
Distributed Control Theory for Biological and
Cyberphysical Systems

Thesis by
Jing Shuang (Lisa) Li

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2024
Defended June 26, 2023

ii

© 2024

Jing Shuang (Lisa) Li
ORCID: 0000-0003-4931-8709

All rights reserved

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor, John Doyle, for inspiring and supporting me, and
for the incredible level of independence he has granted me in my research endeavors.

I would like to thank past and present students of Doyle group for their support
and collaboration. Firstly, I would like to thank Dimitar Ho, who independently
proposed the topic for and guided me through my very first academic paper. Without
his initial guidance, I suspect that my early PhD years would have been much
rockier. I would like to thank Anish Sarma for skillfully helping me navigate the
murky waters of neuroscience, particularly when I was young and naive about the
complexities of the field. I would like to thank Fangzhou Xiao for providing me with
many pieces of sage advice, and for being a tremendously positive presence (and
a fun collaborator). I would also like to thank Jiexin Chen, SooJean Han, Mandy
Huo, and Jing Yu. Though we never quite worked together, I have thoroughly
enjoyed our many conversations about research, academia, and life in general. I
particularly appreciated Mandy’s cheerful disposition, unconventional insights, and
rich knowledge of boba spots. Finally, I would like to thank Carmen Amo Alonso,
with whom I first learned how to write a journal paper. We have collaborated for
the majority of my PhD years, and it has been delightful to know and work with her.

Outside the group, I would like to thank Bing Brunton and Lili Karashchuk for
introducing me to the exciting world of insect motor control, and for our intellec-
tually stimulating collaboration and conversations. I would also like to thank, in
alphabetical order, James Anderson, Steve Brunton, Peter Lee, Steven Low, Nikolai
Matni, Richard Murray, Terry Sejnowski, Shih-Hao Tseng, and Adam Wierman.

Perhaps most importantly, I would like to thank my friends (you know who you are)
for their company and conversation throughout my PhD. In particular, I would like
to thank my partner and best friend, whose presence by my side has been a constant
source of motivation and comfort, and who now knows more about distributed
control theory than he ever expected to. I would also like to thank my parents, who
are the best parents on the planet — I am truly fortunate to be their child.

Lastly, I would like to mention that I failed my PhD preliminary exams on the first
try, but made it through the rest of the PhD nevertheless (some might even say I did
a good job). So I would like to thank you, dear reader, for taking an interest in this
thesis, and implore you to never get too discouraged by life’s inevitable setbacks!

iv

ABSTRACT

In engineering, control theory plays a crucial role in the design and analysis of
robust and efficient systems — including robots, spacecraft, and power grids. In
biology, control theory underlies sensorimotor and locomotion models of organisms.
Distributed control is particularly useful for large-scale cyber-physical systems and
also in biological systems, where communication is more limited than in engineered
counterparts. In this thesis, I provide a number of theoretical advances in distributed
control theory on the relationship between communication within controllers vs.
closed-loop behavior in both the online and offline settings, on the application of
distributed methods to robust control, and on necessarily information flow within
controllers subject to communication constraints. I then discuss the applications of
these theoretical advances to the primate cortex, as well as to sensorimotor models
of drosophila locomotion. Overall, the contributions outlined in this thesis facilitate
modeling techniques and insights that were previously unavailable.

v

PUBLISHED CONTENT AND CONTRIBUTIONS

[1] J. S. Li and C. Amo Alonso, “Global Performance Guarantees for Localized
Model Predictive Control,” Submitted to IEEE Open Journal of Control
Systems, 2023. [Online]. Available: https://arxiv.org/abs/2303.
11264,
J. S. Li led problem formulation, research, analysis, and manuscript writing.

[2] J. S. Li, A. A. Sarma, T. J. Sejnowski, and J. C. Doyle, “Internal feedback
in the cortical perception-action loop enables fast and accurate behavior,”
Submitted to Proceedings of the National Academy of Sciences, 2023. [On-
line]. Available: https://arxiv.org/abs/2211.05922,
J. S. Li co-led problem formulation, research, analysis, and manuscript writ-
ing.

[3] J. S. Li, “Internal Feedback in Biological Control: Locality and System
Level Synthesis,” in IEEE American Control Conference, 2022, pp. 474–
479. doi: 10.23919/ACC53348.2022.9867769. [Online]. Available:
http://arxiv.org/abs/2109.11757,
J. S. Li performed problem formulation, research, analysis, and manuscript
writing.

[4] J. S. Li and J. C. Doyle, “Distributed Robust Control for Systems with
Structured Uncertainties,” in IEEE Conference on Decision and Control,
2022, pp. 1702–1707. doi: 10.1109/CDC51059.2022.9992622. [Online].
Available: http://arxiv.org/abs/2204.02493,
J. S. Li led problem formulation, research, analysis, and manuscript writing.

[5] J. Stenberg, J. S. Li, A. A. Sarma, and J. C. Doyle, “Internal Feedback in Bio-
logical Control: Diversity, Delays, and Standard Theory,” in IEEE American
Control Conference, 2022, pp. 462–467. doi: 10.23919/ACC53348.2022.
9867794. [Online]. Available: http://arxiv.org/abs/2109.11752,
J. S. Li contributed to problem formulation, research, analysis, and manuscript
writing as a co-mentor.

[6] J. S. Li, C. Amo Alonso, and J. C. Doyle, “Frontiers in Scalable Distributed
Control: SLS, MPC, and beyond,” in IEEE American Control Conference,
2021, pp. 2720–2725. doi: 10.23919/ACC50511.2021.9483130. [On-
line]. Available: https://arxiv.org/abs/2010.01292,
J. S. Li led problem formulation, research, analysis, and manuscript writing.

[7] J. S. Li and D. Ho, “Separating Controller Design from Closed-Loop Design:
A New Perspective on System-Level Controller Synthesis,” in IEEE Ameri-
can Control Conference, 2020, pp. 3529–3534. doi: 10.23919/ACC45564.
2020.9147736. [Online]. Available: http://arxiv.org/abs/2006.
05040,
J. S. Li led research, analysis, and manuscript writing.

vi

TABLE OF CONTENTS

Acknowledgements . iii
Abstract . iv
Published Content and Contributions . v
Table of Contents . vi
List of Illustrations . viii
List of Tables . xviii
Chapter I: Introduction . 1

1.1 Why Biology? . 2
1.2 Why Control Theory? . 4

Chapter II: Technical Setup . 6
2.1 Notation and Abbreviations . 6
2.2 System Level Synthesis . 7

Chapter III: Closed-Loop vs. Controller Specifications 10
3.1 Introduction . 10
3.2 Implementation Matrices . 11
3.3 Stability . 16
3.4 Approximate Implementations . 17
3.5 Closed-Loop vs. Controller Constraints 19
3.6 Simulations . 21
3.7 Conclusions and Future Work . 22

Chapter IV: Distributed Structured Robust Control 23
4.1 Introduction . 23
4.2 System Level Synthesis for Linear Control Problems 24
4.3 Separability and Computation . 26
4.4 Robust Stability . 29
4.5 Simulations . 36
4.6 Conclusions and Future Work . 37

Chapter V: Efficient Distributed Model Predictive Control 39
5.1 Introduction . 40
5.2 Localized MPC . 42
5.3 Global Performance of Localized MPC 45
5.4 Algorithmic Implementation of Optimal Locality Selection 54
5.5 Simulations . 57
5.6 Efficient Two-Layer MPC . 62
5.7 Conclusions and Future Work . 67

Chapter VI: Internal Feedback in Primate Cortex 69
6.1 Introduction . 70
6.2 Task Model and Performance . 73
6.3 Sensing and Actuation Delay . 75

vii

6.4 Functional Localization . 84
6.5 Communication Constraints and Distributed Sensorimotor Circuits . 88
6.6 Speed-Accuracy Trade-Offs . 93
6.7 Discussion and Interpretation of Results 99
6.8 Conclusions and Future Work . 107

Chapter VII: A Layered Model of Drosophila Locomotion 109
7.1 Introduction . 109
7.2 End-to-End Learning and Control Model 111
7.3 Realistic Model-Generated Walking 116
7.4 Dynamic Perturbations and Motor Delay 117
7.5 Discussion and Interpretation of Results 118
7.6 Conclusions and Future Work . 120

Bibliography . 126

viii

LIST OF ILLUSTRATIONS

Number Page
2.1 Implementation of a state feedback system level synthesis controller.

Φ𝑥 andΦ𝑢 are the closed-loop responses from exogeneous disturbance
to state and input, respectively. 9

3.1 Implementation of state feedback controller. 11
4.1 Feedback interconnection of transfer matrix G and uncertainty ∆. G

is the nominal closed-loop response from disturbance w to regulated
output z. 30

4.2 D-Φ iteration results for 𝜈,L1, andL∞ robust stability. Algorithm 4.1
(labelled "Alg. 1") and Algorithm 4.2 (labelled "Alg. 2") perform
similarly. The controller with maximum stability margin for 𝜈 is
found in 18 iterations for both algorithms; for L1, in 30 iterations for
Algorithm 4.1 and 35 iterations for Algorithm 4.2; for L∞, for L1,
in 25 iterations for Algorithm 4.1 and 35 iterations for Algorithm 4.2. 37

5.1 Example system with three dynamically coupled subsystems, two of
which are actuated. 52

5.2 Runtime of matrix construction (step 1, green) and rank determina-
tion (step 3, pink) of Algorithm 5.2 vs. network size and horizon
length. Parallelized (i.e. per-subsystem) runtimes are shown for ma-
trix construction. The algorithm was run for grids containing 16, 25,
36, 64, and 121 subsystems. For each point, we run the algorithm on
five different systems, and plot the average and standard deviation —
here, the standard deviation is so small that it is barely visible. As
expected, the rank determination step dominates total runtime, while
the matrix construction step is extremely fast. 59

ix

5.3 Optimal locality size as a function of various parameters. Each
point represents the average over five different systems; standard
deviations are shown by the fill area. (Left) Optimal locality size
vs. actuation density. The two are inversely correlated. (Center)
Optimal locality size vs. network size for 60% actuation (pink), 80%
actuation (blue), and 100% actuation (green). For 60% and 80%
actuation, optimal locality size roughly increases with network size.
For 100% actuation, the optimal locality size is always 1, independent
of network size. (Right) Optimal locality size vs. predictive horizon
length for 60% actuation (pink), 80% actuation (blue), and 100%
actuation (green). For 60% and 80% actuation, optimal locality size
increases with horizon size up until 𝑇 = 10, then stays constant
afterward. For 100% actuation, the optimal locality size is always 1. . 61

5.4 Topology of example system. We will plot the time trajectories of
states, disturbances, and input for the red square subsystem. 62

5.5 Architecture of example system with optimal power flow solver, sub-
controllers, and subsystems. For ease of visualization, we depict a
simple 4-subsystem topology instead of the 25-subsystem mesh we’ll
be using. 63

5.6 Layered sub-controller for the 𝑖th subsystem. Horizontal dotted lines
indicate communication with neighboring sub-controllers. 64

5.7 Performance of centralized LQR, centralized MPC, and distributed
two-layer controller. The phase setpoint is shown by the dotted
line; a setpoint change occurs at 𝑡 = 2. The LQR controller loses
stability, resulting in large oscillations in phase and frequency, which
are omitted from the plot after around 𝑡 = 4; the associated actuation
engages in oscillations as well, which are shown on the plot. The
MPC and two-layer controllers perform similarly. 66

x

6.1 Single-loop model of sensorimotor control. The organism receives
information from the external environment via sensors, communi-
cates this information through the body, computes actions, then acts
on the environment; this forms the external feedback loop, or single
loop model (black). Internal signals that flow opposite to the direc-
tion of the external feedback loop are classified as internal feedback
(pink). Thus, the internal feedback is counterdirectional. Internal
feedback also includes lateral interactions within or between areas
(not shown). 70

6.2 A partial, simplified schematic of sensorimotor control. We focus
on key cortical and subcortical areas and communications between
them. Black and green arrows indicate communications that traverse
from sensing toward actuation; green arrows are particularly fast
pathways, which enable the tracking of moving objects in our model.
Pink arrows indicate internal feedback signals, which traverse from
actuation toward sensing. Broken lines are not necessarily direct neu-
ronal projections. SC = spinal cord, Th = thalamus, V1 = primary
visual cortex, M1+ = primary motor cortex and additional motor ar-
eas, V2/3 = secondary and tertiary visual cortex, IT = inferotemporal
cortex, MT = mediotemporal cortex (V5). Only a subset of the in-
ternal feedback pathways are shown (e.g. not included are internal
feedback signals from M1+ to V2 and signals from M1+ to IT). . . . 72

6.3 Internal feedback improves performance when there are internal de-
lays in sensing. The scalar problem of tracking a moving target over
a line was simulated, varying the task difficulty . The ‘Ideal’ con-
troller contains no sensor delays. The ‘Internal Feedback’ controller
contains sensor delays, and uses internal feedback to compensate for
the delays. The ‘No Internal Feedback’ controller contains sensor
delays, but uses no internal feedback. As 𝛼 approaches 2, the task
becomes infeasible without internal feedback (broken line). Shaded
areas indicate standard deviations. 78

xi

6.4 (Left) Optimal control model for system with sensor delays. Tracking
error 𝑥 is sensed, then communicated by the sensor with some delay to
the 𝐿1 block, which computes the appropriate actuation. Counterdi-
rectional internal feedback (pink) conveys information from actuation
back toward sensing. Internal computation 𝐿2 adjusts the sensor sig-
nal to compensate for actions taken by the system; this results in
improved performance. (Right) Optimal control model for system
with actuation delays. Actuation 𝑢 is computed, then executed with
some delay. Counterdirectional internal feedback (pink) conveys in-
formation back toward sensing, to compensate for the actuation delay. 79

6.5 (Top) Optimal control model for system with 3 steps of sensor de-
lay. Counterdirectional internal feedback (pink) conveys information
from actuation back toward sensing. Internal computations 𝐿2 ad-
justs the sensor signal to compensate for actions taken by the system;
this results in improved performance. (Bottom) Alternative equiva-
lent implementation of optimal control model for system with 3 steps
of sensor delay. 80

6.6 Optimal control model for system with 3 steps of actuation delays.
Actuation 𝑢 is computed, then executed with some delay. Counterdi-
rectional internal feedback (pink) conveys information back toward
sensing, to compensate for the actuation delay. 80

6.7 Internal feedback in a controller with instantaneous but imperfect
sensing and actuation. 𝐴, 𝐵, and 𝐶 represent the state, actuation,
and sensing matrices of the physical plant; 𝐾 represents the optimal
controller, and 𝐿 represents the optimal observer. The Time Shift
block shifts 𝑥(𝑡 + 1) to 𝑥(𝑡) in Eq. 5. The internal feedback pathways
(blue) are inherent to the Kalman Filter; these use state, actuation,
and sensing models to create an internal estimate of the tracking
error, or state. All internal feedback depicted in this diagram is
counterdirectional. 82

xii

6.8 Internal feedback in a controller with sensor and actuator delays. 𝐴,
𝐵, and 𝐶 represent the state, actuation, and sensing matrices of the
physical plant; 𝐾1, 𝐾2, 𝐿1, 𝐿2 are submatrices of the optimal con-
troller and observer gains. The internal feedback pathways (pink)
through 𝐿2 and 𝐾2 compensate for sensor and actuator delays, re-
spectively. Other internal feedback pathways (blue) are inherent to
the Kalman Filter. All internal feedback depicted in this diagram is
counterdirectional. The yellow box contains parts of the controller
that roughly correspond to motor areas in cortex. 83

6.9 Optimal localized control of two coupled subsystems. (Top) Overall
schematic. Each subsystem has its own corresponding local con-
troller, which senses and actuates only its assigned subsystem. Local
controllers communicate to each other via lateral internal feedback
(pink), with some delay. (Bottom) Circuitry of local controller 1.
Local controller 2 has identical circuitry, with different matrices; 𝐴12
instead of 𝐴21, 𝐴22 instead of 𝐴11, etc. 86

6.10 Localization of function within motor-related cortex: although differ-
ent parts of the cortex control different parts of the body, these parts
of the body are inherently mechanically coupled. As a result, internal
feedback is useful and in some cases necessary to maintain localiza-
tion of function. In simulations, we consider the problem of tracking
a moving target over a two-dimensional space, varying the task dif-
ficulty. The "Ideal" controller is centralized (i.e. no delays between
local controllers) and obtains the best performance. The localized
controller with internal feedback achieves similar performance. The
localized controller without internal feedback suffers from substan-
tially worse performance (higher cost). As task difficulty increases,
the task becomes infeasible without internal feedback (broken line).
Shaded areas indicate standard deviations. 87

xiii

6.11 Standard implementation of a system with FIR transfer function Φ𝑢,
input 𝜹̂, and output u. This example uses a strictly causal Φ𝑢 with
horizon length 𝑇 = 5. Values in memory are multiplied by the
appropriate spectral elementΦ𝑢 (𝑘) then summed to obtain the output.
(Left) Contents of memory at time 𝑡 = 11. (Right) Contents of
memory at time 𝑡 = 12. Notice that the entries in memory have
shifted to the right compared to the previous timestep. The oldest
value, 𝛿(7) has been discarded, and a new value, 𝛿(12), has entered
the memory. 89

6.12 For ease of visualization, we temporarily assume all subsystems are
actuated. (Top left) Ring with 8 subsystems. (Top right) Spectral
elements of Φ𝑢. Colored squares represent nonzero values; other
values are constrained to be zero. Nonzero values away from the
diagonal represent communication between subsystems. Sparsity
constraints arise from delayed communication (for Φ𝑢 (1)) and local
communication (for Φ𝑢 (𝑘), 𝑘 > 1). Sparsity on Φ𝑢 additionally
translates to local disturbance rejection. (Bottom) Local controller
and memory at subsystem 4. Each subsystem uses its own row of
Φ𝑢 (𝑘) to implement its local controller. Rectangles in local memory
represent scalar values of 𝛿𝑖 (𝑡); colors indicate the source of the
value, e.g. pink rectangles are 𝛿 values from subsystem 3. Recent
entries are toward the left, and oldest entries are toward the right.
Local actuation (not shown) is produced by multiplying 𝑃ℎ𝑖𝑢,4(𝑘) by
columns in memory and summing over the products. 91

xiv

6.13 (Left) Ring with 8 subsystems. (Right) Size and shape of example
local memory at subsystem 4. Horizon length 𝑇 indicates how far to
remember into the past. Spatial extent indicates how many neighbors
each subsystem communicates with. For the ring system, communi-
cation delay is indicated by the angle of the triangular "front" of the
memory; larger angle corresponds to larger delay. In this example,
𝑇 = 5, and subsystems communicate to their 4 nearest neighbors with
delay proportional to distance. Subsystem 4 has up-to-date informa-
tion on subsystem 4 (yellow), slightly outdated (delayed one time
step) information from subsystems 3 and 5 (pink and green), and
more outdated (delayed 2 time steps) information from subsystems 2
and 6, which are farther away. Note that for an arbitrary system, the
pattern of local memory entries will not be triangular. 92

6.14 Local controller at subsystem 4, assuming subsystem 4 is actuated.
The feedforward path is depicted by the black arrows; counterdirec-
tional internal feedback is depicted by the yellow solid arrows, and
lateral feedback is depicted by dashed yellow, pink, and green arrows.
In this example, we enforce inter-subsystem communication delay;
𝛿3 and 𝛿5 are received from neighboring subsystems with a delay of
1 time step. Note that Φ𝑥 (1) is not included because for all Φ𝑥 satis-
fying the feasibility constraint, the 𝑧Φ𝑥 − 𝐼 (see Figure 2.2) results in
Φ𝑥 (1) being canceled out by 𝐼. 93

6.15 Local controllers at subsystems 3, 4, and 5. Each local controller
is enclosed in a grey box. Only subsystems 3 and 5 are actuated.
Feedforward is denoted by black arrows. Counterdirectional internal
feedback are denoted by the solid color arrows, and lateral internal
feedback are denoted by dashed color arrows. Not shown are lateral
internal feedback from other neighbors of subsystems 3 and 5. 94

6.16 Optimal control model of attention, with moveable sensor. (Top)
Model with one communication path, in which information is quan-
tized by quantizer 𝑄 and conveyed to the controller with delay 𝑇 .
(Bottom) Model with two communication paths, and two separate
quantizers 𝑄𝑠, 𝑄 𝑓 and respective delays. This model can be con-
sidered lateral (e.g V1-V1) or counterdirectional (V2-V1) internal
feedback (pink) between the two controller paths. 97

xv

6.17 (Left) Internal feedback and layering achieve superior performance
when sensor-controller communications are subject to speed-accuracy
trade-offs. The "No Internal Feedback" controller uses one layer,
while the "Internal Feedback" controller uses two layers, with inter-
nal feedback between the layers. The two-layer case consists of a
fast forward pathway compensated by slow internal feedback, which
takes slow background changes into account; this achieves better per-
formance (lower cost) than the case without internal feedback. The
"Ideal" controller, where the sensor directly senses the moving object,
is also shown. The layered system with internal feedback achieves
performance close to the ideal. Task difficulty is 𝛼 = 1. 𝑇 represents
delay. For the "No Internal Feedback" controller, it represents the
delay of the single layer; for the "Internal Feedback" controller, it
represents the delay of the slow layer, i.e. 𝑇 = 𝑇𝑠. The delay of
the fast layer is held constant. (Right) Performance (log cost) of the
two-layer controller with internal feedback as delays of both layers
are varied. Notice that performance is generally good when 𝑇 𝑓 is low
and 𝑇𝑠 is sufficiently high. 98

xvi

7.1 Summary of layered locomotion model and relation to anatomy. (A)
Anatomy involved in walking. The brain sends high-level commands
(e.g. walking speed and direction) to the ventral nerve cord (VNC),
which coordinates across legs. Each leg’s neurons and muscles take
inputs from the VNC and acts on the environment; this body-world in-
teraction and its effect for leg joints, joint angular velocities, torques,
etc. are reported back to local circuits on the leg via propriocep-
tive feedback. (B) Full model: per-leg models are coupled through
their phase coordinators (blue ovals). (C) Per-leg dynamics model,
derived from link-and-joint models and Euler-Lagrange equations.
(D) Layered per-leg model. Body-world interactions are modeled
through a dynamics model. We assume proprioceptive feedback pro-
vides information on joint angles and angular velocities. Each leg
contains an optimal controller which interfaces with dynamics, and
a trajectory generator which generates realistic gaits. The trajectory
generator interfaces with the phase coordinator, a Kuramoto oscilla-
tor which induces inter-leg coupling. The trajectory generator and
optimal controller mimic local circuits and do not interact with other
legs. 112

7.2 Comparison of walking behavior generated by the model (blue) vs.
walking behavior recorded from real flies (orange). (A) Exam-
ple time-series of femur-tibia flexion R1 for three different walking
speeds. Real data exhibits slightly more variability than model simu-
lations. (B) Angle and angular velocity vs. computed per-leg phase of
femur-tibia flexion R1 for four different walking speeds. (C) Example
time-series of femur rotation for leg L2 for three different walking
speeds. (D) Angle and angular velocity vs. computed per-leg phase
for femur rotation for leg L2 for four different walking speeds. (E)
Average differences between model simulations and data. The dotted
line indicates average in-sample differences between different bouts
of real walking — we see that the average difference between the
model and data is comparable to the in-sample differences in the data
itself. 122

xvii

7.3 Phase coupling within and between legs. (A) Phase coupling within
each leg. For each leg, we compare phases between a representative
joint for the leg (denoted "target" on the image) and other joints on the
leg. Peaks in coupling indicate synchronization. The model exhibits
slightly stronger coupling than data. (B) Phase coupling across legs.
We compare phases of representative joints across legs. The model
exhibits slightly weaker coupling than data. 123

7.4 Model simulation behavior under perturbations corresponding to
walking on a slippery surface. (A) Example time-series of femur-tibia
flexion on leg R1 for three different walking speeds before, during,
and after perturbation. The plot is visibly different during pertur-
bation, but recovers to normal levels after perturbation. (B) Angle
vs. phase plots for walking before, during, and after perturbation for
femur-tibia flexion on leg R1. The plots corresponding to "before"
and "after" perturbations greatly resemble one another, suggesting
that walking has largely recovered. The plots corresponding to "dur-
ing perturbations" exhibit a markedly different shape. (C) Example
time-series of femur rotation for leg L2 for three different walking
speeds before, during, and after perturbation. (D) Angle vs. phase
plots for walking before, during, and after perturbation for femur
rotation on leg L2. Similar observations from panel (B) apply. 124

7.5 Model walking under various perturbations and motor delays. (A,
B) Example time-series of femur-tibia flexion on leg R1 and femur
rotation on leg L2 for various speeds and motor delays, with identical
perturbation strength. (C) LogPDF differences between perturbed
and after-perturbation gaits and perturbation-free walking. During
perturbations, a delay of less than 30ms results in relatively normal
walking. After perturbations, a delay of less than 40ms results in
recovery to normal walking. 125

xviii

LIST OF TABLES

Number Page
2.1 Common abbreviations . 7
3.1 Comparison of LQR costs . 22
4.1 Separability of Φ step of D-Φ iteration 33
4.2 Scalability of D step of D-Φ iteration 35
5.1 LQR costs corresponding to Figure 5.7 65
5.2 LQR costs averaged over 30 simulations 67
7.1 Joints included for leg models . 111

1

C h a p t e r 1

INTRODUCTION

Control theory originated as a tool for the design and analysis of various cyberphys-
ical systems, including aircraft and chemical process plants. In the modern world,
control theory plays a crucial role in the design and operation of robots, spacecraft,
autonomous vehicles, power grids, and more. In recent years, the increased presence
of large-scale cyberphysical systems — intelligent transport systems, multi-agent
systems — has spurred renewed interest in distributed control theory. The first
goal of this thesis is to present a set of theoretical advances in distributed control
theory, including distributed optimal control (Chapters III and VI), distributed ro-
bust control (Chapter IV), and distributed model predictive control (Chapter V).
Ultimately, these theoretical advances aim to provide more scalable, efficient, and
robust methods of operation for our cyberphysical systems.

The second goal of this thesis is to demonstrate how control theory may be applied
to provide novel insights and models for biological systems. Control theory has
enjoyed a few modest successes in the field of biology, but progress on this front
is hindered by the incompatibility between control theory and known physiological
constraints. This incompatibility arises from historical reasons: control theory was
originally formulated for engineers, who typically use computers or circuit chips to
implement various cyberphysical systems and controllers. Computers and circuit
chips are composed of transistors and copper wires, which coordinate to produce
desired signals and outputs. In organisms, cells and various chemical messengers
coordinate together in a similar fashion; however, these organic components are far
inferior to their metal counterparts in terms of communication speed, bandwidth, and
noise. Crudely put, computing on meat is much more challenging than computing
on metal, and the inability of existing control theory to capture these key biological
challenges limits its applicability to biology.1 Thus, the second goal of this thesis
is to present a set of theoretical advances (including distributed control theory) that
begin to bridge this gap between control theory and biology, and to demonstrate
how these theoretical advances can provide insights on sensorimotor structures in
the primate cortex (Chapter VI) and models of fruit fly locomotion (Chapter VII).

1This problem is shared by the more popular neighbor of control theory: machine learning (more
specifically, neural networks).

2

At this point, the reader will likely not require additional persuasion regarding the
first goal of this thesis; its motivations are standard and well-aligned with the goals
of control theory and engineering as a whole. However, the second goal — a
somewhat unconventional union between control theory and biology — may raise
the eyebrows of both engineers and biologists alike. I will now elaborate on this
goal for engineers who may find this choice of application puzzling (in other words,
"why biology?"), and also for biologists who may be skeptical as to how this theory
can be of use to them (in other words, "why control theory?").

1.1 Why Biology?
The pursuit of autonomy and artificial intelligence — particularly in the domain of
robotics — is a major driving force behind funding, research, and technological ad-
vances in both academia and industry. However, despite significant investments and
breakthroughs, state-of-the-art systems are often bested by biology. One only has to
look across the street at the neighbor’s cat to see an example of an autonomous being
that is at once more agile, energy-efficient, and robust to environmental variations
than our best quadruped robots. In general, animals excel at complex tasks (e.g.
predator evasion) in highly dynamic and unpredictable environments — modern
engineering systems, for the most part, cannot achieve comparable performance
for even simple subsets of these tasks (e.g. legged locomotion, balancing). This
contrast is made more remarkable by the fact that, as previously mentioned, animals
are composed of organic components that are in many ways inferior to the metal
components that make up our robots. In short, animals attain a level of robust-
ness and autonomy that engineers have thus far failed to replicate. By gaining a
deeper understanding of how biology accomplishes this, engineers can gain valuable
insights to aid in their designs.

The study of sensorimotor systems — that is, how organisms use sensory information
(e.g. vision, hearing, proprioception) to inform decisions and movements — is
highly relevant to the presented motivation. Fortuitously, this is the subfield of
biology in which control theory has found the strongest foothold; indeed, the results
in this thesis focus on various aspects of the sensorimotor system. The general
approach is to utilize control theory to build new models or supplement existing
models in order to gain insights into the design principles of biology. Given some
dynamical system, objectives, and constraints, we can use control theory to provide
mathematical descriptions of optimal system operation and behavior. This can
model the behavior of organisms, as well as the physiology — if we are clever

3

about the formulation. In addition to sensorimotor systems, many other biological
processes (e.g. biomolecular chemical reactions, biocircuits) can be modeled using
the tools of ordinary differential equations and dynamical systems. Control theory
is a natural extension of dynamical systems theory, and may be applicable to these
biological processes as well; this is the subject of ongoing work.

In the realm of engineering, we typically have well-established systems, objectives,
and constraints — the main research problem is how to design the controller to
satisfy requirements. In the realm of biology, things are not quite so clear cut;
typically, neither system, objectives, nor constraints will be obvious to us. Or-
ganisms are complex systems, and we typically only have sparse observations on
these systems. For instance, even a small fruit fly has hundreds of thousands of
neurons, which coordinate in various ways to produce a rich repertoire of behaviors.
However, data on this organism is typically limited to specific clusters of neurons
or specific behavioral contexts. This observational sparsity is challenging to en-
gineering researchers unfamiliar with biology, and requires a change in mindset:
instead of demanding details that are experimentally costly or impossible to obtain,
we want to think about what can be done with the data that is available. This requires
making simplifying abstractions, which allow us to produce methods and insights
that are dependent on fundamental system properties rather than unknown details.
For example, in Chapter VI, the physiological insights arise from the inclusion of
sparse communication constraints, and not on any specific numerical quantities. Of
course, we can also mix data-driven techniques and control theory to produce novel
quantitative models, as is done in Chapter VII.

In general, the formulation of control theory for biology problems varies greatly
from project to project, and is also quite different from the formulation of control
theory for engineering problems. Even even within the field of biology, different
problems may require different approaches. However, it is not the approach or
formulation that matters, but the biological research question — and it is crucial
that this question is formulated with input from actual biologists. It is no mean
feat to find a problem that is both biologically meaningful and appropriate for
control theory, but when we do, the results are uniquely rewarding. I must also
caution that it is thoroughly unrewarding to work on biology-inspired problems that
lack these qualities. Laboring away at a contrived bio-inspired problem that has
neither applicability to biology nor engineering is quite meaningless; attempting to
shoehorn control theory into a biology problem for which a different mathematical

4

tool would be better suited is tedious and unfruitful. Good collaborators in biology
will help one to avoid the former, and it is an interdisciplinary exercise to avoid the
latter.

Another reason why biology should be of interest to control theorists is the rela-
tive maturity of control theory as a field. Theoretical progress is often driven by
applications, and applications of control theory in industry typically use techniques
developed decades ago. Exploring new application directions in biology can raise
new theoretical questions with both intellectual and practical merit — for instance,
how to implement a controller with signaling limitations.

In summary, applying control theory to biology has two main benefits. Firstly, a
better understanding of biological autonomy can provide design insights for engi-
neers who wish to construct autonomous systems. Secondly, a fresh application
area introduces new and interesting theoretical problems.

1.2 Why Control Theory?
I start with an obvious caveat: control theory is not applicable to the entirety
of biology. However, it is a cornerstone of models in the area of sensorimotor
neuroscience, as mentioned above. Adjacent fields, such as motor control and
locomotion, naturally also benefit from control theory. For biologists working in
more distant areas, a general guideline is that if the biological entities of interest can
be described with differential equations, then applying concepts from dynamical
systems and control theory may provide additional insights and models.

Control theory is fundamentally concerned with optimization: given some dynam-
ical system, objective, and constraints, what is the best behavior possible, and how
is this behavior obtained? This is a natural way of looking at biological systems,
which are optimized for various survival-critical tasks through evolution. Inter-
preting biology from this perspective offers two key benefits: prior modeling and
human-interpretable models. Firstly, control-based models can be formulated as
prior models — that is, they can predict experimental outcomes before the exper-
iment is conducted. This is complementary to data-driven models, which provide
insights via analysis only after experiments have been performed. Prior models can
identify potentially interesting future experiments; this is particularly important as
the space of available experiments grows exponentially with the advancement of
experimental techniques. Additionally, control theory creates human-interpretable
models from human-interpretable inputs (i.e. system, objective, and constraints),

5

which can reveal fundamental principles that govern complex systems — an example
is given in Chapter VII.

In the domain of sensorimotor neuroscience, control theory also provides the math-
ematical tools needed to translate longstanding qualitative ideas on closed-loop
sensing and action into quantitative models. These ideas are concerned with the
analysis of sensory areas (e.g. vision) not as standalone modules, but as part of
the larger sensorimotor feedback loop. The general underlying principle is that all
neural processes serve motor output; sensory processing is only useful insofar as
it produces appropriate actions. While analysis of solitary modules such as vision
are dominated (and rightfully so) by other mathematical approaches, the analysis
of the full loop necessitates the use of control theory, which is fundamentally con-
cerned with the closed-loop relationship between sensing, action, and environment.
Unique insights can come of looking at the brain from this closed-loop perspective
as opposed to individual modules, as shown in Chapter VI.

6

C h a p t e r 2

TECHNICAL SETUP

2.1 Notation and Abbreviations

• Italicized lower-case letters (e.g. 𝑥) denote scalars or vectors in the time
domain. They may also denote functions — the distinction will be apparent
from context.

• Italicized upper-case letters (e.g. 𝐴) denote constant matrices.

• Calligraphic upper-case letters (e.g. P) denote sets.

• Fraktur upper-case letters (e.g. ℜ) denote some subset of Z+, e.g. ℜ =

{1, . . . , 𝑛}, 𝑛 ∈ Z+.

• An arrow above a matrix quantity denotes vectorization, i.e.
⃗⃗ ⃗⃗
𝐴 is the vector-

ization of 𝐴.

• Round brackets with subscripts denote elements of matrices and vectors. For
example, (𝐴)𝑖, 𝑗 denotes the element in the 𝑖th row, 𝑗 th column of 𝐴. (𝐴)𝑖,:
denotes the 𝑖th row of 𝐴. (𝐴)𝑖:,: denotes the rows of 𝐴 starting from the 𝑖th row.
Subscripts can also be sets: (𝐴)ℜ,ℭ denotes the submatrix of 𝐴 composed of
the rows and columns specified by ℜ and ℭ, respectively. Where appropriate,
we may also overload subscript notation to indicate block partitions of a
matrix; the meaning will be clear from context. Occasionally for vectors, we
will omit the round brackets for notational simplicity.

• Subscripts without round brackets have several uses, all of which should
be apparent from context. They are most commonly used to denote block
partitions of matrices or vectors. Additionally, in Chapter V, we will use
subscripts 𝑥𝑡 to denote the predicted value 𝑥 in 𝑡 timesteps (not to be confused
with 𝑥(𝜏), which is the true value of 𝑥 at time 𝜏.

• Square brackets with subscripts denote elements of matrices and vectors cor-
responding to specific subsystems. For example, [𝐴]𝑖, 𝑗 represents influence
from the 𝑗 th subsystem to the 𝑖th subsystem. This notation is convenient when
subsystems may contain multiple states or inputs.

7

• Boldface lower-case letters (e.g. x) denote signals in the discrete-time fre-
quency domain, i.e. 𝑧-domain.

• Boldface upper-case letters (e.g. Φ) denotes transfer matrices in the fre-
quency domain, i.e. 𝑧-domain. Transfer matrices are composed of spec-
tral elements (constant matrices). For example, transfer matrix Φ may
be written as Φ :=

∑𝑇
𝑘=0Φ(𝑘)𝑧−𝑘 , where Φ(𝑘) is the 𝑘 th spectral ele-

ment of Φ, and 𝑇 ∈ Z+ is the finite-impulse-response (FIR) horizon length.
Subscript-style notation also applies to boldface transfer matrices. For exam-
ple, [Φ]𝑖, 𝑗 :=

∑𝑇
𝑘=0 [Φ(𝑘)]𝑖, 𝑗 𝑧−𝑘 .

• Superscript blk indicates augmented matrices. For any matrix 𝑍 , the corre-
sponding augmented matrix 𝑍blk is defined as a block-diagonal matrix con-
taining 𝑁𝑥 copies of 𝑍 , i.e. 𝑍blk := blkdiag(𝑍, . . . 𝑍). For any matrix𝑌 = 𝑍Λ,
the corresponding vectorization can be written as

⃗⃗⃗
𝑌 = 𝑍blk

⃗⃗ ⃗⃗
Λ.

For the most part, we will omit dimensions; when omitted, they will be obvious
from context and assumed to be compatible.

Table 2.1: Common abbreviations
FIR Finite impulse response
LQR Linear quadratic regulator
LQG Linear quadratic Gaussian
MPC Model predictive control
SLS System level synthesis

2.2 System Level Synthesis
Chapters III, IV, V, and VI of this thesis make use of the system level synthesis
(SLS) framework. In this section, we introduce the basics of SLS, adapting material
from [1]–[3]. The interested reader is referred to the review paper [3] for more
details.

Consider the linear time-invariant dynamics

𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝑤(𝑡) (2.1)

where 𝑥, 𝑢, and 𝑤 denote state, control input, and exogenous disturbance, respec-
tively.

