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ABSTRACT

Resolvent analysis is applied to nonequilibrium incompressible adverse pressure gra-
dient (APG) turbulent boundary layers (TBL) and hypersonic boundary layers with
high temperature real gas effects, including chemical nonequilibrium. Resolvent
analysis is an equation-based, scale-dependent decomposition of the Navier Stokes
equations, linearized about a known mean flow field. The decomposition identifies
the optimal response and forcing modes, ranked by their linear amplification. To
treat the nonequilibrium APG TBL, a biglobal resolvent analysis approach is used
to account for the streamwise and wall-normal inhomogeneities in the streamwise
developing flow. For the hypersonic boundary layer in chemical nonequilibrium,
the resolvent analysis is constructed using a parallel flow assumption, incorporating
N2, O2, NO, N, and O as a mixture of chemically reacting gases.

Biglobal resolvent analysis is first applied to the zero pressure gradient (ZPG) TBL.
Scaling relationships are determined for the spanwise wavenumber and temporal
frequency that admit self-similar resolvent modes in the inner layer, mesolayer, and
outer layer regions of the ZPG TBL. The APG effects on the inner scaling of the
biglobal modes are shown to diminish as their self-similarity improves with increased
Reynolds number. An increase in APG strength is shown to increase the linear
amplification of the large-scale biglobal modes in the outer region, similar to the
energization of large scale modes observed in simulation. The linear amplification
of these modes grows linearly with the APG history, measured as the streamwise
averaged APG strength, and relates to a novel pressure-based velocity scale.

Resolvent analysis is then used to identify the length scales most affected by the high-
temperature gas effects in hypersonic TBLs. It is shown that the high-temperature
gas effects primarily affect modes localized near the peak mean temperature. Due
to the chemical nonequilibrium effects, the modes can be linearly amplified through
changes in chemical concentration, which have non-negligible effects on the higher
order modes. Correlations in the components of the small-scale resolvent modes
agree qualitatively with similar correlations in simulation data.

Finally, efficient strategies for resolvent analysis are presented. These include an
algorithm to autonomously sample the large amplification regions using a Bayesian
Optimization-like approach and a projection-based method to approximate resolvent
analysis through a reduced eigenvalue problem, derived from calculus of variations.



vii

PUBLISHED CONTENT AND CONTRIBUTIONS

Gomez, Salvador R. and Beverley J. McKeon (2023). “Linear amplification of large
scale structures in adverse pressure gradient turbulent boundary layers through
resolvent analysis”. In: Progress in Turbulence. X: Proceedings. of the iTi Con-
ference in Turbulence. Submitted. Springer, pp. 167–172.
S. R. G. developed the biglobal resolvent code applied to the APG TBL, ran the
parametric sweeps, and was the primary author.

Barthel, Benedikt, Salvador R Gomez, and Beverley J McKeon (2022a). “Variational
formulation of resolvent analysis”. In: Physical Review Fluids 7.1, p. 013905. doi:
https://doi.org/10.1103/PhysRevFluids.7.013905.
S. R. G. developed the code used for the biglobal resolvent analysis of the ZPG
TBL in Section 5, assisted with the computations and analytics in Section 6, and
assisted with writing as second author.

Barthel, Benedikt, Salvador R. Gomez, and Beverley J. McKeon (2022b). “The role
of an optimal modeling basis in variational resolvent analysis”. In: Turbulence
and Shear Flow Phenomena. Vol. 12. url: http://www.tsfp-conference.
org/proceedings/2022/205.pdf.
S. R. G. developed the example for the optimal basis, ran the code for the ZPG
TBL biglobal resolvent modes, and assisted with writing as second author. He
also developed code for the biglobal resolvent modes.

Gomez, Salvador R., Christopher T. Williams, et al. (2022). “Adaptive resolvent
analysis with application to high enthalpy flows”. In: Proceedings of the CTR
Summer Program, pp. 87–96. url: https://web.stanford.edu/group/
ctr/ctrsp22/ii04_Gomez.pdf.
S. R. G. provided the theoretical and computational developments required for
the hypersonic resolvent analysis that incorporates real gas effects, developed and
applied the adaptive resolvent analysis, and was the primary author.

https://doi.org/https://doi.org/10.1103/PhysRevFluids.7.013905
http://www.tsfp-conference.org/proceedings/2022/205.pdf
http://www.tsfp-conference.org/proceedings/2022/205.pdf
https://web.stanford.edu/group/ctr/ctrsp22/ii04_Gomez.pdf
https://web.stanford.edu/group/ctr/ctrsp22/ii04_Gomez.pdf


viii

TABLE OF CONTENTS

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Published Content and Contributions . . . . . . . . . . . . . . . . . . . . . . vii
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
List of Illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiv
Chapter I: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Canonical Wall Bounded Turbulence . . . . . . . . . . . . . . . . . 4
1.2 Adverse Pressure Gradient Turbulent Boundary Layers . . . . . . . . 8
1.3 High Enthalpy Turbulent Boundary Layers . . . . . . . . . . . . . . 11
1.4 Linear Analysis in Shear Flows . . . . . . . . . . . . . . . . . . . . 13
1.5 Bayesian Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.6 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter II: Biglobal Resolvent Analysis . . . . . . . . . . . . . . . . . . . . 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Resolvent Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Application to Incompressible Flows . . . . . . . . . . . . . . . . . 26
2.4 Verification of Resolvent Analysis . . . . . . . . . . . . . . . . . . . 32
2.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Chapter III: Scaling of Biglobal Resolvent Modes for ZPG TBL . . . . . . . 42
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Generalization of Local Scaling Results . . . . . . . . . . . . . . . . 43
3.3 Predicting the Wall-Normal Support of the Biglobal Resolvent Modes 48
3.4 Generalization of Biglobal Scaling Results . . . . . . . . . . . . . . 52
3.5 Self-similar Laminar Scaling of the Biglobal Resolvent Operator . . 54
3.6 Inner Scaling of the Biglobal Resolvent Operator . . . . . . . . . . . 56
3.7 Mesolayer Scaling of the Biglobal Resolvent Operator . . . . . . . . 61
3.8 Outer Scaling of the Biglobal Resolvent Operator . . . . . . . . . . . 63
3.9 Chapter Summary and Future Work . . . . . . . . . . . . . . . . . . 66

Chapter IV: Nonequilibrium Effects in Turbulent Boundary Layer Flows . . . 71
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Outer Scaling of Adverse Pressure Gradient Turbulent Boundary

Layer Local Resolvent Modes . . . . . . . . . . . . . . . . . . . . . 72
4.3 Inner Scaling of Adverse Pressure Gradient Turbulent Boundary

Layer Biglobal Resolvent Modes . . . . . . . . . . . . . . . . . . . 77
4.4 Pressure Gradient Effect on the Amplification of Large Scale Structures 82
4.5 History Effects on the Amplification of Large Scale Structures . . . . 91
4.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Chapter V: Resolvent analysis of high enthalpy boundary layers . . . . . . . . 101



ix

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2 Resolvent Formulation for an Ideal Gas . . . . . . . . . . . . . . . . 104
5.3 Influence of CPG/CIG Assumption on Linear Amplification . . . . . 107
5.4 Resolvent Formulation for a Mixture of Ideal Gases in Chemical

Nonequilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.5 Effects of Chemical Nonequilibrium on Resolvent Amplification in

Laminar Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.6 Effects of Chemical Nonequilibrium on Resolvent Amplification in

a TBL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.7 Correlations in the Chemical Nonequilibrium Response Mode Com-

ponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.8 Chapter Summary and Future Work . . . . . . . . . . . . . . . . . . 167

Chapter VI: Efficient methods for resolvent analysis: Sampling and Approxi-
mations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.2 Preliminaries for Bayesian Optimization . . . . . . . . . . . . . . . 172
6.3 Variational Resolvent Analysis . . . . . . . . . . . . . . . . . . . . . 178
6.4 An Arnoldi-free Resolvent Analysis Approximation . . . . . . . . . 194
6.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Chapter VII: Conclusions and Future Work . . . . . . . . . . . . . . . . . . 200
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Appendix A: Arnoldi Iteration Algorithms . . . . . . . . . . . . . . . . . . . 211

A.1 Arnoldi Algorithm for Eigenvalue Problems . . . . . . . . . . . . . 211
A.2 Arnoldi Algorithm for Resolvent Analysis . . . . . . . . . . . . . . . 211

Appendix B: Adjoint of Linear Differential Operators with Dirichlet Boundary
Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

Appendix C: Biglobal Orr-Sommerfeld-Squire Equations . . . . . . . . . . . 218
Appendix D: Domain length effects on sweeps . . . . . . . . . . . . . . . . . 220

D.1 Domain Length Effect on Small Scales . . . . . . . . . . . . . . . . 220
D.2 Domain Length Effect on Large Scale Amplification . . . . . . . . . 221

Appendix E: Linear terms of the Navier Stokes Equations for a Hypersonic
Turbulent Boundary Layer . . . . . . . . . . . . . . . . . . . . . . . . . 223
E.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
E.2 Linearization of the Single Species CIG Equations . . . . . . . . . . 223
E.3 Linearization of the Governing Equations for a Mixture of Ideal

Gases in Chemical Nonequilibrium . . . . . . . . . . . . . . . . . . 225
Appendix F: Effect of the Inner Product on the resolvent modes using chemical

nonequilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231



x

LIST OF ILLUSTRATIONS

Number Page
1.1 Plots of experimental and DNS 𝑈. (a) 𝑈+(𝑦+) with 𝑦+ plotted in

black and 1/𝑘 log(𝑦+) + 𝐴 in orange. (b)𝑈+
∞−𝑈+(𝑦/𝛿99) with Coles

(1956)’s law of the wake fitted to the highest 𝑅𝑒𝜏 data plotted in
magenta. The blue and red lines are from the ZPG TBL DNS of
Schlatter and Örlü (2010) with 𝑅𝑒𝜏 = 670 and 1270, respectively.
The green lines are from the ZPG TBL experiment of Baidya et al.
(2017) with 𝑅𝑒𝜏 = 2500 (circles), 5000 (squares), 104 (triangles), and
1.8 × 104 (stars). Here, 𝜅 = .384 and 𝐴 = 4.173 (Nagib, Chauhan,
and Monkewitz, 2007). . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Schematic of the domain, Ω𝑛, with the spanwise direction pointing
out of the page. The shaded rectangular regions denote the sponge
regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Real part of 𝝓𝑢,1 (a,b), 𝜎1𝝍𝑢,1 (c,d), 𝝓𝑢,2 (e,f), and 𝜎2𝝍𝑢,2 (g,h)
from the strategy described in Section 2.3 (a,c,e,g) and subplots from
Figure 2 of Sipp and Marquet (2013), reproduced with permission
(b,d,f,h). 𝛿 denotes the displacement thickness at 𝑥 = 1. The black
curves indicate the local displacement thickness. . . . . . . . . . . . 34

2.3 𝑒𝑢,1(60, 𝑥) (red) and 𝑒 𝑓 ,1(60, 𝑥) (black) (a) and 𝑒𝑢,2(60, 𝑥) (red) and
𝑒 𝑓 ,2(60, 𝑥) (black) (b). The solid lines are computed with the ap-
proach described herein while the dashed lines are extracted from
Sipp and Marquet (2013). . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Isocontours of 𝑒 𝑓 (𝐹,Re𝛿 (𝑥)) (a,b) and 𝑒𝑢 (𝐹,Re𝛿 (𝑥)) (c,d) of the
strategy described in Section 2.3 (a,c) and subplots from Figure 3
of Sipp and Marquet (2013), reproduced with permission (b,d). The
cyan circles denote the maximum energy density in 𝑥 ∈ [0, 1] and
vertical black lines denote 𝑥 = 1. The magenta curve in (b,d) denotes
the neutral stability curve. . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 𝜎1(𝐹) (red) and 𝜎2(𝐹) (blue) using the approach described herein
(solid line) and the results of Sipp and Marquet (2013) (dotted lines). 38



xi

2.6 Comparison of the real parts of 𝝍1 for 𝑘𝑧 = 0.1 at Re𝛿 (𝑥) = 1000.
Red dots denote the results from Sasaki et al. (2022), reproduced with
permission, and black lines denote results from the strategy described
here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7 Comparison of 𝜎2
1 , normalized by Re2

𝐿
, between the results of Sasaki

et al. (2022) in red, reproduced with permission, and the strategy
described here in black. The black line, circles, and crosses denote
Re = 1000, 2000, and 3000. . . . . . . . . . . . . . . . . . . . . . . 39

2.8 Comparison of 𝑘𝑢,𝑖 (𝑥), between the results of Sasaki et al. (2022) in
black dots, reproduced with permission, and the strategy described
here in colored lines for 𝑘𝑧 = 0.04 and 𝜔 = 0. The red, blue, and
green lines denote 𝑖 = 1, 2, and 3 . . . . . . . . . . . . . . . . . . . . 40

3.1
��𝜓𝑢,1�� (a,b),

��𝜓𝑣,1�� (c,d), and
��𝜓𝑤,1�� (e,f) nondimensionalized using

outer units (a,c,e) and the self-similar inner units (b,d,f). The black
arrow denotes the direction of increasing Re𝜏. Each colored line has
Re𝜏 incrementing by 1000, with blue denoting Re𝜏 = 10000 and red
denoting Re𝜏 = 2000. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2
��𝜓𝑢,1�� (a,b),

��𝜓𝑣,1�� (c,d), and
��𝜓𝑤,1�� (e,f) nondimensionalized using

outer units (a,c,e) and the self-similar mesolayer units (b,d,f). The
black arrow denotes the direction of increasing Re𝜏. Each colored
line has Re𝜏 incrementing by 1000, with blue denoting Re𝜏 = 10000
and red denoting Re𝜏 = 2000. . . . . . . . . . . . . . . . . . . . . . 47

3.3
��𝜓𝑢,1�� (a,b),

��𝜓𝑣,1�� (c,d), and
��𝜓𝑤,1�� (e,f) nondimensionalized using

outer units (a,c,e) and the self-similar outer units (b,d,f). The black
arrow denotes the direction of increasing Re𝜏. Each colored line has
Re𝜏 incrementing by 1000, with blue denoting Re𝜏 = 10000 and red
denoting Re𝜏 = 2000. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Comparison the real parts of 𝜓𝑎
𝑆𝑄

(a), 𝜓𝑏
𝑆𝑄

(b), 𝜓𝑐
𝑆𝑄

(c), 𝜓𝑎
𝜔,1 (d), 𝜓𝑏

𝜔,1
(e), and 𝜓𝑐

𝜔,1 (f). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5 Amplitudes of 𝜓𝑢,1(𝑥, 𝑦) (a), 𝜓𝑣,1(𝑥, 𝑦) (b), and 𝜓𝑤,1(𝑥, 𝑦) (c) in the

self-similar laminar scaling for 𝐿 = .08𝛿99Re𝐿 , 𝜁 = 2𝜋 and 𝜔̃ = 60.
The dotted, dashed, and solid lines denote 𝑥 = 1.1𝐿, 1.25𝐿, 1.4𝐿.
The red, blue, greeen, purple, and black lines denote Re𝐿 = 104, 105,

106, 107, and 108. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



xii

3.6 The first five𝜎𝑗 with the self-similar laminar scaling for 𝐿 = .08𝛿99Re𝐿 ,
𝜁 = 2𝜋 and 𝜔̃ = 60. Red, blue, greeen, purple, and black denote
Re𝐿 = 104, 105, 106, 107, 108 while the circle, square, triangle, cross,
and star denote 𝑗 = 1, 2, 3, 4, and 5. The horizontal black lines are
consant values at 𝜎𝑗 . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.7 Inner scaled mean flow fields with Re𝜏 = 1200, 3400, 5600, 7800, and
10000 plotted in red, blue, green, purple, and black lines, respectively. 57

3.8
��𝜓𝑢,1�� in outer (a) and inner (b) units for 𝐿+𝑥 = 10000, 𝑘+𝑧 = 2𝜋/100
and 𝜔+ = 2𝜋/100. Red, blue, green, purple, and black denote
Re𝜏 = 1200, 3400, 5600, 7800, and 10000, respectively. The dotted,
dashed, and solid lines denote 𝑥 = .2𝐿𝑥 , .5𝐿𝑥 , .8𝐿𝑥 . . . . . . . . . . . 58

3.9 𝜎𝑗 in outer units with the black lines denoting 𝑆 𝑗𝜈/𝑢2
𝜏 (a) and 𝜎𝑗 in

inner units, normalized by 𝑆 𝑗 (b) for 𝐿+𝑥 = 10000, 𝑘+𝑧 = 2𝜋/100 and
𝜔+ = 2𝜋/100. The circle, square, triangle, cross, and star denote
𝑗 = 1, 2, 3, 4, and 5, respectively. The colors are the same as in
Figure 3.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.10 Rows from top to bottom are the magnitude of the streamwise, wall-
normal, and spanwise components of the 𝑗 th response mode in inner
units and vertically offset to distinguish different streamwise loca-
tions. Left to right is increasing 𝑗 . The colors and line types are the
same as in Figure 3.8. The modes are computed using 𝐿+𝑥 = 10000,
𝑘+𝑧 = 2𝜋/100 and 𝜔+ = 2𝜋/100. . . . . . . . . . . . . . . . . . . . . 59

3.11 Contours of 𝐸+
𝑢𝑢 (a) and 𝐾+

𝑢𝑢 (b) for Re𝜏 = 800 (red), Re𝜏 = 2500
(blue), and Re𝜏 = 6000 (black). The contour levels are at 0.62,
6.17, 61.66, 369.96, 554.94 and the crosses denote the maxima of
𝐸+
𝑢𝑢 (𝑥, 𝑦, 𝑘𝑧). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.12 Mesolayer scaled𝑈𝑦 with Re𝜏 = 1200, 3400, 5600, 7800, and 10000
plotted in red, blue, green, purple, and black lines, respectively. . . . 61

3.13
��𝜓𝑢,1�� in outer (a) and mesolayer (b) units for 𝐿𝑥 = 40𝛿99, 𝜁 = 2𝜋/7,
and 𝜔̃ = 25. Red, blue, green, purple, and black denote Re𝜏 = 1200,
2700, 3950, 5700, and 8000, respectively. The dotted, dashed, and
solid lines denote 𝑥 = .2𝐿𝑥 , .5𝐿𝑥 , .8𝐿𝑥 . . . . . . . . . . . . . . . . . 62

3.14 𝜎𝑗 in outer units with the black lines denoting 𝑆 𝑗ℓ𝑚𝛿99/𝜈 (a) and 𝜎𝑗
in mesolayer units, normalized by 𝑆 𝑗 (b) using 𝐿𝑥 = 40𝛿99, 𝜁 = 2𝜋/7,
and 𝜔̃ = 25. The circle, square, triangle, cross, and star denote 𝑗 = 1,
2, 3, 4, and 5, respectively. Colors are the same as in Figure 3.13. . . 62



xiii

3.15 Rows from top to bottom are the magnitude of the streamwise, wall-
normal, and spanwise components of the 𝑗 th response mode in meso-
layer units and vertically offset to distinguish different streamwise
locations. Left to right is increasing 𝑗 . The colors and linetypes
are the same as in Figure 3.13. The modes are all computed using
𝐿𝑥 = 40𝛿99, 𝜁 = 2𝜋/7, and 𝜔̃ = 25. . . . . . . . . . . . . . . . . . . 63

3.16 Velocity deficit in outer units with Re𝜏 = 1200, 2000, 3500, 6000, and
11000 plotted in red, blue, greeen, purple, and black lines, respectively. 64

3.17 |𝜓 |𝑢,1 in inner (b) and outer (c) units computed using 𝐿𝑥 = 15𝑥𝑠/𝑥𝑠,𝑚𝑖𝑛,
𝜁 = 𝜋 and 𝜔̃ = 16. Red, blue, greeen, purple, and black lines denote
Re𝜏 = 1200, 2000, 3500, 6000, and 11000, respectively. The dotted,
dashed, and solid lines denote 𝑥 = .2𝐿𝑥 , .5𝐿𝑥 , .8𝐿𝑥 . . . . . . . . . . . 65

3.18 𝜎𝑗 in outer units with the black lines denoting 𝑆 𝑗𝛿2
99Re𝜏/𝜈 (a) and 𝜎𝑗

in outer units, normalized by 𝑆 𝑗 (b) computed using 𝐿𝑥 = 15𝑥𝑠/𝑥𝑠,𝑚𝑖𝑛,
𝜁 = 𝜋 and 𝜔̃ = 16. The circle, square, triangle, cross, and star denote
𝑗 = 1, 2, 3, 4, and 5, respectively. Colors are the same as in Figure
3.17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.19 Real part of 𝝍𝐿,𝑢,𝑖 (colored lines), 𝝍̃𝐿,𝑢,𝑖 (dots), and 𝜓̃𝑆,𝑢,𝑖 (thin black
lines) (a) and real part of 𝝓𝐿,𝑣,𝑖 (colored lines), 𝝓̃𝐿,𝑣,𝑖 (dots), and 𝜙𝑆,𝑣,𝑖
(thin black lines). Red, blue, green, and purple denote 𝑖 = 1, 2, 3,
and 4. The modes are computed using 𝑘+𝑧 = 2𝜋/100, 𝑘+𝑥 = 2𝜋/1000,
and 𝑐+ = 12.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1 𝑈 in inner scaled coordinates (a) and WK outer scaling (b). 𝑈𝑦 in
WK outer scaled coordinates (c). The black dashed lines denote 𝑓𝑆𝐿
(a) and 𝑓 ′

𝑆𝐿
(b). The line colors and styles are denoted in Table 4.1. . 75

4.2 Amplitude of the local 𝜓𝑢,1 in (a) outer units, (b) inner units, (c) WK
outer units for 𝛼 = 2𝜋Re𝑠,𝑟𝑒 𝑓 /10, 𝜁 = 2𝜋, 𝑐 = 1. The line colors and
styles are denoted in Table 4.1. . . . . . . . . . . . . . . . . . . . . . 75

4.3 Amplitude of the Local 𝜓𝑣,1 in (a) outer units, (b) inner units, (c) WK
outer units for 𝛼 = 2𝜋Re𝑠,𝑟𝑒 𝑓 /10, 𝜁 = 2𝜋, 𝑐 = 1. The line colors and
styles are denoted in Table 4.1. . . . . . . . . . . . . . . . . . . . . . 76

4.4 𝜎1 in (a) outer units, (b) WK outer units for 𝛼 = 2𝜋Re𝑠,𝑟𝑒 𝑓 /10,
𝛽 = 2𝜋, 𝑐 = 1. Note that the 𝑥 axis is in log scale, and 𝜎1 for the S0
dataset is plotted at 𝛽 = .5 for visibility. . . . . . . . . . . . . . . . . 77



xiv

4.5 𝑢𝜏/𝑢𝜏,0 (a) and 𝛽 (b) for the different mean flow fields used in Section
4.3. The colors are labeled in Table 4.2. For the orange and black
curves, the dashed, dashed-dot, and solid lines denote the Re𝜏 = 650,
1200, and 1800 datasets. . . . . . . . . . . . . . . . . . . . . . . . 79

4.6 𝑈
+ at the center of the domains (a). Magnitude of 𝜓𝑢,1 in inner units

at 𝑥 = .2, .5, .8, vertically offset for clarity (b). The dotted, dashed-
dot, and solid lines denote the Re𝜏 = 650, 1200, and 1800 domains.
𝜎𝑗 in inner units normalized by 𝑆 𝑗 , the inner scaled 𝜎𝑗 for the ZPG
dataset at Re𝜏 = 1800 (c). The circle, square, triangle, cross, and star
denote 𝑗 = 1, 2, 3, 4, and 5. 𝑗 = 1 is plotted in darker colors to aid in
visibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.7 𝐸+
𝑢𝑢 (𝑥, 𝑦, 𝑘𝑧) (a) and 𝐾+

𝑢𝑢 (𝑥, 𝑦) (b) at 𝑥 = .7𝐿𝑥 . The dotted, dashed-
dot, and solid lines denote the Re𝜏 = 650, 1200, and 1800 domains.
The contour lines are at 0.62, 6.17, 61.66, 369.96 and the crosses
denote the maxima of 𝐸+

𝑢𝑢 (𝑥, 𝑦, 𝑘𝑧). . . . . . . . . . . . . . . . . . . 80
4.8 𝑈

+ at the center of the domains (a). Magnitude of 𝜓𝑢,1 in inner units
at 𝑥 = .2, .5, .8, vertically offset for clarity (b). 𝜎𝑗 in inner units
normalized by 𝑆 𝑗 , the inner scaled 𝜎𝑗 for the ZPG dataset (c). The
circle, square, triangle, cross, and star denote 𝑗 = 1, 2, 3, 4, and 5.
𝑗 = 1 is plotted in darker colors to aid in visibility. . . . . . . . . . . 81

4.9 𝐸+
𝑢𝑢 (𝑥, 𝑦, 𝑘𝑧) (a) and 𝐾𝑢𝑢 (𝑥, 𝑦) (b) at 𝑥 = .7𝐿𝑥 . The contour lines are

at 0.62, 6.17, 61.66, and 369.96 and the crosses denote the maxima
of 𝐸+

𝑢𝑢 (𝑥, 𝑦, 𝑘𝑧). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.10 𝜎1𝜓𝑢,1 using S0I (a) and b2n (b) for 𝜆+𝑧 = 50, 𝜆+𝑡 = 50. The dashed

vertical lines denote the streamwise location of the largest amplitude,
𝑥𝑎. Line plots of

��𝜎1𝜓𝑢,1(𝑥𝑎, 𝑦)
�� (c) for b2n (red) and s0 (black). . . . 83

4.11 𝜎1𝜓𝑢,1 using S0I (a) and b2n (b) for 𝜆+𝑧 = 537, 𝜆+𝑡 = 200. The dashed
vertical lines denote the streamwise location of the largest amplitude,
𝑥𝑎. The navy blue lines denote the boundary layer thickness. Line
plots of

��𝜎1𝜓𝑢,1(𝑥𝑎, 𝑦)
�� (c) for b2n (red) and s0 (black). . . . . . . . 84

4.12 Real parts of 𝜎1𝜓𝑢,1 (a,b) and 𝜙𝑣,1 (c,d) for 𝑘+𝑧 = 2𝜋/50, 𝜔+ = 2𝜋/50
with (a,c) computed using ⟨·, ·⟩𝑟 = ⟨·, ·⟩ 𝑓 and (b,d) using ⟨·, ·⟩𝑟 from
Equation 4.9. The dashed vertical line denotes 𝑥𝑐 and the solid
vertical lines in (b) denote Ω𝑟 . . . . . . . . . . . . . . . . . . . . . . 86



xv

4.13 Real parts of 𝜎1𝜓𝑢,1 (a,b) and 𝜙𝑣,1 (c,d) for 𝑘+𝑧 = 2𝜋/Re𝜏 (𝑥𝑐), 𝜔+ =

2𝜋/200 with (a,c) computed using ⟨·, ·⟩𝑟 = ⟨·, ·⟩ 𝑓 and (b,d) using
⟨·, ·⟩𝑟 from Equation 4.9. The dashed vertical line denotes 𝑥𝑐 and the
solid vertical lines in (b) denote Ω𝑟 . The navy blue lines denote the
boundary layer thickness. . . . . . . . . . . . . . . . . . . . . . . . . 86

4.14 Contour maps of 𝐸+
𝑢𝑢 (𝑥, 𝑦, 𝑘𝑧) for S0 (a), b1n (b), b2n (c), and m18n

(d) at 𝑥 = 𝑥𝑐. The black contour lines denote 𝐸+
𝑢𝑢 = .62, 6.17, 61.66,

616.62, 1950. The black crosses denote the near-wall peaks. . . . . . 87
4.15 Real components of 𝜙𝑣,1 (a,c,e) and 𝜓𝑢,1 (b,d,f) for 𝜆+𝑧 = 50 and

𝜆+𝑡 = 50 using b2n. (a,b) are computed with domain length of
𝐿𝑥 = 4. Using the entire domain, (c,d) are computed using the inner
product in Equation 4.9 for both the forcing and response and (e,f)
are computed using the inner products in Equations 4.8 and 4.9. The
navy blue line denotes the boundary layer thickness and the vertical
lines denote the edges of Ω𝑟 , where it is used. . . . . . . . . . . . . . 88

4.16 𝐾+
𝑢𝑢 at 𝑥 = 𝑥𝑐 for the sweeps using the mean flow field color coded in

Table 4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.17 𝑢𝑢+𝑚𝑜𝑑𝑒𝑙 (a) and 𝑢𝑢+ from the LES datasets (b) at 𝑥 = 𝑥𝑐. . . . . . . . 90
4.18 𝛽 and Re𝜏 for the domains described in Table 4.4 (a). The circles

denote Re𝜏 (𝑥𝑟). 𝑈
+(𝑥𝑟 , 𝑦+) (b), 𝑢𝑢+(𝑥𝑟 , 𝑦+) (c), and

��𝜎+
1 𝜓𝑢,1(𝑥𝑟 , 𝑦

+)
��

for 𝜆𝑧 = 2, 𝜆𝑡 = 4.48. The colors are color coded according to Table
4.4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.19 𝜎1 for the (𝑘𝑧, 𝜔) labeled in the legend against 𝛽 (a) and 𝛽∞ (b). The
lines are the lines of best fit for each 𝑘𝑧, 𝜔, fitted for 𝜎1 with 𝛽 > 0.
𝜎1(𝑘𝑧, 𝜔) normalized by 𝑚𝛽∞ + 𝑏′(𝑘𝑧, 𝜔) for 𝛽 > 0 (c). . . . . . . . 94

4.20 Contour maps of
���𝜎1(𝑘𝑧, 𝜔)/𝜎(𝛽∞, 𝑘𝑧, 𝜔) − 1

��� against 𝜆𝑧 and 𝜆𝑡 . (a-
f) denote b1nH, m13nH, P14H, b2nH, m16nH, m18nH. The color
axis is fixed in all the plots. . . . . . . . . . . . . . . . . . . . . . . 95

4.21 Contour maps of
���𝜎1(𝑘𝑧, 𝜔)/𝜎𝑚 (𝛽∞, 𝑘𝑧, 𝜔) − 1

��� against 𝜆𝑧 and 𝜆𝑡 .
(a-f) denote b1nH, m13nH, P14H, b2nH, m16nH, m18nH. The color
axis is fixed in all the plots. . . . . . . . . . . . . . . . . . . . . . . 96

4.22 Contour maps of
���𝜎1(𝑘𝑧, 𝜔)/𝜎̃𝑚 (𝛽∞, 𝑘𝑧, 𝜔) − 1

��� against 𝜆𝑧 and 𝜆𝑡 .
(a-f) denote b1nH, m13nH, P14H, b2nH, m16nH, m18nH. The color
axis is fixed in all the plots. . . . . . . . . . . . . . . . . . . . . . . 96

4.23 𝐾+
𝑢𝑢 from Figure 4.16 rescaled with 𝑢4

𝜏/𝑈4
ℎ𝑦𝑏

(𝑦). . . . . . . . . . . . 98



xvi

5.1 𝑈 (a),𝑇 (b), 𝑘 (c), 𝑐𝑣 (d), 𝑢𝑢 (e), 𝑣𝑣 (f), 𝑢𝑢/max 𝑢𝑢 (g), and 𝑣𝑣/max 𝑣𝑣
(h) from the CPG (red) and CIG (black) DNS. In (c), the black dashed
line denotes 𝜇 for the CIG. Note that 𝜇 = 𝑘 for the CPG. . . . . . . . 108

5.2 𝜎2
1 𝑘𝑥𝑘𝑧 for case i (a), case ii (b), and case iii (c). The thick black line

corresponds to the sonic line. The black contour lines correspond to
𝜎2

1 𝑘𝑥𝑘𝑧 = 103, 104, 105, 1.75 × 105, 3 × 105, 5 × 105, 106. . . . . . . 110
5.3 Contours of 𝜎2

1 𝑘𝑥𝑘𝑧 for case i (red), ii (black), and iii (blue) using
𝑐 = 𝑈 (𝑦+ = 15). The contours denote 𝜎2

1 𝑘𝑥𝑘𝑧 = 103, 104, 105,

1.75×105, 3×105, 5×105, 106 in (a) and .1%, 1%, 10%, 30%, 50%,
and 75% of the local maxima of 𝜎2

1 𝑘𝑥𝑘𝑧 in (b). The thick black line
denotes the sonic line. . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.4
��𝜓𝑢,1�� (a),

��𝜙𝑢,1�� (b),
��𝜓𝑣,1�� (c),

��𝜙𝑣,1�� (d),
��𝜓𝑤,1�� (e),

��𝜙𝑤,1�� (f),
��𝜓𝑇,1��

(g),
��𝜙𝑇,1�� (h),

��𝜓𝑇,1�� (i),
��𝜙𝑇,1�� (j) for representative subsonic modes

(𝑘𝑥 = 2𝜋/4, 𝑘+𝑧 = 2𝜋/.4, 𝑐 = 𝑈 (𝑦+ = 15). Case i, ii, and iii are in
red, black, and blue solid lines. . . . . . . . . . . . . . . . . . . . . 112

5.5
��𝜓𝑢,1�� (a),

��𝜙𝑢,1�� (b),
��𝜓𝑣,1�� (c),

��𝜙𝑣,1�� (d),
��𝜓𝑤,1�� (e),

��𝜙𝑤,1�� (f),
��𝜓𝑇,1��

(g),
��𝜙𝑇,1�� (h),

��𝜓𝑇,1�� (i),
��𝜙𝑇,1�� (j) for representative supersonic modes

(𝑘𝑥 = 2𝜋/1, 𝑘𝑧 = 2𝜋/10, 𝑐 = 𝑈 (𝑦+ = 15). Case i, ii, and iii are in
red, black, and blue solid lines. . . . . . . . . . . . . . . . . . . . . 114

5.6 Real part of 𝜓𝑝,1 for the representative supersonic modes (𝑘𝑥 = 2𝜋/1,
𝑘𝑧 = 2𝜋/10, 𝑐 = 𝑈 (𝑦+ = 15). Case i, ii, and iii are in red, black,
and blue solid lines. The dotted orange line denotes 𝑝𝑀 , where its
amplitude and phase angle is matched to 𝜓𝑝,1 at 𝑦+ = 350. . . . . . . 115

5.7 Contours of 𝜎2
1 𝑘𝑥𝑘𝑧 for case i (red), ii (black), and iii (blue) using

𝑐 = 𝑈 (𝑦+ = 15) and forcing from only the temperature and density
components to investigate the effect of differences in the thermody-
namic properties within the boundary layer on the linear amplifica-
tion. The thick black line denotes the sonic line. The contour lines
above the sonic line correspond to 𝜎2

1 𝑘𝑥𝑘𝑧 = 790 and 9600 and below
the sonic line correspond to 𝜎2

1 𝑘𝑥𝑘𝑧 = 100, 316, 550, 710, and 1000
in (a). In (b), the contour lines denote .1%, 1%, 10%, 30%, 50%,
and 75% of the local maximum of 𝜎2

1 𝑘𝑥𝑘𝑧 below the sonic line. The
contour lines above the sonic line are omitted in (b) to highlight the
differences within the subsonic region. . . . . . . . . . . . . . . . . 116



xvii

5.8 Contours of 𝜎2
1 𝑘𝑥𝑘𝑧 for case i (red), ii (black), and iii (blue) using

𝑐 = 𝑈 (𝑦+ = 100). The contour lines correspond to 𝜎2
1 𝑘𝑥𝑘𝑧 = 103,

104, 105, 106, 107, 108. . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.9 Contours of 𝜎2

𝑖
𝑘𝑥𝑘𝑧 for case i (red), ii (black), and iii (blue) using

𝑐 = 𝑈 (𝑦+ = 15). The contour lines denote .1%, 1%, 10%, 30%,
50%, and 75% of the local maximum of 𝜎2

𝑖
𝑘𝑥𝑘𝑧 below the sonic line.

𝑖 = 2, 3, 4, and 5 are plotted in (a), (b), (c), and (d). . . . . . . . . . . 118
5.10 𝑈 (a),𝑇 (b), 𝜌 (c), 𝜇 (d), 𝑘 (e), and 𝑐𝑣 (f) for the CPG (in red) and CNE

(in black) similarity solutions. 𝑋 𝑖𝑠 (g), and ¤𝜔𝑖𝑠 (h) are plotted with
their colors labeled in the legend. Note that the 𝑋 𝑖𝑠 of the dissociated
components are rescaled in (g) for visualization. . . . . . . . . . . . 126

5.11 Contours of 𝜎2
1 𝑘𝑥𝑘𝑧 for case i (a), case ii (b), and case iii (d). The

contour lines denote 𝜎2
1 𝑘𝑥𝑘𝑧 = 101, 102, . . . , 107. These contours

are all plotted in (c) where case i, ii, and iii are in red, blue, and black.
The solid black line denotes the sonic line. . . . . . . . . . . . . . . 128

5.12
��𝜓𝑢,1�� (a),

��𝜙𝑢,1�� (b),
��𝜓𝑣,1�� (c),

��𝜙𝑣,1�� (d),
��𝜓𝑤,1�� (e),

��𝜙𝑤,1�� (f),
��𝜓𝑇,1��

(g),
��𝜙𝑇,1�� (h),

��𝜓𝑇,1�� (i),
��𝜙𝑇,1�� (j) for representative subsonic modes

(𝑘𝑥 = 2𝜋/10, 𝑘𝑧 = 2𝜋/1, 𝑐 = .5). Case i, ii, and iii are in red, blue,
and black solid lines. . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.13
���𝜓𝜌𝑁2 ,1

��� (a),
���𝜙𝜌𝑁2 ,1

��� (b),
���𝜓𝜌𝑂2 ,1

��� (c),
���𝜙𝜌𝑂2 ,1

��� (d),
��𝜓𝜌𝑁𝑂 ,1

�� (e),
��𝜙𝜌𝑁𝑂 ,1

��
(f),

��𝜓𝜌𝑁 ,1�� (g),
��𝜙𝜌𝑁 ,1�� (h),

��𝜓𝜌𝑂 ,1�� (i),
��𝜙𝜌𝑂 ,1�� (j) for representative

subsonic modes (𝑘𝑥 = 2𝜋/10, 𝑘𝑧 = 2𝜋/1, 𝑐 = .5). Case ii and iii are
in blue and black solid lines. . . . . . . . . . . . . . . . . . . . . . . 130

5.14 Real part of 𝜓𝑋𝑁2 ,1 (a), 𝜓𝑋𝑂2 ,1 (c), 𝜓𝑋𝑁𝑂 ,1 (e), 𝜓𝑋𝑁 ,1 (g), and 𝜓𝑋𝑂 ,1
(i) and magnitude of 𝜙𝑋𝑁2 ,1 (b), 𝜙𝑋𝑂2 ,1 (d), 𝜙𝑋𝑁𝑂 ,1 (f), 𝜙𝑋𝑁 ,1 (h), and
𝜙𝑋𝑂 ,1 (j) for representative subsonic modes (𝑘𝑥 = 2𝜋/10, 𝑘𝑧 = 2𝜋/1,
𝑐 = .5). Case ii and iii are in blue and black solid lines. . . . . . . . . 131

5.15
��𝜓𝑢,1�� (a),

��𝜙𝑢,1�� (b),
��𝜓𝑣,1�� (c),

��𝜙𝑣,1�� (d),
��𝜓𝑤,1�� (e),

��𝜙𝑤,1�� (f),
��𝜓𝑇,1��

(g),
��𝜙𝑇,1�� (h),

��𝜓𝑇,1�� (i),
��𝜙𝑇,1�� (j) for representative supersonic modes

(𝑘𝑥 = 2𝜋/5, 𝑘𝑧 = 2𝜋/10, 𝑐 = .5). Case i, ii, and iii are in red, blue,
and black solid lines. . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.16
���𝜓𝜌𝑁2 ,1

��� (a),
���𝜙𝜌𝑁2 ,1

��� (b),
���𝜓𝜌𝑂2 ,1

��� (c),
���𝜙𝜌𝑂2 ,1

��� (d),
��𝜓𝜌𝑁𝑂 ,1

�� (e),
��𝜙𝜌𝑁𝑂 ,1

��
(f),

��𝜓𝜌𝑁 ,1�� (g),
��𝜙𝜌𝑁 ,1�� (h),

��𝜓𝜌𝑂 ,1�� (i),
��𝜙𝜌𝑂 ,1�� (j) for representative

supersonic modes (𝑘𝑥 = 2𝜋/5, 𝑘𝑧 = 2𝜋/10, 𝑐 = .5). Case ii and iii
are in blue and black solid lines. . . . . . . . . . . . . . . . . . . . . 134



xviii

5.17 Real part of 𝜓𝑋𝑁2 ,1 (a), 𝜓𝑋𝑂2 ,1 (c), 𝜓𝑋𝑁𝑂 ,1 (e), 𝜓𝑋𝑁 ,1 (g), and 𝜓𝑋𝑂 ,1
(i) and magnitude of 𝜙𝑋𝑁2 ,1 (b), 𝜙𝑋𝑂2 ,1 (d), 𝜙𝑋𝑁𝑂 ,1 (f), 𝜙𝑋𝑁 ,1 (h),
and 𝜙𝑋𝑂 ,1 (j) for representative supersonic modes (𝑘𝑥 = 2𝜋/5, 𝑘𝑧 =
2𝜋/10, 𝑐 = .5). Case ii and iii are in blue and black solid lines. . . . . 135

5.18
��𝜓𝑢,1�� (a),

��𝜙𝑢,1�� (b),
��𝜓𝑣,1�� (c),

��𝜙𝑣,1�� (d),
��𝜓𝑤,1�� (e),

��𝜙𝑤,1�� (f),
��𝜓𝑇,1��

(g),
��𝜙𝑇,1�� (h),

��𝜓𝑇,1�� (i),
��𝜙𝑇,1�� (j) for representative subsonic streaky

modes (𝑘𝑥 = 2𝜋/100, 𝑘𝑧 = 2𝜋/5, 𝑐 = .5). Case i, ii, and iii are in
red, black, and blue solid lines. . . . . . . . . . . . . . . . . . . . . . 136

5.19
���𝜓𝜌𝑁2 ,1

��� (a),
���𝜙𝜌𝑁2 ,1

��� (b),
���𝜓𝜌𝑂2 ,1

��� (c),
���𝜙𝜌𝑂2 ,1

��� (d),
��𝜓𝜌𝑁𝑂 ,1

�� (e),
��𝜙𝜌𝑁𝑂 ,1

��
(f),

��𝜓𝜌𝑁 ,1�� (g),
��𝜙𝜌𝑁 ,1�� (h),

��𝜓𝜌𝑂 ,1�� (i),
��𝜙𝜌𝑂 ,1�� (j) for representative

subsonic streaky modes (𝑘𝑥 = 2𝜋/100, 𝑘𝑧 = 2𝜋/5, 𝑐 = .5). Case ii
and iii are in blue and black solid lines. . . . . . . . . . . . . . . . . 137

5.20 Real part of 𝜓𝑋𝑁2 ,1 (a), 𝜓𝑋𝑂2 ,1 (c), 𝜓𝑋𝑁𝑂 ,1 (e), 𝜓𝑋𝑁 ,1 (g), and 𝜓𝑋𝑂 ,1
(i) and magnitude of 𝜙𝑋𝑁2 ,1 (b), 𝜙𝑋𝑂2 ,1 (d), 𝜙𝑋𝑁𝑂 ,1 (f), 𝜙𝑋𝑁 ,1 (h), and
𝜙𝑋𝑂 ,1 (j) for representative subsonic streaky modes (𝑘𝑥 = 2𝜋/100,
𝑘𝑧 = 2𝜋/5, 𝑐 = .5). Case ii and iii are in blue and black solid lines. . . 138

5.21 Contours of 𝜎2
1 𝑘𝑥𝑘𝑧 for case i (a), case ii (b), and case iii (d) where

only forcing from the 𝑇 component is considered. The contour lines
denote 𝜎2

1 𝑘𝑥𝑘𝑧 = 101, 102, . . . , 105. These contours are all plotted
in (c) where case i, ii, and iii are in red, blue, and black. The solid
black line denotes the sonic line. . . . . . . . . . . . . . . . . . . . 139

5.22 Contours of 𝜎2
1 𝑘𝑥𝑘𝑧 for case iii where forcing from 𝜌 (a), 𝜌𝑁2 (b),

𝜌𝑂2 (c), 𝜌𝑁𝑂 (d), 𝜌𝑁 (e), 𝜌𝑂 (f) is considered through masking. The
contour lines denote 𝜎2

1 𝑘𝑥𝑘𝑧 = 101, 102, . . . , 105. The diagonal
black line denotes the sonic line. . . . . . . . . . . . . . . . . . . . 140

5.23 Contours of𝜎2
𝑖
𝑘𝑥𝑘𝑧 for case ii (blue) and iii (black). The contour lines

denote .1%, 1%, 10%, 30%, 50%, and 75% of the local maximum of
𝜎2
𝑖
𝑘𝑥𝑘𝑧 for each case. 𝑖 = 2, 3, 4, and 5 are plotted in (a), (b), (c),

and (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.24 𝑈 (a), 𝑇 (b), 𝜌 (c), 𝜇 (d), 𝑘 (e), and 𝑐𝑣 (f) for TBL assuming chemical

nonequilibrium. 𝜌𝑖𝑠 (g), and ¤𝜔𝑖𝑠 (h) are plotted with their colors
labeled in the legend. Note that the densities of the dissociated
components are rescaled in (g) for visualization. . . . . . . . . . . . 143



xix

5.25 Contours of 𝜎2
1 𝑘𝑥𝑘𝑧 assuming chemical equilibrium (a) and chemical

nonequilibrium (b). The contour lines denote 𝜎2
1 𝑘𝑥𝑘𝑧 = 101, 102,

. . . , 107. These contours are all plotted in (c) where blue and black
denote chemical equilibrium and nonequilibrium. The solid black
line denotes the sonic line. . . . . . . . . . . . . . . . . . . . . . . 144

5.26
��𝜓𝑢,1�� (a),

��𝜙𝑢,1�� (b),
��𝜓𝑣,1�� (c),

��𝜙𝑣,1�� (d),
��𝜓𝑤,1�� (e),

��𝜙𝑤,1�� (f),
��𝜓𝑇,1��

(g),
��𝜙𝑇,1�� (h),

��𝜓𝑇,1�� (i),
��𝜙𝑇,1�� (j) for representative subsonic modes

(𝑘𝑥 = 2𝜋/.9, 𝑘𝑧 = 2𝜋/.09, 𝑐 = .48). The chemical nonequilibrium
and equilibrium modes are in black and blue. . . . . . . . . . . . . . 146

5.27
���𝜓𝜌𝑁2 ,1

��� (a),
���𝜙𝜌𝑁2 ,1

��� (b),
���𝜓𝜌𝑂2 ,1

��� (c),
���𝜙𝜌𝑂2 ,1

��� (d),
��𝜓𝜌𝑁𝑂 ,1

�� (e),
��𝜙𝜌𝑁𝑂 ,1

��
(f),

��𝜓𝜌𝑁 ,1�� (g),
��𝜙𝜌𝑁 ,1�� (h),

��𝜓𝜌𝑂 ,1�� (i),
��𝜙𝜌𝑂 ,1�� (j) for representative

subsonic modes (𝑘𝑥 = 2𝜋/.9, 𝑘𝑧 = 2𝜋/.09, 𝑐 = .48). The chemical
nonequilibrium and equilibrium modes are in black and blue. . . . . 147

5.28 Real part of 𝜓𝑋𝑁2 ,1 (a), 𝜓𝑋𝑂2 ,1 (c), 𝜓𝑋𝑁𝑂 ,1 (e), 𝜓𝑋𝑁 ,1 (g), and 𝜓𝑋𝑂 ,1
(i) and magnitude of 𝜙𝑋𝑁2 ,1 (b), 𝜙𝑋𝑂2 ,1 (d), 𝜙𝑋𝑁𝑂 ,1 (f), 𝜙𝑋𝑁 ,1 (h), and
𝜙𝑋𝑂 ,1 (j) for representative subsonic modes (𝑘𝑥 = 2𝜋/.9, 𝑘𝑧 = 2𝜋/.09,
𝑐 = .48). The chemical nonequilibrium and equilibrium modes are
in black and blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.29
��𝜓𝑢,1�� (a),

��𝜙𝑢,1�� (b),
��𝜓𝑣,1�� (c),

��𝜙𝑣,1�� (d),
��𝜓𝑤,1�� (e),

��𝜙𝑤,1�� (f),
��𝜓𝑇,1��

(g),
��𝜙𝑇,1�� (h),

��𝜓𝑇,1�� (i),
��𝜙𝑇,1�� (j) for representative supersonic modes

(𝑘𝑥 = 2𝜋/5, 𝑘𝑧 = 2𝜋/10, 𝑐 = .48). The chemical nonequilibrium and
equilibrium modes are in black dotted and blue solid lines. . . . . . . 149

5.30
���𝜓𝜌𝑁2 ,1

��� (a),
���𝜙𝜌𝑁2 ,1

��� (b),
���𝜓𝜌𝑂2 ,1

��� (c),
���𝜙𝜌𝑂2 ,1

��� (d),
��𝜓𝜌𝑁𝑂 ,1

�� (e),
��𝜙𝜌𝑁𝑂 ,1

��
(f),

��𝜓𝜌𝑁 ,1�� (g),
��𝜙𝜌𝑁 ,1�� (h),

��𝜓𝜌𝑂 ,1�� (i),
��𝜙𝜌𝑂 ,1�� (j) for representative

supersonic modes (𝑘𝑥 = 2𝜋/5, 𝑘𝑧 = 2𝜋/10, 𝑐 = .48). The chemical
nonequilibrium and equilibrium modes are in black dotted and blue
solid lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.31 Real part of 𝜓𝑋𝑁2 ,1 (a), 𝜓𝑋𝑂2 ,1 (c), 𝜓𝑋𝑁𝑂 ,1 (e), 𝜓𝑋𝑁 ,1 (g), and 𝜓𝑋𝑂 ,1
(i) and magnitude of 𝜙𝑋𝑁2 ,1 (b), 𝜙𝑋𝑂2 ,1 (d), 𝜙𝑋𝑁𝑂 ,1 (f), 𝜙𝑋𝑁 ,1 (h),
and 𝜙𝑋𝑂 ,1 (j) for representative supersonic modes (𝑘𝑥 = 2𝜋/5, 𝑘𝑧 =
2𝜋/10, 𝑐 = .48). The chemical nonequilibrium and equilibrium
modes are in black and blue solid lines. . . . . . . . . . . . . . . . . 151



xx

5.32 Contours of 𝜎2
1 𝑘𝑥𝑘𝑧 assuming chemical equilibrium (a) and chemical

nonequilibrium (b) where only forcing from the 𝑇 component is
considered. The contour lines denote 𝜎2

1 𝑘𝑥𝑘𝑧 = 101, 101.5, 102, . . . ,
104.5, 105. These contours are all plotted in (c) where blue and black
denote chemical equilibrium and nonequilibrium. The solid black
line denotes the sonic line. . . . . . . . . . . . . . . . . . . . . . . 152

5.33 Contours of 𝜎2
1 𝑘𝑥𝑘𝑧 for case iii where forcing from 𝜌 (a), 𝜌𝑁2 (b),

𝜌𝑂2 (c), 𝜌𝑁𝑂 (d), 𝜌𝑁 (e), 𝜌𝑂 (f) is considered through masking for the
turbulent mean flow field. The contour lines denote 𝜎2

1 𝑘𝑥𝑘𝑧 = 101,
102, . . . , 105. The diagonal black line denotes the sonic line. . . . . 153

5.34 Contours of 𝜎2
𝑖
𝑘𝑥𝑘𝑧 using chemical equilibrium (blue) and chemical

nonequilibrium (black). The contour lines denote .1%, .5%, 1%,
10%, 30%, 50%, and 75% of the local maximum of 𝜎2

𝑖
𝑘𝑥𝑘𝑧 for each

case. 𝑖 = 2, 3, 4, and 5 are plotted in (a), (b), (c), and (d). . . . . . . . 154
5.35 The first ten 𝜎𝑗 for the chemical nonequilibrium (black open circles)

and chemical equilibrium (blue filled cirlces) approaches using 𝑘𝑥 =
2𝜋/.9, 𝑘𝑧 = 2𝜋/.09, 𝑐 = .48, represenative of the subsonic region.
The 𝑦 axis is in log-scale. . . . . . . . . . . . . . . . . . . . . . . . 155

5.36
��𝜓𝑢,5�� (a),

��𝜙𝑢,5�� (b),
��𝜓𝑣,5�� (c),

��𝜙𝑣,5�� (d),
��𝜓𝑤,5�� (e),

��𝜙𝑤,5�� (f),
��𝜓𝑇,5��

(g),
��𝜙𝑇,5�� (h),

��𝜓𝑇,5�� (i),
��𝜙𝑇,5�� (j) for representative subsonic modes

(𝑘𝑥 = 2𝜋/.9, 𝑘𝑧 = 2𝜋/.09, 𝑐 = .48). The chemical nonequilibrium
and equilibrium modes are in black and blue. . . . . . . . . . . . . . 156

5.37
���𝜓𝜌𝑁2 ,5

��� (a),
���𝜙𝜌𝑁2 ,5

��� (b),
���𝜓𝜌𝑂2 ,5

��� (c),
���𝜙𝜌𝑂2 ,5

��� (d),
��𝜓𝜌𝑁𝑂 ,5

�� (e),
��𝜙𝜌𝑁𝑂 ,5

��
(f),

��𝜓𝜌𝑁 ,5�� (g),
��𝜙𝜌𝑁 ,5�� (h),

��𝜓𝜌𝑂 ,5�� (i),
��𝜙𝜌𝑂 ,5�� (j) for representative

subsonic modes (𝑘𝑥 = 2𝜋/.9, 𝑘𝑧 = 2𝜋/.09, 𝑐 = .48). The chemical
nonequilibrium and equilibrium modes are in black and blue. . . . . 157

5.38 Real part of 𝜓𝑋𝑁2 ,5 (a), 𝜓𝑋𝑂2 ,5 (c), 𝜓𝑋𝑁𝑂 ,5 (e), 𝜓𝑋𝑁 ,5 (g), and 𝜓𝑋𝑂 ,5
(i) and magnitude of 𝜙𝑋𝑁2 ,5 (b), 𝜙𝑋𝑂2 ,5 (d), 𝜙𝑋𝑁𝑂 ,5 (f), 𝜙𝑋𝑁 ,5 (h), and
𝜙𝑋𝑂 ,5 (j) for representative subsonic modes (𝑘𝑥 = 2𝜋/.9, 𝑘𝑧 = 2𝜋/.09,
𝑐 = .48). The chemical nonequilibrium and equilibrium modes are
in black and blue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158



xxi

5.39 𝐶𝑖, 𝑗 from the DNS of Di Renzo and Urzay (2021). (a) and (b) plot
𝐶𝑢,𝑌𝑖𝑠 , (c) and (d) plot 𝐶𝑣,𝑌𝑖𝑠 , (e) plots 𝐶𝑢,𝑇 , and (f) plot 𝐶𝑢,𝑇 . The
blue, red, green, orange, and purple curves denote 𝑖𝑠 =N2, O2, NO, N,
and O. The dashed lines are used to distinguish the different curves.
Note that only the region 𝑦+ < 130 is shown to compare the regions
where 𝝍1 is supported for small scale modes. . . . . . . . . . . . . . 161

5.40 𝑅𝑖, 𝑗 for a subsonic mode with 𝑘𝑥 = 2𝜋/.9, 𝑘𝑧 = 2𝜋/.09, and 𝑐 = .48.
(a) and (b) plot 𝑅𝑢,𝑌𝑖𝑠 , (c) and (d) plot 𝑅𝑣,𝑌𝑖𝑠 , and (e) and (f) plot 𝑅𝑇,𝑌𝑖𝑠 .
The blue, red, green, orange, and purple curves denote 𝑖𝑠 =N2, O2,
NO, N, and O. Note that only the region 𝑦+ < 130 is shown since 𝝍1

has negligible support in the outer region of the flow. . . . . . . . . . 162
5.41 𝑅𝑖, 𝑗 for a subsonic mode with 𝑘𝑥 = 2𝜋/.9, 𝑘𝑧 = 2𝜋/.09, and 𝑐 = .48.

𝑅𝑢,𝑇 and 𝑅𝑣,𝑇 are plotted in (a) and (b). The solid lines are computed
using the chemical nonequilibrium approach and the dotted lines are
computed using the chemical equilibrium approach. (c) plots 𝑅𝑋𝑁2 ,𝑋𝑁

and 𝑅𝑋𝑁2 ,𝑋𝑁𝑂
in black and red. (d) plots 𝑅𝑋𝑂2 ,𝑋𝑁𝑂

, and 𝑅𝑋𝑂2 ,𝑋𝑂
in

black and red. Note that only the region 𝑦+ < 130 is shown since 𝝍1

has negligible support in the outer region of the flow. . . . . . . . . . 163
5.42 𝑅𝑖, 𝑗 for a subsonic mode with 𝑘𝑥 = 2𝜋/10, 𝑘𝑧 = 2𝜋/1, and 𝑐 = .48.

The colors and linestyles are the same as in Figure 5.40. . . . . . . . 165
5.43 𝑅𝑖, 𝑗 for a subsonic mode with 𝑘𝑥 = 2𝜋/10, 𝑘𝑧 = 2𝜋/1, and 𝑐 = .48.

The colors and linestyles are the same as in Figure 5.41. . . . . . . . 166
6.1 𝜎2

1 𝑘𝑥𝑘𝑧 for a TBL in chemical nonequilibrium using the same pa-
rameters as in Figure 5.25 with the initial samples (triangles) and the
samples found using ARA (circles) (a). The order of the identified
samples is color coded, beginning with white and ending with black.
𝜎2

1 𝑘𝑥𝑘𝑧 (black contours) and 10𝑚𝑒 (red contours) where the contour
values are 10.5, 101, . . . , 106 (b). . . . . . . . . . . . . . . . . . . . 176

6.2 The same contours from Figure 6.1 are plotted in (a) and (c). In (a),
the upside down triangles denote the points found from the ARA,
while the rest denote the initial points. In (c), the triangles denote the
sample points, all equispaced. 𝜎2

1 𝑘𝑥𝑘𝑧 (black contours) is compared
with interpolations (red contours) from the ARA samples in (b) and
the equispaced samples in (d). The contours are taken at 101, 102,
103, 104, 105, 105.5. . . . . . . . . . . . . . . . . . . . . . . . . . . 178
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6.3 Comparison of𝜎𝑗 using 23 basis elements for the GL system. The red
triangles and blue filled circles are the VRA approximated singular
values using the Gaussian and Fourier bases, respectively. The black
open circles are the singular values computed using the SVD. Note
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6.5 The error in the VRA approximations for 𝜎𝑗 (a), 𝜓 𝑗 (b), and 𝜙 𝑗 (c)
relative to the SVD computed modes as 𝑟 increases. The open circles
denote the error using the Fourier basis while the closed circles are
the error with the Gaussian basis. The red, blue, green, and purple
lines denote 𝑖 = 1, 2, 3, and 4. The black dashed lines are proportional
to 𝑟−1 in (a,c) and proportional to 𝑟−2 in (b). . . . . . . . . . . . . . 185
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𝑣,1 (d) using 𝜆+𝑧 = 100. The
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C h a p t e r 1

INTRODUCTION

Transportation connects people and commerce across the globe, encompassing
cargo ships moving across the oceans, commercial airplanes soaring through the
skies, and pipelines pumping products across regions. It is estimated that these
industries account for 25% of the world’s energy use (Jiménez, 2013). Part of this
energy is used to overcome the drag from a fluid flowing past solid surfaces or walls.
The flow near these surfaces in industrial applications is typically turbulent—i.e.,
categorized by chaotic, vortical, and multiscale motions that promote mixing. These
turbulent motions require energy, which is supplied by the surface moving relative
to the fluid. For example, 50% of the fuel used in a commercial flight is used to
overcome the turbulence near the vehicle’s surface (Marušić, Mathis, and Hutchins,
2010b). Despite their technological relevance, wall-bounded turbulent flows lack a
comprehensive underlying theory and remain computationally and experimentally
difficult to study.

Mathematically, the presence of a solid surface imposes a boundary condition on
wall-bounded flows. For incompressible flows, this is manifested as the “no-slip”
boundary condition which states that the relative velocity between the fluid and the
wall is zero at the wall. In the wall-normal direction, this is a constraint that imposes
no fluid flow through the surface. In the transverse directions, the no-slip condition
is a purely viscous effect. For free-surface flows, like the flow over a vehicle
surface, the no-slip condition creates a boundary layer—the thin wall-normal region
of the flow where the flow adjusts from zero velocity at the wall to the freestream
conditions. For an airplane wing, the boundary layer can be a few centimeters tall.
This wall-normal anisotropy in the streamwise velocity creates a velocity gradient
within the boundary layer, causing the shear stress at the wall and vorticity within
the boundary layer.

Boundary layers evolve in the streamwise direction as the effect of the wall accu-
mulates downstream of the leading edge. For a flat plate with a constant freestream
velocity, this results in streamwise growth of the boundary layer. Although the
flow may begin laminar downstream of the leading edge, it eventually transitions
naturally to a turbulent state. The region of transition is typically described by the
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Reynolds number, the nondimensional group defined colloquially as the ratio of
inertial effects to viscous effects. Here, 𝑅𝑒𝑥 = 𝑈∞𝑥/𝜈, where 𝑈∞ is the freestream
velocity, 𝑥 is the distance downstream of the leading edge, and 𝜈 is the kinematic vis-
cosity, which acts to dampen disturbances. As 𝑅𝑒𝑥 becomes large (𝑅𝑒𝑥 ≿ 6 × 105),
the disturbances become too energetic to be quickly dissipated by viscosity. This
allows for streamwise growth of said disturbances, which breakdown in the transi-
tional region. As these disturbances interact with one another, the flow eventually
becomes fully turbulent. Predicting where and how this occurs is still a matter of
debate and of important engineering interest because the turbulent boundary layer
(TBL) experiences larger shear stresses and heat fluxes than its laminar counterpart.
These effects can have detrimental effects on the vehicle’s performance.

The turbulent boundary layer and laminar boundary layer (LBL) differ in many ways.
The LBL admits a single wall-normal length scale, the boundary layer thickness,
𝛿(𝑥). On the other hand, the TBL is multiscale. In the vicinity of the wall, the
flow is categorized by the effect of the wall and is thus scaled with a viscous length
scale, ℓ𝜈. Further from the wall, the majority of the TBL is categorized by the
outer length scale, 𝛿. The ratio of these two length scales defines the friction
Reynolds number, 𝑅𝑒𝜏 = 𝛿/ℓ𝜈, which is the only parameter in the zero pressure
gradient (ZPG) TBL. For turbulent flow, 𝑅𝑒𝜏 is at smallest 180 and can be as large
as 104 − 106 for industrially relevant flows (Smits and Marušić, 2013). The viscous
region extends O(100ℓ𝜈) from the wall, encompassing less than a percent of 𝛿
for flows of engineering interest. Despite its size, a large portion of the turbulent
activity occurs within this near wall region (Pope, 2000). This separation of scales
is one of the hallmarks of wall bounded turbulence, and one of the challenges, as
resolving the near wall activity requires sensitive experimental equipment or a large
number of grid points in a simulation. Despite these challenges, the mean flow
field and, consequently, the skin friction of the ZPG TBL can be modeled due to
well-established asymptotic theories and similarity laws.

Despite the advances in the ZPG TBL, flows that depart from these canonical
configurations have received less attention and are increasingly difficult to predict.
Real vehicles have curvature, which create streamwise deceleration or acceleration
of the freestream velocity. To isolate the effects of a streamwise deceleration of
the freestream velocity, many researchers consider the flat plate with an adverse
pressure gradient (APG). The APG is commonly seen in the flow around airfoils or
within diffusers. If the APG becomes too strong, it can lead to separation which
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creates adverse effects on vehicles. Here, the focus is on mild-moderate APG such
that the flow remains attached. Under these conditions, the APG primarily affects
the outer region of the TBL, strengthening the turbulent fluctuations, thickening the
boundary layer, and increasing the outer region velocity, 𝑈/𝑢𝜏, relative to a ZPG
TBL at the same 𝑅𝑒𝜏, where𝑈 is the mean velocity and 𝑢𝜏 is the friction velocity.

Since the APG affects the turbulent flow, a measure of the APG strength must also
parameterize the TBL. Here, the parameter chosen to represent the APG strength is
the Clauser parameter,

𝛽 =
𝛿∗

𝜏𝑊

𝑑𝑝

𝑑𝑥
, (1.1)

where 𝛿∗ is the displacement thickness, 𝜏𝑊 is the shear stress at the wall, and 𝑑𝑝

𝑑𝑥

is the pressure gradient. 𝛽 represents the ratio of the pressure gradient acting on
the boundary layer to the shear stress at the wall. The APG TBL can not be solely
categorized by the local values of 𝛽 and 𝑅𝑒𝜏 since its streamwise development is
affected by the accumulated upstream 𝛽 (Bobke et al., 2017), similar to how the ZPG
TBL grows as it is increasingly retarded by the wall. Following the definition in
Clauser (1954), the APG TBL will be considered to be in equilibrium if 𝛽 is constant.
Here, nonequilibrium effects in the APG TBL will be considered as history effects
from a streamwise varying 𝛽.

For now, the discussion has focused on incompressible flows which assume that
𝑈∞ is significantly smaller than the speed of sound in the freestream, 𝑎∞. The
Mach number, Ma = 𝑈∞/𝑎∞, is a nondimensional quantity commonly used in
compressible flows. A TBL with Ma > 1 is considered supersonic, and the air
can be modeled as a calorically perfect ideal gas. These flows experience large
temperatures as the kinetic energy from the freestream flow is converted into heat
as the flow comes to rest at the wall. This causes the largest temperatures within
the boundary layer, which increase with Ma. When the Ma > 5, the flow can
be categorized as a hypersonic TBL. These hypersonic flows have temperatures
where high-temperature real gas effects become important. For example, vibrational
excitation of the gas begins at 800 K, O2 dissociates at 2000 K, and N2 dissociates
at 4000 K (Anderson Jr., 2006). In hypersonic flows, the calorically perfect ideal
gas assumption no longer holds.

For a hypersonic vehicle, the TBL needs to be accurately modeled because it ex-
periences O(10) times larger heat fluxes than the LBL (Van Driest, 1956). Poor
modeling of these heat loads can cause detrimental effects to the vehicle and its
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payload. For hypersonic TBLs with large Ma, the O2 and N2 dissociate, requiring
the air to be modeled as a mixture of N2, O2, NO, N, and O, and other species if,
for example, ionization or ablation are considered. These reactions occur as the
individual molecules collide with one another, meaning that the reactions occur in
a finite amount of time, 𝑡𝑟 . The modeling of the chemical reactions depends on the
advection time of the flow, 𝑡 𝑓 , relative to 𝑡𝑟 . This is measured by the Damköhler
number, 𝐷𝑎 = 𝑡 𝑓 /𝑡𝑟 . At the two extremes are the chemically frozen assumption
(𝐷𝑎 = 0) and the chemical equilibrium assumption (𝐷𝑎 → ∞). In between these
two extremes, the flow is assumed to be in chemical nonequilibrium, meaning that
the changes in concentration and heat release due to the reactions need to be ac-
counted for. This requires the explicit handling of nonlinear functions that describe
the thermophysical properties in the flow as well as a state vector that includes
the concentrations of the species elements. These extra terms make the equations
computationally stiff.

Despite the complexities in the TBL, the flow tends to organize itself in coherent
structures that sustain the flow. From the turbulent data, their signature can be seen
in the premultiplied energy spectra, which reveal distinct peaks corresponding to a
small-scale near-wall cycle and large-scale outer layer motions at sufficiently high
𝑅𝑒𝜏. Understanding the processes that sustain and amplify these distinct length
scales can lead to a better understanding of the laminar-turbulent transition, length
and time scales to target in flow control, and improved reduced order models.

This chapter will provide a brief overview of the topics seen in the rest of the thesis.
First, Section 1.1 provides an overview of turbulent statistics and coherent motions
present for channels, pipes, and ZPG flat plates. Section 1.2 discusses how an APG
changes the structure of the TBL, including nonequilibrium effects. Supersonic and
hypersonic TBLs are briefly explained in Section 1.3, with special attention given
to the high temperature gas effects. Section 1.4 discusses linear methods applied to
shear-driven flows, with an emphasis on the resolvent analysis approach. Section 1.5
provides a preliminary discussion on Bayesian Optimization, which is often used
for parameter optimization in fluid systems. Finally, Section 1.6 provides a brief
outline for the rest of the thesis.

1.1 Canonical Wall Bounded Turbulence

The earliest insights on canonical wall-bounded turbulence originate from self-
similar scalings for the mean streamwise velocity, 𝑈, derived from empirical ob-



5

servations or asymptotics from the governing equations. The flow near the wall is
governed by a balance between the viscous stresses, 𝜌𝜈 𝜕𝑈

/
𝜕𝑦 , and the wall shear

stress, 𝜏𝑊 , while all other stresses are negligible, due to either the no-slip condi-
tion or because they scale as O

(
𝑅𝑒−1

𝜏

)
. This balance introduces a friction velocity,

𝑢𝜏 =
√︁
𝜏𝑊/𝜌, and a viscous length scale, ℓ𝜈 = 𝜈/𝑢𝜏 such that 𝜕𝑈+/

𝜕𝑦+ = 1 at
the wall. Variables nondimensionalized with these coordinates are denoted with +
superscripts. Upon nondimensionalization with 𝑢𝜏 and ℓ𝜈, the Reynolds averaged
Navier Stokes (RANS) equations integrated in 𝑦 for a turbulent channel, pipe, or
a two-dimensional TBL under the typical boundary layer approximations (Pope,
2000) become

𝜕𝑈
+

𝜕𝑦+
− 1 + 𝑇+ =

1
𝑅𝑒𝜏

∫ 𝑦+

0
𝐶+𝑑𝑦̃+, (1.2)

where 𝑇 = −𝑢𝑣 denotes the Reynolds shear stress and 𝐶 = 𝜌−1 𝜕𝑝/𝜕𝑥 for a channel
and pipe or 𝐶 = 𝜕𝑈

/
𝜕𝑥 𝑈 + 𝜕𝑈

/
𝜕𝑦 𝑉 for a TBL (Wei, Fife, et al., 2005). 𝐶

denotes the terms that drive the flow, which for the internal flows is the pressure
gradient and in a TBL is the advection. In the region where 𝑦+ ≪ 𝑅𝑒𝜏, the integral
can be neglected making Equation 1.2 𝑅𝑒𝜏-independent. This forms the ‘law of the
wall,’

𝑈 (𝑦+) = 𝑓𝑊 (𝑦+), (1.3)

which holds in the near wall region (von Kármán, 1939; Coles, 1956).

Further from the wall, the flow becomes 𝑅𝑒𝜏 dependent in the viscous-scaled units as
the integral is no longer negligible. ℓ𝜈 can not be used to scale the velocity gradients
in this outer region since the viscous stresses are negligible (Wei, Fife, et al., 2005).
The turbulence’s wall-normal extent in the outer region is constrained by a length
scale, 𝛿, which is either the channel half-height, pipe radius, or a measure of the
boundary layer thickness. There is ambiguity in the correct choice of 𝛿 for a ZPG
TBL. One choice is the boundary layer thickness, 𝛿99. The length scale proposed by
Clauser (1954), Δ, has seen success, though Nagib, Chauhan, and Monkewitz (2007)
demonstrate that Δ/𝛿99 approaches a constant for previously unavailable large 𝑅𝑒𝜏
ZPG TBL data. Due to this, 𝛿99 is chosen as the 𝛿 for the ZPG TBL. Experimentally,
it has been observed that outside of the inner region,

𝑈
+
∞ −𝑈+

= 𝑔

( 𝑦
𝛿

)
, (1.4)

where 𝑈∞ denotes the freestream velocity in a TBL or the centerline velocity in an
internal flow (Coles, 1956; von Kármán, 1934). Equation 1.4 is known as the ‘law
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Figure 1.1: Plots of experimental and DNS 𝑈. (a) 𝑈+(𝑦+) with 𝑦+ plotted in black
and 1/𝑘 log(𝑦+) + 𝐴 in orange. (b)𝑈+

∞ −𝑈+(𝑦/𝛿99) with Coles (1956)’s law of the
wake fitted to the highest 𝑅𝑒𝜏 data plotted in magenta. The blue and red lines are
from the ZPG TBL DNS of Schlatter and Örlü (2010) with 𝑅𝑒𝜏 = 670 and 1270,
respectively. The green lines are from the ZPG TBL experiment of Baidya et al.
(2017) with 𝑅𝑒𝜏 = 2500 (circles), 5000 (squares), 104 (triangles), and 1.8 × 104

(stars). Here, 𝜅 = .384 and 𝐴 = 4.173 (Nagib, Chauhan, and Monkewitz, 2007).

of the wake’ and suggests that the velocity defect is 𝑅𝑒𝜏 independent, although 𝑔
may be a function of the geometry.

Equations 1.3 and 1.4 hold in two separate regions of the flow. As a result, it
must be the case that these two expressions have to overlap in some intermediate
region. Millikan (1938) showed that in order for this to be the case, then𝑈 must be
logarithmic such that

𝑈
+
=

1
𝜅

log
(
𝑦+

)
+ 𝐴, (1.5)

where 𝜅 is the Kármán ‘constant’ and 𝐴 is an additive ‘constant’ that can account for
flow roughness (Marušić, Monty, et al., 2013). Although the parameters in Equation
1.5 may be denoted as constants, there is increasing evidence that they may be flow
dependent (Smits, McKeon, and Marušić, 2011).

ZPG TBL mean flow field data from the direct numerical simulation (DNS) of
Schlatter and Örlü (2010) and the high 𝑅𝑒𝜏 experiments of Baidya et al. (2017) are
plotted in viscous units in Figure 1.1(a) and in wake-deficit form in Figure 1.1(b).
The linear relationship in the viscous sublayer, log law, and Coles (1956)’s law of
the wake are included as well. These plots illustrate the Re𝜏 independence of 𝑈+

in the near wall region and in the outer regions of the flow, when scaled in the
appropriate units. For the smallest Re𝜏 data, deviations from Equation 1.3 and 1.4
are observed both closer to and farther from the wall compared to the larger Re𝜏
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data. In addition, the logarithmic region becomes wider in viscous units as Re𝜏
increases, which increases the inner and outer scale separation.

The region 𝑦+ ∈ [0, 5] where 𝑈+ ≈ 𝑦+ is the viscous sublayer. Between that
region and the log layer is the buffer layer, 𝑦+ ∈ [5, 30]. The log layer holds for
𝑦+ ∈

[
𝑦+𝑠 , .15Re𝜏

]
, while the outer layer is 𝑦+ ≥ .15Re𝜏. Different authors have

denoted the start of the log layer with values of 𝑦+𝑠 = 30, 200, and 2.6
√

Re𝜏, to name
a few (Wei, Fife, et al., 2005; Marušić, Monty, et al., 2013). While these layers
describe different qualities of 𝑈, they do not necessarily describe the dynamics
within these flows. Wei, Fife, et al. (2005) considered the balance of terms in
the RANS equation, which describes the balance of stress gradients in the mean
momentum equation, rather than the balance of stresses in Equation 1.2. From this
balance, they mathematically determined four distinct layers with Re𝜏-dependent
thicknesses where two or three of the stress gradients, 𝜈 𝜕2𝑈

/
𝜕𝑦2 , 𝜕𝑇/𝜕𝑦 , and 𝐶,

balance. The mesolayer, the sole layer where the three terms balance, is categorized
by a mixed length scale ℓ𝑚 =

√
ℓ𝜈𝛿, in agreement with Afzal (1984).

