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ABSTRACT

Over the last two decades, the rapidly decreasing units costs of solar, wind, and
energy storage technologies have launched a fundamental transformation in how
electric power is produced, distributed, and consumed. Proliferation of these tech-
nologies has effected a shift towards a more decentralized, flexible, and sustainable
energy system that can meet the growing demand for energy while reducing green-
house gas emissions from fossil fuels. The work in this thesis studies two principal
themes in this transformation: uncertainty and decentralization.

Uncertainty is a key challenge in the modern grid resulting from the weather de-
pendence of variable renewables and volatile loads like electric vehicles distributed
throughout the grid. Electricity markets, whose function is to regulate the precise
balance of supply and demand across the system, face a pressing need for dispatch
mechanisms that account for uncertainty while providing participation incentives
for generators and loads. We introduce a framework for multi-stage market dis-
patch and pricing under a general description of forecast uncertainty that enables
system operators to explicitly incorporate uncertainty into market-clearing prices.
In related work, we study mechanisms that guarantee feasibility of multi-interval
dispatch under robust uncertainty and provide participation incentives for shiftable
demand response in forward multi-interval markets.

The trend towards a more decentralized energy system stems from the inherent mod-
ularity of distributed energy resources (DERs), such as solar and storage, as well
as the persistent growth in end-use loads. This evolution presents significant chal-
lenges to system operators who typically lack the tools and processes for managing
a complex, distributed power system. To fill this gap, we introduce and implement
a Microgrid Operating System (OS), a software platform for monitoring, modeling,
and optimizing microgrids and distribution systems. The Microgrid OS is a central
layer that links DER hardware, such as batteries, solar, and flexible loads, to energy
applications like cost minimization, emissions reduction, and wholesale market par-
ticipation. The core functions it provides are data acquisition and processing, system
modeling and learning, and optimization & control. We present key modules of
the Microgrid OS in the context of several implementation projects in microgrids,
commercial buildings, and distribution networks.
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C h a p t e r 1

INTRODUCTION

Over the last two decades, the rapidly decreasing units costs of solar, wind, and en-
ergy storage technologies have caused a fundamental transformation in how electric
power is produced, distributed, and consumed. Their proliferation has effected a
shift towards a more decentralized, flexible, and sustainable energy system that can
meet the growing demand for energy while reducing greenhouse gas emissions from
producing and combusting fossil fuels.

In addition to their low-carbon footprint, there are two key characteristics of solar,
wind, and battery storage that distinguish them from the conventional generation
technologies on the grid. First is that they are modular and scale from household size
(102 W) to utility scale (109 W) with the same core subcomponents (e.g., solar cells,
battery modules). This distinguishes renewable generation and storage technologies
from traditional thermal generation types such as coal, nuclear, and gas plants, each
of which is comprised of only a few large generating units (steam/gas turbine driving
an electrical generator) with a characteristic scale of 108 W.

Second, the modularity of solar, wind, and battery storage enables a decentralized
generation footprint, with renewable generation assets spread throughout the grid
rather than concentrated at a handful of large facilities (Figure 1.2). This is opposed
to the centralization of conventional thermal generating facilities into a small number
of locations. There are fewer than 2,500 fossil fuel generating facilities in the US as

(a) 1.5W individual photo-
voltaic (PV) cell

(b) 250W solar panels on a
home rooftop in the US [115]

(c) 2.2GW Bhadla Solar Park
in Rajasthan, India [101]

Figure 1.1: Solar power generation size scales by using multiples of the same
component PV cells, wired together in series and parallel and combined into panels
and arrays.
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of 2021 [128].

Figure 1.2: Map of generating plants in the US in 2023. Solar and wind are in
yellow and blue circles, the size of which represents the size of the power plant
[126]. The typical gas or coal power plant is between 500-1000MW, whereas the
average size of a solar generator is 1-5MW.

In addition to the trends of modularity and proliferation of renewables, increased
social consciousness around decarbonization has been driving electrification of end-
use energy, particularly transportation and heating. This has resulted in increased
variability and intensity of large loads like electric vehicle (EV) charging stations
distributed throughout the grid (Figure 1.3).

Together, these changes in electricity supply and demand are raising significant en-
gineering challenges for system operators, system planners, and end-use consumers
of electrical energy. The research in this thesis addresses two of these challenges:
1) electricity market dispatch and pricing under uncertainty and 2) modeling and
control of distributed energy resources (DERs).

1.1 Challenges facing a distributed, high-renewables energy system
The work in this thesis targets two principal trends in the energy system transfor-
mation currently underway: 1) increasing uncertainty and 2) decentralization of
generation and load. Uncertainty arises from the weather-dependence of renewable
energy, which causes the patterns of production from these sources to be spatially
and temporally unpredictable. Decentralization, which is manifested in generation
sources increasingly being located throughout the distribution grid, is being driven
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Figure 1.3: Map of EV charging stations in the US in 2022 [47]. DC fast chargers
being deployed by Electrify America, a public EV charging network in the US, can
draw up to 350kW which is over 100x the power draw of a single-family home
(typically 1-2kW).

by accelerating electrification thermal (heating, cooling) and transportation (elec-
tric vehicles) end-use energy alongside distributed generation from renewables and
storage. Both of these trends increasingly conflict with the control methodologies
used to balance the grid today.

The first of these two themes is particularly relevant to system operators whose
mandate is to manage the delivery of reliable electric power within their geographic
territories. They must dispatch available supply at lowest cost to meet predicted
demand, while maintaining a precise balance between these two quantities at all
times. This problem is referred to as economic dispatch. Increasingly, it is crucial
for system operators to quantify and manage the uncertainty in both net load and
supply.

The second theme is of particular interest to end-use customers and distribution
utilities. Customers increasingly care about reliability of their power supplies in
the face of electrification of all energy use and extreme weather events that threaten
the stability of the broader grid. In addition, societal consciousness about the
importance of decarbonization is leading to proliferation of distributed zero-carbon
power sources like rooftop solar and batteries. The propagation of distributed
renewables creates challenges for distribution utilities such as the bi-directional
flow of power, power quality degradation, overloading of lines and transformers,
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and overall system stability. Utilities often do not have real-time visibility into their
networks and therefore these issues are difficult to anticipate and mitigate until after
the fact.

We now present the particular engineering and control consequences of uncertainty
and decentralization that are the objects of study in this thesis.

Challenge #1: Dispatch mechanisms to handle uncertainty
Economic dispatch is the process of allocating available power generation resources
to meet the demand for electricity while minimizing the total cost of generation. In a
power system, there are usually multiple power generation sources available, such as
thermal power plants, hydroelectric power plants, wind farms, and solar photovoltaic
(PV) systems. Economic dispatch involves solving a mathematical optimization
problem that minimizes the cost of producing electricity from each available source,
as well as any constraints on the power generation, such as minimum and maximum
output levels, ramp rates, and transmission limitations. The dispatch algorithm is
typically run multiple times, to account for changes in electricity demand and the
availability of power sources.

Uncertainty in the availability of power sources or in the demand for electricity can
lead to suboptimal dispatch decisions, which can result in higher costs, increased
emissions, or even blackouts. One challenge of economic dispatch under uncer-
tainty is the need for accurate and timely information about uncertain parameters,
such as weather forecasts for renewable production or electricity demand. Another
challenge is the difficulty in balancing the trade-off between cost minimization and
risk mitigation. For example, robust dispatch may be more expensive than de-
terministic dispatch but it provides greater protection against unexpected events.
Additionally, some economic dispatch mechanisms, such as real-time dispatch or
demand response, may require more flexible or responsive power systems, which can
require additional investment in infrastructure and technology, such as fast-ramping
resources like gas peaker plants or battery storage. Overall, the challenges of eco-
nomic dispatch under uncertainty highlight the importance of developing robust and
adaptive dispatch mechanisms that can handle a range of possible scenarios and
ensure the reliability and efficiency of power systems.

The problem of uncertain economic dispatch is a currently a topic of particular in-
terest both researchers and practitioners. Recently, research community has focused
on applying techniques from robust and stochastic optimization to the dispatch prob-
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lem. In practice, system operators have focused on methods such as multi-interval
dispatch, multiple forward markets, and ancillary services such as operating reserves
and ramp reserves.

Challenge #2: Pricing mechanisms to handle uncertainty
Related to the scheduling problem in economic dispatch is the dual problem of
determining market clearing prices that support the system operator’s desired dis-
patch. The standard theory of competitive equilibrium pricing introduced by Walras,
Arrow, and Debreu is widely adopted in electricity markets around the world as a
means of determining efficient clearing prices. [6] This theory was refined in the
1990s by Schweppe and Hogan to account for particular aspects of electricity sys-
tems such as transmission constraints. [118, 62, 66] More recently, price formation
under uncertainty has received attention from the research community, particularly
for multi-interval and multi-settlement markets [139, 57, 28, 94, 42].

However, in the existing literature, when the dispatch problem is posed as a stochastic
or robust optimization problem, the price formation depends explicitly on the choice
of primal dispatch procedure, which often ignores important implementations details
that arise in practice. This constrains the flexibility and adaptability of many of
the proposed pricing mechanisms. In contrast, the pricing being developed by
system operators are often explicitly tailored to challenges in a particular market or
geography and are not designed with broad market principles in mind. This also
limits the generalizability of these approaches.

A related set of issues is the pricing of electricity market products (or ancillary
services) beyond energy. Examples of these include capacity payments, demand
response, operating reserves, and ramp reserves. Each of these services is related to
the pricing of uncertainty at a particular time scale. However, understanding of how
markets for the different services interact and how incentives align for participants
in them is still nascent.

Challenge #3: DER control and coordination
As distributed energy resources (DERs) are becoming increasingly prevalent in
modern power systems, their coordination and control are presenting significant
challenges. One of the main challenges in DER coordination and control is the
integration of different types of resources, such as solar, wind, energy storage,
HVAC systems, flexible loads, electric vehicles. Coordinating the output of these
resources requires sophisticated control algorithms to ensure that the system operates
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efficiently and reliably. Another challenge is the variability of these resources, which
can lead to fluctuations in power output and make it difficult to maintain grid stability
(e.g., voltage fluctuations). Additionally, there is often a lack of visibility and control
over DERs, as many of them are owned and operated by individual customers rather
than utilities. This can make it challenging to coordinate and control DERs in a
way that benefits the entire system. Finally, regulatory and market structures may
not incentivize optimal coordination and control of DERs, which can impede their
integration into the power system.

Aggregations of DERs, such as microgrids and virtual power plants (VPPs) have
been the focus of increasing interest from end-use customers as well as system
operators. Despite this interest, there is still comparatively little practical experience
with microgrids. In contrast, microgrid control has been studied extensively by
researchers; see for example [125]. These leaves a theory-practice gap that needs to
be filled in order for DERs to scale widely in the energy system.

Challenge #4: Modeling DERs and microgrids
Microgrids are physical networks of DERs with complex topologies and varying
levels of interconnectedness. Modeling the physical system accurately requires
detailed information about the location, capacity, and characteristics of the different
components, including generation and load sources, transformers, lines, switches,
and breakers. Such information is often lacking or if it is available, it is contained
in a diverse set of singleline diagrams or asset databases. Translating these varied
sources into a single, coordinated model is a major challenge in practice which is
not considered my much of the research work on microgrids.

Accurate modeling of distribution systems and microgrids also requires high-quality
timeseries data on the state of system components. Examples include nodal voltages,
line flows through conductors, power injections from generators and loads, and
power quality metrics such as power factor, harmonic distortion and phase balance.
This data can be difficult to obtain, particularly for smaller systems or for components
that are owned and operated by individual customers or component operators. Thus,
another major practical challenge that is also frequently overlooked by researchers is
obtaining a cleaned, organized, and reliable timeseries data for microgrid systems.

These modeling difficulties leave a gap in the tools available for modeling micorgrids.
At the network scale, there are the tools used by distribution system operators such as
OpenDSS, Gridlab-D, Cyme, and Milsoft to model low-voltage distribution systems.
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At the building and component scale, there are detailed component models of assets
like transformers, breakers, HVAC systems, DERs, and buildings (e.g., Building
Information Models [7]). However, there is a lack of modeling languages that
integrate all of the components into a cohesive system model amenable to analysis,
optimization, and real-time control.

Challenge #5: Market participation for DERs
Enabling market participation for DERs is seen as critical for their wide proliferation
in energy systems. Market prices provide both coordinating signals during operation
and financial incentives for investing in new capacity. In 2020, the Federal Energy
Regulatory Commission (FERC) issued Order 2222 which mandated that system
operators design and implement market mechanisms for DERs to participate in
wholesale markets [22, 141]. Despite the regulatory mandate, progress towards
DER markets has been uneven due in part to the following barriers.

First, in order to join the wholesale market, DERs often need to meet technical re-
quirements for communication, control, and redundancy initially intended for large
power plants that are too onerous given the small scale of most DERs. Second, util-
ities mandate that DERs go through a lengthy and complex interconnection process
to connect to the grid and participate in the electricity market. The interconnection
process almost always requires a manual review by a utility engineer and may also
require extensive power flow studies to verify that the distribution grid has sufficient
capacity to accommodate the DER. Third, regulatory barriers currently limit the
market participation of DERs by preventing them from accessing certain markets or
by imposing additional requirements and costs. Part of this is due to the reluctance
of system operators to experiment with new planning or operating processes that
could impact the high levels of reliability expected from the power system. An-
other part is due to the balkanized nature of utilities. In there US there are roughly
3,000 individual utilities, each with their own set of regulations and interconnection
processes that apply within their service territory [127]. This heterogeneity makes
it difficult to implement market participation mechanisms within DERs that scale
easily across service territories.

In the next section, we specify our technical contributions that address important
aspects of five challenges highlighted above and present the structure of the thesis.
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1.2 Contributions of this Thesis
The technical contributions in this thesis are two-part. In the first part, consisting of
Chapters 2-4, we study market mechanisms for efficient and incentive-compatible
power system dispatch under uncertainty. We propose electricity market mecha-
nisms based on stochastic and robust optimization frameworks that enable system
operators to feasibly incorporate uncertainty into the dispatch procedure as well as
to integrate the impact of this uncertainty into the market clearing prices. Incentive
compatibility properties of the proposed mechanisms are established.

In the second part, consisting of Chapters 5-8, we present a software platform for
monitoring, modeling, and controlling DERs and microgrids. Three key function-
alities are exhibited in this platform, which we call the Microgrid Operating System
(OS): 1) data collection (as implemented in the Meter Caltech project); 2) model-
ing and monitoring of microgrids and DERs (as implemented in the Digital Twin
project); 3) optimization of microgrids and DERs (as implemented in collaborations
with utilities and industry partners).

We now summarize the particular topics covered in each chapter.

Chapter 3: Feasible multi-interval economic dispatch under uncertainty
As introduced in Chapter 1, a rapid shift in the composition of the generation mix in
power markets is creating several challenges for system operators. First, increasing
renewable penetration from solar and wind is injecting variability and uncertainty
into available power supply. Second, there is a lack of suitable market mechanisms
tailored to the physical characteristics of DERs (such as energy storage) which are
seeking to join markets in increasing numbers. Third, electrification of vehicle
charging and thermal (heating/cooling) loads is impacting the shape and variability
of the demand profile, leading to periods of high, sustained ramping.

These factors have a common theme of uncertainty, and system operators have
been rapidly innovating on new market structures and dispatch procedures to handle
it. These include multi-interval lookahead dispatch [63], ramping reserves [44],
operating reserves [43], capacity markets [36], and multi-stage or intraday mar-
kets. Alongside, researchers have been investigating techniques from stochastic
optimization to efficiently dispatch the market under uncertainty, including robust
optimization [134, 94], chance-constrained optimization [99], scenario optimization
[93], and distributionally robust optimization [42].

