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Introduction

During the past five years the study of linear
topological spaces, those non-metrisable spaces intermediate
between the pure spaces of ensemble topology and the normed
spaces of General Analysis, has received much attention,
particularly under the hands of the Russian and Polish schools
headed by Kolmogoroff and Tychonoff. Interest in the slightly
weaker spaces of topological group type has also been greatly
stimulated by the search for strong purely topological foun-
dations of group theory by Schreler, von Dantzig and others,
and for an abstract formulation of continuous group theory as

in the work of Michal and Elconin.

Because of the implied necessity of theories in the
large for situations such as these, 1t was felt desirable to
determine what analytic entities could be defined, while pre-
serving as large a portion of the usual properties as possible,
directly for the base spaces, without the rigid local inter-

mediary of the norm.

I should like to express here my appreciation of the
sustained assistance and advice of Professor A.D.Michal in the

development of this thesis.
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Resume

Part 1 of this thesis is devoted to a general study
of topological and geometrical properties of a linear space
gsubjected to a topology of neighborhood type. Some new results

on questions of boundedness and compactness are given.

Part 2 contains essentially work done in collabora-
tion with Professor A.D.Michal during 1935 and 1936. It defines
differentials of extended Fréchet and Gateaux type as well as
derivatives for functions on the real numbers. Elementary

properties are considered.

Parts 3 and 4 develop the theory of integrals of
Riemann type, examine the relations to the derivative, and in
particular verify the existence of the unique primitive

solution of the differential equation 0{3 ldu = t(e\) , & real.

Part 5 furnishes two types of existence theorem
technique for the ordinary linear equation A; [dp = gft‘-,13

in the linear topological space.

Various examples are considered in an appendix.
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Symbols ¢ Those not enlarged upon in the text.

*54.F S EREE abstract elements, points
od, P d e, real numbers
A,B P S sets.of points

A o B the set A contains the set ©

B c A the set B is contained in the set A
K P the element J is a member of the set P
+ € S T 1s not a member of the set S

o the null class, zero element, zero
() a set consisting of one element, P
AnbD intersection of A and B
T : ] _ ) logical product

® s ( , 5 ) logical sum

%.* } a set of which X is a typical member
fxnt , 5 P { sequences

. s loglical implication
Wl Banach norm

~ corresponds to ; is assocliated with

Numbers in square brackets refer to references listed in

the bibliography.



Part 1
$ 1.1

Let L. denote any ensemble of elements (points) of com-—
pletely unspecified nature, forming under the undefined operations
of 'addition' of elements, and 'multiplication' of elements by
real numbers, a real linear space. The following postulates are
to be fulfilled, with.ﬁ,‘s e L ,o any real number implying olf "
)g+3 € L
1.1.1 {+3 = 3*73, TuleBe (ol+;3>§=di+f3'€
LeleDe (-€+33+fu = €+(§+f‘-) 1.1.6. «(f+ )= °<£+°(3
1.1.5. vt =1 117, f+ho= g+
1.1.4. o (BL) = CdﬁD'é implies { =9 -
The rules of computation for o and-—ﬁ are readily deduced. In
particular, o.ﬁ is independent of t and hence may be named o ( € L)

uniquely. Cf. [2] pp 95-97.

Applying the same symbols of operation to sets C L,
the following definitions are unambiguous ( ﬁ1>1 €L - S)'F C L;
o, > real) :

Definition l.1.1. o« S is the set of all o ﬁ : ﬁ e S .

Definition 1.1.2. S + T 1is the set of all ﬁ-+ R E & 5J 3 €T,

Lemma 1.1.1. o((s.,.-r)-.-,(S—e-dT'; L (PS) = (o(p)55
S+T =T+S | (S+T)+R = S+(T+R);o(3+;35:(e/+;3355

(S+T)F T > 95 . The last two inclusions are, in general, proper.
Proof. Immediate by definition.
N.B. S—=95 = 0 | (o)
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A topological ordering essentially of non-metric neigh-
borhood type, is introduced in L. through the following postulates
wherein 'set' of the kind qualified below is the undefined notion.
Because of the uniformity of the support space, only the situation
at the origin need be considered. Let a set U of 'sets' U € L

be given such that :

1.2.1. V€U implies there exists Ve W, V+V ¢ U

1.2.2. U,V ¢ . imply there exists We W L, W ¢ UNnV.

1.2.3, Ve ,—1 £ o £+ imply there exists Ve I , «Vc U,
1.2.4. There is a sequence j VU, I € such that I;[ U, = (o).
1.2.5. iél— ,U €. imply there exists « , z e « U.

1.2.6. o F ODVE'Z/L imply there existes U € 7L , «V = U.
1.2.7. U,V ¢ U imply there exists W & U | U+V =W,

Remarks : By l.2.4, 7. is non~vacuous. By 1.2.5, no U (€ U ) = (o).
Ry 1.2.3, 0.Vc U. Hence U € . implies o0 € .

The first five of these postulates are those given by v.Neumann,

[1] p 4. His space convexity postulate U+Uc 2|/is omitted.

Various non-metric consistency and independence examples will be

considered in the appendix.

We rephrase some fundamental set theoretic and topolog-—

ical definitions in terms of this topology.

Definition 1.2.1. The interior 5} of a set S ¢ L is the set of

allie S for which a U€ U exists with I’q— Uecs.
of. 11] p Be
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Definition 1.2.2. Given ScL . A point P (€ S necessarily)

ig a limit point of S, if for everyUeél , there exists a

§€S, QF o » such that ¢ € + U,

The definitions of derived set, closure, and complement

are quite as usual. Cf. e.g. [3].

Definition 1.2.3. The frontier set of S ¢ L is given by

F(S)=S N C(S), where S 1is the closure of S and C(S)
is the complement of S in L. .

Definition 1.2.4, $.=D( S, F(S)) whereD indicates the

logical difference.
This 1s quite equivalent to Def.l.2.1.
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We indicate some topologies equivalent to (ZL), in the
sense of Hausdorff. Cf. [4] p 3l.

Theorem l.3.1. The following are equivalent topologies for L :

(o) (U4.) , original fundamental sets ;

(B) (U;), the interiors of the U s )
(q) Co(u_‘.) , the interiors of the sets a/U,—Isdé. +1  Uell .
Proof. Ad (d)=(p): U c U ([1] p 5) ; there exists V < U;

by Def.1.2.1 and 0 elU.. Ad (B)= (4): By Post.1l.2.3, there exists

V,dVeclU B -1z +1 dvb.cu[ ([1] p 6). Also

]
oV: > V; by definition of ¢V .

(‘bl.") describes a regular Hausdorff topology ([1] p 6 ).

Remark : Topological properties remain invariant under a change

to an equivalent neighborhood system.

Definition 1.3.1. ScL is open if $= S, ; S is closed if rL% )
is open. Sy, = C(cC(s). ).

TLemma le3.l. SL is the greatest open set C & 5 5(;2_ ig the smallest

closed set > S . Cf. [1] p 6.

Theorem 1l.3%.2. Through Def.l.3.1, (it )generates a topological

space in the sense of Kuratowski, [9] p 15, using closed hulls
as the primitive topologicallordering.

Proof. Take §¥=Sclo Use Theorem 1.3.1 ( @), v.Neumann's
Theorem 6, [1] p 6, and the general equivalence theorem of

Alexandroff and Hopf, [4] p 43.
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This section is concerned with boundedness, a notion
permitted to L because of its linearity. The definitions given

coincide with the usual ideas for a metric topology.

Definition 1.4.1.1. Scl is bounded if for each UéTL, there is

determined a real d:d(UJQ, sueh that S c « U.

( v.Neumann, [1] p 7)

Definition 1.4.1.2. SclL is bounded if for every X € S, there is

determined a real A=A(x,5) such that > X implies xx € S.
( Michal and Paxson, [14])

Definition 1.4.1.3. SclL is bounded if for every sequence f ¥, f € 5)
and every real sequence jd,, f such thatd-—>owith m, o, X, —> O
with rv\—l , under the assigned topology.

( XKolmogoroff, [5] p 30)

Definition 1.4.2. {x,tcL is convergent to X , l.e. X — X ,

if for every Ue U ,m 2Zm (U)implies X, € X+ Ll

Theorem l.4.1. If Xx,~> X, then X is unique.

Proof. For suppose XM-> x*,x*#:x . Then U arbitrary EV.’ ™M Z/V‘, (V)
implies X —% € v, mzml(u)implies x*é v . Put

, = MAX (m”m,.);X-—x* e U-U = o0 (Lemma 1.1.1). By
Post.1.2.3, there exists U ,*UcV, V now arbitrary.

x—x*¥ € V4+V ¢ W |, W now arbitrary by Post.l.2.1. Put

W= U, in Post.l.2.4, and x —x¥ can only be o, for the

contradiction.



Theorem 1.4.2. Definitions l.4.1.1, 1.4.1.2, 1.4.1.3 are

completely equivalent.

Proof. Ad (l.4.1.1).D.(1l.4.1.2) : Let S ,0€S, be bounded
(1.4.1.1). Suppose there exists X, &S such that 4.u.T. A (AX, € s)
does not exist finitely. Then /\xaeo(U , unbounded A 5

finite « , every Ué¢7. . Contradiction of Post.l.2.4.

Ad (1.4.1.2).D. (1.4.1.1) : Let S ,06S be bounded (1.4.1.2).
Then for every xoeS, there 1s determined J(xo,s)such that

%o (r>8) € O TakeSXOGS( we may always take S , for

if S 1s bounded so also is S;). Consider the set of such § |,
A(S). By Post.1.2.5,8x, exl/, By Post.1.2.3, pVc U .

Hence o V C &V —o £9 <+« , That is, given any U , a
centered convex set (c¢f. Def.l.6.2) as large as desired may be
constructed for « U , by taking o« as large as necessary. Consider
the sheaf of line segments through the O —element. The class of
$%s terminate these finitely in S by hypothesis. By isomorphic
mapping, derive a set of « , denoted by A, so that «~ & ,r
A~A. Take £.u.t-, A =u*ecA . Then ScaU. y
Ad (le4.1.1).2-(le4.7.3) : Let S ,06ScL be bounded (l.4.1.1).
Let {«,fbe any real null sequence, and {X,{any sequence < S
Let U be arbitrary € U . Let AVc U for —1£A< | by Post.l.2.3.
For all m , X,, € S c o« (5 V),V , by hypothesis. This is a

uniform condition, « not depending on m . Hence ¢, X, € o o V.

Since « is finite and «

', 0, for some m (el )y m = m, implies

oo =Y, )
¢ alsl. mzm @2 mxmcU
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A4 (le84.1¢3).2.{1e4:1.1) : Let S o€ S <Ll be bounded (1.4.1.3).
Then if X be arbitrary € S , and f«, { any real null sequence, V& ZL
such that AV c U (arbitrary) for —1 S A< |, we have o, X € V AV,
If (510 be any line through the origin, there exists a finite —@_
such that § > @ implies 5P €S . For choosing o€ S , € some Wé%_]
we would have, supposing the contrary, some sequence [o/m_'/ﬁf < S
such that)‘the hypothesis would be contradicted, since 7a ?L_W &
{d’";} is some null subsequence of some null sequence j &, §
Hence (1.4.1.3).2.(1.4.1.2), completing the discussion.

