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ABSTRACT

Over the past few decades, our physical and digital worlds have become increasingly
intertwined and reliant on each other. Advancements in areas such as machine
learning, online optimization, and control theory, along with ubiquitous access to
computational power, have played a crucial role in this technological evolution. As a
result, we are now moving towards a future where complex and intelligent dynamical
systems, with humans in the loop, govern our daily lives.

Building advanced control systems is a critical step in this journey, as they enable
swift and data-informed decision-making. However, as we aim to create even more
sophisticated closed-loop systems, we must proceed with a careful balance of ambition
and caution. While the benefits of these interconnected systems are abundant and
our dependence on them deepens, ensuring the actual reliability and safety of the
systems becomes increasingly challenging due to the growing complexity of their
dynamics. This challenge is particularly prominent in safety-critical applications
involving physical systems, which often have strict and non-negotiable safety and
performance requirements. To establish a harmonious relationship between our
physical and digital worlds, it is crucial to develop intelligent closed-loop control
systems that are not only fast and efficient, but also reliable and fault-tolerant.

The title of this thesis, "Control of Unknown Dynamical Systems: Robustness and
Online Learning of Feedback Control," reflects the central focus of this work on
addressing this pressing challenge. The thesis aims to develop theoretical frameworks
and tools that provide insights and contribute new approaches to the design of control
systems capable of handling the inherent uncertainty in real-world dynamical systems.

The first part of the thesis focuses on the design of closed-loop systems that are
robust to dynamic uncertainty, particularly in settings involving nonlinear dynamics
and complex control constraints. The second part introduces a general framework for
learning-to-control algorithms that provide worst-case guarantees, even in scenarios
where the dynamic uncertainty is arbitrarily large. By addressing these key aspects,
this work aims to advance our understanding and capabilities in designing control
systems that can effectively deal with uncertainty.
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1

C h a p t e r 1

INTRODUCTION

Over the past few decades, the integration of our physical and digital worlds has
deepened, with advances in machine learning, online optimization, and control
theory playing pivotal roles. This progress, coupled with widespread access to
computational power, is propelling us towards a future where interconnected smart
systems, with humans in the loop, play an integral part in our lives. Understanding
this complex closed-loop system and ensuring its reliability and safety, especially
in safety-critical settings involving physical systems, is a paramount contemporary
challenge. From a system engineering standpoint, designing control systems capable
of operating in complex and unpredictable dynamic environments is an especially
difficult problem. This naturally leads to a pertinent question regarding robust system
design:

How do we design control systems for real world systems in one-shot, which
can handle large model uncertainty online, and with worst-case guarantees?

Indeed, the central focus of this thesis seeks to address this pressing question, and
contributes new approaches to the design of control systems that are capable of
handling the inherent uncertainties that come with real-world dynamical systems. Part
1 of this thesis focuses on outlining a novel method of designing closed-loop systems
that are robust to dynamic uncertainty, especially in settings involving nonlinear
dynamics and complex control constraints. Part 2 introduces a general framework for
learning-to-control algorithms that provide worst-case guarantees, even in scenarios
with arbitrarily large dynamic uncertainty. By addressing these dually-important
aspects, this work aims to advance our understanding and capabilities in designing
control systems that can autonomously and effectively deal with uncertainty.
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If you would be a real seeker after truth, it is necessary that at least once in
your life you doubt, as far as possible, all things.

– René Descartes: Principles of Philosophy

1.1 Definitions and Principles of Control System Design
In this section, we lay the groundwork by outlining fundamental concepts and
terminologies, and offer a review of current control design methods. We differentiate
these methods into two categories, namely "episodic" and "one-shot" strategies.

Every real-world control design problem begins merely with an unknown dynamical
system and the aspiration to control it. As we venture into this, an almost philosophical
question arises:

"How do we rationalize our certainty and uncertainty about the un-
known?"

On the one hand, if we believe that the nature of the unknown system and the
environment is predominantly random, then it would make sense to proceed with a
probabilistic problem setup, i.e., viewing system and environment behavior as the
realizations of random processes. That being said, it is oftentimes warranted to be
more skeptical and prefer a more falsifiable, deterministic problem setup. In this
dissertation, we advocate for a deterministic view. Such perspective characterizes a
control problem using three fundamental definitions: 1. Closed-Loop Complexity:
The level of detail and class of models with which we want to describe the closed-loop
system. 2. Model Hypothesis: Formulating a set of possible models. 3. Control
Objective: Paraphrasing our objectives and requirements in control-theoretic terms.
We next discuss these terms in detail.

Deterministic Formulation of a Control Problem
A deterministic setup consists of constructing a set of candidate models and phrasing
our objectives as worst-case guarantees. Step one involves defining observation and
action spaces, then choosing a representation to describe the closed-loop system. For
example, one needs to choose whether to model the system as a linear or nonlinear
dynamical system, how best to represent interactions with the environment, and how
to impose constraints on the structure of the closed-loop system (i.e., constraints that
may arise due to technological limitations: restricted and delayed communication,
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limited and distributed computational resources, limited sensing and actuation
capabilities, etc.).

This first step in our decision-making process determines the level of model complexity.
Essentially, we’re choosing how detailed we want our representation to be of the
system’s behavior, its interaction with the controller, and the environment. This
choice will set the complexity level for the entire closed-loop system dynamics.

Concurrently, or subsequently, we postulate our model hypothesis. This hypothesis
comprises a collection of models, within which we expect at least one model to
accurately depicting the dynamics of the unknown system. The size of this set mirrors
the level of uncertainty (or confidence level) concerning our model hypothesis.

Figure 1.1: Deterministic problem formulation: Specifying a model class and stating
a hypothesis set of possible models.

These two steps, choosing the model complexity and making a hypothesis, are
illustrated in Figure 1.1. The box Ω represents a set of models forming our model
hypothesis. The vertical axis indicates the level of complexity intrinsic to each of the
models in the set, whereas the width of the box depicts the size of our set Ω, i.e., the
breadth of uncertainty of our model hypothesis.

Note that determining whether or not our uncertainty is large or small can only be
achieved once our control objectives are fully articulated. Flying a plane stably
through turbulence, operating a manufacturing plant at peak efficiency, managing
power distribution in a smart grid; many real world objectives and requirements can
be phrased in terms of closed-loop stability conditions which should remain true
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even in worst-case scenarios. This type of control objective is often referred to as
worst-case closed-loop guarantees. Some of the most common examples, which we
will focus on in this work, are listed below:

• ℓp-(internal)-stability: A closed-loop system is ℓp-internally stable [49, 77, 139,
142] if its trajectories change continuously1 under ℓp-bounded perturbations;
that is, by adding small ℓp-bounded noise to every observed, controlled or
computed signal.

• Worst-Case Safety-Guarantees: Most practical safety requirements are stated
as verifiable and measurable conditions that should either always or never
hold. Very often, this can be formally translated into some ℓ8-stability related
condition [8, 45, 53], which can be expressed qualitatively as the following
informal inequality

max
t

tRisk Score Rt at time tu ď Safety-Threshold,

describing a worst-case ℓ8-bound on some scalar sequence tRtu quantifying
the risk or "unsafety" of the system at each time.

• Worst-Case Cost-Performance Guarantees: Many meaningful performance
metrics can be phrased in terms of some cumulative sum of cost functions
over time. Qualitatively, performance guarantees can be represented as an
inequality of the type:

Total Cost “
ÿ

t

tCost Ct incurred at time tu ď Worst-Case Bound .

Guarantees of the above form can often be related to notions of ℓp-stability
[49, 68, 85, 142]2 by expressing performance guarantees as worst-case ℓp-norm
bounds on some suitable scalar cost sequence tCtu.

In summary, our ground zero for control system design is a deterministic problem
formulation, which entails choosing a model representation of our closed-loop,
stating our model hypothesis Ω, and translating our control objectives into suitable
desired worst-case guarantees. Next, we review existing schools of thought and
methods from literature. As illustrated in Figure 1.2, our overview will categorize
literature by whether an episodic, "learning-then-control"-type, problem setting is
assumed, or a one-shot problem setting is allowed.

1The stronger Lipshitz-continuity property corresponds with the definition of ℓp-finite-gain
stability, and the Lipshitz constant is called ℓp-gain.

2Particularly common are parallels to ℓ1- and ℓ2-stability.
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Figure 1.2: Overview of problem definition and different control design approaches.

One-Shot Approach to Control System Design
In the one-shot approach, we use the model hypothesis Ω and specified control
objectives as our basis, and, without further input, task ourselves with designing a
control algorithm that can be directly deployed on the unknown system; in other
words, our goal is to design an algorithm capable of handling model uncertainty
and feedback control decisions autonomously. In the classical control literature,
this problem setting is the core subject of the fields commonly referred to as robust
control theory (with the caveat that model uncertainty must be relatively small)
[49, 141, 142] and adaptive control theory [15].

If the level of model uncertainty is small relative to our control objectives, we
can apply methods of robust control theory literature. In robust control, synthesis
processes primarily use the same internal structure or architecture of the feedback
controller as in nominal control design. However, the feedback control law is
developed to meet our control objective concurrently on all potential models of our
assumption. Of course, these robust control design methods are only viable when
the level of uncertainty is sufficiently small.

After a certain size of uncertainty, i.e, a certain set size of our model hypothesis,
we have to drastically change the internal structure and architecture of our control
algorithm, for it has to allow for incorporating online-learning in the closed loop.
This is the canonical problem setting of the domain known as adaptive control
[14, 69, 112].

Episodic Approach to Control System Design
If we have access to a controlled environment in which we can perform experiments
and measurements of the unknown system (such as for the purpose of recording
system trajectories, etc.), we can resort to an alternative approach to control design
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that leverages a two step process rather than just "one shot": a learning phase, and a
controller synthesis phase. In the learning phase, we follow a process commonly
known as system identification [16, 88], in which we perform repeated experiments,
collect data, and apply learning algorithms to reduce the uncertainty of our initial
model hypothesis Ω. Sometimes experiments are performed in closed-loop with a
stabilizing feedback controller (assumed given as part of the problem formulation);
this is referred to as closed-loop system identification [89] and is in general more
difficult than open-loop system identification due to the distributional shift caused by
the coupling of state and input signal. Particularly in the case of closed-loop system
identification, it can also make sense to repeat the data collection and estimation
process several times, wherein each round (also called episode), the experiment and
stabilizing controller are redesigned based on the most recent data. The learning
phase concludes once the system identification has made sufficient progress such that
a new model hypothesisΩ1 Ă Ω can be formulated (refer to Figure 1.2) with minimal
uncertainty. At this stage, we can synthesize the desired controller by choosing an
arbitrary model within Ω1 and designing a nominal controller specifically for it.

The episodic control design approach also commonly arises in model-based rein-
forcement learning [24, 57, 108]. Many modern learning and control algorithms
also follow similar learning-then-control design approaches [3, 4, 62, 115].

Fundamental Prerequisites and Limitations to Episodic Design Optimally, the
episodic control design is favored or paired with a single-shot method. However, the
conditions for system identification may be too time-consuming or unattainable in
reality. This includes the prerequisite of a strictly governed lab setting, essential
for conducting safe experiments and affording the flexibility to pause or terminate
the system when required. Particularly in real world applications, characterized
by complex dynamical systems and uncertain environments, the former renders an
episodic design approach impractical.Two main factors contribute to the impracticality
of an episodic design approach in such settings. Firstly, system identification becomes
quickly intractable for complex systems, particularly ones with nonlinear dynamics.
Additionally, the potential for large model uncertainty in real-time operations
necessitates the flexibility to adapt, further complicating the application of an
episodic design approach.

An additional challenge is a fundamental theoretical obstacle inherent to the de-
terministic framework. Within episodic control design, worst-case error bounds
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on the complete system identification process are mandatory to ensure worst-case
guarantees for the final control algorithm. However, achieving this is an intractable
issue even for simpler linear systems [41]. This difficulty is evident in existing
literature: probabilistic approaches offering closed-loop guarantees (stated with high
probability) are plentiful [1, 28, 43, 50, 51]. Yet, deterministic approaches providing
worst-case guarantees are scarce [35].

1.2 Major Challenges and Mission Statement
The main mission motivating this work is studying control design that can reliably
and autonomously handle the complexity and large uncertainty inherent to real world
dynamical systems. Tackling such a problem naturally calls for a one-shot design
approach, and specifically, finding answers to the following central question:

How do we design control systems in one-shot, which provide worst-case
guarantees in presence of large model uncertainty and complex closed-loop
dynamics?

At its core there are three intertwined aspects to the problem: Complex Constraints
and Dynamics, Worst-Case Guarantees, and Large Model Uncertainty. These issues
present two critical challenges existing literature has yet to adequately address.

Figure 1.3: Overview of major challenges.

Challenge 1: Robust Control Theory for Complex Closed-Loop Dynamics
As alluded to previously, stability analysis and control design for nonlinear and
complex systems is a core problem to consider.
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Nonlinear dynamics in the system or controller result in overall nonlinear closed
loops and require analysis and synthesis from the nonlinear control theory literature.
Nonlinear stability analysis is based on some fundamental results in the classical
literature [77, 101, 111, 117, 124], such as Lyapunov functions, passivity, the small-
gain theorem, barrier functions [6], Poincaré maps, contraction analysis [90], and
describing functions. Among these, the Lyapunov methods are by far the most widely
used technique.

Methods for nonlinear control design can be separated into two groups: analytical
and computational. Lyapunov stability analysis and the optimal control formalism
[77, 85] have inspired most classical analytical methods such as feedback linearization,
backstepping, sliding-mode control, and gain scheduling [77, 111, 117], among
many others. With the technological breakthrough of computers in the 90s and the
rapid advancement in computational capabilities and numerical optimization since
then, computation-based control design approaches have also gained dominance.
Prominent examples of such methods are Model-Predictive Control [30, 95] and
reachability/viability-based approaches [20]. Another important line of work started
with the sum-of-squares method (SOS) developed in [99, 103], which made it
possible to compute Lyapunov functions through convex optimization and inspired
new synthesis methods such as [104, 105, 133].

However, a common limitation in almost all approaches is that they do not scale well
with system and controller complexity. We consider the following three aspects to be
particularly important:

1. High-Dimensional Systems: Most optimal control or SOS-based synthesis
procedures [19, 30, 67, 84, 85, 99, 103, 104] require solving (sometimes
repeatedly [30]) optimization problems that are only tractable for small system
dimensions.

2. Complexity of Controller Constraints: Many of the above synthesis methods
cannot incorporate additional constraints on the controller. As mentioned
above, technical limitations in practice can require us to impose structural
constraints on the implementation of the realizing controller. These constraints
are particularly common in large-scale systems, and some important ones
include communication constraints between components used for sensing or
actuation, limited actuation caused by saturation, and available computational
resources that are possibly distributed.
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3. Complexity of Controller Dynamics: Both stability analysis and control
synthesis in a nonlinear setting primarily assume that the chosen controller
is static or has a simple internal structure, such as an added state observer.
Aside from a few exceptions (often analytical methods such as backstepping),
many of the mentioned synthesis procedures, particularly computation-based
ones, do not extend past static controllers. This is partially due to the fact that
stability analysis of nonlinear closed-loop dynamics and controllers with rich
internal structures is not well-studied. However, analysis and synthesis methods
that are compatible with more complex and nonlinear control structures are
increasingly needed in many modern control applications, especially in the
rapidly growing area of learning and control [3, 5, 9, 37, 42, 59, 115]. In such
problem settings, it is not unusual for controllers to have high-dimensional
and complex internal dynamics. A common cause for this is that controller
implementations require continuous and iterative solving of multiple (possibly
interconnected and layered) tasks in closed loop, which potentially generate
high-dimensional internal states with dynamics; such tasks include planning,
machine learning, and online optimization.

Until recently [126], even for linear time-invariant systems, control design was
challenging for the above problem settings. However, the system-level approach, as
introduced in [126], enabled new efficient controller synthesis methods [66, 127]
that allowed for localized, distributed, and scalable control design in large-scale
linear systems. This was achieved by transforming constrained optimal linear control
problems into convex optimization problems over achievable closed-loop maps that
can be solved efficiently. A key component of the system-level synthesis (SLS)
procedure is that once we have solved for the desired closed-loop map, there is a
simple way to construct a controller that stably realizes this on the system.

We endorse the central idea of the system-level approach and use it in Part 1 of this
thesis as our starting point, then go further to introduce a new framework for nonlinear
control design and system analysis dedicated to addressing the aforementioned
additional challenges.

Challenge 2: One-Shot Worst-Case Guarantees vs. Large Model Uncertainty
One-shot control design, in the case of arbitrarily large model uncertainty, naturally
has to embed some kind of online learning process into the closed-loop system, i.e.,
data collection and inference is performed in closed loop, at the same time as the
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system is being controlled. This design approach is commonly taken in modern
"learning and control" literature [1, 3, 4, 37, 43, 58, 62, 115] and in the more classical
"adaptive control" literature [14, 15, 52, 69, 71, 72, 83, 112, 121, 132]. Exactly how
these two fields integrate online interference into the closed-loop, however, remains
quite different.

One-shot control design approaches in modern learning and control literature
focus exclusively on problem settings wherein the system is either perfectly known
[3, 4, 37, 58, 62, 115], or the model hypothesis enjoys small uncertainty. Moreover,
said literature primarily focuses on the task of regret-optimal (with respect to
some cost function) online control [1, 3, 4, 37, 42, 42, 43, 51, 62]. Furthermore,
aside from a few exceptions ([28, 76] for example), the online learning for control
literature mostly focuses on linear systems [35, 43, 62, 116] and convex cost functions.
Linear-quadratic (LQ) costs have been of particular interest: [1, 2, 42, 43, 62] study
algorithms with sublinear regret bounds, while [58, 115] present online control
algorithms with competitiveness guarantees. However, compared to the adaptive
control literature, even for linear systems, modern learning and control approaches
that provide worst-case guarantees in the large model uncertainty setting are almost
non-existent ([35]3).

In contrast, adaptive control algorithms are primarily focused on providing stability
guarantees in the presence of large model uncertainty, and less on cost performance
guarantees. Despite a long history dating back to the 1960s [23], the field of
adaptive control has not matured as much as other areas of control literature. From a
conceptual point of view, the central problem of adaptive control, that is robustness
to large model uncertainty, is clearly relevant and of interest in almost any control
application, and one would naturally expect that methods and principles of adaptive
control can be applied in a way that builds on top of existing control methods of other
areas of control; however, this is not the case. Despite some efforts to address this
[8–10], there is still no unifying framework that allows us to bridge this gap. As an
example, theoretical tools, particularly concerning robustness and stability analysis,
which are considered standard in other areas of control [6, 90, 139, 141], cannot be
applied (or have no analog) in the adaptive control literature. In particular, theory
and design methods which come with safety and cost performance under adversarial
disturbances and noise, are almost non-existent ([68]4 is a rare exception).

3Proves sublinear regret and stability guarantees for a linear system with large model uncertainty.
4L1-adaptive control provides ℓ8-stability guarantees for linear systems and a small class of

nonlinear systems
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Reviewing the current literature, old and new, we are still very far from a unifying
theory for designing control systems with worst-case guarantees in the presence of
large model uncertainty. Part 2 of this thesis is dedicated to closing this gap (at least
partially) by introducing new theory and frameworks for control design.

1.3 Main Contributions of the Thesis
In this thesis, we aim to address the previous challenges by investigating the problem
of one-shot control design from two complementary perspectives.

Figure 1.4: Thesis overview.

In Part 1, we restrict ourselves to the small uncertainty setting and focus on developing
new theory and methods for robust control design and system analysis of closed-loop
systems with nonlinear dynamics, complex constraints and complex internal structure.
In the Part 2, we develop new theory and algorithms for the large model uncertainty
setting. In particular, we introduce a first general and modular one-shot control design
framework ("PixSel") with worst-case cost- and safety performance guarantees in
the presence of arbitrarily large uncertainty in our model hypothesis. The following
sections will delve into these topics, shedding light on our novel contributions to this
emerging interdisciplinary intersection.

Synopsis of Part I: Nonlinear Closed Loops and System Level Control
In Part 1 of the thesis we introduce a new framework for nonlinear control design
and system analysis dedicated to addressing the first set of challenges of Section 1.2.
In Chapter 2, we show that for a very general class of nonlinear systems, there is a
universal connection between the closed-loop map, the external representation of
a closed-loop as a map between input and output sequences (see Figure 1.5), and
the operators corresponding to the feedback controller and system dynamics, which
describe the behavior of the closed-loop from an internal point of view. We discuss
important equivalence relations between different representations of the closed-loop
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system via a set of characterizing operator equations. These equations and their
solution space provide useful insights for system analysis and control design, which
form the foundation of the nonlinear system level approach.

Figure 1.5: Part 1: Nonlinear system level approach

The solutions, called closed-loop maps (CLM) of the characterizing operator equa-
tions, lead to concrete implementations of the realizing controller. This enables us
to reformulate control design problems equivalently in terms of CLM operators,
and realize feedback control as a structured dynamic system parameterized by the
desired CLM operator. We refer to this special control structure as the "system-level"
implementation, which turns out to offer more benefits than its intended original
purpose. In fact, parameterizing a system-level implementation with approximate
solutions of the operator equation provides a stable closed-loop system, as long as
the approximation error is small enough in an appropriate sense. This leads to a
result for robust stability analysis of nonlinear closed-loop systems, which is both
instructive and can be leveraged for robust controller synthesis.

We then proceed to investigate closed-loop maps in the special setting where we
have a linear system and nonlinear dynamic control. We define a particular class of
"blended" closed-loop maps, which are particularly suited for this problem setting,
and offer new insight into the dynamics of such closed-loops. The corresponding
system-level implementations of these blended closed loops lead to a promising
synthesis approach, which is capable of "blending" multiple linear controllers into
one nonlinear controller, thus allowing us to combine desirable properties of each
individual component.

In Chapter 3, we explore some first implications of these results, such as robust discrete-
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time trajectory tracking controllers for continuous-time nonlinear systems. Second,
we investigate some first application scenarios, namely, distributed constrained
LQR and distributed anti-windup control, where this technique naturally provides
significant benefits in the large-scale system setting over existing methods. We
describe a synthesis procedure for blended SLS controllers that outperforms any
optimal linear controller for the constrained LQR problem [36, 86, 91, 140]. We
then discuss how the blended SL approach provides a natural remedy for controller
windup in a way that is easily scalable for use in large-scale control systems. We
discuss the efficacy of the methods with simulations and show that synthesis and
implementation enjoy the same benefits as previous SLS synthesis methods: both
are distributed, handle delays, sparse actuation, and allow for localized disturbance
rejection.

In Chapter 4, we begin to shift our focus towards the problem of learning-to-control
in closed-loop; the core topic of the second part of the thesis. We investigate a
common feature found in many learning and control algorithms across various
problem settings: At each time step, we estimate a model of the system dynamics
and then switch to a control law designed for that model; i.e., we pretend to have
found a model that will remain accurate going forward. This design approach is
often referred to as "certainty equivalent" control.

We show that this general design principle imposes a certain structure on the
closed-loop maps, which we can leverage for stability analysis and algorithm design.
This leads to a sufficient condition for closed-loop stability, which admits a natural
interpretation within our framework. Decomposing the dynamics of the lumped
disturbance reveals that three factors are important for robust and stable adaptation
in closed-loop:

1. Model Sensitivity of Nominal Control: Small changes in models should cause
small changes in nominal controllers (the control law selected for each model).

2. Consistency of Models: Models should be consistent (or consistent up to some
bounded error) with our observations.

3. Select Models Efficiently: The posited model should change as little as possible.

This observation is a manifestation of a deeper concept, which we explore in Part
2, Chapter 6 of the thesis. Learning-to-control can be decomposed into control
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via Robust Oracle Design (addressing factor 1) and learning via Consistent Model
Chasing (addressing factors 2 and 3). This idea serves as the foundation for many
of the results in Part 2, where we develop the theory and framework for learning to
control largely uncertain dynamical systems with guarantees.

In the second part of the Chapter 4, we explore applications of this result for problem
settings concerned with online learning of optimal controllers. To this end, we
focus on the setting of linear time-invariant systems and linear-quadratic costs; a
problem setting that has received immense recent attention in the learning and control
literature.

Guided by the theoretical findings in Part 1, we follow the principle of certainty
equivalence to design a learning-to-control scheme with LQ-optimal system-level
controllers as our basis of nominal control laws. We perform perturbation analysis
of the solutions for the LQ-optimal control problem and show that the solutions are
Lipschitz-continuous with respect to changes in the system matrices of the linear
system (over parameter sets of equal degree of controllability). This partial result in
itself is new and characterizes the sensitivity of LQ-optimal closed-loop maps for
linear time-invariant (LTI) systems in terms of system-theoretic properties such as
controllability and observability. With this result, we analyze the closed-loop stability
of the learning-to-control scheme and provide conditions for model selections that
are sufficient for closed-loop stability. We revisit these conditions again in Part 2 in
the context of consistent model chasing.

In summary, Part 1 of this thesis discusses new fundamental connections between
closed-loop maps, realizing controllers, and system-level implementations that open
up new possibilities for the analysis and design of closed-loop control systems,
allowing for a broad range of nonlinear dynamics in the system and controller.
The strength of this approach, compared to existing ones, is that it is particularly
well-suited for the handling of complex systems, such as large-scale systems, as
well as complex control structures caused by high-dimensional internal dynamics
(such as learning and optimization in closed-loop) and/or restrictive implementation
constraints (spatially and temporally structured sensing, actuation, communication,
and computation constraints). This has proven to be a catalyst for new control
approaches, some of which we outline in the next section.

Impact, Current Work and Outlook. The results presented in Part 1 of the
thesis were inspired by our earlier work [66], which for the first time, extended the
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SLS-theory to the linear time-varying case and noticed its importance for online
learning of feedback control: [66] introduced a framework for distributed adaptive
control via system-level controllers, which allowed for incorporating online learning
in large-scale closed-loop systems with delay and communication constraints. In
later work, we leverage some of the ideas in [7] to develop sub-optimal adaptive
system-level controllers that are robust to communication dropouts. With [1], we
were the first to extend the system level analysis approach to general nonlinear systems,
and then demonstrated its use-case for nonlinear control design in the large-scale
system setting in [8]. [8] uses the CLM blending approach to formulate a nonlinear
control synthesis method that outperforms linear controllers for the constrained LQR
problem; notably, CLM blending is also shown to provide a solution for distributed
and localized anti-windup. In [6] we introduced a new way for robust control
design through a decomposition into a problem of CLM design and robust controller
implementation. The theory developed in [1] and presented in Chapter 2 has served
as a foundation for new results on nonlinear controller synthesis: [39] presents
synthesis methods for nonlinear system-level control for dynamical systems with
polynomial dynamics. [56] applies the theory to provide a characterization of the
space of nonlinear stabilizing controllers and introduces a new framework, called
neural system-level synthesis, to learn stabilizing nonlinear system-level controllers
via neural networks.

Synopsis of Part II: Learning to Control Unknown Systems
Part 2 of the thesis focuses on addressing the second set of challenges, a conundrum
we referred to as "One-Shot Worst-Case Guarantees vs. Large Uncertainty" earlier
in Section 1.2.

In contrast to Part 1, which focuses on the "small uncertainty" setting, Part 2 focuses
on the more general "large uncertainty" scenario, where the set of possible models
is bounded (in an appropriate sense), but is allowed to be arbitrarily large. Thus,
in a practical sense, we assume that the dynamics of the system are almost entirely
"unknown".

Chapter 5 explores possible trade-offs and difficulties associated with our overall
objective of handling completely unknown systems. It is clear that with larger
model uncertainty comes degradation in robustness; hence, there has to be a limit at
which model uncertainty renders possibly desired guarantees impossible to achieve.
Surprisingly, there are no clear and general answers to this problem, even for simple
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linear systems. In Chapter 5, we focus on a simple class of linear systems and explore
the following questions:

At what size of model uncertainty does "learning-to-stabilize" become an
impossible task? Is there a minimal model assumption?

The results presented in Chapter 5 are based on the work published in [65] and
develop new methods for stability analysis and control design without the need
for a model. In particular, we demonstrate the first instance of an all-model-free
formulation of controller, closed-loop dynamics, and robust stability analysis. We
end up with a positive answer for the considered class of systems. We present a simple
model-free control algorithm that is able to robustly learn and stabilize an unknown
discrete-time linear system with full control and state feedback subject to arbitrary
bounded disturbance and noise sequences. The controller does not require any prior
knowledge of the system dynamics, disturbances, or noise, yet it can guarantee
robust stability and provide asymptotic and worst-case bounds on the state and input
trajectories. To the best of our knowledge, this is the first model-free algorithm
that comes with such robust stability guarantees without the need to make any prior
assumptions about the system. Moreover, the theory and results developed provide
a first set of tools that allow for an entirely model-free formulation of controller,
closed-loop dynamics, and robust stability analysis. The simulation results also
show that despite the generality and simplicity, the controller demonstrates good
closed-loop performance: fast convergence, small learning transients, and almost
optimal asymptotic gain.

Investigating this problem led us to a new convex geometry-based approach towards
robust stability analysis, which served as a key enabler in our results. A distinguishing
feature of the approach is that stability conditions can be phrased entirely in terms
of data and there is an intuitive geometric way of quantifying and analyzing model
uncertainty, which can be phrased in terms of metric entropy, the absolute convex
hull of the observed data, and the disturbance. This perspective allows us to conduct
stability analysis independent of the system matrix and the size of the disturbance
and noise. The key idea that led to these results was to describe the reduction of
uncertainty obtained from new observations in a set-theoretic way and study the
geometric relation between the data and the uncertainty. The insight gathered from
this approach inspired us to rethink the general problem of learning to control as a
whole from a new angle, which led us to a framework introduced in Chapter 6.
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Figure 1.6: Chapter 6: PixSel Framework for adaptive systems analysis and control
design

In Chapter 6, we introduce a new modular framework for one-shot control design
that is particularly well suited for learning-to-control problem settings that require
robust safety and cost performance guarantees in the presence of potentially large
model uncertainty. Our approach is based on decomposing the problem into two
sub-problems: online learning, named "consistent model chasing", and the underlying
control problem in the absence of model uncertainty, called "oracle design". Each
of these sub-problems can be addressed separately, and their solutions (a control
oracle and a model chaser) are used to instantiate a certainty-equivalent learning-
to-control scheme. This scheme, in a symbiotic way, inherits both control- and
learning-theoretic guarantees, certifying the robustness of the closed-loop, even for
large model uncertainty in the system dynamics. The range of closed-loop guarantees
that we can obtain through this inheritance is fairly broad. In this chapter, which is
based on the work in [5], we present worst-case performance guarantees in terms
of t0, 1u costs (commonly referred to as finite mistake or mistake bound guarantees
in online learning) and represent worst-case safety guarantees as bounds on the
ℓ8-norm of the trajectories of the closed-loop. As we show later, this way of phrasing
closed-loop "safety" and "performance" is expressive enough to represent many other
guarantees of stability, convergence, or even set invariance.

A defining feature of this new approach is the inheritance relation between the
learning-to-control algorithm ("PixSel") and its instantiating sub-procedures, which
builds a new bridge between the fields of online learning and robust control theory.
This allows us to rigorously merge online learning with traditional control algorithms
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for the purpose of learning to control uncertain dynamical systems.Moreover, it
opens up an important connection between two, so far mostly separated, problem
settings in control theory: small model uncertainty and large model uncertainty. As
discussed earlier, the classical (adaptive control) and modern (learning and control)
literature do not provide a simple way to scale robust controllers designed for the
setting of small uncertainty to the more general setting of large model uncertainty.
Within the "PixSel" framework, we accomplish this by merging the controller with a
consistent model chaser, thereby extending the robustness guarantees of the original
controller to the large-model uncertainty setting. As far as we are aware, there are no
other existing approaches that enable this in such a general and straightforward way.

As an instructive example and to demonstrate the practicality of our approach, we
show how to instantiate this framework for general robotic systems for common
tasks such as stabilization or trajectory tracking. In addition to providing theoretical
guarantees, empirical results show that our framework is a promising approach to
designing efficient algorithms for learning and control in practice. We apply our
approach to the problem of swinging up a cartpole with large parametric uncertainty
in a realistic and highly challenging setting and show that it consistently achieves
good performance over 900 experiments with different parameter settings. Despite
its popularity, the cart-pole swing-up problem presents many fundamental challenges
(underactuated, non-minimum phase, nonlinear dynamics) for control design, and the
majority of existing design approaches in the adaptive control literature [73, 83, 117]
are not applicable. There does not seem to be any empirical evidence of other
design methods capable of tackling this learning-to-control problem in a large-model
uncertainty setting.

In conclusion, the main motivation behind the research presented in this part was
to establish a theoretical foundation for a systematic approach to online learning of
feedback control in the presence of uncertainty and constraints. The objective was to
develop a theory for "Online Learning of Feedback Control with Robustness to Large
Uncertainty." Chapter 5 introduced new theoretical tools for a model-free approach
to the problem, formulating controller synthesis and analysis in a model-free and
model-agnostic way.

Chapter 6 addressed the core problem of learning to control unknown systems from
a model-based perspective, introducing the "PixSel" framework. This framework
modularly combines online learning and control design methods to provide robust
safety and cost performance guarantees in the presence of large model uncertainty.
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The framework establishes an inheritance relation between online learning and
control procedures, merging the fields of online learning and robust control theory.
It also bridges the gap between small and large model uncertainty settings, providing
a straightforward way to extend robustness guarantees to the more general setting.

Impact, Current Work and Outlook. The theory developed in Part 2 has served
as a foundation for recent progress in this problem space. The work of [135]
applies the PixSel framework to provide an efficient solution to the problems of
robust voltage control under uncertain grid topology. In [9], we adapt the PixSel
framework for the distributed case and combine it with the system-level approach to
provide the first distributed, localized adaptive control approach, both in learning and
control, that provides worst-case safety and stability guarantees for arbitrarily large
bounded uncertainties. The algorithms which we presented in [9], form a symbiotic
marriage of the theoretical results developed in Chapter 6 and Chapter 4 and provide
a tremendous improvement over our early adaptive system-level control framework
[66] in terms of scalability (more efficient distributed learning), computational cost
([66] relied on solving a robust optimization problem, which, compared to [9], scales
very poorly with local model complexity), generality, and guarantees ([9] provides
worst-case stability bounds for arbitrarily large uncertainty, while in [66] we can only
provide guarantees for the small uncertainty setting).

More recently, the work presented in [138] applies the PixSel framework to the special
case of LTV systems and develops an approach to online stability of unknown linear
time-varying systems by reformulating the corresponding problem of consistent
model chasing into a convex body chasing problem.



Part I

Nonlinear Closed-Loops and System
Level Control
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OVERVIEW

In this part of the thesis, we introduce a new operator-theoretic framework for the
design and analysis of complex closed-loop systems. This framework allows for
general nonlinear dynamics in the plant and controller, robust control synthesis and
stability analysis, and complex constraints on the controller implementation. We
refer to this framework as the nonlinear system-level approach. Chapter 2 introduces
this theory, while the following two chapters demonstrate how this theory opens up
new methods for control synthesis and system analysis.

Chapter 2 is based on the work presented in [64] and begins with an introduction
to the required mathematical concepts from operator theory. It also reviews old
and new lemmas for operator stability analysis. The first core result of this chapter
characterizes the space of achievable closed-loop systems once feedback control is
introduced to a given nonlinear system F . By representing closed-loop systems as
nonlinear causal operators mapping between inputs and outputs, we identify the space
as solutions to an operator equation, the Closed-Loop-Map-Equation, parameterized
by F . Moreover, any operator Ψ that solves the CLM equation, called a closed-loop
map (CLM) of the system F , can be realized by means of a particular controller
structure, the system level controller SLpΨq. The internal stability of this realization
is the topic of the second main theorem, which discusses sufficient and necessary
conditions for stability. The final part of this chapter investigates closed-loop systems
consisting of nonlinear controllers and linear plant dynamics. We show that in this
case, the set of nonlinear CLMs is closed under a special type of combination, which
we call CLM-blending, and this allows us to construct more expressive CLMs from
simpler ones in a hierarchical way.

The ramifications of this result are explored in Chapter 3, which is based on the
work presented in [8, 64, 66]. As a first application, we use blending to develop a
scalable method for robust control design of linear time-varying dynamic controllers
for trajectory tracking in nonlinear continuous-time systems. We then discuss how
CLM-blending allows for control design with improved safety and cost-performance
trade-offs in control applications considering large-scale linear systems subjected to
controller constraints and actuator saturation. We discuss this in the context of two
control problems, constrained LQR and distributed anti-windup.

The first half of Chapter 4 applies the nonlinear system level framework to derive
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new results for stability analysis of closed-loop systems with online model esti-
mation/selection and certainty-equivalent control in the loop. We introduce an
operator-theoretic characterization of the space of closed-loop systems such as tuples
pΩ, F̂ ,Ψ,Sq consisting of a compact parameter space Ω of possible system models
ω with dynamics F̂ rωs, a parameterization of nominal CLMs Ψ : ω ÞÑ Ψrωs

underlying the certainty-equivalent control policies, and an operator S representing
an algorithm for online model estimation. Our main theorem states that if the
parameterizations of dynamics F̂ : ω ÞÑ F̂ rωs and desired closed-loop behavior
Ψ : ω ÞÑ Ψrωs are continuous and the algorithm S guarantees convergent and
consistent model selection, then the overall closed-loop dynamics are stable.

Guided by these theoretical findings, in the second half of the chapter, we follow
the certainty equivalence principle to design a learning-to-control scheme with
LQ-optimal system-level controllers as the basis of nominal control laws. Most
of the results are based on work published in [9, 66]. We perform perturbation
analysis of the solutions for the LQ-optimal control problem and show that the
solutions are Lipschitz-continuous with respect to changes in the system matrices
of the linear system (over parameter sets of equal degree of controllability). This
partial result is novel and characterizes the sensitivity (i.e., analytic bounds on the
Lipschitz constant) of LQ-optimal closed-loop maps for LTI systems in terms of
system-theoretic properties such as controllability and observability. With this result,
we analyze the closed-loop stability of the proposed learning-to-control scheme and
provide conditions for model selection that are sufficient for closed-loop stability,
which we revisit in Part 2 in the context of consistent model chasing.
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C h a p t e r 2

NONLINEAR CLOSED LOOP MAPS FROM THE INSIDE AND
OUTSIDE

There is a universal connection between the achievable closed-loop dynamics and the
corresponding feedback controller that produces it, which shows promise of leading to
new methods for robust non-linear control in discrete time. In this chapter, we derive
that given a causal nonlinear discrete-time system and controller, the resulting closed
loop is a solution to a nonlinear operator equation. Conversely, any causal solution to
the nonlinear operator equation is a closed loop that can be achieved by some causal
controller. Moreover, solutions can be substituted into a simple dynamic controller
structure, which we refer to as a system level controller, to obtain an implementation
of the unique corresponding feedback controller. System-level controllers are a
promising approach for robust nonlinear control, as we show that even when they
are parameterized with approximate solutions to the operator equation, they can still
produce robustly stable closed loops. We provide theoretical results that state how
the degree of approximation and robust stability of the closed loop are related and
show that this relationship can be leveraged for controller synthesis.

2.1 Introduction
Compared to linear control theory, there are fewer mathematical tools for tackling
controller synthesis of general nonlinear systems. Nonlinear stability analysis is
based on some fundamental results in the classical literature [77, 101, 111, 117, 124],
such as Lyapunov functions, passivity, the small gain theorem, barrier functions [6],
Poincare maps, contraction analysis [90] and describing functions. Among these,
the Lyapunov methods are by far the most widely used technique.

Methods for non-linear control design can be separated into two groups: analytical and
computational. Lyapunov stability analysis and the optimal control formalism [85],
[77] have inspired most classical analytical methods such as feedback linearization,
backstepping, sliding-mode control, gain scheduling [77, 111, 117], and many others.
Nevertheless, with the recent explosion of available computational resources and
progress in the optimization and control theory community, significant progress
has been made toward achieving a more generalized, data-driven approach to
nonlinear control design. With the sum of squares methods (SOS) [103], [99],
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it became possible to compute Lyapunov functions for stability analysis through
convex optimization. SOS-based controller synthesis methods are presented in
[104, 105], and [133] for the continuous-time (CT) and discrete-time (DT) settings,
respectively. Examples of computational methods based on approximating solutions
of the Hamilton-Jacobi-Bellman type of equations are found in [120], [67], [130].
Other more recent works [84] (CT), [61] (DT) provide alternative formulations of
optimal controller synthesis through occupation measures.

Inspired by the recently developed system-level approach to linear control theory
[126], we present a new insight into nonlinear discrete-time systems that enables new
synthesis methods for nonlinear discrete-time systems. The system-level approach, as
introduced in [126], enabled new efficient controller synthesis methods [66, 127] that
allow for localized, distributed, and scalable control design in large-scale systems.
This is achieved by transforming constrained optimal control problems as convex
optimization problems into achievable closed-loop maps that can be solved efficiently.
A key component of the system-level synthesis (SLS) procedure is that once we have
solved for the desired closed-loop map, there is a simple way to construct a controller
that stably realizes this on the system.

In this chapter, we show that this connection between closed-loop maps and their
corresponding realizing controller is not merely a phenomenon of linear systems,
but rather a surprisingly universal control principle that extends to general nonlinear
discrete-time systems. We demonstrate that given any feasible nonlinear closed-loop
map from disturbance to state and input, we can construct an internally stable
dynamic controller that realizes it. Specifically, we characterize the space of all
feasible closed-loop maps as solutions to a nonlinear operator equation and define a
dynamic controller that realizes them. This controller structure, which we refer to
as a system-level (SL) controller, is parameterized by the solutions of the operator
equation. We further show that even approximate solutions of this equation, with a
small enough error, can still yield stabilizing controllers when parameterized into
the SL controller structure. We characterize the internal stability of the nonlinear
closed loop and discuss a simple sufficient closed-loop stability condition based on
the small-gain theorem.

The presented approach motivates new paths towards nonlinear control synthesis: 1)
finding approximate solutions to the closed-loop operator equation and 2) obtaining
a stabilizing controller by parameterizing an SL controller with the approximate
solutions. In the latter part of the chapter, we also discuss a method for synthesizing
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nonlinear dynamic controllers based on blending of closed-loop maps. These ideas
and their importance for control applications will be explored in Chapter 3. To
formulate the framework rigorously, we first review some background on operator
theory and stability and introduce necessary preliminaries such as notation and basic
definitions.

Preliminary Definitions and Notation
Binary Relations. A subset R Ă X ˆ Y of the Cartesian product of two sets
X and Y is called a binary relation. dopRq “ tx P X | Dy P Y : px, yq P Ru

is called the domain and Y is called the codomain, denoted copRq of the relation
R. One says x relates to y to state px, yq P R. The image RpX 1q of a subset
X 1 Ă dopRq refers to the set ty P Y | Dx P X 1 : px, yq P Ru and similarly
R´1pY 1q :“ tx P X | Dy P Y 1 : px, yq P Ru is the preimage of a subset Y 1 Ă Y . A
composition R1 ˝ R2 or R1R2 of two relations R1 Ă X ˆ Y and R2 Ă Y ˆ Z refers
to the relation tpx, zq | Dy P Y : px, yq P R1, py, zq P R2u Ă X ˆ Z and, similarly,
z “ R1R2pxq expresses that there exists a y P Y such that y “ R2pxq and z “ R1pyq.

Relations and Functions. A relation R is said to be functional if for any two
pairs px, yq P R, px1, yq P R holds y “ y1 ùñ x “ x1. We write f : X Ñ Y
as a shorthand to say that f is a functional relation with domain X and codomain
Y and write y “ fpxq or f : x ÞÑ y to express px, yq P f . A restriction of
a function f : X Ñ Y to a subset X 1 Ă is a function g : X 1 Ñ Y such that
gpxq “ fpxq, @x P X 1 and we refer to the function g with the notation f |X 1 or f |X 1.
On the other hand, an extension of a function f : X Ñ Y to Xe Ą X refers to the
function g : Xe Ñ Y such that gpxq “ fpxq, @x P X ; co-restriction and co-extension
of f : X Ñ Y refer to functions g1 : X Ñ Y 1 for Y 1 Ą fpX q and g2 : X Ñ Ye,
Ye Ą Y such that g1pxq “ g2pxq “ fpxq, @x P X .

Sequences. A sequence s of elements in S over the time horizon T is a function
s : T Ñ S where the domain T Ă N is a subset of natural numbers N “ t0, 1, . . . u

and the codomain is S; the space of all such sequences is denoted by ST . If we
say s is a sequence of S and do not specify T or just write s P SN, it is implied
that T “ N. We will often use st to refer to the value sptq of a sequence s in t. As
defined for general functions above, we will write, for example, srt1,t2s or sT for
some T Ă N, to refer to the restrictions of s to an interval rt1, t2s Ă N or subset T ;
extensions of a sequence s P ST to time horizon Te Ă N are defined analogously
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as in the context of general functions. A sequence s P ST over some finite horizon
T Ă N, i.e., |T | ă 8, is called a finite sequence.

Remark. It is important to note that a finite sequence srτ,τ̄ s entails more information
than merely the vector rsτ , sτ`1, . . . , sτ̄ s, because in the latter all information about
the domain is lost. To point out this difference formally: the space of all finite
sequences s : T Ñ S with domain of size n (that is: |T | “ n) is infinite dimensional
and not simply an n-dimensional vector space of S.

Normed Vector Spaces and their Sequence Spaces We will use caligraphic font
variables - most commonly just X and U - to denote two fixed finite-dimensional
vector spaces equipped with norms | ¨ |X and | ¨ |U . For convenience, we assume
that there is some norm | ¨ | : X ˆ U ÞÑ R`

0 such that | ¨ |X : x ÞÑ |px, 0q| and
| ¨ |U : u ÞÑ |p0, uq|, and therefore we drop the dependence on the space and let | ¨ |

represent a default norm for any finite-dimensional vector spaces. If not otherwise
specified, the reader can assume that X “ Rn, U “ Rm for some n and m ă n, and
| ¨ | represent the standard Euclidean norm. We will use ℓX , ℓU , and ℓXˆU to denote
the vector space of sequences X N, UN, and pX ˆ UqN. Similarly, we define the ℓp
norms in these spaces as

}x}p :“

˜

8
ÿ

k“0

|xk|
p

¸1{p

}x}8 :“ sup
kě0

|xk|

where | ¨ | denotes the corresponding norm in finite-dimensional vector spaces.
Consequently, define the subspaces of ℓp bounded sequences in ℓX as ℓXp Ă ℓX ,
ℓXp :“ tx P ℓX |}x}p ă 8u and define ℓUp , ℓXˆU

p analogously. Sequences that have
finitely many nonzero elements span a linear subspace of ℓX which we refer to as ℓX0 .
Furthermore, the subset of sequences x P ℓX0 for which xpkq “ 0, @k ě t, i.e., the
sequence takes on zero values after time t, form a pt ` 1qdimpX q-dim. subspace of
ℓX0 , which we refer to as ℓX

r0,ts.

Remark. Unless it is crucial for the discussion, we will not distinguish between the
two spaces ℓX

r0,ts and X r0,ts. However, it should be noted that strictly speaking, X r0,ts

and ℓX
r0,ts are only isomorphic to each other, since ℓX

r0,ts is an embedding of X r0,ts into
space ℓX .

A truncation x1 of a sequence x P ℓX is a sequence x1 P ℓX
r0,ts such that x1

k :“ xk for
k P t0, . . . , tu and some t, that is, a sequence formed by truncating all but the first of
the elements t of x.
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Tuples and Concatenations of Sequences We will use small tt-font styled
variables tx, u,w, ŵ, y, zu to form index sets for sequence tuples or partial operators.
For example, if we write τ “ tτiuiPI P

Ś

iPIpViq
N, I “ x, u,w, then we mean that

τ is a tuple pτx, τu, τwq of sequences τx P pVxqN, τu P pVwqN, and τw P pVwqN;
Ś

jPJ Sj generally denotes the Cartesian product of a family of sets tSjujPJ .
Occasionally, we match the variable names of the sequences with the labels and
will write τxuw “ px,u,wq to suggest assignment pτx, τu, τwq “ px,u,wq. The
concatenation of a sequence x P ℓX and u P ℓU is a new sequence z P ℓXˆU , such
that zt “ pxt, utq, @t P N; we refer to sequence z by writing

“

x
u

‰

. With slight
abuse of notation, we use J to identify px,uqJ with

“

x
u

‰

and
“

x
u

‰J with px,uq,
i.e., p¨qJ : px,uq ÞÑ

“

x
u

‰

and r¨sJ :
“

x
u

‰

ÞÑ px,uq, and define this correspondence
similarly for any tuple of sequences; hence, p¨qJ is the canonical isomorphism
between

Ś

iPIpViq
N and p

Ś

iPI Viq
N.

2.2 Fundamentals of Operator Theory
Operators will be denoted in bold capital letters A and will represent maps between
vector sequence spaces ℓX Ñ ℓU . An operator will be called causal if for any pair
of input x P ℓX and the corresponding output y “ Apxq, the values of yt do not
depend on future input values xt`k, k ě 1. More precisely, we define A : ℓX Ñ ℓU

to be a causal operator if there are functions, At : X r0,ts Ñ U that allow A to be
equivalently represented as

Apxq “ pA0px0q, A1px1, x0q, . . . , Atpxt:0q, . . . q. (2.1)

If in addition, the functions At satisfy Atpxt:0q “ Atp0, xt´1:0q, i.e., are constant
in their first parameter, then A will be called strictly causal. The functions tAtu

fully characterize a causal operator and will also be called component functions
or just components of A. Notice that every component function At has t ` 1

arguments which are populated in reverse-chronological order in Definition (2.1).
For notational convenience, for an interval I Ă N, I “ ri, js, i ď j we will use
AI : X r0:js Ñ UI (or Ai:j) to refer to the mapping defined below: xj:0 Q X r0,js ÞÑ

pAipxi:0q, Ai`1pxi`1:0q, . . . , Ajpxj:0qq P U ri,js for j ě i as

Ai:jpxj:0q :“ pAipxi:0q, Ai`1pxi`1:0q, . . . , Ajpxj:0qq.

An operator with the same domain and co-domain, for example: A : ℓX Ñ ℓX , is
called square. Define the space of all causal and strictly causal operators ℓX ÞÑ ℓY

as CpℓX , ℓYq and CspℓX , ℓYq, respectively. Similarly, define LCpℓX , ℓYq Ă CpℓX , ℓYq
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and LCspℓ
X , ℓYq Ă CspℓX , ℓYq the spaces of all linear causal and strictly causal

operators. The corresponding spaces of square (linear)-(strictly)-causal operators on
ℓX will be denoted by CpℓX q, CspℓX q, LCpℓX q, LCspℓ

X q. The right-shift operation
S` : CpℓX , ℓYq ÞÑ CspℓX , ℓYq is defined to map any causal operatorA P CpℓX , ℓYq, to
a strictly causal one S`rAs :“ A` P CspℓX , ℓYq by shifting all component functions
to the right, that is, T`

0 px0q :“ 0, T`
t pxt:0q :“ Tt´1pxt´1:0q.

Addition and Multiplication of Operators
Sums and products of operators are defined as binary operations on the space of
causal operators where

A ` B : x ÞÑ Apxq ` Bpxq

AB or A ˝ B : x ÞÑ ApBpxqq.

It is crucial to remember that for general operators, the above defined multiplication
is not commutative and is only right-distributed over the summation but not left-
distributed, i.e.,

pA ` BqC “ AC ` BC but CpA ` Bq ‰ CA ` CB.

Moreover, for two operators A P CpℓX q, B P CpℓX , ℓUq with matching domain,
“

A
B

‰

refers to the operator C P CpℓX , ℓXˆUq with components Ct defined each t and
sequence x P ℓX as

Ctpxt:0q :“ pAtpxt:0q, Btpxt:0qq.

Truncation Operator
Sequences that have finitely many nonzero elements span a linear subspace of ℓX

which we refer to as ℓX0 . Furthermore, for a fixed subset I Ă N, the subset of
sequences x P ℓX0 such that xk “ 0 for all k R I forms a subspace of ℓX0 , which we
refer to as ℓXI ; for example, ℓX

r0,ts represents the subspace of sequences with elements
equal to 0 after the first t ` 1 terms. A truncation x1 of a sequence x P ℓX is a
sequence x1 P ℓX

r0,ts such that x1
k :“ xk for k P t0, . . . , tu and some t, that is, a

sequence formed by truncating all but the first t elements of x. For each t P N, the
correspondence x ÞÑ x1 between sequences x P ℓX and their truncations x1 P ℓX

r0,ts

defines a unique linear projection map P t
n : ℓX Ñ ℓX onto ℓX

r0,ts, commonly called a
truncation operator. Below, we define the truncation operators tP t

n | t P Nu in terms
of the broader – however less standard – family of operators tP I

n | I Ă Nu:
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Definition 2.1. [Truncation Operators] For a subset I Ă N and its complement
Ic :“ N zI, define the operator P I

n : ℓX Ñ ℓX and P I
n : ℓX Ñ ℓX for each x P ℓX

as:

P I
n pxq :“

#

xk for k P I
0 else

P I
n pxq :“

#

xk for k P Ic

0 else.
.

Moreover, we use the following shorthand notation for P I
n and P I

n if I is an interval
or a singleton:

• For t P N, P t
n :“ P I

n and P t
n :“ P I

n where I “ r0, ts Ă N.
• For t, t1 P N : t ă t1, P rt,t1s

n :“ P I
n and P

rt,t1s
n :“ P I

n where I “ rt, t1s Ă N.
• For t P N, P rts

n :“ P I
n and P

rts
n :“ P I

n where I “ ttu.

The truncation operators are linear projection maps in sequence space and have
several important properties listed in Cor. 1, all of which are trivial consequences of
the previous definition:

Corollary 1. For any I Ă N, the truncation operator P I satisfies the following
identities:

(i) P I
n pxq P ℓXp for any x and finite set I . (ii) P I

n px` yq “ P I
n pxq `P I

n pyq.

(iii) P I
nP

I
n “ P I

n (iv) If x R ℓXp ,(p P r1,8s) then P I
n pxq R ℓXp or P I

n pxq R ℓXp .

(v) }x}pp “ }pI ´ P I
n qpxq}pp ` }P I

n pxq}pp “ }P I
n pxq}pp ` }P I

n pxq}pp holds for all
p ă 8 and x P ℓXp .

(vi) }x}8 “ }pI ´ P I
n qpxq}8 _ }P I

n pxq}8 “ }P I
n pxq}8 _ }P I

n pxq}8 holds for
all x P ℓX8. (a _ b :“ maxta, bu).

In light of this more general definition, the standard truncations P t
n we discussed in

the beginning are identified with the intervals I “ r0, ts. Furthermore, the operation
P

rts
n pxq truncates all terms of xk, except k “ t. To familiarize with the introduced

notation, let t, t1 P N, t ă t1 and notice the following relationships:

P t
n ` P t

n “ In P rts
n “ P t

n ´ P t´1
n

P t
n “

t
ř

k“0

P
rks
n P rt,t1s

n “ P t1

n ´ P t´1
n .

Given that we live in the space LCpℓX , ℓX q, as long as I is a finite subset of
N, it is clear that P I

n is a finite-rank linear projection and rankpP I
n q “ n|I|.
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For finite sets I, we can factor P I
n into the familiar form P I

n “ UIU˚I , by
letting the linear maps UI : RN Ñ ℓX and U˚I : ℓX Ñ RN be extensions of
the canonical isomorphisms between RN , where N “ n|I|, and the ℓX0 -subspace
tx P ℓX0 |xk “ 0, @k R Iu. To clarify, consider I “ r1s as an example. Then, for any
x P Rn, y “ U r1spxq is the sequence y “ p0, x, 0, . . . q P ℓX0|1 and, vice versa, for any
sequence x “ p0, y, 0, . . . q P ℓX0|1 with y P Rn, we have U˚r1spxq “ y. To match our
previous notation, we also abbreviate U r0,ts

n and U
˚r0,ts
n as U t

n and U˚t
n , respectively,

which allows us to factor the standard truncation operators as P t
n “ U t

nU
˚t
n .

Causal Operators and Truncations

There are several important relationships between truncations and causal operators,
one being that the causality of an operator Q can be equivalently defined in terms of
its interaction with truncations.

Lemma 2. For each t P N, let P t
n and P t

m denote the t-truncation on ℓU and ℓU . For
any operator Q : ℓX ÞÑ ℓU , the following hold:

Q P CpℓX , ℓUq ô @t P N : P t
mQ “ P t

mQP t
n

Q P CspℓX , ℓUq ô @t P N : P t
mQ “ P t

mQP t´1
n .

Using the above definition and right-distributiveness, we can decompose a causal
operator Q : ℓX ÞÑ ℓU as follows:

Q “ pIm ´ P t
mqQ ` P t

mQ

“ P t
mQ ` P t

mQP t
n.

As mentioned in Cor. 1, a truncation operator exhibits some properties that resemble
orthogonal projections, but without requiring a specific inner product. In particular,
in any normed space ℓUp {ℓU8, from the above decomposition and the properties
mentioned in Cor. 1, we obtain that for any x and Q P CpℓX , ℓUq, the following
holds:

}Qpxq}
p
p “ }P t

mQpxq}
p
p ` }P t

mQpxq}
p
p

}Qpxq}8 “ }P t
mQpxq}8 _ }P t

mQpxq}8.

Remark. The above equations are consistent in the case Qpxq R ℓXp or Qpxq R ℓXp ,
if we define }Qpxq}p and }Qpxq}8 to take on the value `8.
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Using the definitions of U˚rts and U t, we can also concisely define the component
functions of an operator Q as Qt “ U

˚rts
m QU t

n. Similarly, we can factor P t
mQ as

P t
mQ “

t
ÿ

k“0

U rks
m QkU

˚k
n .

Another important consequence of this decomposition is that appending a truncation
P t

m to a causal operator Q always results in smaller ℓUp norms than prepending a
truncation P t

n. To see this, we prepend P t
n to Q and use right-distributiveness and

causality to obtain the equivalence:

QP t
n “ ppIm ´ P t

mqQ ` P t
mQqP t

n “ P t
mQP t

n ` P t
mQP t

n

“ P t
mQP t

n ` P t
mQ.

Then, for any x P ℓX , Q P CpℓX , ℓUq, and t P N, the following hold:

}QP t
npxq}

p
p “ }P t

mQP t
npxq}

p
p ` }P t

mQ}
p
p ě }P t

mQ}
p
p

}QP t
npxq}8 “ }P t

mQP t
npxq}8 _ }P t

mQ}8 ě }P t
mQ}8.

We summarize our findings in the lemma below:

Lemma 3. Let tTk “ rtk, t̄ksu, (tk ď t̄k), be a collection of pairwise disjoint intervals
of N over some index set k P I, and let Q P CpℓX , ℓUq be a causal operator. Then,
for any t P N, p P t1, . . . ,8u, and x P ℓU , the following inequality holds:

}p
ÿ

kPI
P Tk

n Qqx}p ď
ÿ

kPI
}QP t̄k

m x}p. (2.2)

The above lemma will be used in the derivation of the small gain theorem, which we
derive in the next section.

Causally Invertible Operators
A square operator A : ℓX Ñ ℓX is invertible if there exists another operator
B : ℓX Ñ ℓX such that AB “ BA “ In. If such a B exists, it is unique and is
therefore called the inverse of A and is denoted as A´1. We call A P CpℓX q causally
invertible if it is invertible and its inverse is causal, that is, A´1 P CpℓX q.

Definition 2.2. A P CpℓX q is causally invertible if there exists A´1 P CpℓX q such
that AA´1 “ A´1A “ In.
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In general, the inverse of a causal operator is not necessarily a causal operator [110].
In fact, it is possible to find counterexamples even for operators A : ℓr0,ts Ñ ℓr0,ts

that map between finite-dimensional spaces. However, if causality of the inverse can
be proven, it also provides instructions on how to implement the inverse operator.

If we are given a causally invertible operator A P CpℓX q, then by definition, for any
t P N, P tA´1 “ P tA´1P t, @t P N. Combining this with causality of A shows that
we obtain an invertible function At by concatenating the first t component functions:

At : pxt, . . . , x0q ÞÑ pAtpxt, . . . , x0q, . . . , A0px0qq. (2.3)

The map At can be written more compactly as At “ U˚tAU t. For the next
derivation, let B “ A´1 P CpℓX q denote the inverse of A and similarly, let the
concatenation of the components of B be denoted as Bt “ U˚tBU t. Below, we
derive that Bt is in fact the inverse of At and therefore invertibility of At, @t P N is a
necessity for causal invertibility:

P t
“ P tAB “ P tBA

ùñ U tU˚t
“ P tAP tBP t

“ P tBP tAP t

X ÞÑU˚tXU t

ùñ INt “ pU˚tBU t
q

looooomooooon

Bt

pU˚tAU˚t
q

looooomooooon

At

“ pU˚tAU t
qpU˚tBU˚t

q

ùñ Bt “ pAtq
´1 .

Having established the equivalence Bt “ pAtq
´1, going forward, we can refer to Bt

as A´1
t without causing ambiguity, since U˚tA´1U t and pAtq

´1 are indeed the same
function. Furthermore, the above equivalence aids us in constructing a realization of
the inverse operator.

Setting t “ 0, the above implies that A0 is invertible. Moving to t “ 1, it is easy
to see that A1 : pu0, u1q ÞÑ pA0pu0q, A1pu1, u0qq is invertible if and only if the map
u1 ÞÑ A1pu

1, u0q is invertible for any u0 P Rn. This observation motivates us to
investigate whether this condition extends to all N. To this end, let b and a be such
that b “ Aa, and let at “ pat, . . . , a0q and bt “ pbt, . . . , b0q. Then, for some t P N,
we can express at as

at “ U r˚tsA´1
pbq “ U r˚tsA´1P t

pbq “ A´1
t pbt, bt´1q “ A´1

t pbt, At´1pat´1qq

“ A´1
t pAtpat, at´1q, At´1pat´1qq (2.4)

where A´1
t “ U r˚tsA´1U t denotes the t-th component function of A´1. For

a fixed choice of at´1, denote At|t´1rat´1s : Rn Ñ Rn as the restriction of the
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component function At such that At|t´1rat´1spaq “ Atpa, at´1q. Similarly, let
Bt|t´1rat´1s : Rn Ñ Rn be a function defined for each b P Rn as Bt|t´1rat´1spbq “

A´1
t pb, At´1pat´1qq. With these two function definitions, (2.4) can be written as

at “ Bt|t´1rat´1s ˝ At|t´1rat´1spatq. Since this equation has to hold for all at´1 and
at P Rn, we can conclude that for any fixed at´1, the function Bt|t´1rat´1s is the left-
inverse ofAt|t´1rat´1s. Hence, equation (2.4) can be written as at “ Bt|t´1rat´1spbtq

and provides us with a realization of A´1. For a given b such that b “ Apaq with
causally invertible A, the sequence a is a trajectory of the dynamic system described
by the equations

at “ Btrat´1spbtq. (2.5)

Our discussion has so far shown that if A is causally invertible, then the functions
tAtutPN have to be invertible. Moreover, the latter implies that any function in the
set A “ tAt|t´1rzt´1s : Rn Ñ Rn | t P N, zt´1 P RNtu has to be invertible as well
and that using the inverse functions Btrat´1s we can realize the operator A´1 as the
dynamical system (2.5). Clearly, this realization is also evidence that invertibility of
the functions in A is sufficient for the existence of A´1. This conclusion closes a
chain of implications and leads to the following Lemma, which characterizes causally
invertible operators in terms of their component functions:

Lemma 4. For a causal operator A : ℓX Ñ ℓX , the following statements are all
equivalent:

(i) A is causally invertible.
(ii) tAt : z ÞÑ U˚tAU tpzq | t P Nu is a family of invertible functions.
(iii) tAt|t´1rzt´1s : a ÞÑ Atpa, zt´1q | t P N, zt´1 P A´1

t´1pRNt´1qu is a family of
invertible functions.

Proof. We recap the ring implications. piq ùñ piiq: The causal invertibility
of A means that there is some causal B such that AB “ I , which leads to
P tAP tBP t “ P t, @t P N and proves that Bt : U

˚tBU t is the right inverse of At.
piiq ùñ piiiq: Pick an arbitrary t P N and apply the operator U t to both sides
(multiplication from the left) of the identity At ˝Bt “ INt . The new equation can be
restated as:

@y P Rn, @yt´1 P RNt´1 : AtpBtpy, yt´1q, Bt´1pyt´1qq “ y.

