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ABSTRACT

Recent engineering advances have opened up avenues to novel technologies that
bridge the gap between the quantum and the classical. In order to understand large-
scale quantum systems, a variety of approximate theoretical treatments have been
proposed. This thesis focuses on development and applications of path-integral
methods, which have enjoyed broad applicability in recent years for exploring nu-
clear quantum effects in the domains that span physical, bio-, geo-, and materials
chemistry.1

Feynman’s path-integral formulation of quantum statistical mechanics2 offers pow-
erful and widely used strategies for including nuclear quantum effects in complex
chemical systems. These strategies are based on the observation that the quantum
Boltzmann statistical mechanics of a quantum system is exactly reproduced by the
classical Boltzmann statistical mechanics of an isomorphic ring-polymer system.3
For the numerically exact calculation of quantum Boltzmann statistical properties,
the classical Boltzmann distribution of the ring-polymer system can be sampled us-
ing Monte Carlo4 (i.e., path-integral Monte Carlo, or PIMC) or molecular dynamics5

(PIMD).

Chapters 1 and 2 of this thesis identify and — with no computational overhead —
eliminate the issues in virtually all previous numerical implementations of PIMD
that stem from time discretization. The resultant integration scheme requires only
a small modification to existing PIMD algorithms and provides accurate statistical
and dynamical data in a single-shot simulation with an up to 3-fold increase in the
timestep duration.

Chapter 3 transitions from the PIMD method development to the applications of
the related PIMC method to understand equilibrium of stable heavy isotopes (𝐷 ≡
2𝐻, 13𝐶, 17𝑂, and 18𝑂) in small gaseous molecules. We present a collaborative
experiment-theory calibration of the temperature dependence of the clumped isotope
effect in methane in Chapter 4. We continue in Chapter 5, adding the study of isotopic
fractionation between methane, water, and molecular hydrogen. Here we present
the first concrete example of the effect of Born-Oppenheimer approximation on PI
calculations. Finally, Chapter 6 extends our treatment to ethane and propane. For
propane, in addition to multiple clumped isotope effects, there is also a strong site
preference for the heavy isotopes to occupy the central (methylene) 𝐶𝐻2 group.

All the isotopic equilibrium calculations utilize accurate potential energy surfaces
and are validated against experimental data in close collaboration with Daniel
Stolper’s experimental group at Berkeley, representing (to the best of our knowledge)
the most accurate reference data available to date.
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NOMENCLATURE

Δ𝑖 – measure of excess (when positive) or depletion (when negative) of isotopo-
logue 𝑖 relative to that observed at random distribution of isotopes, see
Equation (3.5), page 46.

𝜔𝑛 – temperature-dependent ring-polymer frequency, page 4.

RPFR – reduced partition function ratio, see Equation (3.24), page 50.
𝑖𝛼𝑀−𝑁 – fractionation factor expressing the preference of heavy isotope 𝑖 to partition

into 𝑀 relative to 𝑁 , see Equation (3.3), page 44.

6-311++G(d,p) – (same as 6-311++G**) triple-𝜁 Pople-type basis set with both
polarization and diffuse (extending over larger distance) functions added on
top of the 6-311G basis set..

6-311G – triple-𝜁 Pople-type babis set, “6” before the dash describes the treatment
of core electrons by six contracted Gaussian functions; the three numbers
after the dash mean the valence electrons are represented by three functions:
one consisting from three contracted Gaussians (3) and the other two are
single Gaussians (11).

6-311G(d,p) – (same as 6-311G**) triple-𝜁 Pople-type basis set with polarization
(higher angular momentum) functions added on top of the 6-311G basis set..

6-31G – smallest Pople-type basis set used in this thesis. The valence electrons are
represented by two functions: one consisting from three contracted Gaussians
(3) and the other is a single Gaussian (1).

aHO – weakly anharmonic potential, see Equation (1.29).

AIREBO – adaptive intermolecular reactive bond order force field, a model for
calculating the potential energy of covalent bonds and the interatomic force.

aug-cc-pCVXZ – augmented correlation-consistent core-valence Dunning basis
set (“X” is D or T or Q ...).

aug-cc-pVXZ – Dunning’s cc-pVXZ basis set augmented with additional diffuse
functions.

B3LYP – the most popular hybrid DFT functional, i.e., an approximation of electron-
electron interactions.

BAOAB – (magenta color in plots throughout) splitting of time evolution where
the thermostat is applied in the middle of each timestep Δ𝑡, suggested by
Leimkuhler, see Equation (2.1).
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BCOCB – (black color in plots throughout) splitting of the full timestep evolution,
that yields the best performance of T-RPMD.

BMU – Bigeleisen, Mayer, and Urey — harmonic approximation for calculating
the RPFR, see Equation (3.25), page 51.

Cayley transform – strongly stable approximation second order approximation of
the time evolution, see Equation (1.21).

CBS limit – a complete basis set limit, i.e., when an infinite number of basis
functions is used. In practice, this limit can be approached via basis set
extrapolation techniques.

cc-pVXZ – correlation-consistent polarized valence X-zeta Dunning’s basis sets,
where “X” in order of increasing basis set size is D for double, T for triple,
Q for quadruple, 5 for quintuple and 6 for hextuple etc.

CCSD – coupled cluster with single and double excitations, i.e., a post-Hartree-
Fock variational method that uses exponential excitation operator.

CCSD(T) – a combination of the CCSD calculation and the triple excitations that
are added perturbatively.

CCSD(T)-F12A – explicitly correlated coupled-cluster with single, double, and
perturbative triple excitations (A denotes a simplifying approximation that
results in a slight overestimate of the correlation energy).

CHARMM – Chemistry at Harvard macromolecular mechanics, a popular general
empirical force field.

circulant matrix – a square matrix in which all row vectors are composed of the
same elements and each row vector is rotated one element to the right relative
to the preceding row vector. It is diagonalized efficiently (i.e., O(𝑛 ln 𝑛) with
the size of the matrix 𝑛 × 𝑛) by a discrete Fourier transform, page 5.

clumped isotope effect – the excess or deficit concentration of isotopologues with
multiple rare isotopic substitutions relative to what would be expected given
a random distribution of isotopes amongst all isotopologues.

CMD – centroid molecular dynamics.

DBO or DBOC – diagonal Born-Oppenheimer correction, lowest order perturba-
tive correction to the BO-approximation, page 52.

DFT – density functional theory.

dimensionality freedom – a property of numerical time evolution scheme when in
the limit of 𝑛− > ∞ the distribution of ring-polymer positions obtained at
finite timestep 𝛿𝑡 has finite overlap with the exact distribution , page 27.
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fractionation of isotope – (potentially uneven) distribution of an isotope between
sites of the molecule, phases, or species.

GLE thermostat – generalized Langevin equation thermostat.

icMRCI – internally contracted multireference configuration interaction.

isotopologue – a molecular analogue of isotope. A molecule that differs (from
other molecule) only in its isotopic composition.

MD – molecular dynamics.

MP2 – second order Moller-Plesset perturbation theory, done on top of the Hartree-
Fock (mean field) solution to the electronic structure problem.

OBABO – (red color in plots throughout) splitting of time evolution, where the
thermostat (O step) is applied at the beginning and the end of each timestep
Δ𝑡. This is the standard Bussi-Parinello splitting, see Equation (2.1).

OBCBO – (blue color in plots throughout) a modification of the standard Bussi-
Parinello splitting scheme (OBABO), where the free ring-polymer evolution
is done approximately via Cayley-transform of matrix 𝑨 governing the exact
evolution.

OMCMO – (green color in plots throughout) a modification of the OBCBO split-
ting, that achieves dimensionality freedom of non-preconditioned PIMD by
modifying (mollyfying) the action of the external potential, page 33.

OmCmO – (cyan color in plots throughout) a modification of the OBCBO splitting
similar to OMCMO, except that force mollification is only performed for the
high frequency modes, resulting in smaller overall error, page 34.

PES – potential energy surface, describing how the potential energy (within the
Born-Oppenheimer approximation) varies as a function of nuclear coordi-
nates.

PIMC – path-integral Monte Carlo, page 3.

PIMD – path-integral molecular dynamics, page 3.

primitive kinetic energy – the estimator of kinetic energy, whose variance grows
with increasing number of beads 𝑛, see Equation (2.20).

RHF – restricted Hartree-Fock, a mean-field approximate solution of the electronic
structure problem. Also a starting point for the post-Hartree-Fock methods
like MP2, CCSD or CISD etc.

RPMD – ring-polymer molecular dynamics, page 3.

strong stability – a property of symplectic matrix 𝑺 if 𝑺 is stable and all sufficiently
close symplectic matrices are also stable, page 6.
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T-RPMD – thermostatted ring-polymer molecular dynamics, page 15.

Verlet integrator – numerical algorithm for propagating equations of motion in
classical mechanics. For matrix form of Verlet algorithm applied to single
harmonic oscillator, see Equation (1.19.

virial kinetic energy – an alternative (to the primitive) estimator of kinetic energy;
it is more costly to evaluate, but has better statistical properties (especially
for a large number of beads 𝑛), see Equation (2.38).
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C h a p t e r 1

CAYLEY MODIFICATION FOR PATH-INTEGRAL
SIMULATIONS

1R. Korol, N. Bou-Rabee, and T. F. Miller III, “Cayley modification for strongly sta-
ble path-integral and ring-polymer molecular dynamics”, The Journal of Chem-
ical Physics 151, 124103 (2019) 10.1063/1.5120282,

1.1 Abstract
Path-integral-based molecular dynamics (MD) simulations are widely used for the
calculation of numerically exact quantum Boltzmann properties and approximate
dynamical quantities. A nearly universal feature of MD numerical integration
schemes for equations of motion based on imaginary-time path integrals is the use
of harmonic normal modes for the exact evolution of the free ring-polymer posi-
tions and momenta. In this work, we demonstrate that this standard practice creates
numerical artifacts. In the context of conservative (i.e., microcanonical) equations
of motion, it leads to numerical instability. In the context of thermostatted (i.e.,
canonical) equations of motion, it leads to non-ergodicity of the sampling. These
pathologies are generally proven to arise at integration timesteps that depend only
on the system temperature and the number of ring-polymer beads, and they are
numerically demonstrated for the cases of conventional ring-polymer molecular
dynamics (RPMD) and thermostatted RPMD (T-RPMD). Furthermore, it is demon-
strated that these numerical artifacts are removed via replacement of the exact free
ring-polymer evolution with a second-order approximation based on the Cayley
transform. The Cayley modification introduced here can immediately be employed
with almost every existing integration scheme for path-integral-based molecular dy-
namics –including path-integral MD (PIMD), RPMD, T-RPMD, and centroid MD
— providing strong symplectic stability and ergodicity to the numerical integration,
at no penalty in terms of computational cost, algorithmic complexity, or accuracy
of the overall MD timestep. Furthermore, it is shown that the improved numerical
stability of the Cayley modification allows for the use of larger MD timesteps. We
suspect that the Cayley modification will therefore find useful application in many
future path-integral-based MD simulations.

1.2 Introduction
Feynman’s path-integral formulation of quantum statistical mechanics2 offers pow-
erful and widely used strategies for including nuclear quantum effects in complex
chemical systems. These strategies are based on the observation that the quantum
Boltzmann statistical mechanics of a quantum system is exactly reproduced by the
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classical Boltzmann statistical mechanics of an isomorphic ring-polymer system.3
For the numerically exact calculation of quantum Boltzmann statistical properties,
the classical Boltzmann distribution of the ring-polymer system can be sampled us-
ing Monte Carlo4 (i.e., path-integral Monte Carlo, or PIMC) or molecular dynamics5

(PIMD).

For the approximate calculation of dynamical quantities, such as reaction rates,6–8

diffusion coefficients,9,10 and absorption spectra,11–14 the Newtonian dynamics of
the classical isomorphic system can be numerically integrated as a model for the
real-time quantum dynamics, as in ring-polymer molecular dynamics (RPMD)15,16

and centroid molecular dynamics (CMD).17,18 These and related methods have
enjoyed broad applicability in recent years for exploring nuclear quantum effects in
the domains that span physical, bio-, geo-, and materials chemistry.1

For PIMD and RPMD calculations, considerable effort has been dedicated to the
development and refinement of numerical integration schemes. This work falls into
two distinct categories. In the first, the RPMD equations of motion are precon-
ditioned by modifying the ring polymer mass matrix; this causes the integrated
trajectories to differ from those of the RPMD model,19–25 but it can lead to efficient
and strongly stable21–23 sampling of the quantum Boltzmann distribution. In the
second category, no modification is made to the ring-polymer mass matrix (i.e., the
“physical” masses of the ring-polymer beads are employed).26–30

Within the second category, it is common to apply a thermostat to the internal ring-
polymer motions, with two primary aims: to more efficiently sample the quantum
Boltzmann distribution,24,27,28 or to avoid the “spurious resonance” artifact of the
microcanonical (i.e., un-thermostatted) RPMD equations of motion in which inter-
nal ring-polymer modes mechanically couple to physical modes of the system.29,30

PIMD and RPMD integration schemes in the second category (which preserve the
RPMD model dynamics) typically employ a Trotter-like factorization of the time
evolution operator.9,27–31 For the example of thermostatted RPMD (T-RPMD)29 us-
ing the generalized Langevin equation (GLE) thermostat,27 the numerical integration
is performed using32

𝑒Δ𝑡𝐿 = 𝑒
Δ𝑡
2 𝐿𝛾𝑒

Δ𝑡
2 𝐿𝑉 𝑒Δ𝑡𝐿0𝑒

Δ𝑡
2 𝐿𝑉 𝑒

Δ𝑡
2 𝐿𝛾 + O(Δ𝑡3) (1.1)

where the Liouvillian 𝐿 = 𝐿𝑉 + 𝐿0 + 𝐿𝛾 includes contributions from the physical
potential, 𝐿𝑉 , the purely harmonic free ring-polymer motion, 𝐿0, and the friction
and thermal noise, 𝐿𝛾; note that the standard microcanonical RPMD numerical
integration scheme is then recovered in the limit of zero coupling to the thermostat,
such that9

𝑒Δ𝑡𝐿 = 𝑒
Δ𝑡
2 𝐿𝑉 𝑒Δ𝑡𝐿0𝑒

Δ𝑡
2 𝐿𝑉 + O(Δ𝑡3). (1.2)

Standard practice in these RPMD and PIMD integration schemes is to exactly
evolve the harmonic free ring-polymer dynamics associated with exp(Δ𝑡𝐿0) using
the uncoupled free ring-polymer normal modes.9,27,31
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The first major conclusion of this Chapter is that any integration scheme (PIMD,
RPMD, CMD, or other)5,15–17,27–31,33–38 that involves the exact integration of the
free ring polymer (i.e., involves the ubiquitous exp(Δ𝑡𝐿0) step in terms of the ring-
polymer normal modes) will exhibit provable numerical deficiencies, including res-
onance instabilities and non-ergodicity. For the case of the standard microcanonical
RPMD integration scheme in Eq. (1.2), which is a symplectic map, exact evolution
of the free ring-polymer step leads to the provable loss of strong symplectic sta-
bility and the demonstrable appearance of resonance instabilities in the integrated
trajectories. For thermostatted RPMD and PIMD integration schemes that involve
a free ring-polymer step,27–30 exact evolution of that step leads to the provable and
numerically demonstrable non-ergodicity.

The second major conclusion of this Chapter is that these numerical artifacts can be
eliminated by simply replacing the exact evolution of the free ring polymer step with
an approximation based on the Cayley transform: an alternative to exact free ring-
polymer evolution that is no more costly, no more complicated, and no less accurate
in the context of the full integration timestep. In particular, we show that this Cayley
modification eliminates the resonance instabilities that occurs when trajectories
are evolved using standard microcanonical RPMD integrators, and we show that it
restores ergodicity to thermostatted RPMD and PIMD trajectories. Furthermore, we
show that the improved numerical properties of the Cayley modification generally
allow for larger RPMD and PIMD integration timesteps to be employed.

The Chapter is organized as follows. In section 1.3 we articulate the numerical
instability problem in the context of standard RPMD numerical integration and
introduce the Cayley modification as the solution. Section 1.4 numerically illustrates
the instability of standard RPMD numerical integration and shows that the Cayley
modification removes this problem. Finally, in section 1.5 we generalize these
findings to thermostatted trajectories.

1.3 Theory
The theory introduced here adapts and advances previous mathematical results on
the numerical approximation of general second order Langevin stochastic partial
differential equations with space-time white noise.39

RPMD
We consider a quantum particle in 1D with Hamiltonian operator given by

𝐻̂ =
𝑝2

2𝑚
+𝑉 (𝑞) (1.3)

where 𝑞, 𝑝, and 𝑚 represent the particle position, momentum, and mass, respec-
tively, and 𝑉 (𝑞) is a potential energy surface. All results presented here are easily
generalized to multiple dimensional quantum systems.
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The thermal equilibrium properties of the system are described by the quantum
mechanical Boltzmann partition function,

𝑄 = Tr[𝑒−𝛽𝐻̂] , (1.4)

where 𝛽 = (𝑘𝐵𝑇)−1 is the inverse temperature. Using a path-integral discretization,
𝑄 can be approximated by a classical partition function 𝑄𝑛 of a ring-polymer with
𝑛 beads,5

𝑄𝑛 =
𝑚𝑛

(2𝜋ℏ)𝑛
∫

𝑑𝑛𝒒

∫
𝑑𝑛𝒗𝑒−𝛽𝐻𝑛 (𝒒,𝒗) , (1.5)

where 𝒒 = (𝑞0, . . . , 𝑞𝑛−1) is the vector of bead positions, and 𝒗 is the corresponding
vector of velocities. The ring-polymer Hamiltonian is given by

𝐻𝑛 (𝒒, 𝒗) = 𝐻0
𝑛 (𝒒, 𝒗) +𝑉ext

𝑛 (𝒒), (1.6)

which includes contributions from the physical potential

𝑉ext
𝑛 (𝒒) =

1
𝑛

𝑛−1∑︁
𝑗=0
𝑉 (𝑞 𝑗 ) (1.7)

and the free ring-polymer Hamiltonian

𝐻0
𝑛 (𝒒, 𝒗) =

𝑚𝑛

2

𝑛−1∑︁
𝑗=0

[
𝑣2
𝑗 + 𝜔2

𝑛 (𝑞 𝑗+1 − 𝑞 𝑗 )2
]
, (1.8)

where 𝑚𝑛 = 𝑚/𝑛, 𝜔𝑛 = 𝑛/(ℏ𝛽) and 𝑞𝑛 = 𝑞0. If we let 𝑛 = 1 in Eq. (1.5), the
classical partition function of the system (governed by a classical Hamiltonian,
Eq. 1.6 with 𝑛 = 1) is recovered, i.e., 𝑄1 = 𝑄𝑐𝑙 . In the limit 𝑛 → ∞, the path-
integral approximation converges to the exact quantum Boltzmann statistics for the
system, such that 𝑄∞ = 𝑄. The thermal ensemble of ring-polymer configurations
associated with Eq. (1.5) can be sampled using either molecular dynamics (leading
to PIMD methods) or Monte Carlo (leading to PIMC methods).

The classical equations of motion associated with the ring-polymer Hamiltonian in
Eq. (1.6),

¤𝑞 𝑗 = 𝑣 𝑗 , (1.9)

¤𝑣 𝑗 = 𝜔2
𝑛 (𝑞 𝑗+1 + 𝑞 𝑗−1 − 2𝑞 𝑗 ) −

1
𝑚
𝑉 ′(𝑞 𝑗 ),

yield the RPMD model for the real-time dynamics of the system.15,16 RPMD
provides a means of approximately calculating Kubo-transformed thermal time-
correlation functions, such as the position autocorrelation function

𝐶̃𝑞𝑞 (𝑡) =
1
𝑄

Tr[𝑒−𝛽𝐻̂𝑞(0)𝑞(𝑡)] (1.10)
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where the Kubo-transformed position operator 𝑞 is

𝑞 =
1
𝛽

∫ 𝛽

0
𝑒𝜆𝐻̂𝑞𝑒−𝜆𝐻̂𝑑𝜆 (1.11)

and the time-evolved operator 𝑞(𝑡) is 𝑒𝑖𝐻̂𝑡/ℏ𝑞𝑒−𝑖𝐻̂𝑡/ℏ.

Specifically, the RPMD approximation to Eq. (1.10) is

𝐶̃𝑞𝑞 (𝑡) =
1
𝑄𝑛

∫
𝑑𝑛𝒒

∫
𝑑𝑛𝒗𝑒−𝛽𝐻𝑛 (𝒒,𝒗)𝑞(0)𝑞(𝑡) (1.12)

where 𝑞 is the bead-averaged position

𝑞(𝑡) = 1
𝑛

𝑛−1∑︁
𝑗=0
𝑞 𝑗 (𝑡) , (1.13)

and the pair (𝒒(𝑡), 𝒗(𝑡)) are evolved by the RPMD equations of motion in Eq. (1.9)
with initial conditions drawn from the classical Boltzmann-Gibbs measure.

The RPMD equations of motion can be compactly rewritten as[
¤𝒒
¤𝒗

]
= 𝑨

[
𝒒
𝒗

]
+

[
0

𝑭(𝒒)/𝑚𝑛

]
, where 𝑨 =

[
0 𝑰
−𝛀2 0

]
, (1.14)

𝑭(𝒒) = −∇𝑉ext
𝑛 (𝒒), 𝑰 is an 𝑛 × 𝑛 identity matrix, 0 is an array of zeros, and 𝛀2 is

the 𝑛 × 𝑛 symmetric positive semi-definite matrix

𝛀2 = 𝜔2
𝑛



2 −1 0 · · · 0 −1
−1 2 −1 0 · · · 0

. . .
. . .

. . .

. . .
. . .

. . .

0 · · · 0 −1 2 −1
−1 0 · · · 0 −1 2


. (1.15)

We recognize 𝛀2 as the 1D discrete Laplacian endowed with periodic boundary
conditions; its spectral radius that scales as 𝑛2, and since 𝛀2 is circulant, it can be
diagonalized by the 𝑛 × 𝑛 orthogonal real discrete Fourier transform (DFT) matrix.
In particular, the spectral decomposition of 𝛀 can be written as

𝛀 = 𝑼𝛀𝒅𝑼
T, where 𝛀𝒅 = diag(0, 𝜔1,𝑛, . . . , 𝜔𝑛−1,𝑛) (1.16)

is a diagonal matrix of eigenvalues given by

𝜔 𝑗 ,𝑛 =


2𝜔𝑛 sin

(
𝜋 𝑗

2𝑛

)
if 𝑗 is even ,

2𝜔𝑛 sin
(
𝜋( 𝑗+1)

2𝑛

)
else ,

(1.17)
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In nontrivial applications, the RPMD equations of motion in Eq. (1.14) cannot be
solved analytically. It is then necessary to employ approximate numerical integration
of the equations of motion. As we discuss next, designing good numerical integrators
for Eq. (1.14) is complicated by the interplay between the time-evolution of the free
ring-polymer (obtained by setting 𝑭 = 0 in Eq. 1.14) and the contributions from the
physical forces 𝑭.

Cayley removes instabilities in a free ring-polymer mode
RPMD is an example of highly oscillatory Hamiltonian dynamics.40 To understand
why numerical integration of such systems is tricky and why the Cayley modification
is needed, it helps to consider the equations of motion for a particular normal mode
of the free ring polymer with Matsubara frequency 𝜔 > 0:[

¤𝑞
¤𝑣

]
= 𝑨

[
𝑞

𝑣

]
where 𝑨 =

[
0 1
−𝜔2 0

]
, (1.18)

which are also the equations of motion for a linear oscillator with natural frequency
𝜔. If 𝜔 is large, Eq. (1.18) is highly oscillatory. Solving Eq. (1.18) amounts to
approximating the matrix exponential exp(Δ𝑡𝑨) whereΔ𝑡 is a timestep size. A good
2 × 2 matrix approximation 𝑴Δ𝑡 should satisfy:

(P1) Accuracy ∥𝑴Δ𝑡 − exp(Δ𝑡𝑨)∥ = 𝑂 (Δ𝑡3).

(P2) Strong Stability For all 𝜔 > 0, and for all Δ𝑡 smaller than some constant
independent of 𝜔, 𝑴Δ𝑡 is a strongly stable symplectic matrix.

(P3) Time-Reversibility For all 𝜔 > 0 and Δ𝑡 > 0, 𝑴Δ𝑡 is reversible with respect

to the velocity flip matrix 𝑹 =

[
1 0
0 −1

]
, i.e., 𝑹𝑴Δ𝑡𝑹 = 𝑴−1

Δ𝑡
.

We briefly comment on each of these criteria for a good approximation. Prop-
erty (P1) is a basic requirement that ensures second-order accuracy on finite-time
intervals. Property (P3) is particularly useful for sampling from the stationary
distribution, since a reversible map can be readily Metropolized41–43, and since
time-reversibility in a volume-preserving numerical integrator leads to a doubling
of the accuracy order (see Propositions 5.2 and Theorem 6.2 of Ref.43, respectively).
Property (P2) is the most interesting. A symplectic matrix 𝑺 is stable if all powers
of the matrix 𝑺 are bounded. A symplectic matrix 𝑺 is strongly stable if 𝑺 is stable
and all sufficiently close symplectic matrices are also stable. In other words, 𝑺 is
strongly stable if there exists an 𝜖 > 0, such that all symplectic matrices 𝑺𝜖 that are
within a distance 𝜖 away from 𝑺 are also stable. A sufficient condition for 𝑺 to be
strongly stable is that the eigenvalues of 𝑺 are on the unit circle in the complex plane
and are distinct; both the necessary and sufficient conditions for strong stability of
symplectic matrices are known.44
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Figure 1.1: Eigenvalues of 2×2 symplectic matrices. Eigenvalues of a symplectic matrix
𝑺 = exp(𝑡𝑨) (black dots) are plotted in the complex plane along with eigenvalues of a
perturbed symplectic matrix 𝑺𝜖 = exp((1/2)𝑡𝑩) exp(𝑡𝑨) exp((1/2)𝑡𝑩) (grey dots). The
elements of 𝑨 and 𝑩 are specified in the text. For both values of 𝑡, 𝑺 is stable since its
eigenvalues lie on the unit circle. When the eigenvalues of 𝑺 are not distinct, then as shown
in (a), 𝑺𝜖 has an eigenvalue with modulus greater than one, and hence, 𝑺𝜖 loses stability.
However, if the eigenvalues of 𝑺 are distinct, then 𝑺 is strongly stable, and as shown in (b),
𝑺𝜖 is stable since its eigenvalues remain on the unit circle.

Figure 1.1 illustrates the concept of strong stability. In particular, for different values
of 𝑡 (as indicated in each panel), the black dots correspond to the eigenvalues of the
symplectic matrix 𝑺 = exp(𝑡𝑨) with 𝜔 = 3, and the grey dots are the eigenvalues of
a perturbation of 𝑺 which preserves the symplectic nature of the matrix, specifically

𝑺𝜖 = exp((1/2)𝑡𝑩) exp(𝑡𝑨) exp((1/2)𝑡𝑩) where 𝑩 =

[
0 𝜖

𝜖 0

]
and 𝜖 = 0.15. For

any 𝑡, note that the two eigenvalues of 𝑺 are always on the unit circle, and hence, 𝑺
is always stable, but as the figure shows, 𝑺 is not always strongly stable. Indeed, in
Figure 1.1 (a), we see that the two eigenvalues of 𝑺, represented by a single black
dot, are both equal to (−1, 0), which violates the condition for strong stability, and
in this case, we see that one of the eigenvalues of 𝑺𝜖 has modulus greater than unity,
which implies that 𝑺𝜖 is unstable. In Figure 1.1 (b), the two eigenvalues of 𝑺 are
distinct and equal to (0,±1), and hence, 𝑺 is strongly stable. Since 𝑺 is strongly
stable, and 𝜖 is sufficiently small, 𝑺𝜖 has eigenvalues that are on the unit circle,
and hence, is itself stable. For a more detailed discussion of the concept of strong
stability of symplectic matrices, see Section 42 of Ref.45.

A natural candidate for an approximation 𝑴Δ𝑡 that satisfies these criteria is the Verlet
integrator, which is ubiquitous in the classical simulation of molecular systems.46–49

For a single Matsubara frequency of the free ring polymer, the Verlet integrator
gives

𝑴Δ𝑡 =

[
1 − Δ𝑡2𝜔2

2 Δ𝑡

−1
2Δ𝑡𝜔

2(2 − Δ𝑡2𝜔2

2 ) 1 − Δ𝑡2𝜔2

2

]
. (1.19)

However, for Δ𝑡 > 2/𝜔, the eigenvalues of 𝑴Δ𝑡 are real and distinct, so that one of
them has modulus > 1, and therefore the powers of 𝑴Δ𝑡 grow exponentially. Thus,
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(a) exp(Δ𝑡𝑨) (b) cay(Δ𝑡𝑨)

Figure 1.2: Eigenvalues of the exponential vs. Cayley maps. Eigenvalues of exp(Δ𝑡𝑨)
(a) and cay(Δ𝑡𝑨) (b) at 50 different timestep sizes between 0.05 and 5.0 (evenly spaced)
and with 𝜔 = 3, color-coded from blue (smallest) through green and yellow to red (largest).
For exp(Δ𝑡𝑨), the eigenvalues rotate around the unit circle multiple times. However, for
cay(Δ𝑡𝑨), the eigenvalues start near (1, 0), but never reach (−1, 0). Since the eigenvalues
of cay(Δ𝑡𝑨) are always distinct, it provides strong symplectic stability, whereas the matrix
exponential loses strong stability every time the eigenvalues hit the horizontal axis. In both
panels, the eigenvalue associated with the ring-polymer centroid motion is excluded.

numerical stability requires Δ𝑡 < 2/𝜔, and Verlet does not satisfy (P2), since this
numerical stability requirement is not uniform in 𝜔.

Surprisingly, the exact solution for the normal-mode dynamics also does not satisfy
(P2). To see why, note that the eigenvalues of the matrix exponential exp(Δ𝑡𝑨) are
𝑒±𝑖𝜔Δ𝑡 and (P2) requires that 𝑒𝑖𝜔Δ𝑡 ≠ 𝑒−𝑖𝜔Δ𝑡 which is violated if and only if

Δ𝑡 =
𝜋𝑘

𝜔
for all 𝑘 ≥ 1 . (1.20)

At these timesteps, the exact solution violates strong stability. This is illustrated in
Figure 1.2 (a), where the two eigenvalues of exp(Δ𝑡𝑨) are plotted in the complex
plane for a range of time-step sizes. Although the two eigenvalues of exp(Δ𝑡𝑨) lie
on the unit circle for all Δ𝑡, strong stability fails to hold whenever the eigenvalues
are both equal to (±1, 0).

A simple strategy to avoid these artificial resonances is to use a random timestep
size 𝛿𝑡, e.g., take as timestep size an exponential random variable 𝛿𝑡 with mean
Δ𝑡. Averaging exp(𝛿𝑡𝑨) over the exponential probability density function yields
𝑴Δ𝑡 = E(exp(𝛿𝑡𝑨)) = (𝑰 − Δ𝑡𝑨)−1, where here 𝑰 is the 2 × 2 identity matrix.
Unfortunately, as can be easily verified, this matrix satisfies none of our criteria:
it is neither symplectic, nor reversible, nor sufficiently accurate. However, we can
easily turn this approximation into one that satisfies (P1), by simply composing 1/2
step of this integrator with 1/2 step of its adjoint 𝑴−1

Δ𝑡
. This correction yields the

Cayley transform of the matrix Δ𝑡𝑨,

cay(Δ𝑡𝑨) ≡ (𝑰 − (1/2)Δ𝑡𝑨)−1(𝑰 + (1/2)Δ𝑡𝑨). (1.21)
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In fact, the Cayley transform satisfies all three of the specified criteria for a
good numerical integrator. It is time-reversible since 𝑹 cay(Δ𝑡𝑨)𝑹 = (𝑹 −
(1/2)Δ𝑡𝑹𝑨)−1(𝑹 + (1/2)Δ𝑡𝑨𝑹) = cay(Δ𝑡𝑨)−1, where we used that 𝑹−1 = 𝑹.
It is a symplectic matrix since

cay(Δ𝑡𝑨)𝑇 𝑱 cay(Δ𝑡𝑨) = 𝑱 where 𝑱 =

[
0 1
−1 0

]
where we used the fact that 𝑨 is a Hamiltonian matrix (See Ref.50, Section 2.5). More
importantly, it is a strongly stable symplectic matrix for all Δ𝑡 > 0, as illustrated
in Figure 1.2 (b); in contrast with the exponential map, for all 𝜔 > 0 and Δ𝑡 > 0
the eigenvalues of the Cayley map are (4−Δ𝑡2𝜔2 ± 4𝑖Δ𝑡𝜔)/(4 +Δ𝑡2𝜔2), which are
distinct and of unit modulus. Thus, not only is every matrix power of cay(Δ𝑡𝑨)
bounded, but the Cayley map is strongly stable uniformly in 𝜔 and Δ𝑡.

Cayley removes instabilities in microcanonical RPMD
For numerical integration of the conservative RPMD equations of motion (Eq. 1.9
or Eq. 1.14), it is standard practice9,16 to employ a symmetrically split second-order
integrator of the form in Eq. (1.2).

Furthermore, it is standard practice to exactly perform the free ring-polymer time
evolution step,16 using an exponential map of the form exp(Δ𝑡𝐿0) = exp(Δ𝑡𝑨)where
𝑨 is the matrix associated with the dynamics of the free ring-polymer Hamiltonian,[

¤𝒒
¤𝒗

]
= 𝑨

[
𝒒
𝒗

]
. (1.22)

In practice, the exact exponential map is executed by successively (i) changing from
the Cartesian bead positions and velocities to the normal modes of the free ring
polymer, (ii) numerically integrating each of the uncoupled normal mode equations
of motion, and (iii) translating the time-evolved normal mode coordinates back into
the Cartesian bead positions and velocities. Therefore, the numerical stability of
standard RPMD numerical integration may be analyzed in normal mode coordinates,
where the free ring-polymer equations of motion in Eq. (1.22) decouple into a system
of 𝑛 independent oscillators with natural frequencies given by the eigenvalues of the
matrix 𝛀 in Eq. (1.17).

By applying Eq. (1.20) to each normal mode coordinate, we find that strong stability
of the exact free ring-polymer time evolution is violated when

Δ𝑡 =
𝜋𝑘

𝜔 𝑗

for all 𝑘 ≥ 1 and 1 ≤ 𝑗 ≤ 𝑛 − 1 . (1.23)

Unstable pairs of Δ𝑡 and 𝑛 are plotted using solid lines in Fig. 1.3(b) for selected
values of 𝑗 and 𝑘 . The horizontal asymptotes in this figure reflect the fact that the
eigenvalues of 𝛀 converge to the eigenvalues of the continuous Laplacian endowed
with periodic boundary conditions.
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Unlike the exact free ring-polymer step used in standard RPMD numerical integra-
tion, the Cayley modification exp(Δ𝑡𝐿0) ≊ cay(Δ𝑡𝑨) is strongly stable for allΔ𝑡 > 0
uniformly in 𝑛. To see this, note that the Cayley transform can be equivalently com-
puted in either bead or normal mode coordinates. More precisely, let 𝛀2 = 𝑼𝛀2

𝒅𝑼
T

by the spectral decomposition of 𝛀 given in Eq. (1.16). Direct computation then
shows that

cay(Δ𝑡𝑨) =
[
𝑼 0
0 𝑼

]
cay

(
Δ𝑡

[
0 𝑰
−𝛀2

𝒅 0

] ) [
𝑼T 0
0 𝑼T

]
.

Using this correspondence, one can invoke the preceding results on the one-
dimensional oscillator, to conclude that cay(Δ𝑡𝑨) is second-order accurate, strongly
stable symplectic, and time-reversible.

Since the Cayley transform meets our criteria (P1)-(P3), and under suitable condi-
tions on the force 𝑭, the Cayley modification to the RPMD numerical integrator is
provably stable and second-order accurate on finite-time intervals with a stability
requirement that is uniform with respect to the number of ring polymer beads. On
the other hand, standard RPMD integrators may display artificial resonance
instabilities because the free RP step is not always strongly stable. These insta-
bilities often manifest as exponential growth in energy when strong stability is lost,
as will be discussed in Section 1.4.

We emphasize that the improved numerical stability of the Cayley modification
comes at zero cost in terms of algorithmic complexity or computational expense,
and it preserves the same order of accuracy for the overall timestep. Use of this
improved integration algorithm simply involves replacing the exact normal mode free
ring-polymer step in the standard RPMD integrator with the Cayley modification.

Algorithmic comparison: Standard vs. Cayley
For complete clarity, we now present a side-by-side comparison of the full RPMD
timestep (Eq. 1.2) with the free ring-polymer motion exp(Δ𝑡𝐿0) implemented using
either the standard exponential map (i.e., exact normal mode evolution) or via the
Cayley modification. In both cases, the full RPMD timestep associated with the
splitting in Eq. (1.2) is implemented using the algorithm

Velocity half-step: 𝒗 ← 𝒗 + Δ𝑡
2

𝑭
𝑚𝑛

Free ring-polymer step: (𝒒, 𝒗) ← FRP(𝒒, 𝒗;Δ𝑡)
Force evaluation: 𝑭 = −∇𝑉ext

𝑛 (𝒒)
Velocity half-step: 𝒗 ← 𝒗 + Δ𝑡

2
𝑭
𝑚𝑛

(1.24)

In standard RPMD numerical integration, the free ring-polymer step is performed
exactly, using:
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1. Convert bead Cartesian coordinates to normal modes using the orthogonal
transformation:

𝝔 = 𝑼𝒒 and 𝝋 = 𝑼𝒗 (1.25)

where 𝑼 is the real DFT matrix defined in Eq. (1.16).

2. From 𝑡 to 𝑡 + Δ𝑡, exactly evolve the free ring polymer in the normal mode
coordinates: (

𝜚 𝑗 (𝑡 + Δ𝑡)
𝜑 𝑗 (𝑡 + Δ𝑡)

)
= exp(Δ𝑡𝑨 𝑗 )

(
𝜚 𝑗 (𝑡)
𝜑 𝑗 (𝑡)

)
(1.26)

where

𝑨 𝑗 =

[
0 1
−𝜔2

𝑗
0

]
,

for 0 ≤ 𝑗 ≤ 𝑛 − 1 with 𝜔 𝑗 defined in Eq. (1.17).

3. Convert back to bead Cartesian coordinates using the inverse of 𝑼, which is
just its transpose, since 𝑼 is orthogonal.

In the Cayley modification, the only change is to use the following in place of
Eq. (1.26): (

𝜚 𝑗 (𝑡 + Δ𝑡)
𝜑 𝑗 (𝑡 + Δ𝑡)

)
= cay(Δ𝑡𝑨 𝑗 )

(
𝜚 𝑗 (𝑡)
𝜑 𝑗 (𝑡)

)
, (1.27)

where cay is the Cayley transform given in Eq. (1.21).

1.4 Results for RPMD
In this section, we demonstrate the numerical integration of the microcanonical
RPMD equations of motions (Eq. 1.14). Specifically, we compare the performance
of the standard RPMD integrator, which involves exact integration of the free ring-
polymer modes (Eq. 1.26) and our refinement in which the Cayley modification
is used (Eq. 1.27). Results are presented for simple one-dimensional potentials,
including

Harmonic: 𝑉 (𝑞) = 1
2
𝑞2 (1.28)

Weakly anharmonic: 𝑉 (𝑞) = 1
2
𝑞2 + 1

10
𝑞3 + 1

100
𝑞4 (1.29)

Quartic: 𝑉 (𝑞) = 1
4
𝑞4 (1.30)

and using a mass of 𝑚 = 1.
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Figure 1.3: Stability of RPMD trajectories on the harmonic oscillator potential. (a)
Representative trajectories performed using the standard RPMD integration scheme and
using the Cayley modification. (b) Results for the standard RPMD numerical integration.
The solid lines plot the instability condition in Eq. (1.23) for 𝑘 = {1, . . . , 10} and 𝑗 =

{2, 4, . . . , 16}. Higher values of 𝑗 are more blue, and higher values of 𝑘 are thicker. The
dotted black line shows the maximum safe timestep defined in Eq. (1.31). The heatmap
indicates the fraction of stable trajectories using standard RPMD integration. (c) The the
fraction of stable trajectories using Cayley-modified RPMD integration. Results obtained at
temperature 𝛽 = 1.

We begin by numerically testing the conditions for loss of strong stability (Eq. 1.23)
for the example of the harmonic potential (Eq. 1.28). Figure 1.3(a) shows a typical
example of one of the approximately 25% of trajectories that fail for the standard
RPMD integration scheme with 𝛽 = 1, 𝑛 = 16, and Δ𝑡 = 0.1. The unstable
trajectories start out with the typical values of ring-polymer energy in Eq. 1.6 (i.e.,
they are not the “hot” initial conditions from the tail of the thermal distribution),
and they diverge to exponentially large energies after relatively short propagation
time when run with the standard RPMD. All of these trajectories are stable when
run with the Cayley modification.

The solid lines in Fig. 1.3(b) indicate predicted conditions for instability (Eq. 1.23).
These analytical predictions are overlaid with a heatmap showing the fraction of
stable RPMD trajectories on the harmonic potential using the standard RPMD
integration scheme; for the purposes of the current section, a trajectories is deemed
to be unstable if energy conservation associated with the ring-polymer Hamiltonian
(Eq. 1.6) is violated by more than 10% within 100 time units of simulation. There
are clear correlations in Fig. 1.3(b) between the predicted instabilities and observed
simulation results.
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Finally, Fig. 1.3(c) presents the corresponding heatmap for the Cayley-modified
RPMD integration scheme. The Cayley modification preserves the conditions for
strong stability, and the only numerically unstable trajectories are found for extremely
large timesteps (Δ𝑡 > 0.6). Comparison of Figs. 1.3(b) and (c) reveals the clear
numerical advantages of the Cayley-modified RPMD integration scheme over the
standard RPMD integration scheme.

Before proceeding, we emphasize the generality of the loss of strong stability with
the standard RPMD numerical integrator: Eq. (1.23) makes no assumption with
regard to the form of the physical potential, the dimensionality of the system, or
the mass of the particles; it only depends on the temperature of the system and the
number of ring-polymer beads in relation to the size of the integration timestep.
Considering Eq. (1.23) for the 𝑘 = 1 index and the highest Matsubara frequency of
the ring-polymer, it is straightforward to show that the smallest possible timestep
Δ𝑡∗ at which strong stability is violated is given by

Δ𝑡∗ =
𝛽ℏ𝜋

2𝑛
. (1.31)

We thus arrive at a highly practical expression for the “maximum safe timestep” that
depends only on 𝛽 and 𝑛, such that all smaller timesteps avoid the loss of strong
stability associated with Eq. (1.23). In Fig. 1.3(b), this result is plotted (dotted,
black line) and seen to follow the convex hull of smallest timesteps created by the
other curves. In passing, we note that if 𝛽 corresponds to room temperature and
𝑛 = 64, then the maximum safe timestep is 0.6 fs, which is strikingly consistent
with the conventional 0.5 fs timestep employed in many PIMD simulations of liquid
water.

Figure 1.4 confirms that the numerical instabilities of the standard RPMD integrator
also manifest for anharmonic potentials. For both the weakly anharmonic (Eq. 1.29)
and quartic (Eq. 1.30) potentials, we plot the fraction of stable trajectories as a func-
tion of timestep, comparing the standard RPMD integration scheme with the Cayley
modification. Also shown are the fraction of stable classical mechanical trajecto-
ries (i.e., the 1-bead limit of RPMD) when integrated using the Verlet algorithm.
Indeed, the standard RPMD integration scheme exhibits clear numerical instabili-
ties at particular timesteps (which depend on the choice of 𝛽 and 𝑛), whereas the
Cayley-modified integration scheme (like the classical integration scheme) avoids
these pronounced instabilities. For the results in Fig. 1.4, the maximum safe timestep
is Δ𝑡∗ ≈ 0.029. Note that the standard RPMD integration scheme on the weakly
anharmonic potential does not exhibit significant loss of stability at this timestep,
due to the fact that the unstable ring-polymer mode apparently does not sufficiently
couple to the other modes on the timescale of the trajectories. However, the expected
artifact at this timestep is indeed observed for the quartic potential. These results
illustrate that the degree to which the resonance instabilities of standard RPMD
integration manifest will depend on the application, but regardless of the system,
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Figure 1.4: Stability and Accuracy of RPMD trajectories on anharmonic potentials.
Percentage of stable RPMD trajectories using standard and Cayley-modified integration as
a function of timestep, for the (a) weakly anharmonic and (b) quartic potentials. Results
obtained using 𝑛 = 54 and 𝛽 = 1. Also included are classical MD results using the
Verlet integrator. (c) For the quartic potential, comparison of the RPMD position time
autocorrelation function obtained using standard integration with a small time-step where
it is stable (Δ𝑡 = 0.01) and using the Cayley modifiction with a range of larger timesteps
(Δ𝑡 = 0.01, filled circles; Δ𝑡 = 0.05, empty circles; Δ = 0.10, stars), indicating no significant
loss of accuracy.

these resonance instabilities can be removed using the Cayley modification. Finally,
panel (c) in this figure compares the accuracy of the standard and Cayley-modified
RPMD integration schemes for the case of the quartic oscillator, revealing that even
with time-steps that three-fold exceed the maximum safe timestep of the standard
integration scheme, the Cayley-modified scheme shows negligible loss of accuracy
in the trajectories.

Figure 1.5 explores the degree to which the Cayley modification enables the use of
larger timesteps in comparison to the standard RPMD integration scheme. Defining
the “critical timestep” as the largest value of Δ𝑡 for which 980 out of 1000 trajecto-
ries are stable, we compare this quantity for standard and Cayley-modified RPMD
numerical integration as a function of the number of ring-polymer beads; the trends
in the figure are insensitive to the precise definition of the critical timestep. Also
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Figure 1.5: Comparing largest stable timestep as a function of the number of ring-
polymer beads for the standard and Cayley-modified RPMD integration schemes on the
(a) weakly anharmonic and (b) quartic potentials. The critical timestep for the numerical
simulations is defined in the text. Also shown is the maximum safe timestep for the
standard RPMD integration scheme (red dots). For classical MD integration using the
Verlet algorithm, the critical timestep is 0.5 for the weakly anharmonic potential and 0.3 for
the quartic potential. Results obtained at temperature 𝛽 = 1.

shown is the maximum safe timestep for the standard RPMD integration scheme
(Eq. 1.31). The improved stability of the Cayley-modified integration scheme is
seen to consistently allow for the use of larger RPMD timesteps. The numerical
behavior of the standard RPMD integration scheme closely tracks the predictions of
the maximum safe timestep, although as seen previously, the resonance instabilities
do not always manifest on the timescale of the simulated trajectories. Interestingly,
for small 𝑛 in the quartic-oscillator simulations, the standard RPMD integration
scheme actually underperforms the prediction of the maximum safe timestep, given
that it exhibits large energy fluctuations (> 10%) without fully encountering a res-
onance instability. In summary, using the maximum safe timestep for the standard
RPMD integration scheme as a reference, the figure indicates that in these systems,
the Cayley modification allows for substantial improvements in the allowed timestep
size (three-fold or more for large 𝑛).

1.5 Results for T-RPMD
Thermostatted RPMD (T-RPMD) involves thermalization of the internal ring-
polymer modes during RPMD dynamics, with the aims of improving sampling of
the Boltzmann distribution27 or avoiding the “spurious resonance” artifact that can
appear in RPMD simulations of vibrational spectra.11,29 Following Refs.27 and29,
we implement T-RPMD using the splitting in Eq. (1.1), where 𝐿𝑇 corresponds to

¤𝒗 = −𝜸𝒗 +
√︃

2𝑛𝑚−1𝛽−1𝜸1/2 ¤𝑾 (𝑡), (1.32)

¤𝑾 (𝑡) is a white-noise vector (since 𝑾 is an 𝑛-dimensional standard Brownian mo-
tion), and 𝜸 is an 𝑛 × 𝑛 friction matrix defined such that 𝑼T𝜸𝑼 is a diagonal matrix
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whose 𝑘th diagonal entry is equal to 𝜔𝑘 (Eq. 1.17). In normal mode coordinates
(cf. Eq. 1.25), this thermostat is implemented by adding the following at the begin-
ning and end of the full integration step outlined in Eq. 1.24:

𝜑 𝑗 (𝑡 + Δ𝑡) = 𝑒−
𝜔𝑗Δ𝑡

2 𝜑 𝑗 (𝑡) +
√︃
𝑛𝑚−1𝛽−1

√︁
1 − 𝑒−𝜔 𝑗Δ𝑡𝜉 𝑗 ,

where 𝜉 𝑗 is a standard normal variate.