8

We can rewrite this in 𝑧-domain by applying the 𝑧-transform, the discrete-time
analogue of the Laplace transform, to obtain

𝑧x = 𝐴x + 𝐵u + w (2.2)

and apply linear causal state feedback controller u = Kx. Define Φ𝑥 and Φ𝑢, transfer
matrices representing closed-loop responses (also referred to as closed-loop maps)
from disturbance to state and control[

x

u

]
=

[
(𝑧𝐼 − 𝐴 − 𝐵K)−1

K(𝑧𝐼 − 𝐴 − 𝐵K)−1

]
w =:

[
Φ𝑥

Φ𝑢

]
w (2.3)

Theorem 2.1. (Theorem 4 in [3]) For system (2.2) with linear state-feedback con-
troller u = Kx, the following hold:

1. The affine subspace[
𝑧𝐼 − 𝐴 −𝐵

] [
Φ𝑥

Φ𝑢

]
= 𝐼, Φ𝑥 ,Φ𝑢 ∈

1

𝑧
RH∞ (2.4)

parametrizes all responses Φ𝑥 ,Φ𝑢 achievable by an internally stabilizing state
feedback controller K. This is the state feedback achievability constraint.
Here, 1

𝑧
RH∞ is the set of stable, strictly causal LTI transfer matrices.

2. For any Φ𝑥 ,Φ𝑢 obeying (2.4), the controller K = Φ𝑢Φ
−1
𝑥 , implemented as

𝜹̂ = x + (𝐼 − 𝑧Φ𝑥)𝜹̂, u = 𝑧Φ𝑢 𝜹̂ (2.5)

achieves the desired closed-loop response as per (2.3).

Theorem 2.1 allows us to parametrize control problems as optimizations over closed-
loop responses Φ𝑥 and Φ𝑢, instead of controller K. For example, we can write the
LQR problem with state penalty matrix 𝑄 and input penalty matrix 𝑅 using SLS as

min
Φ𝑥 ,Φ𝑢

[
𝑄

1
2 0

0 𝑅
1
2

] [
Φ𝑥

Φ𝑢

]

2
𝐹

(2.6a)

s.t.
[
𝑧𝐼 − 𝐴 −𝐵

] [
Φ𝑥

Φ𝑢

]
= 𝐼 (2.6b)

Φ𝑥 ,Φ𝑢 ∈
1

𝑧
RH∞ (2.6c)

9

𝒖

Dynamical system

Controller

+
-

z𝚽x − I

z𝚽u

ෝ𝒙 ෡𝜹

𝒙

Figure 2.1: Implementation of a state feedback system level synthesis controller.
Φ𝑥 and Φ𝑢 are the closed-loop responses from exogeneous disturbance to state and
input, respectively.

where ∥ · ∥𝐹 indicates the Frobenius norm. Example of how to formulate other
standard control problems (e.g. LQG) as optimizations over closed-loop responses
are given in [3]. Once the optimal closed-loop responses are found, they can be used
to implement the controller via (2.5). This is pictorially depicted in Figure 2.2.

The advantages of the the SLS parametrization are twofold. Firstly, this parametriza-
tion allows us to incorporate delayed communication, local communication (in which
distributed agents are allowed only to communicate to other agents within some local
neighborhood), and localized disturbance rejection (in which the effects of a distur-
bance at a given agent is forced to be contained within some local neighborhood
of the agent) into the controller synthesis problem. In the SLS formulation, these
constraints manifest themselves as sparsity constraints on decision variables Φ𝑥 and
Φ𝑢. These sparsity constraints are affine and easy to enforce, allowing the resulting
problem to be solved using tools from convex optimization. Secondly, this formu-
lation allows us to perform both controller synthesis and controller implementation
in a distributed manner, conferring considerable scalability benefits. For controller
synthesis, we can decompose the full optimization problem into sub-problems to be
solved in parallel by each subsystem, resulting in a synthesis procedure with 𝑂 (1)
complexity relative to network size — more details are described in Chapter IV.
In the remainder of this thesis, we leverage these advantages for both theoretical
advances in controls and conceptual insight for biological systems.

10

C h a p t e r 3

CLOSED-LOOP VS. CONTROLLER SPECIFICATIONS

[1] J. S. Li and D. Ho, “Separating Controller Design from Closed-Loop Design:
A New Perspective on System-Level Controller Synthesis,” in IEEE Ameri-
can Control Conference, 2020, pp. 3529–3534. doi: 10.23919/ACC45564.
2020.9147736. [Online]. Available: http://arxiv.org/abs/2006.
05040,

Overview: We show that given a desired closed-loop response for a system, there
exists an affine subspace of controllers that achieve this response. By leveraging the
existence of this subspace, we are able to separate controller design from closed-loop
design by first synthesizing the desired closed-loop response and then synthesizing
a controller that achieves the desired response. This is a useful extension to the SLS
framework, in which the controller and closed-loop response are jointly synthesized
and we cannot enforce controller-specific constraints without subjecting the closed-
loop response to the same constraints. We demonstrate the importance of separating
controller design from closed-loop design with an example in which communication
delay and locality constraints cause standard SLS to be infeasible. Using our new
two-step procedure, we are able to synthesize a controller that obeys communication
constraints while only incurring a 3% increase in LQR cost compared to the optimal
LQR controller. Overall, our proposed two-step synthesis allows us to design low-
cost, distributed controllers that were unavailable to us in the previous framework.

3.1 Introduction
In the standard SLS framework, the closed-loop responses Φ𝑥 and Φ𝑢 are directly
used to implement the controller. Thus, any constraints applied to the controller
are enforced on the closed-loop response as well. For example, we cannot enforce
local communication constraints on the controller without also enforcing localized
disturbance rejection on the closed-loop response. This can be overly restrictive, es-
pecially in situations where we are only concerned with communication constraints
and not with closed-loop constraints. In the worst case, standard SLS can be infea-
sible under strict communication constraints, because SLS will also by definition
enforce analogous closed-loop constraints, and the latter is often excessively strict.
This is partially addressed by virtually local SLS [4], which searches over approxi-

11

𝒖

Dynamical system

Controller

+
-

z𝐑 − I

𝑧𝐌

𝒙

ෝ𝒙 ෡𝜹

Figure 3.1: Implementation of state feedback controller.

mate closed-loop responses instead of exact closed-loop responses; constraints are
imposed on the approximate closed-loop responses, which mitigates infeasibility.
In this chapter, we propose an alternative two-step procedure:

1. Synthesize the desired closed-loop response, subject to closed-loop con-
straints. This can be done using SLS or any other linear synthesis method.

2. Synthesize the controller, subject to controller constraints.

This method confers performance benefits over the virtually local method, as demon-
strated in the simulations section. Additionally, this method allows us to cleanly
separate controller specifications from closed-loop specifications, an important se-
mantic difference for many applications.

3.2 Implementation Matrices
To fully separate closed-loop response constraints from controller constraints, we
require a controller that is implemented using transfer matrices other than the
closed-loop responses. Figure 3.1 shows the controller implementation. R and M

are the controller implementation matrices, with horizon 𝑇𝑐. In standard SLS, we
set R = Φ𝑥 and M = Φ𝑢. In this chapter, we will explore the alternatives.

The controller contains two internal signals: x and 𝜹̂. The frequency-domain
equations describing the controller are

𝜹̂ = x + (𝐼 − 𝑧R)𝜹̂ (3.1a)

x = 𝑧R𝜹̂ (3.1b)

12

u = 𝑧M𝜹̂ (3.1c)

Assuming that 𝑅(1) = 𝐼, we can rewrite these in the time domain:

𝛿(𝑡) = 𝑥(𝑡) −
𝑇𝑐∑︁
𝑘=2

𝑅(𝑘)𝛿(𝑡 − 𝑘 + 1) (3.2a)

𝑢(𝑡) =
𝑇𝑐∑︁
𝑘=1

𝑀 (𝑘)𝛿(𝑡 − 𝑘 + 1) (3.2b)

we remark that this assumption will not limit the space of available R and M;
equivalent results can be obtained with arbitrary 𝑅(1), although the bookkeeping of
variables becomes more tedious in this case.

Proposition 3.1. Any linear law u = Kx can be implemented using the controller
structure defined in Figure 3.1.

Proof. Construct closed Φ𝑥 and Φ𝑢 directly from K via (2.3):[
Φ𝑥

Φ𝑢

]
=

[
(𝑧𝐼 − 𝐴 − 𝐵K)−1

K(𝑧𝐼 − 𝐴 − 𝐵K)−1

]
(3.3)

Set R = Φ𝑥 and M = Φ𝑢 in (3.1). This recovers the control law u = Kx. □

Controllers and closed-loop responses

Lemma 3.1. Let (Φ𝑥 ,Φ𝑢) be stable closed-loop responses. The only linear controller
K (i.e. u = Kx) that achieves these closed-loop responses is K = Φ𝑢Φ

−1
𝑥 .

Proof. By Theorem 2.1, K = Φ𝑢Φ
−1
𝑥 achieves the closed-loop responses. We show

uniqueness by contradiction. Assume there is another linear controller K1 ≠ K that
also achieves the desired closed-loop responses. Since both K and K1 achieve (Φ𝑥 ,
Φ𝑢), we have that

Φ𝑥 = (𝑧𝐼 − 𝐴 − 𝐵K1)−1 = (𝑧𝐼 − 𝐴 − 𝐵K)−1 (3.4a)

Φ𝑢 = K1(𝑧𝐼 − 𝐴 − 𝐵K1)−1 = K(𝑧𝐼 − 𝐴 − 𝐵K)−1 (3.4b)

Substituting (3.4a) into (3.4b) gives

K1Φ𝑥 = KΦ𝑥 (3.5)

Since Φ𝑥 is invertible, this implies that K1 = K. Contradiction! □

13

From Lemma 3.1 and the definitions of the closed-loop responses (2.3), we see that
there is a one-to-one mapping between a given linear controller and its closed-loop
responses. However, the linear controller K can be implemented in a variety of
ways. For example, we could directly implement u = Kx; we could also implement
a linear controller using the structure shown in Figure 3.1. In the original SLS
framework, the latter is used to avoid direct matrix inversion of Φ𝑥 .

Implementing closed-loop responses
We introduce some necessary terminology:

Definition 3.1. For the controller structure shown in Figure 3.1 with controller
matrices R and M, let the resulting closed-loop response be (Φ̃𝑥 , Φ̃𝑢). Then, we
say that (R, M) are implementation matrices for (Φ̃𝑥 , Φ̃𝑢), and (Φ̃𝑥 , Φ̃𝑢) are the
implemented closed-loop responses of controller matrices R and M.

The implemented closed-loop responses are found by combining (3.2) and (2.1):[
Φ̃𝑥

Φ̃𝑢

]
=

[
R

M

]
∆−1𝑐 , ∆𝑐 =

[
𝑧𝐼 − 𝐴 −𝐵

] [
R

M

]
(3.6)

Note that ∆𝑐 can also be written as 𝐼 + ∆. This is the same formulation used by
(4.22) in [3], modulo notational differences (we use R and M instead of Φ̂𝑥 , Φ̂𝑢).
∆𝑐 is invertible since its leading spectral element, 𝐼, is invertible.

Our analysis largely focuses on closed-loop responses (Φ𝑥 ,Φ𝑢) instead of the con-
troller K. We remark that we can also view (R, M) as implementation matrices for
the controller K = Φ𝑢Φ

−1
𝑥 , since there is a one-to-one mapping between controller

and closed-loop responses.

Theorem 3.1. For 𝑅(1) = 𝐼, (R, M) are implementation matrices for (Φ𝑥 , Φ𝑢) if
and only if they satisfy the following implementation constraint[

R

M

]
=

[
Φ𝑥

Φ𝑢

] [
𝑧𝐼 − 𝐴 −𝐵

] [
R

M

]
(3.7)

Proof. Necessity. If (R, M) are implementation matrices for (Φ𝑥 , Φ𝑢), then[
Φ̃𝑥

Φ̃𝑢

]
=

[
R

M

] ([
𝑧𝐼 − 𝐴 −𝐵

] [
R

M

])−1
=

[
Φ𝑥

Φ𝑢

]
(3.8)

14

where the first equality arises from (3.6), and the second equality arises from the fact
that the implemented closed-loop responses must be equal to (Φ𝑥 , Φ𝑢). Multiplying

by
[
𝑧𝐼 − 𝐴 −𝐵

] [
R

M

]
gives the desired result.

Sufficiency. If (R, M) satisfy (3.7), we can substitute (3.7) into (3.6) to conclude
that (Φ̃𝑥 , Φ̃𝑢) = (Φ𝑥 , Φ𝑢), i.e. (R, M) are implementation matrices for (Φ𝑥 , Φ𝑢), as
desired. □

Theorem 3.1 describes an affine subspace of implementation matrices for (Φ𝑥 , Φ𝑢).

Corollary 3.1. If (R, M) are implementation matrices for (Φ𝑥 , Φ𝑢), then the first
spectral components of M and Φ𝑢 are equal, i.e. 𝑀 (1) = Φ𝑢 (1).

Proof. If (R, M) are implementation matrices for (Φ𝑥 , Φ𝑢), then (3.7) must hold.
Writing out (3.7) in terms of its spectral elements gives the desired result. □

Corollary 3.2. For 𝑇𝑐 ≥ 𝑇 , (Φ𝑥 , Φ𝑢) are implementation matrices for themselves.

This corollary agrees with results from standard SLS, in which (Φ𝑥 , Φ𝑢) are used as
implementation matrices as well as closed-loop responses.

Corollary 3.3. If (R, M) are implementation matrices for (Φ𝑥 , Φ𝑢), then controller
K = Φ𝑢Φ

−1
𝑥 = MR−1

Proof. The first equality holds by Theorem 2.1. To see that the second equality
holds, combine equations (3.1b) and (3.1c). □

Existence of solutions
Corollary 3.2 states that (3.7) has at least one solution for 𝑇𝑐 ≥ 𝑇 . We now provide
some analysis on the existence of solutions when 𝑇𝑐 < 𝑇 . In this case, we cannot
directly work with the transfer matrices, as they have unequal horizon lengths —
we will instead write out block matrices of spectral elements. We first define some
block matrices:

𝑅 =


𝑅(1)
𝑅(2)
...

𝑅(𝑇𝑐)


, 𝑀 =


𝑀 (1)
𝑀 (2)
...

𝑀 (𝑇𝑐)


, 𝑍𝐴𝐵 =


𝐼 0

−𝐴 . . . −𝐵
. . . 𝐼

. . .

−𝐴 −𝐵


(3.9a)

15

Φ𝑥 =



Φ𝑥 (1)
Φ𝑥 (2)

. . .

...
. . .

Φ𝑥 (𝑇)
. . .

Φ𝑥 (𝑇)


,Φ𝑢 =



Φ𝑢 (1)
Φ𝑢 (2)

. . .

...
. . .

Φ𝑢 (𝑇)
. . .

Φ𝑢 (𝑇)


(3.9b)

Then, (3.7) can be rewritten in block matrix form as
𝑅

0

𝑀

0


=

[
Φ𝑥

Φ𝑢

]
𝑍𝐴𝐵

[
𝑅

𝑀

]
(3.10)

where the zeros on the left hand side arise from the fact that 𝑇𝑐 < 𝑇 . We can split
constraint (3.10) into two parts. The first part can be written as:

[
𝑅

𝑀

]
=

[
(Φ𝑥)1
(Φ𝑢)1

]
𝑍𝐴𝐵

[
𝑅

𝑀

]
(3.11)

where we have partitioned Φ𝑥 =

[
(Φ𝑥)1
(Φ𝑥)2

]
with appropriate dimensions, i.e. (Φ𝑥)1

has the same number of rows as 𝑅. A similar partition is applied to Φ𝑢 =

[
(Φ𝑢)1
(Φ𝑢)2

]
,

where (Φ𝑢)1 has the same number of rows as 𝑀 . Constraint (3.11) can be further
rearranged into

([
(Φ𝑥)1
(Φ𝑢)1

]
𝑍𝐴𝐵 − 𝐼

) [
𝑅

𝑀

]
= 0 (3.12)

The second part of (3.10) can be written as

[
(Φ𝑥)2
(Φ𝑢)2

]
𝑍𝐴𝐵

[
𝑅

𝑀

]
= 0 (3.13)

Stacking (3.12) and (3.13) together, we can write

16

𝐹

[
𝑅

𝑀

]
= 0, 𝐹 =



[
(Φ𝑥)1
(Φ𝑢)1

]
𝑍𝐴𝐵 − 𝐼[

(Φ𝑥)2
(Φ𝑢)2

]
𝑍𝐴𝐵


(3.14)

Recall that the first spectral element 𝑅(1) is restricted to be equal to the identity.
Then, we can partition 𝐹 =

[
𝐹1 𝐹2

]
where the number of columns in 𝐹1 is equal

to the number of rows in 𝑅(1). Finally, we introduce free variable 𝑣 :=


𝑅(2)
...

𝑅(𝑇𝑐)
𝑀


and

rewrite (3.7) as 𝐹2𝑣 = −𝐹1, where 𝐹1 and 𝐹2 are constant for some given system
and closed loop maps, and 𝑣 contains the variables representing the implementation
matrices. This is a simple affine constraint. To check whether solutions (i.e.
implementation matrices) exist, we need only check the conditions of the Rouché-
Capelli theorem [5] — namely, that rank(𝐹2) = rank(𝐹).

3.3 Stability
Internal dynamics
The system is internally stable if the dynamics of 𝛿, the internal signal, are stable.
Substitute (3.2) into (2.1) to obtain internal dynamics of the form

𝑧𝑡 =


𝛿𝑡−𝑇𝑐+1
...

𝛿𝑡−1

𝛿𝑡


, 𝑧𝑡+1 = 𝐴𝑧𝑧𝑡 , 𝐴𝑧 =


0 𝐼 . . . 0 0
...

. . .

0 0 . . . 0 𝐼

−Δ𝑐 (𝑇𝑐) . . . −Δ𝑐 (1)


(3.15)

where the spectral elements of ∆𝑐 depend on the implementation matrices (R, M).

Stability check
We can verify internal stability a posteriori by checking that 𝐴𝑧 is stable. Alterna-
tively, a sufficient condition for internal stability is ∥∆ = ∆𝑐 − 𝐼 ∥ < 1 [4].

The stability of 𝐴𝑧 can be checked in a distributed manner. First, a helpful proposi-
tion:

17

Proposition 3.2. Let ∥ · ∥ be an induced matrix norm. For 𝐴 ∈ R𝑛×𝑛, if ∃𝑚 > 0 s.t.
∥𝐴𝑚 ∥ < 1, then 𝐴 is stable.

Proof. Let 𝜌 = ∥𝐴𝑚 ∥1/𝑚, 𝜌 ∈ [0, 1). Using norm submultiplicativity, we can show
that ∀𝑡 > 𝑚, ∥𝐴𝑡 ∥ ≤ 𝐶𝜌𝑡 for some constant 𝐶. Using this upper bound and induced
norm properties, we can show that ∀𝑥0 ∈ R𝑛, lim𝑡→∞ ∥𝐴𝑡𝑥0∥ = 0. This is the
definition of stability in the discrete-time setting. □ □

Due to the structure of ∆𝑐, the internal dynamics matrix 𝐴𝑧 can be computed in
parallel using local information only. After 𝐴𝑧 has been computed, we let each
subsystem 𝑖 store 𝐴𝑧 its its entirety. The distributed stability check procedure is as
follows:

Algorithm 3.1 Distributed stability check for alternative implementation matrices
input : 𝐴𝑧, 𝑘𝑚𝑎𝑥 , 𝑛𝑚𝑎𝑥
output : Boolean value indicating whether internal stability was certified
for 𝑘 = 1 . . . 𝑘𝑚𝑎𝑥 :

1: For every subsystem 𝑖, [𝐴𝑘𝑧]𝑖 ← 𝐴𝑧 [𝐴𝑘−1𝑧]𝑖
2: if ∥ [𝐴𝑘𝑧]𝑖∥1→1 < 1 for all 𝑖 :

return True
elseif ∃ 𝑖 s.t. ∥ [𝐴𝑘𝑧]𝑖∥1→1 > 𝑛𝑚𝑎𝑥 :

return False

Here, 𝑘𝑚𝑎𝑥 is some predetermined maximum number of iterations, and 𝑛𝑚𝑎𝑥 is
some predetermined threshold for the transient condition; since ∥𝐴𝑘𝑧 ∥ corresponds
to the amplitude of the transient response, this termination condition involving 𝑛𝑚𝑎𝑥
corresponds to finding an unacceptably large transient condition.

We use the induced 1-to-1 norm for its column-wise separability; all computations
can be distributedly computed, though the final stability certification requires con-
sensus. In simulations later in this chapter, this algorithm certifies stability in 7
iterations for the low-order controller and 32 iterations for the full-order controller.

3.4 Approximate Implementations
In this section, we introduce relaxations of (3.7). These relaxations are preferable
for two reasons. Firstly, the original constraint (3.7) may not permit sparse im-
plementation matrices for certain closed-loop responses. For instance, if Φ𝑢 (1) is
dense, then 𝑀 (1) must also be dense, according to Corollary 3.1. Secondly, we
find that enforcing (3.7) often yields implementation matrices that are internally
unstable.

18

Consider the implemented closed-loop responses (Φ̃𝑥 , Φ̃𝑢) of implementation ma-
trices (R,M). Instead of enforcing (Φ̃𝑥 , Φ̃𝑢) to be equal to (Φ𝑥 , Φ𝑢) via (3.7), we

now only want them to be close under some norm, i.e. we penalize

[
Φ𝑥

Φ𝑢

]
−

[
Φ̃𝑥

Φ̃𝑢

]

,
which can be rewritten using (3.6) as

[
Φ𝑥

Φ𝑢

]
−

[
R

M

] ([
𝑧𝐼 − 𝐴 −𝐵

] [
R

M

])
−1

 (3.16)

Due to the dependence of ∆𝑐 on R and M, this expression is not convex with respect
to the implementation matrices. Instead of directly including this expression as an
optimization objective, we can penalize a corresponding heuristic

[
Φ𝑥

Φ𝑢

] [
𝑧𝐼 − 𝐴 −𝐵

] [
R

M

]
−

[
R

M

]

 (3.17)

which is the equation error for (3.7) and is indeed convex with respect to the
implementation matrices.

We are now ready to flesh out the second step of the two-step procedure. Given
some desired closed-loop response (Φ𝑥 , Φ𝑢), we solve the following optimization
problem to obtain implementation matrices (R, M)

min
R,M

[
Φ𝑥

Φ𝑢

] [
𝑧𝐼 − 𝐴 −𝐵

] [
R

M

]
−

[
R

M

]

 + 𝜆

[𝑧𝐼 − 𝐴 −𝐵

] [
R

M

]
− 𝐼

(3.18a)

s.t. R ∈ P𝑅,M ∈ P𝑀 (3.18b)

The first term in the objective is a heuristic for how close the implemented closed-
loop responses are to the desired closed-loop responses. The second term in the
objective is a stability-promoting objective, weighted by positive constant 𝜆. For
the control theorist who wishes to enforce stability rather than promote it, we may
replace this stability-promoting objective with a constraint that the term is strictly
less than 1 [4]. P𝑅 and P𝑀 represent constraint sets which may include sparsity and
FIR constraints. Additionally, we could also include additional objectives such as
L1 regularization to promote sparsity on the implementation matrices.

Optimization (3.18) can be decomposed into smaller subproblems to be solved
in parallel, if norms are appropriately chosen (see [3] for examples). Thus, this
optimization enjoys similar scalability benefits as those of standard SLS [3].

19

3.5 Closed-Loop vs. Controller Constraints
In this section, we discuss the physical interpretation of separately applying locality
and delay constraints to the closed-loop and to the controller, and when such con-
straints are appropriate. This separation is not possible in standard SLS, since the
closed-loop responses coincide with the implementation matrices for the controller.

First, we present a result on how applying controller constraints to closed-loop
responses can be overly restrictive:

Proposition 3.3. LetK be the controller corresponding to the closed-loop responses
(Φ𝑥 , Φ𝑢). Then, the operator Φ𝑢 lies in the range of the operator K.

Proof. By Lemma 3.1, we have that KΦ𝑥 = Φ𝑢. □

Proposition 3.3 shows that sparsity constraints (e.g. locality, delay) onKwill always
translate to sparsity constraints onΦ𝑢, but notΦ𝑥; directly applying these constraints
on Φ𝑥 as well is overly restrictive.

Locality
Let N(𝑖) denote some local neighborhood of subsystem 𝑖. Locality constraints
restrict spectral components of R and M (or Φ𝑥 and Φ𝑢) to be zero at certain
locations, i.e.

[𝑅(𝑘)]𝑖, 𝑗 = 0 ∀ 𝑗 ∉ N(𝑖)
[𝑀 (𝑘)]𝑖, 𝑗 = 0 ∀ 𝑗 ∉ N(𝑖)

(3.19)

As an example, for a system with subsystems arranged in a chain configuration,
with one state and input per subsystem and N(𝑖) equal to the 𝑙 closest neighbours
of subsystem 𝑖, locality constraints result in banded diagonal 𝑅(𝑘) and 𝑀 (𝑘) with
a band width of 2𝑙 + 1 ∀𝑘 .

When we apply locality constraints on implementation matrices as per (3.19), we
enforce that subsystem 𝑖 will only communicate with subsystems in N(𝑖) for all
time. When we apply locality constraints on the closed-loop responses (i.e. replace
𝑅 and 𝑀 in (3.19) with Φ𝑥 and Φ𝑢), we limit how far a disturbance at a subsystem
spreads before it is contained. While both are useful, they are semantically distinct;
there are situations when we want to enforce one but not the other, and the proposed
two-step procedure provides a method to do so.

20

Delay
Let 𝑑 (𝑖, 𝑗) denote the delay from subsystem 𝑗 to subsystem 𝑖, which is generally
proportional to the distance between subsystems 𝑖 and 𝑗 . Delay constraints are
enforced as

[𝑅(𝑘)]𝑖, 𝑗 = 0 ∀𝑘 < 𝑑 (𝑖, 𝑗)
[𝑀 (𝑘)]𝑖, 𝑗 = 0 ∀𝑘 < 𝑑 (𝑖, 𝑗)

(3.20)

As an example, for a system with subsystems arranged in a chain configuration,
with one state and input per subsystem and 𝑑 (𝑖, 𝑗) proportional to inter-subsystem
distance, delay constraints result in banded diagonal 𝑅(𝑘) and 𝑀 (𝑘), with wider
bands for higher values of 𝑘 .

When we apply delay constraints on the implementation matrices as per (3.20),
we are ensuring that local controllers do not require information that cannot be
communicated to them in time. For example, subsystem 𝑖 cannot use any information
about subsystem 𝑗 that is more recent than 𝑡 − 𝑑 (𝑖, 𝑗). When we apply delay
constraints on the closed-loop responses (i.e. replace 𝑅 and 𝑀 in (3.20) with Φ𝑥

and Φ𝑢), we limit how fast a disturbance at subsystem 𝑗 propagates to the state and
input at subsystem 𝑖 — this serves no clear purpose. Thus, delay constraints are
only appropriate for implementation matrices, and should not be enforced on the
closed-loop responses.

Delay and locality as optimization objectives
We can augment the objective in (3.18) with the following terms to encourage
tolerance for communication delay

𝑇𝑐∑︁
𝑘=1

∑︁
𝑖

∑︁
𝑗

𝑒𝑑𝑖𝑠𝑡 (𝑖, 𝑗)−𝑘 (∥ [𝑅(𝑘)]𝑖, 𝑗 ∥ + ∥[𝑀 (𝑘)]𝑖, 𝑗 ∥) (3.21)

where 𝑑𝑖𝑠𝑡 (𝑖, 𝑗) is the distance between subsystems 𝑖 and 𝑗 in the network.

We can encourage tolerance for communication locality by using similar terms; note
the removal of 𝑘 from the exponential weight

𝑇𝑐∑︁
𝑘=1

∑︁
𝑖

∑︁
𝑗

𝑒𝑑𝑖𝑠𝑡 (𝑖, 𝑗) (∥ [𝑅(𝑘)]𝑖, 𝑗 ∥ + ∥[𝑀 (𝑘)]𝑖, 𝑗 ∥) (3.22)

Again taking the chain configuration with one state and one input per subsystem as
an example, these terms encourage banded-diagonal 𝑅(𝑘) and 𝑀 (𝑘) with higher
penalties on elements farther away from the diagonal. Elements that survive despite

21

heavy penalty represent edges in the network that require fast communication in
order to best preserve the desired closed-loop response.

3.6 Simulations
Code required to replicate these simulations can be found in the SLS-MATLAB
toolbox [6].

We use a system with 10 subsystems arranged in a chain configuration, with three
actuators, which has the following 𝐴 and 𝐵 matrices

𝐴 =



0.6 0.4 0 . . .

0.4 0.2
. . .

0
. . .

. . .
. . .

...
. . . 0.2 0.4

0.4 0.6


, (𝐵)𝑖, 𝑗 =


1 if (𝑖, 𝑗) ∈ ((3, 1), (6, 2), (10, 3))

0 otherwise

(3.23)
The system is marginally stable, with a spectral radius of 1.

Localized LQR controller
We provide an example in which the proposed two-step procedure substantially
outperforms both standard SLS and virtually local SLS [4].

The goal is to synthesize a controller with some standard LQR cost and communica-
tion constraints — each sub-controller is only allowed to use information from its two
neighbouring sub-controllers, and communication speed between sub-controllers is
restricted to be the same speed as the propagation of the discrete-time dynamics. We
use standard SLS, virtually local SLS, and two-step SLS (the technique proposed
in this chapter) with horizon 20 to solve this problem, and the results are shown in
Table 3.1. For each controller, we include the LQR cost normalized by the optimal,
non-communication-constrained LQR controller, as well as the spectral radius of
the internal dynamics.

The application of the desired constraints renders the standard SLS problem infea-
sible, as the desired constraints overly restrict the closed-loop responses. Using
virtually local SLS, we are able to obtain a controller that meets the requirements.
However, this controller performs nearly 30% worse than the optimal unconstrained
controller. The controller is internally stable, with an internal spectral radius of
0.847.

22

Table 3.1: Comparison of LQR costs

Controller LQR cost Internal spectral radius
Standard SLS, 𝑇 = 20 Infeasible
Virtually local SLS, 𝑇 = 20 1.294 0.847
Two-step SLS, 𝑇𝑐 = 20 1.033 0.876
Two-step SLS, 𝑇𝑐 = 2 1.034 0.851

To apply the two-step procedure, we first synthesize a centralized FIR controller
with a horizon of 20 timesteps using SLS. Then, we find appropriate implementation
matrices using (3.18). We first search over implementation matrices with controller
order𝑇𝑐 = 20. This yields a controller that performs only 3% worse than the optimal
unconstrained controller, and is internally stable, with an internal spectral radius that
is slightly higher than that of virtually local SLS. We also attempt to synthesize a
controller with order 𝑇𝑐 = 2 using the two-step procedure. Interesting, this lower-
order controller performs almost as well as the full-order controller, with only 0.1%
performance degradation. This suggests that in this case, highly delayed information
(which correspond to higher order terms of the implementation matrices) are not
very useful to the controller. Additionally, the lower-order controller has similar
internal stability as the higher-order controller. Overall, in this example, both two-
step controllers are vastly preferable compared to existing SLS techniques.

3.7 Conclusions and Future Work
By separating controller synthesis from closed-loop synthesis, we are able to apply
constraints to the controller without unnecessarily limiting the closed-loop response.
Our proposed two-step procedure offers an alternative approach for scenarios in
which standard SLS is infeasible.

The theory in this chapter can be extended to further clarify the relationship between
closed-loop responses and their corresponding implementation matrices. For a given
network, techniques from this chapter can be used to explore which communication
links in a system are crucial to optimal control performance, and which are not.
Additionally, the example provided shows that in some cases, extremely low-order
controllers perform nearly as well as high-order controllers — more investigation
is required to determine the scenarios in which this order reduction is available.
Furthermore, we are interested in comparing this technique with other distributed
control techniques, particularly spatial truncations of dense LQR controllers.

23

C h a p t e r 4

DISTRIBUTED STRUCTURED ROBUST CONTROL

[1] J. S. Li and J. C. Doyle, “Distributed Robust Control for Systems with
Structured Uncertainties,” in IEEE Conference on Decision and Control,
2022, pp. 1702–1707. doi: 10.1109/CDC51059.2022.9992622. [Online].
Available: http://arxiv.org/abs/2204.02493,

Overview: We present D-Φ iteration: an algorithm for distributed, localized, and
scalable synthesis of robust controllers for systems with structured uncertainties.
This algorithm combines the SLS parametrization for distributed control with sta-
bility criteria from L1, L∞, and 𝜈 robust control. We show in simulation that the
controller generated by this algorithm achieves good nominal performance while
greatly increasing the robust stability margin compared to the LQR controller. To
the best of our knowledge, this is the first distributed and localized algorithm for
structured robust controller synthesis; furthermore, algorithm complexity depends
only on the size of local neighborhoods and is independent of global system size. We
additionally characterize the suitability of different robustness criteria for distributed
and localized computation.

4.1 Introduction
Robust control theory [7]–[9] provides stability and performance guarantees in
the face of model uncertainty, which arises from imprecise models or unexpected
operating conditions. Robust control theory plays a crucial role in mitigating the
undesirable effects of model uncertainty on various engineering systems.

For large-scale systems, distributed H∞ robust control has been studied for linear
spatially invariant systems [10] and linear symmetric systems [11], among others;
more recently, distributed L1 robust controller synthesis for arbitrary linear systems
is proposed in [12]. However, to the best of our knowledge, no distributed methods
address structured uncertainty, which often arises in large systems; for instance,
in a power grid, we may have parametric uncertainty on electrical properties of
transmission lines between buses, but no uncertainty between unconnected buses
— this imposes structure on system uncertainty. Incorporating knowledge of this
structure into the synthesis procedure allows control engineers to provide robust

24

stability margins with minimal conservatism, which has been historically important
in the design of aerospace systems.

In this chapter, we leverage the SLS parametrization to provide distributed syn-
thesis methods for structured robust control. We consider diagonal time-varying
uncertainty and use L1, L∞, and 𝜈 [13] robustness criteria to formulate synthesis
problems. We also present D-Φ iteration, an algorithm for distributed synthesis of
robust controllers. To the best of our knowledge, this is the first distributed and
localized algorithm for structured robust control.

We first describe the SLS formulation as a generic optimization problem, and how it
can be used to describe state feedback, full control, and output feedback problems.
Then, we describe the concept separability, extending concepts from system level
synthesis [3], and discuss and how separability relates to scalability and distributed
computation. Then, we describe how L1, L∞, and 𝜈 robustness criteria translate
into separable objectives and constraints on the control problem, and present two
versions of the scalable D-Φ iteration algorithm for robust control. The efficacy of
the algorithms is demonstrated via simulations; D-Φ iteration provides good robust
stability margins while mostly preserving nominal performance.

4.2 System Level Synthesis for Linear Control Problems
Using SLS, we can cast any linear control problem as an optimization of the form

min
Φ

𝑓 (Φ) s.t. Φ ∈ S𝑎 ∩ P (4.1)

where 𝑓 is some convex functional, and S𝑎 and P are convex sets. S𝑎 represents
the achievability constraint, which is enforced in all SLS problems; it ensures that
we only search over closed-loop responses Φ which can be achieved using a causal,
internally stable controller. This is made mathematically explicit in Theorem 2.1.
P represents additional, optional constraints; we typically use P to enforce sparsity
on Φ, corresponding to local communication, delayed communication, or local
disturbance rejection. In Chapter II, we described how state feedback control can be

cast in the form of (4.1) — in this case, the decision variable is Φ =

[
Φ𝑥

Φ𝑢

]
, where Φ𝑥

and Φ𝑢 map from exogeneous disturbance to state and input, respectively. The state
feedback achievability constraint is given by (2.4). We now provide definitions of
Φ and S𝑎 for the full control and output feedback cases.

The full control problem can be formulated in the frequency domain as

𝑧x = 𝐴x + u + w (4.2a)

25

y = 𝐶x + v (4.2b)

where v represents measurement noise. Apply linear causal controller u = Ly for
some transfer matrix L. We remark that full control (i.e. full actuation, sparse
sensing) is the dual of state feedback (i.e. full sensing, sparse actuation). Define Φ𝑤
and Φ𝑣, closed-loop responses from disturbance and measurement noise to state

x = (𝑧𝐼 − 𝐴 − L𝐶)−1w + (𝑧𝐼 − 𝐴 − L𝐶)−1Lv

=

[
Φ𝑤 Φ𝑣

] [
w

v

]
(4.3)

Results from state feedback apply by duality. The full control achievability constraint
is [

Φ𝑤 Φ𝑣

] [
𝑧𝐼 − 𝐴
−𝐶

]
= 𝐼, Φ𝑤,Φ𝑣 ∈

1

𝑧
RH∞ (4.4)

Any full control problem can be cast as (4.1), where Φ =

[
Φ𝑤 Φ𝑣

]
, and Φ ∈ S𝑎 is

equivalent to Φ satisfying (4.4).

For the output feedback problem defined by (2.2) and (4.2b), i.e.

𝑧x = 𝐴x + 𝐵u + w
y = 𝐶x + v

(4.5)

with linear causal controller K and observer L, we define four closed-loop responses
mapping disturbance and measurement noise to state and control: Φ𝑥𝑤 , Φ𝑥𝑣 , Φ𝑢𝑤,
Φ𝑢𝑣, such that [

x

u

]
=

[
Φ𝑥𝑤 Φ𝑥𝑣

Φ𝑢𝑤 Φ𝑢𝑣

] [
w

v

]
(4.6)

The output feedback achievability constraint resembles a combination of the state
feedback and full control achievability constraints (2.4) and (4.4)[

𝑧𝐼 − 𝐴 −𝐵
] [

Φ𝑥𝑤 Φ𝑥𝑣

Φ𝑢𝑤 Φ𝑢𝑣

]
=

[
𝐼 0

]
(4.7a)[

Φ𝑥𝑤 Φ𝑥𝑣

Φ𝑢𝑤 Φ𝑢𝑣

] [
𝑧𝐼 − 𝐴
−𝐶

]
=

[
𝐼

0

]
(4.7b)

Φ𝑥𝑤,Φ𝑢𝑤,Φ𝑥𝑣 ∈
1

𝑧
RH∞,Φ𝑢𝑣 ∈ RH∞ (4.7c)

Detailed derivations can be found in Section 5 of [3]. Any output feedback problem

can be cast as (4.1), where Φ =

[
Φ𝑥𝑤 Φ𝑥𝑣

Φ𝑢𝑤 Φ𝑢𝑣

]
, and Φ ∈ S𝑎 is equivalent to Φ

satisfying (4.7).

