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ABSTRACT

This dissertation is intended as a collection of essays which explore innovations
in the development and estimation of latent variable models. These methods have
many applications, including Natural Language Processing and latent correlation
structures, which this dissertation explores. In addition to the statistical challenge of
innovating on this class of model, latent variable methods are computationally de-
manding, requiring research insights related to how to render such methods feasible,
both in terms of memory constraints and in terms of achieving rates of convergence
in realistic time frames. The overall substantive angle of this dissertation is related to
political representation, in particular to U.S. Congress. This substantive focus allows
me to study the quality of our democratic institutions and their responsiveness to
and interactions with the public. This dissertations harnesses novel, large datasets,
which demand the innovative methods developed throughout this dissertation to
answer pressing questions related to these issues of political representation. The
dissertation focuses on three main data sources: social media data from members of
the U.S. House on Twitter, public speech data derived from Congressional Record
from 1877-2016 and elections data from the U.S. House from 1956 to 2022. All of
these data relate how politicians relate to their constituents: by communicating with
them through social media or in public speeches in the first and second cases; and
further by trying to earn their votes in the third case. Thus, this dissertation aims
to answer questions relating to the use of innovative statistical methods to recover
latent features of the data. It explores these questions through the lens of their
applications to questions of American legislature. A key finding across domains
is the relative unity and stability between legislative leaders and members of their
respective parties. In fact, this stability is apparent both in contemporaneous studies
of social media, electoral representation in the post-war era, and over historical
speeches on the floor of the U.S. House.

Methodologically, this dissertation argues for new frameworks for thinking about
large data in political science contexts. It emphasizes the importance of descriptive
statistical approaches that consider the full distribution of the data generation pro-
cess, including higher-order moments beyond the mean. In Chapter 2, it shows how
calibrating statistical models for accurate generative descriptions can significant
implications for how researchers interpret their statistical results and can accurately
uncover important quantities of interest. In Chapter 3, this dissertation proposes new
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ways to think about external validity when using unsupervised methods for textual
analysis. Finally, all three chapters contend with approaches to latent features in
the data: topical structure in chapters 1 and 3, and contemporaneous correlations in
Chapter 2. All three chapters employ these latent variable methods while proposing
solutions to contend with the estimation and computational obstacles imposed by
using such methods on large-scale data. In doing so, these papers find unexpected
stability and unity among congressional leaders and legislators, with important
implications for legislative representation in the United States.
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C h a p t e r 1

LEGISLATIVE COMMUNICATION AND POWER:
MEASURING LEADERSHIP IN THE U.S. HOUSE OF
REPRESENTATIVES FROM SOCIAL MEDIA DATA

1.1 Introduction
In January 2019, the U.S. Congress was on the brink of crisis and a shutdown.
Due to a legislative impasse and political infighting, the legislature could not agree
on a compromise to fund the government. Legislative leaders in both parties had
to reconcile an uncertain political environment, high policy stakes, and potentially
long-lasting electoral consequences. Legislators needed then to balance both their
desire to coordinate on a unified message with their desire to actually espouse the
right message (with respect to politics, policy, and electoral concerns). The ability of
party leaders to set the messaging agenda during this crisis rested on their capacity
to balance these concerns. A failure to coordinate on the message or the costs
of choosing the wrong message could have resulted in dire political and electoral
consequences for the party, as well as harm to the country from unsound policy.
This recent example shows that understanding how the party settles on a message
and when members choose to follow their party leaders is crucial for understanding
how party leadership functions in a democracy.

Existing theories of Congress suggest party leadership power in modern American
parties is best explained by national polarization and increased party cohesion that
give rise to top-down party leaders. These existing studies focus on polarization
as an explanation for agenda setting power, and they often compare power relations
across parties. In contrast, we study within-party power relations, and analyze
how leadership arises within a party. Our analysis considers a formal theoretical
framework that considers the predictions from a signalling and coordination model
of Congress due to Dewan and Myatt, 2007. Extending this theory to how party
leaders influence member communications, the model suggests that parties balance
tensions between coordination and information problems. Parties would like to
coordinate around a unified message, but that is difficult because the underlying
political, economic and social conditions of the world are uncertain. Leadership’s
role in this setting is to help facilitate coordination in the face of this uncertainty.
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The recognition of this tension in simultaneously resolving these two problems
guides our empirical research. Drawing on this theoretical insight, we develop and
test a key hypothesis about party leadership in the contemporary U.S. House of
Representatives. We test this hypothesis using social media data and unsupervised
learning methods. Testing formal political theory with these data and methods is an
important contribution of our research.

We focus on a hypothesis which illuminates this informational problem and connects
the party members’ need for policy direction with House leaders’ willingness to
initiate discussion. We show structural stability in the findings across a single
presidential term, even when the party in power changes.

These expectations contrast with previous studies of congressional party leadership
which are conditioned on ideology and legislative institutions. In fact, we believe
our results confound expectations because we are focused on the domain of influence
over communication on social media. For example, Aldrich and Rohde, 2001 present
a theory of conditional government, whereby strong party leaders emerge when
parties are internally homogeneous, but are polarized with respect to other parties.
As the parties polarize, members delegate more authority to their partisan leaders.
Additionally, Aldrich and Rohde, 1998 used DW-Nominate scores to quantify how
parties have grown more polarized and ideologically homogeneous. Similarly,
Gamm and Smith, 2020 argue that modern parties are top-down institutions, with
party leaders exerting control over legislation and committees, especially in the
U.S. House of Representatives. Others have argued that modern congressional
leadership is powerful: various authors have noted that leaders are empowered with
the capacity to bypass committees (Bendix, 2016; Howard and Owens, 2020), to
directly negotiate policy (Curry, 2015; Wallner, 2013), set the agenda (Harbridge,
2015), and to limit floor debate (Tiefer, 2016).

We note two key distinguishing features of our analysis relative to earlier studies.
First, we avoid the selection problems inherent in using roll call data to identify
leadership influence. As party leaders are strategic and have agenda power, they
control which bills reach the floor. Since they are unlikely to bring bills to the
floor which divide their own party, the fact that leadership-supported bills obtain
majorities could signal strength within the party (if leaders persuaded the rank-
and-file to support a bill close to the leader’s preferred stance), or weakness (if
the rank-and-file overrules the leader in the party conference vote). Social media
communications are not subject to the same level of leadership control – members of
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Congress often cultivate their own online home styles. Second, the high frequency
nature of social media data allow us to capture changes in legislative behavior at a
much more granular level than roll call data. In particular, social media offers rich
data concerning party leadership’s ability to direct legislative communication and
public engagement around specific topics among their members, and in real time.

Our paper contributes to the literature in four ways. First, because we define House
leadership influence as the ability of leaders to persuade rank-and-file members to
adopt communication strategies similar to their own, we can exploit social media
data to measure policy positions (Yan et al., 2019). Specifically, we quantify House
leadership influence in terms of leaders’ ability to pull rank-and-file public stances on
Twitter closer to the leadership’s messaging on those same policy positions. Second,
we use high-frequency data that shows that the dynamics of leadership can change
daily. This suggests that leaders’ influence over the party’s policy positions varies
based on the issues dominating discussion at a particular time. Third, our data let us
study the influence of House rank-and-file members on their party leaders. We find
that House rank-and-file members exert influence on their leaders’ policy position
messaging under certain conditions. Our results demonstrate that polarization alone
is not sufficient to explain patterns of party leadership in the House. Finally we show
that NLP methods and social media data provide insight into online home styles.
Thus our work neatly dovetails with Fenno, 2003, as it offers a quantitative approach
to understanding how members of Congress communicate with their constituencies
and one another.

We argue that understanding the role of communication in shaping institutional
structures in the House is central to theoretical understandings of leadership, es-
pecially within political parties. In particular, parties balance coordinating around
a unified policy position while trying to communicate the best policy position in
an uncertain world. We show that political communications data from Twitter il-
luminates understudied aspects of institutions in the House. Twitter is now a key
platform that political leaders use to communicate with their constituents and with
other politicians, yielding data on their revealed preferences like roll call votes or
newsletters to constituents.1 We use data from the official Twitter accounts of U.S.
House members, collected for the 115th and 116th Congresses, between January

1Twitter provides a public forum for members of Congress to interact with each other and the
public (Hall and Sinclair, 2018). Past research suggests that congressional Twitter activity is part
of a legislator’s strategic public communication plan that researchers can use to study legislative
behavior (e.g., (Barbera et al., 2019; Kang et al., 2018)).
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1st, 2017 and January 3, 2021. After pre-processing these data, we use weakly
supervised machine learning methods to show that intra-party variation in our data
is associated with observed member behavior, namely House of Representatives
messaging mechanisms and the institutional structure within each party’s confer-
ence. We next discuss the primary hypothesis which guides our analysis, detailing
the tension between the coordination and information problems.

1.2 Theory of Leadership Communication and Power
Our empirical analysis is framed around theoretical insights from the Dewan and
Myatt (2007) signalling and coordination game of party leadership and commu-
nication – where leadership facilitates coordination on a position in response to
uncertain issues. In the context of this framework, uncertainty could be the political
or electoral popularity of taking a position, or uncertainty about the policy outcome
of a stance. For example, the government shutdown of 2019 presented uncertainty
of all three types: there were reasons to believe the electoral impact of a shutdown
could be either strong or mild and reasons to believe a shutdown could either fa-
vor or disfavor the Democratic House Caucus. Further, the policy outcome of the
shutdown was uncertain, as the stalemate occurred over border wall policy. The
correct position for Democratic and Republican House members to communicate
publicly and in real time on social media was not immediately clear. The theoretical
framework notes that leaders help resolve this tension between the information and
coordination problems faced by party leaders and rank-and-file by acting as a coor-
dination device around a position in light of this uncertainty. In the context of the
model, party leaders issue a public speech and then party members try to coordinate
on a public position in an uncertain state of the world.

To clarify the theory, we return to 2019 government shutdown debate. House
Speaker Pelosi attempted to coordinate her party around a single stance and unite
the moderate and progressive wings of her party. The government shut down when
President Trump and House Democrats failed to agree on a government funding bill
due to disagreements over financing the president’s border wall with Mexico. The
moderate wing had political incentives to break the impasse by appropriating funds
for President Trump’s border wall, while Democratic progressives desired a harder
line of negotiation. In the meantime, House rank-and-file Democrats were privately
discussing their sense of the party’s mood around the most politically advantageous
messaging strategy as they negotiated with a Republican president to resolve the
crisis. These discussions occurred online, in person, and over conference calls.
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The private signals in this legislative coordination game represent these online and
offline discussions.

We explain the terms of our hypothesis in the context of our illustrative example;
the precision of the private signals represents the variation over the moderate and
progressive’s internal discussions related to the messaging surrounding the border
wall and government funding negotiations. As these signals are private, we do not
measure this quantity directly. In the model, the party selects one position whose
number of supporters exceeds a threshold. In our example, this is Speaker Pelosi’s
sense of the level of party support she needs to pursue a particular messaging
strategy. In the case where neither position has sufficient support, the party fails
to coordinate. In the government funding example, Speaker Pelosi initially struck
a hardline messaging strategy, and her members followed her lead. She gauged
internal support as sufficiently high for this strategy. This illustrates the concept of
the need of direction. This concept represents the responsiveness of the messaging
strategy to the fundamental political environment, and the gravity of choosing
incorrectly. In our illustrative example, the need for direction is high, as failure to
coordinate could result in prolonged national suffering and a calamitous electoral
performance for the party assigned blame for the shutdown by the public.

To conclude the 2019 government shutdown example, some Democratic members
publicly indicated they did not support the strategy pursued by their congressional
leaders during the crisis, and feared political backlash for little electoral gain. We
have no reason to believe that they privately supported this strategy, as they actively
advocated for countervailing messaging on social media. Nor is it likely that Demo-
cratic legislators adopted their leadership’s messaging strategy if they thought it was
doomed politically. Thus, the public signals reflected internal dissent and internal
support for Speaker Pelosi’s and her leadership team’s proposed messaging strategy
regarding the shutdown. This ultimately resulted in Speaker Pelosi making conces-
sions to ideologically diverse factions within her party to ensure they coordinated
around her stance on a critical issue. Ultimately, President Trump relented after 35
days and the House and Senate passed a funding bill by voice vote.

In our setting, the public position for each party member is communicated on Twitter.
To evaluate the ability of the party to coordinate around the leaders’ preferred
messages, we construct a measure for the concept of need for direction that is
discussed in detail in Sections 3 and 4.2 Specifically, need for direction captures the

2Readers interested in details of the theory can refer to (Dewan and Myatt, 2007).
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importance of the party coordinating around the “correct” position. When need for
direction is high, the information problem tends to dominate. This is because the
merits of the position are especially responsive to underlying fundamentals which
are uncertain.

We analyze our data at the individual sentiment-topic level. On issues where the
party’s need for direction is low, we expect House rank-and-file to adopt the positions
of their leaders. Here, the stakes for choosing the wrong position are relatively low,
and members prefer to coordinate around a unified policy – even if it is “incorrect”
– rather than fail to coordinate at all. For issues where need for direction is high,
we expect House leaders to adopt the communication style of their rank-and-file.
We define issues with low need for direction as those which explain the variation
in the propensity to discuss sentiment-topics, such as the construction of a border
wall – which Democrats generally oppose and Republicans generally favor. The
“correct” stance on this type of issue for each party is clear. There is little electoral
payoff or cost in taking these stances. Conversely, need for direction is high when
coordinating on the “correct” stance has out-sized electoral and policy effects, such
as a government shutdown. Government shutdowns have resulted in policy and
electoral consequences. Here, we expect House leadership influence to be weaker,
as the theory suggests that rank-and-file members will hedge against the leaders
and adopt their private stance publicly, as the consequences for coordinating on the
“wrong” message are high.

Table 1.1 presents the key theoretical concepts and their empirical measures. The
first column describes the theoretical concepts as we have defined them in the
preceding section, while the second column provides the theoretical meaning of
each concept. The third column previews the empirical measures we derive from
social media data, which we discuss in Section 3 of the paper. Then in Section 4,
we discuss the methods we use to translate theoretical concepts into their empirical
analogues, with results in Section 5, and the discussion and conclusion in Section 6.

1.3 Data and Methodology
Data
In order to study the dynamics of communication, we examine legislators’ Twitter
posts. Using this high-frequency, individual-level data, we examine whether the
House party rank and file discuss topics that are similar to their leaders’ commu-
nications on social media or vice versa. We collect the Twitter handles of 511
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Concept Revealed By Empirical Analogue
Need for Direction Sentiment-topics with out-

sized benefit or cost of coor-
dinating

Classify top twenty topics for
each party driving separation
in sentiment-topic space as
uncovered by PCA analysis as
needing direction

Leadership Influ-
ence

Leaders’ ability to convince
rank-and-file members to fol-
low their topics

Leaders have statistically sig-
nificant IRFs on rank-and-file
members

Table 1.1: Terminology

representatives from January 3rd, 2017 to January 3rd, 2021, covering exactly the
115th and 116th sessions of Congress. We used the official Twitter handles list
collected by C-SPAN3, following Barbera et al., 2019 who used the NYT Congress
API to identify a list of handles for Members of Congress.

We do not include election, personal, or private accounts in our dataset. While
many members have additional personal or campaign social media presences, in
order to have a consistent method to collect Twitter data from members of Congress,
we focus on their official Twitter accounts. It is precisely these accounts that best
represent strategic interactions around substantive policy positions. Personal and
electoral Twitter accounts often focus on non-policy issues, like personal family
matters, sporting events or scheduling of specific campaign events (such as local
town halls or rallies). We focus our study on social media posts that are most likely
to discuss policy. Our dataset includes 738,066 tweets, including only original
posts. Table A.2.1 shows that on average House members tweeted 727.17 times,
with notable inter-party variation. Democratic Party members tweeted on average
894.45 times, while Republican Party members tweeted on average 528.31 times.4

Methodology
In summary, our analysis proceeds in three steps. First we analyze the original
tweets using a Joint Sentiment Topic (JST) model, which we believe is new to
legislative studies. We use this model to produce estimates of the daily propensity
to discuss a sentiment-topic for each legislator. Second, to uncover the topics in
need of direction, we use principal components analysis (PCA) on the member-
level average of the topic weights to identify which topics best explain the variation

3https://twitter.com/cspan/lists/members-of-congress/members
4See Figure A.2.1 for the overall distribution of tweets by House members for this period.
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between members’ preferred discussion topics. Finally we use a daily average of
the topical weights for House rank-and-file and for the House leaders to test whether
House leaders exert influence and lead on the messaging regarding a policy position
or whether House party rank-and-file exert influence and lead discussion.

Joint Sentiment Topic Analysis

We estimate a topic mixture and sentiment mixture, the Joint Sentiment Topic (JST)
model, which we believe is new to the study of legislative communication and
behavior. It is based on Latent Dirichlet Allocation (LDA), though it estimates an
additional latent layer. However, unlike LDA (which estimates two latent layers,
topic classification and words alone), the JST estimates three latent layers (sentiment
orientation, then topic classification, then word mixtures). Importantly, the JST
model estimates the unconditional probability of each sentiment. Note that this
model is weakly supervised, as we place a weak prior over the sentiments orientations
for a selection of common words.

In order to measure the structure of communication, we use the JST method to
classify all tweets for all House members over both sessions of Congress at once.
Previous work in political science has used topic analysis to classify open-ended
survey responses (Roberts et al., 2014a), while Kim, Londregan, and Ratkovic
(2018) have used text to augment an ideological spatial model. Our strategy is an
amalgamation of these two approaches. Our work captures the discussion space,
without relying on assumptions regarding exogenous covariates to uncover the latent
topics.

By accounting for both topic and sentiment, a key feature of the communication
structure uncovered by JST is the clear variation in how Democrats and Republicans
communicate on social media. By uncovering this inter- and intra-party variation,
we are able to analyze behavior within and across parties. Moreover, this method
uncovers partisan separation in party communication, evidence that the unsupervised
method has external validity. We strongly expect there is a partisan element to
discussion on social media from the patterns of communication, which should be
especially strong for our sample of members of Congress.

For all tweets in the dataset, we estimate a probability distribution for every word
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and every tweet which can be decomposed as:

Pr( Word = 𝑤, Sentiment = 𝑗 , Topic = 𝑘) = Pr( Word = 𝑤 | Sentiment = 𝑗 , Topic = 𝑘)
Pr( Topic = 𝑘 | Sentiment = 𝑗) Pr( Sentiment = 𝑗)

This produces a vector of 𝑘 𝑗 independant sentiment-topic probabilities and 𝑗 senti-
ment probabilities for each tweet, which are analgous to the estimates one derives
from mix-membership topic models, such as Latent Dirchilet Allocation.

As with many standard topic models approaches, as we connect the JST model
to political contexts, the model relies on exchangeability and is a bag-of-words
approach to speech, which allows for feasible, tractable estimation. We provide a
full technical overview in Appendix Section A.4.5

To calibrate the model, we optimize the coherence score of the model. Appendix
Figure A.4.2 suggests that the optimal number of topics is 60 topics, the local
maximum in the coherence score metric we employ – normalized pointwise mutual
information. This is a measure of the extent to which, on average, words we say are
likely to be in a topic to be associated in the same topic are actually associated based
on what we see in the data. This measure is among the most accurate for determining
quantitative coherence for uncovered topics Röder, Both, and Hinneburg, 2015. For
the number of sentiments, we fix the number at 3, following the paradigmatic prior
in Lin and He, 2009. This results in 84 conditional sentiment-topic probabilities,
and three unconditional sentiment probabilities for each tweet.

Appendix Table A.4.2 highlights the tweets with the highest probability of belonging
to their sentiment-topic label. We report the pre-processed tweet and the associated
author-generated labels. The tweets in Table A.4.2 highlight that the JST model
produces coherent topic structure, in addition to mathematical coherence.6

Measuring Need For Direction

In order to measure need for direction on a policy, we examine structural notions
of leadership derived from a PCA analysis of the sentiment-topic space. This is
distinct from the topic-by-topic analysis in the preceding section as here we look at
measures of party behavior at the party level.

5This is also reviewed in Lin and He, 2009 and Lin et al., 2012.
6For additional details, see Appendix Section A.4.
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Figure 1.1: Aggregated legislator policy positioning in the two-dimensional topic
space derived from the PCA analysis of the sentiment-topic propensities for the
115th (left) and 116th (right) Congresses. Red indicates a Republican member’s
policy position, blue indicates a Democratic member’s policy position.

Communications decisions among House members are likely guided by exogenous
events, party and peer effects, and personal preferences of legislators, which are
not immediately obvious from looking at the raw mixtures at the document level.
So to understand the individual-level data, we aggregate document-level data by
averaging the topical weights for each member. By using PCA as a dimension
reduction technique on this aggregate individual-level data, we can identify topics
which explain the variation in what members in Congress discuss relative to one
another. Figure 1.1 illustrates the sentiment-topic space for all members in our data,
summarized by member for the entire period covered by the dataset. We call the
coordinate pairs in this figure the policy position for each legislator.7

We employ PCA in the following fashion to uncover which topics are in need of
direction and which are not. After computing the JST mixtures for each tweet, we
find the average probability a House member tweeted about a particular sentiment-
topic for the 115th and 116th Congresses.

We emphasize that these PCA results measure a position in sentiment-topic space
7We also estimate this measure restricted to only the respective Congress. Figure A.5.4 shows

the contrast of rank-and-file members’ position in the PCA-derived Twitter communcation space
when we estimate it separately. We show the main result is robust to changes in this estimation
routine.
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over popular debates taking place on social media in real time. PCA analysis
allows us to analyze messages espoused by legislators on social media. PCA is
useful when taking our JST model as input, as JST accounts for both sentiment
orientation and topic content. This allows the latent partisan structure of the data
to be detected, without imposing additional structure from potentially endogenous
variables to induce this structure. The output of this mapping is a two-dimensional
coordinate for each legislator in Twitter communication space for each Congress.
From these individual-level measures of communication, we can identify topics
which need policy direction or not. These topics form the basis of our empirical
tests of the hypothesis regarding party leaders’ ability to coordinate.

Dynamic Analysis

Finally, we exploit the micro-level data to examine whether House leaders exert
influence and lead discussion on Twitter within their party coalition (and thus exert
influence and lead discussion over their rank-and-file), or whether they adopt their
members’ consensus. As we have stationary data (see Appendix Figures A.6.7 and
A.6.8), we follow the time series strategy employed in Barbera et al. 2019. We
measure daily propensity to discuss a sentiment-topic in precisely the same way
– except using the posterior probability estimates of sentiment-topic JST mixture
weights. This is the daily average probability of a House member discussing a
particular topic with a particular sentiment orientation. Here, influence is measured
by the impulse response functions (IRF) from a vector autoregression (VAR), and
we say members or party leaders exert influence and lead when these IRF estimates
are statistically and substantively significant.

As our data are stationary, but censored between 0 and 1, as in Barbera et al.,
2019, we follow Wallis, 1987’s logit specification for VAR. However, our specifi-
cation contains only two endogenous variables: the average propensity to discuss a
sentiment-topic by leader and rank-and-file within each party. We make this choice
for two reason: first, because the theory makes predictions over which types of topics
should facilitate the emergence of leadership within individual parties, we estimate
VAR’s separately for each topic and party to evaluate the extent that party leaders
emerge as theory predicts. Second, the parameter space is large. Thus, the system
of equations may not be identified for a reasonable number of lags. Assuming the
topics allows us to identify more lags and improves computational tractability. It
also avoids introducing spurious correlations, given the highly interrelated nature
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of the data. Finally, in cases where the nature of the structural relationships are not
known to the researcher, interpreting the results from a VAR regression is difficult.
Our parsimonious specification allows for a more direct analysis.

