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ABSTRACT

A s temperature increases, atomic scale disorder, or entropy, drives the ther-
mophysical properties of materials. One way it does this is by passing heat

through materials in the form of vibrations. In solids, vibrational motions are
called phonons, and their behaviors are used to predict macroscopic properties
such as thermal expansion and thermal conductivity. Other forms of entropy in-
clude configurational and electronic entropy, which also evolve with temperature.
Configurational changes in solids are often small, but in liquids, the prominence
of diffusion makes this contribution significant. This dissertation addresses these
atomistic components of entropy in two studies, one on bcc chromium and the
other on the melting of monatomic systems.

In the first study, phonon densities of states (DOS) of body-centered cubic (bcc)
chromium were measured by time-of-flight inelastic neutron scattering at tem-
peratures up to 1493 K. Density functional theory (DFT) calculations with both
quasi-harmonic (QH) and anharmonic (AH) methods were performed at tempera-
tures above the Néel temperature. Features in the phonon DOS decrease in energy
(soften) substantially with temperature. A Born-von Kármán analysis using fits to
the experimental DOS reveals a softening of almost 17% of the high transverse
phonon branch between 330 and 1493K. The low transverse branch changes by
approximately half this amount. The AH calculations capture the observed be-
havior of the two transverse phonon branches, but the QH calculations give some
inverted trends. Vibrational entropies from phonons and electrons are obtained,
and their sum is in excellent agreement with the entropy of chromium obtained
by calorimetry, indicating that above 330K, no explicit temperature-dependent
magnetic contributions are necessary.

The second investigation delves into the latent heat of melting, defined asTm ∆Sfus,
where Tm is the melting temperature and ∆Sfus is the entropy of fusion. At the
scale of atoms and electrons, ∆Sfus has components from changes of atom config-
urations, atom vibrations, and thermal excitations of electrons. New data analyses
were developed for inelastic neutron scattering (INS) to obtain changes in vibra-
tional spectra upon melting. Combining these INS experiments with computational
work using thermodynamic integration and molecular dynamics, components of
∆Sfus were obtained for a total of six elements, Ge, Si, Bi, Sn, Pb, Li. Upon
melting, there is always a positive change of configurational entropy, ∆Sconfig.
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A baseline value of ∆Sconfig=1.2 kB/atom, approximately the value for Richard’s
rule, corresponds to zero change in the vibrational part of the entropy of fusion,
∆Svib. Elements having values of ∆Sfus that depart from this value of Richard’s
rule have both an additional ∆Svib and an additional ∆Sconfig. Surprisingly, the
extra ∆Sconfig is close to 77% of ∆Svib, for both positive and negative deviations
from Richard’s rule. This implies a correlation between the change in the number
of basins in a potential energy landscape and the change in the inverse of their
curvature upon melting.
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C h a p t e r 1

INTRODUCTION

W hen asked to describe my field, I always hesitate about where to begin. Not
because there is not much to say—the opposite, in fact—the breadth of

materials science is enormous. Over the past eleven years, I have seen materials
science evolve to encompass aspects of physics, chemistry, biology, and even com-
puter science. Instead of covering the entire field, this thesis will focus on a small
but important corner of materials science, vibrational thermodynamics. This, at
least, I can describe well.

For those reading this who might not be scientists, I would like to dedicate this
paragraph to explaining the idea and importance of vibrational dynamics. Think of
the children’s game "telephone," where a chosen sentence passes between people
in a line. The catch? Everybody is whispering. Inevitably, a word or two is mis-
heard, and the result differs from the original phrase. Extending this visualization
to vibrational thermodynamics, imagine an atom traveling with a set amount of
energy (the original sentence). As this atom moves, it transfers some of its initial
energy to others (whispering to other players). Discretized vibrations (which have
set energies and directions of travel) are a subset of motion called phonons. Much
like the original sentence in "telephone," they have lifetimes—lengths of time dur-
ing which they are unaltered before being whispered awry. The differences in how
these phonons propagate, or move, through a material determine how that material
responds to external forces, including heat, pressure, and magnetism.

Development and understanding of such responses are crucial to technological ad-
vancement. From reinforced steel to semiconductors, our society depends upon
materials science. Specifically, we rely on finding and using materials that have
desirable properties for a given task. Most semiconductors, which are crucial com-
ponents of computers, would be a catastrophic choice for reinforcing buildings.
However, steel, a mixture of metals, has been used for decades to mitigate struc-
tural damage. Finding what materials work and why can be traced back to their
fundamental behavior.

A branch of physics called vibrational thermodynamics studies a subset of these
fundamental behaviors of materials. In vibrational thermodynamics, temperature



2

plays a significant role. Returning to the "telephone" game analogy, imagine
what would happen if people could move a certain distance in a random direction
from their starting position depending on the outside temperature. If warmer
weather equates to more movement, people could interact with those previously
out of reach. Overall, there is more disarray in the passing of sentences, and the
original phrase is likely to be distorted in a shorter time. The amount of disorder
associated with this motion is something scientists have named vibrational entropy,
and it relates the degree of randomness in a system to the overall energy (and thus
behavior) in materials. This thesis focuses on understanding vibrational entropy in
elemental solids and liquids.

Throughout this thesis, neutron scattering and anharmonic simulations built upon
density functional theory (DFT) and molecular dynamics (MD) are the two main
methods used to assess entropy (specifically vibrational) in materials.

Neutron scattering probes vibrational intensity by colliding heavy, uncharged parti-
cles known as neutrons with a sample. The material can either lose or gain energy
and momentum with each hit. Detecting, recording, and analyzing these events
reveals the nature of vibrational interactions. By varying the temperature of the
sample and repeating the process, we determine how temperature affects the ma-
terial. These experimental spectra can be related to vibrational entropy. Often,
such experiments can only be performed successfully at national user facilities.
Throughout my time as a graduate scholar, I can safely say that I’ve spent at least
three months collecting the data presented here, and this estimate is likely low.

Computer simulations are a powerful tool to confirm results from experimental
analyses. Anharmonically informed calculations provide a good description of the
temperature-dependent behavior of materials, with the added advantage of being
able to separate contributions from fundamental interactions explicitly. In some
cases, such simulations confirm our understanding of physics in materials. In
others, they reveal previously unexplained physics. Since the calculations to get
these properties are intensive, supercomputers also became a necessary part of my
graduate studies.

The remainder of this work is structured as follows: Chapter 2 provides general
background on topics relevant to the work presented in this dissertation. It begins
with an overview of atomic motion, including diffusion and phonons, and outlines
traditional ways of mathematically formulating each. Then, it covers neutron scat-
tering and anharmonic calculations and how they are used to obtain and analyze
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atomic motion. Chapter 3 presents research and results on chromium (Cr), which
shows unusual vibrational behavior at high temperatures. Chapter 4 quantifies
the contribution of vibrational, configurational, and electronic entropies to the to-
tal entropy of melting in bismuth (Bi), lead (Pb), tin (Sn), and germanium (Ge).
These results provide an explanation for deviations from Richard’s rule and reveal a
surprising fact about the change in the potential energy landscape across melting.
To conclude, Chapter 5 considers future directions for this work.
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C h a p t e r 2

BACKGROUND

This chapter generally follows information gleaned from references [1–4].

2.1 Atomic Motion

T he postulation that everything is made of tiny undividable units—atoms—
dates back to ancient Greece. Although we have since found that atoms are

not the smallest units of matter, they are often the starting point for visualizing
microscopic motion in materials science. Accordingly, this is where we will begin.

Atoms within a solid, liquid, or gas move with varying degrees of randomness. In
a gas at equilibrium, an individual atom knows little about how the other particles
in the gas behave. As a result, random collisions describe the interactions between
atoms well. However, in a solid where atoms are bound to their neighbors, col-
lective motion in the form of quantized waves dominates. Traditionally, these two
types of motion are called diffusion (random) and phonons (collective). As this
thesis will show, liquids have significant contributing factors from both.

The microscopic motion described above determines the macroscopic properties
seen in everyday materials. One goal of thermodynamics is understanding the rela-
tionships between fundamental and measured properties. In particular, vibrational
thermodynamics studies the temperature dependence of this motion and how it
relates to the energetics and, therefore, behaviors of systems.

Diffusion

Three mechanisms for diffusion exist in crystalline solids (repeating units of atoms):
interstitial, interstitialcy, and vacancy. The first involves an atom that moves
between the periodic lattice of host atoms and is often a different chemical species
(Fig. 2.1a). Interstitialcy, shown in Fig. 2.1b, refers to atoms of the same chemical
species either replacing a neighbor from, or moving to, an interstitial (in between)
site. Vacancy diffusion occurs in lattices with a missing atom (i.e., the atomic
arrangement is not perfectly periodic). Within this mechanism, an atom moves into
a neighboring empty site, exchanging positions with a vacancy. A two-dimensional
case of this is illustrated in Figure 2.1c.
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a b c

Figure 2.1: Two-dimensional representation of possible diffusion mechanisms in
crystalline solids, (a) interstitial, (b), interstitialcy, and (c) vacancy diffusion. Ar-
rows show possible pathways for the diffusing atom(s) to take.

Hereafter, the focus will be on diffusion in liquids and models to describe them.
An equilibrium liquid has one primary diffusion mechanism, called single-particle
or self-diffusion. Within this steady state picture, atoms roam and collide in a
random sequence with their neighbors but do not change the overall energy of the
system. For sufficiently long time and spatial scales, this process is approximately
continuous with respect to individual jumps.

Continuous diffusion processes have known relationships between flux and con-
centration (the number of particles in a given volume), Fick’s laws. Fick’s first
law,

j(r, t ) = −D+n (r, t ) (2.1)

relates j , the particle flux (the number of atoms passing through an area perpen-
dicular to particle movement in a given time), to the concentration, n, through
a diffusion coefficient, D . For a system with a constant number of atoms, the

j(r, t)

A

Figure 2.2: Pictoral representation of atoms diffusing a distance ∆r through a
cylinder with cross-sectional area, A.
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particles leaving a subset of the volume must be balanced by a decrease in the
concentration of that volume,

−+ · j(r, t ) = ∂n

∂t
. (2.2)

Substituting the flux from2.1 into the above continuity equation and assuming D
is independent of concentration, Fick’s second law,

∂n

∂t
= −+ · (−D+n (r, t )) = D+2n (r, t ), (2.3)

is found.

Returning to the microscopic (atomic) perspective, consider an atom at position
r at time t = 01. Mathematically, this observation relates to the concentration
n (r, 0) = δ (r). Using this initial condition and assuming that diffusion is equivalent
in all directions (isotropic),

n (r , t ) =
( 1

4πD |t |

)3/2
exp (−r 2)/4D |t |), (2.4)

is a solution to Fick’s second law. How the above expression relates to experimental
measurements will be given in section 2.2.

Collective vibrational motion

Collective motion in atomic scale systems describes how particles move together
in response to each other. Such behavior requires atoms to know or remember
their environment within some time scale. This environment is called the potential
energy surface (PES), and it contains the energetics of atoms and their surround-
ings. A one-dimensional representation of PESs for a solid and a liquid is shown
in Fig. 2.3.

Within the potential energy surface framework, an atom will "fall into" the posi-
tion with the least energy. For crystalline solids, these positions form a periodic
arrangement called a crystal lattice. In an idealized structure, each particle within
this lattice sits at a PES energy minimum, called an equilibrium position, as Fig. 2.4
shows. Realistically, even at zero temperature, atoms vibrate around this equilib-
rium point. As temperature increases, atoms gain energy2. This changes the
potential energy landscape, which in turn changes atomic motion3. If atoms can

1This statement is equivalent to saying that at the beginning of a measurement, there is a
100% probability of an atom being at location r .

2This energy is the thermal energy, ε = kBT per coordinate degree of freedom.
3Atoms with more energy available to them will vibrate more.
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Figure 2.3: Potential energy surfaces in one-dimension for (top) a crystalline solid
and (bottom) a liquid. In each, the three atoms are located in the wells with the
lowest energy.

Figure 2.4: Two-dimensional representation of atoms at equilibrium positions in a
crystalline solid. The grey rectangle is the repeating motif for the crystal lattice,
and extends indefinitely in all directions for an idealized system.

"see" each other (they interact), a change in motion in one affects the others.
This propagating response is called collective motion and can be visualized as a
wave moving through a material. Some instances are so common that they are
given names. Before defining these, it is important to mention two quantities, the
wavevector, k, and the wavefunction, ψ (r, t ) ∝ ei (k·r−ωt ). The former has a mag-
nitude and direction and helps define the direction of wave propagation. The latter
describes how the wave changes with position and time4. With these definitions
in mind, phonons can be classified as longitudinal or transverse. A longitudinal

4For example, the amplitude, or height of the wave at a given time and position.
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Figure 2.5: Longitudinal (top) and transverse (bottom) phonons in a two-
dimensional lattice. Grey atoms depict original equilibrium positions.

phonon is excited when particles in the lattice travel along the same line of mo-
tion as k, and transverse phonons occur when the resulting atomic movement is
perpendicular to the original wavevector (see Fig. 2.5). There are two transverse
modes for each longitudinal mode in three dimensions. Each of these is discretized,
or has a set energy associated with their creation, that changes with temperature.
Describing the temperature evolution of collective motion is a large part of vi-
brational thermodynamics, and many models have been proposed to predict and
understand this behavior in materials.

The harmonic model (HA) is one of the best-known and simplest models to de-
scribe vibrational thermodynamics in crystalline solids. It begins by assuming
atoms in a lattice interact by springs with forces linear in displacement. In physics,
a spring has a known potential energy surface (a parabola), given in one dimension
by

UHA =
1

2
k x 2, (2.5)

where k is a force constant, and x is the displacement from an equilibrium lattice
position. The strength of the force constant determines the amplitude of atomic
vibrations. It is worth noting that any movement within this lattice will continue
indefinitely because this model does not have a dissipative (or damping) term.
As a result, the thermal properties predicted from this model are inaccurate, with
increasing error at high temperatures. However, this approximation helps lay the
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mathematical groundwork for predicting vibrational free energy, which is essential
for understanding materials behavior.

The above picture imagines the atoms in Fig. 2.4 connected by springs, each with
the same energy. In reality, atomic vibrations are quantized with energies, εn =

(n + 1
2 )ħω. Two subtle but important points are hidden in this expression: 1) these

energies are not continuous, and 2) the n = 0 ground state energy is not zero5.
However, these available energies do lie on a parabolic potential energy surface.

