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ABSTRACT

The problem of predicting the aerodynamic characteristics of
configuretions at hypersonic Mach numbers has been unreliable due
to the lack of experimental date.

By predicting the aerodynamic characteristics of a wedge and
cone at Mach numbers from 2 to 12 by four different supersonic
theories, a basis for future experimental comparison wes provided.

An attempt wes made to correlate the theoretical result of a
20o wedge and cone with wind tunnel test results of the same confi=-
guration, However, due to scheduling difficulties the experimental
phase was not completed in time enough to be included in this report.

The theoretical results indicate that the hypersonic similarity
solution gives close agreement with the exect solution for large
Mach numbers. The linearized and second order theory deviates from

the exact solution for Mach numbers greater than 3,
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SYMBOLS AND NOTATION

The following are the symbols and notation with their definitions

used in this investigation.

static pressure of the flow. The subscripts denote flow
field (i.ee)
1l - free stream

2

flow behind shock or on body

o = stagnation conditions

s = flow on surface of bodye.

pressure coefficient = AR/Q.
i T 2
free stream dynamic pressure = 3 P, u| = 2z P.Ml
free stream velocity.
speed of sound @;= \/m. Subscript indicates some condi-
tions as pressure p; .
fluid density. Subseripts same as for p; .
Mach number = “i/q. . Subscripts same as p;
inclination of shock wave, or the quanity /Mlz -1
ratio of specific heats = l.4 for air.
cylindrical or spherical coordinatese
Certesian coordinates. Subscripts denote orthegomal directions
of axise

velocity components.
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SYMBOLS AND NOTATION (continued)

indicate %‘f ) —g—:f where 4 , k are coordinates of
system being usede

semi=apex angle of cone or wedge, and flow deflection in
one case.

potential notation.

angle of attack.

non=dimensional coordinates, or variables of integration.
body thickness, or total apex angle.

body lengthe

thickness ratio parameter (if s/b e



I, INTRODUCTION

The purpose of this investigation was to determine the aerodynemic
characteristics of a wedge and cone at hypersonic Mach numbers and to
correlate these results with existing theories.

Since there has been little or no experimental date availeble at
extremely high Mach numbers, the reliability of extending existing
supersonic theory to hypersonic flow is questionable. The problem is
vast, including as it does, the question of viscosity, shock waves and
devietions from a perfect gas, However, in this investigation only one
phase was to be considered that of correleting, without corrections for
viscosity, shock waves and devietions from a perfect gas, the experimental
results of one configuration of a wedge and a cone with the various super=
sonic theories. Alsoc an attempt was mede to predict, theoretically, the
surfece pressure on various configurations of wedges and cones by four
different theories covering the range of speeds from Mach number 2 through
12, thus providing a basis of comparison for future experimental work.

The configuretions used in the theoretical investigation were:

1. Wedge with apex angles of 5%, 10°, 20°, 30°, 40°, 50° and
60° at angles of attack of 0°, 20, 49,

2. Cone with apex anglesof 5%, 10°, 20°, 30°, 40°, 50° and
80° at zero angle of attecke

In the experimentel phase the only configurations to be tested were the



wedge and cone with a 20° apex angle.
The four methods used in determining the thecretical pressure dis-
tributions were:
l, Obligue Shock=Wedge; Exact Theory for Cone
2. First Order Theory = Linearized Theory
3s Second Order Theory - Iteration of Linearized Theory
4, Hypersonic Similerity,
A brief discussion of eech of the above theories is given on pages 3 to 19,
Due to scheduling difficulties in the hypersonic tunnel, the experi=
mental phase of this investigation was not concluded in time to have the
results included in this report, However, as the experimental portion of
the investigation is to be continued, the correlation of test results with
the theoretical results presented in this report will be made at a lster
date.
Figs. 1, 2, 3 and 4 give sketches and photographs of the models that

will be used in the experimental phase.



IT, CAICULATIONS BY THE VARIOUS THEORIES

A, Oblique Shock Theory - Wedge

From the normal shock theory, the relation for the pressure rise

across the shock to the free stream pressure is given as (cf. Ref. 1)

- 2y %
P2 pl/ P, ¥+ [M|-l] (1)
To transform this equation for use in case of oblique shock waves it

is only necessary to replece Ml by Ml sin B, where B is an inclination

of the shock wave.