For our specification, we fix a sentiment-topic label 𝑘 where k can take on one of
three possible values: positive, negative, and neutral. Let 𝑥𝑘𝑚𝑒𝑚,𝑡 and 𝑥𝑘

𝑙𝑒𝑎𝑑,𝑡
denote

the probability of the average member and average leader respectively discussing a
sentiment-topic label 𝑘 . Let 𝑋 𝑘𝑡 =

(
𝑥𝑘
𝑙𝑒𝑎𝑑,𝑡

, 𝑥𝑘𝑚𝑒𝑚,𝑡

)
. Then let

𝑍 = log
(

𝑋

1 − 𝑋

)
Our specification thus is:

𝑍 𝑘𝑡 = 𝑐𝑘 +
7∑︁
𝑝=1

𝛽𝑡−𝑝𝑍
𝑘
𝑡−𝑝 + 𝜖 𝑘𝑡

Here 𝑐 is a constant accounting for the fact the time series are stationary around
a non-zero mean after taking logs. Appendix Figures A.6.7 and A.6.8 show
for selected series that the times series in log-odds of daily propensity to discuss
sentiment-topics are stationary over our period of analysis. Furthermore, Appendix
Figures A.6.6 and A.6.5 show that we reject at the 1 percent level a null of unit
roots for the vast majority of our time series for the Democratic and Republican
Parties across both the 115th and 116th Congresses. These are key assumptions of
VAR analysis, and these results indicate that our data are consistent with the the key
assumptions of VAR. Finally, we choose a lag of 2 days, which captures the length
of the news cycle on Twitter.8

Finally, to capture the extent that House leaders or followers exert influence and lead
discussion, we estimate generalized impulse response functions for each specifica-
tion following Koop, Pesaran, and Potter, 1996.9 That is, we measure the effect of

8 We also tried a method where we selected the optimum lags based on an AIC criterion,
but we found the optimal number was always around 2 days, so we chose to fix the number of lags,
given that this fixed number induces a consistent number lags across the specifications and did not
substantively alter the results. In fact, choosing lags of 1, 5, and 7 days did not significantly alter the
results.

9 Generalized impulse-response functions IRFs are invariant to variable ordering, unlike
orthogonalized IRFs, while still allowing the researcher to study relationships with non-zero entries
in the variance-covariance matrix, unlike the forecast error IRF. The magnitude of this IRF is how we
derive our second notion of leadership, as noted in Table 1.1. That is, for an 𝑛 step-ahead response,
we compute Θ𝑘

𝑖
(𝑛) = 𝛿j

𝜎2
j
Σ𝜖 𝛽 where 𝛿 is two standard deviations of our data, approximately 10

percent.
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a two standard deviation increase in a party leader’s log-odds of discussing a given
sentiment-topic on the average members’ log-odds of discussing that topic and vice
versa. Using the median daily propensity to discuss a sentiment-topic as a base
rate, we convert the log-odds to relative risk. Using the relative risk, we estimate
the change in daily propensity as a percentage point increase over the base rate
in the contemporaneous period of the shock. We report 95-percent bootstrapped
confidence intervals with 500 draws.

1.4 Operationalizing the Hypothesis
The theoretical framework from Dewan and Myatt, 2007 suggests a clear hypothesis
regarding how House party leadership influence relates to party communication. In
this section, we connect the theoretical framework to our empirical setting. See
Table 1.1 for a road map to our analyses.

Need for Direction
To test the hypothesis that House leaders exert influence and lead discussion when
the need for policy direction is low (and the coordination problem dominates)
and high (when the information problem dominates), we first need to uncover
when leaders exert influence and lead discussion and when rank-and-file members
influence discussion.

Coordination Problem

In Tables 1.2 (115th Congress) and 1.3 (116th Congress), we show the sentiment-
topics that define issues where the coordination problem dominates.10

Our criterion for determining whether each topic needs direction is based on this
percent contribution to the variation of the top two components derived from the
PCA. We take the top twenty topics that contribute to variation in the member-level
propensity to discuss sentiment-topics for each Congress, and classify those topics
as being low in need for direction. Sentiment-topics with low contribution to the
variation in the sentiment-topic propensities do not drive legislators toward the ex-
tremes of sentiment-topic space, while large contributions drive them to the extreme
portion of the space. As Figure 1.1 shows, policy positions for House members
on these sentiment-topics often delineate membership in a particular party. Thus,
for sentiment-topics that drive separation in this space (for example, immigration),
we expect little coordination from party leadership, regardless of party, precisely

10In the supplementary information we provide the PCA topic contributions for member-driven
topics: Appendix Table SI 3 for the 115th Congress and Table SI 4 for the 116th Congress.
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Table 1.2: PCA Topic Contributions - Leader Driven 115th

Topic Contribution
Tax Policy Benefits-Positive 13.79
Tax Cuts-Positive 4.92
Enjoyable Visit - Positive 4.44
Protect Health Insurance -Neutral 3.91
Tune In/Watch Cable News-Positive 2.83
Family Seperations-Negative 2.55
NDAA Passage-Negative 2.28
Middle Class Tax Cut -Positive 2.28
Opioid Task Force-Negative 2.12
Enroll in ACA-Positive 1.96
Pro Trump Mobilization- Positive 1.80
Jobs/Economy - Positive 1.76
Agriculture - Positive 1.73
Signed Legislation-Negative 1.72
Trump Asuylum Policy 1.66
Prevent Gun Violence-Negative 1.57
Abortion Rights-Negative 1.53
Manfacturing Jobs - Neutral 1.51
DACA Policy - Positive 1.49
Trump/Russia Investigation -Negative 1.39

because these are policy positions which delineate belonging to a particular party.
In theory, it is on these types of partisan topics that leaders have the most influence
over the rank-and-file, since the outsized costs or benefits of coordinating on the
wrong messaging are low.

Information Aggregation Problem

We classify the topics not in the top twenty as sentiment-topics as in high need
of policy direction. These topics do not contribute to variation in the propensity
to discuss topics rank-and-file members of the House. We argue these remaining
sentiment-topics, many of which explain less than 1 percent of the variation in
the individual propensities to discuss sentiment-topics, represent sentiment-topics
where the underlying political fundamentals of the topics are more uncertain, so
the information aggregation problem dominates. In this case, failure to coordinate
would be preferable to coalescing around the wrong message. For example, on
arcane matters of budgetary politics, the optimal message is not immediately clear.
The parties may not coordinate on any message, but that might be preferable to
coordinating on a message that would be bad for the party. (For the Democrats,
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Table 1.3: PCA Topic Contributions - 116th Leader Driven

Topic Contribution
Tune In/Watch Cable News-Positive 12.53
Impeachment-Negative 11.74
USMCA/Trade Deals-Positive 5.96
GOP attack Democrats as Socialists- Negative 5.03
Humanitarian Aid at Border-Negative 3.09
Trump/Russia Investigation -Negative 2.94
Tune in/Watch Interview-Negative 2.86
COVID economic Relief-Positive 2.52
Lowest Unemployment Rate - Positive 2.44
Census Encouragement - Positive 1.90
Wear a Mask-Negative 1.53
Religious Freedom-Negative 1.46
Climate Change-Positive 1.38
Partisan Attacks on Trump/Biden-Negative 1.36
Border Crimes - Negative 1.36
Criminal Justive Reform-Negative 1.31
Jobs/Economy - Positive 1.28
Racial Inequality in Health Care - Positive 1.26
Public Health and Safety - Neutral 1.26
Snap Benefits-Positive 1.18

they might coordinate on raising taxes, or for Republicans, they might coordinate
on cutting Social Security. Neither position would be particularly popular.)

House Leadership Influence
To test the hypothesis that party leaders exert influence and lead when the need for
direction is high, for each party, we measure the autoregressive correlations between
the average propensity to discuss a topics leaders with the the average propensity
of the rank-and-file. To quantify influence, we employ IRF analyses from a vector-
autoregression, similar to Barbera et al., 2019. The IRFs enable us to quantify
the ability of House leaders to exert influence and lead discussion. We regress the
average daily propensity to discuss a sentiment-topic by party leadership on by party
rank-and-file, and vice versa. The IRF analysis then supposes a hypothetical shock
to the leadership’s propensity to discuss a sentiment-topic and estimates the increase
in the propensity of rank-and-file member’s to discuss. If this shock is statistically
significant, we say House leadership influences rank-and-file members’ propensity
to discuss a sentiment-topic. We also test the reverse – the influence of rank-and-file
members on leadership’s propensity to discuss a topic.
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1.5 Results
Need for Direction by Leadership - Coordination Problem
We find evidence consistent with the theory outlined in the previous sections. The
IRF analysis suggests leaders can increase the rank-and-file’s propensity to discuss
the most partisan topics by between 0.1 and 1 percent for each standard deviation
increase in the leadership’s daily propensity to discuss a topic. These are substan-
tively large – shocks of 3 or 4 standard deviations (40 to 60 percent) on the daily
propensity to discuss a topic are common, so finding discernible effects at the more
conservative level of 1 standard deviation suggests the result is would be stronger
under conditions that are normal for social media. This reflects the nature of conver-
sation on Twitter, which reacts sensitively to the news cycle. This result is consistent
across parties and time, even when the party in power changes. This consistency is
evidence that the result is robust across these same dimensions, during the period
of 2017 to 2021.

In Figure 1.2, we show the impulse response functions in the first period for the
Democrats in the 115th Congress for topic-sentiments that are low in needing di-
rection. Democratic leaders in this period exert statistically significant levels of
influence for messaging around preventing gun violence, protecting health insur-
ance, abortion rights, and DACA policy. These topics make sense as having low
need for direction – in these cases, the Democrats desired retaining the status quo
(preserving Obamacare, DACA) or were discussing topics that are central to Demo-
cratic Party ideology, such as abortion and gun violence. In both cases, the party
needs little direction in terms of their stances on these issues, so the party would
rather coordinate on some message than no message at all.

For Republicans in the 115th Congress, Figure 1.3 shows that economic sentiment-
topics are statistically significant. Given the overall strength of the economy from
2017 to 2018, the GOP benefited politically from raising the salience of the economy.
We interpret this result as evidence that mis-calibrating the message on the positive
economy was less costly than not coordinating on any message at all.

In Figure 1.4, we show the impulse response functions for the Democrats in the 116th
Congress for topic-sentiments that are low in needing direction. Democratic leaders
in this period exert statistically significant levels of influence for messaging around
public health topics, COVID economic relief, climate change, and impeachment.
Similar to the 115th Congress, these topics are consistent with being in low need
for direction. In these cases, the Democrats discussed two types of such issues. In
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Figure 1.2: Democratic Topics: Need for Direction
Predicted Leader Driven 115th Congress
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Figure 1.2 : Impulse response functions for sentiment-topics predicted to be leader
driven for the Democratic Party. Bootstrapped 95-percent confidence intervals are
shown.

the first type, they raised the salience of issues where Republicans faced political
downside risk (for example impeachment). Second, they discussed topics that are
central to the Democratic Party’s ideology, such as racial equality and public health.

Republicans in the 116th Congress exhibit similar behavior to the Democrats in the
116th Congress. For the Republicans, Figure 1.5 shows that shocks to leaders’ daily
propensity to discuss a particular issue generally results in a less than 1 percent
increase in the rank-and-file members’ daily propensity to discuss that issue. In
particular, Republican leaders induced a ∼ 1 percentage point increase in their rank-
and-file members’ propensity to discuss impeachment and freedom/sacrifice, and
border security. Leaders induced a 0.5 to 1 percentage point increase for impeach-
ment, crimes at the border, attacking the Democrats as socialists, USMCA, and
lauding the low unemployment rate. Figure 1.5 also shows that members induced
a ∼ 2 percentage point increase in their leadership’s propensity to discuss impeach-
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ment and humanitarian aid at the border. Members exerted a ∼ 1 percentage point
increase in their leaders’ propensity to discuss crimes at the border and attacking the
Democrats as socialists. Additionally, they exerted a nearly 1 percentage point in-
crease for trade deals and USMCA, and lauding the low unemployment rate. Again,
members’ influence is an order of magnitude larger than the leadership’s influence.
Notably, the magnitudes derived for Republicans leadership and rank-and-file mem-
bers are similar to those for Democratic leaders and members. This suggests that
party leaders and members are similarly responsive to each other with respect to
their messaging regarding their propensity to discuss sentiment-topics, regardless
of party.

These results show consistent patterns in legislators’ social media behaviors. Party
leaders exert influence over the messaging agenda in precisely the topics that are
consistent with the theory. In fact, the results for the coordination problem are
consistent across time periods, parties and the changes in the party which controls
the House of Representatives.

Need for Direction by Membership - Information Problem
Next, we examine in detail the behavior of congressional parties for topics where we
believe the information aggregation problem dominates. Intuitively, the information
aggregation problem dominates the political environment when there are large costs
to the party for choosing the wrong policy. This problem tends to arise when there
is more uncertainty in the political environment, be it related to the nature of the
political problem, the eventual policy outcome, or the electoral ramifications for
taking a policy stance. For example, in a government shutdown scenario, whether
to continue the shutdown carries large risks. It may galvanize the base of the party
taking the strong stance and increase turnout in favor of the party. Or potentially just
as likely, this stance may harm the economy and thus dissuade swing voters from
supporting the party. In either case, the potential risks are large. In the case when
the information problem dominates, the party relies on “the wisdom of the crowd”
of the party at large. By aggregating information, the party hopes to coordinate on
the “correct” message, even if this risks not coordinating on any message at all. In
these cases, the costs of coordinating on the wrong message outweigh the costs of
failing to coordinate.

Our results for topics predicted as member driven are consistent with this theory.
Specifically, Figure 1.6 shows that Democratic House members exerted the most
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Figure 1.3: Republican Topics: Need for Direction
Predicted Leader Driven 115th Congress
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Figure 1.3: Impulse response functions for sentiment-topics predicted to be
leader driven for the Republican Party. Bootstrapped 95-percent confidence
intervals are shown.

influence over the propensity to discuss Supreme Court nominations (approximately
a 4 percentage point increase for each standard deviation shock) and wishing thoughts
and prayers after a crisis (a ∼ 2.8 percentage point increase). However, across these
same topics, leaders’ influence is either statistically insignificant at traditional levels
or is near 0. Notably, the effect sizes for members on leaders are an order of
magnitude greater than the leadership’s influence on rank-and-file members.

The GOP messaging between leaders and rank-and-file is more tightly correlated,
but we see that the influence exerted by members is less than influence exerted
by Democratic rank-and-file members on their leadership. Rank-and-file members
drive a 1.5 increase in both the propensity for leaders to discuss the low unemploy-
ment rate and also thoughts and prayers around a tragedy. Notably, as illustrated by
Figure 1.7 rank-and-file members exert a ∼ 1 percent increase on the propensity to
discuss important meetings. We hypothesize this is an obfuscation messaging strat-
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Figure 1.4: Democratic Topics: Need for Direction
Predicted Leader Driven 116th Congress
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Figure 1.4 : Impulse response functions for sentiment-topics predicted to be leader
driven for the Democratic Party. Bootstrapped 95-percent confidence intervals are
shown.

egy. Given the majority party runs the risk for being blamed for negative economic
and social conditions in the country, this result is preliminary evidence majority
parties find it advantageous to engage in measurable amounts of political deflection.

The results for the 116th Congress follow a similar pattern for both parties. Figure
1.8 shows that the Democratic rank-and-file membership exerts a 2 to 3 percent effect
on the topics that are in need of direction, whereas leaders exert little influence on
these same topics. In the 116th Congress, Democrats became the majority party.
Despite this change in institutional control, party communication behavior on social
media is consistent with the 115th Congress. Notably, decrying partisan votes – an
obfuscation and deflection message – is now one of the key topics where rank-and-
file Democratic members exert influence on their party leaders. This is similar to
the obfuscation tactics among the GOP rank-and-file when they were in the majority
in the 115th Congress. This supports the prediction from the theoretical framework
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Figure 1.5: Republican Topics: Need for Direction
Predicted Leader Driven 116th Congress
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Figure 1.5: Impulse response functions for sentiment-topics predicted to be
leader driven for the Republican Party. Bootstrapped 95-percent confidence
intervals are shown.

that parties would rather fail to coordinate than coordinate on the wrong message.

In the 116th Congress, the Republican rank-and-file behaves a lot like they did the
115th — and a lot like their contemporaneous Democratic colleagues during the
116th Congress. Figure 1.9 shows that impulses of a standard deviation to the lead-
ers’ daily propensity to discuss a particular issue generally results in a approximately
0.5 to 1 percent increase in the rank-and-file members’ daily propensity to discuss
that issue. As in the 115th Congress, leaders and rank-and-file members both ex-
ert influence over these topics, but rank-and-file members’ influence is an order of
magnitude larger than the leadership’s influence. Notable, the magnitudes derived
for Republicans leadership and rank-and-file members are smaller than those for
Democratic leaders and members. This suggests that party leaders and members are
similarly responsive to each other in relative terms between members and leaders,
though the magnitude of that influence varies between parties. Additionally, the Re-
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Figure 1.6: Democratic Topics: Need for Direction
Predicted Member Driven 115th Congress
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Figure 1.6 : Impulse response functions for sentiment-topics predicted to be leader
driven for the Democratic Party. Bootstrapped 95-percent confidence intervals are
shown.

publicans, who controlled the presidency, continued to obfuscate, decrying partisan
votes and discussing positive constituent visits to their congressional offices.

Discussion
We highlight the consistency of these findings across the parties and the substantive
robustness: on issues where House rank-and-file influence discussion, their effect
on leaders is larger in magnitude than on issues where leaders lead. This is true
across topic types, as illustrated in Figures 1.2, 1.3, 1.4, and 1.5. So, while leaders
and rank-and-file influence each other, the measurable effects from rank-and-file are
stronger than those on leaders for issues where they respectively had influence.

Finally, in Table A.6.5 we note that leaders exert on average more influence than the
most followed accounts in each party. On average, leaders exert double the influence
as the most followed accounts from within the same party. This highlights the
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Figure 1.7: Republican Topics: Need for Direction
Predicted Member Driven 115th Congress
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Figure 1.7: Impulse response functions for sentiment-topics predicted to be
leader driven for the Republican Party. Bootstrapped 95-percent confidence
intervals are shown.

strength of institutional leadership within the party caucus relative to the influence
of members of the party who are popular with the public on social media.11

1.6 Conclusion
Who controls the legislative messaging agenda has important consequences in a
democracy. Currently, the literature on legislative agenda setting suggests that
the agenda is driven by national polarization. But other theories, such as formal
models of legislative leadership, assert that legislative messaging strategies depend
importantly on the information and political environment. In particular these formal
theories argue that legislators shift their messaging as they balance coordination and

11 We also show in Table A.6.5 that leaders exert nearly double the influence on their own
members than leaders from the other party exert on the members of the opposing party, suggesting
the result is not due to trends on social media. Instead, this result suggests that the role of leaders
within their own party explains the result.
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Figure 1.8: Democratic Topics: Need for Direction
Predicted Member Driven 116th Congress
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Figure 1.8 : Impulse response functions for sentiment-topics predicted to be leader
driven for the Democratic Party. Bootstrapped 95-percent confidence intervals are
shown.

information problems. Thus these formal theories predict that when coordination
problems are pressing, legislative members follow the policy positions of party
leaders.

Our research contributes to the study of legislative leadership, messaging and agenda
setting by putting a formal theory of party leadership to the test. We have presented
evidence using social media data that the Dewan and Myatt, 2007 theoretical frame-
work of party leadership helps explain patterns of communication and leadership
in the U.S. House of Representatives by highlighting the tensions between the need
of congressional political parties to coordinate around a unified policy position and
the uncertain nature of politics. We present empirical support for our hypothesis
that House party leaders exert influence and lead discussion on topics that do not
need policy direction, while members exert influence discussion on topics where
topics do need policy direction, mediated by information aggregation. To this end,
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Figure 1.9: Republican Topics: Need for Direction
Predicted Member Driven 116th Congress
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Figure 1.9: Impulse response functions for sentiment-topics predicted to be
member driven for the Republican Party. Bootstrapped 95-percent confidence
intervals are shown.

we find that, given a large enough shock to House leadership’s propensity to dis-
cuss a sentiment-topic where the coordination problem dominates, leaders exert a
statistically significant influence in the short-run over their rank-and-file members’
propensity to discuss that sentiment-topic. Notably, this effect also operates when
the information aggregation problem dominates, with influence flowing from rank-
and-file to leaders. Moreover, when House rank-and-file members experience a
shock to their propensity to discuss a sentiment-topic, leaders are more strongly
impacted than in the reverse case. For a standard deviation (∼10 percentage point)
shock to leadership’s propensity to discuss, we might observe 0.5 percent to 2 per-
cent increases in rank-and-file’s propensity to discuss. For the reverse, we see a
standard deviation (∼10 percentage point) shock to House rank-and-file’s propen-
sities to discuss a sentiment topic results in a 1 to 3 percentage point increase in
leadership’s propensity to discuss a sentiment-topic.
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This suggests a complex interplay between leaders and members, which is in line
with the theory and consistent across parties, changes in partisan control of the
legislative institutions, and fundamental changes in the underlying political environ-
ment. We find evidence from the IRFs suggesting that leaders exert influence over
their members on topics that come to dominate social media discussion. Further-
more, in those cases where members influence leaders, their effect on the messaging
of leadership is nearly double that of leadership on rank-and-file members. That
is, House leadership and rank-and-file messaging on Twitter influence each other.
However, when rank-and-file members drive discussion, their effect is far larger than
that of leadership. Thus, using this theoretical model to specify the coordination-
information trade-off, we use our data to shed light on the situations where legislative
party members resolve tensions between a coordination problem and an information
problem.

We believe this theoretical framework provides a blueprint for studying how com-
munication on social media reveals legislative party behavior, and our work demon-
strates ways to measure and test a relevant hypothesis derived from the theory.
Future work should more precisely classify topics in need of direction versus those
that are not. They may also test notions of leadership.

Our research helps demonstrate that social media data is useful for studying legisla-
tive behavior and organization. We test formal political theory with social media
data using machine learning methods, in line with the recent trend to more closely
connect formal political theory with strong quantitative testing (Bueno de Mesquita
and Fowler, 2021; Granato, Lo, and Wong, 2021). Using formal political theory
to guide our data collection and analytical methods is an important contribution of
our research, which we hope provides direction for ways that social media data and
advanced quantitative methods can be used to test political theories.
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C h a p t e r 2

IF A STATISTICAL MODEL PREDICTS THAT COMMON
EVENTS SHOULD OCCUR ONLY ONCE IN 10,000
ELECTIONS, MAYBE IT IS THE WRONG MODEL

2.1 Introduction
Political scientists have studied democratic elections over most of the history of
our discipline, producing an extensive, high quality, and steadily improving schol-
arly literature with few equals across scholarly fields. Statistical studies of actual
district-level election returns — including causal effects, counterfactual analyses,
forecasts, and full generative models of numerous phenomena — supplemented by
a wide variety of other approaches — such as intensive interviews, survey research,
participant observation, archival work, and historical analyses — have produced an
enviable record of reliable knowledge about the workings of this crucial democratic
institution.

Yet, quite often, commonly used statistical models are spectacularly wrong. This
is easiest to see in election prediction, where rigorous out-of-sample evaluations
are unforgivingly obvious, and a major concern even when prediction is not the
immediate goal. Although standard models do remarkably well much of the time,
and have taught us a great deal, they are embarrassingly far off with regularity.
These mistakes are not ordinary errors of ordinary magnitudes. Our best models
indicate that certain events we see regularly should be rarely observed even if we
had data from a trillion elections and some from even a trillion-trillion elections.