In three dimensions, a lattice with N atoms has 3N independent oscillators. Using
the above energy levels, a partition function, or how many ways a system can be
divided into a subsystem with the same energy, is built. For the harmonic crystal
described here, where each atom has access to the same energy levels, this is a
product of the partition function for a single oscillator,

ZN =
3N∏
i

Zi =
3N∏
i

e−βεi /2

1 − e−βεi
, (2.6)

where β = 1/(kBT ) and kB is Boltzmann’s constant. The importance of ZN
here is that it is directly related to the vibrational free energy, Fvib = −kBT ln ZN .
Unfortunately, experiments cannot measure this value. However, a continuous
quantity called the vibrational entropy, given by Svib = −(∂Fvib/∂T ), is experi-
mentally accessible6. A more common definition of Svib is

Svib = 3kB

∫ ∞

0
g (ε) [(n (ε) + 1) ln(n (ε) + 1) − n (ε) ln(n (ε))]dε, (2.7)

where g (ε) is a normalized continuous vibrational spectrum of frequencies called
the density of states (DOS)7 and

n (ε) = 1

eβε − 1
(2.8)

is the (Planck) occupancy of a vibrational mode with energy ε at a given tempera-
ture, T . A more intuitive way to think about this expression for vibrational entropy
is as an adding of the vibrations active for a specified temperature multiplied by
the disorder these vibrations contribute to the system. In theory, knowledge of
these quantities gives thermal expansion, thermal conductivity, and other ther-
mally driven properties of materials. However, two significant shortcomings of the

5This is the origin of the zero point motion mentioned earlier.
6One method to do so, neutron scattering, is discussed later.
7An example of a DOS and how to read it is given in Section 2.2.
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harmonic approximation make its predicted values fall short. One is that the energy
of the oscillators remains unchanged in response to external parameters, such as
temperature or pressure. In the PES view, this is keeping k constant. The second
assumption is that these oscillators stay independent with increasing temperature
(same as the above statement for no dissipative terms in the potential energy). At
low temperatures, this doesn’t affect calculated values too much because fewer vi-
brational modes are active, and therefore, they have fewer opportunities to interact
with others. As temperature rises, more vibrational modes (phonons) are created,
and they interact more often, changing the shape of the potential energy surface.
Therefore, including T only through the Planck occupancy factor is insufficient to
describe materials.

One common modification to the harmonic model is the quasiharmonic approx-
imation (QHA). This model uses the intuition that an increase in temperature
should lead to a change in the distances between atoms. By mapping a volume
change to temperature, this model provides a prediction of the thermal expansion
of a crystalline lattice. Returning to the description of atoms as interconnected
springs, this is equivalent to changing k , the force constant in Eq. 2.5. If the force
constant softens (decreases) or stiffens (increases) with temperature, the range of
movement of particles in a lattice will change, resulting in new equilibrium posi-
tions. The new minimum energy site that atoms find affects the volume of the
entire lattice, as Fig. 2.6 shows. Mathematically, this is equivalent to minimizing
the Helmholtz free energy,

F (T ,V ) = U (T ,V ) −T S (T ,V ) ≈ U (T ,V ) −T Svib(T ,V ), (2.9)

where U is the internal energy, T is temperature, and S is entropy. In practice,
finding the volume that minimizes the energy is trial and error. The process begins
by generating lattices with different volumes8. A harmonic approximation for each
yields a Helmholtz free energy for a given lattice, and the minimum volume for
each temperature is the one that has the lowest energy. Therefore, by adding a
volume change to the HA, the QHA can give a description of thermal expansion.
However, because it is an extension of the harmonic approximation, the QHA
suffers from the assumption that the oscillators remain independent of each other
with increasing temperature.

An anharmonic framework is needed to address accurate temperature and volume
dependence of collective motion. Generally speaking, an anharmonic model is

8In the QHA this changes the oscillator energy since k = mω2 and ε = ħω.



11

Figure 2.6: Illustration of how the quasiharmonic approximation expands or con-
tracts a lattice by changing the strength of a spring connecting atoms. A larger
force constant corresponds to a stiffening—it takes more energy for an atom to
vibrate—and a smaller force constant is called a softening and has the opposite
effect. This is reflected in the minimum energy sites that atoms take, and at a
fixed temperature, the volume will decrease in the former and expand in the latter.

any model that considers contributions beyond the harmonic and quasiharmonic
approximations. In doing so, the picture of springs connecting lattice sites falls
apart. Now, atoms feel and respond to the effects of their neighbors vibrating in
addition to their own oscillations. These additional effects appear in the potential
energy surface,

UAH = k2x
2 + k3x 3 + k4x 4 + · · · . (2.10)

Figure 2.7 shows how the PES (at a fixed temperature) of a single atom in one
dimension changes with increasing orders of anharmonicity. Although the poten-
tial energy surface of a liquid is much more complicated, anharmonic potential
energy surfaces also suffice to describe collective motion in such systems, provided
that atoms in liquids exhibit solid-like oscillations about temporary (non-periodic)
equilibrium positions such as the one in Fig. 2.3. Addressing details on the com-
putational implementation of AH models is the focus of a subsequent section.

Techniques such as neutron scattering directly measure the true vibrational dy-
namics of a material, including collective motion. This experimental method is
discussed next.
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Figure 2.7: One dimension potential energy surfaces illustrating the effects of
including anharmonic terms on the shape. In the harmonic approximation, atoms
are restricted to a smaller space in x to explore compared to potentials that include
anharmonic terms.

2.2 Neutron Scattering

It would be irresponsible to begin a neutron scattering section without briefly
mentioning the neutron itself. Neutrons have a definitive mass and charge (it is
zero), which are particle-like, but also have wave-like properties such as wavelength,
defined as λ = h/p, where h is Planck’s constant and p is momentum. This
particle-wave duality is a well-known behavior of subatomic particles that allows
for the development of scattering theory for neutrons with energy E and wavevector
(inverse wavelength), k = 2π/λ.

Since neutrons are neutral, they predominately scatter from the nuclei of atoms
within a material. If neutrons have energies (and therefore wavelengths) on the
order of the thermal energy, E ∼ kBT , they are called thermal neutrons. Inter-
actions with thermal neutrons directly inform where atoms are within a material,
whether at their equilibrium position or not. These are the neutrons discussed
here. A typical scattering event, shown in Fig. 2.8, occurs when an incoming neu-
tron with wavevector ki and energy Ei collides with an atomic nucleus. Upon
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Figure 2.8: An incident neutron with energy Ei and momentum ħki colliding with
a nucleus in the sample. After impact, the neutron has energy Ef and momentum
ħkf . The difference in energy (gain or loss), Ei − Ef is transferred to the sample,
along with momentum, ħQ = ħ(ki − kf ).

impact, the sample can lose or gain momentum (ħQ = ħ(ki − kf )) and energy
(∆E = Ei −Ef ) from the neutron9. If the initial neutron energy, Ei is the same as
the final, Ef , this scattering is elastic and probes the equilibrium static structure of
the material. Inelastic scattering occurs when Ei is not equal to Ef , and captures
the dynamics (including diffusion and collective motion) of the system. To get
material responses, the losses and gains of the neutron energy and momenta need
to be interpreted with respect to the sample.

A good place to begin is the neutron cross-section. It is defined as the area
a neutron sees as available to scatter from (see Fig. 2.9), and it varies between
materials. Correspondingly, a target with a small cross-section means incoming
neutrons are less likely to scatter from it over a given time compared to a larger
one. Mathematically, this is

σs =
(total flux of neutrons scattered per second)

Φ0
, (2.11)

where Φ0 is the total flux of neutrons being sent at the target per second. In the
context of this work, the quantity of interest is the partial differential cross-section
(PDCS),

d 2σ

dΩdEf
, (2.12)

9For future reference, working in terms of energy and momentum is called working in recip-
rocal space.
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Figure 2.9: Cartoon of neutron scattering with the same incident flux, Φ0, and
different cross-sections. Six out of the eleven incoming neutrons will not interact
with the target on the left, but all will interact with the sample on the right. The
left is said to have a smaller cross-section than the right.

the number of neutrons scattered per second into solid angle dΩ about a given
direction with final energy between Ef and Ef + dEf [2]. The primary takeaway
from this expression is that the angle neutrons scatter off a sample and their final
energies are important.

From the above description, a logical assumption is that if the neutron partial
differential cross-section is material dependent, it should be able to link scattering
to the properties of the system itself. This thinking is correct, but not without
its caveats. For example, what properties are reasonable to get from cross-section
analyses? There is more than one answer, but recall that the regime of interest
here is thermal neutrons. Therefore, the properties within reach are those on
the spatial scale of crystalline lattices, including magnetic excitations and atomic
motion. The latter describes the dynamics of materials (diffusion and collective
motion). The first step in connecting the PDCS to such properties of materials is
introducing the autocorrelation function, ⟨Â†Â(t )⟩.

Generally speaking, an autocorrelation function is a mathematical way of giving
the statistical correlation of the same parameter of a system at two different points
in space and time. Here, the autocorrelation function, ⟨Â†Â(t )⟩, measures how
property A of the material evolves with time with respect to its initial value.
Another way of putting this is if A is one value, is it aware of or influenced by
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its value at an earlier time? (If this sounds suspiciously like the atomic motion
section above, it should.) The power of this formalism becomes apparent in the
expression,

d 2σ

dΩdEf
=
kf
k i

σ

2

1

2πħ

∫ ∞

−∞
⟨Â†Â(t )⟩ exp (−i ωt )d t (2.13)

where the PDCS is related to the integral over time of the correlation function
multiplied by an exponential that contains the energy of the material. Therefore,
by measuring the cross-section and recording the momentum and energy changes
in a neutron, the static and vibrational (and magnetic) properties of the material
"fall out"! Specifically,

S(Q,ω) = 1

2πħ

∫ ∞

−∞
⟨Â†Â(t )⟩ exp (−i ωt )d t (2.14)

(the Q dependence is hidden in Â) is only material dependent and is known in the
neutron scattering community as the scattering function, the dynamical structure
factor, or the response function. Traditionally, S(Q ,ω) is used to separate the
PDCS into two components, the coherent and incoherent partial differential cross-
sections, ( d 2σ

dΩdEf

)
coh

=
σcoh

4π

kf
k i
NS(Q ,ω) , (2.15)

and ( d 2σ

dΩdEf

)
inc

=
σinc

4π

kf
k i
NSi (Q ,ω) , (2.16)

where σcoh(inc) are the coherent (incoherent) cross sections, and Si is the inco-
herent scattering function. The coherent term describes correlations between the
positions of different atoms in the material over time (i.e., it gives interference
effects), and the incoherent portion gives the correlation between the positions of
the same atom at different times.

The preceding paragraphs motivate what measurements are needed but not how
they are collected. In practice, focusing neutrons and measuring the partial differ-
ential scattering cross-section requires significant effort and precision. This task
becomes more difficult when measuring the dynamic properties of materials (i.e.,
vibrational spectra) due to the reduction of intensity in inelastic (Ei , Ef ) scat-
tering. For this reason, all the experiments reported here were performed using
resources at the Spallation Neutron Source (SNS) located at Oak Ridge National
Laboratory (ORNL) [5].

The SNS hosts a variety of instruments that probe different time and length
scales. For the measurements here, the beamline of choice was ARCS, the wide
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angular-range chopper spectrometer, which offers energy and momentum resolu-
tion uniquely suited for studying vibrational spectra [6]. It is a time-of-flight direct
geometry instrument (the initial energy of the neutron beam is selected) with an
array of detectors arranged in a half cylinder. Two choppers, a T0 chopper to
block the prompt pulse of fast (energy greater than thermal) neutrons, and a
Fermi chopper are used to determine the incident energy of the neutron on the
sample (see Fig. 2.10). Momentum transfer between scattered neutrons and the

T0
Chopper

Fermi
Chopper

Sample

Figure 2.10: The flight path of a neutron beam at ARCS. An incident neutron
beam with a spread of energies passes through a T0 chopper, is monochromated
(one energy is picked out) by a Fermi chopper, and scattered by the sample before
being recorded by an array of detectors. Since the distances between the Fermi
chopper and the sample (L1) and the sample and the detectors (L2) are known,
the final energy of the neutron (and therefore the energy lost or gained by the
sample, ∆Es = Ei − Ef ) can be measured.

incident (forward) beam leverages detector placement (Fig. 2.11) — when an im-
pact is detected, the location of the detector corresponds to an angle, which using
the scattering triangle (|Q| = |ki −kf |), gives momentum. Collecting all this data
and removing the neutron contributions yields intensity as a function of energy
and momentum, an S(Q ,ω)!

However, this is not the end of the story. Scattering from an incident neutron
beam contains elastic (static) and inelastic (dynamic) components. Vibrational
spectra, specifically collective motion, which are the focus of this thesis, are purely
inelastic, so a method of separating the two contributions is necessary. Some
approaches to do this for ARCS data are outlined below.

Begin by envisioning a solid at equilibrium. Its atoms move about their minimum
energy point in the PES but, on average, remain at their lattice points. Now,



17

Figure 2.11: Flattened detector view from the sample where the forward beam is
taken to arrive at θ0, φ0. Pixels within the detector are assigned a solid angle,
represented by θ, φ, where θ represents the component in the plane parallel to the
path of the incident neutrons, and φ designates those in the perpendicular plane.

divide these components into two categories: one constant in time (the lattice
positions) and one changing with time (motion). The static part has the property
that it will be the same at t = 0 and t = ∞. Movement, even if it is collective,
cannot exist indefinitely and will decay to zero over time. These are correlation
functions that describe the properties of a material on an atomic scale, so they
must contribute to the scattering function. They do, and rewriting S(Q,ω) gives,

S(Q,ω) = 1

2πħ

∫ ∞

−∞
⟨Â†Â(t )⟩ exp (−i ωt )d t

= |⟨Â⟩|2δ (ħω) + S̃(Q,ω)
(2.17)

where δ is the elastic (static) contribution and S̃(Q,ω) is the dynamic component
of the response function. Figure 2.12 shows what these components look like from
data taken at ARCS (and explains how to read an S(Q, ε = ħω)). In a solid,
removing the elastic peak and analyzing the vibrational components gives the
vibrational thermodynamics of materials. More on exactly what is wanted out of
this analysis will follow.
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Figure 2.12: Scattering function, S(Q, ε = ħω) for crystalline germanium (Ge) at
ambient (room) temperature. Energy transfer to the sample is on the y-axis, and
the x-axis is the magnitude of momentum transfer. The static part of the response
function occurs at zero energy transfer (the boxed portion). It can be further
divided into coherent (the dark vertical spots) and incoherent (the zero energy
streak) elastic scattering, where the former has an intensity that is dependent
on momentum transfer and the latter does not. Note that the measured "zero"
energy transfer does have some intensity away from true zero—this is a result of
instrument resolution (everything cannot be measured perfectly). Everything else
is part of the dynamic response function, which is the focus of this work. It, too,
contains coherent (curves around 10 meV) and incoherent (streak at approximately
35 meV) parts.

Interpreting neutron scattering spectra from liquids is more complicated. Since
there is no elastic line (a liquid lacks fixed lattice positions in time), the response
function is entirely dynamic. The two different types of dynamics that compete in
a liquid, diffusion and collective motion, each contribute distinct intensities to the
scattering spectra. It is the latter that is useful for understanding the vibrational
properties of materials, so a way to separate these intensities is desirable. To do
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so, start by recalling that diffusion is a random sequence of collisions that results
in a rearrangement of atoms. The solution to the diffusion equation, 2.4, describes
the probability of finding a particle at time t in a unit volume at displacement r
from a point occupied by the same particle at t = 0, and is, therefore, a correlation
function10. Performing a Fourier transform (a mathematical tool to "convert" to
reciprocal space) on this equation yields

S(Q ,ω) = 1

π

ħΓ(Q )
(ħω)2 + (ħΓ(Q ))2

, (2.18)

a Lorentzian function with width Γ. For sufficiently small Q , Γ = DQ 2 where D is
the diffusion coefficient. Physically, this makes sense. If a liquid is at equilibrium,
the energy transferred during a single diffusion event rapidly dissipates throughout
the system. This particular case of inelastic scattering, characterized by (ε ≈
0), is called quasielastic scattering (QENS), and it has features that resemble a
broadened elastic line — this is exactly the Lorentzian from above. Notably, QENS
broadening strongly depends on momentum transfer, unlike the elastic line in a
solid. This adds an additional step of subtracting a Q dependent part of the
inelastic spectra but doing so leaves behind the collective motion.

