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ABSTRACT

Over the past few decades, our physical and digital worlds have become increasingly
intertwined and reliant on each other. Advancements in areas such as machine
learning, online optimization, and control theory, along with ubiquitous access to
computational power, have played a crucial role in this technological evolution. As a
result, we are now moving towards a future where complex and intelligent dynamical

systems, with humans in the loop, govern our daily lives.

Building advanced control systems is a critical step in this journey, as they enable
swift and data-informed decision-making. However, as we aim to create even more
sophisticated closed-loop systems, we must proceed with a careful balance of ambition
and caution. While the benefits of these interconnected systems are abundant and
our dependence on them deepens, ensuring the actual reliability and safety of the
systems becomes increasingly challenging due to the growing complexity of their
dynamics. This challenge is particularly prominent in safety-critical applications
involving physical systems, which often have strict and non-negotiable safety and
performance requirements. To establish a harmonious relationship between our
physical and digital worlds, it is crucial to develop intelligent closed-loop control

systems that are not only fast and efficient, but also reliable and fault-tolerant.

The title of this thesis, "Control of Unknown Dynamical Systems: Robustness and
Online Learning of Feedback Control," reflects the central focus of this work on
addressing this pressing challenge. The thesis aims to develop theoretical frameworks
and tools that provide insights and contribute new approaches to the design of control

systems capable of handling the inherent uncertainty in real-world dynamical systems.

The first part of the thesis focuses on the design of closed-loop systems that are
robust to dynamic uncertainty, particularly in settings involving nonlinear dynamics
and complex control constraints. The second part introduces a general framework for
learning-to-control algorithms that provide worst-case guarantees, even in scenarios
where the dynamic uncertainty is arbitrarily large. By addressing these key aspects,
this work aims to advance our understanding and capabilities in designing control

systems that can effectively deal with uncertainty.
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Notation and Definitions for Part 1

X ez Si

A[F, U]
By F
F+
Fyg

PI
Pt
Tz

CLir.k)
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Chapter 1

INTRODUCTION

Over the past few decades, the integration of our physical and digital worlds has
deepened, with advances in machine learning, online optimization, and control
theory playing pivotal roles. This progress, coupled with widespread access to
computational power, is propelling us towards a future where interconnected smart
systems, with humans in the loop, play an integral part in our lives. Understanding
this complex closed-loop system and ensuring its reliability and safety, especially
in safety-critical settings involving physical systems, is a paramount contemporary
challenge. From a system engineering standpoint, designing control systems capable
of operating in complex and unpredictable dynamic environments is an especially
difficult problem. This naturally leads to a pertinent question regarding robust system

design:

How do we design control systems for real world systems in one-shot, which

can handle large model uncertainty online, and with worst-case guarantees?

Indeed, the central focus of this thesis seeks to address this pressing question, and
contributes new approaches to the design of control systems that are capable of
handling the inherent uncertainties that come with real-world dynamical systems. Part
1 of this thesis focuses on outlining a novel method of designing closed-loop systems
that are robust to dynamic uncertainty, especially in settings involving nonlinear
dynamics and complex control constraints. Part 2 introduces a general framework for
learning-to-control algorithms that provide worst-case guarantees, even in scenarios
with arbitrarily large dynamic uncertainty. By addressing these dually-important
aspects, this work aims to advance our understanding and capabilities in designing

control systems that can autonomously and effectively deal with uncertainty.



If you would be a real seeker after truth, it is necessary that at least once in

your life you doubt, as far as possible, all things.

— René Descartes: Principles of Philosophy

1.1 Definitions and Principles of Control System Design
In this section, we lay the groundwork by outlining fundamental concepts and
terminologies, and offer a review of current control design methods. We differentiate

these methods into two categories, namely "episodic" and "one-shot" strategies.

Every real-world control design problem begins merely with an unknown dynamical
system and the aspiration to control it. As we venture into this, an almost philosophical

question arises:

"How do we rationalize our certainty and uncertainty about the un-

known?"

On the one hand, if we believe that the nature of the unknown system and the
environment is predominantly random, then it would make sense to proceed with a
probabilistic problem setup, i.e., viewing system and environment behavior as the
realizations of random processes. That being said, it is oftentimes warranted to be
more skeptical and prefer a more falsifiable, deterministic problem setup. In this
dissertation, we advocate for a deterministic view. Such perspective characterizes a
control problem using three fundamental definitions: 1. Closed-Loop Complexity:
The level of detail and class of models with which we want to describe the closed-loop
system. 2. Model Hypothesis: Formulating a set of possible models. 3. Control
Objective: Paraphrasing our objectives and requirements in control-theoretic terms.
We next discuss these terms in detail.

Deterministic Formulation of a Control Problem

A deterministic setup consists of constructing a set of candidate models and phrasing
our objectives as worst-case guarantees. Step one involves defining observation and
action spaces, then choosing a representation to describe the closed-loop system. For
example, one needs to choose whether to model the system as a linear or nonlinear
dynamical system, how best to represent interactions with the environment, and how
to impose constraints on the structure of the closed-loop system (i.e., constraints that

may arise due to technological limitations: restricted and delayed communication,
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limited and distributed computational resources, limited sensing and actuation

capabilities, etc.).

This first step in our decision-making process determines the level of model complexity.
Essentially, we’re choosing how detailed we want our representation to be of the
system’s behavior, its interaction with the controller, and the environment. This

choice will set the complexity level for the entire closed-loop system dynamics.

Concurrently, or subsequently, we postulate our model hypothesis. This hypothesis
comprises a collection of models, within which we expect at least one model to
accurately depicting the dynamics of the unknown system. The size of this set mirrors

the level of uncertainty (or confidence level) concerning our model hypothesis.

A
+ complex internal structure %
and implementation Lo}
constraints =
6
>
complex nonlinear system & 2
closed-loop x
. control [
dynamics -
CE> f———Size of Uncertainty ——|
i Sy ) & e Hypothesis of Models {2 N
nonlinear control M
simple linear system & control
closed-loop
s static / no dynamics
Space of Models
M?™ = approximate models M?# = bad models = unknown “true”/accurate models

Figure 1.1: Deterministic problem formulation: Specifying a model class and stating
a hypothesis set of possible models.

These two steps, choosing the model complexity and making a hypothesis, are
illustrated in Figure 1.1. The box €2 represents a set of models forming our model
hypothesis. The vertical axis indicates the level of complexity intrinsic to each of the
models in the set, whereas the width of the box depicts the size of our set €2, i.e., the

breadth of uncertainty of our model hypothesis.

Note that determining whether or not our uncertainty is large or small can only be
achieved once our control objectives are fully articulated. Flying a plane stably
through turbulence, operating a manufacturing plant at peak efficiency, managing
power distribution in a smart grid; many real world objectives and requirements can

be phrased in terms of closed-loop stability conditions which should remain true
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even in worst-case scenarios. This type of control objective is often referred to as
worst-case closed-loop guarantees. Some of the most common examples, which we

will focus on in this work, are listed below:

* (,-(internal)-stability: A closed-loop system is £,-internally stable [49, 77, 139,

142] if its trajectories change continuously! under /,-bounded perturbations;
that is, by adding small /,-bounded noise to every observed, controlled or

computed signal.

» Worst-Case Safety-Guarantees: Most practical safety requirements are stated

as verifiable and measurable conditions that should either always or never
hold. Very often, this can be formally translated into some ¢, -stability related
condition [8, 45, 53], which can be expressed qualitatively as the following

informal inequality
max {Risk Score R; at time t} < Safety-Threshold,

describing a worst-case ¢,,-bound on some scalar sequence {R;} quantifying

the risk or "unsafety" of the system at each time.

* Worst-Case Cost-Performance Guarantees: Many meaningful performance

metrics can be phrased in terms of some cumulative sum of cost functions
over time. Qualitatively, performance guarantees can be represented as an

inequality of the type:

Total Cost = Z {Cost C; incurred at time ¢} < Worst-Case Bound .
t

Guarantees of the above form can often be related to notions of ¢,-stability
[49, 68, 85, 142]? by expressing performance guarantees as worst-case £,-norm

bounds on some suitable scalar cost sequence {C;}.

In summary, our ground zero for control system design is a deterministic problem
formulation, which entails choosing a model representation of our closed-loop,
stating our model hypothesis €2, and translating our control objectives into suitable
desired worst-case guarantees. Next, we review existing schools of thought and
methods from literature. As illustrated in Figure 1.2, our overview will categorize
literature by whether an episodic, "learning-then-control"-type, problem setting is

assumed, or a one-shot problem setting is allowed.

'The stronger Lipshitz-continuity property corresponds with the definition of /,-finite-gain
stability, and the Lipshitz constant is called £,,-gain.
ZParticularly common are parallels to £;- and /5-stability.



Problem Definition Control Design Deployment

Control Objective Real World

Define performance and safety Control System Synthesis === Robust or Adaptive Control Architecture é
metrics for worst-case analysis

Episode ++ Episodic Approach

Represent system / controller dynamics,
interactions, implementation constraints Open / Closed-Loop Open / Closed-Loop N
Data Collection eSet ™ system Identification )
Model Hypothesis (

Specify set of models for dynamics, ( )/ === Control System Synthesis === Nominal Control Architecture q
environment, noise, disturbances, etc.

Figure 1.2: Overview of problem definition and different control design approaches.

One-Shot Approach to Control System Design

In the one-shot approach, we use the model hypothesis €2 and specified control
objectives as our basis, and, without further input, task ourselves with designing a
control algorithm that can be directly deployed on the unknown system; in other
words, our goal is to design an algorithm capable of handling model uncertainty
and feedback control decisions autonomously. In the classical control literature,
this problem setting is the core subject of the fields commonly referred to as robust
control theory (with the caveat that model uncertainty must be relatively small)
[49, 141, 142] and adaptive control theory [15].

If the level of model uncertainty is small relative to our control objectives, we
can apply methods of robust control theory literature. In robust control, synthesis
processes primarily use the same internal structure or architecture of the feedback
controller as in nominal control design. However, the feedback control law is
developed to meet our control objective concurrently on all potential models of our
assumption. Of course, these robust control design methods are only viable when

the level of uncertainty is sufficiently small.

After a certain size of uncertainty, i.e, a certain set size of our model hypothesis,
we have to drastically change the internal structure and architecture of our control
algorithm, for it has to allow for incorporating online-learning in the closed loop.
This is the canonical problem setting of the domain known as adaptive control
[14, 69, 112].

Episodic Approach to Control System Design
If we have access to a controlled environment in which we can perform experiments
and measurements of the unknown system (such as for the purpose of recording

system trajectories, etc.), we can resort to an alternative approach to control design
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that leverages a two step process rather than just "one shot": a learning phase, and a
controller synthesis phase. In the learning phase, we follow a process commonly
known as system identification [16, 88], in which we perform repeated experiments,
collect data, and apply learning algorithms to reduce the uncertainty of our initial
model hypothesis €2. Sometimes experiments are performed in closed-loop with a
stabilizing feedback controller (assumed given as part of the problem formulation);
this is referred to as closed-loop system identification [89] and is in general more
difficult than open-loop system identification due to the distributional shift caused by
the coupling of state and input signal. Particularly in the case of closed-loop system
identification, it can also make sense to repeat the data collection and estimation
process several times, wherein each round (also called episode), the experiment and
stabilizing controller are redesigned based on the most recent data. The learning
phase concludes once the system identification has made sufficient progress such that
anew model hypothesis Q" = € can be formulated (refer to Figure 1.2) with minimal
uncertainty. At this stage, we can synthesize the desired controller by choosing an

arbitrary model within €’ and designing a nominal controller specifically for it.

The episodic control design approach also commonly arises in model-based rein-
forcement learning [24, 57, 108]. Many modern learning and control algorithms

also follow similar learning-then-control design approaches [3, 4, 62, 115].

Fundamental Prerequisites and Limitations to Episodic Design Optimally, the
episodic control design is favored or paired with a single-shot method. However, the
conditions for system identification may be too time-consuming or unattainable in
reality. This includes the prerequisite of a strictly governed lab setting, essential
for conducting safe experiments and affording the flexibility to pause or terminate
the system when required. Particularly in real world applications, characterized
by complex dynamical systems and uncertain environments, the former renders an
episodic design approach impractical. Two main factors contribute to the impracticality
of an episodic design approach in such settings. Firstly, system identification becomes
quickly intractable for complex systems, particularly ones with nonlinear dynamics.
Additionally, the potential for large model uncertainty in real-time operations
necessitates the flexibility to adapt, further complicating the application of an

episodic design approach.

An additional challenge is a fundamental theoretical obstacle inherent to the de-

terministic framework. Within episodic control design, worst-case error bounds
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on the complete system identification process are mandatory to ensure worst-case
guarantees for the final control algorithm. However, achieving this is an intractable
issue even for simpler linear systems [41]. This difficulty is evident in existing
literature: probabilistic approaches offering closed-loop guarantees (stated with high
probability) are plentiful [1, 28, 43, 50, 51]. Yet, deterministic approaches providing

worst-case guarantees are scarce [35].

1.2 Major Challenges and Mission Statement

The main mission motivating this work is studying control design that can reliably
and autonomously handle the complexity and large uncertainty inherent to real world
dynamical systems. Tackling such a problem naturally calls for a one-shot design

approach, and specifically, finding answers to the following central question:

How do we design control systems in one-shot, which provide worst-case
guarantees in presence of large model uncertainty and complex closed-loop

dynamics?

At its core there are three intertwined aspects to the problem: Complex Constraints
and Dynamics, Worst-Case Guarantees, and Large Model Uncertainty. These issues

present two critical challenges existing literature has yet to adequately address.

Real World Challenges of One-Shot Control Design

Robust Control Theory for Complex Closed Loops

Complex
P Worst-Case Large
Constraints and :
. Guarantees Uncertainty
Dynamics

Guarantees for Large Model Uncertainty

Figure 1.3: Overview of major challenges.

Challenge 1: Robust Control Theory for Complex Closed-Loop Dynamics
As alluded to previously, stability analysis and control design for nonlinear and

complex systems is a core problem to consider.



8

Nonlinear dynamics in the system or controller result in overall nonlinear closed
loops and require analysis and synthesis from the nonlinear control theory literature.
Nonlinear stability analysis is based on some fundamental results in the classical
literature [77, 101, 111, 117, 124], such as Lyapunov functions, passivity, the small-
gain theorem, barrier functions [6], Poincaré maps, contraction analysis [90], and
describing functions. Among these, the Lyapunov methods are by far the most widely

used technique.

Methods for nonlinear control design can be separated into two groups: analytical
and computational. Lyapunov stability analysis and the optimal control formalism
[77, 85] have inspired most classical analytical methods such as feedback linearization,
backstepping, sliding-mode control, and gain scheduling [77, 111, 117], among
many others. With the technological breakthrough of computers in the 90s and the
rapid advancement in computational capabilities and numerical optimization since
then, computation-based control design approaches have also gained dominance.
Prominent examples of such methods are Model-Predictive Control [30, 95] and
reachability/viability-based approaches [20]. Another important line of work started
with the sum-of-squares method (SOS) developed in [99, 103], which made it
possible to compute Lyapunov functions through convex optimization and inspired
new synthesis methods such as [104, 105, 133].

However, a common limitation in almost all approaches is that they do not scale well
with system and controller complexity. We consider the following three aspects to be

particularly important:

1. High-Dimensional Systems: Most optimal control or SOS-based synthesis
procedures [19, 30, 67, 84, 85, 99, 103, 104] require solving (sometimes
repeatedly [30]) optimization problems that are only tractable for small system

dimensions.

2. Complexity of Controller Constraints: Many of the above synthesis methods
cannot incorporate additional constraints on the controller. As mentioned
above, technical limitations in practice can require us to impose structural
constraints on the implementation of the realizing controller. These constraints
are particularly common in large-scale systems, and some important ones
include communication constraints between components used for sensing or
actuation, limited actuation caused by saturation, and available computational

resources that are possibly distributed.
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3. Complexity of Controller Dynamics: Both stability analysis and control
synthesis in a nonlinear setting primarily assume that the chosen controller
is static or has a simple internal structure, such as an added state observer.
Aside from a few exceptions (often analytical methods such as backstepping),
many of the mentioned synthesis procedures, particularly computation-based
ones, do not extend past static controllers. This is partially due to the fact that
stability analysis of nonlinear closed-loop dynamics and controllers with rich
internal structures is not well-studied. However, analysis and synthesis methods
that are compatible with more complex and nonlinear control structures are
increasingly needed in many modern control applications, especially in the
rapidly growing area of learning and control [3, 5, 9, 37, 42, 59, 115]. In such
problem settings, it is not unusual for controllers to have high-dimensional
and complex internal dynamics. A common cause for this is that controller
implementations require continuous and iterative solving of multiple (possibly
interconnected and layered) tasks in closed loop, which potentially generate
high-dimensional internal states with dynamics; such tasks include planning,

machine learning, and online optimization.

Until recently [126], even for linear time-invariant systems, control design was
challenging for the above problem settings. However, the system-level approach, as
introduced in [126], enabled new efficient controller synthesis methods [66, 127]
that allowed for localized, distributed, and scalable control design in large-scale
linear systems. This was achieved by transforming constrained optimal linear control
problems into convex optimization problems over achievable closed-loop maps that
can be solved efficiently. A key component of the system-level synthesis (SLS)
procedure is that once we have solved for the desired closed-loop map, there is a

simple way to construct a controller that stably realizes this on the system.

We endorse the central idea of the system-level approach and use it in Part 1 of this
thesis as our starting point, then go further to introduce a new framework for nonlinear
control design and system analysis dedicated to addressing the aforementioned

additional challenges.

Challenge 2: One-Shot Worst-Case Guarantees vs. Large Model Uncertainty
One-shot control design, in the case of arbitrarily large model uncertainty, naturally
has to embed some kind of online learning process into the closed-loop system, i.e.,

data collection and inference is performed in closed loop, at the same time as the
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system is being controlled. This design approach is commonly taken in modern
"learning and control" literature [1, 3, 4, 37, 43, 58, 62, 115] and in the more classical
"adaptive control" literature [14, 15, 52, 69, 71, 72, 83, 112, 121, 132]. Exactly how
these two fields integrate online interference into the closed-loop, however, remains

quite different.

One-shot control design approaches in modern learning and control literature
focus exclusively on problem settings wherein the system is either perfectly known
[3,4, 37,58, 62, 115], or the model hypothesis enjoys small uncertainty. Moreover,
said literature primarily focuses on the task of regret-optimal (with respect to
some cost function) online control [1, 3, 4, 37, 42, 42, 43, 51, 62]. Furthermore,
aside from a few exceptions ([28, 76] for example), the online learning for control
literature mostly focuses on linear systems [35, 43, 62, 116] and convex cost functions.
Linear-quadratic (LQ) costs have been of particular interest: [1, 2, 42, 43, 62] study
algorithms with sublinear regret bounds, while [58, 115] present online control
algorithms with competitiveness guarantees. However, compared to the adaptive
control literature, even for linear systems, modern learning and control approaches
that provide worst-case guarantees in the large model uncertainty setting are almost

non-existent ([35]3).

In contrast, adaptive control algorithms are primarily focused on providing stability
guarantees in the presence of large model uncertainty, and less on cost performance
guarantees. Despite a long history dating back to the 1960s [23], the field of
adaptive control has not matured as much as other areas of control literature. From a
conceptual point of view, the central problem of adaptive control, that is robustness
to large model uncertainty, is clearly relevant and of interest in almost any control
application, and one would naturally expect that methods and principles of adaptive
control can be applied in a way that builds on top of existing control methods of other
areas of control; however, this is not the case. Despite some efforts to address this
[8—10], there is still no unifying framework that allows us to bridge this gap. As an
example, theoretical tools, particularly concerning robustness and stability analysis,
which are considered standard in other areas of control [6, 90, 139, 141], cannot be
applied (or have no analog) in the adaptive control literature. In particular, theory
and design methods which come with safety and cost performance under adversarial

disturbances and noise, are almost non-existent ([68]# is a rare exception).

3Proves sublinear regret and stability guarantees for a linear system with large model uncertainty.
4£1-adaptive control provides /.,-stability guarantees for linear systems and a small class of
nonlinear systems
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Reviewing the current literature, old and new, we are still very far from a unifying
theory for designing control systems with worst-case guarantees in the presence of
large model uncertainty. Part 2 of this thesis is dedicated to closing this gap (at least

partially) by introducing new theory and frameworks for control design.

1.3 Main Contributions of the Thesis
In this thesis, we aim to address the previous challenges by investigating the problem

of one-shot control design from two complementary perspectives.

Part |

Complex
Constraints and
Dynamics

Worst-case Large
Guarantees Uncertainty

Part ll, Chap. 5

Figure 1.4: Thesis overview.

In Part 1, we restrict ourselves to the small uncertainty setting and focus on developing
new theory and methods for robust control design and system analysis of closed-loop
systems with nonlinear dynamics, complex constraints and complex internal structure.
In the Part 2, we develop new theory and algorithms for the large model uncertainty
setting. In particular, we introduce a first general and modular one-shot control design
framework ("PixSel") with worst-case cost- and safety performance guarantees in
the presence of arbitrarily large uncertainty in our model hypothesis. The following
sections will delve into these topics, shedding light on our novel contributions to this

emerging interdisciplinary intersection.

Synopsis of Part I: Nonlinear Closed Loops and System Level Control

In Part 1 of the thesis we introduce a new framework for nonlinear control design
and system analysis dedicated to addressing the first set of challenges of Section 1.2.
In Chapter 2, we show that for a very general class of nonlinear systems, there is a
universal connection between the closed-loop map, the external representation of
a closed-loop as a map between input and output sequences (see Figure 1.5), and
the operators corresponding to the feedback controller and system dynamics, which
describe the behavior of the closed-loop from an internal point of view. We discuss

important equivalence relations between different representations of the closed-loop
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system via a set of characterizing operator equations. These equations and their
solution space provide useful insights for system analysis and control design, which

form the foundation of the nonlinear system level approach.

input sequence output sequence
External / outward-facing view
ErTanm e o T TR clcacaop)eystam
i Internal / inward-facing view Closed-loop trajectory of
disturbance seq. : system/controller state
initial conditions _— —>| svstem(‘plant’) j—0 — control action
noise seq. - action observation observation

External Representation Nonlinear System Level Analysis and Synthesis Internal Representation

relation between trajectories equivalence of closed-loop maps & realizing controllers dynamic equations

map between input & output seq.

Figure 1.5: Part 1: Nonlinear system level approach

The solutions, called closed-loop maps (CLM) of the characterizing operator equa-
tions, lead to concrete implementations of the realizing controller. This enables us
to reformulate control design problems equivalently in terms of CLM operators,
and realize feedback control as a structured dynamic system parameterized by the
desired CLM operator. We refer to this special control structure as the "system-level"
implementation, which turns out to offer more benefits than its intended original
purpose. In fact, parameterizing a system-level implementation with approximate
solutions of the operator equation provides a stable closed-loop system, as long as
the approximation error is small enough in an appropriate sense. This leads to a
result for robust stability analysis of nonlinear closed-loop systems, which is both

instructive and can be leveraged for robust controller synthesis.

We then proceed to investigate closed-loop maps in the special setting where we
have a linear system and nonlinear dynamic control. We define a particular class of
"blended" closed-loop maps, which are particularly suited for this problem setting,
and offer new insight into the dynamics of such closed-loops. The corresponding
system-level implementations of these blended closed loops lead to a promising
synthesis approach, which is capable of "blending" multiple linear controllers into
one nonlinear controller, thus allowing us to combine desirable properties of each

individual component.

In Chapter 3, we explore some first implications of these results, such as robust discrete-
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time trajectory tracking controllers for continuous-time nonlinear systems. Second,
we investigate some first application scenarios, namely, distributed constrained
LQR and distributed anti-windup control, where this technique naturally provides
significant benefits in the large-scale system setting over existing methods. We
describe a synthesis procedure for blended SLS controllers that outperforms any
optimal linear controller for the constrained LQR problem [36, 86, 91, 140]. We
then discuss how the blended SL approach provides a natural remedy for controller
windup in a way that is easily scalable for use in large-scale control systems. We
discuss the efficacy of the methods with simulations and show that synthesis and
implementation enjoy the same benefits as previous SLS synthesis methods: both
are distributed, handle delays, sparse actuation, and allow for localized disturbance

rejection.

In Chapter 4, we begin to shift our focus towards the problem of learning-to-control
in closed-loop; the core topic of the second part of the thesis. We investigate a
common feature found in many learning and control algorithms across various
problem settings: At each time step, we estimate a model of the system dynamics
and then switch to a control law designed for that model; i.e., we pretend to have
found a model that will remain accurate going forward. This design approach is

often referred to as "certainty equivalent" control.

We show that this general design principle imposes a certain structure on the
closed-loop maps, which we can leverage for stability analysis and algorithm design.
This leads to a sufficient condition for closed-loop stability, which admits a natural
interpretation within our framework. Decomposing the dynamics of the lumped
disturbance reveals that three factors are important for robust and stable adaptation

in closed-loop:
1. Model Sensitivity of Nominal Control: Small changes in models should cause
small changes in nominal controllers (the control law selected for each model).

2. Consistency of Models: Models should be consistent (or consistent up to some

bounded error) with our observations.

3. Select Models Efficiently: The posited model should change as little as possible.

This observation is a manifestation of a deeper concept, which we explore in Part

2, Chapter 6 of the thesis. Learning-to-control can be decomposed into control
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via Robust Oracle Design (addressing factor 1) and learning via Consistent Model
Chasing (addressing factors 2 and 3). This idea serves as the foundation for many
of the results in Part 2, where we develop the theory and framework for learning to

control largely uncertain dynamical systems with guarantees.

In the second part of the Chapter 4, we explore applications of this result for problem
settings concerned with online learning of optimal controllers. To this end, we
focus on the setting of linear time-invariant systems and linear-quadratic costs; a
problem setting that has received immense recent attention in the learning and control

literature.

Guided by the theoretical findings in Part 1, we follow the principle of certainty
equivalence to design a learning-to-control scheme with LQ-optimal system-level
controllers as our basis of nominal control laws. We perform perturbation analysis
of the solutions for the LQ-optimal control problem and show that the solutions are
Lipschitz-continuous with respect to changes in the system matrices of the linear
system (over parameter sets of equal degree of controllability). This partial result in
itself is new and characterizes the sensitivity of LQ-optimal closed-loop maps for
linear time-invariant (LTI) systems in terms of system-theoretic properties such as
controllability and observability. With this result, we analyze the closed-loop stability
of the learning-to-control scheme and provide conditions for model selections that
are sufficient for closed-loop stability. We revisit these conditions again in Part 2 in

the context of consistent model chasing.

In summary, Part 1 of this thesis discusses new fundamental connections between
closed-loop maps, realizing controllers, and system-level implementations that open
up new possibilities for the analysis and design of closed-loop control systems,
allowing for a broad range of nonlinear dynamics in the system and controller.
The strength of this approach, compared to existing ones, is that it is particularly
well-suited for the handling of complex systems, such as large-scale systems, as
well as complex control structures caused by high-dimensional internal dynamics
(such as learning and optimization in closed-loop) and/or restrictive implementation
constraints (spatially and temporally structured sensing, actuation, communication,
and computation constraints). This has proven to be a catalyst for new control

approaches, some of which we outline in the next section.

Impact, Current Work and Outlook. The results presented in Part 1 of the

thesis were inspired by our earlier work [66], which for the first time, extended the
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SLS-theory to the linear time-varying case and noticed its importance for online
learning of feedback control: [66] introduced a framework for distributed adaptive
control via system-level controllers, which allowed for incorporating online learning
in large-scale closed-loop systems with delay and communication constraints. In
later work, we leverage some of the ideas in [7] to develop sub-optimal adaptive
system-level controllers that are robust to communication dropouts. With [1], we
were the first to extend the system level analysis approach to general nonlinear systems,
and then demonstrated its use-case for nonlinear control design in the large-scale
system setting in [8]. [8] uses the CLM blending approach to formulate a nonlinear
control synthesis method that outperforms linear controllers for the constrained LQR
problem; notably, CLM blending is also shown to provide a solution for distributed
and localized anti-windup. In [6] we introduced a new way for robust control
design through a decomposition into a problem of CLM design and robust controller
implementation. The theory developed in [1] and presented in Chapter 2 has served
as a foundation for new results on nonlinear controller synthesis: [39] presents
synthesis methods for nonlinear system-level control for dynamical systems with
polynomial dynamics. [56] applies the theory to provide a characterization of the
space of nonlinear stabilizing controllers and introduces a new framework, called
neural system-level synthesis, to learn stabilizing nonlinear system-level controllers

via neural networks.

Synopsis of Part II: Learning to Control Unknown Systems
Part 2 of the thesis focuses on addressing the second set of challenges, a conundrum
we referred to as "One-Shot Worst-Case Guarantees vs. Large Uncertainty" earlier

in Section 1.2.

In contrast to Part 1, which focuses on the "small uncertainty" setting, Part 2 focuses
on the more general "large uncertainty" scenario, where the set of possible models
is bounded (in an appropriate sense), but is allowed to be arbitrarily large. Thus,
in a practical sense, we assume that the dynamics of the system are almost entirely

"unknown".

Chapter 5 explores possible trade-offs and difficulties associated with our overall
objective of handling completely unknown systems. It is clear that with larger
model uncertainty comes degradation in robustness; hence, there has to be a limit at
which model uncertainty renders possibly desired guarantees impossible to achieve.

Surprisingly, there are no clear and general answers to this problem, even for simple
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linear systems. In Chapter 5, we focus on a simple class of linear systems and explore

the following questions:

At what size of model uncertainty does "learning-to-stabilize" become an

impossible task? Is there a minimal model assumption?

The results presented in Chapter 5 are based on the work published in [65] and
develop new methods for stability analysis and control design without the need
for a model. In particular, we demonstrate the first instance of an all-model-free
formulation of controller, closed-loop dynamics, and robust stability analysis. We
end up with a positive answer for the considered class of systems. We present a simple
model-free control algorithm that is able to robustly learn and stabilize an unknown
discrete-time linear system with full control and state feedback subject to arbitrary
bounded disturbance and noise sequences. The controller does not require any prior
knowledge of the system dynamics, disturbances, or noise, yet it can guarantee
robust stability and provide asymptotic and worst-case bounds on the state and input
trajectories. To the best of our knowledge, this is the first model-free algorithm
that comes with such robust stability guarantees without the need to make any prior
assumptions about the system. Moreover, the theory and results developed provide
a first set of tools that allow for an entirely model-free formulation of controller,
closed-loop dynamics, and robust stability analysis. The simulation results also
show that despite the generality and simplicity, the controller demonstrates good
closed-loop performance: fast convergence, small learning transients, and almost

optimal asymptotic gain.

Investigating this problem led us to a new convex geometry-based approach towards
robust stability analysis, which served as a key enabler in our results. A distinguishing
feature of the approach is that stability conditions can be phrased entirely in terms
of data and there is an intuitive geometric way of quantifying and analyzing model
uncertainty, which can be phrased in terms of metric entropy, the absolute convex
hull of the observed data, and the disturbance. This perspective allows us to conduct
stability analysis independent of the system matrix and the size of the disturbance
and noise. The key idea that led to these results was to describe the reduction of
uncertainty obtained from new observations in a set-theoretic way and study the
geometric relation between the data and the uncertainty. The insight gathered from
this approach inspired us to rethink the general problem of learning to control as a

whole from a new angle, which led us to a framework introduced in Chapter 6.
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Figure 1.6: Chapter 6: PixSel Framework for adaptive systems analysis and control
design

In Chapter 6, we introduce a new modular framework for one-shot control design
that is particularly well suited for learning-to-control problem settings that require
robust safety and cost performance guarantees in the presence of potentially large
model uncertainty. Our approach is based on decomposing the problem into two
sub-problems: online learning, named "consistent model chasing", and the underlying
control problem in the absence of model uncertainty, called "oracle design". Each
of these sub-problems can be addressed separately, and their solutions (a control
oracle and a model chaser) are used to instantiate a certainty-equivalent learning-
to-control scheme. This scheme, in a symbiotic way, inherits both control- and
learning-theoretic guarantees, certifying the robustness of the closed-loop, even for
large model uncertainty in the system dynamics. The range of closed-loop guarantees
that we can obtain through this inheritance is fairly broad. In this chapter, which is
based on the work in [5], we present worst-case performance guarantees in terms
of {0, 1} costs (commonly referred to as finite mistake or mistake bound guarantees
in online learning) and represent worst-case safety guarantees as bounds on the
{-norm of the trajectories of the closed-loop. As we show later, this way of phrasing
closed-loop "safety" and "performance" is expressive enough to represent many other

guarantees of stability, convergence, or even set invariance.

A defining feature of this new approach is the inheritance relation between the
learning-to-control algorithm ("PixSel") and its instantiating sub-procedures, which
builds a new bridge between the fields of online learning and robust control theory.

This allows us to rigorously merge online learning with traditional control algorithms
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for the purpose of learning to control uncertain dynamical systems.Moreover, it
opens up an important connection between two, so far mostly separated, problem
settings in control theory: small model uncertainty and large model uncertainty. As
discussed earlier, the classical (adaptive control) and modern (learning and control)
literature do not provide a simple way to scale robust controllers designed for the
setting of small uncertainty to the more general setting of large model uncertainty.
Within the "PixSel" framework, we accomplish this by merging the controller with a
consistent model chaser, thereby extending the robustness guarantees of the original
controller to the large-model uncertainty setting. As far as we are aware, there are no

other existing approaches that enable this in such a general and straightforward way.

As an instructive example and to demonstrate the practicality of our approach, we
show how to instantiate this framework for general robotic systems for common
tasks such as stabilization or trajectory tracking. In addition to providing theoretical
guarantees, empirical results show that our framework is a promising approach to
designing efficient algorithms for learning and control in practice. We apply our
approach to the problem of swinging up a cartpole with large parametric uncertainty
in a realistic and highly challenging setting and show that it consistently achieves
good performance over 900 experiments with different parameter settings. Despite
its popularity, the cart-pole swing-up problem presents many fundamental challenges
(underactuated, non-minimum phase, nonlinear dynamics) for control design, and the
majority of existing design approaches in the adaptive control literature [73, 83, 117]
are not applicable. There does not seem to be any empirical evidence of other
design methods capable of tackling this learning-to-control problem in a large-model

uncertainty setting.

In conclusion, the main motivation behind the research presented in this part was
to establish a theoretical foundation for a systematic approach to online learning of
feedback control in the presence of uncertainty and constraints. The objective was to
develop a theory for "Online Learning of Feedback Control with Robustness to Large
Uncertainty." Chapter 5 introduced new theoretical tools for a model-free approach
to the problem, formulating controller synthesis and analysis in a model-free and

model-agnostic way.

Chapter 6 addressed the core problem of learning to control unknown systems from
a model-based perspective, introducing the "PixSel" framework. This framework
modularly combines online learning and control design methods to provide robust

safety and cost performance guarantees in the presence of large model uncertainty.
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The framework establishes an inheritance relation between online learning and
control procedures, merging the fields of online learning and robust control theory.
It also bridges the gap between small and large model uncertainty settings, providing

a straightforward way to extend robustness guarantees to the more general setting.

Impact, Current Work and Outlook. The theory developed in Part 2 has served
as a foundation for recent progress in this problem space. The work of [135]
applies the PixSel framework to provide an efficient solution to the problems of
robust voltage control under uncertain grid topology. In [9], we adapt the PixSel
framework for the distributed case and combine it with the system-level approach to
provide the first distributed, localized adaptive control approach, both in learning and
control, that provides worst-case safety and stability guarantees for arbitrarily large
bounded uncertainties. The algorithms which we presented in [9], form a symbiotic
marriage of the theoretical results developed in Chapter 6 and Chapter 4 and provide
a tremendous improvement over our early adaptive system-level control framework
[66] in terms of scalability (more efficient distributed learning), computational cost
([66] relied on solving a robust optimization problem, which, compared to [9], scales
very poorly with local model complexity), generality, and guarantees ([9] provides
worst-case stability bounds for arbitrarily large uncertainty, while in [66] we can only

provide guarantees for the small uncertainty setting).

More recently, the work presented in [138] applies the PixSel framework to the special
case of LTV systems and develops an approach to online stability of unknown linear
time-varying systems by reformulating the corresponding problem of consistent

model chasing into a convex body chasing problem.
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OVERVIEW

In this part of the thesis, we introduce a new operator-theoretic framework for the
design and analysis of complex closed-loop systems. This framework allows for
general nonlinear dynamics in the plant and controller, robust control synthesis and
stability analysis, and complex constraints on the controller implementation. We
refer to this framework as the nonlinear system-level approach. Chapter 2 introduces
this theory, while the following two chapters demonstrate how this theory opens up

new methods for control synthesis and system analysis.

Chapter 2 is based on the work presented in [64] and begins with an introduction
to the required mathematical concepts from operator theory. It also reviews old
and new lemmas for operator stability analysis. The first core result of this chapter
characterizes the space of achievable closed-loop systems once feedback control is
introduced to a given nonlinear system F'. By representing closed-loop systems as
nonlinear causal operators mapping between inputs and outputs, we identify the space
as solutions to an operator equation, the Closed-Loop-Map-Equation, parameterized
by F'. Moreover, any operator W that solves the CLM equation, called a closed-loop
map (CLM) of the system F', can be realized by means of a particular controller
structure, the system level controller SL(W). The internal stability of this realization
is the topic of the second main theorem, which discusses sufficient and necessary
conditions for stability. The final part of this chapter investigates closed-loop systems
consisting of nonlinear controllers and linear plant dynamics. We show that in this
case, the set of nonlinear CLMs is closed under a special type of combination, which
we call CLM-blending, and this allows us to construct more expressive CLMs from

simpler ones in a hierarchical way.

The ramifications of this result are explored in Chapter 3, which is based on the
work presented in [8, 64, 66]. As a first application, we use blending to develop a
scalable method for robust control design of linear time-varying dynamic controllers
for trajectory tracking in nonlinear continuous-time systems. We then discuss how
CLM-blending allows for control design with improved safety and cost-performance
trade-offs in control applications considering large-scale linear systems subjected to
controller constraints and actuator saturation. We discuss this in the context of two

control problems, constrained LQR and distributed anti-windup.

The first half of Chapter 4 applies the nonlinear system level framework to derive
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new results for stability analysis of closed-loop systems with online model esti-
mation/selection and certainty-equivalent control in the loop. We introduce an
operator-theoretic characterization of the space of closed-loop systems such as tuples
(Q, F @ S ) consisting of a compact parameter space € of possible system models
w with dynamics F'[w], a parameterization of nominal CLMs ¥ : w — ¥[w]
underlying the certainty-equivalent control policies, and an operator S representing
an algorithm for online model estimation. Our main theorem states that if the
parameterizations of dynamics F:w—F [w] and desired closed-loop behavior
¥ : w — W[w]| are continuous and the algorithm S guarantees convergent and

consistent model selection, then the overall closed-loop dynamics are stable.

Guided by these theoretical findings, in the second half of the chapter, we follow
the certainty equivalence principle to design a learning-to-control scheme with
LQ-optimal system-level controllers as the basis of nominal control laws. Most
of the results are based on work published in [9, 66]. We perform perturbation
analysis of the solutions for the LQ-optimal control problem and show that the
solutions are Lipschitz-continuous with respect to changes in the system matrices
of the linear system (over parameter sets of equal degree of controllability). This
partial result is novel and characterizes the sensitivity (i.e., analytic bounds on the
Lipschitz constant) of LQ-optimal closed-loop maps for LTI systems in terms of
system-theoretic properties such as controllability and observability. With this result,
we analyze the closed-loop stability of the proposed learning-to-control scheme and
provide conditions for model selection that are sufficient for closed-loop stability,

which we revisit in Part 2 in the context of consistent model chasing.
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Chapter 2

NONLINEAR CLOSED LOOP MAPS FROM THE INSIDE AND
OUTSIDE

There is a universal connection between the achievable closed-loop dynamics and the
corresponding feedback controller that produces it, which shows promise of leading to
new methods for robust non-linear control in discrete time. In this chapter, we derive
that given a causal nonlinear discrete-time system and controller, the resulting closed
loop is a solution to a nonlinear operator equation. Conversely, any causal solution to
the nonlinear operator equation is a closed loop that can be achieved by some causal
controller. Moreover, solutions can be substituted into a simple dynamic controller
structure, which we refer to as a system level controller, to obtain an implementation
of the unique corresponding feedback controller. System-level controllers are a
promising approach for robust nonlinear control, as we show that even when they
are parameterized with approximate solutions to the operator equation, they can still
produce robustly stable closed loops. We provide theoretical results that state how
the degree of approximation and robust stability of the closed loop are related and

show that this relationship can be leveraged for controller synthesis.

2.1 Introduction

Compared to linear control theory, there are fewer mathematical tools for tackling
controller synthesis of general nonlinear systems. Nonlinear stability analysis is
based on some fundamental results in the classical literature [77, 101, 111, 117, 124],
such as Lyapunov functions, passivity, the small gain theorem, barrier functions [6],
Poincare maps, contraction analysis [90] and describing functions. Among these,

the Lyapunov methods are by far the most widely used technique.

Methods for non-linear control design can be separated into two groups: analytical and
computational. Lyapunov stability analysis and the optimal control formalism [85],
[77] have inspired most classical analytical methods such as feedback linearization,
backstepping, sliding-mode control, gain scheduling [77, 111, 117], and many others.
Nevertheless, with the recent explosion of available computational resources and
progress in the optimization and control theory community, significant progress
has been made toward achieving a more generalized, data-driven approach to
nonlinear control design. With the sum of squares methods (SOS) [103], [99],
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it became possible to compute Lyapunov functions for stability analysis through
convex optimization. SOS-based controller synthesis methods are presented in
[104, 105], and [133] for the continuous-time (CT) and discrete-time (DT) settings,
respectively. Examples of computational methods based on approximating solutions
of the Hamilton-Jacobi-Bellman type of equations are found in [120], [67], [130].
Other more recent works [84] (CT), [61] (DT) provide alternative formulations of

optimal controller synthesis through occupation measures.

Inspired by the recently developed system-level approach to linear control theory
[126], we present a new insight into nonlinear discrete-time systems that enables new
synthesis methods for nonlinear discrete-time systems. The system-level approach, as
introduced in [126], enabled new efficient controller synthesis methods [66, 127] that
allow for localized, distributed, and scalable control design in large-scale systems.
This is achieved by transforming constrained optimal control problems as convex
optimization problems into achievable closed-loop maps that can be solved efficiently.
A key component of the system-level synthesis (SLS) procedure is that once we have
solved for the desired closed-loop map, there is a simple way to construct a controller

that stably realizes this on the system.

In this chapter, we show that this connection between closed-loop maps and their
corresponding realizing controller is not merely a phenomenon of linear systems,
but rather a surprisingly universal control principle that extends to general nonlinear
discrete-time systems. We demonstrate that given any feasible nonlinear closed-loop
map from disturbance to state and input, we can construct an internally stable
dynamic controller that realizes it. Specifically, we characterize the space of all
feasible closed-loop maps as solutions to a nonlinear operator equation and define a
dynamic controller that realizes them. This controller structure, which we refer to
as a system-level (SL) controller, is parameterized by the solutions of the operator
equation. We further show that even approximate solutions of this equation, with a
small enough error, can still yield stabilizing controllers when parameterized into
the SL controller structure. We characterize the internal stability of the nonlinear
closed loop and discuss a simple sufficient closed-loop stability condition based on

the small-gain theorem.

The presented approach motivates new paths towards nonlinear control synthesis: 1)
finding approximate solutions to the closed-loop operator equation and 2) obtaining
a stabilizing controller by parameterizing an SL controller with the approximate

solutions. In the latter part of the chapter, we also discuss a method for synthesizing
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nonlinear dynamic controllers based on blending of closed-loop maps. These ideas
and their importance for control applications will be explored in Chapter 3. To
formulate the framework rigorously, we first review some background on operator
theory and stability and introduce necessary preliminaries such as notation and basic

definitions.

Preliminary Definitions and Notation

Binary Relations. A subset R € X x Y of the Cartesian product of two sets
X and ) is called a binary relation. do(R) = {zx € X |Jy € YV : (z,y) € R}
is called the domain and ) is called the codomain, denoted co(R) of the relation
R. One says z relates to y to state (z,y) € R. The image R(X”) of a subset
X’ < do(R) refers to the set {y € YV |3dx € X’ : (x,y) € R} and similarly
R1()):={xeX|Iye) : (x,y) € R} is the preimage of a subset )’ = V. A
composition R; o Ry or R{R; of two relations Ry « X x Y and Ry < Y x Z refers
to the relation {(z,2) | Jy € YV : (x,y) € Ry, (y,2) € Ry} € X x Z and, similarly,
z = RyRy(x) expresses that there exists a y € ) such that y = Ry(x) and z = Ry (y).

Relations and Functions. A relation R is said to be functional if for any two
pairs (z,y) € R,(z',y) e Rholdsy = ¢y = =z =2/. Wewrite f : X — )
as a shorthand to say that f is a functional relation with domain X and codomain
Y and write y = f(z) or f : x — y to express (z,y) € f. A restriction of
a function f : X — ) to a subset X’ — is a function g : X’ — ) such that
g(x) = f(z),Yx € X" and we refer to the function g with the notation f|y: or f|X”.
On the other hand, an extension of a function f : X — ) to X, © X refers to the
function g : X, — Y suchthat g(x) = f(z),Va € X; co-restriction and co-extension
of f: X — Y refer to functions g; : X — )’ for )’ o f(X)and g : X — ).,
Y. o Y suchthat g (x) = go(z) = f(x), Vo e X.

Sequences. A sequence s of elements in S over the time horizon 7 is a function
s : T — S where the domain 7" < N is a subset of natural numbers N = {0, 1, ...}
and the codomain is S; the space of all such sequences is denoted by S7. If we
say s is a sequence of S and do not specify 7 or just write s € SV, it is implied
that 7 = N. We will often use s, to refer to the value s(¢) of a sequence s in t. As
defined for general functions above, we will write, for example, s(;, ;,) or s for
some 7 < N, to refer to the restrictions of s to an interval [t1, 3] — N or subset 7 ;

extensions of a sequence s € S7 to time horizon 7, N are defined analogously
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as in the context of general functions. A sequence s € S” over some finite horizon

T < N, ie., |T| < o, is called a finite sequence.

Remark. It is important to note that a finite sequence S|, 7 entails more information
than merely the vector [S;, S; 41, - - - , S|, because in the latter all information about
the domain is lost. To point out this difference formally: the space of all finite
sequences s : T — S with domain of size n (that is: |T| = n) is infinite dimensional

and not simply an n-dimensional vector space of S.

Normed Vector Spaces and their Sequence Spaces We will use caligraphic font
variables - most commonly just X and I/ - to denote two fixed finite-dimensional
vector spaces equipped with norms | - |y and | - |;;. For convenience, we assume
that there is some norm | - | : X x U — R{ such that | - |y :  — |(2,0)| and
| - | = w—[(0,u)|, and therefore we drop the dependence on the space and let | - |
represent a default norm for any finite-dimensional vector spaces. If not otherwise
specified, the reader can assume that X = R", i/ = R™ for some n and m < n, and
| - | represent the standard Euclidean norm. We will use /%, ¢, and (**¥ to denote
the vector space of sequences XN, U™, and (X x U)"N. Similarly, we define the ¢,

norms in these spaces as

i~ 1/p
el = | D] Ll |0 := sup [
k=0 =0
where | - | denotes the corresponding norm in finite-dimensional vector spaces.

Consequently, define the subspaces of ¢, bounded sequences in (* as E;f c (Y,
0y = {x € 1*||x|, < co} and define ¢, (*“ analogously. Sequences that have
finitely many nonzero elements span a linear subspace of £* which we refer to as /7.
Furthermore, the subset of sequences x € E()Y for which (k) = 0,Vk > t, i.e., the
sequence takes on zero values after time ¢, form a (¢ + 1)dim(X’)-dim. subspace of

¢, which we refer to as Eﬁ; g

Remark. Unless it is crucial for the discussion, we will not distinguish between the
two spaces fff) ] and X191, However, it should be noted that strictly speaking, X101
and E[XO’ 5 are only isomorphic to each other, since Kfa ;) IS an embedding of X% into

space (.

A truncation ' of a sequence x € /% is a sequence x’ € Efg ;) such that @) 1= xy, for

k€ {0,...,t} and some ¢, that is, a sequence formed by truncating all but the first of

the elements ¢ of x.
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Tuples and Concatenations of Sequences We will use small tt-font styled
variables {x,u, w, W, y, z} to form index sets for sequence tuples or partial operators.
For example, if we write 7 = {7, };cr € X ;.- (Vi)", Z = x,u, w, then we mean that
T is a tuple (7, T, Tw) of sequences 7, € (V )N, 7, € V)Y, and 7, € (V)N
Xjeg S; generally denotes the Cartesian product of a family of sets {S;};c7.
Occasionally, we match the variable names of the sequences with the labels and
will write Ty, = (o, w, w) to suggest assignment (7, Ty, Tw) = (€, w,w). The

(XU such

concatenation of a sequence x € £ and u € /* is a new sequence z €
that z, = (24, u,), ¥t € N; we refer to sequence z by writing [%]. With slight
abuse of notation, we use T to identify (@, w)" with [ ] and [fj]T with (z,u),
ie, ()" : (z,u) — [Z]and []" : [£] — (x,u), and define this correspondence
similarly for any tuple of sequences; hence, (-)' is the canonical isomorphism

between X .- (V;)N and (X ;. Vi)

2.2 Fundamentals of Operator Theory

Operators will be denoted in bold capital letters A and will represent maps between
vector sequence spaces /¥ — (“. An operator will be called causal if for any pair
of input « € ¢* and the corresponding output y = A(x), the values of y; do not
depend on future input values z;,;, k > 1. More precisely, we define A : /¥ — ¢
to be a causal operator if there are functions, A; : X 0] _, 74 that allow A to be

equivalently represented as
A(CB) = (Ao(l'()), Al(ﬂfl, ,Io), Ce ,At(ﬁtzg), e ) (21)

If in addition, the functions A; satisfy A;(z.0) = A4(0,2,_1,), i.e., are constant
in their first parameter, then A will be called strictly causal. The functions {A;}
fully characterize a causal operator and will also be called component functions
or just components of A. Notice that every component function A; has ¢ + 1
arguments which are populated in reverse-chronological order in Definition (2.1).
For notational convenience, for an interval Z ¢ N, Z = [i, j],7 < j we will use
Az : X191 — Y7 (or A;;) to refer to the mapping defined below: ;.9 3 X109
(Ai(i0), Aig1(Tit10)s - - -5 Aj(z0)) € U for j =i as

Ai:j (ﬂfj:o) = (Ai($i:0)> Ai+1($z’+1:0), cee 7Aj (%’:0))-

An operator with the same domain and co-domain, for example: A : X — 0% s
called square. Define the space of all causal and strictly causal operators (% s (Y
as C(¢%,¢¥) and C,(¢*, 1Y), respectively. Similarly, define LC(¢¥, () = C(£*, (%)
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and LC,(¢*,0Y) = C,(¢*,¢”) the spaces of all linear causal and strictly causal
operators. The corresponding spaces of square (linear)-(strictly)-causal operators on
% will be denoted by C(¢Y), C,(¢%), LC(4Y), LCs(¢Y). The right-shift operation
ST C(6*, 1Y) — Cy (0¥, ¢7) is defined to map any causal operator A € C({*, (¥), to
a strictly causal one ST[A] := AT e C,(¢*, £¥) by shifting all component functions
to the right, that is, Ty (zo) := 0, Ty (240) := Ty—1(7_1.0)-

Addition and Multiplication of Operators

Sums and products of operators are defined as binary operations on the space of

causal operators where

A+B:x— A(x)+ B(x)
ABorAoB:xz— A(B(x)).

It is crucial to remember that for general operators, the above defined multiplication
is not commutative and is only right-distributed over the summation but not left-
distributed, i.e.,

(A+B)C = AC + BCbutC(A + B) + CA+ CB.

Moreover, for two operators A € C((*), B € C({*, () with matching domain, [ |
refers to the operator C € C(¢*, (**¥) with components C; defined each ¢ and

sequence x € /7 as
Ct<xt:0) = (At(xt:O)u Bt<xt:0))-

Truncation Operator

Sequences that have finitely many nonzero elements span a linear subspace of /%
which we refer to as EOX . Furthermore, for a fixed subset Z < N, the subset of
sequences € {5 such that z;, = 0 for all k ¢ Z forms a subspace of £, which we
refer to as /5 ; for example, Efg’ ;] fepresents the subspace of sequences with elements
equal to O after the first £ + 1 terms. A truncation =’ of a sequence = € (7 is a
sequence x’ € E[}g,t] such that =}, := zy for k € {0,...,t} and some ¢, that is, a
sequence formed by truncating all but the first ¢ elements of x. For each ¢t € N, the
correspondence x — x’ between sequences & € £ and their truncations z’ € E[Xo’t]
defines a unique linear projection map P! : % — (% onto E[XOJ], commonly called a
truncation operator. Below, we define the truncation operators { P! | ¢t € N} in terms

of the broader — however less standard — family of operators { PZ | Z < N}:
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Definition 2.1. [Truncation Operators] For a subset I — N and its complement
T¢ := N\Z, define the operator P~ : (¥ — (¥ and PT : (¥ — (¥for each x € (¥
as:

P;{(m) ::{xk forkel P_nz(m) ::{xk for k e I¢ '

0 else 0 else.

Moreover, we use the following shorthand notation for PX and P_nI if L is an interval

or a singleton:

e ForteN, P! := P and P! := PZ where T = [0,t] c N.
o Fort,t' e N: t <t Prgt’t/]:_anI and P} = PZ where T = [t,t'] c N.
eForteN, P = P? and Pl .= PZ where T = {t}.

The truncation operators are linear projection maps in sequence space and have
several important properties listed in Cor. 1, all of which are trivial consequences of

the previous definition:
Corollary 1. For any T c N, the truncation operator P? satisfies the following
identities:
(i) Pl(x) e ) for any x and finite set .~ (ii) Pl (x+y) = Pl (x)+ Pl (y).
(ii) PIPT = PT (iv) Ifx ¢ (¥,(p € [1,0]) then PX(x) ¢ (¥ or PL(x) ¢ (5.

) |zt = (I = PO @)l + | P (@)} = | PE(x)|; + [P ()|} holds for all

p<coandx e ly.

i) &0 = [(I = PO (@)oo v [P (@)oo = [ PE(@)]c v | Py (2)]|or holds for

all x € (%. (a v b:= max{a, b}).

In light of this more general definition, the standard truncations P! we discussed in
the beginning are identified with the intervals Z = [0, ¢]. Furthermore, the operation
P} (x) truncates all terms of zj, except k = ¢. To familiarize with the introduced

notation, let ¢, ¢’ € N, ¢t < ' and notice the following relationships:

P,+ P/ =1, P =P - P
t
P =3 P Pt = p!' — pL,
k=0

Given that we live in the space LC(¢*,(Y), as long as Z is a finite subset of

N, it is clear that PZ is a finite-rank linear projection and rank(PZ) = n|Z|.
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For finite sets Z, we can factor PZ into the familiar form PZ = UZU*Z, by
letting the linear maps UZ : RY — (% and U*? : /* — RY be extensions of
the canonical isomorphisms between RY, where N = n|Z|, and the /7 -subspace
{x € (Y |z, = 0,Vk ¢ Z}. To clarify, consider Z = [1] as an example. Then, for any
r e R", y = UM(2) is the sequence y = (0, 7,0,...) € %{Il and, vice versa, for any
sequence = (0,y,0,...) € ég(ll with y € R™, we have U*[!l(z) = y. To match our
previous notation, we also abbreviate U and U as U! and U;*, respectively,

which allows us to factor the standard truncation operators as P! = ULU;*.

