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ABSTRACT

Methane is a key target for climate change mitigation efforts. With a radiative forcing
85 times stronger than CO2 over a 20-year period and an atmospheric lifespan of only
a decade, mitigating methane emissions will slow climate change in the near-term.
However, quantifying methane emissions from specific sectors accurately poses a
significant challenge. This is because top-down estimations of methane emissions
demand precise observations and constraints on a range of physical and chemical
processes. In this thesis, I seek to enhance the accuracy of methane emissions
calculations by resolving these processes in detail and advocating for an expansion
of the methane monitoring network.

The primary mechanism for atmospheric methane destruction is its oxidation by the
Hydroxyl radical (OH). Chemical feedbacks due to temporal variations in OH avail-
ability can substantially influence the methane lifetime and, consequently, emissions
trends over recent decades. In Chapter 2, I quantify the impact of this predominant
chemical loss mechanism on methane emissions calculations.

Methane loss to the stratosphere represents the second most significant methane
destruction mechanism, although the processes involved remain highly uncertain.
Accurately quantifying methane loss via stratospheric-tropospheric exchange is cru-
cial for improving the accuracy of methane emissions calculations. In Chapter 3,
I utilize chemical tracers to determine how stratospheric-tropospheric exchange
influences global methane emissions trends.

Current understanding of greenhouse gas fluxes from a top-down perspective typi-
cally relies on atmospheric inversions, which depend on spatial and temporal gradi-
ents in observed greenhouse gas concentrations. However, maintaining highly ac-
curate ground-based measurements poses logistical and financial challenges, while
satellites currently do not provide the requisite accuracy and spatial resolution for
long-term monitoring. In Chapter 4, I explore the potential of frequency combs in
measuring environmental impacts on greenhouse gas sensing and as tools to expand
the observation network.

In summary, this thesis contributes to a more profound understanding of the two
primary methane sinks and how their variations affect methane emissions trends
over recent decades. It also lays the groundwork for the next-generation greenhouse
gas observation network using laser frequency combs by quantifying environmental
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impacts on greenhouse gas spectroscopy directly in the field. Future advances
should focus on a more accurate understanding of methane sink processes, improved
spectroscopy, and expanded measurement networks. This will require advances in
both modeling and measurements.

Ultimately, rapid and efficient mitigation of methane emissions remains the most
feasible approach to curb anthropogenic climate change. To do this however, ac-
curate assessments of methane trends and emissions necessitate bringing methane
measurements and modeling of methane destruction processes closer to the real
world.
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C h a p t e r 1

INTRODUCTION

1.1 Motivation
Methane emissions mitigation has emerged as a pivotal approach to curb anthro-
pogenic climate change in the forthcoming decades. As a major contributor to
radiative forcing, methane, which is responsible for a third of radiative forcing,
harbors a global warming potential 85 times more potent than carbon dioxide over
a 20-year span (W. Collins et al., 2022; Shindell, Fuglestvedt, and W. J. Collins,
2017). Nonetheless, its atmospheric lifespan is relatively brief, lasting about a
decade, significantly less than the centuries-long lifespan of carbon dioxide. There-
fore, accurately attributing the sources of methane emissions and discerning the
driving factors influencing atmospheric methane trends are paramount for the effec-
tive execution of climate change mitigation strategies.

1.2 Methane Sources and Sinks
Both anthropogenic and natural sources contribute to methane emissions. Anthro-
pogenic emissions arise from sectors such as oil and gas, rice farming, cattle rearing,
waste treatment, and landfills. Conversely, natural sources are linked to wetlands,
permafrost thaw, and wildfires. However, substantial uncertainties concerning emis-
sions from these sectors persist. Noteworthy studies such as those by A. J. Turner
et al. (2015), employing GEOS-Chem inversions constrained by GOSAT, indicated
that oil and gas emissions in the United States have been underestimated. In addi-
tion, through the utilization of ground-based sensors, Alvarez et al. (2018) further
quantified this underestimation to be upwards of 40%. Meanwhile, other studies
argue that oil and gas emissions have remained relatively stable over recent decades.

Predicting and quantifying methane emissions from natural sources present con-
siderable challenges, given their spatially diffuse, temporally episodic, and spatio-
temporally heterogeneous nature (Goodrich et al., 2011; Morin et al., 2017; Peltola
et al., 2018). For instance, methane emissions from wetlands encompass numerous
processes such as bubbling in the water column, anoxic sediment, soil diffusion,
and even tree emissions. These factors, coupled with the monitoring challenges in
remote tropical wetlands and permafrost regions, lead to significant uncertainty in
quantifying natural methane emissions (Saunois et al., 2020).
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Understanding how methane emissions from natural sources will respond to climate
change is a complex task. Methanogenesis, the primary methane production process
carried out by microbes, is influenced by factors such as soil moisture, nutrient
availability, and temperature (France et al., 2022; Feng et al., 2022; Ma et al., 2021;
Schaefer et al., 2016). Methanotrophy, the microbial consumption of methane in
the soil, is another factor to consider. Despite its importance, our understanding
of methanotrophy is limited. Therefore, focusing on the modeling of microbial
methane production and consumption processes is key to determining the extent
of anthropogenic methane mitigation needed to stabilize methane concentrations
(Thompson, 2021).

Methane’s atmospheric lifespan is approximately a decade, and it is primarily de-
stroyed through the oxidation processes involving hydroxyl (OH) radicals and chlo-
rine (Cl) radicals, stratospheric escape, and soil-surface methanotrophy. The OH
oxidation process accounts for nearly 90% of methane destruction. Yet measuring
OH concentrations directly is a challenge due to its short lifespan, spatio-temporal
heterogeneity, and reactivity with many atmospheric species that can both increase
and decrease its abundance (Nicely et al., 2018; Patra, Houweling, et al., 2011; Naik
et al., 2013; Wolfe et al., 2019). It is also important to note that OH oxidation,
when combined with NO and NO2, leads to the formation of tropospheric ozone,
a major air pollutant. As a result, methane emission mitigation not only helps in
climate change mitigation but also enhances air quality (Fiore et al., 2008). To
comprehend the factors influencing methane trends, quantifying global OH trends
along with other methane sinks is essential. I will quantify the impacts of these
sinks in Chapters 2 and 3. The current imbalance between methane sources and
sinks has led to a tripling of methane concentrations, surging from 600 parts per
billion (ppb) in 1850 to more than 1900 ppb in 2023.

1.3 Proxying Methane Processes
Methane proxies play a critical role in constraining global methane trends. The
primary observables include 12CH4, 13CH4, and MCF. The dominant methane
isotope, 12CH4, is observed from various vantage points, such as space, air, and
the Earth’s surface. 13CH4, the secondary methane isotope, serves as a proxy for
methane sources, as different sources exhibit unique 13CH4 signatures. Methyl
Chloroform (MCF) proxies for variations in the hydroxyl radical. 13CH4 and MCF
observations are primarily surface-based.
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In recent years, global 13CH4 ratios have experienced a decline. This shift towards
lighter methane indicates either a surge in emissions from biogenic methane sources,
such as agricultural or microbial activities (Schaefer et al., 2016; Nisbet et al., 2016),
or a reduction in emissions from isotopically heavier sources like biomass burning
(Worden et al., 2017). Microbial sources generally exhibit lighter signatures around
−60 per mil, while biomass burning displays the heaviest signature of −29 per mil.
Fossil fuel sources fall in-between at about −45 per mil. However, these figures
assume that the isotopic signature of specific sources remain spatially consistent and
constant over time, which might not always hold true.

Methyl Chloroform (MCF), an industrial solvent whose use has been declining
since its ban under the Montreal Protocol, is deployed to proxy variations in the OH
radical. As MCF has no other destruction pathways in the troposphere, changes in
its loss frequency can be attributed to changes in OH concentrations (Montzka et al.,
2011; Patra, Krol, et al., 2021). Therefore, joint inversions of MCF, 12CH4, and
13CH4 have been instrumental in understanding methane trends (McNorton et al.,
2016; Alexander J. Turner, Christian Frankenberg, Wennberg, et al., 2017).

1.4 The Methane Stabilization Mystery
Over the past few decades, methane levels have risen from 1650 ppb in 1983 to 1910
ppb in 2022. Interestingly, this constant rise in methane was briefly interrupted
between 2000 and 2007, leading to a stabilization period. The causes for the onset
and termination of this stabilization remain elusive.

Numerous studies have leveraged methane isotopic signatures and trends to attribute
the end of the stabilization period to increases in emissions from biogenic sources
or fossil fuels. This is because observations of 13CH4 have steadily been inclining
towards lighter methane, which is more indicative of biogenic emissions.

However, other studies have emphasized the role of changes in the primary methane
sink, oxidation by the OH radical, in attributing the onset and termination of the
stabilization period. Joint inversions of methane concentrations, along with obser-
vations of Methyl Chloroform (MCF), which proxy the variability of OH concen-
trations, suggest that OH variations played a role during this stabilization period.
Nevertheless, a causal mechanism for changes in OH concentrations has yet to be
discovered.

The ongoing debate surrounding the stabilization period underscores the complexity
of the global methane cycle. The stabilization requires only a change of 3.5%
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in OH concentrations or a 20 Tg/yr change in methane emissions (Alexander J.
Turner, Christian Frankenberg, and Kort, 2019), a small change considering the
greater than 550 Tg/yr emission rate. A comprehensive global observation system,
capable of monitoring both natural and anthropogenic emissions, alongside an
improved understanding and precise measurements of OH sinks, is required to fully
characterize methane emissions and trends. I will discuss this further in Chapter 2.

1.5 Sensing Methane
The infrared absorption features of methane facilitate the quantification of its spatial
distribution and temporal trends. Various methods, such as orbital satellite plat-
forms, spectrometers on aircraft, and ground-based in situ sensors, are employed to
monitor methane levels. Accurately mapping methane concentrations is crucial as
top-down emission calculations rely on methane gradiants to quantify and attribute
specific sources.

Satellites offer significant advantages as they can continuously map at global and
regional scales using a single instrument (Jacob et al., 2016). Instruments like
Sciamachy have been utilized to detect high-emission regions, such as the Four
Corners and the Amazon C. Frankenberg et al., 2005. The Japanese Greenhouse
Gas Observing Satellite (GOSat) has played a pivotal role in quantifying US oil and
gas emission (A. J. Turner et al., 2015). Meanwhile, the European Tropospheric
Monitoring Instrument (Tropomi) has identified super-emitters in Turkmenistan
(Varon et al., 2019). The global, continuous observations facilitated by these
satellites have shed light on global methane emissions.

However, satellites do have limitations in terms of accuracy, revisit time, and cost.
Future satellites like GHGSat aim to enhance coverage by continuously monitoring
specific regions using multiple satellites in a geosynchronous orbit configuration.
Simultaneously, the Franco-German Merlin satellite seeks to measure methane con-
centrations with an accuracy better than 1% (Delahaye et al., 2016).

Aircraft provide a valuable resource to monitor specific methane sources and re-
gions. For instance, NASA’s AVERIS, an aircraft-mounted spectrometer, has been
instrumental in identifying methane plumes and quantifying emissions (Christian
Frankenberg et al., 2016; Duren et al., 2019). recently used AVERIS to measure
methane emissions in California, revealing that the majority of emissions stem from
the top 30% of sources.

Ground-based measurements, though offering less coverage than satellites, boast
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higher accuracy and accessibility. Most ground-based instruments utilize infrared
spectroscopy to measure methane concentrations. While some of these instruments
measure at the point scale, such as cavity ring-down spectroscopy, others are capable
of longer path measurements, like Fourier transform spectroscopy and dual-comb
spectroscopy.

The current global greenhouse gas measurement network relies on laboratory anal-
yses for obtaining highly accurate methane concentration readings (Sweeney et al.,
2015). However, the logistical difficulty and expense associated with sample col-
lection, flask shipping, and laboratory measurements limit these measurements to a
few select sites.

Despite these advancements, tropical regions remain under-observed and underrep-
resented due to frequent cloud cover and logistical challenges. Notably, the tropical
atmosphere is where the majority of uncertainty in methane emissions are located,
in addition to where the majority of methane destruction occurs, given the abun-
dance of the OH radical. Consequently, innovative approaches are necessary to
enhance coverage in these pivotal areas. The development of the next-generation
observation network, which I will discuss in Chapter 4, holds the promise of rev-
olutionizing methane monitoring by offering accurate, continuous, and automated
measurements.

1.6 Methane Spectroscopy and Retrievals
The interaction between light and methane molecules is complex due to methane’s
tetrahedral configuration. Methane consists of a carbon atom bonded to four hy-
drogen atoms, which generate temporary dipole moments from the stretching and
rotation of C-H bonds when infrared radiation is absorbed. This phenomenon is key
in the greenhouse effect.

Accurate modelling of methane spectroscopy is crucial for precisely retrieving
methane concentrations throughout the atmosphere. Methane spectroscopy’s com-
plexity arises from these temporarily induced dipole moments, which is why the
field is ever-evolving. Moreover, it is vital to accurately model environmental effects
on methane spectra, such as pressure and temperature influences on molecular ab-
sorption lines. Near the surface, pressure broadening, characterized by a Gaussian
line-shape, is more dominant, while Doppler broadening, induced by temperature
effects and depicted by a Lorentzian line-shape, prevails at higher altitudes. The
Voigt Line-shape accounts for both pressure and temperature effects by convolving
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the Lorentzian and Gaussian line-shapes. Errors in modeling these line-shapes will
result in errors in retrieving greenhouse gas concentrations. In Chapter 4, I delve into
the impact of environmental effects on the accuracy of methane and CO2 retrievals.

1.7 Thesis Outline
Precise monitoring and evaluation of methane emissions necessitate both obser-
vational and modelling breakthroughs. In Chapter 2, I delve into the complexity
of the CH4-CO-OH system by quantifying the effect of OH radical variations on
methane emissions and demonstrating how surges in CO emissions, such as those
from wildfires, lead to increases in methane emissions.

Stratospheric methane loss, which accounts for 3-16% of global methane loss,
stands as the second largest sink of atmospheric methane. In Chapter 3, I employ
stratospheric water vapor observations, along with surface observations of methane,
CO, and MCF to ascertain the effect of fluctuations in stratospheric-tropospheric
exchange time on methane emissions and OH concentrations. Here, MCF serves as a
proxy for OH and is assumed to undergo constant or no stratospheric loss, influencing
inferred OH concentrations. I also link methane emissions, OH concentrations, and
lower stratospheric H2O concentrations to ENSO, linking large-scale atmospheric
dynamics to atmospheric chemistry.

Looking to the future, I discuss the instruments that will form the next-generation
greenhouse gas observational network. We leverage the time-keeping stability of the
laser frequency comb, initially developed for pico-second time-keeping, to measure
greenhouse gas concentrations with high accuracy. This facilitates the accurate
examination of environmental influences, such as pressure and temperature, on
molecular spectroscopy directly in the field, since laser frequency combs are free
from the spectrally distorting effect of the instrument line-shape. This feature will
promote automated, accurate, and traceable greenhouse gas measurements in remote
areas and help expand the greenhouse gas observational network.

