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In a forest a fox bumps into a little rabbit, and says, “Hi, junior,
what are you up to?”

“I'm writing a dissertation on how rabbits eat fozes,” said the
rabbit. .

“Come now, friend rabbit, you know that’s impossible/”

“Well, follow me and I'll show you.” They both go into the rab-
bit’s dwelling and after a while the rabbit emerges with a satisfied
ezpression on his face.

Comes along a wolf. “Hello, what are we doing these days?”

“I'm writing the second chapter of my thesis, on how rabbits de-
vour wolves.”

“Are you crazy? Where is your academic honesty?”

“Come with me and I'll show you.” As before, the rabbit comes
out with a satisfied look on his face and a diploma in his paw. Finally,
the camera pans into the rabbit’s cave and, as everybody should have
guessed by now, we see a grand, huge lion sitting next to some bloody

and furry remnants of the wolf and the foz. — Anonymous

The moral: “As a Caltech Ph.D candidate, you should always be

curious.” — Demetri Psaltis
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ABSTRACT

Optical techniques for implementing neural computers are presented. In par-
ticular, holographic associative memories with feedback are investigated. Charac-
teristics of optical neurons and optical interconnections are discussed. An LCLV is
used for simulating a 2-D array of approximately 160,000 optical neurons. Ther-
moplastic plates are used for providing holographic interconnections among these
neurons. The problem of degenerate readout in holographic interconnections and
the method of sampling grids to solve this problem are presented.

Two optical neural networks for associative memories are implemented and
demonstrated. The first one is an optical implementation of the Hopfield network.
It performs the function of auto-association that recognizes 2-D images from a
distorted or partially blocked input. The trade-off between distortion tolerance and
discrimination capability against new images is discussed. The second optical loop
is a 2-layer network with feedback. It performs the function of hetero-association,
which locks the recognized input and its associated image as a stable state in the
loop. In both optical loops, it is shown that the neural gain and the similarity
between the input and the stored images are the main factors that determine the
dynamics of the network.

Neural network models for the optical loops are presented. Equations of motion
for describing the dynamical behavior of the systems are derived. The reciprocal
vector basis corresponding to stored images is derived. A geometrical method is
then introduced which allows us to inspect the convergence property of the system.
It is also shown that the main factors that determine the system dynamics are the
neural gain and the initial conditions.

Photorefractive holography for optical interconnections and sampling grids for
volume holographic interconnections are presented. A periodic copying method
for refreshening multiply exposured photorefractive holograms is presented, which
allows the hologram to maintain the same diffraction efficiency as that when a single
exposure scheme is used. This scheme provides us with the possibility of achieving
maximum storage and maximum diffraction efficiency in holographic associative

memories.
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Chapter 1

Introduction

Optical neural computers are computing architectures based on the concept of neu-
ral networks and implemented with optical hardware. Interest in this type of com-
puter has been motivated largely by the hope that by building a computer that
shares some of the characteristics of biological systems, we will be able to address
problems such as image recognition which animals do exceedingly well but current
digital computers do not [1, 2, 3, 4]. Unfortunately, because of the lack of a detailed
knowledge of the operation of biological neural networks or an adequate theoreti-
cal understanding of how to use an adaptive, massively parallel, densely connected
computer architecture, the practical use of neural networks for the solution of dif-
ficult computational problems remains mostly a goal. Nevertheless, there has been
a great deal of progress on the theoretical side to justify optimism about future
applications, and this has focused attention on the hardware realization of neural
architectures. In this respect it turns out that optical technology is particularly
promising for constructing neural computers. Two questions must be answered be-
fore we start to build an optical neural computer: What are the characteristics of
neural networks and why use optics?

Intuition tells us that the brain is a very complicated organ. Indeed, research in
anatomy shows that the brain contains about 10'? neurons [5]. Each neuron receives
information from hundreds or thousands of other neurons and in turn transmits in-
formation to hundreds or thousands of other neurons. Furthermore, the brain is
organized in such a complicated way that the operation of large parts of it are still
in question, not only in terms of how they work but also in terms of their biological

purpose. Therefore, at the present time it is impossible to describe precisely how the
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brain works. However, several models have being proposed [6, 7, 8, 9]. Though very
much simplified from reality, each model successfully demonstrates certain aspects
of brain function. Given this knowledge, we now define a neural computer to be
characteristized by three properties: a) It consists of a large number of simple pro-
cessing units, which we call “neurons.” Each neuron performs a simple thresholding
operation to its total input signal. b) Each neuron is connected to many others
through weighted interconnections. Typically, the number of the interconnections
range from several hundreds to several thousands. ¢) The network is programmed
to respond appropriately to inputs by adjusting the weights between neurons during
the learning phase.

Two features can be derived from the above definition, which distinguish neural
computers from conventional computers. First, information is stored and distributed
in the extensive interconnection links among the neurons. Each neuron does only
the simple function of thresholding but influences thousands of others simultane-
ously through the massive communication links. It is this parallel and collective
behavior that determines the dynamics of the network, which is also where the com-
putational power of neural computers emerges from. This mode of computation is
fundamentally different from that of conventional computers, which function sequen-
tially, executing a step-by-step algorithm. Secondly, the interconnection pattern, or
the information storage, is modifiable. It is formed by providing the network with
enough “training” samples. With these two features in mind, we now proceed to
find technologies that are appropriate for implementing a neural computer.

Electronics (analog, digital or hybrid) and optics are the two approaches under
consideration for the hardware realization of neural computers. There are two basic
components that need to be implemented: neurons and connections. The neurons
are typically simple thresholding elements that can be implemented by a single

switching device (e.g., transistors). The switching speed or the accuracy required
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for the neurons is not beyond the capabilities of current electronic technology. A
practical neural computer may require millions of neurons operating in parallel. This
requirement by itself is also achievable in electronics [10, 11]. However, each of the
neurons must be connected to several thousand other neurons and these connections
must be modifiable so that learning can take place. This is relatively difficult to
achieve electronically. The reason is that on a silicon chip, communication links
are provided by electrical wires that must be kept separated by some minimum
distance. Otherwise, the electrical signals carried by different channels interfere
with one another. Therefore, the number of interconnections per electronic neuron
1s rather restricted and this limits the amount of communication.

On the other hand, optics dovetails nicely with the characteristics of neural com-
puters. The first reason is that light beams can propagate in free space and remain
unaltered even as they pass through each other. The second reason is that an optical
system has its three-dimensional nature. Hence, if optical neurons are arranged in a
planar architecture, then the neurons on different planes can communicate by emit-
ting and receiving light beams through the free space between them. This provides
optical systems a dense and parallel communication capability. There are several
optical components available for the implementation of neural networks. The first
optical component available is a two-dimensional array of optical switching elements.
Each element of the array switches state depending on the total light input to this
element; thus it simulates the function of a neuron. The array of optical neurons
can be obtained by several approaches. Among them, two-dimensional spatial light
modulators (2-D SLM), opto-electronic chips, and photorefractive crystals are most
promising. One example of 2-D SLM is the liquid light crystal valve that we use in
this thesis, which simulates 160, 000 optical neurons in a one-inch aperture [12]. As
we have already explained, the computational power of a neural computer comes

from extensive connectivity among the neurons. For this purpose, a hologram is an
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excellent component. A holographic grating provides a communication link between
two optical neurons. A planar hologram of one-inch-square size can record as many
as 10® independent gratings. This would allow 10,000 neurons to talk to 10,000
neurons simultaneously. If a volume hologram is used, then we can even obtain
10'? gratings in a cubic centimeter of photorefractive crystal [13]. This is extremely
difficult to achieve with planar electronic technology.

An additional advantage of using holographic interconnections in a neural com-
puter is that learning mechanisms can be realized. The reason for this is that the
formation of holographic gratings simulates the Hebbian rule: The diffraction effi-
ciency of the holographic grating depends on the modulation depth of the recording
beams, which in turn depends on the light intensities from the two interconnecting
neurons. By using adaptive recording materials such as photorefractive crystals to
write dynamic holograms, learning can take place [14]. This feature again is unique
in optical neural computers. We therefore are particularly interested in applying
optics for the implementation of neural computers.

This thesis is an investigation into the holographic implementations of neural
computers. Specifically, we consider the implementation of associative memories.
The reason for choosing the associative memory is because it is the most interesting
property emerging from the collective computational behavior of neural networks
(15,16]. The features of fault tolerance, network dynamics, and learning in associa-
tive memories are quite general and can be extended to other types of neural com-
puters. Two problems are addressed in this thesis. The first is the problem of how
to design and implement a holographic neural computer for associative memories.
The second is the dynamics of the associative loop with feedback. The remainder
of this thesis is organized as follows: In Chapter 2 we discuss optical devices for
the implementation of neural computers. Basic operational principles and the main

characteristics of optical neurons and optical interconnections will be presented. In



—_5—
Chapter 3 we present an associative feedback loop based on the Hopfield model [13].
The optical loop performs the function of image auto-association. The invariances
and discrimination properties of the loop are demonstrated [17]. The neural net
model of the loop and the dynamic equations are presented. A geometrical method
for studying the convergence properties is presented and the parameters that are
pertinent to the loop dynamics are discussed [18]. In Chapter 4 an optical loop that
performs hetero-associations is described [19]. The method of using fractal sampling
grids to avoid degeneracies in holographic reconstructions is presented, and algebraic
formulas for designing the sampling grids are derived. The geometrical method is
again used here to discuss the dynamics of the loop. In Chapter 5 we present
photorefractive holograms for optical neural computers. The method of multiply
exposed photorefractive holograms with maximum storage capacity and maximum
diffraction efficiency is demonstrated [20]. The use of photorefractive crystals as dy-
namic holograms for increasing the storage capacity of optical associative memories

is presented at the end of Chapter 5 [21].



1.1

—6-

References for Chapter 1

Y. Abu-Mostafa and D. Psaltis, “Optical Neural Computers,,” Scientific Amer-

ican, Vol. 256, No. 3, 88-95, March (1987).

D. Psaltis, D. Brady, X. Gu, and K. Hsu, “Optical Implementation of Neural
Computers,” A chapter in Optical Processing and Computing, H. Arsenault
ed., Academic Press, New York, 1989.

N. Farhat and D. Psaltis, “Optical Implementation of Associative Memory
Based on Models of Neural Networks,” A chapter in Optical Signal Processing,
J. L. Horner ed., Academic Press, New York, 1987.

K. Hsu and D. Psaltis, “Optical Associative Memory,” A chapter to appear
in Nonlinear Optics and Optical Computing, S. Martellucci ed., Plenum Pub-
lishing, New York, 1988.

D. H. Hubel, Fye, Brain, and Vision, Scientific American Library series, #
22, W. H. Freeman and Company, New York, 1988.

W. S. McCulloch and W. H. Pitts, “A Logical Calculus of the Ideas Immanent
in Nervous Activity,” Bulletin of Math. Biophysics, 5, 115(1943).

D. Hebb, Organization of Behavior, Wiley, New York, 1949.

. F. Rosenblatt, Principles of Neurodynamics : Perceptrons and the theory of

Brain Mechanisms, Spartan Books, Washington, D. C., 1962.

K. Fukushima, S. Miyake, and Takayukiito, “Neocognitron: A Neural Network
Model for a Mechanism of Visual Pattern Recognition,” IFEFFE Transactions
on Systems, Man, and Cybernetics, vol., SMC-13, No. 5, 826-834, September
(1983).



10

11.

12.

13.

14.

15.

16.

17.

18.

7
C. Mead and L. Conway, Introduction to VLSI Systems, Addison- Wesley
Publishing, Reading, Massachusetts, 1980.

C.Mead, Analog VLSI and Neural Systems, Addison-Wesley Publishing, Read-

ing, Massachusetts, 1989.

K. Hsu, D. Brady, and D. Psaltis, “Experimental Demonstrations of Optical
Neural Computers,” Neural Information Processing Systems, D. Z. Anderson

ed., American Institute of Physics, New York, 1987.

D. Psaltis, J. Yu, X. G. Gu, and H. Lee, “Optical Neural Nets Implemented
with Volume Holograms,” Paper TuA3-1, Topical Meeting on Optical Com-
puting, Optical Society of America, March 16-18, 1987, Incline Village, Nevada.

D. Psaltis, D. Brady, and K. Wagner, “Adaptive Optical Networks using Pho-
torefractive Crystals,” Appl. Optics, Vol. 27, 1752, May 1 (1988).

J. J. Hopfield, “Neural Networks and Physical Systems with Emergent Col-
lective Computational Abilities,” Proc. Natl. Acad. Sci. U. S. A., 79, 2554
(1982).

J. J. Hopfield, “Neurons with Graded Response Have Collective Computa-
tional Properties Like Those of Two-State Neurons,” Proc. Natl. Acad. Sci.

U.S. A. 81,3088 (1984).

K. Hsu and D. Psaltis, “ Invariances and Discrimination Properties of the
Optical Associative Loop,” IEEE Annual International Conference on Neural

Networks, San Diego, 1988.

S. Y. Li, “Analysis of Pinhole Array Associative Memory System Using the

Method of Phase Planes,” private communication.



19.

20.

21.

8-
D. Psaltis and K. Hsu, “The Hetero-Associative Loop using Planar holo-

grams,” to be submitted.

D. Brady, K. Hsu, and D. Psaltis, “Multiply Exposed Photorefractive Holo-
grams with Maximal Diffraction Efficiency,” Paper PDP2, Topical Meeting

on Optical Computing, Optical Society of America, Salt Lake City, Feb. 27-
March 1, 1989.

D. Brady, K. Hsu, and D. Psaltis, “Periodically Refreshed Multiply Exposed

Photorefractive Holograms,” submitted to Opt. Lett.



Chapter 2

Devices for Optical Neural Computers

2.1 Introduction

The generic structure of an optical neural computer is shown in Fig. 2.1. In the
figure, the neurons are arranged in two-dimensional planes and they are intercon-
nected through free-space communication links. There may be several layers in
the network, with feedback paths in each layer. As was described in Chapter 1,
the greatest advantage of this three-dimensional structure is to provide the neural
computer with dense communication links among the neurons so that parallel and
collective computations can emerge.

As shown in the figure, there are two basic components for optical neural com-
puters: optical neurons and interconnections. This chapter presents the technologies
for implementing these two devices and their characteristics. Section 2.2 discusses
the devices for implementing optical neurons. The characteristics of the neurons
such as the thresholding function, light-detection sensitivity, and temporal response
are presented. In Section 2.3 the holographic method for interconnections in neural
computers is presented. The operational principles of thermoplastic plates for planar

holograms and the properties of planar holographic interconnections are presented.

2.2 Optical Neurons

The function of an optical neuron is two-fold. First, it integrates light beams emitted
from all the neurons that its input is connected to. Second, the light-emitting or
light-transmitting property of this neuron is modulated by the light level of the total

input in a nonlinear manner; i.e., it performs a thresholding operation to the total
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input. Several technologies are available for implementing optical neurons: two-
dimensional spatial light modulators (2-D SLM) [1], integrated opto-electronic chips
[2], arrays of nonlinear optical switches [3], and nonlinear photorefractive crystals
[4].

Development of nonlinear optical devices with fast switching speed have been
pursued for many years. In recent years considerable progress made in this area has
led to numerous demonstrations of ultra-high speed (pico-second) optical switches.
The major problem with these switches at present is the very high power required to
switch each element. This makes large arrays impractical due to power dissipation
limitation. For neural network simulation, speed is not critical. The response time
of neurons in the brain is in the millisecond range. Instead, we need large arrays
of neurons to perform collective computation. Thus, nonlinear optical switches are
not considered here.

The opto-electronic approach to simulating optical neurons involves the integra-
tion of a two-dimensional array of light detectors, saturation amplifiers and light-
emitters on a single chip. The amplifier controls the light-emitting level as a function
of input light intensity. The combination of light detector, emitter, and the ampli-
fier simulates an optical neuron. An opto-electronic chip with an array of 10 x 10
~ optical neurons has been demonstrated recently [2]. The arrays required for optical
neurons are more regular and simpler than general circuits; hence larger arrays are
possible. Furthermore, the technology required for making opto-electronic neurons
is compatible with that currently being pursued for providing optical interconnec-
tions in VLSI chips. Therefore, the opto-electronic approach is most likely to provide
practical and useful neurons in the future.

The photorefractive effect is a nonlinear phenomenon that has attracted much
research effort in recent years [5]. The effect occurs in crystals that change their

refractive index under light illumination. When a photorefractive crystal (PR) is
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exposed to a light interference pattern, free charges are excited by the incoming
photons. These photo-induced charges move inside the crystal and eventually are
re-trapped. The pattern of re-distribution of the charges corresponds to that of
the input light pattern. The presence of the spatially varying charge pattern then
induces an internal electrical field, which in turn modulates the index of refraction
through the linear electro-optic effect. Thus a phase hologram is recorded and can
be reconstructed by illuminating the PR crystal with a light beam. The phase
gratings can be used to provide interconnections between optical neurons. On the
other hand, the simultaneous presence of two beams in a PR crystal provides a
nonlinear coupling between the beams through the PR gratings. The amount of
beam amplification and thresholding are functions of the two-beam modulation ratio
and crystal parameters such as doping and orientation. The physical mechanisms
and the use of the PR effect are still under current research.

The fourth technology for implementing optical neurons is two-dimensional spa-
tial light modulators (2-D SLM). These devices have being investigated for many
years, primarily for the purpose of optical image processing. Although thoroughly
developed 2-D SLM’s are still not available [6], there are two commercially available
devices that can provide reasonably large arrays of optical neurons. This allows
us to perform meaningful network experiments at this stage and in the foreseeable
future. The two devices are the microchannel spatial light modulator (MSLM) and
liquid crystal light valve (LCLV). Both these devices can operate in a high contrast
mode such that the output light from each resolution pixel is a nonlinear function
of the input light to that pixel. Thus, each pixel of the SLM simulates one optical
neuron. For the MSLM that we have, the resolution is about 3 lines per millimeter
in a 16 x 16 mm aperture. Thus, this device simulates 1,800 neurons. On the other
hand, the resolution capability of the LCLV is 20 lines per millimeter in a 20 x 20

mm aperture. Consequently, this simulates 160,000 neurons. We use the LCLV in
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most of our experiments.

2.2.1 The MSLM as Optical Neurons

The MSLM is an optically addressed, electrically controlled 2-D SLM [7]. The basic
structure is shown in Fig. 2.2. As shown in the figure, the device is a vacuum-sealed
2-D photo-transducer; its main components include the photocathode, microchannel
plate (MCP), mesh electrode, and a LiNdO; single crystal. The photocathode is
a multialkali type (S-20), which converts the optical input image into an electron
image. The MCP is a thin (0.5 — 1.0 mm) semiconductor glass plate which consists
of a 2-D array of 10 um glass pores spaced 15 pm apart in a hexagonal pattern. Each
element of the MCP functions as a continuous dynode electron amplifier. Under the
application of 1 KV, the MCP can provide an electron gain of 10*. The LiNbO;
is a 300 pum thick single crystal with 55° cut. One side of the crystal which faces
the MCP is a multilayer-coated dielectric mirror and the othervside is coated with

a transparent conducting electrode. Thus, a bias voltage can be applied on the
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crystal to control the surface charge condition of the crystal. The reading light
comes into the crystal from the rear side and is reflected by the mirror. There is
a mesh electrode placed between the MCP and the crystal. The relative potential
between the mesh electrode and the crystal surface determines whether the electrons
emitting from the MCP are attracted to or repelled from the crystal.

The basic operational principle of the MSLM is described in the following. The
2-D optical pattern is first imaged on the photocathode of the MSLM, where it is
converted to an electron image. The electron image is then amplified and re-emitted
by the MCP to the mirror side of the LiNbO3. This spatially varying charge pattern
induces an internal electrical field inside the LiNbO3, which in turn modulates the
index of refraction through the linear electro-optic effect. Thus, the original optical
pattern is recorded as a refractive index pattern in the LiNbO;. A polarized reading
beam, coming into the MSLM from the crystal side, is spatially phase-modulated by
the refractive index pattern of the LiNbO3. The phase modulation can be read out
using a crossed polarizer. The light intensity of the read-out beam can be expressed
as

I= A[sin2(1“/2)] (2.1)
where A is a constant, and I' is the phase retardation induced by the LiNbOs3.
The phase retardation is proportional to the voltage across the crystal, which is
proportional to the charge density on the crystal surface. In the linear operation
region, the charge density is proportional to the writing light intensity. Thus, the

phase retardation can be written as

Ve
L= "(v)

= w(ﬁ) (2.2)

Ox
where V; is the voltage across the crystal, V; is the half-wave voltage of the crystal,

o, is the charge density required to generate = phase retardation, and o, is the charge
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density on the crystal surface, which is proportional to the total exposure. It is seen
from the above equations that the intensity of the output image is proportional to
the charge density accumulated on the crystal surface. The charge density is in
turn proportional to the writing intensity, and is also controlled by the MCP gain.
Fig. 2.3 shows the output intensity as functions of writing intensity and MCP gain.
It is seen that the MSLM provides a nonlinear function of soft thresholding as well as
optical gain. Suppose we deposit a uniform electron charge layer with density o, on
the crystal surface before we write the input on the MSLM. Then the whole surface
is biased by a half-wave voltage and the output is a bright background. Now we
apply electrical voltages on the mesh and the crystal such that the mesh electrode
has higher potential than the crystal surface. When an optical image is written
on the MSLM, the corresponding electron image is generated by the photocathode
and amplified by the MCP. The electrons re-emitted from the MCP are accelerated
toward the crystal and bombard the deposited electrons out of the crystal surface.
These secondary electrons are collected by the mesh electrode. Under appropriate
voltage conditions the coefficient of the secondary emission is greater than one.
Thus, the crystal surface loses electrons. The brighter the input, the more the loss.
As a result, the brighter part produces less phase retardation. This reverses the
contrast of the read-out image. Fig. 2.4(a) and (b) show the output images under
normal operating conditions, and Fig. 2.4(c) and (d) show the contrast reversed
version.

