A Unified Framework
for
Constraint-based Modeling

Thesis by
Devendra Kalra

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology
Pasadena, California

1990
(Submitted May 31, 1990)

(© 1990
Devendra Kalra

All Rights Reserved

i

Acknowledgments

My foremost thanks go to Al Barr, my advisor, for his advice on my research, for
his friendship and for his trust. Al has created a wonderful intellectual and physical
environment at the Graphics Lab at Caltech and it was a great learning experience
working in Al’s lab. He has provided excellent advice, flexibility and moral support
throughout my graduate career.

I would also like to thank Ronen Barzel for his extensive cooperation in software
design and implementation, for his ideas and discussions, and for always being a very
pleasant person to work with. Thanks go to Jim Kajiya for very useful discussions.
Thanks go to Joel Burdick, Mani Chandy, Jim Kajiya and Steve Taylor for being on
my committee and for their valuable suggestions.

Amar Gandhi helped with modeling for some of the simulation examples presented
in this thesis. My thanks also go to Tim Kay, Dave Kirk, David Laidlaw, Mike Newton
and John Snyder for their help and friendship.

A special thanks to Carolyn Collins, group mother and secretary, for working so
hard for all of us. Carolyn has been amazingly resourceful and supportive under
extreme conditions of temperature and pressure!

Finally, big thanks to my parents, Sohan Lal and Suman Lata Kalra, for inspiring,
encouraging and supporting the need for a good education.

All the software described in this thesis was developed on HP9000/835 machines
donated very generously by Hewlett Packard to the Caltech Computer Graphics
Group. The research described in this thesis was supported in part by NSF under
Cooperative Agreement No. CCR-8809615.

111

Abstract

Constraint-based modeling techniques are emerging as an effective computer graphics
approach for modeling and designing objects and their behaviors.

In this thesis, computer graphics constraint techniques are unified into a single
conceptual framework. The central themes of the thesis are methods to partition an
arbitrary constraint problem in different domains and at different levels, and to pro-
vide a language and computational environment for modeling with constraints. Using
partitioning and composition schemes, complex simulations can be built hierarchically
from simpler simulations by “plugging” together separate modules. Fundamental and
basic structures are designed and implemented to provide an “Assembly Language”
for simulation systems. These structures are put together through a collection of
interfaces, much like multiple languages that use the same assembler on a computer.

We use strategies called refinement and partitioning to integrate seemingly dis-
parate constraint techniques. We present Temporal Sequencing as an approach to
design complex time behaviors of simulation systems.

Refinement is a top-down approach of transforming high level representations of
a constraint modeling problem into representations that are closer to the basic solu-
tion mechanisms available in the constraint environment, such as numerical solution
methods. Partitioning is the decomposition of one constraint problem into multiple
simpler constraint problems that are then studied separately. Temporal Sequencing
1s a methodology to design the time behavior of a simulation system by composing
time behaviors of the system over subintervals of time.

Using the above partitioning schemes for the solution and specification of a general
constraint problem, we create a unified constraint environment with the capability to
both solve constraint problem instances and to create specialized constraint systems.
New methods of constraint specification and solution can be added into the same
constraint framework as new methods are developed.

Based on the above approach, a modeling system called “Our Constraint Envi-
ronment”(OCE) has been implemented. A programming language as an extension to
C++ has been designed to provide an interface to OCE. The language provides the
constructs for the partitioning schemes discussed above. Simulations created using
OCE have shown the efficacy of our design approach.

v

Contents

Acknowledgments
Abstract
Contents

List of Figures

Part I: Introduction

1 Introduction
1.1 Background
1.1.1 Current State of Modeling in Computer Graphics
1.2 The Unification of Constraint Modeling
1.2.1 Approaches for Constraint-based Modeling
1.2.2 Unifying Constraint-based approaches
1.3 Brief History of Computer Graphics Modeling
1.4 Benefits of a Unified Approach to Constraint-based Modeling
1.5 Organization of the Thesis

Part II: Theory and Concepts

2 Elements of a Constraint Environment
2.1 Definition of Object
2.2 Definition of Constraint
2.3 Simulation Entities and Representations
24 Summaryo e

3 Designing a Unified Constraint System
3.1 Examples of Constraint Problems

il

v

ix

00 3 UL ot i o N

CONTENTS vi

3.2 Our Approach for Unification of Constraint Techniques 22
3.3 Considerations in the Design of a Constraint-Based Simulation System 26
3.3.1 Our Goals for the Simulation System 26
332 KindsofUsers 27

34 Summary e e e e 28
4 Refinement of Constraint Systems 29
4.1 A Layered Structure for Constraint Systems 31
4.1.1 Layer 1: Constraint Specification 31
4.1.2 Layer 2: Constraint Approaches 33
4.1.3 Layer 3: Mathematical Specification 36
4.1.4 Layer 4: Generic Numerical Interface 37
4.1.5 Layer 5: Symbolic Manipulation and Structuring 38
4.1.6 Layer 6: Numerical Solution Techniques 39

4.2 Advantages of a Layered Approach 39
4.3 SUmMMATY . . . v v v o i e e e e e e e e e e e 41
5 Partitioning of Constraint Systems 42
5.1 Use of Partitioning in Constraint Systems 42
5.1.1 Independent Subsystems 43
5.1.2 Sequenced Subsystems 44
5.1.3 Unpartitioned Systems 45

5.2 Constructs for Horizontal Partitioning 46
5.2.1 Concurrent Solution 46
5.2.2 Solution in Local Coordinate Frames 47

5.3 Advantages of Horizontal Partitioning 49
5.4 Summary e e e e e 49
6 Temporal Sequencing 50
6.1 Useof Timein Simulations 50
6.2 Classificationof Time. 51
6.3 Systemsof Events. 52
6.3.1 Specification of an Event-System 53

6.4 Organization of Systems of Events. e e e e 53
6.4.1 Initialization Behavior and Termination Event 54

6.4.2 Composing two event-units. 54

6.4.3 TimeGraphs 55

6.4.4 Merits of Time Primitive Abstraction 59

6.5 Applicability of Time-Event Approach 59
6.6 Implementation of Systems of Events 61

6.6.1 Simulating a System of Events 61

CONTENTS

6.7

Summary o e e e e e

Part III: Language, Implementation and Examples

7 Language and Implementation

7.1

7.2

7.3

Design of an Interface Language
7.1.1 Possible Approaches for Interface Language Design
7.1.2 Language Design Approachin OCE
7.1.3 Choice of a Base Language
OCE Implementation
7.2.1 Review of C++: Existent Features of the Base Language . . .
7.2.2 Implementation of Refinement Layersin OCE

7.23 Partitioning
7.24 Temporal Sequencing
7.2.5 Syntactical Extensions
7.2.6 UserlInterface
Summary

8 Examples of Constraints

8.1

8.2
8.3
8.4

Building A Package on OCE Layers
8.1.1 Heterogeneous Objects
Multiple Solution Methods
Time-Event Simulation 0 L
SUMIMALY « « v v v v v v vt e e e et e e e e e

Part IV: Conclusions and Appendices

9 Conclusions

A Mathematical Techniques for Simulation

Al
A2

A3
A4
A5

Cartesian Coordinate Frame Transformations
Quaternions e e e
A21 Definition
A2.2 Quaternion Algebra L.
A.2.3 Quaternion as a Rotation
A2.4 Converting a Quaternion to a Rotation Matrix
Dualof avector
Numerical Solution of Ordinary Differential Equations
Calculus of Variations

vil

64

67
68
63
69
69
70
70
73
81
86
86
87
89

90
90
93
95
98
101

CONTENTS viil

B Constraint Satisfaction Techniques : 112
B.1 Rigid Body Dynamics 112
B.2 Inverse Kinematics 114
B.3 Inverse Dynamics 114
B.4 Constrained optimization, 115
B.5 Simulated annealing,, 115
B.6 Lagrangian physics 116

C Implementation Examples from OCE 117
C.1 Inverse dynamicsobject 117
C.2 Pathobject 122

References 124

Glossary

List of Figures

1.1
2.1
3.1

3.2

3.3
3.4
3.5
3.6

3.7

3.8

4.1
4.2
4.3

4.4

A summary of the structure of the thesis.
Levels of abstraction of anobject.

Mixing multiple solution methods to simulate a simulation entity. Object D is
moved from point A to point B on a path such that it does not collide with a
moving object C. The path is determined by optimization methods; the object is
moved on the path by inverse dynamics.,
Another example of using two techniques to solve a problem. Simulated annealing
is used to obtain an initial estimate of a shortest path through a set of points. A
numerical technique (such as conjugate gradient) to minimize continuous functions
is used to impose smoothness constraints using constrained optimization.

Constraints and primitives specified over multiple coordinate frames.
An automated workcellof arobot. Lo L. L.
Mixing flexible and rigid objects.
A Paramecium, example of a biological organism whose motion and shape might
besimulated. L oL
Change of representation of a Simulation Entity. An initial representation is trans-
formed to a final desired representation using refinement and partitioning. The
circles enclosed with squares arise due to partitioning. The circles without enclos-
Ing squares arise due torefinement. L L. L. L.

Example of constraint refinement of rigid body motion simulation.

A refinement structure for a constraint-based modeling environment.
Layers of refinement in a simulation system.
A three-jointed robot. The angles 8, 62 and 05 control the position of the tool
T. Part(b) shows three configurations of the robot computed by inverse kinematics
such that the tool T follows the specified trajectory.
Forward dynamics in terms of generalized variables. Lagrange’s method can be
used to determine the equations of motion of the complex pendulum under the

force of gravity in terms of the generalized variables 63 and 8,.

Ix

13

18

19
19
20
21

22

23
24

30
32

33

35

LIST OF FIGURES

4.5

4.6
5.1

5.2

5.3

5.4

5.5
5.6

6.1

6.2

6.3

An example of Inverse Dynamics. We need to compute forces-f7 and Fo; = —Fhy
that would move bodies B; and Bj under specified constraints of path following

and interconnection. e e e e e e e e e e e e .

Solution of a simulation problem through a change of representation. An initial
representation is transformed to a final desired representation using refinement and
partitioning. The circles enclosed with squares arise due to partitioning. The circles
without enclosing squares arise due to refinement.
An example of independent subsystems. We wish to create a figure by centering
text strings inside rectangles. The rectangles are aligned on a line. The “springs”
in the figure are used as a symbol for constraints. Various subsystems in this
example can be solved in arbitrary sequence and the solutions combined after all
the subsystems of constraints have been solved.
An example of sequenced subsystems. To move object A from point B to C around
obstacles D and E, we can first solve for the path, and then move the object on the
path. . . . e e e e e e e e

An example of system that may be partitioned into sequenced system by changing
the level of representation.,

An example of hierarchies in object modeling.
The motion of a complex pendulum is more naturally specified in terms of #; and
02 as compared to specification in a cartesian frame. A generalized frame 1s useful

for systems that use generalized coordinates.

Representation of an “event unit.” An event unit represents the local time behavior
of a system of objects. The system initially simulates according to a behavior rule
B;. When the logical function £ becomes true, the system of objects switches to
behavior rule Bipq.o

Simple event units. A ball is rolling off a horizontal plane. The ball is simulating
according to behavior rule By, rolling on the table. An event L1 happens when the
ball reaches the end of the table. This event causes the ball to switch to simulate
behavior rule By, a free fall under the force of gravity.
An system of events with a zero time behavior. A ball is free falling under gravity
(Behavior rule By). An event L; happens when the ball hits the ground. The colli-
sion event causes the ball to go into a zero length behavior B in which momentum
transfer computations are made. An event L, is caused after the momentum cal-
culations and the ball goes into a free fall behavior B3. The momentum transfer
behavior lasts for zero time although it causes a change in the behavior of the

system of objects. L L.

35
40

43

44

45

46
47

48

52

54

99

LIST OF FIGURES

6.4

6.5

6.6

6.7

6.8

6.9

6.10

7.1

8.1

A time line representation. The system of objects simulates in behavior rule B;

until event denoted by L; takes place. The system then switches to simulate

with behavior rule By and so on. After event Ls, the system stops simulating. .

The “Ground” symbol is used to denote the termination event system(when the
simulationstops). L L e
A simulation generated from a time line organization of events. A ball rolls down
three incline planes A, B, C. At each incline plane, the only event that can happen
in this simulation is reaching the end of the plane. This event causes the ball to
start free falling under gravity. During free fall, the only event that can happen is
hitting an incline plane. This event takes it into incline roll behavior.
A Time Tree organization of systems of events. Three events may happen when
the system of objects is simulating with behavior rule B1. The system of objects
migrates to behavior rule B2, B3, B4 depending on whether event L11, L12 or
L13 happens respectively. Also a behavior rule may be reached from more than
one system of events as behavior B2 in this figure. The actual path chosen by the
system of objects is shown as the bold line.
An Event Graph. An event graph G is a general organization of event units. The

nodes are event units and the edges represent the connections between event units.

Event graphs may containloops.
A simulation generated from an event graph organization of events. The graph for
this simulation contains multi-way branches and loops. The graph has 26 event
units and two loops. A multi-way branch takes place when the ball is knocked by
the piston on to plane A or travels upwards if not knockedoff.
The need for a method to compute time of occurrence of events in a simulation
using discrete sampling times. Integrating the continuous equation of motion of
the particle between discrete sampling g and ¢; times does not take into account
the collision event at {,. The event has to be detected, accounted for, and the
simulation restarted to get the correct behavior.
Pseudo code for simulation of a system of objects S. The system state is known
at t, and is desired at {,41. System S is simulated in current behavior B; until
an event is detected. The state of system S is computed just before the event and

the system is switched to the behavior B,y indicated by the event that occurred.

Translation of NAG fortran interface to a C++ interface for OCE. If an argument
is unchanged in a routine, const is prefixed in the C++ declaration. The term
‘real’ is used to represent the implementation for floating point numbers, ‘foat’ or
‘double precision’. In the implementation of NAG on our computer system, ‘real’

is implemented as double precision.

A rigid body sequence produced from an inverse-dynamics package built on top of

OCE vertical refinement layers.

X1

55

87

o7

58

60

62

65

75

LIST OF FIGURES xii

8.2

8.3
8.4
8.5

8.6

8.7

A flexible body sequence produced from an inverse-dynamics package built on top
of OCE vertical refinement layers. 92
A sequence showing the interaction of rigid and flexible objects using inverse dynamics. 94
A path determined by an optimization procedure to avoid obstacles. 96
An object is moved using inverse dynamics on a path. Inverse kinematics computes
joint angles for a robot that move the object along the trajectory computed by
inverse dyNamics. . . « « v v v v v 4 e e e e e e e e e e e e e e e e e 97
A time-event example. Multiple systems in a robot work cell are simulated. Work
pieces come in on conveyer belt Cj,. The pieces are picked up by a robot, worked
on and delivered to an outgoing belt Cops. L ... 99
Frames from a robot workcell simulation designed as a time-event sequence. . . . 100

Part 1

Introduction

Chapter 1

Introduction

1.1 Background

The process of creating images on a computer, can be broadly subdivided into two
main activities, modeling ! and rendering.

Modeling refers to the creation of mathematical models that represent objects and
collections of objects. This involves creation of the geometry of individual objects,
organization of objects to create a scene or in the case of computer animation, the
time evolution of objects and their motion.

Rendering refers to the conversion of modeling data into an image. The input
to the rendering process consists of mathematical descriptions of geometry and how
light is to interact with the geometry. The output of the rendering process is a
two-dimensional image composed of an array of discrete elements called pixels, each
assigned a color. Computer animation is created by rendering a series of computer
images and displaying the images in a sequence.

1.1.1 Current State of Modeling in Computer Graphics

Modeling in computer graphics may be roughly subdivided into three categories:
kinematic modeling, physically-based modeling and constraint-based mod-
eling

Kinematic Modeling

Kinematic modeling refers to “physicsless” modeling performed through mathemati-
cal structures such as functions or numbers. This includes the simple surfaces found
in most computer modeled scenes: polygons, spheres and parametric surfaces.
Objects and scenes are typically defined by directly specifying numbers to position

!Words found in the glossary are presented in boldface font when they are first used in the
thesis. :

o

CHAPTER 1. INTRODUCTION 3

and orient the objects (as well as for the parameters of the objects). Some of the
earliest and still commonly used techniques to generate objects are curve-editors and
procedural object generators with organizations of objects created as transforma-
tion hierarchies [FOLEY and VANDAM 82]. Similarly, in kinematic modeling, simple
trajectories or scripts are used to control computer animation. Motion is specified,
among other methods, by interpolating between key-frames or by specifying cubic
parametric curves as paths for objects to move along ([STERN 83] [O'DONNEL and OLSON
81]). ‘

Physically-based Modeling

Physically-based modeling refers to modeling objects while taking into account the
underlying physics, usually Newtonian physics. The motion of rigid bodies may
be modeled after Newton’s equations of rigid body motion, the behavior of flexible
bodies may use concepts of elasticity and plasticity theory, and collisions may be
treated using momentum methods. Physically-based modeling provides a high degree
of realism in the motion and shape of models with specification of much less detail as
compared to kinematic modeling, but at the cost of additional computational effort.
Without constraints, however, physical models are difficult to control, other than
simulating straight forward initial value problems. For example, given the state of
a rigid body and forces acting on it, the subsequent motion is computed from the
current state.

Constraint-based Modeling

In constraint-based modeling, desired behaviors of simulated objects are expressed
in terms of constraints among objects, or as goals that the objects must reach. It
is desirable that the computer be able to translate the specifications of relationships
and goals into the required numerical representation. Human beings seem to think
more easily in terms of relationships between objects and do not seem to naturally
think in terms of numeric values of parameters. We might wish to move an object
between two points to optimize a criterion such as energy consumption. In another
instance, our goal might be to put an object on a table. In this case, the desired
relationship is “object on the table.” We would usually prefer not to have to specify
the exact distances and angles in advance that the object needs to be moved through
so that it is on the table.

[BARR 88] uses the term teleological (from Greek word telos meaning end or goal)
modeling for such an approach.

A Need to Unify Modeling Approaches

To design or specify complex systems of objects, we would like to use many different
approaches to solve different sub-parts of the design and specification problem. Until
this thesis, there did not exist a framework that unified the various constraint-based

CHAPTER 1. INTRODUCTION 4

approaches into an integrated modeling environment. We believe that creating an
environment that integrates constraint-based, physically-based and kinematic model-
ing techniques will result in the capability of modeling complex systems. As part of
the constraint unification, we will produce an assembly language for simulations
so that the basic structures in this simulation assembly language can be put together
to create versatile solutions, much like multiple high level languages on a computer
can use the same assembler.

1.2 The Unification of Constraint Modeling

Given our need to unify different constraint-modeling approaches in the same frame-
work, we need to answer two questions more precisely. '

1. What to unify? We need to identify an extensible basis of modeling approaches.
2. How to unify? We need to create ways to make the techniques work together.

The thesis concentrates on solving the above problems.

1.2.1 Approaches for Constraint-based Modeling

We have chosen the following as an extensible collection of constraint-based modeling
approaches?.

e Inverse kinematics

Inverse dynamics

Constrained optimization

e Calculus of Variations

Simulated annealing

Hamiltonian (and Lagrangian) physics

o Differential-Algebraic Equations

The above constraint approaches have been developed for isolated types of con-
straint problems. Most of these approaches have evolved independently and were not
created so that they would directly work together. Most implementations of con-
straint approaches have been quite specific, without the ability to interface smoothly
with constraint approaches beyond the central approach in the implementation. At
first glance, the approaches may seem quite different from each other. For example,
the approaches of inverse dynamics, constrained optimization and Lagrangian physics
have typically been unrelated.

2These approaches are described in appendices A and B.

CHAPTER 1. INTRODUCTION 5

1.2.2 Unifying Constraint-based approaches

As described in the previous section (1.2.1), we have chosen to unify a diverse col-
lection of approaches. To create a strategy to unify these approaches, we use the
following three steps:

(Step A) Create a set of primitive underlying elements for constraint-based modeling
methods

(Step B) Identify the ways in which different elements interact with each other

(Step C) Create a computational formalism of the underlying elements that lets us
use these techniques together

The above steps are independent of any specific approach to constraints and pro-
vide the design of a framework in which not only existing techniques can work together
but future techniques can also be assimilated as they are developed.

We have chosen to define objects and constraints as the basic elements of constraint-
based modeling. A simulation entity, a model of a system of interacting objects
that we are interested in simulating, can be constructed out of the basic elements.

We have identified three general schemes to use in the solution of constraint prob-
lems. They are refinement, partitioning, and temporal sequencing. Refinement is a
top-down approach of transforming “high” level representations of constraint prob-
lems into representations that are closer to basic solution mechanisms in the envi-
ronment, such as numerical solution methods. Partitioning is the decomposition of
one system of objects into multiple simpler systems that can be studied separately.
Temporal Sequencing is a methodology to design the time behavior of a system by
composing time behavior of the system over subintervals.

Based on this approach, we have implemented a modeling environment called
OCE (Our Constraint Environment). A programming language as an extension to
C++ has been designed to provide an interface to OCE. The language provides some
specialized constructs useful in writing simulation programs.

1.3 Brief History of Computer Graphics Model-
ing

Most of the early modeling work in computer graphics was based on kinematic mod-

eling. Shapes of objects were designed using polygons and line segments or para-

metric curves and surfaces [BARTELS, BEATTY and BARSKY 83]. Collections of objects

were organized using transformation hierarchies [FOLEY and VANDAM 82]. A number
of kinematic motion control environments have also been reported that use various

CHAPTER 1. INTRODUCTION 6

techniques like scripts, key-frame interpolation and parametric curves to specify tra-
jectories ([0'DONNEL and OLSON 81] [REYNOLDS 82] [STERN 83] [ZELTZER 84]).

Work in physically-based modeling started with the application of equations of
rigid body motion to model computer graphics objects. [ISAACS & COHEN 87] [MOORE
and WILHELMS 88] [HAHN 88] and [BARAFF 89] are examples of such work. [ARMSTRONG
and GREEN 85] [WILHELMS 87] and [MILLER 88] have used dynamics for simulation of
articulated bodies such as a human skeleton and worms. Simulation of elastic and
plastic behavior of objects was presented in [TERZOUPQULOS et al 87} and [PLATT and
BARR 88].

Isolated constraint-based modeling techniques, both based on kinematics and
physically-based, have also appeared in the literature from time to time.

Sketchpad [SUTHERLAND 63] was a pioneering effort in both interactive computer
graphics and in using constraints in computer graphics. Sketchpad was a two-
dimensional graphical editor with lines and circular arcs as primitives. Constraints
were specified between objects or parts of objects. Each constraint generated an er-
ror, a scalar, which was zero when the constraint was satisfied. These errors were
first reduced using propagation of degrees of freedom and if this failed, a numerical
iterative procedure was used.

Thinglab [BORNING 79], was written as an extension to the Smalltalk Language [GOLD-
BERG and ROBSON 83]. Thinglab was designed as a simulation laboratory to provide
“an environment for constructing dynamic models of experiments in geometry and
physics.” A constraint was specified as a rule and a set of Smalltalk methods that
can be invoked to satisfy the constraints. Thinglab used the rule to create a proce-
dural test to check if the constraint was satisfied. Thinglab used simple constraint
satisfaction techniques.

TEX [KNUTH 84] is a program that typesets text. It reduces a “penalty,” a measure
of deviation from a “good” state, to compute typesetting parameters such as amounts
of space between words and paragraphs and where to start new lines and pages.

[BARZEL and BARR 88] uses an inverse-dynamics approach based on the Newton
equations of rigid body motion. The individual elements in the environment described
are rigid bodies. Constraint forces are computed that together with external forces
cause the rigid bodies to meet the constraints specified on them. [ISAACS & COHEN 87]
uses inverse-dynamics techniques in combination with kinematic constraints.

- [WITKIN, FLEISCHER & BARR 87] and [PLATT 89] present numerical techniques based
on optimization methods for energy functions to solve constraints on flexible elas-
tic and plastic bodies. Bodies react to external forces and satisfy constraints such
as impenetrability. [WITKIN and KASS 88] presents a technique to compute paths as
functions over time by optimizing functionals of paths.

CHAPTER 1. INTRODUCTION 7

1.4 Benefits of a Unified Approach to Constraint-
based Modeling

There are many reasons to develop a unified approach to constraint-based modeling
that allows us to combine techniques together and helps us develop new ones.

1. Utility: Constraint-based modeling provides a useful technique to design ob-
jects and collections of objects. The specification of objects in terms of desired
behaviors and goals provides an intuitive design methodology.

2. Use of solution techniques appropriate to the natural structure of a problem:
The nature of complex problems usually suggests partitioning methods for de-
composition of the problem into subproblems. The subproblems may require
different techniques for their solution. To take advantage of the natural struc-
ture in constraint problems, we need the ability to solve each subproblem with
techniques best suited for it. To be able to compose an overall solution, we
also need that different techniques work in a complimentary manner. With the
availability of a number of solution techniques that can be used in a compli-
mentary way, we get both the ability to solve a larger class of problems and to
test different solutions to the same problem.

3. Computational Efficiency: The ability to partition a problem into subproblems
and to solve the subproblems often leads to considerable efliciency. It is usually
efficient both in specification and solution if the solutions to the subproblems
can be combined to give the over all solution. The strategy of divide and
conquer has been used effectively in many algorithms in computer science. One
of the reasons why this computational efficiency comes about is because different
parts of a computational structure have different time constants. Solving the
computational structure as a whole often forces the solution mechanisms to use
the smallest time constants while partitioning enables us to compute each part
at its own time constant.

