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ABSTRACT

In this thesis, I explore two new arenas of gravitational-wave physics and advance
them from both data-analysis and theoretical perspectives. I probe the nature
of the remnant of a compact binary merger and study the strong gravitational
lensing of gravitational waves. For probing the nature of a merger remnant, I first
describe recipes of computing radiation emitted by a perturbed Kerr black hole,
and in particular using the Generalized Sasaki-Nakamura formalism. Using a
modified Kerr black hole spacetime as a model of a generic compact object, I
then describe a prescription to compute waveforms of the repeating bursts of
gravitational waves, referred to as gravitational-wave echoes, that are theorized
to be emitted when a compact object with a reflective surface is formed as the
remnant of a merger. Equipped with a waveform model for these echoes, I present
a Bayesian model selection approach to look for echoes in data while inferring
properties of the potential exotic compact object. I apply this approach to search
for echoes in the data covering the first, the second, and the first half of the third
observing run of the LIGO-Virgo-KAGRA network. For the strong lensing of
gravitational waves, I first develop a Bayesian statistical framework that is capable
of computing the probability of a given set of gravitational-wave events being the
strongly-lensed counterparts of the same source or simply coming from distinct
sources. If they are truly lensed, the framework can also infer the properties of the
lensed source in a way unaffected by lensing. I apply this framework to search for
signatures of strongly-lensed binary black hole systems in the data covering the
third observing run. While we did not find any statistically significant evidence in
the search for gravitational-wave echoes and strongly-lensed binary black holes,
we can still place limits using the null results. Admittedly the existence of
exotic compact objects is speculative and the observing rate of strongly-lensed
gravitational waves is rare; however, the scientific impacts that they can bring are
profound if they are proven to exist.
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C h a p t e r 1

INTRODUCTION: THE PAST, THE PRESENT AND THE
FUTURE OF GRAVITATIONAL-WAVE PHYSICS

With the gravitational-wave (GW) detector network formed by the interferom-
eters at Hanford and Livingston from Laser Interferometer Gravitational-Wave
Observatory (LIGO) in the United States [1], the Virgo interferometer in Italy [2],
the GEO600 interferometer in Germany [3, 4, 5] and the Kamioka Gravitational
Wave Detector (KAGRA) interferometer in Japan [6, 7, 8], we are now routinely
observing GW signals coming from collisions of compact objects such as black
holes (BHs) and neutron stars (NSs) that occurred more than gigalight-years away
from us. As two compact objects coalesce with each other, the binary system
emits gravitational radiation with a characteristic chirping waveform where the
frequency increases with time. As of the time of this writing, the GW detector
network has registered over a hundred of those cataclysmic collisions [9, 10, 11,
12].

Those GWs not only carry the news about an occurrence of a compact binary
coalescence (CBC), we can also learn a great deal of physics and astrophysics
from them. By comparing detected GW signals with theoretical waveforms that
CBCs should emit, we can infer the properties such as the masses and the spins
of the GW sources. Once we have collected enough such measurements, we can
also infer the mass distribution and the spin distribution of these compact objects
on the population level, which will tell us more about the astrophysics of their
formation mechanisms [13, 14].

Furthermore, we can also learn about the composition and the structure of com-
pact objects through their tidal interaction signatures imprinted in the GWs they
emit when they merge with each other. For example, we can probe the equation of
state of nuclear matter that NSs are made up of when they smash into each other,



3

at the densities that are impossible to create in laboratory settings [15]. This
is exactly what happened in the binary neutron star (BNS) collision GW170817
[16], which was observed in both the GW and the electromagnetic (EM) spec-
trum [17]. The coincident detection in both spectra allows us to constrain, in
a way that is independent to previous measurements, the Hubble constant 𝐻0

which is an important quantity in cosmology that indicates the expansion rate of
the Universe [18].

Last but not least, GWs can be used to study fundamental physics, such as gravity
itself. Since we use general relativity (GR) to compute expected gravitational
waveforms coming from those CBCs, therefore by measuring deviations of what
we have actually observed in data with the GR predictions, we can test for the
correctness of GR, which is currently the best theory of gravity we have, in the
strong-gravity limit that was not accessible to other weak-field tests of GR such
as the perihelion precession of Mercury [19, 20, 21, 22, 23].

Indeed, the existence of GWs was predicted by Einstein with his GR for a little
over a hundred years. While we now celebrate the success of GR and use GWs
to achieve many scientific breakthroughs, the field of GW science is not without
controversies at the beginning. From the theoretical perspective, scientists were
not sure at first whether GWs are physical and real in the sense that they carry
energy with them as they propagate or they are simply artifacts from choosing
a particular coordinate system where the apparent GWs can be removed by
choosing different coordinate systems. The doubt concerning the reality of GWs
largely went away after the monumental Chapel Hill conference in 1957 where
Feynman presented his “sticky bead” argument [24] to show that when a GW
passes through a rod with two beads that are free to slide across the rod with a
small amount of friction, the incoming GW will cause the beads to move even in
the presence of friction and thus the GW is physical and does work on the beads.

From the experimental side, Weber invented the first GW detector in 1960 based
on resonance of a solid triggered by a passing GW and began to observe GWs
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the new instrument, now referred to as the Weber bar, throughout the 1960s.
His claims of detecting GWs were later discredited after many groups failed to
reproduce his results. Another approach to measure GWs is to use a Michelson
interferometer to measure the very minute stretching and squeezing of the space-
time due to GWs. In a Michelson interferometer, a light beam is directed towards
the center of the interferometer where there is an optical device called a beam
splitter that divides the incident beam into two and sends the split beams onto two
different paths along the 𝑥 and the 𝑦 arm of the interferometer, respectively. At
the end of each arm, there is a mirror that reflects the light beam back towards the
center where the reflected beams from the two arms are recombined. When the
length of the 𝑥 and the 𝑦 arm are equal, no special pattern should emerge from the
interferometer. However, when there is a GW passing through the interferometer
causing the length of the 𝑥 and the 𝑦 arm to differ, a fringe pattern will appear.
This is the technical basis of the GW detectors that we use today [25], which
also led to the discovery of the first direct detection of GW coming from a binary
black hole (BBH) merger, now referred to as GW150914 [26]. The Nobel Prize
in Physics 2017 was awarded to Weiss, Thorne and Barish for their contributions
to the LIGO detectors and observations of GWs.

Fast-forwarding to the present and looking ahead, it is projected that the fourth
observing run (O4) will see well over a hundred of GW signals coming from
CBCs [27]. With the new GW detector, LIGO India, currently under construc-
tion and other planned upgrades to existing GW detectors and constructions of
new detectors [28, 29, 30, 31, 32], we will be able to observe even more GW
signals which were emitted from even greater distances with louder amplitudes,
and consequently be able to study rarer and more exotic phenomena with GW
observations, which are the main subjects of this thesis.



5

C h a p t e r 2

OVERVIEW OF THE THESIS

In this thesis, I will explore new arenas of gravitational-wave (GW) physics
and will advance them from both data-analysis and theoretical perspectives. In
particular, I will focus on two topics — probing the nature of a merger remnant
using a unique waveform signature theorized when the remnant is of an exotic
type of compact object in Part I, and the strong gravitational lensing of GWs in
Part II.

In the first part of the thesis, I will first give a brief introduction in Chapter 3 to
the notion of exotic compact objects (ECOs) and the physics of their repetitive
emissions of GW bursts, which are referred to as GW echoes, after they are
formed as the remnants of mergers. Developments in the theoretical and the
data-analysis aspect have to come together in unison in order to maximize the
science we can do. Considering that, in Chapter 4, I first describe a way to
compute radiation emitted by a spinning black hole (BH) under the framework
of black hole perturbation theory (BHPT) in general relativity (GR). Then in
Chapter 5, I present a prescription to compute waveforms of the aforementioned
GW echoes using BHPT with a slightly modified BH spacetime as a model
of an ECO and the recipes to compute gravitational waveforms in Chapter 4.
Equipped with theoretical predictions of what GW echoes should look like, in
Chapter 6 I take the data-analysis perspective and present a Bayesian model
selection approach to look for these GW echoes in data. In Chapter 7, I describe
the search results of GW echoes in the data covering the first observing run
(O1) and the second observing run (O2) using the technique in Chapter 6 and
demonstrate things that we can learn/limits that we can place with GW echoes.
The search is extended to cover also the data in the first half of the third observing
run (O3a) and the results are presented in Chapter 8. Lastly, I give concluding
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remarks to Part I of my thesis in Chapter 9.

In the second part of the thesis, I will start with a brief introduction to the
phenomenon of strong gravitational lensing of GWs in Chapter 10. Then in
Chapter 11, I will develop a Bayesian statistical framework that simultaneously
identifies strongly-lensed GWs and characterizes the properties of their source.
In Chapter 12 and Chapter 13, I present the analysis results for finding strongly-
lensed binary black hole (BBH) mergers in the data covering O3a and the third
observing run (O3) entirely, respectively. Then in Chapter 14, I describe an
extension to the framework introduced in Chapter 11 that incorporates realistic
simulations of strongly-lensed background objects by galaxy-scale foreground
lenses into strong lensing analysis of GWs, which is applied to two interesting
candidates of strongly-lensed BBH pairs found in O3 as a demonstration. At last
in Chapter 15 I will give concluding remarks to Part II of my thesis.

Finally, I will summarize the thesis and discuss future work in Chapter 16.
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Exotic Compact Objects as
Remnants of Binary Black Hole

Mergers
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C h a p t e r 3

OVERVIEW OF PART I

In the first part of the thesis, let us focus on using gravitational waves (GWs) to
probe the nature of the remnant of a compact binary merger. In general relativity
(GR), after the merger of two black holes (BHs), a new BH should be formed as
the remnant. The new-born BH is highly excited by the merger but it will relax to
a stationary state by the emission of “ringing” gravitational radiation (commonly
referred to as the ringdown). This is akin to the excitation and the subsequent
relaxation of a damped harmonic oscillator.

The GWs generated by the merger will propagate both outwards to infinity (and
be seen by GW detectors) and inwards to the BH itself (see Figure 3.1). However,
we will not observe the wave packet that fell into the BH as the hole will absorb
all the incoming radiation (hence the name black hole). If one instead relaxes
the perfect absorption assumption of the hole (not black anymore), perhaps due
to a reflective structure near the would-be event horizon as motivated by some
quantum gravity considerations, the falling wave packet will be partially reflected
off the hole. The now-reflected wave packet will travel outwards and encounter
the potential barrier (roughly) at the light ring. The wave packet will again
be partially reflected towards the hole and partially transmitted towards infinity.
This effectively forms a GW cavity trapping GWs (see Figure 3.2). The GWs
escaped from the cavity will be seen by the detectors as bursts of waves time-
shifted and modulated with respect to each other, referred to as GW echoes. The
observation of GW echoes in the post-merger part of a signal will indicate that
the merger remnant is a hole that is not a BH in GR. These new class of remnants
are collectively referred to as exotic compact objects (ECOs). This can also be
interpreted as testing the “blackness” of the remnant compact object.

This thesis will be covering both the theoretical and the data-analysis perspective



9

<latexit sha1_base64="ikC4U8oeG6bbG4TdEytFlDHESYE=">AAACE3icbVA9SwNBEN3zM8avU0ubxUQQi3AXRC2DNpYRjAZyIeztzcXFvb1jd04JR/6DjX/FxkIRWxs7/42bj8KvBwOP92aYmRdmUhj0vE9nZnZufmGxtFReXlldW3c3Ni9NmmsOLZ7KVLdDZkAKBS0UKKGdaWBJKOEqvDkd+Ve3oI1I1QUOMugmrK9ELDhDK/Xc/YCDQtBC9Ys7dgsUEoEIURBgesd0ZGg1ECrGQXXYcytezRuD/iX+lFTIFM2e+xFEKc8Tu4BLZkzH9zLsFkyj4BKG5SA3kDF+w/rQsVSxBEy3GP80pLtWiWicalsK6Vj9PlGwxJhBEtrOhOG1+e2NxP+8To7xcbcQKssRFJ8sinNJMaWjgGgkNHCUA0sY18LeSvk104zblEzZhuD/fvkvuazX/MPawXm90jiZxlEi22SH7BGfHJEGOSNN0iKc3JNH8kxenAfnyXl13iatM850Zov8gPP+BfQZntI=</latexit>

wave
em

itt
ed

tow
ard

s 1<latexit sha1_base64="Uh66MWE+xeqwIuqFFMUzmDXl+V0=">AAACE3icjVA9SwNBEN2LXzF+nVraLAZBLMIliFqKNpYKRoVcCHt7k9zi3u6xOxcJR/6DjX/FxkIRWxs7/42bmEJFwQcDj/dmdnZelElhMQjevdLU9MzsXHm+srC4tLzir65dWJ0bDk2upTZXEbMghYImCpRwlRlgaSThMro+HvmXfTBWaHWOgwzaKesp0RWcoZM6/k7IQSEYoXrFDesDhVQgQhyGqG+YiS3FBGiiJQw7frVeC8agf5MqmeC047+FseZ56hZwyaxt1YMM2wUzKLh7rxLmFjLGr1kPWo4qloJtF+ObhnTLKTHtauNKIR2rXycKllo7SCPXmTJM7E9vJP7mtXLsHrQLobIcQfHPRd1cUtR0FBCNhQGOcuAI40a4v1KeMMO4S8lW/hfCRaNW36vtnjWqh0eTOMpkg2ySbVIn++SQnJBT0iSc3JJ78kievDvvwXv2Xj5bS95kZp18g/f6AVNPnxA=</latexit> wave
em

itt
ed

tow
ard

s the
ho

le

Figure 3.1: An illustration of the GW emission during a merger of two holes
(represented by the black and grey circles). The black circle represents the much
heavier hole of the two and the grey circle represents the lighter hole. As they
merge, GWs are emitted both towards infinity (shown in blue) and towards the
heavier hole (shown in orange). If they are indeed BHs in GR, the wave falling
towards the heavier hole will be absorbed completely.

of GW echoes from ECOs. In Chapter 4, I will present the Generalized Sasaki-
Nakamura (GSN) formalism that allows us to compute radiation from Kerr BHs
by solving the Teukolsky equation, the master equation governing the generation
and propagation of waves emitted by BHs. Next in Chapter 5, I will briefly
describe a prescription to compute waveforms of GW echoes from spinning
compact objects, based on Ref. [33] that I co-authored. The prescription uses
the Teukolsky equation for Kerr BHs in GR as the foundation where an ECO is
modeled as a Kerr-BH-like object that satisfies a reflective boundary condition
at its surface instead of a purely in-going boundary condition at the horizon of
a BH. The source term to the Teukolsky equation that drives the radiation is
modeled as a test particle plunging towards the ECO surface.

In particular, two sets of solutions to the Teukolsky equation, namely 𝜓0 that
encodes gravitational radiation falling into the compact object and𝜓4 that encodes
radiation emitted towards infinity (to GW detectors). Typically, at the location
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GW
cavity

Figure 3.2: A spacetime diagram illustrating the generation mechanism of GW
echoes. The GW generated by a merger will propagate both outwards to infinity
and inwards to the remnant of the merger. The in-going wave packet will be
partially reflected off the remnant. The now-reflected wave packet will travel
outwards and encounter the potential barrier. The wave packet will again be
partially reflected towards the remnant and partially transmitted towards infinity.
This effectively forms a GW cavity, and the repeated burst of GWs are referred
to as GW echoes.

where the source term that drives the radiation vanishes, the 𝜓0 and 𝜓4 solutions
are related to each other via the Teukolsky-Starobinsky identities and thus one
only needs to solve one of the two solutions numerically. However in our
prescription, these identities do not apply since the source term evidently does
not vanish at the ECO surface. This is a major caveat of Ref. [33] where we
blatantly misused the Teukolsky-Starobinsky identities to convert 𝜓4 solutions
to 𝜓0 solutions. Indeed, a follow-up work [34] showed that the waveform from
a direct calculation of 𝜓0 for a non-spinning BH differs from that obtained by
converting𝜓4 using the identities. While the simple regularization procedure that
enables the calculation in Ref. [34] can be easily generalized to spinning BHs,
the resulting expression for the regularized source term is too complicated to be
used in any practical calculation. The GSN formalism in Chapter 4 provides an
alternative approach to computing gravitational radiation. The source term in the
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GSN formalism is naturally regularized and numerically better-behaved than in
the Teukolsky formalism. While only the source-free case is being discussed in
Chapter 4, it can be extended to work in a generic setting where the source is non-
vanishing everywhere and the manuscript for the extension is in preparation [35].
With the complete GSN formalism, we would be able to compute theoretical
waveforms for GW echoes in a consistent manner.

The theoretical waveforms can then be fed into data-analysis pipelines that search
for GW echoes in data. In Chapter 6, I will describe one such pipeline that uses a
Bayes factor as the detection statistic to determine if echoes are present in a given
GW data, while simultaneously characterizing properties of the would-be ECO
remnant from the echoes. In particular, the behavior of the detection statistic
under different noise characteristics when there is no echoes in the data was
studied by performing numerous mock analyses, which allows us to compute the
probability (commonly referred to as the 𝑝-value) of having the detection statistic
greater than a certain value when there is actually no echoes and also gives us
the statistical significance of a detection of GW echoes in data.

In Chapter 7, I will present a search for GW echoes in the data near the binary
black hole (BBH) merger signals found during the first observing run (O1) and the
second observing run (O2). While no statistical evidence evidence of echoes were
found, constraints can still be placed with the null detections, both on population
level and individual level. For instance, an upper limit on the formation of ECO
from BBH mergers can be obtained. With the null discovery of echoes for a
BBH merger, limits on the location and the reflectivity of the surface of the
would-be ECO remnant formed after the merger can be constructed. In Chapter
8, I will report the result of a search for GW echoes in the data near selected
statistically-confident BBH mergers in the first half of the third observing run
(O3a).
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C h a p t e r 4

RECIPES FOR COMPUTING RADIATION FROM A KERR
BLACK HOLE USING GENERALIZED
SASAKI-NAKAMURA FORMALISM

This chapter contains work from

R. K. L. Lo. “Recipes for computing radiation from a Kerr black hole
using Generalized Sasaki-Nakamura formalism: I. Homogeneous solu-
tions”. Submitted to Phys. Rev. D. arXiv: 2306.16469 [gr-qc].

4.1 Introduction
The first detection of a binary black hole merger by the two detectors of the Laser
Interferometer Gravitational-Wave Observatory (LIGO) in 2015 [26] marked the
beginning of a new era in physics where scientists can directly observe gravita-
tional radiation emitted from collisions of compact objects such as black holes
(BHs), allowing the strong field regime of gravity to be probed. Subsequent ob-
serving runs of the Advanced LIGO [1], Advanced Virgo [2], and KAGRA [6, 7,
8] detectors have unveiled about a hundred more such gravitational waves (GWs)
coming from the collisions of compact objects [36, 9, 10, 12]. With planned
updates to the current detectors [27] and constructions of new detectors [29, 30],
some targeting different frequency ranges such as the Laser Interferometer Space
Antenna (LISA) [31] and the Deci-hertz Interferometer Gravitational wave Ob-
servatory (DECIGO) [32], we will be observing GWs coming from various kind
of sources on a regular basis.

In order to identify GW signals from noisy data and characterize properties of
their sources, it is imperative to have theoretical understanding of what those
waveforms look like so that we can compare them with observations. Grav-
itational waveforms can be computed using a number of approaches, such as

https://arxiv.org/abs/2306.16469
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numerically solving the full non-linear Einstein field equation, or solving a lin-
earized field equation as an approximation. BH perturbation theory is one such
approximation scheme where the dynamical spacetime is decomposed into a sta-
tionary background spacetime and a small radiative perturbation on top of it. The
metric of the background spacetime is known exactly, and we only need to solve,
usually numerically, for the metric perturbation. See for example Refs. [37, 38,
39, 40] for a comprehensive review on BH perturbation theory.

At the core of BH perturbation theory is the Teukolsky formalism [41, 42, 43, 44]
where a rotating (and uncharged) BH of mass 𝑀 and angular momentum per unit
mass 𝑎 is used as the background spacetime. The metric for such a spacetime is
known as the Kerr metric [45], and in the Boyer-Lindquist coordinates (𝑡, 𝑟, 𝜃, 𝜙)
the exact line element 𝑑𝑠 is given by [46, 47]

𝑑𝑠2 = −
(
1 − 2𝑀𝑟

Σ

)
𝑑𝑡2 − 4𝑀𝑎𝑟 sin2 𝜃

Σ
𝑑𝑡𝑑𝜙 + Σ

Δ
𝑑𝑟2

+ Σ𝑑𝜃2 + sin2 𝜃

(
𝑟2 + 𝑎2 + 2𝑀𝑎2𝑟 sin2 𝜃

Σ

)
𝑑𝜙2, (4.1)

where Σ ≡ 𝑟2+𝑎2 cos2 𝜃 and Δ ≡ 𝑟2−2𝑀𝑟 +𝑎2 = (𝑟 −𝑟+) (𝑟 −𝑟−) with 𝑟+ = 𝑀 +√
𝑀2 − 𝑎2 as the outer event horizon and 𝑟− = 𝑀−

√
𝑀2 − 𝑎2 as the inner Cauchy

horizon. In the Teukolsky formalism, instead of solving directly the perturbed
radiative field (e.g., the metric for gravitational radiation, and the electromagnetic
field tensor for electromagnetic radiation), we solve for its (gauge-invariant)
scalar projections onto a tetrad. For instance, the (Weyl) scalar 𝜓0 and 𝜓4

contain information about the in-going and the out-going gravitational radiation,
respectively [41]. Teukolsky showed that these scalar quantities all follow the
same form of the master equation (aptly named the Teukolsky equation), and it
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is given by [41][ (
𝑟2 + 𝑎2)2

Δ
− 𝑎2 sin2 𝜃

]
𝜕2𝜓

𝜕𝑡2
+ 4𝑀𝑎𝑟

Δ

𝜕2𝜓

𝜕𝑡𝜕𝜙

+
[
𝑎2

Δ
− 1

sin2 𝜃

]
𝜕2𝜓

𝜕𝜙2 − Δ
−𝑠 𝜕

𝜕𝑟

(
Δ𝑠+1

𝜕𝜓

𝜕𝑟

)
− 1

sin 𝜃
𝜕

𝜕𝜃

(
sin 𝜃

𝜕𝜓

𝜕𝜃

)
− 2𝑠

[
𝑎 (𝑟 − 𝑀)

Δ
+ 𝑖 cos 𝜃

sin2 𝜃

]
𝜕𝜓

𝜕𝜙

− 2𝑠

[
𝑀

(
𝑟2 − 𝑎2)
Δ

− 𝑟 − 𝑖𝑎 cos 𝜃

]
𝜕𝜓

𝜕𝑡

+
(
𝑠2 cot2 𝜃 − 𝑠

)
𝜓 = 4𝜋Σ𝑇, (4.2)

where 𝑇 is a source term for the Teukolsky equation, and 𝜓 can correspond to
different scalar projections with different spin weights 𝑠. In particular, 𝑠 = 0 for
scalar radiation, 𝑠 = ±1 for in-going and out-going electromagnetic radiation,
respectively, and 𝑠 = ±2 for in-going and out-going gravitational radiation,
respectively. For example, 𝜓0 satisfies Eq. (4.2) by setting 𝜓 ≡ 𝜓0 and 𝑠 = 2,
whereas 𝜓4 satisfies the equation by setting 𝜓 ≡ (𝑟 − 𝑖𝑎 cos 𝜃)4𝜓4 and 𝑠 = −2.

Despite its fearsome look, Eq. (4.2) is actually separable by writing𝜓(𝑡, 𝑟, 𝜃, 𝜙) =
𝑅(𝑟)𝑆(𝜃, 𝜙)𝑒−𝑖𝜔𝑡 . The separation of variables gives one ordinary differential
equation (ODE) for the angular part in 𝜃 (since the 𝜙 dependence must be
𝜓 ∼ 𝑒𝑖𝑚𝜙 with 𝑚 being an integer due to the azimuthal symmetry of a Kerr BH),
and another ODE for the radial part in 𝑟. We discuss the angular part of the
Teukolsky equation and the recipes for solving the equation numerically more in
depth in App. 4.5. Limiting ourselves to consider the source-free (𝑇 = 0) case
for now1, the ODE for the radial part is given by [41]

Δ−𝑠
𝑑

𝑑𝑟

(
Δ𝑠+1

𝑑𝑅

𝑑𝑟

)
−𝑉T(𝑟)𝑅 = 0, (4.3)

with
𝑉T(𝑟) = 𝜆 − 4𝑖𝑠𝜔𝑟 − 𝐾

2 − 2𝑖𝑠(𝑟 − 𝑀)𝐾
Δ

, (4.4)
1We consider the 𝑇 ≠ 0 case in a subsequent paper (see Sec. 4.4.1).
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where 𝐾 ≡ (𝑟2 + 𝑎2)𝜔−𝑚𝑎, and 𝜆 is a separation constant related to the angular
Teukolsky equation (see App. 4.5, and in particular Eq. (4.73)). The general
solution of 𝜓(𝑡, 𝑟, 𝜃, 𝜙) can then be written as

𝜓(𝑡, 𝑟, 𝜃, 𝜙) =
∑︁
ℓ𝑚𝜔

𝑠𝑅ℓ𝑚𝜔 (𝑟)𝑠𝑆ℓ𝑚𝜔 (𝜃, 𝜙)𝑒−𝑖𝜔𝑡 , (4.5)

where ℓ labels an eigenfunction of the angular Teukolsky equation (c.f. App. 4.5).

While the radial Teukolsky equation in Eq. (4.3) looks benign, it is challenging to
solve it numerically in that form because the potential associated with the ODE is
long-ranged. To see this, we can re-cast Eq. (4.3) into the Schrödinger equation
form that is schematically given by

𝑑2𝑌

𝑑𝑟2
∗
+

(
𝜔2 −𝑉𝑌

)
𝑌 = 0, (4.6)

with 𝑟∗ being the tortoise coordinate for Kerr BHs defined by

𝑑𝑟∗
𝑑𝑟

=
𝑟2 + 𝑎2

Δ
, (4.7)

where 𝑌 is some function transformed from the Teukolsky function 𝑅, and 𝑉𝑌 is
the potential associated with the ODE [42]. For the radial Teukolsky equation,
the potential 𝑉𝑌 is long-ranged2 in the sense that 𝑉𝑌 ∼ −2𝑖𝑠𝜔/𝑟 as 𝑟 → ∞,
as opposed to a short-ranged potential that falls at 1/𝑟𝑛 with 𝑛 ≥ 2 (for an
illustration, see Fig. 4.3). The long-ranged-ness of the potential 𝑉T implies that
the two wave-like “left-going” and “right-going” solutions of Eq. (4.3) will have
different power-law dependences of 𝑟 in their wave amplitudes as 𝑟 →∞ [42, 48].
A direct numerical integration of Eq. (4.3) will suffer from the problem where
the solution with a higher power of 𝑟 in its asymptotic amplitude will overwhelm
the other solution and eventually take over the entire numerical solution due to
finite precision in computation when 𝑟 becomes large [42, 48]. In fact, the same
problem arises when 𝑟 → 𝑟+ (equivalently when Δ→ 0) where the left- and the

2A prime example of a long-ranged potential is the Coulomb potential in electrostatics.
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right-going waves have again different power-law dependences of Δ in their wave
amplitudes and the solution with a smaller power ofΔ in its asymptotic amplitude
will overwhelm the other one numerically as Δ → 0 [42, 48].3 Therefore, a
direct numerical integration, at least with the Boyer-Lindquist coordinates, is not
suitable for solving the radial Teukolsky equation accurately.

Fortunately, there are other techniques that can get around this issue and allow us
to solve for 𝑅(𝑟) accurately. One such technique is the Mano-Suzuki-Takasugi
(MST) method [49], originally as a low frequency expansion and later extended
by Fujita and Tagoshi [50, 51] as a numerical method for solving the homoge-
neous radial Teukolsky equation at arbitrary frequency. The Sasaki-Nakamura
(SN) formalism [52, 53, 54], which is the main topic of this paper (and subsequent
papers), also enables accurate and efficient numerical computations of homoge-
neous solutions to the radial Teukolsky equation. In short, Sasaki and Nakamura
devised a class of transformations, originally only for 𝑠 = −2, that convert the
radial Teukolsky equation with the long-ranged potential 𝑉T into another ODE
with a short-ranged potential. One can then solve the numerically better-behaved
ODE instead. The transformations were later generalized by Hughes [48] to work
for arbitrary integer spin-weight 𝑠.

Comparing to the MST method, the Generalized Sasaki-Nakamura (GSN) for-
malism is conceptually simpler and thus easier to implement. Practically speak-
ing, the MST method expresses a homogeneous solution to the radial Teukolsky
solution 𝑅(𝑟) in terms of special functions, which makes it ideal for analytical
work. However, for numerical work there are no closed-form expressions for
these special functions and oftentimes the evaluations of these special functions
involve solving some ODEs numerically [55]! Thus, efficiency-wise the GSN
formalism is not inferior, at the very least, to the MST method even at low fre-
quencies. On the other hand, while the extension of the MST method by Fujita
and Tagoshi [50, 51] allows the method to in principle compute homogeneous

3Refer to Sec. 4.2.2 for more details and the explicit dependence in 𝑟 and Δ for the asymptotic
wave amplitudes of 𝑅 approaching infinity and the horizon, respectively.
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solutions at arbitrary frequency, practically the authors of Refs. [50, 51] reported
that it was numerically challenging to find solutions when wave frequencies be-
come somewhat large. The GSN formalism, as we will show later, becomes even
more efficient in those cases at high frequencies.

Another appealing capability of the SN formalism has to do with computing
solutions to the inhomogeneous radial Teukolsky equation. The solutions encode
the physical information about the radiation emitted by a perturbed BH, say for
example the GW emitted when a test particle plunges towards a BH. Based on the
SN transformation (for the source-free case), the SN formalism has a prescription
to convert a Teukolsky source term that could be divergent, near infinity or the
horizon (or both), into a well-behaved source term.4

In this paper, we revamp the GSN formalism for the source-free case to take
full advantages of the formalism for computing radiation from a Kerr BH. We
explicitly show the GSN transformations for physically relevant radiation fields
(𝑠 = 0,±1,±2) that transform the radial Teukolsky equation with a long-ranged
potential into a new ODE, referred to as the GSN equation, which has a short-
ranged potential instead. To aid numerical computations using the GSN formal-
ism, we derive expressions for the higher-order corrections to the asymptotic
solutions of the GSN equation, improving the accuracy of numerical solutions.
We also derive expressions for the frequency-dependent conversion factors that
convert asymptotic amplitudes of GSN solutions to that of their corresponding
Teukolsky solutions, which are needed in wave scattering problems and compu-
tations of inhomogeneous solutions.

Furthermore, we describe an open-source implementation of the aforementioned
GSN formalism that is written in julia [56], a modern programming language
designed with numerical analysis and scientific computing in mind. The numer-
ical implementation leverages the re-formulation of the GSN equation, which is
a second-order linear ODE, into a form of first-order non-linear ODE known as

4For more discussions on solving the inhomogeneous radial Teukolsky equation using the
SN formalism, see Sec. 4.4.1.
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a Riccati equation to gain additional performance. Our new code is validated by
comparing results with an established code Teukolsky [57] that implements the
MST method.

The paper is structured as follows: In Sec. 4.2, we first review the GSN formalism
for the source-free case. We then derive the asymptotic behaviors and the
appropriate boundary conditions for solving the GSN equation. In Sec. 4.3, we
describe our numerical implementation of the GSN formalism and compare it
with the MST method. Finally, in Sec. 4.4 we summarize our results and briefly
discuss two applications of the GSN formalism developed in this paper, namely
laying the foundation for an efficient procedure to compute gravitational radiation
from BHs near both infinity and the horizon, and as an alternative method for
determining quasi-normal modes (QNMs). For busy readers, in App. 4.9 we give
“ready-to-use” expressions for both the GSN transformations, the asymptotic
solutions to the corresponding GSN equation, as well as the conversion factors
to convert between the Teukolsky and the GSN formalism.

Throughout this paper, we use geometric units 𝑐 = 𝐺 = 𝑀 = 1, and a prime to
denote differentiation with respect to 𝑟 .

4.2 Generalized Sasaki-Nakamura formalism
In this section, we first review, following Ref. [48] closely, the core idea behind
the Generalized Sasaki-Nakamura (GSN) formalism, i.e., performing a transfor-
mation, which is different for each spin weight 𝑠, from the Teukolsky function
𝑅(𝑟) into a new function 𝑋 (𝑟∗). This new function 𝑋 (𝑟∗) is referred to as the
GSN function, expressed in the tortoise coordinate 𝑟∗ (for Kerr BHs) instead of
the Boyer-Lindquist 𝑟-coordinate. A defining feature of the 𝑟∗-coordinate is that it
maps the horizon to 𝑟∗ → −∞ and infinity to 𝑟∗ →∞. The GSN transformations
were chosen such that the new ODE that 𝑋 (𝑟∗) satisfies, which is referred to as
the GSN equation, is more suitable for numerical computations than the original
radial Teukolsky equation in Eq. (4.3). We then study the leading asymptotic
behaviors, approaching the horizon 𝑟 → 𝑟+ (𝑟∗ → −∞) and approaching infinity
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𝑟 → ∞ (𝑟∗ → ∞), of both the GSN equation and the GSN transformations
to establish the boundary conditions to be imposed, as well as the conversion
factors for converting the complex amplitude of a GSN function to that of the
corresponding Teukolsky function at the two boundaries. To aid numerical com-
putations when using numerically-finite inner and outer boundaries (in place of
negative and positive infinity, respectively, in the 𝑟∗ coordinate), we also derive
the higher-order corrections to the asymptotic boundary conditions.

4.2.1 Generalized Sasaki-Nakamura transformation
The GSN transformation can be broken down into two parts. The first part
transforms the Teukolsky function 𝑅(𝑟) and its derivative 𝑅′(𝑟) into a new set
of functions (𝜒(𝑟), 𝜒′(𝑟)) as an intermediate step. In general, we write such a
transformation as

𝜒(𝑟) = 𝛼̃(𝑟)𝑅(𝑟) + 𝛽(𝑟)𝑅′(𝑟), (4.8)

where 𝛼̃(𝑟) and 𝛽(𝑟) are weighting functions that generate the transformation.
This kind of transformation is also known as a Generalized Darboux transforma-
tion [58], but differs from a “conventional” Darboux transformation in that the
weighting function 𝛽(𝑟) for a conventional Darboux transformation is a constant
instead of a function of 𝑟. For later convenience, we rescale 𝛽 by Δ𝑠+1 and write
𝛼(𝑟) = 𝛼̃(𝑟) and 𝛽(𝑟) = 𝛽(𝑟)Δ−(𝑠+1) . Differentiating Eq. (4.8) with respect to 𝑟
and packaging them into a matrix equation, we have [48](

𝜒

𝜒′

)
=

(
𝛼 𝛽Δ𝑠+1

𝛼′ + 𝛽𝑉TΔ
𝑠 𝛼 + 𝛽′Δ𝑠+1

) (
𝑅

𝑅′

)
, (4.9)

where we have used Eq. (4.3) to write 𝑅′′ in terms of 𝑅, 𝑅′ as

𝑅′′(𝑟) = 𝑉T
Δ
𝑅(𝑟) − 2(𝑠 + 1) (𝑟 − 1)

Δ
𝑅′(𝑟). (4.10)

The inverse transformation going from (𝜒(𝑟), 𝜒′(𝑟)) to (𝑅(𝑟), 𝑅′(𝑟)) is obtained
by inverting Eq. (4.9) and is given by [48](

𝑅

𝑅′

)
=

1
𝜂

(
𝛼 + 𝛽′Δ𝑠+1 −𝛽Δ𝑠+1

−(𝛼′ + 𝛽𝑉TΔ
𝑠) 𝛼

) (
𝜒

𝜒′

)
, (4.11)
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where 𝜂(𝑟) is the determinant of the above matrix, which is given by [48]

𝜂 = 𝛼

(
𝛼 + 𝛽′Δ𝑠+1

)
− 𝛽Δ𝑠+1 (𝛼′ + 𝛽𝑉TΔ

𝑠) . (4.12)

In the second step of the GSN transformation, we further rescale 𝜒(𝑟) to 𝑋 (𝑟∗)
(the motivation of doing so can be found in Ref. [48]) by

𝑋 (𝑟∗(𝑟)) = 𝜒(𝑟)
√︁
(𝑟2 + 𝑎2)Δ𝑠, (4.13)

where an analytical expression of 𝑟∗(𝑟) can be obtained by integrating Eq. (4.7)
(with a particular choice of the integration constant) such that the transformation
from 𝑟 to 𝑟∗ is given by

𝑟∗(𝑟) = 𝑟 +
2𝑟+

𝑟+ − 𝑟−
ln

(𝑟 − 𝑟+
2

)
− 2𝑟−
𝑟+ − 𝑟−

ln
(𝑟 − 𝑟−

2

)
. (4.14)

It should be noted that there is no simple analytical expression for the inverse
transformation 𝑟 = 𝑟 (𝑟∗) and one has to invert 𝑟∗ numerically, typically using
root-finding algorithms (for example see App. 4.6).

In short, the GSN transformation amounts to acting a linear differential operator
𝑠Λ on the Teukolsky radial function 𝑅(𝑟) that transforms it into the GSN function
𝑋 (𝑟∗).5 Schematically this means

𝑋 (𝑟∗(𝑟)) = 𝑠Λ [𝑅(𝑟)] . (4.15)

Using Eq. (4.9) and Eq. (4.13) we see that the 𝑠Λ operator is given by

𝑠Λ [𝑅(𝑟)] =
√︃(
𝑟2 + 𝑎2) Δ𝑠 [(

𝛼 + 𝛽Δ𝑠+1 𝑑
𝑑𝑟

)
𝑅(𝑟)

]
. (4.16)

While the inverse GSN transformation amounts to acting the inverse operator
𝑠Λ
−1 on the GSN function that gives back the Teukolsky function. Again,

schematically this can be written as

𝑅(𝑟 (𝑟∗)) = 𝑠Λ
−1 [𝑋 (𝑟∗)] . (4.17)

5This is a generalization of the Λ operator introduced in Ref. [40] for 𝑠 = −2 to any integer 𝑠.
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Using Eq. (4.11) and Eq. (4.13), we see that 𝑠Λ−1 is given by

𝑠Λ
−1 [𝑋 (𝑟∗)] =

1
𝜂


[(
𝛼 + 𝛽′Δ𝑠+1

)
− 𝛽Δ𝑠+1 𝑑

𝑑𝑟

]
𝑋 (𝑟∗)√︃(
𝑟2 + 𝑎2) Δ𝑠

 . (4.18)

Equipped with the transformation, one can show that by substituting 𝑅(𝑟), 𝑅′(𝑟)
given by Eq. (4.11) into Eq. (4.3), the intermediate function 𝜒(𝑟) satisfies the
following ODE, which is given by [48]

Δ−𝑠
(
Δ𝑠+1𝜒′

)′
− Δ𝐹1𝜒

′ −𝑈1𝜒 = 0, (4.19)

with

𝐹1(𝑟) =
𝜂′

𝜂
, (4.20)

𝑈1(𝑟) = 𝑉T +
1
𝛽Δ𝑠

[(
2𝛼 + 𝛽′Δ𝑠+1

)′
− 𝐹1

(
𝛼 + 𝛽′Δ𝑠+1

)]
. (4.21)

Further rewriting Eq. (4.19) in terms of 𝑋 and its first and second derivatives
with respect to 𝑟∗ using Eq. (4.13) and (4.7), one can show that 𝑋 (𝑟∗) satisfies
the GSN equation, which is given by [48]

𝑑2𝑋

𝑑𝑟2
∗
− F (𝑟) 𝑑𝑋

𝑑𝑟∗
−U(𝑟)𝑋 = 0, (4.22)

with the GSN potentials F (𝑟) andU(𝑟) given by [48]

F (𝑟) = Δ𝐹1

𝑟2 + 𝑎2 , (4.23)

U(𝑟) = Δ𝑈1(
𝑟2 + 𝑎2)2 + 𝐺

2 + Δ𝐺′

𝑟2 + 𝑎2 −
Δ𝐺𝐹1

𝑟2 + 𝑎2 , (4.24)

where
𝐺 =

𝑟Δ(
𝑟2 + 𝑎2)2 +

𝑠(𝑟 − 1)
𝑟2 + 𝑎2 .
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While the GSN equation given by Eq. (4.22) looks significantly more complicated
than the original radial Teukolsky equation given by Eq. (4.3), Eq. (4.22) actually
represents a collection of ODEs equivalent to Eq. (4.3) that we can engineer so
that the resulting ODE has a short-ranged potential and thus can be solved more
easily and efficiently with numerical algorithms.

Up to this point, the weighting functions 𝛼(𝑟) and 𝛽(𝑟) are arbitrary, apart from
being continuous and differentiable (so that Eq. (4.9) and Eq. (4.11) make sense).
However, in order to generate useful transformations, these functions have to
satisfy certain criteria. For example, they can be constrained by requiring that
when 𝑎 → 0, the function 𝑋 (𝑟∗) satisfies the Regge-Wheeler equation [52, 53,
54, 48]. Transformations for fields with different spin-weight 𝑠 that satisfy such
a constraint were first given in Ref. [48] and can be written in the form of

𝜒 =



(√︁
(𝑟2 + 𝑎2)Δ

) |𝑠 |
𝑔0(𝑟)𝐽−

[
𝑔1(𝑟)𝐽−

[
𝑔2(𝑟) . . . 𝐽−

[
𝑔|𝑠 | (𝑟)

(
1

√
𝑟2 + 𝑎2

) |𝑠 |
𝑅

] ] ]
, 𝑠 < 0

𝑔0(𝑟)𝑅, 𝑠 = 0(√︂
𝑟2 + 𝑎2

Δ

) 𝑠
𝑔0(𝑟)𝐽+

[
𝑔1(𝑟)𝐽+

[
𝑔2(𝑟) . . . 𝐽+

[
𝑔𝑠 (𝑟)

(
Δ

√
𝑟2 + 𝑎2

) 𝑠
𝑅

] ] ]
, 𝑠 > 0

,

(4.25)
where 𝐽± are two linear differential operators defined by

𝐽± =
𝑑

𝑑𝑟
± 𝑖 𝐾

Δ
. (4.26)

Inspecting Eq. (4.25), we see that for a spin-|𝑠 | field, the operator 𝐽± will act
on 𝑅(𝑟) |𝑠 |-many times, leading to an expression relating 𝜒(𝑟) linearly to
𝑅(𝑟), 𝑅′(𝑟), . . . , 𝑅( |𝑠 |) (𝑟). Higher-order derivatives 𝑅(𝑛) (𝑟) can be evaluated
in terms of 𝑅(𝑟), 𝑅′(𝑟) by using Eq. (4.10) successively for 𝑛 ≥ 2. Therefore,
by comparing Eq. (4.9) and Eq. (4.25), one can extract the appropriate 𝛼(𝑟) and
𝛽(𝑟) for different 𝑠 modulo some functions 𝑔𝑖 (𝑟) that remain unspecified.

These functions 𝑔𝑖 (𝑟) should reduce to non-vanishing constants when 𝑎 → 0 such
that Eq. (4.22) is exactly the Regge-Wheeler equation for Schwarzschild BHs. In
practice it was found that choosing 𝑔𝑖 (𝑟) as simple rational functions of 𝑟 leads
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to desirable short-ranged GSN potentials. With some particular choices of 𝑔𝑖 (𝑟),
which we explicitly show in App. 4.9 for fields with spin-weight 𝑠 = 0,±1,±2,
the expressions for 𝛼(𝑟) and 𝛽(𝑟) can be quite concise, and we can write 𝜂(𝑟) in
a compact form as

𝜂(𝑟) = 𝑐0 + 𝑐1/𝑟 + 𝑐2/𝑟2 + 𝑐3/𝑟3 + 𝑐4/𝑟4. (4.27)

It should be noted that if one chooses instead 𝑔𝑖 (𝑟) = 1, while the associated GSN
potentials are still short-ranged, the corresponding expression for 𝜂(𝑟) cannot be
written in the form of Eq. (4.27) and the weighting functions 𝛼(𝑟) and 𝛽(𝑟) are
long (except for 𝑠 = 0).

4.2.2 Asymptotic behaviors and boundary conditions of the Generalized
Sasaki-Nakamura equation

4.2.2.1 Teukolsky equation

Before studying the asymptotic behaviors of the GSN equation, it is educational
to first revisit the asymptotic behaviors of the radial Teukolsky equation so that
we can compare the behaviors of the two equations and understand the reasons
why it is preferred to use the GSN equation instead of the Teukolsky equation
when performing numerical computations.

It can be shown that (for example see Refs. [42, 40]) when 𝑟 → ∞ (𝑟∗ →∞)
the radial Teukolsky equation admits two (linearly-independent) asymptotic so-
lutions that go like 𝑅 ∼ 𝑟−1𝑒−𝑖𝜔𝑟∗ or 𝑅 ∼ 𝑟−(2𝑠+1)𝑒𝑖𝜔𝑟∗ . Similarly, when
𝑟 → 𝑟+ (𝑟∗ → −∞) the equation admits two (linearly-independent) asymptotic
solutions 𝑅 ∼ Δ−𝑠𝑒−𝑖𝑝𝑟∗ or 𝑅 ∼ 𝑒𝑖𝑝𝑟∗ , where we define a new wave frequency

𝑝 ≡ 𝜔 − 𝑚ΩH, (4.28)

withΩH ≡ 𝑎/(2𝑟+) being the angular velocity of the horizon (therefore intuitively
speaking 𝑝 is the “effective” wave frequency near the horizon).

Using these asymptotic solutions at the two boundaries, we can construct pairs
of linearly independent solutions. A pair that is commonly used in literature
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(and is physically motivated) is
{
𝑅in, 𝑅up} with 𝑅in satisfying a purely-ingoing

boundary condition at the horizon and 𝑅up satisfying a purely out-going boundary
condition at infinity.6 Mathematically,

𝑅in(𝑟) =

𝐵trans

T Δ−𝑠𝑒−𝑖𝑝𝑟∗ , 𝑟 → 𝑟+

𝐵inc
T
𝑒−𝑖𝜔𝑟∗

𝑟
+ 𝐵ref

T
𝑒𝑖𝜔𝑟∗

𝑟2𝑠+1 , 𝑟 →∞
, (4.29)

𝑅up(𝑟) =

𝐶ref

T Δ−𝑠𝑒−𝑖𝑝𝑟∗ + 𝐶inc
T 𝑒𝑖𝑝𝑟∗ , 𝑟 → 𝑟+

𝐶trans
T

𝑒𝑖𝜔𝑟∗

𝑟2𝑠+1 , 𝑟 →∞
. (4.30)

Here we follow mostly Ref. [38] in naming the coefficients/amplitudes in front
of each of the asymptotic solutions (except renaming 𝐶up in Ref. [38] to 𝐶inc

for a more symmetric form and adding a subscript T for Teukolsky formalism).
These amplitudes carry physical interpretations. Conceptually for the 𝑅in (𝑅up)
solution, imagine sending a “left-going” wave from infinity towards the horizon
(a “right-going” wave from the horizon towards infinity)7 with an amplitude 𝐵inc

T
(𝐶inc

T ). As the wave propagates through the potential barrier (see Fig. 4.1), part
of the incident wave is transmitted through the barrier and continues to travel
with an amplitude 𝐵trans

T (𝐶trans
T ), while part of the incident wave is ref lected by

the barrier and travels in the opposite direction with an amplitude 𝐵ref
T (𝐶ref

T ).
This setup is reminiscent to a potential well problem in quantum mechanics.8

In numerical computations, however, instead of starting with an incident wave,
it is easier to start with a transmitted wave, and then integrate outward (inward)
for 𝑅in (𝑅up) to extract the corresponding incidence and reflection amplitude at

6In some literature, for example Ref. [48], 𝑅in is also denoted by 𝑅H and 𝑅up also being
denoted by 𝑅∞.

7As we have assumed a harmonic time dependence of exp (−𝑖𝜔𝑡), radial functions of the form
exp (𝑖𝜔𝑟∗) are said to be traveling to the right since the waves would depend on the combination
𝑡 − 𝑟∗. Similarly, for radial functions of the form exp (−𝑖𝜔𝑟∗) they are said to be traveling to the
left since the waves would depend on the combination 𝑡 + 𝑟∗.

8However, unlike a potential well problem in quantum mechanics, the square of the reflection
amplitude and the square of the transmission amplitude (each normalized by the incidence
amplitude) does not have to add up to unity. This is known as super-radiance where energy is
being extracted from the black hole.
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incidence

<latexit sha1_base64="ChsqxIGmPlxwASXvzOlb3zLBf24=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqswUfCyLblxWsA9sh5JJ77ShmcyQZIQy9C/cuFDErX/jzr8xbWehrQcCh3PuJfecIBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCopeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx7cxvP6HSPJYPZpKgH9Gh5CFn1FjpUWEokM1ov1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7xlJxZZUDCWNknDZmrvzcyGmk9iQI7GVEz0sveTPzP66YmvPYzLpPUoGSLj8JUEBOTWXwy4MrmFRNLKFPc3krYiCrKjC2pZEvwliOvklat6l1WL+5rlfpNXkcRTuAUzsGDK6jDHTSgCQwkPMMrvDnaeXHenY/FaMHJd47hD5zPH+N4kRE=</latexit>

reflection

<latexit sha1_base64="650dsUAeuTiLcTnlwX35GcuiEBA=">AAAB83icbVBNS8NAEJ34WetX1aOXYBE8laTgx7HoxWMF+wFtKJvtpl26uwm7E6GE/g0vHhTx6p/x5r9x0+agrQ8GHu/NMDMvTAQ36Hnfztr6xubWdmmnvLu3f3BYOTpumzjVlLVoLGLdDYlhgivWQo6CdRPNiAwF64STu9zvPDFteKwecZqwQJKR4hGnBK3UR02Ukdzk/qBS9WreHO4q8QtShQLNQeWrP4xpKplCKogxPd9LMMiIRk4Fm5X7qWEJoRMyYj1LFZHMBNn85pl7bpWhG8XalkJ3rv6eyIg0ZipD2ykJjs2yl4v/eb0Uo5sg4ypJkSm6WBSlwsXYzQNwh1wzimJqCaGa21tdOiaaULQxlW0I/vLLq6Rdr/lXtcuHerVxW8RRglM4gwvw4RoacA9NaAGFBJ7hFd6c1Hlx3p2PReuaU8ycwB84nz+50ZIk</latexit>

transmission

(b) UP solution

Figure 4.1: Physical interpretations of the amplitudes in front of each of the
asymptotic solutions, for the IN solution (upper panel) and for the UP solution
(lower panel).

infinity (at the horizon). Inspecting Eq. (4.29) and (4.30), we can see why it is
challenging to accurately read off those amplitudes if one solves the Teukolsky
equation numerically using Eq. (4.3) directly as the amplitude of the incident and
the reflected wave are of different orders of magnitude. For the 𝑅in solution as
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𝑟 →∞, the ratio of the amplitude of the right-going wave to that of the left-going
wave is ∼ 1/𝑟2𝑠 (which becomes infinitely-large for 𝑠 < 0 and infinitely-small
for 𝑠 > 0). While for the 𝑅up solution as 𝑟 → 𝑟+, that ratio is ∼ Δ𝑠 (which
again becomes infinitely-large for 𝑠 < 0 and infinitely-small for 𝑠 > 0 as Δ→ 0
when 𝑟 → 𝑟+). This implies that when solving Eq. (4.3) numerically with a
finite precision, the numerical solution will be completely dominated by the
right-going wave and thus impossible to extract the amplitude for the left-going
wave.

To see that 𝑅in and 𝑅up are indeed linearly independent, we can calculate the
scaled WronskianW𝑅 of the two solutions, which is given by

W𝑅 = Δ𝑠+1
(
𝑅in𝑅up′ − 𝑅up𝑅in′

)
. (4.31)

Substituting the asymptotic forms of the two solutions 𝑅in,up in Eq. (4.29) and
(4.30), respectively, when 𝑟 →∞ gives the relation

W𝑅 = 2𝑖𝜔𝐶trans
T 𝐵inc

T , (4.32)

which is a non-zero constant9 (when 𝜔 ≠ 0) and thus they are indeed linearly
independent. If instead we substitute the asymptotic forms of 𝑅in,up when 𝑟 → 𝑟+

into Eq. (4.31), we obtain another relation forW𝑅, which is

W𝑅 =
[
2𝑖𝑝(𝑟2

+ + 𝑎2) + 2𝑠(𝑟+ − 1)
]
𝐵trans

T 𝐶inc
T . (4.33)

By equating Eq. (4.32) and Eq. (4.33), we get an identity relating (𝐵inc
T /𝐵

trans
T )

with (𝐶inc
T /𝐶

trans
T ). From a numerical standpoint, we can use this identity as a

sanity check of numerical solutions. More explicitly, the identity is given by

𝐵inc
T

𝐵trans
T

=
𝑝(𝑟2
+ + 𝑎2) − 𝑖𝑠(𝑟+ − 1)

𝜔

𝐶inc
T

𝐶trans
T

. (4.34)

It also means that we technically only need to read off
{
𝐵ref

T , 𝐵inc
T , 𝐶ref

T
}

or{
𝐵ref

T , 𝐶ref
T , 𝐶inc

T
}

from numerical solutions since the rest of the amplitudes are
9Scaled Wronskians are by construction constants and are not functions of the independent

variable. For more details, see App. 4.7.
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either fixed by the normalization convention (which will be covered shortly be-
low), or by the constant scaled Wronskian which can be computed at an arbitrary
location within the domain of the numerical solutions.

4.2.2.2 Generalized Sasaki-Nakamura equation

Now we turn to the GSN equation. Suppose the GSN transformation is of the
form of Eq. (4.25) and satisfies Eq. (4.27), the GSN potentials F (𝑟) and U(𝑟)
then have the following asymptotic behaviors (see Fig. 4.2 for a visualization)

F (𝑟) ∼


0 + O(𝑟 − 𝑟+) 𝑟 → 𝑟+
−𝑐1/𝑐0

𝑟2 + O(𝑟−3) 𝑟 →∞
, (4.35)

U(𝑟) ∼

−𝑝2 + O(𝑟 − 𝑟+) 𝑟 → 𝑟+

−𝜔2 + O(𝑟−2) 𝑟 →∞
. (4.36)

To see more clearly that the GSN potentials are indeed short-ranged, we re-
cast the GSN equation into the same form as Eq. (4.6) by writing 𝑌 ≡ 𝑋/√𝜂.
Fig. 4.3 shows the magnitude of the potential𝑉𝑌 (𝑟) associated with the Teukolsky
equation (blue) and the GSN equation (orange), respectively. Specifically we are
showing the potentials of the 𝑠 = −2, ℓ = 2, 𝑚 = 2 mode with 𝑎 = 0.7 and 𝜔 = 1
as examples. We can see that the potential for the Teukolsky equation decays
only at 1/𝑟 when 𝑟 → ∞ (and hence long-ranged) while the potential for the
GSN equation decays at 1/𝑟2 when 𝑟 →∞ (and hence short-ranged).

The asymptotic behaviors of the GSN potentials imply that as 𝑟 → 𝑟+, the GSN
equation behaves like a simple wave equation 𝑑2𝑋/𝑑𝑟2

∗ + 𝑝2𝑋 = 0, admitting
simple plane-wave solutions 𝑒±𝑖𝑝𝑟∗ . Similarly when 𝑟 → ∞, the GSN equation
behaves like 𝑑2𝑋/𝑑𝑟2

∗ + 𝜔2𝑋 = 0, again admitting plane-wave solutions 𝑒±𝑖𝜔𝑟∗ .
Therefore, we can similarly construct the pair of linearly-independent solutions{
𝑋 in, 𝑋up} that satisfies the purely-ingoing boundary condition at the horizon

and the purely-outgoing boundary condition at infinity, respectively, using these
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Figure 4.2: Asymptotic behaviors of the GSN potentials F (𝑟) and U(𝑟). Both
potentials quickly approach to their corresponding asymptotic values. In particu-
lar,U(𝑟) approaches to −𝑝2 near the horizon and −𝜔2 near infinity, respectively.

asymptotic solutions. Mathematically,

𝑋 in(𝑟∗) =

𝐵trans

SN 𝑒−𝑖𝑝𝑟∗ 𝑟∗ → −∞

𝐵inc
SN𝑒
−𝑖𝜔𝑟∗ + 𝐵ref

SN𝑒
𝑖𝜔𝑟∗ 𝑟∗ →∞

, (4.37)

𝑋up(𝑟∗) =

𝐶ref

SN𝑒
−𝑖𝑝𝑟∗ + 𝐶inc

SN𝑒
𝑖𝑝𝑟∗ 𝑟∗ → −∞

𝐶trans
SN 𝑒𝑖𝜔𝑟∗ 𝑟∗ →∞

. (4.38)

Here the amplitudes in front of each of the asymptotic solutions have the same
physical interpretations as in Eq. (4.29) and (4.30) (c.f. Fig. 4.1). Again by
inspecting Eq. (4.37) and (4.38), we can see that it is easy to accurately read
off those amplitudes as the ratio of the asymptotic amplitude of the incident
wave to that of the reflected wave at both boundaries is ∼ O(1), instead of being
infinitely-large or infinitely-small in the Teukolsky formalism.

Similar to the case of Teukolsky functions, we can also define a scaled Wronskian
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Figure 4.3: Potential 𝑉𝑌 (𝑟) associated with the Teukolsky equation and the GSN
equation. As 𝑟 → ∞, the potential for the Teukolsky equation decays at 1/𝑟
and thus it is long-ranged, while the potential for the GSN equation decays at a
steeper 1/𝑟2 and hence it is short-ranged.

W𝑋 for the GSN functions, namely

W𝑋 =
1
𝜂

[
𝑋 in(𝑑𝑋up/𝑑𝑟∗) − (𝑑𝑋 in/𝑑𝑟∗)𝑋up] , (4.39)

which is also a constant. Substituting the asymptotic forms of 𝑋 in,up in Eq. (4.37)
and (4.38), respectively, as 𝑟∗ → ∞, and the fact that 𝜂(𝑟) → 𝑐0 as 𝑟 → ∞, it
can be shown that

W𝑋 =
2𝑖𝜔𝐶trans

SN 𝐵inc
SN

𝑐0
. (4.40)

Equivalently, we can also use the asymptotic forms of 𝑋 in,up as 𝑟∗ → −∞, and
the fact that 𝜂(𝑟 → 𝑟+) ∼ O(1) to show that

W𝑋 =
2𝑖𝑝𝐵trans

SN 𝐶inc
SN

𝜂(𝑟+)
, (4.41)

We can again equate Eq. (4.40) and Eq. (4.41) to get an identity relating 𝐵inc
SN/𝐵

trans
SN

with𝐶inc
SN/𝐶

trans
SN to check the sanity of numerical solutions. Explicitly, the identity
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is given by
𝐵inc

SN
𝐵trans

SN
=

𝑝𝑐0
𝜔𝜂(𝑟+)

𝐶inc
SN

𝐶trans
SN

. (4.42)

An interesting and useful relation between the scaled Wronskians for GSN func-
tionsW𝑋 and that for Teukolsky functionsW𝑅 (with the same 𝑠, ℓ, 𝑚, 𝑎, 𝜔) is
that despite having different definitions (see Eq. (4.31) forW𝑅 and Eq. (4.39) for
W𝑋), they are actually identical, i.e.,

W𝑋 =W𝑅, (4.43)

where we give a derivation in App. 4.7. This means that GSN transformations
(not limited only to our particular choices of 𝑔𝑖) are scaled-Wronskian-preserving.
This also means that one can compute the QNM spectra of Kerr BHs using either
the Teukolsky formalism or the GSN formalism (see Sec. 4.4.2).

Since one can freely rescale a homogeneous solution by a constant factor, we use
this freedom to set 𝐵trans

SN = 𝐶trans
SN = 1, i.e., we normalize our solutions to the

GSN equation to have a unit SN transmission amplitude. However, the common
normalization convention in literature is to normalize 𝑅in(𝑟) and 𝑅up(𝑟) to each
have a unit transmission amplitude, i.e., 𝐵trans

T = 𝐶trans
T = 1. In fact, one can relate

incidence/reflection/transmission amplitudes in the GSN formalism to that in the
Teukolsky formalism and vice versa by frequency-dependent conversion factors.
To see why this is the case and to obtain the conversion factors, note that when
going from a Teukolsky function to the corresponding GSN function, we have
the 𝑠Λ operator that satisfies

𝑠Λ
[
𝑓 (𝑟)𝑒±𝑖𝑘𝑟∗

]
∝ 𝑒±𝑖𝑘𝑟∗ , (4.44)

and vice versa with the inverse operator 𝑠Λ−1 that satisfies

𝑠Λ
−1 [

𝑓 (𝑟)𝑒±𝑖𝑘𝑟∗
]
∝ 𝑒±𝑖𝑘𝑟∗ , (4.45)

for any differentiable function 𝑓 (𝑟) and 𝑘 is any non-zero constant, since both 𝑠Λ

and 𝑠Λ
−1 are linear differential operators. This means that we can simply match
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the asymptotic solution in one formalism with the corresponding asymptotic
solution with the same exponential dependence in another formalism transformed
by either 𝑠Λ or 𝑠Λ−1 at the appropriate boundary.

For example, to get the conversion factor 𝐶trans
T /𝐶trans

SN , we match the asymptotic
solution as 𝑟 →∞ for the Teukolsky and the GSN formalism like

𝐶trans
SN

[
1 + O

(
1
𝑟

)]
𝑒𝑖𝜔𝑟∗ = 𝐶trans

T 𝑠Λ

{
1

𝑟2𝑠+1

[
1 + O

(
1
𝑟

)]
𝑒𝑖𝜔𝑟∗

}
, (4.46)

where the expression on the RHS, to the leading order, should be ∼ O (1) 𝑒𝑖𝜔𝑟∗ .
We can then obtain the desired conversion factor by taking the limit as

𝐶trans
SN
𝐶trans

T
= lim
𝑟→∞ 𝑠Λ

{
1

𝑟2𝑠+1

[
1 + O

(
1
𝑟

)]
𝑒𝑖𝜔𝑟∗

}
𝑒−𝑖𝜔𝑟∗ , (4.47)

and we know that the expression on the RHS does not depend on 𝑒±𝑖𝜔𝑟∗ using
Eq. (4.44) so that the limit could be determinate. Equivalently, we can also match
the asymptotic solution as 𝑟 →∞ in the two formalism like this instead

𝐶trans
T

1
𝑟2𝑠+1

[
1 + O

(
1
𝑟

)]
𝑒𝑖𝜔𝑟∗ = 𝐶trans

SN 𝑠Λ
−1

{[
1 + O

(
1
𝑟

)]
𝑒𝑖𝜔𝑟∗

}
, (4.48)

where the expression on the RHS, to the leading order, should be∼ O (1) 𝑟−(2𝑠+1)𝑒𝑖𝜔𝑟∗ .
Similarly we can obtain

𝐶trans
T
𝐶trans

SN
= lim
𝑟→∞ 𝑠Λ

−1
{[

1 + O
(
1
𝑟

)]
𝑒𝑖𝜔𝑟∗

}
𝑟2𝑠+1𝑒−𝑖𝜔𝑟∗ , (4.49)

and again we know that the RHS of the expression does not depend on 𝑒±𝑖𝜔𝑟∗

using Eq. (4.45) so that the limit could be determinate.

We find that sometimes it is more convenient to compute the limit in the form of
Eq. (4.47) than to use the limit in the form of Eq. (4.49) in order to find the same
conversion factor, and in some cases the reverse is true even though formally both
expressions should give the same answer. In fact, using the identity between the
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scaled Wronskian of the GSN functionsW𝑋 and that of the Teukolsky functions
W𝑅, we can simplify expressions for these conversion factors by equating expres-
sions ofW𝑋 in terms of the incidence and transmission amplitudes in the GSN
formalism with expressions ofW𝑅 in terms of those amplitudes in the Teukolsky
formalism. In particular, we get identities relating these conversion factors as

𝐶trans
T

𝐶trans
SN

𝐵inc
T

𝐵inc
SN

=
1
𝑐0
, (4.50)

𝐵trans
T
𝐵trans

SN

𝐶inc
T

𝐶inc
SN

=
2𝑖𝑝

𝜂(𝑟+)
[
2𝑖𝑝(𝑟2

+ + 𝑎2) + 2𝑠(𝑟+ − 1)
] . (4.51)

These identities imply that we only need to derive either
𝐶trans

T
𝐶trans

SN
or
𝐵inc

T

𝐵inc
SN

and either

𝐵trans
T
𝐵trans

SN
or
𝐶inc

T

𝐶inc
SN

.