Cayley removes non-ergodicity in T-RPMD
Given that it helps to avoid spurious resonances,29,30 one might expect that a
Langevin thermostat can also eliminate the instabilities we have observed in standard
RPMD integrators. This turns out to be only partly true. Here, we show that (i) lack
of strong stability in the free RP step induces non-ergodicity in standard T-RPMD
integrators, and (ii) the Cayley modification eliminates these non-ergodicity issues.

For this purpose, we revisit the simple case of a single free ring-polymer mode, as
in Section 1.3. Consider Eq. (1.18) with a Langevin thermostat,[

¤𝑞
¤𝑣

]
= 𝑲

[
𝑞

𝑣

]
+

[
0√︁

2𝛽−1𝛾 ¤𝑊

]
, 𝑲 = 𝑨 +

[
0 0
0 −𝛾

]
, (1.33)

where 𝛾 ≥ 0 is a friction factor and ¤𝑊 (𝑡) is a scalar white noise. The solution
(𝑞(𝑡), 𝑣(𝑡)) of Eq. (1.33) is a bivariate Gaussian with mean vector and covariance
matrix given respectively by

𝝁(𝑡) = exp(𝑡𝑲)
[
𝑞(0)
𝑣(0)

]
,

𝚺(𝑡) = 2𝛽−1𝛾

∫ 𝑡

0
exp(𝑠𝑲)

[
0 0
0 1

]
exp(𝑠𝑲T)𝑑𝑠 .

(1.34)

In the limit as 𝑡 → ∞, the probability distribution of (𝑞(𝑡), 𝑣(𝑡)) converges to
the classical Boltzmann-Gibbs measure, which in this case, is a bivariate normal
distribution with mean vector and covariance matrix given respectively by

𝝁 =

[
0
0

]
, 𝚺 = 𝛽−1

[
𝜔−2 0

0 1

]
. (1.35)

In this situation, the standard T-RPMD splitting in Eq. (1.1) inputs (𝑞0, 𝑣0) and
outputs (𝑞1, 𝑣1) defined as[

𝑞1
𝑣1

]
= 𝑶𝑬𝑶

[
𝑞0
𝑣0

]
+

√︄
1 − 𝑒−𝛾Δ𝑡

𝛽

(
𝑶𝑬

[
0
1

]
𝜉0 +

[
0
1

]
𝜂0

)
(1.36)

where 𝜉0, 𝜂0 are independent standard normal random variables, 𝑬 = exp(Δ𝑡𝑨),
and 𝑶 is the 2 × 2 matrix

𝑶 = exp
(
Δ𝑡

2
𝚪

)
, 𝚪 =

[
0 0
0 −𝛾

]
.
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Moreover, the numerical solution after 𝑁 integration steps is a Gaussian vector with
mean vector and covariance matrix given respectively by

𝝁𝑁 = (𝑶𝑬𝑶)𝑁
[
𝑞0
𝑣0

]
, 𝚺𝑁 =

𝑁−1∑︁
𝑗=0
(𝑶𝑬𝑶) 𝑗𝑸(𝑶𝑬T𝑶) 𝑗 , (1.37)

where
𝑸 = 𝛽−1(1 − 𝑒−𝛾Δ𝑡)

(
𝑶𝑬

[
0 0
0 1

]
𝑬T𝑶 +

[
0 0
0 1

] )
.

From Eq. (1.20), if Δ𝑡 = 𝑘𝜋/𝜔 for any 𝑘 ≥ 1, then 𝑬 is not strongly stable. At
these timesteps, the eigenvalues of the matrix 𝑶𝑬𝑶 are given by 𝜆+ = (−1)𝑘 and
𝜆− = (−1)𝑘 exp(−𝑘𝜋𝛾/𝜔). By the Cayley-Hamilton theorem for 2 × 2 matrices,51

we have the following representation of the 𝑁th power of 𝑶𝑬𝑶

(𝑶𝑬𝑶)𝑁 =
(𝜆+)𝑁
𝜆+ − 𝜆−

(𝑶𝑬𝑶 − 𝜆−𝑰)

+ (𝜆−)
𝑁

𝜆− − 𝜆+
(𝑶𝑬𝑶 − 𝜆+𝑰) .

Since |𝜆+ | = 1, it follows from this representation that 𝝁𝑁 does not converge to
𝝁 in Eq. (1.35), since 𝝁𝑁 clearly depends on the initial condition. Similarly, the
covariance matrix 𝚺𝑁 fails to converge to 𝚺.

If we modify the above by replacing every instance of 𝑬 with 𝑪 = cay(Δ𝑡𝑨),
the modified splitting is ergodic. More precisely, provided that the timestep is
sufficiently small such that

2 > (1 + cosh(𝛾Δ𝑡))
(
4 − Δ𝑡2𝜔2

4 + Δ𝑡2𝜔2

)2

, (1.38)

then the eigenvalues of 𝑶𝑪𝑶 are a complex conjugate pair with complex modulus
|𝜆± | = exp(−𝛾Δ𝑡/2). Hence, the matrix 𝑶𝑪𝑶 is asymptotically stable. Un-
der condition 1.38, the Cayley-modified scheme converges to the exact classical
Boltzmann-Gibbs measure, in this example.

These results carry over to T-RPMD, where the free ring-polymer equations of
motion in Eq. (1.22) decouple into a system of 𝑛 independent oscillators with
natural frequencies given by the eigenvalues of the matrix 𝛀 in Eq. 1.17. Although
the analysis of T-RPMD in this section was performed for the specific case of
the splitting in Eq. (1.1) (i.e., the Bussi-Parrinello or OBABO splitting), we have
confirmed that the same problem of non-ergodicity arises in the BAOAB splitting52

and can likewise be fixed via the Cayley modification.
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Figure 1.6: Ergodicity of T-RPMD recovered with the Cayley modification, Example
1. Normalized histograms of the ring-polymer normal mode displacement coordinates for
a single trajectory (6 beads, 𝛽 = 1), evolved on the harmonic potential with a timestep of
Δ𝑡 = 0.26. (a) The centroid mode, 𝜔 𝑗 = 0. (b) The predicted non-ergodic mode with
𝜔5 = 12, (c-d), (e-f) pairs of modes with 𝜔1 = 𝜔2 = 6 and 𝜔3 = 𝜔4 = 10.4, respectively.
Solid black line indicate the equilibrium distribution of the internal modes.

T-RPMD numerical results
Figure 1.6 presents T-RPMD results on the harmonic potential (Eq. 1.28) using
𝑛 = 6 and 𝛽 = 1. For a single T-RPMD trajectory, we histogram the distribution of
the normal mode coordinates that are sampled, employing the smallest timestep for
which numerical instability is observed in the microcanonical case for this number
of beads (see Fig. 1.3b); specifically, we use Δ𝑡 = 0.26, which corresponds to the
instability condition in Eq. (1.23) for the case of 𝑛 = 6, 𝑗 = 5, and 𝑘 = 1. Using
both standard and Cayley-modified T-RPMD integration, the trajectory is sampled
at every timestep for a total of 770 timesteps.

The centroid mode (panel a) follows harmonic motion, that is decoupled from the
other degrees of freedom. With both integrators, the lower-frequency ( 𝑗 = 1 − 4)
internal ring-polymer modes are efficiently sampled and converge to the correct
Gaussian distribution (panels c-f). However, the 𝑗 = 5 mode behaves qualitatively
differently, as predicted by Eq. (1.23), with the standard T-RPMD integrator showing
clear non-ergodicity. The Cayley modification leads to ergodic sampling of all ring-
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Figure 1.7: Ergodicity of T-RPMD recovered with the Cayley modification, Example
2. Normalized histograms of the ring-polymer normal mode displacement coordinates for
a single trajectory (6 beads, 𝛽 = 1), evolved on the harmonic potential with a timestep of
Δ𝑡 = 0.3. (a) The centroid mode, 𝜔 𝑗 = 0. (b) Unique highest frequency mode with𝜔5 = 12,
(c-d) Modes with 𝜔1 = 𝜔2 = 6 (e-f) The predicted non-ergodic modes, 𝜔3 = 𝜔4 = 10.4.
Solid black line indicate the equilibrium distribution of the internal modes.

polymer modes.

The lower frequency internal modes can also be afflicted with non-ergodicity at larger
timesteps in this system. For the next-smallest unstable timestep in Fig. 1.3 (Δ𝑡 = 0.3,
which corresponds to the instability condition in Eq. (1.23) with 𝑗 = 3, 4, and 𝑘 = 1),
the simulations were repeated. As predicted by the instability condition, modes 3
and 4 are found to be non-ergodic if sampled using the standard T-RPMD integrator
(Fig. 1.7); again, ergodicity is recovered using the Cayley modification. The same
non-ergodicity problems appear for anharmonic potentials using the standard T-
RPMD integrator and can easily be avoided with use of the Cayley modification.

1.6 Summary
Strong stability is a relevant — and under-appreciated — concept for path-integral-
based molecular dynamics methods. Without strong stability, numerical integra-
tion schemes are prone to numerical instabilities in the microcanonical case and
non-ergodicity in the canonical case. Fortunately, one can easily imbue existing
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integration schemes, including those for PIMD, RPMD, T-RPMD, and many CMD
methods, with strongly stability via the Cayley modification introduced here. This
can be done without downside in terms of the computational cost, algorithmic com-
plexity, or accuracy of the numerical integration scheme. The numerical results
presented here suggest that this will have practical benefits for simulation studies,
including improved stability, improved sampling efficiency, and improved efficiency
via the use of larger MD timesteps.

While the Cayley transformation is familiar in the chemical physics literature in
the context of the Crank-Nicolson propagator53 for wavepacket dynamics,54,55 and
real-time path integrals56 it has not to our knowledge been utilized for molecular
dynamics, due to an under-appreciation of the property of strong stability.

The following Chapter describes how combination of the Cayley modification and
the particular order of splitting can drastically improve the performance of the
T-RPMD, relative to the standard scheme.27,29
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C h a p t e r 2

DIMENSION-FREE PATH-INTEGRAL MOLECULAR
DYNAMICS

1R. Korol, J. L. Rosa-Raíces, N. Bou-Rabee, and T. F. Miller, “Dimension-
free path-integral molecular dynamics without preconditioning”, The Journal
of Chemical Physics 152, 104102 (2020) 10.1063/1.5134810,

2.1 Abstract
Convergence with respect to imaginary-time discretization (i.e., the number of ring-
polymer beads) is an essential part of any path-integral-based molecular dynamics
(MD) calculation. However, an unfortunate property of existing non-preconditioned
numerical integration schemes for path-integral molecular dynamics (PIMD) —
including essentially all existing ring-polymer molecular dynamics (RPMD) and
thermostatted RPMD (T-RPMD) methods — is that for a given MD timestep, the
overlap between the exact ring-polymer Boltzmann distribution and that sampled
using MD becomes zero in the infinite-bead limit. This has clear implications
for hybrid Metropolis Monte-Carlo/MD sampling schemes, and it also causes the
divergence with bead number of the primitive path-integral kinetic-energy expecta-
tion value when using standard RPMD or T-RPMD. We show that these and other
problems can be avoided through the introduction of “dimension-free” numerical
integration schemes for which the sampled ring-polymer position distribution has
non-zero overlap with the exact distribution in the infinite-bead limit for the case of
a harmonic potential. Most notably, we introduce the BCOCB integration scheme,
which achieves dimension freedom via a particular symmetric splitting of the in-
tegration timestep and a novel implementation of the Cayley modification for the
free ring-polymer half-steps introduced in Chapter 1. More generally, we show
that dimension freedom can be achieved via mollification of the forces from the
external physical potential. The dimension-free path-integral numerical integration
schemes introduced here yield finite error bounds for a given MD timestep, even
as the number of beads is taken to infinity; these conclusions are proven for the
case of a harmonic potential and borne out numerically for anharmonic systems that
include liquid water. The numerical results for BCOCB are particularly striking,
allowing for nearly three-fold increases in the stable timestep for liquid water with
respect to the Bussi-Parrinello (OBABO) and Leimkuhler (BAOAB) integrators
while introducing negligible errors in the calculated statistical properties and ab-
sorption spectrum. Importantly, the dimension-free, non-preconditioned integration
schemes introduced here preserve ergodicity and global second-order accuracy; and
they remain simple, black-box methods that avoid additional computational costs,
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tunable parameters, or system-specific implementations.

2.2 Introduction
Considerable effort has been dedicated to the development of numerical integration
schemes for imaginary-time path-integral molecular dynamics (PIMD).5 In compar-
ison to standard classical molecular dynamics, PIMD numerical integration faces
the additional challenge of the highly oscillatory dynamics of the ring-polymer in-
ternal modes. Work on PIMD numerical integration generally falls into two distinct
categories. In the first, the PIMD equations of motion are preconditioned by mod-
ifying the ring-polymer mass matrix;19–25,43,57 this approach, which includes the
widely used staging algorithms,31 causes the integrated trajectories to differ from
those of the ring-polymer molecular dynamics (RPMD) model for real-time dynam-
ics,15,16 but it can lead to efficient21–23 sampling of the quantum Boltzmann-Gibbs
distribution.2,3 In the second category, no modification is made to the ring-polymer
mass matrix, i.e., the equations of motion are non-preconditioned.9,16,27–30

With the aim of providing useful models for real-time quantum dynamics, as well
as simple and efficient algorithms for equilibrium thermal sampling, the current
work focuses on non-preconditioned PIMD numerical integration, notable examples
of which include RPMD15,16 and its thermostatted variant T-RPMD.29 Numerical
integration schemes for the latter methods typically employ symmetric factorizations
of the time-evolution operator of the form9,27–32,52,58,59

𝑒Δ𝑡L ≈ 𝑒𝑎 Δ𝑡
2 O𝑒

Δ𝑡
2 B𝑒

Δ𝑡
2 A𝑒(1−𝑎)Δ𝑡O𝑒

Δ𝑡
2 A𝑒

Δ𝑡
2 B𝑒𝑎

Δ𝑡
2 O (2.1)

where the operator L = A+B+O includes contributions from the purely harmonic
free ring-polymer motion A, the external potential B, and a thermostat O. Note
that the standard microcanonical RPMD numerical integration scheme is recovered
in the limit of zero coupling to the thermostat, and that Eq. (2.1) yields the “OB-
ABO” scheme of Bussi and Parrinello32 when 𝑎 = 1 and the “BAOAB” scheme of
Leimkuhler52 when 𝑎 = 0. In Chapter 1 we emphasized that earlier PIMD numeri-
cal integration schemes had overlooked a fundamental aspect of the exp((Δ𝑡/2)A)
sub-step of the time evolution in Eq. (2.1). Standard practice in these integration
schemes has been to exactly evolve the harmonic free ring-polymer dynamics associ-
ated with exp((Δ𝑡/2)A) using the uncoupled free ring-polymer normal modes,9,27,31

which was shown to lack the property of strong stability in the numerical integration,
leading to resonance instabilities for microcanonical RPMD and loss of ergodicity
for T-RPMD.60 Use of the Cayley modification to the free ring-polymer motion was
shown to impart strong stability to the time evolution, thereby improving numerical
stability for microcanonical RPMD and restoring ergodicity for T-RPMD.60

In this Chapter, we focus on the accuracy of both statistical and dynamical properties
of the OBABO and BAOAB schemes, as well as the corresponding integrators
obtained when the exact free ring-polymer step is replaced by the strongly stable
Cayley modification (OBCBO and BCOCB, respectively). Particular attention is
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paid to the effect of finite-timestep error with these integrators in the limit of
large bead numbers. Of these four integrators, it is found that only BCOCB is
“dimension-free,” in the sense that the sampled ring-polymer position distribution
has non-zero overlap with the exact distribution in the infinite-bead limit for the
case of a harmonic potential. It is further shown that the OBCBO scheme can be
made dimension-free via the technique of force mollification. It is shown that the
newly introduced BCOCB integrator yields better accuracy than all other considered
non-preconditioned PIMD integrators and allows for substantially larger timesteps
in the calculation of both statistical and dynamical properties. Importantly, these
gains are made without loss of computational efficiency or algorithmic simplicity.

2.3 Non-preconditioned PIMD
Consider a one-dimensional molecular system with potential energy function 𝑉 (𝑞)
and mass 𝑚. The equations of motion for the corresponding 𝑛-bead ring polymer
held at constant temperature 𝑇 by a Langevin thermostat are

¤𝒒(𝑡) = 𝒗(𝑡) , ¤𝒗(𝑡) = −𝛀2𝒒(𝑡) + 1
𝑚𝑛

𝑭(𝒒(𝑡))

− 𝚪𝒗(𝑡) +

√︄
2
𝛽𝑚𝑛

𝚪1/2 ¤𝑾 (𝑡) .
(2.2)

Here,𝑾 is an 𝑛-dimensional standard Brownian motion; 𝒒(𝑡) = (𝑞0(𝑡), . . . , 𝑞𝑛−1(𝑡))
is the vector of positions for the 𝑛 ring-polymer beads at time 𝑡 ≥ 0 and 𝒗(𝑡) are
the corresponding velocities; 𝑚𝑛 = 𝑚/𝑛 and 𝛽 = (𝑘𝐵𝑇)−1; and 𝑭(𝒒) = −∇𝑉ext

𝑛 (𝒒),
where 𝑉ext

𝑛 is the contribution of the external potential defined in Eq. (1.7), 𝛀2 is
the 𝑛× 𝑛 symmetric positive semi-definite matrix defined in Eq. (1.15). Note that 𝛀
can be diagonalized by an 𝑛 × 𝑛 orthonormal real discrete Fourier transform matrix
𝑼 (see Eq. 1.16). Finally, the matrix 𝚪 in Eq. (2.2) is typically an 𝑛 × 𝑛 symmetric
positive semi-definite friction matrix of the form

𝚪 = 𝑼 diag(0, 𝛾1, . . . , 𝛾𝑛−1)𝑼T, (2.3)

where 𝛾 𝑗 is the friction factor in the 𝑗 th normal mode.

In RPMD and T-RPMD calculations, one is often interested in the dynamics of
Eq. (2.2) with initial conditions drawn from the stationary distribution with non-
normalized density exp(−𝛽𝐻𝑛 (𝒒, 𝒗)), where 𝐻𝑛 (𝒒, 𝒗) is the ring-polymer Hamilto-
nian defined by

𝐻𝑛 (𝒒, 𝒗) = 𝐻0
𝑛 (𝒒, 𝒗) +𝑉ext

𝑛 (𝒒), (2.4)

and 𝐻0
𝑛 (𝒒, 𝒗) = (1/2)𝑚𝑛

(
|𝒗 |2 + 𝒒T𝛀2𝒒

)
is the free ring-polymer Hamiltonian.

The standard method for discretizing Eq. (2.2) is to use a symmetric splitting method
of the form of Eq. (2.1) that consists of a combination of three types of sub-steps:
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(i) exact free ring-polymer evolution of timestep 𝜏,(
𝒒
𝒗

)
← exp(𝜏𝑨)

(
𝒒
𝒗

)
, (2.5)

where 𝑨 =

[
0 𝑰

−𝛀2 0

]
is the Hamiltonian matrix associated to the free ring polymer,

(ii) velocity updates of timestep 𝜏 due to forces from the external potential,

𝒗 ← 𝒗 + 𝜏 1
𝑚𝑛

𝑭(𝒒), (2.6)

and (iii) velocity updates of timestep 𝜏 due to the thermostat,

𝒗 ← exp(−𝜏𝚪)𝒗 +

√︄
1
𝛽𝑚𝑛
(𝑰 − exp(−2𝜏𝚪))1/2𝝃, (2.7)

where 𝑰 is the 𝑛× 𝑛 identity matrix and 𝝃 is an 𝑛-dimensional vector whose compo-
nents are independent, standard normal random variables. The acronyms OBABO
and BAOAB indicate the order in which these sub-steps are applied, as indicated in
Eq. (2.1) with 𝑎 = 1 or 𝑎 = 0, respectively.

In Chapter 1 we showed that the matrix exponential for the free ring-polymer
evolution in Eq. (2.5) is not a strongly stable symplectic matrix, and as a consequence,
the OBABO and BAOAB schemes can display non-ergodicity at timesteps Δ𝑡 =

𝑘𝜋/𝜔 𝑗 ,𝑛 for any 1 ≤ 𝑗 ≤ 𝑛 and 𝑘 ≥ 1. We also identified a maximum safe timestep
size Δ𝑡★ = 𝛽ℏ𝜋/(2𝑛), below which the matrix exponential is strongly stable. As
𝑛 → ∞, this maximum safe timestep goes to zero, such that no finite timestep for
the scheme in Eq. (2.1) is safe in this limit from non-ergodicity.

This non-ergodicity motivates the Cayley modification60 which consists of approx-
imating the matrix exponential appearing in Eq. (2.5) with the Cayley transform.
Specifically, for the Cayley-modified OBABO scheme (called OBCBO), we replace
the exact free-ring polymer update of timestep 𝜏 = Δ𝑡 with the Cayley transform
given in Eq. (1.21)

For the Cayley-modified BAOAB scheme (called BCOCB), we replace the two
exact free ring-polymer updates of half-timestep 𝜏 = Δ𝑡/2 with cay(Δ𝑡𝑨)1/2.
While it might be expected that these half-timestep updates would instead be re-
placed with cay((Δ𝑡/2)𝑨), such a choice leads to a loss of strong stability. Our
use of the square root of the Cayley transform preserves strong stability, sym-
plecticity, time reversibility, local third-order accuracy, and by definition satisfies
cay(Δ𝑡𝑨)1/2 cay(Δ𝑡𝑨)1/2 = cay(Δ𝑡𝑨). Furthermore, the square root of the Cayley
transform is no more complicated to evaluate than the Cayley transform itself. Both
the OBCBO and BCOCB Cayley modifications of Eq. (2.1) are ergodic for a fixed
timestep, irrespective of the number of beads; moreover, like Eq. (2.1), the Cayley
modified integrators exhibit locally third-order accuracy in the timestep and leave
invariant the free ring-polymer Boltzmann-Gibbs distribution in the special case of
a constant external potential (𝑉 ≡ const.).60
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2.4 BCOCB avoids pathologies in the infinite bead limit
In this section, we show that of the OBABO, BAOAB, OBCBO, and BCOCB
integration schemes, only BCOCB is dimension-free. Although the current section
presents analytical results for the specific case of a harmonic external potential,
these results are supported by numerical results for anharmonic external potentials
in the subsequent sections.

To this end, consider the 𝑗 th internal ring-polymer mode with frequency 𝜔 𝑗 ,𝑛, in
the presence of a harmonic external potential 𝑉 (𝑞) = (1/2)Λ𝑞2 and a Langevin
thermostat with friction 𝛾 𝑗 . Expressed in terms of the normal mode coordinates 𝝔
and 𝝋, obtained from the Cartesian positions 𝒒 and velocities 𝒗 via Eq. (1.25), the
non-preconditioned PIMD equations of motion for this mode are[

¤𝜚 𝑗 (𝑡)
¤𝜑 𝑗 (𝑡)

]
= 𝑲 𝑗

[
𝜚 𝑗 (𝑡)
𝜑 𝑗 (𝑡)

]
+

[
0√︃

2𝛽−1𝑚−1
𝑛 𝛾 𝑗 ¤𝑊 𝑗 (𝑡)

]
𝑲 𝑗 = 𝑨 𝑗 + 𝑩 + 𝑶 𝑗 ,

(2.8)

where ¤𝑊 𝑗 is a scalar white-noise, and we have introduced the following 2×2 matrices

𝑨 𝑗 =

[
0 1
−𝜔2

𝑗 ,𝑛
0

]
, 𝑩 =

[
0 0

−Λ/𝑚 0

]
, and 𝑶 𝑗 =

[
0 0
0 −𝛾 𝑗

]
.

The solution (𝜚 𝑗 (𝑡), 𝜑 𝑗 (𝑡)) of Eq. (2.8) is a bivariate Gaussian, and in the limit
as 𝑡 → ∞, the probability distribution of (𝜚 𝑗 (𝑡), 𝜑 𝑗 (𝑡)) converges to a centered
bivariate normal distribution with covariance matrix

𝚺 𝑗 =
1
𝛽𝑚𝑛

[
𝑠2
𝑗

0
0 1

]
, 𝑠2

𝑗 =
1

Λ/𝑚 + 𝜔2
𝑗 ,𝑛

. (2.9)

For this system, a single timestep of Eq. (1.1) can be compactly written as[
𝜚 𝑗 (𝑡 + Δ𝑡)
𝜑 𝑗 (𝑡 + Δ𝑡)

]
= 𝑴 𝑗

[
𝜚 𝑗 (𝑡)
𝜑 𝑗 (𝑡)

]
+ 𝑹1/2

𝑗

[
𝜉0
𝜂0

]
, (2.10)

where 𝜉0 and 𝜂0 are independent standard normal random variables, and we have
introduced the following 2 × 2 matrices

𝑴 𝑗 = 𝑒
𝑎 Δ𝑡

2 𝑶 𝑗 𝑒
Δ𝑡
2 𝑩𝑒

Δ𝑡
2 𝑨 𝑗 𝑒(1−𝑎)Δ𝑡𝑶 𝑗 𝑒

Δ𝑡
2 𝑨 𝑗 𝑒

Δ𝑡
2 𝑩𝑒𝑎

Δ𝑡
2 𝑶 𝑗

𝑹 𝑗 =
1 − 𝑒−2(1−𝑎)𝛾 𝑗Δ𝑡

𝛽𝑚𝑛
𝑵 𝑗𝑷𝑵

T
𝑗

+ 1 − 𝑒−𝑎𝛾 𝑗Δ𝑡

𝛽𝑚𝑛

(
(𝑴 𝑗𝑒

−𝑎 Δ𝑡
2 𝑶 𝑗 )𝑷(𝑴 𝑗𝑒

−𝑎 Δ𝑡
2 𝑶 𝑗 )T + 𝑷

)
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where 𝑷 =

[
0 0
0 1

]
and 𝑵 𝑗 = 𝑒𝑎

Δ𝑡
2 𝑶 𝑗 𝑒

Δ𝑡
2 𝑩𝑒

Δ𝑡
2 𝑨 𝑗 . The corresponding step for the

Cayley modification is obtained by replacing exp((Δ𝑡/2)𝑨 𝑗 ) in Eq. (2.10) with
cay(Δ𝑡𝑨 𝑗 )1/2, which is given by

cay(Δ𝑡𝑨 𝑗 )1/2 =

√︄
1

4 + 𝜔2
𝑗 ,𝑛
Δ𝑡2

[
2 Δ𝑡

−𝜔2
𝑗 ,𝑛
Δ𝑡 2

]
. (2.11)

A sufficient conditiona for ergodicity of Eq. ) is

1 > A2
𝑗 ,Δ𝑡 cosh2((Δ𝑡/2)𝛾 𝑗 ) , (2.12)

where
A 𝑗 ,Δ𝑡 = cos(Δ𝑡𝜔 𝑗 ,𝑛) −

(Λ/𝑚)Δ𝑡
2𝜔 𝑗 ,𝑛

sin(Δ𝑡𝜔 𝑗 ,𝑛) .

For the Cayley modification of Eq. (2.10), Eq. (2.12) still provides a sufficient
condition for ergodicity, except with

A 𝑗 ,Δ𝑡 = −1 + 8 − 2(Λ/𝑚)Δ𝑡2

4 + 𝜔2
𝑗 ,𝑛
Δ𝑡2

.

Due to the lack of strong stability in the exact free ring-polymer evolution, Eq. (2.10)
fails to meet the condition in Eq. (2.12) and becomes non-ergodic whenever Δ𝑡 =
𝑘𝜋/𝜔 𝑗 ,𝑛 where 𝑘 ≥ 1 (see sec. 1.5 no such problem exists for the Cayley modifi-
cation. Regardless, assuming that the condition in Eq. (2.12) holds, the numerical
stationary distribution is a centered Gaussian with 2×2 covariance matrix 𝚺 𝑗 ,Δ𝑡 that
satisfies the linear equation

𝚺 𝑗 ,Δ𝑡 = 𝑴 𝑗𝚺 𝑗 ,Δ𝑡𝑴
T
𝑗 + 𝑹 𝑗 ,

for which the solution is

𝚺 𝑗 ,Δ𝑡 =
1
𝛽𝑚𝑛

[
𝑠2
𝑗 ,Δ𝑡

0
0 𝑟2

𝑗 ,Δ𝑡

]
(2.13)

where the variance in the position and velocity marginal are (𝛽𝑚𝑛)−1𝑠2
𝑗 ,Δ𝑡

and
(𝛽𝑚𝑛)−1𝑟2

𝑗 ,Δ𝑡
with

𝑠2
𝑗 ,Δ𝑡 =


1

𝜔2
𝑗 ,𝑛
+ ΛΔ𝑡𝜔 𝑗 ,𝑛

𝑚
cot(Δ𝑡𝜔 𝑗 ,𝑛) − (ΛΔ𝑡2𝑚 )2

𝑎 = 1

1

𝜔2
𝑗 ,𝑛
+ ΛΔ𝑡𝜔 𝑗 ,𝑛

2𝑚 cot(Δ𝑡2 𝜔 𝑗 ,𝑛)
𝑎 = 0

(2.14)

𝑟2
𝑗 ,Δ𝑡 =


1 𝑎 = 1
2𝑚𝜔 𝑗 ,𝑛 − ΛΔ𝑡 tan(Δ𝑡2 𝜔 𝑗 ,𝑛)

2𝑚𝜔 𝑗 ,𝑛

𝑎 = 0.
(2.15)

aIn the special case when Λ = 0, the given condition for OBCBO corrects a sign error in Eq. 37
of Ref.60.
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For the Cayley modification of Eq. (2.10),

𝑠2
𝑗 ,Δ𝑡 =

4𝑚
4𝑚 − 𝑎Δ𝑡2Λ

𝑠2
𝑗 , (2.16)

𝑟2
𝑗 ,Δ𝑡 =

4𝑚 − (1 − 𝑎)Δ𝑡2Λ
4𝑚

. (2.17)

Note that these numerical stationary distributions are independent of the friction
parameter 𝛾 𝑗 , which is a benefit of schemes based on splitting the T-RPMD dynamics
into Hamiltonian and thermostat parts, and using the exact Ornstein-Uhlenbeck flow
in Eq. 2.7 to evolve the thermostat part. Moreover, comparing the exact covariance
matrix in Eq. (2.9) with the finite-timestep approximations in Eqs. (2.13)-(2.17),
note that in all cases 𝚺 𝑗 = limΔ𝑡→0 𝚺 𝑗 ,Δ𝑡 . These results have previously been
reported for the OBABO (Eqs. 2.14 and 2.15, 𝑎 = 1) and BAOAB (Eqs. 2.14 and
2.15, 𝑎 = 0) schemes25,61 but not for the OBCBO (Eqs. 2.16 and 2.17, 𝑎 = 1) or
BCOCB (Eqs. 2.16 and 2.17, 𝑎 = 0) schemes.

In the infinite bead limit, the exact and numerical position-marginals can be writ-
ten as an infinite product of one-dimensional centered normal distributions with
variances given by (𝛽𝑚𝑛)−1𝑠2

𝑗
and (𝛽𝑚𝑛)−1𝑠2

𝑗 ,Δ𝑡
, respectively. By Kakutani’s theo-

rem,62,63 these two distributions have a non-zero overlap if and only if the following
series converges,

∞∑︁
𝑗=1

(
1 −

𝑠 𝑗

𝑠 𝑗 ,Δ𝑡

)2
. (2.18)

For OBABO and BAOAB, due to the oscillatory cotangent term appearing in 𝑠 𝑗 ,Δ𝑡 ,
the limit lim 𝑗→∞(1 − 𝑠 𝑗/𝑠 𝑗 ,Δ𝑡)2 does not exist, and therefore, the series does not
converge. For OBCBO, the 𝑗 th summand of this series is

Δ𝑡4Λ2

16𝑚2

(
1 +

√︂
4𝑚 − Δ𝑡2Λ

4𝑚

)−2

,

which more obviously leads to a divergent series. Therefore, for OBABO, OBCBO,
and BAOAB, the numerical stationary distribution has no overlap with the exact
stationary distribution in the infinite bead limit; it is in this sense that these schemes
fail to exhibit the property of dimensionality freedom. Remarkably, BCOCB is
exact in the position marginal and thus exhibits dimensionality freedom.

2.5 Consequences for the primitive kinetic energy expectation value
In the current section, we show that the non-overlap pathology of the OBABO,
BAOAB, and OBCBO schemes causes a divergence with increasing bead number
of the primitive path-integral kinetic-energy expectation value, an issue that is
numerically well known for OBABO and BAOAB.25,61,64,65 We further show that
this divergence is fully eliminated via the BCOCB scheme — as expected.
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Figure 2.1: Primitive kinetic energy expectation values for a harmonic potential 𝑉 (𝑞) =
1
2Λ𝑞

2 with Λ = 256, ℏ = 𝑚 = 1, and reciprocal temperature 𝛽 = 1; choosing energies to
be in units of 𝑘B𝑇 at room temperature (300 K), then 𝛽ℏ ≈ 25.5 fs and Λ = 𝑚𝜔2 where
𝜔 = 3315 cm−1. (a-d) For various MD timesteps, the primitive kinetic energy expectation
value as a function of the number of ring-polymer beads, with the exact kinetic energy
indicated as a dashed gray line. The standard error of all visible data points in each plot is
smaller than the symbol size. (e) Per-mode error in the variance of position coordinate of
the normal modes for simulations run with 128 ring-polymer beads and a timestep of 1 fs;
solid lines are analytic predictions from Eq. (2.24) with E qs. (2.14) and (2.16) defining 𝑠2

𝑗 ,Δ𝑡

for the different schemes; points indicate the results of numerical PIMD simulations using
the various integration schemes. The BCOCB scheme is not shown since it has zero error
for all internal modes. The black vertical line indicates the crossover frequency (𝜔x = 2/Δ𝑡)
for the error of OBCBO and OMCMO based on the bounds in Eqs. 2.35 and 2.36.
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The primitive kinetic energy expectation value is given by66,67

⟨𝐾𝐸prim⟩ =
𝑛

2𝛽
−

𝑛∑︁
𝑗=1

𝑚𝑛𝜅
2
𝑛

2
⟨(𝑞 𝑗 − 𝑞 𝑗−1)2⟩ (2.19)

=
1

2𝛽
+
𝑛−1∑︁
𝑗=1

(
1

2𝛽
−
𝑚𝑛𝜔

2
𝑗 ,𝑛

2
⟨𝜚2

𝑗 ⟩
)

(2.20)

where the first equality involves a sum over the ring-polymer beads in Cartesian
coordinates (with 𝑞𝑛 = 𝑞0), and the second equality performs the summation in
terms of the ring-polymer normal modes. The divergence of this expectation value
is numerically illustrated for the simple case of a harmonic oscillator (Figs. 2.1a-d);
note that for larger MD timesteps, the OBABO, BAOAB, and OBCBO schemes fail
to reach a plateau with increasing bead number and dramatically deviate from the
exact result (dashed line). The same divergence for OBABO and BAOAB has been
numerically observed in many systems,25,61,64,65 including liquid water which we
discuss later. A striking observation from Figs. 2.1(a-d) is that the BCOCB exhibits
no such divergence or error in the primitive kinetic energy expectation value at high
bead number, regardless of the employed timestep.

Using Eq. (2.9), note that the contribution to the primitive kinetic energy expectation
value from the 𝑗 th ring-polymer mode is

⟨𝐾𝐸 𝑗 ⟩ =
1

2𝛽

(
1 − 𝜔2

𝑗 ,𝑛𝑠
2
𝑗

)
,

such that in the infinite-bead limit,

lim
𝑛→∞

𝑛−1∑︁
𝑗=0
⟨𝐾𝐸 𝑗 ⟩ =

ℏ

4

√︂
Λ

𝑚

(
1 + 2

𝑒ℏ𝛽
√
Λ/𝑚 − 1

)
. (2.21)

Similarly using Eq. (2.13), the 𝑗 th-mode contribution to the kinetic energy from the
finite-timestep numerical expectation value is

⟨𝐾𝐸 𝑗 ⟩Δ𝑡 =
1

2𝛽

(
1 − 𝜔2

𝑗 ,𝑛𝑠
2
𝑗 ,Δ𝑡

)
. (2.22)

Thus, the per-mode error in kinetic energy is

| ⟨𝐾𝐸 𝑗 ⟩ − ⟨𝐾𝐸 𝑗 ⟩Δ𝑡 | =
𝑚𝑛𝜔

2
𝑗 ,𝑛

2
𝜌 𝑗 ,Δ𝑡 , (2.23)

where the per-mode error in the position marginal for internal mode 𝑗 is

𝜌 𝑗 ,Δ𝑡 =
1
𝛽𝑚𝑛

���𝑠2
𝑗 − 𝑠2

𝑗 ,Δ𝑡

��� , (2.24)
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where 𝑠 𝑗 ,Δ𝑡 is given by Eq. (2.14) for the cases of OBABO (𝑎 = 1) and BAOAB
(𝑎 = 0) and by Eq. (2.16) for the cases of OBCBO (𝑎 = 1) and BCOCB (𝑎 = 0).
Note that this error vanishes only for the BCOCB scheme, which satisfies 𝜌 𝑗 ,Δ𝑡 = 0
for each mode 𝑗 , irrespective of the timestep Δ𝑡.

Eqs. (2.23) and (2.24) indicate that the primitive kinetic energy estimator is a
sensitive measure of the finite-timestep error in the sampled ring-polymer position
distribution associated with the high-frequency modes. Fig. 2.1(e) resolves this per-
mode error, 𝜌 𝑗 ,Δ𝑡 , for each internal mode in simulations that employ a total of 128
beads, including results from OBABO (red), BAOAB (magenta) and OBCBO (blue)
using a timestep of 1 fs, with the solid lines indicating the analytical predictions
in Eq. (2.24) and with the dots indicating the result of numerical simulations. The
analytical results are fully reproduced by the simulations. Note that the OBABO per-
mode error exhibits dramatic spikes for 𝜔 𝑗 ,𝑛Δ𝑡 = 𝑘𝜋 where 1 ≤ 𝑗 ≤ 𝑛 and for some
𝑘 ≥ 1, which coincide with the loss of ergodicity of that integration scheme. The
BAOAB scheme exhibits these resonance instabilities at even values of 𝑘 . However,
it is the failure of this per-mode error to sufficiently decay as a function of the
mode number for all three of OBABO, BAOAB and OBCBO that gives rise upon
summation to the divergence of the primitive kinetic energy expectation value, as
seen for this particular timestep value in Fig. 2.1(d). Since 𝜔2

𝑗 ,𝑛
𝑠2
𝑗
→ 1 as 𝑛 → ∞,

the convergence of
∑∞
𝑗=1 | ⟨𝐾𝐸 𝑗 ⟩ − ⟨𝐾𝐸 𝑗 ⟩Δ𝑡 | reduces to the convergence of the

series
∑∞
𝑗=1

���𝑠2
𝑗
− 𝑠2

𝑗 ,Δ𝑡

���, which diverges for both OBABO and OBCBO due to the
same reasons as discussed in the section 2.3.

2.6 Dimensionality freedom for OBCBO via force mollification
The previous sections have demonstrated that whereas the BCOCB integrator ex-
hibits dimensionality freedom, the OBCBO integrator does not. In the current
section, we show that this shortcoming of OBCBO can be addressed by the use of
force mollification, in which the external potential energy in Eq. (1.7) is replaced by

𝑉̃ext
𝑛 (𝒒) = 𝑉ext

𝑛 (sinc(𝛀̃Δ𝑡/2)𝒒), (2.25)

where 𝛀̃ is any positive semi-definite 𝑛× 𝑛 matrix that has the same eigenvectors as
𝛀 (Eq. 1.16) while possibly having different eigenvalues. Force mollification has
not previously been employed for PIMD, although the strategy originates from a
variation-of-constants formulation of the solution to Eq. (2.2);68–71 specifically, the
protocol in Eq. (2.25) is a generalization of the mollified impulse method.68

Use of force mollification in the current work can be motivated on physical grounds:
In the absence of a physical potential, four of the considered integration schemes
(OBABO, BAOAB, OBCBO, and BCOCB) leave invariant the exact free ring-
polymer Boltzmann-Gibbs distribution. Therefore, the loss of any overlap between
the exact stationary distribution of the position marginals in the infinite-bead limit
for OBABO, BAOAB, and OBCBO must be attributed to the influence of the time
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evolution from the external potential in the schemes (i.e., the “B” sub-step) as
implemented in Eq. 2.6; the BCOCB scheme does not suffer from this problem.
To remove this pathology in the OBCBO scheme, we thus use mollification to
taper down the external forces on the high-frequency modes, such that the resulting
integration correctly reverts to free ring-polymer motion for those modes, which
should become decoupled from the external potential as the frequency increases.
The specific appearance of the 1/2 factor in the sinc function argument ensures
that the sinc function switches from its high-frequency effect to its low-frequency
effect when the period of the Matsubara frequency is commensurate with Δ𝑡; the
zero-frequency ring-polymer centroid mode is untouched by mollification.

Force mollification requires only a small algorithmic modification of the OBCBO
integrator. Specifically, the “B” sub-step in Eq. 2.6 is replaced with

𝒗 ← 𝒗 + Δ𝑡

2
1
𝑚𝑛

𝑭̃(𝒒), (2.26)

where the mollified forces are

𝑭̃(𝒒) = sinc(𝛀̃Δ𝑡/2)𝑭( 𝒒̃) = 𝑼𝑫Δ𝑡𝑼
T𝑭( 𝒒̃) (2.27)

where 𝒒̃ = 𝑼𝑫Δ𝑡𝑼
T𝒒 are the mollified bead positions, and where 𝑫Δ𝑡 is the diagonal

matrix of eigenvalues associated with sinc(𝛀̃Δ𝑡/2), i.e.,

𝑫Δ𝑡 = diag(sinc(𝜔̃0,𝑛Δ𝑡/2), . . . , sinc(𝜔̃𝑛−1,𝑛Δ𝑡/2)) (2.28)

where 𝜔̃ 𝑗 ,𝑛 is the 𝑗 th eigenvalue of 𝛀̃. In practice, the mollified forces are computed
in normal mode coordinates as follows:

(a) Starting with the ring-polymer bead position in normal mode coordinates, obtain
a copy of the mollified bead positions via

𝒒̃ = 𝑼𝑫Δ𝑡 𝝔 . (2.29)

(b) Evaluate the external forces at the mollified ring-polymer bead positions, 𝑭( 𝒒̃).

(c) Apply the remaining mollification to the forces in Eq. 2.27 via

𝑼T𝑭̃(𝒒) = 𝑫Δ𝑡𝑼
T𝑭(𝒒̃) . (2.30)

We emphasize that in comparison to the standard force update (Eq. 2.6) the use of
the mollified force update (Eq. 2.26) introduces neither additional evaluations of
the external forces nor 𝑛 × 𝑛 matrix multiplies associated with the discrete Fourier
transform; it therefore avoids any significant additional computational cost.
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This mollification scheme preserves reversibility and symplecticity as well as local-
third order accuracy of the OBCBO scheme with timestep. We emphasize that the
sinc-function-based mollification scheme in Eq. 2.26 is not unique, and alternatives
can certainly be devised. Even within the functional form of the mollification in
Eq. 2.26, flexibility remains with regard to the choice of the matrix 𝛀̃, which allows
for mode-specificity in the way the mollification is applied. A simple choice for this
matrix is 𝛀̃ = 𝛀, such that mollification is applied to all of the non-zero ring-polymer
internal modes. With this choice, we arrive at a fully-specified integration scheme
that replaces the original “B” sub-step in Eq. 2.6 with the mollified force sub-step in
Eq. 2.26; we shall refer to this force-mollified version of OBCBO integration scheme
as “OMCMO.” In the following sub-section, we propose a partially mollified choice
for 𝛀̃ that further improves the accuracy.

For the harmonic external potential, all of the previously derived relations for
OBCBO (most notably Eqs. 2.12, 2.16-2.17, and 2.23-2.24) also hold for OMCMO
with Λ suitably replaced by Λ̃ 𝑗 = sinc2(𝜔 𝑗 ,𝑛Δ𝑡/2)Λ. Note that Λ̃ 𝑗 ≤ Λ, since
sinc2(x) ≤ 1 for all x ≥ 0, making clear that the mollification reduces the effect of
the external potential on the higher-frequency internal ring-polymer modes.

We now show that mollifying the forces in the B substep fixes the pathologies of
OBCBO in the infinite-bead limit, by restoring overlap between the sampled and
exact stationary distributions. To see this, note that the 𝑗 th summand in Eq. (2.18)
for OMCMO satisfies(

1 −
𝑠 𝑗

𝑠 𝑗 ,Δ𝑡

)2
≤

(
1 −

𝑠2
𝑗

𝑠2
𝑗 ,Δ𝑡

)2

≤ 𝑓 (𝜔 𝑗Δ𝑡/2)
Δ𝑡4Λ2

16𝑚2

where 𝑓 (x) = ((1 − sinc2(x))/x2 + sinc2(x))2, and we have used the infinite-bead
limit for the ring-polymer internal-mode frequencies

𝜔 𝑗 = lim
𝑛→∞

𝜔 𝑗 ,𝑛 =


𝜋 𝑗

ℏ𝛽
if 𝑗 is even ,

𝜋( 𝑗 + 1)
ℏ𝛽

else .
(2.31)

Using Eq. (2.31), we write

∞∑︁
𝑗=1

𝑓 (𝜔 𝑗Δ𝑡/2) = 2
⌊ℏ𝛽/(𝜋Δ𝑡)⌋∑︁

𝑗=1
𝑓 ( 𝑗𝜋Δ𝑡/(ℏ𝛽)) + 2

∞∑︁
𝑗=⌈ℏ𝛽/(𝜋Δ𝑡)⌉

𝑓 ( 𝑗𝜋Δ𝑡/(ℏ𝛽)).

Then the first term of the sum is bounded by

2
⌊ℏ𝛽/(𝜋Δ𝑡)⌋∑︁

𝑗=1
𝑓 ( 𝑗𝜋Δ𝑡/(ℏ𝛽)) ≤ 2 𝑓 (1)ℏ𝛽/(𝜋Δ𝑡) < 4ℏ𝛽/(𝜋Δ𝑡)
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and for the second term we use

2
∞∑︁

𝑗=⌈ℏ𝛽/(𝜋Δ𝑡)⌉
𝑓 ( 𝑗𝜋Δ𝑡/(ℏ𝛽)) ≤ 𝐹 (1) + ℏ𝛽/(𝜋Δ𝑡)

∫ ∞

1
𝐹 (𝑥)𝑑𝑥

where
𝐹 (x) = 2((1 − sinc2(x))/x2 + 1/x2)2 (2.32)

is monotone decreasing on [1,∞) with 𝐹 (1) ≤ 4 and
∫ ∞

1 𝐹 (𝑥)𝑑𝑥 ≤ 2. We finally
obtain

∞∑︁
𝑗=1

𝑓 (𝜔 𝑗Δ𝑡/2) ≤ 6
ℏ𝛽

𝜋Δ𝑡
+ 4

∞∑︁
𝑗=1

(
1 −

𝑠 𝑗

𝑠 𝑗 ,Δ𝑡

)2
≤

(
6
ℏ𝛽

𝜋Δ𝑡
+ 4

)
Δ𝑡4Λ2

16𝑚2 . (2.33)

Again invoking Kakutani’s theorem (Eq. 2.18), it follows that the numerical station-
ary distribution has an overlap with the exact stationary distribution. As a byproduct
of this analysis, we can also quantify the amount of overlap between the exact and
numerically sampled stationary distributions, b revealing that the total variation
distance72 between these distributions is given by

𝑑TV(𝜇, 𝜇Δ𝑡) ≤

√︄(
6
ℏ𝛽

𝜋Δ𝑡
+ 4

)
Δ𝑡2Λ

2𝑚
. (2.34)

In summary, the force mollification strategy introduced here provably removes the
pathologies due to the “B” sub-step in the case of a harmonic oscillator potential.
Moreover, for any finite number of beads, the total variation distance between the
exact and numerically sampled stationary distribution can be bounded by Eq. (2.34),
and thus, OMCMO admits error bounds that are dimension-free.