26

4.3 Separability and Computation
We present definitions of separability and compatibility, extending concepts from
[3]. We describe how separable objectives and constraints in (4.1) translate to
distributed computation for both optimal and robust control.

Separability

Definition 4.1. Define transfer matrices Φ = argmin 𝑓 (Φ) and Ψ, where (Ψ)𝑖, 𝑗 =
argmin 𝑓𝑖 𝑗 ((Ψ)𝑖, 𝑗) and 𝑓 , 𝑓𝑖 𝑗 are some functionals. 𝑓 is an element-wise separable
functional if there exist sub-functionals 𝑓𝑖 𝑗 such that 𝑓 (Φ) = 𝑓 (Ψ).

Relevant element-wise separable functionals include ∥·∥H2 and ∥·∥1→∞ (i.e. maxi-
mum absolute element). The latter is the norm associated with 𝜈 robustness [13].

Definition 4.2. Let P represent some constraint set. P is an element-wise separable
constraint if there exist sub-constraint sets P𝑖 𝑗 such that Φ ∈ P ⇔ (Φ)𝑖, 𝑗 ∈ P𝑖 𝑗 .

Sparsity constraints on Φ are element-wise separable.

Definition 4.3. Define transfer matrices Φ = argmin 𝑓 (Φ) and Ψ, where (Ψ)𝑖,: =
argmin 𝑓𝑖 ((Ψ)𝑖,:) and 𝑓 , 𝑓𝑖 are some functionals. 𝑓 is a row-separable functional if
there exist sub-functionals 𝑓𝑖 such that 𝑓 (Φ) = 𝑓 (Ψ).

Definition 4.4. Let P represent some constraint set. P is a row separable constraint
if there exist sub-constraint sets P𝑖 such that Φ ∈ P ⇔ (Φ)𝑖,: ∈ P𝑖.

Column separable functionals and constraints are defined analogously. Clearly,
any element-wise separable functional or constraint is also both row and column
separable. A relevant row separable functional is ∥·∥∞→∞ (i.e. maximum absolute
row sum), which is the norm associated with L1 robustness. A relevant column
separable functional is ∥·∥1→1 (i.e. maximum absolute column sum), which is the
norm associated with L∞ robustness. We also see that constraints of the form
𝐺Φ = 𝐻 are column separable, while constraints of the form Φ𝐺 = 𝐻 are row
separable. Thus, the state feedback achievability constraint is column separable, and
the full control achievability constraint is row separable. For the output feedback
achievability constraints, (4.7a) is column separable, (4.7b) is row separable, and
(4.7c) is element-wise separable.

27

Definition 4.5. Optimization problem (4.1) is a fully row separable optimization
when all objectives and constraints are row separable. It is a fully column separable
optimization when all objectives and constraints are column separable.

Definition 4.6. Optimization problem (4.1) is a partially separable optimization
when all objectives and constraints are either row or column separable, but the
overall problem is not fully separable.

The separability of the SLS state feedback, full control, and output feedback prob-
lems are inherently limited by their achievability constraints, since these must always
be enforced. The state feedback problem can be fully column separable, but not
fully row separable; the opposite is true for the full control problem1. The out-
put feedback problem cannot be fully separable, since it includes a mix of column
and row separable achievability constraints. We now describe the computational
implications of separability.

Scalability and computation
A fully separable optimization is easily solved via distributed computation. For
instance, if problem (4.1) is fully row separable, we can solve the subproblem

min
(Φ)𝑖,:

𝑓𝑖 ((Φ)𝑖,:) s.t. (Φ)𝑖,: ∈ S𝑎𝑖 ∩ P𝑖 (4.8)

at each subsystem 𝑖 in the system, in parallel.

We often enforce sparsity on Φ to constrain inter-subsystem communication to local
neighborhoods of size 𝑑. This translates to (Φ)𝑖, 𝑗 = 0 ∀ 𝑗 ∉ N𝑑 (𝑖), where N𝑑 (𝑖)
is the set of subsystems that are in subsystem 𝑖’s local neighborhood, and |N𝑑 (𝑖) |
depends on 𝑑. Then, the size of the decision variable in subproblem (4.8) scales
with 𝑑. Each subsystem solves a subproblem in parallel; overall, computational
complexity scales with 𝑑 instead of system size 𝑁 . This is highly beneficial for large
systems, where we can choose 𝑑 much smaller than 𝑁 .

For partially separable problems, we apply the alternating direction method of
multipliers (ADMM) [14]. We first rewrite (4.1) in terms of row separable and
column separable objectives and constraints

min
Φ

𝑓 (row) (Φ) + 𝑓 (col) (Φ)

s.t. Φ ∈ S (row)
𝑎 ∩ S (col)

𝑎 ∩ P (row) ∩ P (col)
(4.9)

1The only exception is if all system matrices are diagonal; in this case, all achievability constraints
are element-wise separable.

28

Note that an element-wise separable objective can appear in both 𝑓 (row) and 𝑓 (col);
similarly, an element-wise separable constraint P can appear in both P (row) and
P (col) . We now introduce duplicate variable Ψ and dual variable Λ. The ADMM
algorithm is iterative; for each iteration 𝑘 , we perform the following computations

Φ𝑘+1 = argmin
Φ

𝑓 (row) (Φ) + 𝛾
2
∥Φ −Ψ𝑘 + Λ𝑘 ∥𝐹

s.t. Φ ∈ S (row)
𝑎 ∩ P (row)

(4.10a)

Ψ𝑘+1 = argmin
Ψ

𝑓 (col) (Ψ) + 𝛾
2
∥Φ𝑘+1 −Ψ + Λ𝑘 ∥𝐹

s.t. Ψ ∈ S (col)
𝑎 ∩ P (col)

(4.10b)

Λ𝑘+1 = Λ𝑘 + Φ𝑘+1 −Ψ𝑘+1 (4.10c)

ADMM separates (4.1) into a row separable problem (4.10a) and a column separable
problem (4.10b), and encourages consensus between Φ and Ψ (i.e. Φ = Ψ) via the
𝛾-weighted objective and (4.10c). When both ∥Φ𝑘+1 −Ψ𝑘+1∥𝐹 and ∥Φ𝑘+1 − Φ𝑘 ∥𝐹
are sufficiently small, the algorithm converges; Φ𝑘 is the optimal solution to (4.1).

Optimizations (4.10a) and (4.10b) are fully separable; as described above, they enjoy
complexity that scales with local neighborhood size instead of global system size.
Additionally, due to sparsity constraints on Φ and Ψ, only local communication
is required between successive iterations. Thus, partially separable problems also
enjoy computational complexity that scale with local neighborhood size instead of
global system size [3], [15]. However, partially separable problems require itera-
tions, making them more computationally complex than fully separable problems.
The separability of objectives and constraints in (4.1) can also affect convergence
rate, as we will describe next.

Definition 4.7. Let ℜ, ℭ ∈ Z+ indicate some sets of indices. Define 𝑓sub, a
functional of (Φ)ℜ,ℭ, and 𝑓 , a functional of Φ. Define transfer matrices Φ and Ψ,
and let (Φ)𝑖, 𝑗 = (Ψ)𝑖, 𝑗 ∀(𝑖, 𝑗) ∉ (ℜ,ℭ). 𝑓sub is a compatible sub-functional of
functional 𝑓 if minimizing 𝑓sub is compatible with minimizing 𝑓 , i.e. 𝑓sub((Φ)ℜ,ℭ) ≤
𝑓sub((Ψ)ℜ,ℭ) ⇒ 𝑓 (Φ) ≤ 𝑓 (Ψ).

Definition 4.8. Let ℜ, ℭ ∈ Z+ indicate some sets of indices. Constraint set Psub is a
compatible sub-constraint of constraint set P if Φ ∈ P ⇒ (Φ)ℜ,ℭ ∈ Psub for some
set of elements (Φ)ℜ,ℭ.

29

Compatibility complements separability. If functional 𝑓 is separable into sub-
functionals 𝑓𝑖, then each 𝑓𝑖 is a compatible sub-functional of 𝑓 ; similar arguments
apply for constraints.

Definition 4.9. Let ℜ, ℭ ∈ Z+ indicate some sets of indices. The partially separable
problem (4.9) can be decomposed into row and column sub-functionals and sub-
constraints. We say (4.9) is a balanced ADMM problem if, for any set of elements
(Φ)ℜ,ℭ which appear together in a sub-constraint, there exists a matching sub-
functional 𝑓sub that is compatible with 𝑓 , and depends only on (Φ)ℜ,ℭ.

Intuitively, a balanced partially separable problem converges faster than an unbal-
anced one. For example, consider an output feedback problem with a row separable
objective. This is an unbalanced partially separable problem; though all row sub-
constraints have a matching sub-objective, none of the column sub-constraints have
matching sub-objectives. Thus, we are only able to minimize the objective in the
row computation (4.10a); this results in slow convergence, and places more burden
on consensus between Φ and Ψ than a balanced problem would. More unbalanced
examples include a state feedback problem with a row separable objective, or a full
control problem with a column separable objective. To balance an output feedback
problem, we require an element-wise separable objective 𝑓 .

To summarize: for both fully separable and partially separable problems, computa-
tional complexity scales independently of system size. However, partially separable
problems require iteration, while fully separable problems do not. For partially
separable problems, we prefer a balanced problem to an unbalanced problem due
to faster convergence. Thus, element-wise separability (e.g. H2 optimal control, 𝜈
robustness) is desirable for two reasons: firstly, for state feedback and full control,
element-wise separable objectives give rise to fully separable problems. Secondly,
for output feedback, where ADMM iterations are unavoidable, element-wise sep-
arable objectives give rise to balanced problems. Finally, we remark that H∞
robust control problems are not at all separable, and make for highly un-scalable
computations; this motivates our use of L1, L∞, and 𝜈 robustness.

4.4 Robust Stability
We present distributed algorithms for structured robust control, using criterion
from L1, L∞, and 𝜈 robustness. We consider diagonal nonlinear time-varying
(DNLTV) uncertainties ∆ and strictly causal LTI closed-loops Φ. We leverage the

30

𝚫

𝐆𝐳 𝐰

Figure 4.1: Feedback interconnection of transfer matrix G and uncertainty ∆. G is
the nominal closed-loop response from disturbance w to regulated output z.

SLS formulation to formulate robust control problems as distributed optimization
problems.

Robust stability conditions
Let transfer matrix G map disturbance w to regulated output z. Generally, z is a
linear function of state x and input u, i.e. G = 𝐻Φ for some constant matrix 𝐻.
Thus, G is strictly casual and LTI. Assume that we have some fixed closed-loop
map Φ, and therefore fixed G. We construct positive constant magnitude matrix
𝑀 =

∑∞
𝑝=1 |G(𝑝) |, where G(𝑝) are spectral elements of G, and | · | denotes the

element-wise absolute value. Let D be the set of positive diagonal matrices

D = {𝐷 ∈ R𝑛×𝑛 : (𝐷)𝑖, 𝑗 = 0 ∀𝑖 ≠ 𝑗 , (𝐷)𝑖,𝑖 > 0 ∀𝑖} (4.11)

Lemma 4.1. The interconnection in Figure 4.1 is robustly stable in the L1 sense for
all DNLTV ∆ such that ∥∆∥∞→∞ < 1

𝛽
if and only if inf𝐷∈D ∥𝐷𝑀𝐷−1∥∞→∞ ≤ 𝛽.

Proof in [7].

Lemma 4.2. The interconnection in Figure 4.1 is robustly stable in the L∞ sense
for all DNLTV ∆ such that ∥∆∥1→1 <

1
𝛽

if and only if inf𝐷∈D ∥𝐷𝑀𝐷−1∥1→1 ≤ 𝛽.
Proof: equivalent to applying Lemma 4.1 to 𝑀⊤.

Lemma 4.3. The interconnection in Figure 4.1 is robustly stable in the 𝜈 sense for
all DNLTV ∆ such that ∥∆∥∞→1 <

1
𝛽

if inf𝐷∈D ∥𝐷𝑀𝐷−1∥1→∞ ≤ 𝛽. Additionally,
if ∃𝐷 ∈ D s.t. 𝐷𝑀𝐷−1 is diagonally maximal, then this condition is both sufficient
and necessary. Proof: Theorem 4 in [13].

Definition 4.10. Matrix 𝐴 ∈ R𝑛×𝑛 is diagonally maximal if ∃𝑘 s.t. | (𝐴)𝑘,𝑘 | =
max𝑖, 𝑗 | (𝐴)𝑖, 𝑗 |, i.e. the maximum element in 𝐴 lies on its diagonal.

31

In general, computing the ∥·∥∞→1 norm is NP-hard; for diagonal ∆, ∥∆∥∞→1 =∑
𝑘 | (Δ)𝑘,𝑘 | [13].

Let the nominal performance be ∥𝑄Φ∥perf for some norm ∥·∥perf and some constant
matrix 𝑄. Then, leveraging the robust analysis results from Lemmas 4.1-4.3, we
can pose the synthesis problem for nominal performance and robust stability as

min
Φ,𝑀,𝐷

∥𝑄Φ∥perf + ∥𝐷𝑀𝐷−1∥stab

s.t. 𝑀 =

𝑇∑︁
𝑝=1

|𝐻Φ(𝑝) |, Φ ∈ S𝑎 ∩ P, 𝐷 ∈ D
(4.12)

where for ease of computation we assume that Φ is finite impulse response (FIR)
with horizon 𝑇 . We intentionally leave norms ambiguous; ∥·∥stab can be ∥·∥∞→∞,
∥·∥1→1, or ∥·∥1→∞ for L1, L∞, and 𝜈 robust stability, respectively. ∥𝐷𝑀𝐷−1∥
corresponds to the robust stability margin 1

𝛽
; robust stability is guaranteed for all

∆ such that ∥∆∥ < 1
𝛽
, for the appropriate norm on ∆. Smaller 𝛽 corresponds to

stability guarantees for a larger set of ∆. The nominal performance norm ∥·∥perf

may be different from ∥·∥stab.

D-Φ iteration
Problem (4.12) is nonconvex, and does not admit a convex reformulation. Inspired
by the D-K iteration method from H∞ robust control [8], we adopt an iterative
approach. We heuristically minimize (4.12) by iteratively fixing 𝐷 and optimizing
over Φ in the "Φ step", then fixing Φ and optimizing (or randomizing) over 𝐷 in the
"D step".

We remark that problem (4.12) poses both nominal performance and robust stability
as objectives. If we already know the desired robust stability margin 𝛽−1max, we can
omit the stability objective and instead enforce a constraint ∥𝐷𝑀𝐷−1∥stab ≤ 𝛽max,
as is done in D-K iteration; similarly, if we already know the desired nominal
performance 𝛼, we can omit the performance objective and enforce ∥𝑄Φ∥perf ≤ 𝛼.

The Φ step solves the following problem

Φ, 𝑀 = argmin
Φ,𝑀

∥𝑄Φ∥perf

s.t. ∥𝐷𝑀𝐷−1∥stab ≤ 𝛽

𝑀 =

𝑇∑︁
𝑝=1

|𝐻Φ(𝑝) |, Φ ∈ S𝑎 ∩ P

(4.13)

32

for some fixed value 𝛽 and scaling matrix𝐷 ∈ D. The separability of problem (4.13)
is characterized by the separability of its objective and constraints. As previously
mentioned, P typically consists of sparsity constraints on Φ; this constraint is
element-wise separable. The separability of other constraints and objectives in
(4.13) are as follows:

• If 𝑄 is separably diagonal, ∥𝑄Φ∥perf has the same separability as ∥·∥perf; If
not, it is column separable if and only if ∥·∥perf is column separable.

• ∥𝐷𝑀𝐷−1∥stab < 𝛽 has the same separability as ∥·∥stab.

• If 𝐻 is separably diagonal, 𝑀 =
∑𝑇
𝑝=1 |𝐻Φ(𝑝) | is element-wise separable; if

not, it is column separable.

• Φ ∈ S𝑎 is column separable for state feedback, row separable for full control,
and partially separable for output feedback.

Definition 4.11. For state feedback, the product𝑄Φmay be written as𝑄𝑥Φ𝑥+𝑄𝑢Φ𝑢
for some matrices𝑄𝑥 and𝑄𝑢. 𝑄 is separably diagonal if both𝑄𝑥 and𝑄𝑢 are diagonal
matrices. Analogous definitions apply to the full control and output feedback case.

Table 4.1 summarizes the separability of (4.13) for state feedback, full control, and
output feedback problems with H∞, L1, L∞, and 𝜈 robustness, where we assume
that 𝑄 and 𝐻 are separably diagonal and ∥·∥perf has the same type of separability
as ∥·∥stab. Note that H∞ is not separable for any problem. For state feedback,
L∞ and 𝜈 are the preferred stability criteria; for full control, L1 and 𝜈 are the
preferred stability criteria. For output feedback, 𝜈 is the only criterion that produces
a balanced partially separable problem. Overall, 𝜈 robustness is preferable in all
three cases, resulting in either fully separable formulations that require no iterations,
or balanced partially separable formulations, which have preferable convergence
properties. Though convergence properties vary, the Φ step (4.13) can be computed
with complexity that scales with local neighborhood size 𝑑 instead of global system
size for all non-H∞ cases.

The D step solves the following problem

𝐷 = argmin
𝐷

∥𝐷𝑀𝐷−1∥stab s.t. 𝐷 ∈ D (4.14)

33

Table 4.1: Separability of Φ step of D-Φ iteration

State Feedback Full Control Output Feedback
H∞ No No No
L1 Partial, Unbalanced Full Partial, Unbalanced
L∞ Full Partial, Unbalanced Partial, Unbalanced
𝜈 Full Full Partial, Balanced

for some fixed magnitude matrix 𝑀 . For 𝜈 robustness, the minimizing D step (4.14)
can be recast as a linear program

𝑙𝑖, 𝜂 = argmin
𝑙𝑖 ,𝜂

𝜂 s.t. log (𝑀)𝑖, 𝑗 + 𝑙𝑖 − 𝑙 𝑗 ≤ 𝜂

∀(𝑀)𝑖, 𝑗 ≠ 0, 1 ≤ 𝑖, 𝑗 ≤ 𝑛
(4.15)

The optimal solution𝐷 can be recovered as𝐷 = diag(exp (𝑙1), exp (𝑙2), . . . exp (𝑙𝑛)).
Problem (4.15) can be distributedly computed using ADMM consensus [14]. Let

𝑥𝑖 =

[
𝜂𝑖

𝐿 𝑗@𝑖

]
be the variable at subsystem 𝑖, where 𝜂𝑖 is subsystem 𝑖’s value of 𝜂, and

𝐿 𝑗@𝑖 is a vector containing 𝑙 𝑗@𝑖: subsystem 𝑖’s values of 𝑙 𝑗 for all 𝑗 ∈ N𝑑 (𝑖). The
goal is for all subsystems to reach consensus on 𝜂 and 𝑙𝑖, 1 ≤ 𝑖 ≤ 𝑁 . We introduce

dual variable 𝑦𝑖 and averaging variable 𝑥𝑖 =

[
𝜂𝑖

𝐿̄ 𝑗@𝑖

]
. For each iteration 𝑘 , subsystem

𝑖 performs the following computations

𝑥𝑘+1𝑖 = argmin
𝑥𝑖

𝜂𝑖 + (𝑦𝑘𝑖)⊤(𝑥𝑖 − 𝑥𝑘𝑖) + 𝛾∥𝑥𝑖 − 𝑥𝑘𝑖 ∥22

s.t. ∀ 𝑗 ∈ N𝑑 (𝑖), (𝑀)𝑖, 𝑗 + 𝑙𝑖@𝑖 − 𝑙 𝑗@𝑖 ≤ 𝜂𝑖
(4.16a)

𝜂𝑘+1𝑖 =
1

|N𝑑 (𝑖) |
∑︁

𝑗∈N𝑑 (𝑖)
𝜂 𝑗

𝑙𝑖 =
1

|N𝑑 (𝑖) |
∑︁

𝑗∈N𝑑 (𝑖)
𝑙𝑖@ 𝑗 , 𝑙𝑘+1

𝑗@𝑖 = 𝑙 𝑗 ,∀ 𝑗 ∈ N𝑑 (𝑖)
(4.16b)

𝑦𝑘+1𝑖 = 𝑦𝑘𝑖 +
𝛾

2
(𝑥𝑘+1𝑖 − 𝑥𝑘+1𝑖) (4.16c)

where 𝛾 is a user-determined parameter, and iterations stop when consensus is
reached, i.e. differences between relevant variables are sufficiently small. The size
of optimization variable 𝑥𝑖 depends only on local neighborhood size 𝑑; thus, the
complexity of (4.16a) scales independently of global system size. Computation
(4.16b) requires communication, but only within the local neighborhood. Also, by

34

the definition of Φ and the construction of 𝑀 , (𝑀)𝑖, 𝑗 = 0 ∀ 𝑗 ∉ N𝑑 (𝑖). Thus, for a
fully connected system, solving (4.16) is equivalent to solving (4.15). Additionally,
consensus problems are balanced as per Definition 4.9, so (4.16) converges relatively
quickly.

For L1 robustness, (4.14) is solved by setting 𝐷 = diag(𝑣1, 𝑣2, . . . 𝑣𝑛)−1, where 𝑣 is
the eigenvector corresponding to the largest-magnitude eigenvalue of 𝑀 [7]. This
computation does not lend itself to scalable distributed computation. To ameliorate
this, we propose an alternative formulation that randomizes instead of minimizing
over 𝐷. This can be written in the form of an optimization problem as

𝐷 = argmin
𝐷

0 s.t. ∥𝐷𝑀𝐷−1∥stab ≤ 𝛽 (4.17)

The randomizing formulation lends itself to distributed computation. Also, we
remark that (4.14) can be solved by iteratively solving (4.17) to search for the lowest
feasible value of 𝛽.

Define vectors

𝑣 =


(𝐷)1,1
(𝐷)2,2
...

(𝐷)𝑛,𝑛


, 𝑣−1 =


(𝐷)−11,1
(𝐷)−12,2
...

(𝐷)−1𝑛,𝑛


(4.18)

We can rewrite constraint ∥𝐷𝑀𝐷−1∥stab ≤ 𝛽 as 𝑀𝑣−1 ≤ 𝛽𝑣−1 for L1 stability, and
𝑀⊤𝑣 ≤ 𝛽𝑣 for L∞ stability. Then, problem (4.17) can be formulated as a scalable
distributed ADMM consensus problem using similar techniques as (4.15).

Both versions of the D step ((4.14) and (4.17)) for D-Φ iteration are simpler than the
D step in D-K iteration [8], which requires a somewhat involved frequency fitting
process. Also, all separable versions of the proposed D step are less computationally
intensive than the Φ step (4.13), since the decision variable in the D step is much
smaller. Table 4.2 summarizes the scalability of different versions of the D step for
different robustness criteria. "Minimize" refers to solving (4.14) directly; "Iteratively
Minimize" refers to solving (4.14) by iteratively solving (4.17) to search for the
lowest feasible 𝛽; "Randomize" refers to solving (4.14). ✓ indicates that we can
use scalable distributed computation, and ✗ indicates that no scalable distributed
formulation is available; by scalable, we mean complexity that scales independently
of global system size. For iterative minimization, there is the obvious caveat of
iterations incurring additional computational time; however, forL1 andL∞, iterative
minimization is more scalable than direct minimization. Additionally, we show in

35

Table 4.2: Scalability of D step of D-Φ iteration

Minimize Iteratively Minimize Randomize
H∞ ✗ ✗ ✗

L1 ✗ ✓ ✓

L∞ ✗ ✓ ✓

𝜈 ✓ ✓ ✓

the next section that algorithms using the randomizing D step perform similarly
as algorithms using the minimizing D step; thus, iterative minimization may be
unnecessary. Overall, 𝜈 robustness appears to be preferable for scalability purposes
for both the Φ step and D step.

We now present two algorithms for D-Φ iteration. Algorithm 4.1 is based on
minimizing over 𝐷 (4.14), while Algorithm 4.2 is based on randomizing over 𝐷
(4.17). Both algorithms compute the controller Φ which achieves optimal nominal
performance for some desired robust stability margin 𝛽−1max.

Algorithm 4.1 D-Φ iteration with minimizing D step
input : 𝛽step > 0, 𝛽max > 0
output : Φ, 𝛽

1: Initialize 𝛽𝑘=0 ←∞, 𝑘 ← 1
2: Set 𝛽𝑘 ← 𝛽𝑘−1 − 𝛽step. Solve (4.13) to obtain Φ𝑘 , 𝑀 𝑘

if (4.13) is infeasible :
return Φ𝑘−1, 𝛽𝑘−1

3: Solve (4.14) to obtain 𝐷. Set 𝛽𝑘 ← ∥𝐷𝑀 𝑘𝐷−1∥stab
if 𝛽𝑘 ≤ 𝛽max :

return Φ𝑘 , 𝛽𝑘
4: Set 𝑘 ← 𝑘 + 1 and return to step 2

In Algorithm 4.1, we alternate between minimizing over Φ and minimizing over
𝐷, and stop when no more progress can be made or when 𝛽max is attained. No
initial guess of 𝐷 is needed; at iteration 𝑘 = 1, 𝛽𝑘 = ∞, and the ∥𝐷𝑀𝐷−1∥stab ≤ 𝛽
constraint in (4.13) of step 2 is trivially satisfied. In Algorithm 4.2, we alternate
between minimizing Φ and randomizing 𝐷. There are two main departures from
Algorithm 4.1 due to the use of the randomizing D step:

1. An initial guess of 𝐷 is required to generate 𝛽𝑘=1, which is then used as an
input to the randomizing D step. 𝐷 = 𝐼 is a natural choice, although we may
also randomize or minimize over the initial 𝐷.

36

Algorithm 4.2 D-Φ iteration with randomizing D step
input : 𝛽step > 0, 𝛽max > 0
output : Φ, 𝛽

1: Initialize 𝛽𝑘=0 ←∞, 𝑘 ← 1, 𝐷 ← 𝐼

2: Set 𝛽𝑘 ← 𝛽𝑘−1 − 𝛽step. Solve (4.13) to obtain Φ𝑘 , 𝑀 𝑘

if 𝑘 = 1 :
Set 𝛽𝑘 ← ∥𝐷𝑀 𝑘𝐷−1∥stab

if (4.13) is infeasible :
Solve (4.17)
if (4.17) is infeasible :

return Φ𝑘−1, 𝛽𝑘−1
else :

Solve (4.13) to obtain Φ𝑘 , 𝑀 𝑘

if 𝛽𝑘 ≤ 𝛽max :
return Φ𝑘 , 𝛽𝑘

3: Solve (4.17) to obtain 𝐷
4: Set 𝑘 ← 𝑘 + 1 and return to step 2

2. In step 2, when we cannot find a new Φ to make progress on 𝛽, instead of
stopping, attempt to find a new 𝐷 to make progress on 𝛽. If such a 𝐷 can be
found, find the new optimal Φ, then continue iterating.

Parameter 𝛽step appears in both algorithms, and indicates the minimal robust stability
margin improvement per step. For both algorithms, computational complexity is
dominated by the Φ step problem (4.13) and D step problem (4.14) or (4.17). All of
these problems can be distributedly computed, and all enjoy complexity that scales
independently of global system size; thus, the complexity of the overall algorithm
also scales independently of global system size.

4.5 Simulations
We use a ring of 10 subsystems with with spectral radius 3. Each subsystem is
dynamically coupled to its neighbor on the ring, as follows

𝑥𝑖 (𝑡 + 1) = (𝐴)𝑖,𝑖−1𝑥𝑖−1(𝑡) + (𝐴)𝑖,𝑖+1𝑥𝑖+1(𝑡) + 𝑢𝑖 (𝑡)
for 𝑖 = 2 . . . 𝑁 − 1,

𝑥1(𝑡 + 1) = (𝐴)1,𝑁𝑥𝑁 (𝑡) + (𝐴)1,2𝑥2(𝑡) + 𝑢1(𝑡),
𝑥𝑁 (𝑡 + 1) = (𝐴)𝑁,𝑁−1𝑥𝑁−1(𝑡) + (𝐴)𝑁,1𝑥1(𝑡) + 𝑢𝑁 (𝑡)

(4.19)

Nonzero elements of system matrix 𝐴 are randomly drawn. We focus on the state
feedback case, with an LQR nominal performance objective with state penalty
𝑄𝑥 = 𝐼 and control penalty 𝑄𝑢 = 50𝐼. The regulated output is 𝑧𝑖 = 𝑥𝑖 + 𝑢𝑖.

37

1 1.2 1.4

1.2

1.25

1.3

1.8 2 2.2 2.4

1.2

1.25

1.3

1.8 2 2.2

1.2

1.25

1.3

Figure 4.2: D-Φ iteration results for 𝜈, L1, and L∞ robust stability. Algorithm
4.1 (labelled "Alg. 1") and Algorithm 4.2 (labelled "Alg. 2") perform similarly.
The controller with maximum stability margin for 𝜈 is found in 18 iterations for
both algorithms; for L1, in 30 iterations for Algorithm 4.1 and 35 iterations for
Algorithm 4.2; for L∞, for L1, in 25 iterations for Algorithm 4.1 and 35 iterations
for Algorithm 4.2.

We constrain Φ to be FIR with horizon size 𝑇 = 30. We also constrain Φ to
be sparse, such that each subsystem is only allowed to communicate to neighbors
and neighbors of neighbors. We run Algorithm 4.1 and 4.2 with 𝛽step = 0.05 and
varying values of 𝛽max, and compare the results to the optimal LQR solution, which
is unconstrained by local communication. Results are shown in Figure 4.2, where
cost and robust stability margin are normalized against the LQR solution.

Both algorithms start with the standard SLS solution; in each plot, the point on
the bottom left corresponds to this solution. The performance suboptimality of the
SLS solution arises purely from communication constraints. There appears to be a
tradeoff between nominal cost and stability margin; as the margin increases, so does
the cost. Note that as the number of iterations increase, robust stability margin 1

𝛽

can only increase; thus, the number of iterations required increases as the desired
margin 𝛽−1max increases. Algorithm 4.1 and Algorithm 4.2 perform similarly, though
Algorithm 4.2 appears to require more iterations. Overall, these simulations show
that the two proposed algorithms for D-Φ iteration are viable and give good margins
and nominal performance, as desired. Simulation results may be reproduced using
the relevant scripts in the SLS-MATLAB toolbox [6].

4.6 Conclusions and Future Work
This chapter provides a novel algorithm for distributed structured robust control.
Several directions of future work may be explored:

38

1. This chapter focuses on DNLTV uncertainties ∆. The development of a
similar algorithm for block-diagonal uncertainties and additional classes of
uncertainty is a logical next step.

2. This chapter focuses on robust stability, but may have applications for robust
performance as well. This would require a change in the optimization objective
in the Φ step (and possibly the D step as well).

3. D-Φ iterations operate over a highly non-convex space; additional analysis is
required to understand how the problem of local minima may be avoided, while
ensuring appropriate progress. Currently, progress is enforced by decreasing
𝛽 between iterations – we conjecture that this may make the algorithm more
prone to local minima, particularly when the minimizing D step is employed.
Alternative methods of ensuring progress should be explored.

39

C h a p t e r 5

EFFICIENT DISTRIBUTED MODEL PREDICTIVE CONTROL

[1] J. S. Li and C. Amo Alonso, “Global Performance Guarantees for Localized
Model Predictive Control,” Submitted to IEEE Open Journal of Control
Systems, 2023. [Online]. Available: https://arxiv.org/abs/2303.
11264,

[2] J. S. Li, C. Amo Alonso, and J. C. Doyle, “Frontiers in Scalable Distributed
Control: SLS, MPC, and beyond,” in IEEE American Control Conference,
2021, pp. 2720–2725. doi: 10.23919/ACC50511.2021.9483130. [On-
line]. Available: https://arxiv.org/abs/2010.01292,

Overview: Recent advances in model predictive control (MPC) leverage local com-
munication constraints to produce localized MPC algorithms whose complexities
scale independently of total network size. However, no characterization is available
regarding global performance, i.e. whether localized MPC (with communication
constraints) performs just as well as global MPC (no communication constraints). In
this chapter, we provide analysis and guarantees on global performance of localized
MPC — in particular, we derive sufficient conditions for optimal global performance
in the presence of local communication constraints. We also present an algorithm
to determine the communication structure for a given system that will preserve
performance while minimizing computational complexity. The effectiveness of the
algorithm is verified in simulations, and additional relationships between network
properties and performance-preserving communication constraints are character-
ized. A striking finding is that in a network of 121 coupled pendula, each subsystem
only needs to communicate with its immediate neighbors to preserve optimal global
performance. Overall, this chapter offers theoretical understanding on the effect
of local communication on global performance, and provides practitioners with
the tools necessary to deploy localized model predictive control by establishing a
rigorous method of selecting local communication constraints. This chapter also
demonstrates — surprisingly — that the inclusion of severe communication con-
straints need not compromise global performance. Additionally, we provide an
example of how we can improve the efficiency of distributed MPC by making use
of a layered online-offline architecture.

40

5.1 Introduction
Distributed control is crucial for the operation of large-scale networks such as power
grids and intelligent transport systems. Distributed model predictive control (MPC)
is of particular interest, since MPC is one of the most powerful and commonly used
control methods. Most formulations for distributed MPC involve open-loop policies
(i.e. optimize directly over states and inputs) [16]–[23], which are computationally
efficient but lack intrinsic robustness [24]. Distributed closed-loop approaches (i.e.
optimize over policies) are rarer — and though they enjoy intrinsic robustness, they
typically require strong assumptions, such as the existence of a static structured
stabilizing controller [25] or decoupled subsystems [26]. This motivated the de-
velopment of a distributed closed-loop formulation: distributed and localized MPC
(DLMPC), introduced in previous work [15], [27], [28]. DLMPC is unique among
distributed MPC methods in that it computes structured closed-loop policies, can be
solved at scale via distributed optimization, and requires no strong assumptions on
the system: it may be used on arbitrary linear systems. In the context of system level
synthesis, upon which DLMPC is based, DLMPC is also the first work to extend
to system level formulation to the distributed online (i.e. predictive) setting. Addi-
tionally, DLMPC enjoys minimally conservative feasibility and stability guarantees
[28]. However, DLMPC requires the inclusion of local communication constraints,
whose effects on performance is, thus far, unexplored — this is the focus of this
chapter.

The key benefits of DLMPC are facilitated by the inclusion of local communication
constraints, which are typically encapsulated in a single parameter 𝑑 (rigorously
defined in the next section). The question of how to select this parameter remains
unresolved, as two opposing forces come into play: smaller values of 𝑑 represent
stricter communication constraints, which correspond to decreased complexity —
however, overly strict communication constraints may render the problem infeasible,
or compromise system performance. In this chapter, we address this problem
by providing a rigorous characterization of the impact of local communication
constraints on performance.

The analysis in this chapter is enabled by the unique formulation of DLMPC with
regards to communication constraints. While previous distributed MPC approaches
typically 1) focus on iterative distributed solutions of the centralized problem [16],
[18], [20], [23] or 2) reshape performance objectives for distributed optimization
[17], [19], DLMPC does neither — it introduces local communication constraints

41

via the addition of a single constraint to the centralized problem, and does not
require changes to the centralized performance objective. The resulting localized
MPC problem can be exactly and optimally solved via distributed optimization. In
this chapter, we rigorously analyze the effect of this local constraint by comparing
the performance of the localized MPC problem to the standard global MPC problem.
We restrict analysis to the linear setting, and focus on cases in which optimal global
performance (with respect to any convex objective function with its minimum at the
origin) may be obtained with local communication. In other words, the performance
of the system is unchanged by the introduction of communication constraints. A
striking finding is that in a network of coupled pendula, optimal global performance
can be achieved with relatively strict local communication constraints — in fact, if
every subsystem is actuated, then each subsystem only needs to communicate with
its immediate neighbors to preserve optimal global performance.

For large networked systems, several studies have been conducted on the use of
offline controllers with local communication constraints. Local communication
can facilitate faster computational speed [29] and convergence [30], particularly
in the presence of delays [31] — however, this typically comes at the cost of
supoptimal global performance [32]. In [33], a trade-off between performance and
decentralization level (i.e. amount of global communication) is found for a truncated
linear quadratic regulator. In system level synthesis, the offline predecessor of
DLMPC [3], localization is typically associated with reduced performance of around
10% relative to the global controller. More generally, for both global and localized
control, the topology of the network and actuator placement [34] plays a role in
achievable controller performance [35], [36] and convergence [37]. In the realm
of predictive control, communication constraints are important considerations [38].
However, the improved computational speeds offered by local predictive controllers
typically come at the cost of suboptimal global performance and lack of stability and
convergence guarantees [39]. The novel DLMPC method [15], [27], [28] overcomes
some of these drawbacks, providing both stability and convergence guarantees —
however, thus far, its performance has not been substantially compared to that of
the global, full-communication controller.1. In the few instances that it has, it
performed nearly identically to the global controller despite the inclusion of strict
communication constraints [40], prompting further investigation.

This chapter contains two key contributions. First, we provide a rigorous charac-
1Prior work focuses on comparisons between centralized and distributed optimization schemes

for localized MPC

42

terization of how local communication constraints restrict (or preserve) the set of
trajectories available under predictive control, and use this to provide guarantees
on optimal global performance for localized MPC. Secondly, we provide an exact
method for selecting an appropriate locality parameter 𝑑 for localized MPC. To the
best of our knowledge, these are the first results of this kind on local communication
constraints; our findings are useful to theoreticians and practitioners alike. A third
and more minor contribution consists of a layered online-offline architecture that
facilitates efficient MPC.