Overall, this thesis advances understanding of the main methane sink processes,
namely oxidation by the OH radical and stratospheric loss. It also paves the way for
increased accuracy in methane remote sensing by quantifying how environmental
conditions affect greenhouse gas and radiation interactions, measured directly in the
field. By improving our understanding of the factors influencing global methane
trends and enhancing methane remote sensing, my aim is to provide a comprehensive
approach to accurately quantify methane emissions, thereby contributing to our
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collective effort in mitigating climate change.
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C h a p t e r 2

EFFECTS OF COUPLED CHEMISTRY ON METHANE
EMISSIONS

2.1 Abstract
Methane’s 9-year lifetime makes it an attractive target for near-term radiative forcing
mitigation. However, the coupled chemistry of carbon monoxide (CO), methane and
the hydroxyl radical (OH) can modulate the methane lifetime, which is often ignored
in methane flux inversions; and the impacts of neglecting those feedbacks have not
been quantified. Using a coupled chemistry box model, we show that neglecting
these effects can lead to a 50% bias in calculating methane source perturbations
over multiple decades. The impact of inter-annual variations in CO abundances
on OH can create ∼10 Tg/yr methane pseudo-sources. Moreover, CO emissions
(via biomass burning) during strong El Niño events can have comparable effects
on methane abundances as direct emissions. Finally, we quantify the biases of
including (or excluding) coupled chemistry in the context of recent methane and CO
trends. Given these non-negligible errors, decadal methane emissions inversions
should incorporate chemical feedbacks for more robust methane trend analyses.

2.2 Background
Methane is the second most important anthropogenic greenhouse gas. Globally aver-
aged concentrations have risen from ∼750 ppb during the pre-industrial to 1850 ppb
in 2018, contributing to ∼25% of overall radiative forcing (IPCC, 2013), with even
higher contributions when considering all indirect impacts (Shindell et al., 2005).
This increase includes a brief pause from 2000 to 2007 with a subsequent resump-
tion in growth. The cause of the onset and termination of this stabilization remains
debated (see Turner, Frankenberg, and Kort, 2019, and references therein for a re-
view of recent trends). Due to nonlinear feedbacks affecting the main methane sink,
which is oxidation by the Hydroxyl Radical (OH), perturbations of methane and
other species controlling OH loss may affect the methane lifetime (Prather, 1994;
Prather, 1996), especially in the context of recent methane and CO trends. This is of-
ten overlooked in methane inversion studies, as static OH fields are often employed,
which may impact flux inversions at longer time-scales (Prather and Christopher D.
Holmes, 2017). Our main objective here is to investigate how assumptions on the
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oxidant chemistry affect methane emissions estimates.

Variations in methane fluxes have been inferred with constraints from methane
concentrations andΔ13C growth rates to study the 2000-2007 stabilization. However,
by ignoring coupled chemistry, there are no changes in methane loss; thus any
changes in methane abundances can only be attributed to methane source changes
(e.g., Nisbet et al., 2016; Schaefer et al., 2016; Schwietzke et al., 2016; Thompson
et al., 2018; J. R. Worden et al., 2017).

Other studies have focused on a possible change in the main methane sink (e.g.,
Gaubert et al., 2017; McNorton et al., 2016; Rigby et al., 2017; Turner, Frankenberg,
Wennberg, et al., 2017). Gaubert et al. (2017) focused on the impact of CO on the
methane lifetime. They found that a decline in CO concentrations, resulting from
decreases in CO emissions in the 2000s (H. M. Worden et al., 2013), would result
in increased OH concentrations during the stabilization period and, consequently, a
decline in the methane lifetime. This change in the methane lifetime would require
an even stronger increase in methane emissions to explain recent trends.

Rigby et al. (2017) and Turner, Frankenberg, Wennberg, et al. (2017) concluded it
was likely that OH concentrations declined during the stabilization period. How-
ever, both studies ignored interactive chemistry but used observations of methyl
chloroform (MCF) to constrain globally averaged OH concentrations. Yet Prather
and Christopher D. Holmes (2017) pointed out two main problems: 1) using MCF
to constrain OH is highly uncertain due to uncertainties in MCF emissions and
loss, and 2) both studies did not explicitly account for chemical feedbacks (terms
beyond the first order terms in Eq. 2.1). Given these uncertainties, alongside the
contradicting hypotheses discussed here, the question remains: “how do simplifying
assumptions on coupled chemistry affect methane emissions estimates?”

Studies employ simplifying assumptions in order to decrease computational cost,
and the biases inherent in those assumptions are not well characterized, possibly
contributing to contradicting hypotheses around the stabilization period. For in-
stance, box model results have been criticized for not realistically modeling the
impacts of atmospheric transport (Naus et al., 2019). On the other hand, sophisti-
cated atmospheric transport models with 3D chemistry are used to invert methane
fluxes, but they typically use static OH fields to model methane oxidation. In that
context, we believe that the simplicity of a box model is an ideal way to isolate the
impact of neglecting coupled chemistry on methane flux inversions from other error
sources. To do this, we can conceptualize the complexity of the coupled drivers
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affecting the decay of a methane perturbation 𝛿[CH4] into a linear expansion of
chemical mechanisms, similar to Taylor series expansions:

𝑑𝛿[CH4]
𝑑𝑡

=
∑︁
𝑖

(
𝜕 (𝑑 [CH4]/𝑑𝑡)

𝜕 [𝑋𝑖]

)
𝛿[𝑋𝑖] . (2.1)

In Eq. 2.1, each 𝑋𝑖 represents the concentration of species 𝑖 (e.g. methane, CO,
OH, NO𝑥), which might interact with the methane lifetime. Conceptually, a per-
turbation in 𝑖 will either directly affect the methane lifetime (as is the case for
[OH]) or indirectly affect methane loss by changing oxidant levels (e.g., higher CO
will lead to a decrease in OH, whereas NO𝑥 emissions will typically lead to in-
creased OH abundance and methane loss). The coupled chemistry comes into play
as methane oxidation impacts the steady state concentration of OH itself directly
and indirectly, as the oxidation leads to CO, which interacts with OH at shorter
timescales. Here, we focus on the coupled chemistry of methane, CO, and OH by
using a 2-hemispheres box model with coupled methane, CO, and OH chemistry
(Prather, 1994; Prather, 1996). We will quantify the impacts of critical assumptions
in methane flux inversions (Table 2.4).

2.3 Hemispherically Averaged Concentrations
We use observations of methane (NOAA), CO (NOAA), and MCF (NOAA, GAGE/
AGAGE) concentrations, where hemispheric averaging was done following Turner,
Frankenberg, Wennberg, et al. (2017). In short, hemispheric averaging was done
by bootstrapping from deseasonalized surface observations. We sampled from the
observational record in each hemisphere with replacement, where number of times
sampled is equal to the number of observational records available in that hemisphere
for that species. We also rejected sites that had less than 5 yr of data and required
that older observations had higher uncertainties than more recent observations, with
a minimum uncertainty of 2 ppb. The randomly drawn observations were blocked-
averaged into 1 yr windows. This process was repeated 50 times, so the mean and
varience can be computed from these 50 timeseries.

CO is not well-mixed in the atmosphere, exhibiting large spatial gradients. In
addition, each species experiences its own oxidative capacities (Naus et al., 2019;
Lawrence and Jockel, 2001). Therefore, in order to model CO oxidation by OH, we
selected stations in the tropics (23.5◦ S to 23.5◦ N). This is because most oxidation
of CO occurs in the tropics, where OH concentrations are highest. We refer the
reader to Table 2.2 and 2.3 for station locations and details. The hemispherically
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averaged concentrations were calculated with the same bootstrapping procedure
outlined above.

2.4 Constructing the Forward Model
OH oxidizes methane to form CO, which is also oxidized by OH, resulting in a
coupled chemical system (Table 2.1). The equations in Table 2.1 are solved for
each hemispheric box. The exchange between the hemispheric boxes are a function
of the inter-hemispheric exchange time (1 yr) and inter-hemispheric concentration
gradients.

We also employ simplifying assumptions to our model to abstract the complexity
of OH production, recycling, and loss. OH is also the primary oxidant for a
number of other compounds in the atmosphere (e.g., ethane and other non-methane
hydrocarbons) (Jos Lelieveld et al., 2016), so we follow Prather (1994) and Prather
(1996) and abstract this complexity with an arbitrary molecule, 𝑋 , acting as an
additional OH sink. In TAble 2.4 and 2.1, 𝑆𝑂𝐻 represents the production rate
of OH, which is primarily driven by UV radiation in the presence of ozone and
water vapor, in addition to chemical recycling by other species, especially NO𝑥 (J.
Lelieveld et al., 2002; Jos Lelieveld et al., 2016; Nicely et al., 2018). We do not
explicitly account for these effects here and instead abstract this complexity with a
term, 𝑆𝑂𝐻 , in our model, which then yields the OH concentration given the sources
and sinks of OH. It should also be noted that here, non-interactive chemistry means
that the methane oxidation rate is static, meaning that the globally averaged methane
lifetime as well as the perturbation decay rates are fixed to ∼9 yr. On the other hand,
interactive chemistry allows for [OH] to respond to changes in CO and CH4, even
if 𝑆𝑂𝐻 is constant.

In order to obtain the correct perturbation lifetime seen in Fig. 2.1A, we adjusted
the OH source (𝑆𝑂𝐻) and additional loss term (𝑘3 [𝑥]). The values we obtained are
in Table 2.1. This results in the 13.2 yr perturbation lifetime.

Direct measurements of OH are neither spatially dense enough, nor sufficiently
precise to estimate global mean OH concentrations. This is because OH has a short
lifetime (∼1 seconds), exists in low concentrations (∼ 106 molecules/cm3), and has
large variations in space and time, so variations in MCF are often used as a proxy for
globally integrated OH concentrations (e.g., Bousquet et al., 2005; Montzka et al.,
2011).
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Table 2.1: The coupled chemical reactions in this table models our simplified
chemistry for each hemisphere, denoted by the superscripts.

Chemical Equation Reaction Constant a priori emissions prior error
𝑑 [CH4]N

𝑑𝑡
= 𝑆𝑁CH4

− 𝑘𝑁1 [CH4]N [OH]N + [CH4]S−[CH4]N

𝜏
𝑘1 = 3.395 × 10−15 cm3

molec s 412.5 Tg/yr 200 Tg
𝑑 [CH4]S

𝑑𝑡
= 𝑆𝑆CH4

− 𝑘𝑁1 [CH4]S [OH]S + [CH4]N−[CH4]S

𝜏
𝑘1 = 3.395 × 10−15 cm3

molec s 137.5 Tg/yr 200 Tg
𝑑 [CO]N

𝑑𝑡
= 𝑆𝑁CO + 𝑘1 [CH4]N [OH]N − 𝑘2 [CO]N [OH]N + [CO]S−[CO]N

𝜏
𝑘2 = 1.0133 × 10−12 cm3

molec s 901.5 Tg/yr 800 Tg
𝑑 [CO]S

𝑑𝑡
= 𝑆𝑆CO + 𝑘1 [CH4]S [OH]S − 𝑘2 [CO]S [OH]S + [CO]N−[CO]S

𝜏
𝑘2 = 1.0133 × 10−12 cm3

molec s 67.5 Tg/yr 56 Tg
𝑑 [OH]N

𝑑𝑡
= 𝑆𝑁OH − 𝑘1 [CH4]N [OH]N − 𝑘2 [CO]N [OH]N − 𝑘3 [X]N [OH]N 𝑘3 [𝑋]𝑁 = 0.99𝑠−1 3150 Tg/yr 3150 Tg

𝑑 [OH]S

𝑑𝑡
= 𝑆𝑆OH − 𝑘1 [CH4]S [OH]S − 𝑘2 [CO]S [OH]S − 𝑘3 [X]S [OH]S 𝑘3 [𝑋]𝑆 = 1.23𝑠−1 3150 Tg/yr 3150 Tg

𝑑 [MCF]N

𝑑𝑡
= 𝑆𝑁MCF − 𝑘4 [MCF]N [OH]N + [MCF]S−[MCF]N

𝜏
6.05 × 10−15 cm3

molecs 238.4 ± 280 Gg/yr max(1.5, 0.2× (a priori)) Gg
𝑑 [MCF]S

𝑑𝑡
= 𝑆𝑆MCF − 𝑘4 [MCF]S [OH]S + [MCF]N−[MCF]S

𝜏
6.05 × 10−15 cm3

molecs 0 Gg/yr 0.5 Gg

2.5 Chemical Feedbacks Result in Extended Methane Lifetime
Perturbations to methane do not decay with the methane budget lifetime, which is
obtained by dividing the total atmospheric methane burden with the methane loss
rate assuming steady-state. Instead, in order to account for the nonlinearities in the
methane-CO-OH system, perturbation decay rates are calculated from eigenvalues
of the Jacobian of the chemical system, (Prather, 1994; Prather, 1996; Christopher
D. Holmes, 2018).

K𝑖 𝑗 =
𝜕 (𝑑 [xi]/𝑑𝑡)

𝜕 [xj]
. (2.2)

Each element of the Jacobian, K, consists of the derivative of the rate equations
in Table 2.1, (𝑑 [xi]/𝑑𝑡), with respect to each species, [x 𝑗 ]. The complexity of the
system is caused by the off-diagonal elements in the matrix, resulting in different
perturbation modes with respective decay rates. This perturbation decay rate is also
a function of the concentrations of the species in K, because the eigenvalues depend
on the values in K. Substituting methane, CO, and OH concentrations of the modern
atmosphere into Eq. 2.2 and inverting the minimum eigenvalue of K results in the
methane perturbation lifetime that is ∼40% longer than the budget lifetime.

We demonstrate this extended perturbation lifetime in Fig. 2.1A, running the model
with prescribed emissions, adding a 10 Tg perturbation to methane emissions with
interactive and non-interactive chemistry Fig. 2.1A. The perturbation lifetime of
the non-interactive chemistry model decays with a ∼9.4 yr e-folding lifetime, while
the interactive chemistry decays with a ∼13.2 yr lifetime. This is expected (Prather,
1994; Prather, 1996) and indicates that our forward box model is a realistic approx-
imation of the chemical system. It should be noted that this perturbation lifetime
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also holds for infinitesimally small perturbations to methane or CO, which drive
correspondingly small perturbations to OH, a fact that is sometimes overlooked.
The question is what impact these differences have on decadal-scale flux inversions,
because most studies assume a fixed ∼9 yr lifetime. As can be seen in Figure 2.1a,
a methane perturbation decays much slower, so we expect an overestimation of
methane flux inversions if this effect is ignored.