Causal Operators and Truncations

There are several important relationships between truncations and causal operators,
one being that the causality of an operator () can be equivalently defined in terms of

its interaction with truncations.

Lemma 2. For eacht € N, let P! and P!, denote the t-truncation on (4 and (“. For

any operator Q : {* — (Y, the following hold:

QeC(t*, ) <= VteN: P.Q=P. QP!
QeC,(t*, M) < VteN: P.Q=P QP

Using the above definition and right-distributiveness, we can decompose a causal

operator Q : /% + [ as follows:

Q- (I.— P,)Q+ P.Q
- PLQ+ P.QP.

As mentioned in Cor. 1, a truncation operator exhibits some properties that resemble
orthogonal projections, but without requiring a specific inner product. In particular,
in any normed space 671;’ /t¥, from the above decomposition and the properties
mentioned in Cor. 1, we obtain that for any & and Q € C(¢*, ), the following
holds:

|Q()I} = IPLQ)I} + | PLQ()]}
Q)]0 = |PLQ() ] v | PrQ() -

Remark. The above equations are consistent in the case Q(x) ¢ K;V or Q(x) ¢ [,
if we define |Q(x)|, and |Q ()|« to take on the value +co.
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Using the definitions of U*!) and U, we can also concisely define the component

functions of an operator @ as (); = U:;LMQU,’;. Similarly, we can factor P! Q as
t
P.Q =) UMQU*
k=0

Another important consequence of this decomposition is that appending a truncation
P! to a causal operator @ always results in smaller Eg norms than prepending a
truncation P’. To see this, we prepend P! to @ and use right-distributiveness and

causality to obtain the equivalence:

QP! = ((I,— P.)Q + P,Q)P. = P,QP! + P.QP!
PLQP! + P! Q.

Then, for any = € (*, Q € C(¢*, %), and t € N, the following hold:

QP ()|} = | PLQP, ()|} + | P,Ql} = | PRI
|QP; ()] = |PLQP ()]0 v [PrQc = [ Pr,Q e

We summarize our findings in the lemma below:

Lemma 3. Let {7}, = [t;, tk]}, (L), < tx), be a collection of pairwise disjoint intervals
of N over some index set k € I, and let Q € C(¢*, (1) be a causal operator. Then,

foranyte N, pe{l,... o}, and x € (M, the following inequality holds:

IQ, PFQ)z|, < ) |QPa],. 2.2)

kel kel

The above lemma will be used in the derivation of the small gain theorem, which we

derive in the next section.

Causally Invertible Operators

A square operator A : (¥ — (% is invertible if there exists another operator
B : (* — (¥ such that AB = BA = I,,. If such a B exists, it is unique and is
therefore called the inverse of A and is denoted as A~*. We call A € C(¢*) causally

invertible if it is invertible and its inverse is causal, that is, A~! € C (KX ).

Definition 2.2. A € C(¢*) is causally invertible if there exists A~ € C({™) such
that AA~' = A~'A=1,.
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In general, the inverse of a causal operator is not necessarily a causal operator [110].
In fact, it is possible to find counterexamples even for operators A : £[g ) — {joy
that map between finite-dimensional spaces. However, if causality of the inverse can

be proven, it also provides instructions on how to implement the inverse operator.

If we are given a causally invertible operator A € C(¢*), then by definition, for any
teN, P'A™! = P'A-' P!, VYt € N. Combining this with causality of A shows that

we obtain an invertible function A, by concatenating the first £ component functions:
Ayt (@ 20) = (Ao, Aglao). (23)

The map A, can be written more compactly as A, = U* AU". For the next
derivation, let B = A~ ¢ C(BX ) denote the inverse of A and similarly, let the
concatenation of the components of B be denoted as B, = U* BU". Below, we
derive that B, is in fact the inverse of A, and therefore invertibility of A,,Vt € Nis a

necessity for causal invertibility:

P'=P'AB = P'BA

— U'U* = PPAP'BP! = P'BP'AP!
XHgXUt Iy, = (U*tBUt) (U*tAU*t) = (U*tAUt)(U*tBU*t)
B, A,
e B, = (At)_l .

Having established the equivalence B, = (A,)™!, going forward, we can refer to B,
as A; ' without causing ambiguity, since U** A~'U" and (A,) ! are indeed the same
function. Furthermore, the above equivalence aids us in constructing a realization of

the inverse operator.

Setting ¢t = 0, the above implies that A is invertible. Moving to ¢ = 1, it is easy
to see that A, : (ug, u1) — (Ao(uo), A1(uy,up)) is invertible if and only if the map
u' — A;p(v,up) is invertible for any ug € R™. This observation motivates us to
investigate whether this condition extends to all N. To this end, let b and a be such
that b = Aa, and leta, = (a,...,ap) and b, = (b, ..., bo). Then, for some ¢ € N,

We can express Q¢ as
a, = UM AT (b) = UM AP (b) = A7 (b by y) = A7 (0 Ay (a,y))
= A7 Y (Aag, a,1), Ay (a,_y)) (2.4)

where A;! = UM A-'U? denotes the t-th component function of A~!. For

a fixed choice of a,_,, denote A;;_1[a,_;] : R® — R" as the restriction of the
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component function A; such that A;;_1[a, ,](a) = Ai(a,q,_;). Similarly, let
By¢-1]a,_] : R — R" be a function defined for each b € R™ as By;_1[a,_,](b) =
A7 (b, A, 1 (a;—1)). With these two function definitions, (2.4) can be written as
ar = By—1]a,_1] o Age—1]a,_,](as). Since this equation has to hold for all ¢,_, and
a; € R", we can conclude that for any fixed a,_;, the function By;_1[a,_,] is the left-
inverse of A;;_1[a,_,|. Hence, equation (2.4) can be written as a; = By;—1[a,_;|(b;)
and provides us with a realization of A~'. For a given b such that b = A(a) with
causally invertible A, the sequence a is a trajectory of the dynamic system described

by the equations
Ay = Bt[@tfl](bt)' (25)

Our discussion has so far shown that if A is causally invertible, then the functions
{A, }1en have to be invertible. Moreover, the latter implies that any function in the
set A = {Ay_1[ze-1] - R" > R™ [t € N, z_; € RV} has to be invertible as well
and that using the inverse functions B;[a, ;] we can realize the operator A~! as the
dynamical system (2.5). Clearly, this realization is also evidence that invertibility of
the functions in A is sufficient for the existence of A~!. This conclusion closes a
chain of implications and leads to the following Lemma, which characterizes causally

invertible operators in terms of their component functions:

Lemma 4. For a causal operator A : (¥ — (| the following statements are all

equivalent:

(i) A is causally invertible.
(ii) {4, : z —» U*AU"(z2) | t € N} is a family of invertible functions.
(iii) {Age-1[2z-1] : a — A(a,z1) [t €N, 2, € A (RN=D)Y s a family of

invertible functions.

Proof. We recap the ring implications. (i) == (ii¢): The causal invertibility
of A means that there is some causal B such that AB = I, which leads to
P'AP'BP' = P" Yt € N and proves that B, : U* BU" is the right inverse of A, .
(i1) == (ii1): Pick an arbitrary ¢t € N and apply the operator U* to both sides
(multiplication from the left) of the identity A, o B, = I,. The new equation can be

restated as:
VyeR", Vy,_, € RNt At(Bt(y>yt—l)aﬁt—l(yt—l)) =Y.

This states that for a fixed 2,1 = B,_; (y¢—1), Byi—1[ye-1] : y = Bi(y, yi—1) is the

right inverse of Ay;_1[2—1]. Now, since B,_, is the inverse of A,_;, z_; ranges
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over all R™t. We also showed previously left-invertibility in the same way, which
establishes (i7i). Lastly, (ii1) = () follows through the realization (2.5). O

A corollary of this lemma is that operators A = I,, + A~, which are sums of some
strictly causal A~ € C,(¢*) and the identity operator I, are always causally invertible,

and the inverse operator A~! can be easily realized. This result is derived below:

Corollary 5. If (A — I) € C,(¢{%), then A™' € C({*) exists and b = A™'(a)
satisfies
by = a; — At(0> bt—l:o)-

Proof. Assume given a, we want to find b such that A(b) = a. Equivalently, we
can write b = a — (A — I)(b) Now, since A — I is strictly causal, the component
function A, satisfies A;(zy, x4_1.0) = Ai(0,4-1.0) + z;. Using this factorization,

the component form of b = a — (A — I')(b) becomes
be = a; — A(0,bi—1.0), (2.6)

which proves the existence and uniqueness of b as it describes a concrete recursive

procedure for its computation. [

2.3 Global and Local Stability of Operators
We review some standard stability results from the control literature, which are needed
for later analysis. In the following, we derive various versions of the small-gain

theorem, which are used in our main results.

If we view a dynamical system as a causal map 7" between input sequences w and
output sequences y = T'w, then many common notions of system stability, such as
¢,, stability, can be mapped to notions of boundedness and continuity of the operator
T'. Sometimes it is more natural to define the relationship between input and output
in an implicit fashion, where for an input w, the output y is a solution to equation
Qy = w, for some fixed operator (. In that scenario, input-output stability means

that for a bounded w, any corresponding solution y is also bounded.

Approaching stability analysis from this operator-theoretic perspective was first
studied in the late 1960s, most notably pioneered by George Zames [139], and led to
a large class of important stability analysis tools often grouped together under the

name of small gain theorems.
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In this section, we derive some small-gain theorem conditions that match our problem

setup and that we use frequently in our analysis.

We use the following notions of /,-stability for operators in the statement of our

results:

Definition 2.3. An operator A € C({¥, ") is called:

o (,-stable if A(a) € (Y forall a € (.

e finite gain (f.g.) {,-stable! at a, € ff, if there exists v, 8 = 0 such that for all
acly:
|A(a) — A(ao)|, < v]a —aol, + 5.

e incrementally finite gain? (i.f.g.) {,-stable if there exists v, 3 = 0 such that for

alla,a’ € 625, it holds:
4@ - A@)], <o -], +

Remark 1. Finite gain (,, stability and operator continuity in {,,-norm are closely
related. In fact, if we set 3 = 0 in the above definitions, then, i.f.g. {,-stability of
A with gain vy is equivalent to Lipschitz continuity in {,-norm of A over Ejf . On
the other hand, f.g.-(,-stability at a, implies that A is {,-continuous at a, and
that §(g) can be chosen, in the context of the standard continuity definition [109],
as a linear function § : € — v 'e. Allowing [3 to be nonzero can be thought of as
"almost" (Lipschitz) continuity, as possible discontinuities are deemed irrelevant for

the purpose of stability analysis.

Notice that while the above definition might not be standard, it allows for the stability
analysis of equilibria, trajectories, and limit cycles all within the same definition.

In the following discussion, we consider a fixed causal operator Q € C({*, ¢*) and
investigate pairs (w, y) of sequences w € £ and y € ¢ that are solutions to the

nonlinear operator equation:

Qy) =w = y=U-Q)(y) +w. (2.7

'If we say A is f.g. £,,-stable without specifying a, it is assumed that a is to be taken as 0.
2We write (v, 8)-f.g. and (v, 3)-i.f.g. if we want to specify the constants of the ¢,-stability

property.
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For the purpose of stability analysis, we would ideally like to characterize the space

of solutions (w, y) that satisfy relations of the following types:

(w—1y) l,—stab.:  Qy) =w, wely = yel (2.8a)
(y > w) {,—stab.:  Qy) =w, yely = wel), (2.8b)
bi-stab. {,, : Qy)=w = ywely. (2.8

If we identify w and y with some inputs and outputs of a dynamical system that has
dynamic equations of the form (2.7), then condition (2.8a) represents the standard
notion of bounded-input-bounded-output (BIBO) [75] with respect to the norm £,,.
The statement (2.8b) represents the reverse condition, which is more commonly seen
as a notion of system observability. Similarly to the definitions in (2.8), one can
examine the space of solutions (y, w) for more refined notions of stability, such
as (v, B)-finite gain stability (fgs) and (-, §)-incremental finite gain stability (ifgs).

With respect to the input-output mapping (w — y), these are defined as follows:

(v, 8) =y —fas:  Qy)=w, wely = [yl, <7|wl|, + 5,
(v, 8) — by —ifgsatwy . Qy) =w, wely = oy, < v|dw], + 5.
Q(yo) = wy, wy € E;,Y
oy =y — 1Yo

ow = w — wy.
Next, we focus on deriving sufficient conditions, in the form of small-gain theorems,
for finite gain /,-stability as defined above.
Conditions for Finite-Gain Stability

For the following derivations, we investigate pairs (y, w) which are solutions to (2.7)

and from y we define the scalar sequence s € R* such that s; := | P*(y)|,, i.e.,

t p
50 0= { {/ 2o el forp < o (2.10)

Supi< |yx|  forp = 0.

Furthermore, for convenience we abbreviate the causal operator (I — Q) as A :=

I — @ to rewrite the equation (2.8a) as

y=Ay) +w.

Next, we bound s, from above, which results in a key inequality used to prove the
later small-gain stability conditions. To this end, substitute y = A(y) + w, into the
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definition (2.10) and by causality of A we get an equivalent expression for s;:
st =P (W), = [P'(Aly) + w)l,. (2.11)
From (2.11) and with the help of Lem. 3 we obtain the inequalities below:
Lemma 6. For each term s; of the sequence s holds:
se < [A(P(y))], + [wl, (2.12)
and if A = (I — Q) is strictly causal, then the bound below holds:

se < [AP T (y)], + |wl],- (2.13)

Proof. The first bound follows by applying Lem. 3 to (2.11) directly:
s = | P'(Aly) + w)|, < |AP )], + [wl,.
For the second inequality, we have to do a little more work:
s = [(P'A)(y) + w|, = [(P'AP)(y) + w|, 2.142)
< [(P'A)(Py)| +[wl],
< |(AP) (P y)| + |w], = (AP Py + w],
=A@ ()], + Jw],- (2.14b)
]

With the above Lemma 6, we present sufficient conditions for the stability (2.8a)

with their local/global finite-gain versions.

Theorem 2 (Small Gain Theorem). Assume that the operator A satisfies | A(z)|,, <
vzl + B forall x € (¥ and some small gain ~y < 1. Then, correspondingly for all
w e ﬁf , the system response y satisfies the bound
1
lyll, < m(Hpr + ).

Proof. Applying our assumption to the bound (2.12), we obtain:

se < [AP ()], + lwl, <¥P'(y) + 5 + |wl, (2.15)
<yse+ B+ |wl, (2.16)
1
- st < E(ﬁ + wl,). (2.17)

This establishes the boundedness of s. Since s is nondecreasing by construction, we

know that lim; .o, s, = s* = |y, exists and satisfies ||y, < ﬁ(Hpr +5). O
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We can also obtain a local version of that result, provided A is strictly causal and

satisfies the small-gain property locally:

Lemma 7 (Local Small Gain Theorem). Assume that for some p > 0 and 0 < v < 1,
B = 0the operator I — Q) is strictly causal and satisfies | (I — Q)(z)|, < v |z|,+ 8
for all |z|, < p and some p € {1,2,...,00}. Then, for any (y,w) such that
Q(y) = w holds:

jwl, < (X =~)p—5 — lyl, < = (lwl, + B).

Proof. Our assumption |w||, < (1 —)p — B can be equivalently stated as:

|wl, + 8
(1=7)

We proceed to show s; < (|w], + 3)/(1 — ) for all ¢ per induction: ¢ = 0:

lw|,<(1-=7)p-B8<= (2.18)

so = |wo| < |w|, < (Jw], + B)/(1 —~) < p, since according to assumption
|lw|, < (1—7)p— B which is equivalent to the last inequality. ¢ — ¢ + 1: Assume s,
satisfies s, < ([w], + 3)/(1 —~). Then, due to (2.18), we have s, = | P*(y), < p
and using the small gain property we know:

|AP )], <[P @), + 5. (2.19)

Substituting the above into (2.13) and using our induction assumption s; < (||lw|, +
B)/(1 — =), we obtain:

. |wl, + 8
St <7 | P (y)Hp + B8+ |wl, = s + (1 - V)ﬁ (2.20a)
wi, + wi, + wi, +
B P S L ) 200)
11— 11— 1—7

hence, (2.20b) completes the induction step and we can conclude that s; is bounded
above by ([w|, + 8)/(1 =) < p for all t.

Finally, since s; is non-decreasing per construction, we know that lim; ., s; = s* =

|y, exists and satisfies

1
[yl < 7= (wl, + 8).
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If we associate wy as the initial condition yy and we can rewrite the bounds of

Theorem 7 and Theorem 2 as:

1
lyl, < = ( lyolh + [w]? + 6) 1<p<wm (2.21a)

fol.. < T (max {nl [wl,.} + ) p=w. Q21
Eventually Small Gain Condition
As so far discussed, the small gain condition (I — Q)(y) < y + [ is sufficient
to prove stability of systems governed by the equation Q(y) = w. However, it
is not a necessary requirement for stability. The next Lemma shows that we can
relax the small gain condition and instead demand, that the gain of the operator
A = I — Q is eventually smaller than 1: There exists some %, such that the
operators Plox — P A(U'z + Pl (x)) satisfy the small gain property for any
fixed bounded z € RMo,

Lemma 8. Ler (y, w) be solutions to the operator equation Qy = w for some
causal Q € C({™). Then, the implication w € f;( = y € Eff holds true, if there

exists tg € N for which the operator A = I — Q meets the following conditions:

(i) There exist Cy,Cy > 0 such that for all solutions (y,w), the following (,-f.g.s

condition holds true:
Phwely — |P%y|, < Ci|P w|,+ Cs. (2.22)

(ii) There exist some v < 1 and non-decreasing function 3 : Rt — R™ such that

forall x € Kff:

[P A() ], < v P ()], + BIP*(2)],).

Proof. Let (y,w) be an arbitrary pair such that Qy = w or equivalently y =
Ay + w, and assume that w € E;( . Split y into the sum Py + Ploy and recall
from (2.22) that | P"yl|, < Cy|P"w], + C,. Hence, to show y € £, we need to
show that Ploy € (. Let s, = | Py], sy, = | PZ*(y)|,. where Z;, denote the

intervals [to, to + k| for k € N, and notice the following chain of inequalities:

skt = [P™yl, < [P*APY  y|, + [PPw], < [AP  y|, + [ PTw],

<A|P*(y)l, + 8P yl,) + | P*w,
Aad (1 - 7)5k|t0 < B(Sto) + ”PIkaP
< Skity < ﬁ (5(3150) + Hmep) .
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This shows that sy ;, is bounded for any £ € N and together with the fact that sy, is
non-decreasing in k, it also proves convergence of the sequence (s, S1jto: - - - )
to ]31_210 Skito = Swlty < 0. Hence, we showed Ploy € (¥ and [y, < sy, + Swjt, i
bounded above as

lyl, < Sn(lwly) + Crlwl, + Ca,

where n(x) := B(Ciz + Cy) + . O

2.4 Representing Dynamical Systems as Sets, Relations, and Maps

A discrete-time dynamical system .S is a system whose behavior over time can be
described by a function S : N — S over the index set N, where each S(t) represents
the state of the system S at time-step ¢. Correspondingly, S is usually called the
state space of the dynamical system and represents the granularity of our system
description. Depending on the application, S can be a finite set, a finite- or infinite-
dimensional space of vectors, or even functions. A sequence s = (s, 51,...) € SV,
S(t) = s, describing a specific realization of the system’s behavior is called a state

trajectory of S.

Models are used to characterize the behavior of a dynamical system and ideally
provide a minimal, yet complete representation of the behavior of S over time,
capable of describing all possible state trajectories s of S. There are many ways to
formulate such a representation. A natural approach, often easiest when S' is known
to obey certain laws (e.g., the laws of physics), is to describe the system behavior
implicitly as a set of solutions to a set of difference equations. If the behavior of S is
random, another suitable representation is to model S as a stochastic process over N,

where the system state .S; at time ¢ is represented as a random variable with support
S.

However, as our starting point, we choose a more explicit (and deterministic)
formulation by identifying the behavior of a dynamical system S with its set
Mg < SN of all possible state trajectories 7*. We call the set Mg the dynamic model

or model of the system S.

Remark 3. Many fundamental concepts of systems theory such as controllability,
observability, stability, etc., have an equivalent formulation in this representation.
This alternative framework of control and systems theory was first developed by Jan

C. Willems [131] and is known as the Behavioral Approach to Control.



41

Input-Output Maps of Dynamical Models Often the state space S is represented
by a family {Z;};, i € Z, of smaller spaces indexed over some index set Z; often Z is

used to further specify the internal structure of the system S (see example below).

Example 1. Assume that S represents the behavior of a large-scale system composed
of a family of interconnected dynamical systems { X; };c1, driven by a distributed family
of actuators {U,} ez, and a collection of external disturbance sources {W}jez,.
Then a natural choice to define S is as the Cartesian product X x U x W of the
spaces X = X,z Xy U = X, Uj, and Z = X, 1 Zy corresponding to the

families of subsystems, actuators, and disturbance sources.

Sometimes a dynamical system offers a natural way to divide Z into a union Z* U Z°%
of inputs Z™ representing independent variables Z;, i € 7 and outputs Z°“ such
that the variables Z;, 1 € Z°“* depend causally on the variables Z;, 7 € Z. A dynamical
model has a viable assignment of inputs Z** and outputs Z°* if and only if the binary
relation {({z;}iczin, {2} jezout) |{Zi}ier € Mg} is causal according to the following

definition:

Definition 2.4. A binary relation R < XN x YN is said to be causal if for any
(x,y) € Rand (x',y') € R, and any t € N, the following implication holds true:

P'x = P'Y — Ply=Ply.

Remark 4. The above condition is equivalent to requiring that for any t, the relation
{(P'z, P'y) | (x,y) € R} is functional. Hence, if true, it defines a unique causal
operator ¥ : do(R) — VN such that ¥ (z) = y < (z,y) € R.

From the above definition, we see that a viable assignment of inputs Z"" and outputs
Z°u! implicitly defines a unique causal mapping between inputs s = {z;};cz» and
outputs s°“* = {z;};czou Of trajectories s = {z},er € Mg. We call the operator
representing the mapping W : s s 5% the 7™ + Z°“-map of the dynamical

model Mg. We formulate this definition and summarize our discussion below:

Definition 2.5 (Input-Output Maps of Dynamical Models). Let Mg = SY be a
dynamical model, where S = {Z;};c7. Consider two subsets T™,T° < T such
that T™ 0 I°* = T, and for a trajectory s = {z}icz € Mg, let 8™ = {z};ezm and

SOUt - {Z}iEIDU‘t'
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We say that the pair T™ and Z°*“ is an input-output assignment for Mg if the binary

Rl'in > Fout

relation defined below is causal:

RZi”.—»IO"t N {(Sm,SOUt) ‘ se MS}

Furthermore, under this condition, there exists a unique causal operator ¥ :
do(REF"™ T — S sych that

8% = W(s™) < s e Mg.
This causal operator is referred to as the T™ — I°“-map of Mg.

If an input-output map exists, it provides a complete description of the dynamical
system S, similar to Mg. However, in general, a viable input-output assignment is
not always possible, and if one exists, it is not always unique. Hence, while Mg is
uniquely tied to the dynamical system 5, there might be different input-output maps
of S depending on how many viable assignments of input-output pairs there are.
Therefore, input-output maps of dynamic model Mg have to be distinguished by the

respective choice of inputs Z" and outputs Z°“,

Closed Loop Maps of Dynamical Models In a standard control problem setup,
we are given a dynamical system, called the plant, with state X', which we control
with some input U using measurements Y, and which is subjected to external (non-
measurable) disturbances /. We represent the time behavior of this control system as
a dynamical system with state S = (X, U, W,Y") and state space S = (X, U, W, ))
and denote trajectories of S as a tuple 7 = (7%, 7%, 7Y, 7") composed of the
individual state, input, output, and disturbance sequences 7% ¢ XN 7% ¢ YN,
7 e YN, and 7" € WY corresponding to a realization of the dynamics of the control
system S. Correspondingly, the set of all such realizations forms the dynamical

model Mg = SN, which describes the behavior of the control system .S in open-loop.

On the other hand, introducing a feedback controller K € C(YN,U") leads to
a different dynamical system Sk, describing the closed-loop dynamics of the
interconnection of the open-loop system S and controller K. We say that the
controller K realizes the closed-loop system Sk or equivalently, realizes the closed-
loop model Mg, . The relation between open and closed-loop system can be simply

stated in terms of their dynamic models:

MSK={TEM5*|7'U=K(’Ty)}=M3ﬂMK.
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Thus, the model of the closed-loop system Sk is a subset of the model of the
open-loop system .S, and more specifically, it is obtained from Mg by imposing
the additional constraint 7" = K (7Y) on the trajectories of S. If we represent the
controller K as a dynamical model Mg = {7 € SV | 7% = K(7¥)} embedded in
the space SV, then we can also simply view the closed-loop model as an intersection
of the open-loop and controller models. From this point of view, we can characterize
the space of closed-loop systems realizable by some causal operator K : YN — "
as the following set of dynamical models, which can be referred to as the space of

realizable closed-loop models of the system .S:
Ms = {Msg n Mg | K e C(Y",UM)}.

Maps of closed-loop models Mg, , € Mg are usually called closed-loop maps of .S,

which will be the focus of the discussion in the next section.

Remark S. In later discussion, we consider dynamical systems where for all M* € Mg,

the pair T,,, = {w} and Z,,, = {xuy} is a valid input-output pairing. This permits

us to represent the space of realizable closed-loop system behavior as a space of
wi{uzy}

operators, which we later denote by ® ¢ and refer to as the space of closed-loop

maps of S or Mg.

In this section, we explored the concept of general exterior representations of
dynamical systems, which can be understood as a collection of sequences that
encompass all possible manifestations of system behavior. This discussion led us
to examine dynamic models and the causality conditions that enable us to establish
correspondences between dynamic models and maps linking inputs to outputs.
Additionally, we delved into the relationship between the model of an open-loop

system and the space of realizable closed-loop models through feedback control.

Building upon these ideas, in the upcoming section, we will shift our focus to an
interior representation of dynamical systems. This representation takes the form of
nonlinear difference and operator equations, allowing us to establish connections
and equivalences with the exterior representations discussed earlier, and leads to the
main result of this chapter: the characterization and realization of closed-loop maps

via solutions of the CLM operator equation.

2.5 Dynamic Equations of the Open-Loop System
Here we discuss the class of discrete-time systems of interest and define our setup of

the open-loop system S and the governing dynamic equations.
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The open-loop system S is a dynamical system with state space S = Sx x S, X Sy, =
X ;e Sin L = {x,u, w}, where Sy, S, S, denote the spaces corresponding to the state
of the plant, control action, and external disturbance. Moreover, let ¥ = S, = S,
and 4 = S, where X and U are some fixed finite-dimensional vector spaces, e.g.,
X = R", U = R™. We define the open-loop system S in terms of its trajectories

T = (z,u,w)" as follows:

Let x € (* be the state trajectory of a nonlinear discrete-time dynamical system,
and let u € /* and w € (% be the corresponding sequences of control inputs and

disturbances that generate the trajectory according to the following set of equations:
Vi>1: x= fio1(T4—1.0, W—1:0) + Wi,  To = Wo, (2.23)

where f = {f;}2,, fi : X0 x yl0t — x10 5 a fixed sequence of functions
representing the (open-loop) dynamics of the system. We make no further assumptions
on f,i.e., each f; can be an arbitrary nonlinear function. We can obtain a more compact
description of the dynamics by embedding the function sequence f as the component
functions of a causal operator F' : (**% — (* Thus, let F € C(£**Y (%), and its
strictly causal right-shifted version F* := STF € C,({**¥ (") be defined in terms
of f as:

F(Q%’U/) = (fo(I07U0)7 f1($17$0, Uy, Uo); cee ft($t—1:07ut—1:0), .- ) (2.24)
F+(:c,u) = S+F(:B, ’l.l,) = (O, fo(fL‘Q,Uo), fl(xlzo, ulzo), ce ) (225)

We refer to the operator F' as the open-loop dynamics of the system, since the

dynamic equations (2.23) can be equivalently defined in sequence space as
x=8"F(z,u) +w=: F'(z,u) + w. (2.26)

The above equation is a compact description of the state transitions of the dynamical
system; hence, one can view this as an internal characterization of the system
dynamics. On the other hand, the corresponding external representation of the
open-loop system S is given by the dynamical model Mg < £ x 4 x (%, which is

defined for a fixed dynamics operator F' as:
Mp = {7 = (757 7)) |7 = F" (v, ") + 7" }. (2.27)

Hence, as discussed in the previous section, Mg is the set of all possible trajectories
T =(x,u, 'w)T of S, represented as a tuple of state x, input u, and disturbance w

sequences corresponding to realizations of the open-loop system.
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From the dynamic equations, it is also easy to see that w, w can be treated as
input signals of the open-loop system and the resulting state trajectory @ as the
corresponding output. In other words, {u,w} and {x} is a valid input-output
assignment of the open-loop model Mg, and it has, therefore, a {u, w} — x-map,

which we refer to as the open-loop map G . We derive the closed-form of Gz next.

Remark. Aside from G, Mg also has other valid input-output map representations.
For example, T,,, = {x,u}, L,y = {w} is a valid input-output assignment as well,

and therefore Mg can be equivalently represented as a {x,u} — w-map.

Open-Loop Maps

Since a system state trajectory @ is always a causal function of the input v and the
disturbance w;, it is clear that G : (u, w) — @, st.: (z,u,w)' € M, represents a
well-defined mapping. We call G € C(¢**Y (%) the open-loop map of dynamics
F', and notice that the model set My is the graph of Gr. For a fixed u, denote
FT|, : % — (" as the restriction of FT such that F*|,(x) = F*(x,u). Then,
for each trajectory (x, u, w)" € Mg, holds = (I — F*|,) 'w (inverse exists due

to Proposition 5), and therefore G r is the mapping

Gr: (u,w)— (I - F'|,) 'w.

In this section, we discussed the relationships between different representations of the
open-loop system S: as a set of dynamic equations ¢ = F* (x, u) + w, as a dynamic
model Mg, and as a causal input-output map G : (u,w) — (I — F*|,) 'w. In

the next section, we discuss this trinity of representations for the closed-loop system.

2.6 Closed-Loop Maps and Realizing Controllers

In this section, we introduce feedback control and characterize the dynamics of the
closed-loop, by establishing a correspondence between the closed-loop system’s
exterior representation, as closed-loop maps, and the internal representation, as
dynamics operators and system equations. In short, the key theoretical results
discuss a characterization of the space of realizable CLMs as the solution space of
an operator equation and the one-to-one correspondence between CLMs and their

realizing controllers.
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The Closed-Loop System

Let K € C(¢*, (") represent a causal feedback control law, and let the component

functions K; denote the decision rule for u; based on the state observations xg, . . . , Z4:
K(az) = (Ko(l'()),...,Kt($t;0),...>. (228)

Correspondingly, let Mg = {7 = (7*,7") | 7" = K7*} denote the dynamic
model of K. The interconnection of (2.23) with the open-loop system S defines a
dynamical system CL, which we refer to as the closed-loop, defined by the following

dynamic equations:

CL: Ty = ftfl(xthOa utflzo) +wg,  To = Wo (2.29a)
uy = Ki(t0). (2.29b)

Equivalently, the dynamic system equations of the closed-loop CL can be written as:

CL: z=F"(x,K(z))+w, u=K(x) (2.30)
= F(2) + w,

where Fy denotes the mapping  — F'(x, K (x)), also referred to as the closed-loop

dynamics operator.

Definition (Operator of Closed-Loop Dynamics). For F € C({**Y (%) and K €
C((*, ), define the operator F € C({%) forall x € (* as Fi(x) := F(x, K(x)).

As formulated in Section 2.4, intersecting the open-loop model M i with the controller
model Mg yields CLir k7 = Mg n Mg, the dynamic model of the closed-loop
system CL. CL{p k7 is the set of all trajectories Ty = (¢, u, w) that satisfy the
equations 2.30 for some fixed pair of F' and K and hence admits the equivalent
definition: and define the set of all trajectories T = (x, u, w)T, xel® ue, and

w € ¢~ which are solutions to the above equation as the closed-loop model Clir k)
Clirk) = {(z,u,w)" |z =F'(z,u)+w, u=K(z)}. (2.31)

Recall that F'* € C,(¢**Y ¢*) and therefore the map Fy € C,(¢*) is also strictly
causal. As shown in (5), this observation certifies that the operator I — F has a
causal inverse (I — Fj)~! € C(¢"). Hence, we can equivalently rewrite the equation
x = Fg(x)+wasx = (I — Ff) 'w and see that (z,u,w)" is a trajectory of

CLr k) if and only if it satisfies the equations:

x=(I—-F&) 'w (2.32a)
u=K(I - Fg) 'w. (2.32b)
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In other words, for any F' and K, the operator [ |(I — Fg)™' € C(£%, (Y)

represents the w — [ﬁ ]—map of the closed-loop model CL(F k.

Remark. In terms of the discussion in Section 2.4, 2.32 proves the causality of the
relation R¥™" = {(w, [2]) | (®,u,w)" € CLip K} and provides a formula for

the w +— x, u-map of the closed-loop model CL|r k).

The input-output representation of a closed loop provides a natural way to define
closed-loop stability [139]: The closed-loop trajectories 7 € CL{p k] have /-
bounded state and input trajectory 7*" for any ¢, bounded disturbances 7" if and only
if the w — {x, u}-map of CL[g g is £,-stable, and correspondingly, a controller K
is {,-stabilizing if and only if the corresponding w — {x, u}-map, i.e., the operator
| £ (I — Fy)~" is {,-stable. The next theorem summarizes our discussion so far,

and states important properties of the w — {x, u}-map representation of CLr k.

Theorem 6 (Input-Output Maps of closed loops). For any fixed pair F € C({¥*U (%)
and K € C({*, "), the closed-loop model CL{p k) has a w — {x,u}-map ¥ €

C(¢*, U, and it holds:
i) W =[3] where ¥* = (I — Fz)'and ¥" = K (I — F)™".
ii) T € CLip Kk if and only if 7" = W (TV).

iii) K = Ws (W)L,

Proof. We have already established that CLr x| always has a w — {x, u}-map;
according to the setup of the theorem we denote this map W.

i): As discussed previously, i) follows since for any (z, u, w)' e CL{F K holds 2.32,
which provides a closed-form expression for W. ii): This is just the restatement of
the general definition Def. 2.5. (iii): From i), which is already proven, we have
U* = (I — F)~ ! and (P*)~! = (I — F}), which implicitly states that ¥* is
always causally invertible. Now since ¥" = K (I — Fy)~!, multiplying both sides
from the right by (¥*)~! yields K = ¥"(¥*)~1, O

The above result leads us to a very important conclusion: For fixed F', there is
a one-to-one correspondence, via the transformation H : K — [L](I — Fz)™!
and its inverse H! : [\‘Ilﬁ ] — \Il“(\IIX)_l, between a controller K, later called the

realizing controller, and the corresponding w — {x, u}-map of CLr k7.
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Remark 7. In fact, there is a one-to-one correspondence between w — {x, u}-maps
of CL{p k7 and the pairs (K, Fi ) of controller K and closed-loop dynamics F: If
W is the w — {x,u}-map of CLp k), then I — (¥*)~! = Fiz and ¥*(¥*)! = K;
the reverse direction is clear, since w — {x,u}-maps of CLr k) always have the

form ¥ = [ (I — Fz)~"

This observation motivates us to characterize the space of all w — {x, u}-maps of
CLir.x]. We define this as the space ®Fy ™" [F] of closed-loop maps (CLMs) of
F and call an operator W in the set ®¥*"[F'] a closed-loop map of F":

Definition 2.6 (Closed Loop Maps). An operator ¥ € C({¥, (**") is called a
closed-loop map (CLM) of F, if for some K € C(¢*, 1), called realizing controller
of ¥, the operator ¥ coincides with the w — (x, u)-map of the closed-loop model
CLip k) We denote the set of all such ¥, with ®¢;"[F| and call it the space of
CLMs of F or the CLM-space of F'.

Remark. In terms of the discussion of Section 2.4, the above considers the special
case where y = x, i.e., we can measure the state x and used as measurement for
feedback control.

The next theorem presents different characterizations of the CLM-space ®¢ " [ F'|

and represents a main result of this chapter.

Theorem 8 (Characterization of CLMs ). For a fixed causal operator F €
C(LU %), the following are all equivalent definitions of ®E*[F|:

i) DL F] = {¥ e C(4*, (¥U) | Wisa CLM of F}.

i) ®E V[ F] = {¥ | V[Z_’ZV“] € CLip,wu(wx)-1] 8.t. T = W (7V)}.

iii) ®E[F] = {¥ = [§1] e C(¢*, ¢0YU) | ®* = FH(¥) + I},

iv) BU[F] = {[£ (I - F)™ | K e C(¥, 4)).
Proof. 1) is just reiterating the original definition Def. 2.6. We proceed by proving
that the other statements are all equivalent to 1). ii): This statement follows from
the fact that there is a one-to-one correspondence between CLMs ¥ € ¥ " [ F'|
and their realizing controllers K = ¥"(¥*)~! and recalling Theorem 6 ii). Part iv):

This statement follows directly from i1) of Theorem 6. It remains to establish the

equivalence between iii) and 1).
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1) = 1ii): Assume W is a CLM of F'. Then, per definition, there exists some
K € C(£¥, ") such that ¥ is an w — (x, u)-map of CL;p &) Which is equivalent,
by the characterization Theorem 6, to stating that (z, u, w)' € CL[ k) 1f and only if
x = U¥(w) and u = ¥"(w). Since (z,u,w)’ € Clipgez=F(z,u)+w,
we conclude by substitution that for all w € (¥, ¥*(w) = F™(¥(w)) + w, i.e., the
operator ¥* and F'* (W) + I* are the same.

iii) = 1i): Assume W is a solution of (2.30). Then, ¥* — I = F*(¥) e C,((V),
since F'* € C,(¢**Y (). Asdiscussed in Lem. 5, any operator of the form I,, + A™,
A* € C,(¢%) is causally invertible. Therefore, (¥*)~! exists and (¥*)~! € C(£Y).
Now, take K’ = ¥"(¥*)~" and let (z, u, w)" € CL{p k] be an arbitrary trajectory
of the closed-loop model CL{r k. Then, (z,u) = ®cr [F, K'|(w), which implies
thatx = F(z, %(¥*)"lx)+w. We apply theidentity (I*—1I)(¥*)~ 14 (P*)"1 =
I to the left side of the equation and obtain

(O - (T 'z + (T 'z = FT () 'z +w
= (U~ T - Fro) (0 + (U9 'z = w,

which, due to * — I = F*(¥), implies € = ¥*w and u = U (P*) 1 ¥*p =
Yhw. [

As it turns out, the space of realizable CLMs ®¥*"[F'| can be characterized as

solutions to the nonlinear operator equation:
X = F* (W) + I (2.33)

We therefore also refer to (2.33) as the CLM equation. Writing out the CLM
equation (2.33) in terms of component functions gives the more explicit condition
on the functions W7, U}: The map ¥ = (&>, ¥") satisfies (2.33) if and only if its
component functions satisfy the following infinite set of function equations for all

nputs wy.o:
Ui (wio) = Fro1 (U7 10(wi1:0), Yy 0(wi-10)) + wy. (2.34)

As proven in Theorem 6, the mapping between CLMs (¥*, ¥") € ®F " [F|
and the corresponding realizing controllers K’ is one-to-one, via the relationship
K’ = &"(P*)~!, While the realizing controller K of a CLM W is a unique operator,
we have degrees of freedom regarding the implementation — usually in the form of a
dynamical system — of K. Next, we discuss a particularly simple approach enabled
by the fact that W* is causally invertible for any ¥ € ®F [ F'].
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System Level Implementations of Realizing Controllers
A crucial step of establishing Theorem 8, is to show that (¥*)~! always exists. We
briefly rederive this partial result as a consequence of Lem. 5, restated below, which

highlights the main idea behind the system level implementation.

Lemma. The inverse A~! of a square operator A € C({?) exists if A — I € C,(£7),
and b = A=Y (a) is calculated by evaluating equations b; = a; — A;(0,b;_1.0) in the
ordert =0,1,2,....

Due to Theorem 8, we know that for any CLM ¥ € ®¥ [ F] holds ¥* — I =
F*(W). Furthermore, since F € C,(¢**¥ () holds, we are also ensured that
W* — [ € C,(¢). This allows us to apply the previous lemma and proves that (¥*)~!
always exists and that it is a causal operator in C({%).

Furthermore, as shown in Lem. 5, the condition ¥*—1I € C, (EX ) allows a particularly
simple method of implementing K’ = WU (¥*)~! of Theorem §: Given an input a,

the output b = K’(a) can be computed recursively through the equations

et = a; — Vi(0,¢c-10), (2.35a)
by = Vi (cro)- (2.35b)

The above implementation represents a dynamical system with input a, output b and

internal state ¢ and will be referred to as the system level implementation of K'.

Remark. It is more common in control literature [49, 142] to refer to (2.35) as
the "realization” of the controller, however to prevent overloading and potential
confusion with the "realizing controller” (see Def. 2.6), we instead choose to call

(2.35) the implementation of K.

Moreover, in later sections, we make use of this implementation to define controllers
K that are parameterized by operators W*, W" that are not necessarily CLMs.
In particular, the next section will show that such an implementation can yield
closed-loop stability if W approximately satisfies (2.33). Therefore, we define
controllers with (or which permit) the above implementation separately as System
Level (SL)-controllers:

Definition 2.7. Assume given operators A € C({*), B € C({*, (1), where A — I €

Cs((™). The above dynamical system will be referred to as the system level controller
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SL[A, B]. Consider the dynamical system with input a, output b, and internal state

c according to the equations

Ct = Q¢ — At(07 Ct—l:O)a (2.36)
by = By(co). 2.37)

The above dynamical system will be referred to as the system level controller

SL[A, B].

Remark. A trivial yet important consequence of the definition Def. 2.7 is that both

input a and output b can always be expressed through the internal state c as a = Ac,

b= Be.

The only requirements for the above implementation are that the operator A € C(¢%)
is square and A — I strictly causal, and that B € C({*, ) is of compatible
dimensions. We will abbreviate these conditions with the term candidate closed-loop
map (cCLM):

Definition 2.8 (Candidate Closed-Loop Map). A causal operator ¥ = [#] is
called a candidate closed-loop map (cCLM), if A is square and such that A — 1
is strictly causal. More specifically, we say that W is a candidate CLM of some
FeC*¥ (¥)if Ae C({Y¥)and B € C(t*, "), i.e., F and ¥ are of compatible

domain and co-domain.

The dynamic model SL[¥| of the implementation can be defined as a subset
SL[W] < ¢, where S = {S;}icz, T = {x,u, W} s.t.: S = S, = X. We can define

SL[¥] in terms of its trajectories 7 = (7%, 7, 7%)" € SL[¥] as
SLIW] = {7 e (VU 7% = (U)X, 7% = wirP) (2.38)

and notice that it can be equivalently represented by its x — {W,u}-map, the
operator [ |(¥*)~!. We denote the former as K, = [ﬁ%] e C(¢%, 1) for a
fixed ¥ € ®F [ F]. The partial map K¢, corresponds to the realizing control
law WU(P*)~1 while K¥, represents the dynamics of the internal state of the
implementation used to compute the control action « from the internal state w via

u = P'w.

For a CLM ¥ € ®F™"[F|, the dynamic system SL[¥] provides a simple and

straightforward implementation, of the realizing controller K = ¥"(W¥*)~!, via the
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dynamic equations (2.35). However, the system level implementation of K is not
unique, that is there exist cCLMs W # W such that K = " (¥*)~1 = g ()1 ;
a trivial example is ¥ — [ E ] The space of all such cCCLM W defines an equivalence

class which we refer to as the Implementation Space of a controller K.

Definition 2.9. The (SL)-Implementation Space Lk of causal controller K €
C(0*, 1) is the set of all cCCLMs ¥ € C(¢¥, (") such that ¥*(¥*)~! = K.

Remark. This was first formulated and studied in [6] for the case of LTI systems.
The same work shows that the implementation space can be leveraged to formulate

novel robust control synthesis procedures for LTI systems.

The following result provides a characterization of the implementation space [ of a

controller K in terms of the CLLM it realizes:

Lemma 9 (Space of System Level Implementations). Let ® € ®F " [F'| be a CLM
of some fixed F and let K = ®"(®*)~! be the corresponding unique realizing

controller. Then,

Ix = {[30] e C(t*, () | @(¥* — FTU) = U}

Despite that for any W € I, the dynamic model SL[W | realizes the controller K,
special care needs to be taken when selecting W € [ in practice, since the choice of
the realizing dynamical system SL[W¥] can impact the stability of the overal closed-
loop: We need to make sure that the dynamical system SL|[ W] is stable even if we add
small perturbations v to the computation of the internal state as @ = (¥*) 'z + v.
This is a crucial concern for control applications since even if our evaluation of
w = (P¥) 'z is entirely digital, numerical errors can introduce perturbations v that
are capable of causing numerical instability in our implementation. In the worst-case
scenario, this can jeopardize the stability of the entire closed-loop CLir k). In
control literature, this problem is known as the question of closed-loop internal
stability. In Section 2.7, we show that the system-level implementation SL[¥] of a
realizing controller K = W"(W¥*)~! is internally stable under suitable assumptions
and provided W is a stable CLM of F'.

2.7 Robust and Internal Stability of Closed-Loop
As shown in the previous section, any closed-loopmap ¥ = (¥* ¥")T € $¥[F]

can be realized with the corresponding system level controller SL[¥*, ¥"| as defined
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in Def. 2.7. Thus, we know that if we choose K = SL[¥*, ¥"|, then for any

disturbance w, the trajectories (z, u) of the closed-loop CL will be (z, u)" = ¥ (w).
In this section, we show that under mild assumptions, the controller K = SL[W¥*, U]
guarantees internal stability of the closed-loop. Moreover, we show that closed-
loop stability is guaranteed even if W is satisfying the CLM equation (2.33) only
approximately.

To setup the stability analysis we take the original closed-loop (2.29a) with K chosen
to be SL[¥*, ¥"| and add additional perturbation signals v and d to the internal
state of the system level controller and control input. We call the new perturbed
closed-loop 6CL:

0CL : Ty = Fi1(Te-1.0, We—10) + Wy,  To = Wo (2.39a)
UA]t =Ty + V¢ — qu(o, wt—l:D) (239b)
Uy = @y(ﬁ]t;o) + dt. (2390)

As before, w, x and u represent system disturbance, state and input, and the added
state w represents the internal state of the system level controller. In contrast, to
the previous section, we now assume that ¥ = (U* W") are merely candidate
closed-loop maps (cCLM) of F', and derive conditions sufficient for ¢,-stability of
dCL with respect to the residual operator A[F', W], which is defined for fixed cCLM
V¥ and dynamics F' as:

Definition 2.10. Let ¥ = (U* ¥") be cCLMs of some dynamics F. Then, the
(CLM)-residual of the pair [ F', W], denoted by A|F', ¥ |, is the operator defined as
A[F,¥] = F+(¥) + I — T,

As alluded to by its name, the residual A[F, W] of a cCLM W represents the
CLM-equation error with respect to the dynamics F'. Hence, candidate closed-loop
map ¥ which satisfy A[F', ¥| = 0 define the space of closed-loop maps of F', i.e.,
we can equivalently define the set ®¥ " [F] as

Oe M F] = {¥ [A[F, ¥] = 0}.

In sequence space, we can equivalently describe )CL by the equations:

6CL : x=F"(z,u)+w (2.40a)
b=z +v— (T — 1)) (2.40b)
u="v%w) +d. (2.40¢)
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We can rewrite the equations (2.40) into a form, more suitable for analysis. Denote

u:=u—d, T :=x + v to rewrite (2.40) as

SCL' : T=F"(&—-v,a+d) +w+v (2.41a)
=2 — (P I)(w) =&+ U*(w) (2.41b)
= W' (). (2.41c)

For fixed sequences v, d, and denote T'_,, 4 € C(£¥*U (¥*U) as the affine operator

!

such that V[ﬁ;] e (* . T_v7d[§'j,] = [ﬁ:;g], i.e., T_, 4 represents the identity

operator shifted by the constant sequence [_d” ] With this affine operator, we can
formally rewrite (2.41a) as & = F™T_, 4(&,4) + w + v and substitute it into
(2.41b) to obtain an equation describing the dynamics of the internal state w:
W=F"T ,4P)(w)— (¥*—L,)(0)+w+v
W = FP T, g(W)(d) — (T%, 0¥ — L)) + w = A[F, T, o¥](ab).
(2.42)

Since the residual is a sum of two strictly causal operators F'*(W¥) and I — ¥* (by
definition of cCLMs), the operator I,, — A[F, T, 4¥] is causally invertible, and
we can solve for the lumped disturbance w as

W= (I, - A[F,T_,q%]) " w, (2.43)
and &, 1 as

& =0 (I, - A[F,T_,q¥]) " w, @=9(I,— A[F,T ,4¥])) ' w.

For v, d = 0, the operator (I, — A[F, ¥])™" represents the map w — 1, and we
see that /,-boundedness of w is entirely determined by /,-stability of the former
operator. Suitably, we will refer to the dynamic system governed by equation (2.43)
as the effective/lumped disturbance dynamics. In fact, as shown in our next result,

the stability of the overall closed-loop is entirely determined by the stability of the
dynamics (2.43).

Sufficient and Necessary Conditions for Internal Stability

Summarizing our derivations so far, we can describe the input-output mapping

Pscr : (w,v,d) — (W, x, u) of the closed-loop dCL by the equations:
W= (I, — A[F,T-,q%]) " w (2.44a)
x =0 (I, - A[F,T_,q¥]) " w—v (2.44b)
w=U0"(I, - A[F,T_, %)) 'w+d. (2.44c¢)
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The closed-loop dCL is internally stable if its input-output map Py, is £,-stable.

The next theorem states sufficient and necessary conditions for that:

Theorem 9. Consider the closed-loop system 6CL described by the equations (2.40)
for a fixed F € C({**Y (*) and some fixed compatible {,-stable candidate CLM
W e C(¥, 6YH). Then, the map ®scy1, : (w,v,d) — (W, x,u) is {,-stable if and
only if the operator (I, — A[F,T_, 4¥])"" € C(¥) is {,-stable for any v € (¥,
delY.

Proof. Sufficiency: This is clear from equations (2.44). Necessity: Assume
(I, — A[F, Ty #®])"" is not {,-stable for some v’ € (X, d’' € (¥, then there
exists some w' € £ such that (I, — A[F,T_, 4¥])" w' ¢ (¥ and therefore
Pjop (w0, d) ¢ 1. ]

Robustness of SL controllers in the LTV case was first discussed in [66]. Here, we

discuss the generalization of these results in the context of linear operators.

If we assume that F is linear, we can split F into the linear operators A € LC(£¥, (%)
and B € LC(M,(*) suchthat F : (x,u) — A(x)+ B(u). Inthat case, the operator
A[F,T_, 4¥] represents the mapping

A[F, T ,q¥]: 2z — A[F,¥)(z) + (I, — A*)v + B*d,
and correspondingly, (I,, — A[F, T, 4¥]) ! represents the mapping:
z— (I, - A[F,¥])"" (2 + (I, - AY)v + B*d). (2.45)

The dynamic equations (2.44) of §CL can be equivalently stated in the form:

w= (I, - A[F,®]) " (w+ (I - A")v + B*d), (2.46a)
x =0 (I, - A[F, %)) (w+ (I - A")v + B*d) — v, (2.46b)
u=9"(I, - A[F,¥)) " (w+ (I - AY)v + B*d) +d. (2.46c)

Remark. Notice that ¥ is still allowed to be nonlinear, and therefore, the dynamics

of the closed-loop (2.46) are, in general, nonlinear.

From the above equations, we can see that the stability of (I,, — A[F, T, 4¥]) "
is equivalent to the stability of (I, — A[F, ¥])~! and the boundedness of A and B.
Thus, as a corollary of Theorem 9, we obtain a simpler characterization of internal

¢,-stability for the case where F' is linear:
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Corollary 10. Consider the closed-loop system dCL described by the equations
(2.40) for a fixed F € LC(4**Y (™) and some fixed compatible {,-stable candidate
CLM W € C(4*, ¢**"). Then, the map ®scy, : (w,v,d) — (W, x, ) is {,-stable if
and only if the operator (I, — A[F,®])"" € C(¢X) is {,-stable, and F is {,-stable.

Proof. Envoke Theorem 9 and recall (2.45), which makes it clear that the operator
(I, — A[F, T, 4%])"" is {,-stable for all v € 6y, d e (4, if and only if the
map (I, — A[F,¥])~! is {,-stable and both A and B are /,-stable, i.e., F is
¢,-stable. O]

Remark. It is important to note that requiring (,-stability of F' does not mean

we assume that the dynamics F' is open-loop stable; that requirement would be

(,-stability of (I, — F|y—o) ™' = (I, — AT)™L

Thus, as long as A and B are /,-bounded linear operators, we see that (w0, x, u) is
¢,-bounded if and only if the operator (I, — A[F,®¥])~" is £,-bounded. If ¥ is a
CLM of F, hence A[F, W] = 0, then the former is trivially satisfied. Thus, we see
that for the linear dynamics case, any (potentially nonlinear) CLM can be realized

via the system level controller SL{¥*, ¥"] in an internally stable way.

In contrast to the linear case, verifying the stability of (I, — A[F,®])~" is not
sufficient alone to ensure internal stability for the case of nonlinear F'. Instead, one
must also verify ¢,-stability of the lumped dynamics (2.44a) for all perturbed versions

U= T, 4% of the original CLM W¥; this is, in general, not a trivial question.

In the next section, we use small-gain theorem techniques to break down the internal
stability criterion of Theorem 9 into simpler ones. However, at the expense of losing

necessity.

Remark. It should be noted that for nonlinear systems, it might even be impossible
to achieve ly,-internal stability, despite the controllability and observability of the
system. For example, consider the simple scalar system xj,1 = 2 + uy, + wy, with
Tk = T + vg. It is easy to verify that there does not exist a causal controller that

realizes an { ., -internally stable closed loop.

Sufficient Small-Gain Conditions for Internal Stability
We use the small-gain theorems and ideas derived in Section 2.3 to provide sufficient
conditions for the stability of the map ®sc1,. For the next theorem, recall the following

theorems from Section 2.3:
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Theorem (Global Small Gain Condition). Assume the operator A € C({7) satisfies
|A(@)], <z, + B for all x € £ and some small gain ~y < 1. Then, for all
w e (7 and y = Ay + w holds:

1
lyll, < :(Ilwllp + ).

Theorem (Local Small Gain Condition). Assume that for some p > 0and (0 < v < 1,
the operator A € C,((7) satisfies | A(x)|, < v ||, for all x|, < p. Then, for any
w e 625 and y = Ay + w the following statement holds true:

lwl, < (1 —=7)p - lyll, < =, |w

Hp :

It suits to measure the gain of the residual in terms of the operator (pseudo)-norm
|A[F, ¥] I3, where || - || and the related operator norm || - [|,, for some operator
A are defined as:

jaly = sup ADZAOL gy yags o), e
zeX): 40 ||,

The residual norm ||A[F, ¥]||* measures how well, up to a constant offset, a
candidate CLM W fulfills the CLM equation corresponding to F' and can be viewed
as a degree of approximation of the CLM equation. As shown in the following
results, the closer a cCCLM W approximates a true CLM of F', the more robust the
closed-loop system is. In particular, we require ||A[F, ¥ ||| and the perturbed
residual norm || A[F', T, 4%]|| to be uniformly smaller than 1; if the condition can
only be fulfilled for a subset of perturbations v, d, then we also obtain corresponding

local 4 stability results.