4. Reusability of Code and Models: Many constraint methods in the literature use
common solution techniques at different levels. These techniques may be at
the lowest level in terms of numerical solution techniques or at some higher
representations. For example, two different techniques may use the same nu-
merical solver for a system of first order ordinary differential equations. At a
higher level, two different techniques may use the same model of a rigid body
specified by Newton’s equations of rigid body motion. If these basic techniques
and models are identified and implemented as a substrate, techniques that seem
incompatible can be made to work together in the same framework.

CHAPTER 1. INTRODUCTION 8

5. Ezperimentation with New Techniques and Fxtensibility: With a basic substrate
available, it becomes easier to experiment with new techniques. With a properly
designed substrate and a good access mechanism, we can then begin to test our
ideas much sooner than if the entire software environment had to be designed.

6. Ability to Solve Complex Problems by Non-Ezperts: Often some intelligence
can be built into the modeling environment so that non-experts can use the
environment with a reasonable degree of efficiency and usefulness. For example,
the modeling environment may have the ability to choose the proper numerical
technique to solve a system of differential equations based on the stiffness of
the problem or to use an efficient technique in a matrix solution if the matrix
involved is sparse.

The development of VLSI tools is analogous to our constraint unification effort.
The VLSI technology provides the capability to fabricate a large number of electri-
.cal components in a small area on a silicon substrate. Besides the obvious savings
in space taken by circuits, VLSI spurred the development of cell libraries. Cell li-
braries contain standard VLSI modules with well defined interfaces. These cells can
be hooked together in various way to generate circuits, much more powerful and com-
plicated than individual cells. VLSI technology has also permitted us to design and
fabricate circuits that were not feasible with discrete transistors. For example, the
high level of connectivity that is easily available in VLSI has made possible complex
experiments in fields like neural nets. Integrated Chip technology has been used in
making micro-antennas for high frequency applications, micro-probes to probe animal
brain structures and micro-mechanical structures such as motors just tens of microns
in size. The possibility of integrating analog, digital and mechanical components on
the same structure holds even greater promise for new applications ([MEAD 89], [TAI
and MILLER 89]).

In principle, we anticipate similar results from our research. First, bringing to-
gether various techniques that complement each other and second, various modeling
“cells” that can be put together to generate powerful simulation environments.

1.5 Organization of the Thesis

The thesis is divided into four parts.

The first part, Introduction, has already presented the problem that we wish to
explore and has provided an overview of our approach.

Chapters 2 to 6 constitute the second part, entitled Theory and Concepts. In this
part we develop the concepts that provide a unified framework for simulations. In
chapter 2, we discuss our concept of objects and constraints. In the spirit of object-
oriented programming, we define generic objects. Other objects are created from

CHAPTER 1. INTRODUCTION
Constraint Modeling
Unification
|]
What to How To
Unify niry
|| Inverse
Kinematics | I l
Inverse Create Identify Ways Create a
| Dynamics Primitive Elems in which Computational
Elems Interact Formalism
|| gon_st_rain_ed
plimization Objects —1 Refinement
| /S\imulalted Constraints
nnealing strai || Partitionin
ioning 0 CE
° Simulati
® imuiation — | Sequencing
o Entities

Figure 1.1: A summary of the structure of the thesis.

generic objects by inheritance. Various aspects of a constraint are also discussed in
this chapter and a definition is provided. In chapter 3, we discuss different concepts
of structuring in problems involving constraints. We describe three ways in which a
constraint problem can be partitioned for specification and solution. In chapters 4
through chapter 6 we discuss the details of our partitioning schemes. In chapter 4,
we discuss vertical refinement. In chapter 5, we present horizontal partitioning and
in chapter 6, we present temporal sequencing.

Chapters 7 and 8 constitute the third part of the thesis, entitled Language, Im-
plementation and Ezamples. Chapter 7 discusses the details of implementation of
OCE, a prototype constraint environment built on the concepts provided in part 2
and the details of a language as a front end to OCE. In chapter 8, we present example
simulations that we have carried out using OCE.

The final part of the thesis presents conclusions and appendices.

The structure of the thesis is shown in figure 1.1.

Part 11

Theory and Concepts

10

Chapter 2

Elements of a Constraint
Environment

As described in the previous chapter, we wish to bring seemingly different techniques
into the same framework. This will create a unified constraint language and environ-
ment in which multiple constraint techniques can be used to solve complex problems.

In this chapter, we will define and discuss the underlying elements that form a
constraint environment. .

In a constraint-based modeling environment, we specify the behavior of a system
of objects in terms of constraints or goals. From this point of view, objects and
constraints are the basic elements in the environment which we need to clearly define.
In this way, mechanisms to create and manipulate objects and constraints can be
designed in the constraint language.

It is important that we create a sufficiently general definition of an object so that
the constraint environment is easily extensible. We present a definition such that
every entity in a constraint environment is considered as some type of object. New
objects may be derived by generalizing or specializing other objects. In this way
objects may be constructed hierarchically.

Constraints specify conditions on systems of objects to prescribe their desired
behavior. From one perspective, a constraint may also be considered no different than
an abstract object and in fact may be implemented as such. However, a constraint
has enough unique features that we will present a separate definition for this type of
object.

2.1 Definition of Object

The representation of an object O is composed of two parts,

11

CHAPTER 2. ELEMENTS OF A CONSTRAINT ENVIRONMENT 12

1. A representation X of the state of the object. The state of an object is a set of
ordered pairs

X = {(name of property, value of property)}.

Each value in an ordered pair could be a scalar but may also be a structure
such as a vector, matrix, a set, or in fact a structure of structures.

2. A set F of member procedures, {f(X')}, that

(a) access the state of the object
(b) modify the state of the object, or

(c) cause the execution of member procedures of other objects

Thus an object is the ordered pair (X', F). We have chosen a representation for
an object that can be structured in a number of ways from basic data types. In this
way the state of an object can be tailored according to the problem being solved. As
the representation of an object will vary depending on the domain of the problem,
so will the manner in which the representation is used. Therefore, it seems logical
to attach actions that may be performed on an object as part of its definition. In
one way the data may be thought of as nouns and the associated functions may be
thought of as verbs and the kind of verbs that can be applied to a noun will depend
on the nature of the noun.

Why this definition?

To see the need for such a general definition of an object, we may consider a collection
of different kinds of objects similar to the ones presented in [BARR 88](Figure 2.1). The
simplest representation of an object may be defined in terms of its appearance. This
representation of an object may appear as a two-dimensional image such as in an
array of pixels or a set of vector line drawings.

At the next level, an object may be represented by its kinematic representation.
A kinematic representation does not take into any account physical effects that may
bring about that representation. The object representation is specified as a set of
numbers or functions. For example, the kinematic geometric representation of a
sphere is its center and radius. The time-behavior of an object may be specified by
kinematic functions also. This representation of objects is indeed the one currently
used, in large part, in creating computer animations.

To include physical effects, we may use a dynamic representation of an object. The
dynamic representation takes into account physical causes of the representation, such
as applied forces and torques. Consider the simulation of the motion of a rigid-body
under Newtonian mechanics. The behavior of the body is not specified as a predefined

CHAPTER 2. ELEMENTS OF A CONSTRAINT ENVIRONMENT 13

Object as an image
O = array of color values
=
Object as a kinematic
representation
z = f()

Object as a dynamic

representation
ﬁ F ’
mi = F

Object as desired goals

Move object on path
é-/\/

Figure 2.1: Levels of abstraction of an object.

function of time. The behavior of the body is derived from the physical causes of the
motion and the physical properties of the body such as mass and moments of inertia.

The next higher level of representation of an object represents the desired behavior
of the object. For example, although a mathematical representation of a polynomial
may be its coefficients, we are interested in the values of the coeflicients such that
the polynomial passes through a number of given points. Similarly, for a rigid-body
following Newtonian mechanics, we might be interested in determining a set of forces
that would move the body along a prescribed path. Constraint methods convert
these goals into the desired behavior. This representation may be called a constraint
representation of an object.

Each of the above representations of an object is appropriate in particular do-
mains. In fact, the same object may be represented using more than one of the
above representations and representations may be changed from one to another. For

CHAPTER 2. ELEMENTS OF A CONSTRAINT ENVIRONMENT 14

a general system of objects with many types of objects and many possible represen-
tations of an object, we need a general and encompassing definition as presented at
the beginning of this section.

2.2 Definition of Constraint

Objects form a basic entity in a constraint environment. Constraints prescribe the
desired behavior of the objects.
A constraint contains two main parts, a declarative part £ and a procedural part

P.

A constraint C is the ordered pair (£, P)
where

o L(X) is the declarative part of a constraint. £(X') specifies a logical function of
the state A" of a system of objects which evaluates to true to signify that the
constraint has been met.

e P(X) is the procedural part of a constraint. P(X) is an algorithm or procedure
that generates a state instance X such that £(X;) = true.

Complex constraints with their £ and P functions can be created by combining
the simpler £ and P functions. A unified constraint environment provides general
mechanisms for the specification for £(X') and P(X).

Constraints are conditions on the state of objects comprising a system. Solving
for constraints involves finding an instantiation for the system state that satisfies the
set of constraints. Note that we have quite a general definition for state; the state
might, for example, include a representation for the time dependent behavior of an
object.

Components of a Constraint

A constraint may be considered to contain several components embodied in the above
definition.

Description of a Desired Behavior or State: Constraints may specify the de-
sired behavior of a system of objects in general terms such as a “non-mathematical”
one in the form “Object A should be on table B” or “Object A should follow
a path P such that object A does not collide with object B.” On the other
hand we may use mathematical relations such as

flx) = 0

CHAPTER 2. ELEMENTS OF A CONSTRAINT ENVIRONMENT 15

g(x) < 0

minimize h(x), x € some domain D

to specify constraints. The first expression specifies that f(x) is constrained to
be equal to 0. The second expression specifies that g(x) is constrained to be
less than zero. The third constraint stipulates that k(x) be minimized over a
domain D for x such as D = {z : z € a set A}.

Detection of Desired Behavior A mechanism needs to be defined and set up to
detect if a system of objects is behaving according to a desired behavior.

In general, the detection of a desired behavior can be specified as a logical
function £(&X) of the state X of the system of objects as in the above definition.
A system is satisfying the constraints imposed on it when the detection function
L(X) evaluates to true.

The detection mechanism is directly or indirectly generated from the description
of the desired behavior. For example, the constraint

f(x) =0
directly generates the condition
f(x)=0
to indicate whether the constraint has been met. On the other hand, the con-

straint
minimize h(x), X € some domain D

indirectly requires an auxiliary logical function £(X) to be derived.

Deviation from the Desired Behavior A common mechanism used in constraint
satisfaction mechanisms is to design a deviation function, a measure of how far
a system of objects is from its desired state. The solution mechanism attempts
to reduce this deviation to zero. For example, if we wish a point P on a body
B to be connected to a stationary point P, the distance function between P,
and P, measures the deviation of the constraint and the desired behavior is
achieved when the distance function evaluates to zero.

There will be some types of constraints, however, where it is not possible to
come up with a computable deviation function. For example, for a constraint
that stipulates finding a global minimum of an energy function, it is difficult
to find a deviation function which when reduced to zero will attain constraint
satisfaction. In this case we need to use a more general means of finding when
the constraint is met for the purposes of the problem and might need to use the
general detection mechanism stated in terms of a logical function of state.

CHAPTER 2. ELEMENTS OF A CONSTRAINT ENVIRONMENT 16

Procedure to Achieve Desired Behavior When a system of objects does not
currently satisfy its constraints, we need a mechanism to find a state in which all
the constraints are met. It might be possible to use the same constraint mecha-
nism for all the constraints in an environment if all the object and constraints in
the environment are sufficiently homogeneous. It will not be possible in general
to have the same solution mechanism for all constraints; each constraint will
need a solution method prescribed for it. Finding this mechanism will usually
involve using a variety of different mathematical and numerical techniques. A
large part of the work presented in this thesis in the next few chapters describes
schemes to design such solution mechanisms.

2.3 Simulation Entities and Representations

We use the term “simulation entity” for a system of objects whose behavior we are
interested in modeling. A simulation entity is constructed out of objects and con-
straints on the objects. For example, a system of differential equations, a collection
of interconnected rigid bodies, a robot workcell, fluids or gases flowing through a
pipe are all simulation entities. During the process of modeling, we might decom-
pose a simulation entity into many simpler parts each of which would themselves be
simulation entities in their own right.

The representation of a simulation entity is a mathematical or computational
description that can be used to make a computable model.

A representation transformation mechanism transforms one representation of a
simulation entity to another representation on the way to obtaining the final represen-
tation that we desire. For example, an optimization routine is a solution mechanism
that transforms a representation of the state space of a problem into a member of the
state space with optimal properties. A solver for first order differential equations is
a solution mechanism that transforms the differential equations into functions of the
independent variable.

2.4 Summary

In this chapter, we have presented our definitions of elements of a constraint environ-
ment. The definitions have intentionally been general in keeping with our desire to
design a unified and extensible constraint environment. Much effort will be spent in
the rest of this thesis to provide mechanisms for declaration and solution of objects
and constraints. The definitions presented in this chapter provide us the guidelines
for this design effort.

Chapter 3

Designing a Unified Constraint
System

As discussed in chapter 1, constraints permit models to be described in terms of
“desired behaviors” and in terms of goals for the models to achieve. The constraint-
based approach enables a user to describe behaviors of models at a high level in a
compact form: most of the computational work is off-loaded to a computer. Some
techniques, such as inverse dynamics, Lagrangian physics and constrained optimiza-
tion have already been introduced to computer graphics and other techniques, like
simulated annealing hold promise to convert high level behavior descriptions into the
parameters of a simulation entity.

In chapter 1, we described the need to consolidate constraint techniques into a
unified framework. The unification of techniques will provide a means to structure
the specification and solution of constraint problems and may lead to computational
efficiency. The unification will lead to the development of a simulation assembly
language. Using the building blocks of the simulation assembly language, complex
simulations may be built. The unification will also lead to savings in implementation
by sharing code and models, since a number of techniques use similar low level solution
methods. With a well designed substrate for a constraint framework, it will become
easier to experiment with new techniques and to incrementally develop new methods.

In this chapter, we present our design of a unified constraint system. We begin
by examining a few examples of constraint problems that we wish to simulate. The
examples provide an idea of the range of constraint problems that the constraint-
modeling environment should be able to handle. We then present on overview of our
approach. Finally, we discuss the benefits of the unified approach and how it enables
us to achieve the benefits of a unified framework.

17

CHAPTER 3. DESIGNING A UNIFIED CONSTRAINT SYSTEM 18

Figure 3.1: Mixing multiple solution methods to simulate a simulation entity. Object D is moved
from point A to point B on a path such that it does not collide with a moving object C. The path
is determined by optimization methods; the object is moved on the path by inverse dynamics.

3.1 Examples of Constraint Problems

We start with some examples of the type of constraint problems that we wish to
support in our constraint-based simulation system.

Examples using Multiple Solution Methods

Our first requirement of the constraint system is the ability to combine multiple
solution methods. Consider the simulation entity of figure 3.1. An object C is moving
in space. We wish another object D to move from point A to point B without colliding
with object C. In the example, we wish the object D to take the shortest path between
points A and B without exceeding an acceleration @ at any point on the path.

In the example, the motion of object C is independent of the motion of object D
and the path (for instance, the motion of object C might come about from a kinematic
specification, an inverse dynamics solution or an optimization.). To minimize the
length of the path of object D, we could use a constrained optimization method. To
keep object D on the path AB, we could choose to use inverse-dynamics techniques.
Therefore, in the example, we mix multiple methods in the same overall constraint
problem.

Figure 3.2 represents another example of using multiple solution methods. We
wish to obtain a smooth shortest path passing through n points. The problem could
arise in a robotics path planning problem in which a mobile robot has to pass through
n stations. In the example, a simulated annealing technique might be used to
generate an initial path. An optimization technique that enforces the smoothness
criterion may use the path determined by simulated annealing as an initial condition.

Most numerical optimization methods select a local minimum closest to the initial
starting point. By choosing a good starting guess from simulated annealing, a better
result might be obtained from the latter optimizing technique. The approach of one

CHAPTER 3. DESIGNING A UNIFIED CONSTRAINT SYSTEM 19

6 [

Figure 3.2: Another example of using two techniques to solve a problem. Simulated annealing is
used to obtain an initial estimate of a shortest path through a set of points. A numerical tech-
nique (such as conjugate gradient) to minimize continuous functions is used to impose smoothness
constraints using constrained optimization.

Figure 3.3: Constraints and primitives specified over multiple coordinate frames.

technique providing support and information to another technique to obtain a good
solution would be a useful and general solution strategy.

Examples using Multiple Reference Frames

In physical constraint problems, different physical properties may be specified in dif-
ferent coordinate reference frames. The simulation entity in the example of figure 3.1
is now placed within a moving airplane (figure 3.3). The airplane is flying in a pre-
scribed manner with respect to the ground. The constraints described in the first
example in section 3.1 are now specified with respect to a coordinate frame fixed in
the plane.

In the example, we see one way in which a simulation entity may be organized.
Different parts of the simulation entity are specified in different coordinate frames.
Therefore, we need a way to specify the frame with respect to which an object is

CHAPTER 3. DESIGNING A UNIFIED CONSTRAINT SYSTIEM 20

Figure 3.4: An automated workcell of a robot.

represented. We also need to relate quantities specified with respect to different
frames. For instance, we might additionally impose a constraint that a point fixed
in the airplane frame track a radio beacon on the ground. This leads to the need to
relate the parameters of objects specified in different coordinate reference frames.

A Robot Assembly Example

Our next requirement involves interactions in the time domain. We need the ability to
simulate the time behaviors of multiple simulation entities that might be interacting
with each other. The behavior of a simulation entity may be affected by events
occurring both inside the simulation entity and in other simulation entities.

For instance, we may wish to simulate the workecell of a robot (Figure 3.4). A
conveyer belt €' brings work-pieces into the work cell. A computer vision system
1s used to indicate that the pieces are in place and to stop the conveyer belt. The
robot then picks up the piece, moves it to a workbench, and inserts a pin into a hole
in the ptece. The robot then puts the piece on an outgoing conveyer belt Cy. The
example illustrates a complex simulation entity whose time behavior can be specified
in terms of time behaviors of subparts. The total time behavior of each subpart of
the simulation entity may further be described in terms of multiple behavior rules.
Different events occurring in the robot workeell system cause the simulation entity to

CHAPTER 3. DESIGNING A UNIFIED CONSTRAINT SYSTEM 21

e;
o
0%

54
55
4t

R
355

¥,
%
o

......

&
55

e
o
RS
el %5
GRRREESIEN
I
el

o

o

%
25
&

R
Ry
3

i
2%
2

Figure 3.5: Mixing flexible and rigid objects.

switch from one behavior rule to the other.

Simulation of Heterogeneous Objects

A simulation may involve interaction of multiple heterogeneous objects. Consider the
constraint system shown in figure 3.5. A flexible body F' is constrained to attach
to the end of an oscillating rigid bar P. In its initial position, the flexible body F
is situated some distance away from the point P., to which body F' is constrained
to connect. During the simulation, the body F' moves to attach to the bar at P..
After that, the body stays attached to the bar. In the example, we need to model
the elastic properties of a flexible body, rigid body dynamics and the interaction of
flexible bodies with rigid bodies. In more complex examples, we may have several
other type of objects such as fluids and gases, causing viscosity and turbulence effects.

Simulation of Complex Structures in Space and Time

The behavior of some systems that we might wish to simulate may be quite complex.
Consider the determination of the shape and motion of biological structures such
as cilia and flagella in fluid. Figure 3.6 shows a paramecium covered with cilia.
The system could be simulated by computing the whipping action of a cilium and the
motion of an organism under the forces produced by the interaction of cilia connected
to the organism with the fluid surrounding the organism. A model of similar fluid
dynamic motion was presented in [BARR 84]. To be able to model such complex
systems, we need powerful specification and solution techniques in our simulation

environment.

CHAPTER 3. DESIGNING A UNIFIED CONSTRAINT SYSTEM 22

Figure 3.6: A Paramecium, example of a biological organism whose motion and shape might be
simulated.

3.2 Our Approach for Unification of Constraint
Techniques

The examples described in the previous section provide instances where the use of
multiple constraint approaches to different parts of a simulation problem would be
useful. As discussed in chapter 1, a number of constraint techniques have appeared
in the literature. These techniques include inverse kinematics, inverse dynamics, con-
strained optimization, and Hamiltonian (and Lagrangian) physics. We observed that
most of the work in constraint-based modeling involved solving a single type of prob-
lem or a narrow class of problems. The modeling environments were frequently based
just on a single solution technique. Most modeling environments were implemented
in a manner that was specific to the techniques or objects that the environment could
handle. As a result, it was difficult to bring new techniques into their frameworks
limiting the extensibility of most modeling environments.

We looked at the design of a simulation system in a general manner to provide
facilities in a technique-independent way. As stated in chapter 1, we broke down our
design approach into the following steps:

(Step A) Identify the set of underlying elements that constraint techniques operate
on

(Step B) Identify the ways in which different elements interact with each other

(Step C) Create a computational formalism of the underlying elements that lets us
use these techniques together

In the previous chapter, we discussed step A, the elements of a constraint system
in the previous chapter. In particular, we defined a stmulation entily as a system
of objects whose behavior we are interested in modeling. A simulation entity is
composed from objects and constraints. We now identify general ways in which

CHAPTER 3. DESIGNING A UNIFIED CONSTRAINT SYSTEM 23

¢

B,

©26
E{E
26
Sab26

Figure 3.7: Change of representation of a Simulation Entity. An initial representation is transformed
to a final desired representation using refinement and partitioning. The circles enclosed with squares
arise due to partitioning. The circles without enclosing squares arise due to refinement.

different elements of a constraint system interact in the process of solution to a
simulation entity.

Specification and Solution of a Simulation Entity

The modeling process of a simulation entity starts with a definition or abstraction
of the system that we wish to study. The abstraction process involves choosing the
aspects of the system that we consider to be important in our study. For example, to
model a robot, we might deliberately neglect the flexion of the robot arms and decide
to model each robot arm as a rigid body.

The result of the abstraction process is a simulation entity which we would then
simulate. We need to choose a computational representation for the simulation entity
that is appropriate to the abstraction we have decided to use. To find the unknown
attributes of a simulation entity, we successively transform one representation into
another representation. For example, suppose that we wish to model the motion
of a body that we have abstracted as a rigid body, and our lowest level solution
mechanisms are numerical solution routines. We may start with Newton’s laws of
motion as a representation of the motion of the body. This representation might
be transformed into a set of first order ordinary linear differential equations. The
differential equation representation would then be transformed into a representation
such as a data structure that can be used by a numerical differential equation solver
to generate the motion of the rigid body.

[BARZEL and BARR 90] also discusses ideas similar to the above about a simulation
problem.

The transformation of representation of one simulation entity may sometimes

CHAPTER 3. DESIGNING A UNIFIED CONSTRAINT SYSTEM 24

Newton’s Law

mi = F
1

T =

v=F[/m

1

Runge-kutta

Figure 3.8: Example of constraint refinement of rigid body motion simulation.

involve creating multiple simulation subentities. Each simulation subentity would
then be solved individually. During the specification and solution of a simulation
entity we may conceptually create a tree-like structure (Figure 3.7).

The process of representation change is a basic solution approach which is inde-
pendent of the individual constraint techniques. The representation change process
involves two general solution mechanisms that can be used in constraint-based sys-
tems; these are Refinement and Partitioning. We have additionally defined a solution
design mechanism that we call Temporal Sequencing to design time-behaviors of sim-
ulation entities.

Refinement

Refinement changes one computational representation of the simulation entity into
another representation, typically closer to the primitive solution mechanisms in the
underlying constraint environment. We start with a “high” level representation of the
solution and refine the solution by generating representations that contain increasing
amounts of detail. Typically, “lower” level of representations are also described in
terms of more primitive constructs as compared to the higher level representations.
In figure 3.7, a refinement step is analogous to moving down a branch of the tree
when a representation change does not lead to multiple simulation entities.

For example, at one level in a constraint environment, we may have a routine
that solves second order differential equations by transforming them into first-order
equations. The next level may have a generic solver that solves first-order differential
equations. One level further down may contain a numerical method such as a Runge-
Kutta differential equation solver. The rigid body motion example above could then
be solved by step-wise refining through these layers (Figure 3.8).

We discuss the multi-layered design of refinement in chapter 4.

CHAPTER 3. DESIGNING A UNIFIED CONSTRAINT SYSTEM 25

Partitioning
Partitioning refers to the transformation of representation of a simulation entity that
generates multiple simulation subentities. If simulation entity S, is transformed into
Si1, - -+ S1n, we would then solve the simulation entities Sy, ..., S1, and compose
these subsolutions to generate a solution to S;. In figure 3.7, a partitioning step is
analogous to the steps that generate multiple circles on a horizontal line.

For example, consider the path planning problem of an object D moving on the
shortest path from a point A to a point B as presented in figure 3.1. The problem
may be broken down as

1. Obtain the path of object D from point A to point B
2. Move object D on the path obtained in step 1

Different subentities may be simulated by different techniques. Since the solutions
of the subentities have to be combined, the various solution modules in an environ-
ment need to have well-defined and general interfaces so that they can be plugged
together. In the example, the partitioning will work only if there is a general model
of a path that can be generated and used by different techniques in the constraint
environment. A simulation environment will have facilities that let a user compose
sub-modules to solve a problem.

We discuss partitioning in chapter 5.