D.H.Hyers [6] has shown independently that (l.4.1.3)
and (l.4.1.1) are equivalent definitions.

Temma l.4.1. | is a Hausdorff group under ‘addition’'.

Proof. We use the equivalent topology (Zl.")of Theorem 1. 3.1,
which is a regular Hausdorff topology after [1], Theorem 6.
We must show [7] first that given a+ T+ U; there exist \/
and W, such that a+V,+ T +W;, c a+T + U; . This 1s clear
after Post.1.2.1, with V.+V. ¢ U; . And second that given a + U;
there exists —a+V, such that — C—a + V. J c a+ U;

This follows from Post.l.2.3.

Theorem l.4.3. If one U€eU is bounded, then L. is homeomorphic

with a metric space, i.e. 1t 1g metrisible.

Proof. Taking account of Lemma l.4.1, after a theorem of Birk-
hoff [7], we have only to show that the first Hausdorff count-
ability axiom, [2] p 227, is verified at the origin, L being
linear. Let U*éZLbe the bounded set of the hypothesis. By
Post.1.2.3, e V* ¢ U* g =i <« £ + | . Then o(li,*is

clearly bounded also.



By Theorem 1l.3.1,(«U-)is a topology equivalent to (ZL).
Hence we may verify the countability axiom for it. Let {&m}
be a real sequence satisfying u,—>o with m—land Yo > et 2 9 -
Then the sequence of sets fu,, « \/L—*fis monotonic decreasing.

Now we have only to show that given any open set 5‘J pesScl 3
7)L
for some m_, f+,, o« V. C S . By Def.1.3.1, /& 7L exists
(]

such that Uc S . Let We V1 U by Post.1.2.2. Let
=g.4.%. A  Axew, x ¢ Flaev*))
:3,( '0" /\ (/{ XG[LMO/\/*yng:(o(\/#’))

By boundedness A —> 0 with m~!. Hence for some Mgy o

7\'m</\.ThusforsomeV «VecW, —1 £«&2+1;

[]
é&mx\/*ce(\/cv\/cUC.S
completing the proof.

§>—! >

Remark : It will be shown in the appendix that Hilbert space
weakly topologised, which 1s an instance of the postulates,

possesses no bounded@ neighborhood.

Definition 1.4.3. A function to L is bounded if its set of

values lies in a bounded set.

Theorem 1l.4.4. IfM,, /Vly~ are bounded, and « 18 any real number

and @ 1s such that —/< @8 < | , then L (M, M )

S(Mi, M) s DM, M) MiEMy 5 «M, ; 38 M

b | o
are all bounded sets.

Proof. Clear. Contradicting Def.l.4.1.3 contradicts the bounded—

ness of either M, or M.,



§ 1.5

This section considers various aspects of continuity.
Definitions may be phrased as desired in terms of open sets
because of the v.Neumann result that (%) déscribes a regular

Hausdorff topology.

Definition 1.5.1. A function t(x)on L. to L will be called contin-

uous at x=X, if any open set S 5 0€S , determines some open set

T ,0€T, such that x € x,+ T implies {(x) & £(x,) +S.

Continuity of a function of several variables in the set

is written in an obvious fashion.

Definition 1.5.2. A function ,gfd)on (g #)to L. will be called
*

continuous at od=«” if any open set S ,0€ Scl, determines a
real open interval L(S),0€6I, such that « € L ((ob,o,) 5 ¥4 T)

implies (fc'*) € ,gfo(*) + S.

Definition 1.5.3. A function f@)on (<« )to L will be called

uniformly continuous on(«,,«,)1f, given any open set S, 0 € S c L7
there is determined an open real Interval I(s), oel , the

same for all o € (o, o, ), such that € I and o« +p € Colo, o, )
imply ﬁ(d-;—t«) € ()’(d) + S.

Definition 1.5.4. If ((o()is continuous at every point of (¥, «,)

it 1s said to be continuous on («,,,).

Theorem 1l.5.1. If f(o() on the closed real interval Edo,a(,jto L

is continuous on [« «,] , then «f("” is uniformly continuous

Proof. A set of open intervals covering Ee(o,ot,] is the set of

I’ , I(S) «¥) , of the continuity hypothesis.
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Thus the Heine—Borel theorem may be applied glving a finite
set G of closed intervals J (o )such that

T(*) ¢ «® + T (5 «%).
That 1s, « € T (/) implies [ex) & J(&F) + 5
Let 3-1.‘(:-. G = Jg o Let A, A €L[4,% ] be any two numbers
satisfying A € A +Jg . Then A, A lie in (a) the same or
(b) adjacent intervals. Suppose (b) : let A, be the common
end point. Then there ape determined B , PZ » one in each

interval such that
L(x) e f((sl) + S

ﬁ(?\')e‘f(pz)+5 — {(X)e —{(p) =3

g’(z\o)effﬁ,)+5 —-i(/\o)e—Z’(p,)—-S

£(>’°) € f({si)—i-s

Hence '
(XY =FU(N )+ (M) e [(B)— (Pz)'gp()@/)’*f(/sz)”’T,

g(“ l: Z)o @ z 0 flsl {

where T = S =3 =0 %8 % ¢ . Now T is open and

arbitrary. Thus E’(A) ¢ g(;\_) + T whenever Ae A + Jg , and ~7}
doeg not depend on A . The reasonong proceeds inguite the same

fashion for A , A in the same interval.

Theorem 1l.5.2. o %x and X -+ yl ( X ; e¢ L) are continuous

functions of « , X and X , l respectively.

Proof. [1], Theorem 7.
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Theorem 1.5.3. Let )DDCJ) be continuous on the closed interval
Lo ,o(,J to L . Then f(o() is bounded.

Proof. Suppose the contrary. Then there exists a sequence
{;é(o{m)i,{o(mg C [a/o,.o/,], such that if ; £, § is any real null
monotonic sequence, ECO/M) ~> 0 with 3, . Since Lo, , «, ]
is compact, «, has a limit point « € L ¥,,«, J . Hence by
continuity gcamwré’(o() as m—boo . But 2, [(«)—> 0 with et
by Theorem 1.5.2. Hence f8 z(o(m)—-? 0 , using Theorem 1.4.1,

giving the contradiction.

Remark : It is to be noted that open sets are, in general,
unbounded. For they contain U’s which are not necessarily

bounded. Vide the remark following Theorem l.4.3.

Theorem 1.5.4. Let jC(g«,;) be on [y, 3 x L to L continu-
ously in the palr m, g - Let 3 = J(é*) be continuously on
Coo,o, 1 to L, open. Then z(pu) = _Z”([.«. 3 9 (p)) 1s contin-
uous in i and hence bounded.

Proof. By hypothesis any open E, 0 € E < L determines 4 > o0 ,
and an open S, 0 €S c L , such that lp-p ) <8 p+95 € Leto 2,1,

tgejo—i-s imply f(t*:‘j)f‘f(c""oajo)"‘);'

Also S determines p>o0 such that |p-f | <p , p+p € C% ¥
imply y €y, +S . Let A=mim (p,8) o Then lp—-p,l <A,
pt A é[o(o_,o/,jimply z(w) € 2, + E . Boundedness by Theorem
1.5.30

Theorem 1l.5.5. Let t(f"b s, ‘t*’) be continuous in the pair

sy € Ceo 04,0 o Let3(;€)be continuous in %’ . Then 3;

is continuous in 3 o
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/
Proof. Immediate from the general Sierpinski theorem [ 3],

when the first place of ‘é(t«.,i) keeps any value in [o/, , o, ] .

These lasgst two theorems are taken in a convenient form

for the sequel.

Theorem 1.5.6. 1If K(x), 3(X) on L to L are continuous at X = Xo ,

and A(¢) i continuous at o =of, on the real numbers to the real
numbers, then f(x) c q (x) are continuous at x = X, ,
and A(«) z(x) is continuous at x =x, , = o, .

Proof. Immediate from continuity of a continuous iteration

and Theorem 1.5.2.

For purposes of reference we restate the definition

of topological completeness given by v.Neumann in [1].

Definition 1.5.5. A sequence §x, }<L is fundamental, or is a

Cauchy sequence, if for every U € L. there exists an m,=m, (U)

!
such that m m > m, imply X, — X, € U .
L. is a complete space if every fundamental sequence is conver—

gent.
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S 1.6

Various aspects of convexity are now treated which

have some intrinsic interest and subsequent importance.

Definition 1.6.1. Sc L 1s convex if X, ,Xx € S o £d = |.

I

imply o X, + (I—«) X, €& S

Definition 1.6.2. S , 0 & S c L is centered convex if X GS,

0 £« < | imply <X €S .

Definition 1.6.2 is of course the weaker of the two

and has as a useful example the sets « Y of Post.l.2.3.

Definition 1.6.3. The convex hull of a set S L is the set of

n I
all elements of the form 2 o« X, , X; €S <. 20, 2. =1

(=1 P

Theorem 1l.6.1. The convex hull of a set is convex in the sense

Of Def.l.6.1l.
5 > E
Proof. Let el X, LZ Bcy: € Fceh,

Ay

e
Consider the form H-Z’, o« ke + Cl=pr) Z B; q. Where © sp=si,

<

e S
6 Spedy (=) B, S| ana 2 e, + D Ci-pIB, = |
] L ¢ . %

= L=y

Theorem 1l.6.2. A necessary and sufficient condition that a set

S © L be convex is that, « , & = 0 being any real numbers,
(fd+d) S = oS + 2 5.
cf. [8], where this theorem ig stated but not prc;_ved.

Proof. Ad necessity : Let S be convex, and let Z o X, € S

e =(
S s
Then - | —
o/ + o ) Z °/L'X"' = 'Z'olodz X, + Z ol 06‘. X; 5
¢ = ‘=g ‘=1
which is in « S +« § . Conversely let
S
.:I

¢

L
X, , 2 pry. €35

¢ .
L=y
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5 t=nr+s
Form 2“""‘ +2°/°(ka . Then Zdo/ +21°/,3—a/+o(
c=t R=5+1 + (=
We may therefore write for this 2 p, %, or (a(-f-o()ze" Y %o
=1
where 27 _./ and for _<_,e 5 s | nye = axlﬂd+33_'2.0,

and for s S.fg 2k 1= vy = ZZo(R[:u—n-zj"‘ Zo0.
Hence the set inclusion goes both ways and the condition subsists.

Ad sufficiency : Suppose for all o, & Z0 , (L+&)S = oS +ZS.

oL ol
§ = — S + S .
Thus e o

—

=9

+

Hence if X, X € S 80 also 1s pux + (1= )X, 0 S sl

The construction for the general linear form is now obvious.