Theorem 11. Consider the closed-loop system 0CL described by the equations
(2.40) and let ®5cy, : (w,v,d) — (W, x,u) be the corresponding input-output
mapping of dCL for a fixed F € C({**Y (%) and some fixed compatible (,-stable
candidate CLM ® € C({*, () such that |A[F,®]||* = v < 1. Then, the

following statements hold:

i) Sufficient Condition for Global {,,-internal-stability: If F is if.g. (,-stable,
then ®scy, is {y-stable. If in addition, ¥ is f.g. (,-stable, then, respectively,
Dscr, is f.8. Ly-stable.

3See Appendix Section 2.A for proof of norm-properties.
“Local means for £,-bounded subsets around 0 of inputs (w, u, d).
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ii) Sufficient Condition for Local {,-internal-stability: Assume A[F, ¥](0) =0

and that at w = 0, the map W is {,,-continuous. Moreover, assume that there

exists a nondecreasing function® L : Rt — R™ such that:
Izl 12", <n = |F(2) = F(')[; < L(n)|z - 2],

Then, there exists a 6 > 0 such that ®sc(w,v,d) € 5> whenever
|w|[X, |ollX, |d|Y < 6. If, in addition,
exists a b, > 0 such that ®scp(w, v, d) € (37U whenever |w|y < d,

and [v[7, [ d|¥ < dya.

|| < oo, then for any 0,, > 0, there

Proof. Part i): Fix some v € (5, d € &%, let &%, 4 := (I, — A[F, T ya¥]) !
and decompose A[F, T_,, ¥ ] into the sum A[F, ¥] + J A where the operator 6 A
denotes the difference A[F, | — A[F,T_, 4%]. Now, notice that for all w € ('

SA(w) = F¥ (w) + ¥*(w) — F(¥(w) + [_d”]) —UX(w) — v
=F¥(w)— F(¥(w)+[}]) —v.

Next, we show that the £,-norm of A;(w) is bounded by a constant independent of

w:

* Per assumption, W is /,-stable, and therefore z = Pw € EZ‘ *U  Furthermore,
since v and d are assumed to be bounded in the £,-norm, we have z + [ | €
ff U Invoking i.f.g.-(, stability of F' at z, we know there are fixed constants
(7. 6y) such that for any =: | F(z) — F(z + [ [, < vs(lvl, + |d],) + 7.
This implies that [0 A (w)], is bounded above for all w € (% as:

[0A(w)], < (v + Dvlp + ¢l dly + By (2.48)

Denote ep = A[F,¥](0) and note that since F is i.f.g. /¢,-stable and ¥ is
assumed /,-stable, the sequence e, belongs to €;"f . Now, per our assumption
|A[F, ®]||* =: v < 1, for any w € £ holds:

|ALF, ¥](w)], < |ALF, ®](w) — eof, + el < vlwll, + lleoll,

From the above inequality and (2.48), we can conclude that A[F, T, 4¥] is
(7, B1)-f.g. £,-stable for any v € £, d € (. In particular, for all w € £} holds:

|ALF, T a®](w)], < v[wly + |eoll, + (v; + Dlvll, + ¢ld], + 57 (2.49)
B

3This can be thought of a local Lipshitz-constant.
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According to the above, A[F, T, 4¥| satisfies the ¢, small-gain property. Using
the small-gain Theorem 2 (presented in Section 2.3), we confirm that %[, 4 achieves
(ﬁ, By)-£, fg stability, with 3, = ﬁ (3. On substituting the constants defined in
(2.49), we establish that the partial input-output map of 6CL, ®¥; : (w,v,d) — w,
is (73, B3)-(,-stable where

13 = % By = —”Bf;rjlj”.

The other partial input-output map of the closed loop 6CL, ®3¢; : (w,v,d) —
(x,u), is written as ®58; = WPF,; . This implies that, at a minimum, it is £,-stable,
given that W is /,-stable and ®}; is (73, 83)-f.g.-,-stable. If ¥ is additionally fg.-
(,-stable, ®X; also shares this property. Given that ®scr, = (PF, PXcr, Phor),

we affirm the desired statement.

Partii): Aside from a few modifications, the proof is structured as in the previous part.
Pick € > 0, then, by the /,-continuity assumption, there exists some o () > 0 such
that [ (2)[ ¥ < e forall z € Bf [0(¢)] where B [r] := {w' € {57 ||w']} < r}.

Fix some v, d and denote 9,4 := [[v[7 v [d], then for all =z € Bf [4(¢)] holds
[0A(2)], < |F(¥(2)) = F(®(2) + [ Dy < Lle + 0va)dua-

From || A[F, ¥]|| = v < 1 and since we assumed A[F', ¥](0) = 0, we have e =
0 and therefore A[F, ¥](z) < 7|z|,. We proceed to bound |A[F,T_, 4%](z)[
for z € B"[d(e)]:

|A[F, T-0a®](2)|; < ]2l + Ll + dva)dua.

We can now use the local small gain theorem Lem. 7, letting A (z) play the role
of disturbance and setting p = d(¢). Notice that since L is not decreasing, the term
L(e + 0yq)d,q is not decreasing and converges to 0 as d,4 — 0. This implies that
there exists 7,4 > 0 such that L(e + 7,4)rq < (1 — 7)d(¢). Therefore, if 6,q < 744,
then [0A(z)], < (1 —7)d(e) and we can conclude that $%|, 4 maps to £, when
restricted to w € B [3(c)] and provided that |[v[ v [d[}f < r,g. With §* =
min{d(e), rya}, this shows that ®3¢; (w, v,d) € £ whenever [w|, |[v|7, [d]Y <
&* and leads to the desired result, since W is (,-stable, ®33;, = ¥PY, . and
Pscr = (Pjer, Pior, Pior)- If in addition, || ¥||* = Ly < oo, then () = Ly'e
is onto R, and we can replace ¢(¢) simply by a variable d,, > 0 and construct 7,4 as
a function of 9,, such that L(Lydy, + 7pq)7va < (1 — 7)d,, Which, as argued before,

is possible for any 0, € R.

O
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In the previous theorem, the global stability condition i) required the dynamics

operator F' to be i.f.g ¢,-stability and the local one ii) required the statement
|2l 12", <0 = |F(2) - F()[; < L(n)]z-2[; (250

to hold for an appropriate choice of non-decreasing® function L : R* — R™. Itis
important to point out that both requirements are continuity-type conditions and are
completely unrelated to the question of whether the dynamics F' are open-loop
stable or unstable! As mentioned in our discussion of the different notions of
¢, -stability of Def. 2.3, requiring F to be (v, §)-i.f.g.-{,-stable, with § = 0, is
the same as requiring F' to be Lipschitz continuous over the subspace E;f *U with
respect to the corresponding ¢,-norms of the domain and codomain. On the other
hand, the statement (2.50) is a weaker continuity requirement that is equivalent to
uniform continuity of F' in the ¢,-norm. For most types of dynamical system, these
continuity assumptions can be further reduced to the standard continuity properties
of functions over finite-dimensional normed spaces. For example, the dynamics
operator F' corresponding to any of the following dynamical system equations is
(v, B)-1.f.g.-C,-stable:

» LTI finite-dim.” dynamics: x; = ZZ; Az + ZZ; Brui_p + wy.

* LTV finite-dim. dynamics:
Ty = ZZ; A pi—p + 2211 B, pui—j, + wy, for a bounded set of matrices
{(Agg, Bir) [t e N, 1 < k < h}.

* Nonlinear "almost"-Lipshitz TI S finite-dim. dynamics:
xy = f(®y—14—h,, Wi—14-n,) + w; where f = f; + f, and with f; being
~-Lipshitz-continuous and f5 being a (possibly discontinuous) 5-bounded

function, that is: sup, , | f2|(x,u) < B.

* Nonlinear "almost"-equi-Lipshitz TV finite-dim. dynamics:
xr = fi(Te—1:4—n,, Ut—14—n, ) +w; where for each ¢, the function f; = fi1+ fi2
can be decomposed by a ~y-Lipshitz continuous f; ; and S-bounded (possibly

discontinuous) function fs ;.

Similarly, F' satisfies the condition (2.50) for the above nonlinear systems if we

replace Lipschitz continuity by uniform continuity; for the linear system examples,

®It is clear that the requirement L to be non-decreasing is without loss of generality.
"Finite-dimensional.
8TI=time-invariant, TV=time-varying.
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the conditions are the same. On the other hand, if a dynamical system cannot be
realized with a finite-dimensional internal state, then correspondingly the continuity
requirements on the dynamics operator F' may need to be verified directly in the

corresponding infinite-dimensional ¢,-normed spaces.

In summary, Theorem 11 showed to us that for any of the dynamical systems listed
above, any /,-stable CLM W of F, i.e., A[F,¥]| = 0, can be realized with an
internally /,-stable system level controller SL[W*, W¥*]; in the context of closed loop
of 6CL, ¥ being realized means that the operator ®5¢; |, 4—0 : w — P3¢ (w, 0, 0)
is the same as W. Moreover, if a candidate CLM W is an accurate enough approximate
solution to the CLM equation, i.e., the residual operator A[F', ¥] has a small enough
norm || A[F, ¥]||* < 1, then the system level controller SL[W®, ¥*] still stabilizes
the system and guarantees /,,-internal stability of the closed loop dynamics. However,

in that scenario, the resulting mapping ®3¢; |».a—o is the operator
D3|m0 = ¥ (I, — A[F, ¥])"

and no longer matches W. Nevertheless, if W has stronger stability properties
such as fg-/,-stability, then in either case, whether W is an exact or approximate
CLM of F, the resulting input-output map ®;cy, : (w,v,d) — (W, x,u) of the
closed loop dCL is guaranteed to be fg-/,-stable. Moreover, if F' is only uniformly
¢,-continuous but not necessarily i.f.g.-/,-stable, then as stated in Theorem 11ii),
we can ensure £,-internal closed loop stability of ®;cr, for a bounded set of small

enough perturbations (w, v, d).

2.8 Nonlinear Closed Loop Maps of Linear Systems

Linear techniques, such as loop-shaping, H.,, Hz-optimal control, to name a few,
provide powerful tools for feedback control design of linear systems. However, there
are many applications where, despite the linearity of the system, nonlinear controller
design is required or provides better solutions. Two popular application scenarios
where nonlinear control design is common are model-predictive control and adaptive
control. Due to the nonlinear feedback controller K, the overall closed loop in
these settings has nonlinear dynamics, and it is necessary and crucial to study the
closed-loop behavior in the context of nonlinear control theory. Understanding the
properties of the closed loop maps of F', which are also nonlinear, is also of great
interest, however, they are far less studied in control literature so far, partially due to

the lack of analytical tools.
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The operator-theoretic tools developed in the previous sections open up new ways
of studying the closed-loop dynamics in this setting by analyzing the structure of
the closed-loop maps. It turns out that the linearity of F' imposes structure on the
entire space of CLMs ®¢*"[ F'|, not just the subspace @[ F] n LC(¢F, (¥>U)
of linear ones. In this section, we show that the set of CLMs ®¢*"[F'] is closed

under a particular type of combination, which we refer to as blending:

Definition 2.11 (Blend of a Family of Operators). For a fixed family of operators
F ={W,}icr € C(UY, U), we call an operator s, € C({* (**U) a blend of F
if it can be expressed as a sum Wy, = Y. W, G, for some collection of operators

G = {Gi}icz = C(tY), called weights, which satisfy the identity Y., - G; = Ix.

Thus, a blend can be thought of as a sum of operators ¥, of a family F, "weighted" by
the operators G; of another family G, which, as expressed by condition } |, ; G; = I,
represents a sum decomposition of the identity operator. In this section, we show
that, for linear system dynamics, the CLM space ®@; " [F'] is closed under the
combination of blending described above. In particular, we can combine a family
F = {W;}icr < LC(LY, 4F7U) of linear CLMs with a suitable family G of nonlinear
"weight" operators to merge the desirable properties of different linear CLMs into one
nonlinear CLM. We will demonstrate the power of this approach in the next chapter,
where we consider control applications with large-scale linear systems subjected to
state- and input constraints and actuator saturation. The enabling theoretical result

underlying these methods is stated and proven below:
Theorem 12. Let F be linear, {G; : {* — (*} be N causal operators, and {®;}¥
be N candidate CLMs. Then,

N N
Vi: W, e @G [Fland Y G =1 — > W,G;e ®™[F]. (2.51)

i=1 1=1

Proof. Denote Wy, as the cCLM Wy = Zf\il W.G,; and evaluate the residual



63
A[.F'7 \I’E]I

N N
A[F, W5 = F* (Us) + I - ¥ = F*(Y 0,G,) + T - Y ¥IG,
=1

i=1

N
F (9,G)+1-) WG,

i=1

e
D=

N
I
—

N N
FH(¥,G) + ) .G — ) WG,
=1 i=1

S
b=

S
Il
—_

N
F+(\IIsz) +G; — UG, = Z (F+(\IIZ) +1I - \Ilf) G,

=1

e
=

S
Il
—

B
1=

@
I
—

A[F,¥,]G; = 0.

The first equality a) follows by linearity of F'. Step b) follows by the definition of
operators G;. Step c) uses the right-distributive property of the operator product. In
d) we use the fact that each map ¥; is a CLM of F'. This establishes the desired

result, since we showed A[F', ¥y] = 0 and can invoke Theorem 8. O

As an immediate corollary of the above result, we conclude that the space of CLMs

of linear dynamics operators F' is closed under blending:

Corollary 13. If F is linear, then for any blend ¥y, € C({*, () of a family
F = {‘Ili}iel' C ‘b‘évfxu[F], holds ‘I’E € (PVCVLHXU[F]

This result provides concrete instructions on how to construct new CLMs Wy, from
existing ones ;. If we interpret the operators G; as "weighting" operators (because
they sum up to "one" in the operator space), then Wy, = Zf\il W, G, resembles a
weighted average of the individual CLMs W,;. We refer to the resulting CLM Wy, as
a non-linear blend of the CLMs W, and call a finite collection of operators {G;}
weight operators / weights if Y. G; = I.

It is also important to note that the above result only requires linearity of F', so both
W, and G; can be nonlinear causal operators. In particular, this allows us to construct
blended CLMs composed out of other sets of blended CLMs; one could call that a
layered blend:
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Corollary 14. Let F be linear, {G; : {* — (¥}, {G; : (¥ — (¥} be N causal
operators, and {®;;};_, be N* candidate CLMs. Then,

N N
Vi,j: W e ®Y P [Fland Y. Gy =1,) G =1
i=1 j=1
N N
— > Y ¥,;GG; € BET(F). (2.52)
j=1li=1

Naturally, the above corollary can be applied arbitrarily many times, and it is an open
question whether there is a generating set of CLMs {E,, Es, ..., } < ®F " [F]

from which all of ®;*" can be constructed in this way.

For our discussion, we will focus on simple blends using static weighting operators
{G;}. We refer to static operators as those that act on sequences by applying the
same function f : R” — R™ to each element. For notational convenience, we refer

to the corresponding operator via the Kronecker product I ® f as defined below:

Definition. For a fixed function f : R" + R™, let I ® f : {* — (* be defined as
the map

(20,21, ... ) = (f(z0), f(x1),...).

For a matrix M € R™™™, the operator I ® fy;, where fy : © — Mux, will be
referred toas I @ M.

In the later discussion, we make use of the following types of static weighting

operator:

Definition 2.12. Any collection of operators {G;}Y., defined as below satisfies
25:1 G =I:

1. Linear Orthonormal Projections: G; = I ® UiUiT, where U; € R™ ",
UTU; = 1I,,, and 3N | U;U = I,

2. N-Zone Saturation: Let W, < W, --- < Wx_1 be a collection of nested
convex sets in some normed vector space (| - |,R") and denote T}, : z —

argmin |z — u|,Vk € {1,...,N — 1} as the projection maps onto set V.
ueWy,
With the abbreviations Ty := 0, Ty := I,,, define Gy, = I ® (TT, — T1y_1) for

allke{l,...,N}.
3. Sum Inversion: For any collection of causal operators {G;}fil for which the
sum G = Y | G, is causally invertible, define Gy, := G,,(G

/

\Ifz)fl-
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Next, we investigate how to implement the realizing controller K = WY (¥%)~!, This
leads to a controller implementation scheme which we call a "blended" system-level

controller.

2.9 Blending SL Controllers
We investigate the realizing controller corresponding to candidate CLMs of the type
Uy = >V W,G, formed from a collection of candidate CLMs {®,}~ | and weight
operators {G}N ,, >N G = 1.

As usual, we decompose the computation of the realizing control law u =
Pl (P¥)~x into the computation of an internal state, called the lumped (or effective)
disturbance W := (¥¥);'x, and the final control action u = Wi. Since we no
longer assume that P3; is a CLM of F', we have to at least verify that it is a candidate
CLM to ensure that (¥*)" exists and is causal. This is easy to verify from the fact
that we assumed {¥;} | to be all cCLMs:

Lemma 10. Given some operators {G}Y | such that Y~ | G = I, if {¥;} | are all
cCLMs, then Wy, = Zf\il U.G,; is a cCLM as well.

Proof. Since the composition of causal operators is causal, it is clear that Wy, is

causal. It is left to verify that ¥, — I is strictly causal. To this end, write the former

® N N N
Uy -1 = Z VG, —1I= Z(‘I’?Gz -G = Z(‘I@( -I)G;
-1 -1 i-1
and notice that (P* — I) € C,(4* 4Y) = (¥ — I)G; € C,(£¥, (7). O

From the above, we can realize K as a system-level implementation SL{ W5, Wy |

using the components of Wy:
N x A u ~
Wy = Ty — \I’z,t(oy wtfl:O)a Uy = \Ijzﬂf(wt:())-

However, we derive an implementation in terms of the components of W,.
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Rewrite the relation WY (W) = x as

Ui(w) =z
N
= W=+ (I W) =+ (I - ) TG)w
i=1
N N N
. w=x+ ()G - WG =z+ (D (G — ¥IG)b
=1 1=1 =1
N N
< w=z+ (O (I-T)G)b=z+ ) (I-¥)Gb  (253)
=1 i=1
N
= W=+ ) (I - U)w'
=1
and decompose the control action u = WY () as
N N 4
u = WL(w) = Z VIGH)w = ) (F/Gb) = ) Wi, (2.54)

i=1 i=1
where we define 1w’ = G;(w) as a partial disturbance term corresponding to the ith

cCLM ;. This leads to the following implementation of the realizing controller K:

Definition 2.13. Let K = WL(P%)~! for a cCLM of the form ¥y, = va Yo G,
where {W;} | are cCLMs, and {G;}Y.| are a collection of causal operators such
that Zi:l G; = I. Then, the following realization of K is defined as its blended SL

implementation:

Wy = @y — Z\If (0,9_,,) (2.55a)

w; = Gy(tro) (2.55b)
N .

up = Y W, (ibf). (2.55¢)
=1

In the later sections, we will consider the special case where Wy, is a blend of linear
cCLMs {¥,}¥ | and static nonlinearities G;;(z1.0) := gi(z;). The corresponding

blended SL implementation takes the form:

N t+1
Wy =z — Y > Ry (2.56a)
i=1k=2
Wy = gi(iy) (2.56b)
N t+1

wp = Y3 My (2.56¢)

i=1k=1
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where the matrices R!, € R™*" and M/, € R™*™ are associated with the linear

component functions of the cCLMs W, as follows:

t+1 t+1

(21e01) Z Ry 21, (z1641) 2 M 2. (2.57)

Internal Stability of the Closed Loop
To investigate the stability of the overall closed loop, as described in the previous
section, we need to add the internal states of the implementation w and w* to our

closed loop model and analyze the stability of the corresponding closed loop maps.

To derive the dynamics of the lumped disturbance, we substitute x = F* (x, u) + w
into w = x + (I — ¥ )w. Furthermore, since (x,u) = ¥y (w) we have x =
F* ¥ + w which yields:

'Li)z(F*Wg)w+w+(I—\IIX)1D:(F+\IIE+I—\I'§)1B+w

—w+ A[F, Uy ZAF\II]Gw+w
i=1
Finally, since we established that Wy, is a candidate CLM, A[F, ¥y | = F*(¥y) +
(I — W¥) is strictly causal and assures that I — A[F, Wy] is causally invertible.

Hence, the mapping w —  is defined by the following equation:

N
W= (I-A[F,¥g])'w = (I - ) A[F, ¥,|G) 'w (2.58)
i=1

N
- QI - A[F, %)G)'w. (2.59)

i=1
Since F' is assumed linear, we can invoke Corollary 10 of Theorem 8 to obtain
conditions for closed loop internal stability. Recall the perturbed closed loop model
dCL with SL[¥¥,, Y] as the controller. We have an internal ¢,-stable closed loop

under the following conditions:

Theorem 15. Let Wy, be a G-blended cCLM corresponding to a family of (-
stable cCLMs F = {®,}Y | and a family of {,-stable weights G = {G;}Y,
Consider the closed loop system dCL described by the equations (2.40) for a fixed
{y-stable F € LC((X*U () and controller Ky, = W (WY,) ™! with implementation
SL{wY, WL

Then, the map ®scy, : (w,v,d) — (W, x,u) of the closed loop 0CL is {,-stable if
the operator (3.1 (I — A[F, ®,])G;)™" is (,-stable.
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Proof. Apply Theorem 10. [l

In the next section, we discuss how blending inspires a nonlinear control synthesis
procedure for the constrained LQR problem, which strictly outperforms any linear

controller.

2.10 Conclusion

This chapter highlights a general and fundamental relationship between closed loop
maps and corresponding realizing controllers in general nonlinear discrete-time
systems. The key findings are as follows: 1. All closed loop maps are solutions to an
operator equation, and all solutions of the equation are achievable closed loop maps.
2. Given a solution of the operator equation, we can obtain a realizing controller
by parameterizing a system-level controller with the solution. This controller then
imposes the given solution as the closed loop map of the system. 3. This same
procedure produces robust closed loop stability even when the system-level controllers

are parameterized with approximate solutions of the operator equation.

We discuss an important consequence for the special case of LTV system dynamics
and nonlinear dynamics in the controller: The space of (nonlinear) CLMs is closed
under "blending"-type combinations. This observation informs a procedure for
constructing complex (or more expressive) CLMs from a collection of simpler CLMs.
This idea can be leveraged for nonlinear SL-controller synthesis and provides, for
example, systematic instructions to synthesize nonlinear controllers by "blending"

multiple linear SL controllers into one.

In the next chapter, we will see that this technique has important implications for the
problem setting of linear systems with actuator saturation and provides new ways to

perform simple stability and performance analysis of the closed loop.

2.A Proofs

Let (X,] - |+)and (,] - |y) be some finite-dimensional banach spaces, XN, YN
be the corresponding vector space of sequences over N. Let X;\‘ c XY and
y§ < YN denote the normed vectorspaces w.r.t. to the usual £,-norms defined for
sequences in N. Let C(XN, V) be the space of all causal operators XN — YN and
define || - |5 : C(XN, YN) - Ry v coand || - |5 : C(XN, YN) — Ry U oo, with
pe{l,2,... o} for some operator A € C(XN, YN):

) A(x) — A0 .
jAl = sup A@ AN a4 A©)),

xeX]: 20 H HP
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Lemma 11. || - ||, is a norm on C(X),V))) and || - ||} is a norm on {A €
C(X),))) | A(0) = 0} or the quotientspace C(X,', YY)/ ~ with the equivalence
relation A ~ B < A — B = const. Furthermore the following holds:

(i) ||A — B||; = 0if and only if A and B are the same up to a constant offset.
(ii) Submultiplicativety holds for products T A and AB if T is linear and B(0) =
0:
ITA; < ITGNAN; — IABI; < [[AlZIBI;-

Proof. If || A[5 = 0, then for all & € XY, & # 0 holds y = A(x) = yo := A(0)
because otherwise (

'y — yollp)/|z|, # 0 leads to a contradiction. Let r # 0
then rA = (rI) o A means that [rA(x) — rA(0)|, = ||r(A(z) — A(0))], =
7[|(A(x) — A(0))[, and therefore ||rA||> = [r[[|All;. It remains to show a
notion of sub-additivity. Let A, B € C(XN, YY), then for all © € X;,\] holds
(A+ B)(xz) — (A+ B)(0) = A(x) — A(0) + B(x) — B(0) and by triangle
inequality of the £,-norm follows

|(A+ B)(z) - (A+ B)(0)], < [A(z) — A(0)], + | B(z) — B(0)]-
Let X = Y and consider AB e C(X)', X)) with B(0) = 0. Then

|AB(z) — AB(0)],

A, = sup
b weXZIF:sc;éO Hw”p
~ swp |AB(x) — A(0)], | B()|»
zeXl: B(w)£0 |B(x)], ||,
|A(y) — A(0)] |B(z) — B(0)| “ll 2>
< sup £ sup == Al Bl
yeXl: y#0 |yl zeX: 2£0 ||,

Now, let T' € LC(X)', X)) be a linear operator and notice that T A(xz) — T A(0) =
T(A(x) — A(0)). We repeat the same process as above and obtain [T A||7 <
I 1A -
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Chapter 3

NONLINEAR BLENDING APPROACH TO CONTROL OF
LARGE-SCALE SYSTEMS

The theory developed in the previous chapter provides a framework to systematically
"blend" multiple (possibly) nonlinear controllers into one stabilizing nonlinear
controller. Blending happens at the controller implementation level and can be used
to optimize the performance of the nonlinear closed-loop map by combining the
desired properties of multiple closed-loop maps. In this chapter, we explore three
applications to demonstrate the utility of this approach in control settings challenged

by complex dynamics and constraints in the system or controller.

3.1 Introduction

As a warm-up, we discuss the time-varying design of the SL controller and the local
stability analysis for closed loops involving nonlinear continuous-time systems, which
is the first rigorous discussion of this topic. As an example, we use the problem of
trajectory tracking for nonlinear continuous-time systems through discrete-time zero-
order hold feedback control. Our empirical case study evaluates the SL controller
on the cart-pole system and demonstrates that despite using only a rough model for

synthesis, the resulting controller demonstrates very robust closed-loop performance.

In the later part, we consider nonlinear control settings, where complexity in the
system dynamics is caused by sheer scale and distributedness of the system, rather than
high-order nonlinearity in the dynamics. In particular, we show that the framework
is particularly well-suited for large-scale systems subjected to input saturation and
state constraints, but with otherwise linear dynamics. We investigate some first
application scenarios where our approach naturally provides significant benefits over

existing methods: distributed constrained LQR and distributed anti-windup control.

In the case of constrained LQR, we derive a synthesis procedure for blended SLS
controllers that outperforms any optimal linear controller for the constrained LQR
problem [36, 86, 91, 140]. As a second application, we discuss how the blended
SLS technique provides a natural remedy for controller-windup in a way that is
easily scalable for use in large-scale control systems. We discuss the efficacy of

the methods with simulations and show that synthesis and implementation enjoy
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the same benefits as previous SLS synthesis methods: both are distributed, handle
delays, sparse actuation, and allow for localized disturbance rejection. The presented
work is based on [64] and [137].

Setup and Recap of Key Concepts
For this chapter, we consider linear dynamical systems described by the operator

equation
x=8"F(z,u) +w=: F'(z,u) + w, (3.1)

where F* = S*(F) is a stricly causal operator formed by a right shift of causal
linear operator F' which we call dynamics. As linearity allows, we split F' into
two causal linear operators A : (" +— (", B : {™ +— (™ and write F as F(x,u) :=
(A(x)+ B(u)). Werepresent A and B by a sequence of matrices { A, , € R™*" |t >
0, k= 1}, {Bir € R™™ |t = 0, k > 1} parametrizing the component functions of
A; and B, as:

t

xto Z tk+10t—k; Ut(] ZBtkHUt k-

Correspondingly, F has the component functions F} (.0, tu.0) = Ai(Te0) + Bi(z40),
the components of the dynamics F'* are

t t

F (40, Ut0) Z t—1 Ttk T Z Bt_LkUt—k (3.2)

k=1 k=1
and the difference equation of the system dynamics takes the form:

t t

= Z At—l,kxt_k + Z Bt—l,kut—k + Wt. (33)

k=1 k=1

For the sake of defining the closed-loop maps, we view w as an input and the
pair (x,u) as an output. Then, as in the previous chapter, for a causal controller
K : /" — (™ and fixed plant F', the corresponding w — {x,u} map of the
closed-loop CL is the operator ¥ = [¥% | defined by the partial maps ¥* and ¥":

1

U= (I-S*F(I,K))', ¥ :=K(I-S"F(I,K))

-1

An operator ¥ = (W* W) with partial maps ¥* and ¥* is a candidate closed-loop
map (cCLM) of F', if it is causal and of conforming domain and co-domains, i.e.,
T4 — (" and " : (" — (™ and W* — I is strictly causal. The residual A is a
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map A : C({U () x C(4Y, 0¥U) — C(L*, ¢Y) where for F € C(4**Y (*) and
U = ¥ ] e C(t¥, ¢¥U), A[F, U] is defined as:

A[F, U] = F*(O) + T — ¥ = S'F(¥) + I — ¥",

The set of all closed-loop maps of F' is denoted as ®&; " [ F'] and by Theorem 8 can

be equivalently defined as:
Se M F] = {¥ | A[F,¥] = 0}.

3.2 Discrete-Time Trajectory-Tracking Control for Nonlinear Continuous-
Time Systems
We derived that, in theory, we only need operators (¥*, ¥") to approximately satisfy
the CLM condition (2.33) to obtain robustly stabilizing controllers SL|¥*, ¥"|. The
generality of the robustness result argues that system level controllers could be a
promising design tool in practical control applications. However, more research is
needed to quantify the trade-off between the approximation grade of the condition
(2.33) and the corresponding achievable control performance. As a first step towards
that, we present some first empirical results that show that system-level controllers
can achieve good robust control performance in challenging-to-control nonlinear
systems while using only crude models of the system for synthesis. Figure 3.1 shows
simulation results of using a system level controller SL[W*, ®¥"] at 30 Hz sampling
time to swing up a cart pole system under small and large closed-loop perturbations.
Rather than satisfying the CLM condition (2.33) of the zero-order hold actuated cart

pole system, the maps W are synthesized using the following approximations:

» W are taken to be affine operators, where the affine term is a sampled continuous-
time desired trajectory (z%(t), u?(t)) for the system and linear part is chosen

to be finite memory (2 s window in continuous-time).

* The continuous-time trajectories (z%(t), u(t)) are low-grade approximations

of swing-up motions of the cartpole.

* W are chosen as CLMs of an approximation of the linearized system around

the desired trajectory.

The above simplifications make clear that ¥ serves only as a very coarse approxima-
tion of the exact CLM condition (2.33). On the other hand, the above approximations

allow to synthesize the linear part of W analytically and in parallel, allowing for
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Figure 3.1: Swing-up control for cart-pole system with system level controller at
30Hz sampling rate. (z, z, 0, 6, f) stand for cart position / velocity, pole angle /
velocity, and cart force with units (m, m/s, deg, deg/s, N). 6 = 180° stands for
the upward pole position. The weight of the cart and the pole is chosen as 1 kg
and 0.1 kg, the length of the pole is chosen as 0.5 m. Consult [122] for detailed
system description and equations. Left: Desired trajectory (red) vs. closed-loop
performance under initial condition error ¢(0) = 45° and two scenarios of small
(orange) and large (blue) system perturbations w, v, d. Middle: Evolution of internal
state w for both scenarios and normalized disturbance due to trajectory error é;.
Right: i.i.d Gaussian perturbations w, v, d.

efficient computation.
Leaning on the discussion in Section 2.7, the closed-loop .S of the cart pole simulation

can be written as

Ty = G, (Tp1,Us—1) + Wy + ey, (3.4a)
t+1
Wy =z + v — 2(t7) = Y Ryptbiaop, (3.4b)
k=2
t+1
up = u(try) + Y Myt + di, (3.4c)
k=1

where w, d and v are state, input and internal controller state perturbations and e; is
due to errors in the trajectory synthesis. The matrices [y € R™*", M, € R™*"
parameterize the linear part of ¥. Due to the approximation steps taken in the
synthesis of W, there is a considerable gap between the real system and the model used
for the synthesis. Nevertheless, Figure 3.1 shows that despite the large uncertainty

of the model, the closed loop provides robust performance against a variety of



74

perturbations: Large initial condition errors, large perturbation signals, and errors in

trajectory.

Derivation and Nonlinear Stability Analysis

Using the cart pole system as an example, we demonstrate how to develop a system-
level controller to track trajectories for nonlinear continuous-time systems. We use
the description of the cart pole as presented in [122] and refer to the same reference

for detailed derivations. The dynamic equations of the cart pole are

(me + my) @, + mplép cosf, — mpléi sinf, = f (3.5a)

mplZ. cos b + mPZQép + mypglsing, =0 (3.5b)

where x. and 0, stand for cart position and pole angle in counterclockwise direction
and f represents the force exerted on the cart. Furthermore, § = 0 denotes the
downward position. The parameters (m., m,, [, g) are chosen as (1 kg, 0.1 kg, 0.5
m, 9.81m/s?) and represent the mass of the cart and the pole, the length of the pole
and the gravity constant, respectively. Furthermore, (3.5) can be converted into the

input affine standard form

= F(x)+ g(x)u (3.6)

where = = [z, 0,, T, 0,]7, u = f, (see [122] for description of F'(z) and g(x)). As
in practice, controllers are usually implemented digitally, we assume zero-order hold
on the input v with a sampling time of 7, = 0.033sec (1/75 = 30Hz). Because of
this discretization, we can equivalently represent the system (3.6) at sampling times

through the discrete-time system
Ty = ¢Ts(xt717ut71)7 ¢TS($,U) = Oé(Ts), st a= F(Oé,U),Oé(O) =T, (37)

where we denote x; := x(t75) and u; := u(trs) (t € N) to be samples of the
continuous-time signals z(7), u(7) at time ¢7,. To put (3.7) in operator form, define
F? e C,({™ x ™ (") with component functions Ftd)(:ct;(), Upo) 1= Pro(Tp_1,U—1)

and equation (3.7) can be written in terms of the trajectories (z,u) as x = F?(z, u).

Remark 16. We use the variable T to indicate that a variable a(T) is a continuous-time

signal and use a, to refer to the discrete-time samples a; := a(t7y).

We use a continuous-time trajectory x%(7), u(7) as a reference, which is shown

in red in Figure 3.1. The trajectories approximately satisfy the continuous-time
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dynamics, i.e., 2%(7) ~ F(2%(7)) + g(2%(7))u?(7), and are designed to swing up

the pole in 3 seconds and then keep the cart pole at . = 0, 6, = .

Remark 17. Notice that even if 1%(1) = F(24(7)) + g(24(7))ul(7), it still does
not hold x¢ # ¢, (x4 |, ul ), since the continuous-time trajectories are computed

without consideration of the zero-order hold actuation.

We take the following linear approximation of ¢, around the reference trajectory:

Gr. (T4 1, U 1) ~ 2+ exp(VF\zg_lTs) w(xyq — xf_l) . (3.8)
=:Ai_q
+ L h exp(VFl,g m)g(el )dr«(u s —ul)).  (3.9)
J — )

Denote [A; 1, Bi1] := Vi udr,|(2d | ue ) the true linearization of ¢, at (xf_;, uf_,)
and notice that the above approximation (3.8) is only an approximation of the
linearization, since [At_l,Bt_l] # [As—1, Bi—1]. Using Taylor’s theorem and

assuming ¢, is differentiable, we can write ¢,, as
_ d ,d A _d B _d
Gry(Tp—1, wi—1) = br, (Te_1, ugy) + Apmr (i1 — 24 ) + Bioa (w1 —ui_y) - -
e (@ — 2w —u )

where lim,| o [r:—1(2)|/|2| = 0. We can factor out equation (3.7) into the following

components
vy =20 + Ay (e — 28 )+ B (we —ud ) + e 4 e (xm1,umr)  (3.10)

where e; and e}(z;_1,u;—1) are disturbance terms introduced due to errors in the

reference trajectory and linearization

e = Qr, (x;l—bu?—l) - xf
62(%71, 1) = (Ao — Atfl)(xtfl — »’Uf_l) + (By—1 — étfl)(utfl — Uf_l)

d d
et thl(xt—l — L1, U1 — utfl)

and the remaining terms represent our linear approximation of the dynamics. we
can express this more compactly in operator form: Define F? e, (¢, ™) with the

components

F (20, ur0) = 28 + Ay (21 — 28 ) + Bioa (u—y — ul )
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and the residual A? e C(¢", (") with the components Af (Tp0, Ut0) = € +

ey (zy—1,us1), then we can factor out the original equations of (3.7) as
x = F°(x,u) + A%z, u) (3.12)

where per definition we have the decomposition F? 4+ A¢ = F9.

Our approach for synthesis is now to use F*¢ as a model to design a system level
controller and treat A? as disturbance terms we want to be robust against. We do
this, first solving for the CLMs U= (\ilx, il“) of F¢ and then choosing our feedback
controller as SL[¥*, ¥"].

Due to Theorem 8, W is a CLM of F*¢ if and only if it satisfies the CLM equation
(2.33) for F?, i.e., U* = F*(W) + I. We restrict ¥ to be of affine form ¥ : w —
[%(w) + [ ] with [, ] € ¢ x £™ and R € LC({™, ("), M € LC(", (™). Thus

the component functions of W take the from

t+1

qu(glsﬂrl) = Z Ry rag + 1y (3.13)
k=1

B t+1

Vi (or1) = Z M o + my (3.14)
k=1

where R, ; € R"*", M, ; € R"*™, r,, m, are some fix sequences and .4 denote
the ¢ + 1 arguments of the component function. Structuring W in this form and using
linearity of F? reduces the original operator equation Ux — 13"25(@) + I simply to

the following set of linear equations for R ;, M, ; and 7, my:

Rip= A Revjp1 + BioaMy_yy forallk <t, Ry =1 (3.15)
ro=al,  my =ul. (3.16)
Equation (3.15) is an affine subspace constraint and opens up many possible ways to
synthesize for solutions R, j, M, ;. In fact, (3.15) matches the linear time-varying
formulation of SLS as discussed in [66], [11] and for our case-study here, we are
synthesizing for R, j, M, by solving the following 5/ LQR problem for the LTV

system F¢ subject to an FIR constraint with horizon 7' = 60 time-steps:

min Y 2 NReklE + [ Megl7
Ry ko, My k. 0<t<H 1<k<T
st. Rip=AraRi_1p—1+ BioaMy_q 51 (.17)

Rt,l = -[7 Rt,T = 0.
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Remark 18. See [11] for details of the Ho/LOR problem setup and derivation of

the convex optimization problem. The FIR horizon can be understood as a time
window [t,t + T given to the controller to kill off the disturbance w,. Considering
the sampling time of our example, T’ = 60 here translates to a 2-second window in

continuous time.

Furthermore, /' denotes the length of the trajectory in sampling time steps. The
above problem can be solved in closed form since it is a QP without inequality
constraints. Moreover, the change of variables R}, j41,M;4p j41 with0 < j < T'—1,
0 < h < H shows that (3.17) can be decomposed over / into H separate QP’s that
can be solved analytically and in parallel, hence showing that the computational

complexity of our synthesis approach is independent of the trajectory length H.

The solutions of (3.17) are taken to parameterize the operators (3.13) which give
us the system-level controller SL[@X, 'if“] The resulting closed loop of the cart
pole system (3.7) and controller SL[\iIX, \i’“] can be put into the form of our robust
stability analysis in Section 2.7:

Ty = Gy (Tyo1, 1) + wy (3.18a)
t+1
Wy =z + v — 2(t7) = Y Ryptbya—n (3.18b)
k=2
t+1
up = u(try) + Y Mgty + di. (3.18¢)
k=1

Furthermore, referring to Theorem 11, it can be verified that the residual operator A?
we defined earlier matches the residual operator of Theorem 11, i.e., A[F, ¥] = A
Thus, Theorem 11 applies directly to our problem setting. More specifically, the
local result Lem. 7 can be used to obtain robust stability guarantees. If the lumped
residual terms are (7, ) {,-stable with v < 1, then the closed-loop system is f.g.

(,-stable for small enough perturbations.

3.3 The Constrained LQR Problem

We use the idea of blended CLMs to derive a novel distributed synthesis procedure
that outperforms any optimal linear controller for the constrained LQR problem
[36, 86, 91, 140]. A significant advantage of the approach is that despite being
a nonlinear synthesis method it naturally enjoys the same benefits as the linear
system level approach introduced in [11], which allows for localized controller
implementation, making it scalable to large networks. For the following discussion,
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we assume that F' is a standard linear time-invariant system, thatis: F' = Ax + Bu,
where A = I® A and B = I ® B for some fixed matrices A € R"*™ and B € R"*"™,

Consider a control problem where we wish to minimize an average LQR cost,
but also want that the closed loop meets certain safety guarantees against a set of
rare yet possible worst-case disturbances. Ideally, we would like to synthesize a
controller that can guarantee the necessary safety constraints without too much loss
in performance compared to the unconstrained LQR controller. We will phrase this

design goal as the following constrained LQR problem:

mln Tlglgo — Z E i p(un) [T (4, ur) ] (3.19a)
s.t. xy = Axyi_1 + Bus_1 + wy (3.19b)
ur = Ky(xpp) (3.19¢)

YV : ||wl|eo < Nmag (3.19d)

Sup ‘xkz| Tmazs Sup ‘uk| Umaz

where 7 abbreviates the quadratic stage cost J (z,u) = xTQx + uPu with Q,P > 0.
We will assume that the disturbance is stochastic but bounded such that |w |, < 7z

with known distribution which satisfies the following

Assumption 3.4. Disturbance w! are i.i.d. drawn from the scalar centered distribu-

tion p(w) and uncorrelated in time t and coordinate 1i.

We can equivalently phrase the optimal control problem (3.19) in terms of closed loop
maps as defined in chapter 2. Recalling Def. 2.6, the optimal control problem (3.19)
can be described as an optimization over the set of feasible CLMs W € ®¥ [ F,

where F' : (x,u) — Ax + Bu and by using the characterization Theorem 8 we

obtain:
\Iﬁné,lu 715130 = Z E[T (¥ (wy.0), Vi (weo))] (3.202)
s.t. \Ift (U}tzg) = \I’t (O, wt,lzo) + Wy (320b)
W21 (0, w0) = AW (wpo) + B (o)
VE, W] < Mmaz [T (Wro)| < Tomae (3.20¢)

Vt7 ‘wt| < Nmazx - |\Ijg<wt0)| < Umaz- (320(1)
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As in the linear SLS case [11], we do not need to have the controller K be a decision
variable, since we can always realize the optimal solution (W(®)* ¥(®*) to (3.20)
with a system level controller SL[ W ()* {(W*],

Conservativeness of Linear Solutions

We will first discuss properties of solutions to our original problem (3.19), if we
restrict ourselves to only LTI controllers K. Consider the equivalent problem
formulation (3.20) with the CLMs (W*, W") restricted to being linear. This poses a
convex problem and, as shown in [36], it can be approximately solved by searching
for FIR CLMs (W*, ¥") with enough large horizon 7". However, the corresponding

linear optimal CLMs (W*!in* uwlin®) come with undesirable restrictions:

o (Plin* Pulint) impose stricter safety restrictions than the required restrictions
(3.20c) and (3.20d).

o (Wit guling) qo not depend on the disturbance distribution p(w).

To see the first point, we have the following result as a consequence of linearity:

Lemma 12. For any linear (¥*1" W) the constraint (3.20c),(3.20d) is equiva-

lent to
z,lin Lmaz
sup |05 (wro)| < sup === (3.21a)
t t max
u,lin Umazx
sup [T (wy0)] < sup ; |wy. (3.21b)
t t mazx

Proof. Clearly, (3.21) implies (3.20c),(3.20d). The reverse implication follows from

the assumed linearity of (¥*!n Pwlin) and the homogeneity of the norms. [

Lem. 12 shows that the linearity restriction in CLMs imposes stricter safety conditions
(3.21) than (3.20c),(3.20d). To elaborate on the second point, notice that for linear
CLMs (Pxlin gulin) ' the objective function (3.20a) can be expressed equivalently

as
2

Q1/2\IIX
PI/Q‘I,u

y 02 = Ew~p(w) [wz] (3.22)

Ho

(3.20a) = o>

where o2 denotes the variance of the scalar distribution p(w) and ||. |+, denotes the
Ho norm for linear operators. Since the objective function only gets scaled by a
constant factor o2 for different distributions p(w), this shows that for linear CLMs,
the solutions (P! Pwlin) 1o (3.20) are independent of the distribution p(w).
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Taking the Nonlinear System Level Approach

Now we extend the search space of the problem (3.20), by allowing candidate CLMs
W that are blends of linear CLMs of F'.

We structure the search space of blended cCLMs as follows. Let {¥;}¥ be a
collection of linear-time invariant cCLMs of finite horizon 7". Correspondingly, we

parametrize their component functions of in terms of the matrices R,(f) e R™"™ and
M, t(f,g e R™*™ as follows:

min{T,t+1} 4 min{T,t+1} 4
U (z) = > RYm ®h(zaa) = Y. Mz (323)
k=1 k=1

We assume the saturation weighting of the /V zone mentioned in Def. 2.12. For fixed
NN—1 = -+ =, Py, : R" — R" denotes functions that parameterize the weights
G, .= I ®g; where go = P,,, gn(z) :=2x—P,,_,(v)and g; forie {1,..., N — 1}
are defined as g; = P, — P, _,. For P, and we consider two specific classes functions,

both representing different types of projection maps:

Definition 3.1 (Saturation Projection). Let vector w = [w!, ..., w"]T € R™ The

saturation projection is an element-wise projection:

sat(w!, n)
P,(w) := : (3.24)
sat(w",n)

where sat(w,n) = sign(w) max{|w|,n}.

Definition 3.2 (Radial Projection). The radial projection is defined as:

sat(|wl/n, 1)

3.25
/1 29

P, (w) :=
Unless otherwise specified, the results derived in the rest of the chapter hold for both

projections.

Remark 19. For n = 1, the radial projection and the saturation projection coincide
with each other. The radial and saturation projection operator act as the identity
whenever |w| < 1. Otherwise, the radial projection rescales w so that |P,(w)| = n

whereas the saturation projection performs the elemental radial projection.
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This completes our setup and we arrive at the structure of our candidate CLMs as:

N min{Tt+1}

Vi =21 X RY(Pa Py )(wi)
=1 k=1
N min{T,t+1} .

T =Y D MO(Py = Py ) (wisay). (3.26)
i=1 k=1

The corresponding blended SL implementation of Wy, takes the form:
N min{T,t+1}

UtZZ Z Mlgi)wz-i-l—k

N min{T,t+2}

A (4) =i
Wiy = Tpy1 — Z Z Ry Wy oy
k=2

i=1

With regards to our optimization problem, we enforce the (linear) constraint that
Pxi Yui j e [N] are CLMs of the linear system of interests:

xy = Axy_1 + Bug_1 + wy, (3.27)

with z; € R", w; € R", u e R™.

The overall nonlinear controller SL[W*, ¥"| can be thought of as a nonlinear blend
of the linear FIR controllers SL[W*! ¥ i € [N]. Although the nonlinear operator
Px, W differs from its linear components ¥*!, Ui only by the static nonlinear
function P,, (w), the upcoming sections will demonstrate that this simple additional
nonlinearity proves surprisingly useful. In particular, n;’s separate any disturbance w;
into NV zones such that for each ith linear controller SL[®¥*! ¥"i], only the portion
of w, that "falls" between 7); and 7;_; is acted upon. Intuitively, one could choose
different behaviors for various portions of the disturbance signal, specifying either

performance or safety properties.

For ease of exposition, we focus on the two-zone case of the proposed controller

SL[W¥*, "] although all the analysis naturally extends to the N-zone case.

Consider the general problem (3.20), where we now search for CLMs (W*, ¥") of
the form presented in (3.26) with N = 3 and the choice of 75 = 7),,,4., With some
n < n2. However, since we have the assumption |w|| < 7., R](:)’) and M ](3) drop out

of the objective and safety constraint and can be chosen as arbitrary FIR CLMs for
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now. In the later section we will discuss that this extra degree of freedom can be

used for anti-windup control.

Restricting ourselves to this form of CLM leads to the convex problem (3.20), which

is a relaxation of the general problem (3.20).

o o]”[rV RO s i
R(%ﬂx?m 0 P MO A X (3.282)
F
st. m|RY|+ (n —m)|R?| < Tmae (3.28b)
mIMO| + (s — )| MP| < tpas (3.28¢)
RY, = ARY + BM" (3.284)

RO =1, RY =0

[Oq] CYQI]

Y =

OéQI Oég[

with @y = B[Py, (w)?], @ = B[Py, (w)(Py, (w) = Py, (w))], and ag = E[(Py, (w) —

P, (w))?], where w ~ p(w) and |w|, < Nmaz- Moreover R and M are

where

abbreviations for the row-wise concatenation of the matrices associated with the linear
CLMs i, Wi je RO = [RY RYW RO MO = [ M M9,
Therefore, only constraints (3.28b), (3.28c¢) are sufficient conditions of the constraint
(3.20c), (3.20d) through the multiplicativity of the norm. All other equations
in the above optimization are equivalent to the original problem (3.20). Finally,
solving the convex problem (3.28) gives the suboptimal nonlinear CLMs (W** ¥*")
for the system dynamics (3.19b), realized by an internally stabilizing controller

SL[¥**, ¥*"|. The next theorem states a main result of this chapter:

Theorem 20. Foralln; € [0, 1], the nonlinear system level controller SL[¥**, U*"|
synthesized from (3.28) achieves lower optimal LOR cost for (3.19) than any linear

solutions.

Proof. First, recall thatrestricting K to be linear in the problem (3.19) is equivalent to
restricting * and W" to be linear in the equivalent formulation (3.20). Furthermore,
notice that under the restriction of linear (¥, ¥"), the problem (3.20) is equivalent
to (3.28) with the added constraint R = R® M® — M@ which shows that
any solution (¥** W*") of the problem (3.28) achieves a lower cost than a linear
solution (Wxlin Pulink) of (3,20). O

Remark 21. This argument extends directly to the N-blend case.
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Localized Controller for Constrained LQR

Thanks to the particular form of (3.26), when the projection is chosen to be the
saturation projection Def. 3.1, structural constraints of the controller, such as
the sparsity and delay constraints, can be added in a convex way to the synthesis
procedure described in Section 3.3. This is because imposing structural constraints
on the nonlinear controller (3.26) is equivalent to imposing them on the linear CLM
components of (3.26). Detailed in [11], localization of disturbance, communication,
and actuation delay, as well as sparsity pattern, are all convex constraints in terms of
linear CLMs in the linear System Level Synthesis framework. Specifically, all the
constraints mentioned could be cast as a convex subspace S, and S,, for linear CLMs
Wi Wi e [N]. The corresponding system-level controller SL[T™) T(®)] can
then be implemented in a localized fashion conforming to the subspace constraints
on ¥*! Wi Therefore, the nonlinear controller synthesis in Section 3.3 naturally
inherits all capabilities of the linear system level controllers in terms of distributed

controller synthesis and implementation.

Simulation

To corroborate the results presented in the previous sections, we demonstrate the
performance of a four-zone nonlinear blending controller with radial projection
compared against the optimal linear controller for the constrained LQR problem of

an open-loop unstable system:

1 10 0
Tt = 1 21 T—1 + 0 Up—1 + Wy (329)
0 11 1

With U = 40, Tinae = 15, Nmee = 1, Q = I3, P = 10. The disturbances w;, are
chosen to be a truncated i.i.d. Gaussian random variable with variance 0. Figure
3.2 shows the optimal cost improvement of the presented nonlinear approach over the
optimal linear controller for different choices of variance 2. Figure 3.2 showcases
that the proposed controller can exploit the knowledge of the disturbance distribution
to achieve performance improvement over the linear optimal linear controller: For

small o the proposed controller gains more than 30%.

3.5 Distributed Anti-Windup Controller for Saturated Systems
In the constrained LQR problem, we considered a linear system z; = Ax; | +
Buy_1 + w; and designed a controller that ensures that the closed-loop system state

x; and input u; remained within the specified bounded sets X = {x | |z| < %4, } and
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Figure 3.2: Performance improvement of nonlinear controller SL|W** W*"] over
optimal linear controller SL[®*lin* gulin*] for different variances o2 of the non-
truncated disturbance. The nonlinear blending controller synthesizes over 4 linear
controllers w.r.t. to the projection parameters n; = 0.05,75 = 0.1,n93 = 0.2,y =

Nmaz = 1

U = {u] |u| < s}, for any bounded sequence w € £°, w; € W, W = {w | |w| <
Nmaz }- This partial problem is one of robust set invariance [96]. In this section, we
discuss this problem in a broader context, where input constraints are not part of the
problem specification, but rather enforced by a saturation nonlinearity sat;, in our

input. Hence, we consider our system to be nonlinear and of the form:
H': x;= Ax, 1 + Bsaty(us_1) + wy. (3.30)

If we can be sure that the disturbances of the system and the initial condition remain
within the specified bounds WV, then solving the robust invariance problem, for
example, with one of the techniques from the previous chapter and the general SLS
framework [36], is sufficient. However, in practice, it is more realistic to consider
that our assumptions are only mostly true and it is possible that our assumptions are
temporarily violated on rare occasions. In such a scenario, we have to accept some
degradation in our guarantees, such as state constraints and performance bounds.
However, we would like this degradation to happen gracefully and at least ensure

that some basic properties of the closed-loop such as stability are still preserved.

In this section, we discuss how control design through blended CLMs provides a new
perspective on this topic. In particular, blending with /N-zone saturations naturally
ensures graceful degradation in the presence of saturation and offers an elegant
solution to the issue of controller wind-up [70, 78, 81], an important problem that

commonly arises when input saturation is ignored during linear control design.

The main results of this section show that with the appropriate choice of blending
and weight operators, closed-loop stability and convergence to the target set X are

guaranteed even in the saturated regime, provided that disturbance w violates our
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assumption "occasionally"; mathematically, we phrase this as w = w; + w,, where

HwIHOO < Mmaz and w, € fp_

Setup of Candidate CLMs for Unsaturated Regime

First, we consider the requirements of the unsaturated regime and assume that it is
a feasible control problem. That is, for the given tuple of sets (X', U, V), we can
design a linear controller such that for any disturbance sequence w in W, (that is,
wy € W for all t), the state x, is always guaranteed to stay within the set X if zo € X.
As shown in the previous section, we can pose this as a feasibility problem of convex
constraints. Another general approach to address this problem in the context of SLS
has been presented in [36], which allows polytopic sets X', U, and V. We assume
that the control design for the unsaturated regime is feasible and we formulate this in
terms of cCCLMs W next.

We define the operators F' € LC, (" x £™, (") and F' € Cy(£™ x £™, (™) to distinguish
the dynamics of the linear system with and without actuator saturation. Let F'(x, u) =
A(x)+B(u),where A =I®Aand B = I®B. Let F'(z,u) = A(x) + By(u),
where By, := Bo(I®saty). In general, a saturation nonlinearity sat is characterized
by the properties described in (3.3), that is, as long as the input is in the set I/, the
nonlinearity has no effect, and the system behaves linearly. However, we will focus

our discussion on projection-based saturations IT;, as shown in the example below.

Definition 3.3. Given some closed bounded convex set U with 0 € U, a saturation

function is a Lipshitz continuous map saty : R™ — U onto U, which satisfies
Vu e R™ @ saty(saty(u)) = saty(u) and Vu e U = saty(u) = u.

Example. Let U be some convex body in a normed vector space (| |, R™) containing

the origin in its interior. Then, the map Ty, : u — arg min |u — v’| is a saturation.
u'eld

For our blended cCLM Wy, = ZZ]\LI WG, we consider a collection of linear cCCLM
{®,}N | and weight operators {G;}, constructed from saturation functions as
described in Def. 2.12.

