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ABSTRACT

This thesis consists of three papers. Chapter 1 conducts experimental research on
individual bounded rationality in games, Chapter 2 introduces a novel equilibrium
solution concept in behavioral game theory, and Chapter 3 investigates confirmation
bias within the framework of game theory.

In Chapter 1 (joint with Wei James Chen and Po-Hsuan Lin), we investigate indi-
vidual strategic reasoning depths by matching human subjects with fully rational
computer players in a lab, allowing for the isolation of limited reasoning ability
from beliefs about opponent players and social preferences. Our findings reveal that
when matched with robots, subjects demonstrate higher stability in their strategic
thinking depths across games, in contrast to when matched with humans.

In Chapter 2 (joint with Po-Hsuan Lin and Thomas R. Palfrey), we investigate how
players’ misunderstanding about the relationship between opponents’ private infor-
mation and strategies influence their equilibrium behavior in dynamic environments.
This theoretical study introduces a framework that extends the analysis of cursed
equilibrium from the strategic form to multi-stage games and applies it to various
applications in economics and political science.

In Chapter 3, I employ a game-theoretic framework to model how decision makers
strategically interpret signals, particularly when they face a utility loss from holding
beliefs that differ from their partners. The study reveals that the emergence of
confirmation bias is positively associated with the strength of prior beliefs about a
state, while the impact of signal accuracy remains ambiguous.
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SUMMARY INTRODUCTION

Motivated by studying the underlying mechanisms that drive human behavior to
deviate from the predictions of standard economic theory, a substantial theme of my
thesis centers around investigating how people form their beliefs and the profound
impact belief formation has on individual decision-making processes.

Using choice data to infer an individual’s strategic reasoning ability is challenging,
as sophisticated players may hold non-equilibrium beliefs about others, leading to
non-equilibrium behavior. In Chapter 1, ‘Measuring Higher-Order Rationality with
Belief Control’ (joint with Wei James Chen and Po-Hsuan Lin), we conduct an
experiment to identify individual rationality bounds by matching human subjects
with computer players known to be fully rational. The introduction of robot players
enables the disentanglement of limited reasoning ability from belief formation and
social preferences. Our findings reveal that, compared to interactions with humans,
subjects exhibit a higher level of rationality and notable stability in rationality levels
across games when matched with robots. This implies that strategic reasoning
ability may be a persistent personality trait, and the revealed rationality bound could
potentially serve as a proxy for gauging an individual’s strategic ability when beliefs
about others are properly controlled. In other words, the robot approach has the
potential to become a standard tool for measuring a player’s actual strategic thinking
capacity.

Chapter 2, ‘Cursed Sequential Equilibrium’, (joint with Po-Hsuan Lin and Thomas
R. Palfrey) develops a framework to extend the strategic form analysis of cursed
equilibrium (CE) developed by Eyster and Rabin (2005) to multi-stage games. The
approach uses behavioral strategies rather than normal form mixed strategies, and
imposes sequential rationality. We define cursed sequential equilibrium (CSE) and
compare it to sequential equilibrium and CE. We provide a general characterization
of CSE and apply it to five applications in economics and political science. These
applications illustrate a wide range of differences between CSE and Bayesian Nash
equilibrium or CE: in signaling games; games with preplay communication; reputa-
tion building; sequential voting; and the dirty faces game where higher order beliefs
play a key role. Several of these applications illustrate how and why CSE implies
systematically cursed behavior in dynamic games of incomplete information with
private values, while CE coincides with Bayesian Nash equilibrium for such games.
A key mechanism underlying these distinct predictions is that players’ misunder-



standings of the association between others’ types and actions affect the evolution
of their beliefs about others’ types over time.1

To examine the backfire effect of new information, Chapter 3, ‘Conformity and Con-
firmation Bias’, utilizes a game-theoretic framework to model how decision-makers
strategically interpret a signal in the scenario where they experience a utility loss
due to differing (posterior) beliefs among themselves. Specifically, we consider a
two-player environment with two states, two signals, and two policy choices. The
players have a common prior that is in favor of one state, and each player receives
a signal before making her policy choice. However, a player may misinterpret the
signal and form her posterior belief (and policy choice) accordingly. We character-
ize the conditions that support the following two types of equilibria: (i) Bayesian
Updating Equilibrium (BUE), in which players always correctly interpret their sig-
nals; (ii) Confirmatory Bias Equilibrium (CBE), in which players always interpret
the signal as supporting their prior beliefs. We show the existence of equilibria and
examine how equilibrium conditions change in the strength of the prior belief and the
accuracy of a signal. We find that the emergence of confirmation bias is positively
associated with the strength of prior, whereas the impact of a signal’s accuracy is
ambiguous. Interestingly, when the final policy choice is relatively unimportant,
higher signal accuracy can paradoxically increase the tendency to misinterpret con-
flicting evidence, as it incurs a higher cost of having misaligned posterior beliefs
with a partner. This finding aligns with empirical evidence suggesting that exposure
to conflicting information can sometimes backfire, reinforcing individuals’ existing
opinions.

1In a related work titled ‘A Note on Cursed Sequential Equilibrium and Sequential Cursed
Equilibrium’ (joint with Po-Hsuan Lin and Thomas R. Palfrey), we further compare our CSE
framework with the sequential cursed equilibrium proposed by Cohen and Li (2023), which also
extends the notion of cursedness to dynamic games but in different ways.

2
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C h a p t e r 1

MEASURING HIGHER-ORDER RATIONALITY WITH BELIEF
CONTROL

1.1 Introduction
Studying if people would make optimal choices in strategic interactions is a central
research question in economics. Different from an individual decision-making prob-
lem, a game involves multiple players whose payoffs depend on each other’s choice.
Thus, to achieve a mutual best response, or an equilibrium, a player needs to be not
only (first-order) rational—be able to take a payoff-maximizing strategy based on
her belief about her opponents’ actions—but also higher-order rational—be able to
anticipate that her opponents are rational and that her opponents expect other oppo-
nents are also rational (and so on), and form her own belief and optimal strategies
accordingly. Inspired by the well-documented evidence of systematic deviations
from Nash-equilibrium play (see, for example, Camerer, 2003), behavioral research
has thus proposed that the inability to engage in iterative reasoning and to exhibit
infinite orders of rationality could be a critical factor that hinders individuals from
reaching an equilibrium.

Beyond investigating how many steps of iterative reasoning one can perform, a
recent study on bounded strategic sophistication by Georganas et al. (2015) asked
another fundamental question: Can we observe stability in an individual’s strategic
reasoning depth across games? Measuring strategic reasoning abilities of interacting
individuals can facilitate our understanding and prediction of individuals’ behavioral
patterns. It also helps us evaluate whether the observed non-equilibrium actions are
driven by bounded rationality or by other factors. Nevertheless, if we observe no
regularity when measuring one’s strategic reasoning depth in different environments,
there may not even exist such a persistent trait called “strategic thinking ability.”

The main challenge behind inferring individual strategic reasoning ability from
choice data is that the strategic sophistication revealed by one’s choices does not di-
rectly imply how many steps of iterative reasoning one is able to perform. A player’s
observed depth of reasoning is determined not only by her reasoning capability but
also by her beliefs about the opponents’ (revealed) sophistication, as suggested by
Agranov et al. (2012) and Alaoui and Penta (2016). An individual that can carry



out more than 𝑘 steps of reasoning would act as a 𝑘th-order rational player when she
believes that her opponent exhibits (𝑘 − 1)th-order rationality. In other words, mea-
suring an individual’s revealed strategic sophistication only yields a lower-bound
estimate of her actual sophistication. In addition, psychological factors other than
bounded rationality, such as lying aversion and fairness concern may also motivate a
player to deviate from an equilibrium. Without controlling for a player’s beliefs and
social preferences, the estimation of her strategic reasoning ability could be unstable
and lack external validity. In fact, Georganas et al. (2015) had their subjects interact
in two different families of games but found little persistence of individual strategic
sophistication across the two games.

In this study, we demonstrate a way to recover the stability of individual strategic
sophistication and to possibly pin down the upper bound of an individual’s depth
of iterative strategic reasoning in the lab: having human subjects interact with
equilibrium-type computer players induced by infinite order of rationality. By
informing human players that they are facing fully rational computer players, we are
able to unify players’ expectations about their opponents. In addition, introducing
computer players precludes the possible effect of social preferences (Houser and
Kurzban, 2002; Johnson et al., 2002; Van den Bos et al., 2008). Thus, human
players with an infinite order of rationality are expected to select an equilibrium
strategy. In this setting, out-of-equilibrium actions would provide us a solid ground
to identify an individual’s order of rationality for inferring her strategic reasoning
ability since those actions are likely driven by bounded rationality.

To investigate the stability of individual strategic sophistication across games, we
conduct an experiment with two classes of dominance-solvable games—ring games
and guessing games. Proposed by Kneeland (2015) for identifying higher-order
rationality, an 𝑛-player ring game can be characterized by 𝑛 payoff matrices and
has the following ring structure: the 𝑘th player’s payoff is determined by the 𝑘th
player’s and (𝑘 +1)th player’s actions, and the payoff of the last (𝑛th) player, who has
a strictly dominant strategy, is determined by the last and the first player’s actions.
The guessing games we adopt are a symmetric variant of the two-person guessing
games studied by Costa-Gomes and Crawford (2006), in which a player’s payoff is
single-peaked and maximized if the player’s guess equals its opponent’s guess times
a predetermined number.

Among the games that have been used to study strategic reasoning, we choose to
implement ring games and guessing games in our experiment for two reasons. First,

4



our instruction of a fully rational computer player’s behavior is tailored to align with
the payoff structure of dominance-solvable games, in which the computer players’
actions can be unambiguously determined (see Section 1.5 for details). Furthermore,
these dominance-solvable games enable a structure-free identification approach,
leveraging the notion of rationalizable strategy sets (Bernheim, 1984; Pearce, 1984).
The core idea behind this identification approach is that, within a dominance solvable
game, we can gauge an individual’s depth of reasoning by assessing how many
rounds of iterated deletion of dominated strategies the individual’s chosen action
would survive. Importantly, this approach does not impose structural assumptions on
(the beliefs about) non-rational players’ behavior. Therefore, these classes of games
provide a plausible, structure-free method to empirically categorize individuals into
distinct levels of rationality.

Second, we intend to implement two types of games that are sufficiently different
so that, if we observe any stability in individual strategic reasoning levels across
games, the stability does not result from the similarity between games. We believe
that ring games and guessing games are dissimilar to each other. On one hand, a ring
game is a four-player discrete game presented in matrix forms. On the other hand,
a guessing game is a two-player game with a large strategy space, which is more
like a continuous game. In fact, Cerigioni et al. (2019) report that the correlation of
their experimental subjects’ reasoning levels between ring games and beauty contest
games (which also falls into the family of guessing games) is only 0.10.1

Our experiment comprises two treatments within each game family: the Robot
Treatment and the History Treatment. In the Robot Treatment, subjects encounter
computer players employing equilibrium strategies. In the History Treatment, sub-
jects confront choice data from human players in the Robot Treatment. The History
treatment simulates an environment where human subjects interact without display-
ing social preferences and serves two main objectives. First, by examining if a
subject’s observed order of rationality in the Robot Treatment exceeds that in the
History Treatment, we can evaluate whether the subject responds to equilibrium-type
computer players by employing a strategy that reaches her full capacity for strate-
gic reasoning. Second, by comparing the individual orders of rationality inferred
from data in both the Robot and History Treatments, we can investigate whether the
introduction of robot players contributes to stabilizing observed strategic thinking
levels across various games.

1We implement a guessing game with a single-peaked payoff structure instead of a standard
beauty contest because the latter is not strictly dominant solvable.
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Overall, our findings indicate that strategic reasoning ability may be a persistent
personality trait deducible from choice data when subjects interact with robot play-
ers in strategic scenarios. Relative to interactions involving human opponents,
we observe a larger proportion of participants adopting equilibrium strategies and
demonstrating higher levels of rationality. This observation is supported by both
our between- and within-subject statistical analyses, underscoring the effectiveness
of our Robot Treatment and implying that the rationality depths exhibited in this
treatment potentially approach subjects’ strategic thinking capacity.2

Furthermore, our investigation reveals that subjects’ rationality levels remain re-
markably stable across distinct game classes when interacting with robot players. In
terms of absolute levels, a substantial number of first-order and fourth-order rational
players retain their respective types while transitioning from ring games to guessing
games. In the Robot Treatment, approximately 38% of subjects exhibit constant
rationality depths across games. A further statistical test involving 10,000 simulated
samples demonstrates that this stability in rationality levels cannot be attributed to
two independent type distributions, with the actual proportion of constant-level play-
ers exceeding the mean simulated proportion by 6 percentage points (19 percent).
Additionally, applying the same statistical analysis to the History Treatment reveals
no significant disparities in the proportions of constant-level players between actual
and simulated datasets. This indicates that the stability in individual rationality
depths is not solely due to game selection but is influenced by our manipulation of
subjects’ beliefs about opponents’ strategic reasoning depths.

In terms of relative levels, the rankings of individual rationality levels also remain
consistent in our Robot Treatment. When we randomly select two subjects from our
experiment, the probability of their level order remaining unchanged across games
in the Robot Treatment exceeds the probability of order switching by approximately
30 percentage points, or more than threefold. A similar pattern emerges in the
History Treatment, where a constant ranking of two subjects’ levels across games
is observed more frequently than a switching ranking, although not as frequently
as in the presence of robot players. Additionally, we find evidence suggesting that
individual rationality levels in a game can serve as an indicator of the degree of
game complexity when subjects interact with robot players. However, this evidence

2One might doubt if a subject has the motivation to act rationally upon the presence of an
opponent with a (much) higher rationality level than the subject has. In Section 1.6, we argue that a
subject does have the incentive to exhibit the highest order of rationality she can achieve when she
knows her opponent is at least as rational as herself.

6



is comparatively less substantial and robust in the context of interactions with
human opponents. In summary, the above results demonstrate that, when we use
computer players to control for beliefs, the observed rationality levels of a subject
may effectively capture her overall strategic thinking ability across various types of
games.

A subject’s performance in other cognitive tests could potentially hold predictive
power regarding her strategic reasoning performance in games. As such, we in-
corporate tasks measuring cognitive reflection, short-term memory, and backward
induction abilities (see Section 1.5 for details) into our experiment. We observe
that a subject’s cognitive reflection and backward induction abilities are positively
correlated with her rationality depths, whereas no significant correlation is found
with her short-term memory capacity.

The rest of the paper proceeds as follows. The next subsection reviews related
literature. Section 1.2 summarizes the theoretical framework upon which our iden-
tification approach and hypotheses to be tested are based. Section 1.3 describes
the ring games and guessing games implemented in our experiment. Section 1.4
discusses how we identify a subject’s order of rationality given choice data. Sec-
tion 1.5 presents our experimental design, including the experiment procedure and
instruction for the robot strategy. Section 1.6 lists the hypotheses to be tested and
discuss their implication. Section 1.7 reports the experiment results, and Section
1.8 concludes.3

Related Literature
Our work is closely related to Georganas et al. (2015) in terms of the model,
experiment protocol, and data analysis procedure. In particular, we follow their
model to formalize our hypotheses to be tested.4 Georganas et al. (2015) examine
experimentally whether a subject’s sophistication type is persistent across games.
Our work, however, differs from their work in several ways. First, we substitute the
ring games for the undercutting games in Georganas et al. (2015) and use a simplified,
symmetric version of the guessing games. Second, we employ an identification
strategy distinct from the standard level-𝑘 model to determine a subject’s strategic
sophistication. We use dominance solvable games in order to identify higher-order
rationality without imposing strong and ad hoc assumptions on players’ first-order

3An English translation of the experiment instructions can be found at https://mjfong.github.io.
4For a brief summary of the model in Georganas et al. (2015), see Section 1.2; also, see Section

1.6 for the hypotheses.
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beliefs, which can in turn reduce the noise in the estimation of individual reasoning
depth using a level-𝑘 model.5 More importantly, we control for human subjects’
beliefs about opponents’ sophistication (and social preferences) using computer
players. As a result, we observe a higher correlation in subjects’ types across games
compared to Georganas et al. (2015), in which subjects are matched with each other.

Ring games, first utilized for identifying higher-order rationality by Kneeland (2015),
are subsequently studied by Lim and Xiong (2016) and Cerigioni et al. (2019), who
investigate two variants of the ring games. In this study, we follow the revealed
rationality approach adopted by Lim and Xiong (2016) and Cerigioni et al. (2019)
as our identification approach (discussed in Section 1.4). It is worth noting that
Cerigioni et al. (2019) also find little correlation in subjects’ estimated types across
various games, including ring games, e-ring games, 𝑝-beauty contests, and a 4 × 4
matrix game. Again, our results suggest that the lack of persistence in the identified
order of rationality at the individual level is driven by subjects’ heterogeneous beliefs
about the rationality of their opponents.

Indeed, several empirical studies have shown that beliefs about others’ rationality
levels can alter a player’s strategy formation. Friedenberg et al. (2018) indicate that
some non-equilibrium players observed in the ring games (Kneeland, 2015) may
actually possess high cognitive abilities but follow an irrational behavioral model
to reason about others. Alternatively, Agranov et al. (2012) and Alaoui and Penta
(2016) find that, in their experiments, a subject’s strategic behavior is responsive to
the information she receives about her opponents’ strategic abilities.6 The designs of
experiments allow them to manipulate subjects’ beliefs, whereas we aim to elicit and
identify individual strategic capability by unifying subjects’ beliefs about opponents.

Some recent studies have tried to distinguish between non-equilibrium players who
are limited by their reasoning abilities and players who are driven by beliefs. Identi-
fying the existence of ability-bounded players is important since, if non-equilibrium
behavior was purely driven by beliefs, it would be unnecessary to measure an individ-
ual’s reasoning depth. Jin (2021) utilizes a sequential version of ring games, finding
that around half of the second-order and third-order rational players are bounded
by ability. Alaoui et al. (2020) also report the presence of ability-bounded sub-

5Burchardi and Penczynski (2014) conduct an experiment in a standard beauty contest with
belief elicitation, finding heterogeneity in both level-0 beliefs and level-0 actions within a game.

6In Agranov et al. (2012), the subjects play against each other, graduate students from NYU
Economics Department, or players taking uniformly random actions. In Alaoui and Penta (2016),
the subjects play against opponents majoring in humanities, majoring in math and sciences, getting
a relatively high score, or getting a low score in a comprehension test.
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jects by showing that an elaboration on the equilibrium strategy shifts the subjects’
level-k types toward higher levels. Overall, the existence of both ability-bounded
and belief-driven players in the real world indicates the need for an approach that
can measure individual reasoning ability without the impact of beliefs. Whereas Jin
(2021) and Alaoui et al. (2020) do not pin down the belief-driven players’ actual
ability limit, we aim to directly measure each subject’s strategic reasoning ability.

Bosch-Rosa and Meissner (2020) propose an approach to test a subject’s reasoning
level in a given game: letting a subject play against herself (i.e., an “one-person”
game). Specifically, their subject acts as both players in a modified two-person
p-beauty contest (Grosskopf & Nagel, 2008), in which a player’s payoff decreases
in the distance between her guess and the average guess multiplied by 𝑝, and
receives the sum of the two players’ payoffs.7 The one-person game approach
eliminates the impact of beliefs that arises from interacting with human players.
However, a limitation of this approach is that it can only be applied to the game in
which the equilibrium is Pareto optimal. For instance, it would be rational for a
payoff-maximizing subject to deviate from the equilibrium and choose (Cooperate,
Cooperate) in the prisoner’s dilemma since (Cooperate, Cooperate) maximizes the
total payoff of both players even though those are not equilibrium strategies.8 In this
study, we employ an alternative approach that overcomes this limitation to measure
rationality levels: letting a subject play against equilibrium-type computer players
(i.e., the Robot Treatment).

Similar to the motivation of our Robot Treatment, Devetag and Warglien (2003),
Grehl and Tutić (2015), and Bayer and Renou (2016) also employ rational com-
puter players to mitigate the impact of beliefs and social preferences on individual
decisions in their experiments. While Devetag and Warglien (2003) find a positive
correlation between a subject’s short-term memory performance and conformity to
standard theoretical predictions in strategic behavior, Grehl and Tutić (2015) and
Bayer and Renou (2016) explore a player’s ability to reason logically about others’
types in the incomplete information game known as the dirty faces game. In con-
trast, our study departs from theirs by focusing on investigating whether playing
against computers can provide a robust measure of strategic reasoning ability across

7Bosch-Rosa and Meissner (2020) report that 69% of the subjects do not select the equilibrium
action (0, 0) when playing the one-person game, which echoes the findings of the presence of
ability-bounded players in Jin (2021) and Alaoui et al. (2020).

8Also note that in the ring game G1, both the equilibrium strategy profile (P1 chooses b; P2
chooses c; P3 chooses c; P4 chooses b) and another non-equilibrium strategy profile (P1 chooses a;
P2 chooses b; P3 chooses a; P4 chooses a) lead to a total payoff of 66 (see Figure 1.1).
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different families of games with complete information. Additionally, we also in-
clude a memory task to investigate whether the lack of significant predictive power
of short-term memory on reasoning levels observed in Georganas et al. (2015) was
influenced by uncontrolled beliefs and to offer a robustness check for the findings
of Devetag and Warglien (2003) in different game settings.

In previous studies on strategic reasoning, equilibrium-type computer players have
been introduced into laboratory experiments to induce human players’ equilibrium
behavior (e.g., Costa-Gomes and Crawford, 2006; Meĳering et al., 2012) and to
eliminate strategic uncertainty (e.g., Hanaki et al., 2016).9 In contrast, our aim is to
utilize computer players to uncover individual strategic reasoning ability. Notably,
our experimental design avoids fully informing the subjects about either the notion
of an equilibrium (Costa-Gomes & Crawford, 2006) or the computer player’s exact
strategy (Meĳering et al., 2012; Hanaki et al., 2016), as such knowledge could
potentially bias our estimation of individual strategic reasoning ability. Instead,
following the approach of Johnson et al. (2002), in our Robot Treatment we inform
subjects that the computer player is third-order rational (i.e., the computer is rational,
knows its opponent is rational, knows its opponent knows it is rational) without
disclosing further details (see Section 1.5). Our study contributes to the literature
by demonstrating that introducing robot players can induce human subjects to exhibit
stable reasoning levels across games, thus providing a solid foundation for measuring
individual strategic thinking ability.

1.2 Theoretical Framework
The Model in Georganas et al. (2015)
To formalize the idea of the depth of rationality and the hypotheses we are going
to test, we introduce the model and notations used in Georganas et al. (2015). In
their model, an 𝑛-person normal form game 𝛾 ∈ Γ is represented by (𝑁, 𝑆, {𝑢𝑖}𝑖∈𝑁 ),
where 𝑁 = {1, ..., 𝑛} denotes the set of players, 𝑆 = 𝑆1 × · · · × 𝑆𝑛 = Π𝑛

𝑖=1𝑆𝑖 denotes
the strategy sets, and 𝑢𝑖 : 𝑆 → R for 𝑖 ∈ 𝑁 denotes the payoff functions. Following
the notation in Georganas et al. (2015), we use 𝑢𝑖 (𝜎) to refer to 𝐸𝜎 [𝑢𝑖 (𝜎)], where
𝜎 = (𝜎1, ..., 𝜎𝑛), when 𝜎 is a profile of mixed strategies (i.e., 𝜎𝑖 ∈ Δ(𝑆𝑖)).

Player 𝑖’s strategic ability is modeled by two functions (𝑐𝑖, 𝑘𝑖). Let 𝑇 be the set of
environmental parameters, which captures the information a player observes about
their opponents’ cognitive abilities. The function 𝑐𝑖 : Γ → N0 represents 𝑖’s capacity

9For a survey of economics experiments with computer players, see March (2021).
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for game 𝛾, and the function 𝑘𝑖 : Γ×𝑇 → N0 represents 𝑖’s (realized) level for game
𝛾. A player’s level for a game is bounded by her capacity, so 𝑘𝑖 (𝛾, 𝜏𝑖) ≤ 𝑐𝑖 (𝛾) for
all 𝛾, 𝜏𝑖 ∈ 𝑇 , and 𝑖 ∈ 𝑁 . The goal of our experiment is to measure 𝑐𝑖 (𝛾) and to test
if 𝑐𝑖 (𝛾) (or 𝑘𝑖 (𝛾, 𝜏𝑖), after controlling for 𝜏𝑖) exhibits any stability across different
games (see Section 1.6 for further discussion).

Level-𝑘 Model and Higher-Order Rationality
In Georganas et al. (2015), a player’s behavior is characterized by a standard level-
𝑘 model (Arad & Rubinstein, 2012; Crawford et al., 2013; Nagel, 1995; Stahl
& Wilson, 1994, 1995). Specifically, let 𝜈 : N0 → Δ(N0) be a player’s belief
about her opponents’ levels. In a standard level-𝑘 model, 𝜈(𝑚) = 1{𝑚 − 1} for all
𝑚 ≥ 1, and a level-0 player 𝑖’s strategy is exogenously given as 𝜎0

𝑖
∈ Δ(𝑆𝑖). A

level-𝑘 (𝑘 ≥ 1) player 𝑖’s strategy (𝜎𝑘
𝑖

) is defined inductively as a best response
to 𝜈(𝑘). Formally, for all 𝑠′

𝑖
∈ 𝑆𝑖, 𝜎𝑘𝑖 satisfies 𝑢𝑖 (𝜎𝑘𝑖 , 𝜎

𝜈(𝑘)
−𝑖 ) ≥ 𝑢𝑖 (𝑠′𝑖 , 𝜎

𝜈(𝑘)
−𝑖 ) where

𝜎
𝑣(𝑘)
−𝑖 = (𝜎𝑘−1

1 , ..., 𝜎𝑘−1
𝑖−1 , 𝜎

𝑘−1
𝑖+1 , ..., 𝜎

𝑘−1
𝑛 ). Notice that in order to pin down a level-𝑘

player’s strategy, we need to impose an assumption on the level-0 strategy. However,
some studies have reported variations in level-0 actions and level-0 beliefs across
individuals (Burchardi & Penczynski, 2014; Chen et al., 2018). Thus, an individual’s
identified level of reasoning can be sensitive to the structural assumptions under a
level-𝑘 model.

To avoid the ad hoc assumptions on level-0 players , we can instead define 𝑘th-order
rationality (Bernheim, 1984; Lim & Xiong, 2016; Pearce, 1984) in the following
way. Let 𝑅𝑘

𝑖
(𝛾) be the set of strategies that survive 𝑘 rounds of iterated elimination

of strictly dominated strategies (IEDS) for player 𝑖. In other words, a strategy 𝑠𝑖 is in
𝑅1
𝑖
(𝛾) if 𝑠𝑖 is a best response to some arbitrary 𝑠−𝑖, and 𝑠𝑖 is in 𝑅𝑘 ′

𝑖
(𝛾) if 𝑠𝑖 is a best

response to some 𝑠−𝑖 ∈ 𝑅𝑘
′−1

−𝑖 (𝛾) for 𝑘′ > 1. We say that a player 𝑖 exhibits 𝑘th-order
rationality in 𝛾 if and only if 𝑖 always plays a strategy in 𝑅𝑘

𝑖
(𝛾). Equivalently, an

individual exhibits 𝑘th-order rationality if and only if there is a 𝜎0
−𝑖 such that the

individual can be classified as a level-𝑘 player in a standard level-𝑘 model. Note that
given any game 𝛾 ∈ Γ, 𝑅𝑘+1

𝑖
(𝛾) ⊂ 𝑅𝑘

𝑖
(𝛾) for all 𝑘 ∈ N0. In other words, a player

exhibiting 𝑘th-order rationality also exhibits 𝑗 th-order rationality for all 𝑗 ≤ 𝑘 .

1.3 The Games
We study two classes of games: the four-player ring games used in Kneeland (2015)
for identifying individuals’ higher-order rationality and a variant of the two-person
guessing games first studied by Costa-Gomes and Crawford (2006) and used in
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Georganas et al. (2015) for identifying players’ level-k types.

Ring Games
A four-player ring game is a simultaneous game characterized by four 3 × 3 payoff
matrices. Figure 1.1 summarizes the structures of the two ring games, G1 and
G2, used in our experiment. As shown in Figure 1.1, each player 𝑖 ∈ {1, 2, 3, 4}
(simultaneously) chooses an action 𝑎𝑖 ∈ {𝑎, 𝑏, 𝑐}. Player 4 and Player 1’s choices
determine Player 4’s payoff, and Player k and Player (k + 1)’s choices determine
Player k’s payoff for 𝑘 ∈ {1, 2, 3}. Note that Player 4 has a strictly dominant strategy
in each ring game (𝑏 in G1 and 𝑐 in G2), and the two ring games are identical in the
payoff matrices of Player 1, 2, and 3.

Figure 1.1: The Ring Games
Note: The Nash Equilibria are highlighted with colored borders.

Given the payoff structure, an individual that exhibits first-order rationality (i.e.,
maximizes her payoff based on some arbitrary belief) will always choose b in G1
and c in G2 when acting as Player 4. By eliminating dominated strategies, an
individual exhibiting second-order rationality will always choose 𝑐 in G1 and 𝑏 in
G2 when acting as Player 3. Then, by eliminating dominated strategies iteratively,
an individual exhibiting third-order rationality will always choose 𝑐 in G1 and 𝑎 in
G2 when acting as Player 2, and an individual exhibiting fourth-order rationality
will always choose 𝑏 in G1 and 𝑐 in G2 when acting as Player 1. The unique Nash
equilibrium of G1 is thus Player 1, 2, 3, and 4 choosing 𝑏, 𝑐, 𝑐, and 𝑏, respectively,
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and the unique Nash equilibrium of G2 is Player 1, 2, 3, and 4 chossing 𝑐, 𝑎, 𝑏, and
𝑐, respectively, as highlighted in Figure 1.1.

Guessing Games
In our experiment, the guessing game is a simultaneous two-player game parame-
terized by a constant 𝑝 ∈ (0, 1). We use 𝑝 = 1

3 , 1
2 and 2

3 in our experiment. Each
player 𝑖 simultaneously chooses a positive integer 𝑠𝑖 between 1 and 100. Player 𝑖’s
payoff strictly decreases in the difference between the number chosen by 𝑖, 𝑠𝑖, and
the number chosen by 𝑖’s opponent multiplied by a constant 𝑝, 𝑝𝑠−𝑖. Specifically,
player 𝑖’s payoff is equal to 1

5 (100− |𝑠𝑖 − 𝑝𝑠−𝑖 |). Thus, a payoff-maximizing player’s
objective is to make a guess that matches her opponent’s guess times 𝑝. Note that,
given 𝑝 < 1, any action (integer) greater than or equal to 100𝑝 + 1 is strictly dom-
inated by [100𝑝] (i.e., 𝑎𝑟𝑔𝑚𝑎𝑥𝑥∈N |100𝑝 − 𝑥 |) since | [100𝑝] − 𝑝𝑠−𝑖 | < |𝑠′

𝑖
− 𝑝𝑠−𝑖 |

for all 𝑠−𝑖 ∈ {1, ..., 100} and 𝑠′
𝑖
∈ {[100𝑝 + 1], ..., 100}.10

Given the payoff function, a rational individual will always choose an integer between
1 and [100𝑝]. An individual exhibiting second-order rationality will always choose
a positive integer less than [[100𝑝] · 𝑝], and so on. The unique equilibrium of the
two-person guessing game is thus both players choosing 1.

1.4 Identification
Our model does not allow us to directly identify one’s higher-order rationality from
choice data. For example, an equilibrium player will choose 1 in the guessing
game with 𝑝 = 1

2 , while a player choosing 1 may have only performed one step of
reasoning if her first-order belief is that her opponent guesses 2. Thus, observing
a player 𝑖 choosing a strategy in 𝑅𝑘

𝑖
(·) for 𝑘 > 1 (in a finite number of rounds)

does not imply that 𝑖 exhibits 𝑘th-order rationality, which renders an individual’s
higher-order rationality unidentifiable. In fact, following the definition of 𝑅𝑘

𝑖
(·),

we have 𝑅𝑘+1
𝑖

(·) ⊂ 𝑅𝑘
𝑖
(·) for all 𝑘 ∈ N0. Namely, every strategy (except for the

dominated actions) can be rationalized by some first-order belief.

Following the rationale of higher-order rationality, we use the revealed rationality
approach (Lim and Xiong, 2016; Brandenburger et al., 2019; Cerigioni et al.,
2019) as our identification strategy. As explained below, this approach allows us to
identify individual higher-order rationality in a dominance-solvable game. Under

10For instance, in a guessing game with 𝑝 = 1
3 , every integer between 34 and 100 is dominated by

33; when 𝑝 = 1
2 , every integer between 51 and 100 is dominated by 50; when 𝑝 = 2

3 , every integer
between 68 and 100 is dominated by 67.
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the revealed rationality approach, we say that a player 𝑖 exhibits 𝑘th-order revealed
rationality if (and only if) we observe the player actually playing a strategy that can
survive 𝑘 rounds of IEDS, i.e., 𝑠𝑖 ∈ 𝑅𝑘𝑖 (·). A subject is then identified as a 𝑘th-order
(revealed-)rational player when she exhibits𝑚th-order revealed rationality for𝑚 = 𝑘

but not for 𝑚 = 𝑘 + 1. That is, a player is classified into the upper bound of her
(revealed) rationality level.11

The idea behind the revealed rationality approach is the “as-if” argument: a subject 𝑖
selecting 𝑠𝑖 ∈ 𝑅𝑘𝑖 (·) \ 𝑅𝑘+1

𝑖
(·) in finite observations behaves like a 𝑘th-order rational

player, who always selects a strategy in 𝑅𝑘
𝑖
(·) but probably not in 𝑅𝑘+1

𝑖
(·), and thus is

identified as a 𝑘th-order revealed rational player. Under this identification criterion,
we can identify an individual’s order of (revealed) rationality without requiring her to
play in multiple games with different payoff structures. In our data analysis, we will
classify subjects into five different types: first-order revealed rational (R1), second-
order revealed rational (R2), third-order revealed rational (R3), fourth-order (or
fully) revealed rational (R4), and non-rational (R0).12 Tables 1.1 and 1.2 summarize
the predicted actions under the revealed rationality approach for each type of players
in our ring games and guessing games, respectively.

Ring Games
P1 P2 P3 P4

Type G1 G2 G1 G2 G1 G2 G1 G2
R0 N/A N/A N/A not (b, c)
R1 N/A N/A not (c, b) (b, c)
R2 N/A not (c, a) (c, b) (b, c)
R3 not (b, c) (c, a) (c, b) (b, c)
R4 (b, c) (c, a) (c, b) (b, c)

Table 1.1: Predicted Actions in the Ring Games Under the Revealed Rationality
Approach

11Kneeland (2015) uses the exclusion restriction (ER) as its identification strategy, assuming
that a player with low order rationality does not respond to changes in payoff matrices positioned
away from herself. However, Lim and Xiong (2016) show that more than three-quarters of their
experimental subjects change their actions in two identical ring games, which suggests the failure of
the ER assumption since a rational player is predicted to take the same action in two identical games
under the exclusion restriction. Also, the ER assumption does not facilitate the identification of
higher-order rationality in the guessing games since we cannot separate out first-order payoffs from
higher-order ones.

12In a four-player ring game, the highest identifiable (revealed) order of rationality is level 4.
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Guessing Games
Type 𝑝 = 1/3 𝑝 = 1/2 𝑝 = 2/3
R0 34–100 51–100 68–100
R1 12–33 26–50 46–67
R2 5–11 14–25 31–45
R3 2–4 8–13 21–30

R4 (or above) 1 1–7 1–20

Table 1.2: Predicted Actions in the Guessing Games Under the Revealed Rationality
Approach

1.5 Design of the Experiment
Protocol
We design a laboratory environment to measure the subjects’ higher-order rationality.
The experiment protocol is summarized in Figure 1.2. The experimental subjects
did not receive any feedback about the outcomes of their choices until the end of the
experiment.

Figure 1.2: Experiment Protocol

At the beginning of the experiment, we let each subject complete two tasks that
measure the cognitive abilities that have been found to be correlated with strategic
reasoning abilities. The first task is the Cognitive Reflection Test (CRT) (Frederick,
2005), which is designed to evaluate the ability to reflect on intuitive answers.
This test contains three questions that often trigger intuitive but incorrect answers.
Georganas et al. (2015) report that the subjects’ CRT scores have moderate predictive
power on their expected earnings and level-k types.

The second test is the Wechsler Digit Span Test (Wechsler, 1939), which is designed
to test short-term memory. In our experiment, this test contains eleven rounds. In
each round, a subject needs to repeat a sequence of digits, which is displayed on
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the screen at the rate of one digit every second. The maximum length of the digit
sequence a subject can memorize reflects the subject’s short-term memory capac-
ity.13 Devetag and Warglien (2003) find a positive correlation between individual
short-term memory and strategic reasoning ability.

After completing the tasks, the subjects played the ring games in two different
scenarios, the Robot Treatment and the History Treatment. To balance out potential
spillover effects from one treatment to another, we alternated the order of the two
scenarios across sessions. In each scenario, each subject played the two four-player,
three-action ring games (G1 and G2 in Figure 1.1) in each position in each game
once (for a total of eight rounds). Each subject was, in addition, assigned a neutral
label (Member A, B, C, or D) before the ring games started. The label was only used
for the explanation of an opponent’s strategy in the History Treatment and did not
reflect player position. To facilitate the cross-subject comparison, all the subjects
played the games in the following fixed order: P1 in G1, P2 in G1, P3 in G1, P4 in
G1, P1 in G2, P2 in G2, P3 in G2, and P4 in G2.14 The order of payoff matrices
was also fixed, with a subject’s own payoff matrix being fixed at the leftmost side.15
Note that the payoff structures of our ring games are the same as those in Kneeland
(2015).16 Adopting the same payoff structure facilitate the comparability between
our and Kneeland’s results.

In the Robot Treatment, the subjects played against fully rational computer play-
ers. Specifically, each subject in each round was matched with three robot players
who only select the strategies that survive iterated dominance elimination (i.e., the
equilibrium strategy). We informed the subjects of the presence of robot players
that exhibit third-order rationality.17 The instructions for the robot strategy are as
follows:18

13The length of the digit sequence increases from three digits to thirteen digits round by round.
14Note that Player 4 has a dominant strategy in the ring game. We have our subjects play in each

position in the reverse order of the IEDS procedure to mitigate potential framing effects resulting
from the hierarchical structure.

15This feature is adopted in Jin (2021) and the main treatment of Kneeland (2015). Kneeland
(2015) perturbs the order of payoff matrices in a robust treatment and finds no significant effects on
subject behavior.

16The only difference is that we alter the order of the (row) payoffs for Player 4 in G1 to avoid
coinciding, predicted actions given by a standard level-𝑘 model. The actions 𝑎, 𝑏, 𝑐 in G1 (Figure
1.1) for Player 4 correspond to 𝑐, 𝑎, 𝑏, respectively, in the G1 in Kneeland (2015).

17Since we are not able to identify a subject’s order of rationality above four in a four-player ring
game, incorporating a third-order rational computer player is sufficient for the identification.

18Our instructions are adapted from the experiment instructions of Study 2 of Johnson et al.
(2002). The original instructions are as follows: “In generating your offers, or deciding whether to
accept or reject offers, assume the following: 1. You will be playing against a computer which is
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When you start each new round, you will be grouped with three other
participants who are in different roles. The three other participants will
be computers that are programmed to take the following strategy:

1. The computers aim to earn as much payoff as possible for them-
selves.

2. A computer believes that every participant will try to earn as much
payoff as one can.

3. A computer believes that every participant believes “the computers
aim to earn as much payoff as possible for themselves.”

The first line of a robot’s decision rule (“The computers aim to...”) implies that a
robot never plays strictly dominated strategies and thus exhibits first-order rationality.
The second line (along with the first line) indicates that a robot holds the belief that
other players are (first-order) rational and best responds to such belief, which implies
a robot’s second-order rationality. The third line (along with the first and second
lines) implies that, applying the same logic, a robot exhibits third-order rationality.

In the History Treatment, the subjects played against the data drawn from their
decisions in the previous scenario. Specifically, in each round, a subject was
matched with three programmed players who adopt actions chosen in the Robot
Treatment by three other subjects. Every subject was informed that other human
participants’ payoffs would not be affected by her choices at this stage. By having the
subjects play against past decision data, we can exclude the potential confounding
effect of other-regarding preferences on individual actions.

After the ring games, the subjects played the two-person guessing games (in the order
of 𝑝 = 2

3 ,
1
3 ,

1
2 ) in both the Robot Treatment and the History Treatment. Instead of

being matched with three opponents, a subject was matched with only one player in
the guessing games. The instructions for the guessing games in both treatments are
revised accordingly.

At the last section of the experiment, we introduce an individual task developed by
Bone et al. (2009)—the farsightedness task—to measure a subject’s ability to do
backward induction, or to anticipate her own future action and make the best choice

programmed to make as much money as possible for itself in each session. The computer does not
care how much money you make. 2. The computer program expects you to try to make as much
money as you can, and the program realizes that you have been told, in instruction (1) above, that it
is trying to earn as much money as possible for itself” (p. 44-45).
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accordingly. By comparing a subject’s decisions in the ring games/guessing games
and the farsightedness task, we can evaluate the correlation between one’s depth
of reasoning in a simultaneous game and that in a sequential decision task. We
describe the details of the farsightedness task in the next subsection (Section 1.5).

There was a 180-second time limit on every subject’s decisions in the ring games,
guessing games, and farsightedness task. A subject who did not confirm her choice
within 180 seconds earned zero payoff (for that round).19

The subjects were paid based on the payoffs (in ESC, Experimental Standard Cur-
rency) they received throughout the experiment. In addition to the payoff in the
farsightedness task, one round in the ring games and one round in the guessing
games were randomly chosen for payment. A subject also got three ESC for each
correct answer in the CRT, and one ESC for each correct answer in the Digit Span
Test.

Farsightedness Task

Figure 1.3: The Farsightedness Task in Bone et al. (2009)

The farsightedness task (Bone et al., 2009) is a sequential task that involves two sets
of decision nodes and two sets of chance nodes (see the decision tree in Figure 1.3).
The first and third sets of nodes are the decision nodes where a decision maker is
going to take an action (up or down). The second and fourth sets of nodes are the
chance nodes where the decision maker is going to be randomly assigned an action
(with equal probability).

19Jin (2021) sets a 60-second time limit on decisions in the ring games and finds little effect on
type classification.
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Notice that there is one dominant action, in the sense of first-order stochastic dom-
inance, at each of the third set of nodes (i.e., the second set of decision nodes).
Anticipating the dominant actions at the second set of decision nodes, the decision
maker also has a dominant action (down) at the first node. However, if a payoff
maximizer lacks farsightedness and anticipates that each payoff will be reached
with equal chance, then the dominated action (up) at the first node will become the
dominant option from this decision maker’s perspective. Therefore, a farsighted
payoff-maximizer is expected to choose down, but a myopic one is expected to
choose up, at the first move (and choose the dominant actions at the second moves).

Laboratory Implementation
We conducted 41 sessions between August 31, 2020 and January 28, 2021 at
the Taiwan Social Sciences Experiment Laboratory (TASSEL) in National Taiwan
University (NTU). Each session lasted about 140 minutes, and all participants
were NTU students recruited through ORSEE (Greiner, 2015). A total of 299
subjects participated in the experiment, among whom 136 subjects played the Robot
Treatment before the History Treatment in both families of games (RH Order) and
157 subjects played the History Treatment first (HR Order).20 The experiment
was programmed with the software zTree (Fischbacher, 2007) and instructed in
Chinese. Including a show-up fee of NT$200 (approximately $7 in USD in 2020),
the earnings in the experiment ranged between NT$303 and NT$554, with an average
of NT$430.21

1.6 Hypotheses
The Robot Treatment is designed to convince subjects that the computer opponents
they face are the most sophisticated players they could encounter. Consequently,
if our Robot Treatment is effectively implemented, it should prompt subjects to
employ a strategy at the highest achievable level 𝑘 , i.e., 𝑘𝑖 (𝛾, 𝜏𝑖 = 𝑅𝑜𝑏𝑜𝑡) = 𝑐𝑖 (𝛾)
for all 𝛾 and 𝑖. (Recall that 𝑘𝑖 and 𝑐𝑖 denote subject 𝑖’s realized level and capacity,
respectively.) This observation gives rise to the first hypothesis we aim to evaluate.

Hypothesis 1 (Bounded capacity). 𝑘𝑖 (𝛾, 𝜏′𝑖 ) ≤ 𝑘𝑖 (𝛾, 𝜏𝑖 = 𝑅𝑜𝑏𝑜𝑡) for all 𝜏′
𝑖

and 𝛾.

In words, we test whether subjects’ rationality levels against robots capture individual
strategic reasoning capacity. If Hypothesis 1 holds, then we can evaluate several

20Six subjects were dropped due to computer crashes.
21The exchange rate was 1 ESC for NT$4, and the foreign exchange rate was around US$1 =

NT$29.4.
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possible restrictions on 𝑐𝑖 by forming hypotheses on 𝑘𝑖 (𝛾, 𝑅𝑜𝑏𝑜𝑡). In evaluating
Hypothesis 2 and 3, we study if we can observe any stable patterns of (revealed)
individual depth of reasoning across games.