5.2 Localized MPC
We begin with a brief summary of global MPC and localized MPC [15], [27], [28].

Consider the standard linear time-invariant discrete-time system described in (2.1),
sans disturbance 𝑤(𝑡). This system can be interpreted as 𝑁 interconnected sub-
systems, each equipped with its own sub-controller. We model the interconnection
topology as an unweighted undirected graph G(𝐴,𝐵) (E,V), where each subsystem 𝑖

is identified with a vertex 𝑣𝑖 ∈ V and an edge 𝑒𝑖 𝑗 ∈ E exists whenever [𝐴]𝑖 𝑗 ≠ 0 or
[𝐵]𝑖 𝑗 ≠ 0. The MPC problem at each timestep 𝜏 is defined as follows

min
𝑥𝑡 ,𝑢𝑡 ,𝛾𝑡

𝑇−1∑︁
𝑡=0

𝑓𝑡 (𝑥𝑡 , 𝑢𝑡) + 𝑓𝑇 (𝑥𝑇) (5.1a)

s.t. 𝑥0 = 𝑥(𝜏), (5.1b)

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 , (5.1c)

𝑥𝑇 ∈ X𝑇 , 𝑥𝑡 ∈ X𝑡 , 𝑢𝑡 ∈ U𝑡 , (5.1d)

𝑢𝑡 = 𝛾𝑡 (𝑥0:𝑡 , 𝑢0:𝑡−1), 𝑡 = 0, ..., 𝑇 − 1 (5.1e)

where 𝑓𝑡 (·, ·) and 𝑓𝑇 (·) are assumed to be closed, proper, and convex, with the
minimum at the origin; 𝛾𝑡 (·) is a measurable function of its arguments; and sets
X𝑇 , X𝑡 , and U are assumed to be closed and convex sets containing the origin
for all 𝑡. We have chosen to write the standard MPC problem in this closed-loop
form (i.e. optimizing over policies 𝛾𝑡) due to the increased intrinsic robustness
provided by closed-loop MPC versus open-loop MPC (i.e. optimizing over inputs
and states directly) [24]. Policies 𝛾𝑡 are time-varying and capture all possible causal
combinations of state 𝑥𝑡 and input 𝑢𝑡 .2

2Readers are referred to [27] for details.

43

In localized MPC, we impose communication constraints such that each subsystem
can only communicate with a other subsystems within its local region. We shall refer
to these constraints interchangeably as local communication constraints or locality
constraints. LetN(𝑖) denote the set of subsystems that subsystem 𝑖 can communicate
with. Then, to enforce locality constraints on (5.1), we replace constraint (5.1e) with

[𝑢𝑡]𝑖 = 𝛾𝑖,𝑡 ([𝑥0:𝑡] 𝑗∈N (𝑖) , [𝑢0:𝑡−1] 𝑗∈N (𝑖)) (5.2)

Most SLS-based works use the concept of 𝑑-local neighborhoods, replacing N(𝑖)
with N𝑑 (𝑖):

Definition 5.1. N𝑑 (𝑖) denotes the 𝑑-local neighborhood of subsystem 𝑖. Subsystem
𝑗 ∈ N𝑑 (𝑖) if there exists a path of 𝑑 or less edges between subsystems 𝑖 and 𝑗 in
G(𝐴,𝐵) (E,V).

The inclusion of local communication constraints renders problem (5.1) difficult
to solve. To ameliorate this, we can apply ideas from the system level synthesis
framework [3] to reparametrize the problem. We will now describe the key ideas
from this framework — these ideas were already stated in II, but in the interest of
clarity, we will now restate them with in an explicitly finite-horizon fashion.

First, we define 𝐴 := blkdiag(𝐴, ..., 𝐴), 𝐵 := blkdiag(𝐵, ..., 𝐵), and 𝑍 , the block-
downshift matrix with identity matrices along the first block sub-diagonal and zeros
elsewhere. Let boldface vectors and matrices be block concatenations of time-
domain values, i.e.

x =


𝑥0

𝑥1
...

𝑥𝑇


, K =


𝐾0,0

𝐾1,1 𝐾1,0
...

. . .
. . .

𝐾𝑇,𝑇 . . . 𝐾𝑇,1 𝐾𝑇,0


(5.3)

where each 𝐾𝑖, 𝑗 is a matrix, and K denotes a causal (i.e. lower block triangular)
finite horizon operators.

The behavior of system (2.1) over time horizon 𝑡 = 0 . . . 𝑇 can be written in terms
of closed-loop maps in signal domain as

x = (𝐼 − 𝑍 (𝐴 + 𝐵K))−1w =: Φ𝑥w (5.4a)

u = KΦ𝑥w =: Φ𝑢w (5.4b)

44

Note the similarity to (2.3); in our case, the formulation looks slightly different
because we are explicitly making use of finite horizon operators. Theorem 2.1 may
be partially restated as follows for the finite horizon case:

Proposition 5.1. For system (2.1) with causal state feedback control policy u = Kx,
define 𝑍𝐴𝐵 :=

[
𝐼 − 𝑍𝐴 −𝑍𝐵

]
. The affine subspace of causal closed-loop maps

𝑍𝐴𝐵

[
Φ𝑥

Φ𝑢

]
= 𝐼 (5.5)

parametrizes all achievable closed-loop maps Φ𝑥 , Φ𝑢.

This result allows us to reformulate a control problem over state and input signals
into an equivalent problem over closed-loop maps Φ𝑥 , Φ𝑢. In the case of problem
(5.1), where no driving noise is present, we notice that w :=

[
𝑥⊤0 0 . . . 0

]⊤
.

Then, only the first block column of Φ𝑥 , Φ𝑢 need to be computed. We can rewrite
(5.4) as x = Ψ𝑥𝑥0 and u = Ψ𝑢𝑥0, where Ψ𝑥 and Ψ𝑢 correspond to the first block
columns of Φ𝑥 and Φ𝑢, respectively. Then, we can rewrite (5.5) as

𝑍𝐴𝐵

[
Ψ𝑥

Ψ𝑢

]
=

[
𝐼

0

]
(5.6)

Notice that for any Ψ𝑥 satisfying constraint (5.6), (Ψ𝑥)1:𝑁𝑥 ,: = 𝐼. this is due to
the structure of 𝑍𝐴𝐵. Also, constraint (5.6) is always feasible, with solution space

of dimension 𝑁𝑢𝑇 . To see this, notice that rank(𝑍𝐴𝐵) = rank

[
𝑍𝐴𝐵

[
𝐼

0

]]
always

holds, since 𝑍𝐴𝐵 has full row rank due to the identity blocks on its diagonal; apply
the Rouché-Capelli theorem [5] to get the desired result.

We now apply this closed-loop parametrization to (5.1), as is done in [27]

min
Ψ𝑥 ,Ψ𝑢

𝑓 (Ψ𝑥𝑥0,Ψ𝑢𝑥0) (5.7a)

s.t. 𝑥0 = 𝑥(𝜏), (5.7b)

𝑍𝐴𝐵

[
Ψ𝑥

Ψ𝑢

]
=

[
𝐼

0

]
, (5.7c)

Ψ𝑥𝑥0 ∈ X, Ψ𝑢𝑥0 ∈ U (5.7d)

45

Objective 𝑓 is defined such that (5.1a) and (5.7a) are equivalent; similarly, constraint
sets X,U are defined such that (5.1d) and (5.7d) are equivalent. Overall, problems
(5.1) and (5.7) are equivalent.

In (5.7), Ψ𝑥 and Ψ𝑢 not only represent the closed-loop maps of the system, but
also the communication structure of the system. For instance, if [Ψ𝑥]𝑖, 𝑗 = 0

and [Ψ𝑢]𝑖, 𝑗 = 0 ∀𝑖 ≠ 𝑗 , then subsystem 𝑖 requires no knowledge of (𝑥0) 𝑗≠𝑖 —
consequently, no communication is required between subsystems 𝑖 and 𝑗 for all
𝑗 ≠ 𝑖. The relationship between closed-loop maps and communication constraints
are further detailed in [27]. Thus, to incorporate local communication into this
formulation, we introduce an additional constraint

Ψ𝑥 ∈ L𝑥 , Ψ𝑢 ∈ L𝑢 (5.8)

where L𝑥 and L𝑢 are sets with some prescribed sparsity pattern that is compatible
with the desired local communication constraints.

For simplicity, we define decision variable Ψ :=

[
Ψ𝑥

Ψ𝑢

]
, which has 𝑁Φ := 𝑁𝑥 (𝑇 +

1) + 𝑁𝑢𝑇 rows. We also rewrite locality constraints (5.8) as Ψ ∈ L.

From here on, we shall use global MPC to refer to (5.1), or equivalently, (5.7).
We shall use localized MPC to refer to (5.7) with constraint (5.8). We remark
that localized MPC is less computationally complex than global MPC — also, for
appropriately chosen locality constraints, it confers substantial scalability benefits
[27].

5.3 Global Performance of Localized MPC
In this section, we analyze the effect of locality constraints Ψ ∈ L on MPC per-
formance. We are especially interested in scenarios where localized MPC achieves
optimal global performance, i.e. 𝑓 ∗ = 𝑓 ∗L , where 𝑓 ∗ and 𝑓 ∗L are the solutions to the
global MPC problem and localized MPC problem, respectively, for some state 𝑥0.

First, we must analyze the space of available trajectories from state 𝑥0 for both global

and localized MPC. We denote an available trajectory y :=

[
x1:𝑇

u

]
.

Definition 5.2. Trajectory set Y(𝑥0) denotes the set of available trajectories from
state 𝑥0 under dynamics (2.1) as

Y(𝑥0) := {y : ∃Ψ s.t. 𝑍𝐴𝐵Ψ =

[
𝐼

0

]
, y = (Ψ)𝑁𝑥+1:,:𝑥0}

46

Localized trajectory set YL (𝑥0) denotes the set of available trajectories from state
𝑥0 under dynamics (2.1) and locality constraint Ψ ∈ L as

YL (𝑥0) := {y : ∃Ψ s.t. 𝑍𝐴𝐵Ψ =

[
𝐼

0

]
,

Ψ ∈ L, y = (Ψ)𝑁𝑥+1:,:𝑥0}

Proposition 5.2. For state 𝑥0, if the local communication constraint set L is chosen
such that Y(𝑥0) = YL (𝑥0), then the localized MPC problem will attain optimal
global performance.

Proof. Global MPC problem (5.1) can be written as

min
x,u

𝑓 (x, u) (5.9a)

s.t. 𝑥0 = 𝑥(𝜏), x ∈ X, u ∈ U, (5.9b)

y :=

[
x1:𝑇

u

]
∈ Y(𝑥0) (5.9c)

The localized MPC problem can also be written in this form, by replacing Y(𝑥0)
in constraint (5.9c) with YL (𝑥0). Thus, if Y(𝑥0) = YL (𝑥0), the two problems are
equivalent and will have the same optimal values. □

We remark that this is a sufficient but not necessary condition for optimal global
performance. Even if this condition is not satisfied, i.e. YL (𝑥0) ⊂ Y(𝑥0), the opti-
mal global trajectory may be contained within YL (𝑥0). However, this is dependent
on objective 𝑓 . Our analysis focuses on stricter conditions which guarantee optimal
global performance for any objective function.

We now explore cases in which Y(𝑥0) = YL (𝑥0), i.e. the localized MPC problem
attains optimal global performance. Localized trajectory set YL (𝑥0) is shaped by
the dynamics and locality constraints

𝑍𝐴𝐵Ψ =

[
𝐼

0

]
(5.10a)

Ψ ∈ L (5.10b)

To obtain a closed-form solution for YL (𝑥0), we will parametrize these con-
straints. Two equivalent formulations are available. The dynamics-first formu-
lation parametrizes constraint (5.10a), then (5.10b), and the locality-formulation

47

parametrizes the constraints in the opposite order. The dynamics-first formulation
clearly shows how local communication constraints affect the trajectory space; the
locality-first formulation is less clear in this regard, but can be implemented in code
with lower computational complexity than the dynamics-first formulation. We now
derive each formulation.

Dynamics-first formulation
We first parametrize (5.10a), which gives a closed-form expression for trajectory set
Y(𝑥0).

First, we introduce the augmented state variable. For state 𝑥0, the corresponding
augmented state 𝑋 is defined as 𝑋 (𝑥0) :=

[
(𝑥0)1𝐼 (𝑥0)2𝐼 . . . (𝑥0)𝑁𝑥

𝐼

]
. For

notational simplicity, we write 𝑋 instead of 𝑋 (𝑥0); dependence on 𝑥0 is implicit.
For any matrix Λ, Λ𝑥0 = 𝑋

⃗⃗ ⃗⃗
Λ.

Lemma 5.1. The trajectory set from state 𝑥0 is described by

Y(𝑥0) = {y : y = 𝑍𝑝𝑥0 + 𝑍ℎ𝑋𝜆, 𝜆 ∈ R𝑁Φ}

where 𝑍𝑝 := (𝑍†𝐴𝐵)𝑁𝑥+1:,:

[
𝐼

0

]
and 𝑍ℎ := (𝐼 − 𝑍†𝐴𝐵𝑍𝐴𝐵)𝑁𝑥+1:,:

and the size of the trajectory set is

dim(Y(𝑥0)) = rank(𝑍ℎ𝑋)

If 𝑥0 has at least one nonzero value, then

dim(Y(𝑥0)) = 𝑁𝑢𝑇

Proof. As previously shown, (5.10a) always has solutions. We can parametrize the
space of solutions Ψ as:

Ψ = 𝑍
†
𝐴𝐵

[
𝐼

0

]
+ (𝐼 − 𝑍†

𝐴𝐵
𝑍𝐴𝐵)Λ (5.11)

where Λ is a free variable with the same dimensions as Ψ. Recall that Ψ1:𝑁𝑥 ,: = 𝐼

always holds; thus, we can omit the first 𝑁𝑥 rows of (5.11). Define Ψ2 := (Ψ)𝑁𝑥+1:,:

and consider
Ψ2 = 𝑍𝑝 + 𝑍ℎΛ (5.12)

48

Combining (5.12) and the definition of y, we have

y = Ψ2𝑥0 = 𝑍𝑝𝑥0 + 𝑍ℎΛ𝑥0 (5.13)

Making use of augmented state 𝑋 , rewrite this as

y = Ψ2𝑥0 = 𝑍𝑝𝑥0 + 𝑍ℎ𝑋
⃗⃗ ⃗⃗
Λ (5.14)

This gives the desired expression for Y(𝑥0) and its size.

To prove the second statement, notice that if 𝑥0 has at least one nonzero value,
then rank(𝑍ℎ𝑋) = rank(𝑍ℎ) due to the structure of 𝑋 . All that is left is to show
rank(𝑍ℎ) = 𝑁𝑢𝑇 . First, note that rank(𝑍𝐴𝐵) = 𝑁𝑥 (𝑇 + 1) due to the identity blocks
on the diagonal of 𝑍𝐴𝐵. It follows that rank(𝑍†

𝐴𝐵
) = rank(𝑍†

𝐴𝐵
𝑍𝐴𝐵) = 𝑁𝑥 (𝑇 + 1).

Thus, rank(𝐼 − 𝑍†
𝐴𝐵
𝑍𝐴𝐵) = 𝑁Φ − 𝑁𝑥 (𝑇 + 1) = 𝑁𝑢𝑇 . Recall that 𝑍ℎ is simply

𝐼 − 𝑍†
𝐴𝐵
𝑍𝐴𝐵 with the first 𝑁𝑥 rows removed; this does not result in decreased

rank, since all these rows are zero (recall that Ψ1:𝑁𝑥 ,: is always equal to 𝐼). Thus,
rank(𝑍ℎ) = rank(𝐼 − 𝑍†

𝐴𝐵
𝑍𝐴𝐵) = 𝑁𝑢𝑇 . □

To write the closed form of localized trajectory setYL (𝑥0), we require some defini-
tions:

Definition 5.3. Constrained vector indices 𝔏 denote the set of indices of Ψ2 :=

(Ψ)𝑁𝑥+1:,: that are constrained to be zero by the locality constraint (5.10b), i.e.

(
⃗⃗⃗⃗ ⃗⃗ ⃗⃗
Ψ2)𝔏 = 0⇔ Ψ ∈ L

Let 𝑁𝔏 be the cardinality of 𝔏.

We now parametrize (5.10b) and combine this with Lemma 5.1, which gives a
closed-form expression for localized trajectory set YL (𝑥0).

Lemma 5.2. Assume there exists some Ψ that satisfies constraints (5.10a) and
(5.10b). Then, the localized trajectory set from state 𝑥0 is described by

YL (𝑥0) = {y : y = 𝑍𝑝𝑥0 + 𝑍ℎ𝑋𝐹†𝑔 +
𝑍ℎ𝑋 (𝐼 − 𝐹†𝐹)𝜇, 𝜇 ∈ R𝑁𝔏}

where 𝐹 := (𝑍blk
ℎ)𝔏,: and 𝑔 := −(

⃗⃗⃗⃗ ⃗⃗⃗
𝑍𝑝)𝔏

and the size of the localized trajectory set is

dim(YL (𝑥0)) = rank(𝑍ℎ𝑋 (𝐼 − 𝐹†𝐹))

49

Proof. Using the augmented matrix of 𝑍ℎ, we can write the vectorization of (5.12)
as ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗

Ψ2 =
⃗⃗ ⃗⃗ ⃗⃗⃗
𝑍𝑝 +𝑍blk

ℎ

⃗⃗ ⃗⃗
Λ (5.15)

where
⃗⃗ ⃗⃗
Λ is a free variable. Incorporate locality constraint (5.10b) using the con-

strained vector indices
(
⃗⃗ ⃗⃗ ⃗⃗⃗
𝑍𝑝 +𝑍blk

ℎ

⃗⃗ ⃗⃗
Λ)𝔏 = 0 (5.16)

This is equivalent to (
⃗⃗ ⃗⃗ ⃗⃗⃗
𝑍𝑝)𝔏 + (𝑍blk

ℎ
)𝔏,:
⃗⃗ ⃗⃗
Λ = 0, or 𝐹

⃗⃗ ⃗⃗
Λ = 𝑔. We can parametrize this

constraint as ⃗⃗ ⃗⃗
Λ = 𝐹†𝑔 + (𝐼 − 𝐹†𝐹)𝜇 (5.17)

where 𝜇 is a free variable. Plugging this into (5.14) gives the desired expression for
YL (𝑥0) and its size. We remark that there is no need to consider Ψ1 = 𝐼 in relation
to the locality constraints, since the diagonal sparsity pattern of the identity matrix
(which corresponds to self-communication, i.e. subsystem 𝑖 "communicating" to
itself) satisfies any local communication constraint. □

Theorem 5.1. If 𝑥0 has at least one nonzero value, then localized MPC attains
optimal global performance if

1. There exists some Ψ that satisfies constraints (5.10a) and (5.10b), and

2. rank(𝑍ℎ𝑋 (𝐼 − 𝐹†𝐹)) = 𝑁𝑢𝑇

Proof. By definition, YL (𝑥0) ⊆ Y(𝑥0). Equality is achieved if and only if the two
sets are of equal size. Applying Lemmas 5.1 and 5.2 shows that the conditions of
the theorem are necessary and sufficient for YL (𝑥0) and Y(𝑥0) to be equal. Then,
apply Proposition 5.2 for the desired result. □

This theorem provides a criterion to assess how the inclusion of locality constraints
affects the trajectory set. It also allows us to gain some intuition on the effect of these
constraints, which are represented by the matrix 𝐹. If no locality constraints are
included, then 𝐹 has rank 0; in this case, rank(𝑍ℎ𝑋 (𝐼−𝐹†𝐹)) = rank(𝑍ℎ𝑋) = 𝑁𝑢𝑇 ,
via Lemma 5.1. The rank of 𝐹 increases as the number of locality constraints
increases; this results in decreased rank for 𝐼 − 𝐹†𝐹, and possibly also decreased
rank for 𝑍ℎ𝑋 (𝐼 − 𝐹†𝐹). However, due to the repetitive structure of 𝑍ℎ𝑋 , this is
not always the case: it is possible to have locality constraints that do not lead to
decreased rank for 𝑍ℎ𝑋 (𝐼 − 𝐹†𝐹). We provide a detailed numerical example of this
later in this section.

50

Unfortunately, checking the conditions of Theorem 5.1 is computationally expensive.
In particular, we must assemble and compute the rank of matrix 𝑍ℎ𝑋 (𝐼−𝐹†𝐹). The
complexity of this operation is dependent on the size of the matrix, which increases
as Ψ becomes more sparse (as enforced by locality constraints). This is a problem,
since it is generally preferable to use very sparse Ψ, as previously mentioned —
this would correspond to an extremely large matrix 𝑍ℎ𝑋 (𝐼 − 𝐹†𝐹), which is time-
consuming to compute with. Ideally, sparser Ψ should instead correspond to lower
complexity; this is the motivation for the next formulation.

Locality-first formulation
We first parametrize (5.10b), then (5.10a). This directly gives a closed-form expres-
sion for localized trajectory set YL (𝑥0). First, some definitions:

Definition 5.4. Support vector indices 𝔐 denote the set of indices of
⃗⃗ ⃗⃗
Φ such that

(
⃗⃗ ⃗⃗
Φ)𝔐 ≠ 0 is compatible with locality constraint (5.10b). Let 𝑁𝔐 be the cardinality

of 𝔐.

Notice that this is complementary to Definition 5.3. Instead of looking at which
indices are constrained to be zero, we now look at which indices are allowed to
be nonzero. A subtlety is that this definition considers the entirety of Ψ, while
Definition 5.3 omits the first 𝑁𝑥 rows of Ψ.

Lemma 5.3. Assume there exists some Ψ that satisfies constraints (5.10a) and
(5.10b). Then, the localized trajectory set from state 𝑥0 is described by

YL (𝑥0) = {y : y = (𝑋2):,𝔐𝐻†𝑘 +
(𝑋2):,𝔐 (𝐼 − 𝐻†𝐻)𝛾, 𝛾 ∈ R𝑁𝔐 }

where 𝑋2 := (𝑋)𝑁𝑥+1:,:

and 𝐻 := (𝑍blk
𝐴𝐵):,𝔐 and 𝑘 :=

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗[
𝐼

0

]
and the size of the localized trajectory set is

dim(YL (𝑥0)) = rank((𝑋2):,𝔐 (𝐼 − 𝐻†𝐻))

Proof. Future trajectory y can be written as

y = 𝑋2
⃗⃗ ⃗⃗
Φ = (𝑋2):,𝔐 (

⃗⃗ ⃗⃗
Φ)𝔐 (5.18)

51

where the first equality arises from the definitions of y and 𝑋 , and the second
equality arises from the fact that zeros in

⃗⃗ ⃗⃗
Φ do not contribute to y; thus, we only

need to consider nonzero values (
⃗⃗ ⃗⃗
Φ)𝔐.

Using the augmented matrix of 𝑍𝐴𝐵, constraint (5.10a) can be rewritten as 𝑍blk
𝐴𝐵

⃗⃗ ⃗⃗
Φ =

𝑘 . Nonzero values (
⃗⃗ ⃗⃗
Φ)𝔐 must obey

𝐻 (
⃗⃗ ⃗⃗
Φ)𝔐 = 𝑘 (5.19)

Constraint (5.19) is feasible exactly when constraints (5.10a) and (5.10b) are feasible.
By assumption, solutions exist, so we can parametrize the solution space as

(
⃗⃗ ⃗⃗
Φ)𝔐 = 𝐻†𝑘 + (𝐼 − 𝐻†𝐻)𝛾 (5.20)

where 𝛾 is a free variable. Substituting (5.20) into (5.18) gives the desired expression
for YL (𝑥0) and its size. □

Theorem 5.2. If 𝑥0 has at least one nonzero value, then localized MPC attains
optimal global performance if

1. there exists some Ψ that satisfies constraints (5.10a) and (5.10b), and

2. rank((𝑋2):,𝔐 (𝐼 − 𝐻†𝐻)) = 𝑁𝑢𝑇

Proof. Similar to Theorem 5.1; instead of applying Lemma 5.2, apply Lemma
5.3. □

To check the conditions of Theorem 5.2, we must assemble and compute the rank of
matrix (𝑋2):,𝔐 (𝐼 −𝐻†𝐻). The complexity of this operation is dependent on the size
of this matrix, which decreases as Ψ becomes more sparse (as enforced by locality
constraints). This is beneficial, since it is preferable to use very sparse Ψ, which
corresponds to a small matrix (𝑋2):,𝔐 (𝐼 −𝐻†𝐻) that is easy to compute with. This
is in contrast with the previous formulation, in which sparser Ψ corresponded to
increased complexity. However, from a theoretical standpoint, this formulation does
not provide any intuition on the relationship between the trajectory set Y(𝑥0) and
the localized trajectory set YL (𝑥0).

For completeness, we now use the locality-first formulation to provide a closed-form
expression ofY(𝑥0). The resulting expression is equivalent to — though decidedly
more convoluted than — the expression in Lemma 5.1:

52

𝑢1 𝑢2

plant

actuation

𝑥1 𝑥2 𝑥3

Figure 5.1: Example system with three dynamically coupled subsystems, two of
which are actuated.

Lemma 5.4. The trajectory set from state 𝑥0 is described by

Y(𝑥0) = {y : y = 𝑋2𝑍
blk
𝐴𝐵𝑘 +

𝑋2(𝐼 − 𝑍blk†
𝐴𝐵

𝑍blk
𝐴𝐵)𝛾, 𝛾 ∈ R𝑁Φ}

Proof. In the absence of locality constraints, 𝔐 includes all indices of
⃗⃗ ⃗⃗
Φ since all

entries are allowed to be nonzero. Here, 𝑁𝔐 = 𝑁Φ, (𝑋2):,𝔐 = 𝑋2, (
⃗⃗ ⃗⃗
Φ):,𝔐 =

⃗⃗ ⃗⃗
Φ, and

𝐻 = 𝑍blk
𝐴𝐵

. Substitute these into the expression in Lemma 5.3 to obtain the desired
result. □

Notice that by definition, 𝑋2𝑍blk
𝐴𝐵
𝑘 = 𝑍𝑝𝑥0 and 𝑋2(𝐼−𝑍blk†

𝐴𝐵
𝑍blk
𝐴𝐵
) = 𝑍ℎ𝑋 . Substituting

these quantities into Lemma 5.4 recovers Lemma 5.1.

Numerical example
To provide some intuition on the results from the previous subsections, we present
a simple numerical example. We work with a system of three subsystems in a chain
interconnection, as shown in Figure 5.1. The system matrices are

𝐴 =


1 2 0

3 4 5

0 6 7

 , 𝐵 =


1 0

0 0

0 1

 (5.21)

We set initial state 𝑥0 =
[
1 1 1

]⊤
, and choose a predictive horizon size of 𝑇 = 1.

Here, 𝑁Φ = 𝑁𝑥 (𝑇 + 1) + 𝑁𝑢𝑇 = 8. We choose locality constraints L such that
each subsystem may only communicate with its immediate neighbors; subsystem 1
with subsystem 2, subsystem 2 with both subsystems 1 and 3, and subsystem 3 with

53

subsystem 2. Then, locality constraint (5.10b) is equivalent to

Ψ =



∗ ∗ 0

∗ ∗ ∗
0 ∗ ∗
∗ ∗ 0

∗ ∗ ∗
0 ∗ ∗
∗ ∗ 0

0 ∗ ∗



(5.22)

where ∗ indicate values that are allowed to be nonzero. The support vector indices
are 𝔐 = {1, 2, 4, 5, 7, 9 − 16, 18, 19, 21, 22, 24}, and the constrained vector indices
are 𝔏 = {3, 5, 11, 14} (recall that indices in 𝔏 do not include the first 𝑁𝑥 rows of Ψ).
We confirm that there exists some Ψ that satisfies both dynamics constraints (5.10a)
and locality constraints (5.10b) by checking that constraint (5.19) is feasible.

We start with dynamics-first formulation. In our case,

𝑍ℎ =

[
03 𝑐1 0 𝑐2 𝑐1 𝑐2

]
(5.23)

where 𝑐1 and 𝑐2 are defined as

𝑐1 :=
1

2



1

0

0

1

0


, 𝑐2 :=

1

2



0

0

1

0

1


(5.24)

𝑍ℎ has a rank of 2. Then, 𝑍ℎ𝑋 =

[
𝑍ℎ 𝑍ℎ 𝑍ℎ

]
, also has a rank of 2. Per Lemma

5.1, this is the size of the trajectory set Y(𝑥0), which is exactly equal to 𝑁𝑢𝑇 , as
expected. We write out 𝑍ℎ𝑋 and 𝑍ℎ𝑋 (𝐼 − 𝐹†𝐹) in full in equations (5.25) and
(5.26), where zeros represent zero blocks, and their subscripts indicate the number
of columns in the zero block if the number of columns is greater than 1. Boxed
columns represent columns zeroed out as a result of locality constraints, i.e. if we
replace the boxed columns in 𝑍ℎ𝑋 with zeros, we obtain 𝑍ℎ𝑋 (𝐼 − 𝐹†𝐹). In our
example, 𝑍ℎ𝑋 (𝐼 − 𝐹†𝐹) also has a rank of 2; by Theorem 5.1, the local trajectory
set is equal to the trajectory set, and by Theorem 5.1, the localized MPC problem
attains optimal global performance.

54

𝑍ℎ𝑋 =

[
03 𝑐1 0 𝑐2 𝑐1 𝑐2 03 𝑐1 0 𝑐2 𝑐1 𝑐2 03 𝑐1 0 𝑐2 𝑐1 𝑐2

]
(5.25)

𝑍ℎ𝑋 (𝐼 − 𝐹†𝐹) =
[
03 𝑐1 02 𝑐1 04 𝑐1 0 𝑐2 𝑐1 𝑐2 05 𝑐2 0 𝑐2

]
(5.26)

(𝑋2):,𝔐 (𝐼 − 𝐻†𝐻) =
[
02 𝑐1 0 𝑐1 03 𝑐1 0 𝑐2 𝑐1 𝑐2 03 𝑐2 𝑐2

]
(5.27)

Two observations are in order. First, we notice that the rank of 𝑍ℎ𝑋 (= 2) is
low compared to the number of nonzero columns (= 12), especially when 𝑥0 is
dense. Additionally, the structure of 𝑍ℎ𝑋 is highly repetitive; the only two linearly
independent columns are 𝑐1 and 𝑐2, and each appears 6 times in 𝑍ℎ𝑋 . Furthermore,
the specific values of 𝑥0 do not affect the rank of these matrices — only the placement
of nonzeros and zeros in 𝑥0 matters.

Second, notice that post-multiplying 𝑍ℎ𝑋 by (𝐼−𝐹†𝐹) effectively zeros out columns
of 𝑍ℎ𝑋 . However, due to the repetitive structure of 𝑍ℎ𝑋 , this does not result
in decreased rank for 𝑍ℎ𝑋 (𝐼 − 𝐹†𝐹). In fact, it is difficult to find a feasible
locality constraint that results in decreased rank. This observation is corroborated
by simulations in the later portion of this chapter, in which we find that locality
constraints that are feasible also typically preserve global performance. For more
complex systems and larger predictive horizons, post-multiplication of 𝑍ℎ𝑋 by
(𝐼−𝐹†𝐹) no longer cleanly corresponds to zeroing out columns, but similar intuition
applies.

We now apply the locality-first formulation. To check the conditions of Theorem
5.2, we must construct the matrix (𝑋2):,𝔐 (𝐼 −𝐻†𝐻) and check its rank. This matrix
is written out in equation (5.27). As expected, the rank of this matrix is also equal to
two. Additionally, notice that (𝑋2):,𝔐 (𝐼−𝐻†𝐻) contains the same nonzero columns
as 𝑍ℎ𝑋 (𝐼−𝐹†𝐹): 𝑐1 and 𝑐2 are each repeated four times, in slightly different orders.
This is unsurprising, as the two formulations are equivalent.

5.4 Algorithmic Implementation of Optimal Locality Selection
Leveraging the results of the previous section, we introduce an algorithm that selects
the appropriate locality constraints for localized MPC. For simplicity, we restrict
ourselves to locality constraints corresponding to 𝑑-local neighborhoods, though we
remark that Subroutine 5.1 is applicable to arbitrary communication structures.

The localized MPC problem can be solved via distributed optimization techniques;
the resulting distributed and localized MPC problem enjoys complexity that scales
with locality parameter 𝑑, as opposed to network size 𝑁 [27]. Thus, when possible,

55

it is preferable to use small values of 𝑑 to minimize computational complexity. For
a given system and predictive horizon length, Algorithm 5.2 will return the optimal
locality size 𝑑 — the smallest value of 𝑑 that attains optimal global performance.

As previously described, the specific values of 𝑥0 do not matter — only the placement
of nonzeros and zeros in 𝑥0 matters. We will restrict ourselves to considering dense
values of 𝑥0. For simplicity, our algorithm will work with the vector of ones as 𝑥0
— the resulting performance guarantees hold for any dense 𝑥0.

To check if a given locality constraint preserves global performance, we must check
the two conditions of Theorem 5.2. First, we must check whether there exists some
Ψ that satisfies both dynamics and locality constraints; this is equivalent to checking
whether (5.19) is feasible. We propose to check whether

∥𝐻 (𝐻†𝑘) − 𝑘 ∥∞ ≤ 𝜖 (5.28)

for some tolerance 𝜖 . Condition (5.28) can be distributedly computed due to the
block-diagonal structure of 𝐻. Define partitions [𝐻]𝑖 such that

𝐻 = blkdiag([𝐻]1, [𝐻]2 . . . [𝐻]𝑁) (5.29)

In general, 𝐻 has 𝑁𝑥 blocks, where 𝑁𝑥 is the number of states. Since 𝑁 ≤ 𝑁𝑥 and
one subsystem may contain more than one state, we are able to partition 𝐻 into 𝑁
blocks as well. Then, (5.28) is equivalent to

∥ [𝐻]𝑖 ([𝐻]†𝑖 [𝑘]𝑖) − [𝑘]𝑖∥∞ ≤ 𝜖 ∀𝑖 (5.30)

If this condition is satisfied, then it remains to check the second condition of Theorem
5.2. To so, we must construct matrix 𝐽 := (𝑋2):,𝔐 (𝐼 − 𝐻†𝐻) and check its rank.
Notice that 𝐽 can be partitioned into submatrices 𝐽𝑖, i.e. 𝐽 :=

[
𝐽1 𝐽2 . . . 𝐽𝑁

]
,

where each block 𝐽𝑖 can be constructed using only information from subsystem 𝑖,
i.e. [𝐻]𝑖, [𝑘]𝑖, etc. Thus, 𝐽 can be constructed in parallel — each subsystem 𝑖

performs Subroutine 5.1 to construct 𝐽𝑖.

Subroutine 5.1 checks whether the dynamics and locality constraints are feasible
by checking (5.30), and if so, returns the appropriate submatrix 𝐽𝑖. Notice that the
quantity [𝐻]𝑖 is used in both the feasibility check and in 𝐽𝑖. Also, 𝑥0 does not appear,
as we are using the vector of ones in its place.

Having obtained 𝐽 corresponding to a given locality constraint, we need to check its
rank to verify whether global performance is preserved, i.e. rank(𝐽) = 𝑁𝑢𝑇 , as per

56

Subroutine 5.1 Local sub-matrix for subsystem 𝑖

input : [𝐻]𝑖, [𝑘]𝑖, 𝜖
output : 𝐽𝑖

1: Compute 𝑤 = [𝐻]†
𝑖
[𝑘]𝑖

2: if ∥ [𝐻]𝑖𝑤 − [𝑘]𝑖∥∞ > 𝜖 :
𝐽𝑖 ← False

else :
𝐽𝑖 ← 𝐼 − [𝐻]†

𝑖
[𝐻]𝑖

return 𝐽𝑖

Theorem 5.2. As previously described, we restrict ourselves to locality constraints
of the 𝑑-local neighborhood type, preferring smaller values of 𝑑 as these correspond
to lower complexity for the localized MPC algorithm [27]. Thus, in Algorithm 5.2,
we start with the smallest possible value of 𝑑 = 1, i.e. subsystems communicate only
with their immediate neighbors. If 𝑑 = 1 does not preserve global performance,
we iteratively increment 𝑑, construct 𝐽, and check its rank, until optimal global
performance is attained.

Algorithm 5.2 Optimal local region size
input : 𝐴, 𝐵, 𝑇 , 𝜖
output : 𝑑
for 𝑑 = 1 . . . 𝑁 :

1: for 𝑖 = 1 . . . 𝑁 :
Construct [𝐻]𝑖, [𝑘]𝑖
Run Subroutine 5.1 to obtain 𝐽𝑖
if 𝐽𝑖 is False :

continue
2: Construct 𝐽 =

[
𝐽1 . . . 𝐽𝑁

]
3: if rank(𝐽) = 𝑁𝑢𝑇 :

return d

In step 1 of Algorithm 5.2, we call Subroutine 5.1 to check for feasibility and
construct submatrices 𝐽𝑖. If infeasibility is encountered, or if optimal global perfor-
mance is not attained, we increment 𝑑; otherwise, we return optimal locality size
𝑑.

Complexity
To analyze complexity, we first make some simplifying scaling assumptions. As-
sume that the number of states 𝑁𝑥 and inputs 𝑁𝑢 are proportional to the number of
subsystems 𝑁 , i.e. 𝑂 (𝑁𝑥 + 𝑁𝑢) = 𝑂 (𝑁). Also, assume that the number of nonzeros

57

𝑁𝔐 for locality constraint corresponding to parameter 𝑑 are related to one another
as 𝑂 (𝑁𝔐) = 𝑂 (𝑁𝑑𝑇).

Steps 1 and 3 determine the complexity of the algorithm. In step 1, each subsystem
performs operations on matrix [𝐻]𝑖, which has size of approximately 𝑁𝑥 (𝑇 + 1) by
𝑑𝑇 — the complexity will vary depending on the underlying implementations of
the pseudoinverse and matrix manipulations, but will generally scale according to
𝑂 ((𝑑𝑇)2𝑁𝑥𝑇), or 𝑂 (𝑇3𝑑2𝑁). In practice, 𝑑 and 𝑇 are typically much smaller than
𝑁 , and this step is extremely fast; we show this in the next section.