Although the MSLM can simulate neuron functions, its resolution is limited to
3 lines per millimeter with an aperture of 16 x 16 mm. The number of neurons
that we can get from this device is approximately 1,800. This is too small for our
image association purpose. Furthermore, the input image is written on the crystal
surface as an electron charge image. Since the crystal is an insulator, unless an erase

mechanism is applied to the MSLM, the electron image would stay on the crystal
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(d)

Figure 2.4: Readout Images of the MSLM: (a). Normal operation. (b). Contrast

reversal.
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for a long time (longer than a week). This is a nice characteristic when the device is
used as a buffer. If we want to use the MSLM for simulating the dynamics of neural
networks, we need to apply a uniform erasing light on the MSLM periodically so

that dynamics can occur.

2.2.2 The LCLV as Optical Neurons

The general structure of the liquid crystal light valve (LCLV) is shown in Fig. 2.5 [8].

As shown in the figure, ths basic structure of the LCLV is a multilayered device. On
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one side it has the photosensor layer for writing the input image; on the other side it
has the electro-optic layer for transferring the input information to the phase retar-
dation of the reading beam. Similar to the MSLM, in the LCLV there is a dielectric
mirror sandwiched between the light-sensing layer and the light-modulation layer
for separating the reading beam from the writing beam. The differences between the
two devices are the materials that are used. The photosensor of the LCLV is a CdS
semiconductor layer, which has a peak photo-response at 515 nm in the green. We
use an argon laser with wavelength 514 nm as the writing beam. The electro-optic
material for the LCLV is a thin layer of nematic liquid crystal. The layer thickness
is about a few microns. The liquid crystal (LC) molecules are aligned in a layered
structure with their long axes parallel to each other. The axis of the aligned direc-
tion is equivalent to the optical axis of the LC layer. In the LCLV the LC molecules
on the front surface of the reading side are aligned along some preferred direction.
The molecules on the back surface of the LC layer are aligned along a direction
that is 45° with respect to that of the front surface. As a result, the axes of the
molecules in the bulk of the LC layer are rotated adiabatically from one surface to
the other by 45°. Thus, the optical axis is also rotated adiabatically by 45°. This
is called the twisted effect. When a reading beam comes into the LCLV with the
polarization vector along the optical axis of the front surface, the polarization state
will be rotated by 45° following the twisted angle of the liquid crystal molecules [9].
We now explain the operational principles of the LCLV. In operation, the optical
image is input into the photosensor side and a uniform reading beam comes into
the liquid crystal side of the LCLV. We apply an electrical bias voltage across the
LC layer, dielectric mirror, and the photosensor layer. When there is no writing
light, most of the voltages is across the high impedance photosensor layer; only a
small portion of the voltage is across the LC layer. Thus, the orientation of the LC

molecules remains in a twisted structure. As the reading beam passes through the
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LC layer, its polarization state is rotated 45°. However, the light beam is reflected
by the mirror to make a second pass through the LC layer. Thus, the output
polarization is rotated back to the incident state through the adiabatic following on
the backward pass. Therefore, the output is zero after a crossed analyzer. On the
other hand, when there is an input image writing on the LCLV, the impedance of
the photosensor layer is reduced. The bias voltage is switched to the LC layer, in
proportion to the input light intensity. This induced voltage produces an electric
field in a direction perpendicular to the LC layer. If the voltage is above some
threshold, the LC molecules begin to tilt toward the electric field. In this orientation
of the molecules, between the parallel and perpendicular directions of the electrical
field, the optical birefringence of the LC molecules as well as the twisted orientation
both affect the polarization of the light. As a result, the output light from the
LCLV after double pass through the LC layer is no longer linearly-polarized. The
transmission through the crossed polarizer is proportional to the degree of tilt of the
molecules, which is in turn proportional to the writing light intensity. Therefore,
the intensity pattern of the input image is transferred to the output light amplitude.
In the limit of applying a very high electric field across the LC layer, all the LC
molecules are rotated 90° to the perpendicular direction. Then the optical axis of the
LC layer is along the propagation of the reading beam. The LC layer is equivalent
to an isotropic device. Thus, the polarization of the reading beam is unaffected, and
the output is zero. Usually we keep the bias voltage under a certain level so that
this does not happen.

Fig. 2.6 shows the measured results of the output vs. input intensity of the
LCLV. Two observations can be seen from this figure. First, the device has the
characteristics of soft thresholding; this simulates the nonlinear function of a neuron.
Second, the device is sensitive to light intensities of 1 uW/em? and produces output

intensity of 100 uW/cm?. This means that the LCLV provides an optical gain of
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100. The optical gain can be higher with higher intensity of the reading beam.

Besides the above characteristics, there is another important parameter for the
implementation of neural computers: the number of neurons that the LCLV can
simulate. This number is proportional to the number of the resolvable spots of the
device. We build a Michelson interfefometer to measure the resolution capability
of the LCLV. The light beams of the two arms of the interferometer interfere to
form a fringe pattern. The spatial frequency of the fringes is adjusted by rotating
the mirror of one arm of the interferometer. The interference fringes are imaged on
the photosensor of the LCLV. The read-out pattern of the LCLV is then Fourier-
transformed onto a CCD camera and the first-order diffraction intensity is measured.
The experimental result is shown in Fig. 2.7. It is seen that the LCLV has good
resolution capability more than 20 lines per millimeter. The device has uniform
response over a 20 mm aperture. Therefore, the device can simulate approximately
160,000 optical neurons. |

In optical neural networks, the signal decays as it propagates through the net-
works. This is due to the losses from reflections and absorptions of the optical
components as well as the from the finite diffraction efficiency of holograms. In
some cases we need a high gain to compensate the losses. One way is to cascade a
pre-amplifier to the LCLV. In our experiments we use an image intensifier to achieve
this purpose. The image intensifier is a very sensitive 2-D device. The input side is
a photocathode for converting an optical image into an electron image. The output
side is a phosphorus screen for converting the electron image back into a visible im-
age. Between them is a microchannel-plate (MCP) which can amplify the intensity
of the electron image by up to 10%. The output side of the image intensifier is a fiber
optical plate. The writing side of the LCLV is also a fiber optical plate. Thus, the
two devices can be attached directly to form a combination. The photosensor plate

of the LCLV is driven by the output image displayed on the phosphorus screen of
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the image intensifier. This combination simulates a two-dimensional array of very
sensitive optical neurons. Fig. 2.8 shows the output vs. input characteristics of this
combination. It is seen that the combination has a soft thresholding characteristic.
It is sensitive to the light intensity as low as nW/cm?, and the output intensity is
higher than 10? uW/cm?. This corresponds to an optical gain of more than 10°. We
will see in Chapters 3 and 4 that the neuron gain is the key factor that determines
the dynamic behavior of neural networks. The combination of the image intensifier
and the LCLV provides a very versatile control on selecting proper neuron gains,
because the the optical gain can be adjusted simply by changing the bias voltage of
the microchannel-plate. Fig. 2.9 shows the optical gain of the neuron as a function
of bias voltage for a specific reading beam intensity of 1 mW/cm?.

In order to study the dynamic behavior of neural networks, we need to know
the temporal response of the neurons. Fig. 2.10 shows the temporal response of
the optical neuron under the writing intensity of 20 nW/cm? and the driving power
supply at 1 K Hz. In the figure, the upper curve represents the ON and OFF of the
writing light. The lower trace is the response of the optical neuron. It is seen that
both the rise and fall times of the device are in the range of 400 ms. The response
time of the device is mainly determined by the RC time constant of the device.
Since the impedance of the light valve is a function of the writing intensity as well
as the driving frequency of the power supply, the response time will be different
under different operating conditions. In our experiments the response times are in
the range of a few hundred ms. We therefore take the response of an individual
pixel z; to its input y; to mimic a nonlinear amplifier followed by an RC circuit as

shown in Fig. 2.11. The equation of motion for each neuron can then be written as

dl‘,’

prile —z; + g(y:) (2.3)

where g(y;) is the nonlinear gain function performed by the neuron. Note that
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for simplicity we have scaled the time constant and gain function so that the time
constant of the RC circuit is 1. One important comment about the gain function
g should be made here. Our gain function is symmetric with respect to the input
amplitude y;. This is because the incoherent detection property of the LCLV and
the image intensifier, which respond to light intensity and not to the amplitude of
the input. As a result, the derivative of the gain function g is not always positive.
This is different from the sigmoid-like function used in almost all other papers. Since
the usual method for the convergence proof of the network uses the fact that the
derivative of the gain function is always positive, that method does not apply to
our system. We will develop a geometric method in Chapters 3 and 4 for studying
the dynamics of neural networks. This method allows us to see not only how the
system converges but also how the gain affects the dynamics. In our analysis, we do
not need to specify a particular shape for the gain function, but need only assume
that it approaches a saturation gain when the absolute value of the input exceeds a
certain threshold, and that the slope at zero input is zero. The general form of the

gain function is shown in Fig. 2.12.

2.3 Optical Interconnections

As we explained in Chapter 1 for the characteristics of neural networks, there are two
crucial considerations for the interconnections in neural networks. First, the number
of interconnections must be large enough for the collective computation to occur.
Second, the interconnections must be dynamically modifiable so that the learning
process can be realized. In the following, based on these two criteria, we discuss the
technologies that are suitable for the implementation of optical interconnections.
For the networks we envision, we would like to have global interconnections

among 10* neurons. This means 10® interconnections. In general, silver halide
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holographic films have a resolution capability of more than 1,000 lines/mm over
the size larger than one-inch square. Thus, it is sufficient for the required number
of interconnections. However, once the interconnection are recorded and developed,
they are fixed. Hence, these materials do not have the learning capability.

The second material that is promising for providing optical interconnections is
erasable optical disks. Currently optical disks are used for data storage in electronic
computers. We can have 10'° bits from a single disk. Thus, they are promising for
recording a large number of interconnections. With current technology, information
can be accessed randomly from any bit of the disk by mechanically scanning the
disk and moving the reading laser head and then detecting the reflected beam. Each
bit of the data is detected and processed sequentially; this limits the usefulness of
the disks for optical neural computings. However, some optical architectures for
paralle] read-out of magneto-optic disks has being proposed and demonstrated [10,

11]. This suggests the potentiality of incorporating disks in optical neural networks.



-30-
Furthermore, magneto-optic disks can be erased and rewritten optically. Hence,
the erasable optical disk is a promising technology for implementing optical neural
computers with learning capabilities.

The third candidate is photorefractive materials.

As was explained in Section 2.2, photorefractive crystals are materials whose
refractive indices can be modified by light illumination. Thus, the interconnec-
tions recorded in these materials are programmable. The second advantage for the
photorefractive crystals is their volume storage capability. The storage capacity is
limited by the number of resolvable spots in the crystal. In principle, this number
is proportional to the volume of the crystal divided by the wavelength cubed. For a
crystal of volume 1 em?® and with the laser wavelength of .5 um, the storage capacity
is approximately 10'2. The tremendous storage capacity and its modifiability make
photorefractive crystals very attractive for applications in optical neural computers
[12].

In the experiments of neural networks to be presented in Chapters 3 and 4, we
are interested in studying the dynamics of associative memories. The information
is recorded and fixed. We therefore use holographic plates for recording the inter-
connections. Thermoplastic plates are used for this purpose. In what follows we
present the technique for recording optical interconnects in planar holograms and
discuss its characteristics. The use of photorefractive crystals for neural networks

will be presented in Chapter 5.

2.3.1 Holographic Gratings for Optical Interconnections

Historically, holograms were the first link between optics and neural networks. Both
Van Heerden [13, 14] and Gabor [15] have discussed the analogy between hologra-
phy and the way information may be stored in the brain. In holography the stored

pattern is reconstructed by illuminating the hologram with the reference beam that
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was used for recording. Thus holography is a form of associative memory. Recently,
holograms have been considered as a means for providing interconnections in elec-
tronic computers [16, 17]. For our applications in neural networks, we use holograms
for interconnecting neurons to form associative memories.

The way we make an interconnection between two neurons is by constructing a
holographic grating between them. The schematic diagram of the optical system for
the recording step is shown in Fig. 2.13. As shown in the figure, the architecture
is similar to that of the Vander Lugt correlator [18]. Suppose the neurons @ and b
on different planes are to be associated. In order to develop the interconnection,
we put a neuron ¥ at the imaging position of b in one of the input planes of the
correlator. This input plane is called the training plane since it serves the purpose
of training the network. We record a hologram using light emitted from the two
training neurons @ and b'. The recorded hologram is a Fourier-transform hologram of
the two point sources. Suppose the light amplitudes coming from the neurons a and
b are A and B, respectively. Then the amplitude transmittance of the developed

hologram is proportional to the exposure; i.e.,
t =~ IAe—j27rua1 + Be—j21rua2l2

— |A|2 + IBI2+ AtBejT/ru(a;—az) +AB*6—j27ru(a1—a2)

= I [1 + mef?rulta=az) 4 me‘ﬂ’”‘(‘“"”)]

= I [1 + 2m cos (2ru(a; — az))] (2.4)
where * denotes the complex conjugate, u represents the spatial frequency, a, is the
position of the neuron a, a, is the position of the neuron b, and

Iy = |AP+|BJ?

= L+1, (2.5)

is the normalized intensity, m = is the modulation depth of the hologram. It

a
Ia+Ib
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1
(a1—a2)

is seen that a grating with spatial frequency of is recorded in the hologram.
This grating works as the the interconnection between the neurons a and b. Suppose
now that the neuron a is activated and emits light amplitude with A; . Then the

reconstructed wave from the hologram is

[A1e—j2mm] Iy [1 + mef?rular—az) 4 me—jzm(al—w)]

= A, [1 + me™Ie2 4 m—ﬂ”("'al-“ﬂ]. (2.6)

We see that the second term represents the light that is diffracted to the associated
neuron b. This is the recalling process, and is shown in Fig. 2.14. Therefore, the
interconnection between the associated neurons can be formed by recording the
holographic grating with the neurons in the training plane.

Two points should be noted from the above result. First, the diffracted light
amplitude is proportional to the modulation depth m of the hologram, which is in
turn proportional to the product of the light amplitudes A and B that were used
during recording. This implies that the interconnection strength is proportional
to the product of the activities of two neurons. Thus holographic interconnection
implements the Hebbian learning rule. Secondly, thin holographic gratings are shift-
invariant. Hence, every neuron not only reads out its own gratings but also reads
out other neurons’ gratings and produces extra output. An example is shown in
Fig. 2.15. In Figure 2.15(a), the neurons at the positions of the letter A are associ-
ated with a single neuron ¢. The holographic gratings are recorded. In the figure,
w;; represents the holographic interconnection between neurons j and i, and w;;
represents the holographic interconnection between neurons k and i. However, in
the recalling process, neuron j is connected not only by w;; to neuron ¢, but also
by w;; to neuron #;. Similarly, neuron k also reads out w;; and wy;, thus activating
an extra neuron i,. Fig. 2.16 shows the experimental results. We see that in Figure

(b) the reconstructed output is not the original point source. Therefore, if we want
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Figure 2.16: Association between the image of letter A and a point source.
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to avoid reading out the degeneracies, the neurons ¢; and ¢, at the output plane
should be prohibited. One way to achieve this is to use sampling masks to block out
the neurons at the degenerate positions [19]. The technique of designing sampling
masks will be presented in Chapter 4.

We now briefly describe the mechanisms of thermoplastic holograms. The ther-
moplastic plate consists of three layers coated on a quartz-plate substrate: an opti-
cally transparent conductor layer, a photoconductive organic polymer, and a ther-
moplastic layer. The plate is sensitive to the visible spectrum with an exposure
sensitivity of 10 uJ/ecm?. The optical interference fringes of the input beams are
recorded as a surface relief pattern on the thermoplastic layer. The result is a thin
phase hologram. The diffraction efficiency is typically 10%. The resolution capabil-
ity of the plate is 800 lines/mm with an aperture size of 30 x 30 mm square [20].
Thus, the plate can accommodate 10® gratings, allowing 10* neurons to talk to 10*
others simultaneously. The thermoplastic holographic interconnections will be used

in Chapters 3 and 4 for our associative loop experiments.
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Chapter 3

The Holographic Associative Memory Loop

3.1 Introduction

Associative memories are one of the most interesting applications of neural networks.
In general, an associative memory stores a set of information, called memories. The
information is stored in a format such that when an external stimulus is presented
into the system, the system evolves to a stable state that is closest to the input data.
We can view this process as a content-addressable memory since the stored memory
is retrieved by the contents of the input and not by the specific address. In other
words, the memory can recognize distorted inputs as long as the input provides
sufficient information. Later in this chapter we will show the characteristics of
the associative memory by presenting distorted versions of the stored images, e.g.,
rotated, scaled, shifted ones, etc. to the system and see how it converges.

In this chapter we present holographic implementations of Hopfield’s model of
neural network [1, 2]. This model has a very simple structure and is easy to imple-
ment. However, its principles and characteristics, e.g., neuron thresholding, global
intérconnections between the neurons, and feedback dynamics, are very flexible
hence the results can be easily extended to other types of neural networks. In the
following section, the basic principle of the Hopfield network and its one-dimensional
implementation are reviewed. The optical implementation of the network for pro-
cessing two- dimensional informations is presented in Section 3 and its experimental
results are presented in Section 4. Special attention is focused on the dynamical phe-
nomena of the feedback loop. Section 5 discusses the trade-off between distortion

tolerance and image-recognition capability of the associative memory. Mathemati-
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Figure 3.1: The 2-D Hopfield-type Neural Network

cal modeling of this particular optical loop and its convergence proof are presented

in Section 6.

3.2 The Hopfield Model of Associative Memory

The basic structure of the Hopfield type neural network for two-dimensional (2-D)
informations is shown in Fig. 3.1. It is a single-layer network with feedback. As
shown in the figure there are two ingredients in the network: the neurons and the
interconnection te-nsor. The neurons are distributed in a plane called the neural
plane. The neurons receive input images, perform nonlinear thresholding on the

received input, and then re-emit output patterns. The output of each neuron is
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connected to the input of every other neurons to form a feedback network.

There are several ways to implement a 2-D neural plane [3]. Optoelectronic tech-
niques integrate photo-detectors, electronic amplifiers, and light emitting sources to
form a neural plane [4]. The thresholding characteristics of the neurons are con-
trolled by adjusting the gains of the electronic amplifiers. Photorefractive BaT:Os
crystal operating in a saturable, two-beam amplification mode provides another al-
ternative [5] where the modulation depth between the two beams is an adjustable
parameter. In our experiments we use the combination of an image intensifier and a
liquid-crystal light valve (LCLV) to simulate the neural plane. The characteristics of
this combination were already described in Chapter 2. For the case of 2-D neurons
the interconnection pattern is a four-dimensional tensor. In our experiments the
interconnection tensor is implemented by two Fourier-transform holograms. The
holographic techniques of making this interconnection will be presented in the next
section.

There are two phases involved in operating the Hopfield network, the learning
phase and the recalling phase. In the learning phase, the information to be stored is
recorded using an outer product scheme. This storage specifies the interconnection
strengths between the neurons. In the recalling phase, an external input is presented
to the system. The state of the system then evolves according to the correlation
between the input and the stored data. Consider the learning phase in the 1-D case;

we first store M N- bit binary words in a matrix w; ; according to

M omom e s

s = m=1 VIV i e # g (3.1)
0 otherwise,

where v* = 1, i = 1,.--,N, is the ith bit of the mth memory. This matrix

can be calculated and recorded in a program for simulations or it. can be plotted

on a transparency for optical experiments. The recording of this synaptic matrix

completes the learning phase. In the recalling phase, external data are fed into
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the system and iterations are induced. For example, suppose v™°, the mth stored

vector, 1s presented into the system. This vector is then multiplied by the stored

matrix w; ;, giving the output of the first iteration:

N M
= sgn {Z [2 v}"v?] v;"o} (3.2)
M N
= sgn {(N — 1) + Z ’:Z 'U;-nv;-noj' v:n} ) (3.3)

where sgn{-} means the thresholding function

if f(z ;
sn{fy=4 = T@20 (3.4)
_1 i f(e) <0,

The thresholded result of the first iteration re-enters the system for the next iteration
so that the system evolves continuously. We see that in Eq. (3.3) two terms result

* memory which we call the

from each iteration: The first term resembles the m’
signal; the second is the crosstalk between the m** vector and other vectors, which
we call the noise. We assume that the binary words are chosen randomly so that
each bit is statistically independent; i.e., P[v]* = 1] = P[v[* = —1] = 1/2; then the
signal-to-noise ratio (SN R) before thresholding is
E[or°)
= J(N-1)/(M-1)
N

o (3.5)

SNR =

X

If N is sufficiently larger than M, then with high probability each element of $7°
equals that of v/*°. Therefore, the stored vector v™? remains a stable state of the

system in iterating operations. It was shown in [6,7] that if the stored vectors are
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to be stable states, then the number of memories that can be stored in the system
is limited by M < N/(41n N).

From Eq. (3.2) we see that we need three steps to implement the Hopfield net-
work: vector-matrix multiplication, thresholding, and feedback. This was first done
by Psaltis and Farhat using optoelectronic techniques [8,9]. They used a computer-
generated transparency to provide the interconnection matrix. A 1-D array of 32
photodiodes followed by electronic thresholding plus a 1-D array of 32 LEDs was
used to simulate 32 neurons. The arrays were used to detect and emit 32-bit data
vectors. An optical vector-matrix multiplier was used to perform the multiplication
between the the data vector and the transparency matrix. The multiplied result
was detected by the photodiode array. The detected signal of each photodiode was
electronically thresholded and fed back to the corresponding LED for further it-
erations. This system successfully demonstrated the dynamics and the capability
of associative information recall of feedback neural networks. Another architecture
using acousto-optics also demonstrated similar functions [10]. In this thesis we are
interested in the processing of 2-dimensional images. The design and its optical

implementation are presented in the following section.