Hypothesis 2 (Constant capacity). 𝑘𝑖 (𝛾, 𝑅𝑜𝑏𝑜𝑡) = 𝑘𝑖 (𝛾′, 𝑅𝑜𝑏𝑜𝑡) for all 𝛾, 𝛾′.

Hypothesis 3 (Constant ordering of capacity). For every 𝑖, 𝑗 ∈ 𝑁 , 𝑘𝑖 (𝛾, 𝑅𝑜𝑏𝑜𝑡) ≥
𝑘 𝑗 (𝛾, 𝑅𝑜𝑏𝑜𝑡) for some 𝛾 implies 𝑘𝑖 (𝛾′, 𝑅𝑜𝑏𝑜𝑡) ≥ 𝑘 𝑗 (𝛾′, 𝑅𝑜𝑏𝑜𝑡) for all 𝛾′ ∈ Γ.

We first examine if a player’s reasoning depth is constant across games, which is the
strictest restriction on the stability of individual rationality levels (i.e., Hypothesis 2).
If Hypothesis 2 does not hold, we can examine a weaker restriction and test whether
the ranking of players (in terms of rationality levels) remains the same across games
(i.e., Hypothesis 3). In other words, we examine if playing against robots can give
us a measure of one’s absolute level of depth of reasoning by evaluating Hypothesis
2, and a measure of relative level by evaluating Hypothesis 3.

The last restriction we will evaluate is whether the ordering of games (in terms of a
player’s rationality level) remain the same across players:

Hypothesis 4 (Consistent ordering of games). For every 𝛾, 𝛾′ ∈ Γ, 𝑘𝑖 (𝛾, 𝑅𝑜𝑏𝑜𝑡) ≥
𝑘𝑖 (𝛾′, 𝑅𝑜𝑏𝑜𝑡) for some 𝑖 implies 𝑘 𝑗 (𝛾, 𝑅𝑜𝑏𝑜𝑡) ≥ 𝑘 𝑗 (𝛾′, 𝑅𝑜𝑏𝑜𝑡) for all 𝑗 ∈ 𝑁 .

In words, we examine if playing against robots can give us a measure of game
difficulty (in terms of players’ depth of reasoning) by evaluating Hypothesis 4.22

Discussion
An implicit assumption behind Hypothesis 1 is that a subject has an incentive to play
a strategy with the maximum level she can achieve when encountering fully rational
opponents that play at their highest reasoning level. This statement is trivially
true for an equilibrium-type subject since she knows her opponents will play the
equilibrium strategy and is able to best respond to it. However, it may or may not be
true for a bounded rational player. If one believes that an iterative reasoning model
describes an individual’s actual decision-making process, there are two possible
reasons that a player is only able to perform 𝑘 steps of iterative reasoning. First, she
may incorrectly believe that other players can exhibit (at most) (𝑘 − 1)th-order of
rationality and best respond to such belief. Second, she may correctly perceive that

22Our Hypothesis 2, 3, and 4 correspond to Restriction 2, 3, and 5 in Georganas et al. (2015),
respectively (see p. 377).
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other players can exhibit (at least) 𝑘th-order of rationality but fail to best respond to
it. While our statement regarding incentive compatibility still holds in the first case,
it becomes unclear how a bounded rational player would respond when confronted
with a player exhibiting an order of rationality above 𝑘 .

Nevertheless, we argue that this case will not be a problem under the identification
strategy of the revealed rationality approach. Notice that a player who exhibits
𝑘th-order rationality would also exhibit 𝑚th-order rationality for all 𝑚 ≤ 𝑘 . Thus, a
level-𝑘 individual 𝑖who perceives that other players are exhibiting (at least) 𝑘th-order
rationality would also perceive that they are exhibiting (𝑘 − 1)th-order rationality.
That is, she knows that her robot opponents’ strategies will survive 𝑘 − 1 rounds of
IEDS. Thus, a payoff-maximizing player 𝑖 who is able to perform 𝑘 steps of iterative
reasoning will choose some strategy in 𝑅𝑘

𝑖
(·), which contains all the undominated

strategies after 𝑘−1 rounds of IEDS. Under the revealed rationality approach, player
𝑖 will then be classified as a 𝑘th-order revealed-rational player.

1.7 Experiment Results
Data Description
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Figure 1.4: Ring Game Choice Frequency at Each Position

Before delving into the main results, we begin by summarizing the subjects’ choice
frequencies in the ring games (Figure 1.4) and guessing games (Figure 1.5). Figure
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1.4 reports the subjects’ choice frequencies in the two ring games (G1 and G2,
see Figure 1.1) at each player position. It is noteworthy that, first, over 97% of
subjects choose the strictly dominant strategy ((action in G1, action in G2) = (𝑏, 𝑐)
at the Player 4 position) in both treatments, which suggests a clear understanding
of the payoff structure of ring games and the ability to recognize strict dominance.
Second, at each player position except P4, the Robot Treatment exhibits a 10 to 15
percentage points higher frequency of subjects choosing the equilibrium strategy
((𝑏, 𝑐), (𝑐, 𝑎), (𝑐, 𝑏) at P1, P2, P3, resp.) compared to the History Treatment, which
suggests that the Robot Treatment effectively prompts subjects to display higher
levels of rationality. Third, at each player position except P4, a notable proportion
of subjects choose the action that maximizes the minimum possible payoff among
the three available actions (𝑎 at P1, 𝑏 at P2, 𝑎 at P3). It is also worth noting that
in G1, the minimum possible payoffs of equilibrium actions (except at P4) are all
0. As reported in Figure 1.4, there is a higher proportion of subjects choosing the
equilibrium actions in G2 but maxmin actions in G1 ((𝑎, 𝑐), (𝑏, 𝑎), (𝑎, 𝑏) at P1, P2,
P3, resp.) in the History Treatment compared to the Robot Treatment. This evidence
suggests that when players have uncertainty about their opponents’ reasoning and
strategic behavior, some players may opt for a non-equilibrium strategy to avoid the
possibility of experiencing the worst possible payoff.
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Figure 1.5: Cumulative Distribution of Guesses
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Figure 1.5 summarizes the subjects’ guesses in the three guessing games, depicted
in terms of cumulative distribution. Consistent with the observations from the ring
games, we observe a 13 to 17 percentage points higher proportion of subjects making
the equilibrium guess (i.e., choosing 1) across the three guessing games in the Robot
Treatment compared to the History Treatment. This difference in proportions results
in the (first-order stochastic) dominance of the cumulative distribution of guesses in
the Robot Treatment over that in the History Treatment, suggesting a higher level of
rationality exhibited by the subjects in the Robot Treatment for the guessing games
as well. In the subsequent subsection, we will describe our approach for classifying
individual rationality levels and perform statistical tests to assess whether subjects
demonstrate higher orders of rationality when playing against robots.

Type Classification
We adopt the revealed rationality approach to classify subjects into different rational-
ity levels. Specifically, let 𝑠𝑖 = (𝑠𝛾

𝑖
) be the vector which collects player 𝑖’s actions in

each family of games 𝛾, where 𝛾 ∈ {𝑅𝑖𝑛𝑔, 𝐺𝑢𝑒𝑠𝑠𝑖𝑛𝑔}. In the ring games, we clas-
sify subjects based on the classification rule shown in Table 1.1. In both the Robot
Treatment and the History Treatment, if a subject’s action profile matches one of
the predicted action profiles of type R0–R4 exactly, then the subject is assigned that
type. Therefore, we can obtain each subject’s type in the Robot Treatment and the
History Treatment, which are denoted as 𝑘𝑖 (𝑅𝑖𝑛𝑔, 𝑅𝑜𝑏𝑜𝑡) and 𝑘𝑖 (𝑅𝑖𝑛𝑔, 𝐻𝑖𝑠𝑡𝑜𝑟𝑦),
respectively.

Similarly, for the guessing games, we classify subjects based on the rule outlined in
Table 1.2. In both treatments, each subject makes three guesses (at 𝑝 = 1

3 , 1
2 , and

2
3 ). If a subject is categorized into different types in different guessing games, we
assign her the lower type. Thus, we can obtain the types in both treatments, denoted
as 𝑘𝑖 (𝐺𝑢𝑒𝑠𝑠𝑖𝑛𝑔, 𝑅𝑜𝑏𝑜𝑡) and 𝑘𝑖 (𝐺𝑢𝑒𝑠𝑠𝑖𝑛𝑔, 𝐻𝑖𝑠𝑡𝑜𝑟𝑦), respectively. Following this
rationale, we construct the overall distribution of individual rationality levels for
each treatment by assigning each subject the lower type she exhibits across the two
classes of games, i.e., 𝑘𝑖 (𝜏𝑖) = min{𝑘𝑖 (𝑅𝑖𝑛𝑔, 𝜏𝑖), 𝑘𝑖 (𝐺𝑢𝑒𝑠𝑠𝑖𝑛𝑔, 𝜏𝑖)}.

Type Distributions
Figure 1.6 reports the distributions of rationality levels in the two treatments for
both ring games and guessing games. As shown in the top of Figure 1.6, subjects
tend to be classified into higher types when playing against robots. There are more
R1 and R2 players but fewer R3 and R4 players in the History Treatment than
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in the Robot Treatment. To examine if a subject’s rationality depth is bounded
by her revealed rationality level in the Robot Treatment (Hypothesis 1), at the
aggregate level, we conduct the two-sample Kolmogorov-Smirnov test to compare
the distributions of rationality levels in the two treatments. If Hypothesis 1 holds,
we should observe either no difference in the two distributions or the distribution
in the Robot Treatment dominating the distribution in the History Treatment. Our
results show that the underlying distribution of individual rationality levels in the
Robot Treatment stochastically dominates the one in the History Treatment (K-S
test 𝑝 = 0.015 for ring games and 𝑝 = 0.001 for guessing games), and thus provide
supporting evidence for Hypothesis 1.
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Figure 1.6: Frequency of Rationality Levels in Ring Games (Left) and Guessing
Games (Right)

Moreover, our within-subject design gives us paired data of individual rationality
types across treatments (as summarized in the bottom of Figure 1.6), which gives us
another way to test Hypothesis 1. Overall, 72 percent of subjects (211/293) exhibit
(weakly) higher rationality levels in the Robot Treatment than in the History Treat-
ment in both families of games. In contrast, only fewer than four percent of subjects
(11/293) consistently exhibit strictly lower rationality levels in the Robot Treatment
across games. We further conduct the Wilcoxon signed-rank test to examine whether
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the subjects’ rationality levels in the Robot Treatment are significantly greater than
the History Treatment. Consistent with Hypothesis 1, we observe higher rationality
levels in the Robot Treatment (Wilcoxon test 𝑝 < 0.0001 for both ring games and
guessing games). Therefore, we conclude that the rationality levels in the Robot
Treatment for a game can serve as a proxy of individual strategic reasoning capacity
in that game.

In the guessing games, our classification results display a typical distribution pat-
tern of estimated levels as documented in Costa-Gomes and Crawford (2006) and
Georganas et al. (2015). First, the modal type is R1 (Level 1), with more than
35 percent of subjects classified as R1 players in both treatments (Robot: 38.23%;
History: 47.78%; Costa-Gomes and Crawford: 48.86%; Georganas et al.: 50.00%).
In particular, the proportion of R1 players reported in the History treatment of
our guessing games is very close to the proportion of level-1 players reported in
Costa-Gomes and Crawford (2006) and Georganas et al. (2015). Second, R3 (Level
3) represents the least frequently observed category among the rational types (i.e.,
R1–R4), with fewer than 10 percent of subjects classified as R3 players in both
treatments, a proportion that aligns with findings in the literature. (Robot: 6.14%;
History: 4.10%; Costa-Gomes and Crawford: 3.41%; Georganas et al.: 10.34%).
Third, the percentage of R4 players in our History Treatment falls within the range of
equilibrium-type player proportions reported in Costa-Gomes and Crawford (2006)
and Georganas et al. (2015) (Robot: 30.03%; History: 16.04%; Costa-Gomes and
Crawford: 15.91%; Georganas et al.: 27.59%). Noticeably, in our Robot Treatment,
we observe a relatively high frequency of R4 players compared to previous liter-
ature.23 This finding underscores the significant impact of non-equilibrium belief
about opponents on non-equilibrium behavior.

It is noteworthy that, contrary to previous findings, we observe very few R0 players
in the ring games in both treatments (Robot: 0.68%; History: 2.04%).24 In our
experiment, the subjects do not interact with each other in both treatments. Thus,
our observation suggests that, when human interactions exist, social preferences
may play some roles in a ring game and lead to (seemingly) irrational behavior,

23For instance, Arad and Rubinstein (2012) also note that, in their 11–20 game, the percentage
of subjects employing more than three steps of iterative reasoning does not exceed 20 percent. This
aligns with the proportion of R4 players identified in our History Treatment but is lower than that in
our Robot Treatment.

24Kneeland (2015) observes 6 percent of R0 players (with the ER approach) and Cerigioni et al.
(2019) observe more than 15 percent of R0 players (with the revealed rationality approach) in their
experiments.
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though we cannot exclude the possibility that this discrepancy in the prevalence of
R0 players is due to different samples.

Constant Absolute Rationality Levels
In this subsection, we evaluate the hypothesis that an individual has constant strategic
reasoning capacity across games in the Robot Treatment (i.e., Hypothesis 2). Figure
1.7 reports how frequently a ring game player with a rationality depth is classified into
the same or another type in the guessing games. If the observed individual rationality
level is the same across games, then every diagonal entry of each transition matrix
in Figure 1.7 will be 100(%). Alternatively, if subjects’ rationality orders in the ring
games and guessing games are uncorrelated, every row in a transition matrix will
be the same and equals the overall distribution in the guessing games.
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Figure 1.7: Transition Matrix for Rationality Levels in Both Treatments (from Ring
to Guessing Games)

The transition matrices for both treatments show that most R1 and R4 players in
the ring games remain as the same type in the guessing games. Most R2 ring game
players, however, only exhibit first-order rationality in the guessing games. We do
not observe any subjects consistently classified into R3 for both ring and guessing
games, possibly because we have relatively low numbers of R3 subjects in either
games. Overall, there is a relatively high proportion of subjects that exhibit the
same rationality depth across games in both treatments (Robot: 38.23%; History:
40.27%).25 Note that in the Robot Treatment, we observe a relatively high proportion
(52/293 = 17.74%) of subjects classified as R4 players in both games,26 suggesting

25Georganas et al. (2015) report that only 27.3% of their subjects play at the same level across
two families of games.

26In the History Treatment, constant R4 players across games constitute only 6.82% (20/293) of
the subjects.
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that subjects in our experiment understand the instruction for robots’ decision rules
and try to play the best response to such rules.

To test if the high proportion of constant-level players actually results from inde-
pendent type distributions, we generate 10,000 random samples of 293 pairs of
levels, independently drawn from the empirical distribution of rationality levels in
the Robot Treatment. The simulated datasets provide a distribution of the frequency
with which a subject plays at the same level in both game families. The mean
frequency is found to be 32.86%, with a 95 percent confidence interval ranging
from 27.65% to 38.23%. The observed frequency is 38.23%, rejecting the null
hypothesis that the subjects’ rationality depths are independently distributed across
game families in terms of absolute rationality depths, at a significance level close
to 5% (𝑝 = 0.057). Thus, we conclude that the hypothesis stating an individual
exhibits constant depths of rationality across games has predictive power (despite
not being perfectly accurate) regarding experimental subjects’ actions under proper
belief control.

To establish a baseline for comparison, we utilize the same Monte Carlo simulation
and statistical test outlined above to investigate whether the restriction of constant
rationality depth can be applied to modeling subjects’ actions when they face human
opponents (choice data) instead of robots in the History Treatment. Upon exam-
ining the pooled data in the History Treatment, we find that the null hypothesis of
independently distributed rationality levels cannot be rejected despite the seemingly
high proportion of constant-level players. The simulated samples generated from the
data in the History Treatment exhibit an average of 40.27% constant-level players
(95% CI = [34.81%, 45.73%]), and the observed frequency in the actual data is
41.30% (𝑝 = 0.768). This finding suggests that the high stability observed in indi-
vidual (absolute) rationality depth within our experiment does not result from the
specific games selected. Moreover, it indicates that unifying subjects’ beliefs about
opponents’ strategic reasoning depth effectively stabilizes the individual revealed
order of rationality across games.

Constant Ordering of Rationality Levels
In this subsection, we evaluate the hypothesis that the ranking of individual strategic
reasoning capacity between two players in different game families is the same (i.e.,
Hypothesis 3). Table 1.3 reports the switch frequency, non-switch frequency, and
switch ratio observed in the actual data and computed under the null hypothesis
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of independently distributed rationality levels. The switch frequency, as defined
in Georganas et al. (2015), represents the proportion of player pairs in which the
player who exhibits a strictly higher level in one game becomes the player with a
strictly lower level in another game. On the other hand, the non-switch frequency
corresponds to the proportion of player pairs in which the player with a strictly
higher level in one game maintains that higher level in another game.27 The switch
ratio is calculated by dividing the switch frequency by the non-switch frequency.
If the relative rationality levels are preserved across games, the switch ratio will be
zero. Alternatively, if the rationality levels are independently drawn, we expect to
observe a switch ratio of one.

Pooled Data (𝑛 = 293) RH Order (𝑛 = 136) HR Order (𝑛 = 157)
Ring Game vs.
Guessing Game

Empirical
Data

Null
Hypothesis

Empirical
Data

Null
Hypothesis

Empirical
Data

Null
Hypothesis

Robot Treatment
Switch frequency: 12.3% 22.5% 11.9% 19.8% 12.5% 24.0%
Non-switch frequency: 41.3% 22.5% 37.7% 19.8% 42.3% 24.1%
Switch ratio: 0.30 1.01 0.32 1.03 0.29 1.02
𝑝-value: < 0.0001 < 0.0001 < 0.0001

History Treatment
Switch frequency: 12.9% 17.9% 11.0% 21.2% 14.8% 14.5%
Non-switch frequency: 34.5% 17.8% 40.3% 21.3% 28.1% 14.5%
Switch ratio: 0.37 1.02 0.27 1.02 0.53 1.04
𝑝-value: < 0.0001 < 0.0001 0.019

Table 1.3: Switch Ratio for the Robot and History Treatment

The results presented in Table 1.3 provide compelling evidence of stable rankings
of individual rationality levels. Our pooled data show that non-switching occurs
three times more frequently than switching in the Robot Treatment (Non-switching:
41.30%; Switching: 12.28%). The switch ratio of 0.30, derived from the switch and
non-switch frequencies, is lower than any switch ratio obtained from our 10,000-
sample simulated data. Additionally, these results consistently hold across different
treatment orders. Whether the Robot Treatment is played first or second, the ob-
served switch ratios remain around 0.30, both of which are lower than any switch
ratio obtained from the simulated data. Consequently, we reject the null hypothesis
of independently distributed levels in terms of relative rationality depths, with a
𝑝-value less than 0.0001.

27The sum of the switch frequency and non-switch frequency may not be one since the paired
players who exhibit the same level in one game are excluded.
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We also calculate the switch and non-switch frequencies in the History Treatment to
investigate whether the rankings of individual rationality levels remain stable when
subjects’ beliefs about others’ rationality depths are not controlled. In the History
Treatment, the null hypothesis of independently distributed levels in terms of relative
rationality depths is also rejected (𝑝 < 0.0001), with the pooled data showing
switch and non-switch frequencies of 12.89% and 34.47%, respectively, resulting in
a switch ratio of 0.37. However, it is noteworthy that the switch ratio in the History
Treatment is 23% higher than that in the Robot Treatment, and this difference
increases to 66% when focusing solely on the Robot and History Treatments that
are played first by subjects (Robot: 0.32; History: 0.53).28 This result mainly stems
from the fact that the non-switch frequency in the Robot Treatment is substantially
higher than that in the History Treatment. These findings once again suggest that
unifying subjects’ beliefs about the strategic reasoning capability of their opponents
can significantly improve the stability observed in individual rationality levels across
games.

To summarize, our Robot Treatment reveals stability in both the subjects’ absolute
and relative rationality depths. These findings indicate that strategic reasoning
ability could be an inherent personal characteristic that can be inferred from choice
data when participants interact with robot players.

Persistence of Ordering of Games
In this subsection, we evaluate the hypothesis that the ranking of games in terms of
individual strategic reasoning capacity is the same (i.e., Hypothesis 4). Table 1.4
reports the change-in-same-direction frequency, change-in-opposite-directions fre-
quency, and the opposite/same ratio computed based on actual data and simulated
data generated from independently-drawn levels. The change-in-same-direction
frequency represents the proportion of player pairs in which both players exhibit a
strictly higher level in the same game. On the other hand, the change-in-opposite-
directions frequency refers to the proportion of player pairs in which the two players
exhibit a strictly higher level in different games (Georganas et al., 2015).29 The

28We conduct a statistical comparison by contrasting a switch ratio of 0.32 with the switch ratios
obtained from 10,000 random samples of independently drawn levels from the empirical distribution
of rationality levels in the History Treatment under HR Order. Our analysis reveals that, when
focusing exclusively on the data from treatments played first, we can reject the null hypothesis that
the observed rationality levels in the Robot Treatment are drawn from the same distribution of levels
as in the History Treatment, in terms of switch ratios (𝑝 = 0.027).

29Again, the sum of the change-in-same-direction frequency and change-in-opposite-directions
frequency may not be one since a pair of players is excluded if one of them exhibits the same level
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opposite/same ratio is calculated by dividing the change-in-opposite-directions fre-
quency by the change-in-same-direction frequency. In the case of a constant ranking
of games across players, the opposite/same ratio would be zero. Conversely, if the
rationality levels are independently drawn, we would expect the opposite/same ratio
to be one.

Pooled Data (𝑛 = 293) RH Order (𝑛 = 136) HR Order (𝑛 = 157)
Ring Game vs.
Guessing Game

Empirical
Data

Null
Hypothesis

Empirical
Data

Null
Hypothesis

Empirical
Data

Null
Hypothesis

Robot Treatment
Change in opposite direction: 17.5% 22.6% 18.7% 19.8% 16.5% 24.1%
Change in same direction: 20.6% 22.6% 20.2% 19.8% 20.8% 24.1%
Opposite/same ratio: 0.85 1.00 0.93 1.00 0.79 1.00
𝑝-value: < 0.0001 0.079 0.0004

History Treatment
Change in opposite direction: 16.3% 17.9% 17.1% 21.2% 15.6% 14.5%
Change in same direction: 18.1% 17.9% 18.2% 21.3% 17.8% 14.5%
Opposite/same ratio: 0.90 1.00 0.94 1.00 0.88 1.00
𝑝-value: 0.002 0.112 0.025

Table 1.4: Opposite/same Ratio for the Robot and History Treatment

In the Robot Treatment, the frequency with which two paired players change their
rationality levels in the same direction (20.58%) is 3 percentage points higher
than the frequency of changing in the opposite directions (17.58%), as shown in
Table 1.4 (the column of Pooled Data). The observed opposite/same ratio of 0.85
significantly deviates from the mean of the simulated datasets (1.00 with a 95 percent
confidence interval of 0.96 to 1.01), leading to the rejection of the null hypothesis
of independently distributed levels in terms of the ordering of games (𝑝 < 0.0001).
This result remains robust regardless of the order of treatments, although it only
reaches marginal significance when the analysis is limited to the subjects who
played the Robot Treatment first (RH Order: 𝑝 = 0.079; HR Order: 𝑝 = 0.0004).
Consequently, our findings suggest that an individual’s strategic reasoning level,
measured under an environment where a player’s belief is well controlled, could
serve as a reliable proxy for the (relative) complexity or difficulty of a game.

In the History Treatment, we find a similar result but with weaker evidence. The
simulated datasets generated from the History Treatment data yield a mean oppo-
site/same ratio of 1.00, with a 95 percent confidence interval of 0.95 to 1.01. The
actual ratio of 0.90, which is 6% higher than that in the Robot Treatment, still rejects

across games.
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the null hypothesis of independently distributed levels with a significance level of
𝑝 = 0.002. However, this result becomes less robust when considering the order of
treatments. We cannot reject the null hypothesis when examining only the subjects
who played against robots before playing against human choice data (RH Order:
𝑝 = 0.112; HR Order: 𝑝 = 0.025). Without controlling for a subject’s belief about
her opponents’ strategic thinking abilities, the observed rationality level could reflect
either the complexity of the environment or how a subject believes others would
perceive the complexity of the environment, and thus has weaker predictive power
on other players’ (revealed) order of rationality.

Cognitive Tests, Farsightedness, and Strategic Thinking
If individual strategic sophistication is persistent across games, a natural next ques-
tion will be whether a subject’s performance in other cognitive tests or strategic
tasks can predict her strategic reasoning ability. Accordingly, we run regressions of
revealed rationality levels on subjects’ CRT scores, short-term memory task scores,
and farsightedness task scores (see Figure 1.8). We cluster the regression standard
errors at the session level.

The definitions of the independent variables are as follows: CRT Score (ranging
from 0 to 3) represents the number of correct answers a subject gets in the three
CRT questions. Memory Score (ranging from 0 to 11) is defined as the number of
correct answers a subject provides before making the first mistake. Farsightedness
is an indicator variable that equals one if a subject chooses to go down at the first
move in the farsightedness task (see Section 1.5). Last, the dependent variable is
the individual rationality level (ranging from 0 to 4) revealed in each type of games
and each treatment.

Figure 1.8 presents a coefficient plot summarizing the OLS regression results of
revealed rationality levels. The analysis demonstrates a positive association between
a subject’s performance in the CRT and her revealed rationality depth across all types
of games and treatments. Overall, the CRT score has a stronger predictive power on
subjects’ rationality levels in the guessing games and in the Robot Treatment. In the
Robot Treatment, each additional correct answer on the CRT is associated with an
average increase of 0.298 (𝑝 < 0.001) in the individual’s revealed rationality level
for ring games and 0.566 (𝑝 < 0.001) for guessing games. Comparatively, in the
History Treatment, each additional correct answer on the CRT is associated with a
relatively smaller average increase of 0.239 (𝑝 = 0.002) in the individual’s revealed
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Guessing Robot Level Guessing History Level

Figure 1.8: Coefficient Plot for OLS Regressions with Different Dependent Variables
Note: Error bars show 95% CI. Standard errors are clustered at the session level.

rationality level for ring games and 0.461 (𝑝 < 0.001) for guessing games, both
approximately 0.8 times the coefficient sizes reported under the Robot Treatment.

In contrast to the previous finding, our results show no significant correlation be-
tween short-term memory and strategic sophistication. The coefficient estimates
of Memory Score are all below 0.03, and all the corresponding 𝑝-values are above
0.3. Notably, these findings are in line with those of Georganas et al. (2015), who
also observe that CRT scores hold some predictive power over subjects’ strategic
thinking types, whereas short-term memory capacity does not.

A subject’s choice in the farsightedness task also holds significant predictive power
over her revealed rationality depth across all types of games and treatments. Similar
to the CRT score, we observe a stronger association between farsightness and
individual rationality levels in the guessing games and in the Robot Treatment. In
the Robot Treatment, a farsighted subject’s revealed rationality level is, on average,
0.569 (𝑝 = 0.002) and 0.842 (𝑝 < 0.001) levels higher than that of a myopic subject
when playing ring games and guessing games, respectively. Comparatively, in the
History Treatment, a farsighted subject’s revealed rationality level is, on average,
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0.339 (𝑝 = 0.050) and 0.631 (𝑝 < 0.001) levels higher than that of a myopic
subject when playing ring games and guessing games, respectively. Both of these
coefficients are smaller in size compared to the estimates reported for the Robot
Treatment. In summary, these results indicate a strong correlation between an
important strategic thinking skill in a dynamic game—–backward induction ability–
—and the strategic reasoning ability in a one-shot interaction.

1.8 Concluding Remarks
This study delves into the cognitive capacity of individuals in strategic interactions.
To examine their ability to engage in multi-step reasoning, we conduct an experiment
designed to elicit and identify each subject’s “rationality bound,” while controlling
for a subject’s belief about her opponent’s rationality depth. Following the revealed
rationality approach, we use two classes of dominance solvable games, ring games
and guessing games, as the base games in our experiment for identifying a sub-
ject’s order of rationality. More importantly, to disentangle the confounding impact
of beliefs, we introduce equilibrium-type computer players that are programmed
to exhibit infinite order of rationality into the experiment. Under the theoretical
framework of Georganas et al. (2015), which formalizes the idea of individual ca-
pacity of strategic reasoning, we then test (1) whether a subject’s order of rationality
is (weakly) higher in the Robot Treatment and (2) whether the observed order of
rationality in the Robot Treatment exhibits any stable pattern across games.

Overall, our results offer compelling evidence that matching subjects with robot
players to elicit and identify individual strategic reasoning ability is an effective
approach. First, subjects exhibit a higher order of rationality in the Robot Treatment
compared to the History Treatment, supporting the hypothesis that a subject plays
at her highest achievable rationality level (i.e., her capacity bound) in the Robot
Treatment. Second, the observed absolute and relative order of rationality in the
Robot Treatment remains stable across different types of games, a rare finding in
previous literature. Additionally, we find a positive association between a subject’s
rationality level and her CRT score and backward induction ability, while no signif-
icant correlation is observed with short-term memory. These findings indicate that
strategic reasoning ability may represent an inherent personal characteristic that is
distinct from other cognitive abilities and can be reliably inferred from choice data
when subjects’ beliefs about others are properly controlled.

Considering that the revealed rationality bound identified in the Robot Treatment can
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serve as a reliable proxy for an individual’s strategic thinking ability, we can inde-
pendently implement dominance-solvable games, such as ring games and guessing
games, with human subjects playing against fully rational computer opponents to
effectively elicit and identify human players’ strategic capacity, either before or after
any lab experiment. By matching human players with computer players, their re-
vealed strategic sophistication is not confounded by their endogenous beliefs about
each other’s level of sophistication. Furthermore, the robot approach eliminates
the need for multiple players to identify a single player’s 𝑘th-order rationality in a
game, allowing for an individual task that efficiently elicits and identifies a subject’s
higher-order rationality. Additionally, as the interactions with computer players
are independent of the interactions with human players, the two experiences are
expected to have minimal influence on each other. Consequently, the measurement
of strategic reasoning ability could remain distinct from the behavioral patterns ob-
served in the main experiment session, thereby avoiding any potential contamination
between the two.

In conclusion, we believe that such experiment protocol, particularly the robot
approach, has the potential to become a standard tool for measuring a player’s
actual strategic sophistication, analogous to the usage of the established method (for
eliciting risk attitude) in Holt and Laury (2002) but applied to the domain of strategic
reasoning. By utilizing this tool, we can gain a better understanding of whether non-
equilibrium behavior observed in the main experiment can be attributed to bounded
strategic thinking capability or other factors, such as non-equilibrium beliefs and
social preferences.
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C h a p t e r 2

CURSED SEQUENTIAL EQUILIBRIUM

2.1 Introduction
Cursed equilibrium (CE) proposed by Eyster and Rabin (2005) is a leading be-
havioral equilibrium concept that was developed to explain the “winner’s curse”
and related anomalies in applied game theory. The basic idea behind CE is that
individuals do not fully take account of the dependence of other players’ strategic
actions on private information. Cursed behavior of this sort has been detected in a
variety of contexts. Capen et al. (1971) first noted that in oil-lease auctions, “the
winner tends to be the bidder who most overestimates the reserves potential” (Capen
et al., 1971, p. 641). Since then, this observation of overbidding relative to the
Bayesian equilibrium benchmark, which can result in large losses for the winning
bidder, has been widely documented in laboratory auction experiments (Bazerman
& Samuelson, 1983; Camerer et al., 2016; Dyer et al., 1989; Forsythe et al., 1989;
Ivanov et al., 2010; Kagel & Levin, 1986, 2009; Kagel et al., 1989; Lind & Plott,
1991). In addition, the neglect of the connection between the opponents’ actions
and private information is also found in non-auction environments, such as bilateral
bargaining games (J. Carrillo & Palfrey, 2009; J. D. Carrillo & Palfrey, 2011; Holt
& Sherman, 1994; Samuelson & Bazerman, 1985), zero-sum betting games with
asymmetric information (Rogers et al., 2009; Søvik, 2009), and voting and jury
decisions (Guarnaschelli et al., 2000).

While CE provides a tractable alternative to Bayesian Nash equilibrium and can
explain some anomalous behavior in games with a winner’s-curse structure, a
significant limitation is that it is only developed as a strategic form concept for
simultaneous-move Bayesian games. Thus, when applying the standard CE to dy-
namic games, the CE analysis is carried out on the strategic form representation of
the game, implying that CE cannot distinguish behavior across dynamic games that
differ in their timing of moves but have the same strategic form. That is, players
are assumed to choose type-dependent contingent strategies simultaneously and not
update their beliefs as the history of play unfolds. A further limitation implied by the
strategic form approach is that CE and standard Bayesian Nash equilibrium make
identical predictions in games with a private-values information structure (Eyster



and Rabin (2005), Proposition 2). In this paper we extend the CE in a simple
and natural way to multi-stage games of incomplete information. We call the new
equilibrium concept Cursed Sequential Equilibrium (CSE).

In Section 2.2, we present the framework and our extension of cursed equilibrium
to dynamic games. We consider the framework of multi-stage games with observed
actions, introduced by Fudenberg and Tirole, 1991b, where players’ private infor-
mation is represented by types, with the assumption that the set of available actions
is independent of their types at each public history. Our new solution concept is
in the same spirit of the cursed equilibrium—in our model, at each stage, players
will (partially) neglect the dependence of the other players’ behavioral strategies on
their types, by placing some weight on the incorrect belief that all types adopt the
average behavioral strategy. Specifically, at each public history, this corresponds to
the average distribution of actions given the current belief about others’ types at that
stage. Therefore, as players update their beliefs about others’ private information via
Bayes’ rule, but with incorrect beliefs about the other players’ behavioral strategies,
in later stages this can lead them to have incorrect beliefs about the other players’
average distribution of actions.

Following Eyster and Rabin (2005)’s notion of cursedness, we parameterize the
model by a single parameter 𝜒 ∈ [0, 1] which captures the degree of cursedness
and define fully cursed (𝜒 = 1) CSE analogously to fully cursed (𝜒 = 1) CE. Recall
that in a fully cursed (𝜒 = 1) CE, each type of each player chooses a best reply to
expected (cursed) equilibrium distribution of other players’ actions, averaged over
the type-conditional strategies of the other players, with this average distribution
calculated using the prior belief on types. Loosely speaking, a player best responds
to the average CE strategy of the others. In a 𝜒-CE, players are only partially cursed,
in the sense that each player best responds to a 𝜒-weighted linear combination of the
average 𝜒-CE strategy of the others and the true (type-dependent) 𝜒-CE strategy of
the others.

The extension of this definition to multi-stage games with observed actions is dif-
ferent from 𝜒-CE in two essential ways: (1) the game is analyzed with behavioral
strategies; and (2) we impose sequential rationality and Bayesian updating. In a fully
cursed (𝜒 = 1) CSE, (1) implies at every stage 𝑡 and each public history at 𝑡, each
type of each player 𝑖 chooses a best reply to the expected (cursed) equilibrium dis-
tribution of other players’ stage-𝑡 actions, averaged over the type-conditional stage-𝑡
behavioral strategies of other players, with this average distribution calculated using
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𝑖’s current belief about types at stage 𝑡. That is, player 𝑖 best responds to the average
stage-𝑡 CSE strategy of others. Moreover, (2) requires that each player’s belief at
each public history is derived by Bayes’ rule wherever possible, and best replies are
with respect to the continuation values computed by using the fully cursed beliefs
about the behavioral strategies of the other players in current and future stages.

A 𝜒-CSE, for 𝜒 < 1, is then defined in analogously to 𝜒-CE, except for using a
𝜒-weighted linear combination of the average 𝜒-CSE behavioral strategies of others
and the true (type-dependent) 𝜒-CSE behavioral strategies of others. Thus, similar
to the fully cursed CE, in a fully cursed (𝜒 = 1) CSE, each player believes other
players’ actions at each history are independent of their private information. On the
other hand, 𝜒 = 0 corresponds to the standard sequential equilibrium where players
have correct perceptions about other players’ behavioral strategies and are able to
make correct Bayesian inferences.1

After defining the equilibrium concept, in Section 2.3 we explore some general
properties of the model. We first prove the existence of a cursed sequential equi-
librium in Proposition 1. Intuitively speaking, CSE mirrors the standard sequential
equilibrium. The only difference is that players have incorrect beliefs about the
other players’ behavioral strategies at each stage since they fail to fully account
for the correlation between others’ actions and types at every history. We prove
in Proposition 2 that the set of CSE is upper hemi-continuous with respect to 𝜒.
Consequently, every limit point of a sequence of 𝜒-CSE points as 𝜒 converges to 0
is a sequential equilibrium. This result bridges our behavioral solution concept with
the standard equilibrium theory. Finally, we also show in Proposition 4 that 𝜒-CSE
is equivalent to 𝜒-CE for one-stage games, demonstrating the connection between
the two behavioral solutions.

In multi-stage games, cursed beliefs about behavioral strategies will distort the
evolution of a player’s beliefs about the other players’ types. As shown in Proposition
3, a direct consequence of the distortion is that in 𝜒-CSE players tend to update their
beliefs about others’ types too passively. That is, there is some persistence in beliefs
in the sense that at each stage 𝑡, each 𝜒-cursed player’s belief about any type profile
is at least 𝜒 times the belief about that type profile at stage 𝑡−1. Among other things,

1For the off-path histories, similar to the idea of Kreps and Wilson (1982), we impose the 𝜒-
consistency requirement (see Definition 2) so the assessment is approachable by a sequence of totally
mixed behavioral strategies. The only difference is that players’ beliefs are incorrectly updated by
assuming others play the 𝜒-cursed behavioral strategies. Hence, in our approach if 𝜒 = 0, a CSE is
a sequential equilibrium.
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this implies that if the prior belief about the types is full support and 𝜒 > 0, the full
support property will persist at all histories, and players will (possibly incorrectly)
believe every profile of others’ types is possible at every history.

This dampened updating property plays an important role in our framework. Not
only does it contribute to the difference between CSE and the standard CE through
the updating process, but it also implies additional restrictions on off-path beliefs.
The effect of dampened updating is starkly illustrated in the pooling equilibria of
signaling games where every type of sender behaves the same everywhere. In this
case, Proposition 5 shows if an assessment associated with a pooling equilibrium is
a 𝜒-CSE, then it also a 𝜒′-CSE for all 𝜒′ ≤ 𝜒, but it is not necessarily a pooling
equilibrium for all 𝜒′ > 𝜒. This contrasts with one of the main results about CE, that
if a pooling equilibrium is a 𝜒-CE for some 𝜒, then it is a 𝜒′-CE for all 𝜒′ ∈ [0, 1]
(Eyster and Rabin, 2005, Proposition 3).

This suggests that perhaps the dampened updating property is an equilibrium se-
lection device that eliminates some pooling equilibrium, but actually this is not a
general property. As we demonstrate later, the 𝜒-CE and 𝜒-CSE sets can be non-
overlapping, which we illustrate with a variety of applications. The intuition is that
in CSE, players generally do not have correct beliefs about the opponents’ average
behavioral strategies. The pooling equilibrium is just a special case where players
have correct beliefs.

In Section 2.4 we explore the implications of cursed sequential equilibrium with five
applications in economics and political science. The first subsection of Section 2.4
analyzes the 𝜒-CSE of signaling games. Besides studying the theoretical properties
of pooling 𝜒-CSE, we also analyze two simple signaling games that were studied in a
laboratory experiment (Brandts & Holt, 1993). We show how varying the degree of
cursedness can change the set of 𝜒-CSE in these two signaling games in ways that are
consistent with the reported experimental findings. Next, we turn to the exploration
of how sequentially cursed reasoning can influence strategic communication. To this
end, we analyze the 𝜒-CSE for a public goods game with communication (Palfrey
& Rosenthal, 1991; Palfrey et al., 2017) in the second subsection of Section 2.4,
finding that 𝜒-CSE predicts there will be less effective communication when players
are more cursed.

Next, in the third subsection of Section 2.4 we apply 𝜒-CSE to the centipede game
studied experimentally by McKelvey and Palfrey (1992) where one of the players
believes the other player might be an “altruistic” player who always passes. This
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is a simple reputation-building game, where selfish types can gain by imitating
altruistic types in early stages of the game. The public goods application and the
centipede game are both private-values environments, so these two applications
clearly demonstrate how CSE departs from CE and the Bayesian Nash equilibrium,
and shows the interplay between sequentially cursed reasoning and the learning of
types in private-value models.

In strategic voting applications, conditioning on “pivotality”—the event where your
vote determines the final outcome—plays a crucial role in understanding equilibrium
voting behavior. To illustrate how cursedness distorts the pivotal reasoning, in the
fourth subsection of Section 2.4 we study the three-voter two-stage agenda voting
game introduced by Ordeshook and Palfrey (1988). Since this is a private value
game, the predictions of the 𝜒-CE and the Bayesian Nash equilibrium coincide for
all 𝜒. That is, cursed equilibrium predicts no matter how cursed the voters are,
they are able to correctly perform pivotal reasoning. On the contrary, our CSE
predicts that cursedness will make the voters less likely to vote strategically. This is
consistent with the empirical evidence about the prevalence of sincere voting over
sequential agendas when inexperienced voters have incomplete information about
other voters’ preferences (Levine and Plott, 1977; Plott and Levine, 1978; Eckel and
Holt, 1989).

Finally, in the last subsection of Section 2.4 we study the relationship between
cursedness and epistemic reasoning by considering the two-person dirty faces game
previously studied by Weber (2001) and Bayer and Chan (2007). In this game,
𝜒-CSE predicts cursed players are, to some extent, playing a “coordination” game
where they coordinate on a specific learning speed about their face types. Therefore,
from the perspective of CSE, the non-equilibrium behavior observed in experiments
can be interpreted as possibly due to a coordination failure resulting from cognitive
limitations.

The cursed sequential equilibrium extends the concept of cursed equilibrium from
static Bayesian games to multi-stage games with observed actions. This generaliza-
tion preserves the spirit of the original cursed equilibrium in a simple and tractable
way, and provides additional insights about the effect of cursedness in dynamic
games. A contemporaneous working paper by Cohen and Li, 2023 is closely related
to our paper. That paper adopts an approach based on the coarsening of information
sets to define sequential cursed equilibrium (SCE) for extensive form games with
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perfect recall. The SCE model captures a different kind of cursedness2 that arises
if a player neglects the dependence of other players’ unobserved (i.e., either future
or simultaneous) actions on the history of play in the game, which is different from
the dependence of other players’ actions on their type (as in CE and CSE). In the
terminology of Eyster and Rabin (2005) (p. 1665), the cursedness is with respect to
endogenous information, i.e., what players observe about the path of play. The idea
is to treat the unobserved actions of other players in response to different histories
(endogenous information) similarly to how cursed equilibrium treats players’ types.
A two-parameter model of partial cursedness is developed, and a series of exam-
ples demonstrate that for plausible parameter values, the model is consistent with
some experimental findings related to the failure of subjects to fully take account
of unobserved hypothetical events, whereas behavior is “more rational” if subjects
make decisions after directly observing such events. A more detailed discussion of
the differences between CSE and SCE can be found Fong et al. (2023). At a more
conceptual level, our paper is related to several other behavioral solution concepts
developed for dynamic games, such as agent quantal response equilibrium (AQRE)
(McKelvey & Palfrey, 1998), dynamic cognitive hierarchy theory (DCH) (Lin, 2022;
Lin & Palfrey, 2022), and the analogy-based expectation equilibrium (ABEE) (Je-
hiel, 2005; Jehiel & Koessler, 2008), all of which modify the requirements of
sequential equilibrium in different ways than cursed sequential equilibrium.

2.2 The Model
Since CSE is a solution concept for dynamic games of incomplete information,
in this paper we will focus on the framework of multi-stage games with observed
actions (Fudenberg & Tirole, 1991b). The first subsection of Section 2.2 defines
the structure of multi-stage games with observed actions, followed by the second
subsection of Section 2.2, where the 𝜒-cursed sequential equilibrium is formally
developed.

Multi-Stage Games with Observed Actions
Let 𝑁 = {1, . . . , 𝑛} be a finite set of players. Each player 𝑖 ∈ 𝑁 has a type 𝜃𝑖 drawn
from a finite set Θ𝑖. Let 𝜃 ∈ Θ ≡ ×𝑛

𝑖=1Θ𝑖 be the type profile and 𝜃−𝑖 ∈ Θ−𝑖 ≡ × 𝑗≠𝑖Θ 𝑗

be the type profile without player 𝑖. All players share a common (full support) prior
distribution F (·) : Θ → (0, 1). Therefore, for every player 𝑖, the belief of other

2We illustrate some implications of these differences in the application to signaling games in
Section 2.4.
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players’ types conditional on his own type is

F (𝜃−𝑖 |𝜃𝑖) =
F (𝜃−𝑖, 𝜃𝑖)∑

𝜃′−𝑖∈Θ−𝑖 F (𝜃′−𝑖, 𝜃𝑖)
.