Let W) < W, --- < Wy_1 be a collection of nested convex sets and pick Wy _; :=

W. Denote TTyy, : @ — argmin |z —u|, Vk € {1,..., N — 1} as the projection maps
ueWy,
onto the sets W;. Define the weights as G, = I @ gy, where g, = TTyy, — Ty, |

forall k€ {2,...,N —1}and gy = Thy,, gn : @ — & — My, (z).
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We purposely picked the last weight operator such that Gy = I ® (I —TTyy), hence

in the unsaturated regime, the last cCCLM W 5 does not contribute to the closed-loop
state and input behavior. This is due to the fact that for any sequence w < W, it
holds that

N N-1
wcW: — 'w=ZGi('w)= ZGZ(’w)
i=1 i=1
and therefore
N-1
i=1
We assume that {¥;}~ ! have been designed to satisfy the desired notion of robust

set invariance in the unsaturated regime:

Assumption 3.6. {¥;} ! are CLMs of the linear system F, and for all w € W,
the following holds:

N-1 N-1
D UGi(w)e X > WG (w) e U (3.31)
=1

=1

For notational convenience, we split the blended CLLM into two parts. Let [ ]\1}] stand

for
N-1 N-1
R:= ) UG, M:= ) W'G,
i=1 i=1
SO we can write:
U = R+ UGy U =M + U Gy.

It is clear from this setup that for sequences w € W, the map [ % | is a CLM for the
linear system F', and if we restricted the domain of the CLMs to sequences in W, it

would also be a CLM of the nonlinear system F”.

Design Approach for Stability in the Saturated Regime

We now consider the case where the disturbance leaves the set YV occasionally,
leading to actuator saturation. It is commonly known that graceful performance
degradation cannot be taken for granted, as instability phenomena like the "wind-up"

effect can occur if the controller synthesis improperly deals with actuator saturation.
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For stable system matrices A, a modification based on the IMC principle of the

controller is shown in [36], which guarantees closed-loop stability when w ¢ W .

In the case of our blended SL controller W%(W%)~1, it turns out that stability in the
saturated regime is ensured if we make two simple modifications. First, we require

Wy = 0, and ¥ to be an LTI FIR ¢cCLM with the linear components

min{7T—1,t}
Uy (wee) = D, Afwiy vy, =0, (3.32)
k=0

for some finite horizon 7" > 1. Second, we prepend the projection to ITy, to R and
M.

Next, we show that with the above rule, ¢, stability of the nonlinear closed loop is
guaranteed. Moreover, global stability results (for stable A) and local stability results
(for unstable A), along with the corresponding transient bounds, can be derived for
the closed loop. The convergence to X in finite time is shown for ¢, perturbations
with p < co.

Dynamics of Lumped Disturbances in the Saturated Regime

The basis for our stability analysis is the provided by the following lemma:

Lemma 13. Given assumption (3.6) and assuming W satisfies (3.32), then for

/

‘I’E = [ﬁ]ﬂw + ‘I/NGN holds:

’

A[F', W] = A[F, ¥ y]|Gy.

Proof.
A[F Wy = F O, +1—-0¢
= A*RIyy + AT UGy + B, (MTTy, + L Gy)
.-+ I — RITy, — ¥LGy.
Now since, Mw € U for all w € W and Tl)yw € W, Vw, we can conclude

MTlyw € U for all w. Furthermore, since ¥}, = 0, we have ¥,Gn = 0. Itis
therefore trivial to rewrite the term B, (MTIy, + ¥% Gy) as:

B} (MTy + ¥4Gy) = B} (MTly) = BT (MTly) + B"ULGy.

Moreover, using the fact that I = G + Tl we substitute in the above equation and

yield the decomposition:

A[F W] = (ATR+B*M — R+ I)TTy, + A[F, ¥ |Gx.
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Since, the first term equals A[F, [ A’}]]TIW and the [ AI}] are CLMs of the linear
system F' we have A[F, [ J{';‘I]]ITW = (. This leaves us with the desired result:

!

A[F', U] = A[F, ¥ y]|Gy. O

Applying Theorem 11 from the previous chapter, we obtain the dynamics of the

lumped disturbance as:

w = A[F, \IIN]GNQIJ + w.
We analyze the stability of these dynamics by rewriting them as the difference
equation:

Wy =

(3.33)

Wy else .

. { AT(’LZ)t_T — ﬂw<1f)t_T)) +w; fort =T

Here is a quick derivation for clarity: \Iﬂ;\, =0, means A[F,¥y]| = ATWY, + I -
W%, Define the auxiliary variables w" = Gyw, a = Lw" B = AT
~ = (I — ¥%)w" and following calculations to compute 3 +

Wy = By + 1 + wy min{7,t+1} prans

min{7T—1,t} Qr = Z wt-‘rl k

_ k-~
= Z A wt k mm{T,t}
= B = Z Afal,

B = Aay_y

min{T 1,8} B+ = Ath r, ift =T, else 0
Ve = Z . LTI ‘

1 = AT@N 4+ wy, ift =T, else w.

Finally, substituting @ = 1; — TTyy(10;) into the last expression on the right yields
the difference equation (3.33).

Stability and Convergence in Saturated Regime
Next, we analyze the stability of the dynamic system (3.33) and its implications for
the overall closed-loop. We show that we can always choose 7" to achieve closed-loop

stability. The choice of 7" depends on the matrix A and the norm used in projection
TTyy.

From equation (3.33), it is easy to see that we can decompose the sequence w and

w into T" subsequences d),[;] = Wik, @ € {0,...,T — 1}, w,[;] := Wik, Whose

dynamics can be analyzed entirely separately. In fact, for each ¢ and k holds

—ATGH —my@ )+l forallt > 1and ! = Wl (3.34)
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Notice that f.g. ¢, /{,-stability of the above system is sufficient for fg. £, /¢ -stability

of the original system (3.33), since:

@, < A, forallie{o,....T -1}

T-1 T-1 T—1
— [l = ¢ X lofE < | Y plel)p =] ) 1085 = lwl,.
i=0 i=0 i=0

Hence, we drop the index ¢ and analyze the auxiliary system

Wiyl = AT(@k — ”W(@k)) + Wg.

For the next lemma, define B, := {w| |w| < n} as the ball of radius 1 corresponding
to the norm | - | used in the definition of the projection TT)y. The next result proves

the conditions for closed-loop stability dependent on the design parameter 7.

Lemma 14. Define 1) := sup{n| B, = W} and define |A| := sup,_; |Az|.

If 7 > 0 and assuming (,, (y, are formulated also w.r.t. the norm | - |, then:
1. If|AT| < 1, then the following bound holds for all w:
R 1
2. Forany 0 <~ < min{1, |AT|} holds:
A7 A 1
|wl, <M =7y)m7m— = |l < 7—lwl,.

| AT =~
Proof. First observe the following property of the projection map TTyy:

IThy(w) —w| = min  |w’| < min |u/|
st. wH+weW st w4 w| <7

a
)
9 B e
< min t|w| = max{0, |w| — 7}

st (1—t)w| <7

)

where inequality a) follows by restricting the search to the line w’ = tw, t > 0. This

shows that |TTyy (w) — w| < |w| for all w € R™. Hence, it follows that for any w holds:

(AT (@ = T (@))] < [AT| max{0, lw| — 7} < max{0, |A"[|w] — [A"|7}.
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This proves the first statement. On the other hand, for any v < min{1,|A”|}, the
following local small-gain property holds:

laf, < AT =y [(IT® A" (id —Tw))al, < v|al, (3.35)
where id : © — z. Lastly, the desired local and global results follow by direct

application of the small gain result lemma 7. [

Lemma 14 formulates stability conditions in terms of 7" and a requirement of | A7 | < 1
to ensure global stability. Due to Gelfand’s theorem, a standard result from Linear
Algebra, we are guaranteed that as long as A is Schur, it is always possible to pick a
T large enough such that |[A”| < 1, however T' might depend on the particular norm
| - | we chose in the projection TTy.

Lemma 15 (Gelfand’s Theorem). Denote by p(A) the spectral radius (max ab-

solute value of eigenvalue) of A € R"™", then for any matrix norm |.| holds

limy o0 (JA®[)* = p(A).

The lemma 14 tells us that if A is Schur, we can always choose 7' such that |AT] < 1,
then we are guaranteed f.g. ¢, stability for the lumped disturbances w and by
Theorem 11, this shows overall closed-loop stability for our system since F' is
trivially Lipschitz and therefore i.f.g. ¢, stable everywhere. Furthermore, even in
the case where |A”| > 1, the second result offers at least local ¢,-stability for the
closed-loop. Hence, we have stability for small disturbances in the saturated regime,

even if the system is open-loop unstable.

As a corollary of the above result, we can prove that as long as our disturbance only
exits the set JV a finite number of times, then we are also guaranteed to violate the
state constraint X a finite number of times. Our strategy is to show that there exists a
time ¢’ for which x; is guaranteed to stay in X’ for all time ¢ > t" if w is composed of

w; + wy where ||w; |, < 7 and wy € 0.

Corollary 16. Assume 7j > 0 and |A”| < 1 as used in Lemma 14. If w = w; + w,
where |w||o, < 7 — € for some £ > 0 and wy € {,, then there exists a time t' such
that forall t > t': x, € X.
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Proof. Recall the relationship @ = (¥¥) 'z & ¥*w = x and Y& = R(I —

Gny) + ¥ (Gy) to decompose « into the terms s and s':

& = Ry () + W% (W — Ty (). (3.36)
N J/ . ~ >

Since Rw € X for all w € W and TTyy maps onto W, it is clear that s = RITy(w) €
A for all w. Denote (s), := max{0, s} and retrace the proof of Lem. 14, to arrive
at the inequality:

|y| < (|e—1] = 7)4 + |wyl.

From the above, we obtain the following inequalities

W] < (|We—r| — 7)5 + |wil
had | — 0 < (JWea| = 0)4 + |we| =7
. < ([wia| = 10) 4 + [way] — ¢
= < (|w—1| = 1)+ + (Jwe| = 7)+
= (Jiy| = 7) 4 < (|p—a| = 7) 4 + (Jwe] —7)+
s s
= Vg Z(\wt’ =M+ — ([Wema| =)+ < Z(|wt| — 1)+
t=0 k=0
s s
ad Vg (wa — )4 < (Jwe] —1)4 < (Jwae| =€)+
k=0 k=0

Recall w = wy+w;, where ws € ¢, and |w; |, < 7. The last line shows ||w |, < o,
since there exists some timestep 7 such that V¢ > T, lwy| — 77 < —%. Furthermore,
for all k& > T holds:

(Wi =7 < (|Wp—1| —7)4+ — 5.

The shows that after some finite time 75, |w;| < 77 and therefore w; — TTyy (w;) = 0
for all t > T5. Finally, since cCLM WY is FIR, it also implies s'(¢) = 0 after at
most 7" time steps afterward. This proves that eventually, that is, after some ¢’ > 0,
v, € Xforallt >t

3.7 Example
As an example, we revisit the structure of the optimal blended SL controller of the

constrained LQR problem and augment it with the anti-windup technique discussed
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in the previous section. In the control design procedure, we discussed that the last
CLM Wy (in the small example, it was W3) was a degree of freedom that does
not affect the LQR cost. However, in light of our previous discussion, we can use
that extra degree of freedom to ensure graceful degradation in the event that the

disturbance violates our assumptions.

As discussed in our previous results, we pick ¥}, = 0 and pick W, according to the
rule (3.32). The blended cCLM Wy, changes only the component ¥5;:

N min{7T,t+1} '
lIl?a(wt:O) - Z ( Z Rl(cl) (Pm - Pm1)(wt+lk)>
i=1 k=1

T+1

+ 30 AR (Wi — Py (wimpg)) - (3.37)
k=1

In the above, 7 is a design parameter, and recall that by design, we have chosen
NN = Nmazs the expected norm bound on disturbances. This extra term added
to the CLM accounts for residual disturbances that are not attenuated by the
original controller SL[¥*, ¥"| because the disturbances are larger than expected
by projection mapping, that is, |w;| > 7),,4,. Therefore, SL[¥** W] considers the

T-step propagation of the unaccounted for disturbances from SL[W¥*, ¥"].

The resulting lumped dynamics under the augmented controller SL[¥*# W] take
the form:
@t = AT+1('LDt_T — P77maa: (UA]t_7—>) + Wt (338)

where P, . () is the entry-wise saturation used in the constrained LQR problem.
P,,...() can be equivalently viewed as an instance of a projection TTy,, with respect to
the oo-norm | - |, and where W denotes the scaled co-norm ball 7,4, {z | |||, < 1}.
Leveraging the stability theorem Lem. 14 and using Gelfand’s Lemma, closed-loop
stability for the saturated regime is ensured under the following condition stated in

the lemma below:

Lemma 17. Assume p(A) < 1 and pick T such that |A™!|,, < 1. Then the internal
dynamics (3.38) are globally finite-gain {,-stable, where for all w € (.,

N 1
W]l < m“w”m-
Proof. Pick |- | := |- |4 and choose 7 such that |A"*1|,, < 1. Then apply the lemma

(14). O
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Therefore, if the system is open-loop stable, SL[W*? W"| guarantees graceful
degradation when the closed-loop is saturated. Similarly, we obtain local stability
results in the case where A is open-loop unstable. Similarly to the large-scale
constrained LQR case in Section 3.3, the augmentation for anti-windup allows for

distributed and localized implementation.

Simulation
We end this chapter with some simulation experiments demonstrating the effectiveness
of anti-windup augmentation. We consider a bi-directional chain system with the ith

node’s dynamics being

zh = (1—04N(@)|)x, + 0.4 Z ] + sat(ul, Upmag) + W
JEN;

where N (i) denotes the set of vertices that has an edge connected to ith vertex and

w! is the ith coordinate of disturbance vector at time ¢. In particular, |w|, < 1
and xy = 0. One can check that the overall chain system is open-loop marginally
(un)stable. In this chain example, we allow 1 time step communication delay between

nodes and actuation delay with 50%.

We illustrate the anti-windup property of the nonlinear controller (3.26) in the
decentralized setting with additional sparsity, locality, and delay constraints in Figure
3.3c. First, a nominal integral controller for this system is designed and called the
Integral Controller. Due to its integral structure, the Integral Controller for the
unconstrained closed loop guarantees convergence of the state to the origin under
persistent disturbance, i.e., step rejection. In comparison, a second linear controller
synthesized from the standard constrained LQR problem is generated that guarantees
stability for all admissible w under saturation. We refer to this linear controller
as the non-integral controller since the states only stay bounded under persistent

admissible disturbance.

The nonlinear controller with the saturation projection here is chosen to be a two-zone
blending controller. The simulation shows the anti-windup property as well as the
preservation of step rejection in both large- and small-disturbance schemes of the
proposed method. Figure 3.3c shows that the blended SL-controller stabilizes the
system while the integral controller becomes unstable under worst-case bounded
disturbance. On the other hand, in Figure 3.4c, the proposed blending controller

preserves the performance of step rejection while the linear Non-integral Controllers
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Figure 3.3: Worst-case Response: The heatmaps show how a worst-case disturbance
is propagated through space-time for the saturated chain system. The integral
controller becomes unstable due to saturation and the naive blending controller
possesses has the anti-windup property of the non-integral controller.
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Figure 3.4: Step disturbance rejection: Response to small step disturbances at
node 8,10,12 entering at time 2,6,10, respectively. As in the scalar case, the
proposed blending controller not only stabilizes under saturation but also recovers
the performance objective of rejecting small step disturbances. This contrasts against
the non-integral controller, which sacrifices small-signal performance for stability.

forfeit the performance objective in order to preserve stability in the saturated closed
loop. For more details on the simulation, see [137].

3.8 Conclusion

We showcase the nonlinear system-level approach developed in [64] and illustrate
the use cases for a class of nonlinear system-level controllers. We propose a tractable
nonlinear control synthesis method that outperforms any optimal linear controller
for constrained LQR problems. It is further shown that such a controller naturally

possesses an anti-windup property for linear systems with input saturation. A key
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highlight is that the presented approach is compatible with locality/delay constraints
and distributed implementation, similar to the linear system-level approach [11].
Overall, this chapter is a first step in exploring the full potential of the new nonlinear
control synthesis framework developed in [64] and highlights that even just the
presented special case of the framework, called "nonlinear blending" of linear

controllers, offers many benefits.
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Chapter 4

ROBUSTNESS AND SENSITIVITY OF
CERTAINTY-EQUIVALENT ADAPTATION

This chapter investigates closed-loop in learning-to-control problem settings, where
the decision-making of the algorithm is structured in a certainty equivalent way.
Certainty Equivalence (CE) is a common principle underlying many learning and
control algorithms: At each time step, we hypothesize a model for the system
dynamics and then act according to the nominal control law designed for that
model. In other words, we pretend to have found a model that will remain accurate
going forward. We show that there is a natural way to perform certainty-equivalent
adaptation for SL controllers, which simplifies the analysis and is instructive for
the design of the overall learning-to-control algorithm. The particular structure of
the nonlinear closed-loop maps reveals three general design principles sufficient for

designing stable learning-to-control algorithms:

1. Smooth parametrizations of nominal CLMs and Dynamics: The nominal
CLMs and dynamics chosen by CE-adaptation should change smoothly with
small changes in the nominal model.

2. Consistency of Selected Models: The sequence of models that we hypothesize
should be consistent with the online data (up to some ¢,-bounded error).

3. Efficient Model Selection: Our model hypothesis should eventually converge;

however, it is not required to converge to the true model.

In the second part of the chapter, we explore applications of this result for problem
settings related to online learning of optimal controllers. To this end, we focus on the
setting of linear time-invariant systems and linear-quadratic costs, a problem setting
that has received immense recent attention in the learning and control literature.
Guided by the theoretical findings in the first part, we follow the principle of certainty
equivalence to design a learning-to-control scheme with nominal LQ-optimal system-
level controllers. We analyze the closed-loop stability of the learning-to-control
scheme and provide conditions for model selections that are sufficient for closed-loop
stability, which are closely related to consistent model chasing, a core topic in Part 2
of the thesis. The main technical result underlying this analysis is on perturbation

analysis of LQ-optimal CLMs. The result in itself is new and characterizes the
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sensitivity (i.e., analytic bounds on the Lipschitz constant) of LQ-optimal closed-loop
maps for LTI systems in terms of system-theoretic properties such as controllability

and observability.

4.1 Closed-Loop Dynamics in the Presence of CE-Adaptation

We assume a nonlinear system in the standard form we introduced in Chapter 2 and
that the disturbance w belongs to WY := {w € (¥ | Vk € N : wj;, € W} for some
closed-bounded set WW < R".

x=F'(z,u)+w, weW"

We restrict ourselves to diagonal operators F', i.e., F' can be decomposed as:

F =) pPUFpl 4.1)

t=0

and let {f; : R""™ — R"}¥ , be the unique functions formed by dropping the
obsolete arguments of the component functions; alternatively, each f, is well-
defined by the mapping f, : (z,,u,) — Fr(Z;.0,ur0). Moreover, we assume
that the dynamics F' are unknown, however, belong to a known set of dynamics
{F(w) |we Q} =: F[Q] parametrized over some compact metric space (Q, dg)
with some fixed map F': Q — C(¢¥*U (¥). Correspondingly with our assumption
of F', we assume that D[€)] consists of diagonal operators and there exists some
w* € Q such that D(w*) = F. We summarize these assumptions and definitions
below: Moreover, we assume that the dynamics F' are unknown; however, they
belong to a known set of dynamics {F(w) | w € Q} =: F[Q] parameterized over
some compact metric space (£, dg) with some fixed map F' : Q — C(4X*U (%),
Similarly to our assumption of F', we assume that D[€2] consists of diagonal operators
and that there exists some w* € € such that D(w*) = F. We summarize these

assumptions and definitions below:

Assumption 4.2. We are given a compact metric space (Q,dq) and a map F .
Q — C(0U 1Y), where each w € € represents a dynamic system with diagonal

dynamics operator F[w).

As we discussed, taking the CE-approach is the most common (often also efficient
[92]) way to tackle learning of feedback control in the closed-loop. The defining
feature of CE-adaptation is the simple structure of the decision-making process: At

each time-step k, we hypothesize a model parameter 6; and evaluate the nominal
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controller uy = Ki[0:](210) designed for the assumed dynamics F'[0;] := D(6;);
one can view the nominal controllers as a parametrized collection {K(w) | w € Q},
K : Q — C({*, 1) of specified (or synthesized online) control laws, where each
control law K |w] := K(w) achieves some desired nominal closed-loop behavior,
assuming the system dynamics are ﬁ’[w] Selecting 0, is commonly performed via
online system identification [16], or gradient-based adaptation rules [71], and we
shall denote this process as the causal operator S € C(£**4 Q) QN .= {w | wy €

Q Yk € N} which we refer to as the model selection/selector S.

To summarize, under CE-adaptive control, the closed-loop dynamics are governed

by the following equations at each time-step k:

Ty = fro1(Tp—1,up—1) + wy (4.2a)
O, = Sk:(ﬂﬁk::o, Uk—1:0) (4.2b)
Ur = Kk[ek] (wk:()). (420)

It is hard to gauge the behavior of the closed-loop dynamics from the above equations;
however, that changes with a slight tweak to how we perform adaptation. Next, we
formulate CE-adaptation in terms of nominal closed-loop maps and system-level

controllers.

CE-Adaptation in System Level Implementations

Instead of encoding the desired nominal behavior as a parameterization K : w —
K [w] of control laws { K [w] |w € € }, we can equivalently consider a representation
in the form of nominal CLMs {¥|w] | w € Q}, ¥[w] € C({*, (). Hence, we
assume each nominal CLM ¥[w] is a CLM of the dynamics F'[w]:

Vwe Q - Wlw] e C(t¥ 1) st Wlw] € PET[F[w]] (4.3)

and corresponds to the nominal control law K[w]| = ¥“[w](¥*[w])~!. However,
the System Level Implementation SL[U*[w], U*|w]] of the nominal controller offers
alternative ( to (4.2c) ) ways to perform adaptation, simply by swapping out the
nominal CLMs in the SL control structure. The resulting closed-loop dynamic

equations over time k take the form:

T = fro1(Tp—1, up—1) + wy (4.4a)
Wy, = Tp, — ‘Ifi[ek](oa ’Lffkq:o) (4.4b)

O = Sk(xk:m Uk—l:O)- (4.4d)
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Despite the correspondence K [w] = ¥“[w](¥*[w])~!, the closed-loops (4.4) and

(4.2) are not the same because CE-adaptation is performed differently.

Remark. In fact, the adaptive control law (4.2¢c) parameterized by CLMs takes the
formu = Y7 P[0, P* @ [0, Plz.

However, the above closed-loop dynamics can be manipulated into a form that turns
out to be insightful, particularly for the design of S. In the next section, we discuss
sufficient conditions for closed-loop stability provided by appropriate design of the

model selection.

Model Selection Conditions for Closed-Loop Stability
For this section, we consider S a design variable, and therefore we treat the parameter
sequence @ as an input of the closed-loop model (the set of all (x,u, 8, W, w)

conforming with equations (4.4)). Regardless of 0, the usual identity still remains
for all £:

Moreover, treating the sequence 6 as an index set, we denote W g as the operator
with component functions (W¥|g) : (Wr0) — Vi[O (Wr0). We can rewrite (4.5) in

sequence space as:
x = Ui u = Wi, (4.6)

An intuitive design criterion for model selection and choice of 8 is the I-step
prediction error e. At time step k, the prediction error is defined as e, = x3, —
fk_l [0k](xk_1,up_1),1.e., it measures how well the current selected model ;, matches
with the most recent system transition (xy_1, ugx_1) — x. However, the selection
of 6, is allowed to depend on e, since we get to observe x;, before choosing 6.
In particular, it is easy to see that we can always control the size of this error to
be at most the size of wy. Since there exists a true w* € Q such that F = F[w*],
given z and 1, u;_1 at time k, w* accurately models the latest state transition
Th_1,Ur—1 — Tp. Thatis, e, = xj, — fk[Qk](xk_l, Up—_1) = wg, therefore it is always
possible to find a parameter 6, such that |e;| < |wg|. The same argument applies
to the entire history of observed transitions (z, u),_1.0 — 1.1, and therefore it is

always possible to select a parameter 6 such that the prediction error in hindsight

€lk:0]|k = Th:1 — Fk—m[@k](xk—m,Uk—lzo)
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is always smaller in norm than wy_;.9. Hence, at each time £, the history of past
observations g, ui_1.0 provides sufficient knowledge to find some GZP , for example,
by explicit minimization, such that | ep.ojk |, < |wr—1.0(p, regardless of what value
w takes. We will call a sequence 6 for which the hindsight prediction errors are
uniformly bounded over time, i.e., sup,{|epok|p} < o0, to be an {,-consistent
parameter selection, and 0*P = (657, 0;" ... ) to be £,-optimal. Similarly, we call a
sequence 6 to be a finite horizon £,-consistent selection for some 7', if the norm of

the truncated hindsight prediction errors
€Tk = X1y, — szfl[ek](tfquo,kalzo), Iy = [k - T, ]f]

forms a scalar ¢,-bounded sequence (|ez,o|, lez,1],-..). We summarize these
definitions below and define causal operators S' to be /,,-consistent model selectors
if the output parameter sequence @ = S(x, u) is always a /,-consistent selection,

whenever = F*(x,u) + w, w € (.

Definition 4.1. Let (Q. d) be a parameter space, F' : Q 5w — F[w] € C((X x
UN, XN be parameterization of dynamic functions, and S € C((X x U)N, Q) be
a parameter selector. Denote Er : (QQ x X x U)N — R{ as the causal operator

defined by its component functions as
PHE.: (0,xz,u) — |P%(x— F 0] (x, )|, Z:=[k—T k]

(i) S iscalled an (,-consistent parameter selector ifforall x € (¥, u € M, w € E;f
such that x = F*|w](x,u) + w for some w € Q, E,(S(x,u),x,u) € ly.

(ii) S is called an (,-consistent parameter selector with a finite T'-horizon if for
all x € (¥, ue M, we (¥ such that x = F*[w](z, ) +w for some w € Q,
Er(S(x,u),z,u) €,

Remark. We discuss consistent model selections in depth in Chapter 6.

As alluded to previously, the following decision rule always defines a corresponding

¢,-consistent selector:
S, : P(z,u) — 6, € argmin |P%(P'z — F*[w]P!(x,u))|,

0*P = (67,67, ...), and therefore the model selectors defined above always exist.
Next, we consider S, which are just /,-consistent selectors of horizon 7" = 1,

and consider F', which are diagonal operators, i.e., for any t, PUF = PUF P,
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In other words, the selector S is assumed to guarantee the uniform boundedness
of the 1-step prediction error e, = fj_1(p_1, Up_1) + Wg — fk,l[ﬁk] (Tp—1, Up_1)-
Provided that assumption, e can replace the role of w as input, and as summarized
in Theorem 22, we can analyze the closed-loop stability in terms of the stability of

the map (e, 0) — (W, x, u).
To derive these equations, first, notice that the following statement is vacuous:
Tk = fro1|0k](Tp—1, uk—1) + €.

By substituting the above into (4.4b) and using the identity (4.5), we arrive at the
following set of equations:

Wk = Froa[0e](Wr 1 [0r 1] (0k—1:0)) — OL[0](0, W0p_r0) + er.  (4.7)

For a fixed £, the right-hand side of the equation corresponds with the %£-th component
of the operator F'*[6,,]®[6),_,] + ¥*[6)], where ¥* := I — ¥* hence we can write

the above set of equations in sequence space as:

F+ Gk [Qk 1] + ‘I’ [Qk])(’lf)) + e

i

F+ Qk [Qk—l] + ?[Gk])(Pk_l'Lb) +e

where the second equation follows from the strict causality of F'* and W®. The
operator on the right-hand side is what we refer to as Ag, and it determines the

stability of the disturbance dynamics. The terms of the sum are parameterized by the
function A*[w, V] := FH[w]¥[v] + ¥%[w].

Theorem 22 below summarizes our findings so far:

Theorem 22. Consider a fixed sequence 0 € QN and let (1, x,u) be governed by
the closed-loop equations (4.4a)-(4.4c) where F' and F[w], w € Q are all diagonal

operators. Then (W, x,u) satisfy:
T = Uhw u = W w=(I— Aré)_le 4.8)

where g € C(XN, (X x U)N) and Arg, € C,((X x U)N, XYY denote the operators:

0
¥l = > P[] P! Z PUAY0,,0,,] P (4.9)
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and AT : Q? — C,((X x U)N, &N), Q? := Q x Q, for fixed w,v € Q, is defined

as

The stability of the closed-loop systems is determined by the stability of the maps
g and (I — Ap)~" in equation (4.8). If ¥[w],w € Q are all CLMs of the

corresponding dynamics F'[w],w € Q and F are linear we can split A\; into two

components, as stated below:

A~

Lemma 18. If ¥[w] € O (F[w]),Vw € Q, the operator Alg can be written
as the sum Argp + A‘;f , where where Ar;f , AF(;‘P are defined by their component

functions for k € N as:
U*[k]Aréka : (?f)k:o) — (fk—l[ek] - fk—l[ek—l]) o (‘I’k—1[9k—1])(117k—1:0)
U*[k]A‘E‘PUk : (?f)k:o) = (Ek[ek] _Ek[ek—l])(oawk—lzo)'

Moreover, if { fu[w] | w € Q, k € N} are linear functions, then the components of

Alz become
UMALUY = fi 1[0c] © (U 1[6k-1] — Vi1 [0k]). (4.10)

Proof. Per definition, ¥[0,] € ®F " [F[0k]] and ¥[0_1] € PE*"[F[Or-1]]
holds, and therefore the operators have to satisfy the respective CLM equation:

Fr (0 1](2[0i1]) = ¥ [0,1] — T FF[6,](2[6,]) = ¥7[6,] - I.
With the above, we can rewrite (4.7) as

W = A (Wp—10) + A (Wr-10) + €x

with the operators defined below:

ALy = (feeal0] = froa[0h1]) © (T41[0k1])
AL (Wr-1:0) = (Yrl[Or—1] — r[0k]) (0, Wr—1.0)
€k = Tk — fkfl[ek](xkfla qu)-

Lastly, if { fs[w] |w € Q, k € N} are linear functions, the components of A(; + Af;

take on a simpler a form:

(A‘fg + Aﬁ)kq = fkq[@k] o (Wr—1[Ok—1] — Yi_1[bk]).
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Hence, CE-adaptation using the SL implementation of the nominal controllers allows

us to represent the closed-loop dynamics in the form:
—1
z-Whw  u—Ueh  w- (I1-STAL-S'AG) e

From this representation, we can derive conditions for closed-loop stability in terms
of 6. As expected, a necessary condition for closed-loop stability is sensible design
of the nominal CLMs that assures at least some type of stability of the maps ¥[w].
Moreover, boundedness of the closed-loop trajectory (0, w, x, u) is implied, if 0 is
chosen such that the derived operator (I —& +A|’; -S +A“z+)‘1 is ¢ -stable and the
prediction error e is bounded. This observation provides an objective for the design
of the model selection: Finding a causal selection rule S which guarantees the former
conditions for any selected sequence @ = S(x, u). A natural design approach is to
view S as a means to prove stability via the small-gain theorem. For example, if
S guarantees sufficiently small gains of ATZJF and Af;r, then we can prove stability
of( I -8 +A|j; - St AT;*)_I via small-gain theorems such as Theorem 2. From
this representation, we can derive conditions for closed-loop stability in terms of 6.
As expected, a necessary condition for closed-loop stability is a sensible design of
the nominal CLMs that guarantees at least some type of stability of the maps ¥|[w].
Moreover, the boundedness of the closed-loop trajectory (0, w, , u) is implied if
0 is chosen such that the derived operator (I — S +A|f0 -S *A‘f;r)*l is (2 stable
and the prediction error e is bounded. This observation provides an objective for
the design of the model selection: Finding a causal selection rule S that guarantees
the former conditions for any selected sequence & = S(x,w). A natural design
approach is to view S as means to prove stability via the small-gain theorem. For
example, if S guarantees sufficiently small gains of A?‘; and A‘f;,
stability of (I —S *A‘fe -S +Ar;+)4 using small-gain theorems such as Theorem

then we prove the

2. However, we obtain less restrictive design criteria if we conduct analysis with the

adapted small-gain conditions of Lem. 8:

Theorem 23. Let w, x,u, 0 be a trajectory of the closed-loop dynamical system
described by the equations (4.4) for some disturbance w € (% and sequence of
selected parameters 0. The state and input sequence x, u are bounded if the following

conditions are met:

i) Consistent model selection: S is an {y-consistent model selector with a
horizon of at least T' = 1.

ii) Efficient selection: the selection @ converges in €.
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iii) CE-nominal design: ¥ is a parametrization of CLMs: for each w € €3 holds
A[\I’[w],ﬁ’[w]] = 0.

iv) Smooth/robust parametrization of CLMs: The "oracle” map ¥ : Q —
C(0*, 04 is continuous over the metric space (2, d) w.r.t. the operator
norm || - [|.

v) Smooth/robust parametrization of Dynamics : The map D defined by the
correspondence

D : (wy,ws) — Flw] o ¥lw,]

between the domain (Q? dqg2), do2(z,y) = d(x1,y1) v d(xs,y0) and
codomain (C(",0™), () — (")||e0) is continuous at every point p of the subset

{(w,w) | we Q} = Q2

Proof. We assumed (Q, d) is a compact metric space and defined for the family
of dynamics {F[w] |w € Q } and CLMs {¥[w] |w € Q } the map A+ : Q2 —
Cs(0*, 0"), where

At[w,v] := Frw]¥[v] + ¥*[w] = DT [w, V] + I, — ¥7[w]

for each (w,v) € Q2 in the metric space (€22, dqg:). Recall the definitions of the

operator norm || - ||, and pseudo-norm || - ||* from Lem. 11:
s |A(z) — A(0)] .
IA[I} := sup = Al = 1AL + 1A©)],
xeX]N: x#0 || Hp

and let By : C(¢Y, %) — (¥ denote the linear evaluation map such that for each
VA € C(¢¥,¢%) : Eg(A) = A(0). Since per assumption, D : (Q2? dg2) —
(™, ), - ) is continuous for all p = (p1, p2) € Q2, s.t.: p; = pyand ¥[-]isa
o, itfollows that A : (Q2 dg2) — (C(0",0"), ||-|ls)

has to be continuous for all p = (py, ps) € Q2 s.t.: p; = po as well.

continuous map (Q, d) - H| : H

Per assumption, we are assured that our parameter sequence converges to some

parameter 0, = tlim 0;, 0 € Q. Pick ¢ = u < 1 and invoke continuity of A at
—00

0. Thus, there exists some d > 0 such that

Vw,v e Bslly] i IAT[w, V] = AT[0x,05]]|l0 < . 4.11)

Since tlim 0; = 0, there exists some N € Nsuchthat Vk > N holds d(6x_1,0,) < 6.
—00
Now decompose Aly into the sum

0

Alp = Z PEAT[04,0,-1] = Y| PHIAT[0,, 6,1 PF

k=1 k=1
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and assume some arbitrary z € (2. Next, rewrite [PV A|gz|, as

a0
|PNAloz|e = sup [P Aoz, = sup [P PHA6,, 6,_1]PF ' 2|,
h>N h>N =1
4.12)
= sup |[PMA* [0, 0,1 P" 2|0 (4.13)

h>N

Next we bound each individual term | PYA*[6;,, 0, | P" 2|

| PMAT[0,, 0, 1P " 2
< |AT[6, Qh,l]Ph_lz — AT[01,0,1](0)|loo + [EoAT[0n, 0h-1]]0-  (4.14)

By construction h > N, 0,6, _1 € Bs[0,] and by continuity of AT we have
AT [0h, On1]llo < [EoAT[0n, 0n—1] — BoAT [0, 0] 0 < €,

where A*[0,,,0,] = A[F, ®][0,,] = 0, since ¥[0,] is designed as a CLM of
F[6.,]. Similarly continuity of A* implies that

|AT1On, On-1]P" 2 = AT [0n, 04-1](0) oo < i P" 2

< | PV 2] + p| PNz

and by substituting this bound into (4.14) we obtain a bound for each term on the
right-hand side of (4.13):

| PYIAT 04, 041 1P" ' 2] o0 < p| PN 2| + 5| PN 2] +2. (415)
Finally, we apply the above to (4.13) and bound | PN Algz|., from above as:

[PV Aoz]o,
< sup p| Pz 4+ p| PV 2] +
h>N

<psup  sup |z| + p|PVz|, + €
h>N je(N,h—1]

< psup |zn| + p| PV 2] + & = p| PNz, + p| PV 2|0 + . (4.16)
h>N

We are ready to apply our findings for stability analysis of the lumped disturbance
dynamics. Recall from our derivations, that 1 is governed by the dynamic equations
W = A'|pw + e and therefore:

PV — PVA* g + PPe.
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Denote the sequence of the intervals Z, = [N + 1,k|,k > N + 1 and apply the
truncation P%* to the above equation for some ¢t > N and use causality of A|g to

arrive at the equality:
PTp = PYPNAT|p Pl + P e.
Now, we apply (4.16) by setting z = P and obtain the inequality

| PTd||o < p|PY P9 + pl| PY Py, + | P €| + €
| PHdb| o + | PV + [P el + €
|PY Do + | P*e|q + €.

<

= E

= (1- )P ], <
The constant ¢ = i was chosen such that ;© < 1. Hence from the above we get the
inequality
PPN + lefo + p
1—p '

The right-hand side of the above inequality is bounded because: 1. we assumed a

| PHab], <

bounded prediction error e € /% and 2. N is finite and thus | PY P'w|,, !. Since
the scalar sequence (sy, Sy11, .- ), Where s, = |P%*d|., is non-decreasing and
bounded above, it converges and proves that PN e (% and therefore w € (%,
Moreover, ||, can be bounded above in terms of the norm of its finite 7'-truncation

as:

o < {1Pa, P el e
o X 05 .

I —p

Finally, we utilize the continuity of the CLM parametrization map ¥ : (Q,d) —
(XU ||| »). Since W is continuous, it also follows that Ego W is continuous. Due to
the compactness of Q, there exists some C' > 0 and ¢g > 0 such that || ¥[w]||, < C
and | [w](0)]e < ¢p Vw € €. This also implies that the component functions have

to obey the inequality:
|\Ijt[w](zt:0)| < CHZt:()Hoo + Cop-

This proves the boundedness of x and w, since (z;,u;) = Vi[0;](wWpo) <
C' maxg<; || + ¢, and therefore W € C(Ei, gixu), 0

The stability conditions above admit a natural interpretation and provide us with a

concrete guideline for nominal control design and the design of model selectors. To

!Since we are in the discrete-time setting, we do not have to worry about finite-time escapes.
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assure closed-loop stability, the design and parametrization of the nominal control
behavior, represented by the maps F and ¥, and the online adaptation strategy,

denoted by the model selector .S, have to fulfill the following requirements:

* Smooth parameterization maps for dynamics and CLMs: The set of system
dynamics F = {F[w] | w € Q}, which describe the model uncertainty, is
usually dictated by the specific problem setting and is therefore fixed. However,
we have design freedom in how we choose to cover the space F, that is, the
choice of (€2, d) and the parametrization mapping F' : Q — C((X xU)N, XV)
such that J__o F[w] = F is not unique. Moreover, for a given €2 and F,
there is even more freedom in how we assign nominal-CLMs ¥[w] for each
ﬁ’[w] Conditions iii), iv), and v) of Theorem 23 state that the parameter
space €2 and the maps F', W should be designed so that the parametrization of
nominal CLMs and dynamics is as smooth as possible over the space £2. An
intuitive notion of smoothness is presented in the form of continuity of ¥ and
the map D, which parametrizes the composition of F and ¥. Notice that this

is a weaker requirement than enforcing continuity of F.

* (y-consistent selector .S with convergent selection 8: Conditions i) and ii) of
Theorem 23 impose intuitive design requirements for the model selector S.
The operator S, i.e., the algorithm in charge of the adaptation, should always
select parameters 6, that are consistent with our observations up until time ¢
(allowing for some small /.,-bounded error), and our selection strategy should
be efficient in that it eventually settles on a fixed parameter 6, i.e., S should
guarantee the convergence of the sequence 8. As discussed in Part 2 of the
thesis, designing such selectors, and even ones with stronger properties, is
possible and requires us to consider the general problem of Consistent Model

Chasing, which we discuss in Chapter 6.

CE-based adaptive control schemes are commonly used in problem settings concerned
with learning optimal controllers [1, 5, 92, 94]. In such scenarios, it is common that
each nominal CLM W|w] is chosen to be an optimal closed-loop map with respect to
the specific optimal control problem (OCP). A general OCP can be succinctly defined
by a dynamics operator F' € C(¢**¥ (%) and a functional [J : C(£"V, (**U) — R*,2

’In our formulation, we always set W = X.
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as the following infinite-dimensional optimization problem
OCP|J, F] : H}Iin J(P) (4.17)

st: @ =F"(®)+1I
® e C(, U

pq
W pX xU
gp 7€q
some specified notion of closed-loop stability. Correspondingly, the nominal
CLM parametrization ¥ is a map Q 3 w — ®* € argmin OCP[J, F[w]]

A~

which corresponds dynamics F'[w]| with the respective optimal CLM solutions

over all stable closed-loop maps ® € C( ) of F*, where p and ¢ represent

®* € argmin OCP[J, F[w]]. Moreover, if such solutions are unique, i.e., the
set argmin OCP[7, F'[w]] is a singleton, then the nominal CLM parametrization
map W is entirely determined by the OCP functional .7 and the parametrization of
dynamics F'. In light of Theorem 23, establishing the smoothness conditions iv)
and v) falls entirely on sensitivity analysis of the solutions to the optimal control
problem OCP[J, F|w', s]] to perturbations w’, ; € Bs[w] around fixed parameters
w € €). Thus, having a well-conditioned OCP formulation over the parametrization
F' is a prerequisite for using the optimal controllers for online adaptation. This is,
again, states an intuitive requirement: Assume, for example, that for some wg € Q
the dynamics F [w £ | lose u-controllability (in an essential way important to the
problem), then we can expect OCP[7, F'[w ¢ ] to exhibit discontinuities in any
neighborhood of wg. We explore this connection between the conditioning of
optimal control problems and well-posedness for learning-to-control in the well-
known and important class of OCPs defined by LQ-functionals .7 and LTI dynamics
F . Q — LC(0V, (¥U), where we assume  to be a compact subset of some
finite-dimensional Euclidean space. The main result assumes F to be affine and
states that as long as the set of linear dynamics {FW}WEQ are all of sufficient and of
equal degree of controllability, then the natural parametrization of LQ-optimal linear
CLMs ¥ : Q 5w — ®*[w] € LC(OV, ¢**) fulfills the smoothness conditions
iv) and v) of Theorem 23. Therefore, CE-adaptation with any model selector S
that meets conditions 1) and ii) of Theorem 23 yields stable learning-to-control in

closed-loop (1).

4.3 Certainty Equivalent Adaptation with LQ-Optimal SL. Controllers
LQR is a canonical and well-studied problem of optimal control [77, 85, 132]. In
recent years, it has received revived attention in the context of learning and control

problems [2, 37, 38, 92]. The general problem setup assumes an LTI system of
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the form z;, = Azy, + Bug_1 + wy, with state x € R”, input u € R™, i.i.d standard
Gaussian disturbance w; ~ N(0, I,,), and system matrices A € R"*™ and B € R™*™.
Our objective is to find a linear causal controller K € LC (¢, (*) that solves the

optimization problem

T
- : 1 TAT THT
Keﬁrgl(lzlbllﬁ) hgl_)scgp T ,; Ewinonle: € Cry+u, D' Duy]  (4.18a)
S.t.: T = AZL’k_l + Buk_l + wg, for k =1 (418b)

up = Ki(xpo), for k e N, To = wy, (4.18¢)

where C' and D are fixed matrices of full rank, i.e., CTC > 0, D'D > 0. As
stated, it is well-known that the solution to the above problem is the static linear
feedback control law w4, : © +— —K*x, where the gain matrix K* is obtained by
solving the Discrete Algebraic Ricatti-Equation (DARE). However, in applications
with systems of large scale (such as, for example, the power grid), it is not feasible to
implement the former in practice due to technical limitations in sensing, actuation,
and communication. To account for that, one has to translate the former into
constraints on the controller structure, which we then incorporate into the problem
formulation. A common constraint is communication delay between sensors and
actuators of different subsystems, which can be translated into spatial-temporal

subspace constraints on the operator K, as shown in the example below:

Example. Assume we have p separate actuators and q different sensors that partition
the input- and state-space into orthogonal subspaces as Vi @ --- @V, = R™ and
U@ - -®U, = R", respectively. Furthermore, let V;V," and U,;U jT denote orthogonal
projection maps onto the subspaces V; and U;, and denote T = I, ® V;V,"
and MY = I, ® U;U] their diagonal extensions to LC((, (%) and LC(¥, 1Y),
respectively. Now, if each actuator i receives the measurement from sensor j with

d(1, j) time-steps delay, we can formulate these i - j number of constraints as:

Vi, j, 7 : PMYKMY = Py KNy p7-403), (4.19)

Adding constraints, however, such as (4.19) to the LQR problem (4.18), makes
the problem hard to solve with traditional approaches. With the introduction of
SLS [11, 128], this changed: By changing the search space from K to the CLMs
@, we can formulate tractable subspace constraints on ®, which are sufficient for
K = &“(®")~! to fulfill (4.18). A common approximation [11] is to restrict the
CLM search to FIR maps of a fixed finite horizon ¢. Then, we obtain the following
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finite-dimensional QP problem for ®: The resulting optimization problem takes the

form:
2
LQ(A B.t):  min i 10) zI\Z ]\JZ APZ] F 4.20)
st Ry =1
Ryi1 = AR + BMy, VEk:1<k<t
Rt+1 =0

where Ry € R"*" and M € R™*" represent matrices associated with the component
functions of cCLMs

min{t,k+1} min{t,k+1}
Of(wio) == Y, Rjwga—;  Op(weo) = Y, Mjwgaa_j.  (421)
j=1 J=1

For fixed A, B, and horizon ¢, the optimal CLMs ®*(A, B, t) € LC({™, (**U), exist
if [A, B] is t-controllable (i.e., it is possible to drive the system state from any initial
condition to the origin within ¢ time-steps) and are unique if we assume that C', D,

and B have a trivial null-space.

LQ-Optimal CLMs for Nominal SL. Control
Motivated by the scalability of SLS in complex system settings, such as large-scale
systems, we investigate the LQ-optimal SL controllers of the problem (4.20) for

CE-based learning and control.

Setup. We assume that we are given an uncertainty set of LTI dynamics, described by
a compact metric space (€, d) of LTI systems, and an affine parameterization map F.
Q — LC(**YU (X)) where each operator F'[w] is linear, diagonal and has component
functions { F},[w] : (20, ko) — flw](@k, ) rers flw] = (2, u) — Alw]z+Blw]u
for some fixed continuous matrix-valued functions A : (Q,d) — (R™*"|-|) and
B:(Q,d) — (R™*™ | -|). We consider a fixed horizon t and let the nominal CLM
parameterization ¥ : Q — LC(¢Y, (**U)
LQ-optimal CLM ¥[w] := ®*(A[w], B|w],t) w.r.t. to the optimization problem
LQ(A[w], B|w],t) described by (4.20) and (4.21). We leave the model selector
S e C(¢**U () unspecified and assume that it is /., consistent and guarantees a

assign to each parameter w € €2 the

converging parameter selection @ € /2. As we discuss in detail in Chapter 6 in Part 2
of the thesis, this assumption is justified, as we can tackle the design of S in isolation
from the question of nominal control design, as a problem instance of Consistent
Model Chasing.
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Algorithm 1 Learning-to-Control with LQ-optimal SL Controllers

Setup: model selector S € C(¢**Y (), compact parameter space (Q,d), continuous
maps A : Q — R"™" and B : Q — R™*", specified LQ(A’, B',t) with fixed
invertible C', D, t € N and online solver ®*(A’, B’, t), CLM parameterization ¥ : w +—
®*(Alw], Blw], t)

Initialization: choose some 6y € QQ

I: fork=0,1,... toocodo

2: observe xy,

3 Or — Sk(x.0, Uk—1.0) = update model to 6, € Q
4 solve LQ(A[0k], B[], t) from (4.20) = Solve LQ-OCP
5: Set W[0y] <« ®*(A[0k], B[0k],t) from (4.21) = Synthesize optimal CLM
6: Wy, «— x — VE[0](0, Wk—1:0) = adapt SL-controller
7w 0] (o)

8 apply action uy

9: end for

Remark. F[w] can be expressed as 37, Uy [k]A[w]U,[zk] + U, [k]B[w] UM,

The CE-Adaptive Control Algorithm. The learning-to-control algorithm is
described in Algorithm 1 and naturally inherits many of the benefits and features of
basic System Level Synthesis. [66] first recognized the importance of SL controllers
for online learning and control and showed that by extending the system-level
robustness analysis of [127], [11] to linear time-varying systems, one can obtain
scalable and easy-to-analyze adaptive control methods via system-level controllers. A
key difference from [66] is that in [66], the parameterization W consisted of candidate
CLMs synthesized to be robust to a limited amount of parametric uncertainty
and, therefore, closed-loop stability was only guaranteed if £) was not too large.
As illustrated in Algorithm 1, in each time step k we select the system matrices
Ay, = Al0;], By = B[] and synthesize an LQ-optimal LQ controller by solving
the problem LQ(Ay, By, t) presented in (4.20). Note that whether or not the
parameterization W is available offline or computed on demand online does not make
any difference for closed-loop stability analysis. As described in detail in [11], we
can add — at no cost — linear constraints to ensure that the controller implementation
is aligned with real-world restrictions such as delay and sparsity of sensing, actuation
and communication. Almost all attractive features of the SLS approach [11] carry

over into our online learning and control setting.

Closed-Loop Dynamics. Appealing to our previous discussion and derivation of

Theorem 22 and Lem. 22, the closed-loop dynamics are described by the following
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set of equations:

VkeN: = UO[0,](dro) (4.22a)

O = Sk(Tr0, Uk—1.0) (4.22b)

e = xp — AlOk|xr_1 — B0k |ug—1 + wy (4.22¢)

Wy = f[ek—l](\lfk—l[gk—l] - \Ijkz—l[(gk]z(wk_l;o) + ey, (4.22d)
U*[k]AﬁéU[kfll

ur = Uy [0k] (Wro) (4.22e)

where ¥ : Q 5w — ®*(Afw], B|w],t) and f represents the linear, time-invariant
transition function flw] : (z,u) — A[w]z + Blw]u. Let ME° < (U V>
denote the model set of the above closed-loop and Mg < (4> the model of the

uncertain open-loop dynamics for bounded disturbance w:

MEP = {7* = (z,u, W, e, w) s.t.: (4.22) and w € £})} (4.23)
MG := {1 = (&, u,w) st: x = F[w](z,u) + w for some w e Q, w e (7}
(4.24)

Investigating closed-loop stability in the /,,-BIBO sense now means proving that all

trajectories 7* € M¥” are bounded, i.e., that M{® is a subset of £2 xUxWxA>xW,

(,-BIBO-Stability of Closed-Loop Dynamics. We appeal to the conditions of
Theorem 23 for stability analysis of the closed-loop dynamical system. Since

we assumed that S guarantees e € (®, 30, s.t.: tlim 0; = 0, and we have
—00

A[F[w], ®[w]] = 0,Vw € Q dueto ¥[w] := ®*(A[w], B[w], ), verifying stability
reduces down to checking iv) and v). Furthermore, it can be shown that in our
setup 1v) actually implies v), and therefore, checking the continuity of the CLM
parameterization map W over € is sufficient for verifying both conditions. This is

easily seen by first rewriting the difference F/[p,|®[p,] — F[w]®[w] as

Fpi]¥([ps] — Flw]®[w]
=13’[p1]\11 pa]| — F[pﬂ‘I’[pﬂ + F[pl]‘l’[Pl] - F[W]‘I’[W]
=Fp](¥[po] — ¥[p1]) + T [p1] — T[w], (4.25)

where the last equation follows from A[F'[w], ®[w]] = 0 and the linearity of F',
and second by noticing that the || - [|,,-norm of F'[p,](®[p2] — ¥[p1]) is bounded

above as

I Elp:) (2 [p2] = C[p1]) e < ca - [ €[p2] — ¥[pa]]lo (4.26)
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where cq = mez‘xic{|A[p]| + | B[p]|}; the maximum cq exists because (€2,d) is a
compact metripc space and the parameterizations A and B are continuous maps on
(Q, d). Hence, from (4.25) and (4.26) and since A and B were already assumed to
be continuous, the stability conditions iv) and v) would be satisfied if ®*(A, B, )
is continuous in A and B. Therefore, we need to investigate the sensitivity of
LQ optimal CLM solutions ®*(A + dA, B + 0B, t) with respect to small matrix
perturbations 0A € R"*", 0B € R™ ™. This perturbation analysis constitutes the

second part of this chapter and culminates in the theorem stated below:

Theorem 24 (Lipschitzness of LQ-optimal CLM oracle). Let t € N be fixed, C' €
R™ ™ D e R™*™ be fixed invertible matrices, and ®*(A, B, t) represent the unique
optimum of the optimal control problem LQ(A, B, t) described by (4.20), (4.21).
Assume that S,y is a compact subset of R"*("+™) such that each pair [A, B] € Sap
is t-controllable, i.e., the matrix P;,(A, B) = [A"™'B, A" 2B, --- ,B] € R"™ js
of rank n. Then there exists a fixed positive constant L € R™ such that for all

[Ay, B1],[Asg, Ba] € Sap holds
H|q)*(AlvBl7t) - ‘|(I)*(A2;BQat>H|oo < L(|512A‘ + |612B|)

where 51214 = Al — AQ and 6123 = Bl — BQ.

The above result, which will be stated in much greater detail later, states that the
map ®*(A’, B', t) is Lipshitz-continuous over compact sets of ¢-controllable pairs
of matrices [A’, B'], and therefore our CLM parametrization map ¥ is indeed
continuous over (€2, d). Hence, in summary, as long as all system matrix pairs
{[A|w], B|w]]}weq are t-controllable, all stability conditions imposed on the nominal
control design, i.e., iii), iv), v) of Theorem 23, are met, and the closed-loop system
(4.22) is {5,-BIBO stable (with a fitting choice of S). We summarize our discussion

in the theorem stated below:

Theorem 25 (/,-stability of Closed-Loop Alg.1). Recall the Closed-Loop setup
described in Algorithm I and the corresponding closed-loop equations (4.22) and sets
Mg* and Mg of closed-loop (4.23) and open-loop (4.24) trajectories, respectively.
All closed-loop trajectories T € M§° are bounded if the following conditions are

met:

1. If 0 = S(x,u), where (x,u,w) € MG, then 0 converges in (,d) and

sup |zg — AlOk]rr—1 — B[Ok |us—1| < 0.
keN
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2. Each pair of matrices [A|w], B[w]], w € Q is t-controllable.