The intrepid political scientists who give media interviews after elections take one
for our team trying to explain this to the public. But pretty much the best they can do
is to say something like “Oops!. . . We Did It Again” and to explain that voters get to
cast ballots for whomever they want. However, we all know (to paraphrase Britney
Spears again) we’re not that innocent. Errors of such magnitude are not merely
mistakes. They are bugs in our logic, our models, our forecasts, our conclusions, our
textbooks, our advice, and our public pronouncements — similar to what we would
think if we built a computer program to forecast the Democratic vote proportion, hit
run, and it played a video of a galloping giraffe. This is not a missed forecast; it’s
the wrong model. And models that do so badly when they are vulnerable to being
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proven wrong, as in prediction problems, do not inspire confidence when applied to
other tasks more difficult to evaluate and of more interest to social scientists, such
as causal inferences or generatively accurate descriptive summaries.

We aim to learn some fundamental characteristics of electoral democracy through
a validated generative statistical model capable of estimating many of the diverse
quantities political scientists find of interest. These include descriptive quantities —
such as the probability of an incumbent losing, the odds of a competitive election,
the expected vote of the median house seat, partisan bias, electoral responsiveness,
among others — and, with appropriate additional assumptions, causal and other
counterfactual inferences. Only a generative model can provide sufficient generality
to estimate all these and other quantities, along with accurate uncertainty estimates,
which is unlike approaches better for more specific purposes, such as via model-free,
distribution-free, machine learning, or semi-parametric approaches. Such a model
should also be capable of making election forecasts, but we (and most other political
scientists) are not especially interested in forecasting in and of itself (except as
citizens to participate in the fun and public interest leading up to an election). After
all, from an academic perspective, the best method of forecasting is well known: just
wait a bit. However, ensuring that we have a useful model requires that it be made
vulnerable to being proven wrong in as many ways as possible, for which forecasting
— along with leave-one-election-year-out cross-validation — is essential.

We thus build a new general purpose statistical model and validate it with extensive
out-of-sample tests in 14,710 district-level US Congressional elections, 1954-2020.
We show that, unlike standard approaches, estimates from this model are correctly
calibrated, meaning that its probability estimates are accurate representations of
empirical frequencies. Some of the generatively accurate descriptive summaries
from this model reveal the rich complexity and dramatic changes in the landscape of
US Congressional elections, including a reinterpretation the 1950s as very similar to
the present day, except with parties then based on social-psychological groups rather
than ideological distinctions. They also suggest an optimistic conclusion about a
central feature of American democracy: Although, the marginals sometimes vanish
and incumbency advantage sometimes soars, the probability of that incumbents
losing their seats has been quite high and essentially unchanged over our entire
sample period. Of course, the same model can be used to estimate numerous other
quantities.

We describe the standard model and our proposed alternative in Section 2.2, perform
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many out-of-sample evaluations in Section 2.3, and give substantive findings and
even suggest a broader theory of congressional elections consistent with these results
in Section 2.4. Section 2.5 describes the broader methodological implications of
generatively accurate descriptive summaries.

2.2 Statistical Models of District-Level Elections
We summarize the standard model used in the literature (Section 2.2) followed by
our proposed alternative (Section 2.2). We construct our alternative approach to
incorporate more substantive knowledge of elections, to simultaneously analyze
more elections, and to attend to more of the known statistical issues than previously
possible, all within a single Bayesian model. This led us to jointly estimate, integrate
over, and represent the uncertainty of 3,567 parameters, including coefficients,
missing cell values, uncontested districts, and random effects terms.

One of the reasons our approach has not been tried before is that it would have been
computationally infeasible even a few years ago. With highly tuned computational
algorithms we developed on a new server (with 20 cores and 128gb of RAM, and
software tuned specially to this hardware), we are now able to complete one run of
our model on a decade of congressional elections data in only about twenty minutes,
although a full analysis of all our data with calibration and strictly out-of-sample
evaluation requires about 48 hours of model run time generating about 44gb of
output. Along with this paper, we are making available easy-to-use open source
software that implements all our algorithms and methods.

Standard
The outcome variable for modeling US congressional elections is the Democratic
proportion of the two-party vote, 𝑣𝑖𝑡 for district 𝑖 and election (time) 𝑡. The standard
model is a linear-normal regression of 𝑣𝑖𝑡 on a vector of 𝐾 covariates 𝑋𝑖𝑡 , with
estimation conducted for each election year 𝑡 run independently. For most applica-
tions in the last quarter century, an independent normal district-level random effect
(constant over hypothetical or real elections but varying over districts) is added to
the regression to model the political uniqueness of individual districts (Gelman and
King, 1994, implemented in JudgeIt software).1

The specific content of the covariates varies some by application but, to fix ideas
1Instead of directly estimating 𝛾𝑖 and modeling multiple elections together, which would have

been computationally difficult in the 1990s, JudgeIt analyzes one election at a time, after a prepro-
cessing step to estimate how much variation should be attributed to this random effect.
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and for the analyses below, we define 𝑋𝑖𝑡 to include a lagged vote share (𝑣𝑖,𝑡−1),
incumbent party (the party that won the previous election, with 1 for Democrat and 0
for Republican), incumbency status (1 if the Democratic candidate is an incumbent,
0 for open seat, and −1 for a Republican incumbent), uncontestedness (1 if a
Democrat runs uncontested, 0 if contested, and −1 if Republican runs uncontested),
an indicator for the old confederate states, and a presidential midterm penalty (coded
1 if 𝑡 is a midterm year and the incumbent party in district 𝑖 matches the president’s
party in that midterm and 0 otherwise).

We summarize this model as

𝑣𝑖𝑡 ∼ N(`𝑖𝑡 , 𝜎2) (2.1)

`𝑖𝑡 = 𝑋𝑖𝑡𝛽𝑡 + 𝛾𝑖

where 𝛽𝑡 is a vector of 𝐾 linear regression effect parameters, 𝛾𝑖 ∼ N(0, 𝜎2
𝛾 ) is an

independent normal random effect with variance 𝜎2
𝛾 > 0, and 𝜎2 is the variance of

the usual homoskedastic regression independent normal error term.

Proposed Model
We now build on the standard model to develop our proposed approach. We keep
the same flexibility in choice of covariates within a fully Bayesian framework,
but in three steps we describe our changes. First, in Section 2.2, we provide
a qualitative description of model components we designed to reflect knowledge
from the literature on elections that had been excluded from the standard approach.
Second, in Section 2.2, we put together these components into a single Bayesian
model, but for expository purposes focus only on the simple special case where all
elections are contested. Finally, in Section 2.2, we allow district elections to be
either contested or uncontested.

See Appendix B.1 for the full likelihood, Supplementary Appendix C.4 for com-
putational details, and Supplementary Appendix C.2 for a set of “ablation” studies
that, by sequentially removing each model component, demonstrates how all com-
ponents are essential to the performance we achieve. Supplementary Appendix C.5
considers alternative modeling assumptions.

Novel Model Components

Error terms in statistical models are designed to represent “known unknowns,”
features that reflect political scientists’ knowledge of elections too difficult to code
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in the covariates. For example, the error term in Equation 2.1 allows for district
uniqueness by adding a random term 𝛾𝑖 to model the persistence of this uniqueness
for any one district 𝑖 over time, beyond changes due to 𝑋 . For example, Minnesota’s
7th Congressional District has long been more Republican than the nation as a
whole, favoring Donald Trump in 2016 and 2020 by about 30 percentage points. Yet,
Democrat Colin Peterson won this seat from 1991 to 2021 because of his personal
brand and unusual political preferences, opposing abortion and supporting the border
wall, but (perhaps accounting for how he wins the Democratic nomination) highly
progressive economic views.

We now add to this model four other “known unknowns,” modeling features that
reflect valuable substantive political information well understood by students of
elections or observable in the data but rarely modeled directly. First is covariate
effect stability: 𝛽𝑡 varies relatively little over time. For example, the incumbency
advantage might range between two and ten percentage points, with only rare sharp
changes over time. Similarly, the coefficient on the lagged vote is usually in the
range of [0.6, 0.8]. We add this feature to the model by (a) modeling all elections
within a “redistricting regime” (i.e., all elections for which the district geography
remains unchanged) simultaneously rather than independently, and (b) assuming
that each element 𝛽𝑡𝑘 of vector 𝛽𝑡 (corresponding to covariate 𝑘 , 𝑘 = 1, . . . , 𝐾 and
time 𝑡) comes from the same distribution 𝛽𝑡𝑘 ∼ N(𝛽, 𝜎𝛽𝑘 ), where 𝜎𝛽𝑘 < ∞; in
contrast, estimating each equation separately and independently, as in the standard
approach, is equivalent to setting 𝜎𝛽𝑘 → 0. (The notation 𝛽 is a shorthand reference
to empirical Bayes, meaning that this distribution shrinks different covariate effects
in the same redistricting regime toward the estimated mean without favoring one’s
a prior guess; this is equivalent to a fully Bayesian model with the mean in the
null space; see Girosi and King 2008.) The idea here is to borrow strength for the
estimate of each parameter in each year from the estimation of the same parameter
in other years, but without the rigidity and potential bias that would come from a
more “informative” prior. This will be especially valuable in smaller legislatures,
such as many state assemblies and senates and the class up for election in the US
Senate.2

Second, we allow for positive cross-district covariances by adding a random national
swing term, [𝑡 , that allows all districts in one election to be affected in roughly the
same way by the same national event, over and above the information in 𝑋 . For

2We could elaborate this assumption by allowing 𝛽𝑡 to trend linearly, as a random walk, or as a
function of other covariates, but we find no evidence for these alternative approaches in our data.



32

example, the 1994 Republican national congressional campaign strategy (known as
the “Contract With America”) seemed to be a successful heresthetical maneuver
(Riker, 1990; Shepsle, 2003) that moved all the districts in the Republican direction
by approximately the same amount. Although we cannot know ex ante what any one
national swing will be, we can estimate the variation caused by the national swings,
which we know occur regularly, and represent this uncertainty in the model with a
common random effect for all districts. The result is the well known “approximate
uniform partisan swing” pattern common across time periods, electoral systems,
and even countries (Katz, King, and Rosenblatt, 2020).

Third, we model district-level political surprises, including intentional heresthetical
maneuvers and unintentional exogenous political events that affect one district’s vote
at a point in time differently than others and are not included in 𝑋 . Consider for
example the election in Texas’ 22nd district in 2006. Tom Delay was the popular
Republican House majority leader from the district, regularly winning election by
35 or more percentage points. During the campaign, he was indicted and abruptly
resigned. Worse for his party, the deadline to field a candidate on the ballot line had
passed and so his party could only field a write-in candidate late in the campaign.
The result was that this overwhelmingly Republican district elected a Democrat
over the Republican write-in candidate by over 8 percentage points. Equation 2.1
already includes the usual normal error term that can be used to model surprises,
but a normal distribution indicates that deviations from a prediction this large would
happen so infrequently that it would almost never be observed. Of course, as every
election observer is aware, these surprises happen regularly, even if we do not know
which ones will occur. As we explain below, we will therefore swap out the normal
distribution for one that can more appropriately represent these political surprises,
also keeping predictions within the [0,1] interval.

Finally, the normal distribution used in the standard approach turns out to be inad-
equate for two reasons. The first reason is that, although it often works well when
the mean or average vote outcome is of interest, it fails miserably for most other
aspects of the distribution, such as for uncertainty estimates or the probability of a
close election or of one party winning. The second reason is that the normal tail
implies that big surprises should almost never occur, meaning that it also gets the
concentration around the mean wrong. To fix these problems, we use the additive
logistic Student 𝑡 (ALT) distribution, which, unlike the normal, constrains the vote
proportion to the [0,1] interval and also has appropriately fatter tails to represent
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surprises. In addition, the ALT distribution has the simultaneous advantage of
having more of its density concentrated near the mean, making the mean (and the
covariates that account for its variation) more informative at the same time as it is
accounting better for surprises.3 The ALT distribution thus allows more informative
predictions to coexist in the same model with the possibility of huge surprises.

The Model, with Fully Contested Elections

We now combine all the features described above in one model, reusing the notation
(and redefining symbols) from Section 2.2. For expository simplicity, we imagine
until the next section that all districts are contested. Thus, let

𝑣𝑖𝑡 ∼ ALT(`𝑖𝑡 , 𝜙2
𝑡 , a𝑡), (2.2)

`𝑖𝑡 = 𝑋𝑖𝑡𝛽𝑡 + 𝛾𝑖 + [𝑡 (2.3)

where the variance is decomposed by the ALT for additional flexibility into scale
𝜙 and degrees of freedom a𝑡 parameters (as a𝑡 → ∞, the ALT approximates the
additive logistic normal). The systematic component for the conditional expected
value includes three independent random effect terms for covariate effects, district
uniqueness, and national swing, respectively,

𝛽𝑡𝑘 ∼ N(𝛽𝑘 , 𝜎2
𝛽𝑘
), 𝛾𝑖 ∼ N(0, 𝜎2

𝛾 ), [𝑡 ∼ N(0, 𝜎2
[ ),

for 𝑘 = 1, . . . , 𝐾 covariates, 𝑖 = 1, . . . , 𝑛 observations, 𝑡 = 1, . . . , 𝑇 elections, and
diffuse priors chosen for estimation convenience (see Appendix C.4).

For intuition, we consider the voting data on the logistic scale by letting 𝑦𝑖𝑡 ≡
ln[𝑣𝑖𝑡/(1− 𝑣𝑖𝑡)] = `𝑖𝑡 +𝜔𝑖𝑡 = 𝑋𝑖𝑡𝛽𝑡 + 𝛾𝑖 + [𝑡 +𝜔𝑖𝑡 , with error term 𝜔𝑖𝑡 ≡ ln[𝑣𝑖𝑡/(1−
𝑣𝑖𝑡)] − `𝑖𝑡 , which Equation 2.2 indicates is is 𝑡 distributed. This enables us to see,
first, that national swings induce a positive covariance between any two districts
𝑖 and 𝑗 (𝑖 ≠ 𝑗) for each election year 𝑡: Cov(𝑦𝑖𝑡 , 𝑦 𝑗 𝑡 |𝑋𝑖𝑡 , 𝑋 𝑗 𝑡 , 𝛽𝑡) = 𝜎2

[ > 0.
This setup also makes clear that the random district uniqueness term 𝛾𝑖 induces
a positive covariance for election outcomes in any one district 𝑖 at two times 𝑡
and 𝑡′ (within the same redistricting decade), over and above differences due to 𝑋:
Cov(𝑦𝑖𝑡 , 𝑦𝑖𝑡′ |𝑋𝑖𝑡 , 𝑋𝑖𝑡′ , 𝛽𝑡 , 𝛽𝑡′) = 𝜎2

𝛾 > 0.

As with the standard approach, some covariates one might put in this model vary
over 𝑖 and 𝑡 (e.g., the lagged vote, 𝑣𝑖𝑡), some vary only over 𝑖 (e.g., the confederate

3Roughly, the ALT is the implied distribution on 𝑣 (and so restricted to the [0,1] interval) when
the 𝑡 distribution is applied to the (unbounded) logistic transformation of the vote ln 𝑣𝑖𝑡/(1 − 𝑣𝑖𝑡 ).
For technical details, and extensive evaluations in multiparty elections, see Katz and King (1999).
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states indicator), and some vary only over 𝑡 (e.g., presidential approval). A random
effect can also be included, which can be useful when little information exists such
as for covariates of the last type when 𝑇 is small.

The Model, Allowing for Uncontested Elections

In the standard approach, the vote in uncontested elections is often recoded to fixed
values such as 𝑣𝑖𝑡 = 0.25 for Democrats running uncontested and 𝑣𝑖𝑡 = 0.75 for
Republicans running uncontested, or sometimes uncontested elections are deleted
entirely. We instead formally distinguish between the observed vote 𝑣𝑖𝑡 and the
effective vote 𝑣∗

𝑖𝑡
, defined as the vote proportion that would be observed if the election

had been contested (e.g., King and Gelman, 1991a). The effective vote is observed
𝑣∗
𝑖𝑡
= 𝑣𝑖𝑡 in contested elections but unobserved if one party runs unopposed. We then

impute unobserved values (for uncontested elections) during Bayesian estimation
simultaneous with the rest of the model. This approach includes all the information
available and accounts for all uncertainty in the imputation.

To model 𝑣∗
𝑖𝑡

when unobserved, we replace the outcome variable 𝑣𝑖𝑡 in Equation
2.2 with the effective vote, and add a “censoring assumption”: candidates who run
unopposed would have won even if the election were contested. This assumption is
intuitive, probably accounts for why the district was uncontested in the first place,
and is a special case of the assumption made by Katz and King (1999). We then
replace Equation 2.2 with

𝑣∗𝑖𝑡 ∼ ALT(`𝑖𝑡 , 𝜙2
𝑡 , a𝑡), (2.4)

and write the likelihood function for an election district that is fully contested
as ALT(𝑣𝑖𝑡 | `𝑖𝑡 , 𝜙2

𝑡 , a𝑡), for a district where a Democrat runs uncontested as 𝜓𝑖𝑡 ≡∫ 0.5
0 ALT(𝑣∗ | `𝑖𝑡 , 𝜙2

𝑡 , a𝑡)𝑑𝑣∗, and for a district where a Republican runs uncontested
as 1 − 𝜓𝑖𝑡 . The integral implements the censoring assumption.

The model contains one additional feature: When the lagged effective vote is used
as a covariate, it too can be unobserved, which adds another level of modeling
complexity. We describe this feature, along with the full likelihood, in Appendix
B.1.

2.3 Evaluation
We now evaluate both the standard linear-normal approach and our proposed additive
logistic 𝑡 model with contemporaneous correlations, or LogisTiCC for short. We
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do this by summarizing the models’ statistical properties (Section 2.3), comparing
the probabilities of rare events from each approach to actual elections (Section 2.3),
and studying the models’ confidence interval coverage (Section 2.3).

Statistical Properties
As political scientists have long understood, the linear-normal model can reveal
important information about elections, when its specification is correct or close to
correct. The standard modeling approach is not formally a limiting special case of
the LogisTiCC although it can be thought of as an approximation in some situations.
For one, as with all potentially misspecified models, point estimates from the linear-
normal model will choose the distribution closest to the true data generation process
(in the sense of the Kullback-Leibler information criterion; see White 1996) even if
the data come from the LogisTiCC. In addition, if the linear specification is correct,
both the normal and the LogisTiCC models will produce similar (and approximately
consistent) estimates of (the same) 𝛽.

Unfortunately, given the covariance structure of the proposed model, estimates
from the normal will be highly inefficient relative to the LogisTiCC, if data come
from the model we are putting forward that would seem to better represent the
knowledge of election experts, and standard errors of 𝛽 will be incorrect. However,
most quantities of interest other than 𝛽, such as even the probability of a candidate
winning an election, will be statistically inconsistent under the normal but consistent
with the LogisTiCC.

As we demonstrate, a key problem with the linear-normal model is its incorrect
independence assumptions, leading to substantial false precision in its uncertainty
estimates (confidence intervals and standard errors that are too small). In contrast,
the LogisTiCC allows for dependence among elections held in the same district
at different times and among elections held in different districts on the same day.
Correcting for this false precision leads to appropriately larger confidence intervals:
the ratio of the nominal width of LogisTiCC-to-normal confidence intervals is about
1.4 for district-level predictions and about 5 for aggregate predictions such as the
vote for the median house seat. (See Supplementary Appendix C.1 for details.)

Rare Event Probabilities
We analyze 28 years of US Congressional elections from 1954 to 2020, including a
total of 14,710 district-level contests, with forecasts limited to the 10,778 contests
that exclude the first year of each redistricting decade. This large dataset enables
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us to conduct numerous rigorous evaluations (cf. Grimmer, Knox, and Westwood,
2022), all of which we do out of sample (so that no data from the election being
predicted is used during calibration or estimation). In each analysis, we use either a
one-step-ahead or leave-one-out forecast, depending on context.

To begin, consider the probability of extraordinarily rare events under each model.
For illustration, we use the notion of moral certitude from the Enlightenment, which
is that events with probabilities smaller than 1 in 10,000 should be disregarded.
(Because demographers of the time observed that the probability of a healthy person
dying in the next day was smaller than 1 in 10,000 and does not seem to affect people’s
behavior in their daily lives, people act as if they are “morally certain” that these rare
events will never occur; see Kavanagh 1990; Buffon 1777.) Updating this (quaint)
idea, we make predictions for all elections in our dataset (except the first year in
each redistricting decade) and count the number of elections for which the vote
proportion observed out-of-sample appears outside a 99.99% (i.e., 1 − 1/10, 000)
forecast credible interval. If the interval is correct, we should observe about 1 in
10,000 outside the interval.

Figure 2.1 gives a count of these extraordinarily rare events (on the vertical axis)
by election year (on the horizontal axis) and for the normal model (in gold) and
the LogisTiCC (in black). As can be seen, the data dramatically violate the normal
model’s predictions in a disturbingly large number of elections. In the entire dataset
of 10,778 elections, we would expect to see only about one 1-in-10,000 event, but
this claim is wrong by a factor of more than sixty, in that surprise events the model
is morally certain will not occur actually happened in 61 elections (and as many as
12 of the 435 elections in a single year, 1958) (see also Gelman et al., 1995, Ch. 8).
The figure also annotates some of the points with the exact probability that we would
expect to see these results under the model. These forecasts are stunningly bad. The
late Richard McKelvey was fond of arguing that a fix for over-claiming in empirical
work would be to require anyone reporting a p-value to take a bet with the implied
odds (i.e., the reciprocal of the p-value to one) against someone finding evidence
to the contrary. Using this logic, a one dollar bet against the linear-normal model’s
claimed level of certainty would give an equal chance of winning quadrillions of
times more money than exists in circulation in all the world’s currencies.

In stark contrast, the black line in Figure 2.1 shows that only one of the 10,778
out-of-sample observed election results are much of a surprise to the proposed
LogisTiCC model. All but one year has zero events and just one (in 1996) has one
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Figure 2.1: Moral Certitude: Count of elections outside a 99.99 credibility interval
for each election year (with selected points labeled with the probability each model
gives of seeing this many 1-in-10,000 events). Separate calculations appear for the
normal model (in gold) and our proposed LogisTiCC model (in black).

event with a modest probability of 1 in 26.5, which is about what we would expect
if the world generated all the data according to this model.

Thus, for this measure of extraordinarily unlikely events, the out-of-sample perfor-
mance of our proposed model vastly exceeds that of the standard approach. We
now show that this result is general in that the probabilities from our model, but not
the normal, are well calibrated, meaning that for example when the model predicts
that a certain event will occur with a 30% probability, that event actually occurs in
about 3 of every 10 elections, and so on. We do this, for each election and model,
by first computing the (out-of-sample) probability of a competitive outcome (which
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we define as 𝑣𝑖𝑡 ∈ [0.45, 0.55]). We then sort these probabilities into bins, [0, 0.1],
(0.1, 0.2], (0.2, 0.3],. . . , separately for each model, and plot them in Figure 2.2, as
follows. For each model, we plot a dot with a horizontal coordinate as the average
of the estimated probabilities of elections in a bin and the vertical coordinate as the
number of (out-of-sample) elections in the same bin that are in fact observed to be
competitive. Dots for a perfectly calibrated model should fall approximately on the
45 degree line.
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Figure 2.2: Calibration: Predicted out-of-sample probabilities (horizontally) by
observed frequencies (vertically).

As Figure 2.2 demonstrates, the dots computed from the LogisTiCC bins (in black)
are all close to the 45 degree line, and hence well calibrated. In contrast, those from
the normal (in gold) substantially deviate from the 45 degree line of equality as
the predicted probability of a competitive election gets higher. In other words, the
normal model fails most dramatically in elections that are most politically important,
the competitive ones.

Coverage
We now study, in three ways, the properties of credible intervals computed from the
standard and proposed models.