Temporal Sequencing

Time is an important concept in computer graphics. A majority of simulation ap-
proaches obtain the behaviors of simulation entities as they evolve in time. In a
simulation, the behaviors that are continuous in time are as important as the events
that may occur and cause discontinuities. Collisions between objects is such an ex-
ample. We propose temporal sequencing as a scheme to partition the time-behavior
of simulation entities during an interval of time into rules of behavior during sub-
intervals of time. Temporal sequencing may be treated as a scheme analogous to the
“push-pop” geometric hierarchies in traditional computer graphics [FOLEY and VANDAM
82] but in the time domain. A simulation entity switches from one behavior to another
due to occurrence of events. Temporal sequencing provides a way to integrate events
and continuous behaviors in a uniform frame work. Time behaviors may be combined
using hierarchical organizations. Multiple simulation entities may be simulated with
events in some simulation entities causing effects in other simulation entities. In one
sense, temporal sequence may be considered as partitioning in the time domain.

We discuss temporal sequencing in chapter 6.

CHAPTER 3. DESIGNING A UNIFIED CONSTRAINT SYSTEM 26

3.3 Considerations.in the Design of a Constraint-
Based Simulation System

The above approach was motivated by the goals that we want to achieve in the
design of our simulation environment and the type of users that we think might find
our constraint environment useful.

3.3.1 Our Goals for the Simulation System

We want to provide the following features and capabilities in our environment:

Ability to use multiple techniques: In a complex simulation, many disparate tech-
niques will generally be used. Our simulation system should have multiple
techniques available and the various techniques should have the capability to
interact in a complimentary manner so that they can be brought upon to solve
various parts of a complex problem.

Ability to solve problems on different scales of complexity: The simulation sys-
tem should provide the capability of both setting up simple experiments of small
systems and also to design big simulation systems on top of the substrate pro-
vided. For example, a user should be able to observe the behavior of a rigid
body under user-specified forces. On the other hand, it should be possible to
write a full-fledged robot work-space simulation system that lets a user program
a robot to carry out complex tasks.

A Low Level Assembly Language for Simulations: A high level computer lan-
guage 1s generally translated into an “assembly language” which is made up of
simple primitives. The assembly language model permits the design of sophisti-
cated high level languages by providing basic low level building blocks that can
be put together in various ways. We want to provide an analog of an assembly
language on top of which various simulation systems can be written. We be-
lieve that the building block approach is especially important for an extensible
modeling environment supporting many heterogeneous techniques. It is usually
difficult to predict what different simulation techniques will be used or added to
the simulation environment and therefore it is difficult to come up with a com-
prehensive set of high level techniques. On the other hand, providing building
blocks so that high level solution methods can be assembled by combining the
building blocks in various ways provides a great degree of flexibility.

Multiple Levels of Representation: Depending on the scope of a problem at hand
or the training of a user in a field, the user would like to know the least possible

CHAPTER 3. DESIGNING A UNIFIED CONSTRAINT SYSTEM 27

about the details of a simulation environment before he can use it. The sim-
ulation environment should provide various levels of representation and detail-
hiding for different levels of users. For example, a high level interface should
be provided so that a user can “wire up” a quick simulation with minimal pro-
gramming. On the other hand, a user should have access to the internal details .
of the environment if he wishes to change the environment in a big way or to
add new low-level facilities to the simulation environment.

Features of User-friendliness without being Expert-hostile: Naturally, the sim-
ulation environment should be user-friendly. However, as the expertise of the
user grows, the user should not feel restricted by the limitations imposed by
the environment. We think that many user-friendly systems serve their purpose
well for the novice user in terms of getting him started towards problem solu-
tion quickly. However, the expert user quickly becomes confined by restricted
prescriptions.

Ease of Extensibility: The simulation environment is designed to be used with a
multitude of techniques and objects. It is difficult to predict at the outset which
techniques will ever be required by a user. New techniques may be added to
the environment. For the simulation environment to be useful over a length of
time, it should be easily extensible. The assembly language concept above is
one aspect of providing extensibility for the environment.

Using a basic building block approach with the ability to plug the blocks in dif-
ferent ways provides a design that allows the above goals to be met.

3.3.2 Kinds of Users

In the design of any system, it is important to consider the categories of users who
might use the system. Our objective is to design a simulation environment that
accommodates a large variety of users. Some of the types of users who might find our
environment useful are:

“High” Level Users: These users use specialized user-interfaces to solve specialized
problems. The user interfaces may be interactive such as mouse based interfaces
with various kinds of feedback including visual, tactile and force feedback. The
high level user is interested in solving a specific problem without much concern
about the details of the solution of the problem. The details of the simulation
environment are hidden from the high level user. We do not expect a great deal
of computer knowledge from this category of users.

Application Designers: These users design solution packages for various classes of
problems using the facilities provided in a simulation environment. They need

CHAPTER 3. DESIGNING A UNIFIED CONSTRAINT SYSTEM 28

to know about the various system-level facilities provided. The application
designer usually interacts with a simulation environment at the level of calling
subroutines and some simple programming in a provided textual language to
interface to low-level facilities. Application Designers design high-level user
interfaces to abstract the details of the solution process from high-level users.

System Programmers: These users extend the environment by writing low level
code. They use various low level simulation language constructs and also write
in various general purpose computer languages. The new code is interfaced with
the existing environment through well defined interfaces and language bindings.
System programmers usually program in a base general purpose computer lan-

guage.

The same person might fit into a different user category at different times in the
process of the solution of a problem.

As a simple example of user categories, consider the problem of designing a
constraint-based curve editor. At the highest level, a user sees a menu based system
where the user can use a mouse to pick curves attach constraints between objects and
command the system to solve for desired figure configurations. From an application
design point of view, various decisions would have been made such as how curves are
represented (for example piecewise cubic curves), what solution method is necessary
to solve constraints (energy minimization method), how the energy function will be
formed etc. At the lowest level, a system programmer would have have provided var-
ious representations for curves, various optimization solution methods (for example
conjugate gradient) that the application designer would use.

3.4 Summary

In this chapter, we presented an overview of our constraint-unification approach. We
presented three approaches to design building blocks that can be plugged together to
create simulations. Refinement provides a transformation between one representation
of a simulation entity to another representation typically closer to the final solution
representation. Partitioning refers to a transformation of representation that gener-
ates multiple simulation entities. Temporal sequencing provides pluggability between
time behaviors of simulation entities over subintervals of time to create a time behav-
ior over an interval of time.

Chapter 4

Refinement of Constraint Systems

A primary goal of the thesis is to present a design of a general constraint-based mod-
eling environment. In the modeling environment, we wish to have the capability to
support multiple techniques in the same framework. We also require the modeling
environment to be extensible so that new techniques can be added as they are de-
veloped. Our approach to the design of such a system is to identify basic solution
mechanisms for any constraint problem, as opposed to basing the design on solutions
of particular instances of a constraint problem. One of the effective problem solution
techniques is the stepwise transformation of an initial representation of the problem
into a representation that can be solved by the basic solution mechanism in an envi-
ronment. This transformation technique is frequently known as refinement. In this
chapter, we shall discuss the use of refinement in forming an effective design strategy
~ for a constraint environment.

After studying previous work and implementing a number of constraint systems,
it became apparent that different systems required similar categories of methods.
Most systems are just not implemented in a manner that these categories are clearly
defined and have compatible interfaces. In most cases, the entire constraint process,
from specification to solution, was implemented in a tightly coupled fashion. Even
though the system might be using a general technique, the system was usually imple-
mented in a very application-specific manner. The tightly coupled application-specific
implementation scheme made it difficult to interface a constraint system to other con-
straint techniques or even to make significant modifications in techniques used in the
implemented framework.

Refinement Layers for Constraint Systems

The refinement approach introduced in chapter 3 can be used to structure the design
of simulations. To provide facilities in our constraint environment to use refinement
as an effective solution strategy, we have identified a number of layers through which
a typical constraint problem may be refined. These layers range from a “high” level

29

CHAPTER 4. REFINEMENT OF CONSTRAINT SYSTEMS 30

1. Constraint Specification
2. Constraint Approaches
3. Mathematical Specification
4. Generic Numerical Interface
5. Symbolic Manipulation and Structuring
6. Numerical Solution Techniques

Figure 4.1: A refinement structure for a constraint-based modeling environment.

specification to basic numerical solution routines, the most primitive level in our
environment. We have identified six layers of representation that we find useful in
thinking about constraint-based modeling problems.

These layers are shown in figure 4.1 and 4.2.

The layered refinement structure is useful for the design of a general constraint
environment from a number of viewpoints. First, the constraint refinement structure
provides a guideline to design a substrate upon which various constraint methods can
be built. The routines in the layers in figure 4.1 can be built with general interfaces
and can be used with a variety of dependent techniques. Second, as new techniques
are incorporated into the constraint environment, they can be built upon the existing
routines in the substrate rather than having to implement each technique afresh.
Third, as new routines are written for the substrate, their position in the above
layered structure suggests the requisite interfaces that they should provide so that
the new routines can be plugged to multiple other routines.

For example, most techniques using dynamics involve the solution of ordinary
differential equations. Optimization techniques like gradient descent also result in a
set of differential equations. A large number of implementations of such techniques
have ended up using Euler’s method to solve their differential equations [HAUMANN and
PARENT 88][SIMS and ZELTZER 87]. Euler’s method for solution of differential equations
is known to have bad convergence properties. However, Euler’s method is a popular
method for differential equations because it easy to codel. A well designed substrate
would make any solution method easy to use and the selection of a method could then
be based on the appropriateness of the method to the problem at hand. Based on
the layered refinement structure presented in this chapter, an effective computational
substrate can be built that will provide a wide range of solution approaches and
techniques.

A layered approach for the design of different representation levels of simulation
entities has another advantage. Support will usually exist in the lower layers to be
able to build a custom solution conveniently, even if a high level solution technique

1We strongly recommend that users NOT use Euler’s method!

CHAPTER 4. REFINEMENT OF CONSTRAINT SYSTEMS 31

is not already implemented.

Hence, although refinement is a popular existing problem solving strategy in com-
puter science, the application of the refinement technique to the design of a general
constraint environment as the above delineation of layers is a new contribution to
computer graphics modeling.

4.1 A Layered Structure for Constraint Systems

In this section we will discuss each of the six refinement layers in figures 4.1 and 4.2.
We present examples of some basic techniques that can be implemented in each
layer and may form a useful computational substrate. The choice of examples of
basic techniques has been based mostly on the study of existing constraint systems
(and our experiments), but the layered design does not depend on any particular
implementation.

4.1.1 Layer 1: Constraint Specification

The solution of a simulation problem starts with a high level specification of desired
behavior goals, for example,

¢ Move object A on path P in a physical environment such that object A spends
the least amount of energy

¢ Find shape of body B under forces F1 and F2 given elastic properties of body
B

¢ Find the motion of a flagellum in fluid of given viscosity
e Plan the path of a robot arm to move object A avoiding obstacles in a scene

At this first level of specification, we are not concerned about the final solution
methods that will be used or required to obtain the desired behavior. The initial
specification will need to be refined into lower layers to find a final solution mechanism.
The ability to use high level specifications of constraint problems makes it easy for
users to avoid having an intimate knowledge of the implementation details in the
simulation environment. For example, the statement:

compute_shape(elastic_body B, Force f1, Force f2)

might be sufficient to generate a complete description of the shape of body B in
the second bulleted example above. The fact that the compute_shape process might
involve the solution of partial differential equations is not important at this level of
specification (and might not be of interest to the user).

CHAPTER 4. REFINEMENT OF CONSTRAINT SYSTEMS

Move Object on Path

Constraint Motion of Flagellain
Fluid

Specification
Shape of Elastic
Body

Inverse Dynamics
Constraint Optimization
Approach Dynamics

Inverse Kinematics

Set up Newton's

Equations
. Compute Constraint
Mathematical Forces
Specification

Differential Equations

Generic Linear Systems

Numerical . .
Simulated Annealing
Interface

Mathematica
. - . Macsyma
Symbolic Manipulation -
and Sparse Matrices

Data Structuring

Runge-Kutta
Numerical Conjugate Gradient
Methods LU-Decomposition
Adam's Method
SVD

Figure 4.2: Layers of refinement in a simulation system.

CHAPTER 4. REFINEMENT OF CONSTRAINT SYSTEMS 33

Figure 4.3: A three-jointed robot. The angles 6, 62 and 5 control the position of the tool T.
Part(b) shows three configurations of the robot computed by inverse kinematics such that the tool
T follows the specified trajectory.

4.1.2 Layer 2: Constraint Approaches

The second constraint-refinement layer provides a collection of different constraint
approaches to solve the constraint problems (or parts of the constraint problems)
posed in the first layer, constraint specification. The various constraint approaches
mentioned in section 1.2.1 may be used in combination to compose an overall solution
strategy.

Several of the methods which are found useful in a constraint-based environment
are described below. These methods are just a sample from currently used techniques
in constraint-based modeling. These techniques are presented here to aid in the choice
of numerical techniques to be implemented in lower layers.

Inverse Kinematics
Kinematics refers to the study of the motion of bodies with no consideration of the
physical causes of the motion, i.e., physicsless motion [SHAMES 82].

For example, the complete motion of a rigid body may be specified geometrically
by specifying

f(t) = position of origin of body

R (t) = rotation matrix with respect to world coordinates

where f (¢) and R (t) are vector and matrix functions of time respectively. Thus, for
a set of rigid bodies with constraints, an inverse kinematics solution is the pair of
functions f () and R (¢) for each of the bodies such that the specified constraints are
met.

As another instance, consider a multi-body linkage such as a robot in figure 4.3a.
For this robot, the values of the angles 6,, #, and 8; determine both the configurations

CHAPTER 4. REFINEMENT OF CONSTRAINT SYSTEMS 34

of the three arms of the robot and the position of the tool T' on the end arm. The
kinematics of the point 7" can be specified in terms the three joint angles:

PT(X) = f(Xl,Hl, 92, 03)

where, X represents the fixed parameters of the robot such as the lengths of the arms
and the position of the base.

Suppose that we wish to impose constraints on the path of the tool carried by
the robot. In this instance, given that the end point T' of arm L3 has to follow a
given trajectory, the inverse kinematics problem would be to determine the variation
of joint angles 61, 62 and 63 as functions of time that would cause the desired motion

of the tool T' (Figure 4.3b).

Forward Dynamics

Forward dynamics involves the determination of motion of bodies under the influence
of applied forces and torques for rigid, flexible, or fluid objects. The motion of rigid
bodies is determined by using Newton’s equations of rigid body motion that relate
linear and angular accelerations of bodies to the forces and torques applied through
inertial properties of the bodies, namely, mass and the inertia tensor [GOLDSTEIN 80].
The equations of rigid body motion are second order ordinary differential equations.
Similarly, equations from elasticity theory can be used to determine motion of flexible
bodies and Navier-Stokes equation may be used to model fluids.

Forward dynamics may be extended to compute “motion” of generalized variables.
In this case, a system configuration is described in terms of generalized variables, one
variable corresponding to one degree of freedom of the system, and generalized forces
that cause the values of generalized variables to change. For example, for the system
in figure 4.4, the generalized variables are angles 6; and 6;. The forward dynamics
problem is to determine the variation of the angles 8, and 6, starting from prescribed
initial values under the force of gravity. One of the methods to determine the gener-
alized equations of motion of systems is by Lagrange’s method [GOLDSTEIN 80] that
generates differential equations relating the derivatives of expressions representing
energy of the system.

Inverse Dynamics

Inverse Dynamics is the inverse problem of Forward Dynamics. Inverse dynamic
techniques compute the necessary forces and torques on a body that will result in a
desired motion or equilibrium state. The forces and torques are computed by using
the specification of the motion and the forward dynamics laws that apply to the
bodies.

As an example of constraints using inverse dynamics, consider the system of bodies
in figure 4.5. The system consists of two bodies By and B,. A point P;; on body

CHAPTER 4. REFINEMENT OF CONSTRAINT SYSTEMS 35

Figure 4.4: Forward dynamics in terms of generalized variables. Lagrange’s method can be used
to determine the equations of motion of the complex pendulum under the force of gravity in terms
of the generalized variables #; and 6;.

Figure 4.5: An example of Inverse Dynamics. We need to compute forces F7 and Fyy = — [F59 that
would move bodies By and By under specified constraints of path following and interconnection.

CHAPTER 4. REFINEMENT OF CONSTRAINT SYSTEMS 36

B; is constrained to be on a prescribed path P. At the same time body point P,
on body B, is constrained to be connected to point Pj, on body B;. The bodies are
assumed to move according to Newton-euler equations of rigid body motion. The
inverse dynamics problem involves finding the constraint forces Fy and Fy; = —Fy,
as a function of time that will move the bodies according to the above constraints.

Optimization techniques
Optimization is a process of minimizing or maximizing an objective function, possibly
in the presence of some constraints.

Many computer graphics constraint problems can be cast as a constrained opti-
mization problem involving an energy function of the state of the system [WITKIN,
FLEISCHER & BARR 87] [PLATT 89] [KALRA 90b]. In principle, a state that minimizes this
energy function is the state that satisfies the constraints imposed on the system.

4.1.3 Layer 3: Mathematical Specification

A constraint approach such as described above, specifies a general overall mechanism
towards the solution of a constraint problem. Once a constraint approach has been
selected, we need to generate a representation of the constraint problem that can
be solved mathematically. The mathematical specification is a formulation of the
problem in terms of mathematical structures such as sets of differential equations
which when solved will generate the solution to the constraint problem.

For example, consider the following approach to inverse dynamics. In the context
of rigid bodies, the approach solves for forces which (when applied to the bodies) will
produce a desired motion of bodies. To be able to compute the solutions with this
technique, a mathematical representation may be generated as in [BARZEL and BARR
88], via:

1. Form a “deviation function” for each constraint

2. Compute constraint forces for the objects in the system such that each deviation
function is reduced to zero using a critically damped trajectory.

3. Integrate the differential equations of motion of the objects using the constraint
forces and external forces in the system

A complete elucidation of the above example is provided in [BARZEL and BARR 88] where
the first two steps result in a linear system of equations for the computation of forces.

Similarly, to use optimization as a constraint-solution technique, we need to form
an “objective function” and the constraints functions of the problem. More precisely,

CHAPTER 4. REFINEMENT OF CONSTRAINT SYSTEMS 37

an optimization problem may be written as [GILL et al 81]:

minimize F(x) z € R
subject to E;(x) =0, 1 =1,2,...,m
L(x)>0, :=1,2,..,p

In the above formulation, m or p or both may be zero. If m = p = 0, the problem
reduces to an unconstrained optimization problem.

The mathematical specification step generates a general mathematical represen-
tation of the problem.

4.1.4 Layer 4: Generic Numerical Interface

After the mathematical statement of the problem has been made, the resultant math-
ematical problems need to be solved. The generic numerical interface in a constraint-
environment implements a front-end to numeric solution of generic mathematical
problems. Typical front-ends might be a linear equation solver, a differential equa-
tion solver, and an optimization package.

For example, to solve a system of differential equations:

y{ = fl(ylay%"‘)yn’m)
y; = f2(y1ay27“"ynax)

y:L = fn(yl, Y2,-- -3 Yn, .’12)

a variety of methods may be used, such as, Adam’s method and Runge-Kutta methods
of various orders (even Euler’s method), depending on the nature of the differential
equations. Although particular numerical methods may differ in detail, each of them
computes the solution to a set of differential equations, a set of n functions, y;(z) to
Yyn(z). The purpose of providing generic numerical interfaces is to hide the details
of specific numerical techniques that may be employed and to present a uniform
front-end that is appropriate to the mathematical representation of a problem.

Selection of a numerical solution technique

Given a generic interface, how do we select a particular technique to solve the prob-
lem?

Each generic interface should have a default technique that would be used in the
absence of any auxiliary information. Interface facilities should be provided for a
user to specify specific numerical routines to effect computation in a desired man-
ner. Examples of such implementations for generic numerical solvers are presented in
chapter 7.

CHAPTER 4. REFINEMENT OF CONSTRAINT SYSTEMS 38

In some cases, it is possible for the generic interface layer to use information about
the problem to choose the proper numerical routine depending on the nature of the
problem. For example, if a set of differential equations is stiff, the layer should
choose an appropriate method. Similarly, for a sparse matrix or a tridiagonal matrix,
a method that takes advantage of the sparsity should be used.

An advantage of providing this layer is that users who are not experts in numerical
methods can still employ the default numerical solution methods capable of solving
their problems. In fact, if the generic interface layer has the capability to select
appropriate numerical methods depending on the nature of the problem, non-experts
can benefit from this “numerical expert-system.” Experts can still override defaults
and tailor the solution according to their needs. This approach is according to our
philosophy: to provide a user-friendly system without being expert-hostile.

4.1.5 Layer 5: Symbolic Manipulation and Structuring

Once we have formulated our problem in general mathematical terms and have se-
lected a method to solve the problem, some work is still required before a numerical
routine can be used. This work is mostly in generating extra information from the
problem statement and in organizing data into a form that is usable by a numerical
routine. The symbolic manipulation and structuring layer provides this support.

- Symbolic Manipulation
In most problems that use numerical methods, a number of mathematically extrane-
ous structures must be computed in addition to the structures required for the central
problem.

For example, consider the problem of minimizing a function

= flzi,.20) (4.1

This unconstrained minimization problem is a clearly stated mathematical prob-
lem. To solve this problem we need to select a numerical method. Various methods
may require different types of information from the above canonical statement of the
problem and functions to provide this information have to be written.

One simple technique to find a local minimum of a function is Conjugate Gra-
dient. This technique requires the value of the gradient of the objective function

for ar ar
" |02 bz D)

v/

Some more sophisticated techniques may require the jacobian matriz and the
Hessian matrix of functions also. These auxiliary mathematical structures are not

CHAPTER 4. REFINEMENT OF CONSTRAINT SYSTEMS 39

directly related to do the central problem but are computed depending on the par-
ticular technique used as a solution method. Further, most of these structures can
usually be computed by a rote method such as symbolic or numerical differentiation.

We believe that this computation should be done by the simulation environment.
Many good symbolic manipulation packages like [MATHEMATICA 88] and [MACSYMA 77]
now exist that can be used to carry out most of the work of deriving mathematical
structures required for the solution of a problem. The simulation environment needs
to provide a convenient interface to such packages.

Data Structuring

During the solution process of a constraint problem using numerical techniques, ef-
fort is also spent structuring the data into the form that can be used by a numerical
method. An example is setting up correspondence between indices of vectors gener-
ated by one part of the solution process with vectors used by another part. Another
example is handling of sparse matrices where mechanisms need to be set up for access
and modification for the sparse matrix representation. This is a very error prone pro-
cess during programming and can usually be handled automatically by a computer.

4.1.6 Layer 6: Numerical Solution Techniques

From the point of view of our constraint environment, the numerical solution tech-
niques layer is the most primitive layer in the system. This layer is composed of raw
numerical solution routines that provide the solution of basic mathematical problems
such as solution of differential and algebraic equations and optimization problems.
These routines may be taken from numerical libraries or may be simple interfaces to
these routines. Many good sources of such routines are widely available such as [NAG
89] and [PRESS et al 88].

4.2 Advantages of a Layered Approach

The above layered approach for refinement in constraint systems provides the follow-
ing benefits for the design of a constraint-system.

Provides a Structure to the Design of a Large Software System

The simulation environment that we are designing and implementing is a large soft-
ware system. By partitioning the environment into sub-parts that build on each other,
we obtain a design structure for the implementation of the system. This partitioning
also enables us to think and produce general interfaces for solution techniques so that
any technique can be used by more than one dependent technique.

CHAPTER 4. REFINEMENT OF CONSTRAINT SYSTEMS 40

Modaling Lighting Viawing
Clipping Tiler
Screen

Transf " Codeulati Transformation

Figure 4.6: The Graphics Pipeline.

Different Entry Points into the Solution Process

As discussed at the beginning of this chapter, the refinement pipeline presented in
this chapter provides various levels of abstractions to the same problem. A user may
start the solution of his problem at a number of different levels depending on the how
specific his problem is. Even if the exact solution to his problem does not exist, a
user can still use the basic facilities that already exist in the system and build up
from there.

Hardware Amenability of the layered Approach

The layered approach presented in this chapter suggests a pipeline for the solution of
constraint methods. We see the possibility of efficient and fast hardware implementa-
tion of simulation systems as an important advantage of the above layered approach,
although some parts of this layered structure are more amenable to hardware imple-
mentation than others. By separating various conceptual parts of a simulation system,
it becomes easier to decide what parts would benefit by a hardware implementation
to provide big speed benefits.

We may compare the layered approach with the graphics pipeline. In the 1970s,
algorithms were developed to render polygons on bit-mapped displays. In the early
1980s, a sequence of operations was defined in order to render polygons (figure 4.6).
This sequence operated on polygons in modeling space and through various transfor-
mations generated a two dimensional projection on a discrete grid of pixels. This
pipelined delineation of the polygon rendering process spurred the development of
specialized hardware that speeded up the time consuming parts of the rendering pro-
cess. These developments resulted in work stations with fast rendering systems that
can render hundreds of thousands of polygons per second.

There are certainly differences between the polygon rendering process and the
general simulation problem. The simulation problem has many disparate techniques
and objects and at different times different operations may be performed on any
object. There are still some time consuming parts in our “simulation pipeline” that
can benefit greatly by migration into hardware. Already there is hardware available to
carry out vector and matrix operations. An attractive numerical problem to migrate

CHAPTER 4. REFINEMENT OF CONSTRAINT SYSTEMS 41

into hardware is the solution of differential equations. There is great potential in
combining analog hardware [MEAD 89] and digital hardware to come up with fast
differential equation solvers. Some applications of analog hardware in optimization
problems were also presented in [PLATT 89]. Just like the vector and matrix operations
boards available today, we anticipate the availability of plug-in boards that implement
other numerical methods.

4.3 Summary

In this chapter, we presented a layered structure of refinement steps which might be
employed to generate solution to a high level problem in terms of primitive solution
structures such as basic numerical solution methods. Higher layers in this structure
permit the use of representations that hide implementation details of lower layers.
The layered approach also suggests a hardware implementation that may speed up
some parts of the solution process.