3.3 Optical Implementation of the Associative Memory
Loop

In this section we consider the implementation of the Hopfield-type neural network

for 2-dimensional images. The interconnection pattern for 2-D images is described

by the following equation:

M
w(z,y:6,m) = X (2 y)fm(E ), (3.6)

where f.(z,y) is the mth image to be stored, and M is the total number of images

to be stored. Note that w(:cv, y; £,7n) is a four-dimensional tensor. It cannot be im-
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plemented straightforward using a single transparency since a 2-D optical system
has only two spatial coordinates. One could obtain additional variables by using
wavelength multiplexing and time-domain processing. In [8], Psaltis and Farhat
proposed a spatial-frequency multiplexing method in which a 2-D array of 2-D holo-
grams, each separated by different spatial-frequencies, was used to perform the 4-D
interconnection. Jang, et al. used a 2-D array of N x N diffused holograms to obtain
the 4-D interconnection [11, 12].

We approach this problem from another point of view. Recall that in the recalling

phase, the output of the system is described by the iterating equation

fzyt+l)=g {//w(x,y;{",n)f(é,n,t)dédn}, (3.7)

where g{-} represents the nonlinear thresholding of the neurons, f(z,y,t) is the
input to the system at time ¢, and f(x,y,t + 1) is the output of the system. By
inserting the expression of w(z,y;€,n) into this equation and rearranging the order

of integration and summation, we obtain
X M
featrr) = of [ |5 mteniuten] seniican)
M "
= 9{2_: fn(z,y) [/ fm(€,n)f(§,n,t)d§dn]}

=g {mfijl fulew) [ [ fmlem€—2m - y,t>d£dn]z=o,y=0} (338)

From Eq. (3.8) we can see that the implementation of the 2-D associative memory
can be achieved in three steps [13]. The first step is to perform the inner product
of the input image f with each of the memories f,,. Second, each inner product
is multiplied by the associated memory. Third, these products are summed over
all memories and thresholded by the neurons for iterations. The implementation of
these steps matches holographic techniques exactly. The idea is shown in the block

diagram of Figure 3.2. The first step described above can be realized by sampling
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Figure 3.2: Block Diagram of the Optical Loop.

the correlation pattern at the origin in Vander Lugt system [14]. The first correlator
and the pinholes carry out this operation. The signal passing through the pinholes
reconstructs the images from the second correlator. This carries out the second step.
In the final step, the reconstructed images are summed up at the input side of the
neurons, in this case the writing side of the LCLV. The LCLV is used to simulate
a plane of neurons to perform the thresholding and provides a signal for further
iterations.

The operation of the associative loop can be explained with the aid of the diagram
shown in Fig. 3.3. In this example four images are spatially separated and stored
in the Fourier-transform holograms H; and H, as shown in the figure. When the
input pattern A is presented on the plane P1 of the system, the first correlator
produces the auto-correlation pattern along with three cross-correlations on plane
P,. The pinhole z;rray on P, samples these correlation patterns at the center of each
pattern where the inner products between the input and each of the stored images
form. Each of the four beams that pass through the pinholes act as delta functions,

reconstructing from the second correlator the four images stored in hologram H,.
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Figure 3.4: Recording of the Fourier Transform Hologram.

These reconstructed images are spatially translated according to the position of
each pinhole and superimposed on plane P;. At the center of the output plane of
the second correlator we obtain the superposition of the four stored images. The
stored image that is most similar to the input pattern gives the strongest correlation
signal, hence the brightest reconstructed image. Here in Fig. 3.3 we show only the
bright image that is reconstructed by the strongest auto-correlation peak. The
weak read-out signal that is due to cross-correlations can be eliminated somehow by
thresholding by the LCLV. The output of the LCLV becomes the new input image
for the loop and forms a closed loop. The stable pattern that forms as a recirculating
image in the loop is the stored image that is most similar to the original input. This
image stays locked in the loop even when the external input in turned off.

In the s;ystern that we described in the previous paragraph, the images are

recorded in a conventional Fourier-transform hologram, as shown in Fig. 3.4. The
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four images, A, B, C, D, in this example are spatially separated at the input plane.
A single plane wave is used as the reference. We record two identical holograms,
H1 and H2, then put one in each of the two correlators of Fig. 3.2. A pinhole array
with pinhole separations equal to that of the corresponding original images is placed
at the correlation plane to sample the correlation signal.

The schematic diagram of the architecture of the above design is shown in
Fig. 3.5; and a photograph of the experimental apparatus is shown in Fig. 3.6.
In the system shown in Figure 3.5, the LCLV at plane P;, the beam splitter cube
BS;, thelenses Ly, L,, and the hologram H, form the first correlator. The part con-
sisting of P,, L3, H,, Ly, BS3, and P; form the second correlator. The input pattern
is imaged onto the LCLV by lens L; and through beam splitter BS3. A collimated
argon laser beam illuminates the read-out side of the LCLV through beam splitters
BS; and BS;. A portion of the reflected light from the LCLV that propagates
straight through BSi, is diverted by BS,, and it is imaged by lens Ly onto a CCD
television camera. This provides real time monitoring of the activity of the system.
The portion of light that is reflected by BS; into the loop is Fourier-transformed
by lens Ly and illuminates hologram H;. The correlation between the input image
and each of the stored images is projected on plane P,. The pinhole array at P, has
spacing corresponding to the spatial separations of the stored images. The remain-
der of the optical system from P, back to the neural plane P, is essentially a replica
of the first half, with the hologram H; storing the same set of images at H;.

We now describe the operation of this system analytically. The amplitude trans-

mittance of the transparency from which the holograms are recorded is

flz,y) = me(x—am,y bm), (3.9)

where f,.(z,y) is the amplitude transmittance of the mth image at the input plane

in Fig. 3.5, (am, bx) is the center of f,(z,y) on the (z,y) plane, and M is the total
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Figure 3.5: Schematic Diagram of the Optical Loop.
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Figure 3.6: Photograph of the Optical Loop.
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number of recorded images. In our experiments, the separations between different
images are the same, i.e., a,, = b, = ma, where a is a constant. The M images
in Eq. 3.9 are Fourier-transformed to interfere with a reference wave e=72"* and
recorded on a holographic plate. The amplitude transmittance of the developed

hologram is

M 2
T(u,v) = ZFm(u’v)e-—j2r(uam+ubm) + e—j?rub
‘m

M
= 3 Fi(y, v)ed2rlulem=bltvbml 4 Compler Conjugate + DC terms, (3.10)

where (u, v) is the coordinate in the Fourier plane. This hologram is placed in planes
H, and H; of the system. In the above equation we are interested only in the first
term since it is the part which the input image will correlate with. Suppose the
amplitude of the input image at time t is f(z, y,t) at plane P;, then after hologram

H; the light amplitude diffracted by the first term is

M
> F(u,v,t)F2 (u,v)e/?relam=bl+vbm] (3.11)

m=1

At the correlation plane, P,, the light amplitude is the Fourier transform of the

above term:
M

z—: f(_mla _ylvt) * fm(_:tla —y,) * 5($I - (am - b)a yl - bm)
M
= th(_:t,’ _y,at) * 5(.’5, - (am - b)ay, - bm), (312)

where h,,(—z',—y’,t) represents the correlation between f and the memory f,,, *
means correlation and * means convolution, and (z/,y/) is the coordinate in correla-
tion plane. The above equation is sampled by the array of pinholes having diameter
W and locating at the positions (am — b,by). In the limit W — 0, the pinholes
can be described as delta functions. Thus, the signal passing through the pinholes

becomes

M " - b ' b,
Sl hm(=2', -y, 1) * 6(2' — (am — b), ¥’ — bm)] rect(%——l)rect(y T

m=1
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M
~ Y hn(0,0,8)8(z' — (am — b),y’ — bp), as W — 0. (3.13)
m=1
This signal reconstructs images from the hologram H,, giving

M M
Z E hm(0,0,t)e‘jz”[“(“'"‘b)“‘”"'"]F,;,(u,v)e"?’f["(am'—b)+vbm,]

m=1m'=1

M M ‘
=3 3 hw(0,0,t)Fp (u,v)e 2 b@m—am)+elbm=bm)] (3.14)

m=1m'=1
This signal is Fourier-transformed back to the input side of the neural plane P;.
The total field amplitude is

f(z,y,1) Z Z hn(0,0,) fr(z + (am — ams), ¥ + (b — bni))- (3.15)

m=1ms=1
There are M x M images reconstructed and imaged on the neural plane. Only the
terms with m = m/ are on-axis and aligned with the original input f(z,y,t). If we
put a window centered at the optical axis, with the size equal to the size of each

memory, we observe only the terms where m = m’:

M
flz,y,t) = 2 hn(0,0,)f7(2,9). (3.16)

The intensity of this light amplitude is detected by the photoconductor of the LCLV
and gives an output light amplitude, to the first order, proportional to the detected
intensity. Thus, the images are fed back into the loop. The images reconstructed
by the auto-correlation peak become stronger and stronger until the LCLV satu-
rates, whereas the images reconstructed by the cross-correlations become weaker
and weaker until they die out.

The key elements in this optical loop are the holograms, the pinhole array, and
the threshold device. The holograms in this system are thermoplastic plates. They
have a resolution of 800 lines per millimeter over an area of one square inch. If we
put a mirror [13] or a phase conjugate mirror [15, 16, 17] at the pinhole plane P,

to reflect the correlation signal back through the system, then we only need one
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hologram to form the associative memory. But then it losses feedback dynamics.
The use of two holograms, however, not only provides dynamics but also improves
system performance. We make the hologram at H, with a high-pass characteristic
so that the input section of the loop has high spectral discrimination. On the other
hand, we want the feedback images to have high fidelity with respect to the original
images. Thus, the hologram at plane H; must have broad-band characteristics. We
use a diffuser to achieve this when making H,. Fig. 3.7(a) shows the four original
images. Fig. 3.7(b) shows the images reconstructed from the first hologram H1,
and Fig. 3.7(c) shows the images reconstructed from the second hologram H2. As
expected, Fig. 3.7(b) is a high-pass version of the original image while Fig. 3.7(c) is
broad band.

The pinhole array at plane P, samples the correlation signal between the image
coming from the LCLV and the images stored in hologram H;. The pinhole diameter
used in these experiments range from 45 um to 700 pm, depending on the images
to be stored and the desired system performance. If the pinhole size is too small,
then the light that passes through it to reconstruct the feedback image is too weak
to be detected by the LCLV and no iterations can occur. On the other hand,
large pinholes introduce excessive blurring and cross-talk in the feedback and make
the reconstructed images unrecognizable. The pinhole size also affects the shift
invariance property of the loop. In order to be recognized, the auto-correlation
peak from an external image should stay within the pinhole. Larger pinholes allow
more shift in the input image. The system performance under different selections
of pinhole diameters will be discussed in the next section. |

The purpose of the threshold device in this system is three-fold. The first is to
bring into the system a coherent image from the external input (although either
coherent or incoherent images can be used as the input). The second is to provide

a thresholding operation to the feedback signal so that cross-correlation is reduced
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Figure 3.7: Images Stored in the Holograms. (a) The original images. (b) Images

reconstructed from H;. (c) Images reconstructed from H,.
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in successive iterations. The third is to provide gain to the feedback signal. The
optical signal is attenuated in the loop because of the diffraction efficiencies of the
Fourier transform holograms and the losses from pinholes as well as lenses and beam
splitters. Therefore, we need to have optical gain to compensate this loss. In our
system this is achieved by adding an image intensifier at the photoconductor side of
the LCLV. As described in Chapter 2, the microchannel plate of the image intensifier
is sensitive to a minimum incident intensity of approximately 1 nW/cm? and repro-
duces the input with an intensity 10* times brighter (10 uW/cm?). This is bright
enough to drive the LCLV. If we use a beam with intensity equal to 10 mW/em? to
read the LCLV, then the intensity of the output light is approximately 1 mW/cm?.
Thus, the combination of the image intensifier and the LCLV provides optical gain
up to 10°. This optical gain is similar to a sigmoid function and its slope can be
adjusted by changing the bias voltage of the image intensifier. In Section 3.5 we
will see that the setting of the gain is the key parameter that mediates the trade-off

between distorsion invariance and the discrimination capability of the loop.

3.4 Experimental Results

In this section we show, experimentally, many interesting properties of the optical
associative loop. These include retrieval of complete images from partial inputs,
recognition of the shifted, rotated and scaled images, error-correction capability, and
neural network dynamics. The most interesting among these is the system dynamics.
This is a unique property of a neural network with feedback and threshold. The state
of the system evolves in time and the dynamics are determined by the operation
parameters . The dynamics provide a trade-off for optimal system design. The
dynamics of the associative memory is presented in the following section and the

trade-off issue will be discussed in Section 3.5.
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3.4.1 The Dynamics of the Associative Loop

According to the characteristics of the optical components, i.e., active or passive,
the optical associative loop of Fig. 3.5 can be lumped into a simplified diagram as
shown in Fig. 3.8(a). Since the LCLV provides optical gain and thresholding to
the signal, it is represented as the component Gain in Fig. 3.8(a). The other parts
of the loop are all lossy components and are represented as the component Loss
in Fig. 3.8(a). This includes the beam-splitter cubes, the lenses, the mirrors, the
pinhole array, and the holograms. The circulation of the optical signal in the loop
is also shown by the arrows in the figure. Note that in the loop the output of the
neurons forms the input to the lossy part, and the output of the lossy part becomes
the new input for the neurons in the next iteration.

Let us consider the loop dynamics. The dynamics of the recall process can be
described by using an iteration map formed by the gain and loss curves as shown in
Fig. 3.8(b). In the figure the sigmoid curve represents the input-output response of
the neurons. The slope of the curve is proportional to gain of the neurons, whereas
the slope of the straight line is proportional to loop loss because of the holograms
and pinholes and is drawn on the same diagram as the input-output response of
the neurons. The intersection point of this line with the neural gain curve at Q,
determines the loop threshold level, and the intersection point (), represents a stable
point. If the initial condition of the neuron is above the threshold level 6,, such as I;
shown in the figure, the signal grows after each iteration until it arrives and latches
at Q2. On the other hand, if the initial condition is below 6,, such as I; shown in
the figure, the signal will decay to zero. The number of iterations depends on the
distance of the initial condition from the threshold.

The loop dynamics was measured by controlling two shutters as shown in Fig. 3.8a.

The temporal response of the loop to an input pattern is shown in Fig. 3.9. The
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lower trace represents the intensity of the external input image and the upper trace
represents the corresponding light intensity detected at the loop output. Before
time {;, both shutters are OFF and the responses are low. At time ¢; the input
shutter is turned ON; hence the lower trace becomes high, but the loop shutter
remains OFF. The upper trace shows the corresponding response of the neurons to
the external input. The rise time of the LCLV is approximately one second in this
experiment. At time ¢, the loop shutter is turned ON and the loop is closed. The
feedback signal arrives at the neurons as an additional input and iteration occurs.
From Fig. 3.9(a) we see that it takes about two seconds for the loop to reach a stable
state. At time {3 the input shutter is turned OFF; hence the lower trace becomes
low. However, the loop remains latched to a stable state, which is one of the stored
images. Fig. 3.9(b) shows the same experiment but with input intensity reduced
to one-third of the first input. The first rise of the upper trace shows that the rise
time of the neurons remains one second. And the second rise of the upper trace
shows that it takes approximately four seconds for the loop to reach its stable state.
However, after the input is turned off, the loop gives the same output intensity.
This example shows that initial conditions affect the dynamics of the loop but do
not affect the final state of the system. Fig. 3.10 shows the iteration map of this
experiment where the initial input I, is lower than I;. It shows that I, takes more
iterations to reach the stable state, but the final state is the same as that of I;.

Since the external input does not affect the shape of the final state, but rather
selects which state is produced, we can build a degree of invariance in the system
since a shifted, rotated or scaled version of a stored image can recall the stored
image. The effect of such distortions of the input image is to decrease the level of
the initial condition. As long as the initial condition is above the loop threshold (¢
in Fig. 3.8(b)), the loop is always brought to the stable state that is most similar

to the initial input. This means that the dynamics is determined by the relative
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position of the initial input with respect to the loop threshold. The initial condition
is determined by the degree of distortion of the external image as well as its light
intensity. On the other hand, the loop threshold is determined by system parameters
such as the neural gain and loop loss. In the next section we give experimental
results of system invariances against various distortions. The problem of how to
select optimal system parameters to make the trade-off between distortion tolerance

and capability of recognizing correct images will be presented in Section 3.5.

3.4.2 Retrieval of the Complete Image from a Distorted Input

In this section we show experimental results of the invariance property of the memory
loop in recognizing a distorted image. The images stored in the loop are the four
faces shown in Fig. 3.7(a). They are recorded as a Fourier-transform hologram as
described in Section 3.3.

Fig. 3.11(a) shows the response of the memory when the half face of a recorded
image is presented to the system with the loop shutter OFF. This sets the initial
condition of the loop. We then turn the loop shutter ON to close the feedback
loop. The signal then circulates in the loop and the state evolves. After many
iterations the loop reaches the stable state and the complete face appears. The time
for this process ranges from less than one second to several seconds, depending on
the initial conditions and the system parameters. The complete image is locked in
the loop even after the external input is turned OFF. Fig. 3.11(b) shows the system
output at the moment the loop shutter is ON. We see that the feedback image is
superimposed on the external input. Fig. 3.11(c) shows the output 0.4 seconds after
the feedback loop is closed, and Fig. 3.11(d) shows the output 0.8 seconds after the
feedback loop is closed. Fig. 3.11(e) shows the complete image recalled from the
loop after 2 seconds. Fig. 3.11(f) shows that after we remove the external input the

recalled image is latched in the loop. Fig. 3.12 shows the temporal sequence of the
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Figure 3.11: Retrieval of the complete Image from the Partial Input. (a) The partial
input at t = 0. (b) ¢t = 0% (Loop closed). (c) t =400 ms. (d) t = 800 ms. (e) t =2
sec. (f) Input OFF.
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same experiment but with another half-face as the input. This experiment shows
that the external input to the associative memory does not need to be exactly the
same as the recorded images.

Now we use a rotated version of one of the stored images as the input to investi-
gate the rotation invariance capability of the loop. Fig. 3.13(a) shows the response of
the memory when a rotated version of a recorded image is presented into the system
with the loop shutter OFF. The input is rotated by 6 degrees with respect to the
original image. Fig. 3.13(b) shows the memory output at the moment the feedback
loop is closed. The loop state then evolves to give the original image. The temporal
sequence of this evolving is shown in Fig. 3.13(c) to Fig. 3.13(e). In this experiment
the degree of rotation of the input image sets the initial condition of the loop. More
rotation means more distortion; hence the initial condition is farther away from the
stored memory. Thus, the loop needs more iterations to arrive at the stable state.
Fig. 3.14(a) shows this result. In the figure the upper curve represents the stable
state intensity of the output image and the lower curve represents the time for the
loop to reach stable states, both as a function of rotation angle. It shows that as
the input is rotated, it takes a longer time to be recognized. However, once the loop
converges to the stable state, the output intensity is always the same regardless of
initial rotation. The figure also shows that the output intensity drops to zero when
the initial input is rotated over 8 degrees. This means that the initial condition is
below the loop threshold and the rotated image is not recognizable. One way to
increase the tolerance of rotation is to increase the neural gain so that it can detect
weaker feedback signals from the distorted input. Fig. 3.14(b) shows the result of
the same experiment but with the neural gain 10 times higher compared to that
used in Fig. 3.14a. The rotation tolerance now increases to 16 degrees. One might
infer that we can obtain more tolerance simply by increasing the neural gain. This

is not true since high gain also enhances crosstalk and the loop may not converge
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Figure 3.12: Retrieval of the complete Image from the Partial Input. (a) The partial
input at t = 0. (b) t = 0% (Loop closed). (c) t = 480 ms. (d) t = 800 ms. (e) t =2
sec. (f) Input OFF.



—67-

Figure 3.13: Retrieval of the complete Image from the Rotated Input. (a) The input
at t = 0. (b) t = 0% (Loop closed). (c) t = 1.8 sec. (d) t = 3.6 sec. (e) t = 4.8 sec.
(f) Input OFF.
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to the correct image. This problem will be addressed in Section 3.5.

The third experiment on distortion tolerance is scale invariance. Fig. 3.15(a)
shows the response of the memory when the scaled version of the face of a recorded
image is presented to the system with the loop shutter OFF. This face is 85% of
the size of the original stored image. After we turn ON the feedback shutter, the
loop evolves to the stable state. The temporal sequence of this evolving behavior is
shown in Fig. 3.15(b) to Fig. 3.15(e). We now remove the external input by turning
OFF the input shutter. Fig. 3.15(f) shows that the loop remains latched to the
original image. The convergence time in this case is 1.5 seconds. This is longer than
what would be required if the input were the original image. However, the two cases
give the same output intensity. When the input image is further scaled down to
70% of the original size we need to increase the neural gain from 104 to 10° for the
loop to recognize the image. But this high gain results in low discrimination such
that an input image that is not stored is also incorrectly recognized. These results
are consistent with the dynamics and the invariance properties that we discussed
above.

In principle, this loop is shift invariant since the images are stored in the Fourier-
transform holograms. If one of the stored images appears at the input plane, there
will be a bright spot at the correlation plane. If the input image shifts, the correlation
peak will also shift to a corresponding position. However, if the peak shifts out of
the pinhole position, then we lose the feedback signal and the image cannot be
latched in the loop. Only when the shift equals an exact image Spacing can the
correlation peak pass through the pinhole to close the feedback path. But then
the image that appeared in the window would be different from the previous one.
Hence, this loop is shift-invariant only within the pinhole size. Without the pinholes
the cross-correlation noise and the auto-correlation peak would be fed back to the

loop together and the reconstructed images would not be recognizable. There is a
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(e)

Figure 3.15: Retrieval of the Complete Image from the Scaled Input. (a) The input
at t = 0. Image size = 85%. (b) t = 0% (Loop closed). (c) t = 1.8 sec. (d) t = 3.0
sec. (e) t = 4.8 sec. (f) Input OFF.
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compromise between pinhole size and loop performance. Small pinholes allow good
memory discrimination and sharp reconstructed images, but can also cut the signal
to below the level that can be detected by the threshold device and reduce the shift
tolerance of the system. The function of the pinhole array in this system might also
be met by using a nonlinear spatial light modulator, in which case we can achieve
full shift invariance [18, 19].

