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ABSTRACT 

The emergence of machine learning methods for expediting directed evolution via protein fitness 

prediction has recently shed light on the need for more, high quality sequence-fitness data from which 

to learn the mapping from sequence to fitness. Enzymes specifically are highly selective catalysts and 

engineered enzymes are becoming increasingly important for human applications such as 

pharmaceutical synthesis. This thesis thus focuses on the collection of enzymatic sequence-fitness 

data to enable both development and validation of emerging approaches. Chapter 1 describes the 

process of traditional directed evolution as well as ways that machine learning methods have been 

used to accelerate it. It also discusses the experimental considerations for applying machine learning 

to the various steps of protein engineering campaigns, as the experimental constraints are not always 

obvious to the machine learning community. One of the major constraints for the application of 

machine learning methods is the requirement to sequence all variants required for model training, a 

step that is often skipped by traditional, lab-only directed evolution due to it not being worth the time 

and cost. Chapter 2 introduces a solution to this problem with “every variant sequencing” (evSeq), 

which enables higher throughput collection of sequencing data for a similar time and cost as 

commonly used Sanger sequencing methods. This method not only enables implementation of ML 

methods such as machine learning-assisted directed evolution (MLDE) and focused training MLDE 

(ftMLDE) by sequencing variants during an evolution campaign, but also offers promise to fill 

existing protein sequence-fitness databases with protein engineering datasets. This type of data 

collection can enable the development of newer, more accurate ML methods, and was an inspiration 

for the work presented in Chapter 3, which details the collection of a combinatorially complete, 

epistatic sequence-fitness landscape in an enzyme active site. Oftentimes, the effects of mutations on 

protein fitness can be considered largely independent and laboratory recombination of them can find 

an optimal variant. This general principle breaks down when the effects of mutations are not 

independent, termed epistasis, and sequence-fitness landscapes with these interactions are difficult to 

traverse. Thus, collection of this dataset provides a challenging task for the development of both ML 

and physics-based models and pushes the boundary of predictive methods for protein engineering. 
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ABSTRACT 

Directed evolution (DE) via iterative mutation and screening has proven itself time and again 

as an effective method for protein engineering. Through either single-step walks up a fitness 

landscape or recombination-based approaches, this laboratory-based method has proved a 

difficult baseline to beat. However, recent advances in machine learning (ML) approaches 

have shown that it is possible, with some ML-assisted DE implementations more efficiently 

reaching improved variants, especially on epistatic fitness landscapes. As the field of ML for 

DE has grown, new avenues have emerged, where ML might assist with identifying starting 

points or in designing libraries to test in the lab. Despite this, there has remained a disconnect 

between those doing experiments and those doing predictions, as laboratory constraints and 

practicalities are not always obvious. Furthermore, a specific protein engineering problem 

may have very constraints than another; there are a wide range of assay throughputs as well 

as assay-specific levels of noise that should be considered. This introduction seeks to provide 

experimental insight to those seeking to predict protein fitness, describing both situations 

where predictive models might help as well as experimental constraints new predictive 

approaches should consider. It also motivates the need for sequence-fitness datasets if we 

hope to develop even better predictive models.  
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1.1 Background 

Enzymes provide solutions to life’s most challenging chemical problems. The ability of 

enzymes to catalyze chemical reactions efficiently and selectively makes them useful not 

only to their host organisms, but also for myriad applications that humans have devised. As 

green, cheap, efficient catalysts, enzymes have been taken up by industries ranging from 

pharmaceuticals to consumer products, materials, food, and fuels, and their importance is 

expected to continue to grow1–3. 

Enzymes and many other proteins useful to humans often must function in non-native 

environments (non-aqueous solutions, high temperatures, in the presence of surfactants, etc.) 

that eliminate or reduce the activity of the natural protein. Additionally, although enzymes 

exhibit remarkable selectivity, they typically have a limited substrate scope, which often 

means that a new enzyme must be optimized for new target reactions or applications by 

engineering its amino acid sequence4,5. 

A protein’s sequence encodes its function (the level of which is termed “fitness”), and the 

relationship between them is often conceptualized as a surface in high-dimensional space 

called the protein fitness landscape6,7. New proteins are developed by searching this 

landscape, but importantly, the number of possible protein sequences is immense, presenting 

a significant challenge to any protein engineering strategy. A typical protein is several 

hundred amino acids long, and at each position there are twenty canonical amino acids 

possible, resulting in 20300 (10390) possible sequences. Interestingly, this does not mean that 

finding functional proteins or improving protein fitness is a hopeless endeavor. For evolution 

to occur, functional protein sequences must neighbor other functional sequences in protein 
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sequence space, implying that functional proteins exist clustered together within a vast sea 

of non-functional ones6. Therefore, rather than throwing metaphorical darts at this 

astronomical space and hoping for a hit, protein engineers can begin with a small level of 

activity for their function of interest and leverage methods for local exploration to improve 

it. The process most commonly used is directed evolution7. 

Directed evolution proceeds by subjecting a protein having at least a small amount of the 

desired function to iterative rounds of mutagenesis and screening, using the best variant in 

each round as the starting point for the next until the functional goal is achieved (Figure 1-

1A). First, a protein with a measurable amount of the property of interest must be identified. 

Many protein engineering projects fail at this stage, since biochemical ingenuity is required 

to identify a protein able to accomplish a new goal such as breaking down polyethylene 

terephthalate (in man-made plastics8) or selectively modifying DNA for targeted gene 

therapy.9 Second, the protein sequence is randomized to generate a pool of variants, often 

called a library. In nature, this process typically occurs through random mutagenesis, where 

random mutations in DNA correspond to random changes in the protein sequence, or 

recombination of existing protein fragments. Third, the library is tested for the desired 

property. Some examples of approaches capable of generating the largest amounts of data 

(high-throughput assays), are based on protein fluorescence or binding, and reach hundreds 

of thousands of labels per month. However, other properties such as enzymatic activity for 

generating small molecule substrates are measured in much lower throughput. Thus, 

extensive laboratory characterization remains a bottleneck for the development of many 

engineered proteins. 
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To reduce the experimental burden of directed evolution, protein engineers are increasingly 

turning to in silico strategies for screening, particularly machine learning (ML). When 

applied to directed evolution, ML has thus far largely been cast as a supervised problem; that 

is, given a set of protein sequences with associated labels (e.g., catalytic activity, stability, 

etc.), the task is to learn a function that can predict the label of previously unseen sequences 

(Figure 1-1B). Using this function, large numbers of proteins can be evaluated 

computationally during each cycle of evolution, enabling much greater exploration of the 

protein fitness landscape than could be accomplished with laboratory screening alone. 

 

Figure 1-1. Example workflows of traditional and ML-assisted directed evolution. Both 
workflows begin by identifying a protein with activity for a target function. Once the starting point is 
identified, diversity is introduced by mutagenesis and resulting variants are screened for function. A 
In traditional directed evolution, many variants are screened and the best variant is then fixed as the 
parent for the next round of mutagenesis/screening. B When applying supervised machine learning 
to directed evolution, fewer variants are screened. Using the resulting sequence-function data, a 
function is fit that relates protein sequence to protein fitness (e.g., for f(x) = y, ‘x’ is the protein 
sequence and ‘y’ is the protein fitness). This function can be used to predict the fitness values of 
variants not experimentally evaluated or to propose a new set of variants to screen in the next round 
of evolution. 
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1.2 Protein fitness landscapes contain non-additive interactions that can constrain 

evolution 

Due to the iterative nature of the optimization cycle that is directed evolution, it is commonly 

conceptualized as a greedy, uphill walk up the protein fitness landscape towards a fitness 

peak7. Each round of mutagenesis and screening searches through the local landscape, 

typically sampling only a few mutations away from the current position in sequence space. 

When a hit is identified, a step toward the fitness peak is taken and the local search is 

repeated, with the entire process continuing until the fitness is satisfactory or a peak is 

reached. Importantly, no downward steps into valleys of the fitness landscape are typically 

allowed in directed evolution. 

 

Figure 1-2. Two-dimensional representation of a protein fitness landscape. Sequence space is 
represented in the x and y axes despite being much more high-dimensional in practice. Fitness is 
represented by the contours of the map. 

Fitness landscapes are often visualized as smooth, easy-to-navigate surfaces, but in reality, 

they are discrete, high-dimensional spaces, with many of the dimensions being quite rugged. 

This ruggedness is due to a phenomenon known in biology as epistasis, where mutational 
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effects are dependent on higher order interactions rather than their individual contributions10. 

Epistasis arises most commonly from direct structural contacts, but interactions between 

residues can also be modulated by ligands, substrates, allostery, cofactors, or conformational 

dynamics. As a result, it is often reasonable to assume that distant mutations are mostly 

independent, but there are important cases where this assumption breaks down and epistasis 

must be considered. Otwinowski et al. explored the prevalence of global epistasis, where the 

mapping of genotype to phenotype showed inherent non-linearity not just due to pairwise 

interactions between residues11. This effect varied in magnitude depending on the protein 

being studied. 

Intertwined with the idea of global epistasis, it is important to consider the pre-requisite 

protein properties that must be satisfied to take fitness measurements, such as expression, 

stability, and substrate binding. This means that fitness landscapes are a result of some 

combination of these factors, and changes in any of them can modulate fitness or cause 

epistasis. For example, Romero & Arnold outline how negative epistasis can arise from a 

protein stability threshold, where beneficial, but destabilizing mutations combine to 

completely ablate activity7. In fact, any mutation is more likely to be destabilizing than 

neutral or stabilizing, and therefore, most activity-improving mutations that improve activity 

are also most likely to be destabilizing12. Therefore, more stable starting proteins can be 

easier to evolve, as they allow for larger decreases in stability that occur as activating 

mutations are discovered13. 
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1.3 The promise of machine learning for directed evolution 

In traditional DE, the top 𝑘 variants (often 𝑘 = 1) are fed back into the diversity generation 

step for further improvement. For methods where DE is further enabled by ML, two other 

steps may follow the initial fitness determination step. Importantly, the advantages offered 

by ML currently depends on the protein being evolved and its fitness assay. Some protein 

engineering projects are already able to test millions of variants in a single round, minimizing 

the value of an ML approach. Other projects require a day or more to acquire a single data 

point and would not even be possible without further guidance from sources such as machine 

learning. 

For ML-assisted approaches, the step following fitness determination is to fit ML models to 

the relationship between protein sequences and their fitness labels. A wide variety of 

approaches are available to the machine learning practitioner here, and there are multiple 

sources of prior knowledge that can be leveraged for proteins. One example is the rich 

historical record of protein sequences, which can be obtained from sequence databases such 

as UniRef.14,15 From such a database, sets of evolutionarily related sequences (homologs) 

can be obtained and aligned in Multiple Sequence Alignments (MSAs), which can be used 

as priors on viable sequences. However, while this history represents sequences retained in 

nature, it does not necessarily represent the distribution of allowed sequences for a specific 

protein on a specific engineered task, especially for non-natural activities. For example, 

mutating the axial ligand of cytochrome P450BM3 from a cysteine to a serine unlocked 

multiple non-natural activities, but an MSA would show high conservation of the cysteine 

residue and disfavor mutation at this position.16 
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The final step of an ML-assisted approach is to use a trained model to select optimal proteins 

for experimental validation. Again, a variety of approaches have been employed in this step 

such as gradient-based, reinforcement-learning-inspired, and active learning methods. The 

sampling strategy often depends on the modeling approach used in the previous step. 

Additionally, this step may be constrained by cost and availability of current molecular 

biology techniques. Such constraints have typically been enforced manually, but one can 

envision encoding them in the design process as well. From here, proposed sequences are 

tested for activity. At this point, a new diversity generation step could be pursued, more 

sequences could be proposed, or ML-assisted DE could be complete. 

1.4 Identifying a starting variant for directed evolution 

The first consideration in a directed evolution experiment is selecting the protein variant to 

evolve, which can be a nontrivial task. In the most extreme setting, there may be no known 

proteins that perform the desired function; a related setting is when the desired output of the 

directed evolution experiment needs to be substantially different from all known proteins due 

to considerations of scientific novelty or intellectual property. 

1.4.1 Experimental considerations for finding starting variants  

When screening for new activities, protein engineers typically begin by searching annotated 

databases of existing sequences and structures, looking for proteins which perform a similar 

function to the desired one. Such proteins are hoped to have at least a small level of 

"promiscuous" activity for the new function. For enzymes, this could mean looking for ones 

that have the desired mechanism but act on a different substrate. As another approach, plates 

of variants from previous evolution campaigns might be screened for a new but similar 
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activity. These methods ultimately rely on the latent promiscuity of extant sequences, as the 

probability that a functional sequence is found through a random search is approximately 

zero. 

1.4.2 Applying machine learning to finding starting variants  

Alternatively, ML would be a useful way to identify a novel starting variant, typically with 

weak or suboptimal fitness, that can subsequently be given to a traditional or ML-assisted 

DE pipeline. Existing approaches fall somewhere between using ML to propose large and 

diverse collections of proteins to test for nonzero fitness values17,18 and using ML to de-novo 

design the initial, functional protein.19–21 As an example of the first approach, Shin et al. use 

an autoregressive language model, trained on approximately 1.2 million natural llama 

nanobody sequences, to generate a nanobody library that is screened to potentially identify 

novel binders to a target protein.17 The generative model enables improved sequence 

diversity over previous synthetic libraries, enabling the authors to identify new proteins with 

high binding affinity using an efficient set of approximately 105 generated sequences, which 

is 1000-fold smaller than other libraries. The second approach, which promises robust 

starting points with desired properties without the need to physically screen lots of generated 

proteins, is an ideal yet unreached. However, progress towards designing new enzymes with 

new functions has continued, with the most notable example being luciferase enzymes 

designed in a completely novel scaffold with a combination of deep learning and rational 

design.21 

These approaches target cases in which the starting variant is unknown or must be 

substantially different from existing proteins, but in many other cases a good, functional 
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variant might already exist. DE could be used directly to evolve this variant, but it may be in 

a local optimum of the fitness landscape from which it is difficult to escape. Therefore, it 

may be desirable to find an alternate starting point or multiple starting points that could be 

more evolvable. Engineering a more evolvable starting variant, even at some fitness cost, is 

currently an open question,22 as it is often unclear a priori if a given starting point is more 

evolvable. ML may be of some help here, as proteins with higher intrinsic stability are 

thought to be more evolvable13, and many ML models have been developed that either 

directly (via supervision) or indirectly (as an emergent property of an unsupervised model) 

predict stability.23,24  

1.5 Designing and building protein variant libraries 

The data used to train an ML model determines what it learns and, by extension, in what 

situations it can be used to make effective predictions. For protein engineering, this means 

that the design of the library that will provide training data is critical to the eventual 

effectiveness of the trained model in finding improved sequences.  

1.5.1 Experimental methods for designing and building protein variant libraries 

After a starting point for evolution is identified, a variety of molecular biology methods are 

available for generating local sequence diversity. While these steps are physically separate 

from the downstream assay, which pairs a sequence to a fitness label, the assay throughput 

is a key factor in selecting the method of diversity generation. Several methods and their 

biases, an important consideration for applying ML, are introduced below, but notably, these 

methods are often combined in protein engineering campaigns.  
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Random mutagenesis is one of the most straightforward methods for creating initial sequence 

diversity. Errors are introduced throughout an initial DNA sequence by either randomly 

damaging DNA or by introducing errors during replication such as via error-prone PCR 

(epPCR), a process that introduces mutations randomly by increasing the error rate of the 

copying enzyme, the polymerase. However, it is important to note that errors introduced via 

“random” mutagenesis are not perfectly random in two major ways. First, mutations from 

one nucleotide to another do not occur at identical frequencies, so the original base can dictate 

what mutations are most likely at a given position.25 Second, the genetic code is redundant, 

with the twenty canonical amino acids encoded by 61, three-nucleotide codons. Although it 

is possible for multiple nucleotides within a single codon to mutate simultaneously, this is 

rare, and generally only one nucleotide mutation occurs per codon during random 

mutagenesis, limiting the mutations available at the amino acid level. In comparison to other 

mutagenesis methods, the protein engineer has much less control over the generated library 

— only the rate of mutations can be changed. 

Targeted mutagenesis, of which the focused mutagenesis discussed in the previous section 

is a subset, is an alternative to random mutagenesis that affords more control over the final 

library. Unlike random mutagenesis, targeted mutagenesis typically assumes that either (1) 

specific sites in the protein sequence are important to mutate or (2) it is important to be able 

to access all amino acids at a given position. Site selection usually requires structural 

knowledge or other biochemical insights into the protein system, and, unlike random 

mutagenesis, any amino acid can be accessed with equal probability. The pool of degenerate 

DNA oligos used for mutagenesis can also be modified to achieve a relatively even 
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distribution across all twenty canonical amino acids26 or to achieve a different distribution of 

interest.27,28 Importantly, as the desired amino acid distribution becomes more complex and 

more sites are mutated simultaneously, both difficulty of laboratory implementation and the 

cost of oligos can become untenable, approaching direct gene synthesis costs). Therefore, 

ML methods relying on targeted mutagenesis for either training set design or evaluation of 

predicted designs must keep in mind these constraints. 

Another strategy for library generation is recombination, which pieces together, or 

“recombines,” initial diversity into different arrangements to create new diversity. The 

choice of recombination strategy typically relies on the type of initial diversity on hand. Such 

diversity could be comprised of a set of functional, homologous proteins, the top variants 

from a random mutagenesis library, or the top variants from a targeted mutagenesis library. 

Another approach for recombination is the use of SCHEMA libraries,29 where fragments of 

multiple parent proteins (selected by conserving contacts) are swapped, and which has been 

successfully engineered with ML methods.30,31 Importantly, some recombination strategies 

are quite experimentally straightforward and a single round of recombination on top variants 

can yield much higher improvements in fitness than a single round of random or targeted 

mutagenesis. Overall, recombination is a very broad category of diversity generation, and 

due to the array of recombination strategies available, we have only briefly mentioned a few. 

Further strategies are well reviewed by Packer & Liu.32 

Library design has typically been constrained by methods of library generation, but there is 

promise to disrupt these traditional paradigms with the advent of cheap gene synthesis 
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technologies.33 Rather than starting with an initial sequence or pool of sequences and 

building diversity with mutagenesis or recombination, a set of desired sequences can be 

synthesized directly for under $100 per protein — a cost which is currently dropping, 

particularly for proteins shorter than 100 residues. Ordering pools of sequences with targeted 

or random mutations is also possible, and emerging synthesis technologies can impart more 

control over the final distribution. As these DNA synthesis technologies improve, ML 

methods for protein engineering can begin to leverage and propose precisely defined libraries 

that were previously cost-prohibitive. 

1.5.2 Applying machine learning to designing and building protein variant libraries  

ML models tend to be more effective at interpolation than extrapolation and so will typically 

perform best when used to make predictions in the same domain as the data used to train 

them. In general, for a given design space of allowed proteins, this translates to collecting 

maximally diverse training data that best covers that space. For proteins, this means that 

training data with maximal sequence diversity will be most informative for modeling an 

underlying true fitness landscape: the more diverse the training sequences are, the more of 

the design space that is covered by the training data and the less a model must extrapolate to 

previously unseen regions of sequence space. For example, Romero et al., Bedbrook et al., 

and Greenhalgh et al. maximize the information entropy of the initial set of sequences when 

engineering P450s, channelrhodopsins, and acyl-ACP reductase, respectively.30,34,35 

Randomly collecting sequences from a fixed design space (e.g., a combinatorial space 

defined by a given number of positions in a protein) can thus be a valuable strategy for 

training data collection, as this will on average result in the collection of highly diverse 
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sequences. Random collection of training data is also an attractive approach based on 

available lab methods discussed previously, and this strategy has been combined with ML 

methods to engineer halohydrin dehalogenase,36 fluorescent proteins,37,38 and an adenovirus 

capsid protein.39 

While building a perfect map of a fitness landscape would be ideal for model-guided 

engineering, it is not always feasible given our limited ability to collect experimental data. 

More complex fitness landscapes considering larger sections of sequence space require more 

data to model and a small amount of randomly selected training data may be spread too thinly 

across the design space to build a comprehensive map.40 The goal of ML-assisted protein 

engineering is not to comprehensively map fitness landscapes, but to use ML to guide 

exploration of fitness landscapes to reach higher-fitness protein variants. As a result, if 

training data is expensive to collect, then it can be advantageous to build focused initial 

libraries that are biased toward protein variants believed a priori to be higher in fitness. It is 

more important to be able to identify the highest-fitness variants from the set of high-fitness 

variants than the lowest-fitness variants from the set of low-fitness variants, and so the idea 

of this strategy is to model (potentially) higher-fitness regions of the protein fitness landscape 

at higher resolution and lower-fitness regions of the protein fitness landscape at lower 

resolution. 

Focused libraries can be particularly helpful when navigating protein fitness landscapes filled 

with many zero-fitness proteins, or “holes”.41 As more mutations are made to a protein, the 

probability that it retains function decreases exponentially,13 and so fitness landscapes 

consisting of combinations of mutations at multiple positions (combinatorial landscapes) 
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tend to be dominated by such holes. These variants are conceptually distinct from fitness 

valleys mentioned previously, as they do not provide information about the extent to which 

a mutation impacts protein fitness, which is valuable information for training the regression 

models typically employed for ML-assisted protein engineering. Wittmann et al. 

demonstrated that by using so-called zero-shot predictors—models or strategies that can 

predict protein fitness prior to collection of new experimental data—focused training sets 

can be constructed that minimize inclusion of holes in training data.41 Through simulation 

on a complex, hole-filled, combinatorial fitness landscape, they showed that models trained 

with these focused training sets tend to be far more effective at identifying the highest-fitness 

variants than models trained with data drawn randomly from the landscape.  

The prior information needed to construct focused libraries can come from many sources. 

For instance, prediction of protein thermal stability,41 use of meta-predictors of protein 

fitness,42 or strategies based on evolutionary conservation can all be used to make zero-shot 

predictions of protein fitness.43–47 The exact strategy that will be most effective, however, 

will vary depending on the fitness and protein being optimized. Take, for instance, zero-shot 

strategies that rely on sequence conservation. Such strategies assume that evolutionary 

fitness aligns with whatever fitness is being predicted; that is, they assume that mutant 

proteins more closely resembling known protein sequences (found in databases of protein 

sequence such as UniProt48) are more likely to be functional than others. Should this 

assumption not hold (for instance, the fitness of a protein being engineered for a new-to-

nature activity may not correlate well with evolutionary fitness), or if there are simply not 

enough homologous protein sequences available to build an effective sequence-based zero-
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shot prediction model, then the zero-shot predictions are likely to be inaccurate. Inaccurate 

zero-shot predictions are unhelpful for focused library design: indeed, they may even be 

detrimental to effective learning by focusing training data collection on regions of the fitness 

landscape dominated by holes.  

Ultimately, the decision between random library design and focused library design will 

depend on a number of factors. If the fitness landscape to be explored is expected to be 

minimally complex with few holes and large amounts of training data can be easily collected 

for it, then random library design is a reasonable approach, as the library itself will be simple 

to construct, and training data gathered from it will be sufficient to build a comprehensive 

map of the fitness landscape. If the fitness landscape to be explored is complex, full of holes, 

or it is challenging to gather training data for it, then focused libraries may be more viable, 

particularly if high-confidence zero-shot predictions can be made for the fitness landscape. 

Such libraries may be more challenging to construct in the laboratory, but they will likely 

result in more efficient ML-guided engineering. These are the applications where the 

dropping costs of gene synthesis will have the largest impact, but new methods are being 

developed to build focused libraries within the constraints of current molecular biology 

technology.28 

1.6 Collecting protein sequence-fitness data 

Once an initial variant has been selected and an initial library defined and built, is time to 

collect protein sequence-fitness data through screening (direct measurement of individual 

variants) or selection (assay where variants “compete” against each other, sometimes 

resulting in only the top variants remaining). 
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1.6.1 Assaying protein fitness creates labels for machine learning 

With proteins performing such a wide variety of different functions, the protein engineering 

community has had to devise countless different assays to measure them all. As such, assays 

for protein function vary widely in both accuracy and throughput, with ranges from tens to 

millions of protein variants (Figure 1-3). This amount is typically dependent on the project 

definition of fitness. For instance, if the measurement of fitness can be directly coupled to a 

sequencing assay (as in deep mutational scanning, DMS), then large datasets (105–106) can 

be rapidly created. Many assays for fitness, however, are limited to comparatively low-

throughput chromatographic methods (e.g., HPLC, LCMS, GCMS, etc.), which rely on 

physical separation of a mixture through a column, producing smaller datasets (101–104). 

The amount of data available for training a model will dictate how much of sequence space 

can be explored and how accurate the predictions of fitness for new sequences will be. At 

the same time, however, the goal of ML in protein engineering is to reduce the burden of 

experimental screening and expedite the process, so a balance must be found between the 

amount of data collected and the accuracy of predictions of models trained on that data. 
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Figure 3. Many different screening throughputs exist for protein fitness. A Screening throughput can 
range from less than one variant per day for some specialized experiments to over 107 per day for 
some DMS-based screens. B Many protein screens require spatial separation of variants, including 
many chromatographic methods. This then requires separate sequencing and screening processes that 
can be later be combined into complete sequence-fitness datasets. C With deep-mutational scanning 
assays sequencing and fitness are linked. Sequencing is performed pre- and post-selection and 
changes in read frequency are used to calculate a fitness value for every variant  

Additionally, one should consider where an ML method for protein engineering may have 

the biggest impact on efficiency, cost, and time. Protein functions that can be assayed in high-

throughput provide more data for training downstream ML models; however, applying an 

ML-based engineering method to such a function may not impart as much benefit as it would 

being applied to engineering a function with a low-throughput assay. Therefore, many recent 

efforts for building ML methods for protein engineering have focused on the low-N regime, 

where few samples are used for training.31,41,49–52 

Final considerations, for both the protein engineer choosing an assay and the ML scientist 

choosing a dataset, are the assay bias and noise. As interest has grown in applying ML to 

protein engineering, method developers have sought out sequence-fitness datasets with 
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which to benchmark their approaches. This has typically resulted in the pursuit of large 

datasets built from multiplexed assays of variant effects (MAVEs) and using some fitness-

related selection such as fluorescence-activated cell sorting (FACS) for a fluorescent 

protein.53 Inherent biases in such protein fitness datasets are left under-discussed, making it 

difficult for the ML community to discern what datasets are appropriate for a given 

application. 

Sequencing-based fitness measurements can be heavily impacted by the input library and 

selection methods, resulting in highly non-uniform error across a dataset.54 For example, 

FACS-based assays have inherent bias due to fluorescence-based binning. Post-binning 

sequence processing attempts to smooth the categories into a continuous function, but 

systemic bias persists, leading Trippe et al. to propose a random gating strategy to reduce 

it.55 Noise can be more difficult to address as there tends to be a balance between throughput 

and measurement accuracy for biological systems. However, examining and quantifying the 

noise within a dataset can be important for setting expectations for the success of downstream 

ML model. This could be done by comparing a subset of high-throughput measurements to 

more accurate, low-throughput measurements or using published statistical packages for data 

processing and analysis.54,56 Note that even low-throughput assays can have their own noise 

and bias, so this should always be thoroughly considered when developing an ML method 

on any dataset. 
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1.6.2 Pairing sequences to fitness data through sequencing creates features for machine 

learning 

Uncommon in the broader ML discipline, datasets that result from typical protein 

engineering campaigns are label-rich and feature-poor, with many assayed fitness values and 

relatively few variant sequences. Because only function is being optimized in directed 

evolution, this process does not technically require sequencing. Indeed, only the top few 

variants from each round are sequenced for validation in practice, and sequencing all the 

variants is considered an unnecessary, unjustifiable expense. Thus, the remainder of the 

unimproved variants are discarded without sequencing, resulting in fitness labels that are 

rendered useless. Notably, this is not true for MAVE libraries, where fitness is directly 

coupled to sequencing, which is a large part of the reason many ML approaches are currently 

developed on these types of datasets.41,51,57–59 

Variant sequencing, especially for low-throughput assays, has traditionally been done via 

Sanger sequencing, but the cost of this method scales linearly with the number of variants, 

typically at a few dollars per sequence. Depending on the assay used for evaluating protein 

fitness, sequencing could easily become the most expensive part of a protein engineering 

campaign.  

Fortunately, next generation sequencing (NGS) technologies60 have begun disrupting this 

paradigm. The MAVE strategies mentioned in the previous section rely on sequencing to 

measure fitness, meaning variant sequencing and fitness assaying happen simultaneously.61 

New sequencing methods that incorporate NGS show promise to continue shifting the 

sequencing paradigm by spreading reads over many, multiplexed sequences, enabling large-
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scale sequencing for individually screened fitness values. For such methods, there is a trade-

off between read length and cost per sequence. Both long- and short-read methods can return 

full-length sequences, but they typically require filling an entire NGS flow cell, which can 

cost upwards of $1000 per run and a few dollars per variant.62,63 Alternatively, short 

amplicons from within an entire gene, which are restricted to only a few hundred amino 

acids, can be sequenced for cents per variant and are a cost-effective compromise when 

variation is confined to a smaller region of a gene.64 Nonetheless, both sequencing 

technologies and sequencing methods for the protein engineering community have been 

growing rapidly in the past few years, showing promise to address these shortcomings in the 

near future. 

1.6.3 Using alternative data sources to reduce the number of required experiments 

Sequence-fitness data are not the only data that can be useful when applying ML to DE, and 

there are a variety of databases that can be leveraged. Of particular note are UniRef,14,15 

UniProt48 and the Protein Data Bank (PDB).65,66 From such a database like UniRef or 

UniProt, sets of evolutionarily related sequences (homologs) can be obtained and aligned in 

Multiple Sequence Alignments (MSAs), which can be used as priors on viable sequences. 

However, while this history represents sequences retained in nature, it does not necessarily 

represent the distribution of allowed sequences for a specific protein on an engineered task, 

especially for non-natural activities. For example, as mentioned earlier, mutating the axial 

ligand of cytochrome P450BM3 from a conserved cysteine to a serine unlocked multiple non-

natural activities. However, an MSA would show high conservation of the cysteine residue 

and disfavor mutation at this position.  



 

 

28 
UniProt also contains a large amount of information about proteins beyond their sequence, 

including cross-references to functional labels, disease-association and Protein family (Pfam) 

classifications at the per-residue level,67 Gene Ontologies on the per-protein example,68,69 

and links to several other databases. UniProt also releases reference protein clusters which 

are currently almost ubiquitous as the training set for large protein language models.70 This 

dataset will continue to grow as more metagenomes are sequenced71 and more unique 

proteins are identified. Some approaches to modeling proteins are conditioned on protein 

functional labels20 or other data available in UniProt,57 but there is no clear optimal approach 

to incorporating annotations about all proteins for protein engineering campaigns, which are 

often focused on specific protein families.  

The PDB is the primary source of experimental protein structure data, and it largely consists 

of static protein structures obtained through protein crystallography, although the number of 

structures obtained through cryo-EM and NMR are also increasing. Protein structures are 

invaluable to biologists in providing much-needed context for molecules that are otherwise 

difficult to probe. However, mutations may have effects that are not captured by static 

structures. For example, they may bias the protein’s Boltzmann distribution toward different 

conformational states in the ensemble without perturbing the ground state crystal structure, 

or the crystal structure may simply have too low resolution to capture small changes. 

Nonetheless, structure can be a useful prior in directed evolution41,72 and can also be directly 

applied to identify beneficial mutations.73 

AlphaFold74 has the potential to enable protein sequence-based protein engineering methods 

to incorporate structural information. AlphaFold incorporated several biophysical inductive 
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biases in the CASP14 protein structure prediction contest. These include a variant of attention 

to account for the triangle inequality on distances, a lowered emphasis on the linear input 

sequence of a protein (which folds into a three-dimensional structure), and a variant of axial 

attention for the MSA. These methods have been successful for improving protein structure 

prediction, and it is likely that ML methods adapted from them (or even the predictions 

themselves) will improve each step of the protein engineering cycle. 

This prior information can be leveraged for construction of focused libraries (as described in 

the previous section). Prediction of protein thermal stability,41 use of meta-predictors of 

protein fitness,42 or strategies based on evolutionary conservation can all be used to make 

zero-shot predictions of protein fitness.43–47 The exact strategy that will be most effective, 

however, will vary depending on the fitness, predictor, and protein being optimized. Take, 

for instance, zero-shot strategies that rely on sequence conservation. Such strategies assume 

that evolutionary fitness aligns with whatever fitness is being predicted; that is, they assume 

that mutant proteins more closely resembling known protein sequences are more likely to be 

functional than others. Should this assumption not hold (for instance, the fitness of a protein 

being engineered for a new-to-nature activity may not correlate well with evolutionary 

fitness), or if there are simply not enough homologous protein sequences available to build 

an effective sequence-based zero-shot prediction model, then the zero-shot predictions are 

likely to be inaccurate. Inaccurate zero-shot predictions are unhelpful for focused library 

design: indeed, they may even be detrimental to effective learning by focusing training data 

collection on regions of the fitness landscape dominated by holes.  
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1.7 Training a protein sequence-fitness model 

In traditional directed evolution, the top set of variants are fed back into the diversity 

generation step for further improvement. For methods where directed evolution is further 

enabled by supervised ML, two other steps may follow (Figure 2B). First, a model is trained 

on the sequence-fitness data collected. There are a large variety of models available to the 

ML practitioner and tools have emerged to make implementing a new model relatively 

straightforward. Once trained, the model can be used to predict a top set of variants to screen 

and another round of experimentation is performed.  

1.7.1 Representing proteins for machine learning models 

Proteins are variable-length sequences composed of twenty canonical amino acids that fold 

into three-dimensional structures to carry out their function. Due to both the variability in 

sequence length and the categorical nature of amino acids, an important and long-standing 

problem has been how to best represent a protein to facilitate ML. Roughly speaking, there 

are three general approaches for doing this, including (1) simple, one-hot encodings; (2) 

biophysical properties based on individual amino acids, structures, or full-protein 

simulations; and (3) using evolutionarily related sequences to learn likelihoods or 

embeddings to be used as representations. Any of these encoding methodologies are typically 

amenable to a variety of different downstream models. 

One-hot encodings are the simplest way to encode protein input data for an ML model, and 

they are used across many different domains. At the most basic level, one-hot encodings are 

categorized inputs represented as computer-interpretable vectors, and for proteins the most 

common way to implement this encoding method is to designate each of the twenty canonical 
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amino acids as its own category. Thus, each amino acid is described with a vector of length 

twenty where the position of a single “1” among nineteen “0” values indicates the identity of 

the amino acid. These encodings capture no information about similarities between amino 

acid properties (e.g., polarity, charge, size, etc.) and are thus a common baseline 

representation for more complex encoding strategies. 

Biophysical properties are another way that proteins can be encoded, and such approaches 

can work at either a residue or whole-protein level. Per-residue methods can use curated sets 

of biophysical parameters unique to each amino acid such as the Georgiev parameters 75. 

These sets of features as encodings begin to offer information on the similarities between 

amino acids, as those with more similar properties will have more similar encodings — 

downstream models may be able to pick up on these similarities and better share information 

between training data points. Building upon this approach, more complicated and compute-

intensive encodings can be calculated with physical modeling from relatively fast force field 

calculations to molecular dynamics (MD) simulations to quantum mechanics/molecular 

modeling (QM/MM). With such approaches there is a trade-off between speed of calculation 

and accuracy, and the proper balance remains an open question for the field.  

The final type of encoding comes from the information held within evolutionary related 

sequences as well as with protein sequences as a whole. Creating MSAs of homologous 

sequences and quantifying sequence conservation or covariation can provide scores used to 

augment one-hot encodings.49 Alternatively, unsupervised large language models can be 

trained on these sequences or on the millions of protein sequences is sequence databases. 

They can then be repurposed to generate fully continuous vector representations of proteins 
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known as embeddings. Protein embeddings from unsupervised models capture information 

learned during pretraining and define the relationships between proteins within the context 

of learned sequence constraints: similar sequences will be found closer together in 

embedding space and so can, for instance, be inferred to have similar properties by a 

downstream supervised model. In this way, learned protein embeddings allow information 

contained in unlabeled sequences to be passed to a downstream supervised task, in principle 

reducing the amount of labeled data needed compared to less informative encoding 

strategies. 

1.7.2 Machine learning models for directed evolution 

Once protein variants have been assayed to obtain fitness labels and represented to obtain 

features, a supervised model can be trained on these sequence-fitness pairs. These models 

can range from extremely simple models such as linear regression to more complicated 

models such as graph-neural networks, and model selection can depend on the data in 

question as well as the representation being used to encode a given protein variant. Because 

of these intricacies, there is currently no model type that dominates for protein fitness 

prediction, and thus model selection is based on rapidly evolving heuristics and comparisons. 
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1.8 The need for protein engineering datasets 

The common theme for choosing a representation or model is that we require ways to validate 

each choice as well as compare new approaches to existing ones. This has resulted in a 

number of efforts to curate datasets for protein fitness prediction.58,76,77 

1.8.1 The state-of-the-field in existing protein fitness landscapes 

Discussed previously, DMS has been the predominant method for large-scale fitness 

landscape generation, where each residue of a protein sequence is independently altered to 

every other amino acid. Because of their prevalence, they have also been the main testing 

ground for ML models. However, these types of landscapes are not well-suited to the task of 

building ML approaches that work well for DE, as there is no possibility to test iterative 

approaches for improving sequences without generating more variants and measuring their 

fitness values. Therefore, there has been a focus upon landscapes that enable the testing of 

these approaches. For example, methodology for informed training set selection can be 

incorporated, or iterative “sample, screen, predict” strategies can be tested when more than 

single mutants are included.12 Most importantly, they represent a complete validation set 

where every (or nearly every) sequence within the landscape has a measured fitness value 

that can be compared to predictions. 