This states that for a fixed zt´1 “ Bt´1pyt´1q, Bt|t´1ryt´1s : y ÞÑ Btpy, yt´1q is the
right inverse of At|t´1rzt´1s. Now, since Bt´1 is the inverse of At´1, zt´1 ranges
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over all RNt . We also showed previously left-invertibility in the same way, which
establishes piiiq. Lastly, piiiq ùñ piq follows through the realization (2.5).

A corollary of this lemma is that operators A “ In ` A´, which are sums of some
strictly causal A´ P CspℓX q and the identity operator I , are always causally invertible,
and the inverse operator A´1 can be easily realized. This result is derived below:

Corollary 5. If pA ´ Iq P CspℓX q, then A´1 P CpℓX q exists and b “ A´1paq

satisfies
bt “ at ´ Atp0, bt´1:0q.

Proof. Assume given a, we want to find b such that Apbq “ a. Equivalently, we
can write b “ a ´ pA ´ Iqpbq Now, since A ´ I is strictly causal, the component
function At satisfies Atpxt, xt´1:0q “ Atp0, xt´1:0q ` xt. Using this factorization,
the component form of b “ a ´ pA ´ Iqpbq becomes

bt “ at ´ Atp0, bt´1:0q, (2.6)

which proves the existence and uniqueness of b as it describes a concrete recursive
procedure for its computation.

2.3 Global and Local Stability of Operators
We review some standard stability results from the control literature, which are needed
for later analysis. In the following, we derive various versions of the small-gain
theorem, which are used in our main results.

If we view a dynamical system as a causal map T between input sequences w and
output sequences y “ Tw, then many common notions of system stability, such as
ℓp stability, can be mapped to notions of boundedness and continuity of the operator
T . Sometimes it is more natural to define the relationship between input and output
in an implicit fashion, where for an input w, the output y is a solution to equation
Qy “ w, for some fixed operator Q. In that scenario, input-output stability means
that for a bounded w, any corresponding solution y is also bounded.

Approaching stability analysis from this operator-theoretic perspective was first
studied in the late 1960s, most notably pioneered by George Zames [139], and led to
a large class of important stability analysis tools often grouped together under the
name of small gain theorems.
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In this section, we derive some small-gain theorem conditions that match our problem
setup and that we use frequently in our analysis.

We use the following notions of ℓp-stability for operators in the statement of our
results:

Definition 2.3. An operator A P CpℓX , ℓUq is called:

• ℓp-stable if Apaq P ℓUp for all a P ℓXp .

• finite gain (f.g.) ℓp-stable1 at a0 P ℓXp , if there exists γ, β ě 0 such that for all
a P ℓXp :

}Apaq ´ Apa0q}p ď γ }a ´ a0}p ` β.

• incrementally finite gain2 (i.f.g.) ℓp-stable if there exists γ, β ě 0 such that for
all a,a111 P ℓXp , it holds:

›

›Apaq ´ Apa111
q
›

›

p
ď γ

›

›a ´ a111
›

›

p
` β.

Remark 1. Finite gain ℓp stability and operator continuity in ℓp-norm are closely
related. In fact, if we set β “ 0 in the above definitions, then, i.f.g. ℓp-stability of
A with gain γ is equivalent to Lipschitz continuity in ℓp-norm of A over ℓXp . On
the other hand, f.g.-ℓp-stability at a0 implies that A is ℓp-continuous at a0 and
that δpεq can be chosen, in the context of the standard continuity definition [109],
as a linear function δ : ε ÞÑ γ´1ε. Allowing β to be nonzero can be thought of as
"almost" (Lipschitz) continuity, as possible discontinuities are deemed irrelevant for
the purpose of stability analysis.

Notice that while the above definition might not be standard, it allows for the stability
analysis of equilibria, trajectories, and limit cycles all within the same definition.

In the following discussion, we consider a fixed causal operator Q P CpℓX , ℓX q and
investigate pairs pw,yq of sequences w P ℓX and y P ℓX that are solutions to the
nonlinear operator equation:

Qpyq “ w ô y “ pI ´ Qqpyq ` w. (2.7)

1If we say A is f.g. ℓp-stable without specifying a0, it is assumed that a0 is to be taken as 0.
2We write pγ, βq-f.g. and pγ, βq-i.f.g. if we want to specify the constants of the ℓp-stability

property.
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For the purpose of stability analysis, we would ideally like to characterize the space
of solutions pw,yq that satisfy relations of the following types:

pw Ñ yq ℓp ´ stab. : Qpyq “ w, w P ℓXp ùñ y P ℓXp , (2.8a)

py Ñ wq ℓp ´ stab. : Qpyq “ w, y P ℓXp ùñ w P ℓXp , (2.8b)

bi-stab. ℓp : Qpyq “ w ùñ y,w P ℓXp . (2.8c)

If we identify w and y with some inputs and outputs of a dynamical system that has
dynamic equations of the form (2.7), then condition (2.8a) represents the standard
notion of bounded-input-bounded-output (BIBO) [75] with respect to the norm ℓp.
The statement (2.8b) represents the reverse condition, which is more commonly seen
as a notion of system observability. Similarly to the definitions in (2.8), one can
examine the space of solutions py,wq for more refined notions of stability, such
as pγ, βq-finite gain stability (fgs) and pγ, βq-incremental finite gain stability (ifgs).
With respect to the input-output mapping pw Ñ yq, these are defined as follows:

pγ, βq ´ ℓp ´ fgs : Qpyq “ w, w P ℓXp ùñ }y}p ď γ}w}p ` β,

pγ, βq ´ ℓp ´ ifgs at w0 : Qpyq “ w, w P ℓXp ùñ }δy}p ď γ}δw}p ` β.

Qpy0q “ w0, w0 P ℓXp

δy “ y ´ y0

δw “ w ´ w0.

Next, we focus on deriving sufficient conditions, in the form of small-gain theorems,
for finite gain ℓp-stability as defined above.

Conditions for Finite-Gain Stability

For the following derivations, we investigate pairs py,wq which are solutions to (2.7)
and from y we define the scalar sequence s P R8 such that st :“ }P tpyq}p, i.e.,

st :“

#

p

b

řt
k“0 |yk|

p for p ă 8

supkďt |yk| for p “ 8.
(2.10)

Furthermore, for convenience we abbreviate the causal operator pI ´ Qq as ∆ :“

I ´ Q to rewrite the equation (2.8a) as

y “ ∆pyq ` w.

Next, we bound st from above, which results in a key inequality used to prove the
later small-gain stability conditions. To this end, substitute y “ ∆pyq ` w, into the
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definition (2.10) and by causality of ∆ we get an equivalent expression for st:

st “ }P t
pyq}p “ }P t

p∆pyq ` wq}p. (2.11)

From (2.11) and with the help of Lem. 3 we obtain the inequalities below:

Lemma 6. For each term st of the sequence s holds:

st ď
›

›∆pP t
pyqq

›

›

p
` }w}p (2.12)

and if ∆ :“ pI ´ Qq is strictly causal, then the bound below holds:

st ď
›

›∆pP t´1
pyqq

›

›

p
` }w}p . (2.13)

Proof. The first bound follows by applying Lem. 3 to (2.11) directly:

st “
›

›P t
p∆pyq ` wq

›

›

p
ď
›

›∆pP t
pyqq

›

›

p
` }w}p .

For the second inequality, we have to do a little more work:

st “
›

›pP t∆qpyq ` w
›

›

p
“
›

›pP t∆P t´1
qpyq ` w

›

›

p
(2.14a)

ď
›

›pP t∆qpP t´1yq
›

›

p
` }w}p

ď
›

›p∆P t
qpP t´1yq

›

›

p
` }w}p “

›

›p∆P tP t´1
qy
›

›

p
` }w}p

“
›

›∆pP t´1
pyqq

›

›

p
` }w}p . (2.14b)

With the above Lemma 6, we present sufficient conditions for the stability (2.8a)
with their local/global finite-gain versions.

Theorem 2 (Small Gain Theorem). Assume that the operator ∆ satisfies }∆pxq}p ď

γ }x}p ` β for all x P ℓXp and some small gain γ ă 1. Then, correspondingly for all
w P ℓXp , the system response y satisfies the bound

}y}p ď
1

1 ´ γ
p}w}p ` βq.

Proof. Applying our assumption to the bound (2.12), we obtain:

st ď
›

›∆pP t
pyqq

›

›

p
` }w}p ď γP t

pyq ` β ` }w}p (2.15)

ď γst ` β ` }w}p (2.16)

ô st ď
1

1 ´ γ
pβ ` }w}pq. (2.17)

This establishes the boundedness of s. Since s is nondecreasing by construction, we
know that limtÑ8 st “ s˚ “ }y}p exists and satisfies }y}p ď 1

1´γ
p}w}p ` βq.
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We can also obtain a local version of that result, provided ∆ is strictly causal and
satisfies the small-gain property locally:

Lemma 7 (Local Small Gain Theorem). Assume that for some ρ ą 0 and 0 ď γ ă 1,
β ě 0 the operator I´Q is strictly causal and satisfies }pI ´ Qqpxq}p ď γ }x}p`β

for all }x}p ă ρ and some p P t1, 2, . . . ,8u. Then, for any py,wq such that
Qpyq “ w holds:

}w}p ă p1 ´ γqρ ´ β ùñ }y}p ď 1
1´γ

p}w}p ` βq.

Proof. Our assumption }w}p ă p1 ´ γqρ ´ β can be equivalently stated as:

}w}p ă p1 ´ γqρ ´ β ô
}w}p ` β

p1 ´ γq
ă ρ. (2.18)

We proceed to show st ď p}w}p ` βq{p1 ´ γq for all t per induction: t “ 0:
s0 “ |w0| ď }w}p ď p}w}p ` βq{p1 ´ γq ă ρ, since according to assumption
}w}p ă p1´γqρ´β which is equivalent to the last inequality. t Ñ t ` 1: Assume st
satisfies st ď p}w}p ` βq{p1 ´ γq. Then, due to (2.18), we have st “ }P tpyq}p ă ρ

and using the small gain property we know:
›

›∆pP t
pyqq

›

›

p
ď γ

›

›P t
pyq

›

›

p
` β. (2.19)

Substituting the above into (2.13) and using our induction assumption st ď p}w}p `

βq{p1 ´ γq, we obtain:

st`1 ďγ
›

›P t
pyq

›

›

p
` β ` }w}p “ γst ` p1 ´ γq

}w}p ` β

1 ´ γ
(2.20a)

ďγ
}w}p ` β

1 ´ γ
` p1 ´ γq

}w}p ` β

1 ´ γ
“

}w}p ` β

1 ´ γ
, (2.20b)

hence, (2.20b) completes the induction step and we can conclude that st is bounded
above by p}w}p ` βq{p1 ´ γq ă ρ for all t.

Finally, since st is non-decreasing per construction, we know that limtÑ8 st “ s˚ “

}y}p exists and satisfies

}y}p ď
1

1 ´ γ
p}w}p ` βq.
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If we associate w0 as the initial condition y0 and we can rewrite the bounds of
Theorem 7 and Theorem 2 as:

}y}p ď
1

1 ´ γ

´

p

b

|y0|
p
p ` }w}

p
p ` β

¯

1 ď p ă 8 (2.21a)

}y}
8

ď
1

1 ´ γ
pmax t|y0| , }w}

8
u ` βq p “ 8. (2.21b)

Eventually Small Gain Condition
As so far discussed, the small gain condition pI ´ Qqpyq ă y ` β is sufficient
to prove stability of systems governed by the equation Qpyq “ w. However, it
is not a necessary requirement for stability. The next Lemma shows that we can
relax the small gain condition and instead demand, that the gain of the operator
∆ :“ I ´ Q is eventually smaller than 1: There exists some t0 such that the
operators P t0x ÞÑ P t0∆pU t0z ` P t0pxqq satisfy the small gain property for any
fixed bounded z P RNt0 .

Lemma 8. Let py,wq be solutions to the operator equation Qy “ w for some
causal Q P CpℓX q. Then, the implication w P ℓXp ùñ y P ℓXp holds true, if there
exists t0 P N for which the operator ∆ “ I ´ Q meets the following conditions:

(i) There exist C1, C2 ą 0 such that for all solutions py,wq, the following ℓp-f.g.s
condition holds true:

P t0w P ℓXp ùñ }P t0y}p ď C1}P
t0w}p ` C2. (2.22)

(ii) There exist some γ ă 1 and non-decreasing function β : R` Ñ R` such that
for all x P ℓXp :

}P t0∆pxq}p ď γ}P t0pxq}p ` βp}P t0pxq}pq.

Proof. Let py,wq be an arbitrary pair such that Qy “ w or equivalently y “

∆y ` w, and assume that w P ℓXp . Split y into the sum P t0y ` P t0y and recall
from (2.22) that }P t0y}p ď C1}P

t0w}p ` C2. Hence, to show y P ℓXp , we need to
show that P t0y P ℓXp . Let st0 “ }P t0y}, sk|t0 “ }P Ik

n pyq}p, where Ik denote the
intervals rt0, t0 ` ks for k P N, and notice the following chain of inequalities:

sk|t0 “ }P Iky}p ď }P Ik∆P t0`ky}p ` }P Ikw}p ď }∆P t0`ky}p ` }P Ikw}p

ď γ}P Ikpyq}p ` βp}P t0y}pq ` }P Ikw}p

ô p1 ´ γqsk|t0 ď βpst0q ` }P Ikw}p

ô sk|t0 ď 1
1´γ

`

βpst0q ` }P t0w}p
˘

.
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This shows that sk|t0 is bounded for any k P N and together with the fact that sk|t0 is
non-decreasing in k, it also proves convergence of the sequence psr0,ts0 , s1|t0 , . . . q

to lim
kÑ8

sk|t0 “ s8|t0 ă 8. Hence, we showed P t0y P ℓXp and }y}p ď st0 ` s8|t0 is
bounded above as

}y}p ď 1
1´γ

ηp}w}pq ` C1}w}p ` C2,

where ηpxq :“ βpC1x ` C2q ` x.

2.4 Representing Dynamical Systems as Sets, Relations, and Maps
A discrete-time dynamical system S is a system whose behavior over time can be
described by a function S : N Ñ S over the index set N, where each Sptq represents
the state of the system S at time-step t. Correspondingly, S is usually called the
state space of the dynamical system and represents the granularity of our system
description. Depending on the application, S can be a finite set, a finite- or infinite-
dimensional space of vectors, or even functions. A sequence s “ ps0, s1, . . . q P SN,
Sptq “ st, describing a specific realization of the system’s behavior is called a state
trajectory of S.

Models are used to characterize the behavior of a dynamical system and ideally
provide a minimal, yet complete representation of the behavior of S over time,
capable of describing all possible state trajectories s of S. There are many ways to
formulate such a representation. A natural approach, often easiest when S is known
to obey certain laws (e.g., the laws of physics), is to describe the system behavior
implicitly as a set of solutions to a set of difference equations. If the behavior of S is
random, another suitable representation is to model S as a stochastic process over N,
where the system state St at time t is represented as a random variable with support
S.

However, as our starting point, we choose a more explicit (and deterministic)
formulation by identifying the behavior of a dynamical system S with its set
MS Ă SN of all possible state trajectories τ x. We call the set MS the dynamic model
or model of the system S.

Remark 3. Many fundamental concepts of systems theory such as controllability,
observability, stability, etc., have an equivalent formulation in this representation.
This alternative framework of control and systems theory was first developed by Jan
C. Willems [131] and is known as the Behavioral Approach to Control.
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Input-Output Maps of Dynamical Models Often the state space S is represented
by a family tZiui, i P I , of smaller spaces indexed over some index set I; often I is
used to further specify the internal structure of the system S (see example below).

Example 1. Assume that S represents the behavior of a large-scale system composed
of a family of interconnected dynamical systems tXiuiPI1 driven by a distributed family
of actuators tUjujPI2 and a collection of external disturbance sources tWjujPI3 .
Then a natural choice to define S is as the Cartesian product X ˆ U ˆ W of the
spaces X “

Ś

iPI1 Xi, U “
Ś

jPI2 Uj , and Z “
Ś

kPI3 Zk corresponding to the
families of subsystems, actuators, and disturbance sources.

Sometimes a dynamical system offers a natural way to divide I into a union I inYIout

of inputs I in representing independent variables Zi, i P I in and outputs Iout such
that the variablesZi, i P Iout depend causally on the variablesZi, i P I . A dynamical
model has a viable assignment of inputs I in and outputs Iout if and only if the binary
relation tptziuiPIin , tzjujPIoutq |tziuiPI P MSu is causal according to the following
definition:

Definition 2.4. A binary relation R Ă X N ˆ YN is said to be causal if for any
px,yq P R and px1,y1q P R, and any t P N, the following implication holds true:

P tx “ P tx1
ùñ P ty “ P ty1.

Remark 4. The above condition is equivalent to requiring that for any t, the relation
tpP tx,P tyq | px,yq P Ru is functional. Hence, if true, it defines a unique causal
operator Ψ : dopRq ÞÑ YN such that Ψpxq “ y ô px,yq P R.

From the above definition, we see that a viable assignment of inputs I in and outputs
Iout implicitly defines a unique causal mapping between inputs sin “ tziuiPIin and
outputs sout “ tziuiPIout of trajectories s “ tzuiPI P MS . We call the operator
representing the mapping Ψ : sin ÞÑ sout the I in ÞÑ Iout-map of the dynamical
model MS . We formulate this definition and summarize our discussion below:

Definition 2.5 (Input-Output Maps of Dynamical Models). Let MS Ă SN be a
dynamical model, where S “ tZiuiPI . Consider two subsets I in, Iout Ă I such
that I in Y Iout “ I, and for a trajectory s “ tzuiPI P MS , let sin “ tzuiPIin and
sout “ tzuiPIout .
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We say that the pair I in and Iout is an input-output assignment for MS if the binary
relation RIin ÞÑIout defined below is causal:

RIin ÞÑIout

fi tpsin, soutq | s P MSu.

Furthermore, under this condition, there exists a unique causal operator Ψ :

dopRIin ÞÑIout
q Ñ Sout such that

sout “ Ψpsinq ô s P MS.

This causal operator is referred to as the I in ÞÑ Iout-map of MS .

If an input-output map exists, it provides a complete description of the dynamical
system S, similar to MS . However, in general, a viable input-output assignment is
not always possible, and if one exists, it is not always unique. Hence, while MS is
uniquely tied to the dynamical system S, there might be different input-output maps
of S depending on how many viable assignments of input-output pairs there are.
Therefore, input-output maps of dynamic model MS have to be distinguished by the
respective choice of inputs I in and outputs Iout.

Closed Loop Maps of Dynamical Models In a standard control problem setup,
we are given a dynamical system, called the plant, with state X , which we control
with some input U using measurements Y , and which is subjected to external (non-
measurable) disturbancesW . We represent the time behavior of this control system as
a dynamical system with state S “ pX,U,W, Y q and state space S “ pX ,U ,W ,Yq

and denote trajectories of S as a tuple τ “ pτ x, τ u, τ y, τwq composed of the
individual state, input, output, and disturbance sequences τ x P X N, τ u P UN,
τ y P YN, and τw P WN corresponding to a realization of the dynamics of the control
system S. Correspondingly, the set of all such realizations forms the dynamical
model MS Ă SN, which describes the behavior of the control system S in open-loop.

On the other hand, introducing a feedback controller K P CpYN,UNq leads to
a different dynamical system SK , describing the closed-loop dynamics of the
interconnection of the open-loop system S and controller K. We say that the
controller K realizes the closed-loop system SK or equivalently, realizes the closed-
loop model MSK

. The relation between open and closed-loop system can be simply
stated in terms of their dynamic models:

MSK
“ tτ P MS | τ u

“ Kpτ y
qu “ MS X MK .
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Thus, the model of the closed-loop system SK is a subset of the model of the
open-loop system S, and more specifically, it is obtained from MS by imposing
the additional constraint τ u “ Kpτ yq on the trajectories of S. If we represent the
controller K as a dynamical model MK “ tτ P SN | τ u “ Kpτ yqu embedded in
the space SN, then we can also simply view the closed-loop model as an intersection
of the open-loop and controller models. From this point of view, we can characterize
the space of closed-loop systems realizable by some causal operator K : YN Ñ UN

as the following set of dynamical models, which can be referred to as the space of
realizable closed-loop models of the system S:

MS “
␣

MS X MK | K P CpYN,UN
q
(

.

Maps of closed-loop models MSK‹ P MS are usually called closed-loop maps of S,
which will be the focus of the discussion in the next section.

Remark 5. In later discussion, we consider dynamical systems where for allM‹ P MS ,
the pair Iin “ twu and Iout “ txuyu is a valid input-output pairing. This permits
us to represent the space of realizable closed-loop system behavior as a space of
operators, which we later denote by Φw ÞÑtuxyu

S and refer to as the space of closed-loop
maps of S or MS .

In this section, we explored the concept of general exterior representations of
dynamical systems, which can be understood as a collection of sequences that
encompass all possible manifestations of system behavior. This discussion led us
to examine dynamic models and the causality conditions that enable us to establish
correspondences between dynamic models and maps linking inputs to outputs.
Additionally, we delved into the relationship between the model of an open-loop
system and the space of realizable closed-loop models through feedback control.

Building upon these ideas, in the upcoming section, we will shift our focus to an
interior representation of dynamical systems. This representation takes the form of
nonlinear difference and operator equations, allowing us to establish connections
and equivalences with the exterior representations discussed earlier, and leads to the
main result of this chapter: the characterization and realization of closed-loop maps
via solutions of the CLM operator equation.

2.5 Dynamic Equations of the Open-Loop System
Here we discuss the class of discrete-time systems of interest and define our setup of
the open-loop system S and the governing dynamic equations.
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The open-loop system S is a dynamical system with state space S “ Sx ˆSu ˆSw “
Ś

iPI Si, I “ tx, u,wu, whereSx, Sw, Su denote the spaces corresponding to the state
of the plant, control action, and external disturbance. Moreover, let X “ Sx “ Sw

and U “ Su, where X and U are some fixed finite-dimensional vector spaces, e.g.,
X “ Rn, U “ Rm. We define the open-loop system S in terms of its trajectories
τ “ px,u,wqJ as follows:

Let x P ℓX be the state trajectory of a nonlinear discrete-time dynamical system,
and let u P ℓU and w P ℓX be the corresponding sequences of control inputs and
disturbances that generate the trajectory according to the following set of equations:

@t ě 1 : xt “ ft´1pxt´1:0, ut´1:0q ` wt, x0 “ w0, (2.23)

where f :“ tftu
8
t“0, ft : X r0,ts ˆ U r0,ts Ñ X r0,ts is a fixed sequence of functions

representing the (open-loop) dynamics of the system. We make no further assumptions
on f , i.e., each ft can be an arbitrary nonlinear function. We can obtain a more compact
description of the dynamics by embedding the function sequence f as the component
functions of a causal operator F : ℓXˆU Ñ ℓX . Thus, let F P CpℓXˆU , ℓX q, and its
strictly causal right-shifted version F` :“ S`F P CspℓXˆU , ℓX q be defined in terms
of f as:

F px,uq :“ pf0px0, u0q, f1px1, x0, u1, u0q, . . . , ftpxt´1:0, ut´1:0q, . . . q (2.24)

F`
px,uq :“ S`F px,uq “ p0, f0px0, u0q, f1px1:0, u1:0q, . . . q. (2.25)

We refer to the operator F as the open-loop dynamics of the system, since the
dynamic equations (2.23) can be equivalently defined in sequence space as

x “ S`F px,uq ` w “: F`
px,uq ` w. (2.26)

The above equation is a compact description of the state transitions of the dynamical
system; hence, one can view this as an internal characterization of the system
dynamics. On the other hand, the corresponding external representation of the
open-loop system S is given by the dynamical model MF Ă ℓX ˆ ℓU ˆ ℓX , which is
defined for a fixed dynamics operator F as:

MF :“
␣

τ “ pτ x, τ u, τw
q

J
ˇ

ˇ τ x
“ F`

pτ x, τ u
q ` τw

(

. (2.27)

Hence, as discussed in the previous section, MF is the set of all possible trajectories
τ “ px,u,wqJ of S, represented as a tuple of state x, input u, and disturbance w

sequences corresponding to realizations of the open-loop system.
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From the dynamic equations, it is also easy to see that w,u can be treated as
input signals of the open-loop system and the resulting state trajectory x as the
corresponding output. In other words, tu,wu and txu is a valid input-output
assignment of the open-loop model MF , and it has, therefore, a tu,wu ÞÑ x-map,
which we refer to as the open-loop map GF . We derive the closed-form of GF next.

Remark. Aside from GF , MF also has other valid input-output map representations.
For example, Iin “ tx, uu, Iout “ twu is a valid input-output assignment as well,
and therefore MF can be equivalently represented as a tx, uu ÞÑ w-map.

Open-Loop Maps
Since a system state trajectory x is always a causal function of the input u and the
disturbance w, it is clear that GF : pu,wq ÞÑ x, st.: px,u,wqJ P MF , represents a
well-defined mapping. We call GF P CpℓXˆU , ℓX q the open-loop map of dynamics
F , and notice that the model set MF is the graph of GF . For a fixed u, denote
F`|u : ℓX ÞÑ ℓX as the restriction of F` such that F`|upxq “ F`px,uq. Then,
for each trajectory px,u,wqJ P MF , holds x “ pI ´ F`|uq´1w (inverse exists due
to Proposition 5), and therefore GF is the mapping

GF : pu,wq ÞÑ pI ´ F`
|uq

´1w.

In this section, we discussed the relationships between different representations of the
open-loop system S: as a set of dynamic equations x “ F`px,uq`w, as a dynamic
model MF , and as a causal input-output map GF : pu,wq ÞÑ pI ´ F`|uq´1w. In
the next section, we discuss this trinity of representations for the closed-loop system.

2.6 Closed-Loop Maps and Realizing Controllers
In this section, we introduce feedback control and characterize the dynamics of the
closed-loop, by establishing a correspondence between the closed-loop system’s
exterior representation, as closed-loop maps, and the internal representation, as
dynamics operators and system equations. In short, the key theoretical results
discuss a characterization of the space of realizable CLMs as the solution space of
an operator equation and the one-to-one correspondence between CLMs and their
realizing controllers.
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The Closed-Loop System
Let K P CpℓX , ℓUq represent a causal feedback control law, and let the component
functionsKt denote the decision rule for ut based on the state observations x0, . . . , xt:

Kpxq :“ pK0px0q, . . . , Ktpxt:0q, . . . q. (2.28)

Correspondingly, let MK “ tτ xu “ pτ x, τ uq | τ u “ Kτ xu denote the dynamic
model of K. The interconnection of (2.23) with the open-loop system S defines a
dynamical system CL, which we refer to as the closed-loop, defined by the following
dynamic equations:

CL : xt “ ft´1pxt´1:0, ut´1:0q ` wt, x0 “ w0 (2.29a)

ut “ Ktpxt:0q. (2.29b)

Equivalently, the dynamic system equations of the closed-loop CL can be written as:

CL : x “ F`
px,Kpxqq ` w, u “ Kpxq (2.30)

“ F`
Kpxq ` w,

whereFK denotes the mappingx ÞÑ F px,Kpxqq, also referred to as the closed-loop
dynamics operator.

Definition (Operator of Closed-Loop Dynamics). For F P CpℓXˆU , ℓX q and K P

CpℓX , ℓUq, define the operatorFK P CpℓX q for allx P ℓX asFKpxq :“ F px,Kpxqq.

As formulated in Section 2.4, intersecting the open-loop modelMF with the controller
model MK yields CLrF ,Ks fi MF X MK , the dynamic model of the closed-loop
system CL. CLrF ,Ks is the set of all trajectories τxuw “ px,u,wq that satisfy the
equations 2.30 for some fixed pair of F and K and hence admits the equivalent
definition: and define the set of all trajectories τ “ px,u,wqJ, x P ℓX , u P ℓU , and
w P ℓX which are solutions to the above equation as the closed-loop model CLrF ,Ks:

CLrF ,Ks “
␣

px,u,wq
J
ˇ

ˇ x “ F`
px,uq ` w, u “ Kpxq

(

. (2.31)

Recall that F` P CspℓXˆU , ℓX q and therefore the map F`
K P CspℓX q is also strictly

causal. As shown in (5), this observation certifies that the operator I ´ F`
K has a

causal inverse pI ´F`
Kq´1 P CpℓX q. Hence, we can equivalently rewrite the equation

x “ FKpxq ` w as x “ pI ´ F`
Kq´1w and see that px,u,wqJ is a trajectory of

CLrF ,Ks if and only if it satisfies the equations:

x “ pI ´ F`
Kq

´1w (2.32a)

u “ KpI ´ F`
Kq

´1w. (2.32b)



47

In other words, for any F and K, the operator
“

I
K

‰

pI ´ F`
Kq´1 P CpℓX , ℓXˆUq

represents the w ÞÑ
“

x
u

‰

-map of the closed-loop model CLrF ,Ks.

Remark. In terms of the discussion in Section 2.4, 2.32 proves the causality of the
relation Rw ÞÑx,u “ tpw,

“

x
u

‰

q | px,u,wqJ P CLrF ,Ksu and provides a formula for
the w ÞÑ x, u-map of the closed-loop model CLrF ,Ks.

The input-output representation of a closed loop provides a natural way to define
closed-loop stability [139]: The closed-loop trajectories τ P CLrF ,Ks have ℓp-
bounded state and input trajectory τ xu for any ℓp bounded disturbances τw if and only
if the w ÞÑ tx, uu-map of CLrF ,Ks is ℓp-stable, and correspondingly, a controller K
is ℓp-stabilizing if and only if the corresponding w ÞÑ tx, uu-map, i.e., the operator
“

I
K

‰

pI ´ F`
Kq´1 is ℓp-stable. The next theorem summarizes our discussion so far,

and states important properties of the w ÞÑ tx, uu-map representation of CLrF ,Ks.

Theorem 6 (Input-Output Maps of closed loops). For any fixed pairF P CpℓXˆU , ℓX q

and K P CpℓX , ℓUq, the closed-loop model CLrF ,Ks has a w ÞÑ tx, uu-map Ψ P

CpℓX , ℓXˆUq, and it holds:

i) Ψ “
“

Ψx

Ψu

‰

, where Ψx “ pI ´ F`
Kq´1 and Ψu “ KpI ´ F`

Kq´1.

ii) τ P CLrF ,Ks if and only if τ xu “ Ψpτwq.

iii) K “ ΨupΨxq´1.

Proof. We have already established that CLrF ,Ks always has a w ÞÑ tx, uu-map;
according to the setup of the theorem we denote this map Ψ.
i): As discussed previously, i) follows since for any px,u,wqJ P CLrF ,Ks holds 2.32,
which provides a closed-form expression for Ψ. ii): This is just the restatement of
the general definition Def. 2.5. (iii): From i), which is already proven, we have
Ψx “ pI ´ F`

Kq´1 and pΨxq´1 “ pI ´ F`
Kq, which implicitly states that Ψx is

always causally invertible. Now since Ψu “ KpI ´ F`
Kq´1, multiplying both sides

from the right by pΨxq´1 yields K “ ΨupΨxq´1.

The above result leads us to a very important conclusion: For fixed F , there is
a one-to-one correspondence, via the transformation H : K ÞÑ

“

I
K

‰

pI ´ F`
Kq´1

and its inverse H´1 :
“

Ψx

Ψu

‰

ÞÑ ΨupΨxq´1, between a controller K, later called the
realizing controller, and the corresponding w ÞÑ tx, uu-map of CLrF ,Ks.
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Remark 7. In fact, there is a one-to-one correspondence between w ÞÑ tx, uu-maps
of CLrF ,Ks and the pairs pK,FKq of controller K and closed-loop dynamics FK: If
Ψ is the w ÞÑ tx, uu-map of CLrF ,Ks, then I ´ pΨxq´1 “ F`

K and ΨupΨxq´1 “ K;
the reverse direction is clear, since w ÞÑ tx, uu-maps of CLrF ,Ks always have the
form Ψ “

“

I
K

‰

pI ´ F`
Kq´1.

This observation motivates us to characterize the space of all w ÞÑ tx, uu-maps of
CLrF ,Ks. We define this as the space Φ

w ÞÑtx,uu

CL rF s of closed-loop maps (CLMs) of
F and call an operator Ψ in the set Φw ÞÑxu

CL rF s a closed-loop map of F :

Definition 2.6 (Closed Loop Maps). An operator Ψ P CpℓX , ℓXˆUq is called a
closed-loop map (CLM) of F , if for some K̃ P CpℓX , ℓUq, called realizing controller
of Ψ, the operator Ψ coincides with the w ÞÑ px, uq-map of the closed-loop model
CLrF ,K̃s. We denote the set of all such Ψ, with Φw ÞÑxu

CL rF s and call it the space of
CLMs of F or the CLM-space of F .

Remark. In terms of the discussion of Section 2.4, the above considers the special
case where y “ x, i.e., we can measure the state x and used as measurement for
feedback control.

The next theorem presents different characterizations of the CLM-space Φw ÞÑxu
CL rF s

and represents a main result of this chapter.

Theorem 8 (Characterization of CLMs ). For a fixed causal operator F P

CpℓXˆU , ℓX q, the following are all equivalent definitions of Φw ÞÑxu
CL rF s:

i) Φw ÞÑxu
CL rF s “ tΨ P CpℓX , ℓXˆUq | Ψ is a CLM of F u.

ii) Φw ÞÑxu
CL rF s “ tΨ | @

“

τxu

τw

‰

P CLrF ,ΨupΨxq´1s s.t. τ xu “ Ψpτwqu.

iii) Φw ÞÑxu
CL rF s “ tΨ “

“

Ψx

Ψu

‰

P CpℓX , ℓXˆUq | Ψx “ F`pΨq ` Iu.

iv) Φw ÞÑxu
CL rF s “ t

“

I
K

‰

pI ´ F`
Kq´1 | K P CpℓX , ℓUqu.

Proof. i) is just reiterating the original definition Def. 2.6. We proceed by proving
that the other statements are all equivalent to i). ii): This statement follows from
the fact that there is a one-to-one correspondence between CLMs Ψ P Φw ÞÑxu

CL rF s

and their realizing controllers K “ ΨupΨxq´1 and recalling Theorem 6 ii). Part iv):
This statement follows directly from ii) of Theorem 6. It remains to establish the
equivalence between iii) and i).
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i) ùñ iii): Assume Ψ is a CLM of F . Then, per definition, there exists some
K̃ P CpℓX , ℓUq such that Ψ is an w ÞÑ px, uq-map of CLrF ,K̃s, which is equivalent,
by the characterization Theorem 6, to stating that px,u,wqJ P CLrF ,K̃s if and only if
x “ Ψxpwq and u “ Ψupwq. Since px,u,wqJ P CLrF ,K̃s ô x “ F`px,uq ` w,
we conclude by substitution that for all w P ℓX , Ψxpwq “ F`pΨpwqq ` w, i.e., the
operator Ψx and F`pΨq ` Ix are the same.

iii) ùñ i): Assume Ψ is a solution of (2.30). Then, Ψx ´ I “ F`pΨq P CspℓX q,
since F` P CspℓXˆU , ℓX q. As discussed in Lem. 5, any operator of the form In`A`,
A` P CspℓX q is causally invertible. Therefore, pΨxq´1 exists and pΨxq´1 P CpℓX q.
Now, take K 1 “ ΨupΨxq´1 and let px,u,wqJ P CLrF ,K1s be an arbitrary trajectory
of the closed-loop model CLrF ,K1s. Then, px,uq “ ΦCLrF ,K 1spwq, which implies
thatx “ F px,ΨupΨxq´1xq`w. We apply the identity pΨx´IqpΨxq´1`pΨxq´1 “

I to the left side of the equation and obtain

pΨx
´ IqpΨx

q
´1x ` pΨx

q
´1x “ F`ΨpΨx

q
´1x ` w

ô pΨx
´ I ´ F`ΨqpΨx

q
´1

` pΨx
q

´1x “ w,

which, due to Ψx ´ I “ F`pΨq, implies x “ Ψxw and u “ ΨupΨxq´1Ψxw “

Ψuw.

As it turns out, the space of realizable CLMs Φw ÞÑxu
CL rF s can be characterized as

solutions to the nonlinear operator equation:

Ψx
“ F`

pΨq ` I. (2.33)

We therefore also refer to (2.33) as the CLM equation. Writing out the CLM
equation (2.33) in terms of component functions gives the more explicit condition
on the functions Ψx

t , Ψu
t : The map Ψ “ pΨx,Ψuq satisfies (2.33) if and only if its

component functions satisfy the following infinite set of function equations for all
inputs wt:0:

Ψx
t pwt:0q “ Ft´1pΨx

t´1:0pwt´1:0q,Ψu
t´1:0pwt´1:0qq ` wt. (2.34)

As proven in Theorem 6, the mapping between CLMs pΨx,Ψuq P Φw ÞÑxu
CL rF s

and the corresponding realizing controllers K 1 is one-to-one, via the relationship
K 1 “ ΨupΨxq´1. While the realizing controller K of a CLM Ψ is a unique operator,
we have degrees of freedom regarding the implementation – usually in the form of a
dynamical system – of K. Next, we discuss a particularly simple approach enabled
by the fact that Ψx is causally invertible for any Ψ P Φw ÞÑxu

CL rF s.
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System Level Implementations of Realizing Controllers
A crucial step of establishing Theorem 8, is to show that pΨxq´1 always exists. We
briefly rederive this partial result as a consequence of Lem. 5, restated below, which
highlights the main idea behind the system level implementation.

Lemma. The inverse A´1 of a square operator A P CpℓX q exists if A ´ I P CspℓX q,
and b “ A´1paq is calculated by evaluating equations bt “ at ´Atp0, bt´1:0q in the
order t “ 0, 1, 2, . . . .

Due to Theorem 8, we know that for any CLM Ψ P Φw ÞÑxu
CL rF s holds Ψx ´ I “

F`pΨq. Furthermore, since F` P CspℓXˆU , ℓX q holds, we are also ensured that
Ψx ´I P CspℓX q. This allows us to apply the previous lemma and proves that pΨxq´1

always exists and that it is a causal operator in CpℓX q.

Furthermore, as shown in Lem. 5, the conditionΨx´I P CspℓX q allows a particularly
simple method of implementing K 1 “ ΨupΨxq´1 of Theorem 8: Given an input a,
the output b “ K 1paq can be computed recursively through the equations

ct “ at ´ Ψx
t p0, ct´1:0q, (2.35a)

bt “ Ψu
t pct:0q. (2.35b)

The above implementation represents a dynamical system with input a, output b and
internal state c and will be referred to as the system level implementation of K 1.

Remark. It is more common in control literature [49, 142] to refer to (2.35) as
the "realization" of the controller, however to prevent overloading and potential
confusion with the "realizing controller" (see Def. 2.6), we instead choose to call
(2.35) the implementation of K.

Moreover, in later sections, we make use of this implementation to define controllers
K that are parameterized by operators Ψx, Ψu that are not necessarily CLMs.
In particular, the next section will show that such an implementation can yield
closed-loop stability if Ψ approximately satisfies (2.33). Therefore, we define
controllers with (or which permit) the above implementation separately as System
Level (SL)-controllers:

Definition 2.7. Assume given operators A P CpℓX q, B P CpℓX , ℓUq, where A ´ I P

CspℓX q. The above dynamical system will be referred to as the system level controller
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SLrA,Bs. Consider the dynamical system with input a, output b, and internal state
c according to the equations

ct “ at ´ Atp0, ct´1:0q, (2.36)

bt “ Btpct:0q. (2.37)

The above dynamical system will be referred to as the system level controller
SLrA,Bs.

Remark. A trivial yet important consequence of the definition Def. 2.7 is that both
input a and output b can always be expressed through the internal state c as a “ Ac,
b “ Bc.

The only requirements for the above implementation are that the operator A P CpℓX q

is square and A ´ I strictly causal, and that B P CpℓX , ℓUq is of compatible
dimensions. We will abbreviate these conditions with the term candidate closed-loop
map (cCLM):

Definition 2.8 (Candidate Closed-Loop Map). A causal operator Ψ “
“

A
B

‰

is
called a candidate closed-loop map (cCLM), if A is square and such that A ´ I

is strictly causal. More specifically, we say that Ψ is a candidate CLM of some
F P CpℓXˆU , ℓX q if A P CpℓX q and B P CpℓX , ℓUq, i.e., F and Ψ are of compatible
domain and co-domain.

The dynamic model SLrΨs of the implementation can be defined as a subset
SLrΨs Ă ℓS , where S “ tSiuiPI , I “ tx, u, ŵu s.t.: Sŵ “ Sx “ X . We can define
SLrΨs in terms of its trajectories τ “ pτ ŵ, τ x, τ uqJ P SLrΨs as

SLrΨs “ tτ P ℓXˆXˆU
| τ ŵ

“ pΨx
q

´1τ x, τ u
“ Ψuτ ŵ

u, (2.38)

and notice that it can be equivalently represented by its x ÞÑ tŵ, uu-map, the
operator

“

I
Ψu

‰

pΨxq´1. We denote the former as KSL “
“

Kŵ
SL

Ku
SL

‰

P CpℓX , ℓXˆUq for a
fixed Ψ P Φw ÞÑxu

CL rF s. The partial map Ku
SL corresponds to the realizing control

law ΨupΨxq´1, while Kŵ
SL represents the dynamics of the internal state of the

implementation used to compute the control action u from the internal state ŵ via
u “ Ψuŵ.

For a CLM Ψ P Φw ÞÑxu
CL rF s, the dynamic system SLrΨs provides a simple and

straightforward implementation, of the realizing controller K “ ΨupΨxq´1, via the
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dynamic equations (2.35). However, the system level implementation of K is not
unique, that is there exist cCLMs Ψ̂ ‰ Ψ such that K “ ΨupΨxq´1 “ Ψ̂upΨ̂xq´1.;
a trivial example is Ψ̂ “

“

I
K

‰

. The space of all such cCLM Ψ̂ defines an equivalence
class which we refer to as the Implementation Space of a controller K.

Definition 2.9. The (SL)-Implementation Space IK of causal controller K P

CpℓX , ℓUq is the set of all cCLMs Ψ P CpℓX , ℓXˆUq such that ΨupΨxq´1 “ K.

Remark. This was first formulated and studied in [6] for the case of LTI systems.
The same work shows that the implementation space can be leveraged to formulate
novel robust control synthesis procedures for LTI systems.

The following result provides a characterization of the implementation space IK of a
controller K in terms of the CLM it realizes:

Lemma 9 (Space of System Level Implementations). Let Φ P Φw ÞÑxu
CL rF s be a CLM

of some fixed F and let K “ ΦupΦxq´1 be the corresponding unique realizing
controller. Then,

IK “ t
“

Ψx

Ψu

‰

P CpℓX , ℓXˆU
q | ΦpΨx

´ F`Ψq “ Ψu.

Despite that for any Ψ P IK , the dynamic model SLrΨs realizes the controller K,
special care needs to be taken when selecting Ψ P IK in practice, since the choice of
the realizing dynamical system SLrΨs can impact the stability of the overal closed-
loop: We need to make sure that the dynamical system SLrΨs is stable even if we add
small perturbations v to the computation of the internal state as ŵ “ pΨxq´1x ` v.
This is a crucial concern for control applications since even if our evaluation of
ŵ “ pΨxq´1x is entirely digital, numerical errors can introduce perturbations v that
are capable of causing numerical instability in our implementation. In the worst-case
scenario, this can jeopardize the stability of the entire closed-loop CLrF ,Ks. In
control literature, this problem is known as the question of closed-loop internal
stability. In Section 2.7, we show that the system-level implementation SLrΨs of a
realizing controller K “ ΨupΨxq´1 is internally stable under suitable assumptions
and provided Ψ is a stable CLM of F .

2.7 Robust and Internal Stability of Closed-Loop
As shown in the previous section, any closed-loop mapΨ “ pΨx,ΨuqJ P Φw ÞÑxu

CL rF s

can be realized with the corresponding system level controller SLrΨx,Ψus as defined
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in Def. 2.7. Thus, we know that if we choose K “ SLrΨx,Ψus, then for any
disturbancew, the trajectories px,uq of the closed-loopCLwill be px,uqJ “ Ψpwq.
In this section, we show that under mild assumptions, the controllerK “ SLrΨx,Ψus

guarantees internal stability of the closed-loop. Moreover, we show that closed-
loop stability is guaranteed even if Ψ is satisfying the CLM equation (2.33) only
approximately.

To setup the stability analysis we take the original closed-loop (2.29a) with K chosen
to be SLrΨx,Ψus and add additional perturbation signals v and d to the internal
state of the system level controller and control input. We call the new perturbed
closed-loop δCL:

δCL : xt “ Ft´1pxt´1:0, ut´1:0q ` wt, x0 “ w0 (2.39a)

ŵt “ xt ` vt ´ Ψx
t p0, ŵt´1:0q (2.39b)

ut “ Ψu
t pŵt:0q ` dt. (2.39c)

As before, w, x and u represent system disturbance, state and input, and the added
state ŵ represents the internal state of the system level controller. In contrast, to
the previous section, we now assume that Ψ “ pΨx,Ψuq are merely candidate
closed-loop maps (cCLM) of F , and derive conditions sufficient for ℓp-stability of
δCL with respect to the residual operator ∆rF ,Ψs, which is defined for fixed cCLM
Ψ and dynamics F as:

Definition 2.10. Let Ψ “ pΨx,Ψuq be cCLMs of some dynamics F . Then, the
(CLM)-residual of the pair rF ,Ψs, denoted by ∆rF ,Ψs, is the operator defined as
∆rF ,Ψs :“ F`pΨq ` I ´ Ψx.

As alluded to by its name, the residual ∆rF ,Ψs of a cCLM Ψ represents the
CLM-equation error with respect to the dynamics F . Hence, candidate closed-loop
map Ψ which satisfy ∆rF ,Ψs “ 0 define the space of closed-loop maps of F , i.e.,
we can equivalently define the set Φw ÞÑxu

CL rF s as

Φw ÞÑxu
CL rF s “ tΨ | ∆rF ,Ψs “ 0u.

In sequence space, we can equivalently describe δCL by the equations:

δCL : x “ F`
px,uq ` w (2.40a)

ŵ “ x ` v ´ pΨx
´ Iqpŵq (2.40b)

u “ Ψu
pŵq ` d. (2.40c)
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We can rewrite the equations (2.40) into a form, more suitable for analysis. Denote
û :“ u ´ d, x̂ :“ x ` v to rewrite (2.40) as

δCL1 : x̂ “ F`
px̂ ´ v, û ` dq ` w ` v (2.41a)

ŵ “ x̂ ´ pΨx
´ Iqpŵq “ x̂ ` Ψxpŵq (2.41b)

û “ Ψu
pŵq. (2.41c)

For fixed sequences v, d, and denote T´v,d P CpℓXˆU , ℓXˆUq as the affine operator
such that @

“

x1

u1

‰

P ℓX : T´v,d

“

x1

u1

‰

“
“

x1´v
u1`d

‰

, i.e., T´v,d represents the identity
operator shifted by the constant sequence

“

´́́v
d

‰

. With this affine operator, we can
formally rewrite (2.41a) as x̂ “ F`T´v,dpx̂, ûq ` w ` v and substitute it into
(2.41b) to obtain an equation describing the dynamics of the internal state ŵ:

ŵ “ F`T´v,dpΨqpŵq ´ pΨx
´ Inqpŵq ` w ` v

ŵ “ F`T´v,dpΨqpŵq ´ pT x
´v,dΨ

x
´ Inqpŵq ` w “ ∆rF ,T´v,dΨspŵq.

(2.42)

Since the residual is a sum of two strictly causal operators F`pΨq and I ´ Ψx (by
definition of cCLMs), the operator In ´ ∆rF ,T´v,dΨs is causally invertible, and
we can solve for the lumped disturbance ŵ as

ŵ “ pIn ´ ∆rF ,T´v,dΨsq
´1w, (2.43)

and x̂, û as

x̂ “ Ψx
pIn ´ ∆rF ,T´v,dΨsq

´1w, û “ Ψx
pIn ´ ∆rF ,T´v,dΨsq

´1w.

For v,d “ 0, the operator pIn ´ ∆rF ,Ψsq
´1 represents the map w ÞÑ ŵ, and we

see that ℓp-boundedness of ŵ is entirely determined by ℓp-stability of the former
operator. Suitably, we will refer to the dynamic system governed by equation (2.43)
as the effective/lumped disturbance dynamics. In fact, as shown in our next result,
the stability of the overall closed-loop is entirely determined by the stability of the
dynamics (2.43).

Sufficient and Necessary Conditions for Internal Stability

Summarizing our derivations so far, we can describe the input-output mapping
ΦδCL : pw,v,dq ÞÑ pŵ,x,uq of the closed-loop δCL by the equations:

ŵ “ pIn ´ ∆rF ,T´v,dΨsq
´1w (2.44a)

x “ Ψx
pIn ´ ∆rF ,T´v,dΨsq

´1w ´ v (2.44b)

u “ Ψu
pIn ´ ∆rF ,T´v,dΨsq

´1w ` d. (2.44c)
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The closed-loop δCL is internally stable if its input-output map ΦδCL is ℓp-stable.
The next theorem states sufficient and necessary conditions for that:

Theorem 9. Consider the closed-loop system δCL described by the equations (2.40)
for a fixed F P CpℓXˆU , ℓX q and some fixed compatible ℓp-stable candidate CLM
Ψ P CpℓX , ℓXˆUq. Then, the map ΦδCL : pw,v,dq ÞÑ pŵ,x,uq is ℓp-stable if and
only if the operator pIn ´ ∆rF ,T´v,dΨsq

´1
P CpℓX q is ℓp-stable for any v P ℓXp ,

d P ℓUp .

Proof. Sufficiency: This is clear from equations (2.44). Necessity: Assume
pIn ´ ∆rF ,T´v1,d1Ψsq

´1 is not ℓp-stable for some v1 P ℓXp , d
1 P ℓUp , then there

exists some w1 P ℓXp such that pIn ´ ∆rF ,T´v1,d1Ψsq
´1w1 R ℓXp and therefore

Φŵ
δCLpw1,v1,d1q R ℓXp .

Robustness of SL controllers in the LTV case was first discussed in [66]. Here, we
discuss the generalization of these results in the context of linear operators.

If we assume that F is linear, we can split F into the linear operators A P LCpℓX , ℓX q

andB P LCpℓU , ℓX q such thatF : px,uq ÞÑ Apxq`Bpuq. In that case, the operator
∆rF ,T´v,dΨs represents the mapping

∆rF ,T´v,dΨs : z ÞÑ ∆rF ,Ψspzq ` pIn ´ A`
qv ` B`d,

and correspondingly, pIn ´ ∆rF ,T´v,dΨsq´1 represents the mapping:

z ÞÑ pIn ´ ∆rF ,Ψsq
´1

pz ` pIn ´ A`
qv ` B`dq. (2.45)

The dynamic equations (2.44) of δCL can be equivalently stated in the form:

ŵ “ pIn ´ ∆rF ,Ψsq
´1

pw ` pI ´ A`
qv ` B`dq, (2.46a)

x “ Ψx
pIn ´ ∆rF ,Ψsq

´1
pw ` pI ´ A`

qv ` B`dq ´ v, (2.46b)

u “ Ψu
pIn ´ ∆rF ,Ψsq

´1
pw ` pI ´ A`

qv ` B`dq ` d. (2.46c)

Remark. Notice that Ψ is still allowed to be nonlinear, and therefore, the dynamics
of the closed-loop (2.46) are, in general, nonlinear.

From the above equations, we can see that the stability of pIn ´ ∆rF ,T´v,dΨsq´1

is equivalent to the stability of pIn ´ ∆rF ,Ψsq´1 and the boundedness of A and B.
Thus, as a corollary of Theorem 9, we obtain a simpler characterization of internal
ℓp-stability for the case where F is linear:
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Corollary 10. Consider the closed-loop system δCL described by the equations
(2.40) for a fixed F P LCpℓXˆU , ℓX q and some fixed compatible ℓp-stable candidate
CLM Ψ P CpℓX , ℓXˆUq. Then, the map ΦδCL : pw,v,dq ÞÑ pŵ,x,uq is ℓp-stable if
and only if the operator pIn ´ ∆rF ,Ψsq

´1
P CpℓX q is ℓp-stable, and F is ℓp-stable.

Proof. Envoke Theorem 9 and recall (2.45), which makes it clear that the operator
pIn ´ ∆rF ,T´v,dΨsq

´1 is ℓp-stable for all v P ℓXp , d P ℓUp , if and only if the
map pIn ´ ∆rF ,Ψsq´1 is ℓp-stable and both A and B are ℓp-stable, i.e., F is
ℓp-stable.

Remark. It is important to note that requiring ℓp-stability of F does not mean
we assume that the dynamics F is open-loop stable; that requirement would be
ℓp-stability of pIn ´ F`|u“0q

´1 “ pIn ´ A`q´1.

Thus, as long as A and B are ℓp-bounded linear operators, we see that pŵ,x,uq is
ℓp-bounded if and only if the operator pIn ´ ∆rF ,Ψsq

´1 is ℓp-bounded. If Ψ is a
CLM of F , hence ∆rF ,Ψs “ 0, then the former is trivially satisfied. Thus, we see
that for the linear dynamics case, any (potentially nonlinear) CLM can be realized
via the system level controller SLrΨx,Ψus in an internally stable way.

In contrast to the linear case, verifying the stability of pIn ´ ∆rF ,Ψsq
´1 is not

sufficient alone to ensure internal stability for the case of nonlinear F . Instead, one
must also verify ℓp-stability of the lumped dynamics (2.44a) for all perturbed versions
Ψ̃ “ T´v,dΨ of the original CLM Ψ; this is, in general, not a trivial question.

In the next section, we use small-gain theorem techniques to break down the internal
stability criterion of Theorem 9 into simpler ones. However, at the expense of losing
necessity.

Remark. It should be noted that for nonlinear systems, it might even be impossible
to achieve ℓp-internal stability, despite the controllability and observability of the
system. For example, consider the simple scalar system xk`1 “ x2k ` uk ` wk with
x̂k “ xk ` vk. It is easy to verify that there does not exist a causal controller that
realizes an ℓ8-internally stable closed loop.

Sufficient Small-Gain Conditions for Internal Stability
We use the small-gain theorems and ideas derived in Section 2.3 to provide sufficient
conditions for the stability of the mapΦδCL. For the next theorem, recall the following
theorems from Section 2.3:
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Theorem (Global Small Gain Condition). Assume the operator ∆ P CpℓX q satisfies
}∆pxq}p ď γ }x}p ` β for all x P ℓXp and some small gain γ ă 1. Then, for all
w P ℓXp and y “ ∆y ` w holds:

}y}p ď
1

1 ´ γ
p}w}p ` βq.

Theorem (Local Small Gain Condition). Assume that for some ρ ą 0 and 0 ď γ ă 1,
the operator ∆ P CspℓX q satisfies }∆pxq}p ď γ }x}p for all }x}p ă ρ. Then, for any
w P ℓXp and y “ ∆y ` w the following statement holds true:

}w}p ă p1 ´ γqρ ùñ }y}p ď
1

1 ´ γ
}w}p .

It suits to measure the gain of the residual in terms of the operator (pseudo)-norm
~∆rF , Ψ̃s~‹

p3, where ~ ¨ ~‹
p and the related operator norm ~ ¨ ~p for some operator

A are defined as:

~A~
‹
p :“ sup

xPXN
p : x‰0

}Apxq ´ Ap0q}p

}x}p
~A~p :“ ~A~

‹
p ` }Ap0q}p. (2.47)

The residual norm ~∆rF ,Ψs~‹
p measures how well, up to a constant offset, a

candidate CLM Ψ fulfills the CLM equation corresponding to F and can be viewed
as a degree of approximation of the CLM equation. As shown in the following
results, the closer a cCLM Ψ approximates a true CLM of F , the more robust the
closed-loop system is. In particular, we require ~∆rF ,Ψs~‹

p and the perturbed
residual norm ~∆rF ,T´v,dΨs~‹

p to be uniformly smaller than 1; if the condition can
only be fulfilled for a subset of perturbations v,d, then we also obtain corresponding
local 4 stability results.

Theorem 11. Consider the closed-loop system δCL described by the equations
(2.40) and let ΦδCL : pw,v,dq ÞÑ pŵ,x,uq be the corresponding input-output
mapping of δCL for a fixed F P CpℓXˆU , ℓX q and some fixed compatible ℓp-stable
candidate CLM Ψ P CpℓX , ℓXˆUq such that ~∆rF ,Ψs~‹

p “ γ ă 1. Then, the
following statements hold:

i) Sufficient Condition for Global ℓp-internal-stability: If F is i.f.g. ℓp-stable,
then ΦδCL is ℓp-stable. If in addition, Ψ is f.g. ℓp-stable, then, respectively,
ΦδCL is f.g. ℓp-stable.

3See Appendix Section 2.A for proof of norm-properties.
4Local means for ℓp-bounded subsets around 0 of inputs pw,u,dq.
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ii) Sufficient Condition for Local ℓp-internal-stability: Assume ∆rF ,Ψsp0q “ 0

and that at w “ 0, the map Ψ is ℓp-continuous. Moreover, assume that there
exists a nondecreasing function5 L : R` Ñ R` such that:

}z}p, }z
111
}p ď η ùñ }F pzq ´ F pz111

q}
X
p ď Lpηq}z ´ z1

}
X
p .

Then, there exists a δ ą 0 such that ΦδCLpw,v,dq P ℓXˆXˆU
p whenever

}w}Xp , }v}Xp , }d}Up ď δ. If, in addition, ~Ψ~‹
p ă 8, then for any δw ą 0, there

exists a δvd ą 0 such that ΦδCLpw,v,dq P ℓXˆXˆU
p whenever }w}Xp ď δw

and }v}Xp , }d}Up ď δvd.

Proof. Part i): Fix some v P ℓXp , d P ℓUp , let Φŵ|v,d :“ pIn ´ ∆rF ,T´v1,d1Ψsq
´1

and decompose ∆rF ,T´v,dΨs into the sum ∆rF ,Ψs ` δ∆ where the operator δ∆
denotes the difference ∆rF ,Ψs ´ ∆rF ,T´v,dΨs. Now, notice that for all w P ℓXp :

δ∆pwq “ FΨpwq ` Ψxpwq ´ F pΨpwq `
“

´v
d

‰

q ´ Ψxpwq ´ v

“ FΨpwq ´ F pΨpwq `
“

´v
d

‰

q ´ v.

Next, we show that the ℓp-norm of ∆1pwq is bounded by a constant independent of
w:

• Per assumption, Ψ is ℓp-stable, and therefore z “ Ψw P ℓXˆU
p . Furthermore,

since v and d are assumed to be bounded in the ℓp-norm, we have z `
“

´v
d

‰

P

ℓXˆU
p . Invoking i.f.g.-ℓp stability of F at z, we know there are fixed constants

pγf , βf q such that for any z: }F pzq´F pz`
“

´v
d

‰

q}p ď γf p}v}p `}d}pq`βf .

This implies that }δ∆pwq}p is bounded above for all w P ℓX as:

}δ∆pwq}p ď pγf ` 1q}v}p ` γf}d}p ` βf . (2.48)

Denote e0 “ ∆rF ,Ψsp0q and note that since F is i.f.g. ℓp-stable and Ψ is
assumed ℓp-stable, the sequence e0 belongs to ℓXp . Now, per our assumption
~∆rF ,Ψs~‹

p “: γ ă 1, for any w P ℓXp holds:

}∆rF ,Ψspwq}p ď }∆rF ,Ψspwq ´ e0}p ` }e0}p ď γ}w}p ` }e0}p.

From the above inequality and (2.48), we can conclude that ∆rF ,T´v,dΨs is
pγ, β1q-f.g. ℓp-stable for any v P ℓXp , d P ℓUp . In particular, for all w P ℓXp holds:

}∆rF ,T´v,dΨspwq}p ď γ}w}p ` }e0}p ` pγf ` 1q}v}p ` γf}d}p ` βf
loooooooooooooooooooooomoooooooooooooooooooooon

β1

. (2.49)

5This can be thought of a local Lipshitz-constant.
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According to the above, ∆rF ,T´v,dΨs satisfies the ℓp small-gain property. Using
the small-gain Theorem 2 (presented in Section 2.3), we confirm that Φŵ|v,d achieves
p 1
1´γ

, β2q-ℓp fg stability, with β2 “ 1
1´γ

β1. On substituting the constants defined in
(2.49), we establish that the partial input-output map of δCL, Φŵ

δCL : pw,v,dq ÞÑ ŵ,
is pγ3, β3q-ℓp-stable where

γ3 “
γf ` 1

1 ´ γ
, β3 “

βf ` }e0}p

1 ´ γ
.

The other partial input-output map of the closed loop δCL, Φxu
δCL : pw,v,dq ÞÑ

px,uq, is written as Φxu
δCL “ ΨΦŵ

δCL. This implies that, at a minimum, it is ℓp-stable,
given that Ψ is ℓp-stable and Φŵ

δCL is pγ3, β3q-f.g.-ℓp-stable. If Ψ is additionally fg.-
ℓp-stable, Φxu

δCL also shares this property. Given that ΦδCL “ pΦŵ
δCL,Φ

x
δCL,Φ

u
δCLq,

we affirm the desired statement.

Part ii): Aside from a few modifications, the proof is structured as in the previous part.
Pick ε ą 0, then, by the ℓp-continuity assumption, there exists some δpεq ą 0 such
that }Ψpzq}XˆU

p ď ε for all z P Bx
ℓp

rδpεqs where Bx
ℓp

rrs :“ tw1 P ℓXˆU
p |}w1}Xp ď ru.

Fix some v,d and denote δvd :“ }v}Xp _ }d}Up , then for all z P Bx
ℓp

rδpεqs holds

}δ∆pzq}p ď }F pΨpzqq ´ F pΨpzq `
“

´v
d

‰

q}p ď Lpε ` δvdqδvd.

From ~∆rF ,Ψs~‹
p “ γ ă 1 and since we assumed∆rF ,Ψsp0q “ 0, we have e0 “

0 and therefore ∆rF ,Ψspzq ď γ}z}p. We proceed to bound }∆rF ,T´v,dΨspzq}Xp

for z P Bxu
ℓp

rδpεqs:

}∆rF ,T´v,dΨspzq}
X
p ď γ}z}

X
p ` Lpε ` δvdqδvd.

We can now use the local small gain theorem Lem. 7, letting δ∆pzq play the role
of disturbance and setting ρ “ δpεq. Notice that since L is not decreasing, the term
Lpε ` δvdqδvd is not decreasing and converges to 0 as δvd Ñ 0. This implies that
there exists rvd ą 0 such that Lpε ` rvdqrvd ď p1 ´ γqδpεq. Therefore, if δvd ď rvd,
then }δ∆pzq}p ď p1 ´ γqδpεq and we can conclude that Φŵ|v,d maps to ℓXp when
restricted to w P Bx

ℓp
rδpεqs and provided that }v}Xp _ }d}Up ď rvd. With δ˚ “

mintδpεq, rvdu, this shows that Φxu
δCLpw,v,dq P ℓXp whenever }w}Xp , }v}Xp , }d}Up ď

δ˚ and leads to the desired result, since Ψ is ℓp-stable, Φxu
δCL “ ΨΦŵ

δCL, and
ΦδCL “ pΦŵ

δCL,Φ
x
δCL,Φ

u
δCLq. If in addition, ~Ψ~‹

p “ LΨ ă 8, then δpεq “ L´1
Ψ ε

is onto R` and we can replace δpεq simply by a variable δw ě 0 and construct rvd as
a function of δw such that LpLΨδw ` rvdqrvd ď p1 ´ γqδw, which, as argued before,
is possible for any δw P R`.
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In the previous theorem, the global stability condition i) required the dynamics
operator F to be i.f.g ℓp-stability and the local one ii) required the statement

}z}p, }z
111
}p ď η ùñ }F pzq ´ F pz111

q}
X
p ď Lpηq}z ´ z1

}
X
p (2.50)

to hold for an appropriate choice of non-decreasing6 function L : R` Ñ R`. It is
important to point out that both requirements are continuity-type conditions and are
completely unrelated to the question of whether the dynamics F are open-loop
stable or unstable! As mentioned in our discussion of the different notions of
ℓp -stability of Def. 2.3, requiring F to be pγ, βq-i.f.g.-ℓp-stable, with β “ 0, is
the same as requiring F to be Lipschitz continuous over the subspace ℓXˆU

p with
respect to the corresponding ℓp-norms of the domain and codomain. On the other
hand, the statement (2.50) is a weaker continuity requirement that is equivalent to
uniform continuity of F in the ℓp-norm. For most types of dynamical system, these
continuity assumptions can be further reduced to the standard continuity properties
of functions over finite-dimensional normed spaces. For example, the dynamics
operator F corresponding to any of the following dynamical system equations is
pγ, βq-i.f.g.-ℓp-stable:

• LTI finite-dim.7 dynamics: xt “
řhx

k“1Akxt´k `
řhu

k“1Bkut´k ` wt.