The self-similar relationships have inspired many models to predict the behavior
of 𝑈 at higher Re𝜏. For example, Monkewitz, Chauhan, and Nagib (2007) used
matched asymptotics to create a self-consistent composite profile, fitted to high Re𝜏
data, for𝑈 that only requires an Re𝜏 as an input. These ideas have also been used to
build computationally efficient strategies to approximate high Re𝜏 ZPG TBL DNSs,
without the need for a laminar-turbulent transition region. The strategy described in
Lund, Wu, and Squires (1998) generates inflow data from a rescaling and recycling
of the outflow data. The work of Ruan (2021) demonstrates that through a rescaling
of the governing equations using the momentum thickness, 𝜃, the NSE can be treated
as streamwise homogeneous, provided that (𝛿99/𝜃) 𝜕𝜃/𝜕𝑥 ≪ 1 and some terms are
neglected. Although these methods allow for great reductions in computational cost,
caution must be used in interpreting the results as the inlet conditions can affect the
statistics of the flow (Schlatter and Örlü, 2010). Due to this, researchers have opted
to use tripping-based methods to trigger the laminar-turbulent transition and better
compare with experiment (Eitel-Amor, Örlü, and Schlatter, 2014).

Owing to the scale separation in the wall-bounded turbulent flows, turbulent struc-
tures with different characteristic length scales are also energetic in different regions
of the flow. These are denoted coherent structures, and are typically streak-like,
with streamwise lengths, 𝜆𝑥 , larger than their spanwise lengths, 𝜆𝑧. The wavenum-
bers associated with these length scales are 𝑘𝑥 = 2𝜋/𝜆𝑥 and 𝑘𝑧 = 2𝜋/𝜆𝑧. Through
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experiment and simulation, the premultiplied streamwise kinetic energy spectra,
𝑘𝑥𝐸𝑢𝑢 (𝑦, 𝑘𝑥), premultiplied spanwise kinetic energy spectra, 𝑘𝑧𝐸𝑢𝑢 (𝑦, 𝑘𝑧), and
spectral energy density, 𝑘𝑥𝑘𝑧𝐸𝑢𝑢 (𝑦, 𝑘𝑥 , 𝑘𝑧) reveal ample evidence of a near-wall
peak at 𝑦+ = 15, 𝜆+𝑥 = 1000, and 𝜆+𝑧 = 100 for ZPG TBLs (Harun et al., 2013;
Marušić, Mathis, and Hutchins, 2010a; Baidya et al., 2017; Smits, McKeon, and
Marušić, 2011; Eitel-Amor, Örlü, and Schlatter, 2014) and channels (Hoyas and
Jiménez, 2006; M. Lee and Moser, 2015). Further from the wall, the cited studies
also observe a secondary peak in the spectra with 𝜆𝑧 ∼ 𝛿 and 𝜆𝑥 ∼ 6𝛿 that becomes
energetic for Re𝜏 > 4000. The wall-normal location of these peaks are observed to
scale as 𝑦+ ∼ 3.9

√
Re𝜏 for a ZPG TBL (Marušić, Mathis, and Hutchins, 2010a).

The second-order statistics do not exhibit the same self-similar scaling as 𝑈. Evi-
dence for this can be seen in the mesolayer theory which argues that near the peak
|𝑢𝑣 |, 𝜕2𝑢𝑣+

/
𝜕𝑦+2 scales as Re−3/2

𝜏 (Wei, Fife, et al., 2005; Afzal, 1984). Fur-
thermore, the near-wall behavior of 𝑢𝑢+, 𝑢𝑣+, 𝑣𝑣+, and 𝑤𝑤+ is Re𝜏-dependent (M.
Lee and Moser, 2015; Baidya et al., 2017). In particular, the inner peak of 𝑢𝑢+

increases with Re𝜏 while in the outer region, 𝑢𝑢+ also increases with Re𝜏, with
evidence of a secondary outer peak developing for Re𝜏 > 104 (Hoyas, Oberlack,
et al., 2021; Marušić, Mathis, and Hutchins, 2010a). This secondary peak is tied
to the increased energization of large scale structures with increased Re𝜏 while the
inner peak’s Re𝜏 dependence is from the increased interactions between the large
scale motions and small scale motions (Marušić, Mathis, and Hutchins, 2010b). The
interactions of the turbulent structures, whose size depends on the distance from the
wall, have inspired phenomenological models that explain the observed behavior in
the second-order statistics (Marušić and Kunkel, 2003; Marušić and Perry, 1995). In
order to understand the behavior of the large scale structures and fully characterize
the log layer, the future of wall-bounded turbulence aims at achieving larger Re𝜏
with well-resolved near-wall regions.

1.2 Adverse Pressure Gradient Turbulent Boundary Layers

Unlike the canonical turbulent flows, the APG TBL can model effects from de-
celeration due to curvature seen on realistic vehicle surfaces. The discussion here
will focus TBLs over flat plates with mild to moderate APG to isolate the effect of
the pressure gradient on the turbulence while avoiding flow separation. The APG
strength will be measured with the Clauser parameter from Equation 1.1. Although
there are many options to measure the APG strength, 𝛽 is chosen because 𝑢𝑢+
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demonstrates considerably less variation with Re𝜏 if 𝛽 is matched as opposed to
holding other measures constant (Monty, Harun, and Marušić, 2011). Following
Clauser (1954), the APG TBL will be considered to be in equilibrium if 𝛽 is constant.
Other researchers define the equilibrium TBL with a stronger definition, requiring
self-similarity in the wake deficit (Aubertine and Eaton, 2005), though a constant
𝛽 is a ‘necessary condition’ (Monty, Harun, and Marušić, 2011). This work will
consider many APG TBLs ranging from equilibrium to nonequilibrium conditions.

Before delving into how the APG TBL affects the structure, it is instructive to
consider the RANS equations, integrated in the wall-normal direction,∫ 𝑦+

0

(
𝜕𝑈

+

𝜕𝑥+
𝑈

+ + 𝜕𝑈
+

𝜕𝑦+
𝑉
+
)
𝑑𝑦̃+ + 𝑦+d𝑝+

d𝑥+
+ 𝑇+ =

𝜕𝑈
+

𝜕𝑦+
− 1. (1.6)

One difference between the RANS for an APG TBL and the canonical wall bounded
turbulent flows is the presence of both the advective terms and the pressure gradient.
Since the pressure gradient can be approximated to be constant across the TBL (Pope,
2000), 𝜕𝑝+

/
𝜕𝑥+ = −𝑈+

∞ 𝜕𝑈
+
∞

/
𝜕𝑥+ as opposed to 𝜕𝑝+

/
𝜕𝑥+ = Re−1

𝜏 in a channel
or pipe. For the data of Marušić and Perry (1995), the mild APG TBLs (𝛽 < 1) have
Re−1

𝜏

(
𝜕𝑝+

/
𝜕𝑥+

)
∼ O(5) and moderate APG TBLs (𝛽 ≃ 3) have Re−1

𝜏

(
𝜕𝑝+

/
𝜕𝑥+

)
∼

O(20). 𝜕𝑝+
/
𝜕𝑥+ introduces freestream information into the TBL, which can be

several times larger than its effect in the canonical flow. If the APG is strong,
these effects can disrupt the near-wall scaling (Kitsios, Sekimoto, et al., 2017).
Since 𝑦+ 𝜕𝑝+

/
𝜕𝑥+ enters Equation 1.6, it also suggests that the APG effects are

more severe in the wake. Lastly, it is worth emphasizing that the APG introduces
streamwise deceleration into the turbulent boundary layer, which in turn creates
significant nonparallel effects.

Compared to the ZPG TBL, APGs change the turbulent statistics by increasing
the wake deficit (Monty, Harun, and Marušić, 2011; Aubertine and Eaton, 2005),
amplifying the secondary statistics in the outer region (Harun et al., 2013; Marušić
and Perry, 1995), and dropping the velocity in the log layer below the canoni-
cal log-law (Deshpande et al., 2023; Monty, Harun, and Marušić, 2011). The
strengthened secondary statistics in the outer region are tied to the energization
of large scale structures in the outer region of an APG TBL (Harun et al., 2013;
Sanmiguel Vila et al., 2020). The energization is so significant that even low Re𝜏
(Re𝜏 < 700) mild/moderate APG TBLs exhibit a secondary large scale peak in
𝑘𝑧𝐸𝑢𝑢 (𝑦, 𝑘𝑧) (Bobke et al., 2017; J. H. Lee, 2017). This energization leads to a sec-
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ondary outer peak emerging in 𝑢𝑢, present even in large Re𝜏 APG TBLs (Sanmiguel
Vila et al., 2020), that can surpass even the inner peak.

Just like the ZPG TBL can be sensitive to its upstream conditions (Schlatter and Örlü,
2010), so too is the APG TBL. This is denoted as a history effect, where differences in
upstream 𝛽(𝑥) can lead to differences in the turbulent statistics (Bobke et al., 2017).
Due to this, the APG TBL can be parameterized by its Re𝜏, 𝛽, and history, here
considered as the upstream variation in 𝛽(𝑥). Several studies have isolated the effects
of Re𝜏 and 𝛽 by focusing on APG TBLs with constant 𝛽(𝑥) (Kitsios, Atkinson, et al.,
2016; Kitsios, Sekimoto, et al., 2017; J. H. Lee, 2017; Pozuelo et al., 2022; Monty,
Harun, and Marušić, 2011). These studies identify a monotonic strengthening of
the wake and amplification of 𝑢𝑢+ in the outer region with increasing 𝛽. The
growth in 𝑢𝑢+ is coupled to an increased energization of the large scale structures
in the outer region with 𝛽. Similarly, as 𝛽 increases, 𝑈+ continues to drop below
the canonical log-law (J. H. Lee, 2017; Monty, Harun, and Marušić, 2011). Due
to the influence of the large scale motions, 𝑢𝑢+ is dependent on both 𝛽 and Re𝜏 in
the near-wall region (Sanmiguel Vila et al., 2020; Pozuelo et al., 2022; Aubertine
and Eaton, 2005). The effects of history on APG TBL were studied in Bobke et al.
(2017). The history can be measured as 𝛽, the streamwise average of 𝛽 over some
distance upstream (Vinuesa et al., 2017). It was shown that if both 𝛽, 𝛽, and Re𝜏 are
matched, then the turbulent statistics are the same. For flows with matched Re𝜏 and
𝛽, flows with larger 𝛽 have stronger outer fluctuations. Furthermore, 𝑢𝑢+ is more
sensitive to changes in 𝛽 than𝑈+.

Although there are quite a few differences in the APG TBL, there are still some sim-
ilarities with canonical flows, especially in the near wall region for a mild-moderate
APG. For example, inner scaling holds for𝑈+ within the viscous subregion (Bobke
et al., 2017) and up to the start of the log layer in larger Re𝜏 APG TBL (Pozuelo
et al., 2022; Harun et al., 2013). Furthermore, the APG TBLs exhibit a near-wall
cycle with 𝜆+𝑧 ≈ 100 and 𝜆+𝑥 = 1000, located around 𝑦+ = 15 (Pozuelo et al., 2022;
Harun et al., 2013).

There has been a considerable amount of work focused on the scaling of the APG
TBL statistics and here, a few novel scalings will be discussed. The work of Romero
et al. (2022) and Sekimoto et al. (2019) identified a hybrid velocity scale that can
account for the APG effects on the secondary statistics. This hybrid velocity scale
is defined as 𝑢2

ℎ
= 𝑢2

𝜏 + 𝑦/𝜌
𝜕𝑝

𝜕𝑥
, which indicates that close to the wall, the velocity

scale is dominated by the shear while further from the wall is defined by the pressure
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gradient. It has its basis in the mean momentum balance (Romero et al., 2022), and
was shown to remove the APG-related energized secondary peaks in the turbulent
fluctuations. Another scaling is that of Wei and Knopp (2023) which defines a novel
defect-velocity scaling for 𝑈, 𝑉 , and 𝑢𝑣, based on the wall-normal location of the
maximum of 𝑢𝑣, as a departure from the classical law of the wake. It as been shown
to collapse the outer region of the APG TBL in a myriad of Re𝜏, 𝛽, and 𝛽, and is
based on an analogy with a planar mixing layer (Gungor et al., 2016). This scaling
illustrates structural differences in the APG TBL now present in the canonical flows.

1.3 High Enthalpy Turbulent Boundary Layers

The incompressible TBL studies so far assumed that𝑈∞ ≪ 𝑎∞ so that compressibil-
ity effects are negligible. In the case where the Ma > 1, these compressible effects
take shape, requiring modeling of the air’s thermodynamics and thermophysical
properties. Following Spina, Smits, and Robinson (1994), the energy equation can
be nondimensionalized by using the freestream 𝑈∞, 𝑎∞, dynamic viscosity, 𝜇∞,
thermal conductivity, 𝑘∞, specific heat capacity at constant pressure, 𝑐𝑝,∞, and a
length scale 𝐿, as

𝜌𝑐𝑝
𝐷𝑇

𝐷𝑡
= (𝛾 − 1)Ma2𝐷𝑝

𝐷𝑡
+ 1

Re Pr
∇ · 𝑘∇𝑇 − (𝛾 − 1)Ma2

Re
Φ, (1.7)

where 𝑇 is the temperature, 𝛾 is the ratio of specific heats, 𝑃𝑟 = 𝑐𝑝,∞𝜇∞/𝑘∞ is the
Prandtl number, and Φ = 𝜌𝜈

(
𝜕𝑢 𝑗

/
𝜕𝑥𝑖 + 𝜕𝑢𝑖

/
𝜕𝑥 𝑗 − 2/3(∇ · u)𝛿𝑖, 𝑗

)
𝜕𝑢𝑖

/
𝜕𝑥 𝑗 is

the dissipation, which is a positive-definite function. As Ma increases, the positive-
definite temperature source from the dissipation term increases, which raises the
temperature in the shear-dominated boundary layer. Physically speaking, this is
the temperature due to viscous heating and is a result of the kinetic energy in the
freestream being converted to heat as the velocity satisfies the no-slip condition.
As a result, the thermophysical properties experience large variations within the
boundary layer where the 𝑇 is largest. Although this behavior is present in the LBL,
the associated heat transfer to the wall is much larger in the TBL because of the
sharp gradients near the wall (Van Driest, 1956).

These property variations have inspired many theories to compare the statistics of
a supersonic TBL to those of an incompressible TBL. Starting with the Morkovin
hypothesis, it is argued that if the fluctuating Ma𝐿 , where Ma𝐿 is the Mach number
defined with the local streamwise velocity and speed of sound within the TBL,
is small (less than 0.3), then the dynamics of the compressible TBL follow those
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of the incompressible TBL so long as the thermophysical property variations are
accounted for (Morkovin, 1962; Spina, Smits, and Robinson, 1994). While many
transformations have been proposed and tested in the past to map the compressible
TBL’s 𝑈 to the incompressible counter part in the inner region, the stress-based
transformation of Griffin, Fu, and Moin (2021) has shown promise at accounting
for a wide variety of conditions (Cogo et al., 2022; Pirozzoli and Bernardini, 2011).
Furthermore, the premultiplied energy spectra for supersonic TBLs identify a near-
wall small scale peak while the turbulent fluctuations demonstrate a strengthening
of the outer region turbulent fluctuations with Re𝜏, similar to the incompressible
TBL (Cogo et al., 2022; Passiatore et al., 2022).

In compressible flow, the assumption of a calorically perfect gas (CPG) is frequently
used for supersonic flow. However, as the thermodynamic heating increases with Ma,
the temperatures can become so large that the CPG assumption breaks and modeling
of the high-temperature real gas effects is required. These flows are considered
hypersonic and are often characterized with Ma > 5 (Anderson Jr., 2006). When
the temperatures exceed 600 K, vibrational excitation in the air begins, which causes
the specific heat capacities to become temperature dependent, requiring the air to be
treated as a chemically imperfect gas (CIG). For a high-enthalpy Ma = 5 flow over
a compression ramp with 𝑇∞ = 500 K, it was shown that using the CPG assumption
lead to a 10% reduction in the wall-pressure fluctuations and skin-friction coefficient
as well as a 20% difference in heat transfer coefficient (Di Renzo et al., 2022).

Chemical effects become relevant at even larger temperatures. The dissociation
of O2 begins at 2000 K, creating O in solution. When the temperatures exceed
4000 K, the dissociation of N2 begins, which creates N in solution. NO is also
present while O2 and N2 dissociate. How the chemistry is modeled depends on the
Damköhler number, 𝐷𝑎 = 𝑡 𝑓 /𝑡𝑟 , the ratio of a relevant convection time, 𝑡 𝑓 , to a
characteristic chemical reaction time, 𝑡𝑟 . When 𝐷𝑎 → ∞, the flow is considered
to be in chemical equilibrium as the chemical reactions occur instantly. Flows
in chemical equilibrium can be treated as a single-species CIG with the specific
heats, and other thermophysical properties, updated based on the thermodynamic
state (Edwards, 1992). At the other extreme is the chemically frozen flow where
the convection occurs much faster than the chemical reactions with 𝐷𝑎 = 0. In this
case, the individual species do not interact with one-another, though their chemical
concentrations can still change via diffusion. These flows require individual species
continuity equations to handle the diffusion, though they do not require the chemical
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production or destruction rates. In between is the chemical nonequilibrium case,
where the chemical concentrations can change via chemical reactions and species
diffusion. The modeling of the chemical production or destruction rates can be
computationally taxing as these are highly nonlinear functions of the thermodynamic
state (Edwards, 1992).

Despite the computational challenges associated with modeling hypersonic TBLs,
DNS remains a valuable tool to learn about these flows since they can provide
temporal and spatial data of all the flow variables. However, the thermophysical
properties need to be modeled, many of which can not be derived solely on first
principles. For the CIG, the McBride (2002) polynomials, computed from a fit
to experimental data, are commonly used. For the chemical reaction, the (Park,
1990) model is also often used, although new models are being designed with
improved experimental and simulation data (Candler, 2019). For an example of
how the thermophysical properties are modeled, see Di Renzo, Fu, and Urzay
(2020). To highlight the different approaches used for the chemistry model, one can
consider the DNSs of Di Renzo and Urzay (2021) and Passiatore et al. (2022) where
the former uses a single-temperature model and the latter uses a two-temperature
model. Differences in the chemistry model can have profound effects on the laminar-
turbulent transition (Franko, MacCormack, and Lele, 2010).

1.4 Linear Analysis in Shear Flows

The developments in Section 1.1 and 1.2 relied on the RANS equations for the
mean flow field. If the RANS equations are subtracted from the original dynamical
system, then the fluctuations, q, can be written as(

𝜕

𝜕𝑡
+ L(q)

)
q = N(q), (1.8)

where q is the known mean state, and L and N are the linear terms and nonlinear
terms in the equations, respectively. Here, it is assumed that a nondimensionalization
has been chosen such that q ∼ O(1). In the case of an incompressible laminar flow,
q ∼ O(𝜖) where 𝜖 ≪ 1 so that N(q) ∼ O

(
𝜖2) . Thus for an incompressible

laminar flow, the nonlinearities can be neglected as they are O(𝜖) compared to the
linear terms. For a turbulent flow, this is not the case as the nonlinearities drive
the flow and appear as Reynolds stresses. Furthermore, for a chemically-reacting
laminar flow, the Hessian could have large terms due to exponential-variation in the
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thermophysical properties (Park, 1990) that can create non-negligible higher-order
terms for realistic disturbances.

Focusing on a laminar flow, the linearized form of Equation 1.8 are often used to
identify characteristics of the flow that lead to the growth of perturbations, and
eventually the onset to turbulence. Historically, the first strategy is to identify
parameters that lead to the fastest unbounded exponential growth in the linear initial
value problem. Generally, the idea is to treat q as a Fourier mode in time, and any
homogeneous spatial directions, xℎ, as

q(x, 𝑡) = q̂(x𝑛)𝑒𝑖(−𝜆𝑡+k·xℎ) , (1.9)

where x𝑛 are coordinates for the anisotropic directions, k is a known wavenumber
vector in the same subspace as xℎ, and 𝜆 ∈ C is the unknown temporal growth term.
As an example, for a channel, xℎ = [𝑥, 0, 𝑧]𝑇 and x𝑛 = [0, 𝑦, 0]𝑇 . This produces an
eigenvalue problem (

−𝑖𝜆 𝑗I + L̂
)
q̂ 𝑗 = 0, (1.10)

where I is the identity operator and L̂ is the Fourier transformed L and q̂ 𝑗 and
𝜆 𝑗 are the eigenmodes and eigenvalues. If Im

{
𝜆 𝑗

}
> 0, the flow is considered

unstable and stable if Im
{
𝜆 𝑗

}
< 0. This eigenvalue problem has been applied

to shear flows (Schmid and Henningson, 2002), compressible and incompressible
LBLs under the parallel flow assumption (Mack, 1984; Malik, 1990), and spatially
developing flows (Theofilis, 2011; Chomaz, 2005).

In shear flows, it is often the case that transition occurs even though Im
{
𝜆 𝑗

}
< 0

because of nonorthogonality in the eigenmodes that creates non-negligible transient
growth (Trefethen et al., 1993). A linear operator, A, is non-normal if it does not
commute with its adjoint, A†, i.e., AA† ≠ A†A. For these operators, A does not
admit an orthogonal set of eigenvectors, and as a result, experiences transient growth.
The eigenvalues are not a good indicator for the temporal behavior of a non-normal
system since they do not solely predict the transient growth (Trefethen, 1999). For a
shear flow, the linearized Navier Stokes (LNS) operator, L̂, is non-normal because
the component-wise non-normality from 𝜕𝑈

/
𝜕𝑦 , convective non-normality from

a spatially developing 𝑈 (𝑥), and the Orr-mechanism, among others (Symon et al.,
2018; Cossu and Chomaz, 1997; Jovanović and Bamieh, 2005).

Because of the non-normality in L̂, many researchers have looked for the largest
transient growth in the linearized Navier Stokes equations (LNSE). Since these non-
normal measures of growth require an inner product to define the adjoint operator, a
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suitable inner product must be chosen (Chandler et al., 2012). For the incompressible
flows, the kinetic energy norm is chosen while for compressible flows, the Chu norm
is chosen since it removes the compressive work (Chu, 1965). Armed with the Chu
norm, researchers have considered transient growth in compressible flows (Hanifi,
Schmid, and Henningson, 1996; Franko, MacCormack, and Lele, 2010).

Although linear stability theory has provided a lot of insight into fluid dynamics, it
neglects an essential feature in both transition and turbulence—namely the nonlinear
terms. By treating N(q) as an uncorrelated forcing f such that

f (x, 𝑡) = f̂ (x𝑛)𝑒𝑖(−𝜔𝑡+k·xℎ) , (1.11)

along with Equation 1.9 with 𝜆 = 𝜔 ∈ R, then Equation 1.9 can be written as

q̂ =

(
−𝑖𝜔I + L̂

)−1
f̂. (1.12)

The operator
(
−𝑖𝜔I + L̂

)−1
is known as the resolvent of L̂ and is tied to its psue-

dospectrum, which characterizes the behavior of a non-normal operator (Trefethen,
1999). Physically, the resolvent acts as a transfer function between a harmonic
forcing input and its harmonic response. This has been applied to systems where q
is a laminar base flow where perturbations are excited by the forcing (Jovanović and
Bamieh, 2005; Ran et al., 2019; Bagheri et al., 2009; Sipp and Marquet, 2013). In
McKeon and Sharma (2010), this approach was applied to a fully turbulent pipe flow
with q as the mean flow field. In resolvent analysis, the goal is to find the unit-norm
forcing inputs that leads to the largest amplification in the response. If the norm is
chosen as an induced norm, then this can be found through a Schmidt decomposition,
or singular value decomposition (SVD) for a discretized system, which identifies
the gains, 𝜎𝑗 , optimal forcing modes, 𝝓 𝑗 , and optimal response modes, 𝝍 𝑗 of the
resolvent, where 𝜎𝑗 ≥ 𝜎𝑗+1 ≥ 0. These modes represent two orthonormal bases. In
general, 𝝍 𝑗 and 𝝓 𝑗 reflect something related to the non-normality of L̂, such as large
transverse components in 𝝓 𝑗 and an associated large streamwise response in 𝝍 𝑗 due
to the component wise non-normality or a large upstream amplitude in 𝝓 𝑗 leading to
a large downstream amplitude in 𝝍 𝑗 due to the convective non-normality (Jovanović
and Bamieh, 2005; Symon et al., 2018). Norms other than an induced norm can be
used to characterize the resolvent amplification, though they can not take advantage
of the SVD (Skene et al., 2022).

For certain k and 𝜔, the resolvent operator can be low-rank (𝜎1 ≫ 𝜎2). For
these cases, 𝝍1 can represent flow structures found through data driven decompo-
sitions (Towne, Schmidt, and Colonius, 2018; Schmidt et al., 2018; Gómez et al.,
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2014; Abreu, Tanarro, et al., 2021). Moarref, Sharma, et al. (2013) showed that for a
channel, the𝜔, 𝑘𝑥 , and 𝑘𝑧 associated with the near-wall cycle were low-rank. Abreu,
Cavalieri, et al. (2020) demonstrated that the resolvent modes associated with the
lift-up mechanism, a component-wise non-normality with 𝜕𝑈

/
𝜕𝑦 , were low-rank

and compared well with the data-driven modes. Due to the orthogonality in the
resolvent modes, they are often used as a basis to reconstruct flow structure (Rosen-
berg, 2018; Moarref, Jovanović, et al., 2014). Through consideration of the triadic
interactions in the nonlinear terms in the incompressible NSE, the resolvent modes
can even recover behavior representative of the amplitude modulation from large
scales on small scales (Sharma and McKeon, 2013). It has also been used as a
tool to investigate acoustic disturbances in compressible systems (Bae, Dawson, and
McKeon, 2020; Madhusudanan and McKeon, 2022; Jeun, Nichols, and Jovanović,
2016).

Solving the eigenvalue problem in Equation 1.10, computing the inverse for the re-
solvent operator, and the SVD are O

(
𝑛3) operations for the discretized system, where

𝑛 is the product of the number of grid points and state variables. To solve the eigen-
value problem numerically, many algorithms exist, like the Arnoldi iteration (Saad,
2011). To reduce the computational cost, many have used sparse differentiation
schemes, like finite differences, to reduce memory requirements and take advantage
of sparse solvers (Schenk and Gärtner, 2004; Malik, 1990; Lele, 1992; Mattsson
and Nordström, 2004). To reduce the spatial domain size and number of grid points
required for acoustic disturbances, absorbing layers are commonly used (Appelö and
Colonius, 2009). Due to the linear amplification of the resolvent operator onto 𝝍1,
resolvent analysis can be estimated with matrix sketching techniques (Ribeiro, Yeh,
and Taira, 2020). To avoid the inversion of the resolvent operator for flows with weak
spatial development, the resolvent can be approximated by spatial marching tech-
niques instead of inversion (Sasaki et al., 2022; Kamal et al., 2020; Davis, Uzun, and
Alvi, 2019). The action of the resolvent operator can also be approximated through
a transient and steady state response of the linearized system, forced harmonically,
which can replace matrix operations with time-integration (Martini et al., 2021).
In theory, the resolvent analysis can also be done by considering only the LNS
operator, without the need for inversion, though it is in practice, a computationally
ill-posed problem since it requires looking for the smallest singular values of the
LNS operator. This can be circumvented through a projection onto an optimal basis
or analytically through asymptotic methods (Barthel, Gomez, and McKeon, 2022b;
Barthel, Gomez, and McKeon, 2022a; Dawson and McKeon, 2019).
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1.5 Bayesian Optimization

Often times, the required calculations or experiments are too expensive to feasibly
explore the entire parameter space. For these problems, one may be interested in
finding the parameter input that leads to the optimization of the system of interest.
For example, finding the best chord to length ratio in a wing that creates the optimal
lift in an airplane can be an expensive and iterative search where all the ratios can
not be feasibly tested. For these problems, the samples of the parameter space may
be sparse or the system may be too complicated to define analytically, so the calcu-
lation of gradients may even be unfeasible and the system is effectively treated as a
black box. For these problems, one approach at optimization is Bayesian Optimiza-
tion (Williams and Rasmussen, 2006; Huhn and Magri, 2022). These approaches
compute a surrogate model from the measured samples with an associated uncer-
tainty in the surrogate model. This surrogate model can be calculated using Gaussian
Process Regression (Williams and Rasmussen, 2006; Eriksson et al., 2018). Using
the surrogate model and the uncertainty, the next point is determined by using an
acquisition function that balances exploration and exploitation. Exploration looks
for regions with large uncertainty while exploitation looks for regions where the
surrogate model is predicted to be large. As new samples are found, the surrogate
model improves, which improves the prediction from the Bayesian Optimization.
This approach was applied in resolvent analysis of a hypersonic TBL in Gómez et al.
(2014) with an augmented acquisition function that was used to sample the large
amplification regions. Compared to a fixed-grid parameter search, the proposed
scheme is able to increase the resolution of the large amplification regions in the
spectral space.

1.6 Thesis Overview

This thesis focuses on the resolvent amplification of incompressible nonequilibrium
APG TBL and hypersonic TBL with nonequilibrium chemistry. In order to deal
with the nonequilibrium APG effects, the resolvent operator must account for both
the streamwise and wall-normal anisotropy in the APG TBL. For the hypersonic
TBL, the resolvent analysis needs to account for all the species of the gases in the
mixture. These ultimately increase the computational cost of the resolvent analysis,
so methods are discussed that can efficiently approximate the resolvent modes and
autonomously sample the large amplification regions.

Chapter 2 will focus on the derivation of the resolvent analysis, and then tailor the
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discussion to the incompressible NSE, where the biglobal resolvent operator will be
described and validated. Chapter 3 will extend scaling relationships from the ZPG
TBL to the biglobal resolvent modes, extending the work of Moarref, Sharma, et al.
(2013) outside of the parallel flow assumption. Chapter 4 will consider resolvent
modes computed from nonequilibrium APG TBLs. The effect of the APG on the
canonical scaling on the biglobal modes will be discussed, while the effects of 𝛽
and 𝛽 on the resolvent amplification on the resolvent amplification are discussed.
High-temperature real gas effects in hypersonic TBLs are included in the resolvent
modes to predict the length scales most affected by the high temperature effects
in Chapter 5. Finally, Chapter 6 considers an autonomous sampling technique
applied to resolvent amplification using Bayesian Optimization and an inverse-free
resolvent approach, specifically looking at the role of an appropriate modeling basis.
This thesis concludes in Chapter 7, with key findings summarized and future work
proposed.



19

C h a p t e r 2

BIGLOBAL RESOLVENT ANALYSIS

2.1 Introduction

The high-dimensionality, nonlinearity, and multi-scale behavior in wall-bounded
turbulent flows warrants simplified scale-dependent analyses that can capture rele-
vant physics in the flow. In wall bounded flows, the presence of the surface creates
anisotropy due to the no-slip boundary condition. This anisotropy leads to shear in
wall bounded flows creating the non-normal behavior in the linearized Navier Stokes
operator as explained in Section 1.4. In the turbulent regime, the shear contributes
directly to the production of turbulent kinetic energy and the separation of scales
in the wall-normal direction (Pope, 2000). In addition to the linear mechanisms,
turbulence is also fed by nonlinear interactions which serve to distribute energy
across different scales of the flow. The resolvent analysis framework of McKeon
and Sharma (2010) creates a scale-dependent decomposition of the linear transfer
function between the nonlinear terms and the turbulent fluctuations that respects
the non-normality in the equations. This analysis identifies two optimal orthonor-
mal bases for the linear dynamics where the bases elements are ranked by their
corresponding linear amplification. The eigenvectors of non-normal operators are
non-orthogonal, which limits their use as a basis (Trefethen, 1999). The resolvent
analysis framework produces an orthogonal basis for the optimal forcing inputs
and a complimentary orthogonal basis for the linear responses. The forcing inputs
and response outputs take advantage of linear amplification mechanisms, including
non-normal amplification mechanisms, that reflect mechanisms in wall-bounded
turbulence (Symon et al., 2018; McKeon and Sharma, 2010).

In this chapter, the resolvent analysis framework is defined for a general dynamical
system. It is then specialized to the case of incompressible wall bounded flows. The
local approach, that uses the parallel flow assumption, is defined and contrasted with
the biglobal approach, which uses the nonparallel flow assumption. The latter is
useful for the study of streamwise developing flows. Finally, the resolvent analysis
will be validated with published results.
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2.2 Resolvent Analysis

Consider the state Q(x, 𝑡) =
[
𝑄1(x, 𝑡), . . . , 𝑄𝑛𝑠 (x, 𝑡)

]
∈ R𝑛𝑠 of a statistically sta-

tionary dynamical system evolving under a sufficiently smooth nonlinear differential
operator F : R𝑛𝑠 → R𝑛𝑠 with boundary conditions embedded on the surface domain
such that

𝜕𝑡Q + F (Q) = 0; Q(x, 𝑡 = 0) = Q0(x). (2.1)

Here x denotes spatial coordinates, 𝑡 denotes time, 𝑛𝑠 denotes the number of state
variables, 𝑄𝑖, and Q0 denotes the initial condition. The state can be written as
Q = Q + q, where Q = Q(x𝑛) denotes the known mean state, averaged over time
and homogeneous spatial coordinates, xℎ, and x𝑛 denotes the inhomogenous spatial
coordinates. For example, for a TBL, xℎ = [0, 0, 𝑧] while x𝑛 = [𝑥, 𝑦, 0]. Equation
2.1 can be rewritten as

𝜕𝑡q + Lq = −(F (Q) − Lq) � n, (2.2)

where the linear operator L denotes the Jacobian of F evaluated at Q and n ∈ R𝑛𝑠
denotes the nonlinear terms in the governing equations. Alternatively, n can be
interpreted as all the terms other than the linear term in a Taylor expansion of F
evaluated at Q. In general, this decomposition can use any Q = Q(x𝑛) and is not
restricted to be a realizable state of the system. However, unless otherwise specified,
Q will denote the mean state. The domain of the inhomogenous spatial coordinates,
Ω𝑛, is assumed to be closed with boundary conditions on 𝜕Ω𝑛.

Due to the stationarity in time and homogeneity in xℎ, q and n will be expanded in
a modal manner with modes, q̂ and n̂, respectively, such that

[q, n] (x, 𝑡) =
[
q̂, n̂

]
(x𝑛)𝑒−𝑖𝜔𝑡+k·xℎ , (2.3)

where 𝜔 ∈ R and k ∈ Rdim (xℎ) denote the temporal frequency and spatial wavenum-
bers in xℎ. Physically, these modes can be interpreted as structures in the dynamical
system with specified temporal and spatial length scales, 2𝜋/𝜔 and 2𝜋/𝑘𝑖, respec-
tively. The Fourier Transform allows Equation 2.2 to be rewritten as(

−𝑖𝜔I + L̂
)
q̂ = n̂, (2.4)

where L̂ is the Fourier Transform of L and I is the identity operator. To ensure that(
−𝑖𝜔I + L̂

)
is invertible, −𝑖𝜔 is chosen to not be an eigenvalue of L̂ (Trefethen,

1999). Although n is correlated to q, n will hereinafter be assumed to be the
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uncorrelated forcing input, f, unless otherwise stated. Hence, f̂ is independent of q.
The response q̂ is then governed by

q̂ =

(
−𝑖𝜔I + L̂

)−1
f̂ = R f̂, (2.5)

where R is the resolvent operator. Note that R is parameterized by Q, k, and 𝜔.

In engineering applications, forcing inputs, f̂, and response outputs, q̂, of Equation
2.5 are not available over Ω𝑛 due to either limitations in actuation, the span of n̂,
or measurement constraints for sensing. Alternatively, one may be interested in the
linear amplification of a linear combination of the state variables or in a subset of
Ω𝑛. Equation 2.5 can be augmented to consider the linear operators B and C that
linearly augment f̂ and q̂, respectively, as

q̂ = RB f̂

ŷ = Cq̂ = CRB f̂ = H f̂. (2.6)

Here, ŷ denotes the observables of the state q̂ due to the linear operator C and H
denotes the transfer function between f̂ and ŷ. The resolvent analysis framework
will be applied to H to generalize the approach to multiple systems. Results for R
are recovered by setting B and C to identity operators.

To study linear amplification, relevant norms need to be defined. In this study, the
choice of norm will be limited to inner product norms to allow for the use of linear
algebra techniques, though other norms can be studied (Skene et al., 2022). The
relevant inner products will be defined as

⟨a, b⟩𝑟 = ⟨a,W𝑟b⟩ , (2.7)

⟨a, b⟩ 𝑓 =
〈
a,W𝑓 b

〉
, (2.8)

where W𝑟 and W𝑓 are positive-definite operators and

⟨a, b⟩ =
∫
Ω𝑛

a∗b𝑑x𝑛. (2.9)

Here the asterisks denote the conjugate transpose and a∗b = 𝑎∗
𝑖
𝑏𝑖. These inner

products induce the norms ∥a∥𝑟 =
√︁
⟨a, a⟩𝑟 and ∥a∥ 𝑓 =

√︃
⟨a, a⟩ 𝑓 . With these

norms, the linear amplification of H is defined as

𝜎2 =



̂y


𝑟


̂f



𝑓

=




H f̂




𝑟


̂f



𝑓

=

〈
H f̂,H f̂

〉
𝑟〈̂

f, f̂
〉
𝑓

=

〈
H f̂,W𝑟H f̂

〉〈̂
f, f̂

〉
𝑓

=

〈̂
f,H†W𝑟H f̂

〉〈̂
f,W𝑓 f̂

〉 , (2.10)
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where † on an operator denotes the adjoint of the operator with respect to the inner
product in Equation 2.9. For H , H† = B†R†C†. The largest amplification, subject
to unit norm forcing,




̂f



𝑓
= 1, is found by considering stationary points of the cost

function

J (a) = ∥Ha∥𝑟 − 𝜆2
(
∥a∥ 𝑓 − 1

)
=

〈
a,H†W𝑟Ha

〉
− 𝜆2 (〈a,W𝑓 a

〉
− 1

)
,

(2.11)

where 𝜆 denotes the Lagrange multiplier. The optimal forcing input, 𝝓, is found as
the stationary point of J such that

dJ (𝝓 + 𝜖h)
d𝜖

= 2ℜ
{〈

h,H†W𝑟H𝝓
〉
− 𝜆2 〈

h,W𝑓 𝝓
〉}

= 0, (2.12)

for any h in the same vector space as 𝝓. By replacing h with 𝝓 in Equation 2.13 and
comparing with Equation 2.10, it is clear that the Lagrange multiplier, 𝜆2, is equal
to the optimal linear amplification, 𝜎2. Since Equation 2.12 holds for any h, it must
be the case that 𝝓 satisfies the generalized eigenvalue problem,

H†W𝑟H𝝓 = 𝜎2W𝑓 𝝓. (2.13)

BecauseH†W𝑟H andW𝑓 are both Hermitian operators, the eigenvalues and eigen-
vectors of Equation 2.13 are non-negative and orthonormal with respect to the inner
product in Equation 2.8, respectively. The eigenvalues, 𝜎2

𝑖
, and eigenvectors, 𝝓𝑖, are

sorted such that 𝜎2
1 ≥ 𝜎2

2 ≥ 𝜎2
3 ≥ · · · ≥ 0. Taking the inner product of the eigen-

vector 𝝓 𝑗 and Equation 2.13 for the eigen-pair
(
𝜎2
𝑖
, 𝝓𝑖

)
and using orthonormality,

one can show

𝜎2
𝑖

〈
𝝓 𝑗 ,W𝑓 𝝓𝑖

〉
=

〈
𝝓 𝑗 ,H†W𝑟H𝝓𝑖

〉
𝜎2
𝑖 𝛿𝑖 𝑗 =

〈
H𝝓 𝑗 ,W𝑟H𝝓𝑖

〉
=

〈
H𝝓 𝑗 ,H𝝓𝑖

〉
𝑟
. (2.14)

Hence H𝝓𝑖 defines orthonormal vectors 𝝍𝑖, with respect to the inner product in
Equation 2.7, as

H𝝓𝑖 = 𝜎𝑖𝝍𝑖 . (2.15)

The set of orthonormal vectors 𝝍𝑖 and 𝝓𝑖 are identified as the left and right singular
vectors of H and are termed the response and forcing modes, respectively. The
singular values of H are then 𝜎𝑖, which are the linear amplification of the system.
𝝍𝑖, 𝝓𝑖, and 𝜎𝑖 with 𝑖 = 1 are termed the optimal modes and amplification, while
𝑖 > 1 are termed sub-optimal modes and amplifications.
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The response modes can be found independent of 𝝓𝑖 by multiplying both sides of
Equation 2.15 byHW−1

𝑓
H†W𝑟 and using Equation 2.13 and solving the eigenvalue

problem
HW−1

𝑓 H†W𝑟𝝍𝑖 = 𝜎
2
𝑖 𝝍𝑖 . (2.16)

Similarly, by multiplying both sides of Equation 2.15 by W−1
𝑓
H†W𝑟 , it is shown

that 𝝓𝑖 and 𝝍𝑖 are related through

W−1
𝑓 H†W𝑟𝝍𝑖 = 𝜎𝑖𝝓𝑖 . (2.17)

W−1
𝑓
H†W𝑟 is the adjoint of H with respect to the inner products in Equation 2.7

and 2.8 such that ⟨a,Hb⟩𝑟 =
〈
W−1

𝑓
H†W𝑟a, b

〉
𝑓
.

The resolvent operator can be rewritten using the Schmidt decomposition as

H =
∑︁
𝑗

𝜎𝑗𝝍 𝑗𝝓
∗
𝑗 . (2.18)

HenceH can be rewritten as the sum of rank-1 operators,𝝍𝑖𝝓∗
𝑖 , ranked in descending

order by their coefficients 𝜎𝑖. This decomposition depends on the choice of inner
product for f̂ and q̂ and is parameterized by 𝜔, k, and Q. This can be contrasted
with the eigendecomposition of a linear operator N as N =

∑
𝑗 𝜆 𝑗p 𝑗q∗

𝑗
, where 𝜆 𝑗 ,

p 𝑗 , and q 𝑗 denote its eigenvalues, eigenvectors, and adjoint eigenvectors. 𝝍𝑖 and 𝝓𝑖
each form separate orthonormal bases while p𝑖 and q𝑖 do not form orthogonal sets of
eigenvectors, in general. Note that for 𝜆𝑖 ≠ 𝜆 𝑗 , p𝑖 is orthogonal to q 𝑗 . For the special
case where N is a normal operator, its eigendecomposition is N =

∑
𝑗 𝜆 𝑗p 𝑗p∗

𝑗
. In

this case, p 𝑗 forms an orthogonal basis. The Schmidt decomposition can be thought
of as an extension of the eigendecomposition for normal operators to non-normal
operators since the non-normal operator can be decomposed using two separate
orthonormal bases.

In the case where C and B are invertible, Equation 2.6 can be written as

B−1
(
−𝑖𝜔I + L̂

)
C−1 𝑦̂ = A 𝑦̂ = 𝑓̂ . (2.19)

In this case, A is the inverse of H . A can be interpreted as a transfer function from
𝑦̂ to 𝑓̂ . The gain, 𝑔 between 𝑓̂ to 𝑦̂, is defined as

𝑔2 =




̂f



𝑓

̂y


𝑟

=



Aŷ



𝑓

̂y



𝑟

=

〈̂
y,A†W𝑓Aŷ

〉〈̂
y,W𝑟 ŷ

〉 . (2.20)
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Before, the search was performed for the largest gain of H . Now, because the
problem uses its inverse, the search is for the smallest gain of A. To find the
minimum value of 𝑔 subject to



̂y


𝑟
= 1, one must minimize the cost functional

J𝑚 (a) = ∥Aa∥ 𝑓 − 𝜆2∥a∥𝑟
=

〈
a,A†W𝑓Aa

〉
− 𝜆2 ⟨a,W𝑟a⟩ .

(2.21)

Repeating the steps from before to find the stationary points of the cost functional,
J𝑚 gives the following eigenvalue problem

A†W𝑓A𝝍𝑖 = 𝜆
2
𝑖W𝑟𝝍𝑖 . (2.22)

By inverting the left hand side of Equation 2.22 and comparing with Equation 2.16,
it is clear that 𝜆2 = 𝜎−2

𝑖
and the eigenvectors are the response modes. Equation

2.22 provides an alternate way to compute resolvent analysis without inverting
(−𝑖𝜔 + L)−1 and provides an interpretation of the resolvent modes as the minima
of a constrained minimization problem (Barthel, Gomez, and McKeon, 2022b).
This formulation will be used for analytic arguments in future sections. A similar
expression for Equation 2.22 can also be derived for the forcing modes, though it is
omitted here.

Going from Linear Operators to Matrices

So far the discussion has been limited to operators acting on continuous fields.
The discussion will now be tailored to discrete spaces that are encountered in
computational settings.

The inhomogenous spatial coordinates will be discretized into 𝑛 points,
x𝑖 ∈ Ω𝑛 and the state vector will be treated as a column vector q̂ =[
𝑞1

1, . . . , 𝑞
𝑛
1, . . . , 𝑞

1
𝑛𝑠
, . . . , 𝑞𝑛𝑛𝑠

]𝑇 ∈ C𝑛𝑠𝑛, where 𝑞𝑖
𝑗
= 𝑞 𝑗 (x𝑖). The identity operator,

I is replaced with the identity matrix, I ∈ R𝑛𝑠𝑛×𝑛𝑠𝑛. Likewise, the linear operators,
L̂,C,B,W𝑟 , and W𝑓 are discretized into the C𝑛𝑠𝑛×𝑛𝑠𝑛 matrices, L,C,B,W𝑟 , and W 𝑓

based on the choice of differentiation scheme. Boundary conditions are of the form

p𝑇 q̂ = 0, (2.23)

where p denotes the coefficients of the boundary condition. For example, a Dirichlet
boundary condition at x𝑖 would result in the entries of p being all 0, except for the 𝑖th
component which is set to 1. The rows of (−𝑖𝜔I − L) corresponding to boundary
conditions are replaced by row vectors that enforce the said boundary conditions
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and a matrix I𝑐 is constructed that is equal to the identity matrix, except that the
rows where the boundary conditions are applied are set to 0. The resolvent matrix
is then defined as R = (−𝑖𝜔I − L)−1I𝑐 and H = CRB. Note that in practice, R is
not explicitly calculated due to its computational cost and dense nature.

The integration in the inner product in Equation 2.9 is done numerically through
quadrature. This is accomplished by the positive-definite matrix W𝐼 such that

⟨a, b⟩ =
∫
Ω𝑛

a∗b𝑑x𝑛 ≈ a∗W𝐼b. (2.24)

Since each state variable is discretized onto the same grid, W𝑙 is a block-diagonal ma-
trix with 𝑛𝑠 positive-definite matrices W ∈ R𝑛×𝑛 that enforce

∫
Ω𝑛
𝑎𝑖∗𝑏𝑖𝑑x𝑛 ≈ a𝑖∗Wb𝑖.

The equality is not exact because of the numerical approximations. Although in
general W𝐼 does not need to be block-diagonal, this choice is made here because
the kinetic energy-like norms used and choice of primitive variables for the state
vectors do not require off-diagonal blocks. The inner products in Equation 2.7 and
2.8 are then discretized as

⟨a, b⟩𝑟 = a∗W𝐼W𝑟b, (2.25)

⟨a, b⟩ 𝑓 = a∗W𝐼W 𝑓 b. (2.26)

The adjoint operators in Equation 2.13 depend on the choice of inner product
and fall under two approaches. The first approach computes the adjoint based
on the continuous inner product in Equation 2.9 and then discretizes the resulting
continuous operator. The second approach computes the adjoint by considering
Equation 2.24 such that

A† = W−1
𝐼 A∗W𝐼 , (2.27)

where A∗ denotes the complex conjugate of the matrix(Jeun, Nichols, and Jovanović,
2016; Chandler et al., 2012). The first approach is generally more stable (Chandler
et al., 2012), although it requires analytic expressions for the adjoints and involves
two separate inversions for R and R†. The second approach can be prone to
errors near the boundaries since the boundary conditions on (−𝑖𝜔I + L) and I𝑐
can result in inappropriate boundary conditions for the adjoint problem. In this
work, the results with incompressible flow will use the first approach while the
results with compressible flow will use the second approach. In the first approach,
R† = (𝑖𝜔I + L†)−1I†𝑐, where L† is the discretized continuous adjoint of L̂ with the
appropriate boundary conditions applied. In the second approach R† = W−1

𝐼
R∗W𝐼 .



26

Finally, the discretized form of the eigenvalue problem in Equation 2.13 is,

H†W𝑟H𝜙𝑖 = 𝜎2
𝑖 W 𝑓 𝜙𝑖 . (2.28)

This is solved by using the Arnoldi iteration (Saad, 2011). Note that the Arnoldi
algorithm requires repeated calculations of Rb𝑖, or equivalently, multiple solutions
of (−𝑖𝜔I + L)a = I𝑐b𝑖, and similar calculations for the adjoint. To avoid storing
and computing the inverse, an LU decomposition is computed once with the Intel®

oneAPI Math Kernel Library PARDISO (Schenk and Gärtner, 2004), which takes
advantage of the sparse form of (−𝑖𝜔I + L) and parallelized subroutines. This
allows the linear system to be computed efficiently using the factors, with the overall
cost of the process being the cost of one LU decomposition (Jeun, Nichols, and
Jovanović, 2016; Sipp and Marquet, 2013; Schmidt et al., 2018). Despite the
efficiency of using the LU factors, the LU matrices themselves can be dense and
cause the calculations to be limited by computer memory. For the local analysis, the
LU decomposition and Gaussian elimination are handled by the built in MATLAB®

functions, lu and mldivide. See Appendix A for the Arnoldi algorithm used to
compute the singular value decomposition.

2.3 Application to Incompressible Flows

x

y

/99

Figure 2.1: Schematic of the domain, Ω𝑛, with the spanwise direction pointing out
of the page. The shaded rectangular regions denote the sponge regions.

For the rest of this chapter, and Chapters 3 and 4, the discussion will be tailored to
the discussion of statistically stationary, two dimensional, incompressible, flat plate,
wall bounded, boundary layer flows. The spatial coordinates x = [𝑥, 𝑦, 𝑧] denote
the streamwise, wall-normal, and spanwise coordinates, respectively, as shown in
the schematic in Figure 2.1. The state Q = [U, 𝑃] corresponds to the velocity and
pressure, respectively, where U = [𝑈,𝑉,𝑊] denotes the streamwise, wall-normal,
and spanwise velocities. Note that the pressure is normalized by the density. The
velocities and spatial coordinates are nondimensionalized by a reference velocity,
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𝑈𝑟 , and reference length scale, 𝐿𝑟 , which are used to nondimensionalize time
with, 𝐿𝑟/𝑈𝑟 , and the pressure with, 𝑈2

𝑟 . This introduces the Reynolds number,
Re = 𝑈𝑟𝐿𝑟/𝜈, where 𝜈 is the kinematic viscosity, as a parameter for the governing
equations. The state Q satisfies the incompressible Navier Stokes equations (NSE),

𝜕𝑡U + (∇U)U + ∇𝑃 − 1
Re

∇2U = 0, (2.29)

∇ · U = 0. (2.30)

The convective term is written as (∇U)U so it can be interpreted as the velocity
gradient tensor acting on the velocity. This appears neatly in the Reynolds decom-
position as the mean velocity gradient tensor acts on the fluctuations in the same
way that a tensor acts on a vector. In indicial notation, this is still

(
𝜕𝑥 𝑗𝑈𝑖

)
𝑈 𝑗 . The

boundary conditions are U = 0 at 𝑦 = 0 due to the no slip boundary condition and
U → U∞(𝑥) as 𝑦 → ∞ for some freestream velocity that depends on a prescribed
freestream pressure gradient, 𝑑𝑥𝑃∞ = −𝑈∞𝑑𝑥𝑈∞.

Following the Reynolds decomposition described in Section 2.2, where Q is the
incompressible mean flow field and q = [𝑢, 𝑣, 𝑤, 𝑝] is the fluctuating state such that
q = 0, the NSE can be rewritten as

𝜕𝑡u + (∇u)U +
(
∇U

)
u + ∇𝑝 − 1

Re
∇2u = −

(
∇U

)
U − ∇𝑃

− 1
Re

∇2U − (∇u)u = n,
(2.31)

∇ · u = 0. (2.32)

Just as in Equation 2.2, n denotes all the nonlinear terms including the mean flow
terms and the Reynolds stresses, (∇u)u. The Fourier Transform can be applied
again in the temporal direction and homogeneous directions, which depend on the
assumption of a local analysis (1D) or biglobal analysis (2D), as in Equation 2.3. If
𝜔 = 0 and k = 0, the governing equation for the mean flow field can be recovered,
known as the Reynolds Averaged Navier Stokes (RANS) Equation (McKeon and
Sharma, 2010).

For the incompressible flow, Equation 2.4 becomes

−𝑖𝜔û +
(
∇̂û

)
U +

(
∇U

)
û + ∇̂𝑝 − 1

Re
∇̂

2û = −(̂∇u)u,

∇̂ · û = 0,
(2.33)

where ∇̂ accounts for the wavenumbers in xℎ. The left hand side of Equation 2.33
can be identified as the left hand side of Equation 2.4. The terms in Equation 2.33
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from left to right denote the temporal variation, the mean advection, the mean shear,
the pressure gradient, viscous dissipation, and the quadratic, nonlinear forcing. The
latter gives rise to triadic interactions, meaning that the only wavenumber-frequency
pair interactions that can affect𝜔, k are those such that𝜔1+𝜔2 = 𝜔 and k1+k2 = k.
unless otherwise stated, −(̂∇u)u will be treated as an uncorrelated forcing input, f̂.

Because of the continuity constraint, the identity operator, I = diag (1, 1, 1, 0).
The inner products are defined such that W𝑟 = W𝑓 = I so that the inner product
in Equation 2.7 is proportional to the kinetic energy of the fluctuation, integrated
over the domain. Since these are not positive definite operators, their inverses are
undefined. Instead, the inverse will be defined as, W−1

𝑟 = W−1
𝑓

= I.

With the adjoint variables denoted as q̃ = [ũ, 𝑝]𝑇 and f̃, the adjoint equations are

𝑖𝜔ũ −
(
∇̂ũ

)
U +

(
∇U

)𝑇
ũ − ∇̂𝑝 − 1

Re
∇̂

2ũ = f̃,

−∇̂ · ũ = 0.
(2.34)

The values of q̃ and q̂ are assumed to be 0 on 𝜕Ω𝑛 to avoid boundary terms from the
integration by parts. Details on the derivation of the adjoint equations can found in
Appendix B.

The adjoint problem has a continuity constraint on q̃, meaning that for any q̃ =

R†b = 0 with b ∈ C4, ∇̂ · q̃ = 0. This means that ∇̂ · 𝝓𝑖 = 0 from Equation 2.17,
which is restated for the incompressible case as

IR†I𝜓𝑖 = 𝜎𝑖𝝓𝑖 . (2.35)

Thus, the optimal forcing modes are purely solenoidal, despite the fact that in
general, ∇̂ ·

(
(̂∇u)u

)
≠ 0. This agrees with Rosenberg (2018) who found that

the forcing entering the resolvent operator can only be solenoidal by deriving the
Orr-Sommerfeld-Squire equations in the presence of an external forcing. The incom-
pressibility constraint for 𝝓𝑖, or equivalently, the adjoint velocity ũ, comes directly
from the incompressibility constraint of û and that 𝑝 enforces that constraint.

In what follows, the discussion will be applied to the local resolvent analysis which
uses the parallel flow assumption, and then contrasted with the biglobal resolvent
analysis.

Local (1D) Resolvent Analysis

In the local approach, the analysis makes use of the parallel flow assumption. This
assumes that xℎ = [𝑥, 𝑧] and thus k = [𝑘𝑥 , 𝑘𝑧], where 𝑘𝑥 and 𝑘𝑧 define the streamwise



29

and spanwise wavenumbers, respectively. Due to the parallel flow assumption, the
mean flow field, U = 𝑈 (𝑦)e𝑥 . For pipes and channels, this approximation is exact
due to the homogeneity in 𝑥 but is a simplification for the boundary layers of interest.
The velocity and length scale are chosen as 𝑈𝑟 = 𝑈∞, the freestream velocity, and
𝐿𝑟 = 𝛿99, the boundary layer thickness. Finally, the Fourier modes q̂ = q̂(𝑦) and
f̂ = f̂ (𝑦) represent three-dimensional disturbances. Equation 2.33 and 2.34 become(

−𝑖𝜔 + 𝑖𝑘𝑥𝑈
)
û + 𝜕𝑦𝑈𝑣̂e𝑥 + ∇̂𝑝 − 1

Re
∇̂

2û = −̂f,

∇̂ · û = 0,
(2.36)

and (
𝑖𝜔 − 𝑖𝑘𝑥𝑈

)
ũ + 𝜕𝑦𝑈𝑢̂e𝑦 − ∇̂𝑝 − 1

Re
∇̂

2ũ = −f̃,

−∇̂ · ũ = 0,
(2.37)

respectively, where ∇̂ =
[
𝑖𝑘𝑥 , 𝜕𝑦, 𝑖𝑘𝑧

]
and ∇̂

2
= 𝜕𝑦𝑦− 𝑘2

𝑥 − 𝑘2
𝑧 . The domain is chosen

as the bounded domain, 𝑦 ∈ Ω𝑛 = [0, 𝑦𝑚𝑎𝑥], although it is unbounded physically.
Here, 𝑦max ≥ 3. The boundary conditions are û(𝑦 = 0) = 0, 𝜕𝑦û(𝑦 = 𝑦𝑚𝑎𝑥) = 0,
ũ(𝑦 = 0) = 0, and ũ(𝑦 = 𝑦𝑚𝑎𝑥) = 0.

Numerically, the wall-normal grid is discretized using a fourth-order summation by
parts (SBP) scheme (Mattsson and Nordström, 2004) using 𝑁𝑦 grid points. Grid
stretching is employed in the wall-normal direction so that half the points are below
𝑦𝑚𝑖𝑛 as in Madhusudanan and McKeon (2022), Kamal et al. (2020), and Malik
(1990). Here 𝑦𝑚𝑖𝑛 is chosen to be closer to the wall than in their studies since they
focused on capturing freestream acoustics. Although spectral collocation methods
have been used in other studies (Moarref, Sharma, et al., 2013), the SBP scheme
is preferred because it generates sparse operators unlike the spectral codes. The
scheme also creates a matrix W𝐼 that is used for the numerical integration. After
discretization, the linear operators (−𝑖𝜔I + L),

(
𝑖𝜔I + L†) ∈ C4𝑁𝑦×4𝑁𝑦 meaning that

the most expensive operation for resolvent analysis, the LU decomposition, scales
with O

( (
4𝑁𝑦

)3
)
.

In the local analysis, because both 𝑘𝑥 and 𝜔 are specified, this in turn specifies a
wavespeed 𝑐 = 𝜔/𝑘𝑥 that the modes convect at. If viscous terms are neglected
in Equation 2.36, a singularity emerges at the critical layer location 𝑦𝑐 such that
𝜔/𝑘𝑥 = 𝑈 (𝑦𝑐) that creates infinite amplification. The viscous terms regularize this
inviscid singularity in Equation 2.36, yet it remains a source of amplification for
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the resolvent operator (Schmid and Henningson, 2002; McKeon and Sharma, 2010)
and centers the response and forcing modes around 𝑦𝑐. Hence, by specifying 𝜔 and
𝑘𝑥 , the wall-normal location and wavespeed of the resolvent mode can be specified
a priori. This amplification is related to the normal aspects of the operator, though
the presence of shear makes the operator non-normal and creates amplification
mechanisms such as the Orr mechanism or the lift-up mechanism (Schmid and
Henningson, 2002). In the parallel flow assumption, the streamwise development
and wall-normal components of the mean flow are not accounted for.

The local analysis has been successful in describing observations in turbulent chan-
nels and pipes (McKeon and Sharma, 2010; Sharma and McKeon, 2013), where
the parallel flow assumption holds. This is partly due to the observation that for
length and time scales relevant to near-wall turbulence, the local resolvent operator
tends to be low-rank (Abreu, Cavalieri, et al., 2020; Moarref, Sharma, et al., 2013),
meaning that 𝜎1 ≫ 𝜎2. Hence the local resolvent operator is a highly directional
amplifier in the direction of 𝝍1.

Biglobal Resolvent Analysis

Since boundary layers are inherently nonparallel due to their streamwise develop-
ment, it is desirable to have an operator that can account for these nonparallel effects.
𝑈𝑟 and 𝐿𝑟 are chosen as 𝑈∞(𝑥𝑟) and 𝛿99(𝑥𝑟) at some reference location 𝑥𝑟 . Here,
xℎ = 𝑧 and hence k = 𝑘𝑧 and x𝑛 = [𝑥, 𝑦] ∈ Ω𝑛 = [𝑥0, 𝑥0 + 𝐿𝑥] × [0, 𝑦𝑚𝑎𝑥], where 𝑥0

and 𝐿𝑥 are the problem dependent origin of the domain and domain length, respec-
tively, and 𝑦𝑚𝑎𝑥 = 5. The mean flow field is assumed to be two-dimensional such
that U =

[
𝑈 (𝑥, 𝑦), 𝑉 (𝑥, 𝑦), 0

]
while the Fourier modes, q̂ = q̂(𝑥, 𝑦) and f̂ = f̂ (𝑥, 𝑦),

represent three-dimensional disturbances. Equations 2.33 and 2.34 become(
−𝑖𝜔 +𝑈𝜕𝑥 +𝑉𝜕𝑦

)
û +

(
𝜕𝑥𝑈𝑢̂ + 𝜕𝑦𝑈𝑣̂

)
e𝑥+(

𝜕𝑥𝑉𝑢̂ + 𝜕𝑦𝑉𝑣̂
)
e𝑦 + ∇̂𝑝 − 1

Re
∇̂

2û + 𝑠(𝑥)û = −̂f,

∇̂ · û = 0,

(2.38)

and (
𝑖𝜔 −𝑈𝜕𝑥 −𝑉𝜕𝑦

)
ũ +

(
𝜕𝑥𝑈𝑢̃ + 𝜕𝑥𝑉𝑣̃

)
e𝑥+(

𝜕𝑦𝑈𝑢̃ + 𝜕𝑦𝑉𝑣̃
)
e𝑦 − ∇̂𝑝 − 1

Re
∇̂

2ũ + 𝑠(𝑥)ũ = −f̃,

−∇̂ · ũ = 0,

(2.39)
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respectively, where ∇̂ =
[
𝜕𝑥 , 𝜕𝑦, 𝑖𝑘𝑧

]
, ∇̂

2
= 𝜕𝑥𝑥 + 𝜕𝑦𝑦 − 𝑘2

𝑧 , and 𝑠(𝑥) is an added
sponge to make the modes compact in 𝑥 and avoid spurious reflections from the
end-points. The implementation of the sponge zones is similar to Ran et al. (2019),
although applied to the NSE as opposed to the Orr-Sommerfeld-Squire equations.
𝑠(𝑥) is 0 for 90% of the domain at which point it ramps up quadratically from 0 to
𝜖𝑠 at the endpoints of the domain. The explicit form of 𝑠(𝑥) is

𝑠(𝑥) =


𝜖𝑠
( |𝑥 − 𝑥0 − 𝐿𝑥/2| − .45𝐿𝑥)2

.0025𝐿2
𝑥

if |𝑥 − 𝑥0 − 𝐿𝑥/2| ≥ .45𝐿𝑥

0 else.
(2.40)

In this work, 𝜖𝑠 depends on Re, so its value will be specified throughout. The
boundary conditions in the wall-normal direction are the same as the local analysis.
The streamwise boundary conditions are Dirichlet boundary conditions at the inlet
and outlet of the domain for both q̂ and q̃ due to the action of the sponge. This
ensures that there are no boundary terms from the integration by parts when defining
the adjoint operators.

The wall-normal coordinates are discretized using the same scheme as in the local
code. The streamwise direction is discretized with a fourth-order SBP scheme,
where the grid spacing is uniform, unless otherwise specified. These schemes
produce the numerical weight matrices W𝐼 . After discretization, the linear operators
(−𝑖𝜔I + L),

(
𝑖𝜔I + L†) ∈ C4𝑁𝑥𝑁𝑦×4𝑁𝑥𝑁𝑦 , meaning that now the LU decomposition

scales with O
( (

4𝑁𝑥𝑁𝑦
)3

)
. The biglobal analysis is O

(
𝑁3
𝑥

)
times more expensive to

compute than the local approach, due to the increased degrees of freedom required to
discretize the streamwise direction. The inner product in Equation 2.9 is augmented
to normalize by the streamwise domain length such that

⟨a, b⟩ = 1
𝐿𝑥

∫ 𝑥0+𝐿𝑥

𝑥0

∫ 𝑦𝑚𝑎𝑥

0
a∗b𝑑𝑦𝑑𝑥. (2.41)

The response and forcing modes computed with the biglobal approach have both
wall-normal and streamwise variation. Their streamwise structure, wall-normal
location, and convective speed are not specified a priori. Nonparallel components
of the mean flow field are incorporated into the linear analysis, making this operator
apt for studying the nonequilibrium effects in incompressible boundary layer flows,
such as adverse pressure gradients, 𝑑𝑥𝑃∞ = −𝑈∞𝑑𝑥𝑈∞.

One possible way of reducing the computational cost of the biglobal resolvent
analysis is to use an Orr-Sommerfeld-Squire (OSS) formulation for the LNSE.
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This approach is commonly used in local linear stability analysis (Schmid and
Henningson, 2002) and has seen use in local resolvent analysis (Rosenberg, 2018).
The OSS formulation can reduce the LNSE to a system of two equations for the
wall-normal vorticity, 𝜔2 = 𝑖𝑘𝑧𝑢̂ + 𝜕𝑤/𝜕𝑥 , and 𝑣̂ by eliminating 𝑝 by using the
continuity equation. Since the state is reduced to q𝑂𝑆𝑆 = [𝑣̂, 𝜔2], the discretized
degrees of freedom are now 2𝑛. With this approach, the resolvent analysis would
scale as O

(
8𝑛3) when discretized, compared to a scaling of O

(
64𝑛3) when using

the LNSE with primitive variables (𝑢̂, 𝑣̂, 𝑤, 𝑝). Although the OSS formulation has
seen success in studying the receptivity of a boundary layer (Ran et al., 2019),
using the OSS formulation for biglobal resolvent analysis can be cumbersome for a
number of reasons. For starters, the OSS formulation requires second (and higher)
order derivatives of U to create the linear operators, which may be difficult to obtain
from experimental and low-fidelity simulation data. Secondly, the entries in the
OSS linear operator require operations involving

(
𝑘2
𝑧I − 𝜕𝑥𝑥

)−1, which is a dense
operator. This can cause detrimental effects when computing the LU decompositions
used in the Arnoldi algorithm since many linear solvers like the Intel® oneAPI Math
Kernel Library PARDISO (Schenk and Gärtner, 2004) require sparse matrices.
See Appendix C for more details. The dense nature of the OSS linear operator
may circumvent any of the potential computational advantages of using a smaller
system of equations in the biglobal resolvent analysis. For these reasons, the OSS
formulation is not used for any of the calculations in this work, though it is used for
some analytic developments in Chapter 3.

2.4 Verification of Resolvent Analysis

The resolvent analysis will be verified against the results of Sipp and Marquet (2013)
and Sasaki et al. (2022). The two studies differ in that the former considers two-
dimensional disturbances across a finite flat plate, including the leading edge, while
the former considers three-dimensional streaky disturbances over a flat plate in a
truncated domain. Although there are differences between the cited approaches and
the approach described herein because of the differences in base flows and boundary
conditions, it will be shown that similar flow structures and linear amplifications can
be computed with the strategy presented here. This will serve as a verification of the
linear operators, boundary conditions, and Arnoldi iteration. Although the study
of Abreu, Tanarro, et al. (2021) uses similar boundary conditions for the biglobal
analysis as the ones described herein, their publication only present contours of
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different velocity components of the resolvent modes so quantitative comparisons
are not possible with their results.

Verification with Spanwise Constant Modes

Beginning with Sipp and Marquet (2013), their study considers two-dimensional
disturbances, q̂ = [𝑢̂(𝑥, 𝑦), 𝑣̂(𝑥, 𝑦), 0, 𝑝(𝑥, 𝑦)]𝑇 , about a laminar boundary layer over
a finite flat plate of length 𝑙, including the leading edge at 𝑥 = 0. The length and
velocity scale are chosen as 𝐿𝑟 = 𝑙, and𝑈𝑟 = 𝑈∞, the freestream velocity, for a Re =

6 × 105. Their computational domain is 𝑥, 𝑦 ∈ Ω𝑠 = [−.5, 1.25] × [0, .02], which
includes the region upstream of the leading edge and downstream of the trailing
edge of the plate. Their base flow was computed numerically and their response
modes satisfy the same boundary conditions as the base flow. Their adjoint operator
is constructed using the conjugate-transpose approach. More computational details
can be found in their publication.

The base flow, U, used in this comparison is approximated as the laminar Blasius
boundary layer similarity solution for a semi-infinite flat plate, which is not valid
near 𝑥 = 0. To remedy this, the domain is chosen as Ω𝑛 = [0.025, 1.25] × [0, .0219]
to avoid the leading edge. The boundary conditions are treated differently from the
original study since the domain is truncated at the inlet, the flat plate is assumed to
extend to 𝑥 = 1.25, and the ends of the domain are treated with sponge layers. Since
the comparison used here assumes that the flat plate extends past 𝑥 = 1, the base
flow adds an extra source of shear not present in Sipp and Marquet (2013) which
changes the amplification within the domain. The changes in the base flow will
be shown to affect the sub-optimal modes the most. Despite these differences, this
comparison will illustrate that similar amplification mechanisms can be identified
from the strategy described here. To model two-dimensional disturbances with the
operator described in Equations 2.38, 𝑘𝑧 is set to 0. Finally, W𝑟 and W𝑓 are set
such that the inner products are

⟨a, b⟩ 𝑓 =
∫ 1

.025

∫ .0219

0
a∗I𝑐b𝑑𝑦𝑑𝑥 (2.42)

and

⟨a, b⟩𝑟 =
∫ 1

.025

∫ .0219

0
a∗I𝑐b𝑑𝑦𝑑𝑥. (2.43)

The limits of integration in the streamwise direction reflect the choice of inner
product used in Sipp and Marquet (2013), except their study includes the region
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Figure 2.2: Real part of 𝝓𝑢,1 (a,b), 𝜎1𝝍𝑢,1 (c,d), 𝝓𝑢,2 (e,f), and 𝜎2𝝍𝑢,2 (g,h) from the
strategy described in Section 2.3 (a,c,e,g) and subplots from Figure 2 of Sipp and
Marquet (2013), reproduced with permission (b,d,f,h). 𝛿 denotes the displacement
thickness at 𝑥 = 1. The black curves indicate the local displacement thickness.

upstream of the leading edge in their integrals. Furthermore, the limits of integration
are truncated in Equation 2.42 to reflect that the plate is only present from 𝑥 ∈ [0, 1]
in Sipp and Marquet (2013). The same computational scheme described in Section
2.3 is used with equi-spaced grid points in 𝑥. The computational parameters are
𝑁𝑥 = 1400, 𝑁𝑦 = 151, 𝑦𝑚𝑖𝑛 = 0.0046, and 𝜖𝑠 = 30.

In Figures 2.2(a-d), the streamwise component of 𝝓1 and 𝜎1𝝍1 are compared with
the results from Sipp and Marquet (2013) at 𝜔 = 60. The overall structure of
the dominant resolvent modes agree well with the published results, despite the
difference in the treatment of the boundary conditions. At this frequency, 𝝍1 is
reminiscent of Tollmein-Schlichting waves, sporting the characteristic 𝜋 phase jump
in the wall-normal direction (Schmid and Henningson, 2002; Sipp and Marquet,
2013). The forcing is inclined against the direction of the mean flow field, indicative
of the Orr amplification mechanism which amplifies upstream leaning disturbances
to downstream leaning responses (Schmid and Henningson, 2002). Furthermore, the
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forcing being upstream of the response is indicative of the convective non-normality
present in the biglobal operator (Chomaz, 2005; Symon et al., 2018). In fact, this
convective non-normality causes a difference between the approach described herein
and Sipp and Marquet (2013)—the optimal forcing is able to start slightly further
upstream in the latter. As mentioned earlier, the base flow in Sipp and Marquet
(2013) is over a flat plate from 𝑥 ∈ [0, 1] and then flows into a freestream for 𝑥 ≥ 1
where the base flow is expected to have less shear because of the lack of a no-slip
boundary condition in that region. As a result, their forcing modes are mostly
supported in 𝑥 ∈ [0, 1] to take advantage of the amplification due to the mean shear.
Here, the limits of integration in Equation 2.42 were chosen to only capture the
regions where the mean shear is present in the original study. Because the flat plate
is assumed to extend across the entire domain in the approach described here, the
responses are supported on 𝑥 ∈ [0, 1.25]. As a result the response modes in this
study have more support downstream. Despite the differences in the base flow, the
truncated domain, and sponge applied, the optimal modes identified compare well
with the published results.

In Figure 2.2(e-g), the second leading modes are compared. The secondary modes,
𝝓2 and 𝝍2, also demonstrate behavior in line with the Orr-amplification mechanism
exemplified in the upstream tilt of the forcing. The secondary modes demonstrate
two wavepacket-like structures in the streamwise direction and, though not shown
here, higher order 𝝍 𝑗 and 𝝓 𝑗 demonstrate 𝑗 wavepacket-like structures. This behav-
ior is a consequence of the finite streamwise domain coupled with the orthogonality
constraints in the modes. Because of the extra shear in 𝑥 ≥ 1, the sub-optimal
forcing modes have more downstream support. As a result, the two wavepacket
structures are longer and further downstream for both 𝜓𝑢,2 and 𝜙𝑢,2 in this study
than in the published results. Despite this difference in streamwise amplitudes,
the modes once again identify similar structures with the response modes having
Tollmien-Schlichting-like structure.

Now, the energy densities,

𝑒𝑢,𝑖 (𝜔, 𝑥) =
∫ 𝑦𝑚𝑎𝑥

0
𝜎2
𝑖 (𝜔)

(��𝜓𝑢,𝑖 (𝑥, 𝑦;𝜔)
��2 + ��𝜓𝑣,𝑖 (𝑥, 𝑦;𝜔)

��2)𝑑𝑦, (2.44)

and
𝑒 𝑓 ,𝑖 (𝜔, 𝑥) =

∫ 𝑦𝑚𝑎𝑥

0

(��𝜙𝑢,𝑖 (𝑥, 𝑦;𝜔)
��2 + ��𝜙𝑣,𝑖 (𝑥, 𝑦;𝜔)

��2)𝑑𝑦, (2.45)

are compared for the modes plotted in Figure 2.2 with the published results in Figure
2.3. The 𝑒𝑢,𝑖 and 𝑒 𝑓 ,𝑖 agree quite well, despite the differences in the approaches.
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Figure 2.3: 𝑒𝑢,1(60, 𝑥) (red) and 𝑒 𝑓 ,1(60, 𝑥) (black) (a) and 𝑒𝑢,2(60, 𝑥) (red) and
𝑒 𝑓 ,2(60, 𝑥) (black) (b). The solid lines are computed with the approach described
herein while the dashed lines are extracted from Sipp and Marquet (2013).