4.2.2.3 Higher-order corrections to asymptotic behaviors

In Eq. (4.37) and (4.38), we use the asymptotic solutions of the GSN equation
only to their leading order (i.e., O(𝑟0)). However, in order to obtain accurate
numerical solutions solved on a numerically-finite interval (e.g.,

[
𝑟 in
∗ , 𝑟

out
∗

]
), it

is more efficient to include higher-order corrections to the asymptotic solutions
than to simply set 𝑟 in

∗ as a small number and 𝑟out
∗ as a large number. To find such

higher-order corrections, we use an ansatz of the form

𝑋 (𝑟∗) ∼

𝑓∞± (𝑟)𝑒±𝑖𝜔𝑟∗ , 𝑟∗ →∞

𝑔H
± (𝑟)𝑒±𝑖𝑝𝑟∗ , 𝑟∗ → −∞

, (4.52)

where the plus (minus) sign corresponds to the out/right-going (in/left-going)
mode, and the superscript ∞ (H) corresponds to the outer (inner) boundary
at infinity (the horizon). Substituting Eq. (4.52) back to the GSN equation in
Eq. (4.22), we get four second-order ODEs for each of the functions 𝑓∞± (𝑟) and
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𝑔H
± (𝑟) (c.f. Eq. (4.89)). We look for their formal series expansions of the form

𝑓∞± (𝑟) =
∞∑︁
𝑗=0

C∞±, 𝑗
(𝜔𝑟) 𝑗

, (4.53)

𝑔H
± (𝑟) =

∞∑︁
𝑗=0
CH
±, 𝑗 [𝜔(𝑟 − 𝑟+)] 𝑗 , (4.54)

where C∞/H±, 𝑗 are the expansion coefficients. In App. 4.8, we show how one can
compute these coefficients using recurrence relations. Such recurrence relations
for some of the spin weights (𝑠 = 0 and 𝑠 = −2) can also be found in literature
(e.g., Refs. [59, 60, 61]).10 In App. 4.9, we show explicitly the expressions of the
expansion coefficients C∞±, 𝑗 for 𝑗 = 0, 1, 2, 3.

With the explicit GSN transformation and hence the GSN potentials and the GSN
equation as discussed in Sec. 4.2.1, as well as the asymptotic solutions to the
GSN equation and the conversion factors for converting asymptotic amplitudes
between the Teukolsky and the GSN formalism as discussed in Sec. 4.2.2, we
now have all the necessary ingredients to use the GSN formalism to perform
numerical computations. In the next section, we describe the recipes to use those
ingredients to get homogenous solutions to both the Teukolsky and the GSN
equation.

4.3 Numerical implementation
In principle, a frequency-domain Teukolsky/GSN equation solver can be imple-
mented in any programming language with the help of the ingredients in Sec. 4.2
and App. 4.9. Here we describe an open-source implementation of the GSN
formalism that is written in julia [56], namely GeneralizedSasakiNaka-
mura.jl.11 Instead of fixing a particular choice of an numerical integrator for

10Unfortunately the expansion coefficients given in Refs. [48] are incorrect except for the case
with 𝑠 = 0 because the author made an incorrect assumption that the GSN potentials are purely
real, which is not true in general.

11https://github.com/ricokaloklo/GeneralizedSasakiNakamura.jl

https://github.com/ricokaloklo/GeneralizedSasakiNakamura.jl
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solving Eq. (4.22), the code can be used in conjunction with other julia pack-
ages, such as DifferentialEquations.jl [62], which implements a suite of
ODE solvers. The GSN potentials F (𝑟),U(𝑟) for 𝑠 = 0,±1,±2 are implemented
as pure functions in julia, and can be evaluated to arbitrary precision. This
also allows us to use automatic differentiation (AD) to compute corrections to
the asymptotic boundary conditions at arbitrary order (see App. 4.8).12

4.3.1 Numerical solutions to the Generalized Sasaki-Nakamura equation
4.3.1.1 Rewriting Generalized Sasaki-Nakamura functions as complex

phase functions

Instead of solving directly for the GSN function 𝑋 (𝑟∗), we follow Ref. [65] and
introduce a complex phase function Φ(𝑟∗) such that

𝑋 (𝑟∗) ≡ exp [𝑖Φ (𝑟∗)] . (4.55)

Substituting Eq. (4.55) into Eq. (4.22), we obtain a first-order non-linear differ-
ential equation13 as

𝑑

𝑑𝑟∗

(
𝑑Φ

𝑑𝑟∗

)
= −𝑖U + F

(
𝑑Φ

𝑑𝑟∗

)
− 𝑖

(
𝑑Φ

𝑑𝑟∗

)2
. (4.56)

12In particular, we use two variants of AD. The first type is referred to as the forward-mode AD
as implemented in ForwardDiff.jl [63]. However, the computational cost of using the forward-
mode AD to compute higher-order derivatives scales exponentially with the order. Therefore,
for computing corrections to the asymptotic boundary conditions we switch to the second type,
which is based on Taylor expansion as implemented in TaylorSeries.jl [64], where the cost
only scales linearly with the order of the derivatives.

13Unlike what was claimed in App. 3 of Ref. [65], we find that the ODE for both the real
and the imaginary part of Φ can be integrated immediately to first-order (non-linear) differential
equations in (𝑑ΦRe/𝑑𝑟∗, 𝑑ΦIm/𝑑𝑟∗), which is expected since solutions to a homogeneous ODE
are determined only up to a multiplicative factor. Combining the differential equations for
𝑑ΦRe/𝑑𝑟∗ and 𝑑ΦIm/𝑑𝑟∗ such that 𝑑Φ/𝑑𝑟∗ = (𝑑ΦRe/𝑑𝑟∗ + 𝑖𝑑ΦIm/𝑑𝑟∗) will give Eq. (4.56).



35

Such a differential equation is also known as a Riccati equation. Furthermore,
the conversion between (𝑋, 𝑑𝑋/𝑑𝑟∗) and (Φ, 𝑑Φ/𝑑𝑟∗) is given by

Φ = −𝑖 log (𝑋) , (4.57)
𝑑Φ

𝑑𝑟∗
= −𝑖 𝑑𝑋/𝑑𝑟∗

𝑋
. (4.58)

While at first glance it may seem unwise to turn a linear problem into a non-
linear problem, solving Eq. (4.56) numerically presents no additional challenge
compared to solving directly Eq. (4.22). In fact, there are advantages in writing
the GSN function in the form of Eq. (4.55), especially when |𝜔 | is large. Recall
that asymptotically (both near infinity and near the horizon) GSN functions
behave like plane waves, i.e., 𝑋 oscillates like exp (±𝑖𝑘𝑟∗) where |𝑘 | is the
oscillation frequency (assuming 𝑘 is real, and recall that |𝑘 | → |𝜔| when 𝑟∗ →∞
and |𝑘 | → |𝑝 | when 𝑟∗ → −∞). Therefore, in order to properly resolve the
oscillations, the step size 𝛿𝑟∗ for the numerical integrator needs to be much less
than the wavelength, i.e., 𝛿𝑟∗ ≪ 1/|𝑘 |. This can get quite small for large |𝑘 |,
which results in taking a longer time to integrate Eq. (4.22) for a fixed accuracy.

Fortunately this is not the case when solving for the complex phase function
Φ(𝑟∗) since it is varying much slower (spatially) than the GSN function 𝑋 (𝑟∗).
Intuitively this is because the complex exponential in Eq. (4.55) accounts for
most of the oscillatory behaviors. This is especially true if we consider the
asymptotic plane-wave-like solutions of the GSN equation, where the real part
of the phase function ΦRe(𝑟∗) ∼ 𝑘𝑟∗ is linear in 𝑟∗, and the imaginary part of the
phase function ΦIm(𝑟∗) is constant in 𝑟∗.

However, this might not be the case when we consider general solutions to the
GSN equation where the left-going and the right-going modes are superimposed,
for example the 𝑋 in,up pair as shown in Eq. (4.37) and Eq. (4.38). That being said,
the variation of the complex phase function due to the beating or interference
between the left-/right-going modes depends on their relative amplitude (which
is in general a complex number and hence introduces a phase shift). In particular,
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physically Kerr BHs are much more permeable to waves at high frequencies (see
Fig. 4.6). This means that at those high frequencies, the relative amplitudes of
the left-/right-going modes are going to be extreme and hence the beating will
be suppressed.

4.3.1.2 Solving 𝑋 in,up as initial value problems

Recall that there is a pair of linearly-independent solutions to the GSN equation
that is of particular interest, namely

{
𝑋 in, 𝑋up}, where 𝑋 in satisfies the boundary

condition that it is purely in-going at the horizon as given by Eq. (4.37), and 𝑋up

satisfies the boundary condition that it is purely out-going at infinity as given by
Eq. (4.38), respectively.

Despite the usage of the term “boundary condition”, what we are really enforcing
is the asymptotic form of a solution at one of the two boundaries, 𝑋 in at the
horizon and 𝑋up at infinity, respectively. This can be formulated as an initial
value problem. Explicitly for 𝑋̂ in, where a hat denotes a numerical solution
hereafter, we integrate Eq. (4.56) outwards from the (finite) inner boundary 𝑟 in

∗
to the (finite) outer boundary 𝑟out

∗ with

𝑋̂ (𝑟 in
∗ ) = 𝑔H

−

(
𝑟 (𝑟 in
∗ )

)
𝑒−𝑖𝑝𝑟

in
∗ , (4.59)

𝑑𝑋̂ (𝑟 in
∗ )

𝑑𝑟∗
= −𝑖𝑝𝑋̂ (𝑟 in

∗ ) +
𝑑𝑟

𝑑𝑟∗

𝑑𝑔H
− (𝑟)
𝑑𝑟

����
𝑟=𝑟 (𝑟 in

∗ )
𝑒−𝑖𝑝𝑟

in
∗ , (4.60)

as the initial values at 𝑟∗ = 𝑟 in
∗ after converting them to Φ̂in and 𝑑Φ̂in/𝑑𝑟∗ using

Eq. (4.57) and Eq. (4.58), respectively. Similarly for 𝑋̂up, we integrate Eq. (4.56)
inwards from the outer boundary 𝑟out

∗ to the inner boundary 𝑟 in
∗ with

𝑋̂ (𝑟out
∗ ) = 𝑓∞+

(
𝑟 (𝑟out
∗ )

)
𝑒𝑖𝜔𝑟

out
∗ , (4.61)

𝑑𝑋̂ (𝑟out
∗ )

𝑑𝑟∗
= 𝑖𝜔𝑋̂ (𝑟out

∗ ) +
𝑑𝑟

𝑑𝑟∗

𝑑𝑓∞+ (𝑟)
𝑑𝑟

����
𝑟=𝑟 (𝑟out

∗ )
𝑒𝑖𝜔𝑟

out
∗ , (4.62)

as the initial values at 𝑟∗ = 𝑟out
∗ after converting them to Φ̂up and 𝑑Φ̂up/𝑑𝑟∗ using

again Eq. (4.57) and Eq. (4.58) respectively. Note that for both 𝑋̂ in and 𝑋̂up, we
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have chosen the normalization convention of a unit transmission amplitude, i.e.,
𝐵trans

SN = 𝐶trans
SN = 1. After solving Eq. (4.56) numerically for a complex phase

function Φ̂(𝑟∗) and its derivative 𝑑Φ̂/𝑑𝑟∗ on a grid of 𝑟∗ ∈ [𝑟 in
∗ , 𝑟

out
∗ ], we first

convert them back to 𝑋̂ and 𝑑𝑋̂/𝑑𝑟∗ using Eq. (4.55) and Eq. (4.58), respectively.

4.3.1.3 Transforming Generalized Sasaki-Nakamura functions to
Teukolsky functions

In principle, if we want to transform a GSN function 𝑋̂ back to a Teukolsky
function, we simply need to apply the inverse operator 𝑠Λ

−1 on the numerical
GSN function. Since we have the numerical solutions to both 𝑋̂ and 𝑑𝑋̂/𝑑𝑟∗, the
inverse operator can actually be written as a matrix multiplication to the column
vector

(
𝑋̂, 𝑑 𝑋̂/𝑑𝑟∗

)𝑇 .

First, consider the conversion from
(
𝑋̂, 𝑑 𝑋̂/𝑑𝑟∗

)𝑇 to
(
𝑋̂, 𝑋̂′

)𝑇 . This can be done
by left-multiplying the column vector with the matrix

𝑀1 =
©­«
1 0

0
𝑟2 + 𝑎2

Δ

ª®¬ . (4.63)

Next, consider the transformation from
(
𝑋̂, 𝑋̂′

)𝑇 to ( 𝜒̂, 𝜒̂′)𝑇 using Eq. (4.13).
Again this can be done by left-multiplying the column vector

(
𝑋̂, 𝑋̂′

)𝑇 by the
matrix

𝑀2 =

©­­­­­­­«

1√︃(
𝑟2 + 𝑎2) Δ𝑠 0

©­­«
1√︃(

𝑟2 + 𝑎2) Δ𝑠 ª®®¬
′

1√︃(
𝑟2 + 𝑎2) Δ𝑠

ª®®®®®®®¬
. (4.64)

At last, the transformation from ( 𝜒̂, 𝜒̂′)𝑇 to (𝑅, 𝑅′)𝑇 is given by the matrix
equation as shown in Eq. (4.11), where we now explicitly define the matrix as

𝑀3 =
1
𝜂

(
𝛼 + 𝛽′Δ𝑠+1 −𝛽Δ𝑠+1

−(𝛼′ + 𝛽𝑉TΔ
𝑠) 𝛼

)
. (4.65)
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The overall transformation from 𝑋̂ and 𝑑𝑋̂/𝑑𝑟∗ to 𝑅 and 𝑅′ is thus given by the
matrix equation (

𝑅̂

𝑅̂′

)
= 𝑀3𝑀2𝑀1

©­­«
𝑋̂

𝑑 𝑋̂

𝑑𝑟∗

ª®®¬ . (4.66)

By multiplying
(
𝑋̂, 𝑑 𝑋̂/𝑑𝑟∗

)𝑇 with the overall transformation matrix 𝑀3𝑀2𝑀1

that we explicitly simplified in order to facilitate cancellations between terms.
This allows us to accurately convert numerical GSN functions to Teukolsky
functions close to the horizon (Δ → 0) when some of the terms, such as 𝛼(𝑟),
diverge near the horizon.

4.3.2 Extracting incidence and reflection amplitudes from numerical solu-
tions

Apart from evaluating a GSN or a Teukolsky function numerically on a grid
of 𝑟- or 𝑟∗-coordinates, it is also useful to be able to determine the incidence
and the reflection amplitude at a particular frequency 𝜔 (see Sec. 4.2.2 for a
theoretical discussion) from a numerical solution accurately. This is essential
for constructing inhomogeneous solutions using the Green’s function method
(e.g., calculating gravitational waveforms observed at infinity) and for scattering
problems (e.g., calculating the greybody factor of a BH as a function of the wave
frequency 𝜔).

Since we only have numerical solutions on a finite grid of 𝑟∗ ∈ [𝑟 in
∗ , 𝑟

out
∗ ], in order

to determine the reflection amplitude 𝐵̂ref
SN and the incidence amplitude 𝐵̂inc

SN of a
𝑋̂ in solution in the GSN formalism we solve the system of linear equations at the
outer boundary 𝑟out

∗ that

©­­«
𝑓∞+ (𝑟)𝑒𝑖𝜔𝑟∗ 𝑓∞− (𝑟)𝑒−𝑖𝜔𝑟∗

(𝑑𝑓∞+ /𝑑𝑟∗ + 𝑖𝜔 𝑓∞+ )𝑒𝑖𝜔𝑟∗ (𝑑𝑓∞− /𝑑𝑟∗ − 𝑖𝜔 𝑓∞− )𝑒−𝑖𝜔𝑟∗

ª®®¬
�������
𝑟out
∗

©­­«
𝐵̂ref

SN

𝐵̂inc
SN

ª®®¬ =
©­­«
𝑋̂ in

𝑑𝑋̂ in

𝑑𝑟∗

ª®®¬
�������
𝑟out
∗

,

(4.67)
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where we impose continuity of the numerical solution ( 𝑋̂ in, 𝑑 𝑋̂ in/𝑑𝑟∗) with
the analytical asymptotic solution near infinity at 𝑟∗ = 𝑟out

∗ . Similarly, we use
the same scheme to determine the reflection amplitude 𝐶̂ref

SN and the incidence
amplitude 𝐶̂inc

SN of a 𝑋̂up solution in the GSN formalism at the inner boundary 𝑟 in
∗

by solving

©­­«
𝑔H
+ (𝑟)𝑒𝑖𝑝𝑟∗ 𝑔H

− (𝑟)𝑒−𝑖𝑝𝑟∗

(𝑑𝑔H
+ /𝑑𝑟∗ + 𝑖𝑝𝑔H

+ )𝑒𝑖𝑝𝑟∗ (𝑑𝑔H
−/𝑑𝑟∗ − 𝑖𝑝𝑔H

− )𝑒−𝑖𝑝𝑟∗

ª®®¬
�������
𝑟 in
∗

©­­«
𝐶̂inc

SN

𝐶̂ref
SN

ª®®¬ =
©­­«
𝑋̂up

𝑑𝑋̂up

𝑑𝑟∗

ª®®¬
�������
𝑟 in
∗

,

(4.68)
where again we impose continuity of the numerical solution ( 𝑋̂up, 𝑑 𝑋̂up/𝑑𝑟∗) to
the asymptotic solution near the horizon at 𝑟∗ = 𝑟 in

∗ .14

Indeed, the inclusion of the higher-order corrections 𝑓∞± at the outer boundary
and 𝑔H

± at the inner boundary, respectively, allow us to get very good agreements
on the incidence and the reflection amplitudes over a range of frequencies with
the MST method, which we will show in the next sub-section.

4.3.3 Numerical results
Here we showcase some numerical results obtained using our Generalized-
SasakiNakamura.jl implementation. Unless otherwise specified, we use the
ODE solver Vern9 [66] as implemented in DifferentialEquations.jl [62],
and we include corrections to the asymptotic solutions at infinity up to the third
order (i.e., truncating the sum in Eq. (4.53) at 𝑗 = 3) and that at the horizon
only to the zeroth order (i.e., taking only the leading term 𝑗 = 0 in the sum in

14This matching procedure at the two numerical boundaries actually allows us to obtain “semi-
analytical” GSN functions (and by extension Teukolsky functions) that are accurate everywhere,
even outside the grid [𝑟 in

∗ , 𝑟
out
∗ ]. Using 𝑋 in as an example, for 𝑟∗ < 𝑟 in

∗ the analytical ansatz
𝑔H
− (𝑟 (𝑟∗))𝑒−𝑖 𝑝𝑟∗ can be used. This is because the numerical solution 𝑋̂ in was constructed by

using that ansatz to compute the appropriate initial conditions. While for 𝑟∗ > 𝑟out
∗ , the linear

combination of the analytical ansatzes 𝐵̂ref
SN 𝑓

∞
+ (𝑟 (𝑟∗))𝑒𝑖𝜔𝑟∗ + 𝐵̂inc

SN 𝑓
∞
− (𝑟 (𝑟∗))𝑒−𝑖𝜔𝑟∗ can be used,

where the reflection and the incidence coefficient were constructed to ensure continuity with the
numerical solution.
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Eq. (4.54)). We set the numerical inner boundary at 𝑟 in
∗ = −50𝑀 15 and the outer

boundary at 𝑟out
∗ = 1000𝑀 . We use double-precision floating-point numbers

throughout, and both the “absolute tolerance” abstol (roughly the error around
the zero point) and the “relative tolerance” reltol (roughly the local error)
passed to the numerical ODE solver are set to 10−12.

4.3.3.1 Numerical solutions

Fig. 4.4 shows the IN solution in the GSN formalism of the 𝑠 = −2, ℓ = 2, 𝑚 = 2
mode for a BH with 𝑎/𝑀 = 0.7 and two different values of𝜔, in terms of the GSN
function 𝑋 and the complex frequency function 𝑑Φ/𝑑𝑟∗. Recall that for an IN
solution, it is purely in-going at the horizon. We see from the figure that for both
𝑀𝜔 = 0.5 (upper panel) and 𝑀𝜔 = 1 (lower panel), near the horizon, 𝑑Φ̂/𝑑𝑟∗ is
flat and approaches to the imposed asymptotic value −𝑝2, while 𝑋̂ is oscillating
with the frequency 𝑝. On the other hand when 𝑟∗ → ∞, the IN solution is an
admixture of the left- and the right-going modes where their relative amplitude,
𝐵ref

SN/𝐵
inc
SN, is𝜔-dependent. We see from Fig. 4.4a that both 𝑋̂ and 𝑑Φ̂/𝑑𝑟∗ exhibit

oscillatory behaviors, and that the oscillation frequency for 𝑑Φ̂/𝑑𝑟∗ from beating
is twice of that for 𝑋̂ . While we see from Fig. 4.4b that 𝑋̂ is oscillatory but
𝑑Φ̂/𝑑𝑟∗ is flat as the ratio of the left- and right-going mode is extreme and hence
beating is heavily suppressed.

This can be more easily seen in Fig. 4.5 where it shows the first derivative of the
numerical IN solutions 𝑑Φ̂/𝑑𝑟∗, i.e., 𝑑2Φ̂/𝑑𝑟2

∗ , as indicators of how much they
change locally as functions of 𝑟∗, for both the𝑀𝜔 = 0.5 and the𝑀𝜔 = 1 case. We
compute the numerical derivatives using AD on the interpolant of the numerical
solutions of 𝑑Φ̂/𝑑𝑟∗ to avoid issues with using a finite difference method. We
see from the upper panel (Fig. 4.5a) that for 𝑀𝜔 = 0.5 the oscillation in 𝑑Φ̂/𝑑𝑟∗
is significant, while for 𝑀𝜔 = 1 we can see from the lower panel (Fig. 4.5b) that

15More concretely, this corresponds to
(
𝑟 in − 𝑟+

)
/𝑀 ≈ 8 × 10−10 when 𝑎/𝑀 = 0.7. This

difference is a monotonically increasing function in |𝑎 |/𝑀 (for a similar discussion but for
𝑟∗/𝑀 = 0, see Fig. 4.12).
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the oscillation is much more minute. Note that the two panels have very different
scales for their 𝑦-axes.

Physically this boils down to the fact that the potential barriers of a Kerr BH for
different types of radiation are all very permeable to waves at high frequencies.
Fig. 4.6 shows the reflectivity of the potential barriers (for 𝑠 = 0,±1,±2 with
𝑎/𝑀 = 0.7) as defined by 𝐵ref

SN/𝐵
inc
SN. This ratio compares the wave amplitude

𝐵ref
SN that is reflected off the potential barrier when a wave with an asymptotic

amplitude 𝐵inc
SN is approaching the barrier from infinity. We see from Fig. 4.6 that

the reflectivities become zero when the wave frequency gets large (while we only
show for the 𝑎/𝑀 = 0.7 case, the same is true for other values of 𝑎/𝑀 as well).
A low reflectivity means that the ratio of the left- and the right-going mode is
going to be extreme. Explicitly for the case in Fig. 4.6, the right-going mode has
an amplitude |𝐵ref

SN | that is much smaller than the left-going mode |𝐵inc
SN | when

𝑀𝜔 ≳ 1. The lack of beating in Fig. 4.4b is a manifestation of this fact.
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(a)

(b)

Figure 4.4: GSN IN solution of the 𝑠 = −2, ℓ = 2, 𝑚 = 2 mode of a BH with
𝑎/𝑀 = 0.7 and two different values of 𝜔 (upper panel: 𝑀𝜔 = 0.5; lower panel:
𝑀𝜔 = 1), in terms of the GSN function 𝑋 and the complex frequency function
𝑑Φ/𝑑𝑟∗.
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(a)

(b)

Figure 4.5: First derivative of the numerical solutions to the complex frequency
function in Fig. 4.4 (i.e., 𝑑/𝑑𝑟∗(𝑑Φ̂/𝑑𝑟∗)), computed using AD, as indicators of
how much the numerical solutions are changed locally as functions of 𝑟∗ (upper
panel: 𝑀𝜔 = 0.5; lower panel: 𝑀𝜔 = 1).

Fig. 4.7 is similar to Fig. 4.4 but showing the UP solution instead. Recall that
for an UP solution, it is purely out-going at infinity. Again, we see from the
figure that for both 𝑀𝜔 = 0.5 and 𝑀𝜔 = 1 (upper and lower panel, respectively),
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Figure 4.6: Reflectivity 𝐵ref
SN/𝐵

inc
SN of a Kerr BH potential barrier in the GSN

formalism. We see that for all the spin weights 𝑠 considered in this paper, the
corresponding potential barriers are very permeable to high-frequency (𝑀𝜔 ≳
1) waves, meaning that the potentials will not reflect off the incidence waves
and instead allow them to pass right through. In this figure, the BH angular
momentum was set to 𝑎/𝑀 = 0.7 but the same is true for other values of 𝑎/𝑀 as
well.

𝑑Φ̂/𝑑𝑟∗ is flat and approaches to the imposed asymptotic value 𝜔2 as 𝑟∗ → ∞,
while 𝑋̂ is oscillating with the frequency 𝜔. Similar to the IN solutions shown
in Fig. 4.4, since an UP solution is an admixture of the left- and the right-going
modes near the horizon, depending on their relative amplitude 𝐶ref

SN/𝐶
inc
SN, both

𝑋̂ and 𝑑Φ̂/𝑑𝑟∗ can be oscillatory near the horizon as shown in Fig. 4.7a. When
the frequency 𝜔 is sufficiently high, the beating in 𝑑Φ̂/𝑑𝑟∗ is suppressed while
𝑋̂ remains oscillatory as shown in Fig. 4.7b.
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(a)

(b)

Figure 4.7: GSN UP solution of the 𝑠 = −2, ℓ = 2, 𝑚 = 2 mode of a BH with
𝑎/𝑀 = 0.7 and two different values of 𝜔 (upper panel: 𝑀𝜔 = 0.5; lower panel:
𝑀𝜔 = 1), in terms of the GSN function 𝑋 and the complex frequency function
𝑑Φ/𝑑𝑟∗.
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4.3.3.2 Numerical accuracy

As numerical solutions are only approximations to the true solutions, it is neces-
sary to verify their accuracies. First, we need to show that the initial conditions
𝑋̂ and 𝑑𝑋̂/𝑑𝑟∗ that we use are sufficiently accurate such that when solving for
𝑋̂ in,up the corresponding asymptotic boundary forms are satisfied. Next, we need
to show that the numerical solutions actually satisfy the GSN equation inside
the integration domain. In both cases, we can evaluate the residual 𝜀, which is
defined as

𝜀 =

����𝑑2 𝑋̂

𝑑𝑟2
∗
− F (𝑟) 𝑑𝑋̂

𝑑𝑟∗
−U(𝑟) 𝑋̂

���� , (4.69)

where a smaller value (ideally zero) means a better agreement of a numerical
solution 𝑋̂ with the GSN equation.

Fig. 4.8 shows the residual 𝜀 of the ansatz, 𝑓∞± near infinity (upper panel) and
𝑔H
± near the horizon (lower panel) as functions of 𝑟∗. For both panels, solid

lines correspond to the out-going ansatzes and dash lines correspond to the
in-going ansatzes truncated to different orders 𝑁 = 0, 1, 2, 3, i.e., keeping the
first 𝑁 + 1 terms in Eq. (4.53) and Eq. (4.54) respectively. Recall that for all the
numerical results we have shown previously, we set the numerical outer boundary
𝑟out
∗ = 1000𝑀 and truncate 𝑓∞± at 𝑁 = 3 (i.e., including the first four terms). From

Fig. 4.8a we see that this corresponds to 𝜀 ≈ 10−13. As expected, for a fixed
𝑟∗ ≫ 1, the residual 𝜀 decreases as one keeps more terms (i.e., higher 𝑁) in the
summation in Eq. (4.53). Alternatively, for a fixed 𝑁 , the residual 𝜀 goes down
as one has an numerical outer boundary 𝑟out

∗ further away from the BH.

As for the numerical inner boundary 𝑟 in
∗ , recall that we set 𝑟 in

∗ = −50𝑀 and
truncate 𝑔H

± such that only the leading term is kept (i.e., 𝑁 = 0). From Fig. 4.8b
we see that this corresponds to 𝜀 ≈ 10−10. Similar to 𝑓∞± , the residual decreases
with a higher 𝑁 in the summation of Eq. (4.54) for a fixed 𝑟∗ until the precision
of a double-precision floating-point number (around 10−15) is reached and 𝜀

plateaus. Again, for a fixed 𝑁 , as one sets the inner boundary closer to the
horizon, the residual drops until around 10−15.
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Fig. 4.9 shows the residual 𝜀 for the numerical GSN UP solutions in Fig. 4.7 (with
𝑠 = −2, ℓ = 2, 𝑚 = 2, and 𝑎/𝑀 = 0.7), for both 𝑀𝜔 = 0.5 and 𝑀𝜔 = 1. We see
that the residuals are indeed very small, and stay roughly at 𝜀 ≈ 10−12, which is
the absolute and relative tolerance given to the ODE solver. As for the numerical
GSN IN solutions, the residuals are similar to that for the UP solutions.

The scaled WronskianW𝑋 (c.f. Eq. (4.39)) can be used as a sanity check. Using
again the numerical solutions in Fig. 4.7 for the UP solution and Fig. 4.4 for
the IN solution with 𝑀𝜔 = 0.5 and 𝑀𝜔 = 1, we evaluate the magnitude of
the complex scaled Wronskian |W𝑋 |, which should be constant, at four different
values of 𝑟∗/𝑀 = −50, 0, 50, 1000, respectively. The scaled Wronskian can also
be computed using the asymptotic amplitudes at infinity (c.f. Eq. (4.40)) and at
the horizon (c.f. Eq. (4.41)), respectively. The values are tabulated in Tab. 4.1.
We see that the scaled Wronskians computed from the numerical solutions for
the two values of 𝑀𝜔 are indeed constant, at least up to the eleventh digit, across
the integration domain 𝑟∗ ∈ [−50𝑀, 1000𝑀]. This means that our method for
solving GSN functions are numerically stable. The agreement of the scaled
Wronskian evaluated at different locations in the integration domain and that
evaluated using the asymptotic amplitudes at both boundaries also implies that
our procedure of extracting incidence and reflection amplitudes from numerical
solutions works.

4.3.3.3 Comparisons with the Mano-Suzuki-Takasugi method

As mentioned in Sec. 4.1, there are other ways of computing homogeneous
solutions to the radial Teukolsky equation, and one of which is the MST method.
Using the MST method, asymptotic amplitudes of Teukolsky functions (i.e.,
incidence and reflection amplitudes normalized by transmission amplitudes) can
be determined accurately, together with the homogenous solutions themselves.
Here we compare our numerical solutions and asymptotic amplitudes using the
GSN formalism with that using the MST method. In particular, we use the
implementation in the Teukolsky [67] Mathematica package from the Black
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(a) for ansatz near infinity, 𝑓∞±

(b) for ansatz near the horizon, 𝑔H
±

Figure 4.8: Residual 𝜀 of the ansatz (c.f. Eq. (4.52)) 𝑓∞± (upper panel) and 𝑔H
±

(lower panel) that we use in evaluating the initial conditions when solving for
𝑋 in,up and extracting the incidence and reflection amplitudes from the numerical
solutions. In particular, we set 𝑠 = −2, ℓ = 2, 𝑚 = 2, 𝑎/𝑀 = 0.7 for the purpose
of demonstration. For both plots, solid lines correspond to the out-going ansatzes
and dash lines correspond to the in-going ansatzes truncated to different orders
𝑁 = 0, 1, 2, 3, respectively.
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Figure 4.9: Residual 𝜀 of the numerical GSN UP solutions shown in Fig. 4.7 for
𝑀𝜔 = 0.5 and 𝑀𝜔 = 1, respectively. Recall that both the absolute tolerance and
the relative tolerance passed to the numerical ODE solver are set to 10−12.

𝑟∗/𝑀 𝑀𝜔 = 0.5 𝑀𝜔 = 1
−∞ 0.06686918718(132409) 0.09801150092(211632)
−50 0.06686918718(132406) 0.09801150092(220787)

0 0.06686918718(135844) 0.09801150092(220655)
50 0.06686918718(137257) 0.09801150092(220637)

1000 0.06686918718(173902) 0.09801150092(220587)
∞ 0.06686918718(244163) 0.09801150092(220785)

Table 4.1: Magnitude of the (complex) scaled Wronskian |W𝑋 | of two fre-
quencies, 𝑀𝜔 = 0.5 and 𝑀𝜔 = 1, evaluated at four different positions,
𝑟∗/𝑀 = −50, 0, 50, 1000, respectively, and evaluated using the asymptotic am-
plitudes, with the GeneralizedSasakiNakamura.jl code. Digits beyond the
eleventh digit are shown in brackets.

Hole Perturbation Toolkit [57].

We compute the scaled WronskianW𝑅 of the numerical solutions for 𝑠 = −2, ℓ =
2, 𝑚 = 2, 𝑎/𝑀 = 0.7 mode for both 𝑀𝜔 = 0.5 and 𝑀𝜔 = 1 (the same setup as
in Tab. 4.1), using the MST method. Similar to the case for GSN functions, we
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can computeW𝑅 either from the numerical solutions 𝑅in,up using Eq. (4.31), or
from the asymptotic amplitudes using Eq. (4.32) or Eq. (4.33), and they should
agree. In addition, the values forW𝑅 should be the same asW𝑋 .16 The results
are tabulated in Tab. 4.2. We see that the numbers shown in Tab. 4.1, which were
computed using the GSN formalism, agree with the numbers in Tab. 4.2 at least
up to the eleventh digit, testifying the numerical accuracy and correctness of the
solutions and the asymptotic amplitudes computed using GeneralizedSasak-
iNakamura.jl. It should also be remarked that the implementation of the MST
method in the Teukolsky package seems to be struggling either very close (e.g.,
𝑟∗ = −50𝑀) or very far away (e.g., 𝑟∗ = 1000𝑀) from the BH, and in general the
MST method struggles more as 𝑀𝜔 becomes larger17 while the GSN formalism
becomes more efficient instead.18

4.4 Conclusion and future work
In this paper, we have revamped the Generalized Sasaki-Nakamura (GSN) for-
malism for computing homogeneous solutions to both the GSN equation and the
radial Teukolsky equation for scalar, electromagnetic and gravitational perturba-
tions. Specifically, we have provided explicit expressions for the transformations
between the Teukolsky formalism and the GSN formalism. We have also de-
rived expressions for higher-order corrections to asymptotic solutions of the GSN
equation, as well as frequency-dependent conversion factors between asymptotic
solutions in the Teukolsky and the GSN formalism. Both are essential for us-
ing the GSN formalism to perform numerical work. We have also described
an open-source implementation of the now-complete GSN formalism for solv-

16Note that the Teukolsky package uses a normalization convention that 𝐵trans
T = 𝐶 trans

T = 1,
which is different from our GeneralizedSasakiNakamura.jl implementation. To account
for the difference in the normalization convention, a factor of

(
𝐶 trans

T /𝐶 trans
SN

) (
𝐵trans

T /𝐵trans
SN

)
is

multiplied toW𝑅 computed from the Teukolsky code.
17We performed the same set of calculations in Sec. 4.3.3.3 using another MST-basedFortran

code described in Ref. [68] that uses machine-precision numbers. The same conclusion is reached.
18More concretely, the authors of Ref. [51] gave explicit examples (𝑠 = −2, ℓ = 2, 𝑎/𝑀 =

0, 𝑀𝜔 > 5) where they found their MST code were struggling to compute, while the GSN
formalism, for example using our code, can handle these cases with ease.
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𝑟∗/𝑀 𝑀𝜔 = 0.5 𝑀𝜔 = 1
−∞ 0.06686918718(210336) 0.09801150092(219980)
−50 Aborted Aborted

0 0.06686918718(210336) 0.09801150092(219978)
50 0.06686918718(210336) Error

1000 Error Error
∞ 0.06686918718(210336) 0.09801150092(219980)

Table 4.2: Magnitude of the (complex) scaled Wronskian |W𝑅 | of two fre-
quencies, 𝑀𝜔 = 0.5 and 𝑀𝜔 = 1, evaluated at four different positions,
𝑟∗/𝑀 = −50, 0, 50, 1000, respectively, and evaluated using the asymptotic am-
plitudes, with the MST method implemented in the Teukolsky code. Note that
in the computations we use the arbitrary-precision arithmetic in Mathematica
(specifically 64-digit accurate). Digits beyond the eleventh digit are shown in
brackets and truncated to the seventeenth digit to match Tab. 4.1. The computa-
tions at 𝑟∗ = −50𝑀 for both cases were aborted after running for an hour.

ing homogeneous solutions, where the implementation re-formulated the GSN
equation further into a Riccati equation so as to gain extra efficiency at high
frequencies.

In the following we discuss two potential applications of the GSN formalism in
BH perturbation theory, namely as an efficient procedure for computing gravita-
tional radiation from BHs, and as an alternative method for QNM determination.

4.4.1 An efficient procedure for computing gravitational radiation from
Kerr black holes

As we have demonstrated in Sec. 4.3.3, the GSN formalism is capable of produc-
ing accurate and stable numerical solutions to the homogenous GSN equation,
which can then be converted to numerical Teukolsky functions, across a wide
range of 𝑟∗/𝑀 when the MST method tends to struggle when 𝑟∗/𝑀 ≪ 1 and
𝑟∗/𝑀 ≫ 1 as shown in Sec. 4.3.3.3. While we have only shown the numerical
results for 𝑀𝜔 = 0.5 and 𝑀𝜔 = 1 explicitly, it is reasonable to expect the for-
malism to also work for other frequencies, if not even better at high frequencies
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when we gain extra efficiency by further transforming a GSN function 𝑋 (𝑟∗)
into a complex frequency function 𝑑Φ/𝑑𝑟∗, while the MST method requires a
much higher working precision for computation. This can occur, for example,
when computing a higher harmonic of an extreme mass-ratio inspiral (EMRI)
waveform. For a generic orbit, the harmonic has a frequency 𝜔 given by [69]

𝜔 = 𝑚Ω𝜙 + 𝑘Ω𝜃 + 𝑛Ω𝑟 , (4.70)

where Ω𝜙,Ω𝜃 ,Ω𝑟 are the fundamental orbital frequency for the 𝜙-, 𝜃- and 𝑟-
motion, respectively.

Indeed, we see from Sec. 4.3.3.1 that in some regions of the parameter space,
it is more efficient to solve for the complex frequency function 𝑑Φ/𝑑𝑟∗ than to
solve for the GSN function 𝑋 itself. There are, however, cases where the reverse
is true instead, especially at a lower wave frequency when the BH potential
barrier is less transmissive, since it is numerically more efficient (requiring fewer
nodes) to track a less oscillatory function than a more oscillatory function (c.f.
Fig. 4.4). This means that a better numerical scheme solving for 𝑋 in,up (and by
extension 𝑅in,up) can be formulated by first solving the first-order non-linear ODE
for 𝑑Φ/𝑑𝑟∗, and then “intelligently” switching to solving the second-order linear
ODE for 𝑋 when it is more efficient, for example, when 𝑑/𝑑𝑟∗(𝑑Φ̂/𝑑𝑟∗) is above
some pre-defined threshold. This hybrid approach is similar in sprit to some of
the state-of-the-art solvers for oscillatory second order linear ODEs [70].19

While the GSN formalism is a great alternative to the MST method for computing
homogeneous solutions (i.e., 𝑇 = 0) to the radial Teukolsky equation, the real
strength of the GSN formalism is the ability to also compute inhomogeneous
solutions (i.e., 𝑇 ≠ 0). Given an extended Teukolsky source term, such as a
plunging test particle from infinity, the convolution integral with the Teukolsky
functions can be divergent when using the Green’s function method to compute

19As mentioned in both Ref. [65] and Ref. [70], pseudo-spectral methods can be adopted
instead of finite-difference methods (like the Vern9 algorithm that this paper uses) to achieve
exponential convergence. We leave this as a future improvement to this work.
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the inhomogeneous solution and regularization of the integral is needed [71,
72]. In Ref. [54], Sasaki and Nakamura had worked out a formalism, which was
developed upon their SN transformation, to compute the inhomogeneous solution
for 𝑠 = −2 where the new source term, constructed from the Teukolsky source
term, is short-ranged such that the convolution integral with the SN functions is
convergent when using the Green’s function method.

In a forthcoming paper, we show that their construction can also be extended to
work for 𝑠 = 2, and the corresponding GSN transformation, in a similar fashion,
serves as the foundation of the method. This will be important for studying near-
horizon physics [73, 74, 33], such as computing gravitational radiation from a
point particle plunging towards a BH as observed near the horizon, where the
polarization contents are encoded in 𝜓0 (with 𝑠 = 2) instead of 𝜓4 (with 𝑠 = −2).
In particular, the Teukolsky-Starobinsky identities [75, 44] are not valid in this
case (since the source term does not vanish near the horizon) and we cannot use
them to convert the asymptotic amplitude for 𝜓4 to that for 𝜓0.20

4.4.2 An alternative method for quasi-normal mode determination
The re-formulation of a Schrödinger-like equation into a Riccati equation in-
troduced in Sec. 4.3.1.1 is not new and had actually been used previously, for
instance, in the seminal work by Chandrasekhar and Detweiler on QNMs of
Schwarzschild BHs [76]. It was used (c.f. Eq. (5) of Ref. [76]) to alleviate
the numerical instability associated with directly integrating the Zerilli equation,
and equivalently also the Regge-Wheeler equation to which the GSN equation
reduces in the non-spinning limit. Therefore, it is reasonable to expect that the re-
formulation to be useful for determining QNM frequencies and their associated
radial solutions.

Recall that a QNM solution is both purely-ingoing at the horizon and purely-
20Note that it is still possible to compute the asymptotic amplitude for 𝜓0 using the Green’s

function method constructed from the Teukolsky functions, but regularization is needed as the
convolution integral is again divergent [34].
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outgoing at infinity. In terms of the asymptotic amplitudes of the corresponding
Teukolsky function (c.f. Eq. (4.29) and Eq. (4.30)) at a particular frequency
𝜔QNM, we have

𝐵inc
T (𝜔QNM) = 𝐶inc

T (𝜔QNM) = 0

⇒W𝑅 (𝜔QNM) = 0,
(4.71)

where the second line uses Eq. (4.32). This means that searching for QNM
frequencies is the same as searching for zeros ofW𝑅, the scaled Wronskian for
Teukolsky functions. Also recall that in App. 4.7, we proved that the scaled
Wronskian for Teukolsky functions W𝑅 and that for the corresponding GSN
functionsW𝑋 are the same, implying that the QNM spectra for Teukolsky func-
tions coincide with the QNM spectra for GSN functions.21 Thus, we can use
the GSN equation, which has a short-ranged potential, instead of the Teukolsky
equation for determining the QNM frequencies and the corresponding excitation
factors (after applying the conversion factors shown in App. 4.9).

Indeed, Glampedakis and Andersson proposed methods to calculate QNM fre-
quencies and excitation factors given a short-ranged potential [77], alternative to
the Leaver’s method [78]. They demonstrated their methods by computing a few
of the QNM frequencies for scalar perturbations (𝑠 = 0) and gravitational pertur-
bations (|𝑠 | = 2), as well as the QNM excitation factors for scalar perturbations
of Kerr BHs. Together with the GSN transformations and the asymptotic solu-
tions from this paper, it is straightforward to compute the QNM frequencies and
their excitation factors for scalar, electromagnetic, and gravitational perturbations
using the GSN formalism.22 We leave this for future work.

21The two equations, the radial Teukolsky equation and the GSN equation, are therefore said
to be iso-spectral.

22The excitation factors for gravitational perturbations of Kerr BHs have been calculated
using a different method [79, 80, 81], by explicitly computing the gravitational waveform from
an infalling test particle and then extracting the amplitudes for each of the excited QNMs.
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4.5 Appendix: Angular Teukolsky equation
After performing the separation of variables to the Teukolsky equation in Eq. (4.2)
using an ansatz of the form 𝜓(𝑡, 𝑟, 𝜃, 𝜙) = 𝑅(𝑟)𝑆(𝜃, 𝜙)𝑒−𝑖𝜔𝑡 , the equation is
separated into two parts: the angular part and the radial part. In this appendix,
we focus only on solving the angular part (aptly named the angular Teukolsky
equation) numerically, and the radial part is treated in the main text.

Let us define 𝑠𝑆ℓ𝑚𝜔 (𝜃, 𝜙) ≡ 𝑠𝑆ℓ𝑚 (𝑥 ≡ cos 𝜃; 𝑐 ≡ 𝑎𝜔)𝑒𝑖𝑚𝜙, where the integer
𝑚 labels the (trivial) eigenfunctions that satisfy the azimuthal symmetry. The
angular Teukolsky equation then reads

𝑑

𝑑𝑥

[
(1 − 𝑥2) 𝑑

𝑑𝑥
𝑠𝑆ℓ𝑚 (𝑥; 𝑐)

]
+[

(𝑐𝑥)2 − 2𝑐𝑠𝑥 + 𝑠 + 𝑠Aℓ𝑚 (𝑐) −
(𝑚 + 𝑠𝑥)2

1 − 𝑥2

]
𝑠𝑆ℓ𝑚 (𝑥; 𝑐) = 0, (4.72)

where 𝑠Aℓ𝑚 is the angular separation constant and it is related to 𝜆 (c.f. Eq. (4.4))
by

𝜆 = 𝑠Aℓ𝑚 + 𝑐2 − 2𝑚𝑐. (4.73)

The angular Teukolsky equation is solved under the boundary conditions that the
solutions at 𝑥 = ±1 (or equivalently at 𝜃 = 0, 𝜋) are finite, and the solutions are
also known as the spin-weighted spheroidal harmonics, denoted by 𝑠𝑆ℓ𝑚𝜔 (𝜃, 𝜙).
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There are multiple methods for solving the angular Teukolsky equation numeri-
cally, such as Leaver’s continued fraction method [78]. A spectral decomposition
method for solving the angular Teukolsky equation can be formulated [82, 83]
by writing a spin-weighted spheroidal harmonic 𝑠𝑆ℓ𝑚𝜔 (𝜃, 𝜙) as a sum of spin-
weighted spherical harmonics 𝑠𝑌ℓ𝑚 (𝜃, 𝜙). The details for such a formulation can
be found in, for example, Ref. [82] and Ref. [83]. We briefly summarize the
method here, mostly following and using the notations in Ref. [83], for the sake
of completeness.

4.5.1 Spectral decomposition method
A spin-weighted spheroidal harmonic 𝑠𝑆ℓ𝑚 (𝑥; 𝑐) is expanded using spin-weighted
spherical harmonics 𝑠𝑌ℓ𝑚 (𝜃), or equivalently 𝑠𝑆ℓ𝑚 (𝑥; 0) as [83]

𝑠𝑆ℓ𝑚 (𝑥; 𝑐) =
∞∑︁

ℓ′=ℓmin

𝑠𝐶ℓ′ℓ𝑚 (𝑐) 𝑠𝑆ℓ′𝑚 (𝑥; 0)

=

(
®𝐶ℓ

)𝑇 ®𝑆ℓ, (4.74)

where ℓmin = max( |𝑚 |, |𝑠 |) and 𝑠𝐶ℓ′ℓ𝑚 (𝑐) is the expansion coefficient of the ℓ-th
spheroidal harmonic with the ℓ′-th spherical harmonic (of the same value of 𝑠
and 𝑚 and we drop them in the subscripts hereafter), as a function of 𝑐 ≡ 𝑎𝜔.
Equivalently, we can define two column vectors ®𝐶ℓ and ®𝑆ℓ, where the rows are
labelled by the index ℓ′. For example, the first row of the vectors (of index
ℓ′ = ℓmin) are 𝑠𝐶ℓminℓ𝑚 and 𝑠𝑆ℓmin𝑚 (𝑥; 0), respectively. The index for the rows goes
up to ℓ′ = ℓmax → ∞, and the vectors have a size of ℓmax − ℓmin + 1. Then the
spin-weighted spheroidal harmonic 𝑆ℓ (𝑥; 𝑐) is the dot product of the two vectors.

Substituting Eq. (4.74) into Eq. (4.72), we get an eigenvalue equation [83]

M ®𝐶ℓ = Aℓ
®𝐶ℓ, (4.75)

where M is a (ℓmax − ℓmin + 1) × (ℓmax − ℓmin + 1) matrix, and recall that Aℓ ≡
𝑠Aℓ𝑚 (𝑐 ≡ 𝑎𝜔) is the angular separation constant (after writing back all the
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subscripts). The matrix elementsMℓℓ′ are given by [83]

Mℓℓ′ =



−𝑐2Aℓ′𝑚 if ℓ′ = ℓ − 2,

−𝑐2Dℓ′𝑚 + 2𝑐𝑠Fℓ′𝑚 if ℓ′ = ℓ − 1,

Aℓ′ (0) − 𝑐2Bℓ′𝑚 + 2𝑐𝑠Hℓ′𝑚 if ℓ′ = ℓ,

−𝑐2Eℓ′𝑚 + 2𝑐𝑠Gℓ′𝑚 if ℓ′ = ℓ + 1,

−𝑐2Cℓ′𝑚 if ℓ′ = ℓ + 2,

0 otherwise

, (4.76)

where

Aℓ𝑚 = Fℓ𝑚F(ℓ+1)𝑚, (4.77a)

Bℓ𝑚 = Fℓ𝑚G(ℓ+1)𝑚 + Gℓ𝑚F(ℓ−1)𝑚 + H2
ℓ𝑚, (4.77b)

Cℓ𝑚 = Gℓ𝑚G(ℓ−1)𝑚, (4.77c)

Dℓ𝑚 = Fℓ𝑚H(ℓ+1)𝑚 + Fℓ𝑚Hℓ𝑚, (4.77d)

Eℓ𝑚 = Gℓ𝑚H(ℓ−1)𝑚 + Gℓ𝑚Hℓ𝑚, (4.77e)

Fℓ𝑚 =

√︄
(ℓ + 1)2 − 𝑚2

(2ℓ + 3) (2ℓ + 1)
(ℓ + 1)2 − 𝑠2

(ℓ + 1)2
, (4.77f)

Gℓ𝑚 =


√︂
ℓ2 − 𝑚2

4ℓ2 − 1
ℓ2 − 𝑠2

ℓ2 if ℓ ≠ 0

0 if ℓ = 0
, (4.77g)

Hℓ𝑚 =


− 𝑚𝑠

ℓ(ℓ + 1) if ℓ ≠ 0 and 𝑠 ≠ 0

0 if ℓ = 0 or 𝑠 = 0
, (4.77h)

Aℓ (0) = ℓ(ℓ + 1) − 𝑠(𝑠 + 1). (4.77i)

Solving the angular Teukolsky equation now amounts to solving the eigenvalue
problem in Eq. (4.75) for the eigenvalue Aℓ and the eigenvector ®𝐶ℓ. The spin-
weighted spheroidal harmonic can then be constructed using the eigenvector
®𝐶ℓ and the corresponding spin-weight spherical harmonics with Eq. (4.74). In
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practice, we cannot solve a matrix eigenvalue problem of infinite size and we
truncate the column vector ®𝐶ℓ to have a finite value of ℓmax. The accuracy of
the numerical eigenvalue and eigenvector solution depends on the size of the
truncated matrix.

SpinWeightedSpheroidalHarmonics.jl23 is our open-source implementa-
tion of the abovementioned spectral decomposition method for solving spin-
weighted spheroidal harmonics in julia. The code solves the truncated24

version of Eq. (4.75) to obtain the angular separation constant 𝑠Aℓ𝑚 and the
eigenvector 𝑠 ®𝐶ℓ𝑚. Apart from the angular separation constant, the code can also
compute the separation constant 𝜆 (c.f. Eq. (4.4)), and evaluate numerical values
of spin-weight spheroidal harmonics and their derivatives.25 In particular, the
code adopts the normalization convention for 𝑠𝑆ℓ𝑚𝜔 (𝜃, 𝜙) that∫ 𝜋

0
[𝑠𝑆ℓ𝑚 (𝜃; 𝑐)]2 sin(𝜃) 𝑑𝜃 = 1

2𝜋
. (4.78)

To evaluate numerical values of the spin-weighted spheroidal harmonics 𝑠𝑆ℓ𝑚𝜔 (𝜃, 𝜙)
and their derivatives, it is necessary to also be able to numerically (and possibly
efficiently) evaluate the spin-weighted spheroidal harmonics 𝑠𝑌ℓ𝑚 (𝜃, 𝜙).

4.5.2 Evaluation of 𝑠𝑆ℓ𝑚𝜔 (𝜃, 𝜙)
Recall from Eq. (4.74) that the spin-weighted spheroidal harmonic 𝑠𝑆ℓ𝑚𝜔 (𝜃, 𝜙)
is expanded in terms of the spin-weighted spherical harmonics, i.e.,

𝑠𝑆ℓ𝑚 (𝜃, 𝜙; 𝑎𝜔) =
∞∑︁

ℓ′=ℓmin

𝑠𝐶ℓ′ℓ𝑚 (𝑎𝜔) 𝑠𝑌ℓ𝑚 (𝜃, 𝜙),

and the spectral decomposition method solves for the expansion coefficients
𝑠𝐶ℓ′ℓ𝑚 (𝑎𝜔), which is only part of the ingredients. It is possible to evaluate

23https://github.com/ricokaloklo/SpinWeightedSpheroidalHarmonics.jl
24By default the truncated matrixM is 10× 10, but the size is adjustable by setting a different

ℓmax if a higher accuracy or a faster run time is needed.
25It should be noted that our code is also capable of handling complex 𝜔, which is necessary

for carrying out quasi-normal mode related computations.

https://github.com/ricokaloklo/SpinWeightedSpheroidalHarmonics.jl
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𝑠𝑌ℓ𝑚 (𝜃, 𝜙) exactly, and the expression is given by [84]

𝑠𝑌ℓ𝑚 (𝜃, 𝜙) = (−1)𝑚𝑒𝑖𝑚𝜙
√︄
(ℓ + 𝑚)!(ℓ − 𝑚)!(2ℓ + 1)

4𝜋(ℓ + 𝑠)!(ℓ − 𝑠)!

×
ℓ−𝑠∑︁
𝑟=0

[(
ℓ − 𝑠
𝑟

) (
ℓ + 𝑠

𝑟 + 𝑠 − 𝑚

)
(−1)ℓ−𝑟−𝑠

× cos2𝑟+𝑠−𝑚
(
𝜃

2

)
sin2ℓ−2𝑟−𝑠+𝑚

(
𝜃

2

) ] . (4.79)

In principle, obtaining the value of a spin-weighted spherical harmonic 𝑠𝑌ℓ𝑚 (𝜃, 𝜙)
is as simple as evaluating the sum as shown in Eq. (4.79). Oftentimes, however,
when we solve the eigenvalue problem in Eq. (4.75), the index ℓ can be big
enough so that a direct evaluation of the pre-factor√︄

(ℓ + 𝑚)!(ℓ − 𝑚)!
(ℓ + 𝑠)!(ℓ − 𝑠)!

in Eq. (4.79) on a machine can cause an overflow error because of the large
factorials involved in the computation. Fortunately, the expression for the pre-
factor can be simplified. In fact,√︄
(ℓ + 𝑚)!(ℓ − 𝑚)!
(ℓ + 𝑠)!(ℓ − 𝑠)!

=



√︂
(ℓ − 𝑚) (ℓ − 𝑚 − 1) . . . (ℓ − 𝑚 − (𝑠 − 𝑚) + 1)

(ℓ + 𝑚 + (𝑠 − 𝑚)) (ℓ + 𝑚 + (𝑠 − 𝑚) − 1) . . . (ℓ + 𝑚 + 1) if 𝑠 > 𝑚,√︂
(ℓ + 𝑠 + (𝑚 − 𝑠)) (ℓ + 𝑠 + (𝑚 − 𝑠) − 1) . . . (ℓ + 𝑠 + 1)
(ℓ − 𝑠) (ℓ − 𝑠 − 1) . . . (ℓ − 𝑠 − (𝑚 − 𝑠) + 1) if 𝑠 < 𝑚,

1 if |𝑠 | = |𝑚 |.

,

(4.80)

and now evaluations of 𝑠𝑆ℓ𝑚𝜔 (𝜃, 𝜙) using Eq. (4.74) are free from overflow.

4.5.3 Evaluation of 𝜕𝑛
𝜃,𝜙 𝑠𝑆ℓ𝑚𝜔 (𝜃, 𝜙)

In order to evaluate partial derivatives of spin-weighted spheroidal harmonics,
𝜕𝑛
𝜃,𝜙 𝑠𝑆ℓ𝑚𝜔 (𝜃, 𝜙), which are needed for evaluating source terms𝑇 of the Teukolsky
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equation (c.f. Eq. (4.2)), we can use the fact that the expansion coefficients
𝑠𝐶ℓ′ℓ𝑚 (𝑐 ≡ 𝑎𝜔) in Eq. (4.74) are independent of 𝜃 and 𝜙. This means that the
partial derivatives 𝜕𝑛

𝜃,𝜙 𝑠𝑆ℓ𝑚𝜔 (𝜃, 𝜙) are given by the sum of the partial derivatives
of 𝑠𝑌ℓ𝑚 (𝜃, 𝜙) with the same set of the expansion coefficients, i.e.,(

𝜕

𝜕 {𝜃, 𝜙}

)𝑛
𝑠𝑆ℓ𝑚𝜔 (𝜃, 𝜙) =

∞∑︁
ℓ′=ℓmin

[
𝑠𝐶ℓ′ℓ𝑚 (𝑎𝜔)

(
𝜕

𝜕 {𝜃, 𝜙}

)𝑛
𝑠𝑌ℓ𝑚 (𝜃, 𝜙)

]
.

(4.81)

In principle, we can evaluate the partial derivatives using AD. However, the
evaluation can be more performant by noticing that the exact evaluation of the
partial derivative with respect to 𝜙 is trivial because of the 𝑒𝑖𝑚𝜙 dependence.
Each partial differentiation with respect to 𝜙 gives a factor of 𝑖𝑚. As for the
partial derivative of a spin-weighted spherical harmonic with respect to 𝜃, the
computation scheme is less trivial. Note that each term in Eq. (4.79) is of the
form 𝑐𝑟 cos𝛼𝑟 (𝜃/2) sin𝛽𝑟 (𝜃/2), where 𝑟 is the summation index and 𝑐𝑟 is the
pre-factor with 𝛼𝑟 and 𝛽𝑟 being the exponent for the cos(𝜃/2) and sin(𝜃/2)
factor, respectively. Each partial differentiation with respect to 𝜃 splits the
term into two terms, one with (𝑐𝑟/2)𝛽𝑟 cos𝛼𝑟+1(𝜃/2) sin𝛽𝑟−1(𝜃/2), and one with
(−𝑐𝑟/2)𝛼𝑟 cos𝛼𝑟−1(𝜃/2) sin𝛽𝑟+1(𝜃/2).

We can keep track of the coefficients and the exponents for the cosine and the
sine factor with the help of a binary tree. We represent each term in the sum-
mation with index 𝑟 in Eq. (4.79) as the root node of a tree (for an illustration,
see Fig. 4.10) with an entry of three numbers (𝑐𝑟 , 𝛼𝑟 , 𝛽𝑟). Each partial differen-
tiation with respect to 𝜃 corresponds to adding two child nodes with the entry
(𝑐𝑟𝛽𝑟/2, 𝛼𝑟 + 1, 𝛽𝑟 − 1) and (−𝑐𝑟𝛼𝑟/2, 𝛼𝑟 − 1, 𝛽𝑟 + 1), respectively. Therefore,
the 𝑛-th order partial derivative of 𝜃 can be evaluated exactly by traversing all the
nodes of depth 𝑛 and then summing over their contributions.
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1, α, β

1
2β, α+ 1, β − 1

1
4β(β − 1), α+ 2, β − 2 − 1

4β(α+ 1), α, β

− 1
2α, α− 1, β + 1

− 1
4α(β + 1), α, β 1

4α(α− 1), α− 2, β + 2

∂

∂θ

∂

∂θ

Figure 4.10: Binary tree representation of a term and its partial derivatives with
respect to 𝜃 in the summation of Eq. (4.79). In each node, the three numbers
correspond to the pre-factor, the exponent for the cos(𝜃/2) and the sin(𝜃/2)
factor, respectively. A partial differentiation with respect to 𝜃 creates two leaf
nodes with the pre-factor and the exponents computed according to rules of
partial differentiation. The 𝑛-th partial derivative with respect to 𝜃 of the term in
the root node can be evaluated by simply summing over all the nodes of depth 𝑛.

4.6 Appendix: Fast inversion from the tortoise coordinate 𝑟∗ to the Boyer-
Lindquist coordinate 𝑟

The tortoise coordinate 𝑟∗ (for Kerr BHs) is defined by

𝑑𝑟∗
𝑑𝑟

=
𝑟2 + 𝑎2

Δ
=

𝑟2 + 𝑎2

(𝑟 − 𝑟+) (𝑟 − 𝑟−)
. (4.7)

Using Eq. (4.7) one can generate different “tortoise coordinate” which differ to
each other only by an integration constant. Here, and in most of the literature,
we choose the integration constant such that

𝑟∗(𝑟) = 𝑟 +
2𝑟+

𝑟+ − 𝑟−
ln

(𝑟 − 𝑟+
2

)
− 2𝑟−
𝑟+ − 𝑟−

ln
(𝑟 − 𝑟−

2

)
. (4.14)

However, there is no simple analytical expression that gives 𝑟 = 𝑟 (𝑟∗), and one
will have to instead numerically invert Eq. (4.14). Such an inversion scheme that
is both fast and accurate is needed for our numerical implementation of the GSN
formalism because we numerically solve the GSN equation in the 𝑟∗-coordinate
instead of the Boyer-Lindquist 𝑟-coordinate, and yet the GSN potentials, which
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will be evaluated at many different values of 𝑟∗ during the numerical integration,
are written in terms of 𝑟.

This coordinate inversion is equivalent to a root-finding problem. Given a value
of the tortoise coordinate 𝑟0

∗ , we solve for ℎ0 ≡
(
𝑟0 − 𝑟+

)
> 0 that satisfies

𝑟0
∗ − 𝑟∗(𝑟+ + ℎ0) = 0, (4.82)

in order to find the corresponding Boyer-Lindquist coordinate 𝑟0 ≡ 𝑟+ + ℎ0 that
is outside the horizon 26.

Fig. 4.11 shows a plot of 𝑟 as a function of 𝑟∗ for 𝑎/𝑀 = 0.7. As the value of
𝑟∗ becomes larger, the simple approximation 𝑟 (𝑟∗) ≈ 𝑟∗ works better. In fact, the
slope 𝑑𝑟/𝑑𝑟∗ → 1 as 𝑟∗ ≫ 0. Therefore, derivative-based methods such as the
Newton-Raphson method and secant methods [55] are efficient in performing the
coordinate inversion (since we can evaluate the derivatives exactly and cheaply).
However, these methods are going to be inefficient for negative values of 𝑟∗ near
the horizon since the slope tends to zero.

In our numerical implementation, we use a hybrid of root-finding algorithms.
For 𝑟0

∗ > 0, we use the Newton-Raphson method [55] with an initial guess of
ℎ = 𝑟0

∗ , and switch to using the bisection method [55] for 𝑟0
∗ ≤ 0. To use the

bisection method, an interval of ℎ that contains the root of Eq. (4.82) is given to
the algorithm as an initial guess. Since 𝑟 = 𝑟+ maps to 𝑟∗ → −∞, a natural choice
for the lower bound of the bracketing interval would be ℎ = 0. For the upper
bracketing bound, from Fig. 4.12 we see that the value of ℎ that corresponds
to 𝑟∗ = 0 is a monotonically-increasing function of the spin magnitude |𝑎 |.
Therefore, we can simply choose the upper bound value to be (equal to or greater
than) the limiting value of ℎ that corresponds to 𝑟∗ = 0 when |𝑎 | → 1. Explicitly,
the numerical implementation in GeneralizedSasakiNakamura.jl uses the
bracketing interval 0 < ℎ < 1.4.

26A similar construction (i.e., enforcing ℎ0 < 0) can be used to find the Boyer-Lindquist
coordinate 𝑟 ∈ (𝑟− , 𝑟+) that gives the same 𝑟0

∗ .
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Figure 4.11: The Boyer-Lindquist 𝑟-coordinate as a function of the tortoise 𝑟∗
coordinate for 𝑎/𝑀 = 0.7. As the value of 𝑟∗ becomes larger (upper inset),
the approximation 𝑟 (𝑟∗) ≈ 𝑟∗ (dashed) gets increasingly better as 𝑑𝑟/𝑑𝑟∗ →
1. Meanwhile as the value of 𝑟∗ becomes more negative (lower inset), 𝑟 (𝑟∗)
approaches 𝑟 = 𝑟+ as constructed and 𝑑𝑟/𝑑𝑟∗ → 0.