At the beginning of the game, players observe their own types, but not the other
players’ types. That is, each player’s type is his own private information.

The game is played in stages 𝑡 = 1, 2, . . . , 𝑇 . In each stage, players simultaneously
choose actions, which will be revealed at the end of the stage. The feasible set of
actions can vary with histories, so games with alternating moves are also included.
Let H 𝑡−1 be the set of all possible histories at stage 𝑡, where H0 = {ℎ∅} and H𝑇 is
the set of terminal histories. Let H = ∪𝑇

𝑡=0H
𝑡 be the set of all possible histories of

the game, and H\H𝑇 be the set of non-terminal histories.

For every player 𝑖, the available information at stage 𝑡 is in H 𝑡−1 × Θ𝑖. Therefore,
player 𝑖’s information sets can be specified as I𝑖 ∈ Q𝑖 = {(ℎ, 𝜃) : ℎ ∈ H\H𝑇 , 𝜃𝑖 ∈
Θ𝑖}. That is, a type 𝜃𝑖 player 𝑖’s information set at the public history ℎ𝑡 can be
defined as

⋃
𝜃−𝑖∈Θ−𝑖 (ℎ𝑡 , 𝜃𝑖, 𝜃−𝑖). With a slight abuse of notation, it will be denoted as

(ℎ𝑡 , 𝜃𝑖). For the sake of simplicity, we assume that, at each history, the feasible set of
actions for every player is independent of their type and use 𝐴𝑖 (ℎ𝑡−1) to denote the
feasible set of actions for player 𝑖 at history ℎ𝑡−1. Let 𝐴𝑖 = ×ℎ∈H\H𝑇 𝐴𝑖 (ℎ) denote
player 𝑖’s feasible actions in all histories of the game and 𝐴 = 𝐴1 × · · · × 𝐴𝑛. In
addition, we assume 𝐴𝑖 is finite for all 𝑖 ∈ 𝑁 and |𝐴𝑖 (ℎ) | ≥ 1 for all 𝑖 ∈ 𝑁 and any
ℎ ∈ H\H𝑇 .

A behavioral strategy for player 𝑖 is a function 𝜎𝑖 : Q𝑖 → Δ(𝐴𝑖) satisfying
𝜎𝑖 (ℎ𝑡−1, 𝜃𝑖) ∈ Δ(𝐴𝑖 (ℎ𝑡−1)). Furthermore, we use 𝜎𝑖 (𝑎𝑡𝑖 |ℎ𝑡−1, 𝜃𝑖) to denote the prob-
ability player 𝑖 chooses 𝑎𝑡

𝑖
∈ 𝐴𝑖 (ℎ𝑡−1). We use 𝑎𝑡 = (𝑎𝑡1, . . . , 𝑎

𝑡
𝑛) ∈ ×𝑛

𝑖=1𝐴𝑖 (ℎ
𝑡−1) ≡

𝐴(ℎ𝑡−1) to denote the action profile at stage 𝑡 and 𝑎𝑡−𝑖 to denote the action pro-
file at stage 𝑡 without player 𝑖. If 𝑎𝑡 is the action profile realized at stage 𝑡, then
ℎ𝑡 = (ℎ𝑡−1, 𝑎𝑡). Finally, each player 𝑖 has a payoff function 𝑢𝑖 : H𝑇 × Θ → R, and
we let 𝑢 = (𝑢1, . . . , 𝑢𝑛) be the profile of payoff functions. A multi-stage game with
observed actions, Γ, is defined by the tuple Γ = ⟨𝑇, 𝐴, 𝑁,H ,Θ, F , 𝑢⟩.

Cursed Sequential Equilibrium
In a multi-stage game with observed actions, a solution is defined by an “assessment,”
which consists of a (behavioral) strategy profile 𝜎, and a belief system 𝜇. Since
action profiles will be revealed to all players at the end of each stage, the belief
system specifies, for each player, a conditional distribution over the set of type
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profiles conditional on each history. Consider an assessment (𝜇, 𝜎). Following
the spirit of the cursed equilibrium, for player 𝑖 at stage 𝑡, we define the average
behavioral strategy profile of the other players as:

𝜎̄−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃𝑖) =
∑︁

𝜃−𝑖∈Θ−𝑖

𝜇𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃−𝑖)

for any 𝑖 ∈ 𝑁 , 𝜃𝑖 ∈ Θ𝑖 and ℎ𝑡−1 ∈ H 𝑡−1.

In CSE, players have incorrect perceptions about other players’ behavioral strategies.
Instead of thinking they are using 𝜎−𝑖, a 𝜒-cursed3 type 𝜃𝑖 player 𝑖 would believe
the other players are using a 𝜒-weighted average of the average behavioral strategy
and the true behavioral strategy:4

𝜎
𝜒

−𝑖 (𝑎
𝑡
−𝑖 |ℎ𝑡−1, 𝜃−𝑖, 𝜃𝑖) = 𝜒𝜎̄−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃𝑖) + (1 − 𝜒)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃−𝑖).

The beliefs of player 𝑖 about 𝜃−𝑖 are updated in the 𝜒-CSE via Bayes’ rule, whenever
possible, assuming other players are using the 𝜒-cursed behavioral strategy rather
than the true behavioral strategy. We call this updating rule the 𝜒-cursed Bayes’ rule.
Specifically, an assessment satisfies the 𝜒-cursed Bayes’ rule if the belief system is
derived from the Bayes’ rule while perceiving others are using 𝜎𝜒−𝑖 rather than 𝜎−𝑖.

Definition 1. (𝜇, 𝜎) satisfies 𝜒-cursed Bayes’ rule if the following is applied to up-
date the posterior beliefs whenever

∑
𝜃′−𝑖∈Θ−𝑖 𝜇𝑖 (𝜃′−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎𝜒−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃′−𝑖, 𝜃𝑖) >

0:

𝜇𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) =
𝜇𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎𝜒−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃−𝑖, 𝜃𝑖)∑

𝜃′−𝑖∈Θ−𝑖 𝜇𝑖 (𝜃′−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎𝜒−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃′−𝑖, 𝜃𝑖)
.

Let Σ0 be the set of totally mixed behavioral strategy profiles, and let Ψ𝜒 be the set of
assessments (𝜇, 𝜎) such that 𝜎 ∈ Σ0 and 𝜇 is derived from 𝜎 using 𝜒-cursed Bayes’
rule.5 Lemma 1 below shows that another interpretation of the 𝜒-cursed Bayes’ rule
is that players have correct perceptions about 𝜎−𝑖 but are unable to make perfect
Bayesian inference when updating beliefs. From this perspective, player 𝑖’s cursed
belief is simply a linear combination of player 𝑖’s cursed belief at the beginning of
that stage (with 𝜒 weight) and the Bayesian posterior belief (with 1 − 𝜒 weight).
Because 𝜎 is totally mixed, there are no off-path histories.

3We assume throughout the paper that all players are equally cursed, so there is no 𝑖 subscript
on 𝜒. The framework is easily extended to allow for heterogeneous degrees of cursedness.

4If 𝜒 = 0, players have correct beliefs about other players’ behavioral strategies at every stage.
5In the following, we will use 𝜇𝜒 (·) to denote the belief system derived under 𝜒-cursed Bayes’

Rule. Also, note that both 𝜎𝜒

−𝑖 and 𝜇𝜒 are induced by 𝜎; that is, 𝜎𝜒

−𝑖 (·) = 𝜎
𝜒

−𝑖 [𝜎] (·) and 𝜇𝜒 (·) =
𝜇𝜒 [𝜎] (·). For the ease of exposition, we drop [𝜎] when it does not cause confusion.
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Lemma 1. For any (𝜇, 𝜎) ∈ Ψ𝜒, 𝑖 ∈ 𝑁 , ℎ𝑡 = (ℎ𝑡−1, 𝑎𝑡) ∈ H\H𝑇 and 𝜃 ∈ Θ,

𝜇𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) = 𝜒𝜇𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖) + (1 − 𝜒)
[

𝜇𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃−𝑖)∑
𝜃′−𝑖
𝜇𝑖 (𝜃′−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃′−𝑖)

]
Proof. See Appendix A.1. □

This is analogous to Lemma 1 of Eyster and Rabin (2005). Another insight pro-
vided by Lemma 1 is that even if player types are independently drawn, i.e., F (𝜃) =
Π𝑛
𝑖=1F𝑖 (𝜃𝑖), players’ cursed beliefs about other players’ types are generally not inde-

pendent across players. That is, in general, 𝜇𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) ≠ Π 𝑗≠𝑖𝜇𝑖 𝑗 (𝜃 𝑗 |ℎ𝑡 , 𝜃𝑖). The
belief system will preserve the independence only when the players are either fully
rational (𝜒 = 0) or fully cursed (𝜒 = 1).

Finally, we place a consistency restriction, analogous to consistent assessments in
sequential equilibrium, on how 𝜒-cursed beliefs are updated off the equilibrium
path, i.e., when ∑︁

𝜃′−𝑖∈Θ−𝑖

𝜇𝑖 (𝜃′−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎𝜒−𝑖 (𝑎
𝑡
−𝑖 |ℎ𝑡−1, 𝜃′−𝑖, 𝜃𝑖) = 0.

An assessment satisfies 𝜒-consistency if it is in the closure of Ψ𝜒.

Definition 2. (𝜇, 𝜎) satisfies 𝜒-consistency if there is a sequence of assessments
{(𝜇𝑘 , 𝜎𝑘 )} ⊆ Ψ𝜒 such that lim𝑘→∞(𝜇𝑘 , 𝜎𝑘 ) = (𝜇, 𝜎).

For any 𝑖 ∈ 𝑁 , 𝜒 ∈ [0, 1], 𝜎, and 𝜃 ∈ Θ, let 𝜌𝜒
𝑖
(ℎ𝑇 |ℎ𝑡 , 𝜃, 𝜎𝜒−𝑖, 𝜎𝑖) be 𝑖’s perceived

conditional realization probability of terminal history ℎ𝑇 ∈ H𝑇 at history ℎ𝑡 ∈
H\H𝑇 if the type profile is 𝜃 and 𝑖 uses the behavioral strategy 𝜎𝑖 whereas perceives
other players’ using the cursed behavioral strategy𝜎𝜒−𝑖. At every non-terminal history
ℎ𝑡 , a 𝜒-cursed player in 𝜒-CSE will use 𝜒-cursed Bayes’ rule (Definition 1) to derive
the posterior belief about the other players’ types. Accordingly, a type 𝜃𝑖 player 𝑖’s
conditional expected payoff at history ℎ𝑡 is:

E𝑢𝑖 (𝜎 |ℎ𝑡 , 𝜃𝑖) =
∑︁

𝜃−𝑖∈Θ−𝑖

∑︁
ℎ𝑇∈H𝑇

𝜇𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖)𝜌𝜒𝑖 (ℎ
𝑇 |ℎ𝑡 , 𝜃, 𝜎𝜒−𝑖, 𝜎𝑖)𝑢𝑖 (ℎ

𝑇 , 𝜃𝑖, 𝜃−𝑖).

Definition 3. An assessment (𝜇∗, 𝜎∗) is a 𝜒-cursed sequential equilibrium if it
satisfies 𝜒-consistency and 𝜎∗

𝑖
(ℎ𝑡 , 𝜃𝑖) maximizes E𝑢𝑖 (𝜎∗ |ℎ𝑡 , 𝜃𝑖) for all 𝑖, 𝜃𝑖, ℎ𝑡 ∈

H\H𝑇 .
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2.3 General Properties of 𝜒-CSE
In this section, we characterize some general theoretical properties of 𝜒-CSE. The
first result is the existence of the 𝜒-CSE. The definition of 𝜒-CSE mirrors the
definition of the sequential equilibrium by Kreps and Wilson (1982)—the only
difference is that players in 𝜒-CSE update their beliefs by 𝜒-cursed Bayes’ rule
and best respond to 𝜒-cursed (behavioral) strategies. Therefore, one can prove the
existence of 𝜒-CSE in a similar way as in the standard argument of the existence of
sequential equilibrium.

Proposition 1. For any 𝜒 ∈ [0, 1] and any finite multi-stage game with observed
actions, there is at least one 𝜒-CSE.

Proof. We briefly sketch the proof here, and the details can be found in Appendix
A.1. Fix any 𝜒 ∈ [0, 1]. For any 𝑖 ∈ 𝑁 and any I𝑖 = (ℎ𝑡−1, 𝜃𝑖), player 𝑖 has to
choose every action 𝑎𝑡

𝑖
∈ 𝐴𝑖 (ℎ𝑡−1) with probability at least 𝜖 . Since there are no

off-path histories, the belief system is uniquely pinned down by 𝜒-cursed Bayes’
rule and a 𝜒-CSE exists in this 𝜖-constrained game. We denote this 𝜒-CSE as
(𝜇𝜖 , 𝜎𝜖 ). By compactness, there is a converging sub-sequence of assessments such
that (𝜇𝜖 , 𝜎𝜖 ) → (𝜇∗, 𝜎∗) as 𝜖 → 0, which is a 𝜒-CSE. □

Let Φ(𝜒) be the correspondence that maps 𝜒 ∈ [0, 1] to the set of 𝜒-CSE. Propo-
sition 1 guarantees Φ(𝜒) is non-empty for any 𝜒 ∈ [0, 1]. Because 𝜒-cursed
Bayes’ rule changes continuously in 𝜒, we further prove that Φ(𝜒) is an upper
hemi-continuous correspondence.

Proposition 2. Φ(𝜒) is upper hemi-continuous with respect to 𝜒.

Proof. The proof follows a standard argument. See Appendix A.1 for details. □

As shown in Corollary 1, a direct consequence of upper hemi-continuity is that every
limit point of a sequence of 𝜒-CSE when 𝜒 → 0 is a sequential equilibrium. This
result bridges our behavioral equilibrium concept with standard equilibrium theory.

Corollary 1. Every limit point of a sequence of 𝜒-CSE with 𝜒 converging to 0 is a
sequential equilibrium.

Proof. By Proposition 2, we know Φ(𝜒) is upper hemi-continuous at 0. Consider a
sequence of 𝜒-CSE. As 𝜒 → 0, the limit point remains a CSE, which is a sequential
equilibrium at 𝜒 = 0. This completes the proof. □
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Finally, by a similar argument to Kreps and Wilson (1982), for any 𝜒 ∈ [0, 1],
𝜒-CSE is also upper hemi-continuous with respect to payoffs. In other words, our
𝜒-CSE preserves the continuity property of sequential equilibrium.

The next result is the characterization of a necessary condition for 𝜒-CSE. As seen
from Lemma 1, players update their beliefs more passively in 𝜒-CSE than in the
standard equilibrium—they put 𝜒-weight on their beliefs formed in previous stage.
To formalize this, we define the 𝜒-dampened updating property in Definition 4. An
assessment satisfies this property if at any non-terminal history, the belief puts at
least 𝜒 weight on the belief in previous stage—both on and off the equilibrium path.
In Proposition 3, we show that 𝜒-consistency implies the 𝜒-dampened updating
property.

Definition 4. An assessment (𝜇, 𝜎) satisfies the 𝜒-dampened updating property if
for any 𝑖 ∈ 𝑁 , 𝜃 ∈ Θ and ℎ𝑡 = (ℎ𝑡−1, 𝑎𝑡) ∈ H\H𝑇 ,

𝜇𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) ≥ 𝜒𝜇𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖).

Proposition 3. 𝜒-consistency implies 𝜒-dampened updating for any 𝜒 ∈ [0, 1].

Proof. See Appendix A.1. □

It follows that if assessment (𝜇, 𝜎) satisfies the 𝜒-dampened updating property, then
for any player 𝑖, any history ℎ𝑡 and any type profile 𝜃, player 𝑖’s belief about 𝜃−𝑖 is
bounded by

𝜒𝜇𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖) ≤ 𝜇𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) ≤ 1 − 𝜒
∑︁

𝜃′−𝑖≠𝜃−𝑖

𝜇𝑖 (𝜃′−𝑖 |ℎ𝑡−1, 𝜃𝑖).

One can see from this condition that when 𝜒 increases, the feasible range of
𝜇𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) shrinks, and the restriction on the belief system becomes more strin-
gent. Moreover, if the history ℎ𝑡 is an off-path history of (𝜇, 𝜎), then this condition
characterizes the feasible set of off-path beliefs, which shrinks as 𝜒 increases.

An important implication of this observation is that Φ(𝜒) is not lower hemi-
continuous with respect to 𝜒. The intuition is that for some 𝜒-CSE that contains
off-path histories, the off-path beliefs to support the equilibrium might not be 𝜒-
consistent for sufficiently large 𝜒. In this case, the 𝜒-CSE is not attainable by a
sequence of 𝜒𝑘 -CSE where 𝜒𝑘 converges to 𝜒 from above, causing the lack of lower
hemi-continuity.6

6An example is provided in Section 2.4 (see Footnote 7).
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Lastly, another implication of 𝜒-dampened updating property is that for each player
𝑖, history ℎ𝑡 and type profile 𝜃, the belief 𝜇𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) has a lower bound that is
independent of the strategy profile. The lower bound is characterized in Corollary 2.
This result implies that when 𝜒 > 0, F (𝜃−𝑖 |𝜃𝑖) > 0 implies 𝜇𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) > 0 for all
ℎ𝑡 , so that if prior beliefs are bounded away from zero, beliefs are always bounded
away from 0 as well. In other words, when 𝜒 > 0, because of the 𝜒-dampened
updating, beliefs will always have full support even if at off-path histories.

Corollary 2. For any 𝜒-consistent assessment (𝜇, 𝜎), 𝑖 ∈ 𝑁 , 𝜃 ∈ Θ and ℎ𝑡 ∈
H\H𝑇 ,

𝜇𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) ≥ 𝜒𝑡F (𝜃−𝑖 |𝜃𝑖)

Proof. See Appendix A.1. □

If the game has only one stage, then the dampened updating property has no effect,
in which case 𝜒-CSE and 𝜒-CE are equivalent solution concepts. This is formally
stated and proved in Proposition 4.

Proposition 4. For any one-stage game and for any 𝜒, 𝜒-CSE and 𝜒-CE are
equivalent.

Proof. For any one-stage game, the only public history is the initial history ℎ∅.
Thus, in any 𝜒-CSE, for each player 𝑖 ∈ 𝑁 and type profile 𝜃 ∈ Θ, player 𝑖’s belief
about other players’ types at this history is

𝜇𝑖 (𝜃−𝑖 |ℎ∅, 𝜃𝑖) = F (𝜃−𝑖 |𝜃𝑖).

Since the game has only one stage, the outcome is simply 𝑎1 = (𝑎1
1, . . . , 𝑎

1
𝑛), the

action profile at stage 1. Moreover, given any behavioral strategy profile 𝜎, player 𝑖
believes 𝑎1 will be the outcome with probability

𝜎𝑖 (𝑎1
𝑖 |ℎ∅, 𝜃𝑖) ×

[
𝜒𝜎̄−𝑖 (𝑎1

−𝑖 |ℎ∅, 𝜃𝑖) + (1 − 𝜒)𝜎−𝑖 (𝑎1
−𝑖 |ℎ∅, 𝜃−𝑖)

]
.

Therefore, if 𝜎 is the behavioral strategy profile of a 𝜒-CSE in an one-stage game,
then for each player 𝑖, type 𝜃𝑖 ∈ Θ𝑖 and each 𝑎1

𝑖
∈ 𝐴𝑖 (ℎ∅) such that 𝜎𝑖 (𝑎1

𝑖
|ℎ∅, 𝜃𝑖) > 0,

𝑎1
𝑖 ∈ arg max

𝑎1′
𝑖
∈𝐴𝑖 (ℎ∅)

∑︁
𝜃−𝑖∈Θ−𝑖

F (𝜃−𝑖 |𝜃𝑖) ×
∑︁

𝑎1
−𝑖∈𝐴−𝑖 (ℎ∅)

[
𝜒𝜎̄−𝑖 (𝑎1

−𝑖 |ℎ∅, 𝜃𝑖) + (1 − 𝜒)𝜎−𝑖 (𝑎1
−𝑖 |ℎ∅, 𝜃−𝑖)

] 𝑢𝑖 (𝑎1′
𝑖 , 𝑎

1
−𝑖, 𝜃𝑖, 𝜃−𝑖),
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which coincides with the maximization problem of 𝜒-CE. This completes the proof.
□

From the proof of Proposition 4, one can see that in one-stage games players have
correct perceptions about the average strategy of others. Therefore, the maximiza-
tion problem of 𝜒-CSE coincides with the problem of 𝜒-CE. For general multi-stage
games, because of the 𝜒-dampened updating property, players will update beliefs
incorrectly and thus their perceptions about other players’ future moves can also be
distorted.

2.4 Applications
In this section, we will explore 𝜒-CSE in five applications of multi-stage games with
observed actions, in order to illustrate the range of effects it can have and to show
how it is different from the 𝜒-CE and sequential equilibrium. The omitted proofs in
this section can be found in Appendix A.2.

Our first application is the sender-receiver signaling game, which is practically
the simplest possible multi-stage game. From our analysis, we will see both the
theoretical and empirical implications of our 𝜒-CSE.

Pooling Equilibria in Signaling Games
We first make a general observation about pooling equilibria in multi-stage games.
Player 𝑗 follows a pooling strategy if for every non-terminal history, ℎ𝑡 , all types
of player 𝑗 take the same action 𝑎𝑡+1

𝑗
∈ 𝐴 𝑗 (ℎ𝑡). Conceptually, since every type of

player 𝑗 takes the same action, players other than 𝑗 cannot make any inference about
𝑗’s type from 𝑗’s actions. A pooling 𝜒-CSE is a 𝜒-CSE where every player follows
a pooling strategy. Hence, every player has correct beliefs about any other player’s
future move because every type of every player chooses the same action.

Since in any pooling 𝜒-CSE, players can correctly anticipate other players’ future
moves no matter how cursed they are, one may naturally conjecture that a pooling
𝜒-CSE is also a 𝜒′-CSE for any 𝜒′ ∈ [0, 1]. As shown by Eyster and Rabin (2005),
this is true for one-stage Bayesian games: if a pooling strategy profile is a 𝜒-cursed
equilibrium, then it is also a 𝜒′-cursed equilibrium for any 𝜒′ ∈ [0, 1]. Surprisingly,
this result does not extend to multi-stage games. Proposition 5 shows if a pooling
behavioral strategy profile is a 𝜒-CSE, then it remains a 𝜒′-CSE only for 𝜒′ ≤ 𝜒,
which is a weaker result than Eyster and Rabin (2005).
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This result is driven by the 𝜒-dampened updating property which restricts the set of
off-path beliefs. As discussed above, when 𝜒 gets larger, the set of feasible off-path
beliefs shrinks, eliminating some pooling 𝜒-CSE.

Proposition 5. A pooling 𝜒-CSE is a 𝜒′-CSE for 𝜒′ ≤ 𝜒.

Proof. See Appendix A.1. □

The proof strategy is similar to the one in Eyster and Rabin (2005) Proposition
3. Given a 𝜒-CSE behavioral strategy profile, we can separate the histories into
on-path and off-path histories. For on-path histories in a pooling equilibrium, since
all types of players make the same decisions, players cannot make any inference
about other players’ types. Therefore, for on-path histories, their beliefs are the prior
beliefs, which are independent of 𝜒. On the other hand, for off-path histories, as
shown in Proposition 3, a necessary condition for 𝜒-CSE is that the belief system
has to satisfy the 𝜒-dampened updating property. As 𝜒 gets larger, this requirement
becomes more stringent, and hence some pooling 𝜒-CSE may break down.

Example 1 is a signaling game where the sender has only two types and two messages,
and the receiver has only two actions. This example demonstrates the implication
of Proposition 5 and shows the lack of lower hemi-continuity; i.e., it is possible for a
pooling behavioral strategy profile to be a 𝜒-CSE, but not a 𝜒′-CSE for 𝜒′ > 𝜒. We
will also use this example to illustrate how the notion of cursedness in sequential
cursed equilibrium proposed by Cohen and Li, 2023 departs from CSE.

Example 1. The sender has two possible types drawn from the set Θ = {𝜃1, 𝜃2}
with Pr(𝜃1) = 1/4. The receiver does not have any private information. After the
sender’s type is drawn, the sender observes his type and decides to send a message
𝑚 ∈ {𝐴, 𝐵}, or any mixture between the two. After that, the receiver decides
between action 𝑎 ∈ {𝐿, 𝑅} or any mixture between the two, and the game ends. The
game tree is illustrated in Figure 2.1.

If we solve for the 𝜒-CE of the game (or the sequential equilibria), we find that
there are two pooling equilibria for every value of 𝜒. In the first pooling 𝜒-CE,
both sender types choose 𝐴; the receiver chooses 𝐿 in response to 𝐴 and 𝑅 at the
off-path history 𝐵. In the second pooling 𝜒-CE, both sender types pool at 𝐵 and the
receiver chooses 𝑅 at both histories. By Proposition 3 of Eyster and Rabin (2005),
these two equilibria are pooling 𝜒-CE for all 𝜒 ∈ [0, 1]. The intuition is that in

50



2, 2

𝐿

−1, 4

𝑅

𝐴

4,−1

𝐿

1, 0

𝑅

𝐵

𝜃1

[ 1
4 ]

2, 1

𝐿

−1, 0

𝑅

𝐴

4,−2

𝐿

1, 0

𝑅

𝐵

𝜃2

[ 3
4 ]

Nature

1 1

2

2

Figure 2.1: Game Tree for Example 1

a pooling 𝜒-CE, players are not able to make any inference about other players’
types from their actions because the average normal form strategy is the same as the
type-conditional normal form strategy. Therefore, their beliefs are independent of
𝜒, and hence a pooling 𝜒-CE will still be an equilibrium for any 𝜒 ∈ [0, 1].

However, as summarized in Claim 1 below, the 𝜒-CSE imposes stronger restrictions
than 𝜒-CE in this example, in the sense that when 𝜒 is sufficiently large, the second
pooling equilibrium cannot be supported as a 𝜒-CSE. The key reason is that when
the game is analyzed in its normal form, the 𝜒-dampened updating property shown in
Proposition 3 does not have any bite, allowing both pooling equilibria to be supported
as a 𝜒-CE for any value of 𝜒. Yet, in the 𝜒-CSE analysis, the additional restriction
of 𝜒-dampened updating property eliminates some extreme off-path beliefs, and
hence, eliminates the second pooling 𝜒-CSE equilibrium for sufficiently large 𝜒.
For simplicity, we use a four-tuple [(𝑚(𝜃1), 𝑚(𝜃2)); (𝑎(𝐴), 𝑎(𝐵))] to denote a
behavioral strategy profile.

Claim 1. In this example, there are two pure pooling 𝜒-CSE, which are:

1. [(𝐴, 𝐴); (𝐿, 𝑅)] is a pooling 𝜒-CSE for any 𝜒 ∈ [0, 1].

2. [(𝐵, 𝐵); (𝑅, 𝑅)] with 𝜇2(𝜃1 |𝐴) ∈
[ 1

3 , 1 − 3
4 𝜒

]
is a pooling 𝜒-CSE if and only

if 𝜒 ≤ 8/9.

From previous discussion, we know in general, the sets of 𝜒-CSE and 𝜒-CE are
non-overlapping because of the nature of sequential distortion of beliefs in 𝜒-CSE.
Yet, a pooling 𝜒-CSE is an exception. In a pooling 𝜒-CSE, players can correctly
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anticipate others’ future moves, so a pooling 𝜒-CSE will mechanically be a pooling
𝜒-CE. In cases such as this, we can find that 𝜒-CSE is a refinement of 𝜒-CE.7

Remark. This game is useful for illustrating some of the differences between the
notions of “cursedness” in 𝜒-CSE and the sequential cursed equilibrium ((𝜒𝑆, 𝜓𝑆)-
SCE) proposed by Cohen and Li, 2023.8 The first distinction is that the 𝜒 and
𝜒𝑆 parameters capture substantively different sources of distortion in a player’s
beliefs about the other players’ strategies. In 𝜒-CSE, the degree of cursedness, 𝜒,
captures how much a player neglects the dependence of the other players’ behavioral
strategies on those players’ (exogenous) private information, i.e, types, drawn by
nature, and as a result, mistakenly treats different types as behaving the same with
probability 𝜒. In contrast, in (𝜒𝑆, 𝜓𝑆)-SCE, the cursedness parameter, 𝜒𝑆, captures
how much a player neglects the dependence of the other players’ strategies on future
moves of the others, or current moves that are unobserved because of simultaneous
play. Thus, it is a neglect related to endogenous information. If player 𝑖 observes
a previous move by some other player 𝑗 , then player 𝑖 correctly accounts for the
dependence of player 𝑗’s chosen action on player 𝑗’s private type, as would be the
case in 𝜒-CSE only at the boundary where 𝜒 = 0.

In the context of pooling equilibria in sender-receiver signaling games, if 𝜒𝑆 = 1,
then in SCE the sender believes the receiver will respond the same way both on
and off the equilibrium path. This distorts how the sender perceives the receiver’s
future action in response to an off-equilibrium path message. In 𝜒-CSE, cursedness
does not hinder the sender from correctly perceiving the receiver’s strategy since the
receiver only has one type. Take the strategy profile [(𝐴, 𝐴); (𝐿, 𝑅)] for example,
which is a pooling 𝜒-CSE equilibrium for all 𝜒 ∈ [0, 1]. However, with (𝜒𝑆, 𝜓𝑆)-
SCE, a sender misperceives that the receiver, upon receiving the off-path message
𝐵, will, with probability 𝜒𝑆, take the same action (𝐿) as when receiving the on-path
message 𝐴. If 𝜒𝑆 is sufficiently high, the sender will deviate to send 𝐵, which implies
that [(𝐴, 𝐴); (𝐿, 𝑅)] cannot be supported as an equilibrium when 𝜒𝑆 is sufficiently
large (𝜒𝑆 > 1/3). The distortion induced by 𝜒𝑆 also creates an additional SCE
if 𝜒𝑆 is sufficiently large: [(𝐵, 𝐵); (𝐿, 𝑅)]. To see this, if 𝜒𝑆 = 1, then a sender

7Note that the 𝜒-CSE correspondence Φ(𝜒) is not lower hemi-continuous with respect to 𝜒.
To see this, we consider a sequence of {𝜒𝑘} where 𝜒𝑘 = 8

9 + 1
9𝑘 for 𝑘 ≥ 1. From the analysis of

Claim 1, we know [(𝐵, 𝐵); (𝑅, 𝑅)] ∉ Φ(𝜒𝑘) for any 𝑘 ≥ 1. However, in the limit where 𝜒𝑘 → 8/9,
[(𝐵, 𝐵); (𝑅, 𝑅)] with 𝜇2 (𝜃1 |𝐴) = 1/3 is indeed a CSE. That is, [(𝐵, 𝐵); (𝑅, 𝑅)] is not approachable
by this sequence of 𝜒𝑘-CSE.

8To avoid confusion, we will henceforth add the subscript “S” to the parameters of SCE.
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incorrectly believes that the receiver will continue to choose 𝑅 if the sender deviates
to 𝐴, rather than switching to 𝐿, and hence 𝐵 is optimal for both sender types.
However, [(𝐵, 𝐵); (𝐿, 𝑅)] is not a 𝜒-CSE equilibrium for any 𝜒 ∈ [0, 1], or a 𝜒-CE
in the sense of Eyster and Rabin (2005), or a sequential equilibrium.

In the two possible pooling equilibria analyzed in the last paragraph, the second
SCE parameter, 𝜓𝑆, does not have any effect, but the role of 𝜓𝑆 can be illustrated
in the context of the [(𝐵, 𝐵); (𝑅, 𝑅)] sequential equilibrium. This second SCE
parameter, 𝜓𝑆, is introduced to accommodate a player’s possible failure to fully
account for the informational content from observed events. The larger (1 − 𝜓𝑆) is,
the greater extent a player neglects the informational content of observed actions.
Although the parameter 𝜓𝑆 has a similar flavor to 1 − 𝜒 in 𝜒-CSE, it is different in
a number of ways. In particular this parameter only has an effect via its interaction
with 𝜒𝑆 and thus does not independently arise. In the two parameter model, the
overall degree of cursedness is captured by the product, 𝜒𝑆 (1 − 𝜓𝑆), and thus any
cursedness effect of 𝜓𝑆 is shut down when 𝜒𝑆 = 0. For instance, under our 𝜒-CSE,
the strategy profile [(𝐵, 𝐵); (𝑅, 𝑅)] can only be supported as an equilibrium when 𝜒
is sufficiently small. However, [(𝐵, 𝐵); (𝑅, 𝑅)] can be supported as a (𝜒𝑆, 𝜓𝑆)-SCE
even when (1 − 𝜓𝑆) = 1 as long as 𝜒𝑆 is sufficiently small. In fact, when 𝜒𝑆 = 0, a
(𝜒𝑆, 𝜓𝑆)-SCE is equivalent to sequential equilibrium regardless of the value of 𝜓𝑆.
See Fong et al. (2023) for a more detailed discussion.
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Figure 2.2: Game Tree for BH 3 and BH 4 in Brandts and Holt, 1993

Example 2. Here we analyze two signaling games that were studied experimentally
by Brandts and Holt (1993) (BH 3 and BH 4) and show that 𝜒-CSE can help
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explain some of their findings. In both Game BH 3 and BH 4, the sender has two
possible types {𝜃1, 𝜃2} which are equally likely. There are two messages 𝑚 ∈ {𝐼, 𝑆}
available to the sender.9 After seeing the message, the receiver chooses an action
from 𝑎 ∈ {𝐶, 𝐷, 𝐸}. The game tree and payoffs for both games are summarized in
Figure 2.2.

In both games, there are two pooling sequential equilibria. In the first equilibrium,
both sender types send message 𝐼, and the receiver will choose 𝐶 in response to 𝐼
and 𝐷 in response to 𝑆. In the second equilibrium, both sender types send message
𝑆, and the receiver will choose 𝐷 in response to 𝐼 while choose 𝐶 in response to 𝑆.
Both are sequential equilibria, in both games, but only the first equilibrium where
the sender sends 𝐼 satisfies the intuitive criterion proposed by Cho and Kreps (1987).

Since the equilibrium structure is similar in both games, the sequential equilibrium
and the intuitive criterion predict the behavior should be the same in both games.
However, this prediction is strikingly rejected by the data. Brandts and Holt (1993)
report that in the later rounds of the experiment, almost all type 𝜃1 senders send 𝐼
in Game BH 3 (97 %), and yet all type 𝜃1 senders send 𝑆 in Game BH 4 (100%). In
contrast, type 𝜃2 senders behave similarly in both games—46.2% and 44.1% of type
𝜃2 senders send 𝐼 in Games BH 3 and BH 4, respectively. Qualitatively speaking, the
empirical pattern reported by Brandts and Holt (1993) is that sender type 𝜃1 is more
likely to send 𝐼 in Game BH 3 than Game BH 4 while sender type 𝜃2’s behavior is
insensitive to the change of games.

To explain this finding, Brandts and Holt (1993) propose a descriptive story based
on naive receivers. A naive receiver will think both sender types are equally
likely, regardless of which message is observed. This naive reasoning will lead the
receiver to choose 𝐶 in both games. Given this naive response, a type 𝜃1 sender has
an incentive to send 𝐼 in Game BH 3 and choose 𝑆 in Game BH 4. (Brandts and
Holt, 1993, p. 284 – 285)

In fact, their story of naive reasoning echoes the logic of 𝜒-CSE. When the receiver
is fully cursed (or naive), he will ignore the correlation between the sender’s action
and type, causing him to not update the belief about the sender’s type. Proposition
6 characterizes the set of 𝜒-CSE of both games. Following the previous notation,
we use a four-tuple [(𝑚(𝜃1), 𝑚(𝜃2)); (𝑎(𝐼), 𝑎(𝑆))] to denote a behavioral strategy
profile.

9𝐼 stands for “Intuitive” and 𝑆 stands for “Sequential but not intuitive”, corresponding to the two
pooling sequential equilibria of the two games.
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Proposition 6. The set of 𝜒-CSE of Game BH 3 and BH 4 are characterized as
below.

• In Game BH 3, there are three pure 𝜒-CSE:

1. [(𝐼, 𝐼); (𝐶, 𝐷)] is a pooling 𝜒-CSE if and only if 𝜒 ≤ 4/7.

2. [(𝑆, 𝑆); (𝐷,𝐶)] is a pooling 𝜒-CSE if and only if 𝜒 ≤ 2/3.

3. [(𝐼, 𝑆); (𝐶,𝐶)] is a separating 𝜒-CSE if and only if 𝜒 ≥ 4/7.

• In Game BH 4, there are three pure 𝜒-CSE:

1. [(𝐼, 𝐼); (𝐶, 𝐷)] is a pooling 𝜒-CSE if and only if 𝜒 ≤ 4/7.

2. [(𝑆, 𝑆); (𝐷,𝐶)] is a pooling 𝜒-CSE if and only if 𝜒 ≤ 2/3.

3. [(𝑆, 𝑆); (𝐶,𝐶)] is a pooling 𝜒-CSE for any 𝜒 ∈ [0, 1].

As noted earlier for Example 1, by Proposition 3 of Eyster and Rabin (2005), pooling
equilibria (1) and (2) in games BH 3 and BH 4 survive as 𝜒-CE for all 𝜒 ∈ [0, 1].
Hence, Proposition 6 implies that 𝜒-CSE refines the 𝜒-CE pooling equilibria for
larger values of 𝜒. Moreover, 𝜒-CSE actually eliminates all pooling equilibria in
BH 3 if 𝜒 > 2/3. Proposition 6 also suggests that for any 𝜒 ∈ [0, 1], sender type
𝜃2 will behave similarly in both games, which is qualitatively consistent with the
empirical pattern. In addition, 𝜒-CSE predicts that a highly cursed (𝜒 > 2/3) type
𝜃1 sender will send different messages in different games—highly cursed type 𝜃1

senders will send 𝐼 and 𝑆 in Games BH 3 and BH 4, respectively. This is consistent
with the empirical data.

A Public Goods Game with Communication
Our second application is a threshold public goods game with private information
and pre-play communication, variations of which have been studied in laboratory
experiments (Palfrey and Rosenthal, 1991; Palfrey et al., 2017). Here we consider
the “unanimity” case where there are 𝑁 players and the threshold is also 𝑁 .

Each player 𝑖 has a private cost parameter 𝑐𝑖, which is independently drawn from a
uniform distribution on [0, 𝐾] where 𝐾 > 1. After each player’s 𝑐𝑖 is drawn, each
player observes their own cost, but not the others’ costs. Therefore, 𝑐𝑖 is player 𝑖’s
private information and corresponds to 𝜃𝑖 in the general formulation.10 The game

10This application has a continuum of types. The framework of analysis developed for finite types
is applied in the obvious way.
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consists of two stages. After the profile of cost parameters is drawn, the game will
proceed to stage 1 where each player simultaneously broadcasts a public message
𝑚𝑖 ∈ {0, 1} without any cost or commitment. After all players observe the message
profile from this first stage, the game proceeds to stage 2 which is a unanimity
threshold public goods game. Player 𝑖 has to pay the cost 𝑐𝑖 if he contributes, but
the public good will be provided only if all players contribute. The public good is
worth a unit of payoff for every player. Thus, if the public good is provided, each
player’s payoff will be 1 − 𝑐𝑖.

If there is no communication stage, the unique Bayesian Nash equilibrium is that no
player contributes, which is also the unique 𝜒-CE for any 𝜒 ∈ [0, 1]. In contrast,
with the communication stage, there exists an efficient sequential equilibrium where
each player 𝑖 sends 𝑚𝑖 = 1 if and only if 𝑐𝑖 ≤ 1 and contributes if and only if all
players send 1 in the first stage.11 Since this is a private value game, the standard
cursed equilibrium has no bite, and this efficient sequential equilibrium is also a
𝜒-CE for all values of 𝜒, by Proposition 2 of Eyster and Rabin (2005). In the
following, we demonstrate that the prediction of 𝜒-CSE is different from CE (and
sequential equilibrium).

To analyze the 𝜒-CSE, consider a set of “cutoff” costs, {𝐶𝜒
𝑐 , 𝐶

𝜒

0 , 𝐶
𝜒

1 , . . . , 𝐶
𝜒

𝑁
}. In

the communication stage, each player communicates the message 𝑚𝑖 = 1 if and only
if 𝑐𝑖 ≤ 𝐶

𝜒
𝑐 . In the second stage, if there are exactly 0 ≤ 𝑘 ≤ 𝑁 players sending

𝑚𝑖 = 1 in the first stage, then such a player would contribute in the second stage if
and only if 𝑐𝑖 ≤ 𝐶

𝜒

𝑘
. A 𝜒-CSE is a collection of these cost cutoffs such that the

associated strategies are a 𝜒-CSE for the public goods game with communication.
The most efficient sequential equilibrium identified above for 𝜒 = 0 corresponds to
cutoffs with 𝐶0

0 = 𝐶0
1 = · · · = 𝐶0

𝑁−1 = 0 and 𝐶0
𝑐 = 𝐶

0
𝑁
= 1.

There are in fact multiple equilibria in this game with communication. In order to
demonstrate how the cursed belief can distort players’ behavior, here we will focus
on the 𝜒-CSE that is similar to the most efficient sequential equilibrium identified
above, where 𝐶𝜒

0 = 𝐶
𝜒

1 = · · · = 𝐶𝜒

𝑁−1 = 0 and 𝐶𝜒
𝑐 = 𝐶

𝜒

𝑁
. The resulting 𝜒-CSE is

given in Proposition 7.

Proposition 7. In the public goods game with communication, there is a 𝜒-CSE
where

11One can think of the first stage as a poll, where players are asked the following question: “Are
you willing to contribute if everyone else says they are willing to contribute?". The message 𝑚𝑖 = 1
corresponds to a “yes" answer and the message 𝑚𝑖 = 0 corresponds to a “no" answer.
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1. 𝐶𝜒

0 = 𝐶
𝜒

1 = · · · = 𝐶𝜒

𝑁−1 = 0, and

2. there is a unique 𝐶∗(𝑁, 𝐾, 𝜒) ≤ 1 s.t. 𝐶𝜒
𝑐 = 𝐶

𝜒

𝑁
= 𝐶∗(𝑁, 𝐾, 𝜒) that solves:

𝐶∗(𝑁, 𝐾, 𝜒) − 𝜒
[
𝐶∗(𝑁, 𝐾, 𝜒)

𝐾

]𝑁−1
= 1 − 𝜒.

To provide some intuition, we sketch the proof by analyzing the two-person game,
where the 𝜒-CSE is characterized by four cutoffs {𝐶𝜒

𝑐 , 𝐶
𝜒

0 , 𝐶
𝜒

1 , 𝐶
𝜒

2 }, with 𝐶𝜒

0 =

𝐶
𝜒

1 = 0 and 𝐶𝜒
𝑐 = 𝐶

𝜒

2 . If players use the strategy that they would send message 1
if and only if the cost is less than 𝐶𝜒

𝑐 , then by Lemma 1, at the history where both
players send 1, player 𝑖’s cursed posterior belief density would be

𝜇
𝜒

𝑖
(𝑐−𝑖 |{1, 1}) =


𝜒 ·

(
1
𝐾

)
+ (1 − 𝜒) ·

(
1
𝐶

𝜒
𝑐

)
if 𝑐−𝑖 ≤ 𝐶𝜒

𝑐

𝜒 ·
(

1
𝐾

)
if 𝑐−𝑖 > 𝐶𝜒

𝑐 .

Notice that cursedness leads a player to put some probability weight on a type that is
not compatible with the history. Namely, for 𝜒-cursed players, when seeing another
player sending 1, they still believe the other player might have 𝑐−𝑖 > 𝐶𝜒

𝑐 . When 𝜒
converges to 1, the belief simply collapses to the prior belief as fully cursed players
never update their beliefs. On the other hand, when 𝜒 converges to 0, the belief
converges to 1/𝐶𝜒

𝑐 , which is the correct Bayesian inference.

Given this cursed belief density, the optimal cost cutoff to contribute, 𝐶𝜒

2 , solves

𝐶
𝜒

2 =

∫ 𝐶
𝜒

2

0
𝜇
𝜒

𝑖
(𝑐−𝑖 |{1, 1})𝑑𝑐−𝑖 .

Finally, at the first stage cutoff equilibrium, the𝐶𝜒
𝑐 type of player would be indifferent

between sending 1 and 0 at the first stage. Therefore, 𝐶𝜒
𝑐 satisfies

0 =

(
𝐶
𝜒
𝑐

𝐾

) {
−𝐶𝜒

𝑐 +
∫ 𝐶

𝜒

2

0
𝜇
𝜒

𝑖
(𝑐−𝑖 |{1, 1})𝑑𝑐−𝑖

}
.