Chemical simulations of interactive chemistry, when compared to non-interactive
chemistry, result in different equilibrium methane concentrations. We demonstrate
this in Fig. 2.1b, where methane emissions are fixed to 275, 550, 1100, and
2200 Tg/yr with both interactive (solid lines) and non-interactive (dashed lines)
chemistry. For emissions larger than the contemporary 550 Tg/yr case (Saunois
et al., 2016), the interactive chemistry cases have much higher steady-state methane
concentrations than their non-interactive counterparts, because methane concentra-
tions affect OH. However, for the pre-industrial 275 Tg/yr case, the interactive steady
state concentrations are substantially lower as OH would be about 25% higher. As
our prescribed emissions become larger, the difference between methane steady
state concentrations in the interactive and non-interactive cases further differ. In the
2200 Tg/yr case, the lifetime and steady-state lifetime differ by more than a factor
of three, caused by OH depletion (Fig. 2.1c). Even after more than 150 years, the
2200 Tg/yr interactive chemistry case reaches concentrations of ∼30 ppm, while OH
decreases to 10% of contemporary concentrations, and both have not yet reached
a steady state. It should be noted that this simulation ignores other methane sinks,
e.g. stratospheric loss or soil uptake, both of which will dampen this effect in the
actual atmosphere and avoid a runaway effect.

2.6 Effects of El Niño on Methane Concentrations
Here we use the coupled methane-CO-OH chemistry to examine the impact of strong
biomass burning during El Niño events on both methane and CO, and consequently
OH. Previous works have highlighted the importance of El Niño on methane (e.g.,
Saunois et al., 2016; J. Worden et al., 2013; Zhang et al., 2018), CO (e.g., Yin
et al., 2016), emissions through wetlands and fires. El Niño can further impact OH
recycling via changing emissions of lightning NO𝑥 (e.g., Murray et al., 2014; Turner,
Fung, et al., 2018) and through direct NO𝑥 emissions from fires (e.g., Castellanos,
Boersma, and Werf, 2014; Miyazaki et al., 2017), although NO𝑥 effects are not
explicitly represented here. However, NO𝑥 emissions will have a more local to
regional effect on OH, due to its shorter lifetime compared with CO and methane.
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Figure 2.1: A 10 Tg perturbation of methane (Panel A) decays with a 13.2 yr lifetime
for the interactive case (solid line), while the perturbation decays with a 9.4 year
lifetime for the non-interactive case (dotted line). Methane concentrations (Panel
B) and OH concentrations (Panel C) are shown for our steady-state test, where
emissions are fixed to 275, 550, 1100, and 2200 Tg/yr for both interactive (solid
lines) and non-interactive (dashed lines) chemistry.
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Figure 2.2: A 20 Tg pulse of methane (green) increases methane by 6.8 ppb. A
250 Tg perturbation of CO (orange) depletes OH by ∼ −8%, extending the methane
lifetime, resulting in a 5 ppb increase in methane. The methane and CO joint
response (blue) results in a 11.5 ppb increase.

Fig. 2.2 shows the results of three simulations with one-month-long perturbations:
1) a methane release of 20 Tg, 2) a CO release of 250 Tg, and 3) a simultaneous
release of 20 Tg methane and 250 Tg CO, which is similar in magnitude to the 1997-
1998 El Niño (Randerson et al., 2017). From this, we can observe the response
of the system to individual perturbations as well as the joint response, testing our
model with other El Niño results (e.g., Butler et al., 2005; Duncan et al., 2003;
Rowlinson et al., 2019).

In Fig. 2.2, methane increases by ∼6.8 ppb to a 20 Tg methane perturbation (the
green line) and by ∼5 ppb to the 250 Tg CO perturbation (the orange line). The
latter is due to impact of CO on OH concentrations by ∼ −8%, not due to direct
methane emissions. The decrease in the methane oxidation rate due to the decline in
OH increases the methane lifetime in the atmosphere, acting as a pseudo-source of
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methane that acts over several months even after the fires stopped. This OH response
is within the range calculated by other studies using 3-D chemical transport models
e.g., Butler et al. (2005) find a ∼ −2.2% decline in [OH] between July 1997 and
December 1998 ; Duncan et al. (2003) find -2.2% to -6.8% between September
and December 1997 from the Indonesian fires; and most recently, Rowlinson et al.
(2019) find ∼ −9% between 1997 and 1998. This indicates that the magnitude of
the OH response to CO perturbations in our model is realistic.

The indirect impact through CO emissions is comparable in magnitude to the direct
methane emissions, resulting in a much stronger and delayed joint response of
methane to perturbations typical for large-scale biomass burning events. The case
of the combined methane and CO perturbation results in an 11.5 ppb increase in
methane with almost half a year delay in its peak enhancement, demonstrating the
coupling of the CH4-CO-OH system. Hence, it is possible that increases in methane
concentrations can be incorrectly attributed to increases in methane emissions,
rather than CO emissions (or another species that can impact OH abundances). An
El Niño scenario is thus an excellent test case for underlining the importance of
interactive chemistry on not only the magnitude of response of methane and [OH]
to perturbations, but also the timing of the response. In fact, the impact of biomass
burning is highly complex. Locally, direct emissions of methane as well as strong
perturbations in NO𝑥 , radiation, CO and other trace gases can play a role, which we
cannot quantify in our simplified model. The impact on hemispherically averaged
CO concentrations, however, is well captured by our model and has a significant
impact on methane concentrations (hence the term pseudo-source) but not in the
area of biomass burning directly. Flux inversions using concentration gradients
would thus not attribute these background changes in methane concentrations to the
actual fires.

2.7 Inverting for methane Emissions
Our box model maps emissions to concentrations and thus, inverting our model maps
concentrations to emissions. This enables us to quantify the effects of simplifying
assumptions on methane flux inversions. Emissions are estimated using a non-
linear Bayesian inversion method (Rodgers, 2000). We use observations of methane
(NOAA), CO (NOAA), and MCF (NOAA, GAGE/AGAGE) concentrations, where
hemispherically averaged observations were computed following the methods in
Turner, Frankenberg, Wennberg, et al. (2017).



21

We used a non-linear bayesian inversion to obtain the methane fluxes seen in Fig.
2.3 and 2.4 (Rodgers, 2000). The elements of the state vector being fitted for are
in Table 2.4 alongside the observations being used to constrain the inversion. The
a priori assumptions and prior error for our inversion are shown in Table 2.1. For
the MCF prior in the Northern Hemisphere, we set the error to 20% of the a priori
with a minimum of 1.5 Gg. It should also be noted that the temporal correlation
we employed was different for the case corresponding to (Rigby et al., 2017) and
(Turner, Frankenberg, Wennberg, et al., 2017) (+I +[OH]) as compared to the other
cases, which is the reason why the methane timeseries looks much smoother. We
employed much shorter temporal correlations to the other cases in order to make the
inter-annual variability more clear.
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Table 2.2: Monitoring stations used for methane observations.

Station Code Latitude Laboratory
Methane measurements
Alert, Canada ALT 82◦N NOAA/ESRL/INSTAAR
Ascension Island, UK ASC 8◦S NOAA/ESRL/INSTAAR
Terceira Island, Azores AZR 39◦N NOAA/ESRL/INSTAAR
Baring Head, NZ BHD 41◦S NOAA/ESRL/INSTAAR
Barrow, USA BRW 71◦N NOAA/ESRL/INSTAAR
Cold Bay, USA CBA 55◦N NOAA/ESRL/INSTAAR
Cape Grim, Australia CGO 41◦S NOAA/ESRL/INSTAAR
Cape Kumukahi, USA KUM 20◦N NOAA/ESRL/INSTAAR
Lac La Biche, Canada LLB 55◦N NOAA/ESRL/INSTAAR
High Altitude Global Climate Observation Center, Mexico MEX 19◦N NOAA/ESRL/INSTAAR
Mace Head, Ireland MHD 53◦N NOAA/ESRL/INSTAAR
Mauna Loa, USA MLO 20◦N NOAA/ESRL/INSTAAR
Niwot Ridge, USA NWR 40◦N NOAA/ESRL/INSTAAR
Cape Matatula, Samoa SMO 14◦S NOAA/ESRL/INSTAAR
South Pole, Antarctica SPO 90◦S NOAA/ESRL/INSTAAR
Summit, Greenland SUM 73◦N NOAA/ESRL/INSTAAR
Tae-ahn Peninsula, Korea TAP 37◦N NOAA/ESRL/INSTAAR
Mt. Waliguan, China WLG 36◦N NOAA/ESRL/INSTAAR
Ny-Alesund, Norway ZEP 80◦N NOAA/ESRL/INSTAAR
Alert, Canada ALT 82◦N U. Heidelberg
Izana, Portugal IZA 28◦N U. Heidelberg
Neumayer, Antarctica NEU 71◦S U. Heidelberg
Niwot Ridge, USA NWR 41◦N U.C. Irvine
Montana de Oro, USA MDO 35◦N U.C. Irvine
Cape Grim, Australia CGO 41◦S U. Washington
Olympic Peninsula, USA OPW 48◦N U. Washington
Fraserdale, Canada FSD 50◦N U. Washington
Majuro, Marshall Islands MMI 7◦N U. Washington
Mauna Loa, USA MLO 19◦N U. Washington
Baring Head, NZ BHD 41◦S U. Washington
Barrow, USA BRW 71◦N U. Washington
Tutuila, Samoa SMO 14◦S U. Washington
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Table 2.3: Methyl Chloroform and Carbon Monoxide observation stations

Station Code Latitude Laboratory
Methyl Chloroform measurements
Alert, Canada ALT 82◦N NOAA/ESRL
Barrow, USA BRW 71◦N NOAA/ESRL
Cape Grim, Australia CGO 41◦S NOAA/ESRL
Cape Kumukahi, USA KUM 20◦N NOAA/ESRL
Mace Head, Ireland MHD 53◦N NOAA/ESRL
Mauna Loa, USA MLO 20◦N NOAA/ESRL
Palmer Station, Antarctica PSA 65◦S NOAA/ESRL
Niwot Ridge, USA NWR 40◦N NOAA/ESRL
Cape Matatula, Samoa SMO 14◦S NOAA/ESRL
South Pole, Antarctica SPO 90◦S NOAA/ESRL
Summit, Greenland SUM 73◦N NOAA/ESRL
Trinidad Head, USA THD 41◦N NOAA/ESRL
Cape Grim, Australia CGO 41◦S GAGE
Mace Head, Ireland MHD 53◦N GAGE
Cape Meares, USA ORG 45◦N GAGE
Ragged Point Barbados RPB 13◦N GAGE
Cape Matatula, Samoa SMO 14◦S GAGE
Cape Grim, Australia CGO 41◦S AGAGE
Mace Head, Ireland MHD 53◦N AGAGE
Ragged Point Barbados RPB 13◦N AGAGE
Cape Matatula, Samoa SMO 14◦S AGAGE
Trinidad Head, USA THD 41◦N AGAGE
Station Code Latitude Laboratory

Carbon Monoxide measurements
Mauna Loa, USA MLO 20◦N INSTAAR
Ragged Point Barbados RPB 13◦N INSTAAR
Cape Matatula, Samoa SMO 14◦S INSTAAR

2.8 Timescale for INcluding INteractive OH Chemistry
Here we estimate the impact of neglecting interactive OH chemistry in an ideal-
ized inversion test case. Methane emissions are prescribed in our forward model,
assuming interactive chemistry with a constant 6300 Tg/yr-OH source, resulting in
a synthetic methane concentrations time-series, shown in Fig. 2.3A. We use a sce-
nario in which methane emissions abruptly and permanently increase from 550 to
570 Tg/yr, an increase similar to the one needed to explain the renewed growth rate
after 2007. The resulting synthetic concentrations in Fig. 2.3A constitute synthetic
observations used in two inversions, where we assume A) non interactive chemistry,
and B) interactive chemistry. This test serves two purposes: 1) to test the perfor-
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mance of our inversion, and 2) to calculate the error associated with neglecting
interactive OH chemistry in an inversion, as was alluded to in (Prather and Christo-
pher D. Holmes, 2017). This is equivalent to computing the forward model error
of assuming fixed OH concentrations in atmospheric methane inversions (while the
true atmosphere is interactive).

From our synthetic emissions test results (Fig. 2.3B and C), we find that the inversion
is accurate with interactive chemistry. However, inverted methane emissions, in our
non-interactive inversion, are consistently higher after our prescribed emissions
increase, (Fig. 2.3b), reaching an overestimation of about 5 Tg/yr after only 10 years
after the emissions change, which is 25% of the perturbation. This error increases
to well over 8 Tg/yr after more than 20 years. This is because the increased methane
emissions decrease OH concentrations, whereas the non-interactive concentrations
inversion does not account for this OH response. This is non-negligible, because
we only need a 20 Tg/yr source-sink imbalance to explain the 2007 renewed growth.
Relative errors in these derived emission trends can thus be considerable if we
assume fixed OH concentrations.

2.9 Emissions Estimates with Observed Concentrations
We performed inversions with increasing levels of complexity to obtain the biases
associated with including (or neglecting) interactive OH chemistry and CO in emis-
sions estimates constrained by methane, CO, and MCF observations. Table 2.4
describes the assumptions in each experiment. In the non-interactive case (-I), OH
concentrations are fixed, and thus, inversions of methane emissions only respond to
changes in methane concentrations, whereas in the interactive case (+I), methane
emissions adjust to changes in both methane and OH concentrations. In particular,
the ∼210 ppb increase of methane between 1984 and 2017 would, assuming a con-
stant OH source, decrease OH abundances by∼3.5%, extending the methane lifetime
and result in an overestimation of methane emissions when compared to a scenario
where [OH] is held constant (-I). The blue line in Fig 2.4a shows the difference
between our methane inversion, which accounts for interactive chemistry (+I) and
non-interactive chemistry (-I). Discounting interactive OH chemistry would lead to
biased trends in the methane fluxes compared to the 1980 baseline, as increasing
methane abundances will cause [OH] to decrease. When keeping CO constant, this
could induce a 20 Tg bias in methane emissions changes between 1980 and 2015, as
indicated by the green line’s overall declining trend between 1980 and 2017.
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Figure 2.3: Inversion with prescribed emissions: Methane emissions were pre-
scribed with an abrupt +20 Tg/yr step-change in emissions, resulting in a time-series
of methane concentrations ( shown in red in Panel A). These synthetic observations
were used in two inversions shown in Panel B: Interactive OH Inversion (blue line)
and Non-interactive OH Inversion (green line). Note that the prescribed emissions
are shown as red diamonds in Panel B but are difficult to see, as they overlap with
the Interactive OH Inversion.
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Accounting for the decrease in CO emissions (Fig. 2.4d) would increase the avail-
ability of OH radicals to oxidize methane. We quantify this impact (+𝐼/+𝑆𝐶𝑂) by
allowing our inversion to adjust to the declining CO concentrations (Fig. 2.4d),
fitting for CO sources, and comparing this to our non-interactive OH inversion (-I).
CO sources exclude CO from methane oxidation and only considers direct emis-
sions, which include biomass burning and combustion. The orange line’s rising
slope in Fig. 2.4a underlines that 1) decreasing CO abundances overcompensate the
effect of increasing methane on OH, consistent with Gaubert et al. (2017), and 2)
neglecting indirect effects of CO can result in an error of the inter-annual methane
source variability of up to 10 Tg/yr. It should be noted here that our interactive
chemistry results may differ from more sophisticated chemistry models, because
our model only includes methane and CO effects. In reality, the OH source may
have regionally increased due to rising NO𝑥 emissions, which would buffer [OH]
(C. D. Holmes et al., 2013; Naik et al., 2013; Nicely et al., 2018). We do not
explicitly include this effect in our model.