4.7 Appendix: Deriving the identity between the scaled Wronskians for
Teukolsky functions and Generalized Sasaki-Nakamura functions

Recall that the scaled WronskianW𝑅 for the Teukolsky functions 𝑅in,up is defined
by

W𝑅 = Δ𝑠+1
(
𝑅in𝑅up′ − 𝑅up𝑅in′

)
, (4.31)

whereas the scaled WronskianW𝑋 for the GSN functions 𝑋 in,up is defined by

W𝑋 =
1
𝜂

[
𝑋 in(𝑑𝑋up/𝑑𝑟∗) − (𝑑𝑋 in/𝑑𝑟∗)𝑋up] . (4.39)

They are called scaled Wronskians because they are not the same as “ordinary”
Wronskians. For a generic second-order linear ODE

𝑑2𝑦(𝑥)
𝑑𝑥2 + 𝑝(𝑥) 𝑑𝑦(𝑥)

𝑑𝑥
+ 𝑞(𝑥)𝑦(𝑥) = 0, (4.83)
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Figure 4.12: The difference between 𝑟∗ = 0 and the horizon in the Boyer-
Lindquist 𝑟-coordinate, 𝑟 (𝑟∗ = 0) − 𝑟+, as a function of the spin 𝑎 of the BH. We
see that the difference is monotonically increasing with |𝑎 |, and it is the smallest
when 𝑎 = 0, and the largest (≈ 1.3) when |𝑎 | → 1. We can use this to construct
an interval of 𝑟 that must contain 𝑟 = 𝑟 (𝑟∗) for 𝑟∗ ≤ 0 when using the bisection
method.

suppose it admits two linearly-independent solutions 𝑦1(𝑥) and 𝑦2(𝑥), then the
Wronskian𝑊 (𝑥) is defined by

𝑊 (𝑥) = 𝑦1
𝑑𝑦2
𝑑𝑥
− 𝑦2

𝑑𝑦1
𝑑𝑥
, (4.84)

which is a function of 𝑥 in general. It can be shown that𝑊 (𝑥) satisfies the ODE
[85]

𝑑𝑊

𝑑𝑥
+ 𝑝(𝑥)𝑊 = 0. (4.85)

Let us define the scaled WronskianW such that

W ≡ exp
(∫ 𝑥

𝑝(𝑥′) 𝑑𝑥′
)
𝑊 (𝑥), (4.86)

we see that 𝑑W/𝑑𝑥 = 0, i.e.,W is a constant.
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It is not immediately obvious thatW𝑋 , evaluated using Eq. (4.39), is the same as
W𝑅, evaluated using Eq. (4.31). From Eq. (4.39) and using Eq. (4.7), we have

W𝑋 =
Δ

(𝑟2 + 𝑎2)𝜂

(
𝑋 in𝑋up′ − 𝑋up𝑋 in′

)
. (4.87)

Recall that the GSN function 𝑋 is transformed from a Teukolsky function 𝑅 using
the 𝑠Λ operator that

𝑋 (𝑟) = 𝑠Λ [𝑅(𝑟)]

=

√︃(
𝑟2 + 𝑎2) Δ𝑠 [(

𝛼 + 𝛽Δ𝑠+1 𝑑
𝑑𝑟

)
𝑅(𝑟)

]
.

(4.16)

One can show that

𝑋 in𝑋up′ − 𝑋up𝑋 in′

=

(
𝑟2 + 𝑎2

)
Δ𝑠 {𝜂 − (𝑠 + 1)𝛼𝛽Δ𝑠 [2 (𝑟 − 1) − Δ′]}

×
(
𝑅in𝑅up′ − 𝑅up𝑅in′

)
=

(
𝑟2 + 𝑎2) 𝜂

Δ
Δ𝑠+1

(
𝑅in𝑅up′ − 𝑅up𝑅in′

)
=

(
𝑟2 + 𝑎2) 𝜂

Δ
W𝑅,

(4.88)

using Eq. (4.10) and the fact that Δ′ = 2(𝑟 − 1). From here, we see that indeed

W𝑋 =W𝑅 . (4.43)

4.8 Appendix: Recurrence relations for the higher order corrections to the
asymptotic boundary conditions of the Generalized Sasaki-Nakamura
equation

In addition to the asymptotic boundary conditions to the leading order as shown
in Eq. (4.37) and (4.38), it is useful to also compute these boundary conditions to
higher orders. To start off, we assume the following ansatz for the GSN function

𝑋 (𝑟∗) ∼

𝑓∞± (𝑟)𝑒±𝑖𝜔𝑟∗ , 𝑟∗ →∞

𝑔H
± (𝑟)𝑒±𝑖𝑝𝑟∗ , 𝑟∗ → −∞

. (4.52)
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By substituting the ansatz in Eq. (4.52) into the GSN equation in Eq. (4.22), it
can be shown that as 𝑟 →∞, the functions 𝑓∞± satisfy the following second-order
ODE

𝑓∞±
′′ + 𝑃∞± (𝑟) 𝑓∞±

′ +𝑄∞± (𝑟) 𝑓∞± = 0, (4.89)

where we define the functions

𝑃∞± (𝑟) =
(
𝑟2 + 𝑎2

Δ

) [(
Δ

𝑟2 + 𝑎2

)′
± 2𝑖𝜔 − F

]
, (4.90)

𝑄∞± (𝑟) =
(
𝑟2 + 𝑎2

Δ

)2 (
−𝜔2 ∓ 𝑖𝜔F −U

)
. (4.91)

As 𝑟 → 𝑟+, the functions 𝑔H
± satisfy the following second-order ODE

𝑔H
±
′′ + 𝑃H

± (𝑟)𝑔H
±
′ +𝑄H

± (𝑟)𝑔H
± = 0, (4.92)

where we define the functions

𝑃H
± (𝑟) =

(
𝑟2 + 𝑎2

Δ

) [(
Δ

𝑟2 + 𝑎2

)′
± 2𝑖𝑝 − F

]
, (4.93)

𝑄H
± (𝑟) =

(
𝑟2 + 𝑎2

Δ

)2 (
−𝑝2 ∓ 𝑖𝑝F −U

)
. (4.94)

We look for formal series expansions of the solutions 𝑓∞± at infinity and 𝑔H
± at

the horizon, respectively. We then truncate these expansions at an arbitrary order
and use them to set the boundary conditions when solving the GSN equation on
a numerically-finite interval.

4.8.1 Formal series expansion about infinity
Inspecting Eq. (4.89) with 𝑃∞± (𝑟) and 𝑄∞± (𝑟) defined in Eq. (4.90) and (4.91),
respectively and performing the standard change of variable 𝑧 ≡ 1/𝑟, we see that
infinity (i.e., 𝑧 = 0) is an irregular singularity of rank 1. We expand 𝑃∞± (𝑟) and
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𝑄∞± (𝑟) as 𝑟 →∞ with

𝑃∞± (𝑟) =
∞∑︁
𝑗=0

𝑃∞±, 𝑗

𝑟 𝑗
, (4.95)

𝑄∞± (𝑟) =
∞∑︁
𝑗=0

𝑄∞±, 𝑗

𝑟 𝑗
. (4.96)

In particular, we find that𝑄∞±,0 and𝑄∞±,1 are zero. Using these facts, the functions
𝑓∞± have the following formal series expansions near infinity as [86]

𝑓∞± (𝑟) = 𝑒𝜈±𝑟𝑟𝜅±
∞∑︁
𝑗=0

𝑎±, 𝑗

𝑟 𝑗
, (4.97)

(note that we suppress the ∞ superscript on the RHS since the context is clear)
where 𝜅± is given by

𝜅± = −
𝑃±,1𝜈± +𝑄±,1
𝑃±,0 + 2𝜈±

, (4.98)

and 𝜈± is a solution to the characteristic equation

𝜈2
± − 𝑃±,0𝜈± = 0. (4.99)

There are two solutions to the characteristic equation: 𝜈± = 0 or 𝜈± = 𝑃±,0. We
pick 𝜈+ = 𝜈− = 0 as this gives the desired form for the series expansions and
as a result we have both 𝜅+ = 𝜅− = 0 (recall that 𝑄±,1 = 0). The expansion
coefficients 𝑎±, 𝑗 can be evaluated using the recurrence relation [86]

𝑃0 𝑗𝑎 𝑗 = 𝑗 ( 𝑗 − 1)𝑎 𝑗−1 +
𝑗∑︁
𝑘=1
[𝑄𝑘+1 − ( 𝑗 − 𝑘) 𝑃𝑘 ] 𝑎 𝑗−𝑘 , (4.100)

where we further suppress the ± subscript (both the out-going and the in-going
mode have the same form above for the recurrence relations), and we set 𝑎0 = 1.
As an example, the coefficient 𝑎1 is given by 𝑎1 = 𝑄2/𝑃0. Comparing Eq. (4.53)
with Eq. (4.97), we have

C∞±, 𝑗 = 𝜔 𝑗𝑎∞±, 𝑗 . (4.101)
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4.8.2 Formal series expansion about the horizon
Inspecting Eq. (4.92) with 𝑃H

± (𝑟) and𝑄H
± (𝑟) defined in Eq. (4.93) and Eq. (4.94),

respectively, we see that 𝑟 = 𝑟+ is a regular singularity. In particular, 𝑃H
± (𝑟) (𝑟 − 𝑟+)

and 𝑄H
± (𝑟) (𝑟 − 𝑟+)2 are analytic at 𝑟 = 𝑟+ since

𝑃H
± (𝑟) (𝑟 − 𝑟+) =

(
𝑟2 + 𝑎2

𝑟 − 𝑟−

) [(
Δ

𝑟2 + 𝑎2

)′
± 2𝑖𝑝 − F

]
,

𝑄H
± (𝑟) (𝑟 − 𝑟+)2 =

(
𝑟2 + 𝑎2

𝑟 − 𝑟−

)2 (
−𝑝2 ∓ 𝑖𝑝F −U

)
.

A formal series expansion near the horizon can be obtained using the Frobenius
method. We expand 𝑃H

± (𝑟) and 𝑄H
± (𝑟) near 𝑟 = 𝑟+ as

𝑃H
± (𝑟) =

∞∑︁
𝑗=0

𝑃H
±, 𝑗 (𝑟 − 𝑟+) 𝑗−1, (4.102)

𝑄H
± (𝑟) =

∞∑︁
𝑗=0
𝑄H
±, 𝑗 (𝑟 − 𝑟+) 𝑗−2. (4.103)

The functions 𝑔H
± (𝑟) again have the formal series expansions near the horizon as

[86]

𝑔H
± (𝑟) = (𝑟 − 𝑟+)𝜈±

∞∑︁
𝑗=0
𝑎±, 𝑗 (𝑟 − 𝑟+) 𝑗 , (4.104)

(note that we again suppress the H superscript on the RHS since the context is
clear) where 𝜈± is a root to the indicial polynomial 𝐼 (𝜈±), which is given by [86]

𝐼 (𝜈±) = 𝜈±(𝜈± − 1) + 𝑃±,0𝜈± +𝑄±,0. (4.105)

Note that we have 𝑄±,0 = 0, therefore the indicial equation 𝐼 (𝜈±) = 0 has two
solutions: 𝜈± = 0 or 𝜈± =

(
1 − 𝑃±,0

)
. Again we pick 𝜈+ = 𝜈− = 0 as this gives

the desired expansions. The expansion coefficients 𝑎±, 𝑗 can be evaluated again
using a recurrence relation as [86]

𝐼 ( 𝑗)𝑎 𝑗 = −
𝑗−1∑︁
𝑘=0

(
𝑘𝑃 𝑗−𝑘 +𝑄 𝑗−𝑘

)
𝑎𝑘 , (4.106)
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where we again further suppress the ± subscript (both the out-going and the
in-going mode have the same form above for the recurrence relations), and we
set 𝑎0 = 1. For example, explicitly 𝑎1 = −𝑄1/𝑃0. Comparing Eq. (4.54) with
Eq. (4.104), we have

CH
±, 𝑗 = 𝜔

− 𝑗𝑎H
±, 𝑗 . (4.107)

4.9 Appendix: Explicit Generalized Sasaki-Nakamura transformations
for physically relevant radiation fields

Here in this appendix we explicitly show our choices of 𝑔𝑖 (𝑟) for radiation fields
with spin weight 𝑠 = 0,±1,±2 that we use to construct the GSN transformation.
For each transformation, we give explicit expressions for the weighting functions
𝛼(𝑟), 𝛽(𝑟), the determinant of the transformation matrix 𝜂(𝑟), the asymptotic
solutions to the GSN equation at infinity and at the horizon for both the in-
going and the out-going mode, and the conversion factors for transforming the
asymptotic amplitudes between the Teukolsky function 𝑅 and the SN function
𝑋 . Together with Sec. 4.2 and this appendix, one should have all the necessary
ingredients to use the GSN formalism to numerically solve the homogenous
radial Teukolsky equation for physically relevant radiation fields (𝑠 = 0 for scalar
radiation, 𝑠 = ±1 for electromagnetic radiation, and 𝑠 = ±2 for gravitational
radiation).

Despite being long-winded, we opt to show the expressions explicitly for the
sake of completeness. Accompanying this paper are Mathematica notebooks
deriving and storing all the expressions shown here, and they can be found
on Zenodo.27 While the GSN formalism was proposed to facilitate numerical
computations, all the expressions in this appendix and Sec. 4.2 are exact. In
particular, we do not assume that 𝜔 is real when deriving expressions shown
here and they can be used in QNM calculations with the GSN formalism (such
as Ref. [87] using the parametrized BH quasi-normal ringdown formalism [88,
89, 90] to compute semi-analytical corrections from QNM frequencies for a

27https://doi.org/10.5281/zenodo.8080242

https://doi.org/10.5281/zenodo.8080242
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non-rotating BH, and Sec. 4.4.2). We also do not use the identities shown in
Eq. (4.50) and Eq. (4.51) to simplify the expressions for the conversion factors
below.

4.9.1 Scalar radiation 𝑠 = 0
By choosing 𝑔0(𝑟) = 1, we have the weighting functions

𝛼(𝑟) = 1, (4.108a)

𝛽(𝑟) = 0. (4.108b)

The determinant of the transformation matrix 𝜂(𝑟) can be written as

𝜂 = 𝑐0 + 𝑐1/𝑟 + 𝑐2/𝑟2 + 𝑐3/𝑟3 + 𝑐4/𝑟4

with the coefficients

𝑐0 = 1, (4.109a)

𝑐1,2,3,4 = 0. (4.109b)

The asymptotic out-going mode of 𝑋 when 𝑟∗ →∞ is given by

𝑋 (𝑟∗ →∞) ∝ 𝑓∞+ (𝑟)𝑒𝑖𝜔𝑟∗ = 𝑒𝑖𝜔𝑟∗
©­«1 +

∞∑︁
𝑗=1

C∞+, 𝑗
𝑟 𝑗

ª®¬
with the first three expansion coefficients

C∞+,1 =
1
2
𝑖 (𝜆 + 2𝑎𝑚𝜔) , (4.110a)

C∞+,2 =
1
8

{
−𝜆2 + 𝜆 (2 − 4𝑎𝑚𝜔) (4.110b)

+4𝜔
[
𝑖 − 𝑎2𝑚2𝜔 + 𝑎 (𝑚 + 2𝑖𝑚𝜔)

]}
,

C∞+,3 = − 1
48
𝑖
{
𝜆3 + 𝜆2(−8 + 6𝑎𝑚𝜔) (4.110c)

+4𝜆
[
3 − (9𝑖 + 8𝑎𝑚) 𝜔 + 𝑎

(
2𝑎 − 6𝑖𝑚 + 3𝑎𝑚2

)
𝜔2

]
+8𝜔

[
3𝑖 + 𝑎2

(
−1 + 𝑚2(−3 − 6𝑖𝜔)

)
𝜔

+𝑎3𝑚
(
2 + 𝑚2

)
𝜔2 + 𝑎𝑚

(
3 − 3𝑖𝜔 − 8𝜔2

)]}
.
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The asymptotic in-going mode of 𝑋 when 𝑟∗ →∞ is given by

𝑋 (𝑟∗ →∞) ∝ 𝑓∞− (𝑟)𝑒−𝑖𝜔𝑟∗ = 𝑒−𝑖𝜔𝑟∗
©­«1 +

∞∑︁
𝑗=1

C∞−, 𝑗
𝑟 𝑗

ª®¬
with the first three expansion coefficients

C∞−,1 = −1
2
𝑖 (𝜆 + 2𝑎𝑚𝜔) , (4.111a)

C∞−,2 =
1
8

{
−𝜆2 + 𝜆 (2 − 4𝑎𝑚𝜔) (4.111b)

−4𝜔
[
𝑖 + 𝑎𝑚 (−1 + 2𝑖𝜔) + 𝑎2𝑚2𝜔

]}
,

C∞−,3 =
1
48
𝑖
{
𝜆3 + 𝜆2 (−8 + 6𝑎𝑚𝜔) (4.111c)

+4𝜆
[
3 + (9𝑖 − 8𝑎𝑚) 𝜔 + 𝑎

(
2𝑎 + 6𝑖𝑚 + 3𝑎𝑚2

)
𝜔2

]
+8𝜔

[
−3𝑖 + 𝑎2

(
−1 + 𝑚2(−3 + 6𝑖𝜔)

)
𝜔

+𝑎3𝑚
(
2 + 𝑚2

)
𝜔2 + 𝑎𝑚

(
3 + 3𝑖𝜔 − 8𝜔2

)]}
.

These expressions (except for C∞+, 𝑗 ) match with those found in Ref. [48]. Note

that C∞+, 𝑗 =
(
C∞−, 𝑗

)∗
as claimed in Ref. [48] is true only for real 𝜔 since the GSN

potentials F ,U are real-valued in this case.

The conversion factors between the GSN and the Teukolsky formalism are found
to be

𝐵ref
T

𝐵ref
SN

=
𝐶trans

T
𝐶trans

SN
= 1, (4.112a)

𝐵inc
T

𝐵inc
SN

= 1, (4.112b)

𝐶inc
T

𝐶inc
SN

=
1
√

2𝑟+
, (4.112c)

𝐵trans
T
𝐵trans

SN
=
𝐶ref

T

𝐶ref
SN

=
1
√

2𝑟+
. (4.112d)

Note that these conversion factors are frequency-independent.
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4.9.2 Electromagnetic radiation
4.9.2.1 𝑠 = +1

By choosing 𝑔0(𝑟) =
𝑟2 + 𝑎2

𝑟2 and 𝑔1(𝑟) = 1, we have the weighting functions

𝛼(𝑟) =
1

𝑟2
√
Δ

[
−𝑖𝑎3𝑚 − 𝑖𝑎𝑚𝑟2 + 𝑖𝑎4𝜔 (4.113a)

+𝑟3 (1 + 𝑖𝑟𝜔) + 𝑎2
(
−2 + 𝑟 + 2𝑖𝑟2𝜔

)]
,

𝛽(𝑟) =

(
𝑟2 + 𝑎2)
𝑟2Δ3/2 . (4.113b)

The determinant of the transformation matrix 𝜂(𝑟) can be written as

𝜂 = 𝑐0 + 𝑐1/𝑟 + 𝑐2/𝑟2 + 𝑐3/𝑟3 + 𝑐4/𝑟4

with the coefficients

𝑐0 = − (2 + 𝜆) , (4.114a)

𝑐1 = 2𝑖𝑎𝑚, (4.114b)

𝑐2 = −𝑎2 (3 + 2𝜆) , (4.114c)

𝑐3 = −2𝑎2 (1 − 𝑖𝑎𝑚) , (4.114d)

𝑐4 = −𝑎4 (1 + 𝜆) . (4.114e)
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The asymptotic out-going mode of 𝑋 when 𝑟∗ →∞ is given by

𝑋 (𝑟∗ →∞) ∝ 𝑓∞+ (𝑟)𝑒𝑖𝜔𝑟∗ = 𝑒𝑖𝜔𝑟∗
©­«1 +

∞∑︁
𝑗=1

C∞+, 𝑗
𝑟 𝑗

ª®¬
with the first three expansion coefficients

C∞+,1 =
1
2
𝑖 (2 + 𝜆 + 2𝑎𝑚𝜔) , (4.115a)

C∞+,2 =
1
8

[
−𝜆2 − 2𝜆 (1 + 2𝑎𝑚𝜔) (4.115b)

−4𝑎𝜔
(
𝑚 − 2𝑎𝜔 − 2𝑖𝑚𝜔 + 𝑎𝑚2𝜔

)]
,

C∞+,3 = − 1
48
𝑖
{
𝜆3 + 𝜆2 (−2 + 6𝑎𝑚𝜔) (4.115c)

+4𝜆 [−2 − 2 (3𝑖 + 𝑎𝑚) 𝜔
+𝑎

(
−4𝑎 − 6𝑖𝑚 + 3𝑎𝑚2

)
𝜔2

]
+8𝜔

[
−6𝑖 + 𝑎3𝑚

(
−4 + 𝑚2

)
𝜔2

+3𝑎2𝜔
(
−1 − 2𝑖𝑚2𝜔

)
− 𝑎𝑚

(
3 + 6𝑖𝜔 + 8𝜔2

)]}
.
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The asymptotic in-going mode of 𝑋 when 𝑟∗ →∞ is given by

𝑋 (𝑟∗ →∞) ∝ 𝑓∞− (𝑟)𝑒−𝑖𝜔𝑟∗ = 𝑒−𝑖𝜔𝑟∗
©­«1 +

∞∑︁
𝑗=1

C∞−, 𝑗
𝑟 𝑗

ª®¬
with the first three expansion coefficients

C∞−,1 =
1

2𝑐0
𝑖
[
4 + 𝜆2 + 8𝑎𝑚𝜔 + 2𝜆 (2 + 𝑎𝑚𝜔)

]
, (4.116a)

C∞−,2 =
1

8𝑐0

{
𝜆3 + 4𝜆2(1 + 𝑎𝑚𝜔) (4.116b)

+8𝑎𝜔
[
𝑚 (2 + 2𝑖𝜔) − 𝑎𝜔 + 3𝑎𝑚2𝜔

]
+4𝜆

[
1 + 𝑎𝑚 (5 + 2𝑖𝜔) 𝜔 + 𝑎2

(
−2 + 𝑚2

)
𝜔2

]}
,

C∞−,3 = − 1
48𝑐0

𝑖
{
𝜆4 + 6𝑎𝑚𝜆3𝜔 (4.116c)

+4𝜆2 [−3 + (6𝑖 + 4𝑎𝑚) 𝜔 (4.116d)

+𝑎
(
−4𝑎 + 6𝑖𝑚 + 3𝑎𝑚2

)
𝜔2

]
+8𝜆 [−2 + (12𝑖 − 5𝑎𝑚) 𝜔
+𝑎

(
12𝑖𝑚 + 𝑎(−4 + 9𝑚2)

)
𝜔2

+𝑎𝑚
(
−8 + 6𝑖𝑎𝑚 + 𝑎2(−4 + 𝑚2)

)
𝜔3

]
+16𝜔

[
6𝑖 + 𝑎3𝑚

(
−1 + 4𝑚2

)
𝜔2

+3𝑖𝑎2𝜔
(
𝑖 − 2𝜔 + 4𝑚2𝜔

)
+𝑎𝑚

(
−3 + 12𝑖𝜔 − 8𝜔2

)]}
.
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The conversion factors between the GSN and the Teukolsky formalism are found
to be

𝐵ref
T

𝐵ref
SN

=
𝐶trans

T
𝐶trans

SN
=

1
2𝑖𝜔

, (4.117a)

𝐵inc
T

𝐵inc
SN

=
2𝑖𝜔
𝑐0
, (4.117b)

𝐶inc
T

𝐶inc
SN

=
𝑟

3/2
+

4
√

2
, (4.117c)

×
[
𝑟+(1 + 4𝑖𝜔 − 𝑖𝑎𝑚) − 𝑎2(1 + 2𝑖𝜔)

]−1

𝐵trans
T
𝐵trans

SN
=
𝐶ref

T

𝐶ref
SN

=
√︁

2𝑟+
2𝑟+𝜔 − 𝑎𝑚

2𝑎𝑚 + 2𝑖(2 + 𝜆) . (4.117d)

4.9.2.2 𝑠 = −1

By choosing 𝑔0(𝑟) =
𝑟2 + 𝑎2

𝑟2 and 𝑔1(𝑟) = 1, we have the weighting functions

𝛼(𝑟) = −
√
Δ

𝑟2

[
𝑟 + 𝑖

(
𝑟2 + 𝑎2) 𝐾

Δ

]
, (4.118a)

𝛽(𝑟) =

√
Δ

(
𝑟2 + 𝑎2)
𝑟2 . (4.118b)

The determinant of the transformation matrix 𝜂(𝑟) can be written as

𝜂 = 𝑐0 + 𝑐1/𝑟 + 𝑐2/𝑟2 + 𝑐3/𝑟3 + 𝑐4/𝑟4

with the coefficients

𝑐0 = −𝜆, (4.119a)

𝑐1 = −2𝑖𝑎𝑚, (4.119b)

𝑐2 = 𝑎2 (1 − 2𝜆) , (4.119c)

𝑐3 = −2𝑎2 (1 + 𝑖𝑎𝑚) , (4.119d)

𝑐4 = 𝑎4 (1 − 𝜆) . (4.119e)
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The asymptotic out-going mode of 𝑋 when 𝑟∗ →∞ is given by

𝑋 (𝑟∗ →∞) ∝ 𝑓∞+ (𝑟)𝑒𝑖𝜔𝑟∗ = 𝑒𝑖𝜔𝑟∗
©­«1 +

∞∑︁
𝑗=1

C∞+, 𝑗
𝑟 𝑗

ª®¬
with the first three expansion coefficients

C∞+,1 = − 1
2𝑐0

𝑖

(
𝜆2 + 4𝑎𝑚𝜔 + 2𝑎𝑚𝜆𝜔

)
, (4.120a)

C∞+,2 =
1

8𝑐0

[
𝜆3 − 𝜆2 (2 − 4𝑎𝑚𝜔) − (4.120b)

8𝑎𝜔
(
𝑚 − 𝑎𝜔 − 2𝑎𝑚2𝜔

)
+4𝑎𝜔𝜆

(
𝑚 − 2𝑎𝜔 − 2𝑖𝑚𝜔 + 𝑎𝑚2𝜔

)]
,

C∞+,3 =
1

48𝑐0
𝑖
{
𝜆4 + 𝜆3(−8 + 6𝑎𝑚𝜔) (4.120c)

+4𝜆2 [3 − (6𝑖 + 5𝑎𝑚) 𝜔
+𝑎

(
−4𝑎 − 6𝑖𝑚 + 3𝑎𝑚2

)
𝜔2

]
+48𝑎𝜔

[
𝑎(−1 + 2𝑖𝜔)𝜔 + 𝑎2𝑚3𝜔2

−2𝑖𝑎𝑚2𝜔(−𝑖 + 𝜔) + 𝑚
(
1 − 2𝑖𝜔 + 𝑎2𝜔2

)]
+8𝑎𝜆𝜔

[
4𝑎𝜔 + 3𝑎𝑚2(1 − 2𝑖𝜔)𝜔 + 𝑎2𝑚3𝜔2

−4𝑚
(
1 + (2 + 𝑎2)𝜔2

)]}
.
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The asymptotic in-going mode of 𝑋 when 𝑟∗ →∞ is given by

𝑋 (𝑟∗ →∞) ∝ 𝑓∞− (𝑟)𝑒−𝑖𝜔𝑟∗ = 𝑒−𝑖𝜔𝑟∗
©­«1 +

∞∑︁
𝑗=1

C∞−, 𝑗
𝑟 𝑗

ª®¬
with the first three expansion coefficients

C∞−,1 = −1
2
𝑖 (𝜆 + 2𝑎𝑚𝜔) , (4.121a)

C∞−,2 =
1
8

[
−𝜆2 + 𝜆 (2 − 4𝑎𝑚𝜔) (4.121b)

+4𝑎𝜔
(
𝑚 + 2𝑎𝜔 − 2𝑖𝑚𝜔 − 𝑎𝑚2𝜔

)]
,

C∞−,3 =
1

48
𝑖
{
𝜆3 + 𝜆2(−8 + 6𝑎𝑚𝜔) (4.121c)

+4𝜆
[
3 + (6𝑖 − 8𝑎𝑚)𝜔 + 𝑎

(
−4𝑎 + 6𝑖𝑚 + 3𝑎𝑚2

)
𝜔2

]
+8𝑎𝜔

[
𝑎𝜔 + 3𝑎𝑚2 (−1 + 2𝑖𝜔) 𝜔 + 𝑎2𝑚3𝜔2

+𝑚
(
2 − 4

(
2 + 𝑎2

)
𝜔2

)]}
.

These expressions (except for C∞+, 𝑗 ) match with those found in Ref. [48]. Note

that C∞+, 𝑗 =
(
C∞−, 𝑗

)∗
as claimed in Ref. [48] is not true even for real 𝜔 since the

GSN potentials F ,U are in general complex-valued.

The conversion factors between the GSN and the Teukolsky formalism are found
to be

𝐵ref
T

𝐵ref
SN

=
𝐶trans

T
𝐶trans

SN
= −2𝑖𝜔

𝑐0
, (4.122a)

𝐵inc
T

𝐵inc
SN

= − 1
2𝑖𝜔

, (4.122b)

𝐶inc
T

𝐶inc
SN

= −
√
𝑟+

[
(𝑎𝑚 − 4𝜔) 𝑟+ + 2𝑎2𝜔

]
√

2 (𝑎𝑚 − 𝑖𝜆)
, (4.122c)

𝐵trans
T
𝐵trans

SN
=
𝐶ref

T

𝐶ref
SN

=
𝑟

3/2
+

4
√

2
(4.122d)

×
[
(1 + 𝑖𝑎𝑚 − 4𝑖𝜔) 𝑟+ − 𝑎2 (1 − 2𝑖𝜔)

]−1
.
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4.9.3 Gravitational radiation
4.9.3.1 𝑠 = +2

By choosing 𝑔0(𝑟) =
𝑟2

𝑟2 + 𝑎2 , 𝑔1(𝑟) = 1, and 𝑔2(𝑟) =
𝑟2 + 𝑎2

𝑟2 , we have the
weighting functions

𝛼(𝑟) =
1
𝑟2Δ

{
4𝑎3𝑚𝑟 (𝑖 + 𝑟𝜔) (4.123a)

+2𝑎𝑚𝑟2
(
𝑖 − 3𝑖𝑟 + 2𝑟2𝜔

)
− 2𝑎4

(
−3 + 2𝑖𝑟𝜔 + 𝑟2𝜔2

)
+𝑟3 [
−2𝜆 + 𝑟 (2 + 𝜆 + 10𝑖𝜔) − 2𝑟3𝜔2]

−𝑎2𝑟
(
8 + 2𝑚2𝑟 − 𝑟𝜆 + 2𝑖𝑟𝜔 + 4𝑖𝑟2𝜔 + 4𝑟3𝜔2

)}
,

𝛽(𝑟) =
1
𝑟Δ3

[
−2𝑖𝑎𝑚𝑟 + 𝑎2 (−4 + 2𝑖𝑟𝜔) + 2𝑟

(
3 − 𝑟 + 𝑖𝑟2𝜔

)]
.(4.123b)

The determinant of the transformation matrix 𝜂(𝑟) can be written as

𝜂 = 𝑐0 + 𝑐1/𝑟 + 𝑐2/𝑟2 + 𝑐3/𝑟3 + 𝑐4/𝑟4

with the coefficients

𝑐0 = 24 + 12𝑖𝜔 + 𝜆(10 + 𝜆) − 12𝑎𝜔 (𝑎𝜔 − 𝑚) , (4.124a)

𝑐1 = −32𝑖𝑎𝑚 − 8𝑖𝑎𝑚𝜆 + 8𝑖𝑎2𝜔(1 + 𝜆), (4.124b)

𝑐2 = 12𝑎2 − 24𝑖𝑎𝑚 − 24𝑎2𝑚2 + 24𝑖𝑎2𝜔 + 48𝑎3𝑚𝜔 − 24𝑎4𝜔2,(4.124c)

𝑐3 = −24𝑖𝑎3 (𝑎𝜔 − 𝑚) − 24𝑎2, (4.124d)

𝑐4 = 12𝑎4. (4.124e)
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The asymptotic out-going mode of 𝑋 when 𝑟∗ →∞

𝑋 (𝑟∗ →∞) ∝ 𝑓∞+ (𝑟)𝑒𝑖𝜔𝑟∗ = 𝑒𝑖𝜔𝑟∗
©­«1 +

∞∑︁
𝑗=1

C∞+, 𝑗
𝑟 𝑗

ª®¬
with the first three expansion coefficients

C∞+,1 =
1
2
𝑖 (6 + 𝜆 + 2𝑎𝑚𝜔) , (4.125a)

C∞+,2 = −1
8

{
𝜆2 + 2𝜆 (5 + 2𝑎𝑚𝜔) (4.125b)

+4
[
6 + (3𝑖 + 5𝑎𝑚) 𝜔 + 𝑎𝑚 (−2𝑖 + 𝑎𝑚) 𝜔2]} ,

C∞+,3 = − 1
48
𝑖
{
𝜆3 + 2𝜆2 (5 + 3𝑎𝑚𝜔) (4.125c)

+4𝜆
[
6 + (3𝑖 + 10𝑎𝑚) 𝜔 + 𝑎

(
2𝑎 − 6𝑖𝑚 + 3𝑎𝑚2

)
𝜔2

]
+8𝑎𝜔

[
𝑎𝜔 + 6𝑎𝑚2 (1 − 𝑖𝜔) 𝜔 + 𝑎2𝑚3𝜔2

+𝑚
(
2 − 9𝑖𝜔 + 2(−4 + 𝑎2)𝜔2

)]}
.

The asymptotic in-going mode of 𝑋 when 𝑟∗ →∞

𝑋 (𝑟∗ →∞) ∝ 𝑓∞− (𝑟)𝑒−𝑖𝜔𝑟∗ = 𝑒−𝑖𝜔𝑟∗
©­«1 +

∞∑︁
𝑗=1

C∞−, 𝑗
𝑟 𝑗

ª®¬
with the first three expansion coefficients
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C∞−,1 =
1

2𝑐0
𝑖
{
−𝜆3 − 2𝜆2(8 + 𝑎𝑚𝜔) + 4𝜆

[
−21 − 3 (𝑖 + 4𝑎𝑚) 𝜔 + 7𝑎2𝜔2] (4.126a)

+8
[
−18 − (9𝑖 + 23𝑎𝑚) 𝜔 + 𝑎

(
11𝑎 − 3𝑖𝑚 − 3𝑎𝑚2

)
𝜔2 + 3𝑎3𝑚𝜔3

]}
,

C∞−,2 = − 1
8𝑐0

{
𝜆4 + 4𝜆3 (5 + 𝑎𝑚𝜔) (4.126b)

+4𝜆2
[
37 + 2𝑎𝑚 (13 + 𝑖𝜔) 𝜔 + 𝑎2

(
−11 + 𝑚2

)
𝜔2

]
−8𝜆

[
−60 + 8𝑎𝑚 (−11 − 2𝑖𝜔) 𝜔 + 𝑎2

(
39 − 19𝑚2

)
𝜔2 + 14𝑎3𝑚𝜔3

]
−16

[
𝑎2

(
34 + 𝑚2(−49 − 9𝑖𝜔) + 3𝑖𝜔

)
𝜔2

+𝑎3𝑚
(
43 − 3𝑚2 + 6𝑖𝜔

)
𝜔3 + 3𝑎4

(
−4 + 𝑚2

)
𝜔4

−9
(
4 + 𝜔2

)
+ 2𝑎𝑚𝜔

(
−44 − 15𝑖𝜔 + 3𝜔2

)]}
,

C∞−,3 = − 1
48𝑐0

𝑖
{
−𝜆5 − 2𝜆4(10 + 3𝑎𝑚𝜔) (4.126c)

−4𝜆3
[
37 + 2𝑎𝑚 (20 + 3𝑖𝜔) 𝜔 + 𝑎2

(
−13 + 3𝑚2

)
𝜔2

]
−8𝜆2

[
60 + 2𝑎2

(
−29 + 3𝑚2(9 + 𝑖𝜔)

)
𝜔2

+𝑎3𝑚
(
−31 + 𝑚2

)
𝜔3 + 𝑎𝑚𝜔

(
157 + 48𝑖𝜔 − 8𝜔2

)]
+16𝜆

[
𝑎2

(
91 + 𝑚2(−210 − 81𝑖𝜔) + 9𝑖𝜔

)
𝜔2

+2𝑎3𝑚
(
73 − 13𝑚2 + 21𝑖𝜔

)
𝜔3 + 3𝑎4

(
−10 + 7𝑚2

)
𝜔4

−9
(
4 + 𝜔2

)
+ 2𝑎𝑚𝜔

(
−116 − 63𝑖𝜔 + 29𝜔2

)]
+96𝑎𝜔

[
−𝑎3𝑚4𝜔3 + 𝑎𝜔

(
18 + 9𝑖𝜔 − 11𝑎2𝜔2

)
+𝑎2𝑚3𝜔2

(
−28 − 7𝑖𝜔 + 𝑎2𝜔2

)
+𝑎𝑚2𝜔

(
−70 − 55𝑖𝜔 + 2(7 + 15𝑎2)𝜔2 + 6𝑖𝑎2𝜔3

)
+𝑚

(
−36 − 36𝑖𝜔 + (25 + 47𝑎2)𝜔2 + 𝑖(8 + 23𝑎2)𝜔3 − 2𝑎2(4 + 5𝑎2)𝜔4

)]}
.
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The conversion factors

𝐵ref
T

𝐵ref
SN

=
𝐶trans

T
𝐶trans

SN
= − 1

4𝜔2 , (4.127a)

𝐵inc
T

𝐵inc
SN

= −4𝜔2

𝑐0
, (4.127b)

𝐶inc
T

𝐶inc
SN

= − 𝑟
3/2
+

4
√

2

{[
2
(
−1 − 6𝑖𝜔 + 8𝜔2

)
(4.127c)

+𝑎2
(
2 + 𝑚2 + 9𝑖𝜔 − 8𝜔2

)
+ 𝑎𝑚 (3𝑖 − 8𝜔)

]
𝑟2
+

+𝑎3 (−3𝑖 + 4𝜔) (𝑚𝑟+ − 𝑎𝜔)
}−1

,

𝐵trans
T
𝐵trans

SN
=
𝐶ref

T

𝐶ref
SN

= 2
√

2𝑟3/2
+ (4.127d)

× {[4𝜔 (𝑖 − 4𝜔) − 𝑎𝑚 (𝑖 − 8𝜔)
−𝑎2

(
𝑚2 + 2𝑖𝜔 − 4𝜔2

)]
𝑟2
+ + 𝑎2 (𝑖 − 4𝜔) (𝑎𝑚 − 2𝜔) 𝑟+

}
×

{
2𝑟3
+

(
24 + 10𝜆 + 𝜆2 + 12𝑖𝜔

)
− 𝑟2
+ [8𝑖𝑎𝑚 (11 + 2𝜆 + 6𝑖𝜔)

+𝑎2
(
24 + 24𝑚2 + 10𝜆 + 𝜆2 − 28𝑖𝜔 − 16𝑖𝜆𝜔 + 48𝜔2

)]
+8𝑖𝑎3𝑟+ [𝑚 (7 + 𝜆 − 6𝑖𝜔) − 𝑎𝜔 (4 + 𝜆)] + 12𝑎5𝜔 (𝑎𝜔 − 3𝑚)

}−1
.
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4.9.3.2 𝑠 = −2

By choosing 𝑔0(𝑟) =
𝑟2

𝑟2 + 𝑎2 , 𝑔1(𝑟) = 1, and 𝑔2(𝑟) =
𝑟2 + 𝑎2

𝑟2 28, we have the
weighting functions

𝛼(𝑟) =
1
𝑟2Δ

{
4𝑎3𝑚𝑟 (−𝑖 + 𝑟𝜔) (4.128a)

+2𝑎𝑚𝑟2
(
3𝑖 − 𝑖𝑟 + 2𝑟2𝜔

)
+ 𝑎4

(
6 + 4𝑖𝑟𝜔 − 2𝑟2𝜔2

)
+𝑎2𝑟

[
−24 + 𝑟

(
12 − 2𝑚2 + 𝜆 − 6𝑖𝜔

)
+ 12𝑖𝑟2𝜔 − 4𝑟3𝜔2

]
+𝑟2 [

24 − 2𝑟 (12 + 𝜆) + 𝑟2 (6 + 𝜆 − 18𝑖𝜔) + 8𝑖𝑟3𝜔 − 2𝑟4𝜔2]} ,
𝛽(𝑟) =

2Δ
𝑟

[
𝑖𝑎𝑚𝑟 + 𝑎2 (−2 − 𝑖𝑟𝜔) + 𝑟

(
3 − 𝑟 − 𝑖𝑟2𝜔

)]
. (4.128b)

The determinant of the transformation matrix 𝜂(𝑟) can be written as

𝜂 = 𝑐0 + 𝑐1/𝑟 + 𝑐2/𝑟2 + 𝑐3/𝑟3 + 𝑐4/𝑟4

with the coefficients

𝑐0 = −12𝑖𝜔 + 𝜆(2 + 𝜆) − 12𝑎𝜔 (𝑎𝜔 − 𝑚) , (4.129a)

𝑐1 = 8𝑖𝑎𝑚𝜆 + 8𝑖𝑎2𝜔(3 − 𝜆), (4.129b)

𝑐2 = −24𝑖𝑎 (𝑎𝜔 − 𝑚) + 12𝑎2 [
1 − 2 (𝑎𝜔 − 𝑚)2

]
, (4.129c)

𝑐3 = 24𝑖𝑎3 (𝑎𝜔 − 𝑚) − 24𝑎2, (4.129d)

𝑐4 = 12𝑎4. (4.129e)

28Note that 𝑔0, 𝑔1, 𝑔2 here are not the same as the 𝑓 , 𝑔, ℎ in Ref. [54]. In fact, we see that

𝑔 = 𝑔1 = 1 and ℎ = 𝑔2 =
𝑟2 + 𝑎2

𝑟2 but 𝑓 = 𝑔0𝑔1𝑔2 = 1.
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The asymptotic out-going mode of 𝑋 when 𝑟∗ →∞

𝑋 (𝑟∗ →∞) ∝ 𝑓∞+ (𝑟)𝑒𝑖𝜔𝑟∗ = 𝑒𝑖𝜔𝑟∗
©­«1 +

∞∑︁
𝑗=1

C∞+, 𝑗
𝑟 𝑗

ª®¬
with the first three expansion coefficients

C∞+,1 = − 1
2𝑐0

𝑖
{
−𝜆3 − 2𝜆2(2 + 𝑎𝑚𝜔) (4.130a)

+4𝜆
[
−1 + (3𝑖 − 8𝑎𝑚) 𝜔 + 7𝑎2𝜔2]

+24𝜔
[
𝑖 − 𝑎2

(
1 + 𝑚2

)
𝜔 + 𝑎3𝑚𝜔2 + 𝑖𝑎𝑚(𝑖 + 𝜔)

]}
,

C∞+,2 = − 1
8𝑐0

{
𝜆4 + 4𝜆3(1 + 𝑎𝑚𝜔) (4.130b)

+4𝜆2
[
1 + 2𝑎𝑚 (7 − 𝑖𝜔) 𝜔 + 𝑎2

(
−11 + 𝑚2

)
𝜔2

]
−8𝑎𝜆𝜔

[
−5𝑎𝜔 − 15𝑎𝑚2𝜔 + 2𝑚

(
−4 + 4𝑖𝜔 + 7𝑎2𝜔2

)]
−48𝜔2

[
−3 − 𝑎3𝑚

(
−5 + 𝑚2 + 2𝑖𝜔

)
𝜔 + 𝑎4

(
−4 + 𝑚2

)
𝜔2

+2𝑎𝑚 (𝑖 + 𝜔) + 𝑖𝑎2
(
−𝜔 + 5𝑖𝑚2 + 3𝑚2𝜔

)]}
,

C∞+,3 =
1

48𝑐0
𝑖
{
−𝜆5 − 6𝑎𝑚𝜆4𝜔 (4.130c)

−4𝜆3
[
−3 + 2𝑎𝑚 (8 − 3𝑖𝜔) 𝜔 + 𝑎2

(
−13 + 3𝑚2

)
𝜔2

]
−8𝜆2

[
−2 + 2𝑎2

(
10 + 3𝑚2(6 − 𝑖𝜔)

)
𝜔2

+𝑎3𝑚
(
−31 + 𝑚2

)
𝜔3 − 𝑎𝑚𝜔

(
11 + 12𝑖𝜔 + 8𝜔2

)]
+16𝜆𝜔

[
−9𝜔 + 3𝑎2

(
5 + 𝑚2(−10 + 19𝑖𝜔) − 3𝑖𝜔

)
𝜔

−2𝑎3𝑚
(
−11 + 11𝑚2 + 21𝑖𝜔

)
𝜔2 + 3𝑎4

(
−10 + 7𝑚2

)
𝜔3

+2𝑎𝑚
(
6 + 3𝑖𝜔 + 13𝜔2

)]
+ 96𝜔2 [6 + 𝑎𝑚(−3 − 8𝑖𝜔)𝜔

+𝑎4
(
9 − 𝑚4 + 2𝑚2(8 − 3𝑖𝜔)

)
𝜔2 + 𝑎5𝑚

(
−10 + 𝑚2

)
𝜔3

+𝑎3𝑚𝜔
(
−9 + 𝑚2(−12 + 7𝑖𝜔) + 5𝑖𝜔 − 8𝜔2

)
+𝑎2

(
−3𝑖𝜔 + 𝑚2

(
6 + 9𝑖𝜔 + 14𝜔2

))]}
.
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The asymptotic in-going mode of 𝑋 when 𝑟∗ →∞

𝑋 (𝑟∗ →∞) ∝ 𝑓∞− (𝑟)𝑒−𝑖𝜔𝑟∗ = 𝑒−𝑖𝜔𝑟∗
©­«1 +

∞∑︁
𝑗=1

C∞−, 𝑗
𝑟 𝑗

ª®¬
with the first three expansion coefficients

C∞−,1 = −1
2
𝑖 (2 + 𝜆 + 2𝑎𝑚𝜔) , (4.131a)

C∞−,2 =
1
8

{
−𝜆2 − 2𝜆(1 + 2𝑎𝑚𝜔) − 4𝜔

[
−3𝑖 + 𝑎2𝑚2𝜔 + 𝑎 (𝑚 + 2𝑖𝑚𝜔)

]}
, (4.131b)

C∞−,3 =
1

48
𝑖
{
𝜆3 + 𝜆2 (−2 + 6𝑎𝑚𝜔) (4.131c)

+4𝜆
[
−2 − (3𝑖 + 2𝑎𝑚) 𝜔 + 𝑎

(
2𝑎 + 6𝑖𝑚 + 3𝑎𝑚2

)
𝜔2

]
+8𝜔

[
6𝑖 + 𝑎3𝑚

(
2 + 𝑚2

)
𝜔2 + 3𝑎2𝜔

(
−1 + 2𝑖𝑚2𝜔

)
− 𝑎𝑚

(
6 + 3𝑖𝜔 + 8𝜔2

)]}
.

The conversion factors

𝐵ref
T

𝐵ref
SN

=
𝐶trans

T
𝐶trans

SN
= −4𝜔2

𝑐0
, (4.132a)

𝐵inc
T

𝐵inc
SN

= − 1
4𝜔2 , (4.132b)

𝐶inc
T

𝐶inc
SN

= −4𝑝
√

2𝑟+
𝜂 (𝑟+)

[2𝑝𝑟+ + 𝑖 (𝑟+ − 1)] , (4.132c)

𝐵trans
T
𝐵trans

SN
=
𝐶ref

T

𝐶ref
SN

=
1
√

2𝑟+

[(
8 − 24𝑖𝜔 − 16𝜔2

)
𝑟2
+ (4.132d)

+ (12𝑖𝑎𝑚 − 16 + 16𝑎𝑚𝜔 + 24𝑖𝜔) 𝑟+ +
(
−4𝑎2𝑚2 − 12𝑖𝑎𝑚 + 8

)]−1
.

These expressions match those found in literature, for example Refs. [82, 91, 61].
Note again that C∞+, 𝑗 ≠

(
C∞−, 𝑗

)∗
even for real 𝜔 since the GSN potentials F ,U

are in general complex-valued.29

29This was corrected in the erratum [92] for Ref. [82]. In both Refs. [91, 92], expressions for
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C∞+, 𝑗 written in a form much more concise than that in Eq. (4.130) were shown by relating them
with the complex conjugate of C∞−, 𝑗 . Those expressions are valid only for real 𝜔. We opt to not
make such an assumption when deriving the expressions and hence not many simplifications can
be made.
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C h a p t e r 5

GRAVITATIONAL-WAVE ECHOES FROM SPINNING
EXOTIC COMPACT OBJECTS: NUMERICAL WAVEFORMS

FROM THE TEUKOLSKY EQUATION

This chapter contains work from

S. Xin, B. Chen, R. K. L. Lo, et al. “Gravitational-wave echoes from spin-
ning exotic compact objects: Numerical waveforms from the Teukolsky
equation”. In: Phys. Rev. D 104.10 (2021), p. 104005. doi: 10.1103/
PhysRevD.104.104005. arXiv: 2105.12313 [gr-qc].
R. K. L. L performed the detectability analysis of echoes in current
and future generation gravitational-wave detectors and wrote part of the
manuscript.

5.1 Introduction
As discussed in Chapter 3, the presence of repeating bursts of gravitational waves
(GWs), which are also referred to as GW echoes, after the merger of two compact
objects can be used to test the nature of the merger remnant. If the remnant is not
a black hole (BH) as predicted by general relativity (GR) but a novel compact
object, referred to as an exotic compact object (ECO), the surface of the ECO
could reflect some of the incident gravitational radiation, while the BH horizon
would simply absorb all the incident radiation. In order to confidently detect these
GW echoes and to also infer properties of the ECO from the echoes, we need
to have a theoretical modeling of ECOs and the ability to predict gravitational
waveforms of echoes being emitted by those ECO remnant.

Here we model the exterior spacetime of an ECO with a mass 𝑀 and a dimen-
sionless spin parameter 𝜒 ≡ 𝑎/𝑀 where 𝑎 is the angular momentum per unit
mass of the object with a Kerr BH spacetime of the same mass and dimension-
less spin parameter, except when very close to the would-be event horizon of

https://doi.org/10.1103/PhysRevD.104.104005
https://doi.org/10.1103/PhysRevD.104.104005
https://arxiv.org/abs/2105.12313
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the BH, the ECO has a surface at the Boyer-Lindquist coordinate 𝑟ECO in place
of the horizon. Since we only measure GWs reflected off of the surface, the
physics of the ECO interior is entirely encoded in the response of the surface to
incident waves, which is the surface’s reflectivity. Later in this chapter, we will
be using two ECO reflectivity models, namely the Lorentzian reflectivity and the
Boltzmann reflectivity, in order to compute gravitational waveforms of echoes.

In this chapter, we first review the theory of computing gravitational waveforms
using the Teukolsky equation in Sec. 5.2. In particular, we use a test particle
falling into a Kerr BH as an example. This example also serves as a simplified
model of a merger of a binary black hole (BBH) system. Then in Sec. 5.3, we
construct GW echoes using the waveforms computed in Sec. 5.2 and a model of
ECO surface reflectivity. In Sec. 5.5, we perform a detectability study to see if
GW echoes can be detected with current-generation and future GW detectors in
the optimal case where their waveforms are known accurately. Hereinafter we
set 𝑐 = 𝐺 = 𝑀 = 1.

5.2 Computing the gravitational waveform of a particle falling towards a
Kerr black hole using the Teukolsky equation

Let us first consider GWs emitted by a particle falling into a Kerr BH.1 The out-
going gravitational radiation at infinity is encoded in the Newman-Penrose scalar
curvature 𝜓4, which can be decomposed into frequency and angular components
in the Boyer-Lindquist coordinates (𝑡, 𝑟, 𝜃, 𝜙) as

𝜓4(𝑡, 𝑟, 𝜃, 𝜙)

= (𝑟 − 𝑖𝑎 cos 𝜃)−4
∫ +∞

−∞
𝑑𝜔

∑︁
ℓ𝑚

−2𝑅ℓ𝑚𝜔 (𝑟) −2𝑆ℓ𝑚 (𝜃; 𝑎𝜔)𝑒𝑖𝑚𝜙𝑒−𝑖𝜔𝑡 . (5.1)

Here −2𝑆ℓ𝑚 is the spin-weighted spheroidal harmonic with the spin weight 𝑠 = −2
appropriate for 𝜓4 (see Appendix 4.5 for more details), while −2𝑅ℓ𝑚𝜔 is the

1Refer to Chapter 4 for the definition and the expression of symbols used here in this chapter.
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solution to the radial Teukolsky equation

Δ2 𝑑

𝑑𝑟

(
1
Δ

𝑑𝑅ℓ𝑚𝜔

𝑑𝑟

)
−𝑉T(𝑟)𝑅ℓ𝑚𝜔 = −𝑇ℓ𝑚𝜔 (𝑟). (5.2)

Note that here we specialized the radial Teukolsky equation to the 𝑠 = −2
case, and hence we drop the subscript for 𝑠 hereafter when there is no risk for
confusion. The source term 𝑇ℓ𝑚𝜔 (𝑟) is determined by the mass and the trajectory
of the falling test particle, and the full expression of the source term can be
found in literature, for example in Ref. [33]. While our perturbative calculation
formally should only be valid in the extreme mass-ratio limit, in Ref. [33] we
have “calibrated” the source term for a test particle (with mass 𝜇 ≪ 𝑀) such
that the gravitational waveforms computed using BH perturbation theory match
with those for mergers of comparable mass-ratio BBHs using a surrogate model
of numerical relativity NRSur7dq4 [93], which we will be using for subsequent
calculations.

We look for solutions to the sourced (𝑇ℓ𝑚𝜔 ≠ 0) radial Teukolsky equation in
Eq. (5.2) that are only in-going at the horizon (denoted by the superscript in)
and only out-going at infinity (denoted by the superscript up), by imposing that
a solution 𝑅BH

ℓ𝑚𝜔
(𝑟) should behave asymptotically as

𝑅BH
ℓ𝑚𝜔 (𝑟) =


𝑍

in,BH
ℓ𝑚𝜔

Δ2𝑒−𝑖𝑝𝑟∗ as 𝑟 → 𝑟+,

𝑍
up,BH
ℓ𝑚𝜔

𝑟3𝑒𝑖𝜔𝑟∗ as 𝑟 →∞.
(5.3)

Using the Green’s function approach, the wave amplitudes 𝑍up,BH
ℓ𝑚𝜔

, 𝑍
in,BH
ℓ𝑚𝜔

can be
computed using convolution integrals of homogeneous solutions (see Chapter
4 for more details) satisfying the aforementioned boundary conditions with the
source term 𝑇ℓ𝑚𝜔. Explicitly, they are given by

𝑍
in,BH
ℓ𝑚𝜔

=
𝐵trans

T

2𝑖𝜔𝐶trans
T 𝐵inc

T

∫ ∞

𝑟+

𝑑𝑟
𝑅

up
ℓ𝑚𝜔
(𝑟)𝑇ℓ𝑚𝜔 (𝑟)
Δ(𝑟)2

, (5.4)

𝑍
up,BH
ℓ𝑚𝜔

=
1

2𝑖𝜔𝐵inc
T

∫ ∞

𝑟+

𝑑𝑟
𝑅in
ℓ𝑚𝜔
(𝑟)𝑇ℓ𝑚𝜔 (𝑟)
Δ(𝑟)2

. (5.5)
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As mentioned in Chapter 3, 𝜓4 is related to the plus polarization ℎ+ and the cross
polarization ℎ× of the GW at 𝑟 →∞. Mathematically,

𝜓4(𝑟 →∞) =
1
2
𝑑2

𝑑𝑡2
(ℎ+ − 𝑖ℎ×) . (5.6)

Therefore, if an observer is located at a distance 𝑟, a latitude angle Θ and an
azimuthal angle Φ with respect to the source, then the GW seen by the observer
is given by

ℎBH
+ − 𝑖ℎBH

× | (𝑡,𝑟,Θ,Φ) = −
2
𝑟

∑︁
ℓ𝑚

∫ +∞

−∞
𝑑𝜔

𝑍
up,BH
ℓ𝑚𝜔

𝜔2 −2𝑆ℓ𝑚 (Θ; 𝑎𝜔)𝑒𝑖𝑚Φ𝑒−𝑖𝜔(𝑡−𝑟∗) .

(5.7)
Therefore, the wave amplitude 𝑍up,BH

ℓ𝑚𝜔
in Eq. (5.5) determines the gravitational

waveform seen by observers at infinity.

5.3 Constructing gravitational-wave echoes from spinning exotic compact
objects

5.3.1 Modifications to the boundary conditions
Formally, the Teukolsky equation was derived for Kerr BHs. However, as men-
tioned in Sec. 5.1, we assume that an exterior ECO spacetime is identical to a
Kerr BH spacetime except when very close to the would-be event horizon of the
BH. For this reason, we still use the Teukolsky equation to calculate gravitational
waves emitted from ECOs. Since GW echoes are mainly sourced by the plunge
part (past the light ring) of an in-falling trajectory, which is not significantly
affected by the radiation reaction. Hence, we neglect any modification to the tra-
jectory due to the ECO surface. Still, we need to change the boundary condition
near the ECO surface at 𝑟 = 𝑟ECO for the radial Teukolsky function 𝑅ECO

ℓ𝑚𝜔
(𝑟) to a

more general form

𝑅ECO
ℓ𝑚𝜔 (𝑟) =


𝑍 in
ℓ𝑚𝜔

Δ2𝑒−𝑖𝑝𝑟∗ + 𝑍out
ℓ𝑚𝜔

𝑒𝑖𝑝𝑟∗ as 𝑟 → 𝑟ECO,

𝑍
up,ECO
ℓ𝑚𝜔

𝑟3𝑒𝑖𝜔𝑟∗ as 𝑟 →∞.
(5.8)

Note that the form of 𝑅ECO
ℓ𝑚𝜔

is changed near the ECO surface as we add an out-
going homogeneous solution 𝑒𝑖𝑝𝑟∗ with the amplitude 𝑍out

ℓ𝑚𝜔
(which is absent in
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Eq. (5.3)) due to reflections from the ECO surface, while the content of 𝑍 in
ℓ𝑚𝜔

is modified (compared to Eq. (5.3)) since additional waves propagate toward the
ECO upon reflections from the inner side of the Kerr potential barrier near the
light ring. Accordingly, the content of 𝑍up,ECO

ℓ𝑚𝜔
is also modified compared to

𝑍
up,BH
ℓ𝑚𝜔

in Eq. (5.3), and that will determine the gravitational waveform from the
ECO as observed at infinity.

5.3.2 Generation mechanism of gravitational-wave echoes
Schematically the wave amplitude 𝑍up,ECO

ℓ𝑚𝜔
should consist of two contributions,

namely
𝑍

up,ECO
ℓ𝑚𝜔

= 𝑍
up,ringdown
ℓ𝑚𝜔

+ 𝑍up,echoes
ℓ𝑚𝜔

. (5.9)

The first term 𝑍
up,ringdown
ℓ𝑚𝜔

is the contribution from the ringdown of the ECO due to
the plunging particle, and a prescription to compute the second term 𝑍

up,echoes
ℓ𝑚𝜔

is
needed. Fig. 3.2 succinctly illustrates the generation mechanism of GW echoes.
The blue arrow pointing to the right in Fig. 3.2 exactly corresponds to the first
term 𝑍

up,ringdown
ℓ𝑚𝜔

in Eq. (5.9). As for the contribution from echoes, from Fig. 3.2
we see that schematically 𝑍up,echoes

ℓ𝑚𝜔
can be written as

𝑍
up,echoes
ℓ𝑚𝜔

=

(
𝑍

plunge
ℓ𝑚𝜔

RECO
ℓ𝑚𝜔

)
T barrier
ℓ𝑚𝜔 +

(
𝑍

plunge
ℓ𝑚𝜔

RECO
ℓ𝑚𝜔R

barrier
ℓ𝑚𝜔 R

ECO
ℓ𝑚𝜔

)
T barrier
ℓ𝑚𝜔

+
(
𝑍

plunge
ℓ𝑚𝜔

RECO
ℓ𝑚𝜔R

barrier
ℓ𝑚𝜔 R

ECO
ℓ𝑚𝜔R

barrier
ℓ𝑚𝜔 R

ECO
ℓ𝑚𝜔

)
T barrier
ℓ𝑚𝜔 + . . .

.

(5.10)
Let us inspect Eq. (5.10) more carefully. Starting from the first term, we see that
T barrier
ℓ𝑚𝜔

is some sort of “transmissivity” measure of the Kerr BH potential that
relates an out-going wave that goes through the potential barrier and eventually
be seen by observers at infinity to the original wave that was incident onto the
barrier from the left. As for RECO

ℓ𝑚𝜔
, it is a measure of “reflectivity” or response of

the ECO surface to an incident wave 𝑍plunge
ℓ𝑚𝜔

such that the product 𝑍plunge
ℓ𝑚𝜔

RECO
ℓ𝑚𝜔

gives the wave generated (or “reflected”) by the ECO as the result of the incident
wave.

Looking at the second term in Eq. (5.10), the structure is identical to the first
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term except now the incident wave onto the ECO surface is placed by the product
𝑍

plunge
ℓ𝑚𝜔

RECO
ℓ𝑚𝜔
Rbarrier
ℓ𝑚𝜔

, where Rbarrier
ℓ𝑚𝜔

is some sort of “reflectivity” of the Kerr BH
potential that relates an in-going wave that was reflected by the potential barrier
to its original wave incident onto the barrier from the left. This in-going wave
then becomes the incident wave onto the ECO surface that generates the next
echo. It is clear that Eq. (5.10) is just a geometric series with a ratio RECO

ℓ𝑚𝜔
Rbarrier
ℓ𝑚𝜔

between successive terms. Therefore, we can write Eq. (5.10) as

𝑍
up,echoes
ℓ𝑚𝜔

=𝑍
plunge
ℓ𝑚𝜔

RECO
ℓ𝑚𝜔T

barrier
ℓ𝑚𝜔

[
1 + RECO

ℓ𝑚𝜔R
barrier
ℓ𝑚𝜔 +

(
RECO
ℓ𝑚𝜔R

barrier
ℓ𝑚𝜔

)2
+ . . .

]
=
RECO
ℓ𝑚𝜔
T barrier
ℓ𝑚𝜔

1 − RECO
ℓ𝑚𝜔
Rbarrier
ℓ𝑚𝜔

𝑍
plunge
ℓ𝑚𝜔

.

(5.11)
Now our task is to find a way to compute 𝑍plunge

ℓ𝑚𝜔
due to a plunging particle, the re-

flectivity and transmissivity of the potential barrier Rbarrier
ℓ𝑚𝜔

,T barrier
ℓ𝑚𝜔

, respectively,
and to model the response of the ECO surface RECO

ℓ𝑚𝜔
.

In Ref. [74], the relation between 𝑍out
ℓ𝑚𝜔

and 𝑍 in
ℓ𝑚𝜔

(c.f. Eq. (5.8)) was determined
by considering tidal tensor fields of fiducial observers near the horizon. To
summarize the results, we connect 𝜓0 and 𝜓4 to the tidal tensors of fiducial
observers near the horizon:

E ∼ − Δ

4Σ
𝜓0 −

Σ

Δ
𝜓∗4 , (5.12)

where ∗ denotes its complex conjugate. Note that it is the in-going piece of
𝜓0 (∼ Δ−2𝑒−𝑖𝑝𝑟∗) and the out-going piece of 𝜓4 (∼ 𝑒+𝑖𝑝𝑟∗) that dominate this
expression, with both contributing to E at the order of 1/Δ since the effect of
GWs is heavily blue-shifted for near-horizon observers. Since the in-going piece
of 𝜓0 is externally applied to the ECO, while the out-going piece is generated by
the ECO, the ratio of these two terms can then be viewed as a local tidal Love
number of the ECO.

By considering tidal distortions of zero-angular-momentum fiducial observers
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very close to the horizon, we obtain

𝑍out
ℓ𝑚𝜔 =

(−1)𝑚+1
4
RECO
ℓ𝑚𝜔

(
𝑌 in
ℓ−𝑚−𝜔

)∗
, (5.13)

where 𝑌 in is the in-going piece of 𝜓0 near the ECO surface (note the subscript
for 𝑌 is different). Here RECO

ℓ𝑚𝜔
is the response of the ECO to an external driving.

Its modulus, |RECO
ℓ𝑚𝜔
|, corresponds to the energy reflectivity of the ECO surface.