After measuring neutron scattering data and performing the abovementioned sep-
aration, it is finally time to relate it back to vibrational thermodynamics. To do
this, recall equation 2.7, the vibrational entropy. The term in the square brackets
(the entropy of a single oscillator with energy ε) is known for a given tempera-
ture and energy range. What is unknown is the vibrational density of states for
a material11. Or is it? From Fig. 2.13, a DOS is a normalized representation of
all the frequencies at which collective modes can be excited, i.e., the vibrational
response of one neutron creating (or annihilating) a quantized oscillation. This is
what the collective motion data from ARCS are, almost. Although the dynamic
intensity from the measured partial differential cross-section is primarily from cre-
ating or annihilating a single quantum of oscillation, there is also a contribution
from exciting more than one collective mode with a single neutron impact. The
latter process is called multiphonon scattering (see Fig. 2.14). Such scattering
does not provide an accurate representation of the energy of a quantized wave
in a material because while the energy change in neutrons is detectable, there is

10It is assumed here that a classical description is accurate enough because ħω << kBT for
most liquids.

11The vibrational DOS can be calculated within a harmonic approximation using the partition
function, but the true value requires measurements or anharmonic theory.
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Figure 2.13: A vibrational density of states (DOS) of crystalline Ge at 300K from
data taken at ARCS. At each energy, the value of g (ε) gives the relative number
of vibrational states available. The sharp peaks in the spectra are the central
energies of phonons. In order of increasing energy, for Ge, these are the transverse
acoustic, longitudinal acoustic, longitudinal optical, and transverse optical modes.

kf

ki

q, ω

kf

ki

q1, ω1

q2, ω2

Figure 2.14: Illustrative comparison of single (left) versus double (right) collective
mode excitation upon impact with a neutron.
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no way to trace their exact path. This is a complicated way of saying that there
is no way to tell whether a particular neutron creates or destroys more than one
phonon. Thankfully, a mathematical representation of this multiphonon scattering
(that relies on an approximation that is not derived here) makes removing this
component possible. Once removed, the singly excited spectra are converted into
a density of states, the vibrational entropy is calculated, and the vibrational effects
on the behavior of the material are determined using the Helmholtz free energy.

2.3 Computational Thermodynamics

Computational methods complement experimental measurements. In addition to
predicting the behavior of materials, different contributions from fundamental in-
teractions can be "turned off" to better understand individual roles. The caveat
is that simulations must accurately reproduce the real (measured) system. There-
fore, such computations must include anharmonic effects, which are non-trivial12.
Two frameworks that include anharmonicity are the temperature-dependent effec-
tive potential (TDEP) and the machine-learning interatomic potential (MLIP) [7,
8]. Both build upon density functional theory, which predicts the ground state (0
K) of materials using the full quantum mechanical relationships between atoms.
Each is discussed in more detail below.

The premise of TDEP is the creation and mapping of a model Hamiltonian (a func-
tion that describes the total energy of a system) to that of a simulated material.
Within TDEP, the model Hamiltonian is perturbative, i.e., the displacements from
the equilibrium lattice positions are small13. This assumption allows an explicit
Hamiltonian for a material to be written as

H = U0 +
∑
i

p2i
2mi

+ 1

2!

∑
i j αβ

Φ
αβ
i j
uαi u

β
j

+ 1

3!

∑
i j k αβγ

Φ
αβγ
i j k
uαi u

β
j
u
γ
k
+ · · · ,

(2.19)

where the first line contains only harmonic terms. The φ are atomic force con-
stants, similar to the ones introduced in Section 2.1, but φi j tracks the forces felt
between atomic pairs, and φi j k represents forces from three atom interactions.

12Higher order anharmonicities are challenging to separate. For example, some quartic (x 4)
contributions are inseparable from the quadratic (x 2) components. This lack of individual iden-
tification makes it difficult to explicitly include in a model.

13The assumption that atomic displacements are small means that TDEP cannot be used to
predict properties of liquids.
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Density functional theory offers one way to get these forces by performing a series
of calculations on stochastically generated atomic configurations14. Once a suffi-
cient sampling of the force constants in a system is obtained, they are fit to the
model Hamiltonian using a minimization scheme.

In practice, getting a good representation of these atomic forces is a multi-step
process. The first step is creating a grid of unit cells (the smallest repeating lattice)
with different volumes (five is usually the minimum needed) for each temperature.
Unit cells often cannot capture accurate interactions between atoms in a real
system, so supercells, or structures consisting of more than one unit cell (see
Fig. 2.15), are used. Next, temperature effects are introduced by generating atomic

Figure 2.15: Two supercells of a simple cubic lattice, one (left) without any atomic
displacements and the other (right) with atoms located at potential displacement
positions for a fixed temperature, T . The unit cell is drawn with solid gray lines.

displacements based on Bose-Einstein statistics (plus some randomness). For each
volume, up to twenty stochastically displaced supercells can be necessary. Forces
from density functional theory calculations on the resulting supercells then get

14While density functional theory is itself a ground state method, it is possible to find the
effects of temperature on the forces between atoms by introducing displacements using a ther-
modynamic ensemble.
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mapped to Equation 2.19 using nonlinear least squares optimization. This process
is iterative, or needs to be repeated, using force constants from either an initial
guess or a previous run. Achieving convergence (the difference between one set of
runs and the next is small) takes approximately three iterations. Altogether, this
is a lot of calculations (∼300 per temperature). The good news is that once these
forces are known, a Fourier transform of the force constants yields the dynamical
matrix, which contains the frequencies and, therefore, the energies of the collective
motion (phonons). Since these were calculated from an effective potential that
reflects a specific temperature, these quantized energies will include anharmonicity.
The usual methods of obtaining Svib are then used to determine the vibrational
contributions to the behavior of materials.

Before discussing MLIP, it is best to introduce molecular dynamics (MD). At its
core, molecular dynamics uses the position and velocities of atoms at an initial time
to calculate the position and velocity of those same atoms at later times. From a
quantum mechanical perspective, this is very computationally expensive, especially
for large systems (anything over 1000 atoms, and for reference, about a trillion
fit into the period at the end of this sentence). Instead, classical physics (based
on Newtonian physics) with force fields, mathematical representations of the local
energy landscape as a function of atomic coordinates, are used. The downside is
that these force fields are often unstable, and for extended run times, which are
necessary for watching how a system evolves with time, atoms can be "lost" or
begin to act erratically. A middle ground with the accuracy of quantum mechanical
calculations but the computational cost of classical simulations is needed. One
solution is using machine learning to create a robust force field.

As implied by the name, MLIP relies on machine learning to model the energy
landscape of materials. The general outline is to build an interatomic force field
from an initial training set, use a combination of quantum mechanical and clas-
sical molecular dynamics simulations to actively select "good" configurations for
a system (which updates the force field), and use the potential generated from
this process to perform a long-time molecular dynamics calculation15. This final
calculation will be representative of the observed material. An advantage of this
framework is that a perturbative approximation is not assumed, so it can simulate
liquids.

15The mathematical details of the training process are beyond the scope of this section, but
it is worth mentioning that the initial training set uses high-accuracy density functional theory.
More information on running classical molecular dynamics can be found at [9].
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Outputs from molecular dynamics simulations with MLIP contain the velocities of
atoms at any given time step. For a large enough system16, having the velocities at
time t = 0 and t , 0 is equivalent to knowing the vibrational response of a material
since this information describes how the motion of an atom changes in time. And,
recalling the neutron scattering section, this time evolution of velocity can be cast
into an autocorrelation function, ⟨v (t ) ·v (0)⟩. This particular correlation function,
called the velocity autocorrelation function, is related to the vibrational density of
states of a material by

g (ω) =
∫ ∞
−∞

∑N
i mi ⟨vi (t ) · vi (0)⟩d t

3NkBT
, (2.20)

where N is the number of atoms in the simulation, kB is Boltzmann’s constant,
and mi and vi are the velocity and mass of the i th atom. Notably, this is (in
theory) a fully anharmonic density of states, which, when used in the expressions
for Svib and F = U −T S , yields the contribution of motion to the free energy of
materials.

This background outlines how one can use experiments and computations to un-
derstand the fundamental (microscopic) processes that determine thermodynamic
functions that control how materials behave on a macroscopic scale. The following
chapters use a combination of these tools to explore the role of vibrational dynam-
ics in pure elements, one beyond a magnetic transition, and the others across the
melt.

16This is an informal way of ensuring statistical accuracy is achieved.
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C h a p t e r 3

HIGH-TEMPERATURE PHONON THERMODYNAMICS OF CR

Adapted from "Nonharmonic contributions to the high-temperature phonon ther-
modynamics of Cr." [1].

3.1 Introduction

U nderstanding the vibrational, electronic, and magnetic interactions in con-
densed matter is fundamental to predicting the thermodynamic functions of

materials such as free energy, internal energy, and entropy. These thermodynamic
functions are essential for constructing phase diagrams, predicting thermal expan-
sion, and explaining the temperature dependence of elastic constants, bulk moduli,
and magnetization [2]. There are active investigations into these topics for their
own sake, and for their importance to the structure and properties of materials [3–
8].

One intriguing system is body-centered cubic (bcc) chromium, whose vibrational,
electronic, and magnetic free energy contributions result in a transition from an
antiferromagnet to a paramagnet, and show an apparent anharmonicity with in-
creasing temperature [9]. Below the Néel transition temperature, TN = 311K, a
single crystal of Cr is a conventional itinerant antiferromagnet [10]. At TN , Cr
retains the bcc structure but becomes paramagnetic [11, 12]. In general, the free
energy of Cr, F , requires three contributions to the entropy

F (M ,V ,T ) = U −T (Smag + Sele + Svib) , (3.1)

where M is magnetization, V is volume, T is temperature, U is the internal en-
ergy, Smag is the magnetic entropy, Sele is the electronic entropy, and Svib is the
vibrational entropy. The Svib gives most of the total entropy at higher tempera-
tures, even in a harmonic model with fixed phonon frequencies, {ωs } [2]. Phonon
frequencies change with volume, and the “quasiharmonic” (QH) approximation as-
sumes that phonon frequencies, ωs (V (T )), depend on temperature only through
thermal expansion. The “anharmonic” (AH) approximation includes an indepen-
dent change with T , i.e., ωs (V ,T ).

The lattice dynamics of Cr show large anharmonic contributions at high temper-
atures [9]. Transitions from the antiferromagnetic to the paramagnetic states are
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not well understood for Cr [13–17]. It has been suggested that magnetic fluctua-
tions exist above 1000K [16, 18]. These issues of magnetism and anharmonicity
continue to drive work on the high-temperature thermodynamics of Cr. Calorimet-
ric (JANAF) measurements and third-generation CALPHAD models provide values
for the total entropy of Cr, Stot(T ) [19, 20], but not the individual components of
Eq. 3.1.

Here we use time-of-flight (TOF) inelastic neutron scattering (INS), Born-von
Kármán (BvK) analyses, temperature-dependent effective potential modeling, and
non-spin-polarized density functional theory (DFT) to determine the individual
contributions Svib, Sele, and Smag, from 330 to 1493K. Our AH calculations, which
include contributions from electrons and phonons, largely account for the values
of Stot(T ) observed with recent calorimetry measurements and match observed
lattice expansion. The QH approximation also gives a vibrational entropy close to
that observed with TOF INS, but this success is caused by a canceling effect of
individual phonon branches. The BvK analyses of TOF data support AH phonon
branch behavior. A comparison of TOF INS and anharmonic calculations reveals
that AH computations capture most, but not all, experimentally observed phonon
behavior. This additional nonharmonic behavior is unexplained but is not explicitly
magnetic in origin. In summary, we find that temperature-broadened electronic
and third-order anharmonic contributions reproduce experimental thermodynamic
measurements well, and no purely magnetic interactions are needed to explain the
thermodynamics of Cr above 330K.

3.2 Methods

Inelastic neutron scattering

Inelastic neutron scattering (INS) measurements were performed on electrochem-
ically deposited plates of polycrystalline 99.995% Cr purchased from Alfa Aesar.
Two pieces of Cr that gave a large area for scattering were secured inside a nio-
bium foil sachet surrounded by a frame of boron nitride1. All data were taken
at the time-of-flight wide Angular-Range Chopper Spectrometer (ARCS) at the
Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) [21].
The incident energy was 70meV using Fermi chopper 2 at a frequency of 420Hz
and the T0 chopper at 90Hz. This gave a resolution of 2.9 meV at the elastic line.
Sample temperatures varied from 6-1493K. Below 330K, a closed-cycle helium
refrigerator was used. For measurements at higher temperatures, samples were

1Hillary L. Smith prepared the sample sachet described here.
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transferred to the high-temperature MICAS furnace [22]. Data were reduced to
phonon density of states (DOS) curves by subtraction of an empty Nb sachet and
were corrected for multiphonon scattering with Mantid and the Multiphonon pack-
age [23, 24]. Integration to produce the phonon density of states was performed
for values of 3.5 Å−1 < Q < 10 Å−1, where magnetic scattering contributes less
than 1.5% of the total scattering. This ensured that the scattering intensity used
to obtain the density of states was vibrational in origin. Additional corrections to
account for sample curvature were performed in MCViNE [25] (see the Neutron
Simulations with MCViNE section (3.6) of the Supplemental Material [26]) for
more details).

Born-von Kármán Analysis

Analyses of TOF INS DOS were performed using the Born-von Kármán (BvK)
model [27]. This model takes a crystal to be a set of nuclear masses whose in-
teractions act like springs that provide restoring forces against the displacements
of nuclei. By transforming the forces associated with these displacements into a
dynamical matrix, the BvK model has often been used to fit phonon dispersions.
Fitting phonon DOS spectra with the BvK model is more involved because the
DOS are aggregates of all phonon modes in reciprocal space. To address this
challenge, trial force constants2 were used to construct a dynamical matrix, D ( ®q ),
using the underlying symmetries of the crystal lattice. A sufficiently dense set of
q -points in the first Brillouin zone was used to collect the spectrum of phonon
frequencies, ω, for each temperature:

Mω2 ®ϵ = D ( ®q ) ®ϵ, (3.2)

where M is the mass of the atom and ®ϵ is the polarization of the phonon mode
corresponding to reciprocal space vector ®q . This BvK model was embedded in a
genetic algorithm global optimization framework, where trial sets of force constants
were generated randomly according to the differential evolution algorithm [28].
Each optimization was repeated several times to ensure convergence. The resulting
DOS are compared with experimental data. For Cr, a BvK model including atomic
interactions through the second nearest neighbors (four tensorial force constants)
was found to be sufficient. More details of the fitting process are in the Tensorial
and radial force constants portion (3.6) of the Supplemental Material [26].

