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ABSTRACT 

Although the same genome is present in every cell, each cell type orchestrates a distinct 

gene expression program, which can be rapidly adapted in response to stimuli. Accordingly, 

gene regulation is a highly complex, context-specific process that involves the dynamic 

interplay between numerous regulatory factors. Most methods to study these regulatory 

factors only measure pairwise interactions between molecules and are limited to mapping 

one regulatory protein at a time. Consequently, the combinatorial complexity of gene 

regulation at individual genomic loci and the functional consequence of many regulatory 

factors remain underexplored. To address this, we have developed new sequencing-based 

approaches and computational analyses to comprehensively profile, at unprecedented 

scale, the diverse gene regulatory landscape and directly establish the link between 

regulatory factors and transcriptional outcomes. In Chapter 2, we present Chromatin 

Immunoprecipitation Done-In-Parallel (ChIP-DIP), a highly multiplexed method for 

mapping hundreds of proteins to DNA within a single sample. ChIP-DIP increases the 

throughput of existing methods by > 100-fold and enables the production of consortium-

scale, cell type-specific data within a single lab. Capitalizing on the scale and diversity 

provided by ChIP-DIP, we uncover unique quantitative combinations of histone 

modifications that define distinctive classes of regulatory elements. Specifically, we find 

features distinguishing classes of promoters that correspond to different polymerase 

activity, transcriptional levels, and gene types and find acetylation patterns distinguishing 

classes of enhancers that exhibit distinct activity states, induction potential, and regulatory 

potential. Next, in Chapter 3, we apply RNA-DNA SPRITE (RD-SPRITE), a method for 

simultaneous measurement of RNA and DNA organization, to investigate the functional 

relationship between genome structure and transcription. We demonstrate that RD-SPRITE 

precisely detects individual, nascent pre-mRNAs at their transcriptional locus and, as a 

result, can be used to assess the 3D genome structure present during active transcription. 

We find that RNA polymerase II transcription occurs within genomic structures previously 

thought to be inactive, such as the B compartment and DNA regions near the nucleolus. 

This suggests that active transcription can occur throughout the nucleus and argues against 

structural domains that preclude transcription. Overall, our findings highlight the ability of 
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RD-SPRITE to establish a structure-function link. Finally, in Chapter 4, we apply RD-

SPRITE to study the transcriptional dependence of nuclear organization. We demonstrate 

that transcriptional inhibition leads to the loss of high-order structure around multiple 

RNA-processing bodies — the nucleolus, the scaRNA hub and the histone locus body — 

that are responsible for essential nuclear functions such as RNA processing and gene 

regulation. These findings suggest a role for RNA and nascent transcription in the 

formation and maintenance of long-range 3D contacts and critical nuclear compartments. 

In summary, we have developed new approaches to explore epigenomic and organizational 

complexity within the mammalian nucleus and have uncovered genome-wide principles of 

gene regulation.  
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INTRODUCTION 
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1.1. THE MOTIVATION: WHY STUDY GENE REGULATION? 

Although all cells in the human body contain an identical copy of the genome, every cell 

type orchestrates a distinctive gene expression program to take on a characteristic 

phenotype. Moreover, these cell-type-specific expression programs can be rapidly adapted 

to respond to stimuli; this modularity underpins both physiological (e.g. development) and 

pathological (e.g. malignant) transformation in cellular state. Accordingly, understanding 

how a single genomic sequence encodes complex and diverse functional outcomes and 

how variants within the genome (e.g., polymorphisms, mutations) generate phenotypic 

heterogeneity or pathology is the fundamental goal for the study of gene regulation. Simply 

put, how does the genome guide the spatial- and temporal-specific gene expression 

programs behind human health and disease? 

National and international consortia have been and continue to be launched in an attempt 

to answer this question (Figure 1). In 2003, the Human Genome Project completed the 

first sequence of the human genome, providing a fundamental blueprint and exposing the 

“alphabet” of gene regulation1–3. Surprisingly, 95% of the genome was found to be non-

coding, opening questions about the number of regulatory elements encoded in the genome 

and their roles in controlling gene expression. Simultaneously, growing interest was 

directed to epigenomics – the study of reversible modifications on DNA or histone proteins 

that affect gene transcription. Capitalizing on the advancements of sequencing technology, 

projects such as The Encyclopedia of DNA Elements (ENCODE) were designed to 

catalogue the regulome – a variety of DNA elements, cis-regulatory sequences and regions 

of chromatin structure that modulate gene expression4,5. Their goal was to “build a 

comprehensive parts list of functional elements in the human genome”, exposing the 

“words and phrases” of gene regulation to reveal the links between DNA sequence, 

variable gene expression patterns, and the development of disease. Shortly following, 

advancements in RNA-sequencing technology revealed the vast non-coding elements of 

the transcriptome, and molecular studies of these RNAs demonstrated their functional 

relevance as regulators of gene transcription, both in healthy and disease states6–8. Finally, 
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multiple studies highlighted the role of nuclear organization (how the genome is folded, 

stored, and unpacked in the nucleus) in controlling genome function. The 4D Nucleome 

Program was established to map three-dimensional genome organization, its dynamics 

across time, and its relation to disease9.   

However, despite these tremendous efforts to decode the genome, the ability to predict 

gene expression from genomic and epigenomic measurements has remained frustratingly 

elusive2. In this perspective, we discuss current technical limitations and propose a new 

experimental and conceptual framework for achieving this goal.   

 

1.2. THE APPROACH: STRATEGIES TO STUDY GENE REGULATION 

To date, most approaches to characterize the epigenome and other regulatory features have 

relied on measuring pairwise interactions between molecules (e.g., Protein-DNA, Protein-

RNA, DNA-DNA; Figure 2)10–17. Methods that map protein-nucleic acid interactions (e.g., 

ChIP-Seq, CLIP-Seq) are largely limited to studying the interactions of one regulatory 

protein at a time. In contrast, methods that map only nucleic acid interactions (e.g., HiC, 

Ric-seq) can provide a comprehensive readout of genomic and/or transcriptomic pairwise 

interactions. Finally, imaging modalities (e.g., immunofluorescence, RNA/DNA FISH) 

have complemented sequencing-based strategies by visualizing spatial localization of 

regulatory factors within single cells. Such methods cannot directly measure interactions 

but can provide relative distances between molecules and/or genomic regions of interest.  

 

1.3. THE PROBLEM: ESTABLISHING THE LINK   

While individual, pairwise methods have been incredibly useful for cataloguing regulatory 

elements and characterizing the behaviors of individual regulatory factors, the links 

between genome, epigenome, and molecular phenotype have remained nebulous. 

Sequencing the genome provided an “alphabet” and cataloguing regulatory elements and 
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factors provided “words and phrases” but the “grammar” of gene regulation is missing. 

That is, how do genomic elements and regulatory factors act in processes? How do they 

integrate diverse signals across time and space? How do they coordinate and adapt, rapidly 

and specifically, in response to stimuli? With the generation of larger mapping datasets, 

there has been growing appreciation that gene regulation involves the coordinated interplay 

between numerous regulatory factors, dynamically localizing at specific genomic regions 

and at specific times. These regulatory factors are thought to work in concert within high-

order, multimodal assemblies and engage in a complex logic process to control gene 

expression. What these logic circuits and higher-order regulatory structures underlying 

gene regulation are has been underexplored. 

Fundamentally, measurements of pairwise interactions cannot teach us the grammar of 

gene regulation. This is because pairwise measurements cannot provide a comprehensive 

picture of the context in which the regulatory factor acts. For instance, independently 

generated measurements of different regulatory factors cannot inform upon the link 

between these factors. Although various factors may have similar pairwise interaction 

profiles (e.g., two DNA-binding proteins localizing at the same region of DNA), it remains 

unclear whether these factors frequently co-occur, co-occur only in specific circumstances, 

or are mutually exclusive. Similarly, independently generated datasets cannot inform upon 

the functional link between a single factor and a phenotypic outcome. Correlations between 

a regulatory factor and independently generated RNA-seq datasets cannot establish the 

context-specific regulatory function of that factor.  

To illustrate these limitations with pairwise measurements, consider the following simple 

example: ensemble measurements demonstrate that Protein A, Protein B, and Protein C 

bind to the promoter region of an actively transcribed gene. One possible ensemble model 

is that all three proteins co-bind to cause transcription (A+B+C → transcription). An 

alternative ensemble model would be that proteins A and B co-bind to cause high levels of 

transcription, protein C binds alone to cause low levels of transcription, but all three 

proteins bind together to inhibit transcription. (A+B→high transcription, C→low 

transcription, A+B+C→no transcription). With current pairwise methods, it is impossible 
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to determine which model is correct. Generalizing this example, even the simplest of logic 

gates (AND|OR|NOT) cannot be resolved using measurements of the components one-by-

one.  

In part, the inability to compare across independent measurements stems from the cell-to-

cell heterogeneity underlying ensemble measurements. Growing appreciation for the 

degree of cell-to-cell variation has emphasized the need for single cell resolution and 

catapulted the development of single-cell sequencing-based approaches for measuring 

pairwise interactions (Figure 2). While these method variants have been incredibly useful 

for revealing the heterogeneous behavior of single regulatory factors, single cell-based 

approaches do not solve the underlying challenge of linking regulatory factors to each other 

in a context-specific manner. Single cell technologies still do not allow assessment of 

multiple factors on the same cell, and different regulatory factors are still measured using 

different populations of cells. At any point in time, regulatory factor A may be present in 

a subset of cell population A while regulatory factor B may be present in a subset of cell 

population B. Comparing regulatory factors A and B is done using the ensemble model of 

regulatory factor A in cell population A versus the ensemble model of regulatory factor B 

in cell population B. The direct relationship (e.g. co-occurrence frequency) between A and 

B remains unclear.   

In summary, because of measurement limitations and a reliance on pairwise measurements, 

regulatory grammar remains challenging to study. The pairwise interactome catalogue for 

regulatory factors, even at the single-cell level, has been insufficient to understand the 

regulatory complexity underlying human health and disease. 

 

Here, we highlight several well-known regulatory themes that involve spatial and/or 

temporal dynamics to demonstrate the difficulties presented by existing approaches. 

1. Multi-step Sequence (A→B→C) 
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One relatively common circuit in gene regulation involves a sequential progression of 

events. For example, in transcribing a gene, RNA Polymerase II undergoes initiation, 

pausing, elongation, and finally termination.18 When measured by ensemble ChIP-Seq, 

negative elongation factors responsible for pausing RNAP II such as DRB sensitivity-

inducing factor (DSIF) and negative elongation factor (NELF) co-localized with the 

polymerase peak genome wide.  Separate in-vitro transcription experiments using crude 

nuclear extracts found that DSIF and NELF reduced the elongation rate of Pol II, 

functionally assigning them as negative factors.19 Together, these independent 

observations were used to build an ensemble model for transcriptional pausing. The 

positional information from ChIP-seq was, on its own, insufficient to describe the link 

between these factors and their functional outcomes (e.g. transcriptional pausing) and 

construct the logic circuit of transcriptional steps.  

2. Feedback, Loops, and Oscillations (A↔B) 

Another simple circuit in gene regulation is feedback regulation or loops responsible for 

maintenance of steady state equilibria. For example, histone acetylation is modulated by 

two antagonizing classes of enzymes: histone acetyltransferases (HATs) which add acetyl 

groups, and histone deacetylases (HDACs) which remove them. It is well established that 

histone acetylation is marker of active transcription; HATs and HDACs have been found 

to be transcriptional co-activators and co-repressors, respectively. Perplexingly, upon 

genome-wide mapping, HATs and HDACs are both found at active genes marked with 

acetylated histones and positively correlated with transcription.20 To explain this finding, 

the authors proposed a model in which, at active genes, the main function of HDACs is to 

‘reset’ chromatin and, at inactive but poised genes, a dynamic cycle of transient 

HAT/HDAC binding maintains the poised state. Other studies have proposed a role for 

HDACs in regulating pause release based on responses to HDAC inhibitors.21 However, 

without concurrent, real-time measurement of HDAC/HAT occupancy, histone 

acetylation, and transcriptional output, the molecular model controlling expression of these 

genes remains speculative. 
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3. Cis-regulatory Networks (B←A→C) 

Long-range contacts between cis-regulatory elements and promoters are thought to 

regulate gene expression and facilitate co-regulation of multiple genes.22 For example, 

promoter-capture Hi-C analysis has shown that certain enhancers contact multiple 

promoters, leading to the proposal that these enhancers form complex spatial networks 

connecting the regulation of these genes.23 Complementarily, individual promoters have 

also been shown to contact multiple enhancers, leading to the proposal that multiple 

regulators co-regulate a single gene. Importantly, it remains unclear whether spatial 

proximity between enhancer and promoter is sufficient for functional activity.24 

Assignment of enhancers to promoters has also been attempted using computational 

methods instead of proximity methods, searching for target genes near enhancers that share 

chromatin state or accessibility.22,25,26 However, this alternative strategy has struggled 

when genes are regulated by different tissue-specific enhancers.24 In summary, because a 

direct link between a promoter-enhancer interaction and transcriptional output has been 

challenging to measure, much remains unclear. Other related questions such as how many 

of promoter-enhancer interactions occur simultaneously, what regulatory proteins are 

present during these interactions, and what is the contribution of each enhancer-promoter 

interaction on transcriptional output also remain unanswered.  

4. High Affinity Macromolecular Complexes (A+B+C) 

Regulatory proteins (e.g., chromatin regulators, RNA polymerase) commonly assemble 

into high affinity, macromolecular complexes. These complexes are frequently modular 

and combinatorial, with the same component associated with various forms. These forms 

may be cell-type specific but there are also known instances were heterogeneity of a 

complex leads to distinct localization and functionality within the same cell. For example, 

the BAF regulator complex can include up to 15 subunits, many of which are encoded by 

gene families, leading to hundreds of possible predicted assemblies.27 Three of these 

(esBAF, npBAF, nBAF) have been explored for their tissue-specific functions, but 

simultaneously occurring non-canonical assemblies have also been observed. For instance, 
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in mouse embryonic stem cells, Glioma tumor suppressor candidate region gene 1 

(GLTSCR1) or its paralog GLTSCR1-like (GLTSCR1L) and Bromodomain-containing 

protein 9 (BRD9) define a non-canonical BAF complex, which localizes to genomic 

features distinct from those targeted by canonical ESC BAF.28 Another example, the 

nucleosome remodeling and deacetylase activities (NuRD) complex, contains the CHD 

proteins, CHD3 and CHD4, which are co-expressed in many cell lines and localize to 

distinct regions of the genome. In-vitro assays of CHD3-NuRD and CHD4-NuRD 

demonstrate differences in remodeling behavior.29 However, the in-situ actions of 

heterogenous, combinatorial complexes cannot be studied easily and as a result much about 

their in-context biological functions remains unclear.   

5. Biomolecular Condensates (A+A+A) 

In contrast to high-affinity macromolecular complexes, other key molecular assemblies in 

gene regulation form through concentration-dependent, multivalent, cooperative 

associations.30,31 These biomolecular condensates are characterized by spatial enrichment 

relative to the cellular surroundings and can have variable stoichiometries. For example, 

imaging studies have found that RNA Polymerase II and Mediator form clusters within the 

nucleus (referred to as transcriptional condensates), and the size of these clusters correlates 

with the level of nascent transcription.32 Many individual nuclear proteins have been shown 

to undergo condensate formation through liquid-liquid phase separation; these include 

chromatin regulators (e.g. HP1)33, transcription factors (e.g. OCT4)34 and other RNA 

processing factors (e.g. SRSF1)35. While imaging-based methodologies have potentiated 

the study of condensates, they are undetectable by pairwise-interaction sequencing 

techniques.   

6. Nuclear Compartments 

Recently, there has been growing appreciation for the role of nuclear compartmentalization 

in multiple nuclear processes, including transcription regulation, co-transcriptional and 

post-transcriptional RNA processing, and higher-order chromatin regulation.30 For 
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example, compartmentalization is thought to be important for spatially organizing 

enhancers, promoters, and transcription factors to drive transcription initiation. In addition, 

several nuclear structures have been shown to form membrane-less compartments (e.g., 

nucleolus). Such higher order spatial organizations are impossible to study using traditional 

pairwise measurements. 

The examples above highlight the challenges associated with studying gene regulation 

principles using traditional genomics/epigenomics methods. Additionally, countless 

observations have been made using these approaches whose functional significance and 

mechanism remain unclear. Without a direct link between the observed phenomena, 

regulatory context, and transcriptional output, the biological relevance is impossible to 

decipher. Finally, there likely exist many novel mechanisms of gene regulation, which have 

yet not been uncovered and may be impossible to uncover using the current strategies.  

 

1.4. THE SOLUTION: EVERYTHING, EVERYWHERE, ALL AT ONCE 

While it is theoretically possible to study multiple factors simultaneously by enumerating 

their combinations, this strategy is limited by the poor scalability of combinatorics (Figure 

3). The number of possible combinations quickly becomes unmanageable, and more 

importantly, only a small subset of this combinatorial space is biologically relevant. For 

example, as described for the BAF chromatin regulator complex, while there are hundreds 

of theoretical combinations, only a handful of cell-type specific modules (e.g., esBAF, 

npBAF, nBAP) have been observed to exist. 

To discover the rules of gene regulation, we require experimental strategies that can 

directly observe the in-situ complexity of gene regulation. We need a comprehensive 

“snap-shot”, including the set of regulatory factors (e.g., transcription factors, chromatin 

regulators), the genomic context (e.g., 3D genomic structure, chromatin state) and the 

transcriptional output, of an individual locus at a specific time (Figure 4). Such 

“snapshots” are multi-component, multi-modal, spatial measurements that capture the 
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direct associations between regulatory factors and transcriptional output. By generating 

many of such “snapshots”, we may be able to appreciate the heterogeneity and context-

specificity of regulatory events, discover the common rule sets and build more 

comprehensive models.  

Here, we present split pool recognition of interactions by tag extension (SPRITE)36 as a 

potential enabling technology for learning the grammar of gene regulation. Specific 

methods where SPRITE has been used include DNA SPRITE (a method for genome-wide 

mapping of higher-order DNA interactions)37, RNA-DNA SPRITE (a method for 

simultaneous measurement of multiway RNA-RNA, RNA-DNA, and DNA-DNA 

contacts)38, and SPRITE-IP (a method for mapping the DNA contacts surrounding a protein 

of interest)39. SPRITE can resolve the in-situ, multi-way interactions (including both long 

and short distance) between molecules within the nucleus. The output of SPRITE is a 

collection of measurements that identify ‘clusters’, each of which represents a multi-

component, single time point, single cell event (Figure 4). While current applications of 

SPRITE have focused on simultaneous measurement of nucleic acids (e.g., RNA and/or 

DNA) and cannot simultaneously capture all critical element of gene regulation (e.g., 

multiple RNAs, DNAs and proteins), future adaptations could be developed to include the 

missing elements.  

 

To highlight the potential of SPRITE-based measurements, here we describe examples 

where D-SPRITE, RD-SPRITE, or SPRITE-IP have been used to study the regulatory 

structures that are undetectable using other sequencing-based approaches: 

1. Higher Order Spatial Compartments: Interchromosomal DNA, RNA and 

Enhancer-Promoter Hubs  

Utilizing D-SPRITE, Quinodoz et al. (2018) uncovered that higher-order 

interchromosomal hubs shape 3D genome organization within the nucleus.37 Specifically, 
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the authors define two hubs of interchromosomal DNA-DNA interactions that are 

arranged around the nucleolus and the nuclear speckle. 

Utilizing RD-SPRITE, we described multiple higher-order RNA-chromatin structures that 

are involved in diverse classes of nuclear functions, including RNA processing, 

heterochromatin assembly and gene transcription.38 Specifically, we defined hubs (e.g., 

nucleolar hub, centromeric hub, spliceosomal hub, scaRNA hub, histone locus body hub) 

using RNA-RNA interactions. Coupling RD-SPRITE with polymerase inhibition 

treatment, we then investigated the mechanisms behind formation of these RNA-mediated 

nuclear compartments which are involved in essential nuclear functions and gene 

regulation.  

Utilizing SPRITE-IP, Vangala et al. (2020) characterized multi-way enhancer-promoter 

(E-P) interactions.39 The authors found that E-P interactions can form transcriptional hubs 

involving multiple genes and that the stability of E-P hub predicts the stability of gene 

expression across a cell population.   

2. 3D Genome Structure in Context 

Capitalizing on the ability of RD-SPRITE to simultaneously measure DNA-DNA 

interactions and non-coding RNAs, we explored the 3D genome structures surrounding 

RNA-mediated nuclear bodies.38 Specifically, we showed the genomic structures 

associated with active rRNA transcription and processing (nucleolar hub), active snRNA 

transcription and processing (scaRNA hub), or active histone pre-mRNA transcription and 

processing (histone locus hub). In each of these cases, we focused our analyses on clusters 

containing the relevant set of RNAs (pre-rRNA/snoRNAs, snRNA/scaRNA, and U7 

snRNA, respectively) and mapped the concomitant DNA structure. We visualized complex 

genomic structures, such as long-distance DNA-DNA loops and interchromosomal 

associations, present at these RNA-mediated nuclear bodies.   

Capitalizing on the ability of RD-SPRITE to simultaneously measure DNA-DNA 

interactions and nascent RNAs, we explored the functional link between 3D genome 
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structure and transcription.40 We demonstrated that active transcription occurs within 

genomic structures that have previously thought to be inactive, including B compartments 

and DNA regions near the nucleolus, and argue against structural domains that preclude 

transcription.   

In addition to these published examples, existing SPRITE-based data could be used to 

explore other aspects of regulatory grammar. For example, because each SPRITE cluster 

represents a distinct in-situ observation, examining SPRITE-based data could profile the 

heterogeneity of multi-way interactions. Alternatively, because SPRITE clusters can 

contain multiple copies of a particular molecule and cluster size (e.g., the number of 

molecules within a cluster) corresponds to volume, SPRITE-based data may be used to 

explore local concentrations within the nucleus.  

 

1.5. THESIS CONTENTS 

The central goal of my graduate work has been the development, application, and analysis 

of new genomics methods to study the fundamental principles of gene regulation genome-

wide and to explore the interplay of regulatory proteins, chromatin state, genome structure, 

and transcription within the mammalian nucleus.   

In Chapter 2, I describe a newly developed protocol, ChIP-DIP, for highly multiplexed 

mapping of hundreds of regulatory proteins to genomic DNA in a single experiment. ChIP-

DIP increases the throughput of existing methods by > 100-fold and enables the production 

of consortium-scale data by a single lab. By dramatically increasing scale, ChIP-DIP 

facilitates the rapid characterization of hundreds of individual regulatory proteins within 

any experimental system of interest and enables a fundamental shift from consortium-

generated cell-line reference maps to cell-type and cell-state specific maps. In addition, 

ChIP-DIP enables the rapid screening of protein affinity reagents, which are essential for 

studying regulatory proteins. Given the context-dependent nature of gene expression, 

comprehensive understanding of regulatory proteins within specific contexts is necessary 
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for learning the rules of gene regulation. Methodologically, ChIP-DIP employs SPRITE 

for multiplexing; instead of split-and-pool barcoding to resolve the in-situ interactions 

between molecules within the nucleus, ChIP-DIP uses split-and-pool barcoding to link 

together immunoprecipitated chromatin and a synthetic identifier sequence specific to the 

antibody used for immunoprecipitation. Capitalizing on the scale and diversity provided 

by ChIP-DIP, we uncover unique quantitative combinations of histone modifications that 

define distinctive classes of regulatory elements. Specifically, we find features 

distinguishing classes of promoters that correspond to different polymerase activity, 

transcriptional levels, and gene types and find acetylation patterns distinguishing classes 

of enhancers that exhibit distinct activity states, induction potential, and regulatory 

potential. 

In Chapter 3, I describe the application of RNA-DNA SPRITE to investigate the functional 

relationship between genome structural organization and transcription and, specifically, 

argue against nuclear compartments that preclude transcription. Certain nuclear structures, 

such as B compartments or the nucleolus, have been associated with transcriptional 

inactivity; whether these structures are truly impermissive to transcription or simply 

correlated with inactivity has remained unknown due to a lack of methods that 

simultaneously measure genome structure and transcription. We demonstrate that RNA-

DNA-SPRITE, a method for simultaneous measurement of RNA and DNA organization, 

precisely detects individual, nascent pre-mRNAs at their transcriptional locus and, as a 

result, can be used to assess the 3D genomic structure present during active transcription. 

We find that genes located in B compartments as well as genes located in proximity to the 

nucleolus can be actively transcribed, and we argue against a mechanistic model requiring 

drastic changes in genome organization (e.g., “looping out”) for active transcription of 

these genes. In addition, we measure the genome-wide organization of nascent pre-mRNAs 

for the first time and uncover structures reminiscent of DNA organization, such as 

chromosomal territories and A/B compartments. Our results highlight the power of RD-

SPRITE to answer outstanding questions in gene regulation because it detects higher order 
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(e.g., long-distance and multiway) interactions involving nascent RNAs and 

concurrently measures transcriptional output and 3D genome organization.   

Finally, in Chapter 4, I describe the application of RNA-DNA SPRITE to investigate the 

mechanistic dependence of genome structural organization on transcription and, 

specifically, demonstrate that transcriptional inhibition results in the loss of high-order 

genomic structure at RNA-mediated nuclear bodies.  
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Figure 1: Timeline of large-scale national and international genomics and 

epigenomics research initiatives. 
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Figure 2: Methods to study gene regulatory factors. 
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Figure 3: Scaling comparison of combinatoric sampling. 
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Figure 4: Schematic of in-situ molecular interactions and corresponding SPRITE 

clusters.  
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2.1. SUMMARY 

Gene regulation is governed by the complex interplay between thousands of regulatory 

proteins and chromatin states; understanding how these dynamics give rise to precisely 

controlled, cell type-specific gene expression has been a central goal of molecular biology. 

Yet, addressing this goal remains challenging because current methods for mapping 

proteins to DNA are labor-intensive, resource-demanding, and limited to studying a single 

or a small number of proteins at a time. To overcome this, we developed ChIP-DIP (ChIP 

Done In Parallel), a novel split-pool based method that enables simultaneous, genome-wide 

mapping of hundreds of diverse regulatory proteins in a single experiment. We demonstrate 

that ChIP-DIP generates highly accurate maps equivalent to traditional approaches, with 

data quality unaffected by the number of distinct proteins or the composition of proteins 

measured within a single experiment. We show that, because of this multiplexed capability, 

ChIP-DIP enables generation of highly accurate maps using several orders of magnitude 

fewer cells per protein compared to traditional approaches (~30,000 fold), making it ideal 

for studying primary and rare cell populations. In addition, we show that ChIP-DIP can 

generate high-quality maps for all classes of DNA-associated proteins, including histone 

modifications, chromatin regulators, transcription factors, and RNA Polymerases. Using 

these data, we explore quantitative combinations of histone modifications and integrate 

these signatures with RNA Polymerase activity, chromatin regulatory protein binding, and 

transcription factor binding to define distinct classes of regulatory elements (e.g. distinct 

types of enhancer elements), their functional activity (e.g. transcriptional activity), and 

their regulatory potential (e.g. poised for activation upon stimulation or differentiation). 

Together, our results demonstrate that ChIP-DIP enables generation of consortium level 

data within a single lab and highlight the importance of this approach for studying 

mechanisms of gene regulation in a context and cell type-specific manner. 

  



 

 

25 

2.2. INTRODUCTION 

Cell type-specific gene regulation is controlled by thousands of regulatory proteins which 

dynamically localize at precise DNA regions within distinct chromatin states1. Chromatin 

states are comprised of distinct post-translational modifications on histone proteins2 and 

critical for controlling which genomic regions can be bound by transcription factors3 and 

the localization of chromatin regulators4. Consistent with this important role for chromatin 

state in gene regulation, distinct histone modifications have been shown to demarcate 

various functional elements (promoters, enhancers, transcribed regions, etc.) and are used 

to define their activity state (active, inactive, repressed) and regulatory potential 

(poised/primed for activation)5. 

Understanding how the interplay between chromatin state and regulatory protein binding 

gives rise to cell type-specific gene expression has been a central goal of molecular biology 

for many decades4, yet much remains unknown. The key challenge is that the large number 

of distinct regulatory proteins and histone modifications involved makes it difficult to 

comprehensively map their locations6,7. Current methods to map the genome-wide binding 

of specific proteins rely on chromatin immunoprecipitation followed by sequencing (ChIP-

Seq)8 or more recently, antibody-directed transposase assays (e.g. CUT&Tag)9,10. While 

these approaches provide comprehensive maps of individual proteins, they are generally 

limited to mapping a single protein at a time.  

To address this challenge and comprehensively explore regulatory protein binding and 

histone modification patterns, various international consortia have been formed to generate 

reference maps of hundreds of proteins within a small number of cell types (ENCODE11, 

PsychENCODE12, ImmGen13, etc.). Because of the large numbers of cells required to map 

many proteins11, consortium efforts have focused primarily on cell lines that can be easily 

grown in cell culture7. Although these efforts have provided many critical insights14–16, 

because protein binding maps and gene expression programs are intrinsically cell type-

specific17,18, it is not possible to study cell type-specific regulation using maps generated 

from reference cell lines19. Generating additional cell type-specific regulatory maps 
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currently requires consortium-level effort (dozens of labs across the world), time (many 

years), and resources (>$100 million) for each biological system. Moreover, for many 

biological systems of interest (e.g., primary and/or rare cell populations, experimental 

perturbations, or patient-derived samples) obtaining the numbers of cells required to 

generate such maps is not feasible. To address this challenge and comprehensively explore 

regulatory protein binding and histone modification patterns, various international 

consortia have been formed to generate reference maps of hundreds of proteins within a 

small number of cell types (ENCODE11, PsychENCODE12, ImmGen13, etc.). Because of 

the large numbers of cells required to map many proteins11, consortium efforts have 

focused primarily on cell lines that can be easily grown in cell culture7. Although these 

efforts have provided many critical insights14–16, because protein binding maps and gene 

expression programs are intrinsically cell type-specific17,18, it is not possible to study cell 

type-specific regulation using maps generated from reference cell lines19. Generating 

additional cell type-specific regulatory maps currently requires consortium-level effort 

(dozens of labs across the world), time (many years), and resources (>$100 million) for 

each biological system. Moreover, for many biological systems of interest (e.g., primary 

and/or rare cell populations, experimental perturbations, or patient-derived samples) 

obtaining the numbers of cells required to generate such maps is not feasible. 

To enable the generation of comprehensive, context-specific protein localization maps 

within any experimental system and in any molecular biology lab, we developed a method 

called ChIP-DIP (ChIP Done In Parallel). ChIP-DIP enables simultaneous, genome-wide 

mapping of hundreds of diverse regulatory proteins within a single experiment. Here, we 

show that ChIP-DIP generates highly accurate genome-wide maps, equivalent to those 

generated by traditional approaches, and that data quality is not impacted by the number or 

precise composition of distinct proteins mapped in a single experiment. Because ChIP-DIP 

can generate hundreds of protein maps from the same cell lysate, it enables the generation 

of highly accurate maps using several orders of magnitude fewer cells per protein (~30,000-

fold) than consortium efforts. In addition, we show that ChIP-DIP enables accurate 

mapping of all classes of DNA-associated proteins, including histone modifications, 
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chromatin regulators, transcription factors and other sequence-specific DNA binding 

proteins, and RNA Polymerases. Using these data, we explore quantitative combinations 

of histone modifications and integrate these signatures with RNA Polymerase activity, 

chromatin regulatory protein binding and transcription factor binding to define distinct 

regulatory features in the genome, their functional activity, and their regulatory potential. 

Together, our results demonstrate that ChIP-DIP generates consortium level data within a 

single lab without the need for specialized equipment and highlights the importance of this 

approach for studying mechanisms of gene regulation in a context-specific manner. 

2.3. RESULTS 

ChIP-DIP: A highly multiplexed method for mapping DNA-associated proteins 

To enable highly multiplexed, genome-wide mapping of hundreds of DNA-associated 

proteins in a single experiment, we developed ChIP-DIP (ChIP Done In Parallel) (Figure 

1A). ChIP-DIP works by (i) coupling individual antibodies to beads that contain a unique 

oligonucleotide tag and combining sets of different antibody-bead-oligo conjugates to 

create an antibody-bead pool (Figure S1A), (ii) performing ChIP using this pool, (iii) 

conducting split-and-pool barcoding followed by DNA sequencing20–22, and (iv) 

computationally matching split-pool barcodes between DNA and the oligonucleotide tag 

corresponding to a specific antibody. We refer to all unique reads containing the same split-

pool barcode as a cluster. We combine DNA reads from all clusters corresponding to the 

same antibody to generate a protein localization map for each individual protein. The 

output of a ChIP-DIP experiment is analogous to the data generated in a traditional ChIP-

Seq experiment, however instead of a single map, ChIP-DIP provides a set of distinct maps 

— one for each antibody utilized (Figure 1B).  

To ensure that chromatin-antibody-bead-oligo conjugates remain intact throughout the 

ChIP-DIP procedure (rather than dissociating and reforming new complexes), we designed 

a series of experiments to measure dissociation between (i) the oligo and bead, (ii) antibody 

and bead, or (iii) the antibody and chromatin. We observed minimal dissociation for any 
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of these cases; most beads contain a single oligo type (>95%), beads without a coupled 

antibody are associated with minimal chromatin (<0.5%) and most chromatin originates 

from the initial capture (> 94%, Figure S1B-E, Supplemental Note 1-2). 

ChIP-DIP accurately maps hundreds of diverse DNA-associated proteins   

To test whether ChIP-DIP can accurately map genome-wide protein localization, we 

performed a ChIP-DIP experiment in human K562 cells using four well-studied target 

proteins: (1) the CTCF sequence-specific DNA binding protein that binds to insulator 

sequences23, (2) the H3K4me3 histone modification that localizes at the promoters of active 

genes24,25, (3) the RNA Polymerase II enzyme that transcribes RNA26, and (4) the 

H3K27me3 histone modification that accumulates over broad genomic regions that are 

transcriptionally repressed24,25. We compared ChIP-DIP binding profiles to ChIP-Seq 

profiles previously generated by the ENCODE consortium and found that the localization 

patterns are comparable at specific genomic sites (Figure 1B-C) and highly correlated 

genome-wide (r=0.837-0.956, Figure 1D). These results establish that the data generated 

by ChIP-DIP are qualitatively and quantitatively comparable to data generated by ChIP-

Seq. 

We next sought to determine whether ChIP-DIP can generate accurate maps regardless of 

the antibody pool size (number of distinct antibodies) or composition (what other 

antibodies are contained within the pool). To test whether increasing pool size might 

increase background and decrease data quality, we mapped the localization of the same 

four proteins within four distinct panels containing different antibody numbers (10, 35, 50 

or 52 antibodies per pool) (Figure 2A). The localization maps generated for each of these 

four proteins were highly comparable regardless of the pool size and matched those for 

each protein mapped individually using ChIP-Seq (Figure 2B, C). Next, we considered the 

possibility that the antibody composition of a pool might impact data quality; if multiple 

antibodies within the pool bind to the same protein or to distinct proteins that bind similar 

sites, we might observe a loss of signal at these overlapping sites. To test this, we included 

multiple independent antibodies targeting the same protein (CTCF) or multiple antibodies 



 

 

29 

that recognize distinct proteins within a complex (e.g., members of the PRC1/2 complex) 

in our antibody pools. Across pools, we observe highly consistent binding profiles 

regardless of the number of antibodies targeting a protein (Figure 2D), and, within a single 

pool, we successfully map multiple components of a complex (Figure S2). Together, these 

results indicate that neither pool size nor composition impact the quality of the data 

generated.  

We next explored whether ChIP-DIP can generate accurate maps using limited amounts of 

cell lysate, an important requirement for studying many biological systems where it is 

challenging to obtain large numbers of cells. We performed ChIP-DIP using 35 different 

antibodies targeting 29 distinct protein epitopes across a ~1,000-fold decreasing range of 

input cell lysate (amounts equivalent to 45 million (~107) to 50 thousand (~104) human 

K562 cells) (Figure 2E, Figure S3, S4, Supplemental Note 3). To assess the quality of 

the maps produced, we focused on the four well-studied proteins described above and 

compared their binding patterns across the range of cell lysate amounts. We observed that 

the localization patterns remained highly similar for all four proteins as the amount of 

lysate decreased (Figure 2F-H, Figure S4). This suggests that ChIP-DIP can generate high 

quality protein-DNA interaction maps for multiple protein targets from input amounts 

equivalent to as few as 50,000 cells. Because ChIP-DIP can generate dozens of individual 

maps from a single preparation of lysate, this further reduces the effective number of cells 

required per protein target. In this example, we utilized 35 antibodies which correspond to 

~1,400 cell equivalents for an individual protein target, an ~30,000-fold reduction relative 

to material amounts used in previous consortium efforts. In this way, we expect that ChIP-

DIP will be a critical tool for generating comprehensive maps in rare cell populations. 

ChIP-DIP maps histone modifications, chromatin regulators, transcription factors, 

and RNA polymerases  

Gene regulation involves many different types of DNA-associated proteins including post-

translationally modified histone proteins that are organized into nucleosomes (histone 

modifications)27, the enzymes that read, write, and erase histone modifications (chromatin 
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regulators)28, sequence specific DNA binding proteins (e.g., insulators and transcription 

factors)29, and enzymes that transcribe DNA into RNA (RNA polymerases)30. Since some 

of these classes have been traditionally easier to map (e.g., histone modifications) than 

others (e.g. transcription factors), we explored whether ChIP-DIP can simultaneously map 

large numbers of proteins from distinct protein categories. To do this, we performed ChIP-

DIP on >60 distinct proteins in human K562 cells and >160 distinct proteins in mouse 

embryonic stem cells (mESCs) across six experiments (Figure S5, Supplemental Table 

1). These included 39 histone modifications (HMs), 67 chromatin regulators (CRs), 51 

transcription factors (TFs), and all three RNA Polymerases (RNAPs) and four of their 

modified forms. 

Histone modifications. Histone modifications have proven incredibly useful for annotating 

cell type-specific regulatory elements31. We mapped 39 histone modifications — including 

18 acetylation, 17 methylation, 3 ubiquitination, and 1 phosphorylation marks — in either 

mESCs or K562s (Figure 3A). We confirmed the localization of five histone modifications 

commonly used to demarcate five functional chromatin states5, as well as additional 

modifications associated with each state (Figure S6A-F): enhancer regions32 (H3K4me1, 

H3K4me2, H3K27ac, Figure 3B), transcribed regions24,33,34 (H3K36me3, H3K79me1/2, 

Figure 3C), promoter regions24,25,35 (H3K4me3, H3K9ac, Figure 3D), polycomb-

repressed regions36 (H3K27me3, H2AK119ub, Figure 3E), and constitutive 

heterochromatin regions37 (H3K9me3, H4K20me3, Figure 3F).  These data indicate that 

ChIP-DIP accurately maps histone modifications with distinct genome-wide patterns 

(broad and focal localization) that represent distinct activity states (active and repressive), 

and that localize at distinct functional elements (promoters, enhancers, gene bodies, and 

intergenic regions). 

Chromatin regulators. Chromatin regulators (CRs) are responsible for reading, writing, 

and erasing specific histone modifications and are critical for the establishment, 

maintenance, and transition between chromatin states38,39. We measured 67 CRs associated 

with various histone methylation, acetylation, and ubiquitination marks, as well as with 

DNA methylation, in either mouse ES or human K562 cells (Figure 3A). As expected, we 
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observe that an eraser (JARID1A)40 and a writer (RBBP5-containing complex)41 of 

H3K4me3 localize at H3K4me3-modified promoter sites (Fig3G, Figure S6G).  

Additionally, we observed that components of the PRC1 (RING1B, CBX8)42 and PRC2 

complex (EED, SUZ12, EZH2)43 co-localize and are enriched over genomic regions 

containing their respective histone modifications (H2AK119ub and H3K27me3, Figure 

3H, Figure S6H). Similarly, we observed co-localization of two members of the 

Heterochromatin Protein 1 (HP1) family, HP1α and HP1ß, at genomic DNA regions 

containing their associated heterochromatin marks, H3K9me3 and H4K20me344 (Figure 

3I, Figure S6I). These data indicate that ChIP-DIP accurately maps chromatin regulators 

from diverse complexes and with distinct functional properties (i.e., modification 

recognition, enzymatic activity, chromatin packaging).   

Transcription factors. Transcription factors (TFs) bind cis-regulatory elements in 

combinatorial patterns to control gene expression. Generating comprehensive maps of TF 

localization has proven difficult because there are large numbers of distinct TFs, most are 

cell type-specific, and they are challenging to map by ChIP-Seq because they tend to be 

lower in abundance and only transiently associated with DNA45,46. To explore whether 

ChIP-DIP can map large sets of TFs, we measured 15 TFs in K562 and 43 TFs in mESC, 

including constitutive (e.g. SP1 and USF2)47,48, stimulus-dependent (e.g. p53 and NRF1)49–

52, and developmental/cell type-specific (e.g., Nanog and RFX1)53,54 DNA binding 

proteins55 (Figure 4A). We obtained high-resolution binding maps for TFs in both cell 

types, with individual TFs localizing to their well-characterized targets at regions 

containing their known motifs47,50,52,56–58 (Figure 4A-B). Using the genome-wide 

localization data, we can accurately identify the expected DNA binding motifs, including 

the 20bp dimer motif of p5359 and the 21bp RE-1 consensus sequence of REST60 (Figure 

4C). Together, these data indicate that ChIP-DIP generates accurate, high-resolution 

binding maps of diverse TFs in multiple cell types. 

RNA Polymerases (RNAPs). Different types of RNA are transcribed by distinct RNA 

polymerases: RNA Polymerase I (RNAP I) transcribes ribosomal RNA; RNAP II 

transcribes messenger RNAs and various non-coding RNAs, including snRNAs, snoRNAs 
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and lncRNAs; and RNAP III transcribes many classes of small RNAs, including tRNAs, 

the U6 snRNA, and SINE elements61. We leveraged the power of ChIP-DIP to 

simultaneously map all three RNAPs and the post-translationally modified forms of RNAP 

II. We observed that each RNAP localizes with high selectivity to its corresponding classes 

of genes; RNAP I binds at rDNA, RNAP II at mRNA and snRNA genes, and RNAP III at 

tRNA genes (Figure 5A, Figure S7A). Moreover, we observed distinct localization 

patterns of different RNAP II phosphorylation states: serine 5 phosphorylated RNAP II 

localizes at promoters, while serine 2 phosphorylated RNAP II accumulates over the gene 

body and past the 3’ end of the gene (Figure S7B-C). These data indicate that ChIP-DIP 

accurately maps the localization of the three RNA polymerases — including multiple 

functional phosphorylation states of RNAP II — at distinct gene classes and gene features. 