Here we have ignored the mixing between different ℓ-modes, which is a general
feature due to the distortion of spacetime geometry by the spin of the ECO.

In literature, one of the Teukolsky-Starobinsky identities is often used to relate
the the in-going 𝜓0 piece with the in-going 𝜓4 piece, which is

𝑌 in
ℓ𝑚𝜔 = 𝜎ℓ𝑚𝜔𝑍

in
ℓ𝑚𝜔, (5.14)

with 𝜎ℓ𝑚𝜔 being the proportionality constant where its expression is shown in
Eq. (52) in Ref. [33]. This relation has previously been applied to computing
energy and angular momentum carried by GWs into the horizon generated by
test particles in non-plunging orbits. However, we need to be careful here
because this relation may not work in the presence of source terms, while here
we do have a particle plunging into the horizon. In fact, it has been shown in
Ref. [34] that the 𝜓0 solution from a direct calculation differs from that using the
Teukolsky-Starobinsky identities as in Eq. (5.14) for a particle plunging towards
the horizon of a non-spinning BH. For now, we will still use Eq. (5.14) and leave
the improvement of using the actual 𝜓0 wave as future work.

An important implication of the blatant misuse of the Teukolsky-Starobinsky
identities in Eq. (5.14) is that in an numerical calculation of the gravitational
waveform of GW echoes, we only need to consider the 𝜓4 (i.e., 𝑠 = −2) solutions
and we do not need to calculate the 𝜓0 (i.e., 𝑠 = 2) solutions explicitly. To see
this, first note that

𝑍ℓ𝑚𝜔 = 𝑍∗ℓ−𝑚−𝜔, (5.15)
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for an equatorial, quasi-circular orbit [94] that we consider here. Combining this
with Eq. (5.14), we see that(

𝑌 in
ℓ−𝑚−𝜔

)∗
=

(
𝜎ℓ−𝑚−𝜔𝑍

in
ℓ−𝑚−𝜔

)∗
= 𝜎∗ℓ−𝑚−𝜔𝑍

in
ℓ𝑚𝜔

= 𝜎ℓ𝑚𝜔𝑍
in
ℓ𝑚𝜔,

(5.16)

and therefore 𝑍out
ℓ𝑚𝜔

is given by

𝑍out
ℓ𝑚𝜔 =

(−1)𝑚+1
4
RECO
ℓ𝑚𝜔

(
𝑌 in
ℓ−𝑚−𝜔

)∗
= RECO

ℓ𝑚𝜔

[
(−1)𝑚+1

4
𝜎ℓ𝑚𝜔𝑍

in
ℓ𝑚𝜔

]
︸                     ︷︷                     ︸

𝑍
plunge
ℓ𝑚𝜔

. (5.17)

Note that the expression enclosed in the square brackets can be identified as
𝑍

plunge
ℓ𝑚𝜔

, where its expression involves 𝑍 in
ℓ𝑚𝜔

from the 𝜓4 solution and not 𝑌 in
ℓ𝑚𝜔

from the 𝜓0 solution.

Now that we have an expression for 𝑍plunge
ℓ𝑚𝜔

, we still need to find an expression
for the reflectivity Rbarrier

ℓ𝑚𝜔
and the transmissivity T barrier

ℓ𝑚𝜔
of the potential barrier.

They can be computed by considering a wave scattering problem (see Chapter
4 Sec. 4.2.2 and Fig. 4.1b) where an out-going wave is incident on the potential
barrier from the left. The ratio of the transmitted wave amplitude to the incident
wave amplitude should give us the desired transmissivity, namely

T barrier
ℓ𝑚𝜔 =

𝐶trans
T

𝐶inc
T

. (5.18)

As for the reflectivity, we might expect that it is similarly given by the ratio of
the reflected wave amplitude to the incident wave amplitude, namely

Rbarrier
ℓ𝑚𝜔

?
=
𝐶ref

T

𝐶inc
T
.
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However, recall from Eq. (5.13) that we need the in-going 𝜓0 solution in order
to compute the out-going 𝜓4 that is generated by the ECO surface in response.
Therefore, we need to multiply the above expression by an addition factor of[
(−1)𝑚+1

4 𝜎ℓ𝑚𝜔

]
to compute the effective 𝑍plunge

ℓ𝑚𝜔
that sources the subsequent echo

and we absorb this extra factor into our definition of the reflectivity, namely

Rbarrier
ℓ𝑚𝜔 =

(−1)𝑚+1
4

𝜎ℓ𝑚𝜔
𝐶ref

T

𝐶inc
T
. (5.19)

Finally, the wave amplitude 𝑍up,echoes
ℓ𝑚𝜔

as seen by observers at infinity is given by2

𝑍
up,echoes
ℓ𝑚𝜔

=
RECO
ℓ𝑚𝜔
T barrier
ℓ𝑚𝜔

1 − RECO
ℓ𝑚𝜔
Rbarrier
ℓ𝑚𝜔

[
(−1)𝑚+1

4
𝜎ℓ𝑚𝜔𝑍

in,ringdown
ℓ𝑚𝜔

]
, (5.20)

and all that is left is a model for the response of the surface of an ECO, which is
the topic of the next sub-section.

5.3.3 Models for the response of the surface of an exotic compact object
We consider two types of reflectivity, namely a generic, parameterized Lorentzian
reflectivity and a physically-motivated Boltzmann-type reflectivity [95].

5.3.3.1 Lorentzian reflectivity

In the Lorentzian case, we assume the reflection takes place at a fixed position
of 𝑟 = 𝑟ECO (or equivalently in the tortoise coordinate 𝑟∗ = 𝑟ECO

∗ , see Eq. (4.14))
. At that position, the proper distance 𝛿 along the radial direction toward the
horizon is given by

𝛿 =

∫ 𝑟ECO

𝑟+

√
𝑔𝑟𝑟𝑑𝑟 ≈

√︄
𝑟2
+ + 𝑎2 cos 𝜃2

𝑟+𝜅

√︁
𝑟ECO − 𝑟+, (5.21)

2Alternatively, we can replace T barrier
ℓ𝑚𝜔

with Jℓ𝑚𝜔 ≡
[
(−1)𝑚+1

4 𝜎ℓ𝑚𝜔

]
T barrier
ℓ𝑚𝜔

so that Eq. 5.20
looks more neat. This replacement was done in Ref. [33].
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where 𝑔𝜇𝜈 is the metric of the ECO (which is identical to a Kerr BH), 𝜅 ≡
(𝑟+−𝑟−)/

[
2(𝑟2
+ + 𝑎2)

]
is the surface gravity and we assume that 𝛿 ≪ 1. For BHs

with 𝑎/𝑀 not too close to unity, this leads to

𝑟ECO
∗ ≈ 𝑟+ +

1
2𝜅

log
𝑟ECO − 𝑟+

2
− 𝑟−

2𝜅𝑟+
log

𝑟+ − 𝑟−
2

≈ 1
𝜅

log
𝛿√︃

𝑟2
+ + 𝑎2 cos2 𝜃

. (5.22)

Another way of measuring the closeness to the horizon is via the redshift of
zero-angular-momentum observers at a constant 𝑟 = 𝑟ECO, with

𝛼 =

√︄
4𝑟+𝜅

𝑟2
+ + 𝑎2 cos2 𝜃

√︁
𝑟ECO − 𝑟+. (5.23)

For 𝑎 ≠ 0, both 𝛿 and 𝛼 depend on 𝜃. This can be understood as the deformation
of spherical symmetry due to the spin. In Ref. [74], we choose to set the reflection
surface at a constant redshift 𝛼 (i.e., the reflectivity has the same phase for all
values of 𝜃 when 𝛼 is a constant), which leads to mixing between the modes with
different ℓ. Here, for simplicity, we assume that the Lorentzian reflectivity is a
constant at 𝑟 = 𝑟ECO (or 𝑟∗ = 𝑟ECO

∗ ) and can be written as

RL
ℓ𝑚𝜔 = 𝜀

(
𝑖Γ

𝑝 + 𝑖Γ

)
𝑒−2𝑖𝑟ECO

∗ 𝑝 . (5.24)

Here the quantity 𝜀 parametrizes the amplitude reflectivity of the ECO surface.
Note that R depends on 𝜔 only via 𝑝 ≡ 𝜔 − 𝑚Ω+, the frequency of oscillations
measured by observers co-rotating with the would-be horizon of the Kerr space-
time. The quantity Γ characterizes a relaxation rate of the ECO surface, which
corresponds to an impulse response function ∼ 𝑒−Γ𝑡 in the time domain and
imposes a low-pass filtering of waves upon reflection in the frequency domain.
For distant observers, GWs with frequencies |𝜔 − 𝑚Ω+ | ≲ Γ have the highest
reflectivity. Note in particular, that peak reflectivity takes place at 𝜔 ∼ 2Ω+ for
𝑚 = 2 and 𝜔 ∼ −2Ω+ for 𝑚 = −2. As argued by Refs. [96, 95], as long as 𝜀 is
not too close to unity, the ECO is stable under the Lorentzian reflectivity.
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The phase factor 𝑒−2𝑖𝑟ECO
∗ 𝑝 in RL

ℓ𝑚𝜔
corresponds to a time delay of −2𝑟ECO

∗ . If
we consider that the ringdown is generated roughly at 𝑟∗ ≈ 0, the term −2𝑟ECO

∗
provides an estimate of the time delay between the ringdown and the first echo,
as well as time delays between successive echoes.

5.3.3.2 Boltzmann reflectivity

Considering wave reflection by a thermal atmosphere, Wang et al. [95] and Oshita
et al. [97] proposed the following Boltzmann reflectivity, given by

RB
ℓ𝑚𝜔 = exp

(
− |𝑝 |

2𝑇H

)
exp

[
−𝑖 𝑝
𝜋𝑇H

log(𝛾 |𝑝 |)
]
, (5.25)

with Hawking temperature

𝑇H =
𝜅

2𝜋
=

𝑟+ − 𝑟−
4𝜋(𝑟2

+ + 𝑎2)
=

√
1 − 𝑎2

4𝜋(1 +
√

1 − 𝑎2)
. (5.26)

We may replace 𝑇H with a free parameter 𝑇QH to generalize the Boltzmann
reflectivity,

RB
ℓ𝑚𝜔 = exp

(
− |𝑝 |

2𝑇QH

)
exp

[
−𝑖 𝑝

𝜋𝑇QH
log(𝛾 |𝑝 |)

]
. (5.27)

We fix the temperature to the Hawking temperature, i.e., 𝑇QH = 𝑇H, until in
Sec. 5.5, where we relax this condition to explore the detectability of echoes
that arise from a broader class of reflectivity models. Similar to the Lorentzian
reflectivity, RB

ℓ𝑚𝜔
depends on𝜔 via 𝑝 ≡ 𝜔−𝑚Ω+, leading to the peak reflectivity

(equal to unity) for modes with zero frequency viewed by observers co-rotating
with the horizon, or 𝜔 ∼ 𝑚Ω+, and vanishing reflectivity for |𝜔 − 𝑚Ω+ | ≫ 𝑇H.

Boltzmann reflection does not take place at a fixed point, but for waves oscillating
near the quasi-normal mode (QNM) frequency, 𝜔 ≈ ℜ[𝜔QNM]. The effective
distance traveled by waves at this frequency, in terms of 𝑟∗, due to the phase
factor in Eq. (5.25), is given by

2𝑟ECO, eff
∗ = log(𝛾 |Re[𝜔QNM] − 𝑚Ω+ |)/𝜋𝑇H. (5.28)
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Similar to the Lorentzian case, here −2𝑟ECO, eff
∗ corresponds to the time lag

between echoes.

As shown in Ref. [95], the Boltzmann reflectivity leads to a stable ECO. Basically,
the BH potential barrier has a reflectivity higher than unity for𝜔 < 𝑚Ω+, and the
ECO simply needs to have a reflectivity that decreases fast enough as 𝑝 increases
from zero.

5.4 Features in waveforms of gravitational-wave echoes
Here in this section, we showcase our prescription to compute waveforms of GW
echoes using the two reflectivity models, i.e., the Lorentzian and the Boltzmann
reflectivity, and discuss some of the features in the waveforms from the two
reflectivity models.

In Fig. 5.1, we plot the GR and the echo waveforms for a binary with 𝑞 = 1, using
the Lorentzian reflectivity. For Lorentzian reflectivity RL, 𝜀 simply scales the
magnitude of the 𝑛-th echo by 𝜀𝑛, while |2𝑟ECO

∗ | shifts the time-domain separation
between echoes (effects of 𝜀 and 𝑟ECO on the first echo are shown in the top panels
of Fig. 5.1). The bandwidth Γ of the reflectivity acts as a low-pass filter in the
reference frame of the ECO surface, therefore it filters out frequency components
with |𝜔 − 𝑚Ω+ | ≲ Γ.

In Fig. 5.2, we plot the GR and the echo waveforms for a binary with 𝑞 = 1,
using the Boltzmann reflectivity. The Boltzmann reflectivity RB only has one
free parameter 𝛾, which simply shifts the separation between echoes (as well as
between the first echo and the GR wave) in the time domain by 2𝑟ECO, eff

∗ , as given
by Eq. (5.28).

5.5 Detectability of gravitational-wave echoes
In this section, we discuss the detectability of echoes with current and future
detectors. To quantify the detectability, one can compute the optimal signal-to-
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e
(h

2
2
)
/M

<latexit sha1_base64="7B8InSnWcaW4x8hFysxXJ3dVrtc=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKe4GX8eAFy9CRPOAZAmzk0kyZHZ2mekVwpJP8OJBEa9+kTf/xkmyB00saCiquunuCmIpDLrut5NbWV1b38hvFra2d3b3ivsHDRMlmvE6i2SkWwE1XArF6yhQ8lasOQ0DyZvB6GbqN5+4NiJSjziOuR/SgRJ9wSha6QHP7rrFklt2ZyDLxMtICTLUusWvTi9iScgVMkmNaXtujH5KNQom+aTQSQyPKRvRAW9bqmjIjZ/OTp2QE6v0SD/SthSSmfp7IqWhMeMwsJ0hxaFZ9Kbif147wf61nwoVJ8gVmy/qJ5JgRKZ/k57QnKEcW0KZFvZWwoZUU4Y2nYINwVt8eZk0KmXvsnxxf16qVrI48nAEx3AKHlxBFW6hBnVgMIBneIU3RzovzrvzMW/NOdnMIfyB8/kD5XmNgg==</latexit>

t/M

<latexit sha1_base64="HkKjV8K6a5uYKXgA+N4LBDbOUE8=">AAACEnicbVDLSsNAFJ3UV62vqEs3g0VQ0ZIUa90IhSK4ESvYBzS1TKaTduhkEmYmQgn5Bjf+ihsXirh15c6/cdpmodYDFw7n3Mu997gho1JZ1peRmZtfWFzKLudWVtfWN8zNrYYMIoFJHQcsEC0XScIoJ3VFFSOtUBDku4w03WF17DfviZA04LdqFJKOj/qcehQjpaWueeCQUFIWcHgOrYJ9BMVd7PhIDYQfX1Svk6R7qJ3jcumqa+atgjUBnCV2SvIgRa1rfjq9AEc+4QozJGXbtkLViZFQFDOS5JxIkhDhIeqTtqYc+UR24slLCdzTSg96gdDFFZyoPydi5Es58l3dOb5W/vXG4n9eO1LeWSemPIwU4Xi6yIsYVAEc5wN7VBCs2EgThAXVt0I8QAJhpVPM6RDsvy/PkkaxYJ8WSjcn+UoxjSMLdsAu2Ac2KIMKuAQ1UAcYPIAn8AJejUfj2Xgz3qetGSOd2Qa/YHx8A11rm1U=</latexit>

✏ = 0.1, rECO

⇤ = �75M
<latexit sha1_base64="ymGEI0GB5SkMSm1VzcmMo7ftyXw=">AAACEnicbVDLSsNAFJ3UV62vqks3g0VQ0ZAUa90IhSK4ESvYB7QxTKaTduhkEmYmQgn9Bjf+ihsXirh15c6/cdJ2odYDFw7n3Mu993gRo1JZ1peRmZtfWFzKLudWVtfWN/KbWw0ZxgKTOg5ZKFoekoRRTuqKKkZakSAo8BhpeoNq6jfviZA05LdqGBEnQD1OfYqR0pKbP+iQSFIWcngOLbN4BMVd0gmQ6osguahej0buoXaOy6UrN1+wTGsMOEvsKSmAKWpu/rPTDXEcEK4wQ1K2bStSToKEopiRUa4TSxIhPEA90taUo4BIJxm/NIJ7WulCPxS6uIJj9edEggIph4GnO9Nr5V8vFf/z2rHyz5yE8ihWhOPJIj9mUIUwzQd2qSBYsaEmCAuqb4W4jwTCSqeY0yHYf1+eJY2iaZ+apZuTQqU4jSMLdsAu2Ac2KIMKuAQ1UAcYPIAn8AJejUfj2Xgz3ietGWM6sw1+wfj4Bl8Km1Y=</latexit>

✏ = 0.2, rECO
⇤ = �75M

<latexit sha1_base64="sql+IYwspgsJMXtyzJY4+mGhwco=">AAACEnicbVDLSsNAFJ3UV62vqEs3g0VQ0ZJUa90IhSK4ESvYB7SxTKaTduhkEmYmQgn9Bjf+ihsXirh15c6/cdpmoa0HLhzOuZd773FDRqWyrG8jNTe/sLiUXs6srK6tb5ibWzUZRAKTKg5YIBoukoRRTqqKKkYaoSDIdxmpu/3yyK8/ECFpwO/UICSOj7qcehQjpaW2edAioaQs4PACWrmTIyju45aPVE/48WX5ZjhsH2rnuFi4bptZK2eNAWeJnZAsSFBpm1+tToAjn3CFGZKyaVuhcmIkFMWMDDOtSJIQ4T7qkqamHPlEOvH4pSHc00oHeoHQxRUcq78nYuRLOfBd3Tm6Vk57I/E/rxkp79yJKQ8jRTieLPIiBlUAR/nADhUEKzbQBGFB9a0Q95BAWOkUMzoEe/rlWVLL5+yzXOH2NFvKJ3GkwQ7YBfvABkVQAlegAqoAg0fwDF7Bm/FkvBjvxsekNWUkM9vgD4zPH2Cpm1c=</latexit>

✏ = 0.3, rECO
⇤ = �75M

<latexit sha1_base64="qPBEbwOpclp0le7FcPULwRxKFgc=">AAACE3icbVDLSgMxFM34rPU16tJNsAhStMwUXxuhUAQ3YgX7gE4tmTRtQzPJkGSEMvQf3Pgrblwo4taNO//GTDsLbT1w4XDOvdx7jx8yqrTjfFtz8wuLS8uZlezq2vrGpr21XVMikphUsWBCNnykCKOcVDXVjDRCSVDgM1L3B+XErz8Qqajgd3oYklaAepx2KUbaSG0775FQUSY4vIBOoXgI5X3sBUj3ZRBflm9Go3beOEeu61y37ZxTcMaAs8RNSQ6kqLTtL68jcBQQrjFDSjVdJ9StGElNMSOjrBcpEiI8QD3SNJSjgKhWPP5pBPeN0oFdIU1xDcfq74kYBUoNA990JueqaS8R//Oake6et2LKw0gTjieLuhGDWsAkINihkmDNhoYgLKm5FeI+kghrE2PWhOBOvzxLasWCe1o4uT3OlYppHBmwC/bAAXDBGSiBK1ABVYDBI3gGr+DNerJerHfrY9I6Z6UzO+APrM8fytWbhg==</latexit>

✏ = 0.2, rECO
⇤ = �110M

<latexit sha1_base64="7B8InSnWcaW4x8hFysxXJ3dVrtc=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKe4GX8eAFy9CRPOAZAmzk0kyZHZ2mekVwpJP8OJBEa9+kTf/xkmyB00saCiquunuCmIpDLrut5NbWV1b38hvFra2d3b3ivsHDRMlmvE6i2SkWwE1XArF6yhQ8lasOQ0DyZvB6GbqN5+4NiJSjziOuR/SgRJ9wSha6QHP7rrFklt2ZyDLxMtICTLUusWvTi9iScgVMkmNaXtujH5KNQom+aTQSQyPKRvRAW9bqmjIjZ/OTp2QE6v0SD/SthSSmfp7IqWhMeMwsJ0hxaFZ9Kbif147wf61nwoVJ8gVmy/qJ5JgRKZ/k57QnKEcW0KZFvZWwoZUU4Y2nYINwVt8eZk0KmXvsnxxf16qVrI48nAEx3AKHlxBFW6hBnVgMIBneIU3RzovzrvzMW/NOdnMIfyB8/kD5XmNgg==</latexit>

t/M

<latexit sha1_base64="BdXBxgVXsFKiEhc+ZId0xROaWvw=">AAACDnicbVDJSgNBEO1xjXGLevTSGALxEmcGt2PAixchilkgCaGnU5M06VnorhHCkC/w4q948aCIV8/e/Bs7y0ETHzS8fq+KqnpeLIVG2/62lpZXVtfWMxvZza3tnd3c3n5NR4niUOWRjFTDYxqkCKGKAiU0YgUs8CTUvcHV2K8/gNIiCu9xGEM7YL1Q+IIzNFInV1C0FTDsqyC9gxFtSfCxSPud1HXNT4leH49Pbjq5vF2yJ6CLxJmRPJmh0sl9tboRTwIIkUumddOxY2ynTKHgEkbZVqIhZnzAetA0NGQB6HY6OWdEC0bpUj9S5oVIJ+rvjpQFWg8Dz1SOV9fz3lj8z2sm6F+2UxHGCULIp4P8RFKM6Dgb2hUKOMqhIYwrYXalvM8U42gSzJoQnPmTF0nNLTnnpbPb03zZncWRIYfkiBSJQy5ImVyTCqkSTh7JM3klb9aT9WK9Wx/T0iVr1nNA/sD6/AF4rpsO</latexit> rR
e
(h

2
2
)
/M

<latexit sha1_base64="ftF8kLIMisSl3d/bb96QgyGluig=">AAAB9XicbVDJSgNBEK2JW4xb1KOXxiB4CjPidhECHvQiRDALJGOo6fQkTbpnhu4eJQz5Dy8eFPHqv3jzb+wsB40+KOrxXhVd/YJEcG1c98vJLSwuLa/kVwtr6xubW8XtnbqOU0VZjcYiVs0ANRM8YjXDjWDNRDGUgWCNYHA59hsPTGkeR3dmmDBfYi/iIadorHR/075CKZFcELfsep1iybYJyF/izUgJZqh2ip/tbkxTySJDBWrd8tzE+Bkqw6lgo0I71SxBOsAea1kaoWTazyZXj8iBVbokjJWtyJCJ+nMjQ6n1UAZ2UqLp63lvLP7ntVITnvsZj5LUsIhOHwpTQUxMxhGQLleMGjG0BKni9lZC+6iQGhtUwYbgzX/5L6kflb3T8sntcanizuLIwx7swyF4cAYVuIYq1ICCgid4gVfn0Xl23pz36WjOme3swi84H9/maZDG</latexit>

M� = 0.01
<latexit sha1_base64="RL1YhJH6J2WHHUBgcdm58gXcPhc=">AAAB9HicbVDLSgNBEJyNrxhfUY9eBoPgadkVXxch4EEvQgTzgGQJvZPZZMjM7DozGwhLvsOLB0W8+jHe/BsnyR40WtBQVHXT3RUmnGnjeV9OYWl5ZXWtuF7a2Nza3inv7jV0nCpC6yTmsWqFoClnktYNM5y2EkVBhJw2w+H11G+OqNIslg9mnNBAQF+yiBEwVgruOjcgBOAr7Ll+t1zxXG8G/Jf4OamgHLVu+bPTi0kqqDSEg9Zt30tMkIEyjHA6KXVSTRMgQ+jTtqUSBNVBNjt6go+s0sNRrGxJg2fqz4kMhNZjEdpOAWagF72p+J/XTk10GWRMJqmhkswXRSnHJsbTBHCPKUoMH1sCRDF7KyYDUECMzalkQ/AXX/5LGieuf+6e3Z9Wql4eRxEdoEN0jHx0garoFtVQHRH0iJ7QC3p1Rs6z8+a8z1sLTj6zj37B+fgGdRaQjA==</latexit>

M� = 0.1
<latexit sha1_base64="Sic1G2A009ViK1kubfd0YaBDrHk=">AAAB8nicbVDJSgNBEO2JW4xb1KOXxiB4CjPidhECHvQiRDALTIZQ0+kkTXoZunuEMOQzvHhQxKtf482/sZPMQaMPCh7vVVFVL044M9b3v7zC0vLK6lpxvbSxubW9U97daxqVakIbRHGl2zEYypmkDcssp+1EUxAxp614dD31W49UG6bkgx0nNBIwkKzPCFgnhXedGxAC8BUOuuWKX/VnwH9JkJMKylHvlj87PUVSQaUlHIwJAz+xUQbaMsLppNRJDU2AjGBAQ0clCGqibHbyBB85pYf7SruSFs/UnxMZCGPGInadAuzQLHpT8T8vTG3/MsqYTFJLJZkv6qccW4Wn/+Me05RYPnYEiGbuVkyGoIFYl1LJhRAsvvyXNE+qwXn17P60UvPzOIroAB2iYxSgC1RDt6iOGogghZ7QC3r1rPfsvXnv89aCl8/so1/wPr4Blf2QGg==</latexit>

M� = 1

Figure 5.1: Echoes for an equal-mass binary merger (𝑞 = 1) with the Lorentzian
reflectivity. The top panel shows how 𝜖 and 𝑟ECO

∗ /𝑀 in Lorentzian reflectivity
change the magnitude and separation of echoes (𝑀Γ = 0.5). The lower panel
shows how Γ impacts the shape of the first echo (with 𝜀 = 0.2, 𝑟ECO

∗ /𝑀 = −75).
Fig. reproduced from Ref. [33].

noise ratio (SNR) 𝜌opt, which is defined as [98]

𝜌2
opt = 4

∫ ∞

0
𝑑𝑓
| ℎ̃( 𝑓 ) |2
𝑆n( 𝑓 )

, (5.29)

where 𝑆n( 𝑓 ) is the one-sided noise power spectral density of a detector, and ℎ̃( 𝑓 )
is the strain measured by a detector which is given by

ℎ̃( 𝑓 ) = 𝐹+ ℎ̃+( 𝑓 ) + 𝐹× ℎ̃×( 𝑓 ), (5.30)
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<latexit sha1_base64="BdXBxgVXsFKiEhc+ZId0xROaWvw=">AAACDnicbVDJSgNBEO1xjXGLevTSGALxEmcGt2PAixchilkgCaGnU5M06VnorhHCkC/w4q948aCIV8/e/Bs7y0ETHzS8fq+KqnpeLIVG2/62lpZXVtfWMxvZza3tnd3c3n5NR4niUOWRjFTDYxqkCKGKAiU0YgUs8CTUvcHV2K8/gNIiCu9xGEM7YL1Q+IIzNFInV1C0FTDsqyC9gxFtSfCxSPud1HXNT4leH49Pbjq5vF2yJ6CLxJmRPJmh0sl9tboRTwIIkUumddOxY2ynTKHgEkbZVqIhZnzAetA0NGQB6HY6OWdEC0bpUj9S5oVIJ+rvjpQFWg8Dz1SOV9fz3lj8z2sm6F+2UxHGCULIp4P8RFKM6Dgb2hUKOMqhIYwrYXalvM8U42gSzJoQnPmTF0nNLTnnpbPb03zZncWRIYfkiBSJQy5ImVyTCqkSTh7JM3klb9aT9WK9Wx/T0iVr1nNA/sD6/AF4rpsO</latexit> rR
e
(h

2
2
)
/M

<latexit sha1_base64="7B8InSnWcaW4x8hFysxXJ3dVrtc=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKe4GX8eAFy9CRPOAZAmzk0kyZHZ2mekVwpJP8OJBEa9+kTf/xkmyB00saCiquunuCmIpDLrut5NbWV1b38hvFra2d3b3ivsHDRMlmvE6i2SkWwE1XArF6yhQ8lasOQ0DyZvB6GbqN5+4NiJSjziOuR/SgRJ9wSha6QHP7rrFklt2ZyDLxMtICTLUusWvTi9iScgVMkmNaXtujH5KNQom+aTQSQyPKRvRAW9bqmjIjZ/OTp2QE6v0SD/SthSSmfp7IqWhMeMwsJ0hxaFZ9Kbif147wf61nwoVJ8gVmy/qJ5JgRKZ/k57QnKEcW0KZFvZWwoZUU4Y2nYINwVt8eZk0KmXvsnxxf16qVrI48nAEx3AKHlxBFW6hBnVgMIBneIU3RzovzrvzMW/NOdnMIfyB8/kD5XmNgg==</latexit>

t/M

<latexit sha1_base64="UcD2ajMokwty9/BoiTha3+ZQF2s=">AAAB+HicbVDLSgMxFM3UV62Pjrp0EyyCqzojvjZCwY0boYJ9QDuUO2mmDU0yQ5IR6tAvceNCEbd+ijv/xrSdhVYPXO7hnHvJzQkTzrTxvC+nsLS8srpWXC9tbG5tl92d3aaOU0Vog8Q8Vu0QNOVM0oZhhtN2oiiIkNNWOLqe+q0HqjSL5b0ZJzQQMJAsYgSMlXpuuTsAIeD4Fl9hr+r5Pbdi2wz4L/FzUkE56j33s9uPSSqoNISD1h3fS0yQgTKMcDopdVNNEyAjGNCOpRIE1UE2O3yCD63Sx1GsbEmDZ+rPjQyE1mMR2kkBZqgXvan4n9dJTXQZZEwmqaGSzB+KUo5NjKcp4D5TlBg+tgSIYvZWTIaggBibVcmG4C9++S9pnlT98+rZ3Wml5uVxFNE+OkBHyEcXqIZuUB01EEEpekIv6NV5dJ6dN+d9Plpw8p099AvOxzcAvpFQ</latexit>

�/M = 0.01
<latexit sha1_base64="hCKFI6K+xGrangBBnmmmIG8u988=">AAAB+HicbVDLSgMxFM3UV62Pjrp0EyyCqzojVt0IBTduhAr2Ae1Q7qRpG5pkhiQj1KFf4saFIm79FHf+jWk7C209cLmHc+4lNyeMOdPG876d3Mrq2vpGfrOwtb2zW3T39hs6ShShdRLxSLVC0JQzSeuGGU5bsaIgQk6b4ehm6jcfqdIskg9mHNNAwECyPiNgrNR1i50BCAGnd/gae2Wv0nVLts2Al4mfkRLKUOu6X51eRBJBpSEctG77XmyCFJRhhNNJoZNoGgMZwYC2LZUgqA7S2eETfGyVHu5HypY0eKb+3khBaD0WoZ0UYIZ60ZuK/3ntxPSvgpTJODFUkvlD/YRjE+FpCrjHFCWGjy0Bopi9FZMhKCDGZlWwIfiLX14mjbOyf1Gu3J+Xql4WRx4doiN0gnx0iaroFtVQHRGUoGf0it6cJ+fFeXc+5qM5J9s5QH/gfP4ABs6RVA==</latexit>

�/M = 0.05
<latexit sha1_base64="MAE1a3UA4K/5Ye/4hTjXzshGGUo=">AAAB9XicbVDLSgNBEOyNrxhfUY9eBoPgad0VXxch4MWLEME8IFnD7GQ2GTIzu8zMKmHJf3jxoIhX/8Wbf+Mk2YNGCxqKqm66u8KEM20878spLCwuLa8UV0tr6xubW+XtnYaOU0VoncQ8Vq0Qa8qZpHXDDKetRFEsQk6b4fBq4jcfqNIslndmlNBA4L5kESPYWOm+08dC4KMbdIk81++WK57rTYH+Ej8nFchR65Y/O72YpIJKQzjWuu17iQkyrAwjnI5LnVTTBJMh7tO2pRILqoNsevUYHVilh6JY2ZIGTdWfExkWWo9EaDsFNgM9703E/7x2aqKLIGMySQ2VZLYoSjkyMZpEgHpMUWL4yBJMFLO3IjLAChNjgyrZEPz5l/+SxrHrn7mntyeVqpfHUYQ92IdD8OEcqnANNagDAQVP8AKvzqPz7Lw577PWgpPP7MIvOB/fF1aQ5Q==</latexit>

�/M = 0.1
<latexit sha1_base64="9E8l+uzGjZ+yIOVedrQAEZKNjUk=">AAAB9XicbVDLSgNBEOyNrxhfUY9eBoPgad0Nvi5CwIsXIYJ5QLKG2ckkGTIzu8zMKmHJf3jxoIhX/8Wbf+Mk2YMmFjQUVd10d4UxZ9p43reTW1peWV3Lrxc2Nre2d4q7e3UdJYrQGol4pJoh1pQzSWuGGU6bsaJYhJw2wuH1xG88UqVZJO/NKKaBwH3JeoxgY6WHdh8LgU9u0RXy3HKnWPJcbwq0SPyMlCBDtVP8ancjkggqDeFY65bvxSZIsTKMcDoutBNNY0yGuE9blkosqA7S6dVjdGSVLupFypY0aKr+nkix0HokQtspsBnoeW8i/ue1EtO7DFIm48RQSWaLeglHJkKTCFCXKUoMH1mCiWL2VkQGWGFibFAFG4I///IiqZdd/9w9uzstVbwsjjwcwCEcgw8XUIEbqEINCCh4hld4c56cF+fd+Zi15pxsZh/+wPn8ARjakOY=</latexit>

�/M = 0.2

<latexit sha1_base64="q6eb1GjWpr8JIvTtaAP5lEFlvHA=">AAACDHicbVDLSgMxFM3UV62vqks3wSLUB3Wm+AI3hSK4ESvYB3RqyaSZNjSZGZKMUIb5ADf+ihsXirj1A9z5N2baWaj1QOBwzrnk3uMEjEplml9GZmZ2bn4hu5hbWl5ZXcuvbzSkHwpM6thnvmg5SBJGPVJXVDHSCgRB3GGk6Qyrid+8J0JS37tVo4B0OOp71KUYKS1184WigvuwLLrRXnwX2RypgeDRRfX6wD4nrhvHu4dXOmWWzDHgNLFSUgApat38p93zcciJpzBDUrYtM1CdCAlFMSNxzg4lCRAeoj5pa+ohTmQnGh8Twx2t9KDrC/08Bcfqz4kIcSlH3NHJZFv510vE/7x2qNyzTkS9IFTEw5OP3JBB5cOkGdijgmDFRpogLKjeFeIBEggr3V9Ol2D9PXmaNMol66R0fHNUqJhpHVmwBbZBEVjgFFTAJaiBOsDgATyBF/BqPBrPxpvxPolmjHRmE/yC8fENPUmZ0A==</latexit>

(t + 2rECO, e↵
⇤ )/M

<latexit sha1_base64="s/NsAhxDZQZ6H6XLFZjxtYg4sgs=">AAAB/3icbVDLSgMxFM3UV62vUcGNm2AR6qbOFF/Lghs3QhX7gHYYMmmmDU0yQ5IRyjgLf8WNC0Xc+hvu/BszbRdaPRA4nHMv9+QEMaNKO86XVVhYXFpeKa6W1tY3Nrfs7Z2WihKJSRNHLJKdACnCqCBNTTUjnVgSxANG2sHoMvfb90QqGok7PY6Jx9FA0JBipI3k23uyx5EeSp7ekqwy9NNaLTs6vvbtslN1JoB/iTsjZTBDw7c/e/0IJ5wIjRlSqus6sfZSJDXFjGSlXqJIjPAIDUjXUIE4UV46yZ/BQ6P0YRhJ84SGE/XnRoq4UmMemMk8rJr3cvE/r5vo8MJLqYgTTQSeHgoTBnUE8zJgn0qCNRsbgrCkJivEQyQR1qaykinBnf/yX9KqVd2z6unNSbnuzOoogn1wACrABeegDq5AAzQBBg/gCbyAV+vRerberPfpaMGa7eyCX7A+vgEcVZV1</latexit> rR
e(

h
2
2
)/

M
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Figure 5.2: Echoes for an equal-mass binary merger (𝑞 = 1) with the Boltzmann
reflectivity. The top panel shows how 𝛾 in the Boltzmann reflectivity changes
the echoes. The bottom panel shows how 𝛾 impacts the shape of the first echo.
Note that the time axis is shifted by 2𝑟ECO, eff

∗ , as defined in Eq. (5.28), to align
with the first echo. Fig. produced from Ref. [33].

with 𝐹+,× being the detector response to the plus and the cross polarization,
respectively.

Following Ref. [98], we define a new quantity 𝐻+,×( 𝑓 ) that factors out the 1/𝑑L
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dependence on the luminosity distance 𝑑L 3 for each polarization, where

ℎ̃+,×( 𝑓 ) =
1
𝑑L
𝐻+,×( 𝑓 ). (5.31)

The direction and orientation averaged optimal SNR ⟨𝜌2⟩ is then given by [98]

⟨𝜌2⟩ = 4
5

1
𝑑2

L

∫
𝑑Ω

4𝜋

∫ ∞

0
𝑑𝑓
|𝐻+(Θ,Φ, 𝑓 ) |2 + |𝐻×(Θ,Φ, 𝑓 ) |2

𝑆n( 𝑓 )
, (5.32)

where the angle bracket ⟨...⟩ denotes average over the sky location angles of the
source with respect to the detector, the polarization angle and the polar angles
of the detector with respect to the source (with 𝑑Ω = sinΘ𝑑Θ𝑑Φ). If we only
consider the ℓ = |𝑚 | = 2 modes, the averaging over the orientation can also be
done analytically. In fact, it is given by [99]

⟨𝜌2⟩ = 16
25

1
𝑑2

L

∫ ∞

0
𝑑𝑓
|𝐻+(Θ = 0,Φ, 𝑓 ) |2

𝑆n( 𝑓 )
. (5.33)

Similarly, we can also compute the maximal 𝜌opt by setting the source to be
face-on (Θ = 0) and directly above a detector (𝐹+,× = 1), i.e., both optimally
oriented and optimally located.

We compute both the direction-and-orientation averaged, as well as the max-
imal optimal SNR of the first five echoes in Advanced Laser Interferometer
Gravitational-Wave Observatory (LIGO) at the design sensitivity [100] and Cos-
mic Explorer (CE) [28] with both the Lorentzian and Boltzmann reflectivities.

Figs. 5.3 and 5.4 show the SNR and the detectability of echoes in the 𝜖–Γ
parameter space for the Lorentzian reflectivity model assuming the Advanced
LIGO and CE at their design sensitivities, respectively. For Advanced LIGO,
we see that the echoes obtained using the prescription in this paper are too
weak to be detected in the parameter space that we explore here (0 ≤ 𝜖 ≤ 1,

3To account for the expansion of the Universe, one can simply replace the the coordinate
distance 𝑟 with the luminosity distance 𝑑L, and replace the total mass 𝑀 with the redshifted total
mass 𝑀 (1 + 𝑧) where 𝑧 = 𝑧(𝑑L) is the redshift of the source.
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0 ≤ Γ/𝜅 ≤ 1). This implies that if our prescription is correct, we would not
be able to detect echoes with second-generation terrestrial detectors, and would
require next-generation detectors in order to test the existence of ECO via GW
echoes. Indeed, Fig. 5.4 indicates that with CE, a much larger fraction of the 𝜖–Γ
parameter space allows detection for echoes from our prescription.
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Figure 5.3: SNR and detectability of echoes in the 𝜖–Γ parameter space for
the Lorentzian reflectivity model assuming the Advanced LIGO design sensitiv-
ity [100] with 𝑁echo = 5 at a luminosity distance of 𝑑L = 100 Mpc. Here we set
𝑟ECO
∗ = −100𝑀 . This choice of 𝑟ECO

∗ is not expected to affect the detectability as
it mostly affects the time delay between echoes. We see that the echoes obtained
using the prescription in this paper are generally too weak to be detected.

Fig. 5.5 and 5.6 show the SNR and detectability of echoes in the𝑇QH–𝛾 parameter
space for the Boltzmann reflectivity model assuming the Advanced LIGO and CE
at their design sensitivities, respectively. Similar to the Lorentzian reflectivity
model, we would not see any echoes from our model with second-generation
detectors. Detecting echoes would become more promising with next-generation
detectors. Interesting, from the plots we see that the detectability of echoes is
generally independent of 𝛾.
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Figure 5.4: Same as Fig. 5.3 but with CE at its design sensitivity [28]. The solid
contours correspond to the maximal SNR 𝜌opt = 8 as the detection threshold,
while the dash-dotted contours correspond to the location-and-orientation aver-
aged SNR of 8. With CE, the echoes computed using our prescription are now
strong enough to be detected.
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Figure 5.5: SNR and detectability of echoes in the𝑇QH–𝛾 parameter space for the
Boltzmann reflectivity model assuming the Advanced LIGO design sensitivity
[100] with 𝑁echo = 5 at a luminosity distance of 𝑑L = 100 Mpc. We see that
echoes obtained using our prescription are too weak to be detected.
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Figure 5.6: Same as Fig. 5.5 but with CE at its design sensitivity [28]. The solid
contours correspond to the maximal optimal SNR 𝜌opt = 8 as the detection thresh-
old, while the dash-dotted contours correspond to the location-and-orientation
averaged SNR of 8. The plot also indicates that the detectability of echoes is
generally independent of the value of 𝛾.

5.6 Concluding remarks
In this paper, we compute GW echoes from merging compact objects that arise
from the waves reflected by the surface of spinning ECOs. The exterior spacetime
of a spinning ECO is modeled as a Kerr spacetime except in a small region above
the horizon where a reflecting boundary exists. We obtain the echo waveforms
by first computing the 𝜓4 of the GWs that travel toward the horizon of the final
BH in the case of BBH mergers, and then computing the subsequent reflection
from the ECO surface and the Kerr potential barrier, in the case of ECO. More
specifically, we solve the Teukolsky equation for 𝜓4 sourced by an inspiraling
particle that eventually plunges into the horizon of a Kerr BH.

In order to model binaries with comparable masses, which is the most interesting
case with existing GW events, we have adopted an approach that modifies the
trajectory of the in-falling particle and calibrating the GWs at infinity to match
numerical relativity surrogate waveforms, we can obtain the horizon-going GWs
that approximate those of comparable-mass mergers.
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We propose a prescription of the ECO reflectivity that is better connected to
the spacetime geometry near the ECO surface (obtained from a companion
paper [74]). More specifically, the reflectivity RECO is directly related to the
tidal response of the ECO surface to the external curvature perturbations due to
incoming GWs. As shown in Sec. 5.5, the echoes obtained in this paper are not
expected to be detectable using the second-generation detectors, and we would
need the next-generation detectors to test ECOs via GW echoes.

One subtlety in our calculation is about obtaining the reflectivity for 𝜓4 on the
ECO surface. When applying the RECO between the in-going and out-going 𝜓4,
the Teukolsky-Starobinsky relation between the in-going 𝜓0 and the in-going 𝜓4

has been assumed. Strictly speaking, this relation only applies to homogeneous
solutions of the Teukolsky equation where the source term vanishes and may not
apply to the situation here. A more direct approach, to be studied in future work,
is to compute the in-going 𝜓0, and then obtain the 𝜓4 of the echoes by applying
reflectivities to the ECO surface.
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C h a p t e r 6

TEMPLATED-BASED GRAVITATIONAL-WAVE ECHOES
SEARCH USING BAYESIAN MODEL SELECTION

This chapter contains work from

R. K. L. Lo, T. G. F. Li, and A. J. Weinstein. “Template-based Gravitational-
Wave Echoes Search Using Bayesian Model Selection”. In: Phys. Rev. D
99.8 (2019), p. 084052. doi: 10.1103/PhysRevD.99.084052. arXiv:
1811.07431 [gr-qc].
R. K. L. L performed the analyses and wrote the manuscript.

6.1 Introduction
As of this writing, the Laser Interferometer Gravitational-Wave Observatory
(LIGO) [1] and Advanced Virgo [2] have successfully detected ten compact
binary coalescence events from binary black hole systems [26, 101, 102, 103,
104, 9] and one binary neutron star collision [16]. These discoveries mark the
beginning of a new era of gravitational-wave (GW) astronomy and astrophysics,
where we can infer and probe the properties and structure of astronomical objects
using gravitational waves.

During the inspiral stage of GW emission from the coalescence of a compact
binary system, for instance a binary black hole system, the two black holes
spiral towards each other with an increasing orbital frequency. Eventually, they
coalesce in the merger stage to form one single black hole. The final black hole
then relaxes to a Kerr black hole during the ringdown stage.

Cardoso, Franzin and Pani [105] first pointed out that the ringdown part of the
GW signal can be used as a probe of the structure of a compact object. A
very compact object, not necessarily a black hole, with a light ring will also
exhibit a similar ringdown as that of a black hole. Cardoso, Hopper, Macedo,

https://doi.org/10.1103/PhysRevD.99.084052
https://arxiv.org/abs/1811.07431
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Palenzuela and Pani [106] further showed that a similar ringdown stage will also
be exhibited for different types of exotic compact objects (ECOs) with a light ring
(or a photon sphere), and there will be a train of echoes in the late-time ringdown
stage associated with the photon sphere. Examples of ECOs are theoretical
alternatives to black holes, such as gravastars and fuzzballs. A common feature
of these alternatives is that there is some kind of structure near the would-be
event horizon. The echoes in the late-time ringdown stage are caused by repeated
and damped reflections between the effective potential barrier and the reflective
structure. Cardoso et al. also showed that the time delay between each echo
Δ𝑡echo can be used to infer the nature of an ECO [106], namely

Δ𝑡echo ∼ −𝑛𝑀 log
(
𝑙

𝑀

)
, (6.1)

where 𝑀 is the mass of the ECO, 𝑙 ≪ 𝑀 is the microscopic correction of the
location of the ECO surface from the Schwarzschild radius, and 𝑛 is an integer
of the order of 1 which depends on the nature of the ECO.

Abedi, Dykaar and Afshordi published a paper in December 2016, claiming
that they had found tentative evidence of Planck-scale structure near the black
hole event horizons at a combined 2.9𝜎 significance level [107] of GW150914,
LVT151012 and GW151226 using the matched filtering technique. However,
their analysis methodology, especially the estimation of statistical significance,
was questioned [108, 109]. Various teams have also proposed methods to estimate
the parameters of the GW echoes [110, 111], and to search for echoes in a
morphology-agnostic way [112, 113].

In this paper, we present a template-based search methodology using Bayesian
inference to search for echoes of GWs in compact binary coalescence events. The
analysis technique in this paper can be used with different GW echoes waveform
models to provide robust evidence of the existence of echoes from ECOs by
showing consistent results using different models. Detecting an exotic compact
object would be a groundbreaking discovery as this would revolutionize our
understanding of compact objects, and that this can only be achieved by GW
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observations. In parallel to this work, there are efforts to search for GW echoes
using Bayesian model selection with templates using the inference packagePyCBC
Inference[114].

This paper is structured as follows. In Sec. 6.2, we first establish the methodology
of the search, namely Bayesian model selection and parameter estimation in Sec.
6.2.1, the GW echoes template model in Sec. 6.2.2 and statistical significance
estimation in 6.2.3. We then describe ways to evaluate the sensitivity of a search
in Sec. 6.2.4, and the combination of Bayesian evidence from multiple GW
echoes events in Sec. 6.2.5. In Sec. 6.3, we first describe our implementation in
Sec. 6.3.1, and then we present the results of a Bayesian parameter estimation
and model selection of the presence of echoes versus their absence that were
performed on simulated data with Gaussian noise in Sec. 6.3.3 and Sec. 6.3.4,
respectively. Then we evaluate the performance of the search in simulated
Gaussian noise and real noise in the first observing run (O1) in Sec. 6.3.5. We
demonstrate the idea of combining multiple GW echoes events in Sec. 6.3.6.
Finally in Sec. 6.3.7, we show the search results for the three events in O1.

6.2 Methods
6.2.1 Bayesian model selection and parameter estimation
To search for echoes of GWs from the coalescence of exotic compact objects, we
perform Bayesian model selection analyses on confirmed GW events. Here we
consider two hypotheses H0 and H1, which can also be considered as the null
hypothesis and alternative hypothesis in the frequentist language, and they are

H0 BNo echoes in the data⇒ 𝑑 = 𝑛 + ℎIMR,

H1 B There are echoes in the data⇒ 𝑑 = 𝑛 + ℎIMRE,

where 𝑑 denotes the GW data, 𝑛 denotes the instrumental noise and ℎIMR, ℎIMRE

denote the inspiral-merger-ringdown (IMR) GW signal and inspiral-merger-
ringdown-echo (IMRE) GW signal, respectively. Note that we assume there
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is a GW signal in the data since we perform the search after the GW signal
has been identified, and we are only interested in knowing whether there are
echoes in the data or not. When the null hypothesis H0 is true, that means
the data contain a GW signal with IMR. When the alternative hypothesis H1 is
true instead, that means the data contain a GW signal with both echoes and an
inspiral-merger-ringdown part.

In the context of GW data analysis, suppose that the strain data 𝑑 (𝑡) from a
detector only consist of noise 𝑛(𝑡), which we assume to be Gaussian and stationary
(we will relax these assumptions in what follows). The probability that the noise
𝑛(𝑡) has a realization 𝑛0(𝑡) (with zero mean) is given by [115]

𝑝(𝑛0) = N exp
[
−1

2

∫ +∞

−∞
𝑑𝑓
|𝑛0( 𝑓 ) |2
(1/2)𝑆𝑛 ( 𝑓 )

]
, (6.2)

whereN is a normalization constant and 𝑆𝑛 ( 𝑓 ) is the power spectrum density of
noise. We introduce the notion of noise-weighted inner product, namely

⟨𝐴|𝐵⟩ = 4ℜ
∫ 𝑓high

𝑓low

𝑑𝑓
𝐴̃∗( 𝑓 )𝐵̃( 𝑓 )
𝑆𝑛 ( 𝑓 )

, (6.3)

where 𝑓low and 𝑓high are the low-frequency cutoff and high-frequency cutoff,
respectively. The integration is performed over a finite range because detectors
are taking samples at a finite rate, and hence there is a theoretical upper limit on
the maximum frequency that one can resolve from the data, and detectors are not
sensitive enough below some frequency threshold. Using the inner product, we
can rewrite Eq. 6.2 as

𝑝(𝑛0) = N exp
[
−1

2
⟨𝑛0 |𝑛0⟩

]
. (6.4)

Now, suppose the strain data 𝑑 (𝑡) consist of both noise 𝑛0(𝑡) and a GW signal
modeled by a template ℎ(𝑡; ®𝜃), where ®𝜃 is a set of parameters of the template that
describe the signal, that is

𝑛0(𝑡) = 𝑑 (𝑡) − ℎ(𝑡; ®𝜃). (6.5)
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Then the likelihood 𝑝(𝑑 | ®𝜃,H , 𝐼) for a single detector can be obtained from Eq.
6.2:

𝑝(𝑑 | ®𝜃,H , 𝐼) = N exp
[
−1

2
⟨𝑑 (𝑡) − ℎ(𝑡; ®𝜃) |𝑑 (𝑡) − ℎ(𝑡; ®𝜃)⟩

]
, (6.6)

where 𝐼 denotes the knowledge known prior to the selection; in this case we
knew prior to the model selection that the data contain a GW signal. For the
case of multiple detectors (for example, H1, L1 and V1), if we assume that the
noise distributions for each detector are all Gaussian and stationary, and more
importantly independent of each other, then we have

𝑝(𝑑H1, 𝑑L1, 𝑑V1 | ®𝜃,H , 𝐼) =∏
𝑖∈{H1,L1,V1}

N𝑖 exp
[
−1

2
⟨𝑑𝑖 (𝑡𝑖) − ℎ(𝑡𝑖; ®𝜃) |𝑑𝑖 (𝑡𝑖) − ℎ(𝑡𝑖; ®𝜃)⟩

]
. (6.7)

With the notion of noise-weighted inner product, we can also define the matched-
filtering signal-to-noise ratio (SNR) 𝜌, which tells us how strong a signal is with
respect to the noise, as follows:

𝜌2 =
⟨𝑑 |ℎ⟩2
⟨ℎ |ℎ⟩ , (6.8)

where 𝑑 denotes the GW data and ℎ is a GW signal template. If we have multiple
detectors (for example, H1, L1 and V1), we can define the network SNR squared
as the sum of the matched filtering SNR squared in each detector

𝜌2
network =

∑︁
𝑖∈{H1,L1,V1}

𝜌2
𝑖 . (6.9)

In the optimal case of a template that exactly matches the signal in the data, the
matched-filtering SNR is bound by the optimal SNR, which is given by

𝜌2
optimal =

⟨ℎ |ℎ⟩2
⟨ℎ |ℎ⟩ , (6.10)
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and can be used as an indication of how strong a signal is.

In Bayesian model selection, we compute the Bayes factor B1
0 and odds ratio O1

0 ,
which are defined as

B1
0 =

𝑝(𝑑 |H1, 𝐼)
𝑝(𝑑 |H0, 𝐼)

, (6.11)

O1
0 =

𝑝(H1 |𝑑, 𝐼)
𝑝(H0 |𝑑, 𝐼)

= B1
0 ×

𝑝(H1 |𝐼)
𝑝(H0 |𝐼)

. (6.12)

In the Bayesian language, the odds ratio has the interpretation that when O1
0 > 1,

it means that the data favor the hypothesis H1, and vice versa. For the sake of
simplicity, we will drop the superscript and subscript on the Bayes factor B and
odds ratio O from now on when the context is clear. If we assume that each
hypothesis is equally likely prior to the model selection, namely

𝑝(H0 |𝐼) = 𝑝(H1 |𝐼) =
1
2
, (6.13)

then the odds ratio is simply the Bayes factor, that is

O = B =
𝑝(𝑑 |H1, 𝐼)
𝑝(𝑑 |H0, 𝐼)

. (6.14)

It is often more convenient to work in log space, namely we compute the log
posterior, log likelihood and log prior. We take the natural logarithm on both
sides of Eq. 6.14, and we have

lnO = lnB
= ln 𝑝(𝑑 |H1, 𝐼) − ln 𝑝(𝑑 |H0, 𝐼)
= ln 𝑍1 − ln 𝑍0, (6.15)

where the term 𝑍𝑖 ≡ 𝑝(𝑑 |H𝑖, 𝐼), which is known as the evidence for the hypothesis
H𝑖, can be estimated by numerically integrating over the template parameter
space ®𝜃𝑖 of hypothesisH𝑖 using a sampling algorithm such as parallel-tempering
Markov chain Monte Carlo with thermodynamic integration [116, 117, 118, 119]
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or nested sampling [120]. In this paper, we will use nested sampling (or more
specifically LALInferenceNest [121]). Apart from estimating the evidence, we
can also obtain a set of posterior samples as byproducts of the nested sampling
algorithm, which allow us to perform parameter estimation 1 with little additional
computational cost. We can calculate various estimators of parameters as point
estimates from the posterior samples, such as the maximum likelihood estimator
(MLE), which is

®̂𝜃𝑖,MLE = arg maxL( ®𝜃𝑖 |𝑑,H𝑖, 𝐼), (6.16)

where L( ®𝜃𝑖 |𝑑,H𝑖, 𝐼) = 𝑝(𝑑 | ®𝜃𝑖,H𝑖, 𝐼) is the likelihood as a function of the pa-
rameters ®𝜃𝑖. Another estimator is the maximum a posteriori estimator (MAP),
which is

®̂𝜃𝑖,MAP = arg max 𝑝( ®𝜃𝑖 |𝑑,H𝑖, 𝐼), (6.17)

where 𝑝( ®𝜃𝑖 |𝑑,H𝑖, 𝐼) is the posterior distribution of parameters ®𝜃𝑖.

To obtain the evidence for the hypothesisH𝑖 in the context of GW data analysis,
we use GW waveform templates that assume H𝑖 being true to compute the log
likelihood.

6.2.1.1 Occam factor

One must be cautious when performing model selection that the model which
fits the data best does not imply that the model gives the highest evidence. A
more complicated model, i.e., with more free parameters, is more easily affected
by noise in the data than a simpler model, i.e., with less free parameters. This is
similar to overfitting in regression. Suppose there are 𝑁 data points for fitting;
one can always use a degree 𝑁 − 1 polynomial to fit all points, but very likely the
fitted polynomial will not generalize well to new data because it was affected by
the noise in the data.

Bayesian analysis embodies the Occam factor and penalizes more complicated
models automatically. To illustrate this idea, suppose there are two hypotheses,

1A detailed discussion of parameter estimation can be found in Ref. [121].
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namelyH0 andH1. Without loss of generality, we assume that dim ®𝜃1 > dim ®𝜃0,
where dim ®𝜃𝑖 denotes the dimension of the parameter vector ®𝜃𝑖 that describes the
hypothesis H𝑖. If the posterior distribution has a sharp peak at ®𝜃𝑖 = ®𝜃𝑖,MAP with
width 𝜎𝑖,posterior, then the integral for evidence 𝑍𝑖 can be approximated using
Laplace’s method. We first write the integral for evaluating the evidence of the
hypothesisH𝑖 into the standard form for Laplace’s method

𝑍𝑖 =

∫
exp

{
ln

[
𝑝(𝑑 | ®𝜃𝑖,H𝑖, 𝐼)𝑝( ®𝜃𝑖 |H𝑖, 𝐼)

]}
𝑑 ®𝜃𝑖 . (6.18)

Let 𝑓 ( ®𝜃𝑖) ≡ ln
[
𝑝(𝑑 | ®𝜃𝑖,H𝑖, 𝐼)𝑝( ®𝜃𝑖 |H𝑖, 𝐼)

]
, and we expand 𝑓 ( ®𝜃𝑖) about the sharp

peak ®𝜃𝑖 = ®𝜃𝑖,MAP, which gives

𝑓 ( ®𝜃𝑖) = 𝑓 ( ®𝜃𝑖,MAP) +
𝑓
′′ ( ®𝜃𝑖,MAP)

2
( ®𝜃𝑖 − ®𝜃𝑖,MAP)2 + O( ®𝜃𝑖 − ®𝜃𝑖,MAP)3, (6.19)

where the first derivative 𝑓 ′ vanishes and the second derivative 𝑓 ′′ ( ®𝜃𝑖,MAP) < 0
at the local maximum. Substituting this back into Eq. 6.18, we have

𝑍𝑖 ≈ exp 𝑓 ( ®𝜃𝑖,MAP)
∫

exp

[
− | 𝑓

′′ ( ®𝜃𝑖,MAP) |
2

( ®𝜃𝑖 − ®𝜃𝑖,MAP)2
]
𝑑 ®𝜃𝑖, (6.20)

where the integral becomes a Gaussian integral in the limit that the integration
is performed over (−∞,∞).

Finally we can approximate the evidence 𝑍𝑖 (up to some constant factors) by

𝑍𝑖 ≈ 𝑝(𝑑 | ®𝜃𝑖,MAP,H𝑖, 𝐼)𝑝( ®𝜃𝑖,MAP |H𝑖, 𝐼)𝜎𝑖,posterior. (6.21)

Note that we have assumed that the posterior width 𝜎𝑖,posterior is much smaller
than the width of the integration limits such that the integral in Eq. 6.20 can be
well approximated by a Gaussian integral. It should also be noted that Eqs. 6.20
and 6.21 were not used in our analyses, and they were derived for the purpose of
illustrating the Occam factor only.

For a more complicated model, more parameters are needed to describe the
observed data. For example, for our hypothesis H1 (i.e., there are echoes in
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the data) we need to introduce extra parameters (discussed in the next section)
such as the time delay between each echo Δ𝑡echo in the model selection analysis.
Suppose the prior distribution of parameters ®𝜃𝑖 for each hypothesis is uniform
over a width 𝜎𝑖,prior such that

𝑝( ®𝜃𝑖 |H𝑖, 𝐼) =


1

𝜎𝑖,prior
within the range,

0 otherwise.
(6.22)

The ratio 𝜎𝑖,posterior/𝜎𝑖,prior hence serves as a penalty to down-weigh the evidence
𝑍1 of the more complicated model H1 which has a larger prior volume, i.e.,
𝜎1,prior > 𝜎0,prior to account for the uncertainty of the extra parameters. This
ratio, sometimes referred to as Occam factor [122], allows the analysis to bias
the less complicated IMR-only model in a natural way.

6.2.2 Phenomenological waveform model of echoes
In this paper, we use the phenomenological waveform model of echoes proposed
by Abedi et al. in Ref. [107] to search for echoes of GWs. It should be noted that
the methodology we propose here is independent of the GW echoes templates we
used, and different parametrized waveform models can be readily used instead of
the model by Abedi et al. when more physical models become available in the
future [123, 124, 125, 126, 127]. Their model was motivated by the numerical
results in Ref. [106]. There are five free parameters in their waveform model,
with the phase change between each echo due to the reflection on an ECO surface
being 𝜋. The descriptions of these five parameters are tabulated in Table 6.1.

Using the notations in Ref. [107], the echo templateMTE,I(𝑡) in the time domain
is given by

MTE,I(𝑡) ≡ 𝐴
∞∑︁
𝑛=0
(−1)𝑛+1𝛾𝑛

×MT,I(𝑡 + 𝑡merger − 𝑡echo − 𝑛Δ𝑡echo, 𝑡0), (6.23)
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Parameter Description
Δ𝑡echo The time interval between each echo
𝑡echo The time of arrival of the first echo
𝑡0 The time of truncation of the GW IMR template

MI(𝑡) to produce the echo templateMTE,I(𝑡)
𝛾 The damping factor
𝐴 The amplitude of the first echo relative to the IMR part

of the template

Table 6.1: The five free parameters and the corresponding descriptions of the
phenomenological GW echoes waveform model proposed by Abedi et al. [107].
In particular, Δ𝑡echo is of the most astrophysical interest because it encapsulates
the compactness of the exotic compact object that we are observing as shown in
Eq. 6.1. PhysicallyΔ𝑡echo is related to the distance between the effective potential
barrier and the reflective surface that GW echoes need to travel. Also, 𝐴 can tell
us the typical strength of the GW echoes emitted from exotic compact objects.

where 𝑡merger is the time of merger 2 andMT,I(𝑡) is a smooth activation of the
GW IMR template given by

MT,I(𝑡) ≡ Θ(𝑡, 𝑡0)MI(𝑡)

≡ 1
2

{
1 + tanh

[
1
2
𝜔I(𝑡) (𝑡 − 𝑡merger − 𝑡0)

]}
MI(𝑡), (6.24)

where 𝜔I(𝑡) denotes the angular frequency evolution of the IMR waveform as
a function of time, and MI(𝑡) is the IMR waveform. The smooth activation
Θ(𝑡, 𝑡0) essentially selects the ringdown, which is the part of a waveform that one
might expect to see in echoes [107]. Note that the time of merger 𝑡merger is the
only time reference, and therefore we measure all time-related echo parameters
𝑡0, 𝑡echo and Δ𝑡echo with respect to 𝑡merger. The top and bottom panels of Fig. 6.1
show a truncated IMR time-domain waveformMT,I(𝑡) used to generate the echo
template and a GW150914-like IMRE time-domain waveform with three echoes,
respectively.

2Or equivalently time of coalescence, denoted by 𝑡𝑐.
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In particular, the parameter that represents the time interval between each succes-
sive echo Δ𝑡echo is of the most astrophysical interest because it encapsulates the
compactness of the exotic compact object that we are observing as shown in Eq.
6.1. Physically Δ𝑡echo is related to the distance between the effective potential
barrier and the reflective surface that GW echoes need to travel. The relative
amplitude 𝐴 can also tell us the typical strength of the GW echoes emitted from
exotic compact objects.
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Figure 6.1: A plot of an inspiral-merger-ringdown-echo template generated using
the phenomenological waveform model of echoes proposed by Abedi et al. [107].
Top panel: To generate a template of a GW echo (in blue), we truncate the
ringdown part of the IMR part (in gray) of a waveform by applying the smooth
activation function Θ(𝑡, 𝑡0) (in black dashed lines) to get the truncated IMR
waveform. Bottom panel: A plot of an IMRE template generated using the
phenomenological waveform model of echoes proposed by Abedi et al. We see
that the first echo, which is the truncated IMR template (shown in the top panel)
scaled by the parameter 𝐴, starts at 𝑡echo after the merger. Subsequent echoes,
which are further scaled down by the parameter 𝛾 due to the energy loss when
the echo reflects off an ECO surface, are separated from each other in time by
Δ𝑡echo.
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6.2.3 Detection statistic and background estimation for statistical signifi-
cance

In this paper, the log Bayes factor lnB [Eqs. 6.11 and 6.15] is the detection
statistic to decide whether we claim there is an IMRE signal or an IMR signal
in data. If the log Bayes factor lnB1

0 , or equivalently log odds ratio lnO1
0 , is

greater than 0, we can conclude, from the Bayesian point of view, that the data
favor the alternative hypothesis that the data contain an IMRE signal more than
the null hypothesis that the data contain an IMR signal, thus serving the function
of distinguishing which hypothesis is more supported by the data.