2Trial force constants are calculated using uncorrelated supercell configurations generated
from a canonical ensemble informed by the Debye temperature.
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Computation

All density functional theory (DFT) calculations were performed with the Vienna
Ab Initio Simulation Package (VASP) [29–31]. Plane-wave basis sets with a ki-
netic energy cutoff of 600 eV and projector-augmented-wave pseudopotentials [32,
33] were used with Perdew-Burke-Ernzerhof (PBE) exchange-correlation function-
als [34, 35]. Each calculation used a 6×6×6 supercell consisting of 216 atoms.
Monkhorst-Pack [36] k -point meshes of 4 × 4 × 4 and 8 × 8 × 8 were used for
vibrational and electronic supercell calculations, respectively. We performed spin-
polarized DFT calculations at 1000K from initial paramagnetic, ferromagnetic, and
antiferromagnetic spin configurations. Upon convergence, the magnetic polariza-
tions in all cases were less than 0.08 µB on individual atoms and less than 0.05 µB

in the orientational averages of spins. Calculations were performed for positive and
negative dilations of the lattice, with no notable effect on the converged magnetic
polarization. To balance computational cost with supercell size and complexity,
non-spin-polarized calculations were used for the phonon dynamics.

Quasiharmonic

Phonon calculations within the quasi-harmonic approximation were conducted with
Phonopy [37]. A finite atomic displacement was introduced into each supercell of
a grid of minimized 0 K supercells scaled by ±0.5%,±1%,±1.5% volume. Static
calculations of each were converged to within 10−7 eV for accurate force constant
determination. The harmonic approximation from T = 0 − 1500K was applied to
each volume, and a grid of these free energy curves were fit to a Birch-Murnaghan
equation of state. The minimized volumes at 330, 1000, and 1500K were used to
create corresponding dynamical matrices and predict phonon properties. A q -point
mesh of 70 × 70 × 70 was necessary for proper convergence, and the calculated
phonon DOS were convoluted with a Gaussian of 1.0 meV to approximate the
broadening at higher phonon energies from the instrumental resolution. Lattice
and thermodynamic properties calculated within this approximation depend on
temperature only through a volume mapping, ω = ω (V (T )). More details on this
process are provided in the Supplemental Material (see 3.6) [26].

Anharmonic

Anharmonic contributions to thermodynamic properties were calculated using the
stochastic Temperature Dependent Effective Potential Method (sTDEP) [38]. In
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this procedure, the Born-Oppenheimer surface of a material at a given temperature
is represented using a collection of static calculations on supercells of thermally
displaced atoms. These displacements were generated by a stochastic sampling
of a canonical ensemble at the temperature of interest. The energies, forces, and
displacements of each configuration were tabulated and used to generate force
constants with a least squares fit to a model Hamiltonian,

H = U0 +
∑
i

p2i
2mi

+ 1

2!

∑
i j αβ

Φ
αβ
i j
uαi u

β
j

+ 1

3!

∑
i j k αβγ

Φ
αβγ
i j k
uαi u

β
j
u
γ
k
,

(3.3)

where u{i ,j ,k } is the displacement of atom {i , j , k } and α , β , γ are the Cartesian
components. The temperature-dependent U0 is a fit parameter for the baseline
of the potential energy surface. The sum containing Φi j , the quadratic force
constants, captures some anharmonic and electron-phonon effects at a given tem-
perature, and the final sum includes phonon-phonon interactions through the cubic
force constants, Φi j k . The latter two terms in the model Hamiltonian are used
to calculate anharmonic shifts and broadenings of phonon modes with respect to
temperature. The force constants computed with this method include explicit
temperature and volume dependencies.

A grid of 36 volumes and temperatures was created. For each point on the grid,
an ensemble of ten supercells was generated with stochastically-displaced atomic
positions. DFT calculations were performed on each supercell to obtain energy-
force-displacement data. The resulting energies were fit to the Birch-Murnaghan
equation of state to find the optimized volume for a given temperature. This
volume and the calculated force constants were used to create another set of
configurations on the temperature volume grid, and the minimization process was
repeated. In this way, the force constants are numerically converged with respect
to the number of configurations and supercell size. The final minimized free
energies were utilized to calculate the equilibrium volume at each temperature,
and phonon properties were evaluated at these conditions. Renormalization of
phonon frequencies due to anharmonicity was included in these evaluations. Using
phonon self-energy corrections from many-body theory [27, 39],

∑( ®Ω) = ∆( ®Ω) +
i Γ( ®Ω), shifts and broadenings of the phonon DOS were calculated. Further details
are provided in the Anharmonic Calculations section (3.6) of the Supplemental
Material [26].
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3.3 Results

Phonon densities of states (DOSs) from TOF spectra of Cr are shown in Fig. 3.1.
Shifts of the phonon DOSs from 6-1493K follow the expected trend of “soften-
ing,” or reduction of energy, with an increase in temperature. Interestingly, above
600K, the three defined mode peaks (low transverse, T2, high transverse, T1, and
longitudinal, L) appear as two peaks. This is traced to a large thermal softening
of approximately 8meV of the high transverse mode between 6 and 1493K.

Figure 3.2 shows the temperature dependence of the phonon dispersions between
6-1493K, obtained by fitting the experimental DOSs to a BvK model [28]. We per-
formed fits iteratively using a genetic algorithm optimization [40] (see 3.2). Along
the Γ → H → P → Γ pathway, the transverse modes are degenerate and ex-
hibit a similar softening as the longitudinal mode. From N → Γ, there is a
branch-dependent decrease in energy with respect to temperature. We illustrate
these shifts relative to 330K at each high symmetry point in Fig. 3.3. The largest
softening (of approximately 17%) occurs in the high transverse mode between
330-1493K. This behavior is consistent with the DOSs of Fig. 3.1.

Figure 3.4 shows the calculated and experimental DOS at 330, 1000, and 1500K.
Colored bars representing mode peaks fit to three Lorentzians show the average
shift of each feature. Densities of states calculated with sTDEP show similar peak
location, shape, and softening to the experimental spectra at 330 and 1500K. Our
quasi-harmonic predictions do not accurately reproduce the features in the DOS
at these temperatures, indicating that anharmonicity is important for the thermal
trends of phonons in Cr.

Our experimental and calculated phonon dispersions at 330, 1000, and 1500K are
plotted in Fig. 3.5. Quasi-harmonic and anharmonic calculations agree well with
experimental data along most of the high-symmetry reciprocal space pathways. A
notable exception is the N → Γ direction, where the QH low transverse modes
show an anomaly at the N point, and the high transverse modes do not shift as
strongly as expected. The AH and QH calculations also give different magnitudes
of the longitudinal mode along the Γ → H path.

A way to assess the thermodynamic consequences of anharmonic phonon behavior
is by calculating entropy. Figure 3.6 shows the electronic, vibrational, and electron-
phonon components of entropy and their respective contributions to the total
entropy as determined by JANAF [19].
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Figure 3.1: Cr phonon DOSs from 6-149K measured by TOF. Curves are offset
for clarity, and the 333 K dataset is overlaid with the 1493K curve to show the
magnitude of the shift between 333 and 1493K. Experimental error bars (based on
counting statistics) are not shown because their height is approximately the width
of the line used to connect data points.

The calculated lattice expansions are compared to experimental results in Fig. 3.7.
Both QH and sTDEP ab initio calculations are in agreement with lattice parameters
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Figure 3.2: Phonon dispersion relations from force constant optimization of BvK
fits of the experimental phonon DOSs (333-1493K). Two nearest neighbors (four
variables) were considered in the fit.

obtained from the elastic region of our neutron scattering measurements, and with
previous experimental results that are labeled in the figure.

3.4 Discussion

Phonons

The experimental phonon DOSs of bcc Cr show significant softening at elevated
temperatures, and the apparent disappearance of one of the Van Hove singularities
in Fig. 3.1 is a result of this temperature dependence. Phonon dispersions calcu-
lated with fitted force constants show that the largest softening occurs in the high
transverse mode. At the high symmetry points, Γ, H, and P, the two transverse
branches are degenerate. At the N point near 1000 K, Fig. 3.3 shows a softening
of the high transverse (T1) mode and little softening of the low transverse (T2)
mode. The shift of the high transverse mode from ∼32 to ∼27meV confirms that
features in the phonon DOS with the largest thermal softening are associated with
the T1 [ξ, ξ, 0] phonon branch. At the N point, this T1 mode involves the opposing
displacements of two neighboring (110) planes along the [110] direction [41]. The
relatively small thermal softening of the low transverse mode, T2 [ξ, ξ, 0], up to
1000K also may originate from interactions beyond the harmonic approximation.

At 330K, the high transverse and longitudinal modes in the DOS have higher
energies in the QH calculations than from TOF measurements and anharmonic
sTDEP calculations. This overestimation of peak locations continues to 1500K.
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Figure 3.3: Thermal shifts, relative to ambient temperature, of the phonons in Cr
at each non-Γ high symmetry point for a) our TOF measurements, b) previous
triple axis experiments [41], c) AH calculations, d) and QH calculations. A com-
parison of the thermal shifts for each method at 1500K for the T1 and T2 modes
at the N point is shown in e).

Consequently, the shape of the DOS is skewed in the QH approximation, with
more features appearing at higher energies than those found with measurements
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Figure 3.4: Phonon densities of states at 330 (bottom), 1000 (middle), and 1500K
(top). Each panel compares the experimental phonon DOS (dark blue) to the
calculated DOSs from quasi-harmonic (purple) and anharmonic (light blue) ap-
proximations. The colored markers indicate peak locations from a Lorentzian fit
to the features of the DOSs.
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and sTDEP calculations. The agreement of the DOS calculated with the AH
approximation and TOF measurements is excellent at 330 and 1500K, despite
some excessive broadening of the longitudinal Van Hove singularity.

There is a general agreement of phonon dispersions calculated with each model and
experimental data at 330, 1000, and 1500K along Γ → H → P → Γ (Fig. 3.5).
However, the QH approximation inverts the energies of the T1 and T2 modes at the
N point. This is accentuated by the anomaly in the low transverse branch behavior
at N in the QH dispersions. This discrepancy is better seen with Fig. 3.3e. In the
QH approximation, the low transverse branch shows the largest thermal softening
at N. This disagrees with the general trend seen in the experimental data and AH
calculations: the high transverse phonon branch has the larger thermal softening.
Quasiharmonic models sometimes predict accurate macroscopic properties without
capturing the underlying phonon physics [44, 45].

We attribute the failure of the QH approximation in Cr to the underlying as-
sumption of noninteracting phonons. This assumption is known to fail at higher
temperatures, where temperature-dependent phonon-phonon interactions begin to
dominate [2, 46–48]. The QH model cannot capture these effects because the fre-
quencies within this model, ω = ω (V (T )), incorporate temperature by shifting
harmonic frequencies with changes in volume. This approach ignores terms be-
yond the quadratic phonon self energy, which are needed for lifetime broadening
and purely temperature-dependent (AH) shifts. Our sTDEP calculations include
cubic order corrections of the phonon-self energy, so ω = ω (V ,T ).

The QH approximation did not successfully predict the thermal softenings of indi-
vidual phonons, but there is reasonable agreement between the vibrational entropy
calculated with QH and AH methods. The change in phonon frequency at the N
point gives insight into why. Summing the fractional thermal shifts (T1 + T2 + L)
from the QH calculations at the N zone boundary gives a change of about 22%. A
similar sum for our AH calculations gives a change of 26%, which is comparable.
This shows some cancellation of errors in the average behavior of phonon branches
from the QH calculations, giving them better success with the vibrational entropy.
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Likewise, a good prediction of thermal expansion does not validate the QH ap-
proximation for predictions of phonon physics. Using

∂2F

∂V ∂T
= −βBT (3.4)

and F (V ,T ) = U (V ,T ) −T S (V ,T ), it is evident that thermal expansion, β , and
bulk modulus, BT , are explicitly dependent on both volume and temperature. Any
cancellation of errors introduced in calculated entropy will be present in predictions
of thermal expansion (and bulk modulus). It is therefore plausible that the QH
approximation can successfully reproduce the thermal expansion of Cr (Fig. 3.7),
even with the wrong thermal trends of individual phonons.

There is an underestimation of 4% in the sTDEP vibrational entropy at 1500K,
illustrated in the middle panel of Fig. 3.6. This is caused by an overbinding in
the generalized gradient approximation (GGA) for Cr [49], which also affects our
ground state lattice parameter (a = 2.845Å). This is consistent with the ∼4%
average over-stiffening of the phonon dispersions (Fig. 3.5), and the slight under-
estimation of the lattice expansion (Fig. 3.7). A similar effect occurs in our QH
calculations.

Entropy and free energy

The top panel in Fig. 3.6 shows that for temperatures up to 600K, the phonon
entropy from TOF INS experiments accounts for nearly all of the total entropy [19].
At 1500 K, the Svib from TOF measurements or calculations accounts for over 89%
of the total entropy of Cr. The remainder originates primarily from the occupancy
of electronic states, the change of these states with temperature, and perhaps
magnetic entropy [16, 18].

Figure 3.6 shows that an electronic entropy Sele, calculated first by including the
temperature dependence of the electronic entropy through the Fermi-Dirac distri-
bution with the ground state electronic states, brings the sum of entropies Stot

closer to the JANAF thermodynamic data, where

Stot = Svib + Sele + Smag . (3.5)

Thermal motions of atoms broaden the electronic states through electron-phonon
interactions. This temperature dependence was calculated with supercells consist-
ing of thermally displaced atoms obtained by sTDEP at 330, 1000, and 1500K,
and is shown in Fig. 3.6. The electronic entropy was also calculated by the simpler
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process following Thiessen [50] and Grimvall [51], where the ground state electronic
DOS, ρgnd(E ), is convoluted with a function of Lorentzian form

ρ (E ) = ρgnd(E ) ∗ L(2Γ) , (3.6)

to approximate the effects of electron-phonon interactions on electronic DOS,
ρ (E ). The amount of broadening, 2Γ = 2πλkBT , used a value of λ = 0.5 [52].
Figure 3.6 shows very good agreement between these two approaches.

Adding the thermally-broadened Sele to the experimental and computational Svib

gives our best estimates of the total entropy of bcc chromium. Figure 3.6 shows
that the sum of the measured TOF vibrational and electronic components gives
excellent agreement with the JANAF data from calorimetric measurements. There
is, however, something missing from the anharmonic phonon calculations, as seen
by the inset at the top of Fig. 3.6. A similar discrepancy was found in previous
anharmonic calculations [18], which proposed that the extra entropy required for
agreement with calorimetry was magnetic in origin. However, the experimental
phonon entropy is larger than these anharmonic calculations, and with the elec-
tronic entropy, the total entropy agrees well with calorimetry. The discrepancy
is in the anharmonic calculations of the phonon DOS, which are stiffer and give
a lower phonon entropy than the measurements. The additional non-harmonic
contribution to the phonon self-energy is unexplained, but an effect from phonon-
paramagnon interactions could be a candidate. Paramagnon energies were cal-
culated recently by time-dependent density functional theory at 0K [53]. These
energies were found to be large, and may not change strongly with temperature.
Showing the effects of paramagnons on phonon energies at high temperatures may
require new computations. Nevertheless, a large, explicit contribution from mag-
netic entropy is not needed to account for the thermodynamic entropy of Cr at
high temperatures.