In protein engineering, mutational effects, especially for distant residues, are often presumed 

to be additive or at least cumulative; for such systems, simple linear regression models on 

easy-to-generate one-hot encodings work well, so there is no need to develop new 

approaches. Indeed, in these cases mutations can be directly recombined without the need 

for any ML. However, in the case of non-additive, epistatic, interactions the effects of 
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combined mutations are more difficult to predict, and simple recombination or linear models 

can fail. Thus, ML-based enzyme engineering strategies must handle epistasis if they are to 

be applied to multiple mutations, making epistatic fitness landscapes some of the most 

interesting protein fitness landscapes. Availability of experimental, epistatic landscapes 

essential for the development of new ML methods for protein engineering. 

1.8.2 A standout protein fitness landscape 

One epistatic landscape has thus dominated method development in the space of ML-assisted 

DE: Wu et al. sampled all possible amino acids at each of four positions simultaneously 

(160,000 possible variants).78 The authors built this fitness landscape on the B1 domain of 

protein G, an immunoglobulin-binding protein, targeting four sites known to have epistatic 

interactions that were found through complete single- and double-site saturation mutagenesis 

of GB1.79 With 93.4% of all possible variants measured, nearly every sequence prediction 

can be “tested” in silico, thus making it an important benchmarking landscape for developing 

ML for protein engineering. 

There are two major issues with this landscape, however. First, the function of the GB1 

domain is binding immunoglobulin G, which involves optimizing a protein-protein interface 

to improve binding. This is vastly different than enzymatic catalysis, which requires first 

binding a small-molecule (and potentially also another small-molecule cofactor) into an 

enzyme active site, catalyzing product formation, and then releasing product to the 

environment. This difference in mechanism makes it uncertain if success at predicting on the 

GB1 landscape will translate to enzymes. Furthermore, GB1 has very few known 

homologous sequences, making its multiple-sequence alignment (MSA) extremely shallow. 
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As discussed above, MSAs have been instrumental in recent advances in protein structure 

prediction,74 but GB1’s shallow MSA has limited the effectiveness of these approaches and 

sparked the creation of methods to use deep mutagenesis data to attempt structural prediction 

instead.80,81 With recent efforts to incorporate ML into protein engineering focusing on 

applying unsupervised learning to the creation of informative protein representations, the 

lack of homologous sequences makes the GB1 landscape a non-ideal benchmark to method 

developers since the representations are much less useful. Therefore, the desire for a 

comprehensive landscape for validation must currently be weighed against the desire for a 

landscape built on a protein from a large and diverse family. 

Both DMS landscapes and multi-site saturation landscapes represent important facets of 

proteins that have been leveraged by ML models, but neither represents proteins perfectly. 

Thus, current ML method development is typically done across a panel of landscapes to 

assess performance in multiple tasks. Ideally, if we are to learn general rules about protein 

function, all landscapes would have depth, completeness, and epistasis, and differ most based 

on the protein background, not how the landscape was constructed. 

1.9 Conclusion and outlook 

By moving expensive experimental screens in silico, ML greatly expands our ability to 

explore protein sequence space. While ML has so far been cast mainly as a supervised 

problem when applied to directed evolution, there has been significant expansion in 

unsupervised ML strategies as well. These unsupervised approaches can be used to limit or 

eliminate required experimental characterization of proteins, assist with navigation of 

combinatorial sequence space, and generate new protein sequence diversity, all of which can 
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improve the efficiency of directed evolution campaigns. Yet, ML for directed evolution is 

still a relatively young field with much room for continued advancement. In particular, 

continued decreases in the cost and time of gene synthesis and sequencing as well as 

increases in computational power will make the laboratory application of ML methods more 

feasible and enable expansion of both sequence and sequence-function databases. As data 

availability grows, continued and improved collaboration between ML scientists and protein 

engineers will prove critical to developing experimentally tractable ML strategies that 

advance the field and drive more widespread adoption of the technology.  

Chapter I Bibliography 

1. Blamey, J. M., Fischer, F., Meyer, H.-P., Sarmiento, F. & Zinn, M. Chapter 14 – 

Enzymatic biocatalysis in chemical transformations: A promising and emerging field in 

green chemistry practice. in Biotechnology of microbial enzymes (ed. Brahmachari, G.) 

347–403 (Academic Press, 2017). doi:10.1016/B978-0-12-803725-6.00014-5. 

2. Bornscheuer, U. T. et al. Engineering the third wave of biocatalysis. Nature 485, 185–

194 (2012). 

3. Global enzymes market in industrial applications. https://www.bccresearch.com/market-

research/biotechnology/global-markets-for-enzymes-in-industrial-applications.html 

(2018). 

4. Rosenthal, K. & Lütz, S. Recent developments and challenges of biocatalytic processes 

in the pharmaceutical industry. Curr. Opin. Green Sustain. Chem. 11, 58–64 (2018). 

5. Devine, P. N. et al. Extending the application of biocatalysis to meet the challenges of 

drug development. Nat. Rev. Chem. 2, 409–421 (2018). 



 

 

37 
6. Maynard Smith, J. Natural selection and the concept of a protein space. Nature 225, 563–

564 (1970). 

7. Romero, P. A. & Arnold, F. H. Exploring protein fitness landscapes by directed 

evolution. Nat. Rev. Mol. Cell Biol. 10, 866–876 (2009). 

8. Austin, H. P. et al. Characterization and engineering of a plastic-degrading aromatic 

polyesterase. Proc. Natl. Acad. Sci. U.S.A. 115, E4350–E4357 (2018). 

9. Waehler, R., Russell, S. J. & Curiel, D. T. Engineering targeted viral vectors for gene 

therapy. Nat. Rev. Genet. 8, 573–587 (2007). 

10. Starr, T. N. & Thornton, J. W. Epistasis in protein evolution. Protein Sci. 25, 1204–1218 

(2016). 

11. Miton, C. M., Buda, K. & Tokuriki, N. Epistasis and intramolecular networks in protein 

evolution. Curr. Opin. Struct. Biol. 69, 160–168 (2021). 

12. Otwinowski, J., McCandlish, D. M. & Plotkin, J. B. Inferring the shape of global 

epistasis. Proc. Natl. Acad. Sci. U.S.A. 115, E7550–E7558 (2018). 

13. Bloom, J. D., Labthavikul, S. T., Otey, C. R., Arnold, F. H. & Levitt, M. Protein stability 

promotes evolvability. Proc. Natl. Acad. Sci U.S.A. 103, 5869–5874 (2006). 

14. Suzek, B. E., Huang, H., McGarvey, P., Mazumder, R. & Wu, C. H. UniRef: 

Comprehensive and non-redundant UniProt reference clusters. Bioinform. 23, 1282–

1288 (2007). 

15. Suzek, B. E. et al. UniRef clusters: A comprehensive and scalable alternative for 

improving sequence similarity searches. Bioinform. 31, 926–932 (2015). 

16. Hyster, T. K. & Arnold, F. H. P450BM3-axial mutations: A gateway to non-natural 

reactivity. Isr. J. Chem. 55, 14–20 (2015). 



 

 

38 
17. Shin, J.-E. et al. Protein design and variant prediction using autoregressive generative 

models. Nat. Commun. 12, 2403 (2021). 

18. Liu, G. et al. Antibody complementarity determining region design using high-capacity 

machine learning. Bioinformatics 36, 2126–2133 (2020). 

19. Huang, P.-S., Boyken, S. E. & Baker, D. The coming of age of de novo protein design. 

Nature 537, 320–327 (2016). 

20. Gligorijević, V. et al. Function-guided protein design by deep manifold sampling. 

2021.12.22.473759. bioRxiv (2021). doi:10.1101/2021.12.22.473759. 

21. Yeh, A. H.-W. et al. De novo design of luciferases using deep learning. Nature 614, 774–

780 (2023). 

22. Peisajovich, S. G. & Tawfik, D. S. Protein engineers turned evolutionists. Nat. Methods 

4, 991–994 (2007). 

23. Cao, H., Wang, J., He, L., Qi, Y. & Zhang, J. Z. DeepDDG: Predicting the stability 

change of protein point mutations using neural networks. J. Chem. Inf. Model. 59, 1508–

1514 (2019). 

24. Li, B., Yang, Y. T., Capra, J. A. & Gerstein, M. B. Predicting changes in protein 

thermodynamic stability upon point mutation with deep 3D convolutional neural 

networks. PLOS Comp. Biol. 16, e1008291 (2020). 

25. Vanhercke, T., Ampe, C., Tirry, L. & Denolf, P. Reducing mutational bias in random 

protein libraries. Anal. Biochem. 339, 9–14 (2005). 

26. Kille, S. et al. Reducing codon redundancy and screening effort of combinatorial protein 

libraries created by saturation mutagenesis. ACS Synth. Biol. 15, 83–92 (2012). 



 

 

39 
27. Weinstein, E. N. et al. Optimal Design of Stochastic DNA Synthesis Protocols based on 

Generative Sequence Models. in Proc. 25th Int. Conf. Art. Int. and Stat., PLMR. 151, 

7450–7482 (2022). 

28. Yang, J. et al. DeCOIL: Optimization of degenerate codon libraries for machine learning-

assisted protein engineering. ACS Synth. Biol. 12, 2444–2454 (2023). 

29. Voigt, C. A., Martinez, C., Wang, Z.-G., Mayo, S. L. & Arnold, F. H. Protein building 

blocks preserved by recombination. Nat. Struct. Mol. Biol. 9, 553–558 (2002). 

30. Romero, P. A., Krause, A. & Arnold, F. H. Navigating the protein fitness landscape with 

Gaussian processes. Proc. Natl. Acad. Sci. U.S.A. 110, E193–E201 (2013). 

31. Bedbrook, C. N. et al. Machine learning-guided channelrhodopsin engineering enables 

minimally invasive optogenetics. Nat. Methods 16, 1176–1184 (2019). 

32. Packer, M. S. & Liu, D. R. Methods for the directed evolution of proteins. Nat. Rev. 

Genet. 16, 379–394 (2015). 

33. Kosuri, S. & Church, G. M. Large-scale de novo DNA synthesis: Technologies and 

applications. Nat. Methods 11, 499–507 (2014). 

34. Bedbrook, C. N., Yang, K. K., Rice, A. J., Gradinaru, V. & Arnold, F. H. Machine 

learning to design integral membrane channelrhodopsins for efficient eukaryotic 

expression and plasma membrane localization. PLOS Comp. Biol. 13, e1005786 (2017). 

35. Greenhalgh, J. C., Fahlberg, S. A., Pfleger, B. F. & Romero, P. A. Machine learning-

guided acyl-ACP reductase engineering for improved in vivo fatty alcohol production. 

Nat. Commun. 12, 5825 (2021). 

36. Fox, R. J. et al. Improving catalytic function by ProSAR-driven enzyme evolution. Nat. 

Biotechnol. 25, 338–344 (2007). 



 

 

40 
37. Saito, Y. et al. Machine-learning-guided mutagenesis for directed evolution of 

fluorescent proteins. ACS Synth. Biol. 7, 2014–2022 (2018). 

38. Gonzalez Somermeyer, L. et al. Heterogeneity of the GFP fitness landscape and data-

driven protein design. eLife 11, e75842 (2022). 

39. Bryant, D. H. et al. Deep diversification of an AAV capsid protein by machine learning. 

Nat. Biotechnol. 39, 691–696 (2021). 

40. Brookes, D. H., Aghazadeh, A. & Listgarten, J. On the sparsity of fitness functions and 

implications for learning. Proc. Natl. Acad. Sci. U.S.A. 119, e2109649118 (2022). 

41. Wittmann, B. J., Yue, Y. & Arnold, F. H. Informed training set design enables efficient 

machine learning-assisted directed protein evolution. Cell Syst. 12, 1026-1045.e7 (2021). 

42. Gray, V. E., Hause, R. J., Luebeck, J., Shendure, J. & Fowler, D. M. Quantitative 

missense variant effect prediction using large-scale mutagenesis data. Cell Syst. 6, 116-

124.e3 (2018). 

43. Meier, J. et al. Language models enable zero-shot prediction of the effects of mutations 

on protein function. in Adv. Neural Inf. Process. 34, 29287–29303 (2021). 

44. Liao, J. et al. Engineering proteinase K using machine learning and synthetic genes. BMC 

Biotechnol. 7, 16 (2007). 

45. Musdal, Y., Govindarajan, S. & Mannervik, B. Exploring sequence-function space of a 

poplar glutathione transferase using designed information-rich gene variants. PEDS 30, 

543–549 (2017). 

46. Hopf, T. A. et al. Mutation effects predicted from sequence co-variation. Nat. Biotechnol. 

35, 128–135 (2017). 



 

 

41 
47. Riesselman, A. J., Ingraham, J. B. & Marks, D. S. Deep generative models of genetic 

variation capture the effects of mutations. Nat. Methods 15, 816–822 (2018). 

48. Consortium, T. U. et al. UniProt: The universal protein knowledgebase in 2021. Nucleic 

Acids Res. 49, D480–D489 (2021). 

49. Hsu, C., Nisonoff, H., Fannjiang, C. & Listgarten, J. Learning protein fitness models 

from evolutionary and assay-labeled data. Nat. Biotechnol. 40, 1114–1122 (2022). 

50. Biswas, S., Khimulya, G., Alley, E. C., Esvelt, K. M. & Church, G. M. Low-N protein 

engineering with data-efficient deep learning. Nat. Methods 18, 389–396 (2021). 

51. Wu, Z., Kan, S. B. J., Lewis, R. D., Wittmann, B. J. & Arnold, F. H. Machine learning-

assisted directed protein evolution with combinatorial libraries. Proc. Natl. Acad. Sci. 

116, 8852–8858 (2019). 

52. Qiu, Y., Hu, J. & Wei, G.-W. Cluster learning-assisted directed evolution. Nat. Comput. 

Sci. 1, 809–818 (2021). 

53. Bonner, W. A., Hulett, H. R., Sweet, R. G. & Herzenberg, L. A. Fluorescence activated 

cell sorting. Rev. Sci. Instrum. 43, 404–409 (2003). 

54. Rubin, A. F. et al. A statistical framework for analyzing deep mutational scanning data. 

Genome Biology 18, 150 (2017). 

55. Trippe, B. L. et al. Randomized gates eliminate bias in sort-seq assays. Protein Sci. 31, 

e4401 (2022). 

56. Bloom, J. D. Software for the analysis and visualization of deep mutational scanning 

data. BMC Bioinform. 16, 168 (2015). 

57. Madani, A. et al. Large language models generate functional protein sequences across 

diverse families. Nat. Biotechnol. 1–8 (2023) doi:10.1038/s41587-022-01618-2. 



 

 

42 
58. Dallago, C. et al. FLIP: Benchmark tasks in fitness landscape inference for proteins. 

bioRxiv (2022). doi:10.1101/2021.11.09.467890. 

59. Aghazadeh, A. et al. Epistatic Net allows the sparse spectral regularization of deep neural 

networks for inferring fitness functions. Nat. Commun. 12, 5225 (2021). 

60. Slatko, B. E., Gardner, A. F. & Ausubel, F. M. Overview of next-generation sequencing 

technologies. Curr. Protoc. Mol. Biol. 122, e59 (2018). 

61. Fowler, D. M. & Fields, S. Deep mutational scanning: a new style of protein science. 

Nat. Methods 11, 801–807 (2014). 

62. Currin, A. et al. Highly multiplexed, fast and accurate nanopore sequencing for 

verification of synthetic DNA constructs and sequence libraries. Synth. Biol. 4, ysz025 

(2019). 

63. Appel, M. J. et al. uPIC–M: Efficient and scalable preparation of clonal single mutant 

libraries for high-throughput protein biochemistry. ACS Omega 6, 30542–30554 (2021). 

64. Wittmann, B. J., Johnston, K. E., Almhjell, P. J. & Arnold, F. H. evSeq: Cost-effective 

amplicon sequencing of every variant in a protein library. ACS Synth. Biol. 11, 1313–

1324 (2022). 

65. Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000). 

66. Burley, S. K. et al. RCSB Protein Data Bank: Powerful new tools for exploring 3D 

structures of biological macromolecules for basic and applied research and education in 

fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. 

Nucleic Acids Res. 49, D437–D451 (2021). 

67. Mistry, J. et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 49, 

D412–D419 (2021). 



 

 

43 
68. Ashburner, M. et al. Gene Ontology: Tool for the unification of biology. Nat. Genet. 25, 

25–29 (2000). 

69. The Gene Ontology Consortium. The Gene Ontology resource: Enriching a GOld mine. 

Nucleic Acids Res. 49, D325–D334 (2021). 

70. Rives, A. et al. Biological structure and function emerge from scaling unsupervised 

learning to 250 million protein sequences. Proc. Natl. Acad. Sci. U.S.A. 118, 

e2016239118 (2021). 

71. Mitchell, A. L. et al. MGnify: The microbiome analysis resource in 2020. Nucleic Acids 

Res. 48, D570–D578 (2020). 

72. Bepler, T. & Berger, B. Learning protein sequence embeddings using information from 

structure. arXiv (2019). doi:10.48550/arXiv.1902.08661. 

73. Shroff, R. et al. Discovery of novel gain-of-function mutations guided by structure-based 

deep learning. ACS Synth. Biol. 9, 2927–2935 (2020). 

74. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 

583–589 (2021). 

75. Georgiev, A. G. Interpretable numerical descriptors of amino acid space. J. Comp. Biol. 

16, 703–723 (2009). 

76. Rao, R. et al. Evaluating protein transfer learning with TAPE. bioRxiv (2019) 

doi:10.1101/676825. 

77. Notin, P. et al. Tranception: Protein fitness prediction with autoregressive transformers 

and inference-time retrieval. in Proc. 39th ICML, PLMR. 16990–17017 (2022). 

78. Wu, N. C., Dai, L., Olson, C. A., Lloyd-Smith, J. O. & Sun, R. Adaptation in protein 

fitness landscapes is facilitated by indirect paths. eLife 5, e16965 (2016). 



 

 

44 
79. Olson, C. A., Wu, N. C. & Sun, R. A comprehensive biophysical description of pairwise 

epistasis throughout an entire protein domain. Curr. Biol. 24, 2643–2651 (2014). 

80. Rollins, N. J. et al. Inferring protein 3D structure from deep mutation scans. Nat. Genet. 

51, 1170–1176 (2019). 

81. Schmiedel, J. M. & Lehner, B. Determining protein structures using deep mutagenesis. 

Nat. Genet. 51, 1177–1186 (2019). 



 

 

45 
C h a p t e r  I I  

EVSEQ: COST-EFFECTIVE AMPLICON SEQUENCING OF EVERY 
VARIANT IN A PROTEIN LIBRARY 

Material from this chapter appears in: “Wittmann, B. J., Johnston, K. E., Almhjell, P. J. & 

Arnold, F.H. evSeq: Cost-effective amplicon sequencing of every variant in a protein library. 

ACS Synth. Biol. 11, 1313–1324 (2022). doi: 10.1021/acssynbio.1c00592.” 

B.J.W. conceived the project and performed initial design and execution of research and 
software development. B.J.W., K.E.J, and P.J.A. optimized the experimental workflow and 
software. K.E.J. and P.J.A. wrote software for data visualization and installation. B.J.W., 
K.E.J., and P.J.A. wrote the manuscript and prepared figures. 

 

  



 

 

46 
ABSTRACT 

Widespread availability of protein sequence-fitness data would revolutionize both our 

biochemical understanding of proteins and our ability to engineer them. Unfortunately, 

even though thousands of protein variants are generated and evaluated for fitness during a 

typical protein engineering campaign, most are never sequenced, leaving a wealth of 

potential sequence-fitness information untapped. Primarily, this is because sequencing is 

unnecessary for many protein engineering strategies; the added cost and effort of 

sequencing is thus unjustified. It also results from the fact that, even though many lower 

cost sequencing strategies have been developed, they often require at least some 

sequencing or computational resources, both of which can be barriers to access. Here, we 

present every variant sequencing (evSeq), a method and collection of tools/standardized 

components for sequencing a variable region within every variant gene produced during a 

protein engineering campaign at a cost of cents per variant. evSeq was designed to 

democratize low-cost sequencing for protein engineers and, indeed, anyone interested in 

engineering biological systems. Execution of its wet-lab component is simple, requires no 

sequencing experience to perform, relies only on resources and services typically available 

to biology labs, and slots neatly into existing protein engineering workflows. Analysis of 

evSeq data is likewise made simple by its accompanying software (found at 

github.com/fhalab/evSeq, documentation at fhalab.github.io/evSeq), which can be run on 

a personal laptop and was designed to be accessible to users with no computational 

experience. Low-cost and easy to use, evSeq makes collection of extensive protein variant 

sequence-fitness data practical.  
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2.1 Introduction  

Engineered proteins are valuable tools across the biological and chemical sciences and have 

revolutionized industries ranging from food to fuels, pharmaceuticals, and textiles by 

providing green and efficient protein solutions to challenging chemical problems.1 Over the 

course of a protein engineering campaign, hundreds to thousands or more protein variants 

will be constructed and have their fitnesses (level of, e.g., thermostability, catalytic activity, 

substrate binding, etc.) evaluated. Notably, sequence information is typically not gathered 

alongside the functional information, even though it could provide useful biochemical 

insight.2–4 This is largely because many engineering strategies can be applied without 

sequencing. For example, during a typical directed evolution (DE) experiment, often only 

the best-performing variant or variants are sequenced in each round of mutagenesis and 

screening; sequencing every variant is viewed as an unnecessary expense. Given the massive 

amount of functional data gathered during a typical DE campaign, however, if sequencing 

were performed for the variants generated during these experiments, the resultant large 

datasets of sequence-fitness information could be revolutionary for biological, biochemical, 

and biocatalytic research. This is especially true for data-driven protein engineering 

strategies such as machine learning (ML), the development of which has benefitted 

tremendously from large sequence-fitness datasets made available by strategies like deep 

mutational scanning (DMS) and in databases like ProtaBank.5–16  

Unfortunately, the standard sequencing strategy employed during DE—Sanger 

sequencing—is too expensive for sequencing all variants tested during a round of 

evolution.17 Sanger sequencing is ubiquitous due to ease of sample preparation and ready 

availability of sequencing providers. However, the cost of Sanger sequencing scales linearly 
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with the number of samples (Appendix A, Figure A-1). Thus, while the cost of sequencing 

just the top variants in a round of DE is minor, sequencing the hundreds or thousands of 

variants generated over the full engineering endeavor is not. Ideally, any new approach to 

sequencing during a protein engineering campaign would be comparable in cost, effort, and 

accessibility to that of sequencing just the top variants by Sanger sequencing. Here we 

present a collection of standardized and accessible protocols, components, and software that 

accomplishes this goal. This collection, which we call every variant sequencing (evSeq), 

democratizes barcode sequencing strategies and expands on services made available by 

multiplexed next-generation sequencing (NGS) providers to allow amplicon sequencing of 

a region of interest within every variant produced during a round of DE at a cost of cents per 

variant.18,19 Sample preparation for evSeq is simple, and the method requires no experience 

with NGS to perform, relies only on resources and services typically available to biology 

labs, and slots neatly into existing protein engineering experimental workflows. The 

accompanying software for analysis of evSeq data (found at github.com/fhalab/evSeq, 

documentation at fhalab.github.io/evSeq) was designed to be accessible to users with no 

computational experience and can be run on a personal laptop.  

In this paper, we detail the underlying strategies, protocol, and potential applications of 

evSeq. We begin by describing the strategies employed by evSeq to extend multiplexed NGS 

for sequencing protein variant libraries in a way that reduces both cost and effort. We then 

describe the wet-lab protocol of evSeq sample preparation, focusing on how it can be 

completed without disrupting an existing protein engineering workflow. Next, we discuss 

the features of the evSeq software before finally presenting two case studies that highlight 
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potential applications of evSeq. In particular, we highlight how (1) the sequence-fitness data 

from evSeq can provide valuable information about the quality of variant libraries and the 

functional screen as well as how mutations modulate protein activity, and how (2) the data 

generated from evSeq can be used to implement ML for protein engineering. We designed 

evSeq for use as a routine procedure in many protein/enzyme assays (especially DE and 

protein engineering experiments leveraging mutagenesis strategies that target specific sites 

or a segment of the sequence). This tool brings cost-effective, easy-to-use sequencing to all 

protein engineers, regardless of experience with NGS and access to sequencing and 

computational resources. We believe that widespread adoption of evSeq—and the resultant 

datasets generated—will be invaluable for future ML-guided protein engineering and will 

help us better understand protein sequence-fitness relationships. 

2.2 Results 

2.2.1 evSeq uses inline barcoding to expand on commercially available multiplexed 

next-generation sequencing. 

Unlike Sanger sequencing, which outputs a single chromatogram that represents the 

population of DNA in a sequenced sample, NGS outputs millions of individual DNA reads 

that represent a random draw from the population of DNA in the sequenced sample.18 

Confidence in NGS sequencing results is largely determined by the sequencing “coverage,” 

which for the purposes of this paper is defined as the number of returned reads that map to a 

specific nucleotide on a reference sequence. Higher coverage enables more confident 

identification of mutations relative to a reference sequence as the increased redundancy 

allows distinguishing between true sequence mutations and errors that arise during library 

preparation, clustering, or sequencing. 
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A single NGS run is roughly three orders of magnitude more expensive than a Sanger 

sequencing run, but because the run outputs millions of reads, this cost can be spread over 

multiple samples using a technique known as “multiplexed NGS” (Appendix A, Figure A-

1). In multiplexed NGS, each submitted sample is tagged with a “molecular barcode”—a 

unique piece of DNA that encodes the sample’s original identity—before all samples are 

sequenced together in the same NGS run.19–25 Post sequencing, the barcodes are used to 

assign individual reads to individual samples. For instance, barcodes can be used to 

distinguish reads coming from samples belonging to specific plates and wells.26 Importantly, 

multiplexed NGS can be outsourced just like Sanger sequencing (making it accessible to all 

laboratories regardless of sequencing experience), and sequencing providers typically charge 

tens of dollars per sample in a multiplexed sequencing run, yielding on the order of 104–105 

individual sequences per sample (assuming the run is performed on an Illumina MiSeq 

instrument).  

The level of coverage granted by a set number of reads depends on the length of the DNA 

sample being sequenced, the length of the NGS read used to sequence it, and whether those 

reads are paired-end. NGS reads are short (300 bp or less on Illumina systems), and so reads 

must be spread across a longer sample to sequence it in full. The expected coverage (average 

coverage per nucleotide) obtained for a DNA sample thus depends both on its length and the 

read length used for sequencing. For example, with the ~105 reads returned by a commercial 

MiSeq multiplexed sequencing run, a 3 Mb genome could be sequenced with 150 bp paired-

end reads to an expected coverage of ~10x, whereas a 20 kb plasmid could be sequenced to 

an expected coverage of ~1500x. 
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Because shorter samples can be sequenced at higher coverage for a given number of reads, 

it can be advantageous to sequence only the region of interest of a sample. This is exemplified 

by amplicon sequencing, a strategy in which a researcher sequences a PCR product (an 

amplicon) that targets a specific region of interest in the DNA.27 For instance, continuing the 

example from above, with ~105 total 150 bp paired-end reads, a 300 bp PCR product could 

be sequenced to an expected coverage of ~100,000x.  

Many mutagenesis methods employed in protein engineering (e.g., site-saturation28 and tile-

based mutagenesis29 strategies) target mutations to a specific position or region in the 

sequence of a protein, and thus the variants produced can be sequenced with amplicon 

sequencing to high coverage.20 Notably, however, even though increasing coverage yields 

more confident results, it comes with diminishing returns, and it is generally held that 

coverage in the tens is more than sufficient for effective reference-based identification of 

mutations (Appendix A, Figure A-1).30 Indeed, clinical sequencing of human genomes 

targets 30x coverage or greater to minimize false base calls. Given this reference, it is clear 

that the ~100,000x coverage that would be returned from a multiplexed sequencing run for 

a 300 bp amplicon is far higher than necessary for effective identification of mutations—

2,000 amplicons could be sequenced in the same run and still yield clinical-grade coverage.  

evSeq achieves cost-effectiveness by relying on the facts that (1) at tens of dollars per sample, 

the cost of sending a single sample to an outsourced multiplexed NGS run is comparable to 

the total cost of Sanger sequencing the top variants in a round of DE, (2) amplicon sequencing 

can be used to identify mutations in protein variants from many protein engineering library 

types, and (3) enough reads are returned for a single sample in a commercial multiplexed 
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NGS run to sequence hundreds of amplicons. Specifically, the evSeq protocol (Figure 2-1 

and Appendix A, Section A.2.3, evSeq Library Preparation/Data Analysis Protocol) works 

by focusing all reads of a single multiplexed NGS sample to specific regions on hundreds of 

protein variants, achieving sequencing depths of 101–103 at the approximate cost and level 

of accessibility of using Sanger sequencing of just the top variants in a round of DE 

(Appendix A, Figure A-1).  

The evSeq library preparation protocol begins with PCR amplification of the region of 

interest in each variant (i.e., the position/region where mutations were made) and appending 

inline DNA barcodes to the resultant amplicons that encode their original plate-well position 

(Figure 2-1A).26,31,32 This is a one-pot, two-step, plate-based PCR procedure that uses two 

sets of primer pairs. Each primer in the first set of primers (“inner” primers) consists of a 

user-specified 3’ “seed” region that binds to the regions flanking the region of interest as well 

as a 5’ predefined universal adapter (Appendix A, Section A.1.1, Inner Primer Design). Each 

primer in the second set of primers (“outer” primers) consists of (1) a 3’ region that matches 

the adapter of the inner primers, (2) a central 7-nucleotide barcode where each barcode pair 

between forward and reverse outer primers is unique to a plate-well position, and (3) a 5’ 

sequence matching the Illumina Nextera transposase adapters (Appendix A, Section A.1.2, 

Outer Primer Design, Appendix A, Section A.1.3, Barcode Design, Tables A-1 and A-2). 

We designed 96 unique forward and 96 unique reverse outer primers for evSeq which, 

because both forward and reverse outer primers contain a barcode, can be combined to 

encode up to 962 = 9,216 possible plate-well positions (Appendix A, Section A.2.2, 

Preparation of evSeq Barcode Primer Mixes, and Appendix A, Tables A-3–10. Note that 
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we also provide a pre-filled IDT order form for the outer primers on the GitHub associated 

with this work—see Appendix A, Section A.2.1, Ordering Barcode Primers from IDT for 

details. While we recommend using these pre-tested barcodes, users can also design their 

own to, e.g., further expand the number of available combinations.). Importantly, this set of 

outer primers can be used to sequence any target region from any gene with evSeq, and so 

only needs to be ordered once, constituting a one-time initial setup cost in the range of a few 

hundred dollars (the exact cost will vary based on oligo provider and any institutional 

agreements set up with said provider). Once outer primers are ordered, only a new inner 

primer pair is needed for each new region of interest to be targeted by evSeq.  

Once all barcoded amplicons have been produced, they are pooled and sent to a sequencing 

provider, who will then use the transposase adapters installed with the outer primers as a 

handle to perform a third and final PCR to barcode the pool of amplicons once again with a 

pair of sample-specific Illumina indices (Figure 2-1B). At this point each amplicon in the 

pool has one pair of sample-specific Illumina barcodes and one pair of plate-well-specific 

inline evSeq barcodes. This complete evSeq library is sequenced as a single sample in a 

multiplexed NGS run along with samples from other users (whether or not they are also 

evSeq samples). Post sequencing, the sequencing provider uses the sample-specific barcodes 

to identify those sequences belonging to the evSeq pool and returns them to the user (i.e., the 

provider “demultiplexes” the run, separating evSeq sequences from those of other users). 

The user then uses the evSeq software to analyze the returned sequences, assigning them to 

corresponding plate-well positions using the evSeq barcodes and identifying the mutations 

in the variants relative to a reference (Figure 2-1B and 2-1C). 
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Figure 2-1. Overview of evSeq library preparation and processing. A In the first stage of the 
PCR, a region of interest is amplified with primers that include a 3’ site-specific region (gray) with 
5’ adapter sequences (dark blue). The second PCR stage adds molecular barcodes (rainbow) with 
primers that bind to the adapter regions and add adapters for downstream NGS processing (light 
blue). B To avoid costly DNA isolation steps, evSeq uses liquid cultures of cells harboring mutated 
DNA (e.g., an “overnight culture” of E. coli) as template during the one-pot two-step barcoding 
PCR described in A. Each plate is pooled individually and gel purified. Purified pools are then 
adjusted for concentration differences and pooled together before being sent to a sequencing 
provider, who then appends another set of barcodes as well as sequence elements necessary for 
Illumina NGS sequencing. This sample is now pooled with those of other users and a multiplexed 
sequencing run is performed. After sequencing, the sequencing provider uses the barcodes that they 
attached to separate (“demultiplex”) the evSeq reads from reads of other users; the provider returns 
evSeq reads in .fastq files. c. The .fastq files returned by the NGS provider are inputs to the evSeq 
software, which uses the evSeq forward/reverse barcode pair to map each read to a specific plate 
and well based on known barcode combinations. The software also processes the mapped reads 
(see Appendix A and evSeq documentation for more details) to, among other things, assign variant 
identities to each well and return interactive HTML visualizations. 
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2.2.2 evSeq library preparation fits into existing protein engineering and sequencing 

workflows and was designed to be resource efficient. 

A typical procedure for evaluating protein variants involves (1) arraying colonies of an 

organism (e.g., Escherichia coli) that harbor a plasmid encoding a protein variant into the 

wells of a (usually 96-well) microplate, (2) growing the resulting cultures to stationary phase 

(colloquially, an “overnight culture”), (3) using the overnight culture to inoculate a fresh 

culture that will be used to express the protein variants, and (4) evaluating the fitnesses of 

expressed protein variants. The expression stage (step 3) typically involves downtime where 

the experimentalist must wait until the culture reaches sufficient density before inducing 

protein expression and then again as expression takes place. evSeq library preparation can 

be performed easily in either of these time windows. The evSeq library preparation protocol 

begins with the barcoding PCR described at the end of the previous section; this one-pot, 

two-step, plate-based PCR was designed to be compatible with outsourced sequencing 

workflows, minimize preparation time, and minimize laboratory resource usage (Appendix 

A, Section A.2.3, evSeq Library Preparation/Data Analysis Protocol). For instance, use of 

inline barcodes is a known, effective strategy for expanding the number of samples that can 

be multiplexed without having to modify the Illumina indices used during multiplexed 

sequencing.31,32 Because evSeq library preparation uses inline barcodes, it grants the 

outsourced sequencing provider maximal flexibility in choice of Illumina indices. In other 

words, evSeq library preparation is decoupled from preparation of the Illumina library that 

will eventually be sequenced, allowing the evSeq library to be run just as any other sample 

would be that is submitted to a sequencing provider.  
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As mentioned in the previous section, use of a two-step PCR reduces the number of primers 

that must be ordered per new sequencing region of interest. Because evSeq relies on 96 

unique forward barcodes and 96 unique reverse barcodes, a single-primer PCR would require 

ordering 192 new barcoding primers for each new target region evaluated in each library. In 

a two-primer protocol, however, the inclusion of a universal adapter on the inner primers 

allows the same 192 outer primers to be used regardless of target position in the variant—

only two unique primers (forward and reverse inner) must be purchased for each new target 

region, and only if existing inner primers from previously targeted regions are not already 

compatible. Additionally, the evSeq PCR directly uses liquid from the overnight culture as a 

source of template DNA (Figure 2-1B and Appendix A, Section A.2.3, evSeq Library 

Preparation/Data Analysis Protocol); the template DNA is released from lysed cells during 

the initial heating step of the PCR, avoiding a costly and time-intensive DNA 

isolation/purification step and allowing researchers to use materials already prepared as part 

of the protein expression workflow.32 

The remaining steps of evSeq library preparation were, like the PCR stage, also designed to 

be resource and time efficient. After completion of the PCR, the resulting barcoded 

amplicons are pooled by plate and purified via gel extraction. Pooling prior to purification 

goes against standard practice for multiplexed NGS library preparation, which is to purify 

samples individually, quantify their DNA concentration, then combine them in equimolar 

quantities to ensure more equal read distribution across samples after sequencing.33 

However, because individual plates in protein engineering libraries tend to contain variants 

from the same region of the same protein scaffold (e.g., as would be typical for variants from 
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a comprehensive site-saturation library), it is assumed that the variation in PCR reaction yield 

will be minor within plates and that, as a result, the same plate can be pooled prior to 

quantification with only minor effects on read distribution. Using this “pooling first” 

strategy, only as many purifications as there are plates must be performed as opposed to as 

many as there are variants, thus enabling faster processing of evSeq amplicons while 

reducing resource usage. As will be shown in later sections, the distribution of reads returned 

using pooling first is perfectly acceptable for confidently identifying variant sequences. 