After we have obtained a detection statistic, a natural question to ask is how
statistically significant the detection statistic is. Simply put, how likely is it that
the detection is actually caused by an IMRE signal but not due to noise? In the
Bayesian school, there are different empirical scales, such as Jeffreys’ scale, to
interpret the strength of the Bayes factor. However, they are subjective and not
universally applicable. Therefore, we are not going to use any of them in this
paper.

Calculating the posterior probability of a hypothesis is certainly better than using
a subjective scale to determine the strength of the Bayes factor. However, the
Bayesian posterior probability fails to tell us the probability that the evidence
is simply due to random background noise, since we only consider one set of
data. The frequentist approach can answer the following question: given the null
hypothesis H0 is true, what is the probability that the data are going to be as
extreme as or more extreme than the observed data? The probability that we are
looking for is exactly the frequentist 𝑝-value. We can also interpret this 𝑝-value
as the false-alarm probability.

The 𝑝-value, which we denote as simply 𝑝, is related to the null distribution of
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detection statistic lnB by

𝑝 = Pr(lnB ≥ lnBdetected |H0) (6.25)

= 1 −
∫ lnBdetected

−∞
𝑝(lnB|H0)𝑑 lnB,

where lnBdetected is the detection statistic obtained in an analysis on a segment of
data, and 𝑝(lnB|H0) is called the null distribution of lnB, i.e., the distribution
of lnB given thatH0 is true.

Hence, from the null distribution, we can compute the detection statistic threshold
lnBthreshold corresponding to a certain statistical significance, e.g., 5𝜎 and hence
we can claim a detection of GW echoes if the detection statistic of a candidate
exceeds or is equal to the predetermined threshold.

6.2.4 Evaluation of search sensitivity
Apart from getting the statistical significance of a particular candidate event of
GW echoes, we are also interested in investigating the sensitivity and accuracy
of this search methodology using Bayesian model selection.

6.2.4.1 Sensitive parameter space

To quantify the sensitivity of a search, one can compute the fraction of the
parameter space of echo parameters that the search can determine whether the
data contain echoes or not, given a threshold on the detection statistic lnBthreshold

and GW detectors operating at specific sensitivities. If a search is sensitive, then
it should be able to cover a reasonable fraction of parameter space possible for
astrophysical exotic compact objects, which is schematically defined as

{ ®𝜃echoes = (𝐴, 𝛾, 𝑡0, 𝑡echo,Δ𝑡echo) | lnB( ®𝜃echo) ≥ lnBthreshold}, (6.26)

so that the search is able to detect the existence of echoes in the data with echo
parameters in the sensitive parameter space.
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6.2.4.2 Search efficiency

Another method to quantify the search sensitivity is to compute the probability
that the existence of echoes will be detected given a detection statistic threshold,
which is also known as the efficiency 𝜁 . It is defined as

𝜁 =

∫ ∞

lnBthreshold

𝑝(lnB|H1)𝑑 lnB, (6.27)

where 𝑝(lnB|H1) is the foreground distribution, i.e., the distribution of lnB
given thatH1 is true. If a search is sensitive, then it should have a high value of
efficiency 𝜁 .

6.2.5 Combining Bayesian evidence from a catalog of detection events
Bayesian model selection provides us a natural way to combine evidence of the
existence of exotic compact objects from multiple detection events of GW echoes.
In the following analysis, we do not assume GW events are described by the same
set of echo parameters. Suppose now we have a catalog of𝑁cat independent events
so that we have a set of 𝑁cat data denoted by 𝑑 = {𝑑1, 𝑑2, ..., 𝑑𝑁cat}; the odds ratio
for the catalog of sources is given by

O1
0 =

𝑝(𝑑1, 𝑑2, ..., 𝑑𝑁cat |H1, 𝐼)𝑝(H1 |𝐼)
𝑝(𝑑1, 𝑑2, ..., 𝑑𝑁cat |H0, 𝐼)𝑝(H0 |𝐼)

= (cat)B1
0 ×

𝑝(H1 |𝐼)
𝑝(H0 |𝐼)

, (6.28)

where
(cat)B1

0 =
𝑝(𝑑1, 𝑑2, ..., 𝑑𝑁cat |H1, 𝐼)
𝑝(𝑑1, 𝑑2, ..., 𝑑𝑁cat |H0, 𝐼)

(6.29)
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is the catalog Bayes factor. Since each event is independent, we can write the
catalog Bayes factor as

(cat)B1
0 =

𝑝(𝑑1, 𝑑2, ..., 𝑑𝑁cat |H1, 𝐼)
𝑝(𝑑1, 𝑑2, ..., 𝑑𝑁cat |H0, 𝐼)

=

𝑁cat∏
𝑖=1

𝑝(𝑑𝑖 |H1, 𝐼)
𝑝(𝑑𝑖 |H0, 𝐼)

=

𝑁cat∏
𝑖=1

(𝑖)B1
0 , (6.30)

where (𝑖)B1
0 is the Bayes factor obtained when performing the Bayesian model

selection analysis on the 𝑖th candidate of GW echoes event candidate. Also, we
can define the catalog log Bayes factor, which is simply

ln (cat)B1
0 =

𝑁cat∑︁
𝑖=1

ln (𝑖)B1
0 . (6.31)

Hence, by multiplying the Bayes factor or adding the log Bayes factor from a
catalog of GW echoes events, we can combine the evidence of the existence of
echoes in GW data. Note that if the events share the same value of a parameter,
e.g., Δ𝑡echo, then the analysis is more complicated but still possible to do.

6.3 Results
Before performing Bayesian model selection analyses on real events, it is nec-
essary to validate the performance of the search methodology by performing
analyses on simulated strain data first, namely strain data with Gaussian noise
and an IMRE signal of known parameters.3 By recovering the injected signal and
inferring the parameters correctly, we can validate that the analysis method pro-
posed in this paper will be able to find signals in real strain data. After establishing
the validity of the methodology, we can sample the background and foreground
distribution of the detection statistic to estimate the statistical significance of a

3The signals that were manually added to the data are called injections.
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possible GW echoes event, and the search efficiency in simulated Gaussian noise
at detectors’ design sensitivities and real data in O1 of Advanced LIGO where
GW signals were not detected. Finally, we apply the search methodology to
search for GW echoes in O1 GW events. The GW strain data in O1 of Advanced
LIGO are publicly available from the Gravitational Wave Open Science Center
[128, 129].

6.3.1 Implementation
In this paper, we make use of the software package LALSuite developed by the
LIGO and Virgo collaborations [130]. In particular, we extensively used the
modules LALSimulation for its waveform generation interface and LALInfer-
ence for its stochastic sampler [121]. We implemented the phenomenological
waveform model of GW echoes described in Sec. 6.2.2 in LALSimulation, and
we have used the IMR approximant IMRPhenomPv2 [131, 132, 133] during the
echo waveform generation. We have also modified LALInference so that the
five extra echo parameters will be sampled by the program.

It should also be noted that in theory there should be infinitely many GW echoes.
However, they are damped after each reflection from an ECO surface and more
practically we are analyzing a finite segment of GW data, making the detection
of all the echoes in an event impossible. Therefore we will only put three echoes
in the template during a search, purely due to the limitation of computational
power. For the purpose of model selection and statistical significance estimation,
the number of echoes in a template does not matter since we are injecting
IMR signals into noise in order to estimate the background distribution of the
detection statistic. It is true that putting only three echoes in a template will
bias the estimation of the amplitude parameter 𝐴. This can be easily resolved
by increasing the number of echoes in a template once we have identified an
interesting GW echoes candidate.
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6.3.2 Details of the validation analysis
We performed our proposed search on a 8-second-long data with an IMRE signal
injected into simulated Gaussian noise with the Advanced LIGO-Virgo network
to validate both the methodology and the implementation. We have chosen the
prior distribution of the echo parameters to be uniform over a range (i.e., the
prior range), and that the echoes will not overlap in time domain. The prior
ranges of the parameters used are listed in Table 6.2. The prior range for 𝐴 was
chosen as such because we do not expect the amplitude of echoes to be greater
than the amplitude of the inspiral-merger-ringdown part of a signal. However,
this is not a stringent requirement and can be easily relaxed. As for the prior
range for 𝛾, it was chosen as such because we expect echoes to be damped after
each reflection from an ECO surface. The prior range for 𝑡0 was chosen such that
we are truncating approximately the ringdown part of a signal. As for the prior
ranges for both 𝑡echo and Δ𝑡echo, they depend on our knowledge of the position of
the surface of an ECO. For the purpose of this work, they were chosen to be wide
enough such that their predicted values for all the GW events detected in O1 as
calculated in Ref. [107] fall within their corresponding prior ranges, which are
sensible.

The IMR parameters of this particular injected signal, such as masses and spins,
were chosen to be close to the inferred values of GW150914 [134] and the injected
echo parameters were chosen randomly over the prior range. It should be noted
that in this work we do not assume IMR parameters were known a priori and
they were allowed to vary during the validation analysis together with the echo
parameters. This is because the IMR parameters would affect the determination
of the echo waveform used and thus the uncertainties in inferring IMR parameters
would also propagate to the the search for echoes. This particular injection has
a log Bayes factor of 11.5, and a network optimal SNR of 63.8, which will
be a realistic value when Advanced LIGO-Virgo detectors reach their design
sensitivities.
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6.3.3 Parameter estimation
As an output of our search methodology, the set of posterior samples allows us
to perform the parameter estimation on the simulated data. The search needs
to accurately recover the injected IMRE signal if we are to use the proposed
search methodology to search for GW echoes in real data. A visualization of the
sampled posterior distributions, i.e., a corner plot, that shows the estimated one-
dimensional (1D) marginal posterior probability distribution for each parameter
and joint posterior probability distribution for each pair of parameters, is shown in
Fig. 6.2. We see that the inferred values of the echo parameters are both accurate
(close to the injected value) and precise (narrow posterior distribution), especially
for the time-related parameters. For example, we see from the 1D histogram of
Δ𝑡echo in Fig. 6.2 that the MAP is very close to the injected value (represented
by the vertical blue solid line), and the 90% Bayesian credible interval ([0.2921,
0.2925] s) is much narrower than the prior range ([0.05, 0.5] s), which means
that the range is shrunk by about 99.91%.

Parameter Prior range
𝐴 [0.0,1.0]
𝛾 [0.0,1.0]
𝑡0 (s) [−0.1,0.01]
𝑡echo (s) [0.05,0.5]
Δ𝑡echo (s) [0.05,0.5]

Table 6.2: The prior range of the echo parameters. The prior distribution of each
parameter is uniform over the respective prior range. Refer to the main text for
the justification for the choice of prior ranges.

As for the amplitude-related parameters 𝐴 and 𝛾, the parameter estimation is not
as accurate and precise as for the time-related parameters. For instance, we see
that the range for 𝐴 does not shrink as much compared with Δ𝑡echo (only by about
60%). This is not surprising because the time-related parameters can be inferred
using the coherence of the strain with a template, while the amplitude-related
parameters can only be inferred using noisy strain data.
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By examining the corner plot for recovered IMR parameters (not shown here), we
conclude that the parameter estimation of IMR parameters was not significantly
affected by the introduction of five extra parameters.

Therefore, from the parameter estimation, we conclude that we have correctly
implemented the GW echoes waveform model and modified the sampler, and
more importantly the search methodology is able to infer the values of echo pa-
rameters in actual analyses on candidate GW echoes events as it has successfully
recovered the injected IMRE signal accurately and precisely in this validation
analysis.

6.3.4 Model selection
6.3.4.1 Statistical significance estimation of a candidate GW echoes event

To estimate the statistical significance of a GW echoes candidate, we sampled the
null distribution 𝑝(lnB|H0) of the detection statistic by performing background
runs, i.e., data with an IMR signal injected (so that the null hypothesis H0 is
true). The IMR parameters of the injection set used to estimate the background
distribution were chosen to be representative of what Advanced LIGO and Ad-
vanced Virgo would detect, and were not fixed to be the same as a particular GW
event. We will discuss this choice in Sec. 6.4.1.

The histograms of the sampled null distribution of the individual log Bayes
factor for simulated Gaussian noise (with 192 samples) and real noise during O1
of Advanced LIGO (with 953 samples)4 are shown in the left and right panels of
Fig. 6.3, respectively. The gray-scale bar in the top panel shows the statistical
significance corresponding to the detection statistic. It should be noted that the
𝑝-value was obtained by extrapolation for the ≳ 3𝜎 region, as sampling the > 5𝜎
region would require roughly 107 samples. For the case of simulated Gaussian
noise in the left panel, we see that the null distribution peaks at about lnB ≈ −1,
and the tail of the distribution extends only slightly to lnB > 0. This means

4The number of samples for the background distribution in simulated Gaussian noise is less
than that for real O1 noise because of the lack of computational resources
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Figure 6.2: A corner plot of the posterior samples from the parameter estimation
on simulated data as described in Secs. 6.3.2 and 6.3.3. If we are to use the
proposed search methodology to search for GW echoes in real data, then the
search needs to accurately recover the injected IMRE signal. The blue solid
lines represent the injected values for each parameter. Along the diagonal are
histograms of the estimated 1D marginal posterior probability distribution for
each parameter. The histograms show that the recovered parameters are both
accurate (close to the injected value) and precise (narrow posterior distribution).
For example, the 1D marginal posterior probability density of Δ𝑡echo is very
narrow compared to its prior range tabulated in Table 6.2, and the peak of
the posterior probability distribution is very close to the injected value. The off-
diagonal plots are the two-dimensional histograms of the estimated joint posterior
probability distribution of each pair of parameters, which show the correlation
between pairs of parameters. We conclude that the search methodology is able
to infer the values of the echo parameters in actual analyses on candidate GW
echoes events as it has successfully recovered the injected IMRE signal in the
validation analysis accurately and precisely.
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that it is unlikely for Gaussian noise to mimic GW echoes. For the case of
real noise during O1 in the right panel, we see that the distribution also peaks
roughly at lnB ≈ −1. However, the noise extends the tail of the distribution
more significantly than in the case of Gaussian noise. This means that it is more
likely for real detector noises to mimic the effects of GW echoes.
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Figure 6.3: To estimate the statistical significance of a potential GW echoes event
for simulated Gaussian noise and real noise during O1 of Advanced LIGO, we
sampled the null distribution 𝑝(lnB|H0) of the detection statistic by performing
background runs, i.e., data with an IMR signal injected. The histograms of null
distribution for the case of Gaussian noise with 192 samples and for the case of O1
noise with 953 samples are plotted in the left and right panels, respectively. The
gray-scale bar in the top panel shows the statistical significance corresponding to
the detection statistic (extrapolating from the 3𝜎 region to the 5𝜎 region). Left
panel: For the case of simulated Gaussian noise, we see that the null distribution
peaks at about lnB ≈ −1, and the tail of the distribution extends only slightly
towards lnB > 0. This means that it is unlikely for Gaussian noise to mimic
GW echoes. Right panel: For the case of real noise during O1, we see that the
distribution also peaks roughly at lnB ≈ −1. However, the noise extends the tail
of the distribution more significantly than in the case of Gaussian noise. This
means that it is likely for real detector noises to mimic the effects of GW echoes.

In particular, we injected an IMRE injection with echo parameters that Abedi et
al. claimed to have found in GW150914 into simulated Gaussian noise with the
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Advanced LIGO-Virgo network, and the detection statistic was found to be

lnBdetected, Gaussian = −0.2576 < 0.

This means that in the Bayesian point of view, the data slightly favor the null
hypothesis that the data do not contain echoes. We compute the 𝑝-value and
the corresponding statistical significance, given that the noise is Gaussian, as
follows:

𝑝-value = 0.01275,

statistical significance = 2.234𝜎.

This suggests that what was claimed to be found by Abedi et al. in GW150914,
even for GW detectors operating at design sensitivities and Gaussian noise, does
not have sufficient statistical significance to claim a detection (i.e., ≥ 5𝜎) in
the frequentist approach, and it is also inconclusive whether the data favor the
existence of echoes in the data in the Bayesian approach. From the fact that in
Fig. 6.3 the null distribution for O1 real noise is more skewed to the right, we
can expect that the statistical significance of what Abedi et al. [107] had found
is small and consistent with noise.

Table 6.3 tabulates the values of the detection statistic lnB that correspond to
different levels of statistical significance in Gaussian and O1 backgrounds. If
we want to make a gold-plated detection of GW echoes, i.e., having statistical
significance ≥ 5𝜎, we can set the detection threshold as

lnBthreshold, Gaussian = 1.9,

lnBthreshold, O1 = 5.7,

in the case of Gaussian noise and real O1 noise, respectively, so that any GW
echoes detection with a detection statistic greater than or equal to this threshold
is a ≥ 5𝜎 detection of echoes.
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Statistical
significance

Detection statistic
(Gaussian noise)

Detection statistic
(O1 noise)

1𝜎 −0.9 0.1
2𝜎 −0.4 1.5
3𝜎 1.1 4.0
4𝜎 1.5 5.4
5𝜎 1.9 5.7

Table 6.3: The values of the detection statistic lnB and its corresponding statis-
tical significances in both Gaussian and O1 backgrounds. If we want to make a
gold-plated detection of GW echoes, i.e., with a statistical significance ≥ 5𝜎, we
can set the detection statistic threshold as lnBthreshold, Gaussian = 1.9 in the case of
Gaussian noise, and lnBthreshold, O1 = 5.7 so that any GW echoes detection with
a detection statistic greater than or equal to this threshold is gold-plated.

6.3.5 Search sensitivity, efficiency and accuracy
6.3.5.1 Sensitive parameter space of the search

Given the detection statistic threshold lnBthreshold, we would like to know what
part of the parameter space of echoes we are able to see in the optimal case, where
the GW detectors are operating at design sensitivities and the instrumental noise
is Gaussian. To achieve this, we performed analyses on simulated data injected
with an IMRE signal with different values of the echo parameters of interest. In
this particular study, the IMR parameters were fixed to be GW150914-like. We
will be focusing on the two parameters that are of the most astrophysical interest:
the time interval between echoes Δ𝑡echo and the relative amplitude 𝐴. The two
parameters were varied one at a time.

Figure 6.4 shows plots of the detection statistic lnB as a function of Δ𝑡echo with
the other echo parameters fixed to (𝐴 = 0.6, 𝛾 = 0.89, 𝑡0 = −0.02 s, 𝑡echo =

0.2940 s)(left) and as a function of 𝐴 with other echo parameters fixed to (𝛾 =

0.89, 𝑡0 = −0.02 s, 𝑡echo = 0.2940 s,Δ𝑡echo = 0.2925 s) (right), respectively. The
horizontal dashed line in each plot corresponds to the detection statistic threshold
of 5𝜎 significance. Injections with a detection statistic exceeding or equal to the
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threshold are marked with a green ‘Y’, whereas injections with detection statistic
lower than the threshold are marked with a red ‘X’. From the left panel, we see
that there is no trend for how the detection statistic is distributed with different
values of Δ𝑡echo, and that the search is able to detect GW echoes with a range of
Δ𝑡echo (more specifically [0.05, 0.5] s) as expected since different values ofΔ𝑡echo

only shift the echoes in time, and whether the search is able to find echoes or not
should not depend on their time of occurrence as long as they do not overlap.
Therefore, fixing the values of time-related echo parameters when investigating
the sensitive parameter space of 𝐴 is justified. As for the relative amplitude
𝐴, we see from the right panel that there is a trend that signals with smaller
values of 𝐴 have smaller values of the detection statistic, and that the search can
only pick up echoes with 𝐴 ≳ 0.3 with ≥ 5𝜎 significance. This is expected
because the amplitude of echoes is damped and echoes with small amplitudes
are buried in noise. This finding is consistent with that of Westerweck et al. that
only injections with a strain amplitude ≳ 10−22 in the echoes part could have
the amplitude parameter 𝐴 recovered accurately [111]. In Ref. [114], a plot
similar to the right panel of Fig. 6.4 was also shown [114], but it was unclear
in their paper that at what value of their detection statistic (log Bayes factor for
signal versus Gaussian noise, which is different from what we adopted in this
paper) they are claiming a significant detection of echoes, and we will differ the
discussion of the differences between two approaches in Sec. 6.4.3.2. It should
also be noted that there are injections with echo amplitudes 𝐴 ≳ 0.1 that are
found by our search, and the number we quoted for the sensitive parameter space
for 𝐴 is based on the loudest echo injection that were missed.
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Figure 6.4: To investigate which part of the parameter space of echoes we are able
to see in the optimal case, namely the GW detectors are operating at their design
sensitivities and the instrumental noise is Gaussian, we performed analyses on
simulated data injected with an IMRE signal with different values of the echo
parameters of interest. Left panel: A plot of the detection statistic lnB as a
function of Δ𝑡echo, with other echo parameters fixed to (𝐴 = 0.6, 𝛾 = 0.89, 𝑡0 =

−0.02 s, 𝑡echo = 0.2940 s). Right panel: A plot of the detection statistic lnB
as a function of 𝐴, with the other echo parameters fixed to (𝛾 = 0.89, 𝑡0 =

−0.02 s, 𝑡echo = 0.2940 s,Δ𝑡echo = 0.2925 s). The horizontal dashed line in each
plot corresponds to the detection statistic threshold of 5𝜎 significance. Injections
with a detection statistic exceeding or equal to the threshold are marked with a
green ‘Y’, whereas injections with detection statistic lower than the threshold are
marked with a red ‘X’. From the left panel, we see that there is no trend for how the
detection statistic is distributed with different values of Δ𝑡echo, and that the search
is able to detect GW echoes with a range of Δ𝑡echo (more specifically [0.05, 0.5]
s) as expected since different values of Δ𝑡echo only shift the echoes in time, and
whether the search is able to find echoes or not should not depend on their time
of occurrence as long as they do not overlap. Therefore, fixing the values of the
time-related echo parameters when investigating the sensitive parameter space
of 𝐴 is justified. As for the relative amplitude 𝐴, we see from the right panel that
there is a trend that signals with smaller values of 𝐴 have smaller values of the
detection statistic, and that the search can only pick up echoes with 𝐴 ≳ 0.3 with
≥ 5𝜎 significance. This is expected because the amplitude of echoes is damped
and echoes with small amplitudes are buried in noise. It should be noted that we
found some injections with echo amplitudes 𝐴 ≳ 0.1, and the number we quoted
for the sensitive parameter space for 𝐴 is based on the loudest echo injections
that were missed.
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6.3.5.2 Foreground distribution and search efficiency

To compute the efficiency 𝜁 of the search as described in Sec. 6.2.4.2, the
foreground distribution 𝑝(lnB|H1) of the detection statistic was sampled by
performing foreground runs, i.e., analyses on simulated data with IMRE signals
injected. The IMR parameters of the injection set used to estimate the foreground
distribution were chosen to be representative of what Advanced LIGO and Ad-
vanced Virgo would detect, and were not fixed to be the same as a particular GW
event. We will discuss this choice in Sec. 6.4.1. As for the five echo parameters,
their values were drawn randomly from the same distributions described in Table
6.2.

A numerical integration of Eq. 6.27 on the foreground distribution sampled gives
the efficiency of the search as

𝜁Gaussian = 0.82,

𝜁O1 = 0.61.

That means, in the frequentist language, that the search has a probability of
0.82 in the case of Gaussian noise and 0.61 in the case of O1 of detecting the
existence of echoes marginalized over a set of IMR and echo parameters (with
echo parameters drawn uniformly from the priors in Table 6.2), given that the
data contain GW echoes and that the detection has a ≥ 5𝜎 significance.

6.3.5.3 Search accuracy

Given the detection statistic threshold lnBthreshold, Gaussian = 1.9 for the case of
simulated Gaussian noise and lnBthreshold, O1 = 5.7 for the case of O1, we make
the claim that the data contain echoes only when the detection statistic is greater
than or equal to the threshold. To gauge the performance of our proposed search
methodology in terms of the ability to classify IMR and IMRE signals, a plot of
the receiver operating characteristic (ROC) curve is shown in Fig. 6.5 for both
the simulated Gaussian noise case and the O1 noise case. The ROC curve shows



133

the fraction of IMRE signals that the search has properly identified as IMRE
signals (also known as the true positive rate for binary classifiers) given the
fraction of IMR signals that the search has incorrectly identified as IMRE signals
(also known as the false positive rate). Equivalently, it can also be interpreted
as showing how the efficiency of a search changes with the detection statistic
threshold. A more sensitive search will have a higher true positive rate for a
given false positive rate. For a random guess, the true positive rate is the same
as the false positive rate. Therefore, the ROC curve of a useful search should be
to the left of the diagonal ROC curve. From Fig. 6.5, we see that the search in
simulated Gaussian noise performs better than the search in O1 noise as expected,
and both of the searches perform better than random guessing.

6.3.6 Demonstration of combining evidence from multiple GW echoes
events

From the investigation of the sensitive parameter space of the search in the
optimal case as described in Sec. 6.3.5.1, we see that the GW echoes will need to
have a relative strength 𝐴 ≳ 0.3 in order to be picked up by our search with ≥ 5𝜎
significance in the optimal Gaussian noise case. Statistically we can incorporate
results from multiple events so that the detection statistic of many weak signals
can be added positively to stand out from the combined background, which adds
negatively. Instead of combining the posterior distribution of echo parameters,
which assumed the echo parameters for each event to be the same, we add the
detection statistic log Bayes factor to form the catalog log Bayes factor, which
is described in Sec. 6.2.5, and this approach only assumes each event to be
independent and does not require the parameters of the events to be identical;
indeed, it is assumed that they are all different for each event.

Here we demonstrate how combining multiple events can help us to detect weak
echoes and make a detection statement about a collection of events (i.e., a cat-
alog). Suppose we have ten potential GW echoes events, which is to say we
have 𝑁cat = 10 events in the catalog. The catalog log Bayes factor is sim-
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Figure 6.5: To gauge the performance of our proposed search methodology in
terms of the ability to classify IMR and IMRE signals, the ROC curves for
searches in O1 noise (orange dash-dotted line) and Gaussian simulated noise
(green solid line), respectively, are shown. We see that the search in simulated
Gaussian noise performs better than the search in O1 noise as expected because
the fraction of IMRE signals identified as IMRE signals (with echo parameters
drawn uniformly from the priors in Table 6.2) for the simulated Gaussian noise
case is higher than that for the O1 noise case for a given fraction of IMR signals
misidentified as IMRE signals. Also, both searches in simulated Gaussian noise
and O1 noise outperform the random guess (blue dashed line) for the same reason
described above.

ply the sum of the log Bayes factors of each individual event according to
Eq. 6.31. We sampled the null distribution for the catalog log Bayes factor
𝑝(ln(cat) B|H0) = 𝑝(∑𝑁cat

𝑖=1 ln (𝑖)B1
0 |H0) by picking 𝑁cat = 10 events from the

background distribution and computing the corresponding catalog log Bayes fac-
tor. The histograms of the sampled null distribution for the catalog log Bayes
factor for simulated Gaussian noise and real noise during O1 of Advanced LIGO
(both with 10000 samples in the sampled background distributions) are shown
in the left and right panels of Fig. 6.6, respectively. The gray-scale bar in the top
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panel shows the statistical significance corresponding to the detection statistic.
Compared to the histograms for individual log Bayes factors shown in Fig. 6.3,
we see that the peak of the null distribution for the catalog log Bayes factor for
both the case of Gaussian noise and O1 noise is shifted to be more negative as
expected. If we focus on the case of Gaussian noise, and assume that the mean
of the log Bayes factor ⟨lnB⟩ is roughly −1, then the mean of the catalog log
Bayes factor of the size of 𝑁cat = 10 should be

⟨ln(cat) B⟩ ≈ 𝑁cat⟨lnB⟩ = −10,

which is indeed the case in the right panel of Fig. 6.6. If we assume, for the
sake of demonstration, that we have observed ten GW echoes events similar to
what Abedi et al. claimed to have found in GW150914, namely the individual
log Bayes factor is about −0.2576, then the catalog log Bayes factor will then
become roughly

ln(cat) B ≈ 𝑁cat × −0.2576 = −2.576,

and thus we can make a statement with ≥ 5𝜎 significance that there are GW
echoes in one or more events in the catalog, but we will not be able to pinpoint
which event has echoes.

From this example, we see that by combining the Bayesian evidence from multiple
events, we can statistically make a detection statement about whether there are
echoes in a collection of potential GW echoes candidates, which may be too weak
to be detected individually.
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Figure 6.6: To detect GW echoes which may be individually too weak to be
detected, we can instead make a detection statement on a collection of events (i.e.,
a catalog). The histograms of the sampled null distribution for the catalog log
Bayes factor for simulated Gaussian noise and real noise during O1 of Advanced
LIGO (both with 10000 samples) with a catalog size 𝑁cat = 10 are shown in the
left and right panels, respectively. The gray-scale bar in the top panel shows the
statistical significance corresponding to the detection statistic. Compared to the
histograms for individual log Bayes factors shown in Fig. 6.3, we see that the
peak of the null distribution for the catalog log Bayes factor for both the case of
Gaussian noise and O1 noise is shifted to be more negative as expected. Since
weak signals add positively while the background events add negatively in the
catalog log Bayes factor, weak GW echoes signals can be detected as a whole,
and a statement about whether there are echoes in a collection of potential GW
echoes candidates can be made but not about which individual event/events in
the catalog has/have echoes.

6.3.7 Search results for Advanced LIGO’s first observing run data
We applied the search methodology described above to search for GW echoes in
Advanced LIGO’s O1 data. The prior distribution of the five echo parameters
were chosen to be uniform over the respective prior ranges tabulated in Table
6.2. As for the IMR parameters, they were allowed to vary during the analyses
and were not fixed to any particular values. For GW150914 and GW151012, we
used 8-second-long data with three echoes in the IMRE waveforms for parameter
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estimation. As for GW151226, we used 16-second-long data with ten echoes in
the IMRE waveform. The difference in the length of data used is because the
duration (starting from 30 Hz to merger) of the signal for GW151226 is slightly
more than 1.5 s [36], while those for GW150914 and GW151012 are roughly
less than 0.5 s [36]. This is due to the fact that GW151226 has a lower chirp
mass compared to the other two events. Hence, we used a longer data segment
for the analysis of GW151226, which enabled us to include more echoes in the
IMRE waveforms.

Table 6.4 tabulates the detection statistic and the corresponding statistical signif-
icance and 𝑝-value for the three events (GW150914 [26, 36], GW151012 [36],
and GW151226 [101, 36]) in O1. None of the events have a detection statistic
greater than the 5𝜎-detection threshold. Although the detection statistics used in
the analyses were different, the ordering of the events by their statistical signifi-
cance is consistent with that reported by Nielsen et al.[114]. For GW150914, the
detection statistic is indeed less than the upper bound estimated in Sec. 6.3.4.1
for the case of the signal that Abedi et al. claimed to have found in GW150914
[107] in simulated Gaussian noise. In particular, GW151012 has the highest
detection statistic among the three, and the value is greater than zero. However,
that value is well within the background distribution we showed in the right panel
of Fig. 6.3. Figure 6.7 summarizes the O1 search results with a plot of the
background distribution of the detection statistic in the case of O1 real noise with
the detection statistic of the three events in O1 indicated by vertical dashed lines,
which shows that the detection statistic for all the events in O1 are within the
background. Therefore, we conclude that no significant evidence was found to
support the detection of GW echoes in O1.

Apart from making statistical statements on individual events regarding whether
GW echoes are present or not, we can also make a statistical statement about
whether GW echoes are present in a collection of events (a catalog) as described
in Sec. 6.2.5. The catalog log Bayes factor, which is the sum of the log Bayes
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Event Detection
statistic

𝑝-value Statistical
significance

(𝜎)
GW150914 −1.3 0.806 < 1
GW151012 0.4 0.0873 1.4
GW151226 −0.2 0.254 < 1

Table 6.4: The detection statistic and its corresponding statistical significance
and 𝑝-value for the three events in Advanced LIGO’s O1 data. None of the events
have a detection statistic greater than the threshold for 5𝜎 detection. The ordering
of the events in their statistical significance is consistent with that reported by
Nielsen et al.[114].

factors for the three events in O1, was found to be

lnB(cat)
O1 = −1.1.

Figure 6.8 shows the sampled background distribution for the catalog log Bayes
factor for O1 noise, and the vertical dashed line indicates the catalog log Bayes
factor found for the case of O1. We see that the detected value for O1 does
not stand out from the background, with a statistical significance < 1𝜎. This
is expected as the log Bayes factors for individual events lie well within in the
background. Hence, we conclude that we also find no statistically significant
combined evidence for the existence of GW echoes in O1 data.

6.4 Discussions
6.4.1 Background and foreground distribution estimation
During background and foreground estimation, the values of the IMR parameters
were not fixed to the same as those of a particular GW event but rather were drawn
from distributions that are representative of what Advanced LIGO and Advanced
Virgo would detect. It is legitimate to do this because in our hypotheses (see
Sec. 6.2.1) we did not require the IMR parameters to be known a priori. By
allowing the IMR parameters to be different during background and foreground
estimation, our sampled foreground distribution can be used to estimate the
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Figure 6.7: The histogram of the sampled null distribution for the log Bayes
factor lnB for Advanced LIGO’s O1 data. This is the same plot as in the
right panel of Fig. 6.3 with the detected values of the log Bayes factor for
the three events in O1 (namely GW150914, GW151012 and GW151226). For
GW150914 and GW151226, their detection statistics are less than zero, with a
statistical significance less than 1𝜎. As for GW151012, although the detection
statistic for GW151012 is slightly greater than zero, it is still well within the
background distribution. In fact, the statistical significance is only about 1.4𝜎.
Therefore, we conclude that no significant evidence was found to support the
detection of GW echoes in O1 data.

efficiency of our search to detect GW echoes for a variety of inspiral-merger-
ringdown-echo signals. Similarly, our estimated background distribution can
be used to estimate the false alarm probability for a variety of inspiral-merger-
ringdown signals. Although the background and foreground estimation can
also be done specifically for each individual GW event, it will soon become
computationally too expensive as we will have more than ten binary black hole
mergers in an observing run; for example in the third observing run of Advanced
LIGO and Virgo, it was estimated that there will be about 35+78

−26 binary black
hole merger events [135]. One can perform a follow-up analysis on interesting
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Figure 6.8: The histogram of the sampled null distribution for the catalog log
Bayes factor lnB(cat) for Advanced LIGO’s O1 data. This plot is similar to Fig.
6.6 but with a catalog of size 𝑁cat = 3. From the figure, we see that the value
of the catalog log Bayes factor for O1 is also well within the background, with a
statistical significance < 1𝜎. Hence, we conclude that we also find no statistically
significant combined evidence for the existence of GW echoes in O1 data.

echo triggers found in this search to obtain a more accurate estimate of the false
alarm probability and hence statistical significance.

6.4.2 Combining evidence from multiple GW echoes events
As described in Sec. 6.2.5, we can combine Bayesian evidence by simply
multiplying the Bayes factors from each independent event to give the catalog
Bayes factor. Note that when combining evidence, we do not assume GW events
are described by the same set of echo parameters, whereas in Abedi et al. they
assumed that each event has the same values of 𝛾 and 𝑡0/Δ𝑡echo, where Δ𝑡echo

denotes the average value of Δ𝑡echo inferred in the events, which may not be the
case in reality [107]. In addition, they combined the GW events by summing up
the 𝜌2’s of each event, without demonstrating that this is a proper way to combine
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multiple measurements.

Combining Bayesian evidence from multiple GW echoes events can provide
tighter constraints on the existence of GW echoes than a single event. Note that
the null distribution for the catalog Bayes factor (and hence catalog log Bayes
factor) can be constructed from the null distributions of log Bayes factors in a
catalog of events.

6.4.3 Comparisons with other proposed search methodologies for GW
echoes

6.4.3.1 Model-dependent method proposed by Abedi et al.

As mentioned in the Introduction, Abedi et al. proposed a template-based search
methodology for echoes using matched filtering. The parameter estimation was
achieved by maximizing the square of the SNR 𝜌2, which is also defined in Eq.
6.8. The set of echo parameters that give the highest value of 𝜌2 were said to be
the inferred values in their analysis. Also, they used 𝜌2 as the detection statistic
of their search. By finding the number of events, in segments of data without
gravitational waves, that have a higher or equal value of the detection statistic
found in a candidate, the background distribution of their detection statistic can
be estimated.

However, the use of 𝜌2 as the detection statistic is suboptimal because a large
short-time instrumental noise fluctuation (also known as a glitch) can easily
cause a peak in 𝜌2, and as a result the search will be trying to overfit the glitch
instead of echoes. Also, the addition of five echo parameters when searching
for echoes in GW data will often make IMRE templates fit the data better than
IMR templates when using 𝜌2 as the detection statistic as there are more free
parameters to be adjusted to fit the noise in the data. The Occam factor (described
in Sec. 6.2.1.1) embodied in Bayesian model selection can mitigate the problem
described above by penalizing more complicated models (i.e., having more free
parameters), making our choice of the log Bayes factor more robust against noise
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than 𝜌2 as chosen by Abedi et al. [107].

6.4.3.2 Model-dependent Bayesian model selection approach proposed by
Nielsen et al.

Nielsen et al. [114] adopted the same Bayesian model selection framework to
search for the existence of GW echoes. In their work, they considered two
hypotheses — GW strain data consisting of both echoes plus Gaussian noise
and data consisting only of Gaussian noise — and they are only looking at the
post-merger part of a confirmed GW signal. In comparison to our work, we
select between two hypotheses: GW strain data consisting of an inspiral-merger-
ringdown-echo signal plus Gaussian noise versus an inspiral-merger-ringdown
signal plus Gaussian noise model. Although both works are concerned with
whether the data contain echoes, the hypotheses that are tested are not equivalent.

They interpreted their detection statistic (log Bayes factor) in the Bayesian way
that when it is greater than zero, the data favor the echo signal plus Gaussian noise
hypothesis and when it is less than zero, the data favor the pure Gaussian noise
hypothesis. However, it is known and also pointed out by Nielsen et al. that the
noise in real GW strain data is not strictly Gaussian, and thus the aforementioned
interpretation is only approximately true. We can also see from Fig. 6.3 that the
background distribution for our detection statistic, the log Bayes factor of IMRE
versus IMR, is different for the cases of Gaussian noise and real noise in O1, with
a noticeable tail to the right in the case of O1.

When interpreting the O1 results, they stated that a log Bayes factor with a value
less than 1 does “not worth more than a bare mention” [114]. The use of a
nomenclature to interpret the (log) Bayes factor is suboptimal because the scale
to interpret the Bayesian evidence is not universally applicable. As mentioned
by Kass et al. [136], for forensic evidence to be “conclusive” in court trials, the
Bayes factor needs to be at least 10 times larger than what was originally suggested
by Jeffreys, which suggests that the scale is not universally applicable to different
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situations. A rigorous justification that the scale proposed by Kass et al.[136]
is appropriate was not given in that paper, and its authors merely mentioned
that “From our own experience, these categories seem to furnish appropriate
guidelines.” When performing the parameter estimation with a Gaussian noise
model, the effects due to the non-Gaussianity of the noise can only be properly
accounted by sampling the background distribution of the log Bayes factor in real
data, which was done in our work as described in Sec. 6.3.4.1.

When generating templates of GW echoes for parameter estimation, Nielsen et
al. chose to fix the parameters that govern the inspiral-merger-ringdown part of
the waveform such as the component masses and the luminosity distance of the
source of the signal. However, these inferred parameters have non-negligible
uncertainties. By allowing the IMR parameters to vary during parameter estima-
tion as we do in our work, we can marginalize over these parameters in model
selection properly and hence get a more accurate value for the log Bayes factor,
instead of replacing the joint posterior distribution, that carries information such
as the correlation between parameters, with a product of Dirac delta functions.

6.4.3.3 Model-agnostic method proposed by Tsang et al.

Tsang et al. [113] also adopted the Bayesian approach and used the log Bayes fac-
tor as the detection statistic. However, their search methodology is morphology
agnostic, meaning that no detailed knowledge of the waveform of GW echoes
is needed prior to a search. Their method was a modified version of the search
pipeline BayesWave used for searching GW bursts, which is suitable for search-
ing GW signals that are unmodeled or poorly modeled. This is exactly the current
status of the modeling of GW echoes emitted from exotic compact objects, where
there is no consensus that a particular waveform model can accurately model
echoes. However, it is exactly because their search methodology requires no
prior knowledge on the waveform of GW echoes that echoes need to be loud in
order to be detected by their search. As in our proposed search methodology, we
can make use of the knowledge on the waveform to extract weaker echoes buried
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in noise and the estimation of physical parameters of echoes can be done easily.

6.5 Conclusions and future work
In this paper, we have demonstrated that our proposed search methodology using
Bayesian model selection between the presence of echoes and their absence can
identify and estimate the parameters of an IMRE signal buried in both Gaussian
noise and real noise in the O1 data of Advanced LIGO. In the validation test,
the recovered echo parameters were both close to the true value and had narrow
posterior probability distributions. We demonstrated that we can use a Bayesian
model selection to test the existence of echoes in simulated data, and report
the statistical significance of the detection. By performing many analyses on
simulated data with GW echoes injected, we also found that the search was able
to identify GW echoes in simulated Gaussian noise about 82% of the time and
in O1 real noise about 61% of the time with ≥ 5𝜎 significance. Applying the
search methodology to search for GW echoes in the three O1 events, we found
no statistically significant evidence to support the detection of echoes.

In the future, we can repeat the analysis with different parametrized GW echoes
waveform models that are more physical to provide more realistic evidence of
the existence of echoes from exotic compact objects. When we understand the
physics of exotic compact objects better in the sense that we can come up with
physical waveform models of the echoes from different types of exotic compact
objects, the methodology proposed in this paper can be readily modified to test
the nature of exotic compact objects, using subhypotheses ofH1 such asHGravastar

andHFuzzball, that is

H1 = HGravastar ∨HFuzzball ∨ . . . ,

so that we can learn even more about the properties and structure of exotic
compact objects.
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C h a p t e r 7

SEARCHING FOR GRAVITATIONAL-WAVE ECHOES IN
BINARY BLACK HOLE EVENTS FROM THE GWTC-1

CATALOG USING TEMPLATE-BASED BAYESIAN MODEL
SELECTION APPROACH

This chapter contains work from

R. K. L. Lo, T. G. F. Li, and A. J. Weinstein. “Searching for gravitational-
wave echoes in binary black hole events from the GWTC-1 catalog us-
ing template-based Bayesian model selection approach”. In: unpublished
(2019).
R. K. L. L performed the analyses and wrote the manuscript.

7.1 Introduction
Observations of gravitational waves from Advanced Laser Interferometer Gravitational-
Wave Observatory (LIGO) [1] and Virgo [2] have proven to have significant
impacts on fundamental physics, astrophysics and cosmology. For example, we
can constrain the mass of the graviton [102, 20, 138, 22], the number of space-
time dimensions [20] or measure the Hubble constant with joint electromagnetic
observations in GW170817 [18, 16]. With gravitational waves, we are able to
probe directly the strong-field dynamics of gravity, for instead during the merger
of two black holes. Cardoso et al. [105] suggested that the post-merger part of
a gravitational-wave signal can be used to probe the presence of near-horizon
structure. Cardoso et al. [106] further pointed out that for a class of hypothesized
compact objects, namely exotic compact objects (ECOs), will emit repeating
gravitational waves due to their near-horizon structures when they merge or when
they are formed as a result of the mergers of two ‘ordinary’ compact objects such
as black holes, which are now commonly referred as gravitational-wave echoes.
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Abedi et al. [107] claimed that they have found a combined 2.9𝜎 evidence
of gravitational-wave echoes in the first three binary black hole (BBH) events
detected by LIGO [26, 101, 36], while other groups argued that the claimed
statistical significance was over-estimated [108, 109, 111, 139, 114]. For a com-
prehensive review on the physics, the current observational claims and constraints
of exotic compact objects, readers can refer to Ref. [140], while we will also
review some of the essential physics of ECO in Sec. 7.4.

In this paper, we employ the data analysis method proposed in our earlier paper
[139] to search for gravitational-wave echoes in the ten BBH events reported
in the GWTC-1 catalog, and we found no statistically significant evidence of
echoes in the data. During the preparation of this manuscript, another paper on
searching for echoes in BBH events reported in GWTC-1 catalog using different
data analysis technique was posted [141]. A paper reporting the search results on
all the gravitational-wave (GW) events reported in the GWTC-1 catalog using a
morphology-independent technique was also posted [113]. All three of the papers
(including ours) also conclude that there is no statistically significant evidence of
echoes in the data near the eleven GW events reported in the GWTC-1 catalog
[9].

The paper is structured as follows: In Sec. 7.2, we first briefly describe the
methodology and setup of the search. In Sec. 7.3, we then report our results
on searching for echoes in the ten BBH events from the GWTC-1 catalog, as
well as the search efficiency. With that, in Sec. 7.4 we place some limits on
the population and physics of ECOs using the results of our search. Finally, in
Sec. 7.5 we discuss the systematics of our search and the future prospects of
searching for gravitational-wave echoes. In this paper, we adopt the geometrized
unit system where 𝑐 = 𝐺 = 1.
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7.2 Search description
7.2.1 Methodology
In this search, we employ the Bayesian model selection approach where we test
the two hypothesesH0 andH1, which are defined as

H0 BNo echoes in the data⇒ 𝑑 = 𝑛 + ℎIMR,

H1 B There are echoes in the data⇒ 𝑑 = 𝑛 + ℎIMRE,

where 𝑑 is the GW data, 𝑛 is the instrumental noise and ℎIMR, ℎIMRE are the
inspiral-merger-ringdown (IMR) gravitational-wave signal and inspiral-merger-
ringdown-echo (IMRE) gravitational-wave signal, respectively. We compute the
log Bayes factor lnB as the detection statistic, which is defined as

lnB = ln 𝑝(𝑑 |H1, 𝐼) − ln 𝑝(𝑑 |H0, 𝐼)
= ln 𝑍1 − ln 𝑍0, (7.1)

where 𝐼 denotes the prior knowledge and 𝑍𝑖 is known as the evidence or marginal
likelihood of the 𝑖-th hypothesis, which is given by

𝑍𝑖 =

∫
𝑝(𝑑 | ®𝜃𝑖,H𝑖, 𝐼)𝑝( ®𝜃𝑖 |H𝑖, 𝐼) 𝑑 ®𝜃𝑖, (7.2)

where 𝑝(𝑑 | ®𝜃𝑖,H𝑖, 𝐼), is the likelihood function assuming the 𝑖-th hypothesis
is true when viewed as a function of the set of parameters ®𝜃𝑖 describing the
hypothesis.

In Bayesian statistics, the log Bayes factor has the interpretation that if lnB > 0,
the hypothesis H1 is favored over the hypothesis H0 and vice versa. However,
we have assumed that the instrumental noise is Gaussian and stationary for the
construction of the likelihood function, which are not necessarily true for real
data. To circumvent this problem, we sample the null distribution 𝑝(lnB|H0),
the distribution of the log Bayes factor assuming that H0 is true, by injecting
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IMR waveforms into noise strains, and compute the 𝑝-value defined as

𝑝 = Pr(lnB ≥ lnBdetected |H0) (7.3)

=

∫ ∞

lnBdetected

𝑝(lnB|H0) 𝑑 lnB, (7.4)

where lnBdetected is the detection statistic observed in an analysis, and the right-
hand-side of Eq. 7.4 is known as the complementary cumulative distribution
function (CCDF) when viewed as a function of lnBdetected. Note that 𝑝(lnB|H0)
is the marginalized background distribution of the detection statistic over the
parameters ®𝜃 given by

𝑝(lnB|H0) =
∫

𝑝

[
lnB( ®𝜃) |H0

]
𝑑 ®𝜃. (7.5)

The 𝑝-value has the interpretation that it is the probability that random noise
fluctuation will cause the detection statistic to be as high as or higher than
the observed value, which we can use to assign statistical significance to a
particular candidate of GW echoes. For more details and discussions on our
search methodology, readers can refer to our previous paper [139].

7.2.2 Setup
In this search, we use the phenomenological waveform model from Abedi et
al. [107], which is parametrized by 5 parameters: 𝐴, 𝛾, 𝑡0, 𝑡echo, Δ𝑡echo. The
amplitude parameter 𝐴 controls the amplitude of the first echo with respect to the
IMR part of the waveform, and the reflectivity parameter 𝛾 controls the amplitude
ratio of each successive echo. The parameter 𝑡0 is a nuisance parameter which
controls the time of truncation on the IMR template to get the waveform of
the ringdown. The parameter 𝑡echo is the time difference between the merger
𝑡merger and the first echo, which could be different from the time lag between
each successive (second and so on) echo, which is denoted as Δ𝑡echo. For a
detailed description and an illustration on how these parameters change the echo
waveform, reader can again refer to Ref. [139]. We will discuss the effects
of waveform systematics to the search in Sec. 7.5.1. It should be noted that
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the methodology proposed in [139] is applicable to all parametrized waveform
models of echoes.

Table 7.1 tabulates the prior ranges we used in the search. The prior distribution
of each parameter is uniform over the respective prior range. The prior ranges
for 𝑡echo and Δ𝑡echo were chosen such that the values predicted in Ref. [107] that
correspond to a reflective surface at a proper distance of a Planck length 𝑙𝑝 away
from the would-be event horizon of a compact object are included. As for the
prior ranges for 𝐴 and 𝛾, the prior ranges are wider in the search for the the second
observing run (O2) compared to the ranges adopted in the the first observing run
(O1) to avoid potential issues with the peak of a posterior distribution railing
against the prior range 1.

Parameter Prior range (O1) Prior range (O2)
𝐴 [0.0,1.0] [0.0,1.5]
𝛾 [0.0,1.0] [0.0,1.5]
𝑡0 (s) [−0.1,0.01] [−0.04,0.04]
𝑡echo (s) [0.05,0.5] [0.05,0.5]
Δ𝑡echo (s) [0.05,0.5] [0.05,0.5]

Table 7.1: The prior range of the echo parameters. The prior distribution of
each parameter is uniform over the respective prior range. The justification for
choosing the prior ranges can be found in the main text.

In this paper, we search over the data near the ten BBH events from the GWTC-1
catalog [9]. Notice that we did not analyze the data near the binary neutron star
(BNS) collision GW170817 because we do not have a good waveform model for
echoes from binary neutron star mergers. Table 7.4 in Appendix 7.7 tabulates
the hyper-parameters such as the starting frequency, segment length and number
of echoes in a template we adopted in this search. Some of the results from
searching over Advanced LIGO’s O1 data were first presented in Ref. [139] and
are reported in this paper again for completeness. The gravitational-wave strain

1This does not actually happen in our search as shown in Figure 7.3.
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data in O1 and O2 of Advanced LIGO and Virgo are publicly available from the
Gravitational Wave Open Science Center [128, 142, 129].

7.3 Search results
7.3.1 Gravitational-wave echoes after the binary black hole coalescences

from the GWTC-1 catalog
In this search, we did not find any statistically significant evidence of echoes
in the data near the ten BBH events from the GWTC-1 catalog [9]. Table
7.2 tabulates the detection statistic for this echo search, the corresponding 𝑝-
value and the statistical significance of the ten BBH events computed using
only Hanford-Livingston (HL) data, as well as the detection statistic computed
using all Hanford-Livingston-Virgo (HLV) data when available. None of the
events has a statistical significance greater than 5𝜎. In fact, most of the events
have a statistical significance < 1𝜎. There are only two events with a statistical
significance greater than 1𝜎, namely GW151012 with 1.4𝜎 and GW170729 with
1.3𝜎. Interestingly, these two events are actually the two less significant BBH
detections reported in the GWTC-1 catalog in terms of their false alarm rate [9].
For the three BBH events in O1, the ordering of the events in their statistical
significance is consistent with that reported in Nielsen et al. [114]. The same
information is presented in the form of histograms shown in Figure 7.1, where
the CCDF of the null distribution of the detection statistic with O1 and O2 noise
are plotted, respectively. To achieve a 5𝜎 detection, the detection statistic would
need to be as high as ≈ 5.7 for O1 and ≈ 5.8 for O2. Note that the detection
statistic calculated using both HLV data for GW170729, GW170809, GW170814
and GW170818 are consistent with that calculated using only HL data, indicating
that the addition of Virgo data does not have a significant impact on detection of
echoes in this case. Since the estimation of the corresponding null distribution for
three-detector log Bayes factor is computational intensive, we did not perform the
injection campaigns to estimate the background distribution to report the 𝑝-value
and hence statistical significance with three-detector log Bayes factor.
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Event Detection
statistic

(HL only)

𝑝-value
(HL only)

Statistical
significance

(𝜎)
(HL only)

Detection
statistic
(HLV)

GW150914 −1.3 0.806 < 1 −
GW151012 0.4 0.0873 1.4 −
GW151226 −0.2 0.254 < 1 −
GW170104 −1.2 1.00 < 1 −
GW170608 −1.0 0.998 < 1 −
GW170729 0.3 0.0913 1.3 0.5
GW170809 −0.4 0.844 < 1 −0.5
GW170814 −1.1 0.999 < 1 −1.1
GW170818 −1.2 1.00 < 1 −1.4
GW170823 −0.8 0.988 < 1 −

Table 7.2: The detection statistic and its corresponding statistical significance
of this echo search for the ten BBH events found during Advanced LIGO and
Virgo’s O1 and O2 as reported in the GWTC-1 catalog. None of the events has a
detection statistic greater than the threshold for 5𝜎 detection. Most of the events
have a statistical significance < 1𝜎. There are only two events with a statistical
significance greater than 1𝜎, namely GW151012 with 1.4𝜎 and GW170729 with
1.3𝜎. Interestingly, these two events are actually the two less significant BBH
detections reported in the GWTC-1 catalog in terms of their false alarm rate [9].
Note that the detection statistic calculated using both HLV data for GW170729,
GW170809, GW170814 and GW170818 are consistent with that calculated using
only HL data, indicating that the addition of Virgo data does not have a significant
impact on detection of echoes in this case.

Apart from making a statistical statement on each individual GW event, we can
also combine the log Bayes factor for each event to form a catalog log Bayes
factor lnB(cat) defined as

ln (cat)B =

𝑁cat∑︁
𝑖=1

ln (𝑖)B, (7.6)

where ln (𝑖)B is the individual log Bayes factor of the 𝑖-th event in the catalog
of size 𝑁cat. The detailed motivation of catalog log Bayes factor can be found
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Figure 7.1: The histogram of the sampled complementary cumulative distribution
function (CCDF) of the null distribution for the individual log Bayes factor lnB
computed using only HL data for Advanced LIGO’s O1 (left panel) and O2 (right
panel) data, with a sample size of 953 and 763, respectively. The grey-scale bar
on top of each plot indicates the corresponding statistical significance (in 𝜎) for
each value of the detection statistic lnB. The dashed lines with enclosed area
filled with grey color on each plot show the Poisson ±

√
𝑁 counting error on

the number of background injections with detection statistic greater than certain
values. Note that we have extrapolated the null distribution for ≳ 3𝜎 region.
This does not affect our null detection claim as none of the events has a detection
statistic greater than the corresponding 3𝜎 value. To have a 5𝜎 detection, the
detection statistic lnB would need to be as high as ≈ 5.7 for O1 and ≈ 5.8 for
O2, respectively.

in Ref. [139]. Figure 7.2 shows the histogram of the sampled null distribution
of the catalog log Bayes factor for O1 and O2 using HL data only. The catalog
size for O1 and O2 are 𝑁O1

cat = 3 and 𝑁O2
cat = 7, respectively, corresponding to the

number of BBH events reported in the GWTC-1 catalog [9]. We see from the
plots that the detected value of the catalog log Bayes factor for both O1 and O2 are
well within their respective background distribution, with statistical significance
< 1𝜎 in both cases. Hence, we conclude that we did not find any statistically
significant combined evidence for the existence of GW echoes in O1 and O2 data
as well.
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Figure 7.2: The histogram of the sampled null distribution for the catalog log
Bayes factor lnB(cat) for Advanced LIGO’s O1 (left panel) and O2 (right panel)
data using only HL data. The plot on the left panel has a catalog of size 𝑁O1

cat = 3
and the plot on the right panel has a catalog of size 𝑁O2

cat = 7, corresponding to the
number of BBH events detected in O1 and O2, respectively. From the figures,
we see that the detected value of the catalog log Bayes factor for both O1 and
O2 are well within the background, with statistical significance < 1𝜎. Hence,
we conclude that we find no statistically significant combined evidence for the
existence of gravitational-wave echoes in O1 and O2 data.

7.3.1.1 Parameter estimation of echo parameters

Figure 7.3 shows violin plots for echo parameters (except for the nuisance param-
eter 𝑡0) estimated from the ten BBH events reported in the GWTC-1 catalog [9].
The parameter estimation is not very informative, which is expected since none of
the events has statistically significant evidence for echoes. Visually, the posterior
distributions (left-hand-side of a violin) look similar to their corresponding prior
distributions (right-hand-side of a violin). However, there is indeed a significant
peak in the posterior distribution of 𝑡echo for GW151226. But this alone does not
constitute evidence of echoes in GW151226 since there is no repeating echoes
seen in GW151226, reflected from the lack of a peak in the posterior distribution
of Δ𝑡echo for GW151226.

Quantitatively, the 90% Bayesian credible intervals for each parameter (indicated
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with orange bars in the plots) are essentially as wide as the prior, meaning that
there is not much information gained from parameter estimation. To quantify how
much information was gained in parameter estimation from the prior distribution
𝑞(𝑥) to the posterior distribution 𝑝(𝑥), one can compute the Kullback–Leibler
divergence 𝐷KL [143] defined as

𝐷KL =

∫ ∞

−∞
𝑝(𝑥) ln

[
𝑝(𝑥)
𝑞(𝑥)

]
𝑑𝑥, (7.7)

where we measure the KL divergence in the unit of nats that corresponds to
the choice of the base 𝑒 for the logarithm function 2. To get a sense of the
KL divergence, suppose 𝑞(𝑥) is a Gaussian distribution with a mean 𝜇 and a
standard deviation 2𝜎, and 𝑝(𝑥) is a Gaussian distribution with the same mean
𝜇 but with a standard deviation 𝜎, the KL divergence is around 0.807 nat. The
KL divergence listed on top of each violin in Figure 7.3 shows that most of the
posterior distributions are not very informative, in agreement with our visual
inspection.

Readers should be very cautious when interpreting the violin plots and trying to
look for features in the posterior distributions. Since none of the events has a
high statistical significance, the so-called features in the posterior distributions
are likely due to noise fluctuation, and the probability of such fluctuation is
quantitatively given by the 𝑝-value.

2Another common choice of the base for the logarithm function is 2, and in that case the KL
divergence will be in the unit of bits instead.
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Figure 7.3: Violin plots for various echo parameters (except for the nuisance pa-
rameter 𝑡0) estimated from the ten BBH events. Each violin consists of two parts:
the left-hand-side of the violin shows the posterior distribution and the right-
hand-side of the violin shows the prior distribution of a parameter, respectively.
In this case, all the prior distributions are uniform. The orange bars indicate the
upper and lower limit of the 90% Bayesian credible interval, respectively. The
KL divergence 𝐷KL is computed for each parameter inferred from each event to
quantify the information gained from the parameter estimation, which is listed
on top of each violin. Readers should be very cautious when interpreting the
violin plots and trying to look for features in the posterior distributions. Since
none of the events has a high statistical significance, the so-called features in the
posterior distributions are likely due to noise fluctuation, and the probability of
such fluctuation is quantitatively given by the 𝑝-value.
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Figure 7.3: Violin plots for various echo parameters (except for the nuisance
parameter 𝑡0) estimated from the ten BBH events (continued)

7.3.2 Search efficiency
To demonstrate the capability of our pipeline for detecting gravitational-wave
echoes, quantitatively we can compute the search efficiency 𝜁 defined as

𝜁 =

∫ ∞

lnBthreshold

𝑝(lnB|H1) 𝑑 lnB, (7.8)

where 𝑝(lnB|H1) is the marginalized foreground distribution of the detection
statistic over the parameters ®𝜃 given by

𝑝(lnB|H1) =
∫

𝑝

[
lnB( ®𝜃) |H1

]
𝑑 ®𝜃. (7.9)
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Similar to the case for the background distribution 𝑝(lnB|H0), we obtain samples
of the foreground distribution 𝑝(lnB|H1) by performing injection campaigns
where we inject IMRE signals into noise strains as in real analyses, and then
compute the search efficiency integral numerically shown in Eq. 7.8. We obtain
the search efficiency with simulated Gaussian noise, real O1 and O2 noise as

𝜁Gaussian = 0.82 ± 0.03,

𝜁O1 = 0.61 ± 0.01,

𝜁O2 = 0.59 ± 0.02.

We see that the search efficiency with real O1 and O2 noise are statistically
consistent to each other, and worse than that with simulated Gaussian noise (the
ideal case) as expected.

Visually, we can look at receiver operating characteristic (ROC) curves shown
in Figure 7.4. A ROC curve is commonly used to gauge the performance of a
binary classifier, and here we are classifying a GW signal into either an IMR or
IMRE signal. In this particular case, it shows the fraction of IMRE signals that
the search correctly identified as IMRE signals as a function of the fraction of
IMR signals that the search misidentified as IMRE signals. Essentially, a ROC
curve is giving information about the separation between the background and
foreground distribution. We see from the plot in Figure 7.4 that the search in O1
is slightly more sensitive than the search in O2, and the two are comparable in
sensitivity and both are significantly more sensitive than a random guess. The
ROC curves are consistent with the quantitative description of the performance
of the search with search efficiency 𝜁 .

7.4 Limits on population and physics of exotic compact objects from the
search

Even with a null detection, we can still extract some information about the
population and physics of exotic compact objects, with the caveat that the echo
templates we used in the search accurately model the actual gravitational-wave
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Figure 7.4: The receiver operating characteristic (ROC) curves of the searches
with different noise. A ROC curve is commonly used to gauge the performance
of a binary classifier, and here we are classifying a GW signal into either an
IMR or IMRE signal. In this particular case, it shows the fraction of IMRE
signals that the search correctly identified as IMRE signals as a function of the
fraction of IMR signals that the search misidentified as IMRE signals. A more
sensitive search should have a smaller fraction of IMR signals misidentified as
IMRE signals given a fixed fraction of IMRE signals identified as IMRE signals.
Essentially, a ROC curve is giving information about the separation between the
background and foreground distribution. We see from the plot that the search in
O1 is slightly more sensitive than the search in O2, and the two are comparable
and both are significantly more sensitive than a random guess. The ROC curves
are consistent with the quantitative description of the performance of the search
with search efficiency 𝜁 .

signals from exotic compact objects. We will discuss this issue further in Sec.
7.5.1. With this in mind, the following section serves to demonstrate what we
can learn from gravitational-wave echoes detections (or the lack thereof) once
we have accurate template models of GW echoes.
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7.4.1 Upper limit on gravitational-wave echoes event rate density
Suppose that the hypothesized exotic compact objects exist, and that they form
binary systems and merge just like ordinary compact objects such as black holes3;
or perhaps an exotic compact object would be formed as the remnant of a binary
black hole merger. These scenarios were proposed to emit gravitational-wave
echoes. Therefore, we can understand more about the merger rate of exotic
compact objects or the formation rate of exotic compact objects from mergers
of ordinary compact objects by measuring the event rate (or the rate density)
of gravitational-wave echoes. Since we do not have any confident detection of
GW echoes, from this we can infer an upper bound on how frequent GW echoes
are emitted and we can place an upper limit on the event rate density. The
90% Bayesian credible interval4 of the event rate density (for a derivation see
Appendix 7.8) 5 is given by (0, 𝑅Echoes

90% ). Assuming a uniform prior, the upper
limit 𝑅Echoes

90% can be computed as [144, 145]:

𝑅Echoes
90% =

− ln(0.1)
⟨𝑉𝑇⟩Echoes

Sensitive
, (7.10)

where ⟨𝑉𝑇⟩Echoes
Sensitive is the sensitive spacetime volume surveyed by our search. The

sensitive spacetime volume surveyed by the search for gravitational-wave echoes
⟨𝑉𝑇⟩Echoes

Sensitive can be approximated as

⟨𝑉𝑇⟩Echoes
Sensitive ≈

𝑁recovered
𝑁injected

⟨𝑉𝑇⟩BBH
Sensitive, (7.11)

where ⟨𝑉𝑇⟩BBH
Sensitive is the sensitive spacetime volume for binary black hole events.

A detailed justification of this estimate can be found in Appendix 7.9.
3If that is the case, then the inspiral phase of the gravitational-wave emission will also imprint

information about the exotic compact object binary. Readers can refer to Ref. [140] for details.
However, there is an issue with the stability of such a configuration.

4For a null detection, Bayesian credible interval and frequentist confidence interval coincide,
but they have very different interpretations.