First, we plot in Figure 2.3 a time series of one of the most consequential quantities
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of interest in US politics — the Democratic proportion of the vote of the median
seat in the House of Representatives (see the red stars). Then, for each year and
model, we omit this year from the dataset and compute a point forecast and 95%
out-of-sample credible interval around it. These appear in gold for the normal and
black for the LogisTiCC. In addition to the LogisTiCC intervals being longer than
for the normal because of the normal’s false precision, the LogisTiCC intervals
should be interpreted differently. First, recall that a 𝑡-based interval has both fatter
tails to accommodate surprises and more concentration of density near the mean
than the normal (making the mean prediction more informative). Second, the
LogisTiCC intervals are accurate (See Figure 2.2) whereas the normal intervals are
overconfident. This can be seen because in these out-of-sample tests, we would
expect a well calibrated model to miss only about 1.4 elections, but the normal
misses 20 of 27. In contrast, LogisTiCC’s predictive confidence interval captures
the observed outcome every time.
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Figure 2.3: Expected Vote Share of the Median House Seat (95 Percent Credible
Interval).

Second, for each model, we compute a 95% out-of-sample credible interval around
every individual district’s vote share and tally up the percentage of districts that
interval captures. Our results appear in Figure 2.4, with time on the horizontal
axis and the percent coverage on the vertical axis (again with normal in gold and
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Figure 2.4: Coverage under Each Model at the 95 Percent Level.

LogisTiCC in black). A properly calibrated model should capture 95% of districts
which, aside from estimation error, should be at the flat black line near the top of
the figure. This is the case for the LogisTiCC, which has well calibrated intervals.
In contrast, the normal interval substantially deviates from capturing 95% of the
elections in all but a few years.

Finally, we evaluate our distributional assumption (a compound error term with
random effects and an additive logistic 𝑡 distribution). To do this, we use methods
of “conformal inference” that offer guarantees of accurate distribution-free finite
sample coverage even under model misspecification, for any predictive model, and
so we use it to check for misspecification in our model (Vovk, Gammerman, and
Shafer, 2005). (Intuitively, the method works by computing confidence intervals
based on errors from previous years’ forecasts, assuming primarily that the data
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generation process is exchangeable conditional on the covariates.) In Figure 2.4 we
add conformal confidence intervals (in red). We first confirm that the conformal
intervals have accurate coverage, as designed, which we can see as the red line
varies around the flat 95% line across the years. More relevant for our purposes
is the comparison between the fit of the red and black lines to the 95% line. This
comparison indicates that the LogisTiCC has approximately the same high quality
coverage as these distribution-free intervals. These results thus provide evidence
for the veracity of our distributional assumptions and for our Bayesian model as a
generative model of US congressional elections data.

2.4 Electoral Implications
We use our model to compute generatively accurate descriptive summary statistics.
First, in Section 2.4, we characterize election variation as falling into three regimes,
at the start, middle, end of the 66 years of our study, and how elections throughout
are powerfully driven mostly by national rather than local swings. Second, Section
2.4 builds on the first section with an empirical theory of congressional elections
consistent with our empirical results and prior literature that tries to strip out several
under-appreciated normative assumptions. Section 2.4 then focuses on a key feature
of American democracy, the probability of an incumbent loss, and shows that it is
essentially constant over time, despite well known huge changes in the incumbent’s
expected vote advantage.

The Three Regimes of Election Prediction Variability
Our model decomposes election variability into district uniqueness, national swing,
covariate effect stability, and political surprises, in addition to well known covariate
effects. As Section 2.3 shows, these parts of the model provide far better fit to con-
gressional elections data, making for accurate out-of-sample forecasts, uncertainty
intervals, and calibrated probabilities. We now turn to the large scale patterns this
modeling strategy reveals in congressional elections, leaving most of the substantive
implications to the following sections.

First, we begin with an intuitive summary measure of the overall patterns in con-
gressional elections data that we call vote concentration, the proportion of the vote
probability mass in the interval [0.45,0.55], for mean predictions of 0.5. As Figure
2.5a shows, the early and late periods have high vote concentration, meaning that any
one prediction conveys more certainty and more information, whereas the middle
years have substantially lower concentration values, indicating that predictions in
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Figure 2.5: Model Features.

that period were of less (or more variable) value. These are not small differences:
A prediction of 𝑣 = 0.5 plus or minus five percentage points in the 1950s and the
2010s captures about 60% of likely voting outcomes, whereas in the 1970s-1990s
the same interval only captures 40% of these outcomes.

Second, our results show that the national swing is far more important than the
variation due to district uniqueness (even after accounting for the covariates), which
is one reason for strong time series patterns in voter concentration. To see this, we
compute the ratio of the standard deviation of the vote (on the logit scale) due to
variations in national swing relative district uniqueness: 𝜎[/𝜎𝛾 = 0.2/0.036 = 5.6
(a ratio we find to be largely stable over time). Campaign observers have long
known that exogenous events and heresthetical maneuvers by individual congres-
sional candidates in their district campaigns can be important, but this result shows
that exogenous national events and national-level heresthetical maneuvers are more
than five times as consequential as the sum of all the individual district campaigns.
All politics may well be local in its effect, but national level political issues have a
far bigger effect both nationally and locally than local issues (see also Hopkins 2018
and Caughey and Warshaw 2022: Sec. 3.3).

Finally, we decompose the vote concentration results from Figure 2.5a by noting
that the ALT distribution partitions the overall variance into two parameters, the
“scale” 𝜙, which quantifies the amount of variation, and “degrees of freedom” a,
which controls the shape of the predictive distribution. Time series estimates of
these parameters appear in Figures 2.5b and 2.5c, respectively. In both cases, we see
a clear inverted U shape, revealing low variability in electoral outcomes at the start



43

(1950s–60s) and the end of the series (2000s–2010s) and much higher variability in
the middle years (1970s–1990s). The degrees of freedom parameter is similarly low
at the start and end of the period, indicating sharper deviation from the normal with
both longer tails and more concentration of density around the mean prediction, and
higher values near the middle, indicating lower concentration.4

An Empirical Theory of American Democracy
The literature on American elections is increasingly scientific, but it has not always
made its underlying normative assumptions transparent, which may have led to
unrecognized biases and missed opportunities. We first clarify this point and then
turn to a reevaluation of our empirical evidence.

Avoiding Normative Assumptions

Here we highlight the sometimes unrecognized philosophical assumptions in the
literature. To do this, we begin with a simple characterization of American repre-
sentative democracy as a set of electoral rules that enables politicians to seek office
by making public appeals and voters to choose among the politicians. Importantly,
the electoral rules constrain neither the arguments politicians make nor the calculus
voters use in choosing candidates.

Political scientists and political philosophers have long layered on top of this sim-
ple definition various normative assumptions that they either consciously justify
as important or effectively treat as facts. For example, scholars frequently ask
whether voters pay attention to the important issues of the day, but they too often
presumptuously define “importance” when in fact that’s the voters’ job. War, gun
control, trade, unemployment, inflation, taxes, abortion, energy policy, and others,
may sound important to political philosophers, but nowhere in American electoral
rules do the normative preferences of a bunch of academics get to determine how
voters make their decisions.

Similarly, when we impose our normative preferences for what counts as consistent
positions across issues, voters may have a range of values of issue constraint from
low to high. In fact, however, issue constraint is always “high” by definition, once
we recognize again that the voters get to decide how much to count different issues
in their voting decision. If voters decide only personality is important, or being

4See Supplementary Appendix C.6 for additional empirical evidence of the three regimes. Note
also that a ≈ 6, the largest value in Figure 2.5c, still deviates substantially from an additive logistic
normal, and both deviate from the normal.
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pro-choice is consistent with support for the death penalty, no rule of American
democracy is violated. Of course, philosophers can take normative positions, and
political scientists can evaluate them systematically, but when we take on board
normative views as if they are fixed features of the world, we can wind up with
misleading conclusions.

These normative assumptions are so embedded in our empirical analyses that we
can even miss that they are assumptions. The problem may be easier to see in older
literature, on which much of our present empirical work is built. For example,
consider the American Political Science Association’s famous report, “Toward a
more responsible two-party system” (APSA, 1950), which set the agenda for a
generation of American politics researchers. The leading political scientists of the
time wrote that when party positions and voter decision making are not based on the
issues scholars deemed important, then “Party responsibility at the polls thus tends
to vanish. This is a very serious matter, for it affects the very heartbeat of American
democracy”. They even clarified that “Those who suggest that elections should deal
with personalities but not with programs suggest. . . that party membership should
mean nothing at all” (APSA, 1950). (We should give the authors of this report
a break, written as it was before most of the methodological developments in the
social sciences, but, from a modern perspective, the report reads as breathtakingly
reckless, with recommendations for numerous major reforms squeezed into single
sentences, and all based on unevaluated normative assumptions and little systematic
evidence.)

We might also ask whether these normative assumptions are merely reasonable
viewpoints that no one would disagree with? After all, few have objected in the
literature. For that matter, who would object to the claim that voters should cast
ballots based on government programs rather than personality or temperament?
Well, as it happens, we live in a representative democracy, not a direct democracy,
and in most other situations where a person needs to be selected to do a job,
temperament is a crucial factor. Personality evaluations are routinely made for job
searches throughout the economy, choosing a romantic partner, picking an instructor,
and in many other situations. Even if we could agree on the important issues of
the day, new issues always arise after election day that cannot be the basis for
voter decisions. In other words, one reasonable normative perspective is that voting
should be based at least in part on subjects other than policy issues and programs.
And whether we agree with this normative claim or not, it is perfectly consistent
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with the rules of American democracy: The decision makers are voters, not political
philosophers.

Empirical Evidence

In Section 2.4, we described Figure 2.5a as showing that the distribution of vote
predictions was just as concentrated around its mean in the 1950s as it is now, and
much less concentrated for the years in between. From a casual reading of the
literature, this result seems awfully surprising: Where does it say that the political
parties were as coherent, internally organized, and distinct from each other in the
1950s as they are today? The 1950 APSA report was designed to fix the lack
of coherence in the parties, after all. How can it be that “the era of consensus,”
with Eisenhower as president and the parties in broad agreement over the cold war,
economic prosperity, and support for international alliances like NATO, was as
partisan as the 2010s and 2020s, with the gulf in ideological differences so large
they seem impossible to span?

But wait, it is worse! Consider a direct measure of ideological polarization over time
in Figure 2.6a, measured by a time series plot of the difference in DW-NOMINATE
scores between the median Democratic and Republican members of the House (see
McCarty, 2019). This figure shows a nearly monotonic increase in ideological
polarization over the entire period, very low in the 1950s and very high in recent
years. So why then would Figure 2.5a imply that the 1950s were highly partisan?
The answer is that the 1950s were highly partisan, but the distinction between the
parties was not based on the notions of ideology that political scientists and political
philosophers happen to think are important. In fact, Figure 2.6a does not show that
party polarization was at a low point in the 1950s; it highlights the failure of the
political science concept of ideology to accurately describe this earlier period.

Scholars in the 1960s were aware of these patterns but they used them mostly to
declare their dissatisfaction with how voters make their decisions. The leading
empirical book of the time, The American Voter (Campbell et al., 1980), showed
empirically that voters were intensely partisan, but not very informed on the issues
these political scientists decided were important. Of course, by definition, the voters
were highly informed on the issues they chose to pay attention to, which can be seen
by their highly predictable voting patterns. Voting decisions were based largely on
partisan identification, which in turn was based on stable and measurable factors
like group identities, such as race, religion, and union membership, and parental
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Figure 2.6: Ideological vs. Partisan Alignment.

socialization.

We can also convey these basic empirical facts in simple time series plots. We
do this in Figure 2.6b, by plotting percent agreement between party ID and the
vote in ANES surveys, and Figure 2.6, for the percent agreement between members
of the House and their party leaders (among roll call votes where leaders of one
party oppose those of the other party). Both figures are characteristically U-shaped,
mirroring our concentration graph in Figure 2.5a. (Note that the nadir of the time
series comes earlier in Figure 2.6 than 2.6b, consistent with the idea that changes in
voter behavior are mostly elite driven.)

Finally, note the asymmetry in the graphs we present here: for party differences,
we give results among voters (Figure 2.6b) and legislators (Figure 2.6), but for
ideological differences, we only present differences among legislators (Figure 2.6a).
Why no graph for ideological differences among voters? The reason is that ideology
is an idea invented by philosophers and used by political scientists; it was relatively
unknown among voters until recently. In fact, questions about ideology were not
even asked in the American National Election Survey until 1972 and even then
prefaced with an explanation: “You may have recently heard a lot of talk about
left/right. . . ” Ideology is a normative idea that academics impose on voters, not
necessarily one that voters chose to use themselves.

Changes in Incumbency Advantage, Stability in Incumbent Loss Probabilities
Section 2.4 shows the consequences, in terms understanding or misunderstanding
empirical results, of substituting our own normative preferences for those of voters.
In this section, we show the consequences of choosing a quantity of interest that
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we happen to find of interest and missing a related one of central importance for
democracy. A fundamental question for any democracy is the responsiveness of its
legislators to constituent preferences, and whether elections produce consequences
for violating the voters’ will. Mayhew (1974) famously noticed that this guarantee
appeared to be breaking down in the 1970s given the decline in the number of
competitive elections and what appeared to be an increase in estimates of the
electoral value of incumbency (see also Abramowitz and Webster, 2016; Ferejohn,
1977). Studies of these “vanishing marginals,” and corresponding increases in
incumbency advantage (Gelman and King, 1990; Jacobson, 2015), were a major
concern to generations of scholars. However, win margins and expected increases
in incumbent votes, as important as they are in and of themselves, are only indirect
indicators of the relevant quantity — the probability that an incumbents will lose
his or her job in the next election. And it is the probability of losing one’s job that is
likely to be the motivating factor in keeping incumbents responsive to constituents
and the whole democracy working. We show here that the broad regime changes
in American politics described in Section 2.4 counteract the expected advantages
of incumbency, leading to long term stability in the risk of incumbents losing their
seats. Moreover, this probability of loss is not only stable, it has been high over
the last two-thirds of a century and across the three different electoral regimes we
identify in Section 2.4, precisely because of the patterns identified there.

We begin with the familiar electoral advantage of incumbency, plotted over time in
Figure 2.7a. For each year, the figure reports the expected vote for an incumbent
minus that for a nonincumbent, with all else held constant. If we add appropriate
identification assumptions, as in (Gelman and King, 1990), the vertical axis of this
figure can be interpreted as an estimate of a causal effect, the expected increase in
the vote for a party that comes solely due to nominating the incumbent for reelection
as compared to the best available nonincumbent willing to run. This incumbency
advantage was about two percent in the 1950s and 60s, increased to about ten
percentage points in the 1980s, and then dropped back down again to around two
percent by the third regime after 2000 (as noted by Jacobson, 2015).

Most of the information in incumbency advantage estimates comes from the differ-
ence between the vote for incumbents and open seat candidates of the same parties.
Each of these two components are strong functions of the national swing in any one
year, which itself is of course closely related to the probability of an incumbent loss.
This means that the value of the incumbency advantage, based on the difference,
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Figure 2.7: Measures of Electoral Competitiveness.

is mostly unrelated to the national swing. Thus, for clarity in Figure 2.7b, we give
estimates from our model of the probability of incumbent loss for in-party mem-
bers during midterm years, where there is a well known large predictable negative
national swing. The gold dots in this figure represent the average incumbent loss
probability for all in-party midterm incumbents each year, with thick bars corre-
sponding to the central 50% of the district loss probabilities and thin bars capturing
95% of them (i.e., these are not confidence intervals, representing uncertainty; they
instead describe the distribution of district-level probabilities).

As Figure 2.7b reveals, the in-party midterm loss probabilities are large and vari-
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able, but do not trend over time. The average probability of an in-party incumbent
loss during a midterm, represented by the horizontal gold line, is a substantial
20.6%. The vertical lines through the dots indicate that many incumbents have
much higher probabilities of losing their jobs, which is indicated by the high end
of the asymmetric intervals around the gold dots. The other three logical subsets
have much lower average loss probabilities; these include in-party presidential in
red, out-party midterm in black, and out-party presidential in green. Although these
other three subsets have very small average loss probabilities, the competitiveness
of the presidential election means that incumbents will sometimes wind up facing
voters with a remarkable one-in-five chance of losing their jobs. Of course, nonin-
cumbents in open seat races have much higher probabilities of losing and incumbent
challengers’s chances of losing are higher still. If you are or hope to be a tenured
professor, think of how much more you might pay attention to the chair of your
department, review committee, and students if every four or eight years one in five
tenured professors where summarily fired. Your laurels would not be very restful.
Of course, this is excellent news for the incentives American democracy provides to
its elected legislators to be responsive to their constituents.

Why, then, does incumbency advantage change so dramatically in Figure 2.7a even
as the probability of incumbent loss remains so stable in Figure 2.7b? Indeed,
these seemingly contradictory results are both computed from the same run of
the same generative model. The answer comes from the results in Section 2.4:
When incumbency advantage is low, near the beginning and end of our 66 year
data set, variation is low and voter concentration is high, meaning that even a 2
percentage point incumbency advantage has some substantial value. When the
expected advantage of incumbency rises to roughly 10 percentage points in the
middle of the period, the concentration and thus the value of that expected vote
decreases by twice as much (from about 60% at the start and end, to only 40% in
the middle, of Figure 2.5a). This increasing variability means that incumbents see
little actual reduction in their probability of losing office. Getting a bonus of 10
percentage points (because you are an incumbent) may seem comforting, but if this
“bonus” also comes with a much larger random component its value is degraded
(see also Jacobson, 2015).

Finally, we summarize the consequences of these probabilities for the in-party’s loss
of votes in Figure 2.7c, and seats in Figure 2.7d. The average loss during midterm
elections, represented by the gold flat lines, reflects about an 8.1 percentage point
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vote loss (±2.3 points, a 95% CI) and 8.8 percentage point seat loss (±1.7 points).
These average effects are substantial, but do not miss the occasionally large and
highly asymmetric confidence intervals in Figure 2.7d, meaning that we should also
expect occasional extremely large in-party seat losses.

Consistent with Figure 2.7b, we also see little to no in-party vote or seat change
during presidential years, which is reflected in the black dots and lines in Figures
2.7c and 2.7d.

2.5 Generatively Accurate Descriptive Summaries
We attempt in this paper to build generatively accurate descriptive summaries of our
data, reducing the tremendous complexity of American politics and congressional
elections to understandable summaries computed from a single internally consistent
statistical model. While the cost of working with generative models is the modeling
assumptions, the benefits include rigorous out-of-sample validation (see Section
2.3) and a far richer range of substantive political science questions that can be
tackled, a topic we take up in this section.

Description is sometimes regarded as separate from inference and unaffected by
the usual threats to proper statistical analysis (i.e., often as long as you say you’re
doing “mere” description, anything goes). In practice, however, the best descriptive
summaries are those vulnerable to being proven wrong (and then ideally not actually
wrong) and tailored to the many precise questions of substantive interest. In fact,
descriptive summaries are essential to addressing the breathtaking range of questions
of interest to social scientists. Scholarship should not be limited to quantities
that happen to be computationally or statistically convenient, or those in whatever
methodological area happens to have made progress lately (such as causal inference
in recent years; see Supplementary Appendix C.7).

We outline in this section some of quantities that can be estimated from a generatively
accurate model and explain how they can be used to enrich political science research.
As inference is simply “using facts we know to learn about facts we do not know,” we
characterize the types of quantities we may wish to estimate by first detailing both
the “unknowns” that may be of interest and then the “knowns” we have available
to condition on. We characterize the unknowns in three ways. First, the location
of an unknown is where the values are of the outcome variable that we want to
know. This may involve a “forecast”, i.e., into the future; “farcast,” i.e., to an
election in the present or past not in our dataset (such as for a different office
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or country); “nowcast,” i.e., to unobserved features of elections in our dataset
(such as the posterior distribution for a district vote, only one value of which is
observed, as in posterior predictive checks); or even a “faroutcast,” which refers
to values of the outcome variable under counterfactual conditions (such as if no
incumbents had run). Second is the level of aggregation of the quantity of interest,
such as for district-, state-, regional-, or national-level statistics, or features of non-
geographic groupings like all Democratic districts or all those without an incumbent.
Finally, our quantities of interest involve a concept, such as partisan bias, electoral
responsiveness, the probability that an incumbent will lose, the expected vote in a
district, or the district vote of the median legislator.

Quantities of interest always condition on three types of features that are either
known or, in the case of counterfactuals, assumed known. These include (1) the
choice of covariates and their values for unknown quantities; (2) keeping, removing,
or zeroing out random effects; and (3) keeping, removing, or adjusting surprises
(such as to focus only on the expected value or other features of the posterior). We
explain how to make decisions for choosing quantities of interest, such as those given
in Section 2.4, and how to mix and match the location, level, and concept of the
unknowns with the covariates, random effects, or error term surprises to condition
on.

Consider estimating the probability that a Democrat wins a particular district 𝑖 in
election year 𝑡. The simplest case is a “nowcast.” Here we are interested in the
ex ante probability that the Democrat would this district election, which in fact
we have already observed (ex post). To do this, we set the values of 𝑋 to their
observed district values. For example, suppose the lagged vote for the Democrat
incumbent is 74%. We might then consider setting 𝛽𝑡𝑘 = 𝛽𝑡𝑘 for all 𝑘 covariates,
and 𝛾𝑖 = 𝛾𝑖 and [𝑡 = [̂𝑡 for the random effects. Of course, we do not know any of
these numbers for certain ex ante and, therefore, we would choose instead to include
estimation uncertainty in our estimate of the probability that the Democrat would
win this district. Thus, instead of fixing these parameters at their point estimates, we
draw them from their posteriors, centered on the estimated values. Then, suppose
we take 1,000 draws from this posterior; to generate our model-based “nowcast”
of 𝑣𝑖𝑡 , we then multiply each of these draws by the relevant 𝑋𝑖𝑡𝑘 and add the draw
of the district effect and national swing. We then run this sum through the inverse
logit function to get a hypothetical draw on the scale of votes. This generates 1,000
hypothetical draws of 𝑣𝑖𝑡 . To estimate the probability a Democrat wins the district,
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we then simply count up the fraction of the draws greater than 0.5.

For forecasting, the choices about how to construct generatively accruate descriptive
statistics is more flexible, and thus more complicated. Consider the simplest case.
If all we want is a one-election-ahead forecast, we still have a number of important
decisions to make. For example, how do we set the covariate values? If it is the
next election, we have observed the lagged vote, so that is straightforward to use,
but what about incumbency? Do we know yet if the current incumbent will run
again? If so, we could use that value. But if we are making the forecast well before
the election, and do not know this yet, what value should we use? We could assume
they all run, or some randomly selected proportion run again. Perhaps, however, it
is better to consider what would happen if the district were open? Regardless, the
analyst must choose some value relevant to the question at hand, and must realize
that this choice changes the question we are answering. In fact, the differences in
forecasts across these assumptions may be of considerable substantive value.

We also have important decisions about the district effect, 𝛾𝑖. If this is were only
one election ahead, and we do not think much else has changed, then we may want
to fix 𝛾𝑖 = 𝛾𝑖 as we did in our “nowcast” above. However, we surely do not know
𝛽𝑡𝑘 . So instead we need to use draws of it from 𝛽𝑡𝑘 ∼ N(𝛽𝑘 , 𝜎2

𝛽𝑘
). This will add

additional uncertainty to our forecast, but is otherwise similar to our “nowcast”. And
we are unlikely to know the national swing and so must make a parallel choice about
[𝑡 . Given all these assumptions, we can then generate our hypothetical election
draws and calculate the fraction of times the Democrat wins as our prediction as a
probability.