One difference alluded to earlier is that 𝝓1 and 𝝓2 can begin further upstream in the
published results because of the large shear caused by the leading edge that is not
included in the domain of the approach described herein. The published 𝑒 𝑓 ,1 reaches
its largest amplitude slightly upstream of the results using the approach described
herein. This is also true for the local minima of 𝑒 𝑓 ,2. Due to the differences in 𝝓𝑖,
𝝍𝑖 also has more support slightly upstream in the published results. Despite these
differences, there is good agreement in the identified 𝑒𝑢,𝑖 and 𝑒 𝑓 ,𝑖 for 𝜔 = 60 using
a different base flow and boundary conditions.

Now, contours of 𝑒𝑢,1(𝜔, 𝑥) and 𝑒 𝑓 ,1(𝜔, 𝑥) are are plotted over 𝐹 = 𝜔 × 105/Re
and Re𝛿 (𝑥) = 1.72

√︁
𝑥/Re in Figure 2.4. The comparison between the approach

described herein and Sipp and Marquet (2013) is striking for 𝑒 𝑓 . Although the
amplitudes of the response modes and linear amplification can not be matched
exactly because of the differences with regard to the leading edge, base flow, and
truncation of the domain, the structure of 𝑒𝑢 agrees well with the published results,
capturing the increased amplitude in the downstream direction for only 𝐹 < 120
and agreement in the locations of the maximum 𝑒𝑢 and 𝑒 𝑓 . As 𝐹 increases, the
forcing becomes concentrated near the upstream region in both analyses. This then
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Figure 2.4: Isocontours of 𝑒 𝑓 (𝐹,Re𝛿 (𝑥)) (a,b) and 𝑒𝑢 (𝐹,Re𝛿 (𝑥)) (c,d) of the strategy
described in Section 2.3 (a,c) and subplots from Figure 3 of Sipp and Marquet (2013),
reproduced with permission (b,d). The cyan circles denote the maximum energy
density in 𝑥 ∈ [0, 1] and vertical black lines denote 𝑥 = 1. The magenta curve in
(b,d) denotes the neutral stability curve.

leads the response modes to have support further upstream with increased 𝐹. It is
expected that the higher frequency modes may agree better than the modes plotted
in Figure 2.2 because their energy is concentrated withing the domain, away from
the inlet and outlet.

Finally, 𝜎1(𝜔) and 𝜎)2(𝜔) are plotted over 𝐹 in Figure 2.5 along with the published
results. The differences in 𝜎1 may be attributed to the differences in the base flows.
The approach described herein does not incorporate the large-shear region near
the leading edge. Nonetheless, the two approaches both identify a similar optimal
frequency at 𝐹 ≈ 90. The 𝜎2 are closer in amplitude between the two approaches.
This is likely because of the orthogonality constraints—since 𝝓1 takes advantage
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Figure 2.5: 𝜎1(𝐹) (red) and 𝜎2(𝐹) (blue) using the approach described herein (solid
line) and the results of Sipp and Marquet (2013) (dotted lines).

of forcing near the leading edge, 𝝓2 must be supported downstream within the
boundary layer where the two base flows agree. They are both also able to identify
a local maxima with a larger frequency than the local maxima of 𝜎1. Despite the
differences in the approaches, the approach described herein can identify similar
amplification mechanisms, as evidenced by the forcing and response mode structure
and the most amplified frequencies.

Verification of 3D streaks

To validate the results with modes that model three-dimensional disturbances, com-
parisons will be made with Sasaki et al. (2022) that considers modes with 𝑘𝑧 > 0 and
𝜔 = 0. The results are nondimensionalized by 𝐿𝑟 = 𝛿∗0, the displacement thickness
at the inlet of the domain, and 𝑈𝑟 = 𝑈∞ which defines their Re. Their domains
extend from 𝑥 ∈ [𝑥0, 𝑥0 + 𝐿𝑥] where 𝑥0 and 𝐿𝑥 depend on the Re of interest. Here
Re𝑥 (𝑥) = 𝑥𝑈∞/𝜈 and Re𝛿 (𝑥) = 𝛿∗(𝑥)𝑈∞/𝜈 = 1.72

√
Re𝑥 with Re = Re𝛿 (𝑥0). The

base flow for the comparisons is the Blasius similarity solution. The wall-normal
discretization uses Chebyshev polynomials while the streamwise direction is com-
puted using a parabolic approach which allows spatial marching in 𝑥. This neglects
𝜕𝑥𝑥 in the equations since 𝜔 = 0 creates long streamwise streaks. Their approach
was validated with a biglobal approach like the one described here. Finally the inner
products that they consider are

⟨a, b⟩ 𝑓 =
∫ 𝑥0+𝐿𝑥

𝑥0

∫ 𝑦𝑚𝑎𝑥

0
a∗I𝑐b𝑑𝑦𝑑𝑥, (2.46)
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Figure 2.6: Comparison of the real parts of 𝝍1 for 𝑘𝑧 = 0.1 at Re𝛿 (𝑥) = 1000. Red
dots denote the results from Sasaki et al. (2022), reproduced with permission, and
black lines denote results from the strategy described here.
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𝐿
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et al. (2022) in red, reproduced with permission, and the strategy described here in
black. The black line, circles, and crosses denote Re = 1000, 2000, and 3000.

and

⟨a, b⟩𝑟 =
∫ 𝑥0+𝐿𝑥

𝑥0

∫ 𝛿99 (𝑥)

0
a∗I𝑐b𝑑𝑦𝑑𝑥, (2.47)

to discourage response modes with freestream support. To compare with their
results, the verifications are done with the biglobal approach described herein with
SBP finite differences in 𝑥 and 𝑦, and sponge zones applied at the edges of the
domain. Apart from the parabolic approach, one difference is the treatment of
sponge layers at the inlet and outlet that are not employed in the parabolic approach.
Unlike the comparison with Sipp and Marquet (2013), the base flow of Sasaki et al.
(2022) does not include the leading edge, like the approach described herein. As a
result, the only differences in the approaches are the parabolic approach used in the
published results and their wall-normal discretization.
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Figure 2.8: Comparison of 𝑘𝑢,𝑖 (𝑥), between the results of Sasaki et al. (2022) in
black dots, reproduced with permission, and the strategy described here in colored
lines for 𝑘𝑧 = 0.04 and 𝜔 = 0. The red, blue, and green lines denote 𝑖 = 1, 2, and 3

The following parameters are used in the verification in Figure 2.6: 𝑁𝑥 = 500,
𝑁𝑦 = 251, 𝑦𝑚𝑎𝑥 = 60, 𝑦𝑚𝑖𝑛 = 1.02, and 𝜖𝑠 = 30. The optimal response modes are
compared between the approach described here and Sasaki et al. (2022)’s results for
𝑘𝑧 = 0.1, 𝜔 = 0, and Re = 300 with Re𝛿 (𝑥𝑠 + 𝐿𝑥) = 1000. In the approach described
here, the Re𝛿 (𝑥𝑠 + 𝐿𝑥) = 1080 to account for the sponge layers. The response modes
from the two strategies show excellent agreement at Re𝛿 (𝑥) = 1000. Note that
although the modes from the published study used the parabolic approach, those
modes were validated against the biglobal approach.

In Figure 2.7, the normalized 𝜎1 are compared between the parabolic approach
described in Sasaki et al. (2022) and the approach described here over a sweep of 𝑘𝑧
and Re = 1000, 2000, and 3000. The domain was chosen as 𝑥/(𝑥𝑠 + 𝐿𝑥) ∈ [.1, 1],
where 𝑥𝑠 is determined by Re. In the approach described here, the domain is
𝑥/(𝑥𝑠 + 𝐿𝑥) ∈ [.1, 1.1] to account for the sponge zones, which take up 10% of the
domain. Here, 𝑁𝑥 = 500, 𝑁𝑦 = 251, 𝑦𝑚𝑎𝑥 = 180, 𝑦𝑚𝑖𝑛 = 1.02, 𝜖𝑠 = 300. Following
Sasaki et al. (2022), the 𝜎1 were found to be self-similar with Re𝐿 = Re𝑥 (𝑥𝑠 + 𝐿𝑥),
which is why there is only one line for their results at the different Re in Figure
2.7. The normalized 𝜎1 agree with the published results, even demonstrating the
self-similarity with respect to Re𝐿 . See Chapter 3, Section 3.5 for an explanation
of the Re𝐿 scaling. The differences observed in 𝜎1 are related to the use of sponges
that are not used in the parabolic approach.

Finally, in Figure 2.8, the kinetic energy density of the responses,

𝑘𝑢,𝑖 (𝑥) =
∫ 𝑦𝑚𝑎𝑥

0
𝜎2
𝑖

(��𝜓𝑢,𝑖 (𝑥, 𝑦)��2 + ��𝜓𝑣,𝑖 (𝑥, 𝑦)��2 + ��𝜓𝑤,𝑖 (𝑥, 𝑦)��2)𝑑𝑦, (2.48)
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are plotted for 𝑘𝑧 = 0.04 along with Sasaki et al. (2022)’s results for 𝑖 = 1, 2,
and 3. Since their streamwise domain was not reported for this comparison, the
streamwise domain and Re was chosen to match the plotted 𝛿99(𝑥). This lead to
Re = 400 and 𝑥 ∈ [1, 440.5]. The streamwise resolution was increased to get an
appropriate resolution. This lead to 𝑁𝑥 = 1800, 𝑁𝑦 = 201, 𝜖𝑠 = 300, 𝑦𝑚𝑖𝑛 = 1,
and 𝑦𝑚𝑎𝑥 = 154.8. 𝑘𝑢,1 increases monotonically in 𝑥 while 𝑘𝑢,2 and 𝑘𝑢,3 have
2 and 3 peaks, respectively. The peaks in the higher order 𝑘𝑢,𝑖 is related to the
orthonormality constraint that was also seen in Figure 2.2. Despite the differences
in the strategy used to compute the resolvent modes, the agreement is encouraging.
Differences in 𝑒𝑢,𝑖 are likely due to differences in the domains used as well as the
sponges at the inlet and outlet of the domains.

2.5 Chapter Summary

The resolvent formulation was described for a general dynamical system, including
the discretization approach and Arnoldi iteration to compute the singular value
decomposition. The resolvent formulation was then specified for incompressible
boundary layers, where the direct and adjoint linear equations were defined for both
the parallel flow assumption and the biglobal approach.

The biglobal resolvent approach was then validated against published results. The
results for two dimensional disturbances illustrated that the approach described
here can identify the linear amplification mechanisms despite the differences at the
boundaries and in the base flow. The differences were observed to affect the sub-
optimal modes more substantially than the optimal modes. Computing a sweep over
𝜔 demonstrated that the energy densities of the forcing and responses were in agree-
ment with Sipp and Marquet (2013). The results were then validated against results
for three dimensional streaky disturbances. These results illustrated quantitatively
that the response modes and singular values are in agreement with the published
results. The self-similarity in the amplifications were also observed, indicating that
the resolvent approach described here can reproduce the physics captured in Sasaki
et al. (2022). There were differences that are once again related to the use of sponges
at the boundaries that are not included in the original studies. These verifications
give confidence in the discretization of the linear operators, boundary conditions,
and Arnoldi iteration. The biglobal resolvent approach described here will be used
in Chapters 3, 4, and 6.
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C h a p t e r 3

SCALING OF BIGLOBAL RESOLVENT MODES FOR ZPG TBL

3.1 Introduction

The mean flow field of a ZPG TBL has regions of self-similarity in different wall-
normal regions of the flow. Each of these regions have their associated length and
velocity scales. These scalings generate the classical law of the wall and the law of
the wake that are valid in the near-wall region of the flow and in the outer region,
respectively (Coles, 1956). The mean flow field is traditionally characterized into
four layers, the viscous layer, buffer layer, log layer, and wake layer, where viscous
scaling holds in the first two, outer scaling holds in the latter, and the log layer is
an overlap layer where both scalings hold. Using a mean momentum balance, the
RANS equation reveals four distinct layers characterized by a balance of two or three
of its terms (Wei, Fife, et al., 2005). These terms correspond to the viscous stresses,
Reynolds stresses, and advection terms. In the mesolayer, where all three terms are
balanced

(
𝑦+ ∈

[
1.6

√
Re𝜏, 2.6

√
Re𝜏

] )
, a mixed length scale, ℓ𝑚 =

√
ℓ𝜈𝛿99, emerges

that makes the RANS equations independent of Re (Afzal, 1984). Although this
length scale is based on the dynamics of the flow, it does not collapse the mean flow
field, though it makes ℓ𝑚𝜕𝑦𝑈

+ ∼ O(1) in the mesolayer region.

Since the resolvent operator is defined with the mean flow field, it is natural to
examine how self-similarity of the mean flow field extends to the resolvent ampli-
fication and resolvent modes. Moarref, Sharma, et al. (2013) finds scaling for the
local resolvent modes based on the critical layer location, which anchors the modes
to specific self-similar regions of𝑈. In the local analysis, the critical layer location
can be predicted a priori by specifying a streamwise wavenumber and temporal
frequency that specifies the wavespeed.

Since a streamwise wavenumber is not specified in the biglobal analysis, the
wavespeed and critical layer location of the biglobal resolvent modes can not be
specified either. In order to determine scaling relationships that lead to biglobal
resolvent modes, the wall-normal support of said modes needs to be appropriately
predicted. Here, the wall-normal support of the biglobal resolvent modes is pre-
dicted by balancing linear amplification mechanisms related to the lift-up effect,
which amplifies near-wall modes, and the convection, which amplifies large scale
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modes. Since the mean flow field develops in the streamwise direction, modifica-
tions are made to the biglobal resolvent operator that can account for the streamwise
development of the length and velocity scales that evolve with the mean flow field.

In Section 3.2, the results of Moarref, Sharma, et al. (2013) are first discussed to
illustrate how the streamwise and spanwise wavenumbers and temporal frequencies
need to scale to admit self-similar local resolvent modes. In Section 3.3, it shown
that the spanwise wavenumber can specify the wall-normal support of the biglobal
resolvent by strengthening or weakening the linear amplification from the lift-up
effect. In Section 3.4, scalings are presented for the spanwise wavenumbers and
temporal frequencies that admit self-similar biglobal resolvent modes for a general
self-similar mean flow field. Modifications to the biglobal resolvent operator are
also presented to demonstrate how the streamwise varying velocity and length scales
are incorporated. In Sections 3.5, 3.6, 3.7, and 3.8, the biglobal scaling is applied
to the laminar boundary layer and the inner layer, mesolayer, and outer layer of the
ZPG TBL, respectively. Finally, conclusions are presented in Section 3.9.

3.2 Generalization of Local Scaling Results

In this chapter, all the derivations are done with dimensional quantities to identify
the physical scales that achieve self-similarity. All the terms in Equation 2.33 will
denote dimensional quantities so that the Re is replaced by 1/𝜈. In this section,
the scalings of Moarref, Sharma, et al. (2013) are summarized in a general form so
that the scaling arguments can be extended to the biglobal operator in Section 3.4.
The general form of the 1D scaling is applied to a novel scaling for the APG TBL
in Section 4.2 (Wei and Knopp, 2023). Since the geometric scaling of Moarref,
Sharma, et al. (2013) relies on specified wall-normal locations that do not have a
counterpart in the biglobal operator, the geometric scaling is omitted. The parallel
flow assumption of Section 2.3 is invoked. It is assumed that there exists physical
scales such that

𝜂 =
𝑦 − 𝑦𝑑
𝑦𝑠

, 𝑓 (𝜂) = 𝑈 (𝑦) −𝑈𝑑
𝑈𝑠

, (3.1)

where 𝑦𝑑 denotes an offset wall-normal distance, 𝑦𝑠 is the velocity scale, 𝑈𝑑 is
a velocity offset, and 𝑈𝑠 is a velocity scale. The general form of Equation 3.1
is inspired by the scaling studied in Wei and Knopp (2023) for adverse pressure
gradients, though it can relate to traditional scalings in canonical flows (Coles,
1956). For example, 𝜂 denotes 𝑦+ if 𝑦𝑑 = 0 and 𝑦𝑠 = ℓ𝜈 for the near-wall viscous
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scaling or 𝑓 can denote the velocity-defect as in Equation 1.4 if𝑈𝑑 = 𝑈𝑒 and𝑈𝑠 = 𝑢𝜏
for the outer region.

A Reynolds number is introduced as Re𝑠 = 𝑦𝑠𝑈𝑠/𝜈, based on the mean velocity pro-
file’s scalings. The scaling for the streamwise wavenumber, spanwise wavenumber,
and wavespeed are

𝑘𝑥 =
𝛼

𝑥𝑠
, 𝑘𝑧 =

𝜁

𝑧𝑠
, 𝑐 = 𝑢𝑠 𝑓𝑐 + 𝑢𝑑 , (3.2)

where 𝑥𝑠 and 𝑧𝑠 denote streamwise and spanwise length scales, 𝛼 and 𝜁 denote
nondimensionalized streamwise and spanwise wavenumbers, and 𝑓𝑐 is the nondi-
mensionalized wavespeed. The wavespeed is chosen such that the critical layer is
fixed at 𝜂𝑐, in the nondimensional coordinates. The temporal frequency is then
𝜔 = 𝑐𝑘𝑥 = 𝑢𝑠/𝑥𝑠 ( 𝑓𝑐 + 𝑢𝑑/𝑢𝑠)𝛼 = 𝑢𝑠/𝑥𝑠𝜔̃, where 𝜔̃ is the nondimensional fre-
quency. In general, 𝜔̃ is Re dependent because of the possible Re dependence on
𝑢𝑑/𝑢𝑠 while 𝛼, 𝜁 , and 𝑓𝑐 are Re independent constants.

It is assumed that the optimal response modes are streak-like streamwise fluctuations
where |𝑢̂ | ≫ |𝑣̂ |, |𝑤 | ≫ |𝑝 |/𝑢𝑠 and 𝑘𝑥 ≪ 𝑘𝑧, 1/𝑦𝑠. The pressure components can
be assumed to be small compared to the velocity components and thus negligible.
These response modes are assumed to be forced with wall-normal and spanwise
components such that

��� 𝑓̂𝑣 ���, ��� 𝑓̂𝑤 ��� ≫
��� 𝑓̂𝑢���, and O

(��� 𝑓̂𝑣 ���) ∼ O
(��� 𝑓̂𝑤 ���) (Jovanović and

Bamieh, 2005).

As discussed in Section 2.3, the adjoint equation constrains the forcing modes to be
solenoidal because of the incompressibility constraint on û. In addition, Rosenberg
(2018) had shown that the irrotational component of the forcing can be lumped into
the pressure term in the LNSE. When the Orr-Sommerfeld Squire (OSS) equations
are derived, the pressure terms are eliminated by using the divergence free constraint
on the velocity (Schmid and Henningson, 2002). As a result, only solenoidal forcing
can amplify û and increase the kinetic energy. A relationship between 𝑦𝑠 and 𝑧𝑠
is found by respecting the divergence-free constraint on the optimal forcing modes
and neglecting the 𝑖𝑘𝑥 𝑓̂𝑢 term,

𝑖𝑘𝑥 𝑓̂𝑢 + 𝜕𝑦 𝑓̂𝑣 + 𝑖𝑘𝑧 𝑓̂𝑤 = 0 ∼ 1
𝑦𝑠
𝜕𝜂 𝑓̂𝑣 +

𝑖𝜁

𝑧𝑠
𝑓̂𝑤 . (3.3)

In order for the leading terms of the divergence-free constraint to balance, 𝑧𝑠 =

𝑦𝑠. To determine the scaling for 𝑥𝑠, scaling arguments for the LNSE must be
made. Neglecting the pressure component, it is required that the advective term,
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−𝑖𝜔 + 𝑖𝑘𝑥𝑈

)
, scales with the viscous term, 𝜈∇̂2, to balance the singularity at the

critical layer. Introducing the nondimensionalizations and neglecting the 𝑘2
𝑥 term in

the viscous term, one finds that

−𝑖 𝑢𝑠
𝑥𝑠

( 𝑓𝑐 − 𝑓 )𝛼 ∼ 𝜈

𝑦2
𝑠

(
𝜕𝜂𝜂 − 𝜁2

)
. (3.4)

In order for these two terms to balance, 𝑥𝑠 = 𝑦2
𝑠𝑢𝑠/𝜈 = 𝑦𝑠Re𝑠. From this relationship,

Re𝑠 can be considered a ratio between 𝑥𝑠 and 𝑦𝑠 or a ratio between the shear, 𝑢𝑠/𝑦𝑠,
and the advection, 𝑢𝑠/𝑥𝑠. Finally, due to the normalization constraint on the resolvent
modes, 𝝍 and 𝝓 must scale with 𝑦−1/2

𝑠 .

Using the identified scales, the scaling of the LNSE follows

L ∼ 𝜈

𝑦2
𝑠


𝑎1,1 Re𝑠 𝑓 0 𝛼

0 𝑎1,1 0 Re𝑠𝑎2,4

0 0 𝑎1,1 Re𝑠𝜁
𝛼 Re𝑠𝑎2,4 Re𝑠𝜁 0


, (3.5)

where 𝑎𝑖, 𝑗 , 𝑓 , 𝛼, and 𝜁 are independent of Re. The variables 𝑎𝑖, 𝑗 account for the
derivatives, mean flow, and the nondimensional wavenumbers or frequencies. If
Re𝑠 = 1 as in the case of viscous scaling, L ∼ 𝜈/𝑦2

𝑠 such that R ∼ 𝑦2
𝑠/𝜈. In the case

where Re ≫ 1, the resolvent operator scales as

R ∼
𝑦2
𝑠Re𝑠
𝜈


𝜒1,1Re−1

𝑠 𝜒1,2 𝜒1,3 0
𝜒2,1Re−2

𝑠 𝜒2,2Re−1
𝑠 𝜒2,3Re−1

𝑠 0
𝜒3,1Re−2

𝑠 𝜒3,2Re−1
𝑠 𝜒3,3Re−1

𝑠 0
𝜒4,1Re−2

𝑠 𝜒4,2Re−2
𝑠 𝜒4,3Re−2

𝑠 0


, (3.6)

where 𝜒𝑖, 𝑗 are coefficients that are once again independent of Re. Hence, ∥R∥ ∼
𝑦2
𝑠Re𝑠/𝜈. From Equation 3.6, the optimal response components scale as |𝑢̂ |/𝑢𝑠 ∼

O(1), |𝑣̂ |/𝑢𝑠 ∼ O
(
Re−1

𝑠

)
, |𝑤 |/𝑢𝑠 ∼ O

(
Re−1

𝑠

)
, and |𝑝 |/𝑢2

𝑠 ∼ O
(
Re−2

𝑠

)
. Similarly,

looking at the adjoint of Equation 3.6, the optimal forcing components scale as��� 𝑓̂𝑢���/𝑢𝑠 ∼ O
(
Re−1

𝑠

)
,
��� 𝑓̂𝑣 ���/𝑢𝑠 ∼ O(1), and

��� 𝑓̂𝑤 ���/𝑢𝑠 ∼ O(1). This is consistent with the
initial assumptions made.

𝝍𝑖 and 𝝓𝑖 are nondimensionalized as

𝜓̃𝑢,𝑖 =
√
𝑦𝑠𝜓𝑢,𝑖, 𝜓̃𝑣,𝑖 =

√
𝑦𝑠Re𝑠𝜓𝑣,𝑖, 𝜓̃𝑤,𝑖 =

√
𝑦𝑠Re𝑠𝜓𝑤,𝑖, (3.7)

and

𝜙𝑢,𝑖 =
√
𝑦𝑠Re𝑠𝜙𝑢,𝑖, 𝜙𝑣,𝑖 =

√
𝑦𝑠𝜙𝑣,𝑖, 𝜙𝑤,𝑖 =

√
𝑦𝑠𝜙𝑤,𝑖, (3.8)
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Case 𝑦𝑠 𝑈𝑠 𝑈𝑑 Re𝑠 𝑓𝑐 𝑥𝑠
Inner ℓ𝜈 𝑢𝜏 0 1 𝑓𝑐 ≲ 16 ℓ𝜈

Mesolayer ℓ𝑚 𝑢𝜏 0
√

Re𝜏
���𝑈+(𝑦𝑀𝐿) − 𝑓𝑐

��� ≲ 1 𝛿99

Outer 𝛿99 𝑢𝜏 𝑈𝑒 Re𝜏 −6.5 < 𝑓𝑐 < 0 𝛿99Re𝜏
Blasius 𝛿 𝑈∞ 0

√
Re𝑥 𝑓𝑐 ∈ (0, 1) 𝑥

Table 3.1: Length scales and wavespeed range for the different regions of self-
similarity for the ZPG TBL and the laminar flow. Here 𝑦𝑀𝐿 ≈ 2

√
𝛿99ℓ𝜈 and 𝑦𝑑 = 0

for all cases.

such that 𝝍̃𝑖 and 𝝓̃𝑖 are Re-independent. 𝜎𝑖 is also nondimensionalized to be Re-
independent as

𝜎̃ = 𝜎
𝜈

𝑦2
𝑠Re𝑠

. (3.9)

Note that in the case where Re𝑠 = 1, the Re-independence holds so long as the
response and forcing modes are supported where the mean flow field is self-similar.
Otherwise, the Re-Independence can only hold if Re𝑠 ≫ 1, since the conditions for
self-similarity require the shear driven amplification to be dominant.

The local scaling is now presented for some representative parameters. The same
grid is used for all the results where 𝑁𝑦 = 601 points are used to resolve the
near-wall region with 𝑦𝑚𝑎𝑥 = 3𝛿99 and 𝑦𝑚𝑖𝑛 = .01𝛿99. Although this grid does
not ensure DNS resolution since the grid spacing, Δ𝑦, scales with outer units far
from the wall, the structures in the outer region are expected to be resolved since
they too scale with the outer length scale. The Monkewitz composite profile is
used as the mean flow field to test flow fields with large Re𝜏. Although this is a
modeled flow, it uses asymptotic expansions inline with the canonical scalings of
mean velocity profile that are predicted to hold asymptotically for large Re and is
fitted to experimental results (Monkewitz, Chauhan, and Nagib, 2007). The Re𝜏 are
chosen as 10 equispaced values of Re𝜏 ∈ [2000, 10000], ensuring a decade of Re𝜏.
The scales for the inner, mesolayer, and outer scaling are categorized in Table 3.1.

The scaling is shown for some characteristic modes in Figures 3.1, 3.2, and 3.3. In
these plots, the top row plots |𝜓 |1 nondimensionalized using

√
𝛿99 while the bottom

row plots the modes nondimensionalized with the scaling in Equation 3.7. In Figure
3.1, the inner scaling is demonstrated using 𝛼 = 2𝜋/1000, 𝜁 = 2𝜋/100, and 𝑓𝑐 = 10
which models the energetic structures in the near-wall cycle. Since Re𝑠 = 1, all
components of 𝝍1 are self-similar when nondimensionalized by

√
ℓ𝜈.

For the mesolayer scaling results plotted in Figure 3.2, 𝛼 = 2𝜋/6 and 𝜁 = 2𝜋/45,
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Figure 3.1:
��𝜓𝑢,1�� (a,b),

��𝜓𝑣,1�� (c,d), and
��𝜓𝑤,1�� (e,f) nondimensionalized using outer

units (a,c,e) and the self-similar inner units (b,d,f). The black arrow denotes the
direction of increasing Re𝜏. Each colored line has Re𝜏 incrementing by 1000, with
blue denoting Re𝜏 = 10000 and red denoting Re𝜏 = 2000.
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Figure 3.2:
��𝜓𝑢,1�� (a,b),

��𝜓𝑣,1�� (c,d), and
��𝜓𝑤,1�� (e,f) nondimensionalized using outer

units (a,c,e) and the self-similar mesolayer units (b,d,f). The black arrow denotes
the direction of increasing Re𝜏. Each colored line has Re𝜏 incrementing by 1000,
with blue denoting Re𝜏 = 10000 and red denoting Re𝜏 = 2000.

which makes the streamwise wavelength O(6𝛿99) and spanwise wavelength O(𝛿99).
The dimensions of these modes are similar to the length scales of a VLSM, and
𝑓𝑐 = 𝑈

+(2.2ℓ𝑚) is chosen to center the modes near the start of the log layer (Marušić,
Monty, et al., 2013). Finally, for the outer region, modes with 𝛼 = 2𝜋Re𝜏,𝑚𝑖𝑛/6,
𝜁 = 2𝜋, and 𝑓𝑐 = −6 are plotted in Figure 3.3. The prefactor of Re𝜏,𝑚𝑖𝑛 = 2000 is
included to balance the Re𝜏 in 𝑥𝑠 so that 𝜆𝑥 ∼ O(10𝛿99). In dimensional variables,
these outer scaled modes have 𝜆𝑥 ∈ (6, 30)𝛿99 and 𝜆𝑧 = 𝛿99, which are long streaks.
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Figure 3.3:
��𝜓𝑢,1�� (a,b),

��𝜓𝑣,1�� (c,d), and
��𝜓𝑤,1�� (e,f) nondimensionalized using outer

units (a,c,e) and the self-similar outer units (b,d,f). The black arrow denotes the
direction of increasing Re𝜏. Each colored line has Re𝜏 incrementing by 1000, with
blue denoting Re𝜏 = 10000 and red denoting Re𝜏 = 2000.

Unlike the inner scaled modes, the mesolayer and outer scaled modes require an
Re𝑠-dependent nondimensionalization for the transverse components to ensure self-
similarity. The modes plotted in Figures 3.1, 3.2, and 3.3 all exhibit Re-independence
when plotted using the nondimensionalization described in Equation 3.7 since these
modes have specified critical layers in the appropriate self-similar regions of𝑈.

3.3 Predicting the Wall-Normal Support of the Biglobal Resolvent Modes

Before discussing the self-similarity in the biglobal modes, it must be discussed
how the wall-normal support of the biglobal modes can be predicted. As illustrated
in Section 2.3, the wall-normal location of the local resolvent modes are specified
a priori by taking advantage of the singularity at the critical layer. Since 𝑘𝑥 is not
a parameter in the biglobal resolvent operator, the critical layer location can not
be specified. The wall-normal support of the biglobal resolvent modes can only
depend on 𝜔 and 𝑘𝑧 for a given U and fixed domain. Here, it will be shown that 𝑘𝑧
determines the wall-normal support of the modes while𝜔 influences the streamwise
length scale of the modes.

For these arguments, the thin boundary layer assumptions will be made such that
𝑈 ∼ O(𝑈∞), 𝑥 derivatives and 𝑦 derivatives of the mean flow scale as 𝜕𝑥 ∼ O

(
𝐿−1) ,

𝜕𝑦 ∼ O
(
𝛿−1) , respectively, and gradients of q̂ scale as O

(
𝑦−1
𝑠

)
. Due to mass

conservation, 𝑉 ∼ O
(
𝑈∞𝛿𝐿−1) . It is assumed that 𝛿/𝐿 = 𝜖 ≪ 1 and 𝑦𝑠/𝛿 ≲ 1. By

reducing Equation 2.38 to the biglobal Orr-Sommerfeld-Squire (OSS) form as in
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Ran et al. (2019) and neglecting terms of O(𝜖), one finds that[
L𝑂𝑆 + 𝑠(𝑥) 0
𝑖𝑘𝑧𝑈𝑦 L𝑆𝑄 + 𝑠(𝑥)

] [
𝑣̂

𝜔2

]
=

[
𝑓̂𝑣

𝑓̂2

]
, (3.10)

where 𝜔2 = 𝑖𝑘𝑧𝑢̂ − 𝜕𝑥𝑤, 𝑓̂2 = 𝑖𝑘𝑧 𝑓̂𝑢 − 𝜕𝑥 𝑓̂𝑤, L𝑂𝑆 = ∇̂−2L𝑆𝑄∇̂2 − ∇−2𝑈𝑦𝑦𝜕𝑥 , and
L𝑆𝑄 =

(
−𝑖𝜔 +𝑈𝜕𝑥 − 𝜈∇̂2

)
. See Appendix C for an explicit description of the

full OSS formulation, or Ran et al. (2019) for the OSS formulation using the thin
boundary layer assumptions.. Note that Equation 3.10 assumes that ∇ · f̂ = 0 as this
discussion is tailored to finding optimal forcing modes. This reduced form of the
OSS equations is equivalent to assuming a parallel mean flow, U = 𝑈 (𝑦)e𝑥 .

Although Equation 3.10 ignores the nonparallel terms of O(𝜖) in the ZPG TBL,
it captures the essential features of the full flow such as the advection, viscous
dissipation, and mean shear without imposing a streamwise wavenumber on the
response and forcing modes. The wall-normal boundary conditions are 𝑣̂ = 0, 𝜕𝑦 𝑣̂ =
0, 𝜂 = 0 at 𝑦 = 0, 𝑦𝑚𝑎𝑥 . The inflow and outflow are treated with the sponges, though
their effect is omitted for the arguments made in this section. Since 𝑣̂ is decoupled
from 𝜔2, Equation 3.10 can be solved explicitly as

𝑣̂ = L−1
𝑂𝑆 𝑓̂𝑣, (3.11)

𝜔2 = L−1
𝑆𝑄 𝑓̂2 − 𝑖𝑘𝑧L

−1
𝑆𝑄𝑈𝑦L−1

𝑂𝑆 𝑓̂𝑣 . (3.12)

It is assumed that𝑈 is monotonically increasing and 𝜕𝑦𝑈 is monotonically decreasing
in 𝑦. By inspecting the mean flow fields for ZPG TBLs, one can neglect 𝜕𝑦𝑦𝑈
since O

(
𝑦𝑠𝜕𝑦𝑦𝑈

)
≪ O

(
𝑈∞𝑦−1

𝑠

)
so that L𝑂𝑆 ≈ ∇−2L𝑆𝑄∇2, for [𝑣̂, 𝜔2] supported

sufficiently far from the wall. Attention will focus on the amplification of 𝜔2 in
Equation 3.12 due to the amplified streamwise response. Using the norm in Equation
2.9, maximizing

𝜔2 ≈ L−1
𝑆𝑄 𝑓̂2 − 𝑖𝑘𝑧L

−1
𝑆𝑄𝑈𝑦∇−2L−1

𝑆𝑄∇
2 𝑓̂𝑣 (3.13)

will model the amplification due to the full LNSE. The first term is amplified when
the advection terms balance the viscous terms. In the second term, the mean shear
acts as a weighting function that biases the optimal structures to be closer to the
wall where 𝑈𝑦 is large. This bias is related to the non-normality in the LNSE as
the lift-up mechanism which amplifies wall-normal disturbances into streamwise
components. This effect increases with 𝑘𝑧. If 𝑘𝑧 is sufficiently small, the lift-up
effect can be neglected and the amplification is due to the first term.
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To get a sense of what structures L−1
𝑆𝑄

amplifies, consider

L𝑆𝑄𝑞 = 𝑓 . (3.14)

Finding the unit norm 𝑓 that maximizes ∥𝑞∥ is equivalent to finding the unit
norm 𝑞 that minimizes ∥ 𝑓 ∥ (Barthel, Gomez, and McKeon, 2022b). To get
a sense for what streamwise length scales minimize ∥ 𝑓 ∥, it will be assumed
that 𝑞(𝑥, 𝑦) = 𝑞(𝑦) exp(𝑖𝑘𝑥𝑥) and 𝑓 (𝑥, 𝑦) = 𝑓̂ (𝑦) exp(𝑖𝑘𝑥𝑥), where 𝑞 and 𝑓̂

have a characteristic wall-normal length scale of 𝑦𝑠. It is also assumed that
𝑈 (𝑦) = 𝑈 (𝑦𝑐) + 𝜕𝑦𝑈 (𝑦𝑐) (𝑦 − 𝑦𝑐) + O

(
𝜕𝑦𝑦𝑈 (𝑦𝑐) (𝑦 − 𝑦𝑐)2

)
, where 𝑈 (𝑦𝑐) = 𝜔/𝑘𝑥 .

Neglecting second order terms, one finds that

L𝑆𝑄𝑞 ≈
[
𝑖𝑘𝑥𝜕𝑦𝑈 (𝑦𝑐) (𝑦 − 𝑦𝑐) − 𝜈

(
𝜕𝑦𝑦 − 𝑘2

𝑥 − 𝑘2
𝑧

)]
𝑞 (3.15)

∼
[
𝑘𝑥𝜕𝑦𝑈 (𝑦𝑐)𝑦𝑠 − 𝜈/𝑦2

𝑠

]
𝑞. (3.16)

The dependence of 𝑘2
𝑧 and 𝑘2

𝑥 in the viscous terms were ignored since they act as
additive constants (Dawson and McKeon, 2019). For the two terms on the right to
be of the same order,

𝑦𝑠 ∼
(
𝜈𝑈 (𝑦𝑐)
𝜔𝜕𝑦𝑈 (𝑦𝑐)

)1/3

, (3.17)

where the critical layer approximation, 𝑘𝑥 = 𝜔/𝑈 (𝑦𝑐), was used. SinceL𝑆𝑄 ∼ 𝜈/𝑦2
𝑠 ,

L−1
𝑆𝑄 ∼

𝑦2
𝑠

𝜈
=

𝑈 (𝑦𝑐)2/3

𝜈1/3𝜔2/3
(
𝜕𝑦𝑈 (𝑦𝑐)

)2/3 . (3.18)

From Equation 3.18, the amplification of L−1
𝑆𝑄

and 𝑦𝑠 increases with 𝑦𝑐. This in turn
means that L−1

𝑆𝑄
amplifies modes with smaller 𝑘𝑥 . Finally, increased 𝜔 increases 𝑘𝑥 .

Although the biglobal operator does not support modes of the form 𝑞 = 𝑞(𝑦)𝑒𝑖𝑘𝑥𝑥

because of the boundary conditions and the convective non-normality, similar ar-
guments still hold. The biglobal L−1

𝑆𝑄
amplifies large scale structures in the outer

region. Increasing𝜔 decreases the streamwise length-scales of the identified modes,
regardless of the wall-normal location of the modes. Increasing 𝑘𝑧 increases the
role of the amplification due to the mean shear and moves the modes closer to the
wall, competing directly with L−1

𝑆𝑄
. These large 𝑘𝑧 modes have smaller wall-normal

extent and are close to the wall to get amplified by the lift-up effect. These modes
are expected to have smaller streamwise length-scales. For smaller 𝑘𝑧, the effect of
the mean shear is negligible so the resolvent modes will be large scale structures in
the outer region of the flow.
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Superscript 𝑘+𝑧 𝜔+

a 2𝜋/120 2𝜋/294
b 2𝜋/1200 2𝜋/294
c 2𝜋/1200 2𝜋/98

Table 3.2: 𝑘+𝑧 and 𝜔+ of the modes with the labeled superscripts. Note that the
viscous units are defined at the inlet of the computational domains.
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Figure 3.4: Comparison the real parts of 𝜓𝑎
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(e), and 𝜓𝑐

𝜔,1 (f).

Note that if 𝑘𝑧 = 0, the full LNSE amplifies Tollmien-Schlichting-like modes that
extend across the entire boundary layer with support in the freestream (Schmid and
Henningson, 2002; Sipp and Marquet, 2013). These 𝑘𝑧 = 0 modes are not captured
with the analysis presented here since they are not localized around a critical layer.

To demonstrate how 𝑘𝑧 and𝜔 affect the mode structure of the optimal responses, the
leading response mode of the full LNSE, 𝜓1, is compared with the leading response
mode of L𝑆𝑄 , 𝜓𝑆𝑄 . Specifically, the comparison is made using

𝜓𝜔,1 = 𝑖𝑘𝑧𝜓𝑢,1 − 𝜕𝑥𝜓𝑤,1, (3.19)

the wall-normal vorticity component of 𝜓1, since𝜓𝑆𝑄 is the response mode of
the first term in Equation 3.12 while 𝜓𝜔,1 is governed by Equation 3.12, if the
nonparallel terms are ignored. These modes are computed with Re𝜏 = 1200 and
Ω𝑛 = [0, 30𝛿99(𝑥 = 0)] × [0, 3𝛿99(𝑥 = 0)].

In Figure 3.4, three representative 𝜓𝑆𝑄 and 𝜓𝜔,1 are plotted with their 𝑘𝑧, 𝜔, and
superscript labels defined in Table 3.2. Superscripts a, b, and c denote a small-scale
near-wall mode, a large-scale outer-region mode, and a large-scale outer-region
mode with smaller streamwise length-scale. In Figures 3.4(a,d), 𝜓𝑎

𝜔,1 is closer
to the wall, with a smaller streamwise length scale and wall-normal extent than
𝜓𝑎
𝑆𝑄

. This is related to the increased weight of the mean shear because of the
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increased 𝑘+𝑧 . Only considering L−1
𝑆𝑄

will not account for the small-scale modes
in the near-wall region as these require shear-driven amplification. For the larger-
scale modes in Figures 3.4(b,e), 𝜓𝑏

𝜔,1 and 𝜓𝑏
𝑆𝑄

have similar wall-normal extent,
streamwise length-scale, and are both in the outer region of the flow. Since 𝑘+𝑧 is an
order of magnitude smaller, the amplification is mostly due to L−1

𝑆𝑄
, which amplifies

disturbances in the outer region. For the case with the larger 𝜔+ in Figures 3.4(c,f),
the streamwise length-scale of 𝜓𝑐

𝜔,1 and 𝜓𝑐
𝑆𝑄

is significantly smaller than those from
𝜓𝑏
𝜔,1 and 𝜓𝑏

𝑆𝑄
in Figures 3.4(b,e). This is related to the fact that the modes convect

with 𝑈, thus the length scale is proportional to 𝜔/𝑈. Despite the similar structure
between the response modes of L𝑆𝑄 and LNSE for the small 𝑘+𝑧 modes, there are
several differences that are not captured in the former. Namely, L𝑆𝑄 ignores the
component wise amplification of wall-normal disturbances to streamwise responses,
the generation of Tollmien-Schlichting-like modes from L𝑂𝑆, and nonparallel terms
present in the LNSE are all ignored in this analysis.

To summarize this section, unlike the local resolvent modes, the wall-normal position
of the biglobal resolvent modes can not be specified a priori through a specified
wavespeed. The wall-normal position and support of the biglobal resolvent modes
will be influenced by 𝑘𝑧 where increased 𝑘𝑧 generally makes the modes smaller and
closer to the wall given the same 𝜔. If 𝑘𝑧 is fixed, the streamwise length-scales of
the resolvent modes will increase with 𝜔. Note that the wall-normal position of the
modes also influences the streamwise length-scale by setting the convective velocity
of the modes. As 𝑘𝑧, tends to 0, the modes will resemble Tollmien-Schlichting
waves, which extend across the entire boundary layer (Sipp and Marquet, 2013).

3.4 Generalization of Biglobal Scaling Results

To derive the scaling results for the biglobal operator, the nonparallel terms of U
are ignored, since the interest is on high Re ZPG TBL. As such, it is assumed that
U = 𝑈 (𝑦)e𝑥 . Note that in the actual computations, the full nonparallel mean flow
field is used. In the scaling results of (Moarref, Sharma, et al., 2013), the wall-
normal location of the modes was set by setting a wavespeed, 𝑐, and the scaling of
𝜔 was set by the choice of 𝑐 and the determined 𝑘𝑥 scaling. Here, the wall-normal
location is set by determining an appropriate 𝑘𝑧 that sets the location of the mode
in the wall-normal direction. Furthermore, the streamwise structure of the biglobal
modes can not be set by directly specifying 𝑘𝑥 . Instead, arguments are made for the
scaling of 𝜔, which combined with the choice of 𝑘𝑧, can influence the streamwise
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structure. Additionally, since the biglobal modes depend on a choice of domain
length, 𝐿𝑥 , scaling arguments are also presented for 𝐿𝑥 . It is assumed that the
scaling in Equation 3.1 holds, except that 𝑦𝑠, 𝑦𝑑 , 𝑈𝑑 , and 𝑈𝑠 are slowly varying
functions in 𝑥 such that 𝑑𝑥𝑦𝑠, 𝑑𝑥𝑦𝑑 ≪ 1 and 𝑑𝑥𝑈𝑠, 𝑑𝑥𝑈𝑑 ≪ 𝑈𝑠/𝑦𝑠. The scaling of
the spanwise wavenumber and temporal frequency are

𝑘𝑧 =
𝜁

𝑦𝑠
, 𝜔̃ =

𝜔

𝑡𝑠
, (3.20)

where 𝑡𝑠 denotes a yet to be determined time scale. Finally, the resolvent modes
have a streamwise length scale 𝑥𝑠 such that 𝜕𝑥q̂ ∼ 𝑥−1

𝑠 q̂, where 𝑥𝑠 > 2𝜋/𝑘𝑧 to
allow for an elongated structure in the optimal modes. To ensure that enough
streamwise wavelengths fit inside the computational domain, the domain length
scales proportional to 𝑥𝑠.

To relate 𝑡𝑠 to 𝑥𝑠, it is assumed that 𝑡−1
𝑠 ∼ 𝑈𝑐𝑥−1

𝑠 , where 𝑈𝑐 is a convective velocity.
In general, 𝑈𝑐 ≿ 𝑈𝑠 as it accounts for any potential defect velocities. Note that
𝑎 ≿ 𝑏 denotes O(𝑎) ≥ O(𝑏). Following similar arguments to Section 3.2, for the
advective terms to balance the viscous terms, 𝑥𝑠 must scale as

𝑥𝑠 ∼
𝑦2
𝑠𝑈𝑐

𝜈
= 𝑦𝑠Re𝑠𝜇, (3.21)

where 𝜇 = 𝑈𝑐/𝑈𝑠. This sets 𝑡𝑠 = 𝑦2
𝑠/𝜈, which is ultimately independent of𝑈𝑐 or𝑈𝑠.

The LNSE then scales as

L ∼ 𝜈

𝑦2
𝑠


O(1) O(Re𝑠) 0 O(1)

0 O(1) 0 O(Re𝑠𝜇)
0 0 O(1) O(Re𝑠𝜇)

O(1) O(Re𝑠𝜇) O(Re𝑠𝜇) 0


. (3.22)

Recall that the nonparallel terms were neglected in this analysis since the length-scale
of the streamwise development is larger than the length-scales of the disturbances.
The resolvent operator scales as

R ∼
𝑦2
𝑠Re𝑠
𝜈


O

(
Re−1

𝑠

)
O(1) O(1) 0

O
(
Re−2

𝑠

)
O

(
Re−1

𝑠

)
O

(
Re−1

𝑠

)
0

O
(
Re−2

𝑠

)
O

(
Re−1

𝑠

)
O

(
Re−1

𝑠

)
0

O
(
Re−2

𝑠

)
O

(
Re−2

𝑠

)
O

(
Re−2

𝑠

)
0


, (3.23)

where the 𝜇 dependence reduces to a constant factor if 𝜇 = 1 or 𝜇 ≫ 1.

The scaling of the biglobal R in Equation 3.23 is the same as the local scaling, which
is expected since the nonparallel terms were neglected in this analysis. Because the
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inner product used in Equation 2.41 normalizes with the domain length, the scaling
of the response modes, forcing modes, and singular values is the same as in Equations
3.7, 3.8, and 3.9, respectively. However, the modes are able to vary in 𝑥 unlike the
local modes. It is important to note that when Re𝑠 ≠ 1, the Re𝑠 scaling identified in
Equations 3.7, 3.8, and 3.9 requires that Re𝑠 ≫ 1. The modes that are self-similar
are amplified by the mean shear.

The scaling of the response modes requires that 𝑘𝑧 = 𝜁/𝑦𝑠 and 𝜔 = 𝜔̃𝜈/𝑦2
𝑠 , where

𝜁 and 𝜔̃ are constants. Because the mean flow field evolves over 𝑥, 𝑦𝑠 must be a
streamwise varying quantity that varies in the streamwise direction, hence both 𝑘𝑧
and 𝜔 are streamwise varying quantities to account for the evolution of the mean
flow field. Equation 2.38 is rederived, except with the assumption that[

q
f

]
(x, 𝑡) =

[
q̂
f̂

]
(𝑥, 𝑦)𝑒𝑖(−𝜔̃(𝑥)+𝑘𝑧 (𝑥)) . (3.24)

The LNSE are now

−𝑖𝜔(𝑥)û +
(
∇U

)
û +

(
∇̂û

)
U + ∇̂𝑝 − 𝜈∇̂2û − 𝑖𝜈𝜕𝑥𝑥 [−𝜔(𝑥)𝑡 + 𝑘𝑧 (𝑥)𝑧]û+

𝑖𝜕𝑥 [−𝜔(𝑥)𝑡 + 𝑘𝑧 (𝑥)𝑧]
[
𝑈û + 𝑝e𝑥 − 2𝜈𝜕𝑥û

]
+ 𝑠(𝑥)𝑢̂ = f̂

∇̂ · û + 𝜕𝑥 [−𝜔(𝑥)𝑡 + 𝑘𝑧 (𝑥)𝑧]𝑢̂ = 0,
(3.25)

where ∇̂ =
(
𝜕𝑥 , 𝜕𝑦, 𝑖𝑘𝑧 (𝑥)

)
and ∇̂2 = 𝜕𝑥𝑥 + 𝜕𝑦𝑦 − 𝑘𝑧 (𝑥)2. Equation 3.25 has a similar

form as Equation 2.38, except with streamwise varying 𝑘𝑧 and 𝜔 and additional
terms related to streamwise derivatives of 𝑘𝑧 and 𝜔. The additional terms can be
neglected since 𝜕𝑥 (−𝜔(𝑥) + 𝑘𝑧 (𝑥)) ∼ 𝜕𝑥𝑦𝑠 ≪ 1 for a high Re TBL. The governing
equations are now

−𝑖𝜔(𝑥)û +
(
∇U

)
û +

(
∇̂û

)
U + ∇̂𝑝 − 𝜈∇̂2û + 𝑠(𝑥)𝑢̂ = f̂

∇̂ · û = 0,
(3.26)

which are of the same form as Equation 2.38, except that 𝑘𝑧 and 𝜔 vary in 𝑥 to
respect the self-similarity in the mean flow field. Results will now be tailored to the
laminar scaling and the inner scaling, mesolayer, and outer scaling of the ZPG TBL.

3.5 Self-similar Laminar Scaling of the Biglobal Resolvent Operator

The scaling of the resolvent modes is presented for the Blasius similarity solution.
This flow is completely characterized by a single wall-normal length scale, 𝑦𝑠 =
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Figure 3.5: Amplitudes of 𝜓𝑢,1(𝑥, 𝑦) (a), 𝜓𝑣,1(𝑥, 𝑦) (b), and 𝜓𝑤,1(𝑥, 𝑦) (c) in the
self-similar laminar scaling for 𝐿 = .08𝛿99Re𝐿 , 𝜁 = 2𝜋 and 𝜔̃ = 60. The dotted,
dashed, and solid lines denote 𝑥 = 1.1𝐿, 1.25𝐿, 1.4𝐿. The red, blue, greeen, purple,
and black lines denote Re𝐿 = 104, 105, 106, 107, and 108.

𝛿 = 𝑥/
√

Re𝑥 , where 𝑥 denotes the distance from the leading edge and Re𝑥 = 𝑥𝑈∞/𝜈.
Note that 𝛿99 and 𝛿∗ are proportional to 𝛿, so rescaling with either of these length
scales would be equivalent, up to a constant factor. The velocity scale is 𝑈𝑠 = 𝑈∞,
thus Re𝑠 = 𝛿𝑈∞/𝜈 =

√
Re𝑥 here. 𝑦𝑑 and 𝑈𝑑 are both zero for this flow. The scales

𝑥𝑠 = 𝑥 and 𝑡𝑠 = 𝑥/𝑈∞ both scale with the distance from the leading edge. This
is consistent with the scaling arguments of the spatial coordinates in the Blasius
similarity solution. Re𝑠 can be interpreted as a ratio between the time it takes a
particle to travel from the leading edge to the point 𝑥, 𝑡𝑠, to the characteristic time,
𝑦𝑠/𝑈𝑠. For the Blasius scaling, the scaling is Re𝑥 dependent and self-similarity is
only expected for Re𝑥 ≫ 1, as described in the previous Section.

The prediction that 𝜎̃𝑖 = 𝜎𝑖𝑈∞/(𝛿99Re𝐿) is in agreement with the self-similarity
discussed in Sasaki et al. (2022). However, their results focused on modes with
𝜔 = 0 whereas here, the scaling is shown to apply for 𝜔 > 0. Here, the analysis that
identifies the𝜎𝑖 scaling also identifies scaling for𝝍𝑖 and 𝝓𝑖 while also demonstrating
that the scaling requires Re𝐿 ≫ 1 for the scaling to hold.

To test the scaling, both 𝜁 = 𝑘𝑧/𝛿 and 𝜔̃ = 𝜔𝛿/𝑈∞ are held constant across the
domain. The streamwise domain ranges from 𝑥 ∈ [1, 1.5]𝐿, where 𝐿 is the distance
from the leading edge to the inlet of the domain and is used to define Re𝐿 = 𝐿𝑈∞/𝜈.
The Re𝐿 of interest are Re𝐿 = 104, 105, 106, 107, and 108. For these calculations,
𝑁𝑥 = 500, 𝑁𝑦 = 151, 𝑦𝑚𝑎𝑥 = 3𝛿99, 𝑦𝑚𝑖𝑛 = .35𝛿99, and 𝜖𝑠 = 300.

In Figure 3.5, the amplitudes of 𝜓𝑢,1 𝜓𝑣,1, and 𝜓𝑤,1 at different streamwise locations
are plotted for 𝜁 = 2𝜋 and 𝜔̃ = 60 nondimensionalized with the self-similar vari-
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Figure 3.6: The first five 𝜎𝑗 with the self-similar laminar scaling for 𝐿 = .08𝛿99Re𝐿 ,
𝜁 = 2𝜋 and 𝜔̃ = 60. Red, blue, greeen, purple, and black denote Re𝐿 = 104, 105,

106, 107, 108 while the circle, square, triangle, cross, and star denote 𝑗 = 1, 2, 3, 4,
and 5. The horizontal black lines are consant values at 𝜎𝑗 .

ables described in this section. The temporal frequency is large and similar to the
frequency studied in Sipp and Marquet (2013). As Re𝐿 increases, the self-similarity
improves, as noted by the Re𝐿 = 105 modes (blue) approaching the Re𝐿 = 108 modes
(black). Furthermore, the Re𝐿 ≥ 106 modes all collapse on top of one another. The
Re dependence on the self-similar collapse is seen most clearly in Figure 3.6 where
𝜎1 is plotted in self-similar variables. 𝜎1 asymptote to the black horizontal lines as
Re𝐿 increases. The Re𝐿 ≤ 105 modes do not exhibit the self-similarity because the
scaling requires that

√
Re𝐿 ≫ 1 for the Re based scaling to hold. This Re𝐿 depen-

dence is reflected in the local resolvent operator and is not related to the presence of
nonparallel terms. Rather, the Re dependence occurs because of the difference in 𝑥𝑠
and 𝑦𝑠 scaling. Since Re𝐿 ≫ 1 for the self-similarity to hold, this illustrates that the
self-similarity requires amplification due to the shear rather than the convection.

3.6 Inner Scaling of the Biglobal Resolvent Operator

Now the scaling is applied to the ZPG TBL that is characterized by multiscale
physics. For the inner region close to the wall, it is assumed that the law of the
wall scaling holds for 𝑦 ≲ .15𝛿99. As was discussed in Section 1.1, the mean flow
field is self-similar under viscous inner units, 𝑢𝑠 = 𝑢𝜏, 𝑢𝑠 = 0, 𝑦𝑠 = ℓ𝜈 = 𝜈/𝑢𝜏, and
𝑦𝑑 = 0 and variables scaled with these coordinates are denoted with + superscripts.
The convective velocity scale, 𝑢𝑐 = 𝑢𝜏, because the modes are expected to reside in
the near-wall region. Due to the rescaling, 𝑘+𝑧 = 𝜁 = 𝑘𝑧ℓ𝜈 and 𝜔+ = 𝜔̃ = 𝜔𝜈/𝑢2

𝜏.
Because friction units are used, Re𝑠 = 1. This ensures that there is no Reynolds
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Figure 3.7: Inner scaled mean flow fields with Re𝜏 = 1200, 3400, 5600, 7800, and
10000 plotted in red, blue, green, purple, and black lines, respectively.

number dependence in the scaling of the response modes, forcing modes, or singular
values, provided they are supported in the inner region of the flow. If the modes have
support in the outer region of the flow, then the characteristic length and velocity
scales of the mean flow field differ. The streamwise domain length is fixed at a
constant 𝐿+𝑥 , where the viscous units used for the domain length are defined at the
inlet of the domain. In order for the inner scaling to hold, 𝑘+𝑧 ≲ O

(
Re−1

𝜏

)
. If 𝑘+𝑧 is too

small, then the modes will have support in the outer region due to the amplification
from L−1

𝑆𝑄
as seen in Figure 3.4.

The inner scaling is first done for scales representative of the near-wall cycle with
𝑘+𝑧 = 2𝜋/100 and 𝜔+ = 2𝜋/100 with 𝐿+𝑥 = 10000. This choice of 𝜔+ is chosen to
represent near-wall streaks (𝑘+𝑥 = 2𝜋/1000) convecting in the buffer layer (𝑢+𝑐 = 10),
which were represented in Figure 3.1. The Re𝜏 at the inlet of the domain spans
(1200, 10000) so that a decade in Re𝜏 is studied. The 𝑁𝑥 = 600, 𝑁𝑦 = 301, 𝜖𝑠 = 30,
𝑦+𝑚𝑎𝑥 = 3Re𝜏, and 𝑦+

𝑚𝑖𝑛
= 200 to resolve the near-wall region, where the modes

are expected to reside. The mean flow fields are computed using the Monkewitz
composite profile (Monkewitz, Chauhan, and Nagib, 2007). The inlet𝑈+ is plotted
in Figure 3.7 for reference. The inner scaling in 𝑈 holds up to 𝑦+ ∼ 300. Modes
that extend past 𝑦+ ∼ 300 are not expected to be self-similar using inner scaling for
this Re𝜏 range.

In Figure 3.8,
��𝜓𝑢,1(𝑥, 𝑦)�� is plotted in outer and inner scaled coordinates at 𝑥 = .2𝐿𝑥 ,

.5𝐿𝑥 , .8𝐿𝑥 for all the Re𝜏 and 𝑈+ is plotted for reference. The resolvent modes
illustrate that the streamwise evolution of these modes is self-similar across the
different Re𝜏. In Figure 3.9(a), 𝜎𝑗𝑈∞/𝛿99 are shown to grow linearly with 𝜈/𝑢2

𝜏,
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Figure 3.8:
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inner units, normalized by 𝑆 𝑗 (b) for 𝐿+𝑥 = 10000, 𝑘+𝑧 = 2𝜋/100 and 𝜔+ = 2𝜋/100.
The circle, square, triangle, cross, and star denote 𝑗 = 1, 2, 3, 4, and 5, respectively.
The colors are the same as in Figure 3.8.

with slopes, 𝑆 𝑗 , that are constants independent of Re𝜏. In Figure 3.9(b), 𝜎𝑗𝑢2
𝜏/𝜈 is

plotted and normalized by 𝑆 𝑗 , showing that 𝜎1𝑢
2
𝜏/𝜈 is independent of Re𝜏. As 𝑗

increases, 𝜎𝑗𝑢2
𝜏/𝜈 shows a slight Re𝜏 dependence. The higher order response modes

and their velocity components are plotted in Figure 3.10. Similar to 𝜎𝑗 , 𝜓 𝑗 shows
self-similarity even for the higher order modes. The forcing modes also demonstrate
self-similarity, though they are not plotted for brevity.

Finally, the inner scaling is shown to hold for a sweep over 𝜔+ and 𝑘+𝑧 . 𝜔+ uses 24
logarithmically spaced points between 4𝜋 and 2𝜋/140000 and 𝑘+𝑧 uses 22 logarith-
mically spaced points between 2𝜋/10 and 2𝜋/9000. These sweeps are computed
using 𝐿+𝑥 = 10000, 𝑁𝑥 = 500, 𝑦+

𝑚𝑖𝑛
= 125, and 𝑦𝑚𝑎𝑥 = 3Re𝜏. The Re𝜏 are 800,
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Figure 3.10: Rows from top to bottom are the magnitude of the streamwise, wall-
normal, and spanwise components of the 𝑗 th response mode in inner units and
vertically offset to distinguish different streamwise locations. Left to right is in-
creasing 𝑗 . The colors and line types are the same as in Figure 3.8. The modes are
computed using 𝐿+𝑥 = 10000, 𝑘+𝑧 = 2𝜋/100 and 𝜔+ = 2𝜋/100.

2500, and 6000 requiring 𝑁𝑦 = 201, 251, 301 and 𝜖𝑠 = 30, 30, 60, respectively. The
premultiplied response, 𝐸+

𝑢𝑢, is defined as

𝐸+
𝑢𝑢 (𝑥, 𝑦, 𝑘+𝑧 ) = 𝑘+𝑧

∫ 𝜔+
𝑚𝑎𝑥

𝜔+
𝑚𝑖𝑛

���𝜎+
1 (𝑘

+
𝑧 , 𝜔

+)𝜓+
𝑢,1(𝑥, 𝑦; 𝑘+𝑧 , 𝜔

+)
���2𝑑𝜔+, (3.27)

where 𝜔𝑚𝑖𝑛 and 𝜔𝑚𝑎𝑥 are the limits of 𝜔 in the sweep. The unweighted streamwise
kinetic energy of the response, 𝐾+

𝑢𝑢, is

𝐾+
𝑢𝑢 (𝑥, 𝑦) =

∫ 𝑘+𝑧,𝑚𝑎𝑥

𝑘+
𝑧,𝑚𝑖𝑛

𝐸+
𝑢𝑢 (𝑥, 𝑦, 𝑘+𝑧 )𝑑

(
ln 𝑘+𝑧

)
. (3.28)

𝐸+
𝑢𝑢 and 𝐾+

𝑢𝑢 are the premultiplied streamwise kinetic energy spectra and streamwise
turbulent intensity for fluctuations, q̂ = 𝜎1𝝍1. In actual turbulent flows, q̂ =∑
𝑖 𝜉𝑖𝜎𝑖𝝍𝑖, where the weights, 𝜉𝑖, come from projection onto data or satisfying the

full NSE and set the units of velocity. Here, 𝐸+
𝑢𝑢 and 𝐾+

𝑢𝑢 are both computed with
only knowledge of the linear operator.

In Figure 3.11(a), 𝐸+
𝑢𝑢 (.7𝐿𝑥 , 𝑦+, 𝑘+𝑧 ) is plotted for the different Re𝜏. 𝐸+

𝑢𝑢 is self-
similar due to the self-similarity of the resolvent operator. The largest values of 𝐸𝑢𝑢
are at 𝑦+ = 33, 𝜆+𝑧 = 116, similar to where the near-wall cycle is expected, albeit fur-
ther from the wall. This indicates that the near-wall cycle is preferentially amplified
through the biglobal LNSE without a specification of a streamwise wavenumber.
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Figure 3.11: Contours of 𝐸+
𝑢𝑢 (a) and 𝐾+

𝑢𝑢 (b) for Re𝜏 = 800 (red), Re𝜏 = 2500
(blue), and Re𝜏 = 6000 (black). The contour levels are at 0.62, 6.17, 61.66, 369.96,
554.94 and the crosses denote the maxima of 𝐸+

𝑢𝑢 (𝑥, 𝑦, 𝑘𝑧).

Although large scales in the outer region are expected to emerge with increased
Re𝜏, the amplified large scales are not observed here. This is because the domain,
𝐿+ = 10000 corresponds to 𝐿𝑥 = 12.5𝛿99, 4𝛿99, 1.6𝛿99 for Re𝜏 = 800, 2500, 6000,
which are too small to support the large scale structures. The amplification of the
large scale structures increases with increasing domain length. Other linear analyses
have also noted that large streamwise domains are required for the amplification of
large scale structures and emergence of the secondary large scale peaks (Davis,
Uzun, and Alvi, 2019). The effect of the domain length is shown in Appendix D.1
where smaller 𝐿+𝑥 is shown to suppress 𝐸+

𝑢𝑢 for 𝑦+ > 200. For 𝑦+ > 200, the 𝐸+
𝑢𝑢

of Re𝜏 = 800 does not collapse with the larger Re𝜏 sweeps, likely due to the lack of
scale separation in U for the smaller Re𝜏.

In Figure 3.11(b), 𝐾+
𝑢𝑢 (.7𝐿𝑥 , 𝑦+) is plotted. The curves at the different Re𝜏 all

collapse on top of one another, although the Re𝜏 = 800 curve shows small deviations
from the larger Re𝜏 curves do to the lack of collapse in 𝐸+

𝑢𝑢 caused by the lack of
scale separation. The Re𝜏 = 800 curve shows a slight increase in 𝑦+ > 100 since
the larger domain (in outer units) can support large scale structures which are more
energetic in the outer region of the flow. Since the constant 𝐿+𝑥 domain filters the
large scales, 𝐾+

𝑢𝑢 can be approximated as a contribution from only the small scales.
Many investigations have noted a lack of collapse in inner units for the inner peak
in 𝑢𝑢 due to the footprint of large scale structures (Marušić, Mathis, and Hutchins,
2010a; Hoyas and Jiménez, 2006; M. Lee and Moser, 2015). The collapse of 𝐾+

𝑢𝑢 is
a consequence of the unsupported large scale structures that add outer scaled linear
dynamics to the near-wall region and the lack of nonlinear information in 𝜒𝑖. This
is analogous to the results of Marušić, Mathis, and Hutchins (2010a) who showed
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Figure 3.12: Mesolayer scaled 𝑈𝑦 with Re𝜏 = 1200, 3400, 5600, 7800, and 10000
plotted in red, blue, green, purple, and black lines, respectively.

that the inner peak of 𝑢𝑢+ collapses if the large scale structures are filtered out.

3.7 Mesolayer Scaling of the Biglobal Resolvent Operator

The mesolayer region is characterized by a mixed length scale, 𝑦𝑠 = ℓ𝑚 =
√
ℓ𝜈𝛿99,

with 𝑦𝑑 = 0 and the same inner velocity scales as in Section 3.4. The Reynolds
number, Re𝑠 = Re𝑚 = ℓ𝑚𝑢𝜏/𝜈, which makes the streamwise length scale, 𝑥𝑠 =

Re𝑚ℓ𝑚 = 𝛿99. Just like the local counterparts, the scaling of the biglobal modes will
scale with Re𝑚 as in Equations 3.7 and 3.8. Following Equation 3.9, the singular
values scale with ℓ𝑚𝛿99/𝜈. In order for the scaling to hold, the domain length 𝐿𝑥/𝛿99,
𝜔̃ = 𝜔ℓ𝑚𝛿99/𝜈, and 𝜁 = 𝑘𝑧ℓ𝑚 are held constant. While 𝜔̃ and 𝜁 are allowed to vary
with 𝑥 due to streamwise development of ℓ𝑚 and 𝛿99, the domain length is set with
𝛿99 from the inlet of the domain.

The mean flow fields are once again computed using the Monkewitz composite
profile using Re𝜏 = 1200, 3400, 5600, 7800, and 10000 (Monkewitz, Chauhan,
and Nagib, 2007). 𝑈𝑦 is plotted in Figure 3.12 using the mesolayer scaling. Since
this scaling is found using the mean momentum balance, the scaling ensures that
𝑈𝑦ℓ𝑚/𝑢𝜏 ∼ O(1) in a region 𝑦/ℓ𝑚 ∼ O(1) (Wei, Fife, et al., 2005; Afzal, 1984).
Note that this scaling does not collapse 𝑈. In the region where 𝑦/ℓ𝑚 ≪ 1 or
𝑦/ℓ𝑚 ≿ O(10), the mesolayer scaling does not hold for the mean shear. As a result,
any mode with support in those regions is not expected to be self-similar with the
mesolayer scaling.

The mesolayer scaled modes are computed with 𝑁𝑦 = 251, 𝑁𝑥 = 600, 𝐿𝑥 = 40𝛿99,
𝑦𝑚𝑖𝑛 = 2.6ℓ𝑚, and 𝜖𝑠 = 30. Only the domain length and the wall-normal grid spacing
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Figure 3.13:
��𝜓𝑢,1�� in outer (a) and mesolayer (b) units for 𝐿𝑥 = 40𝛿99, 𝜁 = 2𝜋/7,

and 𝜔̃ = 25. Red, blue, green, purple, and black denote Re𝜏 = 1200, 2700, 3950,
5700, and 8000, respectively. The dotted, dashed, and solid lines denote 𝑥 = .2𝐿𝑥 ,
.5𝐿𝑥 , .8𝐿𝑥 .
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Figure 3.14: 𝜎𝑗 in outer units with the black lines denoting 𝑆 𝑗ℓ𝑚𝛿99/𝜈 (a) and 𝜎𝑗
in mesolayer units, normalized by 𝑆 𝑗 (b) using 𝐿𝑥 = 40𝛿99, 𝜁 = 2𝜋/7, and 𝜔̃ = 25.
The circle, square, triangle, cross, and star denote 𝑗 = 1, 2, 3, 4, and 5, respectively.
Colors are the same as in Figure 3.13.

are Re𝜏 dependent, with 𝑦𝑚𝑖𝑛 chosen to increase the resolution in the mesolayer. The
modes are characterized by 𝜁 = 2𝜋/7 and 𝜔̃ = 25. For comparison, the 𝜆+𝑧 ranges
from 240 to 620. In Figure 3.13, the streamwise components of the optimal response
modes are computed in both outer and mesolayer scaled coordinates. Here, 𝜓𝑢 peaks
at 𝑦/ℓ𝑚 ≈ 2, which is within the region of self-similarity where 𝑈𝑦 has self-similar
collapse in Figure 3.12. Unlike the local scaling, the self-similarity shows some Re𝜏
dependence due to the modes having support near the wall. The local modes are
localized at the critical layer whereas the biglobal modes can spread out more in the
wall-normal direction.

In Figure 3.14(a), 𝜎1𝑈∞/𝛿99 is shown to grow linearly with ℓ𝑚𝛿99/𝜈 with slope 𝑆1.
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Figure 3.15: Rows from top to bottom are the magnitude of the streamwise, wall-
normal, and spanwise components of the 𝑗 th response mode in mesolayer units
and vertically offset to distinguish different streamwise locations. Left to right is
increasing 𝑗 . The colors and linetypes are the same as in Figure 3.13. The modes
are all computed using 𝐿𝑥 = 40𝛿99, 𝜁 = 2𝜋/7, and 𝜔̃ = 25.

The higher order modes grow with ℓ𝑚𝛿99/𝜈, though their growth is not linear as
Figure 3.14(b) illustrates an Re𝜏 dependence in the higher order gains. In Figure
3.15, the magnitude of the velocity components of 𝝍 𝑗 are plotted for the different
Re𝜏. Although these modes exhibit some degree of self-similarity, it is evident that
only 𝝍1 is localized at 𝑦/ℓ𝑚 ∼ 1. The higher order modes, due to orthogonality,
have increased support in the near-wall region or further from the wall, where the
mesolayer scaling does not hold. This causes the Re𝜏 dependence in 𝜎𝑗𝜈/(ℓ𝑚𝛿99)
for 𝑗 > 1.

3.8 Outer Scaling of the Biglobal Resolvent Operator

In the outer scaling of the mean flow field, the velocity deficit 𝑓 = 𝑈+(𝑦/𝛿99) −𝑈+
∞

is self-similar. The velocity scales are 𝑢𝑠 = 𝑢𝜏, and 𝑢𝑑 = 𝑈∞ with the length scales
𝑦𝑠 = 𝛿99 and 𝑦𝑑 = 0. This sets Re𝑠 = Re𝜏 and 𝑥𝑠 = Re𝜏𝛿99. In the local scaling,
the wavespeed was set such that 𝑐+ = 𝑈+

∞ + 𝑓𝑐, where 𝑓𝑐 is a constant, to ensure that
all the modes are localized at a specific 𝑦/𝛿99. In the biglobal case, the wavespeed
of the modes can not be set a priori, so some assumptions must be made for 𝑢𝑐.
It is assumed that the mode has most of its support in the outer region so that the
mean flow field is𝑈 ≈ 𝑢𝜏 𝑓 +𝑈∞. For large Re,𝑈∞/𝑢𝜏 ≈ 2.5 log(Re𝜃) +4.1 (Nagib,
Chauhan, and Monkewitz, 2007). For the Re of interest, 𝑈∞/𝑢𝜏 is at least twice
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Figure 3.16: Velocity deficit in outer units with Re𝜏 = 1200, 2000, 3500, 6000, and
11000 plotted in red, blue, greeen, purple, and black lines, respectively.

as large as 𝑓 in the outer region, so 𝑈 ∼ 𝑈∞, where the approximation improves
logarithmically with Re. This sets the convective velocity to scale with 𝑈∞, which
is different from 𝑢𝑠.

The mean flow fields are computed using the Monkewitz composite profile with
Re𝜏 = 1200, 2000, 3500, 6000, and 11000 (Monkewitz, Chauhan, and Nagib, 2007).
In Figure 3.16, the mean flow profiles at the inlet are plotted as velocity deficits.
They illustrate self-similarity in the outer region of the flow. For 𝑦/𝛿99 ≤ .01, 𝑈 is
no longer self-similar as the inner region is approached. Modes that have support
in this region of the flow will not be self-similar using the outer scaling since the
near-wall region will influence the modes.

To achieve self-similarity, the parameters scale as 𝜁 = 𝑘𝑧/𝛿99 and 𝜔̃ = 𝜔𝛿2
99/𝜈.

In this study, the parameters are set so that 𝑁𝑥 = 500, 𝑁𝑦 = 301, 𝑦𝑚𝑖𝑛 = .1𝛿99,
𝑦𝑚𝑎𝑥 = 3𝛿99, and 𝜖𝑠 = 30. The domain length is held constant as 𝐿𝑥 = 15𝑥𝑠/𝑥𝑠,𝑚𝑖𝑛,
where 𝑥𝑠 is evaluated at the inlet of the domain and 𝑥𝑠,𝑚𝑖𝑛 is 𝑥𝑠 at Re𝜏 = 1200. The
response and forcing modes scale as in Equations 3.7 and 3.8, respectively, and the
singular values scale with 𝛿2

99Re𝜏/𝜈.

In Figure 3.17, the magnitude of the streamwise component of the outer region
modes is plotted for 𝜁 = 𝜋 and 𝜔̃ = 16. For comparison, the response modes are
also plotted in inner scaled coordinates. Due to the scaling, this 𝜔̃ corresponds to
long streamwise streaks since 𝜔𝛿99/𝑈∞ ∼ O

(
10−4) . These modes illustrate self-

similarity for Re𝜏 ≥ 2000, due to the increased scale separation between the inner
region and outer region at larger Re𝜏.

In Figure 3.18(a), 𝜎𝑗 are plotted against 𝑆 𝑗𝛿2
99Re𝜏/𝜈, indicating linear growth with
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Figure 3.17: |𝜓 |𝑢,1 in inner (b) and outer (c) units computed using 𝐿𝑥 = 15𝑥𝑠/𝑥𝑠,𝑚𝑖𝑛,
𝜁 = 𝜋 and 𝜔̃ = 16. Red, blue, greeen, purple, and black lines denote Re𝜏 = 1200,
2000, 3500, 6000, and 11000, respectively. The dotted, dashed, and solid lines
denote 𝑥 = .2𝐿𝑥 , .5𝐿𝑥 , .8𝐿𝑥 .
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Figure 3.18: 𝜎𝑗 in outer units with the black lines denoting 𝑆 𝑗𝛿2
99Re𝜏/𝜈 (a) and 𝜎𝑗

in outer units, normalized by 𝑆 𝑗 (b) computed using 𝐿𝑥 = 15𝑥𝑠/𝑥𝑠,𝑚𝑖𝑛, 𝜁 = 𝜋 and
𝜔̃ = 16. The circle, square, triangle, cross, and star denote 𝑗 = 1, 2, 3, 4, and 5,
respectively. Colors are the same as in Figure 3.17.

respect to this scale for 𝑗 = 1. Plotting the normalized singular values in Figure
3.18(b), indicates that the higher order modes have a non-negligible degree of Re𝜏
dependence. This Re𝜏 dependence is similar to what was observed in Section 3.7
except that here, the higher order modes have support in the near-wall region, where
the outer scaling does not hold. For 𝜎1, only the larger Re𝜏 have self-similarity.