In step 3, we perform a rank computation on a matrix of size (𝑁𝑥 + 𝑁𝑢)𝑇 by
𝑁𝔐. The complexity of this operation, if Gaussian elimination is used, is 𝑂 ((𝑁𝑥 +
𝑁𝑢)1.38𝑇1.38𝑁𝔐), or 𝑂 (𝑇2.38𝑁2.38𝑑). Some speedups can be attained by using
techniques from [41], which leverage sparsity — typically, 𝐽 is quite sparse, with
less than 5% of its entries being nonzero. In practice, step 3 is the dominating step
in terms of complexity.

We remark that this algorithm needs only to be run once offline for any given
localized MPC problem. Given a system and predictive horizon, practitioners
should first determine the optimal locality size 𝑑 using Algorithm 5.2, then run the
appropriate online algorithm from [27].

5.5 Simulations
We first present simulations to supplement runtime characterizations of Algorithm
5.2 from the previous section. Then, we use the algorithm to investigate how optimal
locality size varies depending on system size, actuation density, and prediction
horizon length. We find that optimal locality size is primarily a function of actuation
density. We also verify in simulation that localized MPC performs identically to
global MPC when we use the optimal locality size provided by Algorithm 5.2,
as expected. Code needed to replicate all simulations can be found at https://
github.com/flyingpeach/LocalizedMPCPerformance. This code makes use
of the SLS-MATLAB toolbox [6], which includes an implementation of Algorithm
5.2.

We note that when implementing subroutine 5.1 in MATLAB, use of the back-
slash operator (i.e. H\k) is faster than the standard pseudoinverse function (i.e.
pinv(H)*k). The backslash operator also produces 𝐽𝑖 matrices that are as sparse as
possible, which facilitates faster subsequent computations.

58

System and parameters
We start with a two-dimensional 𝑛 by 𝑛 square mesh. Every pair of neighboring
subsystems have a 40% probability to be connected by an edge — the expected
number of edges is 0.8×𝑛× (𝑛−1). We consider only fully connected graphs. Each
subsystem 𝑖 represents a two-state subsystem of linearized and discretized swing
equations [

𝜃 (𝑡 + 1)
𝜔(𝑡 + 1)

]
𝑖

=
∑︁

𝑗∈N1 (𝑖)
[𝐴]𝑖 𝑗

[
𝜃 (𝑡)
𝜔(𝑡)

]
𝑗

+ [𝐵]𝑖 [𝑢]𝑖 (5.31a)

[𝐴]𝑖𝑖 =
[

1 Δ𝑡

− 𝑘𝑖
𝑚𝑖
Δ𝑡 1 − 𝑑𝑖

𝑚𝑖
Δ𝑡

]
,

[𝐴]𝑖 𝑗 =
[

0 0
𝑘𝑖 𝑗
𝑚𝑖
Δ𝑡 0

]
, [𝐵]𝑖 =

[
0

1

] (5.31b)

where [𝜃]𝑖, [𝜔]𝑖, and [𝑢]𝑖 are the phase angle deviation, frequency deviation, and
control action of the controllable load of bus 𝑖. Parameters are 𝑚−1

𝑖
(inertia), 𝑑𝑖

(damping), and 𝑘𝑖 𝑗 (coupling); they are randomly drawn from uniform distributions
over [0, 2], [1, 1.5] and [0.5, 1] respectively. Self term 𝑘𝑖 is defined as 𝑘𝑖 :=∑
𝑗∈N1 (𝑖) 𝑘𝑖 𝑗 . Discretization step size Δ𝑡 is 0.2.

Under the given parameter ranges, the system is typically neutrally stable, with a
spectral radius of 1. The baseline system parameters are 𝑛 = 5 (corresponding to a
5 grid containing 25 subsystems, or 50 states) and 100% actuation. Note that this
does not correspond to "full actuation" in the standard sense; it means that each
subsystem (which contains 2 states) has one actuator — 50% of states are actuated.
We use a prediction horizon length of 𝑇 = 15 unless otherwise stated.

Algorithm runtime
We plot the runtime of Algorithm 5.2 in Figure 5.2 for different system sizes and
horizon lengths. We separately consider runtimes for matrix construction (step 1)
and rank determination (step 3). The former is parallelized, while the latter is not.

Runtime for matrix construction is extremely small. Even for the grid with 121
subsystems (242 states), this step takes less than a millisecond. Interestingly, matrix
construction runtime also stays relatively constant with increasing network size,
despite the worst-case runtime scaling linearly with 𝑁 , as described in the previ-
ous section. This is likely due to the sparse structure of 𝐻. Conversely, matrix
construction runtime increases with increasing horizon length.

59

Figure 5.2: Runtime of matrix construction (step 1, green) and rank determination
(step 3, pink) of Algorithm 5.2 vs. network size and horizon length. Parallelized
(i.e. per-subsystem) runtimes are shown for matrix construction. The algorithm was
run for grids containing 16, 25, 36, 64, and 121 subsystems. For each point, we run
the algorithm on five different systems, and plot the average and standard deviation
— here, the standard deviation is so small that it is barely visible. As expected, the
rank determination step dominates total runtime, while the matrix construction step
is extremely fast.

Runtime for rank determination dominates total algorithm runtime, and increases
with both system size and horizon length. Rank determination runtime appears to
increase more sharply with increasing horizon length than with increasing system
size. Further runtime reductions may be achieved by taking advantage of techniques
described in the previous section; however, even without additional speedups, the
runtime is no more than 10 seconds for the grid with 242 states.

Optimal locality size as a function of system parameters
We characterize how optimal locality size changes as a function of the system size
and horizon length — the results are summarized in Figure 5.3. Actuation density
is the main factor that affects optimal locality size. Remarkably, at 100% actuation,
the optimal locality size always appears to be 𝑑 = 1, the smallest possible size
(i.e. communication only occurs between subsystems that share an edge). As we
decrease actuation density, the required optimal locality size increases. This makes
sense, as unactuated subsystems must communicate to at least the nearest actuated
subsystem, and the distance to the nearest actuated subsystem grows as actuation

60

density decreases.

The optimal locality size also increases as a function of system size — but only when
we do not have 100% actuation. At 60% actuation, for 121 subsystems, the optimal
locality size is around 𝑑 = 5; this still corresponds to much less communication
than global MPC.

Predictive horizon length does not substantially impact optimal locality size. At
short horizon lengths (𝑇 ≤ 10), we see some small correlation, but otherwise,
optimal locality size stays constant with horizon size. Similarly, the stability of the
system (i.e. spectral radius) appears to not affect optimal locality size; this was
confirmed with simulations over systems with spectral radius of 0.5, 1.0, 1.5, 2.0,
and 2.5 for 60%, 80%, and 100% actuation (not included in the plots).

Localized performance
From the previous section, we found that with 100% actuation, the optimal locality
size is always 1. This means that even in systems with 121 subsystems, each
subsystem need only communicate with its immediate neighbors (i.e. 4 or less other
subsystems) to attain optimal global performance. This is somewhat surprising, as
this is a drastic (roughly 30-fold) reduction in communication compared to global
MPC. To confirm this result, we ran simulations on 20 different systems of size
𝑁 = 121 and 100% actuation. We use LQR objectives with random positive
diagonal matrices 𝑄 and 𝑅, and state bounds 𝜃𝑖 ∈ [−4, 4] for phase states and
𝜔𝑖 ∈ [−20, 20] for frequency states. We use random initial conditions where each
value (𝑥0)𝑖 is drawn from a uniform distribution over [−2, 2].

For each system, we run localized MPC with 𝑑 = 1, then global MPC, and compare
their costs over a simulation of 20 timesteps. Over 20 simulations, we find the
maximum cost difference between localized and global MPC to be 5.6e-6. Thus, we
confirm that the reported optimal locality size is accurate, since the cost of localized
and global MPC are nearly identical.

Feasibility vs. optimality of locality constraints
In Algorithm 5.2, a given locality size is determined to be suboptimal if (1) the
locality constraints are infeasible, or (2) the locality constraints are feasible, but
matrix 𝐽 has insufficient rank. The numerical example from earlier in this chapter
suggests that the second case is rare — to further investigate, we performed 200
random simulations, in which all parameters were randomly selected from uniform

61

Figure 5.3: Optimal locality size as a function of various parameters. Each point
represents the average over five different systems; standard deviations are shown by
the fill area. (Left) Optimal locality size vs. actuation density. The two are inversely
correlated. (Center) Optimal locality size vs. network size for 60% actuation (pink),
80% actuation (blue), and 100% actuation (green). For 60% and 80% actuation,
optimal locality size roughly increases with network size. For 100% actuation, the
optimal locality size is always 1, independent of network size. (Right) Optimal
locality size vs. predictive horizon length for 60% actuation (pink), 80% actuation
(blue), and 100% actuation (green). For 60% and 80% actuation, optimal locality
size increases with horizon size up until 𝑇 = 10, then stays constant afterward. For
100% actuation, the optimal locality size is always 1.

62

Figure 5.4: Topology of example system. We will plot the time trajectories of states,
disturbances, and input for the red square subsystem.

distributions — grid size 𝑁 from [4, 11] (corresponding to system sizes of up to 121
subsystems), actuation density from [0.2, 1.0], spectral radius from [0.5, 2.5] and
horizon length from [3, 20]. In these 200 simulations, we encountered 4 instances
where a locality constraint was feasible but resulted in insufficient rank; in the
vast majority of cases, if a locality constraint was feasible, the rank condition was
satisfied as well.

5.6 Efficient Two-Layer MPC
In the previous portion of this chapter, we described how distributed MPC can per-
form just as well as centralized MPC, even under local communication constraints.
However, despite the scalability of the distributed and localized MPC problem,
MPC itself still incurs computational burden, as it requires an optimization problem
to be solved at each timestep. To lower the required computation, we suggest a
layered online-offline architecture based on existing works in the literature [42]; our
two-layer controller is unique in that it can be fully synthesized and implemented in
a localized manner.

We use a system of linearized swing equations embedded in a square mesh, similar
to the system used in the previous section. An example topology is shown in Figure
5.4. We use dynamics from (5.31), replacing (5.31a) with[

𝜃 (𝑡 + 1)
𝜔(𝑡 + 1)

]
𝑖

=
∑︁

𝑗∈N1 (𝑖)
[𝐴]𝑖 𝑗

[
𝜃 (𝑡)
𝜔(𝑡)

]
𝑗

+ [𝐵]𝑖 ([𝑢]𝑖 + [𝑤]𝑖) (5.32)

where the only difference is that we have added a disturbance term𝑤. The parameters
are drawn over slightly slightly different distributions: we now set damping 𝑑𝑖 to

63

[𝑥]1[𝑢]1

[𝑤]1

[𝑥]2[𝑢]2

[𝑤]2

[𝑥]3[𝑢]3

[𝑤]3

[𝑥]4[𝑢]4

[𝑤]4

[𝑥]1
∗

Optimal power flow solver

[𝑥]2
∗ [𝑥]3

∗ [𝑥]4
∗

load profile

sub-controllersubsystem

communication (constant)

sensing and actuation

physical interaction

communication (periodic)

Figure 5.5: Architecture of example system with optimal power flow solver, sub-
controllers, and subsystems. For ease of visualization, we depict a simple 4-
subsystem topology instead of the 25-subsystem mesh we’ll be using.

zero and draw inertia 𝑚−1
𝑖

from a random uniform distribution over [0, 10]. These
two changes both make this system more challenging to control compared to the
system of the previous section; the decreased damping and inertia render the system
unstable, and in our example the spectral radius of the 𝐴 matrix is 1.5. We define
the state at subsystem 𝑖:

[𝑥]𝑖 :=
[
𝜃 (𝑡 + 1)
𝜔(𝑡 + 1)

]
𝑖

(5.33)

We will incorporate optimal power flow into the system as follows: periodically,
we will generate a random load profile, and solve a direct-current optimal power
flow problem to obtain the optimal state setpoint 𝑥∗. We will then send each sub-
controller 𝑖 its individual optimal setpoint [𝑥]∗

𝑖
, and expect each subsystem to reach

this setpoint. We add local communication constraints: each sub-controller may
only communicate with their immediate neighbors (i.e. subsystems with whom they
share an edge) and neighbors of those neighbors, i.e. the local region size 𝑑 is set to
2. Controllers must reject frequent, random disturbances which have much smaller
magnitudes than that of the setpoint changes. Additionally, we enforce actuator
saturation constraints of the form ∥𝑢(𝑡)∥∞ ≤ 𝑢𝑚𝑎𝑥 . Overall, this simple system
captures some common challenges from power grid control — namely, instability,
setpoint changes, actuator saturation, and disturbances. A diagram of the system
setup is shown in Figure 5.5.

We propose a distributed two-layer MPC scheme for this system, as shown in Figure

64

[𝑢]𝑖

[𝑥]𝑖

MPC Trajectory
Generator

Offline Controller

desired
trajectory

[𝑥]𝑖
∗

[𝑥]𝑖

Figure 5.6: Layered sub-controller for the 𝑖th subsystem. Horizontal dotted lines
indicate communication with neighboring sub-controllers.

5.6. We decompose the main problem into two subproblems: reacting to setpoint
changes and rejecting disturbances. We use MPC to deal with setpoint changes —
specifically, we use MPC in the top layer to generate a desired trajectory that will
accomplish the indicated setpoint change while respecting actuator saturation. In
the bottom layer, we use a linear offline controller to track the trajectory generated
by the top layer, while rejecting disturbances.

To facilitate scalability, we use the distributed and localized MPC technique pre-
viously described [27] in the top layer, and a standard SLS controller [3] in the
bottom layer. The resulting two-layer controller is fully distributed; each subsystem
synthesizes and implements both layers of its own sub-controller. Synthesis of the
two layers is independent of one another, although some synthesis parameters may
be shared. Additionally, all cross-layer communication is local, i.e. a top layer
sub-controller will never communicate with a bottom layer sub-controller from a
different subsystem. Distributed implementation and synthesis allows our con-
troller to enjoy a runtime that is independent of total system size, like its component
SLS-based controllers.

This two-layer controller allows us to obtain MPC-like behavior, but at a fraction of
the computational cost. For any MPC method — including distributed MPC — we
must solve an optimization problem at every timestep. However, in this two-layer
controller, we only need to solve an optimization problem when the setpoint changes.
If the setpoint changes every 𝑇𝑂𝑃𝐹 timesteps, then this two-layer controller offers a
𝑇𝑂𝑃𝐹-fold reduction in computational cost compared to a single MPC controller.

The reader may be tempted to ask whether the bottom layer is required at all: could

65

Table 5.1: LQR costs corresponding to Figure 5.7

Controller LQR Cost
Centralized LQR 2.09e13
Centralized MPC 1.00
Distributed two-layer 1.02

we simply run MPC periodically without need of an offline controller? Unfortu-
nately, the answer is no; in the case of an unstable system, disturbances will persist
between MPC runs and severely compromise performance. The reverse question
can also be asked: could we avoid MPC altogether and simply use an offline con-
troller? Again, the answer is no; the linear offline controller alone can react poorly
to setpoint changes and actuator saturation, as we will see in simulation.

We now present results from simulations for 𝑇𝑂𝑃𝐹 = 20. We compared the perfor-
mance of the distributed two-layer controller with the performance of centralized
MPC and centralized LQR (i.e. offline controller). The centralized controllers are
free of communication constraints while the layered controller is limited to local
communication. The resulting LQR costs, normalized by the centralized MPC cost,
are shown in Table 5.1. We plot trajectories from the red square subsystem from
Figure 5.4 in Figure 5.7, focusing on a window of time during which only one
setpoint change occurs.

In this example, the setpoint change induces unstable behavior from the centralized
LQR. This is to be expected due to saturation-induced windup effects. The cen-
tralized MPC controller and distributed two-layer controller perform very similarly.
From the previous results in this chapter, it should not be surprising that a reduction
in communication does not substantially affect performance. However, this exam-
ple additionally shows that we need not solve the MPC problem at every timestep
to obtain MPC-like performance — here, the two-layer controller solve an MPC
problem every 20 timesteps.

To check general behavior, we re-run the simulation 30 times with different randomly
generated grids, plant parameters, disturbances, and load profiles. The resulting
LQR costs, normalized by the cost of centralized MPC, are shown in Table 5.2.
The centralized LQR controller loses stability in 4 out of 30 simulations. In these
cases, as with the previous example, the two-layer controller maintains stability and
performs highly similarly to centralized MPC. For the 26 simulations for which the

66

0 2 4 6 8 10 12
-6

-4

-2

0

Centralized LQR
Centralized MPC
Distributed two-layer

0 2 4 6 8 10 12

-10

-5

0

5

0 2 4 6 8 10 12
-10

0

10

0 2 4 6 8 10 12
Time (s)

0

1

2

Figure 5.7: Performance of centralized LQR, centralized MPC, and distributed two-
layer controller. The phase setpoint is shown by the dotted line; a setpoint change
occurs at 𝑡 = 2. The LQR controller loses stability, resulting in large oscillations
in phase and frequency, which are omitted from the plot after around 𝑡 = 4; the
associated actuation engages in oscillations as well, which are shown on the plot.
The MPC and two-layer controllers perform similarly.

67

Table 5.2: LQR costs averaged over 30 simulations

Controller LQR cost
All sims LQR controller stable

Centralized LQR 1.14e7 1.05
Centralized MPC 1.00 1.00
Distributed two-layer 1.01 1.01

LQR controller maintains stability, we show the costs in a separate column. In this
case, the LQR controller performs similarly to the MPC and two-layer controllers.

Overall, these examples show that the distributed two-layer controller indeed achieves
near-optimal performance, at a fraction of the communication and computational
cost required by centralized MPC, which is the ideal (but computationally expensive)
controller for this problem.

5.7 Conclusions and Future Work
In this chapter, we provided analysis and guarantees on locality constraints and
global performance. We presented lemmas, theorems, and an algorithm to certify
optimal global performance — these are the first results of their kind, to the best of
our knowledge. We then leveraged these theoretical results to provide an algorithm
that determines the optimal locality constraints that will expedite computation while
preserving the performance — this is the first exact method to compute the optimal
locality parameter 𝑑 for DLMPC. In addition, we showed how further computational
savings can be obtained by combining DLMPC with an offline SLS controller. The
resulting two-layer controller performs similarly to centralized MPC at a fraction of
the computational cost.

Several directions of future work may be explored:

1. The results in this chapter can be leveraged to investigate the relationship
between network topology and optimal locality constraints, i.e. the strictest
communication constraints that still preserve optimal global performance.
Certain topologies may require long-distance communication between handful
of subsystems; others may require no long-distance communications. A more
thorough characterization will help us understand the properties of systems
that are suited for localized MPC.

68

2. Algorithm 5.2 considers 𝑑-local communication constraints; a natural exten-
sion is to consider non-uniform local communication constraints, which are
supported by the theory presented in this chapter. A key challenge of this
research direction is the combinatorial nature of available local communica-
tion configurations; insights from the research direction suggested above will
likely help narrow down said set of configurations.

3. Simulations suggest that feasibility of a given locality constraint overwhelm-
ingly coincides with optimal global performance. This poses the question
of whether feasibility of a given locality constraint is sufficent for 𝐽 to be
full rank under certain conditions, and what these conditions may be. Addi-
tional investigation could reveal more efficient implementations of Algorithm
5.2, as bypassing the rank checking step would save a substantial amount of
computation time.

4. This chapter focuses on nominal trajectories. Additional investigation is
required to characterize the impact of locality constraints on trajectories robust
to disturbances. For polytopic disturbances, the space (or minima) of available
values of Ξ𝑔 from (10) in [27] is of interest. Due to the additional variables
in the robust MPC problem, we cannot directly reuse techniques from this
chapter, though similar ideas may be applicable.

5. Rather than creating a brand new technique or tuning existing algorithms for
small improvements, we can cleverly combine existing algorithms for large
improvements, as we did with the two-layer controller. A future direction
to explore is the development of systematic techniques to integrate various
control algorithms in this manner, to facilitate high-performing, efficient, and
safe control.

69

C h a p t e r 6

INTERNAL FEEDBACK IN PRIMATE CORTEX

[1] J. Stenberg, J. S. Li, A. A. Sarma, and J. C. Doyle, “Internal Feedback in Bio-
logical Control: Diversity, Delays, and Standard Theory,” in IEEE American
Control Conference, 2022, pp. 462–467. doi: 10.23919/ACC53348.2022.
9867794. [Online]. Available: http://arxiv.org/abs/2109.11752,

[2] J. S. Li, “Internal Feedback in Biological Control: Locality and System
Level Synthesis,” in IEEE American Control Conference, 2022, pp. 474–
479. doi: 10.23919/ACC53348.2022.9867769. [Online]. Available:
http://arxiv.org/abs/2109.11757,

[3] J. S. Li, A. A. Sarma, T. J. Sejnowski, and J. C. Doyle, “Internal feedback in
the cortical perception-action loop enables fast and accurate behavior,” Sub-
mitted to Proceedings of the National Academy of Sciences, 2023. [Online].
Available: https://arxiv.org/abs/2211.05922,

Overview: Models of sensorimotor control have assumed that sensory information
from the environment leads to actions, which then act back on the environment,
creating a single, unidirectional perception-action loop. However, the existence of
internal feedback projections — signals flowing from motor areas or late sensory
processing regions back to early sensory processing regions such as primary visual
and auditory areas — are ubiquitous and more numerous in sensorimotor structures
than feedforward projections.1 The function of this internal feedback is poorly
understood; the purpose of this chapter is to develop and apply tools from control
theory to explain the purpose of internal feedback. In particular, we argue that
delayed, local, and disributed communication are the key to understanding the func-
tion of internal feedback. First, we introduce novel theory that incorporates delays
into standard optimal control theory, and show that the resulting controller is reliant
on internal feedback for compensation and estimation. Then, we use distributed
control to further model internal feedback in a system subject to local communi-
cation constraints; the resulting models show that internal feedback is crucial for
localization of function and behavior, and in systems with sparse actuation, neces-
sarily outnumber feedforward projections. Finally, we show how internal feedback

1For the purposes of this chapter, we use "feedforward" in the neuroscientific sense to indicate
projections from sensory areas toward motor areas. This is not to be confused with feedforward
control.

70

Organism

External environment

Internal feedback

External feedback loop

Se
n

si
n

g

Environmental dynamics

A
ctu

a
tio

n

Communication & computation

Figure 6.1: Single-loop model of sensorimotor control. The organism receives
information from the external environment via sensors, communicates this informa-
tion through the body, computes actions, then acts on the environment; this forms
the external feedback loop, or single loop model (black). Internal signals that flow
opposite to the direction of the external feedback loop are classified as internal feed-
back (pink). Thus, the internal feedback is counterdirectional. Internal feedback
also includes lateral interactions within or between areas (not shown).

facilitates good task performance when communications and attention are subject
to speed-accuracy trade-offs. Overall, our models explain anatomical, physiological
and behavioral observations, including motor signals in visual cortex, heterogeneous
kinetics of sensory receptors and the presence of giant Betz cells in motor cortex
and Meynert cells in visual cortex of humans, as well as internal feedback patterns
and unexplained heterogeneity in other neural systems.

6.1 Introduction
Feedback control is an essential strategy for both engineered and biological systems
to achieve reliable movements in unpredictable environments [43]. Optimal and
robust control theory, which provide a general mathematical foundation to study
feedback systems, have been used successfully to explain behavioral observations by
modeling the sensorimotor system as a single control loop also called the perception-
action cycle or perception-action loop [44]–[46]. In these models, the sensorimotor
system senses the environment, communicates signals from sensors to the brain,
computes actions, and then acts on the environment, feeding back to the sensors and
forming a single unidirectional loop as shown in Figure 6.1.

71

Consider the canonical model of localized function in the primate visuomotor cor-
tical pathway, depicted in Figure 6.2: a visual signal is encoded on the retina,
then travels to the lateral geniculate nucleus (LGN) of the thalamus, and on to the
primary visual cortex (V1), progressing through successive transformations until it
reaches the primary motor cortex (M1), the spinal cord, and ultimately the mus-
cles. The single-loop feedback model also makes implicit assumptions about the
interpretation of responses from sensory and motor populations of neurons, which
represent sensory signals and action signals, respectively. Although intuitive, this
model neglects a well-known and ubiquitous feature of sensorimotor processing:
internal feedback [47], which is the main focus of this chapter.

The perception-action control model does not have a direct role for internal feedback
connections. Internal feedback includes all signals that do not flow from sensing
towards action. We can divide internal feedback into two broad categories: coun-
terdirectional between brain areas and lateral interactions within or between areas.
Counterdirectional internal feedback is in the opposite direction of the single-loop
model (for instance, from V2 to V1); these signals flow from action toward sensing.
Lateral internal feedback consists of recurrent connections within and between areas
(for instance, from V2 to V2, or from MT to IT). This distinction emphasizes the
importance of where control signals are spatially located.

The single-loop model offers a set of tools from control theory and a conceptual
framework that allows subsystems to be treated as successive transformations that
can be studied in isolation. However, these subsystems are not isolated. With
internal feedback, each subsystem has access to both bottom-up, top-down, and
lateral information. The eye is itself a site of computation and control: as the
eye moves and senses different parts of the visual scene, lateral interactions within
the retina control spatial and temporal filter properties that can adapt and identify
important features under a wide range of illumination and scene dynamics [48], [49].
Retinal ganglion cells project to relay neurons in the LGN, which then project to
primary visual cortex, V1, but a much greater number of feedback neurons project
from V1 to LGN [50]–[52] (Figure 6.2).

Projections from motor areas in cortex to visual areas have a wide range of mor-
phology, myelination and synaptic kinetics [50], [53], [54]. Given the position of
M1 in the final common pathway, one might expect activity in M1 to be driven by
current visual stimuli or current movements, but instead autonomous or top-down
preparatory activity with internal dynamics dominate the data [55]. Counterintu-

72

Meynert cells

Betz cells 70-80m/s

IT
Object identity

1
-4

m
/s

Internal feedback

Sensing

AMPA receptors (~10ms)
NMDA receptors (~100ms)

Actuation

SC

Eye

Th

V2/3

MT
Object motion

M1+

//

//

V1

Figure 6.2: A partial, simplified schematic of sensorimotor control. We focus on
key cortical and subcortical areas and communications between them. Black and
green arrows indicate communications that traverse from sensing toward actuation;
green arrows are particularly fast pathways, which enable the tracking of moving
objects in our model. Pink arrows indicate internal feedback signals, which traverse
from actuation toward sensing. Broken lines are not necessarily direct neuronal
projections. SC = spinal cord, Th = thalamus, V1 = primary visual cortex, M1+
= primary motor cortex and additional motor areas, V2/3 = secondary and tertiary
visual cortex, IT = inferotemporal cortex, MT = mediotemporal cortex (V5). Only
a subset of the internal feedback pathways are shown (e.g. not included are internal
feedback signals from M1+ to V2 and signals from M1+ to IT).

73

itively, signals related to movements of the whole body are found in areas typically
associated with particular parts of the body, such as the hand area, as well as sen-
sory areas such as primary visual cortex [56]–[59]. Indeed, recent analysis of the
correlation structure between neurons during a visual discrimination task revealed
a task-related global mode in the correlations between cortical neurons associated
with the task response rather than the sensory stimulus, strongly supporting the idea
that top-down feedback is an important element of sensory processing [60]. These
motor-related signals in sensory pathways, which span subsystems and tasks, are
generated by internal feedback and are the focus of this study.

Internal feedback has been studied in the context of predictive coding [61], [62]
and have been invoked in other modeling studies [63]–[66]. However, these models
focus on sensory or motor systems separately and do not account for key constraints
on neuronal communication in both space and time to achieve sensorimotor tasks.
Achieving fast and accurate computation and communication over across brain
areas is difficult, or even impossible, because communication may be slow, limited
in bandwidth and constrained to spatially localized populations.

Here, we build on the foundations of recent work in distributed control theory
[3], [67]–[70] and show that internal feedback is a solution to achieving rapid and
accurate control given the spatial and temporal constraints on brain components and
communication systems. We analyze an idealized class of control models and prove
mathematically that internal feedback is both plausible and necessary for achieving
optimal performance in these idealized models. Internal feedback serves at least
three functions in our model: prediction and estimation, localization of function and
behavior, and focused attention, all of which are crucial for effective sensorimotor
control and survival. This theory explains why there are differences in population
responses between M1 and V1, why different projections predominantly activate
AMPA or NMDA glutamate receptors, the functions of giant pyramidal cells in
visuomotor control, and both the uses and limitations of localization of function in
cortex. There is a general principle behind all of these physiological properties.

6.2 Task Model and Performance
We analyze expected values and theoretical bounds on task performance for highly
simplified control loop models motivated by a well-studied and ethologically relevant
tracking task: reaching for a moving object. The goal of the task is continuous
pursuit, rather than one-time contact between limb and object.

74

The complete tracking task requires identification of the object in a cluttered visual
scene, prediction of the object’s movement, and generation and execution of biman-
ual limb movement. We make many simplifying assumptions that allow us to study
internal feedback in an accessible way using familiar linear dynamical systems.
Models of greater detail and complexity are discussed briefly and are expected to
be based on the same broad principles.

Consider the task of tracking a moving object with the endpoint of a limb on a
plane. The variable to be controlled is the tracking error: the distance between
the hand and the object. We start by assuming that the system controlling the limb
can perfectly sense the position of limb and object at every instant, which will be
relaxed in later models. The cost is defined as the squared Euclidean norm of the
tracking error over time, normalized by the total amount of time; with a smaller cost
indicating better tracking.2.

Let 𝑥, 𝑢, and 𝑤 represent the tracking error, the control action on the limb, and the
action of the object, respectively. We will refer to 𝑥 as the state of the system. Let
𝐴 be a matrix that represents the intrinsic dynamics of 𝑥, including features such
as the movement of the object or mechanical coupling between two dimensions of
limb movement. Let 𝐵 be a matrix that represents the mapping of control action to
tracking error. The time-evolving dynamics of the tracking error follows from the
linear equation of motion (2.1).

Let 𝛼 denote the magnitude of the maximum eigenvalue of 𝐴, as a proxy for task
difficulty. Note that 𝛼 < 1 corresponds to a task in which tracking error 𝑥 will
decrease with no limb action, an easy task. In general, the difficulty of a task
will depend on properties of 𝐴 such as its eigenvalues and the strength of coupling
between states, as discussed in subsequent sections. For example, if the spectral
radius of 𝐴 is less than 1, this corresponds to a task in which tracking error 𝑥
decreases with no limb action, an easy task.

The actions 𝑢 provide feedback control on the tracking error, computed by an
arbitrary function K that has access to all past and present tracking errors 𝑥(1 : 𝑡).
This control law is mathematically written as

𝑢(𝑡) = K(𝑥(1 : 𝑡)) (6.1)
2For control theorists: this corresponds to a unit state penalty and infinitesimal control penalty.

75

The optimal solution to this problem is the linear quadratic regulator (LQR) and the
optimal controller isK(𝑥(1 : 𝑡)) = −𝐴𝑥(𝑡) [43]. This controller fits into the single-
loop model of sensorimotor control, as there is no internal feedback, and the addition
of internal feedback does not provide any additional performance advantage. We
also note that even though we allow access to all past values of 𝑥, the optimal
controller only needs to access 𝑥 at time 𝑡.

Controllers without internal feedback are optimal for a large but special class of
problems, including classical state feedback and full control problems from control
theory. Though mathematically elegant, these controllers make assumptions that are
impractical when applied to biological systems. In subsequent sections, we relax
some of the assumptions implicit in this single-loop model and show that small
deviations from assumptions relevant to biological systems introduces the need for
internal feedback.

Any of the controllers in subsequent sections can be implemented in a variety
of ways, although whether or not a particular controller needs internal feedback
is generic across all possible implementations. We choose particular non-unique
controller implementations with internal feedback for which the optimal solution is
relatively transparent and easy to interpret.

6.3 Sensing and Actuation Delay
The linear quadratic regulator and linear quadratic Gaussian controller are two
of the most widely-used optimal controllers throughout academia and industry.
However, these formulations lack the ability to incorporate delayed sensing and
delayed actuation, which are prevalent in organisms. For instance, the neuronal
conduction time from the eye to motor cortex, has conduction delays on the order
of tens or hundreds of milliseconds. In this section, we provide new techniques that
allow us to incorporate delays into these standard formulations, then investigate the
internal feedback within the resulting controllers.

Full control and state feedback
The state feedback problem is one in which we assume direct access to the state:
given dynamics (2.1), we have the feedback law

𝑢(𝑡) = 𝐾𝑥(𝑡) (6.2)

and we are tasked with finding the optimal controller 𝐾 , which is a constant matrix.
State feedback can be thought of as a controller with perfect sensing and arbitrary

76

actuation. Its dual, the full control problem, can be thought of as a controller with
perfect actuation and arbitrary sensing3. In full control, we assume that we work
with dynamics (2.1) with actuation matrix 𝐵 = 𝐼. The controller is

𝑢(𝑡) = 𝐿𝑦(𝑡) (6.3)

where 𝑦(𝑡) represents sensor data and is related to the state through

𝑦(𝑡) = 𝐶𝑥(𝑡) (6.4)

We will first formulate the delayed sensing problem in full control. We have a sensor
with a single timestep of delay, written as

𝑦(𝑡 + 1) = 𝐶𝑥(𝑡) (6.5)

and we want to find the best controller (6.3) for it. To model sensing delay, we
add delay states to the model. Assume that we sense each state, but with a single
timestep of delay. We introduce a virtual internal state 𝑥𝑠, which contains delayed
information about state 𝑥. This formulation allows us to pose the delayed-sensor
tracking problem as a standard control problem

𝐴 =

[
𝐴 0

𝐶 0

]
, 𝐶 =

[
0 𝐼

]
[
𝑥(𝑡 + 1)
𝑥𝑠 (𝑡 + 1)

]
= 𝐴

[
𝑥(𝑡)
𝑥𝑠 (𝑡)

]
+ 𝑢(𝑡) +

[
𝑤(𝑡)
0

] (6.6)

This problem can be optimally solved by LQR. The optimal controller 𝐿 can be
found by solving a discrete-time algebraic Riccati equation on 𝐴 and 𝐶.

Control action 𝑢 and controller 𝐿 can be further partitioned as[
𝑢1(𝑡)
𝑢2(𝑡)

]
=

[
𝐿1

𝐿2

]
𝑦(𝑡) (6.7)

where 𝐿1 and 𝐿2 are block matrices. Here, the controller does not directly "perceive"
the tracking error 𝑥 and only has access to the virtual internal state 𝑥𝑠. However,
the controller can freely take actions that affect both the tracking error and the
virtual state. The action on the virtual state, 𝑢2, as shown in Figure 6.4, is an
example of counterdirectional internal feedback with gain 𝐿2. We remark that even

3This formulation is less often used, as it is much more common to have perfect sensing than
perfect actuation.

77

though 𝑢1 and 𝑢2 are both control signals in the standard sense, they have vastly
different interpretation in this model: 𝑢1 represents physical actuation, which for an
organism requires high-cost muscle cells, etc, while 𝑢2 represents low-cost internal
communication, i.e. neurons.

For the delayed sensing problem, the optimal controller has a simple analytical form:
𝐿1 = −𝐴2 and 𝐿2 = −𝐴 is the internal feedback. If no internal feedback is allowed
(i.e. we enforce 𝐿2 = 0), then the optimal controller is 𝐿1 = −𝐴2/4. We compare
the performance of these two controllers in Figure 6.3, and see that the controller
with internal feedback far outperforms the controller without internal feedback. We
also note that as the task becomes more difficult (spectral radius of 𝐴 > 2), the
controller without internal feedback is unable to stabilize the closed-loop system
and tracking breaks down.

We can also pose the dual problem of delayed actuation as a standard control
problem, in the form of

𝐴 =

[
𝐴 𝐵

0 0

]
, 𝐵 =

[
0

𝐼

]
[
𝑥(𝑡 + 1)
𝑥𝑎 (𝑡 + 1)

]
= 𝐴

[
𝑥(𝑡)
𝑥𝑎 (𝑡)

]
+ 𝐵𝑢(𝑡) +

[
𝑤(𝑡)
0

]
𝑢(𝑡) =

[
𝐾1 𝐾2

] [
𝑥(𝑡)
𝑥𝑎 (𝑡)

] (6.8)

Here, control signal 𝑢 is delayed before being applied to state 𝑥. Virtual state 𝑥𝑎
represents the delayed actuation signal. The optimal controller 𝐾 can be found by
solving a discrete-time algebraic Riccati equation on 𝐴 and 𝐵. Here, 𝐾2 represents
internal feedback, as shown in shown in Figure 6.4.

The remainder of this subsection is intended primarily for readers with some back-
ground in control theory. We present the full mathematical details for a system with
more than one step of delay – we will do this for the case of full control, and the
state feedback case follows naturally by duality.