Fig. 3.16(a) shows the read-out image from the LCLV, which comes from an
external input shifted away from its stored position. This shift moves its correlation
peak so that it does not match the position of the pinhole. Thus, there is no
feedback signal going through the loop. If we cut off the input image, the read-out
image will die out with a characteristic time of about 50 to 400 ms, corresponding
to the response time of the LCLV. Now we shift the input image around, trying
to search for the correct position. Once the input image comes close enough to
the correct position, the correlation peak passes through the right pinhole, giving a
strong feedback signal superimposed with the external input on the neurons. The
total signal then goes through the feedback loop and is amplified continuously until
the neurons are saturated. Figs. 3.16(b) to (e) show the temporal sequence of this
development from the moment that a sufficient portion of the correlation peak passes
through the pinhole to the complete recall of the original image. Fig. 16(f) shows
the‘ image in the loop with the input turned OFF and the memory latched. In this
experiment the pinhole diameters are 90 pm. As long as the correlation peak is close
enough to the pinhole, the original image can be recalled. Depending on how far the
input image is shifted from the original position and the optical gain of the neurons,
the time required for the loop to reach a stable state is between two to several
seconds. The lower curve of Fig. 3.17(a) shows the loop rise time as a function of
shift when the neural gain is 10*. The upper curve shows the output intensity as a

function of shift. It shows that the shift tolerance for this particular image is 220 um
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(c) (d)

(f)

Figure 3.16: Retrieval of the Complete Image from the Shifted Input. (a) The input
at t = 0. (b) ¢t = 0% (Loop closed). (c) t = 2.4 sec. (d) t = 3.0 sec. (e) t = 0.4 sec
after the input is OFF. (f) Stable state.
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and that the loop converges to the image with the same intensity. If the shift is more
than 220 um, the feedback signal is too weak to trigger the loop and the output
is zero. If we increase the neural gain by a factor of ten, then the shift invariance
increases to about 500 pm. This is shown in Fig. 3.17(b). However, sidelobes are
also amplified in the loop; hence the image may be uncorrectly recognized.

The dynamic and invariance properties of the associative loop shown above imply
that the associative memory has error-correcting capability, since the input does not
have to be the same as the original memory to be recognizable. We show this capa-
bility particularly by using four words as memory. Fig. 3.18(a) shows the four word
s recorded in the Fourier-transform holograms of our system. Fig. 3.18(b) shows
an input word that has three spelling errors. However, it has four correct letters,
O, P, 1, A, at the correct positions. Hence the correlation of (OP41&A) with the
memory gives sufficient feedback signal to trigger the loop iterations. Fig. 3.18(c)
shows the word recalled from the loop, superimposed on the input. Fig. 3.18(d)
shows‘ the loop latched to the correct word after the input is turned OFF. If we
increase the neural gain, the loop would be able to recognize more erroneous words.
But then it will lose the discrimination capability because a completely different

word would also induce enough feedback for the word to be recognized as one of the

stored words.

3.5 Trade-Off Between Distortion Tolerance and Discrim-
ination Capability

The experimental results shown in the above subsection demonstrates the distortion-
invariance capability of the associative loop. The input images do not have to match
the memory exactly. Furthermore, by raising the neural gain, no matter how much

we change the initial condition by rotating, shifting, and scaling the input image,
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Figure 3.18: Error-Correction Capability of the Loop. (a) The stored images. (b)
External input with errors. (c) Feedback image superimposes with the input image.

(d) The stable state of the loop after the external is OFF.
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Figure 3.19: Iteration Map of Low Optical Gain.

the loop can always be made to produce an image as a stable state. But the ability
to correctly recognize a stored image from a distorted input and the discrimination
capability, i.e., the ability to distinguish images from one another, compromise each
other. If there is too much gain, then just shining a flashlight at the input of the
system causes it to lock on to one of its stable states. If the gain is set too low,
then even an input that is a slightly distorted version of one of the stored images
is not recognizable. In particular, there are two parameters under our control that
can affect the gain in the loop: The gain of the neurons and the size of the pinholes.

The importance of selecting an optimal neural gain can be explained by the loop
iteration map. Fig. 3.19 shows the iteration map of a low gain loop. In the figure
there is no intersection between the gain curve and the loss line, and the gain curve
is always below the loss line. Therefore, no matter how well the input image matches
the stored images and no matter how bright the correlation peak is, the output of

the neuron is always below the loss line. Hence, the loop signal becomes weaker and
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weaker in successive iterations until finally it decays to zero. Fig. 3.20(a) shows the
response of the loop to an input image, with the feedback shutter OFF. Fig. 3.20(b)
and (c) shows the output after the loop is closed. Fig. 3.20(d) and (e) shows the loop
output after the input image is OFF. The loop image decays because the neural
gain is too low.

On the other hand, too much neural gain also causes problem. Fig. 3.21 shows
the iteration map with high gain. In this figure the gain curve is higher than the
loss line and they intersect at a low value. Hence, the loop has a low threshold.
Therefore, a small correlation signal is enough to trigger the loop to evolve. As
shown in the above subsection, this loop can tolerate more image distortions such
as rotation, scaling, shift, etc., and can still recognize them. This means that the
loop has a very large radius of attraction for each memory state. However, it also
means that its discrimination capability to distinguish different images is poor. It
is quite possible that the loop recognizes other images as one of the stored images.
Fig. 3.22(a) shows an image that is not stored in the memory. Fig. 3.22(b) to (d)
show that the unfamiliar image triggers the loop to evolve after the feedback shutter
is turned ON. Fig. 3.22(e) shows that after the input image is turned OFF, the
loop is locked to one of the stored images. This shows the loop making an incorrect
recognition.

The gain required to sustain the iteration loop is determined by the loop loss.
The factors in this system that decide the loss are the pinhole size, the hologram
diffraction efficiency, and the reflections from optical components. Among them the
pinhole size is the key factor since the other components are generally fixed. We use
Fig. 3.3 as an example. Let fi(z,y),? = 1,2,3,4, represent the images of the letters
A, B, C, D, respectively, and let the pinhole size be W. Then the reconstructed
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Figure 3.20: Loop dynamics of Low Optical Gain. (a) The input at ¢ = 0. (b)
t = 0% (Loop closed). (c) t = 3 sec. (d) Input OFF. (e) t = 1.2 sec after the input
is OFF. (f) t = 1.8 sec after the input is OFF.
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Figure 3.21: Iteration Map of High Optical Gain.

images in the window at P; can be shown to be
4 :r y

;[gu(ﬂ?’y)rect(w)rect(w)] * fi(z,y) (3.17)
where rect(;)rect(f%) represents the finite size of the pinholes, * represents the
convolution operation, g;;(z,y) the auto-correlation of A, and gy;,¢ # 1, the cross-
correlations of A with B, C, D, respectively. We see that the images are blurred
by the finite dimension of the pinholes. Decreasing W gives better image quality,
but we need to increase the gain of the neurons to compensate for the loss caused
by the small pinholes. At the other limit, if the pinhole size is increased, we do
not need very high-gain neurons but the image quality deteriorates. Fig. 3.23 shows
the effect of the pinhole size on the stable-state loop images. In the limit where

W becomes infinitely large, the reconstructed image in the window at P, becomes

a superposition of all the stored images, each approximately equally strong, and



—80-

Figure 3.22: Loop dynamics of High Optical Gain. (a) The input at ¢t = 0. (b)
t = 0% (Loop closed). (c) t = 1.2 sec. (d) t = 1.8 sec. (e) The input is OFF. (f)

Stable state.
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Figure 3.23: Output Image for Different Pinhole Sizes. (a) 40 um. (b) 90 um (c)

180 pm. (d) 400 pm.
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severely blurred. Fig. 3.24 shows the temporal sequence of the loop signal under the
condition of infinite pinhole size. It is seen that final image in the loop is totally
unrecognizable.

Thus, there is an optimum pinhole size and an optimum neural gain. Fig. 3.25
shows the experimental results of minimum gain required and maximum gain allow-
able for the loop to sustain a stable memory as a function of pinhole size. Below
the minimum gain the loop can not recognize any image in the sense that once the
external input is cut off, the loop activity decays to zero. Above the maximum gain
the loop loses discrimination capability such that any input image, even a flashlight,
will trigger the loop into a stable state. Note that the minimum gain increases when
the pinhole size is increased to more than 250 um. This is because the reconstructed
images are blurred so much that the correlation peaks are weakened and the losses
in the Joop are increased. Fig. 3.25 shows that the optimum pinhole size in this
system is in the range of 70 um to 150 um. We choose 90 um for most of the
experiments. Although this measurement is particular for the images we used, the

above behavior is true in general.

3.6 Neural Network Model for the Memory Loop

The architecture of the optical associative memory that we presented in the preced-
ing sections is a Hopfield-type network. In the system, the neurons are simulated
by the LCLV, and the interconnections between the neurons are achieved by holo-
graphic gratings. In the following, we present an analysis of the neural network
model of the optical associative-memory loop. Based on the model, we will discuss
the convergence properties of the system and the stability of the stored memories.

Recall from Eq. 3.16 that the feedback signal of each iteration in the optical loop
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(a) (b)

Figure 3.24: Loop Behavior without the Pinholes. (a) The input at t = 0. (b)
t = 0+. (Loop closed). (c) t = 0.6 sec. (d) ¢t =2 sec.
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can be written as

M

Sz, y,t) = gl(f*fm)((),ﬂat) ™ (z,y), (3.18)
where f™(z,y) ( m = 1...M) are the stored images, f(z,y) is the input image
to the LCLV, « is the cross-correlation operator, and f™* is the complex conjugate
of f™. Eq. 3.18 shows that the feedback signal in the loop is the superposition
of the reconstructed images from the second hologram, each being weighted by
the cross-correlation of the input with the images stored in the first hologram. In
the optical system, we make the first hologram H; with high-pass characteristics.
The high-pass Fourier-transform hologram was obtained by adjusting the ratio of
the recording intensities of the reference beam and the object beam such that the
high-frequency part has good modulation depth while the low-frequency parts were
overexposed. Thus, in reconstruction there is no diffraction from low-frequency grat-
ings, and only high-frequency components reconstruct the image. The reconstructed
image contains only the edges of the original image, as was shown in Fig. 3.7(b).
The characteristics of the high-pass hologram can be described by subtracting the
low-frequency portion from the original spectrum, which can be represented ap-
proximately by removing the dc signal. Using the high-pass hologram as H; in the
optical loop, the cross- correlation term f * f™ in Eq. 3.18 now should be replaced
by the convolution of the input f(z,y) with the stored images ¢™(z,y), i.e., f*g™,
where g(z,y) is the high-pass version of f(z,y). Since ¢™(x,y) is the original image

with the dc level removed, it can be described by

g"(2,9) = f(z9) - [[ 76, m) de an, (3.19)

where the integration is performed over the finite size of the images.
Instead of taking continuous functions f™(z,y), f(z,y), etc., we will approximate

by sampling discrete points (pixels), indexed by ¢, j, etc. (The number of the
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sampled points N should be greater or equal to the SBP of the optical system.) We

can approximate (f * ¢™)(0,0) by summation of the inner product

N N
(F*g™)(0,0)= 3" fugh (3.20)
I=1 k=1
and write
1 N
gk =Tk — 77 2 15 (3.21)
1,j=1

The feedback signal can thus be written as

© M N N
if = Z [ZZflkgm] Z‘”
m=1 I=1 k=1
N N
= Zzwij;lk fiks (3.22)
=1 k=1
where
M
Wik = O gl
m=1
M 1 N
= YR -(5z X 5 (3.23)
m=1 lk=1

Note that the matrix W is nonsymmetric and that its diagonal terms are not zero
in this case.

For simplicity of discussion, we use one-dimensional signals in the following anal-
ysis. The extension to the two-dimensional case is straightforward. We also assume
that the signals are real. In fact, this may not be true in the real system, because the
nonuniformity and phase distortions of the optical components and the LCLV may
cause signals to become complex. However, the analysis then becomes difficult if we
try to take this into account. Furthermore, the intensity of the signal is detected in
each iteration, and the phase information does not accumulate in the system; thus,

our assumption is reasonable. Following these arguments, the w;; for the 1-D case

is modified as

Cwij= ) (2] — ap)al, (3.24)
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where

Ly
Ay = — > 7 (3.25)
N = ’

is the average level of image m. The feedback signal shown in Eq. 3.22 can then be
written as
N
Yi = D wi;T;. (3.26)
J=1
Therefore, the feedback signal after one cycle and before thresholded by the neurons
can be obtained by inserting Eq. 3.24 into 3.26, which gives

(2: (27" — am)z" )75

7=1 m=1

= [(éz 1’:‘) - (ﬁ,: wj)am]wf"- (3.27)

1 1=1

M

vy =

=

3
Il

Note that in this case the z* and «; are unipolar, i.e., 0 or 1; whereas y; can be
biploar because w;; is bipolar. The above expression can be written in a matrix

form,

= mﬁ;[(x . x’") -~ (f: xj)am]xm. (3.28)

1=1

The signal y is fed back at the neuron plane and is thresholded by the neurons to

give the signal for the next iteration. Thus, the new signal for the next iteration is

x = g(y). (3.29)

This process then repeats until the loop reaches an equilibrium state. Clearly, if
we want to investigate the equilibrium states and the stability characteristics, we
should solve the dynamic equations of the system. However, before we go to that
step, we can qualitatively predict the performance of the loop simply by inspecting
the physical meaning of each term of the feedback signal.

As is seen in Eq. 3.28, the total feedback signal is the weighted sum of the stored
images x™. The weight of each x™ is determined by the two terms in the square

bracket. The term x-x™ is the cross-correlation of the input x and the stored image
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x™, while E;-V:l z; is the dc level of the signal x, and a,, is the dc level of the stored
image x™. The subtraction of the product of the dc levels from the correlation
signal gives the weight. Thus, only the pixels that have correlation with the stored
x™ sufficiently larger than the dc levels contribute a significant component to y.
Therefore, only the strongest stored image component that appears in x will be
enhanced in the feedback, while weaker components are suppressed by subtracting
the average image. This argument suggests that the loop will work as an associative
memory.

In the case of the optical loop, the neural gain is the main factor that determines
whether the loop can recall a correct memory state. The modeled network shows
the same behavior. To illustrate this point, we perform simulations with different
gains. Fig. 3.26 shows an example of computer simulation. There are three patterns
stored in the high-pass network; each pattern has a 30 pixels. In the figure, the
height at each position represents the signal strength of that pixel. When a partial
x2 is input into the system, it converges to a stable state that is closest to the x2
- after 160 iterations. As the gain is reduced, the loop takes more iterations to reach
the steady state. However, when the gain is reduced to below a certain levél, the
loop can no longer sustain the loop signal and the signal gradually decays to zero.
This is illustrated in Fig. 3.27. On the other hand, as the gain is increased, the
loop evolves to a steady state in fewer steps. But if the gain is too high, the loop
converges to a mixed state of the stored images, which may be very distorted and
unrecognizable. Fig. 3.28 shows simulations under high-gain conditions. The results
of these simulations show that the modeled network has the same characteristics as
the optical loop: It has the capability of recognizing distorted images, but there
is a trade-off between distortion tolerance and discrimination capability, which is
governed by the neural gains.

Note that in the simulation of Fig. 3.26 the steady-state image of the loop is
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Figure 3.26: The dynamics of the high-pass loop with a good gain.
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Figure 3.27: The dynamics of the high-pass loop with a low gain.
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Figure 3.28: The dynamics of the high-pass loop with a high gain.
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slightly different from the original images. But we still consider it a correct recall.
Here the correct memory means that it has a similar shape as the original image,
although there is a slight distortion and the signal level is weaker. The reason
for that distortion is easily understandable by inspecting Eq. 3.27. We see that the
feedback contains not only the autocorrelation signal, but also the cross-correlations
with all other memories. Depending on the values of the cross-correlation and the
gain function, some of the crosstalks will be detected by the neurons and survived
in the loop; thus, the total output is distorted. The higher the neural gain the worse
the distortions. We will return to this point later when we examine the steady-state
solution of the dynamic equations of the system.

An interesting question that we want to address is whether the high-pass holo-
gram is necessary and how it affects the system performance. Suppdse the first
hologram is not a high-pass version, then the interconnection strength can be ob-

tained by setting a,, = 0 in Eq. 3.24. We get
M
wij = Yzl (3.30)
m=1

Similarly, the feedback signal can be obtained by setting a,, = 0 in Eq. 3.28,
M
y =3 (% x")xn. (3.31)
m=1
The feedback signal now is simply the superposition of the stored images each being
weighted by the cross-correlation of the input image and the stored images. The
strongest correlation gives the strongest feedback signal and it determines the state
to which the loop will most possibly converge. Hence the loop still works as an asso-
ciative memory. However, because there is no mechanism to suppress the crosstalks,
noise is also easily picked up by the neurons. The discrimination capability of the
loop will be poorer than the high-pass loop. Fig. 3.29 shows an example of the

computer simulation. The ifnages used in the high-pass simulations are used here.
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Simulations show that as long as the stored images have crosstalks, then the low-pass
loop always converges to a mixed state. There is only a very narrow range of the
gain where the system gives the correct output. Therefore, the high-pass hologram
is very crucial in the performance of the loop.

To this point, we have developed a neural network model of the optical associa-
tive loop, and we have investigated its characteristics with computer simulations.
Results show that the model matches well with the optical loop. However, the above
treatments are not very rigorous and do not show the dynamic behavior of the sys-
tem. Therefore, it is not completely satisfactory. In general, only the solution of
the dynamic equations can fulfill our purpose. As we have seen in Chapter 2, an
optical neuron is simulated by one pixel of the LCLV, which gives response z; to
its input y;. The dynamics of the neuron is described by Eq. 2.3. For the sake of

convenience, we rewrite it in the following

dz; .
'(%‘ == +g(yi)’ t=1...N, (332)

where g(y;) is a nonlinear function describing the neuron response. To complete the

feedback loop, we substitute the expression of Eq. 3.26 into Eq. 3.32, we obtain

d.’l,‘i
i

N
- Z‘wijxj), i=1...N (3.33)

j=1
where w;; is the high-pass version of the interconnection strength given by Eq. 3.24.
This is the equation describing the dynamics of the optical loop. In what follows, we
will discuss the system’s, dynamics using a geometrical method [20]. The main idea
of the method is that corresponding to each set of stored memories we first define a
new vector space; then the dynamic equations are transformed consequently into this
space and the dynamics can be observed as a phase flow on the hyper-surface. We
assume that the stored images x* ... xM are linearly independent. This is reasonable

since the number of pixels in the image, N, is usually much larger than M, and we are



95—
not considering the trivial case where one of the stored images is a linear combination
of the others. Since the stored images are linearly independent, they span a vector
space V1. Then, we can form a vector space Vg that is orthogonal to Vi such that
the N-dimensional vector space R" is the direct sum of the two sub-vector spaces;
ie.,

RY=V:0V; (3.34)

It is shown in the Appendix that we can derive a reciprocal basis 8, = {y'...yM}

from {x!...xM} for Vi, and an orthonormal basis B, = {yM*!...y"} for V; such

that 3, U B, = 8 forms a basis for RV. Then any vector in RV can be expressed as
a linear combination of y!,1=1,...N.

It is shown in the appendix that the N-coupled differential equations of Eq. 3.33

can be represented in terms of the 3 coeflicients as

dx,- M m .
-de—x,--{—g(Zcmxi) i=1,...,N. (3.35)

m=1
Note that there are N-coupled differential equations, but there are only M param-
eters of ¢,, for all the equations. It is also derived in the appendix that Equation

3.35 in turn can be transformed into two sets of equations

dC[ N 1 M
- = -—c1+2(x,- ——al)g(z cmm,-m> l=1,...,M, (3.36)
=1 m=1
dC[ N i M
Loe k- b;)g( )3 cmmim) I=M+1,...,N (3.37)
=1 m=1
where
1 ﬁ’: :
I (3.38)
Nj:l ’

Several comments can be made on Eq. 3.36 and 3.37. First, we see that the compo-
nents ¢, ..., cp are coupled together, but they are de-coupled from the components
CM+1, - - - cN- On the other hand, the driving forces for cpr41, - . ., ex depend only on

¢1, ..., cp. This means that the dynamics of the system are completely determined
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by ¢i, ..., cp, although caryq, ..., ¢y are not necessarily zero. Therefore, we only

need to study the dynamics of these M components. The equilibrium states can be

obtained from Eq. 3.35, by letting d/dt = 0, we get

z; = g(mii:l cmx:-"). (3.39)

We see that the equilibrium states are indeed determined by ¢, ..., epr. Each
of these ¢, represents the component of the high-pass version of the input vector
on the reciprocal vectors of the m*h stored image, which in some sense is propor-
tional to the correlation between x and x™. The stored images which have stronger
correlation give stronger components to the equilibrium image. Note that if the neu-
rons are sensitive enough, they will also pick up weak cross-correlation components.
Therefore, the output image will not be exactly the same as the stored images.
However, the summation of all components from the stored images is thresholded
by the neurons. Thus, the nonlinear gain function provides an enhancement of the
closest stored image. This effect helps the network converge to the state near the
stored images.

