with nominal values of shear modulus and
viscosity determined by Estrada et al. (2018). For the stiff gel: 𝐺stiff = 7.69 kPa,
𝜇stiff = 0.101 Pa s, and for the soft gel: 𝐺soft = 2.12 kPa, 𝜇soft = 0.118 Pa s. Since
similar estimation accuracy was achieved in both cases, we report results for the stiff
gel only. The other material properties used are taken from Estrada et al. (2018) and
given in table 2.1. No uncertainty is added to these parameters in the present study
to match their conditions and focus on estimating 𝐺 and 𝜇.

An example simulated radius curve and sampled surrogate measurements (with
noise added) with these parameters is shown in figure 2.2a, plotted against non-
dimensional time

𝑡∗ =
𝑡

𝑅max

√︂
𝑝∞
𝜌
. (2.34)
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Parameter Value Parameter Value
𝜌 1060 kg/m3 𝑐 1430 m/s
𝑝∞ 101.3 kPa 𝑠 5.6 × 10−2 N/m
𝐷 24.2 × 10−6 m2/s 𝜅 1.4
𝐶𝑝,𝑔 1.62 kJ/kg K 𝐶𝑝,𝑣 1.00 kJ/kg K
𝐴 5.3 × 10−5 W/m K2 𝐵 1.17 × 10−2 W/m K2

𝑝ref 1.17 × 108 kPa 𝑇ref 5200 K
𝑇∞ 298.15 K

Table 2.1: Model parameters as they follow from Estrada et al. (2018). Table
reprinted from Spratt, Rodriguez, Schmidmayer, et al. (2021) with permission
from Elsevier, © 2021.

With the simulated data, the evolution over time of all variables in the state vector is
known. For example, bubble-wall velocity, bubble pressure and stress integral are
plotted in figure 2.2b.

(a) (b)

Figure 2.2: Simulated bubble radius and noisy sampled data used to test data
assimilation methods (a), alongside simulated bubble-wall velocity, normalized
bubble pressure and stress integral (b), plotted over non-dimensional time 𝒕∗.
Reprinted from Spratt, Rodriguez, Schmidmayer, et al. (2021) with permission
from Elsevier, © 2021.

A set of initial guesses for the shear modulus and viscosity, ranging from 10%
to 100% error from the true values, were used to test each method. Table 2.2
summarizes results for a subset of these cases, representing 10, 50, and 100% initial
error in 𝐺 and 𝜇. In each case, ensembles were initialized as Gaussian with these
erroneous material properties as the mean, and standard deviation increasing with
increased error. That is, the spread of the initial ensemble was made wider for
cases with more error, to account for the increased uncertainty in the initial guess.
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To match the experimental data (as used in section 3.1 in Chapter 3), simulated
data is limited to the first three peaks of the bubble collapse. This corresponds to
approximately 35 points given the initial conditions and frame rate. Estrada et al.
(2018) found that limiting the data to this region led to better parameter estimation.
Similarly, we find that the model fails to fit the radius measurements after this
time. Reasons for this reduced accuracy at later times are discussed in results with
experimental data in Chapter 3.

Method 𝐺 estimate (%error) 𝜇 estimate (%error) Run time
[kPa] [Pa s] [s]

Guess 1 8.50 (+10%) 0.09 (-10%) –
EnKF 7.234 (5.93%) 0.098 (2.61%) 428

IEnKS–SDA (lag 1) 7.364 (4.24%) 0.110 (8.58%) 852
IEnKS–MDA (lag 3) 6.682 (13.11%) 0.100 (0.92%) 8076

En4D–Var 7.150 (7.03%) 0.099 (1.80%) 679
Guess 2 3.80 (-50%) 0.05 (-50%) –
EnKF 3.988 (48.1%) 0.057 (43.1%) 375

IEnKS–SDA (lag 1) 4.203 (45.4%) 0.080 (20.9%) 904
IEnKS–MDA (lag 3) 7.390 (3.90%) 0.086 (15.2%) 9755

En4D–Var 7.396 (3.82%) 0.100 (0.52%) 690
Guess 3 15.0 (+100%) 0.20 (+100%) –
EnKF 13.649 (77.5%) 0.175 (73.1%) 495

IEnKS–SDA (lag 1) 10.272 (33.6%) 0.142 (40.7%) 800
IEnKS–MDA (lag 3) 10.078 (31.1%) 0.121 (19.9%) 9802

En4D–Var 10.210 (32.7%) 0.118 (16.6%) 611

Table 2.2: Comparing the accuracy of estimation and run time with 3 different
initial guesses for the material parameters 𝑮 and 𝝁. Runs were performed on a
computer with dual 12-core 2.3 GHz processors. Table reprinted from Spratt,
Rodriguez, Schmidmayer, et al. (2021) with permission from Elsevier, © 2021.

Table 2.2 shows that with a relatively good initial guess with 10% error, the assimi-
lation methods perform adequately. For example, the EnKF tracks the correct values
for shear modulus and viscosity within 6% and 3%, respectively. With a moderate
initial error of 50%, however, the EnKF loses accuracy and barely improves on the
initial guess. In some cases, the EnKF was observed to be unstable, and the initial
ensemble covariance had to be limited to prevent divergence. This limited the ability
of the filter to estimate the parameters of interest, and thus despite its computational
efficiency, the EnKF is eliminated from further consideration for this application.
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The IEnKS and En4D–Var performed better than the EnKF for the 50% error case.
The estimation was stable while varying initial conditions and covariance. Still, the
lag 1 IEnKS–SDA only resulted in marginal improvements in the parameter values.
The lag 3 IEnKS–MDA, on the other hand, resulted in further improvement, but at a
high computational cost. This cost is associated with the calculation of the Hessian
(see equation (2.29)) and gradient of the cost function (see equation (2.30)), which
now involves three future time steps. The En4D–Var performs best in this test case,
achieving good estimation with a comparably fast computational time. We note that
while the En4D–Var was run for fifteen iterations in each case, the material property
estimation converged by the fifth iteration. Thus, results and run-time after five
iterations are reported.

Estimation results in the case with 50% error are presented in figure 2.3. Figure 2.3d
shows the suitability of the En4D–Var: both parameters converge to accurate esti-
mates within a few iterations. Overall, figure 2.3 also highlights the value of looking
over a time horizon. While the EnKF and lag 1 IEnKS appear to disbelieve the data
too much throughout the run, taking into account multiple times enables the lag 3
IEnKS–MDA to adjust to new information well, notably around collapse. Addi-
tionally, by nature, the IEnKS–MDA assimilates over the same data points multiple
times. Data at any given time-step 𝑘 , including near collapse point, will be used to
minimize the cost functions at three separate times 𝑘 − 4 to 𝑘 − 1 for a lag 3 IEnKS–
MDA. This redundancy appears important to parameter estimation in this context
and given this data capture rate. Indeed, the IEnKS–MDA significantly corrects the
viscosity estimate around each collapse, and the shear modulus estimate during the
second collapse. Assimilating data from single time-steps appears to be insufficient
given the short time scales of bubble cavitation and limited data. Smoothing over
multiple times far improves performance around collapse points, which, given the
IEnKS–MDA results, appear to hold the most pertinent data to make the necessary
corrections.

In the case with 100% error in the initial guess, the relative performances of each
method are similar to the 50% error case, but the three smoothers stagnate at 20 to
40% errors for 𝜇 and 𝐺. Weighted by computational expense, the En4D–Var per-
forms best, but the IEnKS–MDA should not be discarded. Indeed, the time-varying
estimation provides additional information about potentially time-dependent model-
ing uncertainties. While the physical model used assumes a constant shear modulus
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(a) EnKF (b) IEnKS–SDA (lag 1)

(c) IEnKS–MDA (lag 3) (d) En4D–Var

Figure 2.3: Estimation of shear modulus 𝑮 and viscosity 𝝁 with initial guesses
of 𝑮 = 3.8 kPa and 𝝁 = 0.05 Pa s (both at 50% error) in cases with surrogate
experimental data (simulated radius time histories with added noise). The
estimation is plotted over non-dimensional time 𝒕∗ for the EnKF and IEnKS
methods, and over iteration number for the En4D–Var. The dashed black line is
the true parameter value, the blue circles are the estimate, and the blue shaded
area is the ensemble spread. Reprinted from Spratt, Rodriguez, Schmidmayer,
et al. (2021) with permission from Elsevier, © 2021.

and viscosity, the quasi-online IEnKS–MDA can uncover potential limitations of
this assumption. This issue is further examined in section 3.1.

2.3.2 Uncertainty

Ensemble methods carry information about error statistics of the estimated param-
eters in the final ensemble. One way to visualize ensembles is through a histogram,
an example of which is shown in figure 2.4 for the logarithm of the Cauchy number
with the lag 1 IEnKS–SDA estimator. Despite the nonlinearity of the model, the
tested methods track only the first two statistical moments of an assumed Gaussian
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filtering or smoothing PDF. Previous works (e.g., Evensen and Leeuwen (2000),
Yang, Kalnay, and Hunt (2012), and Katzfuss, Stroud, and Wikle (2016)) have
discussed that adequate results can still be achieved with a nonlinear model where
this assumption must break down to some degree. Our results for the IEnKS and
En4D–Var results above confirm that this is the case in this example.

Figure 2.5 shows a comparison of the fitted histograms for the methods for the case
with 50% initial error in both parameters. Despite imperfect estimation, the En4D–
Var converges significantly better than other methods given the limited data. The
IEnKS–MDA curve displays the least variance of the Kalman methods, as expected.

Figure 2.4: Histogram of the final estimate for log(Ca) with the lag 1 IEnKS
and fitted normal curve, where n is the number of ensemble members at each
value of log(Ca). Reprinted from Spratt, Rodriguez, Schmidmayer, et al. (2021)
with permission from Elsevier, © 2021.

IEnKS-sda

IEnKS-mda
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IEnKS-sda
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Initial Guess
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Figure 2.5: Comparison of final ensembles for log(Ca) (a) and log(Re) (b)
estimates with each tested DA method in the case with 50% initial error in both
parameters. Reprinted from Spratt, Rodriguez, Schmidmayer, et al. (2021)
with permission from Elsevier, © 2021.
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Anticipating experimental results where 10 data sets are available, the En4D–Var
was run 10 times with the same ground truth but different (random) noise. Results
are shown in figure 2.6 for shear modulus and viscosity estimates over the data
sets. The dashed black lines correspond to the truth, and the blue line to the mean
estimate over the 10 runs. Results across these 10 data sets are fairly uniform
(standard deviation of 0.98 kPa for 𝐺, 0.009 Pa s for 𝜇), confirming that reliable
estimates are obtained despite noisy measurements across data sets. Figure 2.7
shows a histogram combining final ensembles for shear modulus to visualize overall
results. As each of the 10 ensembles should be approximately normal, a Gaussian
curve is expected when combining them. Figure 2.7 indeed shows an approximately
normal distribution, as does the equivalent histogram for viscosity (as shown in
section 3.1.3 in figure 3.3a).

(a) (b)

Figure 2.6: En4D–Var estimation results for G (a) and 𝝁 (b), for ten simulated
data sets. Reprinted from Spratt, Rodriguez, Schmidmayer, et al. (2021) with
permission from Elsevier, © 2021.

Based on these results with simulated data, given reasonable initial guesses as to the
shear modulus and viscosity, we can confidently expect to estimate both parameters
to within 5% using the 10 available data sets. Multiple initial guesses can be tested
and their fits with experimental radius histories compared. In practice, an iterative
process can be used to formulate a good initial parameter guess. That is, the final
estimates of a first data assimilation run can be used as an initial guess for the
next, and so on until results converge or an adequate radius fit is achieved. As
shown in table 2.2, even with a large error, both IEnKS methods and the En4D-
Var significantly improve on the initial guess, thus only a few iterations suffice to
obtain a good estimate. The En4D-Var is particularly well suited for this, as it
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Figure 2.7: Histogram for G estimates combining 10 final ensembles for sim-
ulated data runs with En4D-Var. Reprinted from Spratt, Rodriguez, Schmid-
mayer, et al. (2021) with permission from Elsevier, © 2021.

remains stable even with large initial error and a wide spread in the ensemble, as
long as all parameters retain physical values across the ensemble. Therefore, it is
straightforward to formulate an initial guess with less than 50% error, and thus obtain
results comparable to the second test case with simulated data. When applying this
to experimental data, the En4D–Var serves as the baseline given its performance.
IEnKS–MDA can also be tested for its ability to estimate parameters quasi-online.

We note that in all presented results, values for the 𝛽𝑖 coefficients in the IEnKS–
MDA and En4D–Var methods, which attribute weights to different time steps (see
equation (2.23)), were held constant across all time-steps. Different values were
tested for these coefficients to observe their impact on estimation results. For the
IEnKS–MDA, we attempted to increase or decrease the coefficients as we stepped
forward over the data assimilation window (linearly with varying slope). Neither
approach, across all test cases, had a positive impact on the estimation. Thus we
kept constant values for the coefficients, with 𝛽𝑖 = 1

3 for each 𝑖 ∈ [0, 3] for the data
assimilation window of 3 time steps used.

For the En4D–Var methods, given the large amount of information gained near
the collapse points during estimation, we attempted to increase the 𝛽𝑖 coefficients
near collapse points. That is, we posited that by increasing the weight attributed
to data near collapse, and increasing the sensitivity of our estimates to collapse
points, we may improve the accuracy of results. However, as with the IEnKS–
MDA, no improvement in parameter estimation was observed given this strategy.
Furthermore, for consistency, modifying coefficients in this way would require
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additional parameter tuning for each data set, as collapse occurs at different times
in each. Hence, as with the IEnKS–MDA method, we pick constant coefficients of
𝛽𝑖 =

1
𝑁

for the En4D–var, with 𝑁 the total number of time-steps. This yields good
results, without any added tuning required for 𝛽𝑖 coefficients.

Based on the results presented in this chapter, DA-IMR—in particular the IEnKS–
MDA and En4D–Var methods—appears to be a powerful framework for material
parameter estimation, expanding on the capabilities of IMR and maintaining high
accuracy. However, there are limitations to working with synthetic data. While
noise with a high variance is added to the surrogate data, this is white noise added
to data generated with the same model used in our DA forecast model. This means
that the model used throughout this section matches exactly with the data (except
for the added noise), which is a significant simplification of real-world cases, where
the model carries uncertainty associated with its assumptions (as listed in section
2.1). We have shown that if the model used is perfect, we can accurately estimate
material parameters even with high levels of noise, but this does not account for
systematic modeling errors that could be present in experimental data. In the next
chapter, we address this by applying DA-IMR to experimental data to further test its
performance. Given the results from this chapter, we expect DA-IMR to perform
well, as long as the physical model we use accurately captures the physics of bubble
collapse in the hydrogels used.
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C h a p t e r 3

APPLICATION OF DA-IMR TO LASER AND
ULTRASOUND-INDUCED CAVITATION

Parts of this chapter are adapted from Section 5 of Spratt, Rodriguez, Schmidmayer,
et al. (2021), Chapters 4-5 of Buyukozturk et al. (2022) and Chapters 2-4 of Mancia,
Yang, et al. (2021). This chapter presents applications of our developed DA-IMR
framework in three separate cases with varying cavitation methods, material prop-
erties, experimental setups, and using different material models. This establishes
the accuracy and versatility of our method, and provides concrete applications of
the framework. We begin by applying the data assimilation methods found to be
optimal in Chapter 2 to experimental laser-induced cavitation data, where bubble
radius time-histories are obtained through high-speed imaging of cavitating bubbles
in a gel subject to a high amplitude laser pulse. Here, we show that our method
accurately retrieves material parameters with experimental data which the surrogate
data used in Chapter 2 was designed to mimic. We discuss these experimental
results in detail and compare them to previous results obtained with the same data
sets. Then, we present an application with laser-induced cavitation in gels with
nucleation seed particles. These particles enable cavitation with lower laser energy,
to access new finite deformation and material stretch regimes. A new, more robust
material model is also used here requiring estimation of new model parameters. We
show the advantage of parameter estimation at lower energy, and use the DA meth-
ods to pinpoint uncertainties in our physical model. Finally, we present results of
our DA framework in ultrasound-induced cavitation data. Using ultrasound reduces
modeling uncertainty seen with laser-induced cavitation, as no plasma is formed in
the material during cavitation. This highlights a new setting where DA-IMR can be
used.

3.1 DA-IMR with Laser-induced Cavitation Data

In Chapter 2, all presented results were obtained with simulated data. There,
the model used in our DA framework exactly matches that of the data, as the
same forecast function in our DA methods is used to generate this data. This, of
course, represents an idealization of experimental scenarios, as the model used may
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contain intrinsic error. Thankfully, these DA methods are well suited to address
both experimental and model error, and we will show that we can predict material
properties with a high degree of accuracy. In the absence of known ‘true’ material
parameters, we will use the discrepancy between simulated radius vs. time curves
and experimental data as the main metric to determine the adequacy of our results.

3.1.1 Experimental Setup

We begin by briefly describing the experimental setup for the first test case examined
in this chapter, the data from which is used throughout section 3.1. This data was
presented in Estrada et al. (2018), where a more detailed description of the setup
for data collection can be found. Here, a polyacrylamide is used as the medium for
cavitation, the properties of which will be estimated. After the polyacrylamide gel
is prepared, each cavitation event is induced with a 6ns pulse of a “user-adjustable
1–50 mJ, frequency-doubled Q-switched 532 nm Nd:YAG laser." These cavitation
events are triggered at different locations in the same large batch of polyacrylamide
to maximize uniformity of material properties across experiments. Bubble radius
is captured approximately every 3.7 µs, processing 270 000 fps high-speed camera
output by subtracting a reference image from each frame and fitting a circle. A
few sources of error may be present. Nonuniformity of the polyacrylamide gel or
discrepancies across data sets could cause the bubble to lose spherical symmetry.
However, each was triggered at least 5 maximum bubble radii away from a previous
location or edge of the gel, to prevent any boundary effects which could introduce
non-sphericity, for example through the formation of microjets. Estrada et al.
(2018) report that the maximum ¤𝑅/𝑐 was approximately 0.4, and thus below a
regime where significant non-spherical effects may be introduced during the initial
collapse (Brujan, Nahen, et al., 2001; Sagar and el Moctar, 2020). Laser pulses
may also vary slightly across runs, affecting the energy deposited in the system and
thus initial growth conditions. In practice, a difference in maximum bubble radii
was observed, with 𝑅max = 388 ± 35 µm across experiments with the stiff gel, and
𝑅max = 430±17 µm with the soft gel. Ten experimental data sets in the stiff gel were
used for the following results, in part to address this potential lack of uniformity in
experimental conditions. As with the test case with surrogate data in Chapter 2, we
obtain similar results for the stiff and soft gels, and report only results with the stiff
gel here
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3.1.2 En4D–Var Estimates for Shear Modulus and Viscosity

The noise magnitude in the experimental data is smaller than what was used in the
simulated data with the same data rate. Therefore, if the model is adequate and the
noise accurately represented as Gaussian, the IEnKS and En4D–Var should yield
comparable or better estimation results with the experimental data. As with the
simulated data, the assimilation window is limited to the initial collapse and two
subsequent rebounds to match the setup used by Estrada et al. (2018), who estimated
in the stiff-gel: 𝐺stiff = 7.69 ± 1.12 kPa and 𝜇stiff = 0.101 ± 0.023 Pa s. The results
are compared to theirs. Our estimation is initialized with three different initial
guesses, detailed in table 3.1. Similarly to the surrogate truth data from section
2.3.1, initial guesses with 10%, 50%, and 100% difference from the Estrada et al.
(2018) estimates are chosen.

Method 𝐺 estimate ±𝜎 𝜇 estimate ±𝜎 Run time
[kPa] [Pa s] [s]

Guess 1 8.50 (+10% diff) 0.09 (-10% diff) –
IEnKS–SDA (lag 1) 7.93 ± 1.68 0.096 ± 0.012 2751
IEnKS–MDA (lag 3) 7.51 ± 1.50 0.089 ± 0.016 9536

En4D–Var 7.41 ± 1.63 0.093 ± 0.014 609
Guess 2 3.80 (-50% diff) 0.05 (-50% diff) –

IEnKS–SDA (lag 1) 4.32 ± 0.46 0.085 ± 0.013 2832
IEnKS–MDA (lag 3) 6.67 ± 1.43 0.083 ± 0.016 10052

En4D–Var 6.53 ± 1.58 0.090 ± 0.014 585
Guess 3 15.0 (+100% diff) 0.20 (+100% diff) –

IEnKS–SDA (lag 1) 9.46 ± 2.76 0.114 ± 0.014 2871
IEnKS–MDA (lag 3) 8.57 ± 1.52 0.103 ± 0.015 9222

En4D–Var 8.24 ± 1.58 0.098 ± 0.016 535

Table 3.1: Comparing results of estimation with three different initial guesses
for the material parameters 𝑮 and 𝝁. Runs were again performed on a com-
puter with dual 12-core 2.3Ghz processors. Table reprinted from Spratt, Ro-
driguez, Schmidmayer, et al. (2021) with permission from Elsevier, © 2021.

Table 3.1 summarizes the results from the three different initial material parameter
guesses for the three methods. These estimates correspond to the mean estimate
over all 10 experimental data sets. The standard deviation 𝜎 of the results is also
reported.

The En4D–Var estimates for shear modulus and viscosity all fall within the error
bounds provided by Estrada et al. (2018). Results are close to theirs in the test
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cases considered. The estimates are uniform, with only 8.5% difference between
viscosity estimates, and 23% difference in the shear modulus results across the data
sets. This larger difference in the shear modulus estimates and in the associated
standard deviations is expected, as we have found the radius curves to be relatively
more sensitive to 𝜇 than 𝐺. Finally, the average normalized root mean squared
error (NRMSE) for bubble radius is low at 2.16× 10−2 for guess 1, indicating that a
good fit was achieved with this method. This NRMSE is obtained by re-running the
simulation with the forecast model and final parameter estimates, and comparing
the results to experimental data using equation (3.1). Given that the guess–1 results
lead to the smallest radius error, our initial shear and viscosity modulus estimates
are 𝐺 = 7.41 ± 1.63 kPa and 𝜇 = 0.093 ± 0.014 Pa s, respectively. An example
bubble radius curve is shown in figure 3.1, for one of the experimental data sets
(data set 10).

Figure 3.1: Simulated radius vs. time curve given by En4D–Var estimates for
𝑮 and 𝝁, and experimental measurements for data set 10. Reprinted from
Spratt, Rodriguez, Schmidmayer, et al. (2021) with permission from Elsevier,
© 2021.