Together, these results establish ChIP-DIP as a modular, highly multiplexed method that 

generates high-quality maps for a wide range of DNA-associated proteins spanning diverse 

biological functions. 

ChIP-DIP enables integrated analysis of proteins and identifies regulatory features, 

activity, and potential. 

Because of the large number of distinct regulatory proteins, previous integrative analyses 

of multiple protein targets have been limited to datasets generated by consortium efforts in 

a small number of human cell lines62. These integrated analyses have identified unique 

regulatory states and have highlighted that combinations of multiple histone modifications 

can demarcate distinct genomic elements (e.g. promoters, enhancers, transcribed regions, 

etc.)63, their activity state (active, inactive, repressed), and regulatory potential 

(poised/primed for activation)64. Despite the importance of these combinations, mapping 

large numbers of modifications is technically challenging. Accordingly, many efforts to 

profile chromatin states have focused on mapping only five histone modifications that 

demarcate specific features and regulatory states (i.e., H3K4me3, H3K4me1, H3K36me3, 

H3K9me3, and H3K27me3 marking promoters, enhancers, elongated transcripts, 

heterochromatin, and polycomb-mediated silencing, respectively)5. Because ChIP-DIP can 
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map large numbers of diverse proteins, it facilitates comprehensive profiling and 

integrative analyses of histone modifications and other regulatory proteins within each 

specific cell state. To explore this, we asked whether combinations of histone modifications 

can provide additional information about distinct types, activity states, and regulatory 

potentials of cis-regulatory elements (promoters or enhancers) beyond those captured by 

the five commonly studied individual histone modifications. 

Promoter type and activity state are defined by combinations of histone modifications 

H3K4me3 is generally thought to mark the promoters of actively transcribed RNAP II 

transcripts 24,25,65. While we find H3K4me3 over the promoters of actively transcribed 

RNAP II genes, we also observe this modification near RNAP I promoters (ribosomal 

RNA) and many active RNAP III genes (tRNAs) (Figure 5B-C). Similarly, other histone 

modifications that are associated with active RNAP II promoters, including H3K4me2, 

H3K9Ac, H3K27Ac, and H3K56Ac, are also enriched at RNAP I, II, and III genes (Figure 

5B-C, Figure S7C-D).  

Although the presence of these histone modifications does not appear to distinguish 

between genes transcribed by different polymerases, we observed that both their position 

relative to the transcriptional start site (TSS) and their relative levels vary by polymerase: 

for RNAP I genes, these modifications localize prior to the TSS; for RNAP II, they flank 

the promoter and are enriched downstream of the TSS; and for RNAP III, they flank the 

gene body, localizing both upstream of the TSS and downstream of the transcriptional 

termination site (Figure 5B-C, Figure S7C). In addition, the three RNAPs have different 

relative levels of these histone modifications near their respective gene promoters. 

Focusing on H3K4me3, H3K4me2, and H3K56Ac, we found that RNAP I and II have a 

stronger acetylation component and RNAP I and III have a stronger H3K4me2 component 

(Figure 5D). In this way, both combinations of modifications and their position relative to 

the promoter define distinct transcriptional programs (Figure 5E).  
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Next, we considered whether other histone modifications may distinguish types and 

activity states of RNAP II promoters. To explore this, we quantified the levels of ten 

additional histone modifications at each genomic region containing H3K4me3 and grouped 

them using hierarchical clustering. We identified five sets of H3K4me3 enriched genomic 

regions; four are enriched with other histone modification (sets 1-4) and one is not (set 5). 

The four co-occurring sets correspond to H3K4me3 along with: H3K27me3/H2AK119ub 

(set 1), H3K36me3/H3K79me (set 2), H3K9me3/H4K20me3 (set 3), or 

H3K4me1/H3K27ac (set 4) (Figure 6A). These correspond to sets of promoters that 

exhibit distinct transcriptional activity (e.g., high versus low expression) (Figure 6B, 

Figure S8) and are enriched for distinct classes of RNAP II-transcribed genes, such as 

ribosomal protein and cell cycle genes (set 2), zinc finger protein (set 3), and long 

intergenic ncRNAs genes (sets 3 and 4) (Figure 6C-D). Beyond these, there are smaller 

subsets of promoters that display additional histone modification patterns that correspond 

to specific gene classes and transcriptional states (Figure S8). Consistent with the fact that 

promoters of functionally distinct genes have unique chromatin profiles, we found that 

different readers, writers, and erasers of H3K4me3 localize at distinct sets of K4me3 

modified promoters (Figure S6G). 

Taken together, these results demonstrate that combinations of histone modifications can 

distinguish promoter features including polymerase, gene type, and activity level (Figures 

5E, 6I).  

Enhancer type, activity and potential are defined by combinations of histone 

modifications  

There are >40 different histone acetylation marks66, many of which have been associated 

with enhancers and active transcription. We mapped 15 of these, including marks on all 

four core histones and histone variants, in mESCs, and observed that they co-localize at 

similar sites genome-wide (Pearson r = 0.86-0.97)67 (Figure S9). We wondered whether 

these strong correlations indicate that these marks are redundant or whether there is 

additional regulatory information encoded by the relative levels of each acetylation mark 
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at specific genomic sites. To explore this, we used a matrix factorization algorithm to 

define five weighted combinations of acetylation marks at highly acetylated genomic 

regions (quantitative combinations C1-C5; see Methods, Figure 7A-B, Supplemental 

Note 4, Figure S10). These quantitative combinations correspond to genomic regions that 

contain distinct transcription factor and chromatin regulator binding profiles (Figure 7C-

F, Figure S11). 

Active promoter-proximal elements. The first group of regions (C1) is defined by H3K9Ac 

and several other H3 acetylation marks (H3K14ac, H3K18ac, H3K36ac, H3K56ac, and 

H3K79ac) (Figure 7B). Genomic regions containing this signature tend to be localized 

near the promoter region of transcribed genes and are enriched for RNAP II, general TFs 

(e.g. TFIIB), and other CpG-island associated factors (e.g. E2F1, CXX1) along with their 

sequence motifs (e.g. ETS, SP and NRF families) (Figure 7C,E-F, Figure S11).   

Poised promoter-proximal elements. The second group of regions (C2) contains high 

levels of H3K9Ac and acetylation of the histone variant H2AZ (H2AZAc) (Figure 7B). 

Genomic regions containing this signature tend to have lower levels of RNAP II (relative 

to C1) and are strongly enriched for polycomb (JARID2, SUZ12, RING1B) and other 

repressive chromatin regulators (KDM2B, HDAC2) (Figure 7E-F, Figure S11).  

Stress and signaling response elements. The third group of regions (C3) contains high 

levels of H2AZAc and H4Ac (Figure 7B). Genomic regions containing this signature are 

also enriched for RNAP II but are bound by p53 and contain other stress response motifs 

(e.g., BACH1, NRF2) or signaling response motifs (e.g. CRE) (Figure 7C, Figure 7E-F, 

Figure S11). Consistent with these observations, H2AZ has been proposed as a facilitator 

of inducible transcription (e.g. signaling pathway responses and p53 regulation)68–71. Yet, 

because H2AZ is also a component of C2, our results suggest that this behavior is not solely 

a property of H2AZAc but of this unique C3 signature.  

Active pluripotency distal regulatory elements. The fourth group of regions (C4) is defined 

by H2BK20Ac and H3K27Ac (Figure 7B). Genomic regions containing this signature tend 
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to be promoter-distal (Figure S11B) and associated with actively transcribed embryonic 

and stem cell specific genes (Figure 7D). These regions are enriched for binding of the 

pluripotency TFs, including Nanog, Oct4, and Sox2, as well as the P300 acetyltransferase 

and components of mediator (Figure 7F). 

Poised differentiation distal regulatory elements. The fifth group of regions (C5) is 

defined by high-levels of H2BK20Ac (similar to C4) and H3K14Ac (distinct from C4) 

(Figure 7B). Interestingly, these regions displayed similar TF and CR occupancy (e.g. 

Oct4, Sox2, Nanog, P300 and mediator) to C4 regions (Figure 7F-G). However, in contrast 

to C4 regions, which contain a high-density of pluripotency TFs corresponding to 

enhancers of active genes involved in embryo and stem cell function, high-density of these 

TFs in C5 regions is associated with enhancers of genes involved in post-embryonic 

development, particularly muscle structure development (Figure S12). Consistent with 

this, C5 regions are enriched for the sequence motifs of TFs involved in lineage 

specification and cardiac muscle morphogenesis (e.g. TEAD family)72 (Figure 7D, Figure 

S11). Because the heart muscle is one of the earliest organ systems to develop73, this 

suggests that C5 enhancers might be important in establishing the gene expression program 

needed upon differentiation (regulatory potential). Interestingly, we identified a third set 

of genomic regions that also contain a high-density of pluripotency TFs but lack the C4 or 

C5 acetylation signatures; these are associated with genes involved in later stages of 

organogenesis (e.g. kidney and sensory systems) (Figure S12). 

These analyses indicate that histone acetylation is not a redundant marker of enhancers, 

but that combinations of acetylation modifications can define unique classes of cis 

regulatory elements (promoter-proximal versus distal enhancers) that act in distinct ways 

(stimulus-responsive versus developmentally regulated) and that exhibit different activity 

(e.g. active gene expression versus poised for activation upon differentiation) (Figure 7H).  

Overall, these observations highlight the importance of multi-component analyses and 

demonstrate why ChIP-DIP provides a powerful approach that will be critical for defining 

unique regulatory features within distinct cell states.  
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2.4. DISCUSSION 

We demonstrated that ChIP-DIP enables highly multiplexed mapping of hundreds of 

regulatory proteins to genomic DNA in a single experiment, increasing the throughput of 

existing methods by >100-fold. Although the largest experiment in this study contained 

hundreds of proteins in a single experiment, these numbers were primarily selected because 

of the availability of high-quality antibodies; we expect that ChIP-DIP could be used to 

map even larger numbers of proteins. Because this approach employs standard molecular 

biology techniques, we expect that it will be readily accessible to any lab without the need 

for specialized training or equipment. As such, we anticipate that ChIP-DIP will enable a 

fundamental shift from reference maps generated by large consortia for a limited number 

of cell types to cell-type-specific maps generated by individual labs within any specific 

experimental system of interest.  

We used ChIP-DIP to identify combinatorial regulatory information from a large panel of 

histone modifications and other DNA-associated factors. While distinct regulatory states 

have long been proposed to be encoded through diverse combinations of histone 

modifications4, the actual number of such states has remained largely unexplored. For 

example, genomic regions containing H3K4me3 (a mark of active promoters) and 

H3K27me3 (a polycomb-mediated repressive mark) have been shown to represent 

developmentally poised promoters64, yet the diversity of marks co-occurring with 

H3K4me3 and their functional implications has not been well characterized. Moreover, the 

possibility that histone combinations at various regulatory elements might represent 

diverse regulatory states has not previously well explored. Capitalizing on the scale and 

diversity provided by ChIP-DIP, we identified unique quantitative combinations of histone 

modifications that define classes of promoters corresponding to different polymerase 

activity, transcriptional levels, and gene types as well as classes of enhancers that display 

distinct activity states, induction potential, and regulatory potential. Importantly, these 

regulatory elements are occupied by distinct chromatin regulators and transcription factors, 

suggesting that combinations of histone modifications may be deposited or recognized by 
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unique networks of regulatory proteins. Consistent with this observation, various 

chromatin regulators have been shown to recognize unique histone combinations (e.g. 

SWI/SNF)74, suggesting that gene regulation involves coordinated interplay between 

regulatory proteins and diverse sets histone modifications.  

Given the important information encoded within quantitative combinations of histone 

modifications, chromatin regulators, and transcription factors, comprehensively mapping 

these factors across cell-types will be critical for studying gene regulation. The limitations 

of previous methods combined with the large numbers of histone modifications and 

regulatory proteins has necessitated a tradeoff between mapping many marks in a few cell-

types or a few marks in many cell-types. ChIP-DIP overcomes this by mapping hundreds 

of proteins in a single experiment. Moreover, due to the nature of split-pool barcoding used 

in ChIP-DIP and because there is negligible antibody-bead-chromatin dissociation during 

the procedure, ChIP-DIP can also be used to map protein binding within multiple samples 

simultaneously using distinct sets of antibody-oligo-labeled beads or multiplexing during 

split-pool barcoding steps. While we did not directly emphasize this capability in this 

paper, several ChIP-DIP experiments described here were performed simultaneously using 

multiple sample conditions (e.g., crosslinking conditions, IP conditions, cell lysate 

amounts). In this way, ChIP-DIP will enable large scale mapping of proteins across many 

experimental conditions or at multiple timepoints.  

In addition to increased scale, ChIP-DIP also provides important technical advantages that 

enable the study of complex protein binding relationships within individual cell-types. 

Specifically, by mapping multiple proteins within a single sample of crosslinked and 

sonicated material, ChIP-DIP reduces many sources of technical and biological variability 

associated with processing individual proteins and samples individually, enabling direct 

comparison of positions and levels between proteins. The ability to measure regulatory 

proteins at scale, in multiple cell conditions and with reduced sources of variability is 

ideally suited for use-cases requiring mapping dynamic protein localization changes across 

time and, more generally, will enable the construction of large-scale models to 

comprehensively understand gene regulation. 
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Beyond the applications highlighted in this work, ChIP-DIP can be directly integrated 

into existing split-pool approaches to create additional capabilities that are not currently 

possible. For example, we previously showed that we can map the 3D genome structure 

surrounding individual protein binding sites (SIP)75; by integrating this approach with 

ChIP-DIP, we can map the 3D structures that occur at hundreds of distinct protein binding 

sites simultaneously. Moreover, we previously developed a method to map 3D genome 

contacts for thousands of individual single cells using this same split-pool approach76. This 

single cell approach can be directly integrated into ChIP-DIP to enable comprehensive 

mapping of hundreds of regulatory protein binding sites within thousands of individual 

cells.  Finally, we previously showed that split-and-pool barcoding can be used to 

simultaneously map DNA and RNA and measure the levels of nascent RNA transcription 

at individual DNA sites77. Accordingly, this approach can be combined with ChIP-DIP to 

enable the direct measurements of protein binding and transcriptional activity at individual 

genomic locations, providing a directly link between binding events and the associated 

transcription levels within the same cell. For these reasons, we expect that ChIP-DIP will 

represent a transformative new tool for dissecting gene regulation. 
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2.5. MAIN FIGURES 

 

Figure 1: ChIP-DIP: A highly multiplexed method for mapping proteins to genomic 

DNA.  

(A) Schematic of the ChIP-DIP method. Beads are coupled with an antibody and associated 

oligonucleotide (antibody-ID). Sets of beads are then mixed (antibody-bead pool, left) and 
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used to perform ChIP. Multiple rounds of split-and-pool barcoding are performed to 

identify molecules bound by the same Protein G bead (middle). DNA is sequenced and 

genomic DNA and antibody oligos containing the same split-and-pool barcode are grouped 

into a cluster, which are used to assign genomic DNA regions to their linked antibodies 

(right).  All DNA reads corresponding to the same antibody are used to generate protein-

localization maps. (B) Protein localization maps over a specific human genomic region 

(hg38, chr12:53,649,999-54,650,000) for four proteins targets: CTCF, H3K4me3, RNAP 

II and H3K27me3. Left panel: Protein localization generated by ChIP-DIP in K562. Top 

track shows read coverage prior to protein assignment and bottom tracks correspond to 

read coverage after assignment to individual proteins. Right panel: ChIP-Seq data 

generated by ENCODE within K562 for these same 4 proteins are shown for the same 

region. To enable direct comparison of scales between datasets, we normalized the scale to 

coverage per million aligned reads. Scale is shown from 0 to maximum coverage within 

each region. (C) Comparison of ChIP-DIP and ChIP-Seq maps over specific regions 

corresponding to zoom-ins of the larger region shown in (B). The locations presented are 

demarcated by colored bars at the bottom of (B). Scale shown similar to (B) (D) Genome-

wide comparison (density plots of signal correlation) between the localization of each 

individual protein measured by ChIP-DIP (x-axis) or ChIP-Seq (y-axis). Points are 

measured genome-wide across 10kb windows (CTCF, H3K27me3) or all promoter 

intervals (H3K4me3, RNAP II).  
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Figure 2: ChIP-DIP accurately maps large sets of proteins using low-levels of cell 

lysate.  

(A) Schematic of experimental design to test scalability of antibody-bead pool size and 

composition. (B) Correlation heatmap for protein localization maps of four proteins — 

CTCF, H3K4me3, RNAP II and H3K27me3 — generated using antibody pools of four 

different sizes and compositions (see Methods). Pool sizes are listed along top and left 

axis. (C) Comparison of H3K4me3 localization over a specific genomic region (hg38, 
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chr19:45,345,500-46,045,500) when measured within various antibody pool sizes and 

compositions. (D) Comparison of CTCF localization over a specific genomic region (hg38, 

chr19:40,349,999-41,050,000) when measured within a pool containing a single CTCF-

targeting antibody (top) or multiple CTCF-targeting antibodies in the same antibody pool 

(bottom). (E) Schematic of experimental design to test the amount of cell input required 

for ChIP-DIP. (F) Correlation heatmap for protein localization maps of four targets — 

CTCF, H3K4me3, RNAP II and H3K27me3 — generated using various amounts of input 

cell lysate (see Methods). Amounts of input cell lysate are listed along top and left axis. 

(G) Comparison of H3K4me3 localization over a specific genomic region (hg38, 

chr13:40,600,000-42,300,000) when measured using various amounts of input cell lysate. 

(H) Comparison of CTCF localization over a specific genomic region (hg38, 

chr12:53,664,000-53,764,000) when measured using various amounts of input cell lysate. 
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Figure 3: ChIP-DIP accurately maps dozens of functionally diverse histone 

modifications and chromatin regulators.  

(A) Illustration of the diverse histone modifications and chromatin regulatory proteins 

mapped in K562 or mESC using ChIP-DIP. (B-C) Visualization of multiple histone 

modifications across a genomic region (hg38, chr22:23,050,000-23,290,000) in K562 

corresponding to multiple histone modifications associated with (B) enhancers — 

H3K4me1, H3K4me2 and H3K27Ac and (C) active gene bodies — H3K36me3, 

H3K79me1, and H3K79me2. (D) Top: Schematic of histone modifications and chromatin 

regulators associated with active promoters. Bottom: Visualization of multiple histone 
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modifications associated with active promoters — H3K4me3 and H3K9Ac — across a 

genomic region (mm10, chr12:81,590,000-81,636,000) in mouse ESCs. Hashmarks 

indicate an intervening 29kb region that is not shown. (E) Top: Schematic of histone 

modifications and chromatin regulators associated with polycomb-mediated repression. 

Bottom: Visualization of multiple histone modifications associated with polycomb-

mediated repression — H3K27me3 and H2A119ub — across a genomic region (hg38, 

chr2:175,846,000-176,446,000) containing the silenced HOXD cluster in K562.  (F) Top: 

Schematic of histone modifications and chromatin regulators associated with constitutive 

heterochromatin. Bottom: Visualization of multiple histone modifications associated with 

constitutive heterochromatin — H3K9me3 and H4K20me3 — across a genomic region 

(hg38, chr2:46,200,000-55,700,000) in K562. (G) Visualization of an H3K4me3-

associated eraser (JARID1A) and writer component (RBBP5) across the same genomic 

region as (D).  (I) Visualization of PRC2 (EED) and PRC1 (RING1B) components across 

the same genomic region as (E). (J) Visualization of HP1b and HP1a across the same 

genomic region as (F).  
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Figure 4: ChIP-DIP accurately maps dozens of transcription factors representing 

diverse functional classes.  

(A) Top: Visualization of six transcription factors (SP1, USF2, p53-pSer15, NRF1, 

NANOG, RFX1) representing three broad function classes (constitutive, stimulus-

response, development/cell type-specific) across a genomic region (mm10, 

chr11:35,000,000-75,000,000) in mESC. Bottom: Higher-resolution zoom-ins showing 

individual TF binding patterns at selected targets. (1) p53 binding the p53 response element 

on the Cyclin G1 gene promoter. (2) Nanog binding a cluster of sites internal to 

developmental gene. (3) Nuclear Respiratory Factor 1 (NRF1) binding multiple copies of 

its motif at the promoter of FXR2. (4) The constitutively active USF2 binding its triplicate 
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E-box motif. (B) Visualization of TBP (constitutive) and REST (cell type-specific) 

across a genomic region (hg38, chr11:1-11,000,000) in K562 cells. Bottom: Higher-

resolution zoom-ins highlight two individual peaks of RE-1 Silencing Transcription Factor/ 

Neuron-Restrictive Silencer Factor (REST/NRSF) at motif sites near promoters of known 

neuronal gene targets. (C) de novo generated motifs for p53 (top) in mESCs and REST 

(bottom) in K562 cells using binding sites identified using ChIP-DIP. 
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Figure 5: Distinct chromatin signatures define the promoters of each RNA 

Polymerase.  

(A) Visualization of RNAP I at the promoter and along the gene body of rDNA (left), 

RNAP II at a snRNA gene (middle), and RNAP III at a cluster of tRNA genes (right) in 

mouse ESCs. (B) Visualization of RNAP II and RNAP III along with the shared 

transcription factor TBP, and histone modifications H3K4me3 and H3K56Ac across a 

genomic region (mm10, chr13:23,385,000-23,595,000) containing a cluster of RNAP III 

genes adjacent to a cluster of RNAP II genes (separated by dashed line). (C) Comparison 

of H3K4me3 and H3K27Ac profiles at the promoters of RNAP I, II, and III genes. RNAP 

I is displayed over the rDNA spacer promoter (left) while RNAP II and III are displayed 

as metaplots across active (blue) and inactive (dashed gray) promoters. (D) Density 
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distribution of H3K4me2/H3K4me3 versus H3K56Ac/H3K4me3 ratios at RNAP I, 

active RNAP II and active RNAP III promoters. Points show ratios when computed using 

the total sum of histone coverage over all promoters. Marginal distributions are shown for 

RNAP II and III along x and y-axis. Axes are log10 scaled. (E) Schematic showing relative 

levels of histone modifications H3K4me2 and H3K56Ac at H3K4me3 enriched regions 

and the associated RNAP promoter.  
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Figure 6: Combinations of histone modifications distinguish RNAP II promoter type, 

activity, and potential.  

(A) Hierarchically clustered heatmap of coverage levels of 10 different histone 

modifications (y-axis) at individual H3K4me3 enriched genomic regions (x-axis). Five 

distinct sets of regions are indicated by colored bars along top-axis. (B) RNAP II coverage 

at H3K4me3-enriched regions, sorted as in (A). (C) Gene density of 10 different gene 

classes at H3K4me3 enriched regions, sorted as in (A). (D/E) Visualization of H3K4me3, 

H3K79me2/3, and H3K36me3 histone modifications (associated with set 2) across the cell-

cycle associated gene Cyclin B1 and ribosomal protein gene RPL24 in K562. (F) 

Visualization of H3K4me3, H4K20me3, and H3K9me3 (associated with set 3) across 
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neighboring zinc finger genes in K562. (G) Visualization of H3K4me3 and H3K27me3 

(associated with set 1) across the EML5 gene in K562. (H) Visualization of H3K4me3 and 

H3K4me1 (associated with set 4) across the long intergenic noncoding RNA gene 

LNCRNA0881. (I) Illustration summarizing the co-occurring promoter-associated histone 

modifications and their associated gene groups.   
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Figure 7: Distinct combinations of histone acetylation marks define unique enhancer 

types that differ in their activity and developmental potential.  

(A) The relative weights of five different combinations of histone acetylation marks (C1-

C5, y-axis) for each acetylated genomic region (x-axis). Regions are grouped according to 
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the combination that received the greatest weight, as indicated along top-axis. (B) The 

relative weights of each histone acetylation mark (y-axis) within each combination (x-

axis). Only weights greater than 2.5 are labeled. (C) Visualization of H3K9ac and H4ac 

along with SP1 and P53 across a genomic region (mm10, chr15:34,065,000-34,086,000) 

containing enhancers assigned to the C1 (yellow) and C3 (red) state. (D) Visualization of 

H2BK20Ac and H3K27Ac along with Nanog, Tead1, and RNAP II across a genomic 

region (left: mm10, chr7:3,191,500-3,221,500, right: mm10, chr18:5,006,500-5,016,500) 

containing enhancers assigned to C4 (left) and a distinct region assigned to C5 (right). 

(Scale of the Nanog track is capped to the maximum of the left region; Tead1 data is from 

published ChIP-Seq data in fetal cardiomyocytes78). (E) Visualization of H3K9Ac, 

H2AZAc, and H4Ac along with RING1B, P53, and RNAP II over a genomic region 

(mm10, chr8:47,272,800-47,427,000) containing enhancers assigned to all four states (C1-

C4). (F)  DNA-associated proteins (x-axis, ordered by function) with significant binding 

at genomic regions defined by each combination (y-axis) are indicated in color (see 

Methods). (F) Enrichment bargraph of selected transcription-associated factors or regions 

with high density of pluripotency TFs (see Methods, Figure S13) in C4 vs C5 associated-

regions. Error bars correspond to the enrichment range from bootstrap resampling. (G) 

Schematic of C1-C5 associated regions and their corresponding functions.  
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2.6. SUPPLEMENTAL FIGURES  

 

Figure S1: Potential sources of mixing in ChIP-DIP, related to Figure 1. (A) Schematic 

of labeling strategy to generate Protein G beads coupled with a unique antibody-identifying 

oligonucleotide and a matched antibody. Protein G beads are covalently modified with a 

biotin; oligonucleotides containing a 3’ biotin are conjugated to streptavidin; oligo-

streptavidin complexes are mixed with beads and beads are mixed with antibodies. This 

process is repeated for each unique oligonucleotide-antibody pair and pooled together. (B) 

Schematic of three potential sources of mixing during ChIP-DIP. (C) Cumulative 
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distribution plot representing the uniqueness of antibody-ID oligos type (x-axis) within 

individual clusters. (D) Schematic of experimental design to test for antibody movement 

between beads and quantification of relative reads per bead assigned to true targets (CTCF) 

or empty beads added during experimental processing steps. (E) Schematic of human-

mouse experimental design to test for chromatin movement and quantification of species-

specific reads assigned to human or mouse beads. 
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Figure S2: Simultaneous mapping of multiple components of a single protein complex 

using ChIP-DIP, related to Figure 2. (A) Visualization of various components of the 

PRC1 (RING1B, CBX8) and PRC2 (EZH2, SUZ12, EED) complexes that were mapped 

within the same ChIP-DIP pool (K562 52 Antibody Pool) along a genomic region (hg38, 

chr4:500,000-5,500,000). 
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Figure S3: Comparison of ChIP-DIP experiments run with different amounts of input 

cell lysate, related to Figure 2. (A) Comparison of read counts per target across four ChIP-

DIP experiments run using different amounts of input cell lysate (top to bottom: 45M, 5M, 

500K, 50K cell equivalents). (B) Correlation heatmap for protein localization maps of 

various targets measured across different input cell lysate conditions (y-axis) relative to an 
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independent reference sample (independent high-cell input ChIP-DIP experiment with 

matched antibodies or in the few cases where this was not available published ChIP-Seq 

data in K562). For each antibody target, squares are ordered top-to-bottom in descending 

order of input lysate amount. Squares with matched targets on x and y axes are highlighted 

in yellow and shown in isolation on the right (“target matched”).  
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Figure S4. Comparison of protein localization across different amounts of cell lysate, 

related to Figure 2. (A) Comparison of RNAP II NTD localization across a snRNA gene 

cluster (hg38, chr17:58,620,000-58,689,000) when generated using various amounts of 

input K562 cell lysate. (B) Comparison of H3K27me3 localization across a genomic region 

(hg38, chr1:23,850,000-25,850,000) generated using various amounts of input K562 cell 

lysate. (C) Comparison of various isoforms of RNAP II at the EGR1 locus (hg38, 

chr5:138,455,000-138,480,000) generated using various amounts of input K562 cell lysate. 
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Figure S5: Read statistics for two ChIP-DIP experiments in K562, related to Figure 

3. (A) Distribution of reads assigned to each protein in the K562 50 Antibody Pool. (B) 

Reads per bead for each protein target in the K562 50 Antibody Pool. (C) Distribution of 

reads assigned to each target in the K562 52 Antibody Pool. (D) Reads per bead for each 

target in the K562 52 Antibody Pool. 
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Figure S6: Histone modifications associated with five chromatin states, related to 

Figure 3. (A) UMAP embedding of 12 histone modifications measured in K562 
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correspond to five chromatin states. (B) Pie chart showing proportion of H3K4me1 

peaks in K562 at various genomic position categories — promoters (co-localizing 

H3K4me3), intragenic (co-localizing H3K36me3) or intergenic — in K562. Proportion of 

peak regions overlapping with H3K27Ac within each genomic position category are shown 

in purple. (C) Metaplot of signal distribution of H3K36me3, H3K79me1, and H3K79me2 

across the gene body of protein coding genes in K562. (D) Correlation scatterplot of 

H3K9Ac and H3K4me3 signals at promoter sites in mESC. (E) Pie chart showing overlap 

of H2AK119ub and H3K27me3 sites in K562. (F) Enrichment heatmap of H3K9me3 and 

H4K20me3 at various associated (ZNF genes, LTRs, LINES) and unassociated (SINES, 

TSS) genomic elements in K562. H3 is shown as reference. (G) Metaplots of read coverage 

for three H3K4me3-associated chromatin regulators (JARID1A, RBBP5, PHF8) and 

H3K4me3 at four promoter groups in mESC. Promoter groups were identified using k-

means clustering of CR signal (see Methods). (H) Metaplot showing colocalization of 

multiple PRC1 and PRC2 members and their respective histone modifications at RING1B 

sites in K562. (I) Genome-wide correlation matrix of multiple HP1 proteins versus 

heterochromatin and euchromatin markers in K562. 
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Figure S7: Chromatin states corresponding to distinct RNA polymerases and 

isoforms, related to Figure 5.  (A) Bar graph showing enrichment of gene class coverage 

(rRNA, mRNA, snRNA or tRNA) for RNAP I, II, and III in mESC.  For each RNAP, the 

bar of its associated class (or classes) is highlighted.  (B) Visualization of RNAP II 

phosphorylation isoforms across the NUP214 gene in K562. (C) Metaplot of signal 

distribution of RNAP II phosphorylation isoforms across the gene body of protein coding 

genes in K562. (D) Comparison of histone profiles for H3K4me2, H3K9Ac, and H3K56Ac 

at the promoters of RNAP I, II, and III, similar to Figure 5B. (Left) Histone modification 
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over the RNAP I-transcribed rDNA spacer promoter. (Middle/Right) Metaplot of 

histone profiles at active (blue) and inactive (gray) promoters for RNAP II (middle) and 

RNAP III (right). (E) Metaplot of H3K36me3 and H3K79me3 at the promoters of RNAP 

II, and RNAP III.  
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Figure S8: Transcription levels of specific subsets of H3K4me3 enriched regions, 

related to Figure 6. (A) (Top) Hierarchically clustered heatmap of coverage levels of 10 

different histone modifications (y-axis) at individual H3K4me3 enriched regions (x-axis), 

identical to Figure 6A, with dendrogram. (Bottom) Individual H3K4me3 regions 

corresponding to selected gene classes (Ribosomal protein genes, snoRNA genes or zinc 

finger genes) are annotated with tick marks.  (B) Violin plot of transcriptional levels of five 

major sets of H3K4me3 regions identified in (A). (C) (Left) Violin plot of transcriptional 

levels of subsets of Set 2 (left) and Set 3 (right). Tree levels of subsets are indicated in the 

dendrogram of (A).  
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Figure S9: Histone acetylation marks are highly correlated genome-wide, related to 

Figure 7. (A) Genome-wide Pearson correlation of 15 different histone acetylation marks 

in mESC. Correlations are based on coverage computed in 10kB windows. (B) Comparison 

of 15 different histone acetylation marks across a genomic region (mm10, 

chr1:55,048,000-55,148,000) in mESC. 
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Figure S10: ChromHMM model using histone acetylation marks, related to Figure 7. 

(A) Histone acetylation mark emission probability matrix for 19-state ChromHMM model. 
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State annotations (right) were assigned manually based on genomic position enrichments 

of states. (B) Track visualization of histone acetylation marks (top) and chromatin state 

annotations (bottom) at example promoter region (left) versus example intergenic region 

(right). Histone acetylation marks are scaled to the same maximum values at both regions. 

At each region, the chromatin states that are present are shown with solid lines and a box 

indicating the exact position; chromatin states that are absent are listed next to dotted lines. 

(C) Heatmap of genome annotation enrichment of chromatin states. Enrichment scores are 

normalized to the maximum and minimum of each column. (D) Heatmap of genomic 

position enrichment relative to the TSS of chromatin states. Enrichment scores are 

normalized to the maximum and the minimum of the heatmap.   
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Figure S11: Enrichment profiles for NMF generated combinations (C1-C5) of histone 

acetylation marks, related to Figure 7. (A) RNAP II, TF, and CR enrichment matrix for 

regions assigned to combinations (C1-C5) from NMF decomposition of highly acetylated 

regions using histone acetylation marks. (B) Heatmap of genome position enrichments 

relative to TSS for regions assigned to combinations. (C) Transcription factors of top 10 

most significant sequence motifs for regions assigned to each combination are listed. 
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Figure S12: Profiles for high density regions of NANOG-OCT4-SOX2, related to 

Figure 7. (A) Plot showing normalized region scores (x-axis) for peak regions of NANOG-

OCT4-SOX2, ordered by rank (y-axis). High density regions are defined as regions past 

the point where the slope = 1. (B) Track visualization of NANOG-OCT4-SOX2 upstream 

of the gene for KLF4, a pluripotency transcription factor, in mESC. A high-density region 

is indicated with a red bar; low-density regions are indicated with grey bars. (C) 

Visualization of NANOG-OCT4-SOX2 near the TET2 gene, a developmentally associated 

chromatin regulator, in mESC. A high-density region internal to the gene is indicated with 
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a red bar. (D) Coverage metaplots over low density regions (LDR) vs high density 

regions (HDR) for pluripotency transcription factors and other transcriptional-related 

factors. Metagenes are centered on the region and the lengths represent the approximate 

difference in mean lengths (500 for LDRs and 14500 for HDRs). An additional 4kb 

surrounding each region is shown. (E) Enrichment heatmap for GO terms of genes 

associated with HDRs or LDRs containing C4, C5 or neither C4/C5 chromatin signatures. 

(F) Enrichment heatmap for development-associated GO terms of genes associated with 

HDRs or LDRs containing C4, C5 or neither C4/C5 chromatin signatures. 
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2.7. SUPPLEMENTAL TABLE LEGENDS 

Table S1.  Antibody Pools and Read Counts for ChIP-DIP Experiments 

Table S2. Antibody-ID Oligonucleotide Sequences 
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2.8. SUPPLEMENTAL NOTES 

Note S1. Minimal inter-bead mixing during ChIP-DIP ensures accurate protein-DNA 

assignment. We considered three potential issues in our ChIP-DIP experimental system 

that could lead to misassignment between antibodies and chromatin: (1) antibody-ID oligo 

movement, (2) antibody movement, and (3) chromatin movement (Figure S1B). To 

evaluate each of these possibilities, we designed experiments to estimate their frequency.   

1. Antibody-ID oligo movement: If antibody ID oligos were to dissociate from their 

original bead and bind to other beads during the ChIP-DIP procedure, then multiple 

antibody ID oligo types would share a single split-pool barcode, leading to errors 

in assigning a chromatin region to the correct protein. If this were the case, we 

would expect to observe clusters that contain multiple distinct antibody-ID oligos. 

To explore this, for each split-pool barcode we calculated the proportion of 

antibody ID oligo reads corresponding to the maximumly represented antibody ID 

oligo type. In a representative experiment, we observed that 96% of clusters had 

only a single type of antibody ID oligo (100% maximum representation) and 99.4% 

of barcodes had at least 80% maximum representation (Figure S1C). Since most 

split-pool barcodes have unique representation, this suggests that antibody ID oligo 

movement occurs infrequently and should not significantly impact the accuracy of 

antibody-to-chromatin assignments.  

 

2. Antibody movement: If antibodies for protein X dissociated from their bead and 

reassociated with a distinct protein G bead containing a label for an antibody 

recognizing protein Y, then chromatin captured by that antibody would be 

improperly assigned to protein Y. To quantify the frequency of such events, we 

performed a ChIP-DIP experiment where we added in oligo-labeled protein G 

beads that were not conjugated to an antibody or to an IgG antibody and measured 

the amount of chromatin that was assigned to these beads. In all cases, we observed 

minimal detection of chromatin (<0.5%). Specifically, we performed a ChIP-DIP 
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experiment with oligo-labeled beads containing a CTCF antibody, an isotype 

control IgG antibody, or no antibody (empty). Only beads containing an antibody 

(i.e., CTCF, IgG) were present during the IP stages and empty beads were added in 

various post-IP, pre-split pool processing steps to determine the frequency of 

mixing at each step. If antibodies moved between beads during post-IP processing, 

we would expect to find chromatin associated with empty beads. When we 

measured the amount of chromatin assigned to each bead, we observed that beads 

with the IgG control antibody received 0.10% (1/1000th) the amount of chromatin 

compared to the CTCF antibody (Figure S1E). Empty beads added during the end 

repair reaction and dA-tailing reaction received 0.40% and 0.10% the amount of 

chromatin of the CTCF antibody beads, respectively. We note that these estimates 

are likely to be an overestimate of the true mixing rate because this experimental 

design does not distinguish between chromatin associating due to antibody 

movement from chromatin that may non-specifically bind to IgG or empty protein 

G beads. Nonetheless, these results indicate that the impact of antibody movement 

on chromatin assignment is minimal, representing no more than 0.5% of all 

chromatin captured. 

 

3. Chromatin movement: If proteins dissociate from their epitope-specific antibodies 

post IP, they may specifically bind to other beads containing the same epitope-

specific antibodies. If this movement occurs during the split-pool process, then 

these chromatin fragments would not be assigned because they would lack a paired 

antibody ID oligo with the same barcode. We estimated the frequency of chromatin 

movement using a human-mouse mixing experiment in which we separately IP’d a 

human chromatin sample and a mouse chromatin sample using identical pools of 

labeled beads. After the IP, we mixed the samples and performed the remainder of 

the standard ChIP-DIP protocol (DNA processing and split-pool). If chromatin 

dissociates and rebinds prior to split-pool then we would expect that it could rebind 

to beads from the other species containing the same antibody type as its original 

bead. We observed that only ~5% of reads were assigned to beads of the other 
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species (4.2% and 5.8%, Figure S1E). This suggests that disassociation and 

reassociation of chromatin-crosslinked proteins from their epitope-specific 

antibodies during ChIP-DIP processing steps is minimal. Nonetheless, in the cases 

where this does occur it would impact the assignability of these chromatin 

fragments (sensitivity of detection) rather than resulting in incorrect assignment 

(specificity of detection). 

Note S2. Unique sources of background in ChIP-DIP data and normalization 

approaches to address them. Because beads from many antibodies are processed 

together, ChIP-DIP has   sources of potential background that are distinct from a traditional 

ChIP-Seq experiment. In any ChIP experiment, the antibody used will immunoprecipitate 

its specific protein (and the associated chromatin) but will also non-specifically purify 

other proteins (and their associated chromatin) at some lower frequency. This non-specific 

chromatin (background) is generally proportional to the overall distribution of genomic 

DNA present in the starting material (“input”). In ChIP-DIP, the same is true during the 

IP; any given antibody will preferentially capture its specific protein but will, at some lower 

frequency, non-specifically capture other proteins. However, because ChIP-DIP entails 

purification with many antibodies, the source of proteins and chromatin for this non-

specific binding is no longer the entire cellular input but rather the material present within 

the pooled IP (e.g., the proteins and chromatin that were pulled down by the pool of 

antibodies). Indeed, we observed that some antibodies displayed background signal that 

was distinct from the input library. For example, antibodies targeting CTCF displayed 

higher background over promoter regions, likely reflecting the presence of various 

promoter-enriched histone modifications present in the same experimental pool. To 

account for this in our analysis, we used the pool of all genomic DNA reads captured in a 

ChIP-DIP experiment as the background control (see Methods). We found that 

normalization using this empirically defined background led to a more conservative 

enrichment calculation for ChIP-DIP data. For example, in the CTCF example noted above, 

this normalization approach successfully removed the background promoter-associated 

signal while retaining signal at known CTCF binding sites.  
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Note S3. ChIP-DIP requires low amounts of input cell material. One of the major 

challenges with mapping DNA binding proteins in primary cell types, disease models, and 

other rare cell populations is the large number of cells required for traditional ChIP-Seq 

experiments. Because ChIP-DIP enables simultaneous mapping of many proteins within 

the same experiment, we reasoned that it may dramatically reduce the total number of cells 

required in two ways: (i) the number of cells required to map any individual protein is 

instead distributed across all protein targets in a pool, and (ii) the total chromatin purified 

from multiple proteins may enable purification of lower DNA concentrations associated 

with a single/low abundance proteins that might otherwise be lost due to experimental 

handling.  

To test whether ChIP-DIP can generate high-quality data from lower amounts of material, 

we performed a series of ChIP-DIP experiments using the same antibody pool and differing 

amounts of cell lysate. The goals of these experiments were to 1) determine whether 

experimental results changed when lower amounts of input material were used and 2) 

determine which targets could be successfully mapped using low levels of input material.  

Specifically, to enable direct comparison of ChIP-DIP data produced as a function of input 

material amounts, we crosslinked >100M cells in a single batch and then performed four 

ChIP-DIP experiments from this same crosslinked lysate in two pairs. For the first pair 

(45M and 5M conditions), we lysed and sonicated 50 million cells and then split the lysate 

into 45M and 5M cell equivalents. For the second pair (500K and 50K conditions), we 

lysed and sonicated 1 million cells and split the lysate into 500K and 50K cell equivalents. 