• LTV finite-dim. dynamics:
xt “

řhx

k“1At,kxt´k `
řhu

k“1Bt,kut´k ` wt, for a bounded set of matrices
tpAt,k, Bt,kq | t P N, 1 ď k ď hu.

• Nonlinear "almost"-Lipshitz TI8 finite-dim. dynamics:
xt “ fpxt´1:t´hx , ut´1:t´huq ` wt where f “ f1 ` f2 and with f1 being
γ-Lipshitz-continuous and f2 being a (possibly discontinuous) β-bounded
function, that is: supx,u |f2|px, uq ď β.

• Nonlinear "almost"-equi-Lipshitz TV finite-dim. dynamics:
xt “ ftpxt´1:t´hx , ut´1:t´huq`wt where for each t, the function ft “ ft,1`ft,2

can be decomposed by a γ-Lipshitz continuous f1,t and β-bounded (possibly
discontinuous) function f2,t.

Similarly, F satisfies the condition (2.50) for the above nonlinear systems if we
replace Lipschitz continuity by uniform continuity; for the linear system examples,

6It is clear that the requirement L to be non-decreasing is without loss of generality.
7Finite-dimensional.
8TI=time-invariant, TV=time-varying.
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the conditions are the same. On the other hand, if a dynamical system cannot be
realized with a finite-dimensional internal state, then correspondingly the continuity
requirements on the dynamics operator F may need to be verified directly in the
corresponding infinite-dimensional ℓp-normed spaces.

In summary, Theorem 11 showed to us that for any of the dynamical systems listed
above, any ℓp-stable CLM Ψ of F , i.e., ∆rF ,Ψs “ 0, can be realized with an
internally ℓp-stable system level controller SLrΨx,Ψus; in the context of closed loop
of δCL, Ψ being realized means that the operator Φxu

δCL|v,d“0 : w ÞÑ Φxu
δCLpw,0,0q

is the same asΨ. Moreover, if a candidate CLMΨ is an accurate enough approximate
solution to the CLM equation, i.e., the residual operator ∆rF ,Ψs has a small enough
norm ~∆rF ,Ψs~‹

p ă 1, then the system level controller SLrΨx,Ψus still stabilizes
the system and guarantees ℓp-internal stability of the closed loop dynamics. However,
in that scenario, the resulting mapping Φxu

δCL|v,d“0 is the operator

Φxu
δCL|v,d“0 “ Ψ pIn ´ ∆rF ,Ψsq

´1

and no longer matches Ψ. Nevertheless, if Ψ has stronger stability properties
such as fg-ℓp-stability, then in either case, whether Ψ is an exact or approximate
CLM of F , the resulting input-output map ΦδCL : pw,v,dq ÞÑ pŵ,x,uq of the
closed loop δCL is guaranteed to be fg-ℓp-stable. Moreover, if F is only uniformly
ℓp-continuous but not necessarily i.f.g.-ℓp-stable, then as stated in Theorem 11ii),
we can ensure ℓp-internal closed loop stability of ΦδCL for a bounded set of small
enough perturbations pw,v,dq.

2.8 Nonlinear Closed Loop Maps of Linear Systems
Linear techniques, such as loop-shaping, H8, H2-optimal control, to name a few,
provide powerful tools for feedback control design of linear systems. However, there
are many applications where, despite the linearity of the system, nonlinear controller
design is required or provides better solutions. Two popular application scenarios
where nonlinear control design is common are model-predictive control and adaptive
control. Due to the nonlinear feedback controller K, the overall closed loop in
these settings has nonlinear dynamics, and it is necessary and crucial to study the
closed-loop behavior in the context of nonlinear control theory. Understanding the
properties of the closed loop maps of F , which are also nonlinear, is also of great
interest, however, they are far less studied in control literature so far, partially due to
the lack of analytical tools.
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The operator-theoretic tools developed in the previous sections open up new ways
of studying the closed-loop dynamics in this setting by analyzing the structure of
the closed-loop maps. It turns out that the linearity of F imposes structure on the
entire space of CLMs Φw ÞÑxu

CL rF s, not just the subspace Φw ÞÑxu
CL rF s X LCpℓX , ℓXˆUq

of linear ones. In this section, we show that the set of CLMs Φw ÞÑxu
CL rF s is closed

under a particular type of combination, which we refer to as blending:

Definition 2.11 (Blend of a Family of Operators). For a fixed family of operators
F “ tΨiuiPI P CpℓX , ℓXˆUq, we call an operator ΨΣ P CpℓX , ℓXˆUq a blend of F
if it can be expressed as a sum ΨΣ “

ř

iPI ΨiGi for some collection of operators
G “ tGiuiPI Ă CpℓX q, called weights, which satisfy the identity

ř

iPI Gi “ IX .

Thus, a blend can be thought of as a sum of operators Ψi of a family F , "weighted" by
the operatorsGi of another familyG, which, as expressed by condition

ř

iPI Gi “ IX ,
represents a sum decomposition of the identity operator. In this section, we show
that, for linear system dynamics, the CLM space Φw ÞÑxu

CL rF s is closed under the
combination of blending described above. In particular, we can combine a family
F “ tΨiuiPI Ă LCpℓX , ℓXˆUq of linear CLMs with a suitable family G of nonlinear
"weight" operators to merge the desirable properties of different linear CLMs into one
nonlinear CLM. We will demonstrate the power of this approach in the next chapter,
where we consider control applications with large-scale linear systems subjected to
state- and input constraints and actuator saturation. The enabling theoretical result
underlying these methods is stated and proven below:

Theorem 12. Let F be linear, tGi : ℓ
X ÞÑ ℓX u be N causal operators, and tΨiu

N
i“1

be N candidate CLMs. Then,

@i : Ψi P Φw ÞÑxu
CL rF s and

N
ÿ

i“1

Gi “ I ùñ

N
ÿ

i“1

ΨiGi P Φw ÞÑxu
CL rF s. (2.51)

Proof. Denote ΨΣ as the cCLM ΨΣ “
řN

i“1ΨiGi and evaluate the residual



63

∆rF ,ΨΣs:

∆rF ,ΨΣs “ F`
pΨΣq ` I ´ Ψx

Σ “ F`
p

N
ÿ

i“1

ΨiGiq ` I ´

N
ÿ

i“1

Ψx
iGi

aq
“

N
ÿ

i“1

F`
pΨiGiq ` I ´

N
ÿ

i“1

Ψx
iGi

bq
“

N
ÿ

i“1

F`
pΨiGiq `

N
ÿ

i“1

Gi ´

N
ÿ

i“1

Ψx
iGi

cq
“

N
ÿ

i“1

F`
pΨiGiq ` Gi ´ Ψx

iGi “

N
ÿ

i“1

`

F`
pΨiq ` I ´ Ψx

i

˘

Gi

dq
“

N
ÿ

i“1

∆rF ,ΨisGi “ 0.

The first equality aq follows by linearity of F . Step bq follows by the definition of
operators Gi. Step cq uses the right-distributive property of the operator product. In
dq we use the fact that each map Ψi is a CLM of F . This establishes the desired
result, since we showed ∆rF ,ΨΣs “ 0 and can invoke Theorem 8.

As an immediate corollary of the above result, we conclude that the space of CLMs
of linear dynamics operators F is closed under blending:

Corollary 13. If F is linear, then for any blend ΨΣ P CpℓX , ℓXˆUq of a family
F “ tΨiuiPI Ă Φw ÞÑxu

CL rF s, holds ΨΣ P Φw ÞÑxu
CL rF s.

This result provides concrete instructions on how to construct new CLMs ΨΣ from
existing ones Ψi. If we interpret the operators Gi as "weighting" operators (because
they sum up to "one" in the operator space), then ΨΣ “

řN
i“1ΨiGi resembles a

weighted average of the individual CLMs Ψi. We refer to the resulting CLM ΨΣ as
a non-linear blend of the CLMs Ψi and call a finite collection of operators tGiu

weight operators / weights if
ř

i Gi “ I .

It is also important to note that the above result only requires linearity of F , so both
Ψi and Gi can be nonlinear causal operators. In particular, this allows us to construct
blended CLMs composed out of other sets of blended CLMs; one could call that a
layered blend:
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Corollary 14. Let F be linear, tGi : ℓ
X ÞÑ ℓX u, tG1

j : ℓX ÞÑ ℓX u be N causal
operators, and tΨiju

N
i,j“1 be N2 candidate CLMs. Then,

@i, j : Ψij P Φw ÞÑxu
CL rF s and

N
ÿ

i“1

Gi “ I,
N
ÿ

j“1

G1
j “ I

ùñ

N
ÿ

j“1

N
ÿ

i“1

ΨijG
1
jGi P Φw ÞÑxu

CL rF s. (2.52)

Naturally, the above corollary can be applied arbitrarily many times, and it is an open
question whether there is a generating set of CLMs tE1,E2, . . . , u Ă Φw ÞÑxu

CL rF s

from which all of Φw ÞÑxu
CL can be constructed in this way.

For our discussion, we will focus on simple blends using static weighting operators
tGiu. We refer to static operators as those that act on sequences by applying the
same function f : Rn Ñ Rm to each element. For notational convenience, we refer
to the corresponding operator via the Kronecker product I b f as defined below:

Definition. For a fixed function f : Rn ÞÑ Rm, let I b f : ℓX Ñ ℓU be defined as
the map

px0, x1, . . . q ÞÑ pfpx0q, fpx1q, . . . q.

For a matrix M P Rnˆm, the operator I b fM , where fM : x ÞÑ Mx, will be
referred to as I b M .

In the later discussion, we make use of the following types of static weighting
operator:

Definition 2.12. Any collection of operators tGiu
N
i“1 defined as below satisfies

řN
k“1Gk “ I:

1. Linear Orthonormal Projections: Gi “ I b UiU
J
i , where Ui P Rnˆri ,

UJ
i Ui “ Iri , and

řN
i“1 UiU

J
i “ In.

2. N -Zone Saturation: Let W1 Ă W2 ¨ ¨ ¨ Ă WN´1 be a collection of nested
convex sets in some normed vector space p| ¨ |,Rnq and denote Πk : x ÞÑ

argmin
uPWk

|x ´ u|, @k P t1, . . . , N ´ 1u as the projection maps onto set Wk.

With the abbreviations Π0 :“ 0, ΠN :“ In, define Gk “ I b pΠk ´ Πk´1q for
all k P t1, . . . , Nu.

3. Sum Inversion: For any collection of causal operators tG
1

iu
N
i“1 for which the

sum G1
Σ “

řN
i“1G

1

i is causally invertible, define Gk :“ G
1

kpG
1

ΨΣ
q´1.
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Next, we investigate how to implement the realizing controllerK “ Ψu
ΣpΨx

Σq´1. This
leads to a controller implementation scheme which we call a "blended" system-level
controller.

2.9 Blending SL Controllers
We investigate the realizing controller corresponding to candidate CLMs of the type
ΨΣ “

řN
i“1ΨiGi formed from a collection of candidate CLMs tΨiu

N
i“1 and weight

operators tGuNi“1,
řN

i“1G “ I .

As usual, we decompose the computation of the realizing control law u “

Ψu
ΣpΨx

Σq´1x into the computation of an internal state, called the lumped (or effective)
disturbance ŵ :“ pΨxq

´1
Σ x, and the final control action u “ Ψu

Σŵ. Since we no
longer assume that Ψx

Σ is a CLM of F , we have to at least verify that it is a candidate
CLM to ensure that pΨxq

´1
Σ exists and is causal. This is easy to verify from the fact

that we assumed tΨiu
N
i“1 to be all cCLMs:

Lemma 10. Given some operators tGuNi“1 such that
řN

i“1G “ I , if tΨiu
N
i“1 are all

cCLMs, then ΨΣ “
řN

i“1ΨiGi is a cCLM as well.

Proof. Since the composition of causal operators is causal, it is clear that ΨΣ is
causal. It is left to verify that Ψx

Σ ´ I is strictly causal. To this end, write the former
as

Ψx
Σ ´ I “

N
ÿ

i“1

Ψx
iGi ´ I “

N
ÿ

i“1

pΨx
iGi ´ Giq “

N
ÿ

i“1

pΨx
i ´ IqGi

and notice that pΨx
i ´ Iq P CspℓX , ℓX q ùñ pΨx

i ´ IqGi P CspℓX , ℓX q.

From the above, we can realize K as a system-level implementation SLrΨx
Σ,Ψ

u
Σs

using the components of ΨΣ:

ŵt “ xt ´ Ψx
Σ,tp0, ŵt´1:0q, ut “ Ψu

Σ,tpŵt:0q.

However, we derive an implementation in terms of the components of Ψi.
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Rewrite the relation Ψx
Σpŵq “ x as

Ψx
Σpŵq “ x

ô ŵ “ x ` pI ´ Ψx
Σqŵ “ x ` pI ´

N
ÿ

i“1

Ψx
iGiqŵ

ô ŵ “ x ` p

N
ÿ

i“1

Gi ´

N
ÿ

i“1

Ψx
iGiqŵ “ x ` p

N
ÿ

i“1

pGi ´ Ψx
iGiqqŵ

ô ŵ “ x ` p

N
ÿ

i“1

pI ´ Ψx
i qGiqŵ “ x `

N
ÿ

i“1

pI ´ Ψx
i qGiŵ (2.53)

ô ŵ “ x `

N
ÿ

i“1

pI ´ Ψx
i qw̃i

and decompose the control action u “ Ψu
Σpŵq as

u “ Ψu
Σpŵq “ p

N
ÿ

i“1

Ψu
iGiqŵ “

N
ÿ

i“1

pΨu
iGiŵq “

N
ÿ

i“1

Ψu
i w̃

i, (2.54)

where we define w̃i “ Gipŵq as a partial disturbance term corresponding to the ith
cCLM Ψi. This leads to the following implementation of the realizing controller K:

Definition 2.13. Let K “ Ψu
ΣpΨx

Σq´1 for a cCLM of the form ΨΣ “
řN

i“1ΨΣGi,
where tΨiu

N
i“1 are cCLMs, and tGiu

N
i“1 are a collection of causal operators such

that
řN

i“1Gi “ I . Then, the following realization of K is defined as its blended SL
implementation:

ŵt “ xt ´

N
ÿ

i“1

Ψx
i,tp0, w̃

i
t´1:0q (2.55a)

w̃i
t “ Gi

tpŵt:0q (2.55b)

ut “

N
ÿ

i“1

Ψu
i,tpw̃

i
t:0q. (2.55c)

In the later sections, we will consider the special case where ΨΣ is a blend of linear
cCLMs tΨiu

N
i“1 and static nonlinearities Gi,tpzt:0q :“ gipztq. The corresponding

blended SL implementation takes the form:

ŵt “ xt ´

N
ÿ

i“1

t`1
ÿ

k“2

Ri
t,kw̃

i
t`1´k (2.56a)

w̃i
t “ gipŵtq (2.56b)

ut “

N
ÿ

i“1

t`1
ÿ

k“1

M i
t,kw̃

i
t`1´k (2.56c)
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where the matrices Ri
t,k P Rnˆn and M i

t,k P Rnˆm are associated with the linear
component functions of the cCLMs Ψi as follows:

Ψx
i,tpz1:t`1q “

t`1
ÿ

k“1

Ri
t,kzk, Ψu

i,tpz1:t`1q “

t`1
ÿ

k“1

M i
t,kzk. (2.57)

Internal Stability of the Closed Loop
To investigate the stability of the overall closed loop, as described in the previous
section, we need to add the internal states of the implementation ŵ and w̃i to our
closed loop model and analyze the stability of the corresponding closed loop maps.

To derive the dynamics of the lumped disturbance, we substitute x “ F`px,uq `w

into ŵ “ x ` pI ´ Ψx
Σqŵ. Furthermore, since px,uq “ ΨΣpŵq we have x “

F`ΨΣŵ ` w which yields:

ŵ “ pF`ΨΣqŵ ` w ` pI ´ Ψx
Σqŵ “ pF`ΨΣ ` I ´ Ψx

Σqŵ ` w

“ w ` ∆rF ,ΨΣsŵ “

N
ÿ

i“1

∆rF ,ΨisGiŵ ` w.

Finally, since we established that ΨΣ is a candidate CLM, ∆rF ,ΨΣs “ F`pΨΣq `

pI ´ Ψxq is strictly causal and assures that I ´ ∆rF ,ΨΣs is causally invertible.
Hence, the mapping w ÞÑ ŵ is defined by the following equation:

ŵ “ pI ´ ∆rF ,ΨΣsq
´1w “ pI ´

N
ÿ

i“1

∆rF ,ΨisGiq
´1w (2.58)

“ p

N
ÿ

i“1

pI ´ ∆rF ,ΨisqGiq
´1w. (2.59)

Since F is assumed linear, we can invoke Corollary 10 of Theorem 8 to obtain
conditions for closed loop internal stability. Recall the perturbed closed loop model
δCL with SLrΨx

Σ,Ψ
u
Σs as the controller. We have an internal ℓp-stable closed loop

under the following conditions:

Theorem 15. Let ΨΣ be a G-blended cCLM corresponding to a family of ℓp-
stable cCLMs F “ tΨiu

N
i“1 and a family of ℓp-stable weights G “ tGiu

N
i“1.

Consider the closed loop system δCL described by the equations (2.40) for a fixed
ℓp-stable F P LCpℓXˆU , ℓX q and controller KΣ “ Ψu

ΣpΨx
Σq´1 with implementation

SLrΨx
Σ,Ψ

u
Σs.

Then, the map ΦδCL : pw,v,dq ÞÑ pŵ,x,uq of the closed loop δCL is ℓp-stable if
the operator p

řN
i“1pI ´ ∆rF ,ΨisqGiq

´1 is ℓp-stable.



68

Proof. Apply Theorem 10.

In the next section, we discuss how blending inspires a nonlinear control synthesis
procedure for the constrained LQR problem, which strictly outperforms any linear
controller.

2.10 Conclusion
This chapter highlights a general and fundamental relationship between closed loop
maps and corresponding realizing controllers in general nonlinear discrete-time
systems. The key findings are as follows: 1. All closed loop maps are solutions to an
operator equation, and all solutions of the equation are achievable closed loop maps.
2. Given a solution of the operator equation, we can obtain a realizing controller
by parameterizing a system-level controller with the solution. This controller then
imposes the given solution as the closed loop map of the system. 3. This same
procedure produces robust closed loop stability even when the system-level controllers
are parameterized with approximate solutions of the operator equation.

We discuss an important consequence for the special case of LTV system dynamics
and nonlinear dynamics in the controller: The space of (nonlinear) CLMs is closed
under "blending"-type combinations. This observation informs a procedure for
constructing complex (or more expressive) CLMs from a collection of simpler CLMs.
This idea can be leveraged for nonlinear SL-controller synthesis and provides, for
example, systematic instructions to synthesize nonlinear controllers by "blending"
multiple linear SL controllers into one.

In the next chapter, we will see that this technique has important implications for the
problem setting of linear systems with actuator saturation and provides new ways to
perform simple stability and performance analysis of the closed loop.

2.A Proofs
Let pX , | ¨ |X q and pY , | ¨ |Yq be some finite-dimensional banach spaces, X N,YN

be the corresponding vector space of sequences over N. Let X N
p Ă X N and

YN
p Ă YN denote the normed vectorspaces w.r.t. to the usual ℓp-norms defined for

sequences in N. Let CpX N,YNq be the space of all causal operators X N Ñ YN and
define ~ ¨ ~‹

p : CpX N,YNq Ñ R`
0 Y 8 and ~ ¨ ~‹

p : CpX N,YNq Ñ R`
0 Y 8, with

p P t1, 2, . . . ,8u for some operator A P CpX N,YNq:

~A~
‹
p :“ sup

xPXN
p : x‰0

}Apxq ´ Ap0q}p

}x}p
~A~p :“ ~A~

‹
p ` }Ap0q}p.
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Lemma 11. ~ ¨ ~p is a norm on CpX N
p ,YN

p q and ~ ¨ ~‹
p is a norm on tA P

CpX N
p ,YN

p q | Ap0q “ 0u or the quotientspace CpX N
p ,YN

p q{ „ with the equivalence
relation A „ B ô A ´ B ” const. Furthermore the following holds:

(i) ~A ´ B~‹
p “ 0 if and only if A and B are the same up to a constant offset.

(ii) Submultiplicativety holds for products TA and AB if T is linear and Bp0q “

0:
~TA~

‹
p ď ~T~

‹
p~A~

‹
p ~AB~

‹
p ď ~A~

‹
p~B~

‹
p.

Proof. If ~A~‹
p “ 0, then for all x P X N

p ,x ‰ 0 holds y “ Apxq “ y0 :“ Ap0q

because otherwise p}y ´ y0}pq{}x}p ‰ 0 leads to a contradiction. Let r ‰ 0

then rA “ prIq ˝ A means that }rApxq ´ rAp0q}p “ }rpApxq ´ Ap0qq}p “

|r|}pApxq ´ Ap0qq}p and therefore ~rA~‹
p “ |r|~A~‹

p. It remains to show a
notion of sub-additivity. Let A,B P CpX N,YNq, then for all x P X N

p holds
pA ` Bqpxq ´ pA ` Bqp0q “ Apxq ´ Ap0q ` Bpxq ´ Bp0q and by triangle
inequality of the ℓp-norm follows

}pA ` Bqpxq ´ pA ` Bqp0q}p ď }Apxq ´ Ap0q}p ` }Bpxq ´ Bp0q}p.

Let X “ Y and consider AB P CpX N
p ,X N

p q with Bp0q “ 0. Then

~A~
‹
p “ sup

xPXN
p : x‰0

}ABpxq ´ ABp0q}p

}x}p

“ sup
xPXN

p :Bpxq‰0

}ABpxq ´ Ap0q}p

}Bpxq}p

}Bpxq}p

}x}p

ď sup
yPXN

p : y‰0

}Apyq ´ Ap0q}p

}y}p
sup

xPXN
p : x‰0

}Bpxq ´ Bp0q}p

}x}p
“ ~A~

‹
p~B~

‹
p.

Now, let T P LCpX N
p ,X N

p q be a linear operator and notice that TApxq ´ TAp0q “

T pApxq ´ Ap0qq. We repeat the same process as above and obtain ~TA~‹
p ď

~T~‹
p~A~‹

p.
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C h a p t e r 3

NONLINEAR BLENDING APPROACH TO CONTROL OF
LARGE-SCALE SYSTEMS

The theory developed in the previous chapter provides a framework to systematically
"blend" multiple (possibly) nonlinear controllers into one stabilizing nonlinear
controller. Blending happens at the controller implementation level and can be used
to optimize the performance of the nonlinear closed-loop map by combining the
desired properties of multiple closed-loop maps. In this chapter, we explore three
applications to demonstrate the utility of this approach in control settings challenged
by complex dynamics and constraints in the system or controller.

3.1 Introduction
As a warm-up, we discuss the time-varying design of the SL controller and the local
stability analysis for closed loops involving nonlinear continuous-time systems, which
is the first rigorous discussion of this topic. As an example, we use the problem of
trajectory tracking for nonlinear continuous-time systems through discrete-time zero-
order hold feedback control. Our empirical case study evaluates the SL controller
on the cart-pole system and demonstrates that despite using only a rough model for
synthesis, the resulting controller demonstrates very robust closed-loop performance.

In the later part, we consider nonlinear control settings, where complexity in the
system dynamics is caused by sheer scale and distributedness of the system, rather than
high-order nonlinearity in the dynamics. In particular, we show that the framework
is particularly well-suited for large-scale systems subjected to input saturation and
state constraints, but with otherwise linear dynamics. We investigate some first
application scenarios where our approach naturally provides significant benefits over
existing methods: distributed constrained LQR and distributed anti-windup control.

In the case of constrained LQR, we derive a synthesis procedure for blended SLS
controllers that outperforms any optimal linear controller for the constrained LQR
problem [36, 86, 91, 140]. As a second application, we discuss how the blended
SLS technique provides a natural remedy for controller-windup in a way that is
easily scalable for use in large-scale control systems. We discuss the efficacy of
the methods with simulations and show that synthesis and implementation enjoy
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the same benefits as previous SLS synthesis methods: both are distributed, handle
delays, sparse actuation, and allow for localized disturbance rejection. The presented
work is based on [64] and [137].

Setup and Recap of Key Concepts
For this chapter, we consider linear dynamical systems described by the operator
equation

x “ S`F px,uq ` w “: F`
px,uq ` w, (3.1)

where F` “ S`pF q is a stricly causal operator formed by a right shift of causal
linear operator F which we call dynamics. As linearity allows, we split F into
two causal linear operators A : ℓn ÞÑ ℓn, B : ℓm ÞÑ ℓn and write F as F px,uq :“

pApxq`Bpuqq. We representA andB by a sequence of matrices tAt,k P Rnˆn |t ě

0, k ě 1u, tBt,k P Rnˆn | t ě 0, k ě 1u parametrizing the component functions of
At and Bt as:

Atpxt:0q “

t
ÿ

k“0

At,k`1xt´k, Btput:0q “

t
ÿ

k“0

Bt,k`1ut´k.

Correspondingly, F has the component functions Ftpxt:0, ut:0q “ Atpxt:0q`Btpxt:0q,
the components of the dynamics F` are

F`
t pxt:0, ut:0q “

t
ÿ

k“1

At´1,kxt´k `

t
ÿ

k“1

Bt´1,kut´k (3.2)

and the difference equation of the system dynamics takes the form:

xt “

t
ÿ

k“1

At´1,kxt´k `

t
ÿ

k“1

Bt´1,kut´k ` wt. (3.3)

For the sake of defining the closed-loop maps, we view w as an input and the
pair px,uq as an output. Then, as in the previous chapter, for a causal controller
K : ℓn ÞÑ ℓm and fixed plant F , the corresponding w ÞÑ tx, uu map of the
closed-loop CL is the operator Ψ “

“

Ψx

Ψu

‰

defined by the partial maps Ψx and Ψu:

Ψx :“
`

I ´ S`F pI,Kq
˘´1

, Ψu :“ K
`

I ´ S`F pI,Kq
˘´1

.

An operator Ψ “ pΨx,Ψuq with partial maps Ψx and Ψu is a candidate closed-loop
map (cCLM) of F , if it is causal and of conforming domain and co-domains, i.e.,
Ψx : ℓn ÞÑ ℓn and Ψu : ℓn ÞÑ ℓm and Ψx ´ I is strictly causal. The residual ∆ is a
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map ∆ : CpℓXˆU , ℓX q ˆ CpℓX , ℓXˆUq Ñ CpℓX , ℓX q where for F P CpℓXˆU , ℓX q and
Ψ “

“

Ψx

Ψu

‰

P CpℓX , ℓXˆUq, ∆rF ,Ψs is defined as:

∆rF ,Ψs “ F`
pΨq ` I ´ Ψx

“: S`F pΨq ` I ´ Ψx.

The set of all closed-loop maps of F is denoted as Φw ÞÑxu
CL rF s and by Theorem 8 can

be equivalently defined as:

Φw ÞÑxu
CL rF s “ tΨ | ∆rF ,Ψs “ 0u .

3.2 Discrete-Time Trajectory-Tracking Control for Nonlinear Continuous-
Time Systems

We derived that, in theory, we only need operators pΨx,Ψuq to approximately satisfy
the CLM condition (2.33) to obtain robustly stabilizing controllers SLrΨx,Ψus. The
generality of the robustness result argues that system level controllers could be a
promising design tool in practical control applications. However, more research is
needed to quantify the trade-off between the approximation grade of the condition
(2.33) and the corresponding achievable control performance. As a first step towards
that, we present some first empirical results that show that system-level controllers
can achieve good robust control performance in challenging-to-control nonlinear
systems while using only crude models of the system for synthesis. Figure 3.1 shows
simulation results of using a system level controller SLrΨx,Ψus at 30Hz sampling
time to swing up a cart pole system under small and large closed-loop perturbations.
Rather than satisfying the CLM condition (2.33) of the zero-order hold actuated cart
pole system, the maps Ψ are synthesized using the following approximations:

• Ψ are taken to be affine operators, where the affine term is a sampled continuous-
time desired trajectory pxdptq, udptqq for the system and linear part is chosen
to be finite memory (2 s window in continuous-time).

• The continuous-time trajectories pxdptq, udptqq are low-grade approximations
of swing-up motions of the cartpole.

• Ψ are chosen as CLMs of an approximation of the linearized system around
the desired trajectory.

The above simplifications make clear that Ψ serves only as a very coarse approxima-
tion of the exact CLM condition (2.33). On the other hand, the above approximations
allow to synthesize the linear part of Ψ analytically and in parallel, allowing for
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Figure 3.1: Swing-up control for cart-pole system with system level controller at
30Hz sampling rate. (x, 9x, θ, 9θ, f ) stand for cart position / velocity, pole angle /
velocity, and cart force with units (m, m{s, deg, deg{s, N ). θ “ 180˝ stands for
the upward pole position. The weight of the cart and the pole is chosen as 1 kg
and 0.1 kg, the length of the pole is chosen as 0.5 m. Consult [122] for detailed
system description and equations. Left: Desired trajectory (red) vs. closed-loop
performance under initial condition error ψp0q “ 45˝ and two scenarios of small
(orange) and large (blue) system perturbations w, v, d. Middle: Evolution of internal
state ŵ for both scenarios and normalized disturbance due to trajectory error ēi.
Right: i.i.d Gaussian perturbations w, v, d.

efficient computation.
Leaning on the discussion in Section 2.7, the closed-loopS2 of the cart pole simulation
can be written as

xt “ ϕtspxt´1, ut´1q ` wt ` et, (3.4a)

ŵt “ xt ` vt ´ xdptτsq ´

t`1
ÿ

k“2

Rt,kŵt`1´k, (3.4b)

ut “ udptτsq `

t`1
ÿ

k“1

Mt,kŵt`1´k ` dt, (3.4c)

where w, d and v are state, input and internal controller state perturbations and et is
due to errors in the trajectory synthesis. The matrices Rt,k P Rnˆn, Mt,k P Rmˆn

parameterize the linear part of Ψ. Due to the approximation steps taken in the
synthesis ofΨ, there is a considerable gap between the real system and the model used
for the synthesis. Nevertheless, Figure 3.1 shows that despite the large uncertainty
of the model, the closed loop provides robust performance against a variety of
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perturbations: Large initial condition errors, large perturbation signals, and errors in
trajectory.

Derivation and Nonlinear Stability Analysis
Using the cart pole system as an example, we demonstrate how to develop a system-
level controller to track trajectories for nonlinear continuous-time systems. We use
the description of the cart pole as presented in [122] and refer to the same reference
for detailed derivations. The dynamic equations of the cart pole are

pmc ` mpq:xc ` mpl:θp cos θp ´ mpl 9θ2p sin θp “ f (3.5a)

mpl:xc cos θ ` mpl
2:θp ` mpgl sin θp “ 0 (3.5b)

where xc and θp stand for cart position and pole angle in counterclockwise direction
and f represents the force exerted on the cart. Furthermore, θ “ 0 denotes the
downward position. The parameters (mc, mp, l, g) are chosen as (1 kg, 0.1 kg, 0.5
m, 9.81m{s2) and represent the mass of the cart and the pole, the length of the pole
and the gravity constant, respectively. Furthermore, (3.5) can be converted into the
input affine standard form

9x “ F pxq ` gpxqu (3.6)

where x “ rxc, θp, 9xc, 9θpsT , u “ f , (see [122] for description of F pxq and gpxq). As
in practice, controllers are usually implemented digitally, we assume zero-order hold
on the input u with a sampling time of τs “ 0.033sec (1{τs “ 30Hz). Because of
this discretization, we can equivalently represent the system (3.6) at sampling times
through the discrete-time system

xt “ ϕτspxt´1, ut´1q, ϕτspx, uq :“ αpτsq, s.t. : 9α “ F pα, uq, αp0q “ x, (3.7)

where we denote xt :“ xptτsq and ut :“ uptτsq (t P N) to be samples of the
continuous-time signals xpτq, upτq at time tτs. To put (3.7) in operator form, define
F ϕ P Cspℓn ˆ ℓm, ℓnq with component functions F ϕ

t pxt:0, ut:0q :“ ϕτspxt´1, ut´1q

and equation (3.7) can be written in terms of the trajectories px,uq as x “ F ϕpx,uq.

Remark 16. We use the variable τ to indicate that a variable apτq is a continuous-time
signal and use at to refer to the discrete-time samples at :“ aptτsq.

We use a continuous-time trajectory xdpτq, udpτq as a reference, which is shown
in red in Figure 3.1. The trajectories approximately satisfy the continuous-time
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dynamics, i.e., 9xdpτq « F pxdpτqq ` gpxdpτqqudpτq, and are designed to swing up
the pole in 3 seconds and then keep the cart pole at xc “ 0, θp “ π.

Remark 17. Notice that even if 9xdpτq “ F pxdpτqq ` gpxdpτqqudpτq, it still does
not hold xdt ‰ ϕτspxdt´1, u

d
t´1q, since the continuous-time trajectories are computed

without consideration of the zero-order hold actuation.

We take the following linear approximation of ϕτs around the reference trajectory:

ϕτspxt´1, ut´1q « xdt ` expp∇F |xd
t´1
τsq

loooooooomoooooooon

“:Ât´1

˚pxt´1 ´ xdt´1q . . . (3.8)

`

ż τs

0

expp∇F |xd
t´1
τqgpxdt´1qdτ

looooooooooooooooomooooooooooooooooon

“:B̂t´1

˚put´1 ´ udt´1q. (3.9)

Denote rAt´1, Bt´1s :“ ∇x,uϕτs |pxd
t´1,u

d
t´1q the true linearization of ϕτs at pxdt´1, u

d
t´1q

and notice that the above approximation (3.8) is only an approximation of the
linearization, since rÂt´1, B̂t´1s ‰ rAt´1, Bt´1s. Using Taylor’s theorem and
assuming ϕτs is differentiable, we can write ϕτs as

ϕτspxt´1, ut´1q “ ϕτspxdt´1, u
d
t´1q ` At´1pxt´1 ´ xdt´1q ` Bt´1put´1 ´ udt´1q . . .

` rt´1pxt´1 ´ xdt´1, ut´1 ´ udt´1q

where lim|z|Ñ0 |rt´1pzq|{|z| “ 0. We can factor out equation (3.7) into the following
components

xt “ xdt ` Ât´1pxt´1 ´ xdt´1q ` B̂t´1put´1 ´ udt´1q ` et ` e1
tpxt´1, ut´1q (3.10)

where et and e1
tpxt´1, ut´1q are disturbance terms introduced due to errors in the

reference trajectory and linearization

et “ ϕτspxdt´1, u
d
t´1q ´ xdt

e1
tpxt´1, ut´1q “ pAt´1 ´ Ât´1qpxt´1 ´ xdt´1q ` pBt´1 ´ B̂t´1qput´1 ´ udt´1q

¨ ¨ ¨ ` rt´1pxt´1 ´ xdt´1, ut´1 ´ udt´1q

and the remaining terms represent our linear approximation of the dynamics. we
can express this more compactly in operator form: Define F̃ ϕ P Cspℓn, ℓnq with the
components

F̃ ϕ
t pxt:0, ut:0q :“ xdt ` Ât´1pxt´1 ´ xdt´1q ` B̂t´1put´1 ´ udt´1q
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and the residual ∆ϕ P Cpℓn, ℓnq with the components ∆ϕ
t pxt:0, ut:0q “ et `

e1
tpxt´1, ut´1q, then we can factor out the original equations of (3.7) as

x “ F̃ ϕ
px,uq ` ∆ϕ

px,uq (3.12)

where per definition we have the decomposition F̃ ϕ ` ∆ϕ “ F ϕ.

Our approach for synthesis is now to use F̃ ϕ as a model to design a system level
controller and treat ∆ϕ as disturbance terms we want to be robust against. We do
this, first solving for the CLMs Ψ̃ “ pΨ̃x, Ψ̃uq of F̃ ϕ and then choosing our feedback
controller as SLrΨ̃x, Ψ̃us.

Due to Theorem 8, Ψ̃ is a CLM of F̃ ϕ if and only if it satisfies the CLM equation
(2.33) for F̃ ϕ, i.e., Ψ̃x “ F̃ ϕpΨ̃q ` I . We restrict Ψ̃ to be of affine form Ψ̃ : w “
“

R
M

‰

pwq `
“

r
m

‰

with
“

r
m

‰

P ℓn ˆ ℓm and R P LCpℓn, ℓnq, M P LCpℓn, ℓmq. Thus
the component functions of Ψ̃ take the from

Ψ̃x
t pα1:t`1q “

t`1
ÿ

k“1

Rt,kαk ` rt (3.13)

Ψ̃u
t pα1:t`1q “

t`1
ÿ

k“1

Mt,kαk ` mt (3.14)

where Rt,j P Rnˆn, Mt,j P Rnˆm, rt, mt are some fix sequences and α1:t`1 denote
the t` 1 arguments of the component function. Structuring Ψ̃ in this form and using
linearity of F̃ ϕ reduces the original operator equation Ψ̃x “ F̃ ϕpΨ̃q ` I simply to
the following set of linear equations for Rt,j , Mt,j and rt, mt:

Rt,k “ Ât´1Rt´1,k´1 ` B̂t´1Mt´1,k´1 for all k ď t, Rt,1 “ I (3.15)

rt “ xdt , mt “ udt . (3.16)

Equation (3.15) is an affine subspace constraint and opens up many possible ways to
synthesize for solutions Rt,k, Mt,k. In fact, (3.15) matches the linear time-varying
formulation of SLS as discussed in [66], [11] and for our case-study here, we are
synthesizing for Rt,k, Mt,k by solving the following H2/ LQR problem for the LTV
system F̃ ϕ subject to an FIR constraint with horizon T “ 60 time-steps:

min
Rt,k,Mt,k

ř

0ďtďH

ř

1ďkďT

}Rt,k}2F ` }Mt,k}2F

s.t. Rt,k “ Ât´1Rt´1,k´1 ` B̂t´1Mt´1,k´1

Rt,1 “ I, Rt,T “ 0.

(3.17)
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Remark 18. See [11] for details of the H2/LQR problem setup and derivation of
the convex optimization problem. The FIR horizon can be understood as a time
window rt, t` T s given to the controller to kill off the disturbance ŵt. Considering
the sampling time of our example, T “ 60 here translates to a 2-second window in
continuous time.

Furthermore, H denotes the length of the trajectory in sampling time steps. The
above problem can be solved in closed form since it is a QP without inequality
constraints. Moreover, the change of variablesRj`h,j`1,Mj`h,j`1 with 0 ď j ď T´1,
0 ď h ď H shows that (3.17) can be decomposed over h into H separate QP’s that
can be solved analytically and in parallel, hence showing that the computational
complexity of our synthesis approach is independent of the trajectory length H .

The solutions of (3.17) are taken to parameterize the operators (3.13) which give
us the system-level controller SLrΨ̃x, Ψ̃us. The resulting closed loop of the cart
pole system (3.7) and controller SLrΨ̃x, Ψ̃us can be put into the form of our robust
stability analysis in Section 2.7:

xt “ ϕtspxt´1, ut´1q ` wt (3.18a)

ŵt “ xt ` vt ´ xdptτsq ´

t`1
ÿ

k“2

Rt,kŵt`1´k (3.18b)

ut “ udptτsq `

t`1
ÿ

k“1

Mt,kŵt`1´k ` dt. (3.18c)

Furthermore, referring to Theorem 11, it can be verified that the residual operator ∆ϕ

we defined earlier matches the residual operator of Theorem 11, i.e., ∆rF̃ , Ψ̃s “ ∆ϕ.
Thus, Theorem 11 applies directly to our problem setting. More specifically, the
local result Lem. 7 can be used to obtain robust stability guarantees. If the lumped
residual terms are pγ, βq ℓp-stable with γ ă 1, then the closed-loop system is f.g.
ℓp-stable for small enough perturbations.

3.3 The Constrained LQR Problem
We use the idea of blended CLMs to derive a novel distributed synthesis procedure
that outperforms any optimal linear controller for the constrained LQR problem
[36, 86, 91, 140]. A significant advantage of the approach is that despite being
a nonlinear synthesis method it naturally enjoys the same benefits as the linear
system level approach introduced in [11], which allows for localized controller
implementation, making it scalable to large networks. For the following discussion,
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we assume that F is a standard linear time-invariant system, that is: F “ Ax`Bu,
where A “ I bA and B “ I bB for some fixed matricesA P Rnˆn andB P Rnˆm.

Consider a control problem where we wish to minimize an average LQR cost,
but also want that the closed loop meets certain safety guarantees against a set of
rare yet possible worst-case disturbances. Ideally, we would like to synthesize a
controller that can guarantee the necessary safety constraints without too much loss
in performance compared to the unconstrained LQR controller. We will phrase this
design goal as the following constrained LQR problem:

min
K

lim
TÑ8

1

T

T
ÿ

t“1

Ewi
t„ppwqrJ pxt, utqs (3.19a)

s.t. xt “ Axt´1 ` But´1 ` wt (3.19b)

ut “ Ktpxt:0q (3.19c)

@w : ||w||8 ď ηmax : (3.19d)

sup
k

|xk| ď xmax, sup
k

|uk| ď umax

where J abbreviates the quadratic stage cost J px, uq “ xTQx`uPuwithQ,P ą 0.
We will assume that the disturbance is stochastic but bounded such that }w}8 ď ηmax

with known distribution which satisfies the following

Assumption 3.4. Disturbance wi
t are i.i.d. drawn from the scalar centered distribu-

tion ppwq and uncorrelated in time t and coordinate i.

We can equivalently phrase the optimal control problem (3.19) in terms of closed loop
maps as defined in chapter 2. Recalling Def. 2.6, the optimal control problem (3.19)
can be described as an optimization over the set of feasible CLMs Ψ P Φw ÞÑxu

CL rF s,
where F : px,uq ÞÑ Ax ` Bu and by using the characterization Theorem 8 we
obtain:

min
Ψx,Ψu

lim
TÑ8

1

T

T
ÿ

t“1

ErJ pΨx
t pwt:0q,Ψu

t pwt:0qqs (3.20a)

s.t. Ψx
t pwt:0q “ Ψx

t p0, wt´1:0q ` wt (3.20b)

Ψx
t`1p0, wt:0q “ AΨx

t pwt:0q ` BΨu
t pwt:0q

@t, |wt| ď ηmax : |Ψx
t pwt:0q| ď xmax (3.20c)

@t, |wt| ď ηmax : |Ψu
t pwt:0q| ď umax. (3.20d)
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As in the linear SLS case [11], we do not need to have the controller K be a decision
variable, since we can always realize the optimal solution pΨpxq˚,Ψpuq˚q to (3.20)
with a system level controller SLrΨpxq˚,Ψpuq˚s.

Conservativeness of Linear Solutions
We will first discuss properties of solutions to our original problem (3.19), if we
restrict ourselves to only LTI controllers K. Consider the equivalent problem
formulation (3.20) with the CLMs pΨx,Ψuq restricted to being linear. This poses a
convex problem and, as shown in [36], it can be approximately solved by searching
for FIR CLMs pΨx,Ψuq with enough large horizon T . However, the corresponding
linear optimal CLMs pΨx,lin˚,Ψu,lin˚q come with undesirable restrictions:

• pΨx,lin˚,Ψu,lin˚q impose stricter safety restrictions than the required restrictions
(3.20c) and (3.20d).

• pΨx,lin˚,Ψu,lin˚q do not depend on the disturbance distribution ppwq.

To see the first point, we have the following result as a consequence of linearity:

Lemma 12. For any linear pΨx,lin,Ψu,linq, the constraint (3.20c),(3.20d) is equiva-
lent to

sup
t

|Ψx,lin
t pwt:0q| ď sup

t

xmax

ηmax

|wt| (3.21a)

sup
t

|Ψu,lin
t pwt:0q| ď sup

t

umax

ηmax

|wt|. (3.21b)

Proof. Clearly, (3.21) implies (3.20c),(3.20d). The reverse implication follows from
the assumed linearity of pΨx,lin,Ψu,linq and the homogeneity of the norms.

Lem. 12 shows that the linearity restriction in CLMs imposes stricter safety conditions
(3.21) than (3.20c),(3.20d). To elaborate on the second point, notice that for linear
CLMs pΨx,lin,Ψu,linq, the objective function (3.20a) can be expressed equivalently
as

(3.20a) “ σ2

›

›

›

›

›

Q1{2Ψx

P 1{2Ψu

›

›

›

›

›

2

H2

, σ2 :“ Ew„ppwqrw
2
s (3.22)

where σ2 denotes the variance of the scalar distribution ppwq and }.}H2 denotes the
H2 norm for linear operators. Since the objective function only gets scaled by a
constant factor σ2 for different distributions ppwq, this shows that for linear CLMs,
the solutions pΨx,lin,Ψu,linq to (3.20) are independent of the distribution ppwq.
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Taking the Nonlinear System Level Approach
Now we extend the search space of the problem (3.20), by allowing candidate CLMs
Ψ that are blends of linear CLMs of F .

We structure the search space of blended cCLMs as follows. Let tΨiu
N
i“1 be a

collection of linear-time invariant cCLMs of finite horizon T . Correspondingly, we
parametrize their component functions of in terms of the matrices Rpiq

k P Rnˆn and
M

piq
t,k P Rnˆm as follows:

Ψx
i,tpz1:t`1q “

mintT,t`1u
ÿ

k“1

R
piq
k zk Ψu

i,tpz1:t`1q “

mintT,t`1u
ÿ

k“1

M
piq
k zk. (3.23)

We assume the saturation weighting of the N zone mentioned in Def. 2.12. For fixed
ηN´1 ě ¨ ¨ ¨ ě η1, Pηi : Rn Ñ Rn denotes functions that parameterize the weights
Gi :“ I b gi where g0 “ Pη0 , gNpxq :“ x´PηN´1

pxq and gi for i P t1, . . . , N ´ 1u

are defined as gi “ Pηi ´Pηi´1
. For Pη and we consider two specific classes functions,

both representing different types of projection maps:

Definition 3.1 (Saturation Projection). Let vector w “ rw1, . . . , wnsT P Rn. The
saturation projection is an element-wise projection:

Pηpwq :“

»

—

—

–

satpw1, ηq

...
satpwn, ηq

fi

ffi

ffi

fl

(3.24)

where satpw, ηq “ signpwqmaxt|w|, ηu.

Definition 3.2 (Radial Projection). The radial projection is defined as:

Pηpwq :“
satp|w|{η, 1q

|w|{η
w. (3.25)

Unless otherwise specified, the results derived in the rest of the chapter hold for both
projections.

Remark 19. For n “ 1, the radial projection and the saturation projection coincide
with each other. The radial and saturation projection operator act as the identity
whenever |w| ď η. Otherwise, the radial projection rescales w so that |Pηpwq| “ η

whereas the saturation projection performs the elemental radial projection.
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This completes our setup and we arrive at the structure of our candidate CLMs as:

Ψx
t p¨q “

N
ÿ

i“1

mintT,t`1u
ÿ

k“1

R
piq
k pPηi ´ Pηi´1

qpwt`1´kq

Ψu
t p¨q “

N
ÿ

i“1

mintT,t`1u
ÿ

k“1

M
piq
k pPηi ´ Pηi´1

qpwt`1´kq. (3.26)

The corresponding blended SL implementation of ΨΣ takes the form:

ut “

N
ÿ

i“1

mintT,t`1u
ÿ

k“1

M
piq
k w̃i

t`1´k

w̃
piq
t “ gipŵtq

ŵt`1 “ xt`1 ´

N
ÿ

i“1

mintT,t`2u
ÿ

k“2

R
piq
k w̃

i
t`2´k.

With regards to our optimization problem, we enforce the (linear) constraint that
Ψx,i,Ψu,i, i P rN s are CLMs of the linear system of interests:

xt “ Axt´1 ` But´1 ` wt, (3.27)

with xt P Rn, wt P Rn, u P Rm.

The overall nonlinear controller SLrΨx,Ψus can be thought of as a nonlinear blend
of the linear FIR controllers SLrΨx,i,Ψu,is, i P rN s. Although the nonlinear operator
Ψx, Ψu differs from its linear components Ψx,i, Ψu,i only by the static nonlinear
function Pηipwq, the upcoming sections will demonstrate that this simple additional
nonlinearity proves surprisingly useful. In particular, ηi’s separate any disturbancewt

into N zones such that for each ith linear controller SLrΨx,i,Ψu,is, only the portion
of wt that "falls" between ηi and ηi´1 is acted upon. Intuitively, one could choose
different behaviors for various portions of the disturbance signal, specifying either
performance or safety properties.

For ease of exposition, we focus on the two-zone case of the proposed controller
SLrΨx,Ψus although all the analysis naturally extends to the N -zone case.

Consider the general problem (3.20), where we now search for CLMs pΨx,Ψuq of
the form presented in (3.26) with N “ 3 and the choice of η2 “ ηmax, with some
η1 ă η2. However, since we have the assumption }w} ď η2, Rp3q

j and M p3q

j drop out
of the objective and safety constraint and can be chosen as arbitrary FIR CLMs for
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now. In the later section we will discuss that this extra degree of freedom can be
used for anti-windup control.

Restricting ourselves to this form of CLM leads to the convex problem (3.20), which
is a relaxation of the general problem (3.20).

min
Rpiq,Mpiq

›

›

›

›

›

›

«

Q 0

0 P

ff1{2 «

Rp1q Rp2q

M p1q M p2q

ff

Σ1{2
w

›

›

›

›

›

›

2

F

(3.28a)

s.t. η1|R
p1q

| ` pη2 ´ η1q|Rp2q
| ď xmax (3.28b)

η1|M
p1q

| ` pη2 ´ η1q|M p2q
| ď umax (3.28c)

R
piq
k`1 “ AR

piq
k ` BM

piq
k (3.28d)

R
piq
1 “ I, R

piq
T “ 0

where

Σw “

«

α1I α2I

α2I α3I

ff

with α1 “ ErPη1pwq2s, α2 “ ErPη1pwqpPη2pwq ´ Pη1pwqqs, and α3 “ ErpPη2pwq ´

Pη1pwqq2s, where w „ ppwq and }w}8 ď ηmax. Moreover Rpiq and M piq are
abbreviations for the row-wise concatenation of the matrices associated with the linear
CLMsΨx,i, Ψu,i, i.e,Rpiq “ rR

piq
T , R

piq
T´1, . . . , R

piq
1 s,M piq “ rM

piq
T ,M

piq
T´1, . . . ,M

piq
1 s.

Therefore, only constraints (3.28b), (3.28c) are sufficient conditions of the constraint
(3.20c), (3.20d) through the multiplicativity of the norm. All other equations
in the above optimization are equivalent to the original problem (3.20). Finally,
solving the convex problem (3.28) gives the suboptimal nonlinear CLMs pΨ˚x,Ψ˚uq

for the system dynamics (3.19b), realized by an internally stabilizing controller
SLrΨ˚x,Ψ˚us. The next theorem states a main result of this chapter:

Theorem 20. For all η1 P r0, η2s, the nonlinear system level controller SLrΨ˚x,Ψ˚us

synthesized from (3.28) achieves lower optimal LQR cost for (3.19) than any linear
solutions.

Proof. First, recall that restrictingK to be linear in the problem (3.19) is equivalent to
restricting Ψx and Ψu to be linear in the equivalent formulation (3.20). Furthermore,
notice that under the restriction of linear pΨx,Ψuq, the problem (3.20) is equivalent
to (3.28) with the added constraint Rp1q “ Rp2q, M p1q “ M p2q, which shows that
any solution pΨ˚x,Ψ˚uq of the problem (3.28) achieves a lower cost than a linear
solution pΨx,lin˚,Ψu,lin˚q of (3.20).

Remark 21. This argument extends directly to the N-blend case.



83

Localized Controller for Constrained LQR
Thanks to the particular form of (3.26), when the projection is chosen to be the
saturation projection Def. 3.1, structural constraints of the controller, such as
the sparsity and delay constraints, can be added in a convex way to the synthesis
procedure described in Section 3.3. This is because imposing structural constraints
on the nonlinear controller (3.26) is equivalent to imposing them on the linear CLM
components of (3.26). Detailed in [11], localization of disturbance, communication,
and actuation delay, as well as sparsity pattern, are all convex constraints in terms of
linear CLMs in the linear System Level Synthesis framework. Specifically, all the
constraints mentioned could be cast as a convex subspace Sx and Su for linear CLMs
Ψx,i,Ψu,i,i P rN s. The corresponding system-level controller SLrT puq,T pxqs can
then be implemented in a localized fashion conforming to the subspace constraints
on Ψx,i,Ψu,i. Therefore, the nonlinear controller synthesis in Section 3.3 naturally
inherits all capabilities of the linear system level controllers in terms of distributed
controller synthesis and implementation.

Simulation
To corroborate the results presented in the previous sections, we demonstrate the
performance of a four-zone nonlinear blending controller with radial projection
compared against the optimal linear controller for the constrained LQR problem of
an open-loop unstable system:

xt “

»

—

–

1 1 0

1 2 1

0 1 1

fi

ffi

fl

xt´1 `

»

—

–

0

0

1

fi

ffi

fl

ut´1 ` wt (3.29)

with umax “ 40, xmax “ 15, ηmax “ 1, Q “ I3, P “ 10. The disturbances wk are
chosen to be a truncated i.i.d. Gaussian random variable with variance σ2. Figure
3.2 shows the optimal cost improvement of the presented nonlinear approach over the
optimal linear controller for different choices of variance σ2. Figure 3.2 showcases
that the proposed controller can exploit the knowledge of the disturbance distribution
to achieve performance improvement over the linear optimal linear controller: For
small σ the proposed controller gains more than 30%.

3.5 Distributed Anti-Windup Controller for Saturated Systems
In the constrained LQR problem, we considered a linear system xt “ Axt´1 `

But´1 ` wt and designed a controller that ensures that the closed-loop system state
xt and input ut remained within the specified bounded sets X “ tx | |x| ď xmaxu and
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Figure 3.2: Performance improvement of nonlinear controller SLrΨ˚x,Ψ˚us over
optimal linear controller SLrΨx,lin˚,Ψu,lin˚s for different variances σ2 of the non-
truncated disturbance. The nonlinear blending controller synthesizes over 4 linear
controllers w.r.t. to the projection parameters η1 “ 0.05, η2 “ 0.1, η3 “ 0.2, η4 “

ηmax “ 1

U “ tu | |u| ď umaxu, for any bounded sequence w P ℓ8, wt P W , W “ tw | |w| ď

ηmaxu. This partial problem is one of robust set invariance [96]. In this section, we
discuss this problem in a broader context, where input constraints are not part of the
problem specification, but rather enforced by a saturation nonlinearity satU in our
input. Hence, we consider our system to be nonlinear and of the form:

H 1 : xt “ Axt´1 ` BsatUput´1q ` wt. (3.30)

If we can be sure that the disturbances of the system and the initial condition remain
within the specified bounds W , then solving the robust invariance problem, for
example, with one of the techniques from the previous chapter and the general SLS
framework [36], is sufficient. However, in practice, it is more realistic to consider
that our assumptions are only mostly true and it is possible that our assumptions are
temporarily violated on rare occasions. In such a scenario, we have to accept some
degradation in our guarantees, such as state constraints and performance bounds.
However, we would like this degradation to happen gracefully and at least ensure
that some basic properties of the closed-loop such as stability are still preserved.

In this section, we discuss how control design through blended CLMs provides a new
perspective on this topic. In particular, blending with N -zone saturations naturally
ensures graceful degradation in the presence of saturation and offers an elegant
solution to the issue of controller wind-up [70, 78, 81], an important problem that
commonly arises when input saturation is ignored during linear control design.

The main results of this section show that with the appropriate choice of blending
and weight operators, closed-loop stability and convergence to the target set X are
guaranteed even in the saturated regime, provided that disturbance w violates our
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assumption "occasionally"; mathematically, we phrase this as w “ w1 ` w2, where
}w1}8 ď ηmax and w2 P ℓp.

Setup of Candidate CLMs for Unsaturated Regime
First, we consider the requirements of the unsaturated regime and assume that it is
a feasible control problem. That is, for the given tuple of sets pX ,U ,Wq, we can
design a linear controller such that for any disturbance sequence w in W , (that is,
wt P W for all t), the state xt is always guaranteed to stay within the set X if x0 P X .
As shown in the previous section, we can pose this as a feasibility problem of convex
constraints. Another general approach to address this problem in the context of SLS
has been presented in [36], which allows polytopic sets X , U , and W . We assume
that the control design for the unsaturated regime is feasible and we formulate this in
terms of cCLMs Ψ next.

We define the operators F P LCspℓ
nˆℓm, ℓnq andF 1

P Cspℓnˆℓm, ℓnq to distinguish
the dynamics of the linear system with and without actuator saturation. LetF px,uq “

Apxq `Bpuq, where A “ I bA and B “ I bB. Let F 1px,uq “ Apxq `BUpuq,
whereBU :“ B˝pIbsatUq. In general, a saturation nonlinearity sat is characterized
by the properties described in (3.3), that is, as long as the input is in the set U , the
nonlinearity has no effect, and the system behaves linearly. However, we will focus
our discussion on projection-based saturations ΠU as shown in the example below.

Definition 3.3. Given some closed bounded convex set U with 0 P U , a saturation
function is a Lipshitz continuous map satU : Rm Ñ U onto U , which satisfies

@u P Rm : satUpsatUpuqq “ satUpuq and @u P U : satUpuq “ u.

Example. Let U be some convex body in a normed vector space p| |,Rmq containing
the origin in its interior. Then, the map ΠU : u ÞÑ argmin

u1PU
|u ´ u1| is a saturation.

For our blended cCLM ΨΣ “
řN

i“1ΨΣGi we consider a collection of linear cCLM
tΨiu

N
i“1 and weight operators tGiu

N
i“1 constructed from saturation functions as

described in Def. 2.12.

Let W1 Ă W2 ¨ ¨ ¨ Ă WN´1 be a collection of nested convex sets and pick WN´1 :“

W . Denote ΠWk
: x ÞÑ argmin

uPWk

|x´u|, @k P t1, . . . , N ´ 1u as the projection maps

onto the sets Wk. Define the weights as Gk “ I b gk, where gk “ ΠWk
´ ΠWk´1

for all k P t2, . . . , N ´ 1u and g0 “ ΠW1 , gN : x ÞÑ x ´ ΠWN´1
pxq.
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We purposely picked the last weight operator such that GN “ I b pI ´ ΠWq, hence
in the unsaturated regime, the last cCLM ΨN does not contribute to the closed-loop
state and input behavior. This is due to the fact that for any sequence w Ă W , it
holds that

w Ă W : ùñ w “

N
ÿ

i“1

Gipwq “

N´1
ÿ

i“1

Gipwq

and therefore

w Ă W : ùñ ΨΣw “

N´1
ÿ

i“1

ΨiGipwq.

We assume that tΨiu
N´1
i“1 have been designed to satisfy the desired notion of robust

set invariance in the unsaturated regime:

Assumption 3.6. tΨiu
N´1
i“1 are CLMs of the linear system F , and for all w P W ,

the following holds:

N´1
ÿ

i“1

Ψx
iGipwq P X

N´1
ÿ

i“1

Ψu
iGipwq P U . (3.31)

For notational convenience, we split the blended CLM into two parts. Let
“

R
M

‰

stand
for

R :“
N´1
ÿ

i“1

Ψx
iGi M :“

N´1
ÿ

i“1

Ψu
iGi

so we can write:

Ψx
Σ “ R ` Ψx

NGN Ψu
Σ “ M ` Ψu

NGN .

It is clear from this setup that for sequences w P W , the map
“

R
M

‰

is a CLM for the
linear system F , and if we restricted the domain of the CLMs to sequences in W , it
would also be a CLM of the nonlinear system F 1.

Design Approach for Stability in the Saturated Regime
We now consider the case where the disturbance leaves the set W occasionally,
leading to actuator saturation. It is commonly known that graceful performance
degradation cannot be taken for granted, as instability phenomena like the "wind-up"
effect can occur if the controller synthesis improperly deals with actuator saturation.
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For stable system matrices A, a modification based on the IMC principle of the
controller is shown in [36], which guarantees closed-loop stability when w R W .

In the case of our blended SL controller Ψu
ΣpΨx

Σq´1, it turns out that stability in the
saturated regime is ensured if we make two simple modifications. First, we require
Ψu

N “ 0, and Ψx
N to be an LTI FIR cCLM with the linear components

Ψx
N,tpwt:0q “

mintT´1,tu
ÿ

k“0

Akwt´k Ψu
N,t “ 0, (3.32)

for some finite horizon T ě 1. Second, we prepend the projection to ΠW to R and
M .

Next, we show that with the above rule, ℓp stability of the nonlinear closed loop is
guaranteed. Moreover, global stability results (for stable A) and local stability results
(for unstable A), along with the corresponding transient bounds, can be derived for
the closed loop. The convergence to X in finite time is shown for ℓp perturbations
with p ă 8.

Dynamics of Lumped Disturbances in the Saturated Regime
The basis for our stability analysis is the provided by the following lemma:

Lemma 13. Given assumption (3.6) and assuming ΨN satisfies (3.32), then for
Ψ

1

Σ “
“

R
M

‰

ΠW ` ΨNGN holds:

∆rF 1,Ψ
1

Σs “ ∆rF ,ΨN sGN .

Proof.

∆rF 1,ΨΣs “ F
1`Ψ

1

Σ ` I ´ Ψ
1x
Σ

“ A`RΠW ` A`Ψx
NGN ` B`

U pMΠW ` Ψu
NGNq

¨ ¨ ¨ ` I ´ RΠW ´ Ψx
NGN .

Now since, Mw P U for all w P W and ΠWw P W , @w, we can conclude
MΠWw P U for all w. Furthermore, since Ψu

N “ 0, we have Ψu
NGN “ 0. It is

therefore trivial to rewrite the term B`
U pMΠW ` Ψu

NGNq as:

B`
U pMΠW ` Ψu

NGNq “ B`
U pMΠWq “ B`

pMΠWq ` B`Ψu
NGN .

Moreover, using the fact that I “ GN ` ΠW we substitute in the above equation and
yield the decomposition:

∆rF 1,Ψ
1

Σs “ pA`R ` B`M ´ R ` IqΠW ` ∆rF ,ΨN sGN .
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Since, the first term equals ∆rF ,
“

R
M

‰

sΠW and the
“

R
M

‰

are CLMs of the linear
system F we have ∆rF ,

“

R
M

‰

sΠW “ 0. This leaves us with the desired result:
∆rF 1,Ψ

1

Σs “ ∆rF ,ΨN sGN .

Applying Theorem 11 from the previous chapter, we obtain the dynamics of the
lumped disturbance as:

ŵ “ ∆rF ,ΨN sGNŵ ` w.

We analyze the stability of these dynamics by rewriting them as the difference
equation:

ŵt “

#

AT pŵt´T ´ ΠWpŵt´T qq ` wt for t ě T

wt else .
(3.33)

Here is a quick derivation for clarity: Ψu
N “ 0, means ∆rF ,ΨN s “ A`Ψx

N ` I ´

Ψx
N . Define the auxiliary variables w̃N “ GNŵ, α “ Ψx

Nw̃
N β “ A`Ψx

Nw̃
N ,

γ “ pI ´ Ψx
Nqw̃N and following calculations to compute β ` γ

ŵt “ βt ` γt ` wt

αt “

mintT´1,tu
ÿ

k“0

Akw̃N
t´k

βt “ Aαt´1

γt “

mintT´1,tu
ÿ

k“1

´Akw̃N
t´k

ô

αt “

mintT,t`1u
ÿ

k“1

Ak´1w̃N
t`1´k

βt “

mintT,tu
ÿ

k“1

Akw̃N
t´k

βt ` γt “ AT w̃N
t´T , if t ě T , else 0

ŵt “ AT w̃N
t´T ` wt, if t ě T , else wt.