The standard deviation across the 10 IEnKS–SDA runs was comparable to the
En4D–Var. However, the estimates varied significantly based on the initial guess:
from 4.32 kPa to 9.46 kPa for shear modulus, and from 0.085 Pa s to 0.114 Pa s for
viscosity. Except for estimates from guess 1, the shear modulus estimates are also
outside the bounds given by Estrada et al. (2018), and the radius fit is significantly
worse than that of the En4D–Var, with an average NRMSE of 9.10 × 10−2.

On the other hand, while still worse than that of the En4D–Var, the IEnKS–MDA
estimates are within the Estrada et al. (2018) margin, and the radius fit is better
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than that of the IEnKS–SDA (NRMSE = 6.79 × 10−2). The IEnKS–MDA thus
represents the best tested quasi-online method, as expected from the simulated data
results of section 2.3.1. It is important to note here that the bubble radius fits were all
obtained by re-running simulations with final shear modulus and viscosity estimates
and comparing to experimental measurements. This is a fair way to compare the
ability of each method to estimate these parameters. However, the radius fit obtained
online during assimilation with the IEnKS methods is better (and comparable with
the En4D–Var estimates), given that the radius is also being directly corrected at
each time-step as part of the state vector. For parameter estimation, the En4D–Var
is the best tested method, but the IEnKS–MDA is a good quasi-online estimator.
This is particularly useful for the discussion in section 3.1.3, where we make use of
this time-varying estimation.

3.1.3 Accounting for Model Uncertainty

The estimates obtained for the shear modulus and viscosity from the previous section
show that ensemble data assimilation methods can be effectively used for estimation
of viscoelastic material properties. A further look at the results, though, provides
more information than simply this estimate. Examining estimates for each variable
across the 10 tested experimental data sets, as shown in figure 3.2, there appears
to be a discrepancy between data sets 3, 4, 5 and the rest for the viscosity. While
the shear modulus estimation shows no discernible trend (despite the previously
mentioned larger spread in results), the viscosity data appears to be split between
two estimates. The red line in figure 3.2b shows the mean estimate of data sets 3 to
5 (𝜇 = 0.074 Pa s) and the green line that of the rest (𝜇 = 0.102 Pa s).

Figure 3.3 compares the histogram obtained when collating the 10×𝑞 final ensemble
members for viscosity from 10 runs with different simulated data but the same ground
truth (Figure 3.3a) and the 10 runs done with experimental data (Figure 3.3b).
As discussed in section 2.3.2, we expect to approximately retrieve a Gaussian
distribution around the estimate, as is the case for the simulated run in figure 3.3a.
However, figure 3.3b shows an apparent bimodal distribution. The lower viscosity
peak corresponds to the mean estimate of data sets 3 to 5, and the higher peak to
that of the rest.

To understand what may be causing this discrepancy in results, it is useful to consider
the IEnKS–MDA and its quasi-online estimation of viscosity. Figure 3.4 shows a
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(a) G estimates (b) 𝝁 estimates

Figure 3.2: En4D–Var estimates for shear modulus (a) and viscosity (b) for
10 experimental data sets. Reprinted from Spratt, Rodriguez, Schmidmayer,
et al. (2021) with permission from Elsevier, © 2021.

(a) Simulated data (b) Experimental data

Figure 3.3: Comparison of final combined ensembles for viscosity estimation in
simulated and experimental data. Reprinted from Spratt, Rodriguez, Schmid-
mayer, et al. (2021) with permission from Elsevier, © 2021.

comparison between viscosity estimation for data set 2 (figure 3.4a) and data set 3
(figure 3.4b). These are representative of data sets with a high and low viscosity
estimate, respectively. They result in estimates of 𝜇 = 0.098 Pa s for data set 2,
and 𝜇 = 0.077 Pa s for data set 3. Comparing the two data sets, it appears that
the assimilation begins similarly, correcting to a higher viscosity estimate during
the first collapse. However, there is a divergence between the behavior of the
smoother after each collapse point, particularly the second one (around 𝑡 = 65 µs).
Figure 3.4a shows a slow decrease and convergence towards a higher viscosity value,
with negligible change at the second collapse point. However, this estimate drops
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sharply after these collapse points in figure 3.4b. In fact, the data around each
collapse causes the viscosity estimate to sharply drop in data set 3, which does not
occur in data set 2. This behavior is representative of what is seen in data sets 3
through 5, but does not occur in the rest of the runs.

(a) (b)

Figure 3.4: Comparison of online estimation of viscosity in data sets 2 (a) and 3
(b) using the IEnKS–MDA. Reprinted from Spratt, Rodriguez, Schmidmayer,
et al. (2021) with permission from Elsevier, © 2021.

Given the physical model used, the viscosity should be constant and such drops in
the parameter are not expected. The model alone thus cannot adequately capture
the behavior of the gel seen by the IEnKS in these data sets. We can posit that a
violent collapse in these data sets is causing inelastic behavior in the material, and
thereupon this perceived change in material properties (Yang, Cramer, and Franck,
2020). More work will be needed to determine the exact cause, but this could perhaps
result from fracture, damage to the polymer network in the gel, or combustion in the
gas phase (Movahed et al., 2016; Kundu and Crosby, 2009; Raayai-Ardakani, Earl,
and Cohen, 2019).

To further examine this, we perform two simulations where we slightly modify our
spherical bubble dynamics model. Here assumption of constant temperature in the
surrounding material is relaxed, and we apply conservation of energy to obtain a
partial differential equation for this temperature field. Appendix A describes the
changes to the model used to calculate material temperature, based on the model
of Preston, Colonius, and Brennen (2007). Specifically equation (A.10) is used for
temperature in the surrounding medium. The material temperature field 𝑇𝑚 is added
to the state vector 𝑥, and estimated along with the temperature field inside the bubble
and all other variables. While it has predominantly been used to estimate constant
model parameters𝐺 and 𝜇 so far, IEnKS provides quasi-online estimates of all state
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variables, which now include the temperature field in the surrounding gels. Figure
3.5 shows a comparison of heat-maps of this estimated temperature field for data sets
2 and 3, where the x-axis represents non-dimensional time 𝑡∗ = 𝑡

𝑅𝑚𝑎𝑥

√︃
𝑝∞
𝜌

, the y-
axis the distance from the bubble wall, and the color of each cell is non-dimensional
temperature.

(a) (b)

Figure 3.5: Comparison of online estimation of the temperature field in the
surrounding material for data sets 2 (a) and 3 (b) using the IEnKS–MDA. The
x-axis is non-dimensional time, the y-axis represents distance from the bubble
wall, and the color of each cell represents temperature.

In both cases, temperature peaks are visible at two distinct times, which correspond
to the first and second collapse of the bubble. However, the magnitude of these
temperature peaks is larger for data set 3, the same data set which saw the sharp
drop in viscosity estimate at collapse time. This could indicate that the violence of
collapse in this data set results in high temperatures at the bubble wall, which in turn
causes damage to the material. Regardless of physical cause, this time-dependent
behavior is not accounted for in the model, but is captured by the IEnKS–MDA as a
drop in the perceived viscosity. While the exact bounds of the physical model used
are not known and would require more data to determine, this shows that in these
particular data sets, model accuracy is far reduced after the first collapse.

Figure 3.6 compares the normalized root mean squared error (NRMSE) across all
data sets, given by

NRMSE =

√√√
1
𝑁

𝑁∑︁
𝑖

(
𝑅sim(𝑡𝑖) − 𝑅exp(𝑡𝑖)

)2

𝑅exp(𝑡𝑖)2
(3.1)

where 𝑅exp is the experimental bubble radius time history, and 𝑅sim is the simulated
time history given the estimated material properties (at the corresponding times).
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Figure 3.6: Bar plot of radius normalized root mean squared errors (NRMSE)
for each data set. Also plotted are the previous estimate mean NRMSE (mean of
all sets), the mean NRMSE for sets 3 to 5, and the final estimate mean NRMSE
(mean of all other sets). Reprinted from Spratt, Rodriguez, Schmidmayer, et al.
(2021) with permission from Elsevier, © 2021.

Figure 3.6 shows a higher error in the estimated bubble radius curves fit for data sets
3 through 5, which is expected given the heightened model uncertainty in these data
sets. Because of this uncertainty and higher error, we discard these three sets as
outliers, which yields the final IEnKS–MDA-informed En4D–Var estimate reported
in table 3.2. Notable is the drop in standard deviation for viscosity as compared to
the previous En4D–Var estimate and the reduced NRMSE.

Estimate 𝑮 ± 𝝈 [kPa] 𝝁 ± 𝝈 [Pa s] NRMSE
Estrada et al. (2018) 7.69 ± 1.12 0.101 ± 0.023

Previous 7.41 ± 1.63 0.093 ± 0.014 2.16 × 10−2

Final 7.81 ± 1.80 0.102 ± 0.006 1.95 × 10−2

Table 3.2: Final En4D–Var estimates (discarding three outlier data sets)
and standard deviation, along with the average radius normalized root mean
squared error. The previous best estimate corresponds to the mean of all 10
data sets, outliers included. Table reprinted from Spratt, Rodriguez, Schmid-
mayer, et al. (2021) with permission from Elsevier, © 2021.

Given the similarity to the values obtained by Estrada et al. (2018) and the low
NRMSE of the resulting radius time history simulations, these results show that
ensemble-based data assimilation can successfully estimate the mechanical prop-
erties of hydrogels at these high strain rates. The En4D–Var method efficiently
provides an accurate estimate of material properties. In addition, the IEnKS–MDA
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method can elucidate time-dependent behavior, even when not fully accounted for
by the forecast model used, by estimating parameters quasi-online. These methods
account for both model and experimental error, dealing with noisy measurements
or inaccuracies in the model well. It is hypothesized here that the bubble collapses
are damaging the polyacrylamide gel in certain test cases, leading to a reduced
estimated viscosity after each subsequent collapse, a physical effect not accounted
for in the model. Finally, added benefits of these algorithms include adaptability
to different numerical or viscoelastic models, and scalability to further parameter
estimation, with negligible computational cost for additional parameters. The fol-
lowing chapters will demonstrate these benefits, as we apply these methods to new
material models and estimate additional parameters.

3.2 DA-IMR with Laser-induced Cavitation Data in Seeded Gels

In the results of section 3.1, we applied our DA framework to experimental data sets
within the same deformation regime. The material stretch ratio, defined (assuming a
spherical bubble) as the maximum value of the hoop stretch over the bubble collapse

𝜆max = 𝑅max/𝑅0, (3.2)

where 𝑅0 is the long-time bubble equilibrium radius, varies little across experi-
ments. This introduces some limitations to the scope of the DA-IMR method.
Namely, across various materials and applications, maximum deformation can vary
broadly. The breakdown process undergone during laser-induced cavitation is highly
dependent on the material’s properties, and can lead to drastically different stretch
ratios in different materials. Thus, testing our characterization framework in differ-
ent stretch ratio regimes would inform how broadly it can be applied. To address
this, Buyukozturk et al. (2022) introduce a novel experimental approach, whereby
the stretch ratio can be controlled within the same material by introducing seed
particles and varying laser energy. The seed particles are used as a nucleation site
to cavitate bubbles, reducing the dependence of bubble dynamics on properties of
the material itself. Indeed, the particles make it far easier for cavitation to occur,
and lower laser energy can be used. Varying both laser energy and the nature of the
seed particles, a wide range of stretch ratios can be achieved for a single material.

Furthermore, it is known that the bubble dynamics physical model used, described
in section 2.1 in Chapter 2, can be limited in the case of extreme loading rates (Gent
and Wang, 1991; Barney et al., 2020; Hashemnejad and Kundu, 2015; Hutchens,
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Fakhouri, and Crosby, 2016). As discussed in section 3.1.3, the model does not
account for material fracture or other failure mechanisms, and assumes a consistent
viscoelastic response. By using our data assimilation approach, we can continue
to quantify modeling uncertainty and identify regimes or critical points in the
bubble collapse where our models may be failing to adequately capture the physics.
Applying DA-IMR to the experimental method of Buyukozturk et al. (2022), which
extends stretch ratio regimes where cavitation can occur, will much more broadly
assess the adequacy of our DA-IMR method in determining material properties of
viscoelastic materials.

3.2.1 Experimental Setup and Results

We briefly describe the experimental setup used and results obtained by Buyukozturk
et al. (2022), to which we apply our DA-IMR framework in section 3.2.2. Overall,
the setup is similar to that of Estrada et al. (2018), used to generate the data analyzed
in section 3.1. The hydrogel used is again polyacrylamide, with a quasi-static
shear modulus of 𝐺∞ = 461 ± 4 Pa. Four samples are prepared. In three of
them, seed particles are distributed throughout the gels, respectively microspheres
of glass, stainless steel, and paramagnetic coated polyethylene. For details on the gel
preparation and laser setup used to nucleate bubbles, see section 2 of Buyukozturk
et al. (2022). The key differences with the setup used to generate the data of section
3.1 and shown in figure 1.1 are that the laser will be focused on seed particles (in gels
containing them) to initiate cavitation, and the use of neutral density (ND) filters to
attenuate the laser energy, thus modulating the energy between 18.4 ± 1.0 µJ and
449.2 ± 5.0 µJ. Finally, the high-speed camera used to image bubbles is capable
of far greater frame rates than in the previous setup. In the data sets used in the
following, bubble radius is captured every 1 µs, at 1 million frames per second
(compared to 270,000 previously). We saw in section 3.1.3 when using the En4D-
Var method that the estimator was sensitive to data around the first bubble collapse.
However, the time-resolution of those experiments meant that only a few data points
were available near this time, given the violence of the dynamics. Increasing the
time-resolution of our data by almost a factor of 4 means we will be able to resolve
the collapse much better, and improve material parameter estimation.

As expected, the use of seed particles enables cavitation across various stretch ratio
regimes. Both particle type and laser energy have an impact on the maximum bubble
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radius. For cases with no seed particles, the stretch ratio hovered around 𝜆max = 9,
with values averaging 𝜆max = 9.2 for the highest laser energy (449 µJ), and reducing
to 𝜆max = 8.8 at the lowest laser energy where cavitation can still occur with no seed
particles present, around 118 µJ. In contrast, the stretch ratio can be reduced all the
way to a mean of 𝜆max = 4.5 in cases with the paramagnetic beads and laser energy
18.4 µJ. While the reduced laser energy does affect stretch ratio, the nature of seed
particles has a large effect as well. For example, with a laser energy of 118 µJ, the
stretch ratio is 𝜆max = 8.8 in the gel without particles, 𝜆max = 5 for paramagnetic
particles, 𝜆max = 5.6 for glass particles, and 𝜆max = 7.2 for steel particles. Figure
3.7 summarizes the stretch ratios across all experimental data sets. We note that
with seed particles present, laser energy was capped at 254 µJ to avoid cases where
loss of sphericity was observed.

Figure 3.7: Value of Maximum stretch ratio 𝝀max vs. laser energy obtained
across experiments with varying seed particles. All points represent the mean
of 8 experimental data sets. Reproduced from Buyukozturk et al. (2022) with
permission from Springer Nature, © 2022.

3.2.2 DA-IMR Parameter Estimation Results

We implement ensemble-based data assimilation techniques described in Chapter
2 and used in section 3.1 to fit the hydrogel’s material properties and account for
uncertainties in the physics model. In particular, the IEnKS-MDA and En4D-Var
are used, with some minor modifications described here. First, some elements of
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the bubble dynamics model described in section 2.1 are improved. The Keller-
Miksis equation (equation (2.1) (Keller and Miksis, 1980)) is still used, with the
physics of a two-phase mixture of condensable water vapor and non-condensable
gas in the bubble tracked, as shown to be appropriate in the literature (Estrada
et al., 2018; Yang, Cramer, and Franck, 2020; Akhatov et al., 2001; Nigmatulin,
Khabeev, and Nagiev, 1981; Barajas and Johnsen, 2017; Vincent et al., 2014). The
same assumptions described in section 2.1 are maintained, however, the viscoelastic
material model used is changed. Indeed, Yang, Cramer, and Franck (2020) showed
that the quadratic law Kelvin-Voigt model, an adaptation of the Fung model (Fung,
2013) where higher order strain stiffening terms are used (Movahed et al., 2016),
is best for modeling very high strain rate behavior of gels such as the presently
used polyacrylamide. The use of this more general model may help estimation as
we expand DA-IMR to new material stretch regimes, as compared to results from
section 3.1.

Rather than estimating a shear modulus𝐺 as done in section 3.1, we fix a quasi-static
shear modulus 𝐺∞ and estimate a strain-stiffening parameter 𝛼. The stress integral
used with this model is then defined as
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(3.3)

To account for these changes, the state vector used (previously equation (2.10))
becomes

𝒙 = {𝑅, ¤𝑅, 𝑝𝑏, 𝑆,T,C, 𝛼, 𝜇}. (3.4)

Otherwise, the IEnKS and En4D-Var implementation of sections 2.2.2 and 2.2.4
remain unchanged. A lag of 3 is used with the IEnKS.

Now, in section 3.2.2.1, we perform bubble radius fits using the offline (En4D-Var)
method to determine the Quadratic law Kelvin-Voigt material parameters up through
the first (1-peak), second (2-peak), and third (3-peak) collapse. Material parameters
are then used to calculate the critical Mach numbers for each initial bubble collapse
using the IMR framework. For the online method, we assess the time-varying
fitted material properties of the quasi-online (IEnKS) method to identify deviations
from the model during the bubble time evolution in section 3.2.2.2. We note that
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the analysis of results of the following sections 3.2.2.1 and 3.2.2.2 was done in
collaboration with Dr. Selda Buyukozturk and the other co-authors of Buyukozturk
et al. (2022).

3.2.2.1 Multi-peak Fitting with the Offline (En4D-Var) Method

Numerical results presented in this section use the offline (En4D-Var) method for
determining the viscoelastic material parameters in PA. Initial guesses into the solver
for viscosity, 𝜇, and strain stiffening parameter, 𝛼, are 0.05 Pa·s and 0.5, respectively.
These are derived from a preliminary run with the former version of IMR using a
least squares fitting scheme for fitting material properties Yang, Cramer, and Franck,
2020.

As a measure of the 𝑅(𝑡) goodness of fit given the En4D-Var parameter estimates, as
with section 3.1, we use the normalized radius root mean squared error (NRMSE).
Representative 𝑅(𝑡) fits with median NRMSE values for each fitted peak case are
shown in Fig. 3.8. For a cavitation bubble in PA (paramagnetic seed particle),
induced at nominal laser energy 117 𝜇J, the 1-peak case has a median NRMSE
value of 0.009 (Fig. 3.8a), 2-peak case has a median NRMSE value of 0.027 (Fig.
3.8b), and the 3-peak a median NRMSE value of 0.047 (Fig. 3.8c).

We compare 𝑅(𝑡) curves obtained with the En4D-Var parameter estimates to exper-
imental data to calculate the NRMSE. Figs. 3.8(d-f) compare 𝜆𝑚𝑎𝑥 to the NRMSE
for each peak fit. As the number of fitted peaks increases, the NRMSE also in-
creases. 1-peak fits (Fig. 3.8d) exhibit the lowest NRMSE, with most errors within
0.02. However, the error for the 2-peak fits (Fig. 3.8e) are mostly within 0.05, with
some large scatter exhibited by the steel LIC cases. The 3-peak fit case (Fig. 3.8f)
NRMSE values are mostly within 0.15, with a few outliers. Given the number of
fitted peaks, stretch ratio does not have a noticeable effect on the NRMSE. How-
ever, with increasing number of peaks fitted, the NRMSE from the 1- to 3-peak
fits increases by almost an order of magnitude. Thus, subsequent oscillatory bub-
ble dynamics beyond the first peak are not as accurately described by the current
theoretical IMR framework.

Next, we examine the effect of laser energy on NRMSE. In the 1-peak fit case (Fig.
3.8g), LIC bubbles in PA with no particles have the lowest NRMSE compared to
the cases with PA with seed particles. While the general trend indicates increasing
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Figure 3.8: Results of offline En4D-Var fitting on experimental curves for 1-,
2- and 3-peak fits. Representative examples of multi-peak fits with median
NRMSE values (for PA paramagnetic particles at nominal laser energy 117
𝝁J) are shown for a (a) 1-peak fit (NRMSE = 0.009), (b) 2-peak fit (NRMSE
= 0.027), and (c) 3-peak fit (NRMSE = 0.047). NRMSE values with respect
to maximum material stretch for (d) 1-peak, (e) 2-peak, and (f) 3-peak fits,
and with respect to laser energy for (g) 1-peak, (h) 2-peak, and (i) 3-peak
fitting cases. Reproduced from Buyukozturk et al. (2022) with permission from
Springer Nature, © 2022.

NRMSE with increasing laser energy, the bubbles cavitated in PA with seed particles
tend to have similar errors at the lowest energies and diverge more with increasing
energy. This trend continues in the 2- and 3-peak fit cases, as shown in Figs. 3.8(h,
i). Overall, increasing the laser energy increases the fit error.
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For the range of samples and laser energies presented, the strain stiffening parameter,
𝛼, and viscosity, 𝜇, were estimated using the En4D-Var with the IMR framework
and Quadratic law Kelvin-Voigt stress integral (equation (3.3)). A summary of fitted
material parameters for all cases is shown in Fig. 3.9, where the weighted-mean
viscosity, 𝜇, and strain stiffening parameter, 𝛼, values are plotted against each other
with standard deviation error bars for each experimental condition. (The type of
sample is denoted by symbol and the energy level is denoted by color, in accordance
with the color bar shown.) The 1-peak fit case in Fig. 3.9a contains a large cluster
of material parameters located within the range of 𝜇 ≈ 0.04−0.08 and 𝛼 ≈ 0.4 - 0.6
with standard deviation values of 𝜎𝜇 = 0.008 and 𝜎𝛼 = 0.08. A few higher energy
cases fall outside of the cluster. However, as the number of fitted peaks increases to
2-peak (Fig. 3.9b) and 3-peak (Fig. 3.9c) fits, an increase in both 𝜇 and 𝛼 values
is observed, though the viscosity term is more affected. Another noticeable trend
is that the standard deviation of fitted material parameters for a given experimental
condition increases with respect to the laser energy. Thus, as energy increases,
so does the spread in fitted material parameters, particularly for the 2- and 3-peak
fitted cases. Notably though, parameter estimates for lower energy cases remain
more clustered, and do not increase as much as more peaks are fitted. This may
indicate that the IMR framework remains suitable over multiple peaks for lower
laser energies.
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Figure 3.9: Offline En4D-Var estimates for Quadratic law Kelvin-Voigt material
model parameters, namely viscosity 𝝁, and strain stiffening parameter 𝜶. The
material parameters estimates are shown for (a) 1-peak, (b) 2-peak, and (c) 3-
peak fits. The symbols correspond to sample type and the color corresponds to
laser energy, with the associated color bar shown on the far right. Each point
is a weighted average of 𝒏 = 8 experiments where error bars are standard
deviation. Reproduced from Buyukozturk et al. (2022) with permission from
Springer Nature, © 2022.
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Upon collapse, inertial cavitation bubbles emit acoustic waves that propagate through
the hydrogel matrix. The Mach number, 𝑀 , over time is a function of the velocity
of the bubble wall and the finite wave speed of the material, given by

𝑀 = ¤𝑅/𝑐. (3.5)

The critical Mach number, 𝑀𝑐𝑟 , is the maximum Mach number of an inertial bubble,
typically occurring at the first bubble collapse. Previous work suggests that 𝑀𝑐𝑟

values exceeding 0.08 define the condition for a violent collapse (Yang, Cramer,
and Franck, 2020), which may introduce additional physical phenomena such as
damage and inelastic material behavior. For more details on the IMR theoretical
framework, as well as the derivation of non-dimensionalized expressions required
for computations, see Estrada et al. (2018).