In the discussion of a non—-effective existence theorem

in Part 5, sets of the following type will be useful.

Definition 1.6.4. A set Mc L will be called suitably convex

if it is convex and has o0e¢ L in its interior.

Remark : The neighborhoods in the previously mentioned weakly

topologised Hilbert space are of this type and are unbounded.

Theorem 1.6.3. Let M , M, Mlbe suitably convex, and let «

be any real number. Then

(1) there exists Ue , U € M
2y M #+ (o) )

(3) M may not be a line segment through o € L 3

(4) M, n M, 1is suitably convex

(58) M + M,
(6) o M is suitably convex.

is suitably convex
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Proof. Ad (1) : M. is open oeM‘- s Defele3.1,

L
Ad (2) : No UC(CéeU) = (o) -
Ad (3)

(X

No UC(€él) is a line segment by Post.l.2.5.

Ad (4) : That o € M\, n M, is obvious. Let X , 4 be any two

points of R = (M;nM,);, Then all points Ax+ (I—A)y ~0£AZI,
lie in R because they must lie in both M and M,.

Ad (5) : o e (M +M,): by definition of sum. Convexity : If (a)

X 39 €M or x,4eM,, s0also Ax+ (I=-A)y eM, ,M_.
Hence A Xx + (1=XA) 4 € M) + M, since 0o €M, , M, .

If (b) x e M, (e M) 4 M, (GM,),' A X eM,)(/—A)geMzJ
since Aand | —A are £ | ,0€éM; , M, . Thus the sum is in
M, + M, « If (c) x,4 €M Mbut €M +M,, then x=x +X,
gy By 1 K.Y, €M, > X2, Ya eML3 ’\x/“‘("’\)J,éMlanz"'(”’széM‘
Hence Ax + (I=A)Yy € M+ M, , 0 sAs=l.

Ad (6) : o0& M; 1implies 0 € « M

¢ M o £ A S .

: E;,ﬂg e M,
>‘7+(,..>‘)5 € oL M 0o £ A%/,

Let x>n3 % AX + (l—,\)gé
Take Y;Cg € o M « Then X/

AMX /¢ + ()= A)‘g:/o( € M,

Remark : In general neither the logical sum nor the logical

difference of two suitably convex sets will be suitably convex.
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8§ 1.7

Because of the fashion in which the definition of
a differential will be phrased in Part 2, an intimate knowledge
of the properties of frontier points is desirable. Theorems
on representablility in terms of frontier points will also be

useful in the theory of the integral.

Lemna 1.7.1. Inl,the line AX , X €L and fixed, A

a real variable, 1s dense-—in-itself.

Proof. By Theorem 1.5.2, AX is a continuous function of A.

Thus given any open set S ,0€e Scl, there is determined a

real interval I , 0 €I |, guch that for any A , A € A +I1(S)
implies AX€eAX +S . But I determines a positive integer m (I)
such that m Z mi implies ! AeT. Replace A by L1+ Y

on the line AX . A X is a 1limit point of a sequence on the line.

Lemma 1.7.2. Let E < L be a bounded set. Then for every X € L

there 1s determined A (x,F) such that A x € F (E)J
the frontier set of £ .

Proof. Apply Def.l.4.1.2 and Lemma 1.7.1.

Lemma 1l.7.%. If E 1s bounded, 0 € Ec L., then every 2 ¢ E

ig of the form 2=)\X,OSA_<_I,X€-F(E)

Proof. Every z € E lies on some line /\j_ . g e L . Let
i -
,\*‘:l.oc.'ﬂ‘.)(tu>/\ implying[.aj(—-'E)-Then x(eF(EY)=A 3

The result follows by continuity.

Lemma 1.7.4. Ve U , «& F0 10 e F(v) imply there exists
veu , =¥ = peP &

[2

() If-}a is in the frontier set of a set U we write U-”a ¥
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Proof. By Post.1.2.6, «U=V. Since o« U. = (« uod;, ,,/(J‘. = V..
*.
For any U¥é U there exists n € U: such that n € ‘k + U‘: .
;F.
Hence oCrbc’-oéﬁ—l-a/l/‘. = o+ W, W e .

Now 1L € UL implies o« & \/é . Thus x¢ is a 1limit point of t{- "

2

Symmetrically, since 79 ¢ F(U), it is clear that xﬁ is also
a limit point of C(\L/.) , the complement of ({ in L .

Lemma 1.7.5. UeU. , el , § € F(U) imply
P gl = (pru)FT = (g v,

=

Proof. Immediate.
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$ 1.8

Some purely topological aspects of | are now consid—

ered, principally compactness and connectedness.

Definition 1.8.1. A topological space is called compact, after

Fréchet, if every infinite set in it possesses at least one

limit point under the assigned topology.

Remark : It is sufficient that every denumerable sequence have

a limit point.

Theorem 1.8.1. A necessary and sufficient condition that

be compact is that every monotone decreasing sequence of
non—-empty closed sets
F2Fy 3«2 FK 2

have a non—-empty intersection.

Proof. The necessity is demonstrated in [4] p 85. The sufficiency

is mentioned but not shown in [4] p 86, and [10] p 259. We
demonstrate the latter for our situation.

(U.) describes a regular Hausdorff topology as remarked
previously. Hence % (¢L) 0 implies there exist U, V €
such that J?(U,’}H—V):o .(Def.1.2.1). Also pe U, .2: 3\/6‘14..104‘\/4 v.
Let E be any infinite set ¢ L . Let U €U . By Post.l.2.3,
U 1s infinite. Let @, ¢ E . Put S, = E n (& +V) S =F ,
(the closure). Let W ,W, € TL be such that (o, €5, , &, ¥ &, 45
Ca,+W,)n (a, +W,) = o . Take W € 7L such that

@, + W, < «a + U . By Post.1.2.2, there exists W, < W, n Wl'
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Put 5, = (&1+W4_)f\E . $1= Fz, . Then F| and F,_
are closed and non-empty with F, > F, quite properly.
Repeat this construction inductively giving a sequence

Foo Fp2-v0 2 Fgy @0
such as the hypothesis describes.

Let Gy € Fp € Fp, ,h=1,2,.,.. . Since the Fy
are distinct so also are the 7%‘ . Let {{ ‘6"/@}} denote the
class of all such sequences. We are to show that one at least
of these sequences has a limit point.

To that end, consider the class of frontier points of the
non—empty 1. F'k , denoted by F(ITFy ). We assert that for at
least one ¢ F(ITF; ) and any open set S , fo€5cl, there
is determined m,= M, (5,%) such that S > some points in F,"o
but not in FMO,,_, . For there exist points < S, T F (ILF% ).
Since the sequential inclusion of { F}( f is proper the above
assertion follows.

Therefore 1a is a limit point of at least one of the
sequences { § -t"‘h. }j . But every such sequence is in £ ,

completing the proof.

Definition 1.8.2. Cf. [10] p 264.

(1) If a point of a space is characterized by a property E ,

it is called an E —-point of the space.

(2) & space I is said to ‘qe closed in relation to all of its
E -points ( E —closed) in case it 1s impossible to add to i

a point 5 such that in the extended space { & §'

(2) { ig an E ~point, and (b) § is not isolated.

(3) xeéR 1is a X -point if there exists in R a denumerable

sequence converging to X .
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Remark : For example the complex plane, although locally
compact, is not compact in the large (it has sequences such

as 1,2,3,,., ). Addition of an ideal point, the point at
infinity, with a stereographic remetrisation that changes dis—
tance but not convergence makes the complete plane compact.
This may also be done for a locally compact Banach space.

cf. [11] p 221.

Alexandroff and Urysohn indicate but do not prove a
theorem of the following type, [10] p 265.

Theorem 1.8.2., Let /£ be a regular topological space. Vide

[4] p 68. A necessary and sufficilent condition that & be
compact is that it be X ~closed.

Proof. In a Hausdorff neighborhood space the nelghborhoods

are open sets,
Ad necessity : Let ® be compact. Let U, (%) be any neighborhood
of a point ?7 . Then by regularity we have inductively

U() € Uy () P Ugp (F) € Uy (5D

quite properly. Thus Z{ S ¢ e D l/k‘D SN

-
properly, where the bar indicates set closure.

Consider the set of sequences [{ %, ff = § Un © U,,,H_,} .
Every {hj%1} has a limit point by compactness. 7% is the limit
point of at least one such sequence. For let Vﬂ“ﬁ) be any
neighborhhod of % . If V(%) € JL U, the statement is obvious
for then V()overlaps the sets U,, for some determined M, .
Let VI({) < .7,3.— D:n . Then the above process is repeated using V()

in place of U(p)and a fresh denumerable sequence 1s added to [fm}
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Hence the arbitrary V(f)is penetrated and 74m—->ﬁ . Every 7aé—f€
is a /X -point.
Ad X -closure : Suppose a non-isolated point Z could be
added to [ such that in R & Z » ¢ 1s a % —point. Then
there is a distinct termed sequence {zm}, ¢,7>9 - Deleting
Z ’ fzm} is an infinite set of /R with no 1limit point, de-
nying compactness.
Ad sufficlency ¢ Suppose K 1is not compact. Then there exists
in K at least one sequence {70,“},77,”#:7",,” » With no limit point
in { . Then we can add to X a non-isolated point Z’ such
that }.‘m—a»z « To this end, define for the extended space R GZ 5
[& =]
]
Um(i) = 7 & Z U(74‘.)
Lt=Em-|
where Zi 1is a set theoretic sum and the beQ)are chosen by
the separation axiom such that U(f )N U(f)=ofor (' #+ 7

Hence R is not 2 —closed, completing the proof by contradiction.

Remark : Every point of L is a X -point by Lemma 1.7.1, but L.
is not A =-closed since it contains sequences such as {mﬁ}

74 fixed, mm taking integral values. But if L- possesses one
compact neighborhood it may be prolonged into a compact space
after the fashion indicated by Fréchet in [12] p =51.

Theorem 1.8.3. Every compact set in L— is bounded.

Proof. Vide [6]. This 1s of course expected since compactness

generalizes the Bolzano~Welerstrass property.
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Corollary 1l.8.3. Every bicompact set, Def.l.8.4, in | 1is

bounded.
Proof. A blicompact set is compact.

Remark : No unbounded set in L is compact.

Definition 1.8.3. A system of sets of a topological space

constitutes a covering of a set A of the space if each ?614
is also in at least one of the sets of the system.

cf. [4] p 47.

Definition 1.8.4. A set A in a topological space is saild to

be bicompact if every open covering of A contains a finite

subset that also covers A .

Theorem 1.8.4., If a set S§c L 1is compact, then every Cauchy
sequence that penetrates § infinitely is convergent; i.e.
S as a relative space is complete.

Proof. Such a sequence 1is an infinite subset of S and hence

must have a 1limit point.

Pefinition 1.8.5. A set SclL is said to be connected if there

do not exist two non-vacuocus, disjoint, closed sets such that

Remark : Connectedness is a topological property by [4],

Corollary p 53.