P.= P/ Py 2T M/ sw'p - 1] (2)

The pressure coefficient Cp is defined as
Cp = PP/ g (3)
where q is the free stream dynamic pressure, and is equal to

2

g=l_P|Ul 2= KTP'- -%:E = %P;Ml (4)

since M, = UI/ a, ond a, = m

and by substituting Egs. (2) and (4) into Bq. (3), the pressure



coefficient becomes

= PamP 4 [MPan'e - (5)
I WE M Cy1) M7 swe -]
with L, = 3"“2!5 - ¥+l siNg SINO

\ 2 coscp—e)

The resulting pressure coefficients besed on Eqe (5) are given in Tables
1 to 3 and plotted on Figs. 5 to 7.

Be Exact Solution for Cone

The equation for steady isentropic flow in spherical coordinates

with axial symetry is given as (ef. Ref. 2)

2 2 a a i
(@ -uw)u + (o.;\r)tre —ur (L Ug+vy)
(6)
+ a® 2ut+vcore _
r

where direction of velocity and coordinates are

2
°
/
[
~~ a < | (Vd
l
|
} ~ Y
S
9 ~



For the case of flow past the unyawed cone, it is assumed that all
fluid properties are constant on any conical surface having the seme
vertex and axis of symmetry as cone itself.

If the coordinate axis are placed at the vertex of the cone, the
above assumption results in the fluid properties being independent of

r. The irrotationality equation for this case is

v, + VU

du = O
T ro° (7)

From the basic assumption that the flow is independent of r, the irrota-

tionality equation becomes

du _
ae - Y (8)
and Bq. (6) becomes
2
dv + U+ @ (u+\rco1'e) = 0O (9)
ae a®-v?

By integrating this equation it is possible to evaluate the flow
fielde Kopal has done this integration by & numericel method and hes
tabulated the results (ef. Ref. 3). Kopal has also tebulated the ratio
of pressure on the cone to that immediately behind the shock wave, and
the ratio of the pressure immediately behind the shock wave to that of

the undisturbed free stream, i.e., ps/'p2 and pz/p1 respectively. The



product of these ratios gives ps/bl,'which in turn makes it possible

to calculate the pressure coefficient

2
M/}

(Ps-P) /Py (10)

The results of this calculation are tebulated in Table 4 and are plotted

on Fig. 8,

Ce First Order Theory = Wedge

By linearizing the equations of motion and assuming that the flow

is irrotational, & perturbation potential may be introduced (cf. Ref. 4).

The linearized equation of motion becomes

where

2 4
dX, X,

’
bu,,

uy = U = conste
U, =0
u =0

(away fram body)

Introducing the perturbation potential

Lk: = gLij
& ax"

oUs = O (11)

u, U+ u?
1

1
o= 1
Yp T 8y
= %
Y T g

(neighborhood of body)

(12)



the equation of motion becomes

‘

2 x 2117 2 4
_ut 3¢ X 2¢ _ .
(I alj.) axiz, % bx; L ax; = 9 (1\3)

For consistancy the same approximation for determining the pressure
coefficient wes made,

From the isentropic relationship, the pressure
ratio is

ER-E'H
P/ P = I xR 14)
/| |+z;_!M; (14)

which reduces to

-

Pz//P|

|+ 3= M 2wy M)

and

2 '
P2/ Py = I-%M' 2%y + - (16)

and since

ES
- »
>
i

1Y

(17)



By finding a solution which satisfies both the boundary conditions
as well as the perturbation equation, the pressure coefficient equation

becomes

Ce = 3 dx2 (18)
M= d %
boundery
or for the case of the wedge
e
CP = _._2_ TAN © (19)

/-

Table 5 gives the values of Cp for a wedge at zero angle of attack as
calculated by the first order theory, and a plot of CP vs Mach number
is given on Fig. 9.

In calculating the pressure coefficients for the wedge at angles
of attack (2%, 4°) by the linearized theory the seme equation as used

for the zero angle of attack calculations will hold,

Mz- ’ dx|
1 boundary



However, for this case the slope of the upper and lower surfaces will

differ by the angle of attack. For the case of positive angle of

attack
= 2
C = tan (© = @) (20)
P upper M, -1
CP lower N zz tan (@ +¢) (21)
MZ -1
where

; /9/___
e \7

Tables 6 and 7 give the calculated first order value of the wedge at
angles of attack of 2°, 40, and their plot versus Mach number is given
on Figs. 10 and 11.