Once all pooled plates have been purified, the concentrations of the individual purified pools 

are measured. The pools are then normalized by molarity and combined into a final evSeq 

library, which is in turn submitted as a single sample to a sequencing provider. As described 

in the previous section, the provider will perform a final PCR on the evSeq library to add 

sample-specific barcodes before sequencing it as a single sample in a multiplexed sequencing 

run. Outsourcing the sequencing stage has two main benefits: First, it allows evSeq to be 

performed by research groups with no prior sequencing experience and no direct access to 

sequencing equipment—groups need only be familiar with PCR, a ubiquitous technology in 

protein engineering laboratories. Second, to be cost effective, multiplexed sequencing should 

be run with tens of samples at least (Appendix A, Figure A-1). By outsourcing the 

sequencing stage, groups that do not frequently produce evSeq libraries need not wait until 

enough libraries have accumulated to run sequencing—a single outsourced submission, for 

instance, can be run along with those of other research groups with a variety of different 

sequencing needs. 
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The final stage of the evSeq workflow is data analysis using the evSeq software 

(github.com/fhalab/evSeq) (Figure 2-1C). Extensive documentation of the software and its 

capabilities is available as a website (fhalab.github.io/evSeq). The software was designed to 

be accessible to users with varying degrees of computational experience and can be run 

through either a graphical user interface (GUI), a command line application, or in a Python 

environment (e.g., a Jupyter notebook). Outputs from the software range from high-level 

overviews of data (e.g., an interactive “Platemap” graphic that displays sequencing coverage 

and identified mutations in each well of each plate; see Figure 2-1C for an example) to low-

level details about the population of reads assigned to each well (e.g., in a well identified as 

polyclonal, the percentage of reads mapping to each of the identified variants). Functional 

data can also be easily associated with identified variants using the evSeq software outputs 

to produce sequence-fitness datasets, and we provide Jupyter notebooks and web pages that 

walk users through the process. 

2.2.3 evSeq facilitates library construction, validation, and sequence-fitness pairing  

To highlight the utility of evSeq for engineering and biochemical experiments, we first 

examined how it could be used to construct high-confidence and informative sequence-

fitness data. Specifically, we constructed and screened eight single-site-saturation libraries 

of the enzyme Tm9D8*—an engineered β-subunit of tryptophan synthase from Thermotoga 

maritima (TmTrpB)—for tryptophan-forming activity at 30 °C (Figure 2-2).34 In two of the 

screened libraries, we targeted two positions distant from the active site (A118 and S292) 

that have been seen to play a role in allosteric regulation of TmTrpB enzymes; in the other 

six libraries, we targeted active-site residues known to modulate the activity of TrpB (E105, 

L162, I166, F184, S228, and Y301) (Figure 2-2A).35–37 As we show below, this type of 
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sequence-fitness data can be used to assess the quality of a protein engineering library, 

identify improved variants during a round of directed evolution, and give insight into the 

significance of a given residue in catalysis. 

 
Figure 2-2. evSeq enables low-cost investigation of library quality and sequence-fitness 
pairing in site-saturation mutagenesis libraries. A Eight residues (red) known to modulate the 
activity of Tm9D8* were independently targeted with site-saturation mutagenesis: A118 and S292 
(distal residues), E105, L162, I166, F184, S228, and Y301 (active-site residues). An active form of 
the pyridoxal 5’-phosphate cofactor is represented in green, and the substrate indole is shown in 
light blue. B Library quality can be investigated by plotting a heatmap of the number of times each 
variant/mutant was identified at each targeted position ("# in Library") from processed evSeq data. 
Parent amino acids are each marked with an asterisk. C Likewise, the effect of mutations and 
mutational “hotspots” can be identified by plotting a heatmap of the average activity measurements 
for each variant/mutation in each library, normalized to the average parent activity for that library 
("Normalized Rate"), when fitness data is combined with evSeq data. D An example plot made 
possible by evSeq visualization functions shows the number of times each amino acid was found 
in a single TrpB library (position 105), also accounting for known controls and unidentified wells. 
E Another example output of the evSeq software shows activity for a single library (position 105), 
showing biological replicates. The inset displays the role of the mutated residue in this library, 
which is to coordinate the nitrogen of the indole substrate. Note that the circles in this plot 
correspond to individual measurements while the bar plot represents the mean of these 
measurements. If no circles are present for a bar (e.g., E105D), then this is because only a single 
instance of this mutation was observed. Circles are not shown in this case to allow distinguishing 
between a single replicate and a tight distribution of multiple replicates. 
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Many factors can introduce bias into a site-saturation mutagenesis experiment, such as 

annealing bias for the native nucleotides during the PCR for library construction or 

contamination with the template plasmid during transformation. Without sequencing all of 

the variants, it is impossible to know that the library is representative of the experimental 

design. Since evSeq reports exactly which variants are contained in a library, researchers can 

leverage this to implement important quality control practices as part of the standard protein 

screening workflow. For instance, of all 153 possible unique variants in our eight single-site-

saturation libraries, we observed 149 of them (Figures 2-2B and 2-2C); only I166A, S292C, 

S292D, and S292H could not be assigned with confidence, where we define >80% 

abundance in a well with >10 reads as our confidence threshold. Of the variants identified, 

many were found in replicate (Figure 2-2D) due to oversampling during colony picking, 

which ensures that all protein variants have a chance to be found and screened (All libraries 

were constructed with the 22-codon trick38 and 88 individual colonies were screened for each 

library, so we expected a 98% probability of seeing all variants assuming perfect construction 

of libraries). Conveniently, this oversampling also allows us to evaluate the noise in our 

functional screen (Figure 2-2E) which further improves the confidence in the quality of data 

gathered. 

Given just the fitness data gathered in this experiment, a protein engineer would identify 50 

wells that are at least 1.2-fold improved over the parent enzyme Tm9D8*. However, with 

the sequence-fitness pairs constructed via evSeq, we know that these 50 wells correspond to 

only 16 unique variants. Depending on how conservative the engineer was as to what should 

be sequenced, a decision to sequence hits with Sanger sequencing could result in anywhere 
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from 12 (2-fold improvement) to 50 (1.2-fold improvement) wells sent off for sequencing 

for a total cost of $36 to $150 (using an estimate of $3 per sequence). It would cost ~$2000 

to sequence all eight plates via Sanger. Using evSeq, however, we obtained the sequences of 

all 625 wells of variants for only $100, corresponding to $0.13 per non-control well. In other 

words, using evSeq, we can produce far more sequence-fitness information than sequencing 

just the top hits using Sanger all for a similar cost. Importantly, although the evSeq defaults 

currently allow only eight plates to be sequenced at once, the number of variants included in 

this experiment could likely have been increased as the median number of reads per well was 

86 (mean: 98), which is above what is needed for reliable sequencing. Assuming that 

doubling the number of plates would halve the number of reads seen for each well, doubling 

the number of plates sequenced would cause only 14 non-control well sequences to drop 

below the confidence threshold.  

The per-variant cost of evSeq may be reduced even further using different services and 

sequencing platforms. For instance, in both this section and the next, the reported number of 

reads and ~$100 total cost are from outsourced MiSeq runs, which returned hundreds of 

thousands of total reads per evSeq library. We report these numbers because outsourced 

multiplexed MiSeq is a standard service available to all research groups. As an alternative to 

outsourcing, however, our institution provides multiplexed sequencing (via the Caltech 

Millard and Muriel Jacobs Genetics and Genomics Laboratory) on an Illumina NextSeq 

platform, returning an average of ~10x more reads than the outsourced MiSeq run for a total 

cost of ~$10. At 10x more reads and 10x less the total cost, the per-variant evSeq cost could 

decrease 100-fold to <$0.01. Indeed, we were able to re-sequence the TrpB libraries at a per-
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variant cost of ~$0.01 with ~2.2 million total reads returned for an average of thousands of 

reads per variant, far higher than what is needed for reliable variant calling. It must be noted, 

however, that analysis of the millions of evSeq reads was no longer practical on a personal 

laptop, requiring a desktop workstation instead. Computational power beyond a laptop will 

be needed when processing more than hundreds of thousands of reads with the existing evSeq 

software. 

Of final note, aside from providing valuable information for protein engineering 

experiments, evSeq can also facilitate investigation into the biochemical relevance of specific 

positions/mutations. Specifically, because all possible variants in a site-saturation library can 

be identified by evSeq, the sequence-fitness information generated can be used to explore 

the effects of mutations more fully than, for instance, an alanine scanning experiment.39 

Using an example from the TrpB data gathered here, an alanine scanning experiment would 

tell a biochemist that the mutation to the conserved catalytic residue E105A inactivates the 

enzyme, with no information about the effects of other amino acid changes at this position. 

Using site- saturation with evSeq, we instead find that all mutations to E105 except for 

E105D inactivate the enzyme. The fact that glutamate and aspartate are the only amino acids 

containing a carboxylic acid suggests that this functional group is critical for activity (Figure 

2-2E, with inset). 

2.2.4 evSeq facilitates library construction, validation, and sequence-fitness pairing  

We next wanted to demonstrate the utility of evSeq for advancing and applying machine 

learning-assisted protein engineering (MLPE). In MLPE, models are trained to learn a 

function that relates protein sequence to protein fitness (i.e., they learn f(sequence) = 
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fitness).5,6,9–11 These models are then used for rapid, low-cost in silico prediction of protein 

fitness, avoiding or greatly reducing the need for often-costly laboratory screening of variants 

(Figure 2-3).  

Sequence-fitness data is critical for effective MLPE. Indeed, even though strategies exist that 

can predict protein fitness from sequence alone (e.g., those that use evolutionary data to 

predict protein fitness), their effectiveness is improved with the inclusion of sequence-fitness 

information.7,14,15,40 As a result, the most effective MLPE workflows require that both 

sequence and fitness data be collected, unlike a DE workflow, which requires only fitness 

data.  

The need to collect sequence data in addition to fitness data is an often-overlooked additional 

cost of MLPE strategies compared to standard DE. For instance, we recently developed an 

ML strategy known as machine learning-assisted directed evolution (MLDE) for efficient 

navigation of epistatic combinatorial protein variant libraries.41,42 Previously, we used 

MLDE to evolve Rhodothermus marinus nitric oxide dioxygenase (RmaNOD) for greater 

enantioselectivity in a carbon–silicon bond-forming reaction.41 Over the course of the 

engineering campaign, we collected six 96-well plates of sequence-fitness data for training 

ML models. In total, sequencing the variants in these plates by Sanger sequencing cost 

~$1700. High additional sequencing costs like these can make MLPE methods far less 

attractive, even if they are more effective than traditional DE at finding high-fitness protein 

variants.42 However, given that evSeq enables sequencing all variants for a cost similar to 

standard DE methods, it enables use of MLPE without added cost. In essence, evSeq 

eliminates the sequencing burden of MLPE. 
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Figure 2-3. evSeq eliminates the sequencing burden of MLPE. Traditional DE only collects 
sequence information for top variants, essentially “throwing away” fitness data from inferior 
variants and learning nothing about the underlying fitness landscape. If, instead, evSeq is used to 
collect sequence information for all variants, MLPE methods, which require sequence-fitness pairs 
for supervised model training, can be implemented. Sampling from a fitness landscape, an ML 
model can be trained to predict the fitnesses of missing sequences and reconstruct the missing 
regions of this landscape. 

To demonstrate the application of evSeq to MLPE, we used it to sequence five plates of 

RmaNOD variants from a four-site combinatorial library. Coupled with fitness data, the 

sequences resulting from this run could be used to drive a round of MLDE. Notably, 

sequencing these plates by Sanger sequencing would have cost ~$1400; in contrast, 

sequencing by evSeq using an outsourced multiplexed MiSeq run cost ~$100 for a per-

variant cost of ~$0.21. The median read depth per variant in this run was 463 (mean: 506), 

much higher than is required for accurate sequencing, and so more plates—from either the 

same or a different library—could have reasonably been added to this evSeq run to decrease 

the per-variant sequencing cost even further (Figure 2-3B). Of course, as discussed in the 

previous section, in-house sequencing could have cut sequencing costs an additional ten-

fold. 

The cost of sequencing is most notably a barrier for MLPE strategies that focus on 

developing models for a single protein with a well-defined fitness (e.g., MLDE); however, 
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the applicability of evSeq to MLPE is not limited solely to cost-reduction. For instance, ML 

strategies have been developed that, rather than focusing on a specific protein, train models 

on sequence-fitness information across multiple different protein scaffolds.16,43 The goal is 

for these models to learn global determinants of protein fitness, then to use the models as 

general-purpose protein fitness predictors. By enabling the collection of sequence-fitness 

pairs across a wider array of proteins and fitness definitions, evSeq opens these approaches 

to new and more diverse data sources. Generally speaking, the more sequence-fitness data 

available to train and benchmark these strategies, the better we expect them to perform and 

the more rapidly we expect improvements to be developed.16 It is no coincidence that large 

leaps forward in other ML disciplines have followed increased availability of large, diverse 

datasets, with the rapid advance in computer vision sparked by ImageNet being perhaps the 

most prominent example.44 Widespread adoption of evSeq—and commitment to depositing 

sequence-fitness data in resources such as ProtaBank—would provide such a dataset for 

protein engineering.8 This dataset would span the range of all engineered proteins and all 

target fitnesses, capture examples of sequences with both higher and lower/zero fitness 

relative to a parent (the latter of which is effectively never recorded with current DE 

sequencing practices), and overall enable rapid advancement in MLPE. 

2.2.5 evSeq detects all variability in the sequenced amplicons  

Although we focused here on demonstrating applications involving targeted mutagenesis 

strategies, evSeq is also applicable to other mutagenesis methods as the associated software 

can identify both user-specified and unspecified positions of variability (Figure 2-4A). This 

feature not only informs the user of potential unexpected mutations in the sequenced 

amplicon (Appendix A, Table A-11), but also allows it to work effectively with tile-based 
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mutagenesis strategies and other semi-targeted mutagenesis strategies (e.g., error-prone PCR 

of specific regions or small genes). All that is required is that the amplicon length and read 

length be able to capture the full region containing mutations. 

 
Figure 2-4. evSeq detects variability and can be expanded for random mutagenesis. A evSeq 
does not require that the user specify which position in the amplicon was targeted. Instead, the 
software can identify variable regions by comparing to a reference B evSeq can be used to sequence 
entire genes by designing a set of inner primer pairs which together capture the entire gene. 
Different evSeq barcodes can then be used for each region, and the user can reconstruct the entire 
sequence. 

It should be noted that evSeq will not detect off-target mutations outside of the constructed 

amplicon as these regions are not sequenced, meaning that it is unable to identify other 

mutations in a larger DNA element that may be contributing to activity. Due to this fact, for 

exceedingly unexpected mutational effects that are not seen in replicate, we suggest 

sequencing the rest of the DNA element to confirm the presence or absence of any off-target 

mutations. However, this limitation is mitigated by the fact that off-target mutations are rare 

and, importantly, evSeq is agnostic to read length and will work with any length of paired-

end sequencing.45  
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While the current software version is not yet suited for other, long-read sequencing 

technologies (e.g., PacBio or Oxford Nanopore), future versions could be updated and 

validated with these data formats and make full gene-length evSeq experiments more 

straightforward and cost effective. Given this, evSeq is currently best suited and most cost 

effective when all expected mutations exist in the sequenced amplicon, though sequencing 

of multiple overlapping amplicons can readily allow evSeq to be expanded to sequence entire 

genes of variants arrayed in microplates (Figure 2-4B). Care must be taken in such an 

application, however, to account for the fact that aggressive mutation rates could compromise 

the annealing efficiency of inner primers binding in the variable region, as could mutations 

to positions closer to the binding region of the 3’ end of the inner primer. Such situations 

would lead to a higher proportion of wells failing sequencing. 

2.3 Conclusion 

Hundreds to thousands of protein variants (or more) are constructed and their fitnesses 

evaluated over the course of a standard protein engineering campaign. Without sequencing, 

these fitnesses are next to useless—the time, effort, and resources expended to produce them 

are largely wasted. Comparable in cost to existing protocols, accessible to scientists with no 

or minimal sequencing and computational experience, and easy to implement with existing 

technology, evSeq rescues these fitness data by making the collection of sequence data for 

every variant a practical and highly useful step of the protein engineering pipeline. Given the 

number of research groups working on DE and other protein engineering projects, 

widespread adoption of evSeq would lead to an explosion in the availability of sequence-

fitness information. By sequencing every variant, no laboratory screening effort is wasted, 
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and we open the door to advances in both our biochemical understanding of proteins and our 

ability to engineer them with data-driven methods. 

2.4 Materials and Methods 

2.4.1 Single-site-saturation library generation for TrpB.  

Saturation mutagenesis libraries were prepared using a modification of the “22-codon trick” 

described by Kille et al.38 We first designed primers using the templates given in 

Supplemental Table S12. For the forward primers, each sequence of “NNN” in these 

templates was replaced with “NDT,” “VHG,” and “TGG,” resulting in a total of three 

degenerate primers which could then be mixed at a ratio of 12:9:1, respectively. The reverse 

primers were used without changes.  

We also designed primers that bind within the ampicillin resistance (AmpR) gene in 

pET22b(+) with sequences as given in Appendix A, Table A-13. These primers were 

designed such that, when used in combination with the site-specific primers to run a PCR, 

two medium-length fragments would be created with a break in the AmpR gene. For the 

forward site-saturation primers, a PCR was performed using the reverse AmpR primer, 

resulting in a fragment from ~1500–2000 bp long. For the reverse site-saturation primers, a 

PCR was performed using the forward AmpR primer, resulting in a fragment ~4500–5000 

bp long.  

Once PCRs finished, 1 µL of DpnI (NEB R0176S) was added to each of the reactions, which 

were then incubated at 37 °C for 1 h to digest the unmutated template plasmid. The presence 

of correctly sized fragments was confirmed via gel electrophoresis and each fragment was 
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then excised from the gel and purified with the Zymoclean Gel DNA Recovery Kit (Zymo 

Research D4002). 

Purified fragments were then assembled following the standard Gibson assembly method.46 

After 1 h at 50 °C, the reaction mixtures were desalted with a DNA Clean & Concentrator-5 

kit (Zymo Research D4013) and used to transform electrocompetent E. cloni® cells (Lucigen 

60051-1). Libraries were spread onto solid agar selection medium consisting of Luria Broth 

(RPI L24040-5000.0) supplemented with 100 µg/mL carbenicillin (LBcarb) and incubated at 

37 °C until single colonies were observed. Individual colonies were then transferred into the 

wells of 96-well 2-mL deep-well plates containing 300 µL of LBcarb to isolate monoclonal 

enzyme variants, with 8 wells being reserved for control conditions, giving 4-fold 

oversampling of the 22-codon library. These cultures were grown overnight at 37 °C, 220 

rpm, and 80% humidity in an Infors Multitron HT until they reached stationary phase, at 

which point 100 µL from each well were mixed with an equal volume of 50% glycerol and 

stored at –80 °C for future use. 

For protein expression, 20 µL of the remaining culture were used to inoculate 630 µL of 

Terrific Broth with 100 µg/mL carbenicillin (TBcarb). These were then grown at 37 °C, 220 

rpm, and 80% humidity for 3 hours in an Infors Multitron HT, at which point they were 

placed on ice for 30 minutes. Following this, 50 µL of a 14 mM solution of isopropyl-β-D-

thiogalactoside (IPTG; GoldBio #I2481C100) in TBcarb were added to each well to induce 

protein expression at a final concentration of 1 mM IPTG. Expression proceeded in the same 

Infors Multitron HT shaker as before at 22 °C, 220 rpm for roughly 18 hours. Cells were 
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harvested via centrifugation at 4500g for 10 minutes, the supernatant was removed, and the 

plates (now containing pelleted, expressed cells) were placed at –20 °C until needed. 

Once cells had been harvested, cultures for evSeq were prepared. These cultures were started 

from the 96-well plate glycerol stocks prepared prior to moving into the cell expression 

protocol; the cultures were grown overnight (~18hrs) in an Infors Multitron HT (220 rpm, 

37 °C) to saturation in 96-well deep-well plates in 300 µL of LBcarb. These cultures were then 

frozen and stored at –20 °C to be used for sequencing with evSeq. 

A GenBank file detailing the plasmid and primers used in this section is available on the 

evSeq GitHub at https://github.com/fhalab/evSeq/tree/master/genbank_files/tm9d8s.gb. 

2.4.2 Sequencing TrpB libraries with evSeq.  

Frozen overnight cultures (preparation detailed in the previous section) were thawed at room 

temperature. Libraries were then sequenced with the process described in Appendix A, 

Section A.2.3, evSeq Library Preparation/Data Analysis Protocol; the evSeq software was 

run using all default parameters (average_q_cutoff = 25, bp_q_cutoff = 30, 

length_cutoff = 0.9, match_score = 1, mismatch_penalty = 0, 

gap_open_penalty = 3, gap_extension_penalty = 1, variable_thresh = 

0.2, variable_count = 10) with the “return_alignments” flag thrown. The inner 

primers used for library preparation are in Appendix A, Table A-14. The barcode plates 

(Appendix A, Tables A-3–10) were paired to positions as given in Appendix A, Table A-

15. 
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2.4.3 Measuring the rate of tryptophan formation.  

Rate of tryptophan formation data was collected with the same procedure described in Rix 

et al. for non-heat-treated lysate preparation with a few modifications: lysis occurred in 300 

μL KPi buffer with 100 μM pyridoxal 5’-phosphate (PLP) supplemented with 1 mg/mL 

lysozyme, 0.02 mg/mL bovine pancreas DNase I, and 0.1x BugBuster; lysis occurred at 

37 °C for 1 h.35 

2.4.4 Four-site-saturation library generation for RmaNOD.  

Positions S28, M31, Q52, and L56 of a variant of RmaNOD (RmaNOD Y32G) were targeted 

for comprehensive site-saturation mutagenesis using a variant of the 22-codon trick 

originally described by Kille et al.38 Due to the proximity of positions S28 and M31, it was 

easiest to use the same mutagenesis primers to target them; the same was done for positions 

Q52 and L56. Because the 22-codon trick requires three degenerate codons per position 

targeted, nine individual primers capturing all combinations (3 codons ^ 2 positions/per 

primer = 9 primers) of the degenerate codons had to be ordered for each of the two mutagenic 

primers. Sequences of these primers are given in Appendix A, Table A-16.  

The primers from Appendix A, Table A-16 were all ordered from IDT at 100 μM. Both a 

“forward” and a “reverse” primer mixture were prepared by combining individual forward 

and reverse primers in proportion to the number of individual codons they encoded. A 10 

μM forward-reverse primer mixture was then prepared by adding 10 μL of both the forward 

and reverse primer mixtures to 80 μL ddH2O. Once the forward-reverse primer mixture was 

prepared, it was used in a PCR to build a pool of DNA fragments containing the four-site 

combinatorial libraries. Two fragments that captured the remainder of the RmaNOD gene 
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and host plasmid (pET22b(+)) were also produced by PCR. The primers used for these 

flanking fragments are given in Appendix A, Table A-17. 

After PCR completed 1 μL DpnI (NEB R0176S) was added to each reaction. The reactions 

were then held at 37 °C in a thermalcycler for 1 h. The PCR fragments were then gel-

extracted using a Zymoclean Gel DNA Recovery Kit (D4002). 

Fragments were to eventually be assembled using Gibson assembly.46 Because the efficiency 

of Gibson assembly increases with decreasing numbers of fragments, an assembly PCR was 

performed to combine flanking fragment 1 (see Appendix A, Table A-17 for details) and the 

variant fragment. The resultant assembled fragment was then gel-extracted, again using a 

Zymoclean Gel DNA Recovery Kit (D4002). 

To complete construction of the library of variant plasmids, a Gibson assembly was 

performed to combine the assembled PCR fragment and flanking fragment 0. After Gibson 

assembly, the Gibson reaction was cleaned using a Monarch PCR & DNA Cleanup Kit (NEB 

CAT T1030L). The cleaned Gibson product was next used to transform electrocompetent E. 

cloni® BL21 DE3. Transformed cells were spread onto solid agar selection medium 

consisting of Luria Broth (RPI L24040-5000.0) supplemented with 100 µg/mL ampicillin 

(LBamp) and incubated at 37 °C until single colonies were observed. 

To build the 96-well plates of RmaNOD variants used to demonstrate evSeq, 400 μL LB + 

100 μg/mL ampicillin were first added to each well of 5x 96-well deep-well plates. Colonies 

from the agar plates grown overnight were then picked into the wells of the deep-well plates. 

The plates were placed in an Infors Multitron HT at 240 rpm, 37 °C for ~16 h. To glycerol 
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stock the now-stationary-phase culture, 100 μL overnight culture were added to 100 μL 50% 

glycerol before being stored at –80 °C until its use in evSeq library preparation. 

A GenBank file detailing the plasmid and primers used in this section is available on the 

evSeq GitHub at:  

https://github.com/fhalab/evSeq/tree/master/genbank_files/rmanod_y32g.gb 

2.4.5 Sequencing RmaNOD libraries with evSeq.  

To begin preparation of culture for evSeq with the RmaNOD variants, cultures in 96-well 

deep-well plates (with 300 µL of LBcarb) were started from the 96-well plate glycerol stocks 

prepared in the previous section. The plates were placed in an Infors Multitron HT at 240 

rpm; the cultures were grown overnight (~18hrs) before being frozen and stored at –20 °C. 

To start the evSeq protocol, frozen overnight cultures were thawed in a room temperature 

water bath. Libraries were then sequenced with the process described in Appendix A, Section 

A.2.3, evSeq Library Preparation/Data Analysis Protocol; the evSeq software was run using 

the same parameters as for the TrpB data analysis (see Section 2.4.2, Sequencing TrpB 

Libraries with evSeq, above). The inner primers used for evSeq library preparation are given 

in Appendix A, Table A-18. The barcode plates (Appendix A, Tables A-3–10) were paired 

to positions as given in Appendix A, Table A-19. 
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ABSTRACT 

Model-guided protein engineering approaches are quickly emerging as more efficient ways 

to navigate protein fitness landscapes. However, many of the existing datasets for testing 

and developing such approaches consist mainly of single substitutions across a protein 

sequence and are not compatible with the goals of protein engineering, which seeks to 

accumulate many activity-boosting substitutions. Furthermore, protein engineering often 

targets binding regions and active sites, which are commonly enriched in epistasis—non-

additive interactions between substitutions which cannot be predicted from non-

combinatorial datasets. Few existing datasets capture epistasis at large scale, and those that 

do often focus on binding, not catalysis. Here, we generate a combinatorially complete, 

160,000-variant landscape across four residues in the active site of an enzyme. Assaying 

the native function of a thermostable β-subunit of tryptophan synthase (TrpB) in a non-

native environment resulted in a landscape characterized by significant, difficult-to-

navigate epistasis and many local optima. These effects prevent simulated directed 

evolution approaches from efficiently reaching the global optima in many cases. However, 

there is wide variability in effectiveness of the different approaches, which together provide 

experimental benchmarks for predictive workflows to beat. Within this landscape, the 

fittest variants all contained a substitution that is nearly absent in existing TrpB 

sequences—a result that conservation-based predictions would not capture. Thus, although 

fitness prediction using evolutionary data might work to classify inactive and active 

variants, these approaches may struggle to differentiate among the best ones, even for near-

native functions. Overall, this work presents a new, large-scale testing ground for model-
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guided enzyme engineering approaches and suggests that efficient navigation of epistatic 

fitness landscapes will require advances in both data-driven predictors and physical 

modeling. 
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3.1 Introduction  

Engineered proteins are important pharmaceutical and industrial targets, but there are few 

ways to reliably engineer a protein for desired properties due to the complex, and largely 

unknown, relationship between a sequence and function (the level of which is its ‘fitness’). 

The effects of substitutions cannot be reliably predicted, especially in enzymes, which must 

guide substrates through intricate, often multi-step reaction pathways with high efficiency 

and selectivity. Currently, the most reliable way to optimize an enzyme for a desired function 

is by directed evolution, using multiple generations of semi-rational or random mutagenesis 

and screening to accumulate beneficial mutations.1 However, this process is time- and 

resource-intensive, with directed evolution campaigns taking weeks to months. Predictive 

models that can shorten protein engineering timelines are valuable for quickly addressing 

emergent needs for better enzymes.2 The development of such models requires high-quality 

datasets for testing and comparing new approaches. 

Most datasets used for developing and testing predictive models have been generated by 

deep-mutational scanning (DMS). DMS measures the effects of every amino acid 

substitution across many or even all residues in a protein sequence,3 providing information 

about all single substitutions in a specific protein background. However, DMS provides no 

information about the effects of substitutions in different backgrounds or how substitutions 

interact with other substitutions. In many instances, their effects are approximately 

independent (and therefore “additive”).4 Under these circumstances, combining beneficial 

substitutions in a single sequence works well to identify improved variants with multiple 

substitutions, and this makes laboratory recombination a powerful evolutionary strategy.1 

Simple models can often predict the fitnesses of double and even triple mutants from single-
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site data alone.5 However, additivity can break down due to epistasis, particularly for 

positions in close proximity or which simultaneously interact with cofactors or substrates; 

thus, binding sites and enzyme active sites are enriched in epistasis.6 As these regions of 

proteins are vital for protein function, efficient navigation of epistasis is critical. 

Despite a rapidly improving understanding of the mapping of protein sequence to structure 

and binding,7–10 progress toward fitness prediction in epistatic regions of proteins has been 

more measured.11,12 Multi-site saturation combinatorial landscapes have been a major testing 

ground for prediction and navigation of epistatic interactions,13–15 but few landscapes exist 

that deeply examine these interactions, typically going no further than double-site saturation 

mutagenesis16 or random sampling of multi-mutants.17–20 Combinatorially complete 

landscapes, where every variant is characterized (within a constrained search space), are of 

particular interest because they enable exact calculation of epistasis within them and 

thorough testing of experimental or computational methodologies that aim to reach the most 

fit variants via simulation.21,22 The few existing quadruple-site saturation landscapes measure 

only binding,23,24 a simpler task than enzyme catalysis, which has proven to be much more 

difficult for protein design.25,26 We sought to measure a combinatorial fitness landscape of 

an enzyme active site, furnishing a dataset that would enable examination of epistasis and 

evolutionary constraints in an enzymatic system, with a focus on how that epistasis might 

restrict enzyme engineering approaches such as directed evolution. 
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3.2 Results 

3.2.1 Construction of multi-site saturation combinatorial landscapes using a growth-

based assay 

For this study, we chose the β-subunit of tryptophan synthase (TrpB), which synthesizes L-

tryptophan (Trp) from indole and L-serine (Ser). TrpB is well suited for large-scale dataset 

generation because Trp is essential for proteome replication and cell growth, making TrpB 

amenable to a growth-based sequencing assay to obtain fitness and sequence data in high 

throughput. Furthermore, TrpB has been rigorously characterized and is essential in all 

kingdoms of life besides animals, providing a wealth of previous biochemical and structural 

data as well as sequence diversity. For the parent background, we chose a previously 

engineered TrpB variant Tm9D8*.27 Derived from Thermotoga maritima, this variant is 

highly thermostable but can function at 37 °C, providing high activity at Escherichia coli 

growth temperatures. This feature is useful for decoupling loss of catalytic activity from loss 

of stability because fitness effects are less likely to be dominated by stability effects.4 This 

TrpB variant was evolved to work as a stand-alone enzyme without its native partner,28 the 

α-subunit of tryptophan synthase (TrpA), which allosterically activates TrpB and shuttles 

indole to the TrpB active site. 

Previous work has shown that yeast harboring TrpB variants and provided exogenous indole 

can be growth-limited by Trp formation, enabling continuous evolution systems to evolve 

competent stand-alone TrpB variants.29 A similar approach was implemented here using E. 

coli as the host organism. The E. coli strain auxotrophic for Trp was constructed through 

deletion of the trpA and trpB genes. Although deletion of trpA is not strictly necessary, it 

avoids potential confounding allosteric interactions between the native E. coli TrpA and the 
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heterologous TmTrpB.30 The auxotroph strain harboring Tm9D8* exhibited both Trp- and 

TrpB-dependent growth (Figure B-1) in media lacking Trp (Trp-dropout media), and the 

concentrations of indole and gene-expression inducer were optimized via plate-based 

independent growth assays (Appendix B, Figure B-2, Section B.1.6). 

 

Figure 3-1. Overview of TrpB-based combinatorial landscapes. A An E. coli strain with 
deletions of the trpA and trpB genes is transformed with plasmid harboring TrpB. When provided 
with exogenous indole, the harbored TrpB produces Trp according to its activity, enabling 
proteome and cellular replication. B For each landscape, the E. coli Trp auxotroph is transformed 
with a plasmid library and used as a starter culture to inoculate two replicate flasks as well as an 
initial timepoint, T0, (with one or two replicates). Samples at different timepoints are collected in 
duplicate for up to 36 h and prepared for sequencing. C The quadruple-site saturation landscape 
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targeted two pairs of positions: 183/184 and 227/228 (pink). The pyridoxal 5’-phosphate (PLP) 
cofactor of TrpB is colored green and two important catalytic residues are light blue, showing the 
proximity of the selected sites to the catalytic core of TrpB. D Radial heatmap of the fitness values 
obtained for the quadruple-site landscape of TrpB. Missing values are white, demonstrating the 
high completeness of the landscape. 

Single-site (20 possible variants) and double-site (400 possible variants) saturation libraries 

were constructed and assayed with plate-based independent growth rates and growth-based 

enrichment assays (Figure 3-1A). Sites were chosen to be near the active site or because they 

were previously seen to modulate TrpB activity in engineering campaigns. The plate-based 

independent growth rate assays monitored the cell density of E. coli Trp auxotrophs 

harboring TrpB variants via growth in Trp-dropout media (Appendix B, Section B.1.6, 

Figure B-2) while the growth-based enrichment assays were obtained by sequencing 

(Figure 3-1B, and Appendix B, Section B.1.8). We also compared to rates of Trp formation 

collected previously with in vitro lysate-based assays.31 We observed a reasonable 

correlation across each of these activity measurements, indicating that the growth assays 

report on the enzyme-specific rate of Trp synthesis (more details on these assays and results 

can be found in Appendix B, Section B.1.4, Figures B-3–5). 

We then moved on to designing triple-site saturation libraries and constructing these 

landscapes with the competitive growth-based assay (8,000 possible variants per landscape), 

targeting mainly residues in the active site known to impact activity, as well as their 

neighbors. In total, twenty different positions were targeted across nine landscapes with some 

overlapping positions between them (Appendix B, Figures B-6–7). These preliminary tests 

were designed to test scaling of methods to larger library sizes, identify epistatic residues, 

and identify residues which tolerated more than one different amino acid (Appendix B, 
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Figures B-8–10). Four of the nine landscapes had only a handful of variants with detectable 

activity, three had ~10–100 variants with detectable activity, and two had >100 variants with 

detectable activity. The positions sampled in these libraries varied in the breadth of 

substitutions tolerated. We also saw that this tolerance to substitution at each position 

depended on the sequence background in which they were sampled, indicating strong 

epistatic interactions. Inspecting these datasets, we chose four residues that we expected to 

display epistasis and provide a breadth of activities for scaling to a 160,000-variant, 

quadruple-site saturation landscape (Figure 3-1C). From this landscape 159,129 variants had 

an average number of input counts greater than ten, allowing us to quantify fitness for 99.45% 

of the total library (Figure 3-1D). We defined fitness based on work by Kowalsky et al.32 

(Appendix B, Section B.1.11, Figures B-11–12) and imputed the missing 871 fitness values 

for downstream analyses (Appendix B, Figure B-13). 

3.2.2 Epistasis constrains navigability of fitness landscapes 

The top variant of the quadruple-site landscape—the global optimum—contained 

substitutions at all four sites (V183A, F184I, V227K, and S228G with respect to parent) and 

is referred to hereafter as AIKG. Two of the substitutions, F184I and S228G, are reversions 

to wild-type residues in TmTrpB and therefore not unexpected, since the assay was designed 

to capture the native function. A third substitution, V183A,  incorporates the fourth-most-

common residue at this position based on a multiple sequence alignment for Tm9D8* 

(referred to hereafter as VFVS), found in 10.41% of sequences (Appendix B, Figure B-14). 

The final V227K substitution, however, was surprising. V227K occurs at near-noise levels 

(0.01%) in natural sequences (Appendix B, Figure B-14) but is clearly beneficial under these 

assay conditions. Beyond AIKG, we observed a strong preference for 227K in the top 
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variants in the landscape, occurring in all ten top variants and in nearly half of the top fifty 

(Appendix B, Figure B-15). Despite this strong preference, however, 227K is not uniformly 

beneficial. For example, in the parent background sequence of VFVS, it essentially ablates 

activity, requiring the S228G substitution before yielding an improved variant. 

For further analysis, we determined an activity threshold as the upper bound of the 95% 

confidence interval of the fitness distribution of stop-codon-containing sequences (all of 

which are expected to be inactive due to proximity to the active site and occurrence in the 

middle of the coding sequence). We enforced the threshold over both replicates. Sequences 

with fitness values below this threshold were classified as “inactive,” which left 9,783 

“active” variants (6.11% of the library) whose activities could be reliably quantified 

(Appendix B, Figure B-16). This is a large fraction of inactive variants, but for residues so 

close to the active site being mutated simultaneously this fraction is not unexpected given 

the dynamic range of the assay. The previously reported activity threshold of 0.01 used for 

the GB1 binding landscape16 classified 34,545 variants (21.59%) as active.  

Using these thresholds, we quantified the prevalence of pairwise epistasis (Appendix B, 

Section B.1.12), including magnitude, reciprocal sign, and sign epistasis for all paths 

proceeding through active, quantifiable variants (Figure 3-2A). Magnitude epistasis, which 

occurs when the combined effects of two substitutions are in the same direction as expected 

but are of a smaller or larger magnitude than expected if perfectly additive, is navigable by 

step-wise or recombination DE approaches. Sign epistasis occurs when the effect of one of 

the substitutions changes direction in the background of the other, and therefore is only 

navigable by step-wise DE approaches if substitutions are made in the correct order, which 
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is not known a priori. Finally, reciprocal sign epistasis occurs when the effects of both 

substitutions change direction when they are made together and is therefore not navigable by 

step-wise or recombination DE approaches that use only beneficial substitutions. 