Given the estimated viscoelastic material parameters, the time evolution of bubble
radii is simulated with the physical model equations, and the critical Mach number
for each experiment is calculated using equation (3.5). In Fig. 3.10a, the critical
Mach number,𝑀𝑐𝑟 , with respect to each corresponding maximum stretch ratio, 𝜆𝑚𝑎𝑥 ,
is plotted for the 1-peak case and it is found that as the stretch ratio increases, so does
the critical Mach number. The 2-peak (Fig. 3.10b) and 3-peak (Fig. 3.10c) cases
follow the same trend, though there is an observable increase in scatter, particularly
for the steel seed particle case. Thus, there seems to be a dependency of critical
Mach number on the stretch ratio. Comparing the critical Mach number to laser
energy, we refer to Fig. 3.7, where increasing energy only slightly increases the
maximum stretch ratio. Given this, we can conclude that the critical Mach number
is similarly minimally affected by laser energy.

The offline (En4D-Var) method applies the IMR framework to the experimental
kinematic bubble radii using the Quadratic law Kelvin-Voigt material model to assess
the goodness of the bubble radius history fit and viscoelastic material properties for
up to 3-peak fits. The radius fit error, quantified as NRMSE, is generally lower for
all cases at lower energy levels, regardless of the number of peaks fitted. However,
the radius fit is worse, increasing by almost an order of magnitude, as we increase
the DA window from 1- up through 3-peaks with respect to both maximum material
stretch and laser energy. While the calculated critical Mach number did not have a
noticeable change with respect to input laser energy, it was found that the critical
Mach number increases with maximum material stretch ratio, a trend consistent
regardless of the number of bubble radius peaks fitted. Lastly, the fitted viscoelastic
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Figure 3.10: Critical Mach number, 𝑴𝒄𝒓 plotted with respect to maximum
material stretch, 𝝀𝒎𝒂𝒙 , Using offline (En4D-Var) estimates given the (a) 1-
peak, (b) 2-peak, and (c) 3-peak fitted solutions. Critical Mach numbers
were obtained by re-running simulations given these En4D-Var estimates in
each case. Reproduced from Buyukozturk et al. (2022) with permission from
Springer Nature, © 2022.

material properties tend to cluster with a 1-peak fit, but the spread in mean values, as
well as the standard deviation of values at a given experimental condition, increases
with respect to higher laser energy and number of peaks fitted. The latter particularly
affects the fitted viscosity parameter. Critical Mach number increases with respect
to material stretch as before, leading to violent collapses at higher material stretches
(𝑀 ≥ 0.08).

3.2.2.2 Quasi-online (IEnKS) Results

Next, we implement the quasi-online (IEnKS) method, where the estimation trails
the simulation by a fixed number of time steps. This is particularly useful because
the time-varying estimation provides additional information on IMR model uncer-
tainties. In this section, we will focus on two examples that indicate deviations
from the theoretical framework, while comparing cavitation events nucleated under
different experimental conditions.

For the first example, we focus on bubbles nucleated in PA (no seed particles) at all
four laser energies, ranging from nominal values of 117 𝜇J to 449 𝜇J. In Fig. 3.11,
we plot the ensemble’s variance in these estimates over time. The time evolution
of curves spans from the first bubble radius peak for all cases, where initial bubble
collapse for each example occurs approximately at the normalized time indicated
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by the dashed vertical lines. For the nominal laser energy of 117 𝜇J case shown
in Fig. 3.11a, the time-varying 𝛼 parameter gradually increases then dips after the
first bubble collapse. In Figs. 3.11(b,c), as the laser energy is increased, the 𝛼 and
𝜇 variance have an increased peak. This is even more apparent at the highest laser
energy case shown in Fig. 3.11d, where at a nominal laser energy of 449 𝜇J, both
peak 𝛼 and 𝜇 variances increase almost five times the peak values of the lowest
energy case. Thus, as laser energy increases, the quasi-online (IEnKS) method
produces more uncertain fitting results. This is most likely due to missing explicit
mathematical descriptions accounting for additional physical phenomena that, at
present, are not represented in the current IMR theoretical framework.
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Figure 3.11: Quasi-online IEnKS 𝜶 and 𝝁 estimate variance versus normalized
time at nominal laser energies of (a) ∼ 117 𝝁J (b) ∼ 254 𝝁J, (c) ∼ 337 𝝁J, and
(d) ∼ 449 𝝁J. This is for bubble radius time histories in PA with no beads,
where the IEnKS was run using an ensemble size of 48. First bubble collapse
occurs at approximately the dashed line for all 𝒏 = 8 samples per experimental
condition. Reproduced from Buyukozturk et al. (2022) with permission from
Springer Nature, © 2022.

The second representative example we present with the quasi-online (IEnKS) method
compares a bubble in a PA hydrogel (no seed particles) at the highest energy to a
bubble in a PA hydrogel (paramagnetic seed particles) at the lowest energy. The
non-dimensionalized time versus radius curves for each case and online estimation
are shown in Figs. 3.12(a,b). These cases have 𝜆𝑚𝑎𝑥 values of 9.5 and 4.7, with
low NRMSE values. The data assimilation starts at maximum normalized radius,
𝑅∗ = 1, and normalized time, 𝑡∗ = 0. In Fig. 3.12c, we consider a time-varying 𝛼
of the PA hydrogel (no seed particles) at highest energy first (𝜆𝑚𝑎𝑥 = 9.5). There
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is a gradual increase followed by a decrease in 𝛼 as the bubble collapses. However,
at initial collapse, 𝛼 experiences a significant increase. Upon the second peak
collapse, we observe another increase in the estimation. The time-varying viscosity
(Fig. 3.12e) follows a similar trend, where it maintains a steady value until the
first collapse, when a large jump increase is observed. Upon second collapse, the
estimator adjusts to a higher viscosity estimate again.

We compare this case to a bubble nucleated within PA on a paramagnetic particle
at the lowest laser energy (𝜆𝑚𝑎𝑥 = 4.7). In this case, 𝛼 has no discernible jump at
collapse, but instead displays a gradual drop-off in the estimation value over time
(Fig. 3.12d). Likewise, for the viscosity estimate, we observe relatively constant
parameter values in both parameters at collapse, and a slight dip upon first collapse
(Fig. 3.12f). It should be noted that while the parameter estimates in subsequent
radius peaks are constant, this does not imply a better fit to the model during that
portion of the bubble dynamics. Instead, despite using covariance inflation in the
quasi-online method, the ensemble eventually converges when the best estimates
are found. Thus, subsequent peaks are not a better fit to the model, but rather, the
estimator can no longer improve on its estimates for 𝜇 and 𝛼.

Overall, the low laser energy (paramagnetic seed particle) case exhibits a smoother
estimation around first collapse, which is likely due to the smaller exhibited material
stretch. This is in stark contrast to the high energy PA (no seed particles) case,
with large material stretch, where there is a discernible increase in both parameter
estimates and uncertainties at the collapse points. Given the current viscoelastic
IMR theoretical framework, the viscosity and strain-stiffening parameters of the
surrounding PA hydrogel should be estimated to be the same under both conditions,
yet there are observable differences between these cases. These stark contrasts in
time-varying material behavior are consistent with previous observations of violent
bubble collapses in PA gel. This notion is also reflected by a much higher critical
Mach number in the case of no seed particles, compared to that of the paramagnetic
particle case (see Fig. 3.10).

The selected examples described in this section illustrate the time-varying material
parameter estimates, as well as the model uncertainties with respect to material
stretch and laser energy. We see the greatest uncertainty in time-varying material
parameters at the bubble collapse points, especially at the first inertial collapse. How-
ever, we see a convergence in material parameter variation with decreasing energy
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for a given case, as well as at lower material maximum stretch regimes, indicating
that for lower material stretches or nucleation energies, the DA-IMR framework is
appropriate for accurately describing the laser-induced cavitation dynamics.

PA (paramagnetic particles)
18 μJ

PA (no particles)
449 μJ

Time*, t* = t
Rmax

p∞
ρ

1.510.50

Experimental measurement Quasi-online (IEnKS) estimate

Time*, t* = t
Rmax

p∞
ρ

1.510.50

(a) (b)

(c) (d)

Time*, t* = t
Rmax

p∞
ρ

Time*, t* = t
Rmax

p∞
ρ

10 2

1.510.50

10 2

10 2

0

0.5

0

0.1

0.05

0

2

4

0

5

 μ
 [P

a 
 s

]
α

0.6

0.2

1

0.4

0.8

0

0.6

0.2

1

0.4

0.8

0

R
ad

iu
s*

, R
* =

 R
(t)

 / 
R

m
ax

 

R
ad

iu
s*

, R
* =

 R
(t)

 / 
R

m
ax

 

(e) (f)

EnsembleQuasi-online (IEnKS) estimate

λmax = 9.5
  

NRMSE = 0.018 

λmax = 4.7
  

NRMSE = 0.016 

α
 μ

 [P
a 

 s
]

Figure 3.12: Comparison of results of the quasi-online IEnKS fitting for two
extreme cases with normalized radius versus time curves in PA (no beads) at
nominal laser energy 449 𝝁J and (b) PA (paramagnetic particles) at nominal
laser energy 18 𝝁J. The (c, d) 𝜶 (e, f) and 𝝁 estimates over normalized time
for each case are plotted. Reproduced from Buyukozturk et al. (2022) with
permission from Springer Nature, © 2022.

3.2.3 Discussion of Modeling Uncertainties

Overall in section 3.2, we showed that the IEnKS and En4D-Var were able to fit
the parameters of a quadratic law Kelvin-Voigt constitutive model to the broad
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range of data sets, while quantifying associated errors and critical Mach numbers
at initial collapse. Important trends were observed given these DA results. With
the high temporal resolution available in the experimental data, fitting bubble radius
to the first peak only consistently led to a decrease in the NRMSE. While data
from previous studies meant that using a long time-scale was vital to obtaining
good parameter estimates, it appears that with this image capture rate, limiting
to the first peak yields best results. The decrease in result reliability past the first
collapse may be a result of the limit on compressibility effects captured in the model.
Indeed the Keller-Miksis equation only accounts for compressibility effects near the
bubble wall region (Keller and Miksis, 1980; Estrada et al., 2018). While this often
suffices, the increase in results NRMSE past the first collapse point indicates that
this assumption may not hold, particularly in cases where the critical Mach number
exceeds 𝑀𝑐𝑟 = 0.08 (Anderson, 2009). As stretch ratio, and thus Mach number,
increases, the physical model used may be limited in its ability to fully capture the
bubble dynamics.

It was seen that this effect was more pronounced when increasing the laser energy.
While for single-peak fitting, an increase in the stretch ratio did not correlate with
an increased fitting error, a higher laser energy consistently increased the NRMSE
of results, as seen in figures 3.8, 3.9, and in the increased variance in parameters
estimates with the IEnKS with higher energies seen in figure 3.11. This suggests
that at higher laser energies, the physics of plasma formation optical breakdown
of the polyacrylamide at cavitation inception have an impact beyond our modeling
capabilities. The current approach of beginning our data assimilation window at
peak bubble radius no longer suffices to avoid capturing this initial breakdown, which
affects the physics beyond the initial bubble growth, as assumed by our approach.
Lowering energy, for example by introducing seed particles, is thus an effective
way to carry out DA-IMR to avoid these effects. However, another way to address
this may be to modify the cavitation inception method used, and avoid difficulties
caused by the laser nucleation physics altogether. In the next section, we describe
our application of the DA-IMR framework to ultrasound-induced cavitation data.
There, high intensity focused ultrasound is used to induce cavitation in hydrogels
instead of using laser nucleation.
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3.3 DA-IMR with Ultrasound-induced Cavitation Data

3.3.1 Experiment and Problem Setup

Mancia, Yang, et al. (2021) introduce ’Acoustic Cavitation Rheometry’ as an alter-
native to the laser-induced cavitation (LIC) rheometry used in sections 3.1 and 3.2.
Here, cavitation is generated via focused ultrasound, the negative pressure peaks of
which can cause bubble nucleation about existing material defects or microbubbles
trapped in a material. This can avoid some of the issues observed in LIC and de-
scribed in section 3.2.3, while still causing bubbles to grow explosively in media
of interest, and attain similar strain rates as with LIC (Wilson et al., 2019). The
reader is referred to section 2.1 of Mancia, Yang, et al. (2021) for details on the
experimental setup. Key differences with the setup of experiments in section 3.1
and 3.2 are the following. First, agarose gel is used as the cavitation medium rather
than polyacrylamide. The 0.3% and 1% gels are prepared following Vlaisavljevich,
Lin, Maxwell, et al. (2015), and have quasi-static shear moduli of approximately
380 Pa and 720 Pa, respectively. Next, to induce cavitation, a 16-element transducer
array fires 1.5 cycles of focused ultrasound (with a single negative half-period)
at 1 MHz with a peak negative amplitude of −24 MPa into the gel. Each bubble,
generated by acoustic forcing at the transducer focal point alone (Maxwell, Cain,
Hall, et al., 2013), is at least 5 mm away from the previous nucleation site. Images
were captured every 2.5 µs (at 400,000 frames per second), giving a better temporal
resolution than that at which the DA-IMR methods are validated in Chapter 2.

Given the lack of plasma formation, we now use data from the initial growth of the
bubble as well, and are no longer restricted to begin at the first bubble peak. Our
data assimilation window thus includes the full first growth and collapse, so while
the temporal resolution is worse than that of section 3.2, the number of data points
remains large enough to converge on well-fitted material parameters. We continue
to use the same bubble dynamics model described in section 2.1, and three distinct
material models are tested. First, the Neo-Hookean Kelvin-Voigt model (Gaudron,
Warnez, and Johnsen, 2015) used in section 3.1, where the stress integral is given by
equation (2.7). Then, two variants of the quadratic law Kelvin-Voigt model (Fung,
2013; Yang, Cramer, and Franck, 2020), with the stress integral given by equation
(3.3). The first variant is identical to that used previously in section 3.2, where the
shear modulus is fixed at the quasi-static value 𝐺∞. The second generalizes this so
that both 𝐺 and the strain stiffening parameter 𝛼 can vary. Additionally, instead of
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using the long-time equilibrium bubble radius to estimate 𝑅0 as done previously,
this parameter is here estimated along with the material model parameters, with an
initial estimate taken to be the initial bubble radius. Finally, a time-shift parameter
𝑡𝑠 is added to our estimation, which is used to initialize bubble growth. This yields
a new, expanded state vector for our En4D-Var estimator with up to 5 constant
parameters to estimate appended with the generalized QLKV model:

𝒙 = {𝑅, ¤𝑅, 𝑝𝑏, 𝑆,T,C, 𝐺, 𝜇, 𝛼, 𝑅0, 𝑡𝑠}. (3.6)

For the neo-Hookean Kelvin-Voigt model, 𝛼 = 0 is fixed, for the quasi-static QLKV
model we set 𝐺 = 𝐺∞, and for the generalized QLKV model all parameters are
allowed to vary. The main goal of this study is material parameter estimation, so
we report results with the En4D-Var method only (as detailed in section 2.2.4). An
ensemble size of 𝑞 = 48 is used in all cases, which is found to be sufficient while
keeping computational costs low. The initial ensemble is sampled from a Gaussian
distribution centered around an initial state vector. The method is implemented with
both gels, and for each material model.

3.3.2 En4D–Var Parameter Estimation Results

We now analyze the results obtained with En4D-Var parameter estimation. Initial
guesses as to each material property are determined based on the estimates obtained
with IMR in table 1 of Mancia, Yang, et al. (2021). For example, in the 0.3% gel
case, the initial guesses with all models are 𝑅0 = 0.5 𝜇m and 𝜇 = 0.1 Pa·s. For
the Neo-Hookean model, the shear modulus initial guess is 𝐺 = 10 kPa. For both
QLKV models, the initial guess is 𝛼 = 0.03, and while the shear modulus is fixed at
𝐺 = 0.38 kPa in the quasi-static case, the initial guess is 𝐺 = 0.5 kPa in the general
QLKV case.

Table 3.3 summarizes the results with En4D-Var for both the 0.3% and 1% agarose
specimens. These results are comparable with those obtained with simple least-
squares fitting done by Mancia, Yang, et al. (2021) in table 1 for these material
parameters. A key difference, however, appears in the comparatively much smaller
stress-free radius and stiffening parameter standard deviations. In fact, the estimates
for these parameters are close to the initial guess in all cases. This indicates that
given these initial guesses, the En4D-Var is unable to improve on these results and
converges quickly to the original value. This behavior is further discussed below.
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Model 𝐺 [kPa] 𝛼 [10−2] 𝜇 [Pa s] 𝑅0 [µm]
0.3% gel

NH 9.66 ± 0.55 0 0.086 ± 0.028 0.51 ± 0.07
QS QLKV 0.38 ± 0.16 3.0 ± 0.1 0.097 ± 0.026 0.50 ± 0.03
Gen QLKV 0.50 ± 0.05 3.0 ± 0.3 0.094 ± 0.026 0.51 ± 0.06
1% gel

NH 36 ± 3.57 0 0.14 ± 0.031 1.03 ± 0.04
QS QLKV 7.2 ± 0.33 2.4 ± 0.15 0.16 ± 0.038 1.29 ± 0.06
Gen QLKV 7.7 ± 0.89 2.5 ± 0.12 0.16 ± 0.036 1.29 ± 0.05

Table 3.3: Weighted mean and standard deviation of inferred properties using
En4D-Var for 0.3% and 1% agarose specimens. Table reproduced from Man-
cia, Yang, et al. (2021) with permission from the Royal Society of Chemistry, ©
2021.

The radius-normalized RMS errors obtained with the En4D-Var are also similar to
those obtained with IMR. For example, in the 0.3% gel case, the normalized RMS
errors range from 0.02 to 0.09. with a mean of 0.04 with the Neo-Hookean model.
For the quasi-static QLKV model, they range from 0.02 to 0.07 with a mean of 0.05.
Finally, for the general QLKV model, the range is 0.02 to 0.06 with a mean of 0.04.
The increase in model complexity thus appears to better capture material behavior,
reducing the error. Details on these parameter estimates can be found in sections
3 and 4.1-4.3 of Mancia, Yang, et al. (2021), but we here focus on the additional
information that our En4D-Var implementation provides.

Indeed, the En4D-Var results can further inform the uncertainties associated with
the material property estimates obtained, e.g., due to variations in samples.

Figure 3.13 summarizes the En4D results with the QLKV model for each material
property. These histograms combine all final ensemble members across the 19 data
sets (with an ensemble size of 48, the total number of ensemble members is thus
19 × 48 = 912). An approximately Gaussian distribution is obtained for all four
quantities, the mean of which are our estimates for each quantity, thus confirming
that the En4D-Var estimates are uniform across all data sets.

Figure 3.14 shows the iterative estimation of each parameter for all 19 data sets,
again with the QLKV model. It appears that the viscosity estimates are relatively
scattered, which points to a relatively high sensitivity to changes in viscosity in our
estimator. By contrast, the spread in stress-free radius, shear modulus and stiffening
parameter is quite narrow around the initial guess, indicating that in this regime
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Figure 3.13: Histogram of combined final stress-free radius, shear modulus,
stiffening parameter and viscosity ensembles for 0.3% gels with the En4D-var
using the QLKV model. Reproduced from Mancia, Yang, et al. (2021) with
permission from the Royal Society of Chemistry, © 2021.

and given this guess the estimator could not improve the fit significantly. Overall,
this uncertainty assessment demonstrates that the acoustic cavitation extension of
IMR applied with data assimilation methods provides robust parameter estimates
comparable to those obtained with the traditional IMR optimization approach.

Overall, the En4D-Var method was successfully applied to the ultrasound-cavitation
framework for material estimation, or acoustic cavitation rheometry. As compared
to the traditional least-squares fitting method, we obtained comparable material
parameters in a manner far more scalable and computationally efficient, while
additionally providing insight into modeling uncertainties. It has confirmed that
acoustic cavitation rheometry is a powerful framework for viscoelastic material
property estimation at high strain rates, which avoids some of the issues associated
with laser-induced cavitation discussed in section 3.2. Applying En4D to this data
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Figure 3.14: Iterative estimation of the stress-free radius, shear modulus,
stiffening parameter and viscosity for 0.3% gels with the En4D-var using the
QLKV model. Reproduced from Mancia, Yang, et al. (2021) with permission
from the Royal Society of Chemistry, © 2021.

has shown that DA-IMR is a versatile framework, which in all tested cases has
functioned well and provided additional physical insight into the bubble dynamics
of the problem.