D, First Order Theory = Cone

The linearized potential equation in cylindrical coordinates assume

ing exial symmetry is

2

¢
ar?

Iq
Nt
Qs
»
-~

1"
o)

+ (22)

+ (1~

2

2
dr

o3

A
r
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By assuming that the effects of infinitesimals can be superimposed,
the potential of the additional velocities has the form
X-@r

fc§) d 3 (23)
jr(x- §)*-g*r”

$<x,")

1]

where e e = |

By assuming the vertex of the body at x = 0, this integral can be

transformed by letting xg-r'? = cosh u. Then the potential becomes
o

c‘) = j 'F(X-pr cosH U ) du (24)
COSH.‘l.
er

and the velocities components are
Ch (25)

kL SR 4
3% or

Von Karman solved the above equation in (Ref. 5) and the solution

for the over=-pressure acting on the surface of the cone is

-1 |
2 _2 cosH e_P_

2
|- ©* + © cosH ' _L o
p* =P
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or approximately

- 2
from which
c 207 Loa 04
P = — 28
P v (28)

where © = semi-apex angle,

The calculated values of the pressure coefficient, Cp, for the first
order solution of the cone is given in Table 8 and the plot of Cp vs Mach
number is given on Fig. 12,

E, Second Order Theory - Wedge

The linearization method which led to the PrandtleGlauert equation
can be considered to be the first step in an iteration procedure corres-
ponding to the general technique of solution by successive approximation
based on the theory of perturbations,

Busemann (Ref. 6), has carried out the iteration process for super=
sonic flow in which the potential function is expanded in a power series
in a parameter proportional to the thickness ratio of the body. Busemamnt®s

result to the second order for plane flow for the pressure coefficient is
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2
Cp=* _2 o 4|3xM+(M-2)|6"

M= 2 (M*-1)* (29)

This equation wes used to compute the C, for the wedges under considera-

p
tion.s In this equation © is the angle of flow deflection, for zero
angle of attack it corresponds to the wedge semi=apex angle.

Tables 9, 10 and 11 give the calculated second order values of Cp
for the wedge. The plot of these values are given on Figs. 13, 14 and

15.

Fo Second Order Theory = Cone

For axially=-symmetric flow the problem of determining a second
order approximation is reduced to first order problem by the discovery
of a particular solution of the iteration equation. The iteration

equation for a cone as given by Van Dyke, (Ref. 7), is

(|“t’.) étt -+ _;,:_t = M:[Z«(N"l)tz itt(-i-t;t)
t

e - i3 T2 (30)

-2t g v B+ p b . ]

where the concial non-orthogonal coordinates are (x, t) and
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t=prsy g = /M,"-l N = (Iﬂl)zﬂ.2
4

§<x,t,6) = X §<t,9) éxﬁ f‘% i‘itt

%

1
o |
\
f“
oAl
&
84
R
X
1]
x| At
(aall

ér"

]
g
A
ﬁ
e
s
3
n
xT®,
acall
o
e

and

§ is first order perturbation potention

@)
§ = § * <P is second order perturbation potential,

And the boundary conditions are

9,

I+ Px

= slope of the cone surface

& icea = e[ E’;(\Oﬂ = e Pepe]

-

tP("") = cpt“”) = O for second order solution

where the semi-vertex angle of san™2

€.
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By use of an integrating factor J';Siﬁf the homogeneous equa=
[ B

tion can be integrated to give the result

= -A (seen’t - I-¢)
(32)

N

€

A=
/|-Pze + €* sen'(ge)

Substituting this result into the above iternation equation, Van Dyke

(Refs 7), gives for the complete second order perturbation potential
=(2) -t
Py = ~ACseew t - [I-t7)

+ AzM," [B(sscu"t -VI-t*) + (*:;s.c.bf'*:.)L (35)

- CN+1) fI-t" seeH 't -p*A N-tF j
4 t?