Theorem 1.8.5. If S,T ¢ L are connected, and « is any real

number, then o S , S+ 7T are connected, and R < L =V & B &=l

imply that @R 1s connected.
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Proof. ® X on J to o S 1is a homeomorphism through Theorem
1.5.2, and connected:ness i1s a topologilcal property, giving
the first result.

Let Jo € T . Then as above, Jo + S is connected. T+ S

is obtained by a continuous displacement of this set.

The last result is obvious. b, § € R mply pf, f§ € f T,
—1£ B £+|, and the segments [y /57) are self connected

and joined to one another at the origin.

Remarks [ need not be connected. S need not inter—
sect T .+ An example in the appendix will show that all of the
fundamental sets of the assigned topology (7, ) need not be

connected.
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Part 2.

§ 2.1

This part is concerned with definitions and elémentary
properties of topological differentials, of extended Fréchet
[16] and Gateaux [17] types, and of derivatives, devised and
developed in collaboration with Professor A.D.Michal. Cf. [13]
and [14]. For further properties and discussion see these lat—
ter papers.

We are principally interested here in developing

sufficient machinery for the sequel.
s 2,2

Definition 2.2.1. Let i(x) be a function defined on L to L,

although not necessarily on or to the whole of L. . If there
exists a function ﬁ(\<5z) on LxL to L , which satisfies :
(1) t(x5'z) is linear in z , i.e. additive and continuous,
(2) given p>o0 , there is determined a V(ep) € 7L such that

for some Ue . , which has pz as one of its frontier points,
pl
:t(xo.;.z) - -é(x°9z) € 1(7(6) -+ U‘: .

whenever z (o) € V; 5

then we shall say that ﬁ(x)'has a differential f(x°5z) at X=X, -

Remarks : We notice that if L is specialised to a Banach gpace,
l.e. subjected to a norm topology, the sets {/ being the spheres
lixil €& ,U; the open spheres IIxII<§ , the usual Fréchet

differential for a function on [d to [3 arises.
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The translation of Def.2.2.1(2) runs : given P >0, there is

determined 6(,9) > 0 such that
1 *é(xo—f-z) — {(xo)—— ‘g(xo'?z) W < nnp=zl =p n=zil

for all ll zll< €, 2%+ 0 .,

The general non-metric character of these spaces
of L -type apparently 1nhibits,‘under this definition at least,
the consideration of differentiability for transformations
between two distinect spaces, as 1s common in the Banach situ-
ation. There the lialson induced by the two norms mapping on
the same set, the real numbers, permits the notion. Here,
however, points selected‘from one space could not, in general,

be frontier points for the U lying in the value space.

Theorem 2.2.1. Ifg(x)on L. to L has a differential f(x,,;Z)
at X =x, , then f(x) is continuous at X=X, . e
Proof. By definition f(x,+z) € [ (x) + Y(x,;2) + U
for z € \/‘ (,o) « By Post.l.2.5, there exists a set of o such
that é’(xo; 2) € « W, where We T, arbitrarily. By continuity
of the differential at z=0 , any open set W, determines
an open set S , 0 &€ S , such that g(xo,'z) € « W

for ¢z ¢ V"(f)and'g(xo;z) € W, for z e S(W).
Consequently é’(x,)'Z) € WL for 262(1/,_'75)"1-(/":“/);
I open, 06l . Put W, + u‘.ﬂ_—. fE(z,hw) , R open. But
Z depends on p and W , which are arbitrary. Hence let I[e

be arbitrary, determining f and W and hence I . Thus

2z eI (R) implies f(xo-f-z) € g’(xo) +R , I ana R open.
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Theorem 2.2.2. Let g(x) have a differential Z(x,; z) at X=X, .

Let & be any real number. Then o g(x) has a differential
at X '=)(o s glven by olf(xa;'z).

Proof. We must show that for p > o arbitrary

o [lxo+2) — azg(x t2) & a!Z’(Xo) + _U?P

%,

z

—

for z € V.(p), z# o0 . In Def.2.2.1(2) take p = p /o .
Since f and f are arbitrary and o« is fixed V. (7 /x) = {{—'(/’_)’

For z ¢ —l}‘: (F), then, we also have

ocz(xo-g-z) - ol_za(xo)'z) € df(xa)+ol(/‘,’°z/°<

Pz — F =
Apply now Lemma 1.7.4, giving « U Fel = U.

¢

o L (x, t =z ) 1s continuous in =z by Theorem 1.5.6, and is

obviously additive.

It 1s also possible to define in L. an extended form
of the Gateaux differential [17] usually defined for normed

vector spaces.

Definition 2.2.2. Let ,g(x) be on L. to L . If there exists

a function g(x);) onl X L to L , such that given any U éZL
there is determined §(U) >0 so that for all /A/ < &,

f(xo+/\;)—-/\ Z(xo>;)'eg(xo)+AU‘: ,

then é(x,) 3 ) will be called the extended Gateaux differential
of é’(x)at X=%_ s

©
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Theorem 2.2.3. If [(x] has an extended Fréchet differential

at X=X, , then it has an extended Gateaux differential at
X = X,, and the two are equal.

Proof. In Def.2.2.1(2) put z = /\; . Then

P
\zf(xo-l-)u}) - %”(xo)',\g) £ Z{xo) + U.

*d

for /\g € \/‘~(/a), wherein Y 1s held fixed. By continuity of

A 9 IN] < S(V,;(r)) implies /\j_ ¢ V.(p) 1implies

"
L (xo=+ X q) -2 x5 y) e [(xs) + AU 4

uging the linearity of K(xojz) in z and Lemma 1.7.4. Since

4 1s fixed UT? = U(p) . conversely, selecting U deter—

mines P and hence V' so that V= v(7) . Finally

Inl < 8§ = 85(v) = §(U) implies
g’(x°+,\3)—/\1’(x,]j) € J(x,) + AU,

where g(xa)j)‘;f(xpj':).

Remark : It is possible to phrase the extended Gateaux differ—
ential as a limit. First write

AL +Ag)= e = [, q) € U
for /Al < §(U) . Now form the sequence

[fm} = §X2™™ Cyex+72"" ¢) = {(x>7

where A 1is any fixed number. By taking m sufficliently large

m

A= : ; z.l“ can be made as small as desired. Hence whatever

§ any selected U determines, an m, is determined so that

|
forMZm'(U),IH < $(V). Thus g(x‘,)j)is the limit of {‘ém}

as m— oo o
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Theorem 2.2.4. If the extended Frechet differentisl exists

at X=X, for a function g(x) » then that differential is
unigue.
Proof. Apply Theorem 2.2.3. Then the uniqueness of f( Xo , j )

follows from the preceding remark and Theorem 1l.4.1.

Let g(o() be a function defined on a real number inter-
val to some set € L . Then one may define a derivative for

'G(o() as follows :

Definition 2.2.3. If there exists a function ¥'(«) on R

to L , such that for any (/€ TL there 1s determined & (U)> 0O
with Al < § implying
ATV E ey a) = Pl ) T e L) + Uy

then z’/(e/o)will be called the derivative of 6"(&) at w=o, .
Remark : Properties of the usual type hold for this derivative.

Theorem 2.2.5. If,ﬁ’(a/,)exists, then it is unique.

Proof. For Def.2.2.3 implies a sequential approach to .g/("(o )
as in the remark following Theorem 2.2.3. Uniqueness by Theorem
1.4.10

Theorem 2.2.6. If éo(") on L. to L has a differential in the

sense of Def.2.2.1, at all points of a convex set L. < L

(Def.1.6.1), then if X, X, € L
p(t) = {lx, + i—(xl—xa))

has a derivative ?‘('l') for all €L o,11.
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Proof. Since {(x;§x)exists for all X € L. » (%, §x)
exists for all x € L. . Hence phrasing Z’(x) §x) as a limit

we have, putting A, 2'~" = A, ,
Lo 27 D+ A, 8x) =) D= {lx,85x).
Am-’o M

Since Lc is convex, §x = §t (X,—XO) « Thus

el 10 Ele—xg)+ A, 54 (g=n,)) = PUx,+ £0=%,)) ]
n=°
Clx, +t(x,=x)  St(x—=¥) )

—
—_—

" #
Do, VL P(tHp) - p(E) T =87 02 T2,
(e
Note that X, , X, are only abstract parameters.

Thus ¥% = ¢/(t) exists uniquely for all + ¢ Lo,/ .

Remark : A weaker theorem, [ (x, § x ) implying the unique
existence of P/(#), is tacit in the above proof.

For further properties and theorems see Part 4.
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Part 3

3.1

Vo)

We develop here the technical facts necessary for
a discugsion of existence theorems for equations involving a
derivative of the type of Definition 2.2.3, and for a consid-

eration of further differential properties.

The concern is with an integral of Riemann type for
functions on ’? , the real number system, to the space L
with topology described by (7L ) « It is frequently possible
to abstract to some extent the classical Banach space technique

of Kerner [18] and Graves [19].
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S 3.2

Definition 3.2.1. Let ‘C(ol) be topologically bounded (Def.l.4.1)

on the real interval L[, «,]to L . Consider any subdivision
T of Lo, ,

——— e < <~—
=o S, ., &, T .. 2L, =& .

—_—

m
Let £, be an arbitrary point in (;v ,;’H_, 37 CEPE

<) =1,...,m=1 . Then, 1f given any UeU , there is determined

)
a real §(U)>o0 such that for all subdivisions 7C with

ﬁ..t.ﬁ-. (d,,, __o(_u)_<_ S, ((;/;,a_l;_’_,)has the same sign as

C«,,, d ), there exists an element I &€ L such that

for every choice of P, € (o, o ., 2,
2 = 2 LR} td — o ) e T + U
T T f /gu Y+ v ¢

I is called the definite integral of Z(o() from «, to o,

! J

r'4
{
and is denoted as usual by fq, Yt ).
o
I1f I exists, {(«) is said to be integrable on C«,,«, ],

It is also possgsible to phrase this definition in terms
of partial sums.

Definition 3.2.2. By Def.3.2.1, a § —subdivision 7T determines

an M -gubdivision, i.e. [ ,«,]J into m parts, m zZ m, (V) . The

1imit of the sequence of partial sums { ¢,,{ as m — @,

—

m=| _ - s
— ¢ = « — o«
& —1}=Z’ AO/.,_) Z(P-u)) . v T vt ¥ 2

if it exists, is also called the definite integral of f(o/)

from o to 0‘, .

Remark : This might be phrased as a Cauchy condition and a

complete space used.



Lemma 3.2.1. The I of Def.3.2.1 implies the existence of the

€ (6, > &€ ) of Def.3.2.2 and the equality of the two.
Proof. Obvious.

Lemma 3.2.2. If the integral of Def.3.2.1 exists for a func-

tion g(a() » then that integral is unique.

Proof. 1 implies & which is unique by Theorem 1l.4.1.

