CaltechTHESIS
  A Caltech Library Service

Sea Ice Discrete Element Modeling: Melt and Fracture of Floes and Sheets

Citation

Moncada Lopez, Rigoberto (2024) Sea Ice Discrete Element Modeling: Melt and Fracture of Floes and Sheets. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/erqr-cr51. https://resolver.caltech.edu/CaltechTHESIS:07032023-235459528

Abstract

Over the last 40 years, the Arctic Ocean has experienced a significant reduction in surface area and thickness of sea ice for its minimum summer and year-round values. Sea ice, existing both as continuous ice sheets and distinct broken floes or blocks, is disappearing earlier and faster over time. These changes are largely occurring within marginal ice zones, where ice is most vulnerable to thermal forcings from the sun, oceans, and atmosphere and wind and ocean currents. Given that sea ice plays a vital role in regulating climate by delaying global energy exchanges, its loss is a vital factor in increasing global temperatures and the frequency of extreme weather events. Understanding and projecting seasonal variations in sea ice is imperative to improve climate predictions. However, many of the processes in sea ice are not fully described by most existing models, due to the limitations of continuum sea ice approaches. As a result the use of discontinuum techniques on sea ice is a very active field. In this work, we combine discrete element methods with satellite image analysis to study changes in sea ice concentration and floe size distribution during the summer melt transition for ensembles of distinct floes decaying into open waters and continuous fast sea ice sheets breaking into multiple floes. For the pure floe-like behavior, we use the `Level Set Discrete Element Method for Sea Ice' or LS-ICE method. This model can resolve individual sea ice floes with realistic shapes, and represent their physical interactions by leveraging level-set functions to detect contacts. LS-ICE can also be coupled to atmospheric and oceanic heat and momentum forcings and simulate associated melt and breakage processes. With it, we are able to reproduce sea ice concentration decline for the summers of 2018 and 2020 at Baffin Bay. Using LS-ICE we also unveil the sensitivity of sea ice loss and floe size distribution to different intensities of fracturing and ocean/solar melt and how sea ice floe size determines which is more dominant. For monolithic landfast sea ice sheets, we use a bonded particle method within the level set discrete element model called LS-DEM-BPM. We explore the relationship between landfast sea ice breakage and area decline, ocean currents and floe size distribution for a region in Fram Strait in 2023. We also replicate its fracture characteristics, using idealized pulses and arbitrary eddying ocean currents, and unveil particular combinations of wavelengths and wave speeds that facilitate breakage. Our results give new insight on sea ice melt and breakage interactions and provide a numerical framework for simulating the complete transition of sea ice from intact sheets to open oceans.

Item Type:Thesis (Dissertation (Ph.D.))
Subject Keywords:Computational geomechanics, Discrete Element Method, Sea Ice, Floes, Landfast sea ice sheets, breakage, melt, FSD.
Degree Grantor:California Institute of Technology
Division:Engineering and Applied Science
Major Option:Civil Engineering
Thesis Availability:Public (worldwide access)
Research Advisor(s):
  • Andrade, Jose E.
Thesis Committee:
  • Lapusta, Nadia (chair)
  • Asimaki, Domniki
  • Thompson, Andrew F.
  • Andrade, Jose E.
Defense Date:13 November 2023
Non-Caltech Author Email:rigoberto.moncada.lopez (AT) gmail.com
Funders:
Funding AgencyGrant Number
Army Research Office (ARO)W911NF-19-1-0245
National Science Foundation (NSF)JEA.NSFCMMIECI-1-NSF.2033779
National Science Foundation (NSF)NSF-OCE 1829969
Office of Naval Research (ONR)N00014-19-1-2421
Record Number:CaltechTHESIS:07032023-235459528
Persistent URL:https://resolver.caltech.edu/CaltechTHESIS:07032023-235459528
DOI:10.7907/erqr-cr51
Related URLs:
URLURL TypeDescription
https://doi.org/10.1016/j.cma.2023.115891DOIArticle adapted for ch.2
ORCID:
AuthorORCID
Moncada Lopez, Rigoberto0000-0001-7655-5406
Default Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:16133
Collection:CaltechTHESIS
Deposited By: Rigoberto Moncada Lopez
Deposited On:02 Dec 2023 00:58
Last Modified:21 May 2024 22:31

Thesis Files

[img] PDF - Final Version
See Usage Policy.

62MB

Repository Staff Only: item control page