Variations in stratospheric ozone and NO𝑥 can result in OH recycling and production
variability, and these OH sources have been thought to have increased in recent
decades (e.g., C. D. Holmes et al., 2013; Naik et al., 2013; Nicely et al., 2018). To
quantify this OH-source variability, (+𝐼 + 𝑆𝑂𝐻) incorporates OH source variability,
while (+𝐼 + 𝑆𝐶𝑂 + 𝑆𝑂𝐻) also accounts for CO source variability. When we assume
a variable OH source (+I +𝑆𝑂𝐻), the variability in methane emissions is dampened,
because OH production and recycling are able to compensate for the variability in
OH concentrations. As a result, methane emissions stabilize and decline between
2000 and 2010. This result also exhibits similar variability to the case corresponding
to Turner, Frankenberg, Wennberg, et al. (2017) and Rigby et al. (2017), (-I+[OH]),
where concentrations are fitted directly, without interactive chemistry. Also fitting
for CO emissions (+I +𝑆𝑂𝐻 + 𝑆𝐶𝑂) further dampens the variability of methane
emissions, because CO emissions are also allowed to compensate for variability in
methane emissions. These cases are also similar to each other until about 2010, when
MCF observation uncertainties reach instrument limitations (Naus et al., 2019).

The 1998 peak in methane emissions, due to El Niño, demonstrates the coupling of
the methane-CO-OH system. We observe a local maximum in the CO concentrations
in 1998 (Fig. 2.4D). All cases infer an increase in methane emissions with the 1998
El Niño, but the magnitude and duration are markedly different. Specifically, the
(−𝐼) case only accounts for methane emissions and infers ∼48 Tg/yr “spike” in
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Table 2.4: Varying complexity of simulations for flux inversions corresponding to
experiments in Fig. 2.4.

Case Interactive Inverting Inverting Inverting Constrained
Label OH [OH] S𝐶𝑂 S𝑂𝐻 by
−𝐼 no no n/a n/a [CH4]
−𝐼 + [𝑂𝐻] no yes n/a n/a [CH4]
+𝐼 yes n/a no no [CH4]
+𝐼 + 𝑆𝐶𝑂 yes n/a yes no [CH4] [MCF] [CO]
+𝐼 + 𝑆𝑂𝐻 yes n/a no yes [CH4] [MCF]
+𝐼 + 𝑆𝐶𝑂 + 𝑆𝑂𝐻 yes n/a yes yes [CH4] [MCF] [CO]

1998 compared to 1997. This methane emissions spike is not observed in the
cases with interactive chemistry. This is because they are able to accommodate the
1998 minimum in OH concentrations. As such, the interactive cases find a smaller
magnitude emission increase and a different temporal signal. Specifically, 31 Tg/yr
for (+𝐼 + 𝑆𝑂𝐻) and 26 Tg/yr for (+𝐼 + 𝑆𝑂𝐻 + 𝑆𝐶𝑂). When CO sources are also fitted
in the latter case, the inversion is allowed to respond to higher CO concentrations
(Fig. 2.4d), and we see even less methane emissions, due to a release of CO from
increased biomass burning (Sec. 2.6).

2.10 Summary and Recommendations
Studies calculating global methane emissions have conclusions that are dependent
on the assumptions on chemical reaction rates within their inversions. This is
because the methane lifetime depends on the concentration of the OH radical which,
in turn, depends on the concentration of CO and methane as well as sources of OH.
There are no perfect methods to constrain global OH concentrations, and more work
should be done to constrain trends in the concentration and production of hydroxyl
radicals (e.g., Li et al., 2018; Miyazaki et al., 2017; Wolfe et al., 2019). In decadal
methane emissions estimates with fixed OH concentrations, we find a systematic
and non-negligible negative bias in inversions that do not consider this chemical
feedback. When accounting for CO concentration variations, we find decreased
CO emissions beginning in the 2000’s increased the availability of OH, increasing
methane emissions estimates. However, accounting for OH source variability results
in methane emissions estimates with similar trend and variability to Rigby et al.
(2017) and Turner, Frankenberg, Wennberg, et al. (2017), where OH concentrations
are fitted directly without interactive chemistry. This is due to compensating OH
production accounting for variabilities in OH concentrations. It should be noted that
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Figure 2.4: Methane Inversions Constrained by Methane, CO, and MCF Obser-
vations: The green line in Panel A shows the difference between our interactive
chemistry case (+I) and non-interactive chemistry case (-I), while the orange line
shows the difference between our interactive chemistry case with fitted CO sources
(+𝐼 + 𝑆𝐶𝑂) and non-interactive chemistry case (-I). Methane emissions calculations
(Panel B) differ when the inversion is allowed to respond to variations in OH con-
centrations (shown in Panel C). Panel D shows observed CO concentrations (black
Xes) and our CO fits. The assumptions and constraints for each experiment are
listed in Table 2.4.
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other chemical effects that may have a large impact on OH abundances, such as NO𝑥 ,
Ozone, and water vapor effects (C. D. Holmes et al., 2013; Naik et al., 2013; Nicely
et al., 2018) are not explicitly represented in our model, so the question “how does
OH production and recycling vary over time?” remains and should be a priority
research objective.

Moving towards a more robust methane trend analysis, global methane emissions
inversions at decadal timescales should account for the chemistry affecting methane
lifetime in the atmosphere. Inversions with chemical transport models may provide
transport effects, however, they neglect the non-negligible impacts of OH chemistry
on methane lifetime, as their OH fields are usually assumed to be static. This may also
have implications for paleoclimate studies (e.g., Dickens et al., 1995; Frieling et al.,
2016). Future inversions should include this methane chemical feedback, informed
by climate variables relevant for OH production and concentrations. For example,
∼90% of variations in OH production can be parameterized by temperature, water
vapor, column ozone, biomass burning emissions, and lightning NO𝑥 emissions
(C. D. Holmes et al., 2013), so OH production and recycling (𝑆𝑂𝐻) can have real-
world constraints (Castellanos, Boersma, and Werf, 2014; C. D. Holmes et al., 2013;
Miyazaki et al., 2017). Simplified parameterizations can capture primary drivers of
OH production and recycling, while joint inversions of species that modulate OH
concentrations, informed by bottom-up inventories, will more accurately represent
methane lifetimes, bringing decadal-scale methane inversions closer to the real
world.
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C h a p t e r 3

STRATOSPHERIC AND ENSO IMPACTS ON TROPOSPHERIC
METHANE EMISSIONS AND HYDROXYL VARIABILITY

3.1 Background and Motivation
Transport to the stratosphere is a significant sink for methane, accounting for ap-
proximately 3-16% of total methane loss (Saunois, Bousquet, et al., 2016; Saunois,
Stavert, et al., 2020; IPCC, 2013). Methane that reaches the stratosphere undergoes
oxidation, resulting in the production of water vapor, which acts as a radiative forcer
and amplifies methane’s contribution to climate change (Shindell et al., 2005). How-
ever, there are large uncertainties in the impact of strat-trop exchange on methane
emissions inversions. Patra et al. (2011) demonstrated that the representation of
tropospheric to stratospheric transport in chemical transport models has a signif-
icant influence on top-down methane emissions calculations. To address this, we
utilize observed lower stratospheric water vapor observations to gauge strat-trop
exchange and evaluate its impact on the methane sink through stratospheric escape
and oxidation by the Hydroxyl Radical (OH).

Neglecting variations in the stratosphere-troposphere exchange time can not only
introduce errors in the estimation of methane loss to the stratosphere, but also in
inferring OH concentrations using MCF constraints. Methane oxidation by OH
is the primary methane destruction mechanism. MCF, a compound phased out
under the Montreal Protocol, serves as an indicator for global OH concentrations.
Once MCF emissions ceased, its loss rate became directly proportional to OH
concentrations, given that its oxidation by OH is its sole tropospheric destruction
mechanism (Montzka et al., 2011; McNorton et al., 2016; Lelieveld et al., 2016;
Turner, Frankenberg, et al., 2017; Rigby et al., 2017). Consequently, inaccuracies in
the stratosphere-troposphere exchange time can therefore influence calculated MCF
loss rates, leading to potential misestimations of global OH concentrations (Prather
and Holmes, 2017). This, in turn, can have a notable effect on methane emission
assessments. Therefore, it’s essential to accurately determine the stratosphere-
troposphere exchange time to fully quantify methane’s secondary sink—its transport
to the stratosphere—as well as its primary sink through OH oxidation. Accurately
understanding and quantifying methane emissions variations and trends thus depend
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on accurately representing the effects of stratospheric-tropospheric exchange on
methane loss.

Water vapor in the lower stratosphere originates from upwelling from the troposphere
and photo-chemical oxidation of methane in the stratosphere. H2O concentrations in
the lower stratosphere have been linked to the variability of stratosphere-troposphere
exchange (Fu et al., 2015; Lu et al., 2020; Randel and Jensen, 2013). Although
increased Lower stratospheric water vapor concentrations would intuitively indicate
stronger tropical upwelling and stratospheric circulation, the majority of the effects
of stratospheric-tropospheric exchange actually decrease H2O concentrations in
the lower stratosphere, due to increased upwelling of dry air entering the lower
stratosphere (Fu et al., 2015; Lu et al., 2020).

The Brewer-Dobson Circulation is primarily responsible for this transport, with the
ascending branch driving the transport from the troposphere to the stratosphere in the
tropics and the descending branch responsible for the transport from the stratosphere
to the troposphere in the high latitudes. It is worth noting that stratospheric-
tropospheric exchange has been shown to modify the chemical composition of the
lower stratosphere, and its strengthening (+1.3-3.9% per decade) is expected due to
climate change forcing (Fu et al., 2015).

3.2 ENSO and Its Impact on Methane Emissions
ENSO, together with the Arctic Oscillation, influences the variability of the Brewer-
Dobson Circulation through enhanced deep convection (Minganti et al., 2020; Diallo
et al., 2019). Moreover, ENSO has an impact on the availability of OH in the
atmosphere through multiple pathways. El Niño years are associated with elevated
wildfire activity, leading to increased methane and CO emissions. This, in turn,
reduces OH concentrations, as surges in methane and CO consume OH Radicals
(Nguyen et al., 2020). Additionally, in the absence of external forcing, ENSO
can increase OH concentrations by promoting deep convection and subsequent
lightning NO𝑥 production (Turner, Fung, et al., 2018). Lastly, the intensified deep
convection associated with El Niño events enhances the stratospheric-tropospheric
exchange, thereby increasing the stratospheric methane sink. As a result, ENSO
affects methane emissions calculations through multiple pathways.

The objective of this study is to calculate the stratosphere-troposphere exchange
time, quantify its variability, and evaluate its impact on methane’s stratospheric sink
and OH oxidation (proxied by MCF). The ultimate goal is to assess how the derived
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exchange time can improve the accuracy of global methane emission estimates and
trends.

3.3 Observational Constraints
We utilize observations of methane (NOAA), CO (NOAA), and MCF (NOAA,
GAGE/AGAGE) concentrations, with hemispheric averaging following Turner, Franken-
berg, et al. (2017). Hemispheric averaging is performed by bootstrapping from
deseasonalized surface observations. We sample from the observational record in
each hemisphere with replacement, considering the number of available observa-
tional records for that species in that hemisphere. Sites with less than 5 years of
data are rejected, and older observations have higher uncertainties than more recent
observations, with a minimum uncertainty of 2 ppb. The randomly drawn observa-
tions are then blocked-averaged into 1-year windows. This process is repeated 50
times to compute the mean and variance from these 50 time series.

For stratospheric water vapor, we use the NOAA SWOOSH data product (Davis et
al., 2016), which provides a harmonized, gridded, and continuous H2O stratospheric
dataset derived from a combination of limb-sounding satellites and reanalysis. We
focus on variations in lower stratospheric water vapor averaged between 100 and
200 hPa and 60° South to 60° North on an annual basis. The resulting lower
stratospheric water vapor time-series, seen in Fig. 3.4, is used to map variations in
the stratosphere-troposphere exchange time.

3.4 Tracer Growth-rate Correlations
Chemical tracers have been used to track and quantify larger scale circulation,
such as strat-trop exchange. Seasonal cycles of tracers such as ozone (Ruiz and
Prather, 2022) and N2O (Prather, Froidevaux, and Livesey, 2023; Ruiz, Prather,
et al., 2021; Ruiz and Prather, 2022; Simmonds et al., 2013) near the surface have
been observed at northern high latitudes during summer, coinciding with mixing
from the stratosphere. Specifically, tropospheric N2O concentrations decrease at
downwelling latitudes during spring (Simmonds et al., 2013; Assonov et al., 2013).

N2O, the third most important anthropogenic greenhouse gas, primarily results from
agricultural activities. N2O and methane emissions sources, which can also come
from agriculture, are often collocated. In the troposphere, N2O has negligible sinks
and is relatively inert. However, in the stratospheric chemical environment, N2O is
oxidized and photolyzed. As a result, stratospheric air entering the troposphere, due
to the Brewer-Dobson Circulation, contains less N2O than tropospheric air, and this
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Figure 3.1: Tracer Correlations: All three panels show a scatter plot of stratospheric
vs tropospheric tracers colored by the ENSO MEIV2 Index (Kobayashi et al., 2015)
with points labeled by year. Top panel shows a positive correlation between strato-
spheric [H2O] concentrations and the tropospheric N2O growth rate. Middle panel
shows a positive correlation between the stratospheric [H2O] and tropospheric CH4
growth rate. Bottom panel shows negative correlation between stratospheric N2O
concentration and the tropospheric N2O growth rate.
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minimum has been observed at high latitudes. Therefore, N2O has been proposed as
a proxy for distinguishing between tropospheric and stratospheric air, and the N2O
growth-rate have been shown to be modulated by inter-annual variations in strat-trop
exchange (Ruiz, Prather, et al., 2021; Simmonds et al., 2013).

Figure 3.4 shows the average lower stratospheric water vapor concentrations between
60°S and 60°N. A significant negative anomaly is observed in 2001, indicating a
substantial change in stratospheric-tropospheric exchange. This anomaly coincides
with a drop in methane and N2O growth rates, as shown in the top and bottom
panels of Figure 3.4, suggesting a correlation between surface N2O and methane
growth rates and stratospheric-tropospheric exchange. Lower stratospheric water
vapor concentrations therefore seem to proxy strat-trop exchange.

Based on the presented evidence, we aim to use information from tracer correlations
to constrain stratospheric-tropospheric exchange times using a box model. We will
then utilize this tracer-constrained exchange time to reevaluate methane emissions
over recent decades.