Before proceeding, we first return to Fig. 2.1 to compare the accuracy of OMCMO
with the un-mollified OBCBO scheme for the internal-mode position marginal of
the harmonic oscillator. As seen in Fig. 2.1(e) for the results with a timestep of 1
fs, the per-mode error obtained by the mollified scheme (OMCMO, green) decays
more rapidly with mode number than does OBCBO. Fig. 2.1(d) further illustrates
that upon summation of the per-mode contributions, the OMCMO prediction for
the primitive kinetic energy converges to a well-defined asymptote with respect to
the number of ring-polymer beads, whereas OBCBO diverges as discussed earlier.
Similar behavior is seen for shorter MD timesteps (panels a-c), although the failure
of OBCBO becomes less severe with this range of bead numbers as the timestep is
reduced.

bThis quantification uses: (i) 𝑑TV ≤ 2𝑑H where 𝑑TV is the total variation distance and 𝑑H is
the Hellinger distance; and (ii) subadditivity of the squared Hellinger distance, which implies that
𝑑2

H (𝜇, 𝜇Δ𝑡 ) ≤
∑∞

𝑗=1 𝑑
2
H (N (0, 𝑠

2
𝑗
),N(0, 𝑠2

𝑗 ,Δ𝑡
)) ≤ ∑∞

𝑗=1 (1 − 𝑠2
𝑗
/𝑠2

𝑗 ,Δ𝑡
)2 ≤ (3ℏ𝛽/(𝜋Δ𝑡) + 2) Δ𝑡4Λ2

8𝑚2 .
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Although it is satisfying that mollification via OMCMO both formally and numer-
ically ameliorates the problems of the OBCBO scheme in the high-bead-number
limit, the OMCMO results in Fig. 2.1 are not ideal, since in some cases the OM-
CMO error is substantially larger than that of OBCBO when a modest number of
beads is used (e.g., for 16 beads in panel d). This observation points to a simple
and general refinement of the OMCMO scheme, which we discuss in the following
subsection.

Partial mollification
Comparison of the per-mode errors from OBCBO and OMCMO in Fig. 2.1(e) reveals
that lower errors for OMCMO are only enjoyed for internal modes that exceed a
particular frequency (indicated by the vertical black line). This observation suggests
that if a “crossover frequency” could be appropriately defined, then a refinement
to OMCMO could be introduced for which mollification is applied only to the
ring-polymer internal modes with frequency that exceed this crossover value.

For the case of a harmonic external potential, this crossover frequency 𝜔x can be
found by comparing a bound for the per-mode error (Eq. 2.24) for OBCBO

𝜌 𝑗 ,Δ𝑡 ≤
(

𝑠2
𝑗

𝑚𝑛𝜔
2
𝑗 ,𝑛
𝛽

Δ𝑡2Λ

4𝑚 − Δ𝑡2Λ

)
(2.35)

to that for OMCMO

𝜌 𝑗 ,Δ𝑡 ≤ 𝑔(𝜔 𝑗 ,𝑛Δ𝑡/2)
(

𝑠2
𝑗

𝑚𝑛𝜔
2
𝑗 ,𝑛
𝛽

Δ𝑡2Λ

4𝑚 − Δ𝑡2Λ

)
, (2.36)

where 𝑔(x) = (1 − sinc2(x))/x2 + sinc2(x). Since 𝑔(x) ≥ 1 only when x ≤ 1, we
expect better accuracy if mollification is only applied to those ring-polymer internal
modes with frequencies 𝜔 𝑗 ,𝑛 ≥ 𝜔x, where 𝜔x = 2/Δ𝑡. Although this result was
derived for the case of a harmonic potential, it does not depend on Λ. We call this
resulting partly mollified integration scheme “OmCmO.” This scheme has the nice
properties of OMCMO, including strong stability and dimensionality freedom.

Implementation of OmCmO is a trivial modification of OMCMO, requiring only
that the diagonal elements of 𝑫Δ𝑡 in Eq. 2.28 are evaluated using

sinc(𝜔̃ 𝑗 ,𝑛Δ𝑡/2) =
{

1 for 𝜔 𝑗 ,𝑛 < 𝜔x

sinc(𝜔 𝑗 ,𝑛Δ𝑡/2) otherwise,
(2.37)

where 𝑗 = 0, . . . , 𝑛 − 1. In physical terms, the emergence of 2/Δ𝑡 in the crossover
frequency is intuitive, since as was previously mentioned, it corresponds to having
the ring-polymer mode undergo a full period per timestep Δ𝑡.
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Finally, numerical results for the case of a harmonic potential (Figs. 2.1a-d) reveal
that the partially modified OmCmO scheme (cyan) achieves both robust convergence
of the primitive kinetic energy with increasing bead number, as well as better or
comparable accuracy than the OBCBO and OMCMO integration schemes — as
expected. However, it must be emphasized that for all panels of Fig. 2.1, the
BCOCB scheme (which requires no force mollification) is by far the most accurate
and stable.

2.7 Results for anharmonic oscillators
Having numerically characterized the performance of the various non-preconditioned
PIMD integrators for the case of the harmonic oscillator external potential in Fig. 2.1,
we now turn our attention to anharmonic external potentials. In this section, we
consider both a weakly anharmonic (aHO) potential given by Eq. (1.29) and the
more strongly anharmonic quartic potential given by Eq. (1.30).

All calculations are performed using ℏ = 1, 𝑚 = 1, and 𝛽 = 1. Assuming the system
to be at room temperature (300 K), then the thermal timescale corresponds to
𝛽ℏ ≈ 25.5 fs and Λ = 𝑚𝜔2, where 𝜔 = 3315 cm−1 for Λ = 256. The trajectories are
performed with the centroid mode uncoupled from the thermostat (i.e., in the manner
of T-RPMD); for the remaining 𝑛 − 1 internal modes, simulations performed with
the OBABO and BAOAB schemes use the standard27,29 damping schedule of 𝚪 = 𝛀,
and simulations performed using the Cayley modification (i.e., BCOCB, OBCBO,
OMCMO, and OmCmO) use friction 𝛾 𝑗 = min(𝜔 𝑗 ,𝑛, 0.9𝛾max

𝑗
(Λ), 0.9𝛾max

𝑗
(0)) for

the 𝑗 th mode, where 𝛾max
𝑗
(Λ) is the friction that saturates the inequality in Eq. (2.12);

for the quartic potential, we set Λ = 1 in this calculation of 𝛾max
𝑗

.

Panels (a) and (b) of Fig. 2.2 present kinetic energy expectation values for the aHO
potential corresponding to 3315 cm−1 at room temperature. For the primitive kinetic
energy expectation value, the results obtained using the various integration schemes
with timesteps of both 0.5 fs (panel a) and 1.0 fs (panel b) are consistent with the
observations for the harmonic potential in Fig. 2.1; specifically, the integrators with-
out dimensionality freedom (OBABO, BAOAB, and OBCBO) fail to converge with
increasing bead number, while the mollified integrators (OMCMO and OmCmO)
smoothly converge with increasing bead number, and the partially mollified scheme
(OmCmO) is consistently more accurate than OBCBO and OMCMO. However, it
is also clear that BCOCB exhibits the best accuracy with increasing bead number,
converging to the exact result without perceivable timestep error.

Figure 2.2(c-d) presents the corresponding results for the virial kinetic energy ex-
pectation value,

⟨𝐾𝐸virial⟩ =
1

2𝛽
− 1

2
⟨(𝒒 − 𝑞) · 𝑭(𝒒)⟩ (2.38)

where 𝑞 is the centroid (bead-averaged) position. Whereas the virial kinetic energy
for all of the strongly stable integration schemes is well behaved, the OBABO and
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Figure 2.2: Primitive and virial kinetic energy expectation values as a function of
bead number for the weakly anharmonic potential corresponding to 3315 cm−1 at room
temperature, with results obtained using a timestep of 0.5 fs (a,c) and 1.0 fs (b,d). The
standard error of all visible data points in each plot is smaller than the symbol size. The
exact kinetic energy is indicated with a dashed line.

BAOAB schemes perform erratically at large timesteps due to their provable non-
ergodicities. (see sec. 1.5. Appealingly, the BCOCB scheme is consistently the most
accurate for the virial kinetic energy expectation value, as it was for the primitive
kinetic energy expectation value.

Figure 2.3(a-d) shows the results of the various numerical integration schemes for
the primitive and virial kinetic energy expectation values, as a function of the MD
timestep using 64 ring-polymer beads. Results are shown for both the aHO and
the strongly anharmonic quartic oscillator. In all cases, the BCOCB scheme is
consistently the most accurate across this array of model systems.

Finally, Fig. 2.3(e) illustrates the use of the BCOCB integrator for the calculation of
real-time quantum dynamics via T-RPMD, replacing the often-employed OBABO
integration scheme. Using 64 beads, the T-RPMD results are plotted for a range
of integration timesteps. Strikingly, over the entire range of considered timesteps,
BCOCB introduces negligible error in the calculated position time autocorrelation
function; it is confirmed that these results are visually indistinguishable from those
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Figure 2.3: Primitive and virial kinetic energy expectation values as a function of
the timestep for the weakly anharmonic potential corresponding to 3315 cm−1 at room
temperature (a,b), and the quartic potential (c,d). The exact kinetic energy is indicated with
a dashed line. The standard error of all visible data points in each plot is smaller than the
symbol size. Also, the position autocorrelation function (e) for the quartic oscillator at room
temperature computed using T-RPMD with the BCOCB integrator. Results are obtained
using 64 ring-polymer beads using timesteps of Δ𝑡 = 0.125, 2, 4, and 8 fs.
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Figure 2.4: Primitive and virial kinetic energy expectation values as a function of the
bead number per hydrogen atom in liquid water at 298 K and 0.998 g/cm3 at timestep
Δ𝑡 = 0.5 fs (a, c) and Δ𝑡 = 0.8 fs (b, d). The reference kinetic energy, obtained from a
converged staging PIMD simulation at timestep Δ𝑡 = 0.1 fs and bead number 𝑛 = 256, is
indicated with a dashed line. The standard error of all visible data points in each plot is
smaller than the symbol size.

obtained using the OBABO integrator in the small-timestep limit.

2.8 Results for liquid water
The previous sections have demonstrated the strong performance of the BCOCB
integrator for obtaining both PIMD statistics as well as real-time dynamics via
the T-RPMD model, in model systems. Here, we test the accuracy and stability
of the various un-mollified integration schemes (OBABO, OBCBO, BAOAB, and
BCOCB) in liquid water, a high-dimensional and relatively complex system. Specif-
ically, we consider a periodic 32-molecule water box at a temperature of 298 K and
a density of 0.998 g/cm3, as described by the q-TIP4P/F force field.73

In Fig. 2.4, we compare the accuracy achieved by the different integrators for the
average kinetic energy per hydrogen atom as a function of the number of ring-
polymer beads. As in previous sections, we consider both the primitive (Eq. (2.20))
and virial (Eq. (2.38)) estimators for the kinetic energy. For each choice of in-
tegrator, timestep, and bead number, the primitive and virial estimators for the
kinetic energy of per hydrogen atom were averaged over a 1-nanosecond trajec-
tory integrated in the manner of T-RPMD, i.e., with the centroid mode uncoupled
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from the thermostat; for the remaining 𝑛 − 1 internal modes, simulations performed
with the OBABO and BAOAB schemes use the standard27,29 damping schedule
of 𝚪 = 𝛀, and simulations performed using the Cayley modification use friction
𝛾 𝑗 = min{𝜔 𝑗 ,𝑛, 0.9𝛾max

𝑗
(𝜔2

OH), 0.9𝛾
max
𝑗
(0)}, where 𝛾max

𝑗
(Λ/𝑚) saturates the in-

equality in Eq. (2.12) for the given values of 𝑗 and Λ/𝑚 at the given time step,
and 𝜔OH is the OH-stretch frequency from the harmonic bending force field term
in the q-TIP4P/F force field. Multi-nanosecond staging PIMD25,31 simulations at a
timestep of 0.1 fs were performed to obtain a bead-converged reference value for
the H-atom kinetic energy, plotted as a dashed line in Figs. 2.4 and 2.5.

The primitive kinetic energy expectation values in panels (a) and (b) of Fig. 2.4 show
similar trends to those seen in Figs. 2.1 and 2.2 for the harmonic and weakly anhar-
monic oscillators. For a 0.5-fs timestep (Fig. 2.4a), at which all integrators exhibit
strong stability for ring polymers with up to 64 beads at the system temperature,60

the OBABO, BAOAB, and OBCBO primitive kinetic energy estimates diverge from
the converged result as the number of beads increases, in agreement with the proven
result that the error in the ring-polymer configurational distribution generated with
these schemes grows unboundedly with increasing bead number. At the larger, 0.8-
fs timestep, (Fig. 2.4b), OBABO and BAOAB formally lose strong stability and their
respective primitive kinetic energy estimates dramatically diverge for bead numbers
greater than 32; the strongly stable OBCBO scheme also yields a divergent result
for the same reason as in Fig. 2.4(a). As seen on the HO and aHO model systems,
the primitive kinetic energy expectation value from the BCOCB integrator mono-
tonically converges to the reference value with increasing bead number, avoiding
any perceptible timestep error.

Fig. 2.4(c-d) shows the corresponding virial kinetic energy expectation values. For
the smaller timestep of 0.5 fs, which is a common choice for path-integral simulations
of water, all of the integrators perform similarly. However, upon increasing the
timestep to 0.8 fs, significant differences in the performance of the integrators
emerges, with only BCOCB avoiding perceptible timestep error.

To further compare the accuracy and stability of the OBABO, BAOAB, OBCBO,
and BCOCB integrators, Fig. 2.5 considers the average kinetic energy per hydrogen
atom obtained using 64 beads over a wide range of timesteps. These results show
that BCOCB remains remarkably accurate for timesteps as large as 1.4 fs for liquid
water, which corresponds to the limit of stability for Verlet integration of the centroid
mode. In comparison, OBCBO diverges monotonically as the timestep increases,
reaching unphysical values for the primitive expectation value and yielding sizable
error (20%) for the virial expectation value. The erratic performance of both
OBABO and BAOAB is due to the emergence of numerical resonance instabilities
at timesteps greater than 0.6 fs at the employed bead number; indeed, the largest
safe timestep at which OBABO and BAOAB remain strongly stable for 𝑛 = 64,
Δ𝑡★ ≈ 0.63 fs, precedes the range of timesteps in Fig. 2.5 for which these integrators
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Figure 2.5: Primitive and virial kinetic energy expectation values as a function of the
timestep per hydrogen atom in liquid water at 298 K and 0.998 g/cm3, as described by a
64-bead ring polymer. The reference kinetic energy, obtained from a converged staging
PIMD simulation at timestep Δ𝑡 = 0.1 fs and bead number 𝑛 = 256, is indicated with a
dashed line. The standard error of all visible data points in each plot is smaller than the
symbol size.

vary erratically.

Extending beyond statistics, we now consider the dynamical properties of liquid
water. Given the superiority of the BCOCB scheme for the calculated statistical
properties in Figs. 2.4 and 2.5, we present results that focus on this scheme in com-
parison to the most widely used OBABO scheme. In particular, we consider the
liquid water infrared absorption spectrum,11 which is proportional to 𝜔2𝐼 (𝜔) where
the dipole spectrum 𝐼 (𝜔) =

∫
R

d𝑡 𝑒−𝑖𝜔𝑡𝐶̃𝜇·𝜇 (𝑡) is the Fourier transform of the Kubo-
transformed dipole autocorrelation function 𝐶̃𝜇·𝜇 (𝑡). The latter is approximated in
the RPMD model by9 𝐶̃𝜇·𝜇 (𝑡) = 1

𝑁

∑𝑁
𝑖=1 ⟨𝜇̄𝑖 (𝑡) · 𝜇̄𝑖 (0)⟩, where 𝑁 is the number of

molecules in the liquid, 𝜇̄𝑖 (𝑡) is the bead-averaged dipole moment of molecule 𝑖
at time 𝑡, and the angle brackets denote averaging over the ring-polymer thermal
distribution. To obtain the time-correlation functions and spectra shown in Fig. 2.6
for the OBABO and BCOCB integration schemes, 12-nanosecond T-RPMD trajec-
tories were simulated for a ring polymer with 64 beads and timesteps ranging from
0.2 to 1.4 fs, using the same friction schedule as described for Figs. 2.4 and 2.5.

Along each trajectory, the velocities of all degrees of freedom in the system were
drawn anew from the Maxwell-Boltzmann distribution every 20 picoseconds; the
autocorrelation function was evaluated out to 2 picoseconds by averaging over stag-
gered windows of that time-length within every 20-picosecond trajectory segment;
and exponential-decay extrapolation was used to extend the autocorrelation function
before evaluating its numerical Fourier transform to obtain the infrared absorption
spectrum.

Fig. 2.6(a-b) present the dipole autocorrelation functions obtained using the OBABO
and BCOCB integrators with a range of timesteps. For the OBABO integrator, the
calculated correlation function is qualitatively incorrect for timesteps as large as 0.8
fs. For the BCOCB integrator, the resulting correlations functions are far more robust
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with respect to timestep. Although modest differences are seen in the exponential
tail of the correlation function, the dynamics on vibrational timescales (see inset) is
largely unchanged as the timestep is varied from 0.2 fs to 1.4 fs. Fig. 2.6(c) further
emphasizes this point by showing the absorption spectrum that is obtained from the
BCOCB time-correlation functions with the various timesteps. To minimize bias,
we avoided any smoothing of the spectra shown in panel c. It is clearly seen that the
librational and bending features (below 2500 cm−1) are visually indistinguishable
over the entire range of considered timesteps. To clarify the comparison for the
stretching region above 3000 cm−1, we smooth the raw spectra in that region by
convolution against a Gaussian kernel with a width of 150 cm−1 (see inset). Again,
the robustness of the simulated spectrum over this span of timesteps is excellent, with
the only significant effect due to finite-timestep error being a slight blue-shifting
of the OH stretching frequency for the results using a 1.4-fs timestep, which is
nearly three times larger than the typical value employed for the OBABO scheme for
simulations with 64 beads. Taken together, these results indicate that the BCOCB
integrator provides an excellent description of both PIMD statistics and T-RPMD
dynamics in realistic molecular systems, substantially improving the accuracy and
stability of previously employed numerical integrators.

2.9 Summary
In Chapter 1, we showed that essentially all schemes for the non-preconditioned
equations of motion of PIMD, including the widely used OBABO scheme, lack
strong stability due to the use of exact free ring-polymer time evolution in the “A”
sub-step, and we proved that this lack of strong stability gives rise to a lack of
ergodicity in the thermostatted trajectories. We further showed that ergodicity can
be restored by simply replacing the “A” sub-step with the Cayley transform.

Here we show that a completely distinct — yet equally important — pathology
exists in the “B” sub-step of previously developed non-preconditioned PIMD in-
tegrators, due to the outsized effect of the external potential on the dynamics of
the high-frequency ring-polymer modes. Specifically, we show that previous in-
tegrators (including OBABO, BAOAB, and OBCBO) yield a numerical stationary
distribution for which the overlap with the exact stationary distribution vanishes in
the infinite-bead limit. We then show that this pathology is completely avoided
in the BCOCB scheme, and we further show that the pathology can be elimi-
nated for the OBCBO scheme by suitably mollifying the “B” sub-step, yielding
the dimension-free non-preconditioned PIMD integrators, namely BCOCB, OM-
CMO, and OmCmO. Implementation of the dimension-free integration schemes
involves no significant additional computational cost, no additional parameters, and
no increase in algorithmic complexity in comparison to either OBABO or BAOAB.
Furthermore, since the integrators considered here are all non-preconditioned, they
can immediately be used for computing the equilibrium statistical properties as well
as dynamical properties via the RPMD model. The numerical performance of the
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Figure 2.6: Dynamical properties of liquid water computed using T-RPMD with the
(a) OBABO and (b,c) BCOCB integration schemes. Panels (a) and (b) present the Kubo-
transformed dipole autocorrelation function computed with various timesteps, and panel (c)
presents the absorption spectrum from the BCOCB correlation function at each timestep.
The inset to panel (c) presents the OH stretching region with smoothing.

BCOCB scheme is particularly striking, yielding results that are markedly better in
terms of accuracy and timestep stability than any of the other considered integrators.
For liquid water, it is shown that BCOCB allows for timesteps as large as 1.4 fs while
exhibiting minimal timestep error in the calculation of both equilibrium expectation
values and the dipole absorption spectrum.
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C h a p t e r 3

APPLICATION OF PATH INTEGRALS TO HEAVY ISOTOPE
EQUILIBRIA

3.1 Introduction
Since the development of BCOCB integrator (Chapter 2), it has been incorporated
into the python-based i-pi wrapper package74, Julia-based NQCDynamics75, high-
performance Tinker-HP76 and used by others to study nuclear quantum effects on
thermal conductivity,77 reaction rates,78,79 and electron transfer.80

The follow-up study by Rosa-Raices et al..81 evaluated the integrators based on
their respective rate of convergence to equilibrium and their efficiency at evaluating
equilibrium expectation values. They considered a broader class of T-RPMD nu-
merical integrators that exhibit strong stability and dimensionality freedom, just as
the BCOCB integrator does and concluded that BCOCB excels over other known
integrators in terms of accuracy, efficiency, and stability with respect to time step
size based on both analytical and numerical results.81

We therefore turn our attention to the application of path-integral methods. Specif-
ically, in the following Chapters we will study the heavy stable isotope equilibria
between small gaseous molecules with PIMC. These effects are of great interest in
geochemistry, as they can be used to identify (or at least constrain) the origin and
history of a given sample. PIMC is especially suited for the study of the equilibration
of heavy isotopes among isotopologues as (i) the effect of interest is purely statistical
in nature; (ii) the deviation from randomness is due to the nuclear quantum effects;
and (iii) the systems of interest include few physical dimensions (up to 11 atoms,
i.e., up to 27 physical degrees of freedom).

3.2 Nomenclature of stable isotope equilibria
We begin by providing the nomenclature used to describe relative differences in the
isotopic composition of phases and sites in the same molecule as well as clumped-
isotope compositions. Although much of the notation used is standard in geo-
chemistry, we have found that notational differences do exist between chemical and
geochemical studies that can lead to confusion in regard to the meaning of what is
actually being calculated or measured (as elaborated below). As such, we provide a
complete explanation of the various nomenclature used here and note where prior
work has used different notations.

Here we will denote stable heavy isotopes following the usual convention, i.e., by
prepending the mass number of the isotope as a superscript to the atomic symbol,
e.g., 13C for carbon-13 with the exception of deuterium (hydrogen-2), which has
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its own symbol 2H ≡ D. We will omit the mass number of the most abundant
isotope of each chemical element, i.e., protium will be denoted as H, carbon-12 as
C, oxygen-16 as O etc. to avoid using too many superscripts and more importantly
to draw reader’s attention to heavy isotope substitutions of a particular isotopologue.

Isotopic differences between phases or species and between sites in the same
molecule
The “bulk” (i.e., average) isotopic composition of a given phase, species, or site
within a molecule is traditionally given using the R notation:

𝑖𝑅 =
[heavy𝐴]
[light𝐴]

(3.1)

where the superscript 𝑖 denotes the rare isotope of atom 𝐴 being examined. As
an example 13𝑅 = [13C]/[C]. Importantly, both rare and abundant isotopes are
spread across all isotopologues in a system. We emphasize this because, as will be
discussed below, relating equilibrium calculations to measured 𝑅 values requires
additional considerations for any system that is not at a random distribution of
isotopes amongst all isotopologues. The bulk isotopic compositions of molecules
are generally reported using delta notation where:

𝛿𝑖𝐴𝑀 = 1000 ×
(

𝑖𝑅𝑀

𝑅standard
− 1

)
. (3.2)

The “standard” is the reference standard that all samples are reported relative to for
that isotopic system. Here, the 𝑖𝐴 refers to the isotopic system being examined (e.g.,
13C, 18O, or D). The “M” corresponds to the phase, species, or site. As an example,
stable carbon isotopic composition of methane would be given as 𝛿13C relative to
the VPDB reference.82

Differences in the isotopic composition between sites within a molecule, phases, or
species are given using alpha notation:

𝑖𝛼𝑀−𝑁 =
𝑖𝑅𝑀
𝑖𝑅𝑁

=
𝛿𝑖𝐴𝑀 + 1000
𝛿𝑖𝐴𝑁 + 1000

(3.3)

As in the definition for delta notation (Eq. 3.2), in Equation (3.3), the M and N can
represent two different phases (e.g, liquid water vs water vapor), species in a given
phase (e.g., carbon dioxide and methane in gas phase for carbon isotopes), two sites
within the same molecules (e.g., terminal methyl vs. center methylene carbon of
propane), or the site of one molecule (e.g., the terminal methyl of propane) vs. the
bulk isotope composition or site of another molecule in the same or different phase.
The 𝛼 is generally termed a “fractionation factor.”
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We note that our definition of isotopic differences between phases or species is
the textbook definition for isotope fractionation factors.83,84 However, there are
two definitions used for site-specific isotope effects (also termed position-specific
isotope effects and we use those terms interchangeably here). In one case, position-
specific effects are given as difference between the isotopic composition at a given
site vs. the bulk isotopic composition of the whole molecule. In the other case, the
isotopic difference is given as the difference between two sites. These differences are
both commonly represented using Δ notation (which we reserve below for clumped
isotopes only) in which the isotopic difference in capital delta notation between
the sites or a site and the bulk molecule is given. Indeed, both definitions are
given in the recent review.85 Which one is used often depends on the history of
prior measurements or calculations for a given molecule type and/or what can be
measured.

Here we report the site-specific calculations as isotopic differences between the
sites. This is sometimes termed a “site preference.” If a difference relative to
an average is desired, it can be directly calculated from the difference in isotopic
composition of the sites. We have reviewed the site/position specific information in
detail because this difference in nomenclature has led to some confusion in terms
of comparing theoretical and measurement-based methods of site-specific isotope
effects in propane.86–88 This is discussed in detail in section 6.5.

Clumped isotope effects
Clumped isotope effects describe the excess or deficit concentration of isotopologues
with multiple rare isotopic substitutions relative to what would be expected given a
random distribution of isotopes amongst all isotopologues.89 Here we only report
clumped isotope effects of doubly substituted species. We give the concentration
of the rare (at natural abundance), doubly substituted species relative to that for the
unsubstituted common isotopologues using 𝑋:

𝑋𝑖 =
[doubly substituted isotopologue]
[unsubstituted isotopologue] . (3.4)

The subscript 𝑖 refers to the clumped species. As an example, 𝑋13CH3D =
[13CH3D]
[CH4] .

We note that in typical studies of clumped isotopes, 𝑅 is used in place of 𝑋 —
however, to avoid confusion over the use of 𝑅 for bulk isotopic compositions (as
given in Equation (3.1)), we use a different symbol.

This excess or deficit of a clumped isotopologue vs. a random distribution is
typically reported using capital delta notation:

Δ𝑖 = 1000 ×
(
𝑋

sample
𝑖

𝑋 random
𝑖

− 1

)
(3.5)
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In this equation, the “sample” refers to the actual measured relative concentration
of the isotopologue, whereas the “random” refers to the composition that would be
calculated assuming all isotopes are randomly distributed amongst all isotopologues.
Both the 𝛼 values (Eq. 3.3) and the Δ values (Eq. 3.5) can be related to expressions
involving only the equilibrium constants for certain isotope exchange reactions. We
describe these reactions in detail in the following section.

Reactions describing the equilibrium isotope effects
Equilibrium isotope effects as a function of temperature for bulk, site-specific,
clumped, and clumped site-specific within and between various molecules are cal-
culated from the equilibrium constant for an isotope-exchange reaction that describes
the isotope effect of interest.

Equation (3.6) provides our generic notation for isotope exchange reactions between
different phases or species 𝑀 vs 𝑁 (e.g., water vapor vs. liquid, or water vapor
vs. methane gas). This reaction is used to describe bulk fractionation differences
between isotopologues with one rare isotopic substitution (labelled with the *).
The example of deuterium fractionation between methane and water is shown in
Eq. (3.7).

∗𝑀 + 𝑁 ⇌ 𝑀 + ∗𝑁 (3.6)
CH3D + H2O ⇌ CH4 + HDO (3.7)

We demonstrate the validity of using a single exchange reaction to approximate
bulk fractionations in Appendix A.3. For bulk fractionations involving propane two
reactions of type (3.6) need to be considered, one for each of the two distinct sites.
We represent the two sites by 𝐶 (center ethylene) and 𝑇 (terminal methyl) and write
the following two reactions:

∗𝑇𝐶𝑇 + 𝑀 ⇌ 𝑇𝐶𝑇 +∗ 𝑀 (3.8)
𝑇∗𝐶𝑇 + 𝑀 ⇌ 𝑇𝐶𝑇 +∗ 𝑀. (3.9)

Reaction (3.10) describes the site-specific isotope exchange of a heavy isotope
(deuterium or carbon-13) labelled by * between the center (𝐶) and terminal (𝑇) sites
of propane. An example for carbon-13 site-specific exchange in propane is shown
in Eq. (3.11):

∗𝑇𝐶𝑇 ⇌ 𝑇∗𝐶𝑇 (3.10)
13𝐶𝐻3𝐶𝐻2𝐶𝐻3 ⇌ 𝐶𝐻3

13𝐶𝐻2𝐶𝐻3. (3.11)
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Here we assume that the three hydrogen atoms of the methyl group are indistin-
guishable. However, this is not always the case where there are trans- and gauche-
deuterations (as in propane), which could be measured individually (e.g., by NMR).
We discuss this in section 6.5. Note that any two of the three Equations (3.8), (3.9)
& (3.10) together define both the bulk and the site-specific effect in propane, be-
cause the number of equations needed to determine the distribution of heavy isotopes
among singly substituted species in two molecules is one less than the total number
of sites in both molecules through closure.

To address clumped isotope effects, we divide our molecules of interest into three
classes. The first class (dihydrogen, water, methane) has only one possible site for
clumping (site 𝑇) and, as such, the clumped isotope effect can be uniquely defined
for each possible combination of heavy isotopes (D + D, 13C + D, 17O + D and
18O + D). In such cases we only need to write one clumping reaction (3.12), where
double star means two heavy isotopes at that site. The example for 13C+D clumping
in methane is given in Eq. (3.13):

∗𝑇 +∗ 𝑇 ⇌ ∗∗𝑇 + 𝑇 (3.12)
CH3D + 13CH4 ⇌

13CH3D + CH4. (3.13)

The second class has multiple sites for clumping that are all equivalent. The only
molecule studied here of this class is ethane; however, other examples include
cyclopropane (3 sites) and benzene (6 sites). For ethane we can write two clumped
reaction types: on the same site (Eq. 3.14) and on the different sites (Eq. 3.15),
where ethane is denoted as 𝑇𝑇 to mark the two equivalent sites.

∗𝑇𝑇 + ∗𝑇𝑇 ⇌ ∗∗𝑇𝑇 + 𝑇𝑇 (3.14)
∗𝑇𝑇 + ∗𝑇𝑇 ⇌ ∗𝑇∗𝑇 + 𝑇𝑇 (3.15)

2 CH2D−CH3 ⇌ CH2D−CH2D + C2H6 (3.16)

Note that Eqs. (3.12), (3.14) and (3.15) can represent multiple isotopic equilibria
reactions. For example, in the case of methane in addition to the reaction (3.13)
there is also a reaction for D + D clumping. Eqs. 3.14 and 3.15 yield the clumped
isotope effect for both D+D and D+ 13C. However, reaction 3.14 cannot be written
for 13C + 13C clumping since each site has only one carbon. Therefore, there are
five distinct reactions describing the clumped isotope effects with two rare isotopic
substitutions in ethane. If the trans- and gauche- rotamers in doubly deuterated
ethane are distinguishable, Eq. (3.13) turns into two equations (one for each of the
rotamers).

Finally, the third category considered are species with non-equivalent sites. Here
the only molecule we consider in this category is propane, which has both equivalent
and non-equivalent sites. The following species can be considered for D + D and
𝐷 + 13𝐶 clumping: ∗∗𝑇𝐶𝑇 , 𝑇∗∗𝐶𝑇 , ∗𝑇𝐶∗𝑇 and ∗𝑇∗𝐶𝑇 . The latter two also appear
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for the 13𝐶 + 13𝐶 clumping. All told, for propane we can write 11 distinct clumped
isotope equilibrium reactions for two rare isotopes (again ignoring rotamers) —
these are given in Appendix A.4. When writing these reactions, we adhere to the
following rule: we ensure that the heavy atoms are located on the same sites between
the left-hand side and the right-hand side of the equilibrium equation as is done in
the example (3.17). This is done to isolate the clumping effect from site-specific
effects. We write the equation as follows:

2 13CH3-CH2−CH3 ⇌
13CH3−CH2−13CH3 + C3H8. (3.17)

To make this more concrete we also give a counterexample (3.18), where the clumped
13𝐶 + 13𝐶 isotope effect is conflated with the site-specific 13𝐶 isotope effect:

2 13CH3-CH2−CH3 ⇌
13CH3−13CH2−CH3 + C3H8. (3.18)

Relating observed isotopologue abundances to calculated isotope equilibrium
constants
There are two commonly employed ways to theoretically calculate values of frac-
tionation factors (𝛼) at isotopic equilibrium. The first way is to calculate equilibrium
isotope effects that describe isotope exchange reactions between all isotopologues
of the given molecule types. This is an exact approach and was taken by Richet
et al.90 However, it involves a large number of calculations as all isotopologues
(e.g., 216 of them for propane) must be considered. More recent approaches have
avoided this and instead assumed that all isotopes are at a random distribution in
each of the two species (phases), such that calculations of 𝛼 can be approximated by
using equilibrium constants for the exchange only between isotopologues with no
substitutions and one rare substitution. Note that for molecules with nonequivalent
sites (propane in our case) it is the average of substitutions in all (two for propane)
sites that is assumed to be given by random distribution of isotopes. We take this
latter approach here and demonstrate it is sufficiently accurate for our purposes in
appendix A.3. Specifically, we calculate 𝛼𝑒𝑞 by normalizing the equilibrium con-
stant (𝐾) for a given isotope-exchange reaction relative to the equilibrium constant
calculated with random distribution of isotopes among all isotopologues, 𝐾 random.

𝛼
𝑒𝑞

𝑖
=

𝐾𝑖

𝐾 random
𝑖

(3.19)

𝐾 random is the equilibrium constant that would be found for the infinitely high
temperature limit. This normalization removes any dependence on the symmetry
of the molecules, so that a deviation of 𝛼𝑒𝑞 from unity is solely due to isotope
fractionation. Values of 𝛼𝑒𝑞 for reactions (3.6) are not exactly equal to the true
values of fractionation factors 𝛼 defined in Eq. (3.3). However, the approximate
equality is true to high accuracy in all cases considered here because, at natural
isotopic abundances, non-random concentrations of multiply substituted species do
not significantly affect the value of 𝛼 (see appendix A.3).
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For propane we calculate the bulk fractionation factors using the two reactions be-
tween each site and the other species (Eqs. 3.8 and 3.9. The fractionation factors 𝛼𝑒𝑞

𝑖

for each site are then averaged using appropriate weighting to yield the (approximate)
total bulk fractionation between propane and another species. Appendix A.2 details
this averaging procedure for both carbon-13 and deuterium bulk fractionations.

We now turn to clumped isotopes. The Δ values (Eq. 3.20) also depend on the
abundance of heavy isotopes (see appendix A.5). Similarly to Eq. (3.19) we define
Δ
𝑒𝑞

𝑋
, which is independent of the heavy isotope abundances in the sample and

expresses only the thermodynamic preference for the clumped isotope effect that
results in doubly substituted isotopologue 𝑋 . The value of Δ𝑒𝑞 is related to the
equilibrium constants 𝐾𝑋 of the heavy isotope clumping reactions (3.12, 3.14,
3.15).

Δ
𝑒𝑞

𝑋
= 1000 × ln

𝐾𝑋

𝐾 random
𝑋

(3.20)

For the clumped isotopic systems in which sites are equivalent (i.e., all species
considered except propane), the Δ

𝑒𝑞

𝑋
values can be related to the corresponding

Δ𝑋 values in the infinite dilution limit (see appendix A.5). Eq. (3.20) does not
appropriately approximate the Δ values given in Eq. (3.5) for propane (or any other
molecule with non-equivalent sites). In such cases the contribution from the site-
specific effects for singly substituted species needs to be included91 in order to relate
Δ
𝑒𝑞

𝑋
and Δ. We discuss this in detail in appendix A.5.

The normalized equilibrium constant in Eq. (3.20) is equivalent to the ratio of
the appropriate reduced partition function ratios (RPFRs) from reactions (3.12) for
fractionation and reaction (3.10) for the site-specific effect:

𝛼
𝑒𝑞

frac =
RPFR(∗𝑁/𝑁)
RPFR(∗𝑀/𝑀) (3.21)

𝛼
𝑒𝑞

site =
RPFR(𝑇∗𝐶𝑇/𝑇𝐶𝑇)
RPFR(∗𝑇𝐶𝑇/𝑇𝐶𝑇) . (3.22)

Similarly, the normalized equilibrium constant for clumping (Eq. 3.20) is given
by (3.23). Although we write (14C) explicitly for clumping in molecules with one
site (9A), an analogous expression is valid for ethane (reactions 10A-C) and propane
(reaction 11A and others in appendix A3).

𝐾𝑋

𝐾 random
𝑋

=
RPFR(∗∗𝐸/∗𝐸)
RPFR(∗𝐸/𝐸) (3.23)

The RPFRs in Eqs. (3.21), (3.22) and (3.23) are defined as follows:92

RPFR(𝑀/𝑁) = 𝑄𝑀

𝑄𝑁

𝜎𝑀

𝜎𝑁

∏
atoms

(
𝑚𝑁

𝑚𝑀

) 3
2

(3.24)
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where 𝑄 are the partition functions for isotopologues 𝑁 and 𝑀 , the product of the
ratio of masses raised to the power of 3/2 runs over all isotopes that are different
between 𝑀 and 𝑁 , and 𝜎 are the corresponding rotational symmetry numbers.
Eq. (3.24) inherently normalizes out both the mass terms and the symmetry numbers
in 𝑄, such that at infinite temperature (i.e., in the classical limit) the RPFR is unity.

Throughout this work we report and discuss the thermodynamic preferences for
fractionation, clumping and site-specific placement of heavy isotopes. We therefore
report Δ𝑒𝑞

𝑋
for clumped heavy isotope effects and 1000× ln(𝛼𝑒𝑞

𝑁−𝑀) for heavy isotope
fractionation between two phases throughout. We discuss the connection with the
experimentally measurable quantities in Appendices A.3 and A.5. For heavy isotope
fractionation at near-natural abundances of carbon-13 and deuterium 𝛼𝑒𝑞 (Eq. 3.19
approximates 𝛼 (Eq. 3.3) to a very high precision for the molecules considered here
(see appendix A.3). This is not the case for the clumped isotope effects as we
show in appendix A.5. Nonetheless, the Δ

𝑒𝑞

𝑋
are independent of the heavy isotope

abundance of the sample and express the true thermodynamic preference for the
clumped isotope effect leading to isotopologue 𝑋 . Most modern theoretical studies
calculate Δ

𝑒𝑞

𝑋
and not the Δ𝑋 values for these reasons.86,87,93,94 In the last citation

authors use a slightly different mathematical expression, but it is still based on the
𝐾𝑋/𝐾 random

𝑋
ratio, just like Eq. (3.20). Finally, for all molecules considered here

except for propane the Δ
𝑒𝑞

𝑋
values are sufficiently similar to the corresponding Δ𝑋

values (the latter are up to a few per cent smaller at natural abundances of heavy
isotopes), that all the observations discussed here for Δ𝑒𝑞

𝑋
apply to Δ𝑋 values as well.

In addition to the individual Δ𝑒𝑞
𝑋

for each clumped isotopologue, we also report
the combined total D + D and 13C + D effects for ethane and propane as well as
the combined 13C + 13C effect for propane. These are reported in section 6.5 and
calculated by weighing the individualΔ𝑒𝑞

𝑋
as if isotopes were distributed randomly,95

as detailed in Appendix A.6. Finally, we also provideΔ𝑒𝑞18 for methane,Δ𝑒𝑞32 for ethane
and Δ

𝑒𝑞

46 for propane in section 6.5, that combine all isotopologues with the same
mass number, as detailed in Appendix A.6.

3.3 Methods
Reduced partition function ratio (RPFR) calculations
The RPFRs are traditionally calculated within the harmonic approximation, assum-
ing that the total partition function can be written as the product of vibrational,
rotational and translational components; then the vibrations are approximated as
harmonic, rotations as rigid, and both rotations and translations are treated as if they
are classical. With these approximations, the RPFR of an isotopologue pair (starred
over unstarred) can be written as:90,92,96,97:

RPFRharmonic = 𝑒
−

𝐸∗0−𝐸0
𝑘𝐵𝑇

𝑎∏
𝑗=1

𝜔∗
𝑗

𝜔 𝑗

× 1 − 𝑒−
ℎ𝑐𝜔 𝑗

𝑘𝐵𝑇

1 − 𝑒−
ℎ𝑐𝜔∗

𝑗

𝑘𝐵𝑇

. (3.25)
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In Eq. (3.25),𝜔 𝑗 is the harmonic frequency in wavenumbers (cm-1) of the jth normal
mode, 𝑎 is the total number of vibrational modes (𝑎 = 3𝑁 − 5 for linear molecules,
𝑎 = 3𝑁 − 6 for non-linear molecules). The leading term (𝐸0) is the combined
zero-point energy of all modes.

PIMC calculations
The path integral Monte Carlo (PIMC) method allows us to calculate the RPFRs
without relying on the validity of the harmonic approximation.86,93,98,99 Path-integral
methods like PIMC or Path integral molecular dynamics (PIMD) fully take into
account the anharmonicity of vibrations and rovibrational couplings, whereas the
harmonic calculations do not. Neglecting these effects can lead to substantial errors
for some isotopic equilibrium reactions86,98–100, but not for others.86,98

Path-integral-based methods utilize the imaginary-time path-integral formalism2

to sample the quantum Boltzmann statistics of the molecule. The remainder of
this section describes the method, details the specific algorithm used for these
computations and lists key parameters. The quantum statistics are sampled3 by
mapping each of the N (quantum) atoms onto n (classical) copies of that atom,
yielding NP classical particles that interact via the modified potential:

𝑉𝑛 =
𝑚𝑛𝜔

2
𝑛

2

𝑛−1∑︁
𝑗=0
(𝑞 𝑗+1 − 𝑞 𝑗 )2 +𝑉 𝑒𝑥𝑡𝑛 (𝒒) (3.26)

i.e., the potential part of the Hamiltonian given in Eq. (1.6). Thus, each quantum
atom of the original molecule creates a ring polymer of 𝑛 beads, that are connected
via harmonic springs. In the limit of infinite number of beads 𝑛, the partition
function of the real quantum system is equal to the partition function of the fictitious
P-times larger classical system. In practice we always use approximations to evaluate
the potential energy and sufficiently large but finite 𝑛 is chosen. Then Monte Carlo
(MC) or molecular dynamics (MD) is used to sample the classical system — here
we employed the MC importance sampling method.47

While it is possible to take the nuclear exchange into account with PIMC,4,101 we do
not include this for two reasons. First, these effects are not expected to be important
above 100K based on the estimate of the free ring-polymer radius of gyration4 while
all calculations presented here are for temperatures above 270 K. Secondly, including
these effects reduces statistical precision of the MC sampling due to the so-called
“sign problem,”101 meaning much longer calculation times would be required with
no expected gain in accuracy.

We used the direct scaled-coordinate estimator102 to calculate the RPFR for every
single heavy substitution relative to the lighter isotopologue and for every double
substitution relative to the corresponding singly-substituted isotopologue. For each
pair, the heavier of the two isotopologues was sampled with PIMC in Cartesian
coordinates with hundreds of millions of Monte Carlo steps. Each Monte Carlo step
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consists of (1) moving the entire ring-polymers by a small random displacement in
each coordinate and (2) 𝑛/ 𝑗 staging moves31 (rounded up to the nearest integer).
The average displacement and staging length 𝑗 were set such that 40 ± 2% of all
proposed staging moves are accepted to optimize sampling efficiency. Prior to
any data collection, each sampling trajectory was equilibrated for 105 Monte Carlo
steps. Thereafter, ring-polymer configurations were sampled every 10 Monte Carlo
steps. Aside from neglecting nuclear exchange, PIMC provides exact RPFRs for a
specified potential energy surface (PES) in the limit of infinite sampling and infinite
number of beads 𝑛. We choose the number of beads 𝑛 to balance the accuracy that
improves as 𝑛 increases vs. the statistical uncertainty of sampling that increases with
𝑛. Note that the term accuracy here is relative to the method used to approximate
the potential energy and not vs. the unknown true value. We ensure that in each
case the convergence with respect to the number of beads 𝑛 for calculated RPFRs is
within the statistical sampling error (standard error of the mean over samples) and
report the latter as a measure of uncertainty.

Diagonal Born-Oppenheimer correction
All potential energy calculations in this work are done within the Born-Oppenheimer
(BO) approximation.103,104 This approximation separates the full Schrödinger equa-
tion into electronic and nuclear parts, greatly reducing the computational complexity
and is employed, to our knowledge, in all calculations of equilibrium isotope effects.
However, it has been shown that corrections to the BO approximation can substan-
tially change calculated fraction factors for isotopes of hydrogen. For example,
fractionation of deuterium between H2(𝑔) and H2O(𝑔) is affected by about 20‰ at
room temperature105 by the diagonal Born-Oppenheimer (DBO) correction, which
is the lowest order perturbative correction to the BO-approximation. The DBO
correction takes into account the dependence of the electronic wave function on
the nuclear coordinates when calculating the nuclear kinetic-energy contribution.
Higher order corrections are related to the excited electronic states106 and, to our
knowledge, have not been considered for equilibrium isotope effects as their contri-
bution is presumed negligible for the molecules and temperature ranges considered
in this thesis.
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C h a p t e r 4

CLUMPED ISOTOPE EFFECTS IN METHANE

1D. L. Eldridge, R. Korol, M. K. Lloyd, A. C. Turner, M. A. Webb, T. F. Miller,
and D. A. Stolper, “Comparison of Experimental vs Theoretical Abundances
of 13CH3D and 12CH2D2 for Isotopically Equilibrated Systems from 1 to
500 ◦C”, ACS Earth and Space Chemistry 3, 2747–2764 (2019) 10.1021/
acsearthspacechem.9b00244.

4.1 Abstract
Methane is produced and consumed via numerous microbial and chemical reactions
in atmospheric, hydrothermal, and magmatic reactions. The stable isotopic compo-
sition of methane has been used extensively for decades to constrain the source of
methane in the environment. A recently introduced isotopic parameter used to study
the formation temperature and formational conditions of methane is the measure-
ment of molecules of methane with multiple rare, heavy isotopes (“clumped”) such
as 13CH3D and CH2D2. In order to place clumped methane isotope measurements
into a thermodynamic reference frame that allows calculations of clumped-isotope
based temperatures (geothermometry) and comparison between laboratories, all
past studies have calibrated their measurements using a combination of experiment
and theory based on the temperature dependence of clumped isotopologue distribu-
tions for isotopically equilibrated systems. These have previously been performed
at relatively high temperatures (>150°C). Given that many natural occurrences of
methane form below these temperatures, previous calibrations require extrapolation
when calculating clumped-isotope based temperatures outside of this calibration
range. We provide a new experimental calibration of the relative equilibrium abun-
dances of 13CH3D and CH2D2 from 1-500°C using a combination of γ-Al2O3 and
Ni-based catalysts and compare them to new theoretical computations using Path
Integral Monte Carlo (PIMC) methods and find 1:1 agreement (within ± 1 standard
error) for the observed temperature dependence of clumping between experiment
and theory over this range. This demonstrates that measurements, experiments, and
theory agree from 1-500°C providing confidence in the overall approaches. We
additionally compare PIMC computations to those performed utilizing traditional
approaches that are the basis of most previous calibrations (Bigeleisen, Mayer, &
Urey model, BMU) and discuss the potential sources of error in the BMU model
relative to PIMC computations.
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4.2 Introduction
Methane is a product and reactant in atmospheric, hydrothermal, and magmatic
chemical reactions and in microbial metabolisms. It is also a major component of
commercial hydrocarbon deposits. A common first step in the study of methane in
the environment, regardless of the application, is to constrain its source. A long-
standing approach for this is to use the stable isotopic composition of a methane
sample either through comparison of methane 13C/12C vs. D/H ratios to each other
(given as 𝛿13𝐶 and 𝛿𝐷 values),107,108 to the concentration of alkanes gases (e.g.,
methane, ethane propane, and butane),109 or to the stable isotopic composition of
larger alkane gases.110 The measurement of molecules of methane with multiple
rare, heavy isotopes such as 13CH3D and CH2D2 has provided a new way to study
the formational conditions of methane.111–113 The abundance of these so-called
“clumped” isotopologues for an isotopically equilibrated system relative to that
expected for a random distribution of isotopes among all methane molecules is a
monotonic a function of temperature.91 Thus, the measurement of methane clumped
isotopic compositions (relative to a random isotopic distribution) can in principle be
used as a geothermometer and to study departures of samples from isotopic equilib-
rium. Applications of methane clumped isotopes studies include the determination
of apparent formation (or re-equilibration) temperatures of methane in subsurface
reservoirs and to fingerprint abiotic, biogenic, and thermogenic methane.113–123

These capabilities arise from the ability to precisely measure (order per mil) the
relative abundances of unsubstituted (CH4), singly-substituted (CH3D, 13CH4) and
multiply- substituted isotopologues of methane (13CH3D, CH2D2) using either high-
resolution gas-source isotope-ratio mass spectrometers111,113,124,125 or laser adsorp-
tion spectrometers.112

Regardless of the technique, measurements are performed relative to commercial
high-purity methane “working gases,” which have an a priori unknown clumped
isotope composition. As a result, measured methane clumped isotopic compositions
are not inherently anchored to an external reference frame such as one set by inter-
national standards (which are not available) or set by theoretical expectations to the
temperature dependence of methane clumping. To report methane clumped-isotopic
compositions that are anchored to a thermodynamic reference frame and, thus, be
able to calculate clumped-isotope based formation or apparent temperatures and
compare measurements among different laboratories, past studies have combined
experiment and theory to place measured clumped-isotopic compositions into a ref-
erence frame anchored by theoretical expectations of the temperature dependence of
13CH3D or CH2D2 concentrations vs. their expected concentrations for a system in
isotopic equilibrium with a random distribution of isotopes.111–113,120 To accomplish
this, previous studies isotopically equilibrated methane isotopologues at tempera-
tures greater than 150°C in the presence of catalysts that promote C-H bond acti-
vation and hydrogen isotope exchange. The measured differences between samples
equilibrated at different temperatures were then compared to statistical mechanical-
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based calculation of these expected differences.111–113 All measurements of clumped
methane compositions are based on this approach and are performed on a lab-by-lab
basis. The accuracy of such “heated gas” calibrations and, thus, measured methane
clumped isotopic compositions and apparent temperatures depends on the accuracy
of the calculation, the experiments, and the isotopic measurements.