This concludes the first part of the thesis, focused on data assimilation for vis-
coelastic material characterization. While the interaction of ultrasound and bubble
dynamics, as examined in section 3.3, play a central role in the following chapters
and particularly in Chapter 5, we will now shift to a new application of interest.
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C h a p t e r 4

A SINGLE FRAMEWORK FLUID–SOLID NUMERICAL
SOLVER FOR BURST-WAVE LITHOTRIPSY SIMULATIONS

Parts of this chapter are adapted from Spratt, Rodriguez, Bryngelson, et al. (2021),
Spratt and Colonius (2023) and sections 2.2 and 6.2 of Radhakrishnan et al. (2023).
In this chapter, we present our numerical solver implemented for full simulations
of burst-wave lithotripsy. In section 4.1, this modeling framework is described, in-
cluding the 5-equation multiphase model with hypoelasticity, a continuum damage
model, a one-way acoustic wave source for the transducer, and the GPU imple-
mentation of the code. In section 4.2, our hypoelastic model implementation is
validated through comparison to analytical results. In section 4.3, we present first
simulations of BWL, and compare simulated stress patterns in stones to experi-
mental photoelastic imaging. Finally, we use the solver in section 4.4 to study
the frequency-dependence of stress produced in stones of various sizes and shapes
during BWL.

4.1 Numerical Methods

Simulating burst-wave lithotripsy (BWL) requires modeling of various interactions.
In the most simple case, we require a solver that can model acoustic (ultrasound)
waves traveling through the surrounding fluid and impinging on a solid stone. The
elastic response of the kidney stones must be fully represented to determine treatment
efficacy and ensure correct interactions with the acoustic field and surrounding
fluid. This requires modeling the elastic response of the material in the solid
region. Furthermore, the BWL process frequently causes bubbles to cavitate near
the proximal surface of the stone. Accounting for this requires a high-order accurate
multi-phase compressible flow solver, capable of simulating acoustic wave–bubble
interactions, which could include rapid bubble collapse. In all, BWL simulations
thus require a multiphase fluid mechanics solver that can additionally model the
elastic response of a solid material.

To meet these requirements, we use an interface-capturing method with the 5-
equation multiphase flow model (Kapila et al., 2001; Allaire, Clerc, and Kokh,
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2002). This is complemented with a hypoelastic model to capture the behavior of
solid regions while remaining in an Eulerian framework (Rodriguez and Johnsen,
2019), and a continuum damage model to better understand damage accumulation
occurring as a result of the treatment (Cao et al., 2019). Specifically, these models
are added to the open-source Multi-component Flow Code (MFC) to carry out
our simulations, which uses a diffuse interface method with HLL-type Riemann
solvers and supports the 5-equation model (Bryngelson et al., 2021). Spherical
acoustic waves generated by the BWL therapy transducer elements are simulated
using the volumetric source-term approach of Maeda and Colonius (2017), which
can simulate one-way waves off of any smooth surface. Finally, to fully resolve
bubbles on the order 𝑂 (100 µm) in our simulations while capturing the entire stone
volume, we require high resolution. This is facilitated by the port of our code to
GPUs, without which computational costs for the simulations presented in this paper
would have been far greater. We describe each of these models and, in turn, the
GPU implementation in the remainder of this section.

4.1.1 The 5-equation Model with Hypoelasticity

We use the hypoelastic material model of Rodriguez and Johnsen (2019), which is
based on a small-strain approximation (Eringen, 1962) that facilitates the incorpo-
ration of elasticity in an Eulerian framework. This enables adding this model to our
existing multiphase flow solver, without sacrificing any of its capabilities. While
the cases shown in the present paper only include elastic materials (stones), our
implementation uses the Kelvin-Voigt material model, making it generalizable to
viscoelastic materials. Details on the Kelvin-Voigt material can be found in Chapters
2 and 3, where it is used to represent the viscoelastic hydrogels characterized using
DA-IMR.

The MFC code (Bryngelson et al., 2021) uses the so-called 5-equation multiphase
flow model (Kapila et al., 2001; Allaire, Clerc, and Kokh, 2002). Without hypoe-
lasticity, it is given by (for 2 components with superscripts (1) and (2)):

𝜕

𝜕𝑡



𝛼(1)

𝛼(1)𝜌(1)

𝛼(2)𝜌(2)

𝜌𝑢𝑖

𝜌𝐸


+ 𝜕

𝜕𝑥 𝑗



𝛼(1)𝑢 𝑗

𝛼(1)𝜌(1)𝑢 𝑗

𝛼(2)𝜌(2)𝑢 𝑗

𝜌𝑢𝑖𝑢 𝑗 + 𝑝𝛿𝑖 𝑗 − 𝜏𝑣𝑖 𝑗
(𝜌𝐸 + 𝑝)𝑢 𝑗 − 𝑢𝑖𝜏𝑣𝑖 𝑗


+



−𝛼(1) − 𝐾
0
0
0
0


𝜕𝑢 𝑗

𝜕𝑥 𝑗
= 0, (4.1)
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with 𝛼(𝑘) the volume fraction of the 𝑘-th component, and 𝜌, 𝑢, 𝑝, 𝐸 the mixture
density, velocity, pressure, and total energy, respectively. 𝜏𝑣 is the viscous stress
tensor, and 𝐾 is the interface compressibility term, which is important in cavitation
problems to accurately represent the sound speed in mixture regions (Schmidmayer,
Bryngelson, and Colonius, 2020)

𝐾 =
𝜌(2)𝑐(2)

2 − 𝜌(1)𝑐(1)2

𝜌 (2)𝑐 (2) 2

𝛼 (2)
+ 𝜌 (1)𝑐 (1) 2

𝛼 (1)

. (4.2)

We now describe modifications of this model to model the elastic response of solids,
using a hypoelastic material model (Rodriguez and Johnsen, 2019).

This model relies on using a Lie objective temporal derivative (which preserves
thermodynamic consistency) of the stress-strain relation to transform strains to
strain-rates (Altmeyer, Rouhaud, et al., 2015; Altmeyer, Panicaud, et al., 2016).
Strain rates are computed as gradients of velocity ¤𝜖𝑖 𝑗 = 1

2

(
𝜕𝑢𝑖
𝜕𝑥 𝑗
+ 𝜕𝑢 𝑗

𝜕𝑥𝑖

)
, consistent

with fluids. The 5-equation model given by equation (4.1) is modified by first adding
an elastic shear stress term 𝜏

(𝑒)
𝑖 𝑗

to the Cauchy stress tensor

𝜎𝑖 𝑗 = −𝑝𝛿𝑖 𝑗 + 𝜏(𝑣)𝑖 𝑗 + 𝜏
(𝑒)
𝑖 𝑗
. (4.3)

This elastic shear stress will appear in the momentum and energy equations. The

total energy is then also modified with an elastic contribution 𝑒(𝑒) =
𝜏
(𝑒)
𝑖 𝑗
𝜏
(𝑒)
𝑖 𝑗

4𝜌𝐺 , yielding

𝐸 = 𝑒 + ∥𝒖∥
2

2
+ 𝑒(𝑒) . (4.4)

Here, 𝑒 is the internal energy, and 𝐺 is the medium shear modulus. Now, the Lie
derivative of the elastic stresses is given by

¤𝜏(𝑒)
𝑖 𝑗

=
𝜕𝜏
(𝑒)
𝑖 𝑗

𝜕𝑡
+ 𝑢𝑘

𝜕𝜏
(𝑒)
𝑖 𝑗

𝜕𝑥𝑘
− 𝜏(𝑒)

𝑘 𝑗

𝜕𝑢𝑖

𝜕𝑥𝑘
− 𝜏(𝑒)

𝑖𝑘

𝜕𝑢 𝑗

𝜕𝑥𝑘
− 𝜏(𝑒)

𝑖 𝑗

𝜕𝑢𝑘

𝜕𝑥𝑘
. (4.5)

Combining this, and the fact that for an isotropic Kelvin-Voigt material, ¤𝜏(𝑒)
𝑖 𝑗

=

2𝐺 ¤𝜖 (𝑑)
𝑖 𝑗

(see section 3.1.1 of Rodriguez and Johnsen (2019)), an evolution equation
for the elastic stresses is derived and appended to our modified 5-equation model to
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yield a final system of equations, given here for two materials:

𝜕
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0
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, (4.6)

with
𝑆𝑒𝑖𝑙 = 𝜌

(
𝜏
(𝑒)
𝑘 𝑗

𝜕𝑢𝑖

𝜕𝑥𝑘
+ 𝜏(𝑒)

𝑖𝑘

𝜕𝑢 𝑗

𝜕𝑥𝑘
− 𝜏(𝑒)

𝑖 𝑗

𝜕𝑢𝑘

𝜕𝑥𝑘
+ 2𝐺 ¤𝜖 (𝑑)

𝑖 𝑗

)
. (4.7)

As with the original 5-equation model of MFC, the stiffened-gas equation of state (Le
Métayer, Massoni, and Saurel, 2005) closes the system, where for the 𝑘 th component

𝑝𝑘 = (𝛾𝑘 − 1)𝜌𝑘𝑒𝑘 − 𝛾𝑘𝜋∞,𝑘 , (4.8)

where 𝑔𝑎𝑚𝑚𝑎 is the specific heat ratio and 𝑝𝑖 is the liquid stiffness, which are fitted
to produce correct wave speeds in each material (Le Métayer, Massoni, and Saurel,
2004; Le Métayer, Massoni, and Saurel, 2005).

4.1.2 A Continuum Damage Model

We will use two metrics to determine the efficacy of treatment across our simulations.
As brittle materials are expected to fail in tension, we measure the maximum tensile
principal stress 𝜎1 in the stone over the course of a BWL pulse. In 2D, this is given
by

𝜎1 =
𝜎11 + 𝜎22

2
+

√︂(𝜎11 − 𝜎22
2

)2
+ 𝜏2

12, (4.9)

where each diagonal stress term 𝜎𝑖𝑖 is given by 𝜎𝑖𝑖 = −𝑝 + 𝜏(𝑣)𝑖𝑖 + 𝜏
(𝑒)
𝑖𝑖

.

In 3D, the maximum principal stress is obtained by finding the largest root of the
cubic equation:

𝜎3 − 𝐼1𝜎2 + 𝐼2𝜎 − 𝐼3 = 0, (4.10)

where the 𝐼𝑖 terms are the stress invariants:

𝐼1 = 𝜎11 + 𝜎22 + 𝜎33 (4.11)

𝐼2 = 𝜎11𝜎22 + 𝜎22𝜎33 + 𝜎11𝜎33 − 𝜏2
12 − 𝜏

2
23 − 𝜏

2
13 (4.12)

𝐼3 = 𝜎11𝜎22𝜎33 + 2𝜏12𝜏23𝜏13 − 𝜎11𝜏
2
23 − 𝜎22𝜏

2
13 − 𝜎33𝜏

2
12. (4.13)
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The maximum principal stress will indicate where and in which simulations large
peak tensile stresses occur in the stone. This alone is a good predictor of stone
damage.

Second, we implement a continuum damage model following Cao et al. (2019).
Here, a damage state variable 𝐷 (𝑋, 𝑡) ∈ [0, 1) is introduced, which is calculated as
the integral over time

𝐷 (𝑋, 𝑡) =
∫ 𝑡

0
(𝛼 max(𝜎1(𝑋, 𝜏) − 𝜎∗, 0))𝑠𝑑𝜏, (4.14)

where 𝜎1 is the max. principal stress and 𝜎∗, 𝑠, 𝛼 are constant model parameters
determined empirically. 𝐷 = 0 indicates a fully intact material, whereas a point in
the material where 𝐷 = 1 indicates it is fully damaged. This damage is reflected in
the material properties, where in an isotropic linear elastic material, 𝐷 modifies the
local Young’s modulus E as

E(𝑋, 𝑡) = E0(1 − 𝐷 (𝑋, 𝑡)). (4.15)

In our case, the material stiffness is parametrized by the shear modulus𝐺, and given
that𝐺 = E

2(1+𝜈) , this yields the following equation for the local time dependent shear
modulus

𝐺 (𝑋, 𝑡) = 𝐺0(1 − 𝐷 (𝑋, 𝑡)), (4.16)

where 𝐺0 is the initial material shear modulus. Thus, if 𝐷 reaches a value of 𝐷 = 1
at a given position in the solid, the material is considered fully damaged, and the
shear modulus reduced locally to 𝐺 = 0.

We note that in the results presented in Chapter 5, this damage model is modified
and implemented as a one-way model only, meaning that we do not modify local
shear modulus as described in equation (4.16). While Cao et al. (2019) looked at
shock-wave lithotripsy, our simulations only span a single BWL pulse. Relative
to that caused by a shock wave in SWL, the stresses generated by a single BWL
pulse with an originally intact stone are small. Indeed, full stone comminution
usually requires at least 𝑂 (1000) ultrasound pulses during BWL. Because of this,
the feedback incorporated in the model whereby the damage state modifies local
material properties is not necessary for a single BWL pulse, and we only calculate
the accumulation of damage 𝐷. Thus, the damage model can be thought of as a
qualitative way of tracking the accumulation of stress. In Cao et al. (2019), a damage
value of 𝐷 = 1 meant that the stone was completely broken, but that is not the case
here where damage values are used as a qualitative comparison tool.
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The stones used in our simulations in Chapter 5 have identical properties to those of
Cao et al. (2019). We thus utilize the same empirical model parameters in equation
(4.14), except for 𝜎∗ which is reduced to 4 MPa to account for the time-scale of
these simulations of BWL as compared to SWL. Given these modifications, the
damage state 𝐷 (𝑋, 𝑡) ∈ [0, 1) serves here as a measure and visualization tool of
the accumulation of large maximum principal stress 𝜎1 over the course of the BWL
pulse. Plots of this damage over a cross-section of the stone are used to compare
the efficacy of BWL across simulations in Chapter 5.

4.1.3 Spherical Acoustic Wave Generation from a Transducer Source

To model the therapy transducer used in BWL, an acoustic source model capable of
generating spherical ultrasound waves is necessary. To this end, we make use of the
volumetric source term approach of Maeda and Colonius (2017), which can generate
one-way acoustic waves from any smooth surface. In this case, we insert individual
spherically focused transducer elements with a given aperture and focal length, each
of which serves as a source for a spherically focused sine wave. Following section
4.2 of Maeda and Colonius (2017), source terms are added to the mass, momentum
(in the longitudinal and radial direction), and energy equations in our model, given
by

Ω(𝜉, 𝑡) =


𝑓 (𝑡)

𝑔𝑧 (𝜉, 𝑡)
𝑔𝑟 (𝜉, 𝑡)
𝑐2

0 𝑓 (𝑡)
𝛾−1


, (4.17)

where

𝑓 (𝑡) = 𝑝𝑎

𝑐0
sin(𝜔(𝑡 − 𝑡0)) +

𝑝𝑎

𝐴

(
1
𝜔

cos
(
𝜔2(𝑡 − 𝑡0)

)
− 1
𝜔

)
(4.18)

𝑔𝑧 (𝜉, 𝑡) = −𝑝𝑎 sin(𝜔(𝑡 − 𝑡0)) cos(𝜉) (4.19)

𝑔𝑟 (𝜉, 𝑡) = −𝑝𝑎 sin(𝜔(𝑡 − 𝑡0)) sin(𝜉). (4.20)

Here, 𝑓 is the ultrasound frequency, 𝑝𝑎 is the pressure pulse amplitude, 𝑐0 the speed
of sound, 𝜔 = 2𝜋 𝑓 the angular frequency, and 𝐴 the element aperture. 𝜉 is the
polar angle parametrizing the transducer element as (𝑥, 𝑦) = [𝑟0 cos(𝜉), 𝑟0 sin(𝜉)].
The full model derivation and examples of its use are given in Maeda and Colonius
(2017).
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For the simulations of Chapter 5, we implement a custom transducer surface with 18
spherically focused elements placed in two concentric rings (of 6 and 12 elements).
The transducer element pressure amplitudes are calibrated to match experimental
waveforms. Details are provided in the description of the problem setup in section
5.1, and in section 5.2 where a virtual array is created to simulate a transducer within
a reduced domain size.

4.1.4 GPU Acceleration

For the past two decades, CPU clock speed increase has slowed and come to a plateau.
Instead, much of the increase in computational power has come from increased
parallelization, particularly through the use of GPUs. Modern supercomputers
make effective use of GPU acceleration, which has become central to the continued
scaling of computational capabilities. Given CFL number limitations that govern
simulations in computational fluid dynamics, the minimization of wall time for each
time step is critical. To this end, the MFC code, including all models described thus
far in section 4.1, has been ported to GPUs. Details of this implementation can be
found in Radhakrishnan et al. (2023), and are summarized here.

The GPU implementation is done using OpenACC (Wienke et al., 2012), which is a
directive-based programming language. OpenACC directives are read at compile-
time, only when compiling with GPU-enabled compilers. Thus, GPU kernels are
only created when necessary hardware is available, and OpenACC directives are
otherwise ignored. This enables the use of a single codebase for CPU and GPU
execution, while retaining high performance comparable to using GPU-specific pro-
gramming languages such as CUDA (Khalilov and Timoveev, 2021). Furthermore,
OpenACC is not GPU-vendor dependent, and has increased support across various
computing ecosystems, meaning a flexible and future-proof implementation as GPU
architecture evolves (Jarmusch et al., 2022). Despite its relative ease of implemen-
tation, it enables custom parallelization strategies and data management between
CPU host and GPU devices, serving the needs of a relatively large Fortran code
such as MFC.

The results are a performant and highly scalable GPU-accelerated code. Speedup
numbers vary depending on the hardware and models used. In one representative
test case reported in Radhakrishnan et al. (2023), we see a 300× speedup when
comparing a single NVIDIA V100 GPU to a POWER9 CPU core. In another test
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case comparing a full GPU node (4 NVIDIA V100 GPUs) to a CPU node (128 cores
AMD EPYC 7742) on the Expanse supercomputer at the San Diego Supercomputer
Center, a 5.8× speedup is achieved with the hypoelastic and damage models turned
on in a node-to-node comparison (see table 4.1 and Appendix B for full results
of this example). We note that this speedup would be even more significant if
using NVIDIA A100 GPUs, which are approximately 1.7 times faster than NVIDIA
V100s.

The code sees near-ideal weak scaling (where the problem size scales with the
number of processors) up to 𝑂 (10000) GPUs. That is, running a test 3D two-
component case with 1 million points/GPU is only 3% slower on 13824 GPUs than
on a single GPU. Strong scaling (where the problem size is fixed for each run) sees
MFC retain 84% of ideal performance when increasing the number of GPUs 8-fold,
from 8 to 64 GPUs. This decreased performance is attributed to the increased MPI
communication required as the number of GPUs increases. We note that for all
GPU simulations presented in Chapter 5, the number of GPUs did not exceed 32,
where scaling performance remains near-ideal (see figure 2 in Radhakrishnan et al.
(2023)). Overall, the GPU implementation of the code enables runs at much higher
resolutions than previously possible with the CPU code alone.

When the hypoelastic model is activated, we have seen in section 4.1.1 that up to 6
additional equations must be solved. That is, there are up to 6 distinct elastic stresses
𝜎𝑖 𝑗 in 3D, as this is a symmetric 3 × 3 tensor. Also, calculating the damage state
following the method described in section 4.1.2 requires calculating the maximum
principal stress at each point in the domain. These models thus both increase the
computational cost of simulations. Table 4.1 compares run time per time-step for
a 3D test case with the base version of MFC, with the hypoelastic model turned
on, and with both the hypoelastic and damage models. This shows that the GPU

Version Base MFC Hypoelastic Hypoelastic and Damage
CPU node (128 cores) 8.8 s 19.4 s 22.5 s
GPU node (4 GPUs) 2.0 s 3.7 s 3.9 s

Table 4.1: Total time per time-step comparison for a 3D MFC test run with 10
million grid points with two components, with different models activated.

code reduces the additional burden of the implemented models. On one CPU node,
the added cost of turning on both models is 155%. By contrast, this added cost is
reduced to 98% on one GPU node. The added cost of including just the hypoelastic
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model is similarly lower (84% vs 119%) on GPUs. This is likely because the
performance of the GPU code is more limited by routines with intense memory
transfer requirements. Calculations required for both the hypoelastic and damage
models are highly parallelizable, and thus constitute a smaller added cost relative to
the entire time step operations on GPUs, as detailed in Appendix B.

Having described our numerical framework including implemented hypoelastic and
damage models, acoustic source model, and the GPU acceleration of the code, we
now turn to validation cases, particularly for the implemented hypoelastic model.

4.2 Model Validation

4.2.1 Comparison to 1D Analytical Solution

In 1D, following Gavrilyuk, Favrie, and Saurel (2008), we can obtain analytical
solutions to Riemann problems in elastic media as long as 𝜌𝐺 is kept constant. We
consider two such 1D Riemann problems in elastic media taken from Gavrilyuk,
Favrie, and Saurel (2008) and Rodriguez and Johnsen (2019), one of which was
also reported in Spratt, Rodriguez, Bryngelson, et al. (2021). The first is an impact
problem in an elastic material with shear modulus𝐺 = 500 MPa. There is a velocity
discontinuity at the interface, and the full initial conditions are given by

(𝜌, 𝑢, 𝑝, 𝜏𝑒) =

(1000, 10, 1 × 105, 0) for 𝑥 ∈ [0, 0.5],

(1000,−10, 1 × 105, 0) for 𝑥 ∈ [0.5, 1] .
(4.21)

The resulting density, velocity, pressure, and normal stress at 𝑡 = 64 𝜇s are shown
in figure 4.1. The simulation is run on a 1D grid with 400 points. We see good
agreement between the simulation results and analytical solution.
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Figure 4.1: Comparing the simulated results (blue dotted line) to the exact
solution (black line) for a 1D impact problem with initial conditions described
by (4.21) at 𝒕 = 64 µs.

The next validation case is akin to a Sod shock tube with a 1000 : 1 pressure ratio,
but with an added velocity discontinuity in the y-direction at the interface in an
elastic material with high shear modulus 𝐺 = 10 GPa. The initial conditions are

(𝜌, 𝑢, 𝑣, 𝑝, 𝜏𝑒) =

(103, 0, 100, 108, 0) for 𝑥 ∈ [0, 0.5),

(103, 0,−100, 105, 0) for 𝑥 ∈ [0.5, 1] .
(4.22)

To simulate this case with MFC, we run a ’quasi-1D’ simulation with the 2D code.
By this, we mean that initial conditions are uniform along the y-direction (which
only has a few grid points). This way, we achieve the y-velocity discontinuity
required in this example. We plot the resulting state (along the centerline) at time
𝑡 = 64 µs in figure 4.2. Density, velocity in the x-direction, pressure, normal stress,
velocity in the y-direction, and elastic shear stress 𝜏12 are shown for 𝑥 ∈ [0, 1]. Note
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Figure 4.2: Comparing the simulated results (blue dotted line) to the exact
solution (black line) for the 1D Riemann problem described by initial conditions
(4.22) at 𝒕 = 64 µs.

that these values are plotted along the 𝑦 = 0 axis, but are equal for any y as the
initial condition is uniform in the y-direction. Five waves are observed: a shock
propagating to the right, a rarefaction propagating to the left, a contact discontinuity
in the center, and shear waves propagating in both directions. Simulation results
show good agreement with the exact solution, notably demonstrating correct p-wave
and s-wave speeds in this elastic material.