We performed ChIP-DIP using an antibody pool containing 35 antibodies targeting 29 

distinct proteins from diverse classes (e.g., histone modification, chromatin regulators, 

transcription factors, and RNA Polymerase) and several distinct targets that are known to 

colocalize (i.e., multiple components of PRC1/2). This pool also contained multiple 

antibodies to the same protein (i.e., CTCF, RNAP II) to test for variability of antibody 

dependence on input amounts and saturation effects.  
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To examine how various targets behaved in different input conditions, we first visually 

compared tracks. A subset of targets showed clear enrichments in all conditions (Figure 

2G-H, S4). These included histone modifications (H3K4me3, H3K79me2, H3K79me3), 

RNAP II, and CTCF. Notably, H3K79me2/me3 were the two histone modifications that 

received the lowest read coverage in the 50K condition (91,000 and 39,000 reads 

respectively; <2% the number of reads received in the 45M condition) but showed high 

specificity, with most reads near the TSS. However, other targets did not show strong peaks 

at 50K/500K due to lower overall complexity of the material captured. Next, we calculated 

correlation coefficients between each ChIP-DIP dataset and the corresponding reference 

dataset (independent high-cell input ChIP-DIP experiment with matched antibodies or in 

the few cases where this was not available published ChIP-Seq data in K562) across all 

genomic regions with high coverage of histone modifications (see Methods, Figure S3B). 

This approach allowed us to test whether global patterns of enrichments were maintained 

at different input conditions. We found that most proteins mapped displayed high 

correlation values and similar patterns across all four cell conditions. The exceptions 

largely reflected proteins present at lower levels or those for which the experimental pool 

contained multiple targeting antibodies (e.g., RNAP II pSer2), which tended to generate 

reduced chromatin yields overall (Table S1). 

Importantly, not all targets showed a consistent trend related to input amounts, suggesting 

that some of the observed variability is not due to input amounts but other experiment-to-

experiment variability. For instance, the 5M condition had higher signal-to-noise for broad 

histone marks (e.g., H3K9me3, H3K36me3) than the 45M condition, and the 500K 

condition had the strongest tracks for SETD2 (which localizes at focal binding sites) but 

the weakest tracks for EZH2 (which localizes across broader regions) (Figure S3B). 

   

Note S4. ChromHMM Model of histone acetylation states. To investigate the spatial 

relationships between histone acetylation marks, we generated a 19-state genome 

segmentation model using ChromHMM and 15 different histone acetylation marks (Figure 
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S10A). Based on the transition probabilities, we grouped these 19 states and found two 

large sets that differed in their genome positioning: set 1 (States 1-8) was promoter 

proximal, with the individual states identifying the relationship to the TSS, while set 2 

(States 9-16) was promoter distal, with the individual states demarcating the acetylation 

peaks and surroundings between them (Figure S10B-D). State 17 was also promoter 

proximal but was grouped separately because of a unique signature with H2AZAc (Figure 

S10A, D). Finally, States 18 and 19 corresponded to silent genic and intergenic regions. 

Remarkably, this model found that histone acetylation marks were sufficient to define 

multiple functional elements (e.g., promoters, enhancers, gene bodies, silent, intergenic).  

Overall, our state-model found that the acetylation marks cover similar genomic loci; there 

exist multiple states that have nearly all the marks (i.e., State 1, 2, 9, and 10) and multiple 

states that appear alike in composition but differ in relationship to genomic annotations 

(i.e., State 1 vs State 9) (Figure S10A, D). Comparing sets 1 and 2 (i.e., promoter proximal 

vs promoter distal), we found that all acetylation marks are present in both sets, however, 

some marks are more enriched in one set over the other. For example, H3K9Ac was 

strongest in set 1 (the promoter proximal set), while H3K18Ac, H3K27Ac, and H2BK20Ac 

were enriched throughout set 2 (the promoter distal set) (Figure S10A).  Notably 

H3K18Ac, H3K27Ac and H2BK20Ac are all targets of the CBP/p300 acetyltransferase79, 

which is strongly associated with activity at enhancers. In contrast, the GCN5/PCAF 

subfamily preferentially acetylates H3K9, H3K14, and H480 — all marks we see 

preferentially in set 1. Comparing all 19 states individually, we found that a small subset 

of states had greater selective enrichment for specific histone modifications. For example, 

State 5 (promoter up/down stream) and State 7 (gene body) both had greater selectivity for 

H3K9Ac, State 14 was defined by H2BK20Ac and State 17 was defined by H2AZAc. Such 

states may indicate subtle positional shifts or locations unique to these marks. 

Correspondingly, by visual comparison, we saw that H3K9Ac appears more enriched 

downstream of the TSS and into the gene body than other histone acetylation marks.  

Our 19 state ChromHMM genome segmentation results corresponded well with the 

findings of our weighted combinatoric NMF model (Figure 7). In our NMF model, we 
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found that TSS associated combinations (C1 and C2) are defined by H3K9Ac; similarly, 

in our ChromHMM model, we found that H3K9Ac preferred the promoter-associated set 

of states (set 1). In our NMF model, we predicted a unique role for H2AZAc in defining 

multiple promoter-associated combinations (C2 and C3); in our ChromHMM model, we 

found H2AZAc was selectively enriched in State 17, a promoter-associated state. In our 

NMF model, we found that promoter distal combinations are defined by H2BK20Ac and 

H3K27Ac (C4 and C5); in our ChromHMM model, we found that these two marks prefer 

the promoter distal set of states (set 2).  
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2.9. METHODS 

Cell Lines, Cell Culture and Crosslinking 

Cell lines used in this study. We used the following cell lines in this study: (i) Female 

mouse ES cells (pSM44 mES cell line) derived from a 129 × castaneous F1 mouse cross 

and (ii) K562, a female human lymphoblastic cell line (ATCC, Cat # CCL-243). 

Cell Culture Conditions.  

(i) pSM44 mES cells were grown at 37C under 7% CO2 on plates coated with 0.2% gelatin 

(Sigma, G1393-100ML) and 1.75 mg/mL laminin (Life Technologies Corporation, 

#23017015) in serum-free 2i/LIF media composed as follows: 1:1 mix of DMEM/F-12 

(GIBCO) and Neurobasal (GIBCO) supplemented with 1x N2 (GIBCO), 0.5x B-27 

(GIBCO 17504-044), 2 mg/mL bovine insulin (Sigma), 1.37 mg/mL progesterone (Sigma), 

5 mg/mL BSA Fraction V (GIBCO), 0.1 mM 2-mercaptoethanol (Sigma), 5 ng/mL murine 

LIF (GlobalStem), 0.125 mM PD0325901 (SelleckChem) and 0.375 mM CHIR99021 

(SelleckChem). 2i inhibitors were added fresh with each medium change. Fresh medium 

was replaced every 24-48 hours depending on culture density, and cells were passaged 

every 72 hours using 0.025% Trypsin (Life Technologies) supplemented with 1mM EDTA 

and chicken serum (1/100 diluted; Sigma), rinsing dissociated cells from the plates with 

DMEM/F12 containing 0.038% BSA Fraction V.  

(ii) K562 cells were purchased from ATCC and cultured in 1x DMEM (Life Technologies, 

# 11965118), 10% FBS (VWR, #97068-091), 100U/mL Penicillin/Streptomycin (Life 

Technologies, # 15140122), 1mM Sodium Pyruvate (Thermofisher, #11360070), 2mM L-

Glutamine (Life Technologies # 25030081) at 37C and 5% CO in 15cm plates (USA 

Scientific # 5663-9160Q). 

Cell Harvest 

(i) For harvesting pSM44 mESCs, cells were trypsinized by adding 5 mL of TVP (1 mM 

EDTA, 0.025% Trypsin, 1% Sigma Chicken Serum; pre-warmed at 37C) to each 15 cm 
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plate and rocking gently for 3-4 min until cells start to detach. 25 mL of wash solution 

(DMEM/F-12 supplemented with 0.03% GIBCO BSA Fraction V, pre-warmed at 37C) 

was added to each plate to inactivate the trypsin. Detached cells were transferred into 50 

mL conical tubes, pelleted at 330 g for 3 min, washed in 4 mL of 1X PBS per 10 million 

cells and then pelleted in 1X PBS in preparation for crosslinking. (ii) For harvesting K562s, 

the cell suspension was transferred to 50mL conical tubes, pelleted at 330 g for 3 min, 

washed with 4 mL of 1X PBS per 10 million cells, and then pelleted in 1X PBS in 

preparation for crosslinking. 

Cell Crosslinking 

Cells were crosslinked in suspension with 1% formaldehyde for 10 min at room 

temperature. For both cell lines, during crosslinking steps and subsequent washes, volumes 

were maintained at 4 mL of buffer or crosslinking solution per 10 million cells. Pelleted 

cells were resuspended in 1ml of 1X PBS per 10 million cells and pipetted to disrupt clumps 

of cells. Next, cells were crosslinked in suspension in a final volume of 4 mL of 1% 

formaldehyde (FA Ampules, Pierce 28906) diluted in 1X PBS per 10 million cells and 

rocked gently for 10 min at room temperature.  Formaldehyde was immediately quenched 

with addition of 200 ml of 2.5 M glycine (Sigma G7403-250G) per 1 mL of 1% FA solution 

and incubated with gentle rocking for 5 min at room temperature. Cells were then washed 

three times with 0.5% BSA in 1X PBS that was kept at 4C. Finally, aliquots of 10 million 

cells were prepared in 1.7 mL tubes; these cell aliquots were pelleted, flash frozen in liquid 

nitrogen, and stored in -80C until lysis. 

Nuclear Isolation and Chromatin Preparation 

Nuclear Isolation.  

Crosslinked cell pellets (10 million cells) were lysed using the following nuclear isolation 

procedure:  cells were incubated in 0.7 mL of Nuclear Isolation Buffer 1 (50 mM HEPES 

pH 7.4, 1 mM EDTA pH 8.0, 1 mM EGTA pH 8.0, 140 mM NaCl, 0.25% Triton-X, 0.5% 

NP-40, 10% Glycerol, 1X PIC) for 10 min on ice. Cells were pelleted at 850 g for 10 min 
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at 4C. Supernatant was removed, 0.7 mL of Lysis Buffer 2 (50 mM HEPES pH 7.4, 1.5 

mM EDTA, 1.5 mM EGTA, 200 mM NaCl, 1X PIC) was added and the sample was 

incubated for 10 min on ice. Nuclei were obtained after pelleting and supernatant was 

removed (as above). Then, 550 uL of Lysis Buffer 3 (50 mM HEPES pH 7.4, 1.5 mM 

EDTA, 1.5 mM EGTA, 100 mM NaCl, 0.1% sodium deoxycholate, 0.5% NLS, 1X PIC) 

was added and the sample was incubated for 10 min on ice prior to sonication.  

Chromatin fragmentation and size analysis. 

Chromatin was fragmented via sonication of the nuclear pellet using a Branson needle-tip 

sonicator (3 mm diameter (1/8’’ Doublestep), Branson Ultrasonics 101-148-063) at 4C for 

a total of 2.5 min at 4-5 W (pulses of 0.7 s on, followed by 3.3 s off). To check the resulting 

DNA size distribution, a small aliquot of 20uL of sonicated lysate was then added to 80uL 

of Proteinase K buffer ((20 mM Tris pH 7.5, 100 mM NaCl, 10 mM EDTA, 10 mM EGTA, 

0.5% Triton-X, 0.2% SDS) and reverse crosslinked at 80C for 30 minutes. DNA was 

isolated using Zymo IC DNA Clean and Concentrator columns and eluted in water. 10uL 

of purified DNA was then run for 10 minutes on a 1% e-gel (Invitrogen™ E-Gel™ EX 

Agarose Gels, 1%, Cat.No. G402021). Fragments were found to be 150-700 bp with an 

average size of roughly 350 bp. The remaining chromatin prep was stored at 4C overnight 

to be used for the immunoprecipitation the next day. 

ChIP-DIP: Bead Preparation 

Antibody-ID oligo design 

Antibody-ID oligos were designed and ordered from IDT (Table S2). The sequence is as 

follows: 

/5phos/TGACTTGNNNNNNNNTATTATGGTAGATCGGAAGAGCGTCGTGTACAC

AGAGTC/3Bio/. This corresponds to a sticky end that ligates Odd barcodes, UMI, 

antibody barcode, Illumina primer binding site (i5 primer binding site), spacer sequence. 

The oligo contains a 5’ phosphate to enable ligation and a 3’ biotin to enable coupling to 

beads. 
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Protein G Bead biotinylation 

1 mL of Protein G Dynabeads (ThermoFisher, #10003D) were washed once with 1X PBSt 

(1X PBS + 0.1% Tween-20), separately keeping the original storage buffer, and 

resuspended in 1mL PBSt. Beads were then incubated with 20 μL of 5 mM EZ-Link Sulfo-

NHS-Biotin (Thermo, #21217) on a HulaMixer for 30 minutes at room temperature. To 

quench the NHS reaction, beads were placed on a magnet, 500 μL of buffer was removed 

and replaced with 500 μL of 1M Tris pH 7.4, and beads were incubated on the HulaMixer 

for an additional 30 minutes at room temperature. Beads were then washed twice with 1 

mL PBSt and resuspended in their original storage buffer until use. 

Preparation of streptavidin-coupled oligonucleotides 

Biotinylated antibody-ID oligonucleotides were coupled to streptavidin (BioLegend, 

#280302) in a 96-well PCR plate. In each well, 20 μL of 10 μM oligo was added to 75 μL 

1X PBS and 5 μL 1 mg/mL streptavidin to make a 909 nM (calculated from the molarity 

of streptavidin molecules) stock. The 96-well plate was incubated with shaking at 1600 

rpm on a ThermoMixer for 30 minutes at room temperature. Each well was diluted 1:4 in 

1X PBS for a final concentration of 227 nM.  

Preparation of oligonucleotide coupled Protein G beads  

For each antibody in the experiment, 10uL of oligonucleotide-coupled Protein G beads 

were prepared. All biotinylated Protein G beads that would be needed for the entire 

experiment were first pooled into a tube, washed in 1mL of PBSt and resuspended in 200uL 

of 1x oligo binding buffer (0.5X PBST, 5 mM Tris pH 8.0, 0.5 mM EDTA, 1M NaCl) per 

10uL of beads. 200 μL of bead suspension was aliquoted into individual wells of a deep 

well 96-well plate (Nunc 96-Well DeepWell Plates with Shared-Wall Technology, Thermo 

Scientific, Cat. No. 260251) and 14 μL of 5.675nM (1:40 from 227nM working stock made 

fresh) of streptavidin-coupled oligo was added to each well. The 96-well plate was then 

sealed with a Nunc 96-well cap mat (Thermo Scientific, Cat. No. 276000) and shaken at 

1200 rpm on a ThermoMixer for 30 minutes at room temperature. Beads in each well were 
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washed twice with M2 buffer (20 mM Tris 7.5, 50 mM NaCl, 0.2% Triton X-100, 0.2% 

Na-Deoxycholate, 0.2% NP-40), twice with 1X PBSt, and finally resuspended in 200 μL 

of 1X PBSt. 

Estimating number of oligos per bead 

After oligo-coupling, a QC step was performed to estimate the number of oligos bound to 

each bead. 20% of a representative well for each row of the 96-well plate of oligo-coupled 

beads was isolated and the “Terminal” tag from split-and-pool barcoding was ligated onto 

the oligos in these aliquots. Then, half of the ligated product was PCR amplified for 10 

cycles and purified using 1x SPRI beads. The purified DNA product was run on an Agilent 

Tapestation using a D1000 tape to estimate molarity and this molarity was used to calculate 

the total number of molecules post PCR. Using this post-PCR number and the number of 

cycles of PCR, the number of unique molecules pre-PCR was estimated22. Finally, the 

number of unique molecules was divided by the number of beads put into the PCR reaction 

(2.7*10^6 beads per 1uL of stock biotintylated protein G beads) to calculate the estimated 

oligos per bead. 

Antibody Coupling 

2.5 μg of each antibody was added to each well of the 96-well plate containing 

oligonucleotide labeled beads resuspended in 1X PBSt. The plate was incubated on a 

ThermoMixer overnight at 4C with 30 seconds of shaking at 1200 RPM every 15 minutes. 

The following morning, beads were washed twice with 1X PBSt (Sigma, #B4639-5G), 

resuspended in 200 μL of 1x PBSt + 4mM biotin + 2.5ug Human IgG Fc and left shaking 

at 1200 rpm for 15 minutes at room temperature to quench free Protein G or streptavidin 

binding sites.  

Preparation of bead pool 

All wells containing oligo labeled, antibody coupled beads were washed 2X with 200uL 

1X PBSt + 2 mM biotin, taking care to remove all supernatant after the final wash. 
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Afterwards, one of two protocols were followed for bead pooling: 1) Equal bead pooling 

– Beads were pooled using equal amounts of prepared beads for each antibody (10uL of 

Protein G beads per antibody); 2) Titrated bead pooling – Beads were pooled using unequal 

amounts of prepared beads for each antibody. The relative number of beads for each 

antibody was determined based on the chromatin pull-down efficiency (chromatin reads 

per bead) measured in QC experiments. Fewer beads were used for antibodies with higher 

pull-down efficiencies and greater beads were used for antibodies with lower pull-down 

efficiencies or negative controls. This strategy was intended to generate a more uniform 

distribution for the number of chromatin reads assigned to each antibody in the final 

experiment.  

ChIP-DIP: Immunoprecipitation, Split-and-pool and Library Preparation 

Pooled immunoprecipitation 

Fragmented lysate was diluted with PBSt +10mM biotin + 1x PIC + 2.5ug of human IgG 

Fc per 10ul of beads. The pool of labeled beads was added to the lysate and rotated on a 

HulaMixer for 1 hour at room temperature. Beads were washed 2X with 1mL IP Wash 

Buffer I (20mM TrispH8.0, 0.05% SDS, 1% Triton X 100, 2mM EDTA, 150mM NaCl in 

water), 2X with 1mL of IP Wash Buffer II (20mM TrispH8.0, 0.05% SDS, 1% Triton X 

100, 2mM EDTA, 500mM NaCl in water) and 2X with 1mL of M2 buffer (20mM Tris 

pH7.5, 0.2% Triton X100, 0.2% NP-40, 0.2% DOC, and 50mM NaCl). 

Chromatin End Repair and dA-tailing 

To blunt end and phosphorylate double stranded DNA, the NEB End Repair Module 

(E6050L; containing T4 DNA Polymerase and T4 PNK) was used. Beads were incubated 

in 1X NEBNext End Repair Enzyme cocktail + 1X NEBNext End Repair Reaction Buffer 

+ 4mM biotin + 1ug human IgG Fc per 10uL beads at 20C for 15 minutes. The reaction 

was quenched with 3X volume of PBSt + 100uM EDTA and beads were washed 2X with 

1mL PBSt. Next, to dA-tail DNA, the NEBNext dA-tailing Module (Klenow fragment (50 

-30 exo-, NEBNext dA-tailing Module, E6053L) was used. Beads were incubated in 1X 
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NEBNext dA-tailing Reaction Buffer + 1X Klenow Fragment (exo-) + 4mM biotin + 

1ug human IgG Fc per 10uL beads at 37C for 15 minutes. The reaction was quenched with 

3X volume of  PBSt + 100uM EDTA and beads were washed 2X with 1mL PBSt.  

Split-and-pool barcoding 

Split-and-pool barcoding was performed as previously described20,22 with modifications. 

Specifically, beads were first split-and-pool ligated by DPM to attach a common sticky end 

to all DNA molecules. Then, beads were split-and-pool ligated for ≥ 6 rounds with sets of 

“Odd,” “Even,” and “Terminal” tags. The number of barcoding rounds and number of tags 

used for each round was determined based on the number of beads that needed to be 

resolved. These parameters were selected to ensure that virtually all barcode clusters 

(>95%) represented molecules belonging to unique, individual beads. In most cases, 6 

rounds of barcoding with 24-36 tags per round were performed. Each individual tag 

sequence was used in only a single round of barcoding. All split-and-pool ligation steps 

were performed for 5 minutes at room temperature and supplemented with 2mM biotin and 

5.4uM Protein G. After split-and-pool barcoding was complete, beads were resuspended 

in 1mL of MyRNK buffer [20 mM Tris pH 7.5, 100 mM NaCl, 10 mM EDTA, 10 mM 

EGTA, 0.5% Triton-X, 0.2% SDS]. Aliquots of various sizes (0.05% to 4% of total beads) 

were prepared, ensuring that the number of beads within each aliquot was resolvable by 

the number of possible unique split-and-pool barcodes. Each aliquot was then digested with 

8ul of Proteinase K (NEB) for 2 hrs at 55C, 1200RPM shaking and reverse crosslinking at 

65C, 1600 RPM shaking overnight.   

Library Preparation  

DNA from each reverse crosslinked aliquot was isolated with a Zymo IC column using a 

6X volume of the DNA binding buffer (Zymo Cat. No. D4014) and eluted in 21ul of H20. 

Libraries were amplified for 9-12 cycles using Q5 Hot-Start Mastermix (NEB Cat No 

M0294L) and primers that added the full Illumina adaptor sequences. The following PCR 

mixture was used: 21uL DNA in H2O, 2uL of i5 primer (12.5uM), 2uL of i7 primer 
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(12.5uM), 25uL 2X Q5 MM. After amplification, libraries were cleaned with 1.2x SPRI 

(Bulldog Bio CNGS500) and eluted in 20uL. Prior to sequencing, libraries were gel 

purified to remove unused primers using a 2% agarose gel [Invitrogen Cat No. G401002].  

Sequencing 

Sequencing was performed on Illumina NovaSeq S4 (300 cycle) and NextSeq (200 cycle 

or 300 cycle) paired-end runs, Read lengths were asymmetrical in order to capture the full 

split-and-pool barcode sequence on read 2 (R2) and the chromatin sequence on read 1 (R1). 

For 300 cycle kit – 100 cycles for R1, 200 cycles for R2; For 200 cycle kit – 50 cycles for 

R1 and 150 cycles for R2. 

For each experiment, multiple different libraries were generated and sequenced. Each 

library corresponds to a distinct aliquot which is amplified with a unique pair of primers, 

providing an additional round of barcoding. 

Data Processing Pipeline 

Read Processing. Paired-end sequencing reads were trimmed with Trim Galore! V0.6.2 

(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) to remove adaptor 

sequences and quality assessed with FastQC v0.11.8. Split-and-pool barcodes were 

identified from Read 2 using Barcode ID v1.2.0 (https://github.com/GuttmanLab/chipdip-

pipeline ). Reads missing split-and-pool tags or with tags in the incorrect position given 

the split-and-pool round they correspond to were discarded. Subsequently, reads were split 

into two files, one for antibody ID reads and one for DNA reads, based on the presence of 

“BPM” (bead tag) or “DPM” (DNA tag), respectively, on Read 1.  

For DNA reads, the DPM sequence was trimmed from Read 1 using Cutadapt v3.481. The 

remaining sequence was aligned to mm10 or hg38 using Bowtie2 (v2.3.5)82 with default 

parameters. Only primary alignments with a mapq score of 20 or greater were kept for 

further analysis. Finally, reads were masked using the repeat genome obtained from 

ENCODE83.  

https://github.com/GuttmanLab/chipdip-pipeline
https://github.com/GuttmanLab/chipdip-pipeline
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For antibody ID reads, the BPM sequence, which contains the antibody-ID information, 

was   trimmed from Read 1 using Cutadapt v3.4 and the UMI extracted from the remaining 

sequence.  

MultiQC v1.684 was used to aggregate metrics from all steps. 

Cluster Generation. A “cluster file” was generated by aggregating all reads (i.e., aligned, 

masked DNA reads and antibody ID reads) that share the same split-and-pool barcode 

sequence. During this step, reads in each cluster were deduplicated by alignment position 

for DNA reads or UMI for antibody ID reads. 

Antibody ID Oligo Movement Quality Control Check. To assess the frequency of antibody 

ID oligo movement between beads, the proportion of antibody ID reads corresponding to 

the maximum representation in each cluster was calculated. Only clusters with >1 antibody 

ID read were considered. For each experiment, these values were plotted as an empirical 

cumulative distribution function (ECDF) using the python plotting package seaborn85. 

Cluster Filtering and Assignment. Individual clusters in the “cluster file” were assigned to 

a specific antibody based on antibody ID reads within the cluster.  First, clusters in the 

“cluster file” without antibody ID reads or clusters with >10,000 genomic DNA reads 

(which likely represent undersonicated material or clumps of beads) were filtered out. 

Next, each remaining cluster was assigned to the antibody ID that had maximum 

representation within the cluster if 1) there were greater than two unique reads 

corresponding to the antibody ID and 2) the antibody ID represented >80% of all antibody 

ID reads within the cluster. These criteria were selected empirically to ensure high 

confidence assignments of antibody IDs to each cluster. Clusters that did not meet these 

criteria were removed from further analysis. 

Antibody-specific protein maps. Genomic DNA alignments were split into separate bam 

files such that each file corresponded to all alignments associated with an individual 

antibody based on the antibody ID assignments within each cluster. DNA reads from 

clusters that did not have antibody ID reads, were too large, or could not be uniquely 
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assigned to a single antibody ID were filtered out. DNA reads were deduplicated such 

that only one read per alignment position per cluster was retained. 

Visualization and Peak Calling 

Bigwig Generation. Bigwigs were generated from each antibody-specific BAM file using 

the ‘bamCoverage’ function from deeptools v3.1.386 and were visualized with IGV87. 

Track visualizations are scaled to the maximum over the region and scales indicate reads 

per bin, unless indicated otherwise. 

Background Normalization. To correct for nonspecific background, a background model 

was generated for each individual antibody using the total pool of assigned sequencing 

reads. The background for an antibody contained all reads except those assigned to it, or 

other antibodies targeting the same or related proteins. For example, for an antibody 

targeting RNAPII-NTD, reads from all antibodies targeting RNAP II were excluded from 

this background set. To calculate a scaling factor for this background: 1) the total 

experiment coverage was calculated in 10kB bins, 2) the high coverage bins (80%) were 

selected, 3) a per-bin enrichment quotient of the target compared to the background 

coverage was calculated, 4) a kernel density plot of the enrichment quotient was generated, 

5) a threshold was calculated based on the position of the smallest peak, and 6) the ratio of 

total coverage in target versus background bins below the threshold was determined. The 

goal of this procedure was to locate regions that represented background noise in the target 

and calculate the target-to-background ratio using only those regions. The kernel density 

plot was frequently bimodal or with a long tail, with the higher peak or tail representing 

signal bins and the lower peak representing background bins. Background normalized 

peaks were called using the scaled background as a substitute for input. Background 

normalized bigwigs were generated using the ‘bamCompare’ function from deeptools 

v3.1.3 by subtracting the scaled background and, subsequently, removing negative value 

bins. 
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Peak Calling. Peaks were called using the HOMER v4.1188 program ‘findPeaks’ on tag 

directories generated for target datasets using ‘-style histone’ for histone modification 

targets and ‘-style factor’ for other targets. Background normalized peaks were generated 

using the scaled background distribution (described above). Specific parameter settings, 

such as ‘-minDist’ (distance between adjacent peaks), ‘-size’ (width of peaks) or filtering 

thresholds were tuned according to the nature of the target. For instance, peaks for focal 

histone modification H3K4me3 were generated using ‘-F 2 -P 0.001 -L 0’ while enriched 

regions for broad histone modification H3K36me3 were calculated using ‘-F 2 -P 0.001 -

L 0 -size 1000 -minDist 7500 -region’. 

Motif Prediction. Transcription factor motifs were predicted using the HOMER program 

‘findMotifsGenome’ on peaks generated using HOMER, as described above. 

Ribosomal DNA Alignments 

To analyze reads aligning to genomic DNA encoding ribosomal RNA (rDNA), we aligned 

reads directly to an rDNA reference. We generated a modified reference of the mouse 

rDNA sequence (NCBI Genbank BK000964.3)89. Because the original mouse BK000964.3 

sequence begins with the TSS and ends with the Pol I promoter, we transposed a portion 

at the end of the rDNA reference to the beginning, as previously described90, to enable a 

continuous visualization of the promoter-TSS region. Specifically, the rDNA sequence was 

cut at the 36,000 nt position and the sequence downstream of the cut site were moved 

upstream of the TSS, such that the resulting rDNA sequence begins with ~10kb of IGS, 

then the promoters and then transcribed regions. Processing steps prior to sequence 

alignment followed the standard ChIP-DIP pipeline. After barcode identification, DNA 

sequence was aligned to the custom rDNA genome using Bowtie2 (v2.3.5) with default 

parameters. Only primary alignments with a mapq score of 20 or greater were kept for final 

analysis. The subsequent cluster generation and read assignment steps followed the 

standard ChIP-DIP pipeline. 
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ChIP-DIP Experiments 

We performed 8 ChIP-DIP experiments in this paper, each of which, along with the 

associated antibodies, proteins, and statistics, are described in Supplemental Table 1. 

Briefly, these experiments were: 

1. Chromatin Movement Experiment: A quality control human and mouse mixing 

experiment used to quantify possible chromatin movement during the procedure. 

2. Antibody Movement Experiment: A quality control human and mouse mixing 

experiment used to quantify possible antibody movement during the procedure. 

3. K562 10 Antibody Pool Experiment: An initial data-generation experiment 

performed in human K562 to measure a small number of well-defined targets. 

4. K562 50 Antibody Pool Experiment: A data-generation experiment performed in 

human K562 measuring 50 antibodies. 

5. K562 52 Antibody Pool Experiment: A data-generation experiment performed in 

human K562 measuring 52 antibodies. 

6. K562 35 Antibody Pool Experiment: A data-generation experiment in human K562 

measuring 35 antibodies as a function of different cell input amounts. 

7. mESC 67 Antibody Pool Experiment: A data-generation experiment performed in 

mouse ES cells measuring 67 antibodies. 

8. mESC 165 Antibody Pool Experiment: A data-generation experiment performed in 

mouse ES cells measuring 165 antibodies. 

All ChIP-DIP experiments were performed using the same general protocol with the 

following experiment-specific modifications: 

1. Chromatin Movement Experiment: To test whether chromatin dissociates during the 

ChIP-DIP procedure and binds to other beads, we designed a human-mouse mixing 

experiment. Cell lysate from 20M mESC cells, cell lysate from 10M K562 cells and two 

sets of antibody-coupled, oligonucleotide-labeled beads were prepared according to 

standard protocol. Prior to IP, lysate yields were quantified using TapeStation and equal 
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amounts of mouse and human chromatin preparations were used for the subsequent, 

separate IPs. One set of antibody-ID labeled beads was used for the human IP and the other 

set of antibody-ID labeled beads was used for the mouse IP. After IP, the two species-

specific IPs were mixed and split into three conditions using different quenchers: (i) 10% 

BSA quencher, (ii) 1X Blocking Buffer quencher and (iii) No quencher. For the 10% BSA 

quencher condition, end-repair, dA tailing and DPM reactions were performed in buffer 

supplemented with 10% BSA. For the 1X blocking buffer quencher condition, end-repair, 

dA tailing and DPM reactions were performed in buffer supplemented with 1X protein 

blocking buffer (Abcam ab126587). The three conditions were combined for split-and-pool 

barcoding. 

For alignment of human-mouse mixing experiments, DNA reads were aligned to a custom 

combination genome including both mm10 and hg38 genomes using Bowtie2 (v2.3.5) with 

default parameters. Only primary alignments with a mapq score of 20 or greater were kept 

for further analysis. Reads were then masked using a merged version of mm10 and hg38 

blacklist regions defined by ENCODE. Reads were then uniquely assigned to human beads 

(beads present only in the human IP condition) or mouse beads (beads present only in the 

mouse IP condition) using the standard assignment pipeline. Total reads aligned to mm10 

or hg38 for each bead set were quantified and the relative proportions were plotted as a bar 

graph.   

2. Antibody Movement Experiment: To test whether antibodies dissociate from their 

labeled beads during the ChIP-DIP procedure and bind to other beads, we designed an 

experiment that involved the addition of labeled antibody-free beads at various steps. 

Following a similar set-up as the chromatin mixing experiment, cell lysate from 20M 

mESC cells, cell lysate from 10M K562 cells and two sets of antibody-coupled, 

oligonucleotide-labeled beads were prepared using the standard protocol. One set of beads 

was used for the human IP and the other set of beads was used for the mouse IP. After IP, 

half of each species-specific IP was mixed together, and half was left separate. For this 

mixed condition only, oligonucleotide-labeled beads without a coupled antibody were 

added prior to the end repair and the dA-tailing reactions. These empty beads were added 
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to capture antibodies that dissociated from other IP’d beads. Finally, the three conditions 

(mouse only, human only, mixed) were ligated with unique sets of DPM adaptors and 

combined for split-and-pool barcoding. To calculate the frequency of antibody movement, 

total reads and total beads assigned to human CTCF beads, human IgG beads, empty beads 

added prior to end repair and empty beads added prior to dA tailing were quantified. Reads 

per bead for each group were normalized to the mean value for human CTCF beads. These 

normalized values were plotted as a bar graph with 99% CI using the python plotting 

package seaborn. 

3. K562 10 Antibody Pool Experiment: We performed an initial small scale proof-of-

concept (POC) experiment in K562 using 10 different antibodies. The POC experiment 

was performed using lysate from 50M K562 cells per IP. Standard protocol with equal bead 

pooling was used with the exception of IP conditions. Two identical sets of antibody 

coupled beads were prepared using different biotinylated oligonucleotides; one set was 

used for an overnight immunoprecipitation at 4C and one set was used for 1-hr 

immunoprecipitation at room temperature. DNA processing steps and DPM ligation 

reactions were performed separately for the two IP conditions and then the two samples 

were pooled for the remaining rounds of split-and-pool barcoding. See Supplemental 

Table 1 for full list of antibodies under the “K562 10 Antibody Pool” tab. For data 

processing, the standard pipeline generated individual clusters corresponding to antibody-

IP condition pairs and individual bam files for each target in each IP condition. Data from 

both IP conditions were merged for each target, resulting in a single file per antibody. 

Comparison to ENCODE data: All ChIP-DIP comparisons to ENCODE-generated ChIP-

Seq data was performed using this 10 pool experiment in K562. Visual comparisons were 

performed using IGV and the raw ENCODE datasets: ENCFF656DMV (H3K4me3), 

ENCFF785OCU (POLR2A), ENCFF800GVR (CTCF) and ENCFF508LLH 

(H3K27me3). Genome-wide coverage comparisons were calculated across all RefSeq TSS 

for H3K4me3 and POLR2A or across 10kB bins for CTCF and H3K27me3. Calculations 

were performed using the ‘multiBigwigSummary’ function of the python package 

deeptools v3.1.3 and plotted as 2-D kernel density plots using the python library seaborn. 
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4. K562 50 Antibody Pool Experiment: The K562 50 Antibody Pool Experiment was 

performed using lysate from 50M K562 cells. The standard protocol with equal bead 

pooling was used.  See Supplemental Table 1 for full list of antibodies under the “K562 

50 Antibody Pool” tab. 

5. K562 52 Antibody Pool Experiment: The K562 52 Antibody Pool Experiment was 

performed using lysate from K562 cells. To test the efficiency of different crosslinking 

strategies, two parallel IPs were performed using the same pool of prepared beads. One IP 

utilized 60M K562 cells crosslinked with 1% FA and the other IP utilized 60M K562 cells 

crosslinked with 1% FA + DSG. Cells for the 1% FA condition were prepared as described 

above. Cells for the 1% FA + DSG condition were prepared as follows: After harvest and 

pelleting, K562 cells were crosslinked in 4 mL of 2 mM disuccinimidyl glutarate (DSG, 

Pierce) dissolved in 1X PBS per 10 million cells for 45 minutes at room temperature. Cells 

were then pelleted, washed with 1X PBS and crosslinked with 1% FA, as described above. 

For antibody ID oligonucleotide-labeling of beads, beads were labeled in two sequential 

rounds. First, beads were labeled according to the standard protocol. Then, beads were 

labeled again using another 2.5uL of 5.67nM streptavidin-coupled oligo in 200uL of 1x 

oligo binding buffer for 30 minutes at room temperature. During the first round of labeling, 

all wells received a unique streptavidin-coupled oligonucleotide. During the second round 

of labeling, most wells received the same streptavidin-coupled oligonucleotide as the first 

round, with the exception of eleven wells. Eleven pairs of wells received the same 

streptavidin-coupled oligonucleotide in the second round; one well of each pair was labeled 

with the same oligonucleotide in both rounds while the other well was labeled with 

different oligonucleotides. The result was that most beads were labeled with a single, 

unique oligonucleotide label, eleven beads were labeled with a pair of oligonucleotide 

labels, and eleven beads were labeled with a single oligonucleotide label that can also be 

found on other beads. This labeling strategy was designed to test combinatorial labeling of 

beads. After antibody coupling, beads were pooled in equal amounts and half of the bead 

pool was used for IP of each crosslinking condition. Following IP, each condition was 

processed separately and DPM-ligated with unique, condition-identifying sets of adaptors. 
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Conditions were kept separate for the first round of split-and-pool barcoding and then 

combined for the remaining rounds of split-and-pool. See Supplemental Table 1 for full 

list of antibodies under the “K562 52 Antibody Pool” tab. 

Sequenced data was processed using the standard ChIP-DIP pipeline up until the clustering 

assignment step. To account for the dual oligo labeling of selected antibodies, prior to 

assignment of unique antibodies to each cluster, clusters with multiple labels (clusters 

containing both oligo types from a known co-occurring pair) were isolated and antibody-

ID oligos in these clusters corresponded to the second round of labeling were reassigned 

to the matched antibody-ID oligo from the first round of labeling. The result is that all 

antibodies now corresponded to a unique antibody-ID oligo; for the eleven combinatorial 

pairs, this is the first round of labeling.  Afterwards, the remaining steps in the standard 

ChIP-DIP pipeline (cluster assignment, etc.) were performed as described above. 

6. K562 35 Antibody Pool Experiment for input cell number titration:  The K562 35 

Antibody Pool Experiment was designed to measure the amount of cell input material 

required for ChIP-DIP. This experiment involved four separate ChIP-DIP experiments, 

performed in pairs of two. For the first pair, the 45M and 5M conditions, a 50M cell aliquot 

was lysed and sonicated and then split into 45M and 5M cell equivalents of lysate. For the 

second pair, the 500K and 50K conditions, a 1M cell aliquot was lysed and sonicated and 

then split into 500k and 50k cell equivalents of lysate. Each pair of experiments used a 

single preparation of antibody-coupled, antibody ID oligonucleotide labeled beads that was 

split in half.  See Supplemental Table 1 for full list of antibodies under the “K562 35 

Antibody Pool” tab. 

First, read coverage profiles of four targets — H3K4me3, H3K27me3, CTCF, and RNAP 

II — were compared. For both RNAP II and CTCF, two different antibodies were included 

(RNAP II: CST 91151 and 14958S; CTCF: CST 3418S and ABCAM ab128873). Coverage 

of normalized bigwig files across the set of all peak regions from the 10 Antibody Pool 

experiment, the same set of regions used for the pool size comparison correlations, was 

calculated using the ‘multiBigwigSummary’ function of the python package deeptools 
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v.3.1.3. Pearson correlation coefficients for all pairs were calculated using the 

‘plotCorrelation’ function of deeptools v.3.1.3 and the plotted as a heatmap, manually 

ordering the rows/columns from lowest to highest amount of input lysate for each target. 

Second, read coverage profiles for a larger subset of targets were correlated with reference 

profiles over a set of high coverage regions. Only the targets that showed visible signal 

(i.e., peaks or enriched regions) in the 45M or 5M condition were analyzed. High coverage 

regions consisted of the set of all peaks from H3K4me1, H3K4me2, H3K4me3, 

H3K79me2, H3K79me4, H3K36me3, H3K9me3, H3K27me3, H4K20me3, and CTCF in 

either the 45M or the 5M condition. Coverage for all targets over these regions was 

calculated from raw bam files using the ‘multiBamSummary’ function and all pairwise 

Pearson correlation coefficients were calculated using the ‘plotCorrelation’ function from 

the python package deeptools. 

Reference tracks were defined as follows: 

Target Reference Experiment 

H3K27me3 K562 10 Antibody Pool Experiment 

H3K4me3  K562 10 Antibody Pool Experiment 

CTCF  K562 10 Antibody Pool Experiment 

RNAP II NTD  K562 10 Antibody Pool Experiment 

H3K4me1  K562 50 Antibody Pool Experiment 

H3K4me2 K562 50 Antibody Pool Experiment  

H3K79me2 K562 50 Antibody Pool Experiment  

H3K79me3 K562 50 Antibody Pool Experiment  

H3K27Ac K562 50 Antibody Pool Experiment  

RNAP II  K562 52 Antibody Pool Experiment 

RNAP II Ser2  K562 52 Antibody Pool Experiment 

RNAP II Ser5  K562 52 Antibody Pool Experiment 

RNAP II Ser2/5  K562 52 Antibody Pool Experiment 

TBP  K562 52 Antibody Pool Experiment 

SETD2  K562 52 Antibody Pool Experiment 

HP1b  K562 52 Antibody Pool Experiment 

RING1B  K562 52 Antibody Pool Experiment 

CBX8  K562 52 Antibody Pool Experiment 

EZH2  K562 52 Antibody Pool Experiment 

EED  K562 52 Antibody Pool Experiment 

H3K9me3 ENCODE accession: ENCFF155UQU 
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H3K36me3 ENCODE accession: ENCFF035SOZ, ENCFF272JVI, 

ENCFF816ECC, ENCFF880HKV 

H4K20me3 SRA accession: SRR8838489, SRR8838492, SRR8838490, 

SRR8838493, SRR8838491 

 

7. mESC 67 Antibody Pool Experiment: The mESC 67 Antibody Pool experiment was 

performed using lysate from 80M mESC cells.  The standard protocol with titrated bead 

pooling was used. This experiment contained 67 different antibodies. See Supplemental 

Table 1 for full list of antibodies under the “mESC 67 Antibody Pool” tab. 