Despite the self-similarity in the mean velocity deficit, the outer scaled biglobal
modes did not collapse as neatly as the local modes because of the Re dependence
of𝑈+

∞ and that the modes are attached near the wall, where near-wall scaling holds.
It is predicted that self-similarity will hold for larger Re𝜏 mean flow fields since the
near-wall inner-scaled region shrinks in outer units. This reduces the influence of
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the near-wall region on modes in the outer region, provided that the mode is not
attached. Such large Re𝜏 mean flow fields require increased resolution to resolve
the near-wall region, which can be prohibitively expensive for the biglobal analyses
considered here.

3.9 Chapter Summary and Future Work

The self-similarity explored in Moarref, Sharma, et al. (2013) was extended to the
biglobal resolvent operator. The self-similarity relies on ensuring that the modes are
centered in specific wall-normal regions of the flow. These wall-normal locations
are influenced by the spanwise wavenumber, which balances the mean shear and
L−1
𝑆𝑄

. The former amplifies modes near the wall, while the latter amplifies modes
in the outer region of the flow. The self-similarity was explored for the Blasius
similarity solution, which is characterized by a single wall-normal length scale, and
the ZPG TBL, which is multiscale. The Blasius similarity solution demonstrated
that streamwise varying 𝑘𝑧 and 𝜔 that account for the growth in the length and
velocity scales can account for the nonparallel growth in the boundary layer. The
difference in 𝑥𝑠 and 𝑦𝑠 makes even the Blasius case multiscale. For the Blasius case,
the collapse improved when Re𝑠 increased because of the dominance of the shear
driven amplification over the convective terms. For the ZPG TBL case, the collapse
improved when Re𝑠 increased due to an increased separation of wall-normal scales.

For the ZPG TBL scaling, the inner, mesolayer, and outer scaling were investigated.
The inner and mesolayer scaling hold near the wall, where 𝑘𝑧 were chosen to be
sufficiently large to ensure that the modes were amplified primarily by the lift-up
effect. In the outer region, 𝑘𝑧 needed to be sufficiently small so that the amplification
was mostly due to L−1

𝑆𝑄
in the outer region of the flow. The scaling of these modes

improved as Re𝜏 increased which created scale separation between the inner and
outer region, ensuring that the modes were localized in separate regions of self-
similarity. For the mesolayer and outer scaling, the higher order modes had poor
collapse because they had support in regions outside of the regions of self-similarity.
For the outer scaling, because of the Re𝜏 dependence on the streamwise length scales,
the self-similar modes are expected to be streak-like.

Unlike the scaling of Moarref, Sharma, et al. (2013), the scaling presented in this
chapter did not specify a wall-normal location through an imposed wavespeed nor
a streamwise wavelength. The modes identified here were found to be self-similar
by only specifying appropriately scaled 𝑘𝑧 and 𝜔 with the streamwise structure and
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wall-normal location of the modes determined based on the optimal linear ampli-
fication. In Section 3.6, the biglobal resolvent analysis was shown to create the
largest amplification for modes with 𝜆+𝑧 ≈ 100 near the wall, similar to the identified
spectra in the near-wall cycle (Hoyas and Jiménez, 2006). In the local analyses,
the same 𝜆+𝑧 characteristic of the near-wall cycle were shown to produce low-rank
resolvent operators, though these analyses specify a 𝜆𝑥 for the modes (Moarref,
Sharma, et al., 2013). The biglobal analyses identifies these 𝜆+𝑧 as linearly amplified
motions, without restricting their streamwise structure through an imposed 𝜆𝑥 . This
suggests that disturbances are filtered through the linear amplification by prefer-
entially amplifying the characteristic length scales in the near-wall cycle via the
lift-up effect. The results of Abreu, Cavalieri, et al. (2020) showed that streak-like
response modes amplified by the lift-up effect agree with modes from a spectral
proper orthogonal decomposition of Re𝜏 = 180 and 550 turbulent channels (Abreu,
Cavalieri, et al., 2020). The agreement between data and linear analyses for those
low Re𝜏 flows is likely because the inner region forms a large portion of the flow,
lacking scale separation between the large and small scales. Thus, the low Re𝜏 flows
are dominated by the linear amplification via the lift-up effect.

Respecting the self-similarity of the mean flow field for large scale shear-driven
modes in Sections 3.7 and 3.8 leads to modes with length scales typically not
observed in turbulent flows. This suggests that turbulent structures in the outer
region are most influenced by the nonlinear effects, rather than the linear lift-up
effects since these identified self-similar length scales are not energetic.. Further,
these mesolayer and outer scaled modes have increased resolvent amplification with
increased Re, suggesting an increased importance of the large scale modes with
larger Re.

Another challenge of extending the results from this study to turbulent spectra is
the choice of boundary conditions. If the domains are used to approximate real tur-
bulent flows, the inflow and outflow boundary conditions should support nonlinear
boundary conditions that can account for turbulent fluctuations entering and leaving
the domain. The boundary conditions affect the structure of the resolvent modes.
For instance, Gómez et al. (2014) considered a biglobal resolvent operator for a pipe
flow using periodic boundary conditions. Their results found that under periodic
boundary conditions, the biglobal resolvent modes are the local, 1D, resolvent modes
with streamwise wavenumbers being harmonics of 2𝜋/𝐿, where 𝐿 is the domain
length, exhibiting no spatial variation in the amplitude. Other boundary conditions
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have been investigated for ZPG TBL DNS which employ the ZPG TBL scaling
laws, such as the recycling and recycling method of Lund, Wu, and Squires (1998)
or the approximations made in Ruan (2021) to treat the ZPG TBL as streamwise
homogeneous flow under an appropriate outer scaling with the nonparallel growth
term serving as a source term. Incorporating such scaling assumptions into the
biglobal resolvent operator between the inflow and outflow may lead to more real-
istic turbulent structures entering and leaving the domain compared to the sponges.
However, imposing predetermined scaling through boundary conditions is likely to
impose said scaling on the resolvent modes. Further, there is the choice of which
scaling to apply to the resolvent modes as the different 𝑘𝑧 and 𝜔 regimes push the
modes to different regions of the flow where different scalings hold. If the goal is
to approximate the turbulent fluctuations, the scaling of the turbulent fluctuations
must be agreed upon since the turbulent fluctuations do not scale with the mean
flow field’s scaling (Marušić, Mathis, and Hutchins, 2010a; Hoyas and Jiménez,
2006; M. Lee and Moser, 2015). Lastly, these sort of scalings were not considered
since the ZPG TBL scaling they are derived with will not apply to the APG TBL
in Chapter 4. Future work will need to consider more realistic inflow and outflow
boundary conditions to improve comparisons with experiment and simulation. The
scalings explained in this chapter can thus only be applied to the resolvent modes
when the boundary conditions are compact.

The self-similarity studied here can be used to scale resolvent decompositions from
low Re𝜏 to high Re𝜏, which require large resolutions to resolve the near-wall region.
These increased resolutions can quickly become prohibitive if all scales of the flow
need to be resolved since the calculations scale with O

(
𝑁3) . Even though the

scalings did not collapse the identified modes as well as in the local analysis, these
scaled modes can be used as preconditioners for large Re𝜏 linear systems. Consider
the LNSE for a large Re𝜏 flow, A𝐿 , and a small Re𝜏 flow, A𝑆, with their associated
resolvent decompositions,

(
𝝍𝐿,𝑖, 𝝓𝐿,𝑖, 𝜎𝐿,𝑖

)
and

(
𝝍𝑆,𝑖, 𝝓𝑆,𝑖, 𝜎𝑆,𝑖

)
, respectively. The

response, q̂, and forcing, f̂, in Equation 2.4 for the large Re𝜏 case can be projected
onto the rescaled response modes, 𝝍̃𝑆,𝑖, and forcing modes, 𝝓̃𝑆,𝑖, as〈

𝝓̃𝑆,𝑖,A𝐿𝝍̃𝑆, 𝑗
〉
𝑓

〈
𝝍̃𝑆, 𝑗 , 𝑞

〉
𝑟
=

〈
𝝓̃𝑆,𝑖,R 𝑓̂

〉
𝑓
. (3.29)

This is a projection of A𝐿 onto the rescaled resolvent basis of A𝑆. The basis can
be truncated to only retain the first 𝑟 elements so that this produces a linear system,
with the 𝑟 × 𝑟 matrix 𝐴̃𝐿𝑆 =

〈
𝝓̃𝑆,𝑖,A𝐿𝝍̃𝑆, 𝑗

〉
𝑓
. Taking the inverse of this matrix

and its subsequent singular value decomposition gives the bi-orthonormal modes
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Figure 3.19: Real part of 𝝍𝐿,𝑢,𝑖 (colored lines), 𝝍̃𝐿,𝑢,𝑖 (dots), and 𝜓̃𝑆,𝑢,𝑖 (thin black
lines) (a) and real part of 𝝓𝐿,𝑣,𝑖 (colored lines), 𝝓̃𝐿,𝑣,𝑖 (dots), and 𝜙𝑆,𝑣,𝑖 (thin black
lines). Red, blue, green, and purple denote 𝑖 = 1, 2, 3, and 4. The modes are
computed using 𝑘+𝑧 = 2𝜋/100, 𝑘+𝑥 = 2𝜋/1000, and 𝑐+ = 12.5.

q𝑖 and f𝑖, for 𝑖 = 1, . . . , 𝑟 and the singular values, 𝜆𝑖. Note that the 𝑗 th entries of
q𝑖 and f𝑖 denote coefficients for the basis vectors, 𝝍̃𝑆, 𝑗 and 𝝓̃𝑆, 𝑗 . This provides the
approximations for 𝝍𝐿,𝑖 and 𝝓𝐿,𝑖 as

𝝍̃𝐿,𝑖 = 𝑞𝑖, 𝑗 𝝍̃𝑆, 𝑗 , (3.30)

and
𝝓̃𝐿,𝑖 = 𝑞𝑖, 𝑗 𝝓̃𝑆, 𝑗 , (3.31)

respectively. The overall cost of this approximation is the cost of computing the re-
solvent analysis for the smaller Re𝜏 flow, which can be computed with a significantly
smaller grid resolution.

The usefulness of these approximations can be shown with an example using channel
flows under the parallel flow assumption. These correspond to Re𝜏 = 550 (M. Lee
and Moser, 2015) and Re𝜏 = 10000 (Hoyas, Oberlack, et al., 2021). The former
uses 192 points and the latter uses 1051 points for 𝑦 ∈ [0, ℎ], where ℎ is the channel
half height. Using the same DNS grids for a local resolvent analysis using only half
the channel for a local analysis, Re𝜏,𝐿 takes 40 seconds to compute while Re𝜏,𝑆 takes
0.32 seconds to compute on a personal laptop (Lenovo ThinkPad T490s). Using
the approximation described here, 𝝍𝐿,𝑖 and 𝝓𝐿,𝑖 can be approximated with error less
than .1% in .38 seconds for 𝑟 = 15. The majority of the time is spent computing
the modes from Re𝜏,𝑆. Comparing with only the rescaling, the error between the
true 𝝍𝐿,1 and 𝝍̃𝑆,1 is about 1%. The order of magnitude improvement between 𝝍̃𝑆,1
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and the approximation is that 𝝍𝐿,1 can be approximated with multiple modes. In
Figure 3.19, the approximations are compared to the true modes for 𝑘+𝑧 = 2𝜋/100,
𝑘+𝑥 = 2𝜋/1000, and 𝑐+ = 12.5. The approximations described in Equations 3.30 and
3.31 are better able to approximate the higher order modes than using the simple
rescaling. These approximations can help with real time sensing of flows, especially
when large resolutions are required to reconstruct DNS results by decreasing the
time required to create the resolvent basis. Although only shown for the local
analysis, these results can be extended to the biglobal case as well. One challenge
of this approach is that for the self-similarity to hold, the resolvent modes must be
supported in a region where 𝑈 is self-similar. As 𝑅𝑒𝜏 increases, this becomes less
of an issue due to the increased scale separation. Furthermore, the use of multiple
resolvent modes in Equations 3.30 and 3.31 help improve the predictions since they
do not rely solely on the scaling of an individual mode.

The scalings identified here only deal with the LNSE and do not account for any
nonlinear interactions in the flow. In the full nonlinear problem, the triadic inter-
actions create a forcing that is constructed from a variety of scales. For example,
the inner region is influenced by the large scale structures, which becomes more
prevalent at larger Re𝜏. The ideas presented in this chapter show how a basis of
optimal resolvent modes will scale as the Re𝜏 varies. In order to scale the full non-
linear statistics to higher Re𝜏, the scaling of the coefficients of the resolvent modes
must be identified as well. In order for the turbulent spectra to be self-similar with
the identified spectra, the lift-up effect must be a dominant mechanism. Near the
wall, where the shear is dominant, the length and velocity scales are all dominated
by viscosity and lead to the agreement between the biglobal resolvent results and
turbulent spectra. To account for the large scales, and their increased influence near
the wall, the nonlinear coefficients need to be accounted for.
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C h a p t e r 4

NONEQUILIBRIUM EFFECTS IN TURBULENT BOUNDARY
LAYER FLOWS

4.1 Introduction

This chapter will focus on mild APG TBLs, where the flow remains attached. For
these attached flows, the presence of the APG changes the mean flow field by
increasing the wake component and shifting the log layer down from the canonical
turbulent flow (Monty, Harun, and Marušić, 2011). Close to the wall, the APG
TBL mean velocity profile still resembles the canonical ZPG TBL when 𝛽 is small.
The streamwise kinetic energy, 𝑢𝑢, reveals the presence of a secondary peak in
the outer region of the flow that increases in amplitude with increasing 𝛽 (Monty,
Harun, and Marušić, 2011). For sufficiently large 𝛽, this secondary peak can be
as large as the near-wall peak (Bobke et al., 2017). The premultiplied streamwise
kinetic energy spectra for these APG flows identify the near-wall cycle along with a
secondary outer peak, demonstrating energized large scale structures (Harun et al.,
2013). These large scale structures are also more energetic with increased 𝛽. This
secondary peak is reminiscent of high Re𝜏 flows, where the large scale structures
are also energized. In the APG TBL flow, the amplified large scales are found even
in low Re𝜏 (Re𝜏 < 1000) flows (J. H. Lee, 2017; Bobke et al., 2017).

As mentioned in Section 1.1, the APG TBL is characterized by Re𝜏, 𝛽, and its
streamwise history, 𝛽(𝑥). Even when 𝛽 and Re𝜏 are matched locally, differences in
the upstream 𝛽(𝑥) change the statistics of the flow. Typically, the flow with the larger
upstream 𝛽(𝑥) displays more energetic turbulent fluctuations in the outer region of
the flow (Bobke et al., 2017). Thus analyses must include the streamwise variation
of the flow to capture these effects.

By separating the RANS equations from Equation 2.31, the following system is
found for the fluctuations, [u, 𝑝], and the mean,

[
U, 𝑃

]
,(

∇U
)
U + ∇𝑃 − 1

Re
∇2U = −(∇u)u, (4.1)

𝜕𝑡u + (∇u)U +
(
∇U

)
u + ∇𝑝 − 1

Re
∇2u = −(∇u)u + (∇u)u, (4.2)
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along with the divergence free constraint on u and U. From Equation 4.2, ∇𝑃
does not directly couple with u. Rather, ∇𝑃 changes U and (∇u)u. The change
in U creates differences in the linear amplification of u while the change in (∇u)u
affects the distribution of the energetic scales. This chapter will deal with the
linear amplification of u. Following McKeon and Sharma (2010), any effects
of the nonlinearities will act as forcing to the LNSE. For a given frequency and
wavenumber, 𝜎1𝝍1 of R will be interpreted as the directions amplified by nonlinear
forcing in the LNSE. Although the resolvent modes are found under the assumption
of decorrelated, white-noise forcing, 𝜎𝑗𝝍 𝑗 has been shown to identify similar flow
structures in the full nonlinear data when R is low-rank (Moarref, Sharma, et
al., 2013; Abreu, Cavalieri, et al., 2020; Towne, Schmidt, and Colonius, 2018).
When (̂∇u)u has any projection onto 𝝓1, then responses resembling 𝝍1 will be
preferentially amplified by the linear dynamics and are present in the full nonlinear
data.

The first part of this chapter will focus on how changes in 𝑈 change the local
resolvent modes. In particular, a new scaling will be shown for the local resolvent
modes in APG TBL using the scaling of Wei and Knopp (2023). To incorporate
the nonparallel effects of the APG TBL flow, the rest of the chapter will focus on
the linear amplification using the biglobal operator. First, the inner scaling of the
resolvent modes will be investigated for near-wall small-scale structures. Following
this, the large scale structures will be investigated to demonstrate their increased
amplification with increased 𝛽. The effect of history will also be investigated for
these flows as well.

4.2 Outer Scaling of Adverse Pressure Gradient Turbulent Boundary Layer
Local Resolvent Modes

The presence of an APG changes the statistics of the flow through the amplification
of large scale structures in the outer region. This amplification is caused by the
presence of the streamwise PG, 𝑑𝑃∞/𝑑𝑥, in the RANS equations, which changes
𝑈 and the Reynolds stresses. Due to the increased activity in the outer region of
the flow, the peak of 𝑢𝑣 moves to the outer region of the flow. The changes in the
dynamics of the flow have inspired many self-similar scalings for the statistics of the
flow. Here, attention will be placed on the outer scaling of Wei and Knopp (2023),
which has been shown to collapse 𝑈, 𝑉 , and 𝑢𝑣 over a wide range of 𝛽 and Re𝜏
for APG TBL. These scalings for 𝑦, 𝑈, 𝑉 , and 𝑢𝑣 are found by identifying scales
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that make all the terms in the RANS equation between 0 and 1 through the scaling
patch analysis. The scalings depend on 𝛿99 and 𝑦𝑚, the wall-normal location of the
maximum of |𝑢𝑣 | and the values of 𝑈, 𝑉 , and 𝑢𝑣 at these wall-normal locations.
In this chapter, length and velocity scales and variables with superscripts 𝑑 denote
dimensional quantities. The scaling for 𝑦 and𝑈 is

𝜂 =
𝑦𝑑 − 𝑦𝑚
𝛿99 − 𝑦𝑚

, 𝑓 =
𝑈𝑒 −𝑈

𝑑

𝑈𝑒 −𝑈𝑚
, (4.3)

where 𝑈𝑒 and 𝑈𝑚 denote 𝑈𝑑 , evaluated at 𝛿99 and 𝑦𝑚, respectively. This also
introduces the length scale, 𝑦𝑠 = 𝛿99 − 𝑦𝑚, and velocity scale, 𝑈𝑠 = 𝑈𝑒 −𝑈𝑚. This
scaling will be denoted as the WK outer scaling to distinguish it from the outer
scaling in Section 3.8. See Wei and Knopp (2023) for details along with scaling for
𝑉 and 𝑢𝑣.

This scaling relies on the streamwise dependent scales, 𝑦𝑚, 𝑦𝑠,𝑈𝑒, and𝑈𝑠 and holds
in a specific wall-normal outer region of the flow, 𝜂 ∈ (0, 1). Due to the highly
localized nature of the scaling, it is natural to explore how this scaling extends
to the local resolvent modes. Following the generalization of Moarref, Sharma,
et al. (2013)’s scaling results in Section 3.2 and the WK outer scaling, the scales
𝑥𝑠 = 𝑦𝑠Re𝑠, 𝑧𝑠 = 𝑦𝑠, and 𝑢𝑑 = 𝑈𝑒 in Equation 3.2 so that

𝑘𝑑𝑥 =
𝛼

𝑦𝑠Re𝑠
, 𝑘𝑑𝑧 =

𝜁

𝑦𝑠
, 𝑐𝑑 = 𝑈𝑠 𝑓𝑐 +𝑈𝑒 . (4.4)

Here, Re𝑠 = 𝑦𝑠𝑈𝑠/𝜈. For the scaling to hold, 𝑓𝑐 ∈ (0, 1). Since Re𝑠 ≫ 1, the scalings
identified in Equations 3.7, 3.8, and 3.9 are expected to hold asymptotically.

In Table 4.1, the mean flow profiles from experiments and simulations are tabulated
along with their Re𝜏, 𝛽, and computed Re𝑠. Note that the 𝛿99 and𝑈𝑒 were calculated
following the method described in Wei and Knopp (2023). Although these flow
fields all have different upstream 𝛽 histories, the use of the local 𝑦𝑚 accounts for
any accumulated 𝛽 effects in the turbulent statistics. Wei and Knopp (2023) notes
that for the flows where an equilibrium condition is reached, the distance 𝛿99 − 𝑦𝑚
approaches a constant. The Re𝜏 reported in Table 4.1 denote the reported values,
where available. Otherwise Re𝜏 is defined with the 𝛿99 described in this section.
Where 𝛽 is not reported, it is computed using

𝛿∗ =

∫ 𝛿99

0

(
1 − 𝑈

𝑑

𝑈𝑒

)
𝑑𝑦𝑑 , (4.5)
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Dataset Re𝜏 𝛽 Re𝑠 Color Reference
b1n1D 800 0.6 4887 — Bobke et al., 2017
b2n1D 800 1.3 4600 — Bobke et al., 2017

m18n1D 800 4.0 4612 — Bobke et al., 2017
m16n1D 800 2.2 4391 — Bobke et al., 2017
m13n1D 800 1.0 3643 — Bobke et al., 2017
P141D 1800 1.2 10020 — Pozuelo et al., 2022

k1 933 0.9 4580 — Kitsios, Atkinson, et al., 2016
k39 767 45.58 14510 — Kitsios, Sekimoto, et al., 2017

MP10 1280 4.48 12650 · · · Marušić and Perry, 1995
MP30 3503 3.96 30710 · · · Marušić and Perry, 1995

S0 1800 0 19770 — Eitel-Amor, Örlü, and Schlatter (2014)

Table 4.1: Dataset descriptions of the mean flow profiles used in the local analysis
in Section 4.2, with their legend color. Since the WK outer scaling only requires
local quantities, only the local parameters are presented. More information on the
datasets can be found in the accompanying references.

and
𝑑𝑃𝑑

𝑑𝑥𝑑
= −𝜌𝑈𝑒

𝑑𝑈𝑒

𝑑𝑥𝑑
. (4.6)

In this section, the values of Re𝜏 and 𝛽 are used to parameterize the flows and are
not factors in the scaling. The data from simulations are 1D profiles extracted at the
𝑥 location corresponding to the specified Re𝜏.

In Figure 4.1, the 𝑈 are plotted in inner scaled variables and the WK outer scaling
for the APG TBL profiles and ZPG TBL profile. From the inner scaled coordinates,
it is clear that the mean profiles all have different wakes and log layer regions, while
near the wall, 𝑈+ is self-similar for all the profiles except k39. Plotting 𝑈 and 𝑈𝑦

in WK outer scaled variables demonstrates collapse of the mean APG TBL flow
profiles in 𝜂 ∈ [0, 1]. The dashed line in Figures 4.1(b,c) denote

𝑓𝑆𝐿 (𝜂) = 1 − erf
[
1.3𝜂 + .21(1.3𝜂)4] , (4.7)

which has a functional form similar to planar mixing layers (Wei and Knopp, 2023),
which have been noted to share similarities with APG TBLs (Gungor et al., 2016).
The lack of collapse of the ZPG TBL mean flow profile demonstrates differences in
the dynamics of the APG TBL absent in the ZPG TBL. In particular, this scaling
relies on the location of the maximum Reynolds shear stress which moves away
from the wall in an APG TBL, unlike the ZPG TBL whose peak is in the inner
region. Close to the wall (𝜂 < 0), the self-similarity does not hold because the
flow is characterized by inner scaled variables in that region. In the freestream
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Figure 4.1: 𝑈 in inner scaled coordinates (a) and WK outer scaling (b). 𝑈𝑦 in WK
outer scaled coordinates (c). The black dashed lines denote 𝑓𝑆𝐿 (a) and 𝑓 ′

𝑆𝐿
(b). The

line colors and styles are denoted in Table 4.1.
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Figure 4.2: Amplitude of the local 𝜓𝑢,1 in (a) outer units, (b) inner units, (c) WK
outer units for 𝛼 = 2𝜋Re𝑠,𝑟𝑒 𝑓 /10, 𝜁 = 2𝜋, 𝑐 = 1. The line colors and styles are
denoted in Table 4.1.

(𝜂 > 1), there is a lack of collapse for the simulated profiles due to the freestream
boundary conditions which have been observed to generate a nonzero 𝑈𝑦 in the
freestream (Pozuelo et al., 2022).

In Figure 4.2, |𝜓 |𝑢,1 is plotted for 𝛼 = 2𝜋Re𝑠,𝑟𝑒 𝑓 /10, 𝜁 = 2𝜋, 𝑐 = 1 in outer units,
inner units, and WK outer units. Here Re𝑠,𝑟𝑒 𝑓 = 10020 so that the 𝜆𝑥 are a few 𝛿99

long. In outer units, 𝜆𝑑𝑧 /𝛿99 ∈ (.55, .75), 𝜆𝑑𝑥/𝛿99 ∈ (2.5, 23), and 𝑐𝑑/𝑈𝑒 ∈ (.7, .85).
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Figure 4.3: Amplitude of the Local 𝜓𝑣,1 in (a) outer units, (b) inner units, (c) WK
outer units for 𝛼 = 2𝜋Re𝑠,𝑟𝑒 𝑓 /10, 𝜁 = 2𝜋, 𝑐 = 1. The line colors and styles are
denoted in Table 4.1.

The range in 𝜆𝑑𝑥 is due to the required Re𝑠 dependence for self-similarity of the
resolvent modes. The scaling in outer and inner units illustrate the range in the wall-
normal direction where these modes have support. Using the WK outer scaling,
the modes all collapse when using the APG TBL mean profiles. In Figure 4.3,
|𝜓 |𝑣,1 is plotted for the same parameters. Using the WK outer scaling, the wall-
normal component collapses in the region 𝜂 ∈ [0, 1]. For the parameters chosen,
the collapse of the wall-normal component fails near the wall because of the lack
of collapse of the mean profile in that region. It is possible to choose 𝜁 to make
the modes more compact in the wall-normal direction such that the modes have less
support near the wall. The lack of collapse for the ZPG TBL resolvent modes is
due to the lack of collapse of the ZPG TBL mean profile in the WK outer scaled
coordinates. The WK outer scaling depends on 𝑦𝑚, which is in the near-wall region
for the ZPG TBL. As a result, the ZPG TBL mode resembles an attached mode,
with significant support in the near-wall region. The APG TBL modes are detached
because 𝑦𝑚 is in the outer region of the flow.

In Figure 4.4, 𝜎1 are plotted in outer units and WK outer units for the same param-
eters. Using the outer units, 𝜎1 spans several orders of magnitude for the different
velocity profiles used. Using the WK outer scaling, the𝜎1 all fall around 1.14×10−5,
with some scatter, for the APG TBL profiles. For the ZPG TBL, 𝜎1 falls below the
scatter of the APG TBL 𝜎1. The scatter in 𝜎1 for the APG TBL is due to the lack of
collapse of𝑈 for 𝜂 < 0 which affects 𝜓𝑣,1, as shown in Figure 4.3.

In this section, the scaling results of Moarref, Sharma, et al. (2013) were extended
to the scaling identified by Wei and Knopp (2023) for APG TBL. The WK outer
scaling of 𝑈 depends on local parameters of the mean statistics and holds in the
region 𝜂 ∈ (0, 1). For the resolvent modes to scale in WK outer scaled variables,
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Figure 4.4: 𝜎1 in (a) outer units, (b) WK outer units for 𝛼 = 2𝜋Re𝑠,𝑟𝑒 𝑓 /10, 𝛽 = 2𝜋,
𝑐 = 1. Note that the 𝑥 axis is in log scale, and 𝜎1 for the S0 dataset is plotted at
𝛽 = .5 for visibility.

𝑓𝑐 must be chosen to ensure that the critical layer, 𝜂𝑐 is in [0, 1]. Extending
this resolvent scaling to biglobal resolvent modes requires the modes to have scale
separation between the inner and outer regions of the flow to minimize the influence
of the near-wall region. This is because the WK scaling requires modes highly
localized in the outer region of the flow. Due to the lack of scale separation in the
other LES datasets available, localization in only the outer region is not possible. To
the best of the author’s knowledge, the only flat plate APG TBL dataset with enough
scale separation to ensure a minimal near-wall region in outer scaled coordinates is
that of Pozuelo et al. (2022). Although experimental datasets are available at similar
or larger Re𝜏, the biglobal operator requires a mean velocity field over a large
streamwise domain to support the large scale structures. The WK outer scaling is
not attempted for the biglobal modes.

4.3 Inner Scaling of Adverse Pressure Gradient Turbulent Boundary Layer
Biglobal Resolvent Modes

In TBL with mild APG, the near-wall region is largely unchanged, save for the
change in the log layer. In the viscous sub-region, the effect of the PG is negligible.
Owing to small change in the near-wall region due to the PG, it is now investigated
how the PG changes the linear amplification in inner scaled modes. The inner
scaling described in Section 3.6 is applied to various APG TBL LES and a ZPG
TBL LES described in Table 4.2. These simulations all have different 𝛽. The data
of Pozuelo et al. (2022) and Eitel-Amor, Örlü, and Schlatter (2014) will be useful to
compare the differences in the inner scaling of resolvent modes with high Re𝜏 mean
flow fields with different 𝛽. Note that in this section, 𝑥 ∈ [𝑥0 − 𝐿𝑥/2, 𝑥0 + 𝐿𝑥/2],
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Domain Re𝜏 Re𝜏 range 𝛽 𝛽 range 𝐿𝑥/𝛿99(𝑥0) Color
b1nI 650 (540, 750) 0.92 (.99, .85) 13.85 —
b2nI 650 (500, 780) 1.99 (2.12, 1.57) 13.85 —

m18nI 650 (460, 890) 3.26 (4.52, 0) 13.85 —
P14I1 650 (560, 740) 1.49 (1.26, 1.62) 13.85 —
P14I2 1200 (1090, 1310) 1.47 (1.52, 1.42) 7.5 —
P14I3 1800 (1690, 1900) 1.24 (1.27, 1.18) 5 —
S0I1 650 (590, 700) 0 (0, 0) 13.85 —
S0I2 1200 (1150, 1250) 0 (0, 0) 7.5 —
S0I3 1800 (1750, 1850) 0 (0, 0) 5 —

Table 4.2: Names of the mean flow fields in the subdomains with flow parameters
and labels. Here, Re𝜏 range and 𝛽 range denote the values of Re𝜏 and 𝛽 at the inlet
and outlet of the subdomains.

where Re𝜏 (𝑥0) denotes the Re𝜏 of interest. Here, 𝐿+𝑥 = 9000 is used for all the
domains. In all the domains here, 𝑁𝑥 = 400, 𝑦+𝑚𝑎𝑥 = 3Re𝜏 (𝑥0), 𝑦+𝑚𝑖𝑛 = 150, and
𝜖𝑠 = 60. Here, 𝑁𝑦 = 201, 251, and 301 for the Re𝜏 = 650, 1200, and 1800 datasets.

In Figure 4.5, 𝑢𝜏 is plotted against 𝑥 for each domain, normalized by 𝛿99, to describe
how the friction velocity and length scales vary across the domain. The APG
datasets have more streamwise variation in the friction scales than the ZPG TBL.
To account for this streamwise variation in the inner scaling, the Equation 3.26 will
be used. In Section 3.6, the streamwise development of 𝑢𝜏 was small because of
the large Re𝜏 and ZPG TBL datasets used. Because the Re𝜏 is significantly smaller
and the APG TBL creates more streamwise variation, this effect will become more
appreciable.

Figure 4.6 compares the Re𝜏 dependence on the inner scaling of biglobal resolvent
modes with two different 𝛽 by comparing modes computed using the ZPG TBL
data of Eitel-Amor, Örlü, and Schlatter (2014) and the APG TBL data of Pozuelo
et al. (2022). 𝑈

+ at the center of the domain are compared to demonstrate the
change in the inner region of the flow. There is a small change in the log region
at this small 𝛽, with this change becoming smaller with increasing Re𝜏. In Figure
4.6(b),

��𝜓𝑢,1�� is plotted in inner units with 𝑘+𝑧 = 2𝜋/100 and 𝜔+ = 2𝜋/100 at three
different streamwise locations per domain. Due to the lack of scale separation at
Re𝜏 = 650, the ZPG TBL modes do not collapse as well as in Section 3.6 which
used larger Re𝜏 mean flow fields. The smaller Re𝜏 APG TBL modes also do not
collapse well onto the higher Re𝜏 ZPG TBL modes. The collapse of the resolvent
modes improves when Re𝜏 increases for both the APG TBL and ZPG TBL modes.
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Figure 4.6: 𝑈+ at the center of the domains (a). Magnitude of 𝜓𝑢,1 in inner units at
𝑥 = .2, .5, .8, vertically offset for clarity (b). The dotted, dashed-dot, and solid lines
denote the Re𝜏 = 650, 1200, and 1800 domains. 𝜎𝑗 in inner units normalized by
𝑆 𝑗 , the inner scaled 𝜎𝑗 for the ZPG dataset at Re𝜏 = 1800 (c). The circle, square,
triangle, cross, and star denote 𝑗 = 1, 2, 3, 4, and 5. 𝑗 = 1 is plotted in darker colors
to aid in visibility.
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Figure 4.7: 𝐸+
𝑢𝑢 (𝑥, 𝑦, 𝑘𝑧) (a) and 𝐾+

𝑢𝑢 (𝑥, 𝑦) (b) at 𝑥 = .7𝐿𝑥 . The dotted, dashed-dot,
and solid lines denote the Re𝜏 = 650, 1200, and 1800 domains. The contour lines
are at 0.62, 6.17, 61.66, 369.96 and the crosses denote the maxima of 𝐸+

𝑢𝑢 (𝑥, 𝑦, 𝑘𝑧).

This is consistent with the observation that as Re𝜏 increases, the differences in𝑈 in
the log region diminish (Pozuelo et al., 2022) and that APG effects diminish with
increasing Re𝜏 (Deshpande et al., 2023). In Figure 4.6(c), 𝜎𝑗 is plotted in inner
units, and normalized by 𝑆 𝑗 , the inner scaled 𝜎𝑗 for the ZPG dataset at Re𝜏 = 1800.
As Re𝜏 increases, the ZPG 𝜎𝑑

𝑗
𝑢2
𝜏/𝜈 approach 𝑆 𝑗 , indicating improved collapse as

scale separation increases. This is true for the APG as well, even though there is
more significant Re𝜏 dependence on 𝜎𝑑

𝑗
𝑢2
𝜏/𝜈 than the ZPG.

Just as in Section 3.6, a parameter sweep over 𝑘+𝑧 and𝜔+ is performed to compare 𝐸+
𝑢𝑢

from Equation 3.27 in Figure 4.7(a). 𝐸+
𝑢𝑢 (.7𝐿𝑥 , 𝑦, 𝑘𝑧) demonstrates good collapse

for 𝑦+ ≤ 100, with the collapse improving with increasing Re𝜏. The near-wall peak
is found at 𝑦+ = 31, 𝜆+𝑧 = 116. It is expected that for 𝑦+ > 100, the inner scaling
will not hold because of the departure of the inner scaling in 𝑈+ under the APG.
The smallest scales, 𝜆+𝑧 ≤ 30, demonstrate poor collapse for both the ZPG and APG
modes because these modes do not span the entire domain and are either localized
upstream or downstream of 𝑥 = .7𝐿𝑥 . In Figure 4.7(b), 𝐾+

𝑢𝑢 from Equation 3.28
is plotted at 𝑥 = .7𝐿𝑥 . 𝐾+

𝑢𝑢 demonstrates the self-similarity for the larger Re𝜏 in
the near-wall region, despite the presence of the APG. The smaller Re𝜏 modes are
affected by the outer region due to the lack of scale separation. Hence, modes
computed with smaller Re𝜏 are affected more by PG effects. Note that because the
domains are fixed with 𝐿+𝑥 = 9000, the large scale structures are not supported in
this domain so the amplification is only due to modes in the near-wall region. See
Appendix D.1 for a discussion on how scales are suppressed with a decrease in 𝐿+𝑥 .

In Figure 4.8, the inner scaling of biglobal resolvent modes with 𝑘+𝑧 = 2𝜋/100,
𝜔+ = 2𝜋/100, and Re𝜏 = 650 are compared for different 𝛽. As 𝛽 increases, the PG
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Figure 4.8: 𝑈+ at the center of the domains (a). Magnitude of 𝜓𝑢,1 in inner units at
𝑥 = .2, .5, .8, vertically offset for clarity (b). 𝜎𝑗 in inner units normalized by 𝑆 𝑗 , the
inner scaled 𝜎𝑗 for the ZPG dataset (c). The circle, square, triangle, cross, and star
denote 𝑗 = 1, 2, 3, 4, and 5. 𝑗 = 1 is plotted in darker colors to aid in visibility.
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Figure 4.9: 𝐸+
𝑢𝑢 (𝑥, 𝑦, 𝑘𝑧) (a) and 𝐾𝑢𝑢 (𝑥, 𝑦) (b) at 𝑥 = .7𝐿𝑥 . The contour lines are at

0.62, 6.17, 61.66, and 369.96 and the crosses denote the maxima of 𝐸+
𝑢𝑢 (𝑥, 𝑦, 𝑘𝑧).

affects the self-similarity of 𝑈+ for 𝑦+ ≿ 20. This affects the self-similarity of 𝜓𝑢,1
as both the peaks and locations vary in Figure 4.9(b). In Figure 4.9(c), 𝜎𝑗 is plotted
in inner variables and are normalized by 𝑆 𝑗 , denoting the inner scaled ZPG 𝜎𝑗 .
𝜎𝑑
𝑗
𝑢2
𝜏/𝜈 demonstrates non-negligible 𝛽 dependence. This 𝛽 dependence increases

for the higher order 𝑗 since they have support further from the wall where the APG
effects are stronger (not shown). Due to the limited Re𝜏, the scale separation of
these modes is limited which affects the quality of the inner scaling.

The 𝑘𝑧, 𝜔 sweep of Section 3.6 is repeated for the different 𝛽 at Re𝜏 = 650 and 𝐸+
𝑢𝑢

is plotted in Figure 4.9(a). Although the contours once again map out the near-wall
cycle, 𝛽 affects the scaling of the contours due to the lack of scale separation. The
local maxima of the near-wall peak is at 𝑦+ ≈ 33 and 𝜆+𝑧 = 116. As 𝛽 increases, 𝐸+

𝑢𝑢

increases for larger 𝑦+, indicative of the amplification of outer-scaled structures with
increased PG (J. H. Lee, 2017; Sanmiguel Vila et al., 2020). For 𝜆+𝑧 ≥ 1000, 𝐸+

𝑢𝑢
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increases with 𝛽, although the contours denote .1% of the maximum 𝐸+
𝑢𝑢. Because

the large scale structures are not supported in this domain, the large scales are
negligible so that 𝐸+

𝑢𝑢 can be approximated as only the small scales. 𝐾+
𝑢𝑢 is plotted

in Figure 4.9(b) which illustrates the lack of collapse of the near-wall region due
to the influence of the PG on the near-wall region. Further from the wall, the 𝐾+

𝑢𝑢

increases with 𝛽, although not monotonically.

The lack of collapse of the small scales was investigated in Sanmiguel Vila et
al. (2020)’s experiments where 𝑢𝑢 was computed by only considering small scale
fluctuations and noted a lack of collapse in the inner scaled peak as well as increased
amplification of the small scales in the outer region of the flow. One key difference
between their study and the study done here is that this study is absent of any
nonlinear interactions and uses only a rank-1 model for 𝑢𝑢. The nonlinearity, through
triadic interactions, can influence the small scales via large scale interactions, present
further from the wall. These interactions can excite higher order modes, decreasing
the validity of the rank-1 model. Another difference was that their study was
performed at Re𝜏 ≈ 4300 which had more scale separation, although a similar range
in 𝛽. The results shown here suggest that differences in the fluctuations of the small
scales in the near-wall region are due to changes in the mean flow field.

4.4 Pressure Gradient Effect on the Amplification of Large Scale Structures

The previous section focused on the amplification of small scale structures near
the wall. In this section, the amplification of the large scale structures will now
be investigated. Since the goal will be to resolve modes representative of both the
near-wall cycle and the outer region, no predetermined scaling will be investigated.
The calculations will be performed using the equations described in Equations 2.38
and 2.39, without allowing for streamwise development of 𝜔 or 𝑘𝑧. To support the
large scale modes, the streamwise domain will be kept as large as possible. First,
individual modes are compared using a ZPG and APG TBL mean flow field to
generalize the effect of the change in the mean flow field on the modes. Then, the
effect of the PG will be compared for all the scales using a sweep over 𝑘𝑧 and 𝜔 and
mean flows with different 𝛽.

The mean flow fields are LES from Bobke et al. (2017)’s APG TBLs and Eitel-
Amor, Örlü, and Schlatter (2014)’s ZPG TBL. In this section, all length scales and
velocity scales are taken with respect to their values at the center of the domain,
𝑥𝑐, where the Re𝜏 is denoted for each simulation in Table 4.3. Variables without
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Domain Re𝜏 Re𝜏 range 𝛽 𝛽 range max 𝛽 𝐿𝑥/𝛿99(𝑥0) Color
b1n 537 (240, 784) 0.95 (.38, .85) 1.12 43.4 —
b2n 537 (189, 900) 1.62 (.08,−.47) 2.19 43.4 —

m18n 505 (193, 968) 2.81 (.14,−1.30) 4.53 36.5 —
S0I 537 (373, 684) 0 (0, 0) 0 43.4 —

Table 4.3: Names of the mean flow fields in the subdomains with flow parameters
and labels. Here, Re𝜏 range and 𝛽 range denote the values of Re𝜏 and 𝛽 at the inlet
and outlet of the subdomains. Max 𝛽 is the largest 𝛽 achieved within the domain.
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Figure 4.10: 𝜎1𝜓𝑢,1 using S0I (a) and b2n (b) for 𝜆+𝑧 = 50, 𝜆+𝑡 = 50. The dashed
vertical lines denote the streamwise location of the largest amplitude, 𝑥𝑎. Line plots
of

��𝜎1𝜓𝑢,1(𝑥𝑎, 𝑦)
�� (c) for b2n (red) and s0 (black).

superscripts are normalized with respect to 𝛿99(𝑥𝑐) and 𝑈∞(𝑥𝑐) and variables with
+ superscripts will be normalized with ℓ𝜈 (𝑥𝑐) and 𝑢𝜏 (𝑥𝑐). Again, any variables with
𝑑 superscripts denote dimensional variables. The calculations will use 𝜖𝑠 = 30,
𝑁𝑦 = 251, 𝑦𝑚𝑎𝑥 = 5, and 𝑦𝑚𝑖𝑛 = .24Re𝜏/537. 𝐿𝑥 = 43.4 corresponds to the entire
domain length of the full b2n dataset, normalized by 𝛿99(𝑥𝑐). This domain length
and reference Re𝜏 were fixed for b1n and S0, which both have larger computational
domains in the full dataset than b2n when normalized by 𝛿99(𝑥𝑐). The entire domain
of m18n is used, which corresponds to 𝐿𝑥 = 36.5. The 𝑦𝑚𝑖𝑛 is slightly closer to
the wall in m18n due to the larger Re𝜏 at the outlet of its domain. 𝑁𝑥 = 900 for
all the datasets, except m18n which uses 𝑁𝑥 = 750, so that Δ𝑥 ≈ .048 for all the
calculations.

Effect on Individual Modes

First, the effect of the pressure gradient is illustrated for representative small scales,
𝜆+𝑧 = 50 and 𝜆+𝑡 = 50.

��𝜎1𝜓𝑢,1
�� is plotted for these small scales in Figure 4.10. As

explained in Section 3.3, the small scale modes are amplified by the mean shear,
and tend to cluster near the areas of largest shear. In the datasets examined here, the
APG TBL has significant streamwise evolution for the shear stress compared to the
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Figure 4.11: 𝜎1𝜓𝑢,1 using S0I (a) and b2n (b) for 𝜆+𝑧 = 537, 𝜆+𝑡 = 200. The dashed
vertical lines denote the streamwise location of the largest amplitude, 𝑥𝑎. The navy
blue lines denote the boundary layer thickness. Line plots of

��𝜎1𝜓𝑢,1(𝑥𝑎, 𝑦)
�� (c) for

b2n (red) and s0 (black).

ZPG TBL. For example,𝑈𝑦 (0, 0)/𝑈𝑦 (𝐿𝑥 , 0) is 84% for S0 and 17% for b2n. While
both modes for S0 and b2n are located in the upstream half of the domain due to
the increased non-normal amplification due to the shear, the mode for b2n is mostly
congregated in the upstream quarter of the domain. In turn, 𝜎1𝜓𝑢,1 is negligible
at 𝑥𝑐. Most of the shear in the TBL is in the near-wall region that decreases in
wall-normal extent with Re𝜏 (𝑥). As a result,

��𝜎1𝜓𝑢,1
�� has more wall-normal extent

for b2n than S0 because the local Re𝜏 is smaller in the former than the latter. The
amplification changes as well since 𝜎1 = 18.99 (347.08 in friction units) for b2n
and 𝜎1 = 10.96 (256.80 in friction units) for S0. The changes in the modes can be
seen in the line plots in Figure 4.10(c) where

��𝜎1𝜓𝑢,1
�� is plotted at the streamwise

location of its local maxima. If they were plotted with the local friction units, the
peak for b2n would be further from the wall. The effects of the streamwise varying
shear stress was accounted for in the previous section by introducing a streamwise
varying 𝑘𝑧 and 𝜔 that accounts for the change in the inner scale but is not pursued
in this section.

The effect of the PG is now explored for representative large scales, 𝜆+𝑧 = 537, 𝜆+𝑡 =
200, by plotting 𝜎1𝜓𝑢,1 in Figure 4.11. Here, the modes span the entire streamwise
domain, reaching their largest amplitude near the outlet of the domain. These modes
are amplified by the convective non-normality, where the forcing is concentrated in
the upstream region, as well as the Orr tilting mechanism. Visually, the modes are
similar except that b2n extends further from the wall. The amplification is larger for
the large scale modes as 𝜎1 = 561 (10254 in friction units) for b2n and 𝜎1 = 280 (
6570 in friction units) for S0. Comparing the line plots, it is evident that the large
scale mode for b2n peaks further from the wall with significant support in the outer
region of the flow compared to the S0 mode. This is true even if the local friction
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units are accounted for. Lastly, the large scale mode has a slightly longer streamwise
length scales for b2n than S0.

By comparing the effect on the representative small scales and large scales, two
effects stand out. The first is that the streamwise variation in the mean shear
changes where the small scale modes will be located. This ultimately changes their
amplification and wall-normal extent when the change in the streamwise scales are
not accounted for. The second effect is that the large scale structures are amplified
under the presence of the APG TBL and are pushed further into the outer region of
the flow.

Effect on All Scales

To investigate the effect of the APG on all the scales of the flow, a parameter sweep
will be studied. To mitigate the effect of the streamwise variation in𝑈𝑦, the response
modes will be weighted only in a region near 𝑥𝑐. The inner products are chosen
such that

⟨a, b⟩ 𝑓 =
∫ 𝐿𝑥

0

∫ 𝑦𝑚𝑎𝑥

0
a∗I𝑐b𝑑𝑦𝑑𝑥, (4.8)

and

⟨a, b⟩𝑟 =
∫ 𝑥𝑐+2

𝑥𝑐−2

∫ 𝑦𝑚𝑎𝑥

0
a∗I𝑐b𝑑𝑦𝑑𝑥. (4.9)

The forcing is weighted across the entire domain while the response is only weighted
in the region 𝑥 ∈ Ω𝑟 = (−2 + 𝑥𝑐, 𝑥𝑐 + 2). SinceΩ𝑟 is constant, this will help mitigate
effects related to the difference in domain size in m18n. This inner product forces the
small scale modes to be centered within Ω𝑟 , where the Re𝜏 are similar in all four of
the mean flow fields examined here. Since the forcing is weighted across the entire
domain, the large scale structures are supported upstream and downstream ofΩ𝑟 and
still have access to the convective non-normality. This was not the case in Section
4.3 where the domain size was limited and the large scales were not supported. The
effects of increasing Ω𝑟 are demonstrated in Appendix D.2. Note that apart from the
differences in the inner product, the resolvent modes are computed using the same
boundary conditions and numerical scheme described in chapter 2.

The effect of this inner product on the leading resolvent modes of b2n is visualized
in Figure 4.12 for representative small scales (𝜆+𝑧 = 50, 𝜆+𝑡 = 50). These modes
are compared with modes computed using the inner product in Equation 4.8 for the
response modes. When ⟨·, ·⟩𝑟 is not constrained, the small scale modes are localized
upstream, and takes advantage of the increased amplification due to the larger wall
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Figure 4.12: Real parts of 𝜎1𝜓𝑢,1 (a,b) and 𝜙𝑣,1 (c,d) for 𝑘+𝑧 = 2𝜋/50, 𝜔+ = 2𝜋/50
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The dashed vertical line denotes 𝑥𝑐 and the solid vertical lines in (b) denote Ω𝑟 .
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Figure 4.13: Real parts of 𝜎1𝜓𝑢,1 (a,b) and 𝜙𝑣,1 (c,d) for 𝑘+𝑧 = 2𝜋/Re𝜏 (𝑥𝑐),
𝜔+ = 2𝜋/200 with (a,c) computed using ⟨·, ·⟩𝑟 = ⟨·, ·⟩ 𝑓 and (b,d) using ⟨·, ·⟩𝑟
from Equation 4.9. The dashed vertical line denotes 𝑥𝑐 and the solid vertical lines
in (b) denote Ω𝑟 . The navy blue lines denote the boundary layer thickness.

shear stress in that region. When Equation 4.9 is used as the inner product for the
response modes, the modes are now constrained within the region of interest, Ω𝑟 .
These modes are closer to the wall than the latter because they take advantage of the
amplification due to shear in the near-wall region which shrinks in the wall-normal
direction as Re𝜏 increases downstream.

In Figure 4.13, leading resolvent modes with representative large scales (𝜆+𝑧 =

Re𝜏 (𝑥𝑐), 𝜆+𝑡 = 200) are compared using the two inner products. The large scale
modes both have support outside of Ω𝑟 and are in the outer region. These modes
display a strong convective non-normality with the forcing upstream of the response.
The effect of using the inner product in Equation 4.9 for the resolvent modes is to
constrain the forcing to have no support downstream of Ω𝑟 since amplification of
the response downstream of Ω𝑟 will not increase 𝜎1. As a result, the response has
a smaller amplitude near the outlet of the domain compared to the response mode
computed without the constraint on the inner product. Although Ω𝑟 is smaller than
the domains used in Section 4.3, the large scales are supported because ⟨·, ·⟩ 𝑓 allows
for amplification from the convective non-normality.
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Figure 4.14: Contour maps of 𝐸+
𝑢𝑢 (𝑥, 𝑦, 𝑘𝑧) for S0 (a), b1n (b), b2n (c), and m18n

(d) at 𝑥 = 𝑥𝑐. The black contour lines denote 𝐸+
𝑢𝑢 = .62, 6.17, 61.66, 616.62, 1950.

The black crosses denote the near-wall peaks.

A sweep is computed using 31 logarithmically spaced 𝑘+𝑧 between 2𝜋/9.5 and
2𝜋/11000 and 33 logarithmically spaced 𝜔+ between 2𝜋/1.25 and 2𝜋/20000. This
sweep encompasses both the small and large scales.

In Figure 4.14, 𝐸+
𝑢𝑢 (𝑥𝑐, 𝑦+, 𝑘+𝑧 ) is plotted for the four mean flow fields in Table 4.2.

For S0, the peak in the amplification is concentrated in the near-wall region, with
the local maxima near 𝑦+ ≈ 20 and 𝜆+𝑧 ≈ 77. Although 𝐸+

𝑢𝑢 is larger in the outer
region for large scales than the sweep for S0I1 in Figure 4.7, there is no semblance
of an outer scaled peak, as is expected for this Re𝜏. The results using b1n, b2n, and
m18n also have a near-wall peak occurring at 𝑦+ ≈ 20 and 𝜆+𝑧 ≈ 77 for b1n and
𝜆+𝑧 ≈ 60 for b2n and m18n. The spectral location of the near-wall peaks in these
sweeps are lower than the peaks seen in Figures 3.11, 4.7, and 4.8.

Using the APG TBL mean flow fields, the sweeps reveal the presence of a secondary
peak with larger scale structures further from the wall that increase in amplitude
with 𝛽. A similar secondary peak has been observed in the premultiplied energy
spectra in simulation, where the peak is amplified with increasing pressure gradient
strength (J. H. Lee, 2017; Bobke et al., 2017; Pozuelo et al., 2022). Here, the
secondary peak is at 𝑦+ ≈ 150 and 𝜆+𝑧 ≈ 150. The premultiplied energy spectra
of J. H. Lee (2017) at Re𝜏 ≈ 360 find the secondary peak at 𝑦+ ≈ 100 − 150 and
𝜆+𝑧 ≈ 340 while Bobke et al. (2017) finds the secondary peak at 𝑦+ ≈ 200 and
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Figure 4.15: Real components of 𝜙𝑣,1 (a,c,e) and 𝜓𝑢,1 (b,d,f) for 𝜆+𝑧 = 50 and
𝜆+𝑡 = 50 using b2n. (a,b) are computed with domain length of 𝐿𝑥 = 4. Using
the entire domain, (c,d) are computed using the inner product in Equation 4.9 for
both the forcing and response and (e,f) are computed using the inner products in
Equations 4.8 and 4.9. The navy blue line denotes the boundary layer thickness and
the vertical lines denote the edges of Ω𝑟 , where it is used.

𝜆+𝑧 ≈ 580 for Re𝜏 ≈ 730 for similar 𝛽 explored here. Note that the spectra in the
latter study are not the spectra of the simulations for b1n, b2n, and m18n. Although
the prediction of the wall-normal location of the secondary peak from the linear
analysis agrees with the location of the premultiplied energy spectra, the value of
𝜆+𝑧 is under predicted.

The underprediction of 𝜆+𝑧 in the near-wall peaks in Figure 4.14 compared to data
and the near-wall peaks of Section 4.3 is likely due to a change in length scale. Both
ℓ𝜈 (𝑥) and 𝛿99(𝑥) vary significantly for the APG TBLs. In Figures 4.12 and 4.13,
it was shown that 𝝓 for the small scales is localized within Ω𝑟 and localized near
the inlet for the large scales due to the convective non-normality. This suggests
that for the large scales, the length scales of interest (ℓ′𝜈, 𝛿′99) are defined upstream.
This corresponds to ℓ′𝜈 > ℓ𝜈 (𝑥𝑐) and 𝛿′99 < 𝛿99(𝑥𝑐). This is shown in Figure 4.15
for 𝜆+𝑧 = 100, 𝜆+𝑡 = 100 where 𝜓𝑢,1 and 𝜙𝑣,1 are computed using a domain of
length 𝐿𝑥 = 4, the full domain with ⟨·, ·⟩ 𝑓 = ⟨·, ·⟩𝑟 , and the inner product used in the
sweeps for b2n. If 𝝓 and𝝍 are restricted using either a small domain size or a smaller
interrogation window for the inner product, the resolvent modes are found near the
wall and represent small scales. When the forcing is not restricted, the resolvent
modes have support in the outer region of the flow. 𝝓1 has the largest amplitude
near the inlet. If 𝛿′99 is computed at the inlet, then 𝜆𝑑𝑧 /𝛿′99 = 1.2 suggesting that
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𝑢𝑢 at 𝑥 = 𝑥𝑐 for the sweeps using the mean flow field color coded in

Table 4.2.

this 𝜆+𝑧 = 100 mode behaves like an outer scaled mode near the inlet. This outer
scaled behavior is seen in Figures 4.15(e,f) where the wall-normal extent of the
mode extends to the edge of the boundary layer. Because the 𝜆+𝑧 ≈ 100 modes are
no longer supported near the wall, they are absent in the near-wall peak. The only
modes present near the wall are the smaller 𝜆+𝑧 modes like the one plotted in Figure
4.12. For the outer peak, since the large scale modes are also forced by the inlet,
they likely scale with 𝛿′99 as opposed to 𝛿99(𝑥𝑐) to account for the smaller boundary
layer thickness. As a result, the outer peak corresponds to 𝜆𝑧 < .5𝛿99(𝑥𝑐) unlike
the 𝜆𝑧 ≿ .8𝛿99(𝑥𝑐) reported in the literature. The discrepancies in the length scale
could be accounted for by incorporating a streamwise varying 𝜆𝑑𝑧 and 𝜔𝑑 as was
done in Chapter 3 and Section 4.3, but since the near-wall region and outer region
are governed by different scales, the scale would have to be 𝑘𝑧 and 𝜔 dependent.
Despite the changes in the scale, the sweep is able to identify two distinct peaks
corresponding to the near-wall cycle and the outer scales.

In Figure 4.16, the 𝐾+
𝑢𝑢 are plotted for the different sweeps. 𝐾+

𝑢𝑢 has a single peak
for S0 while b1n, b2n and m18n have two peaks. The lack of a secondary peak
in S0 is expected since the Re𝜏 is too small to observe energetic fluctuations in the
outer region of the flow in turbulent flows. Since these sweeps did not account for
the streamwise development of the inner scales within the domains, there is a lack
of inner scaled collapse in the near-wall peak. Furthermore, the secondary peaks
increase in magnitude as 𝛽 increases. The secondary peak is larger than the near-
wall peak for b2n and m18n. The existence of a secondary peak that increases with
𝛽 and can surpass the inner peak in the streamwise fluctuations has been observed
in various studies (Bobke et al., 2017; Pozuelo et al., 2022; J. H. Lee, 2017; Monty,
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Figure 4.17: 𝑢𝑢+𝑚𝑜𝑑𝑒𝑙 (a) and 𝑢𝑢+ from the LES datasets (b) at 𝑥 = 𝑥𝑐.

Harun, and Marušić, 2011). This effect is predicted in the optimal responses of the
linear operator without the use of nonlinear weights or eddy viscosity.

To compare the linear results quantifiably to turbulent data, an assumption will be
made on the linear weights. It is assumed that the velocity fluctuations are defined
as a rank-1 model with, q̂(𝑥, 𝑦;𝜔, 𝑘𝑧) = 𝜎1(𝜔, 𝑘𝑧)𝜉1(𝜔, 𝑘𝑧)𝝍1(𝑥, 𝑦;𝜔, 𝑘𝑧), where
𝜉1(𝜔, 𝑘𝑧) is the nonlinear weight of the leading response mode at each frequency-
wavenumber pair. 𝜉1 will be the same for all 𝜔 and 𝑘𝑧 and positive so that its value
will simply make 𝜎1(𝜔, 𝑘𝑧)𝜉1(𝜔, 𝑘𝑧)𝝍1(𝑥, 𝑦;𝜔, 𝑘𝑧) have units of velocity. The
units of 𝜉𝑑1 are

[
𝑈3/

√
𝐿

]
. It will be assumed that the modeled velocity fluctuations,

𝑢̂𝑑 , scale with
√
𝑢𝜏𝑈∞, which has been used as a scaling for the inner peak of the

streamwise turbulent intensity (Marušić and Kunkel, 2003; Aubertine and Eaton,
2005). Assuming this scaling, 𝜉𝑑1 = 𝑢3

𝜏

√︁
𝑢𝜏/𝜈𝜉+1 , where 𝜉+1 = 1/

√
15Re/Re𝜏. The

factor Re/Re𝜏, where Re = 𝛿99𝑈∞/𝜈, accounts for the assumed mixed scaling while
1/
√

15 is a normalization constant. The rank-1 modeled turbulence intensity is then

𝑢𝑢+𝑚𝑜𝑑𝑒𝑙 (𝑥, 𝑦) =
∫ 𝑘+𝑧,𝑚𝑎𝑥

𝑘+
𝑧,𝑚𝑖𝑛

∫ 𝜔+
𝑚𝑎𝑥

𝜔+
𝑚𝑖𝑛

���𝜉+1𝜎+
1 (𝑘

+
𝑧 , 𝜔

+)𝜓+
𝑢,1(𝑥, 𝑦; 𝑘+𝑧 , 𝜔

+)
���2𝑑𝜔+𝑑𝑘+𝑧

=

∫ 𝑘+𝑧,𝑚𝑎𝑥

𝑘+
𝑧,𝑚𝑖𝑛

∫ 𝜔+
𝑚𝑎𝑥

𝜔+
𝑚𝑖𝑛

���� Re
√

15Re𝜏
𝜎+

1 (𝑘
+
𝑧 , 𝜔

+)𝜓+
𝑢,1(𝑥, 𝑦; 𝑘+𝑧 , 𝜔

+)
����2𝑑𝜔+𝑑𝑘+𝑧 .

(4.10)

In Figure 4.17, 𝑢𝑢+𝑚𝑜𝑑𝑒𝑙 is compared with 𝑢𝑢+ from the LES datasets at the 𝑥 = 𝑥𝑐.
By using the modeled scaling for 𝜉1, the magnitudes of 𝑢𝑢+𝑚𝑜𝑑𝑒𝑙 increase with 𝛽 as
in 𝑢𝑢+. The secondary peaks are over predicted with this model, but they follow a
similar trend as the data. The weights, 𝜉1 were determined using only arguments
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Domain Re𝜏 range 𝛽(𝑥𝑟) 𝛽 𝛽 range 𝛽∞ Color
m13nH (507, 840) 0.91 1.01 (1.23, 0.69) 1.01 —
b1nH (535, 832) 0.78 0.86 (1.00, 0.32) 0.88 —

m18nH (368, 952) 2.09 3.27 (3.80,−1.05) 3.25 —
m16nH (417, 873) 1.66 2.09 (2.77, 0.39) 2.10 —
b2nH (451, 869) 1.56 1.82 (2.18, 0.10) 1.91 —
P14H (553, 826) 1.65 1.54 (1.25, 1.64) 1.34 —
S0IH (654, 804) 0 0 (0, 0) 0 —

Table 4.4: Names of the mean flow fields in the subdomains with flow parameters
and labels. Here, Re𝜏 range and 𝛽 range denote the values of Re𝜏 and 𝛽 at the inlet
and outlet of the subdomains. The domain length is 𝐿𝑥 = 15.89 and Re𝜏 (𝑥𝑟) = 777.

for the near-wall peak. A more complete model ought to include a 𝜔, 𝑘𝑧 dependent
weighting that accounts for the scaling of the outer peaks, but is not investigated
further.

4.5 History Effects on the Amplification of Large Scale Structures

APG TBL are locally parameterized by Re𝜏, 𝛽, and the streamwise history of the
APG, denoted by 𝛽(𝑥) here. In Section 4.3, the effects of Re𝜏 and 𝛽were investigated
for the small scales. In Section 4.4, the effect of 𝛽 on the large scales was investigated
for low Re𝜏 flows. Here, the effect of 𝛽(𝑥) on the large scale amplification is studied.
The APG TBL datasets are from Pozuelo et al. (2022) and Bobke et al. (2017) where
several mean flow fields have similar values of 𝛽 at Re𝜏 (𝑥𝑟) = 777. The relevant
length and velocity scales are defined at 𝑥𝑟 and variables without superscripts denote
quantities nondimensionalized by 𝛿99(𝑥𝑟) and 𝑈𝑒 (𝛿99). The domains are chosen to
be the same size, where 𝑥 ∈ [𝑥𝑟 − .81𝐿𝑥 , 𝑥𝑟 + .19𝐿𝑥] and 𝐿𝑥 = 15.89. The domains
have a larger upstream region relative to 𝑥𝑟 to incorporate the upstream 𝛽(𝑥) effects.
The computational details are 𝑦𝑚𝑎𝑥 = 5, 𝑦𝑚𝑖𝑛 = 0.2257, 𝑁𝑦 = 251, 𝑁𝑥 = 450, and
𝜖𝑠 = 30 for all the domains of interest. There is no masking applied in the inner
products so that the resolvent modes are weighted across the entire domain. Details
for each of the datasets are in Table 4.4.

In Figure 4.18(a), the Re𝜏 (𝑥) and 𝛽(𝑥) of the APG TBL mean flow fields are plotted.
The datasets m13nH and b1nH have similar values of 𝛽(𝑥) and 𝛽(𝑥𝑟) across the
domain, with their values diverging near the inlet and outlets of the domains. The
datasets m16nH, b2nH, and P14H have similar values of 𝛽(𝑥𝑟) but different 𝛽(𝑥).
Datasets m16nH and b2nH have decreasing 𝛽(𝑥), and similar 𝛽(𝑥) for a few 𝛿99

upstream of 𝑥𝑟 , while P14H has increasing 𝛽(𝑥). While m18nH and S0IH have
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Figure 4.18: 𝛽 and Re𝜏 for the domains described in Table 4.4 (a). The circles denote
Re𝜏 (𝑥𝑟). 𝑈

+(𝑥𝑟 , 𝑦+) (b), 𝑢𝑢+(𝑥𝑟 , 𝑦+) (c), and
��𝜎+

1 𝜓𝑢,1(𝑥𝑟 , 𝑦
+)

�� for 𝜆𝑧 = 2, 𝜆𝑡 = 4.48.
The colors are color coded according to Table 4.4.

different values of 𝛽(𝑥) than the other datasets, they are used to investigate the
effects of large 𝛽 and 𝛽 = 0, respectively, on the large scales. m18nH and m16nH
have similar values of 𝛽(𝑥) near the outlet of the domain, but these regions are not
compared since they are close to the fringe regions in the LES of Bobke et al. (2017)
where the statistics of the flow are expected to be contaminated. These downstream
fringe regions are treated with the sponges in the analysis described here.

In Figure 4.18(b), 𝑈+(𝑥𝑟 , 𝑦+) is plotted for the different datasets. The datasets with
similar 𝛽(𝑥𝑟) have similar 𝑈+(𝑥𝑟 , 𝑦+) (Bobke et al., 2017), which is unsurprising
considering that 𝛽 is an integral measure of 𝑈. On the other hand, 𝑢𝑢+(𝑥𝑟 , 𝑦+) is
sensitive to 𝛽(𝑥) in the outer region of the flow. For example, 𝑢𝑢+ of b2nH and
m16nH are almost matched while for P14H, 𝑢𝑢+ is significantly lower in the outer
region. The changes in 𝑢𝑢+ have been argued to be an effect of the accumulated 𝛽(𝑥)
upstream of 𝑥𝑟 (Bobke et al., 2017). 𝛽(𝑥) is almost identical for about 6𝛿99 upstream
of 𝑥𝑟 for b2nH and m16nH while P14H experiences lower 𝛽(𝑥) values upstream of
𝑥𝑟 . For the datasets used here, the relative magnitudes of 𝑢𝑢+ in the outer region



93

increased with 𝛽, the streamwise averaged 𝛽. Comparing 𝜎+
1

���𝜓+
𝑢,1(𝑥𝑟 , 𝑦

+)
��� for a

representative large scale, 𝜆𝑧 = 2, 𝜆𝑡 = 4.48, reveals a similar trend in the peaks
in Figure 4.18(d). For increasing 𝛽, the peak also moves further from the wall.
𝜎+

1

���𝜓+
𝑢,1(𝑥𝑟 , 𝑦

+)
��� for S0IH also demonstrates smaller amplification closer to the wall

indicative of different linear amplification in the wake as was shown in Figure 4.2.

The use of a streamwise averaged 𝛽(𝑥) to reflect the accumulated effects of the
history has been explored in Vinuesa et al. (2017) as a parameter in an empirical
correction of the skin friction coefficient correlation for ZPG TBL, 𝐶 𝑓 (Re𝜃)m to
incorporate APG effects. In that study, the streamwise averaged 𝛽 denotes

𝛽𝑉 (Re𝜃) =
1

Re𝜃 − Re𝜃,0

∫ Re𝜃

Re𝜃,0

𝛽(Re𝜃)𝑑Re𝜃 , (4.11)

where Re𝜃,0 is a reference Re𝜃 . The use of 𝛽𝑉 (Re𝜃) helped compare local quantities
in the TBLs and accounted for the effect of upstream history effects. Here, the
history effects are studied for 𝜎1, the global linear amplification of the domain. As
a result, 𝛽 is an average over the entire domain rather than a streamwise varying
quantity such that

𝛽 =
1
𝐿𝑥

∫ 𝐿𝑥

0
𝛽(𝑥)𝑑𝑥. (4.12)

An average over Re𝜃 is not used since the momentum thickness was not considered
as a length scale nor was Re𝜃 used to parameterize the domains.

As described in Equation 1.1, 𝛽 is defined with respect to 𝑑𝑃/𝑑𝑥 defined at 𝛿99.
Although this is a good measure for the pressure gradient in the freestream for
experiments, this is not the pressure gradient imposed in the freestream as a boundary
condition in simulations (Pozuelo et al., 2022). Here, 𝛽∞ = 𝛿∗/𝜏

𝑊
𝑑𝑃∞/𝑑𝑥 where

𝑑𝑃∞/𝑑𝑥 is the pressure gradient at 𝑦𝑑 = 2𝛿99(𝑥𝑟) will be used for the remainder of the
section since it accounts for the pressure gradient in the freestream. 𝑦𝑑 = 2𝛿99(𝑥𝑟)
is approximately the edge of the computational domain in the LES studies of Bobke
et al. (2017). The difference between 𝛽 and 𝛽∞ are most significant in P14H since
the original LES used a significantly taller computational domain than the other
simulations causing𝑈𝑒 and𝑈∞ to differ most significantly.

In Figure 4.19,𝜎1 is plotted for some 𝑘𝑧 and𝜔 representative of large scale structures
for the different U described in Table 4.4. In Figures 4.19(a,b), monotonic growth in
𝜎1 is observed with both 𝛽 and 𝛽∞. These Figures include lines of best fit between
𝜎1 and 𝛽 or 𝛽∞ for the APG cases. 𝜎1 from S0H is not included in the linear fit since
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Figure 4.19: 𝜎1 for the (𝑘𝑧, 𝜔) labeled in the legend against 𝛽 (a) and 𝛽∞ (b). The
lines are the lines of best fit for each 𝑘𝑧, 𝜔, fitted for 𝜎1 with 𝛽 > 0. 𝜎1(𝑘𝑧, 𝜔)
normalized by 𝑚𝛽∞ + 𝑏′(𝑘𝑧, 𝜔) for 𝛽 > 0 (c).

the large scale modes follow different amplification mechanisms, as was shown in
Figure 4.18. The 𝜎1(𝑘𝑧, 𝜔) of P14H falls below the empirical linear growth of the
other datasets when plotted using 𝛽. On the other hand, using 𝛽∞ shifts 𝜎1(𝑘𝑧, 𝜔)
computed with the P14H dataset so that the linear fit improves, which may be due to
𝛽∞ accounting for the changes in U imposed by the freestream boundary conditions.
The norm of residuals, averaged over the (𝑘𝑧, 𝜔) plotted in Figures 4.19(a,b), is 9.7
using 𝛽 and 5.1 using 𝛽∞ demonstrating an improved linear fit with 𝛽∞. The lines
of best fit, 𝜎̃(𝛽∞, 𝑘𝑧, 𝜔) = 𝑚(𝑘𝑧, 𝜔)𝛽∞ + 𝑏(𝑘𝑧, 𝜔), have 𝑘𝑧 and 𝜔 dependent slopes
and intercepts. To mitigate the scale dependence, the lines are consolidated into

𝜎(𝛽∞, 𝑘𝑧, 𝜔) = 𝑚
(
𝛽∞ − 𝛽∞,0

)
+ 𝜎1,0(𝑘𝑧, 𝜔), (4.13)

where 𝑚 denotes the 𝑘𝑧 and 𝜔 averaged 𝑚(𝑘𝑧, 𝜔) and 𝛽∞,0 and 𝜎1,0(𝑘𝑧, 𝜔) denote
the 𝛽∞ and 𝜎1(𝑘𝑧, 𝜔) computed using the b1nH mean flow field. The reference
dataset is arbitrary. In Figure 4.19(c), 𝜎1(𝑘𝑧, 𝜔)/𝜎(𝛽∞, 𝑘𝑧, 𝜔) showing that the
consolidated line of best fit agrees with the actual values to around 90% accuracy.

In Figure 4.20,
���𝜎1(𝑘𝑧, 𝜔)/𝜎(𝛽∞, 𝑘𝑧, 𝜔) − 1

��� is plotted to visualize the 𝜆𝑧 and 𝜆𝑡
that deviate from the proposed linear growth. 𝜎 agrees best with 𝜎1 for 𝜆𝑧 > 1. It
is expected that the agreement would deteriorate for smaller scale modes since they
have more support closer to the wall, away from the wake where the amplification
mechanisms are most sensitive to APG effects. For these scales, using a scale
dependent slope in 𝜎 would be most appropriate. It was checked that the growth in
𝜎1(𝑘𝑧, 𝜔) was monotonic with 𝛽∞ for the range of 𝑘𝑧 and 𝜔 tested here.

The linear growth observed in 𝜎1 with 𝛽∞ is related to the 𝑦 dependent hybrid
velocity scale,

𝑈2
ℎ (𝑦) = 𝑢

2
𝜏 +

𝑦𝑑

𝜌𝑑

𝑑𝑃𝑑

𝑑𝑥𝑑
= 𝑢2

𝜏

(
1 + 𝑦

𝛿∗
𝛽

)
, (4.14)
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Figure 4.20: Contour maps of
���𝜎1(𝑘𝑧, 𝜔)/𝜎(𝛽∞, 𝑘𝑧, 𝜔) − 1

��� against 𝜆𝑧 and 𝜆𝑡 . (a-f)
denote b1nH, m13nH, P14H, b2nH, m16nH, m18nH. The color axis is fixed in all
the plots.

which has been shown to suppress the secondary peaks in 𝑢𝑢 (Romero et al., 2022;
Sekimoto et al., 2019). Here, a global hybrid velocity scale analogous to 𝑈ℎ is
defined as

𝑈2
ℎ𝑦𝑏 (𝑦; 𝛽∞) = 𝑢2

𝜏

(
1 + 𝑦

𝛿∗
𝛽∞

)
, (4.15)

where 𝑢𝜏 and 𝛿∗ are the streamwise averages of 𝑢𝜏 and 𝛿∗. Note that 𝑈ℎ𝑦𝑏 does not
come from the mean momentum equation since𝑈2

ℎ𝑦𝑏
is not the streamwise average

of 𝑈2
ℎ
. This velocity scale can be shown to relate to 𝜎 by setting 𝜎1,0 − 𝑚𝛽∞,0 = 𝑏′

in Equation 4.13 and manipulating 𝜎 as

𝜎 = 𝑏′
(
𝑚

𝑏′
𝛽∞ + 1

)
. (4.16)

By identifying𝑚/𝑏′ as 𝑦𝑚/𝛿∗ for some wall-normal distance 𝑦𝑚 and using Equation
4.15, Equation 4.16 can be written as

𝜎 = 𝑏′
𝑈2
ℎ𝑦𝑏

(𝑦𝑚; 𝛽∞)

𝑢2
𝜏

. (4.17)

The linear growth is related to 𝑈2
ℎ𝑦𝑏

at 𝑦𝑚/𝛿∗ = 𝑚/𝑏′. This ratio is independent of
𝛽∞ and is 𝑘𝑧, 𝜔 dependent because of 𝜎1,0 in 𝑏′.