In principle, the dynamics of the system and its convergence properties can be
obtained by solving Eqgs. 3.36 and 3.37. In practice, it is impossible to obtain explicit
solutions. In what follows we present a geometrical method to illustrate how the
system evolves to a stable state, and how it is influenced by the parameters such as
gain and initial conditions. In order to illustrate the concept, we will consider the
case where only two images, x! and x?, are stored in the memory. As we shall see,
the two-image case contains all the salient features of the dynamics. As discussed
in the previous paragraph, we need only to solve two dynamic equations in the
two-image case. By Eq. 3.36, we have

N
—_ = —a-+ Z(x,l - al)g(cwr} + Cz$?) (3.40)

=1
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d62

N :
- @ + Z($,2 — az)g(erz; + eozl). (341)

=1

Recall that a; and a; are the average levels of the input images x! and x2. Let
hi(cy, cz) represent the summation term in Eq. 3.40, and k3(c;, c;) the summation
term in Eq. 3.41. These two terms are the driving force for ¢; and c,, respectively.
We now discuss the dynamics of the two images. For simplicity, assume that x! and
x? have no overlapping nonzero components. An example is shown in Fig. 3.30. It
is seen that z} can be nonzero only when z? = 0, and vice versa. In this case, the

driving forces can be written as

N
hi(e,e) = ) (2 —ar)glax)) —a; Y g(ca?) (3.42)
z}#0 z?#0
N
ho(er,e2) = Y (af — ax)g(eaa?) — a3 Y glarzy) (3.43)
250 T}#0

There are two terms in each of the driving forces. Consider hy(c;,¢;). The first
term comes from the correlation between the neuron state g(c;x') and the stored
image (x' — a;), and the second term results from the coupling between ¢; and c;
through the dc level a;. Since a; and the gain function g(z) are always positive, the
second term gives a negative contribution to the driving force. This means that the
coupling pulls the system away from x!. The same description also applies to c,. We
plot hy(e1,¢2) against ¢; for ¢; = 0 and ¢; # 0 in Fig. 3.31(a). In the figure, the solid
curve represents the case where ¢; = 0, and the dashed curve represents the case for
c; # 0. We also plot the line h(c;) = ¢; in the same figure. It is seen that there are
three intersections, P, Q, and R, between the straight line and the solid curve. The
plane is divided into four regions. In regions 1 and 3, ¢; is smaller than k,(cy, ¢;)
and df} > 0. Thus, in these regions the system state evolves in the direction of
increasing ¢;. This is represented by the arrow pointing to the right in the figure.
On the other hand, in regions 2 and 4, %ctl < 0; thus, the system evolves toward

decreasing c¢;. It can be seen that the points P and R are stable points, and Q is
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Figure 3.30: An example of two stored images without overlaps.
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Figure 3.31: The Driving Force and the Dynamics of the Loop. (a) The driving

force for the first stored image. (b) The trajectories of the equilibrium states of the

first image.
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a saddle point. Now suppose we increase c;. Then g(c,z?) increases, and hy(cy, ¢;)

decreases. It can be seen from Fig. 3.31(a) that points Q and R move towards each
other. The two points merge into one point at large values of ¢;. On the other
hand, the point P moves downward as ¢, increases. If we plot the trajectories of P,
Q, and R for the coefficient ¢; in the (¢;,c;) plane, we obtain Fig. 3.31(b). Since
the gain function g(z) is positive and symmetric with respect to «, the trajectories
are symmetric with respect to the ¢, axis. The above argument shows how the
dynamical behavior of the system can be understood using a geometrical method.

By going through the same procedure, we can also obtain the trajectories leading
to the equilibrium points of ¢;. We plot the two groups of trajectories in the same
(c1,¢2) plane. Fig. 3.32 shows the result. We see that there are 7 equilibrium
points: one source, three sinks, and three saddles. The three sinks represent the
null state (no image) and the two stored images. Point 1 represents the stable state
corresponding to stored image x!, since at that position ¢; is large and ¢, is small.
On the other hand, at point 2 ¢; is small and ¢, is large. This represents the stable
state corresponding to stored image x2. It can be seen from the figure that if we
start from an initial state, which is close to one of the stored states, then the system
will converge to that state. Otherwise, it will decay to zero.

From the geometrical diagram we see that the stable state is always a mixed
state of the stored memories. The extent of mixture can be reduced by reducing the
neural gain. However, if the gain is too small, then the system will not be able to
sustain the stored memories. As shown in Fig. 3.33(a), when the gain is very low,
there is only one intersection point O between the line k(c) = ¢ and the curve of the
driving force. The corresponding trajectories leading to O are drawn in Fig. 3.33(b).
It is seen that the only equilibrium state is the null state at P. No matter where
the initial state is, the system always decays to zero.

On the other hand, suppose the neural gain is very high. The trajectories to P,
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Figure 3.32: The phase flow of the two-image auto-associative memory. States O,
1, 2 are stable. States 3, 4, 5 are unstable (saddle points). State 6: Source state.

(unstable)
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(a)
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of 0
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(b)

Figure 3.33: The Dynamics of the Loop at Low Gain. (a) The driving force for the
first stored image. (b) Trajectories for the equilibrium points. Point P is the only

stable state.
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Q, and R are shown in Fig. 34. We see that there are two more equilibrium points
than the case shown in Fig. 3.32: a stable point m and a saddle point s. The state
m is a strongly mixed state of x! and x?. We also see that m has a large region of
attraction. Thus, we can not set too high a gain.

Next consider the case where the stored memories have some slight overlap.
The shape and position of the trajectory lines will be altered somewhat. Since the
neural function is continuous, so is the driving force. Thus, the general features of
the system will be the same. However, as the overlapping between the stored states
increases more and more, the trajectories of the equilibrium points will be more and
more distorted. As a result, the stable points that give the stored memory states
will have more “mixing” with the other stored state. Thus, we would not expect
the system to work well in the case of strong overlapping.

We can now investigate the dynamics of the system for the all-pass hologram
in the memory loop. If we do not make the dc-level subtraction in storing the

memories, then Equations 3.40 and 3.41 become

dec; al 1 1 2

—g{- = - +Z$‘g(C1xz + C2.'1:i) (3.44)
=1

dey ud 2 1 2

E = —C + Zl'ig(CIIEi + Czl'i). (3.45)

i=1

By going through similar arguments, we can draw the trajectories leading to the
equilibrium points of the system. Fig. 3.35 shows one example. It is seen that there
are four stable states: two memory states, m; and m,, one null state , and one
mixed state P. If we decrease the neural gain, then the points my, my, Q, and R
may disappear. However, the mixed state P always exists. Therefore, the high-pass

hologram is crucial for good performance of the memory loop.
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Figure 3.34: The Dynamics of the Loop at High Gain. Two new equilibrium states

are generated: m is mixed and s is unstable state.
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Figure 3.35: The Dynamics of the Loop without the High Pass Hologram. There
are four stable states: m;,m; are stored states, O is null state. P is mixed state.

Other states are unstable.
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3.7 Conclusion

In this chapter we have successfully implemented an optical loop of the Hopfield-
type neural network. The loop consists of a single layer of neurons with feedback.
The 2-D array of neurons are simulated by an LCLV. The interconnections between
the neurons are implemented by using planar holograms.

Experimental results show that the loop pel;forms the function of auto-association
which recognizes 2-D images from a distorted input. The distortions may come from
rotating, scaling, shifting, partial blocking, or erroneous input. As long as the input
provides enough information, the loop always converges to a stable state correspond-
ing to the correct stored image. The similarity between the input and the stored
images determines how fast the loop converges.

The gain function is another factor that determines the dynamics of the loop.
Too low gain cannot sustain a stable memory. High gain provides more tolerance
to the system to recognize a distorted image. However, too high gain also induces
mixed states such that the loop makes incorrect recognitions. The trade-off between
distortion tolerance and .discrimination capability is set by the gain function, and
the value of the optimum gain depends on the specific images stored.

We have presented a neural network model for the optical loop. Dynamic equa-
tions for the network are formulated. Since the optical neurons respond to light
intensities, the input vs. output relationship of the neurons is not a simple sigmoid
function. Rather, it is a sigmoid function symmetrical for positive and negative
inputs. Thus, the slope of the neuron function is not always positive, and the con-
ventional proof of convergence does not apply here. Although we have not found an
energy function for our loop, we have presented a geometrical method for inspecting
dynamic behaviors of the loop. The flow of the state in the phase diagram helps us

visualize the convergence properties of the loop. The diagram shows that the stable
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state is always a mixed state of the stored images, the degree of mixture depending

on the gain function.
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3.8 Appendix

Dynamic Equations for the Optical Associative memory

This appendix will focus on the derivation of the dynamic equations for the
optical associative memory loop described in this chapter. The schematic diagram
of the optical loop is shown in Fig. 3.5. The main idea is that corresponding to the
set of stored images, we can construct a vector space RN, where N is the number of
neurons of the system. Then the N-coupled dynamic equations of the neurons can
be expressed in terms of the basis coefficients in RN. This transformation simplifies
the form of dynamic equations so that the dynamic properties of the system can be
inspected using a geometrical method.

A. Vector Space RN and the Basis

1 x2,...,xM are linearly independent. We

We assume that the stored images x
then decompose the vector space RY into two subspaces V1 and Vg, where V7 is

the vector space spanned by the stored images and V2 is normal to Vy; i.e.,

RN = V9V, (3.46)
Vi = span{x*,x2,...,xM}, (3.47)
Vo, = {ylx-y=0,Vx €V}, (3.48)

where @ is the direct sum of vector spaces. We now define a reciprocal basis 5; =

{y',¥2,...,yM} for Vi, such that
yi-xj=5,~j i,j:l,...,M. (3.49)
Next we select an orthonormal basis f, = {yM*1,...,yN} for V,. We then have

B = BUB

= {y,-, ¥V} (3.50)
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which forms a basis for RN. Thus, any image in RN can be expressed in terms of

the basis f:

N
X=) cry®. (3.51)
k=1

B. Dynamic Equations for the Optical Loop
It was shown in Section 3.6 that the dynamic equation for the neurons in the

optical loop is
d:t,'

N
E-:—x,-+g(zw,~j:cj), 1=1...N (3.52)

=1

where w;; is the high-pass version of the interconnection strength given by Eq. 3.24.

By Eq. 3.24 and 3.25, we have
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Note that (wj -+, :zk) is the j** component of the vector (x ~ Ly, zk).
Since (x— % N xk) is also a vector in RN and any vector in RN can be expanded

in the basis 3, we let
1 N N X
(X — —N- Z .’l?k) = Z CLY . (354)
k=1 k=1

The feedback signal in the loop then becomes
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By applying the orthnormal property of the reciprocal vectors x™ and y™ in the

above equation, we obtain

N M
Y wizi =Y emal. (3.56)
j:] m=1
The dynamic equation then becomes
d.’l),' M .
—E—z——z;-i-g(Zcma::") i=1...N. (3.57)
m=1

Note that c,, is the projection of the high-pass version of the input on the stored
vector x™. It is seen that the system dynamics is specified by the M coefficients
of the reciprocal vectors of the stored images. In what follows we will derive the
equation of motion for these coefficients. |

Multiplying both sides of Eq. 3.57 by 1/N and summing over ¢, we get
1Y d:rz

1N 1N M
oo —Nin—}—-NZg(ZcmxT) i=1...N. (3.58)
=1 i=1 m=1

Subtracting Eq. 3.58 from Eq. 3.57 gives

fm St e en( St (). w0

Note that the terms in the bracket can expanded in the basis 3; thus, the equation

of motion is given in terms of the 8 coeflicients as
N dey N M 1N M
S Gk = =Y to(Tena?) - g 9( X emal)  (360)
k=1 m=1 =1 m=1
Multiplying both sides of the above equation by z} and then summing over i gives

Zd;tk(x ¥y = —chx y) +Z$'g(zc’"z)

i=1

(FT ) So( 3 emer) (3.61)

=1 =1

Applying the orthonormal relation between the stored images and the reciprocal

basis, we obtain

dcl M
= =—c+ E .7: —a) ( _S_ cma:Z") l=1,...,.M. (3.62)
m=1
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Recall that a; is the average level of the stored image x'. Similarly, the equation of
motion for cpr41,-++,cn can be obtained by multiplying both sides of Eq. 3.60 by

y!, and summing over i. We get

dC( N . M
—‘i?z—cl-i—Z(a:i—bl)g(Zcmm:") I=M+1,....N, (3.63)
=1 m=1

where b; is defined as
1 N
b==> yl i

The dynamic behavior of the optical loop is thus completely determined by equations
3.63 and 3.64. Instead of solving these equations, we have presented a geometrical
method in Section 3.6 for investigating the convergence properties of the loop and

the important parameters that affect the dynamics.
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Chapter 4

The Hetero-Associative Memory Loop

4.1 Introduction

In the previous chapter we presented the holographic system with feedback, which
performs the function of an auto-associative memory. The basic principle of that
system is based on the correlation operation. When the input image has a strong
correlation with one of the stored images f., the system converges to the stable
state that is most similar to the input image. The system contains two Vander Lugt
correlators in which we used a plane wave as the reference for recording the Fourier-
transform hologram of the stored images. The two holograms in the correlators
store the same set of images f. If, instead, we store a different set of images gm in
the second hologram, then the correlation of the input image with the images stored
in the first hologram reconstructs images gm from the second hologram. Thus, the
system can perform the function of hetero-association. However, if we want to close
the feedback loop, then we need a mechanism to map the images g, back to the
images fm at the input plane. Actually, this can be achieved by using the images
gm as the reference wave to make the Fourier-transform hologram of the images fm
such that the two set of images are recorded associatively.

The basic idea of hetero-associative memory described in the above paragraph
is easily understandable if we think of the principle of holography. A hologram is,
in general, the recording of the intensity pattern of the interference between two
waves. Normally, one of the two waves is called the reference and the other is called
the subject wave. The distinction between the two is actually arbitrary. Let the

complex amplitude of the reference wave be designated by r = r ezp(j¢.), and that
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of the object wave by o = o0 exp(j¢,). Suppose the hologram is recorded linearly;
then the amplitude transmittance of the developed hologram is proportional to the

exposure:

tocl=00"+4+rr"+or"+o'r, (4.1)

where * means the complex conjugate. Now if we input the reference wave r to

reconstruct the hologram, the reconstructed wave would be :

w x rt = roo” + rrr* 4 orr* + rro”. (4.2)

2

Under suitable choice of r such that the intensity of rr* = r? is constant over the

20, and therefore the original

hologram plane, the third term of Eq. 4.2 becomes r
subject wave o is reconstructed. Similarly, if we use the subject wave o to reconstruct
the hologram and make the arrangement such that oo* = o? is constant over the
hologram plane, then we reconstruct the original reference wave as o®r. Therefore,
the two waves o and r are stored in the hologram as an associative pair; whenever we
input one of the two waves, we get the other as the output. We call the information
stored in this form as hetero-associative memory. The idea of using holographic
techniques for storing associative informations was first pointed out by Van Heerden
[1,2] and also by Gabor [3].

In this chapter we present an optical feedback loop what performs the function of
image hetero-association. In Section 4.2 we will describe how to make holographic
interconnections between two image patterns. The problem of degenerate inter-
connections and the sampling techniques to solve this problem will be presented.
The holographic interconnection techniques developed in this section will then be
applied to the image-association loop in Section 4.3. The optical system of the
hetero-associative memory and its experimental results will be presented in this

section. Finally, the neural network model of the hetero-associative loop and its

convergence properties will be presented in Section 4.4
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4.2 Sampling Grids for Planar Holographic Associative

Memories

In this section we show how to use planar holograms to store hetero-association. A
hetero-associative memory between two images is nothing but a transformation or
an interconnection pattern between these two images such that one image is mapped
to the other and vice versa. In Chapter 2 it was shown that a holographic grating
can be used as an interconnection between two points. It was also shown that the
Vander Lugt correlator performs the association between a pattern and a point.
Given these results we will show how to extend the Vander Lugt correlator into a
hetero-associative memory.

Consider the basic structure of the holographic hetero-associative memory shown
in Fig. 4.1. The architecture shown in the figure is similar to that of the Vander Lugt
correlator. However, instead of using a plane wave as the reference, we use images for
inputs to both optical arms. The two patterns f(z,y) and g(z,y) to be associated
are put at the front focal planes of the lenses, Ly and L,, respectively. A holographic
plate is placed at the intersection of the back focal planes of lenses L, and L;. The
interference pattern of the Fourier transforms of f(z,y) and g(z,y) is recorded on
the hologram. Suppose the hologram is linearly recorded and developed; then the

amplitude transmittance of the hologram is proportional to the total exposure:

T o« tl(u,v)
= t|F(u,v) + G(u,v)|?
= t[|F(u,v)]* +|G(u,v))* + F*(u,v)G(u,v) + F(u,v)G"(u,v)], (4.3)
where T is the amplitude transmittance of the developed hologram, ¢ is the exposure

time, I(u,v) is the intensity distribution of the interference pattern, F(u,v) and

G(u,v) are the Fourier-transforms of f(z,y) and g(z,y), respectively, u and v are
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(b) * F e F gt F Mgl r ™

Figure 4.1: Hetero-Associative memory. (a) Recording. (b) Recalling.
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spatial frequencies, and * denotes the complex conjugate. It is seen from the third
and fourth terms of Eq. 4.3 that f(z,y) and g(z, y) are associatively recorded in the
Fourier-transform hologram. Now if the input to the system is f(z,y), as shown in

Fig. 4.1(b), then the transmitted wave from the hologram is

F(u, 0)[|F(u,0)? + |G(u,v)]?] + F(u, 0)F*(x,)G(u, v) + F(u,v) F(u,v)G"(u,v).
(4.4)
If the angular separation between the inputs f(z,y) and g(z,y) is large enough, then
the four terms of the transmitted waves in Eq. 4.4 will also be angularly separated
and will propagate along different directions. The third term is of particular interest
to us because it gives a spectrum that is similar to that of g(z,y). Fig. 4.1(b) shows
that the diffracted wave from the third term is Fourier-transformed to the image

plane. The reconstructed wave at the output plane is

[f(z,9) % f(z,1)] * 9(z,), (4.5)

where * means auto-correlation and * means convolution operators. We see that the
input f(z) produces its associated image g(x). However, the read-out is blurred by
the auto-correlation of f(z,y). Fig. 4.2 shows an example of the optical experimental
results. Fig. 4.2(a) shows the letters C and T that are associatively recorded using
the above scheme. Fig. 4.2(b) shows the output image T when the input is C. The
output image is blurred and is barely recognizable. Similarly, Fig. 4.2(c) shows the
blurred output imaée C when the input is T.

In Eq. 4.5 if f(z,y) = f(z,y) = é(z,y), then the output image is the original
g(z,y). There are two cases when this condition is true: Either f(z,y) is a point
source or it is a random-phase diffuser. However, neither condition is of interest to us
because the patterns to be associated are in general neither of the two cases. In the
following we show how to use the Vander Lugt correlator to make interconnections

between two patterns.
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(c)

Figure 4.2: Experimental Results of Optical Hetero- Associative Memory. (a) Asso-
ciated letters C and T. (b) Recalling T by C. (c) Recalling C by T.
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The key characteristics of the Vander Lugt correlator-type planar holographic
interconnections is shift invariance. Shift invariance means that when the input is
shifted relative to the original position, the output response is shifted correspond-
ingly, but the output pattern remains unchanged. First, we consider the very simple
case when a point source §(z) and a pattern g(z) are associatively recorded in the
Vander Lugt correlator architecture. According to Eq. 4.5, when the input is é(z),

the reconstructed output is
[6(z) * 6(2)] * g(z) = g(z). (4.6)
Now if the input is shifted to §(z — a), the output is shifted as
[6(z —a) * é(z)] * g(z) = g(z — a). (4.7)

This result demonstrates that an erroneous input point can also recall an associated
stored image. Furthermore, if the input contains several point sources, then the
total output will be the combination of the output coming from each source. The

output can be written as
M M

[Z: §(z — a;) * 8(z)] * g(z) = Z;g(:t —a), (4.8)
where a; is the position of each input source and M is the total number of inputs.
Evidently, the output is very different from the original stored image g(z). Fig. 4.3
shows an example. In the figure (a) shows that letter A is stored associatively
with the point source, (b) shows the output A when the input is the original point
source, and (c) shows the output when the input is five point-sources in which one
is the original and four are its shifted versions. The output is a superposition of five
shifted versions of the original memory.

The problem of the shift invariant property of holographic associative memories

would become worse if both associative patterns consist of multiple points. Because
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(a)

(b)

(c)

Figure 4.3: Shift Invariance of the Vander Lugt Correlator. (a) Two associated

patterns. (b) Input one dot to recall the A. (c) Output when the input is five dots.
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each point of one pattern is connected to every point of the other pattern, the light
from one point reads out not only all of its own interconnections but also the shifted
versions of interconnections of other points. The superposition of these read-outs
will be mixed up and unrecognizable. Suppose the stored associative memories are
image g(z) and five point sources "°_, §(z — ma), then according to Eq. 4.5, the
input 32 _, 8(x — ma) gives output

5 5

[2—1 6(z — ma) > é(z — na)] * g(z)
= X_:lz—:lé(x—(m—n)a)*g(x)
= : :g(x — (m —n)a). (4.9)

Evidently the image is completely unrecognizable if the separation between the
point source a is smaller then the size of g(z). Fig. 4.4 shows the results of optical
experiments of the association between the letter A and five point sources. In the
figure (a) shows the original images that are associatively recorded, and (b) shows
the output when the input is the original five points. It is seen that shifted versions
of A are superimposed, as predicted by Eq. 4.9.