After substituting 𝐶𝜒
𝑐 = 𝐶

𝜒

2 , we obtain the 𝜒-CSE satisfies 𝐶𝜒
𝑐 = 𝐶

𝜒

2 = (𝐾 −
𝐾𝜒)/(𝐾 − 𝜒).

From this expression, one can see that the cutoff 𝐶𝜒
𝑐 (as well as 𝐶𝜒

2 ) is decreasing
in 𝜒 and 𝐾 . When 𝜒 → 0, 𝐶𝜒

𝑐 converges to 1, which is the cutoff of the sequential
equilibrium. On the other hand, when 𝜒 → 1, 𝐶𝜒

𝑐 converges to 0, so there is
no possibility for communication when players are fully cursed. Similarly, when
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𝐾 → 1, 𝐶𝜒
𝑐 converges to 1, which is the cutoff of the sequential equilibrium, while

lim𝐾→∞𝐶
𝜒
𝑐 = 1 − 𝜒.

These comparative statics results with respect to 𝜒 and 𝐾 are not just a special
property of the 𝑁 = 2 case, but hold for all 𝑁 > 1. Furthermore, there is a similar
effect of increasing 𝑁 that results in a lower cutoff (less effective communication).
These properties of 𝐶∗(𝑁, 𝐾, 𝜒) are summarized in Corollary 3.

Corollary 3. The efficient 𝜒-CSE predicts for all 𝑁 ≥ 2 and 𝐾 > 1:

1. 𝐶∗(𝑁, 𝐾, 0) = 1 and 𝐶∗(𝑁, 𝐾, 1) = 0.

2. 𝐶∗(𝑁, 𝐾, 𝜒) is strictly decreasing in 𝑁 , 𝐾 , and 𝜒 for any 𝜒 ∈ (0, 1).

3. For all 𝜒 ∈ [0, 1], lim𝑁→∞𝐶∗(𝑁, 𝐾, 𝜒) = lim𝐾→∞𝐶∗(𝑁, 𝐾, 𝜒) = 1 − 𝜒.
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Figure 2.3: (Left) Illustration of the 𝜒-CSE equilibrium condition when 𝐾 = 1.5
and 𝜒 = 0.5. (Middle) The 𝜒-CSE cutoff 𝐶∗(𝑁, 𝐾, 𝜒) for 𝑁 = 2, 3 and for 𝑁 → ∞
when 𝐾 = 1.5. (Right) The 𝜒-CSE cutoff 𝐶∗(𝑁, 𝐾, 𝜒) for 𝐾 = 1.25, 1.5 and for
𝐾 → ∞ when 𝑁 = 2.

These properties are illustrated in Figure 2.3. The left panel illustrates the equilib-
rium condition for 𝐶∗ in a graph where the horizontal axis is 𝐶 ∈ [0, 𝐾]. We can
rewrite the characterization of 𝐶∗(𝑁, 𝐾, 𝜒) in Proposition 7 as a solution for 𝐶 to
the following equation:

1 − 𝐶
𝜒

= 1 −
[
𝐶

𝐾

]𝑁−1
.

The left panel displays the LHS of this equation, 1−𝐶
𝜒

, as the downward sloping line
that connects the points (0, 1

𝜒
) and (1, 0). The RHS is displayed for 𝑁 = 2 and

𝑁 = 3 by the two curves that connect the points (0, 1) and (𝐾, 0). The equilibrium,
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𝐶∗(𝑁, 𝐾, 𝜒), is given by the (unique) intersection of the LHS and RHS curves. It is
easy to see that𝐶∗(𝑁, 𝐾, 𝜒) is strictly decreasing in 𝑁 , 𝐾 , and 𝜒. When 𝑁 increases,
the RHS increases for all 𝐶 ∈ (0, 𝐾), resulting in an intersection at a lower value
of 𝐶. When 𝐾 increases, again the RHS increases for all 𝐶 ∈ (0, 𝐾), and also the
intercept of the RHS on the horizontal axis increases, leading to a similar effect;
and when 𝜒 increases, the intercept of the LHS on the horizontal axis decreases,
resulting in an intersection at a lower value of𝐶. In addition, when 𝑁 grows without
bound, the RHS approaches to 1 for 𝐶 < 𝐾 , resulting in a limiting intersection at
𝐶∗(∞, 𝐾, 𝜒) = 1 − 𝜒. This is illustrated in the middle panel of Figure 2.3, which
graphs 𝐶∗(2, 1.5, ·), 𝐶∗(3, 1.5, ·), and 𝐶∗(∞, 1.5, ·). A similar effect occurs for
𝐾 → ∞, illustrated in the right panel of Figure 2.3, which displays 𝐶∗(2, 1.25, ·),
𝐶∗(2, 1.5, ·), and 𝐶∗(2,∞, ·).

An interesting takeaway of this analysis is that in the public goods game with
communication, cursedness limits information transmission: 𝜒-CSE predicts when
players are more cursed (higher 𝜒), it will be harder for them to effectively com-
municate in the first stage for efficient coordination in the second stage. Moreover,
Corollary 3 shows this 𝜒-CSE varies systematically with all three parameters of the
model: 𝑁, 𝐾 , and 𝜒. In contrast, in the standard 𝜒-CE, players best respond to the
average type-contingent strategy rather than the average behavioral strategy. Since
it is a private value game, players do not care about the distribution of types, only
the distribution of actions. Thus, the prediction of standard CE coincides with the
equilibrium prediction for all 𝑁, 𝐾 , and 𝜒. This seems behaviorally implausible
and is also suggestive of an experimental design that varies the two parameters 𝑁
and 𝐾 , since the qualitative effects of changing these parameters are identified.

Reputation Building: The Centipede Game with Altruists

𝑇1 𝑇2 𝑇3 𝑇4

𝑃4𝑃3𝑃2𝑃11 1 12 2

4, 1 2, 8 16, 4 8, 32

64, 16

Figure 2.4: Four-stage Centipede Game

In order to further demonstrate the difference between 𝜒-CE and 𝜒-CSE, in this
section we consider a variation of the centipede game with private information,
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as analyzed in McKelvey and Palfrey (1992) and Kreps, 1990. This game is an
illustration of reputation-building, where a selfish player imitates an altruistic type
in order to develop a reputation for passing, which in turn entices the opponent to
pass and leads to higher payoffs.

There are two players and four stages, and the game tree is shown in Figure 2.4. In
stage 1, player one can choose either Take (𝑇1) or Pass (𝑃1). If she chooses 𝑇1, the
game ends and the payoffs to players one and two are 4 and 1, respectively. If she
chooses the action 𝑃1, the game continues and player two has a choice between take
(𝑇2) and pass (𝑃2). If he chooses 𝑇2, the game ends and the payoffs to player one
and two are 2 and 8, respectively. If he chooses 𝑃2, the game continues to the third
stage where player one chooses between 𝑇3 and 𝑃3. Similar to the previous stages,
if she chooses 𝑇3, the payoffs to player one and two are 16 and 4, respectively. If she
chooses 𝑃3, the game proceeds to the last stage where player two chooses between
𝑇4 and 𝑃4. If player two chooses 𝑇4 the payoffs are 8 and 32, respectively. If player
two alternatively chooses 𝑃4, the payoffs are 64 and 16, respectively.

Player one has two types, selfish and altruistic. Selfish types are assumed to have
a utility function that is linear in their own payoff. Altruistic types instead have a
utility function that is linear in the sum of the two payoffs. For the sake of simplicity,
we assume that player two has only one type, selfish. The common probability that
player one is altruistic is 𝛼. Player one knows her own type, but player two does not.
Thus, player one’s type is her private information. In the following, we focus on the
interesting case where 𝛼 ≤ 1/7.12

Because this is a game of incomplete information with private values, the standard
𝜒-CE is equivalent to the Bayesian Nash equilibrium of the game for all 𝜒 ∈ [0, 1],
and yields the same take probabilities as the Bayesian equilibrium. Since altruistic
player one wants to maximize the sum of the payoffs, it is optimal for her to always
pass. The equilibrium behavior is summarized in Claim 2.

Claim 2. In the Bayesian Nash equilibrium, selfish player one will choose 𝑃1 with
probability 6𝛼

1−𝛼 and choose 𝑇3 with probability 1; player two will choose 𝑃2 with
probability 1

7 and choose 𝑇4 with probability 1.

It is useful to see exactly why, in this example (and more generally) the standard
12If 𝛼 > 1/7, player two always chooses 𝑃2 in the second stage since the probability of encoun-

tering altruistic player one is sufficiently high. Selfish player one would thus chooses 𝑃1 in the first
stage and choose 𝑇3 in the third stage.
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𝜒-CE is the same as the perfect Bayesian equilibrium. In particular, why it is not the
case that cursed beliefs will change player two’s updating process after observing 𝑃1
at stage one. Belief updating is not a property of the standard 𝜒-CE as the analysis is
in the strategic form, and thus is solved as a BNE of the game in the reduced normal
form.13 Table 2.1 summarizes the payoff matrices in the reduced normal form of
centipede game for selfish and altruistic type.

Table 2.1: Reduced Normal Form Centipede Game Payoff Matrix

selfish (1 − 𝛼) 𝑇2 𝑃2𝑇4 𝑃2𝑃4 altruistic (𝛼) 𝑇2 𝑃2𝑇4 𝑃2𝑃4
𝑇1 4, 1 4, 1 4, 1 𝑇1 5, 1 5, 1 5, 1
𝑃1𝑇3 2, 8 16, 4 16, 4 𝑃1𝑇3 10, 8 20, 4 20, 4
𝑃1𝑃3 2, 8 8, 32 64, 16 𝑃1𝑃3 10, 8 40, 32 80, 16

It is easily verified that at the Bayesian Nash equilibrium, selfish player one would
choose 𝑇1 with probability (1 − 7𝛼)/(1 − 𝛼) and choose 𝑃1𝑇3 with probability
6𝛼/(1 − 𝛼), while player two would choose 𝑇2 with probability 6/7.

To solve the standard 𝜒-CE, let selfish player one choose 𝑇1 with probability 𝑝 and
𝑃1𝑇3 with probability 1 − 𝑝. Let player two choose 𝑇2 with probability 𝑞 and 𝑃2𝑇4

with probability 1 − 𝑞. Notice that for player two, 𝑃2𝑃4 is a dominated strategy and
given this, it is also sub-optimal for selfish player one to choose 𝑃1𝑃3. In this case,
selfish player one would choose 𝑇1 if and only if 4 ≥ 2𝑞 +16(1− 𝑞) ⇐⇒ 𝑞 ≥ 6/7,
implying that selfish player one’s best response correspondence in the standard
cursed analysis coincides with the Bayesian Nash equilibrium analysis. On the
other hand, to solve for player two’s best responses we need to first solve for the
perceived strategy. When player two is 𝜒-cursed, he would think that player one
is using 𝜎𝜒1 (𝑎 |𝜃) where 𝑎 ∈ {𝑇1, 𝑃1𝑇3, 𝑃1𝑃3} and 𝜃 ∈ {selfish, altruistic}. Player
one’s true strategy is given in Table 2.2.

Table 2.2: Player one’s True Strategy

player one’s type
𝜎1(𝑎 |𝜃) selfish altruistic
𝑇1 𝑝 0
𝑃1𝑇3 1 − 𝑝 0
𝑃1𝑃3 0 1

In this case, player one’s average strategy is simply:

𝜎̄1(𝑇1) = (1 − 𝛼)𝑝, 𝜎̄1(𝑃1𝑇3) = (1 − 𝛼) (1 − 𝑝), 𝜎̄1(𝑃1𝑃3) = 𝛼.
13The analysis is similar for the unreduced normal form.
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By definition, 𝜎𝜒1 (𝑎 |𝜃) = 𝜒𝜎̄1(𝑎) + (1 − 𝜒)𝜎1(𝑎 |𝑠) and hence 𝜎𝜒1 (𝑎 |𝜃) is given in
Table 2.3.

Table 2.3: Cursed Perception of Player one’s Strategy

player one’s type
𝜎
𝜒

1 (𝑎 |𝜃) selfish altruistic
𝑇1 𝑝(1 − 𝜒𝛼) 𝑝𝜒(1 − 𝛼)
𝑃1𝑇3 (1 − 𝑝) (1 − 𝜒𝛼) (1 − 𝑝)𝜒(1 − 𝛼)
𝑃1𝑃3 𝜒𝛼 1 − 𝜒 + 𝜒𝛼

From player two’s perspective, given any action profile, player two’s expected payoff
is not affected by whether player one is selfish or altruistic. Hence, player two only
cares about the marginal distribution of player one’s actions. In this case, 𝜒-cursed
player two believes player one will choose 𝑎 ∈ {𝑇1, 𝑃1𝑇3, 𝑃1𝑃3} with probability
𝜎̄1(𝑎). Therefore, it is optimal for player two to choose 𝑇2 if and only if

𝜎̄1(𝑇1) + 8 [1 − 𝜎̄1(𝑇1)] ≥ 𝜎̄1(𝑇1) + 4𝜎̄1(𝑃1𝑇3) + 32𝜎̄1(𝑃1𝑃3) ⇐⇒ 𝑝 ≤ 1 − 7𝛼
1 − 𝛼 ,

implying player two’s best responses in the standard cursed analysis also coincides
with the Nash best responses. As a result, one concludes that standard 𝜒-CE would
make exactly the same prediction as the Bayesian Nash equilibrium regardless how
cursed the players are.

In contrast, the 𝜒-CSE will exhibit distortions to the conditional beliefs of player two,
given that player one has passed, because player two incorrectly takes into account
how player one’s choice to pass depended on player one’s private information. In
particular, it is harder to build a reputation, since a selfish type will have to imitate
altruists in such a way that the true posterior on altruistic type conditional on a pass is
higher than in the perfect Bayesian equilibrium, because the updating by player two
about player one’s type is dampened relative to this true posterior due to cursedness.
This distorted belief updating will result in less passing by player one compared to
the Bayesian equilibrium. Formally, the 𝜒-CSE is described in Proposition 8.

Proposition 8. In the 𝜒-CSE, selfish player one will choose 𝑃1 with probability 𝑞𝜒1
and choose 𝑇3 with probability 1; player two will choose 𝑃2 with probability 𝑞𝜒2
and choose 𝑇4 with probability 1 where

𝑞
𝜒

1 =


[

7𝛼−7𝛼𝜒
1−7𝛼𝜒 − 𝛼

] /
(1 − 𝛼) if 𝜒 ≤ 6

7(1−𝛼)

0 if 𝜒 > 6
7(1−𝛼)

and 𝑞
𝜒

2 =


1/7 if 𝜒 ≤ 6

7(1−𝛼)

0 if 𝜒 > 6
7(1−𝛼) .
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In order to see how the cursedness affects the equilibrium behavior, here we focus
on the case of 𝜒 ≤ 6

7(1−𝛼) where selfish player one and player two will both mix
at stage one and two. Given selfish player one chooses 𝑃1 with probability 𝑞𝜒1 , by
Lemma 1, we know when the game reaches stage two, player two’s belief about
player one being altruistic becomes

𝜇𝜒 = 𝜒𝛼 + (1 − 𝜒)
[

𝛼

𝛼 + (1 − 𝛼)𝑞𝜒1

]
.

Here we see that when 𝜒 is larger, player two will update his belief more slowly.
Therefore, in order to maintain indifference at the mixed equilibrium, selfish player
one has to pass with lower probability so that 𝑃1 is a more informative signal to
player two. Thus, to make player two indifferent between 𝑇2 and 𝑃2, the following
condition must hold at the equilibrium:

𝜇𝜒 =
1
7

⇐⇒ 𝑞
𝜒

1 =

[
7𝛼 − 7𝛼𝜒
1 − 7𝛼𝜒

− 𝛼
] /

(1 − 𝛼).
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Figure 2.5: 𝜒-CSE of the centipede game with altruistic players (𝛼 = 0.05)

To conclude this section, in Figure 2.5, we plot the probabilities of choosing 𝑃1
and 𝑃2 at 𝜒-CSE when there is a five percent chance that player one is an altruist
(i.e., 𝛼 = 0.05). From our analysis above, we can find that both the standard
equilibrium theory and 𝜒-CE predict selfish player one chooses 𝑃1 with probability
0.32 and player two chooses 𝑃2 with probability 0.14. Moreover, these probabilities
are independent of 𝜒. However, 𝜒-CSE predicts when players are more cursed,
selfish player one is less likely to choose 𝑃1. When players are sufficiently cursed
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(𝜒 ≥ 0.91), selfish player one and player two will never pass—i.e., behave as if there
were no altruistic players.

Sequential Voting over Binary Agendas
In this section, we apply the concept of 𝜒-CSE to the model of strategic binary
amendment voting with incomplete information studied by Ordeshook and Palfrey
(1988). Let 𝑁 = {1, 2, 3} denote the set of voters. These three voters will vote
over three possible alternatives in 𝑋 = {𝑎, 𝑏, 𝑐}. Voting takes place in a two-stage
agenda. In the first stage, voters vote between 𝑎 and 𝑏. In the second stage, voters
vote between 𝑐 and the majority rule winner of the first stage. The majority rule
winner of the second stage is the outcome.

Each voter 𝑖 has three possible private-value types where Θ ∈ {𝜃1, 𝜃2, 𝜃3} is the
set of possible types. Each voter’s type is independently drawn from a common
prior distribution of types, 𝑝. In other words, the probability of a voter being type
𝜃𝑘 is 𝑝𝑘 . Each voter’s type is their own private information. Each voter has the
same type-dependent payoff function, which is denoted by 𝑢(𝑥 |𝜃) for any 𝑥 ∈ 𝑋 and
𝜃 ∈ Θ. We summarize the payoff function with the following table.

𝑥

𝑢(𝑥 |𝜃) 𝑎 𝑏 𝑐

𝜃1 1 𝑣 0
𝜃 𝜃2 0 1 𝑣

𝜃3 𝑣 0 1

Notice that 𝑣 ∈ (0, 1) is a parameter that measures the intensity of the second ranked
outcome relative to the top ranked outcome. This intensity parameter, 𝑣, is assumed
to be the same for all types of all voters. Because this is a game of private values,
the standard 𝜒-CE and the Bayesian Nash equilibrium coincide.

We use 𝑎1
𝑖
(𝜃) to denote type 𝜃 voter 𝑖’s action at stage 1. As is standard in majority

voting games we will focus on the analysis of symmetric pure-strategy equilibria
where voters do not use weakly dominated strategies. In other words, we will
consider 𝑎𝑡

𝑖
(·) = 𝑎𝑡

𝑗
(·) for all 𝑖, 𝑗 ∈ 𝑁 , and will drop the subscript.

In this PBE (and 𝜒-CE) all voters will vote sincerely in equilibrium except for type
𝜃1 voters at stage 1. To see this, first note that voting insincerely in the last stage
is dominated and thus eliminated, so all types of voters vote for their preferred
alternative on the last ballot. Second, voting sincerely in both stages is a dominant
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strategy for a type 𝜃2 voter, who prefers any lottery between 𝑏 and 𝑐 to either 𝑎 or
𝑐. Third, voting sincerely in both stages is also dominant for a type 𝜃3 voter in the
sense that, in the event that neither of the other two voters are type 𝜃3, then any
lottery between 𝑎 and 𝑐 is better than a vote between 𝑏 and 𝑐 since 𝑏 (i.e., type 𝜃3’s
least preferred alternative) will win.14 The PBE (and 𝜒-CE) prediction about a type
𝜃1 voter’s strategy at stage 1 is summarized in the following claim.

Claim 3. The symmetric (undominated pure) PBE strategy for type 𝜃1 voters in the
first stage can be characterized as follows.

1. 𝑎1(𝜃1) = 𝑏 is a PBE strategy if and only if 𝑣 ≥ 𝑝1
𝑝1+𝑝2

.

2. 𝑎1(𝜃1) = 𝑎 is a PBE strategy if and only if 𝑣 ≤ 𝑝1
𝑝1+𝑝3

.

Proof. See Ordeshook and Palfrey (1988). □

Claim 3 shows that, if 𝑣 is relatively large, only type 𝜃1 voting sophisticatedly for 𝑏
instead of sincerely for 𝑎 can be supported by a PBE. Conditional on being pivotal,
voting for 𝑏 in the first stage guarantees an outcome of 𝑏 and thus guarantees getting
𝑣, while voting for 𝑎 leads to a lottery between 𝑎 and 𝑐. Thus, when 𝑣 is sufficiently
high, a type 𝜃1 voter will have an incentive to strategically vote for 𝑏 to avoid the
risk of having 𝑐 elected stage 2.

The analysis of a cursed sequential equilibrium is different from the standard cursed
equilibrium in strategic form because the cursedness affects belief updating over
the stages of the game, and players anticipate future play of the game. Due to the
dynamics and the anticipation of future cursed behavior, such cursed behavior at
later stages of a game can feedback and affect strategic behavior earlier in the game.

In the context of the two-stage binary amendment strategic voting model, cursed
behavior and belief updating mean that voters in the first stage use the expected
cursed beliefs in the second stage to compute the continuation values in the two
continuation games of the second stage, either a vote between 𝑎 and 𝑐 or a vote
between 𝑏 and 𝑐. Because they have a cursed understanding about the relationship
between types and the voting behavior in the first stage, this affects their predictions
about which alternative wins in the second stage, conditional on which alternative
wins in the first stage.

14When there is another type 𝜃3 voter, the first ballot does not matter since their most preferred
alternative 𝑐 will always win in the second stage.
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It is noteworthy that, given any 𝜒 ∈ [0, 1], all voters will still vote sincerely in
𝜒-CSE except for type 𝜃1 voters at stage 1. As implied by Proposition 4, a voter
in the last stage would act as if solving a maximization problem of 𝜒-CE but under
an (incorrectly) updated belief. Therefore, we can follow the same arguments as
solving for the undominated Bayesian equilibrium and conclude that type 𝜃2 and 𝜃3

voters as well as type 𝜃1 voters at stage 2 will vote sincerely under a 𝜒-CSE.

Proposition 9 establishes that the set of parameters 𝑣 and 𝑝 that can support a 𝜒-CSE
in which type 𝜃1 voters vote sophisticatedly for 𝑏 shrinks as 𝜒 increases.

Proposition 9. If 𝑎1(𝜃1) = 𝑏 can be supported by a symmetric 𝜒-CSE, then it can
also be supported by a symmetric 𝜒′-CSE for all 𝜒′ ≤ 𝜒.

The intuition behind strategic voting over agendas mainly comes from the informa-
tion content of hypothetical pivotal events. However, a cursed voter does not (fully)
take such information into consideration, and thus becomes overly optimistic about
his favorite alternative 𝑎 being elected in the second stage. Therefore, a type 𝜃1

voter has a stronger incentive to deviate from sophisticated voting to sincere voting
in stage 1 as 𝜒 increases.

Interestingly, the set of 𝑣 and 𝑝 that can support a 𝜒-CSE in which type 𝜃1 voters
vote sincerely for 𝑎 does not necessarily expand as the level of cursedness becomes
higher, as characterized in Proposition 10.

Proposition 10. Given 𝑝 and 𝑣 ∈ (0, 1), there exists 𝜒̃(𝑝, 𝑣) such that

1. If 𝑣 > 𝑝1
𝑝1+𝑝3

, then 𝑎1(𝜃1) = 𝑎 is a 𝜒-CSE strategy if and only if 𝜒 ≥ 𝜒̃(𝑝, 𝑣);

2. If 𝑣 < 𝑝1
𝑝1+𝑝3

, then 𝑎1(𝜃1) = 𝑎 is a 𝜒-CSE strategy if and only if 𝜒 ≤ 𝜒̃(𝑝, 𝑣).

Thus, Proposition 10 shows that, when 𝜒 is sufficiently large, there are some values
of (𝑣, 𝑝) that cannot support sincere voting for type 𝜃1 voters under PBE (and 𝜒-CE)
but can support it under 𝜒-CSE. Alternatively, there also exist some values of (𝑣, 𝑝)
that can support sincere voting under PBE but fail to support it under 𝜒-CSE when
𝜒 is large.

To illustrate this, Figure 2.6 plots the set of 𝑝 (fixing 𝑣 = 0.7) that can support a
𝜒-CSE for type 𝜃1 voters at stage 1 to vote sophisticatedly for 𝑏 and sincerely for
𝑎. The left panel of Figure 2.6 shows that a sophisticated voting 𝜒-CSE becomes
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Figure 2.6: 𝜒-CSE for Sophisticated (left) and Sincere (right) Voting When 𝑣 = 0.7

harder to be supported as 𝜒 increases, as indicated by Proposition 9. For example,
when 𝑝 ≡ (𝑝1, 𝑝2, 𝑝3) = (0.6, 0.3, 0.1), type 𝜃1 voters will not vote for second
preferred alternative 𝑏 if 𝜒 > 0.18.

On the other hand, the right panel of Figure 2.6 shows that, while type 𝜃1 voters who
sincerely vote for 𝑎 at stage 1 cannot be supported under PBE when 𝑝3 is large, they
may emerge in a 𝜒-CSE with sufficiently high 𝜒. Also note that when 𝑝2 is large,
sincere voting by type 𝜃1 voters is no longer a 𝜒-CSE with high 𝜒. In such a sincere
voting equilibrium, a fully rational type 𝜃1 voter knows there will be only one type
𝜃2 voter among the other two voters when being pivotal. As a result, whether to
sincerely vote for 𝑎 is determined by the ratio of 𝑝1 to 𝑝3. When 𝑝3 is large, sincere
voting at stage 1 will likely lead to zero payoff for type 𝜃1 voters and thus cannot be a
PBE strategy. However, cursed type 𝜃1 voters will take the possibility of having two
type 𝜃2 voters into account since they are not correctly conditioning on pivotality.
As a result, when 𝑝2 is large, sincere voting at stage 1 will likely lead to zero payoff
for type 𝜃1 voters, and thus cannot be a 𝜒-CSE strategy with high 𝜒, while voting
sophisticatedly for 𝑏 can likely secure a payoff of 𝑣.

The Dirty Faces Game
The dirty faces game was first described by Littlewood (1953) to study the rela-
tionship between common knowledge and behavior.15 There are several different

15The dirty faces game has also been reframed as the “cheating wives puzzle” (Gamow & Stern,
1958), the “cheating husbands puzzle” (Moses et al., 1986), the “muddy children puzzle” (Barwise,
1981) and (Halpern & Moses, 1990), and the “red hat puzzle” (Hardin & Taylor, 2008).
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variants of this game, but here we focus on a simplified version, the two-person dirty
faces game, which was theoretically analyzed by Fudenberg and Tirole, 1991a and
Lin (2022) and was experimentally studied by Weber (2001) and Bayer and Chan
(2007).

Let 𝑁 = {1, 2} be the set of players. For each 𝑖 ∈ 𝑁 , let 𝑥𝑖 ∈ {𝑂, 𝑋} represent
whether player 𝑖 has a clean face (𝑂) or a dirty face (𝑋). Each player’s face
type is independently and identically determined by a commonly known probability
𝑝 = Pr(𝑥𝑖 = 𝑋) = 1 − Pr(𝑥𝑖 = 𝑂). Once the face types are drawn, each player 𝑖
can observe the other player’s face 𝑥−𝑖 but not their own face.16 If there is at least
one player with a dirty face, a public announcement of this fact is broadcast to both
players at the beginning of the game. Let 𝜔 ∈ {0, 1} denote whether there is an
announcement or not. If there is an announcement (𝜔 = 1), all players are informed
there is at least one dirty face but not the identities. When 𝜔 = 0, it is common
knowledge to both players that their faces are clean and the game becomes trivial.
Hence, in the following, we will focus only on the interesting case where 𝜔 = 1.

There are a finite number of𝑇 ≥ 2 stages. In each stage, each player 𝑖 simultaneously
chooses 𝑠𝑖 ∈ {𝑈, 𝐷}. The game ends as soon as either player (or both) chooses 𝐷,
or at the end of stage 𝑇 in case neither player has chosen 𝐷. Actions are revealed
at the end of each stage. Payoffs depend on own face types and action. If a player
chooses 𝐷, he will get 𝛼 > 0 if he has a dirty face while receive −1 if he has a clean
face. We assume that

𝑝𝛼 − (1 − 𝑝) < 0 ⇐⇒ 0 < 𝛼̄ ≡ 𝛼

(1 − 𝑝) (1 + 𝛼) < 1, (2.1)

where 𝑝𝛼 − (1 − 𝑝) is the expected payoff of 𝐷 when the belief of having a dirty
face is 𝑝. Thus, Assumption (2.1) guarantees it is strictly dominated to choose 𝐷
at stage 1 when observing a dirty face. In other words, players will be rewarded
when correctly inferring the dirty face but penalized when wrongly claiming the
dirty face.

The payoffs are discounted with a common discount factor 𝛿 ∈ (0, 1). To summarize,
conditional on reaching stage 𝑡, each player’s payoff function (which depends on
their own face and action) can be written as:

𝑢𝑖 (𝑠𝑖 |𝑡, 𝑥𝑖 = 𝑋) =

𝛿𝑡−1𝛼 if 𝑠𝑖 = 𝐷

0 if 𝑠𝑖 = 𝑈
and 𝑢𝑖 (𝑠𝑖 |𝑡, 𝑥𝑖 = 𝑂) =


−𝛿𝑡−1 if 𝑠𝑖 = 𝐷

0 if 𝑠𝑖 = 𝑈.

16To fit into the framework, each player’s “type” (their own private information) can be specified
as “other players’ faces.” That is, 𝜃𝑖 = 𝑥−𝑖 .
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Therefore, a two-person dirty faces game is defined by a tuple ⟨𝑝, 𝑇, 𝛼, 𝛿⟩.

Since the game ends as soon as some player chooses 𝐷, the information sets of the
game can be specified by the face type the player observes and the stage number.
Thus a behavioral strategy can be represented as:

𝜎 : {𝑂, 𝑋} × {1, . . . , 𝑇} → [0, 1],

which is a mapping from information sets to the probability of choosing 𝐷, where
{𝑂, 𝑋} corresponds to a player’s observation of the other player’s face.

There is a unique Nash equilibrium. When observing a clean face, a player would
immediately know his face is dirty. Hence, it is strictly dominant to choose 𝐷 at
stage 1 in this case. On the other hand, when observing a dirty face, because of
Assumption (2.1), it is optimal for the player to choose𝑈 at stage 1. However, if the
game proceeds to stage 2, the player would know his face is dirty because the other
player would have chosen 𝐷 at stage 1 if his face were clean and the game would
not have reached stage 2. This result is independent of the payoffs, the timing,
the discount factor, and the (prior) probability of having a dirty face. The only
assumption for this argument is common knowledge of rationality.

Alternatively, when players are “cursed,” they are not able to make perfect inferences
from the other player’s actions. Specifically, since a cursed player has incorrect
perceptions about the relationship between the other player’s actions and their private
information after seeing the other player choose 𝑈 in stage 1, a cursed player does
not believe they have a dirty face for sure. At the extreme when 𝜒 = 1, fully cursed
players never update their beliefs. In the following, we will compare the predictions
of the standard 𝜒-CE and the 𝜒-CSE. A surprising result is that there is always a
unique 𝜒-CE, but there can be multiple 𝜒-CSE.

For the sake of simplicity, we focus on the characterization of pure strategy equilib-
rium in the following analysis. Since the game ends when some player chooses 𝐷,
we can equivalently characterize a stopping strategy as a mapping from the observed
face type to a stage in {1, 2, . . . , 𝑇, 𝑇 + 1} where 𝑇 + 1 corresponds to the strategy
of never stopping. Furthermore, both 𝜒-CE and 𝜒-CSE will be symmetric because
if players were to stop at different stages, least one of the players would have a
profitable deviation. Finally, we use 𝜎̂𝜒 (𝑥−𝑖) and 𝜎̃𝜒 (𝑥−𝑖) to denote the equilibrium
stopping strategies of 𝜒-CE and 𝜒-CSE, respectively.

We characterize the 𝜒-CE in Proposition 11. Since 𝜒-CE is defined for simultaneous
move Bayesian games, to solve for the 𝜒-CE, we need to look at the corresponding
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normal form where players simultaneously choose {1, 2, . . . , 𝑇, 𝑇 + 1} given the
observed face type.

Proposition 11. The 𝜒-cursed equilibrium can be characterized as follows.

1. If 𝜒 > 𝛼̄, the only 𝜒-CE is that both players choose:

𝜎̂𝜒 (𝑂) = 1 and 𝜎̂𝜒 (𝑋) = 𝑇 + 1.

2. If 𝜒 < 𝛼̄, the only 𝜒-CE is that both players choosing

𝜎̂𝜒 (𝑂) = 1 and 𝜎̂𝜒 (𝑋) = 2.

Proposition 11 shows that 𝜒-CE makes an extreme prediction—when observing a
dirty face, players would either choose 𝐷 at stage 2 (the equilibrium prediction)
or never choose 𝐷. In addition, the prediction of 𝜒-CE is unique for 𝜒 ≠ 𝛼̄. As
characterized in Proposition 12, for extreme values of 𝜒, the prediction of 𝜒-CSE
coincides with 𝜒-CE. But for intermediate values of 𝜒, there can be multiple 𝜒-CSE.

Proposition 12. The pure strategy 𝜒-CSE can be characterized as follows.

1. 𝜎̃𝜒 (𝑂) = 1 for all 𝜒 ∈ [0, 1].

2. Both players choosing 𝜎̃𝜒 (𝑋) = 𝑇 + 1 is a 𝜒-CSE if and only if 𝜒 ≥ 𝛼̄ 1
𝑇+1 .

3. Both players choosing 𝜎̃𝜒 (𝑋) = 2 is a 𝜒-CSE if and only if 𝜒 ≤ 𝛼̄.

4. For any 3 ≤ 𝑡 ≤ 𝑇 , both players choosing 𝜎̃𝜒 (𝑋) = 𝑡 is a 𝜒-CSE if and only if(
1 − 𝜅(𝜒)

1 − 𝑝

) 1
𝑡−2

≤ 𝜒 ≤ 𝛼̄ 1
𝑡−1 where

𝜅(𝜒) ≡ [(1 + 𝛼) (1 + 𝛿𝜒) − 𝛼𝛿] −
√︁
[(1 + 𝛼) (1 + 𝛿𝜒) − 𝛼𝛿]2 − 4𝛿𝜒(1 + 𝛼)
2𝛿𝜒(1 + 𝛼) .

Illustrative Example

In order to illustrate the sharp contrast between the predictions of 𝜒-CE and 𝜒-
CSE, here we consider an illustrative example where 𝛼 = 1/4, 𝛿 = 4/5, 𝑝 = 2/3
and the horizon of the game is 𝑇 = 5. As characterized by Proposition 11, 𝜒-CE
predicts players will choose 𝜎̂𝜒 (𝑋) = 2 if 𝜒 ≤ 𝛼̄ = 0.6; otherwise, they will choose
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Figure 2.7: 𝜒-CE vs. 𝜒-CSE When (𝛼, 𝛿, 𝑝, 𝑇) =
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)
𝜎̂𝜒 (𝑋) = 6, i.e., they never choose 𝐷 when observing a dirty face. As demonstrated
in the left panel of Figure 2.7, 𝜒-CE is (generically) unique and it predicts players
will either behave extremely sophisticated or unresponsive to the other’s action at
all.

In contrast, as characterized by Proposition 12, there can be multiple 𝜒-CSE. As
shown in the right panel of Figure 2.7, when 𝜒 ≤ 𝛼̄ = 0.6, both players stopping at
stage 2 is still an equilibrium, but it is not unique except for very low values of 𝜒.
For 0.168 ≤ 𝜒 ≤ 0.505, both players stopping at stage 3 is also a 𝜒-CSE, and for
0.505 ≤ 𝜒 ≤ 0.6, there are three pure strategy 𝜒-CSE where both players stop at
stage 2, 3, or 4, respectively.

The existence of multiple 𝜒-CSE in which both players stop at 𝑡 > 2 highlights a
player’s learning process in a multi-stage game, which does not happen in strategic
form cursed equilibrium. In the strategic form, a player has no opportunity to learn
about the other player’s type in middle stages. Thus, when level of cursedness is not
low enough to support a 𝜒-CE with stopping at stage 2, both players would never
stop. However, in a 𝜒-CSE of the multi-stage game, a cursed player would still learn
about his own face being dirty as the game proceeds, even though he might not be
confident enough to choose 𝐷 at stage 2. If 𝜒 is not too large, the expected payoff
of choosing 𝐷 would eventually become positive at some stage before the last stage
𝑇 .17 For some intermediate values of 𝜒, there might be multiple stopping stages

17The upper bound of the inequality in Proposition 12 characterizes the stages at which stopping
yields positive expected payoffs.
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which yield positive expected payoffs. In this case, the dirty faces game becomes
a special type of coordination games where both players coordinate on stopping
strategies, resulting in the existence of multiple 𝜒-CSE.18

2.5 Concluding Remarks
In this paper, we formally developed Cursed Sequential Equilibrium, which extends
the strategic form cursed equilibrium (Eyster & Rabin, 2005) to multi-stage games,
and illustrated the new equilibrium concept with a series of applications. While
the standard CE has no bite in private value games, we show that cursed beliefs
can actually have significant consequences for dynamic private value games. In
the private value games we consider, our cursed sequential equilibrium predicts
(1) under-contribution caused by under-communication in the public goods game
with communication, (2) low passing rate in the presence of altruistic players in
the centipede game, and (3) less sophisticated voting in the sequential two-stage
binary agenda game. We also illustrate the distinction between CE and CSE in some
non-private value games. In simple signaling games, 𝜒-CSE implies refinements of
pooling equilibria that are not captured by traditional belief-based refinements (or
𝜒-CE), and are qualitatively consistent with some experimental evidence. Lastly,
we examine the dirty face game, showing that the CSE further expands the set of
equilibrium and predicts stopping in middle stages of the game. Our findings are
summarized in Table 2.4.

The applications we consider are only a small sample of the possible dynamic
games where CSE could be usefully applied. One prominent class of problems
where it would be interesting to study the dynamic effects of cursedness is social
learning. For example, in the standard information cascade model of Bikhchandani
et al. (1992), we conjecture that the effect would be to delay the formation of an
information cascade because players will partially neglect the information content
of prior decision makers. Laboratory experiments report evidence that subjects
underweight the information contained in prior actions relative to their own signal
(Goeree et al., 2007). A related class of problems involves information aggregation
through sequential voting and bandwagon effects (Callander, 2007; Ali et al., 2008;
Ali and Kartik, 2012). A natural conjecture is that CSE will impede information
transmission in committees and juries as later voters will under-appreciate the in-

18Note that players with low levels of cursedness would not coordinate on stopping at late stages
since the discount factor shrinks the informative value of waiting (i.e., both choosing𝑈). This result
is characterized by the lower bound of the inequality in Proposition 12.
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Table 2.4: Summary of Findings in Section 2.4

Private-Value
Game 𝜒-CE vs. BNE 𝜒-CSE vs. 𝜒-CE

Signaling Games with
Pooling Equilibrium No ≠ 𝜒-CSE ⊂ 𝜒-CE

Public Goods Game
with Communication Yes = ≠

Centipede Game
with Altruists Yes = ≠

Sequential Voting
Game Yes = ≠

Dirty Faces Game No ≠ ≠

formation content of the decisions by early voters. This would dampen bandwagon
effects. The centipede example we studied suggests that CSE might have broader
implications for behavior in reputation-building games, such as the finitely repeated
prisoner’s dilemma or entry deterrence games such as the chain store paradox.

The generalization of CE to dynamic games presented in this paper is limited in
several ways. First, the CSE framework is formally developed for finite multi-stage
games with observed actions. We do not extend CSE for games with continuous types
but we do provide one application that shows how such an extension is possible.
However, a complete generalization to continuous types (or continuous actions)
would require more technical development and assumptions. We also assume that
the number of stages is finite, and extending this to infinite horizon multi-stage games
would be a useful exercise. Extending CSE to allow for imperfect monitoring in
the form of private histories is another interesting direction to pursue. The SCE
approach in Cohen and Li, 2023 allows for cursedness with respect to both public
and private endogenous information, which leads to some important differences
from our CSE approach. In CSE, we find that subjects are limited in their ability to
make correct inferences about hypothetical events, but the mechanism is different
from SCE, which introduces a second free parameter that modulates cursedness
with respect to hypothetical events. For a more detailed discussion of these and
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other differences and overlaps between CSE and SCE, see Fong et al. (2023).

As a final remark, our analysis of applications of 𝜒-CSE suggests some interesting
experiments. For instance, 𝜒-CSE predicts in the public goods game with commu-
nication, when either the number of players (𝑁) or the largest possible contribution
cost (𝐾) increases, pre-play communication will be less effective, while the predic-
tion of sequential equilibrium and 𝜒-CE is independent of 𝑁 and 𝐾 . In other words,
in an experiment where 𝑁 and 𝐾 are manipulated, significant treatment effects in
this direction would provide evidence supporting 𝜒-CSE over 𝜒-CE. Also, 𝜒-CSE
makes qualitatively testable predictions in the sequential voting games and the dirty
faces games, which have not been extensively studied in laboratory experiments. In
the sequential voting game, it would be interesting to test how sensitive strategic
(vs. sincere) voting behavior is to preference intensity (𝑣) and the type distribution.
In the dirty faces game, it would be interesting to design an experiment to iden-
tify the extent to which deviations from sequential equilibrium are related to the
coordination problem that arises in 𝜒-CSE.
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C h a p t e r 3

CONFORMITY AND CONFIRMATION BIAS

3.1 Introduction
Polarization has been a central focus for political scientists in recent years. According
to a survey by Pew Research Center in 2014, the distribution of Republicans and
Democrats on a 10-scale political values has become much more divided in past
decades. From 1994 to 2014, the proportion of self-identified Republicans who were
more conservative than the median Democrats increased from 64% to 92%, and the
proportion of Democrats who were more liberal than the median Republican grew
from 70% to 94%.1 It is often thought that exposing people to the evidence or views
that challenge their beliefs could alleviate political polarization by getting people out
of their echo chambers. Nevertheless, some recent studies undermine this intuitive
thought. Bail et al. (2018) show that, as its title suggests, people become more
polarized when they are exposed to opposing view on Twitter. Nyhan and Reifler
(2010) find that corrections in news stories can actually strengthen misperceptions
about political issues among the subjects who are most committed to a false belief.
In this paper, we develop a model that demonstrates how and when such backfire
effect of information may arise in a strategic interaction environment that resembles
interactions within a group.

We use a game theoretic framework to model how a decision maker would strategi-
cally interpret the evidence at hand. Specifically, we construct an environment with
two states, two signals, two policy choices, and two decision makers (or players).
The decision makers share a common prior that is in favor of one state. Before
individually making a policy choice, each decision maker receives a conditionally
independent signal that is correlated with the true state, and a decision maker will
get a positive payoff if the policy chosen matches the state (and zero otherwise). In
absence of strategic interaction, this setup replicates the standard decision-making
model with incomplete information.

Our model departs from the above standard setup under incomplete information by
incorporating two additional features. First, a player will experience a utility loss

1Pew, Report (2014). “Political Polarization in the American Public.” Pew Research Center,
https://www.pewresearch.org/politics/2014/06/12/political-polarization-in-the-american-public/, re-
trieved June 21, 2021.



if her posterior belief about the state is away from her opponent’s posterior belief.
Second, a player can choose how to read the signal and then form her posterior
belief and policy choice accordingly. Specifically, a player can interpret a piece of
information as either challenging or confirming her view. These strategic features
capture an individual’s tendency to exhibit confirmatory bias, or to (mis-)interpret
new information as in consistent with her current hypotheses about the world, driven
by the motivation of a sense of belonging and/or peer pressure in the same ideological
group.

We examine the conditions that support the following two types of (Bayesian Nash)
equilibria: (i) Bayesian Updating Equilibrium (BUE), in which players always
correctly interpret their signals, and (ii) Confirmatory Bias Equilibrium (CBE), in
which players always interpret their signals as in favor of their prior belief. In
particular, we investigate how the equilibrium conditions respond to changes in
the strength of prior belief, the accuracy of a signal, and the payoff from policy
choice. Overall, the equilibrium conditions demonstrate a trade-off between a
higher expected payoff from policy choice for interpreting a signal correctly, and a
lower expected utility loss from players’ belief misalignment for always interpreting
a signal as supporting the more likely state based on current belief.

Our results show that, in general, an individual is more likely to exhibit confirmatory
bias when she currently holds a stronger belief about which state is more possible. A
confirmatory bias equilibrium is easier to be sustained when the prior belief favors
one state more strongly. In contrast, the range of parameters that supports a Bayesian
updating equilibrium shrinks as the prior becomes more extreme. Moreover, we
show that a BUE can only be sustained when the prior belief is close enough to
50/50; alternatively, if a signal is only moderately accurate, a CBE can only be
sustained when the prior is extreme enough. The reason behind this finding is that,
as the players’ prior belief becomes stronger, the likelihood of having a different
belief from the other and the disutility from it will eventually overwhelm the possible
gain from choosing a better policy. Our results thus demonstrate that the motivation
of conforming to the belief induced by a more likely signal is a possible explanation
for the backfire effect of information observed in previous literature.