Hereafter when completeness 1s required for L it
will be assumed expliecitly.
The following theorem is obvious, using a direct ab-

straction of the usual proof. Cf. [19].

Theorem 3.2.1. Let [ (), 3(&) be integrable on Lo, o, ]

to L . Let « be such that 4 < « <</, . Let g» be any real number.

Then o Id, | f"l P
(1) ) (f-&-j_)o(c( = ‘{of d+4°3 « ;
o“' al'
(2) f‘(»t«“ =t~£f0‘d;'
Z %) ° %
(3) yﬁ&d -+ J- {do = f 1 d«
o, oL %,

For the third statement [ must be complete (Def.l.5.5).

With the essential restriction that the range of a
«
function ﬁ(e() be a closed, convex set L, < L (Def.1l.6.1),

the following mean value theorem may be stated.
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Theorem 3.2.2, Let L be complete. Let A(«/)be on Lo, o, ]
to the positive real numbers. Let [(x) be on Lo, o]

to Lca c L , where L, 1s a closed convex set. Let A (o)
and A(d) [(«) be integrable on Les , &, ] . Then there exists

73
an element x € L, such that
o

! )
[ac) pear da = [ acarda . ox .

«, v,

Proof. Consider for any Mm =subdivision the element

¥ LT ad,. A (a) (R )jEZA?{) /\//U]

m D=

[d} *
Since L. is convex and { (p ) € Lc , S € LC .« bs Mmoo,
6': tends to a unique element X by completeness; which is

in Li’" since thils set is closed. Hence

) o
f M) Plt)da = [ ata) da. x

o

P o
Remark : It would clearly be sufficient to require only that
cL
every fundamental sequence penetrating Lc infinitely be con—-

vergent. Cf. in this connection Theorem 1.8.4.

(d’s
Corollary 3.2.2. Let g(a() be integrable on [&o o] to L__

Then there exists x ¢ LC such that
f [Cet) oo = (of, — o) . X

Proof. In the theorem put /\(a/)—-/ 5
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Definition 3.2.3. Let {ﬁm<o()§be a sequence of functions on
Ceap,o 0 to L o Jf @ §fwill be said to converge uniformly to
a limit function f(«) if given any Ue UL , the same for all

o € Loto, o) ] , there is determined a positive integer m, (U)
such that m Z m_ implies f, («) € ¢ () + U

for each &« € Lo, o .

Theorem 3.2.3. Let L. be complete. Let each member of the

sequence ffm(“’f be integrable on[«,,«,Jto L . Let { ];’m(a/)}
converge uniformly on [«s, e, to {(«) . Then
(1) flx)is integrable on [, o],

Lirrne ff () da = f L) do.

(2) M-
Proof. Letting T be any P -subdivision of Lop,a, 1 ,

writing Mv-:-/—dw = 4 « _,J , using the uniform convergence

hypothesis and Post.l.2.6, we have

4@, [.(f,) € au, [(p) + U .
Using Post.l.2.7 inductlvely, m =z m, 1implles

ot /e #
(1) vg au, ffm/(/sv) & vZ—;'/ 4, 6"(/6_”) v,
where U *(e ) =’)§ LU .

’ =
Now effect a 791:‘)_ subdivision of Ea(,,’al ] such that

—(R) (%) (%) (E) (Rl = & o3
o= <F17¢<°/z o0 £ £E, £ Kgor =
(%) — (R
< 0/ < o = o
- f&—/ -Fk /
Then the partial sum has as a typical member
N (%) (%)
Z p
6, = 4 « (
(2) 1\ V= v ‘(mo /A-‘U )

with 2 §, that 50 .

3
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o/
Then for any selected L ’{(h§ converges to £ ij (o) d
) ]
as ‘ﬁk —2 oo °
Note that the seguence {5,3, has 5;{—?0 . Hence the integral is
being approached as a 1imit and one may find m, (V) such that

® L Z m, implies

(3) % € o, + U .
In (1) take m=m, , and take T =Ty = 7, . Then
]
(#) o € E‘{j, a2 a4 u.” and
(5) s 61?3 AE’;M)Z(/’“’)—+U ,
By (3), (%), (5), ﬁ Lz m, j.mpliesf‘7 _
(6) EZ_?/ 4 a/ ( (/@(fu . :_/ ——/—f’/zﬂ( (21, _/_;/:.’ .
= =

This considered as a 707‘ gsequence 1is therefore fundamental

and by completeness
YA
v=y w =

But since %—? o as kR 1increases, it follows that :é(o() is

is convergent.

integrable on Lo, o, 1,
Now in (1) let S50 , i.e. fﬁao . Then, clearly, M = m,

implies

B & s
f {, (¢1do ¢ f [(a) o + U,

o o ~/

The proof is completed by the observation that U*and v

are arbitrary since their cémposing sets were such.
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8 3.3

This section develops the fundamental theorem of this
integral calculus.

L]

Theorem 3.3.1l. Let “g(o()be continuous on D\’o,cl,:) to L
Let I decompose the closed interval Eo/o7a’,:l in such a fashion
that for any two points f3, , P, of any interval of the decom-

position and for an arbitrary U€é U, , [ (R, ) — Z((}z] & U‘

(2 uniformity condition). Further let 7 be obtained from 7C

by the intercalation of arbitrarily more end points. Then
there 1s determined a bounded set 7 , 067 < L

such that
2 € Z + T ( 2 ae in Def.3.2.1).
(4 T <
1 *
Proof. g,':,:_ZAo(v Z(/;’F — 3 , MM > m
T
Z‘:—'_ZA&’ Z’(/S(* ,éA'_:/,:llJM—,-
#* # T~
Consider any subinterval (o v & g ) of T, _
Pj £ (di’jj 017’:/_,_,) . This interval is in some ( &, e ‘u,.“ )
of I , properly or improperly. In general suppose that
'% * o
(o/ u+/) gy KB o 70‘47/4_A_I_l)are all in (¢ ) .

& 2 et
Then by hypothesis we have the 7« relations, arising after

suitable multiplication,

[CpT) € anl TR + aw) Uy

2

Hence, via Posts.l.2.6 and l.2.7, remembering that
* #* —

0(_0:

é’~ 5 Tyl & a/kw*l J

(1)

"L\_h—

1)+[.: ((P-()_/-f)éd K(Ph)+W
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The W/ above depends not only on (/ but also on 7 , WETL .
By the continuity of K(o() and Theorem 1l.5.3, g(d) is to a
bounded set 5 ¢ L . Hence W may be replaced by a bounded
set T(U7 ) C W (Theorem 1.4.4).
This 18 quite equivalent to the extraction from U/ of a
bounded set £ ,0 € £, and writing for the set on the r.h.s.
of (1) A

2 4 a’#< = = .E;
(2) p=o V+p )
where £ 1is bounded by Theorem l.4.4.
By Lemma 1.7.3, all elements of £ are of the form A X ,
xe F(E) o< A 21 . Now by (2)

L * *
(3) £ ¢ — O(jf—_f' "(3+/ E - o — Y4 £+ %yt d 1
Consider the set a £ -+ a,E o< 4, =a,.
The frontier of £ 1is represented parametrically by X € F/E))
the frontier of 4, £ by 4, X , as in Lemma 1.7.4.
Construct from 2, £ the set F¥= E#/GZJE), that contains all
points of the form /\aZX) x & F(FE) y 8 = A=
Now certainly @,\E c E* ana a/E c E* E*.is bounded.
Thus a/5+ @, E < E¥ L " = —E‘—*(a{;E),
Finally, by finite induction the r.h.s. of (3) is included in
a set G-(“:,_.,.,’ V).

The idea of this process has been to obtain a set for
the inclusion (1) that does not depend on all the end points
of 7T but only on the extreme right hand one.

Now for each of the intervals of 77 we have a relation
of the type, via (1)

ZA}Ax—F L (pt,) e au, fip,. ) +
p=a VAP e e J

Ut p
wherein (> depends on « and U .

é&—l-l



By addition of all such relations for each interval, and
application again of reasoning similar to the above, we have

the desired result

Z‘ & 2 -+ T(O«?JU)J 067—)
_—

—

T 7
where 7 is bounded.

Theorem 3.3.2. Let [ (o) be continuous on [, to L o«

Let L. be complete. Then Z”(al}is integrable on L&, ,«,d.

M Let fﬁ?mi be a quite arbitrary sequence of decompositions
of the interval [w,,«,J . Let %ao , l.e.

f-?‘;'f*' 4 0715’") - 0 with m~ /.

By Theorem 1.5.1, Z(c() is uniformly continuous. Hence

& o + T(P) implies Z(o()éz’[a?_)+ P , P open,

0 € Pc L , Let & be such that £ 6 € J . Then there is deter—
mined m (6 Jeuch that m = m, implies § < & . Let also m = m, .
Then for any two points « , & of a subinterval of .,

or T, {(«) € [(d)+ P,

Form by the addition of the effects of 72;, and ﬁ;ﬂthe decomposi-
tion % . Then by Theorem 3.3.l, taking FP= Ve o
determined a bounded set T , 06 T <« L , such that

Joe LTl v), D e 2+ T (4,0,
'ﬂ:m e 7Z./V1 T
By subtraction, for mM,. m Z m

there is

o

Z € 7[2 + 5 (e, 7 V') , ( S bounded).

T,

Since U 1is quite arbitrary and #, is fixed, S may be taken

in its turn arbitrary. Thus S 1s imbeddable in an arbitrary

open set. By hypothesis [ is complete. Hence 2 converges

T

to a unique limit. But 7Z; is arbitrary. éﬂ(o/) is integrable.
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Part 4

£ na1

This chapter considers various theorems representing
the interaction of the integral and derivative theories pre-~
viously developed. It also establishes the fundamental exlis-—
tence theorem for the most primitive differential equation.

The functions used are again those on a real number interval to

a suitable set in the space L .

3 4.2

Theorem 4.2.1. If ﬁ(a() on [« & Jto L has a derivative on

Eo/07 «, 7] (Def.2.2.3) which is integrable (Def.3.2.1) on
o/
Co, o s then /
[ tlearda = {(4) =7 (,).
o

Proof. Take &, <« . Let /€ 7L arbitrary. By definition there

is determined a real §(V/)>o such that, for every subdivision

7 with Lw T gy < § o o
¢ with % o and for every f € (vgoij,;./)

of 7 , we have

o/
/
w 2 oax, Lls) - /%”/("””{“ e Ly -
T

&,

4

Now for each P &[«,,¥, ]there exists a positive number fp <)

such that for each point pl of L ,o, ] satisfying |g'-p | = 'é;@

(2) f(p') - [(p) = (g'-p) LIp) € Ip'-pl U, .
The open intervals Tg = (g-%, <p' < p+%,)  constitute

y

an open covering of Ed,,,a/,—_] . Applying the Heine-Borel theorem
a finite set of them, with centers at f, <Pz <0 < o

also cover [« o, ] , with f = &, 5 P = al/ .
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By (2), for each Iit > when[EéI—;{ or is an end point of Ift, 3
(3 LR~ LCPe) ~ L (o) (p—pyplelp=ppl .