The main point of the above discussion is that the Vander Lugt correlator can be
used as an associative memory, but it suffers from the problem of shift invariance. In
order to achieve that purpose, we should find some ways of overcoming the problem
of degenerate read-outs. This problem was first pointed out by Psaltis et al. [4, 5].
Based on the shift-invariance property of the Vander Lugt correlator, Psaltis derived
a geometrical method to design the sampling grids for both planar and volume holo-
graphic interconnections. The condition derived for planar interconnections is that
the diagram formed by connecting any two points of one pattern and any two points
of the second pattern cannot be a parallelogram. In the following we present an

alternate method of designing the sampling grids for planar interconnections. Sup-
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(a)

(b)

Figure 4.4: Hetero-Associative Memory. (a) Two associated patterns. (b) Input the

five dot to recall the A.
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pose two associative imagesthat are to be stored are sampled by the sampling grids
f(z) and g(z), respectively. The sampling grids are represented by the following

sampling functions

M
f(z)=>_ 6(z — ma) (4.10)

m=1

and
N
g(z) = z_:l 6(z — nbd), (4.11)

respectively, where a and b are the sampling periods, and M and N are the number
of sampling points. For simplicity, we use 1-D signals in the analysis, but the results
apply to the 2-D case as well. We also assume that the two grids are uniformly
illuminated and that the light amplitude is normalized to one. The two patterns
are recorded using the architecture of Fig. 4.1. After the hologram is developed,
suppose the input is f(z); then the output can be found by inserting Eq. 4.10 into

Eq. 4.5 to obtain

M M N
[E— §(z — ma)*lz:&(z - la)] * Z_:lé(x — nb)

;:_111=1 n=1
= E; (M — |m|)g(z — ma). (4.12)

We see that the read-out is a superposition of shifted versions of the original g(z).
Usually these images are mixed up. There are two cases when these images can
be separated such that g(z) is recalled correctly. The first case can be seen by
inspecting Eq. 4.12. The output consists of the pattern g(z) and its shifted versions,
each separated by the period a. If the sampling period of f(z) (viz. a) is larger
than the image size of g(z) and we pick up the output only from a window with the

size of g(z), then only one g(z) goes through the window, whereas all other shifted
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versions will be blocked out. Thus, the first condition for the sampling grids is
a > Nb. | (4.13)

An example of 2-D sampling functions f(z) and g(z) is shown in Fig. 4.5(a). In the
figure the sampling spacing of g(z) is set equal to one unit of the spacing between
the resolution pixels of the optical devices; i.e., b = 1. There are two sampling pixels
in each dimension of g(z), i.e., N = 2. From Eq. 4.14, the sampling period of f(z)
should be equal to or larger than 2. We select a = 2. Fig. 4.5(b) illustrates the
.output of the memory for the input f(z). It is evident that the shifted versions of
g(z) are blocked out and the original g(z) is recalled correctly. Similarly, if the input
is g(z), then the output will also be recalled correctly. This is shown in Fig. 4.5(c).

The second case that produces a correct associative recall is obtained by inspect-
ing Eq. 4.12. We see that for each input source at 6(z —ma), the output is the point
8(z—nb) plus 2(M —1) degenerate points that are designated by é(z —nb—(m—1)a),
where m,l = 1,---,M,m # l. All the shifted points can be blocked out by using

the sampling mask of g(z)such that
(m—1a#kb m,,=1,---,M,l#£m; k=1,.---,N. (4.14)

This condition can be rearranged as

o 2

k
#— k=l Nym=1 (M-1). (4.15)

This is the second sampling grid for planar interconnections. Under this condition,
only one pair of associative patterns can be read-out. Fig. 4.6 shows an example.
In the figure, a = 2, N, M = 2. According to Eq. 4.16, b # 1,2. We select b = 3.
Fig. 4.6(b) shows the output pattern associated to the input f(z). It is seen that
by using the sampling mask, g(z) is correctly recalled. A similar result is illustrated

in Fig. 4.6(c) when the input is the sampling pattern g(z).
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ciated sampling grids f and g. (b) Input f to recall g. (c) Input g to recall f. (o
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-128-

X X « X X « X

X

XXoXX.x
Xx®o - 8 X - X

X
X

Xe . o X
X X

X
x

- X

X X o

X X « X X « X

b 4

aum[d
UOJ}U[a.LI0) @

X

*+ X X X X ¢

X

x

X

X X X X
X X X X °
¢ X X o -

X

x

X .

X X X X+« X

X -

(@)

C))

(®)

Figure 4.6: Another Sampling Pattern for Planar Holographic Interconnections. (a)

Associated sampling grids f and g. (b) Input f to recall g. (c) Input g to recall f.



-129-

Thus, if the sampling grids are properly designed, the Vander Lugt correlator
can be used as a hetero-associative memory. The next issue that we want to address
is how to choose the number of sampling points M and N and how to specify
the sampling spacings a and b. The design of these parameters depends on the
application and system architecture. For example, for the purpose of image storage,
we want to have pixel density as high as possible to obtain high-fidelity sampling of
the original images. We choose the sampling grids of the type shown in Fig. 4.5 for
this purpose. But the density of pixels that can be used is usually limited by the
resolution capability of the image input devices such as spatial light modulators.
For some applications, one of the patterns is small, in which case we also choose
dense sampling grids such as the type for g(z) shown in Fig. 4.5(a). On the other
hand, if both patterns are uniform and of the same size, then we choose the uniform
type such as the patterns shown in Fig. 4.6(a). Once a and b are determined, then
M and N are determined by the sizes of the image input devices. Furthermore,
since the interconnection patterns are stored in holographic gratings, M and N are
also limited by the space bandwidth product of the holographic recording material.
Suppose M and N are the total number of sampling points of the two patterns, then
the total number of independent gratings needed for interconnection is M x N. If

the total number of resolution points of a hologram is Ny, then
M x N < Ny. (4.16)

In summary, we obtain the rules of designing sampling grids for associative mem-
ories. The specific design depends on the application and is usually not unique. As
an example, in the following experiments we use English alphabets as the associated
patterns. Since the patterns have similar sizes, we choose uniform gratings. This

means that the grids have similar sampling periods; i.e., a = bor § ~ 1. For a

good sampling of an alphabet, we choose ten sampling pixels in each dimension;
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ie., M = N =10. By Eq. 4.16 the prohibited value of ¢ which is closest to 1 is %.
We choose a = 10 and b = 11. Therefore, one of the sampling grids has a sampling
period of 10 pixels and the other has 11 pixels. The actual size of the pixel depends
on the optical system and imaging device used. For example, the resolution limit
of the LCLV described in the next section is about 50 um; thus, we choose the
pixel size to be 100 uym for all of our experiments. The magnified sampling grids
based on this design are illustrated in Fig. 4.7. The sampling grids are used in
the experiments in this chapter. Fig. 4.8 shows the associative memory experiment
using the sampled patterns of C and T. In the figure (a) shows the two sampled
patterns. The two patterns are recorded using the architecture of Fig. 4.1(a). After
the recording, when the input is C, the read-out pattern is shown in Fig. 4.8(b). It
is seen that the output is the mixture of all shifted patterns of T. If the sampling
grid of T is superimposed on this pattern, we obtain a clean read-out as shown in
the final picture. This example illustrates how to design sampling grids for a specific

application. The results will be used in the next section for the associative memory

loop.

4.3 The Hetero-Associative Memory Loop

As discussed in the previous section, holographic associative memories can be im-
plemented by using suitable sampling grids in the Vander Lugt correlator. The
results are used in this section for the holographic hetero-associative memory feed-
back loop. The memory loop has the capability of recalling the complete associative
image from a partial input. Similar to the auto-associative loop described in the
previous chapter, the most interesting property of this loop is its dynamics. In this
section we present the experimental results of the effects of optical gain and loss on

the growth and decay of the loop signal. The neural network model of the system
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and its dynamics will be discused in the next section.

Fig. 4.9 shows the schematic diagram of the holographic loop, and a photograph
of the experimental apparatus is shown in Fig. 4.10. In the system shown in
Fig. 4.10, the LCLV at plane P,, the beam splitter cube BS1, the lenses L,, L3, and
the hologram H form one arm of the correlator. An identical input I, and the lens
L5 form the second arm of the correlator. A collimated argon laser beam illuminates
the read-out side of the LCLV through beam splitters BSs and BS;. The reflected
light from the LCLYV is reflected by BS; into the loop and is Fourier-transformed by
lens Ly to illuminate hologram H. A portion of the loop light is reflected by B.JS,
and is imaged by lens Ls onto a CCD television camera. This provides real-time
monitoring of the activity of the system. A portion of the illuminating argon laser
is reflected by B S, to illuminate the input I,. The input I, is Fourier-transformed
by lens L4 and illuminates H. The lens L3 gives the inverse Fourier-transform of
H and thus images the input I; onto the writing side of the LCLV. This image is
superimposed with the image from I; and forms a closed feedback loop.

We now describe the operation of the loop. There are five shutters, Sy, S,, Ss,
S4, and Ss in the system for controlling the light beams. The two patterns in each
associative pair are arranged side by side as shown in the figure. In the recording
process, the association from f to g is first recorded on the hologram H. During this
process, only shutters S; and Sy are open. The recorded hologram interconnects the
f pattern of the reading side of the LCLV to the g pattern of the writing side of the
LCLV. The optical path is indicated by a dashed line in the figure. We then make
a second hologram to interconnect the g pattern of the reading side of the LCLV to
the f pattern of the writing side of the LCLV. During this process, shutters S; and
S5 are open and the others are closed. This optical path is indicated by the solid
line in the figure. Thus, the complete loop for one pair of associations is formed.

The associations for other pairs of patterns are also formed in a similar manner and
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Figure 4.9: Schematic Diagram of the Hetero-Associative Loop.
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Figure 4.10: Photograph of the Hetero-Associative Loop.
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recorded on H.

In the recalling process, shutters S and Sy are kept closed. The input is fed into
the system from I; through the shutter S; or S;. The input from I; is correlated
with the patterns stored in the hologram and reconstructs its associative pattern I,.
The reconstructed pattern is imaged on the writing side of the LCLV as a feedback
signal. The feedback loop is closed by turning ON the shutter S5. The loop state
then starts to evolve until it reaches a steady state. We then turn OFF the input
shutter. If the input signal has strong correlation with the stored patterns and if
the optical gain of the LCLV is large enough, then the loop will be locked in the
steady state. Otherwise, the loop signal dies out gradually. Note that this loop
is equivalent to a two-layer network‘with feedback, because there are two optical
paths circulating in the complete loop and each path has a thresholding operation.
However, as we described in the previous paragraph, the optical system is designed
such that two patterns in an associative pair are spatially separated and are imaged
on the LCLV side by side. Therefore, we need only one LCLV in the loop. During
operation, suppose the the shutter S; is opened to present the input f from I; into
the system; then the reconstructed output from the hologram is ¢ and is fed back to
the LCLV as the second input to the system. Note that g is spatially separated from
f; thus, it reconstructs f as the second feedback signal. Therefore, the operation
sequence is f — g — f — --- and forms a complete feedback loop.

Our first experiment of the loop is the hetero-association between the sampled
patterns of C and T. The sampling grids shown in Fig. 4.7 are used. The inter-
connections between the two patterns are recorded on H. Now we block I, and
input a partial image of C from I;. When the feedback loop is ON, the associated
T is recalled and starts to grow. T then enters the loop and recalls C from the
hologram as the second feedback signal. This completes one loop and the next iter-

ation starts. Thus, the two associated patterns reinforce each other in the sequence
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C - T —- C — --- until the loop reaches steady state. If we now turn OFF
the external input, the pattern stays latched in the loop. The loop output of this
operation is shown in the sequence of pictures in Fig. 4.11.

The second experiment of the loop concerns the shift invariance property of the
associative memory. The result is shown in Fig. 4.12. As shown in the figure, a
partial image of T is input from I; but is shifted away from the original position of
recording. There is no response in the feedback loop, as shown in Fig. 4.12(a). We
move the input around until it matches the original position; only at this moment
will the signal start to grow. The associated patterns then iterate in the loop until
they reach the steady state. Fig. 4.12(b) to (d) shows the loop output of the sequence
from the operation. This result is consistent with our prediction. As we explained
in the previous section, the operation of the holographic hetero-associative loop is
based on the principle of using sampling grids to remove the shift-invariance property
of the Vander Lugt correlator. Hence all the shifted signals reconstructed from the
hologram are blocked out by the sampling grids. This destroys shift invariance.

As signals circulate in the loop, they decay because of the loss due to diffraction
efficiency of the holograms and other optical components. This loss can be compen-
sated by appropriately adjusting the optical gain of the loop as we discussed in the
previous chapter. An image intensifier is attached on the writing side of the LCLV
so that the gain adjustment can be made by adjusting the bias voltage of the image
intensifier.

In fact, gain and loss are the main factors that determine the dynamics of the
feedback loop. In what follows, we examine the dynamic behavior of the loop. Two
pairs of associated patterns, C < T and A « O, are stored in the hologram H.
The sampling grids designed in the previous section are used here. The sampled
patterns of the two associated pairs are shown in Fig. 4.13. Note that there is a

four pixel overlap between A and C, and a one-pixel overlap between O and T.
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(a) (b)
(c) (d)

Figure 4.11: Dynamics of the Hetero-Associative Loop. (a) Partial input of C at
t=0.(b)t=450ms . (c) t = 750 ms. (d) t =4 sec.
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(a) (b)
(c) (d)
Figure 4.12: Dynamics of the Hetero-Associative Loop. (a) Partial input of T at
t=0.(b)t=450ms . (c) t = 750 ms. (d) ¢ =4 sec.
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Figure 4.13: The Sampled Patterns Stored in the Optical Loop. (a) The C < T

pair. (X’s represent the sampled points.) (b) The A < O pair. (e’s represent the

sampled points.)
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In recording, we made the Fourier-transform holograms for the A « O pair with
diffraction efficiency higher than that of the holograms for the C « T pair. This
means that the optical gain needed to support the loop of A < O is lower than that
of the C & T pair. Measurements in our experiments show that the minimum gain
required for the A « O pair is 5 x 104, while that of the C « T pair is 1.5 x 10°.

In operation, we first set the optical gain at 6 x 10*. When A is input into
the system and the feedback loop is closed, the system evolves to the stable state
where the association A < O is recalled and latched. The external input is then
turned OFF but the patterns stays locked in the loop. The output of this sequence
is shown in the photographs in Fig. 4.14(a) to (d). Note that the output gives not
only the patterns A < O but also has a slight mixture of the C « T pair. This is
expected. It is due to the crosstalk between the original patterns shown in Fig. 4.13.
Therefore, when A reconstructs its associated pattern which is O, at the same time
the four crosstalk signal contributes to reconstruct T, which is the associated pattern
of C. Similarly, the crosstalk between O and T contribute to the reconstruction of
C. However, there is only one pixel overlap between these patterns; therefore, the
reconstructed C that is due to this crosstalk is very weak. Since the optical gain
is not enough to sustain the C « T pair, the crosstalk signals do not grow. If we
now increase the optical gain from 6 x 10% to 1.5 x 10°, the intensities of C and T
also increase until the pair is latched. The mixed state of the two associated pairs
co-exist in the loop. The output of this state is shown in Fig. 4.14(e). If we decrease
the optical gain back to 6 x 10%, the loop returns to the previous A — O state,
as shown in Fig. 4.14(f). This experiment shows that optical gain is the key factor
that determines the loop state.

We consider next the loop behavior when the initial optical gain is high. We set
the gain at 1.5 x 10°. When C is input into the system, the loop evolves to a stable
state where both C & T and A « O are locked in the loop. Fig. 4.15(a) to (d)
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(b)

© (@)

(f)

Figure 4.14: The Dynamics of the Loop at Gain = 6 x 10%. (a) Input A at ¢t = 0.
(b) t = 600 ms. (c) t =1 sec. (d) Loop with the input OFF. (e) Gain increased to

1.5 x 10%. (f) Gain is decreased to= 6 x 10*.
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shows the output of this evolution. We see that the stable state is similar to that
of Fig. 4.14(d), which has the same gain. The A « O pair in this case is recalled
through the crosstalk between the pairs. Since the A « O pair needs lower gain to
sustain the loop, we expect that as the gain is reduced it will remain latched, while
the C « T pair will decay. Fig. 4.15(f) shows the output when the gain is reduced
to 6 x 10%. It is seen that indeed only A « O survives in the loop. Again, this
experiment shows that gain determines the dynamics of the associative loop.

The preceding experiments show the problem of crosstalks in associative mem-
ories. As we have seen, as long as the original patterns have overlap, recalling one
associative pair may also induce extra associative patterns from the other pairs.
The extent depends on the amount of overlap in the original patterns and also on
the optical gain of the system. The appearance of mixed states can be reduced by
careful control of the gain, but in general, the stable state of the loop is a mixed
state of patterns that have crosstalks.

Finally, let us consider one more characteristic of the interconnections of the
memory loop. Since each point of one pattern is connected to every point of its
associative pattern through independent interconnections, as long as one point has
input, its associated pattern will be recalled by this point and is independent of
the state of all other points. This causes a problem in the memory. Suppose the
system is illuminated by a flashlight. Although this is not a correct input, every
point of the input is excited and all the memory pairs are recalled. The memory will
then converge to a state depending on the specific gain. Fig. 4.16(a) to (d) shows
the sequence of the loop operation. The gain is 6 x 10%. The initial state is set
by a flashlight; the loop then evolves to the state of A « O. This result shows a
fundamental limit of the hetero-associative memory. It is a restriction that we must

take into account when considering the applications of the memory loop.
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(c) (d)

(f)

Figure 4.15: The Dynamics of the Loop at Gain = 1.5 x 10°. (a) Input C at ¢ = 0.
(b) t = 750 ms. (c) t =1 sec. (d) t = 1.5 sec (Input OFF). (e) Gain increased to
3 x 10°. (f) Gain decreased to= 6 x 10%.
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(c) (d)

Figure 4.16: The Dynamics of the Loop at Gain = 6 x 10%. (a) Input at t = 0. (b)
t = 600 ms. (c) t = 1.5 sec. (d) t = 2 sec.
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4.4 Neural Network Model for the Hetero-Associative Mem-
ory

The dynamic behavior of the holographic hetero-associative memory loop demon-
strated in the preceding section can be analyzed using a neural network model.
The analysis will follow the same line of argument we used in the previous chap-
ter for the auto-associative memory loop, because basically both memory loops are
Hopfield-type networks. The main difference is in their feedback architectures, i.e.
the interconnection matrices. In the material follows, we will first present a neural
network model of the memory loop. Then we derive the dynamic equations of the
system. We will construct a vector space corresponding to the stored patterns to
investigate the convergence properties of the loop and the stability of the stored
memories. A graphic method will be presented which will allow us to visualize the
loop dynamics.

To begin, referring to the optical loop shown in Fig. 4.10, we see that the com-
plete loop of the hetero-associative memory is equivalent to a two-layer network,
since it takes two steps for the network to finish one iteration, e.g., C - T — C,
and since each step passes through a nonlinear operation by the LCLV. The neural
network model of the optical loop is illustrated in Fig. 4.17. In the figure, neurons
represent the LCLV pixels and holograms represent the interconnections between
the associated patterns. The associated patterns X < X’ are imaged on the LCLV
side by side. W is the hologram for connecting X — X', and W' is the hologram
for connecting X’ — X. Thus, each neuron of pattern X receives signals from every
neuron of pattern X', and vice versa. This network is similar to the bidirectional
associative memory of Kosko and Guest [6]; Kosko [7]. However, there is a funda-
mental difference in our optical loop: The neurons respond to light intensity instead

of to amplitude. Thus, the slope of the neuron function with respect to the input
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Figure 4.17: Neural Network Model for the Hetero-Associative Loop.
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Figure 4.18: Simplified Model for the Hetero- Associative Loop.

signal is not always positive and hence the usual convergence proof does not apply
here. Furthermore, the convergence proof does not give the loop dynamics, such as
the behavior of the stable states. In what follows we will present a graphic way of
inspecting the dynamic properties of the network [8].

For convenience, we simplify the neural network model of -Fig. 4.17 to the
schematic diagram shown in Fig. 4.18. Suppose the input to the neuron 7 of the
pattern X is y; and its output activity is ;. The dynamic behavior of this neuron

can be described by the equation

dzi

7 = —I; +g(y,), 1=1.. .N, (417)
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where g(y;) represents the neural nonlinear function. Since the input y; comes from

outputs of X’ through the holographic interconnections W', we have

wa i (4.18)

where z; is the output of the neuron j of X', and wj; is the holographic grating that

connects z% to y;. Thus, the dynamic equation of the neuron : becomes

d:z, .
- = x,+g(2wu ]> i=1...N. (4.19)

Similarly, we obtain the dynamic equation of the neuron 7 of X' as

!
dz]

N
E—:—xi-{-g(Zwiﬂj), 1=1...N. (420)

=1
We see that the dynamics of the system is determined by the neuron functions g(x)
and the interconnection matrices W and W'. In general, it is very unlikely, although
not impossible, to solve the 2N-coupled nonlinear differential equations analytically.
However, following the same line of arguments as in Chapter 3, we can construct a
vector space corresponding to the stored patterns to inspect the dynamic properties
of the network.

Suppose the associated patterns to be stored are two pairs, Al & B! and
A2 & B2. The patterns A! and A? are connected to the layer X, and the patterns
B! and B? are connected to the layer X’. The interconnection holograms are

recorded as the outer products of the associative patterns; i.e.,
W = B'A!T + B2A%T, (4.21)

and

W’ = A'B'T 4 A2B?T. (4.22)

In what follows, we will first define a vector space corresponding to the patterns A1,

A2 B!, and B2. Assume that there are N neurons in each layer; then every pattern
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in X or X’ can be represented as an /N-dimensional vector. Since the neurons detect
light intensity, we further assume that the signal from each pixel is positive. Here
the phase nonuniformity caused by the LCLV and optical components is neglected.
Thus, we are considering the patterns in an RN vector space.

Consider the nontrivial case of the hetero-associative memory where the stored
patterns are linearly independent. We can decompose RN into two subspaces V;
and V2, where V7 is the vector space spanned by the stored patterns and Vj is

normal to Vi, i.e.