Proof. If the model selector S satisfies the consistency Assumption (1), then the
conditions (i)) and (ii)) of Theorem 23 hold for any sequence of selections 6 and
consistency errors e of a closed-loop trajectory (x, u, W, e, w) € M5°. Condition
Theorem 23(iii)) is automatically satisfied, since ¥|w] = ®*(A[w], B|w],t) are
always CLMs of the corresponding dynamics F'[w]. Since (€, d) is compact and A
and B are continuous maps, it follows that the image Sq = {[A[w], Blw]] | w € Q}
is a compact subset of R™*("*™) By Assumption (2), we also conclude that all pairs
[A’, B'] € Sq are t-controllable, and therefore, by Lipshitzness of the LQ-optimal
CLM map ®* (according to Theorem 24) and continuity of A and B, we conclude
that ¥ is continuous over (€, d), and therefore condition Theorem 23(iv)) is met.
Moreover, as derived earlier via (4.25) and (4.26), the former implies also that
condition Theorem 23(v)) is true. Finally, we invoke Theorem 23 and conclude that

all closed-loop trajectories (x, u, W, e, w) € M§” have to be bounded. O

The conditions stated above show that closed-loop stability is largely characterized
by the properties of the model selection S. Moreover, it is important to notice that
it is nowhere required that the selections € converge to the true system parameter
0*, merely that it converges to some 0,, € ). This is a major distinction from
most modern learning and control algorithms [3, 35, 50] which explicitly require
accurate system identification in order to guarantee stability. In Part 2 of the thesis,
we will discuss how to define such procedures S through Consistent Model Chasing.
Moreover, aside from convergence, stronger properties (competitiveness) can be
obtained for S which allow for sharper analysis of the transient and cost performance
of the closed-loop. A key component towards establishing these types of guarantees is
proving that the CE-LQ optimal CLMs ® change indeed gradually with perturbations
in 0. Sensitivity analysis of the (oracle) map ® : Q — LC(¢*, ¢**H) is an important
part of what we later refer to as robust oracle design. In the remaining part of this
chapter, we will prove the previously claimed Lipschitz property of the optimal CLM
parametrization map ®*(A’, B’, t) and give analytic bounds of the Lipschitz constant
L in terms of system-theoretic properties such as controllability and observability.
We start the second part of this chapter with a discussion on basic control theory
results regarding controllability, observability, and grammians, which we refine for

the use-case of controlling large-scale systems.
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4.4 Digression on Linear Algebra and Control Theory Basics

Here we discuss some basic linear algebra results that are frequently used in our
arguments but are not always mentioned explicitly in our derivations. For the
following definitions, let M denote an arbitrary matrix M € R™*™, where w.l.o.g.

n=m.

Reduced SVD Decomposition

The factorization M = U, %, V.7, U, € Rk 5. e R¥>* VT e RF™ jg called a
reduced SVD decomposition of M, if UTT U, = I, X, > 0 1is positive-definite and
diagonal, and V,"V, = I;. The diagonal entries of ¥, are the non-zero singular
values of M. We denote o(M) € R™ as the vector [0, 09, ..., 0k, Opi1s- - 0n]"
of singular values of M, ordered in descending order; the diagonal entries (up
to some permutation) of X, are oq,...,0%, while 011 = --- = 0, = 0. M is
invertible if and only if the reduced SVD is such that £ = n. Correspondingly,
01 = Omax(M) = |M|2, 05, = omin(M) and we define 0_; := o4 (M) as the
smallest non-zero singular value of M. If M is invertible, then o_; (M) = opin(M)

and vice versa.

Moore-Penrose Inverse

The Moore-Penrose inverse of M can be uniquely defined as M = V, XU for
any reduced SVD decomposition of M. It is also the unique matrix M satisfying

all of the following four conditions:

MMM =M MMM = Mt
(MMNT = MMT (MTM)T = MTM.

Here some of the key-properties we use of MT:

Lemma 19. For any matrix M and its pseudo-inverse M holds:

i) MM?' and MTM are orthogonal projections with rank k.
ii) M is the (left/right)-inverse of M if and only if M is (left/right)-invertible.
iii) MT = 11\11(1)(MTM +t)*M" and Mz = 2 = 11{%1’1 for any x where

af == (MM + tI)"*M "z denotes the unique solution to the optimization

problem
min | Mv — |3 + t]v]3.
v
iv) The optimal value of the least-squares problem min | Mv — x|3 is attained at
v

v* = Mz and if there is more than one minimizer, then v* is the unique one
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of smallest || ||2-norm.
v) M1yt = oy (M) and | M]," = o1 (M").
vi) MY = (MTM)'MT and MY = MT(MMT)',

4.5 Controllability and Observability at a Fixed Time

Large-scale systems often consist of many sparsely interconnected small systems,
1.e., the dimension of the large system is n = Nng, where ng denotes the typical
dimensions of the small systems, and /N denotes the number of subsystems. Denote
2 € R"s as the state of the ith subsystem and u(®) T, w7 .. 40T denote the
inputs of the M (< N) systems i1, 79, . .., i3y Which have actuation available. Let
= [a2WT 2T 2MT] denote the state of the overall interconnected system
and u = [u()T w027 4m)T] e R™ the total input of dimension m = Mmg,
where mg is the dimension of the inputs of the subsystems. Typically, the large
dimension of the overall system is due to /V and M being large numbers, i.e., n » ng,

m > mg.

If the overall system is controllable, we know that any initial condition x, can
be controlled to the origin within at most n time-steps. However, in the above
case n = Nng, this is often a conservative statement: If communication between
subsystems is fast enough, interconnection is sparse, and actuation is available in
sufficiently many subsystems (M is on the order of V), it is possible to control

arbitrary initial conditions to the origin within much fewer steps ¢ < n.

Motivated by applications in large-scale control settings, we refine the notion of
controllability for this purpose. We shall call [ A, B] to be ¢-controllable if within ¢
time-steps we can control any initial condition x to the origin - or equivalently we
can reach any target state x ¢ at time ¢ - regardless of the initial condition. We adopt

basic controllability results to the finite time setting below:

Lemma 20. The following statements are equivalent:

e [A, B is t-controllable.
e For any pair (o, (y € R, there exists ug, U, ..., u—1 such that xo = (o,
x¢ = (g, where
Tpy1 = Axp + Bug,V k< t.

e The matrix P, = [A"™'B, A*™2B, ..., B] € R™™ js full row rank.
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The fourth condition gives us a necessary condition for ¢-controllability:

t > o ﬁn—s
m  Mmg
Similarly, we define that a pair (C, A) is t-observable if the sequence of observations
Yo, - - > Y1, Yp = Cx), of an impulse response z;, = A*&, are sufficient to compute
the initial condition . As expected, t-observability has multiple equivalent

definitions, which are dual to those of controllability.

Lemma 21. The following statements are equivalent:

o (C, A) is t-observable.
o Let y[l():t_l], y[20:t_1] be observations 1. = CAF(;, of the state-trajectories
1 = CA*¢) and 23 = C AF(,, respectively. Then it holds:

y[lomfl] = y[20:t71] < G =G
® The matrix Q; = [CT,(CA)T, ... (CA™N)T]T is full column rank.

Controllability and Observability Grammians

The relationship between controllability and observability and their corresponding
grammians, defined below, will play an important role in our derivations. In contrast to
standard literature, we discuss this interplay also in the setting of partial observability

and partial controllability. To this end, we make use of the Moore-Penrose inverse.

Definition 4.2 (controllability/observability grammians). Let C' € R"*", A € R™*",
B € R™™ be fixed system matrices. The sequence of positive-semidefinite matrices
{W¢£t and {W?} are called controllability and observability grammians of the system
Try1 = Axp + Buy, yp = Cuxy, respectively, if they satisfy the following set of

dynamic equations:
W¢=BB", Wf=AWS A" + BB', 4.27)
Wy = c'o, We = ATWt"_lA +CTC. (4.28)

By substitution, we obtain the explicit form of W and W:

t
Wi st (427) <= Wy =PP =) A*BBTAM
k=0
t

WPst (428) «— WY =Q[Q, =) A CTcAr,
k=0
It is easy to see, using standard arguments, that the controllability grammians obey

the following properties:
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Lemma 22. Let {Wf} be the controllability grammians of [A, B]. Then, for any

t>1,

1. [A, B] is t-controllable if and only if W¢ > 0.

2. If[A, B] is t-controllable, then, given some target state (; and initial condition
xo = 0, we can compute the optimal (unique) input sequence that drives the

system to x;, = C; with minimal cost |ul3 = 4 |ux|3 as
u* = PW,; ¢y, where u* = [ug ", ui" . ui )" (4.29)
The optimal cost is |u*|5 = (f Wiy

3. More generally, for a given (s € R", z} = PtPtTC ¢ IS the state closest in 2-norm
among all states reachable within t time-steps, starting from the origin. Among
all input sequences that reach z} at time t, u* = P,/ (W¢)(; is the one with

the smallest Uy-norm. Furthermore, it holds |u*|3 = (;W§C;.

Proof. The first statement is obvious after recalling (4.27). For the second, notice

that the desired optimal control problem reduces to the least squares problem:

min [ul3

s.t. 1 (f = Pu.
Since [A, B] is t-controllable, it holds that P; is full-column rank and W, = P,P,” >
0, and the above problem is feasible for any (y € R". The unique solution is

u* = PT(PPT)71¢; = PTW;'(;. The last statement follows by recalling the

properties of the pseudo-inverse. 0

Lemma 23. Let {WW?} be the observability grammians of (C, A). Then, for any
t>=1,

1. (C, A) is t-observable if and only if W? > 0.

2. If (C, A) is t-observable, then for any sequence of observations yjo.t—1}, Y =
Cx,; of an impulse response v, = A&y, it holds that &, = (Wt")_ley[Ozt_u.
Moreover, for an arbitrary yjjo.;—1], éo = (VV;)TQ;r Ulo:t—1] is the initial condition
7 which produces the closest feasible impulse response yo.—1] = tho, ie.,

N : t—1 | 2Ta7o
ly = 913 = ming 33— |50 — CAYE|3 = & Wik.

3. R(WY) is the subspace of observable states in R" at time t.

3And is of smallest 2-norm if there are multiple such initial conditions.
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4.6 Perturbation Analysis of Open-Loop Maps over Finite Time-Horizon

In this section, we discuss how linear system behavior changes with different system
matrices A, B under feedforward/open-loop control. We consider the following LTI
system with state x € R", control input u € R™, disturbance w € R", and the two

outputs y € R" and z € R"*™:

CZEk

xp = Aiti_1 + Biug_1 + wy_1, 2 =
Duk

] yr = Cxy. (4.30)
We consider the output matrices C' and D to be fixed and invertible, and B; to always
be of full column rank. For a given pair A;, B; and a fixed horizon ¢, we define the
open-loop map G as the causal map G(A;, B;)(w, ). — (x,y)[0.q between
the input signals w, u and the state and output signals @, y. Our goal is to analyze
the sensitivity of the map G(A;, B;) with respect to changes in (A;, B;).

Setup and Notation

We represent the system (4.30) in batch form: Let z, denote the stacked vector
[2g,2],...,2]]", and define u,, w,, y,, z, accordingly. Let E;] € R™(+1_for
ke {0,1,...,t}, denote the map E| : z, — x4, i.e., E}, is a block-column matrix
containing all zero matrices 0,,«.,, except for the k-th block row, which contains the

identity matrix I,,:

k+1
We represent the open-loop map G : (w,, u;) — (2, y,) as a Toeplitz matrix, and,

as shown below, we decompose it into block matrices, each representing a partial

open-loop map:

0 _Oan .............. On><n On><n_
wt -:_Lt 1 In Onxn """" Onxn Onxn
|G zrGy SO
T =G o O T | | =25 @3))
Qt Gt Zt Gt . e«Y O .
| O oo Oper I, Onxn
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Now we can express the relationship between the system trajectories over the

time-horizon [0, t] as:

r, =Z;GM(A, By, + Gi*(A)w, -
y, =2/ G{"(C,A B, +G{"(C, Aw,

Dﬂt

CGY" (wy) + GG%'“@)]

(4.32)

where Z," denotes the delay operator, and:

In 0 0 ... 0
y A L, 0 . 0 G = GY"
G/"(A)=|a a4 I 0 D
Gi*(A,B) = GP*(A)(li1® B)
7At At—l At—2 Ini

(4.33)
G/(CA) = (In®CO)Gi"(A)  G{"(C, A B) = (.1 ®C)GI"(A, B).

We denote the k-th controllability matrix and grammian with respect to the pair
(A, B) as P.(A, B) and W¢(A, B), respectively. Similarly, we define the k-th
observability matrix and grammian of a pair (C, A) as Qx(C, A) and W?(C, A):
C
Py(A,B) = [A*B,A1B, ... B] A
Wg(A,B) = P.(A,B)P/ (A, B) Qr(C,A) = ) . (4.34)
We(C,A) = Qu(C,A)TQu(C, A) :
C Ak
We refer to the rank of P, (A, B) and Q;(C, A) as the degree of k-controllability and
k-observability of the system (C, A, B). We quantify the level of controllability and
observability in terms of the singular values 4 of the matrices Py (A, B) and Qx(C, A):
oi(A, B) and 77 (C, A) denote the largest singular eigenvalues of P,(A, B) and
Qr(C, A), while gf(A, B) and ¢9(C, A) denote the smallest non-zero ones. We

summarize these definitions below:

Definition 4.3. For a fixed set of parameters (A, B, C') and time-horizon k, we define
di(A, B), a5.(A, B), 52(C, A), and a3(C, A) as:

5-13(1473) = Hpk(Av B)HQ QZ(Av B) = U*l(Pk(A7B)) = HPII<A7 B)Hgl
GR(CLA) = |Qr(C, A)l:  ap(C, A) = 0_1(Qu(C, A)) = |QL(C, A);".

#Which coincide with the eigenvalues of the grammians.
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Moreover, we define p/°(A), p5/°(A) as:

Pe(A) == | P(A, D)2 pL(A)
Pe(A) == |Qr(1, A)]2 Po(A)

I I
R
-
S
~ =
==

c/o

The quantities p,'“(A) and BZ/ °(A) measure the controllability and observability of a
fictitious system, where B and C' are replaced with the identity matrix /, while A is
being kept the same:

* * *
g = Axp + Yp = Ty

p k/ °(A) and EZ/ °(A) represent the largest and smallest non-zero singular values of the
controllability and observability matrix Py (A, I') and Q) (1, A) and can be interpreted
as describing the attainable level of controllability and observability for the system

matrix A, if we had the ability to change the input and output matrix.

Remark 26. If we drop mentioning the dependence on t and/or the parameters
(A, B,C) in some statement, it is assumed to hold for all t and/or parameters
(A, B,C). For example, if we state, "G™" satisfies . .. ", we implicitly mean "For all
A, B andt, GV (A, B) satisfies ... "

Since W¢ = PP, and W¢ = Q] Q;, the following relation between controllabil-
ity/observability matrices F; and (); and corresponding grammians W and W} is

always true.

Lemma 24.
1
. o
(i) [Pll2 = Qne(WE))Z and [P = (AL, (97)) 2.
.. 1 f ! *%
(i) |Qul = Qs (W7))2 and Q]2 = (AL (W) *.

The next two sections are concerned with deriving key lemmas needed for the

perturbation analysis.

Open-Loop Map Norm-Bounds

Here we derive approximations for the worst-case ¢,-gain of the open-loop map G
over a fixed time-horizon ¢t. We will express the bounds in terms of the relation
between the controllability/observability matrices P, and (), and the corresponding

Grammians.

With the help of the previous lemma and the following easily verified fact
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Lemma 25. (GyV(A)) ' =1, — Z; ® A.
we can derive upper bounds and lower bounds of the toeplitz operators G ):

Lemma 26. Any singular value o; of 0(G7") and G7* lies in the range described
by the inequalities below:

1
o <ai(GTP) < VT T 155(A) (4.352)
1+ [ Al
Jnﬁn(lg) xu —c
Twinl®) 5 (G) < Vi + 169(A, B) (4.35b)
1+ [ Als
Ohﬁn(cj) ] yw —o
— <0;(G}") <Vt +157(C, A). (4.35¢)
1+ A
Proof. |G7|3 = max |G7*u|3. By decomposing u = [u],...,u]]" we can
rewrite this as
2
<BUO
u ABugy + Buy
IG5 = max = max Z | Pe3
A'Bug + -+ + By,

t t

t

Z ‘nﬁax ||Pku||2 = 2 HPkH2 Z
k=

< (t+

k=0 k=0

+ DR = (t +1)(57(A, B))?

where we used the fact that | ;|3 increases in k since it is equal to the largest
eigenvalue of the corresponding controllability Gramian W} = Zf;ol AIBBTA',
Thus, we obtain the bound

|G7*(A, B)|2 < A/(t +1)ai(A, B),

and the bound on |G*"(A)|, follows by setting B = . We apply a similar idea to
bound |GY"|,. Splitting the identity operator I, = 3 _, EE, into a sum of the
t + 1 orthogonal projections Ej, E,, we use the triangle inequality to obtain:

t t
|Gz = | ), GI"ELE[|> < ) |GI"EyE]l |
k=0 k=0
t
|

< S Qule < VETT|Qu = VET 107,

k=0
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For the lower bound, notice that the following chain of inequalities

(01 (G™(A) ™" = 1((Gu(A)) = | I, = ZT ® Al < 1 + || Al

implies 0_1(G*™(A)) = (1 + ||A]2). Now for the operator G**( A, B), notice that

for any vector u, we have:

IG“(A, Blu|2 = |G (A) (I @ B2 = omin(GF (A))[[(1: @ Byl
= Jmin<wa(A))Umin<B)H@tHZ-

Since G7*(A) is invertible and we assume oy, (B) to be full column rank, we

conclude that for all v, it holds

Umin(B)

G™(A, Bl |, > ZontD)
H t ( ) tH2 1+HAH2

a2,

which yields the stated result. ]

Recall that G (C, A) = (I;11 ® C)G7¥(A) and that G7* can be decomposed in

multiple ways:
Gfu = ([t+1 & C)Gfu = Glt/w(ltﬂ ® B) = G%M(It o Z;r ® A)Gf“.

As a corollary of the previous lemma, we obtain bounds on the open loop maps for

the outputs:

Lemma 27. For any singular value o(G?"), o(GY") of G{" and G}" holds:

Umin(0> yw 7°
Tt 14l <o(GY") <A/(t+ 1)57(C, A)
Omin(C) T min(B)

<o(G/") < [Cl2vt + 157(A, B)

1+ Al
o(GY") <Vt +167(C, A)| Bl

Furthermore, by definition, it is easy to see that 62, (G7") < o>

max max (

G/") +0ax(D)
and 02, (G{") + 02,,(D) < ¢2,,(G?*). We can apply Lem. 27 and conclude the

following range for the singular values of G}":

min C)Umin<B)
2 qu > % (
e = (A

0*(G") < (t +1)|C2| Bl2o7(C, A)ai (A, B) + | D3 (4.37b)

2
) + 02, (D) (4.37a)
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Perturbation Inequalities in Operator Norm

Here we discuss how the feedforward operators G *) vary with changes in the system
matrices (A, B), while assuming C' and D are fixed. For the next lemmas, fix two
sets of parameters A;, B; and Ay, B, and denote G**, G**, G¥**, i € {1,2}
etc. the corresponding operators G*"(A4;), G™(A;, B;), GY*(A;, B;,C), etc..
Furthermore, denote 015 A := Ay — Ay, 019 B := By — By, and correspondingly write
012G = G(A1, B1) — G(As, By) to denote the corresponding changes in the open-
loop maps. Correspondingly, 01oG¥* = G — G, 01,G¥ = G7*' — GTV7,
etc. First, we derive a useful decomposition of the terms ¢,2G. To that end, notice

that for two invertible matrices A and B we can always write
At -Bl'=AYB-AB'=BYB-A)A"

Now using the fact that G** is always invertible and Gi*" = (I, — Z;* ® A;) ™1,

: . 1 2 1 2
we can rewrite the differences 012G7Y = Gy — G{"" and Gy — G~ as:

012G = GT"* (2] ® 0 A)GF™? (4.38a)

012G = (GY" — GY"*) (1, ® By) + GV (I, ® 012B) (4.38b)
= G"*(Z} @ 0nA)GT + GF? (I, ® 012B)

012GV = GV (Z} ® 0nA)GT? (4.38¢)

012G = GV (Z) @ 00 A)GT" + GY"? (I, ® 012B) . (4.38d)

Applying the triangle inequality to these equations, we can directly obtain the

following perturbation inequalities in the induced 2-norm:

[012GF |2 < |GT 2| G2 2] 01245
[012G7 2 < |G™*2 2| G™* 2| d12A]2 + |G |2 612 B2
[012GY" 2 < [ G ]o GT2]5 ] 012A] 2
[002GY" 2 < [GV?[|G™ 2] 012 A 12 + |GY?| 2012 B 2.

Applying the results of the previous section Lem. 26, we can further bound the

above inequalities in terms of the singular values of the controllability grammians.
For the following results, we will denote 5" = p5(4;), 0" = 6¢(Aq, By), pi =
p7(C, A;) corresponding to two sets of system parameters (A;, By) and (A, Bs);

Jox c/ox

for each variable, we will use z/* := max;{z/”} (@7 := min;{z7"'}) to
denote the maximum (minimum) of both cases, i.e., py* = max{ ﬁf’l, 55’2}, (p* =

min{gf’l, Bf’z}) etc.
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Lemma 28. Let G 1 and G\, be the open loop maps of two sets of system parameters
(Al, Bl> and (Ag, Bg) Then:

012G |2 < (t + 1)p;" [ 124] 2 (4.39)
101G 2 < (t + 1)o7 57|12 A]l2 + VE + 15701285

[012GY" |2 < (¢ + 1)a7* i | 012Al 5

[012GY" 5 < (t + 1) 57" | O12 A2 + VE + 167%]012B] -

We can utilize the above decomposition also for the controllability and observability
matrices P,(A, B) and Q;(C, A). Notice that P, e R™**+Um — BTG4 is the last
row of submatrices in G¥* and Q,(C, A) € R‘F+1)xn — G E; is the first column

of submatrices in G}, hence from (4.38c) we obtain the decomposition:

Qu(C, Ay) — Qi(C, Ay) =GV (C, A))(Z} ® 0, A)GT 2 (Ay) E,
G%w’l(C’, ANZF ® 0nA)Qu(I, As)

and from (4.38a) and (4.38b) we get:
P,(Ay, By) — Pi(As, By) =P,(As, 1) (2} ® dnA)GY" + 1, ® 012 B) .

Applying the triangle-inequality to these decompositions and substituting the operator
norm bounds derived in Lem. 27 and Lem. 26, we obtain the following perturbation

inequality for the controllability and observability matrices:

Lemma. Denote 0" = Apa (WF(A;i, B;)) and o' = Mpa(WP(CL A;)) corre-
sponding to the two sets of system parameters (A, By) and (Az, By). Then 012 P,

and 015Q); are bounded as:

0Pl < 57 (VE+ DoF 21242 + 1012812 (4.40)
[012Q 2 < ﬁ?’2\/m62”1||61214||2. (4.41)

4.7 From H,-Optimal Control to Least Squares

Having the basic definitions and background, our next step is to reduce the H,-

problem described by the equations (4.20) to a Least-Squares problem. Denote
i’x e R”, i“ € R™ as the jth column of R, € R"*", M} € R™*" and e; the unit

vector in the j-th coordinate axis. From now on, we fix the finite horizon ¢. As

described in [11], we can separate the problem by columns and can equivalently



126

restate (4.20) in terms of each column ¢* and ¢7* :

oG ol
A

2
¢ 0

0 D (4.42)

S; = min

F

st ¢l = e;
I = A" + Beyt, Y1<k<t
zfl = 0.
We rewrite (4.42) further and introduce new variables to avoid tedious notation.

Define u, = ¢, Vk: 0< k<t —1,u=[u],...,u/]" and let C, D denote the
lifted weight matrices C' = [; ® C, D = I, ® D. Now we rewrite the subproblem

S; as
2
CG*™(A,B
Sj = min H[ t_D( ’ ) u — ’I’]t(A) + (CTC)]‘]‘ (4.43a)
2
st: 0= A"e; + P(A B)u (4.43b)

where ] = —[Q:(C, A)Ae;)",0] and E] = [I,,,0,5n, ,0,x,]. To simplify
notation, we introduce the virtual outputs z = [Cz, Du]"T € R™+™)*m 4 = O and

the operators GV*, G*" as

CG*(A, B)

G"*(A, B) = CG*™(A, B) G*(A,B) = 5

] (4.44)

to rephrase the problem into (4.45), where we dropped the constant term (C'TC);; as

it is not needed for analysis.

S; =min [|GZ(A, B)u —mi(A)|; (4.45a)

u

st.. 0= A"e; + P(A, B)u. (4.45b)

4.8 Representation as a Least-Squares Problem
We now rewrite (4.43) as a least square problem. Define u* := P,"(P,P,") ' Ale;,
which is the solution to the optimization problem

min  Jul?

s.t. — A le; = P,

We can interpret u; as the smallest control action, measured in {5, that drives the

system from the origin to —A'™'e; in ¢ time-steps. This relates to controllability
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grammians as described in [49]. In terms of the Moore-Penrose Inverse, we can
also write u* := PJA*'e; = PT(W¢)T At*le;, where W is the t-th controllability
grammian.

We drop the index j from ¢*/ and reparameterize u = —u} + u’ where v’ € null(7,)
and describe (4.43) as the optimization problem:

s = omin GRAB) W - uwl(AB) - n()] . @d0

Let u*(A, B) be a minimizer of the above problem for fixed A, B, we are interested
in the SLS solutions

c! 0

¢*(A, B) = [ 0 D_1] (G7(A, B)(u" —ui(A B)) —mi(A))

and how these solutions are perturbed with changes in A, B. We (over-)parameterize

uvasu = ([ — PtT P,)n, to cast problem S; into an unconstrained one:

min
n

2
G“(A, ByuZ(A, B) + mi(A) - Gi"(A, B)(I - P{P) "HQ' (4.47)

g H

The optimal value of problem S; is ||*||3, where v* := (HH' — I)g and is achieved
atn* = H'g. The corresponding optimal ¢* takes the form min-norm solution n* to
the above problem is * = H'g and S; = |v*|, and therefore the optimal solution
¢* takes the form:

o 0 where v* = (HH' — 1) (4.48)
= V7 V == - . .
0 D! g

Hence, up to the constant xop = max{|C ™|, | D™}, the sensitivity of ¢* scales
linearly with the sensitivity of the corresponding optimal v*. Hence, if ¢}, vf
and ¢3, V3 are optimal solutions for two different sets of parameters (A;, By) and
(Ag, By), then ¢ — @32 is bounded as:

|07 = @32 < Keplvi —v3la.
The goal of the next section is to bound |vf — v5||2 in terms of ||A; — Az, and

|B1 — Bas.

4.9 Perturbation of Least Squares
Consider two optimal solutions v* = (HyH] — I)g; and v = (H,H} — I)g,, of

parameters (A, By) and (A, By). The difference v — v can be written as

vi —vi = (HWH| —1)(g1 — go) + (H\H| — H,H})gs,
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and the term H, H 1T — H.H. 2T can be further broken down into:
-
(I - HyH])(H\ - Hy)H] + |(I - HyH})(H, - Hy)H] |

Now, since the operators (M MT—I) and M M are projections for any matrix M, we
know that | H;H] — I|, = 1 5. Therefore, we can bound the term H; H| — H,H

in terms of the || - [|» norm as:
|H\H{ — HyHj > < |Hi — Ho|2(| H{ |2 + | H3o)- (4.49)
Applying the triangle-inequality on (4.49) and substituting the above bound yields:
[vf = v5l2 < g1 — gal2 + [ Hy — Holo(1H] |2 + | H3J2) o]z (4.50)

In the following, we proceed to analyze each of the terms in the above inequality
separately. To this end, we will make frequent use of the Lemmas. The facts stated
in (29) can be easily verified. The proof of Lem. 30 is more involved and can be
found in [129].6

Lemma 29. For arbitrary matrices X,Y € R"*™ and A, B € R"*", it holds that

(i) Af = A5 = 20 A7 (A — A Ay,
(i) XXT =YY = (I - XX (X -YV)YT+[(I-YYT)(X - Y)XT]T :
(ii)) XTX =YY = YI(X = V)(I — XTX) + [XI(X = YV)(I - YTV)]".

(iv) If A and B are invertible, then A~ — B~' = A=Y(B — A)B~..

The following is a corollary from Theorem 4.1 in [129]:

Lemma 30. Let X and Y be matrices with equal rank, let || - |5 denote the induced

2-norm and | - | denote the Frobenius norm. The following inequalities hold:

| X7 =¥ < ] X[ YT [2) X = Y]
[XT =Y Tr < V2IXT|2Y o)X ~ V]r

where ¢ = %5 denotes the golden ratio constant.

SUnless H; = 0.
6See Corollary of Thm.4.1 in [129].
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Bounding | H; — H,|;
First, notice that we can express H T as (I — P/ P,)(G7*)T and that
H, — Hy = G{"'(P}yP,5 — P/ \Piy) + (Gi™' = G{"*)(I — P, P,»).
Now using the previous lemma and noticing that | G — G;"?||, = |GY"' —GY™“?|,
we obtain the following inequality
[Hy — Hol <|GY = GY?s + |G7* o (I B2 + [ Plal2) [P = Paall
and arrive at:
|Hy — Hs|o(| Hil> + | H3l2) 921> <pn| 002G 2 + paf| 012 P
with the constants

= (|H{[2 + [ HJ|5)[go- (4.51a)
pe = |GF* o(1 Pl 2 + [ Blalls) (1 2 + [ H2) |22 (4.51b)

Lemma 31. Recall that D is invertible. Therefore,

|H'(A,B)|2 < |G |2 < (0uin(GF)

Proof. In order to bound | M|, from above, we have to bound o_; (M) from be-
low. Notice that G;*(A, B) is full-column rank, since D is invertible and thus
rank(G3*(A, B)) = (t+1)-n,. The projection Ilxr(p,) := (I—P; (A, B)P,(A, B)) €
RUEFDmxE+Dne hag rank 75 < (t + 1)n, = rank(G?%(A, B)). Hence, G#*(A, B)
and P, have the same null space and therefore H = G7"(A, B)Ily(p,) is of rank 7.
From these observations, we can equivalently say that o_; (H ) is the ry-th largest
singular eigenvalue of H. Using the Minimax principle, we can therefore represent

o_1(H) as the solution to the following max-min problem:

o_1(H) = max min ' IIH' HIlx (4.52)
proj.II, s.t.: rank(Il)=rg = s.t.: |[[Iz|=1
= max min ' My p) Gi* Gy My (pyIlz. (4.53)

proj.II, s.t.: rank(Il)=rg x s.t.: |[[Iz]|=1
Now recall that I1y(p,) is of rank 7, hence it is a feasible choice for the variable 11

of the outer optimization problem. Furthermore, this leads us to the bound

o 1(H) = min 2 Mn(p)GP T Gy (py @ (4.54)
z st [Iar(p,zl=1
= min GG (4.55)
z st zeN(Py),|z[2=1
> min 2 GPTGME = A A (GG, (4.56)

zs.t: |z|=1
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Finally, the desired statement follows, since \/ Amin(G7TG7Y) = omin(G?*) and by

inverting the inequality above. [

To bound the worst-case of ||g|, recall its definition:
g = GI"(A, Bug(A, B) + mui(A)
— G7(A, B)P/(A, B)A"™ e, — Q,(C, A) Ae;.

—ZU,t 2U,1

Definition 4.4. For a pair (A;, B;) define the constants o ;, and ;" a;"" as:

a = max Ay 07 i= 0pun(GF (AL B)) 07 1= 0uin(GFH(ALL BY).

0<k<t+1

We can obtain an upper bound for | g

9, as a corollary of Lem. 27 and Lem. 24
lgll < (IC12va5 + 1DI2) (26) " au + 57 Al (4.57)

and using the constants defined in Definition (4.4) we can bound the constant g¢; as:

S ZUk

< 2——ay + 07 Al (4.58)
gy Oy
4 5—2u* 2 O.zu* Y
IJ’2 < Zuk ( tc* ) Qy + 2 O—t*HA*HQ (459)
[ 9y _t

. . . . 1 2y = _0,1 _02
where the expression with superscript ¢¢* = min{c"', 07°}, 5% = max{z""', 577}
represents the worst-case pick of ¢ = 1, 2 for the corresponding expression. We can

obtain explicit bounds by substituting the bounds of Lem. 27

Bounding |g; — g-|-
Recall that g, — g- takes the form:

g1 — g2 = G Pl Al e; — G7? P/, AL ej + my(A) — mi(Az). (4.60)

We split g1 — go = Ay + Ay + Az + Ay into the four telescoping terms Ay, ..., Ay

below and proceed to bound each of them individually.
o zu,1 zu,2 T oAt+1 zu,2 T t+1
Ar = (Gi"" = G{"") P AT e, Ay =G ( Pw) A"
Az = Gi"*Ply (AT e — Ayle;) Ay =my(Ar) — mi(A)

LA A < [GE = G2 | P AT e 2.
2. Ay : Applying the | - ||2-bound from Lem. 30 yields:

zu,2
18312 < @l P2l Plalla| G2 2] A e ]l Py — Pralla-
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3. Az: We apply Lem. 29 to obtain A{"" — AS = 370 AlTT(A; — Ay) AL

Notice we can rewrite that as
AT — AP = Pi(AL 1) (AL — Ag)Qu(I, Ay)

and apply the bounds of Lem. 24 to conclude:

12502 < v Nnax WE (AL, D) Amax (WL, A2)) [GF 2| Py 2| A1 — Az
< 5020 IGE 2 o] Plall2] Ar — As .

4. A, : We can bound |Ay|; as
[Adllz < [012Qr ]| Avejfl2 + [Qrafl2] (A1 — Az)ejs.
Combining all the previous inequalities gives us:

g1 — g2l < Ml|1012GY" |2 + 2] Or2Pilla + 73] 012Q¢ 2 + Y] Or2A]2

with the v; defined as:

n = 1P} 2145 ;2 (4.61a)
Yo = QP 2Pl 2| G2 2 AT ey (4.61b)
Y3 = [Are;]l2 (4.61¢)
Y4 = @Qualz + 270G ] Pl (4.61d)

with abbrevations 55" = Apax (W (Ai, I)) and 57" = Aax(W2(I, A;)). Combining
the inequalities we proved in the last two subsections, we obtain a first bound on the

optimal solutions |¢* — @32 < kep|vf — vi .

Kopldf — d3ll2 < Ypa] 012G |2 + Yapea | O12Pr |2 + 73] 012Qt 2 + 4] Gr2 Al 2

This inequality informs a natural interpretation: The sensitivity to parameter changes
of the optimal solutions ¢* can be reduced to analyzing the change of four system-
2, the

theoretic quantities: the open-loop map from control input to output ||012G}"

controllability matrix 05 P, observability 012();, and the system matrix 05 A.

Lemma 32. Let C, D be fixed invertible matrices and let | Ay, B;| and [ A, Bs]
be two t-controllable pairs of system and input matrices. Let ¢7 and ¢35 be the
optimal solutions of the Ha-problem (4.45), corresponding to both sets of parameters

(A1, B1) and (Ag, By). Then, for ¢§ and ¢3 holds the inequality:

Kopldf — 032 < 611012GY" |2 + 62 O12Pil2 + 03] 012Qi|2 + 64 G12A ]2
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where 01, . .., 04 and |1 are the constants defined below:
2 o o
s Tuw _ow M + 0y HA*H2 (462&)
gy Oy
4 a—fu* 2 zu* ok
M2 < ZU*x Ccx t + 2 O-t HA*H2 (4.62b)
[ex o ai*
81 = [Plilla] AT ez + (4.62¢)
8y = | P 2] o207 | AT ejlla + o (4.62d)
d3 = [[Arej2 (4.62¢)
01 = |Qual2 + P75y 67| Py . (4.62f)

Final Perturbation Bound
Our final step is to apply the results of section Section 4.6 to bound the 0-terms on the

right-hand side of the perturbation inequality Lem. 32 in terms of 0;2 A and 015 B:

(012G 2 < (¢t +1)57" 07" 01242 + VE + 167% 0128
0Pl < i (\/a + D5 |01Als + [012B]l2 )
[012Qull2 < A7/ (8 + 1)oy G124 -

We recall also the lower and upper bounds of the singular values of G}*

2/ rzu Omin(C)Tmin(B) ? L zun2
(67 = (T OB o2 (D) = (e

o*(G}") < (t+1)|C2| Bl257(C, A)ai (A, B) + | D] =: (1)

and the relationship between controllability/observability matrices and grammians:
_ 1 _ _
[Pla=07 1Pz = (af) Q=07 QU= (e

We formulate the constants from (4.62) in terms of the controllability and observability

singular values of the system:

01 < (gf) o + 2(af™) T E (o) o + 57 A2

b2 < p(of) 27 s + A0 ) N7 (7)o + 267 (07) a7 | Al 2
03 < HA*H2
04 < ) + pYrprai (o), Qpy 1= max |Al2 v || A5]..

After a bit of bookkeeping, we obtain a first bound quantifying the sensitivity of the

solutions with respect to perturbations in the parameters A and B:
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Lemma 33. Recall the setup of Lem. 32. Then the following inequality holds:

koplédt — @52 < Tal| G124 + Ty 012 B2

where Iy, 'y, are defined as:

Lo = (t+1)a" a7 01 + 02(pi" A/ (t + 1)ae*) + d3p7" A/ (t + 1)a* + d4
[y = vVt + 167" + 6204

4.10 Lipshitzness of 7,-Optimal CLM Parameterization

With Lem. 33, we have derived analytic bounds that quantify the difference between
the two optimal CLMs ®*( A, By, t) and ®*(A,, By, t) in terms of the difference
in system parameters 0;0A = A; — Ay, 019B = By — Bs, and control-theoretic
properties of the linear dynamics corresponding to each set of parameters. The
latter is measured in terms of singular eigenvalues measuring controllability and
observability (w.r.t. C) of the individual pairs of system matrices [A;, By] and
[Az, By]. Our original motivation for this analysis was to investigate the continuity of
the mapping ®* as a parametrization of optimal CLMs over a compact set S of system
matrices {[A[w], B[w]] | w € Q} corresponding to the continuous parametrization
functions A : Q — R™", B : Q — R™*", and parameter space (€2, d) used in
Algorithm 1. With the help of Lem. 33, we will now derive that the mapping
®*([t) : S 3 [A',B'] — ®*(A',B',t) € C({*,¢**") is indeed Lipshitz over a
compact set S = R™ (™) of matrices, as long as S consists all of ¢-controllable
pairs [A, B]. To this end, in the next lemma, we verify that all constants used in Lem.

c/o

33, such as 67°, , pi’°, etc., which depend on (4;, B;) can be uniformly bounded

above for the described sets S.

Lemma 34. Let S be a compact” subset of t-controllable matrix pairs (A, B) <
R™*™ x R™ ™ with full-column rank B, and let C' € R™"™ and D € R™*™ be

invertible matrices. Then, there exist positive constants 0 < 05 < 0g, 0 < 0% < 0g,

0 <ps <75 0<pl <ps 0<bs < bs, andsome()é@g)é...agc)...such

thatforall (A, B) e 8 andie {l,...,n}:

a5 < 0i(P(A, B)) <75 0% < 0i(Qi(C, A) <75
0% < oi(P(A 1)) < 75 p% < 0i(Qu(I, A)) < 7%
max A7), < <a¥ vk=1 bs < 0;(B) < bs

7Take the usual norm for the product-space is defined as |(A, B)| := |A| + |B.
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Proof. All bounds follow from the simple fact that continuous scalar functions over
compact sets achieve a maximum and a minimum, and by letting the corresponding
constant be defined by that maximum/minimum value. Thus we need to verify the
continuity of the corresponding functions. It is obvious that | A’ and P, and Q); are
continuous functions of A and B. It is well-known [25], that the k-th largest singular
value o, : RP*?9 — R* is a continuous function over the space of matrices; a quick
way to convince ourselves is by writing oy, as a difference of the k-th and the & — 1-th

Ky-Fan-Norm [25] and using continuity of norms. Lastly, we know that the minimum

singular values &, 0%, st’ /_)g, bs are all positive, because they are achieved at
respective pairs {(A;, B;)} all of which are ¢-controllable, i.e., o (P (A;, B;)) > 0,
and B; is full column rank, i.e., oy (B;) > 0. O

The concluding theorem of our perturbation analysis follows as a corollary of the
previous two lemmas, and establishes the Lipshitzness of the LQ-optimal CLM

parametrization map ®* over compact sets of ¢-controllable LTI systems:

Theorem (Lipshitzness of LQ-optimal CLM oracle). Let t € N be fixed, C' € R"*",
D e R™™ be fixed invertible matrices, and ®*(A, B,l) represent the unique
optimum of the optimal control problem LQ(A, B,t) described by (4.20), (4.21).
Assume that Sy, is a compact subset of R™*™ x R™*™ such that for all (A, B) € Su,
[A, B] is t-controllable and B is full column rank. Then, there exist fixed constants
Lo, Ly € R* such that for all (Ay, By), (As, Bs) € Sap, the following inequality
holds:

I|@* (A1, Bi,t) — *(A2, Ba, t)loo < La|012A| + Ly|012 B

where (31214 = Al — AQ and 6123 = Bl — BQ.

Proof. Using Lem. 33 and the constants defined in Lem. 34 for § = Sy, we
can see that there are constants ', and I', which are functions of the constants
t,0§,08,08,08, Ps: P PSP bs bs, afs’“) such that the difference between any two
vectorized solutions ¢7 := ¢*(Ay, Bi,t), ¢5 := ¢*(As, By, t), where (A;, B;) and
(Ay, By) belong to Sy, is bounded in | - |5 as |¢* — @3]y < Ty|O12Alg + Ty|012B)s.
Thus, ¢* is a Lipshitz-continuous map over S,;,. This means that the matrices
MP* associated with component functions of ®} = U*!¥1®* P* are | - |p-Lipshitz
continuous and, by equivalence of norms, also | - |,-Lipshitz continuous. Finally,

because ®*(A;, B;,t) is always ¢-FIR and time-invariant, there are fixed L, and
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Ly, such that for any component @3, k € N, and perturbations 012 A and 015 B, the
following inequality holds:

|012PF (wi-0) |

< La’612A| + Lb|algB‘.
wio MAXj<k \wj|

The desired conclusion follows, since || ®*(Ay, By, t) — ®*(Ay, Ba, t)||« is the

supremum over k of the left-hand side of the above inequality. 0

Analytic expressions of L, and L, in terms of the constants can be easily de-
rived, however, doing so is very tedious. The asymptotic behavior in terms ¢ and

controllability/observability singular values is given below:

3 1

ol (@)) sl @)
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OVERVIEW

In regards to robustness to model uncertainty, the previous part primarily focuses on
problem settings where the system dynamics are uncertain but can be narrowed down
to a set of possible models. In this setting, all the models can be simultaneously
stabilized by a fixed controller using methods of robust control theory. On the other
hand, this part of the thesis focuses on the more general "large uncertainty" scenario,
where the set of possible models is bounded but can be arbitrarily large. In practical
terms, Part 2 of the thesis assumes that the dynamics of the system are almost entirely
unknown. In this second part, we introduce new theory and algorithms for a general
framework of learning-to-control with worst-case safety and performance guarantees,
even in settings where dynamic uncertainty is very large. We approach this problem
from two complementary perspectives: Chapter 5 pursues a model-free, data-driven

approach, while Chapter 6 follows a model-based learning and control approach.

The results presented in Chapter 5 are based on the work published in [5] and develop
new methods for stability analysis and control design without the need for a model.
In particular, we demonstrate the first instance of an all model-free formulation
of controller, closed-loop dynamics, and robust stability analysis. We present a
simple model-free control algorithm that can robustly learn and stabilize an unknown
discrete-time linear system with full control and state feedback, subject to arbitrary
bounded disturbance and noise sequences. The controller does not require any prior
knowledge of the system dynamics, disturbances, or noise, yet it can guarantee
robust stability and provides asymptotic and worst-case bounds on the state and
input trajectories. To the best of our knowledge, this is the first model-free algorithm
to come with such robust stability guarantees without the need to make any prior
assumptions about the system. Simulation results also show that despite its generality
and simplicity, the controller demonstrates good closed-loop performance, including

fast convergence, small learning transients, and nearly optimal asymptotic gain.

In Chapter 6, we approach the problem of learning-to-control unknown systems from
a model-based perspective. In this case, we are given a compact parameterization of
all possible system dynamics, which can be arbitrarily large. The results presented
are based on the work published in [5] and introduce a new modular framework
for model-based learning-to-control. This framework provides robust safety and
cost-performance guarantees for closed loop under worst-case scenarios of realized

disturbances, noise, or other environmental conditions. Our approach involves
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decomposing the problem into two subproblems: online learning, referred to as
"consistent model chasing," and the underlying control problem in the absence of
model uncertainty, known as "oracle design." Each subproblem can be addressed
separately, and its solutions (a control oracle and model chaser) are used to instantiate
a certainty-equivalent learning-to-control scheme. This scheme inherits both control-
and learning-theoretic guarantees, certifying robustness of the closed-loop, even
for large model uncertainty in the system dynamics. We discuss how the control
oracle is implicitly given by standard nominal control design, provided that this
procedure satisfies certain regularity properties over the space of models. Designing
the corresponding model chaser represents a problem which we term "consistent
model chasing" and discuss how to solve it with existing techniques from online

learning.
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Chapter 5

ROBUST MODEL FREE LEARNING AND CONTROL OF
LINEAR SYSTEMS

We present a simple model-free control algorithm that is able to robustly learn and
stabilize an unknown discrete-time linear system with full control and state feedback
subject to arbitrary bounded disturbance and noise sequences. The controller does
not require any prior knowledge of the system dynamics, disturbances, or noise, yet it
can guarantee robust stability and provides asymptotic and worst-case bounds on the
state and input trajectories. To the best of our knowledge, this is the first model-free
algorithm that comes with such robust stability guarantees without the need to make
any prior assumptions about the system. We would like to highlight the new convex
geometry-based approach taken towards robust stability analysis, which served as
a key enabler in our results. We will conclude with simulation results that show
that despite generality and simplicity, the controller demonstrates good closed-loop

performance.

5.1 Introduction

Motivation and Problem Statement

Learning to stabilize unknown dynamical systems from online data has been an
active research area in the control community since the 1950s [74] and has recently
attracted the attention of the machine learning community, in particular in the context
of reinforcement learning. Although extensive research has been conducted on this
topic, very few of the algorithms developed have reached the level of adoption in
real-world applications, as one would expect. In particular in areas where frequent
interaction with the physical world is necessary, system failure is costly and the
deployment of control algorithms is only possible if the algorithm can guarantee
that minimal safety and performance specifications will be met during operation.
Although there have been previous research [132],[18] and recent research efforts
[571,[43], [2], [24], [38],[44] to address this problem, very few algorithms have come
with the necessary performance and safety guarantees to be deployed in real-world
applications so far. Motivated by this, we revisit the basic problem of learning to
stabilize a linear system and aim to find learning and control strategies with the least

restrictive assumptions that can still give robust stability bounds for the closed loop.
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In this chapter, we focus on the problem of adaptively stabilizing a linear discrete-time

system

Zk+1 = Aozk + uy, + dy, (5.1a)
T = 2K + N (5.1b)

with state z;,, bounded disturbance dj,, bounded noise ny, and control action wu;, that
is only allowed to depend on noisy state measurements until time £, i.e., zg, . . . , Tk.
We are interested in finding controllers that can stabilize (in the sense of BIBO-
or input-to-state stability guarantees) without requiring any additional assumptions
about the unknown system matrix A, and the disturbance/noise sequences (dy), (1 ).
Although the system (5.1) admits a very restrictive class of linear systems (full state
feedback and control), nearly all available learning and control approaches need
to make some prior assumptions about this system in order to state stability and
performance guarantees. Most commonly, these assumptions come in the form of a

priori bounds on dy, ny, and/or Ay.

Related Work

We will review the relevant literature in the context of our problem setting. Classical
control approaches are found in the literature on adaptive control with [72], [71],
[112] focusing on the deterministic setting and [132] on the stochastic setting. The
self-tuning regulator [18] and its variations come with asymptotic optimality [60],
yet robust stability guarantees without restrictive assumptions are few and can only
be made in the probabilistic sense. On the deterministic side, [72], [71] point out
that instabilities can occur with traditional adaptive schemes and provide improved
versions of adaptive controllers that come with robust stability and performance
guarantees. However, the desired guarantees depend on knowing some limits of
the system parameters and disturbance signals. Other challenges associated with
classical adaptive control approaches are discussed in [8], [10]. Methods in safe
reinforcement learning [57], [24], [S], [53] have made great progress toward methods
that guarantee robust safety properties for classes of non-linear systems, yet the
synthesis procedures involved are computationally expensive, and require knowledge
of an initially robust stabilizing controller, even in the case of a simple linear system
(5.1). Recent work [2], [42], [43], [92], [38], [44] has made significant progress in
providing algorithms with robust finite-time performance guarantees for the adaptive
linear quadratic Gaussian regulator problem. However, in the context of our simple

linear problem setting, all methods require that the uncertainty in the system dynamics
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(i.e., Ap) is small enough at the outset to provide stability guarantees of the closed

loop.

Main Contribution and Overview of the Chapter

In this work, we present a simple controller that can adaptively stabilize (5.1) without
any additional assumptions about disturbance, noise, or the system matrix Ay. The
presented algorithm performs tractable computations (solving a linear program each
time step) and provides both uniform asymptotic and worst-case guarantees on
the state and input trajectories. An additional surprising feature of the presented
algorithm is that it is not based on the certainty-equivalence principle and has a
completely model-free formulation. To the best of our knowledge, this is the first
model-free adaptive controller that can give our robust stability guarantees without

requiring prior knowledge about the unknown system (5.1).

Our core theoretical contribution is a novel approach towards stability analysis. We
first show that in any closed-loop trajectory (x;), there are only a finite number of
time instances ¢; at which x;, 1, is significantly larger than z,,. We term those time-
instances as "unstable transitions" and our first main theorem shows an upper-bound
on the occurrence of these unstable transitions in the closed loop state trajectory.
Then, our stability and performance guarantees follow as corollaries of this result.
We develop a new technique based on convex geometry to bound the occurrence
of unstable transitions in the closed loop. Vaguely speaking, our main idea is to
show that if an unstable transition occurs at some time ¢’, our proposed adaptive
controller learns enough from this observation to prevent similar unstable transitions
from occurring in the future. Mathematically, we formulate this idea in two steps:
1. We define a distance function d between unstable transitions and show that, w.r.t.
to d, we can identify the set of unstable transitions with a bounded separated set
P of equal cardinality. 2. We bound the cardinality of P by a metric-entropy type
of quantity, which leads to an upper bound on the maximum number of times that
unstable transitions can occur. We discuss the convex geometry-based techniques in
detail, to emphasize their potential use for robust design and analysis of learning and
control algorithms, particularly in the model-free setting. The chapter is organized
as follows. We formulate our problem in Section 5.2 and give a brief overview of
our main results in Section 5.3. In Section 5.5, we derive the model-free closed-loop
equation and explain the intuition behind the proposed control law. In Section 5.6, we
present and discuss our main results in detail. Section 5.7 and Section 5.8 highlight

the main techniques and ideas used to prove our results.Section 5.9 highlights a
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parallel between the role of metric entropy in the context of our results and in the
context of statistical learning theory, which could serve as an interesting intersection

for future research. We conclude with some experimental results in Section 5.10.

5.2 Problem Setup
For our discussion, we transform the system (5.1) w.r.t to the measurements x; and

obtain the equivalent! system
Tty = Aofft + U + wy (52)
wy = dy + Ny — Agny,

where w, represents the lumped bounded disturbance at time ¢ which summarizes the
influence on the system of the original noise and disturbance. A causal controller can
be represented as a collection K = (K, K1, ... ) of control laws K, : (zy,...,xq) —

u¢. The closed loop of K and (5.2) is then described by the equation
i1 = Aoy + Ky, ..., 20) + wy. (5.3)

Our goal is now to design K such that the closed-loop (5.3) is bounded-input bounded-
output stable for any A, and any bounded sequence? (w,). More specifically, we
want to design K such that any closed-loop trajectory () satisfies bounds of the

form
sgp ||| < fl(Ao,SgP lwe])
lim sup [|z¢]| < fo(Ao, sup |w|)
t—00 t

for some fixed functions f; and f5.

5.3 Preview of Main Result
We will start by describing the implementation of our proposed controller and a

summary of its performance guarantees in a closed-loop with system (5.2).

Proposed control strategy
For adaptive stabilization of (5.2) we propose a dynamic controller K € C(¢*, (),

which at every time step ¢ computes the input as

CcC
wp = K24y .., o, Ug—1, - - -, Up)

'Since x; = 2 + ny, controlling the system state z, is equivalent to controlling the noisy
measurement ;.
2We use bracket notation to distinguish a sequence (w;) from its element w; at time ¢.
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based on all previous measurements z,...,xo and previously taken actions
U1, - - ., Ug. The controller K computes the input u, at time ¢ as
Kfc(a:t, ey Loy, Ut—1,y - - - ,UO) = (Ut,1 — Xttl) )\t,1($t) (54)

where \;_;(z;) is defined as the solution of the convex optimization problem

i A
min |,

s.t. thl)\ = T

(5.5

and where the matrices U;, X; and X,  are composed of state z; and input u,

measurements up until time ¢ as

Xy =2, 001, , 00, X_1] (5.6a)
Uy o= [ug e, .., g, U] (5.6b)
Xy o=z e, m, X (5.6¢)

with fixed chosen matrices X_;, U_q, Xfl e R™ ™ guch that ng > n and
rank(X_;) = n. The matrices X_;, U_y, X*, with columns Z;, @; and Z;
defined as

5.7

serve to initialize the controller K. Depending on the application scenario, the

matrices can be chosen as follows:

(I1) No prior knowledge: choose @; = 0, ;7 = 0, &; = ee; for 1 < i < n where
e; 1s the ith Cartesian unit vector and € > 0 is some positive scalar. The
parameter £ can be viewed as an initial guess on sup, |w¢|1, the supremum of

the disturbance sequence in 1-norm.

(I2) Prior data available: Assume we had noisy data available z_;, 2, u_;,
1 < j < k collected from the system (5.2) before ¢ = 0. i.e., the data satisfies

ati = Agr_j +u_j +w (5.8)

with w_; denoting the corresponding lumped disturbances. Then, in addition

to the initialization (I1) @; = 0, i;r =0,2; =ce; forl <17 < n, we can

+
l'_j,

incorporate the data x u_; by appending additional columns as

7]',

N S S o -
Upi = Uy Tppi 1= Ty, o=, 1 <1<k,
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Closed-Loop Guarantees

In this chapter, we will show that the controller K stabilizes system (5.1) without
requiring any knowledge of Ay or (w;). We will term the controller K°° defined by
(5.4), (5.5) the causal cancellation controller, as it can be interpreted at time ¢ to
cancel out the part of the dynamics that can be inferred from all previously collected

observations xy, . . ., xo and actions u;_1, . . . , Ug.

As presented in detail in Section 5.6, for any initialization X _, U_;, X*, (only
assuming rank(X_;) = n), the controller (5.5) always ensures a closed loop for
which:

(i) the state (x;) and input (u;) are uniformly bounded.
(i1) an analytic upper-bound can be derived for the worst-case state-deviation.

(iii) after some finite time, (z;) and (u;) converge exponentially to a bounded limit

set.

The above guarantees will be phrased w.r.t. a norm | - |, which measures (z;)
and (u;) relative to the size of the disturbance (wy;) that produced them. Moreover,
as described in (I2), we can incorporate prior data into the initialization of the
controller K. In the case where the provided data is "more informative" than the
default initialization (I1), the closed loop guarantees and bounds tighten. Hence, the
proposed control scheme K does not need prior knowledge to give closed-loop
stability guarantees, but if prior knowledge is available, it can be leveraged through

the initialization (I2) to improve closed-loop guarantees.

5.4 Preliminaries of Convex Geometry

Convex Bodies and Norms

It is a well-known fact in convex geometry that there is a one-to-one relationship
between symmetric convex bodies (see Def. 5.1) and norms in R". Here we will
discuss this equivalence and how it relates to the properties of the | - |-norms which
we used in this chapter. The following discussion is adapted from chapter 1.7 of the

standard text [113], to which we refer for more detail.

Definition 5.1 (Symmetric Convex Body). A set B < R" is a symmetric convex body

if B is a closed, bounded, convex set with non-empty interior and z € B < —z € B.
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Symmetric convex bodies and norms are equivalent in R"”, in the sense that any norm
on R" is uniquely defined by its corresponding unit norm ball, and the set of all
possible unit norm balls in R" is precisely the set of symmetric convex bodies in R".