Due to the similarities between 𝜎 and 𝑈ℎ𝑦𝑏, a model for the amplification is con-
structed as

𝜎𝑚 (𝛽∞, 𝑘𝑧, 𝜔) = 𝜎1,0(𝑘𝑧, 𝜔)
(

1 + 𝛽∞
1 + 𝛽∞,0

)
= 𝜎1,0

𝑢2
𝜏,0𝑈

2
ℎ𝑦𝑏

(𝛿∗, 𝛽∞)

𝑢2
𝜏𝑈

2
ℎ𝑦𝑏

(𝛿∗0, 𝛽∞,0)
, (4.18)
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Figure 4.21: Contour maps of
���𝜎1(𝑘𝑧, 𝜔)/𝜎𝑚 (𝛽∞, 𝑘𝑧, 𝜔) − 1

��� against 𝜆𝑧 and 𝜆𝑡 .
(a-f) denote b1nH, m13nH, P14H, b2nH, m16nH, m18nH. The color axis is fixed
in all the plots.
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Figure 4.22: Contour maps of
���𝜎1(𝑘𝑧, 𝜔)/𝜎̃𝑚 (𝛽∞, 𝑘𝑧, 𝜔) − 1

��� against 𝜆𝑧 and 𝜆𝑡 . (a-
f) denote b1nH, m13nH, P14H, b2nH, m16nH, m18nH. The color axis is fixed in
all the plots.

where 𝑢𝜏,0 and 𝛿∗0 are evaluated from b1nH. This model does not require any fitting,
it depends on quantities computed from the mean flow field and 𝜎1,0. The ratio uses
𝑈ℎ𝑦𝑏 evaluated at 𝛿∗ rather than a suitably defined 𝑦𝑚.

In Figure 4.21,
���𝜎1(𝑘𝑧, 𝜔)/𝜎𝑚 (𝛽∞, 𝑘𝑧, 𝜔) − 1

��� is plotted. Once again, 𝜆𝑧 < 1 have
the worst agreement because a scale-independent slope is used. Overall, the scaling
with 𝜎𝑚 is worse than using 𝜎 however the latter requires fitting to the computed
𝜎1 for the different 𝛽.
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Using a well defined 𝑦𝑚 instead of 𝛿∗ produces a scale dependent slope for 𝛽∞ as
was used in Figure 4.19(b) that can improve the predictions. 𝑦𝑚 (𝑘𝑧, 𝜔) is chosen as
the wall-normal location of the maximum of

��𝜓𝑢,1(𝑥, 𝑦; 𝑘𝑧, 𝜔)
�� of b1nH. The model

in Equation 4.18 is altered such that

𝜎̃𝑚 (𝛽∞, 𝑘𝑧, 𝜔) = 𝜎1,0(𝑘𝑧, 𝜔)
(

1 + 𝑦𝑚 (𝑘𝑧 ,𝜔)
𝛿∗ 𝛽∞

1 + 𝑦𝑚 (𝑘𝑧 ,𝜔)
𝛿∗ 𝛽∞,0

)
. (4.19)

The performance of the 𝜎̃𝑚 model is plotted in Figure 4.22. Using 𝜎̃𝑚 provides a
slight improvement from𝜎𝑚. Notably it mitigates the disagreements for𝜆𝑧 < 1. The
models described in Equations 4.18 and 4.19 require no fitting to reasonably predict
the amplification at larger 𝛽∞. They also illustrate the linear growth of 𝜎1 with 𝛽∞.
Using 𝜎̃𝑚 also highlights the importance of incorporating a scale-dependent slope
to accurately capture the linear growth.

The scaling of 𝜎1 with 𝑢2
ℎ𝑦𝑏

indicates that 𝑈ℎ𝑦𝑏 may be an appropriate velocity
scale for the linear amplification. Here, the scaling was investigated for mean flow
fields with similar Re𝜏 distributions and matched outer scaled 𝑘𝑧 and𝜔, but different
𝛽∞. It is possible that a different choice of scaling for 𝑘𝑧 and 𝜔 may improve the
scaling with 𝑈ℎ𝑦𝑏 similar to how appropriate scalings were investigated in Chapter
3. However,𝑈ℎ𝑦𝑏 only helps remove APG-related features in the outer region of the
Reynolds stresses and does not necessarily collapse the statistics nor terms in the
RANS (Sekimoto et al., 2019; Romero et al., 2022). Furthermore, the analysis does
not present an appropriate outer length scale to couple with 𝑈ℎ𝑦𝑏. Romero et al.
(2022) notes that 𝑈ℎ and 𝑈𝑚 from Section 4.2 are related. However, the WK outer
scaling used 𝑈𝑒 −𝑈𝑚 as the velocity scale. These issues suggest that scaling for 𝑘𝑧
and 𝜔 to produce a self-similar linear operator using𝑈ℎ𝑦𝑏 is unlikely.

𝑈ℎ𝑦𝑏 is used as a velocity scale for 𝐾+
𝑢𝑢 from Section 4.4 since the outer scaled

peak increased with 𝛽 and is related to the increased amplification in 𝜎1(𝑘𝑧, 𝜔)
for modes in the outer region. Since 𝐾+

𝑢𝑢 has 𝜎2
1 (𝑘𝑧, 𝜔) in the integrand, it is

rescaled by 𝑢4
𝜏/𝑈4

ℎ𝑦𝑏
(𝑦). Figure 4.16 is replotted and rescaled in Figure 4.23.

𝐾+
𝑢𝑢𝑢

4
𝜏/𝑈4

ℎ𝑦𝑏
demonstrates suppressed secondary peaks much like how rescaling 𝑢𝑢

with 𝑈ℎ (𝑦) suppresses the secondary peaks (Sekimoto et al., 2019; Romero et al.,
2022). Although 𝑢𝑢 is rescaled by 𝑈2

ℎ
, 𝐾+

𝑢𝑢 is rescaled by 𝑈4
ℎ𝑦𝑏

due to the 𝜎2
1

dependence on 𝐾+
𝑢𝑢. Recovering the 𝑈2

ℎ
scaling for 𝐾+

𝑢𝑢 in the outer region requires
the choice of an appropriate weight, 𝜉. Nonetheless, Figure 4.23 demonstrates
that a pressure related scaling from 𝑈ℎ𝑦𝑏, or 1 + 𝛽∞, explains the increased linear
amplification with 𝛽∞ in the outer region.
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Finally, it is important to note that the results shown here used a limited set of
datasets, primarily with small 𝑅𝑒𝜏. Furthermore, the 𝛽 variation throughout the
domain is small. These results are expected to hold for APG TBL in near-equilibrium
conditions with𝑈∞(𝑥) ∼ (𝑥 − 𝑥0)𝑚 where 𝑚 ∈ (−1/3, 0) (Bobke et al., 2017). As a
result, history effects from sudden variations in𝑈∞ or upstream favourable pressure
gradients were not considered. For flows near separation, as 𝜏𝑊 approaches 0, 𝛽
can exhibit significant streamwise variation. This case was also outside of the scope
of this study. Future work will need to consider U outside of the near-equilibrium
conditions where the nonequilibrium effects are more severe.

4.6 Chapter Summary

The linear amplification in APG TBL flows was studied and demonstrated different
physical behaviors from the ZPG TBL. This was demonstrated in Section 4.2 where
the scaling identified by Wei and Knopp (2023) was shown to admit scaling for 𝑘𝑥 ,
𝑘𝑧, and 𝜔 that produced self-similar resolvent modes and gains over a range of Re𝜏
and 𝛽. Due to the difference in the amplification of the Reynolds shear stresses in the
outer region of the flow between the ZPG TBL and the APG TBL, Wei and Knopp
(2023)’s scaling did not apply to the mean flow fields of the ZPG TBL. As a result,
the ZPG TBL resolvent modes and gains do not collapse to the APG TBL results
indicating different mechanisms in the outer scaled amplification. Wei and Knopp
(2023) and Gungor et al. (2016) suggest that the APG makes the outer region of the
flow behave like a planar shear layer, which in turn changes the nature of the linear
amplification in that region. For mild APG TBL, the effect of the PG is negligible
in the near-wall region of the flow. The inner scaling of the resolvent modes was
studied for APG TBL flows in Section 4.3. To achieve self-similarity in these flows,
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the streamwise evolution of the length and time scales must be accounted for and is
more prominent in these low Re𝜏 APG TBL flows than the ZPG TBL. At high Re𝜏,
the effects of the PG on the inner region are negligible due to the scale separation in
the flows. For smaller Re𝜏, these effects become more apparent because of the lack
of scale separation. An increase in APG strength increases the amplification of the
large scale structures further from the wall. The location of the near-wall cycle was
approximated well in 𝐸+

𝑢𝑢, peaking for 𝑦+ ≈ 30 and 𝜆+𝑧 ≈ 100. For these studies,
secondary peaks were not observed because the domains were too small to support
large scale structures.

To investigate the effect of the APG on the large scale structures, larger streamwise
domains were considered in Section 4.4. By performing a sweep over 𝑘𝑧 and 𝜔, it
was shown that 𝐸+

𝑢𝑢 and 𝐾+
𝑢𝑢 demonstrate a near-wall peak and a secondary peak that

is absent when using the ZPG TBL dataset. The amplitude of the secondary peaks
increase with 𝛽 due to the increase in amplification of the large scale structures. The
near-wall peak is at 𝑦+ ≈ 20 and 𝜆+𝑧 ≈ 65. The smaller 𝜆+𝑧 identified for the near-wall
peak are related to the streamwise evolution of the inner length scales which treated
the 𝜆+𝑧 ≈ 100 modes as large scale modes near the inlet of the domain in the APG
TBL datasets.

In Section 4.5, the effects of the nonequilibrium APG history on the large scales
were investigated. An accumulated APG strength, 𝛽∞, was used to parameterize the
history effects. Accumulated APG effects were used in the study of Vinuesa et al.
(2017) as empirical corrections to commonly used correlations in ZPG TBL, albeit
with a different definition for the accumulated history effect. Here, 𝛽∞ was used
to parameterize the resolvent amplification since these are both metrics integrated
across the domain. It was shown that 𝜎1 grows linearly with 𝛽∞, consistent with the
increase in amplification of the outer region with increase in 𝛽 seen in Section 4.4.
This linear growth was shown to be related to a hybrid velocity scale used to suppress
the secondary peaks in 𝑢𝑢 (Romero et al., 2022; Sekimoto et al., 2019). Using𝑈ℎ𝑦𝑏,
a scale dependent 𝑦𝑚 is proposed that can scale the increase in amplification with
𝛽∞ without any fitting.

The APG effects studied in Sections 4.4 and 4.5 were performed with low Re𝜏 TBL
datasets with mild APGs in near-equilibrium conditions (Bobke et al., 2017; Pozuelo
et al., 2022). Furthermore, these LES simulations were chosen because they had
long, well-resolved streamwise domains to allow for the streamwise evolution of
large scale modes. As a result, the APG TBL parameters represent a small subset of
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the full parameter space. Notably, these results were not applied to APG TBLs with
favorable pressure gradients, sudden variations in𝑈∞, rapid variations in 𝛽 in near-
separation conditions, large APG strengths, and large Re𝜏 TBLs since datasets with
these conditions over large streamwise domains are absent. Future work would need
to assess if the observations made in Sections 4.4 and 4.5 can extend to flows outside
of the studied parameter space. Deshpande et al. (2023) observed that the influence
of the APG on the turbulent statistics diminished with increasing Re𝜏. The LES of
Pozuelo et al. (2022) was used to study the inner scaling of APG TBL with high
Re𝜏, but was not used for the studies on the amplification of large scales since there
is only one 𝛽 to compare with at these Re𝜏. Future studies would need to be done at
larger Re𝜏 to investigate the 𝛽 effects on linear amplification with larger Re𝜏. These
future studies can only be done when such datasets become available. Additionally,
there is a growing need for the study of turbulent statistics in nonequilibrium APG
TBLs away from the near-equilibrium conditions.

An avenue of future work will involve the nonlinear closure. The model used in
Equation 4.10 was constructed using a single nonlinear weight independent of 𝑘𝑧
and 𝜔 designed with only the scaling of the inner peak in mind. Due to this scaling,
the amplitudes of the outer region were overpredicted, compared to the LES data.
A more encompassing scaling will have to take into account the outer scaling of
the outer region of the flow by incorporating a scale-dependent nonlinear weight.
One option for the scaling of the large scale modes is to ensure that the modeled 𝑢𝑢
scales with𝑈2

ℎ
in the outer region as in Romero et al. (2022).
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C h a p t e r 5

RESOLVENT ANALYSIS OF HIGH ENTHALPY BOUNDARY
LAYERS

5.1 Introduction

In this section, the focus will shift away from incompressible flow to consider hyper-
sonic flows. For the flow to be hypersonic, the relevant Mach number, Ma, must be
greater than about 5, though this requirement is debated by many researchers (An-
derson Jr., 2006; Edwards, 1992). The supersonic flow, with Ma > 1, is categorized
by compressibility effects, as well as increased temperatures within the boundary
layer (Spina, Smits, and Robinson, 1994). As Ma increases, the temperature, and
thermal heating to the wall, increase. To account for the thermodynamics, the su-
personic flow models the air as a calorically perfect gas (CPG) while the effects of
compressibility on the turbulent statistics can mostly be explained by accounting for
the temperature-dependent thermophysical properties (Griffin, Fu, and Moin, 2021;
Morkovin, 1962). When Ma ≥ 5, the temperature raises to a point where the CPG
assumption fails. These hypersonic flows require the incorporation of various real
gas effects as the Ma continues to increase. Modeling these real gas effects adds
various nonlinear terms into the governing equations which strain analytical and
computational methods. Along with the temperature-related real gas effects, the in-
creased temperature within the boundary layer increases the viscosity and decreases
the density which both serve to make the boundary layer thicker.

The CPG assumption begins to fail at temperatures around 600 K because of vibra-
tional excitation (Anderson Jr., 2006). As the temperatures increase with increasing
Ma, the vibrational effects become increasingly important for hypersonic TBLs.
The effects of vibrational excitation change the specific heat capacities of the air,
making them temperature-dependent. This requires the use of a calorically imper-
fect gas (CIG) assumption where the specific heats can be described using empirical
relationships, like the McBride (2002) polynomials.

As the temperatures increase further, chemistry effects become important. For
temperatures larger than 2000K, O2 begins to dissociate which creates the presence
of O and NO in the air (Anderson Jr., 2006). For temperatures exceeding 4000K,
N2 also begins to dissociate into N (Anderson Jr., 2006). The presence of these
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components in the air changes its thermodynamic state and the thermophysical
properties. These chemical reactions do not occur instantaneously as they require
time for the reactions to occur. The air may be convected downstream while the
reactions take place. This is related to the Damköhler number, 𝐷𝑎, which represents
the ratio of the reaction rate to the convective transport rate. If 𝐷𝑎 ≫ 1, then
the flow is in equilibrium as the reactions effectively occur instantaneously. This
means that chemical diffusion can be neglected and any effects from the species are
accounted for as changes to the thermophysical properties (Malik and Anderson,
1991). On the other hand, when 𝐷𝑎 is moderate, the time for chemical reaction and
transport processes are comparable. This means that the changes in concentration
of the chemical species due to chemical production and chemical diffusion must be
accounted for. As a result, the flow requires the modeling of the various species
(here N2, O2, NO, N, and O) and their chemistry terms. This was studied using
linear stability in Franko, MacCormack, and Lele (2010).

The chemical nonequilibrium from the high-temperature real gas effects strain the
development of analytic tools since they require a state vector with an increased
number of state variables and additional terms in the governing equations that de-
pend nonlinearly on the state vector. Computationally, such terms increase the
operation count in simulations as the transport and thermal properties of the mix-
ture are calculated over the entire flow field at each time instance using models
requiring polynomials, fits, and look-up tables, whose dimensionality can be large
depending on the number of considered species (Edwards, 1992). Otherwise, these
properties can be computed using kinetic theory, which requires algebraic solutions
of systems of equations, and depends on the assumptions made on the intermolecu-
lar forces. Furthermore, uncertainty in the models can also affect the validity of the
computations since many of the calculations require experimental measurements at
high temperatures with large uncertainties (Anderson Jr., 2006). As these experi-
ments improve, the uncertainties associated with these measurements will decrease.
Nonetheless, the chemistry model used to compute the thermophysical properties
can significantly affect linear stability results, which in turn affects the location of
the laminar-turbulent transition (Franko, MacCormack, and Lele, 2010).

Linear stability theory has been applied to hypersonic flows in the past (Malik and
Anderson, 1991; Franko, MacCormack, and Lele, 2010). Linear stability theory
can provide much insight on the transition of laminar flows. However, since it fun-
damentally ignores nonlinearities in the flow, its applicability to turbulent flows is
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not valid. In this chapter, the high temperature gas effects in hypersonic TBL will be
incorporated into the resolvent analysis which treats the nonlinearities as uncorre-
lated forcing inputs. The resolvent operator is created by only considering the linear
terms of the governing equations, much like the linear operator in linear stability
theory. This means that the resolvent modes and amplifications are independent of
the true nonlinear nature of the real gas effects. However, the resolvent analysis is
by definition an input-output approach. The nonlinearities, here treated as forcing,
are treated as inputs to the linear resolvent operator where the outputs are fluctua-
tions. Resolvent analysis then identifies the optimal inputs and outputs, subject to
the norm chosen. A limitation of this approach is that the nonlinearities are, in ac-
tuality, correlated and restricted based on physically realizeable states. These issues
can be partially accounted for by using the strategy described in Towne, Schmidt,
and Colonius (2018) by weighing the input forcing with a matrix proportional to
the turbulent statistics to bias the forcing inputs to spatial regions where the nonlin-
earities are active, although this is not applied in this study. The leading resolvent
modes can identify physical mechanisms by preferentially amplifying forcing inputs
in the direction of the optimal response modes when the resolvent operator is low
rank (Abreu, Cavalieri, et al., 2020) while the resolvent amplification gives insight
into the forcing inputs, length scales, and frequencies that are most amplified by the
linear dynamics.

Similar to how Franko, MacCormack, and Lele (2010) studied the effects of differ-
ent chemistry models on linear stability theory, in this chapter, differences in the
resolvent analysis due to different modeling assumptions for the real gas effects will
be investigated. This will give insight as to which structures can be suitably modeled
with a simpler modeling approach, such as using chemical equilibrium as opposed
to chemical nonequilibrium in the analysis. Performing resolvent analysis with a
mixture of gases allows the linear amplification from certain species components
to be isolated. This helps identify the length scales where the chemistry terms are
active. Furthermore, the analysis will study what phenomena are amplified by the
linear terms in a hypersonic TBL and comparisons will be made with data, where
possible.

The structure of this chapter is as follows. First, the resolvent analysis will be
compared using the CPG and CIG assumptions to identify which length scales
are most affected by the vibrational excitation. Then, the resolvent analysis will be
formulated to describe a 5 species mixture of ideal gases in chemical nonequilibrium,
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which model dissociated air. The results from resolvent analysis using chemical
nonequilibrium assumption will be compared to resolvent analysis using a chemical
equilibrium assumption. Comparisons will be made using a laminar boundary layer
similarity solution under chemical nonequilibrium and a similarity solution using
the CPG at matched Re, freestream temperature, and wall temperature. Following
this, the resolvent analysis will be examined for a hypersonic TBL in chemical
nonequilibrium. Finally, the correlations in the resolvent modes of the TBL will
be shown to agree qualitatively with data for modes representative of the near-wall
cycle.

5.2 Resolvent Formulation for an Ideal Gas

The effects of a CIG or CPG assumption on the linear amplification will be studied
through the use of local (1D) resolvent analysis. As such, the analysis will consider
a parallel flow assumption, resolving only the wall-normal direction, to reduce the
computational costs in the analysis. This will help identify the length scales most
affected by the vibrational excitation.

The governing equations are nondimensionalized with the streamwise velocity, 𝑈𝑒,
temperature, 𝑇𝑒, boundary layer thickness, 𝛿99, density, 𝜌𝑒, dynamic viscosity, 𝜇𝑒,
thermal conductivity, 𝑘𝑒, specific heat capacity at constant volume, 𝑐𝑣,𝑒, and speed
of sound, 𝑎𝑒 where all the quantities with subscripts 𝑒 are evaluated at the local
𝛿99. The specific heat capacity at constant pressure is nondimensionalized with
𝑐𝑝,𝑒 = 𝑅 + 𝑐𝑣,𝑒, where 𝑅 is the specific gas constant These quantities define the
Reynolds number, Re = 𝑈𝑒𝜌𝑒𝛿99/𝜇𝑒, Mach number, Ma = 𝑈𝑒/𝑎𝑒, Prandtl number,
𝑃𝑟 = 𝜇𝑒𝑐𝑝,𝑒/𝑘𝑒, and the ratio of specific heats, 𝛾

𝑒
= 𝑐𝑝,𝑒/𝑐𝑣,𝑒. In this section, the 𝑃𝑟

is assumed to be a constant equal to 0.71 through the boundary layer and freestream.
Hereafter, any variable with a breve (·̆) denotes the full instantaneous quantity, i.e.,
the sum of its mean and fluctuation.

For a single species ideal gas, the governing equations are
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𝜌̆
𝐷ŭ
𝐷𝑡

= − 1
𝛾
𝑒
Ma2∇𝑝 +

1
Re

∇ · 𝜏, (5.1)

𝜌̆𝑐𝑣
𝐷𝑇

𝐷𝑡
= −(𝛾

𝑒
− 1)𝑝∇ · ŭ + 𝛾

𝑒
(𝛾

𝑒
− 1)Ma2

Re
𝜏 : ∇ŭ +

𝛾
𝑒

𝑃𝑟Re
∇ ·

(
𝑘̆∇𝑇

)
, (5.2)

𝐷𝜌̆

𝐷𝑡
= −𝜌̆∇ · ŭ, (5.3)

𝑝 = 𝜌̆𝑇, (5.4)

𝜏 = 𝜇̆

(
∇ŭ + ∇ŭ𝑇 − 2

3
(∇ · ŭ)I

)
, (5.5)

where Equation 5.1 is the momentum equation, Equation 5.2 is the internal energy
equation, Equation 5.3 is the continuity equation, Equation 5.4 is the equation of
state for an ideal gas, and Equation 5.5 is the expression for the stress tensor for
a Newtonian fluid using Stokes’ assumption for the second coefficient of viscosity.
𝐷 (·)/𝐷𝑡 denotes the material derivative, 𝜕𝑡 + 𝑢̆𝑖𝜕𝑥𝑖 of a quantity (·). In Equation
5.2, the colon, :, denotes the double dot product between two tensors such that
A : B = 𝐴𝑖 𝑗𝐵𝑖 𝑗 using Einstein indicial notation. The state variable is chosen as
q̆ =

[
ŭ, 𝑇, 𝜌̆

]
. The velocity follows the usual no-slip boundary condition at the wall

and a problem-specific temperature boundary condition.

The viscosity is assumed to follow Sutherland’s law such that

𝜇̆ = 𝑇3/2
(
𝑇𝑒 + 𝑆
𝑇𝑇𝑒 + 𝑆

)
, (5.6)

where 𝑆 = 110.4 K. If the CPG is assumed, then 𝑐𝑝 = 7𝑐𝑣,𝑒/(2𝑅). When a CIG
is assumed, 𝑐𝑝 (𝑇) is computed using the 9-coefficient NASA polynomials for a gas
mixture of 79% N2 and 21% O2 on a molar basis and the same value of 𝑅 (McBride,
2002; Di Renzo et al., 2022). 𝛾

𝑒
is equal to 1.4 for the CPG and 1.387 for the CIG.

Due to the constant 𝑃𝑟 assumption, 𝑘̆ = 𝜇̆𝑐𝑝.

Assuming a known mean flow state, q, q̆(x, 𝑡) = q(𝑦) +q(x, 𝑡) where the mean flow
field is assumed to be parallel. Only state variables with an overbar, (·), denote
mean quantities. Any other quantity with an overbar is computed using q. For
example, 𝑝 = 𝜌𝑇 . The fluctuations q(x, 𝑡) are assumed to be stationary in time and
homogeneous in the streamwise and spanwise directions as in Bae, Dawson, and
McKeon (2020). The homogeneity in 𝑥 is an approximation for the boundary layers
studied in this chapter. See the previous chapters for discussions on the influence of
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spatial development on incompressible TBLs. Following Section 2.2, the linear and
nonlinear terms of Equations 5.1, 5.2, and 5.3 are separated and q is approximated
as a normal mode such that q(x, 𝑡) = q̂(𝑦) exp (−𝑖𝜔𝑡 + 𝑘𝑥𝑥 + 𝑘𝑧𝑧), where 𝜔, 𝑘𝑥 , and
𝑘𝑧 are the temporal frequency, streamwise wavenumber, and spanwise wavenumber,
respectively. The fluctuations of a quantity 𝑔̆ are treated as

𝑔̂ =

𝑛𝑠∑︁
𝑖

𝜕𝑔̆

𝜕𝑞𝑖

����
q
𝑞𝑖 . (5.7)

q̂ is governed by

q̂ =

(
−𝑖𝜔 + L̂

)−1
B f̂, (5.8)

where f̂ denotes the forcing, L̂ is the LNS operator, and B is introduced to apply
component-wise masking of the forcing. û satisfies the no-slip boundary condition
at the wall and 𝑇 = 0 at the wall, despite the boundary conditions for 𝑇 at the
wall (Malik, 1990).

The form of L̂ is specified as a block matrix,

L̂ =



𝐿1,1 𝐿1,2 𝐿1,3 𝐿1,4 𝐿1,5

𝐿2,1 𝐿2,2 𝐿2,3 𝐿2,4 𝐿2,5

𝐿3,1 𝐿3,2 𝐿3,3 𝐿3,4 𝐿3,5

𝐿4,1 𝐿4,2 𝐿4,3 𝐿4,4 0
𝐿5,1 𝐿5,2 𝐿5,3 𝐿5,4 𝐿5,5


, (5.9)

where the blocks, 𝐿𝑖, 𝑗 , are specified in Appendix E. The index 𝑖 = 1, 2, 3, 4, and 5
corresponds to the linearized 𝑢 momentum, 𝑣 momentum, 𝑤 momentum, internal
energy, and continuity equations and the index 𝑗 = 1, 2, 3, 4, and 5 corresponds
to the blocks that act on the 𝑢, 𝑣, 𝑤, 𝑇 , and 𝜌 components. The diagonal blocks
have the convective 𝑘𝑥𝑈 terms and dissipative terms. The off-diagonal terms are
responsible for the component-wise non-normal amplification. Although all the
blocks are functions of q, only the 𝐿4,𝑖 blocks are explicitly affected by the variable
specific heat used in the CIG assumption.

To perform the resolvent analysis, a suitable inner product must be chosen. The
inner products are chosen to be equal so that W = W𝑟 = W𝑓 enforce the Chu
(1965) norm,

W = diag

(
𝜌, 𝜌, 𝜌,

𝑐𝑣𝜌

Ma2𝛾
𝑒
(𝛾

𝑒
− 1)𝑇

,
𝑇

𝛾
𝑒
Ma2𝜌

)
. (5.10)
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𝑇𝑒 𝑇𝑤 Ma Re Re𝜏
500 K 1600 K 5 3 × 104 250

Table 5.1: Local properties of the mean flow profiles from the simulations of Di
Renzo et al. (2022). 𝑇𝑒 and 𝑇𝑤 denote the freestream and wall temperatures.

The form ofW is derived by eliminating the compression work related terms (Hanifi,
Schmid, and Henningson, 1996). The form of W differs from the form studied in
Bae, Dawson, and McKeon (2020) and Hanifi, Schmid, and Henningson (1996)
because 𝑐𝑣 is not assumed to be a constant.

The equations are discretized using the SBP scheme with grid stretching described
in Section 2.3 that has been used in other compressible studies (Madhusudanan and
McKeon, 2022; Kamal et al., 2020; Malik, 1990). Half the points are clustered
below 𝑦𝑚𝑖𝑛 while the other half are between 𝑦𝑚𝑖𝑛 and 𝑦𝑚𝑎𝑥 . In this case, 𝑦𝑚𝑖𝑛 = 1 to
cluster the points below the boundary layer as in Madhusudanan and McKeon (2022)
and 𝑦𝑚𝑎𝑥 = 5. 𝑁𝑦 = 501 points are used to discretize the equations. Isothermal and
no-slip boundary conditions are applied at the wall. In the freestream, a damping
layer and artificial viscosity are applied at the last 5% of the domain to absorb
any reflections (Appelö and Colonius, 2009). Due to the damping, the freestream
boundary conditions are set as Dirichlet boundary conditions for û and 𝑇 at 𝑦𝑚𝑎𝑥 .
The adjoint matrix is computed using the conjugate-transpose approach rather than
the discretized adjoint approach. As such, Algorithm 2 is used with at most 300
iterations and stops if 𝜎10 has converged to within 10−6.

5.3 Influence of CPG/CIG Assumption on Linear Amplification

In this section, the mean flow fields will first be discussed. Following this discussion,
comparisons will be made between the 𝜎1, 𝝍1, and 𝝓1 using the CPG or CIG
assumptions.

Description of the Mean Flow Fields

The mean flow fields are obtained from the DNSs of Di Renzo et al. (2022), in
the flat plate region upstream of the compression ramp where nonparallel effects
are assumed to be negligible. The two mean flow fields that are studied were
computed using the CPG and CIG assumptions. Under the parallel flow assumption,
q(𝑦) = [𝑈 (𝑦), 0, 0, 𝑇 (𝑦), 𝜌(𝑦)]. The streamwise location where the mean flow
profiles are taken is about 4.5𝛿99 upstream of the start of the ramp so any nonparallel
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Figure 5.1: 𝑈 (a), 𝑇 (b), 𝑘 (c), 𝑐𝑣 (d), 𝑢𝑢 (e), 𝑣𝑣 (f), 𝑢𝑢/max 𝑢𝑢 (g), and 𝑣𝑣/max 𝑣𝑣
(h) from the CPG (red) and CIG (black) DNS. In (c), the black dashed line denotes
𝜇 for the CIG. Note that 𝜇 = 𝑘 for the CPG.

effect from the changing geometry is neglected. The properties that characterize the
mean flow profiles are listed in Table 5.1.

In Figure 5.1, the mean flow fields are plotted along with some relevant thermo-
dynamic quantities. The temperature dependence in 𝑐𝑣 negligibly affects 𝑈, but
changes 𝑇 within the near-wall region where 𝑇 is largest. The difference in 𝑇 is
expected since the change in the thermodynamic variables affects the heat transfer
to the wall while the small change in 𝜇 hardly affects the viscous diffusion in the
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Case Mean LNSE
i CPG CPG
ii CIG CIG
iii CPG CIG

Table 5.2: CPG and CIG denote the assumption used for the mean flow field and
the LNSE.

momentum. Despite the negligible changes to 𝑈, the streamwise and wall-normal
velocity fluctuations, 𝑢𝑢 and 𝑣𝑣 differ appreciably near the wall. The differences
are likely because 𝑈𝑒 is not a suitable velocity scale for the near-wall region where
the temperature is largest (Griffin, Fu, and Moin, 2021). This is investigated briefly
in Figures 5.1(g,f) where the fluctuations normalized by their local maxima demon-
strate good collapse.

Three cases are studied which differ in the assumption of the gas properties in either
the DNS used to compute the mean or in the LNSE for the resolvent analysis. Cases
i and ii use the CPG and CIG assumptions, respectively, for both the mean and
LNSE. Case iii uses the CPG mean flow field and a CIG for the LNSE. Although
case iii uses a different assumption for the gas in the LNSE than the one used in
the NSE of the mean flow field, case iii will be used to investigate how the linear
amplification changes when only the thermodynamic properties are varied in the
LNSE. This removes the differences in the shear-driven amplification from 𝜕q/𝜕𝑦
terms when different q are used. These cases are summarized in Table 5.2.

Differences in the Optimal Resolvent Modes and Amplification Using the
CPG/CIG Assumptions

The resolvent analysis is computed over a range of 𝑘𝑥 and 𝑘𝑧 with a fixed wavespeed,
𝑐, for the three different cases. The effect of the modeling choice on the amplification
is studied by comparing 𝜎2

1 𝑘𝑥𝑘𝑧 for the three cases. The wavespeed is chosen as
𝑐 = 𝑈 (𝑦+ = 15) ≈ 5.75, where 𝑦+ = 15 corresponds to the location of the largest
𝑢𝑢. 𝑘𝑥 and 𝑘𝑧 each sweep over 80 logarithmically spaced points between 2𝜋/.025
and 2𝜋/100.

The results of the sweep for the three cases are plotted in Figure 5.2. The discon-
tinuity in the amplification, separated by the thick black solid line, is due to the
excitation of supersonic modes with support in the freestream. The characteristics
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Figure 5.2: 𝜎2
1 𝑘𝑥𝑘𝑧 for case i (a), case ii (b), and case iii (c). The thick black line

corresponds to the sonic line. The black contour lines correspond to 𝜎2
1 𝑘𝑥𝑘𝑧 = 103,

104, 105, 1.75 × 105, 3 × 105, 5 × 105, 106.

of these modes are categorized by the value of the freestream relative Mach number,

Ma =
𝑘𝑥(

𝑘2
𝑥 + 𝑘2

𝑧

) Ma(𝑈 − 𝑐)

𝑇
1/2 , (5.11)

where 𝑈 and 𝑇 are evaluated at the freestream (Mack, 1984; Bae, Dawson, and
McKeon, 2020). To gain some insight on Ma, consider

M𝑟 =
Ma(𝑈 − 𝑐)

𝑇
1/2 e𝑥 =

𝑈𝑈𝑒 − 𝑐𝑈𝑒
𝑇

1/2
𝑎𝑒

e𝑥 , (5.12)

as the mean velocity relative to the wavespeed, normalized by the mean speed of
sound, 𝑇1/2

𝑎𝑒, and the unit vector in the direction of the wavenumber,

e𝑘 =
𝑘𝑥e𝑥 + 𝑘𝑧e𝑧(
𝑘2
𝑥 + 𝑘2

𝑧

) . (5.13)

Ma is thus the dot product between M𝑟 and e𝑘 , in other words, the Mach number
relative to the wavespeed projected onto the direction of the wavenumber (Schmid
and Henningson, 2002). When the value of Ma ≥ 1, the modes are considered su-
personic. The freestream component of these modes resemble acoustic phenomena
that radiate out of the boundary layer. Ma = 1 denotes the sonic line, the location of
the discontinuity. Subsonic modes, characterized by Ma < 1, resemble the incom-
pressible counterparts, albeit with variable viscosity and density (Madhusudanan
and McKeon, 2022; Bae, Dawson, and McKeon, 2020). The oscillations in the
contours in the supersonic region are due to the limited resolution in the sweep.

Despite differences in the temperature dependence of the specific heats, the linear
amplification is only mildly affected. This is shown in Figure 5.3(a) where contour
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Figure 5.3: Contours of 𝜎2
1 𝑘𝑥𝑘𝑧 for case i (red), ii (black), and iii (blue) using

𝑐 = 𝑈 (𝑦+ = 15). The contours denote 𝜎2
1 𝑘𝑥𝑘𝑧 = 103, 104, 105, 1.75 × 105, 3 × 105,

5 × 105, 106 in (a) and .1%, 1%, 10%, 30%, 50%, and 75% of the local maxima of
𝜎2

1 𝑘𝑥𝑘𝑧 in (b). The thick black line denotes the sonic line.

lines of𝜎2
1 𝑘𝑥𝑘𝑧 are plotted at specified values. Owing to the freestream support of the

supersonic modes where 𝑇 is smallest, the amplification with Ma > 1 are unaffected
by the differences in the specific heats or q within the boundary layer. Although
the supersonic modes are triggered within the boundary layer (Bae, Dawson, and
McKeon, 2020), the boundary layer encompasses only a fifth of the integration
region in the inner products. The subsonic modes demonstrate sensitivity to the
change in thermodynamic properties since these modes have support within the
boundary layer. Case ii has the largest amplification, followed by case iii, and then
case i. The amplification in case ii is largest because it has access to increased non-
normal amplification due to case ii having the largest𝑈𝑦 near the wall. The thermal
diffusivity, 𝑘/

(
𝜌𝑐𝑝

)
, is largest in case i and smallest in case ii. As a result, case i

has the smallest amplification because of the increased thermal diffusion while case
ii has increased non-normal amplification from𝑈𝑦.

In Figure 5.3(b), the contour lines of𝜎2
1 𝑘𝑥𝑘𝑧 are plotted at percentages of the maxima

of each case. Just as the fluctuations in Figures 5.1(g,h) demonstrated collapse when
rescaled by their local maxima, the same is true for the linear amplification in the
subsonic region. This suggests that normalization with a set of appropriate variables
may collapse the linear amplification, despite the real gas effects. In Figure 5.3(a),
the amplification of the supersonic modes is relatively unchanged for the three cases
since these modes are excited in the freestream, where the mean flow field and
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Figure 5.4:
��𝜓𝑢,1�� (a),

��𝜙𝑢,1�� (b),
��𝜓𝑣,1�� (c),

��𝜙𝑣,1�� (d),
��𝜓𝑤,1�� (e),

��𝜙𝑤,1�� (f),
��𝜓𝑇,1��

(g),
��𝜙𝑇,1�� (h),

��𝜓𝑇,1�� (i),
��𝜙𝑇,1�� (j) for representative subsonic modes (𝑘𝑥 = 2𝜋/4,

𝑘+𝑧 = 2𝜋/.4, 𝑐 = 𝑈 (𝑦+ = 15). Case i, ii, and iii are in red, black, and blue solid lines.

thermophysical properties are the same. This suggests that the freestream variables
can parameterize the amplification of the supersonic modes well. In Figure 5.3(b),
the supersonic modes exhibit some variation because the local maxima used to
define the contours occur in the subsonic region.

The real gas effects on the resolvent modes are compared for representative subsonic
modes with 𝜆𝑥 = 4 (𝜆+𝑥 = 1000), 𝜆𝑧 = .4 (𝜆+𝑧 = 100), and 𝑐 = 𝑈 (𝑦+ = 15) for
the three cases in Figure 5.4. 𝝓1 has large wall-normal and spanwise components,
indicative of the lift-up mechanism’s role in these shear driven flows (Symon et
al., 2018). 𝜙𝑇,1 has a non-negligible component because of the non-normality
introduced by the off-diagonal terms in the LNSE due to the pressure gradient, ∇𝑝,
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in blocks 𝐿𝑖,4 (see Appendix E.2). Physically, the lift-up mechanism redistributes
the near-wall fluid up away from the wall and the fluid from outer region down to
the wall. This creates the low-speed streaks with a temperature fluctuation whose
sign depends on 𝑇 𝑦. The terms responsible for the non-normality are the 𝑈𝑦𝑣 term
in the momentum equation (𝐿1,2) and the 𝑇 𝑦𝑣 term in the energy equation (𝐿4,2).
Although not plotted, 𝜓𝑢,1 and 𝜓𝑇,1 are out-of-phase above 𝑦+ ≈ 10, the location
of maximum 𝑇 . Physically, this corresponds to the lift-up mechanism sweeping
cooler, high-momentum fluid closer to the wall and ejecting hotter, low-momentum
fluid away from the wall above 𝑦+ ≈ 10 (Pirozzoli and Bernardini, 2011; Kong,
Choi, and J. S. Lee, 2000). Due to the non-monotonicity in 𝑇 , the 𝜓𝑢,1 and 𝜓𝑇,1
become in phase for 𝑦+ ≤ 10 because 𝑇 increases away from the wall due to the
wall cooling. The velocity components of 𝝍1 and 𝝓1 are hardly affected by the
change in the thermodynamic properties or 𝑇 unlike the temperature and density
components. Lastly, the saw-tooth nature in 𝜙𝜌,1 is a numerical artifact that is a
consequence of the conjugate-transpose used for the adjoint and limited near-wall
resolution (Chandler et al., 2012). Increasing the wall-normal resolution near the
wall mitigates these saw-tooth oscillations, but does not affect the value of 𝜎1.

In the freestream, the unforced, inviscid LNSE with Ma > 1 have eigenvectors with
an eigenvalue of 0 as described by Mack (1984), and here termed Mack modes.
Since the freestream inviscid LNSE define a normal operator, these Mack modes
are also singular vectors of the inviscid LNSE in the freestream with a singular
value of 0. As a result, the inviscid LNSE has a singularity in the freestream when
Ma > 1 (Madhusudanan and McKeon, 2022). This singularity is similar to the crit-
ical layer singularity in an inviscid flow (Schmid and Henningson, 2002). When the
full viscous LNSE are used, viscous terms can regularize the singularities and make
the LNSE invertible. However the inviscid singularities from the Mack modes or the
critical layer are still sources of large resolvent amplification. The inviscid singu-
larity from the Mack modes is present in the equation for 𝑝 = 𝑇 𝜌̂ + 𝜌𝑇 . As a result,
the temperature and density components of 𝜓1 and 𝜙1 are large in the freestream,
resembling the Mack modes, to excite the amplification from the freestream in-
viscid singularity. This freestream region also supports the existence of velocity
disturbances in the freestream (Schmid and Henningson, 2002; Madhusudanan and
McKeon, 2022).

Representative supersonic modes with 𝜆𝑥 = 1, 𝜆𝑧 = 10, and 𝑐 = 𝑈 (𝑦+ = 15) are
plotted in Figure 5.5. These modes have non-negligible support in the freestream,
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Figure 5.5:
��𝜓𝑢,1�� (a),

��𝜙𝑢,1�� (b),
��𝜓𝑣,1�� (c),

��𝜙𝑣,1�� (d),
��𝜓𝑤,1�� (e),

��𝜙𝑤,1�� (f),
��𝜓𝑇,1��

(g),
��𝜙𝑇,1�� (h),

��𝜓𝑇,1�� (i),
��𝜙𝑇,1�� (j) for representative supersonic modes (𝑘𝑥 = 2𝜋/1,

𝑘𝑧 = 2𝜋/10, 𝑐 = 𝑈 (𝑦+ = 15). Case i, ii, and iii are in red, black, and blue solid
lines.

characteristic of Mack modes excited in the freestream. The freestream components
are independent of the changes in 𝑇 and thermodynamic properties because of the
cooler temperatures in the freestream as the vibrational excitation is nonexistent for
mean temperatures less than 600 K (Anderson Jr., 2006). Because of the small
differences in 𝛾

𝑒
, 𝜓𝑇,1 for case i has slightly larger magnitude. Near the wall, the

changes amongst each of the cases are more appreciable. The amplification of these
supersonic modes takes advantage of the inviscid singularity in the freestream rather
than the shear driven mechanisms within the boundary layer. The supersonic modes
require 𝑘𝑥 > 𝑘𝑧, which are not amplified by the lift-up mechanism through𝑈𝑦 within
the boundary layer (Abreu, Cavalieri, et al., 2020). The forcing components with
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Figure 5.6: Real part of 𝜓𝑝,1 for the representative supersonic modes (𝑘𝑥 = 2𝜋/1,
𝑘𝑧 = 2𝜋/10, 𝑐 = 𝑈 (𝑦+ = 15). Case i, ii, and iii are in red, black, and blue solid
lines. The dotted orange line denotes 𝑝𝑀 , where its amplitude and phase angle is
matched to 𝜓𝑝,1 at 𝑦+ = 350.

the largest magnitude within the boundary layer are 𝜙𝑢,1, 𝜙𝑇,1, and 𝜙𝜌,1 which excite
large response components in 𝜓𝑇,1 and 𝜓𝜌,1. Hence, within the boundary layer, the
linear amplification is primarily through the temperature and density components.
These excite terms that are influenced by the change in the thermodynamic properties
within the boundary layer. Since the temperature and density components are much
larger for the supersonic mode, the difference in 𝛾, 𝑇 , and 𝜌 in the Chu norm of
Equation 5.10 also plays a role in setting the mode shape since the modes need to
be orthonormal with respect to the Chu norm. Regardless, the changes within the
boundary layer only affect the near-wall region and does not affect the amplification
as was shown in Figure 5.3.

In Figure 5.6, the pressure component of 𝝍1, 𝜓𝑝,1 = 𝑇𝜓𝑇,1 + 𝜌𝜓𝜌,1, is plotted for
the three cases. This is compared with Mack (1984)’s unforced, inviscid freestream
solution,

𝑝𝑀 = 𝑖𝛾𝑒Ma2𝑘𝑥
©­­«

1 − 𝑐√︃
𝑘2
𝑥 + 𝑘2

𝑧

ª®®¬ exp

(
−
√︃
𝑘2
𝑥 + 𝑘2

𝑧

√︃
1 − Ma2

𝑦

)
. (5.14)

Note that this solution only holds in the freestream region if viscous effects are
assumed to be negligible. The solution agrees well with 𝜓𝑝,1 in the freestream,
despite the viscous dissipation and presence of the boundary layer (Madhusudanan
and McKeon, 2022). 𝜓𝑝,1 for cases i and iii match well near the wall despite
the differences in thermodynamic properties. This may indicate that the pressure
component is most influenced by changes to the mean shear, rather than changes to
the thermophysical properties.
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Figure 5.7: Contours of 𝜎2
1 𝑘𝑥𝑘𝑧 for case i (red), ii (black), and iii (blue) using

𝑐 = 𝑈 (𝑦+ = 15) and forcing from only the temperature and density components
to investigate the effect of differences in the thermodynamic properties within the
boundary layer on the linear amplification. The thick black line denotes the sonic
line. The contour lines above the sonic line correspond to 𝜎2

1 𝑘𝑥𝑘𝑧 = 790 and 9600
and below the sonic line correspond to 𝜎2

1 𝑘𝑥𝑘𝑧 = 100, 316, 550, 710, and 1000 in
(a). In (b), the contour lines denote .1%, 1%, 10%, 30%, 50%, and 75% of the local
maximum of 𝜎2

1 𝑘𝑥𝑘𝑧 below the sonic line. The contour lines above the sonic line
are omitted in (b) to highlight the differences within the subsonic region.

Since the temperature and density components of the forcing were affected by the
thermodynamics, component wise masking is applied to the forcing to only allow
forcing from 𝜙𝑇 and 𝜙𝜌. The sweep is recomputed using the same parameters as
Figure 5.2 and the results are plotted in Figure 5.7. The absence of hydrodynamic
forcing causes the subsonic region (Ma < 1) to be three orders of magnitude less
amplified than the full forcing at their respective peak values. The forcing in the
supersonic region amplifies similar regions in spectral space as the full forcing
since the supersonic region is amplified by freestream acoustics (Madhusudanan
and McKeon, 2022). Furthermore, the change in the thermodynamic properties and
𝑇 within the boundary layer once again does not affect the amplification of these
supersonic modes.

On the other hand, the subsonic modes are affected by the component wise forcing
since these modes have support within the boundary layer where the changes are
more severe. The length scales that demonstrate most sensitivity to the real gas
effects are representative of the near-wall cycle with 𝜆𝑥 ≈ 1000/Re𝜏, 𝜆𝑧 ≈ 100/Re𝜏,
contrasting with Figure 5.3 where 𝜆𝑥 ≫ 𝜆𝑧 demonstrated the most sensitivity.
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Figure 5.8: Contours of 𝜎2
1 𝑘𝑥𝑘𝑧 for case i (red), ii (black), and iii (blue) using

𝑐 = 𝑈 (𝑦+ = 100). The contour lines correspond to 𝜎2
1 𝑘𝑥𝑘𝑧 = 103, 104, 105, 106,

107, 108.

Plotting the contours as a percent of the local maxima in the subsonic region for
each case in Figure 5.7(b) does not collapse the amplification. This may point to the
amplification mechanisms of temperature and density forcing lacking self-similarity
due to the complex temperature variation in the thermodynamic variables. Case i
has the smallest amplification while case iii has the largest amplification in the
subsonic region. This again points to the reduction of linear amplification with
thermal diffusivity, which is decreased with real gas effects.

Lastly, the sweep is computed using the full forcing for 𝑐 = 𝑈 (𝑦+ = 100) ≈ .9 and
plotted in Figure 5.8. Relatively supersonic modes are not possible with this 𝑐 and
Ma since Ma < 1 for all wavenumbers. As a result, the modes are all relatively
subsonic and exhibit no discontinuity in the amplification. The choice of wavespeed
ensures that the modes are localized by the critical layer at 𝑦+ = 100 (McKeon and
Sharma, 2010). At 𝑦+ = 100, 𝑇 and 𝑈 are approximately the same between the
CPG and CIG. However, 𝑐𝑣 and 𝑘 vary due to the CIG assumption. The 𝜆𝑧 < 1
modes have amplification that is independent of the CPG and CIG assumptions.
These modes are localized at the critical layer, and have a minimal footprint at the
wall. On the other hand, the 𝜆𝑧 > 5 are affected by the real gas effects since these
modes have support close to the wall where 𝑇 differs the most. Case i and iii have
similar amplification despite their differences in the thermodynamic properties. The
amplification of these modes are then due to the changes in 𝑇 and 𝜌 between the
CPG and CIG.
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Figure 5.9: Contours of 𝜎2
𝑖
𝑘𝑥𝑘𝑧 for case i (red), ii (black), and iii (blue) using

𝑐 = 𝑈 (𝑦+ = 15). The contour lines denote .1%, 1%, 10%, 30%, 50%, and 75% of
the local maximum of 𝜎2

𝑖
𝑘𝑥𝑘𝑧 below the sonic line. 𝑖 = 2, 3, 4, and 5 are plotted in

(a), (b), (c), and (d).

Differences in the Sub-optimal Resolvent Gains Using the CPG/CIG Assump-
tions

Up to now, the discussion has focused on the leading response modes and𝜎1. Briefly,
the discussion will now focus on the higher order modes by primarily looking at
𝜎2
𝑖
𝑘𝑥𝑘𝑧 for the three different cases. These are plotted using the same sweep that

was used to compute Figure 5.2 for 𝑖 = 2, 3, 4, and 5 in Figure 5.9. For each 𝜎2
𝑖
𝑘𝑥𝑘𝑧,

the contours are plotted at percentages of the maxima of each case. Plotting these
resolvent gains demonstrates negligible variations in the amplification of the higher
order modes, consistent with what was plotted in Figure 5.3(b) for 𝜎2

1 𝑘𝑥𝑘𝑧. In
fact the variations of the higher order amplifications amongst the different cases is
smaller than the variation in the optimal amplification. Although not plotted, the
higher order modes show small variations with the different cases consistent with
the observations made for the optimal modes.

Finally, for reference, the maximum 𝜎2
𝑖
𝑘𝑥𝑘𝑧 is listed for each case in Table 5.3.

The optimal amplification is an order of magnitude larger than the sub-optimal
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Case 1 2 3 4 5
i 1.11 × 106 2.89 × 105 1.22 × 105 5.40 × 104 2.50 × 104

ii 1.24 × 106 3.20 × 105 1.31 × 105 5.77 × 104 2.66 × 104

iii 1.21 × 106 3.05 × 105 1.28 × 105 5.64 × 104 2.60 × 104

Table 5.3: Maximum 𝜎2
𝑖
𝑘𝑥𝑘𝑧 for each case in the subsonic region

amplification within the subsonic region. This is consistent with the low-rank
behavior seen in the resolvent operator (McKeon and Sharma, 2010).

Summary of the Differences in Resolvent Amplification Using the CPG/CIG
Assumptions

The real gas effects mostly change the linear amplification within the near-wall
region of the flow, where the 𝑇 are largest. The real gas effects were shown to
increase the linear amplification of the flow, largely because of the temperature and
density components of 𝝍1 and 𝝓1. The vibrational excitation decreases the thermal
diffusivity which limits the temperature diffusion allowing for more amplification.
The lack of collapse in 𝑢𝑢 and 𝜎1 in Figure 5.3(a) suggest that a velocity scale that
accounts for the change in thermodynamic properties may be more appropriate (Bae,
Dawson, and McKeon, 2020). In the supersonic region, the real gas effects did not
affect the amplification due to the freestream excitation of these modes. The mode
shapes, however, differ near the wall. The sub-optimal 𝜎𝑖 were shown to have slight
deviations with the different cases, similar to 𝜎1.

5.4 Resolvent Formulation for a Mixture of Ideal Gases in Chemical Nonequi-
librium

At large temperatures, chemical nonequilibrium effects in air become relevant as
N2 and O2 dissociate into NO, O, and N (Anderson Jr., 2006). The effect of the
chemistry terms on the resolvent amplification will now be studied. Accounting for
the products and reactants in the dissociation of air requires a larger state vector with
extra terms in the LNSE. These extra terms produce sources of shear and dissipation
not present in a single species, non-reacting ideal gas.

Here, the fluid is assumed to be a mixture of ideal gases in chemical nonequilibrium
and thermal equilibrium as in the simulation of Di Renzo and Urzay (2021). The
species in the mixture are N2, O2, NO, N, and O, where ionization is neglected. The
equations are nondimensionalized with the same variables in Section 5.2, with the
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addition of the diffusion coefficients, 𝐷𝑖𝑠 ,𝑒, of species 𝑖𝑠. In this section, subscripts 𝑒
denote dimensional values defined at the freestream, rather than the local boundary
layer edge. The governing equations are then

𝜌̆
𝐷ŭ
𝐷𝑡

= − 1
𝛾
𝑒
Ma2∇𝑝 +

1
Re

∇ · 𝜏, (5.15)

𝜌̆𝑐𝑣
𝐷𝑇

𝐷𝑡
= −(𝛾

𝑒
− 1)𝑝∇ · ŭ + 𝛾

𝑒
(𝛾

𝑒
− 1)Ma2

Re
𝜏 : ∇ŭ +

𝛾
𝑒

𝑃𝑟Re
∇ ·

(
𝑘̆∇𝑇

)
+

𝑁𝑠∑︁
𝑖𝑠

[
𝑀𝑒

𝑀𝑖𝑠

𝛾
𝑒
− 1

Re
𝑇∇ ·

(
𝜌̆𝑖𝑠V̆𝑖𝑠

)
− 𝑒𝑖𝑠 ¤̆𝜔𝑖𝑠 −

𝛾
𝑒

Re
𝑐𝑝,𝑖𝑠∇𝑇 · 𝜌̆𝑖𝑠V̆𝑖𝑠

]
, (5.16)

𝐷𝜌̆𝑖𝑠

𝐷𝑡
= −𝜌̆𝑖𝑠∇ · ŭ − 1

Re
∇ ·

(
𝜌̆𝑖𝑠V̆𝑖𝑠

)
+ ¤̆𝜔𝑖𝑠 , (5.17)

𝑝 = 𝑇

𝑁𝑠∑︁
𝑖𝑠

𝑀𝑒

𝑀𝑖𝑠

𝜌̆𝑖𝑠 , (5.18)

𝜏 = 𝜇̆

(
∇ŭ + ∇ŭ𝑇 − 2

3
(∇ · ŭ)I

)
, (5.19)

where Equation 5.15 is the momentum equation, Equation 5.16 is the internal energy
equation, Equation 5.17 is the continuity equation for each species, Equation 5.18
is the equation of state, and Equation 5.19 is the stress tensor. The subscripts
𝑖𝑠 = 1, . . . , 5 denote N2, O2, NO, N, and O, respectively. Note that Equation
5.16 is expressed in terms of internal energy transport to ease comparisons with
Equation 5.2 and to avoid time derivatives of 𝑝 present when considering enthalpy
transport (Malik and Anderson, 1991). Each species has its own density, 𝜌̆𝑖𝑠 , specific
heat capacity at constant pressure, 𝑐𝑝,𝑖𝑠 , internal energy, 𝑒𝑖𝑠 , and chemical rates of
mass production, ¤̆𝜔𝑖𝑠 . 𝑀𝑖𝑠 is the molecular weight of each species, while 𝑀𝑒 is the
molecular weight of the mixture in the freestream. The diffusive flux is defined as

𝜌̆𝑖𝑠V̆𝑖𝑠 =

𝑁𝑠∑︁
𝑘=1

©­«−
𝐷̆𝑖𝑠
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𝜌̆𝑘𝑀𝑖𝑠

𝑀𝑘

∇𝑋̆𝑖𝑠 + 𝑌𝑖𝑠
𝑁𝑠∑︁
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𝐷̆ 𝑗

𝑆𝑐 𝑗

𝜌̆𝑘𝑀 𝑗

𝑀𝑘

∇𝑋̆ 𝑗
ª®¬, (5.20)

where 𝐷̆𝑖𝑠 , 𝑌𝑖𝑠 = 𝜌̆𝑖𝑠/𝜌̆ and 𝑋̆𝑖𝑠 =
(
𝜌̆𝑖𝑠/𝑀𝑖𝑠

)
/
(∑𝑁𝑠

𝑘=1 𝜌̆𝑘/𝑀𝑘

)
are the mass diffusivity,

mass fraction, and mole fraction of species 𝑖𝑠, respectively. 𝑆𝑐𝑖𝑠 = 𝜇𝑒/(𝜌𝑒𝐷𝑖𝑠 ,𝑒)
is the Schmidt number of species 𝑖𝑠. By definition, Equation 5.20 ensures that∑𝑁𝑠

𝑖𝑠
𝜌̆𝑖𝑠V̆𝑖𝑠 = 0. Additionally,

∑𝑁𝑠

𝑖𝑠
¤̆𝜔𝑖𝑠 = 0. Performing a summation of Equation

5.16 over 𝑖𝑠 recovers the continuity equation of the mixture,
𝐷𝜌̆

𝐷𝑡
= −𝜌̆∇ · ŭ, (5.21)
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though only the individual species continuity equations are used in the analysis.
More details on the transport and thermal coefficients are reported by Di Renzo, Fu,
and Urzay (2020). The wall is treated with no-slip, isothermal, and non-catalytic
boundary conditions to match the simulation in Di Renzo and Urzay (2021).

The state vector is q̆ =
[
ŭ, 𝑇, 𝜌̆𝑁2 , 𝜌̆𝑂2 , 𝜌̆𝑁𝑂 , 𝜌̆𝑁 , 𝜌̆𝑂

]
while the thermodynamic state

is 𝜃 =
[
𝑇, 𝜌̆𝑁2 , 𝜌̆𝑂2 , 𝜌̆𝑁𝑂 , 𝜌̆𝑁 , 𝜌̆𝑂

]
. q̆ is decomposed into a mean state, q(𝑦), and

fluctuating state, q(x, 𝑡), using the approximation of the parallel flow assumption
as in Franko, MacCormack, and Lele (2010). The parallel flow assumption here
models flow structures with characteristic length and time scales. Using a streamwise
homogeneous and temporally stationary chemically reacting flow, as implied by the
parallel flow assumption, can not capture the streamwise-varying heat loss from
the endothermic reactions nor the boundary layer growth. Due to these nonparallel
effects, this analysis is expected to hold primarily for the smallest scales with
𝜆𝑥 ≪ 𝑈−1

𝑒 𝜕𝑈𝑒/𝜕𝑥 and 𝜆𝑡 ≪ 𝜕𝑈𝑒/𝜕𝑥 . Just as in Section 5.2, q is treated as a
normal mode and the linear terms are separated from the nonlinear terms in the
governing equations. These nonlinear terms are treated as an uncorrelated forcing.
This creates the linear input-output relationship,

q̂ =

(
−𝑖𝜔I + L̂

)
B f̂. (5.22)

The same convention from Section 5.2 is used for the overbar. Due to the complex
relationship between the thermophysical properties, 𝑔, and 𝜃, partial derivatives,
𝜕𝑔/𝜕𝜃𝑖 , are computed numerically using centered finite differences. The fluctu-
ations of quantities other than the state variables are defined using Equation 5.7.
This is useful for defining the 𝑝, 𝑌𝑖𝑠 , or 𝑋𝑖𝑠 components of the resolvent modes, for
example. At the wall, q̂ satisfies the no-slip, isothermal, and linearized non-catalytic
boundary condition,

𝜕𝑦𝑌𝑖𝑠 = 𝜕𝑦

(
𝜌̂𝑖𝑠

𝜌
− 𝑌 𝑖𝑠

𝜌̂

𝜌

)
= 0, (5.23)

where 𝜌̂ =
∑𝑁𝑠

𝑖𝑠=1 𝜌̂𝑖𝑠 .
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For brevity, L̂ is given as a block diagonal matrix as

L̂ =



𝐿1,1 𝐿1,2 𝐿1,3 𝐿1,4 𝐿1,5 · · · 𝐿1,9

𝐿2,1 𝐿2,2 𝐿2,3 𝐿2,4 𝐿2,5 · · · 𝐿2,9

𝐿3,1 𝐿3,2 𝐿3,3 𝐿3,4 𝐿3,5 · · · 𝐿3,9

𝐿4,1 𝐿4,2 𝐿4,3 𝐿4,4 𝐿4,5 · · · 𝐿4,9

𝐿5,1 𝐿5,2 𝐿5,3 𝐿5,4 𝐿5,5 · · · 𝐿5,9
...

...
...

...
...

. . .
...

𝐿9,1 𝐿9,2 𝐿9,3 𝐿9,4 𝐿9,5 · · · 𝐿9,9


, (5.24)

where the blocks 𝐿𝑖, 𝑗 follow a similar convention as in Equation 5.9, except the
indices from 1 to 9 denote 𝑢, 𝑣, 𝑤, 𝑇 , 𝜌𝑁2 , 𝜌𝑂2 , 𝜌𝑁𝑂 , 𝜌𝑁 , and 𝜌𝑂 . 𝐿 𝑗 ,𝑖 with 𝑗 ≥ 5
denote terms of the linearized 𝑗 th species continuity equation acting on q𝑖. The
explicit terms are listed in Appendix E.3. Just as in Equation 5.9, the diagonal
terms include dissipative terms and the convective term, while the off-diagonal
terms include component-wise amplification mechanisms from shear. 𝐿4,4 can be
expanded as

𝐿4,4 = 𝐿𝑒4,4 + 𝐿
𝑛
4,4, (5.25)

where 𝐿𝑒4,4 has the same terms as the single species CIG case would have while 𝐿𝑛4,4
denotes all the terms related to the chemical nonequilibrium and molecular diffusion.
All of the blocks have terms influenced by the mixture due to the dependence of the
transport and thermophysical properties’ dependence on the thermodynamic state.
The blocks that directly include terms related to the chemical nonequilibrium or
molecular diffusion are the 𝐿𝑖, 𝑗 blocks with 𝑖 ≥ 5, the 𝐿𝑖, 𝑗 blocks with 𝑗 ≥ 5, and
the 𝐿4,4 block.

The inner products are chosen such that W𝑟 = W𝑓 = W removes the influence of
𝑝∇·u terms in the inner product as in the Chu norm (Chu, 1965; Hanifi, Schmid, and
Henningson, 1996; Franko, MacCormack, and Lele, 2010). Explicitly, the weight
matrix is

W = diag

(
𝜌, 𝜌, 𝜌,

𝜌𝑐𝑣

𝑇Ma2𝛾
𝑒
(𝛾

𝑒
− 1)

,
𝑀𝑒𝑇

𝑀1𝛾𝑒
Ma2𝜌1

, . . . ,
𝑀𝑒𝑇

𝑀5𝛾𝑒
Ma2𝜌5

)
. (5.26)

There is a discrepancy with the Chu norm used by Franko, MacCormack, and Lele
(2010) and Equation 5.26 due to the treatment of the

(
𝜌𝑖𝑠

)−1 terms. The former
uses 𝜌 rather than 𝜌𝑖𝑠 to avoid division by zero in the freestream where the densities
of NO, N, and O vanish. Here, regularization is applied by using (𝜌𝑖𝑠 + 𝜖𝑟)

−1,
with 𝜖𝑟 = 10−13, instead of

(
𝜌𝑖𝑠

)−1. Maintaining the 𝜌𝑖𝑠 terms ensures that the
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compressive work terms are neglected to allow for a direct comparison with the
single species Chu-norm in Equation 5.26. See Appendix F for a comparison of
results using the inner product in Equation 5.26 and the one described in Franko,
MacCormack, and Lele (2010).

The equations are discretized using SBP with 𝑁𝑦 = 501 grid points (Mattsson and
Nordström, 2004). The grid points are stretched as 𝑦 𝑗 = 𝑦𝑚𝑎𝑥 sinh

(
5.1𝑦̂ 𝑗

)
/sinh(5.1),

where 𝑦̂ 𝑗 ∈ [0, 1] for 𝑗 = 1, . . . , 𝑁𝑦 are equispaced and 𝑁𝑦 = 501. This grid stretch-
ing was employed in Di Renzo and Urzay (2021), though the value of 𝑁𝑦 and 𝑦𝑚𝑎𝑥
differ to allow for a larger freestream region and increased resolution. The same
strategies as in Section 5.2 are used for the freestream boundary conditions, damp-
ing, and resolvent decomposition. The adjoint of the LNSE is treated using the
conjugate transpose approach described in Section 2.2 which is known to create
grid-to-grid oscillations as in Chandler et al. (2012). Although using increased
resolution can mitigate these oscillations, the large state vector make this a compu-
tationally intensive approach. Instead, a spatial filter is used to remove the small
scale oscillations near the wall (Lele, 1992). See Algorithm 2 for details on the
implementation of the filter in the Arnoldi algortithm.

The effects of chemical nonequilibrium on the resolvent analysis will then be studied
for a laminar base flow and a turbulent mean flow field. The laminar flow study
compares the use of different base flows and gas modeling assumptions in the LNSE.
It is shown that the supersonic modes are hardly affected by the changes in the base
flow and modeling assumptions while the subsonic modes, with most support near
the wall, are sensitive to the changes in the modeling assumptions. Due to the larger
wall-normal extent of the 𝜆𝑥 → ∞ modes, these modes are also most sensitive to the
use of a chemical nonequilibrium assumption. For the turbulent flow fields, the use
of chemical equilibrium and chemical nonequilibrium in the LNSE are contrasted.
For the optimal modes, all the components of the response and forcing modes under
chemical nonequilibrium, agree with those from the chemical equilibrium approach,
except for the species density components. This is because the chemical equilibrium
can not resolve the changes in concentration predicted by the resolvent modes in
chemical nonequilibrium. The linear amplification through chemistry effects in
the chemical nonequilibrium assumption creates non-negligible differences in the
velocity and temperature components of the sub-optimal modes.
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𝑇𝑒 𝑇𝑤 Ma Re𝛿∗ 𝑃𝑟

1040 K 1700 K 10.2 5.7 × 104 0.71

Table 5.4: Properties of the laminar similarity solutions. Here, Re𝛿∗ = 𝜌𝑒𝛿
∗𝑈𝑒/𝜇𝑒

and 𝑇𝑒 and 𝑇𝑤 denote the freestream and wall temperatures.

5.5 Effects of Chemical Nonequilibrium on Resolvent Amplification in Lami-
nar Flow

The resolvent analysis of a mixture of ideal gases in chemical nonequilibrium will
now be investigated using laminar similarity solutions as the mean flow fields. The
similarity solutions have matched properties, though one is computed using a CPG
assumption while the other is computed assuming chemical nonequilibrium. First,
the mean flow fields will be described. Following this, the resolvent analysis will
then be used to compare results using the CIG, chemical equilibrium, and chemical
nonequilibrium assumptions.

Description of the Laminar Similarity Solutions

CPG and chemical nonequilibrium similarity solutions are studied with their char-
acteristic properties and imposed temperatures defined in Table 5.4. Although Re𝛿∗
is matched between the two flows, the Re differ. The chemical nonequilibrium case
has Re = 7.3 × 104 while the CPG has Re = 7.0 × 104. Re𝛿∗ was matched since it is
an integral measure of the velocity. The similarity solution of a CPG is computed
using 𝜇̆ = 𝑇2/3 as opposed to the Sutherland law. To derive the similarity solution
for the CPG, the following variables are defined as

𝜉 (𝑥) =
∫ 𝑥

0
𝜌𝑒𝜇𝑒𝑈𝑒𝑑𝑥 (5.27)

and
𝜂(𝑥, 𝑦) = 𝑈𝑒𝜌𝑒√︁

2𝜉

∫ 𝑦

0
𝜌̆𝑑𝑦. (5.28)

Note that for the ZPG case studied here, 𝜉 (𝑥) = 𝜌𝑒𝜇𝑒𝑈𝑒𝑥. A similarity variable,
𝑓 (𝜂), is introduced such that

𝑢 = 𝑓 ′ (5.29)

and

𝑣 = − 1
𝑈𝑒 𝜌̆

(
𝜌𝑒𝜇𝑒𝑈𝑒√︁

2𝜉
𝑓 + 𝜕𝜂

𝜕𝑥

√︁
2𝜉 𝑓 ′

)
. (5.30)
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Case Mean LNSE
i CPG CIG
ii CNE CE
iii CNE CNE

Table 5.5: CIG, CE (chemical equilibrium), and CNE (chemical nonequilibrium)
denote the assumption used for the mean flow field and the LNSE.

These expressions ensure that the continuity equation in Equation 5.3 holds. Taking
the thin boundary layer assumptions, the streamwise momentum equation becomes

(𝐶 𝑓 ′′)′ + 𝑓 𝑓 ′′ = 0, (5.31)

where 𝐶 = 𝜌̆(𝜂) 𝜇̆(𝜂). The similarity variables and thin boundary layer equations
are then used in Equation 5.2 to arrive at(

𝐶

𝑃𝑟
𝑔′

)′
+ 𝑓 𝑔′ + 𝐶

𝑢2
𝑒

ℎ𝑒
( 𝑓 ′′)2

= 0, (5.32)

where 𝑔 = 𝑇 , ℎ𝑒 is the enthalpy at the freestream, and the assumption that the Prandtl
number is constant across the boundary layer is invoked. Equations 5.31 and 5.32
are closed with the addition of the boundary conditions 𝑓 (0) = 0, 𝑓 ′(0) = 0,
𝑔(0) = 𝑇𝑤/𝑇𝑒, lim𝜂→∞ 𝑓 = 1, and lim𝜂→∞ 𝑔 = 1. More details on the derivation
can be found in Anderson Jr. (2006).

The similarity solution for a hypersonic boundary layer with a mixture of ideal gases
in chemical nonequilibrium is described in the appendix of Di Renzo and Urzay
(2021). The strategy for the similarity solution is similar, except with the addition
of 5 equations for the species continuity equations, additional terms in Equation
5.32 related to the energy flux from diffusion, and different constitutive relations for
the thermophysical properties. Furthermore, they require the boundary conditions
𝑌𝑁2 = 0.767, 𝑌𝑂2 = 0.233, 𝑌𝑁𝑂 = 0, 𝑌𝑁 = 0, and 𝑌𝑂 = 0 at the freestream and
𝑑𝜂𝑌𝑁2 = 𝑑𝜂𝑌𝑂2 = 𝑑𝜂𝑌𝑁𝑂 = 𝑑𝜂𝑌𝑁 = 𝑑𝜂𝑌𝑂 = 0 at the wall to satisfy the non-catalytic
boundary conditions.

Three cases are studied to investigate the effect of chemical nonequilibrium on the
linear amplification. Case i uses the CPG base flow while case ii uses a base flow
under chemical nonequilibrium. These two cases use a single species ideal gas
for the LNSE where the thermophysical properties are computed using the mean
thermodynamic state, 𝜃 (Edwards, 1992; Malik and Anderson, 1991). The base
flow and the LNSE of case i use different thermophysical properties. Despite the
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Figure 5.10: 𝑈 (a), 𝑇 (b), 𝜌 (c), 𝜇 (d), 𝑘 (e), and 𝑐𝑣 (f) for the CPG (in red) and
CNE (in black) similarity solutions. 𝑋 𝑖𝑠 (g), and ¤𝜔𝑖𝑠 (h) are plotted with their colors
labeled in the legend. Note that the 𝑋 𝑖𝑠 of the dissociated components are rescaled
in (g) for visualization.

discrepancy, case i is primarily used to compare the differences in the mean flow
field as opposed to the thermophysical properties. Case i uses a CIG assumption
throughout the boundary layer with thermophysical properties computed using the
local 𝑇 while case ii uses chemical equilibrium, with the thermophysical properties
in the LNSE computed locally using the mass fractions and 𝑇 from the similarity
solution in chemical nonequilibrium. Both cases i and ii use a single species gas.
Case iii uses chemical nonequilibrium in the base flow and the LNSE. These are
summarized in Table 5.5. This is similar to what was studied in Section 5.3, except
here the effects of chemical nonequilibrium are studied.
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The base flows are plotted in Figure 5.10. The chemical nonequilibrium effects on
𝑈 in the similarity solution are negligible. The chemical nonequilibrium effects are
most evident in 𝑇 and 𝜌 due to the changes in the thermodynamics. 𝑘 , 𝜇, and 𝑐𝑣
differ significantly due to the change in thermodynamic state, primarily because of
the 𝑇 differences. 𝑋𝑁 is largest where 𝑇 peaks. 𝑋𝑁𝑂 and 𝑋𝑂 also reach their largest
values where 𝑇 peaks. The mean chemical rates of mass production, ¤𝜔𝑖𝑠 , are plotted
in Figure 5.10(h). They peak locally where𝑇 peaks, but for O and O2, they have large
values near the wall. Since differences in 𝑈 are negligible between the three cases,
comparisons using case i will demonstrate the differences in the resolvent modes
and amplification due to differences in 𝜃. Case ii and iii will illustrate differences in
the modelling approaches.

Comparison of the Resolvent Analysis Results Using Laminar Similarity Solu-
tions

The linear amplification of the three cases is studied by performing a sweep over
80 logarithmically spaced points between 2𝜋/.025 and 2𝜋/100 for both 𝑘𝑥 and 𝑘𝑧.
The wavespeed, 𝑐, is fixed at 𝑐 = .5. 𝑐 is chosen such that 𝑐 = 𝑈 (𝑦𝑇 ), where
𝑦𝑇 it the location of maximum temperature. This is the region where chemical
nonequilibrium effects are most apparent as the temperature is large enough to
sustain dissociation of O2, the nitrogen oxidation via the Zel’dovich mechanism,
and slight dissociation of N2 (Anderson Jr., 2006; Di Renzo and Urzay, 2021). In
this sweep, amplification from different components of the forcing are investigated
through component-wise masking withB. The sweeps consider forcing from the full
forcing vector, temperature, density, or species density components. The density
forcing is only studied in case iii which supports chemical nonequilibrium. The
forcing from the density component entails forcing from all the species density
components such that B𝝓 = [0, 0, 0, 0, 𝜙𝜌𝑁2

, 𝜙𝜌𝑂2
, 𝜙𝜌𝑁𝑂

, 𝜙𝜌𝑁 , 𝜙𝜌𝑂 ].

In Figure 5.11, the contours of 𝜎2
1 𝑘𝑥𝑘𝑧 are compared for the three cases using the

full forcing vector. A visible discontinuity is present at Ma = 1 in all three cases
indicating that freestream supersonic phenomena are supported even under chemical
nonequilibrium. This is expected since these modes are primarily amplified by a
singularity in the freestream (Madhusudanan and McKeon, 2022; Mack, 1984),
where chemical nonequilibrium effects are negligible due to the smaller𝑇 (Di Renzo
and Urzay, 2021). As a result, cases ii and iii have small differences in the supersonic
region for 𝜆𝑥 < 50. Case i has similar contour shapes, although the amplification is
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Figure 5.11: Contours of 𝜎2
1 𝑘𝑥𝑘𝑧 for case i (a), case ii (b), and case iii (d). The
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1 𝑘𝑥𝑘𝑧 = 101, 102, . . . , 107. These contours are all plotted in

(c) where case i, ii, and iii are in red, blue, and black. The solid black line denotes
the sonic line.

smaller than in cases ii and iii, likely because of the increased temperature diffusivity
within the boundary layer. In the subsonic region, the differences between case i
and cases ii and iii are most evident because of the differences within the boundary
layer. Case i once again has decreased amplification due to the reduction in the 𝑇 𝑦
and increased temperature diffusivity.