Perhaps the most difficult set of choices comes from in making a “faroutcast,” as
for example, when we want to forecast what would happen in a new legislative map
following the implementation of a proposed (or perhaps recently passed) redistricting
plan. Here, the covariate choices are not obvious. First, we generally will not
know where incumbents will be, but perhaps we can make some educated guesses.
Alternatively, we might assume all seats are open to obtain a baseline probability that
a Democratic candidate could win the seat. Harder yet, is what to do about lagged
vote, which is giving the model a measure of the normal vote in the district. We
could use precinct level returns for the previous election, subtract out the incumbency
advantage and uncontestedness, aggregate into the new districts, and then add back
in the incumbency advantage for districts where the decisions of incumbents and
challengers is known. Or perhaps we could use presidential vote, or some average of
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statewide votes re-aggregated in the new district map. These constructed measures
would be needed in the original model or in a separate model that imputes lagged
vote from some statewide measures. Also, as with our forecast, we do do not know
𝛽𝑡𝑘 , 𝛾𝑖, or [𝑡 . And as before we could then generate our hypothetical election draws
and calculate the fraction of times the Democrat won.

The flexibility of the model easily enables one to calculate even more sophisticated
quantities of interest. For example, one of the largest sources of uncertainty in
election predictions is the national swing. We can thus draw [𝑡 directly from
its posterior. Alternatively, we can model the parameters of the [𝑡 prior with
national-level covariates, such as unemployment, presidential approval, or whether
the country is at war. Yet another option is to fix it at the value of some previous
election that seems similar to the current one.

By combining the location, level, and concept for a quantity of interest and fine tuning
by making choices about the covariates, random effects, and surprises, accurate
generative models like the one we describe here can reveal a vast amount about
American elections, far richer than any one specific estimate or data analysis on its
own.

2.6 Concluding Remarks
Commonly used models of district-level election results have enabled political sci-
entists to learn a wide variety of information about American legislative democracy.
But the observable implications of these models fail spectacularly quite often in
ways that should almost never happen. We build on this existing approach by adding
features of elections political scientists have learned over the years, and building on
new statistical and computational technology not previously available. We validate
our approach with extensive out-of-sample (and distribution-free) tests in 14,710
district-level elections. Our generative model is general in that it can be used, with
the appropriate additional assumptions and covariates when necessary, to estimate
almost any quantity of interest in the literature, and others, all with calibrated (i.e.,
accurate) probabilities and honest uncertainty intervals.

We apply the model to estimate one of the most central requirements of any represen-
tative democracy — the extent to which legislators have a serious chance of losing
reelection. We reveal this number to be quite high and remarkably constant over
more than half a century, a time period which we show has seen dramatic changes
in many other important characteristics of electoral politics such as the incumbency
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advantage. We then build a more general model of American democracy consistent
with these findings.

Further growth in computational power may one day enable feasible estimation
of joint generative models that enable a richer substantive portrait of the electoral
system, such as conducting modeling at the precinct-level to include redistricting
periods, or encompassing other elections such as for the US senate, president, and
state legislatures. With a continual focus on rigorous out-of-sample validation,
and larger generative models, it may even be possible, one day, to estimate these
simultaneous with other sectors of society such as the economy, demography, public
policy, and public health, or potentially data from other countries.
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C h a p t e r 3

TENSOR-BASED IMPLEMENTATION FOR MULTI-LAYER
CONTEXTUAL TOPIC MODELING : APPLICATIONS TO U.S.
CONGRESSIONAL LEADERSHIP AND AGENDA SETTING

POWER

3.1 Introduction
Given new sources of text data, researchers in social science have increasingly
turned to natural language processing as a tool for understanding and analyzing
important behavior of both political elites and the public. Text data offers a unique
opportunity to generate high frequency data with increasingly large data sets, some
of these data sets ordering on the magnitude of tens of millions of observations with
thousands of features (see: Steinert-Threlkeld, 2018, Salganik, 2017 ). Initially,
researchers employed statistical models for text analysis to classify open-ended
responses to survey questions. Early attempts to classify such responses involved
handcoding the responses; however, such an approach faces two key problems in
modern social science research agendas. First, given the increasing size of text data,
hand-coding data is increasingly impractical. Second, such methods face risk to the
external validity of the outputs, even under ideal conditions. Of course, in practice,
labelling occurs in less-than-ideal conditions: to achieve labels at meaningful scale,
researchers often employ cost-effective methods such as mturk. Unfortunately,
these methods often produce low-quality data. Even in the best case, human hand-
coders may simply make errors as they attempt to classify labels, either through
unintentional error or by failure to comprehend the underlying nature of the labelling
task.

Recently, researchers in social science have adopted methods of text analysis that
often rely on classifying text documents based on applications in computer science
and natural language processing. Computer scientists have rapidly developed meth-
ods of Natural Language Processing over the last two decades. Social scientists
have increasingly employed these methods as a means of dimension reduction in
order to better analyze the structure of text data. The most popular methods include
mixed-membership models, where topics are classified as probabilistic mixtures
over groups. In social science applications, the two most popular methods are
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Structure Topic Models (STM) and Latent Dirichlet Allocation (LDA). Blei, Ng,
and Jordan, 2003 developed LDA as a fully unsupervised method for identifying
topics from clusters of words and then classifying documents into mixtures of these
topical clusters. The model’s computational tractability and flexibility has largely
driven its widespread adoption across a variety of political science contexts.

Given the increasingly large amount of text data now easily accessible to researchers,
especially social media data made available through public Application Program-
ming Interfaces (APIs), there is a pressing need for increasingly tractable estimation
methods such that they have practical convergence times and make use of reasonable
memory budgets. Using the latest topic modeling methods, for example, STM or
LDA could tractably estimate 100,000 documents within a reasonable amount of
time. However, both of these models are usually estimated via variational Bayes and
Expectation Maximization. These methods are computationally expensive and in
large-data applications, often face problems with costly memory usage and imprac-
tically slow convergence. If social scientists wish to study a dataset containing all
tweets relating to a massive political phenomena, such as the social media response
to mass protests or national elections on Twitter, datasets could reasonably reach 50
million or more documents. Such methods could take weeks or months to converge;
more pressingly, without the aid of advanced CPU architectures with production-
grade memory budgets, the methods are completely infeasible to estimate on the
entire dataset. In these cases, certain lines of research will be blocked to analysts
with only standard workstation capabilities.

To this end, using tensor-based spectral decomposition of lower-order moments
allows for tractable estimation of large data on a variety of single-level latent layer
models, such as LDA. That said, both LDA is a clustering method that is largely
agnostic to domain knowledge from the researcher. STM requires metadata to
measure prevalence. When we consider text as data, it is important to note that
political actors may discuss the same topics, such as climate change or immigration,
but their underlying contexts towards those topics could cleave both within and
between political parties and other relevant groups, such as lobbying groups and
special interests. STM addresses these problems by incorporating meta data into
the classification of topics. In order to account for contextt orientation in a weakly
supervised fashion in text and within the context of LDA, Lin and He, 2009 proposed
a model of Joint Sentiment Topic analysis. In certain contexts where functional
flexibility is important to the research application and context is a key component
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of the lexical space, Joint Sentiment Topic (JST) is potentially preferable to LDA
and STM. Building on the work of Anandkumar et al., 2013, (which guaranteed
the theoretical tractability and identification of the model) and Huang et al., 2015
(which proposed a practical implementation), and Kangaslahti et al., 2023 (which
proposed a fully online and end-to-end GPU implementation) this paper will propose
a tensorized implementation and small extension of JST modeling to contexts beyond
sentiment and show application to a dense data-set of public floor speeches in the
U.S. House of Representatives. The paper builds largely on the architecture that was
proposed in Kangaslahti et al., 2023 by incorporating context and applying it to a
large corpus of political text.

This new estimation approach offers benefits in addition to speed. First, the batched
approach allows the model to scale to large data that would be otherwise infeasible
to fit a topic model, by reducing the memory overhead. Not only that, but by taking
advantages of a GPU-based implementation, the batched approach allows the model
to be estimated even on a standard workstation end-to-end on GPU backend. By
reducing the memory costs and implementing an estimation routine that converges
in reasonable time, the method will reduce the user-related costs of employing these
methods on large data. The would make these estimation methods accessible to a
wider array of researchers, even those who do not have access to the most advanced
servers or sophisticated work stations.

This paper makes two contributions – first, the paper extends tensor-based estimation
to a model which incorporates the underlying context of words in a hierarchical
fashion, Multi-Layer Contextual Topic Modeling (MLCT). Then it shows that this
method improves on speed and identifying partisan differences in speech, while
maintaining lexical coherence. This is particularly useful for political domains
because the domain effects could be strong given differing political contexts- by
utilizing a weakly supervised notion of context, MLCT allows for a more flexible
analysis of contextual patterns in political speech.

3.2 Current Methods
Given the increasingly large amount of text data now easily accessible to researchers,
especially social media data made available through public APIs, there is a pressing
need for increasingly tractable estimation methods. Among the most popular of
these methods is Latent Dirchilet Allocation (LDA) – a fully unsupervised method
of uncovering topical clusters and mixtures over those labels (Blei, Ng, and Jordan,
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2003).

Political scientists have innovated with respect to text methods in order to better
understand temporal aspects of speech and aspects relating to the individual actors
issuing the statements under analysis. For example, Quinn et al., 2010 treats the unit
of speech not as the individual speech, but instead the day’s aggregated speeches
in the U.S. Senate are treated as the unit of observation. They estimate the topical
composition of the aggregated speeches within each day representing a topical
mixture. Incorporating this temporal aspect of speech while exploiting the mixture-
based nature of LDA classification, this model produced estimates of the daily
attention to distinct political topics, to track what the Senate was talking about over
a long time series. Employing another Bayesian Hierarchical framework, Grimmer,
2010’s “expressed agenda model” measures the attention paid to specific issues
in senators’ press releases, hoping to derive the messaging space and strategy of
individual senator’s press and communications offices.

As Grimmer and Stewart, 2013 observe, methodologists need to both be in con-
versation with computer scientists and develop new models of their own to address
the evolving set of questions that may be addressed by text data. With increasing
computational power, political scientists have begun to explore powerful word-based
methods such as word-embeddings which incorporate context, unlike unsupervised
topic models. Already, such models have been successfully employed to discern
partisan valence of speech, as well as contextual orientation (Rheault and Cochrane,
2020; Rudkowsky et al., 2018).

Because they incorporate context, there is great excitement around many of the
latest word-embedding methods in computer science, such as BERT (Devlin et al.,
2019). Even more has been made of Large-Language Models and their promise for
a universal method for many task. These methods are exciting as they incorporate
grammars in a computationally tractable way and can produce outputs for many
types of task. However, these innovations come at a cost: unlike many of the most
unsupervised or weakly supervised methods, these frontier models require extensive
pre-training, often on pre-labelled data. Even with fine-tuning, the models will
struggle in highly context-dependent settings that are outside the training set. In the
case of BERT or ChatGPT, the model has been pre-trained on a large, expansive
internet crawl. Reassuringly, Rodriguez and Spirling, 2022 validate that these pre-
trained methods still work well across a variety of contexts within that training set.
Datasets that are highly historical, contemporaneous, or generated via social media
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fall outside that training set. As it happens, these are exactly the types political and
social science contexts that researchers wish to study.

What’s more, for supervised methods preferred by many computer scientists, the
available social science data is both voluminous and unlabelled and contemporane-
ous, with shifting underlying dynamics.

Datasets containing billions of tweets relevant to the Black Lives Matter Movement,
COVID, or #MeToo are potentially ripe for social science study – but these datasets
are both large-scale and extremely dynamic. Given the scale of many of the latest
data sources and the dynamic nature of the political science contexts where these
data are most valuable, frontier models face hurdles in terms of expense of labelling
and training, as well as infeasibility of hand-labelling dynamic data in real time.

In addressing these vital contexts, weakly supervised methods for topic classification
have shown their potential to further understand social behavior. In addition to these
feasibility constraints, prior research has shown that computer-assisted methods bet-
ter recover conceptually meaningfully aspects of political science text data better
than their fully automated (such as word embeddings) or fully expert-coded coun-
terparts. (see Grimmer and Stewart, 2013, Grimmer and King, 2011). Researchers
need ways to incorporate known structure on these vast datasets. To this end, STM
allows for the incorporation of metadata into textual analysis by allowing for a linear
functional form (Roberts et al., 2014b) over metadata that allow analysts to uncover
latent topics while studying how the prevalence and content of topics change with
respondent and document metadata. Similarly, JST allows for the incorporation of
a prior over a subset of words. Both methods offer potential ways forward in terms
of studying these applications in political science.

3.3 Model Comparisons
Ensuring Model Consistency
In order to ensure a consistent model comparison, we ensure that we are comparing
models holding as much equal as possible. We use the same corpus of tweets
and vocabulary across all three models. Additionally, we compare the models at the
same number of topics or senti-topics. Finally, we selected a data environment where
we believed all of the topics models should perform well – a dataset of legislative
tweets. This data has rich topical structure, obvious labels and and easily measured
partisan separation. Finally, we compare these weakly supervised methods to a fully
unsupervised LDA baseline.
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Model Metrics
We compare the models on two dimensions. The first is how well the models recover
coherence topics. One important aspect of text analysis is recovering conceptually
meaningful topics or clusters. We report a standard measure of topical coherence to
obtain an objective quantitative comparison. Second we compare the ability of each
model to recover partisan valence of the legislators from their speech. Given that
the party label of legislators is known, we should expect that these models should be
able to recover it. We expect STM to perform best on this measure, as party labels
can be directly incorporated into the generative model as metadata. That said, if
JST performs at least similarly, that would be suggestive of its utility as an insightful
alternative when metadata quality is of low quality or unavailable to the researcher.
This is because it is recovering conceptually meaningful structure in the data.

Coherence: First, we compare the models based on coherence. We use the normal-
ized pointwise information metric combined with a cosine formulation. We follow
Röder, Both, and Hinneburg, 2015 who find that a Cosine Similarity metric on the
Normalized Pointwise Mutual Information metric (NPMI) of top words is the best
performing coherence metric in a survey of direct and indirect measures of topical
coherence.

The basis of the metric is the NPMI vector, calculated for each words in the vector
of top 20 words per topic:

npmi(𝑤𝑖;𝑤 𝑗 ) =
log2

𝑃(𝑤𝑖 ,𝑤 𝑗 )+𝜖
𝑃(𝑤𝑖)𝑃(𝑤 𝑗 )

− log2 𝑃(𝑤𝑖, 𝑤 𝑗 ) + 𝜖
∀𝑤 𝑗 in the top 20 word topic 𝑘

The metric is then constructed as follows. First, an vector is computed for each word
𝑤𝑖 in the top twenty words against all remaining words 𝑤 𝑗 ≠ 𝑤𝑖, yielding an NPMI
vector for each word as described in the preceding paragraph. Then, the metric
calculates the average of the cosine similarities of each of the the NPMI vectors for
each top word.

Cluster Validity: Second, we examine Principle Components of the mixtures
generated by LDA, STM, and MLCT to assess how well they recover known partisan
labels in the data. We report on standard metric of clustering validity, (Meilă, 2003)’s
variation of information:

VI( �̂�; 𝐿) = −𝑟 [log(𝑏/𝑑) + log(𝑏/𝑟)]
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where

• �̂� are the party labels uncovered from a Principal Components Analysis (PCA)
decomposition on estimated topic mixtures from a topic model

• 𝐿 the true party labels

• 𝑏 the number of legislators where the labels 𝐿 and �̂� disagree on party label

• 𝑑 the number of Democratic legislators both labels 𝐿 and �̂� agree are
Democrats

• 𝑟 the number of Republican legislators both labels 𝐿 and �̂� agree are Repub-
lican

The intuition behind this metric is to measure the distance between sets of partitions.
When the automated party labels are close to the true labels, the metric will be
smaller.

3.4 Tensor Preliminaries
Innovations in spectral decomposition methods from low-order tensors has allowed
for increasingly parsimonious estimation of latent variable models. To connect to
previous work in this area, we introduce the same tensor notations borrowed from
and consistent with Anandkumar et al., 2014. A real 𝑝-th order tensor 𝐴 ∈

⊗𝑝

𝑖=1 R
𝑛𝑖

is a member of the tensor product of Euclidean spaces R𝑝. For a vector 𝑣 ∈ R𝑛, we
use 𝑣⊗𝑝 := 𝑣 ⊗ 𝑣 ⊗ · · · ⊗ 𝑣 ∈

⊗𝑝
𝑅𝑛 to denote its 𝑝-th tensor power. In this paper,

make use of third-order tensors. Intuitively, the object we are working with is the
tri-occurrence of words. (That is, when words appear together up to three times in
one document).

Anandkumar et al., 2014 notes that tensor decomposition is delicate, in general.
Tensors may not even have unique decompositions. Fortunately, the orthogonal
tensors that arise in the present model have a structure which permits a unique
decomposition under a mild non-degeneracy condition, which we described below.
We are able to estimate an orthogonal decomposition to acquire the eigenvectors
and eigenvalues of a 3-order tensor. Note that despite the complications of these
decompositions, they have attractive properties noted in Anandkumar et al., 2012,
Anandkumar et al., 2014, and Huang et al., 2015. The tensor structure employed in
these papers – as well as in this work – is the symmetric orthogonal decomposition.
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This decomposition expresses the low-order tensors calculated in this paper as linear
combination of relatively small-dimensional forms; each form is the tensor product
of a vector and the collection of vectors which form an orthonormal basis. These
methods exploit a key property of such symmetric tensors which possess these
decompositions. That is, these tensors have eigenvectors that, after some careful
algebraic manipulation, reduce to the topic-word probability matrix that is the central
object of estimation for topic models. Anandkumar et al., 2013 and Anandkumar
et al., 2014 focus on theoretical considerations for such models, and we direct the
reader to these works for a more technical treatment of parameter recovery. This
work will focus on implementation and application of these methods to a latent
variable model based on LDA which incorporates hierarchical context.

We take the basic model from (Anandkumar et al., 2013). We have a random vector
ℎ = (ℎ1, ..., ℎ𝑘 )𝑇 ∈ R𝑘 , where ℎ are the 𝑘 latent factors. In Anandkumar et al., 2013
and Huang et al., 2015, ℎ represents the topic-document distribution. In the case of
Tensor MLCT, ℎ is the context-topicc distribution over topics. In this case, 𝑘 is the
number of contexts multiplied by the number of topics.

Tensorizing MLCT
Suppose we have the following exchangeable random vector: {𝑤1, 𝑤2, 𝑤3, ..} ∈ R𝑀 .
Exchangeability is a key simplifying assumption in both LDA and JST. Blei, Ng,
and Jordan, 2003 notes that exchangeability is essentially a notion of “conditionally
independent and identically distributed,” for LDA-based topic models. In this case,
the conditioning is with respect to an underlying latent parameter (ℎ) of a probability
distribution, which gives the mixture of size 𝑘 (that is (𝑆 × 𝑇) total) context-topics.
We assume that the number of documents is weakly greater than the number of
context-topics (𝑀 ≥ 𝑘), a reasonable assumption given the observed nature of text
data. Next, 𝑤1, 𝑤2, 𝑤3, .. ∈ R𝑀 are conditionally independent given ℎ. Finally, let
there exist a matrix 𝑂 ∈ R𝑀𝑥(𝑆∗𝑇) with row vectors for each word-topic probability
𝜙, which are each 1 × ((𝑆 ∗ 𝑇) for all 𝑣 ∈ {1, 2, 3, 4, ..., 𝑁} where 𝑁 is the number
of words in the vocabulary:

𝐸 [𝑤𝑣 |ℎ] = 𝑂ℎ

Thus, we have the following notation for JST:

• 𝑇 , Number of Topics
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• 𝑆, Number of Contexts

• 𝑃(𝑙) = 𝜋𝑙 is the probability document is in context 𝑙.

• 𝑃(𝑧 |𝑙) = \𝑙,𝑧 is probability that a documents is in the 𝑧’th topic conditional
being in context 𝑙.

• 𝑃(𝑤 |𝑧, 𝑙) = 𝜙𝑙𝑧 is probability we observe a word conditional that it is in the
𝑧’th topic and in context 𝑙.

𝑂 =
[
𝜙1

1, 𝜙
1
2, ..., 𝜙

1
𝑇 , 𝜙

2
𝑇 , ..., 𝜙

𝑆
𝑇

]
(3.1)

ℎ =


𝜋1\1

𝜋2\2
...

𝜋𝑆\𝑆


(3.2)

with

\𝑙 =


\𝑙,1

\𝑙,2
...

\𝑙,𝑇


(3.3)

.

Relabeling to acquire contextual structure: Due to the lack of ordering for spectral
methods at hand, the model is identified only up to the atomized context-topics at
the word level. Despite this limitation, we can still incorporate and account for
the contextual structure of the data in our estimation procedure. To simplify the
notation, the paper will consider the relabeled concentration parameters 𝛼𝑙,𝑧 for each
of the context-topics. It denotes the mixing parameter 𝛼𝛾0 =

∑𝑆
𝑙

∑𝑇
𝑡 𝛾𝑙𝛼𝑙,𝑧.

Finally, we allow heterogeneity in 𝛼𝑙,𝑧, but assume homogeneity in 𝛾𝑙 . This sig-
nificantly reduces the number of calculations in cross-moments of the population
moments, reducing the problem to LDA, while still allowing for heterogeneity in the
parameters through the underlying topics in each context. Standard JST and LDA
implementations usually assume completely homogeneous priors, yet Tensor MLCT
still retains some of the flexibility of Tensor LDA as described in Anandkumar et al.,
2013.
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Non-Degeneracy Assumption: The key non-degeneracy assumption which guar-
antees parameter recovery in these models under this method is that 𝑂 is full rank
(see Anandkumar et al., 2012, Anandkumar et al., 2013, and Anandkumar et al.,
2014). As noted in Anandkumar et al., 2014, this implies that variance-covariance
matrix of the data is positive semi-definite with rank 𝑘 . This is essentially a non-
degeneracy assumption and relatively mild, especially in our applications where the
data are relatively rich in variation. In datasets where there is colinearity or insuf-
ficient variation and the assumption fails, Hsu and Kakade, 2012 shows combining
observations (such as in Quinn et al., 2010) can boost the rank of the requisite ma-
trices at hand. Given the size of the vocabularies and number of documents in many
of the large-scale text datasets, it is extremely unlikely this condition will fail to hold
in more practical applications where this method might be useful to researchers.

As in LDA, we assume ℎ is a distribution itself. We let 𝛼𝑧,𝑙 ∈ R𝑘
+. We interpret ℎ

as the distribution over the joint context-topic labels. We assume context-topics are
independent and Dirichlet distributed. We have 𝛼𝑧,𝑙 = 𝛼1,1+𝛼2,1+ ...+𝛼2,1+ ...+𝛼𝑇,𝑆
and 𝛼𝛾0 =

∑𝑆
𝑙=1

∑𝑇
𝑧=1 = 𝛼𝑧,𝑙 , so.

𝑝𝛼,𝛾 (ℎ) =
Γ(𝛼𝛾0)∏

𝑙

∏
𝑧 Γ(𝛼𝑧,𝑙)

𝑆∏
𝑙=1

𝑇∏
𝑧=1

ℎ
𝛼𝑙,𝑧−1
𝑙,𝑧

(3.4)

Note that first we have

𝐸 [𝑤1] = 𝑂𝐸 [ℎ] (3.5)

Under the simplifying assumption that 𝛾1 = 𝛾2 = 𝛾3. As we have exactly the form
of LDA, we apply theorem 3.5 and theorem 4.3 from Anandkumar et al., 2014 to
directly to recover the parameters 𝛼𝑙,𝑧, as we have the form following for the second
empirical moment:

𝐸 [𝑤1𝑤2] = 𝐸 [𝐸 [𝑤1𝑤2 |ℎ]]
= 𝑂𝐸 [ℎℎ𝑇 ]𝑂𝑇

=
1

𝛼𝛾0 (𝛼𝛾0 + 1)𝑂 (𝛼 ⊗ 𝛼)𝑂
𝑇
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That is, we assume homogeneity in the mixing parameter for contexts, while retain-
ing heterogeneity in the mixing parameter context-topics.