3.5 Conclusions

The phonon DOS was measured on bcc chromium from 6 to 1493 K by TOF INS,
and calculations of the phonons were performed with QH and AH approximations
using Phonopy and sTDEP. To obtain detail on individual phonon branches, the
experimental DOS were fit to a Born-von Kármán model using force constants
adjusted with a global minimizer. Both measurements and computations showed
significant thermal softening of the phonons, and a similar average phonon soft-
ening. However, the QH approximation predicted that the low transverse branch
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would soften faster than the high transverse branch, whereas the opposite trend is
found by AH sTDEP calculations, and by TOF results from the present work and
a previous study. The thermodynamic entropy of chromium was obtained from
the experimental phonon DOS, and the electronic entropy from ab initio calcula-
tions. Their sum gave an entropy for chromium that was in excellent agreement
with JANAF results obtained by assessing calorimetric data. An explicit magnetic
entropy contribution is not needed for temperatures above 330K, but a param-
agnon susceptibility may perturb phonon energies beyond the known effects of
quasiharmonic, anharmonic, and electron-phonon interactions.

3.6 Supplemental Information

Multiple Scattering

The experiment was designed to minimize the effects of multiple scattering. This
was achieved by choosing a sufficiently thin sample of Cr. The ratio of double
(multiple) scattering to single scattering is

1/2 (t/τ), (3.7)

where t is the sample thickness and τ is the characteristic scattering length of

τ = 1/(ρσ). (3.8)

Here σ = 3.5 barns for the total scattering of a Cr nucleus and ρ = 8.3 × 1022

nuclei/cm3. For the Cr pieces in this experiment, which were ∼0.15 cm thick, the
ratio of single to double scattering is 0.022, or 2%. Despite some directions in
the sample where the neutron paths were longer, the sample is still thin enough
to neglect multiple scattering.

Quasi-harmonic Calculations

Phonon calculations with the quasi-harmonic (QH) approximation used the Phonopy
package [37]. The finite difference method was used to generate forces on atoms.
Force constant matrices were constructed and transformed into the dynamical
matrix,

D (q)eqs = ω
2
qseqs , (3.9)

where D (q) is the dynamical matrix, q is the phonon wave vector, s is the phonon
band index, ωqs and eqs are the frequency and polarization vector of the phonon
mode with q, s . With all {ωqs }, the vibrational contribution to the free energy is

Fvib =
1

2

∑
qs

ħωqs + kBT
∑
qs

ln
[
1 − exp (−ħωqs/kBT )

]
. (3.10)
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Temperatures from 0-1500K were considered using a grid of 0K supercells scaled in
volume by ±0.5%,±1%,±1.5%. The Helmholtz free energy for each volume was
calculated and minimized at different temperatures using the Birch-Murnaghan
equation of state. Minima of the fitted free energy curves gave the QH volumes at
the temperatures of interest. Quasi-harmonic phonon properties were calculated
with these volumes. The calculated phonon density of states was convoluted with a
Gaussian of 1.0meV to approximate the broadening due to instrumental resolution.

Anharmonic Calculations

Phonon calculations with the anharmonic (AH) approximation used the stochastic
Temperature Dependent Effective Potential Method (sTDEP) [38]. Supercells with
displaced atoms were created by stochastic sampling. For a cell of Na atoms with
mass mi , the atomic positions, {ui }, were created using a harmonic normal-mode
transformation,

ui =
3Na∑
s=1

ei s ⟨Ai s ⟩
√
−2 ln ξ1 sin (2πξ2), (3.11)

where ξn are uniformly distributed numbers between 0 and 1 (the Box-Muller
transform). The thermal amplitude, ⟨Ai s ⟩, of normal mode s with eigenvector ei s
is

⟨Ai s ⟩ =
1

ωs

√
ħωs (ns + 1

2 )
mi

≈ 1

ωs

√
kBT

mi
, (3.12)

where ns = (eħωs/kBT − 1)−1 is the thermal occupation of phonon mode s and
ħω ≪ kBT denotes the classical limit at high temperatures.

Energies and forces from calculations of an ensemble of supercells with thermally
displaced atoms were obtained with a least squares fit to a model Hamiltonian.
A grid of four temperatures, {0, 330, 1000, 1500}K, and nine volumes was cre-
ated. For each volume-temperature point, ten thermally displaced supercells were
stochastically generated using force constants from a model pair potential. Static
calculations were performed on each supercell to obtain energy-force-displacement
data. Quadratic and cubic force constants were re-generated for each temperature
using these data sets. The free energy surface,

F (V ,T ) = U0(V ,T ) + Fvib(V ,T ), (3.13)

for each volume-temperature point was calculated using sTDEP. The baseline,
U0(V ,T ), and the free energy from lattice vibrations,

Fvib =

∫ ∞

0
g (ω)

{
kBT ln

[
1 − e−

ħω
kBT

]
+ ħω

2

}
dω, (3.14)
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depend explicitly on volume and temperature. These free energies were fit to
the Birch-Murnaghan equation of state to find the optimized volume for a given
temperature.

The phonon DOS,
g (ω) =

∑
s

δ (ω − ωs ), (3.15)

also depends explicitly on volume and temperature.

Shifts, ∆s , and linewidths, Γs , of phonons arise from AH, or phonon-phonon,
interactions. To calculate these renormalized frequencies, results from many-body
perturbation theory were used. The self-energy correction of phonons is∑

(Ω) = ∆(Ω) + i Γ(Ω), (3.16)

where E = ħΩ is a probing energy. Linewidths are obtained from the imaginary
component,

Γs (Ω) = ħπ

16

∑
s ′s ′′

|Φss ′s ′′ |2

× {(ns ′ + ns ′′ + 1)δ (Ω − ωs ′ − ωs ′′) + (ns ′ − ns ′′)
× [δ (Ω − ωs ′ + ωs ′′) − δ (Ω + ωs − ωs ′′)]}.

(3.17)

This sum is taken over all possible three-phonon interactions, where Φss ′s ′′ is the
three-phonon matrix element obtained from the cubic force constants.

A Kramers-Kronig transformation was used to get the frequency shifts,

∆(Ω) = 1

π

∫
Γ(ω)

(ω − Ω) dω. (3.18)

As shown in Eq. 3.16, these shifts are the real part of the phonon self-energy.

Anharmonic phonon densities of states curves were calculated using the real and
imaginary parts of the phonon-self energy,

ganh(ω) =
∑
s

2ωsΓs (ω)
[ω2 − ω2

s − 2ωs∆s (ω)]2 + 4ω2
s Γ

2
s (ω)

. (3.19)

In the limit where ∆, Γ → 0 Eq. 3.19 reduces to Eq. 3.15.

Born-von Kármán modeling

The Born-von Kármán formalism relates interatomic force constants of crystalline
solids to phonon frequencies. To solve for phonon frequencies, the interatomic
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interactions in the dynamical matrix are truncated to the first few nearest-neighbor
interactions. Below is a description of how the force constants are extracted from
the DOS of body-centered cubic (bcc) Cr using a genetic algorithm to obtain
temperature-dependent tensorial and radial force constants [40].

Genetic algorithm

A genetic algorithm optimization was performed to obtain interatomic force con-
stants from experimental phonon DOS employing the open-source package mys-
tic [54]. To begin, the algorithm was used to generate many candidate solutions
called a population. Each population consisted of a potential set of force con-
stants that was randomly generated within a set of reasonable force constant
bounds, where

K1NN =
©«
1XX 1XY 1XY
1XY 1XX 1XY
1XY 1XY 1XX

ª®®¬ ,
K2NN =

©«
2XX 0 0

0 2YY 0

0 0 2YY

ª®®¬
(3.20)

are the first and second nearest-neighbor tensorial force constant matrices. The
dynamical matrix was constructed from each population (set of force constants)
and used to generate a DOS. These DOS are compared with the experimental
DOS, and solutions that best reproduce the experimental DOS (by minimizing the
mean squared error) are selected as the parents of the next generation. The par-
ent solutions seeded the next population of potential force constants by selecting
random combinations of parent parameters and also introducing random changes,
or mutations. Least squares fitting and comparison to experiments were repeated
until the population converged on a set of force constants that provided the best
fit to the experimental density of states (Fig. 3.8). Throughout this process, solu-
tions that generated negative frequencies were discarded due to their implication
of dynamical instability in the lattice. Fully optimized force constants were then
used to generate phonon dispersions with q -space resolved information.

Tensorial and radial force constants

Tensorial force constants from the genetic algorithm optimization, previous ex-
periments, and computations are presented in Table 3.1. To visualize the effects
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of temperature on nearest-neighbor interactions, each matrix (K1NN , K2NN ) was
projected onto their respective bond directions (Fig. 3.9). Longitudinal and aver-
age transverse force constants are obtained, which describe the forces parallel and
perpendicular to the bond direction. The longitudinal force constants are signifi-
cantly higher than the average transverse force constants. Second nearest-neighbor
longitudinal force constants dominate over the first nearest-neighbors, but both
show a large decrease with an increase in temperature, as generally expected. The
second nearest-neighbor transverse force constants remain relatively constant with
temperature, while the first nearest-neighbor average transverse force constants
exhibit an unusual temperature dependence.

The radial force constants from the BvK analysis, sTDEP, the QH approximation,
and previous experiments are shown in Fig. 3.9. There is good agreement between
our TOF INS experiments, previous measurements, and sTDEP calculations. QH
calculations predict the nearest neighbor longitudinal force constants to be much
lower than the other methods. This approximation also overestimates the values
for the nearest neighbor transverse force constants. The inability of the QH ap-
proximation to capture the values of the 1NN force constants originates from its
drastic underestimation of the φ1x y tensorial matrix component (see Table 3.1).

Neutron Simulations with MCViNE

The MCViNE (Monte-Carlo VIrtual Neutron Experiment) software package was
used to simulate neutron scattering from a chromium plate measured on the wide
Angular-Range Chopper Spectrometer (ARCS) instrument at room temperature
and above. MCViNE is a neutron ray-tracing simulation package that tracks the
pathway of neutrons through the interaction with instrument optical components,
scattering from the sample, interception by the detectors, and reduction to an
experimentally equivalent format [25]. The sample was described with a “composite
neutron scatterer,” which consisted of five rectangular slabs: the Cr sample plate,
two thin Nb foils in front and behind the sample plate, and the absorbing BN frame
to the left and right of the sample plate. An additional composite neutron scatterer
was placed around the sample to simulate scattering from the MICAS furnace and
between the sample and furnace. The design and testing of this furnace composite
is described elsewhere [22].

The chromium sample is modeled with dimensions matching the sample used in
the ARCS experiment and oriented at 45 degrees to the incident beam. Phonon
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Tensor Force Constants (N/m)
Temp. (K) Φ1xx Φ1x y Φ2xx Φ2y y

293[41] 14.35 6.93 37.70 -0.77
300[55] 13.526 6.487 35.915 -1.564
330a 14.369 -1.464 -4.460 21.093
330b 13.878 6.765 43.040 -2.991
334 11.53 8.12 42.78 1.62
493 11.39 8.19 40.28 2.41
592 11.42 8.24 38.62 2.12
673[41] 12.40 9.99 27.52 1.18
693 11.40 8.37 37.38 2.16
894 10.80 8.27 35.88 2.53
993 10.55 8.32 34.55 2.66
1000a 13.423 -1.108 44.077 -4.254
1000b 12.678 7.808 38.841 -3.250
1073[41] 11.30 9.45 27.44 -1.30
1093 10.47 8.34 33.55 2.48
1193 9.98 8.29 32.93 2.39
1294 9.61 8.12 31.76 2.23
1394 8.93 7.85 31.79 2.46
1473[41] 11.02 9.60 23.16 -1.31
1495 8.42 7.70 31.61 2.55
1500a 12.661 -0.823 42.124 -4.108
1500b 12.004 8.447 34.472 -2.656

Table 3.1: Tensorial force constants from previous experiments [41, 55] and com-
putation. Non-labeled force constants correspond to current measurements, and
those labeled a, b, are Phonopy and sTDEP calculations, respectively.

scattering was simulated for the phonon energies E and momenta Q by starting
with a BvK model employing force constants tabulated by Trampenau et al. at
300K [41]. A polycrystalline average of the phonon scattering was obtained by per-
forming an average of phonon dispersions from all orientations of a single crystal.
The simulated inelastic spectra were obtained from 109 neutron packets emitted
from the moderator and passed through the simulated instrument with chopper
settings matching those used in the ARCS experiment. The resulting event-mode
NeXus file is reduced identically to the experimental data, using the same data
reduction tools [23].

This simulated process revealed the effect of the sample curvature on the S (Q , E )
experimental inelastic spectra. The simulation allows for contributions from multi-
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phonon scattering and multiple scattering to be turned on or off, allowing isolation
of contributions to the S (Q , E ) from these effects. After reduction of experimental
S (Q , E ) to a phonon DOS, an unexpected intensity is observed above the phonon
cutoff near 40-45meV. Based on comparison to the phonon DOS obtained from the
simulated plate, this feature is attributed to scattering resulting from the sample
curvature. A 2D correction matrix was calculated from the simulated data and
applied to the experimental data across the full temperature range. This correction
had the effect of eliminating the unexpected intensity above the phonon cutoff.
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Figure 3.5: Comparison of experimental and calculated phonon dispersion relations
at 330K (bottom), 1000K (middle), and 1500K (top). Symbols to distinguish the
low transverse (diamonds), high transverse (circles), and longitudinal (triangles)
phonon branches are also shown. Anharmonic (light blue) and quasi-harmonic
(purple) dispersions are in good agreement with a BvK fit to experimental data
(dark blue) and existing triple-axis data (gray) [41]. The anharmonic calculations
capture behavior along the H to P high symmetry path better than the quasihar-
monic simulations.
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Figure 3.6: Components of entropy compared to the total JANAF entropy [19].
(Bottom) Electronic entropy including temperature-dependent electron-phonon
coupling. (Middle) Vibrational entropy calculated from DOSs using TOF INS,
a quasi-harmonic approximation, and an anharmonic approximation. (Top) Sum
of the electronic and vibrational components of entropy from experiment and com-
putations versus the calorimetric total entropy.
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Figure 3.7: Lattice expansion of Cr from 6-1500K with respect to ambient tem-
perature. Previous lattice expansions are reproduced from [42, 43]
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Figure 3.8: TOF INS phonon density of states and the BvK DOS from a second
nearest-neighbor fit for 333, 993, and 1493K. The BvK fit was convoluted with
the instrument resolution function.
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Figure 3.9: Temperature dependence of radial force constants from TOF INS data
(squares), TDEP (circles) and QHA (diamonds) calculations, and previous ex-
perimental reports (pentagons and crosses) assuming Born-von Kármán boundary
conditions. Units for the vertical axis are N/m.
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C h a p t e r 4

THE COMPONENTS OF ENTROPY IN THE LATENT HEAT OF
MELTING

4.1 Introduction

M elting is the iconic first-order phase transition where a material changes from
a solid to a liquid at the melting temperature, Tm. In thermodynamics, this

occurs when the Gibbs free energy [1],

G = U −T S + PV , (4.1)

of the solid becomes equal to that of the liquid. The energy absorbed at Tm, the
latent heat, is defined as L = Tm∆Sfus, where ∆Sfus is the entropy of fusion. The
definition of L is consistent with the condition ∆G = G l − Gs = 0, and ∆Sfus is
from the inequality of ∂G/∂T for the solid and liquid at Tm.