3.5 Lower Stratospheric Water Vapor Observations Proxy Stratosphere-Troposphere
Exchange

Lower stratospheric water vapor concentrations can serve as a proxy for stratosphere-
troposphere (strat-trop) exchange as they are directly influenced by this exchange
process. It has been observed that enhanced stratosphere-troposphere exchange
often leads to decreased water vapor concentrations in the lower stratosphere. This
seemingly counterintuitive result arises because as ascending air, which may have
high water vapor content, ascends to the tropopause, it encounters the temperature
minimum. At this cold point, a significant portion of its water vapor condenses
out. Consequently, the air that subsequently enters the lower stratosphere is drier.
This drier air acts to dilute the existing water vapor concentrations in the lower
stratosphere, leading to reduced H2O concentrations. Therefore, increased exchange
between the troposphere and stratosphere typically results in diminished water vapor
concentrations in the lower stratosphere (Fu et al., 2015; Lu et al., 2020).

Our study documents notable fluctuations in these concentrations from 1990 to 2021,
as seen in the middle panel of Fig. 3.4. From 1990 to 1999, lower stratospheric
water vapor concentrations decreased from 4.49 ppm to 4.22 ppm, representing a
change of -6.0%. This decrease in water vapor concentrations suggests an increase
in stratosphere-troposphere exchange during this period.
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In the stabilization period (2000-2007), the concentrations remained relatively
lower than the previous decade. This implies continuous enhanced stratosphere-
troposphere exchange during this period, which likely contributed to the observed
decline in methane emissions and OH variability.

During the subsequent years (2007-2019), there was a slight further decrease in
water vapor concentration by -2.1%, indicating a continuous increase in stratosphere-
troposphere exchange. However, in the most recent years (2019-2021), water vapor
concentrations increased significantly by +6.4%. This increase suggests a dramatic
decrease of stratosphere-troposphere exchange, aligning with the observed surge
in methane emissions, indicating that the stratospheric sink of methane decreased,
leading to even more methane growth.

3.6 Chemical Box Model
We developed a 4-box model that maps emissions to concentrations by simulating
methane chemistry and inter-hemispheric transport. The four boxes represent the
Northern Hemisphere, Southern Hemisphere, Northern Stratosphere, and Southern
Stratosphere. The simplicity of the 4-box model is ideal for this study since inter-
hemispheric transport timescales are more relevant than intra-hemispheric transport
for the examined decadal timescales.

Each tropospheric box models the interactions between methane, CO, and the Hy-
droxyl radical (OH). Since CO is the largest OH sink, we follow Prather (1994) and
Nguyen et al. (2020) in modeling the CH4-CO-OH system while accounting for the
variability in the methane perturbation lifetime. Variations in OH abundances result
in a perturbation lifetime of 13.5 years, which is 40% longer than the perturbation
lifetime assuming fixed OH concentrations.

Chemical abundances in the stratospheric boxes follow a first-order reaction, with
the decay rate of each species determined by the stratospheric lifetime of that species.
Transport to the stratospheric boxes is proportional to the tropospheric-stratospheric
gradient and inversely proportional to the stratospheric-tropospheric exchange time,
set as a baseline of 3 years with variability proportional to variations in lower
stratospheric water vapor concentrations.

We employ a Bayesian non-linear inversion algorithm to infer methane emissions
and OH abundances. MCF is used to calculate variations in OH concentrations,
while lower stratospheric water vapor is directly mapped onto the stratospheric-
tropospheric exchange time. For example, a +2% increase in lower stratospheric
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water vapor corresponds to a -2% decrease in the stratosphere-troposphere exchange
time.

To assess the impact of stratospheric exchange time variations on methane emissions
and OH abundances, we simulate two cases: 1) with the stratosphere turned off and
2) with the stratosphere and variability in the exchange time turned on. This allows
us to quantify the effect of stratosphere-troposphere exchange time variations on
methane emissions inversions and OH concentrations.

3.7 Results and Discussion
Methane Emissions Trends
In the previous section, we established a causal link between methane and strato-
spheric H2O concentrations. Here, we will qualitatively discuss initial results of our
methane flux inversions. For more detailed results and figures, we refer the reader
to a subsiquent paper.

Methane emissions have exhibited noticeable variations from 1990 to 2021. The
methane emissions inferred by the model that includes the stratosphere consistently
show higher emissions than the model without the stratosphere. Interestingly, incor-
porating stratospheric-tropospheric exchange has made the emissions time-series
much smoother than the emissions derived without considering the stratosphere.
It is an interesting result that including the stratosphere decreases the inter-annual
variation in derived methane emissions. Including the stratosphere also improves
the fitting between the model and observations compared to excluding the strato-
sphere, indicating that the model with stratospheric effects provides a more accurate
representation of reality.

OH Variability Trends
OH variability, which refers to the percent change in OH concentrations relative
to the mean of the time-series, exhibits a trend that somewhat mirrors methane
emissions. In initial results, we observe a very good fit of MCF, which proxies OH
variability, between both model outputs and the observations, consistently below 1%
relative error. Including the stratosphere also makes the OH time-series smoother
than the model without the stratosphere, and a downward trend in OH concentrations
over recent decades is observed, which is an interesting result.
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Relationships to El Niño
El Niño years were associated with significant alterations in methane emissions,
OH variability, and lower stratospheric water vapor concentrations. For the years
1991, 1997, 1998, 2002, 2009, 2015, and 2020, considered strong El Niño years,
we observed specific shifts in these parameters. The stratosphere-inclusive model
depicted an average increase of 4.9% (approximately 29.9 Tg/yr) in methane emis-
sions during El Niño years, while the model excluding stratospheric effects showed
a lesser average increase of 3.7% (around 21.4 Tg/yr). Similarly, the stratosphere-
inclusive model noted a decrease in OH concentrations of about 3.1%, whereas the
non-stratosphere model recorded a larger decrease of about 4.5% during El Niño
years.

These results reinforce the suggestion that El Niño events correspond to amplified sea
surface temperatures and increased atmospheric instability. El Niño also appears to
accelerate stratosphere-troposphere exchange, as indicated by the lower stratospheric
water vapor concentrations.

3.8 Conclusions and Recommendations
In this study, we quantified the impact of variations in stratospheric-tropospheric
exchange on methane emissions. By utilizing variations in lower stratospheric water
vapor observations to map exchange time variability, we found that stratospheric
loss affects not only stratospheric methane loss but also inferred OH concentrations
through error aliasing onto MCF.

We observed that incorporating variability in stratospheric-tropospheric exchange
significantly improved the fits of our methane emissions inversions and resulted
in smoother inter-annual variability in both derived methane emissions and OH
concentrations. The inclusion of strat-trop exchange played a role in the stabiliza-
tion of methane concentrations during the period from 2000 to 2007, leading to a
slight increase in the flux from the troposphere to the stratosphere. Additionally,
we found a consistent association between higher stratospheric water vapor concen-
trations and El Niño events. Incorporating this information into our inversions had
a more pronounced effect on methane emissions and OH concentrations compared
to inversions that did not consider the stratosphere. These findings have important
implications for understanding the linkage between ENSO and methane emissions
and loss (Nguyen et al., 2020; Worden et al., 2013; Zhang et al., 2018; Rowlinson
et al., 2019).
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Looking ahead, expanding vertical profile measurements will improve our under-
standing of stratospheric methane loss (Roche et al., 2021; Kuai et al., 2012).
Measurement campaigns such as the NOAA Air Core measurements (Karion et al.,
2010), should be expanded to more regions, especially the tropics, where methane
variability, exchange, and chemistry are most dynamic. Additionally, ground-based
vertical profile measurements, such as those obtained from laser heterodyne ra-
diometers, should be developed to directly infer methane gradients on-site. These
measurements would provide constraints for process-based chemical transport mod-
els.

Furthermore, it is crucial to prioritize the incorporation of processes affecting
stratosphere-troposphere exchange in chemical transport models. Currently, there
are significant differences in vertical gradients among chemical transport models
used to infer methane emissions (Patra et al., 2011). Therefore, errors in model-
ing stratosphere-troposphere exchange time introduce errors into inferred methane
emissions. Advancements in both modeling stratospheric-tropospheric variability
and measuring vertical methane gradients will bring methane emissions inversions
closer to real-world accuracy.
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C h a p t e r 4

TOWARDS LABORATORY-LEVEL ACCURACY IN THE FIELD:
ENVIRONMENTAL IMPACTS ON GREENHOUSE GAS

SENSING MEASURED BY FREQUENCY COMBS

4.1 Abstract
Accurate measurements of greenhouse gas (GHG) gradients and long-term trends
are crucial for informing climate policy. However, achieving such accuracy requires
a comprehensive understanding and quantification of environmental biases, which
affect GHG trends and gradients. This study leverages the capabilities of Dual-
Comb Spectroscopy (DCS) to systematically quantify these biases in both synthetic
and real-world scenarios. The findings are pertinent to future DCS applications and
other remote sensing instruments.

For methane, we found that the Hitran 2008 and TCCON line-lists exhibited less
systematic bias compared to other line-lists. However, synthetic retrievals revealed
an 8% variable error in retrieved methane concentrations across different line-
lists, primarily due to pressure broadening errors. In the case of CO2, the OCO
ABSCO lookup table performed best, which account for additional non-Voigt effects.
Comparing to other line-lists, there was a 0.8% variable error in CO2 concentration
retrievals, mainly attributed to pressure broadening errors.

During a multi-week field deployment of DCS, we found discrepancies of up to
2% in methane concentrations and 0.5% in CO2 concentrations when using dif-
ferent spectroscopic databases. These disparities fluctuated with environmental
conditions, underscoring the imperative of accurately modeling these effects.

Beyond the effects of pressure and temperature, we highlight the significant role of
water vapor broadening, particularly for CO2 retrievals. Neglecting to account for
water vapor broadening can lead to a 1% error in retrieved CO2 concentrations and a
0.1% error in the CO2 column, posing substantial variable bias given the variability
and high concentrations of water vapor in many remote sensing settings.

We emphasize the necessity to improve the accuracy of modeling environmen-
tal effects on GHG spectroscopy. The promising capabilities of DCS allow for
laboratory-level accurate measurements to be conducted directly in the field, which
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would expand the GHG observation network for verification of climate change
mitigation strategies.

4.2 Background
Understanding sources and sinks of greenhouse gases (GHGs) is crucial for accu-
rate GHG emission assessments, which depend on capturing spatial gradients in
concentrations. Our knowledge of fluxes from a top-down perspective typically
comes from atmospheric inversions, relying on spatial and temporal gradients in
observed GHG concentrations. As the primary anthropogenic greenhouse gases are
long-lived, their relative concentrations changes are low, requiring high accuracy
and precision, well below the 1% level. The most accurate measurements can be
obtained from in-situ measurements. For example, the National Oceanic and Atmo-
spheric Administration (NOAA) maintains a global network of flask-sampling sites
for GHG monitoring, but air samples must be collected in flasks and shipped for
analysis, a costly and logistically challenging process (Conway et al., 1994; Keeling,
1960; Pales and Keeling, 1965; Sweeney et al., 2015). These difficulties restrict
highly accurate GHG measurements to a limited number of locations. While satel-
lite observations offer broader spatial coverage, their accuracy and spatial resolution
are often limited compared to ground-based measurements (Miller et al., 2007;
Jacob et al., 2016). In this study, we employ Dual Comb Spectroscopy to explore
a novel remote sensing technique that could be used continuously on the ground
over longer pathlengths. We systematically assess the errors in retrieved CO2 and
methane concentrations under different environmental conditions, aiming to expand
the current measurement network and bridge the gap between ground-based and
satellite observations.

Dual-Comb Spectroscopy (DCS) has emerged as a promising solution to supple-
ment the NOAA network, delivering remote, high-accuracy GHG concentration
measurements (Rieker et al., 2014). With its broad-band, high signal-to-noise ratio
(SNR), and high spectral resolution capabilities, DCS is well-suited for GHG re-
mote sensing. Field deployments have demonstrated its potential and usefulness in
remote sensing applications (e.g., Coburn et al., 2018; Cossel et al., 2017; Waxman,
Cossel, Truong, et al., 2017; Waxman, Cossel, Giorgetta, et al., 2019).

Nonetheless, accurately measuring and monitoring atmospheric GHG concentra-
tions presents challenges due to limitations of our knowledge of spectroscopic
parameters (Collins et al., 2022). Spectroscopic databases lack the 0.1% accuracy
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needed for background monitoring (e.g., Delahaye, Maxwell, et al., 2016; Hartmann,
Tran, and Toon, 2009; Hobbs et al., 2020) and the presence of other gases, partic-
ularly water vapor, can interfere with measurements and retrievals (e.g., Christian
Frankenberg et al., 2008; Hammer et al., 2013). Variable biases based on environ-
mental factors cannot be easily subtracted or averaged out, necessitating sub-percent
accuracy in spectroscopic parameters necessary for modeling GHG spectra.

Here, our objective is to leverage the promising remote sensing capabilities of the
DCS to systematically quantify spectroscopic biases in greenhouse gas spectroscopy.
DCS capabilities and field setup are outlined in Section 4.3. We focus on variable
bias from pressure, temperature, and humidity, because errors in modeling the
impact of these environmental conditions propagate into GHG retrieval errors. This
is explained further in Section 4.4. To do this, in Section 4.5, we use the DCS
to assess the accuracy and systematic biases of multiple spectroscopic line-lists.
In Section 4.6, we then quantify the impact of environmental variable bias, with
respect to pressure and temperature errors, on retrieving GHGs through idealized
synthetic retrievals. Section 4.7 applies these principles by assessing the impact
of environmental variable biases from DCS observations measured during a multi-
week feild campaign. We focus on water vapor impacts on GHG retrievals in Section
4.8. Finally, we summarize and discuss our findings in Section 4.9 and conclude by
discussing the implications of our findings on GHG remote sensing in Section 4.10.

4.3 Dual-Comb Spectroscopy Technique
Dual-Comb Spectroscopy
Dual-Comb Spectroscopy (DCS) utilizes laser frequency combs, originally designed
for pico-second timekeeping (see Fortier and Baumann (2019) for a review). Fre-
quency combs emit laser light at around 100,000 distinct, evenly spaced frequencies,
resembling the teeth of a comb (Telle et al., 1999; Udem, Holzwarth, and Hänsch,
2002). DCS uses two frequency combs, mapping infrared (THz) to radio frequen-
cies (kHz) through destructive interference. The resulting radio-frequency comb
can be read by commercial radio-frequency detectors, reducing instrument cost
(Coddington, Newbury, and Swann, 2016; Rieker et al., 2014).

For laboratory-level accuracy, the frequency combs need long-term frequency stabil-
ity and comb coherence. This is achieved by phase-locking each tooth of the combs
to a Continuous Wave (CW) Laser and referencing the destructed comb teeth to a
common quartz microwave oscillator (Truong et al., 2016). This self-referencing
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protocol offers laboratory-level accuracy and stability in a field setting for GHG
remote sensing.