Chapter 5

Partitioning of Constraint
Systems

In the previous chapter, we applied refinement to the design of a “layered” structure
for a constraint environment. Refinement is the step-wise transformation of one
representation of the simulation entity into a representation that can use the basic
solution mechanisms provided in the environment.

During the refinement process, it is sometimes necessary to partition a simulation
entity into smaller simulation entities before further refinement can proceed. The
solutions to the sub-entities are devised separately and are then composed to generate
an overall solution. The partitioning process may take place at any of the vertical
refinement layers presented in the previous chapter (Figure 5.1).

Partitioning is the decomposition of a simulation entity into sub-entities, and is a
useful and general way to organize solution of problems. Like refinement, partitioning
is a general solution strategy independent of any particular constraint technique.
Partitioning may also generate a division of a problem into subproblems that may
be solved concurrently. Partitioning may also make apparent a parallel or pipeline
structure in the problem.

In this chapter, we identify several types of partitioning for constraint systems
so that we can provide them in our constraint environment. We discuss a number
of ways in which this decomposition may occur and how the solutions to the sub-
problems may be combined to generate an overall solution to the problem. We also
present some computational constructs that can help to effectively use partitioning
in a constraint environment.

5.1 Use of Partitioning in Constraint Systems

We now present a constraint problem classification based on interdependence of sub-
problems during solution. Depending on their interdependence, different solution

42

CHAPTER 5. PARTITIONING OF CONSTRAINT SYSTEMS 43

¢

(5)
Cia) @
(09

Figure 5.1: Solution of a simulation problem through a change of representation. An initial rep-
resentation is transformed to a final desired representation using refinement and partitioning. The
circles enclosed with squares arise due to partitioning. The circles without enclosing squares arise
due to refinement.

 59)
Gm

" Q)
\S _A—

A&

Sa6

methodologies for the subproblems are required.

We consider the solution of a partitioned problem to consist of two steps, subprob-
lem solution and subsolution composition. The subproblem solution involves solving
each of the subproblems of the main problem. The subsolution composition step
combines the solutions to the subproblems, often through simple transformations, to
form the over all solution.

5.1.1 Independent Subsystems

Independent subsystems do not interact during the subproblem solution process. Each
subsystem can be solved by a separate solution technique and may be solved in arbi-
trary order. Each subproblem, however, has to be solved before the overall solution
can be composed. Once the subproblems have been solved, a simple compositions
converts the subsolutions into the solution to the main problem.

An example of an independent system is given in figure 5.2. This example shows
the composition of a figure in a constraint based editor. We wish to form a figure
with rectangles aligned on a line. A text string is centered in each of the rectangles.
In the example in figure 5.2, the constraint to center the text in each rectangle can
be solved completely in the coordinate frame of the rectangle. The alignment of the
rectangles on the line is solved completely in the line frame. Once these constraints
have been solved, a simple coordinate transformation generates the representation of
each object in a common coordinate system (the screen) where each object may be
rendered.

CHAPTER 5. PARTITIONING OF CONSTRAINT SYSTEMS 44

.@ ll:i _@ 111

Figure 5.2: An example of independent subsystems. We wish to create a figure by centering text
strings inside rectangles. The rectangles are aligned on a line. The “springs” in the figure are used
as a symbol for constraints. Various subsystems in this example can be solved in arbitrary sequence
and the solutions combined after all the subsystems of constraints have been solved.

Sequence independent systems are natural candidates for solution on multiple
independent machines. The solution proceeds to completion with no communica-
tion. Only when the sub-solutions are complete, a master process combines the
sub-solutions to generate the complete solution.

5.1.2 Sequenced Subsystems

Sequenced subsystems represent a partitioning of a problem in which one subsystem
depends sequentially on another subsystem for its solution. That is, a time ordering
can be created for the set of sequenced subsystems such that one subsystem may be
solved completely before the solution of another part needs to be attempted. Further,
a sub-system cannot be solved until its predecessor in this solution ordering has been
solved.

As an example of sequenced subsystems, consider the following example. Move
an object A, from point B to point C around obstacles D and E such that an upper
limit of the curvature of the path is « (Figure 5.3). This system can be broken down
into

1. Compute the path from point B to point C under the specified constraints
2. Move object A on the path obtained in step 1

Note that in this example we might use two different solution techniques, e.g.,
constrained optimization to determine the path and inverse dynamics to move the
object on that path. We have to, however, completely solve the constrained optimiza-
tion part of the solution and only then can we start to solve the inverse dynamics

CHAPTER 5. PARTITIONING OF CONSTRAINT SYSTEMS 45

Figure 5.3: An example of sequenced subsystems. To move object A from point B to C around
obstacles D and E, we can first solve for the path, and then move the object on the path.

part. Further, the inverse dynamics solution requires the solution from the opti-
mization constrained part (the path) and therefore can not be attempted until the
optimization is complete.

5.1.3 Unpartitioned Systems

If a system is not decomposed into subsystems during a vertical refinement step, we
just transform the representation of the system to another representation. In some
problems, it might not be apparent how to obtain a partitioning into subproblems at
the current level of representation such that the subproblems can be'solved separately.
By refining the representation, a partitioning might appear.

Change of Representation to Form Sequenced Subsystems

As an example, consider the constraint system shown in figure 5.4. A flexible body F'
is constrained to attach to the end of an oscillating rigid bar P. In its initial position,
the flexible body is situated away from the bar. The body F then moves to attach
to the bar and after that oscillates with it. We decide to use inverse dynamics to
move the elastic body to the bar and to keep it attached. To model the shape of
the flexible body, we decide to use a finite-difference method to approximate the
elastic properties of the body [TERZOUPOULOS et al 87]. In this example the behaviors
of the rigid body P and the flexible body F' are interdependent and cannot be solved
independently of each other. The constraint forces to move the bodies couple the
behaviors of the rigid bar P and the flexible body F. If we look at the problem from
a lower level of representation, we can find a sequenced set of solution methods.
The steps are:

1. Determine the force between the end point P, of the bar P and the point Ps on
the flexible body F' such that P; moves towards £,. This computation has to

CHAPTER 5. PARTITIONING OF CONSTRAINT SYSTEMS 46

RN
e

SR

e,
RABBES
&
b
550503

0
GRS
bttty

s
&

X

......

9t

e
X
5
'3

&
3%
2%

e

X

o,
&

-

Figure 5.4: An example of system that may be partitioned into sequenced system by changing the
level of representation.

take into account any other forces on body P and body F' that may be present.
2. Find the motion of the rigid body P under all the forces on it
3. Find the motion of the flexible body F' under all the forces on it

Note that the solution is still described at a relatively high level. Each of the above
solution steps may be solved by using one of many lower level methods. By going
down a level of representation we have deduced a scheme in which force computation,
rigid body dynamics and finite-differences steps can be interleaved. This example will

be solved in chapter 8.

5.2 Constructs for Horizontal Partitioning

Given the categories of horizontal partitioning presented above, what facilities in a
simulation system could be provided to use partitioning easily and effectively? We
present a discussion of some such constructs in this section.

5.2.1 Concurrent Solution

For independent systems, constructs for the parallel or concurrent solution of sub-
problems are required. These constructs should be implemented to take advantage
of the underlying architecture of the computing environment. In a computer system
that supports multiple processors, the subproblems could be solved as subprocesses

CHAPTER 5. PARTITIONING OF CONSTRAINT SYSTEMS 47

Figure 5.5: An example of hierarchies in object modeling.

spawned on different processors or machines. On a sequential machine the subprob-
lems may be solved one after another or interleaved in a time-sharing fashion. In
any case, the specification of partitioning should be independent of the details of the
implementation. The specification would provide a hint to the system which could
be exploited, if possible, to yield efficiency. Parallelism can be exploited at any level
of representation where it exists.

5.2.2 Solution in Local Coordinate Frames

The solution of subproblems in local coordinate frames is a useful tool in the hierar-
chical solution of problems. Facilities to associate coordinate frames with objects and
use the frames should be part of the simulation environment. The following features
to deal with coordinate frames may be provided.

Declaration of frames and basic transformations: There should be a capabil-
ity to associate a frame with any object in the system. Operations to transform
basic quantities should be provided to transform between frames. Some useful
frame dependent quantities are position, velocity and acceleration vectors and
tensors of various orders.

Hierarchies of Coordinate Frames: Hierarchies arise naturally when using coor-
dinate frames. An almost literal example of hierarchies is shown in figure 5.5.

CHAPTER 5. PARTITIONING OF CONSTRAINT SYSTEMS 48

Figure 5.6: The motion of a complex pendulum is more naturally specified in terms of 81 and 65
as compared to specification in a cartesian frame. A generalized frame is useful for systems that use

generalized coordinates.

Hierarchies have been long used in computer graphics for static scene modeling
[FOLEY and VANDAM 82]. The objects in figure 5.5 were modeled using such a
hierarchical transformation tree.

Transformation hierarchies can represent organization of a system of objects
very effectively. We are also interested in time-dependent behaviors of systems
and the hierarchical structure of a system may change during simulation. As
an example, consider a Rubik’s cube. Each of the faces of a Rubik’s cube can
rotate about an axis perpendicular to it. All the sub-cubes on a face that are
shared by two or three faces can move with the rotation of any of these two
or three faces. Such sub-cubes that may move as part of more than face need
to belong in different parts of an object hierarchy depending on which face is
rotated. We need to be able to define hierarchies that change with time to
simulate such behaviors.

A simpler example is a robot picking up an object A from a table T. When the
robot picks up object A, object A and any hierarchy subtree rooted at object
A becomes a part of the hierarchy of the robot. Object A was part of the table
hierarchy before the robot picked up object A.

Generalized Coordinate Frames: Traditionally, rectangular cartesian frames are
used in simulation systems. However some problems are more naturally repre-
sentable in generalized frames. For example, the complex pendulum in figure 5.6

CHAPTER 5. PARTITIONING OF CONSTRAINT SYSTEMS 49

is more naturally represented in terms of two rotation- angles §; and 6,. In a
general system, a user should be able to define and use generalized frames and
to transform quantities between generalized frames and cartesian frames.

5.3 Advantages of Horizontal Partitioning

Why do we care to partition the problem? There are some very distinct advantages
that accrue.

Use of Hierarchy: Hierarchical decomposition of the problem and hierarchical com-
position of the solution of subproblems may lead to a very effective solution
strategy. The classical computer science strategy of divide and conquer is an
example of exploiting hierarchy in problem solution.

Use of the Structure of Problem Solution (Pipelined and Parallel): Partitioning

of a problem often suggests an effective structure to the solution of the problem.
In some cases, partitioning may lead to subproblems that have very little or no
coupling during some parts of the solution process. These subproblems can be
solved in parallel which could speed up the solution process as a whole. If the
dependence of subproblems on each other is ordered, a pipeline structure for
the solution may be effective and may be exploited by overlapping solution of
subproblems.

Computational Savings: In many instances, different subproblems of a problem
have widely varying time constants. Solving the problem as a whole forces the
solution process to proceed at the rate of the slowest time constant. If the
problem can be decomposed into parts, each subproblem can be solved at the
time constant of the subproblem resulting in substantial computational savings.

5.4 Summary

In this chapter, we presented how partitioning may be used as a problem solving
strategy in constraint systems. We presented a classification of partitioning in con-
straint systems based on how the subsolutions are to be combined. The classification
suggests methods and structures that can be implemented in a modeling framework to
make partitioning a useful problem solving tool for a unified constraint environment.

Chapter 6

Temporal Sequencing

In this chapter, we present a general, systematic and consistent treatment of time
and event modeling. We formalize the concept of events and create an object called
an event unit. Using an event unit as a “time primitive,” we present a succession of
organization schemes to hierarchically create more complex time sequences or systems
of events. Temporal sequencing may be treated as a scheme analogous to the “push-
pop” geometric hierarchies in traditional computer graphics [FOLEY and VANDAM 82]
but in the time domain. The concept of an event unit provides a partitioning scheme
for the creation of a time dependent phenomenon over a time interval by letting us
create and compose behaviors over subintervals.

6.1 Use of Time in Simulations

In a simulation, we are typically studying behaviors of simulation entities as a function
of time. Frequently, the behavior of simulation entities is continuous in time. A
large body of mathematics exists that provides us with structures like differential
equations that implicitly specify the time-evolving behavior and are appropriate for
such continuous behaviors.

On the other hand, a large body of literature and a number of languages (GPSS,
Simula, Simscript) [BRATLEY, FOX and SCHRAGE 83] have been described that are suited
to discrete-event simulation. In this work, a simulation is driven by events. The
time at which an events happens in the future can be usually determined easily since
the behavior taking place between events is usually quite simple. Events are kept
in a sorted queue and the earliest event is activated at its precomputed time. The
emphasis in discrete-event simulation is in gathering statistics about events over a
time interval.

We are interested in simulations that are continuous in most part but various
events may occur during a continuous behavior. These events cause the behavior
of a system of objects to change and the system may start simulating according to

50

CHAPTER 6. TEMPORAL SEQUENCING 51

a possibly different behavior. The continuous behaviors of simulations are usually
complex; the behavior can not usually be predicted a priori as to when an event will
take place. The event occurs as a result of and as a part of the particular continuous
behavior being simulated. The simulation of such systems needs a model in which
the behavior rules that govern a system at various times, the events that may take
place during each behavior and how an event triggers a new behavior are integrated
into the same framework.

In this chapter, we present such a model. We discuss how time behaviors of
systems of objects can be designed hierarchically as time behaviors during subintervals
and connected to each other or plugged together through events. We start with the
definition of an event unit that may be treated as a basic building block for the
creation of time behaviors. We then present schemes to organize event units. ’

6.2 Classification of Time

We consider the following classification of time to be useful in a simulation environ-
ment.

Animation Time Animation time is the representation of time as it is appears in a
motion sequence. This might be on film (normally 24 frames/second) or video
tape (30 frames/second in NTSC). This time is what is perceived as “real time.”
Animation time is the rate at which that the results of a simulation will be
presented.

Simulation Time This represents the time and the time scales at which a process
is simulated. Most often, animation time differs from animation time by a
scale and an offset. For example, in a simulation of galaxies, one second of
animation time may represent millions of years of simulated time while in a
simulation of atomic phenomena, one second of animation time may represent
a few picoseconds.

Solution Time This represents the time elapsed during the solution of a problem.
Solution time may be considered as the “real time” spent when a user is waiting
for the computer(s) to produce solutions. It is difficult to predict the relation
between solution time and simulation time or animation time. Widely varying
amount of solution time may be required for a unit of simulation time depending
on the computational complexity of the problem.

In each of the above cases, the behavior of a system of objects during a time inter-
val will be partitioned into behaviors during subintervals. The sub-behaviors will take
place in a sequence to generate the overall time behavior. The sub-behaviors may be

CHAPTER 6. TEMPORAL SEQUENCING 52

Rules of | Detection Rules of
Behavior of > Behavior
before Event] Event after Event

B; L= > B

Figure 6.1: Representation of an “event unit.” An event unit represents the local time behavior
of a system of objects. The system initially simulates according to a behavior rule ;. When the
logical function £ becomes true, the system of objects switches to behavior rule B; .

complex and be simulated in different ways. For example, during one subinterval, the
behavior of a system may be represented as a set of differential equations and dur-
ing another subinterval, the behavior may be kinematically specified. The behaviors
interact only through events. Various sequences of behaviors are possible depending
on various events that may take place during a behavior. The exact sequencing will
evolve as a result of the simulation and as a result of what events actually take place.
The entire simulation may be set up as a “time program.” The output of this program
is the time behavior of the system during a time interval.

6.3 Systems of Events

Intuitively, an event signifies an “important” point in a simulation. Usually, there
is a discontinuity associated with an event as in the case of a collision between two
bodies. However, an object attaining a particular configuration or a variable attaining
a particular value are also examples of an event although there may not be a visible
discontinuity in the behavior of the system of objects. In addition, events have a time
ordering. That is, a sequence of events can be arranged in a non-decreasing order in
time.

Part of an event can be considered analogous to a conditional statement of a
programming language. While a system of objects is simulating according to a set
of behavior rules B; and a logical condition becomes true, an event is said to have
occurred. After the occurrence of an event, the system starts behaving according
to another set of behavior rules B,y (Figure 6.1). In our representation, an event

CHAPTER 6. TEMPORAL SEQUENCING 53

happens at an instant of time and takes zero time, i.e., the simulation clock does not
progress during the occurrence of an event.

6.3.1 Specification of an Event-System

An event is said to occur when a logical function £ of the state X of a system of
objects attains a true value. The event causes the system of objects to change its
behavior from one set of rules B; to another set of rules B; ;1. B;, Biy1 and L together
encode the local time behavior of a system and we call such a specification an event
unit.

Hence an event unit § is specified as a triplet

S+ (Bi(X), L(X), Biya (X))

where, X is the state of the system of objects, £L(X') is a logical condition signifying
the event, B; is the rules of behavior that the system is obeying before the event and
B;41 is the rules of behavior that the system obeys after the event. Clearly, the event
signified by £ happens during B;. A behavior B does not have to last for a finite
time. Zero time behaviors set initial conditions for other behaviors which follow.

We find this break-down of the parts of an event useful to understand events.
For example, when a collision takes place between two bodies, what is the event?
Is it the instant of collision or is it the momentum transfer that takes place during
collision? How does the motion of the bodies before and after the collision relate to
the collision event? The separation of an event-unit as behavior rules before and after
the occurrence of an event and a logical condition as the detector of the event gives
a convenient division of the parts of an event.

Time Primitives: Building Blocks for Event-based Simulation Systems

An event unit as defined above can be treated as a building block for event-based
simulation systems. Systems of events can be constructed by composing event units
S. Note that each of the behavior in an event unit can be composed of event units
itself. Hence, event simulations can be built hierarchically.

Figure 6.2 shows an example of simple event units. Figure 6.3 shows an example
of a zero length behavior.

6.4 Organization of Systems of Events

We defined an event unit in the previous section. An event unit is represented as a

triplet
S 1 (Bi(X), L(X),Bi11(X)).

CHAPTER 6. TEMPORAL SEQUENCING 54

By L4

«)

(26 1) //C)

L4

B; |Lg

Figure 6.2: Simple event units. A ball is rolling off a horizontal plane. The ball is simulating
according to behavior rule By, rolling on the table. An event L1 happens when the ball reaches the
end of the table. This event causes the ball to switch to simulate behavior rule Bs, a free fall under
the force of gravity.

& represents the state of the system of objects. The system behaves according to
behavior rules B; until the event denoted by L takes place. The system then starts
behaving according to the behavior rules of B;;;.

In this section we shall discuss composition of event units into more complex
systems of events.

6.4.1 Initialization Behavior and Termination Event

In each system of objects, there is a default initial behavior and a default final event.
The Initialization behavior is the behavior in which the system finds itself at the
origin time of simulation time. This is a zero time behavior that initializes the state
of the system. The Termination event is the event that causes the system to stop
i.e., the program to terminate. We use the pictorial notation shown in figure 6.4 to
indicate the termination event.

6.4.2 Composing two event-units

Two event-units

Sl = (Bia Lia Bi+1)

and

Sy = (BJ" LJ" Bj+1)

may be composed if
Bit1 = B;

The composition could be thought of as resulting in a system of events

S3 = (B, Lj, Bj11),

CHAPTER 6. TEMPORAL SEQUENCING 95

L 4

v

B, |Ly B, |L,

cJifo
)

Figure 6.3: An system of events with a zero time behavior. A ball is free falling under gravity
(Behavior rule By). An event L; happens when the ball hits the ground. The collision event causes
the ball to go into a zero length behavior B2 in which momentum transfer computations are made.
An event Ly is caused after the momentum calculations and the ball goes into a free fall behavior
B3. The momentum transfer behavior lasts for zero time although it causes a change in the behavior

of the system of objects.
B5 |L5]

Bs |Ls

A 4

<
w
oS

B3 |L3 L4

«~

B2 |L2

v

B1 {L1

Figure 6.4: A time line representation. The system of objects simulates in behavior rule B; until
event denoted by L; takes place. The system then switches to simulate with behavior rule By and
so on. After event Ls, the system stops simulating. The “Ground” symbol is used to denote the
termination event system(when the simulation stops).

where B represent a behavior rule composed of (B;, L;, Bj). L; is the event detection
function and Bj, is the new behavior rule for Ss.

This simple composition can be extended in several ways to give some useful
time sequences. In the following sections, we progress from simple to more complex
organizations of event units.

6.4.3 Time Graphs

Systems of events can be connected to each other using a directed graph with event
systems being the nodes and edges representing the connection between the event
units. In this subsection we present some special cases of this general connection
network.

CHAPTER 6. TEMPORAL SEQUENCING 56

Time Lines

The simplest organization of event systems is in a linear arrangement which is mono-
tonic in time (figure 6.4). We call this organization, a timeline. In a time line, each
system of events can be entered from only one other event system, only one event can
happen in that event system and the event system can lead to only one other event
system. Formally, a time line is composed of event systems as

L = { (B, Ly, By).
(Blv L17 B2)

(B -1, Ln—17 Bn)}

Time lines are quite useful; many computer simulations with events have been
implemented with time lines.
An example of a time line is shown in figure 6.5.

Time trees

More than one event may occur in a behavior rule causing the system of objefts to
go into one of several new behavior rules (figure 6.6). A time tree is an extension of
time lines that allows such multiple connections between event units. In a time tree,
associated with each event unit is set of event units, representing the new behavior
rules for the system of objects, with possibly more than one event unit in the set. The
system of objects simulates in its current behavior until any of the possible events
occurs, after which the system migrates to the event unit associated with the event
which occurred. A time tree is specified as

r = { (Bla{(Ln,Bu),(L12,B12),...})
(B2){(L21aB21),(L22,Bz2),...})

(Bn7 {(th Bnl)y (Ln27 Bn?), }) }

In this representation, each behavior rule B; has a set of (event, next behavior),
(Lij, Bi;) pairs associated with it. While the system of objects is simulating in the
behavior rule B;, any of the events L;; can occur. The event Lij occurring in B; will
cause the system to shift to behavior rule Bij.

A pictorial representation is shown in figure 6.6.

Unlike time lines, time trees can represent multi-way branches in a simulation.
Although there is a possibility of more than one event happening at a node, only
one path is chosen during simulation. That is, simulation progresses along a line
from the beginning to the end traced in the time tree as shown by the bold line
in figure 6.6. A time tree is analogous to a “switch” statement in the C program-
ming language [KERNIGHAN and RITCHIE 78], when more than one outcome is possible
although only one is chosen.

CHAPTER 6. TEMPORAL SEQUENCING =

Figure 6.5: A simulation generated from a time line organization of events. A ball rolls down three
incline planes A, B, C. At each incline plane, the only event that can happen in this simulation is
reaching the end of the plane. This event causes the ball to start free falling under gravity. During
free fall, the only event that can happen is hitting an incline plane. This event takes it into incline
roll behavior.

B2 £22

£23 \

A\’

Ell E %
31
] Bl ‘Cl2 > 83 £
[/13 32 \
84 £41 >

Figure 6.6: A Time Tree organization of systems of events. Three events may happen when the
system of objects is simulating with behavior rule B1. The system of objects migrates to behavior
rule B2, B3, B4 depending on whether event L11, L12 or L13 happens respectively. Also a behavior
rule may be reached from more than one systemn of events as behavior B2 in this figure. The actual
path chosen by the system of objects is shown as the bold line.

CHAPTER 6. TEMPORAL SEQUENCING 58

L4 B4
\

B
11L1 , B2 T55

B3
L3

Figure 6.7: An Event Graph. An event graph G is a general organization of event units. The nodes
are event units and the edges represent the connections between event units. Event graphs may
contain loops.

Event Graphs

Time lines and time trees do not contain any cycles. The simulation system goes
through each behavior at most once. In event graphs, a system of object can visit an
event system that it has been to before (Figure 6.7). A time tree is a special case
of event graph with no loops. A time line is a special case of time tree, with one.
outgoing edge per node. An event graph is a connected, directed graph.

An example of event graph is shown in the simulation set up in figure 6.8. This
simulation contains both multi-way branches and loops. The simulation was created
by programming separate continuous behaviors and connecting them together at var-
ious events. Note that we can mix different kinds of behaviors in simulations like
these. One part of the simulation may be simulated as a set of differential equations
while another may be specified kinematically. The behaviors only interact at the
events.

Further, once the time graph has been configured, various behaviors of the system
of objects can be observed under different conditions. In the simulation sequence of
this Rube Goldberg machine, when the ball B reaches the height of the piston P, it
can either get knocked off of the conveyor belt or else continue upwards. In another
run of the simulation, we can switch off the piston and the system simulates correctly
interacting with other objects in the environment. We could similarly change the
radius of the ball, slopes of inclines, rising speed of the elevator etc., and the system
would automatically generate the right behavior. We have in effect created a time
program to which we can now feed different input data. We could even remove parts
of the environment such as one of the incline planes and the simulation would stay
correct. This is equivalent to editing our time program.

CHAPTER 6. TEMPORAL SEQUENCING 59

All the event unit organizations described above, time lines, time trees and time
graphs can be themselves used as behavior rules in an event unit.

With the constructs described in this section, we have defined primitives, condi-
tionals, multi-way switches and loops.

6.4.4 Merits of Time Primitive Abstraction

The above abstraction of event units and their organization provides the following
advantages:

o Behavior rules can be programmed individually for each event unit. The interaction
with the rest of the system of objects is through events and event transitions.
This provides a partitioning of the time behavior design of a simulation.

o A behavior function can be designed as if the function starts simulating at zero
time, that is, we can use a canonical time coordinate system for all behaviors.
A behavior is triggered by an event and the time of the event is the time offset
for the behavior. A simulation engine can maintain the correct time offsets for
each subsystem of objects.

e Systems of events can be hierarchically composed to create more complex event
systems.

e The organization of event systems gives us programming constructs for describing
motion sequences. We can apply good programming paradigms to construct
reusable behaviors and easily modifiable event sequences. We can also create a
library of behavior rules that can be connected together in various ways.