5Note that this does not imply that gravitational-wave echoes exist. If gravitational-wave
echoes do not exist, then its event rate density would be 0 (in any unit), which is indeed smaller
than the bound.
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From the GWTC-1 catalog [9], we can obtain an estimate of the sensitive
spacetime volume for binary black hole events by ⟨𝑉𝑇⟩BBH

Sensitive = Γ/𝑅, where
Γ = 10 is the number of BBH detected in O1 and O2. Choosing the upper limit
𝑅 = 101 Gpc−3yr−1 reported in Ref. [9] as a conservative estimate, we have
⟨𝑉𝑇⟩BBH

Sensitive ≈ 0.0990 Gpc3yr1. From injection campaigns, we obtained

𝑁recovered
𝑁injected

≈ 0.489. (7.12)

Therefore, we can place an upper limit on the event rate density of gravitational-
wave echoes as

𝑅Echoes
90% ≈ 48 Gpc−3yr−1. (7.13)

7.4.2 Limits on the amplitude of echoes and reflectivity of exotic compact
objects

If gravitational-wave echoes are loud enough, they would have been detected by
our search. Therefore, the fact that we did not have any detection of echoes means
that if echoes were actually emitted then they are simply not strong enough. In
Ref. [139] we demonstrated that the detectability of echoes mainly depends on the
amplitude of GW echoes. Hence, we can place a joint upper limit on the amplitude
of GW echoes emitted (related to the parameter 𝐴) and the reflectivity (related to
the parameter 𝛾, where 𝛾 ∼

√
RBHRECO, with RBH and RECO are the reflectivity

of the black hole and that of the surface of exotic compact object, respectively
[140]). Using the language of the sensitive parameter space, this is because the
search is sensitive to a certain portion of the parameter space and therefore the
fact that we did not detect any echoes means that if the exotic compact object is
emitting GW echoes, they would not be in the sensitive parameter space. Hence,
constraining the amplitude and the reflectivity parameter amounts to finding the
sensitive parameter space (at least the 𝐴 − 𝛾 subspace), and a null detection can
be used to exclude the sensitive parameter space.

Here we only place the upper limit of the amplitude and reflectivity parameter
for GW151012, the event with the highest statistical significance for GW echoes
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search (1.4𝜎). In principle, the analysis can be done for all ten BBH events.
However, finding the sensitive parameter space is computationally intensive.
Therefore, we picked the GW event with the highest statistical significance for
the echo search. Figure 7.5 shows a contour plot of the detection statistic lnB in
the 𝐴 − 𝛾 plane. We have fixed all the other echo parameters (i.e., 𝑡0, 𝑡echo and
Δ𝑡echo) to take the value of the corresponding maximum a posteriori estimator
(MAP). In Ref. [139], we have shown that the time-related parameters do not
affect the ability of the pipeline to detect echoes, as long as the echoes are not
overlapping with each other. Hence, fixing the time-related echo parameters
is justified. We see that the sensitive parameter space of 𝐴 and 𝛾 parameter
is roughly 𝐴 ≳ 0.7 independent of the value of 𝛾 6. That implies we can
rule out echoes with amplitude parameter 𝐴 > 0.7 (with 5𝜎 significance, since
we picked the detection statistic threshold that corresponds to a 5𝜎 detection),
and equivalently if the remnant of GW151012 emits GW echoes, the amplitude
parameter 𝐴 cannot be higher than 0.7, if the true value of the time lag between
successive echoes Δ𝑡echo is within the prior range 0.05 (s) < Δ𝑡echo < 0.5 (s).

7.4.3 Limits on the compactness of exotic compact objects
A popular way of modeling an exotic compact object is to think of an ECO
as a black hole with a reflective surface near the would-be event horizon at a
location of 𝑟ECO = 𝑟H (1 + 𝜖) is the coordinate of the would-be event horizon
in the Boyer-Lindquist coordinates, where 𝑟H = 𝑀

(
1 +

√︃
1 − 𝜒2

ECO

)
and 𝜒ECO

is the dimensionless spin parameter of the ECO. In a static ECO model, the
ECO surface stays at the same location and the ECO will not expand or contract.
In this simplified picture, the light ring and the ECO surface act like a GW
cavity, reflecting some GW while transmitting some GW away from the system,
which is seen by us as GW echoes. The reflective surface is usually motivated

6This is not saying that the detection statistic log Bayes factor is independent 𝛾. On the
contrary, one can see the dependence of the detection statistic on the reflectivity parameter 𝛾
from Figure 7.5. In fact, the statement that the sensitive parameter (sub-)space is independent of
𝛾 is a gross over-simplification.
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Figure 7.5: A contour plot of the detection statistic lnB in the 𝐴 − 𝛾 plane for
GW151012. The color indicates the value of the detection statistic. A contour line
corresponding to the 5𝜎 detection threshold is drawn to separate the sensitive
parameter (sub-)space with the rest of the parameter space. We see that the
sensitive parameter space of 𝐴 and 𝛾 parameter is roughly 𝐴 ≳ 0.7 independent
of the value of 𝛾, meaning that we can rule out echoes with amplitude parameter
𝐴 > 0.7 with 5𝜎 significance.

by considerations of quantum gravity and therefore usually at a proper distance
Δ ∼ 𝑙𝑝 away from the would-be event horizon, where 𝑙𝑝 is the Planck length.
Ref. [146] 7 pointed out that echo-emitting ECOs suffer from an instability due
to the back-reaction of gravitational waves [146]. As a result, the ECO surface
cannot be too close to the would-be event horizon. Nonetheless, we will assume
in the following text that the ECO of interest is stable and the surface is static,
meaning that gravitational-wave echoes will not induce a prompt collapse of the
ECO.

In the limit of 𝜖 → 0, for spinning ECOs, the time difference between each
7Note that in Ref. [146], they have chosen a different parametrization, where they place the

ECO surface at 𝑟ECO = 2𝑀 + 𝜖 instead. Also, readers should be cautious that Ref. [146] uses
Δ𝑡echo to mean both the time lag between the merger and the first echo and the time difference
between each successive echo. We make the distinction between the two and use 𝑡echo and Δ𝑡echo,
respectively.
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successive echo Δ𝑡echo relates to the location of the ECO surface by [140, 107]

Δ𝑡echo ∼ −4𝑀
[
1 +

(
1 − 𝜒2

ECO

)−1/2
]

log(𝜖). (7.14)

Note that if we set 𝜒ECO = 0, we get the expression for non-spinning ECOs as

Δ𝑡echo ∼ −8𝑀 log(𝜖). (7.15)

Note that 0 < 𝜖 < 1/2 since the 𝜖 = 1/2 implies that the ECO surface is located
at the light ring, which does not give rise to any echo in this simplifying static
ECO picture, and 𝜖 = 0 means that the so-called ECO is actually a black hole
and also will not give rise to any echo. In particular, the small parameter 𝜖 is
related to the proper distance Δ by [107]

Δ =
2
√
𝜖(

1 − 𝜒2
ECO

)1/4 𝑟H. (7.16)

In the case of non-spinning ECOs, 𝑟H = 2𝑀 and 𝜒ECO = 0 and we have [107,
146]

Δ = 4
√
𝜖𝑀. (7.17)

Therefore, we can infer the compactness of an ECO, in terms of 𝜖 or Δ, from the
parameter Δ𝑡echo.

From Sec. 7.3.1.1, we know that the posterior distributions for Δ𝑡echo are not
informative in a sense that they are more or less the prior distributions we put into
the search. However, the prior range we chose for Δ𝑡echo does not span the entire
parameter space 8. Therefore, we can apply the same logic as in Sec. 7.4.2 that
if we assume ECOs truly exist, the fact that the search did not find any echoes
means that the echoes emitted must not be inside of the sensitive parameter space.
Since in Ref. [139] we showed that the detectability of echoes does not depend

8Sadly, if we choose the prior range of a uniform prior distribution to span the entire parameter
space of Δ𝑡echo, namely (0,∞), then the search will not be able to find any echoes because of the
infinite prior volume and hence infinitely small Occam factor.
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on Δ𝑡echo much except when echoes are overlapped with each other, this means
that the projected sensitive parameter space for Δ𝑡echo is exactly its prior range.
Suppose that the true value for the amplitude parameter 𝐴 is greater than 0.7,
and the true value of Δ𝑡echo is actually greater than 0.5 s, we can use Eq. 7.14 to
get an upper bound on the small parameter 𝜖 and therefore the proper distance Δ
between the event horizon and the ECO surface; similarly if we assume that the
true value of Δ𝑡echo is actually less than 0.05 s, we can get a lower bound on 𝜖
and hence Δ. Note that the two assumptions are exclusive, and therefore the two
bounds are not compatible to each other.

Again, in principle the analysis can be done for all ten BBH events. Here we
picked GW151012 as an example with the same reason in Sec. 7.4.2. Table 7.3
tabulates what we can say about the compactness (in terms of 𝜖 and Δ) of the
remnant compact object of GW151012 under different assumptions on the true
value of Δ𝑡echo if the remnant compact object is an ECO. It should be stressed
again that in order to obtain the bounds, we assumed that the templates we used
accurately modeled the gravitational-wave echoes emitted by an ECO, and that
the ECO is static and stable. However, Ref. [146] suggests that the configuration
𝜖 ≲ 10−124 is unlikely to be stable and it will promptly collapse to a black hole.

Assumptions Bound on 𝜖 Bound on Δ

𝐴 ≳ 0.7, Δ𝑡echo, true > 0.50 s 𝜖 ≲ 10−124 Δ/𝑙𝑝 ≲ 10−22

𝐴 ≳ 0.7, Δ𝑡echo, true < 0.05 s 𝜖 ≳ 10−12 Δ/𝑙𝑝 ≳ 1034

Table 7.3: Under different assumptions on the true value of Δ𝑡echo, we can
place different bounds on the compactness of the remnant ECO of GW151012 in
terms of 𝜖 or Δ, if the remnant compact object is an ECO. Note that in order to
obtain the bounds, we assumed that the templates we used accurately modeled
the gravitational-wave echoes emitted by an ECO, and that the ECO is static
and stable. However, Ref. [146] suggests that the configuration 𝜖 ≲ 10−124 is
unlikely to be stable and it will promptly collapse to a black hole.
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7.5 Discussion
7.5.1 Systematics due to waveform model
The waveform model of gravitational-wave echoes proposed by Abedi et al.
in Ref. [107], which is also used in our search, is the first attempt to model
GW echoes. To construct a template of GW echoes using this model, one simply
‘copies’ the ringdown part of a IMR template and then ‘pastes’ the cropped scaled
waveform many times with equal time separation. Although this simple recipe
may capture some essential features of GW echoes, namely repeating ringdown
signals separated by constant time difference, the templates are unlikely to match
the phase evolution of real gravitational-wave echoes emitted by exotic compact
objects. It is important to maximize the match when one is trying to detect very
weak signals in a noisy background in order to maximize the signal-to-noise ratio
of the signals.

That being said, the waveform model is still useful for picking up echoes in
GW data with echoes projected to the space spanned by the waveform model
with sub-optimal search sensitivity. With this caveat, readers should carefully
interpret the meaning of the parameters in the waveform model since what we
observe in a template-based search is the projection of a real signal onto the
templates, where the templates might not be faithful in representing the signal.

In fact, Wang et al. argued that gravitational-wave echoes might not be separated
with a regular time interval [147]. This can be easily seen when one does
not assume a static ECO model that the reflective surface moves as energy is
being pumped into the object. Indeed, Ref. [146] suggests that in some cases
the ECO surface might have to expand teleologically in response to the in-
falling gravitational radiation to prevent collapse. The authors of Ref. [148]
investigated the systematics due to mistakenly assuming a constant Δ𝑡echo using
a search methodology similar to ours proposed in Ref. [139] and they concluded
that this will lead to significant bias in parameter estimation. Evidently, allowing
each successive pair of echoes to have different Δ𝑡echo would induce a very large
penalty from Occam factor when the number of echoes in a template is large. A
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smarter way to deal with this problem, as explored by Ref. [148], is to model
the time delay Δ𝑡echo as a function of some other more tractable parameters,
for example the number of echoes already emitted by the object. However, this
modeling will also have its own systematics. When the number of echoes 𝑁echo

in a template is not large, for example in our search, most of the time we only
include three echoes in a template, as long as the time scale of the variability
of the time delay 𝜏var ≫ 𝑁echoΔ𝑡echo, the search will not suffer significant bias
from the irregularity of the time delay. It remains unclear as to which is the best
solution to account for the possibility of irregular time lag between successive
echoes.

To circumvent the systematics due to waveform uncertainties altogether, one can
search for gravitational-wave echoes using a morphology-independent method,
for instead Ref. [113] and Ref. [112], at the expense of the search sensitiv-
ity. However, if gravitational-wave echoes are intrinsically very weak, these
morphology-independent searches might not be able to detect these tiny echoes
due to insufficient sensitivity.

7.5.2 Future searches of gravitational-wave echoes
Efforts were made to model gravitational-wave echoes emitted from exotic com-
pact objects more accurately, for example Refs. [123, 124, 149, 126, 127]. In
the future, our search for gravitational-wave echoes will switch to use (perhaps
multiple) more physically-motivated waveform models of echoes to provide more
robust evidence of the existence (or the non-existent) of gravitational-wave echoes
and hence exotic compact objects.

7.6 Conclusion
Using the template-based Bayesian model selection approach described in Ref.
[139], we find no statistically significant of gravitational-wave echoes in the data
near the ten BBH events reported in the GWTC-1 catalog [9]. In particular, the
most significant GW event in this echo search, GW151012, only has a significance
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of 1.4𝜎, with most of the GW events having significance < 1𝜎 in the echo search.
We also find < 1𝜎 combined evidence for the existence of gravitational-wave
echoes in O1 and O2 data, respectively. With a null detection, we are able to
place an upper limit of the 90% Bayesian credible interval on the event rate rate
density of echoes, which is found to be 48 Gpc−3yr−1. For the most significant
event in this echo search, GW151012, if we assume that the remnant of the
merger is truly an echo-emitting exotic compact object, and the time lag between
each successive echo is within 0.05 (s) < Δ𝑡echo < 0.5 (s), then the amplitude
parameter 𝐴 of the echoes must be 𝐴 < 0.7. Alternatively, if we instead assume
that the amplitude parameter is 𝐴 > 0.7, then we can constrain the compactness
in terms of the proper distance Δ between the ECO surface and the would-be
event horizon to be Δ/𝑙𝑝 ≲ 10−22 if Δ𝑡echo, true > 0.50 (s) or Δ/𝑙𝑝 ≳ 1034 if
Δ𝑡echo, true < 0.05 (s), where 𝑙𝑝 is the Planck length. Readers should be aware of
the systematics of these results due to inaccurate waveform model used in this
search, and we expect the effects of waveform uncertainties will become less
significant when more accurate waveform models of gravitational-wave echoes
are available.
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7.7 Appendix: Starting frequency, segment length and number of echoes
in a template adopted in the search

Event Starting
Frequency

(Hz)

Segment
Length (s)

Number of
echoes in a
template

GW150914 20 8 3
GW151012 20 8 3
GW151226 20 16 10
GW170104 20 8 3
GW170608 30 8 3
GW170729 20 8 3
GW170809 20 8 3
GW170814 20 8 3
GW170818 16 8 3
GW170823 20 8 3

Table 7.4: Starting frequency, segment length and number of echoes in a template
adopted in the search for each event. Notice that nominally the segment length
we adopted is 8 s and the number of echoes in a template is fixed to be 3, except
for GW151226 where it is a relatively low mass event, implying that the GW
signal spends more time in the detector’s sensitive frequency band. As a result,
we increase the segment length to 16 s and we put 10 echoes in templates used
in GW151226.

7.8 Appendix: Derivation for upper limit of 90% Bayesian credible inter-
val on event rate density

Assume that the number of gravitational-wave echoes events follows a Poisson
distribution, namely the likelihood function L of observing 𝑘 events in a time
interval 𝑇obs is given by

L(𝑘 |𝑁̄) = 𝑁̄ 𝑘𝑒−𝑁̄

𝑘!
, (7.18)

where 𝑁̄ is the mean number of events observed in the time interval. With a
null detection (i.e., observing 0 event), and assuming a uniform prior on the
mean number of events, the posterior probability on the mean number of events
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observed is simply

𝑝(𝑁̄ |𝑘 = 0) = L(𝑘 = 0|𝑁̄) = 𝑒−𝑁̄ . (7.19)

Hence, the 90% Bayesian credible interval on 𝑁̄ is given by
(
0, 𝑁̄90%

)
, where

𝑁̄90% is the upper limit given by solving the equation∫ 𝑁̄90%

0
𝑒−𝑁̄𝑑𝑁̄ = 0.9, (7.20)

and we get
𝑁̄90% = − ln(1 − 0.9) = − ln(0.1). (7.21)

The upper limit of event rate density is then simply given by

𝑅90% =
𝑁̄90%

⟨𝑉𝑇⟩Echoes
Sensitive

=
− ln(0.1)
⟨𝑉𝑇⟩Echoes

Sensitive
. (7.22)

7.9 Appendix: Derivation for average sensitive spacetime volume for gravitational-
wave echoes

In order to estimate the rate density of gravitational-wave echoes, we first need
to have an idea on how much spacetime volume our search is able to probe, in
terms of the sensitive spacetime volume ⟨𝑉𝑇⟩, which is defined as

⟨𝑉𝑇⟩ = 𝑇obs

∫
𝑑𝑧𝑑 ®𝜃 𝑝( ®𝜃 |𝑀)𝑝det(𝑧 | ®𝜃)

𝑑𝑉𝑐

𝑑𝑧
, (7.23)

where 𝑇obs is the total observing time, ®𝜃 is a set of parameters describing the
gravitational-wave echoes, 𝑑𝑉𝑐 is the differential co-moving volume element
between a redshift of 𝑧 and 𝑧 + 𝑑𝑧, 𝑝( ®𝜃 |𝑀) is the probability distribution of ®𝜃
given an astrophysical model 𝑀 , and 𝑝det(𝑧 | ®𝜃) is the detection probability that
a search is able to see a signal with parameters ®𝜃 at a redshift of 𝑧, respectively.
The set of parameters ®𝜃 can be decomposed into two parts: parameters related
to BBH system ®𝜃 BBH and parameters related to echoes ®𝜃 Echoes. Since we do
not know about the astrophysical distribution of echo-related parameters, it is
a simplifying assumption to assume a uniform probability distribution for these
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parameters independent of the BBH parameters. Therefore, we can write the
probability distribution 𝑝( ®𝜃 |𝑀) as

𝑝( ®𝜃 |𝑀) = 𝑝( ®𝜃 BBH |𝑀)𝑝( ®𝜃 Echoes |𝑀). (7.24)

If we make a further assumption that the detection probability 𝑝det(𝑧 | ®𝜃) can be
factorized into two parts, namely

𝑝det(𝑧 | ®𝜃) = 𝑝det(𝑧 | ®𝜃 BBH)𝑝det(𝑧 | ®𝜃 Echoes), (7.25)

which makes sense because we only perform the echoes search on detected
gravitational-wave events. With all the simplifying assumptions, we can write
the sensitive spacetime volume as

⟨𝑉𝑇⟩Echoes
Sensitive = ⟨𝑉𝑇⟩ = 𝑇obs∫

𝑑𝑧𝑑 ®𝜃 BBH𝑑 ®𝜃 Echoes 𝑝( ®𝜃 BBH |𝑀)𝑝( ®𝜃 Echoes |𝑀)𝑝det(𝑧 | ®𝜃 BBH)𝑝det(𝑧 | ®𝜃 Echoes) 𝑑𝑉𝑐
𝑑𝑧
,

(7.26)

where we denote the sensitive spacetime volume for BBH as

⟨𝑉𝑇⟩BBH
Sensitive = 𝑇obs

∫
𝑑𝑧𝑑 ®𝜃 BBH 𝑝( ®𝜃 BBH |𝑀)𝑝det(𝑧 | ®𝜃 BBH) 𝑑𝑉𝑐

𝑑𝑧
, (7.27)

and the estimated value for ⟨𝑉𝑇⟩BBH
Sensitive is reported in Refs. [9, 13]. Therefore,

Eq. 7.26 can be written as

⟨𝑉𝑇⟩Echoes
Sensitive = ⟨𝑉𝑇⟩

BBH
Sensitive ×

∫
𝑑 ®𝜃 Echoes𝑝( ®𝜃 Echoes |𝑀)𝑝det(𝑧 | ®𝜃 Echoes). (7.28)

The detection probability for echoes 𝑝det(𝑧 | ®𝜃 Echoes) can be modeled as an indi-
cator function of the detection statistic lnB that

𝑝det(𝑧 | ®𝜃 Echoes) =


1 if lnB( ®𝜃) ≥ lnBthreshold,

0 otherwise
. (7.29)
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With this, we recognize that the second factor in Eq. 7.28 is∫
𝑑 ®𝜃 Echoes𝑝( ®𝜃 Echoes |𝑀)𝑝det(𝑧 | ®𝜃 Echoes) = 𝑉detectable echoes

𝑉all echoes
≈ 𝑁recovered
𝑁injected

,

(7.30)
where 𝑉all echoes and 𝑉detectable echoes are the volume of the (five dimensional) pa-
rameter space for all echoes and detectable echoes, respectively, and𝑁recovered/𝑁injected

is the fraction of injections recovered by the search pipeline in an injection
campiagn. Hence we arrived at Eq. 7.11 that

⟨𝑉𝑇⟩Echoes
Sensitive ≈

𝑁recovered
𝑁injected

⟨𝑉𝑇⟩BBH
Sensitive.
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C h a p t e r 8

SEARCHING FOR GRAVITATIONAL-WAVE ECHOES IN
BINARY BLACK HOLE EVENTS FROM THE GWTC-2

CATALOG USING TEMPLATE-BASED BAYESIAN MODEL
SELECTION APPROACH

This chapter contains work from

LIGO Scientific, Virgo Collaboration. “Tests of general relativity with
binary black holes from the second LIGO-Virgo gravitational-wave tran-
sient catalog”. In: Phys. Rev. D 103.12 (2021), p. 122002. doi: 10.1103/
PhysRevD.103.122002. arXiv: 2010.14529 [gr-qc].
R. K. L. L performed the analyses featured in this paper that search
for echoes from binary black hole events in the second LIGO-Virgo
gravitational-wave transient catalog. R. K. L. L was the internal edi-
tor/writer for the remnant properties section of the paper.

8.1 Introduction
It is hypothesized that there may be compact objects having a light ring and a
reflective surface located between the light ring and the would-be event horizon.
These compact objects are referred to as exotic compact objects (ECOs), for
example gravastars [150] and fuzzballs [151, 152]. When an ECO is formed as
the remnant of a compact binary coalescence, a train of repeating pulses known as
gravitational-wave (GW) echoes are emitted from the ECO in the late postmerger
stage in addition to the usual ringdown we expect from black holes (BHs). The
effective potential barrier and the reflective surface act like a cavity trapping the
GWs. Unlike BHs, which have a purely in-going boundary condition at the event
horizon, the GWs trapped in the cavity will be reflected back and forth between
the potential barrier and the surface, emitting pulses of waves towards infinity
when some of the waves are transmitted through the potential barrier and escape

https://doi.org/10.1103/PhysRevD.103.122002
https://doi.org/10.1103/PhysRevD.103.122002
https://arxiv.org/abs/2010.14529
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[153, 154, 155, 156, 157, 140]. Detecting these GW echoes would be clear
evidence of the existence of these proposed ECOs [105, 106, 110], though there
are still no full and viable models of ECOs that produce echoes [158, 159, 146,
140, 160].

8.2 Search methods
We employ a template-based approach (in Chapter 6; or see Ref. [139]) that
uses the model proposed in Ref. [107] to search for GW echoes. The waveform
model takes the ringdown part of an IMR waveform and repeats the modulated
ringdown waveform according to five additional echo parameters which control
the relative amplitude of the echoes, the damping factor between each echo, the
start time of ringdown, the time of the first echo with respect to the merger,
and the time delay between each echo. We adopt a uniform prior for each of
the echo parameters. We used IMRPhenomPv2 [161] as the inspiral-merger-
ringdown (IMR) waveform approximant for all the events we analyzed except for
GW190521 where NRSur7dq4 [93] was used instead. The pipeline computes
the log Bayes factor log10 BIMRE

IMR of the data being describable by an inspiral-
merger-ringdown-echo (IMRE) waveform versus an IMR waveform, and uses it
as the detection statistic to identify the existence of echoes in the data.

8.3 Search results
We analyze 31 binary black hole (BBH) signals from GWTC-2 passing our false-
alarm rate (FAR) threshold (of < 10−3 per year; see Ref. [21]) and report the
search results of GW echoes in Table 8.1.1 No statistically significant evidence
of echoes was found in the data; it was reported in [139] that for detector noise
fluctuations typical for the first observing run (O1), a detection threshold for
log10 BIMRE

IMR was found to be roughly 2.48 by empirically constructing the back-
ground distribution of the Bayes factor if we require the false-alarm probability
to be ≲ 3 × 10−7. The event GW190915_235702 has the highest log10 BIMRE

IMR of
1We do not analyze GW190814 because the long data segment and high sampling rate it

requires makes the analysis prohibitively expensive.
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Table 8.1: Results of search for GW echoes. A positive value of the log
Bayes factor log10 BIMRE

IMR indicates a preference for the IMRE model over the
IMR model, while a negative value of the log Bayes factor suggests instead a
preference for the IMR model over the IMRE model.

Event log10 BIMRE
IMR Event log10 BIMRE

IMR

GW150914 −0.57 GW170809 −0.22
GW151226 −0.08 GW170814 −0.49
GW170104 −0.53 GW170818 −0.62
GW170608 −0.44 GW170823 −0.34

GW190408_181802 −0.93 GW190706_222641 −0.10
GW190412 −1.30 GW190707_093326 0.08
GW190421_213856 −0.11 GW190708_232457 −0.87
GW190503_185404 −0.36 GW190720_000836 −0.45
GW190512_180714 −0.56 GW190727_060333 0.01
GW190513_205428 −0.03 GW190728_064510 0.01
GW190517_055101 0.16 GW190828_063405 0.10
GW190519_153544 −0.10 GW190828_065509 −0.01
GW190521 −1.82 GW190910_112807 −0.22
GW190521_074359 −0.72 GW190915_235702 0.17
GW190602_175927 0.13 GW190924_021846 −0.03
GW190630_185205 0.08

merely 0.17, which indicates negligible support for the presence of GW echoes
in the data. While we did not present the Bayes factor for GW151012 and
GW170729 here as their corresponding FARs are above the threshold, the results
are consistent with no significant evidence of echoes being found in the data.
The null results for O1 and the second observing run (O2) events are consistent
with what was reported in [108, 111, 139, 114, 141, 162]. The posterior dis-
tributions of the extra echo parameters mostly recover their corresponding prior
distributions, consistent with the fact that we did not detect any echoes in the
data.
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8.4 Conclusion
While we did not explicitly construct a background distribution for the log Bayes
factors log10 BIMRE

IMR using data from GWTC-2 to compute the exact 𝑝-values
for their statistical significance, it suffices to conclude from the fact that the
highest Bayes factor reported here is merely about 1.5 that there was no statistical
significant evidence of GW echoes in the postmerger part of the data of the BBH
signals reported in GWTC-2.

Even with a null search result for GW echoes as reported here, we can still place
limits on properties of the would-be ECOs. For instance, placing a limit on the
location of the reflective surface of the ECO as the remnant of a specific GW
event, or collectively placing an upper limit on the event rate of the production
of an ECO remnant from compact binary coalescence, from the fact that we did
not observe echoes in data that are present but are simply too weak to be found.
We leave these for future follow-ups.
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C h a p t e r 9

CONCLUDING REMARKS OF PART I

In Part I of the thesis, we first showed the recipes of using the GSN formalism to
compute radiation of scalar, electromagnetic and gravitational type from a Kerr
BH for the vacuum case in Chapter 4. In particular, this is the first time where the
necessary GSN transformations were explicitly shown for the physically relevant
cases with spin weight 𝑠 = 0,±1,±2 in literature. Together with the higher-order
corrections to the asymptotic solutions to the GSN equation being constructed
for all those cases, the GSN formalism was revamped as an efficient approach
to perform numerical work in BHPT. An implementation of the GSN formalism
written in julia, GeneralizedSasakiNakamura.jl, is also presented. An
important and obvious future work would be to extend the GSN formalism to
work also for the non-vacuum/sourced case. Indeed, the work to extend the
gravitational case (i.e., 𝑠 = ±2) is in progress.

Then in Chapter 5, we presented our prescription to compute waveforms of the
speculated GW echoes using BHPT since we model an ECO as a modified Kerr
BH. Specifically, we computed some example echo waveforms with two models,
the Lorentzian reflectivity model and the Boltzmann reflectivity model, where
these models give us the response of the surface of an ECO to an incident GW. A
caveat to this work is the misuse of the Teukolsky-Starobinsky identities where
the ingoing 𝜓0 solution was obtained by converting the ingoing 𝜓4 solution near
the ECO surface. However these identities were not true in the non-vacuum case,
which is exactly the scenario where we applied those identities. An improvement
to this work would be to directly compute the ingoing 𝜓0 solution sourced by
a plunging test particle, which is actually one of the motivations leading to the
work in presented Chapter 4.

In addition, in Chapter 5, we performed a study on the detectability of GW
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echoes with current and future generation GW detectors and found that it is not
likely for us to detect GW echoes with current-generation detectors because the
predicted echoes are simply too weak and our current GW detectors are not
sensitive enough. That being said, this will not deter us from trying to look
for these echoes in our data. In fact, in Chapter 6, we described a Bayesian
model selection approach to do just that. Furthermore in Chapter 7, it was used
to search for GW echoes in the O1 and O2 data. While we did not find any
statistically significant evidence supporting the presence of GW echoes in the
data, we showcased what limits we can place with null search results, namely an
upper limit on the ECO formation rate density as a remnant of BBH mergers and
a bound on the compactness of a BBH merger remnant. Next, in Chapter 8 we
extended the analysis to the O3a data. In the future, we plan to extend the echo
analysis to the O3b data as well, and possibly using an improved echo waveform
model from Chapter 4 and Chapter 5.
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C h a p t e r 10

OVERVIEW OF PART II

In the second part of the thesis, let us focus on another exotic phenomenon
of gravitational waves (GWs), though arguably less speculative than what was
covered in Part I, namely the strong gravitational lensing (SL) of GWs.

With GWs, it is often said that they travel through the Universe unimpeded,
whereas electromagnetic (EM) waves are often obscured by their interactions with
intervening matter and thus are not as good as GWs in giving us cleaner signals
from their emitters. Actually, GWs are still subject to gravitational interactions
as they propagate. For instance, when the deflection due to the gravitational
potential from an intervening astronomical object such as a galaxy is significant
enough, multiple rays of the same GW can now arrive at our detectors, to be seen
as separate arrivals of GWs at different times. This is the same phenomenon,
referred to as SL, in the EM spectrum that gives rise to the spectacular arcs seen
on deep-field images from the Hubble Space Telescope (HST) [163] and more
recently the James Webb Space Telescope (JWST) [164].

While it is commonplace to observe SL of distant objects in the EM world,
the same cannot be said of GW. The fundamental reason is in the difference of
the nature of sources and datasets: typically for EM, strongly-lensed persistent
objects can be identified using images (from flux data) with long exposure times
manifested as multiple spatially-resolved copies of the same source. As for GW,
it is more likely to observe transient events such as mergers of compact objects
as temporal data of GW strain with much poorer source localization capability
[27]. It is only a matter of time, however, for a binary merger to be sufficiently
aligned with a massive foreground object such as a galaxy, to produce multiple
GW signals from the same merger. It is up to us the observers to confidently
identify these strongly-lensed GWs from a vast dataset.
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If confirmed, the potential scientific impacts are plentiful. For example, these
lensed GW signals can be used for testing extra GW polarization modes since we
would have multiple observations of the same source at different times, effectively
increasing the number of virtual detectors without having to physically build more
detectors. Given the cost of constructing and running a GW interferometer, it
is far more cost-effective to invest in using strongly-lensed GW to disentangle
the six GW polarization modes that are generally allowed in a metric theory of
gravity. To fully disentangle the contents of those six polarization modes from
a GW signal without using SL, six GW interferometers will have to be built,
which is unlikely given the amount of funding it needs.1 While the detection of
non-tensorial polarizations is enough to show the inadequacy of general relativity
(GR) since it only allows for the tensorial modes, measuring also the contents of
those non-tensorial modes allows us to put constraints on and learn much more
about alternative theories of gravity in the strong-field regime.

Strongly-lensed GWs can also be used in cosmography such as determining the
Hubble constant 𝐻0 with time-delay cosmography [165] or as non-conventional
“bright sirens”. This is particularly appealing because with EM lensing only, in
order to perform time-delay cosmography a time-varying source (that is also EM-
bright such as a supernova) and its constant monitoring are needed to measure
the time delays between lensed images where the precision of such measurement
depends on the cadence of the observations. With GW+EM lensing, the lensed
source itself does not have to be EM-bright (such as a binary black hole (BBH)
system) as long as we can identify/associate and observe its host galaxy electro-
magnetically. We can use the superb temporal resolution of GW interferometers
to accurately measure the time delays, and use the EM observations to obtain
the lens and source redshift measurements. In addition, since GW interferom-

1Technically speaking, for GW interferometers, the detector responses for the two “scalar”
polarization modes, namely the breathing and the longitudinal modes, are identical. Therefore
we only “need” five detectors since we can at best disentangle five out of the six allowed but
the argument on the plausibility of securing enough funding to build and run five detectors still
holds.
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eters measure amplitudes and not intensities, phasing effects from lensing can
be used to break some degeneracies. For example, it is possible to break the
notorious mass-sheet degeneracy with GW observations [166]. Therefore, com-
bining both EM and GW lensing observations will lead to a much more accurate
determination of 𝐻0.

All these science cases are contingent on the successful identification of strongly-
lensed GWs. In Chapter 11, I will describe a Bayesian statistical framework that
allows us to differentiate strongly-lensed GWs of the same source from a set of
GW events that are coming from different sources by comparing coherence among
the signals. The framework is capable of incorporating astrophysical population
information on GW sources and gravitational lenses while taking selection effects
into account in a statistically consistent manner. The framework also allows us to
infer the properties of a lensed source that are free from shifts/biases introduced
when one did not take lensing into consideration. The framework is the basis of a
python-based code hanabi that was employed in searching for strongly-lensed
GW signals among the detected BBHs in the first half of the third observing run
(O3a) as described in Chapter 12 and in the second half of the third observing
run (O3b) as described in Chapter 13, respectively. In particular in Chapter 14, I
will demonstrate the capability of the framework further and briefly describe SL
analyses on two pairs of BBHs found in O3b in which the analyses incorporated
the astrophysical information on galaxy-scale lenses from a simulated catalog
of strongly-lensed images. The full manuscript describing the details of both
the statistical analysis and the simulation is under preparation as of this writing
[167].

To establish more confidence in the discovery of a strongly-lensed GW-emitting
source, one possible avenue is to find all (and not just two) lensed signals/images2
of the same source and by the same foreground lens. This is because more
realistic models of gravitational lenses usually predict more than two images

2The term lensed signals and lensed images will be used interchangeably throughout the
thesis.
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being formed. Among those images, some would be magnified while some
could be de-magnified compared to the un-lensed signal. This implies that
some of the de-magnified signals could become quieter than the background due
to instrumentation noise (referred to as being sub-threshold signals) and thus
potentially be missed by conventional searches for GW signals. In Ref. [168],
we presented an approach to perform targeted searches of sub-threshold images
of strongly-lensed GW signals. In fact, one of the BBH pairs being analyzed
in Chapter 14 was found by a targeted sub-threshold search. Finding all lensed
images of the same system that could otherwise be buried in the noise floor not
only gives us more confidence the identification of strong lensing, but it also
permits us to extract more information, such as more time-delay measurements,
regarding both the lensed source and the lens responsible, thus leading to better
constraints on their properties and applications to cosmography and tests of GR.

However, as the number of detected GW signals 𝑁GW increases with longer total
observation time, the number of possible strongly-lensed event pairs that we need
to consider grows like 𝑁GW(𝑁GW − 1)/2. Of these many candidate pairs, it is
likely that only one (to a few) of them are truly lensed. In the idealistic world
of unlimited computational resources, in order not to miss the golden pairs, we
could have run our best and most complete lensing analyses to each and every
possible pair. This approach is clearly impractical. Therefore we need better
strategies to both reduce the number of pairs we need to follow up with the full
analyses.

In Ref. [169], a work that I conceived and co-mentored two undergraduate
students to perform, we demonstrated the use of overlapping sky localization
probability maps (skymaps) to filter out pairs that are not lensed as their skymaps
should not overlap, and how it could help reduce the number of candidate pairs
for subsequent analyses efficiently and rapidly. Alternatively, one can consider
the overlap of waveform phases (after accounting for a time shift and a frequency-
independent phase shift from lensing) at each detector since GW interferometers
best measure phases, and therefore this method has the potential of outperforming
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the skymap overlap approach. As of this writing, the manuscript on this new
method is under preparation [170].

For future-generation GW detectors (such as LIGO Voyager, Cosmic Explorer
(CE) and Einstein Telescope (ET)) that can observe sources much further away
compared to the current-generation detectors, the probability of GW signals com-
ing from those sources being strongly-lensed will be substantial (see Fig. 11.3 in
Chapter 11). Thanks to their much improved sensitivity, those future-generation
GW detectors might allow us to detect unique waveform signature coming from
strong lensing and thus give us smoking-gun evidence of lensing [171]. In Chap-
ter 15, I will conclude Part II of my thesis with prospects of SL of GWs in the
near term with current-generation detectors and with planned detectors in a more
distant future.
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C h a p t e r 11

BAYESIAN STATISTICAL FRAMEWORK FOR
IDENTIFYING STRONGLY LENSED
GRAVITATIONAL-WAVE SIGNALS

This chapter contains work from

R. K. L. Lo and I. Magana Hernandez. “Bayesian statistical framework
for identifying strongly lensed gravitational-wave signals”. In: Phys. Rev.
D 107.12 (2023), p. 123015. doi: 10.1103/PhysRevD.107.123015.
arXiv: 2104.09339 [gr-qc].
R. K. L. L conceived the project, wrote a python implementation of
the framework (i.e., hanabi), performed the analyses and wrote the
manuscript.

11.1 Introduction
As gravitational waves propagate through the Universe to the Earth, they can be
deflected, or lensed, by intervening matters such as galaxies or galaxy clusters
acting as gravitational lenses, just like electromagnetic waves. For visible light
coming from a distant background source, in the case of strong lensing where
the deflection is sufficiently large, multiple images of the source will be formed
that are close to each other, typically separated by only several arcseconds and
distorted compared to the unlensed image [172]. For transients, the time variation
of the images are correlated and delayed, where the time delays range from days
to months [172]. For transient gravitational-wave (GW) signals, such as those
emitted from coalescences of compact binary systems, multiple images refer to
multiple GW triggers registered at different times by GW detectors.1 For an in-
depth review on strong lensing of explosive transients across the electromagnetic
(EM) and the GW spectra, see for example Ref. [173].

1We use the term image and signal interchangeably.

https://doi.org/10.1103/PhysRevD.107.123015
https://arxiv.org/abs/2104.09339
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To investigate the effects of strong lensing on a GW signal, we first briefly
describe how the observed GW strain ℎ(𝑡) depends on some parameters θ when
the signal is not affected by strong lensing.2 The GW strain observed by a
laser-interferometric GW detector is given by

ℎ(𝑡 − 𝑡c;θ) = 1
𝑑L(𝑧)

∑︁
pol=+,×

𝐹pol(𝛼, 𝛿, 𝜓; 𝑡c)ℎpol(𝑡 − 𝑡c;θ), (11.1)

where the detected GW strain is a projection along the arms of the detector
where the response of the detector to the two polarization states of the GW is
defined by the detector’s beam pattern functions 𝐹+,×(𝛼, 𝛿, 𝜓), where 𝛼 is the
right ascension, 𝛿 is the declination, and 𝜓 is the polarization angle of the source,
respectively.3 The luminosity distance to the source 𝑑L(𝑧) is a function of the
redshift 𝑧 and depends explicitly on the cosmology. The time and phase at
coalescence of the signal are denoted by 𝑡c and 𝜙c, respectively. The waveform
of the two polarization states ℎ+ and ℎ× can be compactly written as

ℎ+(𝑡;θ) − 𝑖ℎ×(𝑡;θ) =
∞∑︁
ℓ=2

ℓ∑︁
𝑚=−ℓ

ℎℓ𝑚 (𝑡; 𝜗) −2𝑌ℓ𝑚 (𝜄, 𝜙𝑜) , (11.2)

where ℎℓ𝑚 depends on some intrinsic parameters 𝜗 and the source redshift 𝑧 only,
and −2𝑌ℓ𝑚 (𝜄, 𝜙𝑜) is the spin-weighted spherical harmonic that depends on the
polar angle 𝜄 and the azimuthal angle 𝜙𝑜 in the source frame.4,

5

For the case of GWs from quasicircular binary black hole (BBH) mergers, the
set of intrinsic parameters 𝜗 = {Mc, 𝑞,χ1,χ2} whereMc ≡ (𝑚1𝑚2)3/5/(𝑚1 +

2Here we use θ as a placeholder to denote any generic set of parameters, which can consist
of different parameters in different contexts.

3Note that the beam pattern functions 𝐹+,× are usually calculated in a frame where the
detector is situated at the origin, where the angles 𝛼 and 𝛿 are celestial coordinates. Therefore,
the beam pattern functions depend implicitly on the time of the event as well.

4For nonprecessing binary systems, the angle 𝜄 is also known as the inclination angle, the
angle between the line of sight and the orbital angular momentum vector, which is by convention
chosen to be along the 𝑧-axis of the source frame. For generic precessing binary systems, the
inclination angle changes over time as the orbital angular momentum vector precesses around the
total angular momentum vector.

5Note that the phase at coalescence 𝜙c does not enter Eq. (11.2) explicitly but through the
time-varying azimuthal angle 𝜙𝑜, with 𝜙c as the reference phase.
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𝑚2)1/5 is the chirp mass of the binary, 𝑞 ≡ 𝑚2/𝑚1 ≤ 1 is its mass ratio, both
in terms of the binary component masses 𝑚1 ≥ 𝑚2. The vectors χ1, χ2 are
the dimensionless spin vectors for the binary components. Note that this is
just one particular parametrization, and other ways of specifying the intrinsic
parameters are also possible; for example, using the total mass of the binary
𝑀tot ≡ 𝑚1 + 𝑚2 instead of the chirp massMc. To account for the effect of an
expanding universe, one can do so by simply replacing the (source-frame) masses
𝑚src
𝑖

with the (detector-frame) redshifted masses 𝑚det
𝑖

= (1 + 𝑧)𝑚src
𝑖

. Similarly,
we define the redshifted chirp mass asMdet

c = (1 + 𝑧)Msrc
c , while the mass ratio

remains unchanged. It should be noted that Eqs. (11.1) and (11.2) hold true
regardless of the type of the GW transient source under consideration, and in
general the set of intrinsic parameters 𝜗 will differ for each kind of source.

Working in the geometric optics limit where the wavelength is much shorter than
the lens length scale, for a majority of the time, strongly lensed GW signals
from a binary system will have the same morphology with different amplitudes
(corresponding to different magnifications) and arrive at different times. A given
image has an absolute magnification 𝜇 which can be defined in terms of the true
luminosity distance to the source 𝑑src

L and the apparent luminosity distance 𝑑L as

𝑑
(𝑖)
L =

𝑑src
L√︁
𝜇(𝑖)

, (11.3)

where the bracketed superscript indexes the images. The lensed images arrive at
the (center of the) Earth at different times because of the geometrical time delay,
as they follow different null trajectories, and the time delay due the gravitational
potential. We define the relative time delay Δ𝑡 between two images as Δ𝑡 ≡
𝑡
(2)
c − 𝑡 (1)c , where 𝑡c is the GW arrival (trigger) time for each image. Here we

assume that the time delay Δ𝑡 is large enough so that the lensed images will not
overlap with each other and that we can identify them as separate triggers. We
refer to the image that arrives first as the first image, and vice versa, such that
Δ𝑡 > 0. We can also define the relative magnification 𝜇rel, which is simply the
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ratio of the two absolute magnifications as

𝜇rel ≡
𝜇(2)

𝜇(1)
. (11.4)

The strong lensing of GW can also induce nontrivial effects on the GW waveform
other than a change in the amplitude of the signal and a simple shift in time. In
general, the lensed waveform ℎ̃Lensed

pol ( 𝑓 ) is related to the unlensed waveform
ℎ̃Unlensed

pol ( 𝑓 ) by a frequency-dependent amplification factor 𝐹 ( 𝑓 ) as [172, 174]

ℎ̃Lensed
pol ( 𝑓 ) = 𝐹 ( 𝑓 ) ℎ̃Unlensed

pol ( 𝑓 ), (11.5)

for 𝑓 > 0. The negative frequency components can be obtained via the reality
condition ℎ̃pol(− 𝑓 ) = ℎ̃∗pol( 𝑓 ). In the geometric optics limit, the amplification
factor is given by [172, 174]

𝐹 ( 𝑓 ) =
∑︁
𝑗

√︃
𝜇( 𝑗) exp(2𝜋𝑖 𝑓Δ𝑡 ( 𝑗) − 𝑖𝑛( 𝑗)𝜋/2), (11.6)

for 𝑓 > 0 and 𝑛( 𝑗) ∈ {0, 1, 2} is known as the Morse index of the 𝑗 th image
[172].6 The factor √𝜇 causes the apparent luminosity distance to differ from
the luminosity distance of the source, and the phase factor exp(2𝜋𝑖 𝑓Δ𝑡) causes
the aforementioned time delay. The frequency-independent phase shift from
exp(−𝑖𝑛𝜋/2) is degenerate with a shift in the phase at coalescence when we con-
sider GW signals from nonprecessing binaries with contributions only from the
quadrupole ℓ = |𝑚 | = 2 modes [175, 176]. When the geometric optics approxi-
mation breaks down and the full wave optics treatment is needed, the expression
for the amplification factor can be much more complicated than Eq. (11.6), and
encodes more information about the gravitational lens [172, 174].

Previous works have shown that the detection rate for lensed GWs could be,
optimistically, 5+5−3 yr−1 [177] for Advanced LIGO [1] and Advanced Virgo [2]

6Unlike Ref. [175], we did not include the sgn( 𝑓 ) factor explicitly in Eq. (11.6). This is
because by imposing the reality condition on ℎ̃pol ( 𝑓 ) to obtain the negative frequency components,
adding an additional sgn( 𝑓 ) will have no effect to the final expression for the waveform.
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operating at their design sensitivities, while others predicted more pessimistic
rates, ranging from 0.58 yr−1 [178] to 1.20 yr−1 [179] depending on the source
population model assumed. The detection rate for lensed GWs can also be con-
strained from the detection, and more surprisingly the nondetection, of stochas-
tic gravitational-wave background from individually unresolvable binaries [180,
181]. Searches on the first observing run (O1) and the second observing run (O2)
data for strongly lensed GW signals were performed [182, 183, 184], and it was
concluded that there is no significant evidence that any of the eleven detected GW
events during O1 and O2 are lensed, while Ref. [185] suggests that GW170809
and GW170814 could be lensed images of each other due to the similarity of the
waveforms for these two events.

It is also possible that strongly lensed GW signals from distant sources are
absolutely de-magnified (𝜇 < 1), or relatively demagnified (𝜇rel < 1) such that
when found by matched-filtering search pipelines (such as GstLAL [186, 187]
and PyCBC [188]) they appeared to be subthreshold triggers, not statistically
significant enough to claim detections. If a lensed image is loud enough to
be detected individually, then targeted matched-filtering based searches can be
performed for each detected GW event and search deeper for its potentially
subthreshold lensed image counterparts [168, 189, 183].

An overarching approach in searches for lensed GW signals is the use of Bayesian
statistics [190, 182, 189, 184, 183], where a statistic, either called a “Bayes fac-
tor” in the usual context of Bayesian hypothesis testing or a ranking score, is
calculated. In this paper, we present a Bayesian statistical framework for iden-
tifying strongly lensed GW signals that utilizes hierarchical Bayesian modeling.
By modeling the data generation processes when the observed GW signals are
lensed and not lensed, respectively, we develop a framework that allows us to
compute a Bayes factor, and hence a posterior odds, that incorporates astrophys-
ical information directly and accounts for selection effects. We argue that in
order to interpret the Bayes factor properly as a ratio of normalized probability
densities of the observed data, selection effects cannot be ignored and must be
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accounted for in order to normalize the probability densities. The ability to di-
rectly incorporate astrophysical information, both on the GW sources as well as
the gravitational lenses, serves to better bridge the astrophysical modeling com-
munity and the GW data analysis community. In addition, we argue that whether
a GW signal is interpreted as lensed or not depends also on the astrophysical
models assumed, making the prior astrophysical information an indispensable
ingredient of the analysis.

The paper is structured as follows: Section 11.2 presents the hierarchical Bayesian
framework for identifying strongly lensed GW signals in a general setting, and
the technique to marginalize over the source redshift separately and infer the
true source parameters. In Sec. 11.3 and Sec. 11.4 we apply and showcase the
statistical framework to analyze strongly lensed GW signals from BBH mergers
when we analyze two GW signals jointly and analyze one signal at a time,
respectively. Throughout the paper, we assume a flat ΛCDM cosmology with
𝐻0 = 67.7 km s−1 Mpc−1 and Ωm = 0.307 from the Planck 2015 results [191].

11.2 Statistical framework
In order to differentiate strongly lensed GW signals from GW signals that are
not lensed, we adopt a Bayesian statistical framework where we introduce two
models/hypotheses7 that we want to compare; namely, the lensed hypothesisHL

and the not-lensed hypothesisHNL.8 The framework applies for 𝑁 ≥ 1, where 𝑁
is the number of GW events under consideration, unlike much of previous work
[190, 182, 189, 184, 183]. In the following we will elaborate on what we mean
by the two hypotheses, and model the data generation processes under the two
different hypotheses using hierarchical Bayesian modeling.

7We will use the word model and hypothesis interchangeably throughout the paper.
8The not-lensed hypothesis HNL is often referred as the unlensed hypothesis, denoted by

HU, in literature.
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11.2.1 The not-lensed hypothesisHNL

Suppose we have 𝑁 GW events under consideration, i.e., we have a set of 𝑁 time
series data D = {𝐷 (𝑖)}𝑖=𝑁

𝑖=1 , where the bracketed superscript indexes the events.
The not-lensed hypothesis means that the observed 𝑁 events are 𝑁 independent
realizations of a population distribution of GW source 𝑝src, parametrized by some
parameters λ that control only the shape of the distribution and the total number
of sources 𝑁src in that population.9 Note that we have assumed all 𝑁 of them are
of astrophysical origins. Simply put, the 𝑁 events are just 𝑁 different systems,
with the event-level parameters θ(𝑖) (such as component masses and spins) de-
scribing the 𝑖th event being randomly drawn from a source population distribution
𝑝src(θ |λ), where λ might be for example the maximum mass of a black hole in
that population. These 𝑁 signals will have different source redshifts 𝑧 drawn from
the distribution 𝑝𝑧 (𝑧(𝑖) |R), where R = R(𝑧) is the merger rate density that can be
a function of the source redshift 𝑧, and with different extrinsic parameters such
as the sky location drawn from the distribution 𝑝ext. A concise way of expressing
this is that θ(𝑖) ∼ 𝑝pop(θ(𝑖)) where 𝑝pop = 𝑝src(θ(𝑖) |λ)𝑝𝑧 (𝑧(𝑖) |R,HNL)𝑝ext is
the population-informed prior distribution under the not-lensed hypothesis. The
event-level parameters θ(𝑖) then in turn “generate” the data 𝐷 (𝑖) that we observed
for the 𝑖th event. Figure 11.1 shows a graphical representation of this data gener-
ation process. Although we are not making any inference on the population-level
parameters of GW sources and instead we fix them in our analysis (i.e., choosing
λ and R a priori), we see that the problem of identifying strongly lensed signals
can be naturally framed as a population analysis. Moreover, we can reuse many
of the results from rates and population analyses (for example see Refs. [13,
192]).

9Note that the source population distribution 𝑝src (θ |λ) is normalized such that d𝑁src/dθ =

1/𝑁src 𝑝src (θ |λ). Also, λ are in general redshift-dependent but for simplicity we ignore the
correlations of these parameters with redshift. The framework can be generalized to account for
those correlations.
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Figure 11.1: Data generation process for the 𝑁 observed data under the not-
lensed hypothesis HNL. Each data 𝐷 (𝑖) can be described by the event-level
parameters θ(𝑖) which were drawn from the population-informed prior distri-
bution 𝑝pop = 𝑝src(θ(𝑖) |λ)𝑝𝑧 (𝑧(𝑖) |R,HNL)𝑝ext with λ controlling the shape of
the source population distribution, R being the merger rate density, and 𝑝ext
describing the distribution of the extrinsic parameters except for the redshift.

11.2.2 The lensed hypothesisHL

For the lensed hypothesis, suppose we also have the same 𝑁 events under consid-
eration. However, the lensed hypothesis means that these 𝑁 events are actually
𝑁 strongly-lensed images of the same source. Instead of drawing 𝑁 independent
realizations from the population distribution 𝑝src, now we only have one realiza-
tion of this source population distribution as the images correspond to the same
GW source. In addition to the source population distribution, we will need to
introduce the lens population distribution 𝑝lens, parametrized by some parameters
γ, that describes for example the joint probability distribution of the absolute
magnification of lensed images. Furthermore, we partition the event-level pa-
rameters θ(𝑖) into two disjoint sets: common parameters θ(𝑖)com and independent
parameters θ(𝑖)ind. For the common parameters θ(𝑖)com we expect them to be the
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same across the 𝑁 signals, for example the masses and spins of the source binary
system, as the 𝑁 events correspond to the same source. In addition to the source
parameters, we also expect the redshift 𝑧(𝑖) of each image to be the same as the
source redshift as strong lensing is achromatic, leaving the redshift unchanged.
For extrinsic parameters, we can also assume them to be the same except for the
(apparent) luminosity distance and the time of arrival. While it is true that strong
lensing will deflect a GW signal from its original null trajectory, the typical
deflection angle for gravitational lensing due to a galaxy or a galaxy cluster is
only of the order of arcseconds and arcminutes, respectively [172, 193], which
is much smaller than the typical uncertainty in the source localization of a GW
signal. Therefore, it is valid to assume that the 𝑁 images share the same sky
location. We also expect the difference in the polarization angle 𝜓 to be neg-
ligible [194]. In summary, the common parameters θ(𝑖)com are one random draw
of the distribution 𝑝pop,com = 𝑝src(θ(𝑖)com |λ)𝑝𝑧 (𝑧(𝑖) |R,HL)𝑝ext, where 𝑝pop,com is
the population-informed prior for the common parameters θcom under the lensed
hypothesis.

As for the independent parameters θ(𝑖)ind, we expect them to be different for each
event. For example, the absolute magnification 𝜇 and the arrival time 𝑡c of each
image would be different. Note that the dimension of the event-level parameters
θ under the lensed hypothesis can be different than that under the not-lensed
hypothesis. For example, different lensed images can be classified into three
types where each type of an image will have a different phasing effect to the
lensed waveform [for example see Eq. (11.6)]. The number of lensed images
produced by a gravitational lens can also inform us on the type of lens that
produces the images. Here we do not use this information since it is possible
(and often the case) that we are only analyzing a subset of lensed images coming
from a particular source and lens, either deliberately or simply because we did not
observe all of the lensed images. In short, each image will take different values
for the independent parameters θ(𝑖)ind where each of them is a random realization
of the distribution 𝑝pop,ind = 𝑝lens(θ(𝑖)ind |γ).
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Figure 11.2 shows a graphical representation of this data generation process.
Again one should note that we are not making any inference on the population-
level parameters of the GW sources and lenses. Instead we consider them as
given in our analysis. Next, we will use our knowledge of the data generation
processes under the two hypotheses to construct a statistic that would allow us to
evaluate whether some GW signals are lensed or not.

D(i)

θ
(1)
com

θ
(i)
com

θ
(i)
ind

λ

γ

R

psrc

plens

pz

pext

i ∈ [1, N ]

Figure 11.2: Data generation process for the 𝑁 observed data under the lensed
hypothesis HL. Each data 𝐷 (𝑖) can be described by the event-level param-
eters θ(𝑖) , which are partitioned into two disjoint sets: θ(𝑖)com which are as-
sumed to be the same across the 𝑁 signals and θ(𝑖)ind which can be different
for each signal. Without loss of generality, we assume that θ(𝑖)com = θ(1)com in
the graph. The common parameters θ(1)com are one realization of the distribution
𝑝pop,com = 𝑝src(θ(𝑖)com |λ)𝑝𝑧 (𝑧(𝑖) |R,HL)𝑝ext, while the independent parameters
θ(𝑖)ind for the𝑁 signals are𝑁 realizations of the distribution 𝑝pop,ind = 𝑝lens(θ(𝑖)ind |γ).



197

11.2.3 Model comparison
The standard approach to perform a Bayesian model comparison is to compute
the posterior odds OHL

HNL
, which is defined as10

OHL
HNL

=
𝑝(HL |D,λ,R, γ)
𝑝(HNL |D,λ,R) . (11.7)

Note that for both models we fix the population-level parameters and the merger
rate density, and that they are identical for both the lensed and the not-lensed
hypothesis. Therefore we will not write them out explicitly when there is no
ambiguity. Using Bayes’ theorem, we can easily re-write the posterior odds into
a product of two terms, namely the Bayes factor and the prior odds as

OHL
HNL

=
𝑝(D |HL)
𝑝(D |HNL)︸        ︷︷        ︸

Bayes factor BHL
HNL

× 𝑝(HL)
𝑝(HNL)︸    ︷︷    ︸

Prior odds PHL
HNL

. (11.8)

We first focus on getting an expression for evaluating the Bayes factor BHL
HNL

from
the set of 𝑁 observed data. And later we will discuss the evaluation of the prior
odds PHL

HNL
.

11.2.4 The Bayes factor BHL
HNL

The Bayes factor BHL
HNL

, defined as

BHL
HNL

=
𝑝(D |HL)
𝑝(D |HNL)

, (11.9)

is a ratio of the normalized probability densities of observing the data set D
assuming the two hypotheses under consideration. In Appendix 11.6 we give the
full derivation for the expressions evaluating the normalized probability densities
of observing the data set D under each of the hypotheses. Here we will outline
the derivation. The core idea is to use the graphs that describe the data generation

10We will abuse the notation and use 𝑝 to denote both probability and probability density
when the context is clear.
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processes for the two hypotheses in Figs. 11.1 and 11.2 to write down the desired
expressions for the probability densities, and that the likelihood functions (which
are the probability densities viewed as functions of the event-level parameters)
can be factorized under both the hypotheses.

For the not-lensed hypothesis, since the 𝑁 signals are independent, we have

𝑝(D |HNL) =
𝑁∏
𝑖=1

𝑝(𝐷 (𝑖) |HNL). (11.10)

Combining this with the data generation process described in Fig. 11.1 we have

𝑝(D |HNL) ∝
𝑁∏
𝑖=1

∫
dθ(𝑖) 𝑝(𝐷 (𝑖) |θ(𝑖) ,HNL)𝑝pop(θ(𝑖)), (11.11)

where the expression on the right-hand side is also known as the (unnormalized)
marginal likelihood under the not-lensed hypothesis. Note that we need to make
sure that the probability density 𝑝(𝐷 (𝑖) |HNL) is normalized over all observable11
data, accounting for selection effects [195]. This can be done by evaluating the
proper normalization constant 𝛼, where

𝛼 =

∫
all obs. data

d𝐷 (𝑖) 𝑝(𝐷 (𝑖) |HNL). (11.12)

Therefore the expression for the normalized 𝑝(D |HNL) is given by

𝑝(D |HNL) =
1
𝛼𝑁

𝑁∏
𝑖=1

∫
dθ(𝑖) 𝑝(𝐷 (𝑖) |θ(𝑖) ,HNL)𝑝pop(θ(𝑖)). (11.13)

As for the lensed hypothesis, unfortunately the probability density 𝑝(D |HL)
cannot be factorized like Eq. (11.10). However, the likelihood functions can

11Here the term observable data means that the signals in the data would pass some detection
criteria that one imposes, for example the signals would need to have a signal-to-noise ratio above
some threshold, such that they would be identified as GW events.
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still be factorized if we assume that the noise realizations for the 𝑁 events
are independent and that a signal is deterministic given a set of parameters θ

that describe the waveform. Marginalizing the joint likelihood function with
parameters according to Fig. 11.2, we have

𝑝(D |HL) ∝
∫

dθ(1)com dθ(1)ind · · · dθ
(𝑁)
ind


𝑁∏
𝑗=1

𝑝(𝐷 ( 𝑗) |θ( 𝑗)ind , θ
(1)
com)


× 𝑝pop,ind(θ(1)ind , ..., θ

(𝑁)
ind )𝑝pop,com(θ(1)com),

(11.14)

where the expression on the right-hand side is known as the (unnormalized)
marginal likelihood under the lensed hypothesis. Again, we will need to compute
the normalized probability density 𝑝(D |HL) in order to compute a meaningful
Bayes factor, and take selection effects into account. The proper normalization
constant 𝛽 in this case, is given by

𝛽 ∝
∫

all obs. data set
d𝐷 (1) · · · d𝐷 (𝑁)

∫
dθ(1)com dθ(1)ind · · · dθ

(𝑁)
ind

×

𝑁∏
𝑗=1

𝑝(𝐷 ( 𝑗) |θ( 𝑗)ind , θ
(1)
com)


× 𝑝pop,ind(θ(1)ind , ..., θ

(𝑁)
ind )𝑝pop,com(θ(1)com).

(11.15)

Therefore, the expression for the normalized 𝑝(D |HL) is given by

𝑝(D |HL) =
1
𝛽

∫
dθ(1)com dθ(1)ind · · · dθ

(𝑁)
ind

×

𝑁∏
𝑗=1

𝑝(𝐷 ( 𝑗) |θ( 𝑗)ind , θ
(1)
com)


× 𝑝pop,ind(θ(1)ind , ..., θ

(𝑁)
ind )𝑝pop,com(θ(1)com).

(11.16)
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Finally, we have the expression that we can use to evaluate the Bayes factor for
the lensed hypothesis versus the not-lensed hypothesis, namely

BHL
HNL

=
𝛼(λ,R)𝑁
𝛽(λ,R,γ) ×

{∫
dθ(1)com dθ(1)ind · · · dθ

(𝑁)
ind


𝑁∏
𝑗=1

𝑝(𝐷 ( 𝑗) |θ( 𝑗)ind , θ
(1)
com)


𝑝pop,ind(θ(1)ind , ..., θ

(𝑁)
ind |γ)𝑝pop,com(θ(1)com |λ,R)

}
[
𝑁∏
𝑖=1

∫
dθ(𝑖) 𝑝(𝐷 (𝑖) |θ(𝑖) ,HNL)𝑝pop(θ(𝑖) |λ,R)

]−1

︸                                                               ︷︷                                                               ︸
coherence ratio C

.

(11.17)

One can interpret the boxed expression in Eq. (11.17), which is the ratio of
unnormalized marginal likelihoods under the two hypotheses, as a measurement
of how well the data set D of 𝑁 signals can be jointly fit by a set of common
parameters versus 𝑁 sets of independent parameters, which we call the coherence
ratio C to differentiate it with the Bayes factor. While a negative log-coherence
ratio means that the lensed hypothesis, that is setting some of the parameters
to be the same across events, fails to fit the 𝑁 signals jointly, a positive log
coherence ratio however does not mean that the 𝑁 signals are lensed. This is
the Occam’s razor at play. Assuming that the lensed hypothesis and the not-
lensed hypothesis fit the data set D equally well, the lensed hypothesis will be
favored by the Bayesian model selection framework because it has fewer free
parameters, and hence a smaller prior volume. For GW signals from high-mass
BBH mergers, this issue will be more apparent as they produce shorter signals
detectable in the interferometers, and we usually make less precise measurements
of the masses for these high-mass systems [196]. This is partially alleviated by
incorporating the population information that they are rarer compared to lighter
systems. It also brings out an important point that the Bayes factor, or generally
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any probabilistic statement, that some GW signals are strongly lensed depends
on the source population one is considering.