Finally, substituting w̃N
t “ ŵt ´ ΠWpŵtq into the last expression on the right yields

the difference equation (3.33).

Stability and Convergence in Saturated Regime
Next, we analyze the stability of the dynamic system (3.33) and its implications for
the overall closed-loop. We show that we can always choose T to achieve closed-loop
stability. The choice of T depends on the matrix A and the norm used in projection
ΠW .

From equation (3.33), it is easy to see that we can decompose the sequence ŵ and
w into T subsequences ω̂ris

k :“ ŵi`kT , i P t0, . . . , T ´ 1u, ωris
k :“ wi`kT , whose

dynamics can be analyzed entirely separately. In fact, for each i and k holds

ω̂
ris
k “ AT

pω̂
ris
k´1 ´ ΠWpω̂

ris
k´1qq ` ω

ris
k , for all t ě 1 and ω̂ris

0 “ ω
ris
0 . (3.34)
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Notice that f.g. ℓp{ℓ8-stability of the above system is sufficient for fg. ℓp{ℓ8-stability
of the original system (3.33), since:

}ω̂ris
}p ď γ}ωris

}p for all i P t0, . . . , T ´ 1u

ùñ }ŵ}p “
p

g

f

f

e

T´1
ÿ

i“0

}ω̂ris}
p
p ď

p

g

f

f

e

T´1
ÿ

i“0

γp}ω̂ris}
p
p “ γ p

g

f

f

e

T´1
ÿ

i“0

}ω̂ris}
p
p “ γ}w}p.

Hence, we drop the index i and analyze the auxiliary system

ω̂k`1 “ AT
pω̂k ´ ΠWpω̂kqq ` ωk.

For the next lemma, define Bη :“ tw| |w| ă ηu as the ball of radius η corresponding
to the norm | ¨ | used in the definition of the projection ΠW . The next result proves
the conditions for closed-loop stability dependent on the design parameter T .

Lemma 14. Define η̄ :“ suptη| Bη Ă Wu and define |A| :“ sup|x|“1 |Ax|.
If η̄ ą 0 and assuming ℓp, ℓ8 are formulated also w.r.t. the norm | ¨ |, then:

1. If |AT | ă 1, then the following bound holds for all w:

}ŵ}p ď
1

1 ´ |AT |
}w}p.

2. For any 0 ď γ ă mint1, |AT |u holds:

}w}p ď p1 ´ γq
|AT |η̄

|AT | ´ γ
ùñ }ŵ}p ď

1

1 ´ γ
}w}p.

Proof. First observe the following property of the projection map ΠW :

|ΠWpwq ´ w| “ min |w1|

s.t. w ` w1 P W
ď min |w1|

s.t. |w ` w1| ă η̄

aq

ď min
tě0

t|w|

s.t. p1 ´ tq|w| ă η̄

“ maxt0, |w| ´ η̄u
,

where inequality aq follows by restricting the search to the line w1 “ tw, t ě 0. This
shows that |ΠWpwq ´w| ă |w| for all w P Rn. Hence, it follows that for any ω holds:

|AT
pω̂ ´ ΠWpω̂qq| ď |AT

|maxt0, |ω| ´ η̄u ď maxt0, |AT
||ω| ´ |AT

|η̄u.
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This proves the first statement. On the other hand, for any γ ă mint1, |AT |u, the
following local small-gain property holds:

}a}p ă
|AT |η̄

|AT | ´ γ
ùñ }pI b AT

pid ´ ΠWqqa}p ď γ}a}p (3.35)

where id : x ÞÑ x. Lastly, the desired local and global results follow by direct
application of the small gain result lemma 7.

Lemma 14 formulates stability conditions in terms of T and a requirement of |AT | ă 1

to ensure global stability. Due to Gelfand’s theorem, a standard result from Linear
Algebra, we are guaranteed that as long as A is Schur, it is always possible to pick a
T large enough such that |AT | ă 1, however T might depend on the particular norm
| ¨ | we chose in the projection ΠW .

Lemma 15 (Gelfand’s Theorem). Denote by ρpAq the spectral radius (max ab-
solute value of eigenvalue) of A P Rnˆn, then for any matrix norm |.| holds
limkÑ8p|Ak|q1{k “ ρpAq.

The lemma 14 tells us that if A is Schur, we can always choose T such that |AT | ă 1,
then we are guaranteed f.g. ℓp stability for the lumped disturbances ŵ and by
Theorem 11, this shows overall closed-loop stability for our system since F is
trivially Lipschitz and therefore i.f.g. ℓp stable everywhere. Furthermore, even in
the case where |AT | ą 1, the second result offers at least local ℓp-stability for the
closed-loop. Hence, we have stability for small disturbances in the saturated regime,
even if the system is open-loop unstable.

As a corollary of the above result, we can prove that as long as our disturbance only
exits the set W a finite number of times, then we are also guaranteed to violate the
state constraint X a finite number of times. Our strategy is to show that there exists a
time t1 for which xt is guaranteed to stay in X for all time t ą t1 if w is composed of
w1 ` w2 where }w1}8 ă η̄ and w2 P ℓp.

Corollary 16. Assume η̄ ą 0 and |AT | ď 1 as used in Lemma 14. If w “ w1 ` w2

where }w1}8 ď η̄ ´ ε for some ε ą 0 and w2 P ℓp, then there exists a time t1 such
that for all t ą t1: xt P X .
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Proof. Recall the relationship ŵ “ pΨxq´1x ô Ψxŵ “ x and Ψx
Σ “ RpI ´

GNq ` Ψx
NpGNq to decompose x into the terms s and s1:

x “ RΠWpŵq
loooomoooon

“:s

`Ψx
Npŵ ´ ΠWpŵqq

loooooooooomoooooooooon

“:s1

. (3.36)

Since Rw P X for all w P W and ΠW maps onto W , it is clear that s “ RΠWpŵq P

X for all ŵ. Denote psq` :“ maxt0, su and retrace the proof of Lem. 14, to arrive
at the inequality:

|ŵt| ď p|ŵt´1| ´ η̄q` ` |wt|.

From the above, we obtain the following inequalities

|ŵt| ď p|ŵt´1| ´ η̄q` ` |wt|

ô |ŵt| ´ η̄ ď p|ŵt´1| ´ η̄q` ` |wt| ´ η̄

ô ď p|ŵt´1| ´ η̄q` ` |w2,t| ´ ε

ñ ď p|ŵt´1| ´ η̄q` ` p|wt| ´ η̄q`

ñ p|ŵt| ´ η̄q` ď p|ŵt´1| ´ η̄q` ` p|wt| ´ η̄q`

ñ @τf :

τf
ÿ

t“0

p|ŵt| ´ η̄q` ´ p|ŵt´1| ´ η̄q` ď

τf
ÿ

k“0

p|wt| ´ η̄q`

ô @τf : pŵτf ´ η̄q` ď

τf
ÿ

k“0

p|wt| ´ η̄q` ď

τf
ÿ

k“0

p|w2,t| ´ εq`.

Recallw “ w2`w1, wherew2 P ℓp and |w1|8 ă η̄. The last line shows }ŵ}8 ă 8,
since there exists some timestep Tf such that @t ą Tf , |wt| ´ η̄ ď ´ ε

2
. Furthermore,

for all k ě Tf holds:

|ŵk| ´ η̄ ď p|ŵk´1| ´ η̄q` ´ ε
2
.

The shows that after some finite time T2, |ŵt| ă η̄ and therefore ŵt ´ ΠWpŵtq “ 0

for all t ě T2. Finally, since cCLM Ψx
N is FIR, it also implies s1ptq “ 0 after at

most T time steps afterward. This proves that eventually, that is, after some t1 ą 0,
xt P X for all t ě t1.

3.7 Example
As an example, we revisit the structure of the optimal blended SL controller of the
constrained LQR problem and augment it with the anti-windup technique discussed
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in the previous section. In the control design procedure, we discussed that the last
CLM ΨN (in the small example, it was Ψ3) was a degree of freedom that does
not affect the LQR cost. However, in light of our previous discussion, we can use
that extra degree of freedom to ensure graceful degradation in the event that the
disturbance violates our assumptions.

As discussed in our previous results, we pick Ψu
N “ 0 and pick Ψx

N according to the
rule (3.32). The blended cCLM ΨΣ changes only the component Ψx

Σ:

Ψx,a
t pwt:0q “

N
ÿ

i“1

˜

mintT,t`1u
ÿ

k“1

R
piq
k pPηi ´ Pηi´1

qpwt`1´kq

¸

`

τ`1
ÿ

k“1

Ak´1
pwt`1´k ´ PηN pwt´k`1qq . (3.37)

In the above, τ is a design parameter, and recall that by design, we have chosen
ηN “ ηmax, the expected norm bound on disturbances. This extra term added
to the CLM accounts for residual disturbances that are not attenuated by the
original controller SLrΨx,Ψus because the disturbances are larger than expected
by projection mapping, that is, |wt| ą ηmax. Therefore, SLrΨx,a,Ψus considers the
τ -step propagation of the unaccounted for disturbances from SLrΨx,Ψus.

The resulting lumped dynamics under the augmented controller SLrΨx,a,Ψus take
the form:

ŵt “ Aτ`1
pŵt´τ ´ Pηmaxpŵt´τ qq ` wt (3.38)

where Pηmaxpq is the entry-wise saturation used in the constrained LQR problem.
Pηmaxpq can be equivalently viewed as an instance of a projection ΠW with respect to
the 8-norm | ¨ |8, and where W denotes the scaled 8-norm ball ηmaxtx | }x}8 ď 1u.
Leveraging the stability theorem Lem. 14 and using Gelfand’s Lemma, closed-loop
stability for the saturated regime is ensured under the following condition stated in
the lemma below:

Lemma 17. Assume ρpAq ă 1 and pick τ such that |Aτ`1|8 ă 1. Then the internal
dynamics (3.38) are globally finite-gain ℓ8-stable, where for all w P ℓn8,

}ŵ}8 ď
1

1 ´ |Aτ`1|8

}w}8.

Proof. Pick | ¨ | :“ | ¨ |8 and choose τ such that |Aτ`1|8 ă 1. Then apply the lemma
(14).
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Therefore, if the system is open-loop stable, SLrΨx,a,Ψus guarantees graceful
degradation when the closed-loop is saturated. Similarly, we obtain local stability
results in the case where A is open-loop unstable. Similarly to the large-scale
constrained LQR case in Section 3.3, the augmentation for anti-windup allows for
distributed and localized implementation.

Simulation
We end this chapter with some simulation experiments demonstrating the effectiveness
of anti-windup augmentation. We consider a bi-directional chain system with the ith
node’s dynamics being

xit`1 “ p1 ´ 0.4|N piq|qxit ` 0.4
ÿ

jPNi

xjt ` satpuit, umaxq ` wi
t

where N piq denotes the set of vertices that has an edge connected to ith vertex and
wi

t is the ith coordinate of disturbance vector at time t. In particular, }w}8 ď 1

and x0 “ 0. One can check that the overall chain system is open-loop marginally
(un)stable. In this chain example, we allow 1 time step communication delay between
nodes and actuation delay with 50%.

We illustrate the anti-windup property of the nonlinear controller (3.26) in the
decentralized setting with additional sparsity, locality, and delay constraints in Figure
3.3c. First, a nominal integral controller for this system is designed and called the
Integral Controller. Due to its integral structure, the Integral Controller for the
unconstrained closed loop guarantees convergence of the state to the origin under
persistent disturbance, i.e., step rejection. In comparison, a second linear controller
synthesized from the standard constrained LQR problem is generated that guarantees
stability for all admissible w under saturation. We refer to this linear controller
as the non-integral controller since the states only stay bounded under persistent
admissible disturbance.

The nonlinear controller with the saturation projection here is chosen to be a two-zone
blending controller. The simulation shows the anti-windup property as well as the
preservation of step rejection in both large- and small-disturbance schemes of the
proposed method. Figure 3.3c shows that the blended SL-controller stabilizes the
system while the integral controller becomes unstable under worst-case bounded
disturbance. On the other hand, in Figure 3.4c, the proposed blending controller
preserves the performance of step rejection while the linear Non-integral Controllers
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(b) Non-integral
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(c) Nonlinear Blending

Figure 3.3: Worst-case Response: The heatmaps show how a worst-case disturbance
is propagated through space-time for the saturated chain system. The integral
controller becomes unstable due to saturation and the naive blending controller
possesses has the anti-windup property of the non-integral controller.
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(c) Nonlinear Blending

Figure 3.4: Step disturbance rejection: Response to small step disturbances at
node 8,10,12 entering at time 2,6,10, respectively. As in the scalar case, the
proposed blending controller not only stabilizes under saturation but also recovers
the performance objective of rejecting small step disturbances. This contrasts against
the non-integral controller, which sacrifices small-signal performance for stability.

forfeit the performance objective in order to preserve stability in the saturated closed
loop. For more details on the simulation, see [137].

3.8 Conclusion
We showcase the nonlinear system-level approach developed in [64] and illustrate
the use cases for a class of nonlinear system-level controllers. We propose a tractable
nonlinear control synthesis method that outperforms any optimal linear controller
for constrained LQR problems. It is further shown that such a controller naturally
possesses an anti-windup property for linear systems with input saturation. A key
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highlight is that the presented approach is compatible with locality/delay constraints
and distributed implementation, similar to the linear system-level approach [11].
Overall, this chapter is a first step in exploring the full potential of the new nonlinear
control synthesis framework developed in [64] and highlights that even just the
presented special case of the framework, called "nonlinear blending" of linear
controllers, offers many benefits.
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C h a p t e r 4

ROBUSTNESS AND SENSITIVITY OF
CERTAINTY-EQUIVALENT ADAPTATION

This chapter investigates closed-loop in learning-to-control problem settings, where
the decision-making of the algorithm is structured in a certainty equivalent way.
Certainty Equivalence (CE) is a common principle underlying many learning and
control algorithms: At each time step, we hypothesize a model for the system
dynamics and then act according to the nominal control law designed for that
model. In other words, we pretend to have found a model that will remain accurate
going forward. We show that there is a natural way to perform certainty-equivalent
adaptation for SL controllers, which simplifies the analysis and is instructive for
the design of the overall learning-to-control algorithm. The particular structure of
the nonlinear closed-loop maps reveals three general design principles sufficient for
designing stable learning-to-control algorithms:

1. Smooth parametrizations of nominal CLMs and Dynamics: The nominal
CLMs and dynamics chosen by CE-adaptation should change smoothly with
small changes in the nominal model.

2. Consistency of Selected Models: The sequence of models that we hypothesize
should be consistent with the online data (up to some ℓp-bounded error).

3. Efficient Model Selection: Our model hypothesis should eventually converge;
however, it is not required to converge to the true model.

In the second part of the chapter, we explore applications of this result for problem
settings related to online learning of optimal controllers. To this end, we focus on the
setting of linear time-invariant systems and linear-quadratic costs, a problem setting
that has received immense recent attention in the learning and control literature.
Guided by the theoretical findings in the first part, we follow the principle of certainty
equivalence to design a learning-to-control scheme with nominal LQ-optimal system-
level controllers. We analyze the closed-loop stability of the learning-to-control
scheme and provide conditions for model selections that are sufficient for closed-loop
stability, which are closely related to consistent model chasing, a core topic in Part 2
of the thesis. The main technical result underlying this analysis is on perturbation
analysis of LQ-optimal CLMs. The result in itself is new and characterizes the
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sensitivity (i.e., analytic bounds on the Lipschitz constant) of LQ-optimal closed-loop
maps for LTI systems in terms of system-theoretic properties such as controllability
and observability.

4.1 Closed-Loop Dynamics in the Presence of CE-Adaptation
We assume a nonlinear system in the standard form we introduced in Chapter 2 and
that the disturbance w belongs to WN :“ tw P ℓX | @k P N : wk P Wu for some
closed-bounded set W Ă Rn.

x “ F`
px,uq ` w, w P WN.

We restrict ourselves to diagonal operators F , i.e., F can be decomposed as:

F “

8
ÿ

t“0

P rtsFP rts (4.1)

and let tfk : Rn`m ÞÑ Rnu8
k“0 be the unique functions formed by dropping the

obsolete arguments of the component functions; alternatively, each fτ is well-
defined by the mapping fτ : pxτ , uτ q ÞÑ Fτ pxτ :0, uτ :0q. Moreover, we assume
that the dynamics F are unknown, however, belong to a known set of dynamics
tF̂ pωq | ω P Ωu “: F̂ rΩs parametrized over some compact metric space pΩ, dΩq

with some fixed map F̂ : Ω Ñ CpℓXˆU , ℓX q. Correspondingly with our assumption
of F , we assume that DrΩs consists of diagonal operators and there exists some
ω˚ P Ω such that Dpω˚q “ F . We summarize these assumptions and definitions
below: Moreover, we assume that the dynamics F are unknown; however, they
belong to a known set of dynamics tF̂ pωq | ω P Ωu “: F̂ rΩs parameterized over
some compact metric space pΩ, dΩq with some fixed map F̂ : Ω Ñ CpℓXˆU , ℓX q.
Similarly to our assumption ofF , we assume thatDrΩs consists of diagonal operators
and that there exists some ω˚ P Ω such that Dpω˚q “ F . We summarize these
assumptions and definitions below:

Assumption 4.2. We are given a compact metric space pΩ, dΩq and a map F̂ :

Ω Ñ CpℓXˆU , ℓX q, where each ω P Ω represents a dynamic system with diagonal
dynamics operator F̂ rωs.

As we discussed, taking the CE-approach is the most common (often also efficient
[92]) way to tackle learning of feedback control in the closed-loop. The defining
feature of CE-adaptation is the simple structure of the decision-making process: At
each time-step k, we hypothesize a model parameter θk and evaluate the nominal



98

controller uk “ Kkrθkspxk:0q designed for the assumed dynamics F̂ rθks :“ Dpθkq;
one can view the nominal controllers as a parametrized collection tKpωq | ω P Ωu,
K : Ω Ñ CpℓX , ℓUq of specified (or synthesized online) control laws, where each
control law Krωs :“ Kpωq achieves some desired nominal closed-loop behavior,
assuming the system dynamics are F̂ rωs. Selecting θk is commonly performed via
online system identification [16], or gradient-based adaptation rules [71], and we
shall denote this process as the causal operator S P CpℓXˆU ,ΩNq, ΩN :“ tω | ωk P

Ω, @k P Nu which we refer to as the model selection/selector S.

To summarize, under CE-adaptive control, the closed-loop dynamics are governed
by the following equations at each time-step k:

xk “ fk´1pxk´1, uk´1q ` wk (4.2a)

θk “ Skpxk:0, uk´1:0q (4.2b)

uk “ Kkrθkspxk:0q. (4.2c)

It is hard to gauge the behavior of the closed-loop dynamics from the above equations;
however, that changes with a slight tweak to how we perform adaptation. Next, we
formulate CE-adaptation in terms of nominal closed-loop maps and system-level
controllers.

CE-Adaptation in System Level Implementations
Instead of encoding the desired nominal behavior as a parameterization K : ω ÞÑ

Krωs of control laws tKrωs |ω P Ω u, we can equivalently consider a representation
in the form of nominal CLMs tΨrωs | ω P Ωu, Ψrωs P CpℓX , ℓXˆUq. Hence, we
assume each nominal CLM Ψrωs is a CLM of the dynamics F̂ rωs:

@ω P Ω : Ψrωs P CpℓX , ℓXˆU
q s.t.: Ψrωs P Φw ÞÑxu

CL rF̂ rωss (4.3)

and corresponds to the nominal control law Krωs “ ΨurωspΨxrωsq´1. However,
the System Level Implementation SLrΨurωs,Ψxrωss of the nominal controller offers
alternative ( to (4.2c) ) ways to perform adaptation, simply by swapping out the
nominal CLMs in the SL control structure. The resulting closed-loop dynamic
equations over time k take the form:

xk “ fk´1pxk´1, uk´1q ` wk (4.4a)

ŵk “ xk ´ Ψx
krθksp0, ŵk´1:0q (4.4b)

uk “ Ψu
krθkspŵk:0q (4.4c)

θk “ Skpxk:0, uk´1:0q. (4.4d)
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Despite the correspondence Krωs “ ΨurωspΨxrωsq´1, the closed-loops (4.4) and
(4.2) are not the same because CE-adaptation is performed differently.

Remark. In fact, the adaptive control law (4.2c) parameterized by CLMs takes the
form u “

ř8

t“0P
rtsΨurθtsP

tΨ´xrθtsP
tx.

However, the above closed-loop dynamics can be manipulated into a form that turns
out to be insightful, particularly for the design of S. In the next section, we discuss
sufficient conditions for closed-loop stability provided by appropriate design of the
model selection.

Model Selection Conditions for Closed-Loop Stability
For this section, we consider S a design variable, and therefore we treat the parameter
sequence θ as an input of the closed-loop model (the set of all px,u,θ, ŵ,wq

conforming with equations (4.4)). Regardless of θ, the usual identity still remains
for all k:

xk “ Ψx
krθkspŵk:0q uk “ Ψu

krθkspŵk:0q. (4.5)

Moreover, treating the sequence θ as an index set, we denote Ψ|θ as the operator
with component functions pΨ|θqk : pŵk:0q ÞÑ Ψtrθtspŵk:0q. We can rewrite (4.5) in
sequence space as:

x “ Ψx
|||θŵ u “ Ψu

|||θŵ. (4.6)

An intuitive design criterion for model selection and choice of θ is the 1-step
prediction error e. At time step k, the prediction error is defined as ek “ xk ´

f̂k´1rθkspxk´1, uk´1q, i.e., it measures how well the current selected model θk matches
with the most recent system transition pxk´1, uk´1q ÞÑ xk. However, the selection
of θk is allowed to depend on ek, since we get to observe xk before choosing θk.
In particular, it is easy to see that we can always control the size of this error to
be at most the size of wk. Since there exists a true ω˚ P Ω such that F “ F̂ rω˚s,
given xk and xk´1, uk´1 at time k, ω˚ accurately models the latest state transition
xk´1, uk´1 ÞÑ xk. That is, ek “ xk ´ f̂krθkspxk´1, uk´1q “ wk, therefore it is always
possible to find a parameter θk such that |ek| ď |wk|. The same argument applies
to the entire history of observed transitions px, uqk´1:0 ÞÑ xk:1, and therefore it is
always possible to select a parameter θk such that the prediction error in hindsight

erk:0s|k :“ xk:1 ´ F̂k´1:0rθkspxk´1:0, uk´1:0q
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is always smaller in norm than wk´1:0. Hence, at each time k, the history of past
observations xk:0, uk´1:0 provides sufficient knowledge to find some θ˚p

k , for example,
by explicit minimization, such that }erk:0s|k}p ď }wk´1:0}p, regardless of what value
w takes. We will call a sequence θ for which the hindsight prediction errors are
uniformly bounded over time, i.e., supkt}erk:0s|k}pu ă 8, to be an ℓp-consistent
parameter selection, and θ˚p “ pθ˚p

0 , θ
˚p
1 , . . . q to be ℓp-optimal. Similarly, we call a

sequence θ to be a finite horizon ℓp-consistent selection for some T , if the norm of
the truncated hindsight prediction errors

eIk|k :“ xIk ´ F̂Ik´1rθkspxk´1:0, uk´1:0q, Ik “ rk ´ T, ks

forms a scalar ℓp-bounded sequence p|eI0|0|, |eI1|1|, . . . q. We summarize these
definitions below and define causal operators S to be ℓp-consistent model selectors
if the output parameter sequence θ “ Spx,uq is always a ℓp-consistent selection,
whenever x “ F`px,uq ` w, w P ℓXp .

Definition 4.1. Let pΩ, dq be a parameter space, F̂ : Ω Q ω ÞÑ F̂ rωs P CppX ˆ

UqN,X Nq be parameterization of dynamic functions, and S P CppX ˆ UqN,ΩNq be
a parameter selector. Denote ET : pΩ ˆ X ˆ UqN Ñ R`

0 as the causal operator
defined by its component functions as

P rksET : pθ,x,uq ÞÑ }P Ikpx ´ F̂`
rθkspx,uqq}p, Ik :“ rk ´ T, ks.

(i) S is called an ℓp-consistent parameter selector if for allx P ℓX ,u P ℓU ,w P ℓXp

such that x “ F̂`rωspx,uq ` w for some ω P Ω, E8pSpx,uq,x,uq P ℓ8.
(ii) S is called an ℓp-consistent parameter selector with a finite T -horizon if for

all x P ℓX , u P ℓU , w P ℓXp such that x “ F̂`rωspx,uq ` w for some ω P Ω,
ET pSpx,uq,x,uq P ℓp.

Remark. We discuss consistent model selections in depth in Chapter 6.

As alluded to previously, the following decision rule always defines a corresponding
ℓp-consistent selector:

St : P
t
px,uq ÞÑ θt P argmin

ω
}P IkpP tx ´ F̂`

rωsP t
px,uqq}p

θ˚p “ pθ˚p
0 , θ

˚p
1 , . . . q, and therefore the model selectors defined above always exist.

Next, we consider S, which are just ℓ8-consistent selectors of horizon T “ 1,
and consider F , which are diagonal operators, i.e., for any t, P rtsF “ P rtsFP rts.
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In other words, the selector S is assumed to guarantee the uniform boundedness
of the 1-step prediction error ek “ fk´1pxk´1, uk´1q ` wk ´ f̂k´1rθkspxk´1, uk´1q.
Provided that assumption, e can replace the role of w as input, and as summarized
in Theorem 22, we can analyze the closed-loop stability in terms of the stability of
the map pe,θq ÞÑ pŵ,x,uq.

To derive these equations, first, notice that the following statement is vacuous:

xk “ f̂k´1rθkspxk´1, uk´1q ` ek.

By substituting the above into (4.4b) and using the identity (4.5), we arrive at the
following set of equations:

ŵk “ f̂k´1rθkspΨk´1rθk´1spŵk´1:0qq ´ Ψx
krθksp0, ŵk´1:0q ` ek. (4.7)

For a fixed k, the right-hand side of the equation corresponds with the k-th component
of the operator F̂`rθksΨrθk´1s `Ψxrθks, where Ψx :“ I ´Ψx hence we can write
the above set of equations in sequence space as:

ŵ “

8
ÿ

k“0

P rks
pF̂`

rθksΨrθk´1s ` Ψx
rθksqpŵq ` e

“

8
ÿ

k“0

P rks
pF̂`

rθksΨrθk´1s ` Ψx
rθksqpP k´1ŵq ` e

where the second equation follows from the strict causality of F̂` and Ψx. The
operator on the right-hand side is what we refer to as ∆|θ, and it determines the
stability of the disturbance dynamics. The terms of the sum are parameterized by the
function Λ`rω,νs :“ F̂`rωsΨrνs ` Ψxrωs.

Theorem 22 below summarizes our findings so far:

Theorem 22. Consider a fixed sequence θ P ΩN and let pŵ,x,uq be governed by
the closed-loop equations (4.4a)-(4.4c) where F and F̂ rωs, ω P Ω are all diagonal
operators. Then pŵ,x,uq satisfy:

x “ Ψx
|||θŵ u “ Ψu

|||θŵ ŵ “ pI ´ ∆`

|θq
´1e (4.8)

where Ψ|||θ P CpX N, pX ˆ UqNq and ∆`

|θ P CsppX ˆ UqN,X Nq denote the operators:

Ψ|θ “

8
ÿ

t“0

P rtsΨrθtsP
t ∆`

|θ “

8
ÿ

k“1

P rtsΛ`
rθt, θt´1sP

t´1 (4.9)
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and Λ` : Ω2 Ñ CsppX ˆ UqN,X Nq, Ω2 :“ Ω ˆ Ω, for fixed ω,ν P Ω, is defined
as

Λ`
rω,νs :“ F̂`

rωsΨrνs ` Ψx
rωs

.

The stability of the closed-loop systems is determined by the stability of the maps
Ψ|θ and pI ´ ∆`

|θq´1 in equation (4.8). If Ψrωs, ω P Ω are all CLMs of the
corresponding dynamics F̂ rωs, ω P Ω and F̂ are linear we can split ∆`

|θ into two
components, as stated below:

Lemma 18. If Ψrωs P Φw ÞÑxu
CL pF̂ rωsq, @ω P Ω, the operator ∆|θ can be written

as the sum ∆`φ
|θ ` ∆`f

|θ , where where ∆`f
|θ , ∆`φ

|θ are defined by their component
functions for k P N as:

U˚rks∆`f
|θ U k : pŵk:0q ÞÑ pf̂k´1rθks ´ f̂k´1rθk´1sq ˝ pΨk´1rθk´1sqpŵk´1:0q

U˚rks∆`φ
|θ U k : pŵk:0q ÞÑ pΨkrθks ´ Ψkrθk´1sqp0, ŵk´1:0q.

Moreover, if tf̂krωs | ω P Ω, k P Nu are linear functions, then the components of
∆`

|θ become

U˚rks∆`

|θU
k

“ f̂k´1rθks ˝ pΨk´1rθk´1s ´ Ψk´1rθksq. (4.10)

Proof. Per definition, Ψrθks P Φw ÞÑxu
CL rF rθkss and Ψrθk´1s P Φw ÞÑxu

CL rF rθk´1ss

holds, and therefore the operators have to satisfy the respective CLM equation:

F`
rθk´1spΨrθk´1sq “ Ψx

rθk´1s ´ I F`
rθkspΨrθksq “ Ψx

rθks ´ I.

With the above, we can rewrite (4.7) as

ŵk “ ∆f
k´1pŵk´1:0q ` ∆φ

k´1pŵk´1:0q ` ek

with the operators defined below:

∆f
k´1 :“ pf̂k´1rθks ´ f̂k´1rθk´1sq ˝ pΨk´1rθk´1sq

∆φ
k´1pŵk´1:0q :“ pΨkrθk´1s ´ Ψkrθksqp0, ŵk´1:0q

ek :“ xk ´ f̂k´1rθkspxk´1, uk´1q.

Lastly, if tf̂krωs |ω P Ω, k P Nu are linear functions, the components of ∆f
|θ `∆φ`

|θ

take on a simpler a form:

p∆f
|θ ` ∆φ`

|θ qk´1 “ f̂k´1rθks ˝ pΨk´1rθk´1s ´ Ψk´1rθksq.



103

Hence, CE-adaptation using the SL implementation of the nominal controllers allows
us to represent the closed-loop dynamics in the form:

x “ Ψx
|||θŵ u “ Ψu

|||θŵ ŵ “

´

I ´ S`∆f
|θ ´ S`∆φ`

|θ

¯´1

e

From this representation, we can derive conditions for closed-loop stability in terms
of θ. As expected, a necessary condition for closed-loop stability is sensible design
of the nominal CLMs that assures at least some type of stability of the maps Ψrωs.
Moreover, boundedness of the closed-loop trajectory pθ,w,x,uq is implied, if θ is
chosen such that the derived operator pI ´S`∆f

|θ ´S`∆φ`

|θ q´1 is ℓX8-stable and the
prediction error e is bounded. This observation provides an objective for the design
of the model selection: Finding a causal selection rule S which guarantees the former
conditions for any selected sequence θ “ Spx,uq. A natural design approach is to
view S as a means to prove stability via the small-gain theorem. For example, if
S guarantees sufficiently small gains of ∆φ`

|θ and ∆f`

|θ , then we can prove stability
of pI ´ S`∆f

|θ ´ S`∆φ`

|θ q´1 via small-gain theorems such as Theorem 2. From
this representation, we can derive conditions for closed-loop stability in terms of θ.
As expected, a necessary condition for closed-loop stability is a sensible design of
the nominal CLMs that guarantees at least some type of stability of the maps Ψrωs.
Moreover, the boundedness of the closed-loop trajectory pθ,w,x,uq is implied if
θ is chosen such that the derived operator pI ´ S`∆f

|θ ´ S`∆φ`

|θ q´1 is ℓX8 stable
and the prediction error e is bounded. This observation provides an objective for
the design of the model selection: Finding a causal selection rule S that guarantees
the former conditions for any selected sequence θ “ Spx,uq. A natural design
approach is to view S as means to prove stability via the small-gain theorem. For
example, if S guarantees sufficiently small gains of ∆φ`

|θ and ∆f`

|θ , then we prove the
stability of pI ´ S`∆f

|θ ´ S`∆φ`

|θ q´1 using small-gain theorems such as Theorem
2. However, we obtain less restrictive design criteria if we conduct analysis with the
adapted small-gain conditions of Lem. 8:

Theorem 23. Let w,x,u,θ be a trajectory of the closed-loop dynamical system
described by the equations (4.4) for some disturbance w P ℓX8 and sequence of
selected parameters θ. The state and input sequencex,u are bounded if the following
conditions are met:

i) Consistent model selection: S is an ℓ8-consistent model selector with a
horizon of at least T “ 1.

ii) Efficient selection: the selection θ converges in Ω.
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iii) CE-nominal design: Ψ is a parametrization of CLMs: for each ω P Ω holds
∆rΨrωs, F̂ rωss “ 0.

iv) Smooth/robust parametrization of CLMs: The "oracle" map Ψ : Ω Ñ

CpℓX , ℓXˆUq is continuous over the metric space pΩ, dq w.r.t. the operator
norm ~ ¨ ~8.

v) Smooth/robust parametrization of Dynamics : The map D defined by the
correspondence

D : pω1, ω2q ÞÑ F̂ rω1s ˝ Ψrω2s

between the domain pΩ2, dΩ2q, dΩ2px, yq :“ dpx1, y1q _ dpx2, y2q and
codomain pCpℓn, ℓnq,~p¨q ´ p¨q~8q is continuous at every point p of the subset
tpω, ωq | ω P Ωu Ă Ω2.

Proof. We assumed pΩ, dq is a compact metric space and defined for the family
of dynamics tF̂ rωs |ω P Ω u and CLMs tΨrωs |ω P Ω u the map Λ` : Ω2 Ñ

CspℓX , ℓX q, where

Λ`
rω,νs :“ F`

rωsΨrνs ` Ψx
rωs “ D`

rω,νs ` In ´ Ψxrωs

for each pω,νq P Ω2 in the metric space pΩ2, dΩ2q. Recall the definitions of the
operator norm ~ ¨ ~p and pseudo-norm ~ ¨ ~‹

p from Lem. 11:

~A~
‹
p :“ sup

xPXN
p : x‰0

}Apxq ´ Ap0q}p

}x}p
~A~p :“ ~A~

‹
p ` }Ap0q}p

and let E0 : CpℓX , ℓX q Ñ ℓX denote the linear evaluation map such that for each
@A P CpℓX , ℓX q : E0pAq “ Ap0q. Since per assumption, D : pΩ2, dΩ2q Ñ

pCpℓn, ℓnq,~¨~8q is continuous for all p “ pp1, p2q P Ω2, s.t.: p1 “ p2 and Ψr¨s is a
continuous map pΩ, dq Ñ ~¨~8, it follows thatΛ` : pΩ2, dΩ2q Ñ pCpℓn, ℓnq,~¨~8q

has to be continuous for all p “ pp1, p2q P Ω2, s.t.: p1 “ p2 as well.

Per assumption, we are assured that our parameter sequence converges to some
parameter θ8 “ lim

tÑ8
θt, θ8 P Ω. Pick ε “ µ ă 1 and invoke continuity of Λ` at

θ8. Thus, there exists some δ ą 0 such that

@ω,ν P Bδrθ8s : ~Λ`
rω,νs ´ Λ`

rθ8, θ8s~8 ď ε. (4.11)

Since lim
tÑ8

θt “ θ8, there exists someN P N such that @k ą N holds dpθk´1, θ8q ă δ.
Now decompose ∆|θ into the sum

∆|θ “

8
ÿ

k“1

P kΛ`
rθk, θk´1s “

8
ÿ

k“1

P rksΛ`
rθk, θk´1sP

k´1
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and assume some arbitrary z P ℓX8. Next, rewrite }PN∆|θz}8 as

}PN∆|θz}8 “ sup
hąN

}P rhs∆|θz}8 “ sup
hąN

}P rhs

8
ÿ

k“1

P rksΛ`
rθk, θk´1sP k´1z}8

(4.12)

“ sup
hąN

}P rhsΛ`
rθh, θh´1sP

h´1z}8. (4.13)

Next we bound each individual term }P rhsΛ`rθh, θh´1sP
h´1z}8:

}P rhsΛ`
rθh, θh´1sP h´1z}8

ď }Λ`
rθh, θh´1sP

h´1z ´ Λ`
rθh, θh´1sp0q}8 ` }E0Λ

`
rθh, θh´1s}8. (4.14)

By construction h ą N , θh, θh´1 P Bδrθ8s and by continuity of Λ` we have

}E0Λ
`

rθh, θh´1s}8 ď }E0Λ
`

rθh, θh´1s ´ E0Λ
`

rθ8, θ8s}8 ď ε,

where Λ`rθ8, θ8s “ ∆rF̂ ,Ψsrθ8s “ 0, since Ψrθ8s is designed as a CLM of
F̂ rθ8s. Similarly continuity of Λ` implies that

}Λ`
rθh, θh´1sP h´1z ´ Λ`

rθh, θh´1sp0q}8 ď µ}P h´1z}8

ď µ}PNz}8 ` µ}P pN,h´1sz}8

and by substituting this bound into (4.14) we obtain a bound for each term on the
right-hand side of (4.13):

}P rhsΛ`
rθh, θh´1sP

h´1z}8 ď µ}P pN,h´1sz}8 ` µ}PNz}8 ` ε. (4.15)

Finally, we apply the above to (4.13) and bound }PN∆|θz}8 from above as:

}PN∆|θz}8

ď sup
hąN

µ}P pN,h´1sz}8 ` µ}PNz}8 ` ε

ď µ sup
hąN

sup
jPpN,h´1s

|zj| ` µ}PNz}8 ` ε

ď µ sup
hąN

|zh| ` µ}PNz}8 ` ε “ µ}PNz}8 ` µ}PNz}8 ` ε. (4.16)

We are ready to apply our findings for stability analysis of the lumped disturbance
dynamics. Recall from our derivations, that ŵ is governed by the dynamic equations
ŵ “ ∆`|θŵ ` e and therefore:

PNŵ “ PN∆`
|θŵ ` PNe.
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Denote the sequence of the intervals Ik “ rN ` 1, ks, k ě N ` 1 and apply the
truncation P It to the above equation for some t ą N and use causality of ∆|θ to
arrive at the equality:

P Itŵ “ P ItPN∆`
|θP

tŵ ` P Ite.

Now, we apply (4.16) by setting z “ P tŵ and obtain the inequality

}P Itŵ}8 ď µ}PNP tŵ}8 ` µ}PNP tŵ}8 ` }P Ite}8 ` ε

ď µ}P Itŵ}8 ` µ}PNŵ}8 ` }P Ite}8 ` ε

ô p1 ´ µq}P Itŵ}8 ď µ}PNŵ}8 ` }P Ite}8 ` ε.

The constant ε “ µ was chosen such that µ ă 1. Hence from the above we get the
inequality

}P Itŵ}8 ď
µ}PNŵ}8 ` }e}8 ` µ

1 ´ µ
.

The right-hand side of the above inequality is bounded because: 1. we assumed a
bounded prediction error e P ℓX8 and 2. N is finite and thus }PNP tŵ}8 1. Since
the scalar sequence psN , sN`1, . . . q, where sk “ }P Itŵ}8 is non-decreasing and
bounded above, it converges and proves that PNŵ P ℓX8 and therefore ŵ P ℓX .
Moreover, }ŵ}8 can be bounded above in terms of the norm of its finite T -truncation
as:

}ŵ}8 ď

"

}PNŵ}8,
µ}PNŵ}8 ` }e}8 ` ε

1 ´ µ

*

.

Finally, we utilize the continuity of the CLM parametrization map Ψ : pΩ, dq Ñ

pℓXˆU , }¨}8q. SinceΨ is continuous, it also follows thatE0˝Ψ is continuous. Due to
the compactness of Ω, there exists some C ą 0 and c0 ą 0 such that ~Ψrωs~8 ď C

and }Ψrωsp0q}8 ď c0 @ω P Ω. This also implies that the component functions have
to obey the inequality:

|Ψtrωspzt:0q| ď C}zt:0}8 ` c0.

This proves the boundedness of x and u, since pxt, utq “ Ψtrθtspŵt:0q ď

Cmaxkďt |ŵk| ` c0, and therefore Ψ P CpℓX8, ℓ
XˆU
8 q.

The stability conditions above admit a natural interpretation and provide us with a
concrete guideline for nominal control design and the design of model selectors. To

1Since we are in the discrete-time setting, we do not have to worry about finite-time escapes.
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assure closed-loop stability, the design and parametrization of the nominal control
behavior, represented by the maps F̂ and Ψ, and the online adaptation strategy,
denoted by the model selector S, have to fulfill the following requirements:

• Smooth parameterization maps for dynamics and CLMs: The set of system
dynamics F “ tF̂ rωs | ω P Ωu, which describe the model uncertainty, is
usually dictated by the specific problem setting and is therefore fixed. However,
we have design freedom in how we choose to cover the space F , that is, the
choice of pΩ, dq and the parametrization mapping F̂ : Ω Ñ CppX ˆUqN,X Nq

such that
Ť

ωPΩ F̂ rωs “ F is not unique. Moreover, for a given Ω and F̂ ,
there is even more freedom in how we assign nominal-CLMs Ψrωs for each
F̂ rωs. Conditions iii), iv), and v) of Theorem 23 state that the parameter
space Ω and the maps F̂ ,Ψ should be designed so that the parametrization of
nominal CLMs and dynamics is as smooth as possible over the space Ω. An
intuitive notion of smoothness is presented in the form of continuity of Ψ and
the map D, which parametrizes the composition of F̂ and Ψ. Notice that this
is a weaker requirement than enforcing continuity of F̂ .

• ℓ8-consistent selector S with convergent selection θ: Conditions i) and ii) of
Theorem 23 impose intuitive design requirements for the model selector S.
The operator S, i.e., the algorithm in charge of the adaptation, should always
select parameters θt that are consistent with our observations up until time t
(allowing for some small ℓ8-bounded error), and our selection strategy should
be efficient in that it eventually settles on a fixed parameter θ8, i.e., S should
guarantee the convergence of the sequence θ. As discussed in Part 2 of the
thesis, designing such selectors, and even ones with stronger properties, is
possible and requires us to consider the general problem of Consistent Model
Chasing, which we discuss in Chapter 6.

CE-based adaptive control schemes are commonly used in problem settings concerned
with learning optimal controllers [1, 5, 92, 94]. In such scenarios, it is common that
each nominal CLM Ψrωs is chosen to be an optimal closed-loop map with respect to
the specific optimal control problem (OCP). A general OCP can be succinctly defined
by a dynamics operator F P CpℓXˆU , ℓX q and a functional J : CpℓW , ℓXˆUq ÞÑ R`,2

2In our formulation, we always set W “ X .
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as the following infinite-dimensional optimization problem

OCPrJ ,F s : min
Φ

J pΦq (4.17)

s.t.: Φx
“ F`

pΦq ` I

Φ P CpℓWp , ℓ
XˆU
q q

over all stable closed-loop maps Φ P CpℓWp , ℓ
XˆU
q q of F`, where p and q represent

some specified notion of closed-loop stability. Correspondingly, the nominal
CLM parametrization Ψ is a map Ω Q ω ÞÑ Φ˚ P argmin OCPrJ , F̂ rωss

which corresponds dynamics F̂ rωs with the respective optimal CLM solutions
Φ˚ P argmin OCPrJ , F̂ rωss. Moreover, if such solutions are unique, i.e., the
set argmin OCPrJ , F̂ rωss is a singleton, then the nominal CLM parametrization
map Ψ is entirely determined by the OCP functional J and the parametrization of
dynamics F̂ . In light of Theorem 23, establishing the smoothness conditions iv)
and v) falls entirely on sensitivity analysis of the solutions to the optimal control
problem OCPrJ ,F rω1

`δss to perturbations ω1
`δ P Bδrωs around fixed parameters

ω P Ω. Thus, having a well-conditioned OCP formulation over the parametrization
F is a prerequisite for using the optimal controllers for online adaptation. This is,
again, states an intuitive requirement: Assume, for example, that for some ωA P Ω

the dynamics F̂ rωAs lose u-controllability (in an essential way important to the
problem), then we can expect OCPrJ , F̂ rωAss to exhibit discontinuities in any
neighborhood of ωA. We explore this connection between the conditioning of
optimal control problems and well-posedness for learning-to-control in the well-
known and important class of OCPs defined by LQ-functionals J and LTI dynamics
F̂ : Ω Ñ LCpℓW , ℓXˆUq, where we assume Ω to be a compact subset of some
finite-dimensional Euclidean space. The main result assumes F̂ to be affine and
states that as long as the set of linear dynamics tF̂ωuωPΩ are all of sufficient and of
equal degree of controllability, then the natural parametrization of LQ-optimal linear
CLMs Ψ : Ω Q ω ÞÑ Φ˚rωs P LCpℓW , ℓXˆUq fulfills the smoothness conditions
iv) and v) of Theorem 23. Therefore, CE-adaptation with any model selector S
that meets conditions i) and ii) of Theorem 23 yields stable learning-to-control in
closed-loop (1).

4.3 Certainty Equivalent Adaptation with LQ-Optimal SL Controllers
LQR is a canonical and well-studied problem of optimal control [77, 85, 132]. In
recent years, it has received revived attention in the context of learning and control
problems [2, 37, 38, 92]. The general problem setup assumes an LTI system of
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the form xk “ Axk ` Buk´1 ` wk, with state x P Rn, input u P Rm, i.i.d standard
Gaussian disturbance wt „ N p0, Inq, and system matricesA P Rnˆn andB P Rnˆm.
Our objective is to find a linear causal controller K P LCpℓU , ℓX q that solves the
optimization problem

min
KPLCpℓU ,ℓX q

lim sup
TÑ8

1

T

T
ÿ

k“0

Ewi
k„N p0,Iqrx

J
t C

JCxt ` uJ
t D

JDuts (4.18a)

s.t.: xk “ Axk´1 ` Buk´1 ` wk, for k ě 1 (4.18b)

uk “ Kkpxk:0q, for k P N, x0 “ w0, (4.18c)

where C and D are fixed matrices of full rank, i.e., CJC ą 0, DJD ą 0. As
stated, it is well-known that the solution to the above problem is the static linear
feedback control law ulqr : x ÞÑ ´K˚x, where the gain matrix K˚ is obtained by
solving the Discrete Algebraic Ricatti-Equation (DARE). However, in applications
with systems of large scale (such as, for example, the power grid), it is not feasible to
implement the former in practice due to technical limitations in sensing, actuation,
and communication. To account for that, one has to translate the former into
constraints on the controller structure, which we then incorporate into the problem
formulation. A common constraint is communication delay between sensors and
actuators of different subsystems, which can be translated into spatial-temporal
subspace constraints on the operator K, as shown in the example below:

Example. Assume we have p separate actuators and q different sensors that partition
the input- and state-space into orthogonal subspaces as V1 ‘ ¨ ¨ ¨ ‘ Vp “ Rm and
U1‘¨ ¨ ¨‘Uq “ Rn, respectively. Furthermore, letViV J

i andUjU
J
j denote orthogonal

projection maps onto the subspaces Vi and Uj , and denote ΠV
i “ Im b ViV

J
i

and ΠU
j “ In b UjU

J
j their diagonal extensions to LCpℓU , ℓUq and LCpℓX , ℓX q,

respectively. Now, if each actuator i receives the measurement from sensor j with
dpi, jq time-steps delay, we can formulate these i ¨ j number of constraints as:

@i, j, τ : P τΠV
i KΠU

j “ P τΠV
i KΠU

j P
τ´dpi,jq. (4.19)

Adding constraints, however, such as (4.19) to the LQR problem (4.18), makes
the problem hard to solve with traditional approaches. With the introduction of
SLS [11, 128], this changed: By changing the search space from K to the CLMs
Φ, we can formulate tractable subspace constraints on Φ, which are sufficient for
K “ ΦupΦxq´1 to fulfill (4.18). A common approximation [11] is to restrict the
CLM search to FIR maps of a fixed finite horizon t. Then, we obtain the following
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finite-dimensional QP problem for Φ: The resulting optimization problem takes the
form:

LQpA,B, tq : min

›

›

›

›

›

«

C 0

0 D

ff«

R1 R2 . . . Rt

M1 M2 . . . Mt

ff›

›

›

›

›

2

F

(4.20)

s.t.: R1 “ I

Rk`1 “ ARk ` BMk, @ k : 1 ď k ď t

Rt`1 “ 0

whereRk P Rnˆn andMk P Rmˆn represent matrices associated with the component
functions of cCLMs

Φx
kpwk:0q :“

mintt,k`1u
ÿ

j“1

Rjwk`1´j Φu
kpwk:0q “

mintt,k`1u
ÿ

j“1

Mjwk`1´j. (4.21)

For fixed A, B, and horizon t, the optimal CLMs Φ˚pA,B, tq P LCpℓX , ℓXˆUq, exist
if rA,Bs is t-controllable (i.e., it is possible to drive the system state from any initial
condition to the origin within t time-steps) and are unique if we assume that C, D,
and B have a trivial null-space.

LQ-Optimal CLMs for Nominal SL Control
Motivated by the scalability of SLS in complex system settings, such as large-scale
systems, we investigate the LQ-optimal SL controllers of the problem (4.20) for
CE-based learning and control.

Setup. We assume that we are given an uncertainty set of LTI dynamics, described by
a compact metric space pΩ, dq of LTI systems, and an affine parameterization map F̂ :

Ω Ñ LCpℓXˆU , ℓX q, where each operator F̂ rωs is linear, diagonal and has component
functions tF̂krωs : pxk:0, uk:0q ÞÑ f rωspxk, ukqukPN, f rωs : px, uq ÞÑ Arωsx`Brωsu

for some fixed continuous matrix-valued functions A : pΩ, dq Ñ pRnˆn, | ¨ |q and
B : pΩ, dq Ñ pRmˆn, | ¨ |q. We consider a fixed horizon t and let the nominal CLM
parameterization Ψ : Ω Ñ LCpℓX , ℓXˆUq assign to each parameter ω P Ω the
LQ-optimal CLM Ψrωs :“ Φ˚pArωs, Brωs, tq w.r.t. to the optimization problem
LQpArωs, Brωs, tq described by (4.20) and (4.21). We leave the model selector
S P CpℓXˆU , ℓΩq unspecified and assume that it is ℓ8 consistent and guarantees a
converging parameter selection θ P ℓΩ. As we discuss in detail in Chapter 6 in Part 2
of the thesis, this assumption is justified, as we can tackle the design of S in isolation
from the question of nominal control design, as a problem instance of Consistent
Model Chasing.
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Algorithm 1 Learning-to-Control with LQ-optimal SL Controllers
Setup: model selector S P CpℓXˆU , ℓΩq, compact parameter space pΩ, dq, continuous

maps A : Ω Ñ Rnˆn and B : Ω Ñ Rmˆn, specified LQpA1, B1, tq with fixed
invertible C, D, t P N and online solver Φ˚pA1, B1, tq, CLM parameterization Ψ : ω ÞÑ

Φ˚pArωs, Brωs, tq
Initialization: choose some θ0 P Ω

1: for k “ 0, 1, . . . to 8 do
2: observe xk
3: θk Ð Skpxk:0, uk´1:0q Ź update model to θk P Ω

4: solve LQpArθks, Brθks, tq from (4.20) Ź Solve LQ-OCP
5: Set Ψrθks Ð Φ˚pArθks, Brθks, tq from (4.21) Ź Synthesize optimal CLM
6: ŵk Ð xk ´ Ψx

krθksp0, ŵk´1:0q Ź adapt SL-controller
7: uk Ð Ψu

krθkspŵk:0q

8: apply action uk
9: end for

Remark. F̂ rωs can be expressed as
ř8

k“0U
˚rks
n ArωsU

rks
n ` U

˚rks
n BrωsU

rks
m .

The CE-Adaptive Control Algorithm. The learning-to-control algorithm is
described in Algorithm 1 and naturally inherits many of the benefits and features of
basic System Level Synthesis. [66] first recognized the importance of SL controllers
for online learning and control and showed that by extending the system-level
robustness analysis of [127], [11] to linear time-varying systems, one can obtain
scalable and easy-to-analyze adaptive control methods via system-level controllers. A
key difference from [66] is that in [66], the parameterization Ψ consisted of candidate
CLMs synthesized to be robust to a limited amount of parametric uncertainty
and, therefore, closed-loop stability was only guaranteed if Ω was not too large.
As illustrated in Algorithm 1, in each time step k we select the system matrices
Ak “ Arθks, Bk “ Brθks and synthesize an LQ-optimal LQ controller by solving
the problem LQpAk, Bk, tq presented in (4.20). Note that whether or not the
parameterization Ψ is available offline or computed on demand online does not make
any difference for closed-loop stability analysis. As described in detail in [11], we
can add – at no cost – linear constraints to ensure that the controller implementation
is aligned with real-world restrictions such as delay and sparsity of sensing, actuation
and communication. Almost all attractive features of the SLS approach [11] carry
over into our online learning and control setting.

Closed-Loop Dynamics. Appealing to our previous discussion and derivation of
Theorem 22 and Lem. 22, the closed-loop dynamics are described by the following
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set of equations:

@k P N : xk “ Ψx
krθkspŵk:0q (4.22a)

θk “ Skpxk:0, uk´1:0q (4.22b)

ek “ xk ´ Arθksxk´1 ´ Brθksuk´1 ` wk (4.22c)

ŵk “ f rθk´1spΨk´1rθk´1s ´ Ψk´1rθksq
looooooooooooooooooomooooooooooooooooooon

U˚rks∆`

|θ
U rk´1s

pŵk´1:0q ` ek (4.22d)

uk “ Ψu
krθkspŵk:0q (4.22e)

where Ψ : Ω Q ω ÞÑ Φ˚pArωs, Brωs, tq and f represents the linear, time-invariant
transition function f rωs : px, uq ÞÑ Arωsx ` Brωsu. Let M˚8

Ω Ă ℓXˆUˆWˆXˆW

denote the model set of the above closed-loop and M8
Ω Ă ℓXˆUˆW the model of the

uncertain open-loop dynamics for bounded disturbance w:

M˚8
Ω :“ tτ ˚

“ px,u, ŵ, e,wq s.t.: (4.22) and w P ℓW8 u (4.23)

M8
Ω :“ tτ “ px,u,wq s.t.: x “ F̂ rωspx,uq ` w for some ω P Ω,w P ℓW8 u.

(4.24)

Investigating closed-loop stability in the ℓ8-BIBO sense now means proving that all
trajectories τ ˚ P M˚8

Ω are bounded, i.e., that M˚8
Ω is a subset of ℓXˆUˆWˆXˆW

8 .

ℓ8-BIBO-Stability of Closed-Loop Dynamics. We appeal to the conditions of
Theorem 23 for stability analysis of the closed-loop dynamical system. Since
we assumed that S guarantees e P ℓ8, Dθ8 s.t.: lim

tÑ8
θt “ θ8 and we have

∆rF̂ rωs,Ψrωss “ 0, @ω P Ω due to Ψrωs :“ Φ˚pArωs, Brωs, tq, verifying stability
reduces down to checking iv) and v). Furthermore, it can be shown that in our
setup iv) actually implies v), and therefore, checking the continuity of the CLM
parameterization map Ψ over Ω is sufficient for verifying both conditions. This is
easily seen by first rewriting the difference F̂ rp1sΨrp2s ´ F̂ rωsΨrωs as

F̂ rp1sΨrp2s ´ F̂ rωsΨrωs

“F̂ rp1sΨrp2s ´ F̂ rp1sΨrp1s ` F̂ rp1sΨrp1s ´ F̂ rωsΨrωs

“F̂ rp1spΨrp2s ´ Ψrp1sq ` Ψx
rp1s ´ Ψx

rωs, (4.25)

where the last equation follows from ∆rF̂ rωs,Ψrωss “ 0 and the linearity of F̂ ,
and second by noticing that the ~ ¨ ~8-norm of F̂ rp1spΨrp2s ´ Ψrp1sq is bounded
above as

~F̂ rp1spΨrp2s ´ Ψrp1sq~8 ď cΩ ¨ ~Ψrp2s ´ Ψrp1s~8 (4.26)
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where cΩ “ max
pPΩ

t|Arps| ` |Brps|u; the maximum cΩ exists because pΩ, dq is a
compact metric space and the parameterizations A and B are continuous maps on
pΩ, dq. Hence, from (4.25) and (4.26) and since A and B were already assumed to
be continuous, the stability conditions iv) and v) would be satisfied if Φ˚pA,B, tq

is continuous in A and B. Therefore, we need to investigate the sensitivity of
LQ optimal CLM solutions Φ˚pA ` BA,B ` BB, tq with respect to small matrix
perturbations BA P Rnˆn, BB P Rnˆm. This perturbation analysis constitutes the
second part of this chapter and culminates in the theorem stated below:

Theorem 24 (Lipschitzness of LQ-optimal CLM oracle). Let t P N be fixed, C P

Rnˆn, D P Rmˆm be fixed invertible matrices, and Φ˚pA,B, tq represent the unique
optimum of the optimal control problem LQpA,B, tq described by (4.20), (4.21).
Assume that Sab is a compact subset of Rnˆpn`mq such that each pair rA,Bs P Sab

is t-controllable, i.e., the matrix PtpA,Bq “ rAt´1B,At´2B, ¨ ¨ ¨ , Bs P Rnˆmt is
of rank n. Then there exists a fixed positive constant L P R` such that for all
rA1, B1s, rA2, B2s P Sab holds

~Φ˚
pA1, B1, tq ´ }Φ˚

pA2, B2, tq~8 ď Lp|B12A| ` |B12B|q

where B12A :“ A1 ´ A2 and B12B :“ B1 ´ B2.

The above result, which will be stated in much greater detail later, states that the
map Φ˚pA1, B1, tq is Lipshitz-continuous over compact sets of t-controllable pairs
of matrices rA1, B1s, and therefore our CLM parametrization map Ψ is indeed
continuous over pΩ, dq. Hence, in summary, as long as all system matrix pairs
trArωs, BrωssuωPΩ are t-controllable, all stability conditions imposed on the nominal
control design, i.e., iii), iv), v) of Theorem 23, are met, and the closed-loop system
(4.22) is ℓ8-BIBO stable (with a fitting choice of S). We summarize our discussion
in the theorem stated below:

Theorem 25 (ℓ8-stability of Closed-Loop Alg.1). Recall the Closed-Loop setup
described in Algorithm 1 and the corresponding closed-loop equations (4.22) and sets
M˚8

Ω and M8
Ω of closed-loop (4.23) and open-loop (4.24) trajectories, respectively.

All closed-loop trajectories τ P M˚8
Ω are bounded if the following conditions are

met:

1. If θ “ Spx,uq, where px,u,wq P M8
Ω, then θ converges in pΩ, dq and

sup
kPN

|xk ´ Arθksxk´1 ´ Brθksuk´1| ă 8.
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2. Each pair of matrices rArωs, Brωss, ω P Ω is t-controllable.

Proof. If the model selector S satisfies the consistency Assumption (1), then the
conditions (i)) and (ii)) of Theorem 23 hold for any sequence of selections θ and
consistency errors e of a closed-loop trajectory px,u, ŵ, e,wq P M˚8

Ω . Condition
Theorem 23(iii)) is automatically satisfied, since Ψrωs “ Φ˚pArωs, Brωs, tq are
always CLMs of the corresponding dynamics F̂ rωs. Since pΩ, dq is compact and A
and B are continuous maps, it follows that the image SΩ “ trArωs, Brωss | ω P Ωu

is a compact subset of Rnˆpn`mq. By Assumption (2), we also conclude that all pairs
rA1, B1s P SΩ are t-controllable, and therefore, by Lipshitzness of the LQ-optimal
CLM map Φ˚ (according to Theorem 24) and continuity of A and B, we conclude
that Ψ is continuous over pΩ, dq, and therefore condition Theorem 23(iv)) is met.
Moreover, as derived earlier via (4.25) and (4.26), the former implies also that
condition Theorem 23(v)) is true. Finally, we invoke Theorem 23 and conclude that
all closed-loop trajectories px,u, ŵ, e,wq P M˚8

Ω have to be bounded.

The conditions stated above show that closed-loop stability is largely characterized
by the properties of the model selection S. Moreover, it is important to notice that
it is nowhere required that the selections θ converge to the true system parameter
θ˚, merely that it converges to some θ8 P Ω. This is a major distinction from
most modern learning and control algorithms [3, 35, 50] which explicitly require
accurate system identification in order to guarantee stability. In Part 2 of the thesis,
we will discuss how to define such procedures S through Consistent Model Chasing.
Moreover, aside from convergence, stronger properties (competitiveness) can be
obtained for S which allow for sharper analysis of the transient and cost performance
of the closed-loop. A key component towards establishing these types of guarantees is
proving that the CE-LQ optimal CLMs Φ change indeed gradually with perturbations
in θ. Sensitivity analysis of the (oracle) map Φ : Ω Ñ LCpℓX , ℓXˆUq is an important
part of what we later refer to as robust oracle design. In the remaining part of this
chapter, we will prove the previously claimed Lipschitz property of the optimal CLM
parametrization map Φ˚pA1, B1, tq and give analytic bounds of the Lipschitz constant
L in terms of system-theoretic properties such as controllability and observability.
We start the second part of this chapter with a discussion on basic control theory
results regarding controllability, observability, and grammians, which we refine for
the use-case of controlling large-scale systems.
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4.4 Digression on Linear Algebra and Control Theory Basics
Here we discuss some basic linear algebra results that are frequently used in our
arguments but are not always mentioned explicitly in our derivations. For the
following definitions, let M denote an arbitrary matrix M P Rnˆm, where w.l.o.g.
n ě m.

Reduced SVD Decomposition
The factorization M “ UrΣrV

J
r , Ur P Rnˆk, Σr P Rkˆk, V J P Rkˆm is called a

reduced SVD decomposition of M , if UJ
r Ur “ Ik, Σr ą 0 is positive-definite and

diagonal, and V J
r Vr “ Ik. The diagonal entries of Σr are the non-zero singular

values of M . We denote σpMq P Rn as the vector rσ1, σ2, . . . , σk, σk`1, . . . , σnsJ

of singular values of M , ordered in descending order; the diagonal entries (up
to some permutation) of Σr are σ1, . . . , σk, while σk`1 “ ¨ ¨ ¨ “ σn “ 0. M is
invertible if and only if the reduced SVD is such that k “ n. Correspondingly,
σ1 “ σmaxpMq “ }M}2, σn “ σminpMq and we define σ´1 :“ σkpMq as the
smallest non-zero singular value of M . If M is invertible, then σ´1pMq “ σminpMq

and vice versa.

Moore-Penrose Inverse
The Moore-Penrose inverse of M can be uniquely defined as M : “ VrΣ

´1
r UJ

r for
any reduced SVD decomposition of M . It is also the unique matrix M : satisfying
all of the following four conditions:

MM :M “ M M :MM :
“ M :

pMM :
q

J
“ MM :

pM :Mq
J

“ M :M.

Here some of the key-properties we use of M ::

Lemma 19. For any matrix M and its pseudo-inverse M : holds:

i) MM : and M :M are orthogonal projections with rank k.
ii) M : is the (left/right)-inverse of M if and only if M is (left/right)-invertible.
iii) M : “ lim

tŒ0
pMJM ` tIq´1MJ and M :x “ x: :“ lim

tŒ0
x:
t for any x where

x:
t :“ pMJM ` tIq´1MJx denotes the unique solution to the optimization

problem
min
v

}Mv ´ x}
2
2 ` t}v}

2
2.

iv) The optimal value of the least-squares problem min
v

}Mv ´ x}22 is attained at
v˚ “ M :x and if there is more than one minimizer, then v˚ is the unique one
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of smallest } }2-norm.
v) }M :}

´1
2 “ σ´1pMq and }M}

´1
2 “ σ´1pM :q.

vi) M : “ pMJMq:MJ and M : “ MJpMMJq:.