The graph representation of event systems gives us the opportunity to use the well
developed concepts of graph theory [DEO 74] to analyze event systems.

6.5 Applicability of Time-Event Approach

The examples in section 6.4, which illustrate the event-time approach, have been
selected from computer animation. The time-event approach presented above can
also used in interesting ways in other domains. Some of the applications are presented
below that are suggested by the definition of an event-unit presented in section 6.3 as
events causing system of objects to switch from one set of behavior rules to another
set. A big advantage of this approach, as stated before, is that various behaviors may
be programmed separately and can be plugged together. The behaviors may be any
time-dependent phenomenon.

CHAPTER 6. TEMPORAL SEQUENCING 60

Figure 6.8: A simulation generated from an event graph organization of events. The graph for this
simulation contains multi-way branches and loops. The graph has 26 event units and two loops.
A multi-way branch takes place when the ball is knocked by the piston on to plane A or travels
upwards if not knocked off.

CHAPTER 6. TEMPORAL SEQUENCING 61

Changing problem solution

A solution strategy to solve a problem can be cast in a time-event approach. Some
examples of events occurring during a solution process are some variable taking a value
outside prescribed limits or an iterative solution having taken too many iterations.
The new behavior triggered by these events could be a more robust solution technique.
For example, in the simulation of a bending beam, different sets of equations may
govern the behavior of the beam depending on the amount of bending. A simple
linear elasticity model may be used for small bending but a more complex model may
be needed to accurately model large bending behavior.

Changing Object representation

The representation of model used for an object may also be changed depending on
various events happening in a system of objects. For example, an object may switch
its representation from a collection of particles to a fluid to a rigid body depending on
various events such as temperature change. Similarly, a large collection of objects may
be simulated as a continuum or even a single particle if, for example, the projection
of the collection of objects on the image plane is a small fraction of the full image.
[BARZEL 91] is exploring such variable representations of objects. Our work presents
a way to use these representations and to switch between them.

6.6 Implementation of Systems of Events

In this section, we discuss the implementation details of a simulation environment for
events with the abstraction presented in this chapter.

We assume that during the simulation using event-systems, the results of the
simulation are sampled at predetermined times. We require that the system of objects
being simulated be in the correct state at the time the results are sampled. In the case
of making an animation, this snapshot is taken at every frame time. In simulating a
system of objects , we have to reconcile all the events happening asynchronously to the
frame clock and simulate the system across all the events in the order of occurrence
of the events to obtain the correct state at the frame time.

6.6.1 Simulating a System of Events

The basic event simulating loop for a system of objects S is:
1. Simulate system S in current behavior until an event happens
2. Switch system S into the behavior corresponding to the event that happened

There is an implementation detail, however, that has to be taken care of. During
the simulation of a system of objects, most events are detected some time after they

CHAPTER 6. TEMPORAL SEQUENCING 62

t=t 0 /—— X barrier

x= 1(X)

t=t 4

Figure 6.9: The need for a method to compute time of occurrence of events in a simulation using
discrete sampling times. Integrating the continuous equation of motion of the particle between
discrete sampling {y and #; times does not take into account the collision event at ¢.,. The event has
to be detected, accounted for, and the simulation restarted to get the correct behavior.

have taken place. For example, consider the example of a particle moving towards a
barrier at * = zp, .10 (figure 6.9) following the equation of motion:

dz
s = f(X)

The motion of the particle is found by integrating this differential equation. The
event of the particle hitting the barrier is given by

Tparticle = Tbarrier

In general, we cannot solve for the time of this collision event in closed form. We can
detect that collision has happened by noticing that

Tparticle > Tharrier-

If the differential equation is being integrated in discrete time steps, the collision
detection may happen some time after the time of the collision. The exact time of
the collision has to be computed to be able to handle the collision correctly. To restart
the simulation at the time of the event, the state of the system of objects just before
the event has to be determined. Starting from this state, the system switches into
the behavior dictated by the event that took place.

CHAPTER 6. TEMPORAL SEQUENCING 63

We have provided two mechanisms to implement this backtracking for the state
of a system of objects to the time of an event. The first mechanism is general.
This mechanism saves the state of the system before simulation is started for any
time interval. If an event takes place during that time interval, the system can be
restarted with the saved state and resimulated until the time of the event. The
second mechanism is provided for efficiency but is less general. This step may use
interpolation of the state of the system back to the time of event from the time the
event is detected. '

Simulating an event-system

Each behavior rule B; is programmed to simulate the system of objects S to a specified
time ¢,,4, from a known state at time ¢,, unless an event occurs before time ¢,,;. If
any events happen before time ¢,.,1, the behavior rule returns the time of each event
that occurred. The time ¢, is the time at which the results of the simulation will
be next sampled. If no event is reported by the behavior rule B;, it implies that the
state of the system S has now been updated to time t,,;. If one or more events are
reported, then the system S needs to be restarted at the time of the earliest event.
From all the events reported by B;, let t. be the time of the earliest event. Then state
of the system S is computed at . just before the event. The simulation of system S
is now started from time t. in the new behavior rule B;,; dictated by the event that
occurred.

A behavior rule may return more than event. However, only the earliest event is
important. Therefore, if it is efficient, a behavior function may report only one event
if it is guaranteed that the reported event is indeed the earliest one.

The main simulation skeleton to simulate an event-system is shown in pseudo-code
in figure 6.10.

The implementation described is independent of the frequency of occurrence of
events. This of course assumes that each behavior rule B; is capable of detecting
any event that can occur when the system is behaving according to the behavior rule
B;. The time-event approach adapts to “time stiffness” of the problem. It simulates
slower during time duration where more events are happening and faster where fewer
events are happening. The correct state of the system of objects is obtained at the
time the state is sampled irrespective of how many event-units (events and behaviors)
that the system has to simulate through. During the generation of the Rube Goldberg
machine simulation shown in figure 6.8, we could simulate with any amount of time
between two frames, and any number of events occurring between two frames, and
we would always get the same state at the same animation time.

CHAPTER 6. TEMPORAL SEQUENCING 64

6.7 Summary

In this chapter we presented a methodology to partition behaviors of systems of
objects in time. We presented a time primitive that we call an event-unit. Each
event-unit represents a current behavior, events that can take place during the current
behavior and the next behavior for the system due to each event. Event-units can
be organized as a directed graph to represent the time behavior of a system over an
interval of time in terms of time behavior of the system during subintervals.

CHAPTER 6. TEMPORAL SEQUENCING 65

/%
Simulation of a system of objects S
t_n : time at which the state of S is known
t_(n+1) : time at which the state of S is desired
t.s : time to which S has been simulated
t_s = t_n at the beginning of the code
t_s = t_(n+1) at the end of the code
*/

while(t_s < t_(n+1))
Save state of S

Simulate S in current behavior B_i
until t_(n+1) (unless an event occurs before t_(n+1))

If any event occurred
find time t_e of the earliest event E_e
compute state of S at time t_e
t.s = t_e
put S in behavior B_(i+1) corresponding to event E_e
else /* state of S has been updated by B_i to
time t_(n+1) */
t_s = t_(n+1)
endif
endwhile

Figure 6.10: Pseudo code for simulation of a system of objects .. The system state is known at
t, and is desired at ?,41. System S is simulated in current behavior B; until an event is detected.
The state of system § is computed just before the event and the system is switched to the behavior
B;+1 indicated by the event that occurred.

Part 111

Language, Implementation and Examples

66

Chapter 7

Language and Implementation

In previous chapters, we have presented the concepts for the design of a unified
constraint-based simulation system. As we stated, the primary goal of our design
is the ability to use multiple techniques in the same framework. As discussed in
chapters 3 through 6, we decided to identify basic primitives for a simulation system
and to build on them hierarchically.

Implementation of a Constraint Environment

We now wish to implement a constraint environment based on the concepts presented
in the thesis.

The constraint environment needs to be programmable so that the various primi-
tive blocks can be put together to create powerful simulation approaches. We need a
good programming paradigm to provide the ability for object-oriented programming
and data abstraction. The environment should be portable across various machines
and operating systems. The environment should be extensible both by the users and
the designers. The system should provide functional transparency, i.e., the interface
language for the system should be similar to the language used to construct the sys-
tem so that new user-defined routines can be integrated into the system smoothly
and the users can use the system routines with ease.

We have decided that the basic interface to the environment is through a general
programming language: an extension to C++. The substrate of the system is de-
signed in the same language. We have also implemented some basic building blocks
in the substrate to create a prototype environment system called Our Constraint
Environment (OCE). OCE has been used to create simulation examples which are
presented in the next chapter.

67

CHAPTER 7. LANGUAGE AND IMPLEMENTATION 68

7.1 Design of an Interface Language

There are a number of possible approaches for designing a language to interface to a
simulation system, each having its advantages and disadvantages. We present some
standard choices that are available to anyone designing a language for a simulation
system and then we will discuss our choice.

7.1.1 Possible Approaches for Interface Language Design
Choice A: Designing a New Specialized language

This approach involves designing a new language which is specialized for one par-
ticular purpose. Some robotics languages have been designed using this approach
[SHIMANO, GESCHKE and SPALDING 84][GRUVER and SOROKA 88]. A robotics language will
usually have constructs to specify the motion of a robot. Additional constructs may
be added, such as to describing sequences of motion and executing conditional branch-
ing. The advantage of designing a specialized language is that it is often possible to
design elegant structures for the specific purpose for which the language is designed.
However, in a practical application, there are a number of peripheral tasks that
need to be performed. In the robotics example, matters such as operator interface,
calibration procedures and calculations, error recovery logic and input date processing
have to be taken care of. In fact a major part of an application may require constructs
available in general purpose programming languages [TAYLOR, SUMMERS and MEYER
82]. Further a specialized language approach does not typically lend itself well to
extensibility since the language is, by design, good at specific functions.

Choice B: Extending an Existing Programming Language

This approach to the design of an interface language starts with an existing general-
purpose computer language. This language is then extended by adding necessary
syntax and semantics for the specific purposes of the application to which the language
interfaces.

The advantages of this approach include, 1)the basic programming language has
already been designed, 2) many design questions for the language design have already
been answered, 3) a large amount of user documentation and user training exists, and
in many cases 4) an implementation of the language exists.

The disadvantage of this approach is that the designer of almost any language,
even a general-purpose language, will have made some compromises. This might
make the base language restrictive in some ways that may be detrimental for the
application to which the extended language interfaces.

Choice C: Writing Subroutine Libraries in a General Purpose Language

In this approach, the simulation system is written as subroutine library in a general
purpose language. Various subroutines are provided to do some simulation-specific

CHAPTER 7. LANGUAGE AND IMPLEMENTATION 69

functions. To create a simulation, a user writes a program in the same language
that was used for writing the simulation system. The program is mostly constructed
with subroutine calls to the subroutine library and control structures from the base
language.

This is a straight forward-approach and one that is fairly easy to implement.
However, the user is limited by the decisions taken by the subroutine designer. The
user has to adhere to the interfaces provided by the designer. The user is often unable
to change the internals of the system in any way, since the only interface to the system
is provided through subroutine calls.

Choice D: Designing a General Purpose Language

This approach involves designing a new general purpose language as a programming
base and then extending it with functions necessary for the specific application for
which the language is an interface. This is the most flexible approach. The base
language can be designed with exactly the features that are considered appropriate
for the application at hand without the constraints of an existing implementation.

This approach also involves the most effort since the design and implementation
are done completely bottom up. It is also easy to fall into the trap of “creeping
featurism.” There is a tendency to add new, often ad hoc, constructs to the base
language as required by the application. A user is also forced to learn the syntax of
a new language in addition to application-specific information.

7.1.2 Language Design Approach in OCE

We selected choice B, selecting an appropriate existing programming language, and
extending the language both in syntax and semantics.

Considering the design requirements and philosophy presented in this thesis, we
found this approach to be the most attractive. We wanted a powerful language to
write a substantial substrate. We also wanted the capability to extend our system by
migrating applications as they are developed into the substrate. For this capability,
it was preferable to use the same language for the interface and the substrate. There
are some simulation-specific constructs and facilities that are not generally present
in a general-purpose computer language. We decided to add these syntactical and
semantic constructs to the language we have chosen, C++[LIPPMAN 89]. Using this
approach we quickly built a prototype simulation system, since implementations of
the base language already existed.

7.1.3 Choice of a Base Language

We need our base language to have some basic capabilities: the language needs to
provide a good programming paradigm with data abstraction, structured program-
ming and object-oriented programming capabilities. The language must be easily

CHAPTER 7. LANGUAGE AND IMPLEMENTATION 70

extensible such as providing capabilities to define complex user-defined types. We re-
quire the language to be fairly efficient, since intensive numerical computations form
a major part of typical simulations. To provide an interactive but efficient interface,
we want the capability to have the language run in both interpreted and compiled
modes with the interpreter being able to interface to compiled code. A good support
environment with powerful compilers and debuggers is also desired. Portability to a
number of machines is also a requirement.

There are number of languages that provide some of the above features to varying
degrees. Smalltalk [GOLDBERG and ROBSON 83] provides a good programming model
and a good environment but most Smalltalk implementations are slow and Smalltalk is
not widely available. Lisp, particularly with object oriented extensions as in Flavors,
is becoming widely available but is not sufficiently efficient even on platforms designed
specifically to run Lisp. Most procedural languages like Fortran, Pascal and C are
efficient and widely available but provide a low level programming model.

As a compromise between our various requirements, we chose a recent language
called C++ (read as C plus plus). C++ has a syntax similar to the programming
language C. However, C++ offers facilities to program in an object-oriented manner
with capabilities for data-abstraction. Most C++ implementations translate C++ code
into C code which is then compiled and the run-time code is still efficient. Although
C++ was released only about 5 years ago, it is already available on a large number of
computing platforms, from main-frames to personal computers. Optimizing compilers
and powerful debuggers are available on most of these platforms.

7.2 OCE Implementation

The implementation of OCE represents a computational formalism for the concepts
explained in the previous chapters. The current state of OCE represents a proto-
type to test the concepts provided in this thesis. The description provided below is
intended to provide ideas about different approaches, methods and techniques that
may be implemented in a unified constraint environment. The current implementa-
tion, albeit supporting a limited number of objects, has been used to create a number
of simulations. These simulations will be presented in the next chapter.

7.2.1 Review of C++4: Existent Features of the Base Lan-
guage

The substrate of OCE is written in C++; the interface to OCE is our extension to

C++. C++ was developed as an extension to the C programming language. The C

programming language is very efficient, but it provides a very low level computing

model. C++ was designed to provide support for data abstraction and object-oriented
programming with type checking. Most of the constructs in C++ are similar to the C

CHAPTER 7. LANGUAGE AND IMPLEMENTATION 71

programming language. Some of the additional facilities in C++ are described in this
section.

Support for Data Abstraction
C++ provides support for user-defined types, called, classes, that can be used as
conveniently as built-in types. A class contains both the declaration of data and
member functions or “messages” that operate on the data. The semantics match the
definition of an object we presented in chapter 2. For example, a complex number
class may be defined by a user as:

class complex{

double re, im; /* Real and Imaginary parts */
public: :
complex operator+(complex); /* addition of two complex numbers */
/* Definition of function appears elsewhere */

};

The data declared in a class may be private, protected, or public which makes
the data available to objects of that class, objects of derived classes or objects of any
class respectively.

With this declaration, two complex numbers may be added with the same syntax
as the syntax used to add two integers:

complex a, b, c;
c =a + b;

A clean interface to an object can be created by encapsulating both the state data
of an object and all the functions that operate on the state data into the definition
of the object. The data type can then be used as a black box knowing only the
properties of the object type without having to know all the implementation details.

Support for Object-Oriented Programming

C++ offers the ability to program in an object-oriented manner while still providing
reasonable efficiency. Generic classes for a category of objects may be defined. Specific
instances may then be “derived” or “inherited” from these generic classes. The derived
class inherits all the data and functions declared in the class from its parent class.
In addition new data and member functions may be added. There also exists a
mechanism to override the functions defined in parent classes. For example, a general
class, geometric_shape may be defined as:

class geometric_shape{
point center;
public:

CHAPTER 7. LANGUAGE AND IMPLEMENTATION 72

virtual void draw();
virtual void rotate();

};

A virtual function is a member function in a class that can be overloaded by a
function of the same name in a derived class. The keyword void indicates the type
of the result returned from the respective function, i.e., null or no result is returned
through the name of the function.

Specific classes like rectangle, circle and line may then be derived from this general
class as:

class circle : public geometric_shape{
double radius;

public:
void draw();
void rotate();

};

The draw() and rotate() functions of class circle override the corresponding
functions provided in geometric_shape. The class circle also adds the data for
radius of the circle to the data inherited from its parent(s), in this case, center.

Note that the syntax in C++ to call a member function f(<arguments>) of an
object obj is

obj .f(<arguments>)

In this way, the common aspects of various objects can be abstracted by using
inheritance.

C++ allows calls of member functions depending on the type of the object, even if
two functions have the same syntactical representation. For example, if we define a
vector class as:

class vector{
double x[3];
public:
vector operator+(vector);

};

the vector addition function is called for a+b if a and b are of type vector and a
complex number addition function is called if a and b are of type complex.

CHAPTER 7. LANGUAGE AND IMPLEMENTATION 73

Choice of Function Names According to Functionality

More than one function in C++ may have the same name. The appropriate func-
tion is selected depending on the type of object of which the function is a member,
and depends on the type of parameters of the function. This implies that functions
performing similar actions on different types may be called by the same (hopefully in-
tuitive) name rather than requiring several awkward made-up names. For example, a
function that makes the image of an object on the screen may be called render () for
any type of object. Then the statement body.render() will automatically execute
the render function appropriate to the type of the object body.

One corollary of using parameter types to select the appropriate function to be
called is that C++ provides strict type checking, lack of which was a common source
of errors in C. ‘

7.2.2 Implementation of Refinement Layers in OCE

Now that we have reviewed C++, we proceed to describe the implementation of the
refinement layers presented in chapter 4. Unlike chapter 4, we will describe the
implementation starting from the bottom-most layers to the higher layers. This is
the same order in which OCE was implemented.

Numerical Solution Techniques

We consider numerical solution techniques as the “indivisible” primitives of OCE.
We have provided our extension to C++ as the base language to OCE; all the control
structures and facilities of a general purpose language are available. A constraint
environment needs to provide a large set of numerical techniques so that a user of the
constraint environment is able to construct simulations by putting together building
blocks, rather than having to write a large amount of code in the base language.

As a beginning of a powerful and extensible set of numerical solution techniques,
we chose NAG Version 13 [NAG 89], an extensive library of numerical routines. NAG
is written in Fortran 77. We considered it important to provide a similar interface in
each layer of the constraint environment. Since the OCE base language is extended
C++, we wrote a C++ interface to every routine of NAG!. Since the calling conventions
of routines in Fortran are different in C++, our C++ interface removes the need to use
a different interface than the rest of the system. C++ also provides argument type-
checking during subroutine call. Through the C++ interface we generated, we now
have type-safe usage of an extensive fortran library without the need of a fortran
run-time environment.

The details of a generic numerical interface will, of course, depend on the language
and implementation of the numerical techniques. For the specific example of providing

IThe interface was created automatically from NAG’s online documentation in collaboration with
Ronen Barzel at Caltech.

CHAPTER 7. LANGUAGE AND IMPLEMENTATION 74

an interface to NAG, a fortran library, we needed to reconcile the calling conventions
of fortran with that of C++. A fortran subroutine is called with all of its arguments
passed by reference, i.e., the address to the data is passed to the routine. C++ provides
facilities to take the address of a data item and we could have written our interface
using these facilities. For example, a routine in NAG which has a fortran interface
as:

SUBROUTINE CO5ADF(A, B, EPS, ETA, F, X, IFAIL)

c INTEGER IFAIL
c real A, B, EPS, ETA, F, X
C EXTERNAL F

could have a C++ interface as

void cOb5adf(double *a, double *b, double *eps, double eta,
double (*f)(), double *x, int *ifail)

The above interface to the routine c05adf requires that the address of each argu-
ment be passed and would be called as:

double a, b, eps, eta, x, f();
int ifail;

cO05adf (&a, &b, &eps, &eta, f, &x, &ifail);

We have implemented a cleaner interface by using the ability in C++ to pass
arguments by reference. Additionally, if an argument to a procedure is not changed
in the procedure, the argument can be declared as a constant. Using the syntax for
passing arguments by reference and declaring the argument as constant if necessary,
the interface to c05adf is:

void cO5adf(const double &a, const double &b, const double &eps,
const double &eta, double (const *&f)(), double &x,
int &ifail)

and a call would be simply:
double a, b, eps, eta, x, f();
int ifail;
cO5adf(a, b, eps, eta, f, x, ifail);

Note that this second implementation of the interface generates a cleaner call syn-
tax than the first implementation. In general, the translation of the fortran interface
to the C++ interface is shown in figure 7.1.

CHAPTER 7. LANGUAGE AND IMPLEMENTATION 75

Fortran Parameter C++ parameter

INTEGER X int &x

INTEGER X(N) int x[/* N */]

real X double &x

real X(N) double x[/* N */]

LOGICAL X char &x

SUBROUTINE X ... const void (*&x)(<arguments>)
INTEGER FUNCTION X ... | const int (*&x)(<arguments>)
real FUNCTION X ... const double (*&x)(<arguments>)

Figure 7.1: Translation of NAG fortran interface to a C-++ interface for OCE. If an argument is
unchanged in a routine, const is prefixed in the C++ declaration. The term ‘real’ is used to represent
the implementation for floating point numbers, ‘float’ or ‘double precision’. In the implementation
of NAG on our computer system, ‘real’ is implemented as double precision.

Some of the basic categories of routines available in NAG and hence in OCE in-
clude roots of polynomials and transcendental equations, quadrature, ordinary and
partial differential equations, optimization, matrix operations, eigenvalues and eigen-
vectors, simultaneous linear equations, and curve and surface fitting.

Symbolic Manipulation and Data Structuring

The symbolic manipulation and data structuring layer is implemented to present
two kinds of support. First, the layer provides support to generate code and data
structures that are not directly related to the central mathematical problem being
solved but are needed for a specific numerical solution technique. An example is
computing the gradient of a function to be optimized. Second, the arguments to
the primitive numerical solution techniques are basic data types provided in the base
language. To exploit the data abstraction facilities of C++, we would like to be able
to use user defined types as arguments to solution methods. The layer also provides
this data structuring support.

We have written a stand-alone experimental interface to the symbolic manipu-
lation package, Mathematica [MATHEMATICA 88], that can be used to generate C++
routines from Mathematica output. This interface can start up Mathematica as a
coprocess and communicate with the package using UNIX sockets. The interface cur-
rently understands a limited syntax that lets us generate some mathematical func-
tions symbolically such as differentiation and integration. Using this interface, we
have written a package to generate the inertia tensors for a given mass distribution.
The interface can be also used to compute some auxiliary structures such as gradi-
ents of functions to be used in optimization or other problems. This interface will be
incorporated into OCE.

CHAPTER 7. LANGUAGE AND IMPLEMENTATION 76

Data Structuring provides support to use a data type that can be represented
in multiple ways with a uniform interface. In the current implementation, we have
implemented some classes of data items that are useful in simulation problems. The
emphasis in the implementation of these classes was to provide an interface compatible
to the use of the data item but independent of the representation of the data item.
Currently, the classes implemented in the data structuring layer in OCE are vectors,
matrices and rotations.

Vectors
A vector of size n may be declared as:

Vector v(n)

{

The following operations on vectors are available:

vector vi, v2, v3;
matrix mi;
double di, 42;

v3 = vl + v2 /* vector addition */

v3 = vl - v2 /* vector subtraction */

v3 = d1 * vi /* multiply with a scalar */
di = vl . v2 /* dot product */

v3 = vl "~ v2 /* cross product */

Matrix m1 = vl | v2 /% outer product */

Matrix ml = vl.dual_matrix() /* See appendix A */
v3 = vi.unit_vector()

d1 = vi.magnitude()

Three component vectors have been implemented as a special case for efficiency. Three
component vectors may be used as the general vectors above and are declared as:

Vector3 v;

Matrices

Support for arbitrary-size matrices is provided. In addition sparse matrices are im-
plemented with the same interface as other matrices. In particular, a general sparse
matrix, banded matrices and triangular matrices have been implemented. Each of
the types of matrices is derived from the class GenericMatrix. The different types
of matrices may be declared as follows:

Matrix m(n, m); /* Matrix of dimensions n, m */
SparseMatrix sm(n, m); /* Sparse matrix of dimensions n, m */

CHAPTER 7. LANGUAGE AND IMPLEMENTATION 77

DiagMatrix dm(n, m, b); /* Diagonal matrix of dimensions */
/* n, m and bandwidth b */
TriangularMatrix tm(n, m, {UPPER|LOWER});
/* Triangular matrix of order n, m. */
/* flag indicates upper or lower */
/* triangular %/

After a matrix (of any type) is declared, it can be accessed and operated with
uniformly.

Similar to vectors, addition, subtraction and multiplication of matrices with scalars,
vectors and matrices exist. All multiplications uniformly use the ‘¢’ operator as:

double d;

vector v;

matrix mi, m2, m3;
m3 = d * mi;

m3 mi * m2;

m3 = ml % v;

Additionally, operations for transpose, inverse, adjoint, column and row extraction of
a matrix exist.