 

Figure 3-2. Examining how epistasis can constrain evolution. A The types of pairwise epistasis 
where both single substitutions are beneficial (top) or one single substitution is beneficial while the 
other is deleterious (bottom). B Distributions of the three types of pairwise epistasis within the 
TrpB and GB1 landscapes separated by quartile of the fitness (Q1, Q2, Q3, Q4) of the starting 
variant, differentiating epistasis prevalence from low-fitness variants (Q1) to high-fitness variants 
(Q4). C An example path map from the parent variant (Tm9D8*, VFVS) to the top variant in the 
landscape (AIKG). Nodes are labeled with the amino acids at positions 183, 184, 227, and 228, 
respectively, along with the fitness of that variant. Uphill paths are colored red, neutral paths (<10% 
change in fitness) are gray, and deleterious paths are blue. The width of the line indicates the 
magnitude of the increase or decrease. D A path map like that pictured in C can be built connecting 
every detectably active variant (imputed variants not considered as starting points but were used as 
intermediate variants in graphs) to the top variant for a total number of path maps equal to the total 
number of active variants. Considering each of these maps, the fraction of maps with at least one 
possible path to the top variant is colored in blue while the fraction with no possible paths is colored 
in red. When no downward steps are allowed, max fractional decrease in fitness allowed = 0 and 
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only strictly neutral or beneficial substitutions are allowed. This stringency is relaxed by accepting 
increasingly deleterious substitutions up to 100% (where all paths are accessible). E An empirical 
cumulative distribution function built from all possible starting points and displaying the fraction 
of paths reaching the top, given a specified neutral cutoff. The x-axis denotes the fraction of 
possible paths to the top variant, and the y-axis denotes the fraction of starting variants which have 
up to that fraction of paths possible to the top variant. 

Overall, the fractions of epistasis (among the active variants) are similar in the TrpB and 

GB1 landscapes across all starting fitness quartiles of the starting variant (Figure 3-2B). 

Generally, additive effects and magnitude epistasis (non-sign epistasis) dominate across all 

fitness quartiles, followed by sign epistasis as the next most common type, and finally by 

reciprocal sign epistasis. Interestingly, however, we saw that the GB1 binding protein 

variants were more likely to experience non-sign epistasis as starting fitness increased across 

quartiles, decreasing the prevalence of sign and reciprocal sign epistasis. The dependence of 

non-sign epistasis on starting fitness in the enzymatic landscape stayed more consistent. This 

indicates that difficult-to-navigate epistasis persists into a higher fitness regime in the 

enzyme landscape while it attenuates at higher fitness in the binding landscape, suggesting 

that the binding landscape becomes smoother for higher fitness variants. The enzyme 

landscape remains more rugged for all levels of fitness. Further pairwise epistasis analyses 

can be found in Appendix B, Figure B-17–22. 

Given this, we investigated how navigation of the landscape is constrained by epistasis. To 

do so, we first built directional graphs linking any active variant (Appendix B, Section 

B.1.14) to the best variant in the landscape, AIKG, via single substitutions (Figure 3-2C). 

For this analysis, only direct paths were considered with a maximum number of steps equal 

to the Hamming distance (HD) between the initial and final variants (i.e., we did not allow 
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“side-steps” through other variants via conversion bypass or detour bypass). The number of 

possible paths is factorial of the HD from an initial variant to a final variant (e.g., for HD=4 

there are 24 possible paths). Using these graphs, we determined the fraction of starting points 

which have at least one possible path to the top and found that if no deleterious steps are 

allowed, ~20% of the starting points cannot reach the global optimum, AIKG, via any single-

step path, and so must navigate sign and/or reciprocal sign epistasis to do so (Figure 3-2D). 

Accounting for assay noise or a less restrictive evolutionary pressure, we looked at how 

changing the allowed magnitude of deleterious steps enabled access to more paths to the best 

variant. We allowed steps from a 0% decrease in fitness to a 100% decrease in fitness—at 

which point all steps are allowed, and thus all paths accessible—and observed that even 

allowing any step up to 50% worse still resulted in ~2% of starting variants having no 

possible pathway to the top. Such strongly deleterious substitutions are unlikely to be 

accumulated during natural or laboratory evolution under an explicit selective pressure, 

thereby constraining these starting points from reaching the global optimum.  

We examined this in more detail using empirical cumulative distribution functions (ECDFs) 

that represent the fraction of variants that have at least a given fraction of paths accessible to 

the top variant (Figure 3-2E). The greater the number of variants that display a low fraction 

of accessible paths to the top (e.g., 1/24 paths), the more the ECDF is left-shifted. When no 

deleterious steps are allowed, we see that ~30% of the paths to the top variant are accessible 

from the median starting variant (the ECDF at y = 0.5), but by allowing steps up to a 50% 

reduction in fitness, the median starting variant now had all paths to the top variant 

accessible. 
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We next examined the local optima, defined as variants where no single substitution of an 

active variant yields a more fit variant. There are 520 optima (5.60% of the active variants), 

with one being the global optimum, AIKG, and 169 of which are greater than 10% of the 

maximum fitness. Of the remaining 519 local optima, 98.27% (510 variants) could be 

escaped via two simultaneous substitutions, while the remaining six required three 

simultaneous substitutions. Many fewer local optima were observed in the GB1 landscape, 

with only 30 total fitness peaks (0.07% of the active variants).24 For further characterization 

of the local optima, we focused on the top twenty local optima to reduce the impact of noise 

from optima near the fitness threshold (Appendix B, Section B.1.13). Allowing no 

downward steps, we observed a tendency for the number of starting variants with at least one 

path to the local optimum to decrease as the fitness of the local optimum decreased 

(Appendix B, Figures B-23–24). Variant LPKG was the exception, potentially due to 

constraints imposed by incorporation of proline at position 184. Altogether, these results 

suggest that the TrpB landscape may be enriched in evolution-constraining epistasis 

compared to GB1, and experimental paths may more easily be trapped at local optima. 

3.2.3 Performance of directed evolution and fitness predictors 

We next examined how the effects of epistasis might change the results of different directed 

evolution approaches. We considered three different directed evolution approaches that can 

also serve as competitive benchmarks for predictive approaches: Method 1) site-saturation 

mutagenesis (SSM) at each of the four sites in parallel followed by recombination of the best 

variants at each site; Method 2) single-step sequential SSM, using the best variant at one site 

as the parent for the next until all four sites have been examined, starting from all sites; and 

Method 3) SSM at each site in parallel followed by direct synthesis of the top 96 additivity-
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predicted variants (Figure 3-3A, Appendix B, Section B.1.15). In all cases, because we 

enforced the sampling of every single substitution during the site-saturation mutagenesis 

steps, we would expect to obtain the max fitness every time with each of these approaches if 

the landscapes exhibited no epistasis. Only Method 2 can navigate sign and reciprocal sign 

epistasis, as it samples a new background after each round of SSM, and therefore can 

discover previously deleterious substitutions that have become beneficial.33 However, it 

would require that the substitutions are made in the correct order, which is unknown a priori, 

for it to be efficient.  

For both the TrpB data and the GB1 data, we saw the same pattern of performance: Method 

3 performed the best, then Method 2, and then Method 1 (Figures 3-3B and 3-3C) starting 

from one of the top 9,783 variants of either landscape. Importantly, these simulations were 

run by starting only with variants above the respective activity threshold of each landscape. 

This is the most realistic comparison to directed evolution since detectable starting activity 

is needed to begin an evolution campaign, and the comparison allows the use of the same 

number of starting variants for better comparison between TrpB and GB1. If simulations 

were allowed to start from any variant, the performance was much worse for both landscapes 

(Appendix B, Figure B-27). The performance drop was similar for the two landscapes for 

Methods 1 and 3, but surprisingly, Method 2 on GB1 saw a much less drastic drop in 

performance, working better than Method 3 on average. This may suggest that the single-

step SSM greedy walk approach may be more robust than the SSM calculate and test top N 

approach and able to increase fitness more reliably even in a noisy, low-fitness region, 

potentially due to its ability to navigate sign and reciprocal sign epistasis. 
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Figure 3-3. Evolutionary constraints in enzyme fitness landscapes. A Three different baselines 
of directed evolution methodologies. B The max fitness achieved from each starting point is plotted 
as a violin for each of the three directed evolution simulation methodologies. We show the results 
for both the quadruple-site saturation landscape on TrpB (blue) as well as on a binding landscape 
for GB1 (orange). C An empirical cumulative distribution function of the max fitness achieved 
from each active variant in the respective landscape for each directed evolution simulation method. 
Color indicates the simulation method, with TrpB results in the lighter shade and GB1 results in 
the darker. A left-shifted curve indicates fewer starting variants can achieve a high max fitness. D 
A hypothetical non-predictive model for comparing how using a fitness predictor score as a 
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threshold can determine the composition of the variants above that threshold. In the non-predictive 
model, fitness values (full distribution shown in blue, with active variants shown as black points) 
are normally distributed along the fitness predictor score. As this threshold is decreased, the fraction 
of the library sampled decreases (blue curve), while the fraction of active variants (black curve) 
and their mean activity (red curve) within that sample remains constant, since the fitness predictor 
does not enrich in active variants. E The same analysis as in D for the TrpB landscape using 
EVmutation (an evolutionary-based fitness predictor) and Triad score (a structure-based energy 
predictor) predictors. 

Given the complexity of enzyme catalysis, we suspected that structure-based predictors that 

work well for a small binding protein14,34 may not be as useful for an enzyme landscape. 

Instead, we recognized the abundance of TrpB sequences can be used to generate deep 

multiple sequence alignments (MSAs), making it potentially more amenable to evolutionary-

scale predictors for the fitness effects of substitutions,35,36 especially since we were assaying 

the native function of TrpB. We analyzed the enzyme data with both Triad protein design 

using a Rosetta energy function (Protabit, Pasadena, CA, USA: https://triad.protabit.com), 

which provides a score that aims to predict stability, and EVmutation,35 which provides a 

score that aims to predict the fitness effect of a given set of substitutions based on 

conservation and evolutionary couplings. As a starting structure for the Triad calculations, 

we obtained a 2.15-Å resolution structure of Tm9D8* (Appendix B, Sections B.1.20–21, 

Table B-12). We found that, compared to the null model of zero predictivity (Figure 3-3D) 

and GB1 (Appendix B, Figure B-28), the evolutionary-scale predictor is moderately 

predictive for TrpB while the stability predictor performs much more poorly (Figure 3-3E). 

Both predictors work much better as classifiers of active and inactive variants and perform 

more poorly when asked to differentiate amongst the highest fitness variants. 
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3.2.4 Decoupling stability and activity with a thermostable parent sequence allows an 

evolutionarily unlikely residue to emerge 

As noted above, sequences with K227 dominated the growth assay despite lysine at this site 

being nearly non-existent across known TrpB-like sequences (Appendix B, Figure B-14). 

This suggested to us that K227 may exert some deleterious effect that is not observed under 

the assay conditions but is subject to natural selection. For example, it may increase the KM 

for indole such that it is not competitive under physiological conditions but works well when 

indole is added exogenously at 200 µM. Alternatively (or additionally), K227 may be highly 

destabilizing, but not enough to unfold the thermostable TmTrpB variant at E. coli growth 

temperatures. Indeed, this possibility motivated the use of a thermostable parent sequence at 

the outset of this study. Therefore, we chose a set of variants to characterize in more depth, 

including all variants in the single possible path from Tm9D8* to the top variant (Figure 3-

2C), as well the four other variants in the top five (CLKG, ALKG, CIKG, and VLKG), which 

also all contained K227. 

To assess the stability of these variants, we determined the temperature at which a 1 h 

incubation causes an irreversible 50% reduction in activity as compared to a room 

temperature incubation (T50) (Table 3-1, Appendix B, Figures B-29, B-30 and B-33, 

Section B.1.18). The only possible upward path between Tm9D8* (VFVS) and AIKG first 

requires F184I, which exerts no effect on T50, followed by S228G, which imparts a >1 °C 

increase. From here, two larger decreases in stability come from the remaining two 

substitutions: a decrease of >7.2 °C from V227K and a decrease of 1.7 °C from V183A to 

91.0 °C — a T50 about 8.0 °C lower than the starting variant. All five top variants (all of 

which contain K227) exhibited T50 values similar to AIKG  (90.1–93.2 °C, or 5.8–8.9 °C 
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below the starting variant). Drops in stability this large would likely lead to loss of function 

under native conditions, where proteins are typically only marginally more stable than the 

optimal growth temperature of their host,37 suggesting why K227 might be absent from the 

evolutionary record but emerges as highly fit at E. coli growth temperatures. 

Table 3-1.  T50 values for selected variants. T50 is reported here as the temperature at which a 1 h 
incubation causes a fitness reduction of 50% as compared to a room temperature incubation. 

 

Finally, we measured the kinetic parameters of a few of these: the starting variant, Tm9D8* 

(VFVS); the best variant (AIKG); and VIVG, the variant with two wild-type reversions and 

high stability in the middle of the path from Tm9D8* to AIKG. All three enzymes were 

expressed and purified (Appendix B, Section B.1.19) for characterization via Michaelis-

Menten kinetics (Table 3-2, Appendix B, Figures B-31–33, Section B.1.22). As expected, 

based on preliminary comparisons of in vitro Trp formation and growth rate (Appendix B, 

Figure B-3), we observed that the kcat values for the three enzymes roughly mirrored the 

fitness values we obtained for them in the high-throughput growth assay: 22.6 min-1 for 

Tm9D8*, 51 min-1 for VIVG, and 67 min-1 for AIKG. We also observed that the two wild-

variant T50 (°C)

Tm9D8* 99.0 ± 0.6

VIVS 99.0 ± 0.8

VIVG >100

VIKG 92.8 ± 0.3

AIKG 91.0 ± 0.3

CLKG 90.6 ± 0.3

ALKG 90.1 ± 0.4

CIKG 92.3 ± 0.3

VLKG 93.2 ± 0.4
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type reversions caused a significant decrease in KM for indole in VIVG (4.2 µM), while the 

KM of AIKG for indole (20 µM) was similar to Tm9D8* (23 µM). 

Table 3-2.  Kinetic parameters for selected variants. Monitoring absorbance at 290 nm over 
time enabled UV-Spectrometer collection of initial rate data. 

 

Importantly, while AIKG displays a higher rate of Trp formation at the 200 µM indole 

concentration used during the growth assay, it reacts more slowly than VIVG at indole 

concentrations below ~50 µM, which better represents its native conditions. Both AIKG and 

VIVG had KM values for Ser roughly half that of Tm9D8*, with values of 0.17 and 0.18 mM, 

respectively, compared to 0.30 mM (Table 3-2). These results, coupled with the decrease in 

stability, help explain how K227 can be nearly non-existent in native TrpB enzymes but 

optimal in an assay for its native reaction. The observation of effects like this was enabled 

by the choice of a highly thermostable parent enzyme that can decouple stability and activity.  

3.3 Discussion 

TrpB is conserved across all domains of life, acting in primary metabolism to perform the 

final step of Trp biosynthesis. Here we provide a combinatorially complete, 160,000-variant 

fitness landscape of substitutions at four active site residues of this ubiquitous enzyme, the 

first landscape of its kind that reports on enzymatic catalysis. The topography of this 

landscape reflects significant epistasis, which results in many indirect adaptive paths and 

variant

kinetic parameter Tm9D8* (VFVS) VIVG AIKG

kcat (min-1) 22.6 ± 0.3 51 ± 1.0 67 ± 1.1

KM,serine (mM) 0.30 ± 0.04 0.18 ± 0.01 0.17 ± 0.02

KM,indole (µM) 23 ± 1.4 4.2 ± 0.6 20 ± 1.5

kcat/KM,indole (M-1s-1) 1.44×104 2.03×105 5.53×104
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local optima which can stymie traditional directed evolution methodologies. We expect this 

landscape to provide a useful testing ground for laboratory and predictive protein engineering 

approaches as we learn to navigate epistatic, enzymatic fitness landscapes. 

The high-throughput fitness measurements are scalar quantities resulting from the aggregate 

influence of stability, substrate binding, catalytic rate, and environment (e.g., tunable assay 

conditions and intrinsic host cell conditions) on growth of the bacteria expressing TrpB. The 

emergence of the destabilizing but activating K227 substitution suggests that catalytic rate is 

a prominent factor contributing to the calculated fitness values. However, here we 

characterized only a few of the most active variants; loss of stability could have caused 

catastrophic loss of fitness for others that were not observed.38 Combining these 

measurements with emerging high-throughput stability measurements39 could disentangle 

the contributions of stability and activity within the fitness landscape. More drastic changes 

in KM may also have significantly impacted some of the variants. For example, the top 

variant, AIKG, has a higher catalytic rate than the wild-type reversion variant, VIVG, at the 

200 µM indole used for the assay, but a lower one below 50 µM indole. Assaying such a 

library again at different substrate concentrations would slightly alter the landscape, which 

could help deconvolute the specific fitness contributions of KM and kcat. Alternatively, these 

effects could be examined by characterizing a larger subset of the variants using, for example, 

high-throughput microfluidic methods.40 

Navigation of epistatic landscapes is made more efficient by recognizing that the sources of 

epistasis are diverse, and these non-linear effects can arise due to changes in any one of the 

myriad factors contributing to fitness. For complex functions such as catalysis there can be 



 

 

100 
more potential sources of epistasis. For example, beneficial substitutions that reduce stability 

may remain beneficial if they still meet minimal stability requirements, but when combined 

they could push the protein over the stability threshold and ablate activity altogether.41–43 

Alternatively, enzymatic epistasis can arise via a change in the rate-limiting step.44 In these 

cases, predictors tailored to one particular attribute may fail when the fitness effects are due 

to effects on another attribute. A predictor for kcat, a desirable parameter for enzyme 

engineering,45 would fail if an observed deleterious fitness effect were due to stability 

changes. Likewise, a stability predictor would fail if fitness effects were due to a change in 

catalytic rate, and evolutionary-scale predictors struggle when an environment differs from 

the native one, as we show here. Even when each of these predictors can appropriately 

classify variant effects individually, they may break down in predicting fitness if other effects 

dominate. 

Alone, methods that predict specific variant effects cannot be expected to accurately model 

a sequence-fitness landscape, especially of a complex enzymatic task, but we can envision a 

multi-modal approach where different models predict specific facets of enzyme fitness that 

can be aggregated into a final fitness prediction for a specific set of conditions. These 

methods might be composed of supervised and semi-supervised data-driven models,12–14 

physics-based approaches, or a combination. This work provides a complex, epistatic 

landscape for their testing and development. Alongside the existing binding dataset, as well 

as future datasets to come, we expect high-throughput fitness measurements to play a critical 

role in generalizable approaches for protein fitness prediction and engineering. 
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Appendix A 

SUPPLEMENTARY INFORMATION FOR CHAPTER II 

A.1 Oligo Design 

A.1.1 Inner primer design 

The inner primers of evSeq are specific to the region of interest. Each region of interest is 

captured by both a forward and reverse primer. These primers have the below general layout: 

F: 5’ – CACCCAAGACCACTCTCCGGXXXXXXX… – 3’ 

R: 5’ – CGGTGTGCGAAGTAGGTGCXXXXXXXX… – 3’ 

The 5’ region is a universal adapter to which outer primers bind (see Section A.2.2, 

Preparation of evSeq Barcode Primer Mixes, below) while the 3’ region (denoted by “X” in 

the primers above) is specific to the region of interest. Note that the length of the variable 3’ 

region will vary depending on the target gene (this is indicated by the ellipses at the end of 

the poly-X region). Note that there is no need for the two primers in the pair to be equal 

length—we show them as such to highlight the fact that the forward universal adapter is one 

base longer than the reverse universal adapter. Detailed instructions for effective primer 

construction are provided on the evSeq wiki (https://fhalab.github.io/evSeq/1-

lib_prep.html#inner-primer-design). 

A.1.2 Outer primer design 

The barcode (outer) primers used in evSeq all follow the below layout: 

F: 5’ – TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGXXXXXXXCACCCAAGACCACTCTCCGG – 3’ 

R: 5’ – GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGXXXXXXXCGGTGTGCGAAGTAGGTGC – 3’ 
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Each of these primers consists of (1) a 5’ sequence matching the Illumina Nextera 

transposase adapters, (2) a central unique 7-nucleotide barcode (Table A-1), and (3) a 3’ 

universal seed that matches the 5’ adapter of the inner primers (see Section A.1.1, Inner 

Primer Design, above). Note that only Illumina indices compatible with the Nextera 

transposase adapters can be used with the provided outer primer designs; other indexing 

systems would require different adapters. The full set of outer primers used in this study can 

be found in Table A-2; they can be ordered from IDT by following the instructions provided 

in Section A.2.1, Ordering Barcode Primers from IDT, below. 

A.1.3 Barcode design 

evSeq uses 192 unique 7-nucleotide barcodes (Table A-1). The barcodes were designed to 

satisfy the below criteria: 

1. All barcodes must have GC-content of 40–60%. 

2. All barcodes must be at least 3 substitutions apart. This is to prevent misassignment 

of reads due to sequencing errors of the barcodes. 

3. No barcode can have 3 of the same bases in a row. This is to reduce sequencing 

errors.  

4. No barcode can be a sub-sequence of the Nextera transposase adapters or their 

reverse complements (see below). This is to avoid interference with downstream 

Illumina chemistry. 

5. No barcode can be a sub-sequence of the Illumina p5 and p7 flow cell-binding 

sequences or their reverse complements (see below for sequences). Again, this is to 

avoid interference with downstream Illumina chemistry. 

The Nextera transposase adapter sequences are below: 

5’ – TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG – 3' 
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5’ – GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG – 3' 

The p5 and p7 flow cell-binding sequences are below: 

p5: 5’ – AATGATACGGCGACCACCGAGATCTACAC – 3' 

p7: 5’ – CAAGCAGAAGACGGCATACGAGAT – 3’ 

A.2 Supplemental Protocols 

A.2.1 Ordering barcode primers from IDT 

We provide a pre-filled IDT order form for all evSeq primers on the evSeq GitHub repository 

(https://github.com/fhalab/evSeq/tree/master/lib_prep_tools/IdtOrderForm.xlsx). This order 

form can be used to order evSeq primers in the 96-well plate layout needed to prepare the 

evSeq barcode primer mixes (see Section A.2.2, Preparation of evSeq Barcode Primer 

Mixes, below). To order evSeq primers: 

1. Navigate to the IDT DNA oligo ordering page: 

https://www.idtdna.com/pages/products/custom-dna-rna/dna-oligos/custom-dna-

oligos.  

2. Under “Ordering,” select “Plates.” 

3. From the “Single-stranded DNA” table, select the amount (in nanomoles) of oligo 

you wish to order (denoted in the “Product” column) by clicking “Order” under the 

“96 Well” column. For the work described in this paper, 25 nmol oligos were 

ordered. 

4. On the next page, click “UPLOAD PLATE(S).” Using the pop-up that results, 

upload the “IdtOrderForm.xls” provided on the evSeq GitHub repository. The pop-

up should recognize two plates—one called “FBC” and the other called “RBC”—

each consisting of 96 wells. Click “ADD PLATES” followed by “CLOSE THIS 

WINDOW” to close the window. 
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5. For the “FBC” plate, click “Plate Specifications.” Confirm that the below 

specifications are set as follows: 

a. Purification: Standard Desalting 

b. Plate Type: Deep Well 

c. Ship Option: Wet 

d. Buffer: IDTE 8.0 pH 

e. Normalization Type: Full Yield 

f. Concentration: 100 μM 

Note that the bolded specifications are different from default. While not strictly required, 

it is strongly recommended that primers be ordered wet at 100 μM; reconstituting 

plates of dry primers to 100 μM can be very time-consuming without robotic support. 

6. Once specifications are correctly set for the “FBC” plate, click “APPLY 

SETTINGS TO ALL PLATES” at the bottom of the specifications pop-up, 

followed by “YES” on the window that follows.  Quickly check to make sure that 

the same settings as recommended in step 5 were applied to “RBC” by clicking on 

the “RBC” “Plate Specifications” option. 

7. Add the primers to your order by clicking “ADD TO ORDER,” then follow 

standard IDT procedures for purchasing.  

A.2.2 Preparation of evSeq barcode primer mixes 

There are 96 unique forward and 96 unique reverse outer primers (Table A-2), corresponding 

to 96 unique forward and 96 unique reverse barcodes (Table A-1). The forward and reverse 

outer primers were ordered following the procedure given above in Section A.2.1, Ordering 

Barcode Primers from IDT.  

Each well sequenced in evSeq is encoded by a different combination of forward and reverse 

barcode. Different primers from the forward and reverse outer primer plates can be mixed 

together to associate a barcode combination with a specific well in a specific plate. Because 
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the same outer primers can be used regardless of inner primer, it is convenient to keep plates 

of barcode combinations on hand. Plates of outer primer combinations (hereafter also 

referred to as “barcode plates”) can be stored for long periods of time. 

Throughout this work, we used the same 8 barcode plates (consisting of 768 different 

combinations of forward and reverse outer primers) to encode plate and well locations. 

Barcode plates are named DI01–DI08, where “DI” stands for “dual-indexed.” The exact 

barcode combinations used by evSeq are given in Tables A-3–10; these combinations can 

also be found in the “index_map.csv” file on the evSeq GitHub 

(https://github.com/fhalab/evSeq/tree/master/evSeq/util/index_map.csv). By default, the 

evSeq software assumes the barcode plates used for library preparation are laid out in the 

order given in the “index_map.csv” file. To build the barcode plates depicted in Tables A-

3–10, we followed the below procedure: 

1. 10-fold dilutions of each of the forward and reverse outer primer plates ordered from 

IDT were prepared by adding 10 μL of each primer stock to 90 μL ddH2O, keeping 

the well layout constant. Dilutions were performed in fully-skirted PCR plates (Bio-

Rad HSP9601). The plates from IDT had a starting concentration of 100 μM, so the 

final concentration of these two diluted plates was 10 μM. 

2. To 8 fully-skirted PCR plates, 80 μL ddH2O was added, followed by 10 μL diluted 

(10 μM) forward barcode plate. The well layout was kept constant for the forward 

barcode primers.  

3. To the each of the 8 plates, 10 μL of diluted (10 μM) reverse barcode plate was added, 

shifting the well layout down by 1 row per plate. For instance, row A of the reverse 

plate went into row A of the first barcode plate, row B of the second barcode plate, 

row C of the third barcode plate, and so on; row H of the reverse plate went into row 
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H of the first barcode plate, row A of the second barcode plate, row B of the third 

barcode plate, and so on. 

4. When not in use, the 10-fold dilutions prepared in step 1 were stored at –20 °C, while 

the barcode plates (each well of which had a combination of a specific forward and 

reverse primer at a final concentration of 1 μM) were stored at 4 °C. Both the 10 μM 

stock plates and 1 μM barcode plates can be stored for long periods of time—we have 

noticed no drop in effectiveness even after years of storage. 

A.2.3 evSeq library preparation/data analysis protocol 

The evSeq library preparation protocol was designed to be as cost-effective as possible. The 

quantities used in the below protocol were chosen to fit within the constraints of the resources 

available to our research group (these are the quantities used for all evSeq experiments 

performed in this paper). However, with automation support (e.g., liquid handling robots) 

and higher-capacity molecular biology equipment, the entire protocol could be scaled down 

to lower quantities, further improving cost-effectiveness.  

The list of steps below can be followed to prepare an evSeq library for sequencing using the 

outer primers described in Section A.2.2, Preparation of evSeq Barcode Primer Mixes, 

above. Note that when first using a new set of inner primers, it is recommended to complete 

the below protocol for a few wells as a test before deploying them for plate-scale reactions.  

The library preparation protocol can be completed with the below steps. Note that provided 

part numbers are for the materials/reagents we used while developing this protocol—the 

same components from other providers will almost certainly work as well. This protocol is 

also provided on the evSeq wiki (https://fhalab.github.io/evSeq/1-lib_prep.html#pcr-

protocol). 
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1. Prepare a PCR master mix for the number of wells to be sequenced according to the 

below table. Note that we provide an excel calculator on the evSeq GitHub repository 

for easy calculation of master mix volumes based on the number of plates to be 

sequenced 

(https://github.com/fhalab/evSeq/tree/master/lib_prep_tools/MastermixCalculator.x

lsx). 

Component Amount per 10 μL rxn (μL) 
Thermopol Buffer (NEB B9004S) 1.00 

10 mM dNTPs (NEB N0447) 0.20 
Taq Polymerase (NEB M0267) 0.05 

ddH2O 5.33 
Mol-Bio Grade DMSO (MP 194819) 0.40 

Inner Primer Mix (10 μM) 0.02 

a. Note that the above table assumes that each evSeq PCR reaction will be 10 

μL—if scaling down, adjust volumes accordingly. 

b. Note that the above table also assumes the same set of inner primers is used 

to prepare all plates. If this is not the case, a separate master mix will need to 

be prepared for each set of inner primers. 

c. The Inner Primer Mix (10 μM) is a combination of forward and reverse inner 

primers at a final concentration of 10 μM each in diH2O (this can be prepared, 

e.g., by adding 10 μL of 100 μM forward inner primer and 10 μL of 100 μM 

reverse inner primer to 80 μL diH2O).  

2. Add 7 μL of master mix to each well of as many half-skirted PCR plates (USA 

Scientific 1402-9700) as will be sequenced. These are referred to as “PCR plates” in 

the remainder of this protocol.  

3. Stamp 1 μL of overnight culture from each plate to be sequenced into the PCR plates. 

a. “Stamp” means “apply to all wells, keeping the plate layout consistent”. For 

example, 1 μL of culture from library 01 F02 is moved to PCR plate 01 F02, 

1 μL of culture from library 02 C07 is moved to PCR plate 02 C07, etc. 

b. Note that both fresh culture and previously frozen culture (thawed before use 

as template) will work here. No modifications need to be made to the 

protocol.  
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4. Complete stage 1 PCR using the below thermal cycler conditions. This PCR 

amplifies the fragment of interest from the template DNA contained in the cell 

culture. 

Step Temperature (°C) Time 
1 95 5 min 
2 95 20 s 
3 TD 63-> 54 20 s 
4 68 30 s 
5 Return to 2, 9 x   
6 4 Hold 

a. "TD” above stands for “touchdown.” A touchdown step decrements the 

temperature by 1 °C each cycle. The touchdown in the above PCR starts at 

63 °C and drops to 54 °C by the end.  

b. Note that the extension step (step 4) is long enough to amplify a 500 bp 

fragment. Longer fragments will need a longer extension time. Note, 

however, that you may see reduced sequencing efficiency with fragments that 

are too large.  

c. While developing this protocol, we used the below thermal cycler models: 

i. Eppendorf Mastercycler ep Gradient S Thermal Cycler, Model 5345 

with 96-well universal block 

ii. Eppendorf Mastercycler pro S vapo.protect 

iii. Eppendorf Mastercycler X50s 96-well silver block thermal cycler 

5. Once PCR has completed, stamp 2 μL of 1 μM barcode primer mix from the barcode 

plates into the PCR plates (see Section A.2.2, Preparation of evSeq Barcode Primer 

Mixes, above, for details on preparation of barcode plates). Record which barcode 

plate was stamped into which PCR plate. 

6. Perform the second step PCR using the below conditions: 

Step Temperature (°C) Time 
1 95 20s 
2 68 50 s 
3 Return to 1, 24 x   
4 68 5 min 
5 4 Hold 
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a. Again, longer fragments may need a longer extension time. 

7. While the second PCR runs, prepare a 2% agarose gel with SYBR gold added 

(Thermo Fisher Scientific, S11494).  

8. Once the second PCR has completed, for each plate, pool 5 μL of each reaction into 

100 mM EDTA to a final concentration of 20 mM EDTA—this step quenches the 

reactions. Pooling will leave you with as many tubes as you have plates, each 

containing ~600 μL [96 rxns/plate × (5 μL per rxn + 1.25 μL 100mM EDTA per 

reaction)].  

a. Note: The most efficient way to do the pooling varies depending on the 

equipment available. Our group relies on 12-channel multichannel pipets for 

this step, and so will accomplish pooling by (1) adding 10 μL 100 mM EDTA 

to each well in a single row of a fresh PCR plate, (2) transferring 5 μL reaction 

from each row in the plate-to-be-pooled into the single row of EDTA, and (3) 

transferring 40 μL from each well in the single row of pooled reactions using 

a single-channel pipet (leaving 10 μL dead volume in each well) to a 

microcentrifuge tube. An alternate strategy might be, for instance, adding 120 

μL 100 mM EDTA to a trough, then pipetting 5 μL of all reactions from a 

plate into this trough. Whatever strategy is taken, what is important in 

pooling is that the ratios of the reactions in the pool remain equal—

sacrificing some reaction as dead volume is perfectly acceptable to 

achieve equal mixing in this step. 

9. For each tube made in step 8, take 100 μL of pooled reaction and add it to 20 μL 6x 

loading dye (NEB B7025S) in a microcentrifuge tube. It is critical that the loading 

dye does not contain SDS. At this point, the remaining pooled reaction from step 8 

can be stored at –20 °C for future use (i.e., if the later steps of this protocol ever need 

to be redone). 

a. Note that most of the pooled reaction is not moved into later steps with this 

protocol. Again, if relevant automation and molecular biology equipment is 

available, reactions can be scaled down below 10 μL, reducing wasted 

reaction. Current reaction sizes are set to minimize pipetting error. 
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10. Load the contents of each tube made in step 9 into the agarose gel prepared in step 7. 

The contents of each tube should be kept separate (i.e., loaded into different lanes in 

the gel). Load a ladder (we typically use 100 bp ladder from NEB, N3231S) in the 

flanking lanes. 

11. Run the agarose gel at 130 V until the bands have sufficiently migrated. Often, you 

will see two bands: the lower band is usually primer dimer and the upper is the target. 

Reference the ladder to identify your product, remembering that the two-step PCR 

adds 120 bp of additional length (from the universal adapter, barcode, and 

transposase adapters) onto the gene fragment of interest. 

12. Gel-extract the target bands from the agarose gel, again keeping bands from different 

plates separate. We typically use Zymoclean Gel DNA Recovery Kit (Zymo 

Research, D4001) for this step. Elution should be performed at a low volume—we 

typically elute in 10 μL of ddH2O.  

13. After gel extraction, combine the gel-extracted pools from each plate in equimolar 

concentrations. We provide a calculator on the evSeq GitHub repository that can be 

used to normalize equal-length fragments to a pre-specified concentration 

(https://github.com/fhalab/evSeq/tree/master/lib_prep_tools/LibDilCalculator.xlsx). 

a. Note that the quantification here need not be extremely robust. For all results 

presented in this work, we performed this step using DNA concentrations 

output by a GE NanoVue Plus. 

b. Tip: It is generally not advised to pool amplicons drastically different in 

length. Shorter fragments are preferentially sequenced in NGS, and so the 

shorter amplicon will dominate the number of reads. Separate submissions 

should be made for libraries with very different lengths. 

14. After the previous step, you should have a single tube of cleaned, normalized DNA 

consisting of all amplicons from all plates to be pooled. This DNA will be submitted 

to your sequencing provider for inclusion in a multiplexed sequencing run. You 

should work with your sequencing provider to ensure that all requirements are met 

to slot into their pipeline. For instance, this protocol assumes that the sequencing 

provider can add Nextera-compatible Illumina indices and flow-cell-binding 
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sequences via PCR—it should be confirmed that your sequencing provider can do 

this before submitting your sample. 

a. Note: Throughout this work, we used the “Customized PCR Amplicon 

Sequencing” services of Laragen Inc., 

http://www.laragen.com/laragen_nextgen.php. 

b. Also note that, depending on your sequencing provider, it may be possible 

(or even necessary) to add the Illumina indices yourself. Again, you should 

work with your provider to determine the best course of action for submitting 

evSeq libraries. Adding indices simply requires one final PCR on the pooled 

evSeq library. 

15. Once sequencing is complete, your sequencing provider should return two fastq (or 

fastq.gz) files to you. One will contain the forward reads for your pooled samples and 

the other will contain the reverse reads—both files are needed by the evSeq software 

for processing.  

16. Using the files returned in step 15, run the evSeq software to process results and 

assign variants to their original wells. Detailed instructions on how to use the evSeq 

software and interpret its outputs are provided on the evSeq Wiki 

https://fhalab.github.io/evSeq/4-usage.html 
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A.3 Supplemental Figures 

 
Figure A-1. Comparison of the tradeoff between sequencing depth and cost for Sanger 
sequencing (green), a multiplexed MiSeq run (red), and an evSeq library (blue). The top row 
gives the total cost for sequencing a given number of variants; the bottom row gives the expected 
number of reads per variant for sequencing a given number of variants. Note that the x-axes for the 
left and right columns are different. The limit on the x-axis for the left column is set to reflect what 
is typically the maximum level of multiplexed NGS available (384 samples) when outsourcing 
sequencing. To be consistent with the language used throughout the main text, the x-axis labels 
refer to elements run in a multiplexed NGS run as “samples” and elements contained in an evSeq 
library as “variants”. We assume that the elements sequenced in these examples are derived from 
protein mutant libraries amenable to sequencing by evSeq (i.e., the sequenced elements are targeted 
amplicons). Top Row: We see that both multiplexed NGS on a commercial MiSeq run and evSeq 
have constant cost with an increasing number of elements sequenced; Sanger, in contrast, scales 
linearly with the number of elements sequenced. Many elements (669 with the cost estimates used 
to make this figure) need to be added to a multiplexed MiSeq run before it becomes more cost-
effective than Sanger. Even though research groups may frequently meet or exceed 669 variants in 
a standard protein engineering experiment, the flat cost of $2000 is far too high to justify regular 
sequencing of every variant. Many fewer variants (34) need to be added to an evSeq run before it 
becomes cost-effective over Sanger. A flat cost of ~$100 is justifiable for regularly sequencing all 
variants. Bottom Row: NGS technologies trade off sequencing depth for cost effectiveness. 
Notably, the per-sample sequencing depth achieved by commercially available multiplexed runs is 
much higher than what is needed for reliable sequencing. evSeq, in contrast, more efficiently 
spreads reads, keeping the expected number of reads closer to, yet still above the minimum needed 
for effective sequencing. Notes on Figure Generation: Cost of a single MiSeq run ($2000) is 
based on an estimate provided by Laragen Inc. Cost of a single Sanger sequencing run ($2.99) is 
based on a quote from MCLAB for sequencing a single 96-well plate. The number of expected 
reads from a MiSeq run (13.5 million) is based on estimates provided by Illumina for a MiSeq 
Reagent Kit v2 (note that almost double the number of reads can be achieved using a v3 kit—we 
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used v2 here to be conservative with our estimates for NGS/evSeq). The number of expected reads 
for a variant sampled with evSeq assumes the evSeq library was sequenced as 1 of 96 samples on 
a multiplexed sequencing run using a MiSeq Reagent Kit v2. The cost of a single evSeq run is 
based on an estimate provided by Laragen for a single sample in a multiplexed sequencing run 
using a PE150 kit. 