In this chapter of the thesis, we merge the practice of multi-interval dispatch with
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the theoretical market mechanisms derived from robust optimization. In particular,
we characterize the conditions under which the inflexible, deterministic dispatch
procedures used in practice lead to infeasibility of the dispatch. To address these
shortcomings, we present a dispatch mechanism that leverages the feasibility guar-
antees from robust optimization. We prove its feasibility and give bounds on its
performance by analyzing upper and lower bounds on the competitive ratio of the
algorithm. Finally, we show that our mechanism retains the excellent performance of
the heuristic lookahead algorithms used in practice while still providing feasibility
guarantees over the scheduling horizon.

Chapter 3: Pricing uncertainty in stochastic multi-stage electricity markets
Whereas the work in Chapter 3 studies the primal dispatch procedure, in this chapter
we turn our attention to the dual pricing problem. In this problem, the system
operator seeks to produce a set of market clearing prices that supports its desired
primal dispatch. We focus particularly on the impact of uncertainty on the market
clearing process.

Our work in this area draws on two main lines of inquiry. The first is dispatching and
pricing multi-interval markets in the presence of intertemporal coupling constraints.
This has been studied in [57], [27], [28], [139], [68], [64], among others. The second
is dispatching and pricing using techniques from robust and stochastic optimization,
particularly in [134], [94], and [42].

In contrast to the existing approaches on risk-based electricity pricing, we propose a
pricing mechanism for multi-stage electricity markets that does not explicitly depend
on the choice of dispatch procedure or optimization method. Instead, we introduce
a reformulation of the multi-stage market clearing problem that accommodates any
description of uncertainty. Our approach is applicable to a wide range of methodolo-
gies for the economic dispatch of power systems under uncertainty and includes as
special cases multi-interval dispatch, multi-settlement markets, scenario-based dis-
patch, and chance-constrained dispatch policies. We prove that our pricing scheme
provides both ex-ante and ex-post dispatch-following incentives by simultaneously
supporting per-stage and ex-post competitive equilibria.

Chapter 4: Pricing demand-side flexibility
In contrast to the previous two chapters, which emphasize incentives for the supply
side of electricity markets, the focus of this chapter is incentives for loads to offer
their flexibility into markets. Enabling participation of demand-side flexibility is



11

key to both improving power system resilience as well as promoting the continued
deployment of zero-carbon renewable generation sources. As such, it has been
the subject of extensive study by system operators and researchers, with particular
attention paid to mechanisms for load-shedding demand response [122], [23], [37],
and [70].

Our work addresses the scenario of curtailment of near-zero-marginal-cost renew-
able resources during periods of oversupply, a particularly important cause of inef-
ficient generation dispatch. Focusing on shiftable load in a multi-interval day-ahead
economic dispatch setting, we show that incompatible incentives arise for demand
using the standard shadow pricing approach. While the system’s overall efficiency
increases from dispatching flexible demand, the welfare of the demand side of the
market can often decrease as a result of higher spot prices. We propose a mecha-
nism to address this incentive issue. Specifically, by imposing a small number of
additional constraints on the economic dispatch problem, we guarantee individual
rationality for all market participants while simultaneously obtaining a more efficient
dispatch. Our formulation leads to a natural definition of a uniform, time-varying
flexibility price that can be offered to loads by the market operator to incentivize
flexible bidding.

Chapter 5: An operating system for microgrids
The traditional operating model for the power system involves a system operator
scheduling a dispatchable fleet of generators to meet forecast net demand. In
particular, industrial, commercial and residential loads that are served by local
utility companies form a passive system that is not actively observed and controlled.
Rather, the aggregate demand at substations is forecast and the transmission system
operator ensures sufficient supply is available to match this forecast. A reliable,
low-cost, and low-carbon energy system requires a paradigm shift that converts
these loads and connecting grids into an active system capable of closed-loop real-
time response to random and frequent fluctuations in renewable generations and
electricity prices.

In this chapter, we present the design and deployment of a software platform that
extends the core functions (e.g., monitoring, modeling, optimization) present in
control systems for high-voltage transmission grids to low-voltage grids (e.g., distri-
bution systems, microgrids, and DERs). The platform, which we call the Microgrid
Operating System (OS), is comprised of three layers: 1) data, 2) models/learning,
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and 3) optimization/control. Each of these layers depends on the one below it, as
illustrated in Figure 1.4, but each layer has intrinsic value to system planners and
operators on its own.

Figure 1.4: Layered architecture of the Microgrid OS. Reliable, organized, real-
time data are the foundation for system models, which in turn are necessary for
optimization-based control.

We extend the notion of layered thinking to the entire hardware-to-application stack
for DERs and microgrids shown in Figure 1.5. The Microgrid OS is a software
orchestration layer that links the hardware (e.g., batteries, PV, building loads, electric
vehicle charging) with applications (e.g., resilience, peak shaving, carbon footprint
reduction, energy market participation), allowing each layer to evolve independently
from the others, as long as the interfaces between the layers are compatible. This
paradigm is similar to those in the Internet and cloud computing that have facilitated
rapid advances in cost, efficiency, and scale of these technologies.

We have developed and implemented several components of the Microgrid OS
in the real-world testbed of the Caltech microgrid. The Caltech system is an ideal
setting for understanding challenges in workplace decarbonization and for the testing
of new technologies to overcome them. Despite Caltech’s small size, its energy
infrastructure is large and complex. The electricity, heating, and cooling needs
correspond to those of a city of ∼20,000 people, despite a campus population of
∼5,000. The main load sources are ∼120 buildings with anywhere from 30kW to
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Figure 1.5: An hourglass architecture for DERs. The layered structure enables en-
ergy services to be defined without explicitly referencing the hardware that provides
them. A software layer (Microgrid OS) is necessary to connect the hardware to the
services.

500kW of load each. In recent years, Caltech produced nearly all of its∼100,000MW
electricity consumption onsite (on an annual basis). The main generation resources
on campus are a 12.5MW gas co-generation plant, 4MW of fuel cells (Bloom
Energy), and 2MW of rooftop solar panels distributed across 15 arrays. When
producing simultaneously, these assets can provide most of the 19MW peak campus
demand. The generation and load sources are connected by a distribution network
comprised on four substations, four interconnections with the Pasadena Water and
Power (PWP) grid, and a radial network with voltage levels ranging from 208V
up to 17kV. In addition to the electric distribution system, a district heating and
cooling system supplies the campus buildings with chilled water and hot water (via
steam and steam-to-water heat exchangers). Although the specific projects built
and deployed in this thesis work were primarily developed within Caltech’s system,
the design philosophy and layered architecture of the Microgrid OS is transportable
to any other distribution-level energy system, from single buildings up to utility
distribution networks.

In the subsequent chapters of this thesis, we present particular projects at each of
the main layers (data, models, optimization & control) of the Microgrid OS.
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Chapter 6: Measuring and monitoring microgrids
Real-time, comprehensive, and reliable data is a prerequisite for effectively modeling
and controlling systems of networked DERs. Despite its importance, a high-quality
dataset is often a large gap in practical settings. Even where there is metering and
monitoring infrastructure, as is the case with systems with building management
systems (BMS) or SCADA systems, data is often not retained, organized, cleaned
and made available for analysis. In the Meter Caltech component of the Microgrid
OS project, we are systematically addressing the data gap by first deploying high-
resolution smart meters on all building load and generation assets in the Caltech
campus microgrid and then assembling the data collected by the meters into a com-
prehensive, granular database of electric power injections within the microgrid. This
system provides a testbed for developing design, installation, and commissioning
processes that can be scaled to other microgrids and networks.

The metering deployment is staged in three phases. Phase 0 consisted of the installa-
tion of 2 Egauge-brand smart meters with 15 current transformer sensors (CTs) each
in the main load panels in the Annenberg Center building. The measurement quality
and accuracy were validated and real-time data transmission pipeline between the
meters and our Digital Twin monitoring platform was implemented. Phase 1 con-
sisted of installing 20 additional meters in a self-contained subnetwork within the
Caltech microgrid. These meters collect data from 13 building load switchboards, 2
PV arrays, 2 natural gas fuel cell arrays, and 2 interconnection points with the PWP
grid. Phase 2, which is ongoing, extends the metering infrastructure to the entire
Caltech campus.

The data collected from the meters consists of magnitudes and angles (with respect
to an angle reference onboard each meter) of the three-phase bus voltages and line
currents. These data are logged in a database every second and then used to compute
derivative quantities such as per-phase power factor, real power, reactive power, and
apparent power. In addition, we also collect 1-second-long voltage and current raw
waveform snapshots every five seconds. Two types of measurements are derived
from the waveforms. The first is the harmonic distortion of the current and voltage
signals, which quantifies the deviation of the waveform from perfect sinusoids. This
is an important metric for power quality which, when poor, can damage sensitive
equipment. The second type is the phase offset of each waveform from each
meter with respect to a common network reference signal. Using Network Time
Protocol (NTP) and Precision Time Protocol (PTP) internet timing protocols, we
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have been conducting experiments to validate the alignment of current and voltage
phasors across meters in the network. Coherent synchrophasor data is typically only
obtained in high-voltage transmission networks due to the expense of deploying
phasor measurement units (PMUs). In contrast, our approach leverages inexpensive
smart meters and IP timing protocols to replicate PMU functionality at a fraction of
the standard cost. Synchrophasor data is necessary for state estimation algorithms
which have been the subject of extensive study in distribution power systems. Our
approach serves as a test case for providing synchrophasor data at relatively low
cost, not just in microgrids but also in low-voltage distribution systems.

Chapter 7: Modeling microgrids
With the data collected from the Meter Caltech project as a foundation, we have
designed, built, and deployed a software platform for modeling microgrids, called
the Microgrid Digital Twin. The Digital Twin is a cyber-physical system consisting
of multiple interconnecting sub-components: 1) a set of data collection interfaces
to collect measurement data from smart meters and monitoring databases (e.g.,
BMS, weather data); 2) a processing pipeline to organize, clean, correct, and store
ingested timeseries data; 3) a data integration module that fuses timeseries data with
the database of physical assets contained in model of the network; 4) algorithms
to learn statistical models of the data that can correct or augment the physical
models; and 5) an interactive monitoring dashboard that integrates timeseries data
and network models to make them useful to analysts, system planners, and operators.

Along with the software architecture design and implementation of the Digital Twin
platform, the main technical contribution from this part of the thesis is a distribution
system network modeling schema that can represent all physical components in the
system and the connections between them. The schema incorporates information
about each asset’s labeling, physical properties, geographic location, hierarchical
grouping, and connectivity. This schema builds upon standard tools for multi-
phase distribution system modeling, such as OpenDSS, Cyme, and Gridlab-D, to
include support for a wider range of components such as standard electrical distri-
bution components (e.g., lines, transformers, buses, switches), protection devices
(e.g., breakers, fuses), control devices (e.g., relays, variable frequency drives), me-
ters, thermal assets (e.g., boilers, chillers, heat exchangers), and power generation
sources(e.g., batteries, fuel cells, solar cells, inverters, emergency generators, and
combustion turbines). This allows the Digital Twin to model and facilitate opti-
mization of a broad range of energy systems at multiple scales, from individual



16

electrical load panels up to entire utility distribution networks. It also addresses a
gap in the existing modeling tools for energy systems at the scale of microgrids that
span component-level models (e.g., building information models) and system-level
distribution network models (e.g., Cyme).

Chapter 8: Optimizing microgrids

Building on the data and modeling efforts described in the previous two chapters,
this section of the thesis presents several projects on the optimal design and control
of microgrids and distribution systems.

The first is a collaboration with Pasadena Water & Power (PWP) distribution utility
where the placement and control of a fleet of energy storage devices was optimized in
a distribution feeder correct over- and under-voltage conditions arising summertime
peak load conditions. The principal challenges in this project were two-fold: 1)
solving a non-convex optimal battery location problem; and 2) modeling power
flow equations in a highly-unbalanced 4-wire distribution feeder with transformers.
We showed that a relatively small 75kW/420kWh of energy storage, optimally
distributed and controlled throughout a feeder with 2MW of peak load, could correct
voltages at all ∼800 load nodes to within ±5% of the nominal reference value. Our
modeling validated the effectiveness of inexpensive smart control methods to address
power quality issues, in contrast to the standard approach of expensive and disruptive
transformer and conductor upgrades that utilities typically use in practice.

The second, ongoing project develops methods for optimal sizing of microgrids
subject to physical, reliability, and financial constraints. Microgrids can serve many
purposes depending on how they are designed and operated. Some microgrid opera-
tors, such as university campuses care primarily about reliability due to the high cost
of power outages to operations. Other, emerging applications of microgrids take
advantage of nascent opportunities to participate in wholesale electricity markets for
energy and ancillary services. For both of these instances, we present a technique
for optimizing the capital investment that operators must make in microgrid hard-
ware assets (e.g., solar systems, batteries, generators, switchgear, and transformers)
that incorporates physical constraints, operational constraints, financing cost, and
ongoing cost/revenue streams.
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A rapid shift in the composition of the generation mix in power markets is creating
several challenges for system operators. First, increasing renewable penetration from
solar and wind is injecting variability and uncertainty into available power supply.
Second, there is a lack of suitable market mechanisms tailored to the physical
characteristics of distributed energy resources (such as energy storage) which are
seeking to join markets in increasing numbers. Third, electrification of vehicle
charging and thermal (heating/cooling) loads is impacting the shape and variability
of the demand profile, leading to periods of high, sustained ramping.

These factors have a common theme of uncertainty, and SOs have been rapidly
innovating new dispatch procedures and market structures to handle it. These
include multi-interval lookahead dispatch [63], ramping reserves [44], operating
reserves [43], capacity markets [36], and multi-stage or intraday markets. Along-
side, researchers have been investigating techniques from stochastic optimization
to efficiently dispatch the market under uncertainty, including robust optimization
[134, 94], chance-constrained optimization [99], scenario optimization [93], and
distributionally robust optimization [42].

Uncertainty impacts the stability of pricing signals and can lead to market distortions
such as out-of-merit dispatch, ramping shortages, and load shedding. Even with
more advanced and accurate forecasts, SOs must still dispatch the system in a way
that anticipates forecast uncertainty and the possibility of distribution shift over
time. Pricing that incorporates characterization of uncertainty is necessary to fairly
and efficiently compensate different resources for their contributions to a reliable
power supply as well as to drive efficient investment in an optimal generation mix.

Some of the principal mechanisms SOs use in practice to manage uncertainty are
multi-settlement dispatch and multi-interval scheduling. Multi-settlement dispatch
makes use of a sequence of forward markets that culminate in a real-time when
electricity is actually delivered. Examples of these forward markets are day-ahead
markets, capacity markets, and intraday unit commitment markets. The common
feature of these forward markets is that they only involve a financial settlement and
have no immediate physical consequences on generator dispatch.1 Multi-interval
scheduling is a mechanism used in real-time when generator energy production
must be physically dispatched. It involves optimizing the systems over a rolling
lookahead horizon with predictions in order to more efficiently account for binding

1The unit commitment statuses of generators is decided in forward markets but the energy
production is not determined until real-time.
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intertemporal ramping and unit commitment constraints. Only the first interval of
the horizon is physically and financially binding.

Multi-settlement systems and multi-interval dispatch interact in practice in various
ways. Figure 1.6 illustrates a few of these interactions. The practice in North Ameri-
can ISOs is to have a single day-ahead forward market followed by successive rounds
of multi-interval dispatch (e.g., every 5 or 15 minutes) that unfold in rolling fashion.
In principle, an arbitrary number of forward market settlements is achievable and
some markets such as the Electric Reliability Council of Texas (ERCOT) are ex-
ploring implementation of intraday forward markets that sit between the day-ahead
market and real-time.

Figure 1.6: Schematic of multi-settlement, multi-interval economic dispatch [139].
The forward stage is a day-ahead financial market and the real-time stages are
successive rounds of lookahead economic dispatch.