Rotations

A general representation for rotations has been defined. Rotations are internally
represented as quaternions (Appendix A). However, programs can interface to the
internal rotation representation through other representations of orientation, such
as a rotation matrix or euler-angles. Transformation of vectors and second order
tensors (such as Moments of Inertia) by rotation matrices is available using the same
syntax irrespective of the representation of rotation.

A rotation object may be created using a matrix, axis-angle, quaternion or euler
angle representations. In addition, there are several choices of Euler angle representa-
tions. We chose the roll, pitch and yaw or xyz euler angle representation. A rotation
object may be created as:

rotation r(matrix m) /* rotation matrix */
rotation r(vector axis, double angle) /* axis, angle */
rotation r(quaternion q) /* quaternion */
rotation r(double roll, double pitch, double yaw)/* euler angle */

Generic Numerical Methods

The routines implementing primitive numerical solution techniques need a large num-
ber of arguments that are very specific to the numerical technique being used. The

CHAPTER 7. LANGUAGE AND IMPLEMENTATION 78

purpose of the generic numerical methods is to provide an interface for the solution
of general mathematical problems. The layer attempts to reduce the need to ac-
count for all the details of primitive numerical solution techniques that will be used
to solve the generic mathematical problem. In each of the generic numerical method
implementations, a numerical solution technique is used as a default technique. A
numerical solution technique other than the default may be specified by the user.
OCE currently provides solution of the following generic mathematical problems.

Interface to Linear Equations

This interface provides a solution to a set of possibly non-square set of linear equa-
tions. The class of problems accepted are:

Find vector x such that
Ax = b

where
= an m X n real matrix

= vector of n unknowns
= a vector of m constants
= number of equations in the set, possibly equal to n

S ox >

If the system is non-square, a minimal least squares solution is found. A
method to take advantage of the sparsity is used if the matrix provided to the interface
is sparse. If the matrix does not use representation for sparse matrices but the user
specifies that a sparse matrix be assumed, the sparse matrix interface provided in the
data structuring layer is used to transform the matrix into the proper data structure
before calling the numerical routine from the numerical method layer.

The matrix A can have any of the representations, full, sparse or banded, as
described in the previous section. By using the data structuring facilities provided
for matrices irrespective of internal representation, the same interface can be used
to the linear system solution for any matrix type. Further, efficient solutions can be
chosen for sparse matrices automatically.

The uniform solution interface is:

solve_linear_system(GenericMatrix m, Vector x, Vector b)

The default method used for the solution of linear systems is LU-Decomposition.
Particular solution methods may again be chosen by calling the routine as:

solve_linear_system(OCE_choice method, matrix m, vector x, vector b)

CHAPTER 7. LANGUAGE AND IMPLEMENTATION 79

Interface to Ordinary Differential Equations

The interface to the solution of ordinary differential equations provides a generic
interface to the solution of the system:

Yy = fl(y1,y2,..-,yn,x)
Yo = f2(y1’y27°"7yn7$) (71)

Y = fn(yh Y2,... 3yn’x)

As explained in appendix A, a set of n**-order ordinary differential equations may
be transformed into a system of first order ordinary differential equations. The first
order system can be cast (locally) into the above form, y’ = f (y,¢). The interface
to ordinary differential equations solves for the n functions y;(x),...,yn(z). A system
of differential equations is solved by first creating an GenericOde structure. This
GenericOde structure can then be solved to any value of the independent variable.

The generic ode structure is created as:

GenericOde ode{int no_of_equations, double start_time,
double_function derivative, double tolerance)

The default solution technique used to solve the system of equations in (7.1)1is
Adam’s method. A fifth order Runge-Kutta and Gear’s methods are also provided.
A non-default solution method is used as:

GenericOde ode(0OCE_choice method, int no_of _eqns, double start_time,
double_function derivative, double tolerance)

The system (7.1) is solved to any value of the independent variable z as:
ode.solve(double x, Vector y)

A differential equation data structure is destroyed and the memory taken by the
data structure is freed by

ode.free();

CHAPTER 7. LANGUAGE AND IMPLEMENTATION 80

Interface to Optimization Problems

A general constrained-optimization problem may be stated as:
minimize: F(x) x € R*
~ subject to: [; < z; <y t=1,2,...,n

L<Ax<w;,, i=n+1,n+2,...,n4ng
L<gx)Lu; i=n+np+1,...,n+nr+nn

where
X = an n element vector of variables
F(x) = objective function to be minimized
A = an ny by n matrix of constants
¢i(x) = a non linear constraint function
l; = lower bound on the respective variable or constraint function
u; = upper bound on the respective variable or constraint function

By selecting one or more of ny, or ny to be zero, this general constraint op-
timization problem can be reduced to a non-constrained optimization problem or
a constrained-optimization problem with only linear constraints. A number of in-
terfaces for optimization of functions are available. To perform an unconstrained
minimization of a function, a user can use:

OCE_optimize(int no_of_variables,
void (*#&obj_fun)(), /* routine to compute
objective function and gradient */
double &optimum_value, /* minimum value of function */
double x[] /* variable values at optimum */

)
The function to compute objective function and gradient is declared as

void obj_fun(int no_of_variables, double x[], double &func_value,
double obj_gradient(]);

For the general constrained optimization problem with non-linear constraints, the
interface provided is as follows.

OCE_optimize(int n, /* no of variables */
int nclin, /* no of linear constraints */
int ncnln, /* no of non-linear constraints */

double al], /* linear constraint matrix */

CHAPTER 7. LANGUAGE AND IMPLEMENTATION 81

double 1[/* n+nclin+ncnln */],
double ul/* n+nclin+ncnln */],
/* lower and upper bounds */
void (*&obj_fun)(), /* routine to compute
objective function and gradient */

void (*#&obj_fun)(), /* routine to compute

nonlinear constraints and their jacobian */
double &optimum_value, /* minimum value of function */
double x[] /* variable values at optimum */

)

When a symbolic mathematics interface is fully integrated into OCE, the interface
to the solution of optimization problems will become simpler, with gradlents and
jacobians computed automatically.

7.2.3 Partitioning

The support for partitioning is designed to provide the capability of decomposing
a problem into subproblems, solving the subproblems and composing the subsolu-
tions. Partitioning support in OCE is provided for communication between different
constraint methods approaches.

Communication between Constraint Methods

Different constraint approaches can operate on different objects in the constraint
environment. To enable constraint approaches to cooperate with each other, a general
sufficiently implementation of objects is required. In the current version of OCE, a
number of useful objects have been implemented. The interface provided to any
object is a natural mathematical one, rather than being specific to any constraint
technique. Using the class derivation facilities of C++, technique specific classes of
a general object can be derived if necessary. This general definition of the object
enables good communication between the different constraint approaches.

The definitions for vector, matrix and rotation objects in the generic numerical
methods layer already support partitioning, by providing a uniform interface inde-
pendent of the internal representation of the objects. We have defined additional
objects that are used by constraint techniques at “higher” level of representation of
the constraint problem. For each of the additional objects, a base class definition is
created; specific instances of the object are derived from the base definition to create
more specialized objects.

CHAPTER 7. LANGUAGE AND IMPLEMENTATION 82

PATHS
A base definition of a path in OCE is expressed in terms of n piecewise parametric

functions:
r;(t) = fi(t), Loy <t<t, 1<i<n

Given a value of ¢ between ty and ¢,, a path can return position or derivatives
of various orders of r(t) with respect to t. Classes are provided that reparameterize
paths and compute the parameters of the Frenet-Serret apparatus [FAUX and PRATT
79]. The member functions provided for a generic path are:

GenericPath p;

Vector3 p.position(double t); /* position at parameter value t */
Vector3 p.tangent(double t); /% tangent at parameter value t */
Vector3 p.normal(double t); /# normal at parameter value t */
Vector3 p.binormal(double t); /* binormal at parameter value t */
double p.length(double t); /* path length to parameter value t */
double p.curvature(double t);/* curvature at parameter value t */

Some specific types of paths are implemented as subclasses of the GenericPath
class. A piecewise bezier path and a piecewise linear path are inherited classes of a
GenericPath class and may be respectively created by:

BezPath bpath(int no_of_control_pts, Vector3 control_pts);
LinPath lpath(int no_of_control_pts, Vector3 control_pts);

An interface to a curve editor also exists. A curve from the curve editor may be
read as:

CedPath cpath(char *curve_file);
A path may be reparametrized by arclength to create another path as:

newpath = path.ReParmArcLength()

Force

Two types of forces are currently defined, PointForce and FieldForce. A PointForce
acts on a point on a body. In addition to a force at the center of mass a PointForce
may generate a torque if the point of application is not the center of mass. A
FieldForce is a uniform force field that generates only a force at the center of mass.

Gravitational force (assumed uniform) is an example of a FieldForce?.

2In general, body forces like gravity, surface forces like viscosity and line forces like surface tension
are examples of field forces.

CHAPTER 7. LANGUAGE AND IMPLEMENTATION 83

FieldForce gravity(Vector3(0.0, 0.0, -9.8))
PointForce f1(Vector3 force_vector, Vector3 appl_point)
/* apply force_vector to the point appl_point in body
coordinates */

RI1Gip Bopy
A generic rigid body object is defined with the following attributes:

Center of mass vector

A rotation

Mass of the body

Inertia tensor in body coordinates
Linear Momentum vector

Angular Momentum vector

Specific bodies, such as cylinders and spheres have been derived from the
GenericRigidBody.

RigidCylinder() /* generate a unit cylinder of unit mass */
RigidCylinder(double mass, double radius, Vector3 pi, Vector3 p2)
/* Cylinder from point pl to p2 */
RigidSphere() /* Unit sphere of unit mass */
RigidSphere(double mass, double radius, Vector3 center)

To compute the motion of the rigid bodies, we need to add forces and torques
to the definition of rigid bodies. A rigid body used in a dynamic simulation may be
derived from the GenericRigidBody as:

class DynamicRigidBody : public GenericRigidBody{
Force ExtForces[];
Torque ExtTorques[];

'FLEXIBLE Bopy

A model of flexible solids has been implemented. Currently, the model employs a
simple mass-spring model. Springs are modeled as linear-hookean springs with force
proportional to the displacement from original length. Examples of simulations using
this model are presented in the next chapter. A flexible body may be created as:

FlexibleBody(double mass, Vector3 (*&position_func)(),
int nu, int nv, int nw, double k);

CHAPTER 7. LANGUAGE AND IMPLEMENTATION 84

The function position_func is defined as:
Vector3 position_func(double u, double v, double w)

and returns the world coordinates of the parametric solid parameterized by body
coordinates u, v, w.

The body is discretized into nu, nv, and nw mass points in the three parametric
directions. Hexahedrons are created from adjacent points with springs between each
pair of points. The spring constant for each spring is k.

Constraint Approaches

Using the objects defined above, we have implemented a number of constraint ap-
proaches. These approaches can be used in conjunction to generate the simulations
demonstrated in the next chapter.

INVERSE DYNAMICS

The inverse dynamics technique involves computing constraint forces that together
with external forces acting on bodies will produce motion of bodies according to
specified constraints. The implementation of this technique in OCE is based in part
on [BARZEL and BARR 88]. The implementation supports both rigid bodies and a simple
elasticity model of flexible bodies. Simulations may mix rigid bodies and flexible
bodies.

Classes defining forces, paths, rigid bodies and flexible bodies defined in OCE
have been used in the definition of the inverse dynamics system. Objects of these
classes may be generated or used by other constraint approaches as well as by the
inverse dynamics system. In this way, one constraint approach may be plugged with
other constraint approaches. For instance, in the next section, we describe, how we
can create paths by optimizing functionals of the path. Also, in the next chapter, we
present an example in which an optimized path is used in conjunction with inverse
dynamics.

The derivation of inverse dynamics as presented in [BARZEL and BARR 88] leads to
a linear system of equations for the constraint forces in the system as:

MF. +B=0
where
M = a sparse, possibly non-square matrix
F. = vector of constraint forces

= a vector

CHAPTER 7. LANGUAGE AND IMPLEMENTATION 85

The behavior of the system of rigid bodies is determined by solving the equations
of motion of rigid bodies as described in appendix B. The equations form a set of
ordinary differential equations. .

Using the sparse matrix representations and solutions of differential equations
provided in the generic numerical methods layer, we have implemented an inverse
dynamics system in OCE.

An inverse dynamics system of objects is created by

InverseDynamics system;
The rigid and flexible bodies in the inverse dynamics system can be created as:

ID_Nail(Vector3 position) /* fixed point in space */
ID_FlexibleBody(double mass, Vector3 (*&position_func)(), ,
int nu, int nv, int nw, double k); /% Flexible body */
ID_Cylinder(double mass, double radius, Vector3 p1, Vector3 p2)
/* Cylinder from point pl to p2 */
ID_Sphere(double mass, double radius, Vector3 center)
ID_Point(Vector3 position, ID_Body body)

Flexible bodies and rigid bodies in the inverse dynamics system are derived from
a general class, ID_Body and therefore, a rigid body or flexible body may be used to
create an ID_Point.

External forces may be defined as -

Field_Force gravity(Vector3 force_vector)
Point_force fi(Vector3 position, Vector force_vector)

and applied to a body as:
body.add_force(Force force)
Three types of constraints can currently be declared:

system.PointToNail(ID_Nail n, ID_Point p)
system.PointToPoint(ID_Point pl, ID_Point p2)
system.PointToPath(ID_Point n, Path path)

The inverse dynamics system may be simulated by:
system.simulate(start_time, end_time, time_step)

Examples of simulations carried out with the inverse dynamics system in OCE
are presented in the next chapter.

CHAPTER 7. LANGUAGE AND IMPLEMENTATION 86

7.2.4 Temporal Sequencing

Support for temporal sequencing is provided in OCE through classes for event-units
and event-graphs. An event-graph simulator is a member function of the class for an
event-graph. An event-unit is created as

EventUnit el(char *name,
int (*&behavior_rule) (),
int (*&compute_state_at_event)())

Once event-units have been defined, an event-graph can be created by connecting
event-units as:

EventGraph eg;

eg.connect (EventUnit el, EventUnit ell)

eg.connect(EventUnit el, EventUnit ell, EventUnit e12)
etc.

In a connect message, the first argument is the current behavior rule that a system
of objects is simulating in. The remaining arguments represent respectively the next
behavior rule for each of the events that can occur in the current behavior rule.

An event-graph is simulated simply as

eg.simulate(start_time, end_time, time_step)

7.2.5 Syntactical Extensions

We have added some syntactical extensions to C++ to provide features to aid in
programming simulations. '

Dimensions of Physical Objects

We have added declaration of the dimension of an object to the object’s declaration.
The dimension declaration is added as part of the class definition in C++.

DIMENSION DECLARATION SYNTAX

The declaration is introduced by the keyword dimension in the class declaration and
has the following syntax.

<dimension declaration> ::= dimension <dimension declarator>
<dimension declarator> ::= <dimension letter>[<dimension power>]
<dimension letter> ::=M | L | T

<dimension power> ::= [-]<unsigned integer>

CHAPTER 7. LANGUAGE AND IMPLEMENTATION 87

The declarations are declared as powers of M, L, and T for mass, length, and
time respectively. The dimension letter is followed by an optional integer representing
the exponent. If the power is missing, a unit exponent is assumed.

For example a class force may be declared as:

class force: public vector{
dimension: MLT-2;
/* other data and functions */

};
This declaration declares force to be a vector with dimensions of M LT —2.

Dimension Usage
When parsing an expression, dimension declarations are used to check dimensional
integrity of the equation. For each object in the expression that has dimensions
defined, dimensions are checked for compatibility.

The dimension check is done during preprocessing of a program. There is no run
time penalty because of dimensional checking. The dimension check also does not
cause any syntax change in an expression.

7.2.6 User Interface

This section discusses the user interface provided to OCE. Textual interface is pro-
vided as basic input interface using a general programming language. Some special
purpose interfaces also exist such as interface to an interactive editor for path speci-
fication. Extensive rendering and animation support is also provided.

Textual Environment

The basic interface is through programs written in our extension of C++ as described
in section 7.1. Currently, the C++ program is compiled and linked with the OCE
environment. A C++ interpreter is under development that will allow the simulation
programs to be interpreted. After programs are debugged using the interpreter, they
can be migrated into the compiled part of the system for efficiency.

Rendering Support

The visible results of OCE in most cases are computer images or animation. OCE
has extensive graphics support to make it easy to incorporate rendering and anima-
tions into simulation results. We have attempted to provide a functional rendering
subsystem that handles most of the rendering needs of a simulation. According to
the basic philosophy of OCE, access is still provided to the basic processes of the
rendering subsystem so that a user can implement rendering supports that are not
already available.

CHAPTER 7. LANGUAGE AND IMPLEMENTATION 88

Each object in OCE can be rendered, since all objects in-OCE are derived from
a base object called 0CE_Object, which has a virtual rendering function defined for
it. All derived objects can overload this function with their own rendering function.
The overloaded render functions may use the facilities provided in the OCE Graphics
substrate to generate images and animations.

The rendering system provides support in two ways,

o Creation and maintenance of organizations of renderable objects

¢ Rendering primitive or organizations of objects

To provide the above support, the following facilities are provided in the rendering
subsystem.

OBJECTS, OBJECT LISTS, OBJECT HIERARCHIES

Various canonical geometrical objects are supported in the render subsystem. Some of
the objects are polygons, quadric surfaces, cylinders, superquadrics, and parametric
surfaces. A renderable object may be created out of basic objects by organizing them
in structures such as render-lists and render-hierarchies as described below.

A render-list is a list of renderable objects. Render lists can be passed to the
render subsystems to be rendered. A render-hierarchy is hierarchy in the fashion of
the common graphics push-pop hierarchy [FOLEY and VANDAM 82]. The lists and
hierarchy are dynamic ones and they can be modified as needed during simulation.

SURFACE DESCRIPTIONS

The render-subsystem provides definition and usage of various surface types. To
create a renderable representation of itself, an object can ask for a surface resource
from the rendering system and associate it with its geometry.

Making an image or an animation

The rendering system contains a list of renderable objects which might contain prim-
itive objects, render-lists or render-hierarchies. At each frame time, all the objects in
the render list are rendered. The renderer works in two modes, online and off-line.

The online interactive renderer is a z-buffer based renderer. The objects on the
render’s list are rendered using hardware that uses the z-buffer rendering algorithm.
Drop shadows are supported to provide additional depth cues.

The off-line renderer outputs data to a file for off-line, and possibly, high quality
renderers such as ray tracers. A ray tracer program exists that can input the off-
line rendering output of OCE and render high-quality images providing real shadows,
reflection and refraction.

To create animations, an interface is provided with an ABEKAS A60 digital frame
recorder. When the animation mode is activated, the interface records each frame on

the ABEKAS A60.

CHAPTER 7. LANGUAGE AND IMPLEMENTATION 89

Camera Object

The renderer has a general camera model that provides viewing control on the world
scene. Various parameters of the camera such as the point at which the camera is
looking, the position of the camera and the field of view are accessible to other parts
of the simulator. In this way the camera can be controlled directly by the results of a
simulation. For example, the camera look-at point may be constrained to be always on
a particular object so that the object is always centered on the screen. Similarly, the
camera position may be constrained to follow user specified trajectories. Trajectories
are general paths as described earlier.

7.3 Summary

In this chapter we have discussed the facilities available in OCE and their implemen-
tation. Using an approach of making building blocks that plug together, we have
been able to construct a prototype system that provides considerable simulation ca-
pabilities. A number of built-in objects are provided to provide support of creating
mathematical structures, creating physically based simulation structures and render-
ing outputs. Using the prototype system we have performed some simulations and
built some simulation packages. We will present examples from these simulations in
the next chapter.

Chapter 8

Examples of Constraints

In the previous chapters, we have presented our approach for designing a unified
constraint-based simulation system. In chapter 7, we described a prototype system,
OCE, that we have implemented based on our design concepts. In this chapter we
present simulations that we have carried out using OCE. Some of these problems have
been presented in previous chapters.

8.1 Building A Package on OCE Layers

The first three simulation examples demonstrate the ability to build a constraint
package on top of the facilities provided in OCE. We have implemented an inverse
dynamics package fashioned after [BARZEL and BARR 88]. The technique in [BARZEL and
BARR 88] produces the constrained motion of rigid bodies by computing forces that
under Newtonian mechanics laws would move the bodies according to the constraints.
We have implemented an extended version which also includes flexible models. Cur-
rently, we use a mass-spring model for flexible bodies based on an approximation to
the metric tensor of a solid. A flexible body is discretized as point masses connected
by hookean springs. The implementation uses a differential equation solver and a
sparse linear equation solver. The inverse dynamics system was implemented first for
rigid bodies alone. The availability of high level layers to solve constraint problems
helped to compose the simulations in a short time.

Two simulation sequences are shown in figure 8.1 and 8.2'. The first sequence
shows rigid bodies being assembled. Constraints are imposed between points fixed
in the coordinate system of rigid bodies and between “nails”, points fixed in world
space.

The second sequence (figure 8.2) shows constraints between two flexible bodies.
One point of one flexible body is attached to one nail and one point on the second

!The animation sequences advance left to right and top to bottom.

90

CHAPTER 8. EXAMPLES OF CONSTRAINTS 91

Figure 8.1: A rigid body sequence produced from an inverse-dynamics package built on top of OCE
vertical refinement layers.

CHAPTER 8. EXAMPLES OF CONSTRAINTS 92

SRRE

Figure 8.2: A flexible body sequence produced from an inverse-dynamics package built on top of
OCE vertical refinement layers.

CHAPTER 8. EXAMPLES OF CONSTRAINTS 93

flexible body is attached to a second nail. Further, a point of the first body is
connected to a point on the second body. The bodies start at positions where the
constraints are not met. The bodies then move under the forces computed by inverse-
dynamics to meet the constraints.

The code segment that generates the animation segment is:

InverseDynamics system;
ID_Nail ni(Vector3(nlx, nly, niz));/* Declare two fixed points */
ID_Nail n2(Vector3(n2x, n2y, n2z));

/* Declare two flexible cubes by specifying their corner points */

ID_FBody fbl(massl, left_bottom_1, right_top_1);
ID_FBody fb2(mass2, left_bottom_2, right_top_2);
system.add_body(fbl);
system.add_body(fb2) ;

ID_Point pi(left_bottom, fbil); /* Declare anchor points on */
ID_Point p2(right_top, fbl); /* Flexible Bodies */
ID_Point p3(left_bottom, fb2);

ID_Point p4(right_top, £b2);

system.PointToNail(nl, pl); /* Declare Constraints */
system.PointToNail(n2, p4);
system.PointToPoint(p2, p3);

system.simulate(start_time, end_time, t_step);

8.1.1 Heterogeneous Objects

The sequence in figure 8.3 shows the interaction between rigid and flexible bodies. A
flexible body is constrained to connect to the end point of a rigid pendulum which in
turn is connected to a nail. Inverse dynamics with rigid and flexible bodies is used
to compute forces that move the flexible body and the rigid body according to the
imposed constraints.

The sequence was generated by the following code:

InverseDynamics system;
ID_Nail nail(Vector3(nlx, nly, nlz));
Field_Force gravity(Vector3(0.0, 0.0, -9.8));

CHAPTER 8. EXAMPLES OF CONSTRAINTS 94

Iigure 8.3: A sequence showing the interaction of rigid and flexible objects using inverse dynamics.

CHAPTER 8. EXAMPLES OF CONSTRAINTS 95

ID_Cylinder cyl(massi, radiusl, pl, p2);
ID_FBody fb(mass2, left_bottom_2, right_top_2);

cyl.add_force(gravity);
fb.add_force(gravity);

system.add_body(cyl);
system.add_body(£fb) ;

ID_Point cpi(origin, cyl); /* Declare connecting points */
ID_Point cp2(end, cyl); /* on the bodies in the system */
ID_Point fpil(right_top, £b2);

system.PointToNail(nail, cpl);/* Declare Constraints */
system.PointToPoint(cp2, fpl);

system.simulate(start_time, end_time, t_step);

8.2 Multiple Solution Methods

The animation sequence described here shows the use of multiple techniques in solving
a problem (figure 8.4). The problem is to move an object from point A to point B
around obstacles. A three-axis robot is used to move the object. We wish to find the
robot joint angles as a function of time that will move the object from point A to
point B satisfying the constraints.

Using the terminology in chapter 5 on horizontal partitioning, we break the prob-
lem into three sequenced subsystems. That is, we solve the problem as three sub-
problems one after the other. Each step uses the solution generated by the previous
step. This strategy can work only if the representations for objects used by different
subsystems are compatible. As described in the previous chapter, we have achieved
this compatibility by defining generic classes for the objects. Each technique can use
specialized classes derived from these generic classes.

The three subsystems used to solve the problem at hand are:

Subproblem 1. Find a path avoiding the obstacles
Subproblem 2. Move the object on the path

Subproblem 3. Find the joint angles of the robot that will cause the robot to move
the object on the computed path

The code generating the simulation in figure 8.5 is as follows:

CHAPTER 8. EXAMPLES OF CONSTRAINTS

Figure 8.4: A path determined by an optimization procedure to avoid obstacles.

InverseDynamics system;

IK_robot3 robot; /* Instantiate a robot */
Field_Force gravity(Vector3(0.0, 0.0, -9.8));

/* Step 1. Determine path */

CedPath pathi("initpath.ced"); /* Use a curve editor path as
an initial guess */
OptPath path2(pathl, obstaclel, obstacle2, obstacle3);
/* User written class to optimize length of pathl avoiding
three obstacles. Path path2 is the result. */

/* Step 2. Move body on path */

ID_Sphere sp(b_mass, b_radius, initial_pos);
sp.add_force(gravity);

system.add_body(sp);

CHAPTER 8. EXAMPLES OF CONSTRAINTS 97

Figure 8.5: An object is moved using inverse dynamics on a path. Inverse kinematics computes
Joint angles for a robot that move the object along the trajectory computed by inverse dynamics.