RN = vieV,, (4.23)
Vi = span{Al AZ B! B?}, (4.24)
Vs = {ylx -y=0,vx€ Vi}, (4.25)

where @ means direct sum of the vector spaces. We now define a reciprocal basis

B, = {al,aZ, bl b2} for V,, such that

al Al = &, (4.26)
b .B = &, (4.27)
al.Bl = b'.AJ (4.28)
=0, ij=12 (4.29)
Let 3, = {e®, €5, .. ,eN} C V3 be an orthonormal basis for Vg; then
B = BUp
= {a',a%,b!,b?% €% .- e} (4.30)

forms a basis for space RN. Thus, any pattern in X and X’ can be expressed in

terms of the basis 3. Let

X = ayal + ayb! + aza? + asb? + ase® + -+ - + ayel (4.31)
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and

X' = fra + B:b + fsa® + Bb% 4 Bse® + - + Brel. (4.32)

It is shown in the appendix that the dynamic equations (Eq. 4.20 to 21) for X and

X’ can be written in the vector space RN as

dx,-
and
dm: ! 1 2
7{ = —‘Ti + g(alBi + Q3B'~ ) (434)

It is also shown in the Appendix that, by using Eq. 4.32 and 4.33, the dynamic
equations can be further transformed into a set of 2N equations in terms of the coef-
ficients of the 3 basis. However, among these 2N equations, only the four equations
of a1, as, B2, and B4 are coupled together, while the equations for all other coeffi-
cients are decoupled, and they are functions of these four variables. Therefore, the
dynamic behaviors of the system are completely governed by oy, a3, £2, and 8;. We
need only inspect the dynamic equations of these four variables. The four equations

are written in the following

day i 1 . 1 2
- = -+ Z Aig(ﬂzA; + B4 A;), (4.35)
das N 2 1 2
7{— = —Q3 + Z Aig(ﬁzA,' + ﬂ4Ai )7 (436)
dp, AN . 2
o = -2 + Z Big(a1B; + a3B;), (4.37)
dBs AN 1 2
T —fB. + Z Big(a1B; + a3B;), (4.38)

where Al is the light amplitude of the ith pixel of pattern Aj, A? is the light
amplitude of the ith pixel of pattern Az, etc. It can be seen in Eq. 4.36 that o
is affected by B3, and B4, while B, and B, are in turn affected by a; in Eq. 4.38

and 4.39. Similarly, a3 and Ba, B4 also affect each other in the same way. Thus,
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mathematically, the four variables form a feedback loop. Eq. 4.36 states that the
driving force for a; is proportional to the product of each pixel of the stored pattern
A} and the corresponding feedback signal after thresholding g(8,A}! + BsA?), and
summed over all pixels. The first term of the arguments of the thresholding function
g(z) represents the contribution by the pixel A; and its associated pattern B; (since
3, is proportional to the projection of X along B1). If X has a large projection along
B; (i.e., B, is large), then this term is large and it drives the system toward the
state of increasing ;. The second term in the argument represents the contribution
by the associated pair Ag <« By through the overlaps between A and Aj. If state
X has a large projection along Bz (i.e. B4 is large), and the stored pattern Aj
overlaps with Aj at the pixel z (i.e., both A} and A? are not zero), then this term
represents a force that also drives the system toward increasing a;. The overall
effect of these two terms is to drive the system toward the state Aj. In reality, if
the interconnection strength between the associated patterns is strong and if the
input has strong correlation with the associated pattern, then the system indeed
converges to that stored state. Therefore, the mathematical model matches well
with the optical system.

Consider first the simple case where the patterns A! « A2 have no overlaps
and B! — B2 have no overlaps. Consider the dynamic equation for e;. Each term
of the summation has value only when A} # 0 and g(z) # 0. But since Al and
A2 have no overlaps, A? = 0 at the pixel positions where A} # 0; i.e., A? has no

contributions to the summation term. Thus, Equation 4.36 can be simplified to
N
—_=—a + ZA,lg(ﬂ2A,1) (4.39)

Similarly, the other three equations can be simplified to

dgs

N
= g+ Y Blg(eB)), (4.40)
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dag LA 2 ,

—‘E' = '_CY3+ZA'g(ﬂ4Al), (4.41)
dfy LA 2

—C-lt_ = _ﬁ2 + E Bzg(agB! ). (4.42)

We see that the dynamics are governed by two set of equations, where the first
set (Eq. 4.40 and 4.41) describes the dynamics of the A! « B! pair, and the other
set decribes the dynamics of the A2 « B2 pair. The two sets are un-coupled. Thus,
the dynamics of the two pairs are independent of each other. For this reason, it is
enough to investigate the dynamics of one pair, e.g. Al « Bl. We define the new

variables a; = u, f; = v, and let
N
>_Aig(BAl) = f(v), (4.43)
N
>_Blg(B) = h{u). (4.44)

Then, the dynamic equations for the A « B! pair become

du
Et- = —-u-+ f(v), (4'45)
dv

We now use the phase diagram in (u,v) space to illustrate the dynamics of the
loop. By definition, h(u) is a linear combination of neural functions under different
magnifications. Since g(z) is positive and symmetric with respect to the z-axis,
hence h{u) is always positive and symmetric with respect to the u-axis. Fig. 4.19(a)
shows one h(u) curve in (u,v) phase space. In the figure, the dashed curves represent
components of h(u), Blg(a;B}), as defined in Eq. 4.45. The solid curve represents
the total value of A(u). It is seen that the region above the curve h(u) is where
v > h(u). By Eq. 4.46 , & < 0. Hence the loop in this region tends to move down

toward the k(u) curve. On the other hand, the region below k(u) is where v < h(u);

thus £ > 0, and thus the state in this region tends to move up toward k(u). The
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(a)

u > f(v)

(b) = orrr T

Figure 4.19: The Driving Forces for the Stored Images. (a) The driving force for

the pattern B;. (b) The driving force for the pattern A;.
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B2 AN

el N

Figure 4.20: The Phase Diagram of the Stored Pair A? & B,

flows of the states are shown by the arrows in the figure. Similarly, the dynamics
of Eq. 4.47 is shown in Fig. 4.19(b). The two diagrams are combined in the same
phase space of (u,v) as shown in Fig. 4.20.

We see that there are three intersections: P, @), and R. The point @) is a saddle
point where the loop always moves away from this position. The points P and R
are stable positions where the loop converges to either one of them. The initial
conditions determine which point the loop will converge to. By Eq. 4.32, the initial
values of u (i.e., ;) are set by the projection of the input X on al, which in turn is
proportional to the correlation of the input with the stored pattern Al. Similarly,

the initia] values of v (i.e., B;) are set by the correlation of the input X' with the
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Figure 4.21: Ths Phase Diagram at the Low Gain Condition

stored pattern B!. The higher the initial values of u and v, the more likely it is
that the loop converges to R. On the other hand, if the initial values of u and v are
too small, then the loop will converge to P, where it dies out.

When either the neuron gain or the diffraction efliciency of the interconnection
gratings is too low, the two curves f(v) and h(u) have only one intersection point at
the origin P. This is shown in Fig. 4.21. It is seen that in this case the loop always
dies out.

To find the steady state of the loop, we apply Eq. 4.34 and 4.35. Thus, setting

4

<, = 0, we obtain

z; = g(BAl), (4.47)
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. = g(eB}). (4.48)

1

The above equations show that the stable state output of X is a pure function
of A, and the stable output of X’ is a pure state of Bl. It also shows that only
positions corresponding to the original stored pixels give output; this means that the
output pattern has the same shape as the stored pattern. Furthermore, the output
patterns in X and X’ are spatially separated. There is no mixing between the two
patterns. Thus, the associated pair Al « B! is correctly retrieved. Similarly, the
associated pair A2 « B2 can also be correctly retrieved by setting an appropriate
initial condition.

Up to this point , we have neglected possible overlap between the stored patterns.
Consider next the more general case where A* « A? and/or B! « B2 overlap. The
dynamic behavior of the system is described by the set of four coupled equations,
4.36 to 4.39. The dynamic behaviors of the system can be understood by using
similar technique as that used for the nonoverlapping case. By changing variables

in Equations 4.36 to 4.39, we obtain

du1

- = Tw + fi(vy,v2), (4.49)
% = —uz + folvi, v2), (4.50)
d_c;-)t—l. = —v; + hy(ug, up), (4.51)
% = gt by, ua), (4.52)

where u; = a;, u; = asz, v; = f,, and v, = f4, and
N
filvr,v2) = Y Ajg(vi A} 4 vAD), (4.53)
N
falvi,v) = > Alg(v A} 4 v, A7), (4.54)

N
hy(uis ug) = ZB}g(u,B}-{—uzB?), (4.55)
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N
ho(ui,u2) = > Blg(uiB} +uyB}). (4.56)

In general, we need 4-dimensional phase diagrams in (u1, vy, u2, v2) space to describe
the system dynamics. However, the system operation can be visualized by inspecting
the individual 2-D phase flow of each associated pattern. In the case of two pairs of
associative patterns, we use two 2-D phase diagrams with f;(vy,v2) < hy(us, uz) for
the Ay < Bj pair and f;(vy,v;) < ho(ug,u;) for the Ap < By pair. Let us first
inspect the effects of overlaps on the driving force functions f and h. By Equation
4.56, we see that the function hq(u;,u;) can be de-composed into two terms. One
has contributions from B} pixels that have no overlap with B?; the other one has
contributions from the pixé]s that B} and B? are overlapped; i.e.,
N : N
hi(ui,uz) = Y. Blg(wyB})+ Y Blg(waB} + uzB?Y). (4.57)
B2=0 B2#0

The second term of the above equation shows that the effect of the overlapped pixels
B? to hy(uy,up) is to change its slope. hj(uj,uz) is no longer a symmetrical function
of u;. Furthermore, h;(u;,u;) is not zero at the origin of the u;-axis; i.e.,

N
hl(ul7u2)|u1=0 = Z Btlg(u2Bz2)>
B2#0

# 0. (4.58)
The physical meaning of this equation is that even when the input pattern has no
components in By, there is still a driving force toward B;. The driving force comes
from the overlap between B; and B2 as well as the component of the input on
B,. We also noted that the additional contributions from the overlapped pixels
change the shape of the driving force. However, two things remain unchanged.
First, the driving force h is always positive. Hence, h remains positive everywhere.
Second, the asymptotic value of h remains the same as the nonoverlapping case.

This is because no matter how the overlap changes the shape of g(z), it has the
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Figure 4.22: Phase Diagram for One Pair of Patterns When the Two Stored Pairs

Have Overlaps.

same saturation value for large values of |z|. Consider the case where the stored
patterns have small overlap. As we start from the nonoverlapped case and increase
continuously the portion of overlapping, so will the neural functions g, and hence
the driving function h. However, we would expect these changes to be continuous.
Therefore, the overall effect of overlaps would change only the shape of the driving
function near the origin.

Fig. 4.22 shows the phase diagram for one associative pair. The dashed line rep-
resents the nonoverlapping case, while the solid line represents the overlapped case.

The figure shows that the minimal points of the functions h(u;,u2) and f(vy,v;)
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deviate from the origin. The functions are no longer symmetric with respect to the
u; and u, axes. The intersection points move from Py, Q,, and Ry, to P,, Q,, and
R;, respectively. We should note that the two curves in the figure correspond to
some specific values of u; and v,. The driving forces f;, f2, hy, and h, define 3-D
hyper-surfaces in the 4-D hyper-space. In general, the intersections for these four
hyper-surfaces are isolated points unless one of the surfaces is tangent to the others
at the intersection. However, as discussed in the previous paragraph, the distortion
of the phase diagram from the nonoverlapped case is continuous and small for small
overlaps. Hence, the total number of stable points remains four. The stable states
are near to those of the nonoverlapping case. Note that, by Equations 4.50 to 4.53,
the origin is still one of the stable states. The actual state where the system con-
verges depends on the neural gain and initial conditions. In what follows, we will
draw the phase diagrams for different system conditions to show their stable states
and how they are reached.

Consider the case where the Ay « Bj pair has strong interconnections (i.e., high
diffraction efficiencies in holograms) and the Az « B3 pair has week interconnection
strength. Suppose the loop gain is enough to sustain only one pair. Since the
A1 o Bj pair has stronger interconnections, we expect that under the low-gain
condition the loop can sustain only this pair, and the Az < B2 pair will die out.
The phase diagram corresponding to this condition is shown in Fig. 4.23. In the
figure, the stable state of the system is shown on separated 2-D cross sections of the
phase diagrams. Figure (a) shows the phase flow for the A; < Bj pair and (b) is for
the Aj & Bj pair. The effect of weak interconnections of the Az «— Bg pair is that
f2 and h, have low values. The result is that there is only one stable point in the
phase diagram, P,, which is very close to the origin. This means that only a weak
mixture of Az « Bg exists. On the other hand, stronger interconnection strength

of the A; < Bj pair means high values of f; and h;. The result is that there



(a)

(b)

Figure 4.23: Phase Diagram of the Two Associated Pairs. (a) Phase flow of

A; < B; (with strong interconnections). (b) Phase flow of Az < B2 (with weak

interconnections).
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are three intersection points P;, @;, and R;, with P; and R, as the stable points.
It is seen that the stable point P, for the A2 « Bg pair always exists as long as
A1 < Bj stays at Ry. This means that the total output consists of the A; « B,
pair plus a weak mixing from the As « B2 pair. As shown in Fig. 4.14(d), the
optical experiment confirms this prediction. Note that from the phase diagram in
order to reach the point R;, we should start from initial conditions that have large
uy or vy, or both. On the other hand, the initial values of u; and v, do not affect the
system convergence, because it always decays to the point P;. Note that the small
mixing output P, comes from the couplings through overlaps between A; < B;
and Ao < Ba. The less the overlap the smaller the mixing. The mixing can also be
reduced by reducing the neural gain such that P; is closer to the origin. However,
as the gain is reduced, so are f; and h;. As a result, the intersection point R,
disappears and the A; « Bj pair decays toward P;. Then the values of f; and A
are reducing through the coupling between the two pairs. This further reduces f;
and h;. This effect is fedback in the loop until finally both pairs decay to zero.

Next, we consider the case where the neural gain is high enough such that the
loop can also sustain the Ap « Bj pair. An optical experiment corresponding
to this condition was shown in Fig. 4.15. It was shown that the stable output for
A2 — Bj contains a weak mixture of A; « Bj1. As we increase the gain, A; < B,
becomes stronger. When the gain is high enough, the two pairs co-exist in the loop.
Then if we reduce the gain, the loop signals become weaker. When the gain is
reduced to below the minimal loop gain for A2 « Ba, Az « By dies out. But
A, & Bj stays latched. Thus, by changing the gain we can jump from one memory
to the other. This behavior is easily described by using our neural network model.
Consider the phase diagrams shown in Fig. 4.24. The figure shows that under
high gain conditions the Az < Bgz pair also has three intersection points in the

phase space, and the loop is driven to the stable point (P, R;) by a suitable initial
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Figure 4.24: Phase Diagram for the Loop with a High Gain.
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condition. The loop output is a mixed state of strong A2 <+ B3 and weak A; — Bj.
Note the importance of the initial conditions in determining the dynamics of the
loop. If, instead of starting from the point I;, we set the initial condition at Iy,
then the loop will converge to the point (R, R;). The output is a combination of
A; « Bj and Az — By with almost equal brightness. In reality, this occurs if we
use a flashlight as the input.

Considering the system at the stable state (P, R;) as is shown in Fig. 4.24. As
we increase the gain, the values of fj, ki, f2, and h, are also increased, and the
intersection points move away from the origin. When the gain reaches a certain
high level such that the point P, now becomes P and passes over the saddle point
Q. of Fig. 4.24, the loop is stable at the point (P, R;). However, the state P now is
so bright that the complete pattern of A; <« B; appears in the loop. Thus, both
pairs are locked in the loop. This condition is shown in Fig. 4.25. It is seen that the
point P is higher than the saddle point @ of the low gain loop. The output of the
optical loop corresponding to this condition was shown in Fig. 4.15(e), which indeed
confirms our prediction. Now if we decrease the gain, then the values of fi, hy, fs,
and h, as well as the loop signal decrease. When the gain is reduced to below the
minimal gain for the Az < Bg pair, this pair dies out. However, since the state P
was higher than the saddle-point @y, instead of decaying, the A; < Bj pair evolves
to the stable state R,. Thus A; < Bj stays locked in the loop. This condition is
illustrated in Fig. 4.26. The corresponding optical loop was shown in Fig. 4.15(f).
Again, the neural network model provides a reasonable description of dynamics of

the optical loop.
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Figure 4.25: Phase Diagram for the Loop with a Very High Gain (Increased from

that of Fig. 4.24).
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Figure 4.26: Phase Diagram for the Loop when the Gain is Decreased to that of
Fig. 4.23).
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4.5 Conclusion

In this chapter we have successfully implemented an optical loop that performs the
function of hetero-associative memory. We have also developed a neural network
model for the optical loop to describe its dynamics and the convergence properties.

The Vander Lugt correlator is modified to provide the means for storing associa-
tive memories. Planar Fourier-transform holograms are used for interconnecting the
associative patterns. The holograms are recorded by using one of the patterns as
the reference wave for recording the Fourier-transform pattern of the other pattern.
In operation, input of one pattern retrieves the other as the output. The problem of
degenerate reconstructions that are due to the shift invariant property of the Vander
Lugt correlator has been analyzed. Given this analysis we have derived two sets of
rules for designing sampling grids for associative memories. Under the sampling
conditions, all shifted degeneracies in the reconstructed patterns are blocked out by
the sampling masks; hence the shift-invariant property of the Vander Lugt correlator
is removed. Thus, the grating interconnections between each pair of the associative
pixels are unique, and the original patterns can be reconstructed correctly. Optical
experiments of associative memories for the sampled patterns have been performed
to illustrate the design principle.

We have used the sampled patterns in the optical associative-memory system
with feedback. The most interesting property of the optical loop is its dynamic
behaviors. The dynamic property of the loop is governed by the gain function and
initial conditions of the system. The gain required to sustain a memory in the
loop is in turn determined by the interconnection strengths between the associative
patterns, which is the diffraction efficiency of the holographic gratings. Once the
interconnection holograms are made, the convergence behavior can be controlled

only by setting suitable gain and initial external inputs.
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In the case of storing nonoverlapping patterns, we can always retrieve the original
patterns by presenting enough input of the stored patterns. The recalled patterns
are exactly the same as the stored patterns, although the light-intensity distributions
may be different. In the case of storing overlapping patterns, the output is always a
mixing pattern combining the retrieved patterns and the patterns with which it has
overlap. The way to reduce crosstalks is to reduce the gain to as small as possible
such that only one pair of associated patterns is locked in the loop. However, the
mixed output is not totally avoidable as long as the stored patterns have crosstalks.
This characteristics set the stofage limits of the optical loop.

We have developed a neural network model to analyze the convergence property
of the optical loop. In general, the dynamics of the system can be described by
the set of equations that describes the equation of motion of each neurons. In the
case of the 2N-neuron optical system, we have 2N nonlinear equations which are
coupled together through the interconnections. This is difficult to solve analytically,
because the number N is usually large ( at least 100 for one image). However, we
have shown that we can construct an N-dimensional vector space using each of the
stored patterns as one of the coordinates in the vector space. Any input pattern
(or the current state of the system) can then be represented using the basis of the
vector space, and the 2N dynamic equations are transformed into M equations,
where M is the number of stored patterns. The dynamic property of the system
then can be visualized by inspecting the phase flow in M-dimensional hyper-space
using a graphic method. The method enables us to see how the system converges
and where it converges to. If the stored patterns have no overlaps, the original
patterns can always be retrieved correctly. If there are overlaps, then the output
is always a mixed state of the stored patterns. The model shows that the gain
function, interconnection strengths, crosstalks between the stored patterns, and the

initial conditions are the factors that determine the dynamic behavior of the system.
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4.6 Appendix

Dynamic Equations for the Hetero-Associative Memory

This appendix will focus on the derivation of the dynamic equations for the
optical hetero-associative memory loop that has been implemented in this chapter.
The neural network model of the optical loop is shown in Fig. 4.17. For simplicity, in
what follows we assume that there are two pairs of associative patterns stored in the
system. However, the method and the results are applicable to more general cases.
Suppose that there are N neurons in each neural plane of X and X'’ layers. The
dynamic equations for each neuron were derived in Section 4.4. For convenience, we

re-write the equations here:

dz; N o .

—dT = —$,+g<2w”x]), z=1...N, (4-59)
I=1

dz! a

H o ag(fu) mton
Jj=1

where z; and z! are the output activities of the ith neuron in the X and X’ layers,
respectively. wj; is the holographic grating for connecting z’; to the input of the ith
neuron in X, and w;; is the holographic grating for connecting x; to the input of
the ith neuron in X’. The interconnections provide feedback signals for the loop. It

can be written in a matrix form; i.e.,

N
(Tuiet) = (W) (4.61)
j=1 i
By Equation 4.23, this signal is determined by the correlation between the current

state and the stored patterns, and can be written as

(wx') = [(4'B'T+A%B*T)X]

i 1

= [AI(BI X'y + A%(B?. X')] . (4.62)

By Equation 4.33, any pattern in X' can be expressed in terms of the § basis for

the RN vector space. Then, by using the orthonormal property (Egs. 4.27 to 4.30),
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we can further simplify the above equation. We obtain

(Zwu 7)) = (A + .A?) | (4.63)

1
Hence, the dynamic equations for neurons in layer X now become

dx,

=it g(ﬂ2A1 + 54,42) i=1...N. (4.64)

Similarly, the dynamic equations for layer X' can be written as
4

—C-l-ilz—arﬁ-}—g(alBil—{-ang), i=1...N. (4.65)

Now, since X can be expanded using the 3 basis, we may write
T, = (alel + a2e2 + -+ aNeN>_

_ (% aje{), (4.66)

where el = al, e2 = b1, €3 = a?, and e? = b2. Therefore, the dynamic equation
for z; can be expressed in terms of coefficients of the # basis. We obtain
N

% = - Sadra(Bal+A), =1 N )

Multiplying both sides by A} and sum over 7, the above equation becomes

ZAI()N:d"J z)— ZAI(Z% ,)+ZA1 (B2A3+ﬁ4A?), i=1...N.