Predicting Tm has motivated many investigations [2–5]. One of the most well-
known ideas is the Lindemann criterion, which is that melting occurs when the
square root of the mean-squared atom displacement reaches approximately 10%
of the interatomic distance [6]. While it has had some success, this criterion is
based on the solid phase alone [7–9]. An effort to include the thermodynamics of
the liquid in this criterion was attempted, with mixed results [10]. Recent advances
in computational methods [11, 12] have allowed for increasingly accurate melting
temperature predictions for various materials [13–15].

Despite the increase in the number and accuracy of melting temperature predic-
tions, work remains to understand the thermodynamics of melting using atomic-
scale contributions to ∆Sfus. To date, a common "rule" for the entropy of fusion
is the empirical Richard’s rule, which states ∆Sfus ≈ 1.1kB/atom for monatomic
systems [16]. Elements that do not have entropies of fusion near this value are con-
sidered to melt "anomalously” (see Fig. 4.1) [17]. Recently, efforts to explain these
anomalies have implied a separation of the entropy of fusion into three components
from changes in atomic vibrations, configurations, and electronic excitations [18–
20]

∆Sfus = ∆Sfus,vib + ∆Sfus,config + ∆Sfus,el. (4.2)
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Experimentally quantifying these atomic components of the entropy of fusion re-
mains a challenge. However, methods that measure the dynamic response function,
such as neutron or x-ray scattering, show promise for identifying and analyzing vi-
brational motion in liquids [21–23]. In solids, analysis of the vibrational, and to
some degree, configurational, components are well-established using these tech-
niques [24–26]. Analysis of the liquid state is more difficult due to the quasielastic
(ε ≈ 0 meV) scattering from diffusion, which shows up as a broadening of the elas-
tic peak because the self-diffusion of atoms occurs on relatively long time scales.
This obfuscates the vibrational spectra in the low-energy regime due to the in-
tersection of time scales (and therefore energies) between atomic vibrations and
transitions in or around their instantaneous potential. In fact, most neutron stud-
ies on liquid dynamics focus on self-diffusion and pair-based cluster distributions.
Only lately have significant advances in instrument resolution and flux allowed for
studies into the vibrational modes in liquids [27–29].

Here, we use these recent advances in experimental and computational methods to
quantify the thermodynamic contributions to the entropy of fusion in monatomic
systems. We perform time-of-flight (TOF) inelastic neutron scattering (INS) mea-
surements on Ge, Bi, Sn, and Pb, which span the range of total entropies of fu-
sion, to obtain the vibrational entropy across the melt. Our measurements are
complemented by molecular dynamics calculations with machine-learning inter-
atomic potentials for Ge, Si, Pb, and Li. To the best of our knowledge, this is the
first experimental quantification of the vibrational contribution to melting, and it
accounts for most of the "anomalous" deviation from Richard’s rule.

4.2 Materials and Methods

Inelastic Neutron Scattering

Inelastic neutron scattering experiments were performed on high-quality polycrys-
talline granules of Ge (99.999%), Bi (99.997%), Sn (99.99%), and Pb (99.99%)
encapsulated in vacuum-sealed quartz tubes. Depending on the neutron cross-
section of each element, the inner diameter of the quartz tubes varied from 3-
4mm. Ampules of each material were arranged in parallel and enclosed in a vana-
dium sachet to provide optimal flux on a large, relatively flat volume. The high-
temperature furnace MICAS was used to heat the samples to ∼200 K above their
melting temperatures, allowing data collection in the solid and liquid phases [30].
Data from an empty sample sachet were collected at the temperatures of interest.
All spectra were measured using the time-of-flight direct geometry wide-angular
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Figure 4.1: Entropies of fusion for elements up to uranium, plotted versus atomic
number (a). The elements chosen for this study are indicated by a vertical line and
are annotated with the value of their entropy of fusion. Circles (crosses) designate
experimentally (computationally) studied elements. (b) Distribution of ∆Sfus for
the first 92 elements. The dashed lines in (a) and (b) show Richard’s rule of
1.1kB/atom.
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range chopper spectrometer (ARCS) at the Spallation Neutron Source at Oak
Ridge National Laboratory [27]. Single phonon scattering and vibrational densi-
ties of states (DOS) for the crystalline solids were obtained using the Mantid and
multiphonon packages [31, 32]. More details on the incident energies, chopper
settings, and maximum temperature for each sample are reported in Table 4.4 in
the Supporting Information.

Thermodynamic integration with MTP

To reproduce dynamics across the melting transition, machine-learned moment
tensor potentials (MTP) [33] for Ge, Si, Pb, and Li were trained on DFT data
following [34]. For each element, the MTP potentials were actively trained on
the fly by running MD simulations for a grid of volumes and temperatures near
melting conditions. The interatomic potentials from this procedure were used to
calculate the total change in entropy between the solid and liquid phases of each
element with Bayesian learning thermodynamic integration [35]. The vibrational
entropy contribution of each phase was estimated from the phonon density of
states (PDOS) obtained from velocity autocorrelation function analyses [36]. For
the liquid phase, the quasielastic peak was subtracted from the total PDOS. The
Supporting Information provides additional details on MLIP construction and com-
putational data analyses (see the Moment Tensor Potential training section 4.7).

4.3 Analysis

For a time-of-flight (TOF) Fermi chopper spectrometer, accessing a sufficient Q
range to capture the structure and dynamics in liquids using neutron scattering
presents a challenge due to the balance between energy resolution and the kine-
matic cutoff to the measurable range of reciprocal space. An incident energy of
50 meV provided a sufficiently fine resolution (approximately 2 meV at the elas-
tic peak) and Q -cuts from 0.8-5 Å−1. Each dataset was collected until excellent
statistical quality was achieved (see Data Acquisition paragraph in the Supporting
Information 4.7).

After subtracting the signal from the empty sample holder, the scattering intensi-
ties were separated into diffusive and vibrational components. First, the intensities
were symmetrized using the condition of detailed balance and normalized with
respect to the structure factor, yielding S(Qn, ε)/S(Q ), where Qn is a fixed Q
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value and ε is the energy. The quasielastic peak was then fit to the well-established
incoherent dynamic structure factor form,

S(Q , ε) = 1

π

ħΓ(Q )
ε2 + (ħΓ(Q ))2

∗ R (Q , ε), (4.3)

where Γ represents the peak width and ∗R (Q , ε) denotes the convolution with
the Q and ε dependent resolution function (determined from measurements on a
vanadium standard at equivalent energy and chopper settings). This fit was then
subtracted from the observed intensity because diffusion does not describe atomic
vibrations and, therefore, will not contribute to the vibrational entropy [37].

Within the hydrodynamic regime (where Q < Q0/2 and Q0 is the location of the
first peak in the structure factor, S(Q )), these fits agree with previously reported
self-diffusion coefficients, D , from the relationship Γ = DQ 2 [38–41]. Due to the
increasing intensity of quasielastic scattering near the structure factor maximum
(typically ∼ 2.5Å−1, as seen from the liquid spectra in Fig.4.2), a clear distinction
between the diffusive and vibrational motion was not possible for all values of Q .
Vibrational intensities were discernible below Q = 1.65Å−1 (Ge), Q = 1.55Å−1 (Bi,
Sn, and Pb) and between Q = 3.15−3.55Å−1 (Bi and Sn) and Q = 2.85−3.25Å−1

(Pb). Spectra at these Q -cuts were selected for further analysis. Using this method
to obtain these data allowed for minimal assumptions about the nature of atomic
vibrations in the liquid phase.

To analyze the range of Q -cuts with distinct vibrational dynamics, a S(Qn, ε)
specific density of states (DOS) algorithm was developed (see corresponding sec-
tion, 4.7, in the Supporting Information). Individual Q -cut DOSs for each element
in the liquid were summed together and normalized to obtain the total vibrational
density of states, g (ε). This workflow was repeated on the solid for the same Q -
cuts. The entropy difference between these was then calculated using S l ,vib−Ss,vib
where

Svib = 3kB

∫
g (ε) [(n (ε) + 1) ln (n (ε) + 1) − n (ε) ln (n (ε))]dε, (4.4)

is a relationship that has been tested with success for solids with large anhar-
monicity at high temperatures and was used (in the classical limit) to develop the
vibrational-transit theory of liquids [16, 42–48].

A concern of this process is the limited Q -range where vibrational motion is distin-
guishable from diffusive motion. The main difficulty is that the transverse modes
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are partially hidden by the resolution-broadened elastic peak or are not visible at
low Q where ®Q ⊥ ®e (®e is the atom displacement in the vibrational mode) [49, 50].
This means that the DOSs generated from the sampled Q -cuts are not fully rep-
resentative of the thermodynamic g (ε). Two scalings procedures (see Supporing
Information) were performed on these DOSs to demonstrate that the calculated
vibrational entropy difference between the liquid and solid phase of each element
is thermodynamically representative, even using subsets of Q . The deviations in
∆Svib from these scalings were used as error bars in Fig. 4.4.

4.4 Results

The left columns of Figure 4.2 (a), (b) show background corrected inelastic neutron
scattering spectra for polycrystalline and liquid Ge and Pb near their respective
melting temperatures, Tm,Ge = 1211 K and Tm,Pb = 601 K. Intensities for each
element are on the same scale so that a direct comparison of features between the
solid and liquid phases is possible.

Selected constant-Q slices for liquid Ge and Pb are shown in the right column of
Fig 4.2 (a), (b). Gray error bars show the excellent statistical quality of the collected
data (the error bars are often smaller than the marker size). Dashed lines illustrate
the resolution convoluted quasielastic fits of Eqn. 4.3. Each matches the expected
Lorentzian shape and intensities well [39, 51–53].

In agreement with previous studies [54–56], non-diffusive contributions to the scat-
tering intensities are observed in Q -cuts from both Ge and Pb (see Fig.4.2). Similar
intensities are also found for Bi and Sn (see Fig.4.9 Supporting Information). After
quasielastic, multiple scattering (MS), and multiphonon (MP) intensities are cor-
rected for (see section 4.7 in the Supporting Information), only vibrational spectra
remain. These are used to obtain the Q -weighted densities of states (DOSs) in
Fig. 4.3 for Pb, Sn, Bi, and Ge. For comparison, crystalline solid DOSs obtained
from the same Q values are plotted.

The upper vibrational modes in liquid Pb extend to energies higher than those
of solid Pb, showing a "stiffening" from approximately 10 to 12meV. This is
unexpected since most materials exhibit the opposite behavior with increasing
temperature. A more expected picture is observed in Sn, where there is a small
"softening" of the vibrational spectrum upon melting. Despite this, the overall
shapes of both solid and liquid DOS curves for Pb and Sn are similar. The elements
Bi and Ge, which have appreciable deviations from Richard’s rule, exhibit distinct
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Figure 4.2: Total S(Q , ε) in the crystalline solid (top left) and liquid (bottom left)
phases and selected S(Qn, ε) (right) normalized to S(Q ) for (a) Ge and (b) Pb
near their respective melting temperatures. The dashed lines under the constant
Q cuts are quasielastic fits to the data that include a convolution with the Q
and ε-dependent instrument resolution function. The S(Q , ε) intensity for each
element is identical and is shown on a log scale.
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Figure 4.3: DOS curves from Q -cuts of Pb, Sn, Bi, and Ge in the crystalline solid
(gray triangles) and liquid (black circles) from ARCS. Note the large softening in
liquid Ge and the small stiffening in Pb. All DOSs are normalized to one.

differences in their vibrational DOSs between the crystalline and liquid phases.
The highest vibrational peak in Bi softens from 11.4 to 8meV. Ge shows an even
greater decrease in energy between its solid and liquid states (32.8 to 17.2meV).
Computational DOSs (reported in Fig. 4.10 of the Supporting Information) confirm
these behaviors.

Figure 4.4(a) shows the vibrational contributions to the entropy of fusion in Ge,
Bi, Sn, and Pb from current inelastic neutron scattering measurements. The
difference between the total and vibrational entropies of fusion, denoted ∆Sextra,
for each element is also shown. Computational results for Ge, Si, Pb, and Li are
illustrated alongside experimental results in Fig 4.4(b). The dashed horizontal line
depicts the total entropy according to Richard’s rule. Where available, there is
excellent agreement between the vibrational components of these simulations and
experiments (see Table 4.1).

4.5 Discussion

Changes in the DOSs of Fig. 4.3 give changes in the vibrational entropy across the
melt (see Fig. 4.4(a)). In Ge, which has the most significant softening between
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Figure 4.4: Vibrational (cool gray), and extra (gray) contributions to the entropies
of fusion in Ge, Bi, Sn, and Pb determined from neutron-weighted densities of
states at the best sampling of accessible reciprocal space (a). Error bars were
estimated by scaling the neutron-weighted density of states (see details in Anal-
ysis). (b) Vibrational (cool gray), configurational (gray), and electronic (black)
contributions to the entropies of fusion in Ge, Si, Pb, and Li from computations.
The horizontal dashed line is the total entropy of fusion, ∆Sfus = 1.1kB/atom,
according to Richard’s rule.

Table 4.1: Thermodynamic contributions to the entropy of fusion from experimen-
tal | computational methods.

Element ∆Sfus ∆Sfus,vib ∆Sfus,config ∆Sfus,el
exp.|comp. (kB/atom) (kB/atom) (kB/atom) (kB/atom)

Ge 3.67|3.78 1.47|1.48 –|2.14 –|0.16
Si 3.58|3.51 –|1.09 –|2.24 –|0.19
Bi 2.50|– 0.57|– –|– –|–
Sn 1.67|– 0.25|– –|– –|–
Pb 0.95|1.03 -0.17|-0.08 –|1.03 –|0.07
Li 0.80|0.81 –|-0.21 –|1.02 –|0.00

Table 4.2: Physical properties of the elements investigated across the melt from
measurements | simulations.

Element Tmelt Vl→s ρl→s ∆z l→s

exp.|comp. (K) (Å3) (g/cm3)

Ge [57, 58] 1211|978 –|-1.74 –|0.29 3|–
Si [57, 59] 1683|1452 –|-2.17 –|0.20 2-3|–
Bi [60, 61] 545|– –|– –|0.32 3|–
Sn [62] 505|– –|– –|-0.21 2-3|–
Pb [63, 64] 601|663 –|1.46 –|-0.36 -1|–
Li [65] 454|476 –|0.30 –|– 5|–
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solid and liquid, the vibrational entropy of melting accounts for 41% of the total
entropy of fusion. Bi, as expected from the change in its DOS across the melt,
shows a smaller but still significant vibrational contribution to ∆Sfus. In Sn, where
the DOS shows minor changes, the contribution of vibrations to the entropy of
fusion is small. Interestingly, Pb, which is generally considered to obey Richard’s
rule, exhibits a small but negative vibrational change in entropy upon melting.
This result agrees with the DOS behavior (the slight stiffening of Fig. 4.3). Inter-
estingly, within error bars, these results show that the vibrational contributions to
the melting of each element scale with the total entropy of fusion, as plotted in
Fig. 4.5.

The Ge simulations show a vibrational component nearly identical to that observed.
These calculations also confirm the small negative value for ∆Svib in Pb (see
Table 4.1). Excellent agreement between experimental and computational results
for Ge and Pb encouraged additional simulations of Si and Li, which were not
measured experimentally. Having the vibrational contributions across the melt for
these elements adds confidence to the emerging correlation between the total and
vibrational entropies of fusion.