 
Figure A-2. Sequencing depths for the Tm9D8* evSeq libraries. Left: A histogram of 
sequencing depths for each Tm9D8* variant contained in the full evSeq library. The vertical black 
line gives the median. Right: Violin plots showing the distribution of read depths over the wells in 
each sequenced plate. Variability between plates likely indicates inaccurate quantification of 
pooled plates prior to final assembly of the evSeq library. Notable, libraries 1-5 use different evSeq 
primers than libraries 6-8.  
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Figure A-3. Sequencing depths for the RmaNOD evSeq libraries. Left: A histogram of 
sequencing depths for each RmaNOD variant contained in the full evSeq library. The vertical black 
line gives the median. Right: Violin plots showing the distribution of read depths over the wells in 
each sequenced plate. Variability between plates likely indicates inaccurate quantification of 
pooled plates prior to final assembly of the evSeq library.  
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A.4 Barcode and Outer Primer Sequences 
Table A-1.  evSeq barcode sequences used in this work. The “Plate” and “Well” columns give 
the location of these sequences in the IDT order form provided on the evSeq GitHub repository 
(see Section A.2.1, Ordering Barcode Primers from IDT and Section A.1.3, Barcode Design, 
above). Note that barcode sequences can also be found in the “index_map.csv” file found on the 
evSeq GitHub repository (https://github.com/fhalab/evSeq/tree/master/evSeq/util/index_map.csv); 
this csv file also gives the combinations of barcodes used to define the dual indexing (DI) plates. 

Plate Well Barcode 
FBC A01 GATCATG 

FBC A02 TACATGG 

FBC A03 AAGCACC 

FBC A04 TGGCTCA 

FBC A05 CTTGCTC 

FBC A06 GAAGCGT 

FBC A07 TCTCCAT 

FBC A08 TTGAAGG 

FBC A09 GAATGTC 

FBC A10 ATCTCCA 

FBC A11 GCGTTAT 

FBC A12 TGCACCA 

FBC B01 TGCCTAT 

FBC B02 AGGAATC 

FBC B03 TCCACTG 

FBC B04 TTGTACC 

FBC B05 TTCGAGT 

FBC B06 CTTCAGC 

FBC B07 CAGTGCA 

FBC B08 TGCTGTC 

FBC B09 CGCCATT 

FBC B10 GCCATGA 

FBC B11 CACAACG 

FBC B12 CTTCGCT 

FBC C01 TCGTGAA 

FBC C02 TTATCGG 

FBC C03 AGACCAT 

FBC C04 ACATGAG 

FBC C05 ACGTACT 

FBC C06 CACCTCA 

FBC C07 GTTGGAG 

FBC C08 TGTTCTG 

FBC C09 CTTACGT 

FBC C10 GAGGTTG 



 

 

121 
FBC C11 ATGGACA 

FBC C12 ACACTGA 

FBC D01 ATCTGTG 

FBC D02 AATGTGC 

FBC D03 GAGTTGA 

FBC D04 TTCTCAC 

FBC D05 TGAAGCG 

FBC D06 GCTACAA 

FBC D07 AGAGAAC 

FBC D08 CAGAGTG 

FBC D09 TTCCGAA 

FBC D10 GTACGAC 

FBC D11 ACTCTTG 

FBC D12 CCAACCA 

FBC E01 CTCTAGA 

FBC E02 AATCGGA 

FBC E03 CGTCCTA 

FBC E04 GGAATGT 

FBC E05 TCCAAGC 

FBC E06 GCACCTA 

FBC E07 TTGCGTT 

FBC E08 CAGGATT 

FBC E09 CTGCATA 

FBC E10 CGTTGAG 

FBC E11 TGCTACT 

FBC E12 GTGATCC 

FBC F01 GCATGGT 

FBC F02 GTCGTTA 

FBC F03 CCTGACA 

FBC F04 AGTGTAG 

FBC F05 CGAGCAA 

FBC F06 CTACTCC 

FBC F07 GATGCCA 

FBC F08 GACCGAT 

FBC F09 ACGTTGG 

FBC F10 ATGAGCG 

FBC F11 TACTCCG 

FBC F12 GATTCAC 

FBC G01 ATGACGC 

FBC G02 GGTTGTT 

FBC G03 GTACTTG 

FBC G04 TAGCAAG 
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FBC G05 CTGCCAT 

FBC G06 GAGAACA 

FBC G07 GTATAGC 

FBC G08 TGATGGA 

FBC G09 GGCAGTA 

FBC G10 GAAGAAG 

FBC G11 AGCGGTT 

FBC G12 TAAGGCC 

FBC H01 AACCTGT 

FBC H02 AGTACAC 

FBC H03 CTCGTAG 

FBC H04 CTAGGTG 

FBC H05 CGATACC 

FBC H06 TCGGCTA 

FBC H07 CGGTTGT 

FBC H08 ATTGCCT 

FBC H09 CATTCGA 

FBC H10 GCACAAT 

FBC H11 GCAGTAA 

FBC H12 CCTAATC 

RBC A01 GAACTGC 

RBC A02 ACCAGGT 

RBC A03 TCTAGAG 

RBC A04 CACACAA 

RBC A05 GTGGAAC 

RBC A06 ATATGCC 

RBC A07 GGTCTGA 

RBC A08 GTGAGAT 

RBC A09 TTGGCAG 

RBC A10 ATGCCTG 

RBC A11 TCCGAAG 

RBC A12 GGCTTAC 

RBC B01 AGTTGGC 

RBC B02 AACGATG 

RBC B03 ACTACCG 

RBC B04 GGTGTCT 

RBC B05 CCAGCTT 

RBC B06 TTAGACG 

RBC B07 ACCATAC 

RBC B08 GACGACT 

RBC B09 GTCACCT 

RBC B10 CGTGATG 
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RBC B11 GCTTCCT 

RBC B12 TAGACGT 

RBC C01 CGGACTT 

RBC C02 ACCGGAA 

RBC C03 CCGAAGT 

RBC C04 TCACGCA 

RBC C05 ATCCTCG 

RBC C06 CGAATAG 

RBC C07 TATCCGG 

RBC C08 AGCAAGA 

RBC C09 TGTCGAC 

RBC C10 TTCCATG 

RBC C11 GCAATCG 

RBC C12 TGAGTGG 

RBC D01 TAGGAGA 

RBC D02 AGTCAGT 

RBC D03 GTGCTGT 

RBC D04 CAACAAC 

RBC D05 AATAGCC 

RBC D06 TCTGTGA 

RBC D07 TGTGGTA 

RBC D08 GCGTATG 

RBC D09 AGTTACG 

RBC D10 TTCCTGC 

RBC D11 TATGTCG 

RBC D12 GGAGAGA 

RBC E01 CCTTAGG 

RBC E02 TGTATCC 

RBC E03 CAACCTG 

RBC E04 CTGATGA 

RBC E05 AAGACAG 

RBC E06 AGCTCGT 

RBC E07 GATTGCG 

RBC E08 TCCTTCA 

RBC E09 TCACAGG 

RBC E10 AGAGCTG 

RBC E11 CCTCTGT 

RBC E12 CCTCGAA 

RBC F01 GTGTCTC 

RBC F02 ATTGAGG 

RBC F03 GACAATC 

RBC F04 CACTTGC 
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RBC F05 TGAACGC 

RBC F06 CGTAGCA 

RBC F07 AGGTTCC 

RBC F08 GTACACA 

RBC F09 GATAGGT 

RBC F10 TAGCCTC 

RBC F11 TTCAGCC 

RBC F12 GGATTCA 

RBC G01 TGAGCCT 

RBC G02 AACGCGA 

RBC G03 TCATTGC 

RBC G04 AGCATCT 

RBC G05 TTGGTCT 

RBC G06 CAAGGAT 

RBC G07 AGACGTC 

RBC G08 AGGTCAA 

RBC G09 ATGCTAC 

RBC G10 CTCTGAT 

RBC G11 TCAAGTC 

RBC G12 TCGAGCT 

RBC H01 ACAGTCT 

RBC H02 CAGATAC 

RBC H03 TACGTTC 

RBC H04 ACGGTTC 

RBC H05 CATCGTC 

RBC H06 TACGCAT 

RBC H07 CTTAGAC 

RBC H08 AACTGAC 

RBC H09 ACTTGCA 

RBC H10 ACGCGAT 

RBC H11 TCGACAC 

RBC H12 ACTCAAC 
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Table A-2. Full-length evSeq barcode (outer) primer sequences used in this work. The “Plate” 
and “Well” columns give the location of these sequences in the IDT order form provided on the 
evSeq GitHub repository (see Section A.2.1, Ordering Barcode Primers from IDT and Section 
A.2.2, Preparation of evSeq Barcode Primer Mixes, above). 

Plate Well Sequence 
FBC A01 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGATCATGCACCCAAGACCACTCTCCGG 

FBC A02 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTACATGGCACCCAAGACCACTCTCCGG 

FBC A03 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAAGCACCCACCCAAGACCACTCTCCGG 

FBC A04 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGGCTCACACCCAAGACCACTCTCCGG 

FBC A05 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTTGCTCCACCCAAGACCACTCTCCGG 

FBC A06 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAAGCGTCACCCAAGACCACTCTCCGG 

FBC A07 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTCTCCATCACCCAAGACCACTCTCCGG 

FBC A08 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTGAAGGCACCCAAGACCACTCTCCGG 

FBC A09 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAATGTCCACCCAAGACCACTCTCCGG 

FBC A10 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATCTCCACACCCAAGACCACTCTCCGG 

FBC A11 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGCGTTATCACCCAAGACCACTCTCCGG 

FBC A12 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGCACCACACCCAAGACCACTCTCCGG 

FBC B01 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGCCTATCACCCAAGACCACTCTCCGG 

FBC B02 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGGAATCCACCCAAGACCACTCTCCGG 

FBC B03 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTCCACTGCACCCAAGACCACTCTCCGG 

FBC B04 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTGTACCCACCCAAGACCACTCTCCGG 

FBC B05 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTCGAGTCACCCAAGACCACTCTCCGG 

FBC B06 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTTCAGCCACCCAAGACCACTCTCCGG 

FBC B07 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCAGTGCACACCCAAGACCACTCTCCGG 

FBC B08 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGCTGTCCACCCAAGACCACTCTCCGG 

FBC B09 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCGCCATTCACCCAAGACCACTCTCCGG 

FBC B10 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGCCATGACACCCAAGACCACTCTCCGG 

FBC B11 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCACAACGCACCCAAGACCACTCTCCGG 

FBC B12 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTTCGCTCACCCAAGACCACTCTCCGG 

FBC C01 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTCGTGAACACCCAAGACCACTCTCCGG 

FBC C02 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTATCGGCACCCAAGACCACTCTCCGG 

FBC C03 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGACCATCACCCAAGACCACTCTCCGG 

FBC C04 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGACATGAGCACCCAAGACCACTCTCCGG 

FBC C05 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGACGTACTCACCCAAGACCACTCTCCGG 

FBC C06 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCACCTCACACCCAAGACCACTCTCCGG 

FBC C07 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTTGGAGCACCCAAGACCACTCTCCGG 

FBC C08 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGTTCTGCACCCAAGACCACTCTCCGG 

FBC C09 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTTACGTCACCCAAGACCACTCTCCGG 

FBC C10 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAGGTTGCACCCAAGACCACTCTCCGG 

FBC C11 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATGGACACACCCAAGACCACTCTCCGG 

FBC C12 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGACACTGACACCCAAGACCACTCTCCGG 

FBC D01 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATCTGTGCACCCAAGACCACTCTCCGG 
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FBC D02 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAATGTGCCACCCAAGACCACTCTCCGG 

FBC D03 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAGTTGACACCCAAGACCACTCTCCGG 

FBC D04 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTCTCACCACCCAAGACCACTCTCCGG 

FBC D05 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGAAGCGCACCCAAGACCACTCTCCGG 

FBC D06 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGCTACAACACCCAAGACCACTCTCCGG 

FBC D07 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGAGAACCACCCAAGACCACTCTCCGG 

FBC D08 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCAGAGTGCACCCAAGACCACTCTCCGG 

FBC D09 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTCCGAACACCCAAGACCACTCTCCGG 

FBC D10 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTACGACCACCCAAGACCACTCTCCGG 

FBC D11 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGACTCTTGCACCCAAGACCACTCTCCGG 

FBC D12 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCAACCACACCCAAGACCACTCTCCGG 

FBC E01 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTCTAGACACCCAAGACCACTCTCCGG 

FBC E02 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAATCGGACACCCAAGACCACTCTCCGG 

FBC E03 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCGTCCTACACCCAAGACCACTCTCCGG 

FBC E04 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGGAATGTCACCCAAGACCACTCTCCGG 

FBC E05 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTCCAAGCCACCCAAGACCACTCTCCGG 

FBC E06 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGCACCTACACCCAAGACCACTCTCCGG 

FBC E07 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTGCGTTCACCCAAGACCACTCTCCGG 

FBC E08 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCAGGATTCACCCAAGACCACTCTCCGG 

FBC E09 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTGCATACACCCAAGACCACTCTCCGG 

FBC E10 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCGTTGAGCACCCAAGACCACTCTCCGG 

FBC E11 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGCTACTCACCCAAGACCACTCTCCGG 

FBC E12 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGATCCCACCCAAGACCACTCTCCGG 

FBC F01 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGCATGGTCACCCAAGACCACTCTCCGG 

FBC F02 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTCGTTACACCCAAGACCACTCTCCGG 

FBC F03 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTGACACACCCAAGACCACTCTCCGG 

FBC F04 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGTGTAGCACCCAAGACCACTCTCCGG 

FBC F05 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCGAGCAACACCCAAGACCACTCTCCGG 

FBC F06 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTACTCCCACCCAAGACCACTCTCCGG 

FBC F07 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGATGCCACACCCAAGACCACTCTCCGG 

FBC F08 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGACCGATCACCCAAGACCACTCTCCGG 

FBC F09 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGACGTTGGCACCCAAGACCACTCTCCGG 

FBC F10 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATGAGCGCACCCAAGACCACTCTCCGG 

FBC F11 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTACTCCGCACCCAAGACCACTCTCCGG 

FBC F12 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGATTCACCACCCAAGACCACTCTCCGG 

FBC G01 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATGACGCCACCCAAGACCACTCTCCGG 

FBC G02 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGGTTGTTCACCCAAGACCACTCTCCGG 

FBC G03 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTACTTGCACCCAAGACCACTCTCCGG 

FBC G04 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTAGCAAGCACCCAAGACCACTCTCCGG 

FBC G05 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTGCCATCACCCAAGACCACTCTCCGG 

FBC G06 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAGAACACACCCAAGACCACTCTCCGG 

FBC G07 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTATAGCCACCCAAGACCACTCTCCGG 
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FBC G08 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGATGGACACCCAAGACCACTCTCCGG 

FBC G09 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGGCAGTACACCCAAGACCACTCTCCGG 

FBC G10 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGAAGAAGCACCCAAGACCACTCTCCGG 

FBC G11 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGCGGTTCACCCAAGACCACTCTCCGG 

FBC G12 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTAAGGCCCACCCAAGACCACTCTCCGG 

FBC H01 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAACCTGTCACCCAAGACCACTCTCCGG 

FBC H02 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGTACACCACCCAAGACCACTCTCCGG 

FBC H03 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTCGTAGCACCCAAGACCACTCTCCGG 

FBC H04 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTAGGTGCACCCAAGACCACTCTCCGG 

FBC H05 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCGATACCCACCCAAGACCACTCTCCGG 

FBC H06 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTCGGCTACACCCAAGACCACTCTCCGG 

FBC H07 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCGGTTGTCACCCAAGACCACTCTCCGG 

FBC H08 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATTGCCTCACCCAAGACCACTCTCCGG 

FBC H09 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCATTCGACACCCAAGACCACTCTCCGG 

FBC H10 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGCACAATCACCCAAGACCACTCTCCGG 

FBC H11 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGCAGTAACACCCAAGACCACTCTCCGG 

FBC H12 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTAATCCACCCAAGACCACTCTCCGG 

RBC A01 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGAACTGCCGGTGTGCGAAGTAGGTGC 

RBC A02 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACCAGGTCGGTGTGCGAAGTAGGTGC 

RBC A03 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCTAGAGCGGTGTGCGAAGTAGGTGC 

RBC A04 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCACACAACGGTGTGCGAAGTAGGTGC 

RBC A05 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGTGGAACCGGTGTGCGAAGTAGGTGC 

RBC A06 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGATATGCCCGGTGTGCGAAGTAGGTGC 

RBC A07 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGTCTGACGGTGTGCGAAGTAGGTGC 

RBC A08 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGTGAGATCGGTGTGCGAAGTAGGTGC 

RBC A09 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTTGGCAGCGGTGTGCGAAGTAGGTGC 

RBC A10 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGATGCCTGCGGTGTGCGAAGTAGGTGC 

RBC A11 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCCGAAGCGGTGTGCGAAGTAGGTGC 

RBC A12 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGCTTACCGGTGTGCGAAGTAGGTGC 

RBC B01 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGTTGGCCGGTGTGCGAAGTAGGTGC 

RBC B02 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAACGATGCGGTGTGCGAAGTAGGTGC 

RBC B03 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACTACCGCGGTGTGCGAAGTAGGTGC 

RBC B04 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGTGTCTCGGTGTGCGAAGTAGGTGC 

RBC B05 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCAGCTTCGGTGTGCGAAGTAGGTGC 

RBC B06 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTTAGACGCGGTGTGCGAAGTAGGTGC 

RBC B07 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACCATACCGGTGTGCGAAGTAGGTGC 

RBC B08 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACGACTCGGTGTGCGAAGTAGGTGC 

RBC B09 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGTCACCTCGGTGTGCGAAGTAGGTGC 

RBC B10 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCGTGATGCGGTGTGCGAAGTAGGTGC 

RBC B11 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCTTCCTCGGTGTGCGAAGTAGGTGC 

RBC B12 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTAGACGTCGGTGTGCGAAGTAGGTGC 

RBC C01 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCGGACTTCGGTGTGCGAAGTAGGTGC 
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RBC C02 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACCGGAACGGTGTGCGAAGTAGGTGC 

RBC C03 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCGAAGTCGGTGTGCGAAGTAGGTGC 

RBC C04 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCACGCACGGTGTGCGAAGTAGGTGC 

RBC C05 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGATCCTCGCGGTGTGCGAAGTAGGTGC 

RBC C06 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCGAATAGCGGTGTGCGAAGTAGGTGC 

RBC C07 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTATCCGGCGGTGTGCGAAGTAGGTGC 

RBC C08 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGCAAGACGGTGTGCGAAGTAGGTGC 

RBC C09 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTGTCGACCGGTGTGCGAAGTAGGTGC 

RBC C10 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTTCCATGCGGTGTGCGAAGTAGGTGC 

RBC C11 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCAATCGCGGTGTGCGAAGTAGGTGC 

RBC C12 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTGAGTGGCGGTGTGCGAAGTAGGTGC 

RBC D01 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTAGGAGACGGTGTGCGAAGTAGGTGC 

RBC D02 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGTCAGTCGGTGTGCGAAGTAGGTGC 

RBC D03 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGTGCTGTCGGTGTGCGAAGTAGGTGC 

RBC D04 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCAACAACCGGTGTGCGAAGTAGGTGC 

RBC D05 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAATAGCCCGGTGTGCGAAGTAGGTGC 

RBC D06 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCTGTGACGGTGTGCGAAGTAGGTGC 

RBC D07 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTGTGGTACGGTGTGCGAAGTAGGTGC 

RBC D08 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCGTATGCGGTGTGCGAAGTAGGTGC 

RBC D09 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGTTACGCGGTGTGCGAAGTAGGTGC 

RBC D10 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTTCCTGCCGGTGTGCGAAGTAGGTGC 

RBC D11 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTATGTCGCGGTGTGCGAAGTAGGTGC 

RBC D12 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGAGAGACGGTGTGCGAAGTAGGTGC 

RBC E01 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCTTAGGCGGTGTGCGAAGTAGGTGC 

RBC E02 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTGTATCCCGGTGTGCGAAGTAGGTGC 

RBC E03 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCAACCTGCGGTGTGCGAAGTAGGTGC 

RBC E04 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCTGATGACGGTGTGCGAAGTAGGTGC 

RBC E05 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAAGACAGCGGTGTGCGAAGTAGGTGC 

RBC E06 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGCTCGTCGGTGTGCGAAGTAGGTGC 

RBC E07 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGATTGCGCGGTGTGCGAAGTAGGTGC 

RBC E08 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCCTTCACGGTGTGCGAAGTAGGTGC 

RBC E09 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCACAGGCGGTGTGCGAAGTAGGTGC 

RBC E10 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGAGCTGCGGTGTGCGAAGTAGGTGC 

RBC E11 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCTCTGTCGGTGTGCGAAGTAGGTGC 

RBC E12 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCTCGAACGGTGTGCGAAGTAGGTGC 

RBC F01 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGTGTCTCCGGTGTGCGAAGTAGGTGC 

RBC F02 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGATTGAGGCGGTGTGCGAAGTAGGTGC 

RBC F03 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACAATCCGGTGTGCGAAGTAGGTGC 

RBC F04 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCACTTGCCGGTGTGCGAAGTAGGTGC 

RBC F05 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTGAACGCCGGTGTGCGAAGTAGGTGC 

RBC F06 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCGTAGCACGGTGTGCGAAGTAGGTGC 

RBC F07 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGGTTCCCGGTGTGCGAAGTAGGTGC 
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RBC F08 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGTACACACGGTGTGCGAAGTAGGTGC 

RBC F09 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGATAGGTCGGTGTGCGAAGTAGGTGC 

RBC F10 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTAGCCTCCGGTGTGCGAAGTAGGTGC 

RBC F11 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTTCAGCCCGGTGTGCGAAGTAGGTGC 

RBC F12 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGATTCACGGTGTGCGAAGTAGGTGC 

RBC G01 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTGAGCCTCGGTGTGCGAAGTAGGTGC 

RBC G02 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAACGCGACGGTGTGCGAAGTAGGTGC 

RBC G03 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCATTGCCGGTGTGCGAAGTAGGTGC 

RBC G04 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGCATCTCGGTGTGCGAAGTAGGTGC 

RBC G05 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTTGGTCTCGGTGTGCGAAGTAGGTGC 

RBC G06 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCAAGGATCGGTGTGCGAAGTAGGTGC 

RBC G07 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGACGTCCGGTGTGCGAAGTAGGTGC 

RBC G08 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAGGTCAACGGTGTGCGAAGTAGGTGC 

RBC G09 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGATGCTACCGGTGTGCGAAGTAGGTGC 

RBC G10 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCTCTGATCGGTGTGCGAAGTAGGTGC 

RBC G11 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCAAGTCCGGTGTGCGAAGTAGGTGC 

RBC G12 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCGAGCTCGGTGTGCGAAGTAGGTGC 

RBC H01 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACAGTCTCGGTGTGCGAAGTAGGTGC 

RBC H02 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCAGATACCGGTGTGCGAAGTAGGTGC 

RBC H03 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTACGTTCCGGTGTGCGAAGTAGGTGC 

RBC H04 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACGGTTCCGGTGTGCGAAGTAGGTGC 

RBC H05 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCATCGTCCGGTGTGCGAAGTAGGTGC 

RBC H06 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTACGCATCGGTGTGCGAAGTAGGTGC 

RBC H07 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCTTAGACCGGTGTGCGAAGTAGGTGC 

RBC H08 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAACTGACCGGTGTGCGAAGTAGGTGC 

RBC H09 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACTTGCACGGTGTGCGAAGTAGGTGC 

RBC H10 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACGCGATCGGTGTGCGAAGTAGGTGC 

RBC H11 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCGACACCGGTGTGCGAAGTAGGTGC 

RBC H12 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACTCAACCGGTGTGCGAAGTAGGTGC 

  



 

 

130 
A.5 Dual-Indexing Platemaps 

This section contains all platemaps for the dual indexing plates (DI plates) used in this study. 

The tables that follow show how the primers from the forward and reverse barcode plates 

(Table A-2) were arrayed to produce the barcode plates. Each entry in the below platemaps 

follows the format “Well-Barcode Plate,” where the “-” delimits the plate and well. An “F” 

after the delimiter indicates that the well preceding the delimiter was from the forward 

barcode plate (“FBC” in Table A-2) and an “R” indicates that the well was from the reverse 

barcode plate (“RBC”). A detailed protocol for how the dual index plates were produced is 

given in Section 2.2.2, Preparation of evSeq Barcode Primer Mixes, above. 
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Table A-3. Platemap for DI01 used in this study.  

DI01 01 02 03 04 05 06 07 08 09 10 11 12 

A A01-F, 
A01-R 

A02-F, 
A02-R 

A03-F, 
A03-R 

A04-F, 
A04-R 

A05-F, 
A05-R 

A06-F, 
A06-R 

A07-F, 
A07-R 

A08-F, 
A08-R 

A09-F, 
A09-R 

A10-F, 
A10-R 

A11-F, 
A11-R 

A12-F, 
A12-R 

B B01-F, 
B01-R 

B02-F, 
B02-R 

B03-F, 
B03-R 

B04-F, 
B04-R 

B05-F, 
B05-R 

B06-F, 
B06-R 

B07-F, 
B07-R 

B08-F, 
B08-R 

B09-F, 
B09-R 

B10-F, 
B10-R 

B11-F, 
B11-R 

B12-F, 
B12-R 

C C01-F, 
C01-R 

C02-F, 
C02-R 

C03-F, 
C03-R 

C04-F, 
C04-R 

C05-F, 
C05-R 

C06-F, 
C06-R 

C07-F, 
C07-R 

C08-F, 
C08-R 

C09-F, 
C09-R 

C10-F, 
C10-R 

C11-F, 
C11-R 

C12-F, 
C12-R 

D D01-F, 
D01-R 

D02-F, 
D02-R 

D03-F, 
D03-R 

D04-F, 
D04-R 

D05-F, 
D05-R 

D06-F, 
D06-R 

D07-F, 
D07-R 

D08-F, 
D08-R 

D09-F, 
D09-R 

D10-F, 
D10-R 

D11-F, 
D11-R 

D12-F, 
D12-R 

E E01-F, 
E01-R 

E02-F, 
E02-R 

E03-F, 
E03-R 

E04-F, 
E04-R 

E05-F, 
E05-R 

E06-F, 
E06-R 

E07-F, 
E07-R 

E08-F, 
E08-R 

E09-F, 
E09-R 

E10-F, 
E10-R 

E11-F, 
E11-R 

E12-F, 
E12-R 

F F01-F, 
F01-R 

F02-F, 
F02-R 

F03-F, 
F03-R 

F04-F, 
F04-R 

F05-F, 
F05-R 

F06-F, 
F06-R 

F07-F, 
F07-R 

F08-F, 
F08-R 

F09-F, 
F09-R 

F10-F, 
F10-R 

F11-F, 
F11-R 

F12-F, 
F12-R 

G G01-F, 
G01-R 

G02-F, 
G02-R 

G03-F, 
G03-R 

G04-F, 
G04-R 

G05-F, 
G05-R 

G06-F, 
G06-R 

G07-F, 
G07-R 

G08-F, 
G08-R 

G09-F, 
G09-R 

G10-F, 
G10-R 

G11-F, 
G11-R 

G12-F, 
G12-R 

H H01-F, 
H01-R 

H02-F, 
H02-R 

H03-F, 
H03-R 

H04-F, 
H04-R 

H05-F, 
H05-R 

H06-F, 
H06-R 

H07-F, 
H07-R 

H08-F, 
H08-R 

H09-F, 
H09-R 

H10-F, 
H10-R 

H11-F, 
H11-R 

H12-F, 
H12-R 
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Table A-4. Platemap for DI02 used in this study.  

DI02 01 02 03 04 05 06 07 08 09 10 11 12 

A A01-F, 
H01-R 

A02-F, 
H02-R 

A03-F, 
H03-R 

A04-F, 
H04-R 

A05-F, 
H05-R 

A06-F, 
H06-R 

A07-F, 
H07-R 

A08-F, 
H08-R 

A09-F, 
H09-R 

A10-F, 
H10-R 

A11-F, 
H11-R 

A12-F, 
H12-R 

B B01-F, 
A01-R 

B02-F, 
A02-R 

B03-F, 
A03-R 

B04-F, 
A04-R 

B05-F, 
A05-R 

B06-F, 
A06-R 

B07-F, 
A07-R 

B08-F, 
A08-R 

B09-F, 
A09-R 

B10-F, 
A10-R 

B11-F, 
A11-R 

B12-F, 
A12-R 

C C01-F, 
B01-R 

C02-F, 
B02-R 

C03-F, 
B03-R 

C04-F, 
B04-R 

C05-F, 
B05-R 

C06-F, 
B06-R 

C07-F, 
B07-R 

C08-F, 
B08-R 

C09-F, 
B09-R 

C10-F, 
B10-R 

C11-F, 
B11-R 

C12-F, 
B12-R 

D D01-F, 
C01-R 

D02-F, 
C02-R 

D03-F, 
C03-R 

D04-F, 
C04-R 

D05-F, 
C05-R 

D06-F, 
C06-R 

D07-F, 
C07-R 

D08-F, 
C08-R 

D09-F, 
C09-R 

D10-F, 
C10-R 

D11-F, 
C11-R 

D12-F, 
C12-R 

E E01-F, 
D01-R 

E02-F, 
D02-R 

E03-F, 
D03-R 

E04-F, 
D04-R 

E05-F, 
D05-R 

E06-F, 
D06-R 

E07-F, 
D07-R 

E08-F, 
D08-R 

E09-F, 
D09-R 

E10-F, 
D10-R 

E11-F, 
D11-R 

E12-F, 
D12-R 

F F01-F, 
E01-R 

F02-F, 
E02-R 

F03-F, 
E03-R 

F04-F, 
E04-R 

F05-F, 
E05-R 

F06-F, 
E06-R 

F07-F, 
E07-R 

F08-F, 
E08-R 

F09-F, 
E09-R 

F10-F, 
E10-R 

F11-F, 
E11-R 

F12-F, 
E12-R 

G G01-F, 
F01-R 

G02-F, 
F02-R 

G03-F, 
F03-R 

G04-F, 
F04-R 

G05-F, 
F05-R 

G06-F, 
F06-R 

G07-F, 
F07-R 

G08-F, 
F08-R 

G09-F, 
F09-R 

G10-F, 
F10-R 

G11-F, 
F11-R 

G12-F, 
F12-R 

H H01-F, 
G01-R 

H02-F, 
G02-R 

H03-F, 
G03-R 

H04-F, 
G04-R 

H05-F, 
G05-R 

H06-F, 
G06-R 

H07-F, 
G07-R 

H08-F, 
G08-R 

H09-F, 
G09-R 

H10-F, 
G10-R 

H11-F, 
G11-R 

H12-F, 
G12-R 
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Table A-5. Platemap for DI03 used in this study.  

DI03 01 02 03 04 05 06 07 08 09 10 11 12 

A A01-F, 
G01-R 

A02-F, 
G02-R 

A03-F, 
G03-R 

A04-F, 
G04-R 

A05-F, 
G05-R 

A06-F, 
G06-R 

A07-F, 
G07-R 

A08-F, 
G08-R 

A09-F, 
G09-R 

A10-F, 
G10-R 

A11-F, 
G11-R 

A12-F, 
G12-R 

B B01-F, 
H01-R 

B02-F, 
H02-R 

B03-F, 
H03-R 

B04-F, 
H04-R 

B05-F, 
H05-R 

B06-F, 
H06-R 

B07-F, 
H07-R 

B08-F, 
H08-R 

B09-F, 
H09-R 

B10-F, 
H10-R 

B11-F, 
H11-R 

B12-F, 
H12-R 

C C01-F, 
A01-R 

C02-F, 
A02-R 

C03-F, 
A03-R 

C04-F, 
A04-R 

C05-F, 
A05-R 

C06-F, 
A06-R 

C07-F, 
A07-R 

C08-F, 
A08-R 

C09-F, 
A09-R 

C10-F, 
A10-R 

C11-F, 
A11-R 

C12-F, 
A12-R 

D D01-F, 
B01-R 

D02-F, 
B02-R 

D03-F, 
B03-R 

D04-F, 
B04-R 

D05-F, 
B05-R 

D06-F, 
B06-R 

D07-F, 
B07-R 

D08-F, 
B08-R 

D09-F, 
B09-R 

D10-F, 
B10-R 

D11-F, 
B11-R 

D12-F, 
B12-R 

E E01-F, 
C01-R 

E02-F, 
C02-R 

E03-F, 
C03-R 

E04-F, 
C04-R 

E05-F, 
C05-R 

E06-F, 
C06-R 

E07-F, 
C07-R 

E08-F, 
C08-R 

E09-F, 
C09-R 

E10-F, 
C10-R 

E11-F, 
C11-R 

E12-F, 
C12-R 

F F01-F, 
D01-R 

F02-F, 
D02-R 

F03-F, 
D03-R 

F04-F, 
D04-R 

F05-F, 
D05-R 

F06-F, 
D06-R 

F07-F, 
D07-R 

F08-F, 
D08-R 

F09-F, 
D09-R 

F10-F, 
D10-R 

F11-F, 
D11-R 

F12-F, 
D12-R 

G G01-F, 
E01-R 

G02-F, 
E02-R 

G03-F, 
E03-R 

G04-F, 
E04-R 

G05-F, 
E05-R 

G06-F, 
E06-R 

G07-F, 
E07-R 

G08-F, 
E08-R 

G09-F, 
E09-R 

G10-F, 
E10-R 

G11-F, 
E11-R 

G12-F, 
E12-R 

H H01-F, 
F01-R 

H02-F, 
F02-R 

H03-F, 
F03-R 

H04-F, 
F04-R 

H05-F, 
F05-R 

H06-F, 
F06-R 

H07-F, 
F07-R 

H08-F, 
F08-R 

H09-F, 
F09-R 

H10-F, 
F10-R 

H11-F, 
F11-R 

H12-F, 
F12-R 
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Table A-6. Platemap for DI04 used in this study.  

DI04 01 02 03 04 05 06 07 08 09 10 11 12 

A A01-F, 
F01-R 

A02-F, 
F02-R 

A03-F, 
F03-R 

A04-F, 
F04-R 

A05-F, 
F05-R 

A06-F, 
F06-R 

A07-F, 
F07-R 

A08-F, 
F08-R 

A09-F, 
F09-R 

A10-F, 
F10-R 

A11-F, 
F11-R 

A12-F, 
F12-R 

B B01-F, 
G01-R 

B02-F, 
G02-R 

B03-F, 
G03-R 

B04-F, 
G04-R 

B05-F, 
G05-R 

B06-F, 
G06-R 

B07-F, 
G07-R 

B08-F, 
G08-R 

B09-F, 
G09-R 

B10-F, 
G10-R 

B11-F, 
G11-R 

B12-F, 
G12-R 

C C01-F, 
H01-R 

C02-F, 
H02-R 

C03-F, 
H03-R 

C04-F, 
H04-R 

C05-F, 
H05-R 

C06-F, 
H06-R 

C07-F, 
H07-R 

C08-F, 
H08-R 

C09-F, 
H09-R 

C10-F, 
H10-R 

C11-F, 
H11-R 

C12-F, 
H12-R 

D D01-F, 
A01-R 

D02-F, 
A02-R 

D03-F, 
A03-R 

D04-F, 
A04-R 

D05-F, 
A05-R 

D06-F, 
A06-R 

D07-F, 
A07-R 

D08-F, 
A08-R 

D09-F, 
A09-R 

D10-F, 
A10-R 

D11-F, 
A11-R 

D12-F, 
A12-R 

E E01-F, 
B01-R 

E02-F, 
B02-R 

E03-F, 
B03-R 

E04-F, 
B04-R 

E05-F, 
B05-R 

E06-F, 
B06-R 

E07-F, 
B07-R 

E08-F, 
B08-R 

E09-F, 
B09-R 

E10-F, 
B10-R 

E11-F, 
B11-R 

E12-F, 
B12-R 

F F01-F, 
C01-R 

F02-F, 
C02-R 

F03-F, 
C03-R 

F04-F, 
C04-R 

F05-F, 
C05-R 

F06-F, 
C06-R 

F07-F, 
C07-R 

F08-F, 
C08-R 

F09-F, 
C09-R 

F10-F, 
C10-R 

F11-F, 
C11-R 

F12-F, 
C12-R 

G G01-F, 
D01-R 

G02-F, 
D02-R 

G03-F, 
D03-R 

G04-F, 
D04-R 

G05-F, 
D05-R 

G06-F, 
D06-R 

G07-F, 
D07-R 

G08-F, 
D08-R 

G09-F, 
D09-R 

G10-F, 
D10-R 

G11-F, 
D11-R 

G12-F, 
D12-R 

H H01-F, 
E01-R 

H02-F, 
E02-R 

H03-F, 
E03-R 

H04-F, 
E04-R 

H05-F, 
E05-R 

H06-F, 
E06-R 

H07-F, 
E07-R 

H08-F, 
E08-R 

H09-F, 
E09-R 

H10-F, 
E10-R 

H11-F, 
E11-R 

H12-F, 
E12-R 
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Table A-7. Platemap for DI05 used in this study.  