Different from the effect of the prior belief on the equilibrium conditions, we find
that a signal’s accuracy has an ambiguous impact on the occurrence of confirmatory
bias. Specifically, if the benefit from policy choice is large enough, lower accuracy
of a signal will facilitate the occurrence of confirmatory bias. However, if the
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gain from implementing the optimal policy is small, a CBE (BUE, resp.) may be
easier to be sustained under greater (lower, resp.) accuracy of a signal; that is,
higher accuracy of a signal may actually facilitate the occurrence of confirmatory
bias. This finding, to some extent, violates the intuition that information from a
source with high credibility is less susceptible to misinterpretations by readers. The
reason behind the above finding is that, although a signal has a higher instrumental
value when it is more accurate, the distance between different posterior beliefs
induced by opposite signals (and thus the corresponding disutility) increases with a
signal’s accuracy as well. Our result reveals that, as a signal’s accuracy is improved,
an increase in the loss from two players’ belief misalignment could dominate the
increase in the signal’s instrumental value related to policy choice if the consequence
of policy choice is trivial.

After the derivation of the main results, we consider two possible extensions of
the basic model. First, we examine the scenario in which there are more than two
players and a player will suffer a utility loss if her posterior belief is away from
the median (or the majority) posterior belief among the other players. We show
that an increase in the size of players decreases the sustainability of a Bayesian
updating equilibrium. Second, we discuss the robustness of our main results to the
assumption that a player’s belief about the other player’s type, or the likelihood that
the other player receives a specific signal, do not depend on the player’s own signal.
In our basic model, we assume that a player’s belief about types is solely determined
by the common prior. In the extension, we allow a player to update her belief about
types based on the signal she receives, and we argue that our main results pertaining
to the confirmatory bias equilibrium still hold.

The paper proceeds as follows. We provide a brief review of the literature in the next
subsection. Section 3.2 describes the model setup. In Section 3.3, we characterize
the conditions that support the BUE and CBE, prove the existence of the equilibria,
and obtain the main results. In Section 3.4 we discuss two extensions of the basic
model. Section 3.5 concludes. The details of the proofs of propositions are provided
in Appendix B.

Related Literature
The seminal theoretical work on confirmation bias is Rabin and Schrag (1999), in
which they show how an individual’s confirmatory bias can lead to overconfidence.
Rabin and Schrag (1999) take confirmatory bias as their model’s primitive, assuming
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that a decision maker may misread a signal that contradicts her current belief as
confirming evidence with an exogenous and fixed probability. In other words, they
do not model the mechanism behind an agent’s misinterpretation of signals. Our
model complements their work by providing a micro foundation of confirmatory
bias and characterizing the relationship between the strength the of prior and the
occurrence of confirmatory bias.

A recent work by Fryer Jr et al. (2019) characterizes another possible mechanism
behind misperceptions of new information and confirmation bias. In their model,
in addition to the two signals that are correlated to the two states of nature, there
is another signal that is ambiguous and (thus) open to interpretation. Fryer Jr et al.
(2019) assume that an agent is more likely to interpret the ambiguous signal as
supporting her current belief and stores such perception in memory, which in turn
induces confirmatory bias and polarization in the long run. Our model departs from
Fryer Jr et al. (2019) in that, instead of introducing a third type of signal, we follow
the setup in Rabin and Schrag (1999) and assume that an agent may misinterpret
conflicting evidence as supporting evidence. Moreover, our model is established
on a strategic interaction environment instead of an individual decision-making
problem. The motivation behind distorting the meaning of a signal in our model is
that a decision maker would like to conform to the (posterior) belief that is more
likely to be held by another decision maker. Without multiple agents, a decision
maker would not exhibit confirmatory bias under our model assumptions.

Our model joins the literature that studies conformism, or “the inclination of an
individual to change spontaneously (without any order or request by anyone) his
judgements and (or) actions to conform to ‘socially prevailing’ judgements and (or)
actions” (Luzzati 1999, p. 111). The models in this literature can be divided into
two classes based on their methodology. A representative model of the first class
is Bernheim (1994), in which conformity is derived endogenously. In particular,
Bernheim (1994) assumes that individuals would like to be considered to be of a
given status (i.e., type), and conformism arises endogenously in the form of pooling
equilibria. The second class of models, our model included, treats conformism
as primitive in the sense that an agent directly suffers disutility for deviating from
exogenous social or group norms on actions (e.g., Akerlof, 1980; Jones, 1984;
Luzzati, 1999). For example, Jones (1984) assumes that a worker obtains a utility
loss from the distance between the worker’s production and the average production
level of all workers. In our model, we assume that a player suffers a utility loss if the
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player’s and her opponent’s interpretations of their signals diverge. A key feature
of our model is that the size of disutility is determined by the distance between the
players’ posterior beliefs (induced by their interpretations of signals), not by their
choices themselves.

Our model is also related to the coordination games with private information, in the
sense that the players in our model have an incentive to interpret their signals in
the same way. Previous literature in this strand mainly focuses on how the issue of
multiple equilibria in a coordination game may be overcome via incomplete infor-
mation (e.g., Carlsson and Van Damme, 1993) or via communication (e.g., Banks
and Calvert, 1992). Our focus is, however, not the properties of a coordination game
itself but how this framework can help us explain the emergence of confirmatory
bias and the backfire effect of new information.

Our model also contributes to the literature on motivated reasoning (Kunda, 1990;
Bénabou and Tirole, 2016), which studies how an agent may distort her belief
updating process to achieve a desired conclusion for intrinsic motivation such as self-
confidence (e.g., Bénabou and Tirole, 2002; Gottlieb, 2014), moral self-esteem (e.g.,
Bénabou and Tirole, 2011), anticipatory emotions (e.g., Caplin and Leahy, 2001;
Bracha and Brown, 2012), and dissonance reduction (e.g., Chauvin, 2020). In our
model, the motivation underlying a decision maker’s non-standard Bayesian belief
updating is her preference of sharing the same (posterior) belief as her opponent.
A main distinction between ours and previous models on motivated reasoning is
that most of prior studies focus on individual decision-making (or belief-updating)
problem, whereas our model is built within a strategic interaction environment.2
Another distinctive feature of our model is that our decision maker does not directly
suffer a cost of belief distortion that is positively correlated with the distance between
the objective Bayesian belief and the decision maker’s subjective belief. Instead,
the cost comes from a higher chance of choosing an unmatched policy based on the
decision maker’s subjective belief. This implies that two different distorted beliefs
will lead to the same utility cost if the a decision maker chooses the same policy
under both beliefs.

Last, our model belongs to the vast literature on biases in belief updating (see
Benjamin 2019 for a review). It is noteworthy, however, that we do not incorporate
cognitive biases into an agent’s belief updating process as a primitive. While a player

2One exception we notice is Bénabou (2013), where a group of agents can choose how to interpret
public signals about future prospects.
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in our model can misread the objective signal she receives, she follows the Bayes’
rule to form her posterior belief based on her perception, or subjective interpretation,
of a signal.

3.2 Model
The players in this model, denoted as 𝑖 = 1, 2, are two decision makers from the
same ideological group. They need to individually make a policy choice, 𝑎𝑖 ∈ {𝑙, 𝑟},
in a world with an uncertain state. Specifically, the state of the world 𝜔 is either Left
(𝐿) or Right (𝑅), with P(𝜔 = 𝑅) = 𝜃 > 1

2 . That is, the players share a common prior
in favor of 𝑅. Both players, before making their policy choice, receive a private
signal 𝑠𝑖 ∈ {𝐿̂, 𝑅̂} that is positively correlated with the true state. Specifically, we
assume that P(𝑠𝑖 = 𝐿̂ |𝜔 = 𝐿) = P(𝑠𝑖 = 𝑅̂ |𝜔 = 𝑅) = 𝑞 > 𝜃. We further assume that
the signals are conditionally independent.

A key assumption that distinguishes our model from the above standard setup is that
a player can choose how to interpret the evidence at hand. Formally, let 𝑠𝑖 ∈ {𝐿̂, 𝑅̂}
denote Player 𝑖’s subjective signal, or her interpretation of the (objective) signal.
In words, a decision maker can either perceive her objective signal as its literal
meaning, or misread it in the opposite direction. The motivation behind possible
misinterpretation of a signal is that members from the same group would like to
share a similar outlook on the world, which is formalized in the following subsection.

Utilities and the Maximization Problem
A player’s utility in this game consists of two components. First, as in a standard
model of individual decision making under incomplete information, we assume
that a player gets a positive payoff when her policy choice matches the state and 0
otherwise, i.e., 𝑢(𝑎𝑖 = 𝑙 |𝜔 = 𝐿) = 𝑢(𝑎𝑖 = 𝑟 |𝜔 = 𝑅) = 𝛿 > 0 and 𝑢(𝑎𝑖 = 𝑙 |𝜔 = 𝑅) =
𝑢(𝑎𝑖 = 𝑟 |𝜔 = 𝐿) = 0. Note that 𝛿 represents the significance of choosing the correct
policy. Moreover, a player suffers a utility loss when her posterior belief, induced
by her subjective signal 𝑠𝑖, is different from the other player’s subjective posterior
belief. Formally, given 𝑗 ∈ {1, 2} such that 𝑗 ≠ 𝑖, let 𝑣𝑖 (𝑝𝑖 [𝑠𝑖], 𝑝 𝑗 ) = −(𝑝𝑖 − 𝑝 𝑗 )2,
where 𝑝𝑖 [𝑠𝑖] = P(𝜔 = 𝑅 |𝑠𝑖 = 𝑠𝑖); that is, 𝑝𝑖 [𝑠𝑖] denotes the (posterior) probability
that 𝜔 = 𝑅 induced by 𝑠𝑖. Player 𝑖 experiences a quadratic utility loss from the
distance between the subjective posterior beliefs of the two players.

To capture the tension between the motivation for conformity and the motivation for
being accurate behind belief updating, we impose a further assumption on a player’s
actions. We require a player’s policy choice to be consistent with her subjective
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posterior belief. Formally, we assume that 𝑎𝑖 = arg max𝑎∈{𝑙,𝑟} [(1 − 𝑝𝑖 [𝑠𝑖])𝑢(𝑎 |𝜔 =

𝐿) + 𝑝𝑖 [𝑠𝑖]𝑢(𝑎 |𝜔 = 𝑅)] (given Player 𝑖’s subjective signal 𝑠𝑖). In words, a player’s
policy choice maximizes her expected payoff, calculated based on her subjective
belief, at the final decision-making stage. Given the symmetric payoff structure,
the induced policy 𝑎𝑖 would be 𝑟 when 𝑝𝑖 [𝑠𝑖] ≥ 1

2 or 𝑠𝑖 = 𝑅̂, and 𝑎𝑖 = 𝑙 when
𝑝𝑖 [𝑠𝑖] < 1

2 or 𝑠𝑖 = 𝐿̂. This assumption reflects the scenario when a decision maker
can only remember her (mis)interpretation of the information she receives instead
of the content of the information upon the timing of decision making, or when a
decision maker incurs a huge mental cost if her choice cannot be rationalized by the
belief she forms.

Given the above assumption and Player 𝑗’s strategy
(
𝑠 𝑗 (𝑠 𝑗 = 𝑅̂), 𝑠 𝑗 (𝑠 𝑗 = 𝐿̂)

)
, we

specify Player 𝑖’s maximization problem as follows:

max
𝑠𝑖∈{𝐿̂,𝑅̂}

− P(𝑠 𝑗 = 𝑅̂ |𝜃)
(
𝑝𝑖 [𝑠𝑖] − 𝑝 𝑗 [𝑠 𝑗 (𝑠 𝑗 = 𝑅̂)]

)2 − P(𝑠 𝑗 = 𝐿̂ |𝜃)
(
𝑝𝑖 [𝑠𝑖] − 𝑝 𝑗 [𝑠 𝑗 (𝑠 𝑗 = 𝐿̂)]

)2

+ P(𝜔 = 𝑅 |𝑠𝑖) · 𝛿I{𝑝𝑖 [𝑠𝑖]≥ 1
2 }
+ P(𝜔 = 𝐿 |𝑠𝑖) · 𝛿I{𝑝𝑖 [𝑠𝑖]< 1

2 }
(★)

The first two terms in the objective function describe a player’s expected utility
(loss) derived from the gap between two players’ beliefs. We assume that a player’s
belief about the signal received by her partner is induced by her prior belief.3 The
idea is that, before interpreting a signal, an individual does not have information
other than her current belief to update her evaluation of the likelihood of the other’s
signal. Thus, the expected utility are calculated using probabilities conditional only
on the prior 𝜃 but not the objective signal 𝑠𝑖. Given that the prior is in favor of
the state 𝑅, a player believes that her partner is more likely to receive signal 𝑅̂. As
such, if both players do not misread the signal that is aligned with their prior, this
assumption would generate a direct incentive to exhibit confirmatory bias for being
more likely to share the same belief.

The last two terms describe a player’s expected payoff from policy choice, which
corresponds to the standard individual optimization problem with incomplete infor-
mation. This expected payoff is calculated using the objective posterior probabilities,
and thus represents the cost of distorting the meaning of a signal. This captures
the intuition that, when an individual makes an interpretation of a signal, she may
(consciously or subconsciously) realize that misinterpretation can lower her payoff

3In this paper, we term a player’s opponent partner to emphasize that two players come from the
same social group.
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since she will choose a policy that is less likely to be optimal. As a result, there
is a tension between conforming to another group member’s belief and interpreting
a signal accurately. Note that the expected utility terms from belief distance are
dominated when 𝛿 goes to infinity, and the maximization problem is essentially
reduced to the standard scenario.

Bayesian Game
The above model setup can be summarized as a static Bayesian game (Gibbons,
1992):

• Players: 𝑖 ∈ {1, 2}

• Action space: 𝑆𝑖 = {𝐿̂, 𝑅̂}.

• Type space: 𝑆𝑖 = {𝐿̂, 𝑅̂}.

• Beliefs (about 𝑗’s type): 𝑃𝑟𝑖 (𝑠 𝑗 = 𝑅̂) = 𝜃𝑞 + (1 − 𝜃) (1 − 𝑞); 𝑃𝑟𝑖 (𝑠 𝑗 = 𝐿̂) =
𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞.

• Utility:

– 𝑈𝑖 (𝑠𝑖 = 𝑅̂, 𝑠 𝑗 = 𝑅̂; 𝑠𝑖 = 𝐿̂) = 𝜃 (1−𝑞)
𝜃 (1−𝑞)+(1−𝜃)𝑞 𝛿

– 𝑈𝑖 (𝑠𝑖 = 𝑅̂, 𝑠 𝑗 = 𝐿̂; 𝑠𝑖 = 𝐿̂) = −( 𝜃𝑞

𝜃𝑞+(1−𝜃) (1−𝑞)−
𝜃 (1−𝑞)

𝜃 (1−𝑞)+(1−𝜃)𝑞 )
2+ 𝜃 (1−𝑞)

𝜃 (1−𝑞)+(1−𝜃)𝑞 𝛿

– 𝑈𝑖 (𝑠𝑖 = 𝐿̂, 𝑠 𝑗 = 𝐿̂; 𝑠𝑖 = 𝐿̂) = (1−𝜃)𝑞
𝜃 (1−𝑞)+(1−𝜃)𝑞 𝛿

– 𝑈𝑖 (𝑠𝑖 = 𝐿̂, 𝑠 𝑗 = 𝑅̂; 𝑠𝑖 = 𝐿̂) = −( 𝜃𝑞

𝜃𝑞+(1−𝜃) (1−𝑞)−
𝜃 (1−𝑞)

𝜃 (1−𝑞)+(1−𝜃)𝑞 )
2+ (1−𝜃)𝑞

𝜃 (1−𝑞)+(1−𝜃)𝑞 𝛿

– 𝑈𝑖 (𝑠𝑖 = 𝑅̂, 𝑠 𝑗 = 𝑅̂; 𝑠𝑖 = 𝑅̂) = 𝜃𝑞

𝜃𝑞+(1−𝜃) (1−𝑞) 𝛿

– 𝑈𝑖 (𝑠𝑖 = 𝑅̂, 𝑠 𝑗 = 𝐿̂; 𝑠𝑖 = 𝑅̂) = −( 𝜃𝑞

𝜃𝑞+(1−𝜃) (1−𝑞)−
𝜃 (1−𝑞)

𝜃 (1−𝑞)+(1−𝜃)𝑞 )
2+ 𝜃𝑞

𝜃𝑞+(1−𝜃) (1−𝑞) 𝛿

– 𝑈𝑖 (𝑠𝑖 = 𝐿̂, 𝑠 𝑗 = 𝐿̂; 𝑠𝑖 = 𝑅̂) = (1−𝜃) (1−𝑞)
𝜃𝑞+(1−𝜃) (1−𝑞) 𝛿

– 𝑈𝑖 (𝑠𝑖 = 𝐿̂, 𝑠 𝑗 = 𝑅̂; 𝑠𝑖 = 𝑅̂) = −( 𝜃𝑞

𝜃𝑞+(1−𝜃) (1−𝑞)−
𝜃 (1−𝑞)

𝜃 (1−𝑞)+(1−𝜃)𝑞 )
2+ (1−𝜃) (1−𝑞)

𝜃𝑞+(1−𝜃) (1−𝑞) 𝛿

Note that 𝜃𝑞

𝜃𝑞+(1−𝜃) (1−𝑞) −
𝜃 (1−𝑞)

𝜃 (1−𝑞)+(1−𝜃)𝑞 = 𝑃𝑟 (𝜔 = 𝑅 |𝑅̂) − 𝑃𝑟 (𝜔 = 𝑅 | 𝐿̂). Thus,
( 𝜃𝑞

𝜃𝑞+(1−𝜃) (1−𝑞) −
𝜃 (1−𝑞)

𝜃 (1−𝑞)+(1−𝜃)𝑞 )
2 is the utility loss for a player not having the same

interpretation of a signal as the other.
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3.3 Bayesian Updating Equilibrium and Confirmatory Bias Equilibrium
Given the symmetry of the game, we focus on two types of symmetric (pure-strategy)
Bayesian Nash Equilibria in the following analyses:

1. Bayesian Updating Equilibrium (BUE): 𝑠𝑖 (𝑅̂) = 𝑠 𝑗 (𝑅̂) = 𝑅̂ and 𝑠𝑖 ( 𝐿̂) =

𝑠 𝑗 ( 𝐿̂) = 𝐿̂. In this equilibrium, both players always correctly interpret a
signal and thus act as Bayesian rational agents.

2. Confirmatory Bias Equilibrium (CBE): 𝑠𝑖 (𝑅̂) = 𝑠 𝑗 (𝑅̂) = 𝑠𝑖 ( 𝐿̂) = 𝑠 𝑗 ( 𝐿̂) = 𝑅̂.
In this equilibrium, both players always perceive a signal as supporting their
prior belief and thus exhibit confirmatory bias.

Bayesian Updating Equilibrium (BUE)
We first characterize the conditions under which a Bayesian Updating Equilibrium
can be sustained. Given that Player 𝑗’s strategy is

(
𝑠 𝑗 (𝑅̂) = 𝑅̂, 𝑠 𝑗 ( 𝐿̂) = 𝐿̂

)
(i.e.,

suppose 𝑗 acts Bayesian rationally), Player 𝑖 will correctly interpret the signal when
it confirms her current belief (i.e., 𝑠𝑖 (𝑅̂) = 𝑅̂ is Player 𝑖’s best response) if and only
if

− (𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)
(

𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)2

+ 𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) 𝛿

≥ − (𝜃𝑞 + (1 − 𝜃) (1 − 𝑞))
(

𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)2

+ (1 − 𝜃) (1 − 𝑞)
𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) 𝛿

⇐⇒
(

𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)2
(2𝜃 − 1) (2𝑞 − 1)

≥ 1 − 𝜃 − 𝑞
𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) 𝛿

Note that under the assumption of 𝜃 ∈ (0.5, 1) and 𝑞 ∈ (𝜃, 1), the above inequality
always holds.4 Intuitively, since misinterpreting a confirming signal not only reduces
the probability of selecting the optimal policy but also increases the likelihood of
misaligned beliefs between the two players, there is no reason for a player to misread
signal 𝑅̂.

4 (2𝜃 − 1) (2𝑞 − 1) > 0 > 1−𝜃−𝑞
𝜃𝑞+(1−𝜃 ) (1−𝑞) for every 𝜃 ∈ (0.5, 1) and 𝑞 ∈ (𝜃, 1).
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Alternatively, when Player 𝑖’s signal conflicts with her current belief, she will
correctly interpret it (i.e., 𝑠𝑖 ( 𝐿̂) = 𝐿̂ is Player 𝑖’s best response) if and only if

− (𝜃𝑞 + (1 − 𝜃) (1 − 𝑞))
(

𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)2

+ (1 − 𝜃)𝑞
𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞 𝛿

≥ − (𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)
(

𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)2

+ 𝜃 (1 − 𝑞)
𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞 𝛿

⇐⇒
(

𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)2
(2𝜃 − 1) (2𝑞 − 1)

≤ 𝑞 − 𝜃
𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞 𝛿 (3.1)

The left hand side of inequality (3.1) is the benefit from conforming to the belief
that the other player is more likely to hold. The term (2𝜃 − 1) (2𝑞 − 1) comes from
the fact that, if a player views conflicting evidence as confirming evidence, (she
believes that) the probability that she has a different belief from the other player will
decrease by (𝜃𝑞 + (1 − 𝜃) (1 − 𝑞)) − (𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞) = (2𝜃 − 1) (2𝑞 − 1).

The right hand side of inequality (3.1) is the gain from implementing the policy
that is more likely to match the state because of correct interpretation of conflicting
evidence. Compared to misreading 𝐿̂ as 𝑅̂, taking 𝐿̂ as 𝐿̂ and making a policy choice
accordingly increases the probability of choosing the optimal policy by 𝑞−𝜃

𝜃 (1−𝑞)+(1−𝜃)𝑞 .
If the expected gain from choosing a better policy exceeds the potential utility loss
from two players making misaligned interpretations of their signals, a player will
not have enough motivation to exhibit confirmatory bias when her partner does
not distort the meaning of objective signals. Note that inequality (3.1) is also
the condition under which an individual, in our model setup, does not exhibit
confirmatory bias when she believes that the other decision maker is a non-strategic
Bayesian rational agent.

Confirmatory Bias Equilibrium (CBE)
We now turn to characterize the conditions under which a Confirmatory Bias Equi-
librium can be sustained. Given that Player 𝑗’s strategy is

(
𝑠 𝑗 (𝑅̂) = 𝑅̂, 𝑠 𝑗 ( 𝐿̂) = 𝑅̂

)
(i.e., suppose 𝑗 exhibits confirmatory bias), 𝑠𝑖 (𝑅̂) = 𝑅̂ is Player 𝑖’s best response if
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and only if

𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) 𝛿 ≥ −
(

𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)2

+ (1 − 𝜃) (1 − 𝑞)
𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) 𝛿

⇐⇒
(

𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)2
≥ 1 − 𝜃 − 𝑞
𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) 𝛿

Again, when the objective signal a player receives is consistent with her prior (i.e.,
𝑠𝑖 = 𝑅̂), she does not misinterpret the signal for sure. Otherwise, the player will
hold a different belief from her partner and get a lower expected payoff from her
policy choice.

Alternatively, when the signal does not support Player 𝑖’s current belief, she will
misinterpret it (i.e., 𝑠𝑖 ( 𝐿̂) = 𝑅̂ is Player 𝑖’s best response) if and only if

𝜃 (1 − 𝑞)
𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞 𝛿 ≥ −

(
𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)2

+ (1 − 𝜃)𝑞
𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞 𝛿

⇐⇒
(

𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)2
≥ 𝑞 − 𝜃
𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞 𝛿

(3.2)

Notice that the above inequality does not involve a player’s belief about her partner’s
type (i.e., the objective signal her partner gets) since how the other player interprets
a signal does not depend on his type—a signal is always interpreted as confirming
the prior. As a result, unlike the equilibrium condition for a BUE (i.e., inequality
(3.1)), the utility loss term for two players’ misaligned beliefs, ( 𝜃𝑞

𝜃𝑞+(1−𝜃) (1−𝑞) −
𝜃 (1−𝑞)

𝜃 (1−𝑞)+(1−𝜃)𝑞 )
2, is not multiplied by the difference in a player’s beliefs about her

partner’s type, (2𝜃 − 1) (2𝑞 − 1), in the equilibrium condition for a CBE (i.e,
inequality (3.2)).

inequality (3.2) shows that, when a player exhibits confirmatory bias, the other
player will also exhibit confirmatory bias if the expected gain from choosing a
better policy is less than the certain utility loss from two players making misaligned
interpretations of their signals. Note that inequality (3.2) is also the condition
under which an individual, in our model setup, exhibits confirmatory bias when she
believes that the other decision maker is a non-strategic agent who has confirmatory
bias due to other intrinsic motivations.
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Before we proceed to the properties of the BUE and CBE, it is noteworthy that
inequality (3.1) and (3.2) cannot be violated at the same time given 𝜃 ∈ (0.5, 1)
and 𝑞 ∈ (𝜃, 1). Thus, the existence of the equilibria is guaranteed under our model
setup, as summarized in Theorem 1.

Theorem 1. For 𝜃 ∈ (0.5, 1) and 𝑞 ∈ (𝜃, 1), there always exists either a BUE or a
CBE (or both).

Proof. See Appendix B. □

Some Properties of BUE and CBE
In this subsection, we derive some properties of the Bayesian Updating Equilibrium
and Confirmatory Bias Equilibrium with respect to the strength of prior belief (𝜃) and
the precision of a signal (𝑞). To preview the main result, we show that confirmatory
bias is more likely to occur as players hold a more extreme prior belief, in the
sense that the BUE (CBE, resp.) can only be sustained when 𝜃 is below (above,
resp.) some threshold value. Nevertheless, the impact of a signal’s precision on
the occurrence of confirmatory bias is ambiguous. We will have a more detailed
discussion on the effect of 𝑞 in the next subsection about comparative statics.

Before we start the derivation of properties of equilibria, we define the following
two functions:

𝑓 (𝜃, 𝑞, 𝛿) =
(

𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)2
(2𝜃 − 1) (2𝑞 − 1)

− 𝑞 − 𝜃
𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞 𝛿

𝑔(𝜃, 𝑞, 𝛿) =
(

𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)2
− 𝑞 − 𝜃
𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞 𝛿

The functions 𝑓 (·) and 𝑔(·) correspond to the equilibrium condition for BUE and
CBE, respectively. The BUE is supported if and only if 𝑓 (·) ≤ 0, and the CBE is
supported if and only if 𝑔(·) ≥ 0.

We first consider the case when 𝛿 ≥ 1, that is, when the payoff from a policy choice
is relatively large. Proposition 1 shows that, when 𝛿 ≥ 1, a BUE can be sustained if
and only if the prior belief is not too extreme.

Proposition 1. If 𝛿 ≥ 1, then given any 𝑞 ∈ (0.5, 1), there exists 𝜃𝐵𝑈𝐸
𝑞,𝛿

∈ (0.5, 𝑞)
such that a BUE is supported iff 𝜃 ≤ 𝜃𝐵𝑈𝐸

𝑞,𝛿
.
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Proof. The proof can be completed in three steps:

1. 𝑓 (𝜃 = 0.5, 𝑞, 𝛿) < 0.

2. 𝑓 (𝜃 = 𝑞, 𝑞, 𝛿) > 0.

3. When 𝛿 ≥ 1, 𝜕
𝜕𝜃
𝑓 (𝜃, 𝑞, 𝛿) > 0 for 𝜃 ∈ (0.5, 1).

Thus, given some 𝛿 ≥ 1 and 𝑞 ∈ (0.5, 1), 𝑓 (·; 𝑞, 𝛿) only has one root in (0.5, 𝑞),
and 𝑓 (𝜃′, 𝑞, 𝛿) ≤ 0 iff 𝜃′ is less than or equal to that root given 𝜃′ ∈ (0.5, 𝑞).

For a complete proof, see Appendix B. □

At first glance, the above result seems straightforward. Given 𝑠𝑖 = 𝐿̂, on the one
hand, the instrumental value of a signal as captured by 𝑞−𝜃

𝜃 (1−𝑞)+(1−𝜃)𝑞 𝛿 decreases in
𝜃. On the other hand, a player believes that the likelihood that two players’ posterior
beliefs are misaligned, characterized by (2𝜃 − 1) (2𝑞 − 1), increases in 𝜃 if both
players correctly interpret their signals. This argument seems to suggest that the
benefit of deviating from a BUE must be increasing in 𝜃 (i.e., 𝜕

𝜕𝜃
𝑓 (𝜃, 𝑞, 𝛿) > 0), and

therefore a BUE cannot be supported by a large 𝜃.

Nevertheless, notice that the utility loss from a failure in the coordination in posterior
beliefs, characterized by ( 𝜃𝑞

𝜃𝑞+(1−𝜃) (1−𝑞) −
𝜃 (1−𝑞)

𝜃 (1−𝑞)+(1−𝜃)𝑞 )
2, decreases in 𝜃. The reason

is that, if two players have different interpretations of a signal, their posteriors will
be more dispersed when their common prior is less extreme. As a consequence, it is
unclear whether the gain of deviating from a BUE and exhibiting confirmatory bias
(i.e., the left hand side of inequality (3.1)) increases or decreases in the strength of
prior. The above sketch of the proof of Proposition 1 shows that, when 𝛿 ≥ 1, the
benefit of deviation from a BUE is indeed increasing in 𝜃.

Parallel to Proposition 1, Proposition 2 shows that, when 𝛿 ≥ 1, a CBE can be
sustained if and only if the prior belief is extreme enough.

Proposition 2. If 𝛿 ≥ 1, then given any 𝑞 ∈ (0.5, 1), there exists 𝜃𝐶𝐵𝐸
𝑞,𝛿

∈ (0.5, 𝑞)
such that a CBE is supported iff 𝜃 ≥ 𝜃𝐶𝐵𝐸

𝑞,𝛿
.

Proof. The proof can be completed in three steps.

1. 𝑔(𝜃 = 0.5, 𝑞, 𝛿) < 0.

2. 𝑔(𝜃 = 𝑞, 𝑞, 𝛿) > 0.
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3. 𝜕
𝜕𝜃
𝑔(𝜃, 𝑞, 𝛿) > 0.

Thus, given some 𝛿 ≥ 1 and 𝑞 ∈ (0.5, 1), 𝑔(·; 𝑞, 𝛿) only has one root in (0.5, 𝑞),
and 𝑔(𝜃′, 𝑞, 𝛿) ≥ 0 iff 𝜃′ is greater than or equal to that root given 𝜃′ ∈ (0.5, 𝑞).

For a complete proof, see Appendix B. □

From previous discussion, we know that both the instrumental value of a signal and
the distance between two misaligned posterior beliefs decrease in 𝜃. The proof of
Proposition 2 indicates that, when 𝛿 ≥ 1, the change in a signal’s instrumental value
is more dominant.

We then turn to the properties of equilibria with respect to the accuracy of a signal.
Proposition 3 shows that, when 𝛿 ≥ 1, a BUE can be sustained if and only if a signal
is accurate enough.

Proposition 3. If 𝛿 ≥ 1, then given any 𝜃 ∈ (0.5, 1), there exists 𝑞𝐵𝑈𝐸
𝜃,𝛿

∈ (𝜃, 1) such
that a BUE is supported iff 𝑞 ≥ 𝑞𝐵𝑈𝐸

𝜃,𝛿
.

Proof. The proof can be completed in three steps:

1. 𝑓 (𝜃, 𝑞 = 𝜃, 𝛿) > 0.

2. 𝑓 (𝜃, 𝑞 = 1, 𝛿) < 0.

3. When 𝛿 ≥ 1, 𝜕
𝜕𝑞
𝑓 (𝜃, 𝑞, 𝛿) < 0 for 𝑞 ∈ (0.5, 1).

Thus, given some 𝛿 ≥ 1 and 𝜃 ∈ (0.5, 1), 𝑓 (·; 𝜃, 𝛿) only has one root in (𝜃, 1), and
𝑓 (𝜃, 𝑞′, 𝛿) ≤ 0 iff 𝑞′ is greater than or equal to that root given 𝑞′ ∈ (𝜃, 1).

For a complete proof, see Appendix B. □

Note that the instrumental value of a signal ( 𝑞−𝜃
𝜃 (1−𝑞)+(1−𝜃)𝑞 𝛿), the likelihood that the

players’ posterior beliefs are misaligned ((2𝜃 −1) (2𝑞−1)), and the utility loss from
two players having misaligned beliefs (( 𝜃𝑞

𝜃𝑞+(1−𝜃) (1−𝑞) −
𝜃 (1−𝑞)

𝜃 (1−𝑞)+(1−𝜃)𝑞 )
2) all increase

in 𝑞. The above sketch of the proof of Proposition 3 shows that, when 𝛿 ≥ 1, a
change in a signal’s instrumental value caused by an increase in 𝑞 is more dominant
than the change in the product of the other two terms (i.e., the left hand side of
inequality (3.1)).

Parallel to Proposition 3, Proposition 4 shows that, when 𝛿 ≥ 1, a CBE can be
sustained if and only if a signal is not too accurate.
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Proposition 4. If 𝛿 ≥ 1, then given any 𝜃 ∈ (0.5, 1), there exists 𝑞𝐶𝐵𝐸
𝜃,𝛿

∈ (𝜃, 1) such
that a CBE is supported iff 𝑞 ≤ 𝑞𝐶𝐵𝐸

𝜃,𝛿
.

Proof. The proof can be completed in four steps:

1. 𝑔(𝜃, 𝑞 = 𝜃, 𝛿) > 0.

2. 𝑔(𝜃, 𝑞 = 1, 𝛿) < 0.

3. When 𝛿 = 2, 𝜕
𝜕𝑞
𝑔(𝜃, 𝑞, 𝛿) < 0. Thus, 𝜕

𝜕𝑞
𝑔(𝜃, 𝑞, 𝛿) < 0 for 𝛿 ≥ 2.

4. We can further show that, given any 𝛿 ∈ [1, 2] and 𝜃 ∈ (0.5, 1), 𝑔(·; 𝜃, 𝛿) only
has one (real) root in (𝜃, 1).

Thus, given some 𝛿 ≥ 1 and 𝜃 ∈ (0.5, 1), 𝑔(·; 𝜃, 𝛿) only has one root in (𝜃, 1), and
𝑔(𝜃, 𝑞′, 𝛿) ≥ 0 iff 𝑞′ is less than or equal to that root given 𝑞′ ∈ (𝜃, 1).

For a complete proof, see Appendix B. □

As we have mentioned above, both a signal’s instrumental value and the utility
loss from belief misalignment increase in 𝑞. If the payoff from policy choice is
sufficiently large, the change in the loss from belief misalignment will be dominated.
However, this cannot be guaranteed under the assumption that 𝛿 ≥ 1. In other words,
𝜕
𝜕𝑞
𝑔(𝜃, 𝑞, 𝛿) may be positive when 𝛿 is close to one.5 The above sketch of the proof

of Proposition 4 reveals that, if the value of 𝑞 is already above the threshold 𝑞𝐶𝐵𝐸
𝜃,𝛿

such that a CBE cannot be sustained, the increase in the utility loss from belief
misalignment caused by an increase in 𝑞 will not be large enough to offset the
difference between this utility loss term and the instrumental value of a signal.

Next we explore the properties of BUE and CBE for the case when 𝛿 ∈ (0, 1), that
is, when the payoff from policy choice is relatively small. Proposition 5 shows that,
when 𝛿 ∈ (0, 1), there still exists a threshold of 𝜃 above which a BUE cannot be
sustained. In other words, the result of Proposition 1 holds regardless of the value
of 𝛿.

Proposition 5. If 𝛿 ∈ (0, 1), then given any 𝑞 ∈ (0.5, 1), there exists 𝜃𝐵𝑈𝐸
𝑞,𝛿

∈ (0.5, 𝑞)
such that a BUE is supported iff 𝜃 ≤ 𝜃𝐵𝑈𝐸

𝑞,𝛿
.

Proof. The proof can be completed in three steps:
5For instance, given 𝛿 = 1.05 and 𝜃 = 0.55, 𝜕

𝜕𝑞
𝑔(𝜃, 𝑞, 𝛿) is positive when 𝑞 is in (0.7953, 1).
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1. 𝑓 (𝜃 = 0.5, 𝑞, 𝛿) < 0.

2. 𝑓 (𝜃 = 𝑞, 𝑞, 𝛿) > 0.

3. We can (numerically) show that, given any 𝛿 ∈ (0, 1) and 𝑞 ∈ (0.5, 1),
𝜕
𝜕𝜃
𝑓 (𝜃0, 𝑞, 𝛿) > 0 for 𝜃0 ∈ (0.5, 𝑞) such that 𝑓 (𝜃0, 𝑞, 𝛿) = 0.

Thus, given some 𝛿 ∈ (0, 1) and 𝑞 ∈ (0.5, 1), 𝑓 (·; 𝑞, 𝛿) only has one root in (0.5, 𝑞),
and 𝑓 (𝜃′, 𝑞, 𝛿) ≤ 0 iff 𝜃′ is less than or equal to that root given 𝜃′ ∈ (0.5, 𝑞).

For a complete proof, see Appendix B. □

Unlike the proof of Proposition 1, 𝜕
𝜕𝜃
𝑓 (𝜃, 𝑞, 𝛿) is not necessarily greater than 0

when 𝛿 ∈ (0, 1).6 Note that the impact of the payoff from policy choice is limited
when 𝛿 is small. Thus, when 𝛿 ∈ (0, 1), a player’s utility is mainly determined by
(a player’s belief about) the likelihood that the players’ beliefs are misaligned, and
the utility loss from such belief misalignment. The above sketch of the proof of
Proposition 5 reveals that, as the value of 𝜃 changes around the threshold, the change
in the likelihood term (i.e., (2𝜃 − 1) (2𝑞 − 1)) dominates the change in the utility
loss term. Moreover, although 𝜕

𝜕𝜃
𝑓 (𝜃, 𝑞, 𝛿) may become negative as 𝜃 increases

and approaches 𝑞, the above proposition suggests that the decrease in the utility loss
from belief misalignment will not be large enough to offset the benefit of deviating
from a BUE as long as 𝜃 ≥ 𝜃𝐵𝑈𝐸

𝑞,𝛿
.

The next proposition indicates that, if 𝛿 ∈ (0, 1), then the equilibrium condition for
a CBE (i.e., inequality (3.2)) will always hold given that 𝑞 is sufficiently large.

Proposition 6. Given any 𝛿 ∈ (0, 1), there exists 𝑞𝐶𝐵𝐸
𝛿

∈ (0.5, 1) such that a CBE
is supported by all 𝜃 ∈ (0.5, 𝑞′′) when 𝑞′′ ≥ 𝑞𝐶𝐵𝐸

𝛿
.

Proof. We can show that, when 𝛿 ∈ (0, 1), 𝑔(𝜃, 𝑞, 𝛿) is greater than 0 for all
𝑞 ∈ [ 1+𝛿

2 , 1] given any 𝜃 ∈ (0.5, 1) by showing that

1. 𝑔(𝜃, 𝑞 = 1+𝛿
2 , 𝛿) > 0.

2. 𝜕
𝜕𝑞
𝑔(𝜃, 𝑞, 𝛿) > 0 for 𝑞 ∈ [ 1+𝛿

2 , 1].

Thus, 𝑔(𝜃, 𝑞, 𝛿) > 0 for 𝑞 ∈ [ 1+𝛿
2 , 1].

For a complete proof, see Appendix B. □

6For instance, given 𝛿 = 0.1 and 𝑞 = 0.9, 𝜕
𝜕𝜃
𝑓 (𝜃, 𝑞, 𝛿) is negative when 𝜃 is in (0.8282, 0.9).
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Proposition 6 suggests that, when 𝛿 is relatively small, a highly accurate signal may
actually facilitate the occurrence of confirmatory bias. In words, if the payoff from
policy choice is insignificant and the objective signal is accurate enough, the benefit
from having the same belief as the other player will always dominate the payoff from
policy choice, and a player who believes that her partner is exhibiting confirmatory
bias will also exhibit confirmatory bias no matter how the prior is distributed. Note
that, contrary to the result derived above, Proposition 4 indicates that a CBE is not
sustainable under a large 𝑞 when 𝛿 ≥ 1. We defer the further discussion about how
the impact of 𝑞 on the existence of confirmatory bias depends on the size of 𝛿 to the
next subsection of comparative statics.

The last proposition in this subsection shows that, when 𝛿 ∈ (0, 1) and given that
𝑞 is small enough, a CBE can be sustained if and only if the prior belief if extreme
enough.

Proposition 7. If 𝛿 ∈ (0, 1), then given any 𝑞 ∈ (0.5, 1+𝛿
2 ), there exists 𝜃𝐶𝐵𝐸

𝑞,𝛿
∈

(0.5, 𝑞) such that a CBE is supported iff 𝜃 ≥ 𝜃𝐶𝐵𝐸
𝑞,𝛿

.

Proof. The proof can be completed in three steps.

1. 𝑔(𝜃 = 0.5, 𝑞, 𝛿) < 0.

2. 𝑔(𝜃 = 𝑞, 𝑞, 𝛿) > 0.

3. 𝜕
𝜕𝜃
𝑔(𝜃, 𝑞, 𝛿) > 0 when 𝑞 ∈ (0.5, 1+𝛿

2 ).

Thus, given some 𝛿 ≥ 1 and 𝑞 ∈ (0.5, 1), 𝑔(·; 𝑞, 𝛿) only has one root in (0.5, 𝑞),
and 𝑔(𝜃′, 𝑞, 𝛿) ≥ 0 iff 𝜃′ is greater than or equal to that root given 𝜃′ ∈ (0.5, 𝑞).

For a complete proof, see Appendix B. □

The result and the proof of Proposition 7 are parallel to Proposition 2, with the
exception that the statement in Proposition 7 holds only when the accuracy of a
signal is below some threshold. The above sketch of proof reveals that, when
𝛿 ∈ (0, 1), the change in a signal’s instrumental value induced by an increase
in 𝜃 will still be more dominant than the change in the utility loss from belief
misalignment if 𝑞 < 1+𝛿

2 .

Theorem 2 summarizes the main result in this subsection and characterizes the
relationship between the strength of prior belief (𝜃) and the existence of a BUE and
a CBE.
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Theorem 2. Given some 𝛿 > 0. For any 𝑞 ∈ (0.5, 1+𝛿
2 ), there exist 𝜃𝑞,𝛿 and 𝜃

¯ 𝑞,𝛿
where 0.5 < 𝜃

¯ 𝑞,𝛿
< 𝜃𝑞,𝛿 < 1 such that

1. only a BUE is supported when 𝜃 ∈ (0.5, 𝜃
¯ 𝑞,𝛿

);

2. only a CBE is supported when 𝜃 ∈ (𝜃𝑞,𝛿, 1);

3. both a BUE and a CBE are supported when 𝜃 ∈ (𝜃
¯ 𝑞,𝛿

, 𝜃𝑞,𝛿).

Proof. Follows from Theorem 1, Proposition 1, 2, 5, 6, and 7. □

In words, given that the accuracy of a signal is moderate (below 1+𝛿
2 ), there are two

thresholds of 𝜃 (depending on 𝑞 and 𝛿), 𝜃
¯𝑞,𝛿

and 𝜃𝑞,𝛿, that divide the parameter
space into three regions. When the prior is moderate (i.e., 𝜃 is less than 𝜃

¯𝑞,𝛿
), a

confirmatory bias equilibrium cannot be sustained and a player always correctly
interprets an objective signal. As the prior becomes more skewed towards state
𝑅 but not too extreme (i.e., 𝜃 is between 𝜃

¯𝑞,𝛿
and 𝜃𝑞,𝛿), both a confirmatory bias

equilibrium and a Bayesian updating equilibrium can be sustained, and whether a
player will exhibit confirmatory bias is determined by her belief about the partner’s
strategy. When the prior is extreme (i.e., 𝜃 is above 𝜃𝑞,𝛿), a Bayesian updating
equilibrium cannot be sustained and a player always interprets an objective signal as
in favor of her current belief. Therefore, the above result suggests that the occurrence
of confirmatory bias is positively associated with the extremeness of the players’
prior belief.

Comparative Statics
In this subsection, we consider how the set of parameters that support a BUE or a
CBE changes in response to changes in the skewness of the prior (𝜃) and the accuracy
of an objective signal (𝑞). In other words, we examine whether an equilibrium is
easier to be sustained under a higher or a lower value of 𝜃 and 𝑞.

Proposition 8 shows that a BUE (CBE, resp.) is easier to be supported by a smaller
(larger, resp.) 𝜃.