We summarize this in the following lemma:

Lemma 35. For any norm || - || in R", the corresponding norm ball {x ||z| < 1} is
a symmetric convex set in R"™. On the contrary, for any symmetric convex body B in
R™, the function g(B, - ) : R" — R* defined by

g(B,z) :=min{r > 0|z erB}, VreR" (5.9)

is a norm on R".

In convex geometry, the function ¢(B, -) is often called the gauge function or the
Minkowski functional of B and describes a concrete way to evaluate a norm based on
knowing its unit ball. For our purposes, it will be convenient to extend the above
definition to derive norms from general bounded sets S = R” in the following way:
Given an arbitrarily bounded set S, we will refer to | - | as the norm g(c(S), - ),
obtained by the Minkowski functional of the absolute convex hull ¢(S) of the set S.
We define this formally in Def. 5.4 and Def. 5.5:

Definition. Let S be a set in R"™, then the set of all finite linear combinations
SN Niw; of elements x; in S with Y. | | \;| < 1is called the absolute convex hull

of S, and we will refer to its closure as c(S):

c(S) :=cl {i \iZ;

Remark. Equivalently, c(S) is the closure of the convex hull of the set (—S) U S.

N
{zl =S, DInl< 1}. (5.10)
=1

Definition. For a fixed bounded set S — R", let || - | : R" — Ry be the norm
defined for all x € R" as

Iz { min {r = 0|z € rc(S)}, forz € span(S)
z|g =

0, else

and for sets S' — R", define |S'| s as the quantity

||S/||s = zrel};?s}'{) HZHS (5.11)
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The definition is overloading the common notation for the norm | - |5 as used in
[113] where S is required to be a symmetric convex body. Applying Def. 5.5 to
the disturbance set W, (5.26) defines the previously introduced norm || - |, that we
use to formulate the stability analysis. Figure 5.1 illustrates an example of how the
set ¢(W) and the norm |z, are related in two dimensions. The following lemma
summarizes some key properties following from the above definitions. Note property
(iii) and (iv), which show that we can verify the set-membership and set inclusions of
symmetric convex bodies in terms of the norm. Furthermore, property (ii) describes

a practical evaluation of | - || for finite sets S and shows

[Aer(@)]ly = min Al = [lx,_,

s.t. thl)\ = X.

(5.12)
Lemma 36. Norms according to Definition 5.5 satisfy:

(i) For any set S in Def. 5.5, c(S) is a symmetric convex body in R". Moreover,
c(S) is the unit norm ball of | -

s» S0 we can equiv. Write | - |ls = || - [ s)-

(ii) IfSis afinite setS = {p1,...,pn}, then for any x € R",

as.

x| s can be computed

N
|z]s = min {Z Al

i=1

N
)\1,...,)\NS.I. Z)\Zpl_l'}

i=1
(iii) for all x € R™ holds x € ¢(S) < x| < 1.
(iv) ¢(S1) < c(S2) holds if and only if for all x € R™ holds ||z|s > ||,
() forally > 0, holds | |15 =7 - s

Proof. The statements of Lem. 36 are easy to verify: (i), (iii), (iv) follow directly

from Lem. 35 and (i1) follows by using the description of the set shown in (5.10) to

rewrite the definition of | - ||. O

We use the definition (5.11) of [|S, s, to measure the size of a set S; w.r.t. the norm
|- |5, of another set Sy. The following properties can be easily verified:
Lemma 37. Let Sy, Sy, be some bounded sets in R"™ and recall the definitions Def.

5.5. Then we have the following.

(i) H51H52 :=min{ t | S; < tc(Sy), t = 0}.
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(ii) equivalence of norms in R": m I lls, < |- s, < IS2lls, I - s, -
(lll) H51H52 <le Sl e C(Sg).

(lV) Sl C H51H52 C(Sg).

Property (i) states that we can equivalently define |S:||s, as the smallest factor ¢ such
that S; is contained in tc(Sy). This definition is visualized in the middle plot of
Figure 5.1 for some exemplary sets W and X; in R%. The other properties can be

derived as immediate consequences of property (i): (i) = (iv) = (iii), (ii).

Distance Between Norms
For bounded sets Sy, So we define d(S;,S2) as a multiplicative distance d(S;, Ss)

between the two norms | - | and || - [|s,:

Definition 5.2. Let S;,S; = R" be sets with norms | - | ,
5.5. Then, define d(S;,Ss) as

|5, defined as in Def.

d(S1,S2) := max{[[Sis, , [Sa]s, }- (5.13)
Lemma 38. The definitions 5.2 imply the following.
(i) d(S,S) = 1.
(”) d(slysQ) = d(527 Sl)

(iii) d(S1,S2) < d(51,5)d(S,S2).

Proof. Statement (1) and (i1) are trivial. Part (iii) follows using (iv) and (i) of Lem.
37: Note that

S, © d(S1,5)¢(S') < d(S1,S)d(S', Sa)e(S) (5.14)
Sy = d(S2.5)e(S') = d(Ss, S)d(S', S1)e(S1) (5.15)

leads to max{[S, |5, , [Sals, } < d(Ss,S)d(S', S1)- O

Lem. 38 shows that the map d( - , - ) can be viewed as a multiplicative distance
between sets: These properties imply that logd( -, - ) is a pseudometric over the

space of bounded sets in R".
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5.5 The Model-Free Adaptive Controller and Closed-Loop Equations

We will start by first discussing the key idea and intuition behind the causal cancelation
controller K°¢. Section 5.5 is deriving that all (X;", X;, U;) satisfies the open loop
equation of the unknown system for some appropriately defined disturbance matrix ;.
This is used to show in Section 5.5 that at time ¢ and state x;, the causal cancelation
control law K¢ approximates the ideal deadbeat control action u; = —Agz; directly
from online data (X, ;, X;_1, U;_) without requiring an explicit estimate Ay. This
relation leads to a model-free form of the closed loop equation, shown in Section 5.5,

which is used for the later stability analysis.

Open Loop Equation for Data Matrices

Recall from (5.6), that (X", Xy, U;) are constructed from some fixed initialization
(X*,,X_1,U_1) and some state (z;) and input (u;) sequences of the system (5.2)
with respect to some fixed lumped disturbance (w;). Define the disturbance matrix

W, € R*(#+1+410) g9 the matrix

Wi = [wy, w1, ..., wo, W_1] (5.16a)

W—l = [12)1,...,’&)”0] = Xi_l —A()X_l —U_l (516b)

of lumped disturbances wy, . . . , wy and the matrix W_; which is composed of the
columns wy, . .., wy,,. With the above auxiliary definition, we can easily see that the

matrices Uy, Xy, X,", and W, satisfy the linear equation
X = AXia + Uy + Wiy, (5.17)

which resembles the open-loop dynamics of the unknown system. We will term w;
as "virtual" disturbances, which are defined to account for errors introduced through
the initial guesses X 1, U_y, X©,. If we take &;, u;, Z; to be the ith columns of
the initialization matrices X 1, U_;, X*, and W_1, we can rewrite the definition

(5.16b) columnwise in the form
TF = Aot + U+, 1< < g (5.18)

to see that each pair of (z;, @;) and ij can be posed as a transition of the true unknown

system (5.2), w.r.t. the virtual disturbance w;.

Example 2. If we initialize according to procedure (11), then w; = —eApe; and
W_1 = *Z:‘AQ.
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Model-Free Approximation of Deadbeat Control Action

In a compact form, the components { K7°} of the causal cancellation controller are

mappings (x;, X;";, X;_1,U;_1) — uy such that:

up = (U1 — X;7)) Meca (@) (5.19)
where A\;_i(x;) := argmin |A[;.
Ast. Xi_ 1 A=x¢

Remark. The technical issue that a minimizer of (5.5) might not be unique is not

relevant for the analysis and for simplicity will be ignored.

The function \;_;(z;) is defined to always satisfy
Xt—l)\t—l(l't) = Ty (5.20)

and represents a decomposition of the state x; as a linear combination of the columns
of Xt—l .

Rewriting equation (5.17) as
Upr = X = —AcX 1 — Wi (5.21)

and substituting the right hand side of equation (5.21) into (5.19) and using (5.20)

allows us to rewrite the controller equivalently as

Uy = (Ut—l - Xtt1) >\t—1($t) (SiO) _AO«Tt - Wt—l)\t—l(l't)- (5.22)
The above shows that the control law (5.19) is a direct way to approximate the ideal
deadbeat control action — Ay, from the online data matrices U,_1, X;: 1» X¢—1. The
additional term —W;_;\;_1(z;) is the corresponding approximation error at time t.
As will become clear later, the optimization step in (5.19) is minimizing an upper
bound of —W;_;\;_1(z;) relative to the norm | - [, (see definition in Section
5.6).

The Model-Free Closed-Loop equations
Setting K = K*“° and using (5.22), the closed loop equations (5.3) take the form of

Tey1 = —Wisi M1 (ze) + wy (5.23a)
up = (U1 — X;7)) Mo (@) (5.23b)

which will serve as the basis for our stability analysis. The above equation says that

the closed-loop dynamics is entirely determined by W;_; (containing virtual and



150

past lumped disturbances), as well as how we choose to decompose z; as a linear
combination X; 1\, 1(z;) of past data. Suitably, we could call equation (5.23a) to
be a model-free description of the closed loop, since the dynamics are formulated

independent of the underlying true unknown system Ay.

5.6 Main Results

Theorem 27 and Theorem 29 are the main theoretical results. Theorem 27 states that
any state trajectory (x;) of the closed loop has finitely many "unstable transitions"
(defined in Def. 5.6). Theorem 29 is a consequence of Theorem 27 and presents our
main stability bounds for state and input trajectories of the closed loop. To formulate

our results, we first introduce the necessary notation and definitions.

Notation and Definitions
Definition 5.3. If M € R™ js a matrix with N columns m;, then define the

corresponding variable M in sans serif font to denote the set M := {m;,... my}.

Definition 5.4. Let S be a set in R", then the set of all finite linear combinations
SN Niw; of elements x; in S with 3. | | \;| < 1is called the absolute convex hull

of S and we will refer to its closure as c(S):

N
S) = cl {2 Azmz
i=1

Definition 5.5. For a fixed bounded set S — R", let || - | : R" — Ry be the norm
defined for all x € R" as

{zi}, S, ZIAI } (5.24)

g i { min{r > 0|z € rc(S)}, forx € span(S) (5.25)

o0, else

and for sets S' — R", define |S'| s as the quantity

/ Lyp—
I5']s = ma |2]s.

Key properties of the above norm and relevant concepts from convex geometry are
discussed in the appendix Section 5.4. For a fixed disturbance (w;) and virtual

disturbance ', define W as the corresponding fixed set.
W = {wy|t € N} U {w;|1 < i < ng}. (5.26)

Let ||,y and ||-|, denote the norms constructed from the fixed disturbances and
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T |l

. Wo
w1 Wy

o wy
c(W) er
—w . /

— —by

—wy

Figure 5.1: Examples in R?. Left: ¢(W) and |z, for W = {0y, w2} U {w;|r € N}
and ('LUt) = (’LUo,wl,0,0, e ) nght C(Xl) and H : HXl for X1 = [.1'1,1’0,.@2,5%1].
Middle: ky = |W/|y, is the smallest factor 7 such that ¢(W) = rc(X,).

data matrix X; according to Def. 5.5 and Def. 5.3. For a fixed trajectory (z;), W

and fixed initial time 7, the constant x., refers to the quantity
Ke = Wy - (5.27)

Figure 5.1 shows an example in R? that illustrates the geometric relationship between
the sets ¢(W), ¢(X;) and the evaluation of their respective norms at some point .
The arrows indicate that one set is a scaled copy of the other set. The middle picture
in Figure 5.1 shows a geometric interpretation of the corresponding constant «, for
T = 2 K, is the smallest scaling factor r such that the set 7 x c¢(X,_;) contains the
set c(W).

Finite Occurrence of Unstable Transitions
Our approach is to analyze the behavior of the closed loop by quantifying how many
"unstable transitions" can occur in the future time window [, c0) of a closed-loop

trajectory (), given (X, X

T—1°

U._1), which represents the data collected up to
time 7. For a fixed 0 < u < 1 and a trajectory (z;), we define the occurrence of a

p-unstable transition as follows:

Definition 5.6 (u-unstable transition). The trajectory (x;) has a p-unstable transition

at time t if the pair of consecutive states (x,,1, T;) satisfies

e > masx { 25, e el + 1} (5.28)

In other words, (x11, x;) € U, whereU,, denotes the set of all pairs (x,x*) € R" xR™
that satisfy the inequality (5.28):

U, = {(;L""":L‘N |zt > max{ﬁ,u |z + 1}} (5.29)

The condition (5.28) represents a growth condition on a transition (x4, z;,1) on the
trajectory (x,). For each trajectory (), we define a corresponding set X, that

collects all states z; at which (2,11, z;) belongs to U,,:
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Definition 5.7. Given a trajectory (z;), an initial time T and some 0 < p < 1, define
X, ((x);7) < R™ as

Xy ((z);7) i={ 2 | (w,241) €Ut =T} (5.30)

Remark. Note that if p < 1, then X, ((z;), 7) © X, ((x), 7).

The core technical contribution of our chapter is Theorem 27, which places an upper
bound on the number of p-unstable transitions that can occur in the closed loop

trajectory (x):

Theorem 27. For any trajectory (x;) of the closed loop (5.23a) and any T = 0, the

set X, ((x¢); T) is a finite set for any . € I,._, where I, is the open interval.

7. = (( §+i+§)_1,1>. (5.31)

Moreover, the cardinality is bounded above as | X, ((x¢);7)| < N(u; k;), where
N : R x R — R stands for the function

N(p;kr) =3 (ﬁ) max{1, £ 1" (5.32)

H—=A/ KT

and k. is a constant computed from X,_; as:
rr= Wi, - (5.33)

Remark 28. Recall, that we initialize X _ such that rank(X_y) = n; This guarantees
rank(X,_1) = n, assures k. < o0 and that the interval Z,,_ is always non-empty. In

addition, it can be verified that N (ui; k,) < oo for any feasible .

Theorem 27 states that for the suitably chosen 4, the set X),((z;); 7) is finite for any
closed loop trajectory (x;). The constant ., controls the interval of feasible . as
well as the total number of unstable transitions I/, that can occur in the time interval
[7,0). As k. decreases, the bound N (u; k,) tightens (N (u; k) < N(u; k,') for
Kk, < K;') and the interval (5.31) widens. Geometrically, x, describes the size of
the disturbance set W relative to the set ¢(X,_;) (see Figure 5.1 for an example
in R?) and the result states that we have fewer unstable transitions if the collected
observations are larger in size than the disturbance. Therefore, we can view «, as
a constant that quantifies how informative the data X._; observed before 7 are to
control the system for time ¢ > 7.

The proof of Theorem 27 is postponed to Section 5.8.
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Closed Loop Stability Bounds

As a consequence of Theorem 27, we obtain our main closed loop stability bounds
presented in Theorem 29. The result gives bounds on the trajectories (x;) and (u;)

in terms of the fixed disturbance (w;) and virtual disturbance ;.

Remark. Recall from (5.16b) that instead of analyzing the closed loop dynamics for
fixed Ao, X*t,, X_1, U_1, we can equivalently analyze the closed loop dynamics for
fixed w;.

Theorem 29. Let (z;), (u;) be the trajectories of the closed loop (5.23a) for some
fixed (wy) and w; with the corresponding set W defined as (5.26). Let T be some
fixed time and let ri, := |W|y__ . Then, for any p € I, , where I, _is the interval

-1
T, = (( §+$+§> ,1), (5.34)
the trajectories (x;) and (u;) satisfy the bounds (i), (ii) and (iii):

(i) limsup,_, |2y <

1
lim sup, . |uelw < ([ Aollw + ”T)E'

(ii) there exists an T' > 0 such that for all k > 0 holds
Vi(zrrgr) < g Vi) (5.35)
where Vi (x) := max{0, |z],, — ﬁ}
(iii) the worst-case norm of (x;) and (u;) is bounded above as 3

sup |z < f(kr, s 22 ]\Ww) + 9(, K7) (5.36)
sup [[ugfyy < (| Ao|w + £r) sup (EyeY

t=7

where N (i; k) is defined as the function

Vo) o= 3 (s ) w50 G:37)

1 Aow = max |Aoz|lw is a constant and f and g abbreviate the functions
xre

f (kg | yy) = max{1, 5 N0 mas{ 7o )
1 — /‘{/ N(M;’{T)

u) = T 5.38
9(Krs 1) - (5.38)

3For 7 = 0 and z¢ ¢ span(W), replace | z¢]y with | Aozl in (5.36).
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The bounds in Theorem 29 are phrased w.r.t. to the norm || - |, that is constructed
from the set W (see Figure 5.1 as an example of | - |, in R?). The set W captures
disturbances due to (w;) and due to w;, where w; describes the mismatch between the
initial guess matrices X *;, X_1, U_; and the true system matrix Ay. |,y measures

x; relative to the underlying set of (lumped and virtual) disturbances W that realized it.

The result also quantifies how the bound guarantees improvement with online data:
Given some initial time 7, the above result gives stability bounds on the future
trajectories of x;, u;, t = 7 which depend on the total states observed X, before
time 7, the constant s, and p € Z,,_, which acts as a free variable. The constant x,
can be interpreted as a signal-to-noise ratio between state observations X, and the
disturbance set W (see Figure 5.1 for an example in R?). A smaller &, indicates
that the data X" |, X, 1, U,_; collected before time 7 are more informative about
how to stabilize the system for future time-steps ¢ > 7. x, is always nonincreasing
in 7 and the bounds (iii), (i) of Theorem 29 tighten as 7 increases. The bounds in
Theorem 29 depend on a free variable ;¢ which can be chosen in the interval Z,,_. We
can tighten the bounds (i) and (iii) by minimizing the right-hand side over p € Z,; .

For bound (i), the choice
-1
w= (it +1) (5.39)

minimizes ﬁ over i € Z,, and achieves a minimal value which is almost linear in

= (3 afE ) +1 (<r+2), (5.40)

For 7 = 0 we get the following improved asymptotic upper bound for the state

Koy

trajectory:
Corollary 39. If (x;) satisfies (5.23a) then

lim sup |z¢/y < Ko (% +4/5+ %) + 1 =: m(kyo).
t—00

Example

Assume n = 1 and the scalar system z; 1 = agz; + us + w;. Pick X_; = ¢ with
some e > 0and X, U_; = 0. Let (w;) be some fixed bounded scalar disturbance
with || (wy)[, = 1. Then W = ¢(—age L {w;|t € N}) and |z],, = ——. The

max{|aole,1}*
constant kg takes the value

oo

Ko = [Wly_, = max{e ", |ao|}.
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If we substitute this into Cor. 39, and rewrite it in terms of |x;| we obtain the bound

lim sup | 7| < exp (% +a/3+ %) + €Ko. (5.41)

t—00
5.7 Proving Closed Loop Stability
In this section, we derive the closed loop stability bounds presented in Theorem
29 from the results of Theorem 27. The derivation of Theorem 27 is postponed to
Section 5.8. First, we will derive some useful inequalities that are used frequently in

the derivations.

Bounding One-Time Step Closed Loop Transitions

Recall the closed loop equation (5.23a) and the definition of the norm Def. 5.5 and
the sets W and X;. In the Appendix, Lem. 36 summarizes some important properties
of the norms | - ||. We use these to obtain the following bounds on the one time-step

growth of the state:

Lemma 40. Consider a state trajectory (x;) of the closed loop for a fixed W, then at

each time step t > 1 holds:

el < [ Wior2ig | Pea@l + 1 (5.420)
< H)\t,l(xt)Hl +1 (5.42b)
< ey, , +1 (5.42¢)
< Wiy, , ey +1 (5.42d)
< Ky |z + 1. (5.42¢)

Recall that the vector \;_;(z;) poses as a linear decomposition of x; in terms of the
previous observations X;_;, which is obtained through the minimization in (5.19).
The right-hand side of the inequality (5.42c) and (5.42b) are equivalent. This follows

from the equivalence relation

[Aea GOl =1 I, (5.43)

which follows from property (ii) of Lem. 36 and is discussed in the appendix. The
inequality (5.42c) offers valuable insight into the closed loop behavior: The smaller

x, is relative to the absolute convex hull of all previous observations X;_1, the tighter

the bound is on ||z;1]|\y. Hence, |z¢[y, . captures how well we can control a certain
state x; given the observations made up until time ¢. If we rewrite |z, as

|zellw |ze/ 2]y, , and use the fact that the normalized vector x;/|z,y lies in
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the set W, we obtain the looser upper-bound (5.42d). Finally, (5.42e) is obtained by

recalling that, per definition |W/|y is non-increasing in t and therefore for all £ > 7
itholds Wl = < |W[y = &,

Obtaining Bounds on Closed Loop Trajectories

Recall the definition of a y-unstable transition in Def. 5.6 and consider Lem. 41: If
a 4 -unstable transition does not occur, (5.44) and (5.45) show that the quantities
Vi(zy; ) and Vo (x5 1) do not increase for that time-step; On the other hand, (5.46)

provides a bound on the increase of V5 (xy; p1) if a p-unstable transition does occur.

Lemma 41. Let (x;) be a trajectory of (5.23a) with t > 0 and define the scalar

1

functions Vi (z; i) := max{0, ||z], — in

}and Va(z; 1) := max{|z|y , ﬁ} Then

(i) if (xe41,21) ¢ U, then

Vi(wea; ) < pVi(wg p) (5.44)
Va(@s1; ) < Vol p). (5.45)
(ii) if (Te41,2¢) € U, then
Va(@eyrs ) < kiVa(zs p) + 1 (5.46)
Vi(@gs o) > pVi(@g ). (5.47)
Proof. See Appendix. 0

The bounds of Theorem 29 follow by combining the results of Theorem 27 with
the above lemma. To highlight the main proof techniques, we focus only on the
derivation of (i) and (ii) of Theorem 29 and refer to the Appendix for a detailed proof
of the remaining statements.

Consider some arbitrary closed-loop trajectory (z;), fix 7 = 0, and choose some 1 €
Z..,» where ., depends on the set W and the initial guess matrix X _; = [Z1, ..., Tp,].
Recall that x, measures the relative size between the disturbance set W and the
set ¢(X_1). According to Theorem 27, the trajectory (z;) is guaranteed to have at
most N (; ko)-many p-unstable transitions. Hence, there is some finite time, call it
T'((x)), such that for all time ¢ > 7"((x;)) it holds (x¢+1, z:) ¢ U,,, and therefore
the reverse inequality of (5.28) holds, that is:

el < max{ 2o oy + 1}, V> T((@). (548)
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Now, apply the statement (i) of Lem. 41, to conclude that for all ¢ > 7"((x;)) holds

Vi(zyi; 1) < pVi(zyg; ). Therefore, we get the convergence bound.
Vi(@rr(aoy ks 1) < WV @10y ), k=0 (5.49)

which proves that the trajectory (x;) has to be bounded. We also conclude that

tlim Vi(z; 1) = 0, which leads to the asymptotic bound.
—00

limsup |2y < limsup(Vi(z;p) + ) = . (5.50)

t—00 t—00

Similar type of arguments are used to derive the other statements of Theorem 29 and

are presented in the Appendix.

5.8 Proving Finite Occurrence of Unstable Transitions

Here, we will discuss the key steps in proving Theorem 27. The general idea will
be to first argue that if an unstable transition occurred at time ¢’ and state z, (i.e.,
(xy11,p) € U,) then any future unstable transitions (z441,2;) € U, t > ¢’ must
originate from some state z; which is significantly different from x,; in a second
step, we then prove that there is a finite upper bound on how many significantly
"different" unstable transitions can occur in the same trajectory, which leads to the
result presented in Theorem 27. In the following derivations we will make use of
various simple facts from convex geometry, which are summarized in the appendix,
Section 5.4. Matching the presentation of the theorem, in the derivations we will use
the constant x, := [W|,  corresponding to some fixed set W, the trajectory (x;)
of the closed loop (5.23a) and the initial time 7. Throughout the discussion, ;& will

represent some fixed value in the open interval.

T, = (( i+é+§)l,1) (5.51)

and 0 will refer to the corresponding transformed variable ¢ := % i, which always

satisfies § > 1. The following one-to-one relationship between both constants ;. and

0 will be frequently used and can be easily verified:
-1
o=k, forpe (Wit t+d) 1) (5.52a)
-1
- p=(\i+s+5) . forde (i) (5.52b)

Our argument can be structured into the following three statements, which we prove

separately in the next sections:
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(a) We can radially project the set X, onto the ball %W and show that the resulting

set, called P, has the same cardinality as &,.

(b) The set P, forms a d-separated subset of %W with respect to a particularly

chosen distance function d( - , - ; X;_1).

(c) There are some constants ¢ and C', such that for any 0 separated subset P of %W
we can construct a superset P < N (P) in R™ whose volume can be bounded
above and below as |P|c;, < Vol(NV(P)) < Coy; hence, the cardinality of any

§ separated set, included P,,, is bounded above by eut,

Cin

Projection Onto the Ball %W
Define the projection II,, : R" — %W as I1,(p) := mp and define P, ((z¢); 7) as
the set resulting from applying II,, to every point in X, ((z¢); 7):

Pul(@e);7) = { W) | e € Xu(2);7) } - (5.53)

Remark. 7o limit the notational burden, we will state the explicit dependency on
the trajectory (x;) and T only in lemmas and theorems. For the derivations, we will
simply write X,,, P,, instead of P,((x¢); 7), X, ((z¢); 7).

Per construction, for every point p € P, holds |p|,y = % and therefore each p € P,
lies on the surface of the ball %W. Recall that for a time instance ¢, where 7, € X,
holds.
ey > max { Tz gl + 1} (5.54)
|zeiallw < ey, + 1,

< Wik, lelw +1 (5.54b)

where (5.54a) is due to the definition of the set X, and (5.54b) follows from Lem.
40. Combining the above inequalities, we can further establish that any z; € X, also

satisfies the inequalities (5.55a):

Lemma 42.

2 1

H;xt > 1. (5.55b)
mEA ] N
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Proof. Combining the lower-bound (5.54a) and the upper-bound (5.54b) yields

lzellx,, + 1> pladw +1

1

Wik, ., lzelw > 725 =1 = e

]

Using the above inequalities we can show in Lem. 43 that P, has the same cardinality
as X,. Hence, instead of reasoning about the size of X, directly, we can equivalently
study the size of the set P,. As will become apparent in the following sections,
the main advantage of analyzing the projected set P, rather than X, is that we can

leverage P, as a subset of %W.

Lemma 43. |X,| = |P,|.

Proof. From the definition of P, it is clear that P, has at most as many elements as
X, hence trivially we have |P,| < |X,|. To establish |P,| > |X,|, we have to show
that there are no two time instances ¢; # t for which z; ,z;, € X, gets mapped
to the same point p € P,,. For the sake of proof by contradiction, assume for some
Ty, Ty, € X, Where w.l.o.g. t1 < ta, holds d(u |y, |lw) 'ze, = (1|2, ) e,

Then, using Lem. 42 it follows:

(5.55b)
—SE’tl = —,TtQ >
p e il W e s W
(5.55a) 2
$||:L’251||Xt2_1>N||xt1||w > (1M_M) ”WH; 1' (556)
-

Now, since ¢t > ty, it is clear that z;, € ¢(X;,_1) and therefore thleQ_l < 1.

Furthermore, with (5.56) and since y is in the interval Z,,_, we are forced to conclude

the following
2
Wi, , > 77— = [W] (5.57)
Xtq—1 (1 _ ,U) Xr-1
which is a contradiction, since ¢; > 7 and we know that [W/|y is non-increasing in
t. 0

Separateness of the Set P,
The previous section established, that the bounded set P, < %W has equal number
of elements as X,. Here, we will show that the points in the set P, are "evenly

spread" across the surface of %W. Formally, we will term P, to be a d-separated
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subset of %W. This property will ultimately lead to the cardinality bound derived in
the next Section 5.8. The next lemma shows that any two points p,p’ € P,, p # p
respect the inequality (5.58).

Lemma44. Let P, ((x;); T) be the projected set (5.53) and recall the definitions of the
variables 6, v and k. in (5.52). Then, for any two distinct points py,ps € P,((x4); 7),
p1 # po holds:

max{[pzlx, o, » [P1Ix, yop,) > 0 (5.58)

Proof. Fix two arbitrary and distinct points py,ps € P, p1 # pe, then according
to the definition of P, there are two corresponding elements z;,, x;, € X, ((x;); T)
with 1 # t such that py = 6(u |24, lw) '@, and p2 = 6(p ||z, )~ ar,. We will
prove the desired statement, by showing that depending on which unstable transition

occurred first, i.e., t; > t1 or t; < ¢y, either |poy > §or |piy > 0 has

T—1UPp1 —1Up2

to be satisfied. The inequality (5.58) then follows taking the maximum of both cases.
Therefore, to complete our argument, we will assume the case ¢, > ¢, and proceed
to prove |po HXT > ¢; The case t; < t, then follows by interchanging ¢; and ¢,:
First, notice that since HWHXH_1 < ||W[x__,, we can conclude that for any z; €

X, ((,); T), the following inequality is satisfied:

—-1Vp1

2
) _ K 1 1

< <1 (5.59)
pldw = (=) Wik, ., wllzlw

Now, for x;, recall from (5.55b) that

> . (5.60)

Xtg—1

Ipol, , =

“”x’QHw

We will now use repeatedly the property (iv) of Lem. 36, to bound the left-hand side

of (5.60) from above. To this end, consider first the following chain of inclusions:

a) b)
c(Xiy—1) D c(Xyy) D e(Xog Uy ) -
3 Xy Upr). (5.61)
The inclusions a), b) follow directly from the definition of X;. For inclusion c),
observe that p; = 0(u||z¢/|,y) ‘2 and recall from (5.59) that the scalar constant
§(p |@e]yy) " is less than one. Now, since ¢(X . U x;, ) is a symmetric convex body,
we know that it contains 0. Hence, we can view p; as a convex combination of (

and z,;, which proves that p; € ¢(X,_1 U x;) and therefore the set inclusion ¢). Now,
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using property (iv) of Lem. 36 we can translate the inclusion (5.61) into a chain
of corresponding inequalities to bound the left hand side of (5.60) and ultimately
obtain:

||p2HX7—71Up1 > 5

]

The term on the left hand side of inequality (5.58) can be seen as a binary operation
d(-, -;X,_1) on the points p; and p, which measures a particular notion of distance
characterized by the symmetric convex body ¢(X,_1). We will define this operation

more generally for some set B below and can use it to restate inequality (5.58) as

d(phpQ;XT—l) > 0.

Definition 5.8. Letr B be some bounded set in R"™ and define the map d( - , - ;B) :
R™ x R" — Ry for each x,y € R" as

B B
d(z,y;B) := min< r c(Bux) =reBuy) (5.62)
c¢(Buy) cre(Bux)
or equivalently as
d(l’, Y; B) = maX{HB v X”Buy ’ HB o y”Bux}' (563)
The definition of d( - , - ; B) in the form of equation (5.62) gives a geometric intuition

as to why the value d(z,y;B) can be viewed as a notion of distance between z
and y. As an example, consider in Figure 5.2 the two points x,y € R? that satisfy
d(z,y; B) > r and where B is taken as the box [—1, 1] x [—1,1] in R?; Equation
(5.62) then implies that z lies outside the set 7c(B U y) and y lies outside of rc¢(B U x).
This scenario is presented in Figure 5.2 for r = 1.3 and illustrates how condition
d(x,y; B) > r enforces a separation between z and y. We will call x and y to be

(r; B)-separated. More generally, we will introduce the following terminology:
Definition 5.9. A set P  R" is (&; B)-separated (with suitable set B), if d(p,p’; B) >
¢ holds for any p,p' € P, p # p.

In terms of the above definition, Lem. 44 states that P, is a (0; X,_1)-separated
subset of %W.
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€2

{rl pleo. <}

{rl lplsoy <7}

€1

Figure 5.2: Geometry of the distance function d( - , - ; B): The points = and y satisfy
the inequality d(z,y; B) > r in n = 2, where B is taken as the two dimensional cube
B := {(z1,22)| || <1} andr = 1.3.

Bounding the Cardinality of P, Through Volume Bounds

In this section we will complete the proof of Theorem 27, by showing that any
(¢, B)-separated subset of some bounded set S has to be a finite set. This argument
then leads to the results in Theorem 27, since P, is a (J; X,_1)-separated subset of
s,

To illustrate the general idea, assume that we would like to construct a (£; B) separated
setP = {p1,ps, ..., }, contained within some larger bounded set S € R2. In particular,
assume that we start with some p; € S, pick p, € S such that d(p;, p2; B) > ¢ and
proceed to select each p,, st. d(p,,px;B) > ¢ holds for all previous &k < n. As
illustrated in Figure 5.2, it becomes intuitively clear that any constructed (¢; B)-
separated subset P in S has to have finite cardinality, as it becomes increasingly harder
to find "enough" room for a new point p,, € S that respects the separation condition
w.r.t. previous points d(p,, px; B) > €, k < n. In the next section, we will show by
means of a volumetric argument that this intuition extends to n-dimensions and leads
to a cardinality bound on the set P,,. Denote P to represent some (0; X,_; )-separated
subset of %W, i.e., not necessarily P,. We will bound |P| first by constructing a
corresponding cover set A'(P) = P and then showing that the volume of A/(P) is

bounded below and above as
IPlcin < VOI(N(P)) < Cous,

with some constants c;,, Cy,; independent of P. The desired cardinality bound then
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takes the form |P| < €. The following sections will discuss: 1) the set N(P),
2) establishing the lower bound |P|c;,, 3) proving the upper bound Cj,, and 4)
formulating the statement of Theorem 27.

Covering Set \/(P)
For some point p € R” and € > 1, define N(p; , B) to stand for the set
N(p;e,B) := {p' e R"|d(p,p’;B) < €} (5.64)

See Figure 5.3 as an example of the geometry of the set N(p; e, B) in R? with
B = [-1,1] x [-1,1]. For a set P, correspondingly define the set A/(P) as the
following union of sets.
N(P) := | JN(p: 07, X, 1), (5.65)
peP
N (P) is a cover of P, since it can be easily verified that A/(P) < P. It can be easily
seen that the map d( - , - ; B) inherits the following properties from Lem. 38:

Lemma 45. Forall x,y, z € R" holds:

(i) d(x,z;B) = 1.
(it) d(z,y;B) = d(y,x;B) = d(y, —z;B).

(iii) d(z,y;B) < d(z, z;B)d(z,y; B).

As shown in Corollary 46, the property (iii) of Lemma 45 can be used to show that
for (0, B)-separated sets P, the sets in the union (5.65) are pairwise disjoint and we
can therefore evaluate the volume Vol(/\/ (P)) as the sum:
Vol(N'(P)) = ) Vol (N(p; 52,%,1)). (5.66)
peP
Corollary 46 (of Lem. 45). If for some x,y € R" holds d(z,y;B) > ¢, then
N(z;e2, B)n N(y; ez, B) =J.

Proof. For the sake of proving the statement through contradiction, assume that
there was some point zeN(z;e2,B) N N(y, £2,B). Then we know that z satisfies
both d(z, z; B) < €2 and d(y, z; B) < £2. But from the property (iii) of Lem. 45,

we also have to conclude
d(z,y;B) < d(x, 2 B)d(z,y;B) < ¢

which leads to the intended contradiction. ]
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Figure 5.3: N(z;¢,B) is the intersection of {p| ||z[g_, < €} and {p| [p[g , < ¢}
and contains two translates of the set (¢ — 1)B. In the picture, B is taken as the two
dimensional cube B := {(z1,z3)| |z;| < 1} and ¢ = 1.6.

Lower Bound on Volume of N (P)

To lower-bound the quantity (5.66), we will make use of the following lemma:

Lemma 47. Let x,y € R", then if y = x + (¢ — 1)p for some p € B and € > 1, then
it holds d(x,y; B) < e.

Proof. Weneed to prove |z[g , < cand [y[p , < €. |lylg,, < : From the triangle

inequality, we obtain

HyHBux = ||"L‘ + (5 - 1)pHBux < ||x||Bux + (5 - 1) ||p||BuX

and using the fact that x,p € ¢(B u x) by the norm definition (5.25) we get
[ylgox s T+ (e-1) =e

|7/, < e Rewrite zasx = ¢ (£(y) + <=1(—p)) and notice that —p, y € c(Buy),
which shows that x € ec(B u y). Hence, via the norm definition (5.25) we conclude

HxHBuy Sé. u

If we use the property (ii) of Lem. 45, then Lem. 47 tells us that each set N(p; ¢, B)
contains the sets x@® (¢ — 1)B and —x @ (¢ — 1)B, where the operator @ denotes the
Minkowski sum of two sets. For R?, Figure 5.3 illustrates the geometric relationship
between the set N(x; ¢, B) and the set B which is taken again to be the co-norm unit

ball. We can see that the set N(p; ¢, B) is a union of two symmetrical polytopes
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and contains two non-overlapping translations (by the vector x and —x) of the set
(¢ — 1)B. Now, using the fact that n-dimensional volume Vol( - ) is a homogenous
function of degree n, we can obtain the following lower bound on the volume of any
set N(p; ¢, B):

Vol(N(p; e,B)) = 2(e — 1)"Vol(B). (5.67)

Combining this observation with our previous finding (5.66), we obtain the following
lower bound on the volume of Vol(N(P)):

Lemma48. Let N (P) be the collection (5.65) corresponding to a (6, X,_1)-separated
(0 > 1) set P, then the volume Vol(N (P)) is bounded below by

Vol(NV(P)) = 2(67 — 1)"Vol(c(X,_1))|P], (5.68)

where |P| denotes the cardinality of the set P.
Proof. Apply (5.67) to every term in the sum (5.66). U

Upper Bound on Volume of N (P)

Consider some arbitrary point ¢ € N(p; § 2 , X,_1) for some p in the J-separated set P
and recall that p € %W. Then, from the construction of the sets N as (5.64) we can

conclude that
1

lallx. ,op < d(g,p;Xr1) < 02. (5.69)

Moreover, since we can upper bound W as W < k,c¢(X,_1), we also obtain

X;—1 U p < max{l, %S}C(qu) and therefore the point ¢ satisfies

1
Hq” < HqHXT_lup < 52

max{l,%a}xf_1

. g € 0% max{1, =2 }c(X,_y). (5.70)

Hence, (5.70) shows that the collection A (P) is a subset of 42 max{1, %S}C(XT_l)
which proves the following upperbound on the volume Vol(N(P)):

Lemmad49. Let N (P) be the collection (5.65) corresponding to a (0, X _1)-separated
(0 > 1) set P, then the volume Vol(N (P)) is bounded above by

VOl(NV(P)) < 6% max{1, =2}"Vol(c(X,1)). (5.71)
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Figure 5.4: The geometry of a (J,c(X,_1))-separated set P = {p;,...,ps}. All
sets are geometrically accurate, assuming ¢(X,_1) is the box [—1,1] x [—1,1] and
0 =1.6.

Cardinality Bound for (6, X,_;)-Separated Sets P

Finally, the lower bound (5.68) and upper bound (5.71) imply the following bound
on the cardinality of any (9, X,_1)-separated set P %W withd > 1:

Pl <L (%)nmax{l,%}". (5.72)
Figure 5.4 shows a pictorial summary of our derivation of the above inequality in R
A (6,¢(X;1))-separated set P = {py, ..., ps} is defined to satisfy p; ¢ N(p;, 0, X;_1),
for all 7 # 7 and as a consequence, we showed in Cor. 46 that the sets in the cover
N (P) = U;N(pj,V/&,X,_1), are all disjoint. Then, Lem. 47 helped us establish that
N (P) contains 2|P| many translations of the set (v/d — 1)c(X,_1), which lead to the
volume bound (5.67). We obtain the upperbound (5.71) by showing that A/(P) has
to be contained in the bigger box d 2 max{l, %‘S}C(XT_l). So, in the context of the
picture Figure 5.4, we obtained our final cardinality bound (5.72) by dividing the

volume of the outer larger box by the volume of the smaller boxes.

Recalling the relationship between the variables 0, ;2 and - in (5.52), we can express

4 in terms of some § > 1 and «, as

1
p=dre (Vs 1) = (Vi+s+1) (5.73)

and can equivalently rewrite (5.72) in terms of constant s, and 0 > 1 as a free
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variable :

Pl< 3 (32) max{h g/ + 5k + 37 (0k0)" (5.74)
In summary, (5.74) establishes a bound on the cardinality of |P| which serves as
an upper-bound on |P,,((x;), 7)| = |X,((z:), 7)], thus the total number of unstable

transitions U, that can occur in the interval |7, 00) of any closed loop trajectory (z;).

We conclude by restating the results Theorem 27 again in terms of 0:

Theorem. For any trajectory (x;) of the closed loop (5.23a) and any T > 0, the
cardinality |X,, ((z;); 7) | of the set X, ((x¢); T) is finite for any p chosen as

= (Vi m +1) o (5.75)

0K+

for some 6 > 1 and bounded above as |X,, ((x);T)| < N(9; k,), where N stands

for the function

N(b;k,) =3 (\/gﬁJnmaX{i, A/3+ ﬁ + 31" (0k,)" (5.76)

and k. is a constant computed from X,_; as:

Ky = HWHXT_l = I?E%\}/( HZHXT_l . (5.77)

5.9 A Connection Between Metric Entropy Bounds and Model-Free Stability
Analysis

The notion of metric entropy# dates back to early work of A.N. Kolmogorov [80] in
1959 and more recently has been proven useful for studying stochastic processes in
the field of high-dimensional statistics. As an example, Chap. 5 of [125] discusses
how bounds on the metric entropy of a metric space can be leveraged to obtain
probabilistic bounds on the supremum of sub-Gaussian processes over that same
metric space; Particularly in machine learning applications, these mathematical
results can then be used to derive learning theoretic guarantees of algorithms.

Reexamining the line of arguments that lead to our theoretical guarantees suggests
that there might be a possibly fruitful connection between metric entropy bounds and
worst-case performance bounds in the context of learning and control problems. In
retrospect, the main technique for stability analysis can be described as representing

the collection X, of unstable transitions as a packing set P, in the totally bounded

“This is to be distinguished from the Kolmogorov-Sinai entropy of a dynamical system introduced
in [79].
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metric space (%W, d( -, - ;X;-1)); The bound on the cardinality X, presented in
Theorem 27 and derived in Section 5.8 can be viewed as the corresponding metric
entropy bound. In hindsight, this inspires a new potential approach to algorithm
design for learning and control: Synthesizing a control law for which unstable
transitions (potentially as broader defined than {,, considered here) form a packing
in some totally bounded metric space. Similar to our presented result, we could also
hope that smaller metric entropy translates to improved closed loop performance
guarantees.

We will proceed by introducing the metric entropy and related concepts based on
[125] and [47]. In the next section, we will draw the connection to our stability

analysis presented in Section 5.8.

Metric Entropy of Pseudo-Metric Spaces

A pseudometric space (S, d) consists of a set S and a pseudometricd : S x S — R,

which satisfies the following properties:

(i) d(x,z) = 0forany x € S.
(ii) d(x,y) = d(y,x) for any z,y € S.
(iii) d(z,y) < d(z,y) +d(y, z) forany z,y,z € S.
If in addition d(x,y) = 0 holds only if x = y, then d is called a metric and
correspondingly (S, d) is a metric space. The e-packing of S w.r.t to d is a set
P < S such that for each two distinct points p1, p2 € P, p1 # po holds d(p1, p2) > €.

Correspondingly, the e-packing number of S is the cardinality of the largest e-packing
set P of S. Formally, this is defined in Def. 5.10

Definition 5.10. Let (S, d) be a metric (or pseudo-metric) space. Then the e-packing
number D(S, ) (or D(S,e,d)) of S is defined as

D(S,¢e) :=sup {m

forsomepl,...,p@ E.S’ ‘ (5.78)
d(pi,p;) > eforl <i<j<m

If D(S, ¢) is finite for any € > 0, then (S, d) is often called fotally bounded. In this
case, we define the quantity log(D(S, €)) as the metric entropy of the set S w.r.t. the

metric d.
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Remark 30. An alternative definition of metric entropy as in [125], is log(N (S, ¢))

where N (S, ¢) is the covering number of the set S. The distinction between both
(and other) definitions is of conventional matter, as it is well-known that packing
numbers and covering numbers behave in equivalent manners. For our purpose, we
will use the more fitting definition (5.10), which is for example used in the works of
R.M. Dudley [47].

Bounding Occurrence of Unstable Transitions Through Metric Entropy

The key result behind our analysis in Section 5.8 was to show that any (J, X,_;)-
separated subset P — %W respects the cardinality bound (5.74). From Lem. 45 we
can directly see that the operation log(d( - , - ; B) satisfies the properties of a pseudo-
metric Def. 5.9 and therefore (%W, log(d( -, - ;X;_1)) is a pseudo-metric space.
Correspondingly, the set P < %W is log(9)-packing in that same pseudo-metric
space and our cardinality bound can be seen as an upper bound on the packing-
number D(%W, log(d)) of the set %W w.r.t. to the pseudometric log(d( -, - ; X;_1)).
Moreover, since we established the bound (5.74) for every § > 1 (or log(d) > 0),
the space (%W, log(d( -, - ;X,_1)) is a totally bounded pseudometric space with
inequality (5.74) implying a particular metric entropy bound. Hence in hindsight,
our approach to stability analysis relied on mapping the set of unstable transitions
X, onto a fitting pseudometric space in which the metric entropy imposes a direct
bound on the cardinality of the set X},. An interesting topic of further research is
whether this general principle could be leveraged for model-free stability analysis

and controller synthesis in broader learning and control problem settings.

5.10 Simulation
We conducted N = 1000 simulations of the causal cancelation controller K¢
defined in (5.19). For the kth experiment, the trajectories (z¥), (uF) are produced by

the closed loop equations

wyy = Agal + K{(of, X, XE L UE) + wy, (5.79)

and the system matrix A% € R®*3, initial condition zf € R?® and disturbance w? is

picked at random. All entries of A} and % are picked i.i.d. from the standard
Gaussian distribution NV (0, 1). In each experiment, the causal cancellation controller
(5.19) is initialized as X | = eI, X*;, = 0, U_; = 0 with fixed choice ¢ = 0.1.
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Figure 5.5: Results of 1000 closed-loop simulations with random AF, z& and
disturbances w¥ drawn from [—1,1]3. The plots on the left show the largest 1%,
10%, 50% percentile values of Ha:ff \Wk, ufHWk, k¥, m(k.). The right plot shows the
same percentile values for the state z¥ and input u% measured in 2-norm.

Figure 5.7 shows the simulation results of a single experiment where A is chosen as

14 02 1 2.7
Ag=102 1.3 1 AMAg) = | 1.13] . (5.80)
05 0.3 2 0.86

and has a large unstable eigenvalue \;(Ap). Figure 5.5 and Figure 5.6 summarize
the N closed-loop experiments for two scenarios of disturbances. The graphs
show, as a function of ¢, the highest 1%, 10%, 50% percentiles of the values
k k _ |k
w5 = TWE,

m(kr) = k(3 4+4/7 + i) + 1 represents the updated theoretical asymptotic bound

fo and m(k,) among the N experiments; the quantity

2
given the data collected up until time 7. In experiment k, the set W* is constructed
according to equation (5.26) from the disturbance sequences (w¥)!_;' and the virtual
disturbances wf For our initialization of X 1, X*, U_4, the vectors zbf take the

values —5A’§ei, 1 < 7 < n, where e; denotes the th axis of the standard basis in R":

W» = {wf| 0 <t <T}u{—cAfe;| 1 <i<n}. (5.81)

SWe assume that after t > 7" the disturbance w? stays in the set c(W¥).
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Figure 5.6: Results of 1000 closed-loop simulations with random A¥, zF and w¥ = 0.

The plots on the left show the largest 1%, 10%, 50%* percentile values of fo

wes
k|| yx» 55 m(rr). (* this percentile is too small to visualize for |f |, , and HufHVV\:/k)

The right plot shows the same percentile values for the state and input measured in
2-norm.

For Figure 5.5, the disturbance sequence (w}) of each experiment is picked i.i.d.
uniformly from the interval [—1,1]3. For Figure 5.6, the initial condition x; is
chosen i.i.d. according to the Gaussian distribution N'(0, 0?), o = 1072 and w’ = 0.
Since we have no disturbance, for this case, W* is simply the set of virtual disturbances
{—eAke;| 1 < i < n}. We discussed that, as a corollary of our main result (see
(5.40)), the causal cancelation controller K guarantees for each experiment the

asymptotic bound

lim sup foHWk <m(ky), Wt (5.82)
t—00

where we take the function m( - ) to abbreviate the expression

m(s) :=s (% +4/5+ %) + 1. (5.83)

In Figure 5.5 and Figure 5.6, we overlayed the percentiles of fo Hwk (blue) and m(kF)
(red) to show that qualitatively the experiments match the theoretical guarantee
above. In each experiment, the controller eventually learns to stabilize the unknown

system (consistently after 10 time-steps) and eventually (see ¢ > 20 in Figure 5.5)
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is bounded above by the asymptotic bound m(xF). Note also that as more online
data is observed, the asymptotic bound m(xF) tightens. Figure 5.6 is showing the
closed loop performance in the no disturbance regime. This is to investigate how
the controller K performs in the absence of excitation by the disturbance. We
see in Figure 5.6 that the controller K “° stabilizes the system in all experiments,
but compared to (5.5), we have a longer transient of learning. Note that in Figure
5.6, the percentiles of the constant x¥ do not decrease over time as much as in the
experiments of Figure 5.5. Recall that for time ¢, the constant < can be seen to
approximate the remaining uncertainty of the unknown system A%. Therefore, Figure
5.6 shows that despite the remaining uncertainty in the system, the controller still
manages to stabilize the system. This reflects that K does not primarily care about
identifying the unknown matrix A%, but rather collects only enough data about the

matrix A to be able to stabilize the closed loop.

20 | — [dlw ||
:E N —Ll——l— _'_m(/{t) |
= __,_.-I_L"—. ~ 2.66
0 I I L ik T_i_'_s_hT___h— L = i
40 F T T T =
2
= 20 1
=
01 | ‘ —
o1, f
; 10 = N
~ 1.04
0 C L I I
0 5) 10 15 20
time ¢

Figure 5.7: |lz;],y and |w|y trajectories for closed loop with uniform disturbance
w; 4 in [—1,1] and 2y = [0.2,0,0.1]%.

5.11 Conclusion

In this chapter we derive a simple model-free controller that can adaptively and
robustly stabilize a linear system with full actuation without any additional knowledge
on disturbance, noise or parameter bounds. The controller comes with uniform
asymptotic and worst-case guarantees on the state-deviation. The control design and
stability analysis is enabled by a novel approach inspired by convex geometry, and
simulations show that the controller is able to simultaneously learn and control the

system in an efficient manner, even when applied to an open loop system with large
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unstable eigenvalues. Future work will further explore how this new perspective on
adaptive control can provide more learning and control algorithms with robustness
guarantees and non-restrictive assumptions in a more general setting. In addition,
we will investigate how the presented ideas can help in providing robustness and
performance bounds for present methods in adaptive control and reinforcement

learning.

5.A Proofs
Theorem 29

Proof. The proof follows by applying Lem. 41.The corresponding bounds for (u;)
are then obtained using the equation (5.22).

According to the setting of the theorem, consider some fixed trajectories (x;), (u;),
reference time 7, p € Z,,. with x; = [W/||y . Then, as discussed before, a direct
consequence of Theorem 27 is that there is some trajectory-dependent finite time
T’ < oo, such that in the time interval [0, 7] there are at most N (u; <, )-many time

instances T := {t/,...,t},}, where
Tty <ty<---<th, <T, M<N(uk,) (5.84)

at which p-unstable transitions occur and for all other time-instances ¢ # t; holds
the opposite inequality of (5.28). Thus, depending on whether ¢ belongs to 7, the

transitions (z1, z;) of the trajectory (z;) satisfy
7l > max { gl + 1), Ve T (5.852)
|2t 1]y < max {ﬁ,ﬂ el + 1} VLT, (5.85b)

Moreover, combining Lem. 41 with the above, we find that, w.r.t. the function

Vi(x; p) := max{0, |z, — ﬁ}, the transitions (1, z;) respect the inequality
Vi(@eprs ) > pVi(zgs ), VteT (5.86a)
Vi@ p) < pVilzgp), VegT (5.86b)

and for function V5(z; p) := max{||z|yy , 7=}, the transitions (v, z,) satisfy

Va(een; p) < Wiy, | Voo p) + 1, Vte T (5.87a)
Vo(xppr; ) < Valay; p), Vté¢ T. (5.87b)

The bounds on (z;) in part (i) and (ii) were derived before from (5.86), (see (5.49)
and (5.50)). For (iii), notice that (5.87) implies that for any ¢, V5(x;; ) can be
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bounded above by V5(zy, 415 41), since apart from the time intervals [t;, %}, ], the
quantity V5(x; 1) is guaranteed to be nonincreasing. Moreover (5.87) also shows

that Va(zy, 41; 1) can be bounded above as

Vol 11 11) < aValeri 1) + 8 (5.:88)
M M-1 k
o= [[Wh, o 6= X [TIWh, -
k=1 k=0 j=1 J
Recall that |W[, is not increasing (hence [Wy < r- := [W[y ) and the
th — T—

bound M < N(u; k), to see that the constants « and 3 are bounded above as

) 1 — TN(M“T)
o < max{1, k, N0 8< f— (5.89)
i K;T

We then obtain the final inequality (5.36) by substituting the above bounds into (5.88)
and observing that

sup |z¢yy < sup Va(ze; p) < Va(@e,, 115 1) (5.90)
t=T1 t=1

To obtain the corresponding bounds for the input (u;), recall that u, can be rewritten

as
Uy = (Ut—l - Xt;l) )\t—l(xt)

= (—AoXi—1 — Wit A1 ()
= —Aows — Wit A1 ()

and that [A;_1[, = ||z¢]y, ,. This allows us to upper-bound ||y by

Ty Ty

———n%|+k——
WMJM W Tzl

Ao

(e v
Xi—1

el <
< (max | Aoz |w + Wi ) [l
< ([Aollw + #7) v
and obtain desired bounds for (u;) by adding the bounds already derived for (z;). O

Lemma 41

Proof. Part (i) and (5.47): We can expand the inequality as

el < max { 5. el + (U= w25 } (5.9
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and can subtract ﬁ on both sides to obtain
et — 5 < max {0, plzly - ) }
< max{0, |z ly — 151 < pmax {0, iy — 7}

Similarly, noticing that the second term on the right hand sight of (5.91) is a convex

combination of |z, and ﬁ, we can conclude
max{ |1l , fu} < max{|zyy , ﬁ}
Part (i1): We previously derived that the inequality (5.42d) holds for all time ¢:
H$t+1Hw < HW”xt_1 thHW + 1.
Now, if in addition inequality (5.28) holds, then we obtain
maxx { oz el + 1} < Wi, [zl + 1.
Combining both the previous inequalities, we get the following result.

max { £ ol } < Wi, ey + 1

< Wi, max {15, el f + 1.
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Chapter 6

ROBUST MODEL-BASED LEARNING AND CONTROL OF
UNKNOWN SYSTEMS

In this chapter, we introduce a new framework "PixSel" for adaptive control, and,
more generally, for one-shot control design of nonlinear discrete-time systems. Most
notably, the theory and design methods can provide worst-case closed-loop guarantees
on safety- and cost-performance even in the presence of arbitrarily large model
uncertainty, and allow for problem settings with nonlinear time-varying dynamics
in both system and controller. Our framework reveals a promising connection
between online learning and robust control theory, which enables systematic and
modular design of robust learning and control algorithms with provided safety and
performance guarantees in the large uncertainty setting. To the best of our knowledge,
this is the first time that a fundamental connection between the fields of online

learning and control theory has ever been discovered in this context.