Multi-stage dispatch mechanisms are the focus in this part of the thesis. We study
three particular aspects of them. The first (Chapter 2) is a method to retain feasi-
bility of the multi-stage problem over the entire scheduling horizon under robust
description of uncertainty. We establish the necessity of robust dispatch by proving
fundamental limits on the feasibility of standard multi-interval dispatch even with
perfect lookahead predictions. These limitations are addressed with a proposed
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mechanism that combines robust policy-based dispatch with prediction-based multi-
interval dispatch. We prove that the mechanism admits a feasibility guarantee to
robust disturbances while retaining the excellent average-case guarantee of standard
multi-interval dispatch.

The second (Chapter 3) is the derivation of market-clearing prices when the system
operator is scheduling under uncertainty. The novelty of our approach is the for-
mation of a price does not depend on the particular characterization of uncertainty.
The requirement is simply that the dispatch optimization problem is tractable and
produces and optimal dispatch and that its Jacobian with respect to the parameters
for the optimal dispatch can be computed.

Finally, in Chapter 4, we study demand-side mechanisms to dispatch flexible load
in the day-ahead multi-interval market. We show how the standard shadow price
is not suitable for incentivizing load-side flexibility as the demand-side welfare can
decrease when flexible loads are dispatched. We propose a mechanism to address
this deficiency and prove that it provides rationality and incentive compatibility to
flexible loads to bid into the market while preserving the incentive compatibility for
generators.
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C h a p t e r 2

FEASIBLE MULTI-INTERVAL ECONOMIC DISPATCH UNDER
UNCERTAINTY

In power systems with high penetrations of variable renewable energy production,
sufficient flexible and dispatchable generation resources are necessary to ensure
a stable energy supply. However, conventional dispatchable thermal generators
are ramp-constrained, limiting how quickly they can modulate their production to
accommodate large fluctuations in net demand. This poses a challenge for system
operators on two fronts: resource procurement and real-time generation scheduling.

Resource procurement refers to the system operator’s task of planning for sufficient
available capacity and ramp for the system to meet uncertain net demand. Resource
procurement takes place on longer timescales (e.g., years to day-ahead) and includes
several problems familiar to power system operators including security-constrained
unit commitment (SCUC), resource adequacy, and capacity planning. On shorter
timescales (e.g., 5 to 15 mins), system operators must dispatch available generation
resources efficiently to meet realized net demand. This is known as real-time
economic dispatch (RTED).

Numerous methods have been devised in both of these domains to ensure robustness
to uncertainty in net demand. For resource procurement problems, scenario-based
optimization is common in practice, while other stochastic optimization techniques
and robust optimization have been explored in the research community. For RTED,
lookahead dispatch algorithms have been widely implemented by independent sys-
tem operators (ISOs) in energy markets, and additional ancillary services such as
flexible ramping products and load-following reserves have seen some adoption in
markets with high demand variability.

The ultimate goal of both resource procurement and RTED is to deliver sufficient
generation to meet realized demand while satisfying system constraints: that is, to
guarantee feasibility of the dispatch in real time. However, a crucial challenge facing
state-of-the-art methods today is that if resource procurement fails to account for
the particular dispatch algorithm to be used, or if the RTED algorithm used does not
appropriately consider procured resources (e.g., generation & ramp capacity) when
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making decisions, then feasibility is not assured.1 Moreover, merging the problems
of resource procurement and feasible RTED algorithm synthesis, i.e., optimizing
over both system specifications and RTED algorithms, is intractable for the class of
general dispatch algorithms.

This motivates the goal of this work: developing tractable methods for resource
procurement and RTED that together yield provable guarantees of feasibility.

Contributions
First, to motivate the need for a joint approach to resource procurement and RTED,
we show in Section 2.2 that even on a single-bus system and with nearly full
knowledge of future demand, offline feasibility over a set of demand trajectories
is insufficient to guarantee the existence of any online dispatch algorithm that can
feasibly meet those demand sequences.

Second, a practical joint algorithm for resource procurement and RTED is presented
in Section 2.3. The first step is a robust optimization problem called Dispatch-
Aware Planning (DAP), which determines adequate system capacity to ensure a
feasible RTED algorithm exists. The second step is a dispatch algorithm called Fea-
sible Fixed Horizon Control (FFHC) that minimally modifies the standard receding
horizon control (RHC) algorithm to robustly use trusted predictions of demand.

Third, in Section 2.4 we give matching upper and lower bounds on the competitive
ratio of any feasible online dispatch algorithm. These bounds imply identical bounds
on FFHC.

Finally, we evaluate the proposed approach on a synthetic system derived from
CAISO demand and generation data. We show that FFHC retains the excellent
average-case performance of RHC but in cases where there are large demand fluctu-
ations and the system is ramp constrained, RHC fails while FFHC remains feasible
with minimal additional cost. The test cases presented in this work are designed to
clearly demonstrate the feasibility properties of our approach. Although our algo-
rithm is applicable to realistic problems like SCUC, large-scale simulations are not
explored here and are the subject of future work.

1In systems with no inter-temporal coupling constraints (e.g., ramp or state-of-charge con-
straints), this feasibility mismatch does not arise. However, in practice ramp limits matter, i.e., they
constrain the set of operating points reachable by the system.
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Related work
This work bridges the online algorithms and power systems literatures. We briefly
highlight some related work in each of these domains.

Online algorithms. RTED is an online decision-making problem characterized by a
challenging combination of time-coupling and unknown time-varying constraints.
None of the existing constrained online optimization literature, e.g., [9, 80, 79, 121],
directly handles our setting.

The authors in [9] explore a related ramp-constrained online optimization problem,
yet feasibility does not pose an issue due to the lack of unknown time-varying
constraints. Recent work in online optimal control considers time-invariant [80] as
well as time-varying and coupling constraints [79] on state and action. However,
the feasibility guarantees depend on advance knowledge of the constraints.

The work in [121] comes closest to our setting. The authors optimize over affine
policies to design algorithms for online optimization with switching costs and ramp
limits that are robust to polytopic uncertainty in certain constraints. However, their
approach does not consider the problem of guaranteeing feasibility, and their pro-
posed algorithm is unable to fully exploit good predictions of near-term uncertainty.

Power systems. Resource procurement for system reliability and multi-interval
economic dispatch are two key problems in power systems operation addressed by
this work.

Our formulation of the resource procurement problem has broad applicability to
several problems in power system reliability: in particular security-constrained unit
commitment (SCUC) for day-ahead markets [15, 106, 136, 13, 133], resource ade-
quacy [19, 117, 108], and capacity planning [138, 36, 38]. Most of the approaches
in this literature do not consider behavior of causal RTED algorithms or generally
involve scenario-based optimization [41, 10]. In practice, resource adequacy plan-
ning relies on regulatory standards and scenario-based studies and similarly ignore
the behavior of the RTED algorithm.

Many ISOs have implemented multi-interval lookahead optimization for RTED, as
it can better accommodate variability in forecasts for renewables and intertemporal
constraints from conventional generation and storage [59, 137, 110, 44] Ancillary
services such as flexible ramping products [131, 133, 54] and load-following re-
serves [43, 107, 97] have been studied and implemented in some markets. To our
knowledge, all of the aforementioned proposals for multi-interval dispatch do not
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provide provable guarantees for the feasibility of the lookahead optimization prob-
lem. There is prior work on utilizing affine policies to robustly dispatch reserves
in the real-time market when ramp constraints are present [134, 135], but this work
similarly does not explicitly consider the question of feasibility, and the affine poli-
cies utilized may be more conservative than the lookahead dispatch algorithms used
by operators.

Our work is most closely related to research on adaptive robust unit commitment
with causal affine real-time policies in [84, 85]. Here, robust policy-aware economic
dispatch is combined with robust unit commitment, and an algorithmic framework
for efficient computation of large-scale problems is proposed. Like [121], robustness
comes at the expense of fully utilizing predictions. In contrast, we bring an online
algorithms perspective to the problem of feasible RTED, focusing primarily on (a)
designing feasible RTED algorithms that can fruitfully exploit predictions, and (b)
characterizing the performance of feasible RTED algorithms in general.

Notation
𝑁 ∈ Z+ is the number of dispatchable generators and 𝑇 ∈ Z+ is the length of the
time horizon. We denote the ordered set of time intervals between indices 𝑎 and 𝑏
by [𝑎, 𝑏] B {𝑎, . . . , 𝑏} ⊂ Z+. The inequalities in (2.1) and subsequent optimization
problems are element-wise.

2.1 Problem formulation
The problem of optimal power system planning and operation can be cast as a
sequential optimization problem robust to uncertainty revealed prior to each stage.2

min
y

max
𝑑1

min
x1

· · · max
𝑑𝑇

min
x𝑇

c̄⊤y +
𝑇∑︁
𝑡=1

c⊤𝑡 x𝑡 (2.1a)

s.t. 1⊤x𝑡 = 𝑑𝑡 ∀𝑡 ∈ [1, 𝑇] (2.1b)

𝑔𝑡 (x𝑡 , y) ≤ 0 ∀𝑡 ∈ [1, 𝑇] (2.1c)

ℎ𝑡 (x𝑡−1, x𝑡) ≤ 0 ∀𝑡 ∈ [1, 𝑇] (2.1d)

(𝑑1, . . . , 𝑑𝑇 ) ∈ D (2.1e)

For concreteness, we limit our presentation to a single planning stage with de-
cision variables y ∈ R𝐾 (e.g., generator capacities, ramp/line limits, unit com-

2For simplicity, in this work we assume that the only uncertainty is the demand, although
uncertainty in generation (e.g., solar, wind) can also be accommodated.
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mitments) followed by 𝑇 generation dispatch stages, each with decision variables
x𝑡 ∈ R𝑁 , 𝑡 = 1, . . . , 𝑇 , where the initial operating point x0 is fixed. We assume the
cost functions for planning variables c̄ and dispatches c𝑡 are linear and known by the
system operator. Constraint (2.1b) is the supply-demand balance constraint where
𝑑𝑡 is the demand at time 𝑡. Constraints (2.1c) and (2.1d) are affine and represent
capacity/planning constraints and intertemporal (ramp, state-of-charge) constraints
respectively. We focus on a single-bus network with all dispatchable generators
satisfying a net load trajectory d = (𝑑1, . . . , 𝑑𝑇 ), which is contained in a bounded,
known uncertainty set D.3 We assume that D is polytopic, i.e. it takes the form
D = {d ∈ R𝑇 : Ed ≤ f} with parameters E ∈ R𝐿×𝑇 and f ∈ R𝐿 known to the system
operator prior to solving the planning and dispatch problem.

Each dispatch stage depends on the planning decision as well as the previous dis-
patch. An example of a problem falling under this framework is SCUC followed
by multi-interval real-time dispatch. However, this framework can be extended to
include several planning stages in advance of dispatch, such as capacity planning
and intraday unit commitment.

Planning problem
The goal of the planning problem is to determine a choice y∗ of the planning deci-
sions. Given that problem (2.1) is intractable due to the sequential min−max−min
operators, an approach taken by power system operators in practice is to choose
y∗ by solving an “offline” form of the problem where the demand sequence d =

(𝑑1, . . . , 𝑑𝑇 ) ∈ D (or a small number of scenarios) is assumed known in advance.

min
y∈R𝐾
x𝑡∈R𝑁

c̄⊤y +
𝑇∑︁
𝑡=1

c⊤𝑡 x𝑡 (2.2a)

s.t. 1⊤x𝑡 = 𝑑𝑡 ∀𝑡 ∈ [1, 𝑇] (2.2b)

𝑔𝑡 (x𝑡 , y) ≤ 0 ∀𝑡 ∈ [1, 𝑇] (2.2c)

ℎ𝑡 (x𝑡−1, x𝑡) ≤ 0 ∀𝑡 ∈ [1, 𝑇] (2.2d)

As written, (2.2) is a linear program; when y represents unit commitments, (2.2)
becomes a MILP with the addition of integrality constraints on y (not shown).

While the resulting y∗ from this offline optimization would be ex-post optimal,
were the assumed demand sequence the true demand, this will not generally be

3Everything that follows can be extended to multi-bus setting with network constraints, as in
[84, 85].
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the case, as the planning problem is typically solved far in advance, when there is
still uncertainty in future demand. To provide stronger guarantees in the face of
demand uncertainty, system operators may wish for y∗ to satisfy (2.2b) - (2.2d) for
any d ∈ D. This motivates the following definition of offline feasibility. A planning
decision y∗ is offline feasible if and only if for all d ∈ D there exists a dispatch
sequence x1, . . . , x𝑇 satisfying the dispatch feasibility constraints (2.1b) - (2.1d).

Online dispatch problem
After the planning variables y∗ are chosen, the task of the system operator is to
determine real-time dispatches x𝑡 . They do so via an online dispatch algorithm:
a sequence of functions 𝑋1, . . . , 𝑋𝑇 , each of which maps a demand sequence to a
dispatch for time 𝑡: 𝑋𝑡 : D → R𝑁 . Crucially, the collection of functions {𝑋𝑡}𝑇𝑡=1
must be causal, so the decision 𝑋𝑡 (d) at time 𝑡 can only depend on information
known to the system operator at time 𝑡. We will assume that the system operator
knows the exact demand 𝑑𝑡 at time 𝑡, and also has access to perfect predictions of
demand 𝑑𝑡+1, . . . , 𝑑𝑡+ℎ within a short lookahead window of length ℎ. Thus 𝑋𝑡 (d)
may only depend on demands through time min{𝑡 + ℎ, 𝑇}.

A desirable objective for an online dispatch algorithm is the satisfaction of dispatch
feasibility constraints. This motivates the following definition of online feasibility
of a dispatch algorithm as well as of a planning decision y∗.

1. Given a fixed planning decision y∗, a feasible online dispatch algorithm is
a sequence of causal policies {𝑋𝑡}𝑇𝑡=1 with the property that for any demand
sequence d ∈ D, the produced decisions 𝑋1(d), . . . , 𝑋𝑇 (d) satisfy the con-
straints (2.1b) - (2.1d).

2. If y∗ admits a feasible online dispatch algorithm, then y∗ is said to be an online
feasible planning decision.

A particular online dispatch algorithm that is widely used in practice is Receding
Horizon Control (RHC), where at time 𝑡, dispatches are optimized over the ℎ-step
perfect lookahead horizon [𝑡, 𝑡 + ℎ]. Only the first dispatch x∗𝑡 is committed at
each step of RHC; the remaining dispatches over the lookahead horizon are merely
“advisory”. This process is then repeated for the subsequent interval 𝑡 + 1, and so
on. However, RHC has a significant downside in that it is not necessarily feasible,
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even if the planning decision y∗ is online feasible. We demonstrate situations when
RHC lacks feasibility in Section 2.5.

2.2 Offline feasibility does not imply online feasibility
Although we presented the planning and dispatch problems separately in the pre-
vious section, we show now why the common practice of solving for the planning
variables y∗ offline in a dispatch-unaware fashion can ultimately cause online dis-
patch infeasibility. We answer the following question: For a particular demand
uncertainty set, does offline feasibility of planning decisions y∗ necessarily imply
their online feasibility?

We answer this question in the negative in the following theorem. This establishes
that anything short of full knowledge of the demand sequence is insufficient for
offline feasibility to imply online feasibility.

Theorem 1. There exist choices of affine system constraints {𝑔𝑡}, {ℎ𝑡}, a polytopic
demand uncertainty set D, and fixed planning decisions y∗ that are offline feasible,
yet which are not online feasible if ℎ < 𝑇 − 1.

In other words, this theorem states that offline feasibility does not imply online
feasibility, even for online algorithms with arbitrary (but not full) knowledge of
future demand. This fact necessitates performing resource procurement with explicit
consideration of online feasibility.