The streamwise and radial velocity perturbations are

- A secH't + AlM, [B SECH 't + (SECWH &)

u =
U o (34)
-(N-I) secH't ~(N+I) - 3PAJ_L_ ]
J1-t t*
Lo At cATM, [-B It 2t seaie secut
B U ¢ t

4+ (N41) L + (N- l)tsecHt +|FAJ -t* (35)
% J1-¢ &3
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The constant B must be adjusted to satisfy the tangency condition
given by Eq. (31)s
From these expressions the pressure coefficient at any point can

be calculated from

Co = 2 |+ X Mz(l-az )]%" I (35a)
P (g ST g

The calculated values of Cp for the cone by the second order theory are
given in Table 12. The plot of these values versus lMach number are
given on Fig. 16,

Go Hypersonic Similarity

Hypersonic flows are flow fields where the fluid velocity is much
larger than the velocity of propagation of small disturbances, the
velocity of sound. Tsien, (Ref. 8), has developed the similsrity laws
for hypersonic flows

If u, v are the components of velocity in the x, y directions and
a is the loeal velocity of sound, the differential equations for irrota-

tional two-dimensional motion are

2 7 .
Q=T Ug -4 (Uy+%) + (1= L)% =0 (50)

I’x‘ -~ UY =0 (37)
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Introducing the perturbation potential as

U.=U+_a_t U'=)_¢_ (38)
X dY

and the relations

a’ = ay - L; (U vh) = - Bl U 2ugy (39)
+ (40 +(dy)']

a,'= 4 - ¥ U* ()
2

Since for hypersonic flow both &, and %1 R %i are small
X Y

compared to u, the equation of motion becomes to the second order

[1-CoroM L ¢ = BL L (0= M ] b -

IM L bt [ oML g 3L ]9 7O

Von Kérman, (Ref. 5), has shown that for hypersonic flow over &
slender body the variation of fluid velocity due to présence of the
body is limited within a nerrow region close to the body, the hypersonic
boundery laeyer. Therefore, in order to investigate this velocity varie=-
tion, the coordinate normel to the body was expanded. If 2b is the

length or chord of the body and 8 is the thickness of the body, the
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non=dimensional coordinates { and A can be defined as

h

X = b; Y:b(—:—)l? (42)

where n is an exponent greater than O from above condition of coordinate
expans ion.

The appropriate non-dimensional form for the velocity potential is

b=abL fct,n (43)
M,
By substituting equations 42 and 43 into equation 41, and letting

n=1I M, S =K
b
Tsien gives the differential equation for two-dimensions as,

[I-(x-.l)ﬁ - ¥+l L (3_")1] a_z'f_ =
LS 2 K" o MMt

o gy ()
k* ¥ 4 z3f 9T
tE an N
with boundary conditions
E_-F. = _B_f. = 0 AT ©O
28 L
(45)
of =k he§)  -1<E<
( aq)l‘lzo

where h( f) - 1< € <1 is a given function describing the thickness

distribution along the length of the body.
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This similerity law means that if a series of bodies having the
seme thickness distribution bub different thickness ratios ( 8/b) are
put into flows of different Mach numbers M; such that the products of
M, and ( 8/5) remain constant and equal to K, then the flow patterns
are similer in the sense that they are governed by the same function
£(§,N ) determined by equations (44) and (45).

For axially symmetricel flows, the ordinate y is the radial dis-
tance from the axis to the point concerned. Then a similer analysis

leads to the following differential equations and boumdary conditions,

3 2
6
% T
23f ' I
an A g*
of _ 3 _ o6 ur oo
dFf 2N (a7)

Rfy =k h(E) 1< §<|

where h(§) is the distribution function for cross-sectional areas
along the length of the body.
Shen, (Ref. 9), solves these basic equations by expanding the

solution into a series near the initial point and integrating
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numerically., The result of this integration determines the flow
field, and from this flow field, the surface pressure coefficient
can be found., For the cone, Shen gives a curve of Cp/e2 vs K,
(ecfo Pige 17 and Table 13) which, by using the similarity parameter
K, suffices for various slender cones in hypersonic flow. Using
this curve the Cp based on hypersonic similitude was readily calcu=-
lated.

For a wedge Shen's analysis results in the equation

cp/e‘ = % + 2 \/(%)".{, I/Kz. (48)

where © = 1/2 apex angle.
The calculations based on the curve and equations are given in

Tables 14 to 17, and are plotted on Figs. 18 to 21,
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IITI, CONCLWIONS

Fig. 22 gives a cross-plot of the surface pressure coefficient

for the 20° total apex angle, wedge and cone at zero angle of attack,

Examination of this curve indicates:

1.

26

Se

4,

The hypersonic similarity solution gives close agreement
with the exact solution for Mach numbers above 6.

The second order solution gives close agreement for the
low Mach numbers below 4,

The lineariged theory solution gives, throughout the
complete Mach number range, values considerably lower
than those of the exact theory.