4.2.2 2D Bi-Layered Media Simulations

Next, we consider a two-dimensional simulation of bi-layered media to examine
transmitted 𝑠- and 𝑝-waves through a water–elastic-medium interface. This wave
transmission is vital to the understanding of the elastic response of stones to BWL.
Here, an acoustic source placed in the top fluid layer, 500 m above the interface,
generates one cycle of a 10 Hz Ricker wave. This waveform, which is a derivative
of a Gaussian pulse, is frequently used as a surrogate for seismograph data (Ryan,
1994). The elastic material has density 𝜌 = 2500 kg/m3 and theoretical wave-speeds
𝑐𝐿 = 3400 m/s and 𝑐𝑇 = 1963 m/s. A probe is placed 500 m below the material
interface, and 2000 m from the source in the x-direction. The full setup is shown in
figure 4.3.
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Figure 4.3: Sketch of the setup for a 2D bi-layered media problem, showing the
location of wave source and probe as well as material properties of each layer.

This example is taken from Komatitsch, Barnes, and Tromp (2000), and thus we can
compare the resulting wave pattern to that observed in their spectral-element code
simulations. Figure 4.4 shows the velocity magnitudes in the domain at two distinct
times, where the reflected and transmitted waves can be observed.

(a) 𝒕 = 0.7 s (b) 𝒕 = 1.26 s

Figure 4.4: Simulated velocity magnitudes in bi-layered media. A source in the
liquid (top half) emits a Ricker wavelet which reflects and propagates through
the material interface with the elastic solid (bottom half). Resulting wave
patterns are shown at two different times 𝒕 as labeled.

The simulation displays all expected waves. These are labeled as follows: The
initial wave emitted from the source (a), a reflected (b) and transmitted (c) p-wave,
a transmitted s-wave (d), and two refracted waves (e,f). Calculated p and s-wave
speeds in the elastic medium match the expected theoretical values within 0.1%,
and comparing to figure 1 of Komatitsch, Barnes, and Tromp (2000) shows great
alignment.
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We also compare our simulation results at the probed location (shown as the blue
diamond in figure 4.3) to an analytical solution. For this comparison, we use
analytical results obtained with the Gar6more2D solver of Diaz and Ezziani (2010).
They compute the analytical solution to wave propagation in 2D bi-layered media
using the Cagniard-De Hoop method (Cagniard et al., 1963; De Hoop, 1960). Details
of their implementation can be found in Diaz and Ezziani (2010). Specifically, we
plot the velocity in the x and y-direction for the first 1.5 s from wave emission
in figure 4.5 This shows good agreement between the probed velocities from our

Figure 4.5: Velocity in the x (top) and y-direction (bottom) at the probe point
in the elastic solid layer, located 1000 m below the source in the y-direction
and 2000 m past the source in the x-direction. The probe is 500 m below the
water-solid interface.

simulation and the analytical solution, showing accurate propagation of elastic waves
through the interface and solid material. Three waves are visible in this plot. The
first, at 𝑡 ≈ 1 s, corresponds to the transmitted p-wave labeled (c) in figure 4.4. The
second, at 𝑡 ≈ 1.2 s is the refracted wave labeled (e), and the final wave at 𝑡 ≈ 1.4 s
is the transmitted s-wave labeled (d).

The three validation cases presented in section 4.2 have shown the accuracy of
our simulation framework, as compared to analytical results. Section 4.3 presents a
validation case for a simulation of BWL, where results are compared to experimental
stress measurements.
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4.3 Comparison of BWL Simulations to Experimental Photoelastic Stress
Images

Experimentally, it can be difficult to determine the optimal transducer setup for
stone comminution. Surrogate kidney stones can be used, and time to comminution
recorded in various settings, but this does not help understand elastic wave propaga-
tion patterns leading to stone damage. To address this, Sapozhnikov, Maxwell, and
Bailey (2020) used an ingenious method to visualize stresses occurring in stones in
real-time during experiments. For this, they make use of photoelastic stress imag-
ing. This method works by shining a polarized light through a stone (which must
be transparent, and optically isotropic) undergoing BWL. The local stresses in the
stone modifies the polarization of the light shining through it, and thus the projected
light displays patterns of stress inside the stone. However, this cannot be done in
retrieved human kidney stones, or other typical kidney stone phantoms used exper-
imentally, as the light beam cannot traverse these. Instead, Sapozhnikov, Maxwell,
and Bailey (2020) use transparent, optically isotropic epoxy, which is prepared to
match kidney stone sound speeds and density relatively well. Another advantage of
these experiments, is that they are a good point of comparison for BWL simulations.

In this section, we show simulations of BWL using the numerical framework de-
scribed in section 4.1, and compare them to the photoelastic images obtained by
Sapozhnikov, Maxwell, and Bailey (2020) and Maxwell, MacConaghy, et al. (2020).
We replicate their experimental setup and use cylindrical stones with length 20.8 mm,
diameter 6.3 mm. The stone material properties are identical to the epoxy stones
used: 𝜌 = 1100 kg/m3, 𝑐𝐿 = 2440 m/s, 𝑐𝑇 = 1295 m/s. Figure 4.6 shows the setup
of this simulation, where the transducer is simplified as a single spherically focused
element with aperture 90 mm and focal length 70 mm, and a cylindrical stone is
submerged in water. The transducer fires 20 cycles of ultrasound at 340 kHz.

In figure 4.7, we show the pressure in the surrounding liquid, and maximum principal
stress 𝜎1 in the stone during the BWL pulse at three distinct times.
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Figure 4.6: Setup of the simulation with a submerged epoxy stone on the
right and simplified, single-element ultrasound transducer on the left, both
submerged in water.

(a) 𝒕 = 50 µs (b) 𝒕 = 100 µs (c) 𝒕 = 150 µs

Figure 4.7: Propagation of pressure in the fluid and maximum principal stress
in an epoxy stone submerged in water as a result of a 20-cycle BWL ultrasound
pulse from a single-element transducer at 340 kHz, shown for three distinctive
times as labeled.

We compare this to experimental photoelastic images. Using the method outlined by
Sapozhnikov, Maxwell, and Bailey (2020), computational photoelastic images can
be obtained from the stresses calculated in our simulations. Section 2 of Sapozh-
nikov, Maxwell, and Bailey (2020) derives light propagation equations dependent on
local stresses. These equations are integrated over the stone cross-section to obtain
a 2D distribution of light intensity, matching what would be seen in experimental
photoelastic images. Details on this method can be found in sections 2 and 3 of
Sapozhnikov, Maxwell, and Bailey (2020). In figure 4.8, we compare the computa-
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tional photoelastic images obtained from the MFC simulation (top) to experimental
images of Maxwell, MacConaghy, et al. (2020) and Sapozhnikov, Maxwell, and
Bailey (2020) (bottom).

(a) 𝒕 = 100 µs (b) 𝒕 = 115 µs

Figure 4.8: Comparison of computational photoelastic stress images in an epoxy
stone obtained in our simulation (top) and experimental images obtained by
Sapozhnikov, Maxwell, and Bailey (2020) which are also reported in Maxwell,
MacConaghy, et al. (2020) The bottom experimental images are reprinted with
permission from Sapozhnikov, Maxwell, and Bailey (2020). © 2020, Acoustical
Society of America.

While quantitative comparisons with photoelastic images are challenging given
the dependence of computational photoelastic modeling on empirical parameters
(Sapozhnikov, Maxwell, and Bailey, 2020), good qualitative agreement between
our simulation results and the experimental data is observed. This shows that our
simulation framework can adequately model the behavior of elastic waves in a stone
exposed to a BWL pulse. We now use the hypoelastic model to study the frequency
dependence of stress patterns in stones during BWL.

4.4 Frequency–Dependence of Stresses Generated by BWL

Having validated our numerical framework, including with a BWL example, we
apply it to simulate BWL at various frequencies, and in stones with varying shapes.
The goal is here to determine a frequency which optimally damages stones of
typical composition and size seen in human kidney stones. In Chapter 5, the
problem is complicated by introducing bubbles to shield the stone, but we begin
here by applying our framework in cases without bubbles present. Thus, we aim to
determine a baseline frequency to be used going forward.
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Experimental studies have explored BWL treatment frequency (Maxwell, Cunitz,
et al., 2015; Maxwell, MacConaghy, et al., 2020). These have led to the generally
accepted range of 350 kHz to 400 kHz, which is used in clinical trials (Harper, Met-
zler, et al., 2021; Harper, Lingeman, et al., 2022). By deriving an analytical model
for mechanical stress in a spherical stone during BWL, Sapozhnikov, Maxwell, and
Bailey (2021) explore the stone-size–dependence of maximum stress at a given fre-
quency (or conversely, the frequency–dependence for a fixed stone size). Their study
focuses on smaller stones, and shows that higher frequencies of ultrasound plane-
waves increase stress in small stones. With plane waves, they show that stresses in
circular stones remain approximately equal to the pressure wave magnitude when
the wavelength is much larger than the stone diameter. However, as the frequency
increases and the wavelength drops below twice the stone diameter, stress in the
stone can increase to many times this value. Here, we calculate stresses generated
in circular and rectangular stones at various ultrasound frequencies guided by their
findings, but using our numerical framework with a spherical transducer element,
and stone composition matching what will be used for full BWL simulations in
Chapter 5.

Given the large beam-width (compared to the stone diameter) in BWL, we expect our
results with the spherical waves to closely match the observations of Sapozhnikov,
Maxwell, and Bailey (2021). They find that for calcium oxalate monohydrate
(COM) stones with 𝜌 = 1823 kg/m3 𝑐𝐿 = 4476 m/s 𝑐𝑇 = 2247 m/s, large stresses
are generated for ultrasound frequencies around 350 kHz for 5mm diameter stones,
and 175 kHz for 10mm stones. We note that higher stress peaks are observed
at higher frequencies, but with narrow frequency bands. In practice, using the
listed frequencies where high stresses are sustained over a larger frequency range is
preferable. In a setup matching that of figure 4.6, we expose circular stones with
a 5mm and 10mm diameter to three ultrasound frequencies ranging from 175 kHz
to 700 kHz. Table 4.2 reports values for max(𝜎1)/𝑝0, the maximum principal
stress over the simulation normalized by the focal pressure, which is calibrated to
𝑝0 = 6.5 MPa for all tested frequencies.
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frequency [kHz] max(𝜎1)/𝑝0

175 2.18
5 mm stone 350 3.22

700 2.17
175 3.18

10 mm stone 350 1.97
700 2.80

Table 4.2: Maximum value of the normalized maximum principal stress over
a BWL simulation with a single spherical element at three fixed frequencies,
for circular stones with diameter 5 mm and 10 mm; bold values represent the
maximum stress values in each case.

The trend observed by Sapozhnikov, Maxwell, and Bailey (2021) is also seen in
our results, with the largest stresses observed at 350 kHz for the smaller stone,
and 175 kHz for the larger stone. max(𝜎1) fields in the stone for each of these
cases are shown in figure 4.9 for the 5 mm-diameter stone, and figure 4.10 for the
10 mm-diameter stone.

(a) 175 kHz (b) 350 kHz (c) 700 kHz

Figure 4.9: Maximum value of 𝝈1 in a 5 mm diameter circular stone over the
course of a BWL simulation with a single spherical transducer element at three
test frequencies.

Large areas of high tensile stress are observed at 350 kHz for the 5 mm stone,
and at 175 kHz for the 10 mm stone, as expected. We note the interesting pattern
observed for the 10 mm stone at 700 kHz in figure 4.10c. This case, which table
4.2 also showed has a relatively large max(𝜎1) value, corresponds to one of the
narrower stress peaks discussed in Sapozhnikov, Maxwell, and Bailey (2021). At
this frequency, resonance in the stone is causing localized stress peaks of high
magnitude. However, in practice, this regime is difficult to reach unless stone size
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(a) 175 kHz (b) 350 kHz (c) 700 kHz

Figure 4.10: Maximum value of 𝝈1 in a 10 mm diameter circular stone over
the course of a BWL simulation with a single spherical transducer element at
three test frequencies.

is precisely known a priori. Furthermore, while the peak stress values in this case
are high, they are far more localized.

To examine the shape-dependence of these results, we calculated the equivalent
max(𝜎1) values in rectangular stones, which are shown in table 4.3

frequency [kHz] max(𝜎1)/𝑝0

175 2.35
5 × 5 mm 350 2.38

700 1.77
175 4.47

10 × 5 mm 350 1.85
700 1.54

Table 4.3: Maximum value of the normalized maximum principal stress over a
BWL simulation with a single spherical element at three fixed frequencies, for
rectangular stones with width 5 mm, and length 5 mm and 10 mm, respectively;
bold values represent the maximum stress values in each case.

The same trends are observed, with highest values of max(𝜎1) at 350 kHz in the
small stone, and 175 kHz in the large stone. Representative stress patterns are shown
for the 5 mm length stone in figure 4.11.

While the max(𝜎1)/𝑝0 values reported for this rectangular stone in table 4.3 were
similar for 175 kHz and 350 kHz, figure 4.11 shows a preferable stress pattern with
the higher frequency of 350 kHz, where the peak stresses occur across a large region
of the stone, centered in the middle of the stone.
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(a) 175 kHz (b) 350 kHz (c) 700 kHz

Figure 4.11: Maximum value of 𝝈1 in a 5 mm length rectangular stone over
the course of a BWL simulation with a single spherical transducer element at
three test frequencies.

Overall, these results have shown that previous experimental results, as well as the-
oretical results with plane waves, appear to hold for BWL with spherically focused
ultrasound waves. Moreover, these results hold for different stone shapes, with
length-scale seemingly the most important factor to predict frequencies causing
larger peak stresses. While we see high peak stresses at higher resonant frequencies
in certain cases, as seen with the 10mm diameter stone at 700 kHz, a frequency
near 350 kHz is most reliable, as Sapozhnikov, Maxwell, and Bailey (2021) showed
that high stresses are generated in a broader band of frequencies around this value.
In subsequent simulations in Chapter 5, we use 375 kHz as our baseline frequency,
which is near this 350 kHz value, but appeared in testing to yield slightly higher
stresses in the material used, which has higher wave-speeds. Given that higher
frequencies yield higher stresses in smaller stones, testing at a slightly higher fre-
quency is also advantageous as it will continue to deliver high stress to the stone as
it fragments and its length scale is reduced.
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C h a p t e r 5

NUMERICAL INVESTIGATION OF BUBBLE DYNAMICS AND
DAMAGE IN BURST-WAVE LITHOTRIPSY

Parts of this chapter are adapted from Spratt and Colonius (2023). In Chapter 4, we
presented BWL simulation results involving the interaction of focused ultrasound
and stones. However, as discussed in section 1.6 of Chapter 1, it has been observed
that bubbles can nucleate during lithotripsy and impact treatment efficacy (Maeda,
Kreider, et al., 2015; Maeda, Maxwell, et al., 2018; Maeda, Colonius, et al., 2018;
Hunter et al., 2018). In particular, Maeda, Maxwell, et al. (2018) looked at energy
shielding of bubble clouds over single pulses and saw that they can reduce delivery of
acoustic energy to the stone by as much as 90%. In this chapter, using the numerical
setup described in detail in Chapter 4, we quantify the impact of shielding on wave
propagation and the resulting damage within the stone. Additionally, we investigate
further strategies to minimize shielding by modulating the ultrasound frequency of
individual transducer elements, introducing a secondary low-frequency ultrasound
wave that causes bubbles to collapse ahead of the stone. We examine different
configurations of this strategy, aiming to maximize the efficiency and efficacy of
treatment in the presence of bubbles.

As an outline of the chapter, we begin by describing the problem setup in section 5.1.
Then, the creation of a virtual transducer array to replicate waves generated from
a transducer with a much smaller acoustic source to reduce computational costs is
detailed in section 5.2. In section 5.3, we use this framework to show the impact
that the presence of bubbles near the proximal part of the stone has on the stresses
and damage generated in the stones. Section 5.4 examines bubble dynamics when
modulating transducer element frequencies according to two distinct strategies, to
attempt to encourage bubble collapse. In section 5.5, we run full (wave–bubble–
stone) BWL simulations once again with these shielding mitigation strategies to test
their efficacy. Results are discussed in section 5.6.
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5.1 Problem Setup

A simple sketch of a side-view of the experimental setup for BWL which our
simulations replicate is shown in figure 5.1. We use a spherically focused transducer
with focal length 𝐹 = 150 mm and total aperture is 𝐴 = 180 mm. The transducer
is focused on the center of a cylindrical stone with length 6 mm and diameter 5
mm. The stone (and transducer array) are submerged in water. The sketch is not
drawn to scale, as the transducer aperture and focal length are much larger than the
stone length scale. In section 5.2, we provide more details on the transducer, and
show how a virtual array is created to replicate it with a much smaller aperture and
focal length. This way, we minimize computational costs by reducing the required
domain size.

Figure 5.1: Simplified sketch of the setup used for BWL simulations throughout
Chapter 5.

The kidney stones in our simulations are modeled using the material parameters of
a BegoStone (Liu and Zhong, 2002), an artificial surrogate for kidney stones, which
has been used in various experimental studies of SWL and BWL (Maxwell, Cunitz,
et al., 2015; Zwaschka et al., 2018). The properties of BegoStone fall within the
range of density and sound speeds seen in human kidney stones. In our simulations,
we use a stone density of 𝜌 = 1995𝑘𝑔/𝑚3, and longitudinal and transverse wave
speeds 𝑐𝐿 = 4159𝑚/𝑠, 𝑐𝑇 = 2319𝑚/𝑠 to match that of Cao et al. (2019) for a
BegoStone prepared as detailed by Esch et al. (2010). The cylindrical stone has a
length of 6 mm and a diameter of 5 mm, and is submerged in water.
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Finally, to model a bubble cloud in front of the stone, we randomly distribute air
bubbles with radii following a log-normal distribution with a mean of 250 𝜇m. The
standard deviation is determined through observation of experimental and simulated
bubble clouds in Maeda, Maxwell, et al. (2018). Our setup is agnostic as to how
bubbles formed, and we begin simulations with air bubbles already present. Given
the small time-scale of simulations, bubbles will only collapse to a certain point.
While bubbles nucleated during BWL may contain some water vapor, the dynamics
of air bubbles will adequately capture these dynamics up to final collapse.

Maeda, Maxwell, et al. (2018) performed a number of simulations with varied initial
bubble cloud thickness ℎ and void fraction 𝛽0. Using a subgrid bubble model, they
excite bubble nuclei with ultrasound analogous to that used in BWL, and track the
evolution of these bubble clouds via their total area 𝐴when projected on a 2D plane.
They observe that the bubble cloud projected area plateaus near a value dependent
on the initial thickness and void fraction of the bubble cloud. Furthermore, this pro-
jected area value correlates to shielding factor, with larger values of 𝐴 corresponding
to higher shielding. Given the use of resolved bubbles in our simulations, we do not
simulate the growth phase of bubbles from the original nuclei, and instead initialize
our bubble clouds with a given projected area corresponding to these plateau values.
The projected area value 𝐴 = 2 mm2 used in the following sections corresponds
to a case with initial void fraction of 𝛽0 = 8 × 10−5. A denser bubble cloud with
projected area 𝐴 = 3 mm2 is also considered. Given the results of Maeda, Maxwell,
et al. (2018), both bubble clouds are expected to shield the stone effectively.

We set the mean bubble radius of 250 𝜇m to match the upper bound for radii
values seen in experiments and simulations of BWL with bubbles present (Maeda,
Maxwell, et al., 2018; Maeda, Colonius, et al., 2018), while remaining large enough
to be resolved in our simulations. This enables a resolution of ∼ 50 grid points per
bubble diameter. Furthermore, while small bubbles readily oscillate when exposed
to ultrasound at treatment frequencies, the dynamics of these larger bubbles are
less sensitive to these waves, as will be shown in simulations in section 5.4. The
persistence of larger bubbles over multiple ultrasound pulses is a likely cause for
reduced treatment efficacy, which our setup can examine. Standoff distance of the
bubble cloud is chosen to match observed values in Maeda, Maxwell, et al. (2018).
A representative setup for a full simulation with a bubble cloud present is shown in
the next section, in figure 5.4b.
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5.2 Virtual Transducer Array Calibration

To accurately capture the focused ultrasound waves used experimentally (Maeda and
Colonius, 2017; Maeda, Maxwell, et al., 2018), we model an 18-element transducer,
which consists of an inner ring of 6 elements, and an outer ring of 12 elements.
In order to maximize resolution and capture bubble dynamics accurately while
reducing computational expense, our simulations use a virtual transducer array,
which is a spherical projection of the full transducer array with a much reduced
aperture and focal length of 𝐴/12 and 𝐹/12. The virtual array, still composed of
18 elements, retains the correct incident wave angles to the stone and is calibrated
to account (in an approximate way) for diffraction effects (edge waves) associated
with each transducer element.

To calibrate this virtual array, we first ran a large simulation with a full 18-element
transducer with focal length 𝐹 = 150 mm and aperture 𝐴 = 180 mm firing at
375 kHz. This simulation was calibrated to achieve a peak negative focal pressure
of −7 MPa. Thinking of the transducer as two concentric rings, there are four edge
waves to consider: one traveling inward and one traveling outward radially from
each concentric ring. Figure 5.2 shows this for a 2D example, with each of the edge
waves labeled 1 through 4. Wave 4 propagates out of the domain, and thus needn’t
be considered. What remains is to understand the effects of the first 3 waves. We
hypothesized that waves 1 and 3, as they propagate inward, would create a focusing
effect and increase the pressure near the centerline between transducer and stone
center. Conversely, as wave 2 propagates away radially, we conjectured that this
would deflect waves from the outer ring of the transducer away from the stone. With
a smaller virtual array, these edge waves have far less time to develop before the
ultrasound reaches the stone, so we reconstruct these effects through calibration of
the input pressure of each transducer element.