Simulations of the melt also gave insight into the non-vibrational entropic contri-
butions, defined as the "extra" entropy in Fig. 4.4(a). From Eqn. 4.2,

∆Sfus,extra = ∆Sfus − ∆Sfus,vib

= ∆Sfus,config + ∆Sfus,el .
(4.5)

As expected, transitioning from the ordered crystalline solid to a disordered liquid
increases configurational entropy. (In contrast, the electronic entropy of fusion is
nearly negligible for all elements calculated.) For Ge and Si, this configurational
component is well above the value predicted by Richard’s rule (see Table 4.1).
Figure 4.1 shows additional deviations in Richard’s rule and illustrates that the
actual values of ∆Sfus span nearly an order of magnitude. Therefore, although
Richard’s rule helps estimate the entropy of melting, it is an approximation in search
of physical underpinnings. A step beyond this rule has been taken by classifying
melting as "normal" and "anomalous" based on whether materials do or do not
follow Richard’s rule. This adds more detail while keeping the convenience of a
simple rule. Unfortunately, Fig. 4.1(b) shows this classification describes a wide
range of materials, and that more insight into the atomistic components of melting
is essential.
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Figure 4.5: Vibrational entropies across the melt versus the total entropy of fusion.
Circles (crosses) are from experimental (computational) results. The intercept at
∆Sfus,vib = 0 occurs at ∆Sfus ≈ 1.18 kB/atom, near the value of Richard’s rule.

Potential energy landscape (PEL) theory offers a convenient statistical thermo-
dynamics framework to assess the relationship between the configurational, vibra-
tional, and electronic components across the melt [66–68]. The PEL for a liquid
has a large number of basins, Ωl ,b. (Vibration-transit (V-T) theory associates
these basins with intersecting valleys in the PEL [43, 44].) Atoms in the liquid
make transitions between these basins, resulting in many possible equilibrium con-
figurations. During the time spent in a basin, the N atoms undergo thermal
vibrations (there is evidence that these vibrations are approximately harmonic, but
this is not essential for the following discussion [44]). These vibrational dynamics
explore a volume in the phase space of momentum, ®p and position ®q , where the
vector notation indicates that there are 3N independent coordinates of each. The
number of vibrational states, Ωl , ®p Ωl , ®q , available to the material is proportional to
this 6N -dimensional volume. Metallic liquids also have a number Ωl ,el of states ac-
cessible to thermally-excited electrons. Using these components, the total number
of states available to the liquid, Ωl, is

Ωl = Ωl ,bΩl , ®p Ωl , ®q Ωl ,el . (4.6)
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Thermally accessible states for the crystal are enumerated similarly, with the big
difference of Ωs,b = 1 because there is only one equilibrium structure for atoms in
the crystal. The total number of states accessible to the crystalline solid at Tm is
then

Ωs = Ωs, ®p Ωs, ®q Ωs,el . (4.7)

The kinetic energy of the atoms in both phases is the thermal energy, 3N kBT /2.

Using this formalism and the Boltzmann entropy, S = kB lnΩ, the relationship be-
tween these microstates and the entropy of fusion can be developed by recognizing
∆Sfus = S l (Tm) − Ss (Tm) = kB ln (Ωl /Ωs ). Begin by taking the ratio

Ωl

Ωs
=

Ωl ,b Ωl , ®q Ωl ,el

Ωs, ®q Ωs,el
, (4.8)

where because the atom masses are the same in both the solid and liquid, the
ranges explored in momentum space are equal, and the degrees of freedom asso-
ciated with momentum cancel. Next, the relationship between atomic vibrations
and position space is addressed.

Whether considered from a local or non-local perspective, the complete set of
vibrational modes must account for the simultaneous vibrations of all N atoms.
A linear transformation from atom coordinates, ®q , to vibrational modes preserves
the number of 3N independent modes. In this representation, a mode j with
lower frequency ωj has a large amplitude of vibration for a fixed energy. At high
temperatures, when atoms execute thermal vibrations as harmonic oscillators, the
range explored in ®q -space is proportional to

∏3N
j (1/ωj ) [16], yielding

Ωl

Ωs
=

Ωl ,b

{∏3N
j (1/ωl ,j )

}
Ωl ,el{∏3N

j (1/ωs,j )
}
Ωs,el

. (4.9)

Then,

∆Sfus = S l ,b + S l ,vib + S l ,el − Ss,vib − Ss,el

= kB

[
ln (Ωl ,b) + ln

(∏3N
j (1/ωl ,j )∏3N
j (1/ωs,j )

)
+ ln

(Ωl ,el

Ωs,el

)]
= ∆Sfus,config + ∆Sfus,vib + ∆Sfus,el ,

(4.10)

where the entropy from the number of basins in the liquid is relabeled as a con-
figurational entropy, S l ,config/kB = lnΩl ,b (again, this is negligible for a crystal of
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a pure element). This is possible since diffusional processes in a liquid move the
atoms between basins in the PEL, allowing the equilibrium value of S l ,config from
Ωl ,b to be reached. There is a long history of work to extract an S l ,config from the
pair distribution function (PDF) of a liquid [43], but the PDF is a one-dimensional
quantity that cannot fully account for three-dimensional structures.

For the vibrational entropy component, Eqn. 4.4 is used as the product function
(
∏3N
j ). The current analysis of inelastic neutron scattering data was designed to

evaluate the change in vibrational entropy across melting from the DOS above
approximately ħω = 3meV. This accounts for most of the vibrational modes in
the material, but there could be errors from vibrational modes at lower energy
(and an issue with transverse modes mentioned in the Analysis section). Our
computational work obtained S l ,config such that

S l ,config = ∆Sfus − ∆Sfus,vib − ∆Sfus,el. (4.11)

The ∆Sfus,config for melting is always positive, as expected because Ωl ,b is much
larger than 1. There is some variation in the magnitude of ∆Sfus,config – approx-
imately a factor of two for the elements studied here. Nevertheless, the change
in vibrational entropy can be comparably large, or even negative. (The negative
values of ∆Svib are bounded because ∆Sfus must be positive.) Following prior ob-
servations that elements with large ∆Sfus (e.g., Si and Ge) undergo large changes
in local structure upon melting [17], we might expect a correlation between ∆Sfus

and the change in coordination number ∆z of Table 4.2. This correlation is not so
compelling, however, since the chemical potential also depends on bond distances
and angles.

Figure 4.5 shows a trend for all our results. We note that the ∆Svib is zero for
∆Sfus ≈ 1.2 kB/atom, which is close to the value used for Richard’s rule. The
linear relationship shows that the extra (denoted δ) configurational entropy is
proportional to the extra vibrational entropy as

δSconfig = 0.77 δSvib , so (4.12)

∆Sfus − 1.2 = 1.77∆Svib , (4.13)

in units of kB/atom. Since larger vibrational entropy corresponds to potential
wells having lower curvatures, Eqn. 4.12 makes an unexpected statement about
the PEL. Upon melting, the number of basins (or configurations) accessible to
the liquid is inversely proportional to the change in curvature of the basins (with
respect to the solid).
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4.6 Summary and Conclusions

Methods of inelastic neutron scattering (INS) were developed for measuring vi-
brational spectra of materials across melting transitions. Quasielastic scattering
from diffusional processes confined the data analysis to lower values of momentum
transfer or those slightly above the maximum intensity of the structure factor. Ac-
counting for quasielastic scattering, multiple scattering, and multiphonon scatter-
ing allowed isolation of the vibrational spectra above 3meV. Approximate phonon
DOS curves were obtained for the liquid and the solid phases of Ge, Bi, Sn, and Pb
using the same analyses, giving the change in vibrational entropy across melting.

The computational methods implemented to model the melt required large num-
bers of atoms, and employed classical molecular dynamics with machine-learned
interatomic potentials obtained from ab initio molecular dynamics calculations on
smaller systems. Computational results gave changes in vibrational entropies upon
melting that were in excellent agreement with the INS results for Ge and Pb. These
simulations also accounted well for the total latent heat.

We first note that a reasonable value of Richard’s rule can be selected as the case
where there is zero change in vibrational entropy upon melting. From Fig. 4.5 this
sets Richard’s rule at approximately 1.2 kB/atom for the entropy of fusion. Positive
deviations from Richard’s rule imply both a positive value of ∆Svib, and an extra
∆Sconfig of 77% of this ∆Svib, but with the same sign. A positive departure from
Richard’s rule suggests that the PEL surface has more basins, but these basins
have curvatures that are smaller than for the crystal.

4.7 Supporting Information

Inelastic Neutron Scattering Methods and Analysis

Data Acquisition

At the Spallation Neutron Source, the number of neutrons emitted is directly
proportional to the number of protons incident on the target. Therefore we account
for variations in power by counting to a certain number of protons incident on the
target or a specific proton charge in Coulombs. To obtain the excellent statistical
quality reported in the main text, data was collected until 2C of proton charge was
accumulated.
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Multiple Scattering Corrections

The MCViNE (Monte-Carlo VIrtual Neutron Experiment) software is a neutron
ray-tracing simulation package that tracks the pathway of neutrons through the
interaction with instrument components, scattering from the sample, interception
by the detectors, and reduction to an experimentally equivalent format [69]. Here,
MCViNE was used to simulate the effects of multiple scattering from polycrys-
talline germanium, tin, and lead measured on the wide Angular-Range Chopper
Spectrometer (ARCS) instrument near each melting temperature.

All samples were modeled with dimensions and orientations matching the respective
experimental setup. The simulated inelastic spectra were obtained from 7 × 109

neutron packets emitted from the moderator and passed through the simulated
instrument with chopper settings identical to those from the ARCS measurements.
The incoherent approximation using the full neutron cross-section was assumed for
all elements, allowing for a polycrystalline average without explicit knowledge of
the phonon dispersions. The resulting event-mode NeXus files were reduced using
the same data reduction tools as the experimental data [31].

These simulations allow contributions from multiple scattering (MS) to be turned
on or off, making intensities from MS in the dynamic scattering function, S(Q , ε),
easy to identify. For each Q -cut of interest, results show that while MS is non-
negligible, it is predominately elastic scattering, and the shape of the one-phonon
scattering is preserved. This implies that a constant background subtraction scaled
to match MS is sufficient to correct for these effects. Excellent agreement be-
tween the solid densities of states (DOS) from Q -cuts and previous experimental
DOS [70–72] supports this choice of MS subtraction in the solid. Similarly, the
strong agreement between the experimental and computational results in the liquid
phase implies that this correction method also holds for liquid scattering.

Quasielastic Fitting

An incident energy of 50 meV provides scattering from Q = 0.5 − 10Å−1 with a
resolution of 0.1Å−11. After data reduction and subtraction of the signal from the
sample holder, regions of reciprocal space with distinct intensity away from ε =

0meV were identified. These were below Q = 1.65Å−1 (Ge) or Q = 1.55Å−1 (Bi,
Sn, and Pb) and between Q = 3.15− 3.55Å−1 (Bi and Sn) or Q = 2.85− 3.25Å−1

1This resolution was determined by observing at which bin size there were not any intensities
for a given value of Q .
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(Pb). For these values of Q , quasielastic scattering takes the shape of a Lorentzian,
and the spectra can be fit to the incoherent response function,

S(Q , ε) = A

π

ħΓ(Q )
ε2 + (ħΓ(Q ))2

∗ R (Q , ε) , (4.14)

where A is a scaling factor, Γ = DQ 2 describes the peak width, and ∗R (Q , ε)
denotes convolution with the resolution function. All spectra fit to this expression
were normalized with respect to the structure factor, S(Q ) and symmetrized using
detailed balance,

S(Q ,−ε) = exp (−ε/kBT )S(Q , ε). (4.15)

The objective of fitting quasielastic neutron scattering (QENS) peaks was to sub-
tract them from each Qn spectrum and extract the vibrational intensities. Since
vibrational dynamics have some contributions to the intensity under the quasielas-
tic peak, using the hydrodynamic limit (where Q < Q0/2 and Q0 corresponds to
the location of the first intensity peak in S(Q )) and known diffusion coefficients
to build the initial fitting model was essential. First, a Q ≈ 0.5Å−1 spectral cut
for each element was normalized to S (Q ) and symmetrized with detailed balance.
Then, using Q = 0.5Å−1 and previously reported liquid diffusion coefficients, D ,
near the melting temperature [38–41], Γ was calculated. From Γ, Eqn. 4.14 was
evaluated for varying intensity offsets of the Q = 0.5Å−1 cut, and the value that
gave the smallest root mean squared error fit to the data was chosen as the
starting offset for higher Q spectra. Aside from this empirical starting model, all
spectra were fit to Eqn. 4.14 with Γ and A as free parameters. The Q 2 behavior
of vibrational intensity was also taken into account. Where possible, the diffusion
coefficient from higher Q -cuts (but still below Q0/2) was found to reproduce the
diffusion coefficient well (see Table 4.5). Fitting with this procedure (i.e., only
looking at the central peak) avoided any assumptions regarding the behavior of
vibrational dynamics away from ε ≈ 0. The resulting quasielastic fits from each Q
of interest are subtracted from the inelastic neutron spectra and further analyzed
using the density of states algorithm described below.

Density of States Analysis

To analyze the range of Q -cuts with distinct vibrational spectra, a S(Qn, ε) spe-
cific density of states (DOS) algorithm was developed. For each Q , a multiple
scattering correction, informed by Monte Carlo ray tracing (see above), was per-
formed. Then, an initial guess of the vibrational density of states with a chosen
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energy maximum was input to calculate multiphonon contributions. The S(Qn, ε)
generated from this process was used to scale the measured vibrational intensi-
ties to this calculated spectra to obtain the one-phonon scattering function. The
experimental density of states was then calculated from

g (ε) = A1(ε) × ε × γ0 × [1 − exp (−ε/(kBT ))], (4.16)

where A1 is the one-phonon scattering and

γ0 =

∫
coth

( ε

2kBT

) g (ε)
ε
dε (4.17)

is calculated from the previous DOS iteration. This process is continued until the
difference between the calculated and observed DOS is minimal, as outlined by
Sears et al. and others [25, 73]. Varying the initial DOS energy maximum by ± 1
meV showed little change in the final DOS. Once converged, the Q -cut DOSs are
summed together and renormalized. This workflow is repeated on the solid for the
same Q -cuts.

As outlined in the main text, a concern of this process is the limited Q -range where
vibrational and diffusive motion are separable. This limitation means the DOSs
generated from the sampled Q -cuts do not fully represent the thermodynamic
g (ε). Two scalings were performed to demonstrate that although the Q -cut
derived DOSs are not fully descriptive of phonon thermodynamics, the entropy
difference between the liquid and solid Q -cut DOSs is.

Both scaling methods begin with the thermodynamic polycrystalline DOS cal-
culated using the well-established multiphonon package [74]. The solid Q -cut
weighed DOS is then calculated using the same {Qn} that are of interest in the
liquid. As in the liquid, the transverse modes of the solid Q -weighed g (ε) are
not visible at low Q where ®Q ⊥ ®e (®e is the atom displacement in the vibrational
mode) [49, 50]. However, the true g (ε) is known in the solid, and a multiplicative
factor to bring the Q -weighed DOS into agreement with the thermodynamic DOS
is calculated for each element.