Proof of Theorem 1. We construct an example system and an offline feasible de-
mand uncertainty set D admitting no feasible online algorithm. Consider a 2-
generator system with x = (0, 0), x = (2ℎ + 4, 2ℎ + 4) and Δ𝑥 = (2ℎ + 4, 1),
Δ𝑥 = (−2ℎ − 4,−1), and initial operating point x0 = (ℎ + 2, ℎ + 2), where ℎ ≥ 0. In
a single time interval, the first generator can ramp to any operating point within its
capacity bounds, while the second generator can only ramp up or down by 1 unit.
Consider the demand uncertainty set

D := {d ∈ Rℎ+3 : 𝑑0, . . . , 𝑑ℎ+1 = 2ℎ + 4, 0 ≤ 𝑑ℎ+2 ≤ 4ℎ + 8}

and distinguish two demand sequences in this set:

d(𝐴) = (2ℎ + 4, . . . , 2ℎ + 4, 4ℎ + 8)
d(𝐵) = (2ℎ + 4, . . . , 2ℎ + 4, 0)
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Figure 2.1: Illustration of the setting used in Theorem 1.

We illustrate the system, and the two demand sequences d(𝐴) and d(𝐵) , in Figure
2.1: the outer box contains all of the operating points the system can realize while
respecting capacity constraints and diagonal grey lines correspond to demands 𝑑𝑡 ,
since an operating point along such a diagonal line corresponds to an aggregate
generation of 𝑑𝑡 .

Note that both d(𝐴) and d(𝐵) are offline feasible: for case (A), x(𝐴) as in Figure 2.1
with 𝑥 (𝐴)𝑡 = (ℎ + 2 − 𝑡, ℎ + 2 + 𝑡) for 𝑡 ∈ [1, ℎ + 1] and 𝑥 (𝐴)

ℎ+2 = (2ℎ + 4, 2ℎ + 4)
is feasible. For case (B), 𝑥 (𝐵)𝑡 as in Figure 2.1 with 𝑥 (𝐵)𝑡 = (ℎ + 2 + 𝑡, ℎ + 2 − 𝑡)
for 𝑡 ∈ [1, ℎ + 1] and 𝑥 (𝐵)

ℎ+2 = (0, 0) is feasible. Furthermore, it can be seen from
the ramp constraints that x(𝐴) is the unique feasible dispatch meeting the demand
sequence d(𝐴) , and similarly x(𝐵) is the unique feasible dispatch meeting demand
sequence d(𝐵) . Finally note that any d ∈ D is a convex combination of d(𝐴) and
d(𝐵) . By convexity, thus, D is offline feasible.

Now consider any online dispatch algorithm with lookahead ℎ. At time 𝑡 = 1, it
must choose 𝑥1 without seeing 𝑑ℎ+2; thus when choosing 𝑥1 it does not know, for
example, whether the full demand sequence is d(𝐴) or d(𝐵) . Clearly if the algorithm
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does not select 𝑥1 = 𝑥
(𝐴)
1 , it will not be feasible if d(𝐴) is the full demand trajectory;

likewise, if the algorithm does not select 𝑥1 = 𝑥
(𝐵)
1 , it will not be feasible if d(𝐵) is

the full demand trajectory. As 𝑥 (𝐴)1 ≠ 𝑥
(𝐵)
1 , the online algorithm cannot choose a

decision at time 1 that allows it to remain feasible for both cases (A) and (B). Thus
the algorithm is not feasible for D. □

Remark 1. The particular construction in the proof – namely, the dependence of
generator capacities on ℎ – is not crucial for the result. Other systems and offline
feasible demand uncertainty sets can be constructed wherein both generator capac-
ities and ramps are independent of ℎ, yet for which no online dispatch algorithm
with lookahead ℎ < 𝑇 − 3 is feasible.

2.3 Joint algorithm for system planning and online dispatch
The counterexample in Theorem 1 establishes that the offline feasibility of a plan-
ning decision y∗ for a particular demand uncertainty set does not imply its online
feasibility. This motivates the joint approach in Algorithm 1, where we use affine
policies to guarantee the existence of an online feasible y∗ as well as an online
feasible dispatch algorithm. Affine policies approximate online decision making
during the planning stage (called Dispatch-aware Planning (DAP)), before pass-
ing the optimal planning variables to the RTED algorithm (called Feasible Fixed
Horizon Control (FFHC)). Rather than using the (conservative) affine policies for
determining actual dispatch schedules in real time, we subtly modify the standard
RHC dispatch algorithm to include an affine-policy-based regularization term on
the last decision of each subhorizon. This allows for online scheduling to exploit
accurate short-term predictions without taking decisions that are too myopic. Other
variants of fixed horizon control, like AFHC [82] or CHC [29], can be substituted
for RHC in our algorithm at the expense of more burdensome notation.

Algorithm 1 Joint algorithm for planning and dispatch
1: input: Cost functions c̄, c𝑡 and constraints 𝑔𝑡 , ℎ𝑡
2: Solve DAP problem (2.4)
3: Fix optimal planning variables y∗
4: for 𝑡 = 1, . . . , 𝑇 do
5: 𝑑𝑡+ℎ revealed
6: Solve FFHC problem (2.5) with 𝑑1, . . . , 𝑑𝑡+ℎ and x∗

𝑡−1 as parameters
7: return x∗𝑡
8: end for
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Dispatch-Aware Planning (DAP)
The dispatch-aware planning problem is defined in (2.4) below. The demand se-
quence d = (𝑑1, . . . , 𝑑𝑇 ) resides in a known polytopic demand uncertainty set D,
and the linear planning/dispatch cost functions are known as well. Piecewise-linear
cost functions can also be accommodated with additional notation.

The real-time scheduling policies {𝑋𝑡 (·)}𝑇𝑡=1 are defined to be affine in the demand
trajectory:

𝑋𝑡 (d) := A𝑡d + b𝑡 ∀𝑡 ∈ [1, 𝑇] (2.3)

To optimize over the 𝑋𝑡 is to optimize over the matrices 𝑡 ∈ R𝑁×𝑇 and vectors 𝑡 ∈ R𝑁 .
The 𝑋𝑡 are causal, meaning A𝑡 have 0’s for all columns with index greater than 𝑡.
This requirement can be enforced with entrywise constraints on the matrices. It is
assumed that (2.4) has a feasible solution.

min
y

𝑋1,...,𝑋𝑇

max
d∈D

c̄⊤y +
𝑇∑︁
𝑡=1

c⊤𝑡 𝑋𝑡 (d) (2.4a)

s.t. 1⊤𝑋𝑡 (d) = 𝑑𝑡 ∀𝑡 ∈ [1, 𝑇] (2.4b)

𝑔𝑡 (𝑋𝑡 (d), y) ≤ 0 ∀𝑡 ∈ [1, 𝑇] (2.4c)

ℎ𝑡 (𝑋𝑡−1(d), 𝑋𝑡 (d)) ≤ 0 ∀𝑡 ∈ [1, 𝑇] (2.4d)

As convention we assume 𝑋0(d) = x0. Problem (2.4) is a linear program with
semi-infinite constraints resulting from the "∀" qualification on d. Using strong
duality of linear programs, (2.4) can be equivalently posed as a linear program with
a finite number of additional variables and constraints [11]. The result is a tractable
linear program that can be solved with off-the-shelf optimization solvers. However,
depending on the length of the time horizon and the complexity of D, (2.4) can be
challenging to scale to large problem sizes. Although this scaling is not the focus
of this chapter, strategies for improving scaling are discussed in Section 2.5.

After solving (2.4), the optimal planning variables y∗ are fixed. It is then possible
to schedule in real time using the optimal affine policies 𝑋∗

1 , . . . , 𝑋
∗
𝑇

applied to the
real-time demand sequence. The resulting generation schedules are guaranteed to
be feasible—that is, they satisfy (2.1b)-(2.1d) for any d ∈ D—but because of their
robustness and inability to incorporate more refined demand predictions, the cost of
the dispatch is likely to be quite conservative. In contrast, the algorithm we propose
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next uses the policies to constrain online dispatches to an always-feasible region
while still allowing accurate short-term predictions to be exploited.

Feasible Fixed Horizon Control (FFHC)
Economic dispatch in real-time (e.g., 5-min, 15-min) electricity markets is often a
multi-interval optimization problem over an (ℎ + 1)-step horizon from which only
the first dispatch decision is binding and the remaining are advisory. In the control
literature this algorithm is referred to as receding horizon control (RHC) or model
predictive control (MPC).

The version of fixed horizon control that we propose here, called Feasible Fixed
Horizon Control (FFHC), is RHC with the addition of a robust affine constraint
composed from the optimal policies from (2.4). FFHC is parameterized by the
optimal solutions y∗, 𝑋∗

1 , . . . , 𝑋
∗
𝑇

from (2.4).4 FFHC has access to 𝑑𝑡 and ℎ perfect
predictions of future demand 𝑑𝑡+1, . . . , 𝑑𝑡+ℎ, as well as the previously committed
dispatch x∗

𝑡−1. The first decision x∗𝑡 in the subhorizon of the following optimiza-
tion problem determines the decision of FFHC in time 𝑡, denoted henceforth by
FFHC(𝑡).5

arg min
x𝑡 ,...,x𝑡+ℎ

𝑡+ℎ∑︁
𝑠=𝑡

𝑐⊤𝑠 x𝑠 (2.5a)

s.t. 1⊤x𝑠 = 𝑑𝑠 ∀𝑠 ∈ [𝑡, 𝑡+ℎ] (2.5b)

𝑔𝑠 (x𝑠, y∗) ≤ 0 ∀𝑠 ∈ [𝑡, 𝑡 + ℎ] (2.5c)

ℎ𝑠 (x𝑠, x𝑠−1, y∗) ≤ 0 ∀𝑠 ∈ [𝑡 + 1, 𝑡 + ℎ] (2.5d)

ℎ𝑡 (x𝑡 , x∗𝑡−1, y
∗) ≤ 0 (2.5e)

ℎ𝑡+ℎ+1(𝑋∗
𝑡+ℎ+1(d), x𝑡+ℎ, y

∗) ≤ 0 ∀d ∈ D0:𝑡+ℎ (2.5f)

D0:𝑡+ℎ is the restricted set of demand sequences in D that are possible given the
already-revealed demand values from time 0 to 𝑡 + ℎ. In general for a pair of indices
𝑟, 𝑠 ∈ [0, 𝑇] and 𝑟 ≤ 𝑠 and d̃𝑟:𝑠 = (𝑑𝑟 , . . . , 𝑑𝑠) a subsequence of realized values, we
define

D𝑟:𝑠 := {d ∈ D | 𝑑𝑡 = 𝑑𝑡 ∀𝑡 = 𝑟, . . . , 𝑠}.6 (2.6)

Clearly, D𝑟:𝑠 ⊆ D ⊆ R𝑇+1.
4𝑋∗
𝑡 refers to (A∗

𝑡 , b∗
𝑡 ).

5At 𝑡 = 𝑇 − ℎ, the optimal solution of (2.5) determines FFHC’s remaining dispatch decisions
x∗
𝑇−ℎ, . . . , x

∗
𝑇

because by that time, the entire demand sequence is known.
6The explicit dependence of D𝑟 :𝑠 on d̃𝑟 :𝑠 is suppressed in the notation for simplicity.
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As was explored in Theorem 1, only enforcing constraints (2.5b) - (2.5e) does not
always yield a feasible solution. Because the ramping constraint ties the previously
committed decision x∗

𝑡−1 to all subsequent dispatches, a short-sighted dispatch early
on could lead to infeasibility for a subsequent round. The addition of robust con-
straints (2.5f) on the last decision x𝑡+ℎ ensures that earlier decisions are robust to
future uncertainty. As in (2.4), the robust constraint in (2.5) can be transformed
into auxiliary linear constraints on x𝑡+ℎ. Taking the optimal solutions of the first
variables x∗𝑡 from each subhorizon for 𝑡 = 1, . . . , 𝑇 gives the dispatch sequence from
FFHC, which, as presented in the following theorem, is feasible.

Theorem 2. FFHC is a feasible online dispatch algorithm. That is, for any d ∈ D,
𝑇 − ℎ successive rounds of FFHC(𝑡) produce a dispatch sequence x∗1, . . . , x

∗
𝑇

that
satisfies (2.1b)-(2.1d).

Proof. The main idea of the proof is to match constraints between the offline robust
capacity procurement problem and the online feasible dispatch problem.

Pick any d = (𝑑0, . . . , 𝑑𝑇 ) ∈ D. We will inductively construct feasible solutions for
each round of FFHC to satisfy demand d as its elements are revealed sequentially.
We take the starting point x0 to be the one given by the optimal solution from the
DAP synthesis problem; i.e., x0 = 𝑐A∗

0d + b∗
0.7 The solution sequence of FFHC(𝑡)

is x∗𝑡 , x
(𝑡)
𝑡+1, . . . , x

(𝑡)
𝑡+ℎ. We use the “∗” notation to highlight that only the first decision

of each subproblem is committed; the remaining decisions are merely advisory.

Start with 𝑡 = 1. Let d1+ℎ := (𝑑0, . . . , 𝑑1+ℎ, 𝑑2+ℎ, . . . , 𝑑𝑇 ) be a sequence in D0:1+ℎ

where (𝑑0, . . . , 𝑑1+ℎ) is the demand subsequence known at time 1 and (𝑑2+ℎ, . . . , 𝑑𝑇 )
is a sequence of ersatz values that fill out the remainder of the time horizon while
satisfying the relevant constraints in D.

We claim that sequence of dispatches

x∗1 = A∗
1d1+ℎ + b∗

1

x(1)
2 = A∗

2d1+ℎ + b∗
2

...

x(1)
1+ℎ = A∗

1+ℎd1+ℎ + b∗
1+ℎ

(2.7)

is feasible for FFHC(1). This dispatch sequence is unique, despite the fact that
demand values 𝑑ℎ+2, . . . , 𝑑𝑇 are yet unknown, because of the causality constraints

7This assumption is not restrictive as x0 can be fixed if desired when solving the RAP synthesis
problem.
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on the A∗
𝑡 matrices. Since d1+ℎ ∈ D, (2.7) satisfies constraints (2.4b - 2.4d) for

𝑡 = 1, . . . , ℎ and these exactly match constraints (2.5b - 2.5e) in FFHC(1), then
(2.7) is feasible for (2.5b - 2.5e) in FFHC(1). Constraint (2.5f) in FFHC(1) is also
satisfied, because (2.5f) is just constraint (2.4d) for interval ℎ + 2 restricted D0:1+ℎ,
which is a subset of D over which constraint (2.4d) is guaranteed to hold. Thus
(2.7) is feasible for FFHC(1).

Next, assume there exists a feasible solution sequence for FFHC(𝑡 − 1), namely
x∗
𝑡−1, x

(𝑡−1)
𝑡 , . . . , x(𝑡−1)

𝑡+ℎ−1. Define d𝑡+ℎ := (𝑑0, . . . , 𝑑𝑡+ℎ, 𝑑𝑡+ℎ+1, . . . , 𝑑𝑇 ) analogously
to d1+ℎ from above. When rolling ahead to time 𝑡, an additional demand value
𝑑𝑡+ℎ is revealed. Because we assume perfect forecasts, the first ℎ demand values in
demand sequence for time 𝑡 coincide with the last ℎ values in the demand sequence
for time 𝑡 − 1. At time 𝑡, the previous first decision x∗

𝑡−1 has been committed.

We claim that

x∗𝑡 := x(𝑡−1)
𝑡

x(𝑡)
𝑡+1 := x(𝑡−1)

𝑡+1
...

x(𝑡)
𝑡+ℎ−1 := x(𝑡−1)

𝑡+ℎ−1

x(𝑡)
𝑡+ℎ := A∗

𝑡+ℎd𝑡+ℎ + b∗
𝑡+ℎ

(2.8)

is a feasible solution for FFHC(𝑡). The sequence x(𝑡−1)
𝑡 , . . . , x(𝑡−1)

𝑡+ℎ−1 satisfies con-
straints (2.5b - 2.5e) for 𝑡, . . . , 𝑡 + ℎ − 1 in FFHC(𝑡) which can be seen by matching
identical constraints between the subproblems FFHC(𝑡 − 1) and FFHC(𝑡).