The first and second order theories for the cone give
imaginary results for particular values of apex angle
and Mach number. In the case of the 20° cone above Mach
number of 5,7 for the second order theory and Mach number

of 11,0 for the first order theory the solution is imaginary,.

Fig. 23 shows the 1ift coefficient Cp vs M for the 20° wedge at 2°

and 4° angles of attack. These curves follow the same pattern in regard

to agreement with the exact solution as the calculated values of the

pressure coefficients.



1.

26

3e

4

5

6o
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TABLE 1

Wedge
Oblique Shock Theory

0° Angle of Attack

Cp
§

M 5° 10° 20° 30° 40° 50° 60°
2.0 (0716 o110  .2565 o433 665

4,0 .0241 L0558 ,1531 ,2425 .379  .581 738
6.0 0177 046 106  .203  .329  .484  ,666
8.0 .0148  ,0325 .0939 187  ,3095 463  .641
10,0 .0116  .0294 L0871 L1765 302 4515 o634
12,0 .026  ,0835 L,172  .205 443 625
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TABIE 2

Wedge
Oblique Shock Theory
29 Angle of Attack

Cp

M 59 10° o 30° 400 50° 60°

2.0 Cp upperxr «0133 «070 0192 352 «H56 094
lower 0104 «168  .,320 .51 » 800

400 C upper .0045 0038 .100 0194 0324 0476 0652
P yower .050  ,086 L.170 .298 .444 612  .826

6.0 C upper 00028 0026 0078 0162 0276 0420 0590
lower +C40 +068 0142 250 e384 552 o 742

8,0 C upper +0022 +C18 «066 » 146 0260 396 + D66
lower «030 »052 0128 236 368 «HB30 ¢ 720

10.0 C_ upper .C015 012 .C60 ,140 ,256 390 o560
lower .026 050 ,120 .230 .360 .520 L.710

12,0 C_ upper L,0011 .,012 ,060 .140 .256 .390 560
P iower .026 050 L1168  .230 .360 520 710




TABLE 3

Wedge

Oblique Shock Theory

4° Angle of Attack

S
M 50 100 209 30° 40° 50°  60°
2. 0 upper ° 025 '] 140 [} 290 @ 470 @ 720
lower 0154 224 »390 +»608
4,0 upper - 20109 «072 «150 «270 o414 + 578
lower 080 0116 220 354 506 892 « 924
660 upper +0069 052 124 0226 0360 #5118
lower 060 « 022 ° 184 « 304 « 450 590 « 830
8.0 upper 0042 004.4 « 110 212 0 340 o494
lower «050 080 0170 288 428 566 800
10.C upper 0040 040 104 206 334 486
lower 044 .C76 « 160 « 280 2420 « 560 2790
12,0 upper (0037 o040 o100 o206 o330  .480
lower «044 «076 +160 0280 420 D56 786




2b

TABIE 4

Cone

Exact Theory (Kopal)

0° Angle of Attack

C

2

M 10° 20° 30° 40° 50° 60°
2.0 .0348 .1046 »2026 »3240 WA473 0641
4,0 .0250 .0801 .1600 «2670 .382 .551
6.0 ,0217 .0720 .1500 «2565 .375 o534
8.0 .0188 .0676 .1465 «2530 «365 .524
10,0 .0186 .0669 »1440 #2520 «363 «519
12,0 ,0178 .0658 ,1415 «2520 «353 »519
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TABIE 5

Wedge
First Order Theory
0° Angle of Attack

c

P
)

M 50 109 209 30° 40° 50° 60°
240 .0503 1006 2035 .3090 4200 .5280 .6650
4,0 .0225 0449 L0909 L1380 L,1880 .2410 L2975
6.0 .0148  ,0295 .0596 .0906 .1232 1580 .1953
8.0 .0110 .0219 ,0443 ,0673 ,0914 L1172 ,1450

10,0 .0088 L0175 L0355 L,0539 ,0732 ,0939 .1160
12.0 .0075 ,0146 .0295 ,0448 ,0608 .0780 ,0965
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TABIE 6

Wedge
First Order Theory

29 Angle of Attack

c
P
S
M 50 10° 200 300 40° 500 60°

2,0 C_ upper O 0604 .1625 .2665 L3755 .4900 L6130
P yower .0905 .1420 .2455 .3530 L4670 .5880 .7220