We can think of the factor 𝛽(λ,R, γ)/𝛼(λ,R)𝑁 in Eq. (11.17) as a population-
averaged scale of the coherence ratio accounting for selection effects, which
affect the two hypotheses differently. If the coherence ratio is greater than the
population typical value for 𝛽/𝛼𝑁 , then the Bayes factor will indicate that the
lensed hypothesis is favored by the observed data. In fact, the normalization
constant under the not-lensed hypothesis 𝛼 can be interpreted as the detectable
fraction of sources [195]. Similarly, we can interpret the normalization constant
under the lensed hypothesis 𝛽 as the fraction of sources that would produce 𝑁
detectable lensed signals. We expect that the order of magnitude for 𝛽 would be
similar to that for 𝛼. Therefore, essentially selection effects penalize the lensed
hypothesis by a factor of roughly 𝛼𝑁−1, counteracting the Occam’s razor.

11.2.5 The prior odds PHL
HNL

The Bayes factor we derived above in Eq. (11.17) only compares the coherence
of the data set with each hypothesis, but not the probability in which each
hypothesis would occur. We know empirically, that strong lensing causing at
least 𝑁 images occurs less frequently than observing 𝑁 independent GW events
with each coming from a different source. We can incorporate our knowledge
about the rate in the form of prior odds PHL

HNL
, which is defined as

PHL
HNL

=
𝑝(HL)
𝑝(HNL)

. (11.18)

We can then compute the posterior odds OHL
HNL

using Eq. (11.8) from the Bayes
factor in Eq. (11.17) and the prior odds in Eq. (11.18).

One can assign the prior odds simply as the ratio of the rate of observing 𝑁 lensed
images from a single source over the rate of observing 𝑁 GW signals coming from
𝑁 independent sources. Obtaining this will require detailed modeling of GW
sources and lenses. In particular these numbers should be computed under the
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the chosen source and lens population models for an analysis. However, one can
argue that for most of the population models commonly used by the astrophysics
community, the prior odds is very small with the current sensitivities of GW
detectors, about PHL

HNL
≈ 10−2 − 10−4 [177, 178, 179, 180, 181].

11.2.6 Marginalization over redshift
With the expression for 𝑝(D |HL) under the lensed hypothesis in Eq. (11.16), one
can estimate the integral using a stochastic sampling algorithm such as nested
sampling [120] by sampling over

{
θ(1)com, θ

(1)
ind , · · · , θ

(𝑁)
ind

}
with a prior

𝑝pop,ind(θ(1)ind , ..., θ
(𝑁)
ind )𝑝pop,com(θ(1)com)

and a joint likelihood
𝑁∏
𝑗=1

𝑝(𝐷 ( 𝑗) |θ( 𝑗)ind , θ
(1)
com).

However, a direct sampling will be inefficient because of the degeneracy between
the absolute magnification and the luminosity distance, and hence the redshift
of the source. Under the not-lensed hypothesis, we can infer the source redshift
since we can infer the luminosity distance of the source 𝑑src

L , and by assuming
a particular cosmology we can compute the redshift 𝑧src = 𝑧(𝑑src

L ) from the
luminosity distance. Under the lensed hypothesis, each image will be, in general,
magnified by a different factor. In fact, we can only measure the apparent
luminosity distance for each image as in Eq. (11.3). Therefore, we will not be
able to infer the absolute magnification for each image and the source redshift
at the same time. For example, a signal with a said redshift of 𝑧 ≈ 0.363 and
an absolute magnification of 𝜇 = 4 would have the same apparent luminosity
distance of 1 Gpc as a signal with a redshift of 𝑧 ≈ 0.780 and an absolute
magnification of 𝜇 = 25.

In order to explore the degenerate parameter space more efficiently, we can
marginalize over the source redshift separately. In fact, the source redshift 𝑧
stands out from the rest of the parameters. This is because with a given redshift,
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one can figure out the prior distribution of the apparent luminosity distance 𝑑 (𝑖)L
given the prior distribution of the absolute magnification 𝑝(𝜇(𝑖)) by

𝑝(𝑑 (𝑖)L ) = 𝑝
©­«𝜇(𝑖) =

(
𝑑src

L (𝑧)
𝑑
(𝑖)
L

)2
������ 𝑧ª®¬

����𝜕𝜇(𝑖)
𝜕𝑑
(𝑖)
L

����
=

2𝜇(𝑖)

𝑑
(𝑖)
L

𝑝
©­«𝜇(𝑖) =

(
𝑑src

L (𝑧)
𝑑
(𝑖)
L

)2
������ 𝑧ª®¬ ,

(11.19)

and similarly for the prior distribution of the redshifted/detector-frame masses
given the distribution of source-frame masses and the redshift as

𝑝(𝑚det
1,2) = 𝑝(𝑚

src
1,2 =

𝑚det
1,2

1 + 𝑧 |𝑧)
����𝜕𝑚src

1,2

𝜕𝑚det
1,2

����
=

(
1

1 + 𝑧

)2
𝑝(𝑚src

1,2 =
𝑚det

1,2

1 + 𝑧 |𝑧).

(11.20)

Therefore, we can rewrite Eq. (11.16) as a 1D integral over the redshift as

𝑝(D |HL) ∝
∫

d𝑧 Lmarg(𝑧) 𝑝𝑧 (𝑧 |HL), (11.21)

where Lmarg(𝑧) is given by

Lmarg(𝑧) =
∫

dθ(1)com \ {𝑧} dθ(1)ind · · · dθ
(𝑁)
ind

×

𝑁∏
𝑗=1

𝑝(𝐷 ( 𝑗) |θ( 𝑗)ind , θ
(1)
com \ {𝑧})


× 𝑝pop,ind(θ(1)ind , ..., θ

(𝑁)
ind )𝑝pop,com(θ(1)com \ {𝑧}).

(11.22)

The marginalized likelihood Lmarg(𝑧), which is a function of 𝑧 only, can be ob-
tained via the conventional Monte Carlo methods (such as Markov Chain Monte
Carlo method and nested sampling) by sampling over redshifted/detector-frame
parameters without the redshift. This will alleviate the degeneracy problem, as
well as open up the possibility of computing Eq. (11.16) by reusing computations
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done with the not-lensed hypothesis assumed, without re-exploring the joint pa-
rameter space. It also lends itself to the interpretation of treating the redshift
as a hyperparameter of a subpopulation of signals sharing the same intrinsic
parameters (and some of the extrinsic parameters).

Given a merger rate density R(𝑧) ≡ d𝑁src/(d𝑉cd𝑡), which is the number density
of mergers per comoving volume 𝑉c per unit time 𝑡 in the source frame, one can
compute the probability density of the source redshift 𝑧 as

𝑝(𝑧) ∝ d𝑉c
d𝑧

1
1 + 𝑧R(𝑧). (11.23)

Using the product rule, we can write down the prior distribution for the redshift
𝑧 under the lensed hypothesis as

𝑝𝑧 (𝑧 |HL) =
1
𝐶

𝑝(HL |𝑧)𝑝(𝑧)
𝑝(HL)

=
1
𝐶

𝜏(𝑧)𝑝(𝑧)
𝑝(HL)

,

(11.24)

where 𝐶 is the normalization constant, and 𝜏(𝑧) ≡ 𝑝(HL |𝑧) is the optical depth
of strong lensing at redshift 𝑧. Similarly, under the not-lensed hypothesis, the
prior distribution for the redshift 𝑝𝑧 (𝑧 |HNL) is given by

𝑝𝑧 (𝑧 |HNL) =
1
𝐶
′
𝑝(HNL |𝑧)𝑝(𝑧)
𝑝(HNL)

=
1
𝐶
′
[1 − 𝜏(𝑧)] 𝑝(𝑧)

𝑝(HNL)
,

(11.25)

where the normalization constant 𝐶 ′ is defined accordingly. Figure 11.3 shows
the prior distribution of redshift 𝑧 under the lensed (solid blue line) and not-lensed
hypothesis (dashed green line), using the optical depth model in Ref. [182] and
a merger rate density tracking the star formation rate in [197, 178]. The peak
of the prior distribution under the lensed hypothesis shifts to a higher value of
𝑧 ∼ 3 compared to that under the not-lensed hypothesis, which peaks at roughly
𝑧 ∼ 2 because of the optical depth (gray dash-dotted line) being higher at higher
redshifts.
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Figure 11.3: The probability densities 𝑝𝑧 (𝑧) of the source redshift 𝑧 under the
lensed and not-lensed hypothesis. The gray dotted line shows the optical depth
𝜏(𝑧). As the optical depth increases with the redshift, the peak of the density
𝑝𝑧 under the lensed hypothesis shifts to a higher value of 𝑧 ∼ 3 compared to the
density under the not-lensed hypothesis.

As a by-product of evaluating Eq. (11.21), we also get a set of posterior samples
of 𝑧, which are distributed according to

𝑝(𝑧 |D,HL) =
Lmarg(𝑧)𝑝𝑧 (𝑧 |HL)∫

d𝑧 Lmarg(𝑧) 𝑝𝑧 (𝑧 |HL)
. (11.26)

In the next subsection, we describe how to reconstruct the true (but degenerate)
source parameters using Gibbs sampling.

11.2.7 Inferring source parameters using Gibbs sampling
Ultimately we want a set of joint posterior samples {𝑧, θ} describing the source
of the observed lensed signals. As a by-product of the marginalization over the
redshift calculation using nested sampling, we obtain a set of posterior samples
of the redshift 𝑧 ∼ 𝑝(𝑧 |D,HL) marginalized over the parameters θ. Using
Gibbs sampling, we can obtain the desired joint posterior samples from sam-
ples drawn from the conditional probability distributions 𝑝(𝑧 |D,HL) from the
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marginalization step and 𝑝(θ |𝑧,D,HL) from the inference step. This is because

𝑝(𝑧, θ |D,HL) ∝ 𝑝(θ |𝑧,D,HL)𝑝(𝑧 |D,HL). (11.27)

Algorithm 1 outlines the (collapsed and blocked) Gibbs sampling algorithm
[198] that allows us to reconstruct the joint posterior samples. This variant of
Gibbs sampling can be easily parallelized since each iteration is independent.
For each set of joint {𝑧, θ} samples, since θ are redshifted parameters (such as
the redshifted component masses) and 𝑧 is the source redshift, one can compute
the true source parameters such as the source masses easily. In Sec. 11.3, we
demonstrate the framework and tools we developed with simulated lensed GW
signals from BBH mergers.

Algorithm 1 Gibbs sampling
1: procedure Sample(𝑁𝑠)
2: 𝑖 ← 1
3: θtrue ← [ ]
4: while 𝑖 ≤ 𝑁𝑠 do
5: 𝑧drawn ← a random draw from the samples 𝑧 from the marginalization

step
6: compute the ln weight ln𝑤 𝑗 for each of the samples θ 𝑗 from the

inference step
7: θdrawn ← a random draw from

{
θ 𝑗

}
with weight 𝑤 𝑗 using rejection

sampling assuming that the true source redshift is 𝑧drawn
8: append {𝑧drawn, θdrawn} to θtrue
9: 𝑖 ← 𝑖 + 1

10: end while
11: return θtrue
12: end procedure

11.3 Strong lensing of gravitational waves from a binary black hole merger:
observing a pair of lensed signals

Now that we have developed the statistical framework in a general setting, here
we want to apply the framework to analyze two particular cases and discuss the
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technical subtleties involved, namely for the case of strong lensing of a GW signal
from a BBH merger with a pair of lensed images (i.e., 𝑁 = 2) observed, and with
only one image (i.e., 𝑁 = 1) observed. In this section, we focus on the former
case first.

11.3.1 Under the not-lensed hypothesis
Suppose we write the event-level parameters for each of the BBH mergers under
the not-lensed hypothesis as

θ(𝑖) = {𝑀det
tot , 𝑞,χ1,χ2︸            ︷︷            ︸

intrinsic parameters

, 𝑑L, 𝛼, 𝛿, 𝜓, 𝜄, 𝜙c, 𝑡c︸                 ︷︷                 ︸
extrinsic parameters

},
(11.28)

and these are the parameters that are being sampled over during the inference
step. As derived in Eq. (11.13) with 𝑁 = 2, under the not-lensed hypothesis we
have

𝑝({𝐷 (1) , 𝐷 (2)}|HNL)

=
1
𝛼2 𝑝(𝐷

(1) |HNL)𝑝(𝐷 (2) |HNL).
(11.29)

Figure 11.4 shows a graphical representation of the data generation process under
the not-lensed hypothesis for signals from BBH mergers using the parametriza-
tion in Eq. (11.28). Here we use 𝚽 to denote the set of extrinsic parameters
{𝛼, 𝛿, 𝜓, 𝜄, 𝜙𝑐} that are distributed according to the distribution 𝑝ext. As for the
time of arrival 𝑡c, we treat it separately and hence it is not shown in Fig. 11.4.
From matched-filtering pipelines that scan through all the data looking for GW
triggers, we know roughly the time of arrival for each trigger. Let us write
𝑡
(1)
c = 𝑡1 + 𝛿𝑡 (1)c and 𝑡 (2)c = 𝑡2 + 𝛿𝑡 (2)c , where 𝑡1 and 𝑡2 are the point estimates of

the arrival times given by a pipeline for the two triggers, respectively. Instead
of sampling over 𝑡 (1)c and 𝑡 (2)c , we sample over 𝛿𝑡 (1)c and 𝛿𝑡 (2)c with a small prior
range (typically ∼ 0.2 s) and 𝑡1, 𝑡2 taken to be known. Mathematically, this means

𝑝(𝑡 (1)c , 𝑡
(2)
c |HNL)d𝑡 (1)c d𝑡 (2)c

= 𝑝(𝛿𝑡 (1)c , 𝛿𝑡
(2)
c |𝑡1, 𝑡2,HNL)𝑝(𝑡1, 𝑡2 |HNL)d𝛿𝑡 (1)c d𝛿𝑡 (2)c .

(11.30)
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Suppose we order the two events by their times of arrival, i.e., 𝑡2 > 𝑡1, and define
the time delay Δ𝑡 ≡ (𝑡2 − 𝑡1) > 0. After this transformation, there is an extra
factor in the prior that accounts for the probability of having two random events
separated by a time delay of Δ𝑡 under the not-lensed hypothesis. If we model
the arrival of events by a Poisson process, the prior probability density that any
random pair of events having a time delay of Δ𝑡, given that there are 𝑁obs events
during the time interval of (0, 𝑇obs], is given by

𝑝(Δ𝑡 |HNL) =
2
𝑇obs

(
1 − Δ𝑡

𝑇obs

)
, (11.31)

where we give a detailed derivation in Appendix 11.8. This can be considered
as the part of the time-delay Bayes factor in Ref. [190] from the not-lensed
hypothesis.

Therefore, the full expression for 𝑝({𝐷 (1) , 𝐷 (2)}|HNL) now reads

𝑝({𝐷 (1) , 𝐷 (2)}|HNL)

=
1
𝛼2 𝑝(Δ𝑡 |HNL)

×
2∏
𝑖=1

∫
d{𝑀det

tot , 𝑞,χ1,χ2, 𝑑L, 𝛼, 𝛿, 𝜓, 𝜄, 𝜙c, 𝛿𝑡c︸                                         ︷︷                                         ︸
θ (𝑖)

}

𝑝(𝐷 (𝑖) |θ(𝑖))𝑝pop(θ(𝑖) |HNL),

(11.32)

where under the not-lensed hypothesis there is a one-to-one mapping between
𝑑L and 𝑧, and hence one will only need to convert Eq. (11.25) by multiplying
the proper Jacobian without the need of a separate marginalization of the source
redshift.

11.3.2 Under the lensed hypothesis
Under the lensed hypothesis, we write the event-level parameters differently,
namely we let the common parameters θ(𝑖)com = {𝑀det

tot , 𝑞,χ1,χ2, 𝛼, 𝛿, 𝜓, 𝜄, 𝜙c}.
As for the independent parameters, we write θ(𝑖)ind = {𝛿𝑡 (𝑖)c , 𝑑

(𝑖)
L ,Ξ

(𝑖)}, where we
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Figure 11.4: Data generation process for the 𝑁 observed data under the not-lensed
hypothesisHNL. This is similar to Fig. 11.1 but with the event-level parameters
θ(𝑖) written out explicitly. Here we use𝚽 to denote the set of extrinsic parameters
{𝛼, 𝛿, 𝜓, 𝜄, 𝜙𝑐} that are distributed according to the distribution 𝑝ext.

perform the same transformation to the time of arrival as in the case under the
not-lensed hypothesis, and Ξ denotes the type of an image which can be either
{I, II, III}.

Each strongly lensed image can be classified into three types (I, II or III), where
each image type corresponds to a Morse index of {0, 1, 2}, respectively, inducing a
different phase shift as shown in Eq. (11.6) to the image because of the interaction
of the lensed image with the caustic. One would expect the image that arrives at
the Earth first to be of type I since type-I images correspond to local minima of
the Fermat time-of-arrival potential. However, the signal that we called the first
image in an analysis might not actually be the first image that had arrived the
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Earth since, for example, the GW detectors might be offline. Various arguments
on the type of images one would see can be made if we know the geometry of
the gravitational lens but this is not known prior to the analysis. Therefore, to
be lens-model-agnostic we assume that the type of the lensed images in a pair to
each follow a discrete uniform distribution and are uncorrelated, namely

𝑝lens(Ξ(1) ,Ξ(2)) = 𝑝lens(Ξ(1))𝑝lens(Ξ(2)), (11.33)

where

𝑝lens(Ξ(𝑖)) =


1/3 when Ξ(𝑖) = I

1/3 when Ξ(𝑖) = II

1/3 when Ξ(𝑖) = III

. (11.34)

That being said, both the assumptions that the image types are uncorrelated
and each follows a uniform distribution are not true. If one adopts a particular
lens model and ordering of the images, the appropriate joint distribution that
encapsulates the correlation should be used instead.

Figure 11.5 shows a graphical representation of the data generation process under
the lensed hypothesis for BBH signals. Similar to Fig. 11.4, we use 𝚽 to denote
the set of extrinsic parameters {𝛼, 𝛿, 𝜓, 𝜄, 𝜙c} that are distributed according to
the distribution 𝑝ext, and that we treat the time of arrival 𝑡c separately. Unlike
the not-lensed case, here we assume that θ(𝑖)com = {𝑀det

tot , 𝑞,χ1,χ2, 𝛼, 𝛿, 𝜓, 𝜄, 𝜙c}
are the same across the signals (hence we dropped the superscript in the graph).
Also, even though we sample the apparent luminosity distance for each image,
there is no one-to-one mapping between it and the true source redshift since the
apparent luminosity distance is also related to the absolute magnification of a
lensed image. As discussed in Sec. 11.2.6, we perform the marginalization over
the source redshift separately.

For the time of arrival 𝑡 (𝑖)c , we can perform the same transformation as in the case
for the not-lensed hypothesis (similar to Eq. (11.30)), and sample 𝛿𝑡 (𝑖)c that has a
much smaller range instead. However, instead of having an analytical expression
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Figure 11.5: Data generation process for the 𝑁 observed data under the lensed
hypothesis HL. This is similar to Fig. 11.2 but with the common parameters
θ(𝑖)com and the independent parameters θ(𝑖)ind written out explicitly. Again, we use
𝚽 to denote the set of extrinsic parameters {𝛼, 𝛿, 𝜓, 𝜄, 𝜙c} that are distributed
according to the distribution 𝑝ext.

for the time delay Δ𝑡, there is no analytically tractable expression for the time
delay under the lensed hypothesis. That being said, we can obtain it readily from
numerical simulations (for example, Ref. [190]). As a result, there is an extra
factor of 𝑝(Δ𝑡 |HL) in the prior that accounts for the probability of having two
lensed images separated by a time delay of Δ𝑡.
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Therefore, the full expression for 𝑝({𝐷 (1) , 𝐷 (2)}|HL) now reads

𝑝({𝐷 (1) , 𝐷 (2)}|HL)

=
1
𝛽
𝑝(Δ𝑡 |HL)

×
∫

d𝑧 𝑝𝑧 (𝑧 |HL)
[ ∫

d{𝑀det
tot , 𝑞,χ1,χ2, 𝛼, 𝛿, 𝜓, 𝜄, 𝜙c︸                              ︷︷                              ︸

θcom

}

∫
d{𝛿𝑡 (1)c , 𝑑

(1)
L ,Ξ(1)︸            ︷︷            ︸

θ (1)ind

, 𝛿𝑡
(2)
c , 𝑑

(2)
L ,Ξ(2)︸            ︷︷            ︸

θ (2)ind

}𝑝(𝐷 (1) |θcom, θ
(𝑖)
ind)

𝑝(𝐷 (2) |θcom, θ
(2)
ind)𝑝pop,ind(θ(1)ind , θ

(2)
ind |HL)𝑝pop,com(θcom |HL)

]
,

(11.35)

where the expression enclosed by the square brackets would be identified as
Lmarg(𝑧) as discussed in Sec 11.2.6.

11.3.3 Demonstration
Here we demonstrate the framework with two examples. In the first example,
we injected two GW signals with a redshifted total mass 𝑀det

tot = 280𝑀⊙ into
simulated data streams. With this example, we show explicitly how the source
population model would change the Bayes factor. In the second example, we
injected instead two GW signals with a redshifted total mass𝑀det

tot = 60𝑀⊙, which
corresponds to typical stellar-mass BBH systems for the LIGO-Virgo detectors. In
both examples, we use the waveform approximant IMRPhenomXPHM [199], which
models both the leading-quadrupole (ℓ = 2) radiation, as well as some of the
nonquadrupole (ℓ > 2) multipoles. By incorporating the higher-order modes, we
show that the image type of each lensed signal can also be inferred. All the results
presented here were computed using the software package hanabi12, which is
built upon the package bilby [200] and parallel_bilby [201]. Also, we used
the nested sampling algorithm implemented in the package dynesty [202] with

12https://github.com/ricokaloklo/hanabi

https://github.com/ricokaloklo/hanabi
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the number of live points nlive = 2000 and the number of autocorrelation times
nact = 60 when running the nested sampling algorithm, where the settings are
sufficient to give convergent results [203]. More specifically, the results presented
in this paper used the aforementioned packages of version bilby==1.0.2 [204],
parallel_bilby==0.1.5 [205], dynesty=1.0.1 [206], and hanabi==0.3.1
[207].

11.3.3.1 Example 1: Two lensed signals from apparent intermediate-mass
binary black hole mergers

In this example, we have two lensed GW signals injected into two simulated data
streams with Gaussian noise recolored to match the Advanced LIGO (aLIGO)
design noise curve [100]. Table 11.1 summarizes some of the waveform param-
eters for the two signals. The two injected signals, when analyzed on their own,
seem to originate from two separate mergers of an intermediate-mass binary
black hole system.

To demonstrate how using different source population models would change
one’s interpretation of the two signals, as well as the numerical value of the
Bayes factor using our framework, we first use a log-uniform distribution as the
population model for the component masses, namely

𝑝src(𝑚src
1,2) ∝


1/𝑚src

1,2 for 5𝑀⊙ ≤ 𝑚src
1,2 ≤ 300𝑀⊙

0 otherwise
. (11.36)

For the component spins, we use a distribution that is uniform in the component
spin magnitude, and isotropic in the spin orientation.

As for the merger rate density, here we use, for the sake of demonstration, an
analytical fit from Ref. [178] that tracks the population synthesis results from
Ref. [197] for population-I and population-II stars, namely

R(𝑧) = 6.6 × 103 exp(1.6𝑧)
30 + exp(2.1𝑧) . (11.37)
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For the absolute magnification, again for the purpose of demonstration, we use a
simple power law distribution that is independent of the time delay, namely

𝑝lens(𝜇(1) , 𝜇(2) |Δ𝑡) = 𝑝lens(𝜇(1))𝑝lens(𝜇(2)), (11.38)

with

𝑝lens(𝜇(𝑖)) ∝

𝜇−3 for 𝜇 ≥ 2

0 otherwise
, (11.39)

where it captures the general 𝜇−3 scaling in the high-magnification regime, as
well as the requirement that the absolute magnification has to exceed some
threshold in order for multiple lensed images to be formed. However, it does
not capture the correlation between the magnifications of the lensed images, and
the correlation between the magnification and the time delay. For example, the
relative magnification tends to unity if the lensed images are highly magnified
[172]. In fact, one can derive a poor-man’s prior distribution for the relative
magnification, if we assume that the absolute magnification for each of the two
images follows Eq. (11.38), with the form

𝑝(𝜇rel) =

𝜇rel for 𝜇rel ≤ 1

𝜇−3
rel for 𝜇rel > 1

, (11.40)

where we give a detailed derivation in Appendix 11.9. The poor-man’s prior
distribution for the relative magnification models the correct power law scaling
of 𝜇−3

rel when 𝜇rel ≥ 1, but predicts the wrong power law scaling when 𝜇rel < 1.

In addition, we use a simple analytical model for the optical depth [208, 182],
which is the probability of strong lensing at a given redshift, with the form

𝜏(𝑧) = 𝐹
(
𝑑c(𝑧)
𝑑H

)3
, (11.41)

where 𝑑c(𝑧) is the comoving distance at 𝑧, and 𝑑H is the Hubble distance. The
empirical constant 𝐹 is taken to be 0.0017 here [182]. A more realistic and
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detailed model for the merger rate density, the magnification distribution, as well
as the optical depth, that impart more astrophysical information to an analysis
would certainly help differentiating lensed signals.

With this set of population models, we obtained a log-coherence ratio of log10 C =

2.7, and a log-Bayes factor of log10 B
HL
HNL

= 1.1 without accounting for the
time delay.13 We see that with this set of population models and the detec-
tor sensitivity, the selection effects down-weight the pair by a factor of ≈ 40.
Figure 11.6 shows both the 1D and 2D marginalized posterior distributions for{
𝑀src

tot , 𝑞, 𝜇
(1) , 𝜇(2) , 𝜇rel, 𝑧

}
obtained using the algorithm described in Sec. 11.2.7.

The orange solid lines show the correct values for each of the parameters if the
redshift 𝑧 is set to 1. The plot shows that our two-step hierarchical procedure
described in Sec. 11.2.6 is able to find the correct values describing the signals.
From the plot we can also see the various degeneracies between parameters. For
example, the degeneracy between the total mass 𝑀src

tot and the redshift 𝑧, where
the blob in the lower left corner of Fig. 11.6 corresponds to the redshifted total
mass that we do measure. Note that we are able to infer the mass ratio 𝑞 and the
relative magnification 𝜇rel as they are not degenerate with the redshift.

13This means that we set 𝑝(Δ𝑡 |HL)/𝑝(Δ𝑡 |HNL) = 1 such that the coherence ratios and the
Bayes factors reported will not be boosted by setting the time-delay of the injected signals to
be very consistent with the lensed hypothesis, though incorporating the time delay information
would be important in actual analyses.
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Figure 11.6: The 1D and 2D marginalized posterior distributions of{
𝑀src

tot , 𝑞, 𝜇
(1) , 𝜇(2) , 𝜇rel, 𝑧

}
for Example 1 (cf. Sec. 11.3.3.1) obtained using

the algorithm described in Sec. 11.2.7. The orange solid lines show the correct
values for each of the parameters if the redshift 𝑧 is set to 1. The plot shows that
our two-step hierarchical procedure described in Sec. 11.2.6 is able to find the
correct values describing the signals. From the plot we can also see the various
degeneracies between parameters. For example, the degeneracy between the total
mass 𝑀src

tot and the redshift 𝑧, where the blob in the lower left corner corresponds
to the redshifted total mass that we do measure. Note that we are able to infer the
mass ratio 𝑞 and the relative magnification 𝜇rel as they are not degenerate with
the redshift.
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Table 11.1: Summary of some of the injection parameters for Example 1 in
Sec. 11.3.3.1. The two injected signals, when analyzed on their own, seem to
originate from two separate mergers of an intermediate-mass binary black hole
system. For more detailed definitions of some of the binary parameters, see Ref.
[200].

Parameter Value
Redshifted total mass 𝑀det

tot 280𝑀⊙
Mass ratio 𝑞 0.75
Redshifted primary mass 𝑚det

1 160𝑀⊙
Redshifted secondary mass 𝑚det

2 120𝑀⊙
Dimensionless spin magnitude of the primary |χ1 | 0.3
Dimensionless spin magnitude of the secondary |χ2 | 0.2
Tilt angle between the spin vector of the primary 0.1 rad
and the orbital angular momentum vector
Tilt angle between the spin vector of the secondary 0.2 rad
and the orbital angular momentum vector
Azimuthal angle between the two spin vectors 1.1 rad
Azimuthal angle of the cone of precession of the orbital 2.2 rad
angular momentum about the total angular momentum
Inclination angle between the total angular momentum 1.04 rad
and the line of sight
Right ascension 𝛼 0.2 rad
Declination 𝛿 0.4 rad
Polarization angle 𝜓 0.6 rad
Phase at coalescence 𝜙c 0.8 rad
Apparent luminosity distance for the 3.11 Gpc
first signal 𝑑 (1)L
Apparent luminosity distance for the 3.15 Gpc
second signal 𝑑 (2)L
Image type of the first signal I
Image type of the second signal II
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If we instead use a population model that asserts there are no black holes with
mass greater than 60𝑀⊙, referred as “Model A” in Ref. [13], namely

𝑝src(𝑚src
1 , 𝑚src

2 |𝛼, 𝛽, 𝑚min, 𝑚max) =
1−𝛼

𝑚1−𝛼
max −𝑚1−𝛼

min
(𝑚src

1 )
−𝛼 1+𝛽
(𝑚src

1 )1+𝛽−𝑚
1+𝛽
min
(𝑚src

2 )
𝛽 if 𝑚min ≤ 𝑚src

2 ≤ 𝑚
src
1 ≤ 𝑚max

0 otherwise
,

(11.42)

with 𝛼 = 1.8, 𝛽 = 0, 𝑚min = 5 𝑀⊙, and 𝑚max = 60 𝑀⊙ 14, now both the
log-coherence ratio and the log-Bayes factor are infinite, while the log evidence
under the lensed hypothesis is finite. This is a “smoking-gun evidence” that
the two signals are lensed. This is not surprising because the two signals are
impossible under the not-lensed hypothesis with this set of population models.
Under the not-lensed hypothesis, we interpret the apparent luminosity distance
as the true luminosity distance without any magnification bias, allowing us to
infer the redshift directly from the measured luminosity distance. In this case,
the redshift that corresponds to the apparent luminosity distance of the first signal
is roughly 𝑧 ≈ 0.53, meaning that both the primary and secondary mass would
be above the 60𝑀⊙ maximum. This example, though extreme, clearly shows
that the Bayes factor, and hence one’s interpretation on the origin, of the signals
would be sensitive to the population models that one assumes.

11.3.3.2 Example 2: Two lensed signals from a stellar-mass binary black
hole merger

In the second example, we also have two lensed GW signals injected into two
simulated data streams with Gaussian noise. However, this time the two signals

14Note that the numbers we adopted here are slightly different from the reported values in
Ref. [13] because we write the model in the (𝑚src

1 , 𝑚src
2 ) parametrization here instead of the

(𝑚src
1 , 𝑞) parametrization. The probability density is hence off by a Jacobian of 1/𝑚src

1 , which
can be easily accounted for by adjusting the value of 𝛼.
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have a lower redshifted total mass (𝑀det
tot = 60𝑀⊙). Table 11.2 summarizes some

of the waveform parameters. This example serves to represent typical scenarios
for second-generation terrestrial GW detectors such as the two Advanced LIGO
detectors [1] and the Advanced Virgo detector [2] observing stellar-mass BBH
systems, and demonstrate how would the Bayes factor change with different
detector sensitivities. For the population models, we use the same set of models
in the last subsection with the “Model A” mass model described in Eq. (11.42).

Table 11.2: Summary of some of the injection parameters for Example 2 in
Sec. 11.3.3.2. This example serves to represent typical scenarios for second-
generation terrestrial GW detectors observing stellar-mass BBH systems. Pa-
rameters for this injection that are not listed explicitly below are identical to that
listed in Table 11.1.

Parameter Value
Redshifted total mass 𝑀det

tot 60𝑀⊙
Mass ratio 𝑞 0.875
Redshifted primary mass 𝑚det

1 32𝑀⊙
Redshifted secondary mass 𝑚det

2 28𝑀⊙
Apparent luminosity distance for the 811 Mpc
first signal 𝑑 (1)L
Apparent luminosity distance for the 823 Mpc
second signal 𝑑 (2)L

Figure 11.7 shows the marginalized 1D and 2D posterior distributions for{
𝑀src

tot , 𝑞, 𝜇
(1) , 𝜇(2) , 𝜇rel, 𝑧

}
we recover when the two lensed signals were injected

into data streams with simulated Gaussian noise recolored to match the aLIGO
design sensitivity [100]. From the plot we see similar degenerate structures
between parameters as in Fig. 11.6. To demonstrate the degeneracies more
explicitly, we show the correct source parameters for this two signals if we assume
the true source redshift is 𝑧 = 0.4 (solid orange lines), as well as that if the true
redshift is instead 𝑧 = 1 (dotted gray lines). Note that both the mass ratio 𝑞 and the
relative magnification 𝜇rel take the same value when different source redshifts are
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assumed. While we are not able to constrain the source parameters individually
because of the aforementioned degeneracies, we are capable of providing joint
constraints for the source parameters by properly incorporating information from
both the detected signals and the astrophysical population models assumed. From
Fig. 11.7, we see that it is less likely for the signals to come from a binary system
with a total mass of 𝑀src

tot = 30𝑀⊙ at a redshift 𝑧 = 1 under the lensed hypothesis
because of the large absolute magnifications required are less probable under the
lens model we assumed in the analysis.
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Figure 11.7: The 1D and 2D marginalized posterior distributions of{
𝑀src

tot , 𝑞, 𝜇
(1) , 𝜇(2) , 𝜇rel, 𝑧

}
for Example 2 (cf. Sec. 11.3.3.2) obtained using

the algorithm described in Sec. 11.2.7. The orange solid lines show the correct
values for each of the parameters if the redshift is set to 𝑧 = 0.4, while the gray
dotted lines show the correct values for the parameters if the redshift is instead
set to 𝑧 = 1. Note that both the mass ratio 𝑞 and the relative magnification 𝜇rel
take the same value when different source redshifts are assumed. While we are
not able to constrain the source parameters individually because of the degenera-
cies, we are capable of providing joint constraints for the source parameters by
properly incorporating information from both the detected signals and the astro-
physical population models assumed. We see that it is less likely for the signals
to come from a binary system with a total mass of 𝑀src

tot = 30 𝑀⊙ at a redshift
𝑧 = 1 under the lensed hypothesis because of the large absolute magnifications
required are less probable under the lens model we assumed in the analysis.
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For this example, we obtained a log-coherence ratio of log10 C = 5.2 and a
log-Bayes factor of log10 B

HL
HNL

= 3.0 when injecting the signals into simulated
Gaussian noise recolored to match the aLIGO design sensitivity [100]. Table
11.3 tabulates the values of log10 𝛼, log10 𝛽, and log10

(
𝛽/𝛼2) for this particular

set of population models under different detector sensitivities, computed using
pdetclassifier [209]. In Appendix 11.7, we give a detailed description
on how one can compute these normalization constants, or selection functions,
under the lensed and the not-lensed hypothesis. As expected, the values of 𝛼

O1+O2 O3a aLIGO design
log10 𝛼 −3.5 −3.1 −2.4
log10 𝛽 −4.1 −3.7 −2.5
log10

(
𝛽/𝛼2) 2.9 2.5 2.3

Table 11.3: The values of log10 𝛼(λ,R), log10 𝛽(λ,R, γ), and
log10

[
𝛽(λ,R, γ)/𝛼(λ,R)2

]
with different detector sensitivities computed using

pdetclassifier [209] for the population models described in Sec. 11.3.3.2.

and 𝛽 increase as the detector network becomes more sensitive and capable of
detecting weaker signals. The difference between the values of 𝛼 and 𝛽 narrows
as the network increases in sensitivity, and that the selection effects penalize the
lensed hypothesis to a lesser extent, roughly by a factor of ∼ 𝛼. While we did
not perform the same injection test with simulated noise recolored to match the
sensitivity during O1+O2 and O3a, we can reasonably expect the log-coherence
ratio increases with a more sensitive detector network as we can better measure
the waveform parameters to a higher precision. Therefore, the log-coherence
ratio, as well as the log-Bayes factor would increase with the detector sensitivity
given the same set of lensed signals.

11.3.4 Identifying the image types
When we consider only the dominant ℓ = |𝑚 | = 2 modes and a nonprecessing
binary system, the phasing effect due to strong lensing reduces to a shift in the
observed phase at coalescence (or any reference orbital phase) [175, 176]. For
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a GW signal from the merger of a precessing binary system with a significant
contribution from higher-order modes, for example when the system is asym-
metric in component masses and/or is inclined with respect to our line of sight,
we can break the degeneracy between the phasing effect from strong lensing
and the orbital phase. This allows us to identify the image type for each of the
lensed signals. We demonstrate this by injecting signals with an asymmetric
mass ratio 𝑞 ≈ 0.3 viewing at an angle of roughly 107 deg between the line of
sight and the total angular momentum vector into simulated Gaussian noise at
aLIGO design sensitivity using two different waveform models, IMRPhenomXP
and IMRPhenomXPHM [199]. The former approximant, IMRPhenomXP, includes
only the quadrupole (ℓ = 2) radiation from a precessing binary system, while
the latter approximant, IMRPhenomXPHM, includes both the quadrupole radiation
and some of the higher multipoles (ℓ > 2) from the precessing system. In both
cases, the first injected lensed GW signal is of type I, while the second injected
signal is of type II. Figure 11.8 shows the joint probability mass function of the
image type inferred for the first signal Ξ(1) and that for the second signal Ξ(2) .
We see that when there are measurable contributions from higher modes, we
are able to pin-point the type of each lensed image from the phasing effect (left
panel of Fig. 11.8), breaking the degeneracy between the phasing effect from
strong lensing and the shift in the orbital phase. This is in line with the findings
reported in Ref. [171], where one can tell type-II images apart individually for
third-generation detectors.

11.3.5 Improvement in localizing the source in the sky
Since we expect the lensed GW signals coming from the same source to have
approximately identical sky locations, the signals should be better localized when
analyzed jointly compared to the case when they are analyzed individually. This
is because we gain information about the shared sky location from two data
streams instead of just one. We demonstrate this using the inference results
from Example 1 in Sec. 11.3.3.1. Figure 11.9 shows the 90% credible regions
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Figure 11.8: The joint posterior probability mass function of the (discrete) image
type for the first signal Ξ(1) and that for the second signal Ξ(2) in an injection
test. In the test, we injected a type-I signal into the first data stream, and a type-
II signal into the second data stream. We see that when there are measurable
contributions from higher modes, we are able to pinpoint the type of each lensed
image, breaking the degeneracy between the phasing effect from strong lensing
and a shift in the orbital phase. This is in line with the findings in Ref. [171].

of the localization of signals, when analyzed separately (blue and green) and
when analyzed jointly (orange). In all cases, the credible regions enclose the true
source location (gray crosshair). However, the area of the 90% credible region,
a metric for the localization uncertainty, from the joint inference is only 17 deg2,
which is roughly two times smaller than that when localizing the first image only
(31 deg2) and roughly four times smaller than that when localizing the second,
fainter, image only (80 deg2).

Combining the improved sky localization of the source with the joint constraints
of the source parameters (such as the redshift), one will be more informed when
trying to locate the gravitational lens and the source electromagnetically (see, for
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Figure 11.9: The sky localizations when two simulated lensed GW signals are
analyzed jointly and when they are analyzed individually. The gray crosshair
shows the injected values for the right ascension 𝛼 and the declination 𝛿. The
signals are better localized when analyzed jointly (area of the 90% credible
region: 17 deg2) compared to the case when they are analyzed individually (area
of the 90% credible region: 31 deg2 for the brighter image, 80 deg2 for the fainter
image) as expected [210] since we gain information about the shared sky location
from two data streams instead of just one. The improvement in sky localization
helps identifying the gravitational lens and the source electromagnetically [210,
211], and hence cross-validating the claim that the GW signals are indeed strongly
lensed.

example, Ref. [210, 211]). Indeed, if we were able to identify the massive object
responsible for the gravitational lensing and observe lensing of electromagnetic
waves as well, that can serve as a cross-validation that the GW signals that
were being analyzed are indeed strongly lensed. The lensed source could be by
itself electromagnetically bright, for example a binary neutron star system or a
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neutron-star-black-hole binary (though it is not expected to see lensed signals
coming from these kind of sources with current-generation GW detectors as they
have lower merger rates relative to BBH systems). If the lensed source is in a
host which emits electromagnetic radiation, such as in a galaxy, one could search
for possible foreground lenses (as the electromagnetic signature coming from the
host should also be lensed by the same lens) within the joint localization region
that would produce lensed GW signals with consistent absolute magnifications
and time delays.

11.4 Strong lensing of gravitational waves from a binary black hole merger:
observing only one lensed signal

The statistical framework can also be applied when only one GW signal (i.e.,
𝑁 = 1) is being analyzed at a time. In this case, the expression for the Bayes
factor reads

BHL
HNL

=
𝛼(λ,R)
𝛽(λ,R, γ)

×
∫

dθ(1)com dθ(1)ind 𝑝(𝐷
(1) |θ(1)ind , θ

(1)
com)𝑝pop,ind(θ(1)ind |γ)𝑝pop,com(θ(1)com |λ,R)∫

dθ(1) 𝑝(𝐷 (1) |θ(1) ,HNL)𝑝pop(θ(1) |λ,R)
,

(11.43)

where the normalization constant 𝛽(λ,R, γ) for the case of 𝑁 = 1 is defined
accordingly. For BBH systems, the data generation process described in Fig. 11.4
for the not-lensed hypothesis, and that in Fig. 11.5 for the lensed hypothesis, are
also applicable here. Compared with the case of 𝑁 = 2 we discussed extensively
in Sec. 11.3, the framework is less capable of differentiating a lensed BBH
signal in the geometric optics limit from a signal that is not lensed. This is
because effectively the framework is leveraging only the inconsistency of the
signal with the given population models without the help of Occam’s razor and
selection effects. However, this will not be the case if gravitational lensing leaves
distinctive signatures in the observed waveforms, for example when the geometric
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optics approximation breaks down and the full wave optics treatment is needed
[172, 174]. The framework can also be easily extended to handle GW lensing
from BNS systems (see, for example, Ref. [212]) and NSBH systems.

Here we demonstrate the statistical framework when 𝑁 = 1 with an example
where a lensed BBH signal with waveform parameters identical to the first image
of Example 1 in Sec. 11.3.3.1 (cf. Table 11.1) injected into simulated Gaussian
noise recolored to the aLIGO design noise curve [100]. As we shall see, the
framework is less capable of identifying a lensed BBH signal purely from its
inconsistency with the population models, unless the models fail to produce such
an observed signal (such as Example 1 in Sec. 11.3.3.1 with a source population
model asserting that no black hole can have a mass greater than 60𝑀⊙). This is
very similar to the lensing analysis for GW190521 presented in Ref. [213], and
the BNS lensing analysis in Ref. [212].

In this example, we first use the log-uniform distribution in Eq. (11.36) as the pop-
ulation model for the component masses, and use the same models for spin, mag-
nification, optical depth, and merger rate density as in Sec. 11.3.3.1. Figure 11.10
shows the marginalized 1D and 2D posterior distributions of

{
𝑀src

tot , 𝑞, 𝜇
(1) , 𝑧

}
,

again using the Gibbs sampling algorithm described in Sec. 11.2.7. The orange
solid lines show the correct values for each of the parameters if the redshift 𝑧
is set to 1. Similar to the case with 𝑁 = 2 in Fig. 11.6, we observe similar
degenerate structures such as that between 𝑀src

tot and 𝑧. However, the uncertainty
in the joint 𝑀src

tot − 𝑧 constraint here when 𝑁 = 1 is greater compared to that in
Fig. 11.6. This can be attributed to the less constraining measurements of the
redshifted masses when there is only one data stream to infer from, instead of
two data streams as in the case for Fig. 11.6.

With this set of population models, we obtained a log-coherence ratio of log10 C =

0.06, and a log-Bayes factor of log10 B
HL
HNL

= 0.08. The Bayes factor here is not
statistically significant and within the statistical uncertainty from using nested
sampling. Given the rarity of strong lensing, reflected in the prior odds, the strong
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Figure 11.10: The 1D and 2D marginalized posterior distributions of{
𝑀src

tot , 𝑞, 𝜇
(1) , 𝑧

}
for the example in Sec. 11.4 obtained using the algorithm de-

scribed in Sec. 11.2.7. The orange solid lines show the correct values for each
of the parameters if the redshift 𝑧 is set to 1. Similar to the case with 𝑁 = 2
in Fig. 11.6, we observe similar degenerate structures such as that between 𝑀src

tot
and 𝑧. However, the uncertainty in the joint 𝑀src

tot − 𝑧 constraint here when 𝑁 = 1
is greater compared with that in Fig. 11.6. This can be attributed to the less
constraining measurements of the redshifted masses when there is only one data
stream to infer from, instead of two data streams as in the case for Fig. 11.6.

lensing hypothesis will easily be dismissed with the small posterior odds. While
the above example might give a pessimistic impression for identifying strongly
lensed BBH signals individually, this does not have to be the case, especially
if the signals are of type II, where we might be able to identify them from the
distortion to the waveforms due to lensing, for example from the extra Morse
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phase [171], or other frequency-dependent wave optics effects.

11.5 Conclusions and outlook
In this paper, we present a Bayesian statistical framework for identifying strongly
lensed GW signals. By modeling the data generation processes for 𝑁 observed
signals assuming that they are lensed images from the same source and that
they are simply 𝑁 signals from 𝑁 different sources, respectively, we are able to
write down an expression for the Bayes factor which quantifies the ratio of the
probability densities of observing the 𝑁 signals given the two scenarios and the
astrophysical models on the properties of the sources and lenses. Selection effects
are accounted for naturally as we normalize the probability densities. Combined
with the prior odds, we can properly interpret the resultant posterior odds as the
ratio of the probability that the 𝑁 signals are strongly lensed versus not lensed.

In order to compute the marginalization integral for the Bayes factor more effi-
ciently, we present a hierarchical scheme to evaluate the integral over the source
redshift separately, breaking down the high-dimensional integral into an integral
with a lower dimension and smaller degeneracy among variables that can be
computed using Monte Carlo methods such as in Ref. [120], plus a 1D integral
over the redshift that can be efficiently evaluated. The true source parameters
can be inferred after the hierarchical analysis using a Gibbs sampling algorithm.

We demonstrate the framework with examples when 𝑁 = 1 and 𝑁 = 2, respec-
tively. We show explicitly how changing the assumed astrophysical models can
alter one’s interpretation on the origin of the observed signals, and sometimes
can lead to smoking-gun evidence of strong lensing of GW. For the case of 𝑁 = 2,
we also show how one can jointly constrain the total mass and the redshift of the
source. Together with the improvement in localizing the source from observing
two images, it helps locating the source and the lens electromagnetically [210,
211], and ultimately cross-validating the GW lensing analysis. In some cases
where higher multipoles of lensed GW signals are observable, the Morse index,
or the type, of the lensed images can be identified.
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Currently, one of the key assumptions of the framework is that all 𝑁 triggers
are of astrophysical origins. This might not be the case when we perform a
targeted search on subthreshold lensed counterparts [168, 189, 183], especially
for a high-mass GW signal. This is because transient noise fluctuations in the
detectors, or glitches, can easily mimic these short-duration high-mass signals.
In this case, unfortunately, the Occam’s razor is working against us as the lensed
hypothesis will have a similar goodness-of-fit to the glitches compared to the not
lensed hypothesis while having fewer free parameters. The assumption can be
relaxed where some of the 𝑁 triggers are of terrestrial origins. However, this
would require a detailed study of the morphology of the glitches and we leave
this to future work.

While detecting strongly lensed GW signals are exciting in its own right, it can
also be used to improve our understanding on various subjects in fundamen-
tal physics, astrophysics and cosmology. For example, observing the strongly
lensed GW signals from the same source multiple times effectively boosts the
number of “virtual GW detectors”, and hence can be used to better constrain
the polarization contents of the GW signals and test the general relativity [214].
Strongly lensed GW signals also allow us to probe further to study for example
stellar environments at higher redshift through the spin alignment of the lensed
binaries [215], and origins of the binaries at high redshift [216, 217]. With the
statistical framework presented in this paper, which directly ingests models from
the astrophysics community, the GW data analysis community can work closer
together with the astrophysical modeling community on finding lensed GWs and
extracting more science from them.
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11.6 Appendix: Full derivation of the probability densities of observing a
set of data under various hypotheses

In this section, we give the full derivation for the probability densities of observ-
ing a set of data D under the lensed hypothesisHL and the not-lensed hypothesis
HNL, accounting for both the astrophysical information on sources and lenses,
and well as selection effects. This would in turn allow us to write down the
expression for the (proper) Bayes factor and hence the posterior odds for identi-
fying strongly lensed gravitational-wave signals. The derivations below follow
Ref. [195] closely.

11.6.1 Under the not-lensed hypothesisHNL

Now let us find the expression for the probability density 𝑝(D |HNL,λ,R) under
the not-lensed hypothesis HNL. Since each of the observed data in the data set
D = {𝐷 (𝑖)}𝑖=𝑁

𝑖=1 is simply one random draw from the population distribution 𝑝pop,
we can factorize the probability density into 𝑁 terms as

𝑝(D |HNL,λ,R) ∝
𝑁∏
𝑖=1

𝑝(𝐷 (𝑖) |HNL,λ,R). (11.44)
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Using the marginalization rule, we can write the term 𝑝(𝐷 (𝑖) |HNL,λ,R) as

𝑝(𝐷 (𝑖) |HNL,λ,R)

∝
∫

dθ(𝑖) 𝑝(𝐷 (𝑖) |θ(𝑖)) 𝑝pop(θ(𝑖) |HNL,λ,R),
(11.45)

where this integral can be estimated using nested sampling [120] in a so-called
parameter estimation (PE) run. In a PE run, the goal is to obtain a set of posterior
samples for θ(𝑖) that follow the posterior distribution

𝑝(θ(𝑖) |𝐷 (𝑖)) = 𝑝(𝐷 (𝑖) |θ(𝑖))𝑝PE(θ(𝑖))
𝑍 (𝑖)

, (11.46)

where 𝑝PE is the sampling prior distribution used in that particular PE run,
and 𝑍 (𝑖) is the evidence under the particular signal hypothesis in that PE (or
equivalently a normalization constant). Note that we can rearrange Eq. (11.45)
to get

𝑝(𝐷 (𝑖) |HNL,λ,R)

∝
∫

dθ(𝑖) 𝑝(𝐷 (𝑖) |θ(𝑖)) 𝑝pop(θ(𝑖) |HNL,λ,R)

=

∫
dθ(𝑖) 𝑝(θ(𝑖) |𝐷 (𝑖)) 𝑍 (𝑖)

𝑝pop(θ(𝑖) |HNL,λ,R)
𝑝PE(θ(𝑖))

≈ ⟨𝑍 (𝑖)
𝑝pop(θ(𝑖) |HNL,λ,R)

𝑝PE(θ(𝑖))
⟩,

(11.47)

where ⟨· · · ⟩ denotes an average over posterior samples for θ(𝑖) . This means that
we can obtain the unnormalized probability density as

𝑝(D |HNL,λ,R) ∝
𝑁∏
𝑖=1

𝑍 (𝑖) ⟨
𝑝pop(θ(𝑖) |HNL,λ,R)

𝑝PE(θ(𝑖))
⟩. (11.48)

Now, we will need to obtain the normalization constant, denoted as 𝛼̃, by requiring
that when summed over all observable data sets Eq. (11.44) sums to unity, i.e.,

1
𝛼̃

∫
all obs. data

d𝑁D
𝑁∏
𝑖=1

𝑝(𝐷 (𝑖) |HNL,λ,R) = 1. (11.49)



233

Since the likelihood function 𝑝(𝐷 (𝑖) |HNL,λ,R) is independent of each other,
we have

𝛼̃ =

∫
all obs. data

d𝑁D
𝑁∏
𝑖=1

𝑝(𝐷 (𝑖) |HNL,λ,R)

=

𝑁∏
𝑖=1

∫
all obs. data

d𝐷 (𝑖) 𝑝(𝐷 (𝑖) |λ,R)︸                                 ︷︷                                 ︸
Selection function 𝛼(λ,R)

= 𝛼(λ,R)𝑁 ,

(11.50)

where 𝛼(λ,R) ≡
∫
all obs. data d𝐷 (𝑖) 𝑝(𝐷 (𝑖) |λ,R) is known as the selection func-

tion or detectable fraction for the population model parametrized by λ with a
merger rate density R. We can write the selection function 𝛼(λ,R) as an integral
over all observable data and the event-level parameters θ(𝑖) as

𝛼(λ,R) =
∫

all obs. data
d𝐷 (𝑖)

×
∫

dθ(𝑖) 𝑝(𝐷 (𝑖) |θ(𝑖)) 𝑝pop(θ(𝑖) |HNL,λ,R)

=

∫
dθ(𝑖)

(∫
all obs. data

d𝐷 (𝑖) 𝑝(𝐷 (𝑖) |θ(𝑖))
)

︸                                   ︷︷                                   ︸
detection probability 𝑝det (θ=θ (𝑖) )

× 𝑝pop(θ(𝑖) |HNL,λ,R)

=

∫
dθ(𝑖) 𝑝det(θ(𝑖)) 𝑝pop(θ(𝑖) |HNL,λ,R),

(11.51)

where 𝑝det(θ) is known as the detection probability. The detection probability
can be obtained semianalytically, or empirically estimated by performing an
injection campaign [218, 219, 13, 192]. In Appendix 11.7.1, we give more
details on the numerical computation of the selection function 𝛼.
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To conclude, the full expression of the probability of observing the data set D
under the not-lensed hypothesis is given by

𝑝(D |HNL,λ,R)

=
1

𝛼(λ,R)𝑁
𝑁∏
𝑖=1

𝑝(𝐷 (𝑖) |HNL,λ,R).
(11.52)

11.6.2 Under the lensed hypothesisHL

For the lensed hypothesis HL, we only make one random draw from the source
population distribution 𝑝src, and 𝑁 random draws of the parameters of the lensed
images from the lens population distribution 𝑝lens.

Using the marginalization rule, we write the probability of observing the data set
D under this hypothesis as

𝑝(D |HL,λ,R, γ)

∝
∫

dθ(1) · · · dθ(𝑁) 𝑝(θ(1) , ..., θ(𝑁) |HL,λ,R, γ)

× 𝑝(D |θ(1) , ..., θ(𝑁) ,HL,λ,R, γ).

(11.53)

Recall that we partition the event-level parameters θ(𝑖) into common parameters
θcom and independent parameters θind. As a result, we can write the probability
density as

𝑝(D |HL,λ,R, γ)

∝
∫

dθ(1)com dθ(1)ind · · · dθ
(𝑁)
comdθ(𝑁)ind 𝑝(D |θ(1) , ..., θ(𝑁))

× 𝑝(θ(1)com, ..., θ
(𝑁)
com |HL,λ,R, γ)

× 𝑝(θ(1)ind , ..., θ
(𝑁)
ind |θ

(1)
com, ..., θ

(𝑁)
com,HL,λ,R, γ).

(11.54)

We expect the common parameters to be the same across the 𝑁 events, and that
the independent parameters θind to be distributed according to the same lens
population distribution, i.e., θind ∼ 𝑝pop,ind(θind |γ). We also assume they are
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independent of the common parameters. Therefore, we have

𝑝(D |HL,λ,R, γ)

∝
∫

dθ(1)com dθ(1)ind · · · dθ
(𝑁)
com dθ(𝑁)ind 𝑝(D |θ(1) , ..., θ(𝑁))

× 𝑝pop,ind(θ(1)ind , ..., θ
(𝑁)
ind |γ)𝑝pop,com(θ(1)com |λ,R)

× 𝛿(θ(2)com − θ(1)com) · · · 𝛿(θ(𝑁)com − θ(1)com),

(11.55)

where we impose the (𝑁 − 1) Dirac-delta distribution to enforce the common
parameters to be the same across the 𝑁 events, reducing the dimension of the
integral. Now the expression simplifies to

𝑝(D |HL,λ,R, γ)

∝
∫

dθ(1)com dθ(1)ind · · · dθ
(𝑁)
ind 𝑝(D |θ

(1)
ind , ..., θ

(𝑁)
ind , θ

(1)
com)

× 𝑝pop,ind(θ(1)ind , ..., θ
(𝑁)
ind |γ)𝑝pop,com(θ(1)com |λ,R).

(11.56)

Note that the joint-likelihood function can still be factorized as

𝑝(D |θ(1)ind , ..., θ
(𝑁)
ind , θ

(1)
com)

∝ 𝑝(𝐷 (1) |θ(1)ind , θ
(1)
com) · · · 𝑝(𝐷 (𝑁) |θ(𝑁)ind , θ

(1)
com).

(11.57)

Therefore, we have

𝑝(D |HL,λ,R, γ)

∝
∫

dθ(1)com dθ(1)ind · · · dθ
(𝑁)
ind 𝑝(𝐷 (1) |θ(1)ind , θ

(1)
com) · · ·

× 𝑝(𝐷 (𝑁) |θ(𝑁)ind , θ
(1)
com)

× 𝑝pop,ind(θ(1)ind , ..., θ
(𝑁)
ind |γ)𝑝pop,com(θ(1)com |λ,R).

(11.58)

To evaluate the evidence integral above, one can use nested sampling [120]
to perform a joint-parameter estimation across the 𝑁 events with the chosen
source and lens population distribution, as well as Dirac-delta prior distribution
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to enforce the common parameters to be the same across the events. In particular,
we choose the likelihood function Ljoint-PE in a joint-PE run as

Ljoint-PE = 𝑝(𝐷 (1) |θ(1)ind , θ
(1)
com) · · · 𝑝(𝐷 (𝑁) |θ(𝑁)ind , θ

(1)
com)

=

𝑁∏
𝑗=1

𝑝(𝐷 ( 𝑗) |θ( 𝑗)ind , θ
(1)
com),

(11.59)

and with the joint prior distribution 𝑝joint-PE = 𝑝joint-PE(θ(1)ind , ..., θ
(𝑁)
ind , θ

(1)
com) with

parameters {θ(1)com, θ
(1)
ind , ..., θ

(𝑁)
ind } being sampled over in the joint-PE run.

Still, we will need to find the overall normalization constant 𝛽 by again requiring
when summed over all observable data sets that

1 =

∫
all obs. data

d𝑁D 𝑝(D |HL,λ,R, γ)

=
1
𝛽

∫
all obs. data

d𝑁D
∫

dθ(1)com dθ(1)ind · · · dθ
(𝑁)
ind[

𝑝(𝐷 (1) |θ(1)ind , θ
(1)
com) · · · 𝑝(𝐷 (𝑁) |θ(𝑁)ind , θ

(1)
com)

× 𝑝pop,ind(θ(1)ind , ..., θ
(𝑁)
ind |γ)𝑝pop,com(θ(1)com |λ,R)

]
𝛽 =

∫
all obs. data

d𝑁D
∫

dθ(1)com dθ(1)ind · · · dθ
(𝑁)
ind

𝑝(𝐷 (1) |θ(1)ind , θ
(1)
com) · · · 𝑝(𝐷 (𝑁) |θ(𝑁)ind , θ

(1)
com)

× 𝑝pop,ind(θ(1)ind , ..., θ
(𝑁)
ind |γ)𝑝pop,com(θ(1)com |λ,R).

(11.60)
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The normalization constant 𝛽 = 𝛽(λ,R, γ) can be viewed as a function of the
population models. We can further write this “lensing selection function” as

𝛽(λ,R, γ)

=

∫
all obs. data

d𝑁D
∫

dθ(1)com dθ(1)ind · · · dθ
(𝑁)
ind

× 𝑝(𝐷 (1) |θ(1)ind , θ
(1)
com) · · · 𝑝(𝐷 (𝑁) |θ(𝑁)ind , θ

(1)
com)

× 𝑝pop,ind(θ(1)ind , ..., θ
(𝑁)
ind |γ)𝑝pop,com(θ(1)com |λ,R)

=

∫
dθ(1)com dθ(1)ind · · · dθ

(𝑁)
ind

×
(∫

all obs. data
𝑑𝐷 (1) 𝑝(𝐷 (1) |θ(1)ind , θ

(1)
com)

)
︸                                             ︷︷                                             ︸

𝑝det (θ=θ (1)com∪θ
(1)
ind )

× · · ·

×
(∫

all obs. data
d𝐷 (𝑁) 𝑝(𝐷 (𝑁) |θ(𝑁)ind , θ

(1)
com)

)
︸                                               ︷︷                                               ︸

𝑝det (θ=θ (1)com∪θ
(𝑁 )
ind )

.

× 𝑝pop,ind(θ(1)ind , ..., θ
(𝑁)
ind |γ)𝑝pop,com(θ(1)com |λ,R).

=

∫
dθ(1)com dθ(1)ind · · · dθ

(𝑁)
ind


𝑁∏
𝑗=1

𝑝det(θ = θ
( 𝑗)
com ∪ θ(1)ind)


× 𝑝pop,ind(θ(1)ind , ..., θ

(𝑁)
ind |γ)𝑝pop,com(θ(1)com |λ,R).

(11.61)

Therefore, in order to evaluate the lensing selection function 𝛽, we will need to
perform a (possibly Monte Carlo) integration, evaluated at the chosen population
models. In Appendix 11.7.2, we give more details on the numerical computation
of the selection function 𝛽.



238

In summary, the full expression of the probability of observing the data set D
under the lensed hypothesis is

𝑝(D |HL,λ,R, γ)

=
1

𝛽(λ,R, γ)

∫
dθ(1)com dθ(1)ind · · · dθ

(𝑁)
ind


𝑁∏
𝑗=1

𝑝(𝐷 ( 𝑗) |θ( 𝑗)ind , θ
(1)
com)


× 𝑝pop,ind(θ(1)ind , ..., θ

(𝑁)
ind |γ)𝑝pop,com(θ(1)com |λ,R).

(11.62)

11.7 Appendix: Evaluation of selection functions
Here we explain how to numerically compute the selection functions 𝛼 and
𝛽 under the not-lensed and the lensed hypothesis, respectively. Note that the
numerical values are parametrization invariant, and hence we will be using the
parametrization that is more convenient in terms of computation. A common
technique employed in the evaluation of high-dimensional integral, as in the
case here, is Monte Carlo (MC) integration, where we randomly generate points
inside the integration region for evaluation. We will be using MC integration
extensively here.

11.7.1 Under the not-lensed hypothesis
The selection function under the not-lensed hypothesis 𝛼(λ,R), is given by

𝛼(λ,R) =
∫

all obs. data
d𝐷

∫
dθ 𝑝(𝐷 |θ) 𝑝pop(θ |λ,R)

=

∫
dθ

[∫
d𝐷 Θ(𝜌 − 𝜌th)𝑝(𝐷 |θ)

]
︸                               ︷︷                               ︸

𝑝det (θ)

𝑝pop(θ |λ,R)

=

∫
dθ 𝑝det(θ)𝑝pop(θ |λ,R),

(11.63)

where we have chosen the network SNR threshold 𝜌th to be 12 [209], and Θ(𝑥)
denotes the Heaviside step function.
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We can evaluate this integral using Monte Carlo integration. If we have 𝑁MC

samples of θ drawn from the distribution 𝑝pop(θ |λ,R), then we can simply
approximate the selection function as

𝛼(λ,R) ≈ 1
𝑁MC

𝑁MC∑︁
𝑖=1

𝑝det(θ𝑖). (11.64)

However, for most of the time, it is not trivial to generate samples from 𝑝pop(θ |λ,R).
We can generate a set of fiducial samples {θ}𝑖 that instead follow another distri-
bution 𝑞(θ) that we can sample easily. This is known as importance sampling
(where 𝑞 should be chosen such that it is nonvanishing wherever 𝑝pop is also
nonvanishing). The selection function 𝛼 can be calculated as

𝛼(λ,R) ≈ 1
𝑁MC

𝑁MC∑︁
𝑖=1

[
𝑝det(θ𝑖)

𝑝pop(θ𝑖 |λ,R)
𝑞(θ𝑖)

]
. (11.65)

11.7.2 Under the lensed hypothesis
The selection function under the lensed hypothesis 𝛽(λ,R, γ) is given by

𝛽(λ,R, γ)

=

∫
dθ(1)com dθ(1)ind · · · dθ

(𝑁)
ind


𝑁∏
𝑗=1

𝑝det(θ = θ
( 𝑗)
com ∪ θ(1)ind)


× 𝑝pop,ind(θ(1)ind , ..., θ

(𝑁)
ind |γ)𝑝pop,com(θ(1)com |λ,R).