Then by a simple extension of the reasoning used by Graves, [19],

W) [(4,)-L(%, )~ (/g )da, ¢ da, U

U+

for every v/ . Hence by (4) and Posts.l.2.6 and 1.2.7, with

W now arbitrary
2 Cpea, )= fld) = dd, 7 )] €W,
Y/

(5) Vot

go that with (1) o) )
2 EqE,, ) - {7)] ~ ] Qlerdd e Gorn W
/A o,

But for any 7 , the sum above is %o(o(/)__ Z(a/,) .

¢, "
g = fe) - pea) = [ gl da e W

o,

0

Hence

But Wfis arbitrary. Therefore j- must be in each member of the
sequence of Post.l.2.4. Thus j_ can only be the zero element,

completing the proof.

Theorem 4.2.2. Let f(x) on L to L have a vanishing differ—

ential g(x)‘ z) (Def.2.2.1) at all points of a convex set

Lo < L . Then Y(x)1is abstractly constant on this set.

Proof. Y'(4) exists by Theorem 2.2.6, anda ¥'(t) =0

for 0 £ + < | . Hence vl(t) 1s integrable and by Theorem 4.2.1,
Y(1) — ¥(o) = O . Slnce y(t) = K(Xo—l- i_(’(/—xo));
‘é’(x/) = “g(xo) . PRut X/ " X(; are any two points of LC "

Hence _é(x) is constant over LC_ *
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The followlng theorem is similar but has a somewhat

dif ferent proof.

Theorem 4.2.3. Let L be complete. Let Z(K) be on L to L .

Let the differential f(x;z) exist, continuous in X , for all

points of a convex set L, < L . Then

|
ff(x/—;-oz (x=%,); K&—)(/)aéa( = g”(xl)~g"/x/ ), %, x, €Lc.

<
Proof. If X ,X; EL. , X = x/+o((x1—x,)é/_C)0£x-—/‘
. =K ) O
Then by linearity, P(x;2) = [(x, + (X=X X, X, )
Lo, Pld+8)— Plt) _ A Y
. — ) L _‘x = —_—
pt (X F & lx =X 5 X y 2 Py — T3

for all o ¢ [Lo,1 1, Take fd =clX. Since é’(x)' z ) is contin-
uous in X it is continuous in a , and hence by Theorem 3.3.2,
since L 1s complete, *¥/ ol 1s integrable on Lo,1].

The result follows from Theorem 4.2.1.

Definition 4.2.1. Tlet f(oz)be on [, &, Jto L . If there exists
‘IA

a function F(m) such that F(Q) = ”L Bﬂ(q’)oéo(
(o]

for all e [:4/070(/] » 1t will be called the indefinite integral
of L(L) .

Remark : If Z’(a/) 1s continuous on L&, o, ] it is integrable

on every subinterval and F (@) exists on [« o, Jto L .

Lemma 4.2.1. Let L. be complete. If zp(a{) is continuous on

Cp, ¢, 3 to L ,and if A >0, & S < +Ah =24,
F
Lio ;= [ gearda = (CE)
K

then

Ao
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Proof, By Theorem 3.3.2, i(o() is inti;gr_;_a(\ble on every sub-
interval of [« ,«,J. Hence A1 _&_- Z”(a() d o

always exists for suitable A .

By Theorem 1.5.3, Z(o() is on (i, ;o + A ) to g’(/«: ) +E(A)
where £ is a bounded set. Construct the closed convex hull

of £ , Eca » Zp(o/) is clearly to g"[f:)—f Ecoe' . By Corollary

3.2.2, i)
y - x [AJ
y f Z’u) o « X
i V4
where X & g(/l)‘f'ECCL . As A-)o,EC—>(0).
Hence in the limit X (0) = g(ﬁ) .

Theorem 4.2.4. Let L. be complete. Let f(o() be continuous at

a(::F . Then F/(/I) = ZD(F' ) (F(p) a8 in Def.4.2.1).

Proof. By Theorem 3.2.1, -
e f.+-A

F(R+X)— Fi(p) = f_ § () e
& +A b
Also A:—:[ A« . Hence

& A

Af/p) = f J(F)da,

These relations are true for A sufficiently small, i.e. for
regions close enough to ZI go that in them the continuity
conditions on Z’(o()apply.

Again by Theorem 3.2.1, . 7+
Flp+x) — F(R)—A{(R) :/;Ef(d)—ga(ﬁ)jo(o(,
ot

By Lemma 4.2.1, _
i =1L F(E+A)— F(E) = {(F),
A—>o

giving the result.
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Theorem 4.2.5. Let F(«) be on [, o, Jto L . Let Fl(«)

vanish on [« &, and let F(«,)=0 . Then F(x) vanisghes on
Loy oty 1
Proof. F'(«)exists on [«6,4,] to the closed set (o) in L .

By definition it is integrable from o« to = < «, . Hence
©
I(p) = J Fltwrda = Flp) —F(%)
o
[

by Theorem 4.2.1. But [(p)=0 and F&,)=0 . Hence Flul=0 .

Theorem 4.2.6. Let Z(o() be continuous on [ ,4,Jto L .
M~
The indefinite integral f“, g”(d) A « , which is zero for
2}
p=o, 5 i8 the unique solution of the equation F’[/A,) = f(/«).
Proof. If there were another distinct function ~ 7"[}&) that

satisfied these conditions, then F7(a,) = 0 , and
FF*pr= () . en Fla,) —FH(u,) = g () =0
Also jl(f’”) vanishes identically in ¢+ . By Theorem 4.2.5,
j((‘*)’: o , and F and F%can not be distinct.

This assures the existence of a unique primitive

solution for F'(p) = Z(#) .
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Part 5

This part ie devoted to a study along two essentially
different lines of the existence of solutions of the differ-
ential equation Y /ol = [ Y ) where f(f‘> y)is on KX L
to L. and Y on K to L .

One attack 1s through a Cauchy approximation technique
for whose successful completion it is apparently necessary,
for reasons mentioned below, to make rather severe demands on
the form of the function fﬁgyg), the space remaining locally

unconditioned.

In the other direction an extension of the Brouwer
fixed point theorem is applied to yield a non—-effective, i.e.
non—-constructive, existence theorem. But this approach, in its
turn, while demanding little of the form of Z(ﬂvtl)makes
rather severe pseudo—local demands on the space, in the sense
elucidated below, without affecting what is in general the

non-metric character of the space, under the assigned topology.
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$ 5.2

We proceed first to the non—-effective theorem. For
this discussion it 1s necessary to consider in some detall an

abstract function space assocliated with the space Lo,

Let F denote the space of all continuous functions
on the closed interval [ o,/ | (this is selected for defi-
niteness; any closed real interval could be chosen ab initio)
to the space L. « By Theorem 1.5.3, ~ is a subspace of the
space of all bounded functions on [o,/ 1 to L . If j(ol) & F
then also by Theorem 1.5.1, j(“) is uniformly continuous.

Obviously every point € L , i.e. the constant functions, lies € F.

Theorem 5.2.1. F is alinear space. Cf. 1l.1.1 to 1.1.7, p 1.

Proof. Addition and multiplication by reals are well defined
through the postulates on L . X&) + Y ()= Z(A) means

that corresponding points in L. are added, x(@g )-+-7 («;)== Zf%ﬁ):
Similarly for A X(«)=w () o That Z&)andw)are in ~

follows from Theorem 1l.5.6. With the closures established the

required postulates are verified through those on Lo,

We topologize F in the following way, with ‘set'
as conditioned below again the undefined notion. Let there
be given a set Vg of 'sets'l. < F where U- consists of all
continuous functions on 2,1 ] to a sultably convex set M < L.
Cf. Def.l.6.4. Then the discussions involving 7L, are thrown
back on a discussion of the set JI] of suitable sets N

thanks to Theorem 5.2.1.
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Theorem 5.2.2. F 1is of the same linear topological type
as L .

Proof. Linearity by Theorem 5.2.1.

Let UF § VF_ be any two neighborhoods of the zero function.
Ad Post.1.2.1 : Let U (€2 g) ~ M ( € JJT] ). Then

M/2 + M/2 = M , since M 1is convex. I.e. X € M, X/2 € M/z E
M e Mo+ Mo o X, yeM Xap+ Y/ €M Mo Mg %

J
0e M/ »
Hence M /2, is suitably convex. Take W ~ M/2

Ad Post.l.2.2. : Theorem 1.6.3(4).

Ad Post.l.2.3 : If M 1is convex, so also is /=M-M vy
Theorem 1.6.3 (5,6). M 1s such that if ¥ € VN , then — X &/V.
To prove this statement : (1) let x € M , then — X € — M
—Xx+0 €N, —~x N ;5 (2) let xeM E-M, but ¥éMN . Then
X=X =Xz , X, , %X, € M . Thus — X =X, —X, , Xz = X, &N,
Hence « MVc NV for —/ £« < [ by convexity since 0 & IV, .

Now we wish to show that there exists 2 = 0 such that g/N<c M,
For then FN———/\/*CM. ‘

Both N and M are origin centered convex (Def.l.6.2).

let x ¢ F(M) , and suppose to avoid triviality that

Rlcm), B(M_N)) =+ o . Then for some X € F(M) ana
some A >/ we have AX € F(N) . Therefore X & ATTEoN).
Consider the set {/\—/] of such A ' . This set is clearly
bounded from zero since M contains a U/ , 0€ F(U), and

o« X 1s continuous. Let B = j_-l- . ¢ ’\_lj .

Then gN €M . puaN =N cM, -1+,
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Ad Post.l.2.4 : Let U €U . Denote by (/,p, the convex hull of

U . Then Uy, 1s suitably convex, U c U, . . U

contains gcentered convex set « V', some Ve , —/ =X s #1.
Let x € F(«V)  x =0 .Take g= 9.L. 0 AT F
where Ax € F (U, .,/ . B 1s bounded from zero.

BUeony € ¥V C U, B Uiopy 18 suitably convex by Theorem 1.6.3(6).
Thus every U & 74. contains a suitably convex kernel. Finally

let (/ be successively the L/ of Post.l.2.4, giving the result.
Ad Post.l.2.5 : Take any K(d)éF. Then since f&/} is continuous,

it i1s to a bounded set S < L . Hence given any /¢74, there

exists & with S c« (/. For any suitably convex M take ¢ < M
since 0 € M; ., Then Z(o() c Sc all ¢ M.

X M 1is suitably convex by Theorem 1.6.3(6). f € (/,.— ~aM.
Ad Posts.l.2.6 and 1.2.7 : Theorem 1l.6.3(5,6).

This completes the proof.

Corollary 5.2.2.1. The topology (7Lr) describes a regular Haus—

dorff topology for F =

Corollary 5.2.2.2. If f,j ¢ F and o is any real number, then

;qj i ogz are continuous in Z’ 3 j and o , 7; » respectively.

Lemma 5.2.1. F is spatially convex in the sense of v.Neumann.