4.5 Controllability and Observability at a Fixed Time
Large-scale systems often consist of many sparsely interconnected small systems,
i.e., the dimension of the large system is n “ NnS , where nS denotes the typical
dimensions of the small systems, and N denotes the number of subsystems. Denote
x

piq
t P RnS as the state of the ith subsystem and upi1qJ, upi2qJ, . . . , upiM qJ denote the

inputs of the M (ă N ) systems i1, i2, . . . , iM which have actuation available. Let
x “ rxp1qJ, xp2qJ, . . . , xpNqJs denote the state of the overall interconnected system
and u “ rupi1qJ, upi2qJ, . . . , upiM qJs P Rm the total input of dimension m “ MmS ,
where mS is the dimension of the inputs of the subsystems. Typically, the large
dimension of the overall system is due toN andM being large numbers, i.e., n " nS ,
m " mS .

If the overall system is controllable, we know that any initial condition x0 can
be controlled to the origin within at most n time-steps. However, in the above
case n “ NnS , this is often a conservative statement: If communication between
subsystems is fast enough, interconnection is sparse, and actuation is available in
sufficiently many subsystems (M is on the order of N ), it is possible to control
arbitrary initial conditions to the origin within much fewer steps t ! n.

Motivated by applications in large-scale control settings, we refine the notion of
controllability for this purpose. We shall call rA,Bs to be t-controllable if within t
time-steps we can control any initial condition x0 to the origin - or equivalently we
can reach any target state xf at time t - regardless of the initial condition. We adopt
basic controllability results to the finite time setting below:

Lemma 20. The following statements are equivalent:

• rA,Bs is t-controllable.
• For any pair ζ0, ζf P Rn, there exists u0, u1, . . . , ut´1 such that x0 “ ζ0,
xt “ ζf , where

xk`1 “ Axk ` Buk, @ k ď t.

• The matrix Pt “ rAt´1B,At´2B, . . . , Bs P Rnˆtm is full row rank.



117

The fourth condition gives us a necessary condition for t-controllability:

t ą
n

m
“
N

M

nS

mS

.

Similarly, we define that a pair pC,Aq is t-observable if the sequence of observations
y0, . . . , yt´1, yk “ Cxk of an impulse response xk “ Akξ0 are sufficient to compute
the initial condition ξ0. As expected, t-observability has multiple equivalent
definitions, which are dual to those of controllability.

Lemma 21. The following statements are equivalent:

• pC,Aq is t-observable.
• Let y1

r0:t´1s
, y2

r0:t´1s
be observations yik “ CAkζi, of the state-trajectories

x1k “ CAkζ1 and x2k “ CAkζ2, respectively. Then it holds:

y1
r0:t´1s “ y2

r0:t´1s ô ζ1 “ ζ2.

• The matrix Qt “ rCJ, pCAqJ, . . . , pCAt´1qJsJ is full column rank.

Controllability and Observability Grammians
The relationship between controllability and observability and their corresponding
grammians, defined below, will play an important role in our derivations. In contrast to
standard literature, we discuss this interplay also in the setting of partial observability
and partial controllability. To this end, we make use of the Moore-Penrose inverse.

Definition 4.2 (controllability/observability grammians). Let C P Rhˆn, A P Rnˆn,
B P Rnˆm be fixed system matrices. The sequence of positive-semidefinite matrices
tW c

t u and tW o
t u are called controllability and observability grammians of the system

xk`1 “ Axk ` Buk, yk “ Cxk, respectively, if they satisfy the following set of
dynamic equations:

W c
0 “ BBJ, W c

t “ AW c
t´1A

J
` BBJ, (4.27)

W o
0 “ CJC, W o

t “ AJW o
t´1A ` CJC. (4.28)

By substitution, we obtain the explicit form of W c
t and W o

t :

W c
t s.t. (4.27) ðñ W c

t “ PtP
J
t “

t
ÿ

k“0

AkBBJAkJ

W o
t s.t. (4.28) ðñ W o

t “ QJ
t Qt “

t
ÿ

k“0

AkJCJCAk.

It is easy to see, using standard arguments, that the controllability grammians obey
the following properties:
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Lemma 22. Let tW c
t u be the controllability grammians of rA,Bs. Then, for any

t ě 1,

1. rA,Bs is t-controllable if and only if W c
t ą 0.

2. If rA,Bs is t-controllable, then, given some target state ζf and initial condition
x0 “ 0, we can compute the optimal (unique) input sequence that drives the
system to xt “ ζf with minimal cost }u}22 “

řt´1
k“0 }uk}22 as

u˚
“ PJ

t W
´1
t ζf , where u˚

“ ru˚J
0 , u˚J

1 , . . . , u˚J
t´1s

J. (4.29)

The optimal cost is }u˚}22 “ ζJ
f W

c
t ζf .

3. More generally, for a given ζf P Rn, x˚
t “ PtP

:
t ζf is the state closest in 2-norm

among all states reachable within t time-steps, starting from the origin. Among
all input sequences that reach x˚

t at time t, u˚ “ PJ
t pW c

t q:ζf is the one with
the smallest ℓ2-norm. Furthermore, it holds }u˚}22 “ ζfW

c
t ζf .

Proof. The first statement is obvious after recalling (4.27). For the second, notice
that the desired optimal control problem reduces to the least squares problem:

min
u

}u}
2
2

s.t. : ζf “ Ptu.

Since rA,Bs is t-controllable, it holds that Pt is full-column rank andWt “ PtP
J
t ą

0, and the above problem is feasible for any ζf P Rn. The unique solution is
u˚ “ PJ

t pPtP
J
t q´1ζf “ PJ

t W
´1
t ζf . The last statement follows by recalling the

properties of the pseudo-inverse.

Lemma 23. Let tW o
t u be the observability grammians of pC,Aq. Then, for any

t ě 1,

1. pC,Aq is t-observable if and only if W o
t ą 0.

2. If pC,Aq is t-observable, then for any sequence of observations yr0:t´1s, yt “

Cxt of an impulse response xt “ Atξ0, it holds that ξ0 “ pW o
t q´1QJ

t yr0:t´1s.
Moreover, for an arbitrary ŷr0:t´1s, ξ̂0 “ pW o

t q:QJ
t ŷr0:t´1s is the initial condition

3 which produces the closest feasible impulse response yr0:t´1s “ Qtξ̂0, i.e.,
}y ´ ŷ}22 “ minξ

řt´1
k“0 }ŷt ´ CAkξ}22 “ ξ̂J

0 W
o
T ξ0.

3. RpW o
t q is the subspace of observable states in Rn at time t.

3And is of smallest 2-norm if there are multiple such initial conditions.
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4.6 Perturbation Analysis of Open-Loop Maps over Finite Time-Horizon
In this section, we discuss how linear system behavior changes with different system
matrices A,B under feedforward/open-loop control. We consider the following LTI
system with state x P Rn, control input u P Rm, disturbance w P Rn, and the two
outputs y P Rn and z P Rn`m:

xk “ Aixk´1 ` Biuk´1 ` wk´1, zk “

«

Cxk

Duk

ff

yk “ Cxk. (4.30)

We consider the output matrices C and D to be fixed and invertible, and Bi to always
be of full column rank. For a given pair Ai, Bi and a fixed horizon t, we define the
open-loop map Gt as the causal map GtpAi, Biqpw,uqr0:ts ÞÑ px,yqr0:ts between
the input signals w,u and the state and output signals x,y. Our goal is to analyze
the sensitivity of the map GtpAi, Biq with respect to changes in pAi, Biq.

Setup and Notation
We represent the system (4.30) in batch form: Let xt denote the stacked vector
rxJ

0 , x
J
1 , . . . , x

J
t sJ, and define ut, wt, yt, zt accordingly. Let EJ

k P Rnˆpt`1qn, for
k P t0, 1, . . . , tu, denote the map EJ

k : xt ÞÑ xk, i.e., Ek is a block-column matrix
containing all zero matrices 0nˆn, except for the k-th block row, which contains the
identity matrix In:

EJ
k “

”

0nˆn ¨ ¨ ¨ In ¨ ¨ ¨ 0nˆn
hkkikkj

k ` 1

ı

.

We represent the open-loop map Gt : pwt, utq ÞÑ pxt, ytq as a Toeplitz matrix, and,
as shown below, we decompose it into block matrices, each representing a partial
open-loop map:

«

wt ut

xt Gxw
t Z`

t G
xu
t

y
t

Gyw
t Z`

t G
yu
t

ff

“ Gt

»

—

—

—

—

—

—

—

–

0 1 ... t´1 t

0 0nˆn 0nˆn 0nˆn

1 In 0nˆn 0nˆn 0nˆn

2 0nˆn

... 0nˆn

t 0nˆn 0nˆn In 0nˆn

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

t times
“ Z`

t . (4.31)
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Now we can express the relationship between the system trajectories over the
time-horizon r0, ts as:

xt “ Z`
t G

xu
t pA,Bqut ` Gxw

t pAqwt

y
t

“ Z`
t G

yu
t pC,A,Bqut ` Gyw

t pC,Aqwt

zt “

«

CGyw
t pwtq ` CGyu

t putq

Dut

ff

(4.32)

where Z`
t denotes the delay operator, and:

Gxw
t pAq “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

In 0 0 . . . 0

A In 0 ... 0

A2 A In ... 0

... ...

At At´1 At´2 ... In

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Gzu
t “

«

Gyu
t

D

ff

Gxu
t pA,Bq “ Gxw

t pAqpIt`1 b Bq

(4.33)

Gyw
t pC,Aq “ pIt`1 b CqGxw

t pAq Gyu
t pC,A,Bq “ pIt`1 b CqGxu

t pA,Bq.

We denote the k-th controllability matrix and grammian with respect to the pair
pA,Bq as PkpA,Bq and W c

k pA,Bq, respectively. Similarly, we define the k-th
observability matrix and grammian of a pair pC,Aq as QkpC,Aq and W o

t pC,Aq:

PkpA,Bq “ rAkB,Ak´1B, ¨ ¨ ¨ , Bs

W c
k pA,Bq “ PkpA,BqPJ

k pA,Bq

W o
k pC,Aq “ QkpC,AqJQkpC,Aq

QkpC,Aq “

»

—

—

—

—

–

C

CA
...

CAk

fi

ffi

ffi

ffi

ffi

fl

. (4.34)

We refer to the rank of PkpA,Bq and QkpC,Aq as the degree of k-controllability and
k-observability of the system pC,A,Bq. We quantify the level of controllability and
observability in terms of the singular values 4 of the matricesPkpA,Bq andQkpC,Aq:
σ̄c
t pA,Bq and σ̄o

t pC,Aq denote the largest singular eigenvalues of PkpA,Bq and
QkpC,Aq, while σc

tpA,Bq and σo
t pC,Aq denote the smallest non-zero ones. We

summarize these definitions below:

Definition 4.3. For a fixed set of parameters pA,B,Cq and time-horizon k, we define
σ̄c
kpA,Bq, σc

kpA,Bq, σ̄o
kpC,Aq, and σo

kpC,Aq as:

σ̄c
kpA,Bq :“ }PkpA,Bq}2 σc

kpA,Bq :“ σ´1pPkpA,Bqq “ }P :

k pA,Bq}
´1
2

σ̄o
kpC,Aq :“ }QkpC,Aq}2 σo

kpC,Aq :“ σ´1pQkpC,Aqq “ }Q:

kpC,Aq}
´1
2 .

4Which coincide with the eigenvalues of the grammians.
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Moreover, we define ρ̄c{o
k pAq, ρc{o

k
pAq as:

ρ̄ckpAq :“ }PkpA, Iq}2 ρc
k
pAq :“ σ´1pPkpA, Iqq

ρ̄okpAq :“ }QkpI, Aq}2 ρo
k
pAq :“ σ´1pQkpI, Aqq.

The quantities ρ̄c{o
k pAq and ρc{o

k
pAq measure the controllability and observability of a

fictitious system, where B and C are replaced with the identity matrix I , while A is
being kept the same:

x˚k`1 “ Ax˚
k ` u˚

k y˚
k “ x˚

k.

ρ̄
c{o
k pAq and ρc{o

k
pAq represent the largest and smallest non-zero singular values of the

controllability and observability matrix PkpA, Iq andQkpI, Aq and can be interpreted
as describing the attainable level of controllability and observability for the system
matrix A, if we had the ability to change the input and output matrix.

Remark 26. If we drop mentioning the dependence on t and/or the parameters
pA,B,Cq in some statement, it is assumed to hold for all t and/or parameters
pA,B,Cq. For example, if we state, "Gxw satisfies . . . ", we implicitly mean "For all
A,B and t, Gxw

t pA,Bq satisfies . . . ".

Since W c
t “ PtP

J
t and W o

t “ QJ
t Qt, the following relation between controllabil-

ity/observability matrices Pt and Qt and corresponding grammians W c
t and W o

t is
always true.

Lemma 24.

(i) }Pt}2 “ pλmaxpW c
t qq

1
2 and }P :

t }2 “

´

λÓ

´1pW c
t q

¯´
1
2 .

(ii) }Qt}2 “ pλmaxpW o
t qq

1
2 and }Q:

t}2 “

´

λÓ

´1pW
o
t q

¯´
1
2 .

The next two sections are concerned with deriving key lemmas needed for the
perturbation analysis.

Open-Loop Map Norm-Bounds
Here we derive approximations for the worst-case ℓ2-gain of the open-loop map G

over a fixed time-horizon t. We will express the bounds in terms of the relation
between the controllability/observability matrices Pt and Qt and the corresponding
Grammians.

With the help of the previous lemma and the following easily verified fact
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Lemma 25. pGxw
t pAqq´1 “ It ´ Z`

t b A.

we can derive upper bounds and lower bounds of the toeplitz operators Gp ¨ q:

Lemma 26. Any singular value σi of σpGxw
t q and Gxu

t lies in the range described
by the inequalities below:

1

1 ` }A}2
ďσipG

xw
t q ď

?
t ` 1ρ̄ctpAq (4.35a)

σminpBq

1 ` }A}2
ďσipG

xu
t q ď

?
t ` 1σ̄c

t pA,Bq (4.35b)

σminpCq

1 ` }A}2
ďσipG

yw
t q ď

?
t ` 1σ̄o

t pC,Aq. (4.35c)

Proof. }Gxu
t }22 :“ max

}u}2“1
}Gxu

t u}22. By decomposing u “ ruJ
0 , . . . , u

J
t sJ we can

rewrite this as

}Gxu
t }

2
2 “ max

}u}2“1

›

›

›

›

›

›

›

›

›

›

»

—

—

—

—

–

Bu0

ABu0 ` Bu1

. . .

AtBu0 ` ¨ ¨ ¨ ` But

fi

ffi

ffi

ffi

ffi

fl

›

›

›

›

›

›

›

›

›

›

2

2

“ max
}u}2“1

t
ÿ

k“0

}Pku}
2
2

ď

t
ÿ

k“0

max
}u}2“1

}Pku}
2
2 “

t
ÿ

k“0

}Pk}
2
2 ď

t
ÿ

k“0

pσ̄c
kpA,Bqq

2

ď pt ` 1q}Pt}
2
2 “ pt ` 1qpσ̄c

t pA,Bqq
2

where we used the fact that }Pk}22 increases in k since it is equal to the largest
eigenvalue of the corresponding controllability Gramian W c

k “
řk´1

i“0 A
iBBJAiJ.

Thus, we obtain the bound

}Gxu
t pA,Bq}2 ď

a

pt ` 1qσ̄c
t pA,Bq,

and the bound on }GxwpAq}2 follows by setting B “ I . We apply a similar idea to
bound }Gyw

t }2. Splitting the identity operator It “
řt

k“0EkE
J
k into a sum of the

t ` 1 orthogonal projections EkE
J
k , we use the triangle inequality to obtain:

}Gyw
t }2 “ }

t
ÿ

k“0

Gyw
t EkE

J
k }2 ď

t
ÿ

k“0

}Gyw
t EkE

J
k }2

ď

t
ÿ

k“0

}Qk}2 ď
?
t ` 1}Qt}2 “

?
t ` 1σ̄o

t .
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For the lower bound, notice that the following chain of inequalities

pσ´1pG
xw

pAqqq
´1

“ σ1ppGwpAqq
:
q “ }It ´ Z`

b A}2 ď 1 ` }A}2

implies σ´1pG
xwpAqq ě p1 ` }A}2q. Now for the operator GxupA,Bq, notice that

for any vector ut we have:

}Gxu
t pA,Bqut}2 “ }Gxw

t pAqpIt b Bqut}2 ě σminpGxw
t pAqq}pIt b Bqut}2

ě σminpGxw
t pAqqσminpBq}ut}2.

Since Gxw
t pAq is invertible and we assume σminpBq to be full column rank, we

conclude that for all ut it holds

}Gxu
t pA,Bqut}2 ě

σminpBq

1 ` }A}2
}ut}2,

which yields the stated result.

Recall that Gyw
t pC,Aq “ pIt`1 b CqGxw

t pAq and that Gyu
t can be decomposed in

multiple ways:

Gyu
t “ pIt`1 b CqGxu

t “ Gyw
t pIt`1 b Bq “ Gyw

t pIt ´ Z`
t b AqGxu

t .

As a corollary of the previous lemma, we obtain bounds on the open loop maps for
the outputs:

Lemma 27. For any singular value σpGyw
t q, σpGyu

t q of Gyw
t and Gyu

t holds:

σminpCq

1 ` }A}2
ďσpGyw

t q ď
a

pt ` 1qσ̄o
t pC,Aq

σminpCqσminpBq

1 ` }A}2
ďσpGyu

t q ď }C}2
?
t ` 1σ̄c

t pA,Bq

σpGyu
t q ď

?
t ` 1σ̄o

t pC,Aq}B}2.

Furthermore, by definition, it is easy to see that σ2
maxpGzu

t q ď σ2
maxpGyu

t q `σ2
maxpDq

and σ2
minpGyu

t q ` σ2
minpDq ď σ2

minpGzu
t q. We can apply Lem. 27 and conclude the

following range for the singular values of Gzu
t :

σ2
pGzu

t q ě

ˆ

σminpCqσminpBq

1 ` }A}2

˙2

` σ2
minpDq (4.37a)

σ2
pGzu

t q ď pt ` 1q}C}2}B}2σ̄
o
t pC,Aqσ̄c

t pA,Bq ` }D}
2
2. (4.37b)



124

Perturbation Inequalities in Operator Norm
Here we discuss how the feedforward operators Gp ¨ q vary with changes in the system
matrices pA,Bq, while assuming C and D are fixed. For the next lemmas, fix two
sets of parameters A1, B1 and A2, B2 and denote Gxw,i, Gxu,i, Gyu,i, i P t1, 2u

etc. the corresponding operators GxwpAiq, GxupAi, Biq, GyupAi, Bi, Cq, etc..
Furthermore, denote B12A :“ A1 ´A2, B12B :“ B1 ´B2, and correspondingly write
B12G “ GpA1, B1q ´ GpA2, B2q to denote the corresponding changes in the open-
loop maps. Correspondingly, B12G

xu
t “ Gxu,1

t ´ Gxu,2
t , B12G

xw
t “ Gxw,1

t ´ Gxw,2
t ,

etc. First, we derive a useful decomposition of the terms B12G. To that end, notice
that for two invertible matrices A and B we can always write

A´1
´ B´1

“ A´1
pB ´ AqB´1

“ B´1
pB ´ AqA´1.

Now using the fact that Gxw,i is always invertible and Gxw,i
t “ pIt ´ Z`

t b Aiq
´1,

we can rewrite the differences B12G
xw
t “ Gxw,1

t ´ Gxw,2
t and Gxu,1

t ´ Gxu,2
t as:

B12G
xw
t “ Gxw,2

t pZ`
t b B21AqGxw,1

t (4.38a)

B12G
xu
t “ pGxw,1

t ´ Gxw,2
t qpIt b B1q ` Gxw,2

t pIt b B12Bq (4.38b)

“ Gxw,2
t pZ`

t b B21AqGxu,1
t ` Gxw,2

t pIt b B12Bq

B12G
yw
t “ Gyw,1

t pZ`
t b B21AqGxw,2

t (4.38c)

B12G
yu
t “ Gyw,2

t pZ`
t b B21AqGxu,1

t ` Gyw,2
t pIt b B12Bq . (4.38d)

Applying the triangle inequality to these equations, we can directly obtain the
following perturbation inequalities in the induced 2-norm:

}B12G
xw
t }2 ď }Gxw,1

}2}Gxw,2
}2}B12A}2

}B12G
xu
t }2 ď }Gxw,2

}2}Gxu,1
}2}B12A}2 ` }Gxw,2

t }2}B12B}2

}B12G
yw
t }2 ď }Gyw,1

}2}G
xw,2

}2}B12A}2

}B12G
yu
t }2 ď }Gyw,2

}2}G
xu,1

}2}B12A}2 ` }Gyw,2
t }2}B12B}2.

Applying the results of the previous section Lem. 26, we can further bound the
above inequalities in terms of the singular values of the controllability grammians.
For the following results, we will denote ρ̄c,it “ ρ̄ctpAiq, σ̄c,i

t “ σ̄c
t pAi, Biq, ρ̄o,it “

ρ̄ot pC,Aiq corresponding to two sets of system parameters pA1, B1q and pA2, B2q;
for each variable, we will use x̄

c{o˚

t :“ maxitx
c{oi
t u (xc{o˚

t :“ minitx
c{oi
t u) to

denote the maximum (minimum) of both cases, i.e., ρ̄c˚
t “ maxtρ̄c,1t , ρ̄c,2t u, (ρc˚

t
“

mintρc,1
t
, ρc,2

t
u) etc.
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Lemma 28. Let Gt,1 and Gt,2 be the open loop maps of two sets of system parameters
pA1, B1q and pA2, B2q. Then:

}B12G
xw
t }2 ď pt ` 1qρ̄c˚

t }B12A}2 (4.39)

}B12G
xu
t }2 ď pt ` 1qσ̄c˚

t ρ̄
c˚
t }B12A}2 `

?
t ` 1ρ̄c˚

t }B12B}2

}B12G
yw
t }2 ď pt ` 1qσ̄o˚

t ρ̄
c˚
t }B12A}2

}B12G
yu
t }2 ď pt ` 1qσ̄c˚

t σ̄
o˚
t }B12A}2 `

?
t ` 1σ̄o˚

t }B12B}2.

We can utilize the above decomposition also for the controllability and observability
matrices PtpA,Bq and QtpC,Aq. Notice that Pk P Rnˆpk`1qm “ EJ

t G
xu
t is the last

row of submatrices in Gxu
k and QkpC,Aq P Rℓpk`1qˆn “ Gyw

t E0 is the first column
of submatrices in Gyw

k , hence from (4.38c) we obtain the decomposition:

QtpC,A1q ´ QtpC,A2q “Gyw,1
t pC,A1qpZ`

t b B21AqGxw,2
t pA2qE1

Gyw,1
t pC,A1qpZ`

t b B21AqQtpI, A2q

and from (4.38a) and (4.38b) we get:

PtpA1, B1q ´ PtpA2, B2q “PtpA2, Iq
`

pZ`
t b B21AqGxu,1

t ` It b B12B
˘

.

Applying the triangle-inequality to these decompositions and substituting the operator
norm bounds derived in Lem. 27 and Lem. 26, we obtain the following perturbation
inequality for the controllability and observability matrices:

Lemma. Denote σu,i “ λmaxpW c
t pAi, Biqq and σy,i “ λmaxpW o

t pC,Aiqq corre-
sponding to the two sets of system parameters pA1, B1q and pA2, B2q. Then B12Pt

and B12Qt are bounded as:

}B12Pt}2 ď ρ̄c,2t

´

a

pt ` 1qσ̄c,1
t }B12A}2 ` }B12B}2

¯

(4.40)

}B12Qt}2 ď ρ̄o,2t

a

pt ` 1qσ̄o,1
t }B12A}2. (4.41)

4.7 From H2-Optimal Control to Least Squares
Having the basic definitions and background, our next step is to reduce the H2-
problem described by the equations (4.20) to a Least-Squares problem. Denote
ϕj,x
k P Rn, ϕj,u

k P Rm as the jth column of Rk P Rnˆn, Mk P Rmˆn and ej the unit
vector in the j-th coordinate axis. From now on, we fix the finite horizon t. As
described in [11], we can separate the problem by columns and can equivalently
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restate (4.20) in terms of each column ϕj,x
k and ϕj,u

k :

Sj :“ min

›

›

›

›

›

«

C 0

0 D

ff«

ϕj,x
1 ϕj,x

2 . . . ϕj,x
t

ϕj,u
1 ϕj,u

2 . . . ϕj,u
t

ff
›

›

›

›

›

2

F

(4.42)

s.t.: ϕj,x
1 “ ej

ϕj,x
k`1 “ Aϕj,x

k ` Bϕj,u
k , @ 1 ď k ď t

ϕj,x
t`1 “ 0.

We rewrite (4.42) further and introduce new variables to avoid tedious notation.
Define uk “ ϕj,u

k , @k : 0 ď k ď t ´ 1, u “ ruJ
1 , . . . , u

J
t sJ and let C, D denote the

lifted weight matrices C “ It b C, D “ It b D. Now we rewrite the subproblem
Sj as

Sj “ min
u

›

›

›

›

›

«

CGxu
t pA,Bq

D

ff

u ´ ηtpAq

›

›

›

›

›

2

2

` pCJCqjj (4.43a)

s.t.: 0 “ At`1ej ` PtpA,Bqu (4.43b)

where ηJ
t “ ´rQtpC,AqAejq

J,0s and EJ
1 “ rIn,0nˆn, ¨ ¨ ¨ ,0nˆns. To simplify

notation, we introduce the virtual outputs z “ rCx,DusJ P Rpn`mqˆm, y “ Cx and
the operators Gyu, Gzu as

Gyu
pA,Bq “ CGxu

pA,Bq Gzu
pA,Bq “

«

CGxupA,Bq

D

ff

(4.44)

to rephrase the problem into (4.45), where we dropped the constant term pCJCqjj as
it is not needed for analysis.

Sj “ min
u

}Gzu
t pA,Bqu ´ ηtpAq}

2
2 (4.45a)

s.t.: 0 “ At`1ej ` PtpA,Bqu. (4.45b)

4.8 Representation as a Least-Squares Problem
We now rewrite (4.43) as a least square problem. Define u˚

c :“ PJ
t pPtP

J
t q´1Atej ,

which is the solution to the optimization problem

min
u

}u}
2
2

s.t. ´ At`1ej “ Ptu.

We can interpret u˚
c as the smallest control action, measured in ℓ2, that drives the

system from the origin to ´At`1ej in t time-steps. This relates to controllability
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grammians as described in [49]. In terms of the Moore-Penrose Inverse, we can
also write u˚

c :“ P :
t A

t`1ej “ PJ
t pW c

t q:At`1ej , where W c
t is the t-th controllability

grammian.
We drop the index j from ϕ˚j and reparameterize u “ ´u˚

c `u1 where u1 P nullpPtq

and describe (4.43) as the optimization problem:

Sj :“ min
u1PnullpPtpA,Bqq

›

›

›
Gzu

t pA,Bqpu1
´ u˚

c pA,Bqq ´ ηtpAq

›

›

›

2

2
. (4.46)

Let u˚pA,Bq be a minimizer of the above problem for fixed A,B, we are interested
in the SLS solutions

ϕ˚
pA,Bq :“

«

C´1 0

0 D´1

ff

pGzu
t pA,Bqpu˚

´ u˚
c pA,Bqq ´ ηtpAqq

and how these solutions are perturbed with changes inA,B. We (over-)parameterize
u as u “ pI ´ P :

t Ptqη, to cast problem Sj into an unconstrained one:

min
η

›

›

›
Gzu

t pA,Bqu˚
c pA,Bq ` ηtpAq

looooooooooooooooomooooooooooooooooon

g

´Gzu
t pA,BqpI ´ P :

t Ptq
loooooooooooomoooooooooooon

H

η
›

›

›

2

2
. (4.47)

The optimal value of problem Sj is }ν˚}22, where ν˚ :“ pHH: ´ Iqg and is achieved
at η˚ “ H:g. The corresponding optimal ϕ˚ takes the form min-norm solution η˚ to
the above problem is η˚ “ H:g and Sj “ }ν˚}2 and therefore the optimal solution
ϕ˚ takes the form:

ϕ˚
“

«

C´1 0

0 D´1

ff

ν˚, where ν˚
“ pHH:

´ Iqg. (4.48)

Hence, up to the constant κCD “ maxt}C´1}2, }D
´1}2u, the sensitivity of ϕ˚ scales

linearly with the sensitivity of the corresponding optimal ν˚. Hence, if ϕ˚
1 , ν˚

1

and ϕ˚
2 , ν

˚
2 are optimal solutions for two different sets of parameters pA1, B1q and

pA2, B2q, then }ϕ˚
1 ´ ϕ˚

2}2 is bounded as:

}ϕ˚
1 ´ ϕ˚

2}2 ď κCD}ν˚
1 ´ ν˚

2 }2.

The goal of the next section is to bound }ν˚
1 ´ ν˚

2 }2 in terms of }A1 ´ A2}2 and
}B1 ´ B2}2.

4.9 Perturbation of Least Squares
Consider two optimal solutions ν˚

1 “ pH1H
:

1 ´ Iqg1 and ν˚
2 “ pH2H

:

2 ´ Iqg2, of
parameters pA1, B1q and pA2, B2q. The difference ν˚

1 ´ ν˚
2 can be written as

ν˚
1 ´ ν˚

2 “ pH1H
:

1 ´ Iqpg1 ´ g2q ` pH1H
:

1 ´ H2H
:

2qg2,
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and the term H1H
:

1 ´ H2H
:

2 can be further broken down into:

pI ´ H1H
:

1qpH1 ´ H2qH:

2 `

”

pI ´ H2H
:

2qpH1 ´ H2qH
:

1

ıJ

.

Now, since the operators pMM : ´Iq andMM : are projections for any matrixM , we
know that }HiH

:

i ´ I}2 “ 1 5. Therefore, we can bound the term H1H
:

1 ´ H2H
:

2

in terms of the } ¨ }2 norm as:

}H1H
:

1 ´ H2H
:

2}2 ď }H1 ´ H2}2p}H:

1}2 ` }H:

2}2q. (4.49)

Applying the triangle-inequality on (4.49) and substituting the above bound yields:

}ν˚
1 ´ ν˚

2 }2 ď }g1 ´ g2}2 ` }H1 ´ H2}2p}H:

1}2 ` }H:

2}2q}g2}2. (4.50)

In the following, we proceed to analyze each of the terms in the above inequality
separately. To this end, we will make frequent use of the Lemmas. The facts stated
in (29) can be easily verified. The proof of Lem. 30 is more involved and can be
found in [129].6

Lemma 29. For arbitrary matrices X, Y P Rnˆm and A,B P Rnˆn, it holds that

(i) Ak
1 ´ Ak

2 “
řk´1

j“0 A
k´1´j
1 pA1 ´ A2qA

j
2.

(ii) XX: ´ Y Y : “ pI ´ XX:qpX ´ Y qY : `
“

pI ´ Y Y :qpX ´ Y qX:
‰J
.

(iii) X:X ´ Y :Y “ Y :pX ´ Y qpI ´ X:Xq `
“

X:pX ´ Y qpI ´ Y :Y q
‰J
.

(iv) If A and B are invertible, then A´1 ´ B´1 “ A´1pB ´ AqB´1.

The following is a corollary from Theorem 4.1 in [129]:

Lemma 30. Let X and Y be matrices with equal rank, let } ¨ }2 denote the induced
2-norm and } ¨ }F denote the Frobenius norm. The following inequalities hold:

}X:
´ Y :

}2 ď φ}X:
}2}Y

:
}2}X ´ Y }2

}X:
´ Y :

}F ď
?
2}X:

}2}Y :
}2}X ´ Y }F

where φ “ 1`
?
5

2
denotes the golden ratio constant.

5Unless Hi “ 0.
6See Corollary of Thm.4.1 in [129].
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Bounding }H1 ´ H2}2

First, notice that we can express HJ as pI ´ P :
t PtqpGzu

t qJ and that

H1 ´ H2 “ Gzu,1
t pP :

t,2Pt,2 ´ P :

t,1Pt,1q ` pGzu,1
t ´ Gzu,2

t qpI ´ P :

t,2Pt,2q.

Now using the previous lemma and noticing that }Gzu,1
t ´Gzu,2

t }2 “ }Gyu,1
t ´Gyu,2

t }2

we obtain the following inequality

}H1 ´ H2}2 ď}Gyu,1
t ´ Gyu,2

t }2 ` }Gzu,1
t }2

´

}P :

t,1}2 ` }P :

t,2}2

¯

}Pt,2 ´ Pt,1}2

and arrive at:

}H1 ´ H2}2p}H:

1}2 ` }H:

2}2q}g2}2 ďµ1}B12G
yu
t }2 ` µ2}B12Pt}2

with the constants

µ1 “ p}H:

1}2 ` }H:

2}2q}g2}2 (4.51a)

µ2 “ }Gzu,1
t }2p}P :

t,1}2 ` }P :

t,2}2qp}H:

1}2 ` }H:

2}2q}g2}2 (4.51b)

Lemma 31. Recall that D is invertible. Therefore,

}H:
pA,Bq}2 ď }Gzu:

t }2 ď pσminpGzu
t qq

´1.

Proof. In order to bound }M :}2 from above, we have to bound σ´1pMq from be-
low. Notice that Gzu

t pA,Bq is full-column rank, since D is invertible and thus
rankpGzu

t pA,Bqq “ pt`1q¨nu. The projectionΠN pPtq :“ pI´P :
t pA,BqPtpA,Bqq P

Rpt`1qnuˆpt`1qnu has rank rH ă pt ` 1qnu “ rankpGzu
t pA,Bqq. Hence, Gzu

t pA,Bq

and Pt have the same null space and therefore H “ Gzu
t pA,BqΠN pPtq is of rank rH .

From these observations, we can equivalently say that σ´1pHq is the rH-th largest
singular eigenvalue of H . Using the Minimax principle, we can therefore represent
σ´1pHq as the solution to the following max-min problem:

σ´1pHq “ max
proj.Π, s.t.: rankpΠq“rH

min
x s.t.: }Πx}“1

xJΠHJHΠx (4.52)

“ max
proj.Π, s.t.: rankpΠq“rH

min
x s.t.: }Πx}“1

xJΠΠN pPtqG
zuJ
t Gzu

t ΠN pPtqΠx. (4.53)

Now recall that ΠN pPtq is of rank rH , hence it is a feasible choice for the variable Π
of the outer optimization problem. Furthermore, this leads us to the bound

σ´1pHq ě min
x s.t.: }ΠN pPtqx}“1

xJΠN pPtqG
zuJ
t Gzu

t ΠN pPtqx (4.54)

“ min
x s.t.: zPN pPtq,}z}2“1

zJGzuJ
t Gzu

t z (4.55)

ě min
z s.t.: }z}“1

zJGzuJ
t Gzu

t z “

b

λminpGzuJ
t Gzu

t q. (4.56)
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Finally, the desired statement follows, since
a

λminpGzuJ
t Gzu

t q “ σminpGzu
t q and by

inverting the inequality above.

To bound the worst-case of }g}2 recall its definition:

g “ Gzu
t pA,Bqu˚

c pA,Bq ` ηtpAq

“ Gzu
t pA,BqP :

t pA,BqAt`1ej ´ QtpC,AqAej.

Definition 4.4. For a pair pAi, Biq define the constants αt,i, and σ̄zu,i
t , σzu,i

t as:

αt :“ max
0ďkďt`1

}Ak
}2 σ̄zu,i

t :“ σmaxpGzu
t pAi, Biqq σzu,i

t :“ σminpGzu
t pAi, Biqq.

We can obtain an upper bound for }g}2, as a corollary of Lem. 27 and Lem. 24

}g}2 ď

´

}C}2
?
tσ̄c

t ` }D}2

¯

pσc
tq

´1αt ` σ̄o
t }A}2, (4.57)

and using the constants defined in Definition (4.4) we can bound the constant µ1 as:

µ1 ď 2
σ̄zu˚
t

σzu˚
t σc˚

t

αt ` σ̄o˚
t }A˚}2 (4.58)

µ2 ď
4

σzu˚
t

ˆ

σ̄zu˚
t

σc˚
t

˙2

αt ` 2
σ̄zu˚
t

σc˚
t

σ̄o˚
t }A˚}2 (4.59)

where the expression with superscript σc˚
t “ mintσc,1

t , σc,2
t u, σ̄o˚

t “ maxtσ̄o,1
t , σ̄o,2

t u

represents the worst-case pick of i “ 1, 2 for the corresponding expression. We can
obtain explicit bounds by substituting the bounds of Lem. 27

Bounding }g1 ´ g2}2

Recall that g1 ´ g2 takes the form:

g1 ´ g2 “ Gzu,1
t P :

t,1A
t`1
1 ej ´ Gzu,2

t P :

t,2A
t`1
2 ej ` ηtpA1q ´ ηtpA2q. (4.60)

We split g1 ´ g2 “ ∆1 ` ∆2 ` ∆3 ` ∆4 into the four telescoping terms ∆1, . . . ,∆4

below and proceed to bound each of them individually.

∆1 “
`

Gzu,1
t ´ Gzu,2

t

˘

P :

t,1A
t`1
1 ej ∆2 “ Gzu,2

t

´

P :

t,1 ´ P :

t,2

¯

At`1
1 ej

∆3 “ Gzu,2
t P :

t,2

`

At`1
1 ej ´ At`1

2 ej
˘

∆4 “ ηtpA1q ´ ηtpA2q

1. ∆1 : }∆1}2 ď }Gyu,1
t ´ Gyu,2

t }2}P
:

t,1}2}A
t`1
1 ej}2.

2. ∆2 : Applying the } ¨ }2-bound from Lem. 30 yields:

}∆2}2 ď φ}P :

t,1}2}P
:

t,2}2}G
zu,2
t }2}At`1ej}2}Pt,1 ´ Pt,2}2.
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3. ∆3 : We apply Lem. 29 to obtain At`1
1 ´ At`1

2 “
řt

j“0A
t´j
1 pA1 ´ A2qAj

2.
Notice we can rewrite that as

At`1
1 ´ At`1

2 “ PtpA1, IqpA1 ´ A2qQtpI, A2q

and apply the bounds of Lem. 24 to conclude:

}∆3}2 ď
a

λmaxpW c
t pA1, IqqλmaxpW o

t pI, A2qq}Gzu,2
t }2}P :

t,2}2}A1 ´ A2}2

ď ρ̄o,2t ρ̄c,1t }Gzu,2
t }2}P :

t,2}2}A1 ´ A2}2.

4. ∆4 : We can bound }∆4}2 as

}∆4}2 ď }B12Qt}2}A1ej}2 ` }Qt,2}2}pA1 ´ A2qej}2.

Combining all the previous inequalities gives us:

}g1 ´ g2}2 ď γ1}B12G
yu
t }2 ` γ2}B12Pt}2 ` γ3}B12Qt}2 ` γ4}B12A}2

with the γi defined as:

γ1 “ }P :

t,1}2}At`1
1 ej}2 (4.61a)

γ2 “ φ}P :

t,1}2}P
:

t,2}2}G
zu,2
t }2}A

t`1ej}2 (4.61b)

γ3 “ }A1ej}2 (4.61c)

γ4 “ }Qt,2}2 ` ρ̄o,2t ρ̄c,1t }Gzu,2
t }2}P

:

t,2}2 (4.61d)

with abbrevations ρ̄c,it “ λmaxpW c
t pAi, Iqq and ρ̄o,it “ λmaxpW o

t pI, Aiqq. Combining
the inequalities we proved in the last two subsections, we obtain a first bound on the
optimal solutions }ϕ˚

1 ´ ϕ˚
2}2 ď κCD}ν˚

1 ´ ν˚
2 }2:

κ´1
CD}ϕ˚

1 ´ ϕ˚
2}2 ď γ1µ1}B12G

yu
t }2 ` γ2µ2}B12Pt}2 ` γ3}B12Qt}2 ` γ4}B12A}2.

This inequality informs a natural interpretation: The sensitivity to parameter changes
of the optimal solutions ϕ˚ can be reduced to analyzing the change of four system-
theoretic quantities: the open-loop map from control input to output }B12G

yu
t }2, the

controllability matrix B12Pt, observability B12Qt, and the system matrix B12A.

Lemma 32. Let C, D be fixed invertible matrices and let rA1, B1s and rA2, B2s

be two t-controllable pairs of system and input matrices. Let ϕ˚
1 and ϕ˚

2 be the
optimal solutions of the H2-problem (4.45), corresponding to both sets of parameters
pA1, B1q and pA2, B2q. Then, for ϕ˚

1 and ϕ˚
2 holds the inequality:

κ´1
CD}ϕ˚

1 ´ ϕ˚
2}2 ď δ1}B12G

yu
t }2 ` δ2}B12Pt}2 ` δ3}B12Qt}2 ` δ4}B12A}2
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where δ1, . . . , δ4 and µ1 are the constants defined below:

µ1 ď
2

σzu˚
t

σ̄zu˚
t

σc˚
t

αt ` σ̄o˚
t }A˚}2 (4.62a)

µ2 ď
4

σzu˚
t

ˆ

σ̄zu˚
t

σc˚
t

˙2

αt ` 2
σ̄zu˚
t

σc˚
t

σ̄o˚
t }A˚}2 (4.62b)

δ1 “ }P :

t,1}2}A
t`1
1 ej}2 ` µ1 (4.62c)

δ2 “ φ}P :

t,1}2}P
:

t,2}2σ̄
zu˚
t }At`1ej}2 ` µ2 (4.62d)

δ3 “ }A1ej}2 (4.62e)

δ4 “ }Qt,2}2 ` ρ̄o,2t ρ̄c,1t σ̄zu˚
t }P :

t,2}2. (4.62f)

Final Perturbation Bound
Our final step is to apply the results of section Section 4.6 to bound the B-terms on the
right-hand side of the perturbation inequality Lem. 32 in terms of B12A and B12B:

}B12G
yu
t }2 ď pt ` 1qσ̄c˚

t σ̄
o˚
t }B12A}2 `

?
t ` 1σ̄o˚

t }B12B}2

}B12Pt}2 ď ρ̄c,2t

´

a

pt ` 1qσ̄c,1
t }B12A}2 ` }B12B}2

¯

}B12Qt}2 ď ρ̄o,2t

a

pt ` 1qσ̄o,1
t }B12A}2.

We recall also the lower and upper bounds of the singular values of Gzu
t

σ2
pGzu

t q ě

ˆ

σminpCqσminpBq

1 ` }A}2

˙2

` σ2
minpDq “: pσzu

t q
2

σ2
pGzu

t q ď pt ` 1q}C}2}B}2σ̄
o
t pC,Aqσ̄c

t pA,Bq ` }D}
2
2 “: pσ̄zu

t q
2

and the relationship between controllability/observability matrices and grammians:

}Pt}2 “ σ̄c
t }P :

t }2 “ pσc
tq

´1
}Qt}2 “ σ̄o

t }Q:
t}2 “ pσo

t q
´1 .

We formulate the constants from (4.62) in terms of the controllability and observability
singular values of the system:

δ1 ď pσc˚
t q

´1αt˚ ` 2pσzu˚
t q

´1σ̄zu˚
t pσc˚

t q
´1αt ` σ̄o˚

t }A˚}2

δ2 ď φpσc˚
t q

´2σ̄zu˚
t αt˚ ` 4pσzu˚

t q
´1

pσ̄zu˚
t q

2
pσc˚

t q
´2αt ` 2σ̄zu˚

t pσc˚
t q

´1σ̄o˚
t }A˚}2

δ3 ď }A˚}2

δ4 ď σ̄o˚
t ` ρ̄o˚

t ρ̄
c˚
t σ̄

zu˚
t pσc˚

t q
´1, αt˚ :“ max

0ďkďt`1
}Ak

1}2 _ }Ak
2}2.

After a bit of bookkeeping, we obtain a first bound quantifying the sensitivity of the
solutions with respect to perturbations in the parameters A and B:
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Lemma 33. Recall the setup of Lem. 32. Then the following inequality holds:

κ´1
CD}ϕ˚

1 ´ ϕ˚
2}2 ď Γa}B12A}2 ` Γb}B12B}2

where Γa,Γb are defined as:

Γa “ pt ` 1qσ̄c˚
t σ̄

o˚
t δ1 ` δ2pρ̄

c˚
t

a

pt ` 1qσ̄c˚
t q ` δ3ρ̄

o˚
t

a

pt ` 1qσ̄o˚
t ` δ4

Γb “ δ1
?
t ` 1σ̄o˚

t ` δ2ρ̄
c˚
t .

4.10 Lipshitzness of H2-Optimal CLM Parameterization
With Lem. 33, we have derived analytic bounds that quantify the difference between
the two optimal CLMs Φ˚pA1, B1, tq and Φ˚pA2, B2, tq in terms of the difference
in system parameters B12A “ A1 ´ A2, B12B “ B1 ´ B2, and control-theoretic
properties of the linear dynamics corresponding to each set of parameters. The
latter is measured in terms of singular eigenvalues measuring controllability and
observability (w.r.t. C) of the individual pairs of system matrices rA1, B1s and
rA2, B2s. Our original motivation for this analysis was to investigate the continuity of
the mappingΦ˚ as a parametrization of optimal CLMs over a compact set S of system
matrices trArωs, Brωss | ω P Ωu corresponding to the continuous parametrization
functions A : Ω Ñ Rnˆn, B : Ω Ñ Rmˆn, and parameter space pΩ, dq used in
Algorithm 1. With the help of Lem. 33, we will now derive that the mapping
Φ˚p¨|tq : S Q rA1, B1s ÞÑ Φ˚pA1, B1, tq P CpℓX , ℓXˆUq is indeed Lipshitz over a
compact set S Ă Rnˆpn`mq of matrices, as long as S consists all of t-controllable
pairs rA,Bs. To this end, in the next lemma, we verify that all constants used in Lem.
33, such as δc{o

i ,µ, ρ
c{o
i , etc., which depend on pAi, Biq can be uniformly bounded

above for the described sets S.

Lemma 34. Let S be a compact7 subset of t-controllable matrix pairs pA,Bq Ă

Rnˆn ˆ Rnˆm with full-column rank B, and let C P Rnˆn and D P Rmˆm be
invertible matrices. Then, there exist positive constants 0 ă σc

S ď σc
S , 0 ă σo

S ď σo
S ,

0 ă ρcS ď ρcS , 0 ă ρoS ď ρoS , 0 ă bS ď bS , and some 0 ď α
p1q

S ď . . . α
pkq

S . . . such
that for all pA,Bq P S and i P t1, . . . , nu:

σc
S ď σipPtpA,Bqq ď σc

S σo
S ď σipQtpC,Aqq ď σo

S

ρcS ď σipPtpA, Iqq ď ρcS ρoS ď σipQtpI, Aqq ď ρoS

max
1ďjďk

}Aj
}2 ď α

pkq

S , @k ě 1 bS ď σipBq ď bS .

7Take the usual norm for the product-space is defined as |pA,Bq| :“ |A| ` |B|.



134

Proof. All bounds follow from the simple fact that continuous scalar functions over
compact sets achieve a maximum and a minimum, and by letting the corresponding
constant be defined by that maximum/minimum value. Thus we need to verify the
continuity of the corresponding functions. It is obvious that }Aj}2 and Pt and Qt are
continuous functions of A and B. It is well-known [25], that the k-th largest singular
value σk : Rpˆq Ñ R` is a continuous function over the space of matrices; a quick
way to convince ourselves is by writing σk as a difference of the k-th and the k´ 1-th
Ky-Fan-Norm [25] and using continuity of norms. Lastly, we know that the minimum
singular values σc

S , σo
S , ρcS , ρoS , bS are all positive, because they are achieved at

respective pairs tpAi, Biqu all of which are t-controllable, i.e., σminpPtpAi, Biqq ą 0,
and Bi is full column rank, i.e., σminpBiq ą 0.

The concluding theorem of our perturbation analysis follows as a corollary of the
previous two lemmas, and establishes the Lipshitzness of the LQ-optimal CLM
parametrization map Φ˚ over compact sets of t-controllable LTI systems:

Theorem (Lipshitzness of LQ-optimal CLM oracle). Let t P N be fixed, C P Rnˆn,
D P Rmˆm be fixed invertible matrices, and Φ˚pA,B, tq represent the unique
optimum of the optimal control problem LQpA,B, tq described by (4.20), (4.21).
Assume that Sab is a compact subset of Rnˆn ˆ Rnˆm such that for all pA,Bq P Sab,
rA,Bs is t-controllable and B is full column rank. Then, there exist fixed constants
La, Lb P R` such that for all pA1, B1q, pA2, B2q P Sab, the following inequality
holds:

~Φ˚
pA1, B1, tq ´ Φ˚

pA2, B2, tq~8 ď La|B12A| ` Lb|B12B|

where B12A :“ A1 ´ A2 and B12B :“ B1 ´ B2.

Proof. Using Lem. 33 and the constants defined in Lem. 34 for S “ Sab, we
can see that there are constants Γa and Γb which are functions of the constants
t, σc

S , σ
c
S , σ

o
S , σ

o
S , ρ

c
S , ρ

c
S , ρ

o
S , ρ

o
S , bS , bS , α

pkq

S such that the difference between any two
vectorized solutions ϕ˚

1 :“ ϕ˚pA1, B1, tq, ϕ˚
2 :“ ϕ˚pA2, B2, tq, where pA1, B1q and

pA2, B2q belong to Sab, is bounded in | ¨ |2 as |ϕ˚
1 ´ ϕ˚

2 |2 ď Γa|B12A|2 ` Γb|B12B|2.
Thus, ϕ˚ is a Lipshitz-continuous map over Sab. This means that the matrices
MΦ˚

k associated with component functions of Φ˚
k “ U˚rksΦ˚P k are | ¨ |F-Lipshitz

continuous and, by equivalence of norms, also | ¨ |8-Lipshitz continuous. Finally,
because Φ˚pAi, Bi, tq is always t-FIR and time-invariant, there are fixed La and
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Lb such that for any component Φ˚
k, k P N, and perturbations B12A and B12B, the

following inequality holds:

sup
wk:0

|B12Φ
˚
kpwk:0q|

maxjďk |wj|
ď La|B12A| ` Lb|B12B|.

The desired conclusion follows, since ~Φ˚pA1, B1, tq ´ Φ˚pA2, B2, tq~8 is the
supremum over k of the left-hand side of the above inequality.

Analytic expressions of La and Lb in terms of the constants can be easily de-
rived, however, doing so is very tedious. The asymptotic behavior in terms t and
controllability/observability singular values is given below:

La “ O

¨

˝

ˆ

tσc
Sσ

o
S

σc
S

˙

3
2
ˆ

σo
S
σc
S

˙

1
2

α
ptq
S

˛

‚ Lb “ O
ˆˆ

tσc
Sσ

o
S

σc
S

˙ˆ

σo
S
σc
S

˙

α
ptq
S

˙

.
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OVERVIEW

In regards to robustness to model uncertainty, the previous part primarily focuses on
problem settings where the system dynamics are uncertain but can be narrowed down
to a set of possible models. In this setting, all the models can be simultaneously
stabilized by a fixed controller using methods of robust control theory. On the other
hand, this part of the thesis focuses on the more general "large uncertainty" scenario,
where the set of possible models is bounded but can be arbitrarily large. In practical
terms, Part 2 of the thesis assumes that the dynamics of the system are almost entirely
unknown. In this second part, we introduce new theory and algorithms for a general
framework of learning-to-control with worst-case safety and performance guarantees,
even in settings where dynamic uncertainty is very large. We approach this problem
from two complementary perspectives: Chapter 5 pursues a model-free, data-driven
approach, while Chapter 6 follows a model-based learning and control approach.

The results presented in Chapter 5 are based on the work published in [5] and develop
new methods for stability analysis and control design without the need for a model.
In particular, we demonstrate the first instance of an all model-free formulation
of controller, closed-loop dynamics, and robust stability analysis. We present a
simple model-free control algorithm that can robustly learn and stabilize an unknown
discrete-time linear system with full control and state feedback, subject to arbitrary
bounded disturbance and noise sequences. The controller does not require any prior
knowledge of the system dynamics, disturbances, or noise, yet it can guarantee
robust stability and provides asymptotic and worst-case bounds on the state and
input trajectories. To the best of our knowledge, this is the first model-free algorithm
to come with such robust stability guarantees without the need to make any prior
assumptions about the system. Simulation results also show that despite its generality
and simplicity, the controller demonstrates good closed-loop performance, including
fast convergence, small learning transients, and nearly optimal asymptotic gain.

In Chapter 6, we approach the problem of learning-to-control unknown systems from
a model-based perspective. In this case, we are given a compact parameterization of
all possible system dynamics, which can be arbitrarily large. The results presented
are based on the work published in [5] and introduce a new modular framework
for model-based learning-to-control. This framework provides robust safety and
cost-performance guarantees for closed loop under worst-case scenarios of realized
disturbances, noise, or other environmental conditions. Our approach involves
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decomposing the problem into two subproblems: online learning, referred to as
"consistent model chasing," and the underlying control problem in the absence of
model uncertainty, known as "oracle design." Each subproblem can be addressed
separately, and its solutions (a control oracle and model chaser) are used to instantiate
a certainty-equivalent learning-to-control scheme. This scheme inherits both control-
and learning-theoretic guarantees, certifying robustness of the closed-loop, even
for large model uncertainty in the system dynamics. We discuss how the control
oracle is implicitly given by standard nominal control design, provided that this
procedure satisfies certain regularity properties over the space of models. Designing
the corresponding model chaser represents a problem which we term "consistent
model chasing" and discuss how to solve it with existing techniques from online
learning.
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C h a p t e r 5

ROBUST MODEL FREE LEARNING AND CONTROL OF
LINEAR SYSTEMS

We present a simple model-free control algorithm that is able to robustly learn and
stabilize an unknown discrete-time linear system with full control and state feedback
subject to arbitrary bounded disturbance and noise sequences. The controller does
not require any prior knowledge of the system dynamics, disturbances, or noise, yet it
can guarantee robust stability and provides asymptotic and worst-case bounds on the
state and input trajectories. To the best of our knowledge, this is the first model-free
algorithm that comes with such robust stability guarantees without the need to make
any prior assumptions about the system. We would like to highlight the new convex
geometry-based approach taken towards robust stability analysis, which served as
a key enabler in our results. We will conclude with simulation results that show
that despite generality and simplicity, the controller demonstrates good closed-loop
performance.

5.1 Introduction
Motivation and Problem Statement
Learning to stabilize unknown dynamical systems from online data has been an
active research area in the control community since the 1950s [74] and has recently
attracted the attention of the machine learning community, in particular in the context
of reinforcement learning. Although extensive research has been conducted on this
topic, very few of the algorithms developed have reached the level of adoption in
real-world applications, as one would expect. In particular in areas where frequent
interaction with the physical world is necessary, system failure is costly and the
deployment of control algorithms is only possible if the algorithm can guarantee
that minimal safety and performance specifications will be met during operation.
Although there have been previous research [132],[18] and recent research efforts
[57],[43], [2], [24], [38],[44] to address this problem, very few algorithms have come
with the necessary performance and safety guarantees to be deployed in real-world
applications so far. Motivated by this, we revisit the basic problem of learning to
stabilize a linear system and aim to find learning and control strategies with the least
restrictive assumptions that can still give robust stability bounds for the closed loop.
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In this chapter, we focus on the problem of adaptively stabilizing a linear discrete-time
system

zk`1 “ A0zk ` uk ` dk (5.1a)

xk “ zk ` nk (5.1b)

with state zk, bounded disturbance dk, bounded noise nk, and control action uk that
is only allowed to depend on noisy state measurements until time k, i.e., x0, . . . , xk.
We are interested in finding controllers that can stabilize (in the sense of BIBO-
or input-to-state stability guarantees) without requiring any additional assumptions
about the unknown system matrix A0 and the disturbance/noise sequences pdkq, pnkq.
Although the system (5.1) admits a very restrictive class of linear systems (full state
feedback and control), nearly all available learning and control approaches need
to make some prior assumptions about this system in order to state stability and
performance guarantees. Most commonly, these assumptions come in the form of a
priori bounds on dk, nk, and/or A0.

Related Work
We will review the relevant literature in the context of our problem setting. Classical
control approaches are found in the literature on adaptive control with [72], [71],
[112] focusing on the deterministic setting and [132] on the stochastic setting. The
self-tuning regulator [18] and its variations come with asymptotic optimality [60],
yet robust stability guarantees without restrictive assumptions are few and can only
be made in the probabilistic sense. On the deterministic side, [72], [71] point out
that instabilities can occur with traditional adaptive schemes and provide improved
versions of adaptive controllers that come with robust stability and performance
guarantees. However, the desired guarantees depend on knowing some limits of
the system parameters and disturbance signals. Other challenges associated with
classical adaptive control approaches are discussed in [8], [10]. Methods in safe
reinforcement learning [57], [24], [5], [53] have made great progress toward methods
that guarantee robust safety properties for classes of non-linear systems, yet the
synthesis procedures involved are computationally expensive, and require knowledge
of an initially robust stabilizing controller, even in the case of a simple linear system
(5.1). Recent work [2], [42], [43], [92], [38], [44] has made significant progress in
providing algorithms with robust finite-time performance guarantees for the adaptive
linear quadratic Gaussian regulator problem. However, in the context of our simple
linear problem setting, all methods require that the uncertainty in the system dynamics
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(i.e., A0) is small enough at the outset to provide stability guarantees of the closed
loop.

Main Contribution and Overview of the Chapter
In this work, we present a simple controller that can adaptively stabilize (5.1) without
any additional assumptions about disturbance, noise, or the system matrix A0. The
presented algorithm performs tractable computations (solving a linear program each
time step) and provides both uniform asymptotic and worst-case guarantees on
the state and input trajectories. An additional surprising feature of the presented
algorithm is that it is not based on the certainty-equivalence principle and has a
completely model-free formulation. To the best of our knowledge, this is the first
model-free adaptive controller that can give our robust stability guarantees without
requiring prior knowledge about the unknown system (5.1).

Our core theoretical contribution is a novel approach towards stability analysis. We
first show that in any closed-loop trajectory pxtq, there are only a finite number of
time instances ti at which xti`1 is significantly larger than xti . We term those time-
instances as "unstable transitions" and our first main theorem shows an upper-bound
on the occurrence of these unstable transitions in the closed loop state trajectory.
Then, our stability and performance guarantees follow as corollaries of this result.
We develop a new technique based on convex geometry to bound the occurrence
of unstable transitions in the closed loop. Vaguely speaking, our main idea is to
show that if an unstable transition occurs at some time t1, our proposed adaptive
controller learns enough from this observation to prevent similar unstable transitions
from occurring in the future. Mathematically, we formulate this idea in two steps:
1. We define a distance function d between unstable transitions and show that, w.r.t.
to d, we can identify the set of unstable transitions with a bounded separated set
P of equal cardinality. 2. We bound the cardinality of P by a metric-entropy type
of quantity, which leads to an upper bound on the maximum number of times that
unstable transitions can occur. We discuss the convex geometry-based techniques in
detail, to emphasize their potential use for robust design and analysis of learning and
control algorithms, particularly in the model-free setting. The chapter is organized
as follows. We formulate our problem in Section 5.2 and give a brief overview of
our main results in Section 5.3. In Section 5.5, we derive the model-free closed-loop
equation and explain the intuition behind the proposed control law. In Section 5.6, we
present and discuss our main results in detail. Section 5.7 and Section 5.8 highlight
the main techniques and ideas used to prove our results.Section 5.9 highlights a
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parallel between the role of metric entropy in the context of our results and in the
context of statistical learning theory, which could serve as an interesting intersection
for future research. We conclude with some experimental results in Section 5.10.

5.2 Problem Setup
For our discussion, we transform the system (5.1) w.r.t to the measurements xt and
obtain the equivalent1 system

xt`1 “ A0xt ` ut ` wt (5.2)

wt :“ dt ` nt`1 ´ A0nt,

where wt represents the lumped bounded disturbance at time t which summarizes the
influence on the system of the original noise and disturbance. A causal controller can
be represented as a collectionK “ pK0, K1, . . . q of control lawsKt : pxt, . . . , x0q ÞÑ

ut. The closed loop of K and (5.2) is then described by the equation

xt`1 “ A0xt ` Ktpxt, . . . , x0q ` wt. (5.3)

Our goal is now to designK such that the closed-loop (5.3) is bounded-input bounded-
output stable for any A0 and any bounded sequence2 pwtq. More specifically, we
want to design K such that any closed-loop trajectory pxtq satisfies bounds of the
form

sup
t

}xt} ď f1pA0, sup
t

}wt}q

lim sup
tÑ8

}xt} ď f2pA0, sup
t

}wt}q

for some fixed functions f1 and f2.

5.3 Preview of Main Result
We will start by describing the implementation of our proposed controller and a
summary of its performance guarantees in a closed-loop with system (5.2).

Proposed control strategy
For adaptive stabilization of (5.2) we propose a dynamic controller Kcc P CpℓX , ℓUq,
which at every time step t computes the input as

ut “ Kcc
t pxt, . . . , x0, ut´1, . . . , u0q

1Since xt “ zt ` nt, controlling the system state zt is equivalent to controlling the noisy
measurement xt.

2We use bracket notation to distinguish a sequence pwtq from its element wt at time t.
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based on all previous measurements xt, . . . , x0 and previously taken actions
ut´1, . . . , u0. The controller Kcc computes the input ut at time t as

Kcc
t pxt, . . . , x0, ut´1, . . . , u0q :“

`

Ut´1 ´ X`
t´1

˘

λt´1pxtq (5.4)

where λt´1pxtq is defined as the solution of the convex optimization problem

min
λ

}λ}1

s.t. Xt´1λ “ xt
(5.5)

and where the matrices Ut, Xt and X`
t are composed of state xt and input ut

measurements up until time t as

Xt :“ rxt, xt´1, . . . , x0, X´1s (5.6a)

Ut :“ rut, ut´1, . . . , u0, U´1s (5.6b)

X`
t´1 :“ rxt, xt´1, . . . , x1, X

`
´1s (5.6c)

with fixed chosen matrices X´1, U´1, X`
´1 P Rnˆn0 such that n0 ą n and

rankpX´1q “ n. The matrices X´1, U´1, X`
´1 with columns x̂i, ûi and x̂`

i

defined as

X´1 :“ rx̂1, . . . , x̂n0s, U´1 :“ rû1, . . . , ûn0s,

X`
´1 :“ rx̂`

1 , . . . , x̂
`
n0

s
(5.7)

serve to initialize the controller Kcc. Depending on the application scenario, the
matrices can be chosen as follows:

(I1) No prior knowledge: choose ûi “ 0, x̂`
i “ 0, x̂i “ εei for 1 ď i ď n where

ei is the ith Cartesian unit vector and ε ą 0 is some positive scalar. The
parameter ε can be viewed as an initial guess on supt }wt}1, the supremum of
the disturbance sequence in 1-norm.

(I2) Prior data available: Assume we had noisy data available x´j , x`
´j , u´j ,

1 ď j ď k collected from the system (5.2) before t “ 0. i.e., the data satisfies

x`
´j “ A0x´j ` u´j ` w´j (5.8)

with w´j denoting the corresponding lumped disturbances. Then, in addition
to the initialization (I1) ûi “ 0, x̂`

i “ 0, x̂i “ εei for 1 ď i ď n, we can
incorporate the data x´j , x`

´j , u´j by appending additional columns as

ûn`i :“ u´i, x̂n`i :“ x´i, x̂`
n`i :“ x`

´i, 1 ď i ď k.
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Closed-Loop Guarantees
In this chapter, we will show that the controller Kcc stabilizes system (5.1) without
requiring any knowledge of A0 or pwtq. We will term the controller Kcc defined by
(5.4), (5.5) the causal cancellation controller, as it can be interpreted at time t to
cancel out the part of the dynamics that can be inferred from all previously collected
observations xt, . . . , x0 and actions ut´1, . . . , u0.

As presented in detail in Section 5.6, for any initialization X´1, U´1, X`
´1 (only

assuming rankpX´1q “ n), the controller (5.5) always ensures a closed loop for
which:

(i) the state pxtq and input putq are uniformly bounded.