Proposition 8. Given any 𝜃 ∈ (0.5, 1), let BUE𝜃 ≡ {(𝑞, 𝛿) :
(

𝜃𝑞

𝜃𝑞+(1−𝜃) (1−𝑞) −
𝜃 (1−𝑞)

𝜃 (1−𝑞)+(1−𝜃)𝑞

)2
(2𝜃−

1) (2𝑞 − 1) ≤ 𝑞−𝜃
𝜃 (1−𝑞)+(1−𝜃𝑞) 𝛿 | 𝑞 ∈ (𝜃, 1), 𝛿 ∈ (0,∞)}, then BUE𝜃′′ ⊆ BUE𝜃′ for

all 𝜃′ ≤ 𝜃′′. Alternatively, let CBE𝜃 ≡ {(𝑞, 𝛿) :
(

𝜃𝑞

𝜃𝑞+(1−𝜃) (1−𝑞) −
𝜃 (1−𝑞)

𝜃 (1−𝑞)+(1−𝜃)𝑞

)2
≥

𝑞−𝜃
𝜃 (1−𝑞)+(1−𝜃𝑞) 𝛿 | 𝑞 ∈ (𝜃, 1), 𝛿 ∈ (0,∞)}, then ({(𝑞, 𝛿) : 𝑞 > 𝜃′′} ∩ CBE𝜃′) ⊆ CBE𝜃′′
for all 𝜃′ ≤ 𝜃′′.
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Proof. This proposition follows from Proposition 1, 2, 5, 6, and 7.

When a triple of parameters (𝜃, 𝑞, 𝛿) can support a BUE, by Proposition 1 and 5, we
have 𝜃 ≤ 𝜃𝐵𝑈𝐸

𝑞,𝛿
; furthermore, Proposition 1 and 5 imply that (𝜃0, 𝑞, 𝛿) also supports

a BUE given any 𝜃0 ≤ 𝜃, since 𝜃0 ≤ 𝜃𝐵𝑈𝐸
𝑞,𝛿

.

When a tuple of parameters (𝜃, 𝑞, 𝛿) can support a CBE, there are two possible
cases. First, if 𝛿 ∈ (0, 1) and 𝑞 ∈ [ 1+𝛿

2 , 1], then by Proposition 6, we know that
(𝜃0, 𝑞, 𝛿) also supports a CBE given any 𝜃0 ∈ (0.5, 𝑞). Otherwise, by Proposition
2 and 7, we have 𝜃 ≥ 𝜃𝐶𝐵𝐸

𝑞,𝛿
; furthermore, Proposition 2 and 7 imply that (𝜃0, 𝑞, 𝛿)

also supports a CBE given any 𝜃0 ∈ (𝜃, 𝑞), since 𝜃0 ≥ 𝜃𝐶𝐵𝐸
𝑞,𝛿

. □

In words, the above proposition reveals that, with fixed (𝑞, 𝛿), a BUE being sustain-
able under a given strength of prior implies that it is also sustainable under a weaker
prior. Alternatively, if a CBE can be sustained under a given strength of prior,
then it is also sustainable under a stronger prior. Note that this proposition directly
follows from the results in the previous subsection. Therefore, it can be viewed as
another way to characterize the fact that a larger 𝜃 will facilitate the occurrence of
confirmatory bias.

Proposition 9 shows that a BUE (CBE, resp.) is easier to be supported by a smaller
𝑞 given a small (large, resp.) 𝛿, whereas it is easier to be supported by a larger 𝑞
given a large (small, resp.) 𝛿.

Proposition 9. Given 𝑞 ∈ (0.5, 1), let BUE𝑞 ≡ {(𝜃, 𝛿) :
(

𝜃𝑞

𝜃𝑞+(1−𝜃) (1−𝑞) −
𝜃 (1−𝑞)

𝜃 (1−𝑞)+(1−𝜃)𝑞

)2
(2𝜃−

1) (2𝑞 − 1) ≤ 𝑞−𝜃
𝜃 (1−𝑞)+(1−𝜃𝑞) 𝛿 | 𝜃 ∈ (0.5, 𝑞), 𝛿 ∈ (0,∞)}. Given 𝑞′ and 𝑞′′ such that

𝑞′ ≤ 𝑞′′, there exists 𝛿𝐵𝑈𝐸
𝑞′,𝑞′′ > 0 such that

1. (𝜃, 𝛿) ∈ BUE𝑞′′ =⇒ (𝜃, 𝛿) ∈ BUE𝑞′ for all 𝛿 ∈ (0, 𝛿𝐵𝑈𝐸
𝑞′,𝑞′′);

2. (𝜃, 𝛿) ∈ BUE𝑞′ =⇒ (𝜃, 𝛿) ∈ BUE𝑞′′ for all 𝛿 ∈ (𝛿𝐵𝑈𝐸
𝑞′,𝑞′′ ,∞).

Alternatively, given 𝑞 ∈ (0.5, 1), let CBE𝑞 ≡ {(𝜃, 𝛿) :
(

𝜃𝑞

𝜃𝑞+(1−𝜃) (1−𝑞) −
𝜃 (1−𝑞)

𝜃 (1−𝑞)+(1−𝜃)𝑞

)2
≥

𝑞−𝜃
𝜃 (1−𝑞)+(1−𝜃𝑞) 𝛿 | 𝜃 ∈ (0.5, 𝑞), 𝛿 ∈ (0,∞)}. Given 𝑞′ and 𝑞′′ such that 𝑞′ ≤ 𝑞′′, there
exists 𝛿𝐶𝐵𝐸

𝑞′,𝑞′′ > 0 such that

1. (𝜃, 𝛿) ∈ CBE𝑞′ =⇒ (𝜃, 𝛿) ∈ CBE𝑞′′ for all 𝛿 ∈ (0, 𝛿𝐶𝐵𝐸
𝑞′,𝑞′′);

2. (𝜃, 𝛿) ∈ CBE𝑞′′ =⇒ (𝜃, 𝛿) ∈ CBE𝑞′ for all 𝛿 ∈ (𝛿𝐶𝐵𝐸
𝑞′,𝑞′′ ,∞).
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Proof. See Appendix B. □

We can formally illustrate the intuition behind the above proposition with the partial
derivative of 𝑓 (𝜃, 𝑞, 𝛿) and 𝑔(𝜃, 𝑞, 𝛿) with respect to 𝑞. Recall that a BUE can be
sustained when 𝑓 (𝜃, 𝑞, 𝛿) ≤ 0 and a CBE can be sustained when 𝑔(𝜃, 𝑞, 𝛿) ≥ 0.
Moreover, it can be shown that

𝜕

𝜕𝑞
𝑓 (𝜃, 𝑞, 𝛿) = 2(2𝜃 − 1)

[(
𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)2
+

(2𝑞 − 1)
(

𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)
·

𝜃 (1 − 𝜃)
(

1
(𝜃𝑞 + (1 − 𝜃) (1 − 𝑞))2 + 1

(𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)2

)]
− 2𝜃 (1 − 𝜃)

(𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)2 𝛿

and

𝜕

𝜕𝑞
𝑔(𝜃, 𝑞, 𝛿) = 2𝜃 (1 − 𝜃)

[(
𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)
·(

1
(𝜃𝑞 + (1 − 𝜃) (1 − 𝑞))2 + 1

(𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)2

)]
− 2𝜃 (1 − 𝜃)

(𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)2 𝛿

Note that, in both 𝜕
𝜕𝑞
𝑓 (𝜃, 𝑞, 𝛿) and 𝜕

𝜕𝑞
𝑔(𝜃, 𝑞, 𝛿), the first term (i.e., the term fol-

lowed by a minus sign) is positive while the second term (i.e., − 2𝜃 (1−𝜃)
(𝜃 (1−𝑞)+(1−𝜃)𝑞)2 𝛿) is

negative. When 𝛿 is small, 𝜕
𝜕𝑞
𝑓 (𝜃, 𝑞, 𝛿) and 𝜕

𝜕𝑞
𝑔(𝜃, 𝑞, 𝛿) are greater than 0; thus, a

BUE is easier to be supported by a smaller 𝑞 and a CBE is easier to be supported
by a larger 𝑞. Alternatively, when 𝛿 is large, 𝜕

𝜕𝑞
𝑓 (𝜃, 𝑞, 𝛿) and 𝜕

𝜕𝑞
𝑔(𝜃, 𝑞, 𝛿) are less

than 0, which implies that a BUE is easier to be supported by a larger 𝑞 and a CBE
is easier to be supported by a smaller 𝑞 in this case.

The above proposition, again, highlights the trade-off between correctly interpreting
an objective signal (and choosing the optimal policy accordingly) and having the
same beliefs as the other player. When 𝑞 is large (i.e., the objective signal is
accurate), the instrumental value of a signal is relatively large; however, the distance
between the posteriors induced by different signals is also large. If 𝛿 is small, the
disutility from having opposite beliefs as the other will overwhelm the (expected)
gain from choosing the policy matching an objective signal.
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We notice that there is empirical evidence indicating that, on aggregate, the credi-
bility of information source does not have a significant impact on how individuals
interpret the information. Nyhan and Reifler (2010) find that, in their experiment,
news source manipulation has a null effect on how a subject perceives the infor-
mation that tries to correct the subject’s misperceptions about political events. Our
model suggests that such finding may arise from the heterogeneity in people’s per-
ceptions about the importance of those events or about whether their choices really
matter in determining the final policy outcome.

3.4 Extensions
In this section, we consider two extensions of the basic model developed in Section
3. First, we consider the scenario in which there are more than two members in
a group. Second, we discuss the case in which a player uses the objective signal
she receives to form her belief about her partner’s type (i.e., the likelihood of her
partner’s objective signal) before she interprets the signal.

Group Size
In this subsection, we explore how the group size affects the equilibrium conditions.
Formally, assume that there are 𝑁 players (i.e., 𝑖 ∈ {1, 2, ..., 𝑁}), where 𝑁 > 2. For
simplicity of exposition, we further assume that 𝑁 is even (so that 𝑁 − 1 is odd).
Player 𝑖 will, in addition to the payoff from policy choice, experience a quadratic
utility loss from the distance between her subjective belief (induced by 𝑠𝑖) and the
median of her partners’ subjective beliefs. In other words, a player will suffer a
utility loss of ( 𝜃𝑞

𝜃𝑞+(1−𝜃) (1−𝑞) −
𝜃 (1−𝑞)

𝜃 (1−𝑞)+(1−𝜃)𝑞 )
2 if her subjective posterior belief differs

from the posterior belief that the majority of the other players hold. Note that the
baseline model with 𝑁 = 2 is a special case of this setup.

As in the previous section, we focus on Bayesian Updating Equilibrium (BUE) and
Confirmatory Bias Equilibrium (CBE). Notice that the equilibrium condition for a
CBE (i.e., inequality (3.2)) does not change with the group size. Suppose that the
players except Player 𝑖 always interpret an objective signal as the supporting one
(i.e., 𝑠 𝑗 (𝑠 𝑗 ) = 𝑅̂ for all 𝑗 ≠ 𝑖 and for all 𝑠 𝑗 ), Player 𝑖 will suffer the utility loss
from belief misalignment −( 𝜃𝑞

𝜃𝑞+(1−𝜃) (1−𝑞) −
𝜃 (1−𝑞)

𝜃 (1−𝑞)+(1−𝜃)𝑞 )
2 for sure if she chooses

to correctly interpret the objective signal that contradicts the prior belief. As a
result, when 𝑠𝑖 = 𝐿̂, Player 𝑖 faces the same trade-off as characterized in Section 3.2
between having the same posterior belief with the majority for sure and correctly
interpreting the signal, which induces a policy choice that is more likely to match
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the true state.

However, if players never misread their signals, then the likelihood (derived from
a player’s belief about others’ types) that the majority receives 𝑅̂ will change in
the group size. Thus, the equilibrium condition for a BUE will be different as 𝑁
changes. For example, when 𝑁 = 4, Player 𝑖 believes that the probability that the
median posterior belief of the other players is induced by 𝑅̂ is equal to

𝑃𝑟𝑖 (𝑠 𝑗 = 𝑅̂ ∀ 𝑗 ≠ 𝑖) + 𝑃𝑟𝑖 (𝑠 𝑗1 = 𝑅̂, 𝑠 𝑗2 = 𝑅̂, 𝑠 𝑗3 = 𝐿̂ for 𝑗𝑘 ≠ 𝑖 for all 𝑘 and 𝑗𝑘 ≠ 𝑗𝑙 for all 𝑘, 𝑙)
= (𝜃𝑞 + (1 − 𝜃) (1 − 𝑞))3 + 3(𝜃𝑞 + (1 − 𝜃) (1 − 𝑞))2(𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)

Let 𝜆 ≡ 𝜃𝑞 + (1 − 𝜃) (1 − 𝑞). Then a BUE can be sustained as an equilibrium if and
only if

− (𝜆3 + 3𝜆2(1 − 𝜆))
(

𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)2

+ (1 − 𝜃)𝑞
𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞 𝛿

≥ − ((1 − 𝜆)3 + 3(1 − 𝜆)2𝜆)
(

𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)2

+ 𝜃 (1 − 𝑞)
𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞 𝛿

⇐⇒ (2𝜃 − 1) (2𝑞 − 1) (1 + 2𝜆(1 − 𝜆))
(

𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)2

≤ 𝑞 − 𝜃
𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞 𝛿

Note that the LHS of the above inequality is greater than the LHS of inequality
(3.1), which implies that a BUE is harder to be supported when the group size is
four instead of two.

In general, as the group size is 2𝑘 (𝑘 ∈ N), the equilibrium condition for a BUE
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becomes

− ©­«
𝑘−1∑︁
𝑗=0

(
2𝑘 − 1
𝑗

)
𝜆2𝑘−1− 𝑗 (1 − 𝜆) 𝑗ª®¬

(
𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)2

+ (1 − 𝜃)𝑞
𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞 𝛿

≥ − ©­«1 − ©­«
𝑘−1∑︁
𝑗=0

(
2𝑘 − 1
𝑗

)
𝜆2𝑘−1− 𝑗 (1 − 𝜆) 𝑗ª®¬ª®¬

(
𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)2
+

𝜃 (1 − 𝑞)
𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞 𝛿

⇐⇒ ©­«2 ©­«
𝑘−1∑︁
𝑗=0

(
2𝑘 − 1
𝑗

)
𝜆2𝑘−1− 𝑗 (1 − 𝜆) 𝑗ª®¬ − 1ª®¬

(
𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)2

≤ 𝑞 − 𝜃
𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞 𝛿

The following proposition shows that the LHS of the above inequality is increasing
in 𝑘 .

Proposition 10. Given 𝜆 ∈ (0.5, 1), let 𝑓𝜆 (𝑘) = 2
(∑𝑘−1

𝑗=0
(2𝑘−1

𝑗

)
𝜆2𝑘−1− 𝑗 (1 − 𝜆) 𝑗

)
−1.

Then 𝑓𝜆 (𝑘 + 1) − 𝑓𝜆 (𝑘) > 0 for all 𝑘 ∈ N and 𝜆 ∈ (0.5, 1).

Proof. See Appendix B. □

In words, Proposition 10 reveals that, in general, a BUE becomes harder to be
sustained as the group size 𝑁 increases. Since the equilibrium condition for a CBE
does not change in 𝑁 , this result suggests that confirmatory bias becomes more
likely to occur as a group expands. This finding is consistent with the intuition that,
in a larger group, an individual is more willing to conform to the belief that is shared
by the majority of the group, since he/she has more interaction opportunities with
other group members and (thus) faces greater peer pressure.

Belief about the Partner’s Type
In our basic model, we assume that a player’s belief about her partner’s type, or her
partner’s (objective) signal 𝑠 𝑗 , is purely induced by the common prior belief and is
not dependent on the player’s own objective signal 𝑠𝑖. This assumption accounts
for the idea that an individual does not use the evidence at hand to update her
belief about the state before she interprets the evidence. However, a caveat of this
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assumption is that it leads to inconsistency between a player’s belief about the other
player’s type and the probability of the true state adopted to evaluate the expected
policy payoff, which is conditional on 𝑠𝑖. Hence, in this subsection, we discuss how
the equilibrium conditions will change if we allow Player 𝑖’s belief about Player 𝑗’s
type to depend on 𝑠𝑖.

Formally, when Player 𝑖’s belief about her partner’s type depends on both 𝜃 and 𝑠𝑖,
given Player 𝑗’s strategy

(
𝑠 𝑗 (𝑠 𝑗 = 𝑅̂), 𝑠 𝑗 (𝑠 𝑗 = 𝐿̂)

)
, Player 𝑖’s maximization problem

can be rewritten as:

max
𝑠𝑖∈{𝐿̂,𝑅̂}

− P(𝑠 𝑗 = 𝑅̂ |𝑠𝑖; 𝜃)
(
𝑝𝑖 [𝑠𝑖] − 𝑝 𝑗 [𝑠 𝑗 (𝑠 𝑗 = 𝑅̂)]

)2 − P(𝑠 𝑗 = 𝐿̂ |𝑠𝑖; 𝜃)
(
𝑝𝑖 [𝑠𝑖] − 𝑝 𝑗 [𝑠 𝑗 (𝑠 𝑗 = 𝐿̂)]

)2

+ P(𝜔 = 𝑅 |𝑠𝑖) · 𝛿I{𝑝𝑖 [𝑠𝑖]≥ 1
2 }
+ P(𝜔 = 𝐿 |𝑠𝑖) · 𝛿I{𝑝𝑖 [𝑠𝑖]< 1

2 }

where P(𝑠 𝑗 = 𝑅̂ |𝑠𝑖; 𝜃) = P(𝜔 = 𝑅 |𝑠𝑖)𝑞 + P(𝜔 = 𝐿 |𝑠𝑖) (1 − 𝑞) and P(𝑠 𝑗 = 𝐿̂ |𝑠𝑖; 𝜃) =
P(𝜔 = 𝑅 |𝑠𝑖) (1 − 𝑞) + P(𝜔 = 𝐿 |𝑠𝑖)𝑞.

We first consider the equilibrium condition for a BUE. Under the assumption of
𝑞 > 𝜃, both P(𝜔 = 𝑅 |𝑠𝑖 = 𝑅̂) and P(𝜔 = 𝐿 |𝑠𝑖 = 𝐿̂) are greater than one half,
which implies that P(𝑠 𝑗 = 𝑅̂ |𝑠𝑖 = 𝑅̂; 𝜃) > 1

2 and P(𝑠 𝑗 = 𝐿̂ |𝑠𝑖 = 𝐿̂; 𝜃) > 1
2 . Thus,

if Player 𝑗 always correctly interprets his objective signal (i.e., 𝑠 𝑗 (𝑠 𝑗 ) = 𝑠 𝑗 for
𝑠 𝑗 = 𝑅̂, 𝐿̂), Player 𝑖 will never have an incentive to misinterpret 𝑠𝑖 as well, since she
will have a higher probability of both forming the same posterior belief as the other
player and choosing the optimal policy when following the literal meaning of 𝑠𝑖.
This implies that, when a player’s belief about the objective signal received by her
partner depends on 𝑠𝑖, a BUE can be sustained for all 𝜃 ∈ (0.5, 1) and 𝑞 ∈ (𝜃, 1).

It is noteworthy, however, that the equilibrium condition for a CBE remains the
same under this new assumption. Given that Player 𝑗 always interprets his signal as
supporting evidence (i.e., 𝑠 𝑗 (𝑠 𝑗 ) = 𝑅̂ for 𝑠 𝑗 = 𝑅̂, 𝐿̂), Player 𝑖 clearly has no incentive
to misinterpret her objective signal when 𝑠𝑖 = 𝑅̂. Moreover, when 𝑠𝑖 = 𝐿̂, Player
𝑖 will have a different posterior belief from Player 𝑗 with certainty under correct
interpretation of 𝑠𝑖, regardless of how Player 𝑖’s belief about 𝑗’s type is established.
As a result, Player 𝑖’s best response is to interpret conflicting evidence as supporting
one as well if (and only if) the utility loss from belief misalignment is greater than
the expected gain from choosing a policy that is more likely to match the state, that

is,
(

𝜃𝑞

𝜃𝑞+(1−𝜃) (1−𝑞) −
𝜃 (1−𝑞)

𝜃 (1−𝑞)+(1−𝜃)𝑞

)2
≥ 𝑞−𝜃

𝜃 (1−𝑞)+(1−𝜃𝑞) 𝛿, which is the same as inequality
(3.2). This result implies that the properties and comparative statics related to a CBE
in the basic model also hold under the assumption that a player’s belief about the
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partner’s type depends on 𝑠𝑖, and thus demonstrates the robustness of our findings
in the previous section.

3.5 Conclusion
In this paper, we demonstrate how conformity in beliefs can lead to confirmatory bias
in a strategic interaction environment. We build our model upon a standard decision-
making model under incomplete information in which two agents individually update
their belief about the binary state of nature after receiving a (binary) signal and make
a policy choice accordingly. We incorporate the elements of strategic interaction by
(i) introducing a cost from misaligned posterior beliefs between the agents to their
utility, and (ii) allowing an agent to manipulate the interpretation of a binary signal.

Specifically, in our setup, an agent’s perception of a signal need not be the same
as the signal’s literal meaning. When observing a signal that conflicts with the
(asymmetric) common prior, an agent has to trade off between correctly perceiving
the signal to get higher expected reward from policy choice, and misinterpreting
the signal as in consistent with the prior to increase the likelihood that two agents’
posteriors are aligned. We study how such trade-off is affected by the strength of
the prior and the quality of an information source.

Under this framework, we show that a stronger prior belief about the world will facil-
itate the emergence of confirmatory bias. The intuition is that the instrumental value
of a signal decreases as the prior becomes more biased, and the incentive to correctly
interpret the signal will eventually be dominated by the incentive to conform to the
majority belief. This result is consistent with previous empirical works studying
political polarization which report the backfire effect of information—providing
information that is inconsistent with an individual’s viewpoint may prompt the
individual to exhibit more polarized belief.

In addition, we find that an increase in the accuracy of the information source does
not necessarily alleviate confirmatory bias. The reason is that the distance between
(and thus the loss associated with) misaligned posterior beliefs induced by opposite
signals goes up as a signal becomes more accurate. As a result, when the policy
choice is relatively unimportant, the high accuracy of a signal could increase an
individual’s tendency to misinterpret conflicting evidence. This finding suggests
that exposing individuals to opposing views may not be an effective way to reduce
political polarization, even if the information source is of high quality.

We finish by noting several model extensions that are worth further investigation.
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First, in our current model, the disutility term from belief misalignment is a quadratic
loss from the distance between two players’ posterior beliefs. A reasonable ro-
bustness check is to explore whether our findings still hold under a more general
assumption on the form of disutility term (e.g., a concave function). Second, to
capture conformity in a group, the players in our model are homogeneous—they
share a common prior belief and have the same utility function. It may be interesting
to introduce heterogeneity into the environment. For instance, we can consider the
interaction between two ideological groups, each of which prefers to form a belief
that is distanced from the other group’s ideology. Such heterogeneity may provide
further insights on the origin and dynamics of political polarization.
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A p p e n d i x A

PROOFS FOR CHAPTER 2

A.1 Omitted Proofs of General Properties
Proof of Lemma 1
By definition 1, for any (𝜇, 𝜎) ∈ Ψ𝜒, any history ℎ𝑡−1, any player 𝑖 and any type
profile 𝜃 = (𝜃𝑖, 𝜃−𝑖),∑︁

𝜃′−𝑖

𝜇𝑖 (𝜃′−𝑖 |ℎ𝑡−1, 𝜃𝑖) [𝜒𝜎̄−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃𝑖) + (1 − 𝜒)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃′−𝑖)]

= 𝜒


∑︁
𝜃′−𝑖

𝜇𝑖 (𝜃′−𝑖 |ℎ𝑡−1, 𝜃𝑖)
︸                     ︷︷                     ︸

=1

𝜎̄−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃𝑖) + (1 − 𝜒)

∑︁
𝜃′−𝑖

𝜇𝑖 (𝜃′−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃′−𝑖)
︸                                             ︷︷                                             ︸

=𝜎̄−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1,𝜃𝑖)

= 𝜎̄−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃𝑖).

Therefore, since (𝜇, 𝜎) ∈ Ψ𝜒, with some rearrangement, it follows that

𝜇𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) =
𝜇𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎𝜒−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃−𝑖, 𝜃𝑖)∑

𝜃′−𝑖∈Θ−𝑖 𝜇𝑖 (𝜃′−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎𝜒−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃′−𝑖, 𝜃𝑖)

=
𝜇𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖) [𝜒𝜎̄−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃𝑖) + (1 − 𝜒)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃−𝑖)]

𝜎̄−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃𝑖)

= 𝜒𝜇𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖) + (1 − 𝜒)
[

𝜇𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃−𝑖)∑
𝜃′−𝑖
𝜇𝑖 (𝜃′−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃′−𝑖)

]
. ■

Proof of Proposition 1
The proof is similar to the proof for sequential equilibrium and proceeds in three
steps. First, for any finite multi-stage games with observed actions, Γ, we construct
an 𝜖-perturbed game Γ𝜖 that is identical to Γ but every player in every information
set has to play any available action with probability at least 𝜖 . Second, we defined a
cursed best-response correspondence for Γ𝜖 and prove that the correspondence has a
fixed point by Kakutani’s fixed point theorem. Finally, in step 3, we use a sequence
of fixed points in perturbed games, with 𝜖 converging to 0, where the limit of this
sequence is a 𝜒-CSE.

Step 1: Let Γ𝜖 be a game identical to Γ but for each player 𝑖 ∈ 𝑁 , player 𝑖 must play



any available action in every information set I𝑖 = (𝜃𝑖, ℎ𝑡) with probability at least 𝜖
where 𝜖 < 1∑𝑛

𝑗=1 |𝐴 𝑗 | . Let Σ𝜖 = ×𝑛
𝑗=1Σ

𝜖
𝑗

be set of feasible behavioral strategy profiles
for players in the perturbed game Γ𝜖 . For any behavioral strategy profile 𝜎 ∈ Σ𝜖 ,
let 𝜇𝜒 (·) ≡ (𝜇𝜒

𝑖
(·))𝑛

𝑖=1 be the belief system induced by 𝜎 via 𝜒-cursed Bayes’ rule.
That is, for each player 𝑖 ∈ 𝑁 , information set I𝑖 = (𝜃𝑖, ℎ𝑡) where ℎ𝑡 = (ℎ𝑡−1, 𝑎𝑡) and
type profile 𝜃−𝑖 ∈ Θ−𝑖,

𝜇
𝜒

𝑖
(𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) = 𝜒𝜇

𝜒

𝑖
(𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖) + (1 − 𝜒)

[
𝜇
𝜒

𝑖
(𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃−𝑖)∑

𝜃′−𝑖∈Θ−𝑖 𝜇
𝜒

𝑖
(𝜃′−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃′−𝑖)

]
.

Notice that the 𝜒-cursed Bayes’ rule is only defined on the family of multi-stage
games with observed actions. As 𝜎 is fully mixed, the belief system is uniquely
pinned down.

Finally, let 𝐵𝜖 : Σ𝜖 ⇒ Σ𝜖 be the cursed best response correspondence which maps
any behavioral strategy profile 𝜎 ∈ Σ𝜖 to the set of 𝜖-constrained behavioral strategy
profiles 𝜎̃ ∈ Σ𝜖 that are best replies given the belief system 𝜇𝜒 (·).

Step 2: Next, fix any 0 < 𝜖 < 1∑𝑛
𝑗=1 |𝐴 𝑗 | and show that 𝐵𝜖 has a fixed point by

Kakutani’s fixed point theorem. We check the conditions of the theorem:

1. It is straightforward that Σ𝜖 is compact and convex.

2. For any 𝜎 ∈ Σ𝜖 , as 𝜇𝜒 (·) is uniquely pinned down by 𝜒-cursed Bayes’ rule, it
is straightforward that 𝐵𝜖 (𝜎) is non-empty and convex.

3. To verify that 𝐵𝜖 has a closed graph, take any sequence of 𝜖-constrained
behavioral strategy profiles {𝜎𝑘 }∞

𝑘=1 ⊆ Σ𝜖 such that 𝜎𝑘 → 𝜎 ∈ Σ𝜖 as 𝑘 → ∞,
and any sequence {𝜎̃𝑘 }∞

𝑘=1 such that 𝜎̃𝑘 ∈ 𝐵𝜖 (𝜎𝑘 ) for any 𝑘 and 𝜎̃𝑘 → 𝜎̃.
We want to prove that 𝜎̃ ∈ 𝐵𝜖 (𝜎).

Fix any player 𝑖 ∈ 𝑁 and information set I𝑖 = (𝜃𝑖, ℎ𝑡). For any 𝜎 ∈ Σ𝜖 , recall
that 𝜎𝜒−𝑖 (·) is player 𝑖’s 𝜒-cursed perceived behavioral strategies of other play-
ers induced by 𝜎. Specifically, for any type profile 𝜃 ∈ Θ, non-terminal
history ℎ𝑡−1 and action profile 𝑎𝑡−𝑖 ∈ 𝐴−𝑖 (ℎ𝑡−1), 𝜎𝜒−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃−𝑖, 𝜃𝑖) =

𝜒𝜎̄−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃𝑖) + (1 − 𝜒)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃−𝑖).

Additionally, recall that 𝜌𝜒
𝑖
(·) is player 𝑖’s belief about the terminal nodes

(conditional on the history and type profile), which is also induced by𝜎. Since
𝜇𝜒 (·) is continuous in 𝜎 we have that 𝜎𝜒−𝑖 (·) and 𝜌𝜒

𝑖
(·) are also continuous
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in 𝜎. We further define S𝑘
I𝑖 ≡

{
𝜎′
𝑖
∈ Σ𝜖

𝑖
: 𝜎′

𝑖
( · |I𝑖) = 𝜎̃𝑘𝑖 ( · |I𝑖)

}
and SI𝑖 ≡{

𝜎′
𝑖
∈ Σ𝜖

𝑖
: 𝜎′

𝑖
( · |I𝑖) = 𝜎̃𝑖 ( · |I𝑖)

}
. Since 𝜎̃𝑘 ∈ 𝐵𝜖 (𝜎𝑘 ), for any 𝜎′

𝑖
∈ Σ𝜖

𝑖
, we

can obtain that

max
𝜎′′
𝑖
∈S𝑘

I𝑖

{ ∑︁
𝜃−𝑖∈Θ−𝑖

∑︁
ℎ𝑇∈H𝑇

𝜇
𝜒

𝑖
[𝜎𝑘 ] (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖)𝜌𝜒𝑖 (ℎ

𝑇 |ℎ𝑡 , 𝜃, 𝜎𝜒−𝑖 [𝜎
𝑘 ], 𝜎′′

𝑖 )𝑢𝑖 (ℎ𝑇 , 𝜃𝑖, 𝜃−𝑖)
}

≥
∑︁

𝜃−𝑖∈Θ−𝑖

∑︁
ℎ𝑇∈H𝑇

𝜇
𝜒

𝑖
[𝜎𝑘 ] (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖)𝜌𝜒𝑖 (ℎ

𝑇 |ℎ𝑡 , 𝜃, 𝜎𝜒−𝑖 [𝜎
𝑘 ], 𝜎′

𝑖 )𝑢𝑖 (ℎ𝑇 , 𝜃𝑖, 𝜃−𝑖).

By continuity, as we take limits on both sides, we can find 𝜎̃ ∈ 𝐵𝜖 (𝜎) because

max
𝜎′′
𝑖
∈SI𝑖

{ ∑︁
𝜃−𝑖∈Θ−𝑖

∑︁
ℎ𝑇∈H𝑇

𝜇
𝜒

𝑖
[𝜎] (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖)𝜌𝜒𝑖 (ℎ

𝑇 |ℎ𝑡 , 𝜃, 𝜎𝜒−𝑖 [𝜎], 𝜎
′′
𝑖 )𝑢𝑖 (ℎ𝑇 , 𝜃𝑖, 𝜃−𝑖)

}
≥

∑︁
𝜃−𝑖∈Θ−𝑖

∑︁
ℎ𝑇∈H𝑇

𝜇
𝜒

𝑖
[𝜎] (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖)𝜌𝜒𝑖 (ℎ

𝑇 |ℎ𝑡 , 𝜃, 𝜎𝜒−𝑖 [𝜎], 𝜎
′
𝑖 )𝑢𝑖 (ℎ𝑇 , 𝜃𝑖, 𝜃−𝑖).

By Kakutani’s fixed point theorem, 𝐵𝜖 has a fixed point.

Step 3: For any 𝜖 , let 𝜎𝜖 be a fixed point of 𝐵𝜖 and 𝜇𝜖 be the belief system
induced by 𝜎𝜖 via 𝜒-cursed Bayes’ rule. We combine these two components and let
(𝜇𝜖 , 𝜎𝜖 ) be the induced assessment. We now consider a sequence of 𝜖 → 0, where
{(𝜇𝜖 , 𝜎𝜖 )} is the corresponding sequence of assessments. By compactness and
the finiteness of Γ, the Bolzano-Weierstrass theorem guarantees the existence of a
convergent subsequence of the assessments. As 𝜖 → 0, let (𝜇𝜖 , 𝜎𝜖 ) → (𝜇∗, 𝜎∗). By
construction, the limit assessment (𝜇∗, 𝜎∗) satisfies 𝜒-consistency and sequential
rationality. Hence, (𝜇∗, 𝜎∗) is a 𝜒-CSE. ■

Proof of Proposition 2
To prove Φ(𝜒) is upper hemi-continuous in 𝜒, consider any sequence of {𝜒𝑘 }∞𝑘=1
such that 𝜒𝑘 → 𝜒∗ ∈ [0, 1], and any sequence of CSE, {(𝜇𝑘 , 𝜎𝑘 )}, such that
(𝜇𝑘 , 𝜎𝑘 ) ∈ Φ(𝜒𝑘 ) for all 𝑘 . Let (𝜇∗, 𝜎∗) be the limit assessment, i.e., (𝜇𝑘 , 𝜎𝑘 ) →
(𝜇∗, 𝜎∗). We need to show that (𝜇∗, 𝜎∗) ∈ Φ(𝜒∗).

For simplicity, for any player 𝑖 ∈ 𝑁 , any information set I𝑖 = (ℎ𝑡 , 𝜃𝑖), any 𝜎′
𝑖
∈ Σ𝑖,

and any 𝜎 ∈ Σ, the expected payoff under the belief system 𝜇𝜒 (·) induced by 𝜎 is
denoted as:

E𝜇𝜒 [𝜎]
[
𝑢𝑖 (𝜎′

𝑖 , 𝜎−𝑖 |ℎ𝑡 , 𝜃𝑖)
]
≡

∑︁
𝜃−𝑖∈Θ−𝑖

∑︁
ℎ𝑇∈H𝑇

𝜇
𝜒

𝑖
(𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖)𝜌𝜒𝑖 (ℎ

𝑇 |ℎ𝑡 , 𝜃, 𝜎𝜒−𝑖, 𝜎
′
𝑖 )𝑢𝑖 (ℎ𝑇 , 𝜃𝑖, 𝜃−𝑖).
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Suppose (𝜇∗, 𝜎∗) ∉ Φ(𝜒∗). Then there exists some player 𝑖 ∈ 𝑁 , some information
set I𝑖 = (ℎ𝑡 , 𝜃𝑖), some 𝜎′

𝑖
∈ Σ𝑖, and some 𝜖 > 0 such that

E𝜇𝜒∗ [𝜎∗]
[
𝑢𝑖 (𝜎′

𝑖 , 𝜎
∗
−𝑖 |ℎ𝑡 , 𝜃𝑖)

]
− E𝜇𝜒∗ [𝜎∗]

[
𝑢𝑖 (𝜎∗

𝑖 , 𝜎
∗
−𝑖 |ℎ𝑡 , 𝜃𝑖)

]
> 𝜖. (A)

Since 𝜇𝜒 (·) is continuous in 𝜒, it follows that for any strategy profile 𝜎, 𝜎𝜒−𝑖 (·) and
𝜌
𝜒

𝑖
(·) are both continuous in 𝜒. Thus, there exists a sufficiently large 𝑀1 such that

for every 𝑘 ≥ 𝑀1,����E𝜇𝜒𝑘 [𝜎𝑘]
[
𝑢𝑖 (𝜎𝑘𝑖 , 𝜎𝑘−𝑖 |ℎ𝑡 , 𝜃𝑖)

]
− E𝜇𝜒∗ [𝜎∗]

[
𝑢𝑖 (𝜎∗

𝑖 , 𝜎
∗
−𝑖 |ℎ𝑡 , 𝜃𝑖)

] ���� < 𝜖

3
. (B)

Similarly, there exists a sufficiently large 𝑀2 such that for every 𝑘 ≥ 𝑀2,����E𝜇𝜒𝑘 [𝜎𝑘]
[
𝑢𝑖 (𝜎′

𝑖 , 𝜎
𝑘
−𝑖 |ℎ𝑡 , 𝜃𝑖)

]
− E𝜇𝜒∗ [𝜎∗]

[
𝑢𝑖 (𝜎′

𝑖 , 𝜎
∗
−𝑖 |ℎ𝑡 , 𝜃𝑖)

] ���� < 𝜖

3
. (C)

Therefore, for any 𝑘 ≥ max{𝑀1, 𝑀2}, inequalities (A), (B) and (C) imply:

E
𝜇𝜒

𝑘 [𝜎𝑘]
[
𝑢𝑖 (𝜎′

𝑖 , 𝜎
𝑘
−𝑖 |ℎ𝑡 , 𝜃𝑖)

]
− E

𝜇𝜒
𝑘 [𝜎𝑘]

[
𝑢𝑖 (𝜎𝑘𝑖 , 𝜎𝑘−𝑖 |ℎ𝑡 , 𝜃𝑖)

]
>
𝜖

3
,

implying that 𝜎′
𝑖

is a profitable deviation for player 𝑖 at information set I𝑖 = (ℎ𝑡 , 𝜃𝑖),
which contradicts (𝜇𝑘 , 𝜎𝑘 ) ∈ Φ(𝜒𝑘 ). Therefore, (𝜇∗, 𝜎∗) ∈ Φ(𝜒∗), as desired. ■

Proof of Proposition 3
Fix any 𝜒 ∈ [0, 1] and let (𝜇, 𝜎) be a 𝜒-consistent assessment. We prove the
result by contradiction. Suppose (𝜇, 𝜎) does not satisfy 𝜒-dampened updating
property. Then there exists 𝑖 ∈ 𝑁 , 𝜃 ∈ Θ and a non-terminal history ℎ𝑡 such that
𝜇𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) < 𝜒𝜇𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖).

Since (𝜇, 𝜎) is 𝜒-consistent, there exists a sequence {(𝜇𝑘 , 𝜎𝑘 )} ⊆ Ψ𝜒 such that
(𝜇𝑘 , 𝜎𝑘 ) → (𝜇, 𝜎) as 𝑘 → ∞. By Lemma 1, we know for this 𝑖, 𝜃 and ℎ𝑡 ,
𝜇𝑘
𝑖
(𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) equals to

𝜒𝜇𝑘𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖) + (1 − 𝜒)
[

𝜇𝑘
𝑖
(𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎𝑘−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃−𝑖)∑

𝜃′−𝑖
𝜇𝑘
𝑖
(𝜃′−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎𝑘−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃′−𝑖)

]
≥ 𝜒𝜇𝑘𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖).

There will be a contradiction as we take the limit 𝑘 → ∞ on both sides:

𝜇𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) = lim
𝑘→∞

𝜇𝑘𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) ≥ lim
𝑘→∞

𝜒𝜇𝑘𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖) = 𝜒𝜇𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖). ■
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Proof of Corollary 2
We prove the statement by induction on 𝑡. For 𝑡 = 1, by Proposition 3, 𝜇𝑖 (𝜃−𝑖 |ℎ1, 𝜃𝑖) ≥
𝜒𝜇𝑖 (𝜃−𝑖 |ℎ∅, 𝜃𝑖) = 𝜒F (𝜃−𝑖 |𝜃𝑖).Next, suppose there is 𝑡′ such that the statement holds
for all 1 ≤ 𝑡 ≤ 𝑡′ − 1. At stage 𝑡′, by Proposition 3 and the induction hypothesis, we
can find that

𝜇𝑖 (𝜃−𝑖 |ℎ𝑡
′
, 𝜃𝑖) ≥ 𝜒𝜇𝑖 (𝜃−𝑖 |ℎ𝑡

′−1, 𝜃𝑖) ≥ 𝜒

[
𝜒𝑡

′−1F (𝜃−𝑖 |𝜃𝑖)
]
= 𝜒𝑡

′F (𝜃−𝑖 |𝜃𝑖). ■

Proof of Proposition 5
Let the assessment (𝜇, 𝜎) be a pooling 𝜒-CSE. We want to show that for any 𝜒′ ≤ 𝜒,
the assessment (𝜇, 𝜎) is also a 𝜒′-CSE. Consider any non-terminal history ℎ𝑡−1, any
player 𝑖, any 𝑎𝑡

𝑖
∈ 𝐴𝑖 (ℎ𝑡−1) and any 𝜃 ∈ Θ. We can first observe that

𝜎̄−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃𝑖) =
∑︁
𝜃′−𝑖

𝜇𝑖 (𝜃′−𝑖 |ℎ𝑡−1, 𝜃𝑖)𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃′−𝑖)

= 𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃−𝑖)

∑︁
𝜃′−𝑖

𝜇𝑖 (𝜃′−𝑖 |ℎ𝑡−1, 𝜃𝑖)
 = 𝜎−𝑖 (𝑎𝑡−𝑖 |ℎ𝑡−1, 𝜃−𝑖)

where the second equality holds because 𝜎 is a pooling behavioral strategy profile,
so 𝜎−𝑖 is independent of other players’ types. For this pooling 𝜒-CSE, let 𝐺𝜎 be the
set of on-path histories and 𝐺̃𝜎 be the set of off-path histories. We can first show
that for every ℎ ∈ 𝐺𝜎, 𝑖 ∈ 𝑁 and 𝜃 ∈ Θ, 𝜇𝑖 (𝜃−𝑖 |ℎ, 𝜃𝑖) = F (𝜃−𝑖 |𝜃𝑖).

This can be shown by induction on 𝑡. For 𝑡 = 1, any ℎ1 = (ℎ∅, 𝑎1) and any 𝜃 ∈ Θ,
by Lemma 1, we can obtain that

𝜇𝑖 (𝜃−𝑖 |ℎ1, 𝜃𝑖) = 𝜒𝜇𝑖 (𝜃−𝑖 |ℎ∅, 𝜃𝑖) + (1 − 𝜒)
[
𝜇𝑖 (𝜃−𝑖 |ℎ∅, 𝜃𝑖)𝜎−𝑖 (𝑎1

−𝑖 |ℎ∅, 𝜃−𝑖)
𝜎̄−𝑖 (𝑎1

−𝑖 |ℎ∅, 𝜃𝑖)

]
= 𝜒F (𝜃−𝑖 |𝜃𝑖) + (1 − 𝜒)F (𝜃−𝑖 |𝜃𝑖)

[
𝜎−𝑖 (𝑎1

−𝑖 |ℎ∅, 𝜃−𝑖)
𝜎̄−𝑖 (𝑎1

−𝑖 |ℎ∅, 𝜃𝑖)

]
︸                  ︷︷                  ︸

=1

= F (𝜃−𝑖 |𝜃𝑖).

Now, suppose there is 𝑡′ such that the statement holds for 1 ≤ 𝑡 ≤ 𝑡′ − 1. At stage
𝑡′ and ℎ𝑡′ = (ℎ𝑡′−1, 𝑎𝑡

′) ∈ 𝐺𝜎, by Lemma 1 and the induction hypothesis, we can
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again obtain that the posterior belief is the prior belief

𝜇𝑖 (𝜃−𝑖 |ℎ𝑡
′
, 𝜃𝑖) = 𝜒𝜇𝑖 (𝜃−𝑖 |ℎ𝑡

′−1, 𝜃𝑖) + (1 − 𝜒)
[
𝜇𝑖 (𝜃−𝑖 |ℎ𝑡

′−1, 𝜃𝑖)𝜎−𝑖 (𝑎𝑡
′
−𝑖 |ℎ𝑡

′−1, 𝜃−𝑖)
𝜎̄−𝑖 (𝑎𝑡

′
−𝑖 |ℎ𝑡

′−1, 𝜃𝑖)

]
= 𝜒F (𝜃−𝑖 |𝜃𝑖) + (1 − 𝜒)F (𝜃−𝑖 |𝜃𝑖)

[
𝜎−𝑖 (𝑎𝑡

′
−𝑖 |ℎ𝑡

′−1, 𝜃−𝑖)
𝜎̄−𝑖 (𝑎𝑡

′
−𝑖 |ℎ𝑡

′−1, 𝜃𝑖)

]
︸                     ︷︷                     ︸

=1

= F (𝜃−𝑖 |𝜃𝑖).

Therefore, we have shown that players will not update their beliefs at every on-path
information set, so the belief system is independent of 𝜒. Finally, for any off-path
history ℎ𝑡 ∈ 𝐺̃𝜎, by Proposition 3, we can find that the belief system satisfies for
any 𝜃 ∈ Θ,

𝜇𝑖 (𝜃−𝑖 |ℎ𝑡 , 𝜃𝑖) ≥ 𝜒𝜇𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖) ≥ 𝜒′𝜇𝑖 (𝜃−𝑖 |ℎ𝑡−1, 𝜃𝑖),

implying that when 𝜒′ ≤ 𝜒, 𝜇 will still satisfy the dampened updating property.
Therefore, (𝜇, 𝜎) remains a 𝜒′-CSE. ■

A.2 Omitted Proofs of Section 2.4
Pooling Equilibria in Signaling Games
Proof of Claim 1 First observe that after player 1 chooses 𝐵, it is strictly optimal
for player 2 to choose 𝑅 for all beliefs 𝜇2(𝜃1 |𝐵), and after player 1 chooses 𝐴, it is
optimal for player 2 to choose 𝐿 if and only if

2𝜇2(𝜃1 |𝐴) + [1 − 𝜇2(𝜃1 |𝐴)] ≥ 4𝜇2(𝜃1 |𝐴) ⇐⇒ 𝜇2(𝜃1 |𝐴) ≤ 1/3.