4,0 C_ upper O L0269 L0725 ,1190 L1678 .2190 .2740
P iower .0404 ,0633 .1096 L1577 .2085 .2625 3220

600 Cp upper 0 00177 004:76 »0781 01100 014:35 01800
lower 0265 ,0416 o,O0718 ,1035 ,1368 ,1723 .2115

8,0 C_ upper O .0131 ,0354 ,0580 ,0876 .1066 .1335
P ower .0197 .0309 .0533 .0768 .1015 .1280 .1570

10,0 C,upper O  ,0105 ,0283 ,0464 ,065¢ ,0854¢ ,1070
lower ,0158 ,0247 ,0426 ,0615 ,0813 ,1025 .1258

12.0 C_ upper O .0087 ,0235 ,0386 ,0544 ,0709 ,0888
P Jower .0131 ,0205 .0355 L0511 L0675 .C852 ,1045




28
TABLE 7

Wedge
First Order Theory

4° Angle of Attack

p
IS

M 5° 10° 20° 30° 40° 50°  60°
2.0 C, upper =.0302 ,0201 ,1214 ,2240 .3515 .4430 ,5630
lower 01312 .1830 +2880 o3975 oB5140 6390 7780
4,0 C, upper =.0185 ,0090 ,0542 ,1000 ,1480 ,1980 ,2510
lower .0588 L0816 ,1288 .1775 .2295 .2855 .3475
6.0 C, upper =,0089 .0059 .0356 .0656 .0970 ,1300 .1650
lower 0385 .0536 .0844 ,1185 .1508 .1875 2280
8.0 C, upper =.0066 ,0044 ,0264 ,0488 ,0720 ,0963 ,1225
lower 00286 0398 .0626 .0865 .1118 .1391 .1695
10.0 C_ upper =-.0053 .0035 .0212 ,039L L0577 0772 0980
lower o0229 0319 .0502 ,0693 .0895 1115 ,1358
12.0 C_ upper =,0044 ,0029 ,Ol76 ,0324 L0479 ,0642 ,0815
P jower ,0190 .0265 .0417 .0575 L0745 .0925 1127
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TABLE 8

Cone
First Order Theory
0° Angle of Atbtack

C

P
=

n 5° 10° 20° 30° 400 500 60°
260 .0134 ,0394 ,1148 ,2036 .2932 L3720 ,4400
4,0 .0094 ,0268 ,0658 L0930 .0952  ,0646

6.0 .0078  .0206 .0402 ,0354

8.0 .0066 ,0162  ,0220
10.0 .0038  ,0127  ,0080
12.0 .0031 0099
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TABLE 9

Wedge
Second Order Theory
0°© Angle of Attack

(¢

P
6

M 59 10° 200 300 40° 500 609
2.0 «0531 1065 ,2460 ,4020 ,5810 L7820 1.,0000
4,0 0253 L0519 1276 .2190 .3300 L4590 L6070
8.0 0170 0371 .0960 ,1721 .2651 3775 .5087
860 00133 .0300 .0808 ,1481 .2346 ,3488 .4625
10.0 .0111 .,0257 L0720 L1359 .2168 .3262 .4352

12,90 0096 ,0229 .0660 L,1257 .2045 .3108 .4165
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TABIE 10

Wedge
Second Order Theory

2° Angle of Attack

C
é

M 50 100 20° 30° 40° 50° 60°
2,0 C, upper 0101 .0644 .1898 ,3371 ,5070 ,6990 9160
lower 0996 ,1827 .3054 ,4717 .6600 L8695 1,1040

4,0 C, upper .0045 ,0304 ,0960 ,1803 .2832 .4050 5460
lower .0480 ,0811 ,1615 ,2614 .3795 ,5161 L6720

600 (6 uppel‘ 00030 00233 00709 01389 .2255 95506 04554
P iower .0340 .0593 L1236 .2069 .3085 .4282 5655

8.0 C, upper .0022 ,0165 ,0586 1189 ,1978 2954 ,4118
lower o0271 .0486 .1053 .1809 ,2744 ,3862 L5162

10,0 C, upper 0018 ,0138 ,0515 ,1075 ,1820 ,2746 .3863
lower .0232 ,0424 .0946 L1657 .2547 .3622 ,4875

12,0 C, upper 0015 ,0121 .0468 .0994 ,1707 .2605 .3693
lower .0204 L0383 L0874 L1554 L2411 L3457 ,4675
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TABLE 11