(ii) an analytic upper-bound can be derived for the worst-case state-deviation.

(iii) after some finite time, pxtq and putq converge exponentially to a bounded limit
set.

The above guarantees will be phrased w.r.t. a norm } ¨ }W which measures pxtq

and putq relative to the size of the disturbance pwtq that produced them. Moreover,
as described in (I2), we can incorporate prior data into the initialization of the
controller Kcc. In the case where the provided data is "more informative" than the
default initialization (I1), the closed loop guarantees and bounds tighten. Hence, the
proposed control scheme Kcc does not need prior knowledge to give closed-loop
stability guarantees, but if prior knowledge is available, it can be leveraged through
the initialization (I2) to improve closed-loop guarantees.

5.4 Preliminaries of Convex Geometry
Convex Bodies and Norms
It is a well-known fact in convex geometry that there is a one-to-one relationship
between symmetric convex bodies (see Def. 5.1) and norms in Rn. Here we will
discuss this equivalence and how it relates to the properties of the } ¨ }S-norms which
we used in this chapter. The following discussion is adapted from chapter 1.7 of the
standard text [113], to which we refer for more detail.

Definition 5.1 (Symmetric Convex Body). A set B Ă Rn is a symmetric convex body
if B is a closed, bounded, convex set with non-empty interior and z P B ô ´z P B.
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Symmetric convex bodies and norms are equivalent in Rn, in the sense that any norm
on Rn is uniquely defined by its corresponding unit norm ball, and the set of all
possible unit norm balls in Rn is precisely the set of symmetric convex bodies in Rn.
We summarize this in the following lemma:

Lemma 35. For any norm } ¨ } in Rn, the corresponding norm ball tx |}x} ď 1u is
a symmetric convex set in Rn. On the contrary, for any symmetric convex body B in
Rn, the function gpB, ¨ q : Rn ÞÑ R` defined by

gpB, xq :“ min tr ě 0 |x P rBu , @x P Rn (5.9)

is a norm on Rn.

In convex geometry, the function gpB, ¨q is often called the gauge function or the
Minkowski functional of B and describes a concrete way to evaluate a norm based on
knowing its unit ball. For our purposes, it will be convenient to extend the above
definition to derive norms from general bounded sets S Ă Rn in the following way:
Given an arbitrarily bounded set S, we will refer to } ¨ }S as the norm gpcpSq, ¨ q,
obtained by the Minkowski functional of the absolute convex hull cpSq of the set S.
We define this formally in Def. 5.4 and Def. 5.5:

Definition. Let S be a set in Rn, then the set of all finite linear combinations
řN

i“1 λixi of elements xi in S with
řN

i“1 |λi| ď 1 is called the absolute convex hull
of S, and we will refer to its closure as cpSq:

cpSq :“ cl

#

N
ÿ

i“1

λixi

ˇ

ˇ

ˇ

ˇ

ˇ

txiu
N
i“1 Ă S,

N
ÿ

i“1

|λi| ď 1

+

. (5.10)

Remark. Equivalently, cpSq is the closure of the convex hull of the set p´Sq Y S.

Definition. For a fixed bounded set S Ă Rn, let } ¨ }S : Rn ÞÑ Rě0 be the norm
defined for all x P Rn as

}x}S :“

#

min tr ě 0 |x P rcpSqu , for x P spanpSq

8, else

and for sets S1 Ă Rn, define }S1}S as the quantity

}S1
}S :“ max

zPcpS1q
}z}S . (5.11)
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The definition is overloading the common notation for the norm } ¨ }S as used in
[113] where S is required to be a symmetric convex body. Applying Def. 5.5 to
the disturbance set W, (5.26) defines the previously introduced norm } ¨ }W that we
use to formulate the stability analysis. Figure 5.1 illustrates an example of how the
set cpWq and the norm }x}W are related in two dimensions. The following lemma
summarizes some key properties following from the above definitions. Note property
(iii) and (iv), which show that we can verify the set-membership and set inclusions of
symmetric convex bodies in terms of the norm. Furthermore, property (ii) describes
a practical evaluation of } ¨ }S for finite sets S and shows

}λt´1pxq}1 “ min
λ

}λ}1 “ }x}Xt´1

s.t. Xt´1λ “ x.
(5.12)

Lemma 36. Norms according to Definition 5.5 satisfy:

(i) For any set S in Def. 5.5, cpSq is a symmetric convex body in Rn. Moreover,
cpSq is the unit norm ball of } ¨ }S, so we can equiv. Write } ¨ }S “ } ¨ }cpSq

.

(ii) If S is a finite set S “ tp1, . . . , pNu, then for any x P Rn, }x}S can be computed
as:

}x}S “ min

#

N
ÿ

i“1

|λi|

ˇ

ˇ

ˇ

ˇ

ˇ

λ1, . . . , λN s.t.
N
ÿ

i“1

λipi “ x

+

.

(iii) for all x P Rn holds x P cpSq ô }x}S ď 1.

(iv) cpS1q Ă cpS2q holds if and only if for all x P Rn holds }x}S1 ě }x}S2 .

(v) for all γ ą 0, holds } ¨ } 1
γ
S “ γ } ¨ }S .

Proof. The statements of Lem. 36 are easy to verify: (i), (iii), (iv) follow directly
from Lem. 35 and (ii) follows by using the description of the set shown in (5.10) to
rewrite the definition of } ¨ }S.

We use the definition (5.11) of }S1}S2 to measure the size of a set S1 w.r.t. the norm
} ¨ }S2 of another set S2. The following properties can be easily verified:

Lemma 37. Let S1, S2 be some bounded sets in Rn and recall the definitions Def.
5.5. Then we have the following.

(i) }S1}S2 :“ mint t | S1 Ă tcpS2q, t ě 0u.
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(ii) equivalence of norms in Rn: 1
}S1}S2

} ¨ }S2 ď } ¨ }S1 ď }S2}S1 } ¨ }S2 .

(iii) }S1}S2 ď 1 ô S1 Ă cpS2q.

(iv) S1 Ă }S1}S2 cpS2q.

Property (i) states that we can equivalently define }S1}S2 as the smallest factor t such
that S1 is contained in tcpS2q. This definition is visualized in the middle plot of
Figure 5.1 for some exemplary sets W and X1 in R2. The other properties can be
derived as immediate consequences of property (i): (i) ñ (iv) ñ (iii), (ii).

Distance Between Norms
For bounded sets S1, S2 we define dpS1, S2q as a multiplicative distance dpS1, S2q

between the two norms } ¨ }S1 and } ¨ }S2:

Definition 5.2. Let S1, S2 Ă Rn be sets with norms } ¨ }S1 , } ¨ }S2 defined as in Def.
5.5. Then, define dpS1, S2q as

dpS1, S2q :“ maxt}S1}S2 , }S2}S1u. (5.13)

Lemma 38. The definitions 5.2 imply the following.

(i) dpS, Sq “ 1.

(ii) dpS1, S2q “ dpS2, S1q.

(iii) dpS1, S2q ď dpS1, S
1qdpS1, S2q.

Proof. Statement (i) and (ii) are trivial. Part (iii) follows using (iv) and (i) of Lem.
37: Note that

S1 Ă dpS1, S
1
qcpS1

q Ă dpS1, S
1
qdpS1, S2qcpS2q (5.14)

S2 Ă dpS2, S
1
qcpS1

q Ă dpS2, S
1
qdpS1, S1qcpS1q (5.15)

leads to maxt}S1}S2 , }S2}S1u ď dpS2, S
1qdpS1, S1q.

Lem. 38 shows that the map dp ¨ , ¨ q can be viewed as a multiplicative distance
between sets: These properties imply that log dp ¨ , ¨ q is a pseudometric over the
space of bounded sets in Rn.
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5.5 The Model-Free Adaptive Controller and Closed-Loop Equations
We will start by first discussing the key idea and intuition behind the causal cancelation
controller Kcc. Section 5.5 is deriving that all pX`

t , Xt, Utq satisfies the open loop
equation of the unknown system for some appropriately defined disturbance matrixWt.
This is used to show in Section 5.5 that at time t and state xt, the causal cancelation
control law Kcc

t approximates the ideal deadbeat control action u˚
t “ ´A0xt directly

from online data pX`
t´1, Xt´1, Ut´1q without requiring an explicit estimate A0. This

relation leads to a model-free form of the closed loop equation, shown in Section 5.5,
which is used for the later stability analysis.

Open Loop Equation for Data Matrices
Recall from (5.6), that pX`

t , Xt, Utq are constructed from some fixed initialization
pX`

´1, X´1, U´1q and some state pxtq and input putq sequences of the system (5.2)
with respect to some fixed lumped disturbance pwtq. Define the disturbance matrix
Wt P Rnˆpt`1`n0q as the matrix

Wt :“ rwt, wt´1, . . . , w0,W´1s (5.16a)

W´1 :“ rŵ1, . . . , ŵn0s :“ X`
´1 ´ A0X´1 ´ U´1 (5.16b)

of lumped disturbances wt, . . . , w0 and the matrix W´1 which is composed of the
columns ŵ1, . . . , ŵn0 . With the above auxiliary definition, we can easily see that the
matrices Ut, Xt, X`

t , and Wt satisfy the linear equation

X`
t´1 “ A0Xt´1 ` Ut´1 ` Wt´1, (5.17)

which resembles the open-loop dynamics of the unknown system. We will term ŵi

as "virtual" disturbances, which are defined to account for errors introduced through
the initial guesses X´1, U´1, X`

´1. If we take x̂i, ûi, x̂`
i to be the ith columns of

the initialization matrices X´1, U´1, X`
´1 and W´1, we can rewrite the definition

(5.16b) columnwise in the form

x̂`
i “ A0x̂i ` ûi ` ŵi, 1 ď i ď n0 (5.18)

to see that each pair of (x̂i, ûi) and x̂`
i can be posed as a transition of the true unknown

system (5.2), w.r.t. the virtual disturbance ŵi.

Example 2. If we initialize according to procedure (I1), then ŵi “ ´εA0ei and
W´1 “ ´εA0.
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Model-Free Approximation of Deadbeat Control Action
In a compact form, the components tKcc

t u of the causal cancellation controller are
mappings pxt, X

`
t´1, Xt´1, Ut´1q ÞÑ ut such that:

ut “
`

Ut´1 ´ X`
t´1

˘

λt´1pxtq (5.19)

where λt´1pxtq :“ argmin
λ s.t. Xt´1λ“xt

}λ}1 .

Remark. The technical issue that a minimizer of (5.5) might not be unique is not
relevant for the analysis and for simplicity will be ignored.

The function λt´1pxtq is defined to always satisfy

Xt´1λt´1pxtq “ xt (5.20)

and represents a decomposition of the state xt as a linear combination of the columns
of Xt´1.

Rewriting equation (5.17) as

Ut´1 ´ X`
t´1 “ ´A0Xt´1 ´ Wt´1 (5.21)

and substituting the right hand side of equation (5.21) into (5.19) and using (5.20)
allows us to rewrite the controller equivalently as

ut “
`

Ut´1 ´ X`
t´1

˘

λt´1pxtq
(5.20)
“ ´A0xt ´ Wt´1λt´1pxtq. (5.22)

The above shows that the control law (5.19) is a direct way to approximate the ideal
deadbeat control action ´A0xt from the online data matrices Ut´1, X`

t´1, Xt´1. The
additional term ´Wt´1λt´1pxtq is the corresponding approximation error at time t.
As will become clear later, the optimization step in (5.19) is minimizing an upper
bound of ´Wt´1λt´1pxtq relative to the norm } ¨ }Wt´1

(see definition in Section
5.6).

The Model-Free Closed-Loop equations
Setting K “ Kcc and using (5.22), the closed loop equations (5.3) take the form of

xt`1 “ ´Wt´1λt´1pxtq ` wt (5.23a)

ut “
`

Ut´1 ´ X`
t´1

˘

λt´1pxtq (5.23b)

which will serve as the basis for our stability analysis. The above equation says that
the closed-loop dynamics is entirely determined by Wt´1 (containing virtual and
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past lumped disturbances), as well as how we choose to decompose xt as a linear
combination Xt´1λt´1pxtq of past data. Suitably, we could call equation (5.23a) to
be a model-free description of the closed loop, since the dynamics are formulated
independent of the underlying true unknown system A0.

5.6 Main Results
Theorem 27 and Theorem 29 are the main theoretical results. Theorem 27 states that
any state trajectory pxtq of the closed loop has finitely many "unstable transitions"
(defined in Def. 5.6). Theorem 29 is a consequence of Theorem 27 and presents our
main stability bounds for state and input trajectories of the closed loop. To formulate
our results, we first introduce the necessary notation and definitions.

Notation and Definitions
Definition 5.3. If M P RnˆN is a matrix with N columns mi, then define the
corresponding variable M in sans serif font to denote the set M :“ tm1, . . . ,mNu.

Definition 5.4. Let S be a set in Rn, then the set of all finite linear combinations
řN

i“1 λixi of elements xi in S with
řN

i“1 |λi| ď 1 is called the absolute convex hull
of S and we will refer to its closure as cpSq:

cpSq :“ cl

#

N
ÿ

i“1

λixi

ˇ

ˇ

ˇ

ˇ

ˇ

txiu
N
i“1 Ă S,

N
ÿ

i“1

|λi| ď 1

+

. (5.24)

Definition 5.5. For a fixed bounded set S Ă Rn, let } ¨ }S : Rn ÞÑ Rě0 be the norm
defined for all x P Rn as

}x}S :“

#

min tr ě 0 |x P rcpSqu , for x P spanpSq

8, else
(5.25)

and for sets S1 Ă Rn, define }S1}S as the quantity

}S1
}S :“ max

zPcpS1q
}z}S .

Key properties of the above norm and relevant concepts from convex geometry are
discussed in the appendix Section 5.4. For a fixed disturbance pwtq and virtual
disturbance ŵi, define W as the corresponding fixed set.

W :“ twt|t P Nu Y tŵi|1 ď i ď n0u. (5.26)

Let }¨}W and }¨}Xt
denote the norms constructed from the fixed disturbances and
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e1

e2

ŵ1 ŵ2

´ŵ1´ŵ2

w0

w1

´w1

´ŵ1´ŵ2

´w0

x ˆ }x}W

cpWq e1

e2

}W}X1
ˆ cpX1q

cpX1q

cpWq

e1

e2

x̂1

x̂2

´x̂1

´x̂2

x0
x1´x1

´x0

x
ˆ }x}X1

cpX1q

Figure 5.1: Examples in R2. Left: cpWq and }x}W for W “ tŵ1, ŵ2u Y twt|r P Nu

and pwtq “ pw0, w1, 0, 0, . . . q. Right: cpX1q and } ¨ }X1
for X1 “ rx1, x0, x̂2, x̂1s.

Middle: κ2 “ }W}X1
is the smallest factor r such that cpWq Ă rcpX1q.

data matrix Xt according to Def. 5.5 and Def. 5.3. For a fixed trajectory pxtq, W
and fixed initial time τ , the constant κτ refers to the quantity

κτ :“ }W}Xτ´1
. (5.27)

Figure 5.1 shows an example in R2 that illustrates the geometric relationship between
the sets cpWq, cpXtq and the evaluation of their respective norms at some point x.
The arrows indicate that one set is a scaled copy of the other set. The middle picture
in Figure 5.1 shows a geometric interpretation of the corresponding constant κτ for
τ “ 2 : κτ is the smallest scaling factor r such that the set r ˆ cpXτ´1q contains the
set cpWq.

Finite Occurrence of Unstable Transitions
Our approach is to analyze the behavior of the closed loop by quantifying how many
"unstable transitions" can occur in the future time window rτ,8q of a closed-loop
trajectory pxtq, given (Xτ , X`

τ´1, Uτ´1), which represents the data collected up to
time τ . For a fixed 0 ă µ ă 1 and a trajectory pxtq, we define the occurrence of a
µ-unstable transition as follows:

Definition 5.6 (µ-unstable transition). The trajectory pxtq has a µ-unstable transition
at time t if the pair of consecutive states pxt`1, xtq satisfies

}xt`1}W ą max
!

1
1´µ

, µ }xt}W ` 1
)

. (5.28)

In other words, pxt`1, xtq P Uµ, whereUµ denotes the set of all pairs px, x`q P RnˆRn

that satisfy the inequality (5.28):

Uµ :“
!

px`, xq|
›

›x`
›

›

W
ą max

␣

1
1´µ

, µ }x}W ` 1
(

)

. (5.29)

The condition (5.28) represents a growth condition on a transition pxt, xt`1q on the
trajectory pxtq. For each trajectory pxtq, we define a corresponding set Xµ that
collects all states xt at which pxt`1, xtq belongs to Uµ:
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Definition 5.7. Given a trajectory pxtq, an initial time τ and some 0 ă µ ă 1, define
Xµppxtq; τq Ă Rn as

Xµ ppxtq; τq :“ t xt | pxt, xt`1q P Uµ, t ě τ u . (5.30)

Remark. Note that if µ ă µ1, then Xµppxtq, τq Ą Xµ1ppxtq, τq.

The core technical contribution of our chapter is Theorem 27, which places an upper
bound on the number of µ-unstable transitions that can occur in the closed loop
trajectory pxtq:

Theorem 27. For any trajectory pxtq of the closed loop (5.23a) and any τ ě 0, the
set Xµ ppxtq; τq is a finite set for any µ P Iκτ , where Iκτ is the open interval.

Iκτ :“
´´

b

1
4

` 1
κτ

` 1
2

¯´1

, 1
¯

. (5.31)

Moreover, the cardinality is bounded above as |Xµ ppxtq; τq | ď Npµ;κτ q, where
N : R ˆ R ÞÑ R stands for the function

Npµ;κτ q :“ 1
2

ˆ

µ

µ´
?

κτ p1´µq

˙n

maxt1, µ
1´µ

u
n (5.32)

and κτ is a constant computed from Xτ´1 as:

κτ “ }W}Xτ´1
. (5.33)

Remark 28. Recall, that we initializeX´1 such that rankpX´1q “ n; This guarantees
rankpXτ´1q “ n, assures κτ ă 8 and that the interval Iκτ is always non-empty. In
addition, it can be verified that Npµ;κτ q ă 8 for any feasible µ.

Theorem 27 states that for the suitably chosen µ, the set Xµppxtq; τq is finite for any
closed loop trajectory pxtq. The constant κτ controls the interval of feasible µ as
well as the total number of unstable transitions Uµ that can occur in the time interval
rτ,8q. As κτ decreases, the bound Npµ;κτ q tightens (Npµ;κτ q ď Npµ;κτ

1q for
κτ ď κτ

1) and the interval (5.31) widens. Geometrically, κτ describes the size of
the disturbance set W relative to the set cpXτ´1q (see Figure 5.1 for an example
in R2) and the result states that we have fewer unstable transitions if the collected
observations are larger in size than the disturbance. Therefore, we can view κτ as
a constant that quantifies how informative the data Xτ´1 observed before τ are to
control the system for time t ě τ .
The proof of Theorem 27 is postponed to Section 5.8.
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Closed Loop Stability Bounds
As a consequence of Theorem 27, we obtain our main closed loop stability bounds
presented in Theorem 29. The result gives bounds on the trajectories pxtq and putq

in terms of the fixed disturbance pwtq and virtual disturbance ŵi.

Remark. Recall from (5.16b) that instead of analyzing the closed loop dynamics for
fixed A0, X`

´1, X´1, U´1, we can equivalently analyze the closed loop dynamics for
fixed ŵi.

Theorem 29. Let pxtq, putq be the trajectories of the closed loop (5.23a) for some
fixed pwtq and ŵi with the corresponding set W defined as (5.26). Let τ be some
fixed time and let κτ :“ }W}Xτ´1

. Then, for any µ P Iκτ , where Iκτ is the interval

Iκτ :“
´´

b

1
4

` 1
κτ

` 1
2

¯´1

, 1
¯

, (5.34)

the trajectories pxtq and putq satisfy the bounds (i), (ii) and (iii):

(i) lim suptÑ8 }xt}W ď 1
1´µ

,

lim suptÑ8 }ut}W ď p}A0}W ` κτ q 1
1´µ

.

(ii) there exists an T 1 ą 0 such that for all k ą 0 holds

V1pxT 1`kq ď µkV1pxT 1q (5.35)

where V1pxq :“ maxt0, }x}W ´ 1
1´µ

u.

(iii) the worst-case norm of pxtq and putq is bounded above as 3

sup
těτ

}xt}W ď fpκτ , µ, }xτ}Wq ` gpµ, κτ q (5.36)

sup
těτ

}ut}W ď p}A0}W ` κτ q sup
těτ

}xt}W

where Npµ;κτ q is defined as the function

Npµ;κτ q :“ 1
2

ˆ

µ

µ´
?

κτ p1´µq

˙n

maxt1, µ
1´µ

u
n, (5.37)

}A0}W :“ max
xPW

}A0x}W is a constant and f and g abbreviate the functions

fpκτ , µ, }xτ}Wq “ maxt1, κτ
Npµ;κτ q

umaxt 1
1´µ

, }xτ}Wu

gpκτ , µq “
1 ´ κτ

Npµ;κτ q

1 ´ κτ
. (5.38)

3For τ “ 0 and x0 R spanpWq, replace }x0}W with }A0x0}W in (5.36).
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The bounds in Theorem 29 are phrased w.r.t. to the norm } ¨ }W that is constructed
from the set W (see Figure 5.1 as an example of } ¨ }W in R2). The set W captures
disturbances due to pwtq and due to ŵi, where ŵi describes the mismatch between the
initial guess matricesX`

´1,X´1, U´1 and the true system matrixA0. }xt}W measures
xt relative to the underlying set of (lumped and virtual) disturbancesW that realized it.

The result also quantifies how the bound guarantees improvement with online data:
Given some initial time τ , the above result gives stability bounds on the future
trajectories of xt, ut, t ě τ which depend on the total states observed Xτ before
time τ , the constant κτ and µ P Iκτ , which acts as a free variable. The constant κτ
can be interpreted as a signal-to-noise ratio between state observations Xτ and the
disturbance set W (see Figure 5.1 for an example in R2). A smaller κτ indicates
that the data X`

τ´1, Xτ´1, Uτ´1 collected before time τ are more informative about
how to stabilize the system for future time-steps t ě τ . κτ is always nonincreasing
in τ and the bounds (iii), (i) of Theorem 29 tighten as τ increases. The bounds in
Theorem 29 depend on a free variable µ which can be chosen in the interval Iκτ . We
can tighten the bounds (i) and (iii) by minimizing the right-hand side over µ P Iκτ .
For bound (i), the choice

µ˚
“

´
b

1
4

` 1
κτ

` 1
2

¯´1

(5.39)

minimizes 1
1´µ

over µ P Iκτ and achieves a minimal value which is almost linear in
κτ :

1
1´µ˚ “ κτ

´

1
2

`

b

1
4

` 1
κτ

¯

` 1 pď κτ ` 2q. (5.40)

For τ “ 0 we get the following improved asymptotic upper bound for the state
trajectory:

Corollary 39. If pxtq satisfies (5.23a) then

lim sup
tÑ8

}xt}W ď κ0

´

1
2

`

b

1
4

` 1
κ0

¯

` 1 “: mpκ0q.

Example

Assume n “ 1 and the scalar system xt`1 “ a0xt ` ut ` wt. Pick X´1 “ ε with
some ε ą 0 and X`

´1, U´1 “ 0. Let pwtq be some fixed bounded scalar disturbance
with }pwtq}

8
“ 1. Then W “ cp´a0ε Y twt|t P Nuq and }x}W “

|x|

maxt|a0|ε,1u
. The

constant κ0 takes the value

κ0 “ }W}X´1
“ maxtε´1, |a0|u.
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If we substitute this into Cor. 39, and rewrite it in terms of |xt| we obtain the bound

lim sup
tÑ8

|xt| ď εκ20

´

1
2

`

b

1
4

` 1
κ0

¯

` εκ0. (5.41)

5.7 Proving Closed Loop Stability
In this section, we derive the closed loop stability bounds presented in Theorem
29 from the results of Theorem 27. The derivation of Theorem 27 is postponed to
Section 5.8. First, we will derive some useful inequalities that are used frequently in
the derivations.

Bounding One-Time Step Closed Loop Transitions
Recall the closed loop equation (5.23a) and the definition of the norm Def. 5.5 and
the sets W and Xt. In the Appendix, Lem. 36 summarizes some important properties
of the norms } ¨ }S. We use these to obtain the following bounds on the one time-step
growth of the state:

Lemma 40. Consider a state trajectory pxtq of the closed loop for a fixed W, then at
each time step t ą τ holds:

}xt`1}W ď

›

›

›
Wt´1

λt´1

}λt´1pxtq}1

›

›

›

W
}λt´1pxtq}1 ` 1 (5.42a)

ď }λt´1pxtq}1 ` 1 (5.42b)

ď }xt}Xt´1
` 1 (5.42c)

ď }W}Xt´1
}xt}W ` 1 (5.42d)

ď κτ }xt}W ` 1. (5.42e)

Recall that the vector λt´1pxtq poses as a linear decomposition of xt in terms of the
previous observations Xt´1, which is obtained through the minimization in (5.19).
The right-hand side of the inequality (5.42c) and (5.42b) are equivalent. This follows
from the equivalence relation

}λt´1p ¨ q}1 “ } ¨ }Xt´1
, (5.43)

which follows from property (ii) of Lem. 36 and is discussed in the appendix. The
inequality (5.42c) offers valuable insight into the closed loop behavior: The smaller
xt is relative to the absolute convex hull of all previous observations Xt´1, the tighter
the bound is on }xt`1}W. Hence, }xt}Xt´1

captures how well we can control a certain
state xt given the observations made up until time t. If we rewrite }xt}Xt´1

as
}xt}W }xt{}xt}W}Xt´1

and use the fact that the normalized vector xt{}xt}W lies in
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the set W, we obtain the looser upper-bound (5.42d). Finally, (5.42e) is obtained by
recalling that, per definition }W}Xt

is non-increasing in t and therefore for all t ą τ

it holds }W}Xt´1
ď }W}Xτ´1

“ κτ .

Obtaining Bounds on Closed Loop Trajectories
Recall the definition of a µ-unstable transition in Def. 5.6 and consider Lem. 41: If
a µ -unstable transition does not occur, (5.44) and (5.45) show that the quantities
V1pxt;µq and V2pxt;µq do not increase for that time-step; On the other hand, (5.46)
provides a bound on the increase of V2pxt;µq if a µ-unstable transition does occur.

Lemma 41. Let pxtq be a trajectory of (5.23a) with t ě 0 and define the scalar
functions V1px;µq :“ maxt0, }x}W ´ 1

1´µ
u and V2px;µq :“ maxt}x}W , 1

1´µ
u. Then

(i) if pxt`1, xtq R Uµ, then

V1pxt`1;µq ď µV1pxt;µq (5.44)

V2pxt`1;µq ď V2pxt;µq. (5.45)

(ii) if pxt`1, xtq P Uµ, then

V2pxt`1;µq ď κtV2pxt;µq ` 1 (5.46)

V1pxt`1;µq ą µV1pxt;µq. (5.47)

Proof. See Appendix.

The bounds of Theorem 29 follow by combining the results of Theorem 27 with
the above lemma. To highlight the main proof techniques, we focus only on the
derivation of (i) and (ii) of Theorem 29 and refer to the Appendix for a detailed proof
of the remaining statements.
Consider some arbitrary closed-loop trajectory pxtq, fix τ “ 0, and choose some µ P

Iκ0 , where κτ depends on the set W and the initial guess matrixX´1 “ rx̂1, . . . , x̂n0s.
Recall that κτ measures the relative size between the disturbance set W and the
set cpX´1q. According to Theorem 27, the trajectory pxtq is guaranteed to have at
most Npµ;κ0q-many µ-unstable transitions. Hence, there is some finite time, call it
T 1ppxtqq, such that for all time t ą T 1ppxtqq it holds pxt`1, xtq R Uµ, and therefore
the reverse inequality of (5.28) holds, that is:

}xt`1}W ď max
!

1
1´µ

, µ }xt}W ` 1
)

, @t ą T 1
ppxtqq. (5.48)
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Now, apply the statement (i) of Lem. 41, to conclude that for all t ą T 1ppxtqq holds
V1pxt`1;µq ď µV1pxt;µq. Therefore, we get the convergence bound.

V1pxT 1ppxtqq`k;µq ď µkV1pxT 1ppxtqq;µq, k ě 0 (5.49)

which proves that the trajectory pxtq has to be bounded. We also conclude that
lim
tÑ8

V1pxt;µq “ 0, which leads to the asymptotic bound.

lim sup
tÑ8

}xt}W ď lim sup
tÑ8

pV1pxt;µq ` 1
1´µ

q “ 1
1´µ

. (5.50)

Similar type of arguments are used to derive the other statements of Theorem 29 and
are presented in the Appendix.

5.8 Proving Finite Occurrence of Unstable Transitions
Here, we will discuss the key steps in proving Theorem 27. The general idea will
be to first argue that if an unstable transition occurred at time t1 and state xt1 , (i.e.,
pxt1`1, xt1q P Uµ) then any future unstable transitions pxt`1, xtq P Uµ, t ą t1 must
originate from some state xt which is significantly different from xt1; in a second
step, we then prove that there is a finite upper bound on how many significantly
"different" unstable transitions can occur in the same trajectory, which leads to the
result presented in Theorem 27. In the following derivations we will make use of
various simple facts from convex geometry, which are summarized in the appendix,
Section 5.4. Matching the presentation of the theorem, in the derivations we will use
the constant κτ :“ }W}Xτ´1

corresponding to some fixed set W, the trajectory pxtq

of the closed loop (5.23a) and the initial time τ . Throughout the discussion, µ will
represent some fixed value in the open interval.

Iκτ :“
´´

b

1
4

` 1
κτ

` 1
2

¯´1

, 1
¯

(5.51)

and δ will refer to the corresponding transformed variable δ :“ µ2

1´µ
1
κτ

, which always
satisfies δ ą 1. The following one-to-one relationship between both constants µ and
δ will be frequently used and can be easily verified:

δ “
µ2

1´µ
1
κτ
, for µ P

´´
b

1
4

` 1
κτ

` 1
2

¯´1

, 1
¯

(5.52a)

ô µ “

´
b

1
4

` 1
δκτ

` 1
2

¯´1

, for δ P p1,8q. (5.52b)

Our argument can be structured into the following three statements, which we prove
separately in the next sections:
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(a) We can radially project the set Xµ onto the ball δ
µ
W and show that the resulting

set, called Pµ, has the same cardinality as Xµ.

(b) The set Pµ forms a δ-separated subset of δ
µ
W with respect to a particularly

chosen distance function dp ¨ , ¨ ;Xτ´1q.

(c) There are some constants c andC, such that for any δ separated subset P of δ
µ
W

we can construct a superset P Ă N pPq in Rn whose volume can be bounded
above and below as |P|cin ď VolpN pPqq ď Cout; hence, the cardinality of any
δ separated set, included Pµ, is bounded above by Cout

cin
.

Projection Onto the Ball δ
µ
W

Define the projection Πµ : Rn ÞÑ δ
µ
W as Πµppq :“ δ

µ}p}W
p and define Pµppxtq; τq as

the set resulting from applying Πµ to every point in Xµ ppxtq; τq:

Pµppxtq; τq :“ t Πµpxtq | xt P Xµppxtq; τqu . (5.53)

Remark. To limit the notational burden, we will state the explicit dependency on
the trajectory pxtq and τ only in lemmas and theorems. For the derivations, we will
simply write Xµ, Pµ instead of Pµppxtq; τq, Xµppxtq; τq.

Per construction, for every point p P Pµ holds }p}W “ δ
µ

and therefore each p P Pµ

lies on the surface of the ball δ
µ
W. Recall that for a time instance t, where xt P Xµ

holds.

}xt`1}W ą max
!

1
1´µ

, µ }xt}W ` 1
)

(5.54a)

}xt`1}W ď }xt}Xt´1
` 1,

ď }W}Xt´1
}xt}W ` 1 (5.54b)

where (5.54a) is due to the definition of the set Xµ and (5.54b) follows from Lem.
40. Combining the above inequalities, we can further establish that any xt P Xµ also
satisfies the inequalities (5.55a):

Lemma 42.

µ }xt}W ą
µ2

p1´µq

1
}W}Xt´1

(5.55a)
›

›

›

1
µ}xt}W

xt

›

›

›

Xt´1

ą 1. (5.55b)
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Proof. Combining the lower-bound (5.54a) and the upper-bound (5.54b) yields

}xt}Xt´1
` 1 ą µ }xt}W ` 1

}W}Xt´1
}xt}W ą 1

1´µ
´ 1 “ µ 1

1´µ
.

Using the above inequalities we can show in Lem. 43 that Pµ has the same cardinality
as Xµ. Hence, instead of reasoning about the size of Xµ directly, we can equivalently
study the size of the set Pµ. As will become apparent in the following sections,
the main advantage of analyzing the projected set Pµ rather than Xµ is that we can
leverage Pµ as a subset of δ

µ
W.

Lemma 43. |Xµ| “ |Pµ|.

Proof. From the definition of Pµ it is clear that Pµ has at most as many elements as
Xµ, hence trivially we have |Pµ| ď |Xµ|. To establish |Pµ| ě |Xµ|, we have to show
that there are no two time instances t1 ‰ t2 for which xt1 , xt2 P Xµ gets mapped
to the same point p P Pµ. For the sake of proof by contradiction, assume for some
xt1 , xt2 P Xµ where w.l.o.g. t1 ă t2, holds δpµ }xt1}Wq´1xt1 “ δpµ }xt2}Wq´1xt2 .
Then, using Lem. 42 it follows:

›

›

›

›

1

µ}xt1}
W

xt1

›

›

›

›

Xt2´1

“

›

›

›

›

1

µ}xt2}
W

xt2

›

›

›

›

Xt2´1

(5.55b)
ą 1

ñ }xt1}Xt2´1
ą µ }xt1}W

(5.55a)
ą

µ2

p1´µq

1
}W}Xt1´1

. (5.56)

Now, since t2 ą t1, it is clear that xt1 P cpXt2´1q and therefore }xt1}Xt2´1
ď 1.

Furthermore, with (5.56) and since µ is in the interval Iκτ , we are forced to conclude
the following

}W}Xt1´1
ą

µ2

p1 ´ µq
ě }W}Xτ´1

(5.57)

which is a contradiction, since t1 ě τ and we know that }W}Xt
is non-increasing in

t.

Separateness of the Set Pµ

The previous section established, that the bounded set Pµ Ă δ
µ
W has equal number

of elements as Xµ. Here, we will show that the points in the set Pµ are "evenly
spread" across the surface of δ

µ
W. Formally, we will term Pµ to be a δ-separated
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subset of δ
µ
W. This property will ultimately lead to the cardinality bound derived in

the next Section 5.8. The next lemma shows that any two points p, p1 P Pµ, p ‰ p1

respect the inequality (5.58).

Lemma 44. LetPµppxtq; τq be the projected set (5.53) and recall the definitions of the
variables δ, µ and κτ in (5.52). Then, for any two distinct points p1, p2 P Pµppxtq; τq,
p1 ‰ p2 holds:

maxt}p2}Xτ´1Yp1
, }p1}Xτ´1Yp2

u ą δ. (5.58)

Proof. Fix two arbitrary and distinct points p1, p2 P Pµ, p1 ‰ p2, then according
to the definition of Pµ there are two corresponding elements xt1 , xt2 P Xµppxtq; τq

with t1 ‰ t2 such that p1 “ δpµ }xt1}Wq´1xt1 and p2 “ δpµ }xt2}Wq´1xt2 . We will
prove the desired statement, by showing that depending on which unstable transition
occurred first, i.e., t2 ą t1 or t1 ă t2, either }p2}Xτ´1Yp1

ą δ or }p1}Xτ´1Yp2
ą δ has

to be satisfied. The inequality (5.58) then follows taking the maximum of both cases.
Therefore, to complete our argument, we will assume the case t2 ą t1 and proceed
to prove }p2}Xτ´1Yp1

ą δ; The case t1 ă t2 then follows by interchanging t1 and t2:
First, notice that since }W}Xt1´1

ď }W}Xτ´1
, we can conclude that for any xt P

Xµppxtq; τq, the following inequality is satisfied:

δ

µ }xt}W
ď

µ2

p1 ´ µq

1

}W}Xt´1

1

µ }xt}W
ă 1. (5.59)

Now, for xt2 recall from (5.55b) that

}p2}Xt2´1
“

›

›

›

›

δ

µ}xt2}
W

xt2

›

›

›

›

Xt2´1

ą δ. (5.60)

We will now use repeatedly the property (iv) of Lem. 36, to bound the left-hand side
of (5.60) from above. To this end, consider first the following chain of inclusions:

cpXt2´1q
aq

Ą cpXt1q
bq

Ą cpXτ´1 Y xt1q . . .

. . .
cq

Ą cpXτ´1 Y p1q. (5.61)

The inclusions aq, bq follow directly from the definition of Xt. For inclusion cq,
observe that p1 “ δpµ }xt}Wq´1xt and recall from (5.59) that the scalar constant
δpµ }xt}Wq´1 is less than one. Now, since cpXτ Y xt1q is a symmetric convex body,
we know that it contains 0. Hence, we can view p1 as a convex combination of 0
and xt, which proves that p1 P cpXτ´1 Y xtq and therefore the set inclusion cq. Now,



161

using property (iv) of Lem. 36 we can translate the inclusion (5.61) into a chain
of corresponding inequalities to bound the left hand side of (5.60) and ultimately
obtain:

}p2}Xτ´1Yp1
ą δ.

The term on the left hand side of inequality (5.58) can be seen as a binary operation
dp ¨ , ¨ ;Xτ´1q on the points p1 and p2 which measures a particular notion of distance
characterized by the symmetric convex body cpXτ´1q. We will define this operation
more generally for some set B below and can use it to restate inequality (5.58) as

dpp1, p2;Xτ´1q ą δ.

Definition 5.8. Let B be some bounded set in Rn and define the map dp ¨ , ¨ ;Bq :

Rn ˆ Rn ÞÑ Rě0 for each x, y P Rn as

dpx, y;Bq :“ min

#

r

ˇ

ˇ

ˇ

ˇ

ˇ

cpB Y xq Ă rcpB Y yq

cpB Y yq Ă rcpB Y xq

+

(5.62)

or equivalently as

dpx, y;Bq :“ maxt}B Y x}BYy , }B Y y}BYxu. (5.63)

The definition of dp ¨ , ¨ ;Bq in the form of equation (5.62) gives a geometric intuition
as to why the value dpx, y;Bq can be viewed as a notion of distance between x
and y. As an example, consider in Figure 5.2 the two points x, y P R2 that satisfy
dpx, y;Bq ą r and where B is taken as the box r´1, 1s ˆ r´1, 1s in R2; Equation
(5.62) then implies that x lies outside the set rcpBYyq and y lies outside of rcpBYxq.
This scenario is presented in Figure 5.2 for r “ 1.3 and illustrates how condition
dpx, y;Bq ą r enforces a separation between x and y. We will call x and y to be
pr;Bq-separated. More generally, we will introduce the following terminology:

Definition 5.9. A set P Ă Rn is pε;Bq-separated (with suitable set B), if dpp, p1;Bq ą

ε holds for any p, p1 P P, p ‰ p1.

In terms of the above definition, Lem. 44 states that Pµ is a pδ;Xτ´1q-separated
subset of δ

µ
W.
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e1

e2

x
y

´x

´y

B

t p | }p}BYy ă ru

t p | }p}BYx ă ru

Figure 5.2: Geometry of the distance function dp ¨ , ¨ ;Bq: The points x and y satisfy
the inequality dpx, y;Bq ą r in n “ 2, where B is taken as the two dimensional cube
B :“ tpx1, x2q| |xi| ď 1u and r “ 1.3.

Bounding the Cardinality of Pµ Through Volume Bounds
In this section we will complete the proof of Theorem 27, by showing that any
pε,Bq-separated subset of some bounded set S has to be a finite set. This argument
then leads to the results in Theorem 27, since Pµ is a pδ;Xτ´1q-separated subset of
δ
µ
W.

To illustrate the general idea, assume that we would like to construct a pε;Bq separated
setP “ tp1, p2, . . . , u, contained within some larger bounded set S P R2. In particular,
assume that we start with some p1 P S, pick p2 P S such that dpp1, p2;Bq ą ε and
proceed to select each pn st. dppn, pk;Bq ą ε holds for all previous k ă n. As
illustrated in Figure 5.2, it becomes intuitively clear that any constructed pε;Bq-
separated subset P in S has to have finite cardinality, as it becomes increasingly harder
to find "enough" room for a new point pn P S that respects the separation condition
w.r.t. previous points dppn, pk;Bq ą ε, k ă n. In the next section, we will show by
means of a volumetric argument that this intuition extends to n-dimensions and leads
to a cardinality bound on the set Pµ. Denote P to represent some pδ;Xτ´1q-separated
subset of δ

µ
W, i.e., not necessarily Pµ. We will bound |P| first by constructing a

corresponding cover set N pPq Ą P and then showing that the volume of N pPq is
bounded below and above as

|P|cin ď VolpN pPqq ď Cout,

with some constants cin, Cout independent of P. The desired cardinality bound then
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takes the form |P| ď Cout

cin
. The following sections will discuss: 1) the set N pPq,

2) establishing the lower bound |P|cin, 3) proving the upper bound Cout, and 4)
formulating the statement of Theorem 27.

Covering Set N pPq

For some point p P Rn and ε ą 1, define Npp; ε,Bq to stand for the set

Npp; ε,Bq :“ tp1
P Rn

|dpp, p1;Bq ď εu . (5.64)

See Figure 5.3 as an example of the geometry of the set Npp; ε,Bq in R2 with
B “ r´1, 1s ˆ r´1, 1s. For a set P, correspondingly define the set N pPq as the
following union of sets.

N pPq :“
ď

pPP

Npp; δ
1
2 ,Xτ´1q. (5.65)

N pPq is a cover of P, since it can be easily verified that N pPq Ă P. It can be easily
seen that the map dp ¨ , ¨ ;Bq inherits the following properties from Lem. 38:

Lemma 45. For all x, y, z P Rn holds:

(i) dpx, x;Bq “ 1.

(ii) dpx, y;Bq “ dpy, x;Bq “ dpy,´x;Bq.

(iii) dpx, y;Bq ď dpx, z;Bqdpz, y;Bq.

As shown in Corollary 46, the property (iii) of Lemma 45 can be used to show that
for pδ,Bq-separated sets P, the sets in the union (5.65) are pairwise disjoint and we
can therefore evaluate the volume VolpN pPqq as the sum:

VolpN pPqq “
ÿ

pPP

Vol
`

Npp; δ
1
2 ,Xτ´1q

˘

. (5.66)

Corollary 46 (of Lem. 45). If for some x, y P Rn holds dpx, y;Bq ą ε, then
Npx; ε

1
2 ,Bq X Npy; ε

1
2 ,Bq “ H.

Proof. For the sake of proving the statement through contradiction, assume that
there was some point z P Npx; ε

1
2 ,Bq X Npy; ε

1
2 ,Bq. Then we know that z satisfies

both dpx, z;Bq ď ε
1
2 and dpy, z;Bq ď ε

1
2 . But from the property (iii) of Lem. 45,

we also have to conclude

dpx, y;Bq ď dpx, z;Bqdpz, y;Bq ď ε

which leads to the intended contradiction.
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e1

e2

x

´x

B

tp | }x}BYp ď εu

tp | }x}BYp ď εu

tp | }p}BYx ď εu

Npx; ε,Bq pε ´ 1qB

pε ´ 1qB

Figure 5.3: Npx; ε,Bq is the intersection of tp| }x}BYp ď εu and tp| }p}BYx ď εu
and contains two translates of the set pε ´ 1qB. In the picture, B is taken as the two
dimensional cube B :“ tpx1, x2q| |xi| ď 1u and ε “ 1.6.

Lower Bound on Volume of N pPq

To lower-bound the quantity (5.66), we will make use of the following lemma:

Lemma 47. Let x, y P Rn, then if y “ x ` pε ´ 1qp for some p P B and ε ą 1, then
it holds dpx, y;Bq ď ε.

Proof. We need to prove }x}BYy ď ε and }y}BYx ď ε. }y}BYx ď ε: From the triangle
inequality, we obtain

}y}BYx “ }x ` pε ´ 1qp}BYx ď }x}BYx ` pε ´ 1q }p}BYx

and using the fact that x, p P cpB Y xq by the norm definition (5.25) we get
}y}BYx ď 1 ` pε ´ 1q “ ε.
}x}BYy ď ε: Rewrite x as x “ ε

`

1
ε
pyq ` ε´1

ε
p´pq

˘

and notice that ´p, y P cpBY yq,
which shows that x P εcpB Y yq. Hence, via the norm definition (5.25) we conclude
}x}BYy ď ε.

If we use the property (ii) of Lem. 45, then Lem. 47 tells us that each set Npp; ε,Bq

contains the sets x ‘ pε´ 1qB and ´x ‘ pε´ 1qB, where the operator ‘ denotes the
Minkowski sum of two sets. For R2, Figure 5.3 illustrates the geometric relationship
between the set Npx; ε,Bq and the set B which is taken again to be the 8-norm unit
ball. We can see that the set Npp; ε,Bq is a union of two symmetrical polytopes
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and contains two non-overlapping translations (by the vector x and ´x) of the set
pε ´ 1qB. Now, using the fact that n-dimensional volume Volp ¨ q is a homogenous
function of degree n, we can obtain the following lower bound on the volume of any
set Npp; ε,Bq:

VolpNpp; ε,Bqq ě 2pε ´ 1q
nVolpBq. (5.67)

Combining this observation with our previous finding (5.66), we obtain the following
lower bound on the volume of VolpN pPqq:

Lemma 48. LetN pPq be the collection (5.65) corresponding to a pδ,Xτ´1q-separated
(δ ą 1) set P, then the volume VolpN pPqq is bounded below by

VolpN pPqq ě 2pδ
1
2 ´ 1q

nVolpcpXτ´1qq|P|, (5.68)

where |P| denotes the cardinality of the set P.

Proof. Apply (5.67) to every term in the sum (5.66).

Upper Bound on Volume of N pPq

Consider some arbitrary point q P Npp; δ
1
2 ,Xτ´1q for some p in the δ-separated set P

and recall that p P δ
µ
W. Then, from the construction of the sets N as (5.64) we can

conclude that

}q}Xτ´1Yp ď dpq, p;Xτ´1q ď δ
1
2 . (5.69)

Moreover, since we can upper bound W as W Ă κτcpXτ´1q, we also obtain
Xτ´1 Y p Ă maxt1, κτ δ

µ
ucpXτ´1q and therefore the point q satisfies

}q}
maxt1,

κτ δ
µ

uXτ´1
ď }q}Xτ´1Yp ď δ

1
2

ô q P δ
1
2 maxt1, κτ δ

µ
ucpXτ´1q. (5.70)

Hence, (5.70) shows that the collection N pPq is a subset of δ 1
2 maxt1, κτ δ

µ
ucpXτ´1q

which proves the following upperbound on the volume VolpN pPqq:

Lemma 49. LetN pPq be the collection (5.65) corresponding to a pδ,Xτ´1q-separated
(δ ą 1) set P, then the volume VolpN pPqq is bounded above by

VolpN pPqq ď δ
n
2 maxt1, κτ δ

µ
u
nVolpcpXτ´1qq. (5.71)
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e1

e2

cpXτ´1q

δ
1
2 maxt1, κτ δµ ucpXτ´1q

p1

p2
p3

p4

p5p1

p2
p3

p4

p5

Npp1; δ,Xτ´1q

Npp1;
?
δ,Xτ´1q

p
?
δ ´ 1qcpXτ´1q

Figure 5.4: The geometry of a pδ, cpXτ´1qq-separated set P “ tp1, . . . , p5u. All
sets are geometrically accurate, assuming cpXτ´1q is the box r´1, 1s ˆ r´1, 1s and
δ “ 1.6.

Cardinality Bound for pδ,Xτ´1q-Separated Sets P

Finally, the lower bound (5.68) and upper bound (5.71) imply the following bound
on the cardinality of any pδ,Xτ´1q-separated set P Ă δ

µ
W with δ ą 1 :

|P| ď 1
2

´ ?
δ?

δ´1

¯n

maxt1, δκτ

µ
u
n. (5.72)

Figure 5.4 shows a pictorial summary of our derivation of the above inequality in R2.
A pδ, cpXτ´1qq-separated setP “ tp1, . . . , p5u is defined to satisfy pi R Nppj, δ,Xτ´1q,
for all i ‰ j and as a consequence, we showed in Cor. 46 that the sets in the cover
N pPq “ YjNppj,

?
δ,Xτ´1q, are all disjoint. Then, Lem. 47 helped us establish that

N pPq contains 2|P| many translations of the set p
?
δ ´ 1qcpXτ´1q, which lead to the

volume bound (5.67). We obtain the upperbound (5.71) by showing that N pPq has
to be contained in the bigger box δ 1

2 maxt1, κτ δ
µ

ucpXτ´1q. So, in the context of the
picture Figure 5.4, we obtained our final cardinality bound (5.72) by dividing the
volume of the outer larger box by the volume of the smaller boxes.

Recalling the relationship between the variables δ, µ and κτ in (5.52), we can express
µ in terms of some δ ą 1 and κτ as

µ “ δκτ

´
b

1
4

` 1
δκτ

´ 1
2

¯

“

´
b

1
4

` 1
δκτ

` 1
2

¯´1

(5.73)

and can equivalently rewrite (5.72) in terms of constant κτ and δ ą 1 as a free
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variable :

|P| ď 1
2

´ ?
δ?

δ´1

¯n

maxt 1
δκτ
,
b

1
4

` 1
δκτ

` 1
2
u
n
pδκτ q

n. (5.74)

In summary, (5.74) establishes a bound on the cardinality of |P| which serves as
an upper-bound on |Pµppxtq, τq| “ |Xµppxtq, τq|, thus the total number of unstable
transitions Uµ that can occur in the interval rτ,8q of any closed loop trajectory pxtq.
We conclude by restating the results Theorem 27 again in terms of δ:

Theorem. For any trajectory pxtq of the closed loop (5.23a) and any τ ě 0, the
cardinality |Xµ ppxtq; τq | of the set Xµ ppxtq; τq is finite for any µ chosen as

µ “

´
b

1
4

` 1
δκτ

` 1
2

¯´1

, δ ą 1 (5.75)

for some δ ą 1 and bounded above as |Xµ ppxtq; τq | ď Npδ;κτ q, where N stands
for the function

Npδ;κτ q :“ 1
2

´ ?
δ?

δ´1

¯n

maxt 1
δκτ
,
b

1
4

` 1
δκτ

` 1
2
u
n
pδκτ q

n (5.76)

and κτ is a constant computed from Xτ´1 as:

κτ “ }W}Xτ´1
:“ max

zPW
}z}Xτ´1

. (5.77)

5.9 A Connection Between Metric Entropy Bounds and Model-Free Stability
Analysis

The notion of metric entropy4 dates back to early work of A.N. Kolmogorov [80] in
1959 and more recently has been proven useful for studying stochastic processes in
the field of high-dimensional statistics. As an example, Chap. 5 of [125] discusses
how bounds on the metric entropy of a metric space can be leveraged to obtain
probabilistic bounds on the supremum of sub-Gaussian processes over that same
metric space; Particularly in machine learning applications, these mathematical
results can then be used to derive learning theoretic guarantees of algorithms.
Reexamining the line of arguments that lead to our theoretical guarantees suggests
that there might be a possibly fruitful connection between metric entropy bounds and
worst-case performance bounds in the context of learning and control problems. In
retrospect, the main technique for stability analysis can be described as representing
the collection Xµ of unstable transitions as a packing set Pµ in the totally bounded

4This is to be distinguished from the Kolmogorov-Sinai entropy of a dynamical system introduced
in [79].
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metric space p δ
µ
W, dp ¨ , ¨ ;Xτ´1qq; The bound on the cardinality Xµ presented in

Theorem 27 and derived in Section 5.8 can be viewed as the corresponding metric
entropy bound. In hindsight, this inspires a new potential approach to algorithm
design for learning and control: Synthesizing a control law for which unstable
transitions (potentially as broader defined than Uµ considered here) form a packing
in some totally bounded metric space. Similar to our presented result, we could also
hope that smaller metric entropy translates to improved closed loop performance
guarantees.
We will proceed by introducing the metric entropy and related concepts based on
[125] and [47]. In the next section, we will draw the connection to our stability
analysis presented in Section 5.8.

Metric Entropy of Pseudo-Metric Spaces
A pseudometric space pS, dq consists of a set S and a pseudometric d : Sˆ S ÞÑ Rě0,
which satisfies the following properties:

(i) dpx, xq “ 0 for any x P S.

(ii) dpx, yq “ dpy, xq for any x, y P S.

(iii) dpx, yq ď dpx, yq ` dpy, zq for any x, y, z P S.

If in addition dpx, yq “ 0 holds only if x “ y, then d is called a metric and
correspondingly pS, dq is a metric space. The ε-packing of S w.r.t to d is a set
P Ă S such that for each two distinct points p1, p2 P P, p1 ‰ p2 holds dpp1, p2q ą ε.
Correspondingly, the ε-packing number of S is the cardinality of the largest ε-packing
set P of S. Formally, this is defined in Def. 5.10

Definition 5.10. Let pS, dq be a metric (or pseudo-metric) space. Then the ε-packing
number DpS, εq (or DpS, ε, dq) of S is defined as

DpS, εq :“ sup

#

m

ˇ

ˇ

ˇ

ˇ

ˇ

for some p1, . . . , pm P S,

dppi, pjq ą ε for 1 ď i ă j ď m

+

. (5.78)

If DpS, εq is finite for any ε ą 0, then pS, dq is often called totally bounded. In this
case, we define the quantity logpDpS, εqq as the metric entropy of the set S w.r.t. the
metric d.
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Remark 30. An alternative definition of metric entropy as in [125], is logpNpS, εqq

where NpS, εq is the covering number of the set S. The distinction between both
(and other) definitions is of conventional matter, as it is well-known that packing
numbers and covering numbers behave in equivalent manners. For our purpose, we
will use the more fitting definition (5.10), which is for example used in the works of
R.M. Dudley [47].

Bounding Occurrence of Unstable Transitions Through Metric Entropy
The key result behind our analysis in Section 5.8 was to show that any pδ,Xτ´1q-
separated subset P Ă δ

µ
W respects the cardinality bound (5.74). From Lem. 45 we

can directly see that the operation logpdp ¨ , ¨ ;Bq satisfies the properties of a pseudo-
metric Def. 5.9 and therefore p δ

µ
W, logpdp ¨ , ¨ ;Xτ´1qq is a pseudo-metric space.

Correspondingly, the set P Ă δ
µ
W is logpδq-packing in that same pseudo-metric

space and our cardinality bound can be seen as an upper bound on the packing-
number Dp δ

µ
W, logpδqq of the set δ

µ
W w.r.t. to the pseudometric logpdp ¨ , ¨ ;Xτ´1qq.

Moreover, since we established the bound (5.74) for every δ ą 1 (or logpδq ą 0),
the space p δ

µ
W, logpdp ¨ , ¨ ;Xτ´1qq is a totally bounded pseudometric space with

inequality (5.74) implying a particular metric entropy bound. Hence in hindsight,
our approach to stability analysis relied on mapping the set of unstable transitions
Xµ onto a fitting pseudometric space in which the metric entropy imposes a direct
bound on the cardinality of the set Xµ. An interesting topic of further research is
whether this general principle could be leveraged for model-free stability analysis
and controller synthesis in broader learning and control problem settings.

5.10 Simulation
We conducted N “ 1000 simulations of the causal cancelation controller Kcc

defined in (5.19). For the kth experiment, the trajectories pxkt q, pukt q are produced by
the closed loop equations

xkt`1 “ Ak
0x

k
t ` Kcc

t pxkt , X
k`
t´1, X

k
t´1, U

k
t´1q ` wk

t , (5.79)

and the system matrix Ak
0 P R3ˆ3, initial condition xk0 P R3 and disturbance wk

t is
picked at random. All entries of Ak

0 and xk0 are picked i.i.d. from the standard
Gaussian distribution N p0, 1q. In each experiment, the causal cancellation controller
(5.19) is initialized as X´1 “ εI , X`

´1 “ 0, U´1 “ 0 with fixed choice ε “ 0.1.
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Figure 5.5: Results of 1000 closed-loop simulations with random Ak

0, xk0 and
disturbances wk

t drawn from r´1, 1s3. The plots on the left show the largest 1%,
10%, 50% percentile values of

›

›xkt
›

›

Wk ,
›

›ukt
›

›

Wk , κkτ , mpκτ q. The right plot shows the
same percentile values for the state xkt and input ukt measured in 2-norm.

Figure 5.7 shows the simulation results of a single experiment where A0 is chosen as

A0 “

»

—

–

1.4 0.2 1

0.2 1.3 1

0.5 0.3 2

fi

ffi

fl

λpA0q “

»

—

–

2.7

1.13

0.86

fi

ffi

fl

. (5.80)

and has a large unstable eigenvalue λipA0q. Figure 5.5 and Figure 5.6 summarize
the N closed-loop experiments for two scenarios of disturbances. The graphs
show, as a function of t, the highest 1%, 10%, 50% percentiles of the values
›

›xkt
›

›

Wk ,
›

›ukt
›

›

Wk , κ
k
t “

›

›Wk
›

›

Xt´1
andmpκτ q among theN experiments; the quantity

mpκτ q :“ κτ p1
2

`

b

1
4

` 1
κτ

q`1 represents the updated theoretical asymptotic bound
given the data collected up until time τ . In experiment k, the set Wk is constructed
according to equation (5.26) from the disturbance sequence5 pwk

t q
T´1
t“0 and the virtual

disturbances ŵk
i . For our initialization of X´1, X

`
´1, U´1, the vectors ŵk

i take the
values ´εAk

0ei, 1 ď i ď n, where ei denotes the ith axis of the standard basis in Rn:

Wk
“
␣

wk
t | 0 ď t ă T

(

Y
␣

´εAk
0ei| 1 ď i ď n

(

. (5.81)

5We assume that after t ą T the disturbance wk
t stays in the set cpWkq.
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Figure 5.6: Results of 1000 closed-loop simulations with random Ak

0 , xk0 and wk
t “ 0.

The plots on the left show the largest 1%, 10%, 50%˚ percentile values of
›

›xkt
›

›

Wk ,
›

›ukt
›

›

Wk , κkτ ,mpκτ q. (˚ this percentile is too small to visualize for
›

›xkt
›

›

Wk and
›

›ukt
›

›

Wk)
The right plot shows the same percentile values for the state and input measured in
2-norm.

For Figure 5.5, the disturbance sequence pwk
t q of each experiment is picked i.i.d.

uniformly from the interval r´1, 1s3. For Figure 5.6, the initial condition x0,i is
chosen i.i.d. according to the Gaussian distribution N p0, σ2q, σ “ 10´3 and wk

t “ 0.
Since we have no disturbance, for this case,Wk is simply the set of virtual disturbances
t´εAk

0ei| 1 ď i ď nu. We discussed that, as a corollary of our main result (see
(5.40)), the causal cancelation controller Kcc guarantees for each experiment the
asymptotic bound

lim sup
tÑ8

›

›xkt
›

›

Wk ď mpκkt q, @t (5.82)

where we take the function mp ¨ q to abbreviate the expression

mpsq :“ s

ˆ

1
2

`

b

1
4

` 1
s

˙

` 1. (5.83)

In Figure 5.5 and Figure 5.6, we overlayed the percentiles of
›

›xkt
›

›

Wk (blue) andmpκkt q

(red) to show that qualitatively the experiments match the theoretical guarantee
above. In each experiment, the controller eventually learns to stabilize the unknown
system (consistently after 10 time-steps) and eventually (see t ą 20 in Figure 5.5)
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is bounded above by the asymptotic bound mpκkt q. Note also that as more online
data is observed, the asymptotic bound mpκkt q tightens. Figure 5.6 is showing the
closed loop performance in the no disturbance regime. This is to investigate how
the controller Kcc performs in the absence of excitation by the disturbance. We
see in Figure 5.6 that the controller Kcc stabilizes the system in all experiments,
but compared to (5.5), we have a longer transient of learning. Note that in Figure
5.6, the percentiles of the constant κkt do not decrease over time as much as in the
experiments of Figure 5.5. Recall that for time t, the constant κkt can be seen to
approximate the remaining uncertainty of the unknown systemAk

0 . Therefore, Figure
5.6 shows that despite the remaining uncertainty in the system, the controller still
manages to stabilize the system. This reflects that Kcc does not primarily care about
identifying the unknown matrix Ak

0, but rather collects only enough data about the
matrix Ak

0 to be able to stabilize the closed loop.
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Figure 5.7: }xt}W and }ut}W trajectories for closed loop with uniform disturbance
wi,t in r´1, 1s and x0 “ r0.2, 0, 0.1sT .

5.11 Conclusion
In this chapter we derive a simple model-free controller that can adaptively and
robustly stabilize a linear system with full actuation without any additional knowledge
on disturbance, noise or parameter bounds. The controller comes with uniform
asymptotic and worst-case guarantees on the state-deviation. The control design and
stability analysis is enabled by a novel approach inspired by convex geometry, and
simulations show that the controller is able to simultaneously learn and control the
system in an efficient manner, even when applied to an open loop system with large
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unstable eigenvalues. Future work will further explore how this new perspective on
adaptive control can provide more learning and control algorithms with robustness
guarantees and non-restrictive assumptions in a more general setting. In addition,
we will investigate how the presented ideas can help in providing robustness and
performance bounds for present methods in adaptive control and reinforcement
learning.

5.A Proofs
Theorem 29

Proof. The proof follows by applying Lem. 41.The corresponding bounds for putq

are then obtained using the equation (5.22).

According to the setting of the theorem, consider some fixed trajectories pxtq, putq,
reference time τ , µ P Iκτ with κτ “ }W}Xτ´1

. Then, as discussed before, a direct
consequence of Theorem 27 is that there is some trajectory-dependent finite time
T 1 ă 8, such that in the time interval r0, T 1s there are at most Npµ;κτ q-many time
instances T :“ tt11, . . . , t

1
Mu, where

τ ď t11 ă t12 ă ¨ ¨ ¨ ă t1M ď T 1, M ă Npµ;κτ q (5.84)

at which µ-unstable transitions occur and for all other time-instances t ‰ t1i holds
the opposite inequality of (5.28). Thus, depending on whether t belongs to T , the
transitions pxt`1, xtq of the trajectory pxtq satisfy

}xt`1}W ą max
!

1
1´µ

, µ }xt}W ` 1
)

, @t P T (5.85a)

}xt`1}W ď max
!

1
1´µ

, µ }xt}W ` 1
)

, @t R T . (5.85b)

Moreover, combining Lem. 41 with the above, we find that, w.r.t. the function
V1px;µq :“ maxt0, }x}W ´ 1

1´µ
u, the transitions pxt`1, xtq respect the inequality

V1pxt`1;µq ą µV1pxt;µq, @t P T (5.86a)

V1pxt`1;µq ď µV1pxt;µq, @t R T (5.86b)

and for function V2px;µq :“ maxt}x}W , 1
1´µ

u, the transitions pxt`1, xtq satisfy

V2pxt`1;µq ď }W}Xt´1
V2pxt;µq ` 1, @t P T (5.87a)

V2pxt`1;µq ď V2pxt;µq, @t R T . (5.87b)

The bounds on pxtq in part (i) and (ii) were derived before from (5.86), (see (5.49)
and (5.50)). For (iii), notice that (5.87) implies that for any t, V2pxt;µq can be
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bounded above by V2pxt1
M`1;µq, since apart from the time intervals rt1i, t

1
i`1s, the

quantity V2pxt;µq is guaranteed to be nonincreasing. Moreover (5.87) also shows
that V2pxt1

M`1;µq can be bounded above as

V2pxt1
M`1;µq ď αV2pxτ ;µq ` β (5.88)

α :“
M
ź

k“1

}W}Xt1
k

´1
, β :“

M´1
ÿ

k“0

k
ź

j“1

}W}Xt1
M´j

´1
.