Field Setup
Our DCS generates light between 6,000 and 6,400 cm−1 (1560 - 1660 nm) at 80,000
stable frequencies, resulting in an equidistant spectral sampling of 0.0067 cm−1. The
DCS has an instrument-lineshape full-width at half max of 4 × 10−4 cm−1, making
the instrument line-shape negligible. This is ideal for long-term monitoring, because
temporal drifts in the instrument line-shape require instruments to be recalibrated.
Given that the DCS instrument line-shape is negligible, DCS would be an ideal
instrument for an automated measurement network.

The DCS design follows Sinclair et al. (2015). Both frequency combs are powered
by a 10 mW femto-second, mode-locked laser centered at 1550 nm, with light
amplified to 300 mW through an erbium-doped non-linear fiber.

The DCS was deployed at the NIST facility in Boulder, CO, for 15 days from 21
September to 5 October, 2016. It was mounted atop a building and aimed at a retro-
reflector 1 km away on a nearby hill. The 2 km round-trip signal was read by an
InGaAs photodetector and saved on the FPGA. Post-processing further aggregated
the data into 30-second intervals, and Fourier Transforms produced transmission
spectra for GHG concentration retrievals. An example measurement is shown in
Fig. 4.1

A commercial cavity ring-down spectrometer (Picarro Model 3012) was deployed
alongside a pressure and temperature sensor to act as a reference for our measure-
ments. It was calibrated to the WMO error standard with a reference mixed gas,
resulting in an instrument uncertainty of 0.7 ppm for CO2 and 1.5 ppb for CH4. The
instrument was mounted on a radio tower 30 m above the ground along the DCS
beam path. Further details about the field configuration can be found in Waxman,
Cossel, Truong, et al. (2017).

Spatial Representation of Measurements
Though the point sensor serves as a reference, the point sensor and open-path DCS
will not perfectly match due to the different spatial footprints (Bai et al., 2019). The
point sensor is more sensitive to small-scale enhancements and turbulence-induced
fluctuations. However, the Picarro instrument remains a useful benchmark for DCS
retrievals.
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Figure 4.1: Top row: Example original DCS spectrum covering the entire spectral
range with an envelope determined by the DCS setup. Bottom row shows a focus
on transmissions in the CH4 window (bottom left), between 6050 to 6108 cm−1, and
the CO2 retrieval window (bottom right), between 6180-6260 cm−1. An inset into
individual transitions shows the high spectral resolution of the DCS system.

To minimize spatial representation error, we retrieve pressure and temperature from
DCS spectra over the path instead of relying on nearby point-scale sensors. Accurate
retrieval of pressure and temperature over the path is crucial for calculating the dry
air column density, which is required to convert retrieved total column estimates of
GHG into dry mixing ratios. Other instruments use ancillary measurements of O2

to infer the dry-air column (e.g., Mendonca et al., 2019). DCS can also measure O2

concentrations (Malarich et al., 2023). However, due to its high spectral sampling,
we can calculate the dry air column by directly retrieving pressure, temperature, and
water vapor over the light-path.

4.4 Retrieval Approach
Problem Statement
The retrieval problem for an open-path system involves determining the greenhouse
gas column density (in molecules/cm2) from the shape and depth of the measured
absorption lines and then converting it to a volume mixing ratio. The GHG column
density is divided by the dry air column density to achieve this conversion:
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[𝐺𝐻𝐺𝑣𝑚𝑟] =
𝐺𝐻𝐺𝑐𝑑

𝑎𝑖𝑟𝑐𝑑 − 𝐻2𝑂𝑐𝑑

(4.1)

In Eq. 4.1, 𝑎𝑖𝑟𝑐𝑑 represents the column density of air, 𝐺𝐻𝐺𝑐𝑑 the GHG column
density, and 𝐻2𝑂𝑐𝑑 the column density of water vapor. The dry air column density
𝑑𝑟𝑦𝑐𝑑 , defined as the air density without considering water, i.e. 𝑎𝑖𝑟𝑐𝑑 − 𝐻2𝑂𝑐𝑑 , is
calculated using a modification of the Ideal Gas Law:

𝜌𝑑𝑟𝑦 =
𝑝𝑑𝑟𝑦

𝑅𝑇
=

𝑝(1 − [𝐻2𝑂𝑣𝑚𝑟])
𝑅𝑇

(4.2)

𝑑𝑟𝑦𝑐𝑑 = 𝜌𝑑𝑟𝑦Δ𝑥 (4.3)

Eq. 4.2 relates the number density of dry air (𝜌𝑑𝑟𝑦) to the atmospheric state,
determined by pressure (p), temperature (T), and the water vapor mixing ratio
([𝐻2𝑂𝑣𝑚𝑟]). The dry air column density (𝑑𝑟𝑦𝑐𝑑) is calculated by multiplying the
dry air number density (𝜌𝑑𝑟𝑦) by the round-trip path-length (Δ𝑥). Fractional errors
in obtained 𝑝 and 𝑇 propagate directly into errors in [𝐺𝐻𝐺𝑣𝑚𝑟], even if 𝐺𝐻𝐺𝑐𝑑

is bias free. Thus, it is important to minimize errors in modeling pressure and
temperature-dependent absorption cross-sections that could propagate into variable
biases in the dry air column and consequently GHG concentration. An alternative
approach is to measure a proxy gas for dry air, such as O2, which can alleviate this
source of bias.

This paper examines biases in retrieving GHG concentrations, both for GHG column
density retrievals and its conversion to a column-averaged mixing ratio using the
derived dry air column.

Retrieval Algorithm
To retrieve GHG concentrations from measured spectra, we employ a non-linear
inversion using the Lambert-Beer Law:

𝜏(𝜆) =
𝑛∑︁
𝑖

[𝐺𝐻𝐺𝑣𝑚𝑟] · 𝑑𝑟𝑦𝑐𝑑 · 𝜎(𝜆, 𝑝, 𝑇) (4.4)

𝑇 (𝜆) = exp−𝜏(𝜆) (4.5)
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The optical depth (𝜏) depends on the GHG column density and the absorption cross-
section (𝜎). Here, the cross-section is calculated using the Voigt line-shape from the
vSmartMOM.jl tool based on the Hitran database or, alternatively, more complex
line-shapes using lookup tables, such as the OCO-2 mission ABSCO table linelist
Version 5.1, which include collisional narrowing effects as well as full line-mixing.
Eq. 4.5 relates the transmission (𝑇) to the optical depth.

Evaluations of the forward model map the chemical and environmental state (e.g.,
concentrations, pressure, and temperature) to simulated spectra observed by the
instrument. To find the optimal state, the misfit between the simulated spectra
and the observed spectra is minimized by iteratively selecting state parameters and
evaluating the forward model. Exploration and selection of the state is done by
non-linear least squares fitting (Rodgers, 2000). The algorithm is as follows:

𝑥𝑖+1 = 𝑥𝑖 +
(
KTS−1

𝜖 K
)−1

KTS−1
𝜖 (𝑦 − 𝑓 (𝑥)) (4.6)

Here, 𝑦 is the observed spectrum, 𝑓 (𝑥) is the modelled spectrum, S𝜖 is the error
covariance matrix (purely diagonal), and K is the Jacobian matrix. The Jacobian
is calculated using automated differentiation techniques in Julia using the Forward-
Diff.jl package. Finally, 𝑥𝑖 is our state vector at the ith iteration, and it includes the
vertical column density (vcd) of each of the gases being retrieved, pressure, temper-
ature, and a polynomial term to account for baseline variations of the transmission
(see top row in Figure 1). Here, we use Legendre polynomials of degree 100 to
account for the low-frequency variability in the DCS baseline.

A crucial aspect of our retrieval is using the column density in the state vector rather
than the volume-mixing ratio. This approach separates spectroscopic errors from
pressure and temperature errors. Pressure and temperature errors will affect the
dry air column amount, propagating into the derived GHG concentration. Fitting
for the column amount individually enables error contributions to be calculated
independently.

4.5 Greenhouse Gas Spectroscopy
Spectroscopic Line-Lists
Accurate modeling of pressure, temperature, and wavelength-dependent absorption
lines is essential for retrieving pressure and temperature from the absorption line
shapes. The Voigt line-shape model accounts for both pressure and temperature
effects by convolving the temperature-dependent Lorentzian line-shape and the
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Species Line-lists Retrieval Window
CH4 TCCON, Hitran 2008, Hitran 2016, Hitran 2020 6050-6108 cm−1

CO2 OCO ABSCO, TCCON, Hitran 2016, Hitran 2020 6180-6260 cm−1

H2O TCCON 6050-6108, 6180-6260 cm−1

Table 4.1: Spectroscopic line-lists and retrieval windows used to retrieve greenhouse
gas amounts in our experiment. For H2O, we used TCCON exclusively, as it provided
the best fits and enables us to isolate fitting errors just due to differences on GHG
absorption cross sections.

pressure-dependent Gaussian line-shape. More complex profiles than the standard
Voigt Profile have recently been used to account for additional physical effects,
such as the molecular velocity changes that occur with molecular collisions (known
as velocity changes), the speed-dependence on collisional broadening and shifting
coefficients (speed dependence), and the interaction of neighboring transitions (line-
mixing) (e.g., Delahaye, Maxwell, et al., 2016; Hartmann, Tran, and Toon, 2009;
D. A. Long et al., 2022; Payne et al., 2020).

Table 4.1 displays the line-lists being used in our study. We use the HITRAN
2008 (Rothman et al., 2009), Hitran 2016 (Gordon, Rothman, Hill, et al., 2017),
and Hitran 2020 (Gordon, Rothman, Hargreaves, et al., 2022) line-lists as well as a
line-list optimized for retrievals within the Total Carbon Column Observing network
TCCON (Tune, n.d.; Wunch et al., 2011), which updates some Hitran parameters,
also for H2O, to optimize spectral fits in TCCON retrieval windows. For these
line-lists, we generate cross-sections using the Voigt line-shape. In addition, we
use tabulated cross section data from the ACOS/OCO-2 absorption coefficients
Version 5.1 (ABSCO) developed for the Orbiting Carbon Observatory missions
(labeled as OCO here) (Payne et al., 2020). The ABSCO tables account for velocity
changes, speed-dependence, and line-mixing. Using multiple line-lists enables us
to quantify how biases vary with pressure and temperature in the most commonly
used spectroscopic databases.

Using DCS Capabilities to Examine Systematic Errors in GHG Spectroscopy
We can examine the accuracy of the CO2 and methane spectroscopy by looking at
the spectral residuals of our retrieval’s and comparing them to the measured DCS
spectrum. The data shown in Figs 4.2 and 4.3 are obtained from averaging the
spectra over a 24 hour period on Day 0 and dividing by the instrument baseline.
Spectra were averaged in order to minimize random noise so that systematic offsets
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Figure 4.2: DCS Absorption spectrum (top) over the CO2 retrieval window (6180-
6260 cm−1). The bottom panel shows modelled residuals from the OCO, Hitran
2016, Hitran 2020, and TCCON line-lists, as outlined in Table 4.1.

and individual absorption features can be closely inspected. Transmission spectra
measured by the DCS are plotted in Panel A of Figs 4.2 and 4.3. The ideal instrument
line-shape of the DCS enables time-averaging without instrument drift, increasing
the signal-to noise ratio, and is another advantage of the DCS instrument.

Systematic Errors in CO2 Spectroscopy
CO2 was retrieved from the window between 6180-6260 cm−1. Fig. 4.2 shows
prominent absorption features at 6215 and 6240 cm−1. Examining the residuals
in Panel B, we see that in general, all of the line-lists tested here have minimal
systematic residuals. However, we do see spikes in the residuals throughout the
spectrum, with the largest at 6185 cm−1. This indicates that there are some missing
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lines in those regions which may be due to missing water lines. Although the
differences between the Line-lists are small, we do see that OCO does perform most
well.

Although there is not a significant difference between each of these spectral resid-
uals, OCO does perform best. This is due to the additional physical processes
accounted for in the OCO spectroscopy, which includes line-mixing and other pro-
cesses beyond just pressure and temperature broadening. Incorporating additional
physical processes makes calculations of the dry air column amount more accurate
(Hartmann, Tran, and Toon, 2009; D. A. Long et al., 2022; Malina et al., 2022;
Thompson et al., 2012).

Systematic Errors in CH4 Spectroscopy
Fig 4.3A shows the measured transmission spectrum of the DCS over our methane
retrieval window between 6050-6108 cm−1. We see that this region is highly pop-
ulated with methane and water absorption lines. Examining the residuals in Fig.
4.3B, we see that there are more systematic offsets with spikes atmore places, indi-
cating missing absorption lines. Hitran 2008 and TCCON perform most well, with
only one main offset at 6078 cm−1, while Hitran 2016 performs least well. Hitran
2020 and 2016 have similar number of systematic offsets, with 8 main spikes seen
in the residuals at 6056, 6067, 6078, 6088, 6096, 6099, and 6105 cm−1.

The next-generation methane observation satellite, Merlin, will be launched in 2028.
Merlin will employ differential absorption LIDAR to measure the R6 methane
transition at 6076 cm−1 (1645 nm) to achieve better than 1% accuracy in methane
concentrations (Delahaye, Maxwell, et al., 2016). Fig. 4.4 shows a zoom into the
methane R6 transition between 6076 to 6079 cm−1. We find that here, there are
systematic residuals in all the line-lists. This indicates that there are both parameter
and model errors in this spectral region. We see that Hitran 2016 and 2020 has
a sine-shaped residual between 6076.75-6077 cm−1. However, this is not seen in
Hitran 2008 and TCCON. All line-lists also have a dip at 6078.25 cm−1, which
may come from inaccuracies in modeling the absorption line-shape in this specific
transition.

Delahaye, Maxwell, et al. (2016) and Delahaye, Ghysels, et al. (2019) more closely
examined this specific transition. They find that accounting for additional processes,
such as line-mixing and collision induced absorption, through the Hartman Tran
Profile improves the fits to 0.1%. Since the DCS has a broader spectral range,
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Figure 4.3: DCS absorption spectrum over the CH4 fitting window (6050-
6108 cm−1), on top. The bottom panel shows the residuals with modelled spectra
using the Hitran TCCON, 2008, Hitran 2016, and Hitran 2020 line-lists.

similar analyses and parameter optimizations should be performed over additional
transitions in the DCS ranges to obtain the most accurate modeled absorptions of
methane.

Methane’s spectroscopy is continuously evolving (Devi et al., 2015; Delahaye,
Maxwell, et al., 2016; C. Frankenberg et al., 2008; Zolot et al., 2013). This is because
Methane spectroscopy is particularly challenging, due to the manifolds in vibrational
and rotational transitions, which creates a blend of overlapping absorption lines,
resulting in line-shape asymmetries and additional difficulty in modeling the line-
shape (Boudon, Rey, and Loëte, 2006). The Voigt Profile does not account for
these more complex processes. However, Rieker et al. (2014) found that errors in
the Voigt parameters are larger than errors from not employing more complex line-
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Figure 4.4: Zoom into the CH4 R6 transition, which will be observed by the
Merlin Mission. The bottom panel shows spectral residuals between modelled and
measured spectra for TCCON, Hitran 2008, Hitran 2016, and Hitran 2020 line-lists.

shapes. This should be explored further. Quantifying the effects of using Voight
versus more advanced line-shapes on methane retrievals would be also important for
the methane remote sensing community. Calculating more accurate spectroscopic
parameters for methane is an on-going effort, and we find that it is necessary in
order to achieve highly accurate methane measurements with the DCS.