Consider a system of size 𝑛, with sensory input of size 𝑝 and sensory delay of 𝑑
timesteps. As before, we will introduce virtual states 𝑥𝑠, this time with dimension
𝑝𝑑. The resulting state vector is 𝑥 =

[
𝑥⊤ 𝑥⊤𝑠

]⊤
, where 𝑥 is the original tracking

error. We can think of 𝑥𝑠 as information sensed by the eye that is being passed along
a delayed visual pathway to LGN, then V1, and so on. The motor areas of the brain

78

Figure 6.3: Internal feedback improves performance when there are internal delays
in sensing. The scalar problem of tracking a moving target over a line was simulated,
varying the task difficulty . The ‘Ideal’ controller contains no sensor delays. The
‘Internal Feedback’ controller contains sensor delays, and uses internal feedback to
compensate for the delays. The ‘No Internal Feedback’ controller contains sensor
delays, but uses no internal feedback. As𝛼 approaches 2, the task becomes infeasible
without internal feedback (broken line). Shaded areas indicate standard deviations.

can only access the most delayed information, i.e. the values of 𝑥𝑠 corresponding
to a delay of 𝑑; these will be picked out by the sensing matrix 𝐶. Thus, the overall
setup is

𝐴 =


𝐴 0𝑛×𝑝𝑑

𝐶 0𝑝×𝑝𝑑

0𝑝(𝑑−1)×𝑛 𝐼𝑝(𝑑−1) 0𝑝×𝑝

 , 𝐶 =

[
0𝑝×𝑛+𝑝(𝑑−1) 𝐼𝑝

]
,

[
𝑥(𝑡 + 1)
𝑥𝑠 (𝑡 + 1)

]
= 𝐴

[
𝑥(𝑡)
𝑥𝑠 (𝑡)

]
+ 𝑢(𝑡) +

[
𝑤(𝑡)
0

] (6.9)

As before, the optimal control law is (6.3), and the optimal controller 𝐿 can be
found by solving a discrete-time algebraic Riccati equation on 𝐴 and 𝐶. We can

79

Internal
feedback

Actuation
delays

Sensing Actuation

𝑥𝑎

Internal
feedback

Sensor
delays+

Sensing Actuation

𝐿2

𝐿1𝑥𝑠
𝑥

+𝐾1

𝑢1 𝑥

𝑢

𝐾2

Figure 6.4: (Left) Optimal control model for system with sensor delays. Track-
ing error 𝑥 is sensed, then communicated by the sensor with some delay to the
𝐿1 block, which computes the appropriate actuation. Counterdirectional internal
feedback (pink) conveys information from actuation back toward sensing. Internal
computation 𝐿2 adjusts the sensor signal to compensate for actions taken by the
system; this results in improved performance. (Right) Optimal control model for
system with actuation delays. Actuation 𝑢 is computed, then executed with some
delay. Counterdirectional internal feedback (pink) conveys information back toward
sensing, to compensate for the actuation delay.

once more partition the controller 𝐿 as is done in (6.7); now, 𝑢2, which represents
internal feedback, has dimension 𝑝𝑑. As we can see, the dimension of this internal
feedback grows with delay 𝑑. We show a depiction of a system with three timesteps
of sensory delay in Figure 6.5, and a system with three timesteps of actuation delay
in Figure 6.6. These diagrams can be considered to be more zoomed-in versions of
6.4. Bracketed values indicate partitions of blocks, i.e.

𝐿2 =


𝐿2(1)
𝐿2(2)
𝐿2(3)

 (6.10)

where each submatrix 𝐿2(𝑖) has 𝑛 rows. Similarly,

𝐾2 =

[
𝐾2(1) 𝐾2(2) 𝐾2(3)

]
(6.11)

where each submatrix 𝐾2(𝑖) has 𝑛 columns.

In both delayed sensing and delayed actuation, internal feedback is required for
optimal performance. Internal feedback adjusts delayed signals to compensate for
actions taken and information received during the delay; in other words, internal
feedback implicitly compensates for the delays.

The linear-quadratic problem that we consider here could be straightforwardly tested
in a laboratory setting. The simplest real-world task, which is exactly captured by

80

Sensing Actuation

𝐿1

𝐿2(1)

Sensor
delay

Sensor
delay

Sensor
delay+

Sensing Actuation

𝐿1
Sensor
delay

Sensor
delay

Sensor
delay+ + +

Internal
feedback

Internal
feedback

𝐿2(2)

𝐿2(3)

𝐿2(2)

𝐿2(1)

𝐿2(3)

Figure 6.5: (Top) Optimal control model for system with 3 steps of sensor delay.
Counterdirectional internal feedback (pink) conveys information from actuation back
toward sensing. Internal computations 𝐿2 adjusts the sensor signal to compensate
for actions taken by the system; this results in improved performance. (Bottom)
Alternative equivalent implementation of optimal control model for system with 3
steps of sensor delay.

Internal
feedback

Sensing Actuation

𝐾1 +
Actuation

delay
Actuation

delay
Actuation

delay

𝐾2(3)

𝐾2(2)

𝐾2(1)

Figure 6.6: Optimal control model for system with 3 steps of actuation delays.
Actuation 𝑢 is computed, then executed with some delay. Counterdirectional internal
feedback (pink) conveys information back toward sensing, to compensate for the
actuation delay.

81

the model, is a stable limb resting on a surface tracking an object over a line or
plane. This can be modeled by 𝐴 = 𝐼 with single time-step delays corresponding
to internal loop delays on the order of 100 ms. Longer delays would move the
feasibility boundary towards a spectral radius of 1. More complex models of more
difficult tasks corresponding to more realistic scenarios, such as movement against
gravity and adversarial disturbances, could make a task impossible to control without
internal feedback. We next describe controllers with internal feedback that include
sensor delays, actuator delays and imperfect sensing that will motivate a general
model for sensorimotor control in brains.

Kalman filter with and without delays
We now consider the case in which sensing is instantaneous, but noisy. Consider
dynamics (2.1) with sensor (6.4) — this is the output feedback control problem.
The optimal controller makes use of controller gain 𝐾 and estimator gain 𝐿, and is
formulated as

𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐿 (𝑦(𝑡) − 𝐶𝑥(𝑡))
𝑢(𝑡) = 𝐾𝑥(𝑡)

(6.12)

where 𝑥 is an internal estimate of tracking error 𝑥. This optimal controller uses the
Kalman filter, which inherently contains three counterdirectional internal feedback
pathways irrespective of delays being present. These pathways are represented by
the blue arrows through in Figure 6.7, and play a central role in state estimation. The
pathway through 𝐴 estimates state evolution in the absence of noise and actuation;
the pathway through 𝐵 accounts for controller action, and the pathway through 𝐶
predicts incoming sensory signals based on the internal estimated state.

The implementation shown in Figure 6.7 is not unique. We now briefly discuss
a few equivalent implementations that use less internal feedback and explain why
they are less advantageous in the sensorimotor context than the implementation in
Figure 6.7.

In one alternative implementation, we can remove the internal feedback through
𝐵, and replace 𝐴 with 𝐴 + 𝐵𝐾 . However, this requires duplication of 𝐾; in the
sensorimotor context, which requires duplicating of motor structures within vi-
sual structures. In another alternative implementation, we can remove the internal
feedback through 𝐶, and replace 𝐴 with 𝐴 − 𝐿𝐶. This requires a duplication of 𝐿.
Additionally, filtering out predictable sensory input via𝐶 earlier (as is done in Figure
6.7) can be preferable to filtering it out later (as in our alternative implementation).
This is because the filtered information is typically much smaller in bandwidth, and

82

+

State model
prediction

Sensing model
prediction

-

Actuation model prediction

Time
Shift+

Sensing Actuation

State
estimate

𝐵

𝐴

𝐶

𝐾𝐿

Figure 6.7: Internal feedback in a controller with instantaneous but imperfect sensing
and actuation. 𝐴, 𝐵, and 𝐶 represent the state, actuation, and sensing matrices of
the physical plant; 𝐾 represents the optimal controller, and 𝐿 represents the optimal
observer. The Time Shift block shifts 𝑥(𝑡+1) to 𝑥(𝑡) in Eq. 5. The internal feedback
pathways (blue) are inherent to the Kalman Filter; these use state, actuation, and
sensing models to create an internal estimate of the tracking error, or state. All
internal feedback depicted in this diagram is counterdirectional.

requires less resources to communicate: the earlier we perform this filtering, the
less resources we require to pass this information forward. If communications are
subject to a speed-accuracy trade-off (described below), then earlier filtering allows
us to pass sensory information forward with less delay.

We now synthesize a model that combines features from previous sections: sensor
delays, actuator delays, and imperfect sensing. The model can be constructed using
virtual states as follows, for the case of one timestep of delay

𝑥(𝑡 + 1)
𝑥𝑎 (𝑡 + 1)
𝑥𝑠 (𝑡 + 1)

 =


𝐴 𝐵 0

0 0 0

𝐶 0 0



𝑥(𝑡)
𝑥𝑎 (𝑡)
𝑥𝑠 (𝑡)


+


0 0

𝐼 0

0 𝐼


[
𝑢(𝑡)
𝑢𝑠 (𝑡)

]
+


𝑤(𝑡)
0

0


𝑦(𝑡) = 𝑥𝑠 (𝑡)

(6.13)

where 𝑥𝑎 and 𝑥𝑠 are virtual internal states corresponding to delayed actuator com-
mands and delayed sensor signals, respectively, and 𝑢𝑠 represents compensation on
virtual internal states. We can use standard control theory to obtain the optimal

83

+

+

State model
prediction

Sensor delay
compensation

Sensing model
prediction

Sensor
delays

-

Actuation model prediction

Actuator delay
compensation

Time
Shift+

Actuator
delays

Sensing Actuation

State
estimate

M
o

to
r are

as
𝐵

𝐴

𝐶

𝐿1 𝐾1

𝐿2

𝐾2

Figure 6.8: Internal feedback in a controller with sensor and actuator delays. 𝐴,
𝐵, and 𝐶 represent the state, actuation, and sensing matrices of the physical plant;
𝐾1, 𝐾2, 𝐿1, 𝐿2 are submatrices of the optimal controller and observer gains. The
internal feedback pathways (pink) through 𝐿2 and 𝐾2 compensate for sensor and
actuator delays, respectively. Other internal feedback pathways (blue) are inherent
to the Kalman Filter. All internal feedback depicted in this diagram is counterdirec-
tional. The yellow box contains parts of the controller that roughly correspond to
motor areas in cortex.

controller gain 𝐾 and optimal estimator gain 𝐿. Due to the block-matrix structure
of the system matrices, the optimal gains have the following structure

𝐾 =

[
𝐾1 𝐾2 0

]
, 𝐿 =


𝐿1

0

𝐿2

 (6.14)

The controller can be implemented as follows

𝛿(𝑡 + 1) = 𝐶𝑥(𝑡) − 𝐶𝑥(𝑡) − 𝐿2𝛿(𝑡)
𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑥𝑎 (𝑡) + 𝐿1𝛿(𝑡)

𝑢(𝑡) = 𝐾1𝑥(𝑡) + 𝐾2𝑥𝑎 (𝑡)

(6.15)

Here, 𝛿 is the delayed difference between the estimated sensor input and true sensor
input, discounted by the observer term 𝐿2𝛿(𝑡). The resulting controller, shown in

84

Figure 6.8, contains two internal feedback pathways related to delay; one pathway
compensates for sensor delays, and the other compensates for actuator delays. The
remaining internal feedback is inherent to the Kalman Filter, as described in the
previous section and shown in Figure 6.7. Overall, the inclusion of sensor delays,
actuator delays, and imperfect sensing result in an optimal controller with several
internal feedback pathways, each of which serves a specific, interpretable purpose.

We additionally remark that in the adversarial H∞ setting, an additional internal
feedback path is necessary to anticipate the worst-case adversarial disturbance.

6.4 Functional Localization
Almost all muscles in the body are engaged in even the simplest actions, such as
reaching. Controlling a system with many degrees of freedom is a difficult problem
for motor control even without delays. Localization of function is well established
in motor cortex, with different different body parts controlled by different cortical
regions; however, communication and computation between localized cortical areas
typically has spatial and temporal constraints, compared with signals within areas.

Consider two motor areas and partition tracking errors into two sets 𝑥1 and 𝑥2,
representing two distinct but possibly coupled subsystems (e.g. two distinct limbs
that are mechanically coupled) using the problem formulation described by (2.1).
The overall tracking error is

𝑥 =

[
𝑥1

𝑥2

]
(6.16)

Correspondingly, we partition actuators into two sets 𝑢1 and 𝑢2 that act on their
respective subsystems via local controllers

𝑢 =

[
𝑢1

𝑢2

]
(6.17)

Each local controller senses and controls one subsystem; i.e. local controller 1
senses 𝑥1 and computes 𝑢1, and local controller 2 senses 𝑥2 and computes 𝑢2.
Local controllers may communicate with one another; however, due to localization
constraints, the cross-communication is delayed. Thus, local controller 1 cannot
directly access 𝑥2 without some delay, and similarly for local controller 2.

We observe that without the constraint of localized communication, the optimal
controller for our system is 𝑢 = −𝐴𝑥. If 𝐴 is block-diagonal (i.e. 𝑥1 and 𝑥2

are uncoupled), then this controller obeys localized communication constraints —

85

in fact, no cross-communication (internal feedback) is required between the two
local controllers. However, if the two subsystems are coupled with time delays,
then this controller requires rapid, global communication, which violate localized
communication constraints.

To enforce localized communication, we reformulate the problem by introducing
virtual states 𝑥′1 and 𝑥′2, which represent delayed cross-communication between
the two local controllers. 𝑥′1 is information sent from local controller 1 to local
controller 2, with delay. 𝑥′2 is information sent from local controller 2 to local
controller 1, with delay. We also define 𝑢′1 and 𝑢′2, which model interconnections
between virtual states and real tracking errors. For simplicity, we assume unit delay.
The reformulated problem then becomes

𝑥 =


𝑥1

𝑥′2
𝑥′1
𝑥2


, 𝑢 =


𝑢1

𝑢′2
𝑢′1
𝑢2


𝑤̃ =


𝑤1

0

0

𝑤2


,

𝐴 =


𝐴11 0 0 𝐴12

0 0 0 0

0 0 0 0

𝐴21 0 0 𝐴22


, 𝐾 =


∗ △ ∗ 0

△ ∗ △ ∗
∗ △ ∗ △
0 ∗ △ ∗


𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝑢(𝑡) + 𝑤̃(𝑡)

𝑢 = 𝐾𝑥

(6.18)

The zeros in the top right and bottom left corners of the 𝐾 matrix preserve localized
communication; they enforce that the two local controllers cannot communicate
instantaneously to one another. Asterisks and triangles indicate free values: trian-
gles represent sites of potential cross-communication, or lateral internal feedback.
When these free values are optimized to achieve optimal performance with localized
communication, the resulting 𝐾 matrix is

𝐾 =


−𝐴11 0 −𝐴12 0

0 0 −𝐴12 𝐴12

𝐴21 −𝐴21 0 0

0 −𝐴21 0 −𝐴22


(6.19)

The resulting local controllers are shown in Figure 6.9. Note that the −𝐴12 term
in the second row and the −𝐴21 term in the fourth row of 𝐾 correspond to lateral

86

Internal feedback
between local

controllers

Sensing

Coupling

Actuation

DelayDelay

Local
controller 1

Local
controller 2

Subsystem 2Subsystem 1

+

+

Delay

Local controller 1

−𝐴21 −𝐴12

−𝐴12

−𝐴11

𝐴21

Figure 6.9: Optimal localized control of two coupled subsystems. (Top) Overall
schematic. Each subsystem has its own corresponding local controller, which senses
and actuates only its assigned subsystem. Local controllers communicate to each
other via lateral internal feedback (pink), with some delay. (Bottom) Circuitry of
local controller 1. Local controller 2 has identical circuitry, with different matrices;
𝐴12 instead of 𝐴21, 𝐴22 instead of 𝐴11, etc.

internal feedback. Here, these internal feedback signals carry predicted values of the
unsensed tracking errors for each controller, after taking control action into account;
for instance, internal feedback from local controller 2 to local controller 1 conveys
the predicted value of 𝑥2, after taking control action from controller 2 into account.
We can develop intuition for this implementation by following an impulse 𝑤 through
time

𝑥(1) =


𝑤1

0

0

𝑤2


→ 𝑥(2) =


𝐴12𝑤2

𝐴12𝑤2

𝐴21𝑤1

𝐴21𝑤1


→ 𝑥(3) = 0 (6.20)

The performance of this controller can be compared to the controller without inter-
nal feedback in Figure 6.10. The best possible linear controller for the controller
without internal feedback results in severe performance degradation. As task dif-
ficulty increases, this controller is unable to stabilize the closed-loop system and
tracking becomes infeasible. With internal feedback, task performance stays near
the centralized optimal (i.e. the case where local controllers can communicate freely
without delay).

This analysis shows that when motor function is localized to specialized parts of
motor cortex that control particular parts of the body, cross-communication via
internal feedback between local controllers is essential. Local circuits in the two

87

Figure 6.10: Localization of function within motor-related cortex: although different
parts of the cortex control different parts of the body, these parts of the body are
inherently mechanically coupled. As a result, internal feedback is useful and in some
cases necessary to maintain localization of function. In simulations, we consider
the problem of tracking a moving target over a two-dimensional space, varying
the task difficulty. The "Ideal" controller is centralized (i.e. no delays between
local controllers) and obtains the best performance. The localized controller with
internal feedback achieves similar performance. The localized controller without
internal feedback suffers from substantially worse performance (higher cost). As task
difficulty increases, the task becomes infeasible without internal feedback (broken
line). Shaded areas indicate standard deviations.

hemispheres must also be coordinated — indeed, they are connected by a massive
corpus collosum that crosses the midline.

The crosstalk between local controllers is supported by the presence of global
signals from movements of the whole body to the local controller in motor cortex
specialized to particular parts of the body. In reality, all body movements are
mechanically coupled, something which the motor system can conceal through
effective localization and coordination using internal feedback.

88

6.5 Communication Constraints and Distributed Sensorimotor Circuits
The above examples use tools from standard control theory to model delays and local
communication constraints in controllers. We now use tools from SLS to model
both delays and local communication constraints in a slightly more complex system.
This section is geared toward readers with some background in control theory.

We consider a chain of coupled subsystems (shown in the top left of Figure 6.12)
which is controlled in a distributed fashion, and whose distributed controller is
subject to delays and local communication constraints. This distributed controller,
which can be thought of as a model of distributed sensorimotor circuitry, contains
large amounts of internal feedback — both counterdirectional and lateral. This is
the first model that replicates the massive amounts of internal feedback observed in
the cortex from purely a priori principles. In our case, distributed implementation,
communication constraints, and sensing-to-actuation ratio are the principles which
drive the presence of internal feedback.

Though we provided examples of how classical control can be modified to accommo-
date delays and local communication, we will be utilizing the SLS parametrization
in this section. The primary reason is that delays and local communication, while
simple to formulate on small systems, become unwieldy (and, in the case of local
communication, downright impossible) to solve on larger systems using the tools of
classical control. All previous examples can be equivalently solved using SLS.

We use a symmetric 8-subsystem ring, shown in the top left of Figure 6.12. The
state matrix 𝐴 ∈ R8×8 and actuation matrix 𝐵 ∈ R8×4 are

𝐴 =
𝛼

3
∗



1 1 0 . . . 1

1 1 1 0 . . .

0
. . .

. . .
. . .

...
...
. . .

. . .
. . . 1

1 0 . . . 1 1


, 𝐵 =



1 0 0 0

0 0 0 0

0 1 0 0

.

0 0 0 0


(6.21)

where the spectral radius of 𝐴 is equal to 𝛼 = 1.8. This system is unstable;
in context of the tracking task, it is relatively difficult. 50% of subsystems are
actuated; subsystems 1, 3, 5, and 7 receive actuation, while subsystems 2, 4, 6, and
8 do not.

The standard implementation of the SLS controller is shown in Figure 2.2. We now
look at the distributed implementation of this controller. For pedagogical reasons,
we will first focus on the implementation of the 𝑧Φ𝑢 block alone, then discuss the

89

+

Memory

+

Memory

Figure 6.11: Standard implementation of a system with FIR transfer function Φ𝑢,
input 𝜹̂, and output u. This example uses a strictly causal Φ𝑢 with horizon length
𝑇 = 5. Values in memory are multiplied by the appropriate spectral element Φ𝑢 (𝑘)
then summed to obtain the output. (Left) Contents of memory at time 𝑡 = 11.
(Right) Contents of memory at time 𝑡 = 12. Notice that the entries in memory have
shifted to the right compared to the previous timestep. The oldest value, 𝛿(7) has
been discarded, and a new value, 𝛿(12), has entered the memory.

implementation of the full controller. This block takes 𝜹̂ as input and gives u as
output. In time domain, this block performs the following convolution:

𝑢(𝑡) =
𝑇∑︁
𝑘=0

Φ𝑢 (𝑘)𝛿(𝑡 − 𝑘 + 1) (6.22)

To compute 𝑢(𝑡), we require a memory of the most recent 𝑇 values of 𝛿. Every time
step, we discard the oldest value of 𝛿 from memory and add the newest value of
𝛿. An example of this is shown in Figure 6.11. This is a standard implementation
of a system with FIR transfer matrix Φ𝑢; we will build upon it to create locally
implemented controllers with local memory.

To incorporate both delay and local communication constraints, we enforce sparsity
on transfer matrix Φ𝑢. This corresponds to sparse spectral elements Φ𝑢 (𝑘). These
sparsity constraints enable us to implement this controller in a distributed manner:
instead of a centralized memory and convolution computation, each subsystem will
have its own local memory and local convolution computation. Each subsystem 𝑖

locally computes its input 𝛿𝑖, and relies on local inter-subsystem communication to

90

access 𝛿 𝑗 for 𝑗 ≠ 𝑖. We show an example in Figure 6.12, where each subsystem
communicates only with its immediate neighbors. In our example, we consider
inter-subsystem delays, but not self delays (i.e. sensor 𝑖 communicates to controller
𝑖 with some nonzero delay). Self delays can be easily enforced via zero-constraints
on the diagonals of Φ𝑢 (𝑘) for appropriate 𝑘 .

Since each subsystem has its own local memory, a lot of redundant memory is
created. In our example, the memory at subsystem 4 stores past values of 𝛿3; past
values of 𝛿3 are also stored at subsystems 2 and 3. Here, each entry in memory
is stored 3 times: by subsystem 𝑖 and its neighbors 𝑖 + 1 and 𝑖 − 1. For a general
system, each entry will be stored by subsystem 𝑖 and all neighbors with whom it
communicates.

Figure 6.12 shows an example of local memory at a single subsystem. A more
general characterization is shown in Figure 6.13. In our example, the size of the
local memory is uniform across subsystems; however, in general, the size of the
local memory may vary from subsystem to subsystem. All of this is supported by
the SLS formulation; one must only specify the appropriate sparsity constraint on
Φ𝑢 and Φ𝑥 .

We have described the implementation of the 𝑧Φ𝑢 block from Figure 2.2. To
implement the full SLS controller described in this figure, we must also implement
the 𝑧Φ𝑥 − 𝐼 block. This block also takes 𝜹̂ as input, so it shares the memory
structure we have already described. We now present the full local controller at
a single subsystem in Figure 6.14. Here, the counterdirectional internal feedback
computes x̂, the predicted future state. It does so using the closed-loop map Φ𝑥 ,
which contains information on both the system itself and the system’s controller
(i.e. motor model). This echoes observations from previous sections and existing
literature: counterdirectional feedback serves a predictive purpose. We also note that
in state feedback, the "estimations" are exact; 𝛿(𝑡) = 𝑤(𝑡−1), and 𝑥(𝑡 +1) = 𝑥(𝑡 +1)
if 𝑤(𝑡) = 0.

Lateral feedback is also abundant in the local controller. As in the previous section,
it serves the purpose of cross-communication between sub-controllers of subsystems
that are dynamically coupled.

To get a better picture of the different sources of internal feedback, we show three
local controllers in Figure 6.15. Here, subsystem 4 is unactuated, as per the original
problem statement above. However, despite having no actuation, subsystem 4 still

91

Subsystem 3

Subsystem 4

Subsystem 5

Local Memory

Received from
subsystem 5

Received from
subsystem 3

Computed at
subsystem 4

Subsystem 4

System

Figure 6.12: For ease of visualization, we temporarily assume all subsystems are
actuated. (Top left) Ring with 8 subsystems. (Top right) Spectral elements of
Φ𝑢. Colored squares represent nonzero values; other values are constrained to be
zero. Nonzero values away from the diagonal represent communication between
subsystems. Sparsity constraints arise from delayed communication (for Φ𝑢 (1)) and
local communication (for Φ𝑢 (𝑘), 𝑘 > 1). Sparsity on Φ𝑢 additionally translates to
local disturbance rejection. (Bottom) Local controller and memory at subsystem
4. Each subsystem uses its own row of Φ𝑢 (𝑘) to implement its local controller.
Rectangles in local memory represent scalar values of 𝛿𝑖 (𝑡); colors indicate the
source of the value, e.g. pink rectangles are 𝛿 values from subsystem 3. Recent
entries are toward the left, and oldest entries are toward the right. Local actuation
(not shown) is produced by multiplying 𝑃ℎ𝑖𝑢,4(𝑘) by columns in memory and
summing over the products.

92

System

Horizon length

Sp
atial exten

t

Communication
delay

Figure 6.13: (Left) Ring with 8 subsystems. (Right) Size and shape of example local
memory at subsystem 4. Horizon length 𝑇 indicates how far to remember into the
past. Spatial extent indicates how many neighbors each subsystem communicates
with. For the ring system, communication delay is indicated by the angle of the
triangular "front" of the memory; larger angle corresponds to larger delay. In this
example,𝑇 = 5, and subsystems communicate to their 4 nearest neighbors with delay
proportional to distance. Subsystem 4 has up-to-date information on subsystem 4
(yellow), slightly outdated (delayed one time step) information from subsystems 3
and 5 (pink and green), and more outdated (delayed 2 time steps) information from
subsystems 2 and 6, which are farther away. Note that for an arbitrary system, the
pattern of local memory entries will not be triangular.

requires memory and circuitry to calculate 𝛿4 and communicate it to its neighbors.
A fundamental asymmetry between feedforward and internal feedback is revealed
here; in our model, feedforward is necessitated by actuation, while internal feedback
is necessitated by sensing. In both biological and cyberphysical systems, actuation
is much more energy-intensive than sensing, and therefore actuators are generally
much less numerous than sensors. For example, a human can see objects that are
hundreds of meters away, but can only act on objects within a small radius around
his or her body — and even then, in a manner severely limited by anatomy, mobility,
and strength. Thus, because organisms sense more than they actuate, they contain
more internal feedback than forward. Another interpretation is that internal feedback
filters sensory information to produce appropriate motor output, performing a sort
of dimension reduction.

We remark that this model is based on the standard realization of the state feedback
SLS controller, which is internally stable [3]. Internal feedback is a necessary
feature in all known alternative realizations of state feedback SLS [71], [72], as
well as full control and output feedback SLS controllers. We anticipate that for
any local and distributed controller, internal feedback will outnumber feedforward

93

Sensory input

+

Actuation on subsystem 4

-

Subsystem 4

Predicted sensory input

+

+

Local sub-controller

Figure 6.14: Local controller at subsystem 4, assuming subsystem 4 is actuated.
The feedforward path is depicted by the black arrows; counterdirectional internal
feedback is depicted by the yellow solid arrows, and lateral feedback is depicted by
dashed yellow, pink, and green arrows. In this example, we enforce inter-subsystem
communication delay; 𝛿3 and 𝛿5 are received from neighboring subsystems with a
delay of 1 time step. Note that Φ𝑥 (1) is not included because for all Φ𝑥 satisfying
the feasibility constraint, the 𝑧Φ𝑥− 𝐼 (see Figure 2.2) results inΦ𝑥 (1) being canceled
out by 𝐼.

paths, though we defer a more thorough exploration of implementation details to
future work. Additionally, we remark that in the SLS formulation, any constraint on
Φ𝑥 ,Φ𝑢 will constrain both the controller and the closed-loop, i.e. local constraints
will translate to both local communication and localized behavior. However, we may
not always want to constrain the closed-loop — in such cases, we may use alternative
techniques, as described in Chapter III. These techniques utilize the same controller
structure as standard SLS, so all discussion on memory and feedback still apply to
these alternative techniques.

6.6 Speed-Accuracy Trade-Offs
We have shown that state estimation and localization of function require internal
feedback to correct for self-generated or predictable movements. In particular, large
amounts of internal feedback are required when we take distributed control of a
many-sensor, few-actuator system into account. We now show how to efficiently

94

+

+

+Subsystem 5

Subsystem 3

Subsystem 4

Figure 6.15: Local controllers at subsystems 3, 4, and 5. Each local controller is
enclosed in a grey box. Only subsystems 3 and 5 are actuated. Feedforward is
denoted by black arrows. Counterdirectional internal feedback are denoted by the
solid color arrows, and lateral internal feedback are denoted by dashed color arrows.
Not shown are lateral internal feedback from other neighbors of subsystems 3 and
5.

track a moving object with the limitations imposed by neural components and
internal time delays using an attention mechanism.

Up to this point, we have assumed that the controller can directly sense the position
of the object (perhaps with some delay). In the real world a scene can comprise
many objects, which makes it more difficult for a sensorimotor system to localize an
object in the scene. However, a moving object, once identified, can be more easily
discriminated from a static visual scene. This illustrates the distinction between
scene-related tasks (such as object identification) and error-related tasks (such as
object tracking), which in the visual cortex is accomplished by the ventral and dorsal
streams, respectively.

95

This distinction also mirrors the separation between bumps and trails in the mountain-
biking task studied in [67], allowing us to build on the control architecture in that
task. The main difference is that instead of separating into two control loops, we use
layering and internal feedback to supplement the control actions of the main control
loop.

For simplicity of presentation, we consider a one-dimensional problem (tracking
on a line), and use as the metric ∥𝑥∥∞ (worst-case, or adversarial tracking error)
rather than ∥𝑥∥2 (average-case tracking error). We have some object whose position
relative to us, 𝑟, is governed by the dynamics

𝑟 (𝑡 + 1) = 𝑟 (𝑡) + 𝑤𝑟 (𝑡) + 𝑤𝑏 (𝑡) (6.23)

where 𝑤𝑟 represents object movement, and 𝑤𝑏 represents changes in the background
scene. Our limb position 𝑝 is governed by the dynamics

𝑝(𝑡 + 1) = 𝑝(𝑡) − 𝑢(𝑡) (6.24)

where 𝑢(𝑡) is some limb action. The tracking error 𝑥 := 𝑟 − 𝑝 then obeys the
dynamics

𝑥(𝑡 + 1) = 𝑥(𝑡) + 𝑤𝑟 (𝑡) + 𝑤𝑏 (𝑡) + 𝑢(𝑡) (6.25)

where the task difficulty is implicitly equal to 1.

We assume that object movement and background changes are bounded: |𝑤𝑟 (𝑡) | ≤
𝜖𝑟 and |𝑤𝑏 (𝑡) | ≤ 𝜖𝑏 for all 𝑡. Additionally, we assume that background changes are
much slower than object movement: 𝜖𝑏 ≪ 𝜖𝑟 , i.e.

𝜖𝑟 + 𝜖𝑏 ≈ 𝜖𝑟 (6.26)

Consider a movable sensor that senses some interval of size 𝛽 on the continuous
line. Information from the sensor must be communicated to the controller via
axon bundles, which are subject to speed-accuracy trade-offs — that is, the higher
bandwidth a signal, the slower it can be sent. Thus, roughly speaking, axonal
communication can be low-bandwidth and fast, or high-bandwidth and slow. We
can formalize this as follows for a volume of cortex axons with uniform radius,
adapting from [67]:

We first observe that delay 𝑇 is inversely proportional to axon radius 𝜌 with propor-
tionality constant 𝛼

𝑇 =
𝛼

𝜌
(6.27)

96

Firing rate per axon, 𝜙, is proportional to axon radius with proportionality constant
𝛽

𝜙 = 𝛽𝜌 (6.28)

Cross sectional area 𝑠 is related to axon radius 𝜌 and the number of axons in the
nerve 𝑛 via

𝑠 = 𝑛𝜋𝜌2 (6.29)

And finally, signaling rate 𝑅 of the entire nerve, which is related to the resolution of
information sent about the sensed interval, is represented by

𝑅 = 𝑛𝜙 (6.30)

These equations can be combined to obtain the speed-accuracy trade-off

𝑅 = 𝜆𝑇, 𝜆 =
𝑠𝛽

𝜋𝛼
(6.31)

The constant 𝜆 is proportional to 𝑠, the cross-sectional area; for projections of fixed
length, this represents the spatial and metabolic cost to build and maintain the axons.
In general, given some fixed cortical volume, we can either build few thick axons,
which will have low delay but low information rate, or we can build many thin axons,
which will have high information rate but high delay.

We implement this speed-accuracy trade-off using a static, memoryless quantizer𝑄
with uniform partition, followed by a communication delay, as shown on the top in
Figure 6.16. This choice of quantizer does not add to the cost, since it recovers the
optimal cost over all possible quantizers [73]. The controller can move the sensor
around; the interval sensed by the sensor remains constant, but the controller can
choose where the interval lies. Assume the initial position of the object is known
— we can select an initial sensor location and 𝛽 appropriately such that 𝑟 (𝑡) always
falls within the sensed interval. In this case, the best possible tracking error for any
delay 𝑇 is

𝜖𝑟𝑇 +
𝛽

2𝜆𝑇
(6.32)

The first term represents error from delay, object movement, and drift. In the time
taken for information to reach the controller, the most adversarial action possible by
the object and background would contribute a tracking error of (𝜖𝑟 + 𝜖𝑏)𝑇 ; we apply
simplification (6.26) to obtain 𝜖𝑟𝑇 . The second term represents quantization error.

97

Sensor

Actuation

Sensor
controller

Actuator
controller

Delay

Sensor

Actuation

Sensor
controller

+

Actuator
controller

Compensator
Internal

feedback

Delay

Delay

𝑄 𝑇

𝑇𝑠

𝑇𝑓

𝑄𝑠

𝑄𝑓

Figure 6.16: Optimal control model of attention, with moveable sensor. (Top) Model
with one communication path, in which information is quantized by quantizer𝑄 and
conveyed to the controller with delay 𝑇 . (Bottom) Model with two communication
paths, and two separate quantizers 𝑄𝑠, 𝑄 𝑓 and respective delays. This model can
be considered lateral (e.g V1-V1) or counterdirectional (V2-V1) internal feedback
(pink) between the two controller paths.

For an interval of size 𝛽 divided into 𝑁 uniform sub-intervals, the worst-case error
is 𝛽

𝑁
; we then use the fact that 𝑁 = 2𝑅 = 2𝜆𝑇 .

This is achieved by the controller depicted on the top in Figure 6.16. The cost, as
a function of 𝑇 , is plotted in the left panel Figure 6.17 with the label "No Internal
Feedback" (where 𝑇 = 𝑇𝑠). Here, the speed-accuracy trade-off is implicit. Very low
values of 𝑇 correspond to very low signaling rates — the controller does not receive
enough information to act accurately, so performance is poor. The opposite problem
occurs at very high values of 𝑇 ; though the information is high-resolution, the time
elapsed between information and action is too long, leading to poor performance.
The best performance occurs between these two extremes [67].

98

Figure 6.17: (Left) Internal feedback and layering achieve superior performance
when sensor-controller communications are subject to speed-accuracy trade-offs.
The "No Internal Feedback" controller uses one layer, while the "Internal Feedback"
controller uses two layers, with internal feedback between the layers. The two-layer
case consists of a fast forward pathway compensated by slow internal feedback,
which takes slow background changes into account; this achieves better performance
(lower cost) than the case without internal feedback. The "Ideal" controller, where
the sensor directly senses the moving object, is also shown. The layered system
with internal feedback achieves performance close to the ideal. Task difficulty is
𝛼 = 1. 𝑇 represents delay. For the "No Internal Feedback" controller, it represents
the delay of the single layer; for the "Internal Feedback" controller, it represents the
delay of the slow layer, i.e. 𝑇 = 𝑇𝑠. The delay of the fast layer is held constant.
(Right) Performance (log cost) of the two-layer controller with internal feedback as
delays of both layers are varied. Notice that performance is generally good when 𝑇 𝑓
is low and 𝑇𝑠 is sufficiently high.

We can improve this performance by nearly an order of magnitude by adding an
additional communication pathway and the requisite internal feedback. We now
have two communication paths from the sensor, each with its own quantizer and
delay block. The slower communication path uses quantizer 𝑄𝑠 with delay 𝑇𝑠,
while the faster path uses 𝑄 𝑓 with delay 𝑇 𝑓 . To further facilitate speed in the fast
path, we allow it to send only a subset of information from the sensor (i.e. only
send information about a small part of the sensed scene). Mathematically, let the
fast path send information about an interval of size 𝛽 𝑓 , with 𝛽 𝑓 < 𝛽, and let this
smaller sub-interval be contained within the sensor interval. This sub-interval is
an implementation of attention. The fast path is the main actuation path, while the
slower path provides compensatory signals via internal feedback; this is shown on

99

the bottom in Figure 6.16. In this case, the best possible cost is

𝜖𝑟𝑇 𝑓 +
𝛽 𝑓 + 𝐸𝑠
2𝜆𝑇 𝑓

𝐸𝑠 = 𝜖𝑏𝑇𝑠 +
𝛽

2𝜆𝑇𝑠

(6.33)

The first term represents error from delay and object movement, similar to (6.32).
The second term represents a combination of quantization error from the fast com-
munication pathway (𝛽 𝑓) and performance error of the slow pathway (𝐸𝑠), which
informs the fast pathway of where to place the sub-interval. Notice that 𝐸𝑠 takes the
same form as (6.32).

The cost, as a function of 𝑇𝑠, is plotted in the left panel of Figure 6.17 with the
label "Internal Feedback". In this plot, we assume 𝑇 𝑓 to be its smallest possible
value: one unit of delay. We see that using two quantizers in combination with
internal feedback is superior to using one quantizer. We remark that this only holds
when the two quantizers are different; if we simply use two quantizers with the same
interval, bit rate, and delay, no such performance boost occurs. In general, holding
𝑇𝑠 constant and decreasing 𝑇 𝑓 improves performance, as shown in the right panel of
Figure 6.17.

Functionally, the inclusion of a faster communication pathway allows action to be
taken in a more timely manner than in the single-pathway case. Unlike in the single-
pathway case, we are not encumbered by issues of low-resolution information; the
slower communication pathway corrects the fast pathway through internal feedback.
Here, as in previous examples, the internal feedback carries signals correcting for
self-generated and slow, predictable changes. Overall, despite speed-accuracy trade-
offs in communication, the system achieves fast and accurate behavior with the help
of internal feedback, under reasonable assumptions about the dynamics of the scene
and environment.