Wedge
Second Order Theory

4° Angle of Attack

Cp

)
M 50 10 20° 30° 40° 50° 60°
2,0 C_ upper =.0292 ,0205 1369 .2752 .4357 .6220 ,3265
P Jower 1497 .2113 .3685 .5446 ,7400 .9600 1.2010
4.0 C_ upper =-.0127 .0094 ,0674 ,1441 ,2396 .3555 4875
P yower L0742 .1112 .1990 .3070 .4316 .5760 .7388
6.0 C, upper =-.008l .0063 ,0487 ,1094 ,1884 ,2872 .4035
lower 0539 .0830 .1544 .2458 .3541 .4815 .6266
8.0 C, upper =.0058 ,0048 .0395 .0927 .1640 ,2551 ,3632
lower .0441 ,0692 .1330 .2163 3172 4367 5740
10,0 C, upper =-,0045 ,0039 .0342 .0830 1499 2356 3393
10'W'er 00583 00613 o1206 31995 92952 04098 054:22
12.0 C, upper =,0036 0033 0307 .0763 ,1401 ,2222 .3237
lower L0344 .0558 .1121 .1878 .2805 .3921 5217




é=10°
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TABIE 12

Cone

Second Order Theory

3094 0253
7.58 ,0207

11,36 .0209

6= 20°
M O
2,14 L1010
3,01 L0881
3.91 ,0824
5,48 ,0821

5,70

.0829

6: 300
M CP
1,80 #2270
2,68 21837
3483 21829

6= 400
M c
P
1,70 3476
2.80 .3155
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TABLE 13

Hypersonic Similarity Parameters

Wedge
X CE/ng
.1 15,200
.2 11.280
.3 74980
o4 6380
.5 56380
.5 44740
o8 3,980
1.0 3,536
1.5 2,992
2,0 2,762
3.0 24581
4.0 2500
5.0 2.464
6.0 2,446
7.0 2432

Cone (Ref. 8)

K Cp/ez
66 2.95
092 2665

1.22 245
1.59 2031
2,10 2,20
2,74 2,14
4,00 2,10




TABIE 14

Wedge

Hypersonic Similarity

0° Angle of Attack

5°§ 10° § 20°§ 30° § 40°§ 50° § 60° &

M Cp M Cp u Cp M Cp M Cp M Cp M CP
2,30 .0289 2,29 L0869  1.70 .249 1.87 o388 2,20 .454 2,14 775  1.75 1.17
4,59 .0224 3,43 L0615 2,27 .198 2.24 341 2,75 .402  3.22 .655  2.62 1,00
6486 0152 4,57 ,0490 2,83 .168 2.99 .287 4,12 .34l 4,29 .605  3.49 916
9.16 .0121  5.71 L0415  3.40 .148 3.74 254 5450 o815 6444 o565 5,23 o857
11.45 .0102 6,36 +0365  4.54 124 .60 +215 8,25 o294 8,59 o548  6.99 830

9.15 .0306 5,67 .11l 7046 199 11,00 .285 10,70 540 8,72  .819

11,40 .0272 8,50 .0934  11.40 .136 10,45 812

12,20

«808

ae
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TABIE 15

Wedge
Hypersonic Similarity

2° Angle of Attack

5°8 10°8

M Cp. T Co M Cp, M Cop
11.50 00115 2,50 L0710 1,92 .041 1,63 170
3.80 0530 3,85 030 2,44 ,120

5,06 0400 5e76 o022 3425 096

6.32 .0336 7270 4017 4,06 081

7,60 ,0282 9.60 ,014 4,89 o071

10,20 ,0250 11,50 013 6,50 060

12,60 .0223 8.14 .054

12.20 ,045
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TABIE 15 (continued)

Wedge
Hypersonic Similarity

2° Angle of Attack

20°6 30%8
M Cpu M CpL M CPu M CPL
2613 o160 1.88 4289 2,16 ,285 1.96 .445
2,84 L1127 235 .245 2,60 o251 2.62 .374
3.55 108 282 +215 348 L2111 36028 0332
4,26 ,095 376 o181 4,34 L1187 4,90 ,281
5,78 080 4,70 161 6.50 .,158 6.54 +259
7.10 L0071 7,04 136 8665 ,146 9:80 o242
10,60 o060 9,40 ,125 10,80 ,137 13.20 .235
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TABIE 15 (continued)