We split the virtual transducer into its inner and outer ring, and varied the pressure
amplitude for each ring. We gradually increased the amplitude for the six inner
elements, and decreased that of the twelve outer elements, while maintaining a peak
focal pressure of −7 MPa through trial and error. At a pressure amplitude ratio
of approximately 1.7 : 1 from outer-ring to inner-ring elements, we reached good
agreement between probed pressures across the stone region. Figure 5.3 shows
the agreement between the probed pressures at three locations corresponding to the
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Figure 5.2: 2D example of the 4 edge waves generated by transducer elements,
for a transducer with focal length 150 mm and aperture 180 mm with 4 ele-
ments. Half of the domain is shown (positive 𝒚 half-domain).

stone center, edge, and center of the proximal surface for the full and reduced-size
transducer for 5 cycles of a 375kHz BWL pulse.

(a) (b) (c)

Figure 5.3: Comparison of probed pressures for the full transducer (black solid
line) and the scaled-down transducer used in simulations (dotted colored line)
at three locations corresponding to the stone center (a), stone edge (b), and
center of the proximal stone surface (c).

We note, for clarity, that these simulations are run without a stone, but use the
coordinates of these locations on the stone (when present) to probe the pressure.
Good agreement is observed between the waveforms over the 5 cycles. While this
represents a small difference over the 20-cycle ultrasound pulse used, we do see that
the positive focal pressure peaks for the leading and trailing cycles are overestimated
by the scaled-down transducer. The resulting scaled-down 18-element virtual array
used in simulations is shown in figure 5.4, including in the context of a full BWL
simulation in figure 5.4b.
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(a) (b)

Figure 5.4: Virtual array used in BWL simulations viewed face-on (a), and
from the side in the context of the full setup of a BWL simulation (b).

5.3 Bubble Shielding during Burst-Wave Lithotripsy

In this section, we utilize a 20-cycle pulse at 375 kHz and compare the results
with and without bubbles, in order to corroborate past evidence on shielding while
quantifying the effect of bubbles on wave propagation (and damage) within the
stone. The simulations shown in this section are 3D, quarter-domain simulations
with symmetric boundary conditions in the y and z-directions. As a measure of
the performance of our GPU-accelerated numerical framework described in section
4.1.4 of Chapter 4, running on 64 (NVIDIA A40) GPUs on the Delta supercomputer
at the National Center for Supercomputing, such a simulation takes approximately
20 hours to run.

Figure 5.5 shows the propagation of waves in the fluid and stone at various times
during the simulation. Pressure is plotted in the liquid along a slice of the domain
in the y-normal direction, whereas the maximum principal stress 𝜎1 and continuum
damage field 𝐷 are shown in the top and bottom halves of the stone, respectively.
The final damage state in the stone can be seen in figure 5.5d, with the maximum
value over time of the maximum principal tensile stress Max(𝜎1) in the top half of
the stone, and the final damage field 𝐷 in the bottom half.

We see that in the absence of bubbles, high stress magnitudes are seen across large
areas of the stone, and we see two regions of high damage near the stone centerline.
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(a) 𝒕 = 10𝝁s (b) 𝒕 = 30𝝁s (c) 𝒕 = 50𝝁s

(d) Cumulative

Figure 5.5: Propagation of the maximum principal stress in the stone and
damage caused during BWL at 375kHz when no bubbles are present. Figures
(a), (b), (c) show three different time steps, and figure (d) shows maximum value
of 𝝈1 in the top half, and damage field 𝑫 in the bottom half at the end of the
simulation.

We now introduce a bubble cloud with a projected area of 3 mm2 in front of the stone
(which we will refer to as the ‘dense’ bubble cloud), with the closest bubbles at a
standoff distance 250 µm, and bubbles randomly distributed along the entire radius
of the stone. The resulting maximum principal stress and damage in the stone, as
well as bubble cloud oscillations, are shown in figure 5.6. Figure 5.6d shows that
the presence of a bubble cloud influences the damage magnitude and pattern in
the stone, as acoustic energy can no longer be effectively delivered to the center of
the stone. The magnitude of maximum principal stress and damage to the stone is
reduced by 16 % and 83 %, respectively (when averaged over the stone volume).
We observe slight deformation in the bubbles ahead of the stone over the course of
the pulse, but they remain mostly intact.
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(a) 𝒕 = 10𝝁s (b) 𝒕 = 30𝝁s (c) 𝒕 = 50𝝁s

(d) Cumulative

Figure 5.6: Propagation of the maximum principal stress in the stone and
damage caused during BWL at 375kHz with a dense bubble cloud (𝑨 = 3 mm2)
present. Bubbles are shown with 2 contour levels for the volume fraction of
air: 0.2 (low opacity) and 0.8 (higher opacity). Figures (a), (b), (b) show three
different time steps, and figure (d) shows maximum value of 𝝈1 in the top half,
and damage field 𝑫 in the bottom half at the end of the simulation.

To determine the effect that bubble cloud void fraction has on the stress and damage
to the stone, we simulated a second test case with a sparser bubble cloud of projected
area 2 mm2. Figure 5.7 shows the final damage state in this case. The pattern is
similar to that seen in the previous case in figure 5.6d, though as expected the stress
magnitude and final damage are larger.

To quantify the shielding effects of these bubble clouds, we compare the mean
damage in the stone 1

𝑉

∭
𝑉
𝐷 and mean maximum value of 𝜎1 over the course of

the simulation: 1
𝑉

∭
𝑉

max(𝜎1), where 𝑉 is the stone volume. Values are reported
in table 5.1. We can see the expected trend, with far higher damage occurring in
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Figure 5.7: Damage to the stone during BWL with default transducer param-
eters and a sparser bubble cloud (𝑨 = 2 mm2) present. Maximum value of
𝝈1 over time is plotted in the top half of the stone, and damage field 𝑫 in the
bottom half.

the case with no bubbles present, and an increase in shielding as bubble cloud void
fraction increases.

Case 1
𝑉

∭
𝑉
𝐷 1

𝑉

∭
𝑉

max(𝜎1)
No Bubbles 0.052 7.45 MPa

Sparse bubble cloud 0.032 7.18 MPa
Dense bubble cloud 0.009 6.28 MPa

Table 5.1: Comparison of resulting average damage and max(𝝈1) values over
the stone region for three BWL cases with: no bubbles, a sparse bubble cloud
(𝑨 = 2 mm2) and a dense bubble cloud (𝑨 = 3 mm2). All cases are with 375 kHz
ultrasound.

5.4 Simulations of Bubble Dynamics during BWL

In this section, we aim to understand frequency-typical bubble dynamics in BWL. We
begin with two simplified cases to better understand expected behavior of bubbles
during treatment. In the first, a simple 1D spherical bubble dynamics model is
used, similar to the bubble dynamics model used with DA-IMR in Chapters 2 and
3, to get an idea of the frequency-dependence of bubble dynamics for bubbles of
sizes typical of BWL. Next, we will use full 3D simulations of plane ultrasound
waves interacting with bubbles and bubble clouds to test hypotheses given by the
1D model. Finally, we conclude this section by using the virtual transducer array
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described in section 5.2 to model the interactions of spherically focused waves from
a multi-element transducer with bubble clouds typical of BWL.

5.4.1 1D Keller-Miksis Model

In the cases simulated in section 5.3, we saw only small oscillations in the bubbles
as the ultrasound waves traveled through the cloud. Here, we explore different mod-
ifications to the BWL waveform that affect the bubble dynamics more significantly,
hoping to collapse or shrink the bubbles, and thus increase damage to the stone by
reducing the void fraction of the bubble cloud. Ideally, sufficiently violent collapse
of bubbles can be induced, leading to breakup into smaller bubbles and ultimately
their dissolution. Given the size of the bubbles (≈ 250𝜇m), a lower ultrasound fre-
quency will be needed to observe large oscillations in the bubble radius over the time
scale of a BWL pulse. To remain within the capabilities of ultrasound transducers,
however, we cannot reduce the frequency below𝑂 (10 Hz). As a first approximation
of expected bubble dynamics, we implement a solver for spherical bubble dynamics
using the Keller-Miksis equation (Keller and Miksis, 1980; Brennen, 1995; Spratt,
Rodriguez, Schmidmayer, et al., 2021), which accounts for an incident plane wave
with amplitude 𝑃 and angular frequency 𝜔:
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(5.1)

where 𝑅 is the bubble radius, 𝑐 the sound speed and 𝑠 the surface tension. Δ is
defined as Δ(𝑅) = 1

𝜌
(𝑝𝑏 (𝑅) − 𝑝∞), with 𝑝𝑏 the bubble pressure assumed uniform,

and 𝑝∞ the freestream pressure. We use this model to simulate the response of a
250 µm bubble to several ultrasound frequencies, ranging from 375 kHz to 20 kHz.
The bubble radius time history over 30 µs for representative frequencies is shown in
figure 5.8.

Here, we see that while the therapy frequency of 375 kHz only causes very small
oscillations of the bubble, lower frequencies induce a more violent collapse. A
value of 20 kHz is found to be effective at collapsing bubbles around 250 µm over
the course of a BWL pulse, while remaining high enough to be within the range
of existing ultrasound transducers. Thus, this frequency is chosen for our low-
frequency ’bubble collapsing’ wave. In section 5.4.2, we turn to fully 3D plane-
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Figure 5.8: Radius time histories for 250 µm bubble under ultrasound at vari-
ous frequencies with an amplitude of 1 MPa.

wave–bubble simulations to confirm whether this result obtained under a spherical
bubble assumption holds for a fully resolved 3D bubble.

5.4.2 3D Plane-Wave–Bubble Simulations

We first compare the oscillations of a single bubble under a plane wave at 375 kHz
and 20 kHz with a magnitude of 3 MPa. This is shown in figures 5.9 and 5.10.
Different bubble dynamics are observed. As expected, the low frequency wave
collapses the bubble early in the simulation, which rebounds but remains small
throughout. By contrast, the bubble radius oscillates only slightly when exposed to
the 375 kHz ultrasound. This matches what was expected based on the Keller-Miksis
model simulations and the radius curves shown in figure 5.8.

(a) 𝒕 = 1𝝁s (b) 𝒕 = 30𝝁s (c) 𝒕 = 60𝝁s

Figure 5.9: Oscillation of a 250 µm bubble under a plane wave at 375 kHz.

We also simulate plane waves interacting with the dense bubble cloud used in section
5.3. The dynamics of the bubble cloud are such that there is some deformation of
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(a) 𝒕 = 1𝝁s (b) 𝒕 = 30𝝁s (c) 𝒕 = 60𝝁s

Figure 5.10: Oscillation of a 250 µm bubble under a plane wave at 20 kHz.

the bubbles in both cases, but the overall results remain that the low frequency wave
more effectively collapses and deforms bubbles in the cloud. Figure 5.11 shows the
behavior of a bubble cloud under 375 kHz ultrasound. In Figure 5.12, a 20 kHz
pulse of equal amplitude is superposed on the 375 kHz pulse. This causes large
deformation in the bubble cloud, with many bubbles largely collapsed by the end of
the simulation in the dual-frequency case, with a contour level of 𝛼(𝑎𝑖𝑟) = 0.9

(a) 𝒕 = 1𝝁s (b) 𝒕 = 30𝝁s (c) 𝒕 = 60𝝁s

Figure 5.11: Oscillation of a dense bubble cloud (𝑨 = 3 mm2) under a plane
wave at 375 kHz.

This shows that adding a low frequency ’bubble collapsing pulse’ to the usual
375 kHz ’therapy pulse’ may help reduce shielding by collapsing bubbles and thus
reduce the void fraction of the cloud. While this appears to be effective, further
study of cloud bubble dynamics under ultrasound pulses could help formulate other
strategies. Given the high dependence of bubble dynamics on bubble radius and
characteristics of bubble clouds, determining a systematically optimal frequency
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(a) 𝒕 = 1𝝁s (b) 𝒕 = 30𝝁s (c) 𝒕 = 60𝝁s

Figure 5.12: Oscillation of a dense bubble cloud (𝑨 = 3 mm2) under the super-
position of plane waves at 375 kHz and 20 kHz.

may prove difficult, as these characteristics vary case-by-case during BWL. By
choosing this low frequency, and setting the phase of the ultrasound so that the
pressure pulse begins as positive, we can ensure the fast collapse of bubbles across
a range of sizes and for different bubble cloud configurations. Thus, we reduce the
need for fine-tuning, and opt for a strategy that should be broadly applicable given
various bubble cloud configurations.

With a full 18-element therapy transducer, there are multiple ways this low frequency
pulse can be added. A first approach is to simply superpose the 20 kHz sine
wave signal to each transducer element. Alternatively, individual elements can be
controlled to fire at a single frequency. Both approaches are examined in section
5.4.3 for transducer–bubble-cloud simulations.

5.4.3 Spherically focused Ultrasound–Bubble Cloud Simulations

To examine the dynamics of a bubble cloud in an acoustic field akin to that of BWL,
the simulations presented in this section make use of the virtual array described in
section 5.2. In all these simulations, the denser bubble cloud with projected area
3 mm2 is used, where the interaction between bubbles in the cloud has a larger effect
on its dynamics. Three cases are shown. First, a reference simulation with only the
375 kHz ultrasound is shown in figure 5.13.
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(a) 𝒕 = 10𝝁s (b) 𝒕 = 20𝝁s (c) 𝒕 = 30𝝁s

Figure 5.13: Oscillation of a dense bubble cloud (𝑨 = 3 mm2) exposed to BWL
transducer ultrasound at 375 kHz.

Then, a case where a 20 kHz ultrasound with a focal amplitude of 1 MPa is super-
posed on each transducer element, which we will call the ‘dual frequency configura-
tion,’ is shown in figure 5.14. Finally, a simulation where the 6 inner ring elements
fire the 20 kHz pulse, while the outer ring fires at the usual 375 kHz, referred to as
the ‘split frequency configuration,’ is shown in figure 5.15. Figure 5.16 shows this
split between inner ring and outer ring, with elements colored in orange at 20 kHz
and those in blue at 375 kHz. In all tested cases, focal pressure was calibrated not
to exceed a peak of 7 MPa to remain within a safe treatment regime.

The first thing to note is the similarity between the bubble cloud dynamics in the
plane-wave and transducer cases, apparent when comparing figures 5.13 and 5.14
to the results of section 5.4.2. The notable difference being that the cloud collapses
faster under the incident spherical wave, mostly due to higher pressures near the
focus of the transducer. The deformation of the bubbles in the dual and split-
frequency cases is similar, though the final bubble cloud shape is slightly different.
In the dual-frequency case, the cloud is slightly more compact and concave to the
right, while it is more spread out and concave to the left in the split-frequency case.
While this appears to be a minor difference, we will see in section 5.6 that it has an
impact on the shielding of the cloud.
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(a) 𝒕 = 10𝝁s (b) 𝒕 = 20𝝁s (c) 𝒕 = 30𝝁s

Figure 5.14: Oscillation of a dense bubble cloud (𝑨 = 3 mm2) exposed to BWL
transducer ultrasound in the dual frequency configuration.

(a) 𝒕 = 10𝝁s (b) 𝒕 = 20𝝁s (c) 𝒕 = 30𝝁s

Figure 5.15: Oscillation of a dense bubble cloud (𝑨 = 3 mm2) exposed to BWL
transducer ultrasound in the split frequency configuration.

Overall, both the split-frequency and dual-frequency configurations are effective
at collapsing the bubble clouds quickly during the course of the ultrasound pulse.
From these transducer–bubble cloud simulations alone, it appears that both strategies
could be viable to increase the damage done to the stone in BWL in the presence of a
bubble cloud. In the following section 5.5, we examine both strategies in the context
of a full transducer–bubble-cloud–stone simulation, and compare the damage to the
stone with each configuration.
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Figure 5.16: Split frequency transducer configuration: orange elements fire at
20 kHz, blue elements at 375 kHz.

5.5 Dual and Split-Frequency BWL Simulations

Adding the stone back into the simulations, we now carry out full 3D simulations
of BWL with the two strategies described in the previous section. We begin by
looking at the dual-frequency configuration. While there may be similarities with
the bubble cloud behavior observed in section 5.4.3, the reflection of acoustic
waves off of the surface of the stone impacts bubble cloud dynamics. Figure 5.17
shows the propagation of 𝜎1 and damage state 𝐷 throughout the simulation, as
well as the evolution of the bubble cloud in the dual-frequency case. We see that
as with the simulation shown in figure 5.14, bubbles are significantly deformed,
though bubbles deform and collapse faster in this case due to the higher pressure
magnitudes experienced in the bubble cloud due to reflected waves off the stone.

However, as seen in figure 5.17d which shows the final damage state, this config-
uration does not improve damage to the stone compared to the case with only the
375 kHz wave shown in figure 5.6d. With this transducer configuration, the bubble
cloud continues to effectively shield the stone, and it is thus not an effective method
to reduce shielding.

In contrast, we now turn to the split-frequency configuration. Figure 5.18 shows a
time history of this simulation with a dense bubble cloud. We see that there is again
a significant deformation of bubbles and a reduction in void fraction. In this case,
though, the bubbles are stretched and pushed out radially, away from the center of
the proximal stone surface. This difference in bubble cloud dynamics appears to
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(a) 𝒕 = 10𝝁s (b) 𝒕 = 30𝝁s (c) 𝒕 = 50𝝁s

(d) Cumulative

Figure 5.17: Propagation of the maximum principal stress in the stone and
damage caused during BWL with the dual-frequency configuration with a dense
bubble cloud (𝑨 = 3 mm2) present. Bubbles are shown with 2 contour levels for
the volume fraction of air: 0.2 (low opacity) and 0.8 (higher opacity). Figures
(a), (b), (c) show three different time steps, and figure (d) shows maximum value
of 𝝈1 in the top half, and damage field 𝑫 in the bottom half at the end of the
simulation.

have an important effect on stone shielding, as the damage to the stone is much more
significant in this case.

Indeed, figure 5.18d shows the high damage and large maximum magnitude of 𝜎1

observed in this case. We also simulated this configuration with the sparse bubble
cloud, with similar results apart from minor differences in the damage patterns.
The split-frequency configuration is far more effective than the dual-frequency case,
causing high damage and stress magnitudes in the stone.

Table 5.2 compares average damage field value 𝐷 and maximum 𝜎1 in the stone
over the course of the simulation in the case with only the 375 kHz ultrasound and
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(a) 𝒕 = 10𝝁s (b) 𝒕 = 30𝝁s (c) 𝒕 = 50𝝁s

(d) Cumulative

Figure 5.18: Propagation of the maximum principal stress in the stone and
damage caused during BWL with the split-frequency configuration with a dense
bubble cloud (𝑨 = 3 mm2) present. Bubbles are shown with 2 contour levels for
the volume fraction of air: 0.2 (low opacity) and 0.8 (higher opacity). Figures
(a), (b), (c) show three different time steps, and figure (d) shows maximum value
of 𝝈1 in the top half, and damage field 𝑫 in the bottom half at the end of the
simulation.

the split-frequency case. In both cases, the split frequency significantly improves
damage to the stone. This is particularly effective with the dense bubble cloud,
where we observe a nine-fold increase in the mean damage value in the stone, and a
25% increase in the mean value of max(𝜎1). This method thus appears to be highly
effective at reducing bubble cloud shielding in both tested cases.
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Figure 5.19: Damage to the stone during BWL with split-frequency configu-
ration and a sparse bubble cloud (𝑨 = 2 mm2) present. Maximum value of
𝝈1 over time is plotted in the top half of the stone, and damage field 𝑫 in the
bottom half.

Case wave form 1
𝑉

∭
𝑉
𝐷 1

𝑉

∭
𝑉

max(𝜎1)
Sparse bubble cloud BWL at 375 kHz 0.032 7.18 MPa

split-frequency 0.080 7.95 MPa
Dense bubble cloud BWL at 375 kHz 0.009 6.28 MPa

split-frequency 0.082 7.84 MPa

Table 5.2: Comparison of resulting average damage and max(𝝈1) values over
the stone region between the baseline BWL 375 kHz waveform case and dual
frequency case for a sparse bubble cloud (𝑨 = 2 mm2) and a dense bubble cloud
(𝑨 = 3 mm2).

5.6 Discussion

For both the dual-frequency and split-frequency configurations, bubble cloud void
fraction reduction occurs on the same time scale, as shown in sections 5.4.3 and
5.5. There is a difference, however, in the dynamics and deformation of the bubbles.
It appears that the split frequency configuration causes favorable conditions for the
propagation of acoustic waves through the bubble cloud. In figure 5.20, we show
a side view of the bubble clouds from the dual-frequency case and split-frequency
cases after 30 µs (from the same simulations as figures 5.17 and 5.18).

Here we see that the shapes of the bubble clouds are quite different. Figure 5.20a
shows a more compact bubble cloud which is slightly concave to the right, while
the bubble cloud in figure 5.20b is concave to the left and more spread out in the y-z
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(a) (b)

Figure 5.20: Dense bubble cloud (𝑨 = 3 mm2) deformation during treatment
at 𝒕 = 30𝝁s for the (a) dual frequency and (b) split frequency cases. Bubbles
are shown with 2 contour levels for the volume fraction of air: 0.2 (low opacity)
and 0.8 (higher opacity)

plane, with the edges of the cloud extending beyond the stone edge. This difference
in shape can be explained by the fact that the bubbles are being pushed out by the low
frequency waves. In the dual frequency case, these low-frequency waves are coming
from the entire transducer, pushing the outer bubbles inward towards the center. By
contrast, the narrower beam of low-frequency waves in the split-frequency case
pushes bubbles at the center of the cloud towards the stone, and as these bubbles
interact with the stone surface they are pushed out radially, causing the cloud to
spread out.

In fact, this effect was visible in simulations from section 5.4.3, in figures 5.14c
and 5.15c, even without the stone present. The bubble cloud in the former is more
compact, and in the latter spreads out radially. Given these examples, it appears that
over a single ultrasound pulse, a strategy that spreads a bubble cloud out may be
more effective than one aimed simply at collapsing bubbles or reducing their void
fraction.

We note here that these results are limited to the time-scale of a single BWL pulse.
Even with a fast pulse repetition frequency, the time between pulses is three orders
of magnitude larger than the time-span of a BWL pulse (0.1 s vs. 60 µs). While
this method of spreading out the bubble cloud is effective at causing high damage
to the stone over a single pulse, the resulting bubble dynamics between pulses are
not yet well understood. Intuitively, spreading bubbles away from the stone as is
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done with the split-frequency should only improve the energy delivery to the stone
in the subsequent pulse, and so the effects of this strategy could stack up with each
subsequent pulse. However, this remains to be tested, and is beyond the capabilities
of our numerical methods.