(11.66)

Here we ignore any kind of observational selection effects, for example due
to detector down-time [220] or finite observation period [179]. Suppose we
are using the parametrization θcom = {𝑚1, 𝑚2,χ1,χ2, 𝛼, 𝛿, 𝜓, 𝜙c} and θind ={
𝜇(1) , 𝜇(2) ,Ξ(1) ,Ξ(2) , 𝑧

}
. We also ignore the phasing effect due to lensing to the

detectability of images [171]. In particular, we can separate the integration over
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the source redshift 𝑧

𝛽(λ,R, γ)

=

∫
d𝑧 𝑝lens(𝑧 |HL,R)

{∫
d {𝑚1, 𝑚2,χ1,χ2, 𝛼, 𝛿, 𝜓, 𝜙c}

× 𝑝src(𝑚1, 𝑚2,χ1,χ2 |λ)𝑝ext(𝛼, 𝛿, 𝜓, 𝜙c)

×
∫

d
{
𝜇(1) , 𝜇(2)

}
𝑝lens(𝜇(1) , 𝜇(2) |γ)

[
𝑝det(θ(1))𝑝det(θ(2))

]}
,

(11.67)

where the dependence on the image types Ξ(1) ,Ξ(2) are trivially integrated over
since

∫
dΞ(𝑖) 𝑝lens(Ξ(𝑖)) = 1.

Note that the event-level parameters θ(𝑖) consist of

θ(𝑖) =
{
𝑚1, 𝑚2,χ1,χ2, 𝛼, 𝛿, 𝜓, 𝜙c, 𝜇

(𝑖) , 𝑧
}
.

This means that we can evaluate the inner integral enclosed by the curly brack-
ets first using Monte Carlo integration. Again, if we have 𝑁MC samples of
θ drawn from the joint distribution 𝑝src(𝑚1, 𝑚2,χ1,χ2 |λ)𝑝ext(𝛼, 𝛿, 𝜓, 𝜙c) and
𝑝lens(𝜇(𝑖) |γ) with a given redshift 𝑧, then we can simply approximate the inner
integral 𝜖 (𝑧) as

𝜖 (𝑧) ≈ 1
𝑁MC

𝑁MC∑︁
𝑖=1


𝑁∏
𝑗=1

𝑝det(θ( 𝑗)𝑖 |𝑧)
 . (11.68)

Figure 11.11 shows how 𝜖 (𝑧) depends on the redshift 𝑧. We see that 𝜖 (𝑧)
decreases as we go higher in 𝑧. However, the contribution of 𝜖 (𝑧) to the 𝛽
selection function integral is weighted by 𝑝𝑧 (𝑧) (dotted line) which peaks at
𝑧 ∼ 3 for the particular merger-rate density model and lens model we used in the
calculation (cf. Sec. 11.3).

We can employ the same Monte Carlo integration technique to evaluate the
outer integral over 𝑧. Suppose we have 𝑁𝑧 samples of 𝑧 ∼ 𝑝𝑧 (𝑧), then we can
approximate the entire 𝛽(λ,R, γ) integral as

𝛽(λ,R, γ) ≈ 1
𝑁𝑧

𝑁𝑧∑︁
𝑘=1

1
𝑁MC

𝑁MC∑︁
𝑖=1


𝑁∏
𝑗=1

𝑝det(θ( 𝑗)𝑖 |𝑧𝑘 )
 . (11.69)
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Figure 11.11: The inner integral 𝜖 (𝑧) (solid line) as a function of the source
redshift 𝑧 evaluated using Monte Carlo integration. We see that 𝜖 (𝑧) decreases
as we go further in 𝑧. However, the contribution of 𝜖 (𝑧) to the 𝛽 selection
function integral is weighted by 𝑝𝑧 (𝑧) (dotted line) which peaks at 𝑧 ∼ 3 for the
particular merger rate density model and lens model we used in the calculation
(cf. Sec. 11.3).

11.8 Appendix: Derivation of the arrival time probability density function
under the not-lensed hypothesis

Here we give a derivation of the arrival time probability density function under
the not-lensed hypothesis we used in the main text, namely

𝑝(Δ𝑡 |HNL) =
2
𝑇obs

(
1 − Δ𝑡

𝑇obs

)
. (11.70)

Given that we have observed 𝑁obs events within the interval (0, 𝑇obs], if we
assume that the arrival of the events follows a Poisson process with a mean rate
𝑟, then we can write down the joint probability distribution of the 𝑁obs ordered
arrival times 𝑡1, 𝑡2, . . . , 𝑡𝑁obs (such that 𝑡1 < 𝑡2 < . . . ) conditioned that we have
observed 𝑁obs events as
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𝑝(𝑡1, 𝑡2, . . . , 𝑡𝑁obs , 𝑡1 < 𝑡2 < · · · < 𝑡𝑁obs |𝑁obs, 𝑟)

=
𝑝(𝑡1, 𝑡2, . . . , 𝑡𝑁obs , 𝑡1 < 𝑡2 < · · · < 𝑡𝑁obs , 𝑁obs |𝑟)

𝑝(𝑁obs |𝑟)

=
𝑟 exp(−𝑟𝑡1) . . . 𝑟 exp

[
−𝑟 (𝑡𝑁obs − 𝑡𝑁obs−1)

]
exp

[
−𝑟 (𝑇obs − 𝑡𝑁obs)

]
(𝑟𝑇obs)𝑁obs exp(−𝑟𝑇obs)/𝑁obs!

=
𝑁obs!
𝑇
𝑁obs
obs

,

(11.71)

where the second line uses the fact that for a Poisson process one can partition
the time interval into many smaller chunks where each chunk still follows the
same Poisson process, and that the interarrival time follows an exponential dis-
tribution. The factor exp

[
−𝑟 (𝑇obs − 𝑡𝑁obs)

]
is due to the requirement that there

is no event between (𝑡𝑁obs , 𝑇obs]. Note that there are exactly 𝑁obs! combinations
of unordered arrival times

{
𝑡1, 𝑡2, . . . , 𝑡𝑁obs

}
that would lead to the same ordered

times. Therefore the joint probability distribution of the 𝑁obs unordered arrival
times

{
𝑡1, 𝑡2, . . . , 𝑡𝑁obs

}
is simply

𝑝(𝑡1, 𝑡2, . . . , 𝑡𝑁obs |𝑁obs, 𝑟) =
(

1
𝑇obs

)𝑁obs

. (11.72)

Note that we are interested in the probability distribution of the time delay
between arbitrary two events among these 𝑁obs ≥ 2 events. If we consider the
unordered set of arrival times, without loss of generality we can assume that
the arrival times corresponding to the two events are 𝑡1 and 𝑡2, respectively. The
marginalization over

{
𝑡3, 𝑡4, . . . , 𝑡𝑁obs

}
is trivial since the joint probability density

does not depend on 𝑡𝑖, and the marginalized density is just

𝑝(𝑡1, 𝑡2 |𝑁obs, 𝑟) =
(

1
𝑇obs

)2
. (11.73)

Note that since 0 < 𝑡1, 𝑡2 ≤ 𝑇obs, this probability distribution is simply two
uniform distributions multiplied together, i.e.,

𝑝(𝑡1 |𝑁obs, 𝑟) = 𝑝(𝑡2 |𝑁obs, 𝑟) =
(

1
𝑇obs

)
. (11.74)
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Let us define a new variable Δ𝑡 = |𝑡2 − 𝑡1 | > 0. The cumulative distribution
function 𝐹 (Δ𝑡) ≡ Pr( |𝑡2 − 𝑡1 | < Δ𝑡) can be found using simple coordinate
geometry by noting that the support of the joint distribution of 𝑝(𝑡1, 𝑡2 |𝑁obs, 𝑟)
forms a square of length 𝑇obs (see Fig. 11.12). If we normalize the length by 𝑇obs,
the condition that Δ𝑡 > 0 cuts out two triangles of area (1−Δ𝑡/𝑇obs)2/2 from the
unit square. Therefore,

𝐹 (Δ𝑡) = Pr(−Δ𝑡 < 𝑡2 − 𝑡1 < Δ𝑡)

= 1 − 2
(1 − Δ𝑡/𝑇obs)2

2
.

(11.75)
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Figure 11.12: A visualization of the integration region over the 𝑡1/𝑇obs − 𝑡2/𝑇obs
plane to obtain the distribution 𝑝(Δ𝑡 |HNL). The condition that Δ𝑡 > 0 carves out
two triangles of equal area (1 − Δ𝑡/𝑇obs)2/2 from the unit square. In the figure,
we put Δ𝑡/𝑇obs = 1/2 for demonstration.

The desired probability density is a triangular distribution, i.e.,

𝑝(Δ𝑡 |HNL) =
d𝐹
dΔ𝑡

=
2
𝑇obs

(
1 − Δ𝑡

𝑇obs

)
,

(11.76)
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where the distribution is independent of 𝑟 and 𝑁obs. This can be checked against
simulations. Figure 11.13 shows two histograms of Δ𝑡 from simulations with
𝑁obs = 10 and 𝑁obs = 50, respectively. We can see that the distributions for these
two cases are indeed the same, and are well described by Eq. (11.70).

10−1 100 101 102 103

∆t [s]

10−4

10−3

p(
∆
t|H

N
L
)

analytical expression

Tobs = 103 s

simulation, Nobs = 10

simulation, Nobs = 50

Figure 11.13: The probability density 𝑝(Δ𝑡 |HNL) for the time delayΔ𝑡 under the
not-lensed hypothesis from an analytical expression (dot-dashed line) and from
simulations (blue and green solid lines). For visualization, we set 𝑇obs = 103

s (dotted line) when evaluating the analytical expression and performing the
simulations. We see that the distributions are independent of 𝑁obs and well-
described by the analytical expression in Eq. (11.70).

11.9 Appendix: Derivation of the poor-man’s prior on the relative magni-
fication

Here we will derive the poor-man’s prior on the relative magnification 𝜇rel ≡
𝜇(2)/𝜇(1) we used in the main text, namely

𝑝(𝜇rel) =

𝜇rel for 𝜇rel ≤ 1

𝜇−3
rel for 𝜇rel > 1

, (11.77)
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if we assume that the absolute magnification follows the probability distribution

𝑝(𝜇) =


2𝜇2
min𝜇

−3 for 𝜇 ≥ 𝜇min

0 otherwise
, (11.78)

where 𝜇min > 0.

Note that the probability distribution of the ratio of two random variables
𝜇(1) , 𝜇(2) can be found by evaluating the integral

𝑝(𝜇rel ≡ 𝜇(2)/𝜇(1))

=

∫ +∞

−∞
d𝜇(1) |𝜇(1) | 𝑝(𝜇(1)) 𝑝(𝜇(2) = 𝜇rel𝜇

(1)).
(11.79)

We can divide the integral into two cases; when 𝜇rel > 1 and when 𝜇rel ≤ 1. For
the former case, the condition that 𝜇(2) > 𝜇min is trivially satisfied. Therefore
when 𝜇rel > 1, the lower limit of the integral is simply 𝜇min and the integral is
just

𝑝(𝜇rel) =
∫ +∞

𝜇min

d𝜇(1) 𝜇(1) (2𝜇2
min)

2
(
𝜇(1)

)−3 (
𝜇rel𝜇

(1)
)−3

= 4𝜇4
min

[∫ +∞

𝜇min

d𝜇(1)
(
𝜇(1)

)−5
]
𝜇−3

rel

= 𝜇−3
rel .

(11.80)

For the latter case, 𝜇(1) ≥ 𝜇min/𝜇rel for the integral to not vanish. Therefore, the
lower limit of the integral becomes 𝜇min/𝜇rel instead, and

𝑝(𝜇rel) =
∫ +∞

𝜇min/𝜇rel

d𝜇(1) 𝜇(1) (2𝜇2
min)

2
(
𝜇(1)

)−3 (
𝜇rel𝜇

(1)
)−3

= 4𝜇4
min

[∫ +∞

𝜇min/𝜇rel

d𝜇(1)
(
𝜇(1)

)−5
]
𝜇−3

rel

= 4𝜇4
min

𝜇4
rel

4𝜇4
min
𝜇−3

rel

= 𝜇rel.

(11.81)
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Note that this poor-man’s prior for 𝜇rel does not depend on the value of 𝜇min.
Again, it can be checked against simulations. Figure 11.14 shows the results of
two simulations, assuming that 𝜇rel = 2 and 𝜇rel = 10, respectively. We see that
the poor-man’s prior for 𝜇rel is indeed independent of the value of the minimum
value of the absolute magnification 𝜇min.
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Figure 11.14: The poor-man’s prior for the relative magnification. Numerical
simulations were performed with different values of 𝜇min to confirm the ana-
lytical expression in Eq. (11.77), and that the distribution (both the shape and
normalization) does not depend on the value of 𝜇min.
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C h a p t e r 12

SEARCH FOR GRAVITATIONAL-LENSING SIGNATURES IN
THE FIRST HALF OF THE THIRD OBSERVING RUN OF THE

LIGO-VIRGO NETWORK

This chapter contains work from

LIGO Scientific, VIRGO Collaboration. “Search for Lensing Signa-
tures in the Gravitational-Wave Observations from the First Half of
LIGO–Virgo’s Third Observing Run”. In: Astrophys. J. 923.1 (2021),
p. 14. doi: 10 . 3847 / 1538 - 4357 / ac23db. arXiv: 2105 . 06384
[gr-qc].
R. K. L. L performed the analyses for identifying strongly lensed bi-
nary black hole signals using the code hanabi and wrote part of the
manuscript.

12.1 Introduction
Strong lensing, in addition to magnification, can produce multiple images of a
single astrophysical event. These multiple images appear at the gravitational-
wave (GW) detectors as repeated events. The images will differ in their arrival
time and amplitude [221, 190, 182, 168, 189]. The sky location is the same
within the localization accuracy of GW detectors, given that the typical angular
separations are of the order of arcseconds. Additionally, lensing can invert or
Hilbert transform the image [175, 176], introducing a frequency-independent
phase shift. This transformation depends on the image type, set by the lensing
time delay at the image position: Type-I, II, and III correspond to a time-delay
minimum, saddle point, and maximum, respectively [176]. The multiple-imaged
waveforms {ℎ̃𝐿

𝑗
} of a single signal ℎ̃ then satisfy [175, 176]

ℎ̃𝐿𝑗 ( 𝑓 ; 𝜃, 𝜇 𝑗 ,Δ𝑡 𝑗 ,Δ𝜙 𝑗 ) =
√︃
|𝜇 𝑗 | ℎ̃( 𝑓 ; 𝜃,Δ𝑡 𝑗 ) exp

(
𝑖 sign( 𝑓 )Δ𝜙 𝑗

)
, (12.1)

https://doi.org/10.3847/1538-4357/ac23db
https://arxiv.org/abs/2105.06384
https://arxiv.org/abs/2105.06384
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where
√︁
|𝜇 𝑗 | is the lensing magnification experienced by the image 𝑗 and Δ𝜙 𝑗 =

−𝜋𝑛 𝑗/2 is the Morse phase, with index 𝑛 𝑗 = 0, 1, 2 for Type-I, II, and III images.
ℎ̃( 𝑓 ; 𝜃,Δ𝑡 𝑗 ) is the original (unlensed) waveform before lensing, but evaluated
as arriving with a time delay Δ𝑡 𝑗 . The multi-image hypothesis then states that
most parameters measured from the different lensed images of the same event
are consistent.

The relative importance of different parameters for the overall consistency under
the multi-image hypothesis will vary for different events. For example, the sky
localization match will have greater relevance for well-localized, high-signal-
to-noise ratio (SNR) events. Similarly, the overlap in measured chirp mass
(1 + 𝑧)Mc = (1 + 𝑧) (𝑚1𝑚2)3/5/(𝑚1 + 𝑚2)1/5, where 𝑧 is the redshift, will be
more significant when the uncertainty in that parameter is lower, although in
this case the underlying astrophysical mass distribution will play a key role.
The similarities in other parameters such as mass ratios or spins will be more
important when they depart from the more common astrophysical expectations.
Evidence of strong lensing could also be acquired with a single Type-II (saddle
point) image if the induced waveform distortions in the presence of higher modes,
precession, or eccentricity are observed [176]. Such evidence is unlikely to be
observed without next-generation detectors [171].

Previous studies have searched for multiple images in the GWTC-1 catalog [182,
185, 168, 189, 183, 184] covering events in the first observing run (O1) and the
second observing run (O2). The first search for GW lensing signatures in O1
and O2 focused on the posterior overlap of the masses, spins, binary orientation
and sky positions [182] and the consistency of time delays with expectations
for galaxy lenses, but found no conclusive evidence of lensing. The search did
uncover a candidate pair GW170104–GW170814 with a relatively high Bayes
factor of ≳ 200. Still, that study disfavored the candidate due to its long time
delay and the low prior probability of lensing. In parallel, Broadhurst, Diego, and
Smoot [185] suggested that the candidate pair GW170809–GW170814 could be
lensed, but this claim is disfavored by more comprehensive analyses [182, 184].
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Both Li et al. [168] and McIsaac et al. [189] performed searches for sub-threshold
counterparts to the GWTC-1 events, identifying some marginal candidates but
finding no conclusive evidence of lensing. More recently, Dai et al. [183] and
Liu, Hernandez, and Creighton [184] searched for lensed GW signals including
the analysis of the lensing image type, which can be described through the Morse
phases, Δ𝜙 𝑗 in Eq. (12.1). These analyses have revisited the pair GW170104–
GW170814 and demonstrated that the Morse phase is consistent with the lensed
expectation but would require Type-III (time-delay maximum) images, which
are rare from an observational standpoint. Dai et al. [183] also pointed out that
a sub-threshold trigger, designated by them as GWC170620, is also consistent
with coming from the same source. However, the required number and type
of images for this lens system make the interpretation unlikely given current
astrophysical expectations. Also, two same-day event pairs in the first half of the
third observing run (O3a) (on 2019 May 21 and 2019 August 28) have already
been considered elsewhere, but were both ruled out due to vanishing localization
overlap [193, 213].

In this chapter, we perform a more detailed joint-parameter estimation (PE)
analysis for promising pairs in O3a reported by the posterior overlap analysis
in Ref. [222], considering all potential correlations in the full parameter space
and the image type. This joint analysis provides a more solid determination
of the lensing probability for a given GW pair. According to the predictions
of the expected lensing time delays and the rate of galaxy and galaxy cluster
lensing [223, 178, 183], we expect it to be less likely for counterpart images of
the events in O3a to be detected in O1 or O2.1 Thus, we only search for multiple
images within O3a itself.

12.2 Methods
Here we follow up on the most significant pairs of events from the posterior-
overlap analysis reported in Ref. [222] with a more detailed but more computa-

1Relative lensing rates for galaxies and clusters are given in Tab. 1 of Ref. [222].
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tionally demanding joint-PE analysis. The benefit of this analysis is that it allows
for more stringent constraints on the lensing hypothesis by investigating poten-
tial correlations in the full parameter space of binary black hole (BBH) signals,
instead of marginalizing over some parameters. Moreover, it also includes a test
for the lensing image type by incorporating lensing phase information.

We perform our analysis here using a bilby-based pipeline, hanabi [224]. Unlike
the posterior-overlap analysis, the joint-PE analysis does not start from existing
posterior samples. Instead, we start the inference directly using the detector strain
data. We follow the same data selection choices (calibration version, available
detectors for each event, and noise subtraction procedures) as in the original
GWTC-2 analysis [10], with special noise mitigation steps (glitch subtraction
and frequency range limitations) taken for some events as listed in Table V of
that paper. In this section, we first describe how we quantify the evidence for the
strong lensing hypothesis, then detail the pipeline and finally present the results.

12.2.1 The coherence ratio and the Bayes factor
There will be three types of outputs for the joint-PE analysis. First, we compute
a coherence ratio CL

U, which is the ratio of the lensed and unlensed evidences,
neglecting selection effects and using default priors in the joint-PE inference. We
treat this as a ranking statistic, which quantifies how consistent two signals are
with the lensed hypothesis. Large coherence ratios indicate that the parameters of
the GWs agree with the expectations of multiple lensed events. This occurs, for
example, when the masses and sky localization coincide. However, the coherence
ratio does not properly account for the possibility that the parameters overlap by
chance.

The likelihood that GW parameters overlap by chance sensitively depends on
the underlying population of sources and lenses. For example, if there existed
formation channels that produced GWs with similar frequency evolutions (as
expected of lensing), the likelihood of an unlensed event mimicking lensing
would increase substantially. Thus, we introduce a second output, the population-
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weighted coherence ratio CL
U |pop, which incorporates prior information about the

populations of BBHs and lenses. The value of CL
U |pop is subject to the choice of

both the BBH and lens models.

Similarly, the probability that two signals agree with the multiple-image hypoth-
esis is altered through selection effects, as some masses and sky orientations are
preferentially detected. Thus, we also include the selection effects, which gives
us our final output, the Bayes factor BL

U. The BL
U quantifies the evidence of the

strong lensing hypothesis for a given detector network and population model.
For the full derivations and detailed discussion on the difference between the
coherence ratio and the Bayes factor, see Ref. [224].

12.2.2 The hanabi pipeline
The hanabi pipeline adopts a hierarchical Bayesian framework that models the
data generation process under the lensed and the unlensed hypothesis, which is
covered extensively in Chapter 11. This pipeline uses the IMRPhenomXPHM
waveform [199], which models the full inspiral–merger–ringdown for generic
precessing binaries including both the dominant and some sub-dominant multi-
pole moments.

hanabi differs from the LALInference-based pipeline in Ref. [184] in the
treatment of the Morse phase. Here the lensing phase is directly incorporated
in the frequency-domain waveform, accounting for any possible distortion of
Type-II images [225, 176, 224]. Moreover, the lensed probability is computed
by considering all possible combinations of image types with a discrete uniform
prior [224]. For this reason, hanabi only produces one evidence per pair, and
not one for each discrete phase difference as the LALInference-based pipeline.
Unlike the LALInference-based pipeline, hanabi samples the observed masses
in a uniform distribution. The mass ranges are different for each event pair, but
an overall reweighting is applied later (see below). The rest of the prior choices
for the intrinsic parameters are the same as for the LALInference-based pipeline
with the addition of a discrete uniform prior on the Morse phase and isotropic
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spin priors.

In addition to computing the joint-PE coherence ratio, hanabi also incorporates
prior information about the lens and BBH populations, as well as selection
effects. In particular, the BBH population is chosen to follow a Power Law +
Peak model in the primary mass following the best-fit parameters in Abbott et al.
[10]. Similarly, the secondary mass is fixed to a uniform distribution between the
minimum and the primary mass. hanabi also uses an isotropic spin distribution
and merger rate history following Model A in Sec. 3 in Ref. [222]. The lens
population is modeled by the optical depth described in Hannuksela et al. [182]
and a magnification distribution 𝑝(𝜇) ∝ 𝜇−3 for 𝜇 ≥ 2. hanabi is thus able to
output CL

U, CL
U |pop and BL

U. However, hanabi does not include any preference
for a particular type of image, i.e., hanabi uses a discrete, uniform prior for the
Morse phase shift Δ𝜙 𝑗 .

12.3 Results
Within the O3a events, the LALInference-based pipeline reports 11 pairs with
log10(CL

U) > 4 as shown in Tab. 3 of Ref. [222], indicating high parameter
consistency. We have checked that the results of the LALInference-based
pipeline are qualitatively consistent with those from hanabi. This reinforces our
previous argument that the shift in the coalescence phase is a good approximate
description of the lensing Morse phase given that in the present catalog most
events are dominated by the ℓ = |𝑚 | = 2 multipole moments. However, because
of the pair-dependent prior choices of hanabi, we do not present its raw CL

U
results in Table 12.1.

We then include our prior expectation on the properties of the lensed images
(derived from our BBH and lens population priors) and selection effects when
computing the population-weighted hanabi coherence ratio and the Bayes factors
BL

U. The results are summarized in Table 12.1. The event pair GW190728_06–
GW190930_13, which seemed the most promising from the overlap analysis in
Sec. 5.1 of Ref. [222], is disfavored by the hanabi pipeline. After the inclusion
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of the population prior and selection effects, none of the event pairs display a
preference for the lens hypothesis (log10 BL

U < 0).

The population-weighted coherence ratio and the Bayes factor are subject to the
BBH and lens model specifications. The population properties are not inferred
taking into account the possibility of lensing. This introduces an inevitable
bias, but it can be justified a posteriori to be a good approximation given the
expected low rate of strong lensing. Additionally, the population properties
include significant uncertainties in the hyper-parameter estimates and presume
a population model. In any case, to quantify this intrinsic uncertainty in the
modeling, we consider different choices for the mass distribution and merger
rate history. Varying the maximum BBH mass and the redshift evolution of the
merger rate using the 𝑅min(𝑧) and 𝑅max(𝑧) of Model A in Sec. 3 of Ref. [222], we
find that the strong lensing hypothesis is always disfavored. While these results
are subject to assumptions on prior choices, our results are sufficient to reject
the strong lensing hypothesis: Even if other prior choices favored the lensing
hypothesis, the evidence would at best be inconclusive.

The impact of selection effects is considerable. Among other reasons, this is
because present GW detectors preferentially observe higher mass events [226],
making coincidences in observed masses more probable. Along the same lines,
given the specific antenna patterns of the current network of detectors, GW
events are preferentially seen in specific sky regions with characteristic elongated
localization areas [220], which favors the overlap between different events.

We also reanalyze the GW170104–GW170814 event pair in the O2 data previ-
ously studied by Dai et al. [183] and Liu, Hernandez, and Creighton [184]. Using
the LALInference-based pipeline, Liu, Hernandez, and Creighton [184] found
that the coherence ratio, including selection effects associated with the Malmquist
bias [227], is log10(CL

U) ≈ 4.3 for a 𝜋/2 coalescence phase shift. However, when
including together population and selection effects with hanabi, we find that the
evidence drastically reduces to a Bayes factor of log10(BL

U) ≈ −2.0.
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In addition to the Bayes factor, it is important to contrast the recovered number
of candidate lensed pairs and their properties with astrophysical expectations. In
Sec.3.1 of Ref. [222], it was found that the relative rate of GW events with at least
two strongly lensed images above the detection threshold is below ∼ 1.3 × 10−3

for all considered BBH population models. Thus, the lensing rate estimates sig-
nificantly disfavor the lensing hypothesis a priori; even a moderate Bayes factor
would not by itself yet make a compelling case for strong lensing. Additionally,
the type of images, arrival times, and magnifications provide additional informa-
tion on the lensing interpretation’s plausibility. For example, a quantification of
the time-delay prior can be computed by multiplying the coherence ratio by Rgal.
However, our final conclusions do not depend on the prior information about the
lensing time delays or the prior odds against lensing: the prior lensing knowledge
further disfavors the strong lensing hypothesis, but we did not use it to rule out
any candidates.



255

log10( CL
U
��
pop) log10(BL

U)
Event 1 Event 2 hanabi hanabi

GW190412 GW190708_23 −6.6 −9.7
GW190421_21 GW190910_11 −0.7 −3.8
GW190424_18 GW190727_06 −0.8 −3.9
GW190424_18 GW190910_11 −0.8 −3.9
GW190513_20 GW190630_18 −2.4 −5.5
GW190706_22 GW190719_21 −0.3 −3.4
GW190707_09 GW190930_13 −9.4 −12.5
GW190719_21 GW190915_23 −0.7 −3.8
GW190720_00 GW190728_06 −6.7 −9.8
GW190720_00 GW190930_13 −9.2 −12.3
GW190728_06 GW190930_13 −8.5 −11.6
GW190413_05 GW190424_18 −1.6 −4.7
GW190421_21 GW190731_14 −0.2 −3.3
GW190424_18 GW190521_07 −2.0 −5.1
GW190424_18 GW190803_02 −1.0 −4.1
GW190727_06 GW190910_11 −1.4 −4.5
GW190731_14 GW190803_02 −0.9 −4.0
GW190731_14 GW190910_11 −1.2 −4.3
GW190803_02 GW190910_11 −0.1 −3.2

Table 12.1: Summary of joint-PE results for event pairs in O3a. We select
those events with posterior overlap ranking statistic larger than 50 as reported in
Ref. [222]. For each pair of events presented in the first two columns, the third and
the fourth columns correspond to the hanabi results for the population-weighted
coherence ratio CL

U |pop and the Bayes factor BL
U. All quantities are given in log10.

All high coherence ratio events display a small Bayes factor when including the
population priors and selection effects. Table reproduced from Ref. [222].

12.4 Conclusion
Although we do not find evidence of strong lensing, future electromagnetic
follow-up of the candidates could allow for independent support for the hypothesis
if we identified a lensed counterpart galaxy to these events [228, 223, 229, 230,
211, 231, 232, 233]. This identification could take place by matching GW and



256

electromagnetic image properties when four GW images are available [211].
With two images, the number of hosts could also be constrained [228, 233],
but to a lesser degree due to degeneracies with the lens and source alignment
and uncertainties introduced by micro/millilensing — although strong lensing by
galaxy clusters might allow us to identify a single cluster candidate [223, 229,
230, 231, 232].
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C h a p t e r 13

SEARCH FOR GRAVITATIONAL-LENSING SIGNATURES IN
THE FULL THIRD OBSERVING RUN OF THE LIGO-VIRGO

NETWORK

This chapter contains work from

LIGO Scientific, VIRGO, KAGRA Collaboration. “Search for gravitational-
lensing signatures in the full third observing run of the LIGO-Virgo net-
work”. Submitted to Astrophys. J. arXiv: 2304.08393 [gr-qc].
R. K. L. L performed the analyses for identifying strongly lensed bi-
nary black hole signals using the code hanabi and wrote part of the
manuscript.

13.1 Introduction
In this chapter, we search for pairs of gravitational-wave (GW) events consistent
with the strong-lensing hypothesis in the third observing run (O3). Some of these
pairs will have sufficiently strong amplitudes that can be identified as confident
detections (super-threshold) by the search pipelines used in Abbott et al. [10,
11, 12], while others may have not been identified as signals (sub-threshold)
because of the relative de-magnification. Our searches will include both pairs1
among super-threshold GW events, as well as pairs among a super-threshold and
a sub-threshold GW event.

Similar to the analysis of data for the first half of the third observing run (O3a)
in Ref. [222] and Chapter 12, we perform a joint parameter estimation (PE)
analysis for the most relevant candidate lensing pairs. We follow up on the pairs
that display low false-positive probability in their posterior overlap or machine
learning (ML) classification scheme as reported in Ref. [234]. These are pairs

1A pair is the minimum association, but higher multiplicities are also possible.

https://arxiv.org/abs/2304.08393
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within the whole of O3, but we only consider here those with at least one event in
the second half of the third observing run (O3b) since pairs in O3a were studied
in Abbott et al. [222].

13.2 Methods
Here we use the hanabi [224] pipeline, which implements the Bayesian statis-
tical framework described in Chapter 11. It uses the nested sampling algorithm
dynesty [202], and implement the joint PE with the help of bilby [200, 235].
hanabi [224] first performs a joint inference on a signal pair by constructing
a joint likelihood function that is a product of the likelihood function for each
individual event, with a joint prior distribution. The latter is defined for a set
of joint parameters that can simultaneously describe both signals if they are
truly lensed, for example, the masses and the spins, as well as a set of param-
eters that are different for each of the signals such as the time of arrival, the
apparent luminosity distance, and the Morse phase factor associated to each
of the lensed signals. The joint parameter space is explored with the package
hanabi.inference [224]. The inference result is then reweighted with an as-
trophysically motivated prior distribution; for example, the astrophysical prior
distribution for the redshifted component masses would be dependent on both
the population model for the intrinsic binary black hole (BBH) masses and the
redshift distribution of the sources. However, the true source redshift cannot
be determined from GW observations alone since the true source redshift is
degenerate with the magnification from strong lensing. To compute the Bayes
factor BL

U, an indicator of the preference of the lensed hypothesis L over the
unlensed hypothesis U, the source redshift which serves as a hyper-parameter for
the signal pair must be marginalized over. Selection effects enter as a normal-
ization constant to the marginal data likelihood. This procedure is implemented
in hanabi.hierarchical with the help of gwpopulation [236]. The ratio of
unnormalized evidences calculated under the lensed hypothesis and the unlensed
hypothesis using this astrophysical prior is referred to as the population-weighted
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coherence ratio CL
U
��
pop, while the ratio of normalized evidences that accounts for

both population prior and selection effects is referred to as the Bayes factor BL
U

in this analysis. We follow our fiducial singular isothermal sphere (SIS) lensing
model when computing the magnification prior [222]. This analysis however
does not impose any informative prior on the time delay or the image types from
the lensing model.

In particular, the analysis presented here uses IMRPhenomXPHM [199] as the
waveform model, with an additional Morse phase applied to each of the waveform
polarizations in the frequency domain. Other inputs, such as the power spectral
density estimates and the calibration envelopes, are chosen to match the analyses
done in the GWTC-3 catalog paper [12]. Following the same prescriptions of
the other analyses, we fix the BBH population model to the Power-Law + Peak
model for the primary masses and the merger rate history to Madau–Dickinson
star-formation rate [237] normalized by the median GWTC-3 rate [14].

13.3 Results
Our main results are presented in Fig. 13.1, where the left column indicates the
event pairs and the horizontal axis their BL

U. There we can observe that none
of the event pairs shows support for the lensing hypothesis, i.e., all BL

U < 1.
The pair with highest BL

U is GW190620_030421 – GW200216_220804, for an
evidence against lensing of ∼ 1/100 with the fiducial merger rate density model
following the Madau-Dickinson star-formation rate. As a robustness check of how
using different merger rate density models would change the results, we repeat
the calculations using two more models, namely 𝑅min(𝑧) and 𝑅max(𝑧) from our
previous O3a analysis [222] that minimally and maximally bracket many existing
population-synthesis results [238, 239, 240, 241]. We see that while the exact
values for the Bayes factor change with the use of different merger rate density
models, the conclusion remains that there is no support for the lensing hypothesis
in any of the event pairs analyzed. To further assess the significance of these pairs
we also include a color code to indicate the probability of having an astrophysical
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origin 𝑝pair
astro, defined as the product of the highest 𝑝astro of each event reported

in the GWTC-3 catalog paper [12] by different pipelines. In conclusion, we find
no evidence of multiply imaged events.
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U

GW190413 13−GW191109 01
GW190413 05−GW200209 08
GW190413 05−GW200219 09
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GW190620 03−GW200216 22
GW190701 20−GW200220 12
GW190803 02−GW200219 09
GW190805 21−GW190916 20
GW190929 01−GW200216 22
GW190930 13−GW191105 14
GW191103 01−GW191105 14
GW191222 03−GW200128 02
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Figure 13.1: Bayes factors BL
U from hanabi for the highest-ranked multiple-

image candidate pairs. As a check on the robustness of our results, we show the
Bayes factors calculated using three different merger rate density models, namely
the fiducial model tracking the Madau–Dickinson star-formation rate [237], and
also the 𝑅min(𝑧) and 𝑅max(𝑧) model introduced in Abbott et al. [222]. The
color for each marker represents the value of 𝑝pair

astro for each pair, which is the
probability that both of the signals from a pair are of astrophysical origins and
not from terrestrial sources.

13.4 Conclusion
We have extended the search for lensing signatures to all BBH candidates with
a probability of astrophysical origin higher than 0.5 from O3b [12]. Interesting
sub-threshold/super-threshold pairs and pairs formed from two super-threshold
events with a false-positive probability from either the posterior overlap analysis
or the ML classification smaller than 10−2 as reported in Ref. [234] were further
analyzed for their probability of being from a single, strongly lensed source by
conducting full joint Bayesian inference analyses that take population priors and
selection effects into account. We found no pairs that show significant evidence
for strong lensing.
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C h a p t e r 14

FOLLOW-UP ANALYSES TO THE SEARCH FOR STRONGLY
LENSED GRAVITATIONAL-WAVE SIGNALS FROM THE
FULL THIRD OBSERVING RUN OF THE LIGO-VIRGO

NETWORK

This chapter contains work from

J. Janquart et al. “Follow-up Analyses to the O3 LIGO-Virgo-KAGRA
Lensing Searches”. Submitted to Mon. Not. Roy. Astron. Soc. arXiv:
2306.03827 [gr-qc].
R. K. L. L performed the follow-up analyses on the two pairs of binary
black hole merger signals highlighted in this paper using the code hanabi
and wrote part of the manuscript.

R. K. L. Lo. “denmarf: a Python package for density estimation using
masked autoregressive flow”. Submitted to J. Open Source Softw. doi:
10.48550/arXiv.2305.14379. arXiv: 2305.14379 [astro-ph.IM].

14.1 Introduction
In this chapter, we present follow-up analyzes that could be applied to assess
the significance of possibly lensed gravitational-wave (GW) events and ascertain
what information may be extracted about the lens-source system, and apply these
analyzes to two candidate event pairs found in the third observing run (O3) and
reported in Ref. [234] as demonstrations, even if these signals did not yield a
high significance for any of the lensing hypotheses. Applying these additional
analyzes does not lead to any additional evidence for lensing in the candidates that
have been examined. However, it does provide important insight into potential
avenues to deal with high-significance candidates in future observations.

First, we analyze the GW191103–GW191105 pair for strong lensing, which is
discarded in Ref. [234] only after the inclusion of both the population priors

https://arxiv.org/abs/2306.03827
https://doi.org/10.48550/arXiv.2305.14379
https://arxiv.org/abs/2305.14379
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and selection effects. Moreover, since some fainter counterparts are likely to be
present in a strongly-lensed multiplet, we also follow up on an additional strongly-
lensed candidate containing a super-threshold event GW191230_180458 and a
weaker “sub-threshold” event LGW200104_184028 found by the sub-threshold
targeted search for lensed counterparts [168] and reported in Ref. [234]. This
pair was not followed up in Ref. [234] but then was identified for investigation by
a new method [242]. We analyze this pair in more details in this work, showing
that it is an intriguing pair but is unlikely to be lensed. Although, ultimately,
not confirmed as lensed, such events contain features representative of signatures
one could find in genuinely lensed events. It is therefore important to see what
sort of follow-up analyzes one could do on such events to have a better grasp on
their significance, and to extract a maximum of information about the systems.

We stress that whilst the events discussed in this paper may be treated as though
they were lensed, they do not display significant evidence for lensing [234]. The
goal of this work is to demonstrate the methodologies that can be used to dig
deeper in the case of genuinely lensed events and to better assess the importance
of candidates. To represent this, we refer to the events as “lensed candidates” in
what follows. Additionally, since the events and event pairs analyzed in this work
have been selected because they present interesting features, it is often the case
that they lead to higher Bayes factors. However, this is generally not enough to
claim lensing, and we would also require to have posteriors converging to a given
value of the lensing parameters or a high significance compared to a background
before considering an event as lensed.

14.2 Methods
Following Ref. [234], we use the hanabi code [224] to perform joint-parameter
estimation (PE) analyzes on the two event pairs to better characterize the prop-
erties of their potential sources. The code also calculates Bayes factors BL

U for
the lensed hypothesis (denoted by a superscript L) versus the unlensed hypoth-
esis (denoted by a superscript U) based on the Bayesian statistical framework
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presented in Chapter 11. The Bayes factors computed not only encode the mu-
tual consistency between the GW signals being jointly analyzed but can also
encode their consistency with the information from a lens and a source popu-
lation model [224]. The lens and the source population model affect both the
probability of observing a given set of data, in this case (𝑑1, 𝑑2), under the lensed
and the unlensed hypothesis. Specifically, the lens population model informs the
joint probability distribution on the magnification, the image type, and the time
delay between images, as well as the optical depth for strong lensing, while the
source population model informs the distribution of the (true) redshift and the
source parameters of a lensed source. This was already done in Ref. [222] and
Ref. [234] using the simple singular isothermal sphere (SIS) lens model.

In practice, it is difficult to write down an analytical form for the above-mentioned
joint probability distribution from a lens model except for some simple lens
models (e.g., the SIS model), and instead one usually resorts to constructing a
surrogate that approximates the probability density function, such as the kernel
density estimation (KDE) technique [243]. However, it can be computationally
expensive to use KDE-based schemes to construct an estimate for the probability
density from a catalog of simulated lensed images that contains many (e.g.,
millions of) samples, which in turn is evaluated over a set of (roughly tens of
thousands of) posterior samples.

To understand more the issue of computational cost with using KDE tech-
nique, consider a case where we have a set of 𝐷-dimensional data of size 𝑁 ,
(®𝑥1, ®𝑥2, . . . , ®𝑥𝑁 ), i.e., ®𝑥𝑖 is a 𝐷-dimensional vector where 𝑖 ∈ [1, 𝑁] that follows
the probability distribution 𝑓 (®𝑥) we wish to approximate. The KDE estimator
𝑓KDE using those input data is given by [243]

𝑓KDE(®𝑥) =
1
𝑁

𝑁∑︁
𝑖=1

𝐾 (®𝑥 − ®𝑥𝑖), (14.1)

where𝐾 is the kernel function that depends on the distance between the evaluation
point ®𝑥 and the input data point ®𝑥𝑖. The cost of𝑀 such evaluations using Eq. (14.1)
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is therefore 𝑂 (𝑀𝑁𝐷). This can be slow if we need to evaluate the KDE of a
large data set (i.e., large 𝑁) many times (i.e., large 𝑀). In our case, we want
to evaluate the probability density, estimated from a large number (𝑁 ∼ 107)
of simulated lensed astronomical objects, of two lensed images of a background
object having certain magnifications over a set of possible (𝑀 ∼ 105) values
from a joint-PE analysis.

Here we use the probability density surrogate described in Ref. [167] that fits the
joint probability density on the magnification and the image type conditioned on
the time delay between images from a catalog of mock lens images used in [178]
using a normalization-flow-based method (denmarf [244]). The underlying
strong lensing model adopted in the simulation is a population of galaxy-scale
singular isothermal ellipsoid (SIE) lenses with external shear. The lens-redshift-
dependent velocity dispersion function is constructed from hybridizing the ve-
locity dispersion measurement for the local Universe derived from the Sloan
Digital Sky Survey Data Release 6 [245] with the Illustris simulation result for
the velocity dispersion function at higher lens-redshifts [246]. The ellipticity and
the external shear follow a Gaussian distribution and a log-normal distribution,
respectively, with additional detail found in [178].

The computational advantage of using a normalizing-flow-based approach is
that an evaluation of the estimated density is independent of 𝑁 . Suppose 𝑇 (®𝑥)
maps the target distribution 𝑓 (®𝑥) into the base distribution 𝑢, usually chosen as
a 𝐷-dimensional standard normal distribution, then the density estimate using
normalizing flow (NF) 𝑓NF is given by

𝑓NF(®𝑥) = 𝑢(𝑇 (®𝑥)) |𝐽𝑇 (®𝑥) |, (14.2)

where |𝐽𝑇 | is the Jacobian determinant of the mapping, and note that there is no
summation over the 𝑁 input data. Fig. 14.1 shows the computational cost for
𝑀 = 1000 evaluations of the density estimate from data of size 𝑁 using KDE
and that using NF, respectively. We can see that the evaluation cost using KDE
scales with 𝑁 while that using NF is indeed independent of 𝑁 .
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Figure 14.1: Computation cost for 𝑀 = 1000 evaluations of the density estimate
from data of size 𝑁 using KDE with scikit-learn [247] and that using NF
with denmarf [244], respectively. We can see that the evaluation cost using KDE
scales with 𝑁 while that using NF is independent of 𝑁 .

14.3 Results
14.3.1 GW191103–GW191105
GW191103 and GW191105 were binary black holes (BBHs) detected during the
second half of the third observing run (O3b) [12]. In the main LVK analyzes,
the standard treatment of the signals revealed nothing out of the ordinary for
these events. However, when treating the events as potential lensing candidates,
the pair display some intriguing characteristics. For example, there is a notable
amount of overlap between some of the reported source parameters, such as
the sky location and masses [248]. Moreover, the two events have about two
days delay between their merger times which is consistent with galaxy-scale
lenses [249, 250]. However, in the LVK lensing search, these events were
ultimately discarded once the Bayes factor had been computed [234], meaning
that the observed overlap is unlikely to be coming from a lensed BBH and is
more likely to be coincidental. Nevertheless, as was stated in the introduction, in
the following analyzes we have disregarded this and treated the event as though
it were a lensed pair.



269

Here, we repeat the Bayes factor calculation comparing the probability ratio of
the lensed versus the unlensed hypothesis as described in [234] using the more
realistic lens population model described in Ref. [178] (see also Ref. [167])
using hanabi [224]. We use the same set of source population models as in
Ref. [234], e.g., the powerlaw + peak model for the source masses from the
GWTC-3 observations [14] and three models for the merger rate density: Madau-
Dickinson [237], Rmin(𝑧), and Rmax(𝑧). Table 14.1 shows the log-10 Bayes
factors computed using the three merger rate density models with the simple SIS
lens model reported in Ref. [234] and the SIE + external shear model reported
in Ref. [167]. We see that the values calculated using the SIE + external shear
model are consistently higher than those using the SIS model, indicating that
the pair is more consistent with a more realistic strong lensing model. Still, the
log10 BL

U values are negative, and therefore the event pair is most likely unlensed.

Lens model
Merger rate density Madau-Dickinson Rmin(𝑧) Rmax(𝑧)

SIS −3.27 −3.21 −2.33
SIE + external shear −2.60 −2.46 −1.28

Table 14.1: log10 BL
U for the GW191103–GW191105 pair from hanabi assuming

three different merger rate density models and two different lens models. The
values computed using the SIS model are reproduced from Ref. [234] for the sake
of comparison. We see that the values with the SIE + external shear model are
consistently higher than that with the SIS model, indicating a higher compatibility
of the pair with a more realistic strong lensing model. However, since the values
remain negative, the event is still most likely to be unlensed considering a more
realistic lensing population with the most recent population models.

14.3.2 GW191230_180458–LGW200104_180425
During the O3 sub-threshold lensing counterpart search, the TESLA pipeline [168]
based on the GstLAL software [186, 251] found roughly 470 triggers which could
be potential strong lensing counterparts to the super-threshold events. Of these,
two had a false-alarm rate (FAR) lower than 1 in 69 years [234] though none
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were found to have support for the lensing hypothesis and all were ultimately
discarded. An alternative method for identifying the sub-threshold triggers as
possible lensed counterparts to super-threshold events, developed in Goyal et al.
[242], uses the Bayestar localization skymaps, matched-filter chirp mass esti-
mates and the time delay priors to rank all the super-sub pairs. It identifies the
sub-threshold event termed LGW200104_1804251 as a possible lensed counter-
part to the super-threshold GW191230_180458 event. It is the most promising
super-sub pair according to this method as it has significant sky and mass over-
lap, coupled with the magnifications and the time delay matching their expected
values from a galaxy-scale lens model (see Goyal et al. [242] for more detail).
In the rest of this section, we denote the super-threshold and the sub-threshold
events GW191230 and LGW200104, respectively, for brevity.

LGW200104 was detected with both the Laser Interferometer Gravitational-
Wave Observatory (LIGO) detectors with an signal-to-noise ratio (SNR) of 6.31
in Hanford and 4.94 in Livingston. The GstLAL matched-filter estimates on
its chirp mass place it at 67.39𝑀⊙ with the individual component masses being
82.48𝑀⊙ and 72.71𝑀⊙. These high component masses combined with the
faintness of the signal contribute to a very low 𝑝astro of 0.01 from the usual
unlensed super-threshold searches. The event was also found with the SPIIR [252,
253] and cWB [254] pipelines, signifying a significant lack of probability of the
event being a genuine detection. Likewise, the FAR found for this event during
the super-threshold searches is 4824/yr, also favoring a terrestrial origin for the
signal [255]. Since the sub-threshold searches have a more focused template
bank, they also reduce the FAR for the events when they are in the correct region
of the parameter space [189, 168]. Therefore, the FAR for the event decreases
to 6.59/yr when it is found with the TESLA pipeline [168], still higher than
the threshold used for following-up on sub-threshold events in O3 [234]. In

1Here, we follow the usual naming convention, adding an L at the start of the event name
to specify it is a sub-threshold candidate. Therefore the name of the sub-threshold trigger is
LGWYYMMDD_hhmmss, where YY is the year, MM the month, DD the day, hh the hour, mm
the minutes and ss the second in UTC time.
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keeping with the analyzes done within this work, whilst we do not claim that
the event is both genuine and genuinely lensed, we treat it as though it were.
Consequently, we investigate the pair using the lensing identification tools used
for super-threshold pairs.

This GW191230-LGW200104 pair was also analyzed by the full joint-PE code
hanabi [224] where the joint parameter space of the two events was simultaneous
explored by the stochastic sampler dynesty [202] with settings identical to those
used in [234]. In particular, Fig. 14.2 shows the posterior probability mass
function for the possible image types of the GW191230-LGW200104 pair. We
see that the image type configurations for the two events that have non-zero
support have the difference in the Morse phase factor Δ𝑛 either 0 (i.e., the I-I,
II-II and III-III configuration) or 0.5 (i.e., the II-I and III-II configuration).
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Figure 14.2: Posterior probability mass function for the image type of
GW191230 and the image type of LGW200104 from hanabi. It is more likely
for the difference in Morse factor Δ𝑛 to be Δ𝑛 = 0.5 (i.e., the II-I and III-II
configuration) than to be Δ𝑛 = 0 (i.e., the I-I, II-II and III-III configuration).

We also performed the Bayes factor calculation comparing the probability ratio
of the lensed versus the unlensed hypothesis for this pair in the same fashion that
we did for the GW191103–GW191105 pair as in Sec. 14.3.1. Again, we use
the same set of source population models as in Ref. [234], e.g., the powerlaw
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Lens model
Merger rate density Madau-Dickinson Rmin(𝑧) Rmax(𝑧)

SIS −0.76 −0.35 −0.57
SIE + external shear 0.14 0.57 0.30

Table 14.2: log10 BL
U for the GW191230 and LGW200104 pair from hanabi

assuming three different merger rate density models and two different lens models.
We see that the values with the SIE + external shear model are all positive (but
only mildly) and consistently higher than that with the SIS model which are
all negative, indicating a higher compatibility of the pair with a more realistic
strong lensing model. Note that the calculations assumed that both GW events
are astrophysical of origin. These values are not sufficient to claim the event
pair to be lensed as we would require a positive log10 posterior odds, and the
observed Bayes factors are not high enough to balance the low prior odds for
strong lensing.

+ peak model for the source masses from the GWTC-3 observations [14] and
three models for the merger rate density: Madau-Dickinson [237], Rmin(𝑧), and
Rmax(𝑧). Table 14.2 shows the log10 Bayes factors computed using the three
merger rate density models with the simple SIS lens model [234] and the SIE
+ external shear model [167]. We see that the values calculated using the SIE
+ external shear model are positive but only mildly (< 1), and they are also
consistently higher than the values computed using the SIS model (which are all
negative), indicating that the pair is more consistent with a more realistic strong
lensing model. It should be noted that the calculations assumed that both GW
events are astrophysical of origin and the second is treated as a super-threshold
event.

Despite some of the evidence for this event aligning relatively well with the
expectations for a strongly lensed event, there remain several key arguments
against a claim of strong lensing for this pair. The first is that whilst it is the case
that the event has the highest currently observed Bayes factor, it is insufficient
to yield a positive log posterior odds considering that the log10 prior odds is
between −2 and −4 [177, 178, 179, 180, 181, 249]. The second argument is
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the nature of the trigger itself. There is no clear evidence that the sub-threshold
event is a genuine GW detection.

In the end, although the event pair is unlikely to be lensed, the analyses performed
on this event pair serve as a powerful demonstration of the necessity for searching
for such sub-threshold counterparts and the kinds of information that they may
yield.

14.4 Conclusion
In this work, we have analyzed candidates found to be interesting by the LIGO-
Virgo-KAGRA lensing searches in the full O3 data [234] as though they were
genuinely strongly-lensed.

The GW191103–GW191105 pair we considered here was flagged in Ref. [234]
as interesting because of its relatively high coherence ratio and the consistency of
the relative amplitudes and time separation with the expectations for the relative
magnification and time delay of galaxy lenses. We demonstrate that by including
a more realistic SIE model in our analysis, a negative log Bayes factor is obtained
disfavoring the lensing hypothesis for this pair.

A new ranking scheme for the sub-threshold counterparts of detected super-
threshold events found a new interesting candidate pair: the GW191230_180458
super-threshold and the LGW200104_180425 sub-threshold events. As was
done for the other event pairs reported in Ref. [234], we analyzed this pair using
the standard and follow-up tools. Analysis with the joint PE showed that upon
the inclusion of a galaxy-lens model, the coherence ratio was higher than for the
GW191103–GW191105 pair. The computation of the proper Bayes factor with an
SIS model leads to negative log Bayes factor, disfavoring the lensing hypothesis.
On the other hand, the inclusion of an SIE lens model leads to a marginally
positive log Bayes factor. However, it is not high enough to compensate for the
prior odds, and therefore the posterior odds is disfavoring the lensing hypothesis.

Though the events investigated do not display strong evidence of being lensed, the
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analyses done here demonstrate possible follow-up strategies for future observing
runs in order to assess the significance of any lensing candidate event.

Acknowledgements

The authors thank Aditya Vĳaykumar for the useful discussion, providing some
scripts to generate plots, and carefully re-reading the manuscript. The authors
thank Christopher Berry for useful discussions on 𝑝astro.

The authors are grateful for computational resources provided by the LIGO labo-
ratory and Cardiff University and supported by the National Science Foundation
Grants PHY-0757058 and PHY-0823459, and the STFC grant ST/I006285/1,
respectively. The authors are also grateful to the Inter-University Center for
Astronomy & Astrophysics (IUCAA), Pune, India for additional computational
resources.

This material is based upon work supported by NSF’s LIGO Laboratory which
is a major facility fully funded by the National Science Foundation. The authors
also gratefully acknowledge the support of the Science and Technology Facilities
Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and
the State of Niedersachsen/Germany for support of the construction of Advanced
LIGO and construction and operation of the GEO 600 detector. Additional sup-
port for Advanced LIGO was provided by the Australian Research Council. The
authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare
(INFN), the French Centre National de la Recherche Scientifique (CNRS) and
the Netherlands Organization for Scientific Research (NWO), for the construction
and operation of the Virgo detector and the creation and support of the EGO con-
sortium. The authors also gratefully acknowledge research support from these
agencies as well as by the Council of Scientific and Industrial Research of India,
the Department of Science and Technology, India, the Science & Engineering
Research Board (SERB), India, the Ministry of Human Resource Development,
India, the Spanish Agencia Estatal de Investigación (AEI), the Spanish Ministerio



275

de Ciencia e Innovación and Ministerio de Universidades, the Conselleria de Fons
Europeus, Universitat i Cultura and the Direcció General de Política Universitaria
i Recerca del Govern de les Illes Balears, the Conselleria d’Innovació, Univer-
sitats, Ciéncia i Societat Digital de la Generalitat Valenciana and the CERCA
Programme Generalitat de Catalunya, Spain, the National Science Centre of
Poland and the European Union – European Regional Development Fund; Foun-
dation for Polish Science (FNP), the Swiss National Science Foundation (SNSF),
the Russian Foundation for Basic Research, the Russian Science Foundation, the
European Commission, the European Social Funds (ESF), the European Regional
Development Funds (ERDF), the Royal Society, the Scottish Funding Council,
the Scottish Universities Physics Alliance, the Hungarian Scientific Research
Fund (OTKA), the French Lyon Institute of Origins (LIO), the Belgian Fonds de
la Recherche Scientifique (FRS-FNRS), Actions de Recherche Concerées (ARC)
and Fonds Wetenschappelĳk Onderzoek – Vlaanderen (FWO), Belgium, the
Paris Ile-de-France Region, the National Research, Development and Innovation
Office Hungary (NKFIH), the National Research Foundation of Korea, the Nat-
ural Science and Engineering Research Council Canada, Canadian Foundation
for Innovation (CFI), the Brazilian Ministry of Science, Technology, and Innova-
tions, the International Center for Theoretical Physics South American Institute
for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong
Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme
Trust, the Research Corporation, the National Science and Technology Council
(NSTC), Taiwan, the United States Department of Energy, and the Kavli Founda-
tion. The authors gratefully acknowledge the support of the NSF, STFC, INFN
and CNRS for provision of computational resources. This work was supported by
MEXT, JSPS Leading-edge Research Infrastructure Program, JSPS Grant-in-Aid
for Specially Promoted Research 26000005, JSPS Grant-inAid for Scientific Re-
search on Innovative Areas 2905: JP17H06358, JP17H06361 and JP17H06364,
JSPS Core-to-Core Program A. Advanced Research Networks, JSPS Grantin-
Aid for Scientific Research (S) 17H06133 and 20H05639, JSPS Grant-in-Aid



276

for Transformative Research Areas (A) 20A203: JP20H05854, the joint research
program of the Institute for Cosmic Ray Research, University of Tokyo, National
Research Foundation (NRF), Computing Infrastructure Project of Global Science
experimental Data hub Center (GSDC) at KISTI, Korea Astronomy and Space
Science Institute (KASI), and Ministry of Science and ICT (MSIT) in Korea,
Academia Sinica (AS), AS Grid Center (ASGC) and the National Science and
Technology Council (NSTC) in Taiwan under grants including the Rising Star
Program and Science Vanguard Research Program, Advanced Technology Center
(ATC) of NAOJ, and Mechanical Engineering Center of KEK.

J. Janquart and C. Van Den Broeck are supported by the research programme
of the Netherlands Organisation for Scientific Research (NWO). S.Goyal is sup-
ported by the Department of Atomic Energy, Government of India. J.M. Ezquiaga
is supported by the European Union’s Horizon 2020 research and innovation pro-
gram under the Marie Sklodowska-Curie grant agreement No. 847523 INTER-
ACTIONS, and by VILLUM FONDEN (grant no. 53101 and 37766).Á. Garrón,
D. Keitel, P. Cremonese and S. Husa are supported by the Universitat de les Illes
Balears (UIB); the Spanish Ministry of Science and Innovation (MCIN) and
the Spanish Agencia Estatal de Investigación (AEI) grants PID2019-106416GB-
I00/MCIN/AEI/10.13039/501100011033, RED2022-134204-E, RED2022-134411-
T; the MCIN with funding from the European Union NextGenerationEU (PRTR-
C17.I1); the FEDER Operational Program 2021–2027 of the Balearic Islands;
the Comunitat Autònoma de les Illes Balears through the Direcció General de
Política Universitaria i Recerca with funds from the Tourist Stay Tax Law ITS
2017-006 (PRD2018/23, PDR2020/11); the Conselleria de Fons Europeus, Uni-
versitat i Cultura del Govern de les Illes Balears; and EU COST Action CA18108.
Á. Garrón is supported through SOIB, the Conselleria de Fons Europeus, Uni-
versitat i Cultura and the Conselleria de Model Econòmic, Turisme i Treball with
funds from the Mecanisme de Recuperació i Resiliència (PRTR, NextGenera-
tionEU). D. Keitel is supported by the Spanish Ministerio de Ciencia, Innovación
y Universidades (ref. BEAGAL 18/00148) and cofinanced by UIB. The authors



277

thank the Supercomputing and Bioinnovation Center (SCBI) of the University
of Malaga for their provision of computational resources and technical sup-
port (www.scbi.uma.es/site) and thankfully acknowledge the computer resources
at Picasso and the technical support provided by Barcelona Supercomputing
Center (BSC) through grants No. AECT-2022-1-0024, AECT-2022-2-0028,
AECT-2022-3-0024, and AECT-2023-1-0023 from the Red Española de Super-
computación (RES). J. Garcia-Bellido acknowledges support from the Spanish
Research Project PID2021-123012NB-C43 [MICINN-FEDER], and the Cen-
tro de Excelencia Severo Ochoa Program CEX2020-001007-S at IFT. Prasia P.
would like to thank Prof. Sukanta Bose for his support and IUCAA, Pune for
providing computational facilities. A. K.Y. Li and R. K. L. Lo are supported by
the National Science Foundation Grants PHY-1912594 and PHY-2207758. A.
Mishra would like to thank the University Grants Commission (UGC), India, for
financial support as a research fellow.



278

C h a p t e r 15

CONCLUDING REMARKS OF PART II

In Part II of the thesis, we first developed a Bayesian statistical framework that
enables us to identify strongly-lensed GWs and at the same time infer their
true source properties in a way that are unaffected by strong lensing. The
framework also allows us to naturally and consistently impart our assumptions
on the population properties of both the GW source and the gravitational lens,
which in turn changes the probability that a given set of GW events being the
strongly-lensed images of the same source.

This framework forms the basis of a strong lensing analysis code hanabi used by
the LVK collaboration. Indeed, this code was used by the collaboration to look
for possibly strongly-lensed BBHs in the O3a data, where the analysis results
from hanabi were presented in Chapter 12, and in the entire O3 data with the
analysis results presented in Chapter 13, respectively.

While we did not find any statistically significant evidence supporting the claim
of having strongly-lensed BBHs in the O3 data, we went ahead and further
followed up two interesting candidate BBH pairs in O3 being strongly-lensed
in Chapter 14. By treating them as if they are lensed, we demonstrated what
consistency checks we could do to further consolidate the strong lensing claim.
In particular, in Chapter 14, we incorporated the results of a realistic simulation
of many background sources being strongly-lensed by galaxy-scale foreground
lenses and re-calculated the Bayes factor for a pair of BBHs being strongly-lensed
versus simply being two distinct BBH systems. While the Bayes factors for the
two candidate pairs both went up by a small fraction, it is still far from being
sufficient for us to confidently claim that they are strongly-lensed BBHs.
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In order to exploit the full science of strongly-lensed GW signals, one will need to
identify and associate the lensed GW source with the foreground lens responsible
for the strong lensing. Instead of only correlating the GW inference result with
existing lens catalogs, which is what was done in Ref. [183] and Ref. [248],
we can consider extragalactic object catalogs (such as the Sloan Digital Sky
Survey (SDSS), and in the future Legacy Survey of Space and Time (LSST)),
usually from ground-based telescopes, and perform joint GW+EM modeling
of the potential lens system. As a quick proof-of-concept (for an illustration
see Figure 15.1), let us for now use the toy SIS model and assume that the
candidate object is a galaxy. By combining EM and GW data, we can compute
the Einstein radius 𝜃E of the lens for each sample of the source redshift from
the GW inference, with the redshift 𝑧lens and the velocity dispersion 𝜎𝑣 of the
galaxy from those catalogs. The time delay Δ𝑡 between the would-be lensed
GWs serves to constrain the possible source position and image positions as an
implicit equation. For each of the possible configurations, we can then compute
the expected magnification of the would-be lensed GWs and compare them with
GW inference result. We can then rule out inconsistent foreground objects from
the candidate list. In actual analyses we would need to use a more sophisticated
lens model but the concept stays the same. After narrowing down the list to only
contain a few targets, we can submit a proposal requesting space telescope time
specifically to observe these possible lenses to get much better measurements for
the modeling. With the lens responsible for the lensing identified, the detection
of gravitationally-lensed GWs can be claimed assertively.

While Part II of this thesis and much of the literature on GW lensing focus
on strong lensing, weak lensing in the EM spectrum has been proven equally
useful to cosmological measurements. For instance, the weak lensing of photons
from the cosmic microwave background was used to map the distribution of
(both luminous and dark) matter. As a result, the map allows us to constrain
cosmological parameters and the sum of neutrino masses (for example, see
Refs. [256, 257, 258]). It would be interesting to further investigate how weak
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lensing of GWs would play a role in cosmography and fundamental physics.
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if consistent
) add to follow-up list

Figure 15.1: Procedures for the proposed joint GW+EM modeling and identi-
fication of a lens. The SDSS image (upper middle panel) and spectrum (upper
right panel) were taken from SDSS DR16 [259]. The lens equation was solved
using lenstronomy [260].
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C h a p t e r 16

SUMMARY AND OUTLOOK

In this thesis, I have explored two new arenas of GW physics, namely probing the
nature of a merger remnant using the speculative GW echoes when the remnant
is an ECO in the first part of the thesis and the strong gravitational lensing of
GWs in the second part of the thesis, and have contributed to the two subjects
from both data-analysis and theoretical perspectives.

While both searches for ECOs using GW echoes and strong lensing of GWs
returned null results, we can still place limits with the null detections and they
also serve as good practices should they actually occur. More importantly, many
of the tools and the techniques developed in this thesis can also be used in other
research topics. For example, the GSN formalism in Chapter 4 was originally
motivated by the need of directly computing the in-going gravitational radiation
towards a BH due to a plunging particle for the echo waveform calculation
described in Chapter 5. The same formalism can also be used to compute
excitation factors of various QNMs for Kerr BHs, which will be tremendously
useful in the study of gravitational QNMs and their searches in GW data.

Admittedly, the search for the theorized ECOs using GW echoes as their possible
waveform signatures are speculative at best and are unlikely to be detectable with
current-generation GW detectors even with our own calculations. As for the
strong gravitational lensing of gravitational waves, even though it is predicted
in GR and hence way less speculative compared to GW echoes, the expected
relative rate of observing strongly-lensed GWs to observing un-lensed GWs is
very low. All that being said, these are high-reward researches that would have
profound impacts if they are seen in data, hence the title of this thesis — they are
gravitational-wave exotica.
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