Because singular value decomposition is un-ordered, we cannot explicitly learn the
contexts parameters of the model. However, we can still account for the underlying
context-topic structure of the data, as in JST. That is, we can incorporate context
into the analysis exactly as JST does for sentiment, and recover the context-topic
level parameters.This leads to gains in speed over Gibbs sampling based JST and
gains in topical coherence over LDA.

3.5 Forming moments
Anandkumar et al., 2013 are able show that the model parameters are identified
under a mild rank assumption of the 𝑂 matrix for LDA. Given the introduction
of sentiment/context, we make one further assumption to ensure identification of
the re-labeled parameters. As in Lin et al., 2012, this paper employs a weakly-
supervised implementation and so we augment the observed document-term matrix
and weight by contextual orientation. We note that while Lin et al., 2012 imposes
a purely sentiment-based context, this can be generalized to any weak prior over
contexts. Thus, the main input for the algorithm is a constructed data matrix of
word counts weighted by contextual orientations. For the application to social
media data, we use the paradigm list of sentiments employed by Lin et al., 2012.
For the U.S. House Speech data, we impose a prior over 80 words in 4 contexts (20
per context). The contexts are economics, foreign policy, social policy, and judicial
appointments. Under these assumptions, the Tensor MLCT is atomized, and the
estimation procedure reduces to LDA on the augmented sentiment-word document
matrix. We can then apply the same estimation procedures as in Anandkumar et al.,
2013 and Huang et al., 2015, and Kangaslahti et al., 2023 but on the augmented
context-word document matrix (of size 𝑁 × (𝑆 ∗ 𝑇)).

In order to connect the word context orientations to empirical observations, the
document-term matrix is expanded to a context-word document matrix by weighting
by the above contextual priors. For the words not in the prior, the paper assumes a
uniform distribution over contexts. For the U.S. House Social media data, we follow
Lin et al., 2012, we assume three sentiments corresponding to neutral, negative,
and positive. Words in a given sentiment are weighted 0.9, with weights 0.05 for
the remaining two. Given varying domain contexts, it is possible that words might
exhibit differing sentiment orientations depending on context. This distributional
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assumption avoids imposing excessively strong priors on the data. Note that we
can explicitly recover the individual parameters of ℎ by integrating over all the
topics derived for a context – this is despite the fact that spectral methods do not
preserve ordering, since we’ve imposed the weakly supervised structure. That said,
in analyzing text data, we can still recover the individual context-topics. Importantly,
the Tensor MLCT accounts for the underlying context-topical structure, unlike LDA.

Finally, following Kangaslahti et al., 2023, we center the data to reduce the number of
matrix calculations for the higher-order moments. By centering the data, we mean to
say that we de-mean the data so that it has a mean of zero. (𝑋−𝑚𝑒𝑎𝑛(𝑋)). Centering
the data greatly simplifies the calculation of the higher-order moments because cross-
moments cancel out. This reduces the computational overhead significantly. This
gain in computational tractability comes at the cost of generating dense matrices,
increasing memory overhead. Most methods exploit sparsity of document-term
matrix to reduce memory overhead. However, in this case, this model is batched.
That is, we incrementally estimate the singular value decomposition of the second
moment on pre-prescribed subsets of data, rather than estimate the singular value
decomposition on the entire dataset at once. This reduces the maximal memory
imprint to 2 ∗ (𝑁𝑏) samples are kept in memory at any given time, where 𝑁𝑏 is the
number of samples in the batch. Thus, there are gains in flexibility, as the method
can be implemented either on a slower CPU backed or on a GPU backend with
tighter memory constraint. The researcher can decide which method best suits their
use-case, depending on the available computational resources and the size of their
dataset.

Finally, let the centered augmented document term matrix be denoted by 𝐶 with
rows 𝑐𝑡 := (𝑐1,𝑡 , 𝑐2,𝑡 , ..., 𝑐𝑀,𝑡) ∈ R𝑀∗𝑆 denoting the centered frequency vector for
𝑡−th document where 𝑀 is the number of words in the vocabulary, and let 𝑁 be the
number of documents. Finally, we will let 𝑘 = 𝑆 ∗ 𝑇 denote the total number of
context-topics. Given this set-up, we have the following empirical moments:
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𝑀1 :=
1
𝑁

𝑁∑︁
𝑡=1

𝑐𝑡 (3.6)

𝑀2 :=
(𝛼𝛾0 + 1)

𝑁

𝑁∑︁
𝑡=1

𝑐𝑡 ⊗ 𝑐𝑡 (3.7)

𝑀3 :=
(𝛼𝛾0 + 1) (𝛼𝛾0 + 2)

2𝑁

𝑁∑︁
𝑡=1

𝑐𝑡 ⊗ 𝑐𝑡 ⊗ 𝑐𝑡 (3.8)

where ⊗ is the tensor dot product. Following Anandkumar et al., 2013, we have that
the moments can be factorized as

𝐸 [𝑀1] :=
𝑆∑︁
𝑙=𝑖

𝑇∑︁
𝑧=1

𝛼𝑧,𝑙

𝛼𝛾0

`𝑖 (3.9)

𝐸 [𝑀2] :=
𝑆∑︁
𝑙=𝑖

𝑇∑︁
𝑧=1

𝛼𝑧,𝑙

𝛼𝛾0

`𝑖 ⊗ `𝑖 (3.10)

𝐸 [𝑀3] :=
𝑆∑︁
𝑙=𝑖

𝑇∑︁
𝑧=1

𝛼𝑧,𝑙

𝛼𝛾0

`𝑖 ⊗ `𝑖 ⊗ `𝑖 (3.11)

where ` = [`1, ..., `𝑘 ] and `𝑖 = 𝑃𝑟 (𝑥𝑡 |ℎ = 𝑖),∀𝑡 ∈ [𝑙]. In other words, ` is the
context-topic word matrix.

Anandkumar et al., 2013 showed that ` is recoverable from the singular value
decomposition of the third order tensor. The choice of estimating the model from
low-order moments up to third moment is for two reasons. The first is practical–
estimating moments much beyond the third moment would require either explicitly
computing the empirical analogue of an increasingly high-dimensional tensor, which
quickly becomes computationally infeasible. The second is that the co-occurence
of two terms might not be sufficient to pin down topical meaning. For example,
if a researcher observes that the words blackberry and apple co-occur, they would
not be able to discern the topical meaning unless they observed that these words
co-occur with the word phone or fruit. Thus, the third order moment is both feasible
to estimate, while reasonably capturing this critical variation in the co-occurrence
of terms.

This paper builds on the implementation that Huang et al., 2015 proposes and the
online, GPU end-to-end procedure engineered in Kangaslahti et al., 2023. That is,
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Algorithm 1: High-Level Estimation Procedure
Result: Document Context-Topic Matrix and Word Context Topic Matrix

1. Construct the augmented context-word weighting matrix

2. Calculate whitening Matrix𝑊 and whiten centered-data from step 1.

3. Using stochastic gradient descent, estimate the spectral decomposition of
third order moments tensor 𝑀3 implicitly from whitened counts.

4. Recover context-topic mixture for documents using variational inference.

following similar procedures, 𝑀2 is formed implicitly from a singular value decom-
position of the centered data matrix. Then the 𝑀3 tensor is implicitly formed using
the whitened counts of the centered data. Whitening renders the tensor symmetric
and orthogonal (in expectation). Most importantly, it reduces the dimensionality
of the third moment from 𝑂 (𝑛3) to 𝑘3, the number of topics. Given the nature of
speech in political environments, the number of topics is almost always going to
be an order of magnitude smaller than the number of words. However, the exact
implementation is improved over Huang et al., 2015 is a few key ways. First, the
data is centered, reducing the complexity of the computation of the higher-order
cross moments. Second, a batched PCA is employed to estimate the decomposition
of 𝑀2, rather than 𝑘-truncated SVD in order to parsimoniously decompose the data
given it is no longer sparse. Finally, the gradient calculation is simplified given the
context-topic setting, leading to extremely efficient recovery of the 𝑀3 decomposi-
tion. Finally, given we have recovered the context-topic distribution over words, we
employ standard variational inference to recover document-level parameters. The
paper proceeds by walking through each step of the algorithm,

Using the singular values and singular vectors from the centered data, we construct
a whitening matrix𝑊 such that

𝑊𝑇𝑀2𝑊 = 𝐼

where 𝐼 is the identity matrix. The whitening matrix is computed via incremental
Principal Components. This allows for a batched implementation that reduces the
memory constraints of the method. Note this is currently the most costly bottleneck
both in terms of time and memory. Areas of future for spectral NLP methods are
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likely to come from finding more efficient ways to estimate the singular values from
PCA on large, non-sparse data. From the centered data, we have:

𝑊 = 𝑈Σ−
1
2

where 𝑈 and Σ (the variance matrix of the centered data) are the top 𝑘 singular
vectors and singular values of the centered data.1 In order to estimate the implicit
third moment, the method calculates the whitened counts

𝑦𝑡 = ⟨𝑊, 𝑐𝑡⟩

We will use these whitened counts to construct the implicit third-order tensor. Using
that implicit tensor, the method uses a stochastic gradient descent to find the spectral
decomposition of the third-order moments.

Stochastic Gradient Descent
Following Huang et al., 2015 and Kangaslahti et al., 2023, this paper implements a
fully online method to recover context-topical parameters. We let 𝑣 = [𝑣1 |𝑣2 |...|𝑣𝑘 ]
be the true eigenvectors of the third-order moment. We denote the sample size with
𝑛𝑥 . Now that with the whitened tensor in hand, the method follows Huang et al.,
2015 in implementing a Stochastic Tensor Gradient Descent (STGD) algorithm for
tensor CP decomposition.

Now, note the whitened third-order tensor for the centered data (𝑘 × 𝑘 × 𝑘) is

T =
(𝛼0 + 1) (𝛼0 + 2)

2𝑛𝑥

∑︁
𝑡∈𝑋

𝑦𝑡⊗3

.

Finally, the method solves the minimization problem for STGD following Huang
et al., 2015, the method solves the optimization problem:

arg min
v:| |𝑣𝑖 | |2𝐹=1

{| |
∑︁

𝑣𝑖 ⊗3 −T ||2𝐹 + \ | |
∑︁

𝑣𝑖 ⊗3 | |2𝐹}

1Note that given this setting, the singular vectors of the centered data and 𝑀2 are the same, while
singular values of the centered data are the squared values of the singular values of 𝑀2. Thus, the
second moment is never explicitly formed, saving considerable overhead in terms of memory.
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where the first term measures the Frobenius norm between the constructed tensor
and the eigenvectors of the third moment. This is meant to encourage similarity
between the true quantity and the observed quantity from the whitened tensor. The
second term is an orthogonality penalty, meant to encourage orthogonality between
the eigenvectors.

Thus, the method minimizes the loss function

𝐿 (v) = 1
𝑛𝑥

𝑛𝑥∑︁
𝑡=1

1 + \
2
| |

𝑘∑︁
𝑖=1
⊗3𝑣𝑖 | |2𝐹 −

〈 𝑘∑︁
𝑖=1
⊗3𝑣𝑖,T

〉
Simplifying the expression from Huang et al., 2015, denote each stochastic update
as �̂� 𝑗

𝑖
. Then taking the derivative of the loss function, the stochastic updates 𝑗 can

be written as

�̂� 𝑗+1 ← �̂� 𝑗 − 𝛽 𝑗
𝜕𝐿𝑡

𝜕𝑣𝑖

����
�̂� 𝑗

.

Expploiting the centering of the data, we can simplify the expression from Huang
et al., 2015, each stochastic update is

�̂� 𝑗+1 ← �̂� 𝑗 − 3(1 + \)𝛽 𝑗 �̂� 𝑗
(
�̂�𝑇𝑗 �̂� 𝑗 ∗ �̂�𝑇𝑗 �̂� 𝑗

)
+

3𝛽 𝑗 (𝛼0 + 1) (𝛼0 + 2)
2𝑛𝑥

𝑦𝑇 (𝑦�̂� ∗ 𝑦�̂�)

where ∗ is the Hardamard product (column-wise product) and all remaining matrix
operations are normal matrix products (for the full derivation, see Appendix). The
learning rate 𝛽 𝑗 scales linearly downward with each iteration 𝑗 in order to discourage
large jumps in late in the search space. Finally, eigenvalues from third-order moment
in hand, the method estimates the context-topic word matrix ˆ̀ by unwhitening the
eigenvectors of 𝑀3:

ˆ̀ = 𝑊𝑇† �̂�

where † denotes the pseudo-inverse.

Context-topic Document Distribution Recovery
Finally, to recover the context-topic distribution over documents, the paper employs
variational inference based on that first proposed by Blei, Ng, and Jordan, 2003.
The authors propose a simplified family of latent variable models defined by
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𝑞(\, z|𝜓, 𝜙) = 𝑞(\ |𝜓)
𝑁∏
𝑡=1

𝑞(𝑧𝑡 |𝜙𝑡),

Note, that the second term above is estimated by ˆ̀, greatly simplifying the calcu-
lation, as we have already estimated the word-level parameters. Thus, the method
optimizes the Kullbach-Leibler Divergence:

�̂� = arg min
(𝜓)

∫
\

∑︁
𝑧

𝑞(\, z|𝜓, 𝜙) · log
(
𝑞(\, z|𝜓, 𝜙)
𝑝(\, z|𝑑, 𝛼, 𝛽)

)
𝑑\

In words, the method tries to find the best lower-bound that gives us a a variational
distribution most similar to the true posterior in order to estimation the document-
level context-topic matrix. We can then find a bound using Jensen’s inequality (For
further implementation details, see Appendix A.1 of Blei, Ng, and Jordan, 2003 ).

3.6 Simulations
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Figure 3.1: Simulated Topic-Word Probabilities under a Two-Topic Model recovered
using Stochastic Gradient Descent to recover the Tensor Singular Value Decompo-
sition.

As a simple validation check, we simulate draws of MLCT model and compare
Tensor MLCT results for the topic word matrix to the true values. Computationally,
we simulate a Tensor MLCT model with 1 context, 2 topics, and 1000 documents,
and 100 words. For computational convenience, we simulate on CPU and use the
non-streaming estimation routine. As illustrated by Figure 3.1, we find a nearly 1-1
match, suggesting the model is capable of recovering the true Topic probabilities in
simulated conditions.
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3.7 Application: Model Comparison on U.S. House Twitter Data
Data
For the basis of a model comparison using real data, we follow Ebanks et al., 2021
and collect the Twitter handles of 440 representatives from June 29th, 2019 to March
23, 2020 based on the official Twitter handles list2 collected by C-SPAN.3 Although
the true model parameters are not known as the data are observed, this exercise
allows for a more easily understood comparison of model outputs. We treat the
LDA model as the baseline model of comparison, as it is currently standard in the
literature for topic modeling and the closest framework to JST. For this analysis,
we restrict to exactly the first 300,000 tweets of the 117th Congress in the House,
including only original posts and excluding re-tweets. This data is high-frequency
text data, the kind of which is well-suited for NLP dimension reduction methods
such as LDA and JST. What’s more, we know from the context of tweets they are
likely to have very small mixing parameters – tweets are likely only contain one or
two topics.

Model Comparison
In order to benchmark the model, an LDA model, a standard JST model, and a Tensor
MLCT model is fitted on a large Twitter dataset. Ultimately, we expect to see large
gains in speed over larger datasets, with minimal cost to mathematical coherence,
as well as facial coherence. The standard LDA topic model using a variational
Bayes Implementation written in Python Pedregosa et al., 2011.4The online and
batched version of LDA is implemented to provide the fastest possible benchmark
against both versions of JST. We then compare to a Gibbs Sampling implementation
of JST written in C++.5 The Tensor MLCT method is written in python using a
Tensorly backend. This backend is optimized for performance both on CPU and
GPU processors. For now, since most standard workstations are designed for a CPU
backend and a goal of this implementation is to offer a user-friendly method for large
data analysis, the method is tested on a standard CPU backend typical of a usual
workstation. Finally, the models are optimized on topical coherence. We follow
Röder, Both, and Hinneburg, 2015 who find that a Cosine Similarity metric on the
Normalized Pointwise Mutual Information metric (NPMI) of top words is the best
performing coherence metric in a survey of direct and indirect measures of topical

2We did not include election, personal, or private accounts in our datasets.
3https://twitter.com/cspan/lists/members-of-congress/members
4We use the sklearn.decomposition.LatentDirichletAllocation written in python
5Written by Lin and He, 2009



73

coherence.

The basis of the metric is the NPMI vector, calculated for each words 𝑤𝑖 in the
vector of top 20 words:

npmi(𝑤𝑖;𝑤 𝑗 ) =
log2

𝑃(𝑤𝑖 ,𝑤 𝑗 )+𝜖
𝑃(𝑤𝑖)𝑃(𝑤 𝑗 )

− log2 𝑃(𝑤𝑖, 𝑤 𝑗 ) + 𝜖
∀𝑤 𝑗 in the top 20 words

The metric is then constructed as follows. First, an vector is computed for each word
𝑤𝑖 in the top twenty words against all remaining words 𝑤 𝑗 ≠ 𝑤𝑖, yielding an NPMI
vector for each word as described in the preceding paragraph. Then, the metric
calculates the average of the cosine similarities of each of the the NPMI vectors for
each top word. On this basis, we optimize and compare each model.

Model Time to Convergence Optimal Coherence (NPMI) Optimal 𝑇 ∗ 𝑆)
LDA 2:17:05 0.49 80

JST/MLCT 1:14:23 0.59 30*3
Tensor MLCT 00:25:13 0.53 28*3

Table 3.1: Model Comparison: All three models were run on the same system
architecture. Proccessor: Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz, 64gb
RAM, 10 cores.

Table 3.1 shows the speed with which each model converged, as well as the coherence
achieved. Note that Tensor MLCT converges significantly faster than either LDA
or Gibbs-sampling based JST. In fact, Tensor MLCT dominates JST and LDA on
speed, and dominates LDA on coherence. But it is comparable, but slightly lower
coherence, than plain JST. This is likely due to the approximation of the singular
values and singular vectors of the 𝑀2 moment using Incremental PCA6. Given this
is also the main bottleneck in terms of speed of estimation, a key extension of this
method will be improving the incremental PCA method to one that is fully online
and batched. That said, the significant gains in terms of total model estimation time
outweigh the minimal loss in topical coherence.

We next show the ability of the weakly-supervised MLCT to recover a known
characteristic, such a partisanship. We then devise a means to compare its relative
ability to recover that characteristics against other popular methods such as STM
and LDA.

6We use the gensim implementation of batched, incremental PCA in order approximate the
decomposition of the second moment Pedregosa et al., 2011.
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Figure 3.2: Clustering Metrics MLCT vs. STM vs. LDA.

To measure the ability of each model to recover a known characteristics of the data,
we scale the average of the mixtures produced by each model for each legislator to
recover partisan separation. If the evidence shows that weakly supervised methods
are able recover this known characteristic, this suggests they are able to effectively
recover a conceptually meaningful aspect of the data. Figure 3.3 illustrates a visual-
ization of the first two principle components of the average mixture by legislator over
the entire time period covered by the dataset. As 5 topics was optimal for both STM
and MLCT under the coherence metric, we fixed the topic numbers at 5 to provide
visual evidence and to illustrate the result. That said, the relative results between
models are robust to choice of number of topics, although cluster quality degrades
for all models outside the optimal topical range. Moreover, we show variation of
information coefficients for all topics below. It is precisely the labels generated by
these clusters that we use to compare to the true party labels. Even upon visual
inspection, it is clear from Figure 3.3b and Figure 3.3c that JST and STM are cap-
turing the partisan characteristic in the data, which strongly points to their ability to
capture meaningful aspects of the data. At the same time, LDA and STM where the
party labels are randomized perform poorly at recovering the partisan characteristic.
We show in Figure 3.2, the results are robust to topic number.

Figure 3.2 shows that STM generally outperforms MLCT, which comports with
expectations – that is, the party labels generated by STM are generally closer to
the truth than JST, an unsurprising result given that party labels are included in the
training of the model. That said, both models vastly outperform an LDA benchmark.
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Figure 3.3: Recovery of Partisan Characteristic using Topic Models.

This is consistent with the visual evidence from the first two principal components
presented above.

3.8 Application: Long Run Trends in US Leadership and Agenda Setting in
the House

Data, Pre-procecssing, Topic Selection
In order to study the long-run agenda setting trends in the U.S. House, we apply
the MLCT model to a dataset of U.S. Congressional Speeches from 1877 to 2015
Gentzkow, Shapiro, and Taddy, 2018. We train the model on 16,852,571 speeches
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from the House and Senate during this period. Although we train the model on the
full corpus (to help best identify the full population of speeches and for comparison
in future research on this historical dataset), we restrict our analysis to the U.S.
House after the emergence of the formal party leadership system in 1899. We
ultimate analysis 6,629,112 speeches from the U.S. House.

We processed the corpus of Congressional speeches using Rapids, an Nvidia sup-
ported GPU framework, following the best practices outlined in the literature Grim-
mer and Stewart, 2013; Hopkins and King, 2010. We followed closely the pre-
processing procedures outlined in Kangaslahti et al., 2023; Ebanks et al., 2021,
with particular attention to the GPU end-to-end backend for computational speed.
Pre-processing is crucial for producing interpretable and valid results (Grimmer and
Stewart, 2013; Hopkins and King, 2010) , and we optimized feature selection by
stemming and trimming the words in the final corpus used for MLCT esimation.

To arrive at our final set of features, we followed this process:

• Remove any document shorter than 3 tokens.

• Stemmed all words using PorterStemmer to preserve semantic meaning.

• Trimmed the included features by excluding any words appearing in fewer
than 2 percent of the document, in such a way that scales with the number of
documents in the corpus. We also excluded words that appeared more often
than an upper bound of 50 percent of documents.

• Identified bi-grams in the data and tokenized them.

The social science literature has extensively explored the sensitivity of critical
substantive findings to pre-processing. Brute force bag-of-words models, when
combined with with rigorous empirical validation, generally provide the bulk of
explanatory power for text data Hopkins and King, 2010. As long as pre-processing
captures all relevant features, our inferences derived from NLP can be used to analyze
social phenomena. However, the tuning of pre-processing choices generally depends
on the nature of the application. For the following application in this section, our
unit of observation is a Congressional speech, a generally dense document.

In Figure 3.4, we show the gamut of MLCT models that we fit to the Congressional
speech data. We report the Umass coherence by orthogonality penalty, \, by learning
rate 𝛽, and number of topics, 𝑘 . Upon facial inspection, the the results reported
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Figure 3.4: Topic Selection Tensor MLCT.

for \ = 5 were generally unstable and facially incoherent. Of the models with
lower orthogonality penalties, the model with 20 topics, a learning rate of 0.0001,
and an orthogonality penalty of 3 had the maximal coherence. We set the mixing
parameters over contexts and topics both to 0.1. Additionally, this model had general
facial coherence. Thus, the remainder of the analysis on the application is performed
on the outputs of this MLCT model.

Here, we extend the analysis from Figure 2.6 in Chapter 2 from the introduction
of the modern party leadership system in 1899 through to 2015. We report the
extended level of legislator-leader agreement on historical votes and legislator-leader
agreement on speeches given on the House Floor by reporting the correlations of vote
and speech agreement. The speech data gives an additional dimension to consider
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(b) Long-Run Vote Agreement

Figure 3.5: Levels of Within-Party Legislator-Leader Agreement on Roll-Call Votes
and Within-Party Legislator-Leader Agreement on Floor Speech Topics.

strategic interactions in Congress over roll-call votes alone. Roll-Call votes are
tightly controlled by the party leaders, who are unlikely to bring votes where they
are likely to lose and are unlikely to bring votes that will divide their party. Thus,
we might expect roll-call votes to overstate the levels of agreement between party
leaders and legislators in the U.S. House.