DI05 01 02 03 04 05 06 07 08 09 10 11 12 

A A01-F, 
E01-R 

A02-F, 
E02-R 

A03-F, 
E03-R 

A04-F, 
E04-R 

A05-F, 
E05-R 

A06-F, 
E06-R 

A07-F, 
E07-R 

A08-F, 
E08-R 

A09-F, 
E09-R 

A10-F, 
E10-R 

A11-F, 
E11-R 

A12-F, 
E12-R 

B B01-F, 
F01-R 

B02-F, 
F02-R 

B03-F, 
F03-R 

B04-F, 
F04-R 

B05-F, 
F05-R 

B06-F, 
F06-R 

B07-F, 
F07-R 

B08-F, 
F08-R 

B09-F, 
F09-R 

B10-F, 
F10-R 

B11-F, 
F11-R 

B12-F, 
F12-R 

C C01-F, 
G01-R 

C02-F, 
G02-R 

C03-F, 
G03-R 

C04-F, 
G04-R 

C05-F, 
G05-R 

C06-F, 
G06-R 

C07-F, 
G07-R 

C08-F, 
G08-R 

C09-F, 
G09-R 

C10-F, 
G10-R 

C11-F, 
G11-R 

C12-F, 
G12-R 

D D01-F, 
H01-R 

D02-F, 
H02-R 

D03-F, 
H03-R 

D04-F, 
H04-R 

D05-F, 
H05-R 

D06-F, 
H06-R 

D07-F, 
H07-R 

D08-F, 
H08-R 

D09-F, 
H09-R 

D10-F, 
H10-R 

D11-F, 
H11-R 

D12-F, 
H12-R 

E E01-F, 
A01-R 

E02-F, 
A02-R 

E03-F, 
A03-R 

E04-F, 
A04-R 

E05-F, 
A05-R 

E06-F, 
A06-R 

E07-F, 
A07-R 

E08-F, 
A08-R 

E09-F, 
A09-R 

E10-F, 
A10-R 

E11-F, 
A11-R 

E12-F, 
A12-R 

F F01-F, 
B01-R 

F02-F, 
B02-R 

F03-F, 
B03-R 

F04-F, 
B04-R 

F05-F, 
B05-R 

F06-F, 
B06-R 

F07-F, 
B07-R 

F08-F, 
B08-R 

F09-F, 
B09-R 

F10-F, 
B10-R 

F11-F, 
B11-R 

F12-F, 
B12-R 

G G01-F, 
C01-R 

G02-F, 
C02-R 

G03-F, 
C03-R 

G04-F, 
C04-R 

G05-F, 
C05-R 

G06-F, 
C06-R 

G07-F, 
C07-R 

G08-F, 
C08-R 

G09-F, 
C09-R 

G10-F, 
C10-R 

G11-F, 
C11-R 

G12-F, 
C12-R 

H H01-F, 
D01-R 

H02-F, 
D02-R 

H03-F, 
D03-R 

H04-F, 
D04-R 

H05-F, 
D05-R 

H06-F, 
D06-R 

H07-F, 
D07-R 

H08-F, 
D08-R 

H09-F, 
D09-R 

H10-F, 
D10-R 

H11-F, 
D11-R 

H12-F, 
D12-R 
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Table A-8. Platemap for DI06 used in this study.  

DI06 01 02 03 04 05 06 07 08 09 10 11 12 

A A01-F, 
D01-R 

A02-F, 
D02-R 

A03-F, 
D03-R 

A04-F, 
D04-R 

A05-F, 
D05-R 

A06-F, 
D06-R 

A07-F, 
D07-R 

A08-F, 
D08-R 

A09-F, 
D09-R 

A10-F, 
D10-R 

A11-F, 
D11-R 

A12-F, 
D12-R 

B B01-F, 
E01-R 

B02-F, 
E02-R 

B03-F, 
E03-R 

B04-F, 
E04-R 

B05-F, 
E05-R 

B06-F, 
E06-R 

B07-F, 
E07-R 

B08-F, 
E08-R 

B09-F, 
E09-R 

B10-F, 
E10-R 

B11-F, 
E11-R 

B12-F, 
E12-R 

C C01-F, 
F01-R 

C02-F, 
F02-R 

C03-F, 
F03-R 

C04-F, 
F04-R 

C05-F, 
F05-R 

C06-F, 
F06-R 

C07-F, 
F07-R 

C08-F, 
F08-R 

C09-F, 
F09-R 

C10-F, 
F10-R 

C11-F, 
F11-R 

C12-F, 
F12-R 

D D01-F, 
G01-R 

D02-F, 
G02-R 

D03-F, 
G03-R 

D04-F, 
G04-R 

D05-F, 
G05-R 

D06-F, 
G06-R 

D07-F, 
G07-R 

D08-F, 
G08-R 

D09-F, 
G09-R 

D10-F, 
G10-R 

D11-F, 
G11-R 

D12-F, 
G12-R 

E E01-F, 
H01-R 

E02-F, 
H02-R 

E03-F, 
H03-R 

E04-F, 
H04-R 

E05-F, 
H05-R 

E06-F, 
H06-R 

E07-F, 
H07-R 

E08-F, 
H08-R 

E09-F, 
H09-R 

E10-F, 
H10-R 

E11-F, 
H11-R 

E12-F, 
H12-R 

F F01-F, 
A01-R 

F02-F, 
A02-R 

F03-F, 
A03-R 

F04-F, 
A04-R 

F05-F, 
A05-R 

F06-F, 
A06-R 

F07-F, 
A07-R 

F08-F, 
A08-R 

F09-F, 
A09-R 

F10-F, 
A10-R 

F11-F, 
A11-R 

F12-F, 
A12-R 

G G01-F, 
B01-R 

G02-F, 
B02-R 

G03-F, 
B03-R 

G04-F, 
B04-R 

G05-F, 
B05-R 

G06-F, 
B06-R 

G07-F, 
B07-R 

G08-F, 
B08-R 

G09-F, 
B09-R 

G10-F, 
B10-R 

G11-F, 
B11-R 

G12-F, 
B12-R 

H H01-F, 
C01-R 

H02-F, 
C02-R 

H03-F, 
C03-R 

H04-F, 
C04-R 

H05-F, 
C05-R 

H06-F, 
C06-R 

H07-F, 
C07-R 

H08-F, 
C08-R 

H09-F, 
C09-R 

H10-F, 
C10-R 

H11-F, 
C11-R 

H12-F, 
C12-R 
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Table A-9. Platemap for DI07 used in this study.  

DI07 01 02 03 04 05 06 07 08 09 10 11 12 

A A01-F, 
C01-R 

A02-F, 
C02-R 

A03-F, 
C03-R 

A04-F, 
C04-R 

A05-F, 
C05-R 

A06-F, 
C06-R 

A07-F, 
C07-R 

A08-F, 
C08-R 

A09-F, 
C09-R 

A10-F, 
C10-R 

A11-F, 
C11-R 

A12-F, 
C12-R 

B B01-F, 
D01-R 

B02-F, 
D02-R 

B03-F, 
D03-R 

B04-F, 
D04-R 

B05-F, 
D05-R 

B06-F, 
D06-R 

B07-F, 
D07-R 

B08-F, 
D08-R 

B09-F, 
D09-R 

B10-F, 
D10-R 

B11-F, 
D11-R 

B12-F, 
D12-R 

C C01-F, 
E01-R 

C02-F, 
E02-R 

C03-F, 
E03-R 

C04-F, 
E04-R 

C05-F, 
E05-R 

C06-F, 
E06-R 

C07-F, 
E07-R 

C08-F, 
E08-R 

C09-F, 
E09-R 

C10-F, 
E10-R 

C11-F, 
E11-R 

C12-F, 
E12-R 

D D01-F, 
F01-R 

D02-F, 
F02-R 

D03-F, 
F03-R 

D04-F, 
F04-R 

D05-F, 
F05-R 

D06-F, 
F06-R 

D07-F, 
F07-R 

D08-F, 
F08-R 

D09-F, 
F09-R 

D10-F, 
F10-R 

D11-F, 
F11-R 

D12-F, 
F12-R 

E E01-F, 
G01-R 

E02-F, 
G02-R 

E03-F, 
G03-R 

E04-F, 
G04-R 

E05-F, 
G05-R 

E06-F, 
G06-R 

E07-F, 
G07-R 

E08-F, 
G08-R 

E09-F, 
G09-R 

E10-F, 
G10-R 

E11-F, 
G11-R 

E12-F, 
G12-R 

F F01-F, 
H01-R 

F02-F, 
H02-R 

F03-F, 
H03-R 

F04-F, 
H04-R 

F05-F, 
H05-R 

F06-F, 
H06-R 

F07-F, 
H07-R 

F08-F, 
H08-R 

F09-F, 
H09-R 

F10-F, 
H10-R 

F11-F, 
H11-R 

F12-F, 
H12-R 

G G01-F, 
A01-R 

G02-F, 
A02-R 

G03-F, 
A03-R 

G04-F, 
A04-R 

G05-F, 
A05-R 

G06-F, 
A06-R 

G07-F, 
A07-R 

G08-F, 
A08-R 

G09-F, 
A09-R 

G10-F, 
A10-R 

G11-F, 
A11-R 

G12-F, 
A12-R 

H H01-F, 
B01-R 

H02-F, 
B02-R 

H03-F, 
B03-R 

H04-F, 
B04-R 

H05-F, 
B05-R 

H06-F, 
B06-R 

H07-F, 
B07-R 

H08-F, 
B08-R 

H09-F, 
B09-R 

H10-F, 
B10-R 

H11-F, 
B11-R 

H12-F, 
B12-R 
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Table A-10. Platemap for DI08 used in this study.  

DI08 01 02 03 04 05 06 07 08 09 10 11 12 

A A01-F, 
B01-R 

A02-F, 
B02-R 

A03-F, 
B03-R 

A04-F, 
B04-R 

A05-F, 
B05-R 

A06-F, 
B06-R 

A07-F, 
B07-R 

A08-F, 
B08-R 

A09-F, 
B09-R 

A10-F, 
B10-R 

A11-F, 
B11-R 

A12-F, 
B12-R 

B B01-F, 
C01-R 

B02-F, 
C02-R 

B03-F, 
C03-R 

B04-F, 
C04-R 

B05-F, 
C05-R 

B06-F, 
C06-R 

B07-F, 
C07-R 

B08-F, 
C08-R 

B09-F, 
C09-R 

B10-F, 
C10-R 

B11-F, 
C11-R 

B12-F, 
C12-R 

C C01-F, 
D01-R 

C02-F, 
D02-R 

C03-F, 
D03-R 

C04-F, 
D04-R 

C05-F, 
D05-R 

C06-F, 
D06-R 

C07-F, 
D07-R 

C08-F, 
D08-R 

C09-F, 
D09-R 

C10-F, 
D10-R 

C11-F, 
D11-R 

C12-F, 
D12-R 

D D01-F, 
E01-R 

D02-F, 
E02-R 

D03-F, 
E03-R 

D04-F, 
E04-R 

D05-F, 
E05-R 

D06-F, 
E06-R 

D07-F, 
E07-R 

D08-F, 
E08-R 

D09-F, 
E09-R 

D10-F, 
E10-R 

D11-F, 
E11-R 

D12-F, 
E12-R 

E E01-F, 
F01-R 

E02-F, 
F02-R 

E03-F, 
F03-R 

E04-F, 
F04-R 

E05-F, 
F05-R 

E06-F, 
F06-R 

E07-F, 
F07-R 

E08-F, 
F08-R 

E09-F, 
F09-R 

E10-F, 
F10-R 

E11-F, 
F11-R 

E12-F, 
F12-R 

F F01-F, 
G01-R 

F02-F, 
G02-R 

F03-F, 
G03-R 

F04-F, 
G04-R 

F05-F, 
G05-R 

F06-F, 
G06-R 

F07-F, 
G07-R 

F08-F, 
G08-R 

F09-F, 
G09-R 

F10-F, 
G10-R 

F11-F, 
G11-R 

F12-F, 
G12-R 

G G01-F, 
H01-R 

G02-F, 
H02-R 

G03-F, 
H03-R 

G04-F, 
H04-R 

G05-F, 
H05-R 

G06-F, 
H06-R 

G07-F, 
H07-R 

G08-F, 
H08-R 

G09-F, 
H09-R 

G10-F, 
H10-R 

G11-F, 
H11-R 

G12-F, 
H12-R 

H H01-F, 
A01-R 

H02-F, 
A02-R 

H03-F, 
A03-R 

H04-F, 
A04-R 

H05-F, 
A05-R 

H06-F, 
A06-R 

H07-F, 
A07-R 

H08-F, 
A08-R 

H09-F, 
A09-R 

H10-F, 
A10-R 

H11-F, 
A11-R 

H12-F, 
A12-R 
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A.6 Supplemental Tables 

Table A-11. evSeq captures off-target mutations. This table is derived from the 
“AminoAcids_Coupled_Max.csv” output file from evSeq for the TrpB run, and shows all confident 
(defined as ≥0.80 alignment frequency and ≥10 total reads) unexpected mutations captured by 
evSeq; some columns have been removed. Note in the “VariantCombo” column that the amino acid 
at the expected mutagenized position has a “?” as the original amino acid—this is because the evSeq 
run generating this data was told the variable positions with the “NNN” convention. For unexpected 
variable positions, both the original amino acid and the new amino acid are shown.  

IndexPlate Plate Well VariantCombo AlignmentFrequency WellSeqDepth 
DI02 Lib2_118X E03 ?118V_D164G 0.964286 28 

DI04 Lib4_166X B02 P154S_?166Q 0.977011 87 

DI08 Lib8_301X H11 G250D_?301L 0.99537 216 

 

Table A-12. Primer sequences for TrpB saturation mutagenesis library construction. 
Site Direction Sequence 
105 Forward GGCAAAACCCGTATCATTGCTNNNACGGGTGCTGGTCAGCAC 

105 Reverse AGCAATGATACGGGTTTTGCCCATTAGTTTTGCCAGCAGAACCTGGC 

118 Forward GGCGTAGCAACTGCTACCNNNGCAGCGCTGTTCGGTATGGAATGTGTAATCTATA
TGG 

118 Reverse GGTAGCAGTTGCTACGCCGTGCTGACCAGC 

162 Forward GTAAAATCCGGTAGCCGTACCNNNAAAGACGCAATTGACGAAGCTCTG 

162 Reverse GGTACGGCTACCGGATTTTACCGGTACAACTTTAGCACCCAGCAG 

166 Forward CGTACCCTGAAAGACGCANNNGACGAAGCTCTGCGTGACTGGATTACCAACC 

166 Reverse TGCGTCTTTCAGGGTACGGCTACCGGATTTTACCGG 

184 Forward CTGCAGACCACCTATTACGTGNNNGGCTCTGTGGTTGGTCC 

184 Reverse CACGTAATAGGTGGTCTGCAGGTTGGTAATCCAGTCACGCAGAGCT 

228 Forward TACATCGTTGCGTGCGTGNNNGGTGGTTCTAACGCTGCC 

228 Reverse CACGCACGCAACGATGTAGTCCGGCAGACGGCCTTCT 

292 Forward GATGACTGGGGTCAAGTTCAGGTGNNNCACTCCGTCTCCGCTG 

292 Reverse CACCTGAACTTGACCCCAGTCATCCTGCAGAACGAACGTCTTAGAACCG 

301 Forward TCCGCTGGCCTGGACNNNTCCGGTGTCGGTCCGGA 

301 Reverse GTCCAGGCCAGCGGAGACGGAGTGGCTCACCTGAACT 

 

Table A-13. Primers specific to the ampicillin resistance gene of pET22b(+) used in TrpB 
library construction. 

Site Direction Sequence 
AmpR Forward CCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGC 

AmpR Reverse CGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAG 
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Table A-14. Inner primers used for evSeq library preparation from the TrpB site-saturation 
mutagenesis libraries. 

Name Direction Sites Sequence 
evSeq_102_f Forward 105, 118, 

162, 166, 
184 

CACCCAAGACCACTCTCCGGGCAAAACTAATGGGCAAAA
CCCG 

evSeq_184_r Reverse 105, 118, 
162, 166, 
184 

CGGTGTGCGAAGTAGGTGCGATGCGGACCAACCACAGAG 

evSeq_226_f Forward 228, 292, 
301 

CACCCAAGACCACTCTCCGGGCCGGACTACATCGTTGCG 

evSeq_304_r Reverse 228, 292, 
301 

CGGTGTGCGAAGTAGGTGCCAATAGGCGTGTTCCGGACC 

 

Table A-15. The evSeq barcode plates used for sequencing each position of the TrpB site-
saturation mutagenesis libraries. 

Position targeted Barcode plate 
105 DI01 
118 DI02 
162 DI03 
166 DI04 
184 DI05 
228 DI06 
292 DI07 
301 DI08 
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Table A-16. Mutagenic primers used for the construction of the RmaNOD four-site-
saturation library. Note that the names of the primers are delimited by “-” and that the delimited 
sections reflect the mutagenized positions, the degenerate codons at those positions, and the 
direction of the primer on the template DNA ([Positions]-[Codon1]-[Codon2]-[Direction]). 

Name Sequence 
S28M31-NDT-NDT-F AAACACTCAGTCGCTATTNDTGCCACGNDTGGTCGGCTGCTTTTCG 

S28M31-NDT-VHG-F AAACACTCAGTCGCTATTNDTGCCACGVHGGGTCGGCTGCTTTTCG 

S28M31-NDT-TGG-F AAACACTCAGTCGCTATTNDTGCCACGTGGGGTCGGCTGCTTTTCG 

S28M31-VHG-NDT-F AAACACTCAGTCGCTATTVHGGCCACGNDTGGTCGGCTGCTTTTCG 

S28M31-VHG-VHG-F AAACACTCAGTCGCTATTVHGGCCACGVHGGGTCGGCTGCTTTTCG 

S28M31-VHG-TGG-F AAACACTCAGTCGCTATTVHGGCCACGTGGGGTCGGCTGCTTTTCG 

S28M31-TGG-NDT-F AAACACTCAGTCGCTATTTGGGCCACGNDTGGTCGGCTGCTTTTCG 

S28M31-TGG-VHG-F AAACACTCAGTCGCTATTTGGGCCACGVHGGGTCGGCTGCTTTTCG 

S28M31-TGG-TGG-F AAACACTCAGTCGCTATTTGGGCCACGTGGGGTCGGCTGCTTTTCG 

Q52L56-AHN-AHN-R GGCCAACAGGGCCGACGCAHNCTTGTGTATAHNTCTCTCAGGAAGTTCAAACAAG 

Q52L56-AHN-CDB-R GGCCAACAGGGCCGACGCAHNCTTGTGTATCDBTCTCTCAGGAAGTTCAAACAAG 

Q52L56-AHN-CCA-R GGCCAACAGGGCCGACGCAHNCTTGTGTATCCATCTCTCAGGAAGTTCAAACAAG 

Q52L56-CDB-AHN-R GGCCAACAGGGCCGACGCCDBCTTGTGTATAHNTCTCTCAGGAAGTTCAAACAAG 

Q52L56-CDB-CDB-R GGCCAACAGGGCCGACGCCDBCTTGTGTATCDBTCTCTCAGGAAGTTCAAACAAG 

Q52L56-CDB-CCA-R GGCCAACAGGGCCGACGCCDBCTTGTGTATCCATCTCTCAGGAAGTTCAAACAAG 

Q52L56-CCA-AHN-R GGCCAACAGGGCCGACGCCCACTTGTGTATAHNTCTCTCAGGAAGTTCAAACAAG 

Q52L56-CCA-CDB-R GGCCAACAGGGCCGACGCCCACTTGTGTATCDBTCTCTCAGGAAGTTCAAACAAG 

Q52L56-CCA-CCA-R GGCCAACAGGGCCGACGCCCACTTGTGTATCCATCTCTCAGGAAGTTCAAACAAG 

 

Table A-17. Additional primers used to build flanking fragments during construction of the 
four-site-saturation RmaNOD library. 

Flanking Fragment Primer Type Primer Name Sequence 

0 Forward Universal-F CCAACTTACTTCTGACAACGATCGGAGGAC
CGAAGGAGCTAACCGCTTTTTTGC 

0 Reverse S28M31_Const-R AATAGCGACTGAGTGTTTCTGCAGTGCAGG
CAC 

1 Forward L56_Const-F GCGTCGGCCCTGTTGGCCTACGCCCGTAGT
ATCGACAACCC 

1 Reverse Universal-R CGATCGTTGTCAGAAGTAAGTTGGCCGCAG
TGTTATCACTCATGGTTATGGCAG 

 

Table A-18. Inner primers used for evSeq library preparation from the RmaNOD four-site-
saturation mutagenesis library. 

Plates Forward primer Reverse Primer 
All plates CACCCAAGACCACTCTCCGGCACTGCAGAAA

CACTCAGTCG 
CGGTGTGCGAAGTAGGTGCACTACGGGCG
TAGGCCAAC 
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Table A-19. The evSeq barcode plates used for sequencing each position of the RmaNOD 
four-site-saturation mutagenesis library. 

Position targeted Barcode plate 
Plate #1 DI01 
Plate #2 DI02 
Plate #3 DI03 
Plate #4 DI04 
Plate #5 DI05 
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Appendix B 

SUPPLEMENTARY INFORMATION FOR CHAPTER III 

B.1 General procedures 

B.1.1 Escherichia coli Trp knockout strain construction 

An initial Trp auxotroph strain used in preliminary assays was constructed from the NEB5-

α starting strain via λ red-mediated gene replacement.1 Both trpA and trpB were deleted and 

replaced with a Chloramphenicol resistance cassette using primers based on those reported 

for deletion of trpA and trpB in the Keio collection. The Chloramphenicol resistance cassette 

was amplified out of pKD3 with NEB5α_TrpAB::CamR_fwd and 

NEB5α_TrpAB::CamR_rev and used as the linear DNA for homologous recombination. 

Gene deletion was confirmed via colony PCR and Sanger sequencing with 

NEB5α_TrpAB_external_fwd and NEB5α_TrpAB_external_rev. All primers used can be 

found in Table S1. This strain was used for preliminary single- and double-site saturation for 

plate-based growth assays and pooled, sequencing-based growth assays. 

Due to unusually slow growth, we observed with larger libraries in the NEB5-α Trp 

auxotroph, we decided to build a new Trp auxotroph strain with Kanamycin resistance to see 

if this could be remedied. Starting with a K-12 derivative and the parent strain for the Keio 

collection of single gene knockouts,2 BW25113, we performed λ red-mediated gene 

replacement 1. Both trpA and trpB were deleted and replaced with a Kanamycin resistance 

cassette using primers based on those reported for deletion of trpA and trpB in the Keio 

collection. The Kanamycin resistance cassette was amplified out of pKD13 with 

BW25113_TrpAB::KanR_fwd and BW25113_TrpAB::KanR_rev and used as the linear 

DNA for homologous recombination. Gene deletion was confirmed via colony PCR and 
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Sanger sequencing with BW25113_TrpAB_external_fwd, BW25113_TrpAB_external_rev, 

BW25113_TrpAB_internal_fwd, and BW25113_internal_rev. All primers used can be 

found in Table S1. This strain was used as the host organism for all reported triple- and 

quadruple-site saturation landscapes from pooled growth assays. 

The protocol “Recombineering/Lambda red-mediated gene replacement” from 

OpenWetWare was used to construct both knockouts following the system from Datsenko 

& Wanner.1  

B.1.2 Tm9D8* plasmid construction 

In vitro assays and protein expression for purification were all performed with a pET22b(+) 

plasmid harboring TmTrpB genes as previously reported for Tm9D8*.3 For use in the growth 

assays, we constructed an arabinose-inducible TrpB expression vector with the pBAD24 

backbone. pBAD24-sfGFPx1 was a gift from Sankar Adhya & Francisco Malagon (Addgene 

plasmid # 51558; http://n2t.net/addgene:51558; RRID: Addgene 51558). The gene for 

Tm9D8* was exchanged for sfGFPx1 by amplification of Tm9D8* with 

TrpB_pBAD24_insert_fwd and TrpB_pBAD24_insert_rev and backbone amplification of 

pBAD24 with TrpB_pBAD24_bb_fwd and TrpB_pBAD24_bb_rev (primers found in Table 

S3). These pieces were then assembled into a circular plasmid via a two-piece Gibson 

assembly.4 

B.1.3 Deep-well plate protein expression 

First, to prepare overnight culture plates, E. coli colonies harboring TrpB variants in 

pET22b(+) vectors are picked into separate wells of a 96-well deep-well plate containing 

300-500 µL of Luria Broth containing 100 µg/mL carbenicillin (hereafter referred to as 
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LBcarb), covered with a microporous film, and grown overnight at 37 °C, 220 rpm, and 80% 

humidity for 16–20 h. For expression plates, new deep-well plates are prepared with 630 µL 

of Terrific Broth containing 100 µg/mL carbenicillin (hereafter referred to as TBcarb) and 20 

µL of the overnight cultures is dispensed to each well. Expression plates are then incubated 

at 37 °C, 220 rpm, and 80% humidity for 6 h before addition of 50 µL of 14 mM IPTG in 

TBcarb (final concentration 1 mM). These expression plates were then incubated at 30 °C, 250 

rpm, and ambient humidity for 22 h, spun down for 5–10 min at 4500 g (until pellets form 

and supernatant is clarified). Supernatant was decanted and expression plates were frozen at 

-20 °C for later use. 

B.1.4 Preliminary in vitro rate of tryptophan formation assays 

Single-site saturation preliminary data were obtained from Wittmann et al.5  and double-site 

saturation preliminary data were obtained using the same procedure. Sequences were 

obtained using evSeq.5 

B.1.5 Preparation of Trp auxotroph electrocompetent cells and electroporation 

On day 1, the strain of interest was streaked onto an LB+agar plate containing the requisite 

antibiotic and grown overnight at 37 °C. On day 2, a single colony is picked into LB 

containing the requisite antibiotic and grown overnight at 37 °C and 220 rpm. On day 3, the 

overnight culture is diluted between 50- and 500-fold into Super Optimal Broth (SOB) 

medium6 and grown at 18 °C and 220 rpm until OD ~0.4–0.6. Cultures were then plunged 

into ice-cold water for 10+ minutes until they reached 4 °C and then spun down at 5000g for 

5 min at 4 °C. The supernatant was decanted, and cells were resuspended in cold, sterile 

water to 1/5–1/10 the original volume. Cultures were spun down resuspended a second time 
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with the same procedure. One final spin was performed, and cells were resuspended in 1/100 

the original volume (100X concentrated). Once prepared, cells were used fresh on the day 

they were prepared. 

Electroporation was performed by combining 50 µL of cells with 1–2 µL of plasmid in a 1 

or 2 mM in a chilled electroporation cuvette (USA Scientific, 9104-1050 or 9104-5050) and 

applying current (BioRad MicroPulserTM, Catalog # 165-2100, Ec1 or Ec3, respectively). 

Cells were then rescued via resuspension in Super Optimal broth with Catabolite repression 

(SOB medium with 20 mM glucose: SOC) and incubated for 15–60 min before plating onto 

LB+agar or transferring to overnight cultures. 

B.1.6 Preliminary plate-based independent growth assays 

Assay media was composed of 1X M9 Salts (Sigma Aldrich, Catalog # M6030), 0.74 g/L 

dropout supplement -Trp (Takara Bio Inc., Catalog # 630413), 2 mM MgSO4, 100 µM CaCl2, 

and 0.4% glycerol (hereafter referred to as Trp DO Media). To prepare this media, M9 salts, 

dropout supplement -Trp and glycerol were sterile filtered and stored at 4 °C. MgSO4 and 

CaCl2 1 M stock solutions were sterilized by autoclaving and added to the media directly 

before beginning an assay. Antibiotics to select for the Trp auxotroph strain (35 µg/mL 

kanamycin) and the TrpB-containing plasmid (100 µg/mL carbenicillin) were also added to 

the media. Using pBAD24-Tm9D8*, arabinose concentrations from 0.001% to 0.1% and 

indole concentrations from 10 µM to 1000 µM were tested before choosing final 

concentrations of 0.05% arabinose (stock concentration 20% in M9) and 200 µM indole 

(stock concentration 500 mM in DMSO). This final mix will be hereafter referred to as Trp-

dropout media. 
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For the assay, electrocompetent Trp auxotroph cells were transformed with the relevant 

pBAD24-TrpB library and plated onto LB+agar with 35 µg/mL kanamycin and 100 µg/mL 

carbenicillin. Single colonies were picked into liquid LBcarb,kan culture and grown 

overnight at 37 °C, 220 rpm, and 80% humidity for 16–20 h. Cultures were diluted 1:20–

1:200 into Trp-dropout media into UV-transparent microplates (Caplugs/Evergreen Catalog 

# 290-8120-0AF) to a total volume of 200 µL. Plates were then incubated at 37 °C and 240 

rpm with a 2 mm amplitude in a Tecan® SPARKTM. Absorbance at 600 nm was measured 

every 10 min for 12–48 h to monitor cell growth. Between readings the plate remained 

covered. 

B.1.7 DNA library construction 

Libraries were constructed via simultaneous site-saturation mutagenesis using either NNK 

degenerate primers or the 22c-trick.7 Unless otherwise stated, the following default PCR mix 

was used for all reactions, which used the Phusion® High-Fidelity DNA Polymerase 

according to manufacturer recommendations (New England Biolabs, Catalog # M0530L). 

Reagent Volume (µL) 

5x HF Buffer 10 

DMSO (100%) 1.5 

dNTPs (10 mM) 1 

Template variable (x) 

Phusion 0.5 

Forward primer (10 µM) 2.5 

Reverse primer (10 µM) 2.5 

PCR water 32 - x 

Total 50 
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To build the single- and double-site saturation DNA libraries were built with the 22-codon 

trick7 using primers in Table B-2. Extension time was varied based on fragment length. 

Temperature (°C) Time (s) Cycles 

98 00:30 1 

98 00:10 1 

55 

Ramp speed: 1 °C / s 

00:15 

72 variable 

98 00:10 29 

63 00:15 

72 variable 

72 05:00 1 

10 infinite 1 

 

Each fragment was DpnI digested according to manufacturer directions (New England 

Biolabs, Catalog # R0176L) and run on a 1% agarose gel containing SYBRTM Gold Nucleic 

Acid Gel Stain (ThermoFisher Scientific, Catalog # S11494). The relevant bands were 

excised, and the DNA fragments were purified using a Zymoclean Gel DNA Recovery Kit 

(Zymo Research, Catalog # D4002). Products were assembled into circular plasmid using 

NEBuilder® HiFi DNA Assembly (New England Biolabs, Catalog # E2621X) following 

manufacturer instructions. The resultant product was cleaned and concentrated with a DNA 

Clean & Concentrator®-5 kit (Zymo Research, Catalog # D4004). 
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When scaling up to larger DNA libraries composed of more possible sequences, we wanted 

to construct a relatively uniform input library and reduce the bias for the parent sequence; 

therefore, we adopted a two-step PCR approach used for both the triple- and quadruple site 

saturation libraries. 

For the triple-site libraries, to produce the first fragment, an inner PCR (termed “gap” PCR) 

was performed where none of the variable region was included, using the gap primer (F gap) 

for its respective library (Table B-5) along with AmpR_internal_rev (Table B-2). The 

template plasmid used for all libraries was pBAD24-Tm9D8* except libraries F and G, which 

used a 301X plasmid library as the template sequence (prepared following the same method 

as described for single- and double-site saturation libraries using SSM primers (Table B-2). 

The following thermal cycler protocol was used for all reactions: 

Temperature (°C) Time (s) Cycles 

98 00:30 1 

98 00:10 

5 
55 à 59 (+1 °C / cycle) 

ramp speed: 1 °C / s 
00:15 

72 00:45 

98 00:10 

25 59 00:15 

72 00:45 

72 10:00 1 

10 infinite 1 
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The resulting PCR product was DpnI digested according to manufacturer directions (New 

England Biolabs, Catalog # R0176L) and run on a 1% agarose gel containing SYBRTM Gold 

Nucleic Acid Gel Stain (ThermoFisher Scientific, Catalog # S11494). The relevant bands 

were excised, and the DNA fragments were purified using a Zymoclean Gel DNA Recovery 

Kit (Zymo Research, Catalog # D4002). This fragment was then used as template in a second 

PCR using the same reaction mix and thermal cycler settings but exchanging the “F gap” 

primer for the “F library” primer. This product was also run on a 1% agarose gel containing 

SYBRTM Gold Nucleic Acid Gel Stain, excised, and purified with a Zymoclean Gel DNA 

Recovery Kit. 

The second fragment was constructed in a single step using the same reaction mix as used 

for the first fragment. For these reactions, the forward primer was the AmpR_internal_fwd 

(Table B-2) and the reverse primer was a library specific “R primer” based on Table B-5. 

The thermal cycler conditions used are stated below: 

Temperature (°C) Time (s) Cycles 

98 00:30 1 

98 00:10 

30 72 00:15 

72 02:15 

72 10:00 1 

10 infinite 1 

This product was also run on a 1% agarose gel containing SYBRTM Gold Nucleic Acid Gel 

Stain, excised, and purified with a Zymoclean Gel DNA Recovery Kit.  
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Due to the design of the quadruple-site saturation library having two sets of two variable 

sites, the method for building it was slightly different than that used for the triple-site 

saturation libraries. The same two-step approached was used, where the inner region between 

the variable regions was first amplified without the regions to be diversified. This PCR used 

the default PCR mix, “F Gap” and “R Gap” primers from Table B-6, the pBAD24-Tm9D8* 

as template, and the following PCR protocol: 

Temperature (°C) Time (s) Cycles 

98 00:30 1 

98 00:10 

5 
72 à 68 (-1 °C / cycle) 

ramp speed: 1 °C / s 
00:15 

72 00:30 

98 00:10 

25 68 00:15 

72 00:30 

72 10:00 1 

10 infinite 1 

 

The resulting PCR product was DpnI digested according to manufacturer directions (New 

England Biolabs, Catalog # R0176L) and run on a 1% agarose gel containing SYBRTM Gold 

Nucleic Acid Gel Stain (ThermoFisher Scientific, Catalog # S11494). The relevant bands 

were excised, and the DNA fragments were purified using a Zymoclean Gel DNA Recovery 

Kit (Zymo Research, Catalog # D4002). This fragment was then used as template in a second 
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PCR using the same reaction mix and thermal cycler settings but using “F Library” and “R 

Library” from Table B-6. The following thermal cycler program was used for amplification: 

Temperature (°C) Time (s) Cycles 

98 00:30 1 

98 00:10 

5 
67 à 63 (-1 °C / cycle) 

ramp speed: 1 °C / s 
00:15 

72 00:30 

98 00:10 

25 63 00:15 

72 00:30 

72 10:00 1 

10 infinite 1 

 

This product was also run on a 1% agarose gel containing SYBRTM Gold Nucleic Acid Gel 

Stain, excised, and purified with a Zymoclean Gel DNA Recovery Kit. 

The backbone was prepared in two pieces using the AmpR cassette break strategy described 

previously. The first backbone piece was prepared with the default PCR reaction mix using 

pBAD24-Tm9D8* as template and primers AmpR_internal rev (Table B-2) and “F” from 

Table B-6. The following thermal cycler program was used for amplification: 
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Temperature (°C) Time (s) Cycles 

98 00:30 1 

98 00:10 

5 
72 à 68 (-1 °C / cycle) 

ramp speed: 1 °C / s 
00:15 

72 00:45 

98 00:10 

25 69 00:15 

72 00:45 

72 10:00 1 

10 infinite 1 

The second backbone piece was also prepared with the default PCR reaction mix using 

pBAD24-Tm9D8* as template. The primers used for amplification were 

AmpR_internal_fwd (Table B-2) and “R” from Table B-6. The following thermal cycler 

program was used for amplification: 

Temperature (°C) Time (s) Cycles 

98 00:30 1 

98 00:10 

5 
72 à 68 (-1 °C / cycle) 

ramp speed: 1 °C / s 
00:15 

72 02:00 

98 00:10 

25 69 00:15 

72 02:00 

72 10:00 1 

10 infinite 1 
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Both backbone products were run on a 1% agarose gel containing SYBRTM Gold Nucleic 

Acid Gel Stain, excised, and purified with a Zymoclean Gel DNA Recovery Kit. 

Once necessary fragments were prepared, DNA concentrations were measured with a GE 

Healthcare NanoVueTM Plus Spectrophotometer and they were assembled into circular 

plasmid using NEBuilder® HiFi DNA Assembly (New England Biolabs, Catalog # E2621X) 

following manufacturer instructions. The resultant product was cleaned and concentrated 

with a DNA Clean & Concentrator®-5 kit (Zymo Research, Catalog # D4004). To achieve 

high transformation efficiency for the triple- and quadruple-site libraries, assembled plasmid 

libraries were first transformed into high-efficiency electrocompetent cells. We used NEB® 

10-beta electrocompetent E. coli (New England Biolabs Inc., Catalog # C3020K) and the 

manufacturer recommended protocol. DNA concentration and electroporation settings were 

optimized to achieve high transformation efficiency. Following application of current, cells 

were rescued for only 15 minutes in the provided rescue media before being transferred to 

an overnight culture of LBcarb and grown overnight at 37 °C and 220 rpm. Simultaneously, a 

dilution was plated on LBcarb+agar to be used to estimate the transformation efficiency and 

ensure sampling depth. The liquid cultures were miniprepped using the QIAprep Spin 

Miniprep Kit (Qiagen, Catalog # 27104) to prepare plasmid DNA libraries in high 

concentration and purity. 