Isotope exchange reactions and nomenclature
Two clumped methane isotopologues (13CH3D and CH2D2) have been measured
at precisions necessary to calculate clumped-isotope based temperatures at useful
precisions (±< 25°C) and temperatures < 200°C for samples with natural abundances
of stable isotopes. The abundances of these species for a given measurement are
reported using Δ notation91 (Eq. 3.5) such that:

Δ13CH3D = 1000 ×
(
[13CH3D]/[CH4]
[13CH3D]∗/[CH4]∗

− 1
)

(4.1)

and
ΔCH2D2 = 1000 ×

(
[CH2D2]/[CH4])
[CH2D2]∗/[CH4]∗

− 1
)

(4.2)

In Eqs. (4.1-4.2), the square brackets denote concentrations relative to all other
methane isotopologues and the * (star) denotes the calculated concentration of an
isotopologue assuming all isotopes of carbon and hydrogen are randomly distributed
among all isotopologues.91 These Δ values can be related to the following equilib-
rium isotope-exchange reactions:

13CH4 + CH3D⇌ CH4 + 13CH3D (4.3)

and
2 CH3D⇌ CH4 + CH2D2 (4.4)

with𝐾13CH3D and𝐾CH2D2 describing the equilibrium constants for Eqs. (4.3) and (4.4),
respectively.

For isotopically equilibrated systems, Δ and 𝐾 values are related through the fol-
lowing equations:91

Δ13CH3D � Δ
𝑒𝑞
13CH3D

= 1000 × ln
(
𝐾13CH3D

)
(4.5)

and
ΔCH2D2 � Δ

𝑒𝑞

CH2D2
= 1000 × ln

(
8
3
𝐾CH2D2

)
. (4.6)
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The 8/3 value is present in Eq. (4.6) due to the differing symmetry numbers of
the various methane isotopologues in Eq. (4.4). The approximate signs are present
because we assume that the concentrations of the 13CH4 and CH3D isotopologues
are equal to values expected for a stochastic isotopic distribution. This is only
approximately true, but this approximation is valid for our purposes111 given both
the measurement precisions (±1 s.e.) that will be reported below for Δ13CH3D
(±0.25-0.3‰) and ΔCH2D2 (±1-1.5‰) as well as typical 𝛿13𝐶 and 𝛿𝐷 ranges of
environmental samples (∼70‰ and ∼500‰, respectively).

We note that an additional parameter that was used for the first methane clumped
isotope measurements is Δ18.111 This represents the combined measurements of
13CH3D and CH2D2 vs. CH4 compared to a random isotopic distribution.111 Δ18
values are largely equivalent to Δ13CH3D values because 98% of the cardinal mass-18
methane isotopologues are 13CH3D and only 2% are CH2D2.

The key point for our purposes here is that the measured Δ quantities are directly
related to temperature-dependent equilibrium isotope exchange reactions for iso-
topically equilibrated systems (i.e., in homogeneous phase equilibrium). Thus, if
samples can be isotopically equilibrated at known temperatures and the theoretically
expected differences calculated, then theΔ value of samples can be converted into ap-
parent temperatures based on well-understood quantum-statistical-mechanical theo-
ries regardless of the clumped-isotopic composition of the reference gas used during
measurements.

Previous experimental and theoretical determinations of the temperature de-
pendence of Δ values for isotopically equilibrated systems
Experimental calibrations and temperature dependencies of Δ13CH3D and ΔCH2D2

for isotopically equilibrated systems have been conducted at temperatures above
150°C119 and 300°C,113 respectively, and above 200°C forΔ18 values.111 In contrast,
formation temperatures of biogenic gases on earth are typically below 80°C126,127

while thermogenic gases are thought to begin forming as low as 60°C.128 Thus,
the potential range of expected gas-formation temperatures in nature is commonly
outside of these calibrated ranges. This requires extrapolation of calibrations to lower
temperatures and higher Δ values to calculate clumped-isotope based temperatures.
Stolper and co-workers111 calibrated equilibrium Δ18 values at four temperatures
(200, 300, 400, and 500°C) using a nickel-based catalyst that represented a total
measured range in Δ18 of 1.8‰ (quoted internal precision of ±0.25-0.3‰, 1𝜎 and
external precision of ±0.25-0.3‰, 1𝜎). Following this, Ono and co-workers112

calibrated equilibrium Δ13CH3D values at three temperature values over the range
of 200 to 400°C using a platinum-based catalyst that represented a total measured
range in Δ13CH3D of about 1.4‰ (quoted 1𝜎 internal precision ∼0.1-0.15‰, and
analytical 1𝜎 precision of±0.35‰). In the same laboratory, Wang and co-workers119

performed a similar calibration using platinum catalysts at three temperature values
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over 150 to 250°C and a total measured range in Δ13CH3D of about 1.2‰. They
additionally measured a sample at 400°C, but this data point was not included in
their calibration because it did not fit with the expected theoretical temperature
dependence. It was proposed that the sample may have been compromised by
potential quench effects. Finally, Young and co-workers113 calibrated equilibrium
Δ13CH3D andΔCH2D2 values at three temperatures (300, 400, 500°C) using a platinum-
based catalyst representing a total measured range in Δ13CH3D of 1.0‰ and ΔCH2D2

of about 2.2‰ (quoted internal 1𝜎 precision ±0.15‰ and ±0.35‰, respectively,
and ±0.3‰ and ±1.0‰ external precision,116 respectively). Wang et al.129 also
used γ-Al2O3 catalysts to equilibrate Δ13CH3D values of methane at 25 and 100°C.
Their total measured Δ13CH3D range is 2.23‰ with analytical precisions of generally
±0.5‰ (1𝜎).

The lack of samples equilibrated at temperatures <150°C, despite expectations that
biogenic and thermogenic gases could form at such temperatures, is due to the
usage of catalysts (nickel- and platinum-based) that are sluggish at temperatures
<150°C over laboratory timescales. For example, the calibration of the equilibrium
value for Δ13CH3D at 150°C (representing the lowest clumped methane calibration
temperature reported in the above studies) is based on a single experiment that was
allowed to equilibrate for 110 days.119 The ability to extend calibrations to lower
temperatures using methane equilibrated in the laboratory would allow for more
detailed comparisons between theory and experiment and allow apparent clumped-
isotope based temperatures to be calculated based on interpolation of calibrations
as opposed to extrapolations.

Previous calculation of equilibrium Δ13CH3D and ΔCH2D2 values are based on one
of two theoretical approaches: (i) The Bigeleisen and Mayer/Urey model92,96

(BMU),87,95,113,119,130,131 which in practice involves calculations of so-called re-
duced partition function ratios (RPFRs) using a harmonic approximation for the
treatment of the vibrational partition function and classical expressions for ro-
tational and translational partition functions; and (ii) Path Integral Monte Carlo
(PIMC) simulations that avoid the major approximations in the BMU model yield-
ing a fully anharmonic and quantum mechanical description of the partition function
ratios.86

Both approaches require independent computations of the electronic PES for methane,
which are typically taken from electronic structure calculations based on density
functional theory (DFT) or more accurate ab initio wavefunction theories, such as
coupled-cluster theory. Differences in previous calculation of equilibrium Δ13CH3D
values as a function of temperature based on the BMU model using harmonic fre-
quencies are comparable to the typical internal precision of Δ13CH3D measurements
(≤ 0.2‰ for T ≥ 0°C)87,130,131. Cao and Liu95 initially assessed the effect of the
anharmonic corrections toΔ13CH3D and found deviations (up to∼0.2‰) that are com-
parable to typical internal precision of Δ13𝐶𝐻3𝐷 measurements. A later study130
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applied a series of corrections to harmonic RPFRs to account for the effects of anhar-
monicity and many of the other major approximations inherent to the BMU model
using computed isotopologue-specific molecular constants90,132 and found overall
smaller differences in computed Δ13CH3D values relative to uncorrected values based
on harmonic RPFRs, but the differences may be systematic in nature (i.e., +0.04‰
at 0°C to +0.08‰ at 725°C).

Webb and Miller86 performed calculation of Δ13CH3D using both PIMC and BMU
approaches (with and without anharmonic corrections) based on the same computed
electronic PES133 from 27 to 327°C. In that work, the PIMC calculations are the
most rigorous and accurate approach to calculating Δ values for isotopically equi-
librated systems. Calculations of Δ13CH3D using both PIMC and BMU-harmonic
approaches yielded similar results over the temperature ranges studied (i.e., all are
within ≤ 0.06‰ over 27-327°C). However, they illustrated that the apparent agree-
ment between the BMU-harmonic and PIMC calculations arises due to a precise
cancelation of errors in the harmonically computed RPFRs during computation of
the equilibrium constant. They further demonstrated that an anharmonic correc-
tion to the vibrational zero point energy resulted in comparatively worse agreement
(e.g., 0.2 to 0.4‰ differences in Δ13CH3D relative to PIMC).86 It is important to note
that precise error cancelation between PFRs was not universally observed by Webb
and Miller. For example, in the isotope exchange reaction describing position-
specific isotope abundances for isotopically equilibrated system between 14N15NO
and 15N14NO, an anharmonic correction did yield overall better agreement with
PIMC results. This indicates that the partial corrections to BMU approaches should
be judiciously applied in the absence of converged PIMC calculations. calculation
of equilibrium ΔCH2D2 values as a function of temperature have been performed in
two studies based solely on the harmonic BMU model.87,113 The calculated ΔCH2D2

values from these two studies as a function of temperature are similar (<0.45‰ for
temperatures ≥ 0°C).

Here, we provide an experimental calibration of equilibrium Δ13CH3D and ΔCH2D2

values from 1-500°C and compare it to new theoretical computations of equilibrium
Δ13CH3D andΔCH2D2 as a function of temperature using PIMC methods86,93 and BMU
calculations based on the same electronic PES to facilitate direct comparison. To
achieve isotopic equilibrium on laboratory time scales, we use a γ-Al2O3 catalyst to
equilibrate methane from 1 to 165°C and a nickel-based catalyst for higher tempera-
tures (250 to 500°C). We then compare these results to the expected differences using
different theoretical approaches for computing clumped methane compositions (i.e.,
PIMC and BMU). We show that the theoretical and experimental measurements are
in 1:1 agreement from 1 to 500°C and thus provide a calibration for both Δ13CH3D
and ΔCH2D2 over this temperature range validated by both experiment and theory.
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300 K 400 K 500 K 600 K

n CH3D
CH4

CH2D2
CH3D n CH3D

CH4
CH2D2
CH3D n CH3D

CH4
CH2D2
CH3D n CH3D

CH4
CH2D2
CH3D

32 113.380 43.346 24 54.860 20.766 20 35.919 13.535 18 27.231 10.244
64 117.250 44.832 48 56.238 21.296 40 36.581 13.790 35 27.714 10.424
128 118.300 45.216 96 56.614 21.430 80 36.759 13.857 70 27.810 10.461
256 118.520 45.315 192 56.701 21.461 160 36.797 13.872 140 27.841 10.471
384 118.610 45.332 288 56.719 21.477 240 36.816 13.873 210 27.849 10.473
512 118.590 45.322 384 56.727 21.475 320 36.817 13.876 280 27.846 10.473

Table 4.1: Convergence of the calculated PFRs for isotopologue pairs CH3D/CH4 and
CH2D2/CH3D with the number of beads 𝑛.

4.3 Methods
The methods used in the experimental portion of this study are detailed in,94 in-
cluding the origin, purification and equilibration of methane, the precise isotopic
measurements via mass spectrometry with ThermoFisher 253 Ultra instrument, and
the conversion of measured peaks to 𝛿D, 𝛿13C, Δ13CH3D and ΔCH2D2 values. Here we
only describe how the reduced partition function ratios (RPFRs) are computed using
the PIMC.86,93 The electronic PES of methane is taken from Lee and co-workers133

and is computed at the CCSD(T) level of theory.

The Path Integral Monte Carlo (PIMC) technique is described in section 3.3. A
direct scaled-coordinate estimator102 is used to calculate the RPFRs. Heavy iso-
topologue configurations are sampled with PIMC in Cartesian coordinates with an
explicit staging transformation.31 The staging length, 𝑗 , is set such that 38-42% of
all proposed staging moves are accepted. Prior to any data collection, each sampling
trajectory is equilibrated for 105 MC steps, with 𝑛/ 𝑗 staging moves (rounded up to
the nearest integer) attempted per MC step. Thereafter, ring-polymer configurations
are sampled every 10 MC steps. The total number of MC moves for each RPFR
calculation is 2 × 108. There are two primary sources of error in the PIMC calcu-
lations, aside from any errors due to the PES. The first is systematic error related
to convergence of the RPFRs with the number of beads; this error vanishes in the
limit of infinite beads (Eq. 1.5). The second is statistical error related to sampling
of the direct scaled-coordinate estimator for the PFRs; this error vanishes in the
limit of infinite sampling. We determine the number of beads employed in the
PIMC calculations based on explicit convergence tests for the individual PFRs (see
Fig. 4.1) and summarized in Table 4.1. All errors reported for the PIMC calcula-
tions reflect standard errors related to statistical uncertainty with the Monte Carlo
sampling method.

4.4 Results
Results of the PIMC calculations are presented in Table 4.2. Values of Δ𝑒𝑞13CH3D

and
Δ
𝑒𝑞

CH2D2
have been computed over a temperature range of -3.15 to 527.85°C (270

to 800K). The errors (±1 s.e.) on individual PIMC computations are ≤0.03‰ for
Δ
𝑒𝑞
13CH3D

and ≤0.33‰ for Δ𝑒𝑞CH2D2
.
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T (°C) n RPFR 13CH3D CH2D2
CH3D 13CH4

13CH3D CH2D2 Δ𝑒𝑞 1 s.e. Δ𝑒𝑞 1 s.e.
1.2 414 156.6 1.271 1.280 60.11 6.598 0.031 23.28 0.13
6.9 408 146.6 1.267 1.275 56.22 6.477 0.021 22.18 0.22
16.9 396 131.4 1.261 1.269 50.29 6.036 0.030 20.44 0.33
26.9 381 118.6 1.255 1.262 45.33 5.764 0.029 18.99 0.26
36.9 372 107.7 1.250 1.256 41.13 5.441 0.026 17.96 0.24
46.9 360 98.50 1.245 1.251 37.55 5.201 0.023 16.52 0.24
50.5 357 95.47 1.243 1.249 36.38 5.081 0.029 16.10 0.10
56.9 351 90.57 1.240 1.246 34.48 4.934 0.023 15.18 0.21
66.9 342 83.65 1.235 1.241 31.83 4.671 0.020 14.70 0.22
75.7 333 78.33 1.232 1.237 29.77 4.467 0.018 13.34 0.09
76.9 333 77.68 1.231 1.237 29.52 4.484 0.024 13.21 0.17
86.9 324 72.39 1.227 1.233 27.49 4.246 0.019 12.59 0.20
96.9 315 67.78 1.224 1.229 25.71 4.054 0.018 11.32 0.21
126.9 294 56.72 1.214 1.218 21.48 3.504 0.017 9.68 0.16
127.8 294 56.43 1.214 1.218 21.36 3.483 0.016 9.34 0.13
151.9 279 49.88 1.207 1.211 18.86 3.123 0.013 8.22 0.13
165.4 273 46.84 1.203 1.207 17.70 2.947 0.017 7.45 0.07
176.9 267 44.54 1.201 1.204 16.82 2.809 0.016 7.02 0.10
201.9 255 40.28 1.195 1.198 15.19 2.522 0.014 5.69 0.11
226.9 243 36.81 1.190 1.193 13.88 2.303 0.016 5.14 0.12
251.9 234 33.96 1.186 1.188 12.79 2.042 0.011 4.44 0.11
276.9 225 31.57 1.182 1.184 11.89 1.867 0.009 3.90 0.13
301.9 216 29.56 1.179 1.181 11.12 1.684 0.009 3.27 0.13
326.9 207 27.84 1.175 1.177 10.47 1.536 0.012 2.98 0.11
351.9 201 26.37 1.173 1.174 9.914 1.399 0.007 2.65 0.12
376.9 195 25.09 1.170 1.171 9.430 1.288 0.010 2.33 0.10
401.9 189 23.97 1.168 1.169 9.006 1.169 0.008 1.93 0.10
426.9 183 22.99 1.165 1.167 8.635 1.066 0.007 1.75 0.10
451.9 177 22.11 1.163 1.164 8.306 0.966 0.006 1.60 0.08
476.9 174 21.34 1.161 1.163 8.013 0.892 0.007 1.46 0.09
501.9 168 20.65 1.160 1.161 7.752 0.828 0.006 1.15 0.06
526.9 165 20.02 1.158 1.159 7.519 0.752 0.007 1.29 0.09

Table 4.2: Results of PIMC calculations of the reduced partition function ratios (RPFRs)
and Δ𝑒𝑞 values.
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SI 14 

 
 
 
 
 
 

(a) 300 K (b) 400 K 

  
(c) 500 K (d) 600 K 

  
Figure SI.5(a-d): PIMC calculations: Convergence of 12CH3D/CH4 (blue) and 12CH2D2/CH3D (grey) PFR’s with 
the number of beads. The number of beads for the other temperatures is determined by interpolation between the 
second last points on each panel. Data are from Table SI.1. 
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Figure 4.1: Convergence of PFR’s with the number of beads for 𝐶𝐻3𝐷/𝐶𝐻4 (blue)
and 𝐶𝐻2𝐷2/𝐶𝐻3𝐷 (grey). The number of beads for the calculations at intermediate
temperatures is determined by interpolating between the second last points on each panel.
Data are also shown in Table 4.1.

Polynomial fits to Δ values as a function of 𝑇−1 (6th and 7th order with a forced
intercept through 0‰ at infinite temperature) have been applied to the PIMC results
to allow interpolation between computed temperatures and extrapolation above the
highest computed temperature:

Δ13CH3D � 1000 × ln
(
𝐾13CH3D

)
=

1.47348 × 1019

𝑇7 − 2.08648 × 1017

𝑇6 + 1.19810 × 1015

𝑇5

− 3.54757 × 1012

𝑇4 + 5.54476 × 109

𝑇3 − 3.49294 × 106

𝑇2 − 8.89370 × 102

𝑇
(4.7)

ΔCH2D2 � 1000 × ln
(
8
3
𝐾CH2D2

)
= −9.67634 × 1015

𝑇6 + 1.71917 × 1014

𝑇5 − 1.24819 × 1012

𝑇4

+ 4.30283 × 109

𝑇3 − 4.48660 × 106

𝑇2 + 1.86258 × 103

𝑇
.

(4.8)
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*Figure labels provided for labeling purposes only and are not to be included in final figures. 

Figure 3a* 
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*Figure labels provided for labeling purposes only and are not to be included in final figures. 

Figure 3b* 
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Figure 4.2: Polynomial fit to the PIMC calculations of Δ𝑒𝑞
13CH3D

(panel a) and Δ
𝑒𝑞

CH2D2

(panel b). The residuals from the fit are randomly distributed. Error bars on PIMC
calculations (1 s.e.) are smaller than the data points. Best-fit polynomials are given in
Eqs. (4.7) and (4.8).

Values computed from these equations are strictly valid over 270 to 800K but are
also likely valid above 800 K due to the requirement that these values (as defined)
must approach 0‰ at the high-temperature-limit. Note that the range in values
of Δ13CH3D and ΔCH2D2 extrapolated above 800K to the high temperature limit are
≤ 0.75‰ and ≤ 1.3‰, respectively. Computed values from the polynomial fits
are shown in Fig 4.2 along with residuals. The residuals of the polynomial fit are
randomly distributed and the ±1𝜎 of the residuals (±0.02‰ and ±0.14‰ for the
Δ
𝑒𝑞
13CH3D

and Δ
𝑒𝑞

CH2D2
polynomial fits, respectively) are comparable to the errors in

the calculations at any given temperature (see Table 4.2).

Table 4.3 contains the differences between the PIMC and the BMU approaches in 𝛿-
notation: 𝛿RPFRBMU-PIMC = 1000×(RPFRBMU/RPFRPIMC −1), and 𝛿𝐾BMU-PIMC =

1000 × 𝐾BMU/𝐾PIMC − 1) (reported in units of ‰). Both the equilibrium con-
stants (𝐾13CH3D and 𝐾CH2D2) and the equilibrium clumped compositions Δ

𝑒𝑞
13CH3D

and Δ
𝑒𝑞

CH2D2
(derived from 𝐾’s using Eqs. 4.1 and 4.2) are comparable between the

PIMC and BMU approaches (Table 4.3). For example, values of Δ
𝑒𝑞
13CH3D

com-
puted using the BMU model are within ≤ 0.10‰ of the PIMC values over all
computed temperatures (-3-527°C). Similarly, values of Δ𝑒𝑞CH2D2

computed using the
BMU model are within ≤ 0.37‰ of the PIMC values. Despite this agreement in
equilibrium constants, the BMU-based RPFRs are systematically higher than the
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T (°C) 𝛿RPFR(BMU-PIMC) (‰) 𝛿𝐾 (‰)
CH3D 13CH4

13CH3D CH2D2
13CH3D CH2D2

-3.1 94.1 5.5 100 198 -0.08 0.38
1.2 93.0 5.4 99 195 -0.01 0.14
6.9 91.1 5.3 97 191 -0.10 0.23
16.9 87.6 5.1 93 183 0.00 0.30
26.9 84.5 4.9 90 176 -0.06 0.21
36.9 82.0 4.8 87 171 -0.03 -0.16
46.9 79.3 4.6 84 165 -0.07 -0.01
50.5 78.3 4.6 83 163 -0.05 -0.03
56.9 76.5 4.5 81 159 -0.06 0.16
66.9 74.6 4.4 79 154 -0.04 -0.44
75.7 72.3 4.2 77 150 -0.04 0.03
76.9 72.0 4.2 76 149 -0.08 0.05
86.9 70.3 4.1 75 145 -0.06 -0.24
96.9 68.0 4.0 72 141 -0.06 0.18
126.9 62.7 3.7 67 129 -0.04 -0.33
127.8 62.4 3.7 66 129 -0.04 -0.05
151.9 58.8 3.4 62 121 -0.03 -0.31
165.4 56.8 3.3 60 117 -0.04 -0.21
176.9 55.3 3.3 59 113 -0.04 -0.30
201.9 51.9 3.1 55 107 -0.04 0.05
226.9 49.3 2.9 52 101 -0.07 -0.21
251.9 46.8 2.7 50 95 -0.03 -0.20
276.9 44.4 2.6 47 91 -0.04 -0.23
301.9 42.2 2.5 45 86 -0.03 -0.08
326.9 40.4 2.4 43 82 -0.04 -0.20
351.9 38.5 2.3 41 78 -0.03 -0.22
376.9 36.9 2.2 39 75 -0.05 -0.19
401.9 35.3 2.1 37 72 -0.04 -0.04
426.9 33.8 2.0 36 69 -0.03 -0.09
451.9 32.6 1.9 35 66 -0.02 -0.12
476.9 31.4 1.9 33 64 -0.02 -0.14
501.9 30.1 1.8 32 61 -0.03 0.03
526.9 29.2 1.7 31 59 -0.02 -0.24

Table 4.3: Comparison between approximate BMU calculations and the PIMC methods in
𝛿 notation.
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*Figure labels provided for labeling purposes only and are not to be included in final figures. 
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Figure 4.3: Comparison of PIMC calculations to experiment 1000×ln
(
Δ(𝑤𝑔)/1000 + 1

)
values from experiments (y-axis) vs. 1000 × ln(𝐾13CH3D) (panel a) and 1000 ×
ln

(
8/3 × 𝐾CH2D2

)
(panel b) values from the PIMC calculations obtained at the experimental

temperatures. White circles indicate γ-Al2O3 and black circles indicate Ni experiments.
Error bars for replicated experimental data points from this study represent either the ±1 s.e.
of replicates or the expected ±1 s.e. based on the observed external precision of standards
and the number of experimental replicates (i.e., 𝜎𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙/

√
𝑛, where n is the number of

experimental replicates), whichever is larger. Error bar on one experimental data point that
has not been replicated (the ΔCH2D2 value at 350 °C) represents ±1 s.e. internal precision.
Error bars in the PIMC calculations (x axis error bars, ± 1 s.e.) are smaller than the symbols.

PIMC RPFRs. The 𝛿RPFRBMU-PIMC are as high as 5-6‰ for 13CH4 & 13CH3D and
29-95‰ for the CH3D & CH2D2 over the computed temperature range.

4.5 Discussion
Comparison to the experiment
The Δ13CH3D and ΔCH2D2 values for each equilibrated sample can only be obtained in
reference to an arbitrary chosen reference frame that is not rooted in thermodynamics
or internationally recognized standards (which do not exist for methane clumped
measurements). Therefore, the measurements are performed in reference to the
working gas (house methane), whose composition (i.e., Δ13CH3D and ΔCH2D2 values)
is a priori unknown. This is done by asserting that the compositions of the working
gas correspond to Δ13CH3D = 0‰ and ΔCH2D2= 0‰. Based on the calculations shown
in Table 4.2 these measurements are converted to the “thermodynamic” (or absolute)
reference frame.

Experiments vs theory are consistent with a 1:1 line (dashed line) with respect to
the temperature differences. Composition of the working gas can be constrained by
interpolation (e.g., where the 1:1 dashed line intersects the x axis) for the use of re-
porting measurements in the thermodynamic reference frame (absolute) represented
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*Figure labels provided for labeling purposes only and are not to be included in final figures. 
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Figure 4.4: Temperature dependence of the Δ values in thermodynamic (absolute)
reference frame. Note that experimental Δ values are based on converting Δ𝑤𝑔 (reported in
the “working gas reference frame”) into Δ values in the “thermodynamic reference frame.”

by the PIMC calculations.

Fig. 4.3 compares the measured vs calculated clumped isotope compositions com-
puted with PIMC at the experimental temperatures. We compare experimentally
measured values as 1000 × ln

(
Δ(𝑤𝑔)/1000 + 1

)
values vs. computed values of

1000 × ln(𝐾13CH3D) (panel a) and 1000 × ln
(
8/3 × 𝐾CH2D2

)
(panel b) at the exper-

imental temperatures. We note that the measured Δ-values (y-axis) are plotted as
1000 × ln

(
Δ𝑤𝑔/1000 + 1

)
since the measured values follow the 1000 × (𝑅/𝑅 ∗ −1)

notation, while theory appropriately follows the 1000 × ln(𝐾) notation91, and by
converting the measured 1000 × (𝑅/𝑅 ∗ −1) values to 1000 × ln(𝑅/𝑅∗) values
we place the measured and computed values on more comparative grounds. Since
experimentally measured values are shown in the working gas reference frame, the
key aspect of this comparison is the relative difference between theory and experi-
ment as a function of temperature. A least squares linear regression through each
measured vs. theory (PIMC) dataset yields a slope of 1.02 ± 0.04 for the Δ13CH3D
comparison and 0.98± 0.05 for the ΔCH2D2 comparison (1 s.e.). Thus, both slopes
are within 1 s.e. error of 1 over a temperature range of 1-500°C. Given this 1:1
agreement between experiment and theory, lines with slopes of 1 are used to infer
the intercept in each plot to obtain estimates of the working gas composition. These
yield Δ13CH3D = 2.59 ± 0.14‰ and ΔCH2D2 = 5.86 ± 0.60‰ (1 s.e.). As expected
from the 1:1 agreement in Fig. 4.3, the experimental data match the predicted tem-

acomputed from Eqs. (4.5) and (4.6)
bTo facilitate a more direct comparison, these values are reported as 1000 × ln(Δ/1000 + 1).
cIn this instance, error is 1 s.e. (internal precision) because the value represents a single

measurement.
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PIMC Experiment PIMC Experiment
T (°C) Δ

𝑒𝑞
13CH3D

a Δ13CH3D
b 1𝜎 residuals Δ

𝑒𝑞

CH2D2
a ΔCH2D2

b 1𝜎 residuals
500 0.82 0.76 0.23 -0.06 1.30 -0.06 1.93 -1.36
400 1.18 1.44 0.51 0.27 2.03 3.45 0.40 1.42
350 1.41 1.46 0.17 0.05 2.60 3.43 1.21c 0.83
300 1.70 1.26 0.16 -0.45 3.39 1.86 1.72 -1.52
250 2.07 2.27 0.34 0.20 4.47 4.99 2.49 0.52

165.4 2.95 2.93 0.30 -0.02 7.43 8.84 1.44 1.42
127.8 3.50 3.35 0.11 -0.14 9.46 9.59 0.59 0.14
75.7 4.48 4.47 0.21 -0.01 13.45 13.95 1.98 0.50
50.5 5.09 5.07 0.24 -0.01 16.08 13.99 0.47 -2.09
25 5.81 5.62 0.07 -0.19 19.36 19.45 0.95 0.08
1.2 6.64 7.00 0.09 0.36 23.15 23.23 1.55 0.08
1𝝈 0.22 1.17

Table 4.4: Comparison between theoretical (PIMC) and experimentalΔ values in ascending
order (highest temperature first).

perature dependence from the PIMC calculations over 1-500°C (see Fig. 4.4 and
Table 4.4). The computed±1𝜎 of the residuals (Table 4.4) are±0.22‰ and±1.17‰
for the Δ13CH3D and ΔCH2D2 values, respectively, and are comparable to the external
precision estimated solely from the experimental replicates at a given temperature
(±0.28‰ for Δ13CH3D and ±1.61‰ for ΔCH2D2 , 1𝜎).

This work yields the important and satisfying result that theoretically calculated
Δ
𝑒𝑞
13CH3D

and Δ
𝑒𝑞

CH2D2
values using the most rigorous theoretical approach available

(PIMC) are in 1:1 (at the 1.s.e. level) agreement with experimental determinations
of equilibrium Δ

𝑒𝑞
13CH3D

and Δ
𝑒𝑞

CH2D2
. This provides confidence in both the theory, ex-

periments, and measurement techniques over essentially the full range of formation
temperatures of microbial and thermogenic gases on Earth.

Finally, the working gas clumped compositions yield apparent methane-clumped
isotope temperatures of 196 ± 13°C for Δ13CH3D and 204 ± 17°C for ΔCH2D2 (1 s.e.)
as determined by the polynomial fit to the PIMC calibration (Eqs. 4.7 & 4.8). Based
on the 𝛿DVSMOW (-159.3± 2.4‰) and 𝛿13CVPDB (-38.37± 0.2‰) values of the work-
ing gas, the cylinder gas is likely thermogenic in origin.107,108 Such temperatures
are reasonable potential gas formation temperatures128 and are consistent with the
common observation that apparent methane clumped isotope temperatures of ther-
mogenic methane are compatible with expectations of thermogenic gas formation
temperatures.113,116,119,120

The Δ13CH3D and ΔCH2D2-based temperatures are within 1 s.e. of each other. Such
agreement has been previously seen both in assumed thermogenic gases from com-
mercially purchased cylinders125 as well as thermogenic gases from natural gas de-
posits.113,116 Such agreement has been taken as additional evidence that thermogenic
gases may form in clumped-isotope equilibrium and that Δ13CH3D and ΔCH2D2 may
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represent formation temperatures of thermogenic gases (or at least re-equilibration
temperatures).

Given the agreement in clumped-based temperatures of our working gas inferred
for both Δ13CH3D and ΔCH2D2 , we could choose to force our working gas to have a
ΔCH2D2 composition that corresponds to the temperature derived from the Δ13CH3D
calibration (∼196°C) given that the Δ13CH3D measurements are more precise. This
exercise would yield a ΔCH2D2 value of ∼6.17‰ for our working gas using Eq. (4.8),
which is about 0.31‰ higher than, but within 1 s.e. of what we directly infer from
our calibration (5.86 ± 0.60‰, 1 s.e.). This may mean that our future measurements
of ΔCH2D2 could be biased to ca. 0.3‰ higher values based on our calibration, but
given our typical external precision (∼1.4‰) we do not expect that any such bias
would change any interpretations of environmental or experimental samples.

Comparison of the PIMC calculations to the BMU approximation
PIMC calculations provide a means to compute stable isotope fractionation factors
independent of the traditionally employed BMU model and are more rigorous and
accurate (assuming a high-quality PES and sufficiently large number of beads 𝑛 and
number of samples for the systematic and statistical error convergence, respectively).
Therefore, comparison of BMU and PIMC calculations can be used to identify errors
in BMU calculations.86,93 In the current study, all BMU-computed RPFRs exhibit
significant departures from the PIMC-computed RPFRs: up to 5-6‰ for 13CH4/CH4
& 13CH3D/CH3D RPFRs and 29-95‰ for the CH3D/CH4 & CH2D2/CH3D RPFRs
over the computed temperature range (-3 to 527°C). Given that both BMU and
PIMC computations were performed using the same PES for methane computed
using high level coupled cluster theory,133 these are true differences between the
BMU and PIMC theoretical treatments. The CH3D/CH4 RPFR exhibit 5-20x larger
relative errors than 13CH4/CH4 RPFRs, where the larger discrepancy present for
D/H exchange is likely due to the long-recognized inadequacies in the simplified
treatments of partition functions (PF) in the BMU model to account properly for
D/H exchange (harmonic vibrational PF, classical rotational PF).90,92,96,132 The
PIMC calculations inherently account for vibrational anharmonicity and quantize
the rotational motions, and therefore avoid these well-understood pitfalls of the
BMU approach.

Additional insight into the problem may be given by comparisons between the cal-
culations of the present study (BMU vs. PIMC) and previous BMU calculations
performed with and without anharmonic corrections reported by Liu and Liu130.
We first note that such a comparison is ultimately inexact because their130 calcu-
lations are based on electronic potential energy surfaces for methane computed at
the MP2 level of theory rather than the more accurate couple cluster theories of
the present study.133 Nevertheless, the relative difference between uncorrected and
corrected CH3D/CH4 RPFRs using the BMU model by Liu and Liu (ca. 112 to
39‰ over -3 to 527°C, respectively, is comparable to what we observe for BMU



68

and PIMC calculations in this study (95-29‰ over -3 to 527°C, respectively). The
six corrections applied include those accounting for vibrational anharmonicity and
quantum corrections to rotational motions among others.130,132 The total correction
given by Liu and Liu (a multiplicative factor of ∼0.90 to ∼0.96 from -3°C to 527°C)
is almost entirely driven by the correction for the anharmonic contributions to the
zero point energy. This may tentatively suggest that the harmonic treatment of the
vibrational partition function may be the source of much of the error in BMU-based
D/H-related computations for methane.

Regardless of the precise source of the errors in the BMU model, the contrastingly
small (≤0.1-0.4‰) relative differences in the computed equilibrium constants and
related Δ values describing equilibrium clumping in methane from BMU-RPFRs
arises from a cancellation of errors in component RPFRs as observed by Webb
and Miller.86 One likely reason for this precise cancelation of errors may be due
to inherent symmetry preserved in these isotopic clumping reactions. In particular,
any errors present in the 13CH4/CH4 RPFR are expected to be similar in nature
and magnitude to those present in the 13CH3D/CH3D RPFR, since the RPFRs
reflect the same type of isotopic substitution. The same cannot be said for some
exchange reactions involving isotopomers (e.g., 14N15NO ⇌ 15N14NO) for which
BMU calculations have been shown to only benefit from a partial cancelation of
errors.86 Although the RPFR errors are significant on the per mil scale, we find
it remarkable that such errors only amount to relative free energy differences of
approximately 10−3 and 2 × 10−2 kcal/mol for the 13C/C-related and D/H-related
RPFRs, respectively.

4.6 Summary
We presented a new experimental and theoretical working gas calibration method,
covering the range of expected thermogenic and microbial gas formation tempera-
tures on Earth. On the experimental side we utilize γ-Al2O3 an Ni catalysts to allow
for methane equlibration from 1-500°C, and on the theoretical side the path integral
calculations (PIMC) of equilibrium clumping in methane over the same temperature
range. We observed 1:1 agreement between measured differences in Δ13CH3D and
ΔCH2D2 for samples equilibrated from 1-500°C vs. theoretical (PIMC) calculations
of Δ13CH3D and ΔCH2D2 over the same temperature range. We used the PIMC cal-
culations to gain insight into the relative source of errors in the approximate BMU
approach.
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C h a p t e r 5

HYDROGEN ISOTOPIC EQUILIBRIUM IN THE SYSTEM
CH4−H2−H2O

1A. C. Turner, R. Korol, D. L. Eldridge, M. Bill, M. E. Conrad, T. F. Miller, and
D. A. Stolper, “Experimental and theoretical determinations of hydrogen isotopic
equilibrium in the system 𝐶𝐻4 − 𝐻2 − 𝐻2𝑂 from 3 to 200 ◦C”, Geochimica et
Cosmochimica Acta 314, 223–269 (2021) 10.1016/J.GCA.2021.04.026,

5.1 Abstract
Stable isotopic composition of methane (CH4) is commonly used to fingerprint
natural gas origins. Over the past 50 years, there have been numerous proposals
that both microbial and thermogenic CH4 can form in or later attain hydrogen
isotopic equilibrium with water (H2O) and carbon isotopic equilibrium with carbon
dioxide (CO2). Evaluation of such proposals requires knowledge of the equilibrium
fractionation factors between CH4 and H2O or CO2 at the temperatures where
microbial and thermogenic CH4 form in or are found in the environment, which
is generally less than 200°C. Experimental determinations of these fractionation
factors are only available above 200°C, requiring extrapolation of these results
beyond the calibrated range or the use of calculation at lower temperatures. Here,
we provide a calibration of the equilibrium hydrogen isotopic fractionation factor for
CH4 and hydrogen gas (H2) (𝐷𝛼CH4 (𝑔)−H2 (𝑔)) based on experiments using γ-Al2O3
and Ni catalysts from 3 to 200°C. Results were regressed as a 2nd order polynomial
of 1000 × ln 𝐷𝛼CH4 (𝑔)−H2 (𝑔) vs. 1/𝑇 (K-1) yielding:

1000 × ln 𝐷𝛼CH4 (𝑔)−H2 (𝑔) =
3.5317 × 107

𝑇2 + 2.7749 × 105

𝑇
− 179.48.

We combine this calibration with previous experimental determinations of hydrogen
isotope equilibrium between H2, H2O(𝑔), and H2O(𝑙) and we provide an interpo-
latable experimental calibration of 1000 × ln 𝐷𝛼CH4 (𝑔)−H2O(𝑙) from 3 to 200°C. Our
resulting 4th order polynomial is the following equation,

1000 × ln 𝐷𝛼CH4 (𝑔)−H2O(𝑙) = −7.9443×1012

𝑇4 + 8.7772×1010

𝑇3 − 3.4972×108

𝑇2 + 5.4399×105

𝑇
− 382.05.

At 3°C, the value from our calibration differs by 93‰ relative to what would be
calculated based on the extrapolation of the only experimental calibration currently
available to temperatures below its calibrated range (lowest temperature of 200°C).
We additionally provide new theoretical estimates of hydrogen isotopic equilibrium
between CH4(𝑔), H2(𝑔), and H2O(𝑔) and carbon isotopic equilibrium between
CH4(𝑔) and CO2(𝑔) using Path Integral Monte Carlo (PIMC) calculations. Our
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PIMC calculations for hydrogen isotopic equilibrium between CH4 and H2 agree
1:1 with our experiments. Finally, we compile carbon and hydrogen isotopic mea-
surements of CH4, CO2, and H2O from various environmental systems and compare
observed differences between carbon and hydrogen isotopes to those expected based
on isotopic equilibrium. We find that isotopic compositions of some microbial gases
from marine sedimentary, coalbed, and shale environments are consistent with those
expected for CH4 −H2O(𝑙) hydrogen and CH4 − CO2 carbon isotopic equilibrium.
In contrast, microbial terrestrial and pure culture gases are not consistent with both
CH4 −H2O(𝑙) hydrogen and CH4 −CO2 carbon isotopic equilibrium. These results
are explained qualitatively using previously developed conceptual models that link
free energy gradients available to microorganisms to the degree that their enzymes
can promote isotope exchange reactions between CH4, CO2, and H2O.

5.2 Introduction
Stable carbon and hydrogen isotopic compositions are commonly used to trace the
source and sinks of methane (CH4) in a variety of systems including economic hydro-
carbon reservoirs, sediments, lakes, the ocean, hydrothermal systems, and volcanic
systems. The basis of this approach is that methane formed by microbial, thermo-
genic, and abiotic formational processes often (though not always) occupy different
fields in plots of D/H (given by 𝛿D, Eq. 3.2) vs. 13C/C (given by 𝛿13C).107,108,134,135

Stable isotopic composition of methane generated by a given process is controlled
by (i) the source isotopic composition of the carbon and hydrogen107,110,134,136 and
(ii) the isotope effects of the chemical reactions involved in methane formation.
The carbon and hydrogen isotopic compositions of thermogenic methane are com-
monly thought to be controlled by kinetic isotope effects.137 For microbial gases,
both kinetic and equilibrium carbon and hydrogen isotope effects are thought to
control methane’s isotopic composition.107,108,138,139 Finally, in high-temperature
settings, such as volcanic and hydrothermal systems, equilibrium isotope effects
between methane and water (H2O) or methane and carbon dioxide (CO2) have been
proposed to set methane’s isotopic composition,140,141 though there is also an alter-
native interpretation.142 As such, equilibrium processes are commonly thought to
be involved in setting the carbon and hydrogen isotopic composition of methane in
nature. Here, we provide both experimental and theoretical calibrations of hydrogen
isotopic equilibrium between methane, molecular hydrogen (H2), and liquid water
from 3-200°C. To place this work into context, we first review the history and current
thinking on the role of equilibrium processes in setting the carbon and hydrogen
isotopic composition of methane. Second, we review previous experimental and the-
oretical calibrations of the temperature dependence of carbon isotopic equilibrium
between methane vs. CO2 and hydrogen isotopic equilibrium between methane vs.
liquid water.
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The role of isotopic equilibrium in setting the isotopic composition of methane
It is commonly assumed that kinetic processes and therefore kinetic isotope effects
largely control the carbon and hydrogen isotopic composition of thermogenic and
microbial methane. However, over the past 50 years there have been a series of
proposals that equilibrium isotope effects also play a role. We begin with a review
of previous work on carbon isotopes followed by hydrogen isotopes.

Murata et al. proposed that sedimentary methane and CO2 can exchange carbon
isotopes on geological timescales and come into carbon isotopic equilibrium in both
low-temperature sedimentary systems and warmer natural gas reservoirs and hot
springs.143 This proposal was based on the observation that measured differences in
𝛿13C of CH4 and CO2 yield reasonable temperatures based on a sample’s collection
environment and the assumption that methane and CO2 are in carbon isotopic
equilibrium. Moreover, 𝛿13C values of sedimentary samples of microbial methane
and CO2 yield reasonable calculated temperatures assuming the two are in carbon
isotopic equilibrium.144 Finally, based on similar arguments, it was proposed that
methane in Australian coal-seam gases also approaches carbon isotopic equilibrium
with CO2.145 In settings where microorganisms might be expected to be active, this
equilibrium is thought to be achieved through isotope-exchange reactions catalyzed
by methanogenic microbial organisms.146

The hypothesis that methane and CO2 can achieve carbon isotopic equilibrium in
low-temperature sedimentary environments was originally largely rejected on the
grounds that the rates of carbon isotope exchange are too sluggish to promote
equilibration on geological timescales.107,147,148 These arguments have led to the
common assumption that carbon isotope effects for microbial methane generation
are controlled by kinetic isotope effects.

Valentine et al. proposed that both equilibrium and kinetic isotope effects set the
carbon isotopic composition of microbial methane.138 Specifically, they proposed
that the free energy available to drive microbial methane generation dictates the
overall degree of reversibility of enzymes involved in the reduction of CO2 to
methane. When free energy gradients are low, enzymes catalyze reactions in both
the forward and reverse direction (i.e., are reversible) and thus catalyze both the
forward reduction of CO2 to methane and the reverse oxidation of methane back to
CO2. Such reversibility allows for carbon isotopic equilibration to occur between
CH4 and CO2. In contrast, when free energy gradients are high, enzymes act
irreversibly and only catalyze the forward reduction of CO2 to methane. Under
these conditions, only kinetic isotope effects are expressed.

Recently, using a reaction-diffusion model, Meister et al. found that fractionation
factors required to model the observed differences in the 𝛿13C of CO2 and bio-
genic methane in marine sediments are consistent with what would be expected
if the two forms were in isotopic equilibrium.149 Based on this, they suggested
that methanogens in deep-sea sediments could promote CH4 − CO2 carbon iso-
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topic equilibration during methane generation and further argued that methanogens
can produce methane in carbon isotopic equilibrium with CO2 because the carbon
isotopic composition of microbially generated methane reacted with CO2 from ex-
periments150 are similar to the values expected for equilibrium at the correspond
growth temperatures (35-85°C). Thus the problem has, over the past 50 years, come
full circle, with the initial proposal that methanogens catalyze equilibration of car-
bon between methane vs. CO2 in marine sediments, though initially dismissed,
receiving renewed support.

Microbially catalyzed carbon isotopic equilibration between methane and CO2 has
also been proposed to occur during anaerobic oxidation of methane at the sulfate-
methane transition zone.151 Their suggestion is that enzymes of anaerobic methan-
otrophs can operate reversibly and thus catalyze both the forward oxidation of
methane to CO2 and the reduction of CO2 back to methane with the degree of
exchange a function of free energy available to the system.151–153

The carbon isotopic composition of thermogenic methane is generally thought to
be controlled by kinetic isotope effects.137 However, the thermal decomposition of
acetic acid yields CO2 and methane with carbon isotopic compositions consistent
with generation in carbon isotopic equilibrium from 290 to 650°C.154 Recently,
based on observed differences between the 𝛿13C of CO2 and thermogenic methane
vs. measured methane clumped-isotope based temperatures, it was proposed that
thermogenic methane and CO2 can achieve carbon isotopic equilibrium in the sub-
surface through reactions that promote methane oxidation and CO2 reduction.155

Equilibrium isotope effects have also been suggested to set the hydrogen isotopic
composition of some microbial and thermogenic methane samples. For microbial
gases, it has been observed that samples that yield methane clumped-isotope-based
temperatures consistent with expected formation temperatures also yield differences
between the 𝛿D of methane and H2O that would be predicted if these samples formed
in CH4 −H2O hydrogen isotopic equilibrium.119,121,123. This pattern was explained
as the result of high degrees of enzymatic reversibility during methanogenesis that
catalyzes CH4 − H2O hydrogen isotope-exchange reactions, equilibrating the two
and promoting methane clumped-isotope equilibrium.119,121 Based on examinations
of biogenic methane and water hydrogen isotope systematics in coal and shale gas
systems, it was proposed that microbial methane formed in these systems forms
in hydrogen isotopic equilibrium with co-occurring waters.156 Such patterns could
also be explained by methanogens generating methane out of hydrogen isotopic
equilibrium with water and then that microbes later catalyze hydrogen isotope-
exchange reactions between methane and water to equilibrate the two.139 Finally,
it has been proposed that methane clumped isotopic equilibrium can be promoted
during anaerobic methane oxidation.113,116,117,121,157 In this explanation, anaerobic
methane oxidizing archaea also operate enzymes sufficiently reversibly such that
they promote CH4 − H2O hydrogen isotope-exchange reactions.
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It has also been proposed that the hydrogen isotopic composition of thermogenic
methane can be influenced by equilibrium processes at elevated temperatures. More
specifically, the suggestion based on relationships between 𝛿13C and 𝛿D values of
methane from Paleozoic deposits in the Appalachian Basin, is that methane begins
exchanging and therefore equilibrating hydrogen isotopes with water at tempera-
tures of 200 to 300°C.158 Additionally, it was proposed that thermogenic methane
may form in (or achieve) hydrogen isotopic equilibrium with water based on the ob-
served agreement between apparent methane clumped-isotope temperatures (from
118-204°C) and measured differences in the 𝛿D of methane and water versus those
expected for CH4 − H2O hydrogen isotopic equilibrium.116 Recently, it was pro-
posed that methane equilibrates hydrogen with other gaseous alkanes (e.g., ethane,
propane, etc.) in thermogenic gas reservoirs. This proposal is based on the obser-
vation that measured methane clumped-isotope-based temperatures are similar to
temperatures calculated based on the assumption of hydrogen isotopic equilibrium
between methane and other alkanes.155

Finally, as noted above, high temperature (>275°C) volcanic and hydrothermal
systems are commonly thought to yield methane in isotopic equilibrium with co-
occurring water and CO2,118,140,141,144,159,160 although carbon isotopic compositions
of methane and CO2 can also be out of equilibrium as well.142

Evaluation of whether methane forms in or later achieves isotopic equilibrium with
either CO2 or water requires constraints on the equilibrium fractionation factors be-
tween methane and these gases and liquids at relevant environmental temperatures.
All microbial and most thermogenic methane is thought to form at temperatures
below 200°C.128,161 In contrast, all experimentally determined equilibrium fraction-
ation factors for CH4(𝑔) −CO2(𝑔) carbon and CH4(𝑔) −H2O(𝑙) hydrogen isotopic
equilibrium exist only for temperatures greater than 200°C.140,162,163 As a result,
either experimental determinations of equilibrium fractionation factors must be ex-
trapolated to lower temperatures or calculation used when studying all microbial
and most thermogenic samples.