The linear amplification in Figure 5.11 of cases ii and iii differs the most for streak-
like modes with 𝜆𝑥 > 50, 𝜆𝑧 > 1 with case iii having increased amplification.
The streaky structures have support near the wall, where they are amplified by
non-normal, off-diagonal terms in the LNSE due to the chemistry components.
These terms can be large near the wall for the laminar flow, as shown in Figure
5.10(h). When chemical equilibrium is assumed, these chemistry related terms are
neglected resulting in a decrease in amplification. Compared to Figure 5.2, the jump
across Ma = 1 in Figure 5.11 is smaller. This is a Ma related effect, likely due to
increased viscous dissipation with Ma2 in the energy equations which regularize the
singularities that generate acoustic modes.
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Figure 5.12:
��𝜓𝑢,1�� (a),

��𝜙𝑢,1�� (b),
��𝜓𝑣,1�� (c),

��𝜙𝑣,1�� (d),
��𝜓𝑤,1�� (e),

��𝜙𝑤,1�� (f),
��𝜓𝑇,1��

(g),
��𝜙𝑇,1�� (h),

��𝜓𝑇,1�� (i),
��𝜙𝑇,1�� (j) for representative subsonic modes (𝑘𝑥 = 2𝜋/10,

𝑘𝑧 = 2𝜋/1, 𝑐 = .5). Case i, ii, and iii are in red, blue, and black solid lines.

In Figure 5.12, the velocity, temperature, and density components of 𝝍1 and 𝝓1 are
compared for all three cases for a representative subsonic mode with 𝑘𝑥 = 2𝜋/10,
𝑘𝑧 = 2𝜋/1, and 𝑐 = .5. Due to the differences between 𝑇 and 𝜌 within the boundary
layer, the resolvent modes of case i differ significantly. The velocity components
between cases ii and iii are unaffected by the chemical nonequilibrium effects. 𝜙𝑇,1
and 𝜙𝜌,1 differ between case ii and iii because the LNSE of case iii have thermo-
dynamic state-dependent off-diagonal terms from the chemical nonequilibrium and
molecular diffusion that are not present in case ii. These effects then change 𝜓𝑇,1
and 𝜓𝜌,1.

Since case ii assumes chemical equilibrium, a single species of gas is assumed. To
compare the species components of case iii with the chemical equilibrium approach,
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Figure 5.13:
���𝜓𝜌𝑁2 ,1

��� (a),
���𝜙𝜌𝑁2 ,1

��� (b),
���𝜓𝜌𝑂2 ,1

��� (c),
���𝜙𝜌𝑂2 ,1

��� (d),
��𝜓𝜌𝑁𝑂 ,1

�� (e),
��𝜙𝜌𝑁𝑂 ,1

��
(f),

��𝜓𝜌𝑁 ,1�� (g),
��𝜙𝜌𝑁 ,1�� (h),

��𝜓𝜌𝑂 ,1�� (i),
��𝜙𝜌𝑂 ,1�� (j) for representative subsonic modes

(𝑘𝑥 = 2𝜋/10, 𝑘𝑧 = 2𝜋/1, 𝑐 = .5). Case ii and iii are in blue and black solid lines.

the species components of case ii are defined as 𝜓𝜌𝑖𝑠 ,1 = 𝑌 𝑖𝑠𝜓𝜌,1 and 𝜙𝜌𝑖𝑠 ,1 =

𝑌 𝑖𝑠𝜙𝜌,1. In case iii, these species components are computed explicitly and account for
fluctuations in the mass fractions from the species continuity equations. Following
the definition of 𝜓𝜌𝑖𝑠 ,1 in case ii, the species component 𝜓𝜌𝑖𝑠 ,1 in case iii is equivalent
to 𝑌 𝑖𝑠𝜓𝜌,1 + 𝜌𝜓𝑌𝑖𝑠 ,1. The species components are compared in Figure 5.13. The N2

and O2 density components are largest, as one would expect, since these species
are most abundant within the boundary layer. The density components of NO and
O are also larger than the density component of N since the mean temperature
within the boundary layer and freestream is less than 4000 K, which is too small
to support significant dissociation of N2 (Anderson Jr., 2006). Furthermore, any
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Figure 5.14: Real part of 𝜓𝑋𝑁2 ,1 (a), 𝜓𝑋𝑂2 ,1 (c), 𝜓𝑋𝑁𝑂 ,1 (e), 𝜓𝑋𝑁 ,1 (g), and 𝜓𝑋𝑂 ,1
(i) and magnitude of 𝜙𝑋𝑁2 ,1 (b), 𝜙𝑋𝑂2 ,1 (d), 𝜙𝑋𝑁𝑂 ,1 (f), 𝜙𝑋𝑁 ,1 (h), and 𝜙𝑋𝑂 ,1 (j) for
representative subsonic modes (𝑘𝑥 = 2𝜋/10, 𝑘𝑧 = 2𝜋/1, 𝑐 = .5). Case ii and iii are
in blue and black solid lines.

production of N is rapidly consumed by the Zel’dovich mechanism, limiting its
support. The 𝜌𝑁2 components are well approximated in case ii, likely because there
is less dissociation of N2 for these temperatures so 𝜓𝑌𝑁2 ,1 is small in case iii. Case

ii computes a double peaked shape of
���𝜓𝜌𝑂2 ,1

���, though with an overestimation of
the amplitudes. This is consistent with the dissociation of O2 at these temperatures
that makes 𝜓𝑌𝑂2 ,1 non-negligible. The dissociated components, NO, N, and O, are
completely misrepresented in the response modes in both shape and amplitude.
Notably for 𝜓𝜌𝑁 ,1, the chemical equilibrium approach provides amplitudes almost
an order of magnitude larger than in the chemical nonequilibrium approach. The
forcing modes agree better between cases ii and iii than the response modes in



132

both shape and amplitude. Since the species components in case ii are computed
without accounting for fluctuations in 𝑌𝑖𝑠 , this suggests that forcing from changes in
concentration is not optimal. Rather, 𝜙𝜌1 may take advantage of a component-wise
amplification mechanism for 𝜌.

The mole fractions are functions of the temperature and the mass fractions, which can
only change if a mixture of gases is used. Using a single-species gas assumption,
the mole fraction fluctuations in the resolvent modes are 0. In Figure 5.14, the
mole fractions are plotted for the chemical nonequilibrium in case iii. 𝜓𝑋𝑂2 ,1 is
anticorrelated with 𝜓𝑋𝑂 ,1 since a decrease in O2 results in an increase in O. With the
Zel’dovich mechanism, N2 and O produce NO and N. N is then rapidly consumed
with O2 to create NO and O. As a result, increases in 𝜓𝑋𝑂2 ,1 and 𝜓𝑋𝑁2 ,1 lead
to decreases in 𝜓𝑋𝑁𝑂 ,1 and negligible contributions of 𝜓𝑋𝑁 ,1 from the Zel’dovich
mechanism. This causes the peak of 𝜓𝑋𝑁2 ,1 to be also anticorrelated with the peaks
of 𝜓𝑋𝑁 ,1 and 𝜓𝑋𝑁𝑂 ,1. 𝜓𝑋𝑁 ,1 is the smallest since the temperatures do not support
significant production of N. In the forcing modes, 𝜙𝑋𝑖𝑠 ,1 have large amplitudes
near the wall to force the large shear terms in the chemical terms, such as ¤𝜔𝑖𝑠 in
Figure 5.10(g). The small values of 𝜙𝑋𝑖𝑠 ,1 further explain why using the chemical
equilibrium approximation for the forcing resulted in good approximations of 𝜙𝜌𝑖𝑠 ,1
in Figure 5.13.

Now the resolvent modes are compared for a representative supersonic mode with
𝑘𝑥 = 2𝜋/5, 𝑘𝑧 = 2𝜋/10, and 𝑐 = .5. Figure 5.15 compares the velocity, temperature,
and density components of 𝝍1 and 𝝓1. Despite the presence of chemical nonequi-
librium effects, the freestream radiating acoustics are still excited. Case i differs
because of the change in 𝑇 within the boundary layer, though it is interesting to note
that 𝜓𝑢,1 is almost unchanged between the three cases. The differences between case
ii and iii are negligible, except for the boundary layer region of 𝜙𝑇,1. Similarly to
Section 5.3, these modes are excited by freestream phenomena, where the chemical
nonequilibrium effects are negligible.

In Figure 5.16, the densities of the species components are plotted. The 𝜌𝑁2 and 𝜌𝑂2

components are responsible for the pressure oscillations in the freestream acoustics,
while the 𝜌𝑁 , 𝜌𝑂 , and 𝜌𝑁𝑂 components are nonexistent in the freestream. In the
freestream, the mean temperature is too small to support dissociated components,
and this is captured with the linear analysis. Here, the chemical equilibrium assump-
tion agrees well with for the 𝜌𝑁2 and 𝜌𝑂2 components, even within the boundary
layer. This is a stark contrast from what was seen in Figure 5.13. However, the
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Figure 5.15:
��𝜓𝑢,1�� (a),

��𝜙𝑢,1�� (b),
��𝜓𝑣,1�� (c),

��𝜙𝑣,1�� (d),
��𝜓𝑤,1�� (e),

��𝜙𝑤,1�� (f),
��𝜓𝑇,1��

(g),
��𝜙𝑇,1�� (h),

��𝜓𝑇,1�� (i),
��𝜙𝑇,1�� (j) for representative supersonic modes (𝑘𝑥 = 2𝜋/5,

𝑘𝑧 = 2𝜋/10, 𝑐 = .5). Case i, ii, and iii are in red, blue, and black solid lines.

dissociated components are not predicted well, with the biggest difference occurring
for the 𝜌𝑁 component. The 𝜙𝜌𝑖𝑠 ,1 components are once again predicted well using
the chemical equilibrium approach. These supersonic modes require excitation of
a freestream singularity in pressure rather than forcing of chemistry terms through
changes in concentration.

Finally, the molar fractions of the response modes are compared in Figure 5.17. Just
as in the subsonic mode, the anticorrelations observed in 𝜓𝑋𝑖𝑠 ,1 are reflected in this
mode. In the freestream, 𝜓𝑋𝑖𝑠 ,1 ≈ 0 because the small temperatures do not support
chemical nonequilibrium. As a result, changes to the concentrations in the mixture
are not supported in the freestream, despite the fluctuations in the density. This
helps explain why the 𝜌𝑁2 and 𝜌𝑂2 components of the resolvent modes agreed well
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Figure 5.16:
���𝜓𝜌𝑁2 ,1

��� (a),
���𝜙𝜌𝑁2 ,1

��� (b),
���𝜓𝜌𝑂2 ,1

��� (c),
���𝜙𝜌𝑂2 ,1

��� (d),
��𝜓𝜌𝑁𝑂 ,1

�� (e),
��𝜙𝜌𝑁𝑂 ,1

��
(f),

��𝜓𝜌𝑁 ,1�� (g),
��𝜙𝜌𝑁 ,1�� (h),

��𝜓𝜌𝑂 ,1�� (i),
��𝜙𝜌𝑂 ,1�� (j) for representative supersonic modes

(𝑘𝑥 = 2𝜋/5, 𝑘𝑧 = 2𝜋/10, 𝑐 = .5). Case ii and iii are in blue and black solid lines.

between cases ii and iii for the representative supersonic modes. In Di Renzo and
Urzay (2021), the freestream was also absent of any change in concentration. The
small components of 𝜙𝑋𝑖𝑠 ,1 confirm why 𝜙𝜌𝑖𝑠 ,1 in case ii agreed well with case iii
just like in the subsonic mode.

The representative modes plotted corresponded to regions in spectral space where the
amplification showed little discrepancy when incorporating the chemical nonequi-
librium effects. The mode shapes between cases ii and iii were also hardly affected.
A representative streaky mode with 𝑘𝑥 = 2𝜋/100, 𝑘𝑧 = 2𝜋/5, and 𝑐 = .5, charac-
teristic of the region in Figure 5.11 where amplification differs the most, is plotted
in Figures 5.18. This mode is significantly affected by the chemical nonequilibrium
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Figure 5.17: Real part of 𝜓𝑋𝑁2 ,1 (a), 𝜓𝑋𝑂2 ,1 (c), 𝜓𝑋𝑁𝑂 ,1 (e), 𝜓𝑋𝑁 ,1 (g), and 𝜓𝑋𝑂 ,1
(i) and magnitude of 𝜙𝑋𝑁2 ,1 (b), 𝜙𝑋𝑂2 ,1 (d), 𝜙𝑋𝑁𝑂 ,1 (f), 𝜙𝑋𝑁 ,1 (h), and 𝜙𝑋𝑂 ,1 (j) for
representative supersonic modes (𝑘𝑥 = 2𝜋/5, 𝑘𝑧 = 2𝜋/10, 𝑐 = .5). Case ii and iii
are in blue and black solid lines.

effects as 𝝍1 and 𝝓1 differ substantially from case ii. In fact, 𝝍1 for cases i and ii
are more similar than case iii, despite their differences in mean flow fields. Unlike
the subsonic modes plotted in Figure 5.12, these streaky modes are able to extend
over a wide wall-normal extent of the flow, reaching down to the wall. The large
shear terms in the chemistry terms caused by the cooling by the wall create sources
of amplification for these modes that reach down to the wall. This can be seen in
the temperature and density components of 𝝓1 for case iii which differs significantly
from the other cases. Forcing from the velocity components do not show such
extreme variations when using the chemical nonequilibrium approach, suggesting
that this mode is amplified by differences in the thermodynamics.
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Figure 5.18:
��𝜓𝑢,1�� (a),

��𝜙𝑢,1�� (b),
��𝜓𝑣,1�� (c),

��𝜙𝑣,1�� (d),
��𝜓𝑤,1�� (e),

��𝜙𝑤,1�� (f),
��𝜓𝑇,1�� (g),��𝜙𝑇,1�� (h),

��𝜓𝑇,1�� (i), ��𝜙𝑇,1�� (j) for representative subsonic streaky modes (𝑘𝑥 = 2𝜋/100,
𝑘𝑧 = 2𝜋/5, 𝑐 = .5). Case i, ii, and iii are in red, black, and blue solid lines.

The chemical nonequilibrium components of the streaky mode are queried in Figures
5.19 and 5.20. The 𝜓𝜌𝑖𝑠 ,1 components of case i differ significantly from the chemical
equilibrium approach in case ii. This is likely brought upon by the difference in 𝜙𝜌
and 𝜙𝑇 . Here, 𝜙𝜌𝑖𝑠 ,1 is shown to differ from the chemical equilibrium approach since
𝜙𝜌,1 already differed substantially. In Figure 5.20 the 𝑋𝑖𝑠 components are plotted.
Notably, 𝜙𝑋𝑂2 ,1 and 𝜙𝑋𝑂 ,1 are large indicating substantial effects from chemical
concentration-related forcing.

Since thermodynamic state-dependent chemistry terms are the only difference be-
tween case ii and iii, the forcing is masked to consider only linear amplification from
𝜙𝑇 . The sweep over 𝑘𝑥 and 𝑘𝑧 is recomputed using only temperature-component
forcing and is plotted in Figure 5.21. The temperature forcing excites supersonic
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Figure 5.19:
���𝜓𝜌𝑁2 ,1

��� (a),
���𝜙𝜌𝑁2 ,1

��� (b),
���𝜓𝜌𝑂2 ,1

��� (c),
���𝜙𝜌𝑂2 ,1

��� (d),
��𝜓𝜌𝑁𝑂 ,1

�� (e),
��𝜙𝜌𝑁𝑂 ,1

��
(f),

��𝜓𝜌𝑁 ,1�� (g),
��𝜙𝜌𝑁 ,1�� (h),

��𝜓𝜌𝑂 ,1�� (i),
��𝜙𝜌𝑂 ,1�� (j) for representative subsonic streaky

modes (𝑘𝑥 = 2𝜋/100, 𝑘𝑧 = 2𝜋/5, 𝑐 = .5). Case ii and iii are in blue and black solid
lines.

phenomena whose qualitative behavior is relatively unchanged from the full forcing
in Figure 5.11. This is because the temperature component is able to excite the
radiating pressure modes in the freestream. On the other hand, the subsonic region
is less amplified since it lacks forcing from the shear-driven lift-up mechanism. Dif-
ferences between case ii and iii are observed for larger 𝜆𝑥 and 𝜆𝑧 which correspond
to modes that are able to reach down to the wall. The amplification from the streaky
structures is also uniquely observed in case iii, being completely absent in cases i
and ii. This increase in amplification is also observed to permeate more into the
supersonic region, caused by the forcing from the thermodynamic state.
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Figure 5.20: Real part of 𝜓𝑋𝑁2 ,1 (a), 𝜓𝑋𝑂2 ,1 (c), 𝜓𝑋𝑁𝑂 ,1 (e), 𝜓𝑋𝑁 ,1 (g), and 𝜓𝑋𝑂 ,1
(i) and magnitude of 𝜙𝑋𝑁2 ,1 (b), 𝜙𝑋𝑂2 ,1 (d), 𝜙𝑋𝑁𝑂 ,1 (f), 𝜙𝑋𝑁 ,1 (h), and 𝜙𝑋𝑂 ,1 (j) for
representative subsonic streaky modes (𝑘𝑥 = 2𝜋/100, 𝑘𝑧 = 2𝜋/5, 𝑐 = .5). Case ii
and iii are in blue and black solid lines.

Continuing with the effects of component-wise forcing, chemical nonequilibrium
allows the study of forcing from individual species components. Here the forcing is
masked to consider the forcing from 𝜙𝜌𝑖,𝑠 and 𝜙𝜌 for case iii. The same parameters
are used for this sweep and the resulting amplification is plotted in Figure 5.22.
Forcing from 𝜙𝜌 produces similar amplification as forcing from 𝜙𝑇 in that the
supersonic region is relatively unchanged, the subsonic region is less amplified, and
an increase in amplification for the larger 𝜆𝑥 and 𝜆𝑧 modes. Considering forcing
from 𝜙𝜌𝑁2

and 𝜙𝜌𝑂2
reveals similar results as forcing from 𝜙𝜌. This is expected as

N2 and O2 are the most abundant species in the mixture, responsible for the majority
of the density. Compared to the amplification from 𝜙𝜌, the amplification from 𝜙𝜌𝑁2
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Figure 5.21: Contours of 𝜎2
1 𝑘𝑥𝑘𝑧 for case i (a), case ii (b), and case iii (d) where only

forcing from the 𝑇 component is considered. The contour lines denote 𝜎2
1 𝑘𝑥𝑘𝑧 =

101, 102, . . . , 105. These contours are all plotted in (c) where case i, ii, and iii are
in red, blue, and black. The solid black line denotes the sonic line.

and 𝜙𝜌𝑂2
is smaller because they are portions of the full density.

Considering forcing from the dissociated components, 𝜙𝜌𝑁𝑂
, 𝜙𝜌𝑁 and 𝜙𝜌𝑂 , reveals

that the discontinuity across the relative sonic line is absent. This is because the tem-
perature in the freestream is too small to support the dissociated components. As a
result, these dissociated components can not excite the relevant acoustic phenomena
that generates the supersonic modes. The forcing contours still identify the presence
of large amplification of the streaky structures signaling that these modes are excited
by the thermodynamic effects. The forcing from 𝜙𝜌𝑁 creates amplification mostly
by these streaky structures, with some components in the smallest scales.

Differences in the Sub-optimal Resolvent Gains Using the Laminar Similarity
Solution

Now, the differences in the higher order singular values will be compared between
cases ii and iii. Case i is not considered as it has already been shown that changes in
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Figure 5.22: Contours of 𝜎2
1 𝑘𝑥𝑘𝑧 for case iii where forcing from 𝜌 (a), 𝜌𝑁2 (b),

𝜌𝑂2 (c), 𝜌𝑁𝑂 (d), 𝜌𝑁 (e), 𝜌𝑂 (f) is considered through masking. The contour lines
denote 𝜎2

1 𝑘𝑥𝑘𝑧 = 101, 102, . . . , 105. The diagonal black line denotes the sonic line.

Case 1 2 3 4 5
ii 3.13 × 107 1.75 × 106 6.17 × 105 2.81 × 105 1.43 × 105

iii 1.20 × 108 1.73 × 106 6.04 × 105 2.73 × 105 1.39 × 105

Table 5.6: Maximum 𝜎2
𝑖
𝑘𝑥𝑘𝑧 for cases ii and iii.
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Figure 5.23: Contours of 𝜎2
𝑖
𝑘𝑥𝑘𝑧 for case ii (blue) and iii (black). The contour lines

denote .1%, 1%, 10%, 30%, 50%, and 75% of the local maximum of 𝜎2
𝑖
𝑘𝑥𝑘𝑧 for

each case. 𝑖 = 2, 3, 4, and 5 are plotted in (a), (b), (c), and (d).

the mean flow field were the primary cause of the differences in the amplification.
As such, only differences in the assumption of chemical equilibrium or chemical
nonequilibrium in the LNSE will be considered. 𝜎2

𝑖
𝑘𝑥𝑘𝑧 are plotted from the sweep

used in Figure 5.11 for 𝑖 = 2, 3, 4, and 5. The contours are plotted as percentages of
the maxima of 𝜎2

𝑖
𝑘𝑥𝑘𝑧 for each case. 𝜎2

1 𝑘𝑥𝑘𝑧 displayed large amplification for the
streak-like modes with large 𝜆𝑧 in case iii that was absent in case ii. The difference in
amplification for those streak-like modes is reflected in 𝜎2

2 𝑘𝑥𝑘𝑧 as they are sources
of amplification for the 𝑖 = 2 modes in case iii. For 𝑖 > 3, those large 𝜆𝑥 streak-like
modes also contribute to the changes in the amplification contours. For all the other
length scales, the change in amplification is small as evidenced by the amplification
contours overlapping. In Table 5.6, the maximum of 𝜎2

𝑖
𝑘𝑥𝑘𝑧 over the sweep is listed

for cases ii and iii. For 𝑖 = 1, the amplification in case iii is an order of magnitude
larger than case ii because of the streak-like modes. For the higher order modes, the
difference in maximum amplification between the two cases is small. This is because
the local maxima of 𝜎2

𝑖
𝑘𝑥𝑘𝑧 for 𝑖 ≥ 2 occurs at 𝑘𝑧 = 2𝜋 and 𝑘𝑥 = 2𝜋/100, which is

not representative of the streak-like modes that contributed to the differences in the
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𝑇𝑒 𝑇𝑤 Ma Re𝛿∗ Re Re𝜏 𝑃𝑟

1070 K 1700 K 10 4.28 × 104 9.2 × 104 1104 0.71

Table 5.7: Properties of the hypersonic TBL. Here, Re𝛿∗ = 𝜌𝑒𝛿∗𝑈𝑒/𝜇𝑒 and𝑇𝑒 and𝑇𝑤
denote the freestream and wall temperatures. This mean profile corresponds to the
streamwise station furthest downstream presented in Di Renzo and Urzay (2021).

amplification. The maximum of 𝜎2
1 𝑘𝑥𝑘𝑧 is at least an order of magnitude larger than

𝜎2
2 𝑘𝑥𝑘𝑧, once again highlighting the low-rank behavior in the resolvent operator. A

discussion on the higher order resolvent modes for the laminar case is omitted and
will be presented instead for the turbulent case in the next section.

5.6 Effects of Chemical Nonequilibrium on Resolvent Amplification in a TBL

In the previous section, the laminar similarity solution was used to compare the ef-
fects of chemical nonequilibrium on resolvent amplification. In hypersonic boundary
layers, the turbulent flow has shear stresses and heat fluxes an order of magnitude
larger than the laminar case (Van Driest, 1956). This leads to increased𝑈𝑦 and𝑇 𝑦 in
the near-wall region of the TBL. This causes the peak 𝑇 variation to be concentrated
in the near-wall region for a TBL while the peak 𝑇 variation is diffused across the
entire laminar boundary layer. Due to the differences in the two flows, the effects of
chemical nonequilibrium on the resolvent analysis will be studied using the TBL.
First, a description of the mean flow field will be provided and then results will be
shown.

Description of the Hypersonic TBL Mean Flow Field

The mean flow from the DNS of Di Renzo and Urzay (2021) is used to gauge the
effects of chemical nonequilibrium on the linear amplification. The mean flow field
parameters are described in Table 5.7. Here, the effects of the linear amplification
will be compared by considering the linear amplification using either chemical
nonequilibrium or chemical equilibrium as in cases ii and iii in Section 5.5, though
with a turbulent mean flow field. Comparisons will not be done with a CPG mean
flow field since a CPG turbulent flow with parameters similar to Di Renzo and Urzay
(2021) are not readily available. If one were available, the results in Section 5.5
suggest that the differences in amplification will be attributed to differences in the
mean thermodynamic state as opposed to the chemical nonequilibrium present in
the LNSE.
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Figure 5.24: 𝑈 (a), 𝑇 (b), 𝜌 (c), 𝜇 (d), 𝑘 (e), and 𝑐𝑣 (f) for TBL assuming chemical
nonequilibrium. 𝜌𝑖𝑠 (g), and ¤𝜔𝑖𝑠 (h) are plotted with their colors labeled in the
legend. Note that the densities of the dissociated components are rescaled in (g) for
visualization.

The turbulent mean flow fields are plotted in Figure 5.24 against 𝑦+, where the
viscous length scale is defined with the mean properties at the wall. 𝑈 demonstrates
multiscale behavior, with the near-wall region indicative of viscous sublayer and the
presence of a log region which emerges under an appropriate scaling (Griffin, Fu,
and Moin, 2021). The peak 𝑇 is larger for the turbulent flow than the similarity
solution due to the increase in viscous heating in the turbulent flow. Apart from
the changes in 𝑇 , the turbulence changes the chemical composition of the flow,
especially in the near-wall region. Notably, 𝑋𝑁 is nonzero at the wall. The values
of 𝑋𝑂 and 𝑋𝑁𝑂 at the wall are also reduced by a factor of almost 2, resulting in an
increase in 𝑋𝑂2 . The changes in chemical composition at the wall are responsible
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Figure 5.25: Contours of 𝜎2
1 𝑘𝑥𝑘𝑧 assuming chemical equilibrium (a) and chemical

nonequilibrium (b). The contour lines denote 𝜎2
1 𝑘𝑥𝑘𝑧 = 101, 102, . . . , 107. These

contours are all plotted in (c) where blue and black denote chemical equilibrium and
nonequilibrium. The solid black line denotes the sonic line.

for the change in the chemical rates of mass production, ¤𝜔𝑖𝑠 , in the near-wall region.
Here, the peaks of ¤𝜔𝑖𝑠 are near the location of largest 𝑇 , with these peaks being
almost twice as large as in the similarity solution. The value of ¤𝜔𝑁 is also nonzero
at the wall. Finally, since these mean flow fields are plotted in logarithmic units, the
peak variation in these quantities occurs within 10% of the boundary layer making
this flow subject to stronger shear terms.

Comparison of Resolvent Modes and Amplification Using a Hypersonic TBL
Under Chemical Nonequilibrium

A sweep over 80 logarithmically-spaced 𝑘𝑥 and 𝑘𝑧 spanning 2𝜋/.025 to 2𝜋/100 is
computed with fixed 𝑐 ≈ .48 for the chemical equilibrium and chemical nonequi-
librium cases. The same parameters are used for the other sweeps in this section.
This wavespeed corresponds to the 𝑈 where 𝑇 is the largest, located at 𝑦+ ≈ 30.



145

The results of this sweep are plotted in Figure 5.25. The use of a turbulent mean
state does not remove the presence of the discontinuity at the sonic line. The most
amplified structures in the subsonic region are modes with 𝜆𝑥 > 𝜆𝑧 and .1 ≥ 𝜆𝑧 ≤ 1.
For the laminar case, the most amplified structures had a 𝜆𝑧 about an order of mag-
nitude larger. The differences in the amplified structures are due to the differences
in 𝑈𝑦 and 𝑇 𝑦 in the turbulent flow as these are large primarily in the near-wall
region. This essentially creates a constraint on the preferential wall-normal length
scales which relates to the preferential 𝜆𝑥 and 𝜆𝑧. Comparing the amplification
between the chemical nonequilibrium and chemical equilibrium approaches reveal
only slight differences in the amplification. The similarities in the amplification
are likely because of the increased non-normal amplification from the 𝑈𝑦 and 𝑇 𝑦
components which are unchanged if a mixture or a single species is considered. The
biggest differences occur for the largest scales like in the laminar case of figure 5.11.

Since the amplifications are so similar, it is worth considering how the mode shapes
differ. First, subsonic modes are considered with 𝑘+𝑥 = 2𝜋/1000 (𝑘𝑥 = 2𝜋/.9),
𝑘+𝑧 = 2𝜋/100 (𝑘𝑧 = 2𝜋/.09), and 𝑐 = .48 as scales representative of the near-
wall cycle. The velocity, temperature, and density components of 𝝍1 and 𝝓1 are
plotted in Figure 5.26. Owing to the amplification via the lift-up effect through𝑈𝑦,
the velocity components are independent of the chemical nonequilibrium effects.
Similar to Section 5.3, the large 𝜓𝑢,1 is forced by large 𝜙𝑣,1 and 𝜙𝑤,1. There is
also a large 𝜓𝑇,1 response, though it is also unchanged save for the region closest to
the wall. A similar observation is made for 𝜓𝜌,1. The most discernible differences
between the two modes is in 𝜙𝑇,1, likely because of the increase in temperature-
dependent chemical nonequilibrium and molecular diffusion terms which become
more important near the wall. The jaggedness in 𝜙𝜌,1 is because of the limited
resolution near the wall which creates sharp gradients in the mean chemistry terms.

The species components of the subsonic mode are plotted in Figure 5.27. The 𝜌𝑁2

and 𝜌𝑂2 components of 𝝍1 are well approximated with the chemical equilibrium
approach. The peak amplitudes of the 𝜌𝑁𝑂 and 𝜌𝑂 components are also predicted
well, although their shape differs. The chemical equilibrium approach predicts a
zero crossing that is not observed in the chemical nonequilibrium approach. The
lack of the zero crossing is likely because of the production of 𝜌𝑁 in 𝝍1 which is
underpredicted in the chemical equilibrium approach. The sharp gradients in 𝜙𝜌𝑖𝑠 ,1
were also reflected in 𝜙𝜌,1. The 𝜙𝜌𝑖𝑠 ,1 terms are large near the wall to account for
the increased shear in the chemistry terms not present in the chemical equilibrium
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Figure 5.26:
��𝜓𝑢,1�� (a),

��𝜙𝑢,1�� (b),
��𝜓𝑣,1�� (c),

��𝜙𝑣,1�� (d),
��𝜓𝑤,1�� (e),

��𝜙𝑤,1�� (f),
��𝜓𝑇,1��

(g),
��𝜙𝑇,1�� (h),

��𝜓𝑇,1�� (i),
��𝜙𝑇,1�� (j) for representative subsonic modes (𝑘𝑥 = 2𝜋/.9,

𝑘𝑧 = 2𝜋/.09, 𝑐 = .48). The chemical nonequilibrium and equilibrium modes are in
black and blue.

approach. Although 𝜙𝜌,1 for the two approaches are similar, the differences in 𝜙𝜌𝑖𝑠 ,1
suggests differences in concentration.

The 𝑋𝑖𝑠 components of the subsonic optimal modes are plotted in Figure 5.28. The
anticorrelation that was discussed in Section 5.5 is seen clearly in the real part of
the 𝑋𝑁2 , 𝑋𝑂2 , 𝑋𝑁𝑂 , and 𝑋𝑂 components of 𝝍1. An increase in concentration of
N2 and O2 correlates with a decrease in concentration of NO and O. 𝜓𝑋𝑁 ,1 is the
smallest component of the response since the temperature is too small within the
boundary layer to support large scale dissociation of N2 (Anderson Jr., 2006). The
forcing components, 𝜙𝑋𝑖𝑠 ,1, are large and non-negligible near the wall owing to the
differences seen in 𝜙𝜌𝑖𝑠 ,1.
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Figure 5.27:
���𝜓𝜌𝑁2 ,1

��� (a),
���𝜙𝜌𝑁2 ,1

��� (b),
���𝜓𝜌𝑂2 ,1

��� (c),
���𝜙𝜌𝑂2 ,1

��� (d),
��𝜓𝜌𝑁𝑂 ,1

�� (e),
��𝜙𝜌𝑁𝑂 ,1

��
(f),

��𝜓𝜌𝑁 ,1�� (g),
��𝜙𝜌𝑁 ,1�� (h),

��𝜓𝜌𝑂 ,1�� (i),
��𝜙𝜌𝑂 ,1�� (j) for representative subsonic modes

(𝑘𝑥 = 2𝜋/.9, 𝑘𝑧 = 2𝜋/.09, 𝑐 = .48). The chemical nonequilibrium and equilibrium
modes are in black and blue.

A representative supersonic mode with 𝑘𝑥 = 2𝜋/5, 𝑘𝑧 = 2𝜋/10, and 𝑐 = .48 is
considered as this is corresponds to the spectral region where the amplification
differs between the chemical nonequilibrium and equilibrium approaches. From
Figure 5.31, the structure of the modes in the freestream are largely unchanged,
except for 𝜙𝑣,1. Note however that 𝜙𝑣,1 is significantly smaller than 𝜙𝜌,1 and 𝜙𝑇,1
in the freestream, so its difference in amplitude is negligible. The differences in
the modes in the freestream are likely caused within the boundary layer where the
chemical nonequilbrium effects are more appreciable. In this region, the mode
shapes differ slightly, but there is agreement in the amplitudes of the resolvent
modes’ components.
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Figure 5.28: Real part of 𝜓𝑋𝑁2 ,1 (a), 𝜓𝑋𝑂2 ,1 (c), 𝜓𝑋𝑁𝑂 ,1 (e), 𝜓𝑋𝑁 ,1 (g), and 𝜓𝑋𝑂 ,1
(i) and magnitude of 𝜙𝑋𝑁2 ,1 (b), 𝜙𝑋𝑂2 ,1 (d), 𝜙𝑋𝑁𝑂 ,1 (f), 𝜙𝑋𝑁 ,1 (h), and 𝜙𝑋𝑂 ,1 (j) for
representative subsonic modes (𝑘𝑥 = 2𝜋/.9, 𝑘𝑧 = 2𝜋/.09, 𝑐 = .48). The chemical
nonequilibrium and equilibrium modes are in black and blue.

The 𝜌𝑖𝑠 components of the supersonic mode are plotted in Figure 5.30. These
demonstrate the differences between the two approaches within the boundary layer.
The mode shapes of the 𝜓𝜌𝑖𝑠 ,1 components within the boundary layer using the
chemical equilibrium approach agree poorly with those computed using the chem-
ical nonequilibrium approach, especially for the dissociated components. On the
other hand, within the freestream region, the 𝜓𝜌𝑁2 ,1 and 𝜓𝜌𝑂2 ,1 components are
in agreement since the effects of chemical nonequilibrium are negligible in the
freestream. The dissociated components are absent in the freestream. 𝜙𝜌𝑖𝑠 ,1 in the
near-wall region is also not approximated well within the near-wall region.

The 𝑋𝑖𝑠 components are plotted in Figure 5.31. These components only have support
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Figure 5.29:
��𝜓𝑢,1�� (a),

��𝜙𝑢,1�� (b),
��𝜓𝑣,1�� (c),

��𝜙𝑣,1�� (d),
��𝜓𝑤,1�� (e),

��𝜙𝑤,1�� (f),
��𝜓𝑇,1��

(g),
��𝜙𝑇,1�� (h),

��𝜓𝑇,1�� (i),
��𝜙𝑇,1�� (j) for representative supersonic modes (𝑘𝑥 = 2𝜋/5,

𝑘𝑧 = 2𝜋/10, 𝑐 = .48). The chemical nonequilibrium and equilibrium modes are in
black dotted and blue solid lines.

within the boundary layer, where the chemistry is active. There are no changes to
the concentrations in the freestream. The correlations between the 𝑋𝑁2 , 𝑋𝑂2 , 𝑋𝑁𝑂 ,
and 𝑋𝑂 components of 𝝍1 from the subsonic mode are also recovered here. The
large near-wall forcing in 𝜙𝑋𝑖𝑠 ,1 once again illustrates the importance of the shear in
the chemistry-related terms at the wall.

Masking is now considered to investigate the differences in amplification. First,
the amplification from 𝜙𝑇 is investigated in Figure 5.32. Unlike in Figure 5.21,
the effects from the chemical nonequilibrium terms in the linear operator lead to
small changes when considering forcing from 𝜙𝑇 . The differences in Figure 5.21
mostly stemmed from the influence of the large scale streaky that reached down
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Figure 5.30:
���𝜓𝜌𝑁2 ,1

��� (a),
���𝜙𝜌𝑁2 ,1

��� (b),
���𝜓𝜌𝑂2 ,1

��� (c),
���𝜙𝜌𝑂2 ,1

��� (d),
��𝜓𝜌𝑁𝑂 ,1

�� (e),
��𝜙𝜌𝑁𝑂 ,1

��
(f),

��𝜓𝜌𝑁 ,1�� (g),
��𝜙𝜌𝑁 ,1�� (h),

��𝜓𝜌𝑂 ,1�� (i),
��𝜙𝜌𝑂 ,1�� (j) for representative supersonic modes

(𝑘𝑥 = 2𝜋/5, 𝑘𝑧 = 2𝜋/10, 𝑐 = .48). The chemical nonequilibrium and equilibrium
modes are in black dotted and blue solid lines.

to the wall. This is reflected in the top right corner of Figure 5.32(c), though the
influence of these large scale modes on the subsonic region is not as apparent for
this sweep. The lack of amplification for these large scale modes in the turbulent
flow is likely because the large shear region is constrained to the near-wall-region
unlike the laminar case. This limits the amplification from the shear since only
the near-wall portion of the mode can contribute to the non-normal amplification.
The slight differences in the optimal amplification considering forcing from only 𝜙𝑇
suggest that the 𝐿𝑖,4 and 𝐿𝑛4,4 terms play a negligible role in the linear amplification.

Finally, a sweep is done to compare the amplification from the density components,
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Figure 5.31: Real part of 𝜓𝑋𝑁2 ,1 (a), 𝜓𝑋𝑂2 ,1 (c), 𝜓𝑋𝑁𝑂 ,1 (e), 𝜓𝑋𝑁 ,1 (g), and 𝜓𝑋𝑂 ,1
(i) and magnitude of 𝜙𝑋𝑁2 ,1 (b), 𝜙𝑋𝑂2 ,1 (d), 𝜙𝑋𝑁𝑂 ,1 (f), 𝜙𝑋𝑁 ,1 (h), and 𝜙𝑋𝑂 ,1 (j) for
representative supersonic modes (𝑘𝑥 = 2𝜋/5, 𝑘𝑧 = 2𝜋/10, 𝑐 = .48). The chemical
nonequilibrium and equilibrium modes are in black and blue solid lines.

𝜙𝜌 and 𝜙𝜌𝑖𝑠 in Figure 5.33. Just as in the laminar case in Figure 5.22, the forcings
from 𝜙𝜌, 𝜙𝜌𝑁2

, and 𝜙𝜌𝑂2
result in the amplification of a supersonic region while the

forcing from 𝜙𝜌𝑁𝑂
, 𝜙𝜌𝑁 , and 𝜙𝜌𝑂 reveal no discontinuity across the sonic line. This

again occurs because the forcing from the dissociated components can not excite
the freestream acoustics as they are not present in the freestream. The amplification
of streak-like modes seen in Figure 5.22 is not present for the turbulent case. The
relative amplification between the supersonic region and the subsonic region using
forcing from 𝜙𝜌, 𝜙𝜌𝑁2

, and 𝜙𝜌𝑂2
is larger for the turbulent case than the laminar case.

This likely occurs because the shear-driven amplification from the boundary layer
is constrained to the near-wall region which forms less than a tenth of the boundary
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Figure 5.32: Contours of 𝜎2
1 𝑘𝑥𝑘𝑧 assuming chemical equilibrium (a) and chemical

nonequilibrium (b) where only forcing from the 𝑇 component is considered. The
contour lines denote𝜎2

1 𝑘𝑥𝑘𝑧 = 101, 101.5, 102, . . . , 104.5, 105. These contours are all
plotted in (c) where blue and black denote chemical equilibrium and nonequilibrium.
The solid black line denotes the sonic line.

Chemistry 1 2 3 4 5
equilib. 7.68 × 105 2.56 × 105 1.46 × 105 9.57 × 104 6.44 × 104

nonequilib. 7.78 × 105 2.61 × 105 1.48 × 105 9.75 × 104 6.57 × 104

Table 5.8: Maximum 𝜎2
𝑖
𝑘𝑥𝑘𝑧 using the chemical equilibrium or chemical nonequi-

librium assumptions.

layer in the turbulent case while the shear is present throughout the entire boundary
layer in the laminar case.

Differences in the Sub-optimal Resolvent Gains Using the TBL

In Figure 5.34, contours of 𝜎2
𝑖
𝑘𝑥𝑘𝑧 for 𝑖 ≥ 2 are plotted as percentages of their

maximum for the chemical equilibrium and chemical nonequilibrium assumptions.
The regions with largest amplification are largely unaffected by the assumption used
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Figure 5.33: Contours of 𝜎2
1 𝑘𝑥𝑘𝑧 for case iii where forcing from 𝜌 (a), 𝜌𝑁2 (b), 𝜌𝑂2

(c), 𝜌𝑁𝑂 (d), 𝜌𝑁 (e), 𝜌𝑂 (f) is considered through masking for the turbulent mean
flow field. The contour lines denote 𝜎2

1 𝑘𝑥𝑘𝑧 = 101, 102, . . . , 105. The diagonal
black line denotes the sonic line.
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Figure 5.34: Contours of 𝜎2
𝑖
𝑘𝑥𝑘𝑧 using chemical equilibrium (blue) and chemical

nonequilibrium (black). The contour lines denote .1%, .5%, 1%, 10%, 30%, 50%,
and 75% of the local maximum of 𝜎2

𝑖
𝑘𝑥𝑘𝑧 for each case. 𝑖 = 2, 3, 4, and 5 are

plotted in (a), (b), (c), and (d).

in the chemistry of the LNSE. This is reflected in Table 5.8 where the maximum of
𝜎2
𝑖
𝑘𝑥𝑘𝑧 is listed for each assumption used and display only minor variation. The

differences in the amplification of the supersonic modes is also small. The biggest
differences in amplification occur in the subsonic region for the smallest 𝜆𝑥 and 𝜆𝑧.
These small scales were the scales amplified in Figure 5.33 when only forcing from
the dissociated components was considered. This suggests that the higher order
modes with small length scales are amplified by sub-optimal mechanisms related
to forcing from the species components. Accurately capturing the higher order
mode behavior is important because the nonlinearities in true turbulent flows have
projection onto the higher order modes. This can affect flow reconstructions and
predictions from flow actuation.

The components of a sub-optimal response and forcing mode are plotted for the
representative subsonic mode studied in this section. The variations in the 𝑖 =

2 and 𝑖 = 3 modes are not plotted because the differences are small between
the two assumptions on the chemistry, similar to the 𝑖 = 1 mode. The small
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Figure 5.35: The first ten𝜎𝑗 for the chemical nonequilibrium (black open circles) and
chemical equilibrium (blue filled cirlces) approaches using 𝑘𝑥 = 2𝜋/.9, 𝑘𝑧 = 2𝜋/.09,
𝑐 = .48, represenative of the subsonic region. The 𝑦 axis is in log-scale.

variation in the mode shape can be intuited by comparing the contour shapes of
the amplification near 𝜆𝑥 = .9 and 𝜆𝑧 = .09 in Figure 5.34(a,b). Although the
magnitude of the amplification changes, the amplified length scales are still similar,
indicating similar amplification mechanisms for these modes. Significant deviations
in the contour shapes of the amplification near the representative subsonic length
scales occur for 𝑖 = 4 and 𝑖 = 5 in Figure 5.34(c,d). The difference in the amplified
length scales using either the chemical equilibrium or chemical nonequilibrium
assumptions are due to the different amplification mechanisms in the sub-optimal
resolvent modes. The 𝜎𝑗 are compared for the representative subsonic length scales
in Figure 5.35. It is interesting to note that the hypersonic resolvent gains have
considerably less separation between𝜎1 and𝜎2 than the incompressible counterpart.
It is likely that this is caused by the increased dissipation with a larger Ma. The study
of Bae, Dawson, and McKeon (2020) demonstrated that the supersonic resolvent
modes identified low-rank wavenumbers in the subsonic region, similar to Moarref,
Sharma, et al. (2013). The similar low-rank behavior in the supersonic TBL and
the incompressible TBL can be predicted by the Morkovin hypothesis (Morkovin,
1962), which states that for moderate Ma, the compressible dynamics follow the
incompressible dynamics in a TBL if the density variations are accounted for. Since
the hypersonic TBL has a Ma significantly larger than the supersonic TBL studied
in Bae, Dawson, and McKeon (2020), it is likely that the compressible effects are
too large to separate from the incompressible behavior. They further support that
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Figure 5.36:
��𝜓𝑢,5�� (a),

��𝜙𝑢,5�� (b),
��𝜓𝑣,5�� (c),

��𝜙𝑣,5�� (d),
��𝜓𝑤,5�� (e),

��𝜙𝑤,5�� (f),
��𝜓𝑇,5��

(g),
��𝜙𝑇,5�� (h),

��𝜓𝑇,5�� (i),
��𝜙𝑇,5�� (j) for representative subsonic modes (𝑘𝑥 = 2𝜋/.9,

𝑘𝑧 = 2𝜋/.09, 𝑐 = .48). The chemical nonequilibrium and equilibrium modes are in
black and blue.

the first three modes have minor differences since the 𝜎𝑖 are almost the same. For
𝑖 > 4, the 𝜎𝑗 begin to vary depending on how the chemistry is modeled. To study
the differences in the amplification mechanisms due to the chemistry, Figures 5.36,
5.37, and 5.38 compare the components of 𝝍5 and 𝝓5.

First, the 𝑢, 𝑣, 𝑤, 𝜌, and 𝑇 components of 𝝍5 and 𝝓5 are compared in Figure 5.36.
Unlike the optimal mode, the differences using the chemistry assumptions are severe
in both mode shape and relative amplitudes. The multiple-peaked structure in 𝝍5

and 𝝓5 using chemical equilibrium is consistent with the orthonormality constraint
of the resolvent modes. Similar behavior is observed in the 𝑖 = 2 and 𝑖 = 3 modes in
both the chemical equilibrium and nonequilibrium approach, albeit with less peaks
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Figure 5.37:
���𝜓𝜌𝑁2 ,5

��� (a),
���𝜙𝜌𝑁2 ,5

��� (b),
���𝜓𝜌𝑂2 ,5

��� (c),
���𝜙𝜌𝑂2 ,5

��� (d),
��𝜓𝜌𝑁𝑂 ,5

�� (e),
��𝜙𝜌𝑁𝑂 ,5

��
(f),

��𝜓𝜌𝑁 ,5�� (g),
��𝜙𝜌𝑁 ,5�� (h),

��𝜓𝜌𝑂 ,5�� (i),
��𝜙𝜌𝑂 ,5�� (j) for representative subsonic modes

(𝑘𝑥 = 2𝜋/.9, 𝑘𝑧 = 2𝜋/.09, 𝑐 = .48). The chemical nonequilibrium and equilibrium
modes are in black and blue.

in the components (not plotted). Since the 𝑇 and 𝜌 components of 𝝍5 and 𝝓5 in the
chemical nonequilibrium approach have only a single peak, this suggests that the
orthonormality is enforced via a change in the component-wise amplification of the
mode rather than a change in the spatial structure of modes to maintain the same
component-wise amplification seen in the chemical equilibrium sub-optimal modes.
Indeed, this can be seen by comparing the 𝑢, 𝑣, and𝑤 components of𝝍5 and 𝝓5. The
chemical equilibrium approach continues to have large hydrodynamic components
in both the forcing and response due to amplification from𝑈𝑦. These components in
the chemical nonequilibrium approach are an order of magnitude smaller indicating
that this hydrodynamic amplification is not favored in the presence of chemistry.
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Figure 5.38: Real part of 𝜓𝑋𝑁2 ,5 (a), 𝜓𝑋𝑂2 ,5 (c), 𝜓𝑋𝑁𝑂 ,5 (e), 𝜓𝑋𝑁 ,5 (g), and 𝜓𝑋𝑂 ,5
(i) and magnitude of 𝜙𝑋𝑁2 ,5 (b), 𝜙𝑋𝑂2 ,5 (d), 𝜙𝑋𝑁𝑂 ,5 (f), 𝜙𝑋𝑁 ,5 (h), and 𝜙𝑋𝑂 ,5 (j) for
representative subsonic modes (𝑘𝑥 = 2𝜋/.9, 𝑘𝑧 = 2𝜋/.09, 𝑐 = .48). The chemical
nonequilibrium and equilibrium modes are in black and blue.

The differences in the shape of 𝜙𝜌,5, notably the presence of a singular peak in the
near-wall region using chemical nonequilibrium, further suggest that forcing from
the species components is causing the changes in this mode.

Now the 𝜌𝑖𝑠 components are plotted in Figure 5.37. Unlike in the optimal mode,
modelling the 𝜌𝑖𝑠 components of 𝝍5 and 𝝓5 with the chemical equilibrium approach
leads to significant disagreements with the chemical nonequilibrium approach. The
chemical nonequilibrium has singular peaks for 𝜓𝜌𝑖𝑠 ,5 and 𝜙𝜌𝑖𝑠 ,5 at 𝑦+ = 50, unlike
the chemical equilibrium approach. The singular peaks in 𝜓𝜌𝑖𝑠 ,5 and 𝜙𝜌𝑖𝑠 ,5 contrast
with the optimal modes, as they peak closer to the wall. Component-wise, the
O2 and NO components of 𝜓𝜌𝑖𝑠 ,5 and 𝜙𝜌𝑖𝑠 ,5 are much larger than in the optimal
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mode. The 𝜌𝑁 component remains the smallest response component since the mean
temperature is too small to support large concentrations of N. However, the 𝜙𝜌𝑁 ,5
component has an amplitude an order of magnitude larger than what was observed
in the optimal mode. 𝝍5 supports the production of primarily NO, with N2 and O2

playing a role in its production, as expected.

Next the 𝑋𝑖𝑠 components of 𝝍5 and 𝝓5 are compared in Figure 5.38. The first thing
to note is that the magnitudes of these components are significantly larger than the
magnitudes plotted in Figure 5.28 for the optimal modes. The 𝜓𝑋𝑁 ,5 component
has the smallest amplitude once again, in accordance with the relatively small mean
temperature. The 𝜙𝑋𝑖𝑠 ,5 components also have peaks at 𝑦+ = 50 that are not observed
in the optimal mode. The presence of these peaks in 𝜙𝑋𝑖𝑠 ,5 and 𝜙𝜌𝑖𝑠 ,5 serve as sources
away from the wall in the species continuity equations that were almost nonexistent
in the optimal mode. The forcing occurs primarily in N2, O2, and NO. These
components in turn have the largest components in the response. Interestingly an O
forcing or response is about two of orders of magnitude smaller than the other N2, O2,
and NO components. In the response mode, the 𝑋𝑁2 component is anticorrelated
with the 𝑋𝑁𝑂 while the 𝑋𝑂2 and 𝑋𝑁𝑂 components are correlated. Since the 𝑋𝑖𝑠
components are so large, this implies that linear mechanisms that force the species
components drive the amplification of this sub-optimal mode, unlike the optimal
mode. This further explains why the chemical equilibrium approach does not agree
with the chemical nonequilibrium approach in the higher order modes. The source
of this component-wise non-normality stems from 𝜕 ¤𝜔 𝑗𝑠

/
𝜕𝜌𝑖𝑠 terms in the 𝐿4,𝑖𝑠 and

𝐿 𝑗𝑠 ,𝑖𝑠 blocks in the LNS operator.

When the dominant amplification mechanism is shear driven or caused by acoustic
phenomena, the chemical equilibrium and chemical nonequilibrium approaches
amplify dominant modes with similar mode structure. For the mean flow field
studied here, amplification via chemical nonequilibrium mechanisms only becomes
important in the higher order modes. It is likely that for a TBL with a larger mean
temperature, the chemical nonequilibrium mechanisms can affect even the optimal
modes because the temperatures can support more dissociation and compete with
the shear driven or acoustic amplification mechanisms. This could increase the
magnitude of the 𝜕 ¤𝜔 𝑗𝑠

/
𝜕𝜌𝑖𝑠 terms and increase the role of the component-wise

non-normality. Finally, it is stressed that the behavior of these modes is influenced
by the choice of inner product, which sets the condition for the orthonormality.
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5.7 Correlations in the Chemical Nonequilibrium Response Mode Compo-
nents

In the previous sections, most of the behavior of in the response modes was inferred
by comparing the absolute value of certain components. Here, the difference in
phase between different components of a single mode will be compared to infer any
correlations. Comparisons between the phases of resolvent modes have been used
in the past to investigate the large scale modulation on small scale signals using
a reduced-order model (Sharma and McKeon, 2013). In that study, the cosine of
the differences in phase between a set of triadically-consistent resolvent modes was
used as a model for the correlation coefficient. In a similar vein, the correlation
coefficient between the 𝑖 and 𝑗 components of the leading response mode, 𝝍1, is
defined here as

𝑅𝑖, 𝑗 = cos
(
𝛼𝑖 − 𝛼 𝑗

)
, (5.33)

where 𝛼𝑖 and 𝛼 𝑗 are the phase angles of 𝜓𝑖,1 and 𝜓 𝑗 ,1. 𝑅𝑖, 𝑗 can also be defined as

𝑅𝑖, 𝑗 =

ℜ
(
𝜓∗
𝑖,1𝜓 𝑗 ,1

)��𝜓𝑖,1����𝜓 𝑗 ,1�� , (5.34)

where the real part is chosen so that 𝑅𝑖, 𝑗 remains symmetric. 𝑅𝑖, 𝑗 is bounded by
[−1, 1], with negative values denoting anticorrelation and positive values denoting
correlation. 𝑅𝑖, 𝑗 close to 0 means that components 𝑖 and 𝑗 of𝝍1 are not correlated. In
real measurements, the correlation coefficient, 𝐶𝑖, 𝑗 of two signals 𝑖 and 𝑗 is the ratio
of their cross correlation normalized by the products of their standard deviations.
Here, 𝑅𝑖, 𝑗 is simply a comparison of the phase of two different components of the
leading response mode. Although 𝑅𝑖, 𝑗 can be computed with higher order modes,
the leading mode is chosen because it has a single-peaked structure with less zero
crossings compared to the higher order modes. This makes the interpretation of the
changes in phase easier to interpret for the leading mode.

The correlation is examined using the same turbulent mean flow field from Section
5.6, with modes focused on the subsonic region. The 𝑐 is chosen as .4817 which
corresponds to 𝑈 (𝑦+ ≈ 40). Although there are many choices for 𝑅𝑖, 𝑗 that can be
plotted, the 𝑅𝑖, 𝑗 that are considered are 𝑅𝑢,𝑌𝑖𝑠 , 𝑅𝑣,𝑌𝑖𝑠 , 𝑅𝑢,𝑇 , 𝑅𝑣,𝑇 , 𝑅𝑇,𝑌𝑖𝑠 , and 𝑅𝑋𝑖 ,𝑋 𝑗

.
The first four are chosen to compare with the correlation coefficients computed in
Di Renzo and Urzay (2021) and plotted in Figure 5.39. 𝑅𝑇,𝑌𝑖𝑠 is used to investigate
how the mass fractions correlate with the temperature in the linear analysis. 𝑅𝑋𝑖 ,𝑋 𝑗

is used to investigate the correlation between the mole fractions. In particular, this
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Figure 5.39: 𝐶𝑖, 𝑗 from the DNS of Di Renzo and Urzay (2021). (a) and (b) plot
𝐶𝑢,𝑌𝑖𝑠 , (c) and (d) plot 𝐶𝑣,𝑌𝑖𝑠 , (e) plots 𝐶𝑢,𝑇 , and (f) plot 𝐶𝑢,𝑇 . The blue, red, green,
orange, and purple curves denote 𝑖𝑠 =N2, O2, NO, N, and O. The dashed lines are
used to distinguish the different curves. Note that only the region 𝑦+ < 130 is shown
to compare the regions where 𝝍1 is supported for small scale modes.

is used to test how the 𝑋𝑁2 and 𝑋𝑂2 components correlate with the 𝑋𝑁𝑂 , 𝑋𝑁 , and
𝑋𝑂 components.

Before discussing 𝑅𝑖, 𝑗 , a summary of the 𝐶𝑖, 𝑗 computed in Di Renzo and Urzay
(2021) is presented and plotted in Figure 5.39. Recall that 𝐶𝑖, 𝑗 is computed with the
full temporal signal of the data unlike 𝑅𝑖, 𝑗 which is computed based on the phase
of different component of 𝝍𝑖. 𝐶𝑢,𝑇 is equal to 1 near the wall and changes sign near
the location of the maximum 𝑇 . From that location to the rest of the boundary layer,
𝐶𝑢,𝑇 remains negative. The opposite is true for 𝐶𝑣,𝑇 as it begins negative near the
wall and changes sign away from the wall for the rest of the boundary layer. The
change in sign of𝐶𝑢,𝑇 and𝐶𝑣,𝑇 is related to the sweeps and ejections that moves fluid
in the wall-normal directions coupled with the non-monotonicity of 𝑇 . More details
on this will be provided below, when the results of 𝑅𝑖, 𝑗 are presented. 𝐶𝑢,𝑌𝑖𝑠 remains
positive for N2 and O2 and negative for NO and O throughout the boundary layer.
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Figure 5.40: 𝑅𝑖, 𝑗 for a subsonic mode with 𝑘𝑥 = 2𝜋/.9, 𝑘𝑧 = 2𝜋/.09, and 𝑐 = .48.
(a) and (b) plot 𝑅𝑢,𝑌𝑖𝑠 , (c) and (d) plot 𝑅𝑣,𝑌𝑖𝑠 , and (e) and (f) plot 𝑅𝑇,𝑌𝑖𝑠 . The blue, red,
green, orange, and purple curves denote 𝑖𝑠 =N2, O2, NO, N, and O. Note that only
the region 𝑦+ < 130 is shown since 𝝍1 has negligible support in the outer region of
the flow.

For N, 𝐶𝑢,𝑌𝑖𝑠 begins positive near the wall and becomes negative away from the flow
like𝐶𝑢,𝑇 . This behavior in𝐶𝑢,𝑌𝑖𝑠 can also be explained with the sweeps and ejections
as 𝑌𝑁2 and 𝑌𝑂2 monotonically increase while 𝑌𝑁𝑂 and 𝑌𝑂 monotonically decrease
with away from the wall. 𝑌𝑁 , like 𝑇 , is non-monotonic with the peak 𝑌𝑁 and 𝑇
occuring at the same wall-normal location. Since 𝑌𝑁 tracks 𝑇 , N is mostly in steady
state as the chemical production and consumption occurs faster than its molecular
diffusion (Di Renzo and Urzay, 2021). Since 𝐶𝑢,𝑌𝑖𝑠 does not change sign across the
boundary layer for the other species components like 𝐶𝑢,𝑇 , the other species are not
in steady state and have significant transport due to diffusion in the near-wall region.
In the outer region of the flow, 𝐶𝑣,𝑌𝑖𝑠 is positive for the dissociated components and
negative for the undissociated components. Near the wall, 𝐶𝑣,𝑌𝑖𝑠 is approximately 0
for all the species components. This indicates that the mole fractions in the near-wall
region are dominated by molecular diffusion.
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Figure 5.41: 𝑅𝑖, 𝑗 for a subsonic mode with 𝑘𝑥 = 2𝜋/.9, 𝑘𝑧 = 2𝜋/.09, and 𝑐 = .48.
𝑅𝑢,𝑇 and 𝑅𝑣,𝑇 are plotted in (a) and (b). The solid lines are computed using the
chemical nonequilibrium approach and the dotted lines are computed using the
chemical equilibrium approach. (c) plots 𝑅𝑋𝑁2 ,𝑋𝑁

and 𝑅𝑋𝑁2 ,𝑋𝑁𝑂
in black and red.

(d) plots 𝑅𝑋𝑂2 ,𝑋𝑁𝑂
, and 𝑅𝑋𝑂2 ,𝑋𝑂

in black and red. Note that only the region 𝑦+ < 130
is shown since 𝝍1 has negligible support in the outer region of the flow.

In Figures 5.40 and 5.41, the correlation coefficients are compared for the subsonic
mode plotted in Figures 5.26, 5.27, and 5.28 which is representative of the struc-
tures in the near-wall cycle, albeit with a faster convective velocity. Figures 5.40(a,b)
demonstrate that 𝜓𝑢,1 is positively correlated with 𝜓𝑌𝑁2 ,1 throughout the near-wall
region. 𝜓𝑢,1 and 𝜓𝑌𝑂2 ,1 are positively correlated only in the region 𝑦+ ∈ (10, 100).
𝜓𝑢,1 is anticorrelated with 𝜓𝑌𝑁𝑂 ,1 and 𝜓𝑌𝑂 ,1. The correlation between 𝜓𝑢,1 and 𝜓𝑌𝑁 ,1
changes sign around the location of maximum temperature, with them being anti-
correlated away away from the wall. Figures 5.40(c,d) show that 𝜓𝑣,1 is correlated
with 𝜓𝑌𝑁2 ,1, 𝜓𝑌𝑂2 ,1, and 𝜓𝑌𝑁 ,1 and anticorrelated with 𝜓𝑌𝑁𝑂 ,1 and 𝜓𝑌𝑂 ,1 near the wall.
Away from the wall, 𝑅𝑣,𝑌𝑖𝑠 changes signs for all the species, except N. 𝑅𝑣,𝑌𝑁 tracks
𝑅𝑣,𝑌𝑁𝑂

and 𝑅𝑣,𝑌𝑂 above the 𝑇 maximum.

The sign of 𝑅𝑢,𝑌𝑖𝑠 is similar to the sign of the correlation coefficients from the DNS
plotted in Figure 5.39, including the change in sign of 𝑅𝑢,𝑌𝑁 in the near-wall region.
This is unsurprising as sweeps (−𝑣) are responsible for convecting undissociated
components (N2 and O2) and high momentum fluid (+𝑢) down closer to the wall.
The ejections (+𝑣) convect dissociated components (NO, and O) and low momentum
fluid (−𝑢) away from the wall. As a result, the high speed streaks have increased
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𝑌𝑁2 and 𝑌𝑂2 while the low speed streaks have decreased 𝑌𝑁𝑂 and 𝑌𝑂 . The change
in sign in the correlations with 𝑌𝑁 near the wall are because the N are in steady
state and follow 𝑇 variations (Di Renzo and Urzay, 2021). This causes 𝑌𝑁 to be
non-monotonic, like 𝑇 , which changes the N distributions through the sweeps and
ejections depending if they occur below or above the 𝑇 maximum. One thing not
captured in this analysis is the lack of correlation between 𝜓𝑣,1 and 𝜓𝑌𝑖𝑠 ,1 in the
near-wall region. This is likely because the linear mechanisms near the wall are
optimally amplified by the lift-up mechanism. The linear coupling between the 𝑣 and
𝑌𝑖𝑠 components is likely saturated when nonlinear terms, or nonlinear interactions,
are included in the full simulation. In the outer region, the sign of 𝑅𝑢,𝑌𝑖𝑠 matches
the sign in 𝐶𝑢,𝑌𝑖𝑠 .

Next the correlations between 𝜓𝑇,1 and 𝜓𝑌𝑖𝑠 ,1 are plotted in Figures 5.40(e,f). Near
the wall, below the critical layer, 𝑅𝑇,𝑌𝑖𝑠 tracks 𝑅𝑢,𝑌𝑖𝑠 . 𝑅𝑇𝑌𝑁 ≈ 1 throughout the
boundary layer, except at the critical layer where the value of 𝜓𝑇,1 drops to 0. The
correlation between 𝜓𝑇,1 and 𝜓𝑌𝑁 ,1 agrees with the observation that N is in steady
state (Di Renzo and Urzay, 2021). Further from the wall, 𝑅𝑇,𝑌𝑖𝑠 changes sign and is
the opposite of 𝑅𝑢,𝑌𝑖,𝑠 for all the components except N. This change in sign relative
to 𝑅𝑢,𝑌𝑖,𝑠 is explained by the change in sign of 𝑅𝑢,𝑇 across the 𝑇 maximum in Figure
5.41(a). Below the 𝑇 maximum, the ejections bring cool, low momentum fluid up
while the sweeps bring hot, high momentum fluid down. Above the 𝑇 maximum,
the picture is flipped as the ejections now bring hot, low momentum fluid up and
the sweeps bring cool, high momentum fluid down. The change in sign of 𝑇 𝑦 is
thus responsible for the phase jump. The sweeps and ejections also explain the
correlation 𝑅𝑣,𝑇 in Figure 5.41(b) which has the opposite sign of 𝑅𝑢,𝑇 for 𝑦+ < 100.
The velocity-temperature correlations are qualitatively similar to the correlations
from the DNS plotted in Figure 5.39, even capturing the change in sign at the 𝑇
maximum. Note that 𝑅𝑢,𝑇 and 𝑅𝑣,𝑇 track 𝑅𝑢,𝑌𝑁 and 𝑅𝑣,𝑌𝑁 due to the almost perfect
correlation between 𝜓𝑇,1 and 𝜓𝑌𝑁 ,1.

𝑅𝑢,𝑇 and 𝑅𝑣,𝑇 are compared for the chemical equilibrium case. 𝑅𝑢,𝑇 both agree. 𝑅𝑣,𝑇
differs substantially only in the near-wall region where the chemical equilibrium case
predicts correlation between 𝜓𝑇,1 and 𝜓𝑣,1. Although this change is large, it may be
a symptom of the small amplitudes in the viscous sub-layer as 𝝍1 matches the no-
slip and isothermal boundary conditions as visual inspection of the modes does not
reveal a significant phase change. It is worth noting that resolvent analysis assuming
chemical equilibrium would not be able to predict any correlations involving mass
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Figure 5.42: 𝑅𝑖, 𝑗 for a subsonic mode with 𝑘𝑥 = 2𝜋/10, 𝑘𝑧 = 2𝜋/1, and 𝑐 = .48.
The colors and linestyles are the same as in Figure 5.40.

fractions or mole fractions since the changes in concentration are 0, by construction.

The correlations between the mole fractions of the undissociated components and
the dissociated components are plotted in Figures 5.41(c,d). As was alluded to in the
plots of 𝜓𝑋𝑖𝑠 ,1 in Sections 5.5 and 5.6, 𝜓𝑋𝑁2 ,1 is anticorrelated to 𝜓𝑋𝑁𝑂 ,1 and 𝜓𝑋𝑂2 ,1

is anticorrelated to 𝜓𝑋𝑁𝑂 ,1 and 𝜓𝑋𝑂 ,1 as the values of 𝑅𝑋𝑖 ,𝑋 𝑗
≈ −1 throughout. This

is expected because a decrease in undissociated components leads to an increase
in dissociated components. The 𝜓𝑋𝑁2 ,1 and 𝜓𝑋𝑁 ,1 are not anticorrelated since
dissociation of N2 primarily leads to NO. Furthermore, the production of N is more
correlated to the temperature fluctuations (Di Renzo and Urzay, 2021).

In Figures 5.42 and 5.43, the same correlations are plotted for a larger mode with
𝑘𝑥 = 2𝜋/10 and 𝑘𝑧 = 2𝜋/1, with the same 𝑐. For this large scale mode, 𝜓𝑇,1
and 𝜓𝑌𝑖𝑠 ,1 are correlated to the dissociated components and anticorrelated for N2.
𝜓𝑇,1 and 𝜓𝑌𝑂2 ,1 are correlated for most of the domain, except near the temperature
peak. This accompanies a slight change in the correlations with 𝜓𝑌𝑁𝑂 ,1 and 𝜓𝑌𝑂 ,1.
𝜓𝑌𝑖𝑠 ,1 mostly tracks 𝜓𝑇,1 since the chemical activity in this mode is in steady-state,
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Figure 5.43: 𝑅𝑖, 𝑗 for a subsonic mode with 𝑘𝑥 = 2𝜋/10, 𝑘𝑧 = 2𝜋/1, and 𝑐 = .48.
The colors and linestyles are the same as in Figure 5.41.

as was the case for N in the small scale mode. This suggests that for this mode,
chemical diffusion plays a negligible role. The chemical diffusion in Equation
5.17 introduces spatial second derivatives to the mole fractions which decrease the
influence of the chemical diffusion on the large scale modes. The 𝜓𝑌𝑂2 ,1 component
is likely more susceptible to chemical nonequilibrium effects because it is easier to
create large concentrations of O2 with the relevant temperatures in the TBL. Due
to the correlations between 𝜓𝑌𝑖𝑠 ,1 and 𝜓𝑇,1, the profiles of 𝑅𝑢,𝑌𝑖𝑠 and 𝑅𝑣,𝑌𝑖𝑠 follow
𝑅𝑢,𝑇 and 𝑅𝑣,𝑇 . Lastly, 𝑅𝑋𝑖 ,𝑋 𝑗

≈ −1 between the undissociated components and the
dissociated components with no variation for N.

The correlations of the small scale mode agree qualitatively with the correlations
from the DNS data of Di Renzo and Urzay (2021) plotted in Figure 5.39. The
correlations with the large scale mode result in correlations that differ from the data,
notably because the species mass fractions follow the temperature component of
the leading mode. Although the large scale mode is more amplified in the local
analysis, modes with those scales are not typically energetic in the near-wall region
of the flow. Cogo et al. (2022)’s premultiplied energy spectra of a single species
compressible TBL reports a near-wall cycle centered at 𝑦+ ≈ 20 and 𝜆+𝑧 ≈ 100, while
scales similar to the large scale mode in Figures 5.42 and 5.43 are only energetic
in the outer region of the flow. The chemical nonequilibrium flow of Passiatore
et al. (2022) also demonstrates a near-wall peak with 𝜆★𝑧 ∼ 300, where ★ denotes
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rescaling with semilocal length scale 𝜇𝑑/
√︃
𝜌𝑑𝜏𝑑

𝑊
. The small scale structures play an

important role in the near-wall turbulent dynamics while the small scale resolvent
modes reflect the qualitative behavior in the near-wall region.

The correlations made with the small scale mode are only relevant where the small
scale mode has non-negligible support. Furthermore, they only apply for a single
wavenumber triplet. In order to extend the correlations further from the wall, and
to improve the quantitative agreement with the full data, more modes need to be
included with their nonlinear weights chosen to respect the nonlinearity in the full
turbulent flow. This is also true for the incompressible TBL, as was investigated by
Moarref, Jovanović, et al. (2014). Extending the results used in the incompressible
flow to supersonic or hypersonic flows requires an understanding that the interactions
are no longer triadic since the nonlinear terms are not quadratic for hypersonic TBL.

5.8 Chapter Summary and Future Work

The real gas effects that are relevant to hypersonic TBLs such as vibrational exci-
tation and chemical nonequilibrium were examined to see what is captured by the
linear amplification and enable comparisons with real flows. For the flows studied
here, these effects were relevant only within the boundary layer region where the
temperatures were largest. This caused the most appreciable changes in the thermo-
physical properties. The linear amplification of the supersonic modes were hardly
changed by the modeling assumptions due to them being excited in a cooler region
of the flow where the real gas effects are negligible.

It was shown that vibrational excitation, modeled through a CIG assumption, lead
to slight changes in the resolvent amplification, even using the same mean flow
fields, in the subsonic region. The change in amplification is likely because of
the differences in thermal diffusivity caused by the CIG assumption. The mode
shapes within the boundary layer were not changed substantially, although there
were differences in the amplitudes of the modes examined. Since the amplification
in the subsonic region was shown to collapse when rescaled with the local maxima,
it may suggest that the resolvent analysis can be rescaled by accounting for the
local variation in the thermodynamic properties as in Bae, Dawson, and McKeon
(2020). The most relevant changes to the amplification were found when the forcing
was constrained to 𝜙𝑇 and 𝜙𝜌. This revealed sensitivity of the near-wall cycle to
the CIG assumption when forced through the thermodynamic variables. This can
have implications for the control of the near-wall cycle if temperature related effects
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are used as a control mechanism. In Di Renzo et al. (2022), the effects of a CIG
assumption were shown to be most relevant near the oblique shock, where the CIG
assumption affected relevant frequencies near the shock location. An oblique shock
is outside the realm of validity for a local approach. Future work would need to
develop the biglobal approach described earlier to a compressible flow and account
for the changes in coordinates with the ramp to capture these effects.

The effects of chemical nonequilibrium were investigated for both a turbulent flow
and a laminar flow. The analysis with the laminar flow found that the amplification
differed the most with the large-scale streak-like modes that can reach down to the
wall. These streak like modes were uniquely amplified and were not present in
the chemical equilibrium approach. These modes also illustrated different ampli-
fication mechanisms, primarily through 𝜙𝑇 and 𝜙𝜌. In the case of the turbulent
flow, the large𝑈𝑦 and 𝑇 𝑦 terms created sources of amplification that dominated the
chemical nonequilibrium and molecular diffusion terms. As a result, the u, 𝑇 , and
𝜌 components of the leading resolvent modes differed slightly for the small scale
modes amplified by the shear. With chemical nonequilibrium, the largest observed
differences were when the 𝜌𝑖𝑠 and 𝑋𝑖𝑠 components were compared as the chemical
equilibrium approach can not account for changes in concentration. The presence
of the streaky mode seen in the laminar case was not observed in the turbulent
case. The higher order modes for the hypersonic TBL under chemical nonequilib-
rium demonstrated amplification through the chemistry terms that are absent in the
chemical equilibrium approach. This changed the structure and amplification of the
higher order modes.

The use of chemical nonequilibrium allows concentrations of the species to differ
in the linear analysis. A unique aspect of this approach is that it also allows
for forcing from certain species components. Forcing from 𝜙𝜌𝑁2

and 𝜙𝜌𝑂2
led

to the energization of supersonic modes while forcing from 𝜙𝜌𝑁𝑂
, 𝜙𝜌𝑁 , and 𝜙𝜌𝑂

demonstrated no discontinuity from the supersonic phenomena as these components
are not present in the freestream. This forcing can be used to consider the linear
response to forcing from a catalytic wall which can blow species components into
the boundary layer. Furthermore, the analysis described here can be used to describe
how a change to the chemistry model can affect the linear amplification and which
length scales are expected to be affected, to first order.

The correlations in the small-scale chemical nonequilibrium resolvent modes were
shown to agree qualitatively well with the correlations from the data of Di Renzo
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and Urzay (2021). This was due to the importance of the lift-up effect in these
modes. The large scale modes were shown to have correlations that did not agree
with the full data because the large scales did not allow for molecular diffusion.
Future work will require nonlinear closure by finding coefficients for the resolvent
basis described herein.