B.1.8 Growth-based enrichment assay 

To perform the growth-based enrichment assay, electrocompetent Trp auxotroph cells were 

transformed with the relevant DNA library. After a 1 h rescue, cells were transferred to 

LBkan,carb and incubated overnight at 37°C and 220 rpm for 16–20 h. At this point, cells were 



 

 

155 
either used directly or diluted 1:1 with sterile 50% glycerol, aliquoted, and frozen at -80°C 

for later use. Frozen aliquots were prepared by thawing on ice and transferring into LBcarb,kan 

and incubated overnight at 37°C and 220 rpm for 16-20 h. From here, the LB culture was 

spun down at 5,000 g, the supernatant was decanted, and the pellet was resuspended in Trp-

DO media (single- and double-site libraries) or 1X PBS, pH 7.4 (triple- and quadruple-site 

libraries) (Invitrogen, Catalog # AM9625). The resuspension was once again spun down at 

5,000g and the supernatant was decanted to remove as much Trp in the solution as possible. 

The pellets were then resuspended in Trp-DO media to the OD600 reported in Tables B-9–

11. 

Cells were incubated in Trp-dropout media at 37 °C and 250 rpm in total volumes of 25 

(single-, double-, and triple-site libraries) or 50 mL (quadruple-site library) and 1.5 mL 

samples were collected at each timepoint seen in Tables B-9–11. These samples were 

centrifuged at 5,000g for 5 minutes and stored at -20 °C until further use and sequencing 

preparation. 

B.1.9 Sequencing library preparation 

All libraries were prepared for sequencing with the same overall strategy using inner primers 

from Table B-7. Mapping of these primers to the libraries can be found in Table B-8. First, 

an initial two-cycle PCR amplification attached inner handles for the Illumina barcodes using 

the default PCR mix and the following thermocycler program:  

Step Temperature (°C) Ramp rate Time Cycles 

Initial denaturation 98 max 3 min 1 

Denaturation 98 max 30 sec 2 
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Anneal start temp 64 max 1 sec 

Anneal slow ramp 58 0.2 C/s 90 sec 

Extension 72 max 90 sec 

Final extension 72 max 5 min 1 

Hold 4 - - - 

These samples were then digested with ExoCIP (New England Biolabs, Catalog # E1050L) 

using a 20 min incubation at 37 °C followed by a 15 min inactivation step at 80 °C. The 

resulting product was used as template for a second PCR using IDT® for Illumina® 

DNA/RNA UD Indexes Set A, Tagmentation (Illumina, Catalog # 20027213). 

Reagent Volume (µL) 

PCR water 1.25 

5X KAPA HiFi 5 

10 mM dNTP 0.75 

UDP Primer Mix 5 

DNA eluate 12.5 

KAPA HiFi Polymerase 0.5 

Total 25 

Samples were then DpnI digested according to manufacturer directions (New England 

Biolabs, Catalog # R0176L) and purified via magnetic bead cleanup using Agencourt 

AMPure XP (Beckman Coulter, Catalog # A63880) according to manufacturer 

recommendations. Sample concentrations were measured using Quant-iTTM PicoGreenTM 

(ThermoFisher Scientific, Invitrogen, Catalog # P7581) and pooled equimolarly for 

submission to high-throughput sequencing with an Illumina HiSeq2500. 
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B.1.10 Sequencing data pre-processing 

Processing of the sequencing data was performed to provide filtered and aligned data for 

determining accurate, sequence-dependent codon/amino acid counts. Forward and reverse 

reads were filtered independently using fastq-filter (https://github.com/LUMC/fastq-filter) 

with an average read quality (option –q) of 25 (or an error rate of 0.00316). Corresponding 

forward and reverse reads were then matched, retaining only pairs of reads that passed both 

filters. The first 13 bases of each read were trimmed to remove sequence- and experiment-

specific identifiers. Pairs of files were then aligned using minimap2 

(https://github.com/lh3/minimap2) using the following process: `minimap2 –ax sr ref.fasta 

forward.fastq reverse.fastq -k 5 -w 3`, where ref.fasta is a fasta file containing the Tm9D8* 

(parent) reference sequence, forward.fastq is the filtered and trimmed forward fastq file, and 

reverse.fastq is the matching filtered and trimmed reverse fastq file. The option -w 3 was 

used due to the trimmed reads being short for the four-site library (38 bp) to provide a 

sufficiently small window for proper alignment. (The -k 5 option is based on the standard 

ratio of k/w ~1.5.) Aligned reads were then filtered based on the following criteria: both reads 

must align with no indels, starting at the expected position (the starting base of the trimmed 

forward read in the Tm9D8* sequence), with the expected total length for each aligned 

forward+reverse read. (Specific values for each library are reported in the processing scripts.) 

Codon identities for each position were then indexed from these filtered and aligned reads 

for determining fitness. Python scripts and documentation can be found on the associated 

GitHub. 
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B.1.11 Fitness score calculations 

Fitness calculations were determined based on theory proposed by Kowalsky et al. to obtain 

specific growth rates for each variant.8 For each time point captured, a specific growth rate, 

µ!, was calculated for each unique amino acid sequence as follows: 

µ! =	 ln '
𝑥"!
𝑥#!
)
1
𝑡  

where 𝑥#! and 𝑥"! represent the concentration of E. coli harboring the given amino acid 

sequence 𝑖 in the initial population and the population at time 𝑡, respectively. These values 

were calculated based on the OD600 of the culture and the frequency of sequence in each 

population. We observed that sequences containing stop codons, which can be presumed 

non-functional, had slightly non-zero µ! values. Therefore, we subtracted the average µ$%&' 

from each µ!. We then scaled everything to the maximum µ value for that timepoint by 

dividing by µmax. 

fitness =
µ! − µ$%&'
µ()*

 

Fitness values were then calculated for each timepoint in a landscape were then averaged for 

each replicate. The active/inactive threshold was imposed at this point by enforcing that the 

fitness for a variant in each replicate was greater than the 95% confidence interval of the stop 

codon-containing variant distribution. Finally, the fitness values for the two replicates were 

averaged together to obtain a final fitness metric for each sequence. Timepoints were omitted 

when sequencing showed poor agreement between replicates. Missing variants were imputed 

with the KNN imputer from sklearn using weights=’distance’ and n_neighbors=2 for the 
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TrpB data (Figure B-13) and the imputed scores reported previously by the authors were 

used for GB1.9 

B.1.12 Pairwise epistasis calculations and analyses 

Fraction of pairwise epistasis was calculated using python and functions that classify each 

type into one of the three categories: magnitude, sign, and reciprocal sign epistasis. Notably, 

for this analysis additive effects were grouped into magnitude. For each unique starting 

variant (00), all possible double substitutions (11) were tested such that all variants within 

the set of 00, 01, 10, and 11 were active and an epistasis type was assigned. Doing this for 

all possible double substitutions, we computed the fraction of each type of epistasis for the 

starting variant. These results were sorted into quartiles based on the fitness values of the 

starting variant to create the distributions. 

B.1.13 Determination of local optima 

Local optima were determined by looking at all non-imputed variants classified as active. 

For each of these variants, all single substitutions were made in silico. If no single-

substitution variant had a higher fitness than the original, that original variant was classified 

as a local optimum. To determine if two simultaneous substitutions could enable escape from 

the local optimum, all double substitutions were made in silico. If at least one double-

substitution variant had a higher fitness than the original, that original variant was said to be 

able to escape the local optimum via double-site saturation mutagenesis. Code can be found 

in the associated GitHub repository. 
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B.1.14 Path analyses 

For each active variant, networkx10 was used to construct a directed graph from that variant 

to the best variant in the landscape, AIKG. For this analysis, any fitness below zero was set 

to zero. No imputed variants were used as starting points, but they were used as intermediate 

variants when necessary, so that no graphs had missing nodes. The number of direct paths 

possible to the path were counted allowing downward steps ranging from 0% to 90% 

decrease in fitness. The same analyses were run for each of the top twenty local optima. 

B.1.15 Simulations of directed evolution 

Starting from every active variant, directed evolution methodologies were simulated using 

Python functions that can be found in the associated GitHub repository. 

Site-saturation mutagenesis combine best 

For every variant classified as active, all nineteen substitutions are made in silico at each of 

the four positions independently in the background of the initial sequence. The best amino 

acid at each position is obtained and the sequence consisting of these amino acids is built. 

The best variant from among the initial sequence, all single-site mutagenesis variants, and 

the recombined variant is reported as the maximum fitness achieved. 

Single-step site-saturation mutagenesis greedy walk 

For every variant classified as active and each possible order of sampling positions (M! where 

M = number of positions) site-saturation mutagenesis is performed iteratively in silico with 

N rounds. For the first position, all nineteen substitutions are tested for that position in the 

starting background of the other positions. Once the best residue for that position is 

determined, the next position targeted, the best residue is fixed at that position, and so on 
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until all positions have been targeted once. The fitness of the final variant is reported as the 

max fitness achieved. 

Site-saturation mutagenesis calculate and test top N 

For every variant classified as active, all nineteen substitutions are made in silico at each of 

the four positions independently in the background of the initial sequence. Using these M x 

19 + 1 (starting variant) datapoints, fitness scores for all 20M possible combinations are 

calculated as the product of the fold-change for each single substitution over the initial 

sequence. These sequences are then ranked, and the best N are tested in silico. The max 

fitness achieved is reported as the maximum fitness of the initial sequence, any of the single 

substitutions, and the top N predicted sequences. 

B.1.16 Generating zero-shot scores 

Using the methods from Wittmann et al.11 we obtained zero-shot scores using both Triad 

estimates of ∆∆G and EVmutation.12 For Triad, the crystal structure obtained here was used 

as the starting point for the calculations and EVmutation used Tm9D8* as the starting 

sequence. 

B.1.17 Site-directed mutagenesis to construct variants for in-depth biochemical 

characterization 

Using a template plasmid of Tm9D8* in pET22b(+), primers were ordered to make exact 

mutations at positions 183, 184, 227, and 228. Full gene sequences are provided in Table 

B-3. 
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B.1.18 T50 measurements 

Using the plasmids prepared via site-directed mutagenesis, variants were expressed as 

described in Section B 1.3 “Deep-well plate protein expression” with six biological replicate 

wells for each variant. Frozen pellets were fully thawed at room temperature and then 

resuspended by light vortexing in lysis buffer composed of 1 mg/mL lysozyme, 0.1X Bug 

Buster®, 0.2 mg/mL DNase I, and 200 µM PLP in 50 mM KPi. Plates were incubated at 37 

°C, 220 rpm, and 80% humidity for 1 h and then spun down at 4500g for 10 min. Clarified 

lysate for each variant was pooled into individual 15-mL conical centrifuge tubes and stored 

at 4 °C until needed. 

For heat treatments, 40 µL of clarified lysate was aliquoted into full-skirted PCR plates and 

incubated at the reported temperature for 1 h using a gradient on a Mastercycler® X50s 

(Eppendorf, Catalog # 6311000010). Room temperature controls were incubated for 1 h on 

the benchtop in 200-µL PCR tubes. Room temperature controls were then added to the PCR 

plate and all samples were spun down for 8 min at 4000g to remove accumulated debris.   

B.1.19 Enzyme purification 

Since all enzymes displayed T50 measurements much greater than 75 °C, enzyme was 

purified as described in Boville et al.3 apart from the addition of 200 µM PLP and 1 mg/mL 

lysozyme in the lysis buffer. Protein concentrations were obtained with the Pierce BCA 

Protein Assay Kit (ThermoFisher Scientific, Catalog # 23225) and purified protein was 

frozen in aliquots on dry ice or liquid nitrogen. 
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B.1.20 Tm9D8* crystallization 

For the crystallization of tryptophan synthase variant Tm9D8*, protein was purified as 

described above. Due to the similarity between this enzyme and previously described 

tyrosine synthase variants, the same precipitant (1.2 M NaH2PO4/0.8 M K2HPO4, 0.1 M N-

cyclohexyl-3-aminopropanesulfonic acid (CAPS), 0.2 M Li2SO4) was used to crystallize this 

variant. In a 24-well CrysChem M Plate (Hampton Research), 2 mg/mL protein was screened 

using 1–6 µL protein drops and 2–5 µL precipitant drops. While small salt crystals were 

observed in drops containing higher initial precipitant concentrations, drops with a higher 

protein concentration remained clear after 6 days. At this point, these drops (5–6 µL 2 mg/mL 

Tm9D8* + 2 µL precipitant) were streak seeded using a cat whisker, the generous gift of 

Crick Boville, and a seed stock derived from crystals of the related tyrosine synthase variant 

TmTyrS1 (9 mutations) (PDB 8EGY). Within 2 days, small hexagonal prism crystals formed 

in these wells. 

To prepare samples for x-ray diffraction experiments, a cryoprotectant solution was prepared 

by mixing 80 µL of equilibrated reservoir solution with 20 µL of ethylene glycol. This 

solution was then added to the crystal drop, sequentially adding and removing equivalent 

volumes until no schlieren was observed. Following cryoprotection, all crystals were 

mounted in nylon loop, cooled in liquid nitrogen, and stored prior to data collection. 

B.1.21 Tm9D8* crystal structure determination 

Diffraction data were collected at the Stanford Synchrotron Radiation Laboratory (SSRL) 

beamline 12-2. Data reduction and integration were carried out using XDS13 and scaled using 

Aimless in the CCP4 suite of programs.14 Molecular replacement (MR) was performed using 
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the structure of a holo TmTyrS1 (PDB 8EGY) as a search model in Phaser.15 Model building 

and modification in the electron density was performed using Coot and structure refinement 

was performed using Phenix.16,17 Other ligands, including free PLP, as well as water 

molecules and ethylene glycol were added during later stages of refinement. Occasionally, 

spurious electron density peaks were present in the active site, dimer interface, and COMM 

domain that could not be unambiguously modeled by alternative protein conformations, 

solvent, or other additives applied during the procedure, so these were left uninterpreted. The 

quality of the final models was evaluated with MolProbity and PROCHECK.18,19 Data 

collection and refinement statistics are presented in Table B-12. 

B.1.22 Determination of kinetic parameters 

Enzyme parameters, including KM and kcat, were determined via Michaelis-Menten kinetics 

by collecting 290 nm absorbance continuously over 500 seconds with a UV-vis 

spectrophotometer (Shimadzu, Catalog # EW-83400-20) for reactions containing enzyme 

(62.5–250 nM), indole (1.5625–500 µM), Ser (0.05–20 mM), and DMSO (4%) in KPi. 

Indole KM was collected at 20 mM Ser and Ser KM was collected at 200 µM indole (the 

concentration used for the growth rate assay). Initial rates were obtained using linear or 

exponential fits of the data within a time frame not impacted by burst phase kinetics. These 

rates were fit with a Michaelis-Menten model to obtain estimates for KM and kcat.  
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B.2 Supplemental Tables 

Table B-1. Primers for knockout strain building and verification 

Name Sequence (5’ à 3’) 

NEB5α_TrpAB::CamR_fwd TGCCGCCAGCGGAACTGGCGGCTGTGGGATTAACTGCGCGTCGCCGCTTTGTGTAGGC
TGGAGCTGCTTC 

NEB5α_TrpAB::CamR_rev TTGGCCTCGGTTTTCCAGACGCTGCGCGCATATTAAGGAAAGGAACAATGATGGGAAT
TAGCCATGGTCC 

NEB5α_TrpAB_external_fwd TGCCGCCAGCGGAACTGGC 

NEB5α_TrpAB_external_rev TCAAAGACGCACGTCTTTTGGCCTCGG 

BW25113_TrpAB::KanR_fwd TGCCGCCAGCGGAACTGGCGGCTGTGGGATTAACTGCGCGTCGCCGCTTTTGTAGGCT
GGAGCTGCTTCG 

BW25113_TrpAB::KanR_rev TTGGCCTCGGTTTTCCAGACGCTGCGCGCATATTAAGGAAAGGAACAATGATTCCGGG
GATCCGTCGACC 

BW25113_TrpAB_external_fwd GGTAAGCGAAACGGTAAAAAGATAAATATTAAATGAATTTAGG 

BW25113_TrpAB_external_rev GCGCCGGACTTGATTTTAATTCTGC 

BW25113_TrpAB_internal_fwd GCCCAGTCATAGCCGAATAGCC 

BW25113_TrpAB_internal_rev GGCTATTCGGCTATGACTGGGC 

 

  



 

 

166 
Table B-2. Primers for single and double-site saturation mutagenesis for preliminary 
assays. 

Name Sequence (5’ à 3’) 
Tm9D8*_184X_fwd CTGCAGACCACCTATTACGTGXXXGGCTCTGTGGTTGGTCC 

Tm9D8*_118X_fwd GGCGTAGCAACTGCTACCXXXGCAGCGCTGTTCGGTATGGAATGTGTAATCTATATGG 

Tm9D8*_184_rev CACGTAATAGGTGGTCTGCAGGTTGGTAATCCAGTCACGCAGAGCT 

Tm9D8*_118_rev GGTAGCAGTTGCTACGCCGTGCTGACCAGC 

Tm9D8*_301X_fwd TCCGCTGGCCTGGACXXXTCCGGTGTCGGTCCGGA 

Tm9D8*_301_rev GTCCAGGCCAGCGGAGACGGAGTGGCTCACCTGAACT 

AmpR_internal_fwd CCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGC 

AmpR_internal_rev CGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAG 

XXX = mix of three primers with NDT, VHG, or TGG at that position mixed in a ratio of 

12:9:1. This is based on methods presented by Kille et al.7  
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Table B-3. TrpB sequences 

Name Sequence 

Tm9D8* 

 

in pBAD24: 5276 

ATGAAAGGCTACTTCGGTCCGTACGGTGGCCAGTACGTGCCGGAAATCCTGATGGGAGCTCT
GGAAGAACTGGAAGCTGCGTACGAAGGAATCATGAAAGATGAGTCTTTCTGGAAAGAATTCA
ATGACCTGCTGCGCGATTATGCGGGTCGTCCGACTCCGCTGTACTTCGCACGTCGTCTGTCC
GAAAAATACGGTGCTCGCGTATATCTGAAACGTGAAGACCTGCTGCATACTGGTGCGCATAA
AATCAATAACGCTATCGGCCAGGTTCTGCTGGCAAAACTAATGGGCAAAACCCGTATCATTG
CTGAAACGGGTGCTGGTCAGCACGGCGTAGCAACTGCTACCGCAGCAGCGCTGTTCGGTATG
GAATGTGTAATCTATATGGGCGAAGAAGACACGATCCGCCAGAAACTAAACGTTGAACGTAT
GAAACTGCTGGGTGCTAAAGTTGTACCGGTAAAATCCGGTAGCCGTACCCTGAAAGACGCAA
TTGACGAAGCTCTGCGTGACTGGATTACCAACCTGCAGACCACCTATTACGTGTTCGGCTCT
GTGGTTGGTCCGCATCCATATCCGATTATCGTACGTAACTTCCAAAAGGTTATCGGCGAAGA
GACCAAAAAACAGATTCCAGAAAAAGAAGGCCGTCTGCCGGACTACATCGTTGCGTGCGTGA
GCGGTGGTTCTAACGCTGCCGGTATCTTCTATCCGTTTATCGATTCTGGTGTGAAGCTGATC
GGCGTAGAAGCCGGTGGCGAAGGTCTGGAAACCGGTAAACATGCGGCTTCTCTGCTGAAAGG
TAAAATCGGCTACCTGCACGGTTCTAAGACGTTCGTTCTGCAGGATGACTGGGGTCAAGTTC
AGGTGAGCCACTCCGTCTCCGCTGGCCTGGACTACTCCGGTGTCGGTCCGGAACACGCCTAT
TGGCGTGAGACCGGTAAAGTGCTGTACGATGCTGTGACCGATGAAGAAGCTCTGGACGCATT
CATCGAACTGTCTCGCCTGGAAGGCATCATCCCAGCCCTGGAGTCTTCTCACGCACTGGCTT
ATCTGAAGAAGATCAACATCAAGGGTAAAGTTGTGGTGGTTAATCTGTCTGGTCGTGGTGAC
AAGGATCTGGAATCTGTACTGAACCACCCGTATGTTCGCGAACGCATCCGCCTCGAGCACCA
CCACCACCACCACTGA 

VIVS 

 

in pET22b(+): 5277 

ATGAAAGGCTACTTCGGTCCGTACGGTGGCCAGTACGTGCCGGAAATCCTGATGGGAGCTCT
GGAAGAACTGGAAGCTGCGTACGAAGGAATCATGAAAGATGAGTCTTTCTGGAAAGAATTCA
ATGACCTGCTGCGCGATTATGCGGGTCGTCCGACTCCGCTGTACTTCGCACGTCGTCTGTCC
GAAAAATACGGTGCTCGCGTATATCTGAAACGTGAAGACCTGCTGCATACTGGTGCGCATAA
AATCAATAACGCTATCGGCCAGGTTCTGCTGGCAAAACTAATGGGCAAAACCCGTATCATTG
CTGAAACGGGTGCTGGTCAGCACGGCGTAGCAACTGCTACCGCAGCAGCGCTGTTCGGTATG
GAATGTGTAATCTATATGGGCGAAGAAGACACGATCCGCCAGAAACTAAACGTTGAACGTAT
GAAACTGCTGGGTGCTAAAGTTGTACCGGTAAAATCCGGTAGCCGTACCCTGAAAGACGCAA
TTGACGAAGCTCTGCGTGACTGGATTACCAACCTGCAGACCACCTATTACGTGATTGGCTCT
GTGGTTGGTCCGCATCCATATCCGATTATCGTACGTAACTTCCAAAAGGTTATCGGCGAAGA
GACCAAAAAACAGATTCCAGAAAAAGAAGGCCGTCTGCCGGACTACATCGTTGCGTGCGTGA
GCGGTGGTTCTAACGCTGCCGGTATCTTCTATCCGTTTATCGATTCTGGTGTGAAGCTGATC
GGCGTAGAAGCCGGTGGCGAAGGTCTGGAAACCGGTAAACATGCGGCTTCTCTGCTGAAAGG
TAAAATCGGCTACCTGCACGGTTCTAAGACGTTCGTTCTGCAGGATGACTGGGGTCAAGTTC
AGGTGAGCCACTCCGTCTCCGCTGGCCTGGACTACTCCGGTGTCGGTCCGGAACACGCCTAT
TGGCGTGAGACCGGTAAAGTGCTGTACGATGCTGTGACCGATGAAGAAGCTCTGGACGCATT
CATCGAACTGTCTCGCCTGGAAGGCATCATCCCAGCCCTGGAGTCTTCTCACGCACTGGCTT
ATCTGAAGAAGATCAACATCAAGGGTAAAGTTGTGGTGGTTAATCTGTCTGGTCGTGGTGAC
AAGGATCTGGAATCTGTACTGAACCACCCGTATGTTCGCGAACGCATCCGCCTCGAGCACCA
CCACCACCACCACTGA 

VIVG 

 

in pET22b(+): 5278 

ATGAAAGGCTACTTCGGTCCGTACGGTGGCCAGTACGTGCCGGAAATCCTGATGGGAGCTCT
GGAAGAACTGGAAGCTGCGTACGAAGGAATCATGAAAGATGAGTCTTTCTGGAAAGAATTCA
ATGACCTGCTGCGCGATTATGCGGGTCGTCCGACTCCGCTGTACTTCGCACGTCGTCTGTCC
GAAAAATACGGTGCTCGCGTATATCTGAAACGTGAAGACCTGCTGCATACTGGTGCGCATAA
AATCAATAACGCTATCGGCCAGGTTCTGCTGGCAAAACTAATGGGCAAAACCCGTATCATTG
CTGAAACGGGTGCTGGTCAGCACGGCGTAGCAACTGCTACCGCAGCAGCGCTGTTCGGTATG
GAATGTGTAATCTATATGGGCGAAGAAGACACGATCCGCCAGAAACTAAACGTTGAACGTAT
GAAACTGCTGGGTGCTAAAGTTGTACCGGTAAAATCCGGTAGCCGTACCCTGAAAGACGCAA
TTGACGAAGCTCTGCGTGACTGGATTACCAACCTGCAGACCACCTATTACGTGATTGGCTCT
GTGGTTGGTCCGCATCCATATCCGATTATCGTACGTAACTTCCAAAAGGTTATCGGCGAAGA
GACCAAAAAACAGATTCCAGAAAAAGAAGGCCGTCTGCCGGACTACATCGTTGCGTGCGTGG
GTGGTGGTTCTAACGCTGCCGGTATCTTCTATCCGTTTATCGATTCTGGTGTGAAGCTGATC
GGCGTAGAAGCCGGTGGCGAAGGTCTGGAAACCGGTAAACATGCGGCTTCTCTGCTGAAAGG
TAAAATCGGCTACCTGCACGGTTCTAAGACGTTCGTTCTGCAGGATGACTGGGGTCAAGTTC
AGGTGAGCCACTCCGTCTCCGCTGGCCTGGACTACTCCGGTGTCGGTCCGGAACACGCCTAT
TGGCGTGAGACCGGTAAAGTGCTGTACGATGCTGTGACCGATGAAGAAGCTCTGGACGCATT
CATCGAACTGTCTCGCCTGGAAGGCATCATCCCAGCCCTGGAGTCTTCTCACGCACTGGCTT
ATCTGAAGAAGATCAACATCAAGGGTAAAGTTGTGGTGGTTAATCTGTCTGGTCGTGGTGAC
AAGGATCTGGAATCTGTACTGAACCACCCGTATGTTCGCGAACGCATCCGCCTCGAGCACCA
CCACCACCACCACTGA 



 

 

168 
VIKG 

 

in pET22b(+): 5279 

ATGAAAGGCTACTTCGGTCCGTACGGTGGCCAGTACGTGCCGGAAATCCTGATGGGAGCTCT
GGAAGAACTGGAAGCTGCGTACGAAGGAATCATGAAAGATGAGTCTTTCTGGAAAGAATTCA
ATGACCTGCTGCGCGATTATGCGGGTCGTCCGACTCCGCTGTACTTCGCACGTCGTCTGTCC
GAAAAATACGGTGCTCGCGTATATCTGAAACGTGAAGACCTGCTGCATACTGGTGCGCATAA
AATCAATAACGCTATCGGCCAGGTTCTGCTGGCAAAACTAATGGGCAAAACCCGTATCATTG
CTGAAACGGGTGCTGGTCAGCACGGCGTAGCAACTGCTACCGCAGCAGCGCTGTTCGGTATG
GAATGTGTAATCTATATGGGCGAAGAAGACACGATCCGCCAGAAACTAAACGTTGAACGTAT
GAAACTGCTGGGTGCTAAAGTTGTACCGGTAAAATCCGGTAGCCGTACCCTGAAAGACGCAA
TTGACGAAGCTCTGCGTGACTGGATTACCAACCTGCAGACCACCTATTACGTGATTGGCTCT
GTGGTTGGTCCGCATCCATATCCGATTATCGTACGTAACTTCCAAAAGGTTATCGGCGAAGA
GACCAAAAAACAGATTCCAGAAAAAGAAGGCCGTCTGCCGGACTACATCGTTGCGTGCGTGA
AGGGTGGTGGTTCTAACGCTGCCGGTATCTTCTATCCGTTTATCGATTCTGGTGTGAAGCTG
ATCGGCGTAGAAGCCGGTGGCGAAGGTCTGGAAACCGGTAAACATGCGGCTTCTCTGCTGAA
AGGTAAAATCGGCTACCTGCACGGTTCTAAGACGTTCGTTCTGCAGGATGACTGGGGTCAAG
TTCAGGTGAGCCACTCCGTCTCCGCTGGCCTGGACTACTCCGGTGTCGGTCCGGAACACGCC
TATTGGCGTGAGACCGGTAAAGTGCTGTACGATGCTGTGACCGATGAAGAAGCTCTGGACGC
ATTCATCGAACTGTCTCGCCTGGAAGGCATCATCCCAGCCCTGGAGTCTTCTCACGCACTGG
CTTATCTGAAGAAGATCAACATCAAGGGTAAAGTTGTGGTGGTTAATCTGTCTGGTCGTGGT
GACAAGGATCTGGAATCTGTACTGAACCACCCGTATGTTCGCGAACGCATCCGCCTCGAGCA
CCACCACCACCACCACTGA 

AIKG 

 

in pET22b(+): 5280 

ATGAAAGGCTACTTCGGTCCGTACGGTGGCCAGTACGTGCCGGAAATCCTGATGGGAGCTCT
GGAAGAACTGGAAGCTGCGTACGAAGGAATCATGAAAGATGAGTCTTTCTGGAAAGAATTCA
ATGACCTGCTGCGCGATTATGCGGGTCGTCCGACTCCGCTGTACTTCGCACGTCGTCTGTCC
GAAAAATACGGTGCTCGCGTATATCTGAAACGTGAAGACCTGCTGCATACTGGTGCGCATAA
AATCAATAACGCTATCGGCCAGGTTCTGCTGGCAAAACTAATGGGCAAAACCCGTATCATTG
CTGAAACGGGTGCTGGTCAGCACGGCGTAGCAACTGCTACCGCAGCAGCGCTGTTCGGTATG
GAATGTGTAATCTATATGGGCGAAGAAGACACGATCCGCCAGAAACTAAACGTTGAACGTAT
GAAACTGCTGGGTGCTAAAGTTGTACCGGTAAAATCCGGTAGCCGTACCCTGAAAGACGCAA
TTGACGAAGCTCTGCGTGACTGGATTACCAACCTGCAGACCACCTATTACGCGATTGGCTCT
GTGGTTGGTCCGCATCCATATCCGATTATCGTACGTAACTTCCAAAAGGTTATCGGCGAAGA
GACCAAAAAACAGATTCCAGAAAAAGAAGGCCGTCTGCCGGACTACATCGTTGCGTGCAAGG
GTGGTGGTTCTAACGCTGCCGGTATCTTCTATCCGTTTATCGATTCTGGTGTGAAGCTGATC
GGCGTAGAAGCCGGTGGCGAAGGTCTGGAAACCGGTAAACATGCGGCTTCTCTGCTGAAAGG
TAAAATCGGCTACCTGCACGGTTCTAAGACGTTCGTTCTGCAGGATGACTGGGGTCAAGTTC
AGGTGAGCCACTCCGTCTCCGCTGGCCTGGACTACTCCGGTGTCGGTCCGGAACACGCCTAT
TGGCGTGAGACCGGTAAAGTGCTGTACGATGCTGTGACCGATGAAGAAGCTCTGGACGCATT
CATCGAACTGTCTCGCCTGGAAGGCATCATCCCAGCCCTGGAGTCTTCTCACGCACTGGCTT
ATCTGAAGAAGATCAACATCAAGGGTAAAGTTGTGGTGGTTAATCTGTCTGGTCGTGGTGAC
AAGGATCTGGAATCTGTACTGAACCACCCGTATGTTCGCGAACGCATCCGCCTCGAGCACCA
CCACCACCACCACTGA 

CLKG 

 

in pET22b(+): 5281 

ATGAAAGGCTACTTCGGTCCGTACGGTGGCCAGTACGTGCCGGAAATCCTGATGGGAGCTCT
GGAAGAACTGGAAGCTGCGTACGAAGGAATCATGAAAGATGAGTCTTTCTGGAAAGAATTCA
ATGACCTGCTGCGCGATTATGCGGGTCGTCCGACTCCGCTGTACTTCGCACGTCGTCTGTCC
GAAAAATACGGTGCTCGCGTATATCTGAAACGTGAAGACCTGCTGCATACTGGTGCGCATAA
AATCAATAACGCTATCGGCCAGGTTCTGCTGGCAAAACTAATGGGCAAAACCCGTATCATTG
CTGAAACGGGTGCTGGTCAGCACGGCGTAGCAACTGCTACCGCAGCAGCGCTGTTCGGTATG
GAATGTGTAATCTATATGGGCGAAGAAGACACGATCCGCCAGAAACTAAACGTTGAACGTAT
GAAACTGCTGGGTGCTAAAGTTGTACCGGTAAAATCCGGTAGCCGTACCCTGAAAGACGCAA
TTGACGAAGCTCTGCGTGACTGGATTACCAACCTGCAGACCACCTATTACTGTCTGGGCTCT
GTGGTTGGTCCGCATCCATATCCGATTATCGTACGTAACTTCCAAAAGGTTATCGGCGAAGA
GACCAAAAAACAGATTCCAGAAAAAGAAGGCCGTCTGCCGGACTACATCGTTGCGTGCAAGG
GTGGTGGTTCTAACGCTGCCGGTATCTTCTATCCGTTTATCGATTCTGGTGTGAAGCTGATC
GGCGTAGAAGCCGGTGGCGAAGGTCTGGAAACCGGTAAACATGCGGCTTCTCTGCTGAAAGG
TAAAATCGGCTACCTGCACGGTTCTAAGACGTTCGTTCTGCAGGATGACTGGGGTCAAGTTC
AGGTGAGCCACTCCGTCTCCGCTGGCCTGGACTACTCCGGTGTCGGTCCGGAACACGCCTAT
TGGCGTGAGACCGGTAAAGTGCTGTACGATGCTGTGACCGATGAAGAAGCTCTGGACGCATT
CATCGAACTGTCTCGCCTGGAAGGCATCATCCCAGCCCTGGAGTCTTCTCACGCACTGGCTT
ATCTGAAGAAGATCAACATCAAGGGTAAAGTTGTGGTGGTTAATCTGTCTGGTCGTGGTGAC
AAGGATCTGGAATCTGTACTGAACCACCCGTATGTTCGCGAACGCATCCGCCTCGAGCACCA
CCACCACCACCACTGA 

ALKG 

 

ATGAAAGGCTACTTCGGTCCGTACGGTGGCCAGTACGTGCCGGAAATCCTGATGGGAGCTCT
GGAAGAACTGGAAGCTGCGTACGAAGGAATCATGAAAGATGAGTCTTTCTGGAAAGAATTCA
ATGACCTGCTGCGCGATTATGCGGGTCGTCCGACTCCGCTGTACTTCGCACGTCGTCTGTCC
GAAAAATACGGTGCTCGCGTATATCTGAAACGTGAAGACCTGCTGCATACTGGTGCGCATAA
AATCAATAACGCTATCGGCCAGGTTCTGCTGGCAAAACTAATGGGCAAAACCCGTATCATTG
CTGAAACGGGTGCTGGTCAGCACGGCGTAGCAACTGCTACCGCAGCAGCGCTGTTCGGTATG
GAATGTGTAATCTATATGGGCGAAGAAGACACGATCCGCCAGAAACTAAACGTTGAACGTAT
GAAACTGCTGGGTGCTAAAGTTGTACCGGTAAAATCCGGTAGCCGTACCCTGAAAGACGCAA
TTGACGAAGCTCTGCGTGACTGGATTACCAACCTGCAGACCACCTATTACTGTATTGGCTCT
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in pET22b(+): 5282 GTGGTTGGTCCGCATCCATATCCGATTATCGTACGTAACTTCCAAAAGGTTATCGGCGAAGA

GACCAAAAAACAGATTCCAGAAAAAGAAGGCCGTCTGCCGGACTACATCGTTGCGTGCAAGG
GTGGTGGTTCTAACGCTGCCGGTATCTTCTATCCGTTTATCGATTCTGGTGTGAAGCTGATC
GGCGTAGAAGCCGGTGGCGAAGGTCTGGAAACCGGTAAACATGCGGCTTCTCTGCTGAAAGG
TAAAATCGGCTACCTGCACGGTTCTAAGACGTTCGTTCTGCAGGATGACTGGGGTCAAGTTC
AGGTGAGCCACTCCGTCTCCGCTGGCCTGGACTACTCCGGTGTCGGTCCGGAACACGCCTAT
TGGCGTGAGACCGGTAAAGTGCTGTACGATGCTGTGACCGATGAAGAAGCTCTGGACGCATT
CATCGAACTGTCTCGCCTGGAAGGCATCATCCCAGCCCTGGAGTCTTCTCACGCACTGGCTT
ATCTGAAGAAGATCAACATCAAGGGTAAAGTTGTGGTGGTTAATCTGTCTGGTCGTGGTGAC
AAGGATCTGGAATCTGTACTGAACCACCCGTATGTTCGCGAACGCATCCGCCTCGAGCACCA
CCACCACCACCACTGA 