Vide p 1. F 1s locally convex.
Proof. For the first result we show that if M€ JJJ , then

M+M = 2M = MmT e 777 .
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That M+M >2Mig clear.

Let X,4y €M . Then Xx+y ¢ M+M (x4 )J(xﬂu;;)/‘l g_[w_f/v%
(x—k?)/x ¢ M by convexity. X+l}62.M)M+MCZM,
To prove the second statement take Uz € UL, | M~ Up .

Let g’(x)y 3(0() c M . Since F 1is linear AZ”(o/)-,« (/—A)j/wéfj
for each A ,0< A £/ . But /M is convex. Hence for each

« € Lo, | /\f(q/o)—l-[/—-(\) J(a/o ) €M,

Thus the local convexity.

Lemna 5.2.2. TLet Y(pm) be on Co,id ta Ly € L,osel,

ir 0(‘3/01% exists for alléke):a,l] ' then;(cu.) i1s continuous in & .
Proof. By Def.2.2.3, UeZl pm€ Lo, 0T Jal< S (V) u+delo]
imply A7/ L Y (w+d) =g () T € dyldp + U -

Then ‘g_(tx-l-r\)"‘;([,«.)éf\tdg/ok(-ls + UC] . Here [Al< I,

Let S be that open set consisting of all points of the form
o(X,XéF(o‘u}/rl(.& +U))Ioll<l . Then IA| < §(S)
implies 13(5.4-)‘) - 363\) ¢ K

Lemma 5.2.3. Let E be an arbitrary open set, 0 € E < L. .

Let M Dbe any suitably convex set with 0 € M c L. . Then if
Zo{m % 1s a proper real null sequence there is determined
m, = moCE'>M) such that m = m, implies d/m M c E,

Proof. Since E 1is open, o € E , there exists V (e¢U) <€ E .

Apply the proof of Theorem 5.2.2 (1.2.4).

. o
Lemma 5.2.4. Let Ifd,j) = fj((‘")otl‘* & 0o Lok |.
(<]

Then I'(o() 3) is a linear function of { on F to F , providing

S((.L) is to M€ 1] and L 1is complete.
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Proof. First, it 1s clearly additive and homogeneous of degree
one by Theorem 3.2.1.

Second, it is defined on F since through Theorem 1.6.3 (5)
M+M e JT1 1f M EJT]. It 1s also to F by the mean value
Theorem 3.2.2.

Ad continuity : This need only be shown at the zero funection.
Let E € F be open, 0 € E, By Lemma 5.2.3 choose M, so that
.M =N c E . By Theorem 3.2.2, 4 (p) & N  implies
fodg([,.)dt,.,—_-o(gr(a’) and 3”‘6N . Since

¥ e« Co, 1 d and N 1is convex, we also have z:(j*e/\/c-E'

completing the proof.

Lemma 5.2.5. Let N be a bicompact set <« L. ., Let /[ be that

set € F consisting of all continuous functions on [Co,1J

to N ., Then 2 1is bicompact in F .

Proof. Let _E be any infinite open covering of /3 . Then

1f R e X, let W be that set on N to which /2 corresponds,
i.e. which contains all the functions composing /& . W

is taken as the minimal such set. Then W 1is open. For let
") & F(R ) . Then R(«) is the 1limit of a sequence of

functions ¢ [ , /(@ )é [{, , Hence for each value of « ¢ Lo, ’—-J;

nldy) € F(W) by the definition of W , Thus W = W, .
o)

Therefore corresponding to 4L 1g an infinite open covering UL

of N . This contains a finite covering since N 1is bicompact

and hence _2- also contains a finite covering, for the result.

Remark : By a similar proof the same result holds for compact

sets replacing bicompact ones in the above lemma.
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Tychonoff [20] has given the following extension
of the Brouwer fixed point theorem. Cf. also [21], [23], and
especially [22].

Theorem $5.2.3. Every continuous mapping of a convex bicompact

set of a locally convex linear topological space into itself

posgesses at least one fixed point.

The abstract function space F is suitable for an
application of this theorem by virtue of Theorems 5.2.2 and 5.2, 3,
Corollary 5.2.2.2, and Lemma 5.2.1l. Tychonoff speaks of a linear
space as being topological when a topological ordering has been
introduced in some fashion under which the linear operations are

continuous.

The following existence theorem may now be stated :

Theorem 5.2.4. Let _t’(p,g)be continuous in the pair M, 4 ,
and defined on [ o0,/ x L, (o€ L, cL )to a bicompact and
convex set A <L, o0& A . Then within the class of continuous

functions Y (um)on Lo, 10 to L, , the differential system

(1) d.y/a(.[& = f(‘u.)g) 7(0):0

admits at least one solution.
Proof. A is bicompact, hence compact, hence bounded and complete
by Theorems 1.8.3 and 1.8.4. Therefore the integral theory
applies for functions to A .

By the theorems established in Parts 3 and 4, the
solution of the problem 1s completely equivalent to assuring our—

selves that a solution of the integral equation
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(2) *é_(t).):: g‘z()s,‘-é(A))o‘,\

o

<
)o__lu,f_lj

exists.
Let AF denote the set in the space F that contains

all functions 3(&) c A . First it follows that

[Ty cprde € A

For by Corollary 3.2.2, {x g () dp = o, 5_ , 5 ¢ A .
By convexity, since © € A | o(j- = 5*0/) CAJ 5*64}: #
L, n A #F 0 . Let {«, § be a proper real null sequence
and as in Lemma 5.2.3 choose m, such that for some m = m, 5
€, A< L, . Put # A = A%which 1s clearly convex and,
as a subset of a bicompact set, also bicompact.

By Theorem 1.5.3, members of the class of continuous
functions on [o,1] to L, may be taken to a bounded set A’Fc Ly s
Since by hypothesis .f(@-,; t@.)) is continuous in the pair of
variables, it follows from Theorem 1.5.4 that it is continuous
as a function of f . Hence .Cdg(‘«, Y () ) o(‘uk
is well defined.

Since [ (., j(Pl)is a given fixed function, the

above remarks show that
o
(3) 20l ) = { [, gd) dpe

is an integral transformation taking A:' ( A:N A*, /-): c Agp )]
into itself. ‘

By Lemma 5.2.4, (3) is a continuous transformation
and by Lemma 5.2.5, A: is bicompact, and clearly convex. Thus
Theorem 5.2.3 applies and at least one solution of (2) and hence

of (1) is assured.
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Remarks : This technique apparently furnishes no information

as to the uniqueness of the solution achieved.

It is to be noted that the conditioning of the
space [. by the requirement that a bicompact set be imbeddable
in 1t does not inhibit the assigned topology. For example, any
finite line segment in [ 1is such a convex and bicompact set,
and in this connection compare particularly é‘5.5, where a

solution in this pre—existing situation 1s explicitly exhibited.

That is, A 1s not a neighborhood nor will it in
general contain a neighborhood, for thesg are in general un—
bounded. Thus the imposition is not local in the customary sense
of that word. In particular the non-metrisability of the space
is not affected. We feel that such pseudo—local conditions have
an as yet unmarked importance in the theory of linear spaces

guch as these.
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§ 5.3

When the Cauchy method of successive approximations
is applied to the differential equation dy /oden = [ (.4 )
to construct a solution in the small for spaces in which a norm
is defined, a sphere is selected for a Lipschitz condition in
which the differences of the function values of [(g, 4 )
are required to lie, uniformly independently of 4 . That is,
it is supposed that there exists a number M > o0, independent

of [L and 1 guch that

(1) l r S ( (o EI YU s MLy - 9 i,
The rigidity of the norm obviates any essential knowledge of the

form of the function t(f~>3).

One natural way of abstracting this condition to
our situation is along the lines of Part 2. One could demand
that there exist a neighborhood (/ with frontier point M(y - 5’ )
such that
(2) f‘é*:;})“f(ka_j)é UM(J j))
analagously to (1). But since hﬂ(;-g') 1s only one frontier
point of a rather fluid set (/ , which may also be unbounded,
{(esy) — (e, g ) is.not in general expressible in
terms of N\(z._ E ), for use in the integral, as is effectively

the case, in norm, for (1).
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Rather abortive attempts and results, assuming (2)
show that a stronger inclusion idea 1s necessary. Something
along the lines of the definition inclusion for the derivative
and the integral rather than one pivoting on one frontier point

is required, if Y ( ) is to remain unconditioned in form.
t‘:j

We content ourselves here however with the demon-—
stration of solutions for the differential system in which the
function t‘?w%)is taken essentially linear. An extension to

polynomial forms appears practicable.

As a prélude to this we consider briefly questions

of uniform convergence of series of functions.



55.

8 5.4

co
Definition 5.4.1. The series 2/ gm (o) of functions
MN=0

ﬁm («¢) on a real interval LA, Azdto L,c L, is sald to

be uniformly convergent on that interval, if given any open
sett S ,0¢€ Scl, there is determined m,=m, (S), which does

not depend on « , such that for all m =z M, and for all « ¢ Er\;,f\sz

oo n
2 ., (a) = & Fu(«) € S,

o) = VY=o

The following useful test is the abstraction of

a theorem of Welerstrass :

Theorem 5.4.1. If { ~ém(01>}1s glsequence of functions on [A),Azd
& =4
to L,c L, then J gm («) 1is uniformly convergent on L A;, Azl
M=o
if there exists a convergent series of positive real numbers

%; L., say, and a bounded set 7 , 067 < L , such that

I, () € o T

N

for all m and all # ¢ LA, A;]. L. 1is supposed complete.
Proof. Since p — 0 and T 1s bounded
A, T) = (o) .

Hence for each value of « , _fm () —>0 ¢ L . Consider any

fixed value of o , say « . We then have a series of constant
abstract elements, Z fm s Wwith fm -2 0 .
Since /] f(m is convergent, given 8 >0 , there is determined

m, (§) such that m >m, implies
B, — o p, € (o,8).

Hence =
- ; —
Z f v v € S.1

“zo v=0
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But § 1is independent of &« and hence m, is also.
Given any open set J , 0 € S ¢ L , § may be chosen so that
§. T ¢ S gince 7 is bounded. Cf. Lemma 5.2.3. Hence the

uniformity when completeness is used on the partial sums.
The next theorem also abstracts readily :

(<]
Theorem 5.4.2. Let Z,’ ,Bm (/) be a uniformly convergent series
M o a6

of real functions on L A;,A;d. Then the series e, Xm (o)
’n:—‘g

of functions on [A;,Az2dto L converges uniformly on L A;, Az Jd
if there exists a bounded set T , 0 € I < L , such that

Lo () € P (L), T
for all m and all & ¢ [ A;, Azl.

Theorem 5.4.3. The sum of 2 uniformly convergent series of

continuous functions on [A;,A,Jto L is a continuous function.

m
S, (o) =v4:JO Z,(x) . Then as usual S(«) = 5, (L) + 12, («)

co
Proof. We use the notation of Theorem 5.4.1, with S(«) :/nZ} fm/“/})
E— =g
where () is the remainder after m terms.