Our approach is based on decomposing one-shot control design into two separate
sub-problems: Designing a "robust oracle" 7, which encapsulates application specific
nominal control design and desired guarantees, and designing a "consistent model
chaser" SEL, a pure online learning problem which embodies the issue of stable
and efficient adaptation. If each individual problem can be solved, we can use the
resulting subroutines 7 and SEL to instantiate a CE!-based adaptive controller A sgr
that inherits worst-case guarantees from nominal control design, which surprisingly

still hold for arbitrarily large model uncertainty.

Our discussion will begin with studying the one-shot control design problem "Online
Control with Mistake Guarantees" (OC-MG) first introduced in our work [5], which
will serve as a motivation and introductory case study of the general "PixSel"-design
framework (which ultimately has a far broader scope than the problem setting of
OC-MGQG). Some of the broader implications of the "PixSel"-framework are discussed
in Section 6.7 and Section 6.8, others are presented in recent [9] and topic of ongoing

work.

! Certainty-Equivalence principle.
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7T x SEL A sEL

Robust, Robust,
Nonlinear / Linear, . . . Nonlinear / Linear,
Optimal, Control Online Learning Adaptive Optimal, Control

Model Predictive, Model Predictive,
Figure 6.1: PixSel Framework for adaptive control.

6.1 Introduction

We study the problem of online control for nonlinear systems with large model
uncertainty, under the requirement to provide upfront control-theoretic guarantees for
the worst-case online performance; by large uncertainty, we mean to say that we are
given an arbitrarily large set of potential models, of which an unknown few are exact
descriptions of the true system dynamics. Algorithms with such capabilities can
enable us to (at least partially) sidestep undertaking laborious system identification
tasks prior to robust controller design. Motivated by real-world control applications,
we formulate a class of problems which allow us a unified way to address common
control problems such as stabilization, tracking, disturbance rejection, robust set
invariance, etc. We introduce this as online control with mistake guarantees (OC-
MG): We define a problem instance by specifying a desired system behavior and
search for online control algorithms which can quantify, in terms of number of
mistakes, how often the online controlled system could deviate from this behavior in
the worst-case (i.e: worst possible scenario of true system dynamics, disturbances,
noise, etc.). We propose a modular framework for OC-MG: Use robust control to
design a robust oracle 7, use online learning to design an algorithm SEL which
chases consistent models, and fuse them together via a simple meta-algorithm; the
end result is Algorithm 2, which we refer to as A, (SEL). Our approach is based on
decomposing the original problem into the two independent sub-problems "robust
oracle design" (ROD) and "consistent models chasing" (CMC) which for many
problem instances can be readily addressed with existing tools from control theory
(see Section 6.3) and online learning (see Section 6.5). We demonstrate in Section
6.10, that for general robotic systems, we can solve CMC through competitive convex
body chasing [12, 13, 33, 114] and ROD using well-known robust control methods
[54, 96, 118, 119, 141].
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Once suitable subroutines 7 and SEL are selected, we can provide online performance
guarantees for the resulting control algorithm A, (SEL) that holds in the large

uncertainty setting:

* Mistake guarantee: A worst case bound on the total number of times desired
system behavior is violated. See Theorem 38, 39, 40.

» Safety guarantee: A worst-case norm bound on the state-trajectory. See
Theorem 36.

To provide the above guarantees, 7 and SEL have to be solutions to a corresponding
ROD and CMC sub-problem. In Section 6.3 and Section 6.5 we discuss that in many
problem settings this is not a restrictive assumption. In particular, assuming that
ROD can be solved merely ensures that the overall OC-MG problem is well-posed:
The underlying control problem (i.e., assuming no uncertainty) has to be tractably
solvable with robust control; it is clear that this is a bare minimum requirement to
state a meaningful OC-MG problem. In Section 6.5 we discuss different versions of
the CMC sub-problem and present a reduction to nested convex body chasing [33]

which is applicable for a large class of systems.

In Section 6.11, we follow our approach to design a high-performing control algo-
rithm for a difficult nonlinear adaptive control problem: swinging-up a cartpole with
large parametric uncertainty and state constraints. We benchmark the performance of
the online algorithm .4, (SEL) against the offline optimal algorithm over 900 problem
settings (adversarial chosen system parameters, noise, disturbances) and show that
A, (SEL) performs only marginally worse than the optimal offline controller, which

has access to the true system model.

Problem Statement
Consider controlling a discrete-time nonlinear dynamical system with system equa-

tions:

Ti41 = f*(tvztaut)7 f* € F? (61)

where x; € X and u; € U denote the system state and control input at time step ¢ and
X x U denotes the state-action space. We assume that f* is an unknown function

and that we only know of an uncertainty set F that contains the true f*.

Large Uncertainty Setting. We impose no further assumptions on F and explicitly

allow F to represent arbitrarily large model uncertainties.
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Control Objective. The control objective is specified as a sequence G = (Gy, G, . . . )
of binary cost functions G; : X x U — {0, 1}, where each function G, encodes a
desired condition per time step t: G;(x,u;) = 0 means that the state x; and the
input u; meet the requirements at time ¢. G;(z;,u;) = 1 means that some desired
condition is violated at time ¢ and we will say that the system made a mistake att. The
performance metric of system trajectories  := (z¢,x1,...) and w := (ug, uy,...)
is the sum of the cost incurred G; (x4, u;) over the time interval [0, c0) and we denote

this the total number of mistakes:

a0
# mistakes of ¢, u = Z Ge(xe, uy). (6.2)

t=0
For a state-input trajectory of the system (x, u) to achieve an objective G, we want
the above quantity to be finite, i.e., eventually the system stops making mistakes and

meets the objectives requirements for all time.

One-shot Control Design Goal. The goal is to design an online decision rule
ug = A(t,zy,...,x0) such that regardless of the unknown f* € F, the online
trajectories are guaranteed to be bounded, and to have finite or even explicit upper-
bounds on the total number of mistakes (6.2). Thus, we require a strong notion of
robustness: .4 can control any system (6.1) with the certainty that the objective G
will be achieved after finitely many mistakes. It is suitable to refer to our problem

setting as online control with mistake guarantees.

Motivation and Related Work

The main purpose of this work is to find answers to the following question:

How do we learn to control unknown dynamical systems in a systematic and

reliable way?

In one way or another, this is one of the first questions we run into when we approach
real-world control problems: Dynamical systems we encounter in the real world are
unknown to us; we have ways to find approximate mathematical models (system
identification), and use them as a substitute system for control design. That being
said, we are always forced to make a leap of faith when we deploy a control system,
since we can never be certain how well our system models match up with the
dynamics of the real system. Therefore, it is always necessary to collect online data

and keep monitoring for potential inconsistencies between system behavior and our
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model/design assumptions, as well as be ready to adapt our control algorithms once
we learn that our models are no longer accurate enough to guarantee performance.
Depending on the application, accurate models and/or online adaptation can be
of critical importance. This is especially true in safety-critical settings involving
physical systems, such as in engineering domains such as aerospace, industrial
robotics, automotive, energy plants [123], etc. Throughout the last decades and with
the accelerated technological advancement, many important engineering systems
have drastically increased in complexity. Finding accurate models of complex
systems can quickly become really difficult (or even impossible), which makes the
latter problem, of learning to adapt controls from on-line data, a crucial aspect of
over control system design. This problem setting is the focus and motivation of our
work. The existing literature can be split into two general categories: the more recent
literature of what can be described as System ID, then Robust Control and the more

traditional literature of Adaptive Control.

System Identification, then Robust Control

The most common approach in online learning for control literature [42] is to perform
system identification [88], then use tools from robust control theory [141]. Robust
controller synthesis can provide policies with desired guarantees, so long as one
can obtain an approximate model which is “provably close enough” to the real
system dynamics. However, estimating a complex system to a desired accuracy level
quickly becomes intractable in terms of computational and/or sample complexity.
In the adversarial noise setting, system identification of simple linear systems with
precision guarantees can be NP-hard [41]. General approaches for nonlinear system
identification with precision guarantees are for the most part not available (recently
Mania et al. [93] analyzed sample complexity under stochastic noise). Many recent
learning approaches for control of dynamical systems have focused on the setting of
linear optimal control: One is given a linear system, and the control objective is to
minimize a specified cost functional. To relate our problem setting to other approaches
in this field, we can view our problem setting as an instance of optimal control where
we restrict the cost function to be {0, 1} valued. There has been a particular focus
on the problem of the Linear Quadratic Regulator (LQR) [1, 37, 42, 43, 51], or
linear dynamical system with convex costs [3, 4, 62]. Our work is instead suitable as
well for the nonlinear control setting. In addition, even when restricted to the linear
system setting, recent line of work on online learning for control differs from our

approach in the following aspects:
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* Performance Criteria: We focus on bounding the total cost >/~ , G (y, u;) as
defined in Section 6.1 of the main paper. Our notion of control objective is
natural to define in control applications, e.g., most popular robotic goals can
be formulated as driving the systems towards a desirable set or trajectories.
This differs from, but is not incompatible with, the cost-metric formulation
that is often seen in optimal control and online learning for control work.
Specifically, previous effort on learning LQR has been to improve the regret
bound of the learning algorithm [1, 2, 42, 43, 62]. Bounding the regret on
the average cost, which is natural for LQR, is not sufficient to guarantee finite
mistakes in our problem setting. In Section 6.C, we discuss counterexamples
which discuss the relationship between finite mistakes, sublinear regret and
asymptotic guarantees. We show that finite mistake guarantees imply sublinear
regret, yet sublinear regret does not imply finite mistakes.

* Approach: Our proposed approach does not depend on accurate identification
of the online system, which is the focus of several recent works on learning for
LQR [37, 42, 51, 62]. As we consider parametric uncertainty, it is plausible to
also adopt a system identification approach for the non-linear control settings.
However, online system identification with arbitrarily small error is known to
be very challenging. As shown by [41], the sample complexity for identifying
linear systems under bounded adversarial noises can be exponential in the
worst case.

* Assumptions about parameter uncertainty: Some previous work in linear
systems [37, 43, 62] assumes knowledge of a stabilizing controller 7g,¢ : X —
U for the true unknown system parameter 6*. In our setting, we do not require
such an assumption, but merely that for each possible parameter 6 € € one
can find a robust policy 7[#] which stabilizes the small uncertainty model
D[E] < F.

Robust Adaptive Nonlinear Control

Naturally, our problem setting is of great interest to the adaptive control community,
which has had a relatively long history on this topic: [71, 83, 87, 102, 134]. Yet,
most of traditional adaptive control approaches can not be applied to the general
problem setting we consider without making restrictive assumptions. As an example,
in contrast to most adaptive control methods, our framework applies to nonfeedback
linearizable nonlinear system (see overview of adaptive control in [65]). Furthermore,

many adaptive control techniques can not build on top of methods from other areas of
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control, like robust control theory, but rather propose separate control algorithms for
each problem setting. Additionally, robust stability analysis and thorough empirical
validation are largely unavailable for most methods. In fact, most relevant empirical
results are only presented for arguably much simpler settings than for the cart-pole
swing-up problem, which is considered in this work. In addition, we highlight
methodological distinctions.

We provide a modular framework, which allows one to combine robust control tools
with online learning algorithms to provide desired guarantees online. We unify
the treatment of both uncertain system parameters and unknown disturbance via
the construction of confidence sets of candidate systems that are consistent with
the historical collected observations. The estimation of such consistent sets is also
easily attainable for most robotic systems and allows for non-asymptotic convergence
guarantees. Among the relevant adaptive control literature, perhaps the most closely
related to ours is Multi-Model Adaptive Control (MMAC) from [9]. The MMAC
principle needs to run a high-dimensional Multi-Estimation routine online, which
requires the design of nonlinear observers (with the matching and Detectability
property - see [63]) for a sufficiently dense covering set of the parameter space. A
general construction of such a family is only shown for linear systems (see [63] and
references therein), and it is not clear whether designing a tractable Multi-Estimator

for the cart-pole system is possible.

6.2 Overview of Approach and Main Results

No Need for SysID and Persistency of Excitation. While accurate models of real
systems are hard to obtain, it is often easy to provide more qualitative or rough
models of system dynamics without performing offline experiments and requiring
system identification. Having access to a rough system description, we design a
control algorithm in one-shot which can be deployed on the real system with upfront
worst-case control-theoretic guarantees on the online performance. Moreover, in
contrast to other works, such as [35] for example, we are the first framework that can
provide worst-case guarantees without requiring the assumption of persistency of

excitation.

Rough Models as Compactly Parameterisable Uncertainty Sets. In practice,
we never have the exact knowledge of f* in advance. However, for engineering
applications involving physical systems, the functional form of f* can often be
derived through first principles and knowledge of the application-specific domain.

Conceptually, we can view the unknown parameters of the functional form as



183

conveying both the ‘modeled dynamics’ and ‘unmodeled (adversarial) disturbance’
components of the ground truth f* in the system x;,1 = f*(¢, z;, u;). It is almost
always the case that we can represent the uncertainty in f* via a collection of
parameters in bounded ranges. How we choose to parameterize a given uncertainty
set F is not unique and poses a design choice. We will take this as the starting
point for our approach and assume a fixed parameterization of F in the form of a
tuple (D, Q. d), where (€2, d) is a compact metric space, called parameter space,
and D is a map Q — 27 that defines a collection of models {D[d] | § € Q} which
represents a cover of the uncertainty set /. We define this formally as a compact
parameterization of F:

Definition 6.1. A tuple (D, Q, d), where D : Q +— 27 is a compact parametrization
of F, if (€, d) is a compact metric space and F < |, D[6].

We will work with candidate parameters ¢ € € of the system and consider a 6*
to be a true parameter of f*, if f* € D[6*]. Ideally, each candidate model D[]
has small uncertainty; the precise notion of "small uncertainty" however is problem
specific and depends always on the objective. For concreteness, we give several

simple examples of common parameter spaces €:

1. Linear time-invariant system: linear system with matrices A, B perturbed by

bounded disturbance sequence w € {y, W], < 7:
fi(t,z,u) = Az + Bu + w;. (6.3)

The parameter space £) contains bounded intervals describing the parameters
0 = (A, B,n).

2. Nonlinear system, linear parametrization: nonlinear system, where dynam-
ics are a weighted sum of nonlinear functions ; perturbed by a bounded

disturbance sequence w € (o, |wl|o < 7:

M
f*(t,x,u) = Z%%’(@%U) +wt' (64)
i=1

Q) contains bounded intervals that describe § = ({a;},n).
3. Nonlinear system, nonlinear parametrization: nonlinear system, with function
g parameterized by a fixed parameter vector p € R™ (e.g., neural networks),

perturbed by a bounded disturbance sequence w € (o, |w|o < 7:
[t x,u) = g(t, x,u; p) + wy. (6.5)

Q) contains bounded intervals that describe § = (p, ).
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Algorithm 2 Meta-Implementation of A, (SEL)

Require: procedures 7 and SEL

Initialization: Dy < {}, x is set to initial condition &
I: fort =0,1,... tooodo

2: Dy «— append (¢, x4, T4—1,us—1) to Dy—q (if t = 1) = update online history of
observations

3: 0, < SEL[D;] = present online data to SEL, get posited parameter 6;

4: up «— (0] (t, x¢) > query 7 for policy 7[6;] and evaluate it

5: i1 — [H(t @y, up) = system transitions with unknown f* to next state

6: end for

In these examples, the uncertainty set F < | J,.o D[f] is covered by models D[{]
with smaller uncertainty of the form D[6] = {t,z,u — fo(z,u,wy) | |w]e < 1},
where fy denotes one of the functional forms on the right-hand side of eq. (6.3),
(6.4) or (6.5).

Online Robust Control Algorithm. Given a compact parameterization (D, Q, d)
for the uncertainty set F, we design a meta-algorithm A, (SEL) (Algorithm 2) that
controls the system (6.1) online by invoking two subroutines 7 and SEL in each time

step.

» Consistent model chasing. Procedure SEL receives a finite data set D, which
contains state and input observations, and returns a parameter ¢ € €.
Design goal: For each time ¢, the procedure SEL should select 6; such that
the set of models D[#;] stays “consistent” with D;, i.e., candidate models in
D[6;] can explain the past data. Moreover posited parameters 6, should only
change when necessary: two posited parameters 6; and 6, should not be very
different from each other, if both data sets D, and D, contain “similar’” amount
information.

* Robust oracle. Procedure 7 receives a posited system parameter 6 € € as

input and returns a control policy 7[f] : N x X+ U which can be evaluated
at time ¢ to compute a control action u; = 7[6](¢, z;) based on the current
state x;.
Design goal: We require that 7 represents a robust control design subroutine
for the collection of models D, in the sense that policy 7[#] could provide
mistake guarantees for G which are robust to bounded noise if the uncertainty
set F were D|[6].
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Theoretical Contribution. Our main theoretical results certify safety- and finite
mistake guarantees for the online control scheme A, (SEL) if the sub-routines 7 and
SEL meet the design requirement for “robust oracle” and “consistent model chasing”
for a given uncertainty set F and objective G. We will clarify the consistency and
robustness requirements of the sub-routines 7 and SEL in Section 6.3 and Section
6.5. For now, we present an informal version of the finite mistake guarantees and the

worst-case state deviation for the online control scheme A, (SEL):

Theorem (Informal). For any (adversarial) f* € F, the online control scheme
A, (SEL) described in Algorithm 2 guarantees a priori that the trajectories x, u will
achieve the objective G after finitely many mistakes. The total number of mistakes

Yz o Ge(we, wy) is at most

size of uncertainty F >

oracle performance M = T’
perf p ot (eﬂiciency of SEL = robustness margin p of ™

and the norm of the state | x| is at most

r size of uncertainty F Il

2 ; ; ; Lo
efficiency of SEL = single-step robustness margin of ’ ’

for some increasing function I'y : Rt — R* and some function T'y : RT — R*

which is increasing in the first argument and is linear in the second.

* Performance of m: Assume the worst-possible f* € F, but also access to
direct online measurements 6, = 8* + v, of the a true parameter 6* with small
noise v; of size p; M denotes the worst-case mistakes if we were to apply the
almost ideal control law u; = 7[6,](t, z;) in this setting.

» Efficiency of SEL: We quantify the efficiency of SEL in the result through
competitive analysis of online algorithms. The procedure SEL posits parameters
efficiently, if as a function of time, the parameter selection 6, changes only
when necessary; that is, it only changes when new observations are informative
and keep a constant value otherwise. We phrase this in terms of a competitive
ratio vy (with v > 1) and distinguish here between ~-competitive and (v, T')-
finite-time competitive algorithms. The smaller the constant vy is, the more
efficient the algorithm posits parameters. As discussed in Section 6.5, a smaller
~ indicates that an online algorithm performs more closely to the ideal optimal
algorithm in hindsight.

Remark 31. If the same procedure 1 serves as a robust oracle for a set of criteria
WM. g® .. G™M then correspondingly the instantiation A, (SEL) provides
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multiple finite mistake guarantees, i.e., one for each corresponding criteria G @)

i=1,..., M.

This approach brings several attractive qualities:

Generality. The result applies to a wide range of problem settings. The
objective G and the uncertainty set F serve as a flexible abstraction to
represent a large class of dynamical systems and control-theoretic performance
objectives.

Robust guarantees in the large uncertainty setting. Our result applies in
settings where only rough models are available. As an example, we can use the
result to provide guarantees in control settings with unstable nonlinear systems
where stabilizing policies are not known a-priori and which are subject to
online adversarial disturbances.

Decoupling algorithm design for learning and control. The construction of
the “robust oracle” 7 and the consistent model chasing procedure SEL can be
addressed with existing tools from control and learning. More generally, this
perspective enables us to decouple learning and control problems in the large
uncertainty setting into separate robust control and online learning problems,
a novel approach. See discussion in Section 6.3 and Section 6.5.

Modular algorithm design for robust learning and control. The above approach
provides a first interface between robust control and online learning, which
enables a modular design of learning and control algorithms with versatile
worst-case performance guarantees against large model uncertainty.

A new tool for performance analysis of learning and control algorithms. We
can view the above theorem also from an analysis point-of view: Many existing
certainty-equivalence based learning and control algorithms can be easily
represented as an instance of the meta-algorithm A, (SEL) and thus can be

analyzed using the above theorem.

Promising for Design of Efficient Algorithms in pPractice. Besides focusing

on providing worst-case guarantees in a general setting, empirical results show that

our framework is a promising approach to design efficient algorithms for learning

and control in practice. In Section 6.11, we apply our approach to the problem of

swinging-up a cartpole with large parametric uncertainty in a realistic and highly

challenging setting and show that it achieves consistently (over 900 experiments with

different parameter settings) good performance.
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As summarized in Algorithm 2, the main ingredients of our approach are a robust
control oracle 7 that returns a robust controller under posited system parameters, and
an online algorithm SEL that chases parameter sets that are consistent with the data
collected so far. In the following two sections we formulate the formal concept of
oracles and model selectors SEL and discuss their respective properties required for

the statment of our main results.

6.3 Control Oracle: An Abstraction for Nominal Control Design

It is obvious that our OC-MG problem is only well-posed if the underlying control
problem under no uncertainty, i.e., the nominal control design problem, is feasible
as well. In particular, for any dynamics f’ € F, there has to be a control policy
k' € IKC which, in closed-loop, provides worst-case stability and mistake guarantees.
To state this formally, let the dynamical model M[f, k] = (X x U)N be the set of all
closed-loop trajectories obtained by interconnecting the dynamics f with controller

K, 1.€.,

M[f, k] = {(TX,T“)T VteN:

P(t41) = f(t 0, ) } ©6
T(t) = k(t, T(1))

then our problem OC-MG is only feasible, if for any f’ € F there exists some «' € KC
such that for all 7 € M[f’, 5] holds 7 € ¢2*¥ (bounded closed-loop trajectories)

and X7 G,(7(t)) < o (each closed-loop trajectory makes finite mistakes).

The main purpose of the oracle 7 is to serve as an abstraction for nominal control
design which is robust to some small degree of model uncertainty. The procedure
7 is a map Q — K from parameter space € to the space K := {r : N x X — U}
of all (non-stationary) control policies of the form u; = x(¢, z;). The purpose of 7
is to specify a parametrized collection of "fixed"-model-based controllers suitable
for certainty-equivalent control. A desired property of 7 as an oracle is that 7
returns controllers that satisfy G if the model uncertainty were small. Thus, if we let
CL;[w] = (X x U)N be the dynamic model below,

Definition 6.2. CL.[w] = (X x U)N is the dynamic model of the closed-loop
interconnection of the dynamics D|w] and the oracle policy mt|w] and is equivalently
written as:

Clafw] = | MIf,lw]]

feD[w]
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We can formulate a necessary requirements for the nominal problem setting to be:

o
vre | ) Claw] @ Y Gi(r(t) < coand T e (374,
weQ t=0

In other words, if the uncertainty set F were contained in the set D[], then control
policy 7[#] could guarantee to achieve the objective G with finite mistake guarantees.
The above statement is subsumed in the formal oracle requirements, formulated in
the next section. Furthermore, in an idealized setting where the true parameter were
known exactly, the oracle should return a policy such that the system performance
is robust to some level of bounded noise. This is a standard notion of robustness,
which we later define more precisely. Naturally, there exist many control methods in
the control literature which are suitable for robust oracle design. Which method to
use depends on the control objective G, the specific application, and the system class
(linear/nonlinear/hybrid, etc.). For a broad survey, see [118, 119, 142] and references

therein. We characterize two general methodologies (which can also be combined):

* Robust stability analysis focus: In an initial step, we use analytical design
principles from robust nonlinear and linear control design to propose an oracle
7[0](x) in closed-form for all # and z. In a second step we prove robustness
using analysis tools such as for example Input-to-State Stability (ISS) stability
analysis [75] or robust set invariance methods [106, 107]).

* Robust control synthesis: If the problem permits, we can also directly address
the control design problem from a computational point of view, by formulating
the design problem as an optimization problem and compute for a control law
with desired guarantees directly. This can happen partially online, partially
offline. Some common nonlinear approaches are robust (tube-based) MPC
[30, 96], SOS-methods [100],[21], Hamilton-Jacobi reachability methods [22].

There are different advantages and disadvantages to both approaches, and it is
important to point out that robust control problems are not always tractably solvable.
See [27, 31] for simple examples of robust control problems which are NP-hard. The
computational complexity of robust controller synthesis tends to increase (or even be
potentially infeasible) with the complexity of the system of interest; it also further

increases as we try optimize for larger robustness margins p.

The Dual Purpose of the Oracle. In our framework, access to a robust oracle is a
necessary prerequisite to design learning and control agents .4, (SEL) with mistake

guarantees. However, this is a mild assumption and is often more enabling than
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restrictive. First, it represents a natural way to ensure well-posedness of the overall
learning and control problem; If robust oracles cannot be found for an objective, then
the overall problem is likely intrinsically hard or ill-posed (for example, necessary

fundamental system properties like stabilizability/ detectability are not satisfied).

Second, oracle abstraction enables a modular approach to robust learning and control
problems and directly leverages existing powerful methods in robust control: Any
model-based design procedure 7 that works well for the small uncertainty setting
(i.e., acts as a robust oracle) can be augmented with an online chasing algorithm SEL
(with required chasing properties) to provide robust control performance (in the form

of mistake guarantees) in the large uncertainty setting via the augmented algorithm

A, (SEL).

Next, we formulate the robustness properties expected from the oracle 7.

6.4 Robust Oracle Guarantees

The main requirement on the oracle is that if the model uncertainty were small
enough, we could just use the oracle for certainty-equivalent control. We phrase this
requirement by describing the performance of the policy in an idealized setting. Let
0* be a parameter of true dynamics f*, and assume that online we have access to
noisy observations 8 = (6, 6, ...), where each measurement 6, is p-close to 6*,
under metric d. The online control algorithm queries 7 at each time step and applies

the corresponding policy 7[6,]. The resulting trajectories obey the equations:

Teer = fH(tww),  we= T[] (L, x0) (6.7a)
0, s.t.: d(6:,0%) < p, where f* e D[] (6.7b)

To facilitate later discussion, define the set of all feasible trajectories of the dynamic

equations (6.7) as the nominal trajectories Sz|p; 0] of the oracle:

Definition 6.3. For a time-interval T = [t,,t5] < N and fixed 0 € Q, let Sz|p; 0] de-
note the set of all pairs of finite trajectories x7 1= (Ty,, ..., Ty,), Uz := (U, - - ., Uy,)
which for 0* = 0, satisfy conditions (6.7) with some feasible f* and sequence

Oy, 01y).

Design Specification for Oracles. We will say that 7 is p-robust for some objective
G, if all trajectories in Sz | p; 0] achieve G after finitely many mistakes. We distinguish

between robustness and uniform robustness, which we define precisely below.
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p-robust Ve Q: sup,oomy(7;6) < oo
uniformly p-robust M 1= sup, - geq M} (7;0) < o0
locally p-robust Vy=0,0€Q: mj(y;0) <o

locally uniformly p-robust | Vy > 0: M (v) := supgeq mj(7;0) < o0

Table 6.1: Notions of oracle-robustness

Definition 6.4 (robust oracle). Equip X with some norm || |. For each p,~y > 0 and
0 € Q, define the quantity m7(v; 0) as

my(v;6) ;== sup Sup Z G, uy).
I=[t,t'] :t<t! (wz,uz)eSz[p;0l\llrol<y ter
Ifmf(~;0) < wforally = 0,0 € Q, we call T an oracle for G w.r.t. parametrization
(D, Q, d). In addition, we say that an oracle T is (locally) (uniformally) p-robust if
the corresponding property shown in Table 6.1 holds. If it exists, M is the mistake

constant/function of T.

The constant p > 0 will be referred to as the robustness margin of 7. If we use the
above terms without referencing p, it should be understood that there exists some
p > 0 for which the corresponding property is feasible. The mistake constant M7
can be viewed as a robust offline benchmark. It quantifies how many mistakes we
would make in the worst case if we could use the oracle 7 under idealized conditions,
that is, described by (6.7).

Invariance Property. On top of p-robustness, for some results, we will require the

following additional condition from the oracle:

Definition 6.5. For a fixed objective G, define the set of admissible states at time
tas X, = {x |3 : G(x,u') = 0}, i.e, the set of states for which it is possible to
achieve zero cost at the time step t. We call a p-robust oracle 7 cost invariant, if for
all § € Q and t > 0 the following holds:

e For all x € X, holds G,(x, 7[0](t,z)) = 0.

e Forallx € Xy, f € D[f] and 0’ s.t. d(0',0) < p, holds f(t,z,7[0'](t,x)) €
Xis1.

Remark 32. The above condition is related to the well-known notion of positive

set/tube invariance in control theory [26]: The above condition requires that the
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oracle policies m[0] can ensure for their nominal model D(0) the following closed

loop condition: x, € X, = x441 € X441, VL.

Robustness of Single-Step Closed Loop Transitions. To provide worst-case
guarantees on the online state trajectory, we need to bound how system uncertainty
can affect a single online time-step state transition in the worst case. To this end,
consider equipping the state space X’ with some norm | - | and defining a desired

property for the oracle in terms of its performance in the idealized scenario:

Definition 6.6. 7 : Q — I is («, B)-single step robust in the space (X, | - |) if
for any 2-time-steps nominal trajectory (T¢y1, %), (Uey1, Us) € Spes11[p; 0] holds

|21l < aplz] + 5.

The above property requires that in the idealized setting (6.7), we can uniformly
bound the single-step growth of the state by a scalar linear function in the noise-level
p and the previous state norm. Equivalently, we can explicitly write out the condition
in Def. 6.6 as 3o, 3> 0:Y0,0' € Q z € X, f e D[0],t = 0s.t.:

[tz x[0](t,2))]| < ad(0,0)]] + 5.

We use a simplified problem setting to explain the correspondence between the

discussed conditions and standard problems in the control literature.

Mistake Guarantees and Set Convergence Stability

Consider a class of systems of the form z,,; = g(zy, us; 6%) + wy, ||w,| < 1, where
0* is an unknown system parameter that lies in a known compact set O < R™.
We represent the uncertainty set as F = UgeD[0] with D[0] := {f* : t,z,u —
g(x,u;0) + w; | |w], < 1}. Let 7 : Q — K be a procedure which returns state
feedback policies 7[f] : X +— U for a given § € Q. Designing an uniformly
p-robust oracle 7w can be equivalently viewed as making the closed-loop system
(described by (6.7)) of the idealized setting robust to disturbance and noise. For
the considered example, the closed loop can be represented by the dynamic model
Gox € (X xU x Y xV x W)N, defined as

Go+ := {(x,u,y,v,w)" such that (6.8)}

where for all t € N, 3, € Y = R is an output representing the cost at time ¢,

v € ¥V = R™ is an input representing bounded observational noise and w, € W = X



192

is an input representing a disturbance signal.

Top1 = g2, ug; 0F) + wy (6.8a)
U = 7r[9* + Ut] (xt) (68b)
Yr = Gu(we, uy) (6.8¢)

Leaning on our discussion in Chapter 2, we can express the oracle-robustness
property in terms of stability of the {wv} — {xuy}-map, denoted by the operator
By e C(OVXV XUV of the dynamic model Gp«. We call 7 a uniformly
p-robust oracle if, with respect to the domain {(v,w)" | |v]x, < p, |w]w < 1}, the
family of partial maps {®,," }g=cq is uniformly stable in the £}V — ¢;-induced
operator norm. The fixed constant M (or function M) which we used in the
definitions of oracle robustness quantifies the uniform stability of the family of
operators {®,," " }gxcq similarly to the concept of gain, which is commonly used
in operator theory in the control theory literature [139]. Moreover, if we identify
the cost functions G, with their level sets S; := {(z,u) | G;(z,u) = 0}, we can also
rephrase the former conditions as a form of robust trajectory-tracking problem or a
set-point control problem? [77]. It is common in control theory to provide guarantees
in the form of convergence rates (finite-time or exponential convergence) on the
tracking-error; these guarantees can be directly mapped to M and M (- ), as shown

in the next example.

Example 3. Assume we want to track a desired trajectory x® within € precision in
some normed state space (X, | - ||). We can phrase this as a control objective G by
defining Gi(x,u) := 0, if |24 — x| < € and Gi(x,u) := 1, otherwise . Providing an
exponential convergence guarantee of type |8 — || < cu® with constants ¢, p < 1
is a basic problem studied in control theory. It is easy to see that such a guarantee
implies >/ Gy, up) < log(c|‘i)°gu():_l'f;5(€_l)

policy 7t[0] which guarantees (for any |w|, < 1,

. Hence, if design method m provides a

v||ow < p) for any trajectory of
the closed-loop CLy the convergence condition V't : ||x¢ — x| < ¢!, then 7 is a

locally p-uniformly robust oracle with the mistake function

7 _ log(c|aol)+log(e™1)
MP - lo(zg(u’l) )

6.5 Consistent Model Chasing
The procedure SEL has the task of efficiently selecting models consistent with the

observed online data. In this section, we formulate this as an online learning problem

2In that case, G; would be not time dependent.
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of chasing consistent models and discuss various design approaches on how to

address it. Next, we describe the basic setup of the problem.

Consistent Models and Parameters

Let O := {(dy,...,dy) |d; e Nx X x X xU, N < oo} be the space of all data
sets D = (dy, ..., dy) of time-indexed data points d; = (¢;, z;", x;, u;). We will call
adata sequence D = (D1, Dy, ... ) an online stream if the data sets D; = (d, . .., d;)
are formed from a sequence of observations (d, da, . .. ). Intuitively, given a data set
D = (dy,...,dy)of tuples d; = (t;, ], z;, u;), any candidate f € F which satisfies
xj = f(t;,x;,u;) forall 1 < i < N is consistent with D; Similarly, we will say that
f is consistent with an online stream D, if at each time-step ¢, it is consistent with
the data set D,. We will extend this definition to models D[] and parameters ¢ € €.
The model D[A] is a consistent model for a data set D or an online stream D, if it
contains at least one function f that is consistent with D or D, respectively; ¢ is then
called a consistent parameter. Similarly, for some data set D, we define the set of all

consistent parameters as P(D):

Definition 6.7 (Consistent Sets). The map of the consistent set P : Q > 22 returns

for each data set D € Q the corresponding set of consistent parameters P(D):

P(D) := closure( {0 e Q ‘Hf eD[d]: Y(t,zt,z,u) e D, x" = f(t,z,u) })
(6.9)

Some important facts follow from this definition. Since the data D, at time ¢ always
contain the previous data, it is clear that the constraints defining the consistent set
at time ¢ are stricter than those at time ¢ — 1. Hence, the set P(D;) is contained
in the consistent set P(D,_;) from a previous time step. We refer to this as the
nestedness property of the sequence of sets (P(Dy), P(D;),...,). Several other
important implications are remarked in the corollary below:

Corollary. Assume D is a data stream with at least one consistent f € F. Then, the
following holds for the sequence of consistent sets P(D) = (P(D;),P(Ds),...):

(i) The sequence of consistent sets is nested in €, i.e: P(D;) 2 P(Dy41).
(ii) P(Dy) := (Nt P(Dr)) N Q is non-empty.
(iii) If 0, € P(D;), and lim;_,, 0; = O, then 04 € P(Dy,).

Proof. The first property is clear since D; = D;_; u {d;}. For the second, notice

that P(D;) is always a non-empty compact set and recall the basic real analysis fact
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[109]: The intersection of a nested sequence of compact sets that are not empty is
always non-empty [109]. To verify property (iii), notice that nestedness implies that
the subsequence (01,071, ...) is contained in P(Dr); since P(Dr) is closed, we
have 0, € P(Dr). We chose T arbitrarily, so we conclude that 6, € P(Dy) for all
T = 0, thatis: 0, € P(Dy). O

Chasing Consistent Models
Assume a parameterization (D, Q. d) and some fixed data set Dy = (dy,...,dr)
which is presented to us in an online fashion and which has at least one consistent

parameter 6* (i.e., P(Dr) is nonempty).

Our goal is to find a consistent parameter 0* € P(Dy) online, or equivalently, to
find the model D[0*] consistent with all data Dy. However, since we do not have
access to all data upfront, the best we can do is posit at each time-step ¢ a parameter
0, € P(D,) consistent at least with all so far seen data and make the hypothesis that
0, is also consistent with D until proven otherwise by new data. Our goal is to posit
the parameters 6; in an efficient way; we would like to change our hypothesis about
the consistent parameter 0* as little as possible, and thus 6, should change over time
as little as possible. This task can be interpreted as a two-player game, where player
A (our selection SEL) is trying to chase after player B (the set of consistent models
P(D,)) with the objective of tagging them (selecting a parameter 6, € P(D;)). It suits
to call this problem consistent models chasing as our objective is not only selecting
from the consistent sets but also accounting for future and potentially adversarial
changes in the set P(D;). Next, we formulate "chasing" conditions for SEL, defined
in Def. 6.9, which can address this problem. The basic requirement for SEL is to
output a consistent parameter (if one exists) ¢ = SEL[D] for a given data set D.
Described in the language of set-valued analysis, we require SEL to be a selection or
selector O — € of the set-valued map D — P(D).

Definition 6.8. [19]. A function f : X — Y is a selection/selector of the set-valued
map F : X — 2Y ifVre X : f(x) e F(x).

Since we intend to use SEL in an online manner where we are given a stream of
data D, we require that SEL can posit consistent parameters #; = SEL[D;] in an
efficient manner online. A fitting notion of "efficiency" can be defined by comparing
the variation of the parameter sequence 6 and the sequence of consistent sets
P(D) := (P(D,),P(Dy),...) over time, where we quantify the latter using the
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Hausdorff distance dy, : 2 x 2 — R* defined as

dy(S,S") = max {maX d(z,5'), max d(y, S)} :
yes’

€S

We phrase this in terms of desired "chasing"-properties (A)-(D) and refer to selectors

SEL with such properties as (consistent model) chasers:

Definition 6.9. Let SEL : O — € be a selection of P. Let D = (Dy, Dy, ... ) be an
online data stream and let 6 be a sequence defined for each time t as 0, = SEL[D;].
Assume that there always exists an f € F consistent with D and consider the

following statements:

(A) asymptotically efficient: 0* = lim,_,, 0, exists.
(B) asymptotically finite-time (f.t.) efficient: lim; ., d(0;,6,_1) = 0.
(C) ~y-competitive:

to
t <ty = Z d(etaetfl) < ﬁde(P(DtQL P(Dtl))

t=t1+1
(D) (v, T)-finite-time (f.t.) competitive:

to
th—th <T — Z d(0y,0,-1) < v du(P(Dy,), P(Dy,)).

t=t1+1
SEL algorithms that satisfy the above chasing properties as referred to as consistent

model chasers.

The desired properties describe a natural notion of efficiency for this problem. The
posited consistent parameter ¢, should only change online if new data are also
informative. The competitiveness properties (C) and (D) naturally restrict changing
0, when little new information is available and permit bigger changes in 6; only
when new data is informative. Per time interval Z = [t1, 5], the inequalities in
(C) and (D) enforce the following: If the consistent sets P(D,,) and P(D;,) are the
same, i.e., (dy(P(Dy,), P(Dy,)) = 0), the posited parameters 6;,, .. ., 6, should all
have the same value. On the other hand, if P(D;,) is much smaller than P(D,, ),
(i.e. dy(P(Dy,),P(Dy,)) large), the total variation Ziitﬁl d(6;,0;_1) in the posited
parameters is allowed to be at most ydy (P(D,), P(Dy,)).

Properties (C) and (D) are stronger versions of (A) and (B), called competitive-
ness/finite-time competitiveness. The relationship between the chasing properties are
summarized in Lemma 51 below. To prove the relation (D) = (B) we require the

following auxilliary result:
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Lemma 50. Letr (Q, d) be a compact metric space and let {Sy,...,Sr}, Vit : Siiq <
S, St < Q) be a collection of nested subsets in £ that are ¢ separated w.r.t. to the
Hausdorff metric dy, that is: dy(S;,S;) > €,Vi # j. Then we have T < N(€),¢).

Proof. Assume that {S;, ..., Sy} is ae-separated subset of the metric space (22, dy),
where dy, is the Hausdorff metric. Since for all ¢ we have dy (€, Q, 1) > ¢ and
Q,.; < Q,, this means that there exists at least one point p, € €2, such that
d(pt,€4+1) > €. Since for all j > ¢ holds p; € Q; < Q,.;, we conclude
d(pt, pj) = d(pt,€441) > € for all j > t. This establishes that {p;,...,pr}is a
e-separated subset of £). Therefore, we can bound the size of the set 7" by the packing
number 7' < N(Q, ¢). O

Lemma S51. Then the following implications hold between the properties of Def. 6.9:

€) = (A)
U U
(D) = (B).

The reverse (and any other) implications between the properties do not hold in

general.

Proof. (A) = (B), (C) = (D) are obvious. (C) = (A) follows by noticing
that (C) implies > 2, d(6;,6;—1) < ydiam(£2). To prove (D) = (B), we use Lem.
50. First notice that (-, T')-finite time competitiveness (f.t.) implies (-, 1)-w.c.. Pick
some ¢ > 0 and let = {¢1,...,} be all time-steps at which d(6;,0;_1) > . Now,
for each ¢ € Z holds dy (P(Dy),P(Dy—1)) = =. We can verify that the collection of
sets {P(D;—1) | t € I} is a =-separated set in the metric space (222, dy); therefore,
by Lem. 50 it follows that the index set I is finite, that is, |I| < N(€2,£). Since
this holds for all € > 0, we proved Ve > 0N s.t. Vi = N : d(0;,0,1) < ¢, i.e.,
limy o, d(0y,0,_1) = 0. O

From the above diagram, we can see that y-competitiveness is the strongest chasing
property as it implies all other properties. Furthermore, the condition (-, T')-finite-

time competitiveness strengthens with larger 7', as shown below:

Corollary 52. (v, T)-finite time competitiveness implies (kv, k'T')-finite time com-

petitiveness for any k € N.
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Proof. Assume (v, T')-f.t.-competitive and pick k consecutive intervals 7y, . .., Zy,
Z; := |1, 7;], each of length T". Notice that the nestedness property P(D7, ) < - -- <
P(D;,) implies dy (P(D+,), P(D-,)) < dn(P(D5,), P(D-,)) which leads to:

DN d(Br,0:) < ’yz dy(P(Ds,),P(Dy,)) < vkdy(P(D-,), P(D-,)).

7=1 tEI]'

]

In the next section, we discuss that in cases where the consistent set map P returns
convex sets, y-competitive CMC algorithms can be designed via a reduction to
the nested convex bodies chasing (NCBC) problem [33]. On the other hand, for
T =1 and any v > 1, the weaker chasing property (D) can always be achieved, even
if the map P returns arbitrary non-convex sets. We show in Section 6.5 a simple

projection-based selection rule, which satisfies (-, 1)-finite-time competitiveness.

Competitive Chasing via Competitive Nested Convex Body Chasing

The main difficulty in selecting the parameters 6, to solve CMC competitively is
that, for any time ¢t < 7', we cannot guarantee the selection of a parameter 6, that is
guaranteed to be in the future consistent set P(D7). The notion of competitiveness
is a common performance objective in the design of online learning algorithms
[29, 34, 58, 82, 115, 136]. Moreover, it turns out that in the case where a sequence
of consistent sets is always convex, we can reduce the CMC problem to a well-known
problem of nested convex body chasing (NCBC) [33]. This requirement is necessary

for the reduction and is stated in Assumption 6.6.

Assumption 6.6. Given a compact parameterization (T, ., d) of the uncertainty set

F, the consistent sets P(D) are always convex for any data set D € Q.

Constructing consistent sets P(D;) online can be addressed with tools from set-
membership identification. For a large collection of linear and nonlinear systems, the
sets P(D) can be constructed efficiently online. Such methods have been developed
and studied in the literature of set-membership identification, for a recent survey
see [97]. Moreover it is often possible to construct P(D) as an intersection of finite
half-spaces, allowing for tractable representations as LPs. To see a particularly simple

example, consider the following nonlinear system with some unknown parameters
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a* € RM and n*, where wy is a vector with entries in the interval [—n*, n*]:

M
Trer = ), il up) + w, (6.10)
i=1

where ¢; : X x U — X are M known nonlinear functions. If we represent the above
system as an uncertain system D with parameter 6* = [a*; *], it is easy to see that
the consistent sets P(D) for some data D = {(z;,x;,u;) | 1 < ¢ < H} takes the

form of a polyhedron
P(D)={0 =[a;n] | st. (6.1 foralll <i< H},
defined by the inequalities

[V (2, w5), - o (2, wi) oo < @ + 1, (6.11a)
(1 (i, ws), - (i, u) ] = 2 — 1. (6.11b)

We can see that any linear discrete-time system can be put into the above form (6.10).
Moreover, as shown in Section 6.10 the above representation also applies for a large

class of (nonlinear) robotics system.

Nested Convex Body Chasing (NCBC)

In NCBC, we have access to a nested sequence Sy, Sy, . . ., St of convex sets online
in some metric space (M,d) (that is: S; < S;_1). The learner selects at each
time ¢ a point p; from S;. The goal of competitive NCBC is to produce py, ..., pr
online so that the total cost of moving ZJT:I d(p;, pj—1) at time 7' is competitive
with the offline optimum, that is, there is some v > 0 stain. Z?:l d(pj,pj—1) <

v maxy,es, OPTr(po), where OPTr(pg) := minges,. d(p, po).

Remark 33. NCBC is a special case of the more general convex body chasing (CBC)
problem, first introduced by [55], which studied competitive algorithms for metrical

goal systems.

Let the sequence of convex consistent sets P(D;) be the corresponding S; of the
NCBC problem, any y-competitive agent .A for the NCBC problem can instantiate
a y-competitive selection for competitive model-chasing, as summarized in the

following reduction:

Proposition 34. Consider the setting of Assumption 6.6. Then any y-competitive
algorithm for NCBC in metric space (£2,d) instantiates via Algorithm 3 a -
competitive CMC algorithm SEL\cgc in the parametrization (T, €, d).
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Algorithm 3 y-competitive CMC selection SELycpc

Require: ~y-competitive NCBC algorithm Ancpc, consistent set procedure P
1: procedure SELxcpce(t, 21, 2, u)
2: Di < Di—1 v (t,xt,z,u)
3 S; — P(Dy) > construct/update new consistent set
4 present set Sy to AncBc
5: Ancic chooses 0, € S;
6 return 6,
7: end procedure

Proof. Since we set S; = P(D,), it is clear that max,cs, OPTr(po) is equal to
dy (P(Dr),P(Dy)). Therefore, y-competitive NCBC implies y-competitive CMC
on all time intervals [to, 7|, with o = 1. To see that this also holds for any choice of
to, recall that the NCBC problem requires the competitiveness condition to hold for
any sequence of nested convex bodies. Thus, for a fixed sequence S; the condition

must also be satisfied for the shifted sequences S} := S; . O

Simple Competitive NCBC-Algorithms in Euclidean Space R". When (Q, d)
is a compact euclidean finite dimensional space, recent exciting progress on the
NCBC problem provides a variety of competitive algorithms [12, 13, 33, 114] that

can instantiate competitive selections per Algorithm 3.

We highlight two simple instantiations based on the results in [12] and [33]. Both
algorithms can be tractably implemented in the setting of assumption 6.6. The
selection criteria for SEL,(D;) and SEL,(D;) is defined as:

SEL,(D;) := argmin ||§ — SEL,(D,_; )|, (6.12a)
6P (D)
SELy(D;) := s(P(Dy)), (6.12b)

where SEL, defines simply a greedy projection operator and where SEL, selects
according to the Steiner-Point s(P(D;)) of the consistent set P(D,) at time ¢.

Definition 6.10 (Steiner Point). For a convex body €2, the Steiner point is defined as

the following integral over the n — 1 dimensional sphere S"1:

s5(Q) = nJ max{v, z)vdv. (6.13)

eSn—1 T€

Another equivalent definition, which is more useful computationally, is to define the

Steiner point as the weighted average of the extreme points of €2, where the weights
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are the polar angles of each extreme point [113]. A convenient way to express this in
terms of averages of random linear programs: s(£2) is the expectation of a random
variable V;(c), where each random variable V; is the solution to a linear program

max ¢, z with a cost-vector ¢, whose direction in R™ is picked uniformly at random.

zeQ)
Moreover, in euclidean spaces it suffices to sample ¢ from the n-dimensional standard
Gaussian distribution A/ (0, I,,):

(6.13) = 5(Q) =E. a1, argmax {c,v).
veQd

Remark 35. As shown in [13], the Steiner point can be efficiently approximated by

solving randomized linear programs as used in the definition above.

The competitive analysis presented in [33] applies, and appealing to Proposition 34

we can establish that SEL,, and SEL, are competitive CMC algorithms:

Corollary 53 (of Theorem 1.3 [12], and Theorem 2.1 [33]). Assume € is a compact
convex set in R" and d(x,y) := |x — yl||2. Then, the procedures SEL, and SEL, are
competitive (CMC)-algorithms with competitive ratio vy, and s:

n+1 n

Yp=(Mm—-1)nz2, V=g (6.14)

The following lemma is needed to translate the results of [12] and Theorem 2.1 [33]

into our setting:

Lemma 54 (Steiner Point). Ler s(2) denote the Steiner point of a convex body. The

following inequalities hold for a nested sequence of convex bodies 2y > Q-+ D
Qr and their dy-pathlength I'y = Zthl [5(€2y) — s(Ly—1)]2-

FT < %dlam(ﬂl), FT < ndH(Ql,QT).

Proof. Assume Q; D €, --- o Qr is a nested sequence of convex bodies in R”.

Then, as shown in [33] Thm 2.1, we have the following

Z (Q4) — 5(Q1) 2 < B(w(Q1) — w(Qr)), (6.15)

where w(S) denotes mean-width of the set S. w(S) can be written as the average
length of a random 1-dimensional projection of S: Let v be uniformly distributed in
the sphere S"~! and let w(S) be defined as the expectation of [,,(S),

w(S) := Eyevmitsn-1)0(S), 1,(S) := diam(Proj,(S)) (6.16)
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where [, (S) is evaluated by first projecting the set S into the subspace spanned by the
vector v, denoted Proj, (S) and taking its length. By linearity of expectation, we can

write

T
Z Qt — S Qt 1)”2 ZEU~Unif(S”—1)lv(Ql) - lv(QT)
< SEyunigsn—1)2dy (21, Qr) = ndy (L2, Qr) (6.17)

where the last inequality comes from noticing that according to the definition of the
Hausdorff distance, it holds €2y < Q7 @ dy (€21, Q7)B). |,. Similarly, we obtain

T
Z Qt —S Qt 1)“2 1;~Un1f Sn—1) Ly (Q1) dlam(Ql)

]

A General Approach to Finite Time Competitive Consistent Model Chasing
In contrast to the stricter notion of y-competitiveness, we can give a simple and

general selection rule which is always (v, 1)-finite time competitive:

Definition 6.11 (Projection-based chasing). Pick 0, € P(D;) always such that for
some fixed v > 0, at every time-step t holds d(0;,0;—1) < vd(P(Dy), 0;—1).

This projection-based chasing algorithm might not always be tractable to implement,
since it requires solving a potentially non-convex optimization problem with -y
relative accuracy. However, it is trivially (-, 1)-finite time competitive and describes
a simple blueprint to design a general CMC algorithm SEL, that is allowing for
potentially infinite dimensional metric spaces and non-convex consistent sets P(D;).
Combined with a suitable oracle 7, the resulting online control algorithm A, (SEL,,)

provides finite mistake guarantees for objectives G according to Theorem 39.

6.7 Main Results

Assuming that m and SEL meet the required specifications, we can provide the
overall guarantees for the algorithm. Let (D, ), d) be a compact parametrization
of a given uncertainty set /. Let m be robust per Definition 6.3 and SEL return
consistent parameters per Definition 6.9. We apply the online control strategy
A, (SEL) described in Algorithm 2 to system x;,1 = f*(¢, x4, u;) with unknown

dynamics f* € F and denote (x, u) as the corresponding state and input trajectories.
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We organize our results by the strictness of requirements we impose on the model-
chaser SEL. The quality of the overall guarantee depends greatly on the type of
chasing property that SEL provides. Provided that the oracle guarantees certain
robustness requirements, the chasing conditions § — 0., (A) and d(6;,60;_1) — 0
(B) assure that the overall amount of mistakes >,/ , G;(x¢, u;) is finite. What's
more, if SEL provides competitive chasing properties such as y-competitiveness or
(v, T')-finite-time competitiveness, then we can provide stronger guarantees, which

state uniform bounds on the worst-case number of mistakes.

Stability and Boundedness of Closed Loop Trajectories

Regardless of the objective G, we can provide worst-case state norm guarantees for
A, (SEL) in a normed state space (X', | - |), if SEL is a competitive or a finite-time
competitive CMC algorithm and 7 provides sufficient robustness guarantees for a

single time-step transition:

Theorem 36. Assume that 7 : Q — K is («, 5)-single step robust in the space
(X,|| - ||)- Then, the following state bound guarantees hold:

(i) If SEL is a y-competitive CMC algorithm, then:

Vi x| < e14(Q) (etHxO] + 5 ¢ 1> )
6 —_

(ii) If SEL is a (v, T)-finite-time competitive CMC algorithm, then:

e < inf | (1+ (ao(@)™ ) max{s2;, Jzol} + B ) (a0(€)"
k=0

where n* = N(Q, L) and $(€2) denotes the diameter of €.

JQ'Y

Proof. Part 1: In each time-step ¢, it holds x;,1 = f(t,x¢, 7[t,0;]) for some
f € D(6;11). Therefore, the following inequality holds at each time-step:

leall = 1F (& e, [0 (¢, 20)) | < @d (B, 00) ||| + 5. (6.18)

We apply Lem. 55 with the substitution s; := ||z;], &; := ad(6;41,6;) and ¢ := f3, to

obtain

(&
o] < et (wm +B— 1) . (6.19)
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Part 2: We follow the proof technique used in the main result of [65] to prove
boundedness. Given a closed-loop trajectory @, at each time-step ¢ holds x;, =
f(t, xy, w[6:](t, x;)) for some f € D(0;,1). Take an arbitrary time step 7". Define [
the set of all indeces k& < T for which holds ||xy1] > /x| + 8. Notice that for
each k ¢ T holds |z 1] < pllzx| + S while for k& € T we have at least the inequality
|7p41] < adiam(Q)||z,| 4 . Now, for each & € I holds

plael + 8 < zreal = [ £k, 2, 7[0c] (R, 20) | < @d(Orsr, Ok) 2]l + 5,

which leads to d(0x+1,0x) > £. Now, the (v, T) finite-time competitive property
ensures that d(6, 0y 11) < vdy(P(Dg), P(Dks1)). We can therefore conclude that:

L < 2d(Ok, Ops1) < du(P(Dy), P(Dy)), for j > k. (6.20)

Hence, {P(Dy) | k € I} is a Z--separated set in €. Therefore, [I| < N(Q, 2).
Recall again that for each k ¢ T holds |z, 1| < p|zx| + 3 while for & € T it holds
k1| < adiam(Q)|z| + 5. Following the same arguments as in the Appendix

of [65], we obtain the presented | - |,,-bound on . O

Lemma 55. Let s = (sg, S1,-.-), 0 = (00,01, . . . ) be non-negative scalar sequences
such that s, < 0pS, + ¢, with ¢ = 0 and Ztoc 00t < L. Then s, is bounded by:

stéeL(e So +cﬁ)

Proof. First, we apply the comparison lemma. Therefore, s;, is bounded above by a
sequence v with the dynamics v, 1 = dxyk + ¢, where 79 = so. Hence, it suffices

to bound the sequence 4, in order to obtain a bound on s;. Writing out ~y; yields:
t—1t—1
n(skSo +c <1 +Zn5k) .
J=1lk=j

Recall the basic fact 1 + x < ¢” and notice that each product Hk -0, can be

bounded as:
t—1 t—1 —1
H(Sk—]i[l-i- 5k_1 <Hexp(5k—1):exp (2(6k_1>>
k=j §=0 j=k

t) — €—t+k‘ L

< exp(L — e”.