Wedge

Hypersonic Similarity

20 Angle of Atteck

400§ 5008
M Cpu M CpL M Cpu M CPL
2:3% o422 1,98 .€54 1,88 o720 1.96 ,925
3s00 6375 247 5580 2035 o640 2094 L780
4,58 L317 3e7) o450 36D3 o540 3092 o721
5,968 0293 4,95 o453 «70 o500 5,89 +6%4
8695 274 7.42 424 7,06 .466 785 o654
12,00 o265 9,90 o410 9,40 453 9,80 646
12,30 .404 11,75 .445 11,75 640
60°6

M CPu M CpL

1.88 1.010 2,40 1,170

2,82 « 850 3,20 1.080

378 786 4,80 1.010

5673 07358 6,40 » 980

7+50 0712 8,00 ,964

9.40 » 700 9,60 » 560

11,20 .7C0 11.2¢ .952




TABLE 1€

Hypersonic Similarity

39

Wedge

4° Angle of Attack

2,64
3453
4,40
5,26
7,03
8080

13.1C

5.70

11,40

0045

«0035

1.50
2,54
3.16
3080
5,06
634
9.50

12,60

0197
«159
0134
0118
«C99
089
075

069
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TABIE 16 (continued)

Wedge
Hypersonic Similarity

4° Angle of Attack

20°6 30°%

M Cpu M CPL M Cpu M CpL
1,90 .123 2,01 ,354 2,06 .248 2632 4475
2,86 o088 2.41 .294 2,58 ,210 2,921 .421
3080 L070 3621 o247 3,10 ,185 4,36 o356
4,76 o059 4,01 ,220 4,13 ,155 5,80 .329
5,70 052 6,01 ,185 5.16 .138 8,70 .307
7.6C ,044 8,02 171 7.71 L.116 11,60 .298
9.5C +039 12,00 ,160 10,60 ,108

10.5¢ .033




41

TABIE 16 (continued )

Wedge
Hypersonic Similarity

49 Angle of Attack

40°4 50°8
M Cpy M Cpy. M Cp, M %i
2,09 ,394 2425 L705 2,08 590 2.70 .25
2.79 330 3.37 o595 2,60 .524 3.61 ,854
3.49 o204 4,50 o550 3,90 .443 5e42 o796
5e21 o248 6,74 o514 5+2C ,408 7e22 o778
6.96 4229 9,00 .498 7080 .382 9.01 o760
10.50 .214 11.20 490 10,40 .370  10.80 ,756
13,00 .364
60°6

M Cp, M ch

2,05 o845 2022 1,37

3.07 .715 2,96 1.26

4,10 .€60 4,45 1,18

6.15 o616 5,92 1,14

8,20 598 7,40 1.12

10.20 589 8,90 1.11

12,20 ,580 10,70 1.31




Hypersonic Similarity

09 Angle of Attack

Cone

TABLE 17

10°4 20°§ 300§ 40° 8 50°& 60°8
i c, M ¢ M ¢, M Cy i c, M ¢,
7o54 o0227 3.74 ,0945 2,47 212 1.81 .336 1,97 .580 2,12 810
10,50 .0205 5.21 ,0849 3.44 ,191 2,52 o302 2,61 .536 2,77 .765
13.90 .0188 6,90 L0785 4,55 176 3.35 4280 3,42 .506  3.66 .729
9,00 +0740 5,93 166 4,37 o264 4,50 .482 4,78 707
11.88 0704 7.83 .158 5o77 +251  5.87 .469  6.99 .8695
10,45 .154 7.53 .244  8.58 .460
11.00 .239

(474
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TABIE 18
Cy vs M
Wedge, § = 20°
o =29
M Oblique First Second Hypersonic
Shock Order Order Similitude
2,0 «1229 «0792 01102 .0907
4,0 20673 00353 - 0634 00730
6.0 0617 00229 «0510 «0658
860 «0599 00171 00443 .0587
10,0 +0580 0144 .0414 #0556
12.0 .0540 .0114 0386 .0576
o =40
M Oblique First Second  Hypersonic
Shock Order Order Similitude
2,0 02391 »1590 02197 02221
4,0 01418 0714 » 1263 0 1457
6.0 01268 <0457 « 1006 « 1307
860 01211 .0352 .0892 « 1300
10.0 01154 .0276 »0836 <1331
12,0 01154 .0228 0778 01282
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