8. mESC 165 Antibody Pool Experiment: The mESC 165 Antibody pool experiment was 

performed using lysate from 60M mESC cells.  Because the number of antibodies exceeded 

the number of unique antibody-ID oligonucleotides, two experiments were performed in 

parallel. Two plates of antibody-coupled, oligonucleotide-labeled beads were prepared 

separately, and pooled using the titrated bead pooling strategy and used to IP half of the 

prepared cell lysate. After IP, the two samples were processed separately up until the third 

round of split-and-pool barcoding and then combined for the remaining rounds of split-

and-pool. This experiment contained 165 different antibodies. See Supplemental Table 1 

for full list of antibodies under the “mESC 165 Antibody Pool” tab. Sequencing data was 

processed through the standard pipeline, using a concatenated string of antibody names 

(i.e., LSD1-CST_SAP30-Bethyl) to match individual antibody-ID sequences during 

barcode identification. After cluster generation and prior to cluster assignment, each read 

antibody-ID read was assigned to only one antibody based on its first-round split-and-pool 

tag. Cluster assignment and BAM file generation then proceeded using the standard 

pipeline.    

 

Protein Target Classification 

Antibody targets were assigned to one of five categories: histone modification (HM), 

transcription factor (TF), chromatin regulator (CR), RNA polymerase (RNAP), and other 
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DNA associated protein. Transcription factors were defined as proteins with a DNA-

binding domain and were manually subclassified into constitutive, stimulus response or 

cell type specific/developmental manually curated based on functional descriptions from 

GeneCards. Chromatin regulators contained proteins or members of complexes that read, 

write, or erase histone modifications or DNA methylation. Proteins that were part of 

chromatin regulator complexes and contained a DNA binding domain were considered part 

of the chromatin regulatory category. Proteins involved in chromatin remodeling (e.g., 

BRG1) or other structural proteins that interact with chromatin (e.g., Lamin A) were also 

considered chromatin regulators. Dual function proteins (e.g., transcription factors with 

intrinsic acetyltransferase capabilities) were assigned to a single category (e.g., 

transcription factor) but were included in chromatin regulator schematics. Other DNA 

associated proteins included a mixture of targets, such as RNAP elongation factors (e.g., 

ELL), RNA binding proteins (e.g., NONO) and antibodies that detected DNA methylation. 

 

Pool Size Comparison Analysis 

To measure the influence of the number of antibodies contained within an individual pool, 

read coverage profiles of four targets — H3K4me3, H3K27me3, CTCF, and RNAP II — 

generated in four different ChIP-DIP experiments in K562 cells were compared. ChIP-DIP 

experiments included the10 Antibody Pool, the 45M condition from the 35 Antibody Pool, 

the 50 Antibody Pool, and the 52 Antibody Pool in K562.  For both RNAP II and CTCF, 

two different antibodies were included (RNAP II: CST 91151 and 14958S; CTCF: CST 

3418S and ABCAM ab128873). Coverage of normalized bigwig files across the set of all 

peak regions from the 10 Antibody Pool experiment was calculated using the 

‘multiBigwigSummary’ function of the python package deeptools v.3.1.3. Pearson 

correlation coefficients for all pairs were calculated using the ‘plotCorrelation’ function of 

deeptools v.3.1.3 and plotted as a heatmap, manually ordering the rows/columns from 

smallest to largest pool size for each target. 
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Histone Modification Diversity Analysis 

Chromatin-State: Genome-wide coverage for 10kb windows for 12 histone marks 

(H3K27me3, H2AK119ub, H3K9me3, H4K20me3, and H3K9me3 from the 5M condition 

in the 35 Antibody Pool Experiment in K562; H3K79me2, H3K79me1, H3K4me3, 

H3K4me2, H3K4me1, H3K9Ac, and H3K27Ac from the histone panel in K562) was 

calculated using the ‘multiBamCoverage’ function from deeptools v3.1.3. These values 

were standardized for each mark by transforming into z-score values. The UMAP reduction 

was generated using the UMAP91 python package and parameters n_components=2 and 

n_neighbors=3.  

Polycomb-Associated Histone Modifications: Validation of polycomb-associated histone 

modifications used the 5M condition in the K562 35 Antibody Pool Experiment. 

H3K27me3 and H2AK119ub bam alignment files were converted into binary signal files 

using the ‘BinarizeBam’ script from the ChromHMM92 package with standard settings. 

The number of bins with only H2AK119ub signal or with both H2AK119ub and 

H3K27me3 signal were computed and plotted as a pie chart. 

Heterochromatin-Associated Histone Modifications: Validation of heterochromatin-

associated histone modifications used the 5M condition in the K562 35 Antibody Pool 

Experiment. Read coverage of H3K9me3, H4K20me3, and H3 were computed over 

annotation groups (ZNFs, LTRs, LINES, SINES, TSS+/-2kb) using the ‘depth’ function 

from samtools v1.993. An enrichment score was calculated by normalizing for feature and 

target abundance. Specifically, let a = total base pairs within an annotation group, b = 

effective genome size, c = read coverage of a target over the annotation group, and d = total 

reads of the target. The enrichment score would be (c/d) / (a/b).  

Promoter-Associated Histone Modifications: Validation of promoter-associated histone 

modifications used the ChIP-DIP histone dataset in mESC. Promoter coverage correlations 

were calculated across promoters from EPDNew94, a database of non-redundant eukaryotic 
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RNAP II promoters, +/- 500bp using the ‘multiBamSummary’ and ‘plotCorrelations’ 

functions of the python package deeptools v.3.1.3. 

Gene Body-Associated Histone Modifications: Validation of gene body-associated histone 

modifications used the 5M condition in the K562 35 Antibody Pool Experiment and the 

K562 50 Antibody Pool Experiment. Coverage metaplots over the gene bodies of all 

protein coding genes from GENCODE v38 basic annotation were calculated using 

‘computeMatrix’ function of the python package deeptools v.3.1.3 and normalized to the 

maximum and minimum for each target.  

Enhancer-Associated Histone Modifications: Validation of enhancer-associated histone 

modifications used the 5M condition in the K562 35 Antibody Pool Experiment and the 

K562 50 Antibody Pool Experiment. H3K4me1 peaks were assigned to three categories 

(promoter, gene or intergenic) based on overlap with H3K4me3 (promoter), H3K79me1 

(gene) or H3K36me3 (gene). These categories were further sub-divided based on the co-

occurrence of H3K27Ac peaks. The proportion of peaks in each category was computed 

and plotted as a pie chart. 

Chromatin Regulator Diversity Analysis 

Polycomb-Associated Chromatin Regulators: Validation of polycomb-associated 

chromatin regulators used the K562 50 Antibody Pool Experiment. Metaplots respective 

to RING1B peak sites were calculated using ‘computeMatrix’ function of the python 

package deeptools v.3.1.3 with the following settings: ‘reference-point -bs 10000 -a 

500000 -b 500000’. The resulting read coverage profiles were normalized to the maximum 

and minimum for each target and plotted as a heatmap. 

Heterochromatin-Associated Chromatin Regulators: Validation of heterochromatin-

associated chromatin regulators used the K562 50 Antibody Pool Experiment. Genome-

wide coverage for 10kB windows and Pearson correlation coefficients were calculated 

using the ‘multiBigwigSummary’ function and ‘plotCorrelation’ function, respectively, of 

the python package deeptools v3.1.3. 
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H3K4me3-Associated Chromatin Regulators: Analysis of H3K4me3-associated 

chromatin regulator used the mESC 165 Antibody Pool Experiments. Binding profiles of 

JARID1A, RBBP5 and PHF8 were measured +/- 1kB around the TSS of all representative 

promoters from EPDNew and were clustered using k-means clustering with k=4 by the 

‘plotCoverage’ function of the python package deeptools v.3.1.3. H3K4me3 binding 

profiles from the mESC 67 Antibody Pool Experiment were measured over the same four 

promoter groups. 

Polymerase Diversity Analysis 

RNAP I, II and III Comparison: Validation of the various RNA polymerases used the 

mESC 165 Antibody Pool Experiment. First, read coverage within a +/- 100bp window 

surrounding the promoters/TSS of various gene groups were calculated. For tRNAs, the 

TSS of repeatmasker95  tRNAs were used. For snRNAs, the TSS of repeatmasker snRNAs 

(excluding U6 which is transcribed by RNAP III) were used. For mRNAs, EPDNew TSS 

annotations were used. For rDNA, the spacer promoter was used. Next, for each 

polymerase, coverage was normalized to the total reads aligned with any gene group. 

Finally, an enrichment score of the relative coverage compared to IgG was calculated and 

plotted as a bar graph.  

RNAP II Phosphorylation State Comparison: Validation of the various RNA polymerases 

used the K562 52 Antibody Pool Experiment. Metaplots over the gene bodies of all protein 

coding genes from GENCODE v38 basic annotation were calculated using 

‘computeMatrix’ function of the python package deeptools v.3.1.3. 

Histone Combinatorial Analyses 

Polymerase-Associated Histone Profiles 

For RNAP I, track coverage profiles of various histone modifications 1.5kB upstream to 

0.5kB downstream of the spacer promoter were visualized using IGV. 
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For RNAP II, metaplots of coverage profiles for various histone modifications were 

generated around active and inactive RNAP II promoters using the deeptools v.3.1.3 

‘computeMatrix’ (reference-point -a 1000 -b 1000) and ‘plotProfile’ functions. Promoters 

were defined as the TSS of all representative promoters from EPDNew and were grouped 

into active or inactive based on the read coverage of RNAP II in the surrounding +/-1kB 

window.  

For RNAP III, metaplots of coverage profiles for various histone modifications were 

generated around active and inactive tRNA genes using the deeptools v.3.1.3 

‘computeMatrix’ (scale-regions -a 1000 -b 1000 -m 75 -bs 25) and ‘plotProfile’ functions. 

tRNA genes were grouped into active or inactive based on the read coverage of RNAP III. 

For comparison of relative histone levels, total coverage for each histone mark was 

calculated in the -1.5kB to +0.5kB window surround the spacer promoter for rDNA, -0.5kB 

to +0.5kB window around active RNAP II promoters and -0.5kB to +0.5kB window around 

active RNAP III tRNA gene promoters. To account for differences in window size, the 

coverage of H3K56Ac and H3K4me2 was normalized to the level of H3K4me3. The 

density profiles of these ratios were plotted using the seaborn ‘jointplot’ function with the 

following kde parameters: “common_norm=False, thresh=0.2, log_scale=True, levels=10, 

cut=True”. For comparison to RNAP I, the total sum ratios (e.g., total H3K4me2 coverage 

across all active RNAP II promoter intervals divided by total H3K4me3 coverage across 

all active RNAP II promoter intervals) were also calculated and plotted for RNAP II and 

RNAP III.   

H3K4me3 Enriched Regions Clustering  

Combinatorial histone modification analysis for H3K4me3 regions used the 5M condition 

of the K562 35 Antibody Pool Experiment. Read coverage of ten histone targets 

(H3K79me3, H3K79me2, H3K36me3, H3K4me1, H3K4me2, H3K27Ac, H3K27me3, 

H2AK119ub, H3K9me3, and H4K20me3) was calculated over all H3K4me3 peak regions 

using the ‘multicov’ function of bedtools96. The resulting region vs histone data matrix (A) 
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was normalized using log normalization97: 1) The log of the data matrix was computed 

𝐿 = log(𝐴). 2) The column mean (�̅�𝑖.), row mean (�̅�.𝑗), and overall mean (�̅�..) of the log 

matrix were computed. 3) All individual cells of the final matrix were computed according 

to 𝐾𝑖𝑗 =  𝐿𝑖𝑗 − (�̅�𝑖.) − (�̅�.𝑗) + (�̅�..) . This method of normalization is intended to capture 

the “extra” coverage of histone modification j in region i that is not explained simply by 

the overall difference between region i and other regions or between histone modification 

j and other histone modifications. Instead, it is special to the combination of region i (a 

region with H3K4me3 enrichment) and coverage of histone modification j. The regions of 

the normalized data matrix were clustered using cluster.hierarchy.linkage function from 

scipy v.1.6.298 with a Euclidean distance metric and complete linkage method. The 

clustered matrix was visualized using the ‘clustermap’ function of python package seaborn.  

Gene annotation of H3K4me3 regions was performed using the ‘annotatePeaks.pl’ 

function from HOMER v4.11. ZNF genes, RP genes, and lincRNA genes were defined as 

regions whose annotation gene description contained the terms ‘zinc finger protein’, 

‘ribosomal protein’ and ‘long intergenic’, respectively, and had the nearest TSS within 

2000bp. snoRNA genes were defined as all regions whose annotation gene type was 

snoRNA. Satellite RNA genes were defined as regions whose detailed annotation 

contained the term ‘Satellite’. tRNA genes were defined as all regions that intersected with 

tRNA gene bodies or upstream by 500bp of the tRNA TSS from repeat masker. Cell cycle 

genes were defined as regions whose gene annotation belonged to the Kegg Cell Cycle 

Pathway99. Bivalent genes were defined as regions whose gene annotation belong to those 

identified by Court and Arnaud in human H1 cells100. Enhancer RNA regions (both 

antisense and intergenic) were defined as regions that intersected those identified by 

Lidschreiber et al.101 and had the nearest TSS greater than 2000bp away. To visualize 

enrichments of gene annotations in sets and subsets of the hierarchically clustered heatmap, 

the kernel density estimate (KDE)  was calculated for each annotation group based on their 

clustering-defined order.  
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RNAP II levels of individual H3K4me3 regions were measured as the summed 

coverage over each region from four antibodies targeting RNAP II (RNAP II, RNAP II 

NTD, RNAP II Ser5, RNAP II Ser2) from the K562 52 Antibody Pool Experiment. 

Transcriptional levels for sets and subsets of H3K4me3 regions were compared using 

violin plots generated by the python plotting package seaborn. P-values for comparison of 

transcriptional levels within subsets of H3K4me3-enriched regions were calculated using 

the Kolmogorov Smirnov test from scipy.stats. 

ChromHMM Model of Acetylation  

The ChromHMM genome segmentation model was built using 15 different histone 

acetylation modifications measured in the mESC 67 Antibody Pool Experiment. Bam files 

were binarized using the BinarizeBam function from ChromHMM with a Poisson 

threshold of 0.000001 and other default parameters. The signal threshold was increased 

from default to remove spurious noise. State models with 5-20 states were built using the 

LearnModel function with default parameters. States were manually reordered and grouped 

based on transition probabilities between states. 19 states were selected for the final model 

to retain state 17, a state with a distinctive enrichment and transition profile.   

Non-Negative Matrix Factorization of Acetylated Regions 

Non-negative matrix factorization analysis utilized the histone acetylation mark data from 

the mESC 67 Antibody Pool Experiment. NMF is a matrix factorization technique to 

reduce dimensionality and explain the observed data using a limited number of 

combinatorial components97. NMF decomposes the original data matrix (dimensions: N x 

M) into a basis matrix (dimensions: N x k) and a mixture coefficient matrix (dimensions: 

k x M). In this case, N represents genomic regions of interest, M represents individual 

histone acetylation marks and k represents the number of combinatorial histone acetylation 

states. High coverage regions were defined using the results of the ChromHMM Model. 

Specifically, the 200bp genomic bins corresponding to states with enrichment of multiple 

histone acetylation marks (states 1,2,3,4,6,9,10,11,12,15,16) were merged to form high 
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coverage regions. Then, to reduce the number of fragmented or spurious regions, bins 

with 400 base pairs (2 genomic windows) were merged and regions with size less than 400 

base pairs (2 genomic windows) were filtered out. A initial normalized data matrix (N x 

M) was generated by computing the coverage of each histone modification over each 

region and normalizing for region size and histone abundance. Specifically, to account for 

differences in region size between regions, the total reads per region was scaled by region 

size and, to account for differences in total measured histone abundance between marks, 

sigmoidal scaling was used102,103. NMF was then performed using ‘Nimfa’104, a python 

library for nonnegative matrix factorization, with the nndsvd initialization method. The 

rank k was selected empirically, taking into account the biological assignability of the 

resulting states, the complexity of the model and the stability of the factorization (the 

number of iterations the algorithm required to coverage).  

After factorization, the resulting basis matrix (N x k) contained the coefficient of each 

combination i for each genomic region. A sorted heatmap of the basis matrix was generated 

by grouping the regions according to the combination that contributed the greatest 

coefficient for each region. For visualization, this heatmap was normalized by dividing the 

coefficients for each region by the total coefficient sum of the region. 

To profile and assign a biological interpretation to individual combinations, each region 

was assigned to the combination with the maximum coefficient. Identification of 

transcription factors with significant binding overlap to regions assigned to a single 

combination was performed using the Cistrome Data Browser, an interactive database of 

public ChIPseq105. For each combination, the top 100 scores were filtered for targets with 

at least 2 hits in any cell type. Motif enrichment was calculated using the HOMER function 

‘findMotifs’ on all genomic regions assigned to each combination. For comparison of 

enrichment levels in C4 versus C5, enrichments were calculated using bedgraphs from the 

mESC 165 Antibody Pool Experiment and the ChromHMM program ‘OverlapEnrichment’ 

(java -jar ChromHMM.jar OverlapEnrichment -binres 1 -signal). Interval bars for these 

enrichments were generated by bootstrap resampling; enrichments were recalculated for 

200 independent draws of 75% of the regions assigned to C4 or C5.    
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High Density Regions of NANOG-OCT4-SOX2 

High density regions of pluripotency associated transcription factors were calculated using 

the NANOG, OCT4 and SOX2 data from the mESC 165 Antibody Pool Experiment. 

Specifically, high-density and low-density regions were defined using the super-enhancer 

setting of the ‘callPeaks’ function from HOMER on the merged tag directors of the three 

transcription factors. To remove nonspecific background peaks, the merged tag directories 

of the background models for these three factors was used as input.  Briefly, the super 

enhancer setting with default parameters first identifies peaks, then stiches together 

individual peaks that are within 12.5kb of each other, calculates a ‘super enhancer score’ 

for each region based on input-normalized read coverage, generates a ‘super enhancer plot’ 

(regions sorted by score vs number of regions) and identifies the regions where the slope 

of the plot is greater than 1. These regions are labeled as putative ‘super enhancers’ while 

all remaining regions are labeled as ‘typical enhancers’. We consider the ‘super enhancer’ 

regions as high-density regions (HDR) and the ‘typical enhancer’ regions as low-density 

regions (LDR).  

TF and CR enrichments over HDRs versus LDRs were calculated using the 

‘computeMatrix’ function with scale-regions setting from deeptools v.3.1.3. To account 

for the differences in typical region size between LDRs and HDRs, which tended to be 

much larger, the -m parameter was set to approximately the median region size for each 

group.  

GO terms associated with the intersection of HDRs, LDRs and NMF-based acetylation 

combinations were calculated using the GO analysis function of ‘annotatePeaks’ from 

HOMER. To limit the number of terms under consideration, only terms assigned to the 

biological process category that received a cutoff p<0.001 were used. Terms were then 

manually grouped into larger categories (e.g., developmental, metabolic). Enrichment 

scores were calculated by normalizing for the total number of possible unique terms 

assigned the category and the total number of terms assigned to the intersection group.  
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Statistics 

Pearson correlation coefficients for coverage comparisons versus ENCODE were 

calculated using pearsonr function of scipy.stats library98. Pearson correlation coefficients 

for heatmaps were generated using the ‘plotCorrelation’ function from deeptools v.3.1.386. 
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3.1. SUMMARY 

Mammalian genomes are organized into three-dimensional DNA structures called A/B 

compartments which are associated with transcriptional activity/inactivity. However, 

whether these structures are simply correlated with gene expression or are 

permissive/impermissive to transcription has remained largely unknown because we lack 

methods to measure DNA organization and transcription simultaneously. Recently, we 

developed RNA&DNA (RD)-SPRITE, which enables genome-wide measurements of the 

spatial organization of RNA and DNA. Here we show that RD-SPRITE measures genomic 

structure surrounding nascent pre-mRNAs and maps their spatial contacts. We find that 

transcription occurs within B compartments — with multiple active genes simultaneously 

colocalizing within the same B compartment — and at genes proximal to nucleoli. These 

results suggest that localization near or within nuclear structures thought to be inactive 

does not preclude transcription and that active transcription can occur throughout the 

nucleus. In general, we anticipate RD-SPRITE will be a powerful tool for exploring 

relationships between genome structure and transcription.  
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3.2. INTRODUCTION 

The three-dimensional (3D) arrangement of DNA in the nucleus is thought to be important 

for regulating critical nuclear processes such as DNA replication and transcription1–3. 

Accordingly, there have been significant efforts to map DNA structure across different cell 

types using proximity-ligation methods like 3C4, Hi-C5–7 and related variants2,8. These 

methods have identified several structural features including chromosome territories, A/B 

compartments, topologically associating domains (TADs), loops, and promoter-enhancer 

interactions. However, which of these are critical for gene regulation and other cellular 

functions remains unclear.   

The main reason that structure-function relationships within the nucleus are poorly 

understood is that current methods cannot simultaneously measure transcriptional states 

and 3D genome organization9,10. Instead, analysis of the functional consequences of 

nuclear structure relies on correlations between distinct measurements of DNA 

organization and gene expression profiles generated from a combination of experimental 

methods (e.g. Hi-C and RNA-Seq) in different populations of cells. These measurements 

capture an ensemble of many individual cells, each of which may contain heterogenous 

functional states and structures, making the direct comparison between 3D structure and 

transcription challenging5,11. 

To highlight this limitation, consider A and B compartments, which refer to alternating sets 

of DNA regions that broadly partition chromosomes; DNA regions within one 

compartment preferentially interact with each other (e.g., A-A) rather than with 

neighboring regions of the other (e.g., A-B). Early studies found that A compartments are 

enriched for genomic DNA regions containing actively transcribed RNA Polymerase II 

(Pol II) genes, whereas B compartments are depleted for active Pol II genes and enriched 

for repressive chromatin marks7,12. As such, these compartments are generally thought to 

represent spatial organization of transcriptionally active (A) and inactive (B) Pol II genes 

within distinct regions of the nucleus3,10,13–15.  
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In contrast to this general observation, there are specific genes located within B 

compartments that are actively transcribed12. This is predominantly explained by a model 

where actively transcribed DNA loci “loop out” of the inactive (B) compartment to localize 

within an active (A) compartment1,16–19. In this model, Pol II transcription does not occur 

within B compartments; actively transcribed genes may appear to be within them simply 

because of the ensemble nature of compartment (e.g. Hi-C, SPRITE) and gene expression 

measurements (e.g., RNA-seq). In support of this “looping out” model, single cell 

microscopy measurements have shown that individual active genes can be located away 

from the remainder of the chromosome from which they are transcribed16,18–20, that the 

promoter regions of active genes in B compartments can form local associations with the 

A compartment21, and that transcribed genomic loci (measured by interactions between 

pre-mRNAs) do not form A/B compartments16. 

Yet, there are other observations to suggest that transcription may occur within both A and 

B compartments: many A/B compartment boundaries remain the same between distinct 

cell states despite major changes in gene expression programs (Dixon et al., 2015), and 

direct recruitment of various gene loci to the nuclear lamina (a compartment associated 

with transcriptional silencing and located within B compartments) does not always lead to 

transcriptional repression for all genes22–25. Accordingly, whether localization of genes 

within B compartments or other nuclear structures that have been associated with inactive 

Pol II transcription and repressive heterochromatin (such as the nucleolus and nuclear 

lamina)22,26,27 precludes Pol II transcription or is simply correlated with inactive 

transcription remains unclear. 

Recently, we developed RNA & DNA SPRITE (RD-SPRITE), which enables 

simultaneous multi-way measurements of DNA and RNA organization in the nucleus28. In 

our previous study, we focused on the spatial localization of ncRNAs and their roles in 

seeding nuclear organization. However, RD-SPRITE also measures localization of 

mRNAs, including individual nascent pre-mRNAs at their transcriptional loci. Because 

RNA represents the functional output of transcription, this approach allows us to directly 

measure both 3D genome organization and transcription at the same location within the 
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nucleus. Here, we show that RD-SPRITE can be used to assess the relationship between 

structural organization and transcriptional activity within different structural 

compartments. 

 

3.3. RESULTS 

RD-SPRITE measures nascent and mature mRNAs at precise locations in the cell 

RD-SPRITE uses split-and-pool barcoding to measure the spatial organization of 

individual RNA and DNA molecules within the cell. The fundamental measurement unit 

of RD-SPRITE is the SPRITE cluster, which contains multiple RNA and DNA molecules 

that are in close proximity within a single cell28,29. Using these clusters, we can measure 

multiway RNA and DNA contacts, including RNA-RNA, RNA-DNA, and DNA-DNA 

contacts, within higher-order structures in the cell (Figure 1A). We previously showed that 

RD-SPRITE can accurately measure the 3D spatial organization of DNA and RNA in the 

nucleus, including DNA structures such as chromosome territories, A/B compartments, 

TADs, and loops as well as DNA and RNA within nuclear bodies such as the nucleolus, 

nuclear speckles, and histone locus body28,30. 

Here, we sought to explore whether RD-SPRITE can measure the 3D organization of 

distinct populations of mRNAs — including nascent and mature mRNAs — and their 

quantitative levels at various locations in the cell. To do this, we examined the RNA-RNA 

and RNA-DNA contacts in our RD-SPRITE dataset collected from mouse embryonic stem 

cells. Specifically, we focused on intronic reads as a surrogate for nascent pre-mRNAs and 

exonic reads as a surrogate for mature mRNAs. We reasoned that newly transcribed 

(nascent) pre-mRNAs should be preferentially located on chromatin in proximity to their 

genomic DNA locus, while fully spliced (mature), mRNAs should be associated with 

ribosomal RNAs (rRNAs) in the cytoplasm. Consistent with this, we find that intronic reads 

in RD-SPRITE represent nascent pre-mRNAs in that they are (i) enriched on chromatin, 

(ii) enriched for contacts with various small nuclear RNAs (snRNAs) such as U1 and U2, 
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which are involved in pre-mRNA splicing in the nucleus, and (iii) depleted for contacts 

with cytoplasmic RNAs, such as rRNAs (Figure 1B). In contrast, exonic reads show 

properties consistent with mature mRNAs in that they are: (i) depleted on chromatin, (ii) 

depleted for contacts with snRNAs, and (iii) enriched for contacts with rRNAs (Figure 

1B). Together, these data demonstrate that RD-SPRITE can detect both classes of mRNAs 

located in different parts of the cell and distinguish between their localization patterns. 

We next tested whether RD-SPRITE can quantitatively measure the relative abundance of 

these distinct mRNA populations. First, we measured whether the overall RNA levels 

measured by RD-SPRITE correlate with total RNA-Seq measurements and observed a 

strong correlation between the levels of RNAs measured by each approach (spearman 

p=0.79) (Figure 1C)31. Next, we focused specifically on nascent pre-mRNA levels by 

comparing transcription levels estimated from intronic reads in RD-SPRITE and found 

them to be highly correlated with those estimated from global run-on and sequencing 

(GRO-Seq) assays32, which measure transcription levels of mRNAs (spearman p=0.86). 

Finally, we observed a strong correlation between exonic reads measured by RD-SPRITE 

and mature mRNA levels measured by polyA-selected RNA-Seq (spearman p=0.88). 

To confirm the localization of nascent RNAs at their genomic loci, we measured the DNA 

contacts of pre-mRNAs (RNA-DNA contacts) and found them to be enriched for contacts 

with their genomic loci (Figure 1D-E). Next, we explored whether RD-SPRITE can detect 

the 3D structure at these actively transcribing DNA loci. To do this, we mapped the DNA-

DNA contacts of SPRITE clusters containing a specific nascent pre-mRNA and found that 

the DNA contacts are highly enriched surrounding the locus from which the pre-mRNA is 

transcribed (Figure 1F).  

Taken together, these results demonstrate that RD-SPRITE accurately distinguishes 

distinct populations of mRNAs within the cell, enables quantitative measurement of their 

transcription levels, and detects the genomic contacts and 3D structure around individual 

pre-mRNAs. 
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Genomic DNA located within B compartments can be actively transcribed 

Because RD-SPRITE accurately measures both nascent RNA transcripts and higher-order 

DNA organization genome-wide, we used it to explore the global structure of genomic 

DNA regions undergoing Pol II transcription. Specifically, we generated a genome-wide 

DNA-DNA contact matrix using SPRITE clusters containing nascent pre-mRNAs. We 

reasoned that if most genes within B compartments loop out and reposition into A 

compartments when actively transcribed (the “looping out” model), then we would see a 

single active compartment in the DNA-DNA contact matrix of actively transcribed regions. 

Conversely, if genes are transcribed within B compartments, then we would observe both 

A and B compartments within this DNA-DNA contact matrix (Figure 2A). In fact, the 

genomic DNA structures generated from only actively transcribed clusters show clear 

chromosome territories and intra-compartment structures comparable to those observed 

when measuring DNA-DNA contacts across all SPRITE clusters (Figure 2B). The A/B 

compartment structure seen in transcribed clusters closely corresponds to A/B 

compartments defined using principal eigenvector analysis on the DNA contacts measured 

from all SPRITE clusters (Figure S1, see Methods). This suggests that genes in the B 

compartment do not “loop out” as they are transcribed but instead remain in the B 

compartment. 

While it is commonly described as a single compartment, the B compartment is in fact 

heterogenous. Compartment structures can also be defined using 5-subcompartments, three 

of which (B1, B2, B3) are considered B-like but differ in repressive chromatin 

modifications, gene density, and nuclear location33,34 (Figure 2C); B2 and B3 are highly 

enriched for chromatin features associated with transcriptional repression while B1 has 

chromatin features more closely resembling the A2 sub-compartment. Because of this, we 

considered the possibility that our observations of transcription within the B compartment 

might be restricted to B1. To explore this, we focused on a set of highly-expressed nascent 

pre-mRNAs in RD-SPRITE and found these genes to be located within all three B sub-
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compartments (Figure 2C, see Methods). Focusing specifically on the sub-

compartments associated with repressive features (B2 or B3), we measured the DNA-

organization (DNA-DNA contacts) when pre-mRNAs are actively transcribed. We 

selected individual SPRITE clusters that contain reads for nascent pre-mRNAs located 

within B2 or B3 and generated a DNA-DNA heatmap (Figure 2D). We found that actively 

transcribed genomic regions within these sub-compartments maintain DNA-DNA contacts 

with other B2 and B3 regions and do not contact neighboring A1 sub-compartment 

genomic regions. Conversely, when we used clusters containing pre-mRNAs from genes 

within the A1 sub-compartment to generate a DNA-DNA heatmap, we observed 

preferential contacts with other A1 regions but not contacts with neighboring B 

compartment DNA regions. Together, these results demonstrate that active transcription 

can occur within all B sub-compartments.  

To further validate that B compartment structures are observed when B compartment genes 

are actively transcribed, we explored the DNA contacts of nascent pre-mRNAs. RD-

SPRITE detects long-distance RNA-DNA interactions between nascent pre-mRNAs and 

genomic DNA sites beyond their transcriptional loci (Figure 1E). To investigate the 

underlying genomic DNA structure during active transcription of B compartment genes, 

we looked for A/B compartment structures in these long-range RNA-DNA contacts. 

Indeed, beyond RNA-DNA contacts between pre-mRNAs and their own loci, B 

compartment pre-mRNAs are enriched for contacts with DNA regions located in 

neighboring B compartments and depleted for contacts with DNA regions located within 

A compartments (Figure 2E-G). Because these nascent RNA transcripts are located near 

their gene locus, this confirms that genes contained within B compartments do not “loop 

out” when transcribed. 

Together, these results indicate that localization of genes within B compartments does not 

preclude transcription.  
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Nascent pre-mRNAs organize within genome-wide structures resembling A/B 

compartments 

We next wondered whether multiple, simultaneously transcribed genes organize together 

within the B compartment. To explore this, we generated an RNA-RNA contact matrix to 

measure the genome-wide spatial organization of nascent pre-mRNAs (Figures 3A-B). 

Because the number of observed RNA contacts is dependent on expression level, we 

focused on the 2000 most highly expressed genes to ensure high-confidence measurements 

of individual pre-mRNA contacts (Table S1). These highly expressed genes include those 

located within both A and B compartments (1216 A genes and 784 B genes) and display 

comparable expression levels. (Figure S1C, S2A). We sorted these pre-mRNAs by the 

genomic position of their gene locus and observed clear structural patterns, including: (i) 

preferential contacts between pre-mRNAs that are transcribed from the same chromosome 

reminiscent of chromosome territories (Figure 3A); and (ii) alternating blocks of highly 

interacting pre-mRNAs within individual chromosomes reminiscent of A/B compartments 

(Figure 3B). In contrast, contact matrices generated between mature mRNAs (exons) do 

not display preferential contact frequencies based on their genomic positions, consistent 

with their localization in the cytoplasm (Figure S3A-B).  

To determine whether these intrachromosomal structural patterns correspond to A/B 

compartments, we compared them to the 3D structure of their corresponding genomic DNA 

loci. We generated a DNA-DNA contact matrix for these highly expressed genes (gene-

level heatmap) and observed highly similar intrachromosomal patterns in the DNA-DNA 

and the pre-mRNA RNA-RNA contact maps (Pearson r = 0.83), but not between gene-

level DNA and mature mRNA contact maps (Pearson r = 0.04) (Figure 3C, S3C). Next, 

we defined A/B compartments using nascent RNA-RNA contacts and asked whether their 

quantitative (eigenvector) values matched those defined using DNA-DNA contacts. First, 

we ensured that A/B compartment scores based on the gene-level DNA-DNA contacts 

were similar to those measured across the genome (Pearson r = 0.87, see Methods) to 

confirm that this gene-level analysis is comparable to genome-wide analysis (Figure 3D). 

Second, we compared the gene-level DNA-DNA eigenvectors to those calculated from the 
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nascent RNA-RNA contact matrix and found a strong correlation (Pearson r = 0.75) 

(Figure 3E). Finally, we grouped RNA-RNA contacts based on A/B compartment 

definitions from genomic DNA and found that pre-mRNAs transcribed from B 

compartments display a high contact frequency with other pre-mRNAs transcribed from B 

compartments, but not with pre-mRNAs transcribed from loci contained within A 

compartments, and vice versa (Figure 3F). In contrast, mature mRNAs do not display any 

preferential interactions between A/B regions (Figure S3D-F).  

To ensure that the observed compartmentalization of nascent RNAs is not a unique feature 

of highly expressed genes, we explored compartmentalization properties across mRNAs 

that span a broad range of expression levels (i.e., the top 10,000 most abundant pre-

mRNAs) (Figure S4A) and observed preferential A-A and B-B contacts and depletion of 

neighboring A-B contacts (Figure S4B). Indeed, zooming-in on chromosome 2, we 

detected clear B-A-B compartment structures, comparable to those measured for the most 

abundant 2000 pre-mRNAs, within the RNA-RNA contacts of lower expression genes 

(Figure S4C). This indicates that the organization of pre-mRNAs within A/B 

compartments and transcription within the B compartment is observed across a range of 

expression levels and all classes of transcribed Pol II genes. 

These results are consistent with our observations that actively transcribed genes are 

spatially organized into A/B compartments and that multiple genes are simultaneously 

transcribed within B compartments (Figure 3G). If transcription only occurred in a single 

active compartment, we would expect nascent RNAs to globally interact with each other 

(Figure S3G). Instead, our RNA-RNA heatmaps clearly demonstrate that 

compartmentalization occurs among nascent transcripts; we observe distinct groups of pre-

mRNAs interacting with each other while excluding other nearby transcripts. Importantly, 

this pre-mRNA compartmentalization, which closely matches the corresponding A/B 

compartment definitions of DNA, is observed in the RNA-RNA contacts a priori, 

independent of any compartment calls from DNA-DNA contacts.  
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To confirm these observations using an orthogonal assay, we performed RNA-FISH 

and measured whether B compartment pre-mRNAs interact more closely with each other 

than with pre-mRNAs in neighboring A compartments. Specifically, we generated probes 

against introns of 6 pre-mRNAs within chromosome 2; each set of three probes 

corresponded to two mRNAs from distinct B compartments and one from an intervening 

A compartment (Figure 3H). Consistent with our RD-SPRITE measurements, we find that 

the pre-mRNAs transcribed from the two B compartments are closer in 3D space than they 

are to the pre-mRNA transcribed from the A compartment. This occurs even though the 

two genes in the B-compartments (B-B pairs) are farther apart in linear space than the A-

B pairs (Figure 3I-J). 

Together, these results indicate that nascent pre-mRNA transcripts from genes located in 

both the A and B compartments organize into structures such as chromosomal territories 

and A/B compartment structures. This highlights the power of RD-SPRITE and its ability 

to measure long-distance interactions of nascent pre-mRNAs genome-wide to uncover the 

spatial organization of RNA in the nucleus. 

 

Transcription of RNA Pol II genes can occur in proximity to the nucleolus 

We next explored whether Pol II transcription occurs near the nucleolus, a nuclear body 

that is organized around active transcription and processing of RNA Polymerase I (Pol I) 

transcribed pre-ribosomal RNAs35,36. Previous studies have shown that genomic DNA 

regions positioned near the nucleolus are associated with inactive Pol II transcription and 

heterochromatin marks26,27,37,38. However, whether proximity to the nucleolus is simply 

correlated with inactive transcription or whether organization around the nucleolus 

precludes Pol II transcription remains unknown. 

To explore this, we utilized the ability of RD-SPRITE to measure long-range RNA and 

DNA organization around the nucleolus (Figure 4A)28,30. We reasoned that if proximity to 

the nucleolus precludes transcription, DNA regions would loop away when they are 
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transcribed (Figure 4B) and this would result in SPRITE clusters containing nascent 

pre-mRNAs depleted for nucleolar contacts. In contrast, if transcription can occur near the 

nucleolus, we would detect preferential contacts between nascent pre-mRNAs of nucleolar-

proximal genes and nucleolar RNAs. 

First, we defined the genomic DNA regions proximal to the nucleolus (the “nucleolar hub”) 

based on DNA contact frequency with nucleolar RNAs, such as 45S pre-ribosomal RNAs 

(rRNAs) and small nucleolar RNAs (snoRNAs), and inter-chromosomal DNA-DNA 

contacts (Table S2). We previously showed that these genomic DNA regions are proximal 

to the nucleolus30 (see Methods, Figure 4C, S5A). Next, we analyzed whether nascent 

pre-mRNAs transcribed from these nucleolar-proximal DNA loci co-occur in SPRITE 

clusters with snoRNAs, suggesting that they are transcribed when they are physically close 

to the nucleolus and do not “loop out” during transcription. Indeed, pre-mRNAs from 

nucleolar-proximal genes display strong enrichment for snoRNA contacts, whereas nascent 

pre-mRNAs transcribed from nucleolar-distal genes exhibit few snoRNA contacts (Figure 

4D-E). In fact, the frequency of snoRNA to pre-mRNA contacts was positively correlated 

with the nucleolar proximity of the pre-mRNA’s genomic locus (Pearson r = 0.75; Figure 

4F, S5B), while the transcriptional levels of the pre-mRNAs were not (Pearson r = -0.02; 

Figure S2B). This suggests that RNA Pol II transcription can occur close to the nucleolus. 

To explore the underlying genomic DNA structure of nucleolar-proximal genes when they 

are actively transcribed, we measured the RNA-DNA contacts for these pre-mRNAs 

(Figure 4G). We reasoned that if these DNA loci loop away from the nucleolus when they 

are transcribed, nucleolar proximal pre-mRNAs would exhibit reduced interactions with 

nucleolar hub DNA regions and increased interactions with neighboring non-nucleolar hub 

regions. Instead, we observed that nascent pre-mRNAs of these genes frequently contact 

other nucleolar-proximal DNA regions and are depleted at neighboring non-nucleolar hub 

regions.  

Because our results suggest that genes are transcribed when they are near the nucleolus, 

we wondered whether multiple actively transcribed genes organize together around the 
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nucleolus. Specifically, we explored if nascent pre-mRNAs of nucleolar-associated 

genes display preferential inter-chromosomal contacts. To do this, we took the genome-

wide inter-chromosomal contact matrix between all nascent pre-mRNAs (Figure 3A) and 

aggregated the mRNAs into three groups: speckle hub genes, nucleolar hub genes or 

neither (Figure 4H, Table S2, S3). We observed enrichment of inter-chromosomal 

contacts between these nucleolar hub nascent pre-mRNAs (p-value < 0.01, see Methods 

and Figure S5C), suggesting that the nucleolar hub DNA regions from multiple 

chromosomes remain organized together in space during transcription and that genes from 

multiple chromosomes are simultaneously transcribed at the nucleolus. 

To confirm this observation, we performed intron RNA FISH for two genes located on 

chromosome 19, one within the nucleolar hub (Carnmt1) and one far from it (Btrc, Figure 

4I, Video S1, S2). Carnmt1 is actively transcribed while positioned adjacent to the 

nucleolus (Figure 4I). We measured the distance to the nucleolus for 41 alleles of each 

gene across 22 cells and observed that ~50% (21/41) of Carnmt1 alleles are transcribed 

within 0.1 μm of the nucleolar surface. Indeed, even when the allele is directly contacting 

the nucleolus (distance ≤ 0 μm), we observe transcription in ~1/3 of measured Carnmt1 

alleles (Figure 4J). In contrast, we rarely observe Btrc transcribed near the nucleolus, even 

though it is located on the same chromosome as Carnmt1 (Figure 4K).  

Together, these results demonstrate that proximity to the nucleolus does not preclude 

transcription of Pol II genes. 

 

3.4. DISCUSSION 

Here, we showed that RD-SPRITE enables simultaneous measurement of 3D DNA 

structure and nascent RNA transcription to map the DNA contacts of pre-mRNAs, the 3D 

structure of actively transcribed genomic loci, and the global organization of nascent pre-

RNAs. Previously, the question of whether certain nuclear structures are impermissive to 

transcription was unresolved because we lacked the ability to map DNA and RNA contacts 
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simultaneously at high resolution across the genome. Existing methods are unable to 

do this because they either focus exclusively on DNA structure (e.g. Hi-C) or map RNA 

and DNA via proximity ligation (e.g. GRID-seq), which is limited to pairwise interactions 

and therefore cannot simultaneously measure 3D DNA structure and nascent RNA 

localization or RNA-RNA interactions between pre-mRNAs. Using RD-SPRITE, we can 

simultaneously measure RNA-RNA, RNA-DNA, and DNA-DNA contacts genome-wide 

and therefore generate global profiles of the 3D-structures associated with nascent 

transcripts. 