CIKG 

 

in pET22b(+): 5283 

ATGAAAGGCTACTTCGGTCCGTACGGTGGCCAGTACGTGCCGGAAATCCTGATGGGAGCTCT
GGAAGAACTGGAAGCTGCGTACGAAGGAATCATGAAAGATGAGTCTTTCTGGAAAGAATTCA
ATGACCTGCTGCGCGATTATGCGGGTCGTCCGACTCCGCTGTACTTCGCACGTCGTCTGTCC
GAAAAATACGGTGCTCGCGTATATCTGAAACGTGAAGACCTGCTGCATACTGGTGCGCATAA
AATCAATAACGCTATCGGCCAGGTTCTGCTGGCAAAACTAATGGGCAAAACCCGTATCATTG
CTGAAACGGGTGCTGGTCAGCACGGCGTAGCAACTGCTACCGCAGCAGCGCTGTTCGGTATG
GAATGTGTAATCTATATGGGCGAAGAAGACACGATCCGCCAGAAACTAAACGTTGAACGTAT
GAAACTGCTGGGTGCTAAAGTTGTACCGGTAAAATCCGGTAGCCGTACCCTGAAAGACGCAA
TTGACGAAGCTCTGCGTGACTGGATTACCAACCTGCAGACCACCTATTACGCGCTGGGCTCT
GTGGTTGGTCCGCATCCATATCCGATTATCGTACGTAACTTCCAAAAGGTTATCGGCGAAGA
GACCAAAAAACAGATTCCAGAAAAAGAAGGCCGTCTGCCGGACTACATCGTTGCGTGCAAGG
GTGGTGGTTCTAACGCTGCCGGTATCTTCTATCCGTTTATCGATTCTGGTGTGAAGCTGATC
GGCGTAGAAGCCGGTGGCGAAGGTCTGGAAACCGGTAAACATGCGGCTTCTCTGCTGAAAGG
TAAAATCGGCTACCTGCACGGTTCTAAGACGTTCGTTCTGCAGGATGACTGGGGTCAAGTTC
AGGTGAGCCACTCCGTCTCCGCTGGCCTGGACTACTCCGGTGTCGGTCCGGAACACGCCTAT
TGGCGTGAGACCGGTAAAGTGCTGTACGATGCTGTGACCGATGAAGAAGCTCTGGACGCATT
CATCGAACTGTCTCGCCTGGAAGGCATCATCCCAGCCCTGGAGTCTTCTCACGCACTGGCTT
ATCTGAAGAAGATCAACATCAAGGGTAAAGTTGTGGTGGTTAATCTGTCTGGTCGTGGTGAC
AAGGATCTGGAATCTGTACTGAACCACCCGTATGTTCGCGAACGCATCCGCCTCGAGCACCA
CCACCACCACCACTGA 

VLKG 

 

in pET22b(+): 5284 

ATGAAAGGCTACTTCGGTCCGTACGGTGGCCAGTACGTGCCGGAAATCCTGATGGGAGCTCT
GGAAGAACTGGAAGCTGCGTACGAAGGAATCATGAAAGATGAGTCTTTCTGGAAAGAATTCA
ATGACCTGCTGCGCGATTATGCGGGTCGTCCGACTCCGCTGTACTTCGCACGTCGTCTGTCC
GAAAAATACGGTGCTCGCGTATATCTGAAACGTGAAGACCTGCTGCATACTGGTGCGCATAA
AATCAATAACGCTATCGGCCAGGTTCTGCTGGCAAAACTAATGGGCAAAACCCGTATCATTG
CTGAAACGGGTGCTGGTCAGCACGGCGTAGCAACTGCTACCGCAGCAGCGCTGTTCGGTATG
GAATGTGTAATCTATATGGGCGAAGAAGACACGATCCGCCAGAAACTAAACGTTGAACGTAT
GAAACTGCTGGGTGCTAAAGTTGTACCGGTAAAATCCGGTAGCCGTACCCTGAAAGACGCAA
TTGACGAAGCTCTGCGTGACTGGATTACCAACCTGCAGACCACCTATTACGTGCTGGGCTCT
GTGGTTGGTCCGCATCCATATCCGATTATCGTACGTAACTTCCAAAAGGTTATCGGCGAAGA
GACCAAAAAACAGATTCCAGAAAAAGAAGGCCGTCTGCCGGACTACATCGTTGCGTGCAAGG
GTGGTGGTTCTAACGCTGCCGGTATCTTCTATCCGTTTATCGATTCTGGTGTGAAGCTGATC
GGCGTAGAAGCCGGTGGCGAAGGTCTGGAAACCGGTAAACATGCGGCTTCTCTGCTGAAAGG
TAAAATCGGCTACCTGCACGGTTCTAAGACGTTCGTTCTGCAGGATGACTGGGGTCAAGTTC
AGGTGAGCCACTCCGTCTCCGCTGGCCTGGACTACTCCGGTGTCGGTCCGGAACACGCCTAT
TGGCGTGAGACCGGTAAAGTGCTGTACGATGCTGTGACCGATGAAGAAGCTCTGGACGCATT
CATCGAACTGTCTCGCCTGGAAGGCATCATCCCAGCCCTGGAGTCTTCTCACGCACTGGCTT
ATCTGAAGAAGATCAACATCAAGGGTAAAGTTGTGGTGGTTAATCTGTCTGGTCGTGGTGAC
AAGGATCTGGAATCTGTACTGAACCACCCGTATGTTCGCGAACGCATCCGCCTCGAGCACCA
CCACCACCACCACTGA 

 



 

 

170 
Table B-4. Primers for Tm9D8*-pBAD24 plasmid construction 
Name Sequence (5’ à 3’) 

TrpB_pBAD24_insert_fwd AGCAGGAGGAATTCGCCAATGAAAGGCTACTTCGGTCCGTACGG 

TrpB_pBAD24_insert_rev CCAAGCTTCCCGGGTCATCAGTGGTGGTGGTGGTGGTGC 

TrpB_pBAD24_bb_fwd TGACCCGGGAAGCTTGGCTGTTTTGGCGGATGAGAGAAGATTTTCAGC 

TrpB_pBAD24_bb_rev TGGCGAATTCCTCCTGCTAGCCCAAAAAAACGGGTATGGAGAAACAG 

AmpR_internal_fwd CCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGC 

AmpR_internal_rev CGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAG 
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Table B-5. Primers for construction of triple-site saturation libraries 

Library Primer Primer name Sequence (5’ à 3’) 
A 
 
104 
105 
106 

F Gap 9D8s_106_gap_F 
GGTGCTGGTCAGCACG 

F Library 9D8s_104-105-106_F AATGGGCAAAACCCGTATCATTNNKNNKNNKGGTGCTGGT
CAGCACG 

R 9D8s_104_R 
AATGATACGGGTTTTGCCCATTAGTTTTGCCAGCAGAACC
TGGC 

B 
 
105 
106 
107 

F Gap 9D8s_107_gap_F 
GCTGGTCAGCACGGC 

F Library 9D8s_105-106-107_F AATGGGCAAAACCCGTATCATTGCTNNKNNKNNKGCTGGT
CAGCACGGC 

R 9D8s_104_R 
AATGATACGGGTTTTGCCCATTAGTTTTGCCAGCAGAACC
TGGC 

C 
 
106 
107 
108 

F Gap 9D8s_108_gap_F 
GGTCAGCACGGCGTAG 

F Library 9D8s_106-107-108_F AATGGGCAAAACCCGTATCATTGCTGAANNKNNKNNKGGT
CAGCACGGCGTAG 

R 9D8s_104_R AATGATACGGGTTTTGCCCATTAGTTTTGCCAGCAGAACC
TGGC 

D 
 
117 
118 
119 

F Gap 9D8s_119_gap_F GCGCTGTTCGGTATGGAAT 

F Library 9D8s_117-118-119_F ACGGCGTAGCAACTGCTNNKNNKNNKGCGCTGTTCGGTAT
GGAATGTGTAATC 

R 9D8s_117_R AGCAGTTGCTACGCCGTGCTGACCAGCACCCGTTTCAG 

E 
 
184 
185 
186 

F Gap 9D8s_186_gap_F GTGGTTGGTCCGCATCC 

F Library 9D8s_184-185-186_F CTGCAGACCACCTATTACGTGNNKNNKNNKGTGGTTGGTC
CGCATCCATATCC 

R 9D8s_184_R CACGTAATAGGTGGTCTGCAGGTTGGTAATCCAGTCACGC
AGAGCT 

F* 
 
162 
166 
301 

F Gap 9D8s_166_gap_F GACGAAGCTCTGCGTGAC 

F Library 9D8s_162-166_F GTAAAATCCGGTAGCCGTACCNNKAAAGACGCANNKGACG
AAGCTCTG 

R 9D8s_162_R GGTACGGCTACCGGATTTTACCGGTACAACTTTAGCACCC
AGCAG 

G* 
 
227 
228 
301 

F Gap 9D8s_228_gap_F GGTGGTTCTAACGCTGCC 

F Library 9D8s_227-228_F GGACTACATCGTTGCGTGCNNKNNKGGTGGTTCTAACGCT
GCCGGTA 

R 9D8s_227_R GCACGCAACGATGTAGTCCGGCAGACGGCCTTCTTTTTCT
GG 
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H 
 
228 
230 
231 

F Gap 9D8s_231_gap_F AACGCTGCCGGTATCTTCTAT 

F Library 9D8s_228-230-231_F GGACTACATCGTTGCGTGCGTGNNKGGTNNKNNKAACGCT
GCCGGTATCTTCTATCCG 

R 9D8s_227_R GCACGCAACGATGTAGTCCGGCAGACGGCCTTCTTTTTCT
GG 

I 
 
182 
183 
184 

F Gap 9D8s_184_gap_F GGCTCTGTGGTTGGTCC 

F Library 9D8s_182-183-184_F CCAACCTGCAGACCACCTATNNKNNKNNKGGCTCTGTGGT
TGGTCCGC 

R 9D8s_182_R ATAGGTGGTCTGCAGGTTGGTAATCCAGTCACGCAGAGCT
TCGT 

*These libraries used a template of a 301X plasmid library created with primers in Table S2. 
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Table B-6. Primers for construction of quadruple-site saturation libraries 

Library Primer Primer name Sequence (5’ à 3’) 

4-site 
 
183 
184 
227 
228 

F 9D8s_foursite_183-184-
227-228_bb_f 

GGTGGTTCTAACGCTGCCGGTATCTTCTATCCGTTTATCG 

F Gap 9D8s_foursite_183-184-
227-228_inner_f 

GGCTCTGTGGTTGGTCCGCATCCATATCCG 

F Library 9D8s_foursite_183-184-
227-228_outer_NNK_f 

CCAACCTGCAGACCACCTATTACNNKNNKGGCTCTGTGGTT
GGTCCGC 

R 9D8s_foursite_183-184-
227-228_bb_r 

GTAATAGGTGGTCTGCAGGTTGGTAATCCAGTCACGC 

R Gap 9D8s_foursite_183-184-
227-228_inner_r 

GCACGCAACGATGTAGTCCGGCAGACGGCCTTC 

R Library 9D8s_foursite_183-184-
227-228_outer_NNK_r 

GGCAGCGTTAGAACCACCMNNMNNGCACGCAACGATGTAGT
CCG 
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Table B-7. Sequencing preparation primers for triple- and quadruple-site libraries 

Primer name Barcode Seed (bp) F/R Sequence 5’ à 3’ 

pr191_seq_TGT_266-285_F TGT 266-285 F TCGTCGGCAGCGTCAGATGTGTATAAG
AGACAGNNNNNNNNNNTGTGCCAGGTT
CTGCTGGCAAAA 

pr192_seq_GTG_266-285_F GTG 266-285 F TCGTCGGCAGCGTCAGATGTGTATAAG
AGACAGNNNNNNNNNNGTGGCCAGGTT
CTGCTGGCAAAA 

pr193_seq_ACA_266-285_F ACA 266-285 F TCGTCGGCAGCGTCAGATGTGTATAAG
AGACAGNNNNNNNNNNACAGCCAGGTT
CTGCTGGCAAAA 

pr195_seq_TGT_415-394_R TGT 415-394 R GTCTCGTGGGCTCGGAGATGTGTATAA
GAGACAGNNNNNNNNNNTGTTCTGGCG
GATCGTGTCTTCTTC 

pr196_seq_GTG_415-394_R GTG 415-394 R GTCTCGTGGGCTCGGAGATGTGTATAA
GAGACAGNNNNNNNNNNGTGTCTGGCG
GATCGTGTCTTCTTC 

pr197_seq_ACA_415-394_R ACA 415-394 R GTCTCGTGGGCTCGGAGATGTGTATAA
GAGACAGNNNNNNNNNNACATCTGGCG
GATCGTGTCTTCTTC 

pr206_seq_TGT_448-473_F TGT 448-473 F TCGTCGGCAGCGTCAGATGTGTATAAG
AGACAGNNNNNNNNNNTGTGCTAAAGT
TGTACCGGTAAAATCCGG 

pr207_seq_GTG_448-473_F GTG 448-473 F TCGTCGGCAGCGTCAGATGTGTATAAG
AGACAGNNNNNNNNNNGTGGCTAAAGT
TGTACCGGTAAAATCCGG 

pr209_seq_TGT_589-565_R TGT 589-565 R GTCTCGTGGGCTCGGAGATGTGTATAA
GAGACAGNNNNNNNNNNTGTCGATAAT
CGGATATGGATGCGGACC 

pr210_seq_GTG_589-565_R GTG 589-565 R GTCTCGTGGGCTCGGAGATGTGTATAA
GAGACAGNNNNNNNNNNGTGCGATAAT
CGGATATGGATGCGGACC 

pr215_seq_TGT_659-678_F TGT 659-678 F TCGTCGGCAGCGTCAGATGTGTATAAG
AGACAGNNNNNNNNNNTGTCGGACTAC
ATCGTTGCGTGC 

pr216_seq_GTG_659-678_F GTG 659-678 F TCGTCGGCAGCGTCAGATGTGTATAAG
AGACAGNNNNNNNNNNGTGCGGACTAC
ATCGTTGCGTGC 

pr212_seq_TGT_929-911_R TGT 929-911 R GTCTCGTGGGCTCGGAGATGTGTATAA
GAGACAGNNNNNNNNNNTGTTAGGCGT
GTTCCGGACCG 

pr213_seq_GTG_929-911_R GTG 929-911 R GTCTCGTGGGCTCGGAGATGTGTATAA
GAGACAGNNNNNNNNNNGTGTAGGCGT
GTTCCGGACCG 

pr018_seq_TGT_518-540_F TGT 518-540 F TCGTCGGCAGCGTCAGATGTGTATAAG
AGACAGNNNNNNNNNNTGTGGATTACC
AACCTGCAGACCACC 

pr019_seq_GTG_518-540_F GTG 518-540 F TCGTCGGCAGCGTCAGATGTGTATAAG
AGACAGNNNNNNNNNNGTGGGATTACC
AACCTGCAGACCACC 

pr020_seq_ACA_518-540_F ACA 518-540 F TCGTCGGCAGCGTCAGATGTGTATAAG
AGACAGNNNNNNNNNNACAGGATTACC
AACCTGCAGACCACC 
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pr021_seq_TGT_709-688_R TGT 709-688 R GTCTCGTGGGCTCGGAGATGTGTATAA

GAGACAGNNNNNNNNNNTGTAGATACC
GGCAGCGTTAGAACC 

pr022_seq_GTG_709-688_R GTG 709-688 R GTCTCGTGGGCTCGGAGATGTGTATAA
GAGACAGNNNNNNNNNNGTGAGATACC
GGCAGCGTTAGAACC 

pr023_seq_ACA_709-688_R ACA 709-688 R GTCTCGTGGGCTCGGAGATGTGTATAA
GAGACAGNNNNNNNNNNACAAGATACC
GGCAGCGTTAGAACC 
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Table B-8. Mapping sequencing primers to libraries 

Primer name Libraries 
pr191_seq_TGT_266-285_F A/T0 

B/T0 
C/T0 
D/T0, D1/T1–T5 

pr192_seq_GTG_266-285_F A1/T1 
B1/T1 
C1/T1 
D2/T1–T5 

pr193_seq_ACA_266-285_F A1/T4 
B1/T4 
C1/T4 

pr195_seq_TGT_415-394_R A/T0 
B/T0 
C/T0 
D1/T1–T5 

pr196_seq_GTG_415-394_R A1/T1 
B1/T1 
C1/T1 
D2/T1–T5 

pr197_seq_ACA_415-394_R A1/T4 
B1/T4 
C1/T4 

pr206_seq_TGT_448-473_F E/T0, E1/T1–T5 
F/T0, F1/T1–T5 
I/T0, I1/T1–T5 

pr207_seq_GTG_448-473_F E2/T1–T5 
F2/T1–T5 
I2/T1–T5 

pr209_seq_TGT_589-565_R E/T0 
E1/T1–T5 
I/T0, I1/T1–T5 

pr210_seq_GTG_589-565_R E2/T1–T5 
I2/T1–T5 

pr215_seq_TGT_659-678_F G/T0, G1/T1–T5 
H/T0, H1/T1–T5 

pr216_seq_GTG_659-678_F G2/T1–T5 
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H2/T1–T5 

pr212_seq_TGT_929-911_R F/T0, F1/T1–T5 
G/T0, G1/T1–T5 
H/T0, H1/T1–T5 

pr213_seq_GTG_929-911_R F2/T1–T5 
G2/T1–T5 
H2/T1–T5 

pr018_seq_TGT_518-540_F 4-site replicate #1/T0–T6 
pr019_seq_GTG_518-540_F 4-site replicate #2/T0–T6 
pr021_seq_TGT_709-688_R 4-site replicate #1/T0–T6 
pr022_seq_GTG_709-688_R 4-site replicate #2/T0–T6 

  



 

 

178 
Table B-9. OD600 over time by library: libraries A, B, and C 

Hours A1 A2 B1 B2 C1 C2 

0 0.1* 0.1 0.1* 0.1 0.1* 0.1 

18 0.72* 0.75 0.75* 0.84 0.74* 0.76 

20 0.78 0.83 0.83 0.98 0.78 0.84 

24 0.94 1.01 1.09 1.50 0.86 0.92 

44 2.55* 2.7 3.3* 3.85 1.95* 4.15 

*These samples were sequenced. Based on preliminary results where most variants were 
inactive, the remaining timepoints were not sequenced. 
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Table B-10.  OD600 over time by library: libraries D, E, F, G, H, and I 

Time 
(h) 

D1 D2 E1 E2 F1 F2 G1 G2 H1 H2 I1 I2 

0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 
12 0.19 0.18 0.20 0.20 0.17 0.17 0.14 0.14 0.15 0.14 0.36 0.39 
16 0.29 0.28 0.27 0.26 0.20 0.20 0.18 0.18 0.19 0.18 0.83 0.87 
20 0.51 0.49 0.47 0.44 0.23 0.24 0.23 0.23 0.26 0.26 1.24 1.36 
24 0.85 0.97 0.91 0.94 0.27 0.27 0.44 0.44 0.67 0.58 1.7 2.1 
36 1.42 1.81 1.41 1.54 0.79 0.79 2.0 1.95 2.9 1.85 1.95 2.25 
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Table B-11. OD600 over time: quadruple-site library 

Time (h) 4-site rep #1 4-site rep #2 
0 0.025 0.025 
12 0.19 0.19 
16 0.51 0.52 
20 1.26 1.34 
24 1.50 1.625 
28 1.675 1.75 
36 1.75 1.875 
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Table B-12. Data collection and refinement statistics for the structure of Tm9D8* 

Structure Tm9D8* 
Unit cell  
Space group I4 
a, b, c (Å) 165.7, 165.7, 83.06 
ɑ, β, ɣ (°) 90.0, 90.0, 90.0 
Data collection  
Wavelength (Å) 0.97946 
Resolution (Å) 45.99 – 2.15 
Total/unique no. of 
reflections 

825756/61153 

Rmerge
a,b 0.17 (2.19) 

Rp.i.m.
a,c 0.05 (0.64) 

CC1/2
a,d 0.99 (0.60) 

I/σ(I)a 13.2 (1.7) 
Redundancya 13.5 (12.4) 
Completenessa (%) 99.9 (99.4) 
Refinement  
No. of reflections used in 
refinement/test set 

61110/6021 

Rwork
a,e 0.214 (0.303) 

Rfree
a,e 0.237 (0.326) 

No. of nonhydrogen atoms  
protein 5814 
ligand 49 
solvent 96 
root-mean-square deviation 
from ideal geometry 

 

bonds (Å) 0.002 
angles (°) 0.49 
Ramachandran plotf (%)  
favored 97.24 
allowed 2.37 
disallowed 0.39 
PDB accession code N/A 

aValues in parentheses refer to data in the highest shell.  
bRmerge = ∑hkl∑i|Ii,hkl − ⟨I⟩hkl|/∑hkl∑i Ii,hkl, where ⟨I⟩hkl is the average intensity calculated for 
reflection hkl from replicate measurements.  
cRp.i.m.= (∑hkl(1/(N-1))1/2∑i|Ii,hkl − ⟨I⟩hkl|)/∑hkl∑i Ii,hkl, where ⟨I⟩hkl is the average intensity 
calculated for reflection hkl from replicate measurements and N is the number of reflections.  
dPearson correlation coefficient between random half-datasets.  
eRwork = ∑||Fo| − |Fc||/∑|Fo| for reflections contained in the working set. |Fo| and |Fc| are the 
observed and calculated structure factor amplitudes, respectively. Rfree is calculated using the 
same expression for reflections contained in the test set held aside during refinement.  
fCalculated with PROCHECK.  
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B.3 Supplemental Figures 

 

Figure B-1. TrpB- and Trp-dependent growth for the E. coli Trp auxotroph. The left 
set of tubes are cultures where the Trp auxotroph is given no TrpB variant while the right set 
does harbor an efficient TrpB (Tm9D8*). Within the sets, cultures were grown with and 
without exogenous Trp added to the Trp-DO media (all cultures contained indole and 
arabinose). Only cultures where exogenous Trp is added, or the cells harbor an active TrpB 
variant show detectable growth. 
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Figure B-2. Choosing growth assay conditions. E. coli Trp auxotroph cells harboring 
pBAD24-Tm9D8* and grown in Trp-dropout media supplemented with arabinose and 
indole. Sterile wells appear as flat lines in this assay. A Absorbance at 600 nm (OD600) versus 
time for all wells colored by arabinose concentration (%). This showed that 0.05% arabinose 
was optimal. B Absorbance at 600 nm (OD600) versus time for all wells colored by indole 
concentration. This showed that 200 µM indole was optimal. C Replicates of absorbance at 
600 nm (OD600) versus time at 0.05% arabinose and 200 µM indole. 
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Figure B-3. Preliminary results for independent growth rates. A Independent growth 
rates for a 184X library were monitored by collecting the absorbance at 600 nm (OD600) over 
time and pairing it with sequencing data obtained by evSeq. B Absorbance at 600 nm vs 
cycle number with the scatter plots colored by amino acid identity. We observed clear 
clustering between amino acids that indicated reproducibility. C Looking at a timepoint 
along the collected data, we subtracted the absorbance of the average negative control (empty 
pET22b(+) vector) well to obtain a background-subtracted absorbance for each well. Results 
were grouped by amino acid. D Plotting the background subtracted absorbance against the 
normalized rate of Trp formation (data obtained from Wittmann et al.,5 we absorbed a 
reasonable correlation between the two that indicated the fitness we were measuring was 
similar. 
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Figure B-4. 118X/184X growth-based enrichment assay. A Frequency of each 118/184 
amino acid pair in the input DNA library. B Normalized enrichment was calculated as the 
output sequencing frequency divided by the input sequencing frequency and normalized to 
parent (A118, F184). C Correlation of normalized enrichment and normalized rate of Trp 
formation for all variants in the 118X/184X library with A118 (a proxy for a 184X library). 
D Correlation of normalized enrichment and normalized rate of Trp formation for all variants 
in the 118X/184X library with F184 (a proxy for a 118X library). 
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Figure B-5. Comparison of 118X/184X growth-based enrichment and in vitro rate of 
Trp formation. A Normalized rate of Trp formation for a subset of the 118X/184X library. 
B Correlation between the normalized rate of Trp formation and enrichment ratio (output 
frequency / input frequency) for the subset of the 118X/184X library. 
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Figure B-6. All positions targeted within triple-site saturation libraries. A total of twenty 
different residues were targeted amongst nine triple-site saturation libraries. Residues were 
chosen to be near the active site or known to modulate the activity of TrpB.  
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Figure B-7. Sets of residues chosen for the triple-site saturation libraries. Nine sets of 
three residues were targeted based on proximity to each other as well as each of construction 
with available molecular biology methods. Different numbers of replicates and timepoints 
were obtained for libraries A, B, and C vs libraries D, E, F, G, H, and I.  
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Figure B-8. Fitness for all pairs of residues for Libraries A, B, and C. Initial 
investigations into the utility of these sets of positions for larger libraries. Fitness was defined 
as the natural logarithm of the output frequency at T=44 over the input frequency. For each 
plot, the unplotted residue was held at the parent amino acid at that position, and for all three 
libraries very few amino acids are accepted at each position. A Library A separated into the 
three possible pairs of positions: 104 & 105, 105 & 106, and 104 & 106. B Library B 
separated into the three possible pairs of positions: 105 & 106, 106 & 107, and 105 & 107. 
C Library C separated into the three possible pairs of positions: 106 & 107, 107 & 108, and 
106 & 108.  
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Figure B-9. Fitness for all pairs of residues for Libraries D, E, and F. Initial 
investigations into the utility of these sets of positions for larger libraries. Fitness was defined 
as the natural logarithm of the output frequency at T=36 over the input frequency and 
averaged between the two replicates. For each plot, the unplotted residue was held at the 
parent amino acid at that position. A Library D separated into the three possible pairs of 
positions: 117 & 118, 118 & 119, and 117 & 119. There is a relatively broad range of 
positions allowed at 118 and 119 while 117 allows many fewer. Interestingly, substitutions 
at 118 to Leu, Met, or Asp allow His to emerge as an option for 117. B Library E separated 
into the three possible pairs of positions: 184 & 185, 185 & 186, and 184 & 186. Position 
184 shows a broad range of allowed amino acids while 185 and 186 are much more limited. 
C Library F separated into the three possible pairs of positions: 162 & 166, 166 & 301, and 
162 & 301. This library allowed very few deviations from the parent sequence. Y301 
appeared nearly mandatory as did I166 while either Leu or Iso were accepted at 162.  
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Figure B-10. Fitness for all pairs of residues for Libraries G, H, and I. Initial 
investigations into the utility of these sets of positions for larger libraries. Fitness was defined 
as the natural logarithm of the output frequency at T=36 over the input frequency and 
averaged between the two replicates. For each plot, the unplotted residue was held at the 
parent amino acid at that position. A Library G separated into all three possible pairs of 
residues: 227 & 228, 228 & 301, and 227 & 301. Once again Y301 appeared nearly 
mandatory. Positions 227 and 228 appeared to allow many more residues. One especially 
exciting observation was that G227 highly activating when paired with G228, but in the 
original S228 background it ablated activity. B Library H separated into all three possible 
pairs of residues: 228 & 230, 230 & 231, and 228 & 231. Very few amino acids were 
accepted at positions 230 and 231 while the range of those accepted at position 228 appeared 
similar to what was observed in library G. C Library I separated into all three possible pairs 
of residues: 183 & 184, 184 & 185, and 183 & 185. This library had many reasonably active 
variants, with some of the biggest improvements coming from the 183/184 pairing. Y182 
appeared to be reasonably important for activity, but Phe, Leu, and Met were accepted at 182 
to varying degrees with different residues at 183 and 184.  
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Figure B-11. Correlation of mu scores between replicates for all data and stop-codon 
sequences. Mu values were calculated as described by Kowalsky et al.8 for all variants at all 
timepoints. In the top panel of six plots, mu for replicate 1 is plotted against mu for replicate 
2 for all variants. In the bottom panel of six plots, mu for replicate 1 is plotted against mu for 
replicate 2 for just the stop codon-containing sequences. We observed that the distribution 
shrunk over time for both all variants as well as for stop codons, leading us to subtract the 
average mu for the stop codons within each replicate and timepoint and divide by the 
maximum mu value within that replicate and timepoint (mu_1-bg/max or mu_2-bg/max). 
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Figure B-12. Correlation of fitness scores between replicates for all timepoints. The 
scaled mu values for both replicates plotted against each other by timepoint overlaid on the 
identity line, y=x. There was a high degree of agreement between the replicates as well as 
between the timepoints. 
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Figure B-13. Results of KNN imputation on 1,000 randomly ablated fitness scores. For 
three different sets of 1000 randomly ablated fitness scores, the KNN imputer was tested 
with weights=‘distance’ and n_neighbors = 1, 2, or 3. The imputed fitness values are plotted 
against the actual fitness values and overlaid with the line y=x. The ablated fitness values 
were restored and then the KNN imputer with n_neighbors = 2 was chosen to impute the 871 
missing fitness values for the TrpB four-site landscape. 
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Figure B-14. Frequency of amino acids at each position of the quadruple-site landscape 
positions. EVCouplings was run with the webserver available at https://evcouplings.org/ to 
generate the multiple-sequence alignment used to determine the amino acid frequencies at 
each position.20 These results are from the Tm9D8* sequence as an input and using a bitscore 
of 0.3. 
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Figure B-15. Prevalence of K227 in the top sequences. The fraction of variants containing 
K227 with that ranking or better versus the ranking of the variant. All ten top sequences 
contained K227 and  even among the top ~2,000 K227 remains overrepresented compared 
to the other nineteen possible amino acids. The black horizontal line is the expected fraction 
of sequences containing K227 (1/20) if sampling were random. 
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Figure B-16. Selecting an active/inactive threshold. A Correlation between fitness for the 
two replicates for stop-codon containing sequences (blue). This was overlaid with points 
sampled from a multivariate normal distribution based on the stop-codon distribution (red). 
This shows that the distribution is roughly normal. B Since it appeared that the fitness 
distribution was normal for each replicate, the active threshold was imposed such that the 
fitness of a variant was greater than the 95% confidence interval of stop-codon containing 
sequences for each replicate. C Histogram of the fitness values by averaging the two 
replications. The active/inactive threshold is displayed with a red, vertical line. 
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Figure B-17. Epsilon distribution by pair of positions for TrpB and GB1. Epsilon was 
calculated as described in Olson et al.21 for each set of variants: 𝜖 = ln 6"!%!!

"!%""
7 − ln 6"!%"!

"!%""
7 −

ln 6"!%!"
"!%""

7 where 00 is the starting variant, 11 is the final variant with two substitutions, and 
01 and 10 are the two single substitutions. Left: Epsilon distributions if all variants are 
required to be above the activity threshold. Right: Epsilon distributions if all variants are 
required to be in the top 9783 variants. Positions for TrpB and GB1 are listed in sequence 
order. TrpB: 0à183, 1à184, 2à227, 3à228. GB1: 0à39, 1à40, 2à41, 3à54. All 
following figures use the same nomenclature.  
  



 

 

199 

 
Figure B-18. Epsilon distributions by position pair and epistasis type. A Epsilon 
distributions for both TrpB and GB1 for sets of variants where the fitness of every variant is 
above the activity threshold. The distributions are symmetric because variants appear as both 
starting and final variants which results in an epsilon of equal magnitude and opposite 
direction. B Epsilon distributions for GB1 where each variant in the set is either above the 
activity threshold (blue) or in the top 9,783 variants (orange). For TrpB this does not change 
the distribution, so it is displayed only for GB1. 
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Figure B-19. Distribution of epistasis types by position pair. For all sequences above the 
respective activity thresholds, distributions of the fraction of each epistasis type grouped by 
pair of positions for both TrpB (upper) and GB1 (lower). All variants within a set were 
required to be above the activity threshold to determine the epistasis type. We see that the 
distributions are fairly similar across all position pairs. 
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Figure B-20. Distribution of epistasis by position pair with final fitness > initial fitness. 
For all sequences above the respective activity thresholds, distributions of the fraction of 
each epistasis type grouped by pair of positions for both TrpB (upper) and GB1 (lower). All 
variants within a set were required to be above the activity threshold to determine the 
epistasis type. Additionally, it was enforced that the final fitness be greater than the initial 
fitness to investigate the distribution of epistasis for beneficial substitution pairs. Differences 
appeared to be relatively minor with a slight increase in the amount of magnitude epistasis 
across all positions pairs for both TrpB and GB1. 
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Figure B-21. Investigating the distribution of epsilon and epistasis type by variant. For 
the five variants involved in the path from parent (VFVS) to the best variant (AIKG), we 
plotted the distribution of epsilon separated by epistasis type and position pair as well as the 
fractions of epistasis types for each position pair. Although we had seen that the position 
pairs showed similar fractions of each epistasis type when examining all variants, when 
examined one background sequence at a time there is a lot of variation. VFVS and VIVG 
appear to have reciprocal sign epistasis for all position pairs, while VIKG has almost none. 
There is also much more variation in the fractions of epistasis between each of the pairs of 
positions for each background. For example, VIVS exhibits very little reciprocal sign 
epistasis except for between residue 227 (2) and 228 (3). For all sets, all variants were 
required to have fitness above the activity threshold, which is why some epsilon distributions 
are empty (no sets existed where all variants were above the threshold).  
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Figure B-22. Further information on the pairwise epistasis distributions across 
quartiles. Top: In the main text, when classifying types of epistasis, all variants were 
required to be above the activity threshold. If any variants can be used to classify epistasis 
(using only active variants as starting sequences), the distributions change, potentially due to 
noise impacting proper classification. More reciprocal sign epistasis is reported for TrpB 
(blue) while the GB1 (orange) distributions change less. Middle: Box and whisker plot of the 
data presented in Figure 3-2B for TrpB. Bottom: Box and whisker plot of the data presented 
in Figure 3-2B for GB1. 
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Figure B-23. Analysis of paths to each local optima. Fractions and ECDFs of active 
variants with at least one upward path to each of the top twenty local optima given the 
allowed fitness decreases. Most ECDFs appear roughly the same as that presented for AIKG 
with varying widths of distributions. However, the final two optima presented, VECT and 
IWWV, appear to be much more inaccessible than expected.  
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Figure B-24. Fraction of active variants with at least one upward path to each local 
optima. Allowing no decreases in fitness, this is the fraction of starting variants that have at 
least one upward path to each of the top 20 local optima (blue). The fraction of starting 
variants that do not have even one upward path to the local optima is in red. There is a general 
trend that as the fitness of the local optima decreases it becomes less accessible, likely 
because some of the paths require variants with higher fitness than the optima, which makes 
them inaccessible. However, many of these local optima are still similarly accessible as 
AIKG, meaning they could trap evolution campaigns. 
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Figure B-25. Comparing simulation results with varying activity cutoffs for GB1 data. 
Presented in the main text, we show the simulation results starting from each of the top 9,783 
non-imputed variants. We observed significant differences in the performance based on the 
starting cutoffs imposed for GB1 that made comparison between GB1 and TrpB difficult. A 
A comparison of the directed evolution simulation results starting from all variants above the 
respective activity thresholds for TrpB and GB1. In these results, the maximum fitness 
achieved is generally much higher for TrpB. However, the minimum fitness allowed for 
TrpB is ~1/20 the max while for GB1 it is ~1/1,000 the max. This means a given starting 
point for TrpB is fewer fold-improvements from the maximum to begin with. B 
Alternatively, the simulations can be run for GB1 using the same fraction of the maximum 
fitness as a cutoff. In this case, only 5587 variants from the GB1 landscape are within this 
cutoff. This makes the simulation results between TrpB and GB1 much more similar, with 
GB1 having fewer campaigns trapped at very low fitness (~0–0.3), but more trapped and 
medium fitness (~0.3–0.8).  
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Figure B-26. Varying the number of exact variants tested in SSM predict top N. Since 
many machine learning-assisted directed evolution approaches require direct synthesis of N 
variants for a prediction round, we tested if increasing N improved the max fitness achieved 
via choosing top variants with SSM and recombination based on additivity. Testing more 
variants did shift the distributions slightly upward, but the return was quite small for a 2X or 
3X increase in required synthesis costs. 
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Figure B-27. Directed evolution simulations from any variant with fitness >0 in the 
landscape. As a final comparison, we tested how well simulations did starting from any 
random variant in the landscape of either TrpB or GB1. As expected, the performance was 
significantly worse, especially for site-saturation mutagenesis + recombine best (middle 
violin). Single-step site saturation and site-saturation predict top 96 performed similarly for 
GB1, but single-step SSM was by far the best for TrpB, likely because it allowed escape 
from the distribution of inactive variants. This suggests that a single-step walk may be a more 
robust approach, especially for early evolution campaigns when activity is near-noise levels 
even though SSM predict top 96 did somewhat better when starting from the detectably 
active variants.  
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Figure B-28. Zero-shot fitness predictor performance for the GB1 binding protein. Left: 
EVmutation, Right: Triad with Rosetta energy function. EVmutation appears to be able to 
increase the fraction of active variants somewhat, but it barely increases the mean fitness 
achieved. Alternatively, Triad appears to be able to increase both the fraction of active 
variants sampled as well as the mean fitness.  
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Figure B-29. T50 absorbance vs time (s) plots colored by temperature for each variant. 
Across three different collection plates, lysate harboring each variant was incubated for 1 h 
at a temperature between room temperature at 99 °C. Lysate was spun down and then added 
to a reaction mix containing indole and serine, and absorbance at 290 nm was collected over 
time. It is clear that some variants lose activity with temperature whiles others barely change 
(VIVG). The initial rates were captured with linear fits. 
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Figure B-30. Sigmoid fits for fraction of RT activity vs 1 h incubation temperature. 
Initial rates were divided by the initial rate of the room temperature-incubated sample and 
plotted versus temperature. These data were fit with a sigmoid that was used to estimate the 
T50 for each variant. No measurements were taken over an incubation temp of 99 °C.  
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Figure B-31. Fits for variable indole Michaelis-Menten rate estimation data. Initial rates 
were estimated from linear or exponential rates. More details provided in the associated 
GitHub repository where data processing notebooks can be found. 
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Figure B-32. Fits for variable serine Michaelis-Menten rate estimation data. Initial rates 
were estimated from linear or exponential rates. More details provided in the associated 
GitHub repository where data processing notebooks can be found. 
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Figure B-33. Biochemical investigation of the top variants. Stability and activity 
measurements for select variants. A T50 curves for all variants in the single possible path from 
Tm9D8* to AIKG as well as the top five variants: AIKG, CLKG, ALKG, CIKG, and VLKG 
(in order of fitness). B Michaelis-Menten curves for Tm9D8*, VIVG, and AIKG with 
different indole concentrations at 20 mM Ser (left) and different Ser concentrations at 200 
µM indole (right). 
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