Recall that }W}Xt
is not increasing (hence }W}Xt1

k
´1

ď κτ :“ }W}Xτ´1
) and the

bound M ď Npµ;κτ q, to see that the constants α and β are bounded above as

α ď maxt1, κτ
Npµ;κτ q

u β ď
1 ´ κτ

Npµ;κτ q

1 ´ κτ
. (5.89)

We then obtain the final inequality (5.36) by substituting the above bounds into (5.88)
and observing that

sup
těτ

}xt}W ď sup
těτ

V2pxt;µq ď V2pxt1
M`1;µq. (5.90)

To obtain the corresponding bounds for the input putq, recall that ut can be rewritten
as

ut “ pUt´1 ´ Xt:1qλt´1pxtq

“ p´A0Xt´1 ´ Wt´1qλt´1pxtq

“ ´A0xt ´ Wt´1λt´1pxtq

and that }λt´1}1 “ }xt}Xt´1
. This allows us to upper-bound }ut}W by

}ut}W ď

›

›

›

›

A0
xt

}xt}W

›

›

›

›

W

}xt}W `

›

›

›

›

xt
}xt}W

›

›

›

›

Xt´1

}xt}W

ď pmax
xPW

}A0x}W ` }W}Xτ´1
q }xt}W

ď p}A0}W ` κτ q }xt}W

and obtain desired bounds for putq by adding the bounds already derived for pxtq.

Lemma 41

Proof. Part (i) and (5.47): We can expand the inequality as

}xt`1}W ď max
!

1
1´µ

, µ }xt}W ` p1 ´ µq 1
1´µ

)

(5.91)
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and can subtract 1
1´µ

on both sides to obtain

}xt`1}W ´ 1
1´µ

ď max
!

0, µp}xt}W ´ 1
1´µ

q

)

ômaxt0, }xt`1}W ´ 1
1´µ

u ď µmax
!

0, }xt}W ´ 1
1´µ

)

.

Similarly, noticing that the second term on the right hand sight of (5.91) is a convex
combination of }xt}W and 1

1´µ
, we can conclude

maxt}xt`1}W , 1
1´µ

u ď maxt}xt}W , 1
1´µ

u.

Part (ii): We previously derived that the inequality (5.42d) holds for all time t:

}xt`1}W ď }W}Xt´1
}xt}W ` 1.

Now, if in addition inequality (5.28) holds, then we obtain

max
!

1
1´µ

, µ }xt}W ` 1
)

ă }W}Xt´1
}xt}W ` 1.

Combining both the previous inequalities, we get the following result.

max
!

1
1´µ

, }xt`1}W

)

ď }W}Xt´1
}xt}W ` 1

ď }W}Xt´1
max

!

1
1´µ

, }xt}W

)

` 1.
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C h a p t e r 6

ROBUST MODEL-BASED LEARNING AND CONTROL OF
UNKNOWN SYSTEMS

In this chapter, we introduce a new framework "PixSel" for adaptive control, and,
more generally, for one-shot control design of nonlinear discrete-time systems. Most
notably, the theory and design methods can provide worst-case closed-loop guarantees
on safety- and cost-performance even in the presence of arbitrarily large model
uncertainty, and allow for problem settings with nonlinear time-varying dynamics
in both system and controller. Our framework reveals a promising connection
between online learning and robust control theory, which enables systematic and
modular design of robust learning and control algorithms with provided safety and
performance guarantees in the large uncertainty setting. To the best of our knowledge,
this is the first time that a fundamental connection between the fields of online
learning and control theory has ever been discovered in this context.

Our approach is based on decomposing one-shot control design into two separate
sub-problems: Designing a "robust oracle" π, which encapsulates application specific
nominal control design and desired guarantees, and designing a "consistent model
chaser" SEL, a pure online learning problem which embodies the issue of stable
and efficient adaptation. If each individual problem can be solved, we can use the
resulting subroutines π and SEL to instantiate a CE1-based adaptive controller AπˆSEL

that inherits worst-case guarantees from nominal control design, which surprisingly
still hold for arbitrarily large model uncertainty.

Our discussion will begin with studying the one-shot control design problem "Online
Control with Mistake Guarantees" (OC-MG) first introduced in our work [5], which
will serve as a motivation and introductory case study of the general "PixSel"-design
framework (which ultimately has a far broader scope than the problem setting of
OC-MG). Some of the broader implications of the "PixSel"-framework are discussed
in Section 6.7 and Section 6.8, others are presented in recent [9] and topic of ongoing
work.

1Certainty-Equivalence principle.
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Figure 6.1: PixSel Framework for adaptive control.

6.1 Introduction
We study the problem of online control for nonlinear systems with large model
uncertainty, under the requirement to provide upfront control-theoretic guarantees for
the worst-case online performance; by large uncertainty, we mean to say that we are
given an arbitrarily large set of potential models, of which an unknown few are exact
descriptions of the true system dynamics. Algorithms with such capabilities can
enable us to (at least partially) sidestep undertaking laborious system identification
tasks prior to robust controller design. Motivated by real-world control applications,
we formulate a class of problems which allow us a unified way to address common
control problems such as stabilization, tracking, disturbance rejection, robust set
invariance, etc. We introduce this as online control with mistake guarantees (OC-
MG): We define a problem instance by specifying a desired system behavior and
search for online control algorithms which can quantify, in terms of number of
mistakes, how often the online controlled system could deviate from this behavior in
the worst-case (i.e: worst possible scenario of true system dynamics, disturbances,
noise, etc.). We propose a modular framework for OC-MG: Use robust control to
design a robust oracle π, use online learning to design an algorithm SEL which
chases consistent models, and fuse them together via a simple meta-algorithm; the
end result is Algorithm 2, which we refer to as AπpSELq. Our approach is based on
decomposing the original problem into the two independent sub-problems "robust
oracle design" (ROD) and "consistent models chasing" (CMC) which for many
problem instances can be readily addressed with existing tools from control theory
(see Section 6.3) and online learning (see Section 6.5). We demonstrate in Section
6.10, that for general robotic systems, we can solve CMC through competitive convex
body chasing [12, 13, 33, 114] and ROD using well-known robust control methods
[54, 96, 118, 119, 141].
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Once suitable subroutines π and SEL are selected, we can provide online performance
guarantees for the resulting control algorithm AπpSELq that holds in the large
uncertainty setting:

• Mistake guarantee: A worst case bound on the total number of times desired
system behavior is violated. See Theorem 38, 39, 40.

• Safety guarantee: A worst-case norm bound on the state-trajectory. See
Theorem 36.

To provide the above guarantees, π and SEL have to be solutions to a corresponding
ROD and CMC sub-problem. In Section 6.3 and Section 6.5 we discuss that in many
problem settings this is not a restrictive assumption. In particular, assuming that
ROD can be solved merely ensures that the overall OC-MG problem is well-posed:
The underlying control problem (i.e., assuming no uncertainty) has to be tractably
solvable with robust control; it is clear that this is a bare minimum requirement to
state a meaningful OC-MG problem. In Section 6.5 we discuss different versions of
the CMC sub-problem and present a reduction to nested convex body chasing [33]
which is applicable for a large class of systems.

In Section 6.11, we follow our approach to design a high-performing control algo-
rithm for a difficult nonlinear adaptive control problem: swinging-up a cartpole with
large parametric uncertainty and state constraints. We benchmark the performance of
the online algorithm AπpSELq against the offline optimal algorithm over 900 problem
settings (adversarial chosen system parameters, noise, disturbances) and show that
AπpSELq performs only marginally worse than the optimal offline controller, which
has access to the true system model.

Problem Statement
Consider controlling a discrete-time nonlinear dynamical system with system equa-
tions:

xt`1 “ f˚
pt, xt, utq, f˚

P F , (6.1)

where xt P X and ut P U denote the system state and control input at time step t and
X ˆ U denotes the state-action space. We assume that f˚ is an unknown function
and that we only know of an uncertainty set F that contains the true f˚.

Large Uncertainty Setting. We impose no further assumptions on F and explicitly
allow F to represent arbitrarily large model uncertainties.
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Control Objective. The control objective is specified as a sequenceG “ pG0,G1, . . . q

of binary cost functions Gt : X ˆ U ÞÑ t0, 1u, where each function Gt encodes a
desired condition per time step t: Gtpxt, utq “ 0 means that the state xt and the
input ut meet the requirements at time t. Gtpxt, utq “ 1 means that some desired
condition is violated at time t and we will say that the system made a mistake at t. The
performance metric of system trajectories x :“ px0, x1, . . . q and u :“ pu0, u1, . . . q

is the sum of the cost incurred Gtpxt, utq over the time interval r0,8q and we denote
this the total number of mistakes:

# mistakes of x,u “

8
ÿ

t“0

Gtpxt, utq. (6.2)

For a state-input trajectory of the system px,uq to achieve an objective G, we want
the above quantity to be finite, i.e., eventually the system stops making mistakes and
meets the objectives requirements for all time.

One-shot Control Design Goal. The goal is to design an online decision rule
ut “ Apt, xt, . . . , x0q such that regardless of the unknown f˚ P F , the online
trajectories are guaranteed to be bounded, and to have finite or even explicit upper-
bounds on the total number of mistakes (6.2). Thus, we require a strong notion of
robustness: A can control any system (6.1) with the certainty that the objective G
will be achieved after finitely many mistakes. It is suitable to refer to our problem
setting as online control with mistake guarantees.

Motivation and Related Work
The main purpose of this work is to find answers to the following question:

How do we learn to control unknown dynamical systems in a systematic and
reliable way?

In one way or another, this is one of the first questions we run into when we approach
real-world control problems: Dynamical systems we encounter in the real world are
unknown to us; we have ways to find approximate mathematical models (system
identification), and use them as a substitute system for control design. That being
said, we are always forced to make a leap of faith when we deploy a control system,
since we can never be certain how well our system models match up with the
dynamics of the real system. Therefore, it is always necessary to collect online data
and keep monitoring for potential inconsistencies between system behavior and our
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model/design assumptions, as well as be ready to adapt our control algorithms once
we learn that our models are no longer accurate enough to guarantee performance.
Depending on the application, accurate models and/or online adaptation can be
of critical importance. This is especially true in safety-critical settings involving
physical systems, such as in engineering domains such as aerospace, industrial
robotics, automotive, energy plants [123], etc. Throughout the last decades and with
the accelerated technological advancement, many important engineering systems
have drastically increased in complexity. Finding accurate models of complex
systems can quickly become really difficult (or even impossible), which makes the
latter problem, of learning to adapt controls from on-line data, a crucial aspect of
over control system design. This problem setting is the focus and motivation of our
work. The existing literature can be split into two general categories: the more recent
literature of what can be described as System ID, then Robust Control and the more
traditional literature of Adaptive Control.

System Identification, then Robust Control

The most common approach in online learning for control literature [42] is to perform
system identification [88], then use tools from robust control theory [141]. Robust
controller synthesis can provide policies with desired guarantees, so long as one
can obtain an approximate model which is “provably close enough” to the real
system dynamics. However, estimating a complex system to a desired accuracy level
quickly becomes intractable in terms of computational and/or sample complexity.
In the adversarial noise setting, system identification of simple linear systems with
precision guarantees can be NP-hard [41]. General approaches for nonlinear system
identification with precision guarantees are for the most part not available (recently
Mania et al. [93] analyzed sample complexity under stochastic noise). Many recent
learning approaches for control of dynamical systems have focused on the setting of
linear optimal control: One is given a linear system, and the control objective is to
minimize a specified cost functional. To relate our problem setting to other approaches
in this field, we can view our problem setting as an instance of optimal control where
we restrict the cost function to be t0, 1u valued. There has been a particular focus
on the problem of the Linear Quadratic Regulator (LQR) [1, 37, 42, 43, 51], or
linear dynamical system with convex costs [3, 4, 62]. Our work is instead suitable as
well for the nonlinear control setting. In addition, even when restricted to the linear
system setting, recent line of work on online learning for control differs from our
approach in the following aspects:
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• Performance Criteria: We focus on bounding the total cost
ř8

t“0 Gtpxt, utq as
defined in Section 6.1 of the main paper. Our notion of control objective is
natural to define in control applications, e.g., most popular robotic goals can
be formulated as driving the systems towards a desirable set or trajectories.
This differs from, but is not incompatible with, the cost-metric formulation
that is often seen in optimal control and online learning for control work.
Specifically, previous effort on learning LQR has been to improve the regret
bound of the learning algorithm [1, 2, 42, 43, 62]. Bounding the regret on
the average cost, which is natural for LQR, is not sufficient to guarantee finite
mistakes in our problem setting. In Section 6.C, we discuss counterexamples
which discuss the relationship between finite mistakes, sublinear regret and
asymptotic guarantees. We show that finite mistake guarantees imply sublinear
regret, yet sublinear regret does not imply finite mistakes.

• Approach: Our proposed approach does not depend on accurate identification
of the online system, which is the focus of several recent works on learning for
LQR [37, 42, 51, 62]. As we consider parametric uncertainty, it is plausible to
also adopt a system identification approach for the non-linear control settings.
However, online system identification with arbitrarily small error is known to
be very challenging. As shown by [41], the sample complexity for identifying
linear systems under bounded adversarial noises can be exponential in the
worst case.

• Assumptions about parameter uncertainty: Some previous work in linear
systems [37, 43, 62] assumes knowledge of a stabilizing controller πsafe : X ÞÑ

U for the true unknown system parameter θ˚. In our setting, we do not require
such an assumption, but merely that for each possible parameter θ P Ω one
can find a robust policy πrθs which stabilizes the small uncertainty model
Drθs Ă F .

Robust Adaptive Nonlinear Control

Naturally, our problem setting is of great interest to the adaptive control community,
which has had a relatively long history on this topic: [71, 83, 87, 102, 134]. Yet,
most of traditional adaptive control approaches can not be applied to the general
problem setting we consider without making restrictive assumptions. As an example,
in contrast to most adaptive control methods, our framework applies to nonfeedback
linearizable nonlinear system (see overview of adaptive control in [65]). Furthermore,
many adaptive control techniques can not build on top of methods from other areas of
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control, like robust control theory, but rather propose separate control algorithms for
each problem setting. Additionally, robust stability analysis and thorough empirical
validation are largely unavailable for most methods. In fact, most relevant empirical
results are only presented for arguably much simpler settings than for the cart-pole
swing-up problem, which is considered in this work. In addition, we highlight
methodological distinctions.
We provide a modular framework, which allows one to combine robust control tools
with online learning algorithms to provide desired guarantees online. We unify
the treatment of both uncertain system parameters and unknown disturbance via
the construction of confidence sets of candidate systems that are consistent with
the historical collected observations. The estimation of such consistent sets is also
easily attainable for most robotic systems and allows for non-asymptotic convergence
guarantees. Among the relevant adaptive control literature, perhaps the most closely
related to ours is Multi-Model Adaptive Control (MMAC) from [9]. The MMAC
principle needs to run a high-dimensional Multi-Estimation routine online, which
requires the design of nonlinear observers (with the matching and Detectability
property - see [63]) for a sufficiently dense covering set of the parameter space. A
general construction of such a family is only shown for linear systems (see [63] and
references therein), and it is not clear whether designing a tractable Multi-Estimator
for the cart-pole system is possible.

6.2 Overview of Approach and Main Results
No Need for SysID and Persistency of Excitation. While accurate models of real
systems are hard to obtain, it is often easy to provide more qualitative or rough
models of system dynamics without performing offline experiments and requiring
system identification. Having access to a rough system description, we design a
control algorithm in one-shot which can be deployed on the real system with upfront
worst-case control-theoretic guarantees on the online performance. Moreover, in
contrast to other works, such as [35] for example, we are the first framework that can
provide worst-case guarantees without requiring the assumption of persistency of
excitation.

Rough Models as Compactly Parameterisable Uncertainty Sets. In practice,
we never have the exact knowledge of f˚ in advance. However, for engineering
applications involving physical systems, the functional form of f˚ can often be
derived through first principles and knowledge of the application-specific domain.
Conceptually, we can view the unknown parameters of the functional form as
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conveying both the ‘modeled dynamics’ and ‘unmodeled (adversarial) disturbance’
components of the ground truth f˚ in the system xt`1 “ f˚pt, xt, utq. It is almost
always the case that we can represent the uncertainty in f˚ via a collection of
parameters in bounded ranges. How we choose to parameterize a given uncertainty
set F is not unique and poses a design choice. We will take this as the starting
point for our approach and assume a fixed parameterization of F in the form of a
tuple pD,Ω, dq, where pΩ, dq is a compact metric space, called parameter space,
and D is a map Ω ÞÑ 2F that defines a collection of models tDrθs | θ P Ωu which
represents a cover of the uncertainty set F . We define this formally as a compact
parameterization of F :

Definition 6.1. A tuple pD,Ω, dq, where D : Ω ÞÑ 2F is a compact parametrization
of F , if pΩ, dq is a compact metric space and F Ă

Ť

θPΩDrθs.

We will work with candidate parameters θ P Ω of the system and consider a θ˚

to be a true parameter of f˚, if f˚ P Drθ˚s. Ideally, each candidate model Drθs

has small uncertainty; the precise notion of "small uncertainty" however is problem
specific and depends always on the objective. For concreteness, we give several
simple examples of common parameter spaces Ω:

1. Linear time-invariant system: linear system with matrices A, B perturbed by
bounded disturbance sequence w P ℓ8, }w}8 ď η:

f˚
pt, x, uq “ Ax ` Bu ` wt. (6.3)

The parameter space Ω contains bounded intervals describing the parameters
θ “ pA,B, ηq.

2. Nonlinear system, linear parametrization: nonlinear system, where dynam-
ics are a weighted sum of nonlinear functions ψi perturbed by a bounded
disturbance sequence w P ℓ8, }w}8 ď η:

f˚
pt, x, uq “

M
ÿ

i“1

aiψipt, x, uq ` wt. (6.4)

Ω contains bounded intervals that describe θ “ ptaiu, ηq.
3. Nonlinear system, nonlinear parametrization: nonlinear system, with function
g parameterized by a fixed parameter vector p P Rm (e.g., neural networks),
perturbed by a bounded disturbance sequence w P ℓ8, }w}8 ď η:

f˚
pt, x, uq “ gpt, x, u; pq ` wt. (6.5)

Ω contains bounded intervals that describe θ “ pp, ηq.



184

Algorithm 2 Meta-Implementation of AπpSELq

Require: procedures π and SEL
Initialization: D0 Ð tu, x0 is set to initial condition ξ0
1: for t “ 0, 1, . . . to 8 do
2: Dt Ð append pt, xt, xt´1, ut´1q to Dt´1 (if t ě 1) Ź update online history of

observations
3: θt Ð SELrDts Ź present online data to SEL, get posited parameter θt
4: ut Ð πrθtspt, xtq Ź query π for policy πrθts and evaluate it
5: xt`1 Ð f˚pt, xt, utq Ź system transitions with unknown f˚ to next state
6: end for

In these examples, the uncertainty set F Ă
Ť

θPΩDrθs is covered by models Drθs

with smaller uncertainty of the form Drθs “ tt, x, u ÞÑ fθpx, u, wtq | }w}8 ď ηu,
where fθ denotes one of the functional forms on the right-hand side of eq. (6.3),
(6.4) or (6.5).

Online Robust Control Algorithm. Given a compact parameterization pD,Ω, dq

for the uncertainty set F , we design a meta-algorithm AπpSELq (Algorithm 2) that
controls the system (6.1) online by invoking two subroutines π and SEL in each time
step.

• Consistent model chasing. Procedure SEL receives a finite data set D, which
contains state and input observations, and returns a parameter θ P Ω.
Design goal: For each time t, the procedure SEL should select θt such that
the set of models Drθts stays “consistent” with Dt, i.e., candidate models in
Drθts can explain the past data. Moreover posited parameters θt should only
change when necessary: two posited parameters θt and θt1 should not be very
different from each other, if both data sets Dt and Dt1 contain “similar” amount
information.

• Robust oracle. Procedure π receives a posited system parameter θ P Ω as
input and returns a control policy πrθs : N ˆ X ÞÑ U which can be evaluated
at time t to compute a control action ut “ πrθspt, xtq based on the current
state xt.
Design goal: We require that π represents a robust control design subroutine
for the collection of models D, in the sense that policy πrθs could provide
mistake guarantees for G which are robust to bounded noise if the uncertainty
set F were Drθs.



185

Theoretical Contribution. Our main theoretical results certify safety- and finite
mistake guarantees for the online control scheme AπpSELq if the sub-routines π and
SEL meet the design requirement for “robust oracle” and “consistent model chasing”
for a given uncertainty set F and objective G. We will clarify the consistency and
robustness requirements of the sub-routines π and SEL in Section 6.3 and Section
6.5. For now, we present an informal version of the finite mistake guarantees and the
worst-case state deviation for the online control scheme AπpSELq:

Theorem (Informal). For any (adversarial) f˚ P F , the online control scheme
AπpSELq described in Algorithm 2 guarantees a priori that the trajectories x, u will
achieve the objective G after finitely many mistakes. The total number of mistakes
ř8

t“0 Gtpxt, utq is at most

oracle performance Mπ
ρ ˚ Γ1

ˆ

size of uncertainty F
efficiency of SEL ˚ robustness margin ρ of π

˙

,

and the norm of the state }xt} is at most

Γ2

ˆ

size of uncertainty F
efficiency of SEL ˚ single-step robustness margin of π

, }x0}

˙

,

for some increasing function Γ1 : R` ÞÑ R` and some function Γ2 : R` ÞÑ R`

which is increasing in the first argument and is linear in the second.

• Performance of π: Assume the worst-possible f˚ P F , but also access to
direct online measurements θt “ θ˚ ` vt of the a true parameter θ˚ with small
noise vt of size ρ; Mπ

ρ denotes the worst-case mistakes if we were to apply the
almost ideal control law ut “ πrθtspt, xtq in this setting.

• Efficiency of SEL: We quantify the efficiency of SEL in the result through
competitive analysis of online algorithms. The procedure SEL posits parameters
efficiently, if as a function of time, the parameter selection θt changes only
when necessary; that is, it only changes when new observations are informative
and keep a constant value otherwise. We phrase this in terms of a competitive
ratio γ (with γ ě 1) and distinguish here between γ-competitive and pγ, T q-
finite-time competitive algorithms. The smaller the constant γ is, the more
efficient the algorithm posits parameters. As discussed in Section 6.5, a smaller
γ indicates that an online algorithm performs more closely to the ideal optimal
algorithm in hindsight.

Remark 31. If the same procedure π serves as a robust oracle for a set of criteria
Gp1q,Gp2q, . . . , GpMq, then correspondingly the instantiation AπpSELq provides
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multiple finite mistake guarantees, i.e., one for each corresponding criteria Gpiq,
i “ 1, . . . ,M .

This approach brings several attractive qualities:

• Generality. The result applies to a wide range of problem settings. The
objective G and the uncertainty set F serve as a flexible abstraction to
represent a large class of dynamical systems and control-theoretic performance
objectives.

• Robust guarantees in the large uncertainty setting. Our result applies in
settings where only rough models are available. As an example, we can use the
result to provide guarantees in control settings with unstable nonlinear systems
where stabilizing policies are not known a-priori and which are subject to
online adversarial disturbances.

• Decoupling algorithm design for learning and control. The construction of
the “robust oracle” π and the consistent model chasing procedure SEL can be
addressed with existing tools from control and learning. More generally, this
perspective enables us to decouple learning and control problems in the large
uncertainty setting into separate robust control and online learning problems,
a novel approach. See discussion in Section 6.3 and Section 6.5.

• Modular algorithm design for robust learning and control. The above approach
provides a first interface between robust control and online learning, which
enables a modular design of learning and control algorithms with versatile
worst-case performance guarantees against large model uncertainty.

• A new tool for performance analysis of learning and control algorithms. We
can view the above theorem also from an analysis point-of view: Many existing
certainty-equivalence based learning and control algorithms can be easily
represented as an instance of the meta-algorithm AπpSELq and thus can be
analyzed using the above theorem.

Promising for Design of Efficient Algorithms in pPractice. Besides focusing
on providing worst-case guarantees in a general setting, empirical results show that
our framework is a promising approach to design efficient algorithms for learning
and control in practice. In Section 6.11, we apply our approach to the problem of
swinging-up a cartpole with large parametric uncertainty in a realistic and highly
challenging setting and show that it achieves consistently (over 900 experiments with
different parameter settings) good performance.
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As summarized in Algorithm 2, the main ingredients of our approach are a robust
control oracle π that returns a robust controller under posited system parameters, and
an online algorithm SEL that chases parameter sets that are consistent with the data
collected so far. In the following two sections we formulate the formal concept of
oracles and model selectors SEL and discuss their respective properties required for
the statment of our main results.

6.3 Control Oracle: An Abstraction for Nominal Control Design
It is obvious that our OC-MG problem is only well-posed if the underlying control
problem under no uncertainty, i.e., the nominal control design problem, is feasible
as well. In particular, for any dynamics f 1 P F , there has to be a control policy
κ1 P K which, in closed-loop, provides worst-case stability and mistake guarantees.
To state this formally, let the dynamical model Mrf, κs Ă pX ˆ UqN be the set of all
closed-loop trajectories obtained by interconnecting the dynamics f with controller
κ, i.e.,

Mrf, κs “

#

pτ x, τ u
q

J

ˇ

ˇ

ˇ

ˇ

ˇ

@t P N :
τ xpt ` 1q “ fpt, τ xptq, τ uptqq

τ uptq “ κpt, τ xptqq

+

, (6.6)

then our problem OC-MG is only feasible, if for any f 1 P F there exists some κ1 P K
such that for all τ P Mrf 1, κ1s holds τ P ℓXˆU

8 (bounded closed-loop trajectories)
and

ř8

t“0 Gtpτ ptqq ă 8 (each closed-loop trajectory makes finite mistakes).

The main purpose of the oracle π is to serve as an abstraction for nominal control
design which is robust to some small degree of model uncertainty. The procedure
π is a map Ω ÞÑ K from parameter space Ω to the space K :“ tκ : N ˆ X ÞÑ Uu

of all (non-stationary) control policies of the form ut “ κpt, xtq. The purpose of π
is to specify a parametrized collection of "fixed"-model-based controllers suitable
for certainty-equivalent control. A desired property of π as an oracle is that π
returns controllers that satisfy G if the model uncertainty were small. Thus, if we let
CLπrωs Ă pX ˆ UqN be the dynamic model below,

Definition 6.2. CLπrωs Ă pX ˆ UqN is the dynamic model of the closed-loop
interconnection of the dynamics Drωs and the oracle policy πrωs and is equivalently
written as:

CLπrωs “
ď

fPDrωs

Mrf, πrωss.
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We can formulate a necessary requirements for the nominal problem setting to be:

@τ P
ď

ωPΩ

CLπrωs :
8
ÿ

t“0

Gtpτ ptqq ă 8 and τ P ℓXˆU
8 .

In other words, if the uncertainty set F were contained in the set Drθs, then control
policy πrθs could guarantee to achieve the objective G with finite mistake guarantees.
The above statement is subsumed in the formal oracle requirements, formulated in
the next section. Furthermore, in an idealized setting where the true parameter were
known exactly, the oracle should return a policy such that the system performance
is robust to some level of bounded noise. This is a standard notion of robustness,
which we later define more precisely. Naturally, there exist many control methods in
the control literature which are suitable for robust oracle design. Which method to
use depends on the control objective G, the specific application, and the system class
(linear/nonlinear/hybrid, etc.). For a broad survey, see [118, 119, 142] and references
therein. We characterize two general methodologies (which can also be combined):

• Robust stability analysis focus: In an initial step, we use analytical design
principles from robust nonlinear and linear control design to propose an oracle
πrθspxq in closed-form for all θ and x. In a second step we prove robustness
using analysis tools such as for example Input-to-State Stability (ISS) stability
analysis [75] or robust set invariance methods [106, 107]).

• Robust control synthesis: If the problem permits, we can also directly address
the control design problem from a computational point of view, by formulating
the design problem as an optimization problem and compute for a control law
with desired guarantees directly. This can happen partially online, partially
offline. Some common nonlinear approaches are robust (tube-based) MPC
[30, 96], SOS-methods [100],[21], Hamilton-Jacobi reachability methods [22].

There are different advantages and disadvantages to both approaches, and it is
important to point out that robust control problems are not always tractably solvable.
See [27, 31] for simple examples of robust control problems which are NP-hard. The
computational complexity of robust controller synthesis tends to increase (or even be
potentially infeasible) with the complexity of the system of interest; it also further
increases as we try optimize for larger robustness margins ρ.

The Dual Purpose of the Oracle. In our framework, access to a robust oracle is a
necessary prerequisite to design learning and control agents AπpSELq with mistake
guarantees. However, this is a mild assumption and is often more enabling than
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restrictive. First, it represents a natural way to ensure well-posedness of the overall
learning and control problem; If robust oracles cannot be found for an objective, then
the overall problem is likely intrinsically hard or ill-posed (for example, necessary
fundamental system properties like stabilizability/ detectability are not satisfied).

Second, oracle abstraction enables a modular approach to robust learning and control
problems and directly leverages existing powerful methods in robust control: Any
model-based design procedure π that works well for the small uncertainty setting
(i.e., acts as a robust oracle) can be augmented with an online chasing algorithm SEL
(with required chasing properties) to provide robust control performance (in the form
of mistake guarantees) in the large uncertainty setting via the augmented algorithm
AπpSELq.

Next, we formulate the robustness properties expected from the oracle π.

6.4 Robust Oracle Guarantees
The main requirement on the oracle is that if the model uncertainty were small
enough, we could just use the oracle for certainty-equivalent control. We phrase this
requirement by describing the performance of the policy in an idealized setting. Let
θ˚ be a parameter of true dynamics f˚, and assume that online we have access to
noisy observations θ “ pθ0, θ1, . . . q, where each measurement θt is ρ-close to θ˚,
under metric d. The online control algorithm queries π at each time step and applies
the corresponding policy πrθts. The resulting trajectories obey the equations:

xt`1 “ f˚
pt, xt, utq, ut “ πrθtspt, xtq (6.7a)

θt s.t.: dpθt, θ
˚
q ď ρ, where f˚

P Drθ˚
s. (6.7b)

To facilitate later discussion, define the set of all feasible trajectories of the dynamic
equations (6.7) as the nominal trajectories SIrρ; θs of the oracle:

Definition 6.3. For a time-interval I “ rt1, t2s Ă N and fixed θ P Ω, let SIrρ; θs de-
note the set of all pairs of finite trajectories xI :“ pxt1 , . . . , xt2q, uI :“ put1 , . . . , ut2q

which for θ˚ “ θ, satisfy conditions (6.7) with some feasible f˚ and sequence
pθt1 , . . . , θt2q.

Design Specification for Oracles. We will say that π is ρ-robust for some objective
G, if all trajectories in SIrρ; θs achieve G after finitely many mistakes. We distinguish
between robustness and uniform robustness, which we define precisely below.
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ρ-robust @θ P Ω : supγě0m
π
ρpγ; θq ă 8

uniformly ρ-robust Mπ
ρ :“ supγě0,θPΩm

π
ρpγ; θq ă 8

locally ρ-robust @γ ě 0, θ P Ω : mπ
ρpγ; θq ă 8

locally uniformly ρ-robust @γ ě 0 : Mπ
ρ pγq :“ supθPΩm

π
ρpγ; θq ă 8

Table 6.1: Notions of oracle-robustness

Definition 6.4 (robust oracle). Equip X with some norm } }. For each ρ, γ ě 0 and
θ P Ω, define the quantity mπ

ρpγ; θq as

mπ
ρpγ; θq :“ sup

I“rt,t1s : tăt1

sup
pxI ,uIqPSIrρ;θs,}x0}ďγ

ÿ

tPI
Gtpxt, utq.

Ifmπ
0 pγ; θq ă 8 for all γ ě 0, θ P Ω, we callπ an oracle forG w.r.t. parametrization

pD,Ω, dq. In addition, we say that an oracle π is (locally) (uniformally) ρ-robust if
the corresponding property shown in Table 6.1 holds. If it exists, Mπ

ρ is the mistake
constant/function of π.

The constant ρ ą 0 will be referred to as the robustness margin of π. If we use the
above terms without referencing ρ, it should be understood that there exists some
ρ ą 0 for which the corresponding property is feasible. The mistake constant Mπ

ρ

can be viewed as a robust offline benchmark. It quantifies how many mistakes we
would make in the worst case if we could use the oracle π under idealized conditions,
that is, described by (6.7).

Invariance Property. On top of ρ-robustness, for some results, we will require the
following additional condition from the oracle:

Definition 6.5. For a fixed objective G, define the set of admissible states at time
t as Xt “ tx | Du1 : Gtpx, u

1q “ 0u, i.e., the set of states for which it is possible to
achieve zero cost at the time step t. We call a ρ-robust oracle π cost invariant, if for
all θ P Ω and t ě 0 the following holds:

• For all x P Xt holds Gtpx, πrθspt, xqq “ 0.

• For all x P Xt, f P Drθs and θ1 s.t. dpθ1, θq ď ρ, holds fpt, x, πrθ1spt, xqq P

Xt`1.

Remark 32. The above condition is related to the well-known notion of positive
set/tube invariance in control theory [26]: The above condition requires that the
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oracle policies πrθs can ensure for their nominal model Dpθq the following closed
loop condition: xt P Xt ùñ xt`1 P Xt`1, @t.

Robustness of Single-Step Closed Loop Transitions. To provide worst-case
guarantees on the online state trajectory, we need to bound how system uncertainty
can affect a single online time-step state transition in the worst case. To this end,
consider equipping the state space X with some norm } ¨ } and defining a desired
property for the oracle in terms of its performance in the idealized scenario:

Definition 6.6. π : Ω ÞÑ K is pα, βq-single step robust in the space pX , } ¨ }q if
for any 2-time-steps nominal trajectory pxt`1, xtq, put`1, utq P Srt,t`1srρ; θs holds
}xt`1} ď αρ}xt} ` β.

The above property requires that in the idealized setting (6.7), we can uniformly
bound the single-step growth of the state by a scalar linear function in the noise-level
ρ and the previous state norm. Equivalently, we can explicitly write out the condition
in Def. 6.6 as Dα, β ą 0 : @θ, θ1 P Ω, x P X , f P Drθs, t ě 0 s.t.:

}fpt, x, πrθ1
spt, xqq} ď αdpθ, θ1

q}x} ` β.

We use a simplified problem setting to explain the correspondence between the
discussed conditions and standard problems in the control literature.

Mistake Guarantees and Set Convergence Stability
Consider a class of systems of the form xt`1 “ gpxt, ut; θ

˚q ` wt, }wt} ď 1, where
θ˚ is an unknown system parameter that lies in a known compact set Ω Ă Rm.
We represent the uncertainty set as F “ YθPΩDrθs with Drθs :“ tf˚ : t, x, u ÞÑ

gpx, u; θq ` wt | }w}8 ď 1u. Let π : Ω ÞÑ K be a procedure which returns state
feedback policies πrθs : X ÞÑ U for a given θ P Ω. Designing an uniformly
ρ-robust oracle π can be equivalently viewed as making the closed-loop system
(described by (6.7)) of the idealized setting robust to disturbance and noise. For
the considered example, the closed loop can be represented by the dynamic model
Gθ˚ P pX ˆ U ˆ Y ˆ V ˆ WqN, defined as

Gθ˚ :“ tpx,u,y,v,wq
J such that (6.8)u

where for all t P N, yt P Y “ R is an output representing the cost at time t,
vt P V “ Rm is an input representing bounded observational noise and wt P W “ X
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is an input representing a disturbance signal.

xt`1 “ gpxt, ut; θ
˚
q ` wt (6.8a)

ut “ πrθ˚
` vtspxtq (6.8b)

yt “ Gtpxt, utq (6.8c)

Leaning on our discussion in Chapter 2, we can express the oracle-robustness
property in terms of stability of the twvu ÞÑ txuyu-map, denoted by the operator
Φwv ÞÑxuy

θ˚ P CpℓWˆV , ℓXˆUˆYq of the dynamic model Gθ˚ . We call π a uniformly
ρ-robust oracle if, with respect to the domain tpv,wqJ | }v}8,ď ρ, }w}8 ď 1u, the
family of partial maps tΦwv ÞÑy

θ˚ uθ˚PΩ is uniformly stable in the ℓWˆV
8 ÞÑ ℓ1-induced

operator norm. The fixed constant Mπ
ρ (or function Mπ

ρ ) which we used in the
definitions of oracle robustness quantifies the uniform stability of the family of
operators tΦwv ÞÑy

θ˚ uθ˚PΩ similarly to the concept of gain, which is commonly used
in operator theory in the control theory literature [139]. Moreover, if we identify
the cost functions Gt with their level sets St :“ tpx, uq | Gtpx, uq “ 0u, we can also
rephrase the former conditions as a form of robust trajectory-tracking problem or a
set-point control problem2 [77]. It is common in control theory to provide guarantees
in the form of convergence rates (finite-time or exponential convergence) on the
tracking-error; these guarantees can be directly mapped toMπ

ρ andMπ
ρ p ¨ q, as shown

in the next example.

Example 3. Assume we want to track a desired trajectory xd within ε precision in
some normed state space pX , } ¨ }q. We can phrase this as a control objective G by
defining Gtpx, uq :“ 0, if }xdt ´ x} ď ε and Gtpx, uq :“ 1, otherwise . Providing an
exponential convergence guarantee of type }xdt ´ xt} ď cµt with constants c, µ ă 1

is a basic problem studied in control theory. It is easy to see that such a guarantee
implies

ř8

t“0 Gtpxt, utq ď
logpc}x0}q`logpε´1q

logpµ´1q
. Hence, if design method π provides a

policy πrθs which guarantees (for any }w}8 ď 1, }v}8 ď ρ) for any trajectory of
the closed-loop CLθ the convergence condition @t : }xdt ´ xt} ď cµt, then π is a
locally ρ-uniformly robust oracle with the mistake function

Mπ
ρ “

logpc}x0}q`logpε´1q

logpµ´1q
.

6.5 Consistent Model Chasing
The procedure SEL has the task of efficiently selecting models consistent with the
observed online data. In this section, we formulate this as an online learning problem

2In that case, Gt would be not time dependent.
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of chasing consistent models and discuss various design approaches on how to
address it. Next, we describe the basic setup of the problem.

Consistent Models and Parameters
Let O :“ tpd1, . . . , dNq | di P N ˆ X ˆ X ˆ U , N ă 8u be the space of all data
sets D “ pd1, . . . , dNq of time-indexed data points di “ pti, x

`
i , xi, uiq. We will call

a data sequenceD “ pD1,D2, . . . q an online stream if the data setsDt “ pd1, . . . , dtq

are formed from a sequence of observations pd1, d2, . . . q. Intuitively, given a data set
D “ pd1, . . . , dNq of tuples di “ pti, x

`
i , xi, uiq, any candidate f P F which satisfies

x`
i “ fpti, xi, uiq for all 1 ď i ď N is consistent with D; Similarly, we will say that
f is consistent with an online stream D, if at each time-step t, it is consistent with
the data set Dt. We will extend this definition to models Drθs and parameters θ P Ω:
The model Drθs is a consistent model for a data set D or an online stream D, if it
contains at least one function f that is consistent with D or D, respectively; θ is then
called a consistent parameter. Similarly, for some data set D, we define the set of all
consistent parameters as PpDq:

Definition 6.7 (Consistent Sets). The map of the consistent set P : O ÞÑ 2Ω returns
for each data set D P O the corresponding set of consistent parameters PpDq:

PpDq :“ closure
`

!

θ P Ω
ˇ

ˇ

ˇ
Df P Drθs : @pt, x`, x, uq P D, x` “ fpt, x, uq

)

˘

.

(6.9)

Some important facts follow from this definition. Since the data Dt at time t always
contain the previous data, it is clear that the constraints defining the consistent set
at time t are stricter than those at time t ´ 1. Hence, the set PpDtq is contained
in the consistent set PpDt´1q from a previous time step. We refer to this as the
nestedness property of the sequence of sets pPpD0q,PpD1q, . . . , q. Several other
important implications are remarked in the corollary below:

Corollary. Assume D is a data stream with at least one consistent f P F . Then, the
following holds for the sequence of consistent sets PpDq “ pPpD1q,PpD2q, . . . q:

(i) The sequence of consistent sets is nested in Ω, i.e: PpDtq Ą PpDt`1q.

(ii) PpD8q :“
`
Ş8

k“1 PpDkq
˘

X Ω is non-empty.
(iii) If θt P PpDtq, and limtÑ8 θt “ θ8, then θ8 P PpD8q.

Proof. The first property is clear since Dt “ Dt´1 Y tdtu. For the second, notice
that PpDtq is always a non-empty compact set and recall the basic real analysis fact
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[109]: The intersection of a nested sequence of compact sets that are not empty is
always non-empty [109]. To verify property (iii), notice that nestedness implies that
the subsequence pθT , θT`1, . . . q is contained in PpDT q; since PpDT q is closed, we
have θ8 P PpDT q. We chose T arbitrarily, so we conclude that θ8 P PpDT q for all
T ě 0, that is: θ8 P PpD8q.

Chasing Consistent Models
Assume a parameterization pD,Ω, dq and some fixed data set DT “ pd1, . . . , dT q

which is presented to us in an online fashion and which has at least one consistent
parameter θ˚ (i.e., PpDT q is nonempty).

Our goal is to find a consistent parameter θ˚ P PpDT q online, or equivalently, to
find the model Drθ˚s consistent with all data DT . However, since we do not have
access to all data upfront, the best we can do is posit at each time-step t a parameter
θt P PpDtq consistent at least with all so far seen data and make the hypothesis that
θt is also consistent with DT until proven otherwise by new data. Our goal is to posit
the parameters θt in an efficient way; we would like to change our hypothesis about
the consistent parameter θ˚ as little as possible, and thus θt should change over time
as little as possible. This task can be interpreted as a two-player game, where player
A (our selection SEL) is trying to chase after player B (the set of consistent models
PpDtq) with the objective of tagging them (selecting a parameter θt P PpDtq). It suits
to call this problem consistent models chasing as our objective is not only selecting
from the consistent sets but also accounting for future and potentially adversarial
changes in the set PpDtq. Next, we formulate "chasing" conditions for SEL, defined
in Def. 6.9, which can address this problem. The basic requirement for SEL is to
output a consistent parameter (if one exists) θ “ SELrDs for a given data set D.
Described in the language of set-valued analysis, we require SEL to be a selection or
selector O ÞÑ Ω of the set-valued map D ÞÑ PpDq.

Definition 6.8. [19]. A function f : X ÞÑ Y is a selection/selector of the set-valued
map F : X ÞÑ 2Y , if @x P X : fpxq P F pxq.

Since we intend to use SEL in an online manner where we are given a stream of
data D, we require that SEL can posit consistent parameters θt “ SELrDts in an
efficient manner online. A fitting notion of "efficiency" can be defined by comparing
the variation of the parameter sequence θ and the sequence of consistent sets
PpDq :“ pPpD1q,PpD2q, . . . q over time, where we quantify the latter using the
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Hausdorff distance dH : 2Ω ˆ 2Ω ÞÑ R` defined as

dHpS, S1
q “ max

"

max
xPS

dpx, S1
q , max

yPS1
dpy, Sq

*

.

We phrase this in terms of desired "chasing"-properties (A)-(D) and refer to selectors
SEL with such properties as (consistent model) chasers:

Definition 6.9. Let SEL : O ÞÑ Ω be a selection of P. Let D “ pD1,D2, . . . q be an
online data stream and let θ be a sequence defined for each time t as θt “ SELrDts.
Assume that there always exists an f P F consistent with D and consider the
following statements:

(A) asymptotically efficient: θ˚ “ limtÑ8 θt exists.
(B) asymptotically finite-time (f.t.) efficient: limtÑ8 dpθt, θt´1q “ 0.

(C) γ-competitive:

t1 ă t2 ùñ

t2
ÿ

t“t1`1

dpθt, θt´1q ď γ dHpPpDt2q,PpDt1qq.

(D) pγ, T q-finite-time (f.t.) competitive:

t2 ´ t1 ď T ùñ

t2
ÿ

t“t1`1

dpθt, θt´1q ď γ dHpPpDt2q,PpDt1qq.

SEL algorithms that satisfy the above chasing properties as referred to as consistent
model chasers.

The desired properties describe a natural notion of efficiency for this problem. The
posited consistent parameter θt should only change online if new data are also
informative. The competitiveness properties (C) and (D) naturally restrict changing
θt when little new information is available and permit bigger changes in θt only
when new data is informative. Per time interval I “ rt1, t2s, the inequalities in
(C) and (D) enforce the following: If the consistent sets PpDt2q and PpDt1q are the
same, i.e., (dHpPpDt2q,PpDt1qq “ 0), the posited parameters θt1 , . . . , θt2 should all
have the same value. On the other hand, if PpDt2q is much smaller than PpDt1q,
(i.e. dHpPpDt2q,PpDt1qq large), the total variation

řt2
t“t1`1 dpθt, θt´1q in the posited

parameters is allowed to be at most γdHpPpDt2q,PpDt1qq.

Properties (C) and (D) are stronger versions of (A) and (B), called competitive-
ness/finite-time competitiveness. The relationship between the chasing properties are
summarized in Lemma 51 below. To prove the relation pDq ùñ pBq we require the
following auxilliary result:
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Lemma 50. Let pΩ, dq be a compact metric space and let tS1, . . . , ST u, @t : St`1 Ă

St, St Ă Ω be a collection of nested subsets in Ω that are ε separated w.r.t. to the
Hausdorff metric dH, that is: dHpSi, Sjq ą ε, @i ‰ j. Then we have T ď NpΩ, εq.

Proof. Assume that tS1, . . . , ST u is a ε-separated subset of the metric space p2Ω, dHq,
where dH is the Hausdorff metric. Since for all t we have dHpΩt,Ωt`1q ą ε and
Ωt`1 Ă Ωt, this means that there exists at least one point pt P Ωt such that
dppt,Ωt`1q ą ε. Since for all j ą t holds pj P Ωj Ă Ωt`1, we conclude
dppt, pjq ě dppt,Ωt`1q ą ε for all j ą t. This establishes that tp1, . . . , pT u is a
ε-separated subset of Ω. Therefore, we can bound the size of the set T by the packing
number T ď NpΩ, εq.

Lemma 51. Then the following implications hold between the properties of Def. 6.9:

pCq ñ pAq

ñ ñ

pDq ñ pBq.

The reverse (and any other) implications between the properties do not hold in
general.

Proof. (A) ùñ (B), (C) ùñ (D) are obvious. (C) ùñ (A) follows by noticing
that (C) implies

ř8

t“1 dpθt, θt´1q ď γdiampΩq. To prove (D) ùñ (B), we use Lem.
50. First notice that pγ, T q-finite time competitiveness (f.t.) implies pγ, 1q-w.c.. Pick
some ε ą 0 and let I “ tt1, . . . , u be all time-steps at which dpθt, θt´1q ě ε. Now,
for each t P I holds dHpPpDtq,PpDt´1qq ě ε

γ
. We can verify that the collection of

sets tPpDt´1q | t P Iu is a ε
γ
-separated set in the metric space p2Ω, dHq; therefore,

by Lem. 50 it follows that the index set I is finite, that is, |I| ď NpΩ, ε
γ

q. Since
this holds for all ε ą 0, we proved @ε ą 0DN s.t. @t ě N : dpθt, θt´1q ă ε, i.e.,
limtÑ8 dpθt, θt´1q “ 0.

From the above diagram, we can see that γ-competitiveness is the strongest chasing
property as it implies all other properties. Furthermore, the condition pγ, T q-finite-
time competitiveness strengthens with larger T , as shown below:

Corollary 52. pγ, T q-finite time competitiveness implies pkγ, kT q-finite time com-
petitiveness for any k P N.
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Proof. Assume pγ, T q-f.t.-competitive and pick k consecutive intervals I1, . . . , Ik,
Ij :“ rτj, τ̄js, each of length T . Notice that the nestedness property PpDτ̄kq Ă ¨ ¨ ¨ Ă

PpDτ1q implies dHpPpDτ̄jq,PpDτjqq ď dHpPpDτ̄kq,PpDτ1qq which leads to:

k
ÿ

j“1

ÿ

tPIj

dpθt`1, θtq ď γ
k
ÿ

j“1

dHpPpDτ̄jq,PpDτjqq ď γkdHpPpDτ̄kq,PpDτ1qq.

In the next section, we discuss that in cases where the consistent set map P returns
convex sets, γ-competitive CMC algorithms can be designed via a reduction to
the nested convex bodies chasing (NCBC) problem [33]. On the other hand, for
T “ 1 and any γ ě 1, the weaker chasing property (D) can always be achieved, even
if the map P returns arbitrary non-convex sets. We show in Section 6.5 a simple
projection-based selection rule, which satisfies pγ, 1q-finite-time competitiveness.

Competitive Chasing via Competitive Nested Convex Body Chasing
The main difficulty in selecting the parameters θt to solve CMC competitively is
that, for any time t ă T , we cannot guarantee the selection of a parameter θt that is
guaranteed to be in the future consistent set PpDT q. The notion of competitiveness
is a common performance objective in the design of online learning algorithms
[29, 34, 58, 82, 115, 136]. Moreover, it turns out that in the case where a sequence
of consistent sets is always convex, we can reduce the CMC problem to a well-known
problem of nested convex body chasing (NCBC) [33]. This requirement is necessary
for the reduction and is stated in Assumption 6.6.

Assumption 6.6. Given a compact parameterization pT,Ω, dq of the uncertainty set
F , the consistent sets PpDq are always convex for any data set D P O.

Constructing consistent sets PpDtq online can be addressed with tools from set-
membership identification. For a large collection of linear and nonlinear systems, the
sets PpDq can be constructed efficiently online. Such methods have been developed
and studied in the literature of set-membership identification, for a recent survey
see [97]. Moreover it is often possible to construct PpDq as an intersection of finite
half-spaces, allowing for tractable representations as LPs. To see a particularly simple
example, consider the following nonlinear system with some unknown parameters
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α˚ P RM and η˚, where wt is a vector with entries in the interval r´η˚, η˚s:

xt`1 “

M
ÿ

i“1

α˚
i ψipxt, utq ` wt, (6.10)

where ψi : X ˆU ÞÑ X are M known nonlinear functions. If we represent the above
system as an uncertain system D with parameter θ˚ “ rα˚; η˚s, it is easy to see that
the consistent sets PpDq for some data D “ tpx`

i , xi, uiq | 1 ď i ď Hu takes the
form of a polyhedron

PpDq “ tθ “ rα; ηs | s.t. (6.11) for all 1 ď i ď H u ,

defined by the inequalities

rψ1pxi, uiq, . . . , ψMpxi, uiqsα ď x`
i ` 1η, (6.11a)

rψ1pxi, uiq, . . . , ψMpxi, uiqsα ě x`
i ´ 1η. (6.11b)

We can see that any linear discrete-time system can be put into the above form (6.10).
Moreover, as shown in Section 6.10 the above representation also applies for a large
class of (nonlinear) robotics system.

Nested Convex Body Chasing (NCBC)

In NCBC, we have access to a nested sequence S0, S1, . . . , ST of convex sets online
in some metric space pM, dq (that is: St Ă St´1). The learner selects at each
time t a point pt from St. The goal of competitive NCBC is to produce p1, . . . , pT
online so that the total cost of moving

řT
j“1 dppj, pj´1q at time T is competitive

with the offline optimum, that is, there is some γ ą 0 stain.
řT

j“1 dppj, pj´1q ď

γmaxp0PS0 OPTT pp0q, where OPTT pp0q :“ minpPST dpp, p0q.

Remark 33. NCBC is a special case of the more general convex body chasing (CBC)
problem, first introduced by [55], which studied competitive algorithms for metrical
goal systems.

Let the sequence of convex consistent sets PpDtq be the corresponding St of the
NCBC problem, any γ-competitive agent A for the NCBC problem can instantiate
a γ-competitive selection for competitive model-chasing, as summarized in the
following reduction:

Proposition 34. Consider the setting of Assumption 6.6. Then any γ-competitive
algorithm for NCBC in metric space pΩ, dq instantiates via Algorithm 3 a γ-
competitive CMC algorithm SELNCBC in the parametrization pT,Ω, dq.
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Algorithm 3 γ-competitive CMC selection SELNCBC

Require: γ-competitive NCBC algorithm ANCBC, consistent set procedure P
1: procedure SELNCBC(t, x`, x, u)
2: Dt Ð Dt´1 Y pt, x`, x, uq

3: St Ð PpDtq Ź construct/update new consistent set
4: present set St to ANCBC

5: ANCBC chooses θt P St
6: return θt
7: end procedure

Proof. Since we set St “ PpDtq, it is clear that maxp0PS0 OPTT pp0q is equal to
dHpPpDT q,PpD0qq. Therefore, γ-competitive NCBC implies γ-competitive CMC
on all time intervals rt0, T s, with t0 “ 1. To see that this also holds for any choice of
t0, recall that the NCBC problem requires the competitiveness condition to hold for
any sequence of nested convex bodies. Thus, for a fixed sequence St the condition
must also be satisfied for the shifted sequences S1

t :“ St`k.

Simple Competitive NCBC-Algorithms in Euclidean Space Rn. When pΩ, dq

is a compact euclidean finite dimensional space, recent exciting progress on the
NCBC problem provides a variety of competitive algorithms [12, 13, 33, 114] that
can instantiate competitive selections per Algorithm 3.

We highlight two simple instantiations based on the results in [12] and [33]. Both
algorithms can be tractably implemented in the setting of assumption 6.6. The
selection criteria for SELppDtq and SELspDtq is defined as:

SELppDtq :“ argmin
θPPpDtq

}θ ´ SELppDt´1q}, (6.12a)

SELspDtq :“ spPpDtqq, (6.12b)

where SELp defines simply a greedy projection operator and where SELs selects
according to the Steiner-Point spPpDtqq of the consistent set PpDtq at time t.

Definition 6.10 (Steiner Point). For a convex body Ω, the Steiner point is defined as
the following integral over the n ´ 1 dimensional sphere Sn´1:

spΩq “ n

ż

vPSn´1

max
xPΩ

xv, xyvdv. (6.13)

Another equivalent definition, which is more useful computationally, is to define the
Steiner point as the weighted average of the extreme points of Ω, where the weights
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are the polar angles of each extreme point [113]. A convenient way to express this in
terms of averages of random linear programs: spΩq is the expectation of a random
variable Vtpcq, where each random variable Vi is the solution to a linear program
max
xPΩ

cJ
i x with a cost-vector c, whose direction in Rn is picked uniformly at random.

Moreover, in euclidean spaces it suffices to sample c from the n-dimensional standard
Gaussian distribution N p0, Inq:

(6.13) ô spΩq “ Ec„N p0,Inq argmax
vPΩ

xc, vy.

Remark 35. As shown in [13], the Steiner point can be efficiently approximated by
solving randomized linear programs as used in the definition above.

The competitive analysis presented in [33] applies, and appealing to Proposition 34
we can establish that SELp and SELs are competitive CMC algorithms:

Corollary 53 (of Theorem 1.3 [12], and Theorem 2.1 [33]). Assume Ω is a compact
convex set in Rn and dpx, yq :“ }x ´ y}2. Then, the procedures SELp and SELs are
competitive (CMC)-algorithms with competitive ratio γp and γs:

γp “ pn ´ 1qn
n`1
2 , γs “

n

2
. (6.14)

The following lemma is needed to translate the results of [12] and Theorem 2.1 [33]
into our setting:

Lemma 54 (Steiner Point). Let spΩq denote the Steiner point of a convex body. The
following inequalities hold for a nested sequence of convex bodies Ω0 Ą Ω1 ¨ ¨ ¨ Ą

ΩT and their dH-pathlength ΓT “
řT

t“1 }spΩtq ´ spΩt´1q}2:

ΓT ď n
2
diampΩ1q, ΓT ď ndHpΩ1,ΩT q.

Proof. Assume Ω1 Ą Ω2 ¨ ¨ ¨ Ą ΩT is a nested sequence of convex bodies in Rn.
Then, as shown in [33] Thm 2.1, we have the following

T
ÿ

t“1

}spΩtq ´ spΩt´1q}2 ď n
2
pwpΩ1q ´ wpΩT qq, (6.15)

where wpSq denotes mean-width of the set S. wpSq can be written as the average
length of a random 1-dimensional projection of S: Let v be uniformly distributed in
the sphere Sn´1 and let wpSq be defined as the expectation of lvpSq,

wpSq :“ Ev„UnifpSn´1qlvpSq, lvpSq :“ diampProjvpSqq (6.16)
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where lvpSq is evaluated by first projecting the set S into the subspace spanned by the
vector v, denoted ProjvpSq and taking its length. By linearity of expectation, we can
write

T
ÿ

t“1

}spΩtq ´ spΩt´1q}2 ď n
2
Ev„UnifpSn´1qlvpΩ1q ´ lvpΩT q

ď n
2
Ev„UnifpSn´1q2dHpΩ1,ΩT q “ ndHpΩ1,ΩT q (6.17)

where the last inequality comes from noticing that according to the definition of the
Hausdorff distance, it holds Ω1 Ă ΩT ‘ dHpΩ1,ΩT qB} ¨ }2 . Similarly, we obtain

T
ÿ

t“1

}spΩtq ´ spΩt´1q}2 ď n
2
Ev„UnifpSn´1qlvpΩ1q ď n

2
diampΩ1q.

A General Approach to Finite Time Competitive Consistent Model Chasing
In contrast to the stricter notion of γ-competitiveness, we can give a simple and
general selection rule which is always pγ, 1q-finite time competitive:

Definition 6.11 (Projection-based chasing). Pick θt P PpDtq always such that for
some fixed γ ą 0, at every time-step t holds dpθt, θt´1q ď γdpPpDtq, θt´1q.

This projection-based chasing algorithm might not always be tractable to implement,
since it requires solving a potentially non-convex optimization problem with γ

relative accuracy. However, it is trivially pγ, 1q-finite time competitive and describes
a simple blueprint to design a general CMC algorithm SEL, that is allowing for
potentially infinite dimensional metric spaces and non-convex consistent sets PpDtq.
Combined with a suitable oracle π, the resulting online control algorithm AπpSELpq

provides finite mistake guarantees for objectives G according to Theorem 39.

6.7 Main Results
Assuming that π and SEL meet the required specifications, we can provide the
overall guarantees for the algorithm. Let pD,Ω, dq be a compact parametrization
of a given uncertainty set F . Let π be robust per Definition 6.3 and SEL return
consistent parameters per Definition 6.9. We apply the online control strategy
AπpSELq described in Algorithm 2 to system xt`1 “ f˚pt, xt, utq with unknown
dynamics f˚ P F and denote px,uq as the corresponding state and input trajectories.
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We organize our results by the strictness of requirements we impose on the model-
chaser SEL. The quality of the overall guarantee depends greatly on the type of
chasing property that SEL provides. Provided that the oracle guarantees certain
robustness requirements, the chasing conditions θ Ñ θ8 (A) and dpθt, θt´1q Ñ 0

(B) assure that the overall amount of mistakes
ř8

t“0 Gtpxt, utq is finite. What’s
more, if SEL provides competitive chasing properties such as γ-competitiveness or
pγ, T q-finite-time competitiveness, then we can provide stronger guarantees, which
state uniform bounds on the worst-case number of mistakes.

Stability and Boundedness of Closed Loop Trajectories
Regardless of the objective G, we can provide worst-case state norm guarantees for
AπpSELq in a normed state space pX , } ¨ }q, if SEL is a competitive or a finite-time
competitive CMC algorithm and π provides sufficient robustness guarantees for a
single time-step transition:

Theorem 36. Assume that π : Ω ÞÑ K is pα, βq-single step robust in the space
pX , } ¨ }q. Then, the following state bound guarantees hold:

(i) If SEL is a γ-competitive CMC algorithm, then:

@t : }xt} ď eαγϕpΩq

ˆ

e´t
}x0} ` β

e

e ´ 1

˙

.

(ii) If SEL is a pγ, T q-finite-time competitive CMC algorithm, then:

}x}8 ď inf
0ăµă1

´

1 ` pαϕpΩqq
n˚
¯

maxt
β

1´µ
, }x0}u ` β

n˚
ÿ

k“0

pαϕpΩqq
k

where n˚ “ NpΩ, µ
αγ

q and ϕpΩq denotes the diameter of Ω.

Proof. Part 1: In each time-step t, it holds xt`1 “ fpt, xt, πrt, θtsq for some
f P Dpθt`1q. Therefore, the following inequality holds at each time-step:

}xt`1} “ }fpt, xt, πrθtspt, xtqq} ď αdpθt`1, θtq}xt} ` β. (6.18)

We apply Lem. 55 with the substitution st :“ }xt}, δt :“ αdpθt`1, θtq and c :“ β, to
obtain

}xt} ď eαL
ˆ

e´t
}x0} ` β

e

e ´ 1

˙

. (6.19)
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Part 2: We follow the proof technique used in the main result of [65] to prove
boundedness. Given a closed-loop trajectory x, at each time-step t holds xt`1 “

fpt, xt, πrθtspt, xtqq for some f P Dpθt`1q. Take an arbitrary time step T . Define I
the set of all indeces k ă T for which holds }xk`1} ą µ}xk} ` β. Notice that for
each k R I holds }xk`1} ď µ}xk} ` β while for k P I we have at least the inequality
}xk`1} ď αdiampΩq}xk} ` β. Now, for each k P I holds

µ}xk} ` β ă }xk`1} “ }fpk, xk, πrθkspk, xkqq} ď αdpθk`1, θkq}xk} ` β,

which leads to dpθk`1, θkq ą
µ
α
. Now, the pγ, T q finite-time competitive property

ensures that dpθk, θk`1q ď γdHpPpDkq,PpDk`1qq. We can therefore conclude that:
µ
αγ

ă 1
γ
dpθk, θk`1q ď dHpPpDkq,PpDjqq, for j ą k. (6.20)

Hence, tPpDkq | k P Iu is a µ
αγ

-separated set in Ω. Therefore, |I| ď NpΩ, µ
αγ

q.
Recall again that for each k R I holds }xk`1} ď µ}xk} ` β while for k P I it holds
}xk`1} ď αdiampΩq}xk} ` β. Following the same arguments as in the Appendix
of [65], we obtain the presented } ¨ }8-bound on x.

Lemma 55. Let s “ ps0, s1, . . . q, δ “ pδ0, δ1, . . . q be non-negative scalar sequences
such that sk`1 ď δksk ` c, with c ě 0 and

ř8

t“0 δt ď L. Then st is bounded by:

st ď eL
`

e´ts0 ` c e
e´1

˘

.

Proof. First, we apply the comparison lemma. Therefore, sk is bounded above by a
sequence γk with the dynamics γk`1 “ δkγk ` c, where γ0 “ s0. Hence, it suffices
to bound the sequence γk in order to obtain a bound on sk. Writing out γt yields:

γt “

t´1
ź

k“0

δks0 ` c

˜

1 `

t´1
ÿ

j“1

t´1
ź

k“j

δk

¸

.

Recall the basic fact 1 ` x ď ex and notice that each product
śt´1

k“j δk can be
bounded as:

t´1
ź

k“j

δk “

t´1
ź

k“j

p1 ` pδk ´ 1qq ď

t´1
ź

j“0

exppδk ´ 1q “ exp

˜

t´1
ÿ

j“k

pδk ´ 1q

¸

ď exppL ´ tq “ e´t`keL.

Therefore we obtain our desired result by bounding γt at each time-step t as:

γt ď ď e´teLs0 ` c

˜

1 `

t´1
ÿ

j“1

e´j

¸

eL

ď e´teLs0 ` ceL
8
ÿ

j“0

e´j
ď e´teLs0 ` c

eL`1

e ´ 1
.
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Notice that the above worst-case guarantee holds for arbitrarily large diameter
ϕpΩq of the parameter space Ω, and applies naturally to scenarios where initially
stabilizing control policies do not exist. To this end, it is also important to verify
that the required property defined in Def. 6.6 does not imply existence of an initially
stabilizing control policy.

Finite Mistake Guarantees for Asymptotic CMC

The guarantees stated in Theorem 37 and Theorem 6.7 can be interpreted as global
asymptotic stability of the output, since Gtpxt, utq. To provide this guarantee, we
only impose weak asymptotic conditions on π and SEL: SEL needs to either satisfy
the convergence condition (A) or (B), while π has to be either robust or uniformly
robust+cost-invariant for some non-zero margin, respectively.