We leveraged these features of RD-SPRITE to show that transcription of genomic DNA 

occurs within both A and B compartments as well as at genomic DNA regions that are 

proximal to the nucleolus. Our results demonstrate that DNA does not need to reposition 

into an “active” compartment in the nucleus to be transcribed and that gene localization 

within B compartments or near the nucleolus does not preclude Pol II transcription. 

Furthermore, we found that nascent pre-mRNAs — including those within A 

compartments, B compartments, and near the nucleolus — localize with other transcripts 

from their respective nuclear structures; this is reminiscent of DNA organization such as 

chromosomal territories, A/B compartments and inter-chromosomal interactions around 

the nucleolus. While we focused on exploration of inactive compartments, we note that this 

approach can also be used to explore other structural features and transcription, including 

enhancer-promoter contacts. 

Our findings argue against the “looping out” model whereby active genes need to move 

out of inactive compartments to contact active compartments when transcribed. Previous 

evidence for this model came primarily from imaging studies which observed that 

individual DNA loci can loop away from their chromosome territories when 

transcriptionally active18,39. Additional studies using nascent RNA-FISH did not detect 

chromosome territories or compartment-like structures, suggesting that pre-mRNAs 

organized within a single active compartment16. It was therefore postulated that DNA 

structure detected by Hi-C and similar approaches may capture ensemble DNA 

organization across a population of cells rather than the organization of DNA loci that are 
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actively transcribed. However, these imaging approaches were not able to 

simultaneously measure both RNA and DNA with high sensitivity on a genome-wide scale; 

therefore, their inability to measure these structures likely reflects limited resolution rather 

than support for this model. Using RD-SPRITE, we can detect the long-range RNA-RNA 

interactions of lower abundance RNAs, such as nascent pre-mRNAs, which enables us to 

generate high-depth genome-wide RNA-RNA contact maps for thousands of RNAs.  

Altogether, our results demonstrate that transcription can occur throughout the nucleus, 

including within regions that have typically been viewed as inactive. Thus, the simple idea 

of “active” and “inactive” compartments — distinct structural domains within the nucleus 

that are globally permissive or impermissive for transcription — is likely inaccurate. 

Consistent with this, previous studies have shown that transcription can occur at genes 

proximal to the nuclear lamina22,40–42 and that Pol II can freely access the inactive X 

chromosome heterochromatin domain during X-chromosome inactivation43.  

Because spatial organization does not appear to dictate transcriptional state, arrangement 

of DNA into A/B compartments likely reflects other features of these genomic regions. 

Indeed, our study and others9 suggest that transcription is unlikely to be the sole factor 

driving compartmentalization of the genome. Genomic DNA regions within 

transcriptionally inert sperm cells9,44,45 as well as cells treated with various transcriptional 

inhibitors46,47 are still partitioned into A/B compartments. Additionally, A/B compartments 

can be invariant across cell states — even when undergoing large-scale changes in gene 

expression12. One possibility is that these compartments reflect differential gene density: 

DNA regions contained within A compartments are generally gene dense, whereas those 

in B compartments are generally gene poor. This would explain why A/B compartments 

are correlated with transcriptional activity but may not regulate transcription state, because 

gene-dense regions are more likely to be transcriptionally active. Other possible 

contributors to compartmentalization include A/T sequence content of the genome, the 

prevalence of SINE and LINE elements48, and the replication timing of DNA49,50. In fact, 

multiple studies have found that early and late replicating domains correspond to A and B 

compartments, respectively49,51. Yet another possibility is that these compartments reflect 
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patterns of histone modifications. While the precise features that drive compartment 

organization are unknown, our results suggest that these compartments do not define 

transcriptional state and additional work is needed to understand what role, if any, spatial 

compartments play in gene regulation. 

 

Limitations of the study 

Because RD-SPRITE does not quantify absolute physical 3D distances, our results do not 

directly measure how close actively transcribed genes are to each other or from structures 

such as the nucleolus. Instead, we assess the relative proximity between molecules by 

calculating contact frequency. While our results suggest that transcription can occur near 

the nucleolus, the measurements cannot determine whether transcription is occurring 

directly within — or at a defined distance from — the nucleolus. However, we have 

validated our observations for representative loci using FISH and find strong concordance 

between distances measured by microscopy and SPRITE data (here and in Quinodoz et al., 

2018).  

While our data suggests that large scale, global repositioning of B compartment genomic 

regions into an A compartment is not required for transcription, we cannot exclude the 

possibility that small scale, local structural reorganization may occur (e.g., promoter 

regions loop out and contact each other21) or that individual genes may relocate upon 

transcription. For instance, certain transcribed nucleolar genes may be located further from 

the nucleolus than their inactive counterparts but remain within the B compartment and in 

proximity to the nucleolus. Alternatively, multiple B compartment genes may undergo 

local structural changes to organize together when transcribed, while remaining distinct 

from other active A compartment genes. While these questions remain to be addressed, our 

data clearly indicate that genes remain compartmentalized when transcribed and do not 

reorganize into a single active compartment. 
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Finally, our study focused on mouse ES cells and therefore we cannot exclude the 

possibility that other cell types might display distinct properties. Furthermore, it remains 

possible that other spatial compartments in the nucleus that have not yet been studied might 

preclude Pol II transcription. Future work will be needed to comprehensively map 

transcriptional states and 3D genome structure in other cell types and extend these 

observations to additional cell-types and nuclear compartments. 
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3.5. MAIN FIGURES  

 

Figure 1: RD-SPRITE measures nascent and mature mRNAs at precise locations in 

the cell 

(A) Schematic of nascent pre-mRNAs (blue), mature mRNAs (red), and their respective 

molecular interactions mapped using RNA-DNA SPRITE. Zoom-ins show nascent pre-

mRNA contacts in the nucleus (top) and mature mRNA contacts in the cytoplasm (bottom). 

The specific RNA (RPM) or DNA (DPM) molecules measured within RD-SPRITE 

clusters are shown in the dotted circles. (B) Contact frequency enrichment scores of introns 

(blue) or exons (red) with chromatin (left), snRNAs (middle) or rRNAs (right) measured 

using RNA-DNA or RNA-RNA interactions. (C) Correlations between RD-SPRITE RNA 

abundance and total RNA-seq31 (left), RD-SPRITE introns and GRO-seq32 (middle), and 

RD-SPRITE exons and polyA-selected RNA-seq (right). (D) Aggregated total RNA-DNA 

contacts of introns or exons with DNA regions surrounding their genomic loci. Shown is 

the total weighted contact frequency of all RNAs within these populations contacting 1 

megabase (Mb) genomic DNA windows from 10 Mbs up- and down-stream from the 
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transcriptional start site. (E) Examples of weighted RNA-DNA interactions for selected 

pre-mRNAs (1Mb resolution). The genomic locus for each pre-mRNA is annotated on the 

x-axis. (F) Weighted DNA-DNA interactions for transcriptionally active loci at the Gli2 

gene locus on chromosome 1 (100 kb resolution). Interactions of transcriptionally active 

loci are defined as the DNA contacts occurring within multi-way SPRITE clusters 

containing both nascent Gli2 pre-mRNA transcripts and multiple DNA reads.  
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Figure 2: Genomic DNA located within B compartments can be actively transcribed. 

(A) Two models of RNA Pol II gene transcription within A or B compartments and the 

expected DNA-DNA interaction matrices for actively transcribed loci. The “looping out” 

model requires B compartment genes to loop into the A compartment to be transcribed and 

the corresponding DNA-DNA matrix generated from transcribed DNA regions (left 

heatmap, upper diagonal) would not have compartment structure. In the “permissive” 

model, transcription of B compartment genes occurs without a change in genomic structure 

and the corresponding DNA-DNA matrix from transcribed DNA regions (right heatmap, 

upper diagonal) would have A/B compartment structure. (B) Weighted DNA-DNA 
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interaction heatmaps for SPRITE clusters containing nascent pre-mRNAs (upper 

diagonal) versus all SPRITE clusters (lower diagonal). Chromosomes 2 and 4 are shown 

as examples. (C) Feature profiles of A/B sub-compartments at 100 kilobase (kb) resolution. 

Characteristics include percentage (%) of genome assigned to each sub-compartment (top), 

% of 100 kb regions for each sub-compartment matching the corresponding “super-

compartment” labels (i.e., A1-A, B1-B) calculated by principal eigenvector analysis of RD-

SPRITE (second), mean number of protein-coding genes per 100 kb DNA region (third), 

mean weighted RNA-DNA contacts of pre-mRNAs per 100 kb DNA region (fourth), mean 

weighted RNA-DNA contacts of small nuclear RNAs (snRNAs) per 100 kb DNA region 

(fifth), number of top 2000 genes within each sub-compartment (sixth), and % of speckle 

or nucleolar hub regions within each sub-compartment (seventh and eighth). (D) Weighted 

DNA-DNA interaction heatmaps for actively transcribing SPRITE clusters containing 

nascent pre-mRNAs of genes in various sub-compartments. (E) Unweighted RNA-DNA 

interactions of nascent pre-mRNAs at the B-A-B compartment boundaries near the front 

end of chromosome 2 (10Mb-53Mb). (F) Inter-compartment pre-mRNA-DNA contact 

enrichment score for A versus B compartment genes (black solid line) and the first 

eigenvector (E1) (grey dotted line) along chromosome 2. Enrichment scores were rank-

remapped to E1 for direct comparison (see Methods). (G) Mean inter-compartment pre-

mRNA-DNA enrichment scores for A versus B compartment genes on A (left) or B (right) 

compartment genomic regions of chromosome 2. Error bars show 95% bootstrapped 

confidence intervals. 
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Figure 3: Nascent pre-mRNAs organize within genome-wide structures resembling 

A/B compartments. 
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(A) Gene-level DNA-DNA and nascent pre-mRNA RNA-RNA contact matrixes. 

Unweighted RNA-RNA contacts between the top 2000 expressed pre-mRNAs are shown 

(see Methods). DNA-DNA matrixes are binned by the genomic loci of genes used in the 

RNA-RNA matrix. Genes (and pre-mRNAs) are sorted based on their genomic position.  

(B) Zoom-in of gene-level DNA-DNA and nascent pre-mRNA RNA-RNA contact 

matrices for chromosome 2. (C) Correlation of genome-wide, intra-chromosomal contact 

frequencies for gene-level DNA-DNA (x-axis) and nascent pre-mRNA RNA-RNA (y-

axis) contact matrices. (D) Comparison of the first eigenvector (E1) calculated from a 

genome-wide 10 kb-binned DNA-DNA contact matrix (top), gene-level binned DNA-

DNA contact matrix (middle), and nascent pre-mRNA RNA-RNA contact matrix (bottom) 

along chromosome 2. A/B indicator bar along the top shows compartment assignments 

based on the value of the 10 kb-binned E1. (E) Correlation of E1 calculated from gene-

level DNA-DNA (y-axis) and nascent pre-mRNA RNA-RNA (x-axis) contact matrices.  

(F) Saddle plots generated from the gene-level DNA-DNA and nascent pre-mRNA RNA-

RNA contact matrices. Plots show the average interactions between groups of genes 

ordered by their compartment signals calculated from a 10 kb binned DNA-DNA matrix. 

A/B indicator bars along the axes indicate the compartments of the genes. (G) Model of 

RNA Pol II transcription of multiple genes within B compartments and the expected RNA-

RNA interaction matrix. (H) Schematic of intron RNA-FISH design. Nascent transcripts 

from two B compartment genes located on opposite sides of an A compartment gene in 

linear genomic space (left) were probed and the 3D distance between pairs (right) was 

measured. (I) Representative microscopy image of intron RNA FISH for Arhgap21 (B 

compartment gene), Odf2 (A compartment gene), and Gtdc1 (B compartment gene). Both 

alleles of Gtdc1 are expressed. Transcripts from a single chromosome are boxed. Arrows 

highlight the B compartment genes coming together in 3D space. Scale bar is 1 µm. (J) 

Parallel coordinates plot of pairwise 3D distances measured by intron RNA-FISH (B1-A 

and A-B2). Distances were normalized to the B1-B2 pair distance for each cell to account 

differences in for cell size. Each gray line indicates a measurement from a single cell, 

bolded black lines indicate the mean, and shaded gray regions indicate the standard 

deviation. Probed genes and the linear genomic distances between each DNA loci are listed 
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on top of each plot. Measurements are from n = 12 cells containing Arhgap21, Gtdc1, 

and Odf2 triplets and n = 27 cells containing Abi1, Mbd5, and Sptan1 triplets. 
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Figure 4: Transcription of RNA Polymerase II genes can occur in proximity to the 

nucleolus. 

(A) Schematic of the molecular interactions occurring near the nucleolus and their 

corresponding RNA and DNA interactions measured within an RD-SPRITE cluster 

(circle). Because RD-SPRITE clusters can capture long-distance interactions, a single 

cluster can measure multiple interacting RNA (pre-mRNAs) and DNA molecules (genomic 

loci) around RNA bodies (containing 45S rRNA and snoRNAs). (B) Two models of RNA 
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Pol II gene transcription for nucleolar-proximal genes. (C) Diagram of inter-

chromosomal DNA contacts between nucleolar hub regions. Chromosomes in gray contain 

ribosomal DNA genes. (D) RNA-DNA interactions (top box) corresponding to RNAs 

known to reside in the nucleolus (y-axis; snoRNAs and 45S pre-rRNAs) with genomic loci 

(x-axis; binned per gene) are shown along the top. RNA-RNA interactions (bottom 2 

boxes) between the top 2000 expressed pre-mRNAs (x-axis; see Methods) and nucleolar 

RNAs (y-axis; 45S pre-rRNA and snoRNAs) are shown. Genes are ordered along the x-

axis based on genomic position. Three components of 45S pre-rRNA spacers (ITS1, ITS2, 

3’ETS) and the top 50 snoRNAs in descending order by contact frequency are along the y-

axis. DNA loci within the nucleolar hub are annotated in purple. (E) Cumulative density 

of pre-mRNA contacts with snoRNAs for nucleolar proximal (purple) and nucleolar distal 

(gray) genes. (F) Nascent pre-mRNA – snoRNA contact matrix for the top 2000 genes. 

Genes are ordered based on their distance to the nucleolus, defined by contact frequency 

of the genomic locus to nucleolar hub regions in RD-SPRITE. Heatmap of U3 RNA-DNA 

density at the nucleolar distance corresponding to each gene is shown. (G) Unweighted 

pre-mRNA-DNA contacts occurring in SPRITE clusters containing snoRNAs for nucleolar 

genes of chromosome 18 (left) and 19 (right). 45S pre-rRNA density (RNA-DNA contact 

frequency) is shown as a heatmap, indicating nucleolar close (white) and far (purple) 

regions. (H) Average unweighted inter-chromosomal RNA-RNA contacts of the top 2000 

nascent pre-mRNAs grouped by hub (speckle hub, nucleolar hub, neither). P-values were 

calculated relative to an expected distribution generated by randomizing RNAs reads 

across SPRITE clusters and calculating the resulting inter-chromosomal RNA-RNA 

contact frequency (see Methods). (I) Immunofluorescence (IF) combined with intron 

RNA-FISH for two genes on chromosome 19: Carnmt1 (yellow), a nucleolar-proximal 

gene, and Btrc (green), a nucleolar-distal gene. Both alleles of Carnmt1 are transcribed 

while located adjacent to the nucleolus (Nucleolin; purple). Nucleus is demarcated with 

DAPI. Arrows highlight the nucleolar-proximal pre-mRNAs located adjacent to nucleoli. 

Scale bar is 2 µm. (J) 3D surface representation of intron RNA-FISH for Carnmt1 (yellow) 

and Btrc (green) and IF for Nucleolin (purple). Zoom-out (upper left, scale bar = 2 µm) 

shows original FISH and IF signals in the entire cell. Zoom-ins show spheres 
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corresponding to FISH signal and nucleolar surface (lower left, scale bar = 2 µm) and 

the two transcribed Carnmt1 alleles intersecting the nucleolar surface (right, scale bar = 0.7 

µm). (K) Distribution of 3D distances between the nucleolar surface and Carnmt1 (purple) 

or Btrc (grey) nascent transcripts quantified from intron RNA-FISH and IF images (n = 22 

cells). 
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3.6. SUPPLEMENTAL FIGURES 

 
 

Supplemental Figure 1: Eigenvector 1 (E1) and A/B compartment assignments 

calculated from RD-SPRITE clusters, corresponding to Figure 2 and Figure 3. (A) 

Weighted DNA-DNA contact matrix at 100kb resolution (top) and eigenvector 1 (E1) at 

10kb resolution (bottom) along chromosome 2. Both the contact matrix and E1 were 

calculated from RD-SPRITE clusters containing 2-1000 DNA reads (see Methods). (B) 

Zoom-in of the 100kb DNA-DNA contact matrix and E1 from (A) near the front of 

chromosome 2. The positions of one of the A (black) and B (gray) compartment gene 

triplicates measured by RNA-FISH in Figure 3 (Abi1, Sptan1, and Mbd5) are annotated. 

(C) Zoom-in of E1 at 10kb resolution near the gene annotations of the three RNA FISH-

measured genes in (B). (i) Abi1 — a B compartment gene, (ii) Sptan1 — an A compartment 
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gene, and (iii) Mbd5 – a B compartment gene. The compartments for each gene were 

assigned based on the sign of E1 (A compartment > 0; B compartment < 0). 
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Supplemental Figure 2: Expression level profiles of top 2000 expressed introns, 

corresponding to Figure 3 and Figure 4. (A) Violin plot of read counts of selected, top 

2000 expressed introns grouped by A/B compartment assignment of the individual genes. 

Median and quartiles are shown with dotted lines. The bottom of each violin was set to the 

lowest read count. Mann-Whitney p-value (top) shows no significant difference in the 

distributions of read counts between A and B compartment genes. (B) Scatterplot of read 

counts versus genomic loci distance to nucleolus for top 2000 expressed introns. Distance 

to nucleolus was calculated based on DNA-DNA contact frequency of the DNA region 

containing the gene locus and nucleolar hub regions (see Methods). Neither Pearson nor 

Spearman statistics show a correlation between counts and distance. 
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Supplemental Figure 3: RNA-RNA interaction matrix of mature mRNAs (exons), 

corresponding to Figure 3. (A) Mature mRNA (exon) gene-level RNA-RNA contact 

matrix for the exons of genes corresponding to the top 2000 expressed introns, analogous 

to Figure 3A. Genes are sorted based on their genomic position. Chromosomes are 

annotated along the top and left axes. (B) Zoom-in of mature mRNA (exon) RNA-RNA 

contact matrix for chromosome 2. (C) Correlation of genome-wide, intra-chromosome 

contact frequencies for gene-level DNA-DNA (x-axis) and mature mRNA (exon) RNA-

RNA (y-axis) contact matrices. (D) Saddle plots generated from mature mRNA (exon) 

RNA-RNA contact matrix, analogous to Figure 3F. Plot shows the average interactions 

between groups of genes ordered by their compartment signals calculated from a 10 kb-

binned DNA-DNA matrix. A/B indicator bar along the axes indicate the compartment 
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assignments of the genes. (E) Correlation of E1 calculated from gene-level DNA-DNA 

(y-axis) and mature mRNA (exon) RNA-RNA (x-axis) contact matrices. (F) E1 calculated 

from a mature mRNA (exon) RNA-RNA contact matrix along chromosome 2. A/B 

indicator bar along the top shows compartment assignments based on the sign of E1 

generated from a 10 kb-binned DNA-DNA heatmap. (G) Schematic of the “looping out” 

model and the corresponding predicted RNA-RNA matrix. If transcription only occurs in 

the A compartment, nascent transcripts of both A and B compartment genes would interact 

within a single “active compartment” and there would be no observable compartmentalized 

structure in an RNA-RNA contact matrix. 
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Supplemental Figure 4: RNA-RNA contacts for genes of varied expression levels, 

corresponding to Figure 3. (A) Summary statistics for five gene expression groups 

spanning the top 10,000 expressed pre-mRNA in RD-SPRITE. Each group contains 2,000 

genes. (B) Genome-wide, intrachromosomal RNA-RNA contact matrices for pre-mRNAs 

within the five gene expression groups, collapsed by A/B compartment assignments of the 

individual genes. (C) RNA-RNA contact matrices of pre-mRNAs at the start of 

chromosome 2 for top three gene expression groups, collapsed by compartment domain 

assignments of the individual genes.  
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Supplemental Figure 5: Nucleolar Hub definition and interactions, corresponding to 

Figure 4. (A) DNA-DNA contact matrix of snoRNA or pre-rRNA containing clusters for 

chromosome 18 (top) and chromosome 19 (bottom). Nucleolar hub regions (purple) were 

defined by clustering of the interchromosomal contacts of the genome-wide DNA-DNA 

contact matrix generated from clusters containing snoRNA or 45S pre-rRNAs (see 

Methods). Hub regions are annotated with purple bars along the top and left axes. (B) 

Scatterplot of nucleolar hub distance versus snoRNA contacts for top 2000 expressed 

introns. SnoRNA contacts correspond to the total, normalized contact frequency between 

each pre-mRNA and the top 50 snoRNAs, shown in Figure 4D. Pearson and spearman 

correlation coefficients (top) show positive correlation between distance and contact 

frequency. (C) Expected distribution of mean interchromosomal RNA-RNA contacts 

between speckle hub genes (left) and nucleolar hub genes (right), used for significance 

testing of Figure 4H.  RNA reads were randomly permuted among SPRITE clusters 100 

times and interchromosomal RNA-RNA contacts were recalculated for each randomization 

(see Methods). Observed interchromosomal contact frequencies from Figure 4H are 
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shown as dotted lines and are located at considerably larger values than the expected 

distributions (permuted).  
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3.7. SUPPLEMENTAL TABLE AND VIDEO LEGENDS 

Supplemental Table 1: Names and genomic locations of selected top 2000 expressed 

introns, related to Figures 3 and 4. 

The 2,000 top expressed introns were identified in RD-SPRITE clusters of sizes 2-1000 

(see Methods). The genes of these introns were used for profiling nascent pre-mRNA 

contacts with each other (Figure 3) and nascent transcription around the nucleolus (Figure 

4).  

Supplemental Table 2: Nucleolar Hub Regions, related to Figure 4. 

Genomic DNA regions (1Mb resolution) that associate together around the nucleolus were 

annotated using RD-SPRITE clusters enriched for snoRNAs and pre-rRNAs (see 

Methods; mm10 genome). 

Supplemental Table 3: Speckle Hub Regions, related to Figure 4. 

Genomic DNA regions (1Mb resolution) that associate together around nuclear speckles 

were annotated using RD-SPRITE clusters enriched for snRNAs (see Methods; mm10 

genome). 

Supplemental Video 1: Intron FISH for Genes near the Nucleolus, corresponding to 

Figure 4I. 

Video of intron RNA-FISH combined with immunofluorescence for Carnmt1 (yellow), a 

nucleolar proximal gene located on chromosome 19, and Btrc (green), a nucleolar distal 

gene also located on chromosome 19. Both alleles of Carnmt1 are transcribed while located 

adjacent to the nucleolus (Nucleolin; purple). 

Supplemental Video 2: Intron FISH for Genes near the Nucleolus, corresponding to 

Figure 4J. 
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Video of intron RNA-FISH combined with immunofluorescence for Carnmt1 (yellow), 

a nucleolar proximal gene located on chromosome 19, and Btrc (green), a nucleolar distal 

gene also located on chromosome 19. Both alleles of Carnmt1 are transcribed while located 

on the surface of the nucleolus (Nucleolin; purple). 
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3.8. METHODS  

Cell lines used in this study 

We used the following cell line in this study: Female ES cells (pSM44 ES cell line) derived 

from a 129 × castaneous F1 mouse cross. These cells express Xist from the endogenous 

locus under control of a tetracycline-inducible promoter. The dox-inducible Xist gene is 

present on the 129 allele, enabling allele-specific analysis of Xist induction and X 

chromosome silencing. 

Cell culture conditions 

All mouse ES cells were grown at 37°C under 7% CO2 on plates coated with 0.2% gelatin 

(Sigma, G1393-100ML) and 1.75 μg/mL laminin (Life Technologies Corporation, 

#23017015) in serum-free 2i/LIF media composed as follows: 1:1 mix of DMEM/F-12 

(GIBCO) and Neurobasal (GIBCO) supplemented with 1x N2 (GIBCO), 0.5x B-27 

(GIBCO 17504-044), 2 mg/mL bovine insulin (Sigma), 1.37 μg/mL progesterone (Sigma), 

5 mg/mL BSA Fraction V (GIBCO), 0.1 mM 2-mercaptoethanol (Sigma), 5 ng/mL murine 

LIF (GlobalStem), 0.125 μM PD0325901 (SelleckChem) and 0.375 μM CHIR99021 

(SelleckChem). 2i inhibitors were added fresh with each medium change. Medium was 

replaced every 24-48 hours depending on culture density, and cells were passaged every 

72 hours using 0.025% Trypsin (Life Technologies) supplemented with 1mM EDTA and 

chicken serum (1/100 diluted; Sigma), rinsing dissociated cells from the plates with 

DMEM/F12 containing 0.038% BSA Fraction V. 

RD-SPRITE Dataset and Computational Pipeline 

The RNA-DNA SPRITE dataset was previously generated in female PSM44 mouse 

embryonic stem cells treated for 24hr with doxycycline for induction of Xist expression 

and can be found under the GEO accession number GSE15151528. RD-SPRITE data 

processing pipeline details were described in https://github.com/GuttmanLab/sprite2.0-

pipeline. The final pipeline output is a cluster file containing reads grouped into SPRITE 

https://github.com/GuttmanLab/sprite2.0-pipeline
https://github.com/GuttmanLab/sprite2.0-pipeline
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clusters based on shared SPRITE barcode sequences. Each SPRITE cluster may contain 

repeat-masked DNA reads aligned to mm10, RNA reads annotated with Gencode vM25 

gene annotations and repeatmasker annotations and/or repeat RNA reads aligned to a 

custom genome of repeat RNAs.  

Gene identification was improved to avoid mis-annotations of genes. Intronic RNA reads 

were defined as RPM- containing reads that aligned to the genome and were uniquely 

annotated as the intron of a protein-coding gene. Similarly, exonic RNA reads were defined 

as RPM-containing reads that aligned to the genome and were uniquely annotated as the 

exon of a protein-coding gene. For example, mRNA reads overlapping with snoRNAs or 

other repetitive sequences were excluded. Unless stated otherwise, all analyses were based 

on SPRITE clusters of size 2-1000 reads. These cluster sizes were chosen to be consistent 

with the analysis in our previous papers, where we showed that many known structures 

such as TADs, compartments, RNA-DNA and RNA-RNA interactions, etc., occur within 

SPRITE clusters containing 2-1000 reads28,30. We also previously showed that the A/B 

compartments identified in these cluster sizes are highly correlated with those observed by 

Hi-C. 

RD-SPRITE Data Analysis 

Exon and Intron Enrichment Scores 

A “contact enrichment score” was devised to compare the contact profiles of intronic and 

exonic RNA reads. Specifically, the frequency of an intronic or exonic read co-occurring 

in the same SPRITE cluster as another molecular species, such as chromatin (DNA reads, 

defined by DPM tags), small nuclear RNAs (U1, U2), or ribosomal RNAs (18S, 28S), was 

calculated. Contact scores were generated by sorting all clusters with a gene of interest 

based on whether they also contained the other molecule of interest. The contact and no-

contact frequency scores were computed by taking the sum of 1/(cluster size) for all 

clusters with or without the other molecule, respectively. Summing 1/(cluster size) 

accounts for contact distance; larger clusters indicate further contact distances and are 
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proportionally down-weighted. A final contact score for a gene is the ratio of contact 

to no-contact frequency scores. This procedure was performed for intronic and exonic 

reads. Enrichment was computed by normalizing contact scores to the median contact score 

of all intronic and exonic contact scores. Outlier genes with very few annotated exonic or 

intronic reads had extreme scores that were not necessarily representative of intronic or 

exonic reads as a class. These were removed by setting a minimum contact and no contact 

threshold of two clusters in each category for a given gene. The median 90% of intronic 

and exonic contact enrichment scores were plotted as violin plots using the python plotting 

package seaborn.  

Locus Enrichment Scores 

To map the genome-wide localization profiles of intronic or exonic RNA reads relative to 

their genomic locus, the contact frequency between RNA transcripts (intronic or exonic 

reads) and each region of the genome (binned at 1Mb resolution) was calculated. 1Mb 

resolution was selected for this analysis such that most gene loci were located within only 

a single genomic bin (genomic locus bin). The raw contact frequency was defined as the 

number of SPRITE clusters in which a specific RNA transcript read (intronic or exonic) 

and a given genomic bin co-occur. The normalized contact frequency was calculated by 

weighting each SPRITE cluster by a scaling factor proportional to its size (2/n, where n is 

the total number of reads in the cluster). The normalized contact frequency profiles for 

intronic and exonic reads of each gene were summed over all genes, with the contact 

profiles centered on the genomic locus bin +/- 10Mb. The contact profiles for antisense (- 

strand genes) were reversed before summing to account for gene orientation.  

Expression Correlations 

Expression levels for each gene were calculated by counting the number of annotated 

intronic RNA reads and/or annotated exonic RNA reads in SPRITE clusters. The intronic 

expression levels were compared to GRO-Seq expression levels, from NCBI GEO 

(GSE48895 accession)32. The exonic expression levels were compared to a polyA-selected 
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RNA-seq library generated from PSM44 after 24hr dox induction (the identical cell 

line/conditions used for RD-SPRITE). The total expression levels were compared to Ribo-

depleted RNA-seq expression levels from GEO Accession: GSM90366331. 

Selecting the Top 2000 introns 

The top 2000 pre-mRNAs with highest coverage in the RD-SPRITE dataset were 

determined by counting the number of RNA reads in SPRITE clusters of size 2-1000 that 

were annotated as an intron of each protein-coding gene. To remove potential mis-

annotations or non-representative genes, genes with transcript lengths greater than 1 Mb 

were filtered out. Additionally, to remove redundant or overlapping annotations, genes 

with intersecting annotations or annotations within 1000 bp of each other were filtered, 

keeping only the most abundant. This second filter allowed for any DNA locus to be 

uniquely assigned to only a single gene. From the final filtered list, the top 2000 pre-mRNA 

genes were selected.  

DNA-DNA Contact Matrices 

DNA-DNA contact matrices were generated from all SPRITE clusters of total size 2-1000 

reads. Raw contact frequency was calculated at 1Mb resolution by counting the number of 

SPRITE clusters in which pairs of genomic bins co-occur. 1Mb resolution was selected for 

DNA-DNA heatmaps to enable visualization of genome-wide patterns (i.e. chromosomal 

territories, A/B compartments). Normalized contact frequency was calculated by dividing 

each genomic contact by a scaling factor proportional to SPRITE cluster size (specifically, 

n/2 where n is the total number of reads in the SPRITE cluster)29. Normalized contact 

frequency maps were corrected using ICE normalization, a matrix balancing algorithm 

commonly used for correcting Hi-C contact maps using CoolTools52. 

To analyze the 3D structure associated with a single active gene locus (Figure 1F), DNA-

DNA contact maps were generated from a subset of SPRITE clusters that contained an 

intronic RNA transcript of the gene of interest. Cluster size normalized contact maps were 

generated at 100kb resolution by mapping the interactions between all pairs of DNA within 
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these clusters, as described above. 100kb resolution was selected to allow for 

visualization of contact enrichment at the gene-locus level. These contact frequency maps 

were corrected using a modified ICE normalization strategy. Specifically, because cluster 

subsets may be enriched or depleted for certain genomic regions or contacts, the 

assumptions for typical ICE normalization of a matrix do not apply. To correct these 

matrices for any genome coverage bias present in the entire SPRITE dataset, ICE bias 

factors from DNA-DNA contact matrices generated with all clusters were applied to the 

matrices generated from cluster subsets.  

To analyze the 3D-structure associated with nascent transcription for all active regions or 

sets of genes (e.g. A1, A2, B1, B2, etc.), DNA-DNA contact maps were generated from a 

subset of SPRITE clusters that contained a specific set of RNA transcripts. In the case of 

mapping all active regions, SPRITE clusters that had DNA reads and at least one RNA 

read annotated as the intron of a protein coding gene were selected. Cluster size normalized 

contact maps were generated at 1Mb resolution from this subset of clusters, as described 

above. 1Mb resolution was selected to enable visualization of genome-wide structural 

patterns (i.e. chromosomal territories and A/B compartments). These contact maps were 

ICE normalized using the modified ICE normalization strategy for cluster subsets, as 

described above. 

Genome-wide Eigenvector Calculations for A/B Compartment Identification 

Genome-wide eigenvectors were calculated from SPRITE DNA-DNA contact maps to 

define reference A/B compartments. First, SPRITE clusters of sizes 2-1000 DNA reads 

were converted to a cooler format, a standard format for HiC interaction data, using the 

‘cloud-pairs’ function of cooler53. The pairs of contacts within SPRITE clusters were 

individually written out and weighted by the n/2 scaling factor, where n is the number of 

DNA reads in the cluster. Next, cooler files were generated at various resolutions (10kb, 

100kb, 1Mb) using the cooler function “coursen” and matrix balancing weights were 

calculated using the cooler function “balance”. Finally, eigenvectors were calculated at 

these resolutions using the HiC analysis software cooltools. 1Mb resolution eigenvectors 
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were used to define A/B compartment domains for genome-wide or chromosome-wide 

analysis; 100kb resolution eigenvectors were used to match sub compartment resolution 

(see below); 10kb resolution eigenvectors were used to define compartments on a gene-

resolution level and assign individual genes to either compartment. 

RNA-DNA Contact Maps 

Genome-wide localization profiles were generated for individual pre-mRNAs by 

calculating the contact frequency of intronic RNA reads for that gene and genomic DNA 

binned at various resolutions (10Mb, 1Mb, 100kb). A range of DNA binning resolutions 

was used to measure contacts occurring at different size scales — i.e., gene-locus specific 

contacts (100kb), intra-compartment contacts (1Mb), and long-range, chromosome-wide 

contacts (10Mb). Raw contact frequency was calculated by counting the number of 

SPRITE clusters in which an intronic RNA read and a DNA read, mapped to its 

corresponding genomic bin, co-occurred. Weighted contact frequency was calculated by 

scaling raw contacts with a scaling factor proportional to cluster size, as described for 

DNA-DNA contact matrices. To account for differences in gene expression when 

comparing RNA-DNA localization profiles across genes, the genome-wide RNA-DNA 

contacts for each gene were normalized to one. 

Aggregate inter-compartment domain RNA-DNA contact frequencies were computed 

using the unweighted RNA-DNA contact profiles of the top 2000 genes at 1Mb genomic 

bin resolution. 1Mb resolution was selected to define A/B compartment domains and 

resolve compartment boundaries. First, for each gene, the A/B compartment domain 

containing the gene locus was masked. Then, the inter-compartment domain contacts for 

all A compartment genes and all B compartment genes were summed separately. To 

account for the difference in number of A and B compartment genes, the aggregated contact 

frequencies were normalized to their respective medians on a per-chromosome basis. 

Finally, the ratio of A-to-B frequency was used to generate an enrichment score. When the 

ratio is >1, the inter-compartment domain contact frequency with A genes is higher; when 

the ratio is <1, the inter-compartment domain contact frequency with B genes is higher. 
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This enrichment score was further aggregated across all A compartment regions and all 

B compartment regions on chromosome 2. To compare the magnitude of the enrichment 

score to the magnitude of eigenvector 1 (E1), the enrichment score along chromosome 2 

was plotted after rank re-mapping to E1; all enrichment score values and all eigenvector 

values along chromosome 2 were ordered each from greatest to least. The top enrichment 

score was assigned the value of the top eigenvector, the second highest enrichment score 

was assigned the value of the second highest eigenvector and so forth. 

RNA-RNA Contact Matrices 

RNA-RNA contact matrices were generated by computing the contact frequency between 

RNA-RNA pairs. Contact frequency was defined as the number of SPRITE clusters 

containing both transcripts. RNA-RNA contacts were not weighted by cluster size. 

For all of the top 2000 genes, their intronic or exonic RNA transcripts were used to generate 

RNA-RNA contact matrices between nascent pre-mRNAs or mature mRNAs, respectively. 

Matrices were ordered by the genomic position of these genes and normalized using ICE 

normalization (also used for matrix balancing HiC data) to account for differences in RNA 

expression. 

DNA-DNA Contact Matrices By Gene 

DNA-DNA contact matrices were generated on a gene-level to directly compare to the 

corresponding RNA-RNA matrices of the same genes. Specifically, instead of calculating 

the contact frequency between genomic bins of DNA, raw frequencies were calculated by 

annotating each DNA fragment with its respective gene locus (similar to RNA annotations 

but ignoring strand) and counting the number of SPRITE clusters containing pairs of 

interacting gene loci. These matrices were normalized using ICE normalization.  

Eigenvector Calculations for Gene-Binned Contact Maps 

Eigenvectors were calculated from RNA-RNA contact matrices or gene-resolution DNA-

DNA contact matrices using these same HiC analysis software packages to define A/B 
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compartments (see above). Pre-computed, raw contact matrices were converted into a 

cooler format by assigning the contacts of each gene to the 10kb genomic bin located in 

the center of the gene annotation. Coolers were balanced using the cooler function 

“balance”. Finally, eigenvectors were calculated using the HiC analysis software cooltools. 

Signs of eigenvectors for individual chromosomes were matched to the eigenvectors 

calculated from the entire genome. 

Saddle Plots 

Saddle plots were generated from the RNA-RNA and gene-resolution DNA-DNA contact 

matrices using cooltools. To enable direct comparisons, the ordering of genes was the same 

for all saddle plots. The genes were sorted and grouped into 40 bins based on eigenvector 

1 (E1) of their genomic positions from the genome-wide eigenvector calculation using RD-

SPRITE. The RNA-RNA and gene-resolution DNA-DNA contact matrices were then 

aggregated based on these groups. The total interaction sum and count were used to 

calculate an average contact frequency per group. 

RNA-RNA Contacts for Gene Expression Levels 

Genes were grouped into five expression levels of 2000 genes each based on pre-mRNA 

abundance in RD-SPRITE clusters. Specifically, genes were ordered by number of 

associated intron-containing RNA reads and grouped into 0-1999, 2000-3999, 4000-5999, 

6000-7999, and 8000-9999, with the 0-1999 group containing the most abundant pre-

mRNA genes. For each group, RNA-RNA contacts were mapped between pre-mRNAs as 

previously described. Individual gene-based contacts were collapsed into A and B 

compartment contacts for each chromosome. A and B compartments for each gene were 

assigned based on E1 calculated at 10kb resolution from RD-SPRITE data, as described 

above. The genome-wide, by-chromosome A/B compartment contact matrix was 

normalized using ICE normalization. Finally, the total intrachromosomal A-A, A-B and B-

B, contacts were calculated and displayed as a 2-by-2 matrix. For the top three expression 

levels (0-1999, 2000-3999, 4000-5999), the gene-based RNA-RNA contacts were 
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additionally collapsed into contiguous domains of A and B along each chromosome 

(instead of one A and one B group per chromosome). The resulting contact matrix was 

normalized using ICE normalization. A similar domain level analysis was not performed 

for the lowest expression levels because of sparsity in pre-mRNA reads.  

Sub-compartment Analysis 

Annotations for the A/B sub-compartments in mouse embryonic stem cells were kindly 

provided by the Jian Ma laboratory at Carnegie Mellon University. These subcompartment 

annotations were only used for the analyses shown in Figure 2C and Figure 2D. Sub-

compartment annotations were based on a 5 state Gaussian Hidden Markov Model and 

were at 100 kb resolution. The features of the sub-compartments were profiled using the 

RD-SPRITE dataset. Specifically, A/B compartment labels, assigned based on the 

principal eigenvector calculated at 100 kb resolution using RD-SPRITE, were compared 

to the A1/A2/B1/B2/B3 and the number of mismatched compartments (e.g. A compartment 

with B1/B2/B3 sub-compartment) was calculated. Next, the weighted RNA-DNA contacts 

of nascent pre-mRNAs or of small nuclear RNAs (U1, U2) across all regions of a single 

sub-compartment annotation were averaged. To determine whether genes in all sub-

compartments were expressed, the top 2000 pre-mRNA genes were assigned to their 

respective sub-compartments. If a gene annotation intersected multiple sub-compartments, 

it was assigned to the sub-compartment with maximum representation (i.e. most covered 

base pairs); each gene could only be counted for one sub-compartment. Chromosome X 

genes were excluded from this analysis because of the lack of sub-compartment 

assignments. 

Weighted DNA-DNA contact matrices for transcribing regions containing pre-mRNAs 

from each sub-compartment were generated as described above. Specifically, a subset of 

SPRITE clusters containing intronic RNA transcripts of genes located in a given sub-

compartment were selected. Then, the DNA-DNA contact frequency from this cluster 

subset was calculated. Any of the top 2000 genes were assigned to a given sub-
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compartment if a portion of the gene annotation intersected the given sub-compartment. 

Thus, genes could be included in more than one sub-compartment for this analysis.  

Nucleolar and Speckle Hub Definition 

Nucleolar and Speckle Hubs were previously defined using inter-chromosomal contacts of 

DNA SPRITE at 1Mb resolution in mES cells30. Briefly, it was found that two mutually-

exclusive sets of DNA regions showed enriched inter-chromosomal contacts within a set 

but not with DNA regions of the other set of interacting loci. 

To improve these annotations in this manuscript, the hubs were recalculated using the RD-

SPRITE dataset and including RNA enrichment information. Instead of all SPRITE 

clusters being included to generate a DNA-DNA heatmap and measure inter-chromosomal 

contact enrichment, we only used SPRITE clusters containing known RNAs functionally 

associated with the respective nuclear body (nucleolus/speckles) being mapped. For the 

nucleolar hub, clusters were selected using small nucleolar RNAs (snoRNAs) or pre-

rRNAs (45s rRNA); for the speckle hub, clusters were selected using small nuclear RNAs 

(e.g. U1, U2, or other snRNA ‘biotype’ genes). DNA-DNA contact frequency was 

calculated at 1Mb resolution (the same resolution as used for the original hub definition) 

from these cluster subsets and was not weighted by cluster size, in order to maximize the 

information from larger clusters which we have found are enriched for interactions around 

nuclear bodies30. The resulting raw heatmaps were balanced using the ICE bias factors of 

the DNA-DNA heatmap calculated using all clusters, as described above. Inter-

chromosomal contacts were hierarchically clustered using the python package 

g.cluster.hierarchy54. Hierarchical clustering was converted into flat clusters using the 

fcluster function. Upon clustering, a single cluster of genomic bins nearly matching the 

previously annotated “inactive” hub (for the snoRNA/pre-rRNA workup) or “active” hub 

(for the snRNA workup) was apparent. These genomic bins within these clusters were 

redefined as the “Nucleolar” Hub and “Speckle” Hub.  