We now need to construct a feasible x(𝑡)
𝑡+ℎ. Since x(𝑡)

𝑡+ℎ−1 := x(𝑡−1)
𝑡+ℎ−1 satisfies constraint

(2.5f) in FFHC(𝑡 − 1) for any d ∈ D0:𝑡+ℎ−1 and D0:𝑡+ℎ ⊆ D0:𝑡+ℎ−1, then x(𝑡)
𝑡+ℎ :=

A∗
𝑡+ℎd𝑡+ℎ + b𝑡+ℎ satisfies constraint (2.5e) for interval 𝑡 + ℎ in FFHC(𝑡).

It only remains to check that x𝑡+ℎ = A∗
𝑡+ℎd𝑡+ℎ + b𝑡+ℎ satisfies constraint (2.5f) for

FFHC(𝑡). Note that D0:𝑡+ℎ ⊆ D and therefore any d ∈ D0:𝑡+ℎ satisfies the ∀
quantifier in constraint (2.5e). So

−Δ∗
𝑥 ≤ A∗

𝑡+ℎ+1d + b∗
𝑡+ℎ+1 − A∗

𝑡+ℎd − b∗
𝑡+ℎ ≤ Δ

∗
𝑥

holding ∀d ∈ D0:𝑡+ℎ implies

−Δ∗
𝑥 ≤ A∗

𝑡+ℎ+1d + b∗
𝑡+ℎ+1 − x𝑡+ℎ ≤ Δ

∗
𝑥 ∀d ∈ D0:𝑡+ℎ.

Thus (2.8) is feasible for FFHC(𝑡). □
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Remark 2. The terminal constraint (2.5f) is only applied through FFHC(𝑇 − ℎ−1).
Subsequent rounds of FFHC have no demand uncertainty. FFHC’s guaranteed
feasibility distinguishes it from [121]. Moreover, the placement of constraint (2.5f)
on the terminal decision enable FFHC to fully exploit all perfect predictions of
demand, in contrast to work in [121, 84, 85].

2.4 Upper and lower bounds on feasible online dispatch algorithms
We now turn to bounding the worst-case performance of the class of feasible dispatch
algorithms, which contain our proposed FFHC as an instance. The exactly matching
upper and lower bounds we obtain establish fundamental limits on the performance
of algorithms for RTED. They also establish that, in general, feasibility of an
online algorithm implies optimality. In other words, feasibility is the best you can
do. Nonetheless, different algorithms can be distinguished in their average-case
performance, as we examine in the experiments in Section 2.5.

We evaluate performance via the metric of competitive ratio, which has recently
seen increasing use in the control and power systems communities [30, 26, 124]:

CRALG = sup
d∈D

CostALG(d)
CostOPT(d)

(2.9)

A competitive ratio of 1 signifies optimal performance of the online algorithm,
whereas a competitive ratio larger than 1 indicates suboptimal performance. We
choose to focus on the competitive ratio because it is unitless and time-independent,
thus facilitating fair comparison of algorithm performance across different problem
instances and system parameters.8

In the following theorems we assume for clarity of exposition that D ⊆ R𝑇≥0,
dispatch variables x𝑡 are always nonnegative, and costs are linear, positive, and
potentially time-varying. However, performance bounds can be obtained in more
general settings.

Theorem 3. Suppose ALG := {𝑋𝑡}𝑇𝑡=1 is a feasible online dispatch algorithm for
demand uncertainty set D on some arbitrary system, where costs are linear and
time-varying, c1, . . . , c𝑇 ∈ R𝑁

>0. Then, the competitive ratio of ALG is bounded
8Competitive difference upper and lower bounds can be obtained for FFHC, and more generally

for arbitrary feasible online dispatch algorithms, that essentially match those in [9], with slight
modifications due to the inclusion of supply-demand balance constraints in our setting. Further, [9]
obtains upper and lower bounds on competitive difference matching up to a factor of 4, whereas our
competitive ratio upper and lower bounds match exactly.
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above as:
CRALG ≤ max

𝑠,𝑡∈[1,𝑇]

𝑐max,𝑠

𝑐min,𝑡
(2.10)

where 𝑐max,𝑡 = max𝑖∈[1,𝑁] 𝑐𝑖,𝑡 and 𝑐min,𝑡 = min𝑖∈[1,𝑁] 𝑐𝑖,𝑡 .

Proof. Fix an arbitrary d ∈ D, and call x∗1, . . . , x
∗
𝑇

an optimal solution of the offline
dispatch problem (2.2) for this demand sequence. Feasibility of {𝑋𝑡}𝑇𝑡=1 as well as
the offline optimal dispatch trajectory implies that supply-demand balance holds for
all 𝑡 for each trajectory, i.e., 1⊤x∗𝑡 = 1⊤𝑋𝑡 (d) = 𝑑𝑡 for all 𝑡 ∈ [1, 𝑇]. We can bound
the online algorithm’s dispatch cost at time 𝑡 above by 𝑐max,𝑡𝑑𝑡 , and similarly we
can bound the offline algorithm’s dispatch cost at time 𝑡 below by 𝑐min,𝑡𝑑𝑡 . The
competitive ratio is 1 by definition if all demands are 0. Otherwise, we obtain the
following bound:

CRALG ≤ max
d∈D

∑𝑇
𝑠=1 𝑐max,𝑠𝑑𝑠∑𝑇
𝑡=1 𝑐min,𝑡𝑑𝑡

≤ max
d∈D

1⊤d · max𝑠∈[1,𝑇] 𝑐max,𝑠

1⊤d · min𝑡∈[1,𝑇] 𝑐max,𝑡

≤ max
𝑠,𝑡∈[1,𝑇]

𝑐max,𝑠

𝑐min,𝑡
.

□

Remark 3. An even tighter, yet less interpretable, upper bound can be obtained on
the competitive difference (CD) of any feasible online dispatch algorithm. Specif-
ically, on a particular demand trajectory d ∈ D, the cost of any feasible online
dispatch algorithm will be upper bounded by the “offline least-optimal” solution,
i.e., the solution to (2.2) where the min has been replaced with a max, which will
be the feasible dispatch with worst-case cost. Under the assumption of linear costs,
this is yet another linear program, and thus CD{𝑋𝑡 }𝑇𝑡=1

can be bounded by the optimal
value of the following linear program, which maximizes both over the difference
between the offline least and most optimal, as well as over demand trajectories:

max
x1,...,x𝑇∈R𝑁
y1,...,y𝑇∈R𝑁

d∈D

𝑇∑︁
𝑡=1

c⊤𝑡 (x𝑡 − y𝑡) (2.11a)

s.t. 1⊤x𝑡 = 𝑑𝑡 , 1⊤y𝑡 = 𝑑𝑡 ∀𝑡 ∈ [𝑇] (2.11b)

x ≤ x𝑡 , y𝑡 ≤ x ∀𝑡 ∈ [𝑇] (2.11c)

− Δ𝑥 ≤ x𝑡 − x𝑡−1 ≤ Δ𝑥 ∀𝑡 ∈ [𝑇] (2.11d)

− Δ𝑥 ≤ y𝑡 − y𝑡−1 ≤ Δ𝑥 ∀𝑡 ∈ [𝑇] (2.11e)
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where y0 = x0.

In the following, we construct a system with linear, time-invariant costs and gener-
ators which have capacity and ramp constraints. We assume planning decisions y∗

result in a certain generator having arbitrarily slow ramp limit 𝜖 . Thereby, in the
regime where 𝜖 → 0, there is a demand trajectory on which any feasible dispatch
algorithm must have competitive ratio arbitrarily close to the upper bound (2.10).
This constitutes an exactly tight lower bound on the competitive ratio of any feasible
dispatch algorithm.

Theorem 4. Fix 𝜖 ∈ (0, 1). There exists a choice of system parameters y∗(𝜖) with
linear, time-invariant costs c ∈ R𝑁≥0 and a polytopic demand uncertainty set D, as
well as a distinguished demand sequence d̂ ∈ D, such that for any feasible online
dispatch algorithm ALG := {𝑋𝑡}𝑇𝑡=1,

CostALG(d̂)
CostOPT(d̂)

≥ 𝜖 + (1 − 𝜖) 𝑐max
𝑐min

(2.12)

where 𝑐max := max𝑖∈[1,𝑁] 𝑐𝑖 and 𝑐min := min𝑖∈[1,𝑁] 𝑐𝑖.

Proof. Fix ℎ to be some positive integer, independent of 𝑇 . We construct a 2-
generator system with costs c = (𝑐max, 𝑐min); capacity lower and upper bounds
x = (0, 0), x = (2ℎ, 2ℎ); ramp lower and upper bounds Δ = (𝜖, 2 − 𝜖) and Δ =

(−𝜖,−2 + 𝜖); and initial operating point x0 = ((2 − 𝜖)ℎ, 𝜖ℎ). We define the demand
uncertainty set D ⊂ R𝑇 as follows:

D = {d : 𝑑0 = 2ℎ, 𝑑𝑡 ≤ 𝑑𝑡+1 ≤ 𝑑𝑡 + 2, 𝑑𝑡 ≤ 4ℎ∀𝑡 ∈ [0, 𝑇]} ,

where we define 𝑑0 = 1⊤x0 = 2ℎ. Observe that D admits an online feasible
algorithm: specifically, the online algorithm that chooses its operating point at time
𝑡 in the set {x : 1⊤x = 𝑑𝑡 , x = 𝜆x0 + (1 − 𝜆)x, 𝜆 ∈ [0, 1]} is feasible for D.

Now consider the specific demand trajectory d̂ with 𝑑𝑡 = 2ℎ for all 𝑡 ∈ [1, 𝑇].
We claim that, for all times 𝑡 ∈ [1, 𝑇 − 2ℎ], 𝑋𝑡 (d̂)1 ≥ (2 − 2𝜖)ℎ. We prove
this by contradiction: suppose alternatively that 𝑋𝑡 (d̂)1 < (2 − 2𝜖)ℎ for some
𝑡 ∈ [1, 𝑇 − 2ℎ]. But consider another demand trajectory d̃ ∈ D defined by 𝑑𝑠 = 2ℎ
for 𝑠 ∈ [1, 𝑡 + ℎ] and 𝑑𝑠 = min{2ℎ + 2(𝑠− 𝑡 − ℎ), 4ℎ} for 𝑠 ∈ [𝑡 + ℎ + 1, 𝑇]. As d̂ and
d̃ coincide in their entries through time 𝑡 + ℎ, causality dictates that 𝑋𝑡 (d̂) = 𝑋𝑡 (d̃),
so 𝑋𝑡 (d̃)1 < (2−2𝜖)ℎ as well. But then the online algorithm cannot remain feasible
for d̃ for the rest of time: this is because feasibly meeting d̃ for the rest of time,
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and in particular remaining feasible for the sequence of demand increases beginning
at time 𝑡 + ℎ + 1, requires 𝑋𝑡+ℎ (d̃) = x0 due to the ramp and capacity constraints.
However, since 𝑋𝑡 (d̃)1 < (2 − 2𝜖)ℎ and up-ramp on the first generator is bounded
by 𝜖 , it is impossible for the online algorithm to reach x0 at time 𝑡 + ℎ. Thus the
online algorithm cannot be feasible for D, yielding a contradiction.

By the last paragraph’s result, we know that for 𝑡 ∈ [1, 𝑇 − 2ℎ], 𝑋𝑡 (d̂)1 ≥ (2− 2𝜖)ℎ;
as 𝑋𝑡 (d̂)1 = 𝑑𝑡 − 𝑋𝑡 (d̂)2, it follows that the cost of the online algorithm on each of
the first 𝑇 − 2ℎ timesteps is lower bounded by (2− 2𝜖)ℎ𝑐max + 2ℎ𝜖𝑐min. On each of
the last 2ℎ timesteps, we trivially lower bound the online algorithm cost by 2ℎ𝑐min.
Thus we obtain

CostALG(d̂) ≥ (𝑇−2ℎ) ((2−2𝜖)ℎ𝑐max+2ℎ𝜖𝑐min) +(2ℎ)2𝑐min (2.13)

Now we turn to providing an upper bound on CostOPT(d̂). Since the offline optimal
knows all demands in advance, it will ramp maximally to transfer all generation
onto the second, cheaper generator and will remain at this operating point for the
rest of time. It will take (2−𝜖)ℎ

𝜖
timesteps to ramp to the operating point (0, 2ℎ),

since generator 1 has ramp limit 𝜖 and demand is constant through time. For each
of these first (2−𝜖)ℎ

𝜖
timesteps, we upper bound the offline optimal cost trivially by

2ℎ𝑐max in each step. Once the offline optimal reaches (0, 2ℎ), its cost in each step
for the rest of time is exactly 2ℎ𝑐min. We get:

CostOPT(d̂) ≤
(2−𝜖)ℎ
𝜖

(2ℎ𝑐max) +
(
𝑇− (2−𝜖)ℎ

𝜖

)
(2ℎ𝑐min) (2.14)

Forming the ratio of (2.13) with (2.14) and taking the limit as 𝑇 → ∞ yields the
lower bound (2.12). □

2.5 Experiments
In this section we explore through simulations on simple systems how the proposed
algorithm handles infeasibilities that otherwise arise when resource procurement
is done in a dispatch-agnostic fashion. We also include a discussion about the
scalability of the method to larger, more realistic power systems.

A two-generator case
We use a two-generator case (same as the one presented in the proof of Theorem 1)
to show how FFHC is able to compute a feasible dispatch when the standard RHC
algorithm cannot.
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Figure 2.2: Counterexample from Theorem 1 revisited. Panel (a) shows a scenario
where all algorithms are feasible. Panel (b) shows a scenario where RHC is un-
able to remain feasible, whereas FFHC remains feasible. Panel (c) illustrates the
performance of the RHC, FFHC, and RAP against the offline optimal as the size
of the uncertainty set grows. The dotted green line going to ∞ indicates that RHC
becomes infeasible on some trajectories beginning at an uncertainty value of 3.
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Setting ℎ = 2 and 𝑇 = 4, we define a demand uncertainty set D = {(2, 2, 2, 𝑑) : 𝑑 ∈
[1, 4]}. We run DAP on this system with costs c = (1, 3/4), c̄ = (10, 11), nominal
max capacity x = (2, 2), nominal ramp rates Δnom = Δ

nom
= (2, 1/4), and starting

point x0 = (1, 1). For offline planning and dispatch, the nominal max capacity of
(2, 2) is sufficient to satisfy all d ∈ D. DAP procures an additional 37.5% capacity
and a proportional amount of ramp capacity on (lower cost) Generator 1.

Figures 2.2a and 2.2b show the performance of the algorithms RHC, FFHC, and
RAP (affine policies synthesized in DAP), as well as the offline optimal, on the two
demand sequences d(𝐴) and d(𝐵) distinguished in Theorem 1. d(𝐴) is an “easy”
demand sequence: all algorithms are feasible, and FFHC takes more conservative
(i.e., costlier) decisions than RHC, which immediately moves up to the top left of
the capacity region to exploit the lower cost of Generator 2. On the other hand, d(𝐵)

details the “hard” demand sequence , for which RHC is unable to remain feasible,
since it mistakenly chooses to exploit the lower cost of Generator 2 production at
𝑡 = 1, leaving it unable to meet 𝑑4. FFHC is able to remain feasible in contrast.

Figure 2.2c compares the performance of the algorithms via competitive ratio as the
demand uncertainty set is scaled. We parameterize the uncertainty set by 𝑢:

D(𝑢) := {(2, 2, 2, 𝑑) : 𝑑 ∈ [2 − 𝑢/2, 2 + 𝑢/2]}

For 𝑢 ∈ [0, 4], we run DAP on D(𝑢) to determine system parameters. We then
sample trajectories from D(𝑢) set using a hit-and-run sampler for polytopes [50],
and compute the dispatch of each algorithm. The mean empirical competitive ratio
of the trajectories along with upper/lower bounds (shaded) for each algorithm are
shown in Figure 2.2c.