Therefore we obtain our desired result by bounding ~; at each time-step ¢ as:
t—1
T < < etelsg+c| 1+ Ze’] e

J=1

6L-i-l

[0 0]
< e telsy 4 cet Z ed <etelsy+c

j=0 -
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Notice that the above worst-case guarantee holds for arbitrarily large diameter
¢(Q) of the parameter space €2, and applies naturally to scenarios where initially
stabilizing control policies do not exist. To this end, it is also important to verify
that the required property defined in Def. 6.6 does not imply existence of an initially
stabilizing control policy.

Finite Mistake Guarantees for Asymptotic CMC

The guarantees stated in Theorem 37 and Theorem 6.7 can be interpreted as global
asymptotic stability of the output, since G;(x;, u;). To provide this guarantee, we
only impose weak asymptotic conditions on 7 and SEL: SEL needs to either satisfy
the convergence condition (A) or (B), while 7 has to be either robust or uniformly

robust+cost-invariant for some non-zero margin, respectively.

Theorem 37. Assume that SEL is a consistent model chaser (CMC) of type (A) and
that  is an p-robust oracle for an objective G. Then, the amount of mistakes we

make online is guaranteed to be finite; i.e., for any closed-loop trajectory (x,u)
holds 3. o Gi(x4, up) < 0.

Proof. Denote the online data at time ¢ as the tuple D, := (di,...,d;). Per
assumption, we know that P(D,,) is non-empty and that tlilg 0, = 0, € Py.
Moreover, there exists some f’ € D(f,) such that the trajectories satisfy for all
time ¢ > 0 the dynamics x;,; = f'(¢, 24, u;). Since 6; — 0, there exists a time
T, such that for all t > T, d(0;,0.) < p, i.e., for t = T, we apply policies 7 (t; 6;)
with parameters p-close to 6. Per definition, this tells us that for the time interval
Z = [T, ), the tail of the trajectory xz, uz is contained in Sz[p;0]. Since we
assume that 7 is a p-robust oracle for G, (Def. 6.4), we have to conclude that
e Ge(ws, ug) < M for some finite number M. This proves the desired claim since
o Gl w) < X2 Gl w) + M. L]

The next theorem states that we can guarantee finite mistakes even for the weakest

chasing condition (B), provided 7 satisfies a stronger robustness property.

Theorem. Assume that SEL is a consistent model chaser (CMC) of type (B) and
that  is an uniformly p-robust, cost-invariant oracle for an objective G. Then, the
amount of mistakes we make online is guaranteed to be finite, i.e., for any closed-loop

trajectory (x,w) holds >/, Gi(s, uy) < 0.
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Proof. Pick an arbitrary 0 < ¢ < p and some 7" > M 7. There exists N > 0 such
that V¢t > N: dist(P(D;),0:) < /4 and d(6:,60;—1) < ¢/(2T"). Pick an arbitrary
time-step s > N + T, there exists a ¢, € P(D;) such that d(6’, 05) < ¢/4. Consider
now the time steps ¢ in the time window Z, = [s — T', s — 1]. Per assumption and
triangle inequality, we have, for all ¢ € Z,:

s—1

d(6),0,) < d(0),0,) + > d(0;41,0;) <

Jj=t

5 5
Ho<SarS <
+ (s >2T o7 e <p.

)

IS
IS

Since 0/, € P(D,), the truncation (xz,, uz,) is contained in the set Sz_[p; 0.]. Since
we picked 7" to be larger than the mistake constant /], there has to be at least one
time-step s’ € Z prior to s at which G, (z, us) = 0; otherwise we would contradict
the p-robustness property. Now, due to the cost-invariance of 7, we have to conclude
that for any time-steps k € Zg, k > s after s holds Gy, (xy, ux) = 0 this also includes
time-step s, hence G (s, us) = 0 is true. Finally, since s was arbitrarily chosen in
the interval [N + T + 1, 00), we know that Y, v, ;.| G¢(2, us) = 0. Therefore, the

total cost is 377, Ge(2s,u;) = St " Gi(wy, uy) and is finite. O

It is important to point out that the above asymptotic guarantees do not require p to
be known, merely that there exist some non-zero p for which 7 is p-robust. Next, we
discuss that the stronger notion of (finite-time)-competitive chasing allows to bound

the total number of mistakes uniformly over all closed-loop trajectories.

Mistake-Bound Guarantees for v-Competitive CMC

As discussed in Section 6.5, in cases where P(D;) have a convex representation, we
can use the Steiner point s(P;) or the projection rule ¢; = Projp,(6;—1) to design a
~v-competitive CMC-algorithm. As shown in the next theorem, SEL procedures of
this type (C') lead to a uniform bound on the total mistakes for the overall adaptive

controller A sgr:

Theorem 38. Assume that SEL is a y-competitive CMC-algorithm and that 7 is an

uniformly p-robust oracle for an objective G. Then, for any trajectory (x,u) holds

”M8

(e, up) < MJ <2%diam(ﬂ) + 1).

Proof. The parameter sequence @ provided by SEL satisfies 6, € P(D,), Vt and
ST d(6,,60,1) < vdu(Q,P(Dr)). Setty = 0 and construct the index-sequence
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to,t1,to, ..., ty as follows:

b { min {t < T [t >ty and d(0,0, ) > 3p} Lifk>1 O

0 itk =0

until for some N, the conditiont < 7't > ty,d(0;,60;,) > % pbecomes infeasible and
we terminate the construction. Define the intervals Z;, := [ty, t1], where ty := ;1 —1
for k < N and ty = T. The intervals Zy, . .., Zy are a non-overlapping cover of the

time-interval [0, T']:

U Z=00T], LinZir=@,¥k:1<k<N.
0<k<N
Let (ag, a1, . ..,ax) and (bg, by, ..., by) be the parameters selected at the start and
end of each interval Z;, respectively, a;, := 0;, and b, := 03, . Per construction, we
know that

d(ak,0;) < spforallt e T (6.22)
d(ag,ar-1) > zpforall 1 <k < N. (6.23)

Inequality (6.22) states that d(ay, by) < % p and implies via triangle inequality that
for all ¢t € Z;, holds

d(6y, b) < d(0y, ar) + d(ak, b) < p.

Since we picked by, = 67, and the procedure SEL assures 67, € P(Dy, ), this means
that for some f’ € D[b,], the partial trajectory (xz, ,uz, ) satisfies the following

equations for the time steps t € Zj:

Ti41 = f/<t7xt7ut)7 Uy = W[et] (tant)~ (6.24)

We can therefore conclude that (x7, , uz, ) € Sz, [p; bi]. Hence, for the time-frame Z;,
the trajectory is consistent with the nominal closed-loop w.r.t. to system parameter
by, and therefore the partial trajectory (zz, , uz, ) has to obey the conditions implied
by p-robustness of the oracle, i.e., we have to conclude that >, .7 Gi(zs, u) < M].
Applying this reasoning to each of the NV intervals Z;, we observe that the total
mistakes can be at most M7 (N + 1):

N

T
D G u) = > Y Gilwj,u) < MI(N +1). (6.25)
t=0

k=0 jEIk
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The last step is to bound the number of intervals /N, for which we leverage the
chasing-property of the selection SEL. We established in (6.23) that over each interval
SEL must have changed the consistent parameter by at least % p. From this we notice
that V has to scale with the total path-length of our selection and obtain our bound

by leveraging the property of y-competitiveness. The following chain of inequalities

N N-1 T
5PN < Z d(ak, ag-1) < Z Z d(0r, 0r41) < Zd(euet&) < 7du(Q,P(Dr))
k=1 =1

k=0 teZy,

leads to the bound N' < 22dy, (€2, P(Dr)). We substitute this into (6.25) to obtain

the desired bound on the total number of mistakes:
T
Z Gi(e,up) < M;;T(Q%dH(Qa P(Dr)) +1)
t=0
< M7 (22dy(Q,P(Dyy)) + 1) < M (22diam(Q) + 1).  (6.26)
We can take the limit 7" — oo and arrive at the desired result. L]
Mistake-Bound Guarantees for Finite-Time Competitive CMC
The strong competitiveness property is not necessary if, instead, stronger conditions
on the oracle can be enforced. The next result states that if the oracle 7 is cost-

invariant we can weaken the assumptions on SEL and still provide finite mistake

guarantees.

Theorem 39. Assume that SEL is (v, T)-finite-time competitive CMC-algorithm
(type D) and that 7 is an uniformly p-robust, cost-invariant oracle for an objective G.

Then for any closed-loop trajectory holds:
o0
G u) < MJ(N(Q,r*) +1), 1" i=-C—— (6.27)
t=0

where N (€, 1) denotes the r packing number of Q as defined in (6.12).

Proof. We discuss only some of the main steps and postpone the discussion of the
full proof to Section 6.A of the appendix. The first part of the proof follows a

construction similar to that in Theorem 38 to arrive at an intermediate bound

T N
D G u) = > Y Gilay,u) < MI(IS| + 1),
t=0

k=0 jeZy

where S is defined as a subset of intervals defined by the condition:

S = {Ik | gtk+1($tk+17utk+1) = 1}
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The second part of the proof is concerned with showing that S is a finite set and
bounding the cardinality |S|. The main argument we use here is similar in spirit to
the one used to establish the boundedness of /V in the proof of Theorem 38: We
show that due to the finite-time competitive chasing property, within each interval
Ty = [t,, tx] our selection 6, changes at least by a fixed nonzero amount, which leads
to a fixed separation of size €

1p T
T2 My AT
in Hausdorff metric between consistent sets P(D,, ) at the beginning of the interval
7 and the consistent set P(Dy, ) at the end of the interval Z,. Moreover, it turns
out that this observation proves the existence of a c-separated set of size |S| that
is contained within €. Due to the compactness of €2, this proves that S is a finite

set and that its cardinality is bounded above by the € packing number of the set
O\P(Dy,) < Q. ]

Definition 6.12 ([46]). Let (M, d) be a metric space and S = M a compact set.
For r > 0, define r-packing number of S, denoted by N (S,r), as:

N(S,r) := max{neN‘ 301,...,0y €Ss.t. d(0;,0;) > 1, Vi #j }

The bound of Theorem 39 is much larger than the one of Theorem 38, however it

compensates for in generality.

The stronger result Theorem 38 requires SEL to be a y-competitive CMC-algorithm;
however, it is unclear whether y-competitiveness can be achieved for the case of
non-convex consistent sets. On the other hand, the generic projection-based strategy
presented in Section 6.5 describes a universal finite-time competitive CMC algorithm
SEL,, regardless of whether the consistents are convex or not. Hence, assuming
that we have a suitable oracle 7, it suffices to couple the oracle with the simple
projection-based CMC SEL,, in order for A sg., to inherit the guarantees of Theorem
39.

Mistake Guarantees with Locally Robust Oracles

The worst-case bound shown in Theorem 36 can be directly used to extend the result
of Theorem 38 to problem settings where we only have access to locally robust

oracles.
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Theorem 40 (Corollary of Thm. 38). Consider the setting and assumptions of
Thm.38 and Thm.39, but relax the oracle robustness requirements to corresponding
local versions and enforce the additional oracle assumption stated in Thm.36. Then
all guarantees of Thm.38 and Thm.39 still hold, if we replace M] in Thm.38 and
Thm.39, respectively, by M7 (Ry,) and M (RY) and where:

(2

Ry = inf (1+<a¢<n>>n*)max{%,uxou}+ﬁ2<a¢<n ‘
k=0

O<p<l

and n* = N(Q, L) and ¢(€2) denotes the diameter of Q.

70(/7

Writing out the inequalities derived from Theorem 38, i.e., the guarantees for
combining y-competitive model chasers SEL with locally uniformly p-robust and

(e, B)-single step stable oracles 7, we obtain the mistake bound:

uMg

(0, w) < MT(Rop) (%diam(ﬂ) + 1) . (6.28)
On the other hand, the guarantee of Theorem 39 transforms into the bound:

0
Z Sz, w) < MI(RY) (N(Q, %) + 1), r* = ;SW (6.29)
6.8 Discussion and Extension of Main Results
Theorem 38 and 39 can be invoked on any learning and control method that
instantiates A, (SEL). It offers a set of sufficient conditions to verify whether a
learning agent A, (SEL) can provide mistake guarantees: We need to show that w.r.t.
some compact parametrization (T, Q, d) of the uncertainty set F, m operates as a
robust oracle for some objective G, and that SEL satisfies strong enough chasing
properties. Theorem 38 also suggests a design philosophy of decoupling the learning
and control problem into two separate problems while retaining the appropriate
guarantees: (1) design a robust oracle 7 for a specified control goal G; and (2)
design an online selection procedure SEL that satisfies the chasing properties defined
in Def. 6.9. Nominal control design methods which have guarantees only in the
small uncertainty settings can be naturally extended to the large uncertainty setting.
Provided that the design method can be embedded as an oracle sub-routine 7,.. and
that we can find a suitable SEL routine, the meta-algorithm A, __(SEL) provides a

simple extension of the original method to the large uncertainty setting.
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p-robust V0 e Q: sup, oomy(7,7;0) <0

uniformly p-robust M7 () 1= sup,~g,geq M} (7,7;0) < ©

locally p-robust Vy>0,0€eQ: sup omi(7,7;0) <0

locally uniformly p-robust | Yy = 0: MJ(7,7) := suppeq m}(7,7;0) < o0

Table 6.2: Notions of oracle-robustness adjusted for finite-time guarantees

Using the theorems of the previous section, any nominal guarantees which can
be paraphrased as OC-MG stability and mistake guarantees are carried over by

A...(SEL) to the large uncertainty setting.

Finite-Time Mistake Guarantees
At the cost of adding notational overhead, we can extend the definitions of the oracle
robustness properties, as shown in Def. 6.13 and Table 6.2, to be more granular and

allow for finite-time evaluation.

Definition 6.13 (7 definition for finite-time guarantees). Equip X with some norm
|- |. Foreachp,v =0, 7 € Nand 0 € Q, define the quantity m (7, ;0) as

my(7,7;0) == sup sup Z Gy, uy).
I=[tt+7] (zz,uz)eSzlp0]|2e|<Vter

With respect to this adjusted set of notations, the proofs of Theorem 38 and Theorem
39 remain, up to some notational substitution, logically the same. Hence, for example,

we can state the inequalities (6.28) and (6.29) as the following finite-time guarantees:

Z (w0, u) < MT(r, R )(%diam(n) + 1). (6.30)
u 1 T
Z Sz u) < MT(r, RY) (N(Q,r*) + 1), 7% = 2§W (6.31)

From Mistake Guarantees to Cost Guarantees
The presented mistake guarantees can be used to obtain worst-case guarantees for

more general cost-functions. We highlight how to perform this reduction next.

Assume we are given a non-negative and possibly time-dependent cost function
C:Nx X xU — R{. Then we can define a family {G[e]}.cg+ of objectives
Gle] : N x X x U — {0, 1} indexed over the open interval ¢ € (0, o), such that
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for a trajectory (z,u)', the sum Y Gi[e](xs, u;) represents the total number
of time-steps t at which we incurred a cost C(t, 2, u,;) larger than . Suitably,
we call this the total number of e-mistakes. We make this definition precise
using characteristic functions. Let xya : R — {0,1} denote the characteristic
function for a subset A — R of the real line and Y, := xac be the corresponding
complementary function, i.e., Ya(s) = 0,Vs € Aand \a(s) = 1,Vs ¢ A. Then, for
each € € R, ¢ > 0, the e-objective G|¢] is defined foreacht e N, x € X, u € U as
Gle](t, 2, u) := Xy (C(t, 2, u)).

Using the following Lemma, which is proven in the Appendix, we can reformulate

the running cost in terms of the mistake bounds.

Lemma 56. For any scalar sequence a € {1 holds:

o0 O
fali = [ Y % alowis = |
0 k=0 0
Proof. See Appendix 6.A [

As direct application of the above, we have the following relation between running

cost and number of e-mistakes:

t oo t o t
Z C(k, vp,up) = J Z Y[o,a](o(k7$k,uk))d5 = J Z Glel(k, zy, ux)de
0 k=0 0 k=0

k=0

maxp<t C(k,xp,ur) t
= J Z Glel(k, xg, uy)de
k=0

0
We can associate the family of objectives {G[e]}.cr+ with a family of corresponding
comparison functions {m[]}.cr+ and { M [¢]}.er+ —each m7[e], M [e] quantify-
ing the nominal mistake bounds of a fixed oracle 7. Then, for suitable 7 and model
chasers SEL, we can integrate the finite-time mistake bounds over € and use the above
equivalence, in general, to derive finite-time worst-case cost performance guarantees

for Aﬂ— % SEL -

As an example, as a corollary of Theorem 38, and its local extension Theorem 40,

we obtain the following result:

Theorem 41. Let C' : N x X x U — R{ be a non-negative, possibly time-dependent
cost function and let {G|c|}.cr+ be the corresponding family of objectives as defined
above. Let m : Q — K be an oracle with the («, 3)-stability property.
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Assume that SEL is a y-competitive CMC-algorithm and that for each objective G|z],
the oracle T is locally uniformly p-robust, with corresponding comparison functions

m|e], M []. Then, for any closed-loop trajectory (x,u) and T € N holds

M\]

0
C(t, g, up) < (%diam(ﬂ) + 1>J M7 [e](7, Ry )de,
0

t=0

where Ry, := e®7*( ) (| x| + B5)-

Safety Guarantees Using Families of Lyapunov Functions

Def. 6.6 is closely related to ISS-stability [75] and is favored in our derivations as
a simple substitute for generic ¢, -stability conditions. However, Def. 6.6 requires
that all nominal closed-loops CL,[w] share V' (x) = ||«| as a common ISS-Lyapunov
function, which can seem a rather restrictive condition. Nevertheless, we can replace
Def. 6.6 with a more flexible definition without significant repercussions on the

theoretical results.

Assume that for each w € Q, there exists a family {V( - |w)},eq of non-negative
functions V(- ;w) : N x X — R™ and a scalar positive-definite, increasing bijective

function h : Ry — Ry such that the following conditions are met:

1. Forallwe Q.t,x € X :
V(t,z | w) < h(]z])
2. Forsome pt > 0, > 0 and all wy,wq € Q, f € D[wsy]|,t e N,z € X :
Vi (f (&, 2y, wlwn]) [ wa) < (€7 + ad(wi, w2)) Vi(ay [ wi) + 1

If we assume an oracle 7 to satisfy the above set of conditions for some pu, «,
{V(a;w) | w € Q}, h, and couple it with a model chaser SEL, we can obtain
theoretical safety guarantees analogous to Theorem 36 and finite mistake guarantees
analogous to Theorem 40. A thorough discussion of these extensions is being

prepared for publication.

Extension to Unbounded Uncertainties

Surprisingly, knowledge of a compact parametrization of F is not a fundamental
necessity for the PixSel framework. In fact, we can extend the approach to a large
class of problem settings with unbounded uncertainty sets, and still retain the innate

ability to provide worst-case guarantees.
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Algorithm 4 Meta-Model Chaser SEL,

Require: Family of consistent model chasers {SEL; };c corresponding to a filtration {€;}
Initialization: Dy — {}, i = 0, z is set to initial condition &
1: fort =0,1,... tooo do
2: Dy <« append (t, z¢, x4—1,us—1) to Dy (if t = 1) = update history
3 Ht <« SELZ‘ [Dt]
4 while 6; = ¢F do
5 1—1+1 > switch to next CMC
6: 0, < SEL;[Dy] = reattempt selection
7
8
9

end while
Output consistent parameter 6;
: end for

Consider the more general setup, where we have a (non-compact) metric space
(Q., d) representing the space of parameters, and a set-valued map D : Q. — 27
representing the set of dynamics D[w] < F associated with each parameter w € Q,

such that {D[w]},eq, covers the uncertainty F.

Now, suppose we can construct a filtration {€;};cn of compact subsets Q; < Q.
which covers Q. ie.,i <j — €Q; < Q,and J,yQ; = Q, and assume
that for each €); we have a consistent model chaser SEL;, which has the ability to
notify us, for example by returning the empty set (f, the moment the set of consistent

parameters P;(D;) < €, becomes empty at time ¢.

Remark. As a simple example, consider P = R, d(z,y) = |x — y| and define Q;
as the interval [—i,1] < R. Then {Q;}.cy is a filtration of compact subsets which

covers R.

Given such a family of model chasers {SEL;}, we can construct a Meta-chasing-
algorithm SEL ., which initializes as SEL, and thereafter switches to the implemen-
tation of the next model chaser SEL;, 1, once the consistent set of the previous model

chaser P;(D;) becomes empty. This process is diagrammed in Algorithm 4.

Despite its simplicity, the Meta-chasing algorithm SEL,, inherits any chasing-
properties which hold uniformly over the family of model chasers {SEL; },cn. This
inheritance relationship rests on a simple observation. If f* is contained in F,
then there has to exist some ¢* € N for which f* € D[#*] for some 6* € €;«; it is
immediately clear that asymptotic chasing properties, i.e., statements (A) and (B)
of Def. 6.9, hold true for the model-chaser SEL, if the same properties are true for
the entire CMC-family {SEL;};cn. In regards to the competitive chasing properties

(C) and (D), we can easily see that if each model chaser in the family {SEL,};cy is
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~-competitive / (7, T')-f.t.-competitive, then SEL,, is at the very least i*~y-competitive
/ (i*~, T)-f.t.-competitive. Unfortunately, since 7* is not known in general, we can
not expect to have knowledge of the former constants in advance. Nevertheless in
the case of convex consistent sets, there are cases in which the competitive ratio is
preserved. A thorough theoretical discussion of this case is being prepared for future

publication.

Oracle Policies with Memory and System Level Controllers

The previous results assume that 7 returns static policies of the type (¢, ) — wu.
However, this assumption is only made for ease of exposition. All previous results
also hold in the case where 7 returns policies that have an internal state, as long
as we can define the internal state to be shared among all oracle policies; namely,
as part of the oracle implementation online, we update the state z; at each step ¢

according to some fixed update rule h
2t = h(t7 Zt—15 Lty Uty -+ -5 L0, u0)7

and control policies 7[6], § € € are maps (t, z, z) — u which we evaluate at time ¢

as Uy = W[e](t, T, Zt).

The results presented in Chapter 4 provide a natural and seamless way to encapsulate
families of system level controllers as oracles and instantiate corresponding PixSel
Algorithms with worst-case guarantees. A powerful application, which fuses the
results of Chapter 4 and 6, is presented in our recent work [9]. In said publication, we
provide the first fully distributed and scalable control algorithm capable of learning

to stabilize unknown large-scale linear systems in the adversarial setting.
To summarize our findings and recap some of the main results, we review our design

framework for a simple, yet non-trivial example.

6.9 Design Example: Control of Uncertain Scalar Linear System
Let us consider a very basic problem setting, wherein we are given an unknown

scalar linear system
* * . or®
Tpe1 = @z + rup +wp = f*(k, zx, ug),

s.t. |wg] <v* <n<landa* € [—a,al, B* € [1,1+ 2ba], and our goal is to reach

the target interval X7 = [—1, 1] and remain there. We can equivalently phrase this
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as to achieve the objective G = (Gy, G1, . . . ) with cost functions

{o, if 2] < 1

1, else

Gi(z,u) = Vt=0

after finitely many mistakes.

Compact Parametrization of Uncertainty Set. ~ We define our parameter space as
Q = [—a,a]x[1,142bx], and define the true parameter as 0* = (0%, 0%) = (a*, 5*)

T 7u

and parametrize the uncertainty set as F = UgeoD[#] with
D[0] := {t,z,u — O,z + O,u+w,; | [w|e < 7}

We choose the metric as d(6,6') := |0, — 0| + alf, — ¢/,|. The diameter of the
metric space (Q,d) is ¢(Q) = d((—a, 1), (a,1 + 2ba)) = 2(a + ba).

A Locally Uniformly Robust Oracle. As an oracle, we take the simple deadbeat
controller: 7[0](t,x) := —(0,/0,)x. It can be easily shown that 7 is a locally
p-uniformly robust oracle for G for any margin in the interval (0, p), p := 1 — 1, by

noticing the inequality:

[T | < |Opxe + O [0:](t, )|+ = [((0F — Orr) — (0, — eu,t>Z;—';z>:ct| +1
(6.33)
< (107 — O] + 105 — Qu,t\|%ﬁ|)|$t| + 1 < d(0%,0) |z + 7. (6.34)

To obtain the mistake function M forafixed p € (0, 1—n), notice thatif d(6*, 0;) < p,
then

1] < ploe + 0 = plod + L =p)in = fwea| = 75 < pllwe] = 15)

1—p
t
= ol < 725+ o (lwol = 25)-
Notice that
¢ log(lzo]) , log(1—p)—log(l—p—n)
c(p)
which implies the mistake function
v 10
M7 (7) < 5225 + c(p). (6.35)
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Construction of Consistent Sets via LPs. The consistent set for the data set Dy
of N observed system transitions (z;, x;, u;) can be written as an intersection of €3
with 2N halfspaces:

P(DN)={96Q|S.L: ViI<i< N: x*—n<9wxi+9uui<a:;r+n}.

(2

It can be constructed online and is convex.

Competitive Consistent Model Chasing via Steiner Point. We can construct a
competitive CMC-algorithm by using algorithms for competitive NCBC. Assume
we use the Steiner point and denote the selection procedure SEL; as in (6.12). SEL;
isa § = 1-competitive CMC algorithm in euclidean space, and since the euclidean

norm is bounded above by the 1-norm, SEL; is also 1-competitive w.r.t. the metric
space (Q,d).

Mistake Guarantee for A, (SEL;). We apply the extension of the results in
Theorem 40. It is easy to see that our 7 satisfies the extra condition with o = 1,
f = n. Assuming |x¢| = 0, the constant 7, takes the value

Yoo = € (Jwo] + B55) = e, (6.36)

For ease of exposition, assume that 7 = ¢! and that we picked p = e~!. This gives
us M7 (ve) = ¢(£2) — log(e — 2) and substituting all constants gives us a finite
mistake guarantee for the objective G:

> Gular, ) < MJ (70) (2 + 1) ~(Q)(1 + 266(Q2))
= 8e(a +ba)?* + 2(a + ba).

The above inequality shows that the worst-case total number of mistakes grows
quadratically with the size of the initial uncertainty in the system parameters ¢, and
6,. Notice, however, that the above inquality holds for arbitrary large choices of a
and ba. Thus, A, (SEL,) gives finite mistake guarantees for this problem setting for

arbitrarily large system parameter uncertainties.

This small-scale example serves as a warm-up for the the next section where we

discuss applications for learning and control of uncertain robotic systems.
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6.10 Application to Uncertain Robotic Systems

We walk through an example of how to design adaptive controllers A, (SEL) for a
class of robotic systems with the goal of learning to follow a trajectory. We discuss
how to embed well-known control methods in robotics such as robust oracles 7 and
couple it with SEL selections based on competitive algorithms (NCBC). Consider
a general case of online control of uncertain fully-actuated robotic systems. Most

robotic systems can be modeled via the robotic equation of motion [98]:

Mn(‘])d + Cn(Q> Q)q + Nn(% Q) =T+ Tq (6.37)

where ¢ € R" is the multi-dimensional generalized coordinates of the system, ¢ and
¢ are its first and second (continuous) time derivatives, M, (¢), C, (¢, ¢), N,(q, q)
are matrix and vector-value functions that depend on the parameters € R™ of
the robotic system, i.e.,  comes from a parametric physical model. Often, 7 is
the control action (e.g., torques and forces of actuators), which acts as input of the
system. Disturbances and other uncertainties present in the system can be modeled as
additional torques 7; € R™ that perturb the equations. Moreover, one can derive from
first principles [98], that for many robotic systems (for example robot manipulators)

the following two properties hold:

M, (q) — 2C,(q, §) is skew-symmetric (6.382)
M, ()G + Cy(a,4)q + Ny(q,9) = Y(¢,6.4)n =7 + 7a. (6.38b)

The second equation says that the left-hand-side of equation (6.37) can always be
factored into a n x m matrix of known functions Y (q, ¢, §) and a constant vector
n € R™. Assume that the disturbances are bounded at each time ¢, as |74(t)| < w,
w € R™ and where the inequality should be read entry-wise. Consider that we are
given a system with unknown 7*, w*, where the parameter 6* = [n*; w*| is known
to be contained in a bounded set £2. Assume that our goal is to follow a desired
trajectory ¢4, which is given as a function of time ¢4 : R — R", within the precision
e. Denoting z = [¢",¢"]" as the state vector and z4 = [q], ¢, | as the desired state,
we want the state trajectory of the system x(¢) to satisfy:

lirtn sup |z(t) — zq(t)|| < e. (6.39)

-

As is common in practice, we assume we can observe the sampled measurements
T = x(ty), 2¢ := 2%(t;,) and apply a constant control action (zero-order-hold
actuation) 7, := 7(t;) at the discrete time-steps t; = kT, with small enough

sampling-time 7 to allow for continuous-time control design and analysis.
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Control Objective G°. We phrase trajectory tracking as a control objective G°

with the cost functions

0, iffz—ad|<e

Gi(w,u) == { . Vk >0,

1, else

which we wish to achieve online with finite mistake guarantees against the uncertainty
set F = (Jyeq D[0], where:

D[O] := {k, xk, T — [ (g, Tk, Ta( - );0) | 70 : [0, Ts] — R", | 7a] 00 < w}.

The function f* denotes the discretized dynamics of (6.37) w.r.t. the sampling time
7.

Robust Oracle Design. We outline how to design a robust oracle based on a
well-established robust control method for robotic manipulators proposed in [118].

Define v, a and r as the quantities
v=qa—Nqg, a=0v, r=q¢+A], G=q—q (6.40)

and denote Y'(q,q,v,a) as the corresponding n x m matrix which allows the

factorization:

M, (q)a + Cy(q, ¢)v + Ny(q,4) = Y'(q,q4,v,a)n. (6.41)

Based on the control law presented in [118], we define the oracle 7[0](k, z}) for

x = |¢; ¢] and 6 = [n; w] through the equations:

m[0)(k, k) = Y'(qk, G, vr, ar) (0 + ug) — K1y, (6.42)

s .
w= { e YTy > e

(6.43)
—gY/TT‘k if HY/TT]CHQ <e€

where A, K, > 0 are diagonal positive definite design and where p, ¢ are design
variables. Following the analysis in [118] and [40] one can design a suitable gain
K, in terms of w, such that 7 is a uniformly p robust oracle for G in the compact
parametrization (D, Q, d).

Remark 42. The analysis in [118] shows that uniform ultimate boundedness
properties of the tracking error & = [q — qq; ¢ — Gq] are preserved, if we replace 1) in
equation (6.42) with some perturbation 1+ 6(t), |0(t)|l2 < pforallt. In [118], the

disturbance 7, is assumed to be zero, i.e., the w = 0 case, and the gain K is left
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as a tuning variable. However, with standard Lyapunov arguments, the analysis of
[118] can be extended to consider the nonzero disturbance case and specify gains
K., for each w such that the above oracle ™ becomes a uniformly p robust oracle for
the above objective G: For each w, increase the gain K, until the uniform ultimate

boundedness guarantee implies the desired e-tracking behavior described by G°.

Constructing Consistent Sets. The linear factorization property (6.38b) can be
exploited to construct convex consistent sets. Denote [D as an uncertain robotic system
(6.38) with some convex compact uncertainty € in euclidean space (R™*" | - |[2).
Recall that we parameterize the bound on the disturbance by w € R", i.e., |174| < w
holds entry-wise and that our system parameter is represented by 6 = [T, w']T € Q.
At the sampled time-steps t;, equations (6.38b) say that measurements qx, Gx, Gk, Tk

enforce the following entry-wise condition on consistent parameters 7 and w:
T — W < Y Grs Go)0 < T + W (6.44)

In matrix form, the consistent set is captured via the following relationship:

Y(le ., Cjk) -1, n < Tk (6.45)
=Y (qk, Grs Gi) —Ln| |w —Th
. ~ ~/ N —
Ay by

Consequently, we have a concrete construction of consistent set at each time ¢:

P(D,) = {9 - ["] e R™+"

w w

A, [77] < bt} AP(D.1), P(Dy) =Q (6.46)

where A = Ay (z, ux) and by = by (x, ux) are matrix and vector of “features” con-
structed from current control policy and state at time ¢ via the known functional form

of Y. Data sets Dy, are tuples of the form Dy, = (dy, ..., dy), dx = (qk, Gk, Gk, T)-

Designing a Competitive Chasing Selection. The above consistent sets are simply
an intersection of halfspaces, hence we are in the setting of Assumption 6.6 and
we can instantiate competitive selections from the (NCBC) competitive greedy and

Steiner point algorithm algorithms:

* Greedy Projection. SEL, selects §; = SEL,(D,) as the solution to the
following convex optimization problem, which can be solved efficiently:

1
0, — argmin = ||0 — 6,_4||°,
beRPAQ 2

st Af<b;,Vi=1,..., ¢t
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Algorithm 5 design of A, (SEL, ;) for e-trajectory tracking for fully actuated robots

1. fort =0,T,,...,kT, to oo do

2 measure g, i, Gk

3: update polyhedron P(Dy) as in (6.46)
4

5

select according to (6.12a) or (6.12b) > selection SEL,, or SEL;
choose 7, = Y’ (qk, G, vk, ax) (nk + ux) — K, 1) using (6.40), (6.42) o> use
oracle 7 (xy; O)
6: end for

* Steiner-Point. Alternatively, SEL, outputs the Steiner point of the polyhedron
Pp(D;), which in principle requires calculating an integral over multidimen-
sional sphere. Fortunately, as shown in [13], the Steiner point can be efficiently
approximated by solving randomized linear programs; an approach we take in

our empirical validation.)

Mistake Guarantee for A, (SEL,) Since 7 is a robust oracle for G and both
SEL, and SEL are y-competitive CMC algorithms in (D, Q, | - |) for some v > 0,
our result Theorem 38 tells us that A, (SEL,) and A, (SEL;) guarantees upfront
finiteness of the total number of mistakes Y.,~ , G5.(x, 7x), which implies the desired
tracking behavior guarantee lim sup,,_, ., |z — 2% < e. Moreover, if we can provide a
bound M on the mistake constant M;T < M, we obtain from Theorem 38 an explicit

performance bound for the tracking performance in the form of the mistake guarantee

3. Gilan ) < M(Zdiam(€) + 1),
k=0

6.11 Empirical Validation: Cart-Pole Swing-Up on a Constrained Track

We illustrate the practical potential for of our approach on a challenging cart-pole
swing-up goal from limited amount of interaction. Compared to the standard cart-
pole domain commonly used in RL [32], we introduce modifications motivated by

real-world concerns in several important ways:

1. Goal specification: the goal is to swing up and balance the cart-pole from a
down position, which is significantly harder than balancing from the up-right
position (the standard RL benchmark).

2. Realistic dynamics: we use a high-fidelity continuous-time nonlinear model,
with noisy measurements of discrete-time state observations.

3. Safety: cart position has to be kept in a bounded interval for all time. Further-

more, the acceleration should not exceed a specified maximum limit.
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7[6*] || 0 |04]099| 1 | 1
A(SEL) || 0 | 02| 0.8 |0.95]| 1

T 3s| 6s|12s | 30s | 50s

Table 6.3: Fraction of experiments completing the swing up before time 7": ideal
policy 7[6*] vs. A, (SEL)

4. Robustness to adversarially chosen system parameters: We evaluate 900
uncertainty settings, each with a different 8* reflecting mass, length, and
friction. The tuning parameter remains the same for all experiments. This
robustness requirement amounts to a generalization goal in contemporary RL.

5. Other constraints: no system reset is allowed during learning (i.e., a truly

continuous goal).

Our introduced modification makes this goal significantly more challenging from
both on-line learning and adaptive control perspective. Table 6.3 summarizes the
results for 900 different parameter conditions (corresponding to 900 adversarial
settings). It compares the online algorithm to the corresponding ideal oracle policy
7[6*] shows that the online controller is only marginally slower. See Appendix 6.11

and [5] for detailed description of our setup and results.

We employ well-established techniques to synthesize model-based oracles. Expert
controllers are a hybrid combination of a linear state-feedback LQR around the
upright position, a so-called energy-based swing-up controller (see [17]) and a
control barrier function to respect the safety constraints [7]. As also described in
[48], adding constraints on state and acceleration makes learning the swing-up of
the cart-pole a significantly harder goal for state-of-the-art learning and control
algorithms.

Table 6.3 compares the on-line algorithm with the corresponding ideal oracle policy

7[6*] showing that the on-line controller is only marginally slower.

6.A Proofs

Theorem. Assume procedure SEL is (v, T)-finite-time competitive for some v > 0,
T > 1 and that procedure T is a uniform p-robust, cost-invariant oracle for G. Then,

the total number of mistakes is guaranteed to be bounded above by:

21 Gilwe, ) < (N(Q°,r*) + 1) MJ < (N(Q,7%) + 1) My,
t=0
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where Q° := Q\int(P(Dy)) and r* := %fMgTw-
Proof. Denote x, u to be some fixed online trajectories and denote 6 as the corre-
sponding parameter sequence selected by procedure SEL. The sequence @ satisfies
0, € P(Dy) and 3%, ., d(6;,0,-1) < vd(P(Dy,),P(Dy,)) forall ty — t; < 7. For
some time-step 7 > 0, we derive bounds on the mistakes > ;_, G;(x, u;). Setto = 0

and construct the index-sequence ¢y, t1, ts, ..., tx as follows:

(6.47)

o min {¢t <7 [t > t,_y and d(0;,0,, ) > ip} Lifk>1
o Lifk =0

until for some NV, the conditiont < 7,t > ty, d(6;, 6, ) > % p becomes infeasible and
we terminate the construction. Define the intervals Z;, := [ty, tx], where ty 1=t} 1 —1
for k < N and ¢ty = 7. The intervals Zy, . . . , Zy are a non-overlapping cover of the

time-interval [0, 7]:

U T, =10,7], hinTpr =, Vk:1<k<N.

0<k<N

Let (ag, ...,ay) and (bo, ..., by) be the parameters selected at the start and end of
each interval 7, respectively: a; := 0;, and b, := 0z, . Per construction, we know
that

d(ag,b;) < ipforallt e T, (6.48)
d(ay, ax_1) > spforall 1 < k < N. (6.49)

Inequality (6.22) states that d(ay, by) < % p and implies via triangle inequality that
for all ¢t € Z;, holds

d(@t, bk) < d(@t, ak) + d((lk, bk) < p-

Since we picked b;, = 6, and the procedure SEL assures 0z, € P(Dy, ), it means that
for some fj, € D[by], the partial trajectory (zz, , uz, ) satisfies the following equations

for the time-steps t € Zy:
i1 = [t g, ug),  ue = w[0](t, x). (6.50)
We can therefore conclude that (x7, , uz, ) € Sz, [p; br]. We apply to conclude that

> Gl up) < M (6.51)

teZ, k
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for each k € {0, ..., N}. Now, define S as the following collection of intervals
S = {I’f | gtk+1 (xtk+17utk+1) = 1}; (6-52)

i.e., all intervals Z;, where at the start of the next interval Z, ; the costis 1. Combining

this with the former bound (6.51), we can decompose the total mistake sum as

¢ (e, ug) Z Ge(e, ue) + Z Z Gy, ue) + Z Z Gi (e, uy)

I\Mﬂ

tely ZjES tEIjJrl I ¢S tEIJ+1
0
= > Gilwpw) + Y > Gilwu) < MJ(IS|+1).  (653)
telo Zj eS tEIjJrl

Notice that the last term D7 45 >,

T Gi(xy, uy) in the first equation is zero because

Z; ¢ S implies that the next interval Z;,, start with zero cost; due to the cost-
invariance property it follows that Zt61j+1 Gi(x,uy) = 0. The remainder of the

proof is concerned with bounding the cardinality of the collection S.

Bounding |S|: We know that for each [ in the range 1 < [ < |Zj|, there exists at least
one sub-interval Z; 7y, |Z]| = [ of length [, such that

2 400 0041) > Sy (6.54)

tel’

The above has to be true, since otherwise we would contradict (6.49):

e LetZy,..., 7)., m = [|Zx|/l],|Z]| = l,Z] < I} be an overlapping cover of Z,
then
akaak’-i-l Z d 9t+176t Z Z 0t+179t = % [@—‘ |I [+1 (6 55)
tEIk = I
< %p (‘I’Cl + 1) A Ep, (recall that ay1 = 6, 41)
(6.56)

which is a contradiction to (6.49)

Hence, we can always pick a sequence of sub-intervals [t} #}] = I,il) < 7y, (either of
length [ or identical to Zy, if |Z;| < ) such that

Z d(61,0141) > 305 (6.57)

teI
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Notice that if |Z| < [, we pick I,gl) = 74, and therefore the above inequality is
vacuously true since, Ztelk d(0y,0:41) = d(ag, agr1) > %p > %pﬁ Now, the
(v, T')-finite-time competitiveness property ensures that for all £ and all ¢ > ¢; + 1
holds:

Ll < 3 d(0h, Ou1) < vdu(P(Dy,),P(Dy 1)) < vdu(P(Dy,), P(D,))

(T)
heZ,

— 4y (P(Dy,),P(Dy)) > 42T

where dy (P(D-,),P(Ds,+1)) < dyu(P(D-,), P(D;)) follows from nestedness. From
now on, we use the abbreviation P, to refer to the sets P(D;).

Recall the definition S := {Z}, | Gy, ,, (%4,,,,us,,,) = 1} and let k; denote the j-th
interval that belongs to S, i.e., Iy, © S. Now set! = T"and define S; as a subsequence
of P, Py, ... as follows:

Pz

kj

PtTV if T, . ¢ ng_.
kj J J

if (E{kj € ngj

S; = (6.58)

We will show that this collection P = {S1,S,, ...} of sets S; isa %g i — - separated
P

set in the metric space (22, dy,) via the following inequality:

T
M;+T"

Vj <1: dH(Sj,SZ> >

1p
2y

This is proven below:

* Recall SEL is defined to always pick 0, € P(D;) and 7 is p-uniformly robust
and cost-invariant. Due to the SEL property, there always exists a function
f € D[, ] such that zy, = f'(ty, zg,, 7[07,](tk, 27,)). On the other hand,
because of the 7 property, the statement x;,,, ¢ X;, , implies that one of the
following two has to hold at time
1. Assume z7, € Xj,, then it has to hold that d(6;, , 6;,,,) > p. Notice due to
(v, H)-w.c. property, that d(0y, , 0y, .,) < vdu(Pg,, Py, ,) which gives us

du(Pg,, Pry1) > 52
2. Assume x;, ¢ Xi,, then by Def. 6.5, it follows that |Z; | < M7, which then

1p_ T 1p T
29T +T = 2y MZ+T"

* Taking the minimum of both cases we can see that dy(S;, Py, .,) > 32 M;rT —-

Due to nestedness, it holds for z > j that S; < Ptkj .. © S;. Thus, it holds

implies that dy(Pyr, Py, ,,) >

dw(S;,Si) = dy(S;, Py, ) and we arrive at the separation condition:
J

VJ <1: dq{(SJ,Sz) > %gM;,“TJrT‘
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We conclude from Lem. 50, that |[S| = |P| is bounded by the packing number
N(Q, 12

12y M”+T
get the total number of mistakes as:

). Substituting into the bound (6.53) and taking the limit 7 — o0, we

\\Mg

xt,ut M,Z)T (N(Q’%gMT )—|—1> .

A Tighter Bound. We can define Q° = Q\int(P(D)) and S§ = S;\int(P(Dy))
and notice that S7 is non-empty for all j: S7 and P(D,,) are closed, so S; = P(Dy,)
implies that S contains at least the boundary of P(Dy,). Moreover, we can Verify

that the corresponding collection P° = {S9,S3, ...} of sets S? is still a 2

M"+H
separated set in the compact metric space (2, d ). Therefore we can 1mpr0ve the

previous mistake guarantee and state the tighter inequality:

gt

Ga(ie, ur) < (N(Q\int(P(Doo)), Lo o)y 1) M.
]

Let x4 : R — {0,1} denote the characteristic function for a subset A — R of
the real line and 4 := X ¢ be the corresponding complementary function, i.e.,
Xa(s) =0,¥se Aand Y ,(s) = 1,Vs ¢ A.

Lemma 57. For any scalar sequence a € {1 holds:

la]o
lals = f S T (n)ds =f S Xegadds (659
0 2o 0

Proof. We first prove the result for the finite sequence case and for non-negative
sequences, which is stated in equation (6.61); the general result then follows as a
corollary Let a € RY be a non-negative scalar sequence and define Qq4(t,7), for

> 0 as the number of indeces ¢ < ¢ for which the sequence is larger than r, i.e.,
Qa(t,r):=|{i|i <tand a; > r}|, (6.60)

then our goal is to show that
maxg<t Ak
Z ap = f Qalt,r)dr = J Qa(t,r)dr. (6.61)

Let ag, VN al denote the sequence we obtain from rearranging the sequence a[ ) in

an increasing order. Thus, ag < a{ < < ag. It is clear that rearranging does not
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change the sum, hence it holds: ZEZO a; = ZE:O aiT . Now notice that we can rewrite
1 )

; — a,_4 as follows:

2 al = a) + i <a8 - i(a} - a;_1)>

the sum in terms of the increments «

k=0 k=1 7j=1
t
=a$(t+1)+2 (a;—a; 1)
J=1lk=j
t
—af(t+1)+ Y <a} - a}_l) (t+1— ) (6.62)
j=1

where we obtain the last equality through changing the order of summation. Observe
that the function Qg4(t, - ) : 7 — Qa(t,r) is the following piece-wise constant

non-increasing function:

t+1  ifrel0,al)
Qalt,r) =% t+1—3 ifre[a}a}fl)forj)l

0 if r € [a], 0)

Integrating over the domain [0, 50) shows that Q4 (¢, 7)dr is equal to the right-hand
side of (6.62) and concludes the proof of the partial result (6.61).

For the final step, notice that for Qq(t,7) + Q_a(t,7) = S _, X[—r,(ax) and
therefore by (6.61), we have

¢ maxy<s |ag| _t
D laxl = J D X (ar)ds (6.63)
k=0 k=0

0

Furthermore, notice that sup, >;_, X[-s,5)(ax) is finite for all s > 0, because

otherwise it would contradict a € ¢;:

« Assume there exists some s’ > 0 for which Y} _, X[—s',s11(@x) grows unbounded
in ¢, then it means that there are infinitely many elements {a;} which are

bounded below as a; > s'; this contradicts Y., |ax| < 0.

It is also clear that Y,” (¥, ,(ax) = 0 forany s > |a/, and that the right-hand
side of (6.63) is always bounded above ||a|;. Hence, by taking the limit ¢ — o0 in
(6.63), we obtain our final result (6.59). [

6.B Oracle for Cartpole-Swing up with Constraints
Next, we describe the oracle we used to instantiate our approach A, (SEL) for the test

of swinging-up the cart pole on a constrained track. The overall control strategy is a
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hybrid combination of a linear state-feedback LQR around the upright position, a
so-called energy-based swing-up controller (See [17]) and a control barrier-function

to respect the safety constraints [7].

For convenience of the reader we recall the nonlinear dynamics of the cart pole

system:

(M + m)i — milg cos(@) + mld? sin(¢p) — byi: = F (6.64)
I — gsin(ep) — b¢q5 = 7 cos(¢).

Let x and x be the position and velocity of the cart and ¢, gb the angle and angular
velocity of the pole. F'is the force onto the cart pole and serves as our control input
to the system. Throughout the discussion @ and d are design parameters, where @
denotes the maximal cart acceleration allowed, and d be the maximum distance the

cart is allowed to move from the center.

Model-Based Oracle for Cart-Pole Swing Up

The outermost layer of the control strategy is partial feedback linearization. Let
Fy(%,z, 0, é, t) be the force F' we need to apply at time ¢ in order to achieve a
desired cart acceleration of Z,. Multiply the second equation of (6.64) by ml cos(¢)
and add it to the first, to see that F); has to be chosen as:

Fy(&a, &, ¢, ¢, %) = (M + msin(¢)?)Zq — mg cos(¢) sin(¢) + mle?® sin(¢) — by
(6.65)

By choosing F' = Fy(Z4, T, ¢, gz'ﬁ, ), we can now treat the desired acceleration Z4 as
our new control input. With respect to our new input x4, we can simplify the original

equations (6.64) to

T =2y (6.66)
lp — gsin(¢) — b¢¢'> = Zqcos(o). (6.67)

The swingup controller consists now of three separate control laws that are later

combined.

* Around up-right position: static linear LOR controller If the pole has small
enough kinetic energy and is close to the upright position, we simply choose
24 to be LQR-state feedback controller based on the system (6.66) linearized
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around the equilibrium position z = 0,2 = 0,¢ = O,gﬁ = 0. The policy then
takes the form

ZarQr = —Krqr(0)=z.

* Swing up-controller: energy-based controller. The Swing-Up controller is
based on an elegant energy-based approach by [17], in which we simply choose

24 to control the total normalized energy

E(6,9) = %Q%? T cos(9) (6.68)

of the pole. In-depth derivation can be found in [17] and 2, takes the form:

T4 qing = —Satq <%v cos(9)|(E(¢, 0) - 1)sign<<bcos(¢>)> (6.69)

where Sat; is the saturation function which saturates at the max specified

acceleration a.

» Wrapping a safety controller. As part of our oracle policy, we also use a control
barrier function controller that prevents us from triggering the safety policy.
We do this simply by internally overriding our swing-up 24 sying OF balancing
T4 ror terms, if we get too close to the boundary of [—2 40, Tmaz . To this

end, define B(x, ) as the barrier function
Bla,d) = il +
r,r) = —T|T Xz
’ 2a
and define émw := ag/l = sin(30°).

The full description of the oracle policy is mapped out in Algorithm (6).

The controller switches to an LQR if the system is close to the upright position, and
otherwise defaults to the swing up controller that brings the pendulum to the right
energy level. A correction is performed to the previous control action depending
on the barrier-function value |B(xz,z)|. As |B(z, )| gets closer to the boundary
d — €54 e, the controller prioritizes safety and overwrites the previous planned control
action. If = exceeds the buffer d — €,, e, then a safe policy is called, which brings

the cart position back to the region [—J + €safes d— e, fe].

Selection Process SEL
We apply the approach presented in the main paper Section 6.10 to obtain poly-

topes of consistent parameters of P, for the lumped parameters p = [m. +
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Algorithm 6 oracle policy 7[f] under potential safety policy 7gas override

Input: z = [z, ¢, 7, qb], parameters 0 := [M,m, 1, b;, by], €sqre
Output: I
if |2| < d — €54/ then
if |2/ Gmaz] < 60° and cos(30°/Pmae + ¢sign(¢)) > cos(30°) and | —
Kror(0)z] < a then
Z'U.d = —KLQR(Q)Z

else
Fq = —Sata[37] cos(¢)|(E(¢, ) — 1)sign(¢ cos(¢))]
end if
T pack = —asign(z)
\ = [B@d)]

di&safe
if B(z,z) > 0then

fli'd <~ (1 — )\2)515'(1 + )\2 min{i’d, i'd,back}
else
i’d <« (1 — /\Q)fl}d + )\2 max{id, fid,back}
end if
F = Fd(fd, Z)
else
F= 71-sabfety<z)
end if

My, Mipl, by, 1, by, Tz, Tap]. We use randomized LPs [13], to approximate the Steiner
point of the polytope P, and select the corresponding oracle policy 7[#;] as described

in the meta-algorithm 2.

6.C Mistake Guarantees vs Sublinear Regret

A common performance metric in online learning for control is phrased in terms
of the regret R(T"). For our general problem setting, we show that sublinear regret
does not imply finite mistake guarantees, however finite mistake guarantees do imply

sublinear regret.

Regret Definition

Assume we are given some cost function C' : X x U — R* and the system
Tip1 = fH(t, 24, up), ko = &. Assume that some "ideal" policy 7* would generate
the trajectory x}, u;, while the online algorithm A, characterized by the sequence of
policies, produces x;, u;. The optimal total cost of J*(7T') at time 7T is defined as
JHT) := ZL@ C(z}, uy). The regret R(T') of A usually refers to the sum of costs

of the online algorithm up to time 7" minus the sum of costs that the optimal policy
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7* would achieve 3:
T
= > Clag, w) — J*(T). (6.70)
k=0

Sublinear regret is defined as follows.

Definition 6.14. The regret R(T') is called sublinear if R(T') = o(T'), or equivalently:

T
lim R( 2 (2p, up) — CaF, ut)) = 0. (6.71)

T—o0

The slower R(T") grows with T, (for example O(log(7"))), the faster convergence we

can guarantee to the above limit.

Sublinear Regret Does Not Imply Bounded Cost

Sublinear regret is a common way to measure the performance of online learning
and control algorithms. Ideally, we would expect the sublinear regret to subsume
some more basic performance criteria such as the boundedness of the online cost,
that is, supy, |C(xg, ux) — C(z}, uj)| < co. However, simple derivations show that
without additional assumptions, sublinear regret growth is not sufficient to show cost
boundedness. The reason for that is intrinsic to the very definition of regret, and

simple real-analysis arguments will suffice to demonstrate that.

Abbreviate ¢, := C(zg, ug), ¢ := C(z}, u;) and define the sequences

S = C — CZ (672)
1 k k
E Z o Z (6.73)

Now, sublinear regret is defined as the condition klim my. = 0, while bounded cost
—00

w|>—~

considers the statement sup |s;| < o0.
k

The next counter examples show that these statements are not related; The first
example shows that sublinear regret does not imply finiteness of the sequence |sg|;

the second shows that the boundedness of |s;| does not imply sublinear regret.

I. lim my =0 == sup|sx| < .
k—o0 k

3Not the most widespread definition, but the most suited for adaptive control setting. See, for
example, [143].
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Proof. Consider sy, where s.» = n and otherwise 0. Define n(k) := [log(k)],

then ®
fi(k
1 . na(k)(n(k) + 1)
M S k) = EGy 20T T g
i=1
This shows limy,_,,, mp) = 0, but s;, is unbounded. ]

2. Forall € > 0: sup,, s — inf; s, < e == my converges.

Proof. Define s, as the sequence

(1,6,1,1,8,0,1,...,1,8,...,8,1,...,1,8,...,8,...,1,...,1,8,....,6,...
| NS N N —_—— —
N 6 6 6 18 18 2x3" 2x3n
. Ig ~
2x3n

with 0 = 1 — e. From the above pattern, it becomes apparent that the

corresponding my, is satisfied for all n:
Moysn = 1 — /2 Myxzn = 1 — /4, (6.74)
hence m;, does not converge, yet sup,, s, — infy s, < €. L]

Remark 43. The above arguments still hold if we change s, and my, to the definitions

P24

Sublinear Regret Does Not Imply Finite Mistakes, Finite Mistakes Imply

/

k
sy, = |Cl(ag, up) — Clxy, uy)| Z (g, ur) — Clxg, uy)|

?rlr—ﬂ
?rlr—ﬂ

Sublinear Regret

In our problem setting, the costs C'(x, u) are represented by G(x, u), which are {0, 1}-
valued cost functions. Moreover, we compare to an oracle-policy 7* which guarantees
at most M [ mistakes i.e., Yo < M. Trivially, finite mistakes implies sublinear
regret: If it holds that >.,” , ¢y < M, then %Zfzo(% —¢f) < % — 0. However,
the opposite is not true. Consider as an example the following sequence for cy:

c=0,1,0,0,0,1,0,0,0,0,0,0,0,1,...,0,...,1,...
M~ 5 ~ 7N ~ - ~—
2 4 8 ok
The total mistakes >/, ¢, = O(log(T)) grow unbounded, but we still have

hmti,oo my = 0.
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