CHAPTER 8. EXAMPLES OF CONSTRAINTS 98

ID_Point p2(Vector3(0.0, 0.0, 0.0), sp);
system.PointToPath(p2, path2); /* Constrain center of ball to the
optimized path */

for(t=start_time; t<end_time; t+=time_step){
system.solve(t, t+time_step, time_step);/*Solve position of ballx/
/* Step 3. Compute robot joint angles */ '
robot.compute_angles(sp.cm()); /*Compute joint angles for */
/*robot to position ball */
system.render();

}

First, the path is determined by optimizing an energy function that minimizes the
length of the path while avoiding the obstacles (Figure 8.4). A path generated by a
curve editor provided an initial guess for the optimization procedure.

After determining the path, the sphere is moved on the path using inverse-
dynamics. We impose a path-to-point constraint between the path determined in
step 1, and the center of mass of the sphere.

The robot joint angles are determined by inverse kinematics to follow the ball.
A three-axis robot class IK_robot3 exists in OCE which takes a point in 3-space as
input and determines the joint angles.

8.3 Time-Event Simulation

This example illustrates a time-event simulation in a robot work cell (Figure 8.6).
The work cell consists of two conveyer belts, C;, bringing work-pieces in and C,,;,
taking work-pieces out. A robot picks up pieces from C;,, works on the work-piece
and deposits it on the out going belt C,,,. The simulation proceeds as follows:

1. The vision system V on the incoming belt stops the belt when it sees a piece
at the end of the belt

2. The robot picks up the piece, carries it to a work bench W.

3. After “working” on the piece on the work bench, the robot picks up the finished
piece and puts it on the outgoing belt.

The simulation in (figure 8.7) was created using the time-event approach of chap-
ter 6. Behavior rules for the robot-workcell system between events were created and
connected to create a time-graph. The code that generated the sequence in figure 8.7
is as follows:

CHAPTER 8. EXAMPLES OF CONSTRAINTS 99

Figure 8.6: A time-event example. Multiple systems in a robot work cell are simulated. Work
pieces come in on conveyer belt Cj;,. The pieces are picked up by a robot, worked on and delivered
to an outgoing belt C,y;.

/* Create event-units necessary for the simulation */

EventUnit wait_for_belti("ei",
r_wait_for_belti_to_stop,
compute_state_at_b_stop);

EventUnit move_to_belt1("e2",
r_move_to_beltl,
compute_state_at_beltl);

EventUnit move_to_home('"en",
r_move_to_home,
compute_state_at_home) ;

/* Create event graph */
EventGraph robot_graph;
robot_graph.connect(wait_for_beltl, move_to_beltl);
robot_graph.connect(move_to_beltl, grab_object);

CHAPTER 8. I

AMPLES OF CONSTRAINTS 100

Figure 8.7: Frames from a robot workcell simulation designed as a time-event sequence.

CHAPTER 8. EXAMPLES OF CONSTRAINTS 101

robot_graph.connect (move_to_belt2, move_to_home);
robot_graph.connect (move_to_home, wait_for_beltl);

/* Simulate event graph */
robot_graph.simulate(start_time, end_time, time_step);

8.4 Summary

The examples presented in this chapter show some of the capabilities of a prototype
system built on the concepts presented in this thesis. The basic philosophy of the
design has been identifying various ways in which solutions of subproblems can be
plugged together to form overall solutions to a problem. Using partitioning, refine-
ment and temporal sequencing, we have been able to construct a system that provides

us this pluggability.

Part IV

Conclusions and Appendices

102

Chapter 9

Conclusions

Constraint-based modeling techniques are emerging as a useful computer graphics ap-
proach for modeling and designing objects and their behaviors. To solve a constraint
problem effectively, we often need to break complex problems into subproblems, to
use multiple and disparate techniques on the subproblems, and then combine the so-
lutions to subproblems to create the overall solution. In this thesis we have presented
an approach to unify constraint-based modeling (figure 1.1).

In chapter 1, we identified a collection of constraint approaches that would be
found useful in a constraint environment. The constraint approaches are:

e Inverse kinematics

Inverse dynamics
¢ Constrained optimization
e Calculus of Variations

Simulated annealing

Hamiltonian (and Lagrangian) physics

Differential-Algebraic Equations

We then explored the answer to the question, “how do we unify different constraint
approaches?” We want the ability to both use the above constraint approaches and to
incorporate new constraint approaches in the same framework. We started by defining
primitive elements of a constraint environment, objects, constraints and simulation
entities.

We then identified different ways in which the primitive elements can interact dur-
ing the solution of constraint problems. To design a general and extensible constraint
environment, we used three general problem solution strategies:

103

CHAPTER 9. CONCLUSIONS 104

1. Refinement, to step-wise refine a representation of a constraint problem into
the most primitive level, basic numerical solution techniques,

2. Partitioning, to decompose a problem into subproblems at the same level of
representation, and

3. Temporal Sequencing, to create the behavior of a system of objects during a
time interval by organizing the system’s behaviors during sub-intervals.

Based on these general strategies, we designed a prototype system and a pro-
gramming interface for constraint-modeling. Although the prototype system, OCE,
implements a subset of the presented design, we can still do fairly complex simulations
as described in chapter 8. Guided by partitioning, we have implemented very gen-
eral representations of objects in our system. These general objects act as interfaces
between different techniques enabling disparate techniques to work together. Guided
by refinement, we have build a layered structure of techniques that provides different
representations for a problem. At higher levels in the layered refinement structure, we
can use built-in objects and techniques to build simulations quickly. At the same time,
we can built other custom simulations by using lower level facilities in the vertical
refinement layers. Temporal sequencing has provided us a model to design complex
discontinuous behaviors of systems as sub-behaviors. Since the building blocks in
the modeling environment are not dependent or based on a particular technique, the
design is easily extensible. New techniques can be added into the framework and can
interact with both existing and new techniques.

Some aspects of horizontal partitioning and vertical refinement suggest hardware
speedups. Horizontal partitioning and temporal sequencing provide us a problem
decomposition model that can use parallel computers to solve parts of problems con-
currently. Vertical refinement layers provides us a new simulation pipeline, some parts
of which may be migrated into hardware providing fast workstations for constraint-
based modeling.

Appendix A

Mathematical Techniques for
Simulation

In this appendix we discuss some mathematical techniques that are found useful in
formulating and solving simulation problems.

A.1 Cartesian Coordinate Frame Transformations

In formulating physical simulation problems, it is sometimes useful to specify different
parts of the problem in different coordinate frames. For example, it might be conve-
nient to specify a point on a rigid body with respect to a coordinate frame fixed to
the body with the origin of the frame coinciding with the center of mass of the body.
To be able to relate different parts of the problem specified in different coordinate
frames, it is then necessary to transform various physical quantities from one frame
to another.

In this section we present some transformation results between three-dimensional
cartesian coordinate frames.

Consider two cartesian frames A and B moving arbitrarily with respect to each
other. Let the position of a particle P measured with respect to frame B be given by

Br(t).
Then the motion of P may be expressed in frame A as’

A A B
rp="rg + rp (A1)
Frame B may be expressed in terms of frame A as a displacement of the origin

of B with respect to the origin of frame A and a rotation. If we denote unit vectors
along the z, y, and z axes of a coordinate frame as ey, e,, and e, then we can define

1Using notation similar to [CRAIG 89]

105

APPENDIX A. MATHEMATICAL TECHNIQUES FOR SIMULATION 106

the orientation of frame B with respect to frame A with a rotation matrix as

A A A
B€11 pg€21 pgeéal]

A A A A A A A
BR = [B€1 p€2 pg€s } = | €12 p€22 pt€32 (A-Q)
A A A
B€13 pg€23 pg€s3
In terms of the rotation matrix, a position vector in frame B may be transformed

to frame A as
A A B A
r=gR"r+"r Borg

The velocity of point P in frame A is given by

‘t=vp = Mvp +pRPvp+pwx (3R Pr) (A.3)

The acceleration of point P in frame A is given by
Yo="a, = BaBorg + gR BaP +2 gw X gR BVP + gd) x AR °r (A4)
—|—gw X (gw X gR Br)

Point fixed in a Rigid Body

If frame B is fixed with respect to a rigid body and point P is fixed in frame B, there
is a significant simplification in the expressions above. For such a fixed point P

B _ B -0
Vp = ap=

and the expressions for velocity and accelerations for a point in frame A are

“vp = “vp,. + 5w x (AR Pr) (A.5)
AVP = B‘.’Bmg + gdj X gR Br 4 gw X (gw X gR Br) (A.6)

Assuming that all vectors are specified with respect to frame A, the velocity and
acceleration expressions may be further simplified to

= VB,, twXr
a = ag,,twXr+wxwxr

A.2 Quaternions

A quaternion is a mathematical structure that may be used to represent orientations
in a compact form.

APPENDIX A. MATHEMATICAL TECHNIQUES FOR SIMULATION 107

A.2.1 Definition

A quaternion is a four component structure that may be thought of as having a scalar
part and a three component vector part. So a quaternion may be represented as:

q= [37 V] (A7)
where
s = a scalar
v = a three component vector

A quaternion may also be represented as a four component structure much like a
complex number may be represented as a two component structure. In this notation,

q=w+zi+yj+=zk

and
ii=jj=kk=-1
j=k jk=1i ki=j
Nn=-k kj=-1 ik=-j

A.2.2 Quaternion Algebra

Two quaternions may be added and multiplied as:

qQ = [51, V1]

q, = [s2,V2]
q;+dy = [s1+4 82, V14 Vo (A.8)
919; = [81S2 — V1-Va,81Va + 82V + Vi X V3 (A.9)

Note that both the addition and multiplication formulas can be verified by the
four component representation of a quaternion presented above.
The magnitude of a quaternion ¢ = [s,v] is given by

la* = s2+v.v (A.10)
The inverse of a quaternion q = [s,v] is
[s,—V] [s,—V]
2+ M aP
A vector may be multiplied by a quaternion by considering the vector to be a

quaternion with a zero scalar part. Hence a quaternion q = [s, v] is multiplied with
a vector p as

q' =

(A.11)

qp = [-Vv-p,sp+ Vv X p]

APPENDIX A. MATHEMATICAL TECHNIQUES FOR SIMULATION 108

A.2.3 Quaternion as a Rotation

A quaternion can be used to represent a rotation by an angle § about an axis v. The
vector v should be a unit vector. Such a rotation is given by:

q = [cos(8/2),vsin(8/2)]
A vector p is rotated by a quaternion to the vector p’ as:

p' =qpq™!

A.2.4 Converting a Quaternion to a Rotation Matrix
Using the four component representation of a unit magnitude quaternion as
q=w+zi+yj+zk, where w? + 22 +y2 + 22 =1

the corresponding rotation matrix is given by

R = 22y + 2wz 1 —222 — 227 2yz — 2wz

1-2y? — 222 22y — 2wz 22z + 2wy
2zz — 2wy 2yz 4+ 2wz 1 —2z% —2°

A.3 Dual of a vector

The dual of a vector b = [b;, by, bg]T is the antisymmetric matrix b*:

0 —bs b
b* == b3 0 '—bl
b, b 0

With the above definition, for a vector a ,

b*a = bxa
bTa = axb
b*T = _p

bb = 0

A.4 Numerical Solution of Ordinary Differential
Equations

Problems involving ordinary differential equations (ODEs) can be reduced to problems
involving sets of first order differential equations by a variable substitution. Therefore,

APPENDIX A. MATHEMATICAL TECHNIQUES FOR SIMULATION 109

the generic problem in ODEs can be reduced to the study of a set of n coupled first
order differential equations, locally of the form:

y; = fl(yl,y%"'?yn’m)
Z/é = fz(yl,yz,---,ymiv)

yrlw = fn(yl, Y2y 5Yn, III)
To fully specify a problem involving differential equations, we also need boundary
conditions. Boundary conditions may be broadly divided into two categories:

Initial Value Problems The value of all the y; is given at some starting value z, and
we wish to solve for all y;(z) for z > z,.

Boundary Value Problems The values of y; is given at more than one value of z. We
wish to solve for y;(x) such that the specified values of y; at the specified z’s
agree.

We will describe the solution of initial value problem here.

The simplest solution method for an initial value problem is obtained by using the
first order approximation of a derivative. This method is called the Euler method.
The formula for the Euler method is:

yn“H =y"+ hf(:c",y), n = O, 1,2,...

The superscript 7 denotes the values at the end of the i-th step. The formula
advances the solution through an interval & using the derivative information at the
beginning of the interval. The Euler method is O(k?). The Euler method is not very
accurate as compared to other fancier methods for the same step size and may not
be stable for stiff systems of equations.

The Runge-Kutta method uses multiple evaluations of the derivative functions
over an interval to approximate a Taylor series expansion to a higher order. For
example, the fourth order runge-kutta method (O(h5)) uses four evaluations of the
derivative and proceeds as: : :

ki = hrf(z™,y")
h k
ke = Ma"+2,y" + 71)
h k
ks = Af(a" + 2,y + 72)

ki = hf(a” + h,y" + k)

APPENDIX A. MATHEMATICAL TECHNIQUES FOR SIMULATION 110

[PRESS et al 88] also contains the description and code for an adaptive-step size
method for runge-kutta.

Adam’s Method to solve differential equations belongs to the category of predictor-
corrector methods. Predictor-corrector methods record past function values and ex-
trapolate them, using polynomial extrapolation, to predict what the next step would
yield. Using this predicted value of the dependent variable, a corrected value is com-
puted by the corrector step.

For example, the Adams-Bashford-Moulton method computes the predictor step
as:

h
y'tl=y" + £(55t" — 591 + 371" — 9f"~3) + O(2°)

The predicted value of y™*! is used to compute a corrected value by:
h
y =y 4 -ﬂ(gtthl + 19f" — 5*~1 + £°~2) + O(R®)

Note that to compute f*!, the value of y™*! is required.
[GEAR 71] and [PRESS et al 88] present more details of solution methods for differential
equations.

A.5 Calculus of Variations

Calculus of variations involves the determination of a curve such that a given line
integral along the curve has a stationary value.
Given a function

y =y(z), (A.12)

and the functional
Jlyl = /z F(z,y,y")dz (A.13)

Jy] is minimized if

d
yllelyl + y,Fy’y + I’jy/a7 — Fy =0 (A15)
In general,

§J = / [Flyydz + Fy' by[” (A.16)

sJly] OF d (3F) (A.17)

Sy 9y dx \dy

APPENDIX A. MATHEMATICAL TECHNIQUES FOR SIMULATION

More generally, if
Tl = [F@.ys.. .y ™)

0

then,

§Ilyl & dr [OF
Ty =20V (a—y(_)>

n=0

where y(*) = 3:—,3{.
If
J =LF(x,y,yx1,yx2,...)dx

where the integral is now a multiple integral over x € Q and y,, = %.

In this case, the variational derivative is

6J[y] 0
Ty~ h 2 e

On the other hand if

Jy] = /xl F(z,y,z,..,y", 2, ...)dz

o _oF _d (0F
by Oy dz \dy
8J _9F d (OF
6z~ 8z dz \0z

111

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)

Appendix B

Constraint Satisfaction Techniques

In this appendix, we present some techniques that might are useful in devising con-
straint satisfaction strategies for physically-based modeling. (The techniques of cal-
culus of variations and techniques for solution of differential equations have already
been discussed in appendix A.)

B.1 Rigid Body Dynamics

In classical mechanics, the motion of rigid body under the application of forces and
torques is governed by the so called Newton-Fuler equations of rigid body motion.
These equations relate inertial properties of a body to the applied forces and torques.
The state variables associated with a rigid body are:

e Mass m: The mass of a body is a scalar quantity.

¢ Rotational Inertia Tensor I: The rotational inertia tensor is a 3 x 3 matrix
that relates a body’s angular velocity w to the angular momentum of the body.
The inertia tensor depends on the coordinate frame that it is expressed in.
Representing the three axes of a cartesian coordinate frame as z;, z, and z3,
the various components of the inertia tensor are given by:

I = /V(arg-i—mg)p dv

I, = /V(:c§+:rf)p dv

Iy = /V(:c';’+x§)p dv
ho=1Iy = /V(xlxz)p dv

Iys =13 = /V(:Ega:g)p dv

112

APPENDIX B. CONSTRAINT SATISFACTION TECHNIQUES 113

131 = 113 = K/(Igil)p dv

where p is the mass density of the body. It is usually convenient to compute
the inertia tensor I with respect to a coordinate frame fixed with respect to
the body. Given the body inertia, I.q4,, the transformation of the inertia tensor
to another coordinate frame is given by

I'' = RI;, R”
I = RIyg RY

where R represents the rotation matrix of the body coordinate system with
respect to world coordinates.

e Center of Mass of the Body, xcam: The center of mass is a fixed vector in the body
coordinate system of the rigid body given by:

1
XM = —/I‘dp
mJv

o Orientation of the body: The orientation of the body may be represented by a
rotation matrix R or a quaternion q as discussed in appendix A. The use
of quaternions is usually preferable from the point of view of stability of the
solution of the differential equations of motion.

e Linear Momentum p

e Angular Momentum L

o Linear Velocity v

e Angular Velocity w

e Net Force F : The net force is the sum of all the forces F; applied to the body.

F=3F

e Net Torque T : The net torque is the sum of all the torques T; and the sum of
torques due to all the forces F; applied to the body.

T=YrxF+3 T
¢ J

where r is the position vector of the point of application of the force with respect
to the center of mass of the body.

APPENDIX B. CONSTRAINT SATISFACTION TECHNIQUES 114

With the above definitions and symbols, the newton-euler equations of motion
governing the motion of a rigid body are:

Ly
f%’ - F (B.2)
CCZZ—? = %—wq=%l“Lq (B.3)
% = T (B.4)

B.2 Inverse Kinematics

Kinematics is the study of motion of bodies without consideration of the physical
causes of the motion.

Let the state of a system of bodies be represented as X and let the geometric
motion of a body described as

P = f(X).

Given a specific instance of a desired motion, P, the inverse kinematics problem
involves determination of instance(s) of the state X which would generate the desired
motion.

Solution of inverse kinematics problems, generally, involves solving algebraic equa-
tions. [CRAIG 89] discusses inverse kinematics in the context of robotics.

B.3 Inverse Dynamics

Forward dynamics involves the determination of motion of bodies under the influence
of applied forces and torques for rigid, flexible, or fluid objects. The motion of rigid
bodies is determined by using Newton’s equations of rigid body motion that relate
linear and angular accelerations of bodies to the forces and torques applied through
inertial properties of the bodies, namely, mass and the inertia tensor [GOLDSTEIN 80].
The equations of rigid body motion are second order ordinary differential equations.
Similarly, equations from elasticity theory can be used to determine motion of flexible
bodies and Navier-Stokes equation may be used to model fluids.

Inverse Dynamics is the inverse problem of Forward Dynamics. Inverse dynamic
techniques compute the necessary forces and torques on a body that will result in a
desired motion or equilibrium state. The forces and torques are computed by using
the specification of the motion and the forward dynamics laws that apply to the
bodies.

Problems in inverse dynamics generally involve solving differential-algebraic equa-
tions. Examples of inverse dynamics are presented in chapters 4 and 8. [BARZEL and

APPENDIX B. CONSTRAINT SATISFACTION TECHNIQUES 115

BARR 88] employs teh techniques of inverse dynamics to create a rigid body modeling
system.

B.4 Constrained optimization

A optimization problem involves minimizing a function (an objective function) of
several variables, possibly subject to restrictions on the values of the variables defined
by a set of constraint functions.

Optimization problems may be classified into particular categories depending on
the properties of the objective and constraint functions. Some of the categories for an
objective function are: non-linear, sum of squares of nonlinear functions, quadratic,
sums of squares of linear functions and linear. Similarly some categories of constraints
are nonlinear, sparse linear, linear, and bounded (inequality constraints).

A general constraint optimization problem may be stated as:

minimize: F(x) x€eR

subject to: [; < z; < u; 1=1,2,...,n
l,’SAXSu,', t=n+1,n+2,....,n+ng
L<eg(x)<u; i=n+np+1,....,n4+np+ny

A good discussion of techniques for optimization is presented in [GILL et al 81].

B.5 Simulated annealing

Simulated annealing is a combinatorial method to minimize an objective function.
Simulated annealing is useful when the objective function is defined over a discrete
configuration space. There is an analogy between simulated annealing and ther-
modynamics, the way that liquids crystallize or metals cool and anneal. At high
temperatures, atoms in a metal move freely with respect to each other. If the liquid
is cooled slowly, the atoms pack closely and form a low energy crystal. If the metal
1s cooled quickly or “quenched,” the atoms cannot reach the low-energy crystalline
state and form a high energy amorphous state. '

Simulated annealing attempts to determine a low energy configuration of a system
with a discrete configuration space. The system starts at some “temperature” T. A
new configuration C3 of the system different from the current configuration C, is
generated. If the energy of the configuration C; is F; and the energy of configuration
(3 is E,, the system has a probability

p = exp [:(E—ZT:@}

APPENDIX B. CONSTRAINT SATISFACTION TECHNIQUES 116

of going to configuration Cy. If E; < Fy, p is set to unity and the new configuration
is always accepted. However, if £, > Fi, the new configuration is accepted with
probability p. The “temperature” T is gradually lowered. In the earlier stages of
simulated annealing, the system can jump out of deep energy wells. As a result, the
system may be able to jump out of local minima. The scheme of always taking the
downward step but occasionaly taking an uphill step is generally called Metropolis
algorithm. The algorithm involves the definition of:

1. A description of possible system configurations
2. A selector of random configurations from the system configuration space
. A objective function F of system configuration

3
4. A control parameter T and an annealing schedule which determines how T is
lowered

[PAPADIMIRIOU and STEIGLITZ 82] and [KIRKPATRICK, GELATT and VECCHI 83] discuss
simulated annealing.

B.6 Lagrangian physics
Lagrangian physics may be considered as the energy analog of newtonian physics.
In lagrangian physics, the equations of motion of a system of bodies is determined
by differentiating the expressions for energy of the system in terms of the degrees of
freedom of the system.

The equations of motion of a system with n degrees of freedom, with ¢; represent-
ing the i-th generalized variable is given by:

4oLy oL
dt \dq;) 0q;

where the Lagrangian L is defined as
L=T-YV.

In the above equation, T represents the kinetic energy of the system and V represents
the potential energy of the system expressed in terms of the generalized variables ¢;.
[GOLDSTEIN 80] describes lagrangian physics and applications.

Appendix C

Implementation Examples from

OCE

In this appendix, we describe the implementation of two general classes in OCE
to provide an idea about how simulation entities may be created. The first class
described is an inverse dynamics system and the second class is paths in OCE.

The most generic object at the topmost level in OCE is 0CE_Object, which has
virtual functions for rendering, saving and reading the state of an object. Most other
objects are derived from OCE_0Object.

C.1 Inverse dynamics object

The inverse dynamics object, InverseDynamics is also derived from 0CE_Object. The
state of the object InverseDynamics contains a list of bodies and a list of constraints.
The member functions for the object InverseDynamics are provided to

Create an InverseDynamics object
Destroy an InverseDynamics object
Add a body to InverseDynamics
Add a constraint to InverseDynamics
Simulate the InverseDynamics object

CUi LN

The InverseDynamics object is defined as:
class InverseDynamics:public OCE_Object{
gslist(IDBody) bodylist; // gslist(o-type) is a macro to create
// a list of objects of type o_type
gslist(ID_Constraint) constraint_list;
public:
InverseDynamics(); // Constructor: Function to create
// InverseDynamics object

117

APPENDIX C. IMPLEMENTATION EXAMPLES FROM OCE 118

InverseDynamics(); // Destructor: Function to destroy
// InverseDynamics object

void add body(ID_Body &body);
void add_constraint(ID_Constraint &constraint);

void solve MFB(); // solve for constraint forces using
// a sparse matriz solver

void InverseDynamics::simulate(double start_t, double end. t);
// simulate the system by integrating
// the equations of motion of the bodies
// in the system

void render(double t); // render the objects in the system

}s

The InverseDynamics object uses objects ID_Body and ID_Constraint. ID_Body
1s a generic class with ID_RigidBody and ID_FlexibleBody derived from ID_Body.
ID_RigidBody also derives from the class GenericRigidBody.