In the following section, we discuss the current knowledge of the equilibrium isotopic
composition of methane vs. CO2 for carbon and methane vs. liquid water for
hydrogen based on experimental and theoretical studies.

Carbon isotopic equilibrium between CH4 and CO2 and hydrogen isotopic
equilibrium between CH4 and liquid water
Isotopic differences between two phases or species are given using the “alpha”
notation, Eq. (3.3). We give values of 𝛼 as 1000×ln𝛼 as this form has a theoretically
based dependence on temperature for systems at isotopic equilibrium.83

The equilibrium carbon isotopic composition of CH4 vs. CO2 in the gas phase as
a function of temperature has been determined experimentally in two studies: the
first from 200 to 600°C and the second from 300 to 1200°C.162,163 These studies
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yield equilibrium 1000 × ln 13𝛼CH4 (𝑔)−CO2 (𝑔) values in agreement at overlapping
experimental temperatures (within 0.01 to 1.01‰ from 300 to 600°C). Additionally,
theoretical and experimental estimates of 1000 × ln 13𝛼CH4 (𝑔)−CO2 (𝑔) for CH4 −
CO2 carbon isotopic equilibrium agree at overlapping temperatures: theoretical
predictions90 are offset by 0.89‰ from experimental data of Horita et al..162 The
combination of both experimental studies are offset from the calculation90,144 by 0.2
to 0.6‰ and 0.7-1.2‰ respectively.

Both studies do not recommend extrapolation of their results to temperatures outside
of their calibrated range due to their use of polynomial and power-law fit, respec-
tively.162,163 Instead, both studies recommend that if extrapolation is needed, that
the temperature dependence of calculation be fitted to the experimental data and
that these fits be used for any extrapolations beyond the experimentally calibrated
temperature range.164 In such an approach, it is not the absolute values of 1000× ln𝛼
from the theoretical studies that matter, but rather the predicted change in 1000×ln𝛼
as a function of temperature (i.e., the temperature dependence) as any constant off-
sets between theoretical and experimental studies will be minimized during fitting
of the calculation to the experimental data.

We are aware of six published theoretical estimates of 1000 × ln 13𝛼CH4 (𝑔)−CO2 (𝑔)
as a function of temperature at isotopic equilibrium that could be used for such an
exercise.90,144,155,159,165,166 For temperatures lower than those accessed by experi-
ments (i.e., below 200°C), five of them are in general agreement with maximum
differences of 2.3‰ between calculations from 0 to 200°C. Over this temperature
range, these studies yield similar temperature dependencies: calculated differences
in 1000 × ln 13𝛼CH4 (𝑔)−CO2 (𝑔) range from 44.1‰ to 45.2‰ at 0 vs. 200°C. Values
from Craig (1953) from 0 to 200°C are offset from other theoretical studies by
up to 12‰, with predicted change in value over this temperature range of 39.6‰
(indicating a different temperature dependence as well).159 This difference was
attributed to improvement in the accuracy of spectroscopic data from the 1950s
to 1970s.162 Regardless, the strong agreement between post 1950s calculation of
1000× ln 13𝛼CH4 (𝑔)−CO2 (𝑔) and agreement with experimental determinations at over-
lapping temperatures provides confidence in using theory as a basis to extrapolate
experimental calibrations of 1000 × ln 13𝛼CH4 (𝑔)−CO2 (𝑔) to temperatures below the
experimentally calibrated range (<200°C).

An experimental determination of equilibrium 𝐷𝛼CH4 (𝑔)−H2O(𝑙) exists for temper-
atures from 200 to 500°C.140 This is not a direct determination based on co-
equilibration of CH4(𝑔) and H2O(𝑙); instead, they first equilibrated the hydrogen
isotopes of CH4 and H2 gas using nickel-thoria catalysts from 200 to 500°C and
derived a calibration for 𝐷𝛼CH4 (𝑔)−H2O(𝑙) vs. temperature. They then combined this
expression with other experimentally based estimates of equilibrium 𝐷𝛼H2O(𝑙)−H2 (𝑔)
values to derive an equation for 𝐷𝛼CH4 (𝑔)−H2O(𝑙) vs. temperature, noting that further
experiments were needed to constrain the temperature dependence of 𝐷𝛼CH4 (𝑔)−H2 (𝑔)
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and 𝐷𝛼CH4 (𝑔)−H2O(𝑙) at temperatures below their experimental range (<200°C).

Beyond the typical concerns of extrapolating experimentally derived equilibrium 𝛼

values outside of their calibrated range, the specific extrapolation of this calibration
of 𝐷𝛼CH4 (𝑔)−H2O(𝑙) to temperatures below 200°C has additional complexity. They
provide a fit to their data with 𝐷𝛼CH4 (𝑔)−H2O(𝑙) linearly dependent on 1

𝑇2 . However,
such a dependence for 𝐷𝛼CH4 (𝑔)−H2 (𝑔) is inconsistent with the calculations.90 Instead,
it is ln 𝐷𝛼CH4 (𝑔)−H2 (𝑔) that has a theoretically based dependence on 1/𝑇 . As such,
extrapolation of this calibration could lead to inaccurate values of 𝐷𝛼CH4 (𝑔)−H2 (𝑔) at
temperatures below 200°C.

One way around this would be to use the equilibrium theoretical estimates of
1000 × ln 𝐷𝛼CH4 (𝑔)−H2O(𝑙) vs. temperature are fit to experimental data and then
used as the basis for the extrapolation.164 This has not been attempted for this sys-
tem. The question is whether, as was seen above for the case of carbon isotope
equilibrium between CO2 and methane, current calculation are in agreement with
the experimental results at overlapping temperatures and if there is general agree-
ment in the temperature dependence of 1000 × ln 𝐷𝛼CH4 (𝑔)−H2 (𝑔) at temperatures
below those calibrated experimentally.

To our knowledge, no calculation of 1000 × ln 𝐷𝛼CH4 (𝑔)−H2O(𝑙) vs. temperature at
isotopic equilibrium exist. Instead, calculation for hydrogen isotopic equilibrium
between gaseous methane and water (i.e., 1000 × ln 𝐷𝛼CH4 (𝑔)−H2O(𝑔) exist and can
be converted to 1000 × ln 𝐷𝛼CH4 (𝑔)−H2O(𝑙) using the experimental calibration of
1000 × ln 𝐷𝛼H2O(𝑙)−H2O(𝑔) .167 We use the experimental (and not theoretical) gas-
liquid water calibration because it was used for higher temperatures,140 making
comparison of theory to their experimental calibration consistent. We are aware of
seven distinct theoretical estimates from four studies for 1000 × ln 𝐷𝛼CH4 (𝑔)−H2O(𝑔)
vs. temperature.90,130,144,166 In all studies, calculations were done at a minimum
temperature of 0°C and maximum temperatures equal to or greater than 500°C.
These theoretical studies disagree significantly from 0 to 200°C on the value of
1000 × ln 𝐷𝛼CH4 (𝑔)−H2O(𝑙) at isotopic equilibrium (Fig. 5.1). For example, at 0°C
there is a maximum disagreement of up to 159‰ between the theoretical studies
and up to 164‰ between the theoretical studies and the extrapolation of Horibe and
Craig’s calibration. This disagreement is also seen in the calculated temperature
dependence over this range (0 to 200°C): with differences up to 67‰ between
theoretical studies and up to 91‰ between theory and the extrapolation of Horibe
and Craig’s calibration. Thus, there is significant uncertainty (order 100‰) both on
the correct absolute values and temperature dependence of 1000×ln 𝐷𝛼CH4 (𝑔)−H2O(𝑔)
from 0 to 200°C. This uncertainty makes it challenging to confidently extrapolate
the calibration of Horibe and Craig to low (<200°C) temperatures based on theory.
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Figure 1: Published estimates of equilibrium 1000´lnDαCH4(g)-H2O(l) from 0 to 200°C. Theoretical estimates 2295 
are based on calculations of 1000´lnDαCH4(g)-H2O(g) that are converted to 1000´lnDαCH4(g)-H2O(l) using the 2296 
experimental calibration of 1000´lnDαH2O(l)-H2O(g) from Horita and Wesolowski (1994) — this is noted as 2297 
‘+ HW94’ when applied. HC95 (extrapolation) is the extrapolation of the equation given in Horibe and 2298 
Craig (1995) to temperatures below the range of their experiments (200-500°C). B69 is Bottinga (1969). 2299 
R77 is Richet et al. (1977), where (1) refers to the results where the excess factor X(CH4) was calculated 2300 
using a harmonic approximation, while R77 (2) refers to the use of an anharmonic approximation in this 2301 
calculation. LL16 is Liu and Liu (2016) using their notations where RPFR are calculations performed 2302 
assuming a harmonic oscillator approximation while “CPFR” (to use their terminology) includes higher 2303 
order corrections for anharmonicity, rotational-vibrational coupling, and other terms. G20 M06-L is M06-2304 
L calculated RPFR as presented in Gropp et al. (in press), while G20 HCTH is HCTH calculated RPFR 2305 
from the same work. B69, R77 (1), and R77 (2) are 4th order polynomial fits of 1000´lnDαCH4(g)-H2(g) vs. 2306 
1/T based on calculated values of RPFRs from the given study. 2307 

Figure 5.1: Published estimates of equilibrium 1000 × ln 𝐷𝛼CH4 (𝑔)−H2O(𝑙) from 0
to 200°C. Theoretical estimates are based on calculations of 1000 × ln 𝐷𝛼CH4 (𝑔)−H2O(𝑔)
that are converted to 1000 × ln 𝐷𝛼CH4 (𝑔)−H2O(𝑙) using the experimental calibration of
1000 × ln 𝐷𝛼H2O(𝑙)−H2O(𝑔) from [167] — this is noted as “+ HW94” when applied. HC95
(extrapolation) is the extrapolation of the equation given in Ref. [140] to temperatures below
the range of their experiments (200 to 500°C). B69 is Ref. [144]. R77 is Ref. [90], where (1)
refers to the results where the excess factor 𝑋CH4 was calculated using the harmonic approx-
imation, while R77 (2) refers to the use of an anharmonic approximation in this calculation.
LL16 is Ref. [130] using their notations where RPFR are calculations performed assum-
ing a harmonic oscillator approximation while “CPFR” (to use their terminology) includes
higher order corrections for anharmonicity, rotational-vibrational coupling, and other terms.
G20 M06-L is M06-L calculated RPFR as presented in [166], while G20 HCTH is HCTH
calculated RPFR from the same work. B69, R77 (1), and R77 (2) are 4th order polynomial
fits of 1000 ln 𝐷𝛼CH4 (𝑔)−H2 (𝑔) vs. 1/𝑇 based on calculated values of RPFRs from the given
study.
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This study
Here, we provide an experimentally based calibration of the equilibrium hydrogen
isotope fractionation factor for methane and H2 from 3 to 200°C. Based on previous
experimental determinations of hydrogen isotope equilibrium between H2, H2O(𝑔),
and H2O(𝑙), we provide an interpolatable calibration of 1000 × ln 𝐷𝛼CH4 (𝑔)−H2O(𝑙)
derived from experimental constraints from 3 to 200°C. We additionally provide new
theoretical estimates for hydrogen isotopes for 1000 × ln 𝐷𝛼

𝑒𝑞

CH4 (𝑔)−𝐻2 (𝑔) , 1000 ×
ln 𝐷𝛼

𝑒𝑞

CH4 (𝑔)−H2O(𝑔) , and 1000 × ln 𝐷𝛼
𝑒𝑞

H2O(𝑔)−H2 (𝑔) and carbon isotopes for 1000 ×
ln13 𝛼

𝑒𝑞

CH4 (𝑔)−CO2 (𝑔) based on the PIMC calculations. We compare these estimates to
our and other experimentally determined calibrations.

5.3 Methods
The experimental procedures are detailed in [99] — we only describe the theoretical
methodology here. calculation for isotopic equilibrium were based on calculations
of reduced partition function ratios for isotopologues with one rare isotope vs. the
unsubstituted molecule as described in section3.2. We calculated the RPFRs using
two distinct approaches: (i) using the BMU (harmonic) approach92,96 and (ii) using
the PIMC approach.3,86,102 In the harmonic approach, the total partition function is
assumed to factorize into vibrational, rotational and translational components; then
the vibrations are approximated as harmonic, rotations as rigid, and both rotations
and translations are assumed to be classical. The PIMC approach includes a fully
anharmonic and quantum mechanical description of the RPFRs and is thus a more
rigorous theoretical treatment as compared to harmonic calculations. Indeed, PIMC
calculations have been used to identify sources of error in harmonic calculations of
RPFRs.86,93

When computing RPFRs we neglected the effects of: (i) intermolecular interactions,
since the gases are dilute; (ii) electronic excitations, since the excited states are well-
separated for all the molecules considered here; (iii) internal structure of the nuclei;
and (iv) relativistic effects, since the molecules only contain light atoms.168

Potential energy surfaces and harmonic frequencies
In order to calculate an RPFR using either the harmonic or PIMC approach, the
PES of the molecule must first be specified. For the PIMC calculations, we
used published potentials for CH4, CO2, and H2O, and calculated ourselves the
surface for H2. These potential energy surfaces are referred to as “reference”
potentials. The potential for methane was taken from Ref. [133], where it was
calculated at the coupled-cluster level with single double excitations with triple
excitations included perturbatively (i.e., CCSD(T)) using correlation-consistent po-
larized triple zeta (cc-pVTZ) and quadruple zeta (cc-pVQZ) basis sets. The PES
for H2O(𝑔) was taken from [169], where it was computed at internally contracted
multireference configuration interaction (icMRCI) and CCSD(T) levels of theory
with augmented correlation-consistent polarized quintuple-zeta (aug-cc-pV5Z) and
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correlation-consistent polarized sextuple zeta (cc-pV6Z) basis sets and three-body
terms fitted to reproduce the experimental line positions in rovibrational spectra of
water. The carbon dioxide reference potential is a CCSD(T)/aug-cc-pVTZ surface
refined based on extrapolation to the one-particle basis set limit, corrections for
scalar relativity, higher-order electron correlations, and spectroscopic data from the
HITRAN2008 database from Ref. [170].

We calculated the PES for H2 using the Molpro software package (version 2019.2)
with CCSD (exact for the two-electron problem) and cc-pVQZ basis set. The one-
dimensional surface is obtained through spline interpolation between a dense set
of single point CCSD/cc-pVQZ energy calculations between 0.38 and 1.8 Å with
the interval of 0.005 Å. We tighten the energy and orbital convergence thresholds
to 10−16 and leave the other input parameters on standard settings. We have also
confirmed that larger basis sets (up to aug-cc-pV6Z) do not significantly change
hydrogen’s vibrational frequency (within ±3 cm-1). Energy outside the computed
range is approximated by the following fit:

𝐸 (𝑞) =
{
𝐸𝑒𝑞 + exp {−9.56(𝑞 − 𝑞0)} , 𝑞 < 0.38Å
𝐸∞ − exp {−1.85𝑞} , 𝑞 > 1.8Å

(5.1)

where energy is in units of Hartree, 𝐸𝑒𝑞 = −1.17379647 is the equilibrium (mini-
mum) energy, 𝐸∞ = −1 is the energy of two hydrogen atoms at infinite distance and
𝑞0 = 0.23 Å. The high vibrational frequency of hydrogen ensures that the molecule
only explores a tight range of molecular configurations around the equilibrium ge-
ometry, so we do not expect the accuracy of the fit above to influence computed
RPFRs. Harmonic calculations of RPFRs require only the determination of the

Molecule 𝜔1 𝜔2 𝜔3 𝜔4 𝜔5 𝜔6 𝜔7 𝜔8 𝜔9
CH4, [133] 1345.3 1345.3 1345.3 1570.4 1570.4 3036.2 3157 3157 3157

13CH4 1337 1337 1337 1570.4 1570.4 3036.2 3145.9 3145.9 3145.9
CH3D 1188 1188.09 1339.8 1508.1 1508.1 2285.2 3071.4 3156.8 3156.8

CO2, [170] 672.8 672.8 1353.5 2395.9
13CO2 653.7 653.7 1353.5 2327.8

H2O, [169] 1649.1 3832.7 3944.3 1649.1
HDO 1445.6 2824.3 3890.8 1445.6

H2 4403.4
HD 3814

Table 5.1: Reference harmonic frequencies used to compute reference harmonic RPFRs.

harmonic frequencies at an energy-minimized geometry. The numerical Hessian
is computed with 5- and 9-point stencil (in one and two dimensions, respectively)
around known minimum on the reference potential energy surfaces. We converged
the frequencies to 0.1 cm-1. We calculated harmonic frequencies (see Table 5.1),
obtained from the same reference potentials as used for the PIMC calculations. As
such, these RPFRs can be compared directly to PIMC results and used to quantify
the importance of anharmonic and quantum effects that are absent in the harmonic
treatment; we later refer to these harmonic RPFRs as “reference harmonic” lines.
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We also computed the harmonic frequencies from a variety of molecular structures
optimized using a hierarchy of levels of theory; these included the restricted Hartree-
Fock (RHF) method (a mean-field theory that does not take into account the electron-
electron correlations) along with three successively better approximations for the
correlation energy: second order Møller-Plesset perturbation theory (MP2) and
coupled-cluster with single and double excitations (CCSD), as well as CCSD(T),
where triple excitations are included perturbatively. These levels of theory were
paired with basis sets of various sizes (cc-pVXZ and aug-cc-pVXZ as defined
above, where X=D [double], T [triple], or Q [quadruple])171 using the Molpro
software package with the default settings. These calculations were done in order
to determine the sensitivity of our calculation of RPFRs to electronic correlations
and basis set completeness.

The RPFR of an isotopologue pair calculated using the harmonic approach is given
by Eq. (3.25) PIMC methodology is described in section. 3.3 The direct scaled-
coordinate estimator102 was used to calculate the RPFR’s for heavy vs. light
isotopologues. Heavy isotopologue configurations were sampled with PIMC in
Cartesian coordinates with an explicit staging transformation.31 The staging length,
𝑗 , was set such that 38-42% of all proposed staging moves are accepted. Prior to any
data collection, each sampling trajectory was equilibrated for 105 Monte Carlo steps,
with 𝑃/ 𝑗 staging moves (rounded up to the nearest integer) attempted per Monte
Carlo step. Thereafter, ring-polymer configurations were sampled every 10 Monte
Carlo steps. The total number of Monte Carlo moves for each partition function
ratio calculation was 2 × 108.

Aside from neglecting nuclear exchange, PIMC calculations give an exact answer
for RPFRs for a specified PES in the limit of infinite sampling and infinite number
of beads n. In practice, a finite number of beads can be chosen to achieve target
accuracy, while the number of samples controls statistical uncertainty. The number
of beads employed in the PIMC calculations was determined based on explicit
convergence tests for the individual RPFRs over the range of temperatures studied.
We ensured that the accuracy was within the standard error of the mean. This error
is reported for every PIMC calculation as a measure of statistical uncertainty.

Non-Born-Oppenheimer effects (i.e., inaccuracies associated with the use of the
Born-Oppenheimer approximation) are usually negligible compared to the those
inherent to the PES. However, diagonal Born-Oppenheimer corrections (DBO cor-
rections) can become important in high-accuracy electronic structure calculations
for small molecules.172,173 DBO corrections are lowest order perturbation-theory
corrections to the Born-Oppenheimer approximation that correct for the depen-
dence of the electronic wave function on the nuclear coordinates when calculating
the nuclear kinetic-energy contribution. We used the DBO corrections calculated174

at the CCSD level with aug-cc-pCVTZ (the augmented core-valence) basis set175,176

for molecules in optimized geometries. DBO corrections were assumed to be locally
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independent of the nuclear coordinates based on weak (<5 cm-1) dependence for hy-
drogen around equilibrium.177,178 With this assumption, the calculated energy shifts
associated with this correction affect the RPFRs via a free energy shift according to
Eq. (6.1)

While DBO corrections can become important for fractionation of isotopes of hy-
drogen between different chemical species, they vanish exactly179 for self-exchange
reactions, i.e., exchange reactions considered in86,93,98,180 (where all reactants and
products are isotopologues). Moreover, they can be neglected for heavy-atom frac-
tionation processes, since they decrease rapidly with increasing mass.

5.4 Results
t (°C) CH4 − H2 ±1 s.e.a H2O − H2 ±1 s.e. CH4 − H2O ±1 s.e.
0.98 1288.4 0.32 1395.2 0.34 -106.7 0.33
2.94 1275.3 0.37 1382.9 0.41 -107.6 0.25
9.9 1232.2 0.51 1341.2 0.48 -109.0 0.32

14.57 1203.6 0.38 1313.6 0.37 -110.0 0.22
25.4 1143.1 0.25 1256.1 0.27 -113.0 0.22
35.4 1091.1 0.31 1205.3 0.30 -114.3 0.29
50.9 1016.0 0.26 1133.5 0.30 -117.4 0.27
75.65 911.4 0.28 1032.0 0.28 -120.6 0.23
99.9 823.0 0.23 945.7 0.22 -122.7 0.25
127.4 736.6 0.22 860.8 0.19 -124.3 0.19
157.35 656.3 0.19 780.9 0.21 -124.7 0.19

180 603.1 0.18 727.9 0.23 -124.8 0.21
200.2 560.7 0.16 685.1 0.18 -124.4 0.16
203.35 554.4 0.16 678.6 0.16 -124.2 0.14
219.88 522.9 0.15 646.9 0.18 -124.1 0.15
264.07 450.2 0.12 571.8 0.13 -121.6 0.13
302.55 397.0 0.14 516.2 0.16 -119.2 0.13
364.58 327.3 0.10 441.8 0.13 -114.6 0.13

407 288.6 0.11 399.4 0.14 -110.8 0.14
458.1 249.9 0.11 356.0 0.12 -106.1 0.13
476.5 237.4 0.09 341.6 0.10 -104.2 0.10
503.4 220.6 0.08 322.3 0.10 -101.7 0.10

Table 5.2: DBO-corrected PIMC calculations of 1000 × ln 𝐷𝛼𝑒𝑞 for hydrogen isotopic
equilibrium between gaseous molecules.

aStandard error of the mean for each PIMC calculation is reported here as a measure of statistical
uncertainty only.
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t (°C) CH4(𝑔) − CO2(𝑔) ±1 s.e.a
1.85 -77.13 0.06
11.85 -73.09 0.06
26.85 -67.87 0.05
51.85 -60.30 0.05
76.85 -53.92 0.05
101.85 -48.60 0.04
126.85 -44.00 0.04
176.85 -36.59 0.03
226.85 -30.92 0.03
276.85 -26.42 0.01
326.85 -22.82 0.01
376.85 -19.87 0.01
426.85 -17.42 0.01
476.85 -15.39 0.01
526.85 -13.67 0.01
601.85 -11.58 0.01
801.85 -7.83 0.01
1001.85 -5.62 0.01
1301.85 -3.70 0.02

Table 5.3: DBO-corrected PIMC calculations of 1000 × ln 13𝛼𝑒𝑞 for carbon isotopic
equilibrium.

The results of PIMC calculations for hydrogen-isotope RPFRs vs. temperature
for CH4, H2, and H2O are given in Table 5.2 and the carbon-isotope RPFRs vs.
temperature for CH4 and CO2 in Table 5.3. In these tables, all given PIMC values
include DBO corrections; the differences between DBO-corrected and uncorrected
values are given in Tables 5.4. For hydrogen-isotope calculations, DBO corrections
are between -34 to -12‰ for 1000 × ln 𝐷𝛼

𝑒𝑞

H2O(𝑔)−𝐻2 (𝑔) , +12 to +34‰ for 1000 ×
ln 𝐷𝛼

𝑒𝑞

CH4 (𝑔)−H2O(𝑔) , and +0.1 to +0.3‰ for 1000×ln 𝐷𝛼
𝑒𝑞

CH4 (𝑔)−H2 (𝑔) from 0 to 500°C.
For carbon 1000 × ln 13𝛼

𝑒𝑞

CH4 (𝑔)−CO2 (𝑔) calculations, DBO corrections are between
-0.3 and -0.05‰ from 0 to 1300°C. For consistency, we use the DBO-corrected
PIMC values in all cases, even when the correction is minor.

Values of 1000× ln 𝐷𝛼𝑒𝑞 for CH4(𝑔) −𝐻2(𝑔), CH4(𝑔) −H2O(𝑔), H2O(𝑔) −H2(𝑔)
equilibria, as well as 1000 × ln 13𝛼

𝑒𝑞

CH4 (𝑔)−CO2 (𝑔) — all based on the DBO-corrected
PIMC calculations were fit as a function of 1/𝑇 using a 4th order polynomial (Fig. 5.2,
see Table 5.5 for the coefficients). Although ANOVA indicates higher order terms
are statistically significant (𝑝 < 0.05) in some cases, their inclusion changed values
of 1000 × ln𝛼 by less than 0.5‰ for hydrogen isotopes and less than 0.05‰ for
carbon isotopes in all cases across the calculated range in temperatures. We consider
this insignificant and limit the fits to 4th order terms for simplicity.
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T (°C) CH4/H2 CH4/H2O H2O/H2 T (°C) CH4/CO2
0.98 0.3 33.9 -33.5 1.85 -0.26
2.94 0.4 33.6 -33.3 11.85 -0.25
9.9 0.3 32.7 -32.4 26.85 -0.24

14.57 0.3 32.3 -31.9 51.85 -0.23
25.4 0.3 31.1 -30.8 76.85 -0.21
35.4 0.3 30 -29.8 101.85 -0.2
50.9 0.3 28.7 -28.3 126.85 -0.18
75.65 0.2 26.6 -26.3 176.85 -0.16
99.9 0.3 24.9 -24.6 226.85 -0.14
127.4 0.2 23.2 -23 276.85 -0.13
157.35 0.2 21.5 -21.4 326.85 -0.12

180 0.2 20.5 -20.3 376.85 -0.11
200.2 0.2 19.6 -19.4 426.85 -0.1
203.35 0.2 19.5 -19.3 476.85 -0.1
219.88 0.2 18.8 -18.7 526.85 -0.09
264.07 0.2 17.3 -17.1 601.85 -0.08
302.55 0.2 16.1 -16 801.85 -0.07
364.58 0.2 14.6 -14.4 1001.85 -0.06

407 0.1 13.6 -13.5 1301.85 -0.05
458.1 0.1 12.7 -12.6
476.5 0.1 12.4 -12.3
503.4 0.1 11.9 -11.9

Table 5.4: Effect of the DBO correction on 1000 × ln 𝐷𝛼𝑒𝑞 and 1000 × ln 13𝛼𝑒𝑞 values.
The value without the DBO correction is subtracted from the value with the DBO correction
and the result is shown in the table.

1000 × ln𝛼𝑒𝑞 1/𝑇4 (K-4) 1/𝑇3 (K-3) 1/𝑇2 (K-2) 1/𝑇 (K-1) const
CH4 − H2 3.6652E+12 -4.5802E+10 2.2230E+08 -1.4941E+04 -41.20
H2O − H2 2.2218E+12 -2.6028E+10 1.1628E+08 2.2826E+05 -115.00

CH4 − H2O 1.4611E+12 -1.9936E+10 1.0656E+08 -2.4396E+05 74.20
CH4 − CO2 -2.6547E+11 2.8888E+09 -1.3306E+07 1.8968E+03 -0.14

Table 5.5: Coefficients of 4th order polynomial fits to DBO-corrected PIMC calculations
of 1000 × ln𝛼𝑒𝑞 for the pairs of gases.

Determination of 𝐷𝛼𝑒𝑞CH4 (𝑔)−H2O(𝑙) vs. temperature at isotopic equilibrium
In order to calculate the equilibrium fractionation factor between CH4(𝑔) and liquid
water (𝐷𝛼𝑒𝑞CH4 (𝑔)−H2O(𝑙)) using our experimental calibration for 𝐷𝛼CH4 (𝑔)−H2 (𝑔) , it is
necessary to know 𝐷𝛼H2O(𝑙)−H2 (𝑔) as a function of temperature for an isotopically
equilibrated system. The hydrogen-isotope fractionation factor between gaseous
H2 and liquid water has been determined experimentally from 6 to 95°C.181 Ad-
ditionally, equilibrium hydrogen-isotope fractionation factors between gaseous H2
and water vapor (𝐷𝛼H2O(𝑔)−H2 (𝑔)) have been determined experimentally from 80
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 2542 
Figure A1: Results from DBO-corrected PIMC calculations for (A) 1000´lnDαCH4(g)-H2(g), (B) 2543 
1000´lnDαH2O(g)-H2(g), (C) 1000´lnDαCH4(g)-H2O(g), and (D) 1000´ln13αCH4(g)-CO2(g) vs. temperature (°C). Lines 2544 
are 4th order polynomial fits to the calculated data points vs. 1/T (K-1). Calculated values are given in 2545 
Tables 3 and 4. The terms for each best-fit line and the associated error is given in Table EA6. 2546 

Figure 5.2: DBO-corrected PIMC calculations of 1000× ln 𝐷𝛼 (A-C) and 1000× ln 13𝛼

(D) vs. temperature (°C). Lines are 4th order polynomial fits to the calculated data points
vs. 1/𝑇 (K-1). Calculated values are given in Tables 5.2 and 5.3. The terms for each best-fit
line are given in Table 5.5.

to 200°C182 and from 51 to 742°C.183 We use these experiments to construct a
calibration of 𝐷𝛼H2O(𝑙)−H2 (𝑔) as a function of temperature. To do this, we con-
vert experimentally determined values of 𝐷𝛼H2O(𝑔)−H2 (𝑔) to 𝐷𝛼H2O(𝑙)−H2 (𝑔) using the
experimentally based calibration for hydrogen isotopic equilibrium between water
vapor and liquid water (𝐷𝛼H2O(𝑙)−H2O(𝑔)).167

In order to calculate a fit to the experimental data vs. temperature, we first average
published experimental values of 1000×ln 𝐷𝛼H2O(𝑔)−H2 (𝑔) or 1000×ln 𝐷𝛼H2O(𝑙)−H2 (𝑔)
performed within 1°C of each other from a given study. We take these aver-
ages to prevent experiments replicated at the same temperature from having un-
due weight in our fits. Following this, we convert 1000 × ln 𝐷𝛼H2O(𝑔)−H2 (𝑔) to
1000 × ln 𝐷𝛼H2O(𝑙)−H2 (𝑔) using the polynomial fit (the first equation in the abstract
of167). Note that we only used data from for experiments performed below the
critical point of water (374°C). The compiled experimental data is displayed in
Fig. 5.3A. Generally, when experiments from different studies were performed over
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a similar temperature range (∼50 to 200°C), there is agreement between all three
studies. As previously noted181,184, two data points from [183] at 59 and 64°C differ
both from other data in that calibration as well as those from [181] over the same
temperature range. These points are noted in the figure and are omitted from our
calibration due to the apparent anomalous behavior.181

We initially calculated the temperature dependence of 1000 × ln 𝐷𝛼H2O(𝑙)−H2 (𝑔)
vs. 1/𝑇 (K-1) using a 4th order polynomial fit to the experimental data given
in Figure 5.3A. However, the best-fit line had multiple changes in concavity. In
contrast, theory predicts a smooth, concave up temperature dependence. We believe
this difference is due to the polynomial fit being influenced by the scatter of the
experimental data, which is approximately ±25‰ from 0 to 374°C.

In order to use the experimental data as a constraint on the temperature dependence of
1000×ln 𝐷𝛼H2O(𝑙)−H2 (𝑔) , but at the same time avoid fitting the experimental noise, we
do not directly regress these experimentally determined equilibrium 1000× ln𝛼 val-
ues vs. 1/𝑇 ; instead, we perform a least squares fit of the theoretical DBO-corrected
PIMC calculations to the experimental data, where only a constant (temperature-
independent) term is allowed to vary. This is done to ensure the theoretically
expected shape of the temperature dependence for 1000 × ln 𝐷𝛼H2O(𝑙)−H2 (𝑔) is pre-
served in the fit to the experimental data. To do this we combined our DBO-corrected
PIMC calculations of 1000×ln 𝐷𝛼

𝑒𝑞

H2O(𝑔)−H2 (𝑔) at the experimental temperatures with
those of 1000 × ln 𝐷𝛼H2O(𝑙)−H2 (𝑔) using the calibration of [167]. A constant offset
is then added to the theoretical values based on the least square fit to the experi-
ment. We then found the final equation for 1000 × ln 𝐷𝛼H2O(𝑙)−H2 (𝑔) as a function
of temperature as follows: we calculated 1000 × ln 𝐷𝛼

𝑒𝑞

H2O(𝑔)−H2 (𝑔) based on our 4th

order fits to DBO-corrected PIMC calculations from 0 to 374°C at 0.1°C intervals,
added the offset term found above, and then added the 1000 × ln 𝐷𝛼H2O(𝑙)−H2O(𝑔)
value calculated at that temperature based on the calibration of [167]. We then fit a
4th order polynomial to these points. This yielded the following equation, which is
explicitly valid from 6.7 to 357°C (i.e., the experimental temperature range):

1000 × ln 𝐷𝛼H2O(𝑙)−H2 (𝑔) =
7.9443×1012

𝑇4 − 8.7772×1010
𝑇3 + 3.8504×108

𝑇2 − 2.6650×105

𝑇
+ 202.57.

(5.2)

The PIMC calculations were offset by 0.49‰ (± 1.91‰, 1 s.e.) to fit the experimental
data (Fig. 5.3C). Although the offset required for the DBO-corrected PIMC fit is
within 1 s.e. of 0, we still apply this offset (0.49‰) in Eq. (5.2) for consistency. For
this fit, the standard deviation of the residual from all experiments is 12.3‰. The
mean and ±1𝜎 of residuals vs. Eq. (5.2) for each individual published data set are:
1.3 ± 5.2‰ for [182], -2.6 ± 15.4‰ for [183] and 2.3 ± 10.1‰ for [181] (Fig. 5.3B).
Finally, we note that inclusion of the two omitted data points from [183] discussed
above changes the constant term added to our PIMC calculations by -2.7‰ (-2.16‰
vs. 0.49‰).
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 2327 
Figure 4: (A) Experimental and theoretical determinations of equilibrium 1000´lnDαH2O(l)-H2(g) vs. 1000/T 2328 
(K-1). Theoretical estimates are calculations from Bottinga (1969) (B69); Bron et al. (1973) (BCW73); 2329 
Bardo and Wolfsberg (1976) (BW76); Richet et al. (1977) (R77); and Gropp et al. (in press) (G20 M06-L; 2330 
G20 HCTH). Experimental data are given as averages, as discussed in Section 3.4. Experimental data 2331 
from Suess (1949) (S49) and Cerrai et al. (1954) (C54) were measured as 1000´lnDαH2O(g)-H2(g) and 2332 
transformed to 1000´lnDαH2O(l)-H2(g) using the experimental calibration of 1000´lnDαH2O(l)-H2O(g) vs. 2333 
temperature from Horita and Wesolowski (1994) (HW94). Data from Rolston et al. (1976) (R76) are 2334 
direct experimental determinations of 1000´lnDαH2O(l)-H2(g). Two data points from Cerrai at al. (1954) are 2335 
excluded from our fits to the experimental data (red triangles; see discussion in Section 3.5). (B) 2336 
Differences between theoretical calculations and experimental data vs. our PIMC adjusted (‘adj’) best-fit 2337 
line to the experimental data (eq. 8; PIMC + HW94 adjusted). Same legend as (A). This best-fit line was 2338 
found by offsetting the DBO-corrected PIMC calculation (given as PIMC + HW94) with a constant term 2339 
of +0.49‰. Errors for data from Suess (1949 and Cerrai et al. (1954) are as reported in the original study. 2340 
For Rolston et al. (1976), error bars are ±1σ based on replicate measurements, and where not replicated, 2341 
±10‰ as estimated within the reference. (C) Differences relative to the DBO-corrected PIMC adj fit for 2342 
harmonic (‘reference harmonic’ line; see Section 2.5.1), non-DBO-corrected PIMC, and DBO-corrected 2343 
PIMC adj (offset by 0.49‰ to fit the experimental data) fits, as well as experimental data. 2344 

2345 

A

B

C

Figure 5.3: Comparison of the experimental and theoretical determinations of equi-
librium 1000 × ln 𝐷𝛼H2O(𝑙)−H2 (𝑔) to our PIMC adjusted (“adj”) best-fit line to the
experimental data ). Theoretical estimates are as follows: B69 [144], BCW73 [185],
BW76 [184],R77 [90] and G20 M06-L as well as G20 HCTH from [166]. Experimental
data are S49 from [182] and C54 from [183] were measured as 1000 × ln 𝐷𝛼H2O(𝑔)−H2 (𝑔)
and transformed to 1000 × ln 𝐷𝛼H2O(𝑙)−H2 (𝑔) using Ref. [167].
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 2346 
Figure 5: 1000´lnDαCH4(g/aq)-H2O(l) vs. temperature from this study and from Horibe and Craig (1995) [HC95 2347 
(extrapolation)]. Dotted and dashed lines indicate extrapolations beyond experimentally calibrated 2348 
temperatures. 2349 Figure 5.4: Comparison of 1000 × ln 𝐷𝛼CH4 (𝑔/𝑎𝑞)−H2O(𝑙) vs. temperature from this

study and from [140], labelled as HC95 (extrapolation). Dotted and dashed lines indicate
extrapolations beyond experimentally calibrated temperatures.

The residuals of fits show no obvious pattern either as a function of temperature
or study, scattering about a value of 0‰ within error for all studies (Fig. 5.3B
and C). This indicates that the experiments and theory agree in terms of the ex-
pected temperature dependence and justifies our approach to using the theoretical
temperature dependence as a basis for our fit to the experiments. Additionally, it
shows that experiments from different studies are in agreement when they over-
lap in temperature. We note that this is in contrast with the conclusions of [140]
and [119]. They considered these experimental calibrations to be in disagree-
ment at high temperatures (>300°C)140 and low temperatures (<100°C).119 In Fig-
ure 5.3A, B, and C, we also include other calculation and experimental values of
1000 × ln 𝐷𝛼H2O(𝑙)−H2 (𝑔) .90,144,166,184,185.

Determination of 𝐷𝛼CH4 (𝑔)−H2O(𝑙) and of 𝐷𝛼CH4 (𝑎𝑞)−H2O(𝑙) as a function of tem-
perature at isotopic equilibrium
We derived an equation for 1000 × ln 𝐷𝛼CH4 (𝑔)−H2O(𝑙) vs. 1/𝑇 (K-1) at isotopic
equilibrium by subtracting our Eq.( 5.2) from our experimental equation for 1000×
ln 𝐷𝛼CH4 (𝑔)−H2 (𝑔) (Eq. 5.3):

1000 × ln 𝐷𝛼CH4 (𝑔)−H2 (𝑔) =
3.5317 × 107

𝑇2 + 2.7749 × 105

𝑇
− 179.48. (5.3)
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This yields Equation (5.4) that can be interpolated from 3 to 200°C (Fig. 5.4).

1000 × ln 𝐷𝛼CH4 (𝑔)−H2O(𝑙) = −7.9443×1012

𝑇4 + 8.7772×1010

𝑇3 − 3.4972×108

𝑇2 + 5.4399×105

𝑇
− 382.05.

(5.4)

We use 3°C as our lower limit as this is the lowest temperature at which the hydrogen
isotopes of CH4 and H2 were equilibrated experimentally. We note that the lowest
temperature available for H2O(𝑙) − H2(𝑔) hydrogen isotope equilibrium is 6.7°C.
However, as our calibration of 1000 × ln 𝐷𝛼H2O(𝑙)−H2 (𝑔) is based on a theoretical
fit to the experimental data, we consider it acceptable to use Eq. (5.4) to calculate
equilibrium 1000 × ln 𝐷𝛼CH4 (𝑔)−H2O(𝑙) values from 3 to 200°C.

Finally, CH4 is found in the environment both as a gas and dissolved in water. An
experimental determination of equilibrium 𝐷𝛼CH4 (𝑎𝑞)−CH4 (𝑔) values can be derived
from experimental determinations of 1000 × ln(CD4/CH4) in gas vs. liquid given
in [186] from 12-51°C. If we assume a random hydrogen isotopic distribution,
the 4th root of gaseous or dissolved CD4/CH4 ratios allows for the calculation of
equilibrium 1000 × ln 𝐷𝛼CH4 (𝑎𝑞)−CH4 (𝑔) values. These solubility isotope effects
show no apparent temperature dependence from 12-51°C —- linear regression of
1000 × ln 𝐷𝛼CH4 (𝑎𝑞)−CH4 (𝑔) vs. 1000/𝑇 (K-1) yields a slope of -1.3 ± 2.6 (1 s.e.).
Based on this, we assume the value of 1000 × ln 𝐷𝛼CH4 (𝑎𝑞)−CH4 (𝑔) from 12 to 51°C
is constant and equal to 4.2 ± 0.4‰ (1 s.e.). This is the average of the experimental
determinations of 1000 × ln 𝐷𝛼CH4 (𝑎𝑞)−CH4 (𝑔) at all temperatures.

Incorporating this isotope effect into Eq. (5.4) yields the following equation for
1000 × ln 𝐷𝛼CH4 (𝑎𝑞)−H2O(𝑙) vs. 1/𝑇 (K-1) at isotopic equilibrium:

1000 × ln 𝐷𝛼CH4 (𝑎𝑞)−H2O(𝑙) = −7.9443×1012
𝑇4 + 8.7772×1010

𝑇3 − 3.4972×108

𝑇2 + 5.4399×105

𝑇
− 386.25.

(5.5)
This equation can be interpolated from 12-51°C (Fig. 5.4).

Determination of 13𝛼CH4 (𝑔)−CO2 (𝑔) and 13𝛼CH4 (𝑎𝑞)−CO2 (𝑎𝑞) at isotopic equilibrium
as a function of temperature
Here we present equations for carbon isotopic equilibrium between CH4(𝑔) and
CO2(𝑔) and between CH4(𝑎𝑞) and CO2(𝑎𝑞) vs. temperature. We are aware of two
studies experimentally determined the equilibrium fractionation factors between
CH4(𝑔) and CO2(𝑔) (13𝛼CH4 (𝑔)−CO2 (𝑔)).162,163 Between these two studies, experi-
mentally determined values of 13𝛼CH4 (𝑔)−CO2 (𝑔) for isotopic equilibrium are available
from 200 to 1200°C and are in agreement (within 0.01 to 1.01‰) where experiments
overlap in temperature (300 to 600°C).

We are interested here in values for 13𝛼CH4 (𝑔)−CO2 (𝑔) at isotopic equilibrium at
temperatures <200°C, i.e., overlapping the temperature range of the CH4 − H2
equilibration experiments performed in this study. As no experimental calibrations
are available at these temperatures, we estimate these values using the approach
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 2547 
Figure A2: 1000´ln13αCH4(g)-CO2(g) vs. temperature (°C), showing estimates for 1000´ln13αCH4(g)-CO2(g) from 2548 
published experimental fits (Kueter et al., 2019, (K19)), theory (Craig, 1953 (C53); Bottinga, 1969 (B69); 2549 
Richet et al., 1977 (R77); Chen et al., 2019 (C19); Thiagarajan et al., 2020 (T20); Gropp et al., in press 2550 
(G20 M06-L)), new theoretical calculations done in this study (PIMC (PIMC, adjusted)), and 2551 
experimental data used to adjust the theoretical fits, as discussed in Section 3.8 (Horita, 2001; Kueter et 2552 
al., 2019). (B): Difference between 1000´ln13αCH4(g)-CO2(g) from the various studies vs. our adjusted PIMC 2553 
line. Craig (1953) is off scale. Error is 1 s.e.; when not shown, error is smaller than symbol. 2554 

 2555 

Figure 5.5: 1000 × ln 13𝛼CH4 (𝑔)−CO2 (𝑔) from published experimental fits: [163] (K19),
theory [159] (C53), [144] (B69); [90] (R77), [165] (C19), [155] (T20) and [166] (G20 M06-
L), new calculation done in this study (PIMC, adjusted), and experimental data used to adjust
the theoretical fits, as discussed.162,163 (B) Difference between 1000 × ln 13𝛼CH4 (𝑔)−CO2 (𝑔)
from the various studies vs. our adjusted PIMC line. [159] is off scale. Error is 1 s.e.; when
not shown, error is smaller than symbol.

discussed above in which a theoretical calibration is offset to fit the experimental
data and used as the basis for extrapolations to lower temperatures.164 Specifically,
we use the fourth order polynomial fit of 1000 × ln13 𝛼CH4 (𝑔)−CO2 (𝑔) vs. 1/𝑇 (K-1)
to our theoretically calculated points, and then fit these curves to the experimental
data using a constant offset to minimize the sum of square residuals as above. This
results in the following equation (Fig. 5.5):

1000 × ln 13𝛼CH4 (𝑔)−CO2 (𝑔) = −2.6636×1011
𝑇4 + 2.8883×109

𝑇3 − 1.3292×107

𝑇2 + 1.7783×103

𝑇
− 0.70.

(5.6)

For our DBO-corrected PIMC calculations, the theoretical curve is decreased by
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0.56‰ (±0.12‰, 1 s.e.) to fit the experimental data. Uncorrected PIMC calculations
yield an offset of 0.94‰ (±0.08‰, 1 s.e.).

We account for isotope effects associated with the dissolution of CO2 and methane
in water using the experiments from [187] in which CO2(𝑔) and CO2(𝑎𝑞) were
equilibrated from 0 to 60°C. We refit the data in terms of 1000× ln13 𝛼CO2 (𝑎𝑞)−CO2 (𝑔)
vs. 1/𝑇 (K-1) (the fit was originally given as 1000 ×

(13𝛼CO2 (𝑎𝑞)−CO2 (𝑔) − 1
)

vs.
T(°C)) to allow for the interconversion of ln𝛼 calibrations of various species via
addition (or subtraction) of polynomial terms. This refit results in the following
equation:

1000 × ln 13𝛼CO2 (𝑎𝑞)−CO2 (𝑔) = −
378.46
𝑇

+ 0.2016. (5.7)

For methane, [188] provides values for experimental determinations of 1000 ×
ln 13𝛼CH4 (𝑎𝑞)−CH4 (𝑔) at isotopic equilibrium at 20, 50, and 80°C that were originally
presented in [189]. We used this data to find the following equation:

1000 × ln 13𝛼CH4 (𝑎𝑞)−CH4 (𝑔) =
485.54
𝑇

− 1.0453 (5.8)

Combination of Eqs. (5.6), (5.7) and (5.8) yields the following equation for carbon
isotopic equilibrium between aqueous CH4 and CO2:

1000 × ln 13𝛼CH4 (𝑎𝑞)−CO2 (𝑎𝑞) = −2.6636×1011

𝑇4 + 2.8883×109

𝑇3 − 1.3292×107

𝑇2 + 2.6423×103

𝑇
− 1.95

(5.9)

This resulting equation is interpolatable from 20 to 60°C.