Distance to Nucleolus using SPRITE Contacts 
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Genes located within the nucleolar hub annotations are defined as “nucleolus proximal” 

while genes located outside are defined as “nucleolus distal”.  

Additionally, a continuous metric for distance to nucleolus was generated using DNA-

DNA contact frequencies. For each 1Mb bin of the genome, the total inter-chromosomal 

contact frequency with nucleolar hub DNA region was calculated and genes were assigned 

the distance of the 1Mb genomic bin in which they are located.  

snoRNA-RNA and pre-rRNA to pre-mRNA Contacts  

For each of the top 2000 genes, the contact frequency between nascent pre-mRNAs and 2 

sets of nucleolar hub RNAs, defined as individual snoRNAs or the three components of 

45S pre-rRNA (ITS1, ITS2, 3’ETS), was calculated by counting the number of SPRITE 

clusters containing both an intronic read and a snoRNA/pre-rRNA read. A heatmap of 

snoRNA-RNA contacts was generated using only the top 50 snoRNAs with the highest 

contact frequency to the set of top 2000 genes. To account for differences in gene 

expression, the contacts for each gene were normalized to the total number of intronic reads 

for that gene (independent of contact with snoRNAs). To account for differences in 

snoRNA abundance, the total contacts of each snoRNA with the set of top 2000 genes was 

normalized to 1. The contact matrix between pre-rRNA and pre-mRNAs was similarly 

normalized. 

Contact matrices were ordered in two ways: by genomic position and by distance to 

nucleolus. In both cases, snoRNAs/pre-rRNAs are ordered along the y-axis with pre-

rRNAs on top, followed by snoRNAs in the order from most frequently to least frequently 

contacting the set of genes.  

snoRNA-DNA and pre-rRNA to DNA Contacts at Gene Level 

For comparison to the snoRNA-RNA and pre-rRNA-RNA contact matrices, the snoRNA-

DNA and pre-rRNA-DNA contacts per gene were generated. Raw contact frequencies 

were calculated by counting the number of clusters in which a specific snoRNA or pre-
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rRNA and a DNA read overlapping a gene annotation co-occur. To account for biases 

in DNA coverage, the raw frequencies per gene were divided by the total DNA coverage 

of that gene locus. To account for differences in snoRNA or pre-RNA abundance, the total 

contact of each individual RNA was normalized to 1. 

RNA-DNA Contacts for snoRNA containing clusters 

DNA localization profiles for nascent pre-mRNAs of nucleolar genes were calculated using 

a subset of clusters containing snoRNAs. Specifically, we selected clusters that contained 

the top 100 snoRNAs and mapped the RNA-DNA contacts within these clusters. We 

calculated the contact frequency between intronic RNA reads of nucleolar proximal genes 

and genomic DNA binned at 1Mb. 1Mb resolution was selected because we previously 

defined nucleolar hub regions at this resolution30. Raw contact frequencies and normalized 

contact profiles were generated as described in the RNA-DNA contact maps section above.  

 

RNA-seq Experiments and Data Processing 

PolyA-selected RNA-seq of mES cells 

RNA-seq libraries of dox-induced PSM44 mouse embryonic stem cells (mES cells) were 

prepared using a double poly-A selection step prior to RNA library preparation (described 

in the Guttman Lab CLAP protocol;  

https://guttmanlab.caltech.edu/files/2021/08/CLAPprotocol_combined_word.pdf). 

Specifically, NEBNext Magnetic Oligo d(T)25 Beads (NEB, S1419S) were prepared by 

washing twice with RNA binding buffer (50 mM HEPES pH 7.5, 1000 mM LiCl, 2.5 mM 

EDTA, 0.1% Triton-X100). Total RNA was diluted in HEPES buffer, heated to 65°C for 

5 minutes and then cooled to 4°C to denature RNA. Prepared Oligo dT(25) beads were 

mixed with denatured RNA and incubated at room temperature for 10 minutes to allow for 

RNA binding. These beads were then washed twice with RNA Wash Buffer (50 mM 

HEPES pH 7.5, 300 mM LiCl, 2.5 mM EDTA, 0.1% Triton-X100). Polyadenylated RNA 

https://guttmanlab.caltech.edu/files/2021/08/CLAPprotocol_combined_word.pdf
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was eluted from beads by heating to 80°C for 2 minutes in HEPES Elution Buffer 

(5mM HEPES pH 7.5, 1.0 mM EDTA), followed by a hold at 25°C. This capture step 

(bind, wash and elute) was repeated, for two total capture steps, using the same Oligo dT 

beads. Specifically, to re-capture the polyA-selected RNA, RNA binding buffer was added 

to the mixture of beads and eluted RNA and the mixture was incubated at RT for 10 

minutes. These beads were then washed twice with RNA Wash Buffer. The final selected 

polyA transcripts were eluted in HEPES Elution buffer by heating to 80°C for 2 minutes 

and holding at 25°C. The eluted beads were immediately placed on a magnet until the 

solution cleared and the cleared solution was transferred to a new tube. cDNA generation 

and library prep were performed as described in the Guttman Lab CLAP protocol after this. 

Data Processing and Read Annotation 

Libraries were sequenced on a HiSeq 2500 (90 cycle x 125 cycle). Adapters were trimmed 

from raw paired-end fastq files using Trimmomatic v0.38. Trimmed reads were then 

aligned to GRCm38.p6 with the Ensembl GRCm38 v95 gene model annotation using 

Hisat2 v2.1.01 with a high penalty for soft-clipping (--sp 1000,1000) and excluding mixed 

or discordant alignments (--no-mixed --no-discordant). Unmapped reads and reads with a 

low MapQ score (samtools view -bq 20) were filtered out. Mapped reads were annotated 

with the featureCounts tool from the subread package v1.6.455,56 using the Gencode release 

M25 annotations for GRCm38.p6 and a subset of the Repeat and Transposable element 

annotation from the Hammel lab, identical to the annotation strategy for genome-aligned 

RNA reads of RD-SPRITE. Reads that received a single annotation for a protein coding 

gene were counted and correlated with intronic read counts from RD-SPRITE. 

 

Microscopy Experiments 

Intron RNA fluorescence in situ (RNA-FISH) 
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RNA-FISH experiments were performed with ViewRNA ISH Cell Assay 

(ThermoFisher, QVC0001) protocol following manufacturer instructions with minor 

modifications28,57. First, pSM44 mES cells were fixed on coverslips with 4% formaldehyde 

in PBS for 15 minutes at room temperature followed by permeabilization 0.5% Triton X-

100 in 1x PBS (RNAse-free) for 10 minutes at room temperature. Then, coverslips with 

cells were washed twice with 1x PBS (RNAse-free) and either dehydrated with 70% 

ethanol and stored for up to one week at -20C or used directly for the next step. Next, 

coverslips were washed one more time with 1x PBS and incubated with the desired 

combination of RNA FISH probes (custom probe design from Affymetrix) in Probe Set 

Diluent at 40°C for at least three hours. Coverslips were then rinsed once with 1x PBS, 

twice with Wash Buffer for 10 minutes, and rinsed once more with PBS before incubating 

in PreAmplifier Mix Solution at 40°C for 45 minutes. This step was repeated for the 

Amplifier Mix Solution and Label Probe Solution. After all three steps of amplification 

were performed followed by washes, coverslips were incubated with 1x DAPI in PBS at 

room temperature for 15 minutes and subsequently mounted onto glass slides using 

ProLong Gold with DAPI (Invitrogen, P36935). 

RNA-FISH & Immunofluorescence 

For IF combined with in situ RNA visualization, the ViewRNA Cell Plus (Thermo Fisher 

Scientific, 88-19000-99) kit was used following the RNA-FISH part of protocol from 

above with minor modifications. First, pSM44 mES cells were fixed on coverslips with 4% 

formaldehyde in PBS for 15 minutes at room temperature followed by permeabilization 

with 0.5% Triton X-100 in 1x PBS for 10 minutes at room temperature. Next, 

immunostaining was performed starting with two washes of coverslips with 1x PBS 

(RNAse-free) and blocking with blocking buffer (kit) with addition of RNAse inhibitor 

(kit) for 30 minutes. Then, coverslips were incubated with primary antibody for 3 hours at 

room temperature in a blocking buffer with RNAse inhibitor (anti-Nucleolin Abcam Cat# 

ab22758, RRID:AB 776878, 1:500). After incubation, cells were washed 3 times in 1x PBS 

(RNAse-free) and incubated for 1 hour at room temperature with secondary antibody 

labeled with Alexa fluorophores (Invitrogen, Alexa 555) diluted in 1x PBS (1:500). Next, 
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coverslips were washed three times in 1x PBS (RNAse-free) and RNA-FISH protocol 

was performed starting with probe incubation step (described above). After the final wash, 

coverslips were rinsed in ddH2O, mounted with ProLong Gold with DAPI (Invitrogen, 

P36935), and stored at 4°C until acquisition. 

Image quantification and analysis 

RNA-FISH only images were acquired with Zeiss LSM 800 with the 63x oil objective and 

collected every 0.3 µm for 16 Z-stacks, IF/RNA-FISH images were acquired with Zeiss 

LSM 980 with the 63x oil objective and collected every 0.3 µm for 16 Z-stacks.  

Image analysis was performed using an Icy (v2.3) software followed by custom written 

python script for x, y, z Euclidean distance measurements. Briefly, a region of interest 

corresponding to each nucleus was determined using DAPI staining. Next, in each nucleus, 

intron spots were identified based on a local intensity threshold. Only nuclei with at least 

one spot for each target probed and a maximum of two spots per individual target 

(corresponding to the individual alleles) were kept for further analysis; nuclei that did not 

meet criteria were discarded. Then, the x, y, z position of each intron spot was determined 

and used to calculate Euclidean distance between all possible pairs of gene alleles. Using 

this matrix of interactions, nuclei were selected for further analysis only if they contained 

one or two full sets of triplet alleles (B-A-B) and each pair of alleles within the triplet was 

in a proximity of less than 20 units. This allows us to focus on triplets of genes that come 

from the same allele.   

Imaris software v8 from Bitplane (Oxford Instruments Company) was used to visualize 

Nucleolin and intron-RNA-FISH localization. Distances were measured from the middle 

of the 3D spot constructed from allele intensity to the 3D surface constructed from the 

nucleolin signal.  

 

Quantification and statistical analysis 
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Details of statistical analyses performed in this paper including analyses packages can 

be found in the figure legends, main text, and STAR Methods. Spearman correlation 

coefficients and Pearson correlation coefficients were calculated using the stats module of 

the scipy python package54. Mann-Whitney U test was performed using the stats module 

of the scipy python package54. Precision measures such as mean, median, quartiles, 

standard deviation, and bootstrapped confidence intervals are described in the 

corresponding figure legends.  

Significance of inter-chromosomal RNA-RNA contacts 

To compute the significance of inter-chromosomal RNA-RNA contacts between speckle 

hub or nucleolar hub genes, the RNA-RNA contacts between the top 2000 pre-mRNAs 

were randomly permuted to generate an expected distribution for contact frequency. 

Specifically, the pre-mRNA reads associated with these genes were randomized across the 

clusters containing them. The RNA-RNA contacts for the permuted clusters were 

calculated, the gene-based RNA-RNA contact map were normalized using ICE, and the 

inter-chromosomal contacts were collapsed into speckle hub genes, nucleolar hub genes, 

or neither. This procedure was repeated 100 times to generate an expected distribution of 

mean inter-chromosomal contacts. The observed value was compared to the expected 

distribution to generate a p-value. 
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Key Resources Table 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 

Rabbit polyclonal anti-Nucleolin Abcam Cat# ab22758; 
RRID:AB_77687
8 

Chemicals, peptides, and recombinant proteins 

Doxycycline Sigma D9891 

Deposited data 

SPRITE data Quinodoz et al., 
2021 

GEO:GSE15151
5 

Ribo-Depleted RNA RNA-seq data in mESC Sigova et al., 2013 GEO:GSM90366
3 

PolyA RNA-seq data in mESC This Study GEO: 
GSE211287 

GRO-seq data in mES cells Jonkers et al., 2014 GEO:GSE48895 

Experimental models: Cell lines 

Mouse: pSM44 ES cell line This Study pSM44 (dox-
inducible Xist) 

Software and algorithms 

SPRITE pipeline 2.0 (v0.2) This Study https://github.c
om/GuttmanLa
b/sprite2.0-
pipeline  
https://doi.org/
10.5281/zenod
o. 7030136 

Bowtie2 (v2.3.5) Langmead and 
Salzberg, 2012 

http://bowtie-
bio.sourceforge.
net/bowtie2/in
dex.shtml 

Hisat (v2.1.0) Kim, Langmead, and 
Salzberg, 2015 

http://www.ccb
.jhu.edu/softwa
re/hisat/index.s
html 

Samtools (v1.4) Li et al., 2009 http://samtools
.sourceforge.ne
t/ 

Bedtools (v2.30.0) Quinlan and Hall, 
2010 

https://bedtool
s.readthedocs.i
o/en/latest/ 

http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://bowtie-bio.sourceforge.net/bowtie2/index.shtml
http://www.ccb.jhu.edu/software/hisat/index.shtml
http://www.ccb.jhu.edu/software/hisat/index.shtml
http://www.ccb.jhu.edu/software/hisat/index.shtml
http://www.ccb.jhu.edu/software/hisat/index.shtml
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Trim Galore! (v0.6.2) Felix Krueger (The 
Babraham Institute) 

https://www.bi
oinformatics.ba
braham.ac.uk/p
rojects/trim_gal
ore/ 

Subread (v2.0.3) Liao et al., 2013, 
2014 

http://subread.
sourceforge.net
/ 

Cooler (v0.8.5) Abdennur and 
Mirny, 2019 

https://github.c
om/open2c/coo
ler 

Cooltools (v0.4.1) 10.5281/zenodo.521
4125 

https://github.c
om/open2c/coo
ltools 

Scipy (v1.7.1) Virtanen et al., 2020 https://scipy.or
g/ 

 

 

  

https://github.com/open2c/cooler
https://github.com/open2c/cooler
https://github.com/open2c/cooler
https://github.com/open2c/cooltools
https://github.com/open2c/cooltools
https://github.com/open2c/cooltools
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4.1. SUMMARY 

The nucleus is a highly organized arrangement of RNA, DNA, and protein molecules that 

are spatially organized within three-dimensional (3D) structures. Although RNA has long 

been proposed to play a global role in organizing nuclear structure, exploring this has 

remained a challenge because no existing methods can simultaneously measure RNA and 

DNA contacts within 3D structures. To address this, we developed a genome-wide 

approach to comprehensively map the spatial organization of all RNAs relative to DNA 

called RNA & DNA SPRITE (RD-SPRITE). Using this approach, we detect higher-order 

RNA-chromatin structures associated with three major classes of nuclear function: RNA 

processing (including ribosome biogenesis, mRNA splicing, snRNA biogenesis, and 

histone mRNA processing), heterochromatin assembly, and gene regulation. We identify 

hundreds of ncRNAs that form high-concentration territories in spatial proximity to their 

transcriptional loci. Focusing on several examples, we show that RNA is required to recruit 

ncRNA and protein regulators into dozens of precise 3D structures in the nucleus. We show 

that specific ncRNAs can shape long-range DNA contacts, heterochromatin assembly, and 

gene expression within these spatial territories. Together, our results demonstrate a unique 

mechanism by which RNAs can act to shape nuclear structure by forming high 

concentration spatial territories immediately upon transcription, binding to diffusible 

regulators, and guiding them into spatial compartments to regulate a range of essential 

nuclear functions. 
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4.2. INTRODUCTION 

The nucleus is spatially organized in three-dimensional (3D) structures that are important 

for various functions including transcription and RNA processing1–6. To date, genome-

wide studies of nuclear organization have focused primarily on the role of DNA7–9, yet 

nuclear structures are known to contain multiple DNA, RNA, and protein molecules that 

are involved in shared functional and regulatory processes1–6. These include classical 

compartments like the nucleolus10 (which contains transcribed ribosomal RNAs and their 

processing molecules) and nuclear speckles11 (which contain nascent pre-mRNAs and 

mRNA splicing components), as well as more recently described transcriptional 

condensates12,13 (which contain Mediator and RNA Polymerase II). Because the complete 

molecular architecture of the nucleus has not been globally explored, the full extent to 

which such compartments exist and contribute to nuclear function remains unknown. Even 

for the specific nuclear compartments that have been molecularly characterized, the 

mechanism by which intrinsically diffusible RNA and protein molecules become spatially 

organized within these structures remains largely unknown. 

Nuclear RNA has long been proposed to play a central role in shaping nuclear structure14–

19. Initial experiments performed more than 30 years ago found that global disruption of 

RNA (using RNase) leads to large scale morphological deficits in the nucleus14. Over the 

past decade it has become clear that mammalian genomes encode thousands of nuclear-

enriched ncRNAs20–22, several of which play critical roles in the regulation of essential 

nuclear functions23,24. These include ncRNAs involved in splicing of pre-mRNAs 

(snRNAs)25,26, cleavage and modification of pre-ribosomal RNAs (snoRNAs, Rnase 

MRP)27–29, 3’-end cleavage and processing of the non-polyadenylated histone pre-mRNAs 

(U7 snRNA)30–33, and transcriptional regulation (e.g. Xist34–36 and  7SK37–39). Interestingly, 

many of these functionally important ncRNAs localize within specific spatial 

compartments in the nucleus6,40,41. For example, snoRNAs and the 45S pre-ribosomal RNA 

localize within the nucleolus10,42–44, the Xist lncRNA localizes on the inactive X 

chromosome (Barr body)45–48, and snRNAs and Malat1 lncRNA localize within nuclear 

speckles11,49.  
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In each of these examples, multiple RNA, DNA, and protein components 

simultaneously interact within precise three-dimensional structures to coordinate specific 

nuclear functions. While the roles of these specific ncRNAs have been well studied, 

comprehensively mapping the localization patterns of most nuclear ncRNAs relative to 

other RNAs and DNAs in 3D space remains a challenge because no existing method can 

simultaneously measure higher-order RNA-RNA, RNA-DNA, and DNA-DNA contacts 

within 3D structures. As a result, it is unclear (i) which specific RNAs might be involved 

in nuclear organization15,17,19, (ii) which specific nuclear compartments are dependent on 

RNA, and (iii) what mechanisms RNA might utilize to organize nuclear structures. 

Microscopy is currently the only way to relate RNA and DNA molecules in 3D space. 

However, this approach is limited to examining a small number of simultaneous 

interactions and therefore requires a priori knowledge of which RNAs and nuclear 

structures to explore. An alternative approach is genomic mapping of RNA-DNA contacts 

using proximity-ligation methods50–54. While these approaches can provide genome-wide 

pairwise maps of RNA-DNA interactions, they do not provide information about the 3D 

organization of these molecules in the nucleus. Moreover, we recently showed that 

proximity-ligation methods can fail to identify pairwise contacts between molecules that 

are organized within certain nuclear compartments because these methods only identify 

interactions where components are close enough in space to be directly ligated55. 

Consistent with this observation, existing RNA-DNA proximity-ligation methods fail to 

identify known RNA-DNA contacts that are contained within various well-established 

nuclear bodies, such as nucleoli, histone locus bodies (HLBs), and Cajal bodies52–54. 

We recently developed SPRITE, a proximity-ligation independent method that utilizes 

split-and-pool barcoding to generate accurate, comprehensive, and multi-way 3D spatial 

maps of the nucleus across a wide range of distances55. Importantly, we showed that this 

approach can accurately map the spatial organization of DNA arranged around two nuclear 

bodies: nucleoli and nuclear speckles55. However, our original version of the technique 

could not detect the vast majority of RNAs — including low abundance ncRNAs known 

to organize within several well-defined nuclear structures — thereby precluding a 
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comprehensive map of RNA localization within the nucleus. Here, we introduce a 

dramatically improved method, RNA & DNA SPRITE (RD-SPRITE), which enables 

simultaneous and high-resolution mapping of thousands of RNAs — including low 

abundance RNAs such as individual nascent pre-mRNAs and ncRNAs — relative to all 

other RNA and DNA molecules in 3D space. Using this approach, we identify several 

higher-order RNA-chromatin hubs as well as hundreds of ncRNAs that form high 

concentration territories throughout the nucleus. Focusing on specific examples, we show 

that many of these RNAs act to recruit diffusible ncRNA and protein regulators and can 

shape long-range DNA contacts, heterochromatin assembly, and gene expression within 

these spatial territories. Together, our results highlight a unique role for RNA in the 

formation of nuclear compartments that are involved in a wide range of essential nuclear 

functions including RNA processing, heterochromatin assembly, and gene regulation.  

 

4.3. RESULTS 

RD-SPRITE generates accurate maps of higher-order RNA and DNA contacts 

throughout the cell 

To explore the role of RNA in shaping nuclear structure, we developed RNA & DNA 

SPRITE (RD-SPRITE), which enables simultaneous mapping of multi-way DNA-DNA, 

RNA-DNA, and RNA-RNA contacts. Specifically, we improved the efficiency of the 

RNA-tagging steps of our SPRITE method55 to enable detection of all classes of RNA, 

from highly abundant ribosomal RNAs and snRNAs to less abundant lncRNAs and 

individual nascent pre-mRNAs (Supplemental Note 1).  Briefly, our approach works as 

follows: (i) RNA, DNA, and protein contacts are crosslinked to preserve their spatial 

relationships in situ, (ii) cells are lysed and the contents are fragmented into smaller 

crosslinked complexes, (iii) DNA and RNA within each complex are tagged with a 

sequence-specific adaptor, (iv) barcoded using an iterative split-and-pool strategy to 

uniquely assign a shared barcode to all DNA and RNA components contained within a 
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crosslinked complex, (v) DNA and RNA are sequenced, and (vi) all reads sharing 

identical barcodes are merged into a group that we refer to as a SPRITE cluster (Figure 

1A, Supplemental Figure 1A, see Methods). Because RD-SPRITE does not rely on 

proximity ligation, it can detect multiple RNA and DNA molecules that simultaneously 

associate within the nucleus. 

We performed RD-SPRITE in an F1 hybrid female mouse ES cell line that was engineered 

to induce Xist from a single allele (see Methods). We sequenced these libraries on a 

NovaSeq S4 run to generate ~8 billion reads corresponding to ~720 million SPRITE 

clusters (Supplemental Figure 1C, Supplemental Table 2). We confirmed that we 

accurately identify RNA- and DNA-specific reads (Supplemental Figure 1A-B) and that 

the data measure bona fide RNA interactions — including well-described RNA-DNA and 

RNA-RNA contacts not only in the nucleus, but throughout the cell. 

First, we explored RNA-DNA contacts captured in our data and compared their interactions 

to those of several ncRNAs that were previously mapped to chromatin and reflect a range 

of known cis and trans localization patterns. Specifically, we observed strong enrichment 

of (i) Xist over the inactive X (Xi), but not the active X chromosome (Xa)56,57 (Figure 1B, 

Supplemental Figure 1D); (ii) Malat1 and U1 over actively transcribed RNA Polymerase 

II genes58,59 (Figure 1B); and (iii) telomerase RNA component (Terc) over telomere-

proximal regions of all chromosomes (Supplemental Figure 1E)60,61. 

Second, we explored known RNA-RNA contacts that occur in different locations in the 

cell. For example, we observed a large number of contacts between translation-associated 

RNAs in the cytoplasm, including all RNA components of the ribosome (5S, 5.8S, 18S, 

28S rRNA) and ~8000 individual mRNAs (exons), but not with pre-mRNAs (introns). 

Conversely, we observed many contacts between the small nuclear RNA (snRNA) 

components of the spliceosome (e.g. U1, U2, U4, U5, U6) in the nucleus and individual 

pre-mRNAs (Figure 1C).  
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Together, these results demonstrate that RD-SPRITE accurately measures known 

RNA-DNA and RNA-RNA localization patterns in the nucleus and cytoplasm. While we 

focus primarily on RNA localization within the nucleus, we note that RD-SPRITE can also 

be utilized to study RNA compartments beyond the nucleus62–64. 

 

Multiple non-coding RNAs co-localize within spatial compartments in the nucleus 

Because RD-SPRITE generates comprehensive maps of RNA and DNA localization in the 

nucleus, we explored which specific RNAs localize within spatial compartments. To do 

this, we first mapped pairwise RNA-RNA and RNA-DNA contacts and identified several 

groups of RNAs in which member RNAs display high pairwise contact frequencies with 

each other, but low contact frequencies with RNAs in other groups (Figure 1D). 

Interestingly, the multiple pairwise interacting RNAs within the same group also localize 

to similar genomic DNA regions. For example, we observe pairwise contacts between 

snRNAs (e.g. U1, U2) and other RNAs known to localize in nuclear speckles (e.g. Malat1, 

7SK), and these RNAs display similar localization over actively transcribed DNA regions 

(Supplemental Figure 1G-H). Using a combination of RNA FISH to visualize RNAs and 

immunofluorescence to visualize different cellular compartments, we confirmed that 

RNAs within groups spatially co-localize (Supplemental Figure 1I), while RNAs in 

distinct groups localize to different regions of the cell (Supplemental Figure 1J). 

We next explored whether groups of pairwise interacting RNAs form higher-order 

structures within the nucleus. To do this, we computed the frequency of observing 

simultaneous contacts between 3 or more distinct RNAs and compared this to the expected 

frequency if these RNAs were randomly distributed (see Methods). We observed many 

significant multi-way contacts within each group (see Supplemental Table 1). For 

example, we observe multi-way contacts between all RNA components of the spliceosome 

(5-way contacts between U1, U2, U4, U5, and U6, p<0.01, z-score=9.9).  Overall, RNAs 

contained within a group exhibit a significantly higher number of multi-way contacts than 
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RNAs from distinct groups (~50-fold for 3-way contacts, Supplemental Figure 1F). 

We refer to these higher-order, multi-way structures as “hubs” and explore them below. 

 

Non-coding RNAs form processing hubs around genomic DNA encoding their nascent 

targets 

We first explored the RNA-DNA hubs associated with RNA processing. Specifically, we 

examined the RNA components in these hubs (RNA-RNA interactions), the location of 

these RNAs relative to genomic DNA (RNA-DNA interactions), and whether the multiple 

DNA loci come together in 3D space (DNA-DNA interactions). We observed that: 

(i) ncRNAs involved in ribosomal RNA processing organize within a 3D compartment 

containing transcribed ribosomal RNA genes. We identified a hub that includes the 45S 

pre-ribosomal RNA (pre-rRNA), RNase MRP, and dozens of snoRNAs that are involved 

in rRNA biogenesis (Figure 1D, Supplemental Figure 2A). rRNA is transcribed as a 

single 45S precursor RNA and is cleaved by RNAse MRP and modified by various 

snoRNAs to generate the mature 18S, 5.8S, and 28S rRNAs65–67. We found that these 

ncRNAs form multi-way contacts with each other (p<0.01, z-score=31, Supplemental 

Table 1) and localize at genomic locations that are proximal to ribosomal DNA repeats 

that encode the 45S pre-rRNA and other genomic regions that organize around the 

nucleolus55 (Figure 2A, Supplemental Figure 2B, see Methods). We explored the DNA-

DNA interactions that occur within SPRITE clusters containing multiple nucleolar hub 

RNAs (45S pre-rRNA and snoRNAs, ≥4-way contacts) and observed that these RNAs and 

genomic DNA regions are organized together in 3D space (Figure 2B, Supplemental 

Figure 2C, see Methods). Our results demonstrate that the nascent 45S pre-rRNA, along 

with the diffusible snoRNAs and RNase MRP, is spatially enriched near the DNA loci from 

which it is transcribed.  

(ii) ncRNAs involved in mRNA splicing are spatially concentrated around a high-density 

of transcribed Pol II genes. We identified a hub that contains nascent pre-mRNAs along 
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with all of the major (e.g. U1, U2, U4, U5, U6) and minor (U11, U12) spliceosomal 

ncRNAs and other ncRNAs associated with transcriptional regulation and mRNA splicing 

(e.g. 7SK and Malat1) (Figure 1D, Supplemental Table 1). Nascent pre-mRNAs are 

known to be directly bound and cleaved by spliceosomal RNAs to generate mature mRNA 

transcripts25,68, yet it has been unclear how spliceosomal RNAs are organized in the nucleus 

relative to target pre-mRNAs and genomic DNA69–74. We first explored the possibility that 

the localization of splicing RNAs to genomic DNA regions occurs primarily through their 

association with nascent pre-mRNAs. In this case, we would expect that the DNA 

occupancy of splicing RNAs would be proportional to mRNA transcription levels, 

regardless of the 3D spatial position of an individual gene in the nucleus (Figure 2C). 

However, we find that these splicing RNAs do not show a uniform occupancy over all 

genes when normalized for transcription levels. Instead, they are more highly enriched over 

DNA regions containing a high-density of actively transcribed Pol II genes (Pearson r = 

0.84-0.90, Figure 2A, Supplemental Figure 2D). When we explored the higher-order 

DNA contacts of these RNAs (≥2 distinct RNAs, ≥4-way RNA-DNA contacts), we found 

that these genomic DNA regions form preferential inter-chromosomal contacts and are 

comparable to regions we previously showed are organized around nuclear speckles55 

(Figure 2D, Supplemental Figure 2E). Interestingly, we observed that snRNA 

localization was significantly higher over DNA regions that are close to the nuclear speckle 

relative to those located farther away (Figure 2C), even when focusing on genes with 

comparable levels of transcription in both sets (Figure 2E). These results demonstrate that 

spliceosomal RNAs are spatially enriched near clusters of actively transcribed Pol II genes 

and their associated nascent pre-mRNAs.  

(iii) ncRNAs involved in snRNA biogenesis are spatially organized around snRNA gene 

clusters. We identified a hub containing several annotated small Cajal body-associated 

RNAs (scaRNAs), two previously unannotated scaRNAs, and several small nuclear RNAs 

(snRNAs) (Figure 1D, Supplemental Table 1, Supplemental Figure 3F, see Methods). 

snRNAs are Pol II transcripts produced from multiple locations throughout the genome 

that undergo 2’-O-methylation and pseudouridylation before acting as functional 
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components of the spliceosome at thousands of nascent pre-mRNA targets75–77. 

scaRNAs directly hybridize to snRNAs to guide these modifications78–80. We found that 

scaRNAs are highly enriched at discrete genomic regions containing multiple snRNA 

genes in close linear space (Figure 3A). Because nascent snRNAs are hard to distinguish 

from mature snRNAs, we are unable to directly observe the spatial localization of nascent 

snRNAs on genomic DNA. However, because scaRNAs are known to bind to nascent 

snRNAs81,82, we focused on SPRITE clusters containing snRNAs and scaRNAs and 

observed that these clusters are highly enriched at genomic DNA regions containing 

snRNA genes (Figure 3A), indicating that nascent snRNAs are enriched near their 

transcriptional loci. Interestingly, despite being separated by large genomic distances, these 

DNA regions form long-range contacts (Figure 3B, Supplemental Figure 3G). In fact, 

we observe that these scaRNAs, snRNAs, and the distal DNA loci from which the snRNAs 

are transcribed simultaneously interact within higher-order SPRITE clusters (Figure 3A, 

Supplemental Figure 3I). Together, these results demonstrate that these components 

simultaneously interact within a spatial compartment in the nucleus. We note that this 

snRNA biogenesis hub may be similar to Cajal bodies, which have been noted to contain 

snRNA genes and scaRNAs81–85 (see Supplementary Note 2). 

(iv) The histone processing U7 snRNA is spatially enriched around histone gene loci. 

We identified a hub containing the U7 snRNA and various histone mRNAs (Figure 1D). 

Unlike most pre-mRNAs, histone pre-mRNAs are not polyadenylated; instead their 3’ends 

are bound and cleaved by the U7 snRNP complex to produce mature histone mRNAs86,87. 

This process is thought to occur within nuclear structures called Histone Locus Bodies 

(HLBs)33,78, demarcated by NPAT protein (Supplemental Figure 3B). We observed that 

the U7 snRNA localizes at genomic DNA regions containing histone mRNA genes, 

specifically at two histone gene clusters on chromosome 13 (Figure 3A). To determine 

whether the U7 snRNA, histone gene loci, and nascent histone pre-mRNAs form a 3D 

spatial compartment, we generated DNA-DNA interaction maps from U7 snRNA-

containing clusters (≥3-way RNA-DNA contacts) and observed long-range DNA contacts 

between the two histone gene clusters on chromosome 13 (Figure 3C, Supplemental 
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Figure 3H,J). We observed that scaRNAs also localize to these histone gene clusters 

(Figure 3A), consistent with previous observations that HLBs and Cajal bodies are often 

found adjacent to each other in the nucleus83,88 (see Supplemental Note 2, Supplemental 

Figure 3C-E). 

Taken together, these results indicate that higher-order spatial organization of diffusible 

regulators around shared DNA sites and their corresponding nascent RNA targets is a 

common feature of many distinct forms of RNA processing, including ribosomal RNA, 

mRNA, snRNA, and histone mRNA biogenesis. 

 

Spatial organization of processing compartments is dependent on transcription of 

nascent RNA 

In each of these examples, we observed spatial compartments that consist of: (i) nascent 

RNAs localized near their DNA loci, (ii) these DNA loci forming long-range 3D contacts, 

and (iii) diffusible ncRNAs associating with these nascent RNAs and DNA loci within the 

compartment. Because many of these diffusible ncRNAs are known to directly bind to the 

nascent RNA (e.g. snoRNAs bind 45S pre-rRNA27,89,90, U7 binds histone pre-mRNA91–93, 

and scaRNAs bind pre-snRNAs79,81), we hypothesized that nascent transcription of RNA 

might act to form a high-concentration territory at these genomic DNA sites and recruit 

these diffusible ncRNAs into these spatial compartments. 

To test whether transcription of nascent RNA is critical for the spatial organization of these 

compartments, we treated cells with actinomycin D (ActD), a drug that inhibits RNA Pol 

I and Pol II transcription94, for 4 hours and performed RD-SPRITE (Figure 4A, 

Supplemental Figure 4A). We confirmed that ActD treatment led to robust inhibition of 

various nascent RNAs (>10-fold reduction, 45S pre-rRNA, histone mRNAs), but did not 

impact the steady-state RNA levels of their associated diffusible ncRNAs (e.g. snoRNAs, 

U7, scaRNAs) (Figure 4B, Supplemental Figure 4B-C).  
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We then explored the spatial organization of DNA and RNA after ActD treatment. 

Strikingly, while we did not observe structural changes of most DNA structural features 

(e.g., chromosome territories, A/B compartments, Supplemental Figure 4I), we observed 

large-scale disruption of DNA and RNA in the nuclear structures associated with the 

ribosome, snRNA, and histone biogenesis. Focusing on the nucleolar hub, we observed a 

strong depletion of RNA-RNA contacts between the various snoRNAs (Figure 4C) and 

global disruption of snoRNA localization at nucleolar DNA sites (Figure 4D-E, 

Supplemental Figure 4D). Instead, these snoRNAs, RMRP (another nucleolar-enriched 

RNA), and various proteins associated within the nucleolus (e.g. NPM1 and Fibrillarin), 

appeared to diffuse broadly throughout the nucleus (Figure 4D, Supplemental Figure 

4E,H). Moreover, we observed a dramatic reduction in inter-chromosomal contacts 

between genomic DNA regions contained within the nucleolar hub (Figure 4F, 

Supplemental Figure 4G). These results indicate that transcription of 45S pre-rRNA 

(which is known to interact with snoRNAs and RNase MRP23,65) acts to concentrate these 

diffusible trans-acting regulatory ncRNAs and spatially organize DNA loci into the 

nucleolar compartment (Figure 4G). 

We observed a similar loss of focal localization of scaRNAs at snRNA genes (Figure 4E, 

Supplemental Figure 4D), a change from focal to diffusive localization of scaRNAs in 

the nucleus (Figure 4D), and a striking reduction in the long-range DNA-DNA contacts 

between snRNA genes upon ActD treatment (Figure 4F, Supplemental Figure 4G). 

These results indicate that active transcription of nascent snRNAs (which are known to 

bind to scaRNAs79,80) acts to enrich diffusible scaRNAs and snRNA genomic loci into a 

defined spatial compartment (Figure 4G). We observed a loss of focal localization of U7 

at the histone genes (Figure 4E, Supplemental Figure 4D) and specific loss of long-range 

DNA-DNA interactions occurring between the histone loci (Figure 4F). Furthermore, we 

observed an overall increase in the number of nuclear foci containing HLB-associated 

proteins (NPAT) within each cell (Figure 4D, Supplemental Figure 4F). These results 

indicate that nascent transcription of histone pre-mRNAs (which directly bind to U7) act 

to concentrate the trans-associating U7 ncRNA and other HLB proteins, and spatially 
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organize histone genomic DNA into the HLB compartment (Figure 4G). Consistent 

with this notion, previous studies have shown that histone pre-mRNAs are sufficient to 

seed the formation of the HLB and that the U7 binding site on the histone pre-mRNA is 

required for HLB formation41,78,95. 

Although we did not observe major changes in DNA-DNA or RNA-DNA contacts within 

the splicing hub, this may be because ActD only leads to a modest reduction (<2-fold) in 

nascent pre-mRNA (introns) levels (Supplemental Figure 4A). Consistent with this 

possibility, we previously observed significant changes in snRNA localization at active 

DNA sites following treatment with flavopiridol (FVP), a transcriptional inhibitor that runs 

off elongating Pol II and leads to robust reduction of nascent pre-mRNA levels96.  

4.4. DISCUSSION 

We aimed to understand how intrinsically diffusible molecules become spatially enriched 

in 3D space within the nucleus. Our results demonstrate that ncRNAs can act as seeds to 

drive spatial localization of otherwise diffusive ncRNA and protein molecules in the 

nucleus. For example, we showed that experimental perturbations of several ncRNAs 

disrupt localization of diffusible proteins (HP1, SHARP) and ncRNAs (e.g. U7, snoRNAs, 

scaRNAs, etc.) in dozens of compartmentalized structures. In all of these cases, we 

observed a common theme where (i) specific RNAs localize at high concentrations in 

spatial proximity to their transcriptional loci and (ii) diffusible ncRNA and protein 

molecules that bind to these RNAs are enriched within these compartmentalized structures. 

More generally, we identified hundreds of additional ncRNAs that are spatially enriched 

near their transcription sites and, as such, may represent a widespread class of molecules 

that could act as localized seeds to guide spatial localization of regulatory factors 

throughout the nucleus. Together, these observations suggest a common mechanism by 

which RNA can mediate nuclear compartmentalization: nuclear RNAs can form high 

concentration spatial territories close to their transcriptional loci (“seed”), bind to diffusible 

regulatory ncRNAs and proteins through high affinity interactions (“bind”) and by doing 

so act to dynamically change the spatial distribution of these diffusible molecules in the 
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nucleus such that they are enriched within compartments composed of multiple DNA 

loci, regulatory and target RNAs, and proteins in 3D space (“recruit”, Figure 5). By 

recruiting diffusible regulatory factors to multiple distinct DNA sites, these ncRNAs may 

also act to drive coalescence of distinct DNA regions into a shared territory in the nucleus. 

This may explain why various RNAs are critical for organizing long-range DNA 

interactions around specific nuclear bodies. 

This mechanism may explain why many distinct types of RNA processing occur through 

compartmentalization of regulatory ncRNAs and proteins near their nascent RNA targets. 

Specifically, we show that each of these RNA processing hubs consists of a high 

concentration of nascent RNA near its transcriptional locus and enrichment of diffusible 

trans-associating ncRNAs — known to bind to the encoded nascent RNA — within the 

spatial compartment. In this way, these nuclear compartments contain high concentrations 

of regulatory RNAs and proteins in proximity to their nascent RNA targets, which are 

further organized within higher-order DNA structures that come together in 3D space to 

form distinct processing hubs. Because the efficiency of a biochemical reaction is increased 

when the substrate or enzyme concentration is increased, creating a high local 

concentration of regulators (e.g. spliceosomes) and targets (e.g. nascent pre-mRNAs) in 

3D space may increase the kinetic efficiency of such reactions, and in turn increase the 

efficiency of co-transcriptional processing and regulation. This compartmentalization 

mechanism can also increase the rate at which regulators identify and engage targets, which 

may be particularly important in cases where the regulators (e.g. scaRNAs, U7) are 

expressed at low levels relative to their more abundant substrates (e.g. snRNAs, histone 

mRNAs). This spatial organization may be an important regulatory mechanism for 

ensuring the efficiency of co-transcriptional RNA processing and may explain how RNA 

processing and transcription are kinetically coupled. 

Our results demonstrate that hundreds of nuclear ncRNAs are preferentially localized 

within precise territories in the nucleus, suggesting that this may be an important and 

common function exploited by additional nuclear RNAs to coordinate the spatial 

organization of diffusible molecules. This mechanism utilizes a unique role for RNA in the 
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nucleus (relative to DNA or proteins). Specifically, the process of transcription 

produces many copies of an RNA, which is present at high concentrations in proximity to 

its transcriptional locus97,98. In contrast, proteins are translated in the cytoplasm and 

therefore lack positional information in the nucleus, and DNA is only present at a single 

copy and therefore cannot achieve high local concentrations. 

Central to this mechanism is the fact that ncRNAs can form high affinity interactions with 

both protein and RNA immediately following transcription. In this way, they can act to 

recruit proteins and RNAs within these high concentration spatial territories. In contrast, 

mRNAs are functional when translated into protein and therefore do not form stable 

interactions with regulatory molecules in the nucleus. Our results suggest that any RNA 

that functions independently of its translated product may similarly act as a ncRNA. For 

example, we note that nascent pre-mRNAs may have protein-coding functions and also 

form high-affinity interactions within the nucleus that are important for spatial 

organization. Indeed, we find that histone pre-mRNAs can seed organization of nuclear 

compartments even though their processed RNAs are also translated into protein products. 