Finally, in a clinical setting, the focal point accuracy required for the transducer may
be difficult to achieve. The schism between damage caused in the split-frequency
and dual-frequency cases may not be as obvious in a case where the transducer focal
point is not exactly in the center of the stone. With low frequency wave in the center
of the beamwidth, however, the tendency should remain for bubbles to spread out
and away from the focal point of the transducer, and thus retain the benefits observed
above even with imperfect focusing and a stone with a more complex topology.

Overall, the presented strategy in the split-frequency configuration appears to be
a promising approach to reduce the shielding of bubble clouds by collapsing and
dispersing bubbles forming ahead of the stone. Both the dense and sparse bub-
ble clouds presented were effective in shielding the stone and reducing damage.
However, in the tested cases, the split-frequency transducer configuration improved
damage to the stone. It is a promising way to improve the efficacy and efficiency of
BWL in cases with bubbles present ahead of the stone.
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C h a p t e r 6

CONCLUSIONS AND FUTURE WORK

The goal of this thesis was to implement and apply numerical models and data-
driven methods to study biological systems involving the interaction of cavitating
gas bubbles with elastic and viscoelastic materials. We successfully developed a
data assimilation framework (DA-IMR) to aid in the modeling of biomaterials in
low strain, high strain-rate settings, and applied it to various experimental data
sets with distinct materials, bubble nucleation methods, and viscoelastic material
models. DA-IMR was thoroughly tested for soft material characterization, and
has improved both practicality (from O(days) to O(minutes)) and accuracy of the
existing framework. We have shown its usage in a broad array of cases, and its
ability to adapt to varied material models or additional parameters to estimate,
with negligible added computational cost. Additionally, its use helped further
our understanding of the limitations of current physical models used in inertial
microcavitation rheometry. We have also implemented a numerical framework for
the direct numerical simulation of acoustic-wave–bubble–elastic solid interactions,
enabling the full simulation of burst wave lithotripsy. Through these simulations, we
have investigated bubble dynamics and damage occurring in stones during BWL, and
proposed strategies to mitigate bubble shielding, thus improving damage delivered
to kidney stones, and accelerating their comminution. Key conclusions from each
chapter of this thesis and suggestions for future work are summarized below

6.1 Data Assimilation for Inertial Microcavitation Rheometry

In Chapter 2, we presented a data-assimilation approach for the characterization
of viscoelastic materials via observation of bubble collapse. This extension of
inertial microcavitation rheometry, which we call DA-IMR, accurately estimated
the mechanical properties of soft materials using ensemble-based data assimilation
methods. With surrogate data obtained by adding random noise to simulated bubble
radius vs. time curves (at frame rates replicating available high-speed imaging
equipment), we validated this approach and demonstrated its accuracy and reliability
in the context of laser-induced cavitation in hydrogels. The iterative ensemble
Kalman smoother (IEnKS) and a hybrid ensemble-based 4D-Var method (En4D-Var)
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provided the best results. The En4D-Var reduced computational cost by up to two
orders of magnitude, obtaining accurate parameter estimates efficiently, accurately,
and in a scalable framework. The IEnKS, while less efficient, provided useful
information about time-dependent modeling uncertainty.

In Chapter 3, the DA-IMR framework was applied to experimental data across three
test cases. In the first, it was used with experimental data similar to that used in the
validation case in Chapter 2. Here, it was shown to provide accurate estimates for
shear modulus and viscosity of a polyacrylamide gel with experimental laser-induced
cavitation data, despite experimental inconsistency, model error, and noisy data.
Additionally, we gained insight into data sets where the spherical bubble dynamics
model used may have inadequately captured physics during violent bubble collapse.
Next, we applied DA-IMR to experimental data for laser-nucleated cavitation in
hydrogels with seeded particles. Here, a different stretch ratio regime was reached
by nucleating bubbles on the surface of micro-particles in the gels. In this regime,
and using a more general viscoelastic material model, we showed the adaptability
and versatility of DA-IMR. At the same time, we established shortcomings in the
physical model near the bubble collapse point in cases with high laser energy, as
revealed by the quasi-online IEnKS estimation. This highlighted model uncertainties
linked to plasma formation and the optical breakdown process during laser-induced
cavitation. Finally, DA-IMR was used with ultrasound-induced cavitation, which
addresses the issues seen previously with laser-induced cavitation. Here, the En4D-
Var again accurately estimated material properties, using three different material
models and estimating two additional model parameters.

Possible Improvements and Future Work The modeling uncertainties seen with
laser-induced cavitation, particularly those analyzed in section 3.2, point to the need
to capture additional physics in the bubble-dynamics models used. Some of the
concerns around modeling uncertainties due to violent bubble collapse were ad-
dressed by switching to ultrasound-nucleated cavitation. However, with a better
understanding of the plasma physics and rapid collapse occurring following laser-
induced cavitation, this could become a more accurate and dependable framework
for material characterization. Extending DA-IMR to more complete models, in-
cluding those which could account for non-sphericity of bubbles, could also expand
the capabilities of this framework. While such models are likely to be far more
computationally expensive, the gained efficiency and parallelization capability of
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DA-IMR suggest that such an approach would be computationally feasible. Such
an adaptation could help gain insight into the non-spherical collapse of bubbles in
viscoelastic materials, beyond the scope of material characterization.

While a significant advantage of DA-IMR is its efficiency and scalability due to
the parallelizable nature of ensemble-based methods, this efficiency can be reduced
given the need to tune algorithm parameters. In these initial runs, parameters
such as initial modeling and measurement error covariance, number of ensemble
members, and covariance inflation (both additive and multiplicative) needed to be
tested and set through trial and error to obtain optimal results. An approach to tune
these parameters based on the statistics of available data could further improve the
efficiency of the method.

6.2 A Numerical Framework for Full Simulations of Burst-Wave Lithotripsy

In Chapter 4, we presented our implementation of a framework to model the full
interaction of ultrasound waves from a spherically focused transducer array with
gas bubbles and a submerged stone. This model was validated, and shown to
match experimental stress imaging results during BWL well. Furthermore, the
GPU implementation of the code was shown to provide significant acceleration and
near-ideal scaling, enabling high resolution simulations. Calculating the maximum
principal stresses generated in stones of various shapes and sizes, we confirmed that
a frequency range of 350 kHz to 375 kHz appears effective in breaking kidney stones
of typical size. That is, it maximizes the stresses and damage generated in stones of
various sizes typical of human renal calculi.

In Chapter 5, we used the framework presented in Chapter 4 to investigate bubble
dynamics and damage in burst-wave lithotripsy. We quantified the shielding of
bubble clouds on waves and damage in the stone. We determined that introducing
a low-frequency 20 kHz wave in addition to the usual BWL frequency, in this case
375 kHz, can effectively collapse bubbles ahead of a kidney stone during treatment.
When splitting the therapy transducer between a low-frequency inner ring and high-
frequency outer ring, shielding due to the tested bubble clouds was effectively
reduced. We saw that the manner in which the low-frequency wave is introduced
is important to maximize damage, and that bubble dispersion plays a role in this
shielding reduction. We have presented a transducer configuration that enabled high
damage in the tested cases, with a low-frequency pulse in the center of the transducer
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to disperse bubbles, and high-frequency pulse from the outer ring to deliver damage
to the stone.

Perspectives on Future Applications Only a few strategies to minimize bubble
shielding have been tested here. Many other approaches exist, be it with the 18-
element transducer used here or other transducer and acoustic source configurations.
There are likely other ways to reduce shielding, and other approaches focused on
pushing bubbles away from the stone, may yield better results. Furthermore, given
the vast difference in time scales between BWL pules, and inter-pulse time, only
single pulses can be simulated with this method. Experimental trials or reduced
order modeling methods that can cover the time-scale of multiple successive pulses
could shed light on how well this method would translate to a therapy setting.

While multi-pulse simulations remain a challenge, the far reduced computational
cost afforded by the GPU implementation broadens how this method can be applied.
Indeed, iterative optimization approaches are possible with relatively high resolu-
tions, even in full 3D simulations, provided the domain is small enough. Given
the possibility of simulating damage in any arbitrary stones, one could envisage
a treatment protocol whereby a stone is first imaged (using ultrasound or other
imaging techniques), and an optimization is performed given this stone’s size and
shape using MFC. In simulations without bubbles present, the necessary resolution
to obtain accurate stress and damage outputs is low, and such optimizations could
thus readily be performed.
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A p p e n d i x A

COMPARING ONE-DIMENSIONAL, REDUCED-ORDER
SPHERICAL BUBBLE DYNAMICS MODELS

In the following, we detail two recent models for one-dimensional modeling of
spherical bubble dynamics. The first is the model developed by Estrada et al.
(2018) and used in IMR and DA-IMR. The second is the model derived by Preston,
Colonius, and Brennen (2007). We highlight key assumptions made in the derivation
of each set of equations, comparing them across models. In the following, for clarity,
we refer to these models as the Estrada Model and Preston Model. These notes
complement the presentation of the spherical bubble dynamics model in Chapter 2,
section 2.1, adding detail as to the model derivation, and comparing it to another
similar reduced-order 1D bubble dynamics model.

A.1 Model Descriptions

A.1.1 Inertial Microcavitation High Strain-rate Rheometry – Estrada Model)

The spherical bubble dynamics model derived in Estrada et al. (2018) and used in
IMR involves the evolution of four quantities:

1. The bubble radius evolved with the Keller-Miksis equation (A.1) with stress
integral given by equation (A.2).

2. The vapor mass fraction field inside the bubble, evolved with equation (A.6).

3. The temperature field inside the bubble, following equation (A.7).

4. The bubble pressure (assumed uniform), according to equation (A.8).

To come to this system of only four equations (two ordinary differential equations
for radius and pressure, and two partial differential equations for the vapor mass
fraction and temperature fields), a number of assumptions are made by Estrada et al.
(2018).



127

Assumptions First, it is assumed that the motion of the bubble and its contents
are spherically symmetric, thus reducing this to a 1-dimensional system. We also
assume no water flux with respect to the surrounding material. That is, the surround-
ings remain undrained. As long as the surrounding material has high water content
and simulations remain on a small time-scale (as is the case in all cases presented
in this thesis), this assumption holds. Next, it is assumed that surrounding material
is nearly incompressible, with compressible effects only considered in the region
near the bubble wall, following the approach of Keller and Miksis (1980). A low
Mach number approximation (Yang and Church, 2005) is used in the bubble, and we
assume that the bubble contents are a mixture of 2 components, namely water vapor
and a non-condensible gas. The pressure in the bubble is assumed spatially uni-
form, and we track a single bubble pressure value. We assume that the temperatures
of the water vapor and non-condensible gas are equal, and track a single mixture
temperature. Finally, we assume that the temperature of the surrounding material is
constant. The Estrada model equations, as given in section 2.1, are as follows:

Radius The Keller-Miksis equation is used for the time-evolution of the bubble
radius.(
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(A.1)

Stress Integral Given a neo-Hookean Kelvin-Voigt model for the surrounding
material, the stress integral takes the form

𝑆 = −𝐺
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Vapor Mass Fraction It is assumed the bubble contents are a mixture of water-
vapor and non-condensible gas (subscripts 𝑣 and 𝑔, respectively). A mixture density
𝜌𝑚 = 𝜌𝑣 + 𝜌𝑔 is defined, as well as a mixture radial velocity 𝑣𝑚 = 𝑘𝑣𝑣𝑣 + 𝑘𝑔𝑣𝑔,
where 𝑘𝑣 and 𝑘𝑔 are the vapor and gas mass fractions, respectively. Balance of mass
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equations for each species are given by
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where 𝑗𝑣 and 𝑗𝑔 represent radial mass flux for each species relative to the mixture.
Combining these two equations yields a balance of mass equation for the mixture:
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which can be expressed in terms of k to obtain the final expression
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(This requires using 𝜌𝑣 = 𝑘𝜌𝑚 and equation (A.5), as well as Fick’s law).

Temperature
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We note that if we relax the last assumption listed of constant temperature and lack
of water flux in the surrounding material, the temperature and vapor mass fraction
equations are split into two separate equations: one for bubble contents and one
for the surrounding material. In the following, subscripts 1 and 2 denote mixture
quantities inside and outside the bubble, respectively.

Temperature (relaxed model assumptions)
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Vapor Mass Fraction (relaxed model assumptions)

𝜕𝑘1,𝑣

𝜕𝑡
+ 𝑣1

𝜕𝑘1,𝑣

𝜕𝑟
=

1
𝜌1

1
𝑟2
𝜕

𝜕𝑟

(
𝑟2𝜌1𝐷1

𝜕𝑘1,𝑣

𝜕𝑟

)
(A.11)

𝜕𝑘2,𝑔

𝜕𝑡
+ 𝑣2

𝜕𝑘2,𝑔

𝜕𝑟
=

1
𝜌2

1
𝑟2
𝜕

𝜕𝑟

(
𝑟2𝜌2𝐷2

𝜕𝑘2,𝑔

𝜕𝑟

)
. (A.12)

A.1.2 Bubble Dynamics with Phase Change—Preston model

We now summarize the equations used by Preston, Colonius, and Brennen (2007)
to solve for the bubble dynamics in the (i) liquid phase, (ii) gaseous phase, and (iii)
bubble wall interface. The equations are:

• Liquid phase

1. Bubble radius evolution

2. Conservation of mass of the dissolved air/gas in the liquid

3. Conservation of energy in the energy in the liquid (temperature)

• Gaseous phase (mixture of air and water vapor

1. Conservation of mass of the mixture

2. Conservation of mass concentration of water vapor

3. Conservation of momentum of the mixture

4. Conservation of energy for the mixture

• Interface conditions

1. Conservation of (air) mass

2. Conservation of energy at the interface

3. Interface conditions

Liquid phase

1. Integration of the liquid momentum equation from the bubble wall to infinity
yields

𝑝 |𝑟=𝑅 − 𝑝∞(𝑡) = 𝑅 ¤𝑉 +
3
2
𝑉2 + 4

𝑅𝑒

𝑉

𝑅
+ 2
𝑊𝑒𝑅

+ 4
3
𝜇

𝑅𝑒

[
𝜕𝑢

𝜕𝑟
− 𝑢
𝑟

]
𝑟=𝑅

, (A.13)
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where 𝑟 is the radial direction, 𝑝 |𝑟=𝑅 is the bubble wall pressure, 𝑝 |∞(𝑡)
specified far-field liquid pressure, 𝑅 bubble radius, 𝑉 ≡ ¤𝑅, and 𝜇 and 𝑢 the
gas viscosity and velocity, respectively.

2. Conservation of energy in the liquid

𝜕𝑇𝑙

𝜕𝑡
+ 𝑢𝑙

𝜕𝑇𝑙

𝜕𝑟
=

1
𝑃𝑟 𝑅𝑒

1
𝑟2
𝜕

𝜕𝑟

(
𝑟2 𝜕𝑇𝑙
𝜕𝑟

)
+ 12
𝑅𝑒

(𝑢𝑙
𝑟

)2
, (A.14)

where 𝑇𝑙 is the liquid temperature.

3. Conservation of mass of the dissolved non-condensible gas in the liquid

𝜕𝐶𝑎

𝜕𝑡
+ 𝑢𝑙

𝜕𝐶𝑎

𝜕𝑟
=

1
𝑆𝑐 𝑅𝑒

1
𝑟2
𝜕

𝜕𝑟

(
𝑟2 𝜕𝐶𝑎
𝜕𝑟

)
, (A.15)

where 𝐶𝑎 ≡ 𝜌𝑎/𝜌𝑙 is the mass concentration of the dissolved gas in the liquid.

The natural frequency,

𝜔𝑜 =

√︄
3(𝑝′∞𝑜 − 𝑝′𝑣) + 4𝑆′/𝑅′𝑜

𝜌′
𝑙
𝑅
′2
𝑜

, (A.16)

where is used to non-dimensionalize the equations and yield the following definitions

𝑅𝑒 =
𝜌′
𝑙
𝑅
′2
𝑜 𝜔
′
𝑜

𝜇′
𝑙

, 𝑊𝑒 =
𝜌′
𝑙
𝑅
′3
𝑜 𝜔

′2
𝑜

𝑆′
, 𝑆𝑐 =

𝜇′
𝑙

𝜌′
𝑙
𝐷′
𝑙

, 𝑃𝑟 =
𝜇′
𝑙
𝑐′
𝑝𝑙

𝜅′
𝑙

.

Gaseous phase

1. Conservation of the mass for the mixture
𝜕𝜌

𝜕𝑡
+ 1
𝑟2
𝜕

𝜕𝑟
(𝑟2𝜌𝑢) = 0, (A.17)

where 𝜌 and 𝑢 are the mixture density and velocity, respectively.

2. Conservation of mass vapor in the mixture yields

𝜕𝜌𝐶

𝜕𝑡
+ 1
𝑟2
𝜕

𝜕𝑟
(𝑟2𝜌𝐶𝑢) = 1

𝑆𝑐 𝑅𝑒

1
𝑟2
𝜕

𝜕𝑟

(
𝑟2𝜌𝐷

𝜕𝐶

𝜕𝑟

)
, (A.18)

where 𝐶 ≡ 𝜌𝑣/𝜌 is the mass concentration of vapor. Conservation of mo-
mentum for the mixture becomes

𝜕𝜌𝑢

𝜕𝑡
+ 1
𝑟2
𝜕

𝜕𝑟
(𝑟2𝜌𝑢2) =

− 𝜕𝑝
𝜕𝑟
+ 1
𝑅𝑒

4
3

(
1
𝑟2
𝜕

𝜕𝑟

(
𝑟2𝜇

[
𝜕𝑢

𝜕𝑟
− 𝑢
𝑟

] )
+ 𝜇
𝑟

[
𝜕𝑢

𝜕𝑟
− 𝑢
𝑟

] )
,

(A.19)
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where pressure is 𝑝 = 𝜌R𝑇 and the gas temperature is 𝑇 . The effective gas
constant is determined by a weighted average R = 𝐶R𝑣 + (1 − 𝐶)R𝑎.

3. Conservation of energy for the mixture

𝑐𝑣

(
𝜕𝜌𝑇

𝜕𝑡
+ 1
𝑟2
𝜕

𝜕𝑟

(
𝑟2𝜌𝑢𝑇

))
=

1
𝑅𝑒 𝑃𝑟

1
𝑟2
𝜕

𝜕𝑟

(
𝑟2𝑘

𝜕𝑇

𝜕𝑟

)
− 𝑝 1

𝑟2
𝜕

𝜕𝑟
(𝑟2𝑢) + 4

3
𝜇

𝑅𝑒

[
𝜕𝑢

𝜕𝑟
− 𝑢
𝑟

]2
,

(A.20)

where 𝑐𝑣 = 𝐶𝑐𝑣𝑣 + (1 − 𝐶)𝑐𝑣𝑎.

Interface conditions

1. Conservation of mass of air

¤𝑚′′𝑎 =
−1
𝑆𝑐 𝑅𝑒

𝜌𝐷
𝜕𝐶

𝜕𝑟
− 𝜌(1 − 𝐶) (𝑢 −𝑉) = 1

𝑆𝑐 𝑅𝑒

𝜕𝐶𝑎𝑙

𝜕𝑟
, (A.21)

where ¤𝑚′′𝑎 = ¤𝑚′′′𝑎 /𝜌𝑙𝑅′𝑜𝜔′𝑜.

2. Conservation of energy can be written as

𝐿 ¤𝑚′′𝑣 =
1

𝑃𝑟 𝑅𝑒

[
𝜕𝑇

𝜕𝑟
− 𝑘 𝜕𝑇

𝜕𝑟

]
+ (𝑢 −𝑉)

[
𝜌

(
𝑐𝑣𝑇 +

1
2
𝑢2

)
+ 𝑝 − 4

3
𝜇

𝑅𝑒

(
𝜕𝑢

𝜕𝑟
− 𝑢
𝑟

)]
,

(A.22)

where 𝐿 = 𝐿′/(𝑅′𝑜𝜔′𝑜)2 and ¤𝑚′′𝑣 = ¤𝑚′′′𝑣 /𝜌𝑙𝑅′𝑜𝜔′𝑜.

3. Additional interface conditions are

𝑇 = 𝑇𝑙 = 𝑇𝑤, (A.23)

and
𝐶𝑎 = 𝐻𝑝𝑎 = 𝐻𝜌(1 − 𝐶)R𝑎𝑇, (A.24)

4. Mass flux of vapor out of the bubble

¤𝑚′′𝑣 = 𝛼
𝑝𝑣sat (𝑇) − 𝑝𝑣√︁

2𝜋R𝑣𝑇
, (A.25)

which is equated to the mass flux of vapor due to bulk motion and reciprocal
diffusion on the gas side of the interface,

¤𝑚′′𝑣 =
−1
𝑆𝑐 𝑅𝑒

𝜌𝐷
𝜕𝐶

𝜕𝑟
− 𝜌(1 − 𝐶) (𝑢 −𝑉), (A.26)
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which is the same as equation (A.21) but for the vapor. Finally using the
perfect gas law, we can re-write the vapor pressure at the bubble wall as

𝑝𝑣 = 𝜌𝐶R𝑣𝑇. (A.27)

A.2 From the Preston Model to the Estrada Model

In this section, we aim to recover the Estrada model described in section from the
more general the Preston model. Four assumptions must be made for this, which
we describe in detail here, before applying them to the equations of section A.1.2
to recover the set of four equations of section A.1.1. While these are mentioned in
section A.1.1, their limitations and regimes of validity are further explained here.
They are as follows:

1. Insoluble gas
Given the fast timescales of growth and collapse of the bubble (and low sol-
ubility of air in water), the effect of transfer of mass of the non-condensible
gas may be negligible. When looking over many repetitions of the cycle, the
mass of gas in the bubble will increase (and with it the equilibrium radius),
but if looking at a few bubble collapse and growth cycles only, this effect can
be neglected and we can thus remove equation (A.15).