The class definition of GenericRigidBody is as follows:
class GenericRigidBody : public OCE_Object {

protected:
double i_mass;
Quaternion i_q; // Rotation
Matrix33 i_inertia; // Inertia tensor
Frame ref frame; // Reference Frame
Vector3 i_cm, // Center of Mass
i_velocity,
i_omega, // Angular Velocity
ip, iL; // p=Linear momentum L=angular momentum
public:

RigidObj(double mass, Matrix33 Inertia); // Constructor

double mass() return i_mass; // accessor functions
Matrix33 inertia() return i_inertia; '
Vector3 velocity()return i_velocity;

Vector3 omega()return i_omega;
Vector3 cm()return i_cm;

APPENDIX C. IMPLEMENTATION EXAMPLES FROM OCE 119

void set_velocity(Vector3 &vel); // Modifier functions

void set_cm(Vector3 &pos);
void set_omega(Vector3 &om){} ;

The class definition of ID_Body, a body used in InverseDynamics is:

class ID.Body { // Inverse Dynamics Body
protected:

int i_body_type;
public:

ID Body(); // Constructor

virtual void compute_external forces(double t);

virtual void add force(Force *force){};

virtual void add_torque(Torque *torque){};

virtual Vector3 net_force()return(Vector3(0.0,0.0,0.0));
virtual Vector3 net_torque()return(Vector3(0.0,0.0,0.0));

}s

A rigid body used in InverseDynamics is derived from both ID_Body and
GenericRigidBody as:
class IDRigidBody : public ID_Body, public GenericRigidBody {
int no_of_constraints;

int no_of_ext forces; // External forces and
Force i_ext_force[MAX FORCES]; // Torques
int no_of_ext_torques;
Torque i_ext_torque[MAX_TORQUES];
public:
ID RBody(double mass, Matrix33 Inertia); // Constructor
void compute_external forces(double t);
void add force(Force *force);
void add_torque(Torque *torque);
Vector3 net_force();
Vector3 net_torque();

}s

A flexible body ID_FlexibleBody, used in InverseDynamics is derived from
ID_Body as:
class ID FlexibleBody : public IDBody {

APPENDIX C. IMPLEMENTATION EXAMPLES FROM OCE 120

int inu, inv, inw; // No of subdivisions in the parametric
// directions
double mass;
F Point *m_points;. = // State of mass points
F Spring *m_springs; // State of springs between points
int no_of _constraints;
int no_of_ext_forces;
Force i_ext_force[MAX_FORCES];
int no_of_ext_torques;
Torque i_ext_torque[MAX_TORQUES];
public:
ID FBody(double lmass, Vector3 &cl, Vector3 &c2, int nx, int ny,
int nz, double k) ; // Constructor
void render(double t);
void compute_external forces(double t);
void add_force(Force *force);
void add_torque(Torque *torque);
Vector3 net_force();
Vector3 net_torque();

}s

A flexible body ID_FlexibleBody is simulated as point masses interconnected
with springs. Point masses are declared as the class F_Point and springs as F_Spring,.

class F Point : public ID Body { // Point mass in flexible
// body

int no_of_constraints;

Vector3 i_position, i_momentum;

double i_mass;

F Spring *i_springs; // Springs attached to mass
public:

Vector3 net_force();

Vector3 net_torque();

Vector3 momentum() ; // Accesor Functions

Vector3 velocity();

Vector3 position();

void setmomentum(Vector3 m); // Modifier Functions

void set_position(Vector3 p);

}s

class F.Spring{ // Spring in flexible body

APPENDIX C. IMPLEMENTATION EXAMPLES FROM OCE 121

double ik, // Spring Constant
1.10; // Spring rest length
F Point *ml, *m2; // Masses connected to spring
public:

double spring const();
double spring length();
Vector3 spring force();

}s

Constraints in InverseDynamics are derived from a generic constraint class,
ID_Constraint. A constraint needs to compute forces that are caused by the devia-
tion of the constraint from its satisfied state.
class ID_Constraint : public SObject{
protected:
int 1 no_of bodies; // no of bodies effected by constraint
IDBody *1 bodies[MAX BODIES]; // Bodies effected by constraint
public:
virtual int compute force(double t){};
// Compute force components due to constraint
}s
A point to nail constraint stipulates that a point on a body should be connected
to a nail, a point fixed in space. A point to point constraint stipulates connection
between two points on two bodies or the same body, and point to path constraint
constrains a point on a body to follow a path. The classes for these three types of con-
straints are:
class PointToNail:public ID_Constraint{
Nail *nail; // In World Coordinates
ID Point *point; // In body coordinates
double Tau; // Time constant of constraint
public:
PointToNail(InverseDynamics &system, Nail &n, ID_Point &p);
// Constructor

int compute_force_components(double t);

}s

class PointToPath:public ID.Constraint{
Path *i_path;
ID Point *i_point; // In body coordinates
double Tau;
public:
PointToPath(InverseDynamics &system, ID_Point &p,

APPENDIX C. IMPLEMENTATION EXAMPLES FRQM OCE 122

GenericPath &path) ;
int compute force_components(double t);

}s

class PointToPoint:public ID Constraint{
ID_Point *pointl, *point2; // In body coordinates
double Tau;
public:
PointToPoint(InverseDynamics &system, ID Point &pl, ID_Point &p2);
int compute_force_components(double t);

};

C.2 Path object

A path is frequently used object in simulations. A generic path object is defined in
OCE. Specialized paths are derived from the generic path.
The generic path has virtual member functions for position, tangent, normal, bi-
normal, length and curvature.
class GenericPath : public SObject{
protected:
double start_t, end_t;

public:

virtual Vector3 position(double t);

virtual Vector3 tangent(double t);

virtual Vector3 normal (double t);

virtual Vector3 binormal{(double t);

virtual double 1length(double t);

virtual double curvature(double t);

GenericPath ReParmArcLength(); // Reparametrize by arclength

void render(double t);
}s

A piecewise bezier path is derived from GenericPath by overloading the member

functions and declaring data specific to a bezier path.
class BezierPath : public GenericPath{
protected:

int no_of_control_points;

int no_of_curves;

Vector3 *control_point;

Vector4 *xcoeffs;

Vector4 *xycoeffs;

Vector4 *zcoeffs;

APPENDIX C. IMPLEMENTATION EXAMPLES FROM OCE 123

double *t;
public:
BezPath(int no, Vector3 #*points, double *times);
virtual Vector3 position(double t);
virtual Vector3 tangent(double t);
virtual Vector3 normal(double t);
virtual Vector3 binormal(double t);
virtual double length(double t);
virtual double curvature(double t);

}s

Other paths like LinearPath (piecewise linear) and CedPath are derived from
GenericPath in a similar way. Note that a path, irrespective of type has the same
interface.

References

[ARMSTRONG and GREEN 85] Dynamics for Animation of Characters with Deformable
Surfaces, William W. Armstrong and Mark W. Green, Visual Computer, 1985.

[BARAFF 89] Analytical Methods for Dynamic Simulation of Non-penetrating Rigid
Bodies, David Baraff, Computer Graphics, Vol. 23, No.3, July 1989.

[BARR 88] Introduction to Physically-based Modeling, Alan H. Barr, Course
Chairman, Siggraph Course Notes 1988.

[BARR 84] Geometric Modeling and Fluid Dynamic Analysis of Swimming Spermato-
zoa, Alan H. Barr, PhDThesis, Department of Mathematical Sciences, RPI,
Troy, NY.

[BARR and BARZEL 90] Models of Discontinuous Phenomena, Alan H Barr and Ronen
Barzel, To appear.

[BARTELS, BEATTY and BARSKY 83] An Introduction to the use of Splines in Computer
Graphics, Richard H. Bartels, John C. Beatty and Brian A. Barsky, Tech Report
No. UCB/CSD 83/136, Computer Science Division, University of California
Berkeley, 1983.

[BARZEL 91] Modeling Heterogeneous Objects, Ronen Barzel, PhD Thesis, Caltech, To
appear.

[BARZEL and BARR 90] Structured Modeling, Ronen Barzel and Alan H Barr, To ap-
pear.

[BARZEL and BARR 88] A Modeling System Based on Dynamic Constraints, Ronen Barzel
and Alan H Barr, Computer Graphics, Vol. 22, No. 4, August 1988, pp. 179-
188.

[BORNING 79] Thinglab — A constraint-oriented simulation laboratory, Alan Borning,
Report SSL-79-3, Xerox Palo Alto Research Center, Palo Alto, CA. July 1979.

124

APPENDIX C. IMPLEMENTATION EXAMPLES FROM OCE 125

[BORNING 81] The Programming Language Aspects of ThingLab, a Constraint-Oriented
Simulation Laboratory, Alan Borning, ACM Transactions on Programming Lan-

guages and Systems, Vol. 3, No. 4, October 1981, Pp 353-387.

[BORNING 86] Defining Constraints Graphically, Alan Borning, CHI ’86 Proceedings,
April 1986, pp 137-143.

[BOYCE and DEPRIMA 77] Elementary Differential Equations and Boundary Value
Problems, William E. Boyce and Richard C. DiPrima, John Wiley & Sons,
New York, 1977.

[BRATLEY, FOX and SCHRAGE 83] A Guide to Simulation, Paul Bratley, Bennett L.
Fox and Linus E. Schrage, Springer-Verlag, New York.

[COHEN & GREENBERG 86] The Hemi-Cube: A Radiosity For Complex Environments,
M.F. Cohen and D.P. Greenberg, Computer Graphics, July 1985, pp. 31-40.

[CRAIG 89] Introduction to Robotics, Second Edition, John J. Craig, Addison-
Wesley Publishing Company, Reading, Mass. (1989).

[DENAVIT and HARTENBERG 55] A Kinematic Notation for Lower-Pair Mechanisms Based
on Matrices, J. Denavit and R. S. Hartenberg, Journal of Applied Mechanics,
June 1955, pp. 215-221.

[DEO 74] Graph Theory with Applications to Engineering and Computer
Science, Narsingh Deo, Prentice-Hall International Inc., Englewood Cliffs,

N.J.

[FAUX and PRATT 79] Computational Geometry for Design and Manufacture,
I. D. Faux and M. J. Pratt, John Wiley & Sons, New York.

[FOLEY and VANDAM 82] Fundamentals of Interactive Computer Graphics, J. D.
Foley and A. Van Dam, Addison Wesley Publishing Company 82.

[GEAR 71] Numerical Initial Value Problems in Ordinary Differential Equa-
tions, William C. Gear, Prentice-Hall, Englewood Cliffs, NJ, 1971.

[GOLDBERG and ROBSON 83] Smalltalk-80: The Language and its Implementa-
tion, Adele Goldberg and David Robson, Addison-Wesley Publishing Company,
Inc., Reading, Mass. (1983).

[GOLDSTEIN 80] Classical Mechanics, second edition, Herbert Goldstein, Addison-
Wesley Publishing Company, Inc., Reading, Mass. (1980).

APPENDIX C. IMPLEMENTATION EXAMPLES FROM OCE 126

[GILL et al 81] Practical Optimization, P. E. Gill, W. Murray, M. H. Wright, Aca-
demic Press, London (1981).

[GRUVER and SOROKA 88] Programming, High Level Languages, W. Gruver and B. Soroka,
International Encylopedia of Robotics, R. Dorf and S. Nof, Editors, Wiley
Interscience, 1988.

[IMMEL, COHEN & GREENBERG 87] A Radiosity Method for Non-Diffuse Environments,
D.S. Immel, M.F. Cohen and D.P. Greenberg, Computer Graphics, August
1986, pp. 133-142.

[ISAACS & COHEN 87] Controlling Dynamic Simulation with Kinematic Constraints,
Behavior Functions and Inverse Dynamics, Paul M. Isaacs and Michael F. Co-
hen, Computer Graphics, Vol. 21, No. 4, July 1987.

[HAHN 88] Realistic Animation of Rigid Bodies, J. K. Hahn, Computer Graphics, Vol.
22, No. 4, August 1988, pp. 299-308.

[KAJIYA86] The Rendering Equation, James T Kajiya, Computer Graphics, August
86, pp. 143-150.

[KAJIYA and KAY 89] Rendering Fur with Three Dimensional Teztures, James T Kajiya
and Timothy L Kay, Computer Graphics, July 89, pp. 271-280.

[KALRA 90a] T7me and Events in Computer Animation, Devendra Kalra, To appear.

[KALRA 90b] A Constraint-Based Figure-Maker, Devendra Kalra, To appear in the
proceedings of Eurographics 90.

(KERNIGHAN and RITCHIE 78] The C Programming Language, Brian W. Kernighan
and Dennis M. Ritchie, Prentice Hall, Englewood Cliffs, NJ.

[KIRKPATRICK, GELATT and VECCHI 83] Optimization by Simulated Annealing, S. Kirk-
patrick, C. D. Gelatt, and M. P. Vecchi, Science, Vol 220, pp. 671-680.

[de KLEER and SUSSMAN 78] Propagation of Constraints Applied To Circuit Synthesis,
Johan de Kleer and Gerald Jay Sussman, Memo No. 485, Al laboratory, MIT,
September 1978.

[KNUTH 84] The TgEX book, Donald E. Knuth, Addison-Wesley Publishing Com-
pany, 1984,

[LELER 87] Constraint Programming Languages, Wm Leler, Addison-Wesley Pub-
lishing Company, 1987.

APPENDIX C. IMPLEMENTATION EXAMPLES FROM OCE 127

[LINTON et al 89] Composing User Interfaces with InterViews; Mark A. Linton, John
M. Vlissides, and Paul R. Calder, Computer, February 1989.

[LIPPMAN 89] C++ Primer, Stanley B. Lippman, Addison-Wesley Publishing Com-
pany, 1989.

[MACSYMA 77] MACSYMA Reference Manual, The Mathlab Group, MIT Labo-
ratary For Computer Science, Cambridge, Massachusetts, 1977.

[MATHEMATICA 88] Mathematica, A system for Doing Mathematics by Com-
puter, Stephen Wolfram, Addison-Wesley Publishing Company, 1988.

[MEAD 89] Analog VLSI and Neural Systems, Carver Mead, Addison-Wesley
Publishing Company, Reading, MA.

[MILLER 88] The Motion Dynamics of Snakes and Worms, Gavin S. P. Miller, Com-
puter Graphics, Vol. 22, No. 4, August 1988.

[MOORE and WILHELMS 88] Collision Detection and Response for Computer Animation,
Matthew Moore and Jane Wilhelms, Computer Graphics, Vol. 22, No. 4,
August 1988.

[MUJTABA and GOLDMAN 81] AL Users’ Manual, Shahid Mujtaba and Ron Goldman,
Report No. STAN-CS-81-889, Department of Computer Science, Stanford Uni-
versity, Stanford, CA 94305.

[NAG 89] NAG Fortran Library, The Numerical Algorithms Group Limited, Mayftield
House, Oxford, UK OX2 7TDE.

[NELSON 85] Juno, a constraint-based graphics system, Greg Nelson, Computer Graph-
ics, Vol. 19, No. 3, July 1985, pp. 235-243.

[NYE 89] Xlib Programming Manual, Adrian Nye, O'Reilly & Associates, Inc., 1989.

[O'DONNEL and OLSON 81] GRAMPS- A Graphics Language Interpreter for Real-Time,
Interactive, Three-Dimensional Picture Editing and Animation, T. J. O’Donnel
and A. J. Olson, Computer Graphics, Vol. 15, July 1981.

[PAPADIMIRIOU and STEIGLITZ 82] Combinatorial Optimization: Algorithms and

Complexity, C. H. Papadimiriou and K. Steiglitz, Prentice-Hall, Englewood
Cliffs, NJ.

[PENTLAND and WILLIAMS 89] Good Vibrations: Modal Dynamics for Graphics and An-
imation, Alex Pentland and John Williams, Computer Graphics, Vol. 23, No.
3, July 1989, pp 215-222.

APPENDIX C. IMPLEMENTATION EXAMPLES FROM OCE 128

[PLATT 89] Constraint Methods for Neural Networks and Computer Graphics, John
Platt, PhD dissertation, Caltech-CS-TR-89-07, Department of Computer Sci-
ence, California Institute of Technology.

[PLATT and BARR 88] Constraint Methods for Flexible Models, John C. Platt and Alan
H. Barr, Computer Graphics, Vol. 22, No. 4, August 1988, pp. 279-288.

[PRESS et al 88] Numerical Recipes in C, William H. Press, Brian P Flannery, Saul
A Teukolsky and William T Vettering, Cambridge University Press.

[RAIBERT 86] Legged Robots, Marc H. Raibert, CACM 29,6(1986) pp 499-514.

[REYNOLDS 87] Flocks, Herds and Schools: A Distributed Behavioral Model, Craig
Reynolds, Computer Graphics, Vol. 21, No. 4, July 1987.

[REYNOLDS 82] Computer Animation with Scripts and Actors, Craig Reynolds, Com-
puter Graphics, Vol. 16, No. 3, July 1982.

[SIMS and ZELTZER 87] A Figure Editor and Gait Controller for Task Level Animation,
Karl Sims and David Zeltzer, Computer Graphics and Animation Group, Au-
gust 1987.

[SHAMES 82] Engineering Mechanics: Statics and Dynamics, Irving H. Shames,
Prentice Hall, Englewood Cliffs, NJ.

[SHIMANO, GESCHKE and SPALDING 84] Val II: A Robot Programming Language and Con
trol System, B. Shimano, C. Geschke and C. Spalding, SME Robots VIII Con-
ference, Detroit, June 1984.

[SHOEMAKE 85] Animating Rotation with Quaternion Curves, Ken Shoemake, Com-
puter Graphics, July 1985, pp. 245-254.

[STROUSTRUP 85] The C++ Programming Language, Bjarne Stroustrup, Addison-
Wesley Publishing Company, Reading, Mass. (1985).

[STERN 83] Bboop-A System for 8D Keyframe Figure Animation, Garland Stern, Tu-
torial Notes: Introduction to Computer Animation, Siggraph, July 1983.

[STURMAN 84] Interactive Keyframe Animation of 3-D Articulated Motion, David Stur-
man, Proc Graphics Interface '84, May 1984.

[SUSSMAN and STEELE 80] CONSTRAINTS-A Language for Expressing Almost-Hierarchical
Descriptions, Gerald Jay Sussman and guy Lewis Steele Jr., Artificial Intelli-
gence, 14(1980), Pp. 1-39.

APPENDIX C. IMPLEMENTATION EXAMPLES FROM OCE 129

[SUTHERLAND 63] Sketchpad, A man-machine graphical communication system, Ivan
E. Sutherland, PhD dissertation, Department of Electrical Engineering, M.L.T.,
Cambridge, Mass., 1963.

[TAland MILLER 89] IC-processed Electrostatic Synchronous Micromotors, Yu-Chong
Tai and Richard S. Muller, Sensors and Actuators, Vol 20, 1989, pp 49-55.

[TAYLOR, SUMMERS and MEYER 82] AML: A Manufacturing Language, R. H. Taylor, P.
D. Summers and J. M. Meyer, The International Journal of Robotics Research,
Vol. 1, No. 3, Fall 1982.

[TERZOUPOULOS and FLEISCHER 88] Modeling Inelastic Deformation: Viscoelasticity, Plas-
ticity, Fracture, Demetri Terzoupoulos and Kurt Fleischer, Computer Graphics,
Vol. 22, No. 4, August 1988.

[TERZOUPOULOS et al 87] Elastically Deformable Models, Demetri Terzoupoulos, John
Platt, Alan Barr and Kurt Fleischer, Computer Graphics, Vol. 21, No. 4, July
1987.

[WILHELMS 87] Using Dynamic Analysis for Realistic Animation of Articulated Bodies,
Jane Wilhelms and Brian Barsky, Graphics Interface, 1985.

[WITKIN, FLEISCHER & BARR 87] Energy Constraints on Parametrized Models, Andrew
Witkin, Kurt Fleischer and Alan Barr, Computer Graphics, Vol. 21, No. 4,
July 1987.

[WITKIN and KASS 88] Spacetime Constraints, Andrew Witkin and Michael Kass, Com-
puter Graphics, Vol. 22, No. 4, August 1988.

[ZELTZER 84] Representation and Control of Three Dimensional Computer Animated
Figures, David Zeltzer, PhD Thesis, The Ohio State University, 1984.

[XTOOLKIT 88} Programming With The HP X Widgets, Computer Manual, Hewlett
Packard Company, Oregon.

Glossary

Adam’s Method: A predictor-corrector method for the solution of ordinary differen-
tial equations. This method uses values of the derivative at old values of the inde-
pendent variable to predict a new value of the dependent variable by extrapolation.
A corrected value of the dependent variable is computed using the predicted value.

Animation: The process of creating an illusion of motion by displaying a sequence of
images in sequence.

Assembly Language: A symbolic notation for the lowest level operations in a com-
puter usually providing for direct manipulation of processor registers and memory.

Bicubic Patch: A parametric surface defined by cubic equations of two parameters,
u and v. The curves generated by varying only one parameter u or v, is a cubic
parametric curve of that parameter. The general form of the equation is:

Pu,v) = Apu’v® + Apu®o? + Ao + Agqu® +
Axu®v® + ég_u{"v? + Eu:zv + Agqu” +
ég,lmﬁ + @uzﬂ + Aszuv + Asqu +
Anv® 4+ Agpv® + Ago + Ay

where each of the underlined quantities is a 3 x 1 vector, each row representing
one of the dimensions z, y, z.

Bit-mapped displays: A computer graphics display where the display region is made
up of individually addressable dots, called pixels.

Bounding Box: A rectangular box used to enclose another object.

Bounding Volume: A generalization of a bounding boxr where an arbitrary closed
region may be used to enclose another object.

Computer animation: The process of creating animation using computers.

Conjugate Gradient: A numerical technique to minimize a scalar function.

130

131

Constrained Optimization: The process minimizing or maximizing an objective func-
tion subject to constraints.

Constraint-based Modeling: Modeling the behavior of objects using constraints among
objects and goals that the objects must reach.

Coriolis Force: A force generated due to the motion of a body in a non-inertial
coordinate frame.

Deformation: A modeling operation that alters the shape of an object. Some defor-
mations are bending, twisting, tapering, scaling.

Deviation Function: A function that generates a measure of the deviation of a con-
strained system from a state in which the constraints are met. :

Divide and conquer: A solution strategy in which a problem is broken down into
smaller problems which are much more efficient to solve than a big problem. Quick-
sort, a sorting algorithm is an example.

Drop Shadows: A shadow created by projecting the outline of an object to a shadow
plane from the view point of a point light source.

Dynamics: The study of motion of bodies due to physics such as forces and torques.

Energy Function: A scalar function of the state of a system. Most often, energy
functions are defined such that the desired state of the system occurs at the minimum
value of the energy function.

Euler Angles: A scheme to represent the rotation of a body through three successive
rotations.

Finite Differences: The technique to approximate a function by linear functions be-
tween discretized samples of the function.

Hessian matrix of a function: The Hessian matrix of a function

f(x) = f(z1, .y 240)
is the n X n matrix
0 f

Hy =
O0z;0x;

Gear’s Method: A numerical solution technique for stiff differential equations.

Graphics pipeline: A sequence of transformation steps that transform a world space
description of a polygon into a two-dimensional image on a discrete pixel screen.

Inverse Dynamics: The process of computing forces which when applied to bodies
would lead to a desired motion.

132

Jacobian matrix: The Jacobian matrix of a vector of functions

£(x) = [f1(Z1y o0 Tn)s oony fn(@1, oony T0)]T

1s the m x n matrix
_0f;

_a_x,-

In other words, the 7** row of the matrix J is the gradient of f;(x).

Jij

Key-frames: Important frames in an animation. Intermediate frames are created by
interpolating the state of objects from key frames.

Kinematic Modeling: “Physicsless” modeling performed through mathematical struc-
tures such as functions or numbers.

Kinematics: The process of studying the motion of objects without considering the
physical causes motion.

Minimal least squares solution: The solution of a non-square system Ax = b that
minimizes the value of [Ax — b2

Lagrange method: A method to derive equations of motion of objects from the ex-
pressions of energy of the objects.

LU-Decomposition: A numerical technique to compute the solution of linear systems
of equations and to invert a matrix.

Modeling: Modeling refers to the creation of mathematical models that represent
collections of objects.

NTSC: An acronym for National Television Standards Committee. The term NTSC is
now used for a television broadcast standard that was formulated by this committee.
The standard involves transmitting 30 frames per second. Each frame is composed
of two fields each composed of 262.5 lines forming a total of 525 lines for the.whole
frame.

Parametric Surface: A surface defined in terms of an explicit function of some pa-
rameters as:
= fo(ur, .., uy)

y = fylug, .., uym)
z= fo(ur, ..., un)

Physically-Based Modeling: A modeling technique in which objects and their behav-
ior is modeled by modeling the physics of the objects.

133

Pixel: An acronym for picture element, a pixel represents a the smallest addressable
unit on the screen of a graphics display. A computer graphics picture is composed of
a rectangular array of pixels.

Ray Tracing: A rendering scheme in which the color of any pizel in the image is
computed by tracing a light ray through the pixel. A ray is shot into the world and
intersected with the objects in the world. Each intersection spawns more rays that
are used to simulate for example, reflection, and refraction. A shadow ray casting
determines if a particular light source illuminates the point of intersection. At each
intersection, the net intensity is the composite of the intensities of the rays spawned
at that intersection and the intersections of these secondary rays.

This technique enable various phenomena to be simulated such as reflection, re-
fraction, shadows and with certain extensions penumbrae, depth of field, and diffuse
shadows.

Rendering: The process of converting mathematical descriptions of objects and
scenes into a two-dimensional image. Rendering simulates the interaction of light
rays with the objects forming the scene.)

Rigid Body: A mass distribution in which the distance between any two points is
constant.

Runge-Kutta Method: A numerical method to solve differential equations.

Simulated Annealing: An optimization technique based derlved from the thermody-
namic principles of annealing of metals.

Simulation: The process of subjecting mathematical models of system to mathemat-
ical models of effects to study outputs.

Superquadric: A solid that generalizes a quadric surface. The parametric represen-
tation of a superquadric is given by:

T = agcosi(f)cos5(d)
y = agcosi(0)sing(9)
z = agsinj(0)

Transformation Hierarchy: A tree consisting of modeling operations such as rota-
tions, translations, scales, bends, twists, tapers, compositions, CSG operations, and
primitives such as polygons and quadric surfaces. The primitives usually form the
leaves of the tree and the internal nodes are associated with the transformations.
The scope of any transformation is the subtree rooted at the node of the transforma-
tion. The composite transformation for any node is computed as the composite of
the transformations encountered as the tree is traversed from the root to that node.

134

Scripts: A specification of the state of objects at different times in an animation.
Stiff System: A system with many widely different intrinsic time constants.

Tensor: A mathematical quantity that transforms under a tensor transformation rule
when expressed in a different coordinate system.

Z-buffer: A hidden-surface elimination technique for rendering surfaces. A depth
value is kept at each projected point on the screen. For each new point, if the new
depth value is less than the stored depth value, the old value is overwritten.