The resolvent analysis framework is not able to capture the true nonlinear dynamics
in a hypersonic TBL for a number of reasons. One limitation of this approach is that
the turbulence is multiscale, whereas this approach considers the linear amplification
of a single wavenumber-frequency triad. It does not account for the true nonlinear
nature in the full TBL or the nonlinear interactions present in the chemical effects.
Furthermore, the results are depend on the choice of a 2-norm based on the Chu
energy norm (Chu, 1965), which may not be an appropriate measure of energy for a
hypersonic TBL. Despite these limiations, resolvent analysis provides predictions of
the most linearly amplified length and time scales in a hypersonic TBL. This can help
predict which structures are most affected by changes in the chemistry modelling,
similar to the study of Franko, MacCormack, and Lele (2010). Furthermore, the
qualitative agreement in the correlations of the small scale modes with the DNS
correlations suggest that resolvent analysis can capture amplification mechanisms
that are present in the turbulent data with chemical nonequilibrium. Such effects
would not be captured if chemical equilibrium was used in the analysis. Future work
will have to account for the multiscale nature of the TBL by incorporating closure
arguments and properly modeling the nonlinear forcing terms.

Lastly, the freestream temperatures described in this problem allowed for no relevant
chemical effects in the freestream. Future work will study how a larger 𝑇𝑒, which
can sustain the freestream dissociation, affects the linear amplification described
herein. It is likely that a larger 𝑇𝑒 may change the supersonic region when the dis-
sociated components have non-negligible concentrations in the freestream. Within
the boundary layer, hotter temperatures lead to more dissociation of the air, and as
a result, larger chemical terms. These may create substantial effects that differ from
the chemical equilibrium approach. As 𝑇𝑒 increases, incorporating a vibrational
temperature model as in Franko, MacCormack, and Lele (2010) in the resolvent
analysis will also a topic of future work.
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C h a p t e r 6

EFFICIENT METHODS FOR RESOLVENT ANALYSIS:
SAMPLING AND APPROXIMATIONS

6.1 Introduction

Computationally, 𝑛, the number of degrees of freedom in the state vector q̆, is
equal to the number of state variables, 𝑛𝑠, times the number of grid points, 𝑁 .
Increasing 𝑛 increases the computational cost of computing resolvent analysis since
the matrix inversion and SVD are both O

(
𝑛3) operations. Because history effects

from a streamwise varying 𝛽 affect the turbulent statistics in a nonequilibrium APG
TBL, the streamwise development needs to be accounted for, requiring 𝑛 = 4𝑁𝑥𝑁𝑦
compared to a parallel flow assumption which can use 𝑛 = 4𝑁𝑦. To account for
chemical nonequilibrium effects in high temperature air, the local analysis uses
𝑛 = 9𝑁𝑦 to account for 5 reacting species in mixture while the chemical equilibrium
assumption uses 𝑛 = 5𝑁𝑦. As a result, the biglobal resolvent analysis is 𝑁3

𝑥 times
as expensive as the local analysis while including the different gas species in a
hypersonic TBL makes the operator at least 5 times as expensive as the single species
calculations. Although the analyses already take advantage of sparse differentiation
schemes, Arnoldi iterations, and efficient LU decompositions to avoid the explicit
storage and calculation of the inverse, the calculations are still expensive, even
requiring parallel architecture in a high performance computer for the biglobal case.

In this chapter, efficient methods to approximate the resolvent modes will be dis-
cussed along with a sampling algorithm that autonomously identifies the large
amplification regions in the parameter space. The approximate methods could have
been used in Chapters 3 and 4 to decrease the computation time of the large param-
eter sweeps. In Chapter 5, the adaptive search algorithm could have been applied
to find and increase the resolution of regions in spectral space where the resolvent
amplification differed the most, as opposed to distributing the samples equally.

The autonomous sampling uses ideas embedded in Bayesian Optimization (BO) to
identify the most energetic regions of the parameter space. The main idea of this
can be garnered by considering a real world example. Suppose an oil company has
a suspicion that its land sits on a deposit of oil. The company wants to place a
well where it is likely to retrieve the most oil. Because it costs money to drill, the
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company is only willing to make as few holes as possible to sample the oil levels
below. Since samples are limited, the company will need to figure out where to place
the next samples in regions where it can learn the most (reduce the uncertainty) about
the oil field topology while also finding the regions with the most oil. Although the
underlying oil field topology may be smooth, gradient descent approaches to find the
optimal placement are not applicable for this task since the true topology is unknown
and samples are too sparse to calculate any gradients. Instead, this problem can be
tackled with BO. BO is a black box method for identifying optimal parameters that
develops a surrogate model with uncertainty using Gaussian Process Regression
(GPR) from the sampled points. The next points to sample are determined based on
an acquisition function which balances decreasing the uncertainty and finding the
maxima of the surrogate model. Each subsequent sample improves the GPR and
the prediction from BO.

In many ways, the oil well problem is similar to finding optimal parameters in
resolvent analysis which lead to the largest amplification. As described earlier,
calculating resolvent analysis for a new set of samples can be computationally
expensive. Often times, because of scale separation in turbulent flows, there may be
multiple regions in spectral space with different amplification mechanisms. In those
cases, the interest is not to simply identify the largest amplification, but to sample the
various local maxima of the amplification in the parameter space. In Gomez et al.
(2022), a method denoted adaptive resolvent analysis (ARA) was described which
uses BO to identify and sample the large amplification regions in high enthalpy
TBL. This scheme, compared to a fixed-grid parameter search, was able to increase
the resolution of the various large amplification regions. A description of that work
is described in Section 6.2.

While the work in Gomez et al. (2022) described optimal ways of sampling the
parameter space, the calculation of each sample can still be prohibitively expensive.
In Barthel, Gomez, and McKeon (2022b), a method coined VRA was described
which approximates resolvent modes using an inverse free approach. Using calculus
of variations, an Euler-Lagrange equation can be derived that computes the resolvent
modes and singular values as the eigenvectors and eigenvalues of the linearized
Navier Stokes (LNS) operator,

(
−𝑖𝜔 + L̂

)
. This avoids the use of the resolvent

operator,
(
−𝑖𝜔 + L̂

)−1
. Describing the resolvent modes as a sum of 𝑟 basis elements

allows the eigenvalue problem to be projected onto an 𝑟 × 𝑟 matrix. More on this
will be describe in Section 6.3.
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While the VRA approach of Barthel, Gomez, and McKeon (2022b) leads to com-
putational savings by avoiding any inversions, the LNS operator does not act as a
directional amplifier like the resolvent operator. The resolvent operator amplifies
responses in the direction of 𝝍1, since it has the largest gain, 𝜎1. On the other hand,
the singular values of the LNS operator are 1/𝜎𝑗 , the reciprocal of the gains of the
resolvent operator. As a result, the LNS operator amplifies in the direction of the
highest order modes, 𝝓𝑛, which are often spurious (Theofilis, 2011). To take advan-
tage of the directional amplification of the resolvent operator, the ideas in Barthel,
Gomez, and McKeon (2022b) are applied to the biglobal resolvent operator by using
𝑟 basis elements to approximate the forcing modes. This leads to a projection of
Equation 2.13 onto an 𝑟 × 𝑟 eigenvalue problem. This eigenvalue problem now does
not require the use of an Arnoldi iteration to solve. This is described in 6.4.

In this chapter, Section 6.2 will first give a description of GPR and BO to then
explain the ARA algorithm. Examples will be presented to show that the ARA can
increase the resolution of the large amplification regions compared to an equispaced
parameter search. In Section 6.3, the VRA approach will be described. Examples
will be presented to show how the choice of basis functions affect the results.
Section 6.4 will describe how an approximation for the forcing modes can lead to
an Arnoldi-free algorithm for resolvent analysis. Conclusions will be presented at
the end of the chapter.

6.2 Preliminaries for Bayesian Optimization

The ARA uses a modification of BO to sample the large amplification regions of the
parameter space. BO builds a surrogate model with uncertainty by using a GPR. To
describe ARA, these two topics will be succinctly described.

Gaussian Process Regression

A Gaussian Process is defined as a collection of random variables that have a joint
Gaussian distribution. In GPR, it is assumed that there is a probability distribution
over all possible functions. The samples of these functions act as the random
variables and are jointly Gaussian distributed. The regression from the GPR is the
mean function calculated from the probability of all possible functions, given the
samples. The variance of this probability is the uncertainty in the regresssion. As
more samples are included, the mean function and its uncertainty are updated.
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A Gaussian Process assumes that the measurements 𝑓 (x) of samples x are specified
by the mean function, 𝜇𝑚 (x), and covariance, 𝑘 (x, x′), as

𝜇𝑚 (x) = E[ 𝑓 (X)],
𝑘 (x, x′) = = E[( 𝑓 (X) − 𝜇𝑚 (x)) ( 𝑓 (X′) − 𝜇𝑚 (x′))],

(6.1)

where E denotes the expectation of all possible measurements (Williams and Ras-
mussen, 2006). Thus, it is assumed that 𝑓 (x) is drawn from a joint Gaussian
distribution with mean 𝜇𝑚 and covariance 𝑘 . Per convention, 𝜇𝑚 is set to 0 such
that the Gaussian Process is determined only by 𝑘 , such that

𝑓 ∼ N(0, 𝑘), (6.2)

where N denotes a normal distribution. Since the covariance is a symmetric
function, 𝑘 is described as a user-defined kernel function. 𝑘 may depend on hy-
perparameters that specify its behavior. 𝑘 describes how two points in the sample
space, x and x′, are correlated.

It is assumed that 𝑗 samples, X =
[
x1, . . . , x 𝑗

]
, are used to make 𝑗 measurements,

f =
[
𝑓 (x1), . . . , 𝑓

(
x 𝑗

) ]
for the Gaussian Process 𝑓 . The predicted measurements,

f∗, at samples, X∗, are also defined. Since f and f∗ form a Gaussian Processes, they
form a joint Gaussian distribution,[

f
f∗

]
∼ N

(
0,

[
K(X,X) + 𝜖2

𝑛I K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
, (6.3)

where K(X𝑖,X 𝑗 ) denotes a matrix formed with entries 𝐾𝑝,𝑞 = 𝑘

(
x𝑖𝑝, x

𝑗
𝑞

)
and 𝜖𝑛

accounts for noisy measurements. The distribution in Equation 6.3 is the prior
and includes no information from the observations. f∗ is defined as the predicted
measurement at samples X∗ given the measurements f at samples X. This can be
quantified with the distribution conditioned on the observations,

f∗ |X∗,X, f ∼ N(m,𝚺), (6.4)

where

m(X∗) = K(X∗,X)
(
K(X,X) + 𝜖2

𝑛I
)−1

f, (6.5)

𝚺(X∗,X∗) = K(X∗,X∗) − K(X∗,X)
(
X(X,X) + 𝜖2

𝑛I
)−1

K(X,X∗). (6.6)

More details on this derivation are available in Williams and Rasmussen (2006).
m

(
X∗

)
is the GPR of the data, (X, f), and serves as the prediction, f∗, at samples
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X∗. 𝚺(X∗,X∗) is the covariance matrix around m(X∗). The uncertainty, s(X∗),
is then the diagonal of 𝚺(X∗,X∗). m and s are vectors organized as m(X∗) =[
𝑚

(
x∗,1

)
, . . . , 𝑚

(
x∗,𝑛𝑝

)]
and s(X∗) =

[
𝑠
(
x∗,1

)
, . . . , 𝑠

(
x∗,𝑛𝑝

)]
, where 𝑚 and 𝑠 are

scalars and 𝑛𝑝 is the number of vectors in X∗. If 𝜖𝑛 = 0, then 𝑠(𝑥𝑖) = 0 and
𝑚(𝑥𝑖) = 𝑓 (𝑥𝑖) for every sampled point, 𝑥𝑖.

Although 𝜖𝑛 is used to account for noise, here it is used as a regularizer to invert
the covariance matrices and serves as an external parameter (Eriksson et al., 2018).
The GPR depends on the choice of 𝑘 and its hyperparameters as well. Here, given
a choice of kernel function, its hyperparameters, 𝜃ℎ𝑦𝑝, and 𝜖𝑛 are determined as the
values that maximize the log-marginal likelihood,

log
(
𝑝(f |X, 𝜃ℎ𝑦𝑝, 𝜖𝑛)

)
= −1

2

[
f𝑇

(
K(X,X; 𝜃ℎ𝑦𝑝) + 𝜖2

𝑛I
)−1

f

+ log
(
det

(
K(X,X; 𝜃ℎ𝑦𝑝) + 𝜖2

𝑛I
))

+ 𝑗 log(2𝜋)
]
,

(6.7)

over 𝜃 and 𝜖𝑛 (Williams and Rasmussen, 2006; Eriksson et al., 2018). Here, 𝑗 is the
number of samples. The only modeling choice that enters the GPR used here is the
choice of kernel function.

The code used for GPR uses an adapted version of the code described in Eriksson
et al. (2018), though their extension using the derivatives of the observations is not
used. In Gomez et al. (2022), the derivative approach was used to apply GPR in
two separate regions— the relatively subsonic and the relatively supersonic regions.
The two separate regions were used because the derivatives are ill-defined at the
sonic line and the radial basis function could not properly model the discontinuity.
Here, a Matérn 3/2 kernel is used as a kernel function instead as it can resolve sharp
features. This allows for the application of a single GPR across the entire spectral
space, requiring no a priori knowledge of any discontinuities.

Bayesian Optimization

BO uses GPR to create a surrogate model from the measurements with uncertainties
and identifies the next point to sample via an acquisition function. Since it does
not require any a priori knowledge of the function being optimized, BO is com-
monly used as a black-box method for optimizing functions that are expensive to
compute (Huhn and Magri, 2022).

BO begins by making a few measurements, f, at samples, X. These samples and
measurements are then used to calculate the surrogate model, 𝑚, and uncertainty, 𝑠,
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from Equation 6.5 and the diagonal of Equation 6.6, respectively. The next sample
point is the maxima of an acquisition function, 𝑎 = 𝑎(𝑚, 𝑠), designed to balance
exploration and exploitation. Exploration looks for regions of large uncertainty, so 𝑎
needs to be large when 𝑠 is large. Exploitation looks for the largest predicted values
from the surrogate model. Exploitation requires that 𝑎 is large when 𝑚 is large. A
description of commonly used acquisition functions in BO can be found in Williams
and Rasmussen (2006) and Huhn and Magri (2022). These acquisition functions
are not used for the ARA since they focus on identifying the optimal maxima as
opposed to sampling several local maxima. With each new sample, x𝑛𝑒𝑤, a new
measurement 𝑓 (x𝑛𝑒𝑤) is made as well. These values update f and X which then
update 𝑚 and 𝑠. With each subsequent sample, the surrogate model improves at
modeling 𝑓 . These steps are repeated until a convergence criterion or desired total
number of samples has been met.

Adaptive Resolvent Analysis

Here, the ARA algorithm is described and applied to the high enthalpy TBL using a
mixture of ideal gases in chemical nonequilibrium from Section 5.61. The analysis
considers 𝑘𝑥 and 𝑘𝑧 as parameters, given a constant wavespeed, 𝑐. 𝑐 is fixed as
𝑈 (𝑦+ ≈ 40) as in Section 5.6. The analysis can consider any combination of the
three parameters, but here, the focus is only on the length scales. The BO is applied
to the logarithm of the premultiplied singular values,

𝑔(𝑘𝑥 , 𝑘𝑧) = log10(𝜎2
1 (𝑘𝑥 , 𝑘𝑧, 𝑐)𝑘𝑥𝑘𝑧). (6.8)

The use of the logarithm is two-fold. First, the singular values span several orders
of magnitude, which can strain the regressions. The logarithm is able to regularize
this issue. Second, while 𝜎1 ≥ 0, the GPR is not constrained to predict non-negative
surrogate models. Since 𝑔 can be positive and negative, the GPR does not need to
be restricted. Since 𝜎2

1 peaks for the largest length scales, the premultiplied 𝜎2
1 𝑘𝑥𝑘𝑧

is used to also capture amplification from the smallest length scales. Since the
length scales of interest can span several orders of magnitude, the BO is applied in
log-space, such that the parameters are x =

[
log10(𝑘𝑥), log10(𝑘𝑧)

]
.

The acquisition function is defined as

𝑎(𝑚, 𝑠) = (𝑚 − min(𝑚))𝑠𝛼 + 𝜅𝑠, (6.9)
1This work first appeared in Gomez et al. (2022). S. R. G. provided the formulation for the ARA

and developed the hypersonic resolvent schemes. That work has been adapted and reworked into this
section. Fruitful discussions and contributions from the coauthors are gratefully acknowledged.
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Figure 6.1: 𝜎2
1 𝑘𝑥𝑘𝑧 for a TBL in chemical nonequilibrium using the same parameters

as in Figure 5.25 with the initial samples (triangles) and the samples found using
ARA (circles) (a). The order of the identified samples is color coded, beginning
with white and ending with black. 𝜎2

1 𝑘𝑥𝑘𝑧 (black contours) and 10𝑚𝑒 (red contours)
where the contour values are 10.5, 101, . . . , 106 (b).

where 𝜅 > 0 and 𝛼 are used to tune exploration and exploitation. A larger value
of 𝜅 encourages exploration by weighing 𝑠 more than 𝑚. The value of 𝛼 is used
to influence the neighborhood near the samples where 𝑠 ≪ 1. Here, 𝛼 = .3 and
𝜅 = .5. In the first term, 𝑚 is offset by min(𝑚) to ensure that 𝑎 ≥ 0 and 𝑠 is set to 0
at sampled points manually so that new points are always sampled.

The discontinuity in 𝜎1 at the sonic line causes issues when performing regressions
across the entire space. The Matérn 3/2 kernel is used to better resolve the discon-
tinuity since it can resolve sharp features (Huhn and Magri, 2022). The Matérn 3/2
kernel is

𝑘 (x, x′; 𝐴, ℓ) = 𝐴
(
1 +

√
3
ℓ
∥x − x′∥

)
exp

(
−
√

3
ℓ
∥x − x′∥

)
, (6.10)

where 𝐴 and ℓ are hyperparameters that are determined by maximizing the log-
marginal likelihood and ∥·∥ denotes the Euclidean distance.

Adaptive Resolvent Analysis Results

The same parameters used in Figure 5.25 for the TBL in chemical nonequilibrium are
used to compare the results of the ARA. The ARA is initialized with the four points,
labeled by triangles in Figure 6.1(a). The ARA identified 148 points to sample,
labeled by the grey circles. Although the ARA is initialized with points in the
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low amplification regions in the outskirts of the plot, the ARA identifies the largest
amplification within a few iterations. The points are all clustered in the regions with
largest amplification, with sparse measurements in the low amplification regions.
As the large amplification region becomes over sampled, the scheme switches to
exploration, noted by the few dark-grey circles in the low-amplification supersonic
regions with 𝜆𝑧 > 10. In Figure 6.1(b), 𝜎2

1 𝑘𝑥𝑘𝑧 from the full sweep is compared
with 10𝑚𝑒 , where 𝑚𝑒 is the surrogate model of 𝑔 based on the 148 samples. 𝜎2

1 𝑘𝑥𝑘𝑧

and 𝑚𝑒 are evaluated at the same 𝑘𝑥 and 𝑘𝑧. The large amplification regions overlap
well with the surrogate model. The low amplification regions, like the supersonic
region with (𝜆𝑥 ≤ 1, 𝜆𝑧 ≥ 1) and subsonic region with (𝜆𝑥 ≤ 10, 𝜆𝑧 ≤ 0.1), are
poorly represented with the surrogate model due to limited samples. The GPR
assumes that 𝑔 is continuous so the contours are closed across the sonic line. This
limits the modeling of fine features near the sonic line. Nonetheless, the surrogate
model is able to represent the large amplification regions well.

To compare a practical use of ARA, a comparison is made with 49 samples from the
ARA scheme and 49 equispaced samples. An initial coarse sampling with 12 points
is made and the ARA is used to increase the resolution of the large amplification
regions. The comparison is done by using the same scatteredInterpolant
function on MATLAB® with a continuous linear interpolation for the two sets
of samples. The interpolant only matches the data at the sampled points and is
computed similarly to how the contours are plotted in MATLAB® on an equispaced,
regular grid. The interpolants are plotted in Figures 6.2(b,d). Using the ARA,
the remaining samples can be concentrated in the large amplification regions. This
improves the interpolation in those regions. Using the equispaced sampling leads
to less resolution in the regions of interest, causing the large amplifications to be
poorly reconstructed with the samples.

Figure 6.2 illustrates a use for ARA when computational resources are limited. By
applying ARA, the resolution increases in the large amplification regions. The in-
terpolation using these values can provide a clearer picture of the large amplification
regions compared to using a simple equispaced sampling of the parameter space.
It is noted that although the ARA was designed to find optimal points to sample in
spectral space for resolvent analysis, the scheme can easily be adjusted and applied
to other sampling needs. Any BO algorithm can simply replace the acquisition
function with Equation 6.9 to convert the algorithm into a sampling algorithm.
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Figure 6.2: The same contours from Figure 6.1 are plotted in (a) and (c). In (a), the
upside down triangles denote the points found from the ARA, while the rest denote
the initial points. In (c), the triangles denote the sample points, all equispaced.
𝜎2

1 𝑘𝑥𝑘𝑧 (black contours) is compared with interpolations (red contours) from the
ARA samples in (b) and the equispaced samples in (d). The contours are taken at
101, 102, 103, 104, 105, 105.5.

6.3 Variational Resolvent Analysis

The main computational bottleneck with resolvent analysis is dealing with an opera-
tor inverse required to create the resolvent operator, H . In practice, the direct calcu-
lation and storage of an inverse can be avoided by computing an LU decomposition
of the LNS operator, A. The action of H is then replaced with back-substitution
using the LU factors of A, as described in Appendix A (Jeun, Nichols, and Jo-
vanović, 2016; Sipp and Marquet, 2013; Schmidt et al., 2018). Another approach
that avoided the direct storage of H is the work of Ribeiro, Yeh, and Taira (2020),
who used back-substitution with A on a small subset of vectors to sketch H . These
strategies reduce the computational cost as H is never explicitly formed, though the
cost of this strategy is the overall cost of an LU decomposition. Other approaches
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that avoid the direct calculation of H are the “matrix-free” approach of Martini
et al. (2021) that approximates the action of H through the transient and steady
state responses of the periodically forced linearized system and its corresponding
adjoint system. The computational cost of this approach is O(𝑛), though it requires
time-integration of the linearized systems. Through different means, the methods
described all use different strategies to approximate the action of H to solve the
eigenvalue problem in Equation 2.12. The VRA approach of Barthel, Gomez, and
McKeon (2022b), never uses H as the approach only considers A in Equation 2.22.

Here, the VRA approach described in Barthel, Gomez, and McKeon (2022b) will
first be derived and applied to the Ginzburg-Landau equation and the biglobal
resolvent modes. Discussions will be presented to illustrate the effect of the modeling
basis on the VRA approximations.2

Derivation of the Variational Resolvent Analysis Approach

While resolvent analysis searches for the largest resolvent amplification, mathe-
matically, one can equivalently search for the smallest amplification from the LNS
operator (Barthel, Gomez, and McKeon, 2022b). Numerically, this search is ill-
conditioned (Saad, 2011; Theofilis, 2011). In Section 2.21, it was shown that the
minimum of the cost functional in Equation 2.21,

J𝑚 (q) = ∥Aq∥ 𝑓 − 𝜆2∥q∥𝑟
=

〈
q,A†W𝑓Aq

〉
− 𝜆2 ⟨q,W𝑟q⟩ ,

(6.11)

is found by the Euler-Lagrange equations described in Equation 2.22,

A†W𝑓A𝝍𝑖 = 𝜆
2
𝑖W𝑟𝝍𝑖 . (6.12)

Since A†W𝑓A and W𝑟 are normal operators, 𝜆2
𝑖
≥ 0 and 𝝍𝑖 are orthonormal

with respect to the inner product ⟨·, ·⟩𝑟 . The index 𝑖 is ordered in ascending or-
der for 𝜆𝑖 such that 𝜆𝑖 ≤ 𝜆𝑖+1. By multiplying both sides of Equation 6.11 by
A†W𝑓A = HW−1

𝑓
H†, one can show using Equation 2.17 that the eigenvectors,

𝝍𝑖, and reciprocals of the eigenvalues, 𝜆−1
𝑖

, are the response modes and singular
2The idea for VRA first appeared in Barthel, Gomez, and McKeon (2022b), while the ideas for

an optimal modeling basis were investigated in Barthel, Gomez, and McKeon (2022a) to explain the
discrepancies in the nonperiodic biglobal resolvent modes using a periodic basis. In Barthel, Gomez,
and McKeon (2022a), S. R. G. developed the example for the choice of basis on the Ginzburg-Landau
system. In this section, S. R. G. applied the nonperiodic basis to the nonperiodic biglobal resolvent
modes. Contributions from the coauthors are greatly appreciated, especially Benedikt Barthel who
first created the VRA approach and subsequent comment and discussions.
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values of H , respectively. The forcing modes of H are computed by inverting
Equation 2.15 such that

A𝝍𝑖 = 𝜎
−1
𝑖 𝝓𝑖 . (6.13)

Unlike Equation 2.13, the eigenvalue problem in Equation 6.12 does not involve any
operator inverses since it does not require H .

This approach is, mathematically, an equivalent representation for resolvent analysis
without the use of inverse operations. To compare with resolvent analysis, one
needs to find the smallest eigenvalues in Equation 6.12. In practice, this is a
difficult problem as many Krylov-space methods to approximate eigenvalues, like
the Arnoldi iteration, can converge quickly to the largest eigenvalues, while the
smallest eigenvalues are the last to converge. To find the smallest eigenvalues using
Krylov-space methods, the matrix, M, and its eigenvalues, 𝑝𝑖, are transformed
into M̃ and 𝑝𝑖 such that the smallest eigenvalues become the largest. This can
be done with shift-and-invert such that 𝑀 = M−1 which makes 𝑝𝑖 = 𝑝−1

𝑖
(Saad,

2011). Arnoldi iteration is then done on 𝑀 and the identified eigenvalues are then
transformed back to recover the smallest 𝑝𝑖. Thus, to compute the eigenvalues of
interest in Equation 6.12, a 𝑛 × 𝑛 matrix inverse is required which removes any of
its computational advantages.

To circumvent this limitation, Barthel, Gomez, and McKeon (2022b) considers a
projection of Equation 6.12 onto a set of basis elements. The basis elements have
physical properties characteristic of the underlying physics in A. For example,
the examples using biglobal resolvent analysis in Barthel, Gomez, and McKeon
(2022b) used basis elements from a local resolvent approach, which are much
cheaper to compute, while Schmid and Henningson (2002) considered the largest
transient growth of A through a projection onto its eigenmodes. The projection
removes the influence of the spurious eigenvectors associated with large eigenvalues
as they are removed from the span of the projected matrices (Theofilis, 2011). The
underlying projected system is then expected to only retain a span representative of
the underlying physical mechanisms.

To explain this projection, consider Equation 2.21 for a vector defined as the sum of
known basis functions, b𝑖, with coefficients 𝑎𝑖 as

q =

𝑟∑︁
𝑖=1

𝑎𝑖b𝑖 = Ba, (6.14)
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where B = [b1, b2, . . . , b𝑟] ∈ C𝑛×𝑟 and a = [𝑎1, 𝑎2, . . . , 𝑎𝑟]𝑇 ∈ C𝑟×1. Determining
q requires the determination of its coefficient vector a. Rewriting Equation 2.21
with q gives

J𝑚 (Ba) = ∥ABa∥ 𝑓 − 𝜆2∥Ba∥𝑟
=

〈
ABa,W𝑓ABa

〉
− 𝜆2 ⟨Ba,W𝑟Ba⟩

=
〈
a, (AB)∗W𝑓ABa

〉
− 𝜆2 ⟨a,B∗W𝑟Ba⟩ .

(6.15)

To find a that minimizes J𝑚 (Ba), the stationary points must be found as

𝑑J𝑚 (Ba + 𝜖Bh)
𝑑𝜖

= 2ℜ
{〈

h, (AB)∗W𝑓ABa
〉
− 𝜆2 ⟨a,B∗W𝑟Ba⟩

}
= 0. (6.16)

Since Equation 6.16 must hold for any h, the Euler-Lagrange equation becomes the
eigenvalue problem,

(AB)∗W𝑓ABa𝑖 = Qa𝑖 = 𝜆2
𝑖 B

∗W𝑟Ba𝑖 = 𝜆2
𝑖 Da𝑖 . (6.17)

The 𝑟 × 𝑟 matrices Q and D are projections of the operators A†W𝑓A and W𝑟

onto the basis b𝑖. Q is also independent of an adjoint operator. Since Q and D are
Hermitian matrices, Equation 6.17 produces 𝑟 nonnegative eigenvalues, 𝜆2

𝑖
, such

that 𝜆𝑖 ≤ 𝜆𝑖+1. The eigenvectors, a𝑖 are also orthogonal such that

a∗𝑖 Da 𝑗 = 𝛿𝑖 𝑗 , (6.18)

where 𝛿𝑖 𝑗 is the Kroenecker delta. The eigenvectors a𝑖 are coefficients that optimally
approximate 𝝍𝑖 in the basis B while the eigenvalues 𝜆−1

𝑖
approximate 𝜎𝑖. The

response modes are then
𝝍𝑖 = Ba𝑖 . (6.19)

Due to Equation 6.18, 𝝍𝑖 are orthonormal with respect to the inner product ⟨·, ·⟩𝑟 .
By suitably choosing the basis vectors, the projection can identify the amplification
mechanisms present in the optimal modes as opposed to spurious behavior in the
higher order modes.

Using the approximation for 𝜎𝑖 and 𝝍𝑖, the forcing modes can be approximated
by using Equation 6.13. This was done in Barthel, Gomez, and McKeon (2022b),
though it was shown to amplify errors in the approximation of 𝝓𝑖. This occurs
because A amplifies the higher order modes, as opposed to the optimal modes.
This can be seen by the 𝜎−1

𝑖
on the right hand side of Equation 6.13.

The necessary 𝑟 depends on both the efficiency of the model basis and the desired
level of accuracy. The derivation does not include any approximations, so if the input
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basis is complete, the VRA approximation will converge to the solution computed
via an SVD as 𝑟 → ∞. However, it is desired that 𝑟 is sufficiently small compared
to the number of degrees of freedom in the discretized system, 𝑛. If 𝑟 ∼ O(𝑛), it is
preferential to use the standard resolvent approach because the eigenvalue problem
numerically scales as O(𝑟)3. For the examples described here, 𝑟 is at several orders
of magnitude smaller than 𝑛, so computing Equation 6.17 can take seconds.

The approximation in the VRA method is dependent on the choice of basis and 𝑟.
However, one may not know a priori what the optimal basis is nor the 𝑟 required for
satisfactory convergence. In Barthel, Gomez, and McKeon (2022b), this effect was
manifest in the modeling of the ZPG TBL resolvent modes. In that study, streamwise-
periodic local resolvent modes were used as a modeling basis for biglobal resolvent
modes in a ZPG TBL. It was found that the modes closest to the wall could be
optimally represented by the modeling basis. Modes further from the wall in
the wake, subject to non-periodic effects like the convective non-normality and
nonparallel effects from the streamwise evolving flow, lead to poor approximations
of the resolvent modes.

Application to the Ginzburg-Landau Equation

To investigate the effects of using a modeling basis that sub-optimally represents
the leading response modes, VRA is applied to the simple linear Ginzburg-Landau
(GL) equation studied in Bagheri et al., 2009. Here, the GL operator is

A =

(
−𝑖𝜔 + L̂

)
= −𝑖𝜔 − 𝜈𝜕𝑥 + 𝛾𝜕𝑥𝑥 +

(
𝜇0 − 𝑐2

𝜇

)
+ 𝜇2

2
𝑥2 (6.20)

and the resolvent operator is H = A−1 for 𝑥 ∈ R. The coefficients 𝜈, 𝛾, 𝜇0, and 𝑐𝜇
are chosen to be the same as in Bagheri et al., 2009. Here, 𝜔 is set to 2 and 𝜇2 is
−0.01. Finally, the standard inner product over R is chosen such that

⟨𝑎, 𝑏⟩𝑥 =
∫ ∞

−∞
𝑎∗(𝑥)𝑏(𝑥)𝑑𝑥, (6.21)

meaning that W𝑟 = W𝑓 = I.

Cossu and Chomaz (1997) note that the GL operator has many of the hallmarks
seen in the LNS operator. The −𝑖𝜔− 𝜈𝜕𝑥 term provides a convective non-normality,
parameterized by 𝜈, 𝛾𝜕𝑥𝑥 provides viscous dissipation, and 𝜇2𝑥

2/2 provides non-
parallel effects. By increasing 𝜇2, the nonparallel term can be made stronger. The
nonparallel term behaves like a potential well, which encourages amplified modes
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Figure 6.3: Comparison of 𝜎𝑗 using 23 basis elements for the GL system. The red
triangles and blue filled circles are the VRA approximated singular values using the
Gaussian and Fourier bases, respectively. The black open circles are the singular
values computed using the SVD. Note the logarithmic scale in the 𝑦 axis.

to have the most support near 𝑥 = 0, where the potential well is weakest. This term
causes modes to decay in the far field.

A is discretized into the matrix, A, with a fourth-order, equispaced, SBP
scheme (Mattsson and Nordström, 2004) for 𝑥 ∈ [−𝐿, 𝐿] using 𝑛 = 1920 points
using Dirichlet boundary conditions at |𝑥 | = 𝐿. A trapezoidal scheme is used to
create the diagonal matrix, W. The matrix inverse and its SVD are computed using
the built in functions, mldivide and svd on MATLAB®.

To investigate the role of the boundary conditions, the VRA is computed with two
different modeling bases. The first set of basis elements are created with Gaussians,
centered at different locations, to model the effect of a compact basis set. The basis
is defined as

b𝐺𝑗 (𝑥; 𝑟) = 1√︁
2𝜋𝜎2

𝑟

exp

( (
𝑥 − 𝑥𝑟, 𝑗

)2

2𝜎2
𝑟

)
, (6.22)

where 𝑟 denotes the number of basis elements. Here, 𝜎𝑟 = 2𝐿
.675𝑟 and 𝑥𝑟,ℎ = 2𝐿

𝑟
𝑗 − 𝐿,

so that the width and location of the Gaussians depend on the number of basis
elements. The second set of basis elements uses a noncompact modeling basis in
the form of Fourier modes such that

b𝐹𝑗 (𝑥; 𝑟) = 1
√
𝐿

exp
(
2𝜋𝑖
𝐿
𝑗𝑥

)
. (6.23)

The Fourier basis is similar to the basis set chosen in Barthel, Gomez, and McKeon
(2022b).

In Figures 6.3 and 6.4, the resolvent modes and 𝜎𝑗 computed with VRA the two
bases using 𝑟 = 23 are compared to those computed with the SVD. The 𝜎𝑗 show
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Figure 6.4: Comparison of the real parts of 𝜓𝑖 (a-d) and 𝜙𝑖 (e-f) using 23 basis
elements for the GL system. 𝑖 increases from 1 to 4 from left to right. The red and
blue lines are the VRA approximated modes using the Gaussian and Fourier bases,
respectively. The black dotted lines are the modes computed from the SVD.

excellent agreement for the first three 𝜎𝑗 , with the approximation deteriorating as 𝑗
increases. The same is true for 𝜓 𝑗 . Using the Fourier basis leads to worse agreement
in 𝜓4 than using the Gaussian basis. In the forcing modes, the discrepancies are
amplified due to A directionally amplifying the errors in the approximations. This
issue becomes most apparent in 𝜙1 and 𝜙3 using the Fourier basis. The 𝜙4 mode is
approximated poorly using the two approaches because of the error in 𝜓4. Despite
the issues in the higher order modes, the leading modes and amplifications were
captured well by using only 23 basis elements.

The convergence of the singular values, response modes, and forcing modes is
plotted in Figure 6.5. The error in the singular values is defined as 𝑒𝜎, 𝑗 = |𝜎𝑆

𝑗
−𝜎𝑉

𝑗
|,

and the error in the forcing modes and response modes is defined as 𝑒𝜙, 𝑗 = | |𝜙 𝑗 −𝜙 𝑗 | |
and 𝑒𝜓, 𝑗 = | |𝜓 𝑗 − 𝜓̃ 𝑗 | |, respectively. The superscript S and V denote if the quantity
was computed using the SVD or VRA. For the Gaussian basis, the 𝑒𝜎, 𝑗 and 𝑒𝜓, 𝑗
decreases initially, then plateaus for large 𝑟. This is similar for 𝑒𝜙, 𝑗 , except that
the error begins to increase. For the Fourier basis, the error continues to decrease
as 𝑟 increases. When 𝑟 becomes large, the error in the Fourier basis scales as
𝑒𝜎, 𝑗 ∼ O

(
𝑟−1) , 𝑒𝜓, 𝑗 ∼ O

(
𝑟−2) , and 𝑒𝜙, 𝑗 ∼ O

(
𝑟−1) . In all the cases plotted here,

𝑒𝜙, 𝑗 > 𝑒𝜓, 𝑗 .

The Gaussian basis converges quicker than the Fourier basis because the Fourier
basis is not compact whereas the resolvent modes of the Ginzburg Landau operator
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Figure 6.5: The error in the VRA approximations for 𝜎𝑗 (a), 𝜓 𝑗 (b), and 𝜙 𝑗 (c)
relative to the SVD computed modes as 𝑟 increases. The open circles denote the
error using the Fourier basis while the closed circles are the error with the Gaussian
basis. The red, blue, green, and purple lines denote 𝑖 = 1, 2, 3, and 4. The black
dashed lines are proportional to 𝑟−1 in (a,c) and proportional to 𝑟−2 in (b).

are. To resolve the discrepancy, more Fourier modes are required. This is similar to
resolving a spatially localized bump with a Fourier series. The Gaussian basis does
not have this limitation and it is better able to resolve the spatially compact modes.
The plateau in the Gaussian basis likely occurs because the basis elements b𝐺

𝑗
(𝑥; 𝑟)

become narrower as 𝑟 increases, making the basis elements themselves difficult to
differentiate. Since the boundary conditions are homogeneous, it is expected that
the Fourier basis can eventually completely resolve the mode shapes.

Effect of Basis on VRA Approximation in ZPG TBL

VRA is now applied to a ZPG TBL and two different resolvent modes are
considered—one representative of small near-wall structures and the other rep-
resentative of large scale structures. The basis elements will differ from those used
in Barthel, Gomez, and McKeon (2022b). The wall-normal variation of the basis
elements will be computed from the local resolvent modes, 𝝍1𝐷

𝑖 (𝑦; 𝑐 𝑗 , 𝑘𝑧, 𝜔). The
𝑘𝑧 and 𝜔 are the same used as those used in the biglobal resolvent modes while 𝑐 𝑗
are 𝑁𝑐 equispaced wavespeeds between 𝑐𝑚𝑖𝑛 and 𝑐𝑚𝑎𝑥 . The 𝑐 𝑗 define the streamwise
wavenumbers, 𝑘𝑥, 𝑗 = 𝜔/𝑐 𝑗 , so that 𝑘𝑥, 𝑗 is dependent on 𝜔. For each 𝑐 𝑗 , the first 𝑁 𝑗

resolvent modes are retained so that 𝑟 = 𝑁 𝑗𝑁𝑐. The streamwise structure will nomi-
nally be wave-like with a streamwise wavenumber 𝑘𝑥, 𝑗 , though nonperiodic features
will be incorporated. In Barthel, Gomez, and McKeon (2022b), the basis elements
were periodic local resolvent modes, 𝝍1𝐷

𝑖 (𝑦; 𝑐 𝑗 , 𝑘𝑧, 𝑐 𝑗 𝑘𝑥,𝑙) exp
(√

−1𝑘𝑥, 𝑗𝑥
)
, param-
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𝜆+𝑧 𝜔+ 𝑁𝑥 𝐿
(
𝑐+
𝑚𝑖𝑛
, 𝑐+𝑚𝑎𝑥

)
𝑁𝑐 𝑁 𝑗 𝑟 𝑛 = 4𝑁𝑥𝑁𝑦

100 2𝜋/100 300 4.5 (10, 18) 10 2 20 301250
1537 244 600 20 (14.75, 25) 20 9 180 602400

Table 6.1: The computational parameters for the two modes studied here. These
modes both use 𝑦𝑚𝑖𝑛 = .24, 𝑦𝑚𝑎𝑥 = 3.5, 𝑁𝑦 = 251, and 𝜖𝑠 = 30. The parameters
𝑐+
𝑚𝑖𝑛

, 𝑐+𝑚𝑎𝑥 , 𝑁𝑐, 𝑁 𝑗 , and 𝑟 are parameters used to define the local mode basis.

eterized with 𝑁𝑘𝑥 streamwise wavenumbers, 𝑁𝑐 wavespeeds, and 𝑁 𝑗 sub-optimal
modes such that 𝑟 = 𝑁𝑘𝑥𝑁𝑐𝑁 𝑗 . The temporal frequency of the basis modes is
different than the temporal frequency of the biglobal modes in that study.

To provide the streamwise structure for the basis elements, two approaches are used.
The first allows for streamwise periodicity such that

b𝑝
𝑖+ 𝑗 (𝑥, 𝑦) = 𝝍1𝐷

𝑖 (𝑦; 𝑐 𝑗 𝑘𝑧, 𝜔)𝑒𝑖𝑘𝑥, 𝑗𝑥 . (6.24)

The second basis relaxes the streamwise periodicity by allowing for streamwise
variation to account for the convective non-normality. The amplitude of these basis
elements is augmented so that it increase downstream, starting from 0, to mimic this
effect. The nonperiodic basis, b𝑛

𝑖
is defined as

𝑏𝑛𝑖+ 𝑗 ,𝑢 (𝑥, 𝑦) = 𝜓1𝐷
𝑖,𝑢 (𝑦; 𝑐 𝑗 𝑘𝑧, 𝜔)𝑒𝑖𝑘𝑥, 𝑗𝑥 𝑓 (𝑥)

𝑏𝑛𝑖+ 𝑗 ,𝑣 (𝑥, 𝑦) = 𝜓1𝐷
𝑖,𝑣 (𝑦; 𝑐 𝑗 𝑘𝑧, 𝜔)𝑒𝑖𝑘𝑥, 𝑗𝑥 𝑓 (𝑥)

𝑏𝑛𝑖+ 𝑗 ,𝑤 (𝑥, 𝑦) =
√
−1
𝑘𝑧

𝜕𝑏𝑛
𝑖+ 𝑗 ,𝑢 (𝑥, 𝑦)
𝜕𝑥

+
𝜕𝑏𝑛

𝑖+ 𝑗 ,𝑣 (𝑥, 𝑦)
𝜕𝑦

𝑏𝑛𝑖+ 𝑗 ,𝑝 (𝑥, 𝑦) = 𝜓1𝐷
𝑖,𝑝 (𝑦; 𝑐 𝑗 𝑘𝑧, 𝜔)𝑒𝑖𝑘𝑥, 𝑗𝑥 𝑓 (𝑥),

(6.25)

where

𝑓 (𝑥) =
(
1 − exp(−25𝑥/𝐿)

1 − exp(−25)

)2
, (6.26)

creates the nonperiodic structure. The spanwise component of the basis elements,
b𝑛
𝑖
, is chosen so the basis elements remain divergence-free. The periodic basis

does not need to account for this since the local resolvent modes are divergence
free. Since A assumes that the response and forcing modes are 0 at the inlet and
outlet, both sets of basis elements are manually set to be 0 at the inlet and outlet.
This ensures that any q defined as a sum of the basis elements satisfies the correct
boundary conditions.

The ZPG TBL is interpolated from the LES of Eitel-Amor, Örlü, and Schlatter
(2014). The outlet of each domain is used to compute the reference length scales,
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Figure 6.6: Real part of 𝜓𝑆
𝑢,1 (a), 𝜓𝑉

𝑢,1 (c), 𝜙𝑆
𝑣,1 (b), 𝜙𝑉

𝑣,1 (d) using 𝜆+𝑧 = 100. The
VRA modes use b𝑝

𝑖
as the basis.

𝛿99 and ℓ𝜈, and velocity scales,𝑈∞ and 𝑢𝜏, used to nondimensionalize the problem.
At the outlet, each domain has a Re𝜏 = 1537. The local resolvent modes in the basis
elements are computed with the outlet streamwise velocity profile, U(𝑦) = 𝑈 (𝐿, 𝑦).
The small scale mode uses 𝜆+𝑧 = 100 and 𝜔+ = 2𝜋/100, like the modes plotted in
Figure 3.6. The large scale mode uses 𝜆𝑧 = 1 and 𝜔 = 1.5. The parameters used
to compute the modes are described in Table 6.1, including their parameters for the
VRA.

The resolvent modes and singular values computed with the standard resolvent
approach described in Chapter 2 are denoted with an 𝑆 superscript while those
computed using VRA have a 𝑉 superscript. First, the effect of the periodic basis,
b𝑝
𝑖

on the VRA approximations is shown in Figure 6.6. Here, the periodic basis
does a poor job at representing the near-wall mode. Although the periodic basis was
able to approximate a similar mode in Barthel, Gomez, and McKeon (2022b), the
study differed for two reasons. First, that study used 468 basis elements that varied
𝑐 and 𝑘𝑥 independently. The 𝑘𝑥 were chosen to be harmonics of the fundamental
wavenumber, 2𝜋/𝐿. This resulted in local modes with a different 𝜔 than the
biglobal mode. Second, that study used a larger streamwise domain (around 40𝛿99)
which allowed the biglobal modes to exhibit streamwise periodic structure while
they slowly decay in 𝑥 due to viscous dissipation within the domain. On the other
hand, this streamwise domain is too short to allow for significant viscous dissipation
downstream. Furthermore, in this short domain, 𝜓𝑆

𝑢,1 is characterized by transient
effects, like the streamwise growth in amplitude characteristic of the convective
non-normality and the gradual tilting downstream via the Orr-tilting mechanism.
These nonperiodic modes are poorly captured with a periodic basis, especially for
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Figure 6.8: Real parts of 𝜙𝑆
𝑢,1 (a), 𝜙𝑆

𝑣,1 (b), 𝜙𝑆
𝑤,1 (c), 𝜙𝑉

𝑢,1 (d), 𝜙𝑉
𝑣,1 (e), and 𝜙𝑉

𝑤,1 (f)
using 𝜆+𝑧 = 100.

the 𝑟 used here. For the rest of this section, the modes presented are computed with
the nonperiodic basis.

Figures 6.7 and 6.8 compare the reference modes with 𝝍𝑉1 and 𝝓𝑉1 using the nonperi-
odic basis, b𝑛

𝑖
. Using only 𝑟 = 20 nonperiodic basis elements provides an excellent

agreement with 𝝍𝑆1 . The error in the modes is defined in the same way as (Ribeiro,
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Figure 6.9: Real parts of 𝜓𝑆
𝑢,2 (a), 𝜓𝑆

𝑢,3 (b), 𝜓𝑆
𝑢,4 (c), 𝜓𝑉

𝑢,2 (d), 𝜓𝑉
𝑢,3 (e), and 𝜓𝑉

𝑢,3 (f)
using 𝜆+𝑧 = 100.

Yeh, and Taira, 2020) as

𝑒𝑉𝜓, 𝑗 =

������〈𝝍𝑆𝑗 ,𝝍𝑉𝑗 〉
𝑟

��� − 1
���, (6.27)

𝑒𝑉𝜙, 𝑗 =

��������〈𝝓𝑆𝑗 , 𝝓𝑉𝑗 〉
𝑓

���� − 1
����, (6.28)

where the absolute value accounts for a phase differences between the modes. Here,
𝑒𝑉
𝜓,1 = .013, indicating agreement up to around 1%. The forcing modes do not

agree as well as the response modes, primarily because of the streamwise forcing
components. The wall-normal and spanwise components are approximated well
with the VRA approximation. Similar behavior was seen in Barthel, Gomez, and
McKeon (2022b), where 𝜙𝑉

𝑣,1 and 𝜙𝑉
𝑤,1 identified similar structure as those computed

with the SVD. The agreement in the transverse components of the forcing is likely
due to the component-wise amplification in the LNS operator, which connects
transverse forcing to streamwise responses. Such streamwise forcing is inactive in
the lift-up mechanism (Abreu, Cavalieri, et al., 2020) making it difficult to estimate
with the VRA approach. Despite the issues in 𝜙𝑉

𝑢,1, 𝑒𝑉
𝜙,1 = .046 indicates agreement

to within 5% with only 20 modes.

The agreement with the higher order modes is presented in Figures 6.9 and 6.10,
by comparing only 𝜓𝑢,𝑖 and 𝜙𝑣,𝑖 for brevity. Although the response modes agree
qualitatively well, their agreement deteriorates as 𝑖 increases. The error is quantified
as 𝑒𝑉

𝜓,2 = 0.058, 𝑒𝑉
𝜓,3 = 0.068, and 𝑒𝑉

𝜓,3 = 0.056. The disagreement in the forcing
modes begins near the inlet, where large amplitudes are computed for 𝜓𝑣,𝑖. The
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Figure 6.10: Real parts of 𝜙𝑆
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𝑢,3 (b), 𝜙𝑆
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Figure 6.11: 𝜎𝑆
𝑗

(black circles) and 𝜎𝑉
𝑗

using 𝜆+𝑧 = 100. The red open circles are
the VRA approximated modes, computed with the nonperiodic basis, while the blue
circles are computed with the periodic basis.

multiple peaked structure in the higher order modes occurs to enforce orthogonality
and is well captured with VRA. The error is much larger for the higher order forcing
modes with 𝑒𝑉

𝜓,2 = 0.11, 𝑒𝑉
𝜓,3 = 0.13, and 𝑒𝑉

𝜓,4 = 0.20.

Finally, the singular values are compared between the reference and the VRA approx-
imations using b𝑝

𝑖
and b𝑛

𝑖
in Figure 6.11. Using the latter leads to an underprediction

in the singular values. This disagreement could be expected from the difference in
mode shape seen in Figure 6.6. Using the nonperiodic basis leads to good agreement
in the singular values, which could be expected from the agreement in the resolvent
modes. By accounting for the streamwise evolution suggested by the convective
non-normality, the VRA can approximate the standard resolvent results from A
using only 20 basis elements.
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Figure 6.13: Real parts of 𝜙𝑆
𝑣,1 (a) and 𝜙𝑉

𝑣,1 (b) using 𝜆𝑧 = 1.

Now, the performance of the nonperiodic basis is investigated for the large scale
mode in Figures 6.12 and 6.13. In Barthel, Gomez, and McKeon (2022b), using
a periodic basis for the large scale modes lead to poor agreement with reference
modes. By accounting for the convective non-normality in the response modes, the
nonperiodic basis is able to create a 𝝍𝑉1 that agrees well with 𝝍𝑆1 with only 180 basis
elements. With these basis elements, 𝑒𝑉

𝜓,1 = 0.009. Despite the agreement in the
response modes, the forcing modes are poorly approximated, as evidenced by 𝜙𝑉

𝑣,1.
The 𝜙𝑉

𝑣,1 have over predicted amplitudes near the inlet, which is likely caused by the
convective non-normality. In H , upstream inputs lead to large downstream outputs.
For A, this relationship is reversed causing the large values of 𝝍𝑉1 at the outlet to
amplify the upstream amplitude of 𝜙𝑉

𝑣,1. Here, 𝑒𝑉
𝜙,1 = 0.46.

Components of the higher order resolvent modes are presented in Figures 6.14 and
6.15. The agreement of 𝜓𝑉

𝑢,𝑖
with 𝜓𝑆

𝑢,𝑖
is good, especially in the downstream region.

The orthogonality constraint that creates 𝑖 peaked structures in the wall-normal
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Figure 6.14: Real parts of 𝜓𝑆
𝑢,2 (a), 𝜓𝑆

𝑢,3 (b), 𝜓𝑆
𝑢,4 (c), 𝜓𝑉

𝑢,2 (d), 𝜓𝑉
𝑢,3 (e), and 𝜓𝑉

𝑢,3 (f)
using 𝜆𝑧 = 1.
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Figure 6.15: Real parts of 𝜙𝑆
𝑢,2 (a), 𝜙𝑆

𝑢,3 (b), 𝜙𝑆
𝑢,4 (c), 𝜙𝑉

𝑢,2 (d), 𝜙𝑉
𝑢,3 (e), and 𝜙𝑉

𝑢,3 (f)
using 𝜆𝑧 = 1.

direction for 𝜓𝑆
𝑢,𝑖

is also recovered in 𝜓𝑉
𝑢,𝑖

. Due to the disagreement in the response
modes, the higher order 𝝓𝑉𝑖 then poorly approximate 𝝓𝑆𝑖 , as seen in Figure 6.15.
They are also categorized by a large amplitude near the inlet. Despite the large
amplification near the inlet, there is an underlying structure in the VRA forcing
modes that resembles the reference forcing modes. The error increases for the
higher order response modes with 𝑒𝑉

𝜓,2 = 0.04, 𝑒𝑉
𝜓,3 = 0.12, and 𝑒𝑉

𝜓,4 = 0.18 while
𝑒𝑉
𝜙, 𝑗

≈ .45.



193

1 2 3 4 5 6 7 8

j

2000

4000

6000

8000

10000

<
2 j

Figure 6.16: 𝜎𝑆
𝑗

(black circles), 𝜎𝑉
𝑗

computed with 𝑁 𝑗 = 9 (red open circles), 𝑁 𝑗 = 8
(green open circles), 𝑁 𝑗 = 6 (blue open circles), and 𝑁 𝑗 = 4 (purple open circles)
using 𝜆𝑧 = 1. The singular values squared are plotted to visualize differences in 𝑁 𝑗 .

In Figure 6.16, 𝜎𝑆
𝑗

is compared with 𝜎𝑉
𝑗

using the parameters in Table 6.1. As
expected from the poor agreement in the forcing modes, the singular values are
under predicted. 𝜎𝑉

𝑗
is recomputed using less basis elements by decreasing 𝑁 𝑗 .

Increasing 𝑁 𝑗 does not increase the cost of computing the basis, since the local
resolvent calculation is only computed 𝑁𝑐 times. 𝑁 𝑗 simply increases the amount
of retained higher order local modes. Although this increases the cost of the
eigenvalue problem, its computational cost is still miniscule compared to the biglobal
approach. Since 𝑟 = 180 and 𝑁𝑦 = 251, calculating a single local response mode
takes longer than computing the eigenvalues in Equation 6.17. As 𝑟 = 𝑁𝑐𝑁 𝑗

increases, 𝜎𝑉1 increases monotonically, improving the agreement in the singular
value approximation. Despite the improvement in𝜎𝑉

𝑖
,𝝍𝑉𝑖 and 𝝓𝑉𝑖 are hardly affected.

This suggests that a better basis may be possible.

In conclusion, VRA approximates the true resolvent modes well while avoiding a
matrix inverse. The projection onto the basis elements helps regularize the problem
by projecting away spurious vectors from the range of A. This makes the eigenvalue
problem in Equation 6.17 well posed. There is a dependence on the choice of basis
used. When the basis does not satisfy the correct boundary conditions, VRA
leads to poor approximations. This was seen by the increased error in the Fourier
basis for the GL problem and in the lack of agreement using the periodic basis.
Incorporating nonperiodicity into the basis elements for the biglobal modes lead
to excellent agreement, even for the large scale modes. The nonperiodicity was
chosen with a priori knowledge of the convective non-normality in the ZPG TBL.
Increasing the number of basis elements, 𝑟, also lead to better agreements between
the results of the reference resolvent analysis and the VRA. A challenge remains in
decreasing the error in the forcing modes and determining what the best basis may
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be for the nonperiodic flows.

6.4 An Arnoldi-free Resolvent Analysis Approximation

Using the ideas developed for the VRA, a method is described to approximate
the resolvent modes using H that avoids the Arnoldi iteration. The use of H
has the advantageous property that it amplifies responses in the direction of 𝝍1.
Furthermore, the outputs of H satisfy the correct boundary conditions and are
divergence free. However, often times several Arnoldi iterations are required that
need to be computed iteratively, which can add computational time. In Ribeiro,
Yeh, and Taira (2020), the matrix sketching allowed the action of H to be applied
to 𝑟 vectors at once, which avoided the need for an Arnoldi iteration. However, it
also required the action of H† to another set of 𝑟 vectors. Nonetheless, it saved
computational time compared to the Arnoldi algorithm. Here, this method only
needs to compute the action of H to a set of 𝑟 vectors once.

This method begins by assuming that the forcing f is described as the sum of 𝑟 basis
elements, b̃𝑖, with coefficients, 𝑎̃ 𝑗 , as

f =
𝑟∑︁
𝑗

𝑎̃ 𝑗 b̃ 𝑗 = B̃ã. (6.29)

Using similar notation as the previous section, B̃ =

[
b̃1, . . . , b̃𝑟

]
and ã =

[𝑎̃1, . . . , 𝑎̃𝑟]𝑇 . Now the goal is to maximize the cost function, J , in Equation
2.11 for the forcing f. Following the analysis described in Section 6.3, it can be
shown that the Euler-Lagrange equation for ã becomes(

H B̃
)∗
W𝑟

(
HB̃

)
ã𝑖 = Q𝐻 ã𝑖 = 𝜆2

𝑖 B̃
∗W𝑟B̃ã𝑖 = 𝜆2

𝑖 D𝐻 ã𝑖 . (6.30)

Q𝐻 and D𝐻 are 𝑟 × 𝑟 Hermitian matrices. This ensures that ã𝑖 are orthonormal such
that

ã∗𝑖 D𝐻 ã 𝑗 = 𝛿𝑖 𝑗 . (6.31)

Furthermore, 𝜆𝑖 ≥ 0 and 𝜆𝑖+1 ≤ 𝜆𝑖. The coefficients ã𝑖 optimally represent 𝝓𝑖 in the
basis B̃ while 𝜆𝑖 is an approximation for 𝜎𝑖. The forcing modes can be reconstructed
as

𝝓𝑖 = B̃ã𝑖 . (6.32)

The response modes are reconstructed using

𝝍𝑖 = 𝜎
−1
𝑖

(
H B̃

)
ã𝑖 . (6.33)
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Using H for this projection scheme requires the solution of Ax = y, unlike the
VRA approach. This creates a large cost for the method proposed here as an LU
decomposition is required to solve the linear system. The computational savings
of using this approach over the standard resolvent approach is that, due to the
projection, the Arnoldi iterations and discretization of an adjoint resolvent operator
are no longer necessary. Furthermore, this approach only needs to compute H B̃
once since the formulation does not require H†.

By referencing the algorithms in Appendix 1, if the Arnoldi iteration uses 𝑁𝑖
iterations, then the linear systems Ax𝑖 = y𝑖 and A†x𝑖 = y𝑖 are solved 𝑁𝑖 times.
Assuming that the conjugate-transpose method is used, then the LU decomposition
is computed once, which is an O

(
𝑛3) operation. Using the LU factors to solve the

linear systems is an O
(
𝑛2) operation for each triangular system. Thus, the total

cost to compute the standard resolvent analysis is O
(
𝑛3 + 4𝑁𝑖𝑛2) . If the adjoint is

discretized, then the cost is O
(
2𝑛3 + 4𝑁𝑖𝑛2) due to the extra LU decomposition for

the adjoint operator.

These repeated calculations are avoided in the approach described herein by solving
the following system once for all the basis vectors:

AX = B̃. (6.34)

This sets X = H B̃. Solving this system has a computational complexity of O
(
𝑟𝑛2)

if A has already been decomposed into its LU factors. The back substitution is done
only once, as opposed to the Arnoldi algorithm which requires the back substitution
to be computed sequentially. The cost of this algorithm is O

(
𝑛3 + 𝑟𝑛2) . Like in the

VRA example, 𝑟 can be small.

The approach is now applied to the same large scale mode from Figure 6.3. Both
approaches compute the LU decomposition and the Gaussian elimination using
the Intel® oneAPI Math Kernel Library PARDISO (Schenk and Gärtner, 2004).
The Arnoldi algorithm described in Algorithm 2 is used to compare the Arnoldi
iterations so that the adjoint is treated as a conjugate transpose to not include the LU
decomposition of the adjoint operator in the computational cost. The nonperiodic
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Figure 6.17: Real parts of 𝜓𝑆
𝑢,1 (a), 𝜙𝑆

𝑣,1 (b), 𝜓𝑃
𝑢,1 (c), and 𝜙𝑃

𝑣,1 (d) for the 𝜆𝑧 = 1
mode described in Section 6.3.

basis, b̃𝑖, is defined as

𝑏̃𝑖+ 𝑗 ,𝑢 (𝑥, 𝑦) = 𝜙1𝐷
𝑖,𝑢 (𝑦; 𝑐 𝑗 𝑘𝑧, 𝜔)𝑒𝑖𝑘𝑥, 𝑗𝑥 𝑓 (𝑥)

𝑏̃𝑖+ 𝑗 ,𝑣 (𝑥, 𝑦) = 𝜙1𝐷
𝑖,𝑣 (𝑦; 𝑐 𝑗 𝑘𝑧, 𝜔)𝑒𝑖𝑘𝑥, 𝑗𝑥 𝑓 (𝑥)

𝑏̃𝑖+ 𝑗 ,𝑤 (𝑥, 𝑦) =
√
−1
𝑘𝑧

𝜕𝑏̃𝑖+ 𝑗 ,𝑢 (𝑥, 𝑦)
𝜕𝑥

+
𝜕𝑏̃𝑖+ 𝑗 ,𝑣 (𝑥, 𝑦)

𝜕𝑦

𝑏̃𝑖+ 𝑗 ,𝑝 (𝑥, 𝑦) = 0,

(6.35)

where

𝑓̃ (𝑥) = 𝑓

(
−
(
𝑥 − 𝐿

2

))
=

(
1 − exp(−25(𝐿 − 𝑥)/𝐿)

1 − exp(−25)

)2
(6.36)

creates the nonperiodic structure. 𝑓̃ is a reflection of 𝑓 used in Section 6.3 about
center of the domain so that large amplitudes in the forcing are in the upstream
region. This is inline with the convective non-normality for the forcing modes. 𝝍𝑃𝑗 ,
𝝓𝑃𝑗 , and 𝜎𝑃

𝑗
will denote the resolvent modes and singular values computed from the

eigenvalue problem in Equation 6.30 and 𝝍𝑆𝑗 , 𝝓
𝑆
𝑗 , and 𝜎𝑆

𝑗
are the reference results

computed using the standard resolvent approach.

The streamwise component of the response modes and wall-normal components of
the forcing modes are plotted in Figure 6.17. The 𝜙𝑃

𝑣,1 compares well with 𝜙𝑆
𝑣,1

with the 180 basis elements used. Due to the directional-amplification of H in the
direction of 𝝍1 and the good approximation in 𝝓1, the 𝜓𝑆

𝑢,1 and 𝜓𝑃
𝑢,1 agree well.

These components are almost indistinguishable from one another.
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Figure 6.18: Error in response modes, forcing modes, and singular values plotted
as 𝑒𝜓, 𝑗 (red circles), 𝑒𝜙, 𝑗 (blue circles), and 𝑒𝜎, 𝑗 (black open circles) for the mode
described in Section 6.3.

To compare the agreement in the higher order modes, the errors are defined as

𝑒𝜓, 𝑗 =

������〈𝝍𝑆𝑗 ,𝝍𝑃𝑗 〉
𝑟

��� − 1
���, (6.37)

𝑒𝜙, 𝑗 =

��������〈𝝓𝑆𝑗 , 𝝓𝑃𝑗 〉
𝑓

���� − 1
����, (6.38)

𝑒𝜎, 𝑗 =

���𝜎𝑆𝑗 − 𝜎𝑃𝑗 ���
𝜎𝑆
𝑗

. (6.39)

The absolute value is used in Equations 6.37 and 6.38 to account for a difference
in phase between the two sets of modes. The errors are similar to those used in
Ribeiro, Yeh, and Taira (2020). These are plotted in Figure 6.18 for the first 8
modes. The error increases for the higher order modes. 𝑒𝜓, 𝑗 being smaller than 𝑒𝜙, 𝑗
is a testament to the directional amplification in H , since it preferentially amplifies
in the direction of the leading response modes. Since this preferential amplification
weakens for the higher order modes, their associated error increases.

To compare this algorithm with the Arnoldi method, Figure 6.19(a) compares the
time it takes to use these approaches, using 𝑖 Arnoldi iterations or 𝑖 basis elements.
The time it takes to compute a single Arnoldi iteration is about a third of the time it
takes to compute the projection algorithm with 180 basis elements. The projection
algorithm is able to converge𝜎𝑃4 to𝜎𝑆4 in about 13 seconds, compared to the Arnoldi
algorithm, which takes about 25 seconds.

The main benefit of this approach is that the resolvent analysis can be approximated
with a single back substitution, as opposed to multiple iterations. Although this
method is more computationally expensive than the VRA approach, it is a lot
more accurate. The main computational drawback of this approach is that an LU
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Figure 6.19: Temporal comparison of the Arnoldi algorithm and the resolvent ap-
proximation on 𝑖 basis elements. (a) Time to compute 𝑖 iterations of the Arnoldi
algorithm (blue), the 𝑖th Arnoldi iteration (black solid line), and resolvent approxi-
mation using 𝑖 basis elements (red). The dashed lines are proportional to 𝑖. (b) The
time, 𝑡𝑖, it took to compute the Arnoldi algorithm using 𝑖 iterations or the projection
using 𝑖 basis elements. 𝜎𝑖

𝑗
is the 𝑗 th leading singular value computed using 𝑖 itera-

tions (red) of 𝑖 basis elements (blue). 𝜎𝑆
𝑗

is denoted by the black solid lines.

decomposition needs to be computed. The LU decomposition for the example shown
here takes 26 seconds, which can take longer than the Arnoldi algorithm. Another
issue is that this method may be susceptible to the choice of modeling basis, like the
VRA approach.

6.5 Chapter Summary

This chapter focused on strategies that can be implemented to save computational
resources. ARA illustrated that with appropriate choices of acquisition functions
and kernels, the parameter space in the resolvent analysis can be efficiently sampled
with augmented BO code. Compared to a fixed grid parameter search, the large
amplification regions are sampled with increased resolution. The choice of acqui-
sition function allowed for increased sampling of various regions around the local
maxima in the amplification, not just the region with the largest amplification. This
approach can easily be applied to other applications where various local maxima
need to be well-resolved with few samples.

The VRA approach approximates the resolvent modes without the need for a matrix
inverse or solution of a linear system. By assuming that the resolvent modes are
a sum of 𝑟 basis elements, an 𝑟 × 𝑟 eigenvalue problem for the coefficients can
be constructed from the Euler-Lagrange equations of Equation 2.21. These eigen-
coefficients provide the optimal representation of the response modes in the given
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basis. Section 6.3 further illustrated that the choice of basis functions can affect
the results significantly. By using a basis that models the physical amplification
mechanism present in the convective non-normality, the response modes and am-
plifications can be well-approximated using a small number of basis elements. The
most expensive calculations in the VRA approach are the matrix multiplications
with the sparsely discretized LNS operator. Unlike the standard resolvent approach
applied to the biglobal operator, this can be computed without the need for expen-
sive calculations on parallelized architecture. Despite the computational benefits
of the VRA approximation, the forcing modes are often poorly approximated be-
cause A amplifies the errors in the approximated response modes. The VRA can
be rederived by using A† and an approximation of the forcing modes with 𝑟 basis
elements. This would find eigen-coefficients for the forcing modes, allowing for an
approximation for the forcing modes without having to compute the forcing modes
through Equation 6.13.

The computational cost for the local resolvent mode basis scales as O
(
𝑟 (4𝑁𝑦)3) ,

compared to the LU decomposition of the biglobal operator which scale as
O

(
(4𝑁𝑥𝑁𝑦)3) . If the VRA was applied to a parameter sweep, then the local basis

would be computed once and the rest of the expensive calculations would be matrix
multiplications. Due to the nonperiodic boundary conditions used in the biglobal
resolvent analysis, special care needs to be taken to ensure that the basis elements
satisfy the same assumptions as the response modes. It is likely that better basis
elements exist that can satisfy these conditions.

Ideas from the VRA approach were used in Section 6.4 to approximate resolvent
analysis without using an Arnoldi algorithm. This approach represented the forcing
as the sum of 𝑟 basis elements. The coefficients that lead to the largest resolvent
amplification were shown to satisfy the 𝑟 × 𝑟 eigenvalue problem in Equation 6.30.
Although this approach still uses the resolvent operator, the action of the resolvent
operator on the basis elements is only computed once, unlike the Arnoldi algorithm.
This leads to a significant reduction in the calculation time for resolvent analysis. It
was shown that the singular values can converge in about half the time as the Arnoldi
algorithm. Furthermore, the approximations made with this approach have an error
less than a percent, even for the 8th order modes and singular values. Although
the method identifies the optimal forcing modes in the given basis, the error in the
response modes is smaller than the error in the forcing modes. This occurs because
the resolvent operator amplifies the higher response modes.
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C h a p t e r 7

CONCLUSIONS AND FUTURE WORK

This work focused on the resolvent analysis of streamwise developing boundary
layers and high enthalpy boundary layers with real gas effects. To deal with the
increased computational cost associated with larger state vectors, methods were
also presented to efficiently sample the parameter space using ideas from Bayesian
Optimization and to approximate the resolvent analysis through variational methods.
The major findings will be summarized, and future work will also be presented that
can extend these results.

The biglobal resolvent operator described and validated in Chapter 2 was applied to
ZPG boundary layers in Chapter 3. The scaling relationships of the local resolvent
operator studied in Moarref, Sharma, et al. (2013) were shown to extend to the
biglobal resolvent operator. While the local analysis can determine the appropriate
scaling based on a user-specified wavespeed, the biglobal analysis determines its
scaling from 𝑘𝑧. It was shown that modes with large 𝑘𝑧 are localized near the wall,
taking advantage of the lift up mechanism through the large shear at the wall, while
modes with small 𝑘𝑧 are further from the wall, taking advantage of the convective
non-normality. From this biglobal analysis, it was shown that the scaling identified in
Sasaki et al. (2022) for the Blasius boundary layer can be applied to the amplitudes of
the resolvent modes and that those results generalize to𝜔 ≠ 0. Scaling was presented
for the inner layer, mesolayer and outer layer of a ZPG TBL, where it was shown that
the scaling improved as 𝑅𝑒𝜏 increased due to the increased scale separation. The
inner scaling was shown to hold for a wide range of 𝑘+𝑧 and 𝜔+. The premultiplied
amplification also identified the presence of self-similar, small-scale, region, with
length scales and wall-normal location similar to what is observed in experiment
and simulation for the near wall cycle. These scaling relationships can be used to
predict the behavior of high 𝑅𝑒𝜏 resolvent modes, which may be computationally
intractable if the near-wall modes are desired. A topic of interest is the interactions
between small scale and large scale motions, which is predicted to increase with
𝑅𝑒𝜏 (Marušić, Mathis, and Hutchins, 2010a). One to way to understand this is by
determining a scaling relationship for the nonlinear weights of the large scale modes
that extend down to the wall. Understanding the scaling of the nonlinear weights
can also be used to build predictive models of the turbulent statistics.
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The biglobal resolvent operator also allowed for the incorporation of nonparallel
effects in an APG TBL in Chapter 4. The inner scaling described in Chapter 3 was
applied to low 𝑅𝑒𝜏 APG TBLs. Due to the lack of scale separation, the APG effects
were shown to adversely affect the near-wall self-similarity. Using an APG TBL
with a larger 𝑅𝑒𝜏, it was shown that the self-similarity in the inner region could
be recovered, due to to the increased scale separation between the outer and inner
regions and improved self-similarity in 𝑈. Using the premultiplied response, 𝐸+

𝑢𝑢,
the amplification of the large scale modes was shown to increase with 𝛽. These
effects are qualitatively similar to the energization of large scale structures seen
in simulation (J. H. Lee, 2017; Bobke et al., 2017). Using the biglobal resolvent
operator, history effects in the APG can also be studied. It was shown that 𝜎1

increased linearly with 𝛽 for the large scale modes and that this linear growth may
be related to a hybrid velocity scaling (Romero et al., 2022; Sekimoto et al., 2019).
These effects suggest that changes in the turbulent statistics in an APG TBL can
be explained through changes in the linear amplification. When comparing the
modeled streamwise fluctuations from the linear analysis to the data, the nonlinear
weight was chosen only to enforce an observed mixed velocity scaling in the inner
peak (Aubertine and Eaton, 2005) and was not 𝑘𝑧 or 𝜔 dependent. In order to
improve the modeled streamwise fluctuations, a scale-dependent, nonlinear weight
that can account for the outer scaling will be necessary.

In Chapter 5, the resolvent operator was augmented to include real gas effects from
vibrational excitation using a CIG assumption and chemical nonequilibrium using
a mixture of reacting gases. It was shown that the linear amplification from the CIG
and CPG assumptions differed most in the subsonic region, where the modes were
localized near the large temperature regions. However, by rescaling the subsonic
linear amplification, it was shown that the amplification contours were self-similar.
This suggests that there may be a scaling that can account for the differences in
the thermophysical properties. While the effects of vibrational excitation did not
significantly affect the local resolvent modes where the flow could be approximated
as a parallel flow, the vibrational effects in simulation were shown to affect the flow
near a leading shock (Di Renzo et al., 2022). The effects of an oblique shock can not
be modeled with a local approach, so future work will need to extend the biglobal
approach to handle these nonparallel flow features.

The resolvent analysis with chemical nonequilibrium effects allowed for concen-
tration and species density variations across the boundary layer through diffusion



202

and chemical production. These effects are small for the optimal resolvent modes
and amplification since they are amplified via shear-driven mechanisms involving
𝑈 and 𝑇 . However, higher order modes can take advantage of forcing through
the chemistry terms, which lead to substantial differences between the chemical
nonequilibrium and chemical equilibrium approaches. For the small-scale resolvent
modes in chemical nonequilibrium, it was shown that their correlations agree qual-
itatively with the data of Di Renzo and Urzay (2021) due to the importance of the
lift-up effect. Future work will need to consider larger freestream temperatures that
can support increased chemical dissociation of N2 and O2, which are predicted to
increase the role of the chemical production terms. Furthermore, two-temperature
models will also need to be incorporated for cases where the flow is in vibrational
nonequilibrium (Franko, MacCormack, and Lele, 2010; Passiatore et al., 2022).