5.5 Discussion
In Figure 5.4, we compare our experimentally based calibration of 𝐷𝛼CH4 (𝑔)−H2O(𝑙)
for isotopic equilibrium to the experimentally based calibration of [140] for tem-
peratures from 0 to 200°C. Over this temperature range, the two calibrations show
disagreement, the magnitude of which increases with decreasing temperature. For
example, at 3°C (our lowest temperature experiment), the two calibrations disagree
by 76‰. Our calibration indicates that methane formed in the near-surface (for ex-
ample, 0 to 50°C) should be between ∼200‰ and ∼175‰ lower in 𝛿𝐷 compared
to the source waters vs. ∼275‰ to ∼220‰ based on the calibration of [140].

Comparison of our experimentally determined 1000 × ln 𝐷𝛼CH4 (𝑔)−H2 (𝑔) frac-
tionation factor to calculation
In Figure 5.6C, we compare the differences between 1000 × ln 𝐷𝛼CH4 (𝑔)−H2 (𝑔) pre-
dicted based on the best-fit line to our experimental data (Eq. 5.3) vs. those from
previous theoretical studies, our PIMC calculations, and the extrapolation of the
calibration given by [140]. Visually, our theoretical PIMC calculations for isotopic
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 2351 
Figure 6: (A) Comparisons of determinations of 1000´lnDαCH4(g)-H2(g) from this study vs. from Horibe and Craig (1995) (HC95). (B) Experimental 2352 
determinations of 1000´lnDαCH4(g)-H2(g) vs. temperature (°C) from this study and Horibe and Craig (1995) (HC95) from 150 to 275°C. Lines are 2353 
linear extrapolations vs. 1/T (K-1) through the given points and are provided as guidance. The 22.9‰ offset between the two studies at 200°C is 2354 
also observed at lower and higher temperatures as seen by the extrapolations. (C) Relative differences of 1000´lnDαCH4(g)-H2(g) between various 2355 
theoretical calculations and the extrapolation of HC95 vs. the best-fit line to our data (eq. 6). HC95 (extrapolation) is the extrapolation of the 2356 
equation given in Horibe and Craig (1995; eq. 7 of that study) to temperatures below 200°C; B69 is Bottinga (1969); R77 is Richet et al. (1977), 2357 
where (1) represents and estimate where the excess factor X(CH4) is calculated using a harmonic approximation while R77 (2) indicates an 2358 
anharmonic approximation. G20 M06-L is M06-L calculated RPFR as presented in Gropp et al. (in press), while G20 HCTH is HCTH calculated 2359 
RPFR from the same work. “this study, PIMC” is the polynomial fit to the DBO-corrected PIMC theoretical calculations presented here. For the 2360 
theoretical studies, the presented lines are 4th order polynomial fits of 1000´lnDαCH4(g)-H2(g) vs. 1/T based on calculated values of RPFRs from the 2361 
given study. Error bars for experimental points shown are ±1 s.e. and are smaller than the symbol when not shown. 2362 

Figure 5.6: Comparisons of 1000 × ln 𝐷𝛼CH4 (𝑔)−H2 (𝑔) (A) from this study vs. from
Ref. [140] (HC95). (B) Experimental determinations vs. temperature (°C) from this study
and Ref. [140] (HC95) from 150 to 275°C. Lines are linear extrapolations vs. 1/𝑇 (K-1)
through the given points and are provided as guidance. The 22.9‰ offset between the
two studies at 200°C is also observed at lower and higher temperatures as seen by the
extrapolations. (C) Relative differences between various calculation and the extrapolation
of HC95 vs. the best-fit line to our data (Eq. 5.3). HC95 (extrapolation) is the extrapolation
of the equation given in Ref. [140], (Eq. 7 of that study) to temperatures below 200°C; B69
is from [144], R77 is from [90], where (1) represents and estimate where the excess factor
𝑋CH4 is calculated using a harmonic approximation while R77 (2) indicates an anharmonic
approximation. G20 M06-L is M06-L and HCTH are from Ref. [166]. “this study, PIMC” is
the polynomial fit to the DBO-corrected PIMC calculation presented here. For the theoretical
studies, the presented lines are 4th order polynomial fits of 1000 × ln 𝐷𝛼CH4 (𝑔)−H2 (𝑔) vs.
1/𝑇 based on calculated values of RPFRs from the given study. Error bars for experimental
points shown are ±1 s.e. and are smaller than the symbol when not shown.

equilibrium best match our experimental data. For example, the largest disagree-
ment between the fit to the PIMC calculations and the fit to the experimental
data is 7‰, at 3°C (disagreement between individually calculated and measured
points is up to 16.5‰). We show this agreement quantitatively with a plot of
1000 × ln 𝐷𝛼

𝑒𝑞

CH4 (𝑔)−H2 (𝑔) of PIMC calculations vs. our experiments performed at
same temperature (Fig. 5.7). The slope of the best-fit line is 0.986 ± 0.009 (1
s.e.) with an intercept of 10.99 ± 8.81 (1 s.e.). Thus, these determinations of
1000 × ln 𝐷𝛼CH4 (𝑔)−H2 (𝑔) agree within 2 s.e. of the 1:1 line both in slope and in-
tercept. Put another way, satisfyingly, our experimental results agree 1:1 with our
calculation at the highest levels of theory (PIMC with DBO corrections) as yet
employed for these calculations.

Other calculation of 𝐷𝛼CH4 (𝑔)−H2 (𝑔) also visually agree with our experimental data,
although not as closely as the calculations presented in this work. These include
one set of calculations from [90] in which 𝑋CH4 , their so-called “excess factor,”
is calculated using a harmonic approximation (labeled as R77 (1) in Fig. 5.6C),
which shows a maximum difference of 18‰ vs. the fit to our experimental data.
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 2364 
Figure 7: (A) Comparison of DBO-corrected PIMC theoretical calculations of 1000´lnDαCH4(g)-H2(g) vs. our 2365 
experimental results. The best-fit line yields a slope of 0.986 ± 0.009 (1 s.e.) and intercept of 10.99 ± 8.81 2366 
(1 s.e.). Thus, the two are in 1:1 agreement within 2 s.e. (B) Deviations of theoretical calculations vs. 2367 
experimental determinations of 1000´lnDαCH4(g)-H2(g) relative to a 1:1 line. Shading indicates 95% 2368 
confidence interval for the linear fit. Y-axis error bars are 1 s.e. error for both PIMC and our experimental 2369 
data propagated in quadrature. 1 s.e. errors smaller than the size of the symbol are omitted (which 2370 
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Figure 5.7: Comparison of DBO-corrected PIMC calculation of 1000 ×
ln 𝐷𝛼CH4 (𝑔)−H2 (𝑔) vs. our experimental results. The best-fit line yields a slope of
0.986 ± 0.009 (1 s.e.) and intercept of 10.99 ± 8.81 (1 s.e.). Thus, the two are in 1:1
agreement within 2 s.e. (B) Deviations of calculation vs. experimental determinations of
1000 × ln 𝐷𝛼CH4 (𝑔)−H2 (𝑔) relative to a 1:1 line. Shading indicates 95% confidence interval
for the linear fit. Y-axis error bars are 1 s.e. error for both PIMC and our experimental
data propagated in quadrature. 1 s.e. errors smaller than the size of the symbol are omitted
(which includes all error in the X-axis in addition to several Y-axis error bars)



92

 80 

 2561 
Figure A4: (A) 1000´ln13αCH4(g)-H2(g) vs. 1000/T (K-1) of the DBO-corrected PIMC polynomial fit from this 2562 
study, experimental data from this study, and experimental data from Horibe and Craig (1995) (HC95). 2563 
(B) Zoom-in showing just HC95 data and the PIMC fit from this study. Note the offset between HC95 2564 
data and the theoretical line. (C) Difference plot of data from this study and from HC95 relative to PIMC 2565 
calculations from this study. The PIMC calculations were done at the same experimental temperatures for 2566 
both our experimental results and those from Horibe and Craig (1995). Error bars are 1 s.e.. 2567 
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Figure 5.8: Comparison of 1000×ln 13𝛼CH4 (𝑔)−𝐻2 (𝑔) from this study to the experimental
data from [140] (HC95). (B) Zoom-in showing just HC95 data and the PIMC fit from this
study. Note the offset between HC95 data and the theoretical line. (C) Difference plot of data
from this study and from HC95 relative to PIMC calculations from this study. The PIMC
calculations were done at the same experimental temperatures for both our experimental
results and those from Ref. [140]. Error bars are 1 s.e.

Additionally, recent calculations differ from the fit to our experimental data by
at most +34‰ (referred to by them as M06-L) or -26‰ (referred to by them as
HCTH).166 The other theoretical calibrations show larger differences: the curve for
the calculations from [144] is up to 95‰ greater than the fit to our experimental
data, while that from [90] in which 𝑋CH4 is calculated with anharmonic corrections
(labeled as R77 (2) in Fig. 5.6C) is up to 87‰ lower.

Finally, in Figure 5.8 we compare 1000 × ln 𝐷𝛼CH4 (𝑔)−H2 (𝑔) from [140] vs. our
DBO-corrected PIMC results. Data from [140] are offset to lower values than those
based on theory from 18 to 37‰. In addition to the offset itself, the degree of offset
is a function of temperature (increasing with increasing temperature) indicating that
there is a difference in the temperature dependence between PIMC calculations from
this study and the data from [140].
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Comparison of experimental vs. theoretical 1000× ln 𝐷𝛼H2O(𝑙)−H2 (𝑔) for isotopic
equilibrium
Calculations of equilibrium 1000× ln 𝐷𝛼H2O(𝑙)−H2 (𝑔) values are compared to experi-
mental data as a function of temperature in Fig. 5.3. We note that in all cases, calcula-
tions are for 1000× ln 𝐷𝛼H2O(𝑔)−H2 (𝑔) and are converted to 1000× ln 𝐷𝛼H2O(𝑙)−H2 (𝑔)
using the experimental calibration of equilibrium 𝛼H2O(𝑙)−H2O(𝑔) values.167 Our
calculations of equilibrium 1000 × ln 𝐷𝛼

𝑒𝑞

H2O(𝑙)−H2 (𝑔) values based on the PIMC
methodology with the DBO correction are in close agreement with the experimental
data. Using the minimization scheme described above (Fig. 5.3), the DBO-corrected
PIMC calculations are offset by 0.49‰ from the experimental data. In contrast, we
observe a +24.5‰ offset between PIMC calculations without the DBO correction
and experimental data. Additionally, the harmonic RPFR calculated here using the
same reference potentials (“reference harmonic” line) as used for PIMC calculations
is offset by +54.4‰ from the experimental data. Offsets between experiments and
other calculations which include anharmonic corrections to harmonic RPFRs are as
follows: +2.7‰ from [144]; +21.1‰ for [185], -16.3‰ for [90], and +6.1‰ from
[184]. Calculations presented in [166], which do not include anharmonic correc-
tions, are offset by +32.9‰ (M06-L) and +21.0‰ (HCTH) from the experimental
data. We note that the calculations presented in [184] also include an adiabatic
correction to the Born-Oppenheimer (B-O) approximation,105,190 which is just a
different name for the same correction as the DBO correction presented in this
work. Here, we base our correction off of values calculated by174, which are based
on more rigorous levels of theory and larger basis sets.

The observed differences between the various calculations vs. experimentally mea-
sured values of equilibrium fractionation factors may be due to inaccuracies in
calculations or aspects of the experiments. We note that as the calculations do
not all agree for a given set of molecules, they cannot all be accurate. Here we
examine the sensitivity of calculated RPFRs to a range of factors, including: (i)
level of electronic structure theory; (ii) vibrational anharmonicity; and (iii) DBO
corrections.

Accuracy of the electronic structure method
Accurate calculations of RPFRs necessarily require the use of accurate potential
energy surfaces. However, obtaining accurate potential energy surfaces remains
challenging even for the small molecules we are investigating. For the PIMC
calculations we used high-quality reference potentials as described in Section 5.3.
However, these potentials are not exact, and small inaccuracies in electronic energy
could result in inaccurate RPFRs. There are two issues that need to be addressed to
validate the accuracy of these potentials: electronic correlation effects and basis set
completeness (i.e., achieving the complete basis set or CBS limit).

We explored the magnitude of the error resulting from the inaccuracies in reference
potentials at equilibrium geometry as follows. Harmonic RPFRs were computed
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using Eq. (3.25) based on the normal mode frequencies obtained with either in-
creasingly refined treatment of electronic correlation using the same basis set or
using the same electron-correlation treatment with increasing basis set size. These
calculations were then compared to the harmonic result, obtained using the ref-
erence potentials. We interpret convergence of harmonic RPFRs with respect to
the level of theory or basis set size to indicate sufficient accuracy of the electronic
structure methods. Finally, the level of agreement between the converged result and
that obtained from the reference harmonic potentials is used as an estimate of the
possible size of inaccuracies that result from the reference potentials used in this
study (Section 5.3).

We computed the harmonic frequencies using the RHF, MP2, CCSD, CCSD(T)
levels of theory (abbreviations defined in Section 5.3; H2 cannot be calculated at
CCSD(T) level, as it is exact as CCSD). For these calculations, we used the same
high-quality basis set (aug-cc-pVQZ) throughout. For the basis set convergence
test, harmonic frequencies were computed at the CCSD(T) level of theory using the
following standard and augmented correlation-consistent polarized valence basis
sets: cc-pVXZ and aug-cc-pVXZ. Here X denotes the progression of the basis
set size: D for double-, T for triple- and Q for quadruple-𝜁 .171,175 The electron-
electron correlation test results are given in Figure 5.9 and the basis set size test
results in Figure 5.10. We plot 𝛿RPFR on the y-axis, where 𝛿RPFR = 1000 ×
ln (𝑅𝑃𝐹𝑅𝑋/𝑅𝑃𝐹𝑅reference) and is reported in ‰. 𝑋 denotes the value of the variable
tested and the reference is the RPFR calculated using harmonic frequencies from the
same PES as used in the PIMC calculations (the so-called reference harmonic lines;
Section 5.3). This choice of reference is not meant to indicate that the reference
results are necessarily the most accurate but is used simply for the purpose of
comparison. The RHF results in Figure 5.10 are scaled down by a factor of 10 in
order to fit on the same axis. Focusing first on carbon isotopes (panels D and E
of Figs. 5.9 and 5.10), RPFR values converge to ±3‰ at low (25°C) temperatures
and to less than 1‰ above 300°C once the MP2 level and triple-𝜁 basis set size are
reached. These differences are similar in magnitude to the disagreement between the
DBO-corrected PIMC calculations and experimental values (∼0.56‰), suggesting
that disagreements of this size could be due to inaccuracies in the reference potential
energy surfaces.

Turning to hydrogen isotopes, RPFR calculations for H2 converge to ±3‰ at triple-
𝜁 (recall that CCSD treatment is exact for H2). In contrast, for H2O and CH4 we
observe changes of up to 35‰ for H2O and 20‰ for CH4 at 0°C in calculated RPFRs
from CCSD to CSSD(T) (panels 5.9B, 5.9C). There is better (<4‰ difference)
agreement between the CCSD(T) and reference calculations for H2O and CH4.
However, the reference calculations for both molecules are also done at the CCSD(T)
level, though for the case of water, icMRCI and experimental data are used as well
— regardless these similarities may result in some of the agreement seen between
at the CCSD(T) level and reference results. Basis set size does not influence CH4
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Figure 8: Changes in deuterium (A-C) and 13C (D-E) RPFRs with increasing level of correlation treatment 2373 
at fixed basis set size (aug-cc-pVQZ) within the harmonic approximation, relative to harmonic 2374 
calculations using the reference potentials, denoted as ‘ref’ as described in Section 2.5.1 and given as 0 on 2375 
the y-axis. As noted in Section 4.5.1, y-axis is 1000×ln(RPFRX/RPFRref) in each case, where X is the level 2376 
of correlation treatment used. Note that the RHF treatment is scaled down by a factor of 1/10. We note 2377 
that CCSD(T) calculations are not shown in (A) as they are identical to CCSD for H2. 2378 
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Figure 5.9: Changes in deuterium (A-C) and 13C (D-E) RPFRs with increasing level of
correlation treatment at fixed basis set size (aug-cc-pVQZ) within the harmonic approxima-
tion, relative to harmonic calculations using the reference potentials, denoted as “ref” as de-
scribed in Section 5.3 and given as 0 on the y-axis. The y-axis is 1000×ln(RPFR𝑋/RPFRref)
in each case, where 𝑋 is the level of correlation treatment used. Note that the RHF treatment
is scaled down by a factor of 1/10.
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 2380 
Figure 9: Changes in deuterium (A-C) and 13C (D-E) RPFRs with increasing basis set size at the same 2381 
level of theory (CCSD(T)) within the harmonic approximation, relative to harmonic calculations using the 2382 
reference potentials, denoted as ‘ref’ as described in Section 2.5.1 and given as 0 on the y-axis. As noted 2383 
in Section 4.5.1, y-axis is 1000×ln(RPFRX/RPFRref) in each case, where X is the basis set used.2384 
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Figure 5.10: Changes in deuterium (A-C) and 13C (D-E) RPFRs with increasing
basis set size at the CCSD(T) level of theory within the harmonic approximation, relative
to harmonic calculations using the reference potentials, denoted as “ref” as described in
Section 5.3 and given as 0 on the y-axis. The y-axis is 1000 × ln(RPFR𝑋/RPFRref in each
case, where X is the basis set used.
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results (panel 5.10C) by more than 3‰ at triple-𝜁 or above. In contrast, for water
(panel 5.10B), increasing from cc-pVQZ to aug-cc-pVQZ results in changes of up
to 12‰ at 0°C. These results indicate that for CH4 and H2O, the calculations at
the CCSD(T) level and cc-pVQZ have not converged to insignificant (sub per mil)
levels. However, without still higher-level electronic structure calculations, precise
estimates of errors are difficult to make for CH4 and H2O.

Influence of anharmonicity and other quantum effects on RPFRs
Here we discuss the importance of the inclusion of anharmonic and quantum effects
included in RPFRs calculated with PIMC. Figure 5.11 compares calculations of
1000× ln 𝐷𝛼

𝑒𝑞

CH4 (𝑔)−H2 (𝑔) , 1000× ln 𝐷𝛼
𝑒𝑞

CH4 (𝑔)−H2O(𝑔) , 1000× ln 𝐷𝛼
𝑒𝑞

H2O(𝑔)−H2 (𝑔) (panel
A), and 1000 × ln 13𝛼

𝑒𝑞

CO2 (𝑔)−CH4 (𝑔) (panel B) based on RPFRs calculated using the
PIMC method to the harmonic calculations based on the same potential energy
surfaces (reference harmonic line). Differences between 1000 × ln 𝐷𝛼

𝑒𝑞

CH4 (𝑔)−H2 (𝑔) ,
1000 × ln 𝐷𝛼

𝑒𝑞

CH4 (𝑔)−H2O(𝑔) , 1000 × ln 𝐷𝛼
𝑒𝑞

H2O(𝑔)−H2 (𝑔) calculated using PIMC vs.
harmonic calculations are up to +10, -40, and -30‰ respectively, at 0°C (where the
largest difference occurs). The same patterns (but smaller magnitude differences)
are observed for carbon isotopic equilibrium, i.e., errors in RPFRs of different
species do not cancel out (Fig. 5.11B). The difference in 1000 × ln 13𝛼

𝑒𝑞

CO2 (𝑔)−CH4 (𝑔)
for PIMC vs. harmonic calculations is up to -2.5‰ at 0°C.

[86] and [98] demonstrated that the equilibrium methane clumped isotopic compo-
sitions of 13CH3D do not change by more than 0.06‰ from 27 to 327°C when PIMC
or harmonic partition function ratios are used. This is due to almost perfect can-
cellation of nearly identical errors in harmonic partition function ratios of clumped
methane isotopologues as we discussed in Chapter 4. However, when calculating
fractionation factors between different species, the error of the harmonic partition
function ratios only cancels partially (i.e., Fig. 5.11A).

This shows that unlike the case for clumped isotope studies, the cancellation of errors
in harmonic partition function ratios or PIMC approaches cannot be assumed when
dealing with equilibrium isotope-exchange reactions between different species. For
example, neglecting anharmonic and quantum effects accounted for by PIMC leads
to significant (up to ∼40‰) errors in calculated 1000× ln 𝐷𝛼𝑒𝑞 values for hydrogen
isotopes and ∼2.5‰ errors in theoretical 1000× ln 13𝛼𝑒𝑞 values for carbon isotopes
for environmentally relevant conditions on Earth surface (i.e., at or above 0°C) for
the species examined here.

Diagonal Born-Oppenheimer correction
The effect of the DBO correction on the calculated magnitudes of isotopic frac-
tionations of D/H between small molecules has been explored in previous calcula-
tions,105,174,179,190 and compared to experiments for HD−H2O [184] and D2 −HCl
[191]. To assess whether or not the DBO correction is of importance to an ex-
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 2385 
Figure 10: Differences between PIMC calculations, for non-DBO-corrected and DBO-corrected cases 2386 
(given as “+DBOC”) (A) for 1000×lnDaCH4(g)-H2(g), 1000×lnDaCH4(g)-H2O(g), and 1000×lnDaH2O(g)-H2(g) relative to 2387 
corresponding harmonic (‘reference harmonic’) calculations without DBOC. Difference calculated as 2388 
1000×lnDax minus 1000×lnDaharmonic. (B) for 1000×ln13aCH4(g)-CO2(g) relative to corresponding 2389 
1000×ln13aCH4(g)-CO2(g) relative to harmonic calculations without DBOC. In all cases, the same potential 2390 
energy surface is employed, as described Section 2.5.1.2391 

Figure 5.11: Differences between PIMC calculations, for non-DBO-corrected and
DBO-corrected cases (given as “+DBOC”) (A) for 1000 × ln 𝐷𝛼CH4 (𝑔)−H2 (𝑔) , 1000 ×
ln 𝐷𝛼CH4 (𝑔)−H2O(𝑔) , and 1000×ln 𝐷𝛼H2O(𝑔)−H2 (𝑔) relative to corresponding harmonic (“ref-
erence harmonic”) calculations without DBOC. Difference calculated as 1000 × ln 𝐷𝛼𝑋
minus 1000 × ln 𝐷𝛼harmonic. (B) for 1000 × ln 13𝛼CH4 (𝑔)−CO2 (𝑔) relative to corresponding
1000 × ln 13𝛼CH4 (𝑔)−CO2 (𝑔) relative to harmonic calculations without DBOC. In all cases,
the same potential energy surface is employed, as described Section 5.3

change reaction involving some atom A, the difference in electron density on A
in two different molecules must be considered in addition to the mass of A. The
DBO correction will increase in magnitude as (i) A decreases in mass (i.e., a bigger
correction for hydrogen vs. carbon); (ii) A is substituted by a heavier isotope (i.e., a
bigger correction for T/H vs. D/H, where T ≡ 3H is tritium); and (iii) A is bonded
to electron-withdrawing atoms or groups in one molecule and electron-donating
in the other (e.g., the correction for H2O/H2 is greater than for CH4/H2). These
empirical rules follow from the expression for DBO energy correction.172

Our results follow these guidelines. In particular, we find that DBO corrections have
magnitudes of up to 34‰ on calculated hydrogen fractions for H2O−H2 and CH4−
H2O but are negligible (<0.5‰) for calculations for hydrogen isotope fractionations
for CH4 − H2 and carbon isotope equilibrium for CH4 − CO2 (see Fig. 5.11A and
B). [90] did not employ DBO corrections as they considered them minor for systems
exchanging atoms other than hydrogen; for exchange of hydrogen isotopes, they
argue, the corrections computed at the time190 were poorly constrained, such that
the error on the correction approached the size of the correction. Using modern
electronic structure theory methods, DBO corrections have been recomputed174

with better accuracy. Importantly, the application of these more accurate DBO
corrections reduces the difference of theoretically derived 1000 × ln 𝐷𝛼H2O(𝑙)−H2 (𝑔)
values from 24.5‰ to 0.49‰ relative to experimental determinations, and from
0.66‰ to 0.56‰ for 1000 × ln 13𝛼CH4 (𝑔)−CO2 (𝑔) values. This agreement would
indicate that their inclusion does yield more accurate calculation, especially for
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hydrogen isotopes.

We note that to our knowledge, this work presents the first case in which DBO correc-
tions have been included in a path-integral statistical mechanical calculation. Non-
Born-Oppenheimer effects are typically discussed in the context of non-adiabatic
dynamics. The necessity to correct the path-integral result for such a small energy
difference highlights two important aspects of the equilibrium isotope effect: (i)
some gas mixtures have DBO corrections up to 6-8 cm-1, large enough to confirm
the role of these non-Born-Oppenheimer effects on the equilibrium distribution ex-
perimentally; (ii) path-integral calculations using the best available potential energy
surfaces are accurate enough to reveal such small energy differences between the
electronic ground states of small molecules.

Differences in theoretical vs. experimental determinations of equilibrium frac-
tionation factors
The sensitivity tests and comparisons described in the previous sections indicate the
following: (i) inclusion of anharmonic and quantum effects via use of the PIMC ap-
proach has a significant (up to 40‰) effect on equilibrium 1000× ln 𝐷𝛼𝑒𝑞 values for
1000 × ln 𝐷𝛼CH4 (𝑔)−H2 (𝑔) , 1000 × ln 𝐷𝛼CH4 (𝑔)−H2O(𝑔) , and 1000 × ln 𝐷𝛼H2O(𝑔)−H2 (𝑔)
from 0 to 500°C. (ii) DBO corrections further change the computed RPFRs by up to
34‰ for 1000×ln 𝐷𝛼CH4 (𝑔)−H2O(𝑔) and up to -34‰ for 1000×ln 𝐷𝛼H2O(𝑔)−H2 (𝑔) . (iii)
RPFRs computed with PIMC for 13C are likely accurate to at least ±3‰; the inac-
curacy appears to be predominantly due to the electronic structure calculations (i.e.,
the quality of the PES). (iv) The accuracy bounds for the RPFRs involving hydrogen
isotopes are more difficult to estimate but are likely <10‰ based on calculations
presented in Figures 5.9 and 5.10 and are likewise related to the approximations
employed when calculating the potential energy surfaces. Higher-level calculation
will be needed to resolve this.

We observe that when RPFRs for hydrogen isotopes are calculated using PIMC and
the DBO corrections, we achieve close agreement with experimental observations
of 𝐷𝛼H2O(𝑙)−H2 (𝑔) (Fig 5.3) and 𝐷𝛼

𝑒𝑞

CH4 (𝑔)−H2 (𝑔) (Fig. 5.7). In contrast, not including
these terms in the computation of 𝐷𝛼

𝑒𝑞

H2O(𝑙)−H2 (𝑔) results in offsets in calculation
relative to experimental observations of ∼25‰. This indicates that these correc-
tions, which are not always included in calculation of RPFRs, can be important for
hydrogen isotope equilibrium calculations. We note that in making this comparison
between theory and experiment we assume that the experiments are of sufficient
quality both in precision and accuracy to reflect the true equilibrium isotopic com-
positions. We believe that our equilibrations of CH4 and H2 given the bracketing
approach are sufficiently accurate and precise for this purpose. This is because
the residual of the data to our best-fit line is ±5.9‰ (1𝜎) vs. whereas differences
between theoretical treatments can be greater (up to 30‰ for using harmonic cal-
culations with our reference potential). In contrast, for water-H2 hydrogen-isotope
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equilibrations, experimental results show scatter of >25‰ at given temperatures.
This scatter makes exact comparisons between experiment and theory more chal-
lenging and indicates that future experimental equilibrations of H2(𝑔) and H2O(𝑙)
using modern techniques will be useful in comparison of experiments and theory.

5.6 Summary
Experimentally interpolatable calibrations of hydrogen isotopic equilibrium between
methane and liquid water as a function of temperature prior to this work were only
available for temperatures above 200°C.140 Additionally, calculation of CH4 −H2O
hydrogen isotopic equilibrium from 0 to 200°C differ in value by ∼160‰ between
each other and the extrapolation of the experimental calibration of [140] to low
temperatures. Here we presented an experimental calibration of hydrogen isotopic
equilibrium CH4 −H2O(𝑙) that is interpolatable from 3 to 200°C. This was done by
equilibrating the hydrogen isotopes of CH4 and H2 using γ-Al2O3 as a catalyst based
on a bracketing approach and combining this calibration with previous experimental
determinations of hydrogen isotopic equilibrium between molecular hydrogen and
water. We then compared this work both to new calculation of equilibrium hydrogen
isotopic fractionation factors in the system CH4−H2−H2O using Path Integral Monte
Carlo (PIMC) calculations.

We found that our experimental calibration of 1000 × ln 𝐷𝛼CH4 (𝑔)−H2 (𝑔) agrees 1:1
with calculation performed using the PIMC approach (with or without the DBO
correction). Additionally, comparison of previous experimental determinations of
1000× ln 𝐷𝛼H2O(𝑙)−H2 (𝑔) agree 1:1 within 1 s.e. with our theoretical DBO-corrected
PIMC calculations. We investigated potential sources of error for the calculation.
It appears that deviations of at least ∼10‰ for calculations of hydrogen isotope
equilibrium between species are plausible given changes in both the theoretical
level and basis set sizes used to calculate the potential energy surface for H2O and
CH4, which are then used for the PIMC calculations; these errors are challenging
to exactly quantify due to a lack of convergence with increasing level of theoretical
treatment. We note that anharmonicity, quantum effects, and DBO corrections all
can have large effects (up to 34‰ for hydrogen isotopes) on final calculated RPFRs
and 𝛼𝑒𝑞 values and their inclusion was needed here to yield agreement between
theory and experiment. Finally, we additionally provided a theoretical calibration of
1000 × ln 13𝛼

𝑒𝑞

CH4 (𝑔)−CO2 (𝑔) based on the PIMC method. It agrees with experimental
data from 200 to 1300°C with an average offset of 0.56‰.
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C h a p t e r 6

𝐷 AND 13𝐶 ISOTOPIC EQUILIBRIA IN ALKANES

6.1 Abstract
We analyze the approximations involved in calculating heavy isotope equilibria in
and between alkanes (methane, ethane and propane), water and hydrogen gas, in-
cluding heavy isotope fractionation, clumped isotope effects and site-specific isotope
effects. We find that accurate description of molecular potential is essential to obtain
accurate (to within 10% relative error) fractionation factors or site preferences in the
same molecule. On the other hand, clumped isotope effects are much more forgiv-
ing and can be obtained with reasonable accuracy using less expensive DFT/B3LYP
methods. Harmonic frequency scaling factors are found to modestly improve the
agreement between different electronic structure methods with dramatic improve-
ment observed for the least accurate methods. The clumped isotope effects tend to
be less affected by the anharmonic effects as well. The effect of full anharmonic
treatment on site preference and fractionation factors depends on the extend of the
fortuitous error cancellations within harmonic treatment. In particular, it is more
prominent for fractionations that involve propane.The diagonal Born-Oppenheimer
correction is essential to obrain fractionations of deuterium in equilibria that involve
water, but also has a moderate effect on the site preference for deuterium in propane.
We emphasize a number of notational inconsistencies, including the different ways
of expressing the site preference that have lead to some confusion in the literature.
Finally, we connect the calculated equilibrium isotope effects 𝛼𝑒𝑞 and Δ𝑒𝑞 to rele-
vant experimental quantities 𝛼 and Δ, respectively, and discuss the complications in
describing the clumped isotope effects using existing nomenclature that arise from
the presence of different rotamers of ethane and propane as well as from various
isomers of doubly substituted isotopologues, each having a different preference for
clumping.

6.2 Introduction
We explored the clumped isotope effects in methane in Chapter 4 and heavy isotope
effects in methane and other small molecules in Chapter 5. Here we attempt to
extend the same rigorous treatment to mid-sized molecules: ethane and propane.
There are two main challenges: (i) obtaining an accurate potential energy surface
and (ii) addressing a large number of isotopologues.

There is no high-quality potential energy surface available for ethane or propane in
the literature, as constructing these surfaces based on hundreds of thousands of single
point icMRCI or even CCSD(T) calculations extrapolated to CBS limit is currently
beyond reach. Thus, we first must first validate the accuracy of the potential energy
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surfaces within reach and quantify (at least approximately) potential inaccuracies
that result from their use. These are then compared to the anharmonic effects to
ultimately conclude whether PIMC calculations are necessary and feasible to achieve
the best accuracy.

The number of unique isotopologues grows rapidly with increasing the size of the
molecule from 3 for molecular hydrogen to 36 for ethane and 216 for propane.
Fortunately, at natural abundances only a few of those have measurable abundances
(mainly singly and doubly substituted isotopologues). We do not attempt to calculate
all isotopic equilibria with PIMC, since most of them have a negligible effect on the
experimentally accessible abundances of isotopologues. The equilibrium constants
that involve triple and more substitutions are therefore computed based on harmonic
RPFR’s and used in conjunction with the PIMC-based equilibrium constants.

6.3 Methods
We studied methane, ethane, propane, molecular hydrogen and water. The RPFRs
of singly and doubly substituted isotopologues were calculated as described in
section 3.3 using two distinct approaches: (i) harmonically using the approach
outlined in [92, 96] and (ii) using the path integral Monte Carlo (PIMC) method
following the approach developed by [102]. We also evaluate the RPFRs for all
other isotopologues using only the harmonic approach.

Although RPFR calculations with either approach require knowledge of the potential
energy of the molecule as a function of geometry, these must be done differently for
the two approaches as discussed below. We compare the two approaches in detail
throughout this work. Briefly, harmonic calculations require less computational
resources compared to the PIMC method. As a result, for a given amount of com-
putational resources available, more accurate potentials can be used, or alternatively
larger molecules can be calculated with the harmonic method relative to the PIMC
method. However, the harmonic calculations make a number of approximations,
that can lead to systematic errors in calculated RPFRs. In some cases, these errors
mostly cancel out when harmonic RPFRs are used to calculate observables like the
equilibrium constants,86,98 but this is not always case.86,99

PIMC calculations
The path integral Monte Carlo (PIMC) method allows us to calculate the RPFRs
without relying on the validity of the harmonic approximation. In the limit of
infinite number of beads 𝑛, the partition function of the real quantum system is
equal to the partition function of the fictitious n-times larger classical system (see
Eq. 1.5). In practice we always use approximations to evaluate the potential energy
and sufficiently large but finite 𝑛 (Table 6.1 is chosen. The direct scaled-coordinate
estimator102 was used to calculate the RPFR for every single heavy substitution
relative to the lighter isotopologue and for every double substitution relative to the
corresponding singly-substituted isotopologue. For each pair, the heavier of the
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Molecule Number of beads at this temperature

0°C 25°C 50°C 75°C 100°C 150°C 200°C 300°C 400°C 500°C
H2, H2O 950 865 781 697 613 529 445 361 277 193
alkanes 420 383 355 332 313 275 253 214 196 166

Table 6.1: Number of beads employed in the Path-Integral calculations. Water and dihy-
drogen have higher frequency vibrations compared to alkanes. Therefore, alkanes require
fewer beads to achieve the target accuracy.

Molecule H2 H2O Methane Ethane Propane
D 430-500 80-110 100-110 69-70 18-60

D + D 430-500 100-110 60-70 23-34 9-30
13C 20-25 20-21 10-20

13C + D 78-80 24-30 19-30
13C + 13C 10-11 10

Table 6.2: Number of Path-integral samples (in millions) that the results were averaged
over. Since the samples were drawn every 10 steps, the number of Monte-Carlo steps is
10 times larger. For propane, the larger ranges are because there is only one secondary
(center) carbon and two primary (terminal) carbons and correspondingly 2 vs 6 deuterium
atoms. Thus, the terminal carbons are sampled twice as often and the center carbon and the
terminal hydrogens are sampled three times as often as the center hydrogens.

two isotopologues was sampled with PIMC in Cartesian coordinates with hundreds
of millions of Monte Carlo steps (see Table 6.2). Each Monte Carlo step consists
of (1) moving the entire ring-polymers by a small random displacement in each
coordinate and (2) 𝑃/ 𝑗 staging moves (rounded up to the nearest integer).31 The
average displacement and staging length 𝑗 were set such that 40±2% of all proposed
staging moves are accepted to optimize sampling efficiency. Prior to any data
collection, each sampling trajectory was equilibrated for 105 Monte Carlo steps.
Thereafter, ring-polymer configurations were sampled every 10 Monte Carlo steps.
The number of samples collected for each isotopologue is given in Table 6.2.

Molecular potentials for the harmonic calculations
We calculate harmonic RPFR’s using Eq. (3.25). The harmonic frequencies are
calculated using the ORCA 5.2 program192–194 and the MOLPRO program.195 All
ORCA calculations are performed with the most stringent default option “very tight”
for the convergence criteria on the finest default grid (DEFGRID3). An example
input file and the brief description of calculation algorithm are provided in the
Appendix A.1.

The potential energy of molecules as a function of their geometry at present cannot
be obtained exactly for any but the smallest of molecules (e.g., molecular hydro-
gen). Therefore, we use various approximations to calculate the potential energy
that are available within ORCA. We have calculated harmonic frequencies using
a variety of common methods employed in prior isotope geochemistry work to
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assess the relative importance of the accurate description of the potential energy
of the molecule.These include density functional theory (DFT) with the B3LYP
functional196 and four increasingly large Pople’s197 basis sets (6-31G, 6-311G, 6-
311G(d,p), 6-311++G(d,p)) as well as second order Møller-Plesset perturbation
theory (MP2), coupled-cluster with single and double excitations (CCSD), and
the traditional “gold standard” CCSD(T) where triple excitations are included per-
turbatively. We use the correlation-consistent basis sets171 that are designed for
post-Hartree-Fock calculations. We have used four basis sets of increasing size:
cc-pVDZ, aug-cc-pVDZ, cc-pVTZ, and aug-cc-pVTZ.

For completeness, we also include calculations using the restricted Hartree-Fock
(RHF) method. This mean-field theory does not take into account the electron-
electron correlations and, as such, is generally not used in modern calculations.
Finally, we also calculate the harmonic frequencies using two empirical force fields
(CHARMM and AIREBO) since there are calculations for isotope effects considered
in this thesis based on both of these force fields.86,102

Molecular potentials for the PIMC calculations
PIMC calculations of the RPFR’s presented require the potential energy to be calcu-
lated for > 1010 different molecular geometries for each isotopologue. In contrast,
harmonic calculations described above only require about 103 potential energy eval-
uations to compute the harmonic frequencies of propane and even fewer for the
smaller molecules. The most cost-effective way to perform orders of magnitude
more potential energy evaluations for PIMC is therefore different from the direct
(i.e., geometry in, energy out) calculations that were done for the harmonic calcula-
tions.

Instead, we fit the potential energy surface (PES) of the molecule and use this fit
in our PIMC calculations. This strategy enables us to use PI-based approaches for
the molecules considered here with highly accurate PESs. That said, fitting the
PES in sufficient detail still requires many more potential energy evaluations than
the harmonic frequency calculations, limiting the use of PIMC with highly accurate
PESs to relatively small and highly symmetric molecules. Less accurate (and
therefore less computationally demanding) approximations of molecular potential
can be used in conjunction with PIMC (or PIMD), but there is no a priori reason to
expect these RPFRs to be more accurate than the (computationally less expensive)
harmonic results with the same potential.

In our prior studies98,99 we used what we considered the best potential energy
surfaces for each molecule at the time (H2(𝑔), H2O(𝑔), CO2(𝑔), and CH4(𝑔)).
Other than for H2 these PESs used were calculated and published by others. We
assume that the increasing the accuracy of the potential will in turn increase the
accuracy of the calculated RPFR’s of individual molecules. A possible issue with
this approach taken in our prior work is that the methods used to calculate the PES
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of different molecules relied on different approximations to obtain the molecular
potential. As such, when RPFRs are used to find the fractionation factor between
different molecules (Eq. 3.21), errors associated with different methodologies may
not cancel resulting in inaccurate fractionation factors. We have observed this for
the harmonic RPFRs both in this study and in [99] — the RPFRs computed with
different methods and basis set sizes differ by 10s to 100s per mil. However, when
the relevant ratios of RPFRs (Eq. 3.21) are calculated to obtain a fractionation factor,
most of these differences cancel out. As such, the resultant fractionation factors then
show much smaller errors when all molecules are treated within a single method.

Therefore, we take a different approach here and fit the PES for each molecule
ourselves in a consistent manner. The potential energy is obtained using CCSD(T)-
F12A (explicitly correlated coupled-cluster with single, double, and perturbative
triple excitations) method198 with aug-cc-pVTZ basis set.171 All potential energy
calculations for the PES fitting were performed within MOLPRO 2021.3 package.195

We note that as this method is implemented within MOLPRO, it can also be read-
ily used by others. We will refer to this method using a shorthand “F12/ATZ”
throughout this Chapter.

The “explicitly correlated” descriptor in the name of the method highlights that in
contrast to the standard CCSD(T) algorithm, the 2-electron wavefunctions are added
to describe the electron correlation at short distances. This is commonly termed
the “cusp condition.”199 Without such functions, this portion of electron correlation
converges slowly as the basis set size increases. Direct comparisons have shown
that the explicitly correlated CCSD(T)-F12A with aug-cc-pVTZ basis set achieves
comparable accuracy to CCSD(T) with the larger aug-cc-pV5Z.

Since molecular hydrogen is a diatomic molecule, its potential energy depends
only on one coordinate – the distance between two hydrogen atoms; thus, we fit
the PES for dihydrogen using a 1-dimensional spline interpolation on 76 F12/ATZ
calculations for interatomic distances between 0.5 and 6 Bohr (equilibrium geometry
is at 1.402 Bohr). Such direct fitting on a dense grid becomes prohibitively expensive
for larger molecules as the number of coordinates grows rapidly (3 for water, 10 for
methane, 16 for ethane and 22 for propane). A similar interpolation for propane
would require 7622 ≈ 1041 potential energy evaluations which is not possible with
current computing constraints.

Instead, we fit delta-learned permutationally invariant potential energy surfaces to
water, methane, ethane, and propane.200 The permutational invariance with respect
to identical atoms is used to reduce the number of distinct arrangements of atoms
by not double counting symmetric orientations. This reduces the number of points
needed for the fit to be accurate.201 The delta learning approach is used to construct
a fit to F12/ATZ-quality surface for each molecule at reduced computational cost.
Delta learning works by separating the problem into two separate fits. The first
fit contains most of the complexity of the PES, and thus requires a large number
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Molecule # of geometries RMSE (cm-1)
low level high level low level high level total

Water 9902 2401 1.35 1.58 2.08
Methane 28948 3000 1.71 1.18 2.08
Ethane 33522 2655 4.52 2.32 5.08
Propane 19921 4990 4.82 1.73 5.12

Table 6.3: Number of single-point energy evaluations for fitting the delta-learned PES and
the corresponding root-mean-square error of the fit.

of geometries (order 10,000 for the molecules and target accuracy in this study).
The “low level” theory is used to sample the geometries in this step. Although the
resulting PES does not have the desired energy accuracy, this is addressed by the
second fit. Energy is calculated with the “high level” theory for a subset (∼10%)
of the molecular geometries from the first fit and the difference in energy between
the “low level” and the “high level” theory is fitted. This delta learning approach
cuts the computational cost by about an order of magnitude. We use B3LYP/6-
311+G(d,p) DFT and CCSD(T)-F12A/aug-cc-pVTZ as the “low level” and “high
level” methods, respectively. The RMSE, describing the quality of each fit is 2 cm-1

for water and methane and 5 cm-1 for ethane and propane (see Table 6.3).

These PESs were fitted for use in the PIMC calculations. However, we also want to
be able to compare directly PIMC and harmonic calculations in order to be able to
evaluate how inclusion of anharmonic terms changes final calculated fractionation
factors vs. using the harmonic approximation. To that end, we calculate the
harmonic frequencies based on the fitted PESs using FORTRAN subroutines from
the Numerical recipes text.54

The diagonal Born-Oppenheimer correction
We explore the importance of the DBO corrections on the molecules studied here
using the CFOUR package202 to calculate the DBO correction at the CCSD level of
theory and aug-cc-pVTZ basis set. The exact DBO correction depends on both the
molecular geometry and the level of theory. However, we find that the dependence
is weak and therefore we compute these corrections at CCSD/ATZ level of theory
at the equilibrium geometry of interest and approximate it is constant (independent
of molecular geometry). With this assumption, the calculated DBO correction (see
Table 6.4) affects the RPFRs via a free energy shift:105

RPFRDBOC
𝑖 = RPFR𝑖 × exp

(
− Δ𝐶

𝑘𝐵𝑇

)
(6.1)

We compared the RPFRs calculated (i) with no DBO correction; (ii) with the ap-
proximate (given in Eq. 6.1) and (iii) with the exact DBO correction for dihydrogen.
At 25°C, the approximate DBO correction recovers a 6‰ decrease in RPFR, while
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Isotope Hydrogen Water Methane Ethane Prop. (term.) Prop. (center)
D 1.235 7.511 1.109 0.364 0.444 -0.210

13C - - 0.703 0.708 0.694 0.733

Table 6.4: DBO corrections Δ𝐶 (cm-1) for single heavy atom substitution of a given
molecule relative to free atom. All corrections are calculated with the CFOUR package at
CCSD level of theory.

the exact DBO correction (including its dependence on the H-H distance) yields a
7.2‰ decrease. Due to limited computational resources, we do not test the validity
of this approximation in larger molecules and assume it brings the RPFR substan-
tially closer to the true value just like for dihydrogen. Finally, we note that the DBO
corrections do not affect the clumped isotope equilibria.179

Validation of the reference molecular potential
To estimate the errors from approximations to potential energy, we compare the
RPFRs computed in this study and in our previous study99 to the best ab initio
approximations to Born-Oppenheimer potentials to date for dihydrogen,203,204 wa-
ter205 and methane.206 For dihydrogen we are also able to estimate the effect of
approximating the DBO correction as being independent of the molecular geometry
using the DBO correction surface.207

The errors in RPFRs relative to the best potentials are shown in Table 6.5. We
show the difference in the PES for dihydrogen relative to the best PES available to
date203,204 on Fig. 6.1. Because only the relative energies are significant, all three
surfaces are shifted so that the origin (0,0) corresponds to the minimum energy and
the corresponding equilibrium H-H distance.

The CCSD/cc-pVQZ PES we used in our previous work99 is shown on Figure 6.1 in
orange. The difference in harmonic frequency between this PES and our reference
(current best) is very small, about 1 cm-1. Recall that the harmonic frequency is a
measure of the second (i.e., lowest, most important) order effect of the energy on
RPFR. Visually, this manifests in a cubic (third order) shape of the orange deviation
curve around 0 on Figure 6.1. Thus, the harmonic RPFR computed on this PES is
only ∼0.5‰ different from the best result (see Table 6.5).

The PI calculation picks up on the differences past second order, which in this
case partially cancel the harmonic effect resulting in a smaller total difference.
The F12/ATZ surface has about 3cm-1 difference in harmonic frequency, resulting
in parabolic shape of the green curve on Figure 6.1 and a larger (∼1‰) error in
harmonic RPFR at 25°C. On the other hand, the anharmonic effects in F12/ATZ
potential are pretty much identical to the best PES. The F12/ATZ surfaces describe
the anharmonic effects of the best ab initio PES well and yield harmonic RPFR’s
that are consistently underestimated computed with the best ab initio PES. In some
cases, the harmonic and anharmonic discrepancy partially cancel each other, result-
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Figure 6.1: Difference in the potential energy for molecular hydrogen relative to the
best PES (Pachucki, 2010; Pachucki and Komasa, 2014). The range of H-H distance (-0.4
to 0.75 Bohr away from equilibrium distance) covers potential energy of up to 10,000 cm-1.

ing in a superficially good agreement with the best ab initio result. Overall, the
F12/ATZ PES’s used in this study are comparable to the surfaces we used in our
prior work. Crucially, we can see that in all cases the RPFR’s are underestimated
using the F12/ATZ PES, resulting in partial error cancellation when experimentally
observable quantities are computed. We expect this to be the case for ethane and
propane as well, although at present we cannot test that, since the reference-quality
PESs have not yet been developed for the molecules of that size. To maintain internal
consistency, we will use the F12 surfaces as reference PES in each case even though
we have access to the (essentially exact) published PES’s for dihydrogen and water
as well as a highly accurate methane PES.

The dependence of DBO correction on molecular geometry for dihydrogen is
shown in Figure 6.1 in red and causes a 7.2‰ decrease in both RPFR(HD) and
RPFR(D2/HD) at 25°C. To make the calculations feasible, we must approximate
the DBOC and the simplest approximation (assuming the DBOC is constant with
respect to molecular geometry and given by its value at equilibrium geometry)
recovers 6.0‰ decrease in RPFR for dihydrogen. We cannot rigorously test this
for other molecules, but we expect it to be a similarly good approximation for all
molecules considered here.