Yet, this series shows a strikingly different story and remarkable levels of agreement
in public speeches by members of the U.S. House, even accounting for context.
The series show some remarkable similarities. First, the Democratic Party and
Republican Party caucuses in the U.S. House are remarkably similar over time, a
long-run stable stable trend. The parties tend to move in tandem, across vastly
different measures of partisan agreement, in votes and in speech. Secondly, the
levels of agreement are generally high throughout the historical period. The parties
are generally aligned in their agendas as expressed in public speeches, with a low of
80 percent, with post-civil rights highs of 96 percent, which holds steady through
the modern period. Since 2010, both parties have exhibited slight declines in their
party speech alignment to around 94 percent.

On votes, parties historically agreed with their leaders around 80 percent of the time,
with declines during the Teddy Roosevelt Administration and during the passage
of the Civil Rights Act. In the first, pro-business and populist Republicans where
divided on their votes (related to tariffs, gold, and anti-trust policy), while in the
1960s Southern and Northern Democrats were deeply divided over the passage of
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Civil Rights.

Yet along neither measure are the parties particularly divided for long periods of
time, and they exhibit long-run levels of relatively high agreement on votes and
speech, around 80 percent along both measures.

Analysis
Tensor MLCT provides a tractable means of analyzing larger datasets, allowing for
new ways to study social and political behavior. For example, in the U.S. House
Speech application, dynamic scaling of the context-topical space yields a novel
way to visual the development of legislators’ strategic communication positions
over time. In Figure A.5.4, legislators’ social media positions during the 117th
Congress are shown over time, following the same procedure as in Ebanks et al.,
2021.

Such an analysis allows researchers to analyze the dynamics of discussion in a
tractable way: Although previous text methods enable scaling of text data into
partisan spaces, the Tensor MLCT method offers additional flexibility in terms of
these types of applications. For example, this kind of scaling traces the stability
of discussion between and within political parties. Additionally, this method also
allows for novel ways to study the relation between legislative leaders and the rank-
and-file members in the strategic communication space by uncovering a structure of
topical cohesiveness above merely word counts.

To illustrate this point, consider our application to long-run Congressional agreement
and alignment over time. Without topical structure, word frequencies or embeddings
alone might not capture the full contours of contemporaneous and historical political
debate, as it is likely to fall out the predefined training set. We uncover remarkable
long-run stability in leader-legislator agreement over time, even when we might
expect that traditional measures, such as roll-call votes would overstate agreement.
In fact, we find the opposite.

However, MLCT will identify which topics are about combating climate change
with new fuel standard, as opposed to focusing on job losses in the context of
climate policy, versus the historical relevance of the gold standard to monetary
policy. MLCT will identify that Democratic officials discuss child separations in
the context of immigration, while Republicans discuss immigration in the context
of border security. In fact, it is the ability to parsimoniously uncover the context of
words in relation to this larger topical structure that renders topic models so popular
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in text analysis.

Taken together, this additional context enables researchers to study the full pop-
ulation of Congressional speeches, at scale, to study Long-Run agenda setting in
principled fashion the extends beyond roll-call votes.
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3.9 Conclusion
This paper introduces a new spectral Tensor-based implementation method for a
standard model of weakly supervised context-topicc analysis, the Multi-Layer Con-
textual Topic model. The model shows considerable improvements in speed over
the standard LDA model and a standard JST model (estimated using variational
Bayes and Gibbs Sampling, respectively). At the same time, Tensor MLCT exhibits
only minimal loss in coherence relative to JST and retains an edge over LDA on this
measure. Additionally, a qualitative assessment of the context-topiccs and tweet
labels suggests the model achieves a reasonable level of external validity.

This new estimation methods offers benefits in addition to speed. First, the batched
approach allows the model to scale to large data that would be otherwise infeasible
to fit a topic model by reducing the memory overhead. Not only that, but by taking
advantage of a CPU-based implementation, the batched approach allows the model
to be estimated even on a standard workstation without a GPU backend. In addition
to strong CPU performance, the model can run fully online on a end-to-end GPU
backend, similar to Kangaslahti et al., 2023.In both cases (CPU and GPU), by
reducing the memory costs and implementing an estimation routine that converges
in a reasonable time, the method will reduce the user-related costs of employing
these methods on large data. To this end, the code implementation underlying
this paper will be incorporated into the TensorLy library of packages for tensor-
based methods in python. This will enable a larger audience to make ready use
of the implementation on a backend optimized for performance with tensor-based
calculation.

In extending text applications of this method, we can next study the context-topiccal
structure to ask questions related to mass-movements on Twitter – for example, the
MeToo movement, Black Lives Matter, and Covid-related protests. These datasets
have over 50 million observations each. Tensor-based methods provide a feasible
and accessible computational approach to studying these social movements going
forward.

Importantly, in this paper, we use the model to uncover otherwise unseen long-run
trends in Congressional party leader-legislator agreement. We uncover remarkable
long-run stability in leader-legislator agreement over time, even when we might
expect that traditional measures, such as roll-call votes would overstate agreement.
In fact, we find the opposite. Party leaders and legislators tend to agree at very high
levels, and this finding is consistent for the post-war period.
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Importantly, this class of latent variable models is useful for applications both within
and beyond Natural Language Processing. Within the realm of models of natural
language processing, tensor-based estimation routines of models that go beyond the
bag-of-words approach and incorporate more semantic structure could be a prac-
tical extension, such as to correlated topic models. As of yet, such models are
computationally infeasible on large-scale datasets given their current implementa-
tion. Incorporating more complex grammars could allow for the estimation of more
realistic models of language, improve prediction,and make NLP methods usable in
a wider array of research domains.

Additionally, implementing tensor versions of additional latent variable models
could allow for applications to new contexts. For example, some researchers have
proposed using a Gaussian mixture model (another type of latent variable model) to
study elections (King and Gelman, 1991b). Such models would become significantly
more tractable with the spectral tensor estimation approach. In fact, Anandkumar
et al., 2014 has shown tensor based methods can recover the parameters from vari-
ous classes of latent variable models, including a Gaussian mixture. Notably, these
works mostly focus on theoretical considerations. Thus, implementing these esti-
mation routines in a tractable, accessible fashion could augment the computational
tools available to social science researchers as datasets grow increasingly large and
complex.
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A p p e n d i x A

SUPPLEMENTARY INFORMATION FOR CHAPTER 1



A.1 Introduction
In the following pages we provide technical details about the important steps in
our paper’s methodology: summary statistics and visualizations of our Twitter
data; technical details and sensitivity analyses for our topic modeling; information
useful for understanding the sensitivity of our PCA modeling decisions; summary
statistics from our network modeling; and finally, details and sensitivity analysis of
our dynamic analysis.

Upon publication, we will make our code and documentation available, along with
a great deal of additional material that readers can use to examine our modeling
decisions and the robustness of our results to those decisions, including detailed log
files and estimation details. We will also provide our raw data, subject to Twitter’s
current policies about data sharing.

A.2 The Distribution of Tweeting Behavior
In this section we provide summary statistics on the Twitter activity of the Members
of the U.S. House of Representatives, during the time period covered in our study.
Table A.2.1 gives summary statistics for the entire dataset, by party. In Figure A.2.1
we show the data on tweets by member in a histogram.

Table A.2.1: Distribution of Tweeting Behavior: Entire Dataset

Party Mean Median Minimum Maximum Standard Deviation

Democratic Party 894.45 797 43 3, 200 520.46
Republican Party 528.31 457 11 2, 732 417.05

All 727.17 597 11 3, 200 509.33
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A.3 Theory
Game Setting and Example
Here we summarize the model setting. In the next section of the Supplementary
Information we provide intuition for how the model fits our setting using the 2019
government shutdown as an example. In this model, there are 𝑛 party rank-and-file
members who are deciding to advocate either policy stance 𝐴 or 𝐵. The optimal
policy choice depends on a state variable, \. The state is the underlying political
situation. It represents the party mood regarding an unexpected politically sensitive
issue. Finally, members receive private signals 𝑚𝑖 about the true state of the world,
which are normally distributed.

In order to coordinate on a policy, a policy must have a sufficient threshold of
support, 𝑝𝐴 and 𝑝𝐵 for policies 𝐴 and 𝐵 respectively. Conceptually, this is the
informal level of consensus needed for the party to advocate a platform. Then, 𝑥
is the number of party rank-and-file advocating policy 𝐴. Party members earn the
following payoffs depending on their choice of policy stance and on the underlying
state \ and support for policy 𝐴, 𝑥 :

𝑢𝐴 (\) = exp{_\2 } if 𝑥
𝑛
> 𝑝𝐴, adopt policy 𝐴

𝑢𝐵 (\) = exp{−_\2 } if 𝑝𝐵 > 𝑥
𝑛
, adopt policy 𝐵

𝑢𝐴 = 𝑢𝐵 = 0 if 𝑝𝐴 ≥ 𝑥
𝑛
≥ 𝑝𝐵, coordination failure

(A.1)

Dewan and Myatt (2007) assume legislators play a threshold strategy and that they
vote for policy stance 𝐴 instead of the status quo, 𝐵, if and only if their private
signal 𝑚𝑖 > 𝑚 for some threshold 𝑚. They assume this private signal is distributed
normally with mean \ and variance 1

𝜓
. In the payoff structure, the sensitivity to

the benefits of coordinating (electoral success, the continuation of good public
policy) are captured by _, the party’s need for direction. This concept represents
the importance of choosing the right messaging strategy and the gravity of choosing
incorrectly. Conditional on state of the world \, party rank-and-file advocate for 𝐴
with probability 𝑝 = Pr[𝑚𝑖 > 𝑚 |\], which is distributed normally with standard
normal CDF Φ by the distributional assumption on the signal 𝑚𝑖. The authors
note that as 𝑛 increases, 𝑥

𝑛
approaches 𝑝 by the Law of Large Numbers. The

authors then note that assuming large 𝑛, policy 𝐴 succeeds if 𝑝 > 𝑝𝑎. Given
the normality assumption on 𝑚𝑖, this condition is equivalent to \ > \𝐴 where \𝐴
satisfies 𝑝 = Φ[

√
𝜓(\𝐴 −𝑚)]. Similarly, the party adopts policy 𝐵 if \𝐵 > \ where

\𝐵 satisfies 𝑝 = Φ[
√
𝜓(\𝐵 − 𝑚)] This results in the following outcome structure:

92



Outcome =


Coordinate on 𝐴 if \ > \𝐴

Coordinate on 𝐵 if \𝐵 > \

Coordination failure if \𝐴 ≥ \ ≥ \𝐵

(A.2)

where

\𝐴 = 𝑚 + 𝜋𝐴√

𝜓

\𝐵 = 𝑚 + 𝜋𝐵√
𝜓

(A.3)

where substitutions 𝜋𝐴 = Φ−1(𝑝𝐴) and 𝑝𝑖𝐵 = Φ−1(1 − 𝑝𝐵) have been made for
clarity. The authors note that conceptually, 𝜋𝐴 and 𝑝𝑖𝐵 measure the heights of the
barriers to coordination.

Given this setting, the game sequence proceeds as follows:

1. Rank-and-file members receive a private signal 𝑚𝑖 |\ for 𝑖 in 1, ..., 𝑛 that is
conditioned on the true state of the world distributed with variance 1

𝜓
, the

sense of direction.

2. Leaders of the party decide to give a speech or not relaying their signal to the
party.

3. Rank-and-file members adopt a policy stance they individually decide to
advocate.

4. If the critical thresholds of rank-and-file members advocate for the same policy
stance (𝜋𝐴 and 𝜋𝐵), the party successfully coordinates. These thresholds are
called barriers to coordination. Otherwise, the party fails to coordinate.

5. Borrowing terminology from Dewan and Myatt (2007), rank-and-file members
are willing to follow their leaders’ signals based on a leadership index 𝑅:

𝑅 =
Barriers to Coordination × Sense of Direction

Need for Direction
(A.4)

6. The equilibrium strategies are characterized by 𝑅, which makes the concept of
leadership precise in our context: When 𝑅 > 1, rank-and-file members adopt
the same signal as their leaders. For 𝑅 < 1, rank-and-file members adopt a
threshold that is biased towards the leaders’ preferred threshold, increasing in
𝑅. That is, as 𝑅 approaches 1, rank-and-file member play strategies biased in
favor of their leaders’ preferred strategies.
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In our case, we interpret the private signals 𝑚𝑖 as a member’s observation of the
party’s mood, which is derived from interpersonal conversation, social media stances
from other party members, and party conference meetings and calls.1 We interpret
the leader’s speech as the leadership of the parties tweeting out their talking points
and messaging strategy to their members. We interpret the policy stances as the
policy stances advocated on Twitter. In order to identify Dewan and Myatt (2007)
we restrict the strategy space to what they consider a natural class of strategies,
threshold strategies.

We interpret the policy stances on Twitter themselves as the the key strategic be-
havior. On Twitter, House party leadership and rank-and-file membership publicly
and strategically communicate their policy stances. When 𝑅 is high, we expect
rank-and-file members to follow their leaders. When it is low, we expect rank-and-
file members to be less likely to follow their leaders. Thus, the leadership index 𝑅
suggests intuition for patterns of communication behavior we might expect. Using
this intuition from this framework, we derive hypotheses regarding House party
leadership behavior and the tendency of rank-and-file House members to follow
their leaders.

A.4 Topic Analysis
In this section we discuss the details of the Joint Sentiment Topic model and our
implementation. In the next section we provide technical details for the Joint
Sentiment Topic model. The subsequent sections provides graphical material on the
sensitivity of our results to modeling decisions.

Joint Sentiment Topic
We implemented a Joint Sentiment Topic (JST) model (Lin and He 2009) to obtain
the topic diversity for members of the U.S. House of Representatives. Lin et.
al (2012) describe their method as follows. Take a corpus of tweets 𝐶, which is a
collection of 𝐷 tweets {𝑡1, 𝑡2, 𝑡3, ..., 𝑡𝐷}. Each tweet itself is a collection of 𝑁𝑡 words.
Let the words in each tweet be denoted by {𝑤1, 𝑤2, ..., 𝑤𝑁𝑡

}. Now, each potential
word in any tweet is indexed by a vocabulary, with 𝑉 total terms {1, 2, 3, 4, ..., 𝑉}.
Now, let 𝐽 signify the total number of sentiment labels and 𝐿 the total number

1In order to link this theory to our empirical setting, we first note that House member Twitter
accounts are managed both by staff and the legislator. We assume that the incentives of the congres-
sional communication staff are aligned with the legislator they represent. Conversations with several
House communication staffers suggest social media activity is coordinated at the office level under
the direction of their principal.
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of topics. Explicitly, the underlying data-generation process for the documents is
summarized as follows:

1. For each sentiment label 𝑗 in {1, 2, 3, ..., 𝐽}

a) For each topic 𝑘 in {1, 2, 3, ..., 𝐿} draw 𝜙 𝑗 ,𝑘 from 𝐷𝑖𝑟 (_ 𝑗 × 𝛽𝐿𝑗,𝑘 )

2. For each tweet 𝑡, choose a distribution 𝜋𝑡 ∼ 𝐷𝑖𝑟 (𝛾)

3. For each sentiment label 𝑗 under tweet 𝑡, drawn a distribution \ 𝑗 ,𝑘 𝐷𝑖𝑟 (𝛼)

4. For each word 𝑤𝑖 in tweet 𝑡,

a) Draw sentiment 𝑗𝑖 from Multinomial(𝜋𝑡)

b) Draw topic label 𝑘𝑖 from Multinomial(\𝑡, 𝑗𝑖 ) which is conditioned on
sampled sentiment 𝑗𝑖.

c) Draw word from per-corpus word distribution conditioned on sentiment
label 𝑗𝑖 and topic label 𝑘𝑖, i.e. choose a word from Multinomial(𝜙 𝑗𝑖 ,𝑘𝑖 ).

The hyperparameter 𝛼 can be interpreted intuitively as the the prior observation
counts for the number of times topic 𝑘 associated with sentiment label 𝑗 is sampled
from a tweet. The hyperparameter 𝛽 can be interpreted as the prior belief on the
frequency at which words sampled from topic 𝑘 are associated with sentiment label
𝑗 , respectively, ex ante. Following this logic, _ can be treated as the prior belief on
the number of times sentiment label 𝑗 is sampled from a tweet before observing any
tweets.

Observe that as 𝛽 goes to 0, the model converges to a model of a single sentiment-
topic. That is, one sentiment-topic label has probability 1, with all other labels
being assigned 0. On the other hand, as 𝛽 grows large, the limiting distribution is
uniform over sentiment-topics. We expect that tweets, given their concise nature,
are likely only to relate to very few topics at once, so we set these priors relatively
small, following standard practice (such as in Lin and He, 2009).

2

2The model incorporates a prior over _ using a lexicon which suggests sentiment orientations for
some 7000 common words. For more details, see Lin and He (2009) and Lin et al. (2012). We use
an R wrapper written around the authors’ original C++ code, found here: https://github.com/
linron84/JST to estimate the model. We run the model for 1000 iterations after a burn-in of 1000.
The model is computationally expensive, and it runs for about 9 hours prior before converging.
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Topic Selection

Table A.4.2: Emblematic Tweets

Handle Tweet TopicTitle

@repdelbene

whats stake trillion dollar federal
funding countless policy business
decision made based census data fill
census sure youre counted

Census
Encour-
agement -
Positive

@reprokhanna

climate change isnt intergovern-
mental panel climate change report
effort front imperative minimize im-
pact climate change human life im-
pact human life climate

Climate
Change-
Positive

@stevescalise

family small business dems held re-
lief hostage day play politics try
sneak liberal wish list emergency
finally agree largely deal made
schumer block worth

GOP attack
Democrats
as
Socialists-
Negative

@repcuellar

homeland security questioned bor-
der patrol chief carla provost current
crisis cbp facing southern discussed
border patrol retention well border
patrol processing

Humanitarian
Aid at
Border-
Negative

@reparmstrongnd

finally chance ask ig horowitz ques-
tion fbi investigation trump cam-
paign fbi knew steele unreliable fbi
omitted info obtain warrant comey
mccabe perpetrated fraud fisa court
investigating trump campaign

Trump/Russia
Investi-
gation
-Negative

We select the number of topics based on the inflection point beyond which increases
to coherence are small. Based on this criterion, we select 60 topics. To arrive at
this number, we tuned the model starting from 5 topics and 10 topics increasing in
increments of 10 up to 60 topics. Figure A.4.2 shows that that topical coherence
along an NPMI metric is maximized at 60 topics (which results in 180 Senti-Topics).
Due to computational feasibility constraints, we can estimate at most 60 topics, but

96



0.550

0.575

0.600

0.625

0.650

20 40 60
Number of Topics

M
ea

n 
N

P
M

I C
os

in
e 

S
im

ila
rit

y

Figure A.4.2: Coherence Score by Number of Topics.
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in addition to strong quantitative coherence, we show they have facial validity, as
well.
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A.5 PCA Analysis and Summary
First, we show the topics which we identify as member-led in tables A.5.3 and
A.5.4. These tables report the percent contribution to the overall variation in the
data when we decompose the topic data using Principle Components Analysis.

Table A.5.3: PCA Topic Contributions - Member Driven 115th

Topic Contribution
Lowest Unemployment Rate - Positive 1.26
Guests at Capitol Hill-Neutral 1.24
LGBT Equality-Negative 1.23
Fight for Civil Rights-Negative 1.15
Retweeting a Controversial Statement-Negative 1.11
Climate Change-Positive 1.11
Partisan Attacks on Trump/Biden-Negative 1.01
Important Meetings-Negative 0.99
Trump Admin Undermines Country - Negative 0.97
Budgetary Legislation -Negative 0.86
Committee Hearings-Positive 0.86
Hurricane Relief-Negative 0.86
Trump Climate Policy-Negative 0.85
Health Care Expansion - Neutral 0.84
Foreign Election Interference-Negative 0.82
Women’s Pay - Positive 0.82
Supreme Court Nominations-Negative 0.73
Thoughts and Prayers - Negative 0.71
Floor Speeches-Negative 0.68
Student Loan Relief-Positive 0.67

Sensitivity to Topic Number - Democratic Party
The following graphs show that the policy positioning which form the basis of the
Need for Direction classification scheme are robust to changes in number of topics.
The relative positioning and separation in the topical space is invariant to choice of
topic number.
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Table A.5.4: PCA Topic Contributions - 116th Member Driven

Topic Contribution
Family Seperations-Negative 1.18
Pro-Life Policy - Negative 1.14
China/Hong Kong Protests-Negative 1.11
Republican Senate Legislation-Negative 1.10
Prevent Gun Violence-Negative 1.08
Trump Admin Undermines Country - Negative 0.96
Fight for Civil Rights-Negative 0.93
Meuller Investigation - Negative 0.88
Trump Asuylum Policy 0.86
Enjoyable Visit - Positive 0.74
LGBT Equality-Negative 0.71
Social Security/Postal Service - Neutral 0.70
Health Care Expansion - Neutral 0.70
Trump Climate Policy-Negative 0.68
Mitch Mcconnel’s Senate-Negative 0.67
Partisan Votes - Negative 0.60
Voting Rights - Positive 0.56
Law Enforcement - Positive 0.55
Honoring Cultural History-Negative 0.55
Protect Health Insurance -Neutral 0.54
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Figure A.5.3: PCA Embeddings for Policy Stances, Varying by Topic Number.
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Dynamic Policy Stance Analysis
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Figure A.5.4: Changes in Time of Policy Stances.
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A.6 Time Series and Vector Autoregression
This section provides details for our dynamic analysis, in particular our vector
autoregression methodology.

First, we sample some key time series to show the stationarity assumption – which is
key to the validity of the VAR – holds across a variety of topics. We also show the full
histogram of Augmented Dickey Fuller statistics, which tests for non-stationarity.
The vast majority of our time series are consistent with the stationarity assumption,
rejecting the unit root at the 1% level for over 95% of topics for the Democratic and
Republican Parties in both the 115th and 116th Congresses.

Finally, we show a robustness check and that institutional leadership influence is
substantively large. In Table A.6.5 shows that institutional leaders exert on average
more influence than the most followed accounts in each party and the leadership
of the other party. On average, leaders exert double the influence as leaders from
the other party on their members, as well nearly double the influence as the most
followed accounts from within the same party. This latter finding highlights the
relative strength of institutional leadership within the party caucus relative to the
influence of members of the party who are popular with the public social media.

Table A.6.5: IRFs Robustness

Leaders Most Followed Cross-Party Leaders Total Percent Contribution Congress Party

0.202 0.160 0.042 57.245 115 Democratic
0.297 0.063 0.134 57.245 115 Republican
0.184 0.050 0.135 64.409 116 Democratic
0.408 0.364 0.257 64.409 116 Republican
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Figure A.6.5: ADF Unit Root Test Statistics for all Topics: Republican Party.
This Figure shows the distribution of tests ADF statistics for unit roots. All statistics
to the left of the line represent topics for which we reject the null of a unit root at
the 1% level, implying the stationarity assumption is satisfied.
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Figure A.6.6: ADF Unit Root Test Statistics for all Topics: Democratic Party.
This Figure shows the distribution of tests ADF statistics for unit roots. All statistics
to the left of the line represent topics for which we reject the null of a unit root at
the 1% level, implying the stationarity assumption is satisfied.
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Figure A.6.7: Stationarity in Log Odds of Daily Propensity of Discussion- Demo-
cratic Party.
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Figure A.6.8: Stationarity in Log Odds of Daily Propensity of Discussion- Repub-
lican Party.
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A p p e n d i x B

MATHEMATICAL APPENDIX FOR CHAPTER 2

B.1 Statistical Details
This appendix provides the full likelihood function for our model, including all the
features described in Section 2.2, as well as situations where the effective vote is
both included in the model as a lagged covariate and unobserved (because previous
election was uncontested).