Additionally, interface conditions (A.21) and (A.24) can be removed, and we
can rewrite (A.26) as

¤𝑚′′𝑣 =
𝐷

𝑆𝑐 𝑅𝑒

𝜌𝑤

1 − 𝐶𝑤
𝜕𝐶

𝜕𝑟

����
𝑟=𝑅

. (A.28)

2. Cold Liquid
If the liquid temperature is low enough, temperature changes in the liquid
can be neglected because the slope of the vapor saturation curve is small at
low temperatures, and temperature in the liquid remains relatively constant in
these cases. Thus we can remove equation (A.14) and replace the interface
condition with:

𝑇𝑤 = 𝑇𝑙∞ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. (A.29)

3. Equilibrium Phase change
equation (A.25) restricts the rate of phase change at the interface. If the bubble
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motion is slow enough, though, this rate is not reached and instead the finite
rate of diffusion of vapor in the non-condensible gas near the wall limits this
rate. We can then assume the vapor pressure at the wall is in equilibrium with
the bubble wall temperature, enabling the substitution of 𝑝𝑣 = 𝑝𝑣sat (𝑇) into
equation (A.27) to yield the new interface condition

𝜌𝑤𝐶𝑤 =
𝑝𝑣sat (𝑇𝑤)
R𝑣𝑇𝑤

. (A.30)

4. Homobaricity
Assuming uniform pressure in the bubble yields an ODE for the internal
bubble pressure (by integrating equation (A.19) and combining with equation
(A.17)):

𝑑𝑝

𝑑𝑡
=
−3𝛾
𝑅

[
𝑝𝑉 − 𝛾 − 1

𝛾

𝑘𝑤

𝑃𝑟𝑅𝑒

𝜕𝑇

𝜕𝑟

����
𝑟=𝑅

− R𝑣𝑇𝑤 ¤𝑚
′′
𝑣

]
. (A.31)

Furthermore, equation (A.20) can be re-written as

𝜕𝑇

𝜕𝑡
+𝑈𝜕𝑇

𝜕𝑟
=

1
𝑃𝑟𝑅𝑒𝜌𝑐𝑝

1
𝑟2
𝜕

𝜕𝑟

(
𝑘𝑟2 𝜕𝑇

𝜕𝑟

)
+ 𝛾 − 1

𝛾
𝑇
¤̃𝑝
𝑝
. (A.32)

Given these four assumptions, the Preston model simplifies to equations (A.13),
(A.31), (A.32) and (A.18). The only remaining necessary boundary conditions are
equations (A.29) and (A.30).

We compare the model obtained with these four assumptions to the Estrada model:

Liquid Phase: Momentum Equation Preston (2004) integrates the momentum
equation for the liquid phase assuming constant liquid viscosity and constant liquid
density. This yields the Rayleigh-Plesset equation, except for a relaxed assumption
of polytropic behavior of the internal bubble pressure

𝑝 |𝑟=𝑅 − 𝑝∞(𝑡) = 𝑅 ¤𝑉 +
3
2
𝑉2 + 4

𝑅𝑒

𝑉

𝑅
+ 2
𝑊𝑒𝑅

+ 4
3
𝜇

𝑅𝑒

[
𝜕𝑢

𝜕𝑟
− 𝑢
𝑟

]
𝑟=𝑅

. (A.33)

Estrada et al. (2018), however, use a Keller-Miksis formulation for this (relaxing the
incompressibility assumption of Preston (2004) and Preston, Colonius, and Brennen
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(2007)), given by(
1 −
¤𝑅
𝑐

)
𝑅 ¥𝑅 + 3

2

(
1 −

¤𝑅
3𝑐

)
¤𝑅2 =

1
𝜌

(
1 +
¤𝑅
𝑐

) (
𝑝𝑏 −

2𝛾
𝑅
+ 𝑆 − 𝑝∞

)
+ 1
𝜌

𝑅

𝑐

¤(
𝑝𝑏 −

2𝛾
𝑅
+ 𝑆

)
.

(A.34)

Both of these equations are commonly used to described spherical bubble dynamics,
with the Keller-Miksis a slightly more general formulation, whereby the surrounding
material is no longer assumed to be fully incompressible.

Given the insoluble gas and cold liquid assumptions detailed above, there is no
longer a need for mass and energy conservation equations in the liquid phase.

Gas Phase: Mass Conservation Equation (A.18) is used for mass conservation
in the gas phase in the Preston model:

𝜕𝜌𝐶

𝜕𝑡
+ 1
𝑟2
𝜕

𝜕𝑟
(𝑟2𝜌𝐶𝑢) = 1

𝑆𝑐 𝑅𝑒

1
𝑟2
𝜕

𝜕𝑟

(
𝑟2𝜌𝐷

𝜕𝐶

𝜕𝑟

)
. (A.35)

This can be rewritten (expanding partial derivatives on LHS) as:(
𝐶
𝜕𝜌

𝜕𝑡
+ 𝜌 𝜕𝐶

𝜕𝑡

)
+

(
𝑟2𝜌𝑢

𝑟2
𝜕𝐶

𝜕𝑟
+ 𝐶
𝑟2
𝜕 (𝑟2𝜌𝑢)
𝜕𝑟

)
=

1
𝑆𝑐 𝑅𝑒

1
𝑟2
𝜕

𝜕𝑟

(
𝑟2𝜌𝐷

𝜕𝐶

𝜕𝑟

)
(A.36)

⇐⇒ 𝐶

(
𝜕𝜌

𝜕𝑟
+ 1
𝑟2
𝜕 (𝑟2𝜌𝑢)
𝜕𝑟

)
+ 𝜌

(
𝜕𝐶

𝜕𝑡
+ 𝑢 𝜕𝐶

𝜕𝑟

)
=

1
𝑆𝑐 𝑅𝑒

1
𝑟2
𝜕

𝜕𝑟

(
𝑟2𝜌𝐷

𝜕𝐶

𝜕𝑟

)
,

(A.37)

but by conservation of mass for the mixture,

𝜕𝜌

𝜕𝑟
+ 1
𝑟2
𝜕 (𝑟2𝜌𝑢)
𝜕𝑟

= 0 (A.38)

And thus dividing by 𝜌 we obtain (a non-dimensional form of) Estrada’s equation:

𝜕𝐶

𝜕𝑡
+ 𝑢 𝜕𝐶

𝜕𝑟
=

1
𝜌

1
𝑟2
𝜕

𝜕𝑟

(
𝑟2𝜌𝐷

𝜕𝐶

𝜕𝑟

)
. (A.39)
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Gas Phase: Momentum Equation Given the homobaricity assumption, equation
(A.31) is used in the Preston model:

𝑑𝑝

𝑑𝑡
=
−3𝛾
𝑅

[
𝑝𝑉 − 𝛾 − 1

𝛾

𝑘𝑤

𝑃𝑟𝑅𝑒

𝜕𝑇

𝜕𝑟

����
𝑟=𝑅

− R𝑣𝑇𝑤 ¤𝑚
′′
𝑣

]
. (A.40)

We can re-write this by multiplying through by 𝛾 and substituting in our expression
for ¤𝑚′′𝑣 in (A.28):

𝑑𝑝

𝑑𝑡
=

3
𝑅

[
−𝛾𝑝𝑉 + (𝛾 − 1) 𝑘𝑤

𝑃𝑟𝑅𝑒

𝜕𝑇

𝜕𝑟

����
𝑟=𝑅

+ 𝛾R𝑣𝑇𝑤𝜌𝑤
𝐷

1 − 𝐶𝑤
𝜕𝐶

𝜕𝑟

����
𝑟−𝑅

]
, (A.41)

and using (A.30), we can write

R𝑣𝑇𝑤𝜌𝑤 = 𝑝
R𝑣𝑇𝑤𝜌𝑤

𝑝
(A.42)

= 𝑝
𝐶𝑝,𝑣

𝐶𝑝
, (A.43)

which yields the Estrada estimate

𝑑𝑝

𝑑𝑡
=

3
𝑅

[
−𝛾𝑝𝑉 + (𝛾 − 1) 𝑘𝑤

𝑃𝑟𝑅𝑒

𝜕𝑇

𝜕𝑟

����
𝑟=𝑅

+ 𝛾𝑝
𝐶𝑝,𝑣

𝐶𝑝

𝐷

1 − 𝐶𝑤
𝜕𝐶

𝜕𝑟

����
𝑟−𝑅

]
. (A.44)

Gas Phase: Energy Equation Preston (2004) show that equation (A.32), given
the homobaricity assumption, can be written as

𝜕𝑇

𝜕𝑡
+𝑈𝜕𝑇

𝜕𝑟
=

1
𝑃𝑟𝑅𝑒𝜌𝑐𝑝

1
𝑟2
𝜕

𝜕𝑟

(
𝑘𝑟2 𝜕𝑇

𝜕𝑟

)
+ 𝛾 − 1

𝛾
𝑇
¤̃𝑝
𝑝
, (A.45)

while the Estrada model uses:

𝜌𝑚𝐶𝑝

(
𝜕𝑇

𝜕𝑡
+ 𝑣𝑚

𝜕𝑇

𝜕𝑟

)
= ¤𝑝𝑏 +

1
𝑟2
𝜕

𝜕𝑟

(
𝑟2𝐾

𝜕𝑇

𝜕𝑟

)
+ 𝜌𝑚 (𝐶𝑝,𝑣 −𝐶𝑝,𝑔)𝐷

𝜕𝑘𝑣

𝜕𝑟

𝜕𝑇

𝜕𝑟
. (A.46)

Expanding 𝑈 in equation (A.45) as described in section 2.4.4 of Preston (2004)
and with some algebra, the Estrada model equation can be recovered given this
assumption.

Boundary Conditions Finally, the same boundary conditions are used in both
models given the added assumptions. The temperature at the bubble wall is

𝑇𝑤 = 𝑇𝑙∞ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, (A.47)
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and the vapor mass fraction equilibrium is given by

𝜌𝑤𝐶𝑤 =
𝑝𝑣sat (𝑇𝑤)
R𝑣𝑇𝑤

. (A.48)

This completes the comparison of the two models. Given the four key assumptions
listed at the beginning of this section, the Preston model simplifies to the Estrada
model, with the exception of the bubble radius evolution equation, which is given by
the Rayleigh-Plesset equation in Preston, Colonius, and Brennen (2007), and by the
Keller-Miksis equation in Estrada et al. (2018). We note that this is a particularly
important distinction in the context of bubble dynamics in a viscoelastic material, as
the stress integral 𝑆 in the Keller-Miksis equation is defined by the material model
used. The use of the Keller-Miksis equation with this stress integral term is central
to the IMR and DA-IMR methods described in Chapters 2 and 3, where terms in the
material-model–specific expression of 𝑆 are estimated to characterize soft materials.



137

A p p e n d i x B

PERFORMANCE AND SCALING OF MFC

The majority of simulation results shown in Chapters 4 and 5 of this thesis were
performed using the Multi-component Flow Code (MFC) (Bryngelson et al., 2021;
Radhakrishnan et al., 2023), with the additional models described in section 4.1.
MFC, with the aforementioned models now implemented, is open source and can
be accessed at https://mflowcode.github.io/. In this appendix, we report
on performance and scaling results of MFC on both CPUs and GPUs, and provide
details on the performance impact of the implemented hypoelastic and damage
models.

B.1 CPU Scaling and Performance

MFC employs an interface-capturing approach, high-order accurate finite-volume
weighted essentially non-oscillatory (WENO) reconstructions of the primitive flow
variables at the cell-boundaries and Harten-Lax-van Leer–type (HLL and HLLC)
approximate Riemann solvers for upwinding. Explicit total-variation diminishing
(TVD) Runge-Kutta schemes are used to march the solution in time. To solve the
physical model, the five-equation numerical model described in Chapter 4, section
4.1 is used. Inter-processor communication is handled by MPI (message-passing
interface). The algorithm used by MFC is well-suited for parallel applications, due
to the large number of operations required per grid point to evolve the solution. To
ascertain the scaling of MFC, we performed strong and weak scaling tests up to
4096 CPU cores. A weak scaling test keeps the number of grid points per processor
fixed. Ideal weak scaling means that the wall time remains the same as we increase
the number of processors with the problem size. In a strong scaling test, on the other
hand, the problem size is kept fixed, and we report the decrease in wall time as the
number of processors increases. the results of both scaling tests are shown in figure
B.1.

This demonstrates ideal weak scaling (figure B.1b) and near-ideal strong scaling
(figure B.1a) of MFC. The slight deviation from ideal scaling in the strong scaling
test as problem size increases to 𝑂 (1000) cores is expected. This results from

https://mflowcode.github.io/
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Figure B.1: Strong scaling (a) of MFC for 5003 grid points and weak scaling
(b) for 503 grid points per core, both up to 4096 cores. Scaling test performed
on up to 32 compute nodes on the Expanse supercomputer at the San Diego
Supercomputer Center.

the increase in the number of halo regions, where the edge of the domain of each
block is shared with the adjacent block, as the number of processors increases.
These scaling tests were performed on the Expanse supercomputer at the San Diego
Supercomputer Center, with up to 32 nodes in 3D with third-order accurate WENO
spatial reconstruction and TVD Runge-Kutta time marching schemes. The average
grind time per flow variable was found to be 3.7483 𝜇s. We now describe the
implementation of the code on GPUs to accelerate its performance.

B.2 GPU Acceleration

B.2.1 Performance Speedup

A benchmark of the CPU implementation of the code revealed that the majority of the
computational cost came for only two routines, namely the WENO-reconstruction
and Riemann solver, which combined account for more than 90% of the compute
time per time step. The first row of table B.2 shows the distribution of computational
cost across routines on CPUs for a representative 2-component, 3D test case.

This highlighted the potential for straightforward acceleration of the code by making
use of GPU offloading for these two subroutines, in a heterogeneous (combining
CPU and GPU) approach. The GPU programming framework used is OpenACC
(Wienke et al., 2012), which is a directive-based programming language readily
implemented within a Fortran code such as MFC. OpenACC renders a CPU/GPU
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heterogeneous approach easy to implement, as OpenACC directives can be added to
specific subroutines to create GPU kernels executed in parallel on GPU accelerators.

The GPU offloading of these two subroutines proved effective, with 𝑂 (100)×
speedup for each individual routine when comparing 1 GPU to 1 CPU core. In par-
ticular, the WENO reconstruction is nearly 500× faster on an NVIDIA V100 GPU
when compared to a single POWER9 CPU core. This heterogeneous CPU/GPU
implementation was overall approximately 50 times faster than the base CPU code,
when comparing total wall time per time step. Benchmarking this implementation,
however, revealed that there was potential for much greater speedup, as up to 80%
of the cost now came from data transfer, up from under 5% with the CPU code. This
is attributed to back-and-forth data transfers which are now required between CPU
and GPU at each time step.

While the GPU offloading of other routines with low operation counts may not yield
significant acceleration in terms of their individual compute times, a significant
advantage can be gained by running all computing on GPUs. That is, we would
avoid any extraneous data transfer back and forth from host (CPU) to device (GPU),
which is a significant downside of the heterogeneous CPU/GPU approach. We
thus offloaded all operations to run on GPUs, as detailed in Radhakrishnan et al.
(2023), which significantly increased the speedup to more than 300× (from 50×
with the heterogeneous code). Speedup numbers for key routines and overall code
are reported in table B.1

Routine Speedup
WENO reconstruction 486

Riemann Solver 189
Communication 125

Total 305

Table B.1: Speedup of GPU code running on one NVIDIA V100 GPU when
compared to one POWER9 CPU core. These speedup numbers are detailed in
Radhakrishnan et al. (2023)

This table shows that while speedup of other routines did not match that of the WENO
reconstruction, their speedup was sufficient to achieve a high overall speedup of the
code, approximately 6 times faster than the heterogeneous implementation due to
the decreased data transfer and communication required.
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Table B.2 compares benchmarking of key routines in the code for the final GPU
implementation and CPU code. This reveals that while WENO reconstruction
remains the most expensive routine, its relative cost has been far diminished due
to its high speedup. Other routines and communications now represent a higher
contribution to total compute time, given their lower GPU parallelization potential.
Given that WENO reconstruction represented near three quarters of the compute
time on CPU, the very high speedup of that routine drives the overall speedup of the
code, despite the smaller acceleration seen in other routines.

Case WENO Riemann Solver Communication Rest of Code
CPU code 71.7 % 18.7 % 3.8 % 5.8 %
GPU code 43.3 % 33.3 % 5.8 % 17.6 %

Table B.2: Percentage of time-contribution of the WENO Reconstruction,
Riemann solver, communication, and all other routines to total compute time.

B.2.2 Scaling Tests

Scaling tests for the GPU implementation of MFC were performed and reported in
Radhakrishnan et al. (2023). Weak and strong scaling results are reproduced here
in figure B.2.

(a) (b)

Figure B.2: Strong scaling (a) of MFC for 64M grid points up to 128 GPU with
and without CUDA-aware MPI, and weak scaling (b) for 1M grid points per
GPU up to 𝑶(10000) GPUs. Scaling test performed on the Summit supercom-
puter at the Oak Ridge Leadership Computing Facility and reproduced from
Radhakrishnan et al. (2023).

As with the CPU code, we see ideal weak scaling results. We highlight that this weak
scaling test was run on up to 𝑂 (10000) GPUs, which given the speedup detailed in
section B.2.1 corresponds to ideal weak scaling up to the performance-equivalent



141

of 𝑂 (1𝑀) CPU cores. Strong scaling results also shows near-ideal scaling up to 64
GPUs, but begins to deviate for larger numbers of GPUs, where MPI communication
becomes dominant in compute time. We note that in all simulations shown in this
thesis, number of GPUs used never exceeded 64, which was sufficient to run even the
largest cases shown in under 24 hours. To conclude this appendix on the performance
and scaling of MFC, we discuss the slowdown caused by the additional models added
to the code, described in Chapter 4, section 4.1.

B.3 Added Computational Cost of the Hypoelastic and Damage Models

The added computational cost incurred by adding the hypoelastic and damage models
are discussed in the last part of section 4.1.4. As mentioned, when the hypoelastic
model is turned on, up to 6 additional equations are solved in 3D, one for each distinct
element of the 3 × 3 elastic stress tensor. Furthermore, the damage model requires
calculating an additional damage field D dependent on the maximum principal
stress, which must be calculated at all points in the solid domain. This has been
shown to add up to 155% computational cost on CPUs, or 98% computational cost
on GPUs for 3D simulations, as reported in section 4.1.4. However, this incurs no
change to the scaling performance of the code given that the parallel infrastructure
remains the same. For completeness, we report the full slowdown numbers in 1D,
2D and 3D for both CPU and GPU, in table B.3. Note that the 3D numbers reported
are the same as those from table 4.1. Percentage slowdown relative to Base MFC
(without the added hypoelastic and damage models) are reported for each added
model. Numbers are for a simulation with 10M grid points, with a solid immersed
in a high pressure fluid, run on a CPU node with 128 cores, or a GPU node with 4
GPUs on the Expanse supercomputer at the San Diego Supercomputer Center.

We see that for 1D and 2D cases, the slowdown on GPUs is marginally better
than that of CPUs for corresponding cases. However, in 3D there is a significant
difference in the added computational cost. The hypoelastic model alone is 84%
slower as compared to 119% slower on CPUs, and when adding both models, the
slowdown is 98% on GPUs and 155% on CPUs. This is because the six added
equations in 3D represent a significant added cost to the WENO reconstruction,
which is much faster on GPUs. Thus, this translates to a more minor slowdown in
that version of the code.
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Version Dimension Base MFC Hypoelastic Hypoelastic and Damage
1D 1.76 s 2.18 s (24%) 2.50 s (42%)

CPU 2D 3.70 s 5.46 s (48%) 5.83 s (58%)
3D 8.83 s 19.4 s (119%) 22.5 s (155%)
1D 0.40 s 0.48 s (20%) 0.54 s (34%)

GPU 2D 0.87 s 1.25 s (45%) 1.36 s (56%)
3D 1.99 s 3.66 s (84%) 3.93 s (98%)

Table B.3: Total time per time-step comparison for a 3D case with 10 million
grid points with two components, with various MFC configurations. Percent-
ages shown correspond to slowdown relative to the base MFC case for each
version.

We also report the speedup numbers for the GPU implementation with both the
hypoelastic and damage models turned on in 2D and 3D in table B.4. These are
node-to-node comparisons, where we compare a full GPU node with 4 NVIDIA
V100 GPUs to a full CPU node with 128 CPU cores, again on Expanse.

Version CPU node time GPU node time Speedup
2D 0.58 s 0.14 s 4.28×
3D 2.25 s 0.39 s 5.73×

Table B.4: Speedup of GPU code compared to CPU code in 2D and 3D, when
running on a full CPU node (128 cores) and full GPU node (4 GPUs) on Expanse

.

We see approximately a 4.3× and 5.7× speedup in 2D and 3D, respectively. This
means that in a node-to-node comparison, 1 GPU-hour on that system with the
hypoelastic and damage models turned on is approximately equal to 136 CPU core-
hours for a 2D simulation and 183 CPU core-hours for a 3D simulation. Where
available, running the GPU version of the code is thus also advantageous with the
hypoelsatic and damage models, enabling faster and scalable computations.

Example Simulation To conclude this section on the performance of MFC on
GPUs with hypoelasticity, we show the results of a simulation of shock-induced
collapse of air bubbles near a model kidney stone, reported in Radhakrishnan et al.
(2023). Here, we consider the dispersion of 17 air bubbles initially near a model
stone and submerged in water. The impinging shock has a Mach number 𝑀𝑠 = 7.92.
The properties of the stone are those of a BegoStone (Liu and Zhong, 2002), a
kidney stone phantom used in lithotripsy research, which has been used throughout
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this thesis. It has a density of 𝜌 = 1995 kg/m3 and longitudinal and transverse
wavespeeds 𝑐𝐿 = 4159 m s−1 and 𝑐𝑇 = 2319 m s−1.

The simulation domain is 2.67𝐷 in the mean flow direction and 1𝐷 in the transverse
and spanwise directions, where 𝐷 is the stone’s diameter. A structured 1600×600×
600 Cartesian grid (576M grid points) discretizes the domain. This simulation was
conducted on 576 GPUs (96 nodes) on the Summit supercomputer at the Oak Ridge
Leadership Computing Facilty for 25×103 time steps, corresponding to a wall-time
of 30 minutes.

Figure B.3: Illustrative simulation of a kidney stone near a collapsing bubble
cloud. Reds indicate higher stresses and blues indicate lower stresses. The
bubble and stone isosurfaces are shown for volume fraction 𝜶 = 0.5.

Figure B.3 shows maximum principal stresses in the stone at non-dimentional time
𝜏 ≡ 𝑡𝑐/𝑅0 = 2.03 for air sound speed 𝑐 and initial bubble radius 𝑅0. These stresses
follow from the shock, and the subsequent bubble collapses. We observe larger
stresses near the center of the bubble cloud and stone cross-section.
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