In Chapter 6, the adaptive resolvent analysis scheme was presented. This scheme
relies on Bayesian Optimization with an acquisition function designed to sample the
large amplification regions. This was applied to the hypersonic resolvent analysis in
chemical nonequilibrium. Compared to a fixed-grid sampling, the adaptive resolvent
analysis scheme was shown to increase the resolution of the large amplification
regions. This approach can be readily applied to other problems. By using a
variational approach, Euler-Lagrange equations were found for the coefficients of 𝑟
basis elements that optimally approximate the resolvent modes and amplifications
through an 𝑟 × 𝑟 eigenvalue problem where 𝑟 ≪ 𝑛. In the VRA approach, this was
used to create inverse-free approximation of resolvent analysis, where the projection
onto the basis elements removed the spurious vector space from the linear operator.
It was shown that incorporating a set of basis elements that model the convective
non-normality can better represent the biglobal resolvent modes. While the VRA
approach is useful, it can often lead to errors in the forcing mode prediction. Future
work will use the adjoint operator to approximate the forcing modes and avoid
the detrimental amplification from the LNS operator. An Arnoldi-free approach
was also described that can approximate the forcing modes using 𝑟 basis elements.
Although this method requires the operator inverse, it avoids the Arnoldi iterations
while retaining accuracy of 99% for even the 8th order modes. As opposed to VRA,
this approach does not amplify errors in the approximation of the forcing mode
when computing the response mode. Since these two approaches are sensitive to the
choice of basis, future work will need to determine a priori what an optimal basis
is for the problem at hand.
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A p p e n d i x A

ARNOLDI ITERATION ALGORITHMS

A.1 Arnoldi Algorithm for Eigenvalue Problems

Consider the eigenvalue problem of a square matrix, A ∈ C𝑛×𝑛,

Ap𝑖 = 𝜆𝑖p𝑖 . (A.1)

The Arnoldi algorithm looks for approximate eigenvalues, 𝜆̃𝑖, and eigenvectors, p̃𝑖,
based on an orthogonal projection onto the Krylov subspace,

K𝑚 (A, v) = 𝑠𝑝𝑎𝑛
{
v,Av,A2v, ...,A𝑚−1v

}
. (A.2)

Following the steps outlined in Saad (2011), a matrix, V ∈ C𝑛,𝑚, with orthonormal
columns is constructed such that its columns span K𝑚 (A, v1), where v1 is a random
unit vector. The inner product is chosen as the usual 𝐿2 inner product such that
⟨a, b⟩2 = a∗b. The Hessenberg matrix, H𝑒 ∈ C𝑚,𝑚 = V∗AV is used to approximate
the eigenvalues of A. Since 𝑚 ≪ 𝑛, the eigenvalues of H𝑒 can be calculated with
O

(
𝑚3) operations rather than the than the O

(
𝑛3) operations required to compute the

eigenvalues of A. Due to orthogonality of the columns of V, V∗V = I𝑚, where I𝑚
is the 𝑚 × 𝑚 identity matrix. The eigenvalue problem for H𝑒 can be expanded as

H𝑒t𝑖 = 𝜆𝑖t𝑖 (A.3)

V∗AVt𝑖 = 𝜆𝑖V∗Vt𝑖, (A.4)

where t𝑖 and 𝜆̃𝑖 are the eigenvectors and eigenvalues of H𝑒. If 𝑚 = 𝑛, then Vt𝑖
and 𝜆̃𝑖 could be identified as the eigenvectors and eigenvalues of A. otherwise, it
can be shown (Saad, 2011) that 𝜆̃𝑖 → 𝜆𝑖 and Vt𝑖 → p𝑖 and as 𝑚 → 𝑛 for the first
𝑚 eigen-pairs in descending |𝜆𝑖 | order. The algorithm is described in Algorithm 1
where the Gram-Schmidt process is used to create the orthonormal columns of V.

A.2 Arnoldi Algorithm for Resolvent Analysis

The eigenvalue problem that is needed to do perform the resolvent analysis is defined
in Equation 2.13. The discretized version is

W−1
𝑓 H†W𝑟H𝝓𝑖 = 𝜎

2
𝑖 𝝓𝑖, (A.5)
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Algorithm 1 Arnoldi algorithm for eigenvalue problems
1: Begin with a random 𝑛 × 1 vector, 𝑢
2: v1 = u/∥u∥2 ⊲ Normalize
3: for 𝑗 = 1 : 𝑚 − 1 do
4: w = Av 𝑗
5: for 𝑖 = 1 : 𝑗 do
6: 𝐻𝑒

𝑖, 𝑗
= ⟨v𝑖,w⟩2 ⊲ Update the Hessenberg matrix

7: w := w − 𝐻𝑖, 𝑗v𝑖 ⊲ Gram-Schmidt
8: end for
9: 𝐻𝑒

𝑗+1, 𝑗 = ∥w∥2 ⊲ Update the Hessenberg matrix
10: v 𝑗+1 = w/𝐻𝑒

𝑗+1, 𝑗 ⊲ Update and normalize vector
11: end for
12: V = [v1, . . . , v𝑚]
13:

[
𝜆̃𝑖, t𝑖

]
= eig(H𝑒) ⊲ Eigenvalues and eigenvectors of Hessenberg matrix

14: p̃𝑖 = Vt𝑖 ⊲ Approximate eigenvectors of A

where H† is either the discretized continuous adjoint (DCA) or the conjugate-
transpose (CT), W−1

𝐼
H∗W𝐼 . Due to the prohibitive cost to compute and store H and

H†, an LU factorization of (−𝑖𝜔I + L) will be used (Jeun, Nichols, and Jovanović,
2016; Sipp and Marquet, 2013; Schmidt et al., 2018), where the LU factoriza-
tion is computed using the Intel® oneAPI Math Kernel Library PARDISO (Schenk
and Gärtner, 2004). This replaces the calculation w = Hv 𝑗 with the solution of
(−𝑖𝜔I + L)w = I𝑐v 𝑗 , where w is solved efficiently by leveraging the LU decomposi-
tion that is computed once. Without accounting for the sparse nature of the operators,
the LU decomposition is O

(
𝑛3) while Gaussian elimination of upper-triangular ma-

trices is O
(
𝑛2) , which is negligible compared to the LU decomposition if 𝑚 ≪ 𝑛.

The LU decomposition gives

(−𝑖𝜔I + L) = P𝑇𝑑L𝑑U𝑑 (A.6)

and (
𝑖𝜔I + L†

)
= P𝑇𝑎L𝑎U𝑎, (A.7)

where P𝑎 and P𝑑 are permutation matrices, L𝑎 and L𝑑 are lower-diagonal matrices,
and U𝑎 and U𝑑 are upper-diagonal matrices. Note that Equation A.7 is only used
for the DCA matrix. For the CT matrix, the conjugate transpose of Equation A.6 is
used.
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Conjugate Transpose Adjoint Matrix

Using the CT matrix, Equation A.5 becomes

W−1
𝑓 W−1

𝐼 B∗R∗C∗W𝐼W𝑟CRB𝝓𝑖 = 𝜎2
𝑖 𝝓𝑖 . (A.8)

Algorithm 1 is adapted to perform resolvent analysis in Algorithm 2 by employing
the same strategy to solve the eigenvalue problem in Equation A.8. An optional
spatial filter described in Lele (1992) is applied at each iteration and to the computed
𝝓𝑖 and 𝝍𝑖. The spatial filter is applied on Ω𝑛 for each component 𝑞𝑖 of the state
vector q using a block diagonal matrix. If the filter is not used, then it is set to the
identity matrix.

Discretized Continuous Adjoint Matrix

Using the DCA matrix, Equation A.5 becomes

W−1
𝑓 B†R†C†W𝑟CRB𝝓𝑖 = 𝜎2

𝑖 𝝓𝑖 . (A.9)

The algorithm to solve the eigenvalue problem in Equation A.9 is presented in
Algorithm 3. Note that compared to Algorithm 2, Algorithm 3 requires two separate
LU decompositions. This means that resolvent analysis using DCA is about twice
as expensive as the CT approach. A spatial filter can be included in this approach
as well, but is omitted since it is not used in this work.
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Algorithm 2 Arnoldi algorithm for resolvent analysis using conjugate-transpose
adjoint

1: Perform LU decomposition of (−𝑖𝜔I + L) and store L𝑑 ,U𝑑 , and P𝑑
2: if Filtering applied then
3: Set F as 𝑛𝑠 × 𝑛𝑠 block-diagonal matrix where diagonal blocks apply the

spatial filtering to each component of state vector
4: else
5: Set F to identity matrix
6: end if
7: Begin with a random 𝑛𝑠𝑛 × 1 vector, 𝑢
8: v1 = u/∥u∥2 ⊲ Normalize
9: for 𝑗 = 1 : 𝑚 − 1 do

10: v′
𝑗
= Fv 𝑗 ⊲ Apply filter

11: w1 = (−𝑖𝜔I + L)\I𝑐Bv′
𝑗
= U𝑑\

(
L𝑑\

(
P𝑑I𝑐Bv′

𝑗

))
12: w2 = C∗W𝐼W𝑟Cw1
13: w3 = (𝑖𝜔I + L∗)\I∗𝑐w2 = P𝑇

𝑑

(
L∗
𝑑
\
(
U∗
𝑑
\I∗𝑐w2

) )
14: w = W−1

𝑓
W−1

𝐼
B∗w3 ⊲ Calculate Av𝑖

15: for 𝑖 = 1 : 𝑗 do
16: 𝐻𝑒

𝑖, 𝑗
=

〈
v′
𝑖
,w

〉
2 ⊲ Update the Hessenberg matrix

17: w := w − 𝐻𝑖, 𝑗v′𝑖 ⊲ Gram-Schmidt
18: end for
19: 𝐻𝑒

𝑗+1, 𝑗 = ∥w∥2 ⊲ Update the Hessenberg matrix
20: v 𝑗+1 = w/𝐻𝑒

𝑗+1, 𝑗 ⊲ Update and normalize vector
21: end for
22: V =

[
v′1, . . . , v

′
𝑚

]
23:

[
𝜆̃𝑖, t𝑖

]
= eig(H𝑒) ⊲ Eigenvalues and eigenvectors of Hessenberg matrix

24: p̃𝑖 = Vt𝑖
25: 𝜎𝑖 =

√︁
𝜆̃𝑖 ⊲ Singular values of H

26: 𝝓𝑖 = Fp̃𝑖/∥p̃𝑖∥ 𝑓 ⊲ Forcing modes of H
27: 𝝍𝑖 = 𝜎

−1
𝑖

FH𝝓𝑖 ⊲ Response modes of H
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Algorithm 3 Arnoldi algorithm for resolvent analysis using direct continuous adjoint
1: Perform LU decomposition of (−𝑖𝜔I + L) and store L𝑑 ,U𝑑 , and P𝑑
2: Perform LU decomposition of

(
𝑖𝜔I + L†) and store L𝑎,U𝑎, and P𝑎

3: Begin with a random 𝑛𝑠𝑛 × 1 vector, 𝑢
4: v1 = u/∥u∥2 ⊲ Normalize
5: for 𝑗 = 1 : 𝑚 − 1 do
6: w1 = (−𝑖𝜔I + L)\I𝑐Bv𝑖 = U𝑑\ (L𝑑\ (P𝑑I𝑐Bv𝑖))
7: w2 = C†W𝑟I𝑐Cw1

8: w3 =
(
𝑖𝜔I + L†)\I†𝑐w2 = U𝑎\

(
L𝑎\

(
P𝑎I†𝑐w2

))
9: w = W−1

𝑓
B†w3 ⊲ Calculate Av𝑖

10: for 𝑖 = 1 : 𝑗 do
11: 𝐻𝑒

𝑖, 𝑗
= ⟨v𝑖,w⟩2 ⊲ Update the Hessenberg matrix

12: w := w − 𝐻𝑖, 𝑗v𝑖 ⊲ Gram-Schmidt
13: end for
14: 𝐻𝑒

𝑗+1, 𝑗 = ∥w∥2 ⊲ Update the Hessenberg matrix
15: v 𝑗+1 = w/𝐻𝑒

𝑗+1, 𝑗 ⊲ Update and normalize vector
16: end for
17: V = [v1, . . . , v𝑚]
18:

[
𝜆̃𝑖, t𝑖

]
= eig(H𝑒) ⊲ Eigenvalues and eigenvectors of Hessenberg matrix

19: p̃𝑖 = Vt𝑖
20: 𝜎𝑖 =

√︁
𝜆̃𝑖 ⊲ Singular values of H

21: 𝝓𝑖 = p̃𝑖/∥p̃𝑖∥ 𝑓 ⊲ Forcing modes of H
22: 𝝍𝑖 = 𝜎

−1
𝑖

H𝝓𝑖 ⊲ Response modes of H
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A p p e n d i x B

ADJOINT OF LINEAR DIFFERENTIAL OPERATORS WITH
DIRICHLET BOUNDARY CONDITIONS

Equation 2.33 can be rewritten as

(A1 + A2 + A3 + A4)q̂ = I f̂, (B.1)

where

A1 =

(
𝑖𝜔Ĩ + ∇U 0

0 0

)
, (B.2)

A2 =

(
U · ∇̂ 0

0 0

)
, (B.3)

A3 =

(
0 ∇̂

∇̂· 0

)
, (B.4)

A4 =

(
Re−1∇̂2 0

0 0

)
, (B.5)

and Ĩ denotes the identity operator on C3. Since the adjoint of a sum is the sum of
the adjoints, the adjoints of A𝑖, A†

𝑖
, are computed with respect to the inner product

in Equation 2.9 such that ⟨a,A𝑖b⟩ =

〈
A†
𝑖
a, b

〉
. Since A1 is not a differential

operator, A†
1 = A∗

1. For the others, integration by parts will be used.

Beginning with A2, one finds∫
Ω𝑛

a∗𝑢
((

U · ∇̂
)
b𝑢

)
𝑑𝑉 =

∫
Ω𝑛

[
∇̂ ·

(
a∗𝑢b𝑢U

)
+

((
−U · ∇̂

)
a𝑢

)∗
b𝑢

]
𝑑𝑉

=

∮
𝜕Ω𝑛

(
a∗𝑢b𝑢U

)
· n𝑑𝑆 +

∫
Ω𝑛

((
−U · ∇̂

)
a𝑢

)∗
b𝑢𝑑𝑉. (B.6)

The surface integral in Equation B.6 is 0 if there are periodic boundary conditions
or Dirichlet boundary conditions. Here, the latter is assumed at the wall, and at the
inlet and outlet in the biglobal approach. In the free stream, the fluctuations are
assumed to be compact and thus approach 0 as 𝑦 → 𝑦𝑚𝑎𝑥 . Thus,

A†
2 =

(
−U · ∇̂ 0

0 0

)
. (B.7)
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For A3 one finds∫
Ω𝑛

(
a∗𝑢∇̂𝑏𝑝 + 𝑎∗𝑝∇̂ · b𝑢

)
𝑑𝑉 =

∫
Ω𝑛

[
∇̂ ·

(
a∗𝑢𝑏𝑝 + 𝑎∗𝑝b𝑢

)
−

(
∇̂ · a𝑢

)∗
𝑏𝑝

−
(
∇̂𝑎𝑝

)∗
b𝑢

]
𝑑𝑉

=

∮
𝜕Ω𝑛

(
a∗𝑢𝑏𝑝 + 𝑎∗𝑝b𝑢

)
· n𝑑𝑆∫

Ω𝑛

[(
−∇̂ · a𝑢

)∗
𝑏𝑝 +

(
−∇̂𝑎𝑝

)∗
b𝑢

]
𝑑𝑉.

(B.8)

Once again the surface integral is 0, thus

A†
3 =

(
0 −∇̂

−∇̂· 0

)
. (B.9)

Finally, A†
4 = A4 because ∇̂2 is a self-adjoint operator, under the boundary condi-

tions used in this analysis.
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A p p e n d i x C

BIGLOBAL ORR-SOMMERFELD-SQUIRE EQUATIONS

This discussion begins with Equation 2.33, with ûu replaced with f̂, a general forcing
input. For this discussion, f̂ will be expressed as

f̂ = f̂𝑠 + ∇𝐹, (C.1)

where ∇ · f̂𝑠 = 0 and 𝐹 is a scalar potential. By taking the divergence of the
momentum equation, an equation for the pressure can be found as

∇2
(
𝑝 − 𝐹

)
= ∇2𝑝 = −2∇U : ∇û, (C.2)

where 𝑝 is the pressure, augmented by the scalar potential. The goal of the OSS
formulation is to reduce Equation 2.33 into an equation for the wall-normal vorticity,
𝜔2 = 𝑖𝑘𝑧𝑢̂ − 𝜕𝑤/𝜕𝑥 , and the wall-normal velovity, 𝑣̂. By using the divergence-free
constraint,

𝜕𝑢̂

𝜕𝑥
+ 𝑖𝑘𝑧𝑤 = −𝜕𝑣̂

𝜕𝑦
(C.3)

and 𝜔2, the wall-parallel velocities can be expressed as

𝑢̂ =

(
𝜕𝑥𝑥 − 𝑘2

𝑧

)−1
(
𝑖𝑘𝑧𝜔2 −

𝜕2𝑣̂

𝜕𝑥𝜕𝑦

)
(C.4)

𝑤 =

(
𝜕𝑥𝑥 − 𝑘2

𝑧

)−1
(
−𝜕𝜔2

𝜕𝑥
− 𝑖𝑘𝑧

𝜕𝑣̂

𝜕𝑦

)
. (C.5)

By taking the wall-normal component of the curl of the momentum equation, the
following equation can be found

−𝑖𝜔𝜔2 + U · ∇𝜔2 +
𝜕𝑈

𝜕𝑥
𝜔2 −

1
Re

∇2𝜔2 +
𝜕𝑉

𝜕𝑥

(
𝜕𝑥𝑥 − 𝑘2

𝑧

)−1 𝜕2𝜔2

𝜕𝑥𝜕𝑦

+ 𝑖𝑘𝑧

(
𝜕𝑈

𝜕𝑦
𝑣̂ + 𝜕𝑉

𝜕𝑥

(
𝜕𝑥𝑥 − 𝑘2

𝑧

)−1 𝜕2𝑣̂

𝜕𝑦2

)
= 𝑓̂2,

(C.6)

where 𝑓̂2 = 𝑖𝑘𝑧 𝑓̂𝑢 − 𝜕 𝑓̂𝑤

/
𝜕𝑥 . Equation C.6 can be written as(

L𝑆𝑄 + 𝜕𝑉
𝜕𝑥

(
𝜕𝑥𝑥 − 𝑘2

𝑧

)−1 𝜕2

𝜕𝑥𝜕𝑦

)
𝜔2 +

(
𝑖𝑘𝑧

𝜕𝑈

𝜕𝑦
+ 𝑖𝑘𝑧

𝜕𝑉

𝜕𝑥

(
𝜕𝑥𝑥 − 𝑘2

𝑧

)−1 𝜕2

𝜕𝑦2

)
𝑣̂

= 𝑓̂2.

(C.7)
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The wall-normal vorticity component of Equation 3.10 is the same as Equation C.7,
except with the terms involving 𝜕𝑉

/
𝜕𝑥 neglected.

Now, by taking the Laplacian of the wall-normal component of the momentum
equation, the following equation can be found

−𝑖𝜔∇2𝑣̂ + ∇2
(
∇𝑣̂ · U + ∇𝑉 · û

)
− 1

Re
∇4𝑣̂ +

𝜕
(
∇2𝑝

)
𝜕𝑦

= ∇2 𝑓̂𝑠,𝑣 . (C.8)

The dilatational piece of f̂ is absorbed into 𝑝. By using Equation C.2 and expanding
some of the terms in Equation C.8, the equation becomes

−𝑖𝜔∇2𝑣̂+∇2

(
∇𝑣̂ · U + 𝜕𝑉

𝜕𝑦
𝑣̂

)
− 2

𝜕

𝜕𝑦

(
𝜕𝑈

𝜕𝑦

𝜕𝑣̂

𝜕𝑥
+ 𝜕𝑉
𝜕𝑦

𝜕𝑣̂

𝜕𝑦

)
− 1

Re
∇4𝑣̂

+ ∇2

(
𝜕𝑉

𝜕𝑥
𝑢̂

)
− 2

𝜕

𝜕𝑦

(
𝜕𝑈

𝜕𝑥

𝜕𝑢̂

𝜕𝑥
+ 𝜕𝑉
𝜕𝑥

𝜕𝑢̂

𝜕𝑦

)
= ∇2 𝑓̂𝑠,𝑣 .

(C.9)

By using Equation C.4, Equation C.9 can be expressed in terms of only 𝑣̂ and𝜔2, but
the full expression is omitted for brevity. Since Equations C.6 and C.9 fully represent
Equation 2.33 and eliminate 𝑝, the 𝑝 and 𝐹 do not affect the linear amplification.
This observation was made in Rosenberg (2018). Due to this, the optimal forcing
can be treated as solely solenoidal such that f̂ = f̂𝑠.

These terms can be expanded such that

−𝑖𝜔∇2𝑣̂ + U ·
(
∇

(
∇2𝑣̂

))
− 𝜕2𝑈

𝜕𝑦2
𝜕𝑣̂

𝜕𝑥
− 1

Re
∇4𝑣̂

+ 2

(
𝜕𝑈

𝜕𝑥

𝜕2𝑣̂

𝜕𝑥2 + 𝜕𝑉
𝜕𝑥

𝜕2𝑣̂

𝜕𝑥𝜕𝑦

)
+ 𝜕

𝜕𝑦

(
∇2𝑉

)
𝑣̂ +

(
∇2𝑉

) 𝜕𝑣̂
𝜕𝑦

+ 2
𝜕2𝑉

𝜕𝑥𝜕𝑦

𝜕𝑣̂

𝜕𝑥
+ 𝜕𝑉
𝜕𝑦

∇2𝑣̂ + 𝜕
2𝑈

𝜕𝑥2
𝜕𝑣̂

𝜕𝑥
+ ∇2

(
𝜕𝑉

𝜕𝑥
𝑢̂

)
− 2

𝜕

𝜕𝑦

(
𝜕𝑉

𝜕𝑥

𝜕𝑢̂

𝜕𝑦

)
+ 2

(
𝜕2𝑈

𝜕𝑥𝜕𝑦

𝜕

𝜕𝑥
+ 𝜕𝑈
𝜕𝑥

𝜕2

𝜕𝑥𝜕𝑦

) (
𝜕𝑥𝑥 − 𝑘2

𝑧

)−1
(
𝜕2𝑣̂

𝜕𝑥𝜕𝑦
− 𝑖𝑘𝑧𝜔2

)
= ∇2 𝑓̂𝑣 .

(C.10)

Note that the 𝑢̂ terms can still be expanded. This form agrees with the terms in
Ran et al. (2019), if the terms involving 𝜕𝑉

/
𝜕𝑥 and 𝜕𝑈

/
𝜕𝑥𝑥 are neglected. The

first 4 terms can be expressed as ∇2L𝑂𝑆. Finally, the inverse Laplacian can be
applied to both sides to complete the OSS formulation of the biglobal analysis. This
formulation involves

(
𝜕𝑥𝑥 − 𝑘2

𝑧

)−1, ∇−2, and second and third order derivatives of U.
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A p p e n d i x D

DOMAIN LENGTH EFFECTS ON SWEEPS

D.1 Domain Length Effect on Small Scales

By increasing Re𝜏 and holding 𝐿+𝑥 constant, 𝐿𝑥/𝛿99 decreases. As a result, large scale
modes, which scale with outer units, are suppressed since they are not supported
in these smaller domains. To show that the domain length suppresses large scale
modes, the inner sweep for b1nI in Section 4.3 will be recomputed by restricting the
domain from 𝐿+𝑥 = 9000 to 𝐿+𝑥 = 2150. The parameters of the sweep will be kept
the same, except for a smaller domain and 𝑁𝑥 = 150.

In Figure D.1, the results of the sweep using 𝐿+𝑥 = 2150 are compared to the original
sweep using 𝐿+𝑥 = 9000. The near-wall peak moves from 𝜆+𝑧 = 116 when using
𝐿+𝑥 = 9000 to 𝜆+𝑧 = 63 when using 𝐿+𝑥 = 2150. The location of the near-wall peak
also moves closer to the wall, in accordance with the smaller energetic structures
in the smaller domain. There is a decrease in amplification of 𝜆+𝑧 = 100 when the
domain size is decreased. Furthermore, the 𝐿+𝑥 = 2150 sweep has a decrease in
amplification of the large scales because the domain size is decreased in both inner
and outer units. The decrease in the amplification of the large scales is similar to what
was observed in Figure 3.11 where increasing Re𝜏 and fixed 𝐿+𝑥 decreased the outer
scaled domain length and the amplification of the large scales. The observations

100 101 102 103

y+

101

102

103

104

6
+ z

Figure D.1: Comparison of inner scaled sweep for b1nI from Table 4.1 where the
black corresponds to 𝐿+𝑥 = 2150 and red to 𝐿𝑥 = 9000. The contour levels are .1%,
1%, 10%, 60%, and 90% of the maximum value of each sweep. The crosses denote
the maximum value of each sweep.



221

101

102

103

6
+ z

100

101

102

103

100 101 102
101

102

103

6
+ z

100 101 102

100

101

102

103

(a) (b)

(c)

y+

(d)

y+

Figure D.2: Figure 4.14 replotted using a longer domain for Ω𝑟 in Equation 4.9.

made here extend to those made with the high Re ZPG TBL since the APG affects
𝑈 mostly in 𝑦+ ≥ 100 where 𝐸+

𝑢𝑢 is suppressed.

D.2 Domain Length Effect on Large Scale Amplification

The inner product for the response modes in Section 4.4 only considered the energy
of the response modes withinΩ𝑟 which had a streamwise length of 4𝛿99(𝑥𝑐) to ensure
that the small scales were centered at 𝑥𝑐. Here, the calculations are recomputed with
Ω𝑟 = [𝑥𝑐 − 6.5𝛿99, 𝑥𝑐 + 6.5𝛿99] × [0, 𝑦𝑚𝑎𝑥] for a streamwise length of 13𝛿99. In
Figure 4.14, 𝐸+

𝑢𝑢 (𝑥𝑐, 𝑦, 𝑘𝑧) is plotted for the same datasets as Section 4.4 and the
updated ⟨·, ·⟩𝑟 . Once again, there is no secondary peak in S0 and there are large
secondary peaks in the outer region. The outer region amplification increases with
𝛽, though m18n has less amplification in the outer region than b2n. There is a peak
near the wall, though this peak is not as amplified as the one seen in Section 4.4.
This is likely because the large domain in Ω𝑟 keeps the small scale modes from
being centered at 𝑥𝑐.

In Figure D.3, 𝐾+
𝑢𝑢 is replotted with the new inner product for the response modes.

The inner peak in 𝐾+
𝑢𝑢 is weakened in b2n and m18n because the small scales are

outside of the interrogation window. The outer scaled peak is prominent in the APG
TBL and absent in the ZPG TBL. The outer peak in m18n is smaller than the outer
peak in b2n, which was not observed in Figure 4.16. The difference is likely due
to the smaller domain length in m18n than b2n. The modes for b2n have a larger
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Figure D.3: Figure 4.16 replotted using a longer domain for Ω𝑟 in Equation 4.9.

domain upstream of Ω𝑟 to allow 𝝓1 to develop and force 𝝍1 within Ω𝑟 . This effect
is less prominent when Ω𝑟 is smaller because Ω𝑟 is far upstream from the inlet
allowing 𝝓1 to sufficiently develop downstream.
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A p p e n d i x E

LINEAR TERMS OF THE NAVIER STOKES EQUATIONS FOR
A HYPERSONIC TURBULENT BOUNDARY LAYER

E.1 Preliminaries

The following relation will be used to linearize the left hand side of the equations,
which are of the form 𝑓 𝐷𝑔̆/𝐷𝑡 for quantities 𝑓 and 𝑔̆. Assuming that 𝑓 = 𝑓 (𝑦) +
𝑓 (𝑥, 𝑦, 𝑧, 𝑡), 𝑔̆ = 𝑔(𝑦) + 𝑔(𝑥, 𝑦, 𝑧, 𝑡), and ŭ = 𝑈 (𝑦)e𝑥 + u(𝑥, 𝑦, 𝑧, 𝑡) then

𝑓
𝐷𝑔̆

𝐷𝑡
= 𝑓

(
𝜕𝑔

𝜕𝑡
+ 𝑢 𝜕𝑔

𝜕𝑥
+ 𝜕𝑔
𝜕𝑦
𝑣

)
+ 𝑓

(
𝜕𝑔

𝜕𝑡
+ 𝑔∇ · u + u · ∇𝑔

)
+ 𝑛.𝑙. (E.1)

= 𝑓

(
𝜕𝑔

𝜕𝑡
+ 𝑢 𝜕𝑔

𝜕𝑥
+ 𝜕𝑔
𝜕𝑦
𝑣

)
+ 𝑛.𝑙., (E.2)

where 𝑛.𝑙. denotes nonlinear terms. The linear terms of 𝑓 𝐷𝑔̆/𝐷𝑡 do not include
any variation in f̆, and only have the variation of ğ and the shear-driven term 𝑓

𝜕𝑔

𝜕𝑦
𝑣.

For shorthand,
𝜕 𝑓

𝜕𝑞 𝑗
=
𝜕 𝑓

𝜕𝑞 𝑗

����
q

(E.3)

will also be used interchangeably. Finally, as a reminder,

𝑓 = 𝑓 (q) (E.4)

which ensures that if 𝑓 = 0, then 𝑓 = 0.

E.2 Linearization of the Single Species CIG Equations

Assuming that q̆ = q(𝑦) + q(𝑥, 𝑦, 𝑧, 𝑡) with q = [𝑢, 𝑣, 𝑤, 𝑇, 𝜌], Equation 5.1, can be
rewritten as

𝜌

(
𝜕𝑢𝑖

𝜕𝑡
+ 𝜕𝑈
𝜕𝑦
𝑣𝛿𝑖1 +𝑈

𝜕𝑢𝑖

𝜕𝑥

)
= − 1

𝛾
𝑒
Ma2

{
𝜕

𝜕𝑦

(
𝜕𝑝

𝜕𝜃 𝑗

����
𝜃

)
𝜃 𝑗𝛿𝑖,2 +

𝜕𝑝

𝜕𝜃 𝑗

����
𝜃

∇𝜃 𝑗
}

+ 1
Re

{
𝜕𝜇

𝜕𝑦

(
𝜕𝑢𝑖

𝜕𝑦
+ 𝜕𝑣

𝜕𝑥𝑖
− 2

3
𝜕𝑢 𝑗

𝜕𝑥 𝑗
𝛿𝑖2

)
+ 𝛿𝑖,1

𝜕𝑈

𝜕𝑦

𝜕𝜇

𝜕𝑦

+𝜇
(
𝜕2𝑢𝑖

𝜕𝑥2
𝑗

+ 1
3
𝜕2𝑢𝑖

𝜕𝑥𝑖𝜕𝑥 𝑗

)
+ 𝛿𝑖,1

𝜕2𝑈

𝜕𝑦2 𝜇 + 𝛿𝑖,2
𝜕𝑈

𝜕𝑦

𝜕𝜇

𝜕𝑥

}
+ 𝑛.𝑙.,

(E.5)
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where 𝜕𝑥1 = 𝑖𝑘𝑥 , 𝜕𝑥2 = 𝜕𝑦, and 𝜕𝑥3 = 𝑖𝑘𝑧 and 𝑛.𝑙. denotes the nonlinear terms.
Note that 𝜕𝑥 denotes 𝑖𝑘𝑥 . Note that index notation is assumed and that 𝜃 = [𝑇, 𝜌̆].
Equation 5.3 is then

𝜕𝜌

𝜕𝑡
+𝑈𝜕𝜌

𝜕𝑥
+ 𝜕𝜌
𝜕𝑦
𝑣 = 𝜌∇ · u + 𝑛.𝑙. (E.6)

Finally, Equation 5.2 becomes

𝑐𝑣𝜌

(
𝜕𝑇

𝜕𝑡
+𝑈𝜕𝑇

𝜕𝑥
+ 𝜕𝑇
𝜕𝑦
𝑣

)
= −(𝛾

𝑒
− 1)𝑝∇ · u + (𝛾

𝑒
− 1)𝛾

𝑒

Ma2

Re


(
𝜕𝑈

𝜕𝑦

)2

𝜇 +

2𝜇

(
𝜕𝑈

𝜕𝑦

𝜕𝑢

𝜕𝑦
+ 𝑖𝑘𝑥

𝜕𝑈

𝜕𝑦
𝑣

)}
+

𝛾
𝑒

𝑃𝑟Re

(
𝜕𝑘

𝜕𝑦

𝜕𝑇

𝜕𝑦
+ 𝑘∇2𝑇 + 𝜕𝑇

𝜕𝑦

𝜕𝑘

𝜕𝑦
+ 𝜕

2𝑇

𝜕𝑦2 𝑘

)
.

(E.7)

Once it is assumed that q = q̂(𝑦) exp(−𝑖𝜔𝑡 + 𝑖𝑘𝑥𝑥 + 𝑖𝑘𝑧𝑧), then L̂ can be defined.

Explicitly, the 𝐿𝑖, 𝑗 terms in Equation 5.9 are

𝐿1,1 = 𝑖𝑘𝑥𝑈 − 1
𝜌Re

[
𝜕𝜇

𝜕𝑦

𝜕

𝜕𝑦
+ 𝜇

(
−4

3
𝑘2
𝑥 − 𝑘2

𝑧 +
𝜕2

𝜕𝑦2

)]
(E.8)

𝐿1,2 =
𝜕𝑈

𝜕𝑦
− 1
𝜌Re

[
𝑖𝑘𝑥

𝜕𝜇

𝜕𝑦
+ 1

3
𝑖𝑘𝑥𝜇

𝜕

𝜕𝑦

]
(E.9)

𝐿1,3 =
1
3

1
𝜌Re

𝑘𝑥𝑘𝑧𝜇 (E.10)

𝐿1,4 =
𝑖𝑘𝑥

𝛾
𝑒
Ma2

1
𝜌

𝜕𝑝

𝜕𝑇
− 1
𝜌Re

𝜕𝑈

𝜕𝑦

[
𝜕

𝜕𝑦

(
𝜕𝜇

𝜕𝑇

)
+ 𝜕𝜇
𝜕𝑇

𝜕

𝜕𝑦

]
− 1
𝜌Re

𝜕2𝑈

𝜕𝑦2
𝜕𝜇

𝜕𝑇
(E.11)

𝐿1,5 =
𝑖𝑘𝑥

𝛾
𝑒
Ma2

1
𝜌

𝜕𝑝

𝜕𝜌
(E.12)

𝐿2,1 = − 1
𝜌Re

[
−2

3
𝑖𝑘𝑥

𝜕𝜇

𝜕𝑦
+ 1

3
𝑖𝑘𝑥𝜇

𝜕

𝜕𝑦

]
(E.13)

𝐿2,2 = 𝑖𝑘𝑥𝑈 − 1
𝜌Re

[
4
3
𝜕𝜇

𝜕𝑦

𝜕

𝜕𝑦
+ 𝜇

(
−𝑘2

𝑥 − 𝑘2
𝑧 +

4
3
𝜕2

𝜕𝑦2

)]
(E.14)

𝐿2,3 = −𝑖𝑘𝑧
1
𝜌Re

[
−2

3
𝜕𝜇

𝜕𝑦
+ 1

3
𝜇
𝜕

𝜕𝑦

]
(E.15)

𝐿2,4 =
1

𝛾
𝑒
Ma2𝜌

[
𝜕

𝜕𝑦

(
𝜕𝑝

𝜕𝑇

)
+ 𝜕𝑝
𝜕𝑇

𝜕

𝜕𝑦

]
− 𝑖𝑘𝑥

1
𝜌Re

𝜕𝑈

𝜕𝑦

𝜕𝜇

𝜕𝑇
(E.16)

𝐿2,5 =
1

𝛾
𝑒
Ma2𝜌

[
𝜕

𝜕𝑦

(
𝜕𝑝

𝜕𝜌

)
+ 𝜕𝑝
𝜕𝜌

𝜕

𝜕𝑦

]
(E.17)
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𝐿3,1 =
1
3

1
𝜌Re

𝜇𝑘𝑧𝑘𝑥 (E.18)

𝐿3,2 = − 1
𝜌Re

𝑖𝑘𝑧

[
𝜕𝜇

𝜕𝑦
+ 1

3
𝜇
𝜕

𝜕𝑦

]
(E.19)

𝐿3,3 = 𝑖𝑘𝑥𝑈 − 1
𝜌Re

[
𝜕𝜇

𝜕𝑦

𝜕

𝜕𝑦
+ 𝜇

(
−4

3
𝑘2
𝑥 − 𝑘2

𝑧 +
𝜕2

𝜕𝑦2

)]
(E.20)

𝐿3,4 =
𝑖𝑘𝑧

𝛾
𝑒
Ma2

1
𝜌

𝜕𝑝

𝜕𝑇
(E.21)

𝐿3,5 =
𝑖𝑘𝑧

𝛾
𝑒
Ma2

1
𝜌

𝜕𝑝

𝜕𝜌
(E.22)

𝐿4,1 =
𝑖𝑘𝑥

𝑐𝑣𝜌
(𝛾

𝑒
− 1)𝑝 − 2

(𝛾
𝑒
− 1)𝛾

𝑒
Ma2

𝑐𝑣𝜌Re
𝜇
𝜕𝑈

𝜕𝑦

𝜕

𝜕𝑦
(E.23)

𝐿4,2 =
𝜕𝑇

𝜕𝑦
+
(𝛾

𝑒
− 1)
𝑐𝑣𝜌

𝑝
𝜕

𝜕𝑦
− 2𝑖𝑘𝑥

(𝛾
𝑒
− 1)𝛾

𝑒
Ma2

𝑐𝑣𝜌Re
𝜇
𝜕𝑈

𝜕𝑦
(E.24)

𝐿4,3 = 𝑖𝑘𝑧
(𝛾

𝑒
− 1)
𝑐𝑣𝜌

𝑝 (E.25)

𝐿4,4 =

(
𝑖𝑘𝑥𝑈

)
−

𝛾
𝑒

𝑐𝑣𝜌PrRe

[
𝜕𝑘

𝜕𝑦

𝜕

𝜕𝑦
+ 𝑘

(
−𝑘2

𝑥 − 𝑘2
𝑧 +

𝜕2

𝜕𝑦2

)
+ 𝜕

2𝑇

𝜕𝑦2
𝜕𝑘

𝜕𝑇

+𝜕𝑇
𝜕𝑦

𝜕

𝜕𝑦

(
𝜕𝑘

𝜕𝑇

)
+ 𝜕𝑇
𝜕𝑦

𝜕𝑘

𝜕𝑇

𝜕

𝜕𝑦

]
−

(𝛾
𝑒
− 1)𝛾

𝑒
Ma2

𝑐𝑣𝜌Re

(
𝜕𝑈

𝜕𝑦

)2
𝜕𝜇

𝜕𝑇

(E.26)

𝐿4,5 = 0 (E.27)

𝐿5,1 = 𝑖𝑘𝑥𝜌 (E.28)

𝐿5,2 =
𝜕𝜌

𝜕𝑦
+ 𝜌 𝜕

𝜕𝑦
(E.29)

𝐿5,3 = 𝑖𝑘𝑧𝜌 (E.30)

𝐿5,4 = 0 (E.31)

𝐿5,5 = 𝑖𝑘𝑥𝑈 (E.32)

Since the temperature equation related terms, (𝐿4,𝑖) are the only terms with 𝑐𝑣 and
𝑘 , these are the only terms in the LNSE that are explicitly affected by the CIG
assumption.

E.3 Linearization of the Governing Equations for a Mixture of Ideal Gases in
Chemical Nonequilibrium

Just as in the previous section, q̆ = q(𝑦) + q(𝑥, 𝑦, 𝑧, 𝑡) will be used to separate the
linear and nonlinear equations. Before advancing, the diffusive flux will be defined
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as
d̆𝑖𝑠 = 𝜌̆𝑖𝑠V̆𝑖𝑠 (E.33)

to simplify some terms. The linearization of Equation 5.15 is the same
as Equation E.5, except that the fluctuation 𝜇 =

∑
𝑖
𝜕𝜇

𝜕𝜃𝑖

���
𝜃
𝜃𝑖 where 𝜃 =[

𝑇, 𝜌̆𝑁2 , 𝜌̆𝑂2 , 𝜌̆𝑁𝑂 , 𝜌̆𝑁 , 𝜌̆𝑂
]
. Equation 5.17 becomes(

𝜕𝜌𝑖𝑠

𝜕𝑡
+ 𝑢

𝜕𝜌𝑖𝑠

𝜕𝑥
+
𝜕𝜌𝑖𝑠

𝜕𝑦
𝑣

)
= −𝜌𝑖𝑠∇ · u − ∇ · d𝑖𝑠 + ¤𝜔𝑖𝑠 + 𝑛.𝑙. (E.34)

Before continuing, it is worth making some notes on the diffusive fluxes and the
chemical rates of mass production. In order to conserve mass, the diffusive velocities
and chemical rates of mass production are defined such that

𝑁𝑠∑︁
𝑖

d̆𝑖 =
𝑁𝑠∑︁
𝑖

𝜌̆𝑖V̆𝑖 = 0 (E.35)

𝑁𝑠∑︁
𝑖

¤̆𝜔𝑖 = 0. (E.36)

This ensures that

𝑁𝑠∑︁
𝑖

d𝑖 =
𝑁𝑠∑︁
𝑖

𝜌𝑖V𝑖 = 0, (E.37)

𝑁𝑠∑︁
𝑖

¤𝜔𝑖 = 0. (E.38)

It follows then that for the fluctuations,

𝑁𝑠∑︁
𝑖

d𝑖 =
𝑁𝑠∑︁
𝑖

(𝜌𝑖V̄𝑖 + 𝜌̄𝑖V𝑖) = 0, (E.39)

𝑁𝑠∑︁
𝑖

¤𝜔𝑖 =
𝑁𝑠∑︁
𝑖

𝜕 ¤𝜔𝑖
𝜕𝜃 𝑗

𝜃 𝑗 = 0, (E.40)

where summation over 𝑗 is implied. Hence, if Equation E.34 is summed over 𝑖𝑠,
then

𝜕𝜌

𝜕𝑡
+𝑈𝜕𝜌

𝜕𝑥
+ 𝜕𝜌
𝜕𝑦
𝑣 = 𝜌∇ · u + 𝑛.𝑙. (E.41)

is recovered. So using the linear individual species continuity equations enforces
the linear mixture continuity equation.
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Equation 5.16 becomes

𝑐𝑣𝜌

(
𝜕𝑇

𝜕𝑡
+ 𝑢 𝜕𝑇

𝜕𝑥
+ 𝜕𝑇
𝜕𝑦
𝑣

)
= −(𝛾

𝑒
− 1)𝑝∇ · u +

(𝛾
𝑒
− 1)𝛾

𝑒
Ma2

Re

{(
𝜕𝑢

𝜕𝑦

)2
𝜇 +

2𝜇
(
𝜕𝑢

𝜕𝑦

𝜕𝑢

𝜕𝑦
+ 𝑖𝑘𝑥

𝜕𝑢

𝜕𝑦
𝑣

)}
+

𝛾
𝑒

PrRe

(
𝜕𝑘

𝜕𝑦

𝜕𝑇

𝜕𝑦
+ 𝑘∇2𝑇 + 𝜕𝑇

𝜕𝑦

𝜕𝑘

𝜕𝑦
+ 𝜕

2𝑇

𝜕𝑦2 𝑘

)
+

𝑁𝑠∑︁
𝑖𝑠

[
− ¤𝜔𝑖𝑠𝑒𝑖𝑠 −

𝛾
𝑒

Re

{
𝜕𝑇

𝜕𝑦
𝜌𝑖𝑠𝑉 𝑖𝑠𝑐𝑝,𝑖𝑠 + 𝑐𝑝,𝑖𝑠

(
𝜕𝑇

𝜕𝑦
𝑑2,𝑖𝑠 + 𝜌𝑖𝑠𝑉 𝑖𝑠

𝜕𝑇

𝜕𝑦

)}
+𝑀𝑒

𝑀𝑖𝑠

𝛾
𝑒
− 1

Re

(
𝑇∇ · d𝑖𝑠 +

𝜕 (𝜌𝑖𝑠𝑉 𝑖𝑠 )
𝜕𝑦

𝑇

)
− 𝑒𝑖𝑠 ¤𝜔𝑖𝑠 − ¤𝜔𝑖𝑠𝑒𝑖𝑠

]
,

(E.42)

where 𝑑2,𝑖𝑠 denotes the wall-normal component of d𝑖𝑠 .

Equations E.34 and E.42 make use of d̆𝑖𝑠 . Here, this term will be expanded explicitly.
To do so, Equation 5.20 will set𝑊𝑖𝑠 = 𝑀

−1
𝑖𝑠

. As such, Equation 5.20 will be written
as

d̆𝑖 = 𝜌̆𝑖V̆𝑖 = − 𝐷̆𝑖
Sc𝑖

𝜌̆𝑘𝑊𝑘

𝑊𝑖

∇𝑋̆𝑖 + 𝑌𝑖
𝑁𝑠∑︁
𝑗=1

𝐷̆ 𝑗

Sc 𝑗
𝜌̆𝑘𝑊𝑘

𝑊 𝑗

∇𝑋̆ 𝑗 , (E.43)

where the summation over 𝑘 is implied through indicial notation. The mean d𝑖 is

d𝑖 = 𝜌𝑖𝑉 𝑖e𝑦 =
©­«−𝐷𝑖Sc𝑖

𝜌𝑘𝑊𝑘

𝑊𝑖

d𝑋 𝑖
d𝑦

+ 𝑌 𝑖
𝑁𝑠∑︁
𝑗=1

𝐷 𝑗

Sc 𝑗
𝜌𝑘𝑊𝑘

𝑊 𝑗

d𝑋 𝑗

d𝑦
ª®¬e𝑦 . (E.44)

Now for the fluctuation d𝑖,

d𝑖 = − 𝐷𝑖

Sc𝑖
𝜌𝑙𝑊𝑙

𝑊𝑖

[
𝜕

𝜕𝑦

(
𝜕𝑋 𝑖

𝜕𝜌 𝑗
𝜌 𝑗

)
e𝑦 +

𝜕𝑋 𝑖

𝜕𝜌 𝑗
∇𝜌 𝑗

]
− 𝜕𝑋 𝑖

𝜕𝑦

[
𝜌𝑙𝑊𝑙

𝑊𝑖

𝜕𝐷𝑖

𝜕𝜃 𝑗

𝜃 𝑗

Sc𝑖
+ 𝐷𝑖

Sc𝑖
𝑊 𝑗

𝑊𝑖

𝜌 𝑗

]
e𝑦

+ 𝑌 𝑖
𝑁𝑠∑︁
𝑘=1

{
𝐷𝑘

Sc𝑘
𝜌𝑙𝑊𝑙

𝑊𝑘

[
𝜕

𝜕𝑦

(
𝜕𝑋 𝑘

𝜕𝜌 𝑗

)
𝜌 𝑗e𝑦 +

𝜕𝑋 𝑘

𝜕𝜌 𝑗
∇𝜌 𝑗

]
+ 𝜕𝑋 𝑘
𝜕𝑦

[
𝜌𝑙𝑊𝑙

𝑊𝑘

𝜕𝐷𝑘

𝜕𝜃 𝑗

𝜃 𝑗

Sc𝑘

+ 𝐷𝑘

Sc𝑘
𝑊 𝑗

𝑊𝑘

𝜌 𝑗

]
e𝑦

}
+

(
𝑁𝑠∑︁
𝑘=1

𝐷𝑘

Sc𝑘
𝜌𝑙𝑊𝑙

𝑊𝑘

𝜕𝑋 𝑘

𝜕𝑦

)
𝜕𝑌 𝑖

𝜕𝜌 𝑗
𝜌 𝑗e𝑦

=𝐴𝑖, 𝑗 (𝑦)𝜃 𝑗e𝑦 + 𝐵𝑖, 𝑗 (𝑦)∇𝜃 𝑗 ,
(E.45)
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where 𝐴𝑖, 𝑗 and 𝐵𝑖, 𝑗 are defined to shorten the equations and summation over 𝑗 and
𝑙 is implied. The expressions for 𝐴𝑖, 𝑗 and 𝐵𝑖, 𝑗 are

𝐴𝑖, 𝑗 = − 𝐷𝑖

Sc𝑖
𝜌𝑙𝑊𝑙

𝑊𝑖

𝜕

𝜕𝑦

(
𝜕𝑋 𝑖

𝜕𝜃 𝑗

)
− 1

Sc𝑖
𝜕𝑋 𝑖

𝜕𝑦

[
𝜌𝑙𝑊𝑙

𝑊𝑖

𝜕𝐷𝑖

𝜕𝜃 𝑗
+ 𝐷𝑖

𝑊 𝑗

𝑊𝑖

]
+

(
𝑁𝑠∑︁
𝑘=1

𝐷𝑘

Sc𝑘
𝜌𝑙𝑊𝑙

𝑊𝑘

𝜕𝑋 𝑘

𝜕𝑦

)
𝜕𝑌 𝑖

𝜕𝜌 𝑗

+ 𝑌 𝑖
𝑁𝑠∑︁
𝑘=1

{
𝐷𝑘

Sc𝑘
𝜌𝑙𝑊𝑙

𝑊𝑘

𝜕

𝜕𝑦

(
𝜕𝑋 𝑘

𝜕𝜃 𝑗

)
− 1

Sc𝑘
𝜕𝑋 𝑘

𝜕𝑦

[
𝜌𝑙𝑊𝑙

𝑊𝑘

𝜕𝐷𝑘

𝜕𝜃 𝑗
+ 𝐷𝑘

𝑊 𝑗

𝑊𝑘

]} (E.46)

𝐵𝑖, 𝑗 = − 𝐷𝑖

Sc𝑖
𝜌𝑙𝑊𝑙

𝑊𝑖

𝜕𝑋 𝑖

𝜕𝜌 𝑗
+ 𝑌 𝑖

𝑁𝑠∑︁
𝑘=1

𝐷𝑘

Sc𝑘
𝜌𝑙𝑊𝑙

𝑊𝑘

𝜕𝑋 𝑘

𝜕𝜌 𝑗
. (E.47)

As Anderson Jr. (2006) notes:

Clearly, you can see that a major aspect of such a nonequlibrium analysis
is simply bookkeeping, making certain to keep track of all of the terms
in the equations.

This becomes apparent for the block entries in Equation 5.24 listed below.

𝐿1,1 = 𝑖𝑘𝑥𝑢 −
1
𝜌Re

[
𝜕𝜇

𝜕𝑦

𝜕

𝜕𝑦
+ 𝜇

(
−4

3
𝑘2
𝑥 − 𝑘2

𝑧 +
𝜕2

𝜕𝑦2

)]
(E.48)

𝐿1,2 =
𝜕𝑢

𝜕𝑦
− 1
𝜌Re

[
𝑖𝑘𝑥

𝜕𝜇

𝜕𝑦
+ 1

3
𝑖𝑘𝑥𝜇

𝜕

𝜕𝑦

]
(E.49)

𝐿1,3 =
1
3

1
𝜌Re

𝑘𝑥𝑘𝑧𝜇 (E.50)

𝐿1,4 =
𝑖𝑘𝑥

𝛾
𝑒
Ma2

1
𝜌

𝜕𝑝

𝜕𝑇
− 1
𝜌Re

𝜕𝑢

𝜕𝑦

[
𝜕

𝜕𝑦

(
𝜕𝜇

𝜕𝑇

)
+ 𝜕𝜇
𝜕𝑇

𝜕

𝜕𝑦

]
− 1
𝜌Re

𝜕2𝑢

𝜕𝑦2
𝜕𝜇

𝜕𝑇
(E.51)

𝐿1,4+𝑖 =
𝑖𝑘𝑥

𝛾
𝑒
Ma2

1
𝜌

𝑀𝑒𝑇

𝑀𝑖

− 1
𝜌Re

𝜕𝑢

𝜕𝑦

[
𝜕

𝜕𝑦

(
𝜕𝜇

𝜕𝜌𝑖

)
+ 𝜕𝜇

𝜕𝜌𝑖

𝜕

𝜕𝑦

]
− 1
𝜌Re

𝜕2𝑢

𝜕𝑦2
𝜕𝜇

𝜕𝜌𝑖

(E.52)

𝐿2,1 = − 1
𝜌Re

[
−2

3
𝑖𝑘𝑥

𝜕𝜇

𝜕𝑦
+ 1

3
𝑖𝑘𝑥𝜇

𝜕

𝜕𝑦

]
(E.53)

𝐿2,2 = 𝑖𝑘𝑥𝑢 −
1
𝜌Re

[
4
3
𝜕𝜇

𝜕𝑦

𝜕

𝜕𝑦
+ 𝜇

(
−𝑘2

𝑥 − 𝑘2
𝑧 +

4
3
𝜕2

𝜕𝑦2

)]
(E.54)

𝐿2,3 = −𝑖𝑘𝑧
1
𝜌Re

[
−2

3
𝜕𝜇

𝜕𝑦
+ 1

3
𝜇
𝜕

𝜕𝑦

]
(E.55)
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𝐿2,4 =
1

𝛾
𝑒
Ma2𝜌

[
𝜕

𝜕𝑦

(
𝜕𝑝

𝜕𝑇

)
+ 𝜕𝑝
𝜕𝑇

𝜕

𝜕𝑦

]
− 𝑖𝑘𝑥

1
𝜌Re

𝜕𝑢

𝜕𝑦

𝜕𝜇

𝜕𝑇
(E.56)

𝐿2,4+𝑖 =
1

𝛾
𝑒
Ma2𝜌

𝑀𝑒

𝑀𝑖

[
𝜕𝑇

𝜕𝑦
+ 𝑇 𝜕

𝜕𝑦

]
− 𝑖𝑘𝑥

1
𝜌Re

𝜕𝑢

𝜕𝑦

𝜕𝜇

𝜕𝜌𝑖
(E.57)

𝐿3,1 =
1
3

1
𝜌Re

𝜇𝑘𝑧𝑘𝑥 (E.58)

𝐿3,2 = − 1
𝜌Re

𝑖𝑘𝑧

[
𝜕𝜇

𝜕𝑦
+ 1

3
𝜇
𝜕

𝜕𝑦

]
(E.59)

𝐿3,3 = 𝑖𝑘𝑥𝑢 −
1
𝜌Re

[
𝜕𝜇

𝜕𝑦

𝜕

𝜕𝑦
+ 𝜇

(
−4

3
𝑘2
𝑥 − 𝑘2

𝑧 +
𝜕2

𝜕𝑦2

)]
(E.60)

𝐿3,4 =
𝑖𝑘𝑧

𝛾
𝑒
Ma2

1
𝜌

𝜕𝑝

𝜕𝑇
(E.61)

𝐿3,4+𝑖 =
𝑖𝑘𝑧

𝛾
𝑒
Ma2

1
𝜌

𝑀𝑒𝑇

𝑀𝑖

(E.62)

𝐿4,1 =
𝑖𝑘𝑥

𝑐𝑣𝜌
(𝛾

𝑒
− 1)𝑝 − 2

(𝛾
𝑒
− 1)𝛾

𝑒
Ma2

𝑐𝑣𝜌Re
𝜇
𝜕𝑢

𝜕𝑦

𝜕

𝜕𝑦
(E.63)

𝐿4,2 =
𝜕𝑇

𝜕𝑦
+
(𝛾

𝑒
− 1)
𝑐𝑣𝜌

𝑝
𝜕

𝜕𝑦
− 2𝑖𝑘𝑥

(𝛾
𝑒
− 1)𝛾

𝑒
Ma2

𝑐𝑣𝜌Re
𝜇
𝜕𝑢

𝜕𝑦
(E.64)

𝐿4,3 = 𝑖𝑘𝑧
(𝛾

𝑒
− 1)
𝑐𝑣𝜌

𝑝 (E.65)

𝐿𝑒4,4 = (𝑖𝑘𝑥𝑢) −
𝛾
𝑒

𝑐𝑣𝜌PrRe

[
𝜕𝑘

𝜕𝑦

𝜕

𝜕𝑦
+ 𝑘

(
−𝑘2

𝑥 − 𝑘2
𝑧 +

𝜕2

𝜕𝑦2

)
+ 𝜕

2𝑇

𝜕𝑦2
𝜕𝑘

𝜕𝑇

+𝜕𝑇
𝜕𝑦

𝜕

𝜕𝑦

(
𝜕𝑘

𝜕𝑇

)
+ 𝜕𝑇
𝜕𝑦

𝜕𝑘

𝜕𝑇

𝜕

𝜕𝑦

]
−

(𝛾
𝑒
− 1)𝛾

𝑒
Ma2

𝑐𝑣𝜌Re

(
𝜕𝑢

𝜕𝑦

)2
𝜕𝜇

𝜕𝑇

(E.66)

𝐿𝑛4,4 =
1
𝑐𝑣𝜌

𝑁𝑠∑︁
𝑗=1

(
¤𝜔 𝑗

𝜕𝑒 𝑗

𝜕𝑇
+ 𝑒 𝑗

𝜕 ¤𝜔 𝑗

𝜕𝑇

)
+

𝛾
𝑒

𝑐𝑣𝜌Re

𝑁𝑠∑︁
𝑗=1

[
𝜕𝑇

𝜕𝑦

𝜌 𝑗𝑉 𝑗

Sc 𝑗
𝜕𝑐𝑝, 𝑗

𝜕𝑇

+𝑐𝑝 𝑗

{
𝜕𝑇

𝜕𝑦

(
𝐴 𝑗𝑇 + 𝐵 𝑗𝑇

𝜕

𝜕𝑦

)
+ 𝜌𝑖𝑉 𝑖

Sc𝑖
𝜕

𝜕𝑦

}]
−

(𝛾
𝑒
− 1)

𝑐𝑣𝜌Re

𝑁𝑠∑︁
𝑖=1

𝑀𝑒

𝑀𝑖

[
𝜕

𝜕𝑦

(
𝜌𝑖𝑉 𝑖

Sc𝑖

)
+𝑇

{
𝐵𝑖𝑇

(
−𝑘2

𝑥 − 𝑘2
𝑧 +

𝜕2

𝜕𝑦2

)
+

(
𝐴𝑖𝑇 +

𝜕𝐵𝑖𝑇

𝜕𝑦

)
𝜕

𝜕𝑦
+ 𝜕𝐴𝑖𝑇

𝜕𝑦

}]
(E.67)

𝐿4,4 = 𝐿𝑒4,4 + 𝐿
𝑛
4,4 (E.68)
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𝐿4,𝑖 = −
𝛾
𝑒

𝑐𝑣𝜌PrRe

[
𝜕2𝑇

𝜕𝑦2
𝜕𝑘

𝜕𝜌𝑖
+ 𝜕𝑇
𝜕𝑦

𝜕

𝜕𝑦

(
𝜕𝑘

𝜕𝜌𝑖

)
+ 𝜕𝑇
𝜕𝑦

𝜕𝑘

𝜕𝜌𝑖

𝜕

𝜕𝑦

]
+ 1
𝑐𝑣𝜌

𝑁𝑠∑︁
𝑗=1
𝑒 𝑗
𝜕 ¤𝜔 𝑗

𝜕𝜌𝑖
+

𝛾
𝑒

𝑐𝑣𝜌Re

𝑁𝑠∑︁
𝑗=1

[
𝑐𝑝 𝑗

𝜕𝑇

𝜕𝑦

(
𝐴 𝑗𝑖 + 𝐵 𝑗𝑖

𝜕

𝜕𝑦

)]
−

(𝛾
𝑒
− 1)

𝑐𝑣𝜌Re

𝑁𝑠∑︁
𝑖=1

𝑀𝑒

𝑀𝑖

[
𝑇

{(
𝐴𝑖𝑇 +

𝜕𝐵𝑖𝑇

𝜕𝑦

)
𝜕

𝜕𝑦

+ 𝐵𝑖𝑇
(
−𝑘2

𝑥 − 𝑘2
𝑧 +

𝜕2

𝜕𝑦2

)
+𝜕𝐴𝑖𝑇
𝜕𝑦

}]
−

(𝛾
𝑒
− 1)𝛾

𝑒
Ma2

𝑐𝑣𝜌Re

(
𝜕𝑢

𝜕𝑦

)2
𝜕𝜇

𝜕𝜌𝑖

(E.69)

𝐿𝑖,1 = 𝑖𝑘𝑥𝜌𝑖 (E.70)

𝐿𝑖,2 =
𝜕𝜌𝑖

𝜕𝑦
+ 𝜌𝑖

𝜕

𝜕𝑦
(E.71)

𝐿𝑖,3 = 𝑖𝑘𝑧𝜌𝑖 (E.72)

𝐿𝑖,4 = −𝜕 ¤𝜔𝑖
𝜕𝑇

+ 1
Re

[
𝜕𝐴𝑖𝑇

𝜕𝑦
+

(
𝐴𝑖𝑇 +

𝜕𝐵𝑖𝑇

𝜕𝑦

)
𝜕

𝜕𝑦
+ 𝐵𝑖𝑇

(
𝜕2

𝜕𝑦2 − 𝑘2
𝑥 − 𝑘2

𝑧

)]
(E.73)

𝐿𝑖,𝑖 = 𝑖𝑘𝑥𝑢 −
𝜕 ¤𝜔𝑖
𝜕𝜌𝑖

+ 1
Re

[
𝜕𝐴𝑖𝑖

𝜕𝑦
+

(
𝐴𝑖𝑖 +

𝜕𝐵𝑖𝑖

𝜕𝑦

)
𝜕

𝜕𝑦
+ 𝐵𝑖𝑖

(
𝜕2

𝜕𝑦2 − 𝑘2
𝑥 − 𝑘2

𝑧

)] (E.74)

𝐿𝑖, 𝑗 ( 𝑗≠𝑖) = −𝜕 ¤𝜔𝑖
𝜕𝜌 𝑗

+ 1
Re

[
𝜕𝐴𝑖 𝑗

𝜕𝑦
+

(
𝐴𝑖 𝑗 +

𝜕𝐵𝑖 𝑗

𝜕𝑦

)
𝜕

𝜕𝑦
+ 𝐵𝑖 𝑗

(
𝜕2

𝜕𝑦2 − 𝑘2
𝑥 − 𝑘2

𝑧

)]
(E.75)

𝐿𝑒4,4 and 𝐿𝑛4,4 are defined to explicitly separate the terms related to the chemical
nonequilibrium in 𝐿4,4. 𝐿𝑒4,4 is 𝐿4,4 if chemical equilibrium or a single species CIG
is used. The only terms related to the chemical nonequilibrium are 𝐿𝑛4,4, 𝐿4,𝑖, 𝐿𝑖,1,
𝐿𝑖,2, 𝐿𝑖,3, 𝐿𝑖,4, and 𝐿𝑖, 𝑗 .
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A p p e n d i x F

EFFECT OF THE INNER PRODUCT ON THE RESOLVENT
MODES USING CHEMICAL NONEQUILIBRIUM

The resolvent analysis study of a mixture in chemical nonequilibrium in Chap-
ter 5 used an inner product that differed from the inner product used in Franko,
MacCormack, and Lele (2010). Namely, the inner product in Equation 5.26 is

W𝑐 = diag

(
𝜌, 𝜌, 𝜌,

𝜌𝑐𝑣

𝑇Ma2𝛾
𝑒
(𝛾

𝑒
− 1)

,
𝑀𝑒𝑇

𝑀1𝛾𝑒
Ma2𝜌1

, . . . ,
𝑀𝑒𝑇

𝑀5𝛾𝑒
Ma2𝜌5

)
, (F.1)

which is constructed to remove the influence of compressive work on the inner
product (Chu, 1965; Hanifi, Schmid, and Henningson, 1996; Franko, MacCormack,
and Lele, 2010). However, dvision by 𝜌𝑖𝑠 creates issues in the freestream where
𝜌𝑁𝑂 = 𝜌𝑁 = 𝜌𝑂 = 0 because the freestream temperature is too cold to support
dissociation of N2 and O2. To deal with this, Chapter 5 regularizes W by replacing
𝜌𝑖𝑠 with 𝜌𝑖𝑠 + 𝜖 , where 𝜖 ≪ 1. On the other hand, Franko, MacCormack, and Lele
(2010) used 𝜌 instead of 𝜌𝑖𝑠 such that

W′
𝑐 = diag

(
𝜌, 𝜌, 𝜌,

𝜌𝑐𝑣

𝑇Ma2𝛾
𝑒
(𝛾

𝑒
− 1)

,
𝑀𝑒𝑇

𝑀1𝛾𝑒
Ma2𝜌

, . . . ,
𝑀𝑒𝑇

𝑀5𝛾𝑒
Ma2𝜌

)
. (F.2)

Although this may be used to regularize the issues at the freestream, it affects
the inner product even within the boundary layer. Most importantly, W′ can
not be considered a Chu norm because it does not remove the compressive work,
even within the boundary layer. As a result, any results using a single species
approximation, such as a chemical equilibrium assumption, that uses the single
species Chu norm, defined in Equation 5.10, can not compare with the mixture
results that use W′

𝑐 because the inner products do not satisfy the same assumptions.
Here, the effects of using W′

𝑐 on the resolvent analysis of a mixture in chemical
nonequilibrium will be discussed.

In Figure F.1, several components of 𝝍1 and 𝝓1 are compared using chemical equi-
librium and chemical nonequilibrium using W𝑐 and W′

𝑐 for the relatively subsonic
mode studied in Section 5.6. Although the modes computed using W𝑐 and the
chemical equilibrium assumption do not agree exactly, their response mode shape
and amplitude agrees better than for the mode computed with W′

𝑐 , even for the
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Figure F.1:
��𝜓𝑢,1�� (a),

��𝜙𝑢,1�� (b),
��𝜓𝑣,1�� (c),

��𝜙𝑣,1�� (d),
���𝜓𝜌𝑁2 ,1

��� (e),
���𝜙𝜌𝑁2 ,1

��� (f),
��𝜓𝜌𝑁 ,1��

(g),
��𝜙𝜌𝑁 ,1�� (h),

��𝜓𝜌𝑂 ,1�� (i),
��𝜙𝜌𝑂 ,1�� (j) for representative subsonic modes (𝑘𝑥 = 2𝜋/.9,

𝑘𝑧 = 2𝜋/.09, 𝑐 = .48). Modes computed using chemical equilibrium are in blue.
Modes computed using W𝑐 and W′

𝑐 are in black and red.

𝜌𝑖𝑠 components. The choice of inner product affects the 𝑢 and 𝑣 components of
the leading mode. In turn, the chemical equilibrium and chemical nonequilibrium
using W𝑐 velocity components of 𝝍1 and 𝝓1 are almost indistinguishable while the
streamwise components of the modes computed using W′

𝑐 are visibly affected. The
𝜙𝜌𝑁2 ,1 component is hardly affected by the choice of inner product, likely because
𝜌𝑁2 is a large fraction of 𝜌. Perhaps for this reason, 𝜓𝜌𝑁2 ,1 agrees for the three
approaches. On the other hand, the agreement in the dissociated components N and
O is poor when the inner product is changed. For starters, the 𝜌𝑁 components of 𝝍1

and 𝝓1 become at least three and five orders of magnitude larger when computed
using W′

𝑐 . Furthermore W′
𝑐 predicts that the 𝜌𝑁 component is on the same order of
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magnitude as the 𝜌𝑂 component in the response mode. For this temperature, such
species densities are not expected. Lastly, comparing the 𝜌𝑂 components shows that
using W′

𝑐 produces modes with larger amplitudes near the wall. Finally, the values
of 𝜎1 are 6.62 using W𝑐, 6.64 using chemical equilibrium, and 6.84 using W′

𝑐 .

Although the choice of inner product affects primarily the 𝜌𝑖𝑠 components, its
effect can be seen on even the velocity components. The modes computed using
the chemical equilibrium approach and the chemical nonequilibrium approach using
W𝑐 agree well because their inner products satisfy the same assumption, namely that
compressive work is not included in the norm. Changing the inner product causes
unphysical behavior in the response mode shape by increasing the production of 𝜌𝑁
in the response modes on par with the other dissociated components.

Now the effect of the inner product on the relatively supersonic modes studied in
Section 5.6 is studied. Figure F.2 plots various components of 𝝍1 and 𝝓1, which
display support in the freestream characteristic of the relatively supersonic modes
even with W′

𝑐 . For this mode, the 𝑢 and 𝑣 components of the modes computed with
W′

𝑐 differ substantially throughout the domain. The effects of using W′
𝑐 become

more severe when the dissociated components are compared. The 𝜌𝑂 components
using W′

𝑐 are nonzero in the freestream. These components are driven through
forcing from the dissociated 𝜌𝑖𝑠 components, which act as chemical sources in the
freestream. Because of the presence of dissociated components in the freestream,
the 𝑋𝑖𝑠 components are also nonzero, despite the freestream temperature being
too small to support chemical reactions. The nonzero 𝑋𝑖𝑠 are driven by the shear
terms related to 𝜕 ¤𝜔𝑖

𝜕𝜌 𝑗
, which provide component-wise amplification from 𝜌 𝑗 to 𝜌𝑖.

Furthermore, the values of the 𝑋𝑁 response components are an order of magnitude
smaller than the 𝑋𝑁2 response components, which is not expected for the mean
temperatures used here. Finally, the values of 𝜎1 are 45.75 using W𝑐, 45.75 using
chemical equilibrium, and 137.48 using W′

𝑐 .

The use of W′
𝑐 supports dissociated components in the freestream. This allows for

forcing from said dissociated components to act as sources in the freestream which
causes changes in the species concentrations in the freestream. Such behavior is not
expected at the freestream temperatures used in this analysis. When W𝑐 is used, the
freestream dissociated components are penalized in the inner product. Using the
inner product used in Franko, MacCormack, and Lele (2010) causes non-negligible
traces of dissociated components throughout the domain to be predicted using a
linear approach. The large presence of the dissociated components can affect even
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Figure F.2:
��𝜓𝑢,1�� (a),

��𝜙𝑢,1�� (b),
��𝜓𝑣,1�� (c),

��𝜙𝑣,1�� (d),
���𝜓𝑋𝑁2 ,1

��� (e),
���𝜙𝑋𝑁2 ,1

��� (f),
��𝜓𝑋𝑁 ,1

��
(g),

��𝜙𝑋𝑁 ,1
�� (h),

��𝜓𝜌𝑂 ,1�� (i), ��𝜙𝜌𝑂 ,1�� (j) for representative supersonic modes (𝑘𝑥 = 2𝜋/5,
𝑘𝑧 = 2𝜋/10, 𝑐 = .48). Modes computed using chemical equilibrium are in blue.
Modes computed using W𝑐 and W′

𝑐 are in black and red.

the 𝑢 and 𝑣 components.

The effect of the inner product can be seen by considering how the inner product
affects the weighting of A = (−𝑖𝜔 + L̂). Equation 2.15 can be rewritten as

A𝝍1 = 𝜎1𝝓1. (F.3)

Since 𝝍1 and 𝝓1 are orthonormal with respect to the inner products ⟨·, ·⟩𝑟 = ⟨·, ·⟩ 𝑓
from Equation 2.7 and 2.8, the vectors 𝝍𝑊,1 = W1/2

𝑐 𝝍1 and 𝝓𝑊,1 = W1/2
𝑐 𝝓1 are

orthornomal with respect to the inner product ⟨·, ·⟩ in Equation 2.9. 𝝍𝑊,1 and 𝝓𝑊,1
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can be introduced by manipulating Equation F.3 as

W1/2
𝑐 A𝝍1 = 𝜎1W1/2

𝑐 𝝓1 (F.4)

W1/2
𝑐 AW−1/2

𝑐 W1/2
𝑐 𝝍1 = 𝜎1W1/2

𝑐 𝝓1A𝑊𝝍𝑊,1 = 𝜎1𝝓𝑊,1, (F.5)

where A𝑊 = W1/2
𝑐 AW−1/2

𝑐 . Now the SVD of A using the inner products ⟨·, ·⟩𝑟
and ⟨·, ·⟩ 𝑓 is equivalent to the SVD of A𝑊 with the 2-norm ⟨·, ·⟩.

The effect of the choice of norm on A𝑊 will be presented by considering the scaling
of the terms in the operator. This will be done by defining the block diagonal form
of A as

A =


𝐴u,u 𝐴u,𝑇 𝐴u,𝑖 𝐴u, 𝑗

𝐴𝑇,u 𝐴𝑇,𝑇 𝐴𝑇,𝑖 𝐴𝑇, 𝑗

𝐴𝑖,u 𝐴𝑖,𝑇 𝐴𝑖,𝑖 𝐴𝑖, 𝑗

𝐴 𝑗 ,u 𝐴 𝑗 ,𝑇 𝐴 𝑗 ,𝑖 𝐴 𝑗 , 𝑗


. (F.6)

The block terms, 𝐴𝑙,𝑘 denote terms in the LNSE. The subscript 𝑘 denotes which
blocks act on 𝑞 𝑗=𝑘 and the subscript 𝑙 = u denotes the momentum equation, 𝑙 = 𝑇
the temperature equation, 𝑙 = 𝑖 is the 𝑖th species continuity equation and 𝑙 = 𝑗 is the
𝑗 th species continuity equation. Here, 𝑖 will be taken to represent the undissociated
species while 𝑗 represents the dissociated species. From Equations E.70, E.71, and
E.72, the blocks 𝐴𝑖,u ∼ 𝜌𝑖 and 𝐴 𝑗 ,u ∼ 𝜌 𝑗 . W𝑐 can be scaled as

W1/2
𝑐 ∼ diag

©­­«1, 1,
1√︁
𝜌𝑖

,
1√︃
𝜌 𝑗

ª®®¬. (F.7)

As such,

A𝑊 ∼



𝐴u,u 𝐴u,𝑇 𝐴u,𝑖
√︁
𝜌𝑖 𝐴u, 𝑗

√︃
𝜌 𝑗

𝐴𝑇,u 𝐴𝑇,𝑇 𝐴𝑇,𝑖
√︁
𝜌𝑖 𝐴𝑇, 𝑗

√︃
𝜌 𝑗√︁

𝜌𝑖
1√
𝜌𝑖
𝐴𝑖,𝑇 𝐴𝑖,𝑖

√
𝜌 𝑗√
𝜌𝑖
𝐴𝑖, 𝑗√︃

𝜌 𝑗
1√
𝜌 𝑗

𝐴 𝑗 ,𝑇

√
𝜌𝑖√
𝜌 𝑗

𝐴 𝑗 , 𝑗 𝐴 𝑗 , 𝑗


. (F.8)

Because 𝜌 𝑗 ≪ 1, the 𝐴u, 𝑗 , 𝐴𝑇, 𝑗 , and 𝐴𝑖, 𝑗 terms are negligible, especially in the
freestream. This mitigates the nonnormal component-wise amplification from 𝜌 𝑗 to
u,𝑇 , and 𝜌𝑖. Otherwise the 𝐴𝑖, 𝑗 terms, even in the freestream, are nonzero because of
the 𝜕 ¤𝜔𝑖

𝜕𝜌 𝑗
terms. The W𝑐 inner product provides weighting that removes that source

of amplification. The 𝜌 𝑗 is instead acted on by 𝐴 𝑗 , 𝑗 which provides molecular
diffusion, thus damping its contribution. On the other hand, the 𝐴 𝑗 ,𝑇 and 𝐴 𝑗 ,𝑖 terms
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become weighted by
(
𝜌 𝑗

)−1/2
. This serves to increase the amplification from 𝑇

and 𝜌𝑖 to 𝜌 𝑗 . The 𝜕 ¤𝜔 𝑗
𝜕𝜌𝑖

terms are negligible in the freestream, so any nonnormal
amplification of 𝜌 𝑗 is not an issue.

Now, this analysis will be repeated, except using W′
𝑐 . Since 𝜌 ∼ 1, W′

𝑐 ∼ I. This
causes

A𝑊 ∼


𝐴u,u 𝐴u,𝑇 𝐴u,𝑖 𝐴u, 𝑗

𝐴𝑇,u 𝐴𝑇,𝑇 𝐴𝑇,𝑖 𝐴𝑇, 𝑗

𝜌𝑖 𝐴𝑖,𝑇 𝐴𝑖,𝑖 𝐴𝑖, 𝑗

𝜌 𝑗 𝐴 𝑗 ,𝑇 𝐴 𝑗 , 𝑗 𝐴 𝑗 , 𝑗


. (F.9)

Using W′
𝑐 does not bias any of the terms in A𝑊 with the species densities. This

allows component-wise amplification from 𝜌 𝑗 through the 𝜕 ¤𝜔𝑖
𝜕𝜌 𝑗

terms in 𝐴𝑖, 𝑗 . This
encourages nonzero 𝜌 𝑗 , even in the freestream. This explains the behavior seen in
Figure F.2. In conclusion, using W′

𝑐 leads to unphysical behavior by allowing non-
negligible amplification of the dissociated components. This effect can be mitigated
by using W𝑐 instead as it biases nonnormal amplification from the dissociated
components.
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