This role for RNA as a seed for nuclear compartments might also explain formation of 

other recently described nuclear compartments such as transcriptional condensates99,100, 

which inherently produce high levels of RNAs, including enhancer-associated RNAs and 

pre-mRNAs101. Nonetheless, not all ncRNAs — or even all nuclear ncRNAs — act to form 

compartments around their loci since nuclear ncRNAs can also localize within other 

regions in the nucleus (e.g. Malat1, scaRNAs, snoRNAs, and snRNAs). Future work will 

be needed to understand why some specific nuclear RNAs are constrained to local spatial 

compartments, while others diffuse throughout the nucleus. 

This unique role for ncRNAs in the nucleus may explain why certain biological processes 

utilize ncRNA regulators rather than proteins or DNA. For example, coordinated regulation 

of multiple genomic DNA targets would be ideally controlled through the expression of a 

single ncRNA that could localize and recruit regulatory proteins to all of these targets 

simultaneously. Indeed, many multi-gene regulatory programs, such as X chromosome 

inactivation and imprinted gene silencing, utilize ncRNAs as regulators (e.g. Xist, 
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Kcqn1ot1, and Airn). In this way, ncRNAs can increase both the efficiency and 

specificity of gene regulation by enabling control of multiple target genes through the 

expression of a single regulatory RNA from its genomic locus. This strategy may also be 

advantageous even when modulating a single gene because establishment of an RNA 

territory can recruit effector proteins simultaneously to many genomic regions that are far 

away in linear distance but proximal in 3D space — including promoters and multiple 

enhancers — to enable higher concentration and more potent gene regulation. As an 

example, we observe high concentration of the Pvt1 lncRNA over the Myc gene and all of 

its known enhancer elements. This coordinated gene regulation model may extend to many 

of the hundreds of ncRNAs that we identified to be localized within discrete territories in 

the nucleus. 

Taken together, these results provide a global picture of how spatial enrichment of ncRNAs 

in the nucleus can seed formation of compartments that coordinate the efficiency and 

specificity of a wide range of essential nuclear functions, including RNA processing, 

heterochromatin organization, and gene regulation (Supplemental Figure 5). While we 

focused our analysis on ncRNAs in this work, we note that RD-SPRITE can also be applied 

to measure how gene expression relates to genome organization because it can detect the 

arrangement of nascent pre-mRNAs relative other RNAs (e.g. enhancer RNAs, pre-

mRNAs) and 3D DNA structure. Beyond the nucleus, we anticipate that RD-SPRITE will 

also provide a powerful method to study the molecular organization, function, and 

mechanisms of RNA compartments and granules throughout the cell. 

 

LIMITATIONS OF STUDY 

We note that there are several technical limitations of the RD-SPRITE method. For 

example, this approach requires crosslinking, which may lead to potential biases in the 

types of interactions that are detected. Moreover, because this approach takes a snapshot 

in time, it cannot measure dynamic events. In addition, while we showed several examples 
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of RNAs that are required for recruiting diffusible molecules into spatial compartments 

and identified hundreds more that localized in high concentration territories and therefore 

are potentially capable of acting in this way, this mechanism may not hold true for every 

RNA and future work will be needed to explore the functional and mechanistic roles of 

individual ncRNAs.  
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4.5. MAIN FIGURES 

 

Figure 1: RD-SPRITE generates maps of higher-order RNA and DNA contacts 

throughout the cell.  

(A) Schematic of the RD-SPRITE protocol. Crosslinked cells are fragmented into smaller 

crosslinked complexes (e.g. A, B). RNA and DNA are each tagged with a DNA-specific 
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or RNA-specific adaptor sequence (pink). The sample is processed through multiple 

rounds of split-and-pool barcoding (n times), where tag sequences are concatemerized 

during each round. A series of tags is referred to as a SPRITE barcode. RNA and DNA are 

sequenced, and barcodes are matched to generate SPRITE clusters to identify groups of 

interacting molecules. (B) RNA-DNA interactions of various non-coding RNAs in mouse 

embryonic stem (mES) cells. Xist (burgundy) unweighted contacts across the genome in 

female ES cells where Xist is induced exclusively on the 129 allele (inactive X 

chromosome; Xi), but not the Castaneous allele (active X chromosome; Xa). U1 

spliceosomal RNA (red) and Malat1 lncRNA (grey) weighted contacts across the genome 

occur at highly transcribed RNA Pol II (ENCODE) genomic regions (black). Insets show 

zoom-ins of Xist (right) and U1/Malat1 along with genomic localization of RNA Pol II 

from ENCODE (middle and left). Masked regions on chromosome X plotted in gray. (C) 

A heatmap showing the number of unweighted RNA-RNA contacts between different 

classes of RNAs. Columns: translation-associated RNAs (18S, 28S, 5.8S, and 5S rRNA) 

and splicing-associated RNAs (U1, U2, U4, U5, U6 snRNA). Rows: Introns and exons of 

individual mRNAs. Orange represents high contact frequency and blue represents low 

contact frequency. (D) A heatmap showing unweighted RNA-RNA contact frequencies for 

several classes of RNAs. Orange represents high contact frequency and blue represents low 

contact frequency. Groups of pairwise interacting RNAs that have frequent higher-order 

(multi-way) contacts with each other, but not other groups of RNAs, are referred to as RNA 

hubs.  

  



 

 

198 

 

Figure 2: Nucleolar and spliceosomal RNAs form genome-wide interaction hubs.  

(A) Genome-wide weighted RNA-DNA contacts (1Mb resolution) for several RNAs 

within the nucleolar (blue) and spliceosomal (red) hubs. RNA Pol II occupancy from 

ENCODE (black) is shown along with gene density (gray) across the genome. 

Chromosomes that contain ribosomal RNA genes at the centromere proximal regions of 
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the chromosome are demarcated in blue (chr. 12, 15, 16, 18, and 19). (B) Weighted 

DNA-DNA contacts occurring in SPRITE clusters containing nucleolar hub RNAs (e.g 

45S pre-rRNAs, snoRNAs, RMRP). Long range, higher-order inter-chromosomal 

interactions are shown between chromosomes 12 and 19 and chromosomes 15 and 16 for 

nucleolar hub RNA-containing clusters. Red represents high DNA-DNA contact frequency 

and white represents low contact frequency. Weighted 45S rRNA-DNA contacts are shown 

along the top and right axis; blue and white represent high and low contact frequencies, 

respectively. (C) Schematic of two possible snRNA localization models. Model 1: snRNA 

localization at genomic regions occurs primarily through its association with nascent pre-

mRNAs (left). Model 2: snRNA localization depends on 3D spatial position of an 

individual gene in the nucleus (right). (D) Weighted DNA-DNA contacts occurring in 

SPRITE clusters containing spliceosomal hub RNAs (e.g. U1, U2, Malat1, 7SK). Long 

range, higher-order inter-chromosomal interactions are shown between regions on 

chromosome 4 and chromosomes 8 and 11 (examples that have high Pol II occupancy) for 

all spliceosomal hub RNA-containing clusters. Red represents high DNA-DNA contact 

frequency and white represents low contact frequency. Weighted U1 snRNA-DNA 

contacts are shown along the top and right axis; red and white represent high and low 

contact frequencies, respectively. (E) Density of U1 snRNA over genomic DNA regions 

of actively transcribed Pol II genes separated into genes of comparable transcription levels 

whose genomic DNA regions are far from nuclear speckles (blue) or close to nuclear 

speckles (red). Distance from speckle is measured as previously described55 (see 

Methods). 
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Figure 3: Non-coding RNAs involved in snRNA and histone mRNA biogenesis are 

spatially organized around snRNA and histone gene clusters.  

(A) Weighted RNA-DNA contacts for scaRNA2, scaRNA5 (Gm25395), scaRNA17, or 

SPRITE clusters containing both scaRNAs and snRNAs (U1/U2) are plotted across the 

genome in green. Weighed RNA-DNA contacts for U7 snRNA and histone pre-mRNAs 

(Hist1 mRNA) are plotted in teal. Insets (bottom) show zoom-ins on specific regions of 

interest (snRNA gene clusters in red, histone gene clusters in teal). Lines (top) show the 

genomic locations of each RNA plotted and gene clusters of interest. (B) Weighted DNA-

DNA contacts occurring within all SPRITE clusters (lower diagonal) or only SPRITE 
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clusters containing scaRNAs (upper diagonal) are shown across a region of 

chromosome 11 which contains clusters of snRNA genes. The weighted RNA-DNA 

contacts of scaRNAs are shown along the top and side axes. DNA-DNA contacts occurring 

between scaRNA-enriched loci are highlighted with black boxes and arrows. (C) Weighted 

DNA-DNA contacts within all SPRITE clusters (lower diagonal) or only SPRITE clusters 

containing the U7 RNA (upper diagonal) are shown across a region of chromosome 13 

which contains histone genes. U7 and histone pre-mRNA occupancy is shown along the 

top and side axis. DNA-DNA contacts occurring between U7-enriched histone loci are 

highlighted with black boxes and arrows. 
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Figure 4: Inhibition of nascent RNA disrupts the spatial organization of RNA 

processing hubs.  
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(A) Schematic of transcriptional inhibition of RNA Pol I and Pol II in cells treated with 

Actinomycin D (+ActD) or control (+DMSO) and resulting effects on RNA-DNA hub 

organization (red circle). (B) Quantification of changes in gene expression following ActD 

treatment. Nascent transcripts (pre-rRNAs, histone RNAs) are drastically reduced, while 

diffusible ncRNAs (scaRNAs, snoRNAs, U7) are not. (Note: we cannot distinguish nascent 

and mature snRNAs using sequencing.) Raw RNA read counts were normalized to 28S 

rRNA read counts and then scaled to DMSO expression levels (see Methods). Error bars 

represent standard deviation of 3 replicate RD-SPRITE experiments. (C) RNA-RNA 

contact frequency of various snoRNAs contained within the nucleolar hub and cytoplasmic 

hub RNAs following ActD transcriptional inhibition (lower diagonal) or DMSO-control 

treatment (upper diagonal). (D) RNA FISH (columns 1,2) of nucleolar and scaRNA hub-

associated RNAs (snoRNAs, scaRNAs) and IF of HLB-associated NPAT protein (column 

3) following ActD treatment (bottom row) or DMSO-control treatment (top row). (E) 

RNA-DNA SPRITE contact profiles for diffusible RNAs within each hub following 

transcriptional inhibition with ActD. Contact profiles are normalized by RNA expression 

levels within each sample to enable comparison between treated and untreated samples. 

(Left) Genome-wide, weighted RNA-DNA contacts for snoRNAs following ActD 

transcriptional inhibition (+ActD, grey) or control treatment (+DMSO, blue). Contacts for 

top expressing snoRNAs in clusters size 1001-10000 were aggregated (see Methods) 

(Middle) Weighted RNA-DNA contacts for scaRNAs following ActD transcriptional 

inhibition (+ActD, grey) or control treatment (+DMSO, green). RNA localization is shown 

across a region of chromosome 11 which contains snRNA gene clusters (red boxes). 

(Right) Weighted RNA-DNA contacts for U7 snRNA following ActD transcriptional 

inhibition (+ActD, grey) or control treatment (+DMSO, teal). RNA localization is shown 

across a region of chromosome 13 which contains histone gene clusters (teal boxes). (F) 

Weighted DNA-DNA SPRITE contact matrixes at hub-associated genomic locations. 

(Left) Split DNA-DNA contact matrix for nucleolar-hub associated genomic regions 

(previously described55) on chromosomes 10, 12, 15, 16, 18, and 19 following ActD 

treatment (lower diagonal) or DMSO-control treatment (upper diagonal). Raw contact 

frequencies were rescaled to the mean intra-chromosomal contact frequency (see 
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Methods). (Middle) Split DNA-DNA contact matrix for two regions on chromosome 

11 containing snRNA clusters following ActD treatment (lower diagonal) or DMSO-

control treatment (upper diagonal). Weighted DNA contact frequencies were rescaled 

based on rank-ordering to enable comparison between samples (see Methods). Locations 

of snRNA gene clusters are demarcated by red boxes along the top and left side axes. 

(Right) Split DNA-DNA contact matrix for the region on chromosome 13 containing 

histone gene clusters following ActD treatment (lower diagonal) or DMSO-control 

treatment (upper diagonal). Weighted DNA contact frequencies were rescaled based on 

rank-ordering to enable comparison between samples (see Methods). Locations of histone 

genes are demarcated in teal along the top and left axis. (G) Model schematic of how 

nascent transcription of RNA acts to organize diffusible ncRNAs and genomic DNA to 

organize the nucleolar hub (left), scaRNA hub (middle), and histone hub (right).  
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Figure 5: A model for the mechanism by which ncRNAs drive the formation of 

nuclear compartments.  

Upon transcription, mRNAs are exported to the cytoplasm (for translation to proteins) 

while ncRNAs are retained in the nucleus. The process of ncRNA transcription creates a 

concentration gradient of ncRNA transcript with the highest concentrations near its 

transcriptional locus (SEED, left panel). Because these RNAs are functional immediately 

upon transcription and can bind with high affinity to diffusible RNAs and proteins (BIND, 

middle panel), they can act to change the localization of these other RNAs and proteins to 

concentrate them in a spatial compartment (RECRUIT, right panel). In this way, ncRNAs 

may drive the organization of regulatory and functional nuclear compartments.  
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4.6. SUPPLEMENTAL FIGURES 

 



 

 

207 

Supplemental Figure 1: RD-SPRITE accurately measures RNA and DNA 

contacts. (A) Schematic of tagging used to identify DNA- and RNA-specific reads through 

sequencing. DNA and RNA are each tagged with sequence-specific tags, namely “DNA 

Phosphate Modified” (DPM) tag and “RNA Phosphate Modified” (RPM) tags using T4 

DNA and RNA Ligase, respectively. DNA is double stranded and therefore DPM will be 

read from both strands, while RNA is single stranded and therefore RPM will be read only 

from 1 strand. Additionally, the RPM and DPM tags have identical dsDNA sticky ends that 

enable subsequent split-pool barcoding with the same SPRITE tags. (B) The percentage of 

reads aligning to each DNA strand based on their DPM tag (DNA reads) or RPM tag (RNA 

reads) is shown across 144 independently amplified and sequenced SPRITE libraries from 

four SPRITE experiments (technical replicates). (C) Percentage of reads in SPRITE 

clusters of different sizes, stratified into categories of clusters containing 1, 2-10, 11-100, 

101-1000, and 1001+ reads per cluster. Distributions shown for all clusters (left) and paired 

clusters (2+ reads per cluster) (right). (D) Percentage of DNA reads aligning to each 

chromosome from SPRITE clusters containing the Xist lncRNA (black) as compared to all 

SPRITE clusters (gray). (E) The aggregate unweighted RNA-DNA contact frequency of 

the Telomerase associated RNA Component (Terc) across all chromosomes. (F) Multiway 

contact analysis statistics for 3-way and 4-way RNA contacts co-occurring in SPRITE 

clusters. We calculated the expected frequency of multiway contacts if RNAs associated 

at random (n=100 iterations) versus the observed frequency within the RD-SPRITE dataset 

(see Methods). Z-scores are shown for 3-way (top) or 4-way (bottom) contacts among all 

RNAs (all, black) or RNAs within the same “group” (within group, red), defined by sets 

of pairwise interacting RNAs (Figure 1D). (G) Weighted genomic DNA localization 

heatmap of individual RNAs belonging to distinctive nuclear hubs. RNAs are organized 

by their RNA hub occupancy (shown in Figure 1D). Contacts are normalized from 0 to 1 

to account for expression levels of each RNA. (H) Pearson correlation of RNA-DNA 

unweighted contact frequencies across the genome for all pairs of RNAs within the nuclear 

hubs (nucleolar, centromeric, spliceosomal, and scaRNA hubs). Red represents high 

correlation and blue represents low correlation. (I) RNA FISH of various non-coding 

RNAs within the spliceosomal hub (top rows) or nucleolar hub (bottom rows). 
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Spliceosomal hub (top, row 1): Malat1 lncRNA and 7SK RNA and (bottom, row 2): 

U6 and U1 spliceosomal RNAs. Nucleolar hub (top, row 3): snora26 snoRNA and 45S pre-

rRNA ITS2 and (bottom, row 4): RNase MRP (Rmrp) and 45S pre-rRNA ITS1. Far-left 

and left-middle panels show individual RNAs; right-middle panel shows DAPI; far-right 

panels show overlays. Dashed lines demarcate the nuclear boundary identified with DAPI. 

Scalebar is 10µm. (H) RNA FISH (left) of specific, hub-associated ncRNA along with 

nucleolin immunofluorescence (middle) and DAPI (right). 7SK snRNA (top), ITS1 regions 

of 45S pre-rRNA (middle) and tRNAs (bottom). tRNAs are visualized using pooled RNA 

FISH probes (see Methods). Scalebar is 10µm.  
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Supplemental Figure 2: Nucleolar and spliceosomal hubs show higher-order 

interactions around ribosomal RNA genes and genomic regions with a high density 

of actively transcribed genes, respectively. (A) Genome-wide localization of each 
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individual snoRNA, as determined by unweighted RNA-DNA contact frequency. Blue 

track shows 45S pre-rRNA localization on DNA. Chromosomes containing ribosomal 

DNA (rDNA) genes (chromosomes 12, 15, 16, 18, 19) are denoted in blue. (B) (Top) 

Overlay of RNA-DNA contact frequencies on chromosome 12 for various RNAs within 

the nucleolar hub. (Bottom) Overlay of RNA-DNA contact frequencies on chromosome 11 

for various RNAs within the spliceosomal hub. (C) Weighted DNA-DNA contact heatmap 

is shown for SPRITE clusters containing any of the RNAs within the nucleolar hub (left), 

both snoRNAs and 45S pre-rRNA (middle), and snoRNAs, 45S, and 5S (right) 

simultaneously. (D) (Columns 1,2) Genome-wide 1Mb enrichment of several spliceosomal 

hub RNA-DNA interactions (U1 snRNA, U2 snRNAs, 7SK RNA, and Malat1 lncRNA) 

compared to enrichment of Pol II ChIP-seq signal (ENCODE). (Column 3) Genome-wide 

1Mb enrichment of spliceosomal hub RNA-DNA interactions (U1 snRNA, U2 snRNA) 

compared to counts of pre-mRNA RNA-DNA interactions. Pearson correlation scores are 

provided for each set of comparisons. (E) Weighted DNA-DNA contacts that co-occur in 

a SPRITE cluster with at least one RNA in the splicing hub (left) or multiple (2 or more) 

RNAs in the splicing hub are shown (right). Weighted U1 snRNAs contacts on DNA are 

shown as a heatmap (red-white scale) along the top and side axes. 
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Supplemental Figure 3: Spatial relationship between snRNA biogenesis hub and 

histone locus bodies. (A) Immunofluorescence imaging of classical Cajal Body (Coilin) 

and nuclear gem (SMN) markers in mouse ES cells (top) and HEK293T cells (bottom). 
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Mouse ES cells do not contain visible Coilin foci for any of the three anti-Coilin 

antibodies tested. In contrast, HEK293T cells show visible Coilin foci. SMN foci, which 

are markers for nuclear Gemini of Cajal bodies (“gems”), are present in both mouse ES 

cells and HEK293T cells. Scalebar is 10µm. (B) IF of NPAT (magenta), RNA FISH of 

Histone H2B mRNA (green), nuclear stain with DAPI (blue) and overlaid images for two 

representative mES cells. NPAT and Histone H2B mRNA colocalize within the nucleus. 

Scalebar is 10µm. (C)  Combined IF and RNA FISH image of a mouse ES cell co-stained 

for NPAT protein (magenta) and scaRNAs (pooled scaRNA2 and scaRNA17 probes, 

yellow) within the nucleus (DAPI). Inset shows an example of scaRNA localization near 

NPAT foci. Scalebar is 10µm. (D) Combined IF and RNA FISH image of a mouse ES cell 

co-stained for SMN protein (red) and scaRNAs (pooled scaRNA2 and scaRNA17 probes, 

yellow) within the nucleus (DAPI). Inset shows an example of scaRNA localization near 

SMN foci (arrow). Scalebar is 10µm. (E) RNA FISH image of mouse ES cell with probes 

targeting U7 (purple) and scaRNAs (pooled scaRNA2 and scaRNA17 probes, yellow) 

within the nucleus (DAPI). Inset shows an example of scaRNA localization near U7 

(arrow). Scalebar is 10µm. (F) RNA-RNA contact frequency between scaRNA2 and all 

RNAs. Top hits include annotated scaRNAs and two previously unannotated scaRNAs, 

which we identified (see Supplemental Methods). (G) Weighted DNA-DNA contacts 

within all SPRITE clusters (top) and within SPRITE clusters containing scaRNAs (bottom) 

are shown across a region on chromosome 11 which contains snRNA gene clusters. 

scaRNA occupancy is demarcated with solid red boxes along the top and left axis. Contacts 

within or between snRNA gene clusters are outlined with green boxes. (H) Weighted 

DNA-DNA contacts with all SPRITE clusters (top) and within only SPRITE clusters 

containing the U7 snRNA (bottom) are shown across a region on chromosome 13 which 

contains the two Hist1 gene clusters. U7 and Hist1 RNA occupancy is demarcated with 

solid teal boxes along the top and left axis. Contacts within or between histone gene clusters 

are outlined in teal boxes. (I) Weighted DNA-DNA contacts within SPRITE clusters 

containing reads from both scaRNAs and snRNAs are shown across the same snRNA gene 

cluster containing region on chromosome 11 as panel (G). (J) Weighted DNA-DNA 
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contacts within SPRITE clusters containing scaRNAs is shown across the same histone 

gene cluster containing region on chromosome 13 as (H). 
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Supplemental Figure 4: Transcriptional Inhibition with Actinomycin D leads to 

structural changes in the Nucleolar Hub, scaRNA Hub, and HLB Hubs. (A) Cluster 

size distribution in RD-SPRITE for DMSO-treated (left) and ActD-treated (right) samples. 



 

 

215 

Independent results from three biological replicates are shown. (B) Fold-changes in 

gene expression upon ActD treatment compared to control DMSO-treated samples for 

RNAs in the nucleolar, HLB, scaRNA, spliceosomal, and cytoplasmic hubs. Gene 

expression changes were computed in RD-SPRITE clusters containing 2-1000 

reads/cluster. Raw RNA counts were normalized to 28S rRNA counts to account for 

differences in read depth prior to computing the ratio of ActD to DMSO counts. (see 

Methods) (C) Microscopy image of nascent RNA in DMSO-treated cells or ActD-treated 

cells. Nascent transcription was visualized by incubating cells with 5EU and labeling with 

click chemistry (see Methods). Scalebar is 10µm. (D) Genome-wide, weighted RNA-DNA 

contact frequencies for hub-associated RNAs in RD-SPRITE. (Top) DNA localization of 

snoRNAs following ActD transcriptional inhibition (+ActD, grey) or control treatment 

(+DMSO, blue). Contacts for top expressing snoRNAs in SPRITE clusters of size 1001-

10000 reads were aggregated (see Methods) (Middle) DNA localization for scaRNAs 

following ActD transcriptional inhibition (+ActD, grey) or control treatment (+DMSO, 

green). (Bottom) DNA localization of U7 snRNA following ActD transcriptional inhibition 

(+ActD, grey) or control treatment (+DMSO, teal). Untreated tracks are from the original 

RD-SPRITE dataset used in this study. (E) RNA FISH of Rnase MRP (RMRP) following 

ActD treatment or DMSO-control treatment. Dashed lines demarcate the nuclear boundary 

identified with DAPI. (F) Quantification of the mean (red line) number of NPAT spots 

(HLBs) per cell in IF stained cells following ActD or DMSO-control treatment. DMSO: 

n=6 cells; ActD: n=18 cells. (G) DNA-DNA contact matrices generated by DNA-SPRITE 

at different hub-associated regions following ActD treatment (lower diagonal) or DMSO-

control treatment (upper diagonal). (Left) Weighted contact matrixes from SPRITE 

clusters of size 2-10K reads for chromosomes 12-19. Raw contact frequencies were 

rescaled to the mean intra-chromosomal contact frequency (see Methods). (Right) 

Weighted contact matrixes from SPRITE clusters of size 2-1000 reads for a region on 

Chromosome 11 spanning two snRNA gene clusters. Raw contact frequencies were 

rescaled based on rank-ordering (see Methods). (H) IF stain for NPM1 (green), IF stain 

for Fibrillin (pink), nuclear stain with DAPI (blue) and overlayed images in DMSO-control 

treated cells (left) or ActD treated cells (right). Scalebar is 10µm. (I) (Left) Genome-wide, 
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weighted DNA-SPRITE contact frequencies in SPRITE clusters of size 2-1000 reads 

for ActD or DMSO-control treated samples. (Right) Weighted DNA-SPRITE contact 

frequencies on chromosome 2 in SPRITE clusters of size 2-1000 reads measured by DNA-

SPRITE for ActD or DMSO-control treated samples. 
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Supplemental Figure 5. A widespread role for ncRNAs in shaping compartments 

throughout the nucleus that are associated with various nuclear functions. A model 

schematic of the localization of the different nuclear compartments within the nucleus and 

the molecular components contained within them. In each of these cases, an RNA seeds 

organization by achieving high concentration in spatial proximity to its transcriptional 

locus. This leads to the formation of nuclear compartments associated with RNA 

processing, heterochromatin assembly, and gene regulation. 
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4.7. SUPPLEMENTAL TABLE LEGENDS 

Supplemental Table 1: Multi-way (k-mer) contact score statistics for RD-SPRITE.  

To access the significance of a multi-way interactions between RNAs within the RD-

SPRITE dataset, we designed a mutli-way contact score analysis (see Methods). Hubs 

were defined as higher-order, multi-way structures with many significant multi-way 

contacts. 

Supplemental Table 2: Read alignment statistics for RD-SPRITE. Alignment statistics 

to the mouse genome for DPM-tagged (DNA) reads or RPM-tagged (RNA) reads from 

individual RD-SPRITE experiments and libraries. Unaligned or low MAPQ score aligned 

(ie multi-mapping) RPM-tagged reads (Repeat) were subsequently aligned to a custom 

reference genome of repeat RNA sequences (see Methods).  

Supplemental Table 3: Barcode Identification statistics for RD-SPRITE and DNA-

SPRITE. The complete barcode of each read is identified from read 2 (see Supplemental 

Figure 1A). The percentage of reads with 0, 1, 2 … up to n (where n is the maximum 

number of possible) tags is reported for each individual SPRITE library. This represents a 

quality metric and is included as an output in the processing pipeline for RD-SPRITE or 

DNA-SPRITE (see Methods). 

Supplemental Table 4: Template for calculating read depth for sequencing SPRITE 

libraries. To determine the amount of reads required to sequence each SPRITE library 

aliquot to saturation, we estimate the number of unique molecules (pre-PCR) using the 

final library concentrations. We typically sequence each library 1.5-2x coverage. 
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4.8. SUPPLEMENTAL NOTES 

Supplemental Note 1: RD-SPRITE improves efficiency of RNA tagging. Although our 

previous version of SPRITE could map both RNA and DNA, it was limited primarily to 

detecting highly abundant RNA species (e.g. 45S pre-rRNA). In RD-SPRITE, we have 

improved detection of lower abundance RNAs by increasing yield through the following 

adaptations. (i) We increased the RNA ligation efficiency by utilizing a higher 

concentration of RPM, corresponding to ~2000 molar excess during RNA ligation. (ii) 

Adaptor dimers that are formed through residual purification on our magnetic beads lead 

to reduced efficiency because they preferentially amplify and preclude amplification of 

tagged RNAs. To reduce the number of adaptor dimers in library generation, we introduced 

an exonuclease digestion of excess reverse transcription (RT) primer that dramatically 

reduces the presence of the RT primer. (iii) Reverse transcription is used to add the barcode 

to the RNA molecule, yet when RT is performed on crosslinked material it will not 

efficiently reverse transcribe the entire RNA (because crosslinked proteins will act to 

sterically preclude RT). To address this, we performed a short RT in crosslinked samples 

followed by a second RT reaction after reverse crosslinking to copy the remainder of the 

RNA fragment. (iv) Because cDNA is single stranded, we need to ligate a second adaptor 

to enable PCR amplification. The efficiency of this reaction is critical for ensuring that we 

detect each RNA molecule. We significantly improved cDNA ligation efficiency by 

introducing a modified “splint” ligation. Specifically, a double stranded “splint” adaptor 

containing the Read1 Illumina priming region and a random 6mer overhang is ligated to 

the 3’end of the cDNA at high efficiency by performing a double stranded DNA ligation. 

This process is more efficient than the single stranded DNA-DNA ligation previously 

utilized55. (v) Finally, we found that nucleic acid purification performed after reverse 

crosslinking leads to major loss of complexity because we lose a percentage of the unique 

molecules during each cleanup. In the initial RNA-DNA SPRITE protocol there were 

several column (or bead) purifications utilized to remove enzymes and enable the next 

enzymatic reaction. We reduced these cleanups by introducing biotin modifications into 

the DPM and RPM adaptors that enable binding to streptavidin beads and for all subsequent 
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molecular biology steps to occur on the same beads. Together, these improvements 

enabled a dramatic improvement of our overall RNA recovery and enables generation of 

high complexity RNA/DNA structure maps.  

Supplemental Note 2: The snRNA biogenesis hub may be similar to the Cajal body. We 

note that the snRNA biogenesis hub may be similar to Cajal bodies, which have been noted 

to contain snRNA genes and scaRNAs80,82,84,102,103. However, Cajal bodies are traditionally 

defined by the presence of Coilin foci in the nucleus78,82,104 and based on this definition, 

our mES cells do not contain visible Cajal bodies with all three antibodies tested 

(Supplemental Figure 3A). Despite the absence of traditionally defined Cajal bodies, our 

data suggest that snRNA biogenesis hubs do indeed exist and form around snRNA gene 

loci, even in the absence of observable Coilin foci. Our data suggest that scaRNA 

localization more accurately defines snRNA processing bodies relative to Coilin. 

Consistent with this idea, scaRNAs have a clearly defined functional role in snRNA 

biogenesis whereas Coilin is dispensable for snRNA biogenesis84. It is also possible that 

these snRNA processing bodies are distinct from Cajal bodies, which may represent a 

different nuclear structure. For example, these might represent nuclear gems105, which 

contain SMN protein, or “residual bodies,” which are Coilin negative78,106. We note that 

we observe SMN foci in our mES cells and that some, but not all, scaRNAs colocalize with 

SMN protein in the nucleus (Supplemental Figure 3A, D). Additionally, we observed that 

scaRNAs also localize to histone gene clusters, form higher-order DNA interactions, and 

are adjacent to the HLB in the nucleus (Figure 3A, Supplemental Figure 3C-E, J). This 

is consistent with previous observations that HLBs and Cajal bodies are often found 

adjacent to each other in the nucleus78,83. 

Supplemental Note 3: RD-SPRITE measures the frequency at which RNAs are 

contacting chromatin. Although data from previous methods have reported that both 

lncRNAs and mRNAs are similarly enriched on chromatin at their transcriptional loci, we 

observed a striking difference in chromatin localization between these classes of RNA. The 

major reason for this is because RD-SPRITE measures RNA localization within all 

compartments of the cell, including in the nucleus and cytoplasm. Accordingly, we can 
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compute a chromatin enrichment score, which we define as the frequency at which a 

given RNA is localized on chromatin.  Other RNA-DNA mapping methods such as 

hybridization (e.g. RAP, ChIRP) or proximity-ligation (e.g. GRID-Seq, Margi) methods 

exclusively measure RNA when they are present on chromatin and therefore cannot 

measure this differential localization frequency. 

  



 

 

222 

4.9. METHODS 

Cell line generation, cell culture, and drug treatments 

Cell lines used in this study. We used the following cell lines in this study: (i) Female ES 

cells (pSM44 ES cell line) derived from a 129 × castaneous F1 mouse cross. These cells 

express Xist from the endogenous locus under control of a tetracycline-inducible promoter. 

The dox-inducible Xist gene is present on the 129 allele, enabling allele-specific analysis 

of Xist induction and X chromosome silencing. (ii) Female ES cells, where we replaced 

the endogenous Kcnq1ot1 promoter with a tetracycline-inducible promoter (Kcnq1ot1-

inducible ES cell line). In the absence of Doxycycline, these cells do not express Kcnq1ot1; 

in the presence of Doxycycline, these cells express Kcnq1ot1. (iii) Female ES cells 

containing dCas9 fused to 4-copies of the SID transcriptional repression domain integrated 

into a single locus in the genome (dCas9-4XSID). (iv) HEK293T, a female human 

embryonic kidney cell line (ATCC Cat# CRL-3216, RRID:CVCL_0063). 

Cell culture conditions. All mouse ES cell lines were cultured in serum-free 2i/LIF 

medium as previously described55. HEK293T cells were cultured in complete media 

consisting of DMEM (GIBCO, Life Technologies) supplemented with 10% FBS 

(Seradigm Premium Grade HI FBS, VWR), 1X penicillin-streptomycin (GIBCO, Life 

Technologies), 1X MEM non-essential amino acids (GIBCO, Life Technologies), 1 mM 

sodium pyruvate (GIBCO, Life Technologies) and maintained at 37°C under 5% CO2. For 

maintenance, 800,000 cells were seeded into 10 mL of complete media every 3-4 days in 

10 cm dishes. HEK293T cells were used for human-mouse mixing experiments to assess 

noise during the SPRITE procedure as well as for imaging Coilin foci. 

Doxycycline Inducible Xist Cell Line Development. Female ES cells (F1 2-1 line, 

provided by K. Plath) were CRISPR-targeted (nicking gRNA pairs 

TGGGCGGGAGTCTTCTGGGCAGG and GGATTCTCCCAGGCCCAGGGCGG) to 

integrate the Tet transactivator (M2rtTA) into the Rosa26 locus using R26P-M2rtTA, a gift 

from Rudolf Jaenisch (Addgene plasmid #47381).  This line was subsequently CRISPR-

https://www.sciencedirect.com/topics/immunology-and-microbiology/kidney-cell-line
https://www.sciencedirect.com/topics/neuroscience/nonessential-amino-acid
https://www.sciencedirect.com/topics/neuroscience/sodium-pyruvate
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targeted (nicking gRNA pairs GCTCGTTTCCCGTGGATGTG and 

GCACGCCTTTAACTGATCCG) to replace the endogenous Xist promoter with 

tetracycline response elements (TRE) and a minimal CMV promoter as previously 

described107. The promoter replacement insertion was verified by PCR amplification of the 

insertion locus and Sanger sequencing of the amplicon. SNPs within the amplicon allowed 

for allele identification of the insertion, confirming that the 129 allele was targeted and 

induced Xist expression. We routinely confirmed the presence of two X chromosomes 

within these cells by checking the presence of X-linked SNPs on the 129 and castaneous 

alleles.   

Doxycycline induction. Xist and Kcnq1ot1 expression were induced in their respective cell 

lines by treating cells with 2 μg/mL doxycycline (Sigma D9891). Xist was induced for 24 

hours prior to crosslinking and analysis. Kcnq1ot1 was induced for 12-16hrs prior to RNA 

harvesting for qRT-PCR or induced for 24hrs prior to cell crosslinking with 1% 

formaldehyde for ChIP-seq. 

Actinomycin D (ActD) Treatment. ActD transcriptional inhibition was performed by 

culturing cells in 25 μg/mL ActD (Sigma A9415, 25 μL of 1 mg/mL stock added per 1 mL 

culture medium) or DMSO for 4 hours before cells were processed for RNA-FISH, IF or 

SPRITE. The concentrations for imaging and for SPRITE were the same and the same 

stocks were used for all experiments.  

Antibodies 

Antibodies. Primary antibodies used in the study: anti-Nucleolin (Abcam Cat# ab22758, 

RRID:AB_776878, 1:500); anti-NPAT (Abcam Cat# ab70595, RRID:AB_1269585, 

1:100); anti-SMN (BD Biosciences Cat# 610646, RRID:AB_397973, 1:100); anti-HP1ß 

(Active Motif Cat# 39979, RRID:AB_2793416, 1:200); anti-Coilin (Abcam Cat # 

ab210785; Santa Cruz Biotechnology Cat# sc-55594, RRID:AB_1121780; Santa Cruz 

Biotechnology Cat# sc-56298, RRID:AB_1121778; 1:100); anti-Sharp (Bethyl Cat# 

A301-119A, RRID:AB_873132, 1:200); anti-Histone H3K27ac (Active Motif Cat# 39134, 
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RRID:AB_2722569); anti-NPM1 (Abcam Cat# ab10530, RRID:AB_297271; 1:200); 

anti-Fibrillarin (Abcam Cat# ab5821, RRID:AB_2105785; 1:200); anti-LaminB1 (Abcam 

Cat# ab16048, RRID:AB_10107828; 1:1000); For imaging studies, all antibodies were 

diluted in blocking solution. 

RNA & DNA-SPRITE  

RD-SPRITE is an adaptation of our initial SPRITE protocol55 with significant 

improvements to the RNA molecular biology steps that enable generation of higher 

complexity RNA libraries. The approach was performed as follows: 

Crosslinking, lysis, sonication, and chromatin digestion. Cells were lifted using 

trypsinization and were crosslinked in suspension at room temperature with 2 mM 

disuccinimidyl glutarate (DSG) for 45 minutes followed by 3% Formaldehyde for 10 

minutes to preserve RNA and DNA interactions in situ. After crosslinking, the 

formaldehyde crosslinker was quenched with addition of 2.5M Glycine for final 

concentration of 0.5M for 5 minutes, cells were spun down, and resuspended in 1x PBS + 

0.5% RNAse Free BSA (AmericanBio AB01243-00050) over three washes, 1x PBS + 

0.5% RNAse Free BSA was removed, and flash frozen at -80C for storage. We found that 

RNAse Free BSA is critical to avoid RNA degradation. RNase Inhibitor (1:40, NEB 

Murine RNAse Inhibitor or Thermofisher Ribolock) was also added to all lysis buffers and 

subsequent steps to avoid RNA degradation. After lysis, cells were sonicated at 4-5W of 

power for 1 minute (pulses 0.7 second on, 3.3 seconds off) using the Branson Sonicator 

and chromatin was fragmented using DNAse digestion to obtain DNA of approximately 

~150bp-1kb in length. 

Estimating molarity. After DNase digestion, crosslinks were reversed on approximately 

10 μL of lysate in 82 μL of 1X Proteinase K Buffer (20 mM Tris pH 7.5, 100 mM NaCl, 

10 mM EDTA, 10 mM EGTA, 0.5% Triton-X, 0.2% SDS) with 8 μL Proteinase K (NEB) 

at 65°C for 1 hour. RNA and DNA were purified using Zymo RNA Clean and Concentrate 

columns per the manufacturer’s specifications (>17nt protocol) with minor adaptations, 
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such as binding twice to the column with 2X volume RNA Binding Buffer combined 

with by 1X volume 100% EtOH to improve yield. Molarities of the RNA and DNA were 

calculated by measuring the RNA and DNA concentration using the Qubit Fluorometer 

(HS RNA kit, HS dsDNA kit) and the average RNA and DNA sizes were estimated using 

the RNA High Sensitivity Tapestation and Agilent Bioanalyzer (High Sensitivity DNA 

kit). 

NHS bead coupling. We used the RNA and DNA molarity estimated in the lysate to 

calculate the total number of RNA and DNA molecules per microliter of crosslinked lysate. 

We coupled the lysate to ~10mL of NHS-activated magnetic beads (Pierce) in 1x PBS + 

0.1% SDS combined with 1:40 dilution of NEB Murine RNase Inhibitor overnight at 4°C 

as previously described55. We coupled at a ratio of 0.25-0.5 molecules per bead to reduce 

the probability of simultaneously coupling multiple independent complexes to the same 

bead, which would lead to their association during the split-pool barcoding process. 

Because multiple molecules of DNA and RNA can be crosslinked in a single complex, this 

estimate is a more conservative estimate of the number of molecules to avoid collisions on 

individual beads. After NHS coupling overnight, the coupling was quenched in 0.5M Tris 

pH 7.5 and beads were washed post coupling as previously described. 

Because the crosslinked complexes are immobilized on NHS magnetic beads, we can 

perform several enzymatic steps by adding buffers and enzymes directly to the beads and 

performing rapid buffer exchange between each step on a magnet. All enzymatic steps were 

performed with shaking at 1200-1600 rpm (Eppendorf Thermomixer) to avoid bead settling 

and aggregation. All enzymatic steps were inactivated either by adding 1 mL of SPRITE 

Wash buffer (20mM Tris-HCl pH 7.5, 50mM NaCl, 0.2% Triton-X, 0.2% NP-40, 0.2% 

Sodium deoxycholate) supplemented with 50 mM EDTA and 50 mM EGTA to the NHS 

beads or Modified RLT buffer (1x Buffer RLT supplied by Qiagen, 10mM Tris-HCl pH 

7.5, 1mM EDTA, 1mM EGTA, 0.2% N-Lauroylsarcosine, 0.1% Triton-X, 0.1% NP-40). 

DNA End Repair and dA-tailing. We then repair the DNA ends to enable ligation of tags 

to each molecule. Specifically, we blunt end and phosphorylate the 5′ ends of double-

https://www.sciencedirect.com/topics/neuroscience/double-stranded-dna
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stranded DNA using two enzymes. First, the NEBNext End Repair Enzyme cocktail 

(E6050L; containing T4 DNA Polymerase and T4 PNK) and 1x NEBNext End Repair 

Reaction Buffer is added to beads and incubated at 20°C for 1 hour, and inactivated and 

buffer exchanged as specified above. DNA was then dA-tailed using the Klenow fragment 

(5′-3′ exo-, NEBNext dA-tailing Module; E6053L) at 37°C for 1 hour, and inactivated and 

buffer exchanged as specified above. Note, we do not use the NEBNext Ultra End 

Repair/dA-tailing module as the temperatures in the protocol are not compatible with 

SPRITE as the higher temperature will reverse crosslinks. To prevent degradation of RNA, 

each enzymatic step is performed with the addition of 1:40 NEB Murine RNAse Inhibitor 

or Thermofisher Ribolock. 

Ligation of the DNA Phosphate Modified (“DPM”) Tag. After end repair and dA-tailing 

of DNA, we performed a pooled ligation with “DNA Phosphate Modified” (DPM) tag that 

contains certain modifications that we found to be critical for the success of RD-SPRITE. 