Equilibrium 1.

If both types of player 1 choose 𝐴, then 𝜇2(𝜃1 |𝐴) = 1/4, so it is optimal for player
2 to choose 𝐿. Given 𝑎(𝐴) = 𝐿 and 𝑎(𝐵) = 𝑅, it is optimal for both types of player
1 to choose 𝐴 as 2 > 1. Hence 𝑚(𝜃1) = 𝑚(𝜃2) = 𝐴, 𝑎(𝐴) = 𝐿 and 𝑎(𝐵) = 𝑅 is a
pooling 𝜒-CSE for any 𝜒 ∈ [0, 1].

Equilibrium 2.

In order to support 𝑚(𝜃1) = 𝑚(𝜃2) = 𝐵 to be an equilibrium, player 2 has to choose
𝑅 at the off-path information set 𝐴, which is optimal if and only if 𝜇2(𝜃1 |𝐴) ≥ 1/3.
In addition, by Proposition 3, we know in a 𝜒-CSE, the belief system satisfies

𝜇2(𝜃2 |𝐴) ≥
3
4
𝜒 ⇐⇒ 𝜇2(𝜃1 |𝐴) ≤ 1 − 3

4
𝜒.
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Therefore, the belief system has to satisfy that 𝜇2(𝜃1 |𝐴) ∈
[ 1

3 , 1 − 3
4 𝜒

]
, which

requires 𝜒 ≤ 8/9.

Finally, it is straightforward to verify that for any 𝜇 ∈
[ 1

3 , 1 − 3
4 𝜒

]
, 𝜇2(𝜃1 |𝐴) = 𝜇

satisfies 𝜒-consistency. Suppose type 𝜃1 player 1 chooses 𝐴 with probability 𝑝

and type 𝜃2 player 1 chooses 𝐴 with probability 𝑞 where 𝑝, 𝑞 ∈ (0, 1). Given this
behavioral strategy profile for player 1, by Lemma 1, we have:

𝜇2(𝜃1 |𝐴) =
1
4
𝜒 + (1 − 𝜒)

[
𝑝

𝑝 + 3𝑞

]
.

In other words, as long as (𝑝, 𝑞) satisfies

𝑞 =

[
4 − 4𝜇 − 3𝜒

12 − 3𝜒

]
𝑝,

we can find that 𝜇2(𝜃1 |𝐴) = 𝜇. Therefore, if {(𝑝𝑘 , 𝑞𝑘 )} → (0, 0) such that

𝑞𝑘 =

[
4 − 4𝜇 − 3𝜒

12 − 3𝜒

]
𝑝𝑘 ,

then 𝜇𝑘2 (𝜃1 |𝐴) = 𝜇 for all 𝑘 . Hence, lim𝑘→∞ 𝜇𝑘2 (𝜃1 |𝐴) = 𝜇, suggesting that
𝜇2(𝜃1 |𝐴) = 𝜇 is indeed 𝜒-consistent. This completes the proof. ■

Proof of Proposition 6 Here we provide a characterization of 𝜒-CSE of Game 1
and Game 2. For the analysis of both games, we denote 𝜇𝐼 ≡ 𝜇2(𝜃1 |𝑚 = 𝐼) and
𝜇𝑆 ≡ 𝜇2(𝜃1 |𝑚 = 𝑆).

Analysis of Game BH 3.

At information set 𝑆, given 𝜇𝑆, the expected payoffs of 𝐶, 𝐷, 𝐸 are 90𝜇𝑆, 30− 15𝜇𝑆
and 15, respectively. Therefore, for any 𝜇𝑆, 𝐸 is never a best response. Moreover,
𝐶 is the best response if and only if 90𝜇𝑆 ≥ 30 − 15𝜇𝑆 or 𝜇𝑆 ≥ 2/7. Similarly, at
information set 𝐼, given 𝜇𝐼 , the expected payoffs of 𝐶, 𝐷, 𝐸 are 30, 45 − 45𝜇𝐼 and
15, respectively. Therefore, 𝐸 is strictly dominated, and 𝐶 is the best response if
and only if 30 ≥ 45 − 45𝜇𝐼 or 𝜇𝐼 ≥ 1/3. Now we consider four cases.

Case 1 [𝑚(𝜃1) = 𝐼, 𝑚(𝜃2) = 𝑆]:

By Lemma 1, 𝜇𝐼 = 1 − 𝜒/2 and 𝜇𝑆 = 𝜒/2. Moreover, since 𝜇𝐼 = 1 − 𝜒/2 ≥ 1/2
for any 𝜒, player 2 will choose 𝐶 at information set 𝐼. To support this equilibrium,
player 2 has to choose 𝐶 at information set 𝑆. In other words, [(𝐼, 𝑆); (𝐶,𝐶)] is
separating 𝜒-CSE if and only if 𝜇𝑆 ≥ 2/7 or 𝜒 ≥ 4/7.
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Case 2 [𝑚(𝜃1) = 𝑆, 𝑚(𝜃2) = 𝐼]:

By Lemma 1, 𝜇𝐼 = 𝜒/2 and 𝜇𝑆 = 1−𝜒/2. Because 𝜇𝑆 ≥ 1−𝜒/2 ≥ 1/2, it is optimal
for player 2 to choose 𝐶 at information set 𝑆. To support this as an equilibrium,
player 2 has to choose 𝐷 at information set 𝐼. Yet, in this case, type 𝜃2 player 1 will
deviate to 𝑆. Therefore, this profile cannot be supported as an equilibrium.

Case 3 [𝑚(𝜃1) = 𝐼, 𝑚(𝜃2) = 𝐼]:

Since player 1 follows a pooling strategy, player 2 will not update his belief at
information set 𝐼, i.e., 𝜇𝐼 = 1/2. 𝜒-dampened updating property implies 𝜒/2 ≤
𝜇𝑆 ≤ 1 − 𝜒/2. Since 𝜇𝐼 > 1/3, player 2 will choose 𝐶 at information set 𝐼. To
support this profile to be an equilibrium, player 2 has to choose 𝐷 at information set
𝑆, and hence, it must be the case that 𝜇𝑆 ≤ 2/7. Coupled with the requirement from
𝜒-dampened updating, the off-path belief has to satisfy 𝜒/2 ≤ 𝜇𝑆 ≤ 2/7. That is,
[(𝐼, 𝐼); (𝐶, 𝐷)] is pooling 𝜒-CSE if and only if 𝜒/2 ≤ 2/7 or 𝜒 ≤ 4/7.

Case 4 [𝑚(𝜃1) = 𝑆, 𝑚(𝜃2) = 𝑆]:

Similar to the previous case, since player 1 follows a pooling strategy, player 2 will
not update his belief at information set 𝑆, i.e., 𝜇𝑆 = 1/2. Also, the 𝜒-dampened
updating property suggests 𝜒/2 ≤ 𝜇𝐼 ≤ 1 − 𝜒/2. Because 𝜇𝑆 > 2/7, it is optimal
for player 2 to choose 𝐶 at information set 𝑆. To support this as an equilibrium,
player 2 has to choose 𝐷 at information set 𝐼. Therefore, it must be that 𝜇𝐼 ≤ 1/3.
Combined with the requirement of 𝜒-dampened updating, the off-path belief has to
satisfy 𝜒/2 ≤ 𝜇𝐼 ≤ 1/3. As a result, [(𝑆, 𝑆); (𝐷,𝐶)] is a pooling 𝜒-CSE if and
only if 𝜒 ≤ 2/3.

Analysis of Game BH 4.

At information set 𝐼, given 𝜇𝐼 , the expected payoffs of 𝐶, 𝐷, 𝐸 are 30, 45 − 45𝜇𝐼
and 35𝜇𝐼 . Hence, 𝐷 is the best response if and only if 𝜇𝐼 ≤ 1/3 while 𝐸 is the best
response if 𝜇𝐼 ≥ 6/7. For 1/3 ≤ 𝜇𝐼 ≤ 6/7, 𝐶 is the best response. On the other
hand, since player 2’s payoffs at information set 𝑆 are the same as in Game 1, player
2 will adopt the same decision rule—player 2 will choose 𝐶 if and only if 𝜇𝑆 ≥ 2/7,
and choose 𝐷 if and only if 𝜇𝑆 ≤ 2/7. Now, we consider the following four cases.

Case 1 [𝑚(𝜃1) = 𝐼, 𝑚(𝜃2) = 𝑆]:
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In this case, by Lemma 1, 𝜇𝐼 = 1 − 𝜒/2 and 𝜇𝑆 = 𝜒/2. To support this profile
to be an equilibrium, player 2 has to choose 𝐸 and 𝐶 at information set 𝐼 and 𝑆,
respectively. To make it profitable for player 2 to choose 𝐸 at information set 𝐼, it
must be that:

𝜇𝐼 = 1 − 𝜒/2 ≥ 6/7 ⇐⇒ 𝜒 ≤ 2/7.

On the other hand, player 2 will choose𝐶 at information set 𝑆 if and only if 𝜒/2 ≥ 2/7
or 𝜒 ≥ 4/7, which is not compatible with the previous inequality. Therefore, this
profile cannot be supported as an equilibrium.

Case 2 [𝑚(𝜃1) = 𝑆, 𝑚(𝜃2) = 𝐼]:

In this case, by Lemma 1, 𝜇𝐼 = 𝜒/2 and 𝜇𝑆 = 1 − 𝜒/2. To support this as an
equilibrium, player 2 has to choose 𝐷 at both information sets. Yet, 𝜇𝑆 = 1− 𝜒/2 >
2/7, implying that it is not a best reply for player 2 to choose 𝐷 at information set
𝑆. Hence this profile also cannot be supported as an equilibrium.

Case 3 [𝑚(𝜃1) = 𝐼, 𝑚(𝜃2) = 𝐼]:

Since player 1 follows a pooling strategy, player 2 will not update his belief at
information set 𝐼, i.e., 𝜇𝐼 = 1/2. The 𝜒-dampened updating property implies
𝜒/2 ≤ 𝜇𝑆 ≤ 1 − 𝜒/2. Because 1/3 < 𝜇𝐼 = 1/2 < 6/7, player 2 will choose
𝐶 at information set 𝐼. To support this profile as an equilibrium, player 2 has
to choose 𝐷 at information set 𝑆, and hence, it must be the case that 𝜇𝑆 ≤ 2/7.
Coupled with the requirement of 𝜒-dampened updating, the off-path belief has to
satisfy 𝜒/2 ≤ 𝜇𝑆 ≤ 2/7. That is, [(𝐼, 𝐼); (𝐶, 𝐷)] is pooling 𝜒-CSE if and only if
𝜒/2 ≤ 2/7 or 𝜒 ≤ 4/7.

Case 4 [𝑚(𝜃1) = 𝑆, 𝑚(𝜃2) = 𝑆]:

Similar to the previous case, since player 1 follows a pooling strategy, player 2 will
not update his belief at information set 𝑆, i.e., 𝜇𝑆 = 1/2. Also, the 𝜒-dampened
updating property implies 𝜒/2 ≤ 𝜇𝐼 ≤ 1− 𝜒/2. Because 𝜇𝑆 > 2/7, it is optimal for
player 2 to choose 𝐶 at information set 𝑆. To support this as an equilibrium, player
2 can choose either 𝐶 or 𝐷 at information set 𝐼.

Case 4.1: To make it a best reply for player 2 to choose 𝐷 at information set 𝐼, it
must be that 𝜇𝐼 ≤ 1/3. Combined with the requirement from 𝜒-dampened updating,
the off-path belief has to satisfy 𝜒/2 ≤ 𝜇𝐼 ≤ 1/3. As a result, [(𝑆, 𝑆); (𝐷,𝐶)] is a
pooling 𝜒-CSE if and only if 𝜒 ≤ 2/3.
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Case 4.2: To make it a best reply for player 2 to choose 𝐶 at information set 𝐼, it
must be that 1/3 ≤ 𝜇𝐼 ≤ 6/7. Combined with the requirement from 𝜒-dampened
updating, the off-path belief has to satisfy

max
{

1
2
𝜒,

1
3

}
≤ 𝜇𝐼 ≤ min

{
6
7
, 1 − 1

2
𝜒

}
.

For any 𝜒 ∈ [0, 1], one can find 𝜇𝐼 that satisfies both inequalities. Hence
[(𝑆, 𝑆); (𝐶,𝐶)] is a pooling 𝜒-CSE for any 𝜒.

This completes the analysis of Game BH 3 and Game BH 4. ■

A Public Goods Game with Communication
Proof of Proposition 7 To prove this set of cost cutoffs form a 𝜒-CSE, we need
to show that there is no profitable deviation for any type at any subgame. First, at
the second stage where there are exactly 0 ≤ 𝑘 ≤ 𝑁 − 1 players sending 1 in the
first stage, since no players will contribute, setting 𝐶𝜒

𝑘
= 0 is indeed a best response.

At the subgame where all 𝑁 players send 1 in the first stage, we use 𝜇𝜒
𝑖
(𝑐−𝑖 |𝑁) to

denote player 𝑖’s cursed belief density. By Lemma 1, the cursed belief about all
other players having a cost lower than 𝑐 is simply:

𝐹 𝜒 (𝑐) ≡
∫
{𝑐 𝑗≤𝑐, ∀ 𝑗≠𝑖}

𝜇
𝜒

𝑖
(𝑐′−𝑖 |𝑁)𝑑𝑐′−𝑖

=


𝜒 (𝑐/𝐾)𝑁−1 + (1 − 𝜒)

(
𝑐/𝐶𝜒

𝑐

)𝑁−1 if 𝑐 ≤ 𝐶𝜒
𝑐

1 − 𝜒 + 𝜒
(
𝑐/𝐶𝜒

𝑐

)𝑁−1 if 𝑐 > 𝐶𝜒
𝑐 ,

and 𝐶𝜒

𝑁
is the solution of the fixed point problem of 𝐶𝜒

𝑁
= 𝐹 𝜒 (𝐶𝜒

𝑁
).

Moreover, in equilibrium, 𝐶𝜒
𝑐 type of players would be indifferent between sending

1 and 0 in the communication stage. Thus, given 𝐶𝜒

𝑁
, 𝐶𝜒

𝑐 is the solution of the
following equation

0 =

(
𝐶
𝜒
𝑐

𝐾

)𝑁−1 [
−𝐶𝜒

𝑐 + 𝐹 𝜒 (𝐶𝜒

𝑁
)
]
.

As a result, we obtain that in equilibrium, 𝐶𝜒
𝑐 = 𝐶

𝜒

𝑁
= 𝐹 𝜒 (𝐶𝜒

𝑁
) ≤ 1 and denote this

cost cutoff by 𝐶∗(𝑁, 𝐾, 𝜒). Substituting it into 𝐹 𝜒 (𝑐), gives:

𝐶∗(𝑁, 𝐾, 𝜒) − 𝜒
[
𝐶∗(𝑁, 𝐾, 𝜒)

𝐾

]𝑁−1
= 1 − 𝜒.

In the following, we show that for any 𝑁 ≥ 2 and 𝜒, the cutoff 𝐶∗(𝑁, 𝐾, 𝜒) is
unique.
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Case 1: When 𝑁 = 2, the cutoff 𝐶∗(2, 𝐾, 𝜒) is the unique solution of the linear
equation

𝐶∗(2, 𝐾, 𝜒) − 𝜒
[
𝐶∗(2, 𝐾, 𝜒)

𝐾

]
= 1 − 𝜒 ⇐⇒ 𝐶∗(2, 𝐾, 𝜒) = 𝐾 − 𝐾𝜒

𝐾 − 𝜒 .

Case 2: For 𝑁 ≥ 3, we define the function ℎ(𝑦) : [0, 1] → R where

ℎ(𝑦) = 𝑦 − 𝜒
( 𝑦
𝐾

)𝑁−1
− (1 − 𝜒).

It suffices to show that ℎ(𝑦) has a unique root in [0, 1]. When 𝜒 = 0, ℎ(𝑦) = 𝑦 − 1
which has a unique root at 𝑦 = 1. In the following, we will focus on the case
where 𝜒 > 0. Since ℎ(𝑦) is continuous, ℎ(0) = −(1 − 𝜒) < 0 and ℎ(1) =

𝜒
[
1 − (1/𝐾)𝑁−1] > 0, there exists a root 𝑦∗ ∈ (0, 1) by the intermediate value

theorem. Moreover, as we take the second derivative, we can find that for any
𝑦 ∈ (0, 1),

ℎ′′(𝑦) = −
( 𝜒

𝐾𝑁−1

)
(𝑁 − 1) (𝑁 − 2)𝑦𝑁−3 < 0,

implying that ℎ(𝑦) is strictly concave in [0, 1]. Furthermore, ℎ(0) < 0 and ℎ(1) > 0,
so the root is unique, as illustrated in the left panel of Figure 3. This completes the
proof. ■

Proof of Corollary 3 By Proposition 7, we know the cutoff 𝐶∗(𝑁, 𝐾, 𝜒) ≤ 1 and
it satisfies

𝐶∗(𝑁, 𝐾, 𝜒) − 𝜒
[
𝐶∗(𝑁, 𝐾, 𝜒)

𝐾

]𝑁−1
= 1 − 𝜒.

Therefore, when 𝜒 = 0, the condition becomes 𝐶∗(𝑁, 𝐾, 0) = 1. In addition, when
𝜒 = 1, the condition becomes

𝐶∗(𝑁, 𝐾, 1) −
[
𝐶∗(𝑁, 𝐾, 1)

𝐾

]𝑁−1
= 0,

implying 𝐶∗(𝑁, 𝐾, 1) = 0.

For 𝜒 ∈ (0, 1), to prove𝐶∗(𝑁, 𝐾, 𝜒) is strictly decreasing in 𝑁 ,𝐾 and 𝜒, we consider
a function 𝑔(𝑦; 𝑁, 𝐾, 𝜒) : (0, 1) → R where 𝑔(𝑦; 𝑁, 𝐾, 𝜒) = 𝑦 − 𝜒[𝑦/𝐾]𝑁−1. For
any 𝑦 ∈ (0, 1) and fix any 𝐾 and 𝜒, we can observe that when 𝑁 ≥ 2,

𝑔(𝑦; 𝑁 + 1, 𝐾) − 𝑔(𝑦; 𝑁, 𝐾) = −𝜒
[ 𝑦
𝐾

]𝑁
+ 𝜒

[ 𝑦
𝐾

]𝑁−1
> 0,
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so 𝑔(·; 𝑁, 𝐾, 𝜒) is strictly increasing in 𝑁 . Therefore, the cutoff 𝐶∗(𝑁, 𝐾, 𝜒) is
strictly decreasing in 𝑁 . Similarly, for any 𝑦 ∈ (0, 1) and fix any 𝑁 and 𝜒, observe
that when 𝐾 > 1,

𝜕𝑔

𝜕𝐾
= 𝜒(𝑁 − 1)

(
𝑦𝑁−1

𝐾𝑁

)
> 0,

which implies that cutoff 𝐶∗(𝑁, 𝐾, 𝜒) is also strictly decreasing in 𝐾 . For the
comparative statics of 𝜒, we can rearrange the equilibrium condition where

1 − 𝐶∗(𝑁, 𝐾, 𝜒)
𝜒

= 1 −
[
𝐶∗(𝑁, 𝐾, 𝜒)

𝐾

]𝑁−1
.

Since LHS is strictly decreasing in 𝜒, the equilibrium cutoff is also strictly decreasing
in 𝜒. Finally, taking the limit on both sides of the equilibrium condition, we obtain:

lim
𝑁→∞

𝐶∗(𝑁, 𝐾, 𝜒) = lim
𝐾→∞

𝐶∗(𝑁, 𝐾, 𝜒) = 1 − 𝜒.

This completes the proof. ■

The Centipede Game with Altruistic Types
Proof of Claim 2 By backward induction, we know selfish player two will choose
𝑇4 for sure. Given that player two will choose 𝑇4 at stage four, it is optimal for
selfish player one to choose 𝑇3. Now, suppose selfish player one will choose 𝑃1
with probability 𝑞1 and player two will choose 𝑃2 with probability 𝑞2. Given this
behavioral strategy profile, player two’s belief about the other player being altruistic
at stage two is:

𝜇 =
𝛼

𝛼 + (1 − 𝛼)𝑞1
.

In this case, it is optimal for selfish player two to pass if and only if

32𝜇 + 4(1 − 𝜇) ≥ 8 ⇐⇒ 𝜇 ≥ 1
7
.

At the equilibrium, selfish player two is indifferent between 𝑇2 and 𝑃2. If not, say
32𝜇+4(1−𝜇) > 8, player two will choose 𝑃2. Given that player two will choose 𝑃2,
it is optimal for selfish player one to choose 𝑃1, which makes 𝜇 = 𝛼 and 𝛼 > 1/7.
However, we know 𝛼 ≤ 1/7 which yields a contradiction. On the other hand, if
32𝜇 + 4(1 − 𝜇) < 8, then it is optimal for player two to choose 𝑇2 at stage two. As
a result, selfish player one would choose 𝑇1 at stage one, causing 𝜇 = 1. In this
case, player two would deviate to choose 𝑃2, which again yields a contradiction. To
summarize, in equilibrium, player two has to be indifferent between 𝑇2 and 𝑃2, i.e.,
𝜇 = 1/7. As we rearrange the equality, we can obtain that

𝛼

𝛼 + (1 − 𝛼)𝑞∗1
=

1
7

⇐⇒ 𝑞∗1 =
6𝛼

1 − 𝛼 .
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Finally, since the equilibrium requires selfish player one to mix at stage one, selfish
player one has to be indifferent between 𝑃1 and 𝑇1. Therefore,

4 = 16𝑞∗2 + 2(1 − 𝑞∗2) ⇐⇒ 𝑞∗2 =
1
7
.

This completes the proof. ■

Proof of Proposition 8 By backward induction, we know selfish player two will
choose𝑇4 for sure. Given this, it is optimal for selfish player one to choose𝑇3. Now,
suppose selfish player one will choose 𝑃1 with probability 𝑞1 and player two will
choose 𝑃2 with probability 𝑞2. Given this behavioral strategy profile, by Lemma 1,
player two’s cursed belief about the other player being altruistic at stage 2 is:

𝜇𝜒 = 𝜒𝛼 + (1 − 𝜒)
[

𝛼

𝛼 + (1 − 𝛼)𝑞1

]
.

In this case, it is optimal for player two to pass if and only if

32𝜇𝜒 + 4(1 − 𝜇𝜒) ≥ 8 ⇐⇒ 𝜇𝜒 ≥ 1
7
.

We can first show that in equilibrium, it must be that 𝜇𝜒 ≤ 1/7. If not, then it
is strictly optimal for player two to choose 𝑃2. Therefore, it is optimal for selfish
player one to choose 𝑃1 and hence 𝜇𝜒 = 𝛼 ≤ 1/7, which yields a contradiction. In
the following, we separate the discussion into two cases.

Case 1: 𝜒 ≤ 6
7(1−𝛼)

In this case, we argue that player two is indifferent between 𝑃2 and 𝑇2. If not, then
32𝜇𝜒 + 4(1 − 𝜇𝜒) < 8 and it is strictly optimal for player two to choose 𝑇2. This
would cause selfish player one to choose 𝑇1 and hence 𝜇𝜒 = 1 − (1 − 𝛼)𝜒. This
yields a contradiction because

𝜇𝜒 = 1 − (1 − 𝛼)𝜒 < 1
7

⇐⇒ 𝜒 >
6

7(1 − 𝛼) .

Therefore, in this case, player two is indifferent between 𝑇2 and 𝑃2 and thus,

𝜇𝜒 =
1
7

⇐⇒ 𝜒𝛼 + (1 − 𝜒)
[

𝛼

𝛼 + (1 − 𝛼)𝑞𝜒1

]
=

1
7

⇐⇒ 𝜒 + 1 − 𝜒
𝛼 + (1 − 𝛼)𝑞𝜒1

=
1

7𝛼

⇐⇒ 𝛼 + (1 − 𝛼)𝑞𝜒1 = (1 − 𝜒)
/ [

1
7𝛼

− 𝜒
]

⇐⇒ 𝑞
𝜒

1 =

[
7𝛼 − 7𝛼𝜒
1 − 7𝛼𝜒

− 𝛼
] /

(1 − 𝛼).
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Since the equilibrium requires selfish player one to mix at stage 1, selfish player one
has to be indifferent between 𝑃1 and 𝑇1. Therefore,

4 = 16𝑞𝜒2 + 2(1 − 𝑞𝜒2 ) ⇐⇒ 𝑞
𝜒

2 =
1
7
.

Case 2: 𝜒 > 6
7(1−𝛼)

In this case, we know for any 𝑞𝜒1 ∈ [0, 1],

𝜇𝜒 = 𝜒𝛼 + (1 − 𝜒)
[

𝛼

𝛼 + (1 − 𝛼)𝑞𝜒1

]
≤ 1 − (1 − 𝛼)𝜒 < 1

7
,

implying that it is strictly optimal for player two to choose 𝑇2, and hence it is strictly
optimal for selfish player one to choose 𝑇1 at stage 1. This completes the proof. ■

Sequential Voting over Binary Agendas
Proof of Proposition 9 If 𝑎1(𝜃1) = 𝑏 and all other types of voters as well as
type 𝜃1 at stage 2 vote sincerely, voter 𝑖’s 𝜒-cursed belief in the second stage upon
observing 𝑎1

−𝑖 = (𝑎, 𝑏) is

𝜇
𝜒

𝑖
(𝜃−𝑖 |𝑎1

−𝑖 = (𝑎, 𝑏)) =


𝑝1𝑝3𝜒 + 𝑝1

𝑝1+𝑝2
(1 − 𝜒) if 𝜃−𝑖 = (𝜃3, 𝜃1)

𝑝2𝑝3𝜒 + 𝑝2
𝑝1+𝑝2

(1 − 𝜒) if 𝜃−𝑖 = (𝜃3, 𝜃2)

𝑝𝑘 𝑝𝑙𝜒 otherwise.

As mentioned in Section 4.4, a voter would act as if he perceives the other voters’
(behavioral) strategies correctly in the last stage. However, misunderstanding the
link between the other voters’ types and actions would distort a voter’s belief updating
process. In other words, a voter would perceive the strategies correctly but form
beliefs incorrectly. As a result, the continuation value of the 𝑎 vs 𝑐 subgame to
a type 𝜃1 voter is simply the voter’s 𝜒-cursed belief, conditional on being pivotal,
about there being at least one type 𝜃1 voter among his opponents. Similarly, the
continuation value of the 𝑏 vs 𝑐 subgame is equal to the voter’s conditional 𝜒-
cursed belief about there being at least one type 𝜃1 or 𝜃2 voter among his opponents
multiplied by 𝑣. Therefore, the continuation values to a type 𝜃1 voter in the two
possible subgames of the second stage are (let 𝑝2 ≡ 𝑝1

𝑝1+𝑝2
):

𝑎 vs 𝑐 : 𝜒

(
1 − (1 − 𝑝1)2

)
+ (1 − 𝜒)𝑝2

𝑏 vs 𝑐 :
(
1 − 𝑝2

3𝜒
)
𝑣
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It is thus optimal for a type 𝜃1 voter to vote for 𝑏 in the first stage if

𝜒

(
1 − (1 − 𝑝1)2

)
+ (1 − 𝜒)𝑝2 ≤

(
1 − 𝑝2

3𝜒
)
𝑣

⇐⇒ [2𝑝1 − 𝑝2
1 − 𝑝2 + 𝑝2

3𝑣]𝜒 ≤ 𝑣 − 𝑝2 (A.1)

Notice that the statement would automatically hold when 𝜒 = 0. In the following,
we want to show that given 𝑣 and 𝑝, if condition (A.1) holds for some 𝜒 ∈ (0, 1],
then it will hold for all 𝜒′ ≤ 𝜒. As 𝜒 > 0, we can rewrite condition (A.1) as

2𝑝1 − 𝑝2
1 − 𝑝2 + 𝑝2

3𝑣 ≤ 𝑣 − 𝑝2
𝜒

. (2’)

Case 1: 𝑣 − 𝑝2 < 0.

In this case, we want to show that voting 𝑏 in the first stage is never optimal for type
𝜃1 voter. That is, we want to show condition (2’) never holds for 𝑣 < 𝑝2. To see this,
we can first observe that the RHS is strictly increasing in 𝜒. Therefore, it suffices to
show

2𝑝1 − 𝑝2
1 − 𝑝2 + 𝑝2

3𝑣 > 𝑣 − 𝑝2.

This is true because

2𝑝1 − 𝑝2
1 − 𝑝2 + 𝑝2

3𝑣 − (𝑣 − 𝑝2) = 2𝑝1 − 𝑝2
1 − (1 − 𝑝2

3)𝑣
> 2𝑝1 − 𝑝2

1 − (1 + 𝑝3)𝑝1 = 𝑝1𝑝2 ≥ 0

where the second inequality holds as 𝑣 < 𝑝1
𝑝1+𝑝2

.

Case 2: 𝑣 − 𝑝2 ≥ 0.

Since the RHS of condition (2’) is greater or equal to 0, it will weakly increase as 𝜒
decreases. Thus, if condition (2’) holds for some 𝜒 ∈ (0, 1], it will also hold for all
𝜒′ ≤ 𝜒. This completes the proof. ■

Proof of Proposition 10 Assuming that all voters vote sincerely in both stages,
voter 𝑖’s 𝜒-cursed belief in the second stage upon observing 𝑎1

−𝑖 = (𝑎, 𝑏) is

𝜇
𝜒

𝑖
(𝜃−𝑖 |𝑎1

−𝑖 = (𝑎, 𝑏)) =


𝑝1𝑝2𝜒 + 𝑝1

𝑝1+𝑝3
(1 − 𝜒) if 𝜃−𝑖 = (𝜃1, 𝜃2)

𝑝2𝑝3𝜒 + 𝑝3
𝑝1+𝑝3

(1 − 𝜒) if 𝜃−𝑖 = (𝜃3, 𝜃2)

𝑝𝑘 𝑝𝑙𝜒 otherwise.
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Similar to the proof of Proposition 9, the continuation values to a type 𝜃1 voter in
the two possible subgames of the second stage are (let 𝑝3 ≡ 𝑝1

𝑝1+𝑝3
):

𝑎 vs 𝑐 : 𝜒

(
1 − (1 − 𝑝1)2

)
+ (1 − 𝜒)𝑝3

𝑏 vs 𝑐 :
(
1 − 𝑝2

3𝜒
)
𝑣

Thus, it is optimal for a type 𝜃1 voter to vote for 𝑎 in the first stage if

𝜒

(
1 − (1 − 𝑝1)2

)
+ (1 − 𝜒)𝑝3 ≥

(
1 − 𝑝2

3𝜒
)
𝑣

⇐⇒ 𝜒

(
2𝑝1 − 𝑝2

1 − 𝑝3 + 𝑝2
3𝑣

)
≥ 𝑣 − 𝑝3. (A.2)

Case 1: 𝑣 − 𝑝3 > 0.

In this case, we want to show that given 𝑝 and 𝑣, there exists 𝜒̃ such that condition
(A.2) holds if and only if 𝜒 ≥ 𝜒̃. Let 𝜏 ≡ 2𝑝1 − 𝑝2

1 − 𝑝3 + 𝑝2
3𝑣. If 𝜏 > 0, then

condition (A.2) holds if and only if 𝜒 ≥ 𝜒̃ ≡ 𝑣−𝑝3
𝜏

. On the other hand, if 𝜏 ≤ 0,
condition (A.2) will not hold for all 𝜒 ∈ [0, 1] and hence we can set 𝜒̃ = 2.

Case 2: 𝑣 − 𝑝3 ≤ 0.

In this case, we want to show that given 𝑝 and 𝑣, there exists 𝜒̃ such that condition
(A.2) holds if and only if 𝜒 ≤ 𝜒̃. If 𝜏 < 0, then condition (A.2) holds if and only if
𝜒 ≤ 𝑣−𝑝3

𝜏
where the RHS is greater or equal to 0. On the other hand, if 𝜏 ≥ 0, then

condition (A.2) will hold for any 𝜒 ∈ [0, 1] and hence we can again set 𝜒̃ = 2. This
completes the proof. ■

The Dirty Faces Game
Proof of Proposition 11 When observing a clean face, a player will know that he
has a dirty face immediately. Therefore, choosing 1 (i.e., choosing 𝐷 at stage 1)
when observing a clean face is a strictly dominant strategy. In other words, for any
𝜒 ∈ [0, 1], 𝜎̂𝜒 (𝑂) = 1.

The analysis of the case where the player observes a dirty face is separated into two
cases.

Case 1: 𝜒 > 𝛼̄

In this case, we show that 𝜎̂𝜒 (𝑋) = 𝑇+1 is the only 𝜒-CE. If not, suppose 𝜎̂𝜒 (𝑋) = 𝑡
where 𝑡 ≤ 𝑇 can be supported as a 𝜒-CE. We can first notice that 𝜎̂𝜒 (𝑋) = 1 cannot
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be supported as a 𝜒-CE because it is strictly dominated to choose 1 when observing
a dirty face. For 2 ≤ 𝑡 ≤ 𝑇 , given the other player −𝑖 chooses 𝜎̂𝜒 (𝑋) = 𝑡, we can
find player −𝑖’s average strategy is

𝜎̄−𝑖 ( 𝑗) =


1 − 𝑝 if 𝑗 = 1

𝑝 if 𝑗 = 𝑡

0 if 𝑗 ≠ 1, 𝑡.

Therefore, the other player −𝑖’s 𝜒-cursed strategy is:

𝜎
𝜒

−𝑖 ( 𝑗 |𝑥𝑖 = 𝑂) =


𝜒(1 − 𝑝) + (1 − 𝜒) if 𝑗 = 1

𝜒𝑝 if 𝑗 = 𝑡

0 if 𝑗 ≠ 1, 𝑡,

and

𝜎
𝜒

−𝑖 ( 𝑗 |𝑥𝑖 = 𝑋) =


𝜒(1 − 𝑝) if 𝑗 = 1

𝜒𝑝 + (1 − 𝜒) if 𝑗 = 𝑡

0 if 𝑗 ≠ 1, 𝑡.

In this case, given (player 𝑖 perceives that) player −𝑖 chooses the 𝜒-cursed strategy,
player 𝑖’s expected payoff to choose 2 ≤ 𝑗 ≤ 𝑡 when observing a dirty face is:

(1−𝑝)
[
−𝛿 𝑗−1𝜒𝑝

]
+𝑝

{
𝛿 𝑗−1𝛼 [𝜒𝑝 + (1 − 𝜒)]

}
= 𝑝𝛿 𝑗−1 [𝛼 − 𝜒(1 + 𝛼) (1 − 𝑝)]︸                       ︷︷                       ︸

<0 ⇐⇒ 𝜒>𝛼̄

< 0.

Hence, given the other player chooses 𝑡 when observing a dirty face, it is strictly
dominated to choose any 𝑗 ≤ 𝑡. Therefore, the only 𝜒-CE is 𝜎̂𝜒 (𝑋) = 𝑇 + 1.

Case 2: 𝜒 < 𝛼̄

In this case, we want to show that 𝜎̂𝜒 (𝑋) = 2 is the only 𝜒-CE. If not, suppose
𝜎̂(𝑋) = 𝑡 for some 𝑡 ≥ 3 can be supported as a 𝜒-CE. We can again notice that
since when observing a dirty face, it is strictly dominated to choose 1, 1 is never a
best response. Given player −𝑖 chooses 𝜎̂𝜒 (𝑋) = 𝑡, by the same calculation as in
Case 1, the expected payoff to choose 2 ≤ 𝑗 ≤ 𝑡 is:

𝑝𝛿 𝑗−1 [𝛼 − 𝜒(1 + 𝛼) (1 − 𝑝)]︸                       ︷︷                       ︸
>0 ⇐⇒ 𝜒<𝛼̄

> 0,

which is decreasing in 𝑗 . Therefore, the best response to 𝜎̂𝜒 (𝑋) = 𝑡 is to choose 2
when observing a dirty face. As a result, the only 𝜒-CE in this case is 𝜎̂𝜒 (𝑋) = 2.
This completes the proof. ■
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Proof of Proposition 12 When observing a clean face, the player would know
that his face is dirty. Thus, choosing 𝐷 at stage 1 is a strictly dominant strategy, and
𝜎̃𝜒 (𝑂) = 1 for all 𝜒 ∈ [0, 1]. On the other hand, the analysis for the case where the
player observes a dirty face consists of several steps.

Step 1: Assume that both players choosing 𝐷 at some stage 𝑡. We claim that at
stage 𝑡 ≤ 𝑡, the cursed belief 𝜇𝜒 (𝑋 |𝑡, 𝑋) = 1 − (1 − 𝑝)𝜒𝑡−1. We can prove this by
induction on 𝑡. At stage 𝑡 = 1, the belief about having a dirty face is simply the prior
belief 𝑝. Hence this establishes the base case. Now suppose the statement holds for
any stage 1 ≤ 𝑡 ≤ 𝑡′ (and 𝑡′ < 𝑡). At stage 𝑡′ + 1, by Lemma 1,

𝜇𝜒 (𝑋 |𝑡′ + 1, 𝑋) = 𝜒𝜇𝜒 (𝑋 |𝑡′, 𝑋) + (1 − 𝜒)

= 𝜒

[
1 − (1 − 𝑝)𝜒𝑡′−1

]
+ (1 − 𝜒)

= 1 − (1 − 𝑝)𝜒𝑡′

where the second equality holds by the induction hypothesis. This proves the claim.

Step 2: Given the cursed belief computed in the previous step, the expected payoff
to choose 𝐷 at stage 𝑡 is:

𝜇𝜒 (𝑋 |𝑡, 𝑋)𝛼 − [1 − 𝜇𝜒 (𝑋 |𝑡, 𝑋)] =
[
1 − (1 − 𝑝)𝜒𝑡−1] 𝛼 −

[
(1 − 𝑝)𝜒𝑡−1]

= 𝛼 − (1 − 𝑝) (1 + 𝛼)𝜒𝑡−1,

which is increasing in 𝑡. Notice that at the first stage, the expected payoff is
𝛼 − (1 − 𝑝) (1 + 𝛼) < 0 by Assumption (1), so choosing 𝑈 at stage 1 is strictly
dominated. Furthermore, the player would choose𝑈 at every stage when observing
a dirty face if and only if

𝜇𝜒 (𝑋 |𝑇, 𝑋)𝛼 − [1 − 𝜇𝜒 (𝑋 |𝑇, 𝑋)] ≤ 0 ⇐⇒ 𝛼 − (1 − 𝑝) (1 + 𝛼)𝜒𝑇−1 ≤ 0

⇐⇒ 𝜒 ≥ 𝛼̄ 1
𝑇+1 .

As a result, both players choosing 𝜎̃𝜒 (𝑋) = 𝑇 +1 is a 𝜒-CSE if and only if 𝜒 ≥ 𝛼̄ 1
𝑇+1 .

Step 3: In this step, we show both players choosing 𝜎̃𝜒 (𝑋) = 2 is a 𝜒-CSE if and
only if 𝜒 ≤ 𝛼̄. We can notice that given the other player chooses 𝐷 at stage 2,
the player would know stage 2 would be the last stage regardless of his face type.
Therefore, it is optimal to choose 𝐷 at stage 2 as long as the expected payoff of 𝐷
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at stage 2 is positive. Consequently, both players choosing 𝜎̃𝜒 (𝑋) = 2 is a 𝜒-CSE
if and only if

𝜇𝜒 (𝑋 |2, 𝑋)𝛼 − [1 − 𝜇𝜒 (𝑋 |2, 𝑋)] ≥ 0 ⇐⇒ 𝛼 − (1 − 𝑝) (1 + 𝛼)𝜒
⇐⇒ 𝜒 ≤ 𝛼̄.

Step 4: Given the other player chooses 𝜎̃𝜒 (𝑋) > 𝑡, as the game reaches stage 𝑡, the
belief about the other player choosing𝑈 at stage 𝑡 is:

𝜇𝜒 (𝑋 |𝑡, 𝑋)︸       ︷︷       ︸
prob. of dirty

[𝜒𝜇𝜒 (𝑋 |𝑡, 𝑋) + (1 − 𝜒)]

+ [1 − 𝜇𝜒 (𝑋 |𝑡, 𝑋)]︸               ︷︷               ︸
prob. of clean

[𝜒𝜇𝜒 (𝑋 |𝑡, 𝑋)] = 𝜇𝜒 (𝑋 |𝑡, 𝑋).

Furthermore, we denote the expected payoff of choosing 𝐷 at stage 𝑡 as

E [𝑢𝜒 (𝐷 |𝑡, 𝑋)] ≡ 𝜇𝜒 (𝑋 |𝑡, 𝑋)𝛼 − (1 − 𝜇𝜒 (𝑋 |𝑡, 𝑋)) .

In the following, we claim that for any stage 2 ≤ 𝑡 ≤ 𝑇 − 2, given the other player
will stop at some stage later than stage 𝑡 + 2 or never stop, if it is optimal to choose
𝑈 at stage 𝑡 + 1, then it is also optimal for you to choose𝑈 at stage 𝑡. That is,

E [𝑢𝜒 (𝐷 |𝑡 + 1, 𝑋)] < 𝛿𝜇𝜒 (𝑋 |𝑡 + 1, 𝑋)E [𝑢𝜒 (𝐷 |𝑡 + 2, 𝑋)]
=⇒ E [𝑢𝜒 (𝐷 |𝑡, 𝑋)] < 𝛿𝜇𝜒 (𝑋 |𝑡, 𝑋)E [𝑢𝜒 (𝐷 |𝑡 + 1, 𝑋)] .

To prove this claim, first observe that

E [𝑢𝜒 (𝐷 |𝑡 + 1, 𝑋)] < 𝛿𝜇𝜒 (𝑋 |𝑡 + 1, 𝑋)E [𝑢𝜒 (𝐷 |𝑡 + 2, 𝑋)]
⇐⇒ (1 + 𝛼)𝜇𝜒 (𝑋 |𝑡 + 1, 𝑋) − 1 < 𝛿𝜇𝜒 (𝑋 |𝑡 + 1, 𝑋) [(1 + 𝛼)𝜇𝜒 (𝑋 |𝑡 + 2, 𝑋) − 1] .

After rearrangement, the inequality is equivalent to

𝛿𝜒 [𝜇𝜒 (𝑋 |𝑡 + 1, 𝑋)]2 +
[
𝛿(1 − 𝜒) − 𝛿

1 + 𝛼 − 1
]
𝜇𝜒 (𝑋 |𝑡 + 1, 𝑋) + 1

1 + 𝛼 > 0.

Consider a function 𝐹 : [0, 1] → R where

𝐹 (𝑦) = 𝛿𝜒𝑦2 +
[
𝛿(1 − 𝜒) − 𝛿

1 + 𝛼 − 1
]
𝑦 + 1

1 + 𝛼 .

Since 𝜇𝜒 (𝑋 | 𝑗 , 𝑋) = 1 − (1 − 𝑝)𝜒 𝑗−1 is increasing in 𝑗 , it suffices to complete
the proof of the claim by showing there exists a unique 𝑦∗ ∈ (0, 1) such that 𝐹 is
single-crossing on [0, 1] where 𝐹 (𝑦∗) = 0, 𝐹 (𝑦) < 0 for all 𝑦 > 𝑦∗, and 𝐹 (𝑦) > 0
for all 𝑦 < 𝑦∗. Because 𝐹 is continuous and

123



• 𝐹 (0) = 1
1+𝛼 > 0,

• 𝐹 (1) = 𝛿𝜒 +
[
𝛿(1 − 𝜒) − 𝛿

1+𝛼 − 1
]
+ 1

1+𝛼 = −𝛼(1−𝛿)
1+𝛼 < 0.

By intermediate value theorem, there exists a 𝑦∗ ∈ (0, 1) such that 𝐹 (𝑦∗) = 0.
Moreover, 𝑦∗ is the unique root of 𝐹 on [0, 1] because 𝐹 is a strictly convex
parabola and 𝐹 (1) < 0. This establishes the claim.