6.7 Discussion and Interpretation of Results
We analyzed a set of minimal control models to explore internal feedback in a
perception-action loop with time delays and limited communication bandwidth.
We showed how previously internal feedback, which is unbiquitous in brains and
poorly understood, facilitates state estimation and localization of function, and how
attention facilitates motor performance. This is a step toward an end-to-end model
of sensorimotor processing in neural systems.

100

The mathematical framework for biological control explored here can be applied
across a wide range of experimental systems. The simple models were meant to
provide an intuitive understanding of the control strategies for handling internal time
delays and limited signaling bandwidth. The framework can be elaborated to make
more specific predictions for more complex biological systems.

Task-oriented whole-system frameworks reveal new roles for internal feedback
There may be other functions for internal feedback in addition to compensating
for time delays and limited cortical communication bandwidth that have arisen
in parallel with the development of methods for increasingly high-throughput and
high-resolution biological measurements that probe internal feedback and inter-
nal dynamics, essential features of cortical computation and control. Additional
functions that have been suggested are computation through dynamics [63], deploy-
ing recurrent networks [64], performing Bayesian inference [65], [66], generating
predictive codes [61], [62], and many others.

These frameworks emphasize prediction but are largely confined to the context of
either sensory processing or motor processing separately and do not explicitly model
closed loop task performance. Our analysis considers sensorimotor control from an
ethological perspective, which is important because the ultimate selection pressure
on sensory processing is to support optimal actions for ensuring survival [74].

Our framework is is consistent with recent neural recordings from the cortex showing
that motor signals and the influence of past and current actions account for substantial
cortical activity, previously considered spontaneous, background or noise [56]–[59],
[75]. These internal feedback signals carry information about how actions propagate
through the body and its environment, ameliorating communication limitations that
affect both plans and future actions.

The predictions of these models can be used to interpret how ablation, suppression,
or delay of counterdirectional internal feedback would degrade performance in
many visuomotor tasks. The performance gap should be more pronounced in tasks
that involve quickly changing conditions. Similar interventions that disrupt lateral
feedback interactions within motor cortex should degrade performance in tasks
where body parts are highly mechanically coupled — such as hands and shoulders
— and less so for tasks where body parts are loosely mechanically coupled, such as
speech and walking.

Our theory predicts that the fastest neurons from V1 to V2 or V1 to MT (including

101

Meynert cells) should be the most highly activated when there are unpredictable
changes in the visual scene. Similarly, we attribute autonomous dynamics in M1
to the communication of predicted actions laterally and counterdirectionally. This
leads to the prediction that unexpected perturbations during a motor task should lead
subpopulations of cells in M1 (including Betz cells) to transmit rapid change-related
signals in contrast to the smooth responses that accompany unperturbed control.

Classical optimal control models neglect physiological limitations
Optimal control theory is a general framework for sensorimotor modeling. Given
a mathematical description of a system and some task specification, the optimal
controller provably gives the best possible performance. However, these proofs
assume that the components are fast and accurate, with instantaneous communication
and control circuits implemented with fast and accurate electronics. Using these
components, a single sense-compute-actuate loop is generally sufficient to achieve
optimal behavior.

Applying control theory to model physiological circuitry requires a distinction
between behavior and implementation. The same optimal performance may be
achieved through a number of different implementations in the underlying circuitry.
Although traditional control theory excels as a model of sensorimotor behavior, it
does not incorporate the component-level constraints that are prevalent in biology;
as a consequence, the ways that traditional control theory models are implemented
may not be directly relevant to biological control.

Recent advances have extended traditional control theory to allow distributed control
and incorporation of component-level constraints [3], [67], [69], [70]. We build on
this body of work to describe how constrained components affect the implementation
of an optimal distributed biological controller. In particular, we show how and why
internal feedback arises in controllers whose components exhibit the speed-accuracy
trade-offs found in brains.

Fast long-range association fibers in the cortex are metabolically and developmen-
tally expensive, have low bandwidth (compared to slower fibers with higher band-
width), require constant maintenance and repair and are limited in number. Internal
feedback from the motor cortex to earlier sensory areas can regulate the use of these
pathways by suppressing self-generated and other predictable signals, freeing the
fast pathways to selectively transmit the unpredicted changes needed by the motor
system to make make fast decisions. This virtualizes the behavior of the control

102

system to produce actions that are both fast and accurate despite internal time delays
and limited communication bandwidth.

Evidence for the suppression of self-generated sensory signals by corollary
discharge signals
Efference copies of motor signals are ubiquitous throughout brains and serve several
functions. They are used for example as the input to forward models to predict the
consequences of motor commands. Another use of efference copies is for corrolary
discharges that suppresses predictable self-generated sensory signals. these help
to distinguish sensory signals arising in the environment from those that are self-
generated, which are often much larger and can interfere with motor tasks, as
occurs when there is a long time delay between a microphone and a loudspeaker.
Fast suppressive internal feedback signals originate before motor commands are
executed and target sensory pathways before self-generated signals can reach higher
levels of processing [76]

Perhaps the best understood neural system that suppresses predictable self-generated
sensory signals is found in electric fish, which generate electric fields for navigation
and communication [77]. The electrosensitive lateral-line lobe (ELL), a cerebellum-
like structure, receives both a corollary discharge of the generated electric field and
sensory input from electroreceptors on the body of the fish. These two signals are
subtracted in the ELL to detect externally generated electric fields. Suppression is
learned using anti-Hebbian synaptic plasticity, in which the coincidences of incom-
ing spikes and outgoing spikes lead to a decrease in synaptic strength. A similar
arrangement is found in the dorsal cochlear nuclei of mammals, which receives
corollary discharge signals from brainstem nuclei associated with vocalization and
respiration as well as proprioceptive input from body movement [77].

Biophysical speed-accuracy trade-offs drive internal feedback
Biological control systems do not have components that are both fast and accurate.
Spiking neurons, though fast relative to other biological signaling mechanisms, are
many orders of magnitude slower than electronics and face severe speed-accuracy
trade-offs that constrain communication and control. However, by cleverly combin-
ing components with different speed-accuracy trade-offs and using internal feedback
as demonstrated above, brains are able to perform survival-critical sensorimotor
tasks with speed and accuracy.

Neurons have biophysical constraints that lead to speed-accuracy trade-offs. For

103

example, some neurons can rapidly convey a few bits of information, and others can
slowly convey many bits of information, but neurons that rapidly convey many bits
of information are expensive and correspondingly rare. Speed-accuracy trade-offs
include spike averaging versus spike timing and the spatial trade-off between the
number of neurons (information rate) and their axonal diameter (conduction speed)
in nerve bundles [67], [78]. These trade-offs have consequences for the performance
of sensorimotor systems that we can study in our control models.

Brains contain highly diverse populations of neurons. For example, the range of
neural conduction speeds in humans spans several orders of magnitude [78]. In
sensorimotor systems, these diverse neurons are multiplexed in a task-specific way
that approximates the performance of a single-loop system composed of ideal (e.g.
fast and accurate) components [67]. The fastest components are used in the feed-
forward loop, sending information from sensing areas toward motor areas. Internal
feedback compensates for accuracy by filtering out slow-changing, predictable, or
task-irrelevant stimuli, such that the fewest possible bits need to travel along the
fastest possible neurons. From an evolutionary perspective, once a system can
achieve fast responses, additional layers of control can be added to achieve more
accurate and flexible behavior without sacrificing performance.

The reason why internal feedback is not needed in most engineered control systems
is that internal time delays are negligible. But in biological systems, even the fastest
neurons used in the feedforward loop give rise to significant time delays. This is
why it is essential to include delays in our control-based analyses of the forward
loop in models of control in brains (Fig. 6.3).

Fast forward conduction is key to successful sensorimotor task performance
In cortex, the fastest, largest and most striking neurons are the large pyramidal cells:
Meynert cells in primary visual cortex carry signals from rapidly moving-object;
giant Betz cells in motor cortex that project to the spinal cord are responsible for rapid
responses to perturbations from planned movements; and giant Von Economo cells
in the prefrontal cortex (anterior cingulate and fronto-insular areas) that project
subcortically are involved in the regulation of emotional and cognitive behavior.
[79]–[82].

The visual stream diverges into the dorsal and ventral streams, which are responsible
for object motion and object identity, respectively. In natural scenes, object locations
may change quickly, but object identities are change relatively slowly; a mouse may

104

move around rapidly, but its status as a prey hunted by a barn owl does not change.
Thus, speed is crucial for the dorsal stream, but not the ventral stream.

This difference has physiological consequences in our minimal model of attention
that could explain differences between cortical projections in the two streams: the
giant Meynert Cells that project from V1 to MT (an object motion area in the dorsal
stream; see Figure 6.1), but there are no equivalently large cells projecting from V1
to inferotemporal cortex (an object identity area in the ventral stream). Reaching
tasks could test the predictions of our control model for rapidly and unpredictably
moving objects on a fixed background compared with predictably moving objects
on nonstationary backgrounds.

Neurons in MT respond selectively to the direction of moving objects and provide
signals that are used by the oculomotor system for the smooth pursuit of moving
objects [83].There are several visual pathways from the retina to the cortex for
tracking moving stimuli. In addition to the cortical pathway that projects from V1
to area MT in Figure 6.1, the retina also projects to the pulvinar, another thalamic
relay to extrastriate areas of the cortex [84]. These two pathways could implement
the optical control model in the bottom panel of Figure 6.16, where the fast, direct
pathway is from the pulvinar and the delayed, indirect pathway from V1 corresponds
to the slower pathway.

Internal feedback facilitates fast feedforward signals in visual cortex
In recent years, large-scale recordings from visual cortex have uncovered non-
visual signals that challenge the traditional single-loop view of sensorimotor control.
In the traditional view, visuomotor processing consists of a series of successive
transformations from stimulus to response, with each cortical area along the way
tuned to some aspect of stimulus space [85]. However, although V1 does respond
to visual stimuli, the activity of these neurons is also characterized by motor-based
internal feedback and task/attention-related modulatory internal feedback [54], [58],
[59], [74]. Our attention model implements the observed enhancement of responses
in neurons that selectively respond to an attended stimulus through internal feedback
[86].

The number of projections from V1 to V2 is roughly the same as number of neurons,
of similar conduction speed, that project from V2 to V1 [50]–[52]. However,
these neurons are very different in morphological and molecular characteristics: the
neurons that project feedforward from V1 to V2 primarily activate AMPA receptors,

105

while the feedback neurons that project from V2 to V1 have a strong NMDA receptor
component and terminate almost exclusively on excitatory pyramidal neurons [87],
[88]. Both of these receptors are activated by glutamate, but AMPA-mediated
currents are fast, lasting only a few ms, while NMDA-mediated currents can linger
in the postsynaptic neurons for hundreds of ms [89]. This feedback could be relevant
for top-down signaling to shape and control perception during actions. Because
NMDA receptors trigger synaptic plasticity, the feedback could also be important
for learning how to suppress self-generated sensory signals as well as perceptual
learning.

Pharmacologically blocking NMDA receptors in visual cortex disrupts figure-
ground discrimination; that is, a loss in capacity to contextually interpret the visual
scene [90]. In the context of our theory and minimal model of attention, internal
feedback from V2 informs V1 of predictable elements in future stimuli.

Since the visual space cannot be sampled losslessly, these feedback signals could
be helping V1 suppress predictable features, making the the unpredictable features
more salient [87].

Internal feedback facilitates localization of function in motor cortex
Primary motor cortex (M1) is dominated by its own past activity rather than static
representations [55]. In the context of the state estimation problem we considered in
Fig. 6.8, these dynamics in motor cortex are driven neither by motor representations
nor by pattern generation, but by predictions of the consequences of self-action
through local internal feedback, which need to be sent throughout the body.

By the same principle, the localization of function within motor cortex that we con-
sidered in Figure 6.10 reconciles the conventional view of homuncular organization
with, for example, the body-related signals found in putatively hand-related parts of
motor cortex, as well as contralateral hand signals [56], [57], [91]. As with motor
signals in visual cortex, these broad body movement signals in motor cortex are
crucial for identifying predictable consequences of motor signals from other body
movements and separating them from unpredictable signals of critical importance
for rapidly controlling localized body parts. This provides each body part with the
context it needs to compensate for the movement of other body parts.

In our analysis, we assumed the existence of a distinct motor cortex that generates
motor commands and a visual cortex that interprets visual scenes and is essentially
an extension of the retina. With these assumptions, we consider where internal

106

feedback should exist. Is it possible for the entire estimator to be implemented in the
visual cortex? Since the estimator uses predictions of future actions, the estimator
requires at least some input from motor cortex.

Is it possible for the entire estimator to be implemented in motor cortex? The dy-
namical structure of responses in the motor cortex is compatible with a predictive
and delay-compensating function of exactly the kind our model suggests. However,
our model also shows that the information transmitted from sensor to motor cortex
depends on the estimator. Thus, for motor cortex to carry out this entire function
without anatomically counterdirectional internal feedback, it would need to con-
tain all of visual cortex. The counterdirectional internal feedback then solves this
problem with a loop between the visual cortex and the motor cortex

In addition to feedback loops between the motor cortex and other cortical areas, there
are also loops with the cerebellum and the basal ganglia. These provide additional
information about sensory predictions and sequences of future actions, respectively.
Regions of the motor cortex that interdigitate between projections to body parts have
recently been identified that are associated with stimulation-evoked complex actions
and connectivity to internal organs such as the adrenal medulla that are associated
with goals [92]. These regions may be responsible for integrating skeletal body
movements with visceral states and goals.

Learning on internal feedback pathways fine-tunes performance
Internal feedback pathways carry attentional signals that activate slow NMDA re-
ceptors, which in turn regulate the strengths of synapses [93]. We have shown
that internal feedback pathways are needed for ignoring self-generated and other
predictable signals. Early in brain development, activation of NMDA receptors in
primary visual cortex before the first visuomotor experience is needed to suppress
predictable feedback and the the selection of unpredictable stimuli [90]. Knocking
out these NMDA receptors impairs ongoing visuomotor skill learning later in life,
which may compensate for body growth and body weight changes. Learning to to
reduce self-generated sensory prediction error can be implemented locally through
same internal feedback system that broadcasts motor predictions.

Reinforcement learning governed by circuits in the basal ganglia may also benefit
from the internal feedback pathways in the cortex. Transient dopamine release,
which carriers reward prediction error, does not specify which sensory inputs were
responsible for the reward, which in part is why it is a much slower form of learning.

107

Attentional internal feedback in the cortex automatically selects and represents the
currently most salient information to guide motor actions. Attentional information
projects to the striatum and makes it easier for the basal ganglia to associate the
causally relevant sensory inputs with reward signals [74].

We have proposed that prediction is an essential aspect of performance in visuomotor
tasks where fast and accurate responses are needed. Prediction is useful in the
model because it enables compressed representations of the current state, which can
then be transmitted more quickly across the nervous system because of the speed-
accuracy tradeoff discussed above. Extending this principle, high performance can
be achieved by simpler representations of tasks, which in turn allow faster responses.

After a flexible but slow learning system has successfully mastered a task, it could
then be ‘loaded’ onto a simpler, more rigid, and faster subcortical system. Internal
feedback can facilitate this transfer. We have focused here on the fast pathways
represented by large axons in visuomotor cortex, but similar variation in timescales
of conduction can be found throughout the sensorimotor system. We, therefore
propose that during the acquisition of fast and accurate motor skills, control would
shift from slower learning systems in the cortex to less flexible subcortical parts of
the motor system.

Attention has been studied primarily in the context of sensory processing. The
importance of attentional signals for reducing time delays in making motor decisions
adds a new direction for future experimental studies. Attention is linked to conscious
awareness and rides atop the global representation of the body throughout the cortex.
This makes internal feedback a candidate feature of the nervous system that helps
explain the sense of unity that we experience, which would otherwise be difficult to
achieve within a balkanized control architecture built on body parts.

6.8 Conclusions and Future Work
This chapter focuses on incorporating delay, functional localization, local communi-
cation, and bandwidth limitations into sensorimotor control models. While system
level synthesis provides a general theoretical framework which we can use to study
delay and local communication in controllers, we lack a similar framework for band-
width limitations in controllers. One direction of future work is to produce such a
framework. Furthermore, as alluded to earlier, any controller that is expressed in
terms of transfer functions can be realized and implemented in a variety of ways;
in this chapter, we have taken the most natural realization and implementation, but

108

other implementations remain unexplored. For instance, instead of an explicit mem-
ory, memory may be implicitly contained in delayed wires. Clarifying the space
of realizations and implementations is a critical step toward the ultimate goal of
this work, which is to elucidate how neurons (with all their signaling limitations)
coordinate to implement optimal controllers in organisms.

109

C h a p t e r 7

A LAYERED MODEL OF DROSOPHILA LOCOMOTION

This chapter is based on a manuscript that is presently under preparation. The current
authors are Lili Karashchuk (co-first author), myself (co-first author), John C. Tuthill,
and Bing W. Brunton. I contributed to framework formulation and manuscript
writing, and was solely responsible for all work pertaining to the dynamics and
optimal controller. All presented results are preliminary. Code needed to reproduce
model-generated walking and walking data timeseries (as presented in this Chapter)
are provided as supplementary files to the thesis.

Overview: We present a novel layered model of Drosophila melanogaster that
generates realistic and robust multi-legged locomotion. The model is composed of
three functional layers, or modules: an inter-leg coordinator, a data-driven neural
network that generates realistic per-leg kinematics, and an optimal controller to
enact the desired kinematics in a physical environment, subject to motor delays. We
use the model to generate walking at various forward and turning speeds and find
that the resulting angle trajectories are highly similar recorded trajectories from real
flies. The modular nature of the model lends itself to generalization; we demonstrate
that the model maintains walking behavior in the presence of slip-like perturbations,
despite not being trained for such perturbations. Additionally, we leverage the model
to provide insight on fundamental physiological limits — allowable ranges of motor
delays that preserve robust fly walking.

7.1 Introduction
Legged locomotion requires coordination between many elements: central pattern
generators and inter-leg coupling, control of leg poses via muscles, and integration
of proprioceptive feedback [94]. The ultimate goal of the study of legged locomo-
tion is to produce analyses and models that unite physiology, physical dynamics,
and behaviors and uncover the design principles behind locomotion. To this end,
many elements of legged locomotion have been studied in various combinations for
hexapods, predominantly flies and cockroaches. Inter-leg coupling is studied via
analysis of kinematic data in [95], [96], and [97]. Locomotion patterns are studied
in the context of energetic cost in [98].

110

To produce models of walking behavior, one approach is to tune parameterized
networks of coupled oscillators. [99] and [100] use networks of coupled oscillators
and motoneurons, tuned to recreate gaits from data. These works model each leg of
the organism as a single oscillator, and do not include details on individual joints
of legs — however, they leverage data to produce realistic oscillatory trajectories.
Another approach is to focus on physical details: [101] and [102] introduce a
robotic platform, while [103] introduces a physics-engine based platform. [104]
uses a decentralized reactive controller to recreate hexapod gaits. These models are
also composed of tuned oscillators and controllers: the resultant walking behaviors,
though dynamically valid, deviate substantially from those of real organisms in
terms of joint kinematics. A third popular approach is to use data-free learning
and optimization to generate learning-type behaviors from scratch [105], [106].
These approaches produce walking with varying degrees of realism, but require
clever selection of objectives and constraints, and are computationally expensive —
these also do not consider physiological details (e.g. neuronal constraints) beyond
biomechanics.

In short, existing approaches typically lack at least one of the following: physiolog-
ical considerations, physical dynamics, or realistic behavior. We aim to address this
in this chapter. We use a layered model that produces realistic joint-level kinematics
and incorporates physiological motor delays. This end-to-end model that combines
features of many previous studies and models, including coupled oscillators, data-
driven neural networks, optimal controllers, and link-and-joint leg dynamics. The
dynamics are controlled by the optimal control layer, which receives proprioceptive
feedback and maintain realistic trajectories while rejecting external perturbations
and accommodating motor delay. Realistic joint trajectories are generated by a
neural network, which is trained on kinematic data collected from hundreds of bouts
of Drosophila walking [107]. The top-most layer consists of coupled oscillators,
which coordinate walking phases between legs.

A key feature of this model is its modularity: together, the layers of the model achieve
more than the sum of its parts. A particularly important piece is the combination of
the neural network and the optimal controller; a pure neural network is physiologi-
cally uninformative and does not generalize well with external perturbations, while a
pure optimal controller cannot produce realistic kinematics; however, the combina-
tion of the two produces realistic kinematics and is robust to external perturbations.
In other words, the incorporation of the optimal controller allows the data-driven

111

model to generalize to new scenarios as well as interface with physical dynamics.
Additionally, in our model, a novel controller formulation is used to incorporate
motor delays, which are key physiological factors in biological locomotion.

7.2 End-to-End Learning and Control Model
We propose an end-to-end model of Drosophila walking, from single leg joint
dynamics to inter-leg coordination. The efficacy of the model is demonstrated
by comparing model-generated simulations with real data. The model employs
three functional layers, which interface with a dynamics model, shown in Figure
7.1. The three layers are the optimal controller, the trajectory generator, and the
phase coordinator. Each individual leg is governed by its own dynamics, optimal
controller, and trajectory generator, while inter-leg coordination is accomplished by
the phase coordinator.

The use of this layered architecture allows us to unify different aspects of walking;
individual leg dynamics, individual leg kinematics, and inter-leg coupling. Each
layer provides an abstraction for the layer above it, such that the different aspects of
walking can be modularly integrated.

Dynamics and control
Leg dynamics for each leg are derived from ball-and-joint models. We begin with a
link-and-joint model of the fly leg, as depicted in Figure 7.1. For simplicity, we only
model joints that are crucial to natural leg movements during walking and turning.
For instance, varying femur rotation is important to the movements of the middle
legs, but the front legs exhibit near-constant femur rotation; thus, a femur rotation
joint is included for the middle and hind legs only. The joints included for each leg
is shown in Table 7.1.

Table 7.1: Joints included for leg models

Joint Front legs Middle legs Hind legs

Body-coxa flexion ✓
Coxa rotation ✓
Coxa-femur flexion ✓ ✓ ✓
Femur rotation ✓ ✓
Femur-tibia flexion ✓ ✓ ✓

We write the Denavit-Hartenberg (DH) table of the leg model, and use this to

112

m
u

sc
le

d

el
ay

s

Local
neurons

Muscles

p
ro

p
rio

cep
tive

feed
b

ack

Per-leg

Anatomy

L1

Brain
High-level commands

speed,
direction

Body-world
interaction

Ventral nerve cord
Inter-leg coordination

Legs

L2 L3 L4 L5 L6

A

Per-leg model: Layered computationDynamics model

C 𝜏 = 𝑀 𝜃 ሷ𝜃 + 𝐶 𝜃, ሶ𝜃 ሶ𝜃 + 𝐵 𝜃 ሶ𝜃 + 𝑔(𝜃)

leg

body-coxa
flexion coxa

rotation
coxa-femur

flexion
femur
rotation

femur-tibia
flexion

link-and-joint model

𝜏 vector of joint torques
𝜃 vector of joint angles
𝑔 gravitational vector

𝑀 inertia matrix
𝐶 Coriolis matrix
𝐵 friction matrix

Full model: Inter-leg coordination

L1

L2

L3

R1

R2

R3

Inputs: walking speed and directionB

external perturbations 𝑤

coordination
with other legs

phase 𝜙

Dynamics model
Joint angles and torques

state 𝜃, ሶ𝜃

state 𝜃, ሶ𝜃

joint torques 𝜏

muscle delays

n
o

 in
te

ra
ct

io
n

w
it

h
 o

th
er

 le
gs

desired phase 𝜙𝑑

desired

states 𝜃𝑑 , ሶ𝜃𝑑

D

sensor delays

Optimal controller
600-1200 Hz

Phase coordinator
Kuramoto oscillator

Trajectory generator
Learned from data, 300 Hz

Figure 7.1: Summary of layered locomotion model and relation to anatomy. (A)
Anatomy involved in walking. The brain sends high-level commands (e.g. walking
speed and direction) to the ventral nerve cord (VNC), which coordinates across
legs. Each leg’s neurons and muscles take inputs from the VNC and acts on
the environment; this body-world interaction and its effect for leg joints, joint
angular velocities, torques, etc. are reported back to local circuits on the leg via
proprioceptive feedback. (B) Full model: per-leg models are coupled through their
phase coordinators (blue ovals). (C) Per-leg dynamics model, derived from link-and-
joint models and Euler-Lagrange equations. (D) Layered per-leg model. Body-world
interactions are modeled through a dynamics model. We assume proprioceptive
feedback provides information on joint angles and angular velocities. Each leg
contains an optimal controller which interfaces with dynamics, and a trajectory
generator which generates realistic gaits. The trajectory generator interfaces with
the phase coordinator, a Kuramoto oscillator which induces inter-leg coupling. The
trajectory generator and optimal controller mimic local circuits and do not interact
with other legs.

113

systematically derive the Euler-Langrange matrix equations of motion

𝜏 = 𝑀 (𝜃) ¥𝜃 + 𝐶 (𝜃, ¤𝜃) ¤𝜃 + 𝐵(𝜃) ¤𝜃 + 𝑔(𝜃) (7.1)

where 𝜏 is the vector of joint torques; 𝜃, ¤𝜃, and ¥𝜃 are vectors of joint angles, angular
velocity, and angular acceleration; 𝑀 , 𝐶, 𝐵, are the inertia, Coriolis, and friction
matrices; and 𝑔 is the gravity vector.

We then define state 𝑞 =

[
𝑞1

𝑞2

]
=

[
𝜃

¤𝜃

]
and input 𝜏, and rearrange (7.1) into the form

¤𝑞 = 𝐹 (𝑞, 𝜏), i.e.[
¤𝑞1
¤𝑞2

]
=

[
𝑞2

−𝑀 (𝑞1)−1 (𝐶 (𝑞1, 𝑞2)𝑞2 + 𝐵(𝑞1)𝑞2 + 𝑔(𝑞1))

]
+

[
0

𝑀 (𝑞1)−1

]
𝜏 (7.2)

We then choose equilibrium values 𝑞 and 𝜏, such that 𝐹 (𝑞, 𝜏) = 0. 𝑞1 is chosen
based on the average joint angles for each leg, from the data. Then, 𝑞2 = 0 and
𝜏 = 𝑔(𝑞1) gives the desired equilibrium. We linearized about this equilibrium point,
which leads to the following equations

¤𝑥 = 𝐴𝑐𝑥 + 𝐵𝑐𝑢 (7.3)

where 𝐴 and 𝐵 are the Jacobians with respect to 𝑞 and 𝜏, respectively, i.e. 𝐴 =

𝜕𝐹
𝜕𝑞
(𝑞, 𝜏), 𝐵 = 𝜕𝐹

𝜕𝜏
(𝑞, 𝜏); and 𝑥 := 𝑞 − 𝑞 and 𝑢 := 𝜏 − 𝜏. In our code, we use the

SymPyBotics toolbox [108] to obtain symbolic equations for the quantities in (7.1),
then numerically compute Jacobian values.

Next, we discretize the system using some sampling interval 𝑇 , which is typically
chosen to be an integer multiple of sampling interval from the data (𝑇 = 1/300). In
our simulations, we use 𝑇 = 1/600. The discretized dynamics are written as

𝑥(𝑡 + 𝑇) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) (7.4)

where 𝐴 = 𝐼 + 𝐴𝑐𝑇 and 𝐵 = 𝐵𝑐𝑇 .

Finally, we perform a coordinate shift to error dynamics. This allows us to apply
standard control techniques for trajectory tracking. Define tracking error 𝑦 = 𝑞−𝑞𝑑 .
This error obeys the following dynamics

𝑦(𝑡 + 𝑇) = 𝐴𝑦(𝑡) + 𝐵𝑢(𝑡) + 𝑤(𝑡) + 𝑤𝑡𝑟𝑎 𝑗 (𝑡) (7.5a)

𝑤𝑡𝑟𝑎 𝑗 (𝑡) = 𝐴(𝑞𝑑 (𝑡) − 𝑞) + 𝑞 − 𝑞𝑑 (𝑡 + 1) (7.5b)

114

where 𝑤 is external perturbation, and 𝑤𝑡𝑟𝑎 𝑗 represents the effect of constantly
changing trajectories. Error 𝑦 is of size 𝑛𝑦 (8 for front legs, and 6 for the other legs),
and input 𝑢 is of size 𝑛𝑢 := 𝑛𝑦/2.

To include actuation and sensor delay, we make use of augmented state formulations
as introduced in Chapter VI. Let the actuation delay be 𝑑𝑎𝑐𝑡 steps, and let the sensor
delay be 𝑑𝑠𝑒𝑛𝑠𝑒 steps. Our augmented state vector 𝑧(𝑡) is written as

𝑧(𝑡) =



𝑦(𝑡)
𝑓 (𝑡)
𝑎(𝑡)
𝑠(𝑡)
𝑔(𝑡)


(7.6)

where 𝑦 is the error from (7.5); 𝑓 is size 𝑑𝑎𝑐𝑡 ∗ 𝑛𝑦, containing predicted future errors
up to 𝑑𝑎𝑐𝑡 time steps in the future; 𝑎 is size 𝑑𝑎𝑐𝑡 ∗ 𝑛𝑢, containing actuation signals
from up to 𝑑𝑎𝑐𝑡 steps ago; 𝑠 is size 𝑑𝑠𝑒𝑛𝑠𝑒 ∗ 𝑛𝑦, containing sensing signals from
up to 𝑑𝑠𝑒𝑛𝑠𝑒 steps ago; and 𝑔 is size 𝑑𝑎𝑐𝑡 ∗ 𝑛𝑦, containing information about future
trajectory effects 𝑤𝑡𝑟𝑎 𝑗 up to 𝑑𝑎𝑐𝑡 time steps in the future.

We write the overall system in the form of

𝑧(𝑡 + 1) = 𝐹𝑧(𝑡) + 𝐺𝑢(𝑡) + 𝑤𝑎𝑢𝑔 (𝑡) (7.7a)

𝑟 (𝑡) = 𝐻𝑧(𝑡) (7.7b)

where 𝐹,𝐺, and𝐻 are formulated using 𝐴 and 𝐵 according to techniques from Chap-
ter VI, and 𝑤𝑎𝑢𝑔 (𝑡) contains the perturbations from (7.5), appropriately rearranged
and zero-padded.

Note that 𝑢 represents the actuation signal, which must be delayed for some amount
of timesteps (via 𝑎) before affecting the system; similarly, the sensor signal is delayed
for several timesteps (via 𝑠) before reaching the controller via 𝑟.

To achieve effective trajectory tracking, we seek a control law under which 𝑦 remains
small. This can be achieved using the Linear Quadratic Gaussian controller, a
standard technique. The controller is governed by

𝑧̂(𝑡 + 1) = 𝐹𝑧̂(𝑡) + 𝐺𝑢(𝑡) + 𝐿 (𝑟 (𝑡) − 𝐻𝑧̂(𝑡)) (7.8a)

𝑢(𝑡) = 𝐾𝑧̂(𝑡) (7.8b)

115

where 𝑧̂ is the estimate of the state, estimated via a steady-state Kalman filter. 𝐿
and 𝐾 are the optimal observer and controller matrices, respectively, synthesized
via discrete algebraic Ricatti equations.

Overall, the dynamics equations relate the state (angle and angular velocity of each
joint) of the leg model with the actuation (muscle-generated torque on each joint).
At regular intervals, the controller receives a time series of desired state trajectories
from the trajectory generator layer. The controller then produces the necessary
torques to track (i.e. recreate) this trajectory. External perturbations, when present,
enter through the dynamics and affect the states; the controller then senses the state
and reacts to them accordingly.

We remark that the walking and perturbation-rejecting capabilities of the overall
model are not contingent upon any specific dynamics or controller formulation; any
controller that adequately tracks the trajectory generator will suffice.

Trajectory generator
The trajectory generator is a per-leg neural network, trained on biological data [107].
It takes the current leg phase, joint angles, and joint angular velocities as input, and
outputs the phase, joint angles and angular velocities for the next time step. It can
be recursively called to to generate a time series of phase, joint angles, and angular
velocities for each leg.

The trajectory generator periodically receives proprioceptive information from the
controller on the true state (joint angles and angular velocities) of the leg. It also
receives information on the desired phase from the phase coordinator. Using this
information, it generates the desired angle and angular velocity trajectories for some
future time interval, and sends this back to the controller; it also generates phase
values, which are sent to the phase coordinator.

In the absence of external perturbations, the trajectory generator generates realis-
tic walking; it is the key to the overall model’s biologically accurate kinematics.
When external perturbations are present, their effects are largely mitigated by the
controller layer; the trajectory generator itself generally receives low magnitudes of
perturbation, and maintains relatively accurate kinematics. We remark that all data
used to train the trajectory generator come from experimental conditions with no
external perturbations.

116

Phase coordinator
So far, we have described a per-leg dynamical model, per-leg controllers, and per-leg
neural networks. To coordinate the action of these six legs, we utilize a Kuramoto
oscillator as a phase coordinator. Given some walking speed and current leg phases
(produced by the trajectory generators), the phase coordinator produces the desired
leg phases as output. The desired leg phases are used by the trajectory generators
of each leg to produce future trajectories.

7.3 Realistic Model-Generated Walking
Various metrics and visualizations of simulated vs. real walking are shown in
Figure 7.2; these metrics are explained in the following subsections. All simulated
trajectories were produced with motor delays of 30 ms, which is consistent with
experimentally obtained values of motor delay [109]. Though our framework allows
the incorporation of sensory delays as well, we opt to focus on motor delay.

Example time series
We include example time series of simulated walking vs. real walking, as plots of
angles and angular velocities versus time for specific joints on a specific leg. This
is shown in Figure 7.2, panels A and C. Simulated values resemble real values; real
values are comparatively noisier, but the general pseudo-triangular shape, as well as
amplitude and frequency of angular oscillations, are similar. The purpose of these
visualizations is to demonstrate qualitative rather than quantitative resemblance
between simulated and real walking.

Angles and angular velocities versus phase
We compare simulated walking and real walking data by comparing the angles
and angular velocities of the two. The naive approach is to compare between time
series — this can be misleading, since even in data, the time series for two flies
walking in the same direction at the same speed may differ significantly due to
phase misalignment. The appropriate comparison is to compare angles and angular
velocities as functions of phase. Here, we make the distinction between generated
phase, the per-leg phases produced by the phase coordinator of the model, and
computed phase, which can be computed for each joint from time series data. For
real walking data, we do not have access to the generated phase; thus, comparisons
must be made between computed phases.

In panels B and D of Figure 7.2, we plot the angle and angular velocity vs. phase

117

for representative joints (e.g. femur-tibia flexion) for real vs. simulated walking
for single bouts, at varying forward-walking speeds (4 mm/s, 8 mm/s, 12 mm/s, 16
mm/s). The real and simulated data are highly similar.

The aggregate differences between simulated and real data over a range of forward-
walking, backward-walking, turning, and side-stepping speeds are shown in panel
E. The dotted line indicates average in-sample differences between different bouts
of real walking — we see that the average difference between the model and data is
comparable to the in-sample differences in the data itself. We note that the errors for
angular velocity are several orders of magnitude larger; this is partially an artefact
of the high sampling rate (300 Hz) used in data acquisition.

Phase coupling within and across legs
We are also interested in the difference between computed phases of joints within a
leg and across legs, shown in panels A and B of Figure 7.3, respectively. For phase
coupling within a leg, shown in panel A, we choose a representative joint for the
leg (denoted "target" on the image), and observe the coupling between this joint and
other joints on the leg. Peaks in coupling indicate synchronization: a single peak at
zero on the horizontal axis indicates that the two joint phases are coupled to match;
a single peak elsewhere indicates that the two joint phases are coupled with some
offset. A lack of peaks indicates that the two joints are very weakly or not coupled.
We see that in the real data, joints exhibit a mixture of strong and weak coupling,
which is largely replicated by the model.

For phase coupling across legs, shown in panel B, we represent each leg with the
phase of its representative joint, and compare the phases across legs. Once again,
peaks indicate strong coupling, while a lack of peaks indicates a lack of correlation.
Compared to intra-leg phase coupling, inter-leg phase coupling appears to have
smoother, more well-defined peaks.

7.4 Dynamic Perturbations and Motor Delay
We simulate the model with external dynamic perturbations, and assess the realism
of the resulting walking. We consider perturbations that mimic the effects of slippery
ground. When the tip of the leg reaches a local minimum (i.e. touches the ground),
we inject Gaussian noise into two joints: femur rotation and femur-tibia flexion.
We show time series and angle vs. phase data in Figure 7.4, and observe that
joint kinematics appear different, but still oscillatory during perturbations. After
perturbations cease, joint kinematics recover to pre-perturbation patterns. Thus, the

118

model is able to maintain walking-like behavior in the presence of perturbations,
and recovers after perturbations end.

The inclusion of delays in the model allows us to explore varying sensor and motor
delays and how this affects walking. Without external perturbations, the model
is able to produce realistic walking with arbitrary delays; the model can use the
trajectory generator to predict into the future and effectively compensate for delay
effects. However, the assumption of perfectly predictable, perturbation-free walking
is unrealistic; thus, we consider how motor delays affect walking in the presence of
slip-like perturbations.

First, we provide a new summary metric of walking, which will be handy to investi-
gate across varying values of delay and perturbation. For a given bout of walking, we
compute the likelihood of it occurring in nature (i.e. data). The process to compute
this is shown in Figure 7.4. First, a principle component analysis is computed on the
set of experiment data. A Gaussian kernel density estimator (KDE) is fitted to this
data. This KDE takes a bout as input, and gives the log probability density function
(LogPDF) as an output. This is a scalar value corresponding to likelihood, where
a near-zero value corresponds to normal walking (i.e. high likelihood of occurring
in nature), while a large negative value corresponds to very abnormal walking (i.e.
low likelihood of occurring in nature).

We consider both during-perturbation and post-perturbation walking for various
delay values and perturbation strengths, and visualize the results in Figure 7.5. We
see that for a given perturbation strength, the effect is much more pronounced for
higher sensor and motor delays. However, even for large perturbations, the model
mostly recovers after perturbations end. Additionally, as expected, the "normalness"
of walking increases with increased perturbation strength; however, once delay is
below a certain threshold, no noticeable difference in gaits is observed between
different perturbation strengths. For instance, during perturbations, a delay of less
than 30ms results in relatively normal walking (LogPDF greater than -20). After
perturbations, a delay of less than 40ms results in recovery to normal walking
(LogPDF of around zero).