To write the full likelihood function, define an uncontestedness indicator 𝑈𝑖𝑡 as 1
if the Democrat runs uncontested, 0 if contested, and −1 if the Republican runs
uncontested in district 𝑖 and time 𝑡. Then partition elections into four sets depending
on whether the current election 𝑖, 𝑡 and its lag 𝑖, 𝑡 − 1 are contested or uncontested.
Denote CC as the set of all elections for which 𝑈𝑖𝑡 = 0 and 𝑈𝑖,𝑡−1 = 0; UC as the
set of elections for which 𝑈𝑖𝑡 ≠ 0 and 𝑈𝑖,𝑡−1 = 0; CU as the set of elections where
𝑈𝑖,𝑡 = 0 and 𝑈𝑖,𝑡−1 ≠ 0; and UU as the set of elections for which 𝑈𝑖𝑡 ≠ 0 and
𝑈𝑖,𝑡−1 ≠ 0. Then the likelihood function factors into four parts corresponding to
these sets:

𝐿 =
©«

∏
𝑖,𝑡∈{CC}

𝐿CC
𝑖𝑡

ª®¬ ©«
∏

𝑖,𝑡∈{UC}
𝐿UC
𝑖𝑡

ª®¬ ©«
∏

𝑖,𝑡∈{CU}
𝐿CU
𝑖𝑡

ª®¬ ©«
∏

𝑖,𝑡∈{UU}
𝐿UU
𝑖𝑡

ª®¬ (B.1)

each of which we now define.

The first component of the likelihood, for when election 𝑖, 𝑡 and 𝑖, 𝑡 − 1 are both
contested, is by far the most prevalent for the US congress. The likelihood for
observation 𝑖, 𝑡 is then simply

𝐿CC
𝑖𝑡 = ALT(𝑣𝑖𝑡 | `𝑖𝑡 , 𝜙2

𝑡 , a𝑡). (B.2)

The second component of the likelihood accounts for which party is running uncon-
tested at time 𝑡:

𝐿UC
𝑖𝑡 = 1(𝑈𝑖𝑡 = 1)𝜓𝑖𝑡 + 1(𝑈𝑖𝑡 = −1) (1 − 𝜓𝑖𝑡), (B.3)

where our censoring assumption from Section 2.2 implies that 𝜓𝑖𝑡 ≡
∫ 0.5
0 ALT(𝑣∗ |

`𝑖𝑡 , 𝜙
2
𝑡 , a𝑡)𝑑𝑣∗, given the indicator function defined as 1(𝑎) = 1 if 𝑎 is true and 0

otherwise, for any statement 𝑎.



To write the third component, where the lagged value of the effective vote is un-
observed (because it is uncontested), we require a prior distribution for how this
variable is distributed. The posterior will be computed from the entire model, but
to begin we need an assumption about this prior. One option is to let 𝑣∗

𝑖,𝑡−1 be a
censored ALT when unobserved (and equal to 𝑣𝑖𝑡 when observed) but this creates a
substantial computational burden with little substantive benefit. Instead, we find we
can represent almost all relevant information by assuming that, when unobserved,
𝑣∗
𝑖,𝑡−1 ∼ N(𝑍𝑖,𝑡−1𝛼𝑡 , 𝜎

2
𝑣 ), with 𝑍𝑖,𝑡−1 a vector of covariates such as lagged presiden-

tial vote in a congressional district and incumbency status. Then this component of
the likelihood is

𝐿CU
𝑖𝑡 =

∫ ∞

−∞
ALT(𝑣𝑖𝑡 | `𝑖,𝑡 , 𝜙2

𝑡 , a𝑡) · N (𝑣∗ | 𝑍𝑖,𝑡−1𝛼𝑡 , 𝜎
2
𝑣 )𝑑𝑣∗, (B.4)

where the unobserved lagged effective vote 𝑣∗ is included in 𝑋 and so contributes
to `𝑖𝑡 .

For the final component of the likelihood, we use features of all three previous
components, so that

𝐿UU
𝑖𝑡 = 1(𝑈𝑖𝑡 = 1)𝜓′𝑖𝑡 + 1(𝑈𝑖𝑡 = −1) (1 − 𝜓′𝑖𝑡), (B.5)

where

𝜓′ =

∫ ∞

−∞

∫ 0.5

0
ALT(𝑣 | `𝑖,𝑡 , 𝜙2

𝑡 , a𝑡)𝑑𝑣 · N (𝑣∗ | 𝑍𝑖,𝑡−1𝛼𝑡 , 𝜎
2
𝑣 )𝑑𝑣∗.

109



110

A p p e n d i x C

SUPPLEMENTARY INFORMATION FOR CHAPTER 2

C.1 Comparison of Nominal Confidence Interval Lengths
To quantify the magnitude of uncertainty differences between the Normal and Lo-
gisTiCC models for district- and legislature-level statistics, we compute the ratios
of the credible interval (CI) widths from these two models. To compute the ratio
of CI widths for district-level results, we take each of the elections for which we
make a prediction and compute the width of the 95% credibility interval for both
the Normal and LogisTiCC models. We then calculate the ratio of the widths of the
LogisTiCC CI’s to the Normal. To compute the ratio of the credibility intervals for
the legislative median, we compute a 95% credibility interval for the median seat in
the House for each year under each model, again out-of-sample. We take the ratio
for each of the 27 years for which we make a prediction, and report the density of
these ratios.

Figure C.1.1 reports distributions of these ratios, with summaries in Table C.1.1.
The table shows that, at the individual level, the LogisTiCC forecast credible inter-
vals are only 42 percent larger than those of Gelman-King model on average, with
a mode at 25 percent, which we can see from the figure. At the same time, because
of the correlations between different districts represented in the LogisTiCC, its CIs
for the legislative median are 500 percent larger, on average. Given the results in
Figures 1–3, it is clear that these larger CIs are needed for accurate calibration due
to dependence across districts.

Mean Standard Deviation
District Level Results 1.42 0.246
Legislature Level Results 5.06 1.19

Table C.1.1: Numerical Summaries of Figure C.1.1

C.2 Ablation Studies
We make four modeling innovations to achieve generatively accurate model predic-
tions: a national trend, coefficient stability, local uniqueness, and electoral surprises.
In this section, we conduct “ablation studies,” where each model component is se-
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Figure C.1.1: LogisTiCC-to-Normal Ratios of 95% Credibility Interval Widths.

quentially removed to show how the model degrades. The conclusion of this section
is that all model components are essential to achieve the performance we report.

The linear-normal model treats the data as having 435 independent district-level ob-
servations for each election year. In reality, congressional elections data have high
levels and sophisticated patterns of dependence among voting outcomes across dis-
tricts. In Figure C.2.2, we replicate the calibration exercise from Figure 2.3, which
reports the model predictions and observed values for the median congressional seat
in the given election year. We report results for three ablated models. We give the
normal model with none of the modeling innovations (in gold); a model with neither
a National trend assumption nor coefficient stability, but with an additive logistic
student-T (ALT) assumption on the error term (in yellow); and a model with normal
errors, but with a national trend and coefficient stability (in green).

We would expect a well-calibrated model to contain the true value of the median
seat’s vote share about ∼ 95 percent of the time. To that end, we see that the normal
with none of our innovations fares poorly, correctly containing the true value for the
median seat only 25 percent of the elections. If we switch to the ALT specification,
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Figure C.2.2: Comparison of Model Calibration as under Ablation.

we achieve a 40 percent accuracy rate, which is still inadequate, but better than
Normal alone. When we assume normal errors with a national trend and coefficient
stability, we achieve 64 percent accuracy. Under the ablated models, we find that
the coefficient stability and national trend alone allow the model to achieve about
60 percent accuracy in our calibration calibration, while the ALT error assumption
achieves 40 percent accuracy. Only the inclusion of all our modeling assumptions
allowed us to achieve 100 percent accuracy.

In Figure C.2.3, we reproduce Figure 2.3 from the paper with additional information.
As in the original, the linear-normal model (in gold), which assumes independence,
has confidence intervals that are extremely overconfident, and the LogisTiCC (in
black) has accurately calibrated intervals. To these results, we add a version of our
LogisTiCC that zeros out the parameters that model dependence. These include
the national swing parameter 𝜎[ and also our covariate stability parameter 𝜎𝛽 > 0
which, after transforming to the vote scale, also allows for some dependence across
districts. In this model, we retain local uniquenesss.

Thus, we add to Figure C.2.3, in green, estimates from the LogisTiCC model
constrained to give predictions with zero cross-district independence, while retaining
local uniqueness. While this set of assumptions reduces overconfidence of the model
relative to the normal somewhat, the model is still highly overconfident. Only when
we allow our full ALT error structure with cross-district correlations are the out-of-
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Figure C.2.3: Expected Vote Share of the Median House Seat (95 Percent Credible
Interval).

sample model predictions from the LogisTiCC well-calibrated to the historical data
(in black). Under the linear-normal error structure, the incumbent party will never
lose control of the House of Representative. Under the ALT without cross-district
correlation, the uncertainty gets larger so that the incumbent party is sometimes
forecast to lose an election, but clearly not often enough. By introducing cross-
district correlation, our forecasts are well-calibrated.

C.3 Imputation for Uncontested Seats
Missingingess due to uncontestedness is an important feature of historical congres-
sional election data. In Figure C.3.4, we show the historical rate of uncontestedness
in U.S. Congressional elections, which ranges from 21 percent in 1954 to 4 percent
in 1996. Rather than drop these estimates which compose a nontrivial share of
the data in any given election year, we impute predictive vote shares within our
wholesale model framework.

To account for missing data due to uncontestedness, we jointly estimate a multivari-
ate model which predicts the uncontested vote share and missing lagged uncontested
vote share. To this end, we assume that missing vote share is a censored variable
where an uncontested incumbent is constrained to always win. That is, we know
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Figure C.3.4: Uncontested Elections over Time.

uncontested vote share data are not missing at random.

In Figure C.3.5, we show that our predictions are bimodal around modes centered at
25 and 75 percent vote shares. These predictions are in line for historical estimates
of uncontested vote shares.

C.4 Computational Details
The standard approach is usually estimated with a linear regression for forecasting
(i.e., dropping 𝛾𝑖) or, for other quantities of interest, via an approximate two-step
procedure designed to avoid computational challenges that were difficult in the 1990s
(see Gelman and King, 1994).

Because of improvements in computation and Bayesian modeling, we estimate our
LogisTiCC model via a fully Bayesian specification of Equation 2.2, beginning with
the likelihood in Equation B.1. We implement the model in “brms,” open-source
software that uses Hamiltonian Markov Chains (HMC) sampling to draw from
the posterior distribution of a mixed-effects model (Bürkner, 2018). In practice,
we draw 50,000 samples of the posterior distribution from the Bayesian mixed-
effects representation. When lagged congressional vote share is a covariate, we
drop the first election of each redistricting decade to fit the model. Our Bayesian
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Figure C.3.5: Histogram of Predicted Values for Uncontested Elections.

methods are computationally demanding but efficient, which enables us to analyze
large legislatures, and does not require asymptotic assumptions, which is especially
important for legislatures like the small U.S. Senate class up for election in any one
year, small national legislatures, or the many small state houses. We are also able
to simulate quantities of interest directly from the full joint posterior distribution of
the predicted values and parameters, which means researchers can easily calculate
any relevant quantity of interest, along with accurate and calibrated uncertainty
estimates.

In order to achieve valid calibrated uncertainty estimates, we use conservative search
parameters for Stan’s HMC sampler. We set a delta step of 0.99, set a maximum
tree depth of 10, draw 50, 000 samples with a warm up of 5, 000 iterations on 5
chains run in parallel. All Markov Chains successfully converged, with no divergent
transitions, Rhats of 1 across all parameters, well-mixed chains, and no breaches of
maximum tree depth.

We employ weakly informative priors for estimation convenience. In our case,
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Figure C.4.6: Posterior vs. Prior Densities.

because we have an average of about 1, 500 elections per decade, we do not require
regularization to identify model parameters, although our weakly informative priors
reduce computational time for HMC convergence. Priors are useful for speeding
computation but, in our data, the choice of hyperprior parameter values does not have
much effect on empirical results. The specific values we use are 𝜎𝛽, 𝜎𝜔, 𝜎𝑡𝑘 , 𝜎𝑖,∼
Exponential(0.2) and a ∼ Γ(3, 0.5).

In Figure C.4.6, we show the prior and posterior histograms for the coefficient on
our predictor of the “normal” vote. This figure shows that our weakly informative
prior is diffuse, while the coefficient posterior is tightly estimated around its mean,
confirming that our model estimates are mostly a function of the data rather than
priors. We have also found that small changes in the priors have little substantive
consequences for our estimates.

Statistical results are likely less robust to the choice of the these parameters in smaller
legislators. In applications with small legislatures, researchers should carefully
consider the impacts of both prior specification and sampler behavior to guarantee
statistically valid inference of the HMC chains.
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C.5 Alternative Modeling Assumptions
We tried to eliminate any feature of our model not required for accurate out-of-
sample validation and accurate uncertainty intervals, to include additional features
that would improve performance, and to consider alternative specifications that
might be easier to understand.

As we have shown in the main text, the linear-normal model is poorly calibrated for
congressional elections. Additionally, we fit a linear-normal Student-t, which failed
because it lacked the flexibility and asymmetry in the tails provided by the additive
logistic 𝑡 (ALT). The Additive Logistic Normal failed because it could not properly
capture the levels of concentration (nearly 60 percent in the 1980s) exhibited in
Figure 2.5a, nor did it accurately capture surprises with appropriate tails. Fitting
an IID ALT, that is without contemporaneous correlations, is not well-calibrated
because it misses the correlations due to year-to-year swings in the national trend
or dependence due to the stability of coefficient estimates, as we showed in Figure
C.2.3.

We also tried other flexible distributions. We tried the Beta distribution, which
models the unit interval directly, but produces poorly calibrated results because it,
like the IID normal, does not capture appropriate levels of concentration or tail
behavior. We also tried mixture distributions and errors which, while flexible,
wound up being highly model dependent, poorly identified, and computationally
fragile.

We also attempted to find alternative correlation structures, besides time mixed
effects and district random effects on the logit scale, such as regional mixed effects.
Besides districts in the south and outside the south, there was little predictable
inter-regional variation. Districts in the North, West, and Southwest do not seem
to systematically vary, conditional on the covariates. Our covariates includes an
indicator for districts in the South that varies over time to capture what appear to
be the most important systematic effects. In terms of covariate selection, we made
choices for easy comparison to the literature. Our general model structure, like the
normal, can easily accommodate other indicators when desired.

C.6 Additional Information about The Three Regimes
We now give additional ways of distinguishing the three regimes described in Section
2.4. These regimes are also characterized by high levels of continuity, which we
convey by a plot of the coefficient on the lagged vote from our model in Figure
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C.6.7a ranging in 0.8–0.95 in the early and later periods, and as low as 0.3 in the
middle period. We can also see high levels of partisan alignment during the same
periods outside of our model by observing the correlation between the congressional
and presidential vote. We construct a time series plot of these correlations in Figure
C.6.7b, and they again reveal a now familiar U-shaped pattern.
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Figure C.6.7: Partisan Voter Alignment.

C.7 The History of Generative Modeling
To calculate generatively accurate descriptive summaries, the statistical model gen-
erating these summaries should (a) pass extensive, rigorous out-of-sample tests that
validate its generative abilities and (b) reflect available prior information from the
literature. In our efforts to meet these conditions, we benefit from developments in
three major fields of statistics, each of which has engaged with these same condi-
tions. We now situate the ideas described in this paper (particularly Section 2.5) in
the history of statistical analyses by briefly describing these three research traditions.

First, direct attempts to build generative models in the social sciences have a long
history, from path analysis originating in 1920s sociology, to linear structural equa-
tion modeling in econometrics and psychometrics in the 1960s and 70s, and, more
recently, to hierarchical Bayesian models in statistics. At one point, econometricians
had built many structural equation models of the economy, sometimes with hundreds
of equations and each finely tuned to their past theoretical knowledge. However,
rigorous out-of-sample forecasting were surprisingly embarrassed by a comparison
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with “atheoretical” univariate ARIMA models, leading many to reassess the value
of their prior information. These attempts failed because researchers lacked the
requisite computational resources to build models that reflected prior knowledge
and sufficient data to make extensive validation possible. Now, model checking has
become a more common part of Bayesian best practices (e.g., Gelman, Meng, and
Stern, 1996).

Second, when estimating accurate generative models was not feasible, or required too
many unjustified assumptions, social scientists turned to other research frameworks,
often changing their quantities of interest in the process. Most notably, the literature
on causal inference, especially since the 1980s, has made tremendous progress
by developing ways of estimating causal effects without modeling assumptions.
Although numerous articles had previously attempted to make causal inferences,
Leamer (1983) and others pointed out that high levels of (what came to be known
as) model dependence meant that most of these inferences were not right, and maybe
not even wrong, but instead mostly reflected researchers’ priors. The “credibility
crisis” that resulted from this skepticism and from rigorous tests of observational
estimates compared with out-of-sample randomized experiments (Lalonde, 1986),
lit a fire under the methodological community, resulting in remarkable progress
that continues until today (Imbens, 2022). The theories and descriptive stories that
emerge from generative models, including ours, often include many causal effects,
and so the ability of these methods to proceed without modeling assumptions has
been valuable for everyone. At the same time, even if we had exact knowledge of
all causal effects ever estimated and a vast number of others, we would not come
close to the range of descriptive knowledge social scientists seek and which can be
gained by generatively accurate descriptive summaries. Descriptive quantities such
as partisan bias, responsiveness, forecasts, farcasts, and many others are not causal
effects but of course remain of interest to political scientists and policymakers.

Finally, machine learning methods of classification and prediction have made con-
tinual progress by their single-minded focus on out-of-sample validation. By taking
their task as engineering better algorithms and downplaying constraints suggested
by prior theoretical “knowledge,” they make themselves continually vulnerable to
being proven wrong. Although one can often do as well with simpler models that
explicitly code more prior knowledge, this literature’s focus on validation helps them
avoid being fooled by elegant theories that do not have empirical support.

As has been true throughout the history of quantitative social science methodology,
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political scientists have a comparative advantage when they employ their knowledge
of the political world, but do best when subjecting their statistical claims to the
possibility of being proven wrong.
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A p p e n d i x D

SUPPLEMENTARY INFORMATION FOR CHAPTER 3

D.1 Derivation of Gradient for Stochastic Gradient Descent
• 𝑘 number of sentiment-topics (𝑆 ∗ 𝑇)

• ℎ - sentiment-topic mixture

• 𝑤1, ..𝑤𝑣 - words in a document, 𝑤𝑖 ∈ R𝑑

• 𝑑 vocabularly size

• ` = [`1, .., , `𝑘 ], 𝐸 [𝑤𝑖 |ℎ] = `ℎ

• 𝑐𝑡 = (𝑐1,𝑡 , ...𝑐𝑑,𝑡) ∈ R𝑑 , centered frequency vector for documents for the 𝑡-th
document

• 𝑁 number of documents

• 𝑦𝑡 = 𝑐𝑡𝑊, 𝑊 ∈ R𝑑×𝑘 , 𝑦𝑡 ∈ R𝑘

We have whitened tensor of centered data,

• 𝑣 : 𝑘 × 𝑘

• 𝑌 : 𝑁 × 𝑘 (Whitened counts, centered)

• 𝑘 : number of sentiment-topics

• 𝑁: batch size

We want to solve for

𝐿 (v) = 1
𝑛𝑥

𝑛𝑥∑︁
𝑡=1

1 + \
2
| |

𝑘∑︁
𝑖=1
⊗3𝑣𝑖 | |2𝐹 −

〈 𝑘∑︁
𝑖=1
⊗3𝑣𝑖,T

〉
This gives loss function

𝐿 (𝑣) = 1 + \
2
| |

𝑘∑︁
𝑖=1

𝑣𝑖 ⊗ 𝑣𝑖 ⊗ 𝑣𝑖 | |2𝐹 −
〈 𝑘∑︁
𝑖=1

𝑣⊗
3

𝑖 ,
(𝛼0 + 1) (𝛼0 + 2)

2𝑁

𝑁∑︁
𝑡=1

𝑦⊗
3

𝑡

〉



Now, notice we can write

| |
𝑘∑︁
𝑖=1

𝑣𝑖 ⊗ 𝑣𝑖 ⊗ 𝑣𝑖 | |2𝐹 as

| |𝑣𝑖 (𝑣𝑖 ◦ 𝑣𝑖)𝑇 | |where ◦ is the column-wise Kronecker product

= Trace
(
(𝑣𝑖 ◦ 𝑣𝑖)𝑣𝑇𝑖 𝑣𝑖 (𝑣𝑇𝑖 ◦ 𝑣𝑇𝑖 ) from the definition of the Frobenius norm

)
= Trace

(
(𝑣𝑇𝑖 ◦ 𝑣𝑇𝑖 ) (𝑣𝑖 ◦ 𝑣𝑖)𝑣𝑇𝑖 𝑣𝑖

)
from permutation invariance of the Trace operator

= Trace
(
[(𝑣𝑇𝑖 𝑣𝑖) ∗ (𝑣𝑇𝑖 𝑣𝑖)]𝑣𝑇𝑖 𝑣𝑖

)
property of ◦

where ∗ is the Hadamard product (element-wise product). Similarly,

〈 𝑘∑︁
𝑖=1

𝑣⊗
3

𝑖 ,

𝑁∑︁
𝑡=1

𝑦⊗
3

𝑡

〉
=

〈
𝑣(𝑣 ◦ 𝑣)𝑇 , 𝑌𝑇 (𝑌𝑇 ◦ 𝑌𝑇 )𝑇

〉
= Trace

(
(𝑣 ◦ 𝑣)𝑣𝑇𝑌𝑇 (𝑌 ◦ 𝑌 )

)
= Trace

(
(𝑌 ◦ 𝑌 ) (𝑣 ◦ 𝑣)𝑣𝑇𝑌𝑇

)
= Trace

(
(𝑌𝑣) ∗ (𝑌𝑣)𝑣𝑇𝑌𝑇

)
Finally, taking the derivative of 𝐿 with respect to 𝑣, we have

𝜕𝐿

𝜕𝑣
= 3(1 + \)𝑣

(
�̂�𝑇 �̂� ∗ 𝑣𝑇𝑣

)
+ 3(𝛼0 + 1) (𝛼0 + 2)

2𝑛𝑥
𝑦𝑇 (𝑦𝑣 ∗ 𝑦𝑣)

D.2 Moment Derivations

𝐸 [𝑤1 |\, 𝜋] =
∑︁
𝑙

∑︁
𝑧

𝜋𝑙\𝑙,𝑧𝜙
𝑙
𝑧 (D.1)

=
[
𝜙1

1, 𝜙
1
2, ..., 𝜙

1
𝑇 , 𝜙

2
𝑇 , ..., 𝜙

𝑆
𝑇

] 
𝜋1\1

𝜋2\2
...

𝜋𝑆\𝑆


(D.2)

Now, taking the expectation,
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𝐸

[∑︁
𝑙

∑︁
𝑧

𝜋𝑙\𝑙,𝑧𝜙
𝑙
𝑧

]
= 𝑂𝐸 [ℎ] (D.3)

= 𝑂


𝐸 [𝜋1\1]
𝐸 [𝜋2\2]

...

𝐸 [𝜋𝑆\𝑆]


(D.4)

And we have by distributional assumption

𝐸 [𝜋𝑙\𝑙,𝑧] = 𝛾𝑙𝛼𝑙,𝑧

Which means

𝐸 [ℎ] =


𝛾1𝛼

𝛾2𝛼
...

𝛾𝑆𝛼


(D.5)

=



𝛾1𝛼1
...

𝛾1𝛼𝑇

𝛾2𝛼1
...

𝛾𝑆𝛼𝑇


(D.6)
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