While the performance of RAP suffers in comparison to that of the offline optimal,
both FFHC and RHC exactly match the offline performance for 𝑢 < 3. For 𝑢 > 3,
RHC begins encountering infeasibility on some of the demand trajectories, and by
𝑢 = 4 is infeasible for 10% of the sampled trajectories. Meanwhile, FFHC, just like
RAP, always remains feasible, though its performance degrades slightly from that
of the offline since its dispatches are influenced by the robust constraint.

Scenario based on CAISO load profile
The purpose of this example is to show the necessity of dispatch-aware planning to
maintain feasibility under realistic net load profiles. For simplicity, we do not incor-
porate integer unit commitment variables and associated cost functions and therefore
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the setting is not intended to represent the particular variety of unit commitment
problems solved by system operators.

We consider the small power system shown in Figure 2.3, which has 1 GW of peak
load and four generation sources: variable renewables (wind & solar), a fast-ramping
gas turbine, a slow-ramping coal plant, and a transmission interconnection. This
setup, while stylized, represents the scenario of a transmission-constrained zone
within a larger grid where local infeasibilities could arise under high fluctuations of
net demand and ramp shortages.

Aggregate demand  
1 GW (peak load)

Renewables 
600 MW

Coal 
700 MW

Gas 
200 MW

Imports 
200 MW

Figure 2.3: Power system for 4-generator case study. Capacities shown are peak
values.

Details on capacity, ramp rates, and costs for the generation sources are given in
Table 2.1.

Generation
Type

Max Capacity
(MW)

Ramp Rate (%
cap./min)

Variable Cost
($/MWh)

Capacity Cost
($/MW)

Imports 200 ±5 1.93 0
Gas 200 ±2 2.56 1.08 × 106

Coal 700 ±0.5 4.52 3.67 × 106

Renewables 600 Instantaneous 0 NA

Table 2.1: Parameters for generation sources. Costs are from [34, Table 1]. Max
capacity values indicate the maximum available generation for each type. CAISO
generation mix is used to derive a import cost [2]. Ramp rates are taken from
reasonable ranges given in [71], [48].

The 24 hr nominal generation profile sampled at 15 min intervals is taken from
CAISO’s aggregate demand on Sept. 9, 2021 [21]. We subtract the variable re-
newable generation profile (from [21]) to get a nominal net demand curve (solid
black line in Figure 2.4a), around which a demand uncertainty set is constructed.
Trajectories are sampled uniformly from this set using a hit-and-run sampler [50].
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Capacity costs are used in the DAP problem to determine an optimal robust gen-
eration mix (neither renewables nor imports are included in this step as they are
considered already fixed).

Due to the fast, sustained afternoon ramp event in the net load profile, the standard
RHC dispatch runs into infeasibility for 29% of sampled demand trajectories. In
contrast, FFHC is always feasible at little to no extra cost beyond that incurred by
the offline optimal. Figure 2.4b shows the optimal solutions for a particular net de-
mand trajectory. Prior to 20.5 hrs, both algorithms return identical solutions. After
that, RHC becomes infeasible whereas FFHC does not. At the start of the ramp
event, imports are already at their maximum and RHC chooses to myopically exploit
the lower cost of the gas generator. In contrast, FFHC “pre-ramps” the slow coal
generator and saves ramping capacity on the gas generator to accommodate later
fluctuations. It is also notable that even though the planning variables (generator
capacities and ramps) in this example are online feasible, RHC is still unable to
remain feasible. Thus, the existence guarantee of an online feasible dispatch algo-
rithm does not imply that even a good (on average) policy like RHC can produce a
feasible sequence of dispatches.

Figure 2.4c shows that the feasibility guarantee of FFHC comes at a very min-
imal efficiency loss. When RHC is can stay feasible, both algorithms attain
near-optimal cost with average empirical competitive ratios CRRHC = 1.0000 and
CRFFHC = 1.0002. In comparison, the RAP algorithm, while robustly feasible, has
a significantly higher average competitive ratio of 1.0934, indicating the value of
using predictions (robustly!) in our approach. The robust resource procurement step
(DAP) in this simulation procures 1066.6 MW of total generation capacity, which
is 14% above peak demand of 938.8 MW. In ramp constrained power systems, ad-
ditional capacity may be required to accommodate long high ramp events. DAP
provides a way to directly optimize for this margin.

Discussion of algorithm scalability
DAP requires solving a robust linear program, a problem known to suffer from
scalability issues. While scalability is not the focus of this work, in this section
we discuss effective strategies for reducing the problem dimension and highlight
relevant existing literature on this subject.9

9We focus on DAP for scalability; the FFHC stage of our joint algorithm only includes a small
robust constraint that does not appreciably affect computation.
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Figure 2.4: Results from four-generator system using CAISO load and renewable
generation profiles. Approximately 29% of 300 sampled demand trajectories are
infeasible for RHC. The vertical dotted green line in panel (c) indicates at which
time RHC first becomes infeasible and the values at the top of the frame display
the percentage of infeasible trajectories (out of the total sampled) at regular time
intervals.
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Optimization problems for large 𝑁-generator power systems (e.g., SCUC, capacity
planning) already present operators with a demanding computational task, with
𝑂 (𝑁𝑇) variables and 𝑂 (𝑀) constraints where 𝑀 can be as large as 𝑂 (𝑁2𝑇) for
mesh network topologies. We are concerned with the additional complexity our
robust linear formulation adds to this baseline, which arises from 1) the robust
description of the uncertainty set D and 2) expressiveness of the causal affine policy
class.

For 1), we take the reasonable assumption that correlations between elements of the
demand vector are limited to neighbors. This means that the number of constraints
in D is𝑂 (𝑇), rather than𝑂 (𝑇2) which would arise if full correlations were allowed.
For 2) we observe that synthesized policies often only make use of a few previous
demand steps, which we call memory 𝑚 with 𝑚 = 𝑂 (1). This allows us to limit the
size of the affine policies to 𝑁𝑚 variables, as opposed to 𝑁𝑇 for full-history policies.
Using limited memory policies necessitates a careful reformulation of D and the
problem constraints, but the downstream benefits for the size of the robust LP are
significant, as the total number of constraints ultimately scales with the number of
policy variables. Restricting policy memory also eliminates the 𝑂 (𝑁𝑇2) causality
constraints required for the full policies.

Table 2.2 summarizes the number of constraints and variables (in order sense) for
each problem setting. Limited-memory policies allow for the multiplicative factor
of 𝑇 in both variables and constraints for the full-memory robust formulation to be
reduced to a (tunable and small) constant factor 𝑚.

Offline Memory-𝑇 policies Memory-𝑚 policies
Variables 𝑂 (𝑁𝑇) 𝑂 (𝑁𝑇2 + 𝑀𝑇) 𝑂 (𝑚𝑁𝑇 + 𝑚𝑀)
Constraints 𝑂 (𝑀) 𝑂 (𝑁𝑇2 + 𝑀𝑇) 𝑂 (𝑚𝑀)

Table 2.2: Comparison of number of variables and constraints for offline and two
robust formulations.

After reducing the problem size in the proposed manner, the resulting problem may
still be a large LP. We point the interested reader to the excellent discussion of this
issue in [84, 85] where a constraint generation approach along with various other
algorithmic tweaks allow for efficient solutions to large LP/MILP power system
problems. All of the proposed methods therein are applicable to our setting.
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2.6 Conclusion
In this work, we analyze properties of feasible online dispatch algorithms in gen-
eral, and specifically propose a joint algorithm for resource procurement and RTED
that exploits lookahead predictions for good performance while also guaranteeing
feasibility. Our framework is applicable to several types of resource procurement
problem including SCUC and resource adequacy, and is compatible with arbitrary
fixed-horizon lookahead optimization problems. We further present exactly match-
ing upper and lower bounds on the competitive ratio for the problem class of RTED.
Finally, our computational results demonstrate that FFHC nearly matches the per-
formance of the offline optimal while always remains feasible, which contrasts with
the frequent infeasibility of RHC. Thus the proposed approach provides feasible
RTED with nearly no loss of efficiency compared to the standard algorithm.

Future work includes applying this algorithmic framework to problems with energy
storage and time-varying state-of-charge requirements, as well as designing incentive
compatible prices for dispatches computed by feasible RTED algorithms.
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C h a p t e r 3

PRICING UNCERTAINTY IN STOCHASTIC MULTI-STAGE
ELECTRICITY MARKETS

In this chapter, we propose a pricing scheme for multi-stage markets that is inde-
pendent of the particular characterization of parameter uncertainty or the specific
risk-aware method for optimizing dispatch decisions under parameter uncertainty.
Our approach is distinguished from several recent works where the construction of
the energy price intimately depends on the optimization paradigm (e.g., chance-
constrained [42] or robust [94]). We show that our proposed price can be de-
composed into components corresponding to the standard locational marginal price
(LMP), intertemporal coupling, and uncertainty. Finally, we establish that this price
clears the market under profit-maximizing assumptions on the participants and that
it supports both ex-ante and ex-post dispatch-following incentives.

Related Work
Our work draws on two main lines of inquiry into electricity market mechanism
design. The first is dispatching and pricing multi-interval markets in the presence
of intertemporal coupling constraints. The second is dispatching and pricing using
techniques from robust and stochastic optimization.

Pricing multi-period electricity markets In rolling-window real-time economic
dispatch schemes, which are seeing wider deployment across system operators to
mitigate uncertainty in real-time operation, distribution shift in predicted net demand
can lead to lost opportunity cost and distorted truthful bidding incentives for gen-
erators. Several pricing mechanisms building on standard uniform pricing schemes
have been proposed in recent years to mitigate the lack of dispatch-following in-
centives [63, 68, 139]. A more recent line of work [57, 27, 28] has proposed a
non-uniform pricing scheme, Temporal Locational Marginal Pricing (TLMP), and
has established a dual definition of dispatch-following incentives. Simultaneously
satisfying a “partial equilibrium” (i.e., ex ante dispatch-following incentive in ev-
ery stage) and a general equilibrium (i.e., ex post) forms the notion of “strong
equilibrium,” used in this work.

Our study is distinct from the prior literature on pricing multi-period markets as these
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works do not incorporate uncertainty directly in the lookahead dispatch algorithms,
but merely design prices to mitigate incentive misalignment as a result of inaccurate
predictions and distribution shift. However, these lookahead algorithms might be
infeasible [84, 32], necessitating our development of more general pricing schemes
that can incorporate such robust constraints.

Pricing stochastic electricity markets There has been much recent interest in
designing electricity markets incorporating robust or stochastic constraints to ensure
reliable operation in the face of uncertainty. For example, such dispatch schemes
include economic dispatch with robust constraints [94, 134], chance constraints [73,
92, 91], distributionally robust chance constraints [42, 109], and conditional value
at risk constraints [99]. However, in the subset of these works that explicitly address
the problem of designing price mechanisms for the stochastic dispatch problem,
inconsistent notions of ex ante dispatch-following incentives are considered which
leave open the need for out-of-market settlements to make up for lost opportunity
cost. In contrast, our work proposes pricing mechanisms that can be applied to any
formulation of stochastic or robust economic dispatch, and which ensure zero lost
opportunity cost on the part of market participants by considering both ex ante and
ex post dispatch-following incentives in the price specification.

3.1 Multi-stage dispatch under uncertainty
The day-ahead (DA) and real-time (RT) stages of electricity market clearing form
a 𝑇 + 1 stage sequential optimization problem, with coupling between the stages
and uncertainty from load and renewables realized between each of the 𝑇 stages.
The first stage is the single-shot, DA optimization problem which determines a unit
commitment and associated dispatch for the upcoming 24-hour time horizon. This
dispatch, although not physically realized, may be financially settled. Subsequently,
in real time, a receding-horizon multi-interval optimization is performed. The first
interval from each of these 𝑇 subproblems is financially binding. Between each
of the subproblems, the SO utilizes updated forecasts of uncertain demand and
renewable generation to improve the efficiency of the dispatch.

The stages of the sequential problem are temporally coupled in the manner depicted
in Figure 3.1. The first (DA) stage couples to all of the subsequent stages because
it fixes the unit commitment – and therefore the upper/lower generation bounds,
ramp limits, etc. – in the 𝑇 subsequent (RT) stages. Within the RT market, stages
are coupled consecutively due to the form of ramping constraints and the battery
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state-of-charge updates.

Stage: 0 1 2 . . . T

Figure 3.1: Coupling between 𝑇 + 1 stages in DA + RT economic dispatch.

Since the 𝑇 + 1 stages are solved and settled sequentially, we consider two groups of
stages at a time: the period with no uncertainty, and the set of periods with remaining
uncertainty. In the DA stage, the SO seeks to solve a stochastic optimization problem
that fixes here-and-now decisions for the unit commitment while selecting policies
for the wait-and-see decisions of RT stage 1. The purpose of the policies is to
provide realization-dependent recourse in subsequent stages. However, in each of
these stages, after uncertainty has been revealed, the multi-interval optimization is
solved again for the next stage.

Notation
For each optimization interval indexed by 𝑡 ∈ {0, . . . , 𝑇}, each market participant
𝑖 ∈ {1, . . . , 𝑁} has a dispatch vector x𝑖,𝑡 ∈ R𝑀𝑖,𝑡 where 𝑀𝑖,𝑡 is the dimension of
the dispatch vector for 𝑖 in stage 𝑡. The dispatch x𝑖,𝑡 includes all of the quantities
associated with participant 𝑖 in stage 𝑡. For conventional generators, this is just
their power generation. For storage resources, it includes power generation and
state-of-charge. We do not consider discrete variables, such as those needed for unit
commitment, in our presentation here. They can be included without impacting our
pricing or dispatch results, although the dispatch problem would need to be modified
slightly as in [42, 102]. System states, such as nodal power injections, line flows,
and voltage angles, can be written in terms of the individual dispatch variables x𝑖,𝑡
and are therefore not explicitly notated. For each 𝑡, we collect dispatch vectors into
a single decision vector:

x𝑡 B (x1,𝑡 , . . . , x𝑁,𝑡) ∈ R𝑀𝑡 ,

where 𝑀𝑡 B
∑
𝑖 𝑀𝑖,𝑡 . Associated with each dispatch vector is a market price

𝝅𝑡 ∈ R𝑀𝑡 . The revenue (or payment) each participant receives over the entire
horizon is 𝝅⊤

𝑡 x𝑡 .

For each 𝑡 we associate a random vector of uncertainty 𝝃 𝑡 ∈ R𝑃𝑡 . Realizations of 𝝃 𝑡 ,
denoted 𝝃 𝑡 , are obtained sequentially after the dispatch x̂𝑡−1 has been committed but
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prior to computing x𝑡 . We also assume that the SO has access to a forecast 𝜽 𝑡 that
represents their best knowledge at stage 𝑡 about subsequent uncertainty 𝝃 𝑡+1, . . . , 𝝃𝑇 .
The composition of the forecast depends on what information is accessible. In
the simplest case, 𝜽 𝑡 is just a point forecast of 𝝃 𝑡+1, . . . , 𝝃𝑇 . When distributional
information is available, 𝜽 𝑡 can be a set of parameters describing each forecast
distribution and its support. Since stage 0 is the day-ahead/unit-commitment stage
of the market clearing, which happens when no uncertainty has been realized, �̂�0 is
defined to be a set of forecasts over the subsequent 𝑇 RT intervals.

In the rest of the chapter, we denote by a𝜏:𝑡 the set of vectors {a 𝑗 }𝑡𝑗=𝜏. If 𝜏 > 𝑡,
we define this to be the empty set. For 𝜏, 𝑡 ∈ N satisfying 𝜏 ≤ 𝑡, we define
[𝜏, 𝑡] B {𝜏, 𝜏 + 1, . . . , 𝑡}.

Ex-post Dispatch Problem and Prices
If the SO had perfect forecasts of uncertainty, it could solve the following optimiza-
tion problem (3.1) for all time intervals simultaneously. This is a useful solution
because it benchmarks the efficiency of dispatch algorithms and quantifies the impact
of uncertainty.