4.6 Synthetic Retrieval Experiments
Systematically Decomposing GHG column, pressure, and temperature errors
In the previous section, we examined systematic biases in GHG spectroscopy. Now,
we will perform synthetic retrievals to systematically quantify environmental vari-
able biases, specifically pressure and temperature, in our line-lists for greenhouse
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gases. We generated synthetic spectra using the most accurate line-lists for each
species over a range of pressures and temperatures, and we assumed the synthetic
spectra to be free from water vapor effects (i.e., dry air). We then performed re-
trievals using different line-lists to calculate the retrieval error while fitting for GHG
column, pressure, and temperature. This allowed us to systematically decompose the
contributions of GHG column density, pressure, and temperature errors on retrieved
GHG concentrations and quantify their pressure and temperature dependence.

We can separate spectroscopic biases from environmental variable biases by an-
alyzing the retrieved GHG column density from our synthetic retrievals. This is
the numerator in Eq. 4.2. The GHG column density is less affected by errors in
pressure, temperature, and humidity than the GHG concentrations. Systematically
quantifying how biases in the GHG column density vary with environmental con-
ditions is applicable not only to DCS retrievals, but also to retrievals from other
instruments.

Errors in pressure, temperature, and humidity affect GHG concentrations through
the calculation of the dry air column density (Eq. 4.2 and denominator in Eq. 4.1).
Therefore, errors in retrieving these environmental variables will propagate into the
GHG concentrations.

These experiments enable us to quantify the size of the variable biases, observed
through the dynamic range of each color map. We can also see how these biases
vary with pressure and temperature. Results are displayed in Figs 4.5 and 4.6.
These plots, from the top to bottom row, show the retrieval error for the GHG
concentrations, GHG column density, pressure, and temperature with respect to
pressure and temperature for all line-lists examined here.

Methane Biases
Our synthetic methane spectra were generated using Hitran 2008, our most accurate
line-list. Retrievals were performed using Hitran 2016, 2020, and TCCON line-lists.
Fig. 4.5 shows our results.

These synthetic experiments show that errors in retrieving methane concentrations
have high variable bias, which can be seen in the top row of Fig. 4.5. These effects
are more prominent in Hitran 2016 and 2020 line-lists, with errors ranging between
7-15% and 0-8%, respectively. The dynamic range for both is similar at 8%, with 45-
degree error contours. This indicates that errors in retrieving methane concentrations
depend on both pressure and temperature. The highest errors for Hitran 2016 and
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2020 are located at higher pressures and temperatures, maximizing at the top right,
while errors are smaller at lower pressures and temperatures. TCCON has a different
pattern, with horizontal error contours, indicating temperature dependence.

The second row of Fig. 4.5 shows errors in the methane column density are much
smaller than methane concentrations errors. The range for Hitran 2016 and 2020
is between 0-1.5%, and TCCON is between -0.35% to 0.1%. This 1.5% dynamic
range in retrieving methane column densities is much larger than the 8% dynamic
range in the retrieval error for methane concentrations.

The pressure error exhibits very similar error patterns to the methane concentra-
tions error. This indicates that pressure errors dominate the overall concentrations
retrieval error through the calculation of the dry air column density. Hitran 2016
and 2020 have similar dynamic ranges of 6%, with errors ranging from -5% to
-11% and -6% to 0%, respectively. The pressure error for Hitran 2016 and 2020
depends on both pressure and temperature. On the other hand, the pressure bias
from TCCON ranges from 0% to 2% and mainly depends on temperature.

Although errors in temperature are much smaller than pressure, the temperature
errors are still substantial. Hitran 2016 and 2020 have dynamic ranges of 0.95%
and 0.6%, while TCCON has a dynamic range of 0.28%. Hitran temperature errors
depend on both pressure and temperature, while TCCON only depend on temper-
ature. Although these temperature errors are smaller than the methane pressure
errors, the errors among these line-lists indicate that temperature effects on methane
spectroscopy need to be improved for highly accurate methane retrievals.

Our synthetic methane retrievals indicate that the main error and disagreement
in accurately calculating methane concentrations stem from the dry air column
density. The largest error arises from errors in modeling pressure broadening,
which propagate into errors in the dry air column density. Hitran 2016 and 2020
exhibit similar pressure and temperature biases with similar dynamic ranges, but
the errors seem to be shifted from each other. On the other hand, TCCON has very
similar results to Hitran 2008.

Overall, our findings highlight the need for further improvement in methane spec-
troscopy. Accurate spectroscopic parameters for modeling both pressure and tem-
perature effects on methane absorption are necessary, but more emphasis should be
put on accurate pressure broadening parameters.
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CO2 Biases
CO2 in the 1.6-micron region has been extensively studied due to the accuracy
requirements of the OCO missions (Thompson et al., 2012; Hartmann, Tran, and
Toon, 2009; Payne et al., 2020). Nonetheless, uncertainties persist. Fig. 4.6 presents
the retrieval errors for synthetic spectra created using the OCO line-list, while the
retrievals were performed with the Hitran 2016, 2020, and TCCON line-lists. In
comparison to methane, the errors for CO2 are generally smaller, and it is more
difficult to attribute error sources.

The first row of Fig. 4.6 displays the error in retrieved concentrations. TCCON
exhibits the lowest overall dynamic range, around 0.25%, ranging from 2.0-2.25%
and primarily depends on pressure. Hitran 2020 ranges from 0 to 1.2% and is
temperature-dependent with horizontal isolines. Hitran 2016 is fairly similar to
Hitran 2020, with a dynamic range of 0.7%, from 1.8-2.5%. These variable biases
of less then 0.8%, although smaller than methane, are still important to address.

The second row in Fig. 4.6 shows the CO2 column density error. Hitran 2016 and
2020 have errors ranging from -0.2% to 0.15% and -0.1% to 0.2%, respectively.
They both have a similar dynamic range of less than 0.1%. TCCON errors exhibit a
dynamic range of about 0.45%, ranging from 0.35 - 0.8%, with horizontally aligned
isolines, indicating temperature dependence. Variable biases in the CO2 column
density are relatively small.

Generally, errors depend on temperature for all line-lists. Pressure errors seem to
be the largest, but they are much lower than methane. The third row of Fig. 4.6
displays pressure errors. Hitran 2016 ranges from -2.8 to -2%, a 0.8% difference.
Hitran 2020 ranges from -1.25% to +0.25%, a 1.5% difference. TCCON ranges
from -1.8% to -1.1%, a 0.7% difference. They are primarily temperature-dependent
but have some pressure dependence as well. Generally, the errors appear to have
similar temperature and pressure dependence across all the line-lists. These variable
biases in pressure broadening are substantial.

The fourth row of Fig. 4.6 shows temperature errors. Hitran 2016 ranges from -
0.35% to -0.2%, a 0.15% dynamic range. Hitran 2020 ranges from 0.01% to 0.11%, a
0.1% difference. TCCON ranges from 0.04% to 0.3%, a 0.26% difference. All errors
are very small. Hitran 2016 and 2020 exhibit the same behavior, with the lowest
errors in the lower right corner and increasing towards the top-left corner. TCCON
looks different, with the highest values at the lowest pressure and temperature,
and opposite at the high pressure and temperature. Temperature effects on CO2
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Figure 4.5: Retrieval error for CH4 synthetic retrievals. The ’true spectra’ were gen-
erated with Hitran 2008. From top to bottom row, errors in concentrations (denoted
as VMR), methane column density, retrieved pressure, and retrieved temperature
are plotted as a function of pressure and temperature. Retrievals were performed
with Hitran 2016, Hitran 2020, and TCCON line-lists.

spectroscopy seem to be well constrained.

In summary, CO2 line-lists show greater agreement than methane line-lists. CO2

column density errors are found to be small. The majority of errors in retriev-
ing CO2 concentrations stem from pressure errors, with minor contributions from
temperature errors. To enhance the accuracy of CO2 spectroscopy, efforts should
focus on obtaining more precise pressure broadening parameters and improving the
temperature dependence of these parameters.
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Figure 4.6: Retrieval errors from our CO2 synthetic retrieval experiments. The
’true spectra’ were generated wie OCO ABSCO line-list. From top to bottom row,
errors in concentrations (denoted as VMR), CO2 column density, retrieved pressure,
and retrieved temperature are plotted as a function of pressure and temperature.
Retrievals were performed with Hitran 2016, Hitran 2020, and TCCON line-lists.

4.7 DCS Field Retrieval Results
Analyzing Field Retrievals
In the previous section, we quantified the biases that corresponded to errors in
retrieving pressure and temperature in idealized synthetic retrievals. Here, we
will see how these variable biases affect the accuracy of Ghg retrievals in a field
setting, which was described in Section 2. We used different line-lists to retrieved
CO2, methane, and water vapor concentrations from the DCS and had the Picarro
instrument as a reference.

Here, our objective is to quantify the effects of environmental variable biases on
both the GhG column density and GHG concentrations in a real-world setting. To
do this, we separated the GHG column density and GhG concentrations for multiple
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line-lists. Table 4.1 shows the line-lists and retrieval setup.

CO2 Retrievals
Regional-scale gradients of column-averaged CO2 concentrations in the atmosphere
are about 2% (8 ppm) (Thompson et al., 2012). Inferring CO2 sources at this scale
requires sub-ppm accuracy. A global network should be capable of this laboratory-
level accuracy, which the DCS can theoretically provide directly in the field.

Fig 4.7A shows the retrieved time series for a two-week period in our study. We
can see some diurnal patterns, with ∼40 ppm (∼10%) CO2 spikes in the time-
series, which likely correspond to rush-hour traffic. CO2 emissions exhibit a more
pronounced diurnal cycle, because the sources of CO2, such as vehicle traffic and
electricity production, are diurnally varying (Waxman, Cossel, Giorgetta, et al.,
2019).

Our algorithm retrieves CO2 over the window between 6180-6260 cm−1, and we
employed the Hitran 2016, Hitran 2020, TCCON, and OCO ABSCO line-lists. All
the line-lists used here track very closely with the in-situ reference observations,
denoted as black dots. Differences among the different line-lists used are small and
difficult to discern, indicating that the CO2 spectroscopy is in agreement.

The relative GhG column differences between different spectroscopic databases and
the OCO database are displayed in Fig. 4.7B. It should be emphasized that the
mean bias has been subtracted out, because the main objective here is to analyze
the variable bias. We compare against the OCO database, because it is the best
performing, as seen in Fig. 4.2. Differences in the CO2 spectroscopy are relatively
small, with column percent differences ranging from -0.1% to 0.1%, with differences
very close to zero for a majority of the time-series. These small errors indicate
that the CO2 spectroscopy is sufficiently accurate to be within the 0.1% accuracy
threshold required for long-term GhG monitoring.

Accounting for environmental variable biases, which is introduced when calculating
the CO2 concentrations, introduces larger errors. Fig. 4.7C displays the relative
error between retrieved CO2 concentrations from the DCS in comparison to the best
performing line-list, the OCO spectroscopy. The mean bias was subtracted out to
highlight the variable bias. Concentrations were calculated using retrieved p and
T seen in Fig. 4.7D and E, with H2O seen in Fig. 4.9. We can see that the error
ranges between -0.5% and 0.5% with a majority of the datapoints around 0.2%.
These errors are larger than the 0.1% accuracy threshold required for long-term
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monitoring. Temperature retrievals generally agree, while pressure retrievals have
slight offsets among different line-lists. This indicates that improved parameters
on modeling the effect of environmental variables, mainly pressure broadening, on
CO2 are necessary.

Methane Retrievals
Fig. 4.8A displays the retrieved time-series for methane. We observe that methane
exhibits a less pronounced diurnal cycle than CO2. Methane’s peak is approximately
200 ppb above background concentrations, with a particularly abrupt increase for
about a day at the beginning of the time-series. This largest increase also coincides
with the most pronounced CO2 peak. Interestingly, the temperature fits for both
retrieval windows during this period are systematically different from the in-situ
measurements, which usually align almost perfectly with local temperature mea-
surements. These differences are too large to be caused by a retrieval bias and are
likely due to strong temperature gradients, potentially along gradients towards the
hill. Methane still exhibits a diurnal cycle, albeit less than the CO2 diurnal cycle,
which is driven by boundary layer height and urban emissions in Boulder.

We used the Hitran 2008, 2016, and 2020 line-lists, along with the TCCON line-list,
to retrieve methane concentrations. In contrast to CO2, we observe that the retrieved
concentrations among different spectroscopic databases are more spread out for
methane than for CO2 (see panel A). Hitran 2016 consistently has higher values than
the other line-lists. Methane concentrations can vary by up to 300 ppb, which is
attributed to spectroscopic errors. Hitran 2008 is closest to the in-situ observations,
denoted as black dots, suggesting that Hitran 2008 may be the most accurate line-list.
Errors in pressure and temperature-dependent spectroscopic parameters can induce
errors in not only the methane column amount, but also the dry air column density,
affecting overall methane concentrations.

Fig. 4.8B displays the offset between the methane column density. The mean bias
has been subtracted so that variable biases can be examined. The relative differences
are with respect to the best performing spectroscopy, Hitran 2008.

In comparison to CO2, there is a much larger disagreement for the methane column
density. The variable bias ranges from -2% to 2%, which is significantly larger
than the 0.1% seen for the CO2 relative column error. Hitran 2016 (the orange
line) exhibits the largest variable bias, reaching a -2% error during the last two
days, while Hitran 2020, although showing biases up to 1%, is in closer agreement
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Figure 4.7: Retrieved CO2 concentrations with line-lists outlined in Table 4.1 from
our DCS field deployment in Boulder, Colorado, USA over a two week period.
From top to bottom, the panels show CO2 concentrations, relative errors in column
densities with respect to the OCO spectroscopy, relative concentration errors with
respect to the OCO spectroscopy, retrieved temperature, and retrieved pressure. In-
situ observations from the Picarro instrument are plotted in black dots.
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with Hitran 2008. These results indicate that methane spectroscopy requires further
improvement for long-term background monitoring.

Methane concentrations exhibit larger errors than CO2. Fig. 4.8B shows the variable
error for retrieved methane concentrations in comparison with the best performing
line-list, Hitran 2008. Hitran 2016 reaches -2%, while other line-lists regularly
range from -0.5% to 0.5%. Comparing Panels B and C, it appears that errors in
the methane column density are larger than errors in the methane concentrations.
This suggests that errors in the methane column density are being compensated by
errors in retrieved environmental variables. Panel D shows agreement in retrieved
temperature among different line-lists, while Panel E displays a large disagreement
between different line-lists in retrieved pressure. This points to pressure broadening
errors as the source of this compensating error. Our results indicate that the effects
of pressure on modeling methane spectra need improvement to enable more accurate
methane concentration retrievals.