Table 6.5 highlights the difficulties in computing RPFR’s to high precision for any
but the smallest molecules. The RPFR’s are sensitive to the potential energy of the
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𝛿RPFR, ‰ Harmonic Anharmonicity Total
[99] F12/ATZ [99] F12/ATZ [99] F12/ATZ

HD -0.41 -1.05 0.22 -0.35 -0.19 -1.15
D2 /HD -0.49 -1.24 0.25 -0.34 -0.24 -1.39

HDO 0.41 -2.74 0.07 2.57 0.49 -0.17
D2O /HDO 0.48 -3 0.12 2.69 0.6 -0.31

13CH4 -0.23 -0.21 0.27 0.02 0.05 -0.19
CH3D -4.59 -3.39 3.23 -0.98 -1.36 -4.37

CH2D2 /CH3D -4.62 -3.37 2.63 -1.65 -1.99 -5.02
13CH3D / 13CH4 -4.61 -3.4 3.24 -1.16 -1.36 -4.57

Table 6.5: Difference in RPFR (‰) at 25°C relative to the best published potential energy
surfaces: [203, 204] for dihydrogen, [205] for water and [206] for methane.

molecule, which at present cannot be obtained with sufficient accuracy to achieve
sub-per-mil precision in RPFR’s involving D exchange. This is a general issue for
any method, that aims at highly accurate RPFR’s: PIMC,86,93,98,99 PIMD,180,208,209

and methods to include anharmonic effects based on perturbation theory.100,130,174

Table 6.5 also presents a cautionary tale that our error estimates due to use of
approximate potentials are only taking into account the second order (harmonic)
effects. At least for the small molecules considered here, these errors are comparable
with those arising from the higher order (anharmonic) effects in the PES, meaning
that the true error can be larger or smaller than the harmonic error contribution
depending on whether the two parts partially cancel or reinforce each other. This
analysis lets us estimate the errors for the quantities we present in this study. We
expect the fractionation factors involving D and carbon-13 to be accurate to 5‰
and ∼0.5‰ respectively, at 25°C. We expect similar errors in the position-specific
isotope effects. Finally, the D + D and 13C + D clumped isotope effects should be
accurate to ∼0.5‰ and ∼0.1‰ respectively. These error estimates are given for
25°C and should be scaled up (down) for higher (lower) temperatures within the
range covered in this study.

6.4 Results
Here we present the results of the RPFR, fractionation factor, and clumped isotope
calculations for the for the five molecules studied based on the different electronic
structure methods for harmonic calculations as well a comparison of PIMC vs.
harmonic calculations for the reference PES (F12/ATZ). We organize the results
around the key factors that we wish to understand and discuss: (i) the range of
potential differences associated with choice of PES for harmonic calculations; (ii)
the size of PIMC corrections on harmonic calculations; And (iii) the importance of
DBO corrections. For all three cases, we examine whether differences in RPFRs
calculated using different methodologies do or do not cancel when RPFRs are
combined to calculate fractionation factors.
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Figure 6.2: Difference in harmonic fractionation of carbon-13 (b,d) and deuterium
(a,c) with methane for ethane (a-b) and propane (c-d) computed with 4 commonly used
electronic structure methods and triple-𝜁 basis sets relative to the F12/ATZ method. Dotted
vertical lines label temperatures (from 0°C to 500°C). The slanted black lines denote relative
difference in fractionation (5 and 10%) and the horizontal line is placed at y=0 where the
reference (F12/ATZ) result would be.

Differences in harmonic calculations using different PESs
We first present results for bulk fractionation factors between the studied alkanes
for methane vs. ethane in Fig. 6.2(a-b) and methane vs. propane in Fig. 6.2(c-d).
This allows us to observe how well errors cancel when RPFRs based on the same
method are combined to calculate a fractionation factor. We present differences
on the y axis both in absolute magnitude and relative percent vs. the magnitude
of the fractionation factor (1000 × ln𝛼𝑒𝑞) on the x axis. We only present results
for the larger basis set sizes (triple zeta and augmented triple zeta) and the more
accurate electronic structure method (omitting Hartree-Fock and force field-based
results here, since they are off the scale of these plots). All differences are given
relative to the F12/ATZ treatment. This will be done through this section, and we
wish to emphasize that this is not done to indicate this is best technique to date,
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but rather because we use this for the PIMC calculations. For both carbon and
hydrogen we see up to about 10% relative difference in equilibrium fractionation
1000×ln𝛼𝑒𝑞 between the studied methods. In general, absolute differences increase,
while relative differences decrease at lower temperatures. We do not observe a
convergence to similar values as the quality of the method improves from lowest
quality of MP2 through B3LYP to CCSD, to CCSD(T) nor use of triple zeta vs
augmented triple zeta. Rather, we see that different methods largely scatter in the
±10% range. This is also the case for the smaller basis sets (DZ and ADZ; Fig. B.2)
indicating that for alkanes, a ±5 to 10% relative error for harmonic calculations is
difficult to improve upon up to and including CCSD(T)/ATZ level of theory. We
note, thought that use of computational less expensive descriptions of the potential
energy of the molecules based on restricted Hatree-Fock and empirical force fields
that we tested (AIREBO and CHARMM) yields much larger relative difference of
about 20% for RHF and as much as 80% for the force fields (see Fig. B.1).

We next turn to fractionation factors involving molecules beyond alkanes including
H2 and H2O. We provide a similar plot as Fig. 6.2 for all species relative to H2
in Fig. 6.3(a-b) and of water relative to other molecules in Fig. 6.3(c-d) — for the
latter we do not include the H2 as the size of alpha for this is ∼10 times larger than
the others. All calculations are presented for the temperature range from 0°C to
500°C, but temperatures are not given as they vary vs. 1000 × ln𝛼𝑒𝑞 depending
on the molecule pair. We observe that fractionation factors relative to dihydrogen
show absolute differences of up to ±50‰ relative to the F12/ATZ result. However,
because the absolute values of 1000 × ln𝛼𝑒𝑞 are ∼10x larger than for the alkanes,
relative differences are ± ∼3% vs. the 5%-10% for the alkanes. Fractionations
relative to water appear the most sensitive (in the relative sense) to differences in
how the potential energy was calculated with relative differences larger than 25%
observed and absolute differences up to ±40‰. Fractionations involving water do
not show the same monotonic increase in the absolute difference of fractionation
factors with decreasing temperature. As was the case with alkanes, double zeta
and augmented double zeta basis sets yield similar errors except for fractionations
involving water, which differ significantly with 6-31G and 6-311G basis sets at the
DFT (B3LYP) level of theory (see Fig. B.3). Less accurate RHF method shown in
Fig. B.4 differs significantly from the results presented in Fig. 6.3.

Position-specific isotope effect in propane (Fig. 6.4) shows similar trends to the frac-
tionation presented on Fig. 6.2. The relative differences in 1000× ln𝛼𝑒𝑞 up to ±10%
are observed for both deuterium and carbon-13. Analogously, DFT underestimates
the isotopic preference for carbon-13, while CCSD overestimates it relative to the
reference method. Smaller basis set size does not change these general observations
(see Fig. B.5), while cheaper methods (RHF, AIREBO, CHARMM) yield results
that differ significantly from the reference for deuterium, but not for carbon-13
(Fig. B.6). CHARMM force field gives position-specific deuterium isotope effect in
propane in better agreement with the reference method as compared to the AIREBO



112

Figure 6.3: Difference in harmonic fractionation of deuterium with dihydrogen (a-b)
and water (c-d) computed with 4 commonly used methods relative to the F12/ATZ method.
6-31G** was used for the DFT calculations and cc-pVTZ basis set for all other methods in
panels (a,c); 6-311++G** was used for the DFT calculations and aug-cc-pVTZ basis sets
for all other methods in panels (b,d). Dotted vertical lines label temperatures (from 0°C to
500°C). The slanted black lines denote relative difference in fractionation (3%, 5%, 10%
and 25%) and the horizontal line is placed at y=0 where the reference (F12/ATZ) result
would be.
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Figure 6.4: Differences in position-specific isotope effect for (a) deuterium and (b)
carbon-13 computed with four methods at the triple-𝜁 basis set size. All computations are
harmonic relative to the Harmonic F12/ATZ. Dotted vertical lines label temperatures (from
0°C to 500°C). The slanted black lines denote relative difference in fractionation (3%, 5%,
10% and 25%) and the horizontal line is placed at y=0 where the reference (F12/ATZ) result
would be.

force field. This is in contrast to the methane-propane fractionation, presented on
Fig. B.1(c), where AIREBO agreed with the reference method better. We next turn
to the clumped heavy isotope effect for the closest placement of two heavy atoms in
each molecule, which produces the strongest effect (i.e., largest value of Δ𝑒𝑞). D+D
clumped isotope effect shown in Fig. 6.5 deviates by less than 5% relative error as
compared to the reference method (F12/ATZ). The range for 17O + D and 18O + D
effects is even tighter (i.e., ±2%) and similarly for 13C +D effects, which are within
3% of the reference value (Fig. 6.6). 13C+ 13C effects in ethane and propane deviate
by as much as 8% relative to the reference (Fig. 6.7).

Just as with fractionation and position-specific effects, CCSD tends to overestimate
clumping and DFT to underestimate it relative to the reference method. Again, there
is not a definite convergence to the reference value with increasing the quality of the
method past MP2. Empirical force fields (CHARMM, AIREBO) are inconsistent,
giving excellent agreement (<10% relative error) with the reference value in some
cases (see Fig. B.10(c-f) and Fig. B.11), but not in others (Fig. B.8(c-f)). In
particular, AIREBO overestimates clumping in ethane and terminal carbon propane
by more than 50%. RHF is more consistent relative to the reference result, typically
overestimating it by about 10%. Just as for fractionation, using a smaller basis
set does not dramatically shift the results further away from the reference value
(Figs. B.7 and B.9). Interestingly, the basis set size is most important for the DFT
calculations, where results obtained with the 6-31G and 6-311G basis set typically
differ substantially more from the reference than those where additional polarization
functions (i.e., 6-311G**) and diffuse functions (i.e., 6-311++G**) are included in
the basis set (see Figs. B.7 and B.9).
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Figure 6.5: Differences in D + D clumped heavy isotope effect in (a) dihydrogen, (b)
water, (c) methane, (d) ethane and (e-f) propane computed with four methods at four basis
at the triple-𝜁 basis set size. All computations are harmonic relative to the Harmonic F12.
Dotted vertical lines label temperatures (from 0°C to 500°C). The slanted black lines denote
relative differences (2% and 5%) and the horizontal line is placed at y=0 where the reference
(F12/ATZ) result would be.



115

Figure 6.6: Differences in clumped isotope effect involving one deuterium and one
heavy atom (oxygen or carbon) computed with four methods at four basis at the triple-𝜁
basis set size. The panels are as follows: (17) O + D (a) and 18𝑂 + 𝐷 (b) in water, 13C + D
in methane (c), ethane (d) and propane (e-f). All computations are harmonic relative to
the Harmonic F12/ATZ. Dotted vertical lines label temperatures (from 0°C to 500°C). The
slanted black lines denote relative difference in fractionation (1% and 3%) and the horizontal
line is placed at y=0 where the reference (F12/ATZ) result would be.
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Figure 6.7: Differences in carbon-13 clumped effect in ethane (a) and propane (b) com-
puted with the four electronic structure methods investigated in this study. All computations
are harmonic relative to the Harmonic F12/ATZ. Dotted vertical lines label temperatures
(from 0°C to 500°C). The slanted black lines denote relative difference in fractionation (4%
and 8%) and the horizontal line is placed at y=0 where the reference (F12/ATZ) result would
be.

Harmonic frequency scaling factors
Figs. 6.8 and 6.9 address the effects of scaling the harmonic frequencies on the
fractionation between alkanes (Fig. 6.8) and site-specific isotope effect (Fig. 6.9) of
D (a-b) and 13C (c-d). In general, there is a small decrease in percent differences
relative to the reference (F12/ATZ) method upon scaling (i.e., comparing the left
panels to the right panels). The effect of scaling is most noticeable for the (least
accurate) RHF method, bringing the relative error of this method close to that of the
more accurate electronic structure methods.

Fig. 6.10 addresses the effects of scaling the harmonic frequencies on the clumped
D + D (upper panels) and 13C + D (middle panels) and 13C + 13C (lower panels)
heavy isotope effect in alkanes. The right-hand side panels utilize frequencies
scaled by a constant (typically slightly smaller than 1) factor that depends on the
electronic structure method and the basis set used, as tabulated in (REF). In general,
scaling of the frequencies has a small impact on the relative differences for higher
quality methods with larger basis sets and substantially improves agreement with the
reference method for the lower quality methods with smaller basis sets. Comparing
the left (unscaled frequencies) and right (scaled frequencies) panels, the RHF results
benefit significantly from using the scaling factors. However, large deviations in D
+ D clumping using DFT with smaller basis sets persists after applying the scaling
factors.
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Figure 6.8: Effect of scaling the harmonic frequencies on relative differences (in %)
of fractionation of D (a-b), and 13C (c-d) between ethane and methane as well as between
propane and methane computed with different methods relative to the F12/ATZ method.
Panels (a,c) are computed without scaling the frequencies, while panels (b,d) are based on
the scaled frequencies.

Differences due to anharmonic and non-Born-Oppenheimer effects
The diagonal Born-Oppenheimer correction increases the fractionation of deuterium
between propane and methane (𝐷𝛼𝑒𝑞C3H8−CH4

) as well as between ethane and methane
(𝐷𝛼𝑒𝑞C2H6−CH4

) by about 5% (Fig. 6.11a). Deuterium fractionations involving water
are most substantially affected by the DBO correction, as exemplified by methane-
water fractionation on Fig. 6.11(a). The value of 𝐷𝛼𝑒𝑞CH4−H2O is decreased by 10-30‰
due to the DBO correction (orange squares) over the range of temperatures studied.
In contrast, the DBO correction does not change the fractionation of carbon-13
between alkanes (Fig. 6.11b).

The anharmonic effects decrease the fractionation of carbon-13 with methane
(13𝛼

𝑒𝑞

C3H8−CH4
and 13𝛼

𝑒𝑞

𝐶2𝐻6−CH4
) by about 5% (Fig. 6.11b). Deuterium fractiona-

tion between methane and propane (𝐷𝛼𝑒𝑞
𝐶3𝐻8−CH4

) is affected significantly (by about
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Figure 6.9: Effect of scaling the harmonic frequencies on relative differences (in %)
of site-specific isotope effect of D (a-b), and 13C (c-d) in propane computed with different
methods relative to the F12/ATZ method. Panels (a,c) are computed without scaling the
frequencies, while panels (b,d) are based on the scaled frequencies.

20%), while other fractionations (𝐷𝛼𝑒𝑞H2O−CH4
and 𝐷𝛼

𝑒𝑞

𝐶2𝐻6
−CH4) are affected much

less (up to -5% relative difference), see Fig. 6.11a. Note that for deuterium frac-
tionations between alkanes the DBO and anharmonic effects have the opposite sign
and therefore they partially cancel out.

Position-specific isotope effect in propane is affected by both the DBO correction and
the anharmonic effects and the effects happen to align, reinforcing each other relative
to the harmonic result. For carbon-13 the DBO correction decreases 13𝛼

𝑒𝑞

center−terminal
by a little over 1% in relative or 0.1-0.2‰ in the absolute sense and the anharmonic
effects are responsible for another 3% relative (0.2-0.4‰ absolute) decrease (see
Fig. 6.12b). For D position-specific effect the effect is even more pronounced with
both DBO correction and the anharmonic effect increasing 𝐷𝛼

𝑒𝑞

center−terminal by about
5% (or 5-10‰) each (Fig 6.12a).

We verify that the clumped heavy isotope effects are not affected by the DBO cor-
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Figure 6.10: Effect of scaling the harmonic frequencies on relative differences (in %) of
clumped D+D (a-b), 13C+D (c-d) and 13C+ 13C (e-f) isotope effects in alkanes computed
with different methods relative to the F12/ATZ method. Panels (a,c,e) are computed without
scaling the frequencies, while panels (b,d,f) are based on the scaled frequencies.
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Figure 6.11: Effect of the diagonal Born-Oppenheimer correction (DBOC, squares)
and anharmonic contributions (PI, circles) on the fractionation of deuterium (a)
and (b) carbon-13 with methane for water (𝛼𝑒𝑞

H2O−CH4
), ethane (𝛼𝑒𝑞

C2H6−CH4
) and propane

(𝛼𝑒𝑞

C3H8−CH4
). The following temperatures are shown: 500°C, 300°C, 200°C, 100°C, 50°C,

25°C, 0°C (left to right). The slanted black lines denote relative difference in fractionation (5
and 20%) and the horizontal line is placed at y=0 where the reference (harmonic F12/ATZ)
result would be.

Figure 6.12: Effect of the diagonal Born-Oppenheimer correction (DBOC, squares)
and anharmonic contributions (PI, circles) on the position-specific isotope effect of
deuterium (a) and carbon-13 (b) in propane. The following temperatures are shown:
500°C, 300°C, 200°C, 100°C, 50°C, 25°C, 0°C (left to right). The slanted black lines
denote relative difference in fractionation (1%, 3%, 5% and 10%) and the horizontal line is
placed at y=0 where the reference (harmonic F12/ATZ) result would be.
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Figure 6.13: Fifth order least squares polynomial fit (in gray) to the clumped D + D
isotope effect in dihydrogen (a) and water (b) calculated with PIMC (red circles). The
harmonic result with the same electronic structure method is shown in blue and the best
DFT result obtained in this study in green. The bottom panels show the same data, but the
polynomial fit is subtracted off.

rection.179 Anharmonic effects are most pronounced in D+D clumping of hydrogen
and water (Fig. 6.13), i.e., up to 4‰ and up to 2‰ at the lowest temperature (0°C),
respectively. Full anharmonic treatment of all other clumped isotope effects is
comparable to the harmonic result within statistical uncertainty of the path-integral
calculations (see Figs. 6.14 and B.12, B.13, B.14, B.15). It is possible to reduce
the size of statistical uncertainties by sampling further, but we do not attempt to do
so here and instead just conclude that the anharmonic effects contribute less than
0.1‰ for 17O + D clumping in water (Fig. B.12a), 13C + D clumping in methane
(Fig. 6.14a), less than 0.3‰ for 18O + D clumping in water (Fig. B.12b), 13C + D
clumping in ethane (Fig. 6.14b) and D + D clumping in methane (Fig. B.13a). Fi-
nally, the bounds on D+D clumping in ethane (Fig. B.13b) and propane (Fig. B.14)
as well as 13C + D clumping in propane (Fig. B.15) are about ±1‰.

We also note that all other clumped isotope effects in ethane and propane (i.e.,
all 13C + 13C effects as well as D + D effects where the two deuterium atoms are
not bound to the same carbon and 13C + D effects where the heavy atoms are not
directly bound to each other) have small magnitude (<0.5‰). The small size of the
effect (similarly to a weak signal) exacerbates the relative importance of statistical
uncertainty even further, making the path-integral results unreliable. We return to
discuss this in Section 6.5.

Best results
Tables 6.6 and 6.7 provide our best estimates for the fractionation values between
alkanes for deuterium and carbon-13, respectively. These values are obtained from



122

Figure 6.14: Fifth order least squares polynomial fit (in gray) to the clumped 13C + D
isotope effect in methane (a) and ethane (b) calculated with PIMC (red circles). The
harmonic result with the same electronic structure method is shown in blue and the best
DFT result obtained in this study in green. The bottom panels show the same data, but the
polynomial fit is subtracted off.

t,°C 1000 × ln 𝐷𝛼
𝑒𝑞

C2H6−CH4
1000 × ln 𝐷𝛼

𝑒𝑞

C3H8−CH4
1000 × ln 𝐷𝛼

𝑒𝑞

C3H8−C2H6
0 105.5 ± 1.34E-01 106.67 ± 1.62E-01 1.17 ± 1.92E-01
25 88.61 ± 1.37E-01 87.63 ± 1.58E-01 -0.99 ± 1.80E-01
50 75.06 ± 1.16E-01 72.71 ± 1.33E-01 -2.35 ± 1.56E-01
75 63.93 ± 1.03E-01 60.41 ± 1.10E-01 -3.52 ± 1.29E-01
100 54.98 ± 1.03E-01 50.68 ± 1.08E-01 -4.3 ± 1.16E-01
150 41.53 ± 9.17E-02 36.135 ± 8.92E-02 -5.395 ± 9.99E-02
200 32.081 ± 7.21E-02 26.116 ± 7.53E-02 -5.964 ± 8.42E-02
300 20.16 ± 6.23E-02 14.126 ± 6.09E-02 -6.034 ± 6.60E-02
400 13.474 ± 5.18E-02 7.786 ± 4.99E-02 -5.688 ± 5.64E-02
500 9.355 ± 3.99E-02 4.176 ± 3.96E-02 -5.179 ± 4.47E-02

Table 6.6: Deuterium fractionation between alkanes calculated at the F12/ATZ level of
theory with PIMC and the DBO correction.

the path-integral calculations at the F12/ATZ level of theory with the DBO cor-
rection. The individual sites of propane are calculated separately and averaged as
described in Appendix A.2. The largest alkane (propane) is the heaviest in terms
of carbon-13 fractionation, followed by ethane, which makes methane the lightest
(Table 6.7). On the other hand, for deuterium fractionation propane is lighter than
ethane over the temperature range considered here (see Table 6.6). Table 3 provides
the values for site-specific isotope effect in propane. The center site of propane is
significantly heavier than the terminal both for deuterium and carbon-13 site-specific
isotope effects.
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t,°C 1000 × ln 13𝛼
𝑒𝑞

C2H6−CH4
1000 × ln 13𝛼

𝑒𝑞

C3H8−CH4
1000 × ln 13𝛼

𝑒𝑞

C3H8−C2H6
0 19.323 ± 3.14E-02 26.503 ± 2.91E-02 7.18 ± 2.76E-02
25 16.396 ± 2.69E-02 22.397 ± 2.50E-02 6.001 ± 2.68E-02
50 13.946 ± 2.49E-02 18.962 ± 2.36E-02 5.016 ± 2.42E-02
75 11.907 ± 2.07E-02 16.16 ± 2.19E-02 4.252 ± 2.11E-02
100 10.264 ± 1.92E-02 13.86 ± 1.83E-02 3.596 ± 1.83E-02
150 7.641 ± 1.56E-02 10.288 ± 1.44E-02 2.646 ± 1.45E-02
200 5.771 ± 1.15E-02 7.724 ± 1.11E-02 1.952 ± 1.26E-02
300 3.402 ± 1.00E-02 4.4966 ± 9.28E-03 1.0947 ± 8.39E-03
400 2.052 ± 7.25E-03 2.6624 ± 7.12E-03 0.6105 ± 6.19E-03
500 1.2558 ± 8.13E-03 1.6087 ± 7.34E-03 0.3529 ± 6.18E-03

Table 6.7: Carbon-13 fractionation between alkanes calculated at the F12/ATZ level of
theory with PIMC and the DBO correction.

t,°C 1000 × ln 𝐷𝛼
𝑒𝑞

center−terminal 1000 × ln 13𝛼
𝑒𝑞

center−terminal
0 110.47 ± 3.39E-01 16.298 ± 3.90E-02
25 94.58 ± 3.29E-01 13.946 ± 3.43E-02
50 82.09 ± 2.51E-01 11.917 ± 3.30E-02
75 71.74 ± 2.28E-01 10.318 ± 3.25E-02
100 63.24 ± 1.82E-01 8.895 ± 2.41E-02
150 49.31 ± 1.52E-01 6.692 ± 1.99E-02
200 39.88 ± 1.42E-01 5.113 ± 1.76E-02
300 26.96 ± 1.07E-01 3.0179 ± 9.63E-03
400 19.102 ± 9.31E-02 1.8366 ± 8.62E-03
500 14.391 ± 7.76E-02 1.1242 ± 6.72E-03

Table 6.8: Position-specific isotope effect in propane calculated at the F12/ATZ level of
theory with PIMC and the DBO correction.

We also provide the 5th order interpolative polynomial fit coefficients for 1000 ×
ln RPFR(𝐴∗) needed to calculate carbon-13 and deuterium fractionation as well
as the site-specific isotope effect in propane (Tables B.1 and B.2). The best-fit
polynomials produce fits with largest residuals of <0.03‰. There are two advantages
of fitting individual molecules and not pairs of molecules: (i) fewer fits; (ii) new
molecules can be easily added later. The fractionation for any pair can be obtained
by first subtracting the coefficients of the “bottom” molecule from the “top” at
each polynomial order and then plugging in the temperature into resulting 5th order
polynomial equation.

For the clumped heavy isotope effects we only provide the polynomial fits for D+D
clumping in dihydrogen and water in Table 6.9; the PIMC-based values are in
Table 6.10. In all other cases we recommend using the BMU (harmonic) formula
(Eq. 3.25) based on the frequencies obtained via F12/ATZ method.
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Poly order 0th 1st 2nd 3rd 4th 5th Max Res

H2 -22.917088 19.324750 37.531448 -10.852238 1.4122405 -0.0588901 0.067
H2O 11.861599 -26.307850 21.333101 -6.0087275 1.120047 -0.0942403 0.084

Table 6.9: Fifth order least squares fit coefficients for the D + D clumped isotope effect in
molecular hydrogen and water. Last column contains the value of the maximum residual
from fit.

t,°C 𝐷Δ
𝑒𝑞

D2
𝐷Δ

𝑒𝑞

D2O
0 233.328 ± 9.77E-02 45.86 ± 1.43E-01
25 208.361 ± 7.72E-02 38.65 ± 1.08E-01
50 187.47 ± 6.17E-02 32.67 ± 1.08E-01
75 169.744 ± 5.16E-02 27.651 ± 9.61E-02
100 154.209 ± 4.91E-02 23.687 ± 8.43E-02
150 128.809 ± 3.60E-02 17.549 ± 8.15E-02
200 108.845 ± 3.63E-02 13.216 ± 6.90E-02
300 79.549 ± 2.55E-02 7.759 ± 6.41E-02
400 59.479 ± 2.11E-02 5.014 ± 4.85E-02
500 45.128 ± 1.83E-02 3.288 ± 4.07E-02

Table 6.10: D + D clumped isotope effect in molecular hydrogen and water.

6.5 Discussion
When calculating the RPFR’s for real molecules, we are limited to approximate
treatments of the problem. Therefore, it is a focus of this study to assess the
relative importance of the approximations that are frequently made when reporting
calculated RPFR’s in the literature.

Approximate description of the molecular potential
We begin with discussing the approximations of potential energy of the molecule as a
function of its molecular geometry. Theoretical chemistry offers a variety of methods
to calculate the potential energy, depending on the accuracy requirements and the
availability of computational resources. Figs. 6.2-6.7 in the main text and B.2-B.11
in the Appendix address the effect of using select theoretical methods to describe
the molecular potential. We presented the difference in values of 1000 × ln𝛼𝑒𝑞
and Δ𝑒𝑞 computed with different levels of theory and basis set sizes relative to the
reference (F12/ATZ) method in those figures. There are two caveats with such
analysis: (i) we do not know the true values, therefore we present comparisons
relative to the F12/ATZ result and (ii) this comparison only identifies differences
in the fractionation factors computed based on the harmonic approximation, i.e.,
those that arise due to the different curvature of the potentials at the minimal energy
(equilibrium) geometry. Any anharmonic effects of the potential are not accounted
for in this comparison. With that caveat in mind, a few important conclusions are
listed below.



125

Generally, isotopic fractionations and position-specific isotope effects computed
with DFT (B3LYP functional) or the post-Hartree-Fock methods (MP2, CCSD,
CCSD(T)) are within 10% relative difference, while clumped isotope effects are
typically within 5% from the reference method (F12/ATZ). The basis set size does
not matter significantly, other than for the DFT (B3LYP) calculation, where smaller
(6-31G and 6-311G) basis sets yield significant deviations from the reference values.
DFT/B3LYP is the method with the smallest computational cost out of the methods
whose performance is generally adequate. However, the equilibria involving Carbon-
13 (bulk fractionation, site-specific and 13C+D as well as 13C+ 13C clumping) tend
to be underestimated by about 10% relative to the reference result. We do not
recommend decreasing the quality of the molecular potential to empirical force
field (AIREBO, CHARMM) or the mean-field (RHF) methods. These can yield
differences in isotopic equilibria from those predicted by the higher quality methods,
that overwhelm all other approximations. There is no uniform trend with less
accurate methods being farther away and more accurate methods clustering around
the unknown “true answer.” In particular, the MP2 results are typically closer to
the reference F12 values than those calculated using the CCSD method, which is
typically considered to be more accurate. This highlights the unpredictable nature
of error cancellations, which can yield the “right” result for the “wrong” reasons.

Cancellation of errors in molecular potentials
All the results presented in Figs. 6.2-6.7 and B.2-B.11 are based on the harmonic
frequencies, which are very sensitive to the correct description of the molecular
potential. Indeed, we observe large differences in harmonic frequencies of the
molecules computed with different methods.This suggests that proper description
of the molecular potential is very important in getting the isotopic equilibria right.
On the other hand, errors in describing molecular potential have a similar effect on
all the isotopologues involved in the equilibrium reaction, such that even though
the harmonic frequencies from two different methods differ substantially, there is
error cancellation when computing the RPFR’s and a second time when calculating
their ratios. The error cancellation can lead to excellent agreement between the
harmonic approximation and the fully quantum mechanical description of clumping
in methane as shown by [86] for the 13C + D and by [98] for the D + D clumped
effects in methane. Figure 6.15 addresses the question of the importance of error
cancellation when calculating the equilibrium fractionation factors 1000× ln𝛼𝑒𝑞 in
alkanes. We plot the RPFR’s for each singly substituted isotopologue relative to the
unsubstituted one. It is the ratio of these RPFR’s that determine the fractionation
factors (see Eq. 3.21). The first thing to note is that the absolute differences in
RPFRs of alkanes are much larger (up to 60‰ for deuterium and 3‰ for carbon-
13) than the differences in fractionation factors. The latter are only up to 10‰ for
deuterium and 1.5‰ for carbon-13 (see Fig. 6.2). This means that most (over half) of
the difference in RPFR values cancel out when fractionation factors are computed
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Figure 6.15: Difference in harmonic 1000 × ln(RPFR) of methane (a-b), ethane (c-d)
and propane (e-f) with a single heavy atom (deuterium in a,c,e and carbon-13 in b,d,f)
computed with 4 commonly used electronic structure methods relative to the F12/ATZ
method. Dotted vertical lines label temperatures (from 0°C to 500°C).
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Figure 6.16: Difference in harmonic 1000 × ln(RPFR) of monodeuterated molecular
hydrogen (a) and water (b) computed with 4 commonly used electronic structure methods
relative to the F12/ATZ method. Dotted vertical lines label temperatures (from 0°C to
500°C).

using Eq. (3.21), provided the same method is used to describe both molecules.
This also explains why we do not observe consistently better agreement with the
reference method when the basis set size is increased (Fig. B.2). Even though the
difference in RPFR relative to the reference is consistently larger for the cc-pVTZ
than for the aug-cc-pVTZ (Fig. 6.15), we do not see the same trends on Fig. 6.2.
Including diffusive functions (i.e., going from 6-311G** to 6-311++G**) in the DFT
calculations does not substantially change the RPFR’s of alkanes, but in all cases
the change is farther away from the reference.

The large error cancellation when converting RPFR’s to the fractionation values
practically means that a lower-cost calculation can be used with none to minimal
loss of accuracy. On the flip side, the differences in fractionation values of alkanes
(Figs. 6.2, B.2 and B.1) are less predictable. The RPFR’s of alkanes with one
heavy isotope (either D or 13C) converge from above to the F12/ATZ value both
with improving the quality of the electronic structure method from RHF (not shown
on Fig. 6.15 due to large error) to MP2 to CCSD to CCSD(T) and with increasing
the basis set size from cc-pVTZ to aug-cc-pVTZ. DFT calculations do not fit
into the hierarchy of the post-Hartree-Fock methods, and they underestimate the
RPFR’s relative to the reference value by the magnitude comparable to that of the
CCSD method. Because the extent to which the errors cancel does not improve
with increasing the level of theory or basis set size the trends in RPFR values are
obscured by the large effects of error cancellation. It is this error cancellation that
makes it possible for a less accurate method to get the “right answer” for the “wrong
reasons,” so one must be very careful not to assume that if the method (say MP2)
was sufficiently accurate in one case, it ought to be similarly accurate in others.

This is exemplified by the alkane-water fractionation, which varies dramatically
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across the methods (see Figs. 6.3, B.4 and B.3). Because alkanes are much more
alike, it is expected that they would manifest especially favorable error cancellation,
while water has different molecular properties (including a strong dipole moment).
As a result, the RPFR values of water show a different error pattern (see Fig. 6.16(b))
and the error cancellation for fractionations between water and other molecules is
not as strong. This is observed in particular for MP2 which yields fractionations
involving water up to 40‰ (in absolute terms) or 25% (in relative terms) different
from the reference, standing out from the other theoretical models (see Fig. 6.3).

Even though the relative differences in fractionation factors that involve dihydro-
gen are small due to the large magnitude of the equilibrium fractionation factors,
the absolute differences in 1000 × ln 𝐷𝛼

𝑒𝑞

molecule−H2
(Fig. 6.3a) are as large as the

differences in corresponding RPFRs (Figs. 6.15 and 6.16a) indicating poor error
cancellation. This is an issue unique to molecular hydrogen and it arises because
H2 only has two electrons, so the correlation between them is described much better
by all post-Hartree-Fock methods. Moreover, CCSD provides an exact description
of correlation (since 3 or more electrons cannot be excited in a system that only has
2 electrons) at a given basis set size.

The clumped heavy isotope effect yields even better error cancellation, generally
yielding differences between molecular potentials of less than 5%. We believe this
holds for other molecules beyond those considered here. However, the site-specific
effect in propane (Fig. 6.4) is as sensitive to the potential as the fractionations
between different alkanes (Fig. 6.2). Figure 6.4 shows that there is substantial, but
not excellent error cancellation when the ratio of RPFR is computed, just as was the
case with the fractionation of alkanes.

Fig. 6.17 summarizes these trends with relative error for fractionations (a-b),
position-specific effect (c-d) and clumping (e-f) in alkanes involving deuterium
(left panels) and carbon-13 (right panels). The relative errors span a range of 30-
40% for the fractionation, while clumped isotope effect has a significantly narrower
range of ±10% for D +D clumping (panel e) and ±5% for 13𝐶 + 𝐷 clumping (panel
f). The distribution of relative errors for the site-specific isotope effect (Fig. 6.17c-d)
is more similar to the fractionation (panels a-b) than to clumping (panels e-f). This
is especially true for carbon-13, where the distributions of errors on panels (b) and
(d) are almost identical, while panel (f) has a narrow distribution without the second
peak at negative relative errors.

Fig. 6.18 addresses whether the size of the relative difference in fractionation (irre-
spective of the sign) is correlated with the size of the relative difference in clumping
(panels a-b) as well as the site-specific isotope effect (panels c-d). In general, the
differences in clumped effects do not correlate well with the differences in corre-
sponding fractionations. This is especially pronounced for the MP2 method (green)
as the relative importance of the error cancellation is the largest for this method.
In contract, differences site specific affects correlate well with the differences in
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Figure 6.17: Relative deviations from the reference value (dotted black line) for
fractionations (a-b), position-specific (c-d) and clumped (e-f) isotope effects in alkanes
involving deuterium (left panels) and carbon-13 (right panels). Harmonic calculations over
the temperature range of 0-500°C are done using DFT (B3LYP) with 6-311G** and 6-
311++G** basis sets as well as MP2, CCSD and CCSD(T) with cc-pVTZ and aug-cc-pVTZ
basis sets each. Dotted lines are 5th and 95th percentile of the data on each distribution.
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Figure 6.18: Absolute values of the relative (%) differences in clumped (a-b) and site-
specific (c-d) isotope effects plotted against the absolute values of the relative differences
in fractionation values between propane and methane over the temperature range of 0 to
500°C. All differences are relative to the F12/ATZ reference method. Panel (a) contains the
clumped D+D isotope effect in methane as well as center and terminal positions of propane.
Panel (b) contains the analogous 13C + D clumped effects.

fractionation, especially for the carbon-13 equilibria (panel d). Here all meth-
ods except for MP2 show strong correlation between 1000 × ln 13𝛼

𝑒𝑞

propane−ethane and
1000 × ln13 𝛼

𝑒𝑞

center−terminal.

Scaling of the harmonic frequencies
We used the most common and simplest procedure for scaling the harmonic fre-
quencies, wherein all frequencies are scaled by the same factor that depends on
the electronic structure method and the basis set used. These factors are computed
by minimizing the difference in harmonic frequencies relative to a reference for
a number of molecules. As discussed in the previous section, methods that get
closer to the true harmonic frequencies of the molecule do not necessarily yield
more accurate isotopic equilibria due to significant role of error cancellation. Thus,
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Clumping Fractionation Site specific effect

Method 0°C 500°C 0°C 500°C 0°C 500°C
pre post pre post pre post pre post pre post pre post

RHF 9.55 1.52 14.84 3.63 16.01 6.72 35.52 25.33 13.11 4.39 24.1 11.78
B3LYP 3.2 2.95 5.94 5.56 4.81 4.94 22.82 24.8 5.31 5.52 19.79 20.66
MP2 2.8 1.77 5.11 3.27 3.25 3.52 16.65 21.46 2.45 2.1 4.55 4.17

CCSD 2.39 1.74 3.91 2.89 3.99 2.84 11.64 10.37 4.57 3.4 10.42 8.9
CCSD(T) 1.68 1.36 2.79 2.38 2.79 2.26 10.48 10.21 2.58 2.06 5.83 5.49

Table 6.11: Mean absolute values of relative differences (%) between isotopic equilibria in
alkanes pre- and post- the application of harmonic frequency scaling factors at lowest and
highest temperatures studied. Note that the frequencies computed by the reference method
(F12/ATZ) also get scaled to yield the “post” column. Data over all four basis sets for each
electronic structure method studied were averaged to yield 40 data points for the clumped
isotope effects (D + D, 13C + D and 13C + 13C), 16 fractionation factors (propane-methane
and ethane-methane for both deuterium and carbon-13) and 8 site-specific effects in propane
(carbon 13 and deuterium).

it is not obvious that equilibria computed with scaled frequencies are necessarily
closer to the true values. Figures 6.9-6.10 show that scaling has the biggest effect
on the results from RHF, i.e., poorest quality electronic structure method studied
here. In practical terms this is not particularly useful as the DFT-based methods
typically provide superior results at comparable cost to the RHF method. This is
why harmonic frequency calculations are almost never done with the RHF method.
Interestingly, the scaling does not significantly reduce the difference between the
DFT (B3LYP) and all other methods for isotopic equilibria that involve carbon-13
(bottom two panels of all three figures). The effect on all other methods is small, but
generally positive, in a sense that the difference from the reference result generally
decreases upon scaling of both. It is also not surprising that the results computed
with smaller basis sets (solid and dash-dotted lines) typically yield more signif-
icant improvements towards agreement with the (post-scaling) reference method.
Table 6.11 highlights the trends from Figures 3.7-3.9. While agreement with the
reference method is significantly improved for the RHF method, the DFT (B3LYP) is
not significantly affected by the scaling of harmonic frequencies. Overall, it appears
that clumped isotope effect largely benefits from scaling the harmonic frequencies of
alkanes in a sense that equilibria computed with the scaled frequencies are typically
closer to the (also scaled) reference value. At the same time, the impact of the
scaling factors decreases with increasing quality of the computational method used.
The situation is much less clear for the fractionation factors and the site-specific
isotope effect, where frequency scaling can either improve the agreement (e.g., for
RHF) or worsen it (e.g., for MP2).

While it is possible to use more advanced scaling schemes (e.g., including frequency
and/or molecule dependence), we do not analyze their effects in this study. The
scaling factors we used are provided in Table 6.12. Frequency scaling can be a
practical solution to achieving better apparent agreement between different methods,



132

6-31G 6-311G 6-311G(d,p) 6-311++G(d,p)
B3LYP 0.962 0.966 0.967 0.967

cc-pVDZ cc-pVTZ aug-cc-pVDZ aug-cc-pVTZ
MP2 0.95 0.949 0.969 0.951

CCSD 0.947 0.948 0.963 0.951
CCSD(T) 0.963 0.958 0.971 0.964

F12 0.9638

Table 6.12: Harmonic frequency scaling factors used in this study and obtained from
Ref. [210].

but it is a crude approach, that is only applicable to the harmonic approximation
and hard to combine with approaches that go beyond it. Note that frequency scaling
changes the reference result significantly. For example, D + D clumped isotope
effect of methane at F12/ATZ (reference) method and a temperature of 0°C changes
from 23.7‰ prior to scaling to 21.9‰ upon scaling of the harmonic frequencies.
The shift in magnitude of values of isotopic equilibria is less important than the
temperature dependence, which changes less dramatically upon scaling. Therefore,
it is crucial to stay within either only scaled or only unscaled frequencies and to
not mix data from both. We note that except for this section and the corresponding
section in the results, everything presented in this thesis is based on the unscaled
(true) harmonic frequencies.

Importance of the DBO correction
We observe results that are largely consistent with our intuition on the importance
of the DBO correction described in Chapter 5. Recall that it is most prominent for
fractionation of deuterium and for the fractionations between molecules of different
polarity (i.e., between water and all other molecules). Unsurprisingly, the DBO
correction has a negligible effect on fractionation of carbon-13 (Fig. 6.11b). Perhaps
more surprisingly, the site-specific carbon-13 isotope effect in propane is affected
by a small but not negligible amount of about 0.1‰ over the range of temperatures
studied, which corresponds to 1-2% relative error (Fig. 6.12). We also note that
the influence of the DBO correction is in some cases less noticeable due to (at least
partial) cancellation with the anharmonic effects discussed in the following section,
while in other cases (notably site-specific isotope effect) the two effects reinforce
each other.

Tables 6.13 and 6.14 address how each of the individual singly substituted RPFR’s
is affected by the DBO correction. The total effect on the 𝛼𝑒𝑞 value for a pair of
molecules is therefore just a difference between corresponding columns in the table.

Importance of the anharmonic effects
The PIMC method takes into account the anharmonic effects, that are missing
in the approximate BMU (harmonic) treatment. However, the isotopic equilibria
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t °C Hydrogen Water Methane Ethane Center Terminal Total
0 -0.67 -33.72 0 7.23 6.95 3.5 4.44
25 -0.61 -30.9 0 6.63 6.36 3.21 4.05
50 -0.56 -28.51 0 6.11 5.87 2.96 3.73
75 -0.52 -26.46 0 5.68 5.45 2.75 3.46
100 -0.49 -24.69 0 5.3 5.08 2.56 3.22
150 -0.43 -21.77 0 4.67 4.48 2.26 2.84
200 -0.38 -19.47 0 4.18 4.01 2.02 2.53
300 -0.32 -16.07 0 3.45 3.31 1.67 2.09
400 -0.67 -33.72 0 7.23 6.95 3.5 4.44
500 -0.61 -30.9 0 6.63 6.36 3.21 4.05

Table 6.13: Changes in 1000×ln RPFR(𝐴∗) due to the DBO correction for single deuterium
substitution. For convenience, the effect is given relative to methane (i.e., the effect on
1000 × ln RPFR(CH3D) is subtracted from each value. “Center,” “Terminal,” and “Total”
refer to the two positions of propane and their appropriate average.

t °C Methane Ethane Center Terminal Total
0 0 -0.023 0.05 -0.155 -0.019
25 0 -0.021 0.046 -0.142 -0.017
50 0 -0.02 0.042 -0.131 -0.016
75 0 -0.018 0.039 -0.122 -0.015
100 0 -0.017 0.037 -0.114 -0.014
150 0 -0.015 0.032 -0.1 -0.012
200 0 -0.014 0.029 -0.09 -0.011
300 0 -0.011 0.024 -0.074 -0.009
400 0 -0.009 0.02 -0.063 -0.007
500 0 -0.008 0.018 -0.055 -0.006

Table 6.14: Changes in 1000× ln RPFR(𝐴∗) due to the DBO correction for single carbon-
13 substitution. For convenience, the effect is given relative to methane (i.e., the effect on
1000 × ln RPFR(13CH4) is subtracted from each value. “Center,” “Terminal,” and “Total”
refer to the two positions of propane and their appropriate average.
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calculated with PIMC are not necessarily more accurate than the harmonic result
for several reasons that we discuss at the end of this Chapter. Here we assess the
relative importance of the harmonic approximation by comparing the PI-based result
relative to the harmonic result using the same description of the molecular potential
energy, the F12/ATZ PES.

Anharmonic effects are frequently neglected, since they are not easy to evaluate
(especially for larger molecules) and accounting for them typically does not af-
fect the isotopic equilibria dramatically. The typical impact of the anharmonic
effects on fractionation (Fig. 6.11), site-specific effects (Fig. 6.12) and clumping
(Figs. 6.13-6.14) are shown in the results. The effects shown there vary from rather
substantial (e.g., about 20% relative difference for fractionation of deuterium be-
tween methane and propane, Fig. 6.11(a)) to completely negligible (e.g., <0.1‰
difference in D +D clumping of methane, Fig. 6.14(a)). In general, the effect on the
clumped isotope effect is least significant. For methane it has already been shown
that the path-integral-based calculations of clumping agree very well with the har-
monic approximation.86,98 Figs. 6.14 and B.12, B.13, B.14, B.15 show that within
the statistical error of the PIMC calculations, this is also true for water, ethane,
and propane. It is possible to reduce the statistical uncertainty in clumped isotope
effects computed with the path-integral method with additional sampling, but we
do not attempt to do it here as preliminary results do not indicate major effect sizes.
Therefore, for all but two clumped isotope effects considered here we recommend
using the values based on the harmonic frequencies computed with the F12/ATZ
method. However, for the two most pronounced (i.e., largest numerical value of
Δ𝑒𝑞) clumped isotope effects, which are. D + D in molecular hydrogen and water,
we recommend using the path-integral based data, as the anharmonic effects lead
to small but verified difference of up to 2‰ for water and up to 4‰ for molecular
hydrogen (see Fig. 6.13).

The site-specific isotope effect in propane is affected by about +5‰ for deuterium
and -0.3‰ for carbon-13. These effects are larger than the DBO corrections, but
less significant than the accurate treatment of molecular potential (Figure 6.4).

Harmonic approximation can yield to significant changes in fractionation equilibria,
leading to significant changes in interpretation of observed fractionations. Harmonic
calculations overestimate how heavy propane is, which leads to a substantial error
for fractionations involving propane (see Fig. 6.11 for the example of methane-
propane fractionation, with 20% relative error for deuterium and 5% relative error
for carbon-13). More dramatically, the fractionation of deuterium between ethane
and propane has a small magnitude and, in this case, harmonic results yield a
different sign (i.e., direction) of fractionation as shown in Table 6.15. Harmonic
results predict that propane is heavier than ethane with respect to fractionation of
deuterium. The full anharmonic (path-integral-based) treatment using the same
molecular potential disagrees, making propane lighter than ethane over almost the
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t,°C Terminal Center Total
PI Harm PI Harm PI Harm

0 -27.1929 -9.3282 79.8337 91.371 0.6567 24.4499
25 -25.0998 -8.7796 66.3261 77.1366 -1.4478 19.8909
50 -23.1613 -8.2539 56.0193 65.5601 -2.7707 16.2649
75 -21.6203 -7.7589 47.4204 56.0636 -3.9081 13.3512
100 -20.1859 -7.2969 40.5301 48.2133 -4.6578 10.9894
150 -17.6816 -6.4711 29.4022 36.2036 -5.7012 7.4756
200 -15.8421 -5.7646 22.0475 27.6798 -6.2343 5.0766
300 -12.6429 -4.6411 12.6769 16.9318 -6.2526 2.2278
400 -10.3284 -3.8036 7.3772 10.8864 -5.8725 0.7803
500 -8.648 -3.165 4.5265 7.2894 -5.3381 0.0263

Table 6.15: Comparison of the path-integral-based (PI) and approximate harmonic (Harm)
1000 × ln 𝐷𝛼

𝑒𝑞

propane−ethane values for the fractionation between propane (as well as its two
sites) and ethane. Note that these values differ from those presented in Table 6.6 because
the DBO correction has not been applied here.

entire range of temperatures studied here. Note that this is possible in any molecule
with large site-specific preference. Harmonic results correctly predicts that ethane
is in between the two sites of propane with the terminal site lighter and center site
heavier than ethane, but it fails to accurately predict the balance between the two.
Also note that this fractionation does not yield a typical temperature dependence: the
overall fractionation between ethane and propane now vanishes not only at infinite
temperature, but also the second time at approximately 12°C, where the enrichment
(depletion) of the center (terminal) sites of propane cancel out precisely with each
other. We predict that below this crossover temperature propane becomes heavier
than ethane and indeed our DBO-corrected fractionation value 1000×ln 𝐷𝛼

𝑒𝑞

C3H8−C2H6
at 0°C is +1.17‰ (see Table 6.6).