Problem 1. Given an uncertainty realization �̂�, the ex-post dispatch problem for all
𝑇 + 1 stages is:

min
x0,...,x𝑇

𝑇∑︁
𝑡=0

𝑁∑︁
𝑖=1

𝑐𝑖,𝑡 (x𝑖,0:𝑡 ; �̂�0:𝑡) (3.1a)

s.t. 𝑓𝑡 (x𝑡 ; �̂�0:𝑡) ≤ 0 ∀𝑡 (3.1b)

𝑔𝑖,𝑡 (x𝑖,𝑡 ; �̂�0:𝑡) ≤ 0 ∀𝑖, ∀𝑡 (3.1c)

ℎ𝑖,𝑡 (x𝑖,0:𝑡 ; �̂�0:𝑡) ≤ 0 ∀𝑖, ∀𝑡 (3.1d)

Our formulation contains three types of constraints: (3.1b) convex system-wide
constraints 𝑓𝑡 that couple decisions across market participants but within each stage
(e.g., power balance, line flow limits, zonal constraints, reserve requirements); (3.1c)
private constraints 𝑔𝑖,𝑡 for participant 𝑖 and stage 𝑡 (e.g., generation limits, state-of-
charge (SOC) limits); and (3.1d) private constraints ℎ𝑖,𝑡 for participant 𝑖 coupling
their decisions in stage 𝑡 to all previous dispatches (e.g., ramping, storage SOC
updates, unit commitment-dependent generation limits).

This formulation of economic dispatch incorporates linear power flow equations,
network constraints, zonal constraints, reserve constraints, private constraints, and
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intertemporal constraints for both conventional generators, flexible and inflexible
loads, and storage.

Assumption 1. We assume that for each 𝑖, 𝑡, functions 𝑐𝑖,𝑡 , 𝑓𝑡 , 𝑔𝑖,𝑡 , and ℎ𝑖,𝑡 are convex
w.r.t x𝑡 . We also assume that they are causal, in the sense that they possibly depend
on any dispatches and uncertainty realized until time 𝑡. Finally, for non-triviality,
we assume that Problem 1 has a feasible solution.

If market dispatches x∗0, . . . , x
∗
𝑇

are generated by the optimal solution of Problem
1, then the market clearing price that supports a competitive equilibrium is just the
dual multiplier associated with constraint (3.1b), cf. [139, 57].

Sequential Market Dispatch
In practice, solving Problem 1 is not a viable procedure for clearing the market
due to the combination of uncertain inter-stage coupling constraints. Instead, SOs
resort to solving a sequence of market-clearing optimization problems.1 For each
stage, updated forecasts of uncertainty are used as problem parameters, and advisory
forward decisions are computed, but only the decision for the current stage is settled.

The market-clearing problem for stage 𝑡 is presented in Problem 2, where the
function 𝑉𝑡 : R𝑀𝑡 → R represents the forward cost of dispatch x𝑡 ; we refer to this
as the forward value or cost-to-go function. As with the functions in Problem 1, 𝑉𝑡
may be parameterized by all uncertainty realized up to 𝑡, all previous dispatches, as
well as forecasts of future uncertainty 𝜽 𝑡 that are available at time 𝑡:

𝑉𝑡 (x𝑡 ; x̂𝑖,0:𝑡−1, �̂�0:𝑡 , 𝜽 𝑡)

In service of simpler notation, we make this dependence on parameters implicit in
the remainder of the manuscript and simply refer to 𝑉𝑡 (x𝑡), except where an explicit
reference to a particular parameter is necessary. In Section 3.1, we remark on how
𝑉𝑡 is already incorporated in market dispatch problems in practice as well as on the
theoretical benefits of abstracting the forward cost of decisions in this way.

Problem 2. Let x̂0:𝑡−1 be the sequence of dispatches committed prior to stage 𝑡 and
�̂�0:𝑡 the uncertainty realized through stage 𝑡. The sequential dispatch problem for

1For example, this sequence could be the combination of a day-ahead forward market followed
by real-time adjustment market clearings every 15 minutes.
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interval 𝑡 is:

min
x𝑡

∑︁
𝑖

𝑐𝑖,𝑡 (x𝑖,𝑡 , x̂𝑖,0:𝑡−1; �̂�0:𝑡) +𝑉𝑡 (x𝑡) (3.2a)

s.t. 𝝀𝑡 ⊥ 𝑓𝑡 (x𝑡 ; �̂�0:𝑡) ≤ 0 (3.2b)

𝝁𝑖,𝑡 ⊥ 𝑔𝑖,𝑡 (x𝑖,𝑡 ; �̂�0:𝑡) ≤ 0 ∀𝑖 (3.2c)

𝜼𝑖,𝑡 ⊥ ℎ𝑖,𝑡 (x𝑖,𝑡 , x̂𝑖,0:𝑡−1; �̂�0:𝑡) ≤ 0 ∀𝑖 (3.2d)

The dual multipliers associated with each set of constraints are indicated to the left
of each constraint (and followed by “⊥”). When 𝑉𝑡 (x𝑡) is convex with respect to
x𝑡 , and the convexity conditions from Assumption 1 hold, then (3.2) is a convex
optimization problem.

The following algorithm specifies how the system operator clears and settles the
market over the multi-stage scheduling horizon. Note that at each stage, the SO
requires a scheme for deciding the prices 𝝅∗

𝑡 (see below).

Algorithm 1.

1. The SO generates a DA uncertainty forecast �̂�0 and solves Problem 3.2 for
𝑡 = 0 to produce decisions x∗0 and prices 𝝅∗

0.

2. For 𝑡 = 1, . . . , 𝑇:

a) Nature realizes uncertainty �̂� 𝑡;

b) The SO solves Problem 3.2 to produce dispatches x∗𝑡 and prices 𝝅∗
𝑡 ;

c) Each participant realizes dispatch x̂𝑡 B x∗𝑡 and settles with the SO 𝑖 at
𝝅∗
𝑖,𝑡
⊤x̂𝑖,𝑡 .

Assumption 2. Solving Problem 3.2 iteratively for 𝑡 = 0, . . . , 𝑇 produces a feasi-
ble sequence of dispatches. Note that such recursive feasibility is in general not
guaranteed and may depend on the choice of 𝑉𝑡 and 𝜽; see [84, 32] for further
consideration of these details.

Specifying the cost-to-go function 𝑉𝑡
Depending on the parameterization of the uncertainty forecast 𝜽 𝑡 and the choice of
the stochastic optimization model, the function 𝑉𝑡 adopts different forms. We show
below how several common stochastic paradigms fit into this framework. These
encompass the multi-settlement and rolling-window optimization procedures (with
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and without lookahead) used by SOs in practice as well as stochastic optimization
formulations increasingly studied in the research literature.

Rolling dispatch without lookahead

This procedure is the traditional approach to dispatching the DA and RT markets,
where each stage (or interval) is optimized without considering the forward conse-
quences of the current dispatch. Thus, x𝑡 is only coupled intertemporally to x̂𝑡−1

through the constraints (3.2e). In this case, 𝑉𝑡 B 0 for all 𝑡 = 0, . . . , 𝑇 . As this
is convex, Problem 3.2 is therefore convex and tractable. Note however, that this
choice of𝑉𝑡 may not necessarily lead to the feasibility of the entire dispatch sequence
in practice, as is assumed Assumption 2.

Rolling dispatch with lookahead

To better handle uncertainty, SOs make use of forecasts and advisory decisions over
a lookahead horizon of length ℎ > 1. Exploiting lookahead predictions can increase
the feasibility and ex-post optimality of the overall dispatch sequence since it allows
for anticipating future ramp, unit commitment, and storage charge/discharge needs
[137]. The forecast is a point forecast 𝜽 𝑡 = (�̃� 𝑡+1, . . . , �̃� 𝑡+ℎ), available at time 𝑡, of
the true uncertainties �̂� 𝑡+1, . . . , �̂� 𝑡+ℎ to be realized.

𝑉𝑡 (x𝑡 ; 𝜽 𝑡) B

min
x𝑡+1,...,x𝑡+ℎ

𝑡+ℎ∑︁
𝜏=𝑡+1

𝑁∑︁
𝑖=1

𝑐𝑖,𝜏 (x𝑖,𝑡+1:𝜏, x̂𝑖,0:𝑡 ; �̂�0:𝑡 , �̃� 𝑡+1:𝜏) (3.3a)

s.t. 𝑓𝜏 (x𝜏; �̂�0:𝑡 , �̃� 𝑡+1:𝜏) ≤ 0 ∀𝜏 (3.3b)

𝑔𝑖,𝜏 (x𝑖,𝜏; �̂�0:𝑡 , �̃� 𝑡+1:𝜏) ≤ 0 ∀𝑖,∀𝜏 (3.3c)

ℎ𝑖,𝜏 (x𝑖,𝑡+1:𝜏, x̂𝑖,0:𝑡 ; �̂�0:𝑡 , �̃� 𝑡+1:𝜏) ≤ 0 ∀𝑖,∀𝜏 (3.3d)

In the above, ∀𝜏 means 𝜏 ∈ [𝑡 + 1, 𝑡 + ℎ]. By convention, if (3.3) is infeasible,
𝑉𝑡 = +∞.

Proposition 1. 𝑉𝑡 (x𝑡 ; 𝜽 𝑡) in (3.3) is convex in x𝑡 .

For a proof of Proposition 1, see 5.6.1 in [18]. The result is a standard result in
perturbation analysis for convex optimization problems.

Although 𝑉𝑡 in (3.3) is convex, it is not possible to write down a closed-form
solution in general. However, (3.3) can be incorporated into the formulation of
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the problem (3.2), recovering the standard lookahead economic dispatch problem
studied in [57, 139], which is a tractable convex optimization problem. Note that in
a solution x𝑡 , x𝑡+1, . . . , x𝑡+ℎ to (3.2) with𝑉𝑡 defined as (3.3), only the first dispatch x𝑡
is binding for the purposes of Algorithm 1. The remaining dispatches x𝑡+1, . . . , x𝑡+ℎ
are advisory and are re-computed for each successive interval.

Chance-constrained optimization

Chance-constrained optimization has received increasing interest for its ability to
optimize over decisions with constraints involving stochastic uncertainty [73, 42,
88]. The form of𝑉𝑡 presented next enables probabilistic guarantees on the feasibility
of the advisory dispatch under a distributional assumption on uncertainty. At time
𝑡, we define 𝑝𝑡 to be the distribution of future uncertainty 𝝃 𝑡+1:𝑡+ℎ conditioned on
all uncertainty realizations through time 𝑡. The forecast 𝜽 𝑡 collects parameters of
this distribution or of the SO’s best guess of this distribution. In this case, the
risk-neutral chance-constrained lookahead value function is defined as follows:

𝑉 (x𝑡 ; 𝜽 𝑡) B

min
x𝑡+1,...,x𝑡+ℎ

E
𝝃𝑡+1:𝑡+ℎ∼𝑝𝑡

[
𝑡+ℎ∑︁
𝜏=𝑡+1

𝑁∑︁
𝑖=1

𝑐𝑖,𝜏 (x𝑖,𝜏; 𝝃𝜏)
]

(3.4a)

s.t. P𝝃𝑡+1:𝜏 [ 𝑓𝜏 (x𝜏; �̂�0:𝑡 , 𝝃 𝑡+1:𝜏) ≤ 0] ≥ 1 − 𝜀 𝑓𝜏 ∀𝜏 (3.4b)

P𝝃𝑡+1:𝜏 [𝑔𝑖,𝜏 (x𝑖,𝜏; �̂�0:𝑡 , 𝝃 𝑡+1:𝜏) ≤ 0] ≥ 1 − 𝜀𝑔
𝑖,𝜏

∀𝑖,∀𝜏 (3.4c)

P𝝃𝑡+1:𝜏 [ℎ𝑖,𝜏 (x𝑖,𝑡+1:𝜏, x̂𝑖,0:𝑡 ; �̂�0:𝑡 , 𝝃 𝑡+1:𝜏) ≤ 0] ≥ 1 − 𝜀ℎ𝑖,𝜏 ∀𝑖,∀𝜏 (3.4d)

In the above, ∀𝜏 means 𝜏 ∈ [𝑡 + 1, 𝑡 + ℎ]. By convention, if (3.3) is infeasible,
𝑉𝑡 = +∞. The hyperparameter 𝜀’s can be tuned by the SO to adjust the permissible
probability of a constraint violation.

In general, (3.4) is intractable due to the difficulty in computing probabilities and
expectations over arbitrary distributions 𝑝𝑡 . In particular, the feasible set defined
by the constraints may be nonconvex even if the constraint functions 𝑓𝜏, 𝑔𝑖,𝜏, ℎ𝑖,𝜏

are convex. The structure of the constraints may also make the problem infeasible,
e.g., a fixed advisory decision will generally be insufficient to guarantee feasibility
under any demand realization, and uncertainty-dependent recourse will be necessary.
However, by introducing suitable assumptions on the structure of the problem such
as linearity of 𝑐𝑖,𝜏, 𝑓𝜏, 𝑔𝑖,𝜏, ℎ𝑖,𝜏, Gaussianity of 𝑝𝑡 , separating joint chance constraints
into individual chance constraints, and replacing advisory decisions with advisory
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uncertainty-dependent affine policies, a tractable, convex counterpart to (3.4) can be
formed. For details on such a transformation, we refer the reader to recent literature
on chance-constrained optimization and economic dispatch [87, 73].

Other stochastic formulations

The procedure we have been following in Subsections 3.1 – 3.1 to formulate the
sequential dispatch problem in the form (2) be applied to other stochastic opti-
mization settings, including scenario-based optimization, robust optimization, and
distributionally robust optimization, where there is an extensive literature on convex,
tractable reformulations [109, 42, 93, 134, 32].

In fact, although all of these approaches to defining𝑉𝑡 rely on constructing a tractable
optimization problem, this is not necessary for Problem 2. As long as 𝑉𝑡 is convex
and it is possible to obtain gradients of 𝑉𝑡 for any input x𝑡 , then optimization (3.2)
can be solved using gradient-based methods. And, as we will show in the next
section, the price formation also depends only on being able to compute gradients
of 𝑉𝑡 for the market dispatch.

3.2 Pricing multi-stage uncertainty
In this section, we define the market clearing price and prove that it supports
a competitive market clearing solution under ex-ante and ex-post definitions of
dispatch-following incentives.

Model of market participation
In order to establish the properties of a competitive equilibrium, we first present
the participant’s model of market behavior. We assume that the agents are price-
takers, in that they do not bid strategically to impact the price. Further, we assume
that they optimize for the current stage of the optimization problem and do not
price future decisions into the bid for the current interval. We express the agent’s
profit-maximizing behavior precisely through the following problem.

Problem 3. Under a given price 𝝅𝑖,𝑡 , agent 𝑖 would self-schedule itself (denoted x𝑖,𝑡)
in interval 𝑡 according to the following problem:

arg max
x𝑖,𝑡

𝝅⊤
𝑖,𝑡x𝑖,𝑡 − 𝑐𝑖,𝑡 (x𝑖,𝑡 , x̂𝑖,0:𝑡−1; �̂�0:𝑡) (3.5a)

s.t. 𝝁𝑖,𝑡 ⊥ 𝑔𝑖,𝑡 (x𝑖,𝑡 ; �̂�0:𝑡) ≤ 0 (3.5b)

𝜼𝑖,𝑡 ⊥ ℎ𝑖,𝑡 (x𝑖,𝑡 ; x̂𝑖,0:𝑡−1, �̂�0:𝑡) ≤ 0 (3.5c)
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Equilibrium Concepts
We are interested in pricing mechanisms that the SO can implement to promote
dispatch-following incentives. These incentives come in two varieties: ex-ante,
which apply before uncertainty realization and dispatch, and ex-post, which apply
after uncertainty has been realized and dispatches have been committed. Adopting
terminology from [57, 27], we now present equilibrium notions that will encourage
both ex-ante and ex-post dispatch following incentives.