Water Vapor Retrievals
Fig. 4.9 presents the retrieved H2O concentrations. H2O concentrations were
retrieved over the CO2 window between 6180 and 6260,cm−1 using the TCCON
line-list. We opted for a single line-list to enable a more consistent comparison of
methane and CO2 spectroscopy, avoiding the added complexity of multiple H2O
line-lists.

As seen in Fig. 4.9B, H2O exhibits greater variability than methane or CO2, with
concentrations ranging from 0.7% to 1.75%. The highest H2O concentrations occur
during days 0-2, appearing to correspond with lower measured pressure. It is worth
noting that the in-situ observations align well with the retrieved H2O concentrations
from the DCS. The relatively high H2O concentrations at the beginning of the
time-series represent an important feature, which will be further discussed in the
subsequent section.

4.8 H2O Broadening
Effect of H2O broadening can be substantial
In the previous section, we found that retrieval errors correspond strongly to water
vapor concentrations. Water vapor complicates ghg retrievals by spectral cross-
interference and broadens spectral lines more efficiently than dry air (Hobbs et al.,
2020). Fig. 4.7 and 4.8 show the impact of water vapor broadening on our ghg
retrievals. We can see that there is a larger disagreement between the retrieved DCS
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Figure 4.8: Retrieved CH4 from our DCS field-deployment. The figure is arranged as
in Fig. 4.7. Panels B and C display the relative concentrations error and relative CH4
column error with respect to the Hitran 2008 spectroscopy with water broadening.
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Figure 4.9: The top panel displays the calculated dry air column, while the bottom
panel displays retrieved water vapor concentrations. The dry air column density
was calculated using the retrieved pressure and temperature in Eq. 4.2.

concentrations in comparison to the Picarro on days 0-2, which are days with higher
water vapor concentrations, as seen in Fig. 4.9.

Water Broadening on Methane
Water vapor broadening is 1.34 times more efficient in broadening methane line-
shapes than dry air (Delahaye, Landsheere, et al., 2016; Tan et al., 2019). Given
that laboratory-derived H2O broadening parameters for methane are limitted, we
accounted for this effect by instead calculating an effective pressure when computing
the absorption cross-sections. H2O broadening can increase pressure broadening,
so we instead calculated an effective pressure (𝑝𝑒 𝑓 𝑓 𝑒𝑐𝑡𝑖𝑣𝑒) to account for additional
pressure broadening due to water vapor concentrations.

𝑝𝑒 𝑓 𝑓 𝑒𝑐𝑡𝑖𝑣𝑒 = 𝑝(1 + 0.34[𝐻2𝑂]) (4.7)

The blue line in Fig. 4.8B and C shows the impact of water vapor broadening on our
methane retrievals. We see that water vapor can have up to a 10 pbb (0.05%) impact
on methane retrievals on days with higher water vapor concentrations. Although
the impact of water on methane retrievals is relatively small, it should be taken into
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account for background methane monitoring, where accuracy requirements are at
the sub-percent level.

Water Broadening on CO2

H2O broadening on CO2 can be up to 2 times more efficient than dry air (Adkins,
David A. Long, and Hodges, 2021; Sung et al., 2009; Tan et al., 2019). While
the OCO spectroscopy accounts for this effect, the values of this parameter were
obtained from another spectral window located at 2325 cm−1 (4.3 microns) (Oyafuso
et al., 2017; Sung et al., 2009; Tan et al., 2019). In order to test the effect of H2O
broadening on CO2 retrievals, we developed and OCO ABSCO line-list without
water vapor effects by using the full OCO lookup table and set the water vapor
concentrations to zero%. We call this OCO V2 here and compare retrieval results
with the OCO table with H2O broadening.

The pink lines in Fig 4.7 show the difference between accounting for and neglecting
H2O broadening on the DCS CO2 retrievals. There is a 4.5,ppm difference in CO2

concentrations, corresponding to more than 1%. H2O broadening not only affects
the CO2 retrievals through the dry air column, but also the CO2 column density
itself. H2O broadening varies with the rotational state of CO2. We can see that this
enhanced pressure broadening resulting from H2O adds a 0.1% error. This error
affects not only DCS retrievals, but also the CO2 retrievals of other instruments,
because variable errors in the CO2 column density cannot be reduced by ancillary
measurements of the dry column. Given these results, we recommend obtaining
accurate H2O broadening parameters and their temperature dependence for future
work.

Neglecting H2O broadening on methane and CO2 retrievals over these windows can
induce a 0.05% and 1% error on CH4 and CO2 retrievals respectively. Given that
neglecting H2O broadening already has a sizable effect at 1.5% H2O concentrations,
this effect can only be larger in tropical atmospheres, where concentrations can be
up to 5%. Obtaining accurate CO2 water vapor broadening parameters and their
temperature dependence should therefore be a key objective for highly accurate ghg
measurements by both ground-based and space-based sensors.

4.9 Summary and Discussion
This study aimed to systematically quantify the impact of environmental variable
errors on greenhouse gas (GHG) retrievals using Dual-Comb Spectroscopy’s remote
sensing capabilities. Unlike random or systematic errors, environmental variable
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errors cannot simply be averaged or subtracted out. Instead, accurately modeling
environmental effects on GHG spectroscopy is required to mitigate these errors.

We developed a retrieval algorithm that isolates the effects of pressure and tempera-
ture from the retrieved GHG amounts, utilizing the DCS’s high spectral resolution.
The high spectral sampling of the DCS also allows direct retrieval of pressure
and temperature solely from the shape of the measured absorption cross-sections.
Our findings highlight the significance of accurately modeling pressure-broadening
effects on GHGs.

In the case of methane, the Hitran 2008 and TCCON line-lists exhibited fewer
systematic biases compared to other line-lists. Discrepancies among line-lists can
lead to substantial differences in retrieved concentrations, with an 8% dynamic
range relating to pressure and temperature variations. However, the variable er-
ror in retrieving pressure, with a dynamic range of 6%, dominates. In real-world
applications, different spectroscopic databases can yield methane concentrations
that differ by up to 2%, with pressure retrieval errors contributing the majority of
this discrepancy. Thus, while both temperature and pressure broadening param-
eters require improvements for highly accurate methane measurements, pressure
broadening effects demand more attention.

For CO2, the OCO ABSCO lookup table yielded the best performance because it
accounts for additional non-Voigt effects. Synthetic retrievals revealed less than
0.8% variable error in retrieving CO2 concentrations, mainly attributed to errors
in modeling pressure broadening. Field retrievals of CO2 using different line-lists
revealed a 0.5% disagreement in concentrations, which, despite being smaller than
methane, exceeds the 0.1% accuracy required for background monitoring. Like
methane, the majority of the disagreement among different line-lists arises from
errors in retrieving pressure.

In addition to pressure and temperature errors, we found that accounting for H2O
broadening is important for CO2. Neglecting H2O broadening can induce a 1%
error in retrieved CO2 concentrations. This is because H2O can be two times more
efficient than dry air broadening, affecting the retrieved pressure. H2O broadening
can also affect the CO2 column density by 0.1%, which is on par with spectroscopic
disagreements among different line-lists. This is important not only for DCS re-
trievals, but also the retrievals for other instruments. Given the size of this effect at
only 1.7% H2O concentrations, this effect can only be more substantial in tropical
atmospheres, where H2O concentrations can be up to 5%. Current H2O broadening
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parameters used in CO2 spectroscopy are borrowed from another spectral region.
Therefore, calculating accurate H2O broadening parameters should be a priority for
accurate CO2 remote sensing.

4.10 Implications and Recommendations
Environmental biases are crucial to address as they significantly impact measure-
ments of greenhouse gas gradients and long-term trend analysis. These biases cannot
be simply averaged or subtracted out; rather, they require an accurate modeling of en-
vironmental impacts on GHG absorption. Our study leveraged the high-resolution
capabilities of Dual-Comb Spectroscopy (DCS) to systematically quantify these
environmental biases.

Our findings have broad implications not only for DCS but also for other remote
sensing instruments. The variable errors in retrieving the greenhouse gas column
density can affect the accuracy of retrievals from these instruments. Therefore, un-
derstanding and mitigating these errors is essential for ensuring accurate greenhouse
gas measurements across different sensing instruments.

While additional measurements of the dry air column can be useful, our results
indicate that errors in the greenhouse gas column density can exceed the 0.1%
accuracy threshold required for background monitoring, especially in the case of
methane. Therefore, such additional measurements alone may not be sufficient to
meet the required accuracy threshold.

To achieve the high-precision measurements necessary for effective greenhouse gas
monitoring, our study suggests that accurately modeling the effects of pressure, tem-
perature, and humidity on GHG spectroscopy should be a priority. Enhancements to
both temperature and pressure broadening parameters are crucial, with a particular
emphasis on accurately modeling pressure broadening effects. This is especially
true for methane. Additionally, given the impact of water vapor broadening on GHG
retrievals, accurate parameters for this effect should be a key objective, especially
for CO2.

Our study underscores the immense potential of DCS in bringing laboratory-level
accuracy in remote sensing of GHGs directly to field settings. The superior spectral
resolution, stability, and range of DCS, when combined with accurate modeling of
environmental effects on GHG spectroscopy, holds significant promise in advancing
our understanding of GHG dynamics and informing GHG flux inversions. Therefore,
sustained efforts in refining and applying this technology, along with a focus on
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improving GHG spectroscopy, will contribute substantially to expanding the GHG
observation network and facilitating the verification of climate change mitigation
policies.
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C h a p t e r 5

MAIN FINDINGS, SUMMARY, AND RECOMMENDATIONS

5.1 Overview
Mitigating methane emissions is the most viable and crucial strategy to mitigate
anthropogenic climate change in the coming decades. As the second most signifi-
cant contributor to greenhouse gas-induced warming after carbon dioxide, methane
plays a critical role in accelerating climate change. Therefore, it is of paramount
importance that we accurately quantify, attribute, and trace methane emissions and
trends to their respective sources. The findings presented in my dissertation signifi-
cantly contribute to these goals by advancing our understanding of the two primary
methane destruction mechanisms: oxidation by the OH radical and escape to the
stratosphere. Furthermore, I contributed novel methodologies for accurate, trace-
able, and automated greenhouse gas measurements directly in the field, which has
enabled me to quantify the errors associated with biases in greenhouse gas spec-
troscopy, using laser frequency combs. Through these advancements, my PhD
dissertation has enhanced our understanding of methane destruction processes and
moves the field of greenhouse gas remote sensing towards more precise and reliable
measurements.

5.2 Main Findings in this Dissertation
In Chapter 2, I quantified the effect that variations in the hydroxyl radical can have on
methane emissions estimates. OH variations affect methane emissions by changing
the methane perturbation lifetime from 9 to 13.5 years. This 40% increase in the
methane perturbation lifetime can significantly affect methane emissions. This is
because trends of carbon monoxide concentrations (CO) also affect the methane
lifetime via OH abundances. I showed that CO emissions can increase methane
concentrations indirectly by increasing the methane lifetime. This significantly
enhances the climate impact of wildfires. Ignoring both OH changes and CO
changes can bias methane emissions assessments by 20 Tg/yr, which is twice that
of the US fossil fuel industry. Incorporating the variable lifetime of methane is
therefore necessary for accurate methane trend analyses.

I also quantified the effect of methane loss through stratospheric tropospheric ex-
change in Chapter 3. Lower stratospheric water vapor observations can be used to
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proxy strat-trop exchange. I found that accounting for stratospheric loss not only im-
pacts methane loss directly but also affects our calculations of methane destruction
by altering the inferred variations of OH concentrations. This is because Methyl
Chloroform oxidation is used to proxy OH concentrations, and previous studies have
assumed MCF loss to the stratosphere to be either negligible or constant in time.
After incorporating lower stratospheric H2O concentrations to proxy strat-trop ex-
change time, methane emissions from my model became much smoother. A large
portion of this change in methane emissions trends and variability is due to changes
in MCF loss frequencies.

In addition, I found that El Nino corresponded to higher strat-trop exchange, as
seen by increased lower stratospheric H2O concentrations. El Nino years coincided
with higher methane emissions, lower OH concentrations, and increased strat-trop
exchange, an important result that links larger-scale atmospheric dynamics with
atmospheric chemistry.

To enhance future global observational capabilities, in Chapter 4, I used laser fre-
quency combs to examine the interaction of light with methane and CO2 molecules
under different environmental conditions. Laser frequency combs, originally de-
signed for picosecond time-keeping, enable automated, accurate, and stable green-
house gas measurements with ranges of over a kilometer.

I used the accuracy and stability of frequency combs to quantify environmental
biases on greenhouse gas spectroscopy. Environmental conditions affect the ab-
sorption of radiation by greenhouse gases, which affects the accuracy of greenhouse
gas retrievals. This is due to inaccuracies in modeling pressure and temperature
broadening effects. I found that errors in modeling pressure broadening effects dom-
inate both methane and CO2 retrieval errors. Differences in the parameters used
to model pressure and temperature broadening can lead to up to an 8% difference
in concentrations for methane. In the field deployments of our frequency comb,
we found more than a 2% variable error for methane retrievals. In addition, water
vapor broadening, which arises during times of higher humidity, can contribute
substantial errors to CO2 retrievals. I found a more than 1% error in CO2 retrievals
when discounting the effects of water vapor broadening. This was in an atmosphere
with only 1.7% humidity. This effect can only be larger in areas like the tropics,
which can have up to 5% humidity. This underlines the importance of accurately
modeling environmental effects on molecular absorption for accurate greenhouse
gas measurements and monitoring.
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5.3 Recommendations and Concluding Remarks
Overall, this thesis has made substantial contributions to our understanding of
methane sink processes and remote sensing techniques. It has underscored the ur-
gent need for observational, theoretical, and laboratory advancements in order to
fully comprehend and quantify the complex methane cycle. Accurate modeling and
measurement of methane sources and sinks are imperative for effective mitigation
of anthropogenic climate change. To this end, it is crucial to expand our global
observational capabilities by increasing the measurement of methane emissions and
understanding the underlying destruction processes. Addressing the remaining un-
certainties in variations of the OH radical and obtaining precise OH reaction rates,
concentrations, and distributions will significantly enhance our ability to attribute
methane trends to specific sectors and develop targeted mitigation strategies. Ad-
ditionally, a comprehensive understanding of methane transport, particularly within
the troposphere and towards the stratosphere, requires advancements in both model-
ing and measurement techniques. Ground-based vertical profile retrievals, if proven
accurate, offer an affordable and automated means to measure vertical gradients of
methane and CO2, thereby enabling precise constraints on methane transport and
chemical processes. Furthermore, the utilization of laser frequency combs to expand
the global observation network, particularly in under-sampled regions such as the
tropics, will provide crucial insights into the major sources, oxidation, and transport
of methane. However, to fully capitalize on the potential of laser frequency combs,
theoretical advancements in greenhouse gas spectroscopy are needed, particularly
in accurately modeling pressure and water vapor broadening effects. By advanc-
ing our knowledge and capabilities in methane emissions attribution, monitoring,
and mitigation, we can enable effective policies in our collective efforts to combat
climate change.