The first scaling applies this multiplicative factor to the solid and liquid Q -weighed
DOS up to the energy of the first transverse peak. After renormalization, the
lower region of the liquid DOS is in better agreement with the computational
(thermodynamic) vibrational g (ε), as seen from Fig. 4.7. For the second scaling,
the multiplicative factor is applied to the entire energy range of the solid and
liquid {Qn} DOS. The resulting (renormalized) liquid DOSs for each element are
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shown in Fig. 4.8. After each scaling, the sound velocity of the solid and liquid
was used to confirm that the behavior of the low-energy regime (less than 2 meV)
was correct [75]. In bismuth, the low energy scaled g (ε) required an additional
correction (the step in the liquid DOS of Fig. 4.7).

Entropy differences between the solid and liquid vibrational densities of states were
calculated using the DOSs from each of these scaling methods and compared to
the ∆Sfus,vib from the non-scaled DOSs. Minor variations observed between these
values were used to generate error bars for the reported vibrational entropy of
fusion. The general agreement of the final change in entropy supports that these
values are thermodynamically representative even using subsets of Q .

Computational Methods and Analysis

Density functional theory calculations

All density functional theory (DFT) calculations were performed with the Vienna
Ab Initio Simulation Package (VASP) [76–78]. Plane-wave basis sets with a ki-
netic energy cutoff of 500 eV and projector-augmented-wave pseudopotentials [79,
80] were used with Perdew-Burke-Ernzerhof (PBE) exchange-correlation function-
als [81]. Each calculation used a 4×4×4 supercell (128 atoms) for bcc Li, 3×3×3
supercell (108 atoms) for fcc Pb, and 2×2×2 supercell (64 atoms) for diamond
Ge and Si. Monkhorst-Pack [82] k -point meshes of 5 × 5 × 5 for Li, 3 × 3 × 3 for
Pb, and 4 × 4 × 4 for Ge and Si were used for vibrational and electronic supercell
calculations.

Moment Tensor Potential training

Large-scale molecular dynamics (MD) simulations were performed with the use of
Moment Tensor Potentials (MTPs) [33, 83] as implemented in the MLIP software
package [34]. A total of four MTPs were fit to quantum mechanical data.

Moment tensor potentials for each element were trained to reproduce both the solid
and liquid phases and their lattice dynamics near and across the melt. Training for
each followed the procedure described in [34] for the calculation of the melting
point of Al. In the pretraining stage, a level-16 MTP with a cutoff radius of 5 Å and
the mindist parameter set to 1.4 Åwas trained with 20 configurations sampled
from ab initio molecular dynamics. Next, on-the-fly training was performed using
classical molecular dynamics for the solid and liquid phases near the melting point.
Configurations selected from this training were processed with low-fidelity DFT to



72

Table 4.3: Details of the MTPs fitting procedure.

Element Nconf ∆E Frel Srel
(meV/atom) (%) (%)

Li 115 0.6 5 2
Pb 128 0.8 8 3
Ge 104 3.3 15 14
Si 124 5.4 14 16

reduce computational cost. The final training set, generated from a subset of these
configurations, was run with high-accuracy DFT calculations using the parameters
given in the previous section. Another round of active learning was also performed
in this step.

A summary of the fitting procedure is shown in Table 4.3. Nconf is the number
of configurations in the training set, ∆E is the mean potential energy difference
per atom between the MTP and the ab initio model. Frel and Srel are the relative
energy and stress difference per atom and are computed using

Arel =

√
⟨(∆A − ∆A)2⟩

⟨(AMTP − AMTP)2⟩
, (4.18)

where ∆A is the difference in force or stress between the ab initio model and the
moment tensor potential, and ∆A its mean value.

Autocorrelation function analyses

As is shown in [36, 84] an accurate method for calculating the vibrational density
of states, g (ε), is taking the Fourier transform of the velocity autocorrelation
function Φ(t ).

Φ(t ) = 1

N

N∑
i

〈
vi (t )vi (0)

〉〈
vi (0)vi (0)

〉 , g (ε) =
∫ ∞

0
Φ(t ) cos (εt/ħ)d t . (4.19)

In theory, autocorrelation methods include anharmonic effects up to infinite order.
However, convergence of the autocorrelation function is only reached at long time
scales, and a large supercell is required to resolve a sufficient amount of points in
the Brillouin zone. Thus, due to computational cost, ab initio molecular dynamics
can only be used for very approximate calculations [85]. On the other hand,
classical force fields scale well with time and supercell size but provide only a general
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Figure 4.6: Quasielastic subtracted spectra for (a) Ge, (b) Bi, (c) Sn, and (d) Pb.

description of systems’ behavior [86]. Thus, we use machine learning interatomic
potentials trained on ab initio data to perform large-scale simulations, preserving
the quantum-mechanical level of accuracy with reasonable computational time.

The Moment Tensor Potentials obtained with the MLIP procedure were used to
perform large-scale molecular dynamics simulations with the LAMMPS code [87].
The supercell size was 20×20×20 of the conventional unit cell of the corresponding
solid phase. The calculations were performed in two subsequent steps. In the first
step, the system was equilibrated near melting. For the solid phase, this corre-
sponded to a molecular dynamics run at zero pressure and melting temperature for
40 ps. The procedure for liquids included an additional melting stage in which the
system was kept at a high temperature (four times the melting temperature) for
40 ps. In the second step, the equilibrated phases were run in the microcanonical
(NVE) ensemble for 10 ps. The autocorrelation function was then computed using
outputs from this step.

The Fourier transform of the autocorrelation function was used to obtain the
anharmonic vibrational density of states. For the liquid phase, the contributions
from diffusive processes were removed by subtracting a Lorentzian fit (similar to
Eqn. 4.14) from the density of states (the resolution function was taken as one in
the case of computational data). The obtained computational density of states
for different elements is shown in Fig. 4.10. Finally, the vibrational contribution to
the entropy from both phases was calculated using Eqn. 4.4.
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Table 4.4: Time-of-flight inelastic neutron scattering details, including maximum
temperature measured, incident energies, and chopper settings.

Temp.(K) Einc(meV) T0(Hz) Fermi Chopper(Hz)

Ge 1373 30, 50 90 300, 420
Sn 673 30, 50 90 300, 420
Bi 673 30, 50 90 300, 420
Pb 773 30, 50 90 300, 420

Table 4.5: Diffusion coefficients of Ge, Bi, Sn, and Pb from fits to the incoherent
dynamic structure factor below the structure factor maximum.

Element D (Å2/s) Q (Å−1)
Ge 1.25 × 1012 1.05
Sn 2.66 × 1011 0.95
Bi 2.48 × 1011 0.85
Pb 1.74 × 1011 0.95
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These results are consistent with the semiconductor-to-metal transition of Si and
Ge.
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C h a p t e r 5

CONCLUSIONS AND FUTURE DIRECTIONS

5.1 Conclusions

T his thesis combined ab-initio and molecular dynamics simulations with in-
elastic neutron scattering measurements to investigate the atomic thermo-

dynamics of pure elements. It revealed the roles of configurational, vibrational,
electronic, and magnetic contributions in the systems considered. Additionally,
the effect of each on the macroscopic properties, including the heat capacity and
latent heat, was explored.

The beginning of this dissertation addressed conflicting reports on the roles of
magnetism and anharmonicity in the paramagnetic phase of bcc chromium (Cr).
Ab-initio-informed calculations using quasiharmonic (QH) and anharmonic (AH)
models account for most of the entropy in high-temperature Cr. Previously mea-
sured phonon dispersions and time-of-flight neutron scattering show that the AH
model is more representative of the actual vibrational physics in Cr. A relatively
small but larger than anticipated electronic component helps bring the calculated
and INS entropies into better agreement with calorimetric data. The remaining
discrepancy between the total simulated and measured (INS and calorimetric) en-
tropy is tentatively assigned to a phonon-paramagnon interaction.

Next, the entropic components in the latent heat of melting were discussed. It is
well-established that vibrations dominate the solid and liquid entropies of materials.
However, little about atomic interactions across the melting transition was known.
Here, inelastic neutron scattering and computational techniques were combined
to investigate such processes. Developing a new analysis routine of vibrational
spectra from INS in the solid and liquid phases of Ge, Bi, Sn, and Pb revealed
that the change in vibrational entropy across melting scales with the total entropy
of fusion. This behavior was confirmed and extended to Si and Li using machine-
learned interatomic potential molecular dynamics simulations. Configurational and
electronic entropic components through the melt were also determined from these
simulations and shown to be, respectively, significant and small. These results
provided insight into the distinction between normal versus anomalous melting
and revealed an interesting correlation in the potential energy surface across the
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melt; as the change in the number of basins increases, the change in the curvature
of the basins decreases.

Each study presented here is only possible with recent advances in computational
and time-of-flight spectroscopy techniques. Investigating the importance of anhar-
monicity in high-temperature Cr relied on calculating third-order phonon processes
(which required thousands of computational hours) and the high flux of the wide
angular range chopper spectrometer (ARCS) at the Spallation Neutron Source.
Only with both of these was another high-temperature contribution to the entropy
(the proposed paramagnon-phonon coupling) discernible. The high flux and ap-
propriate resolution of ARCS also made studying the vibrational spectra of liquids
possible. Further analyses of the entropic components to the entropy of fusion
were viable due to developments in neutron data processing and simulations using
machine-learning interatomic potentials with thermodynamic integration.

5.2 Future Directions

As much as these studies highlight progress in scientific techniques, they also
indicate what direction improvements can take.

Paramagnons in transition metals

The work on Cr identified an explanation for the gap between measured versus
calculated anharmonic entropies but did not discuss how the proposed param-
agnon interactions might be confirmed. To address this, new experimental and
computational methods are needed.

Computational efforts to include magnetic contributions require an extensive ex-
ploration of phase space or knowledge of the existing magnetic structure [1, 2].
These difficulties arise from the additional degrees of freedom spin direction and
magnitude add to a system. To date, full calculations are restricted to T = 0K [3]
or only include collinear magnetization.

One avenue to explore is machine learning interatomic potentials. In addition
to other complex problems, such methods were recently used to reproduce the
high-temperature magnetic configurations of bcc iron [4]. If trained on the time-
dependent density functional theory calculations such as those in [3], lower cost, ac-
curate, high-temperature noncollinear magnetic structures (that include paramagnon-
phonon interactions) may be possible to simulate.
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Neutron scattering is the default for elucidating magnetic scattering due to the
similar interaction intensity of atomic nuclei and magnetic moments. Furthermore,
spherical neutron polarimetry can help distinguish magnetic states in complex mag-
netic structures, including skyrmions and coexisting spin density waves [5, 6], using
spherical neutron polarimetry.

Resonant inelastic x-ray scattering (RIXS) is another option for investigating spin
dynamics. Unlike neutrons, x-rays are more readily applicable to thin films but
suffer from elastic line resolution. Nonetheless, RIXS has been used to ascertain
spin waves in transition metals, including chromium, with long-range magnetic
order [7, 8] and provide evidence of paramagnon excitations in superconductors [9].

Still, experimentally determining spin-lattice fluctuations above magnetic transi-
tion temperatures also presents challenges. Paramagnons are damped, dispersive
excitations, and even with excellent statistical quality, distinguishing them from
other components in spectra is complex. Fitting to models can help overcome
some of this uncertainty but often involve many fitting parameters [10]. Addi-
tionally, low background and single crystals of high purity are necessary for most
experiments that can probe magnetic fluctuations.

Ultimately, to get a true picture of paramagnon behavior in materials ab-initio or
molecular dynamics calculations must be combined with state-of-the-art scattering
techniques to compare and contrast models with scattering spectra.

Entropy contributions to melting, continued

Investigating the components of the entropy of melting revealed two trends in the
elements considered. The first was that the vibrational entropy of fusion and the
total entropy of fusion are directly correlated. A second unexpected observation
was that the change in the number of basins across melting is inversely related to
the change in the curvature of these basins. However, this study considered seven
elements, and more support for these findings would be beneficial.

One of the difficulties with choosing additional elements for in-situ melting neutron
measurements is that they must be compatible with experimental environments.
For example, the sample must melt 200 K below the maximum furnace tem-
perature to ensure a complete melt. Current furnace capabilities at Oak Ridge
National Laboratory (ORNL) set this limit to 1400 K, which is low compared to
the melting point of many elements. Activation, or how radioactive a material
becomes after exposure to irradiation, is another issue to consider. Uranium melts
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at about 1400 K, a reachable furnace temperature, but becomes highly radioac-
tive. Therefore, it is a terrible candidate for melting studies. Checking neutron
absorption cross-sections [11] gives hints for the severity of such activation. Other
health hazards also must be addressed so that the safety concerns of the facility
are assuaged. With these physical restrictions, only a subset of elements are viable
for experiments.

Thankfully, computational methods do not suffer from sample environment or
safety restrictions. However, they rely on the level of density functional theory
(DFT) calculations performed, so care must be taken to validate these training
simulations. Systems that may present a problem include those containing f-
electrons, which are known to be predicted poorly with DFT, or those with unusual
long-range structures (such as bismuth and selenium or complex magnetism).

Nevertheless, as the present melting study demonstrated, inelastic neutron scatter-
ing and machine-learning interatomic potentials are powerful tools for elucidating
the components of the entropy of fusion. Combined, they can span a wide range of
materials and complement the shortcomings of the other. Possible elements and
compounds to investigate using (and improving on) these methods are outlined
next.

Lanthanides generally have lower fusion entropies than Richard’s rule predicts
(1.1kB/atom). Of this series, cerium (Ce, ∆Sfus = 0.61kB/atom) has a reasonable
melting point (1068 K), is not strongly activated, and adopts a cubic structure
above room temperature. These properties make Ce a strong contender for in-
situ inelastic scattering melting measurements. If the reported correlation holds,
the vibrational entropy across the melt would be more negative than in lithium
(Li). An unexpected result (i.e., a deviation) would also be interesting since the
f-electrons in Ce lead to valance instabilities [12] and are believed to affect melting
temperatures [13]. In the latter case, computational methods including f-electron
physics would be essential for determining the contributions across melting from
each component. No matter the result, such a study would provide insight into
another region of "anomalous" melters.

Another option is to extend the exploration of atomistic contributions of melting
to binary compounds. The question then becomes what alloys to investigate. Ionic
compounds (NaCl, MgI) pose a challenge due to their charge separation [14], and
binary alloys that form two liquid phases are also not ideal. Here, the ASM Alloy
Phase Diagram Database provides guidance. A search of metal alloys reveals that
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(a)

(c)

(b)

(d)

Figure 5.1: Binary phase diagrams for (a) Cu-Sn, (b) Ni-Zn, (c) Al-Sb, and (d)
Al-Se. Reproduced with permission from [15–18].

Cu-Sn, Al-Sb, Al-Se, and Ni-Zn compounds could be viable (Fig. 5.1). Each system
contains an alloy that meets the temperature and activation constraints of inelastic
neutron scattering and is accessible with simulations. Furthermore, each introduces
increased complexity in the entropy. This is due to new physics from configurational
entropy in the solid phase (all, from the solid solution containing more than one
atom), magnetic moments (Ni-Zn), and melting temperatures higher than the
constituent elements (Al-Sn and Al-Sb), all effects that have yet to be considered
in the melting work.

To conclude, plenty of materials remain to study the fundamental, atomistic
physics of melting.
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