We note that the path-integral-based approaches are not the only way to improve
on the harmonic approximation. The anharmonic corrections have been applied to
isotopic equilibria between alkanes, water and other small molecules.86,100,130,132

[86] showed that including only the anharmonic corrections to the zero-point energy
does not necessarily improve agreement with the path-integral method, particularly
they show that for 13C + D clumped effect in methane the other approximations
conspire such that the harmonic result agrees well with the full anharmonic treatment
using PIMC. [132] showed that at MP2/aug-cc-pVTZ level of theory, inclusion of
many corrections that go beyond harmonic approximation can have a major effect on
the isotopic equilibria between molecules. In the subsequent study they established
that the effect on clumped isotope effects is substantially weaker.130 Both of these
findings echo our conclusions based on a path-integral-based method and a higher
quality (CCSD(T)-F12A/aug-cc-pVTZ) molecular potential. Authors of ref.100

use a highly accurate CCSD(T)/6–311+G(d,p) potential for calculating harmonic
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Figure 6.19: Deuterium (a) and carbon-13 (b) fractionation between alkanes calculated
with PIMC and after applying the DBO corrections. Fractionations of ethane with methane
are stars, propane with methane are circles, and propane with ethane are squares. Dashed
lines signify total fractionations shown in Table 6.6.

frequencies of butane, but their inclusion of anharmonic effects is based on the
lower quality MP2/6–311+G(d,p) potential. The advantage of our approach is that
we need not mix different potentials, which can lead to unknown systematic error.
On the other hand, this approach is a practical alternative when the path-integral-
based methods are not feasible — either because the molecule is too large or because
the clumped isotope effects are too weak.

Trends in heavy isotope fractionation among alkanes
Figure 6.19 compares the fractionation of deuterium (a) and carbon-13 (b) for the
alkanes. Comparing the two, we see many similarities. The center position of
propane is the heaviest, while methane is the lightest in both cases. Deuterium
fractionation has a significantly larger magnitude and interestingly ethane falls in
between the two positions of propane, as discussed in the previous section. This
leads to a crossover temperature of about 12°C, below which propane is heavier
than ethane and vice versa for the temperatures above 12°C. This is not observed
for carbon-13 (compare pink squares on panels (a) and (b) of Fig. 6.19). Deuterium
fractionation between ethane and methane is similar to that between propane and
methane — but this similarity is the result of averaging between propane’s center
and terminal sites.

Confusion over the site-specific effect in propane
Our definition of 1000× ln𝛼𝑒𝑞 (Eq. 3.19) to quantify the site-specific isotope effect
and Δ𝑒𝑞 (Eq. 3.20) to quantify clumping most closely resembles Δ

𝐾
𝑗
𝑒𝑞

defined at the
end of the methods section in Ref. [87], the only difference being that we use natural
logarithm, whereas they subtract one from the ratio of equilibrium constants. Thus,
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t,°C 1000 × ln 𝐷𝛼

𝑒𝑞

center−terminal 1000 × ln 13𝛼
𝑒𝑞

center−terminal Δ
𝑒𝑞

CH3−13CHD−CH3
[87] [86] Here [87] [86] Here [87] Here

-23.15 122.9 Harm PIMC 130.1 18.39 Harm PIMC 19.14 6.37 6.33
26.85 89.1 90.12 93.9 93.6 13.35 14.34 14.6 13.96 4.84 4.82
76.85 66.4 71 9.78 10.34 3.78 3.77
126.85 50.7 52.12 53.3 55.3 7.32 7.92 8.12 7.77 3.01 2.99
176.85 39.5 43.9 5.54 5.91 2.43 2.41
226.85 31.4 32.93 33.6 35.5 4.25 4.6 4.63 4.54 1.97 1.96

Table 6.16: Comparing 1000 × ln𝛼𝑒𝑞 obtained from Table 3 of Ref. [87], the harmonic
and path-integral-based results from Table 3 in Ref. [86] and our best results.

our results presented in Table 6.8 above closely resemble those from Table 3 of
Ref. [87], although for proper comparison the values from their Table 3 need to be
transformed to 1000 × ln𝛼𝑒𝑞 as follows:

1000 × ln𝛼𝑒𝑞 = 1000 × ln

(
Δ
𝐾

𝑗
𝑒𝑞

1000
+ 1

)
. (6.2)

We present a head-to-head comparison between our best results (interpolated every-
where except for the lowest temperature point) and Table 3 of Ref. [87] in Table 6.16.

We note that results from [86] shown in Fig. 5 of Ref. [87] are misinterpreted
and the apparent disagreement that results from this misinterpretation is not real.
Figure 6.20 and Table 6.17 address the two conventions of presenting site-specific
isotope effect. The values reported by [86] express enrichment of the center position
relative to random distribution of isotopes – the same nomenclature as is typically
used for the clumped isotope effect. These values are much smaller than the site
preferences. Conversion of Δ𝑖 values from Table 3 of [86] to the nomenclature we
use in this thesis is done via the following equations:

1000 × ln 𝐷𝛼
𝑒𝑞

center−terminal = 1000 × ln
(

4
1 − Δ𝑖/3000

− 3
)

(6.3)

1000 × ln 13𝛼
𝑒𝑞

center−terminal = 1000 × ln
(

3
1 − Δ𝑖/2000

− 2
)

(6.4)

and yields values in excellent agreement with Ref. [87]. The remaining discrepancy
in 1000× ln𝛼𝑒𝑞center−terminal between the harmonic result of [86] and [87] can be easily
explained by the different molecular potentials used in two studies.

We note that the excellent agreement of the path-integral based results of Ref. [86]
with our best results for 1000× ln 𝐷𝛼

𝑒𝑞

center−terminal is largely due to lucky combination
of opposing factors (the CHARMM force field they used happens to overestimate
the result by an amount that is approximately equal to the contribution of the DBO
correction we used). The same effects also conspire to reduce apparent difference
in the same result for site preference of carbon-13, but this time the cancellation of
opposing effects is not as perfect.
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Figure 6.20: Site-specific effect of propane calculated with the PI method and expressed
in two different ways: as excess heavy atom in the enriched position relative to the depleted
(dots) or as excess heavy atom in the enriched position relative to random distribution of
heavy isotopes (stars). The side-by-side comparison of the numerical values is in Table 6.17.

t, °C 1000 × ln 𝐷𝛼𝑒𝑞 𝐷Δ𝑒𝑞 1000 × ln 𝐷𝛼𝑒𝑞 13Δ𝑒𝑞

0 110.5 85.12 16.5 11.03
25 94.58 72.6 14.13 9.44
50 82.09 62.82 12.09 8.08
75 71.74 54.76 10.48 7
100 63.24 48.17 9.05 6.04
150 49.31 37.43 6.82 4.55
200 39.88 30.2 5.23 3.49
300 26.96 20.36 3.12 2.08
400 19.1 14.4 1.92 1.28
500 14.39 10.83 1.2 0.8

Table 6.17: Site-specific isotope effect in propane expressed as both the site preference
(1000 × ln𝛼𝑒𝑞) and the enrichment relative to random distribution of isotopes (Δ𝑒𝑞).
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Figure 6.21: Summary of D+D (a-b), 13C+D (c-d) and 13C+ 13C (e-f) clumped isotope
effects in alkanes. The right-hand side panels zoom in to the area around 0 to distinguish
weaker clumped effects.

Trends in clumped isotope effects
Figure 6.21 summarizes the trends in clumped isotope effects of alkanes. As
expected, the D + D clumping is the strongest, followed by 13C + D clumping with
13C + 13C clumping being the weakest. The strength of the clumped isotope effect
also strongly depends on the proximity of the heavy isotopes, falling below 1‰ for
the deuterium atoms bound to different carbons (panel b) and for 13C +D clumping
when the two heavy atoms are not directly connected to each other (panel d). Further
separation of heavy isotopes decreases the effect by another order of magnitude to
below 0.1‰. The 13C + 13C clumping in propane is similarly affected (panels e-f).
There is another less pronounced trend shown on Fig. 6.21. The clumped isotope
effects decrease going from methane to primary to secondary carbon for all clumped
heavy isotope effects up to propane. Interestingly, propane presents a choice between
placing either carbon-13 or deuterium into the primary (i.e., terminal) position. If
the two alternatives are compared (Fig. 6.21d), it is clear that carbon-13 has a
stronger preference for the primary (terminal) position than deuterium.
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Clumped Methane Ethane Propane
effect Δ𝑒𝑞 vs Δa Δ𝑒𝑞 vs Δ Δ𝑒𝑞 vs Δ
D + D 23.7 23.53 8.74 8.63 5.33 4.82

13C + D 6.64 6.55 3.35 3.26 1.98 2.1
13C + 13C N/A N/A 0.288 0.276 0.181 0.138
𝑀 + 2 6.99 6.9 0.751 0.724 0.391 0.342

Table 6.18: Comparison of the Δ𝑒𝑞 values used throughout in this study and the corre-
sponding 1000 × ln(Δ/1000 + 1) values at 0°C.

Combined clumped isotope effects
For methane, there is only one doubly substituted isotopologue that determines the
total clumped isotope effect for each of the two (D+D and 13C+D) clumping effects:
CH2D2 determines Δ𝑒𝑞D+D and 13CH3D determines Δ𝑒𝑞13C+D . However, for ethane and
propane the individual clumped effects from Fig. 6.21 can be combined, yielding the
total D + D and 13C + D clumped effects shown in Fig. 6.22. Similarly, for propane
the two 13C + 13C effects are combined to yield Δ

𝑒𝑞
13𝐶+13𝐶

. Panel (d) of Fig. 6.22 also
presents measures of the clumped effects that accommodate low-resolution mass
spectroscopy Δ

𝑒𝑞

𝑀+2, i.e., Δ𝑒𝑞18 for methane and the corresponding values for ethane
and propane. All Δ𝑒𝑞 values for combined clumped isotope effects are obtained
via simple averaging of relevant Δ𝑒𝑞isotopologue values. Fig. 6.22 also compares these
averages to the corresponding Δ-values (obtained from Eq. 3.5 and directly relatable
to the mass-spectroscopic measurements), obtained from total excess of all relevant
species at equilibrium relative to when isotopes are distributed randomly. Recall,
that Δ𝑒𝑞

𝑖
values are only equal to Δ𝑖 values in the limit of infinite dilution, i.e.,

when heavy isotope abundances are infinitely small. Therefore, even for methane
although Δ

𝑒𝑞

D+D = Δ
𝑒𝑞

CH2D2
and ΔD+D = ΔCH2D2 , but Δ𝑒𝑞D+D ≠ ΔD+D. The situation is

analogous for the 13C + D clumped effect. Both methane and ethane have larger
equilibrium values, i.e., Δ𝑒𝑞 > Δ. This is expected as the strength of clumping
decreases with increasing concentration of heavy isotopes (see Fig. A.1). The errors
are significantly larger for propane, as the naive averaging of Δ𝑒𝑞 (i.e., using weights
given by random distribution of isotopologues) does not adequately capture the
complexity of equilibrium in propane, that involves the combination of clumped
and site-specific effects.

Rotamers of ethane and propane
Certain experimental techniques (e.g., NMR) allows for resolution of different stable
rotational conformers of isotopically substituted ethane and propane, especially at
lower temperatures where rotations around C-C single bond are slowed down. For
ethane, only the D + D clumped isotope effect on the neighboring carbons results
in two different rotamers, shown in Fig. 6.23(a-b). The clumped isotope effect for

aFor proper comparison to Δ𝑒𝑞 , the numerical values of Δ from Eq. 3.5 are given as 1000 ×
ln(Δ/1000 + 1).
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Figure 6.22: Combined D+D (a), 13C+D (b) and 13𝐶 +13 𝐶 (c) clumped isotope effects
for alkanes. Panel (d) presents a combination of all the clumped effects. The Δ𝑒𝑞 values
(solid lines) are compared to the 1000× ln(Δ/1000+1) values (circles) as defined in Eq. 3.5.
Table 6.18 includes a head-to-head comparison of these values at 0°C.

Rotamers of Larger clumping rotamer Smaller clumping rotamer
CH2D − CH2D (a) D trans to D 1.33‰ (b) D gauche to D 0.10‰

CH2D − CHD − CH3 (c) D trans to D 1.23‰ (d) D gauche to D 0.09‰
CHD2 − CH2 − CH3 (e) H trans to Meb 21.04‰ (f) D trans to Me 20.68‰

13CH2D − CH2 − CH3 (g) D trans to Me 6.13‰ (h) H trans to Me 6.06‰
CH2D − 13CH2 − CH3 (h) H trans to Me 0.45‰ (g) D trans to Me 0.33‰
CH2D − CH2 − 13CH3 (g) D trans to Me 0.043‰ (h) H trans to Me 0.0044‰

Table 6.19: Clumped isotope effects (Δ𝑒𝑞) in rotamers of ethane and propane at 0°C with
F12/ATZ harmonic frequencies. The rotamer labels (a)-(h) refer to Fig. 6.23

rotamer (a) with deuterium atoms at 180°angle relative to each other is about 10
times larger than for the rotamer shown in (b). For the temperature ranges considered
here these rotamer freely interconvert and so elsewhere we report only the average
(properly weighted as 1 to 2) for the two rotamers. The difference of about a factor
of 10 is also observed for an analogous situation for both D + D (Fig. 6.23c-d) and
13C+D (Fig. 6.23g-h) clumped effects in propane. All other clumped isotope effects
of propane are much closer to each other in numerical value for each of two rotamers
(see Table 6.19 for comparison at 0°C).
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Figure 6.23: Rotamers of doubly substituted ethane (a-b) and propane (c-h). Carbon-
13 is not labelled, so (g) and (h) describe all relevant 13C +D clumped effects. In each case
the front carbon of the Newman projection corresponds to the first carbon in Table 6.19.

The terminal site of propane also has two non-equivalent positions for the substitu-
tion of H by D as shown in the Newman projections (g) with D trans to the methyl
group and (h) with D gauche to the methyl group. We do not observe a significant
difference in RPFR for the two either from the path-integral or from the harmonic
calculations.

Considerations for the Path-integral calculations
Properly done PI-based calculations yield accurate RPFR’s for a particular potential.
This means that when low-quality affordable potentials are used, we cannot expect
accurate predictions for RPFR’s. In particular, the prior studies of position-specific
isotope effect in propane86,102 should not be treated as reference values for the
experimental predictions, but only as the estimates of the effect of anharmonicities
for the potentials the path-integral-based approach was applied to. It is possible
that the more accurate potentials have similar anharmonic effects, but we have not
investigated whether this is the case for the molecules investigated here, and we do
not know of a study that did.

We wish to share a note of caution with the reader: the PI calculations are difficult
to converge for the “weak” clumped isotope effects, i.e., those whose enrichment
is very slightly above randomness. For the molecules studied here the following
clumped isotope effects were found to be weak: 13C + 13C clumping in ethane
and propane as well as D + D clumping on different carbon atoms in ethane and
propane as well as 13C + D clumping for deuterium atom that is not connected to
carbon-13. We initially set out to calculate all of these clumped isotope effects using

bMe stands for methyl group, i.e., CH3.
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Figure 6.24: Comparison of the clumped isotope effects in ethane and propane calcu-
lated with PIMC and the corresponding harmonic results for (a) D +D, (b) 13C +D and
(c) 13𝐶 +13 𝐶 clumped effects. The error bars overwhelm the result, requiring at least 100
times more computing time for any meaningful interpretation. These (unconverged) results
give no indication that the anharmonic effects are important in these cases.

our standard path-integral-based methodology, but quickly realized that calculating
them to a reasonable level of precision would require a huge amount of computing
time. Figure 6.24 shows the results with statistical uncertainties after collecting a
little over 10 million samples (which is comparable to what we have done for all
other clumped effects, see Table 6.2). The issue is that the standard error of Δ𝑒𝑞 does
not decrease as the clumped effect is weakened and thus the statistical uncertainty
(noise) overwhelms the clumped isotope effect (the signal) making the path-integral
approach we used in this study impractical. In these cases, we recommend using
the harmonic results To summarize, the PI approach is limited in two ways: (i) The
high-level calculations to accurately fit the PES become not feasible for larger and
less symmetric molecules. Even derivatives of propane (e.g., propanol) would be
challenging. (ii) The sampling to achieve high precision of the target RPFR is costly,
especially for small clumped isotope effects.

6.6 Summary
Based on the extensive calculations performed in this study, we briefly state our key
observations for heavy isotope fractionation, clumping and position-specific effect
in gaseous dihydrogen, water, and small alkanes at 0 to 500 degrees C. We believe
that these ideas extend beyond the strict confines of the examples considered here
and we hope that they will serve a useful guide for future studies of stable isotope
geochemistry.

1. Clumped heavy isotope effects enjoy significant error cancellation and can be
computed better than experimental accuracy using a simple Bigeleisen-Urey
harmonic approach and a cheap DFT potential like B3LYP/6-311G(d,p).
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2. On the contrary, fractionation of heavy isotopes between alkanes and position-
specific isotope effect in propane require the use of highly accurate potential
and accounting for the anharmonic effects.

3. The DBO correction is negligible for equilibria involving carbon-13, but
can be important for fractionations and position-specific effects involving
deuterium.

4. Clumped heavy isotope effect is the strongest for two atoms that are directly
bonded to each other and decays significantly with each additional bond.

5. In alkanes, both D+D and 13C+D clumped heavy isotope effects of a particular
carbon decreases in the following order: CH4 > CH3 > CH2. Moreover, the
total clumping decreases sharply due to the increasing importance of the
weakly-clumped isotopologue with distant heavy isotopes.

6. Path-integral-based methods are a method of choice for accurate calculations
of fractionation between small gaseous molecules. We do not see evidence
that path-integral-based approaches are necessary to accurately describe the
clumped isotope effects in alkanes.
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A p p e n d i x A

DETAILS OF METHODOLOGY

A.1 ORCA calculations
Our typical ORCA input file is as follows:

! CCSD(T) aug−cc−pVTZ d e f g r i d 3 Opt NumFreq Mass2016
VeryTightSCF NoFrozenCore

∗ x y z f i l e 0 1 i n i t . xyz
%f r e q I n c r emen t 0 .001 end
%geom Convergence t i g h t end
%s c f Convergence VeryT igh t end

First, the molecular geometry is optimized with tight convergence criteria using
CCSD(T)/ATZ method and without using the frozen core approximation starting
from the initial guess provided in the “init.xyz” file. The initial molecular geometry
is supplied in the “init.xyz” file and comes from optimized geometry given by the
cheaper method. As instructed by the keyword “Mass2016,” the program uses
atomic masses of most abundant isotopes (average atomic masses are used by
default). The finite difference method (keyword “NumFreq”) is used with the step
size or “Increment” of 0.001 Bohr. Harmonic frequencies calculation via finite
difference is the most time-consuming part of the entire calculation, accounting
for >95% of the total runtime. The frequencies are printed in the “.hess” output
file. We note that there is no need to recalculate the harmonic frequencies for each
isotopologue from scratch; instead the hessian output file “some_output.hess” can
be redirected to the “orca_vib” helper program, that is part of the ORCA package.
This will instantly print out the harmonic frequencies of the isotopologue specified
in the “$atoms” section of the hessian file.

Harmonic frequency calculations proceed through (i) molecular geometry is opti-
mization (i.e., the minimum energy point search) followed by (ii) forces evaluations
at each of 6N small displacements around this equilibrium point to get the Hes-
sian matrix. Following this, (iii) the 3N-by-3N Hessian matrix is diagonalized and
weighted by the atomic masses, which gives the harmonic frequencies as the 3N-6
(3N-5 for linear molecules) eigenvalues. The molecular geometry is optimized using
a quasi-Newton update procedure with the BFGS update (Eckert et al., 1998). Since
the algorithm finds a local minimum, it is crucial for the optimization to start with the
geometry that is close to the global minimum in energy. The initial guess is obtained
from experiments or a previous calculation (frequently using a less accurate, but
also less computationally expensive method) and is guided to the minimum energy
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geometry using the gradient of energy. We have used the experimentally available
structures as a guess for the cheapest RHF/DZ calculations of each molecule and
the final optimized geometry served as initial guess for the next (more expensive)
method.

It is worth noting that hydrogen atoms, attached to one heavy atom (oxygen or carbon)
are equivalent by construction for the PIP surfaces described in section 3.3.2. Thus,
substituting either of the two hydrogens in water or either of the four hydrogens
in methane gives the same exact harmonic frequencies for the PIP surfaces. This
is not the case for the calculations that are typically performed with a standard
software package (Gaussian, ORCA, or MolPro), unless molecular symmetry is
enforced. Small asymmetries in optimized structure will result in slight differences
in harmonic frequencies when different formally equivalent atoms are substituted.
To minimize the error introduced by these small asymmetries, we average over the
RPFR’s due to equivalent substitutions for all of our ORCA calculations.

A.2 Heavy isotope fractionations involving propane
Using Eq. (3.21), we can directly calculate the bulk fractionation factors 𝛼𝑒𝑞 for
molecules in which all sites that allow for isotopic substitution are equivalent. This
is the case for all molecules considered here except for propane, which has two non-
equivalent positions for both carbon and hydrogen — the terminal (methyl group)
and the center (methylene group). In this case we must write down two heavy
isotope exchange reactions, that both contribute to the bulk fractionation of either
deuterium or carbon-13 between propane and the other molecule 𝑀 . Consider, for
example bulk fractionation of propane with dihydrogen:

HD + C3H8 ⇌ H2 + CH3 − CH2 − CH2D,𝐷𝛼𝑒𝑞terminal−H2
=

RPFR(CH3 − CH2 − CH2D)
RPFR(HD)

HD + C3H8 ⇌ H2 + CH3 − CHD − CH3,
𝐷𝛼

𝑒𝑞

center−H2
=

RPFR(CH3 − CHD − CH3)
RPFR(HD) .

Both equilibria contribute to the bulk heavy isotope fractionation with the individual
contribution weighted by the number of atoms of this type:

𝐷𝛼
𝑒𝑞

propane−𝑀 =
3
4
𝐷𝛼

𝑒𝑞

terminal−𝑀 +
1
4
𝐷𝛼

𝑒𝑞

center−𝑀 (A.1)

13𝛼
𝑒𝑞

propane−𝑀 =
2
3

13𝛼
𝑒𝑞

terminal−𝑀 +
1
3

13𝛼
𝑒𝑞

center−𝑀 (A.2)

While the weights of the individual 𝛼𝑒𝑞given in Eqs. A.1-A.2 are approximate, we
confirm that this approximation is negligibly different from the exact answer when
abundances of heavy isotopes is small (i.e., at close to natural abundances), see
Appendix A.3.
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A.3 Approximating isotope fractionations by considering singly substituted
isotopologues only

It is well established that singly substituted species play a dominant role in ex-
change of heavy isotopes between phases. Intuitively this is because (i) the total
concentration of all multiply substituted isotopologues (i.e., all isotopologues other
than the one with all light isotopes or a single heavy isotope) is small for most
small molecules at natural abundance of isotopes (excluding molecules containing
chlorine, bromine and other atoms with large abundance of heavy isotopes) and (ii)
the deviations from random distribution of multiply substituted isotopologues are
typically not very large.

We therefore obtain 𝛼𝑒𝑞
𝑀−𝑁 values that describe fractionations between molecules or

sites 𝑀 and 𝑁 from equilibrium constants of the exchange reactions between singly
substituted isotopologues only, as discussed in Section 3.3. To quantitatively assess
whether 𝛼𝑒𝑞

𝑀−𝑁 values (defined in Eq. 3.19) approximate corresponding exact 𝛼𝑀−𝑁
values (defined in Eq. 3.3) at close to natural abundances, we equilibrate each of the
molecules studied here with methane, whose deuterium abundance is set to VSMOW,
i.e., 155.76 ppm211 and whose carbon-13 abundance is set to VPDB i.e., 11.18 ppt.82

For methane-water equilibrium we additionally set the abundance of oxygen-17 and
oxygen-18 as 379.9 ppm and 2005.20 ppm, respectively.212 The equilibration is
done based on the equilibrium constants calculated with our F12/ATZ reference
molecular potentials (Section 6.3). The equilibrium constants for isotope exchange
reactions between singly substituted isotopologues are given by path-integral-based
calculations, while all other equilibrium constants (involving double, triple etc.
substitutions) are calculated using the harmonic approach.

Table A.1 below presents comparison between 1000 × ln𝛼CH4−𝑀 values (Eq. 3.3)
and the corresponding 1000× ln𝛼𝑒𝑞CH4−𝑀 values (Eq 3.19). The total 𝛼𝑒𝑞 for propane
(last row) is obtained by averaging as described in A.2. The total 𝛼 is obtained as
follows for fractionation of deuterium:

𝐷𝛼CH4−𝑀 =
[D]CH4/[H]CH4

[D]𝑀/[H]𝑀
(A.3)

with [𝐴]𝑀 is the concentration of isotope 𝐴 in species 𝑀 . The analogous expression
is used for carbon-13.

From Table A.1 we conclude that for the isotope fractionations considered here
we may neglect any error resulting from assuming 𝛼𝑒𝑞

𝑀−𝑁 = 𝛼𝑀−𝑁 as they are less
than 0.1‰ for the fractionations with methane at 0°C and even smaller at higher
temperature.

A.4 Clumped heavy isotope effect equilibrium reactions
Equation (3.12) directly defines the heavy isotope clumped effect ΔD+D for dihydro-
gen, water and methane, Δ13C+D for methane and Δ17O+D as well as Δ18O+D for water.

aValues are given as 1000 × ln𝛼CH4−𝑀 in all cases.
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𝑀 Fractionation of deuterium Fractionation of carbon-13
𝐷𝛼a 𝐷𝛼𝑒𝑞 13𝛼 13𝛼𝑒𝑞

dihydrogen 1299.5 1299.43
water -142.92 -142.98
ethane -101.6 -101.59 -19.349 -19.346

term. propane -74.388 -74.392 -20.992 -20.99
cent. propane -181.42 -181.42 -37.499 -37.494
total propane -102.24 -102.23 -26.524 -26.522

Table A.1: Comparison between 𝛼 and 𝛼𝑒𝑞 (both expressed as 1000 × ln𝛼) for deuterium
and carbon-13 fractionation at 0°C. Note that these are prior to the DBO correction, thus
numbers shown here differ slightly from our best results presented in Tables 6.6 and 6.7,
respectively.

The corresponding equilibria are listed below:

Δ
𝑒𝑞

D+D(H2) = Δ
𝑒𝑞

D2
: 2 HD ⇌ H2 + D2 (A.4)

Δ
𝑒𝑞

D+D(H2O) = Δ
𝑒𝑞

D2O : 2 HDO ⇌ H2O + D2O (A.5)

Δ
𝑒𝑞
17O+D(H2O) = Δ

𝑒𝑞

HD17O
: HDO + H2

17O ⇌ H2O + HD17O (A.6)

Δ
𝑒𝑞
18O+D(H2O) = Δ

𝑒𝑞

HD18O
: HDO + H2

18O ⇌ H2O + HD18O (A.7)

Δ
𝑒𝑞

D+D(CH4) = Δ
𝑒𝑞

CH2D2
: 2 CH3D ⇌ CH4 + CH2D2 (A.8)

Δ
𝑒𝑞
13+D(CH4) = Δ

𝑒𝑞
13CH3D

: CH3D + 13CH4 ⇌ CH4 + 13CH3D. (A.9)

Ethane is described by Equations 3.14 and 3.15. We spell out the five individual
equilibrium reactions below:

Δ
𝑒𝑞
13C+13C

(C2H6) = Δ
𝑒𝑞
13CH3 − 13CH3

:

2 CH3 − 13CH3 ⇌ C2H6 + 13CH3 − 13CH3 (A.10)
Δ
𝑒𝑞

CHD2 − CH3
: 2 CH2D − CH3 ⇌ C2H6 + CHD2 − CH3 (A.11)

Δ
𝑒𝑞

CH2D − CH2D : 2 CH2D − CH3 ⇌ C2H6 + CH2D − CH2D (A.12)

Δ
𝑒𝑞
13CH2D − CH3

: CH2D − CH3 + 13CH3 − CH3 ⇌ C2H6 + 13CH2D − CH3

(A.13)
Δ
𝑒𝑞

CH2D − 13CH3
: CH2D − CH3

+ 13CH3 − CH3 ⇌ C2H6 + CH2D − 13CH3.

(A.14)

Finally, the clumped isotope effect in propane is described by the following 11
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reactions:

Δ
𝑒𝑞
13CH3 − CH2 − 13CH3

: 2 13CH3 − CH2 − CH3 ⇌

C3H8 + 13CH3 − CH2 − 13CH3 (A.15)
Δ
𝑒𝑞
13CH3 − 13CH2 − CH3

: 13CH3 − CH2 − CH3 + CH3 − 13CH2 − CH3 ⇌

C3H8 + 13CH3 − 13CH2 − CH3 (A.16)
Δ
𝑒𝑞
13CH2D − CH2 − CH3

: 13CH3 − CH2 − CH3 + CH2D − CH2 − CH3 ⇌

C3H8
+13CH2D − CH2 − CH3 (A.17)

Δ
𝑒𝑞

CH2D − 13CH2 − CH3
: CH3 − 13CH2 − CH3 + CH2D − CH2 − CH3 ⇌

C3H8 + CH2D − 13CH2 − CH3 (A.18)
Δ
𝑒𝑞

CH2D − CH2 − 13CH3
: 13CH3 − CH2 − CH3 + CH2D − CH2 − CH3 ⇌

C3H8 + CH2D − CH2 − 13CH3 (A.19)
Δ
𝑒𝑞

CH3 − 13CHD − CH3
: CH3 − 13CH2 − CH3 + CH3 − CHD − CH3 ⇌

C3H8 + CH3 − 13CHD − CH3 (A.20)
Δ
𝑒𝑞
13CH3 − CHD − CH3

: 13CH3 − CH2 − CH3 + CH3 − CHD − CH3 ⇌

C3H8 + 13CH3 − CHD − CH3 (A.21)
Δ
𝑒𝑞

CHD2 − CH2 − CH3
: 2 CH2D − CH2 − CH3 ⇌

C3H8 + CHD2 − CH2 − CH3 (A.22)
Δ
𝑒𝑞

CH3 − CD2 − CH3
: 2 CH3 − CHD − CH3 ⇌

C3H8 + CH3 − CD2 − CH3 (A.23)
Δ
𝑒𝑞

CH2D − CH2 − CH2D : 2 CH2D − CH2 − CH3 ⇌

C3H8 + CH2D − CH2 − CH2D (A.24)
Δ
𝑒𝑞

CH2D − CHD − CH3
: CH2D − CH2 − CH3 + CH3 − CHD − CH3 ⇌

C3H8 + CH2D − CHD − CH3. (A.25)

A.5 Relationship between Δ and Δ𝑒𝑞

Throughout the study we report the Δ𝑒𝑞 values defined in Eq. (3.20). These are
independent of heavy isotope abundances and express only the thermodynamic
preference for two heavy isotopes to occupy the same site of the molecule at a given
temperature. In contrast, experimentally measured Δ values (defined in Eq. 3.5)
depend on isotopic abundance and are relatable to the corresponding Δ𝑒𝑞 values
only in the limit of infinite dilution:

lim
[𝐷]→0,[13𝐶]→0

{
1000 × ln

(
Δ

1000
+ 1

)}
. (A.26)
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Figure A.1: Effect of the abundance of heavy isotopes on (a) D + D and (b) 13C + D
clumped isotope effects in methane. Dotted horizontal lines are concentration-independent
Δ𝑒𝑞 values (i.e., infinite dilution limit, see Eq. A.26). Vertical lines label the VPDB
and VSMOW standards for carbon-13 and deuterium, respectively. When abundance of
deuterium is varied (dots), carbon-13 is set to VPDB; when abundance of carbon-13 is
varies (open circles), deuterium is set to VSMOW.
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[D] 1000 × ln
(
ΔCH2D2/1000 + 1

)
1000 × ln

(
Δ13CH3D/1000 + 1

)
0°C 50°C 100°C 200°C 400°C 0°C 50°C 100°C 200°C 400°C

Δ𝑒𝑞 23.7 16.177 11.284 5.829 1.909 6.637 5.048 3.931 2.503 1.142
10−6 23.552 16.064 11.197 5.773 1.884 6.563 4.992 3.888 2.476 1.129
10−5 23.551 16.064 11.197 5.773 1.883 6.562 4.992 3.887 2.475 1.129
10−4 23.538 16.055 11.191 5.77 1.882 6.553 4.985 3.883 2.473 1.128
10−3 23.409 15.967 11.13 5.738 1.872 6.465 4.923 3.838 2.448 1.119
10−2 22.134 15.1 10.526 5.428 1.771 5.592 4.311 3.397 2.204 1.028
0.05 16.758 11.441 7.979 4.115 1.342 1.934 1.743 1.548 1.182 0.647
0.1 10.68 7.296 5.09 2.625 0.855 -2.155 -1.128 -0.518 0.04 0.222

Table A.2: Dependence of clumped isotope in methane on abundance of D, while keeping
13C at VPDB (F12/ATZ potential used).

[13C] 1000 × ln
(
ΔCH2D2/1000 + 1

)
1000 × ln

(
Δ13CH3D/1000 + 1

)
0°C 50°C 100°C 200°C 400°C 0°C 50°C 100°C 200°C 400°C

Δ𝑒𝑞 23.7 16.177 11.284 5.829 1.909 6.637 5.048 3.931 2.503 1.142
10−4 23.676 16.16 11.273 5.823 1.907 6.621 5.037 3.923 2.499 1.14
10−3 23.664 16.151 11.266 5.818 1.905 6.615 5.032 3.919 2.497 1.139
10−2 23.544 16.06 11.195 5.773 1.884 6.555 4.987 3.884 2.474 1.129
0.05 23.012 15.655 10.88 5.573 1.793 6.289 4.785 3.727 2.374 1.083
0.1 22.347 15.15 10.487 5.322 1.679 5.956 4.532 3.53 2.249 1.026
0.2 21.017 14.139 9.7 4.821 1.45 5.291 4.026 3.136 1.998 0.912

Table A.3: Dependence of clumped isotope in methane on abundance of 13C, while keeping
D at VSMOW (F12/ATZ potential used).

Fig. A.1 addresses the effect of heavy isotope abundance on the strength of experi-
mentally measured excess of doubly substituted species (i.e., Δ values) in methane.
The values plotted are mirrored in the Tables A.2 and A.3. At low (near-natural)
abundances the two are close to each other, but increasing the abundance of heavy
isotopes decreases the strength of measured clumping. Notably, at surprisingly low
abundance of deuterium of 10% the apparent 13C + D clumped isotope effect re-
verses direction, i.e., the doubly substituted 13CH3D species is less abandoned than
at random distribution of isotopes as evidenced by the negative values in the last
rows of Table A.2. This is because the D + D clumped isotope effect in methane is
significantly stronger than the 13C+D clumping, so it leads to the depletion of singly
deuterated methane that is large enough to force “reverse clumping” of 13C + D.

This is made more concrete by Table A.4. At low abundance of deuterium, ΔCH3D
is tiny, so the two clumped isotope effects are essentially independent with each
of them close to the infinite dilution limit. However, at high deuterium abundance
the 𝐷 + 𝐷 clumped isotope effect leads to significant depletion of CH3D with the
ΔCH3D comparable in size to Δ

𝑒𝑞
13CH3D

. The isotopologues with carbon-13 and more
than one deuterium substitution also deplete the equilibrium amount of 13CH4. As
a result, at equilibrium the denominator of the right-hand side of the Eq. A.27 is
sufficiently small that the numerator needs to be smaller than unity to obtain the
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[D] CH3D CH2D2 CHD3 CD4

13CH4
13CH3D 13CH2D2

13CHD3
13CD4

10−5 -0.074 23.83 48.31 73.37 -0.00027 6.58 30.65 55.29 80.52
0.1 -6.49 10.74 28.26 46.09 -2.28 -2.15 15.15 32.75 50.66

Table A.4: Δ values of all isotopologues of methane at low vs high abundance of deuterium,
both at 0°C.

left-hand side of the equation, which is only very slightly larger than one.

1 ≲
𝐾13CH3D

𝐾 random
13CH3D

=
Δ13CH3D + 1(

ΔCH3D
)
×

(
Δ13CH4

) (A.27)

Propane is distinct compared to other molecules here for clumped isotopes because
it has two non-equivalent sites for placing carbon-13 or deuterium. The presence of
these non-equivalent sites leads to significant deviations from a random distribution
for the equilibrium concentrations of singly-substituted isotopologues of propane at
each site. This is distinct from other molecules where, at natural abundances, the
concentration of the single substituted isotopologues is effectively the same as that
for the random distribution. As a result, the Δ values for clumping on the individual
sites of propane represent a combination of the clumped and position-specific heavy
isotope effects. To be more specific, the Δ value for clumping in the methylene
group of propane is significantly larger than expected based on the clumped heavy
isotope effect considerations alone, while the same value for the methyl group is
negative. Both of these are due to the site-specific heavy isotope effect in propane,
which makes the methylene group significantly heavier than the methyl group. In
contrast, Δ𝑒𝑞 describe the heavy isotope clumped effect alone. These values are
always positive and have similar magnitudes to analogous reactions for methane and
ethane – provided one takes care to consider the equilibrium reactions that do not
involve shifts in heavy isotope positions.

Table A.5 relates the Δ𝑒𝑞 values for up to doubly substituted isotopologues of
propane to experimentally measurableΔ values (calculated with carnon-13 at VPDB
and deuterium at VSMOW abundances).82,211 For propane, the Δ𝑒𝑞 values do not
approximate 1000 × ln(Δ/1000 + 1) values even in the limit of infinite dilution,
other than for singly substituted species. This is because the Δ𝑒𝑞 value of each
clumped isotopologue decouples clumping from the site preference and reports the
thermodynamic preference of clumping. In contrast, the experimentally measuredΔ
values combine the (strong) site preference and the (much weaker) clumped effect.
Thus, the Δ values and corresponding 1000× ln(Δ/1000+1) values are negative for
all doubly substituted D + D and 13C + D isotopologues where no deuterium atom
is in the center position. As suggested by [91], addition of the corresponding pair
of Δ𝑒𝑞 of singly substituted isotopologues recovers the 1000 × ln(Δ/1000 + 1) as a
crude approximation (see second to last column of the table).
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Species Heavy atoms [𝐴] [𝐴]random 1000 × ln
(

Δ
1000 + 1

)
Δ
𝑒𝑞

2 + 2Δ𝑒𝑞1 Δ𝑒𝑞

CH3 − CH2 − CH3 None 0.965992 0.965992 0 0
CH2D − CH2 − CH3 D 0.000879 0.000903 -26.22 -28.37
CH3 − CHD − CH3 D 0.000324 0.000301 74.48 81.69
CHD2 − CH2 − CH3 D&D 1.36E-07 1.41E-07 -31.64 -35.94 20.8
CH3 − CD2 − CH3 D&D 2.77E-08 2.34E-08 167.7 182.1 18.7

CH2D − CHD − CH3 D&D 2.95E-07 2.81E-07 48.72 53.77 0.4594
CH2D − CH2 − CH2D D&D 2.00E-07 2.11E-07 -52.41 -56.72 0.0265

13CH3 − CH2 − CH3
13C 0.021477 0.0216 -5.672 N/A -5.516

CH3 − 13CH2 − CH3
13C 0.010922 0.0108 11.23 N/A 10.97

13CH3 − 13CH2 − CH3
13C & 13C 0.000243 0.000241 5.821 5.719 0.263

13CH3 − CH2 − 13CH3
13C & 13C 0.000119 0.000121 -11.33 -11.02 0.0166

13CH2D − CH2 − CH3
13C & D 9.84E-06 1.01E-05 -25.78 -27.95 6.106

CH3 − 13CHD − CH3
13C & D 3.69E-06 3.36E-06 91.33 81.79 5.621

13CH3 − CHD − CH3
13C & D 7.21E-06 6.73E-06 69.27 76.63 0.4595

CH2D − 13CH2 − CH3
13C & D 9.95E-06 1.01E-05 -14.58 -16.99 0.4072

13CH3 − CH2 − CH2D 13C & D 9.78E-06 1.01E-05 -31.87 -33.87 0.0179

Table A.5: Equilibrium concentrations of up to doubly substituted propane at 0°C and at
random distribution of isotopes (i.e., infinite temperature). The last three columns compare
different measures of isotopic enrichment.

A.6 Averaging of clumped heavy isotope effect due to different isotopologues
We compute the combined clumped heavy isotope effect by averaging the clumped
heavy isotope effect of individual isotopologues according to how they would be
distributed at infinite temperature (random distribution of isotopes among the iso-
topologues), which is an excellent approximation provided the Δ-values are small.95

Δ
𝑒𝑞

D+D(C2H6) =
6Δ𝑒𝑞CHD2 − CH3

+ 9Δ𝑒𝑞CH2D − CH2D

15
(A.28)

Δ
𝑒𝑞
13C+D(C2H6) =

6Δ𝑒𝑞13CH2D−CH3
+ 6Δ𝑒𝑞

CH2D− 13CH3

12
(A.29)

Δ
𝑒𝑞

D+D(C3H8) =
6Δ𝑒𝑞CHD2 − CH2 − CH3

+ Δ𝑒𝑞CH3 − CD2 − CH3

28

+
9Δ𝑒𝑞CH2D − CH2 − CH2D + 12Δ𝑒𝑞CH2D − CHD − CH3

28
(A.30)

Δ
𝑒𝑞
13C+D(C3H8) =

6Δ𝑒𝑞13CH2D − CH2 − CH3
+ 2Δ𝑒𝑞

CH3 − 13CHD− CH3

27

+
6Δ𝑒𝑞

CH2D − CH2 − 13CH3
+ 9Δ𝑒𝑞

CH2D − 13CH2 − CH3
+ 4Δ𝑒𝑞13C H3 − CHD − CH3

27
(A.31)

Δ
𝑒𝑞
13C+13C

(C3H8) =
Δ
𝑒𝑞
13CH3 − CH2 − 13CH3

+ 2Δ𝑒𝑞13CH3 − 13CH2 − CH3

3
. (A.32)

When the resolution of mass-spectroscopic measurements is not sufficient to distin-
guish between isotopologues with the same mass number, it is useful to consider the
combined clumped heavy isotope effect Δ𝑀+2. We report the calculations of these
values by weighing the individual Δ𝑒𝑞

𝑋
as if isotopes were distributed randomly.95
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Δ
𝑒𝑞

18 (CH4) =
6𝑟D × Δ𝑒𝑞D+D(CH4) + 4𝑟13C × Δ

𝑒𝑞
13C+D(CH4)

6𝑟D + 4𝑟13C
(A.33)

Δ
𝑒𝑞

32 (C2H6) =
15𝑟2

D × Δ
𝑒𝑞

D+D(C2H6) + 12𝑟13C𝑟D × Δ𝑒𝑞13C+D(C2H6) + 𝑟2
13C
× Δ𝑒𝑞13C+13C

(C2H6)
15𝑟2

D + 12𝑟13C𝑟D + 𝑟2
13C

(A.34)

Δ
𝑒𝑞

46 (C3H8) =
28𝑟2

D × Δ
𝑒𝑞

D+D(C3H8) + 27𝑟13C𝑟D × Δ𝑒𝑞13C+D(C3H8) + 3𝑟2
13C
× Δ𝑒𝑞13C+13C

(C3H8)
28𝑟2

D + 27𝑟13C𝑟D + 3𝑟2
13C

.

(A.35)

Here the 𝑟iso stands for the molar fraction of the isotope (deuterium or carbon-13)
in the sample.



175

A p p e n d i x B

ADDITIONAL RESULTS

B.1 Bulk fractionations

Figure B.1: Comparing the differences in harmonic fractionation relative to the
F12/ATZ method presented in Fig. 6.2 (only aug-cc-pVTZ basis set results are shown here)
relative to low-cost restricted Hartree-Fock (RHF) and empirical force fields (AIREBO,
CHARMM) methods. The slanted black lines denote relative difference in fractionation and
the dotted horizontal line is placed at y=0 where the reference (F12/ATZ) result would be.



176

Figure B.2: Comparison of the data presented in Fig. 6.2 (right panels) to analogous
calculations with the smaller basis set size (left panels).
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Figure B.3: Comparing the results from Fig. 6.3 (repeated here on the four rightmost panels) to the same calculations performed with smaller basis
set sizes: 6-31G for DFT and cc-pVDZ for other methods on panels (a,e) and 6-311G for DFT and aug-cc-pVTZ for other methods on panels (b,f).
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Poly order 0th 1st 2nd 3rd 4th 5th Max Residual
Hydrogen -119.624 353.6873 40.354 -15.8056 3.034618 -0.23047 0.054621

Water -200.912 501.4586 231.3391 -74.4679 12.20933 -0.80799 0.102199
Methane -80.8961 157.8892 420.5002 -127.928 20.30959 -1.32297 0.012594
Ethane -68.9123 126.3321 452.3712 -137.124 22.24063 -1.49596 0.07143

Terminal -78.7779 148.2027 423.7967 -124.611 19.65664 -1.29016 0.116424
Center -92.3679 182.6488 396.3042 -105.781 15.06961 -0.88493 0.183891

Propane -82.7114 158.1243 415.6881 -119.348 18.40024 -1.17987 0.122139

Table B.1: Fifth order least squares fit coefficients for deuterium fractionation and the
site-specific isotope effect in propane. Last column contains the value of the maximum
residual from fit.

Poly order 0th 1st 2nd 3rd 4th 5th Max Residual
Methane -7.17911 16.79339 10.32542 -2.05092 0.144118 0.002915 0.025833
Ethane -4.13426 8.570187 17.40372 -3.74421 0.41383 -0.01811 0.005173

Terminal -0.77945 0.73986 24.20712 -6.58584 1.00921 -0.06638 0.013485
Center 2.220193 -7.05399 30.76189 -8.04578 1.192091 -0.07707 0.027543

Propane 0.219161 -1.85393 26.38768 -7.07111 1.070355 -0.06999 0.010011

Table B.2: Fifth order least squares fit coefficients for carbon-13 fractionation and the
site-specific isotope effect in propane. Last column contains the value of the maximum
residual from fit.

B.2 Clumped isotope effects
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Figure B.4: Comparing the differences in harmonic fractionation relative to the
F12/ATZ method presented in Fig. 6.3 relative to low-cost restricted Hartree-Fock (RHF)
methods. The slanted black lines denote relative difference in fractionation and the dotted
horizontal line is placed at y=0 where the reference (F12/ATZ) result would be.
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Figure B.5: Comparing the results from Fig. 6.4 (repeated here on the right panels) to
the same calculations performed with smaller basis set sizes (left panels).
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Figure B.6: Comparing the differences in position-specific isotope effect of propane
relative to the F12/ATZ method presented in Fig. 6.4 relative to low-cost restricted Hartree-
Fock (RHF), AIREBO and CHARMM methods. Only the largest basis sets we used
(aug-cc-pVTZ and 6-311++G** for DFT) are plotted for the electronic structure methods.
The slanted black lines denote relative difference in fractionation and the dotted horizontal
line is placed at y=0 where the reference (F12/ATZ) result would be.
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Figure B.7: Comparing the results from Figure 6.5 (repeated here in the second and
forth column) to the same calculations performed with smaller basis set sizes (first and third
columns).
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Figure B.8: Comparing the differences in D + D clumped isotope effect relative to the
F12/ATZ method presented in Fig. 6.5 relative to low-cost restricted Hartree-Fock (RHF),
AIREBO and CHARMM methods (the last two for alkanes only). Only the largest basis sets
we used (aug-cc-pVTZ and 6-311++G** for DFT) are plotted for the electronic structure
methods.
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Figure B.9: Comparing the results from Fig. 6.6 (repeated here in the second and forth
column) to the same calculations performed with smaller basis set sizes (first and third
columns). Note the larger relative deviation for clumped effect in water (panels a-d).
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Figure B.10: Comparing the differences in 13C+D clumped isotope effect relative to the
F12/ATZ method presented in Fig. 6.6 relative to low-cost restricted Hartree-Fock (RHF),
AIREBO and CHARMM methods (the last two for alkanes only). Only the largest basis sets
we used (aug-cc-pVTZ and 6-311++G** for DFT) are plotted for the electronic structure
methods.
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Figure B.11: Comparing the differences in 13C + 13C clumped isotope effect relative to
the F12/ATZ method presented in Figure 3.6 relative to low-cost restricted Hartree-Fock
(RHF), AIREBO and CHARMM methods (the last two for alkanes only). Only the largest
basis sets we used (aug-cc-pVTZ and 6-311++G** for DFT) are plotted for the electronic
structure methods.
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Figure B.12: 17O + D (a) and 18O + D (b) clumped isotope effects.

Figure B.13: 13C + 13C clumped isotope effects in methane (a) and ethane (b).
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Figure B.14: D + D clumped isotope effects in propane center (a) and terminal (b)
positions.

Figure B.15: 13C + D clumped isotope effects in propane center (a) and terminal (b)
positions.