Theorem 37. Assume that SEL is a consistent model chaser (CMC) of type (A) and
that π is an ρ-robust oracle for an objective G. Then, the amount of mistakes we
make online is guaranteed to be finite; i.e., for any closed-loop trajectory px,uq

holds
ř8

t“0 Gtpxt, utq ă 8.

Proof. Denote the online data at time t as the tuple Dt :“ pd1, . . . , dtq. Per
assumption, we know that PpD8q is non-empty and that lim

tÑ8
θt “ θ8 P P8.

Moreover, there exists some f 1 P Dpθ8q such that the trajectories satisfy for all
time t ě 0 the dynamics xt`1 “ f 1pt, xt, utq. Since θt Ñ θ8, there exists a time
T , such that for all t ě T , dpθt, θ8q ă ρ, i.e., for t ě T , we apply policies πpt; θtq

with parameters ρ-close to θ8. Per definition, this tells us that for the time interval
I “ rT,8q, the tail of the trajectory xI , uI is contained in SIrρ; θ8s. Since we
assume that π is a ρ-robust oracle for G, (Def. 6.4), we have to conclude that
ř8

t“T Gtpxt, utq ď M for some finite numberM . This proves the desired claim since
ř8

t“0 Gtpxt, utq ď
řT´1

t“0 Gtpxt, utq ` M .

The next theorem states that we can guarantee finite mistakes even for the weakest
chasing condition (B), provided π satisfies a stronger robustness property.

Theorem. Assume that SEL is a consistent model chaser (CMC) of type (B) and
that π is an uniformly ρ-robust, cost-invariant oracle for an objective G. Then, the
amount of mistakes we make online is guaranteed to be finite, i.e., for any closed-loop
trajectory px,uq holds

ř8

t“0 Gtpxt, utq ă 8.
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Proof. Pick an arbitrary 0 ă ε ă ρ and some T ě Mπ
ρ . There exists N ą 0 such

that @t ě N : distpPpDtq, θtq ď ε{4 and dpθt, θt´1q ď ε{p2T q. Pick an arbitrary
time-step s ą N ` T , there exists a θ1

s P PpDsq such that dpθ1
s, θsq ď ε{4. Consider

now the time steps t in the time window Is “ rs ´ T, s ´ 1s. Per assumption and
triangle inequality, we have, for all t P Is:

dpθ1
s, θtq ď dpθ1

s, θsq `

s´1
ÿ

j“t

dpθj`1, θjq ď
ε

4
` ps ´ tq

ε

2T
ď
ε

4
` T

ε

2T
ď ε ă ρ.

Since θ1
s P PpD8q, the truncation (xIs , uIs) is contained in the set SIsrρ; θ1

ss. Since
we picked T to be larger than the mistake constant Mπ

ρ , there has to be at least one
time-step s1 P I prior to s at which Gspxs, usq “ 0; otherwise we would contradict
the ρ-robustness property. Now, due to the cost-invariance of π, we have to conclude
that for any time-steps k P Is, k ě s1 after s1 holds Gkpxk, ukq “ 0; this also includes
time-step s, hence Gspxs, usq “ 0 is true. Finally, since s was arbitrarily chosen in
the interval rN ` T ` 1,8q, we know that

ř8

t“N`T`1 Gtpxt, utq “ 0. Therefore, the
total cost is

ř8

t“0 Gtpxt, utq “
řN`T

t“0 Gtpxt, utq and is finite.

It is important to point out that the above asymptotic guarantees do not require ρ to
be known, merely that there exist some non-zero ρ for which π is ρ-robust. Next, we
discuss that the stronger notion of (finite-time)-competitive chasing allows to bound
the total number of mistakes uniformly over all closed-loop trajectories.

Mistake-Bound Guarantees for γ-Competitive CMC
As discussed in Section 6.5, in cases where PpDtq have a convex representation, we
can use the Steiner point spPtq or the projection rule θt “ ProjPt

pθt´1q to design a
γ-competitive CMC-algorithm. As shown in the next theorem, SEL procedures of
this type pCq lead to a uniform bound on the total mistakes for the overall adaptive
controller AπˆSEL:

Theorem 38. Assume that SEL is a γ-competitive CMC-algorithm and that π is an
uniformly ρ-robust oracle for an objective G. Then, for any trajectory px,uq holds

8
ÿ

t“0

Gtpxt, utq ď Mπ
ρ

´

2γ
ρ
diampΩq ` 1

¯

.

Proof. The parameter sequence θ provided by SEL satisfies θt P PpDtq, @t and
řT

t“1 dpθt, θt´1q ď γdHpΩ,PpDT qq. Set t0 “ 0 and construct the index-sequence
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t0, t1, t2, . . . , tN as follows:

tk :“

#

min
␣

t ď T
ˇ

ˇ t ą tk´1 and dpθt, θtk´1
q ą 1

2
ρ
(

, if k ą 1

0 , if k “ 0
(6.21)

until for someN , the condition t ď T, t ą tN , dpθt, θtN q ą 1
2
ρ becomes infeasible and

we terminate the construction. Define the intervals Ik :“ rtk, t̄ks, where t̄k :“ tk`1´1

for k ă N and t̄N “ T . The intervals I0, . . . , IN are a non-overlapping cover of the
time-interval r0, T s:

ď

0ďkďN

Ik “ r0, T s, Ik X Ik´1 “ H, @k : 1 ď k ď N.

Let pa0, a1, . . . , aNq and pb0, b1, . . . , bNq be the parameters selected at the start and
end of each interval Ik, respectively, ak :“ θtk and bk :“ θt̄k . Per construction, we
know that

dpak, θtq ď 1
2
ρ for all t P Ik (6.22)

dpak, ak´1q ą 1
2
ρ for all 1 ď k ď N. (6.23)

Inequality (6.22) states that dpak, bkq ď 1
2
ρ and implies via triangle inequality that

for all t P Ik holds

dpθt, bkq ď dpθt, akq ` dpak, bkq ď ρ.

Since we picked bk “ θt̄k and the procedure SEL assures θt̄k P PpDt̄kq, this means
that for some f 1 P Drbks, the partial trajectory pxIk , uIkq satisfies the following
equations for the time steps t P Ik:

xt`1 “ f 1
pt, xt, utq, ut “ πrθtspt, xtq. (6.24)

We can therefore conclude that pxIk , uIkq P SIkrρ; bks. Hence, for the time-frame Ik

the trajectory is consistent with the nominal closed-loop w.r.t. to system parameter
bk and therefore the partial trajectory pxIk , uIkq has to obey the conditions implied
by ρ-robustness of the oracle, i.e., we have to conclude that

ř

tPIk Gtpxt, utq ď Mπ
ρ .

Applying this reasoning to each of the N intervals Ik, we observe that the total
mistakes can be at most Mπ

ρ pN ` 1q:

T
ÿ

t“0

Gtpxt, utq “

N
ÿ

k“0

ÿ

jPIk

Gjpxj, ujq ď Mπ
ρ pN ` 1q. (6.25)
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The last step is to bound the number of intervals N , for which we leverage the
chasing-property of the selection SEL. We established in (6.23) that over each interval
SEL must have changed the consistent parameter by at least 1

2
ρ. From this we notice

that N has to scale with the total path-length of our selection and obtain our bound
by leveraging the property of γ-competitiveness. The following chain of inequalities

1
2
ρN ď

N
ÿ

k“1

dpak, ak´1q ď

N´1
ÿ

k“0

ÿ

tPIk

dpθt, θt`1q ď

T
ÿ

t“1

dpθt, θt´1q ď γdHpΩ,PpDT qq

leads to the bound N ď 2γ
ρ
dHpΩ,PpDT qq. We substitute this into (6.25) to obtain

the desired bound on the total number of mistakes:
T
ÿ

t“0

Gtpxt, utq ď Mπ
ρ p2γ

ρ
dHpΩ,PpDT qq ` 1q

ď Mπ
ρ p2γ

ρ
dHpΩ,PpD8qq ` 1q ď Mπ

ρ p2γ
ρ
diampΩq ` 1q. (6.26)

We can take the limit T Ñ 8 and arrive at the desired result.

Mistake-Bound Guarantees for Finite-Time Competitive CMC
The strong competitiveness property is not necessary if, instead, stronger conditions
on the oracle can be enforced. The next result states that if the oracle π is cost-
invariant we can weaken the assumptions on SEL and still provide finite mistake
guarantees.

Theorem 39. Assume that SEL is pγ, T q-finite-time competitive CMC-algorithm
(type D) and that π is an uniformly ρ-robust, cost-invariant oracle for an objective G.
Then for any closed-loop trajectory holds:

8
ÿ

t“0

Gtpxt, utq ď Mπ
ρ pNpΩ, r˚

q ` 1q , r˚ :“
1

2

ρ

γ

T

Mπ
ρ ` T

(6.27)

where NpΩ, rq denotes the r packing number of Ω as defined in (6.12).

Proof. We discuss only some of the main steps and postpone the discussion of the
full proof to Section 6.A of the appendix. The first part of the proof follows a
construction similar to that in Theorem 38 to arrive at an intermediate bound

T
ÿ

t“0

Gtpxt, utq “

N
ÿ

k“0

ÿ

jPIk

Gjpxj, ujq ď Mπ
ρ p|S| ` 1q,

where S is defined as a subset of intervals defined by the condition:

S :“ tIk | Gtk`1
pxtk`1

, utk`1
q “ 1u.
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The second part of the proof is concerned with showing that S is a finite set and
bounding the cardinality |S|. The main argument we use here is similar in spirit to
the one used to establish the boundedness of N in the proof of Theorem 38: We
show that due to the finite-time competitive chasing property, within each interval
Ik “ rtk, t̄ks our selection θt changes at least by a fixed nonzero amount, which leads
to a fixed separation of size ε

ε “
1

2

ρ

γ

T

Mπ
ρ ` T

in Hausdorff metric between consistent sets PpDtk
q at the beginning of the interval

Ik and the consistent set PpDt̄kq at the end of the interval Ik. Moreover, it turns
out that this observation proves the existence of a ε-separated set of size |S| that
is contained within Ω. Due to the compactness of Ω, this proves that S is a finite
set and that its cardinality is bounded above by the ε packing number of the set
ΩzPpD8q Ă Ω.

Definition 6.12 ([46]). Let pM, dq be a metric space and S Ă M a compact set.
For r ą 0, define r-packing number of S, denoted by NpS, rq, as:

NpS, rq :“ max
!

n P N
ˇ

ˇ

ˇ Dθ1, . . . , θN P S s.t. dpθi, θjq ą r, @i ‰ j
)

.

The bound of Theorem 39 is much larger than the one of Theorem 38, however it
compensates for in generality.

The stronger result Theorem 38 requires SEL to be a γ-competitive CMC-algorithm;
however, it is unclear whether γ-competitiveness can be achieved for the case of
non-convex consistent sets. On the other hand, the generic projection-based strategy
presented in Section 6.5 describes a universal finite-time competitive CMC algorithm
SELp, regardless of whether the consistents are convex or not. Hence, assuming
that we have a suitable oracle π, it suffices to couple the oracle with the simple
projection-based CMC SELp in order forAπˆSELp to inherit the guarantees of Theorem
39.

Mistake Guarantees with Locally Robust Oracles

The worst-case bound shown in Theorem 36 can be directly used to extend the result
of Theorem 38 to problem settings where we only have access to locally robust
oracles.
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Theorem 40 (Corollary of Thm. 38). Consider the setting and assumptions of
Thm.38 and Thm.39, but relax the oracle robustness requirements to corresponding
local versions and enforce the additional oracle assumption stated in Thm.36. Then
all guarantees of Thm.38 and Thm.39 still hold, if we replace Mπ

ρ in Thm.38 and
Thm.39, respectively, by Mπ

ρ pR8q and Mπ
ρ pRw

8q and where:

R8 “ eαγϕpΩq

ˆ

}x0} ` β
e

e ´ 1

˙

Rw
8 “ inf

0ăµă1

´

1 ` pαϕpΩqq
n˚
¯

maxt
β

1´µ
, }x0}u ` β

n˚
ÿ

k“0

pαϕpΩqq
k

and n˚ “ NpΩ, µ
αγ

q and ϕpΩq denotes the diameter of Ω.

Writing out the inequalities derived from Theorem 38, i.e., the guarantees for
combining γ-competitive model chasers SEL with locally uniformly ρ-robust and
pα, βq-single step stable oracles π, we obtain the mistake bound:

8
ÿ

t“0

Gtpxt, utq ď Mπ
ρ pR8q

´

2γ
ρ
diampΩq ` 1

¯

. (6.28)

On the other hand, the guarantee of Theorem 39 transforms into the bound:
8
ÿ

t“0

Gtpxt, utq ď Mπ
ρ pRw

8q pNpΩ, r˚
q ` 1q , r˚ :“

1

2

ρ

γ

T

Mπ
ρ pRw

8q ` T
(6.29)

6.8 Discussion and Extension of Main Results
Theorem 38 and 39 can be invoked on any learning and control method that
instantiates AπpSELq. It offers a set of sufficient conditions to verify whether a
learning agent AπpSELq can provide mistake guarantees: We need to show that w.r.t.
some compact parametrization pT,Ω, dq of the uncertainty set F , π operates as a
robust oracle for some objective G, and that SEL satisfies strong enough chasing
properties. Theorem 38 also suggests a design philosophy of decoupling the learning
and control problem into two separate problems while retaining the appropriate
guarantees: (1) design a robust oracle π for a specified control goal G; and (2)
design an online selection procedure SEL that satisfies the chasing properties defined
in Def. 6.9. Nominal control design methods which have guarantees only in the
small uncertainty settings can be naturally extended to the large uncertainty setting.
Provided that the design method can be embedded as an oracle sub-routine πrc and
that we can find a suitable SEL routine, the meta-algorithm AπrcpSELq provides a
simple extension of the original method to the large uncertainty setting.
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ρ-robust @θ P Ω : supτ,γě0m
π
ρpτ, γ; θq ă 8

uniformly ρ-robust Mπ
ρ pτq :“ supγě0,θPΩm

π
ρpτ, γ; θq ă 8

locally ρ-robust @γ ě 0, θ P Ω : supτě0m
π
ρpτ, γ; θq ă 8

locally uniformly ρ-robust @γ ě 0 : Mπ
ρ pτ, γq :“ supθPΩm

π
ρpτ, γ; θq ă 8

Table 6.2: Notions of oracle-robustness adjusted for finite-time guarantees

Using the theorems of the previous section, any nominal guarantees which can
be paraphrased as OC-MG stability and mistake guarantees are carried over by
AπrcpSELq to the large uncertainty setting.

Finite-Time Mistake Guarantees
At the cost of adding notational overhead, we can extend the definitions of the oracle
robustness properties, as shown in Def. 6.13 and Table 6.2, to be more granular and
allow for finite-time evaluation.

Definition 6.13 (mπ
ρ definition for finite-time guarantees). Equip X with some norm

} ¨ }. For each ρ, γ ě 0, τ P N and θ P Ω, define the quantity mπ
ρpτ, γ; θq as

mπ
ρpτ, γ; θq :“ sup

I“rt,t`τ s

sup
pxI ,uIqPSIrρ;θs,}xt}ďγ

ÿ

tPI
Gtpxt, utq.

With respect to this adjusted set of notations, the proofs of Theorem 38 and Theorem
39 remain, up to some notational substitution, logically the same. Hence, for example,
we can state the inequalities (6.28) and (6.29) as the following finite-time guarantees:

τ
ÿ

t“0

Gtpxt, utq ď Mπ
ρ pτ, R8q

´

2γ
ρ
diampΩq ` 1

¯

. (6.30)

τ
ÿ

t“0

Gtpxt, utq ď Mπ
ρ pτ, Rw

8q pNpΩ, r˚
q ` 1q , r˚ :“

1

2

ρ

γ

T

Mπ
ρ pRw

8q ` T
(6.31)

From Mistake Guarantees to Cost Guarantees
The presented mistake guarantees can be used to obtain worst-case guarantees for
more general cost-functions. We highlight how to perform this reduction next.

Assume we are given a non-negative and possibly time-dependent cost function
C : N ˆ X ˆ U Ñ R`

0 . Then we can define a family tGrεsuεPR` of objectives
Grεs : N ˆ X ˆ U Ñ t0, 1u indexed over the open interval ε P p0,8q, such that
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for a trajectory px,uqJ, the sum
ř8

t“0 Gtrεspxt, utq represents the total number
of time-steps t at which we incurred a cost Cpt, xt, utq larger than ε. Suitably,
we call this the total number of ε-mistakes. We make this definition precise
using characteristic functions. Let χA : R ÞÑ t0, 1u denote the characteristic
function for a subset A Ă R of the real line and χA :“ χAA be the corresponding
complementary function, i.e., χApsq “ 0, @s P A and χApsq “ 1, @s R A. Then, for
each ε P R, ε ą 0, the ε-objective Grεs is defined for each t P N, x P X , u P U as
Grεspt, x, uq :“ χr0,εspCpt, x, uqq.

Using the following Lemma, which is proven in the Appendix, we can reformulate
the running cost in terms of the mistake bounds.

Lemma 56. For any scalar sequence a P ℓ1 holds:

}a}1 “

ż 8

0

8
ÿ

k“0

χr´s,sspakqds “

ż }a}8

0

8
ÿ

k“0

χr´s,sspakqds (6.32)

Proof. See Appendix 6.A

As direct application of the above, we have the following relation between running
cost and number of ε-mistakes:

t
ÿ

k“0

Cpk, xk, ukq “

ż 8

0

t
ÿ

k“0

χr0,εspCpk, xk, ukqqdε “

ż 8

0

t
ÿ

k“0

Grεspk, xk, ukqdε

“

ż maxkďt Cpk,xk,ukq

0

t
ÿ

k“0

Grεspk, xk, ukqdε

We can associate the family of objectives tGrεsuεPR` with a family of corresponding
comparison functions tmπ

ρ rεsuεPR` and tMπ
ρ rεsuεPR` – each mπ

ρ rεs,Mπ
ρ rεs quantify-

ing the nominal mistake bounds of a fixed oracle π. Then, for suitable π and model
chasers SEL, we can integrate the finite-time mistake bounds over ε and use the above
equivalence, in general, to derive finite-time worst-case cost performance guarantees
for AπˆSEL.

As an example, as a corollary of Theorem 38, and its local extension Theorem 40,
we obtain the following result:

Theorem 41. Let C : NˆX ˆU Ñ R`
0 be a non-negative, possibly time-dependent

cost function and let tGrεsuεPR` be the corresponding family of objectives as defined
above. Let π : Ω Ñ K be an oracle with the pα, βq-stability property.
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Assume that SEL is a γ-competitive CMC-algorithm and that for each objective Grεs,
the oracle π is locally uniformly ρ-robust, with corresponding comparison functions
mπ

ρ rεs,Mπ
ρ rεs. Then, for any closed-loop trajectory px,uq and τ P N holds

τ
ÿ

t“0

Cpt, xt, utq ď

´

2γ
ρ
diampΩq ` 1

¯

ż 8

0

Mπ
ρ rεspτ, R8qdε,

where R8 :“ eαγϕpΩqp}x0} ` β e
e´1

q.

Safety Guarantees Using Families of Lyapunov Functions
Def. 6.6 is closely related to ISS-stability [75] and is favored in our derivations as
a simple substitute for generic ℓ8-stability conditions. However, Def. 6.6 requires
that all nominal closed-loops CLπrωs share V pxq “ }x} as a common ISS-Lyapunov
function, which can seem a rather restrictive condition. Nevertheless, we can replace
Def. 6.6 with a more flexible definition without significant repercussions on the
theoretical results.

Assume that for each ω P Ω, there exists a family tV p ¨ |ωquωPΩ of non-negative
functions V p ¨ ;ωq : NˆX Ñ R` and a scalar positive-definite, increasing bĳective
function h : R`

0 Ñ R`
0 such that the following conditions are met:

1. For all ω P Ω, t, x P X :

V pt, x | ωq ď hp}x}q

2. For some µ ą 0, α ą 0 and all ω1, ω2 P Ω, f P Drω2s, t P N, x P X :

Vt`1pfpt, xt, πrω1sq | ω2q ď pe´µ
` αdpω1, ω2qqVtpxt | ω1q ` 1

If we assume an oracle π to satisfy the above set of conditions for some µ, α,
tV pa;ωq | ω P Ωu, h, and couple it with a model chaser SEL, we can obtain
theoretical safety guarantees analogous to Theorem 36 and finite mistake guarantees
analogous to Theorem 40. A thorough discussion of these extensions is being
prepared for publication.

Extension to Unbounded Uncertainties
Surprisingly, knowledge of a compact parametrization of F is not a fundamental
necessity for the PixSel framework. In fact, we can extend the approach to a large
class of problem settings with unbounded uncertainty sets, and still retain the innate
ability to provide worst-case guarantees.
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Algorithm 4 Meta-Model Chaser SEL8

Require: Family of consistent model chasers tSELiuiPN corresponding to a filtration tΩiu

Initialization: D0 Ð tu, i “ 0, x0 is set to initial condition ξ0
1: for t “ 0, 1, . . . to 8 do
2: Dt Ð append pt, xt, xt´1, ut´1q to Dt´1 (if t ě 1) Ź update history
3: θt Ð SELirDts

4: while θt “ H do
5: i Ð i ` 1 Ź switch to next CMC
6: θt Ð SELirDts Ź reattempt selection
7: end while
8: Output consistent parameter θt
9: end for

Consider the more general setup, where we have a (non-compact) metric space
pΩ8, dq representing the space of parameters, and a set-valued map D : Ω8 Ñ 2F

representing the set of dynamics Drωs Ă F associated with each parameter ω P Ω,
such that tDrωsuωPΩ8

covers the uncertainty F .

Now, suppose we can construct a filtration tΩiuiPN of compact subsets Ωi Ă Ω8

which covers Ω8, i.e., i ă j ùñ Ωi Ă Ωj and
Ť

iPN Ωi “ Ω8, and assume
that for each Ωi we have a consistent model chaser SELi, which has the ability to
notify us, for example by returning the empty set H, the moment the set of consistent
parameters PipDtq Ă Ωi becomes empty at time t.

Remark. As a simple example, consider P “ R, dpx, yq “ |x ´ y| and define Ωi

as the interval r´i, is Ă R. Then tΩiuiPN is a filtration of compact subsets which
covers R.

Given such a family of model chasers tSELiu, we can construct a Meta-chasing-
algorithm SEL8, which initializes as SEL0, and thereafter switches to the implemen-
tation of the next model chaser SELi`1, once the consistent set of the previous model
chaser PipDtq becomes empty. This process is diagrammed in Algorithm 4.

Despite its simplicity, the Meta-chasing algorithm SEL8 inherits any chasing-
properties which hold uniformly over the family of model chasers tSELiuiPN. This
inheritance relationship rests on a simple observation. If f˚ is contained in F ,
then there has to exist some i˚ P N for which f˚ P Drθ˚s for some θ˚ P Ωi˚; it is
immediately clear that asymptotic chasing properties, i.e., statements (A) and (B)
of Def. 6.9, hold true for the model-chaser SEL8 if the same properties are true for
the entire CMC-family tSELiuiPN. In regards to the competitive chasing properties
(C) and (D), we can easily see that if each model chaser in the family tSELiuiPN is
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γ-competitive / pγ, T q-f.t.-competitive, then SEL8 is at the very least i˚γ-competitive
/ pi˚γ, T q-f.t.-competitive. Unfortunately, since i˚ is not known in general, we can
not expect to have knowledge of the former constants in advance. Nevertheless in
the case of convex consistent sets, there are cases in which the competitive ratio is
preserved. A thorough theoretical discussion of this case is being prepared for future
publication.

Oracle Policies with Memory and System Level Controllers
The previous results assume that π returns static policies of the type pt, xq ÞÑ u.
However, this assumption is only made for ease of exposition. All previous results
also hold in the case where π returns policies that have an internal state, as long
as we can define the internal state to be shared among all oracle policies; namely,
as part of the oracle implementation online, we update the state zt at each step t
according to some fixed update rule h

zt “ hpt, zt´1, xt, ut, . . . , x0, u0q,

and control policies πrθs, θ P Ω are maps pt, x, zq ÞÑ u which we evaluate at time t
as ut “ πrθspt, xt, ztq.

The results presented in Chapter 4 provide a natural and seamless way to encapsulate
families of system level controllers as oracles and instantiate corresponding PixSel
Algorithms with worst-case guarantees. A powerful application, which fuses the
results of Chapter 4 and 6, is presented in our recent work [9]. In said publication, we
provide the first fully distributed and scalable control algorithm capable of learning
to stabilize unknown large-scale linear systems in the adversarial setting.

To summarize our findings and recap some of the main results, we review our design
framework for a simple, yet non-trivial example.

6.9 Design Example: Control of Uncertain Scalar Linear System
Let us consider a very basic problem setting, wherein we are given an unknown
scalar linear system

xk`1 “ α˚xk ` β˚uk ` wk “: f˚
pk, xk, ukq,

s.t. |wk| ď γ˚ ď η ă 1 and α˚ P r´a, as, β˚ P r1, 1` 2b∆s, and our goal is to reach
the target interval XT “ r´1, 1s and remain there. We can equivalently phrase this
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as to achieve the objective G “ pG0,G1, . . . q with cost functions

Gtpx, uq :“

#

0, if |x| ď 1

1, else
, @t ě 0

after finitely many mistakes.

Compact Parametrization of Uncertainty Set. We define our parameter space as
Ω “ r´a, asˆr1, 1`2b∆s, and define the true parameter as θ˚ “ pθ˚

x, θ
˚
uq “ pα˚, β˚q

and parametrize the uncertainty set as F “ YθPΩDrθs with

Drθs :“ tt, x, u ÞÑ θxx ` θuu ` wt | }w}8 ď ηu.

We choose the metric as dpθ, θ1q :“ |θx ´ θ1
x| ` a|θu ´ θ1

u|. The diameter of the
metric space pΩ, dq is ϕpΩq “ dpp´a, 1q, pa, 1 ` 2b∆qq “ 2pa ` b∆q.

A Locally Uniformly Robust Oracle. As an oracle, we take the simple deadbeat
controller: πrθspt, xq :“ ´pθx{θuqx. It can be easily shown that π is a locally
ρ-uniformly robust oracle for G for any margin in the interval p0, ρ̄q, ρ̄ :“ 1 ´ η, by
noticing the inequality:

|xt`1| ď |θ˚
xxt ` θ˚

uπrθtspt, xtq| ` η “ |ppθ˚
x ´ θx,tq ´ pθ˚

u ´ θu,tq
θx,t
θu,t

qxt| ` η

(6.33)

ď p|θ˚
x ´ θx,t| ` |θ˚

u ´ θu,t||
θx,t
θu,t

|q|xt| ` η ď dpθ˚, θtq|xt| ` η. (6.34)

To obtain the mistake functionMπ
ρ for a fixed ρ P p0, 1´ηq, notice that if dpθ˚, θtq ď ρ,

then

|xt`1| ď ρ|xt| ` η “ ρ|xt| ` p1 ´ ρq 1
1´ρ

η ô |xt`1| ´
η

1´ρ
ď ρp|xt| ´

η
1´ρ

q

ñ |xt| ď
η

1´ρ
` ρtp|x0| ´

η
1´ρ

q.

Notice that

η
1´ρ

` ρt|x0| ă 1 ô t ą
logp|x0|q

logpρ´1q
`

logp1´ρq´logp1´ρ´ηq

logpρ´1q
looooooooomooooooooon

cpρq

which implies the mistake function

Mπ
ρ pγq ď

logpγq

logpρ´1q
` cpρq. (6.35)
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Construction of Consistent Sets via LPs. The consistent set for the data set DN

of N observed system transitions px`
i , xi, uiq can be written as an intersection of Ω

with 2N halfspaces:

PpDNq “
␣

θ P Ω | s.t.: @1 ď i ď N : x`
i ´ η ď θxxi ` θuui ď x`

i ` η
(

.

It can be constructed online and is convex.

Competitive Consistent Model Chasing via Steiner Point. We can construct a
competitive CMC-algorithm by using algorithms for competitive NCBC. Assume
we use the Steiner point and denote the selection procedure SELs as in (6.12). SELs
is a n

2
“ 1-competitive CMC algorithm in euclidean space, and since the euclidean

norm is bounded above by the 1-norm, SELs is also 1-competitive w.r.t. the metric
space pΩ, dq.

Mistake Guarantee for AπpSELsq. We apply the extension of the results in
Theorem 40. It is easy to see that our π satisfies the extra condition with α “ 1,
β “ η. Assuming |x0| “ 0, the constant γ8 takes the value

γ8 “ eαϕpΩq
p}x0} ` β e

e´1
q “

ηe
e´1

eϕpΩq. (6.36)

For ease of exposition, assume that η “ e´1 and that we picked ρ “ e´1. This gives
us Mπ

ρ pγ8q “ ϕpΩq ´ logpe ´ 2q and substituting all constants gives us a finite
mistake guarantee for the objective G:

8
ÿ

t“0

Gtpxt, utq ď Mπ
ρ pγ8q

´

2L
ρ

` 1
¯

«ϕpΩqp1 ` 2eϕpΩqq

“ 8epa ` b∆q
2

` 2pa ` b∆q.

The above inequality shows that the worst-case total number of mistakes grows
quadratically with the size of the initial uncertainty in the system parameters θx and
θu. Notice, however, that the above inquality holds for arbitrary large choices of a
and b∆. Thus, AπpSELsq gives finite mistake guarantees for this problem setting for
arbitrarily large system parameter uncertainties.

This small-scale example serves as a warm-up for the the next section where we
discuss applications for learning and control of uncertain robotic systems.
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6.10 Application to Uncertain Robotic Systems
We walk through an example of how to design adaptive controllers AπpSELq for a
class of robotic systems with the goal of learning to follow a trajectory. We discuss
how to embed well-known control methods in robotics such as robust oracles π and
couple it with SEL selections based on competitive algorithms (NCBC). Consider
a general case of online control of uncertain fully-actuated robotic systems. Most
robotic systems can be modeled via the robotic equation of motion [98]:

Mηpqq:q ` Cηpq, 9qq 9q ` Nηpq, 9qq “ τ ` τd (6.37)

where q P Rn is the multi-dimensional generalized coordinates of the system, 9q and
:q are its first and second (continuous) time derivatives, Mηpqq,Cηpq, 9qq,Nηpq, 9qq

are matrix and vector-value functions that depend on the parameters η P Rm of
the robotic system, i.e., η comes from a parametric physical model. Often, τ is
the control action (e.g., torques and forces of actuators), which acts as input of the
system. Disturbances and other uncertainties present in the system can be modeled as
additional torques τd P Rn that perturb the equations. Moreover, one can derive from
first principles [98], that for many robotic systems (for example robot manipulators)
the following two properties hold:

9Mηpqq ´ 2Cηpq, 9qq is skew-symmetric (6.38a)

Mηpqq:q ` Cηpq, 9qq 9q ` Nηpq, 9qq “ Ypq, 9q, :qqη “ τ ` τd. (6.38b)

The second equation says that the left-hand-side of equation (6.37) can always be
factored into a n ˆ m matrix of known functions Ypq, 9q, :qq and a constant vector
η P Rm. Assume that the disturbances are bounded at each time t, as |τdptq| ď ω,
ω P Rn and where the inequality should be read entry-wise. Consider that we are
given a system with unknown η˚, ω˚, where the parameter θ˚ “ rη˚;ω˚s is known
to be contained in a bounded set Ω. Assume that our goal is to follow a desired
trajectory qd, which is given as a function of time qd : R ÞÑ Rn, within the precision
ϵ. Denoting x “ rqJ, 9qJsJ as the state vector and xd “ rqJ

d , 9qJ
d sJ as the desired state,

we want the state trajectory of the system xptq to satisfy:

lim sup
tÑ8

}xptq ´ xdptq} ď ϵ. (6.39)

As is common in practice, we assume we can observe the sampled measurements
xk :“ xptkq, xdk :“ xdptkq and apply a constant control action (zero-order-hold
actuation) τk :“ τptkq at the discrete time-steps tk “ kTs with small enough
sampling-time Ts to allow for continuous-time control design and analysis.
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Control Objective Gϵ. We phrase trajectory tracking as a control objective Gε

with the cost functions

Gϵ
kpx, uq :“

#

0, if }x ´ xdk} ď ϵ

1, else
, @k ě 0,

which we wish to achieve online with finite mistake guarantees against the uncertainty
set F “

Ť

θPΩDrθs, where:

Drθs :“ tk, xk, τk ÞÑ f˚
pxk, τk, τdp ¨ q; θq | τd : r0, Tss ÞÑ Rn, }τd}8 ď ωu.

The function f˚ denotes the discretized dynamics of (6.37) w.r.t. the sampling time
Ts.

Robust Oracle Design. We outline how to design a robust oracle based on a
well-established robust control method for robotic manipulators proposed in [118].
Define v, a and r as the quantities

v “ 9qd ´ Λ 9q, a “ 9v, r “ 9̃q ` Λq̃, q̃ “ q ´ qd (6.40)

and denote Y1pq, 9q, v, aq as the corresponding n ˆ m matrix which allows the
factorization:

Mηpqqa ` Cηpq, 9qqv ` Nηpq, 9qq “ Y1
pq, 9q, v, aqη. (6.41)

Based on the control law presented in [118], we define the oracle πrθspk, xkq for
x “ rq; 9qs and θ “ rη;ωs through the equations:

πrθspk, xkq “ Y1
pqk, 9qk, vk, akqpη ` ukq ´ Kωrk, (6.42)

u “

#

´ρ Y1Jrk
}Y1Jrk}2

if }Y1Jrk}2 ą ε

´
ρ
ε
Y1Jrk if }Y1Jrk}2 ď ε

(6.43)

where Λ, Kω ą 0 are diagonal positive definite design and where ρ, ε are design
variables. Following the analysis in [118] and [40] one can design a suitable gain
Kω in terms of ω, such that π is a uniformly ρ robust oracle for Gϵ in the compact
parametrization pD,Ω, dq.

Remark 42. The analysis in [118] shows that uniform ultimate boundedness
properties of the tracking error x̃ “ rq ´ qd; 9q ´ 9qds are preserved, if we replace η in
equation (6.42) with some perturbation η ` δptq, }δptq}2 ď ρ for all t. In [118], the
disturbance τd is assumed to be zero, i.e., the ω “ 0 case, and the gain K0 is left
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as a tuning variable. However, with standard Lyapunov arguments, the analysis of
[118] can be extended to consider the nonzero disturbance case and specify gains
Kω for each ω such that the above oracle π becomes a uniformly ρ robust oracle for
the above objective Gϵ: For each ω, increase the gain Kω until the uniform ultimate
boundedness guarantee implies the desired ϵ-tracking behavior described by Gϵ.

Constructing Consistent Sets. The linear factorization property (6.38b) can be
exploited to construct convex consistent sets. DenoteD as an uncertain robotic system
(6.38) with some convex compact uncertainty Ω in euclidean space pRm`n, } ¨ }2q.
Recall that we parameterize the bound on the disturbance by ω P Rn, i.e., |τd| ď ω

holds entry-wise and that our system parameter is represented by θ “ rηJ, wJsJ P Ω.
At the sampled time-steps tk, equations (6.38b) say that measurements qk, 9qk, :qk, τk

enforce the following entry-wise condition on consistent parameters η and ω:

τk ´ ω ď Ypqk, 9qk, :qkqη ď τk ` ω. (6.44)

In matrix form, the consistent set is captured via the following relationship:
«

Ypqk, 9qk, :qkq ´In

´Ypqk, 9qk, :qkq ´In

ff

looooooooooooomooooooooooooon

Ak

«

η

ω

ff

ď

«

τk

´τk

ff

loomoon

bk

. (6.45)

Consequently, we have a concrete construction of consistent set at each time t:

PpDtq “

"

θ “

«

η

w

ff

P Rm`n

ˇ

ˇ

ˇ

ˇ

At

«

η

w

ff

ď bt

*

X PpDt´1q, PpD0q “ Ω (6.46)

whereAk “ Akpxk, ukq andbk “ bkpxk, ukq are matrix and vector of “features” con-
structed from current control policy and state at time t via the known functional form
of Y. Data sets Dk are tuples of the form Dk “ pd1, . . . , dkq, dk “ pqk, 9qk, :qk, τkq.

Designing a Competitive Chasing Selection. The above consistent sets are simply
an intersection of halfspaces, hence we are in the setting of Assumption 6.6 and
we can instantiate competitive selections from the (NCBC) competitive greedy and
Steiner point algorithm algorithms:

• Greedy Projection. SELp selects θt “ SELppDtq as the solution to the
following convex optimization problem, which can be solved efficiently:

θt “ argmin
θPRpXΩ

1

2
∥θ ´ θt´1∥2 ,

s.t: Aiθ ď bi, @i “ 1, . . . , t.
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Algorithm 5 design of AπpSELp{sq for ϵ-trajectory tracking for fully actuated robots
1: for t “ 0, Ts, . . . , kTs to 8 do
2: measure qk, 9qk, :qk
3: update polyhedron PpDkq as in (6.46)
4: select according to (6.12a) or (6.12b) Ź selection SELp or SELs
5: choose τk “ Y1pqk, 9qk, vk, akqpηk ` ukq ´ Kωk

rk using (6.40), (6.42) Ź use
oracle πpxk; θkq

6: end for

• Steiner-Point. Alternatively, SELs outputs the Steiner point of the polyhedron
PDpDtq, which in principle requires calculating an integral over multidimen-
sional sphere. Fortunately, as shown in [13], the Steiner point can be efficiently
approximated by solving randomized linear programs; an approach we take in
our empirical validation.)

Mistake Guarantee for AπpSELp{sq Since π is a robust oracle for G and both
SELp and SELs are γ-competitive CMC algorithms in pD,Ω, } ¨ }q for some γ ą 0,
our result Theorem 38 tells us that AπpSELpq and AπpSELsq guarantees upfront
finiteness of the total number of mistakes

ř8

k“0 Gϵ
kpxk, τkq, which implies the desired

tracking behavior guarantee lim supkÑ8 }x´xd} ď ϵ. Moreover, if we can provide a
bound M on the mistake constant Mπ

ρ ă M , we obtain from Theorem 38 an explicit
performance bound for the tracking performance in the form of the mistake guarantee

8
ÿ

k“0

Gϵ
kpxk, τkq ď Mp

2γ
ρ
diampΩq ` 1q.

6.11 Empirical Validation: Cart-Pole Swing-Up on a Constrained Track
We illustrate the practical potential for of our approach on a challenging cart-pole
swing-up goal from limited amount of interaction. Compared to the standard cart-
pole domain commonly used in RL [32], we introduce modifications motivated by
real-world concerns in several important ways:

1. Goal specification: the goal is to swing up and balance the cart-pole from a
down position, which is significantly harder than balancing from the up-right
position (the standard RL benchmark).

2. Realistic dynamics: we use a high-fidelity continuous-time nonlinear model,
with noisy measurements of discrete-time state observations.

3. Safety: cart position has to be kept in a bounded interval for all time. Further-
more, the acceleration should not exceed a specified maximum limit.
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πrθ˚s 0 0.4 0.99 1 1

AπpSELq 0 0.2 0.8 0.95 1

T 3 s 6 s 12 s 30 s 50 s

Table 6.3: Fraction of experiments completing the swing up before time T : ideal
policy πrθ˚s vs. AπpSELq

4. Robustness to adversarially chosen system parameters: We evaluate 900
uncertainty settings, each with a different θ˚ reflecting mass, length, and
friction. The tuning parameter remains the same for all experiments. This
robustness requirement amounts to a generalization goal in contemporary RL.

5. Other constraints: no system reset is allowed during learning (i.e., a truly
continuous goal).

Our introduced modification makes this goal significantly more challenging from
both on-line learning and adaptive control perspective. Table 6.3 summarizes the
results for 900 different parameter conditions (corresponding to 900 adversarial
settings). It compares the online algorithm to the corresponding ideal oracle policy
πrθ˚s shows that the online controller is only marginally slower. See Appendix 6.11
and [5] for detailed description of our setup and results.

We employ well-established techniques to synthesize model-based oracles. Expert
controllers are a hybrid combination of a linear state-feedback LQR around the
upright position, a so-called energy-based swing-up controller (see [17]) and a
control barrier function to respect the safety constraints [7]. As also described in
[48], adding constraints on state and acceleration makes learning the swing-up of
the cart-pole a significantly harder goal for state-of-the-art learning and control
algorithms.

Table 6.3 compares the on-line algorithm with the corresponding ideal oracle policy
πrθ˚s showing that the on-line controller is only marginally slower.

6.A Proofs
Theorem. Assume procedure SEL is pγ, T q-finite-time competitive for some γ ą 0,
T ě 1 and that procedure π is a uniform ρ-robust, cost-invariant oracle for G. Then,
the total number of mistakes is guaranteed to be bounded above by:

8
ÿ

t“0

Gtpxt, utq ď pNpΩ˝, r˚
q ` 1qMπ

ρ ď pNpΩ, r˚
q ` 1qMπ

ρ ,
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where Ω˝ :“ ΩzintpPpD8qq and r˚ :“ 1
2
ρ
γ

T
Mπ

ρ `T
.

Proof. Denote x,u to be some fixed online trajectories and denote θ as the corre-
sponding parameter sequence selected by procedure SEL. The sequence θ satisfies
θt P PpDtq and

řt2
t“t1`1 dpθt, θt´1q ď γdpPpDt2q,PpDt1qq for all t2 ´ t1 ď T . For

some time-step τ ą 0, we derive bounds on the mistakes
řτ

t“0 Gtpxt, utq. Set t0 “ 0

and construct the index-sequence t0, t1, t2, . . . , tN as follows:

tk :“

#

min
␣

t ď τ
ˇ

ˇ t ą tk´1 and dpθt, θtk´1
q ą 1

2
ρ
(

, if k ą 1

0 , if k “ 0
(6.47)

until for someN , the condition t ď τ, t ą tN , dpθt, θtN q ą 1
2
ρ becomes infeasible and

we terminate the construction. Define the intervals Ik :“ rtk, t̄ks, where t̄k :“ tk`1´1

for k ă N and t̄N “ τ . The intervals I0, . . . , IN are a non-overlapping cover of the
time-interval r0, τ s:

ď

0ďkďN

Ik “ r0, τ s, Ik X Ik´1 “ H, @k : 1 ď k ď N.

Let pa0, . . . , aNq and pb0, . . . , bNq be the parameters selected at the start and end of
each interval Ik, respectively: ak :“ θtk and bk :“ θt̄k . Per construction, we know
that

dpak, θtq ď 1
2
ρ for all t P Ik (6.48)

dpak, ak´1q ą 1
2
ρ for all 1 ď k ď N. (6.49)

Inequality (6.22) states that dpak, bkq ď 1
2
ρ and implies via triangle inequality that

for all t P Ik holds

dpθt, bkq ď dpθt, akq ` dpak, bkq ď ρ.

Since we picked bk “ θt̄k and the procedure SEL assures θt̄k P PpDt̄kq, it means that
for some fk P Drbks, the partial trajectory pxIk , uIkq satisfies the following equations
for the time-steps t P Ik:

xt`1 “ f 1
pt, xt, utq, ut “ πrθtspt, xtq. (6.50)

We can therefore conclude that pxIk , uIkq P SIkrρ; bks. We apply to conclude that
ÿ

tPIk

Gtpxt, utq ď Mπ
ρ (6.51)
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for each k P t0, . . . , Nu. Now, define S as the following collection of intervals

S :“ tIk | Gtk`1
pxtk`1

, utk`1
q “ 1u, (6.52)

i.e., all intervals Ik where at the start of the next interval Ik`1 the cost is 1. Combining
this with the former bound (6.51), we can decompose the total mistake sum as

T
ÿ

t“0

Gtpxt, utq “
ÿ

tPI0

Gtpxt, utq `
ÿ

IjPS

ÿ

tPIj`1

Gtpxt, utq `
ÿ

IjRS

ÿ

tPIj`1

Gtpxt, utq

loooooooooomoooooooooon

0

“
ÿ

tPI0

Gtpxt, utq `
ÿ

IjPS

ÿ

tPIj`1

Gtpxt, utq ď Mπ
ρ p|S| ` 1q . (6.53)

Notice that the last term
ř

IjRS
ř

tPIj`1
Gtpxt, utq in the first equation is zero because

Ij R S implies that the next interval Ij`1 start with zero cost; due to the cost-
invariance property it follows that

ř

tPIj`1
Gtpxt, utq “ 0. The remainder of the

proof is concerned with bounding the cardinality of the collection S.

Bounding |S|: We know that for each l in the range 1 ď l ď |Ik|, there exists at least
one sub-interval I 1

l Ă Ik, |I 1
l | “ l of length l, such that
ÿ

tPI1

dpθt, θt`1q ą 1
2
ρ l

p|Ik|`lq
. (6.54)

The above has to be true, since otherwise we would contradict (6.49):

• Let I 1
1, . . . , I 1

m, m “ r|Ik|{ls, |I 1
i| “ l, I 1

i Ă Ik be an overlapping cover of Ik,
then

dpak, ak`1q ď
ÿ

tPIk

dpθt`1, θtq ď

m
ÿ

j“1

ÿ

tPI1
j

dpθt`1, θtq ď 1
2
ρ
Q

|Ik|

l

U

l
|Ik|`l

(6.55)

ď 1
2
ρ
´

|Ik|

l
` 1

¯

l
|Ik|`l

“ 1
2
ρ, (recall that ak`1 “ θt̄k`1)

(6.56)

which is a contradiction to (6.49)

Hence, we can always pick a sequence of sub-intervals rtlk, t̄
l
ks “ Iplq

k Ă Ik (either of
length l or identical to Ik if |Ik| ď l) such that

ÿ

tPIplq
k

dpθt, θt`1q ą 1
2
ρ l

|Ik|`l
. (6.57)
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Notice that if |Ik| ď l, we pick Iplq
k “ Ik, and therefore the above inequality is

vacuously true since,
ř

tPIk dpθt, θt`1q ě dpak, ak`1q ą 1
2
ρ ě 1

2
ρ l

|Ik|`l
. Now, the

pγ, T q-finite-time competitiveness property ensures that for all k and all t ě t̄k ` 1

holds:

1
2
ρ T

|Ik|`T
ă

ÿ

hPIpT q

k

dpθh, θh`1q ď γdHpPpDtkq,PpDt̄k`1qq ď γdHpPpDtkq,PpDtqq

ùñ dHpPpDtkq,PpDtqq ą 1
2
ρ
γ

T
|Ik|`T

where dHpPpDτkq,PpDτ̄k`1qq ď dHpPpDτkq,PpDtqq follows from nestedness. From
now on, we use the abbreviation Pt to refer to the sets PpDtq.

Recall the definition S :“ tIk | Gtk`1
pxtk`1

, utk`1
q “ 1u and let kj denote the j-th

interval that belongs to S, i.e., Ikj Ă S. Now set l “ T and define Sj as a subsequence
of P1,P2, . . . as follows:

Sj :“

$

&

%

Pt̄kj
if xt̄kj P Xt̄kj

PtTkj
if xt̄kj R Xt̄kj

.
(6.58)

We will show that this collectionP “ tS1, S2, . . . u of sets Sj is a 1
2
ρ
γ

T
Mπ

ρ `T
- separated

set in the metric space p2Ω, dHq via the following inequality:

@j ă i : dHpSj, Siq ą 1
2
ρ
γ

T
Mπ

ρ `T
.

This is proven below:

• Recall SEL is defined to always pick θt P PpDtq and π is ρ-uniformly robust
and cost-invariant. Due to the SEL property, there always exists a function
f 1 P Drθtk`1

s such that xtk`1
“ f 1pt̄k, xt̄k , πrθt̄kspt̄k, xt̄kqq. On the other hand,

because of the π property, the statement xtk`1
R Xtk`1

implies that one of the
following two has to hold at time t̄k:
1. Assume xt̄k P Xt̄k , then it has to hold that dpθt̄k , θtk`1

q ą ρ. Notice due to
pγ,Hq-w.c. property, that dpθt̄k , θtk`1

q ď γdHpPt̄k ,Ptk`1
q which gives us

dHpPt̄k ,Ptk`1
q ą 1

2
ρ
γ
.

2. Assume xt̄k R Xt̄k , then by Def. 6.5, it follows that |Ik| ď Mπ
ρ , which then

implies that dHpPtTk
,Ptk`1

q ą 1
2
ρ
γ

T
|Ik|`T

ě 1
2
ρ
γ

T
Mπ

ρ `T
.

• Taking the minimum of both cases we can see that dHpSj,Ptkj`1
q ą 1

2
ρ
γ

T
Mπ

ρ `T
.

Due to nestedness, it holds for i ą j that Si Ă Ptkj`1
Ă Sj . Thus, it holds

dHpSj, Siq ě dHpSj,Ptkj`1
q and we arrive at the separation condition:

@j ă i : dHpSj, Siq ą 1
2
ρ
γ

T
Mπ

ρ `T
.
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We conclude from Lem. 50, that |S| “ |P | is bounded by the packing number
NpΩ, 1

2
ρ
γ

T
Mπ

ρ `T
q. Substituting into the bound (6.53) and taking the limit τ Ñ 8, we

get the total number of mistakes as:
8
ÿ

t“0

Gtpxt, utq ď Mπ
ρ

´

NpΩ, 1
2
ρ
γ

T
Mπ

ρ `T
q ` 1

¯

.

A Tighter Bound. We can define Ω˝ “ ΩzintpPpD8qq and S˝
j “ SjzintpPpD8qq

and notice that S˝
j is non-empty for all j: S˝

j and PpD8q are closed, so Sj Ă PpD8q

implies that S˝
j contains at least the boundary of PpD8q. Moreover, we can verify

that the corresponding collection P ˝ “ tS˝
1, S

˝
2, . . . u of sets So

j is still a 1
2
ρ
γ

H
Mπ

ρ `H
-

separated set in the compact metric space p2Ω
˝

, dHq. Therefore we can improve the
previous mistake guarantee and state the tighter inequality:

8
ÿ

t“0

Gtpxt, utq ď

´

NpΩzintpPpD8qq, 1
2
ρ
γ

H
Mπ

ρ `H
q ` 1

¯

Mπ
ρ .

Let χA : R ÞÑ t0, 1u denote the characteristic function for a subset A Ă R of
the real line and χA :“ χAA be the corresponding complementary function, i.e.,
χApsq “ 0, @s P A and χApsq “ 1, @s R A.

Lemma 57. For any scalar sequence a P ℓ1 holds:

}a}1 “

ż 8

0

8
ÿ

k“0

χr´s,sspakqds “

ż }a}8

0

8
ÿ

k“0

χr´s,sspakqds (6.59)

Proof. We first prove the result for the finite sequence case and for non-negative
sequences, which is stated in equation (6.61); the general result then follows as a
corollary. Let a P RN be a non-negative scalar sequence and define Qapt, rq, for
r ě 0 as the number of indeces i ď t for which the sequence is larger than r, i.e.,

Qapt, rq :“ |ti | i ď t and ai ą ru| , (6.60)

then our goal is to show that

t
ÿ

k“0

ak “

ż 8

0

Qapt, rqdr “

ż maxkďt ak

0

Qapt, rqdr. (6.61)

Let aÒ

0, . . . , a
Ò
t denote the sequence we obtain from rearranging the sequence ar0,ts in

an increasing order. Thus, aÒ

0 ď aÒ

1 ď ¨ ¨ ¨ ď aÒ
t . It is clear that rearranging does not
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change the sum, hence it holds:
řt

i“0 ai “
řt

i“0 a
Ò

i . Now notice that we can rewrite
the sum in terms of the increments aÒ

i ´ aÒ

i´1 as follows:

t
ÿ

k“0

aÒ

i “ aÒ

0 `

t
ÿ

k“1

˜

aÒ

0 `

k
ÿ

j“1

paÒ

j ´ aÒ

j´1q

¸

“ aÒ

0pt ` 1q `

t
ÿ

j“1

t
ÿ

k“j

paÒ

j ´ aÒ

j´1q

“ aÒ

0pt ` 1q `

t
ÿ

j“1

´

aÒ

j ´ aÒ

j´1

¯

pt ` 1 ´ jq (6.62)

where we obtain the last equality through changing the order of summation. Observe
that the function Qapt, ¨ q : r ÞÑ Qapt, rq is the following piece-wise constant
non-increasing function:

Qapt, rq “

$

’

&

’

%

t ` 1 if r P r0, aÒ

0q

t ` 1 ´ j if r P raÒ

j , a
Ò

j´1q for j ě 1

0 if r P raÒ
t ,8q

Integrating over the domain r0,8q shows that
ş8

0
Qapt, rqdr is equal to the right-hand

side of (6.62) and concludes the proof of the partial result (6.61).

For the final step, notice that for Qapt, rq ` Q´apt, rq “
řt

k“0 χr´r,rspakq and
therefore by (6.61), we have

t
ÿ

k“0

|ak| “

ż maxkďt |ak|

0

t
ÿ

k“0

χr´s,sspakqds (6.63)

Furthermore, notice that supt

řt
k“0 χr´s,sspakq is finite for all s ą 0, because

otherwise it would contradict a P ℓ1:

• Assume there exists some s1 ą 0 for which
řt

k“0 χr´s1,s1spakq grows unbounded
in t, then it means that there are infinitely many elements taju which are
bounded below as aj ą s1; this contradicts

ř8

k“0 |ak| ă 8.

It is also clear that
ř8

k“0 χr´s,sspakq “ 0 for any s ě }a}8 and that the right-hand
side of (6.63) is always bounded above }a}1. Hence, by taking the limit t Ñ 8 in
(6.63), we obtain our final result (6.59).

6.B Oracle for Cartpole-Swing up with Constraints
Next, we describe the oracle we used to instantiate our approach AπpSELq for the test
of swinging-up the cart pole on a constrained track. The overall control strategy is a
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hybrid combination of a linear state-feedback LQR around the upright position, a
so-called energy-based swing-up controller (See [17]) and a control barrier-function
to respect the safety constraints [7].

For convenience of the reader we recall the nonlinear dynamics of the cart pole
system:

pM ` mq:x ´ ml:ϕ cospϕq ` ml 9ϕ2 sinpϕq ´ bx 9x “ F (6.64)

l:ϕ ´ g sinpϕq ´ bϕ 9ϕ “ :x cospϕq.

Let x and 9x be the position and velocity of the cart and ϕ, 9ϕ the angle and angular
velocity of the pole. F is the force onto the cart pole and serves as our control input
to the system. Throughout the discussion ā and d̄ are design parameters, where ā
denotes the maximal cart acceleration allowed, and d̄ be the maximum distance the
cart is allowed to move from the center.

Model-Based Oracle for Cart-Pole Swing Up
The outermost layer of the control strategy is partial feedback linearization. Let
Fdp:x, 9x, ϕ, 9ϕ, 9xq be the force F we need to apply at time t in order to achieve a
desired cart acceleration of :xd. Multiply the second equation of (6.64) by ml cospϕq

and add it to the first, to see that Fd has to be chosen as:

Fdp:xd, 9x, ϕ, 9ϕ, 9xq “ pM ` m sinpϕq
2
q:xd ´ mg cospϕq sinpϕq ` ml 9ϕ2 sinpϕq ´ bx 9x.

(6.65)

By choosing F “ Fdp:xd, 9x, ϕ, 9ϕ, 9xq, we can now treat the desired acceleration :xd as
our new control input. With respect to our new input :xd, we can simplify the original
equations (6.64) to

:x “ :xd (6.66)

l:ϕ ´ g sinpϕq ´ bϕ 9ϕ “ :xd cospϕq. (6.67)

The swingup controller consists now of three separate control laws that are later
combined.

• Around up-right position: static linear LQR controller If the pole has small
enough kinetic energy and is close to the upright position, we simply choose
:xd to be LQR-state feedback controller based on the system (6.66) linearized
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around the equilibrium position x “ 0, 9x “ 0, ϕ “ 0, 9ϕ “ 0. The policy then
takes the form

:xd,LQR “ ´KLQRpθqz.

• Swing up-controller: energy-based controller. The Swing-Up controller is
based on an elegant energy-based approach by [17], in which we simply choose
:xd to control the total normalized energy

Epϕ, 9ϕq “
l

2g
9ϕ2

` cospϕq (6.68)

of the pole. In-depth derivation can be found in [17] and :xd takes the form:

:xd,swing “ ´Satā

ˆ

1

2
γ| cospϕq|pEpϕ, 9ϕq ´ 1qsignp 9ϕ cospϕqq

˙

(6.69)

where Satā is the saturation function which saturates at the max specified
acceleration ā.

• Wrapping a safety controller. As part of our oracle policy, we also use a control
barrier function controller that prevents us from triggering the safety policy.
We do this simply by internally overriding our swing-up :xd,swing or balancing
:xd,LQR terms, if we get too close to the boundary of r´xmax, xmaxs. To this
end, define Bpx, 9xq as the barrier function

Bpx, 9xq “
1

2ā
9x| 9x| ` x

and define :ϕmax :“ āg{l ˚ sinp30˝q.

The full description of the oracle policy is mapped out in Algorithm (6).

The controller switches to an LQR if the system is close to the upright position, and
otherwise defaults to the swing up controller that brings the pendulum to the right
energy level. A correction is performed to the previous control action depending
on the barrier-function value |Bpx, 9xq|. As |Bpx, 9xq| gets closer to the boundary
d̄´ ϵsafe, the controller prioritizes safety and overwrites the previous planned control
action. If x exceeds the buffer d̄ ´ ϵsafe, then a safe policy is called, which brings
the cart position back to the region r´d̄ ` ϵsafe, d̄ ´ ϵsafes.

Selection Process SEL
We apply the approach presented in the main paper Section 6.10 to obtain poly-
topes of consistent parameters of Pt for the lumped parameters p “ rmc `
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Algorithm 6 oracle policy πrθs under potential safety policy πsafe override

Input: z “ rx, ϕ, 9x, 9ϕs, parameters θ :“ rM,m, l, bx, bθs, ϵsafe
Output: F
if |x| ă d̄ ´ ϵsafe then

if | 9ϕ2{:ϕmax| ă 60˝ and cosp30˝{:ϕmax ` ϕsignp 9ϕqq ą cosp30˝q and | ´

KLQRpθqz| ď ā then
:xd “ ´KLQRpθqz

else
:xd “ ´Satār1

2
γ| cospϕq|pEpϕ, 9ϕq ´ 1qsignp 9ϕ cospϕqqs

end if
:xd,back “ ´ā signp 9xq

λ “
|Bpx, 9xq|

d̄´ϵsafe

if Bpx, 9xq ě 0 then
:xd Ð p1 ´ λ2q:xd ` λ2mint:xd, :xd,backu

else
:xd Ð p1 ´ λ2q:xd ` λ2maxt:xd, :xd,backu

end if
F “ Fdp:xd, zq

else
F “ πsafetypzq

end if

mp,mpl, bx, l, bθ, τd,x, τd,θs. We use randomized LPs [13], to approximate the Steiner
point of the polytope Pt and select the corresponding oracle policy πrθts as described
in the meta-algorithm 2.

6.C Mistake Guarantees vs Sublinear Regret
A common performance metric in online learning for control is phrased in terms
of the regret RpT q. For our general problem setting, we show that sublinear regret
does not imply finite mistake guarantees, however finite mistake guarantees do imply
sublinear regret.

Regret Definition
Assume we are given some cost function C : X ˆ U ÞÑ R` and the system
xt`1 “ f˚pt, xt, utq, x0 “ ξ0. Assume that some "ideal" policy π˚ would generate
the trajectory x˚

t , u˚
t , while the online algorithm A, characterized by the sequence of

policies, produces xt, ut. The optimal total cost of J˚pT q at time T is defined as
J˚pT q :“

řT
k“0Cpx˚

k, u
˚
kq. The regret RpT q of A usually refers to the sum of costs

of the online algorithm up to time T minus the sum of costs that the optimal policy
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π˚ would achieve 3:

RpT q :“
T
ÿ

k“0

Cpxk, ukq ´ J˚
pT q. (6.70)

Sublinear regret is defined as follows.

Definition 6.14. The regretRpT q is called sublinear ifRpT q “ opT q, or equivalently:

lim
TÑ8

1

T
RpT q “ lim

TÑ8

1

T

T
ÿ

k“0

pCpxk, ukq ´ Cpx˚
k, u

˚
kqq “ 0. (6.71)

The slower RpT q grows with T , (for example OplogpT qq), the faster convergence we
can guarantee to the above limit.

Sublinear Regret Does Not Imply Bounded Cost
Sublinear regret is a common way to measure the performance of online learning
and control algorithms. Ideally, we would expect the sublinear regret to subsume
some more basic performance criteria such as the boundedness of the online cost,
that is, supk |Cpxk, ukq ´ Cpx˚

k, u
˚
kq| ă 8. However, simple derivations show that

without additional assumptions, sublinear regret growth is not sufficient to show cost
boundedness. The reason for that is intrinsic to the very definition of regret, and
simple real-analysis arguments will suffice to demonstrate that.

Abbreviate ck :“ Cpxk, ukq, c˚
k :“ Cpx˚

k, u
˚
kq and define the sequences

sk :“ ck ´ c˚
k (6.72)

mk :“
1

k

k
ÿ

j“0

pck ´ c˚
kq “

1

k

k
ÿ

j“1

sk. (6.73)

Now, sublinear regret is defined as the condition lim
kÑ8

mk “ 0, while bounded cost
considers the statement sup

k
|sk| ă 8.

The next counter examples show that these statements are not related; The first
example shows that sublinear regret does not imply finiteness of the sequence |sk|;
the second shows that the boundedness of |sk| does not imply sublinear regret.

1. lim
kÑ8

mk “ 0 ­ùñ sup
k

|sk| ă 8.

3Not the most widespread definition, but the most suited for adaptive control setting. See, for
example, [143].
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Proof. Consider sk, where sen “ n and otherwise 0. Define n̄pkq :“ tlogpkqu,
then

mk ď mn̄pkq “
1

en̄pkq

n̄pkq
ÿ

i“1

i “
n̄pkqpn̄pkq ` 1q

2en̄pkq
.

This shows limkÑ8 mn̄pkq “ 0, but sk is unbounded.

2. For all ε ą 0: supk sk ´ infk sk ă ε ­ùñ mk converges.

Proof. Define sk as the sequence

p1, δ, 1, 1, δ, δ
looooomooooon

6

, 1, . . . , 1
loomoon

6

, δ, . . . , δ
loomoon

6
looooooooooooooooomooooooooooooooooon

18

, 1, . . . , 1
loomoon

18

, δ, . . . , δ
loomoon

18

, . . . ,

loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

2ˆ3n

1, . . . , 1
loomoon

2ˆ3n

, δ, . . . , δ,
looomooon

2ˆ3n

. . .

with δ “ 1 ´ ε. From the above pattern, it becomes apparent that the
corresponding mk is satisfied for all n:

m2ˆ3n “ 1 ´ ε{2 m4ˆ3n “ 1 ´ ε{4, (6.74)

hence mk does not converge, yet supk sk ´ infk sk ă ε.

Remark 43. The above arguments still hold if we change sk andmk to the definitions

s1
k :“ |Cpxk, ukq ´ Cpx˚

k, u
˚
kq| m1

k :“
1

k

k
ÿ

j“0

|Cpxk, ukq ´ Cpx˚
k, u

˚
kq| “

1

k

k
ÿ

j“1

s1
k.

Sublinear Regret Does Not Imply Finite Mistakes, Finite Mistakes Imply
Sublinear Regret
In our problem setting, the costsCpx, uq are represented by Gpx, uq, which are t0, 1u-
valued cost functions. Moreover, we compare to an oracle-policy π˚ which guarantees
at mostMπ

ρ mistakes i.e.,
ř8

k“0 c
˚
k ď Mπ

ρ . Trivially, finite mistakes implies sublinear
regret: If it holds that

ř8

k“0 ck ă M , then 1
T

řT
k“0pck ´ c˚

kq ď M
T

Ñ 0. However,
the opposite is not true. Consider as an example the following sequence for ck:

c “ 0 , 1
loomoon

2

, 0 , 0 , 0 , 1
looooomooooon

4

, 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1
looooooooooooooomooooooooooooooon

8

, . . . , 0 , . . . , 1
loooomoooon

2k

, . . .

The total mistakes
řT

t“1 ck “ OplogpT qq grow unbounded, but we still have
limtÑ8 mk “ 0.
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