Specifically, (i) we incorporate a phosphothiorate modification into the DPM adaptor to 

prevent its enzymatic digestion by Exo1 in subsequent RNA steps and (ii) we integrated 

an internal biotin modification to facilitate an on-bead library preparation post reverse-

crosslinking. The DPM adaptor also contains a 5’phosphorylated sticky end overhang to 

ligate tags during split-pool barcoding. Ligation was performed as previously described 

using Instant Sticky End Mastermix (NEB) except that all ligations were supplemented 

with 1:40 RNAse inhibitor (ThermoFisher Ribolock or NEB Murine RNase Inhibitor) to 

prevent RNA degradation. Because T4 DNA Ligase only ligates to double-stranded DNA, 

the unique DPM sequence enables accurate identification of DNA molecules after 

sequencing. 

Ligation of the RNA Phosphate Modified (“RPM”) Tag. To map RNA and DNA 

interactions simultaneously, we ligated an RNA adaptor to RNA that contains the same 7nt 

5’phosphorylated sticky end overhang as the DPM adaptor to ligate tags to both RNA and 

DNA during split-pool barcoding. To do this, we first modify the 3’end of RNA to ensure 

that they all have a 3’OH that is compatible for ligation. Specifically, RNA overhangs are 

repaired with T4 Polynucleoide Kinase (NEB) with no ATP at 37°C for 20 min. RNA is 

https://www.sciencedirect.com/topics/neuroscience/double-stranded-dna
https://www.sciencedirect.com/topics/neuroscience/double-stranded-dna
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subsequently ligated with a “RNA Phosphate Modified” (RPM) adaptor as previously 

described using High Concentration T4 RNA Ligase I108. Because T4 RNA Ligase 1 only 

ligates to single-stranded RNA, the unique RPM sequence enables accurate identification 

of RNA and DNA molecules after sequencing. After RPM ligation, RNA was converted to 

cDNA using Superscript III at 42°C for 1 hour using the “RPM bottom” RT primer that 

contains an internal biotin to facilitate on-bead library construction (as above) and a 5’end 

sticky end to ligate tags during SPRITE. Excess primer is digested with Exonuclease 1 at 

42°C for 10-15 min. All ligations were supplemented with 1:40 RNAse inhibitor 

(ThermoFisher Ribolock or NEB Murine RNase Inhibitor) to prevent RNA degradation. 

Split-and-pool barcoding to identify RNA and DNA interactions. The beads were then 

repeatedly split-and-pool ligated over four rounds with a set of “Odd,” “Even”, and 

“Terminal” tags (see SPRITE Tag Design in Quinodoz et al. Cell 201855). Both DPM and 

RPM contain the same 7 nucleotide sticky end that will ligate to all subsequent split-pool 

barcoding rounds. All split-pool ligation steps and reverse crosslinking were performed for 

45min to 1 hour at 20°C as previously described. All ligations were supplemented with 

1:40 RNAse inhibitor (ThermoFisher Ribolock or NEB Murine RNase Inhibitor) to prevent 

RNA degradation. 

Reverse crosslinking. After multiple rounds of SPRITE split-and-pool barcoding, the 

tagged RNA and DNA molecules are eluted from NHS beads by reverse crosslinking 

overnight (~12-13 hours) at 50°C in NLS Elution Buffer (20mM Tris-HCl pH 7.5, 10mM 

EDTA, 2% N-Lauroylsarcosine, 50mM NaCl) with added 5M NaCl to 288 mM NaCl Final 

combined with 5 μL Proteinase K (NEB).   

Post reverse-crosslinking library preparation. AEBSF (Gold Biotechnology CAS#30827-

99-7) is added to the Proteinase K (NEB Proteinase K #P8107S; ProK) reactions to inactive 

the ProK prior to coupling to streptavidin beads. Biotinylated barcoded RNA and DNA are 

bound to Dynabeads™ MyOne™ Streptavidin C1 beads (ThermoFisher #65001). To 

improve recovery, the supernatant is bound again to 20μL of streptavidin beads and 

combined with the first capture. Beads are washed in 1X PBS + RNase inhibitor and then 
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resuspended in 1x First Strand buffer to prevent any melting of the RNA:cDNA hybrid. 

Beads were pre-incubated at 40C for 2 min to prevent any sticky barcodes from annealing 

and extending prior to adding the RT enzyme. A second reverse transcription is performed 

by adding Superscript III (Invitrogen #18080051) (without RT primer) to extend the cDNA 

through the areas which were previously crosslinked. The second RT ensures that cDNA 

recovery is maximal, particularly if RT terminated at a crosslinked site prior to reverse 

crosslinking. After generating cDNA, the RNA is degraded by addition of RNaseH (NEB 

# M0297) and RNase cocktail (Invitrogen #AM2288), and the 3’end of the resulting cDNA 

is ligated to attach an dsDNA oligo containing library amplification sequences for 

subsequent amplification.  

Previously, we performed cDNA (ssDNA) to ssDNA primer ligation which relies on the 

two single stranded sequences coming together for conversion to a product that can then 

be amplified for library preparation. To improve the efficiency of cDNA molecules ligated 

with the Read1 Illumina priming sequence, we perform a “splint” ligation, which involves 

a chimeric ssDNA-dsDNA adaptor that contains a random 6mer that anneals to the 3’ end 

of the cDNA and brings the 5’ phosphorylated end of the cDNA adapter directly together 

with the cDNA via annealing. This ligation is performed with 1x Instant Sticky End Master 

Mix (NEB #M0370) at 20°C for 1 hour. This greatly improves the cDNA tagging and 

overall RNA yield. 

Libraries were amplified using 2x Q5 Hot-Start Mastermix (NEB #M0494) with primers 

that add the indexed full Illumina adaptor sequences. After amplification, the libraries are 

cleaned up using 0.8X SPRI (AMPure XP) and then gel cut using the Zymo Gel Extraction 

Kit selecting for sizes between 280 bp - 1.3 kb. A calculator for estimating the number of 

reads required to reach a saturated signal depth for each library are provided in 

Supplemental Table 4 as well as in Quinodoz et al. 2021 Nature Protocols (in press) 

describing the SPRITE method. 

Sequencing. Sequencing was performed on an Illumina NovaSeq S4 paired-end 150x150 

cycle run. For the mES RNA-DNA RD-SPRITE data in this experiment, 144 different 
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SPRITE libraries were generated from four technical replicate SPRITE experiments 

and were sequenced. The four experiments were generated using the same batch of 

crosslinked lysate processed on different days to NHS beads. Each SPRITE library 

corresponds to a distinct aliquot during the Proteinase K reverse crosslinking step which is 

separately amplified with a different barcoded primer, providing an additional round of 

SPRITE barcoding. 

Primers Used for RPM, DPM, and Splint Ligation (IDT):  

1. RPM top: /5Phos/rArUrCrArGrCrACTTAGCG TCAG/3SpC3/ 

2. RPM bottom (internal biotin): 

/5Phos/TGACTTGC/iBiodT/GACGCTAAGTGCTGAT 

3. DPM Phosphorothioate top: 

/5Phos/AAGACCACCAGATCGGAAGAGCGTCGTG*T* A*G*G* 

/32MOErG/  *Denotes Phosphorothioate bonds 

4. DPM bottom (internal biotin): 

/5Phos/TGACTTGTCATGTCT/iBioT/CCGATCTGGTGGTCTTT 

5. 2Puni splint top: TACACGACGCTCTTCCGATCT NNNNNN/3SpC3/ 

6. 2Puni splint bottom: /5Phos/AGA TCG GAA GAG CGT CGT GTA/3SpC3/ 

Annealing of adaptors. A double-stranded DPM oligo and 2P universal “splint” oligo were 

generated by annealing the complementary top and bottom strands at equimolar 

concentrations. Specifically, all dsDNA SPRITE oligos were annealed in 1x Annealing 

Buffer (0.2 M LiCl2, 10 mM Tris-HCl pH 7.5) by heating to 95°C and then slowly cooling 

to room temperature (-1°C every 10 sec) using a thermocycler. 

Assessing molecule to bead ratio. We ensured that SPRITE clusters represent bona fide 

interactions that occur within a cell by mixing human and mouse cells and ensuring that 

virtually all SPRITE clusters (~99%) represent molecules exclusively from a single 

species. Specifically, we separately crosslinked HEK293T cells performed a human-mouse 

mixing RD-SPRITE experiment and identified conditions with low interspecies mixing 
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(molecules = RNA+DNA instead of DNA). Specifically, for SPRITE clusters 

containing 2-1000 reads, the percent of interspecies contacts is: 2 beads:molecule = 0.9% 

interspecies contacts, 4 beads:molecule = 1.1% interspecies contacts, 8 beads:molecule = 

1.1% interspecies contacts. We used the 2 beads:molecule and 4 beads:molecule ratio for 

the RD-SPRITE data sets generated in this paper. 

RD-SPRITE technical replicates. One of the RD-SPRITE replicate libraries was 

generated with a DPM lacking the phosphorothioate bond and 2’-O-methoxy-ethyl bases 

on the 3’end of the top adaptor. We found that this resulted in a lower number of DNA 

reads because the exonuclease step can degrade the single-stranded portion of the DPM 

oligo. As a result, this library has lower DNA-DNA and DNA-RNA pairs, but has more 

RNA-RNA contacts overall. This experiment was analyzed to generate higher-resolution 

RNA-RNA contact matrices, including contacts of lower abundance RNAs. The three other 

RD-SPRITE replicate libraries were generated with the same batch crosslinked lysate but 

were ligated with a DPM adaptor containing these modifications to prevent DNA 

degradation. 

 

RD-SPRITE processing pipeline 

Adapter trimming. Adapters were trimmed from raw paired-end fastq files using Trim 

Galore! v0.6.2 (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) and 

assessed with Fastqc v0.11.9. Subsequently, the DPM (GATCGGAAGAG) and RPM 

(ATCAGCACTTA) sequences are trimmed using Cutadapt v2.5109 from the 5’ end of Read 

1 along with the 3’ end DPM sequences that result from short reads being read through into 

the barcode (GGTGGTCTTT, GCCTCTTGTT, CCAGGTATTT, TAAGAGAGTT, 

TTCTCCTCTT, ACCCTCGATT). The additional trimming helps improve read mapping 

in the end-to-end alignment mode. The SPRITE barcodes of trimmed reads are identified 

with Barcode ID v1.2.0 (https://github.com/GuttmanLab/sprite2.0-pipeline) and the 

ligation efficiency is assessed. Reads with an RPM or a DPM barcode are split into two 

separate files, to process RNA and DNA reads individually downstream, respectively. 
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Ligation Efficiency Quality Control. We assessed the reproducibility and quality of an 

RD-SPRITE experiment by calculating the ligation efficiency, defined as the proportion of 

sequencing reads containing only 1, 2, 3… through n barcodes (where n is the number of 

rounds of split-pool barcoding). Across technical replicates, biological replicates, and 

multiple sequencing libraries, we have found highly similar ligation efficiencies, with 

~60% or more of reads containing all 5 barcoding tags (see Supplemental Table 3). 

Processing RNA reads. RNA reads were aligned to GRCm38.p6 with the Ensembl 

GRCm38 v95 gene model annotation using Hisat2 v2.1.0110 with a high penalty for soft-

clipping --sp 1000,1000. Unmapped and reads with a low MapQ score (samtools view -bq 

20) were filtered out for downstream realignment. (see Supplemental Table 2 for 

alignment statistics). Mapped reads were annotated for gene exons and introns with the 

featureCounts tool from the subread package v1.6.4 using Ensembl GRCm38 v95 gene 

model annotation and the Repeat and Transposable element annotation from the Hammel 

lab111. Filtered reads were subsequently realigned to our custom collection of repeat 

sequences using Bowtie v2.3.5112, only keeping mapped and primary alignment reads. 

Processing DNA reads. DNA reads were aligned to GRCm38.p6 using Bowtie2 v2.3.5 

(see Supplemental Table 2 for alignment statistics), filtering out unmapped and reads with 

a low MapQ score (samtools view -bq 20). Data generated in F1 hybrid cells (pSM44: 129 

× castaneous) were assigned the allele of origin using SNPsplit v0.3.4113. RepeatMasker114 

defined regions with milliDev ≤ 140 along with blacklisted v2 regions were filtered out 

using Bedtools v2.29.0115.  

SPRITE cluster file generation. RNA and DNA reads were merged, and a cluster file was 

generated for all downstream analysis. MultiQC v1.6116 was used to aggregate all reports. 

Masked bins. In addition to known repeat containing bins, we manually masked the 

following bins (mm10 genomic regions: chr2:79490000-79500000, chr11:3119270-

3192250, chr15:99734977-99736026, chr3:5173978-5175025, chr13:58176952-

58178051) because we observed a major overrepresentation of reads in the input samples. 
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Microscopy imaging 

Immunofluorescence (IF). Cells were grown on coverslips and rinsed with 1x PBS, fixed 

in 4% paraformaldehyde in PBS for 15 minutes at room temperature, rinsed in 1x PBS, and 

permeabilized with 0.5% Triton X-100 in PBS for 10 minutes at room temperature. Cells 

were either stored at -20°C in 70% ethanol or used directly for immunostaining and 

incubated in blocking solution (0.2% BSA in PBS) for at least 1 hour. If stored in 70% 

ethanol, cells were re-hydrated prior to staining by washing 3 times in 1xPBS and incubated 

in blocking solution (0.2% BSA in PBS) for at least 1 hour. Primary antibodies were diluted 

in blocking solution and added to coverslips for 3-5 hours at room temperature incubation. 

Cells were washed three times with 0.01% Triton X-100 in PBS for 5 minutes each and 

then incubated in blocking solution containing corresponding secondary antibodies labeled 

with Alexa fluorophores (Invitrogen) for 1 hour at room temperature. Next, cells were 

washed 3 times in 1xPBS for 5 minutes at room temperature and mounting was done in 

ProLong Gold with DAPI (Invitrogen, P36935). Images were collected on a LSM800 or 

LSM980 confocal microscope (Zeiss) with a 63× oil objective. Z sections were taken every 

0.3 μm. Image visualization and analysis was performed with Icy software 

(http://icy.bioimageanalysis.org/)  and ImageJ software (https://imagej.nih.gov/). 

Immunofluorescence (IF) for ActD experiments. Cells were cultured in DMSO or ActD 

(Sigma A9415, 25μL of 1mg/mL stock added per 1ml culture medium) for 4 hours, then 

fixed and processed for IF using the anti-NPAT antibody, as described earlier. Images were 

acquired using the Zeiss LSM980 microscope with 63x oil objective and 16 Z-sections 

were taken with 0.3 μm increments. To count the number of NPAT spots, we generated the 

maximal projections, defined a binary mask by thresholding based on background intensity 

levels, and manually counted the number of spots for each nucleus.   

RNA Fluorescence in situ Hybridization (RNA-FISH). RNA-FISH performed in this 

study was based on the ViewRNA ISH (Thermo Fisher Scientific, QVC0001) protocol 

https://www.thermofisher.com/order/catalog/product/QVC0001
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with minor modifications. Cells grown on coverslips were rinsed in 1xPBS, fixed in 

4% paraformaldehyde in 1xPBS for 15 minutes at room temperature, permeabilized in 

0.5% Triton-100 in the fixative for 10 minutes at room temperature, rinsed 3 times with 

1xPBS, and stored at -20°C in 70% ethanol until hybridization steps. All the following 

steps were performed according to manufacturer’s recommendations. Coverslips were 

mounted with ProLong Gold with DAPI (Invitrogen, P36935) and stored at 4°C until 

acquisition. For nuclear and nucleolar RNAs, cells were pre-extracted with 0.5% ice cold 

Triton-100 for 3 minutes to remove cytoplasmic background and fixed as described. All 

probes used in the study were custom made by Thermofisher (order numbers available 

upon request). To test their specificity, we either utilized RNAse treatment prior to RNA-

FISH or two different probes targeting the same RNA. Images were acquired on Zeiss 

LSM800 or LSM980 confocal microscope with a 100x glycerol immersion objective lens 

and Z-sections were taken every 0.3 μm. Image visualization and analysis was performed 

with Icy software and ImageJ software. 

RNA FISH for scaRNA and tRNAs were performed with a combined set of probes to 

increase the signal of lower abundance RNAs. Specifically, scaRNAs were visualized with 

two combined probes of scaRNA2 and scaRNA17. tRNAs were visualized using probes 

targeting tRNA-Arg-TCG-4-1, tRNA-Leu-AAG-3-1, tRNA-Ile-AAT-1-8, tRNA-Arg-

TCT-5-1, tRNA-Leu-CAA-2-1, tRNA-Ile-TAT-2-1, tRNA-Tyr-GTA-1-1. tRNA 

sequences were obtained using the GtRNAdb GRCm38/mm10 predictions (Lowe Lab, 

UCSC)117,118. 

Combined RNA-FISH and IF. For immunostaining combined with in situ RNA 

visualization, we used the ViewRNA Cell Plus (Thermo Fisher Scientific, 88-19000-99) 

kit per the manufacturer’s protocol with minor modifications. Immunostaining was 

performed as described above, but all incubations were performed in blocking buffer with 

addition of RNAse inhibitor and all the wash steps were performed in RNAse free 1x PBS 

with RNAse inhibitor. Blocking buffer, PBS, RNAse inhibitors are provided in a kit. After 

the last wash in 1x PBS, cells underwent post-fixation in 2% paraformaldehyde on 1x PBS 

for 10min at room temperature, were washed 3 times in 1x PBS, and then RNA-FISH 
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protocol was followed as described above. Images were acquired on the Zeiss LSM800 

or LSM980 confocal microscope with a 100x glycerol immersion objective lens and z-

sections were taken every 0.3 μm. Image visualization and analysis was performed with 

Icy software and ImageJ software. 

DNA-FISH. DNA-FISH was performed as previously described119 with modifications. 

Cells grown on coverslips were rinsed with 1x PBS, fixed in 4% paraformaldehyde in 1x 

PBS for 15 minutes at room temperature, permeabilized in 0.5% Triton-100 in the fixative 

for 10 minutes at room temperature, rinsed 3 times with 1x PBS and stored at -20˚C in 70% 

ethanol until hybridization steps. Pre-hybridization cells were dehydrated in 100% ethanol 

and dried for 5 minutes at room temperature. 4 μL drop of hybridization mix with probes 

was spotted on a glass slide and dried coverslips were placed on the drop. Coverslips were 

sealed with rubber cement, slides were incubated for 5 minutes at 85˚C, and then incubated 

overnight at 37˚C in humid atmosphere. After hybridization and three washes with 2x SSC, 

0.05% Triton-100 and 1mg/mL PVP in PBS at 50˚C for 10 minutes, cells were rinsed in 

1x PBS and mounted with ProLong Gold with DAPI (Invitrogen, P36935). 

Hybridization buffer consisted of 50% formamide, 10% dextran sulphate, 2xSSC, 1 mg/mL 

polyvinyl pyrrolidone (PVP), 0.05% Triton X-100, 0.5 mg/mL BSA. 1 mM short 

oligonucleotides labeled with Cy5 ([CY5]ttttctcgccatattccaggtc) were used as probes 

against Major Satellites and full-length minor satellite repeat sequence was used as probes 

against Minor Satellites. Minor satellite sequence was firstly cloned to pGEM plasmid and 

then labeled by PCR reaction with self-made TAMRA dATPs for minor satellites. Labeled 

PCR product was purified with a QIAquick PCR Purification Kit (QIAGEN), and 50 ng 

was mixed with hybridization buffer. Images were acquired on Zeiss LSM800 or LSM980 

confocal microscope with a 63x glycerol immersion objective lens and Z-sections were 

taken every 0.3 μm. Image visualization and analysis was performed with Icy software and 

ImageJ software. 
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Analysis of RNA-DNA contacts 

Generating contact profiles. To map the genome-wide localization profile of a specific 

RNA, we calculated the contact frequency between the RNA transcript and each region of 

the genome binned at various resolutions (1Mb, 100kb and 10kb). Raw contact frequencies 

were computed by counting the number of SPRITE clusters in which an RNA transcript 

and a genomic bin co-occur. We normalized these raw contacts by weighting each contact 

by a scaling factor based on the size of its corresponding SPRITE cluster.  Specifically, we 

enumerate all pairwise contacts within a SPRITE cluster and weight each contact by 2/n, 

where n is the total number of reads within a cluster.  

RNA and cluster sizes. RNA-DNA contacts were computed for a range of SPRITE cluster 

sizes, such as 2-10, 11-100, and 101-1000, ≥1001 reads. We found that different RNAs 

tend to be most represented in different clusters sizes – likely reflecting the size of the 

nuclear compartment that they occupy. For example, 45S and snoRNAs are most 

represented in large clusters, while Malat1, snRNAs, and other ncRNAs tend to be 

represented in smaller SPRITE clusters. For analyses in this paper, we utilized clusters 

containing 2-1000 reads unless otherwise noted. 

Visualizing contact profiles. These methods produce a one-dimensional vector of DNA 

contact frequencies for each RNA transcript that we output in bedgraph format and 

visualize with IGV120. To compare DNA contact profiles between RNA transcripts, we 

calculated a Pearson correlation coefficient between the one-dimensional DNA contact 

vectors for all pairs of RNA transcripts.  

Aggregate analysis of RNA-DNA contacts. To map RNA-DNA localization across 

chromosomes with respect to centromeres and telomeres (e.g. Terc and satellite ncRNAs), 

we computed an average localization profile as a function of distance from the centromere 

of each chromosomes. To do this, we converted each 1Mb genomic bin into a percentile 

bin from 0 to 100 based on its relative position on its chromosome (from 5’ to 3’ ends). 



 

 

236 

We then calculated the average contact frequency for a given RNA with each percentile 

bin across all chromosomes.  

Allele specific analysis. To map localization to different alleles, we identified all clusters 

containing a given RNA (as above) and quantified the number of DNA reads uniquely 

mapping to each allele using allele specific alignments. Allele specific RNA-DNA contact 

frequencies were normalized by overall genomic read coverage for each allele to account 

for differences in coverage for each allele. 

Nucleolar hub RNA-DNA contacts. We observe enrichment of pre-rRNAs and other 

nucleolar hub RNAs on chromosomes containing 45S ribosomal DNA (rDNA). 

Specifically, rDNA genes are contained on the centromere-proximal regions of 

chromosomes 12, 15, 16, 18, and 19 in mouse ES cells. We previously showed that regions 

on these chromosomes organize around nucleoli in the majority of cells imaged with DNA 

FISH combined with immunofluorescence for Nucleolin55. We also observed nucleolar 

hub RNAs enriched on other genomic regions corresponding to centromere-proximal DNA 

and transcriptionally inactive, gene poor regions. We previously showed that these 

genomic regions are organized proximal to the nucleolus using SPRITE and microscopy55.   

Splicing RNA concentration relative to nuclear speckle distance. We observed that 

snRNAs are enriched over genomic regions with high gene-density, which we have 

previously shown organize around the nuclear speckle55. To explore whether splicing RNA 

concentration is related to genomic DNA distance to nuclear speckles, we computed the 

RNA-DNA contact profile for U1 snRNA in 10 kb bins across the genome, weighted by 

cluster size. For the same 10 kb bins, we calculated the RNA expression levels (the number 

of clusters containing the pre-mRNA) and filtered for bins with RNA counts > 100.  In our 

dataset, this filter selects for genomic regions with high gene expression levels regardless 

of speckle distance. We then generated a “distance to speckle” metric for each genomic bin 

using DNA-DNA SPRITE measurements. This “distance” is defined as the average inter-

chromosomal contact frequency between a given bin and genomic bins corresponding to 

the “active” hub (i.e. “speckle” hub). A larger contact frequency value is considered “close 
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to the speckle” while a smaller value is “far from the speckle”. We grouped the 10 kb 

bins into 5 groups based on the “distance to speckle” metric and focused our subsequent 

analysis on the “closest” and “farthest” groups. Closest regions contained a normalized 

speckle distance score between 0.4-0.5 and farthest contained a score from 0-0.1. We then 

compared the distribution of U1 density over genes close to or far from the nuclear speckle.  

 

Analysis of RNA-RNA contacts 

RNA-RNA contact matrices. We computed the contact frequency between each RNA-

RNA pair by counting the number of SPRITE clusters containing two different RNAs. To 

account for coverage differences in individual RNAs, we normalized this matrix using a 

matrix balancing normalization approach as previously described121. Briefly, this approach 

works by ensuring the rows and columns of a symmetric matrix add up to 1. In this way, 

RNA abundance does not dominate the overall strength of the contact matrix. For multi-

copy RNAs (e.g. repeat-encoded RNAs, ribosomal RNA, tRNAs), all reads mapping to a 

given RNA were collapsed. Specifically, multi-copy RNA reads mapping to either the 

mm10 genome annotated using repeat masker or a custom repeat genome consensus were 

collapsed. 

RNA Hubs. Groups of pairwise interacting RNAs were first identified using hierarchical 

clustering of the pairwise RNA-RNA contact matrix. Groups were defined as sets of 

pairwise interacting RNAs that showed high pairwise contact frequencies with other RNAs 

within the same group, but low contact frequency with RNAs in other groups. We next 

explored the multiway contacts of the RNAs within these groups using our multi-way 

contact score (details below). The term “hub” is used to refer to these higher-order, multi-

way interacting group of RNAs. 

Multi-way Contact Score (k-mer analysis). To assess the significance of multiple RNAs 

co-occurring within the same SPRITE cluster, we computed a multi-way contact score. 

Specifically, we compared the observed number of SPRITE clusters containing a specific 
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multi-way contact to the “expected” number of SPRITE clusters containing the multi-

way contacts if the components were randomly distributed. To account for the fact that 

higher-order structures (i.e. k-mers) might be more frequent than expected at random 

because only a subset of the RNAs, but not all components, specifically interact, we 

calculated the “expected” count for a given k-mer from permutations where we fixed the 

frequency and structure of each (k-1)-mer subsets and permuted the remaining RNAs in a 

cluster based on its observed RNA frequency in the dataset. We then computed the 

frequency that we observe the full k-mer structure at random. More concretely, consider 

the 3-way simultaneous contact between RNAs A, B, and C (A-B-C). First, we generate 

the permuted dataset to estimate the frequency of this interaction occurring randomly. We 

focus on only clusters in the RD-SPRITE dataset containing a sub-fragment of the 

interaction (clusters with A-B) and reassign the other members of the cluster using the 

fractional abundances of RNAs within the complete RD-SPRITE dataset. We then count 

the number of occurrences of A-B-C within the permuted dataset. We repeated these 

permutations 100 times to generate an “expected” distribution and used this distribution to 

compute a p-value (how frequently do we randomly generate a value greater than or equal 

to the observed frequency) and z-score (the observed frequency minus average frequency 

of permuted values divided by the permuted distribution standard deviation). For a given 

multi-way k-mer, we report the maximum statistics of all possible paths to assembling the 

k-mer (e.g. max(A-B|C, B-C|A, A-C|B)). In this way, if only the interaction of a k-mer 

subset, for instance B-C, occurs more frequently than by random chance, but the addition 

of A to the B-C k-mer does not occur more frequently than by random chance, the full 

multi-way interaction would not be significant. 

Mapping intron versus exon RNA-RNA contacts. To explore the differential RNA 

contacts that occur within nascent pre-mRNA and mature mRNAs, we focused on the 

intronic regions and exonic regions of mRNAs respectively. We retained all intronic or 

exonic regions that were contained in at least 100 independent SPRITE clusters. We then 

generate contact matrices between splicing non-coding RNAs (U1, U2, U4, U5, U6) and 

translation non-coding RNAs (18S, 28S, 5S, 5.8S) and these mRNA exons, and introns. 
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We performed a matrix balancing normalization (ICE normalization121) on this 

symmetric contact matrix and plotted splicing RNAs and translation RNAs (columns) 

versus mRNA exons and introns (rows). 

Identifying unannotated scaRNAs. We calculated the weighted contact frequency of how 

often a given RNA contacts scaRNA2. Many of the top hits correspond to Mus musculus 

(mm10) annotated scaRNAs (e.g. scaRNA9, scaRNA10, scaRNA6, scaRNA7, scaRNA1, 

scaRNA17, and scaRNA13). Other hits include regions within mRNA introns. We 

performed BLAST-like Alignment Tool (BLAT, https://genome.ucsc.edu/cgi-bin/hgBlat) 

on other top hits contacting scaRNA2, including the Trrap intron region and Gon4l1 intron 

region and found they are homologous to human scaRNA28 and scaRNA26A, 

respectively. Specifically, the Trrap region in mm10 homologous to scaRNA28 is 

chr5:144771339-144771531 and the Gon4l region in mm10 homologous to scaRNA26A 

is chr3:88880319-88880467. 

 

Analysis of multi-way RNA and DNA SPRITE contacts 

Generating RNA-DNA-DNA Contact Matrices for SPRITE clusters containing an 

individual or multiple RNAs. To analyze higher-order RNA and DNA contacts in the 

SPRITE clusters, we generated DNA-DNA contact frequency maps in the presence of 

specific sets of RNA transcripts. To generate these DNA-DNA contact maps, we first 

obtained the subset of SPRITE clusters that contained an RNA transcript or multiple 

transcripts of interest (e.g., nucleolar RNAs, spliceosomal RNAs, scaRNAs satellite RNAs, 

lncRNA). We then calculated DNA-DNA contact maps for each subset of SPRITE clusters 

at 100kb and 1Mb resolution by determining the number of clusters in which each pair of 

genomic bins co-occur. Raw contacts were normalized by SPRITE cluster size by dividing 

each contact by the total number of reads in the corresponding SPRITE cluster. 

Specifically, we enumerate all pairwise contacts within a SPRITE cluster and weight each 

contact by 2/n, where n is the total number of reads within a cluster. This resulted in 
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genome-wide DNA-DNA contact frequency maps for each set of RNA transcripts of 

interest.  

Aggregate DNA-DNA inter-chromosomal maps for SPRITE clusters containing an 

individual or multiple RNAs. For satellite-derived ncRNAs, we also calculated a mean 

inter-chromosomal DNA-DNA contact frequency map. To do this, we converted each 1Mb 

genomic bin into a percentile bin from 0 to 100 based on its chromosomal position, where 

the 5’ end is 0 and the 3’ end is 100. We then calculated the DNA contact frequency 

between all pairs of percentile bins for all pairs of chromosomes. We used these values to 

calculate a mean inter-chromosomal contact frequency map, which reflects the average 

contact frequency between each pair of percentile bins between all pairs of chromosomes.  

 

Actinomycin D RNA-DNA SPRITE and DNA SPRITE 

DNA SPRITE. DNA SPRITE was performed on three biological replicates of ActD-

treated or control DMSO treated cells following the protocol described in our previous 

work (Quinodoz, et al. Nature Protocols - In Press). The individual samples were processed 

in parallel during crosslinking, cell lysis, sonication, and chromatin fragmentation. DNase 

treatment conditions were independently optimized for cell lysates of ActD or DMSO-

treated samples. Samples were then separately coupled to NHS-beads and the DNA 

fragments end-repaired and phosphorylated. For DPM adaptor ligation, a unique set of 

DPM adaptors was used for each treatment condition and replicate, allowing us to 

distinguish the subsequently sequenced DNA reads corresponding to each sample based 

on the identity of the DPM adaptor. Following DPM ligation, the six samples (three 

biological replicates of ActD and three biological replicates of DMSO) were pooled and 

taken through four rounds of split-pool barcoding.  

RNA & DNA SPRITE. RD-SPRITE was performed on ActD or DMSO treated cells 

following the protocol detailed above. Similar to the DNA-SPRITE experiment, the 

individual replicates were processed in parallel for the first steps of the protocol and pooled 
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after the first round of split-pool barcoding. In DNA-SPRITE, there are 96 possible 

DPM adaptors and we could therefore use the identity of the DPM adaptor to distinguish 

reads from the individual samples. In RD-SPRITE, there is a single DPM adaptor and we 

instead use the first round of split-pool barcoding to distinguish individual samples. 

Therefore, the samples were only pooled after the first round of barcoding and each sample 

ligated with a unique subset of ODD adaptors for the first round.  

Sequencing. Sequencing was performed on an Illumina NovaSeq S4 paired-end 150x150 

cycle run. For the DNA-SPRITE data, 16 different SPRITE libraries were generated and 

sequenced. For the RD-SPRITE data, 16 different SPRITE libraries were generated and 

sequenced. In both cases, the individual libraries contained data from all three biological 

replicates of ActD-treated and all three biological replicates of DMSO-control treated 

samples.  

DNA SPRITE processing pipeline. DNA-SPRITE data for ActD-treated and control 

DMSO-treated samples was processed using a pipeline we have previously described 

(Quinodoz, et al. Nature Protocols - In Press). To distinguish clusters corresponding to 

each sample, the identity of the DPM tag was used. 

RNA-DNA SPRITE processing pipeline. RNA-DNA SPRITE data for ActD-treated and 

control DMSO-treated samples was processed as previously described, with minor 

modifications. For instance, updated versions of gene annotations (Gencode release M25 

annotations for GRCm38.p6) and our custom collection of repeat RNA sequences were 

used to annotate RNA reads. To distinguish clusters corresponding to each sample, the 

identity of the first ODD barcode was used. 

Sample replicates. Biological replicates of ActD-treated and control DMSO-treated 

samples were prepared in triplicate for both DNA-SPRITE and RNA-DNA SPRITE 

experiments. As described, the individual replicates were processed in parallel for the 

initial steps of the protocols and merged for the split-pool barcoding and sequencing steps 

of the protocols. Following cluster generation, the three replicates for each treatment 
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condition were merged into a single cluster file. All subsequent contact analysis was 

performed on the aggregated datasets. Various metrics, such as ligation efficiency, 

alignment rates, RNA expression, and cluster sizes, were comparable across the biological 

replicates. 

Sample and cluster sizes. The cluster size distribution was computed for each sample and 

each replicate independently. In both RD-SPRITE and DNA-SPRITE, the cluster size 

distribution for different technical replicates of a single treatment condition was nearly 

identical. Between the ActD and DMSO conditions, we found that the ActD and DMSO 

overall cluster sizes (all clusters) were comparable. However, specifically within the 

clusters containing DNA reads, ActD treated samples and control DMSO treated samples 

had different cluster size distribution profiles, with ActD samples favoring larger DNA 

cluster sizes.  

When comparing DNA-DNA contacts or RNA-DNA contacts for specific hub RNAs, we 

focused on the cluster size ranges we found reflected certain nuclear compartments in the 

untreated samples. Specifically, the nucleolar hub is best seen in larger cluster sizes (2-

10,000 reads/cluster for DNA-SPRITE while the scaRNA hub or HLB hub is seen in 

smaller cluster sizes (2-1000 reads/cluster). In addition, we found that snoRNAs shifted 

from their typical localization in larger SPRITE clusters in control-DMSO samples55, to 

smaller clusters in ActD treated samples, likely due to a loss of localization to the 

nucleolus. For analysis involving snoRNA-DNA contacts for DMSO and ActD treatment, 

we focused on larger cluster sizes (1001-10K). 

Quantification of RNA abundance. RNA abundance was calculated by counting the 

number of annotated RNA reads within all SPRITE clusters of size 2-1000. To account for 

differences in read coverage between samples, we normalized expression to the number of 

counted reads for 28S rRNA. For classes of RNA corresponding to different hubs 

(snoRNAs, scaRNAs, tRNAs), we summed the total number of reads annotated with genes 

in this class. For intron reads, we only considered protein-coding transcripts and, for 45S 

rRNA, we considered reads mapped to ITS1, ITS2 or the 3’ end. Finally, to visualize the 
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changes for RNAs with vastly different expression levels, we set the normalized 

expression value of DMSO samples to one and rescaled the ACTD values accordingly.  

DNA-DNA contact matrices. Cluster size weighted DNA-DNA contact matrices were 

generated at various resolutions (1Mb, 100kb, 50kb, etc.) from DNA-SPRITE data as 

previously described. In brief, raw contact frequencies were calculated by counting the 

number of clusters containing reads from both genomic bins. We weighted each contact by 

a scaling factor related to the cluster size, specifically, n/2 where n is the number of reads 

in each cluster. The weighted contact matrices were normalized using iterative correction 

and eigenvector decomposition (ICE), a matrix balancing normalization approach, as 

previously described121.  

To compare nucleolar-hub DNA-DNA contact profiles, we scaled the DNA-DNA matrices 

to the mean intra-chromosomal contact frequency. Specifically, to compute this re-scaling 

factor, we defined 20-bin windows for each chromosome and then calculated the average 

pairwise contacts within these 20-bin windows, excluding self-contacts, across the 

genome. This way, we can visualize changes in the inter-chromosomal vs intra-

chromosomal contact frequency. We defined the genomic regions corresponding to the 

nucleolar hub based on previous SPRITE data55. 

Because the two samples contained slightly different read depths and cluster sizes, we 

wanted to ensure that observed differences could not simply be explained by these 

differences. Therefore, to compare DNA-DNA contact profiles at histone gene clusters or 

snRNA gene clusters between the ActD and DMSO treatment conditions and account for 

different read depths, we rank-order rescaled the DNA-DNA matrices. This normalization 

allows us to determine if the overall structure of the two matrices are similar, even if the 

exact order of magnitude of individual interactions might differ. To do this, we first 

computed the pairwise contact frequencies in both samples. Then we rank ordered the 

contact frequencies in a specific region for DMSO and ActD samples independently and 

computed the average rank ordered contact frequency. Finally, we remapped the matrix 

values for each sample to the average value based on rank position. After rescaling, the 



 

 

244 

DNA-DNA contact matrices for each sample share the same distribution and can be 

visually compared. We note that we observe comparable differences at the reported 

structures regardless of the precise method of normalization. 

RNA-RNA contact matrices. We computed contact frequencies between pairs of RNAs by 

counting the number of SPRITE clusters containing both RNAs. To account for differences 

in RNA abundance in each sample, we normalized the contact frequency of a given pair to 

the number of clusters containing either RNA. Specifically, we computed a normalized 

score by dividing the number of SPRITE clusters containing A and B by the number of 

clusters containing A or B. 

RNA-DNA contact bedgraphs. To compare changes in RNA localization on chromatin 

following ActD treatment, we plotted weighted DNA-contact profile bedgraphs for various 

hub RNAs. Specifically, to generate a DNA-contact profile, we computed the number of 

clusters containing the RNA and a genomic bin. Identical to DNA-DNA contact profiles, 

the raw RNA-DNA contacts were weighted by a n/2 scaling factor corresponding to cluster 

size, where n corresponds to the number of reads in each cluster. We then normalized the 

weighted bedgraph by dividing each contact frequency by the read count of a given RNA. 

This normalization allows us to account for differences in abundance of a given RNA.  
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Gene regulation involves the coordinated actions of many regulatory factors to direct 

spatial- and temporal-specific gene expression programs within each cell. Propelled by 

rapid advancements in sequencing technologies, researchers have uncovered the 

multifactorial nature of regulation, implicating critical roles for thousands of components 

including cis-regulatory elements, epigenomic modifications, sequence-specific 

transcription factors, DNA modifying enzymes, chromatin-regulatory proteins, non-coding 

RNAs and 3D genomic organization. Despite a wealth of consortium-generated data, how 

a single genome guides distinctive, cell-type specific expression patterns for hundreds of 

individual cell types remains elusive.  

Learning the rules of gene regulation has been challenging. This is because current 

experimental methods are limited in their ability to elucidate the functional relationships 

between complex assemblies of regulatory factors and transcriptional output. More 

specifically, most sequencing-based genomics approaches only measure pairwise 

interactions (e.g., protein-to-DNA or DNA-to-DNA) and, for regulatory proteins, are 

technically limited to studying one protein at a time. Previous studies using such methods 

have demonstrated correlations between transcription and single regulatory proteins, non-

coding RNAs, epigenomic signatures or genome structure. However, whether these 

regulatory factors are merely coincidental with or necessary for transcription 

activity/inactivity has remained unknown. Pairwise interaction measurements simply 

cannot appreciate the temporal and locus-specific complexity of gene regulation nor detect 

higher-order regulatory structures or logic circuits.   

Advancing our understanding of how the genome programs gene expression will require 

the development of new experimental methods, data visualization strategies and 

computational models that account for the multifactorial, context-dependent nature of gene 

regulation. Specifically, we need novel strategies to increase the scale and diversity of 

measurements and directly measure the associations of regulatory factors with each other 

and with transcription. Here, we propose SPRITE as an enabling technology because it can 
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capture ‘snapshots’ of the molecular events within the nucleus. SPRITE detects the 

multiway, multimodal interactions occurring between many individual molecules within a 

single cell at a single point in time. Previous adaptations of SPRITE have focused on 

mapping nucleic acid interactions (e.g., DNA-DNA, RNA-DNA, RNA-RNA); to build a 

comprehensive model for gene regulation, future adaptions need to incorporate protein 

detection.  

In this thesis, I describe RNA-DNA SPRITE, a method for simultaneous measurement of 

multiway RNA and DNA interactions, and ChIP-DIP, a highly multiplexed method for 

mapping regulatory proteins to DNA. ChIP-DIP provides a drastic increase in scale for 

cell-type specific regulatory protein maps and was used to demonstrate that additional 

information is encoded in the quantitative combinations of histone modifications at 

regulatory elements. RNA-DNA SPRITE provides a direct readout of higher order 

organizations of RNA and DNA and was used to demonstrate the bidirectional, functional 

relationship between nascent transcription and genome organization. Combining these two 

methods would provide locus-specific, multi-modal information (e.g., co-localizing 

ncRNAs, 3D genomic structure, nascent transcription) for many individual regulatory 

proteins. Alternatively, strategies that allow for multi-way detection of proteins could also 

be designed. For instance, first ChIP-DIP could be used to rapidly screen and identify high-

quality protein affinity reagents; following, these antibodies could be covalently modified 

with unique identifying sequences and used for a pooled immunoprecipitation; finally, the 

sample would be processed through the standard RNA-DNA SPRITE workup. This 

workflow would be highly modular and allow for multi-way detection of interactions 

between proteins, RNAs, and DNA.    

In summary, the fields of genomics and epigenomics stand at a turning point. Previous 

research has produced a wealth of regulatory candidates but a unified model for gene 

regulation remains elusive. New experimental methods capable of measuring the inter-

connections of regulatory factors at scale and the corresponding analytical and theoretical 



 

 

259 

frameworks will be required to define the principles controlling gene expression and 

understand the mechanisms involved in human health and disease etiology.  