Let « and o+ S« be in LAy, Az 1. Then
SCd+8at) — Slo) = 5 (d+ 8 ) =3, () + 1y, (d+Su)— Ny, (),
Given any open set S we can choose M, such that m 2 m, ( s)
implies n, (d+ 8« ) f,(«) € 3 for all permitted « and & o .

Fix N >m_ . Then S'”(o() is a continuous function of «
since it is the sum of N conf.inuous functions. Hence given
an open Sc L p>0 is determined such that §« € (0 o) implies
Sy ld+8x) — 5, () € S . Hence for &dé(ODP)J
S(od+ 8] —5(l]l € §45S~S . The rehes. is clearly open and

arbitrary.
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§ 5.5

Definition 5.5.1. A function fca) on the real numbers to a

bounded set E < L. is said to be measurable if for every
bounded set SCL the set of real numbers for which [(«x) & S ,
written E L )g € S , is measurable.

Remark : The characteristic properties of measurable functions

are readily carried over.

Theorem 5.5.1. Let (1 ) dy/dw = (g, 4 ) be the first order

differential equation for which a solution is desired. Let 3_(¢~)
be on ft to L, ; ‘i(glj)on RyxLy, (0€l, = L)to S< L |,
with § bounded, such that J(u,o) is measurable. Let F(u,y ) be
additive in the set A, j. o Let <J_(o) = 0 . And lastly take
L. complete.

Then}there exists a continuous function ;(‘u ) on 7?0
to Lo that satisfies (1) and also the initial condition that
4y (o) = D,

Proof. As previously remarked in Theorem 5.2.4 the solution is

equivalent to the determination of a continuous solution of
tA

(2) *}(h):j‘:g(,\)g()s))ot)‘
[~]

By additivity, {(gp,y) = L(ps0) f(O,g )
and f(tu‘—bttI?O) = f(‘k,’)o) 5 z(‘uljo)a
Now as 1is readily verified the analyses of both Sierpir{ski [24]
and Banach [25] translate with minor modifications to this range

space. Hence we have
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(3) ‘C(@)o) = t.&f(lpo)

and ((ﬂ)o) is a continuous function of /(. . Hence from the

additivity relations it is clear that Z(l‘“a ‘J) is a continuous

function of i for each 9 - By Theorem 3.3.2, ‘é’( e, 0)

is integrable and we may write

© - 1
_ _ P ¢
(4) Yy, () = [ ‘((/\Jo]a(A.._;:‘K(I,o)e__:,S

by virtue of (3).

Thus 4 (@) 18 continuous and so ‘go( w9, () )

is continuous. Write

J

[&.
(5) j&ctﬂ)”‘g‘(t&)—: L E'Z(/\>3‘(,\))*'Z)(/\Jo)jd/\

= it&%’f _[.(07 i(‘>°))d/\'

The homogeneity of é’(f\,-j) in 3‘ is shown in the usual way. Hence

3

Ik'

32
9. () —-J‘(‘L&) = _g:'_. Zﬂ("af(’ﬂ))(“:{!"s'

One proceeds now as is usual with the method of

successive approximations, defining recursively

&
(6) 1o, BV = f“é(),gm()\))o(/\.
There arises
tAfM"-‘
S
7 ( - () € T
(7) T (&) = Gy 1! Y

By Theorems 5.4.1 and 5.4.3 it is clear that the sequence

B 0y, — 8,04 Oyy- 4,0 4o O =, B o
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is uniformly convergent to a continuous function 3 (t~)'
Then, proceeding to the limit in (6) we have

t‘k
e = J LA g o da

o

Clearly 3_(0) =0

Remark : The same theorem holds if Z[t*’j ) is subjected to the

following alternative conditions :

(1) f(ﬁ,;) is to a bounded, closed and convex set S < L
(2) for each pair Y , 5_ € L, , there exists a bilunivocal
and bicontinuous transformation 7 , that is homogeneous, such

that S
e,y = L, T = T Cplprcg=50)

where (n) is a real function and X ¢ S implies T (x) & § .
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Appendix
[

Consistency example for Postulates 1.2.1 - 1.2.7.
It is readily verified that complex Hilbert space,

ef. [26], as weakly topologised by v.Neumann [1], satisfies
POStSo 102-1 ke 102050

The definition of fundamental set is : for A1=I7ZJ,,,;

and S’,DEPL7,,,614)S>0 define Uz(‘:l’la,,,b‘:"m;;)

as the set of all points Z ¢ H satisfying the ,m inequalities
lcf, v, 01 =4,
Ad Post.l.2.6 : For I(f ¢ )/<fand a given & ( #o) ;
(g, )11 S it d =5y , «7el,,
Ad Post.l.2.7 : Take two neighborhoods b& ( T S )

CZ

and V, (¥, ..., an : 5 ) for which
(4,9, =8 ,v=t,ms (L, 902 85 m=i, 0., m ,
We must show that there exist iﬁ; and an 1 > 0 such that
1 Cf+C 5 Fpd 1< 9.
T = = <
Take \?P’\f-u"' \ft" so that (i-..mrm __ .
Now lcﬁ+g,‘f_‘)+?t~)155+£+I(*g,yr)l+/(‘g,${u)/,

By Schwartz' inequality, for any z’é H , we have

- P A - Y, k
PCg g ) 2 0 401y e, 0 s/ g, gl

l/.')
Also

Y 4 4
[Cf, 0 1€ Tag (ol 1, g 2 1, ]
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Hence for any { e U, , g’:# o
ic(,?t*uf:<3lcf,%)lszfgg9:@:1{,/4(,\,
Similarly, [ (¢, ¥, )| = I3 .3 .

Hence take 4 = s + f_—l-/(scf -/—/?;J and U, + V, = W, .

Notice that each of the so defined fundamental sets

are convex. For if }, 9 ¢, , @0 2 a% ] then

I(o(‘g-kf—a(j‘)“j’v)’f.!(d‘g)‘fv)l—l-l(l—-:o?j,‘fu)/
L wS—+ iI—-d = §,

Hence V‘f-’- I——_Zj f‘u_zl v

However every neighborhood 1s unbounded. To show
this consider U, ( ¥, ,..., ¥, MY d
Now %, ., ..., Y, determine a linear manifold 4 ¥owvans q.
Since m 1is finite there exists %’*6 H orthogonal to this

-1

manifold. Hence if { o, { is a real null sequence &, (’f ¢ 1/;\,
since :/,(g’f;’:fv)/ﬁ'for V=[5, M .Furtherzfio .
Thus as &, =0 , 4, A/m—'Z’F__?Z’”‘ =+ 0 .

V.Neumann proves that (%,) violates both of the
Hausdorff countability axioms. Cf..[1l] and [2]. Hence after
Birkhoff [7] it follows that M under (le) is not homeomorphic

with a metric space.
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$a.2

The space of all bounded linear operators in Hilbert
space which form a linear space by [26] p 65, also weakly topol-
ogised by v.Neumann [1], verifies these postulates also. Denoting
the space by B » it is subjected to the topology (Z/Z.f}as follows:
For any m = 1,2,:.0 5 6 000, Y, ¥, € H,§>0define
Up (9, ¢ m §) as the set of all bounded linear operators

A el satisfying the m inequalities

[CAe, ¢ )] £ d.

We verify the postulates for this space.
Ad 1.2.1 : Clear from the convexity of the fundamental sets.
In fact Up+U.= 2 Ues .
Ad 1.2.2 : Consider the sets U (%, % m &) ana (¥, ¥ m :f ).
\pv$41)>;;_)—k1;)_ are fixed in H . Let /m=m+/177

€= mm (F, 5§ ) . Then the set ¢ 3 such that

[CAY, ¢,)11 < ¢ V=, ., MM

is 2 subset of both U, and \{\ .

V- since /(dz7j)/:/a//~/(f,j)/,
Ad 1.2.4 : Select m=1, ‘P) ¢ & H . Let —ffmibe a real

Ad 1.2.3 : Clear with Q}::

null sequence. Take the sequence { Up.( ¢, L I )f

and suppose there exist¢ed a non-null operator common to all
members of the sequence. By continuity it would be bounded from
the null operator in the inner product and | (T ® %) [ £ S
would be contradicted.

Ad 1.2.5 : Take Up (¢, 4 ¢ m ; §) and & fixed T € B .

Since T  1is bounded [ (T ¢ e Yl g e, ou ¥, 0,
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put M= PNE (NS, U0 E, ) L then [ (T, v, )] < E%'__SC,
Hence I(S/C’M.,_,T*f_u)*f-_u)l _Sa"’v—:l,z,...,m.
Thus §T/cm> = A € U ., o= M /S s e vU
Ad 1.2.6 ¢ %\{s_(?)%;m;S):Ur(S‘J%,'my' S. /741 ),
Ad 1.2.7 : Take U (¥ ¢ 40 8), Ve ( &, Tj:’).;,-], 5 ).
Let m = max (m ;m), ¢ = L. u, ‘. of the bounds
of the operators of Lﬁr . Erof the bounds of those of Pé. &
- Mma . o
Let M= U I, by gy, W00 ¥ W),
Then — - IR e o
¢ ca+r2 (Y, + 5 ), 5‘,,-*‘/;,)1-5"‘54-3"4(""'6)
Thus W, 1is the neighborhood W,. ( § , £ ; m ; p)
where for V= 1,..., m | _%-_u = tp_u.‘.upv"_f:v—_: Z—y—f%_u;
and for ¥ = Ww+1,.., = v - .
Flsm , Fo Yo e Bop= ¥5 ¢
with p = §+§ + 3MmM* (c+7CT).

Clearly the set of operators of Uy-{- Vr is exhauted by the
A+ 13 of Wg .

This space again violates, [1], both countability

axioms.

It is obvious that all linear normed spaces are

of topological type L .

For further examples of linear topological spaces

see [6].
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$ A3

Various independence examples.

The numeration refers to the postulate denied.

1.2.7 : Consider the linear space of ordered number pairs in
the plane, subjected to the customary vector addition and
multiplication by real numbers. Define the fundamental sets
about the origin as those sets bounded by closed, simple,
origin centered symmetric curves whose minimal radius vectors

occur on the axes and whose maximal ones occur on the lines 3-==i:x,

1.2.6 : Take real Banach space. For the sets U. take the set

of all spheres of rational radius only about the origin.
1.2.5 : The linear continuum with all U= (o) .
1.2.4 : The linear continuum with all UV = the whole space.

The complete intra—-independence of this set of post-—
ulates has not been established. It is suggested that 1.2.2 and

1.2,3 may be dependent, as also may be 1l.2.1 and 1l.2.7.
$ A4

The following example shows that all of the funda-
mental sets need not be connected. Take the linear continuum with
sets U of three types :

(&) open segments about the origin, X[ <M ?
(# ) open sets about the origin, [¥| <M , plus the points lxl>N,N>M5
(4 ) the space itself.
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