7.5 Discussion and Interpretation of Results
Layered model produces robust walking and facilitates local control
One key finding of this model is that robust walking in the presence of external per-
turbations can organically result from a reflex-like controller layer in combination

119

with a trajectory generation layer that is pre-programmed for perturbation-free con-
ditions (i.e. trained on data from perturbation-free walking). The model maintains
robust walking in the presence of perturbations without requiring re-training. The
key enabler of robustness here is the reflex-like controller layer, which rejects per-
turbations while maintaining a walking gait. In nature, many external perturbations
are encountered during legged locomotion; this layered model suggests how robust
locomotion may be maintained using a reflex layer, requiring minimal adaptation
from non-reflex neurons.

The separation of functions between layers in this model also reinforce that loco-
motion can be produced by mostly local (i.e. per-leg) signals. In this model, the
only signals that need to be communicated between legs are signals about per-leg
phases; no information about individual joints needs to be included.

Fundamental constraints on motor delay
This model includes motor delays, which are ubiquitous in animal locomotion due to
the biophysics of muscles and neurons. Their values are governed by two opposing
design principles. Firstly, from an energy perspective, it is more expensive to
manufacture and maintain muscles and neurons with low delay [78] — thus, higher
delays are preferable. In contrast, from a performance perspective, delays result
in performance degradation and slower reactions, which may impede survival. As
seen in our simulations, increased delays lead to worse walking — thus, lower delays
are preferable. Our work reconciles these two design principles by showing that
evolution selects the maximum value of delay that will still preserve performance
(i.e. walking) under reasonable perturbations. In particular, our model predicts that
the maximum allowable motor delay is from 20-40ms, which coincides with known
values for Drosophila.

Motor delay necessitates compensatory prediction
This model uses a novel controller formulation from to include sensor and motor
delays using Linear Quadratic Gaussian techniques. During model development,
we discovered that for the task of tracking a reference trajectory, compensatory
prediction is necessary for good model performance in the presence of motor delays.
In all simulations, we allow the controller to use a prediction horizon that matches
the motor delay. For instance, if the motor delay is 10 timesteps, then the controller
has access to the planned trajectory (from the trajectory generator) up to 10 timesteps
into the future. A motor delay of 10 timesteps means that the current planned motor

120

action will not take effect until 10 timesteps in the future, so intuitively it makes
sense that we should know the planned trajectory at this point in the future. We also
experimented with altering the prediction horizon to be less than the muscle delay,
with catastrophic consequences — the model mostly produced only noise. Overall,
the model suggests that future predictions are crucial in compensating for motor
delays, an idea also proposed in [110].

General framework for models of animal locomotion

The general framework of a three-layer model for locomotion is applicable to any
multi-limbed organism for any modality (e.g. flying, swimming). The key ingredi-
ents required for this model are: (1) a functional inter-limb coordinator, (2) sufficient
data to train a trajectory-generator layer, and (3) a controller that adequately tracks
the trajectory for some dynamical model of the organism. The dynamical model may
be linearized (as is done in this paper) and controlled with a standard controller, or
nonlinear techniques such as feedback linearization may be employed. Overall, this
framework allows scientists and engineers to build upon existing models of inter-limb
coupling and take advantage of various emerging datasets on animal locomotion to
create more fully integrated models of locomotion for various organisms.

7.6 Conclusions and Future Work
We have proposed a layered model of Drosophila locomotion. The focus of this
model is to produce realistic behavior with reasonable physiological considerations,
i.e. link-and-joint dynamics, sensor and motor delays. In order to do so, we have
made a number of physiological simplifications. Though quantitative insights are
made in the study, numerical values may be sensitive to these simplifications. In
particular, ground contact interactions, muscle models, and proprioceptor models
are not explicitly included in the dynamics, though they are implicitly taken into
account by the trajectories learned by the neural network. The incorporation of
these additional features, as well as other biomechanical details, are the subject of
future work. We anticipate that the inclusion of proprioceptor models will make the
system slightly more difficult to control and therefore lower the allowable values of
delay; while the inclusion of muscle models and other biomechanical details will
make the system slightly easier to control and therefore increase the allowable values
of delay. The reasoning for the latter is that biomechanics (for instance, compliance
in the tarsus) are typically somewhat optimized for locomotion.

121

Another key simplification made by this model is the omission of dynamical cou-
pling. Currently, the legs are only coupled neurally, through the phase coordinator
— however, in real life, the legs are also dynamically coupled through the body and
its weight distribution upon the legs. This is also a feature we plan to incorporate
in future work, as we move toward a more biomechanically realistic model. One
avenue of planned investigation is integration with a physics-based model [103].
We anticipate that the inclusion of dynamical coupling may require some additional
coordination between the legs. Furthermore, the current controller uses a position-
based method, while the inclusion of dynamical coupling will necessitate a switch
to impedance-based methods.

This model also has potential applications for bio-mimetic robotic locomotion. In
the interests of parsimony, the current model includes a fairly basic dynamical
model consisting of linearized link and joints; however, we could also replace
this dynamical model with that of a hexapod robot, and recompute a controller
accordingly. Due to the modular nature of the model, other modules (trajectory
generator, inter-leg coordinator) could remain unchanged — and the resulting code
would, in theory, generate bio-mimetic gaits for some robot

122

120

130

140

150

1500

1000

500

0

500

2 0 2

2 0 2

2 0 2

2 0 2 2 0 2

2 0 2 2 0 2

F

femur
rotation

0

10

20

30

0

200

400

600

L2
 f

em
u

r
ro

ta
�

o
n

B

D

Example �me series

Average absolute differences between model and data

R
1

 f
em

u
r-
�

b
ia

 fl
ex

io
n

Angle and angular velocity vs. phase

0.25 s

1 8 0

2 1 0

1 8 0

2 1 0

1 8 0

2 1 0

an
gl

e
(d

eg
)

0.25 s

1 8 0

2 1 0

1 8 0

2 1 0

1 8 0

2 1 0

an
gl

e
(d

eg
)

C

E

an
gl

e
(d

eg
)

6 0

1 2 0

6 0

1 2 0

6 0

1 2 0

0.25 s

an
gl

e
(d

eg
)

6 0

1 2 0

6 0

1 2 0

6 0

1 2 0

0.25 s

A

real data from
walking fly

simulated
by model

1000

2 0 2

60

80

100

120

2 0 2 2 0 2 2 0 2

2 0 2

0

1000

2000

2 0 2 2 0 2 2 0 2

an
gl

e
(d

eg
)

phase (rad)phase (rad) phase (rad) phase (rad)

phase (rad)phase (rad)

body-coxa
flexion

coxa-femur
flexion

coxa
rota�on

femur
rota�on

joint

phase (rad) phase (rad)

an
gu

la
r

ve
lo

ci
ty

 (
d

eg
/s

)
an

gl
e

(d
eg

)
an

gu
la

r
ve

lo
ci

ty
 (

d
eg

/s
)

an
gl

e
d

iff
er

en
ce

 (
d

eg
)

an
gu

la
r

ve
lo

ci
ty

d

iff
er

en
ce

 (
d

eg
/s

)

forward speed
(mm/s)4 8 12 16

forward speed
(mm/s)4 8 12 16

2 0 2

femur-�bia
flexion

Figure 7.2: Comparison of walking behavior generated by the model (blue) vs.
walking behavior recorded from real flies (orange). (A) Example time-series of
femur-tibia flexion R1 for three different walking speeds. Real data exhibits slightly
more variability than model simulations. (B) Angle and angular velocity vs. com-
puted per-leg phase of femur-tibia flexion R1 for four different walking speeds. (C)
Example time-series of femur rotation for leg L2 for three different walking speeds.
(D) Angle and angular velocity vs. computed per-leg phase for femur rotation for
leg L2 for four different walking speeds. (E) Average differences between model
simulations and data. The dotted line indicates average in-sample differences be-
tween different bouts of real walking — we see that the average difference between
the model and data is comparable to the in-sample differences in the data itself.

123

L1

0.3

L2

0.3

L3

0.3

R1

0.3

R2

0.3

ππ π π π

R3

0.0

0.5

1.0

1.5

L1

0.0

0.5

1.0

1.5

L2

0.0

0.5

1.0

1.5

L3

0.0

0.5

1.0

1.5

R1

0.0

0.5

1.0

1.5

R2

2.5 0.0 2.5
0.0

0.5

1.0

1.5

R3

2.5 0.0 2.5 2.5 0.0 2.5 2.5 0.0 2.5

Phase difference rela�ve to target joint
Phase difference between legs

target
joint

target
joint

target
joint

target
joint

target
joint

target
joint

BA

body-coxa
flexion

coxa-femur
flexion

coxa
rota�on

femur
rota�on

femur-�bia
flexion

Phase coupling within a leg Phase coupling across legs

simulated
by model

real data from
walking fly

Figure 7.3: Phase coupling within and between legs. (A) Phase coupling within
each leg. For each leg, we compare phases between a representative joint for the
leg (denoted "target" on the image) and other joints on the leg. Peaks in coupling
indicate synchronization. The model exhibits slightly stronger coupling than data.
(B) Phase coupling across legs. We compare phases of representative joints across
legs. The model exhibits slightly weaker coupling than data.

124

R
1

 f
em

u
r-
�

b
ia

 fl
ex

io
n

Perturba�on: walking on slippery surface

Perturba�on: walking on slippery surface

Example �me series Angle vs. phase

an
gl

e
(d

eg
)

an
gl

e
(d

eg
)

L2
 f

em
u

r
ro

ta
�

o
n 125

150

125

150

2.5 0.0 2.5

125

150

2.5 0.0 2.5 2.5 0.0 2.5

an
gl

e
(d

eg
)

phase (rad)phase (rad)phase (rad)

phase (rad)phase (rad)phase (rad)

50

100

50

100

2.5 0.0 2.5

50

100

2.5 0.0 2.5 2.5 0.0 2.5

A

C

�me (s)

60

120

60

120

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

60

120

an
gl

e
(d

eg
)

120

180

120

180

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

120

180

�me (s)

before perturba�on during perturba�on a�er perturba�on

before perturba�on during perturba�on a�er perturba�on

an
gl

e
(d

eg
)

forward speed
mm/s 16128

forward speed
mm/s 16128

an
gl

e
(d

eg
)

an
gl

e
(d

eg
)

an
gl

e
(d

eg
)

B

D

during
perturba�on

before
perturba�on

a�er
perturba�on

simulated
by model

Figure 7.4: Model simulation behavior under perturbations corresponding to walk-
ing on a slippery surface. (A) Example time-series of femur-tibia flexion on leg R1
for three different walking speeds before, during, and after perturbation. The plot
is visibly different during perturbation, but recovers to normal levels after perturba-
tion. (B) Angle vs. phase plots for walking before, during, and after perturbation
for femur-tibia flexion on leg R1. The plots corresponding to "before" and "af-
ter" perturbations greatly resemble one another, suggesting that walking has largely
recovered. The plots corresponding to "during perturbations" exhibit a markedly
different shape. (C) Example time-series of femur rotation for leg L2 for three
different walking speeds before, during, and after perturbation. (D) Angle vs. phase
plots for walking before, during, and after perturbation for femur rotation on leg L2.
Similar observations from panel (B) apply.

125

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

17
.5

20
.0

0

10

20

30

40

50

60

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

17
.5

20
.0

40

35

30

25

20

15

10

5

0

perturba�on
before during

perturba�on
a�er

perturba�on perturba�on
before during

perturba�on
a�er

perturba�on

100

0

100

0

0

100

0

100

0

100

0

100

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

100

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

100

R
1

 f
em

u
r-
�

b
ia

 fl
ex

io
n

Example �me series

L2
 f

em
u

r
ro

ta
�

o
n

A forward speed
mm/s

forward speed
mm/s

delay
ms

20

40

60

0

5 20

an
gl

e
(d

eg
)

an
gl

e
(d

eg
)

an
gl

e
(d

eg
)

an
gl

e
(d

eg
)

�me (s) �me (s)

perturba�on
before during

perturba�on
a�er

perturba�on perturba�on
before during

perturba�on
a�er

perturba�on

0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0

B forward speed
mm/s

forward speed
mm/s

delay
ms

20

40

60

0

5 20

an
gl

e
(d

eg
)

an
gl

e
(d

eg
)

an
gl

e
(d

eg
)

an
gl

e
(d

eg
)

�me (s) �me (s)

Log-pdf differences

C

ac
tu

a�
o

n
 d

el
ay

 (
m

s)

perturba�on strength

during perturba�ons a�er perturba�ons

perturba�on strength

normal
walking

very
abnormal
walking

0

200

0

200

0

200

0

200

0

200

0

200

0

200

0

200

Figure 7.5: Model walking under various perturbations and motor delays. (A, B)
Example time-series of femur-tibia flexion on leg R1 and femur rotation on leg L2 for
various speeds and motor delays, with identical perturbation strength. (C) LogPDF
differences between perturbed and after-perturbation gaits and perturbation-free
walking. During perturbations, a delay of less than 30ms results in relatively
normal walking. After perturbations, a delay of less than 40ms results in recovery
to normal walking.

126

BIBLIOGRAPHY

[1] Y. S. Wang, N. Matni, and J. C. Doyle, “Separable and localized system-
level synthesis for large-scale systems,” IEEE Transactions on Automatic
Control, vol. 63, no. 12, pp. 4234–4249, 2018.

[2] Y.-S. Wang, N. Matni, and J. C. Doyle, “A system-level approach to con-
troller synthesis,” IEEE Transactions on Automatic Control, vol. 64, no. 10,
pp. 4079–4093, 2019.

[3] J. Anderson, J. C. Doyle, S. H. Low, and N. Matni, “System level synthesis,”
Annual Reviews in Control, vol. 47, pp. 364–393, 2019.

[4] N. Matni, Y. S. Wang, and J. Anderson, “Scalable system level synthesis for
virtually localizable systems,” in IEEE Conference on Decision and Control,
2017, pp. 3473–3480.

[5] I. R. Shafarevich and A. O. Remizov, Linear algebra and geometry. Springer
Science & Business Media, 2012.

[6] J. S. Li, SLS-MATLAB: Matlab Toolbox for System Level Synthesis, 2019.
[Online]. Available: https://github.com/sls-caltech/sls-code,

[7] M. A. Dahleh and M. H. Khammash, “Controller design for plants with
structured uncertainty,” Automatica, vol. 29, pp. 37–56, 1993.

[8] A. Packard and J. C. Doyle, “The complex structured singular value,” Auto-
matica, vol. 29, no. 1, pp. 71–109, 1993.

[9] K. Zhou and J. C. Doyle, Essentials of robust control. Prentice Hall New
Jersey, 1998.

[10] B. Bamieh, F. Paganini, and M. A. Dahleh, “Distributed control of spatially
invariant systems,” IEEE Transactions on Automatic Control, vol. 47, no. 7,
pp. 1091–1107, 2002.

[11] C. Lidstrom, R. Pates, and A. Rantzer, “H-infinity optimal distributed con-
trol in discrete time,” in IEEE Conference on Decision and Control, 2017,
pp. 3525–3530.

[12] N. Matni and A. A. Sarma, “Robust performance guarantees for system level
synthesis,” in IEEE American Control Conference, 2020, pp. 779–786.

[13] O. Kjellqvist and J. C. Doyle, “𝜈-analysis: A new notion of robustness
for large systems with structured uncertainties,” in IEEE Conference on
Decision and Control, 2022, pp. 2361–2366.

[14] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed op-
timization and statistical learning via the alternating direction method of
multipliers,” Foundations and Trends in Machine Learning, vol. 3, no. 1,
pp. 1–122, 2011.

127

[15] C. Amo Alonso and N. Matni, “Distributed and localized closed loop model
predictive control via system level synthesis,” in IEEE Conference on Deci-
sion and Control, 2020, pp. 5598–5605.

[16] A. Venkat, I. Hiskens, J. Rawlings, and S. Wright, “Distributed MPC strate-
gies with application to power system automatic generation control,” IEEE
Transactions Control Systems Technology, vol. 16, no. 6, pp. 1192–1206,
2008. doi: 10.1109/TCST.2008.919414.

[17] Y. Zheng, S. Li, and H. Qiu, “Networked coordination-based distributed
model predictive control for large-scale system,” IEEE Transactions on Con-
trol Systems Technology, vol. 21, no. 3, pp. 991–998, 2013. doi: 10.1109/
TCST.2012.2196280.

[18] P. Giselsson, M. D. Doan, T. Keviczky, B. D. Schutter, and A. Rantzer,
“Accelerated gradient methods and dual decomposition in distributed model
predictive control,” Automatica, vol. 49, no. 3, pp. 829–833, 2013. doi:
10.1016/j.automatica.2013.01.009.

[19] C. Conte, C. N. Jones, M. Morari, and M. N. Zeilinger, “Distributed syn-
thesis and stability of cooperative distributed model predictive control for
linear systems,” Automatica, vol. 69, pp. 117–125, 2016. doi: 10.1016/j.
automatica.2016.02.009.

[20] R. E. Jalal and B. P. Rasmussen, “Limited-Communication Distributed
Model Predictive Control for Coupled and Constrained Subsystems,” IEEE
Transactions on Control Systems Technology, vol. 25, no. 5, pp. 1807–1815,
2017. doi: 10.1109/TCST.2016.2615088.

[21] Z. Wang and C.-J. Ong, “Distributed MPC of constrained linear systems with
online decoupling of the terminal constraint,” in IEEE American Control
Conference, 2015, pp. 2942–2947. doi: 10.1109/ACC.2015.7171182.

[22] A. N. Venkat, J. B. Rawlings, and S. J. Wright, “Stability and optimality of
distributed model predictive control,” in IEEE Conference on Decision and
Control, 2005, pp. 6680–6685.

[23] Y. R. Sturz, E. L. Zhu, U. Rosolia, K. H. Johansson, and F. Borrelli, “Dis-
tributed learning model predictive control for linear systems,” in IEEE Con-
ference on Decision and Control, 2020, pp. 4366–4373. doi: 10.1109/
CDC42340.2020.9303820.

[24] G. Grimm, M. J. Messina, S. E. Tuna, and A. R. Teel, “Examples when
nonlinear model predictive control is nonrobust,” Automatica, vol. 40, no. 10,
pp. 1729–1738, 2004. doi: https://doi.org/10.1016/j.automatica.
2004.04.014.

[25] C. Conte, M. N. Zeilinger, M. Morari, and C. N. Jones, “Robust distributed
model predictive control of linear systems,” in IEEE European Control
Conference, 2013, pp. 2764–2769. doi: 10.23919/ECC.2013.6669745.

128

[26] A. Richards and J. P. How, “Robust distributed model predictive control,”
International Journal of Control, vol. 80, no. 9, pp. 1517–1531, 2007.

[27] C. Amo Alonso, J. S. Li, J. Anderson, and N. Matni, “Distributed and
Localized Model Predictive Control. Part I: Synthesis and Implementation,”
To appear in IEEE Transactions on Control of Network Systems, 2022. doi:
10.1109/TCNS.2022.3219770. [Online]. Available: http://arxiv.
org/abs/2110.07010,

[28] C. Amo Alonso, J. S. Li, J. Anderson, and N. Matni, “Distributed and
Localized Model Predictive Control. Part II: Theoretical Guarantees,” Sub-
mitted to IEEE Transactions on Control of Network Systems, 2022. [Online].
Available: http://arxiv.org/abs/2110.07010,

[29] A. Gasparri and A. Marino, “A distributed framework for kk-hop control
strategies in large-scale networks based on local interactions,” IEEE Trans-
actions on Automatic Control, vol. 65, no. 5, pp. 1825–1840, 2020. doi:
10.1109/TAC.2019.2926595.

[30] L. Ballotta and V. Gupta, “Faster consensus via sparser controller,” arXiv
preprint arXiv:2302.01021, 2023. doi: 10.48550/ARXIV.2302.01021.

[31] L. Ballotta, M. R. Jovanović, and L. Schenato, “Can decentralized control
outperform centralized? the role of communication latency,” IEEE Transac-
tions on Control of Network Systems, pp. 1–11, 2023. doi: 10.1109/TCNS.
2023.3237483.

[32] J. Jiao, H. L. Trentelman, and M. K. Camlibel, “Distributed linear quadratic
optimal control: Compute locally and act globally,” IEEE Control Systems
Letters, vol. 4, no. 1, pp. 67–72, 2020. doi: 10.1109/LCSYS.2019.
2922189.

[33] S. Shin, Y. Lin, G. Qu, A. Wierman, and M. Anitescu, “Near-optimal dis-
tributed linear-quadratic regulator for networked systems,” arXiv preprint
arXiv:2204.05551, 2022. doi: 10.48550/ARXIV.2204.05551.

[34] T. Summers and J. Ruths, “Performance bounds for optimal feedback control
in networks,” in IEEE American Control Conference, 2018, pp. 203–209.
doi: 10.23919/ACC.2018.8431774.

[35] H. K. Mousavi and N. Motee, “Explicit characterization of performance of
a class of networked linear control systems,” IEEE Transactions on Control
of Network Systems, vol. 7, no. 4, pp. 1688–1699, 2020. doi: 10.1109/
TCNS.2020.2995825.

[36] W. Tang and P. Daoutidis, “The role of community structures in sparse
feedback control,” in IEEE American Control Conference, 2018, pp. 1790–
1795. doi: 10.23919/ACC.2018.8431002.

129

[37] J. S. Baras and P. Hovareshti, “Effects of topology in networked systems:
Stochastic methods and small worlds,” in IEEE Conference on Decision and
Control, 2008, pp. 2973–2978. doi: 10.1109/CDC.2008.4738895.

[38] S. Lucia, M. Kögel, P. Zometa, D. Quevedo, and R. Findeisen, “Predictive
control in the era of networked control and communication - a perspective,”
IFAC-PapersOnLine, vol. 48, no. 23, pp. 322–331, 2015. doi: https://
doi.org/10.1016/j.ifacol.2015.11.302.

[39] A. Bemporad and D. Barcelli, “Decentralized model predictive control,” in
Networked Control Systems, A. Bemporad, M. Heemels, and M. Johansson,
Eds. London: Springer London, 2010, pp. 149–178. doi: 10.1007/978-
0-85729-033-5_5.

[40] J. S. Li, C. Amo Alonso, and J. C. Doyle, “Frontiers in Scalable Distributed
Control: SLS, MPC, and beyond,” in IEEE American Control Conference,
2021, pp. 2720–2725. doi: 10.23919/ACC50511.2021.9483130. [On-
line]. Available: https://arxiv.org/abs/2010.01292,

[41] H. Y. Cheung, T. C. Kwok, and L. C. Lau, “Fast matrix rank algorithms and
applications,” Journal of the ACM (JACM), vol. 60, no. 5, pp. 1–25, 2013.

[42] R. Scattolini, “Architectures for distributed and hierarchical model predic-
tive control - a review,” Journal of Process Control, vol. 19, no. 5, pp. 723–
731, 2009.

[43] J. Doyle, B. Francis, and A. Tannenbaum, Feedback control theory. Macmil-
lan, 1992.

[44] D. M. Wolpert, Z. Ghahramani, and M. I. Jordan, “An internal model for
sensorimotor integration,” Science, vol. 269, no. 5232, pp. 1880–1882, 1995.

[45] E. Todorov, “Optimality principles in sensorimotor control,” Nature Neuro-
science, vol. 7, no. 9, pp. 907–915, 2004.

[46] D. W. Franklin and D. M. Wolpert, “Computational mechanisms of senso-
rimotor control,” Neuron, vol. 72, no. 3, pp. 425–442, 2011.

[47] E. Zagha, “Shaping the cortical landscape: Functions and mechanisms of
top-down cortical feedback pathways,” Frontiers in Systems Neuroscience,
vol. 14, p. 33, 2020.

[48] Z. Li, Understanding vision: theory, models, and data. Oxford University
Press, USA, 2014.

[49] T. Gollisch and M. Meister, “Eye smarter than scientists believed: Neural
computations in circuits of the retina,” Neuron, vol. 65, no. 2, pp. 150–164,
2010.

[50] E. M. Callaway, “Feedforward, feedback and inhibitory connections in pri-
mate visual cortex,” Neural Networks, vol. 17, no. 5-6, pp. 625–632, 2004.

130

[51] A. Angelucci and J. Bullier, “Reaching beyond the classical receptive field
of v1 neurons: Horizontal or feedback axons?” Journal of Physiology Paris,
vol. 97, no. 2-3, pp. 141–154, 2003.

[52] Y. El-Shamayleh, R. D. Kumbhani, N. T. Dhruv, and J. A. Movshon, “Visual
response properties of v1 neurons projecting to v2 in macaque,” Journal of
Neuroscience, vol. 33, no. 42, pp. 16 594–16 605, 2013.

[53] D. J. Felleman and D. C. Van Essen, “Distributed hierarchical processing in
the primate cerebral cortex,” Cerebral Cortex, vol. 1, no. 1, pp. 1–47, 1991.

[54] L. Muckli and L. S. Petro, “Network interactions: Non-geniculate input to
v1,” Current Opinion in Neurobiology, vol. 23, no. 2, pp. 195–201, 2013.

[55] M. M. Churchland, J. P. Cunningham, M. T. Kaufman, et al., “Neural pop-
ulation dynamics during reaching,” Nature, vol. 487, no. 7405, pp. 51–56,
2012.

[56] F. R. Willett, D. R. Deo, D. T. Avansino, et al., “Hand knob area of premotor
cortex represents the whole body in a compositional way,” Cell, vol. 181,
no. 2, 396–409.e26, 2020.

[57] S. D. Stavisky, F. R. Willett, G. H. Wilson, et al., “Neural ensemble dynamics
in dorsal motor cortex during speech in people with paralysis,” eLife, vol. 8,
2019.

[58] C. Stringer, M. Pachitariu, N. Steinmetz, C. B. Reddy, M. Carandini, and
K. D. Harris, “Spontaneous behaviors drive multidimensional, brainwide
activity,” Science, vol. 364, 2019.

[59] S. Musall, M. T. Kaufman, A. L. Juavinett, S. Gluf, and A. K. Churchland,
“Single-trial neural dynamics are dominated by richly varied movements,”
Nature Neuroscience, vol. 22, no. 10, pp. 1677–1686, 2019.

[60] S. Ebrahimi, J. Lecoq, O. Rumyantsev, et al., “Emergent reliability in sensory
cortical coding and inter-area communication,” Nature, vol. 605, pp. 713–
721, 2022.

[61] R. P. N. Rao and D. H. Ballard, “Predictive coding in the visual cortex:
A functional interpretation of some extra-classical receptive-field effects,”
Nature Neuroscience, vol. 2, no. 1, pp. 79–87, 1999.

[62] G. B. Keller and T. D. Mrsic-Flogel, “Predictive processing: A canonical
cortical computation,” Neuron, vol. 100, no. 2, pp. 424–435, 2018.

[63] S. Vyas, M. D. Golub, D. Sussillo, and K. V. Shenoy, “Computation through
neural population dynamics,” Annual Review of Neuroscience, vol. 43, no. 1,
pp. 249–275, 2020.

131

[64] K. Kar, J. Kubilius, K. Schmidt, E. B. Issa, and J. J. DiCarlo, “Evidence that
recurrent circuits are critical to the ventral stream’s execution of core object
recognition behavior,” Nature Neuroscience, vol. 22, no. 6, pp. 974–983,
2019.

[65] A. M. Bastos, W. M. Usrey, R. A. Adams, G. R. Mangun, P. Fries, and K. J.
Friston, “Canonical microcircuits for predictive coding,” Neuron, vol. 76,
no. 4, pp. 695–711, 2012.

[66] E. Libby, T. J. Perkins, and P. S. Swain, “Noisy information processing
through transcriptional regulation,” Proceedings of the National Academy
of Sciences, vol. 104, no. 17, pp. 7151–7156, 2007.

[67] Y. Nakahira, Q. Liu, T. J. Sejnowski, and J. C. Doyle, “Diversity-enabled
sweet spots in layered architectures and speed–accuracy trade-offs in sen-
sorimotor control,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 118, no. 22, pp. 1–11, 2021.

[68] A. A. Sarma, J. S. Li, J. Stenberg, G. Card, E. S. Heckscher, N. Kasthuri,
T. Sejnowski, and J. C. Doyle, “Internal Feedback in Biological Control:
Architectures and Examples,” in IEEE American Control Conference, 2022,
pp. 456–461. doi: 10.23919/ACC53348.2022.9867859. [Online]. Avail-
able: http://arxiv.org/abs/2110.05029,

[69] J. Stenberg, J. S. Li, A. A. Sarma, and J. C. Doyle, “Internal Feedback in Bio-
logical Control: Diversity, Delays, and Standard Theory,” in IEEE American
Control Conference, 2022, pp. 462–467. doi: 10.23919/ACC53348.2022.
9867794. [Online]. Available: http://arxiv.org/abs/2109.11752,

[70] J. S. Li, “Internal Feedback in Biological Control: Locality and System
Level Synthesis,” in IEEE American Control Conference, 2022, pp. 474–
479. doi: 10.23919/ACC53348.2022.9867769. [Online]. Available:
http://arxiv.org/abs/2109.11757,

[71] J. Anderson and N. Matni, “Structured state space realizations for sls dis-
tributed controllers,” in IEEE Allerton Conference on Communication, Con-
trol, and Computing, 2017, pp. 982–987.

[72] S.-H. Tseng and J. S. Li, SLSpy: Python-Based System-Level Controller
Synthesis Framework, 2020. [Online]. Available: http://arxiv.org/
abs/2004.12565,

[73] A. A. Sarma and J. C. Doyle, “Flexibility and cost-dependence in quantized
control,” in IEEE American Control Conference, 2019, pp. 2972–2977.

[74] P. S. Churchland, V. S. Ramachandran, and T. J. Sejnowski, “A critique of
pure vision,” in Large-Scale Neuronal Theories of the Brain, MIT Press,
1994, pp. 23–60.

132

[75] M. Leinweber, D. R. Ward, J. M. Sobczak, A. Attinger, and G. B. Keller, “A
sensorimotor circuit in mouse cortex for visual flow predictions,” Neuron,
vol. 95, no. 6, 1420–1432.e5, 2017.

[76] E. V. Holst and M. H., “An internal model for sensorimotor integration,”
Naturwissenschaften, vol. 37, pp. 464–467, 1950.

[77] C. C. Bell, V. Han, and N. B. Sawtell, “Cerebellum-like structures and
their implications for cerebellar function,” Annual Review of Neuroscience,
vol. 31, no. 1, pp. 1–24, 2008.

[78] P. Sterling and S. B. Laughlin, Principles of neural design. MIT Press, 2015.

[79] M. S. Livingstone, “Mechanisms of direction selectivity in macaque v1,”
Neuron, vol. 20, no. 3, pp. 509–526, 1998.

[80] V. Chan-Palay, S. L. Palay, and S. M. Billings-Gagliardi, “Meynert cells in
the primate visual cortex,” Journal of Neurocytology, vol. 3, no. 5, pp. 631–
658, 1974.

[81] E. E. Fetz, “Functional organization of motor and sensory cortex: Sym-
metries and parallels,” in Dynamic Aspects Of Neocortical Function, John
Wiley, 1984, pp. 453–474.

[82] J. Allman, N. Tetreault, A. Hakeem, et al., “The von economo neurons in
frontoinsular and anterior cingulate cortex in great apes and humans,” Brain
Structure and Function, vol. 214, pp. 495–517, 2010.

[83] S. G. Lisberger, “Visual guidance of smooth-pursuit eye movements: Sen-
sation, action, and what happens in between,” Neuron, vol. 66, pp. 477–491,
2010.

[84] C. E. Warner, Y. Goldshmit, and J. A. Bourne, “Retinal afferents synapse
with relay cells targeting the middle temporal area in the pulvinar and lateral
geniculate nuclei,” Frontiers in Neuroanatomy, vol. 4, p. 8, 2010.

[85] D. H. Hubel and T. N. Wiesel, “Receptive fields of single neurones in the
cat’s striate cortex,” The Journal of Physiology, vol. 148, no. 3, pp. 574–591,
1959.

[86] J. Reynolds, T. Pasternak, and R. Desimone, “Attention increases sensitivity
of v4 neurons,” Neuron, vol. 26, pp. 703–714, 2000.

[87] M. W. Self, R. N. Kooĳmans, H. Supèr, V. A. Lamme, and P. R. Roelfsema,
“Different glutamate receptors convey feedforward and recurrent processing
in macaque v1,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 109, no. 27, pp. 11 031–11 036, 2012.

[88] J. Anderson and K. Martin, “Interareal connections of the macaque cortex:
How neocortex talks to itself,” in Axons and brain architecture, Elsevier,
2016, pp. 117–134.

133

[89] D. Attwell and A. Gibb, “Neuroenergetics and the kinetic design of excitatory
synapses,” Nature Reviews Neuroscience, vol. 6, no. 11, pp. 841–849, 2005.

[90] F. C. Widmer, S. M. O’Toole, and G. B. Keller, “Nmda receptors in visual
cortex are necessary for normal visuomotor integration and skill learning,”
eLife, vol. 11, e71476, 2020.

[91] K. C. Ames and M. M. Churchland, “Motor cortex signals for each arm are
mixed across hemispheres and neurons yet partitioned within the population
response,” eLife, vol. 8, 2019.

[92] E. Gordon, R. Chauvin, and A. e. a. Van, “A somato-cognitive action network
alternates with effector regions in motor cortex,” Nature, vol. 617, no. 1,
pp. 351–359, 2023.

[93] F. Li and J. Z. Tsien, “Memory and the nmda receptors,” The New England
Journal of Medicine, vol. 361, no. 3, p. 302, 2009.

[94] P. Holmes, R. J. Full, D. Koditschek, and J. Guckenheimer, “The dynamics
of legged locomotion: Models, analyses, and challenges,” SIAM Review,
vol. 48, no. 2, pp. 207–304, 2006. doi: 10.1137/S0036144504445133.

[95] B. D. Deangelis, J. A. Zavatone-Veth, and D. A. Clark, “The manifold
structure of limb coordination in walking drosophila,” eLife, vol. 8, pp. 1–
33, 2019. doi: 10.7554/eLife.46409.

[96] A. I. Goncalves, J. A. Zavatone-Veth, M. R. Carey, and D. A. Clark, “Parallel
locomotor control strategies in mice and flies,” Current Opinion in Neuro-
biology, vol. 73, p. 102 516, 2022. doi: 10.1016/j.conb.2022.01.001.

[97] I. D. Neveln, A. Tirumalai, and S. Sponberg, “Information-based centraliza-
tion of locomotion in animals and robots,” Nature Communications, vol. 10,
no. 1, pp. 1–11, 2019. doi: 10.1038/s41467-019-11613-y.

[98] J. Nishii, “Legged insects select the optimal locomotor pattern based on the
energetic cost,” Biological Cybernetics, vol. 83, no. 5, pp. 435–442, 2000.
doi: 10.1007/s004220000175.

[99] J. L. Proctor and P. Holmes, “The effects of feedback on stability and maneu-
verability of a phase-reduced model for cockroach locomotion,” Biological
Cybernetics, vol. 112, no. 4, pp. 387–401, 2018. doi: 10.1007/s00422-
018-0762-1.

[100] E. Couzin-Fuchs, T. Kiemel, O. Gal, A. Ayali, and P. Holmes, “Intersegmen-
tal coupling and recovery from perturbations in freely running cockroaches,”
Journal of Experimental Biology, vol. 218, no. 2, pp. 285–297, 2015. doi:
10.1242/jeb.112805.

[101] C. Goldsmith, N. Szczecinski, and R. Quinn, “Drosophibot: A fruit fly
inspired bio-robot,” pp. 146–157, 2019. doi: 10.1007/978- 3- 030-
24741-6_13.

134

[102] C. A. Goldsmith, N. S. Szczecinski, and R. D. Quinn, “Neurodynamic mod-
eling of the fruit fly drosophila melanogaster,” Bioinspiration and Biomimet-
ics, vol. 15, no. 6, 2020. doi: 10.1088/1748-3190/ab9e52.

[103] V. Lobato-Rios, S. T. Ramalingasetty, P. G. Ozdil, J. Arreguit, A. J. Ijspeert,
and P. Ramdya, “Neuromechfly, a neuromechanical model of adult drosophila
melanogaster,” Nature Methods, vol. 19, no. 5, pp. 620–627, 2022. doi:
10.1038/s41592-022-01466-7.

[104] M. Schilling, T. Hoinville, J. Schmitz, and H. Cruse, “Walknet, a bio-inspired
controller for hexapod walking,” eng, Biological Cybernetics, vol. 107, no. 4,
pp. 397–419, Aug. 2013. doi: 10.1007/s00422-013-0563-5.

[105] T. Geĳtenbeek, M. Van De Panne, and A. F. Van Der Stappen, “Flexi-
ble muscle-based locomotion for bipedal creatures,” ACM Transactions on
Graphics (TOG), vol. 32, no. 6, pp. 1–11, 2013.

[106] N. Heess, D. TB, S. Sriram, et al., “Emergence of locomotion behaviours in
rich environments,” arXiv preprint arXiv:1707.02286, 2017.

[107] P. Karashchuk, K. L. Rupp, E. S. Dickinson, et al., “Anipose: A toolkit
for robust markerless 3d pose estimation,” Cell reports, vol. 36, no. 13,
p. 109 730, 2021.

[108] C. D. Sousa, Sympybotics v1.0, 2013. [Online]. Available: https : / /
github.com/cdsousa/SymPyBotics.

[109] A. W. Azevedo, E. S. Dickinson, P. Gurung, L. Venkatasubramanian, R. S.
Mann, and J. C. Tuthill, “A size principle for recruitment of drosophila leg
motor neurons,” Elife, vol. 9, e56754, 2020.

[110] L. U. Perrinet, R. A. Adams, and K. J. Friston, “Active inference, eye move-
ments and oculomotor delays,” Biological cybernetics, vol. 108, pp. 777–
801, 2014.