(4.68)

Re-arranging the order of summations, we obtain
doy o 1. o] N ) \
Z di ( ) E aj (A + E Aig(ﬂ2Ai + ﬂ4A,~). (4.69)
J t

By applying the orthonormal relation of A - e (Eq. 4.27), we obtain final the form

of the dynamic equation as

N
L or+ 3 Alg(Bal + Bun?). (4.70)



Similarly, by multiplying Equation 4.68 by A% B!, B?, and e

, respectively, and

going through the same process, we obtain the dynamic equations for other compo-

nents as well:

da3
dt
da2
dt
dO(4
dt
dal
dt

N

—ag+ Y Atg(BaAl + fud?)
N

~a+ Y. Blg(BaAl + BuA2),
N

~au+ Y Blg(BaAl + BuA),

N
_a1+265g<ﬂ2A3+ﬂ4A:2>, l=5,6,...,N.

(4.71)

(4.72)

(4.73)

(4.74)

Next, starting from Equation 4.66, and going through similar procedures for neurons

in X’, we obtain dynamic equations as

sy

dt

dgs

dt
dfBs

dt
a8,

dt

dp;

dt

N

b+ 3 Alg(en B! + asBE),
N

-6, + ZB}g(alB,-l + asB
N

—&+Z£dm&+%ﬁ
N

__,34 + ZB?Q(O]B} + CY:;.B,-2

N
-G+ Z ef-g(alBil + agB,~2>, l

(4.75)
(4.76)
(4.77)
(4.78)

(4.79)

The above 2N equations determine the dynamic behavior of the system. However,

from Equations 4.71 and 4.72 it is seen that the driving forces for ¢; and a3 are only

functions of B; and B;. On the other hand, from Equations 4.77 and 4.79 it is seen

that the driving forces for B, and f4 are functions of only a; and a3. These four

coefficients are coupled together. Since these coefficients are proportional to the

projections of the system state on the stored patterns, the physical meaning of the

coupling is that the the system dynamics is determined by all the stored patterns

through the interconnections and feedback. We note that in the remaining (2N —4)
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equations, all other coeflicients are de-coupled. These coefficients are independent
of each other and the driving forces for each of them are functions of only o; and
as, or of 3; and 4. Physically, this means that they are in a open loop, and are
determined by the four coeflicients. In conclusion, the loop dynamics is completely
governed by a3, as, B2, and f4. As long as we solve the four coefficients, we obtain
a system state. The four equations were re-written as Equations 4.36 to 4.39. And
as shown in Section 4.4, they are the starting point for studying the convergence

property of the loop.
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Chapter 5
Photorefractive Holography for Associative

Memories

5.1 Introduction

The essential characteristics of the optical neural computers for associative mem-
ories have being discussed in Chapters 3 and 4. These include the capability of
retrieving stored information from a partial and/or distorted input, the discrimina-
tion capability to reject unfamiliar images, the stability of the memory states, and
the parameters that determine the dynamics of the system. However, before they
can be used in practical systems, there are three more properties that should be
addressed: the storage capacity of the memory, the size of the optical system, and
the adaptability of the memory. In this chapter we consider these three issues in
photorefractive holographic associative memories.

Based on the consideration of signal-to-noise ratio and the statistical property of
the Hopfield model, the total number of the memory states that can be stored in the
associative memory is shown to be M < N/(4InN) [1, 2], where N is the number of
neurons and M is the number of stored memories. As was described in Chapter 3,
N = 400 x 400 = 160,000 in our optical system. Thus, theoretically, the number of
images that can be stored in the system is approximately 3,300. Unfortunately, this
requires a large array of images at the input plane. As was described in Section 3.3,
the images are stored on Fourier-transform holograms. All the images are spatially
separated and arranged in a two-dimensional array for writing the holograms. Thus
3300 images require a 60 x 60 image array for the input. This is very difficult to

obtain directly. One way to do this is to reduce photographically the image array
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and to record them on a high-resolution plate using the photolithographic method,
then to use the plate as the input for recording the Fourier-transform holograms.
However, we have to add an image magnification/demagnification scheme into the
optical loop so that the resolution requirement at the neural plane does not exceed
the capability of the LCLV while the image magnification of the optical loop is kept
to unity. The alignment process of this optical system will become very tricky and
makes the system impractical. A better way of doing it is to use a multiple exposure
scheme so that the LCLV does not move during both the recording and recalling
steps. However, the diffraction efficiency of reconstructed images falls off quickly as
the number of multiple exposures increases. Therefore, multiple exposure can not
be applied directly. We present in this chapter a new method for recording multiply
exposed photorefractive volume holograms with improved diffraction efficiency to
overcome this problem.

The use of volume holograms for optical neural computers provides another ad-
vantage over planar holographic interconnections. Suppose we want to interconnect
N neurons in one neural plane to N neurons in the 6ther plane. The total num-
ber of interconnections required is N x N = N2, This requires an interconnection
medium having N? resolvable spots. If we use planar holograms, then we need a
holographic plate that has N resolving spots in one dimension. Suppose the linear
size of each resolvable spot is é; then the linear size of the plate is N§ and the area
is (IV6)?. Assume that we use a 4-F optical system with f-number equals to 1, then
the volume of the system is proportional to 4 Né x (N§)? = 4(N§)3. Now, if instead,
we use volume holograms to record the N? interconnections, then the number of
resolving spots in one dimension of the holographic medium requires only (N?2)'/3
pixels. This requires a linear size of N?/36. We also assume that the f-number of
the optical system is with the order of 1; then the volume of the system becomes

4(6)3N?. This volume is N times smaller than that of the planar holographic inter-
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connection architecture [3]. Usually N is a large number, e.g., 10,000; hence using
volume holographic interconnections can reduce the system volume by a huge factor.

The use of photorefractive crystals for holographic interconnections in optical
neural networks not only permits the storage of a very large number of interconnec-
tions per unit volume [4, 5,], but also makes feasible the implementation of learning
algorithms [6]. Based on the dynamic response characteristics of photorefractive
materials, the holograms previously recorded are reinforced or erased depending on
the new patterns they are exposed to. Thus, the most distinctive features of a set of
images will be extracted and recorded in the photorefractive holograms simply by
repeatedly exposing the crystal to the training samples. Furthermore, by applying
appropriate updating algorithms and exposure schemes, the photorefractive inter-
connections can be modified continuously so that the network responds to correct
input-output mappings [8]. In this chapter we consider applying the adaptability of
photorefractive crystals to increase the storage capacity of optical associative mem-
ories. Basic characteristics of the photorefractive effect and volume holographic
interconnections will be presented in the next section. The optimum scheme for
obtaining multiply exposed photorefractive holograms with increased storage and

improced diffraction efficiency will be presented in Section 5.3.

5.2 The Photorefractive Effect and Volume Holographic

Interconnections

The photorefractive effect is a phenomenon in which a photo-induced space charge
field and a corresponding refractive index change can be formed [9]. This effect
has been found in a variety of materials. In this chapter we consider the use of
SBN : Ce photorefractive crystals for holographic interconnections [4, 5, 6, 7].

The basic mechanism of the photorefractive effect is shown in Fig. 5.1.
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Figure 5.1: The Photorefractive Effect.
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As shown in the figure, under illumination of an interference pattern, the trap
sites in the crystal are ionized and electrons are excited to the conduction band (or
holes into the valence band, depending on the specific material), leaving positively
ionized donors. These electrons move to the regions where the light intensity is
low through either diffusion or drift process. In the dark region, these electrons are
re-trapped to produce a negative stored charge locally. Thus, a space-charge field
corresponding to the optical pattern is built up in the crystal. The space charge field
then modulates the refractive index of the crystal through the linear electro-optic
effect. As a result, a phase hologram is formed.

We now consider using photorefractive gratings for interconnections in optical
neural networks. The basic architecture of the optical system is shown in Fig. 5.2. As
shown in the figure, the difference of this architecture from that of the planar holo-
graphic interconnections is the use of volume holograms. The crystal that we use in
our experiment has a thickness of 3 mm, while the fringe spacing of the interference
patterns is of the order of yum. Thus, the hologram is a three dimensional system
of layers corresponding to a periodic variation of refractive index. Information is
distributed and stored in the entire volume of the crystal. In principle, the number
of gratings that we can store in a crystal is proportional to the volume divided by
the wavelength cubed. We use the 514 nm line of an argon laser in our experiments.
This implies that with an appropriate arrangement of the interconnected neurons,
as many as 10'° independent interconnections may be stored in a single crystal.
This is three orders of magnitude higher than that of planar holograms.

In what follows we consider the problem of how to design sampling grids for
volume interconnections. We consider the case shown in Fig. 5.2. Suppose that two
neurons a and b are associated with each other and that the holographic intercon-
nection is recorded in the photorefractive crystal. The training process is similar to

that of planar holographic interconnections (Fig. 2.13.), except that now the grating
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is recorded in a volume. Let wave vector k, represent the plane wave originating

from the neuron a and k; represent the plane wave originating from the neuron b;

then, the grating formed by these two waves has a direction given by the vector

K=k -k, (5.1)

where k, = ky = 2/\1 and K = 2%, X is the light wavelength and A is the grating

spacing. The relationship between A and A is

2Asind = —, (5.2)

S|>

where 26 is the angle between the writing beams and n is the refractive index of the
crystal. Eq. 5.2 is called the Bragg condition since it is similar to the Bragg condition
of X-ray diffraction in solids. This is the greatest distinction between a volume
and a planar grating. In reconstructing a wave, the diffracted light amplitude is a
maximum only when the reading beam satisfies the Bragg condition. If the reading
beam deviates from the Bragg angle, the diffraction efficiency falls off inversely
proportional to the angle deviation squared. For the unslanted gratings, the angle

resolution for the half-power diffraction is found to be

A01/2 ~ E'd—, (53)

where d is the crystal thickness [8] . In our system A =~ um and d = 3 mm; thus
Aby/; = 0.17 mrad. In our experiments where we use a Fourier-transform lens with
a focal length of 25 cm, the above angular deviation corresponds to a displacement
of 42.5 pm in the input neural plane. This means that as long as other neurons
are separated from neuron a by more than 42.5 pum, there is no read-out from
the grating K. Thus, this grating specifies a unique interconnection between a
and b. This implies that volume interconnections are not shift-invariant. However,

the Bragg condition is valid only in a direction parallel to the grating direction
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K. Tt does not hold in the direction perpendicular to K. In other words, volume
interconnections are shift-invariant in the perpendicular direction [9].

The above characteristics of volume interconnections can be shown using the
k-space representation [4], as shown in Fig. 5.3. In the figure, the vector k, is
drawn with its origin at the center of the sphere, with magnitude equal to % and
in the direction of that of the plane wave from the neuron a. Similarly, the vector
k, represents the plane wave originating from neuron b. The grating vector K is
drawn as a vector with its origin at the tip of k, and its end at the tip of k;, and
its magnitude equal to % Since any k, and k; that satisfy this condition (viz.,
the Bragg condition) give a reconstructable wave, the tips of these vectors form
two circles on the k-sphere, as shown in Fig. 5.3(b). Now suppose the reading beam
comes from a neuron that is shifted away from neuron a in a direction perpendicular
to that of the grating vector K. In k-space this corresponds to a wave vector k; with
its tip lying on the bottom circle. As shown in Fig. 5.3(c), the vectorial sum of k;
and K still lies on the upper grating plane. Thus, the diffracted beam goes to neuron
¢ which is in a position shifted away from neuron b in a direction perpendicular to
K. Therefore, volbume interconnections have the same degeneracy as that of planar
interconnections. However, if the reading beam comes from a neuron which is shifted
in the direction of K, then the vectorial sum of k; and K is not on the upper circle.
This is shown in Fig. 5.3(d). The Bragg condition is no longer satisfied and there is
no diffracted wave. Thus, we do not need sampling grids in this direction as long as
the separation between neurons is sufficiently large, such that the angle between the
directions of the waves from these neurons is larger than the angular resolution given
by Equ.(5.3). In summary, a sampling grid for photorefractive interconnection can
be obtained from that for the planar interconnection, simply by adding all the shifted

versions along the grating vectors with spacings larger than the angular resolution

given by Equ.(5.3). Fig. 5.4 shows & sampling. In the figure (a) is the sampling grids
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for planar holographic interconnections (Fig. 4.5) and (b) is for volume holograms.

As shown in the figure, (b) is obtained by adding all the shifted versions of (a) along

the K direction.

5.3 Photorefractive Associative Memories with Maximum

Storage and Maximum Efficiency

As was described in Section 5.1, the multiple exposure technique provides a pos-
sibility for obtaining maximum st.orage capacity in an optical associative memory.
The problem is that writing a new hologram in a photorefractive crystal causes the
charge patterns of previous holograms to decay exponentially in time. The grat-
ing is erased and the diffraction efficiency is decreased as the number of exposure
increases. Finally, the diffracted light will become too weak to detect. Thus, the
decay of the gratings limits the number of exposures that can be recorded in a
photorefractive crystal, which in turn limits the storage capacity of the associative
memory. We present in this section a copying method that allows us to recover the
diffraction efficiency of each hologram in an SBN crystal to that obtainable from a
single-exposure.

The temporal behavior of photorefractive holograms may be described in the
simplest case by a growth in the amplitude of the space charge density proportional
to (1—e~**) during recording, and a decay proportional to e’ during the recording
of successive holograms. [ is the recording intensity and « depends on crystal
parameters (e.g., doping concentration, orientation, etc.). The amplitude of the

space charge corresponding to the m** hologram when M holograms are recorded is

M
Ay = Ag(l — e *™Yexp(— D alty), (5.4)

m'=m+1

where Ay is the saturation amplitude and t,, is the recording time of the m®* holo-

gram. If we record M holograms and require A, = An41 for all m, then it can be
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shown [7] that the exposure schedule for each hologram is given by

t = %ln ((—m_m:T)) m> 1, (5.5)

We have been able to record as many as 111 holograms in SBN using this scheme.
Fig. 5.5 shows reconstructed images from the hologram. In this experiment, the
holograms are recorded between a reference plane wave and a series of signal plane
waves incident at different angles. Thus, these holograms can be read out in one
time by the reference wave. It is seen that the uniformity of the holograms is good.
However, the diffraction efficiency of the holograms decreases very much. It can be

shown that the amplitude of the space charge is
An = — m=1---, M, (5.6)

where Ay is the saturation amplitude for the single grating. The experimental result
of a multiple exposure hologram is shown in Fig. 5.6. We used the exposure schedule
given by Eq. 5.5. The diffracted light read out from the hologram is detected by a
CCD camera and is shown on an oscilloscope. It can be seen that the diffraction
efficiency of the double-exposure hologram is %, and the triple-exposure hologram is
% that of the saturation diffraction efficiency of a single hologram. As discussed in
Section 5.1,in order to achieve maximal storage capacity of the optical associative
memory, we may need to make hundreds of exposures in a recording medium. The
diffraction efficiency will then drop by a factor of more than 10%. The signal might be
too weak to be detected by optical neurons. In the following we present a method for
increasing the diffraction efficiency of multiply exposed photorefractive holograms
by periodic copying [10, 11].

The architecture of the system is shown in Fig. 5.7 and the photograph of the
optical setup is shown in Fig. 5.8. We first describe the operation of the system.

A series of holograms between a reference plane wave and a set of signal beams is
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Figure 5.5: The Reconstructed Image of 111 Volume Gratings.
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(b)

(c)

Figure 5.6: The Interconnection Strength of a Multiply Exposed Hologram in an

SBN Crystal. (a) Single exposure. (b) Double exposure. (c) Triple exposure.
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Figure 5.7: Schematic Diagram for the Periodic Refreshing Multiple Exposure Ex-

periment.
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Figure 5.8: Photograph of the Setup for the Periodic Refreshing Multiple-Exposure

Experiment.
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recorded in an SBN : Ce crystal. Shutters S4 and S5 are closed during this opera-
tion. In the experiment the signal beams are plane waves incident at different angles
by rotating the mirror RM. While the use of plane waves as signal beams allows us
to monitor the diffraction efficiency of the recorded holograms easily, the analysis
and results apply equally well to arbitrary signal beams. The diffraction efficiency
of the recorded holograms is monitored continuously, using the phase conjugate of
the reference beam. The path of the diffracted conjugate wave to an output CCD is
shown as a dashed line in the figure. A self-pumped BaT'iO3 phase-conjugate mir-
ror is used to generate the conjugate wave. When the diffraction efficiency of the
photorefractive holograms begins to be unacceptably low, the recorded holograms
are copied to a second holographic medium, which in our experiment is a ther-
moplastic plate. The thermoplastic plate hologram is formed using the diffracted
phase-conjugate reference wave and a back-traveling reference wave. Shutters S; and
Sy are closed. The hologram written on the plate is copied back to the SBN with
the original total intensities in the signal and reference beams. The original reference
beam and the wave diffracted from the thermoplastic by the counter-propagating
wave from 5S4 are used to create this hologram. Shutters S; and Ss are closed during
this step. The result is a rejuvenated hologram of each of the signal beams in the
SBN. The intensity diffraction efficiency of each hologram is now proportional to
%, which is M times improved as compared to the previous ﬁlf, but is M times
less than that of a single hologram. The reduction factor of 5; from that of a single
hologram is inherent since in copying back from the thermoplastic plate, the total
intensity in the signal beam is shared by M signals. Thus, the modulation depth
of each signal is reduced by a factor of 71-1‘7 and the intensity diffraction efficiency
of each hologram is '1\14' However, the total diffraction efficiency, summed over M

holograms, is restored to its saturation value. Therefore, this copying scheme al-

lows us to record information in a multiple exposure hologram with the maximum
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diffraction efficiency that can be obtained in a single exposure.

We now describe how to increase the storage capacity in a photorefractive holo-
graphic associative memory using the system of Fig. 5.7. We begin by recording
a series of M; holograms on the SBN following the schedule of Eq. 5.5. The am-

plitude of space charge of each hologram is ML, of the saturation amplitude and

the diffraction efficiency in intensity is ﬁlg at this point, where 79 is the satura-
tion diffraction efficiency for a single hologram. We copy the summed holograms
in the SBN to the thermoplastic plate and back to the SBN using the procedure
described in the previous paragraph. The amplitude of each hologram is then ﬁl-.
We begin recording another series of new holograms on the SBN. Since this time
the starting amplitude of the M; holograms is not at the saturation level Ag, the

exposure schedule is different from that of the first M; exposures. It can be shown

[11] that

1 14 (m—1)x
t = Zjlﬂ(m) m>1, (57)

where x = -’%g-)- represents the amplitude level of the starting hologram. In this case

X = 7171 We make M, exposures in the second cycle. At the end of the second

cycle the amplitude of the holograms recorded in the SBN is

X
= e —-1 ... M M .
Am Aol ﬂ'zX m=i, , Wy + 2 (5 8)

where Ag is the saturation amplitude of the single grating. We select M, such
that the total signal diffracted from the M; + M; holograms in the SBN to the
thermoplastic plate equals that of the M; holograms in the first cycle, i.e., =
Physically, this means that we set a minimum signal level corresponding to the
sensitivity of optical neurons. Once the total signal decreases to this level, we make
a refreshening copy before recording more memories. The condition for selecting M,
is

(My+ M) 1

L+ M)~ M (5.9)
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After M, exposures we copy to the thermoplastic, then back to the SBN and again
make new holograms until the total diffraction efficiency falls to fl"—l once more. From
here on the process may proceed indefinitely. Each time M = %~ M, holograms are
copied back and forth, the diffraction efficiency for each hologram is restored to 4.

In fact, there is one constraint on the allowable number of refreshing cycles.
In order to copy from one hologram to another, it must be possible to diffract
enough energy from the source hologram to record the destination hologram. As
the number of recording cycle increases, the diffraction efficiency of each of the
photorefractive holograms decays. Furthermore, the total energy which may be
diffracted from a photorefractive hologram is limited by the decay of the hologram
on readout. This sets an upper limit for the number of refreshening cycles unless
we add another beam amplification mechanism [12] between the two holographic
media. In our experiment, the energy diffracted from the SBN is ample for recording
the thermoplastic hologram. The energy that may be diffracted back from the
thermoplastic is also relatively high, so no trouble is encountered in the copying
processes.

Fig. 5.9 shows experimental results for recording 25 holograms in a SBN crys-
tal. In the figure, the solid line represents the theoretical Ml—z decay in the diffraction
efficiency per hologram when the exposure schedule Eq. 5.5 is followed. The *’s are
experimental data points for the mean diffracted power of the stored holograms.
The dashed line shows the theoretical path followed by the diffraction efficiency
per hologram with periodic copying when M; = 5. Thermoplastic holograms were
made after 5, 10, and 15 exposures. The #’s represent the experimental data points.
The dotted line corresponds to the theoretical decrease in diffraction efficiency pro-
portional to ;. Both experimental results agree well with theoretical predictions.
Fig. 5.10 shows the image of 15 holograms reconstructed from the SBN before and

after the refreshing cycle. The 15 images are monitored by a CCD camera. The
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Figure 5.9: Experimental Results of the Multiply Exposed hologram.
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(b)

Figure 5.10: Experimental Results of the Multiply Exposed hologram. (a) Before

refreshing. (b) After refreshing.



-195-

CCD signals are arranged on three video lines on a digital oscilloscope. Fig. 5.11
shows the amplitude of these holograms. It is seen that the holograms are not very
uniform. The nonuniformity is partly due to accumulation of scattered noise in the
SBN through repeated copying. The loss of image fidelity sets another limit on the

total number of exposures that can be made.

5.4 Conclusion

In this chapter we have presented the use of photorefractive crystals in optical as-
sociative memories. The designing rules for sampling grids for volume holographic
interconnections are presented. While volume holographic interconnections are not
shift invariant along the grating direction because of the Bragg condition, it is shift-
invariant along the perpendicular direction. The sampling grids for this case can
be obtained by adding all the shifted versions of the planar holographic intercon-
nections along the grating direction. An exposure scheme for a multiple-exposed
photorefractive hologram is presented. This allows the hologram to have the same
diffraction efficiency as that using a single hologram for storing the same informa-
tion. The basic idea of the scheme is to use two holographic media to construct
separate memories which periodically refreshes each other. This scheme allows the

optical associative memory to increase storage capacity and diffraction efficiency.
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(b)

Figure 5.11: Amplitudes of the Reconstructed Images from the Refreshed Hologram

of Fig. 5.10. Each line corresponds to one line of the image.
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