Step 5: For any 3 ≤ 𝑡 ≤ 𝑇 , in this step, we find the conditions to support both
players choosing 𝜎̃𝜒 (𝑋) = 𝑡 as a 𝜒-CSE. We can first notice that both players
choosing 𝜎̃𝜒 (𝑋) = 𝑡 is a 𝜒-CSE if and only if

1. E [𝑢𝜒 (𝐷 |𝑡, 𝑋)] ≥ 0

2. E [𝑢𝜒 (𝐷 |𝑡 − 1, 𝑋)] ≤ 𝛿𝜇𝜒 (𝑋 |𝑡 − 1, 𝑋)E [𝑢𝜒 (𝐷 |𝑡, 𝑋)].

Condition 1 is necessary because if it fails, then it is better for the player to choose
𝑈 at stage 𝑡 and get at least 0. Condition 2 is also necessary because if the condition
doesn’t hold, it would be profitable for the player to choose 𝐷 before stage 𝑡.
Furthermore, these two conditions are jointly sufficient to support 𝜎̃𝜒 (𝑋) = 𝑡 as a
𝜒-CSE by the same argument as step 3. From condition 1, we can obtain that

E [𝑢𝜒 (𝐷 |𝑡, 𝑋)] ≥ 0 ⇐⇒ (1 + 𝛼)𝜇𝜒 (𝑋 |𝑡, 𝑋) − 1 ≥ 0

⇐⇒ 1 − (1 − 𝑝)𝜒𝑡−1 ≥ 1
1 + 𝛼 ⇐⇒ 𝜒 ≤ 𝛼̄ 1

𝑡−1 .

In addition, by the calculation of step 4, we know

E [𝑢𝜒 (𝐷 |𝑡 − 1, 𝑋)] ≤ 𝛿𝜇𝜒 (𝑋 |𝑡−1, 𝑋)E [𝑢𝜒 (𝐷 |𝑡, 𝑋)] ⇐⇒ 𝐹 (𝜇𝜒 (𝑋 |𝑡 − 1, 𝑋)) ≥ 0,

which is equivalent to

𝜇𝜒 (𝑋 |𝑡 − 1, 𝑋) ≤

[
1 + 𝛿

1+𝛼 − 𝛿(1 − 𝜒)
]
−

√︂[
1 + 𝛿

1+𝛼 − 𝛿(1 − 𝜒)
]2 − 4𝛿𝜒

(
1

1+𝛼

)
2𝛿𝜒

=
[(1 + 𝛼) (1 + 𝛿𝜒) − 𝛼𝛿] −

√︁
[(1 + 𝛼) (1 + 𝛿𝜒) − 𝛼𝛿]2 − 4𝛿𝜒(1 + 𝛼)
2𝛿𝜒(1 + 𝛼) ≡ 𝜅(𝜒).

Therefore, condition 2 holds if and only if

1 − (1 − 𝑝)𝜒𝑡−2 ≤ 𝜅(𝜒) ⇐⇒ 𝜒 ≥
(
1 − 𝜅(𝜒)

1 − 𝑝

) 1
𝑡−2

.
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In summary, both players choosing 𝜎̃𝜒 (𝑋) = 𝑡 is a 𝜒-CSE if and only if(
1 − 𝜅(𝜒)

1 − 𝑝

) 1
𝑡−2

≤ 𝜒 ≤ 𝛼̄ 1
𝑡−1 .

This completes the proof. ■
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A p p e n d i x B

PROOFS FOR CHAPTER 3

Proof of Theorem 1

Proof. Suppose (towards contradiction) that both BUE and CBE do not exist. This
implies both inequality (3.1) and inequality (3.2) do not hold, i.e.,(

𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)2
(2𝜃 − 1) (2𝑞 − 1) > 𝑞 − 𝜃

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞 𝛿

and
(

𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)2
<

𝑞 − 𝜃
𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞 𝛿

=⇒ (2𝜃 − 1) (2𝑞 − 1) > 1

However, we have 2𝜃 − 1 ∈ (0, 1) and 2𝑞 − 1 ∈ (2𝜃 − 1, 1) ⊂ (0, 1), which implies
(2𝜃 − 1) (2𝑞 − 1) < 1, a contradiction. □

Proofs of Propositions

Before we start the proofs, recall that 𝑓 (𝜃, 𝑞, 𝛿) =
(

𝜃𝑞

𝜃𝑞+(1−𝜃) (1−𝑞) −
𝜃 (1−𝑞)

𝜃 (1−𝑞)+(1−𝜃)𝑞

)2
(2𝜃−

1) (2𝑞−1)− 𝑞−𝜃
𝜃 (1−𝑞)+(1−𝜃)𝑞 𝛿 and 𝑔(𝜃, 𝑞, 𝛿) =

(
𝜃𝑞

𝜃𝑞+(1−𝜃) (1−𝑞) −
𝜃 (1−𝑞)

𝜃 (1−𝑞)+(1−𝜃)𝑞

)2
− 𝑞−𝜃
𝜃 (1−𝑞)+(1−𝜃)𝑞 𝛿.

A Bayesian Updating Equilibrium (BUE) can be sustained if and only if 𝑓 (𝜃, 𝑞, 𝛿) ≤
0, and a Confirmatory Bias Equilibrium (CBE) can be sustained if and only if
𝑔(𝜃, 𝑞, 𝛿) ≥ 0.

Proof of Proposition 1

Claim: When 𝛿 ≥ 1 (and 𝑞 ∈ (0.5, 1)), 𝜕
𝜕𝜃
𝑓 (𝜃, 𝑞, 𝛿) > 0 for 𝜃 ∈ (0.5, 𝑞).

Proof. To prove the claim, it is sufficient to show that, given 𝛿 ≥ 1, 1
2
𝜕
𝜕𝜃
𝑓 (𝜃, 𝑞, 𝛿) > 0



for 𝜃 ∈ (0.5, 1).

1
2
𝜕

𝜕𝜃
𝑓 (𝜃, 𝑞, 𝛿) = (2𝑞 − 1)

((
𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)2
+ 𝑞(1 − 𝑞) (2𝜃 − 1)

×
(

𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)
×

(
1

(𝜃𝑞 + (1 − 𝜃) (1 − 𝑞))2 − 1
(𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)2

))
+ 𝑞(1 − 𝑞)
(𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)2 𝛿

≥ (2𝑞 − 1)
((

𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)2
+ 𝑞(1 − 𝑞) (2𝜃 − 1)

×
(

𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)
×

(
1

(𝜃𝑞 + (1 − 𝜃) (1 − 𝑞))2 − 1
(𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)2

))
+ 𝑞(1 − 𝑞)
(𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)2

= (2𝑞 − 1)
(

𝜃𝑞

𝜃𝑞+(1−𝜃) (1−𝑞) −
𝜃 (1−𝑞)

𝜃 (1−𝑞)+(1−𝜃)𝑞

)
·((

𝜃𝑞

𝜃𝑞+(1−𝜃) (1−𝑞) −
𝜃 (1−𝑞)

𝜃 (1−𝑞)+(1−𝜃)𝑞

)
+ 𝑞(1 − 𝑞) (2𝜃 − 1) 1

(𝜃𝑞+(1−𝜃) (1−𝑞))2

) (1)

−
(

𝜃𝑞

𝜃𝑞+(1−𝜃) (1−𝑞) −
𝜃 (1−𝑞)

𝜃 (1−𝑞)+(1−𝜃)𝑞

)
(2𝜃 − 1) (2𝑞 − 1)𝑞(1 − 𝑞) 1

(𝜃 (1−𝑞)+(1−𝜃)𝑞)2

}
(2)

+𝑞(1 − 𝑞) 1
(𝜃 (1−𝑞)+(1−𝜃)𝑞)2

}
(3)

Note that the first and third term above after the last equality are positive while
the second term is negative. However, we know (2𝑞 − 1) ∈ (0, 1), (2𝜃 − 1) ∈
(0, 1), and ( 𝜃𝑞

𝜃𝑞+(1−𝜃) (1−𝑞) −
𝜃 (1−𝑞)

𝜃 (1−𝑞)+(1−𝜃)𝑞 ) ∈ (0, 1), which implies ( 𝜃𝑞

𝜃𝑞+(1−𝜃) (1−𝑞) −
𝜃 (1−𝑞)

𝜃 (1−𝑞)+(1−𝜃)𝑞 ) (2𝜃 − 1) (2𝑞 − 1) ∈ (0, 1). Thus, the sum of the second and the third
term is still positive, implying that 1

2
𝜕
𝜕𝜃
𝑓 (𝜃, 𝑞, 𝛿) > 0. □

Notice that 𝑓 (0.5, 𝑞, 𝛿) = −(2𝑞 − 1)𝛿 < 0 and 𝑓 (𝑞, 𝑞, 𝛿) = ( 𝑞2

𝑞2+(1−𝑞)2 − 1
2 )

2(2𝑞 −
1)2 > 0. Therefore, given any 𝛿 ≥ 1 and 𝑞0 ∈ (0.5, 1), there exists a unique
𝜃0 ∈ (0.5, 𝑞0) such that 𝑓 (𝜃0, 𝑞0, 𝛿) = 0; moreover, since 𝑓 (·) increases in 𝜃, we
have 𝑓 (𝜃, 𝑞0, 𝛿) < 0 for 𝜃 ∈ (0.5, 𝜃0), which completes the proof of Proposition 1.

Proof of Proposition 2

Claim: When 𝛿 ≥ 1 (and 𝑞 ∈ (0.5, 1)), 𝜕
𝜕𝜃
𝑔(𝜃, 𝑞, 𝛿) > 0 for 𝜃 ∈ (0.5, 𝑞).
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Proof. To prove the claim, it is sufficient to show that, given 𝛿 ≥ 1, 1
2
𝜕
𝜕𝜃
𝑔(𝜃, 𝑞, 𝛿) > 0

for 𝜃 ∈ (0.5, 1).

1
2
𝜕

𝜕𝜃
𝑔(𝜃, 𝑞, 𝛿) = 𝑞(1 − 𝑞)

(
𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)
×

(
1

(𝜃𝑞 + (1 − 𝜃) (1 − 𝑞))2 − 1
(𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)2

)
+ 𝑞(1 − 𝑞)
(𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)2 𝛿

≥ 𝑞(1 − 𝑞)
(

𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)
×

(
1

(𝜃𝑞 + (1 − 𝜃) (1 − 𝑞))2 − 1
(𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)2

)
+ 𝑞(1 − 𝑞)
(𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)2

=

(
𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)
𝑞(1 − 𝑞) 1

(𝜃𝑞 + (1 − 𝜃) (1 − 𝑞))2

−
(

𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)
𝑞(1 − 𝑞) 1

(𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)2

+ 𝑞(1 − 𝑞) 1
(𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)2

Note that the first and third term above after the last equality are positive while the
second term is negative. However, since ( 𝜃𝑞

𝜃𝑞+(1−𝜃) (1−𝑞) −
𝜃 (1−𝑞)

𝜃 (1−𝑞)+(1−𝜃)𝑞 ) ∈ (0, 1), the
sum of the second and third term is positive, implying that 1

2
𝜕
𝜕𝜃
𝑔(𝜃, 𝑞, 𝛿) > 0. □

Notice that 𝑔(0.5, 𝛿, 𝑞) = (2𝑞 − 1) (2𝑞 − 1 − 𝛿) < 0 and 𝑔(𝑞, 𝑞, 𝛿) = ( 𝑞2

𝑞2+(1−𝑞)2 −
1
2 )

2 > 0. Therefore, given any 𝛿 ≥ 1 and 𝑞0 ∈ (0.5, 1), there exists a unique
𝜃0 ∈ (0.5, 𝑞0) such that 𝑔(𝜃0, 𝑞0, 𝛿) = 0; moreover, since 𝑔(·) increases in 𝜃, we
have 𝑔(𝜃, 𝑞0, 𝛿) > 0 for 𝜃 ∈ (𝜃0, 𝑞0), which completes the proof of Proposition 2.

Proof of Proposition 3

Claim: When 𝛿 ≥ 1 (and 𝜃 ∈ (0.5, 1)), 𝜕
𝜕𝑞
𝑓 (𝜃, 𝑞, 𝛿) < 0 for 𝑞 ∈ (𝜃, 1).

Proof. Let ℎ(𝜃, 𝑞) ≡ 1
2𝜃 (1−𝜃) (𝜃𝑞 + (1− 𝜃) (1− 𝑞))2(𝜃 (1− 𝑞) + (1− 𝜃)𝑞)2. To prove

the claim, it is sufficient to show that, given 𝛿 ≥ 1, ℎ(𝜃, 𝑞) · 𝜕
𝜕𝑞
𝑓 (𝜃, 𝑞, 𝛿) < 0 for
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𝑞 ∈ (0.5, 1).

ℎ(𝜃, 𝑞) · 𝜕
𝜕𝑞

𝑓 (𝜃, 𝑞, 𝛿) = ℎ(𝜃, 𝑞) ·
[
2(2𝜃 − 1)

((
𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)2

+ 𝜃 (1 − 𝜃) (2𝑞 − 1)
(

𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)
×

(
1

(𝜃𝑞 + (1 − 𝜃) (1 − 𝑞))2 + 1
(𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)2

))
− 2𝜃 (1 − 𝜃)

(𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)2 𝛿

]
< ℎ(𝜃, 𝑞) ·

[
2(2𝜃 − 1)

((
𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)
+ 2𝜃 (1 − 𝜃) (2𝑞 − 1)

(
1

(𝜃𝑞 + (1 − 𝜃) (1 − 𝑞))2 + 1
(𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)2

))
− 2𝜃 (1 − 𝜃)

(𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)2

]
= 2(2𝜃 − 1)3𝑞3 + 2(2𝜃 − 1)2(1 − 3𝜃)𝑞2

+ (2𝜃 − 1) (6𝜃2 − 4𝜃 + 1)𝑞 + 𝜃 (−2𝜃2 + 2𝜃 − 1)
≡ 𝛾(𝑞; 𝜃)

We then complete the proof of claim by showing that 𝛾(𝑞; 𝜃) < 0 for any 𝜃 ∈ (0.5, 1)
and 𝑞 ∈ (0.5, 1).

From the discriminant of a cubic polynomial, we know that, if 𝜅(𝑥) = 𝑎𝑥3+𝑏𝑥2+𝑐𝑥+𝑑
(where (𝑎, 𝑏, 𝑐, 𝑑) ∈ R4), then

(
𝑏𝑐

6𝑎2 − 𝑏3

27𝑎3 − 𝑑
2𝑎

)2
+
(
𝑐

3𝑎 −
𝑏2

9𝑎2

)
> 0 implies that 𝜅(𝑥)

only has one real root. Since (2𝜃−1) (6𝜃2−4𝜃+1)
6(2𝜃−1)3 − ( 2(2𝜃−1)2 (1−3𝜃)

6(2𝜃−1)3 )2 = 1
18(2𝜃−1)2 > 0, we

can conclude that 𝛾(𝑞; 𝜃) only has one real root (with respect to 𝑞).

Furthermore, we have 𝛾(1; 𝜃) = (𝜃 − 1) (2𝜃2 − 2𝜃 + 1) < 0 for 𝜃 ∈ (0.5, 1). Notice
that the coefficient of the cubic term of 𝛾(𝑞; 𝜃) is 2(2𝜃 − 1)3 > 0 for 𝜃 ∈ (0.5, 1).
Thus, the (unique) real root of 𝛾(𝑞; 𝜃) is greater than 0, which implies 𝛾(𝑞; 𝜃) < 0
for all 𝑞 ∈ (0.5, 1) (given 𝜃 ∈ (0.5, 1)), as desired. □

Notice that 𝑓 (𝜃, 𝜃, 𝛿) = ( 𝜃2

𝜃2+(1−𝜃)2 − 1
2 )

2(2𝜃 − 1)2 > 0 and 𝑓 (𝜃, 1, 𝛿) = −𝛿 < 0.
Therefore, given any 𝛿 ≥ 1 and 𝜃0 ∈ (0.5, 1), there exists a unique 𝑞0 ∈ (𝜃0, 1) such
that 𝑓 (𝜃0, 𝑞0, 𝛿) = 0; moreover, since 𝑓 (·) decreases in 𝑞, we have 𝑓 (𝜃0, 𝑞, 𝛿) < 0
for 𝑞 ∈ (𝑞0, 1), which completes the proof of Proposition 3.
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Proof of Proposition 4

First, note that 𝑔(𝜃, 𝜃, 𝛿) = ( 𝜃2

𝜃2+(1−𝜃)2 − 1
2 )

2 > 0, 𝑔(𝜃, 1, 𝛿) = 1 − 𝛿 < 0 when 𝛿 > 1,
𝑔(𝜃, 1, 𝛿 = 1) = 0, and 𝜕

𝜕𝑞
𝑔(𝜃, 𝑞, 𝛿) |𝑞=1,𝛿=1 = 1−𝜃

𝜃
> 0. Thus, 𝑔(·; 𝜃, 𝛿) has at least

one root in (𝜃, 1) given any 𝜃 ∈ (0.5, 1) and 𝛿 ≥ 1. We then complete our proof of
Proposition 4 by showing that the following two claims are true.

Claim 1: When 𝛿 ≥ 2 (and 𝜃 ∈ (0.5, 1)), 𝜕
𝜕𝑞
𝑔(𝜃, 𝑞, 𝛿) < 0 for 𝑞 ∈ (𝜃, 1).

Proof.

1
2
𝜕

𝜕𝑞
𝑔(𝜃, 𝑞, 𝛿) = 𝜃 (1 − 𝜃)

(
𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)
×

(
1

(𝜃𝑞 + (1 − 𝜃) (1 − 𝑞))2 + 1
(𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)2

)
− 𝜃 (1 − 𝜃)

(𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)2 𝛿

Thus, we have

1
2
𝜕

𝜕𝑞
𝑔(𝜃, 𝑞, 𝛿 = 2) = 𝜃 (1 − 𝜃)

(
𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)
· 1
(𝜃𝑞 + (1 − 𝜃) (1 − 𝑞))2

− 𝜃 (1 − 𝜃)
(𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)2

+ 𝜃 (1 − 𝜃)
(

𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)
· 1
(𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)2

− 𝜃 (1 − 𝜃)
(𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)2

< 0

Last, notice that 1
2
𝜕
𝜕𝑞
𝑔(𝜃, 𝑞, 𝛿 = 2) < 0 implies that 𝜕

𝜕𝑞
𝑔(𝜃, 𝑞, 𝛿 = 2) < 0 for all

𝛿 ≥ 2. □

Claim 2: Given any 𝛿 ∈ [1, 2] and 𝜃 ∈ (0.5, 1), 𝑔(·; 𝜃, 𝛿) only has one (real) root in
(𝜃, 1).

Proof. Let 𝜅(𝑞; 𝜃, 𝛿) = (𝜃𝑞 + (1 − 𝜃) (1 − 𝑞))2(𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)2𝑔(𝑞; 𝜃, 𝛿). To
prove Claim 2, it is sufficient to show that 𝜅(·; 𝜃, 𝛿) only has one root in (𝜃, 1) since
(𝜃𝑞 + (1 − 𝜃) (1 − 𝑞))2(𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)2 > 0 for 𝜃 ∈ (0.5, 1) and 𝑞 ∈ (𝜃, 1).

Recall that 𝑔(·; 𝜃, 𝛿) (and thus 𝜅(·; 𝜃, 𝛿)) has at least one root in (𝜃, 1). We then
prove that it has at most one root in (𝜃, 1) by showing that 𝑑2

𝑑𝑞2 𝜅(𝑞; 𝜃, 𝛿) > 0 for
𝛿 ∈ [1, 2] and 𝑞 ∈ (𝜃, 1).
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After some tedious algebra, it can be shown that

𝑑2

𝑑𝑞2 𝜅(𝑞; 𝜃, 𝛿) = 12𝑞𝛿(2𝜃 − 1)2((2𝜃 − 1)𝑞 + (1 − 𝜃 − 𝜃2))

+ 2(4𝜃2(1 − 𝜃2) + 𝛿(2𝜃 − 1) (6𝜃3 − 4𝜃2 − 2𝜃 + 1))
> 12𝜃𝛿(2𝜃 − 1)2(𝜃 − 1)2

+ 2(4𝜃2(1 − 𝜃2) + 𝛿(2𝜃 − 1) (6𝜃3 − 4𝜃2 − 2𝜃 + 1)) [∵ 𝑞 > 𝜃]

= 8𝜃2(1 − 𝜃)2 + 𝛿(2𝜃 − 1) (24𝜃4 − 48𝜃3 + 40𝜃2 − 16𝜃 + 2) ≡ Γ(𝜃; 𝛿)

When 𝛿 = 2, we have Γ(𝜃; 2) = 96𝜃5 − 232𝜃4 + 240𝜃3 − 136𝜃2 + 40𝜃 − 4. It
can be numerically shown that Γ(𝜃; 2) only has one real root (≈ 0.183453). Since
Γ(1; 2) > 0 and Γ(0; 2) < 0, we can conclude that Γ(𝜃; 2) > 0 for 𝜃 ∈ (0.5, 1).
Furthermore, this implies that, given any 𝜃 ∈ (0.5, 1) , Γ(𝜃; 𝛿) ≥ 0 for 𝛿 ∈ [1, 2].
If (2𝜃 − 1) (24𝜃4 − 48𝜃3 + 40𝜃2 − 16𝜃 + 2) < 0, then Γ(𝜃; 𝛿) ≥ Γ(𝜃; 2) > 0 for
𝛿 ∈ [1, 2]; if (2𝜃 − 1) (24𝜃4 − 48𝜃3 + 40𝜃2 − 16𝜃 + 2) ≥ 0, then Γ(𝜃; 𝛿) > 0 for
𝛿 ∈ [1, 2] since 8𝜃2(1 − 𝜃)2 > 0. Therefore, we get 𝑑2

𝑑𝑞2 𝜅(𝑞; 𝜃, 𝛿) > Γ(𝜃; 𝛿) ≥ 0 for
any 𝜃 ∈ (0.5, 1) and 𝛿 ∈ (1, 2). □

Recall that 𝑔(·; 𝜃, 𝛿) has at least one root in (𝜃, 1) given any 𝜃 ∈ (0.5, 1) and 𝛿 ≥ 1;
Claim 1 and Claim 2 imply that 𝑔(·; 𝜃, 𝛿) only has one root in (𝜃, 1). That is,
given any 𝛿 ≥ 1 and 𝜃0 ∈ (0.5, 1), there exists a unique 𝑞0 ∈ (𝜃0, 1) such that
𝑔(𝜃0, 𝑞0, 𝛿) = 0. Moreover, since 𝑔(𝜃0, 𝜃0, 𝛿) > 0 and 𝑔(𝜃0, 1, 𝛿) ≤ 0, we have
𝑔(𝜃0, 𝑞, 𝛿) > 0 for 𝑞 ∈ (𝜃0, 𝑞0), which completes the proof of Proposition 4.

Proof of Proposition 5

Recall that 𝑓 (0.5, 𝑞, 𝛿) = −(2𝑞−1)𝛿 < 0 and 𝑓 (𝑞, 𝑞, 𝛿) = ( 𝑞2

𝑞2+(1−𝑞)2−1
2 )

2(2𝑞−1)2 >

0 given any 𝛿 > 0. We then complete the proof of Proposition 5 by showing that,
given any 𝛿 ∈ (0, 1) and 𝑞 ∈ (0.5, 1), 𝜕

𝜕𝜃
𝑓 (𝜃0, 𝑞, 𝛿) must be strictly positive for any

𝜃0 ∈ (0.5, 𝑞) such that 𝑓 (𝜃0, 𝑞, 𝛿) = 0 (which implies that 𝑓 (·; 𝑞, 𝛿) only intersects
with the 𝑥-axis once for 𝜃 ∈ (0.5, 𝑞)).

Claim: Given any 𝛿 ∈ (0, 1) and 𝑞 ∈ (0.5, 1), 𝜕
𝜕𝜃
𝑓 (𝜃0, 𝑞, 𝛿) > 0 for 𝜃0 ∈ (0.5, 𝑞)

such that 𝑓 (𝜃0, 𝑞, 𝛿) = 0.

Proof. When 𝑓 (𝜃, 𝑞, 𝛿) = 0, we have 𝛿 =

(
𝜃𝑞

𝜃𝑞+(1−𝜃) (1−𝑞) −
𝜃 (1−𝑞)

𝜃 (1−𝑞)+(1−𝜃)𝑞

)2
(2𝜃 −

1) (2𝑞 − 1) · 𝜃 (1−𝑞)+(1−𝜃)𝑞
𝑞−𝜃 ≡ 𝛿0. To complete the proof, we need to show that

𝜕
𝜕𝜃
𝑓 (𝜃, 𝑞, 𝛿) |𝛿=𝛿0 > 0.
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Recall that

1
2
𝜕

𝜕𝜃
𝑓 (𝜃, 𝑞, 𝛿) = (2𝑞 − 1)

((
𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)2

+ 𝑞(1 − 𝑞) (2𝜃 − 1) ·
(

𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)
×

(
1

(𝜃𝑞 + (1 − 𝜃) (1 − 𝑞))2 − 1
(𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)2

))
+ 𝑞(1 − 𝑞)
(𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)2 𝛿

From the above equation, we can derive 1
2 (𝑞−𝜃) (𝜃𝑞+(1−𝜃) (1−𝑞))

2(𝜃 (1−𝑞)+ (1−

𝜃)𝑞)2(2𝑞 − 1)−1
(

𝜃𝑞

𝜃𝑞+(1−𝜃) (1−𝑞) −
𝜃 (1−𝑞)

𝜃 (1−𝑞)+(1−𝜃)𝑞

)−1
𝜕
𝜕𝜃
𝑓 (𝜃, 𝑞, 𝛿) ≡ 𝑓 ′(𝜃, 𝑞, 𝛿). Note

that given any 𝑞 ∈ (0.5, 1), the terms preceding 𝜕
𝜕𝜃
𝑓 (𝜃, 𝑞, 𝛿) are greater than 0 for

𝜃 ∈ (0.5, 𝑞). Thus, to complete the proof of the claim, it is sufficient to show that
𝑓 ′(𝜃, 𝑞, 𝛿0) > 0 given any 𝑞 ∈ (0.5, 1) and 𝜃 ∈ (0.5, 𝑞).

After some tedious algebra, we get

𝑓 ′(𝜃, 𝑞, 𝛿0) = − (2𝑞 − 1)3𝜃5 + (16𝑞4 − 12𝑞3 − 8𝑞2 + 9𝑞 − 2)𝜃4 + (−32𝑞4 + 40𝑞3 − 8𝑞2 − 4𝑞 + 1)𝜃3

+ (28𝑞4 − 40𝑞3 + 13𝑞2)𝜃2 + (−12𝑞4 + 18𝑞3 − 6𝑞2)𝜃 + (2𝑞4 − 3𝑞3 + 𝑞2)
≡ 𝐹 (𝜃; 𝑞)

It can be numerically shown that, given any 𝑞 ∈ (0.5, 1), the largest real root of
𝐹 (·; 𝑞) is greater than one, whereas the second largest real root (if exists) of 𝐹 (·; 𝑞)
is less than zero.1 This implies that 𝐹 (𝜃; 𝑞) > 0 for 𝜃 ∈ (0.5, 1) since the coefficient
of 𝜃5 in 𝐹 (·; 𝑞) is negative.2

□

Proof of Proposition 6

We complete the proof by showing that, given any 𝜃 ∈ (0.5, 1) and 𝛿 ∈ (0, 1),
𝑔(𝜃, 𝑞 = 1+𝛿

2 , 𝛿) > 0 and 𝜕
𝜕𝑞
𝑔(𝜃, 𝑞, 𝛿) > 0 for 𝑞 ∈ [ 1+𝛿

2 , 1].

Claim 1: 𝑔(𝜃, 𝑞 = 1+𝛿
2 , 𝛿) > 0 for any 𝜃 ∈ (0.5, 1) and 𝛿 ∈ (0, 1).

1We use Mathematica to obtain numerical solutions.
2In fact, our numerical result shows that min𝜃∈[0.5,1],𝑞∈[0.5,1] 𝐹 (𝜃; 𝑞) = 𝐹 (1, 1) = 0, which also

indicates that 𝐹 (𝜃; 𝑞) > 0 for 𝑞 ∈ (0.5, 1) and 𝜃 ∈ (0.5, 𝑞).
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Proof. First, after some tedious algebra, we can get

𝑔(𝜃, 𝑞 =
1 + 𝛿

2
, 𝛿) =

(4𝜃𝛿(1 − 𝜃))2 +
(
1 − 𝛿2) (1 + (2𝜃 − 1)𝛿)2(1 − (2𝜃 − 1)𝛿)

(1 + (2𝜃 − 1)𝛿)2(1 − (2𝜃 − 1)𝛿)2 − 1

Since both the numerator and the denominator of the first term are positive, 𝑔(𝜃, 𝑞 =

1+𝛿
2 , 𝛿) > 0 if and only if 𝜂(𝛿; 𝜃) > 0, where

𝜂(𝛿; 𝜃) = (4𝜃𝛿(1 − 𝜃))2 +
(
1 − 𝛿2

)
(1 + (2𝜃 − 1)𝛿)2(1 − (2𝜃 − 1)𝛿)

− (1 + (2𝜃 − 1)𝛿)2(1 − (2𝜃 − 1)𝛿)2

=
[
(2𝜃 − 1)3𝛿4 + (2𝜃 − 1)2(1 − (2𝜃 − 1)2)𝛿3

− (2𝜃 − 1) (1 + (2𝜃 − 1)2)𝛿2 − (4𝜃 (1 − 𝜃) − (4𝜃 (1 − 𝜃))2)𝛿 + (2𝜃 − 1)
]
𝛿

≡ 𝜂(𝛿; 𝜃) · 𝛿

To complete the proof of Claim 1, it is sufficient to show that, given any 𝜃 ∈ (0.5, 1),
𝜂(𝛿; 𝜃) > 0 for 𝛿 ∈ (0, 1).

Since the coefficients of 𝛿4, 𝛿3, and the constant term in 𝜂(𝛿; 𝜃) are positive while
the coefficients of 𝛿2 and 𝛿 are negative, 𝜂(𝛿; 𝜃) has no or two positive roots (by
Descartes’ rule of signs). Note that 𝜂(𝛿 = 1; 𝜃) = 0; thus, 𝜂(𝛿; 𝜃) has two positive
roots. Moreover, it can be shown that 𝑑

𝑑𝛿
𝜂(𝛿; 𝜃) < 0 and lim𝛿→∞ 𝜂(𝛿; 𝜃) = +∞

(when 𝜃 ∈ (0.5, 1)). Hence, one of the positive roots of 𝜂(𝛿; 𝜃) is larger than
one. This (along with the fact that 𝑑

𝑑𝛿
𝜂(𝛿; 𝜃) < 0) implies that 𝜂(𝛿; 𝜃) > 0 for

𝛿 ∈ (0, 1). □

Claim 2: Given any 𝜃 ∈ (0.5, 1) and 𝛿 ∈ (0, 1), 𝜕
𝜕𝑞
𝑔(𝜃, 𝑞, 𝛿) > 0 for 𝑞 ∈ [ 1+𝛿

2 , 1].

Proof. Recall that, in the proof of Proposition 4, we have shown that

1
2
𝜕

𝜕𝑞
𝑔(𝜃, 𝑞, 𝛿) = 𝜃 (1 − 𝜃)

(
𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)
×

(
1

(𝜃𝑞 + (1 − 𝜃) (1 − 𝑞))2 + 1
(𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)2

)
− 𝜃 (1 − 𝜃)

(𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)2 𝛿

When 𝑞 = 1+𝛿
2 , we have

(
𝜃𝑞

𝜃𝑞+(1−𝜃) (1−𝑞) −
𝜃 (1−𝑞)

𝜃 (1−𝑞)+(1−𝜃)𝑞

)
=

4𝜃𝛿(1−𝜃)
1−𝛿2 (2𝜃−1)2 > 4𝜃𝛿(1 − 𝜃).

In addition, given 𝜃 ∈ (0.5, 1), we have 4𝜃𝛿(1 − 𝜃) − 𝛿 = 𝛿(4𝜃 (1 − 𝛿) − 1) > 0.
Thus, we get 4𝜃𝛿(1−𝜃)

1−𝛿2 (2𝜃−1)2 · 𝜃 (1−𝜃)
(𝜃 (1−𝑞)+(1−𝜃)𝑞)2 > 𝛿 · 𝜃 (1−𝜃)

(𝜃 (1−𝑞)+(1−𝜃)𝑞)2 .
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Furthermore, we know 𝜕
𝜕𝑞

(
𝜃𝑞

𝜃𝑞+(1−𝜃) (1−𝑞) −
𝜃 (1−𝑞)

𝜃 (1−𝑞)+(1−𝜃)𝑞

)
=

(
1

(𝜃𝑞+(1−𝜃) (1−𝑞))2 + 1
(𝜃 (1−𝑞)+(1−𝜃)𝑞)2

)
>

0. Therefore, we get
(

𝜃𝑞

𝜃𝑞+(1−𝜃) (1−𝑞) −
𝜃 (1−𝑞)

𝜃 (1−𝑞)+(1−𝜃)𝑞

)
· 𝜃 (1−𝜃)
(𝜃 (1−𝑞)+(1−𝜃)𝑞)2 >

4𝜃𝛿(1−𝜃)
1−𝛿2 (2𝜃−1)2 ·

𝜃 (1−𝜃)
(𝜃 (1−𝑞)+(1−𝜃)𝑞)2 > 𝛿 · 𝜃 (1−𝜃)

(𝜃 (1−𝑞)+(1−𝜃)𝑞)2 for 𝑞 ∈ [ 1+𝛿
2 , 1], which implies 𝜕

𝜕𝑞
𝑔(𝜃, 𝑞, 𝛿) > 0

for 𝑞 ∈ [ 1+𝛿
2 , 1]. □

Proof of Proposition 7

Claim: When 𝛿 ∈ (0, 1) and 𝑞 ∈ (0.5, 1+𝛿
2 ), 𝜕

𝜕𝜃
𝑔(𝜃, 𝑞, 𝛿) > 0 for 𝜃 ∈ (0.5, 𝑞).

Proof. Recall that

1
2
𝜕

𝜕𝜃
𝑔(𝜃, 𝑞, 𝛿) = 𝑞(1 − 𝑞)

(
𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)
×

(
1

(𝜃𝑞 + (1 − 𝜃) (1 − 𝑞))2 − 1
(𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)2

)
+ 𝑞(1 − 𝑞)
(𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)2 𝛿

=

(
𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)
𝑞(1 − 𝑞) 1

(𝜃𝑞 + (1 − 𝜃) (1 − 𝑞))2

−
(

𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)
𝑞(1 − 𝑞) 1

(𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)2

+ 𝑞(1 − 𝑞)
(𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)2 𝛿

>

(
𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)
𝑞(1 − 𝑞) 1

(𝜃𝑞 + (1 − 𝜃) (1 − 𝑞))2

−
(

𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)
𝑞(1 − 𝑞) 1

(𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)2

+ (2𝑞 − 1) 𝑞(1 − 𝑞)
(𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞)2

The last inequality holds since 𝑞 < 1+𝛿
2 implies 𝛿 > 2𝑞 − 1.

Moreover, since 𝜕
𝜕𝜃

(
𝜃𝑞

𝜃𝑞+(1−𝜃) (1−𝑞) −
𝜃 (1−𝑞)

𝜃 (1−𝑞)+(1−𝜃)𝑞

)2
= 𝑞(1−𝑞)

(
1

(𝜃𝑞+(1−𝜃) (1−𝑞))2 − 1
(𝜃 (1−𝑞)+(1−𝜃)𝑞)2

)
≤

0 when 𝜃 ∈ [0.5, 1], we have 2𝑞 − 1 −
(

𝜃𝑞

𝜃𝑞+(1−𝜃) (1−𝑞) −
𝜃 (1−𝑞)

𝜃 (1−𝑞)+(1−𝜃)𝑞

)
≥ 2𝑞 − 1 −

(𝑞 − (1 − 𝑞)) = 0, which implies 1
2
𝜕
𝜕𝜃
𝑔(𝜃, 𝑞, 𝛿) > 0. □

Notice that 𝑔(0.5, 𝛿, 𝑞) = (2𝑞 − 1) (2𝑞 − 1 − 𝛿) < 0 when 𝑞 < 1+𝛿
2 , and 𝑔(𝑞, 𝑞, 𝛿) =

( 𝑞2

𝑞2+(1−𝑞)2 − 1
2 )

2 > 0. Therefore, given any 𝛿 ∈ (0, 1) and 𝑞0 ∈ (0.5, 1+𝛿
2 ), there exists

a unique 𝜃0 ∈ (0.5, 𝑞0) such that 𝑔(𝜃0, 𝑞0, 𝛿) = 0; moreover, since 𝑔(·) increases in
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𝜃, we have 𝑔(𝜃, 𝑞0, 𝛿) > 0 for 𝜃 ∈ (𝜃0, 𝑞0), which completes the proof of Proposition
7.

Proof of Proposition 9

In the following, we prove the two statements in Proposition 9 separately.

Proof of the first statement (with respect to the BUE):

We first denote the boundary of the equilibrium condition for a BUE as

𝛿 𝑓 (𝜃; 𝑞) ≡
(

𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)2
(2𝜃−1) (2𝑞−1)·𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

𝑞 − 𝜃

where 𝑞 ∈ (0.5, 1). Note that, given 𝑞 ∈ (0.5, 1), (𝜃, 𝛿) can support a BUE if and
only if 𝛿 ≥ 𝛿 𝑓 (𝜃; 𝑞).

We then complete the proof with the following four statements:

1. 𝛿 𝑓 (0.5; 𝑞) = 0 for any 𝑞 ∈ (0.5, 1).

2. Given 𝑞′ and 𝑞′′ such that 𝑞′′ > 𝑞′, we have lim𝜃→𝑞′ 𝛿 𝑓 (𝜃; 𝑞′) = ∞ and
𝛿 𝑓 (𝜃 = 𝑞′; 𝑞′′) < ∞.

3. It can be numerically shown that 𝑑
𝑑𝜃
𝛿 𝑓 (𝜃; 𝑞′′) |𝜃=0.5 >

𝑑
𝑑𝜃
𝛿 𝑓 (𝜃; 𝑞′) |𝜃=0.5 > 0

when 1 > 𝑞′′ > 𝑞′ > 0.5.

4. It can be numerically shown that 𝑑2

𝑑𝜃2 𝛿 𝑓 (𝜃; 𝑞′) > 𝑑2

𝑑𝜃2 𝛿 𝑓 (𝜃; 𝑞′′) for 𝜃 ∈ (0.5, 𝑞′)
when 1 > 𝑞′′ > 𝑞′ > 0.5.

Thus, 𝛿 𝑓 (·; 𝑞′) only intersects with 𝛿 𝑓 (·; 𝑞′′) once for 𝜃 ∈ (0.5, 𝑞′′). Moreover, when
𝛿 is below that intersection point, we have (𝜃, 𝛿) ∈ BUE𝑞′′ =⇒ (𝜃, 𝛿) ∈ BUE𝑞′ ,
and when 𝛿 is above that intersection point, we have (𝜃, 𝛿) ∈ BUE𝑞′ =⇒ (𝜃, 𝛿) ∈
BUE𝑞′′ , as desired.

Proof of the second statement (with respect to the CBE):

We first denote the boundary of the equilibrium condition for a BUE as

𝛿𝑔 (𝜃; 𝑞) ≡
(

𝜃𝑞

𝜃𝑞 + (1 − 𝜃) (1 − 𝑞) −
𝜃 (1 − 𝑞)

𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

)2
· 𝜃 (1 − 𝑞) + (1 − 𝜃)𝑞

𝑞 − 𝜃

where 𝑞 ∈ (0.5, 1). Note that, given 𝑞 ∈ (0.5, 1), (𝜃, 𝛿) can support a CBE if and
only if 𝛿 ≤ 𝛿𝑔 (𝜃; 𝑞).

We then complete the proof with the following three statements:
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1. 𝛿𝑔 (0.5, 𝑞) = 2𝑞 − 1; thus, 𝛿𝑔 (0.5, 𝑞′) < 𝛿𝑔 (0.5, 𝑞′′) when 1 > 𝑞′′ > 𝑞′ > 0.5.

2. lim𝜃→𝑞′ 𝛿𝑔 (𝜃; 𝑞′) = ∞ and 𝛿𝑔 (𝜃 = 𝑞′; 𝑞′′) < ∞ when 1 > 𝑞′′ > 𝑞′ > 0.5.

3. It can be numerically shown that 𝑑2

𝑑𝜃2 𝛿𝑔 (𝜃; 𝑞′) > 𝑑2

𝑑𝜃2 𝛿𝑔 (𝜃; 𝑞′′) for 𝜃 ∈ (0.5, 𝑞′)
when 1 > 𝑞′′ > 𝑞′ > 0.5.

Thus, 𝛿𝑔 (·; 𝑞′) only intersects with 𝛿𝑔 (·; 𝑞′′) once for 𝜃 ∈ (0.5, 𝑞′′). Moreover, when
𝛿 is below that intersection point, we have (𝜃, 𝛿) ∈ CBE𝑞′ =⇒ (𝜃, 𝛿) ∈ CBE𝑞′′ ,
and when 𝛿 is above that intersection point, we have (𝜃, 𝛿) ∈ CBE𝑞′′ =⇒ (𝜃, 𝛿) ∈
CBE𝑞′ , as desired.

136



Proof of Proposition 10

Let 𝑓𝜆 (𝑘) =
∑𝑘−1
𝑗=0

(2𝑘−1
𝑗

)
𝜆2𝑘−1− 𝑗 (1 − 𝜆) 𝑗 . To complete the proof of Proposition 10,

it is sufficient to show that 𝑓𝜆 (𝑘 + 1) − 𝑓𝜆 (𝑘) > 0 for all 𝑘 ∈ N and 𝜆 ∈ (0.5, 1).

𝑓𝜆 (𝑘 + 1) − 𝑓𝜆 (𝑘)

= 𝜆
©­«(𝜆2𝑘 − 𝜆2𝑘−2) +

𝑘∑︁
𝑗=1

(
2𝑘 + 1
𝑗

)
𝜆2𝑘− 𝑗 (1 − 𝜆) 𝑗 −

𝑘−1∑︁
𝑗=1

(
2𝑘 − 1
𝑗

)
𝜆2𝑘−2− 𝑗 (1 − 𝜆) 𝑗ª®¬

= 𝜆(1 − 𝜆) ©­«
𝑘∑︁
𝑗=1

(
2𝑘 + 1
𝑗

)
𝜆2𝑘− 𝑗 (1 − 𝜆) 𝑗−1 −

𝑘−1∑︁
𝑗=1

(
2𝑘 − 1
𝑗

)
𝜆2𝑘−2− 𝑗 (1 − 𝜆) 𝑗−1 − 𝜆2𝑘−1 − 𝜆2𝑘−2ª®¬

= 𝜆𝑘 (1 − 𝜆) ©­«
𝑘∑︁
𝑗=1

(
2𝑘 + 1
𝑗

)
𝜆𝑘+1− 𝑗 (1 − 𝜆) 𝑗−1 −

𝑘−1∑︁
𝑗=1

(
2𝑘 − 1
𝑗

)
𝜆𝑘−1− 𝑗 (1 − 𝜆) 𝑗−1 − 𝜆𝑘 − 𝜆𝑘−1ª®¬

= 𝜆𝑘 (1 − 𝜆)2 ©­«
𝑘∑︁
𝑗=2

(
2𝑘 + 1
𝑗

)
𝜆𝑘+1− 𝑗 (1 − 𝜆) 𝑗−2 −

𝑘−1∑︁
𝑗=2

(
2𝑘 − 1
𝑗

)
𝜆𝑘−1− 𝑗 (1 − 𝜆) 𝑗−2

−
((

2𝑘 − 1
1

)
+

(
2𝑘 − 1

0

))
𝜆𝑘−1 −

(
2𝑘 − 1

1

)
𝜆𝑘−2

)
= 𝜆𝑘 (1 − 𝜆)3 ©­«

𝑘∑︁
𝑗=3

(
2𝑘 + 1
𝑗

)
𝜆𝑘+1− 𝑗 (1 − 𝜆) 𝑗−3 −

𝑘−1∑︁
𝑗=3

(
2𝑘 − 1
𝑗

)
𝜆𝑘−1− 𝑗 (1 − 𝜆) 𝑗−3

−
((

2𝑘 − 1
2

)
+

(
2𝑘 − 1

1

))
𝜆𝑘−2 −

(
2𝑘 − 1

2

)
𝜆𝑘−3

)
= · · ·

= 𝜆𝑘 (1 − 𝜆)𝑘−1
((

2𝑘 + 1
𝑘 − 1

)
𝜆2 +

(
2𝑘 + 1
𝑘

)
𝜆(1 − 𝜆) −

(
2𝑘 − 1
𝑘 − 1

)
−

((
2𝑘 − 1
𝑘 − 2

)
+

(
2𝑘 − 1
𝑘 − 3

))
𝜆2 −

(
2𝑘 − 1
𝑘 − 2

)
𝜆

)
= 𝜆𝑘 (1 − 𝜆)𝑘−1

((
2𝑘 − 1
𝑘 − 1

)
(1 − 𝜆) (2𝜆 − 1)

)
=

(
2𝑘 − 1
𝑘 − 1

)
𝜆𝑘 (1 − 𝜆)𝑘 (2𝜆 − 1)

> 0 for any 𝜆 ∈ (0.5, 1)
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