Definition 1. Let x0, . . . , x𝑇 be a dispatch sequence and 𝝅0, . . . , 𝝅𝑇 be a price
sequence, and let �̂� be a realization of uncertainty. This pair of sequences supports
a general equilibrium over the entire scheduling horizon 𝑡 = 0, . . . , 𝑇 if and only if
the following conditions hold:

1. Market Clearing Condition. The dispatch sequence satisfies the system-wide
constraints at all times:

𝑓𝑡 (x𝑡 , �̂�0:𝑡) ≤ 0 ∀𝑡 ∈ [0, 𝑇]

2. Incentive Compatibility. For each participant 𝑖, x𝑖,0, . . . , x𝑖,𝑇 is an optimal
solution of the participant’s ex post problem:

arg max
x𝑖,0,...,x𝑖,𝑇

𝑇∑︁
𝑡=0

𝝅𝑖,𝑡
⊤x𝑖,𝑡 − 𝑐𝑖,𝑡 (x𝑖,𝑡 , x𝑖,0:𝑡−1; �̂�0:𝑡) (3.6a)

s.t. 𝝁𝑖,𝑡 ⊥ 𝑔𝑖,𝑡 (x𝑖,𝑡 ; �̂�0:𝑡) ≤ 0 ∀𝑡 ∈ [0, 𝑇] (3.6b)

𝜼𝑖,𝑡 ⊥ ℎ𝑖,𝑡 (x𝑖,𝑡 , x𝑖,0:𝑡−1; �̂�0:𝑡) ≤ 0 ∀𝑡 ∈ [0, 𝑇] (3.6c)

A dispatch and price sequence that supports a general equilibrium supports ex-post
dispatch-following incentives. However, when the SO schedules in the presence
of uncertainty, e.g. in the case of multi-interval lookahead or stochastic dispatch,
a missing payments problem can arise due to distribution shift. The works [57,
27] discuss this issue extensively in the lookahead setting and further show how
this missing payment problem arises even when there are perfect forecasts (but a
truncated lookahead horizon). To address this, they introduce an additional notion
of partial equilibrium at each dispatch stage which may be viewed as a condition on
ex-ante dispatch-following incentives.
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Definition 2. Let x𝑡 be the dispatch and 𝝅𝑡 be the price from interval 𝑡, and let �̂�0:𝑡 be
a realization of uncertainty up through 𝑡. This pair supports a partial equilibrium
for stage 𝑡 if and only if the following conditions hold:

1. Market Clearing Condition:

𝑓𝑡 (x𝑡 , �̂�0:𝑡) ≤ 0

2. Incentive Compatibility: For each 𝑖, the subvector x𝑖,𝑡 of x𝑡 is the optimal
solution of (3.5) under price 𝝅𝑖,𝑡 .

The work in [57, 27] also adopts a dual notion of equilibrium that combines partial
and general equilibrium.

Definition 3. A dispatch sequence x0, . . . , x𝑇 and price sequence 𝝅0, . . . , 𝝅𝑇 support
a strong equilibrium under sequentially realized uncertainty �̂�1, . . . , �̂�𝑇 if and only
if they support both a general equilibrium and a partial equilibrium for each 𝑡.

By employing this stronger notion of equilibrium, both ex-ante and ex-post incentive
alignment can be guaranteed in the lookahead dispatch setting. We adopt this
notion of strong equilibrium in our work to enable pricing that guarantees dispatch-
following incentives in the case of general lookahead value function𝑉𝑡 , such as those
in the case of stochastic optimization formulations of the market dispatch problem.

Pricing a strong equilibrium
In each interval, the market operator solves (2) to generate a dispatch for that interval
for each participant x∗

𝑖,𝑡
along with a price vector 𝝅∗

𝑖,𝑡
defined as

𝝅∗
𝑖,𝑡 :=−Dx𝑖,𝑡 𝑓𝑡 (x∗𝑡 ; �̂�0:𝑡)⊤𝝀∗𝑡︸                    ︷︷                    ︸

Locational marginal price

− ∇x𝑖,𝑡𝑉𝑡 (x∗𝑖,𝑡 ; 𝜽 𝑡)︸               ︷︷               ︸
Price of uncertainty

−Dx𝑖,𝑡 ℎ𝑖,𝑡 (x∗𝑖,𝑡 , x̂𝑖,0:𝑡−1; �̂�0:𝑡)⊤𝜼∗𝑖,𝑡︸                                  ︷︷                                  ︸
Price of intertemporal coupling

(3.7)

This price is defined in terms of optimal dual variables and derivatives of objec-
tive/constraint functions at the optimal point. The notation Dx𝑖,𝑡 𝑓𝑡 (x∗𝑡 ; �̂� 𝑡) represents
the Jacobian of the function 𝑓𝑡 with respect to variable x𝑖,𝑡 evaluated at x𝑖,𝑡 = x∗

𝑖,𝑡
.

Our price admits a straightforward decomposition into several functional parts. The
first component of the price is the standard locational marginal price (LMP). The
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second component is a price on the intertemporal coupling between decisions. The
price of ramping presented in [57] is a special case of this term; our formulation
admits other intertemporal couplings, such as from storage state-of-charge [28].
The last term prices the cost of scheduling under uncertainty. The magnitude of
this term is determined both by the particular choice of 𝑉𝑡 as well as the quality of
the uncertainty parameterization in 𝜽 𝑡 . This price is discriminatory, in that each
participant may see a different price. The necessity of such price discrimination
when there are intertemporal coupling constraints on generators is proven in [57].

We now establish the equilibrium properties of this price. Given the prior convexity
assumptions on 𝑐𝑖,𝑡 , 𝑓𝑡 , 𝑔𝑖,𝑡 , and ℎ𝑖,𝑡 , problems (3.5) and (3.6) are convex.

Theorem 5. Fix a 𝑡 ∈ [0, 𝑇] and let x∗𝑡 be the dispatch produced by the optimal
solution of (2) and let 𝝅∗

𝑡 be the price as defined in (3.7) using optimal primal/dual
variables from (2). This dispatch-price pair forms a partial equilibrium for interval
𝑡.

Proof. For an interval 𝑡, we have realized uncertainty �̂� 𝑡 and a previous dispatch
sequence x̂0:𝑡−1. Assume that problem (2) has been solved to optimality yielding
optimal primal/dual solutions (not necessarily unique) x∗𝑡 , 𝝀∗𝑡 , 𝝁∗

𝑖,𝑡
, 𝜼∗

𝑖,𝑡
∀𝑖.

The market clearing condition in Definition 2 is satisfied by primal feasibility of the
optimal solution x∗𝑡 . Without loss of generality, the rest of the proof will be shown
for a particular 𝑖. To show incentive compatibility, we write down the Lagrangian
of (2) for a given 𝑡:

L𝑡 =

𝑁∑︁
𝑖=1

𝑐𝑖,𝑡 (x𝑖,𝑡 , x̂𝑖,0:𝑡−1; �̂�0:𝑡) +𝑉𝑡 (x𝑡 ; 𝜽 𝑡) + 𝝀⊤𝑡 𝑓𝑡 (x𝑡 ; �̂�0:𝑡)

+
𝑁∑︁
𝑖=1

𝝁⊤
𝑖,𝑡𝑔𝑖,𝑡 (x𝑖,𝑡 ; �̂�0:𝑡) +

𝑁∑︁
𝑖=1

𝜼⊤𝑖,𝑡ℎ𝑖,𝑡 (x𝑖,𝑡 , x̂𝑖,0:𝑡−1; �̂�0:𝑡)

The stationarity conditions hold at optimality:

0 =∇x𝑖,𝑡 𝑐𝑖,𝑡 (x∗𝑖,𝑡 , x̂𝑖,0:𝑡−1; �̂�0:𝑡) + ∇x𝑖,𝑡𝑉 (x∗𝑡 ; 𝜃𝑡)
+ Dx𝑖,𝑡 𝑓𝑡 (x∗𝑡 ; �̂�0:𝑡)⊤𝝀∗𝑡 + Dx𝑖,𝑡𝑔𝑖,𝑡 (x∗𝑖,𝑡 ; �̂�0:𝑡)⊤𝝁∗

𝑖,𝑡

+ Dx𝑖,𝑡 ℎ𝑖,𝑡 (x∗𝑖,𝑡 , x̂𝑖,0:𝑡−1; �̂�0:𝑡)⊤𝜼∗𝑖,𝑡

(3.8)

The argument uses the convex KKT theorem. We construct primal-dual solutions
that satisfy the KKT optimality conditions (primal/dual feasibility, complemen-
tary slackness, and stationarity) of problem (3.5). Because (3.5) is convex, the
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constructed primal-dual solution is also optimal. Define

x𝑖,𝑡 := x∗𝑖,𝑡 (3.9a)

𝝁𝑖,𝑡 := 𝝁∗
𝑖,𝑡 (3.9b)

𝜼𝑖,𝑡 := 0 (3.9c)

x𝑖,𝑡 satisfies primal feasibility of (3.5) because x∗
𝑖,𝑡

is primal feasible for (3.2). 𝝁𝑖,𝑡 and
𝜼𝑖,𝑡 are dual feasible because both are non-negative by construction. Complementary
slackness holds for 𝝁𝑖,𝑡 because 𝝁∗

𝑖,𝑡
is optimal for (2), and holds for 𝜼𝑖,𝑡 trivially.

The Lagrangian of (3.5) is

L𝑖,𝑡 = −𝝅∗
𝑖,𝑡
⊤x𝑖,𝑡 + 𝑐𝑖,𝑡 (x𝑖,𝑡 , x̂𝑖,0:𝑡−1; �̂�0:𝑡)

+ 𝝁⊤
𝑖,𝑡𝑔𝑖,𝑡 (x𝑖,𝑡 ; �̂�0:𝑡) + 𝜼⊤𝑖,𝑡ℎ𝑖,𝑡 (x𝑖,𝑡 , x̂𝑖,0:𝑡−1; �̂�0:𝑡)

(3.10)

Now to check the stationarity condition,

∇x𝑖,𝑡L𝑖,𝑡 = −𝝅∗
𝑖,𝑡 + ∇x𝑖,𝑡 𝑐𝑖,𝑡 (x

∗
𝑖,𝑡 , x̂𝑖,0:𝑡−1; �̂� 𝑡)

+ Dx𝑖,𝑡𝑔𝑖,𝑡 (x
∗
𝑖,𝑡 ; �̂�0:𝑡)⊤𝝁∗

𝑖,𝑡 + 0

= Dx𝑖,𝑡 𝑓𝑡 (x∗𝑡 ; �̂�0:𝑡)⊤𝝀∗𝑡 + ∇x𝑖,𝑡𝑉 (x∗𝑡 ; 𝜃𝑡)
+ Dx𝑖,𝑡 ℎ𝑖,𝑡 (x∗𝑖,𝑡 ; x̂𝑖,𝑡−1, �̂� 𝑡)⊤𝜼∗𝑖,𝑡
+ ∇x𝑖,𝑡 𝑐𝑖,𝑡 (x

∗
𝑖,𝑡 , x̂𝑖,0:𝑡−1; �̂� 𝑡)

+ Dx𝑖,𝑡𝑔𝑖,𝑡 (x
∗
𝑖,𝑡 ; �̂�0:𝑡)⊤𝝁∗

𝑖,𝑡

= 0

where the first equality comes by from plugging (3.9) into (3.11) and the second
equality comes from plugging in the price defined in (3.7). The third equality holds
because the expression is identical to (3.8). □

Theorem 6. The sequences of dispatches x∗0, . . . , x
∗
𝑇

and prices 𝝅∗
0, . . . , 𝝅

∗
𝑇

produced
by Algorithm 1 over the entire scheduling horizon form a general equilibrium.

Proof. This result uses the same approach as the previous theorem. We construct a
primal-dual solution for the individual participant’s ex-post LOC problem (3.6) from
the primal-dual variables computed over the scheduling horizon with Algorithm 1
and then show that this solution is optimal.

First, the market clearing condition is satisfied because constraints (3.2b) and 3.2b)
hold for every 𝑡.
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The Lagrangian of the individual participant’s ex-post LOC problem is (3.6) is

L𝑖,𝑡 =

𝑇∑︁
𝑡=0

−𝝅∗
𝑖,𝑡
⊤x𝑖,𝑡 + 𝑐𝑖,𝑡 (x∗𝑖,𝑡 ; �̂� 𝑡) + 𝜼⊤𝑖,𝑡𝑔𝑖,𝑡 (x𝑖,𝑡 ; �̂� 𝑡)

+ 𝝂⊤𝑖,𝑡ℎ𝑖,𝑡 (x𝑖,𝑡 , x𝑖,𝑡−1; �̂� 𝑡)
(3.11)

Define

x𝑖,𝑡 := x∗𝑖,𝑡 ∀𝑡 (3.12a)

𝜼𝑖,𝑡 := 𝜼∗𝑖,𝑡 ∀𝑡 (3.12b)

𝝂𝑖,𝑡 := 0 ∀𝑡 (3.12c)

Primal/dual feasibility and complementary slackness follow from the same argument
in Theorem 5.

The individual’s stationarity condition, which must hold across the entire time
horizon

∇x𝑖,𝑡L𝑖,𝑡 =

𝑇∑︁
𝑡=0

−𝝅∗
𝑖,𝑡
⊤ + ∇x𝑖,𝑡 𝑐𝑖,𝑡 (x

∗
𝑖,𝑡 ; �̂� 𝑡)

+ Dx𝑖,𝑡𝑔𝑖,𝑡 (x
∗
𝑖,𝑡 ; �̂� 𝑡)⊤𝜼∗𝑖,𝑡

+ Dx𝑖,𝑡 ℎ𝑖,𝑡 (x
∗
𝑖,𝑡 ; x̂𝑖,𝑡−1, �̂� 𝑡)⊤𝝂∗𝑖,𝑡

=

𝑇∑︁
𝑡=0

𝐴
(𝑖)
𝑡

⊤
𝝀∗𝑡 + Dx𝑖,𝑡 𝑓𝑡 (x∗𝑡 ; �̂� 𝑡)⊤𝝁∗

𝑡 + ∇x𝑖,𝑡𝑉 (x∗𝑡 ; 𝜃𝑡)

+ ∇x𝑖,𝑡 𝑐𝑖,𝑡 (x
∗
𝑖,𝑡 ; �̂� 𝑡) + Dx𝑖,𝑡𝑔𝑖,𝑡 (x

∗
𝑖,𝑡 ; �̂� 𝑡)⊤𝜼∗𝑖,𝑡

+ Dx𝑖,𝑡 ℎ𝑖,𝑡 (x∗𝑖,𝑡 ; x̂𝑖,𝑡−1, �̂� 𝑡)⊤𝝂∗𝑖,𝑡
= 0.

□

The last equality holds because equality (3.8) holds for each 𝑡. This reveals the
motivation of the price construction in (3.7). Including a term for the intertemporal
coupling constraints ℎ𝑖,𝑡 allows the pricing problem to decouple across intervals.
Thus, the participant could leave the market after any interval and their lost oppor-
tunity cost would be 0.

The result in Theorem 6 shows that price (3.7) guarantees that each participant has
zero lost opportunity cost at the end of the scheduling horizon. The intertemporal
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coupling term compensates participants for any lost opportunity cost due to binding
intertemporal constraints (e.g., ramping) whereas the uncertainty term compensates
participants for any lost opportunity cost due to the system operator’s uncertainty-
aware scheduling procedure.

The following corollary holds immediately from Theorems 5 and 6:

Corollary 1. The sequences of dispatches x∗0, . . . , x
∗
𝑇

and prices 𝝅∗
0, . . . , 𝝅

∗
𝑇

pro-
duced by Algorithm 1 over the entire scheduling horizon support a strong equilib-
rium.

A strong equilibrium is a desirable property of a market-clearing price because
it provides dispatch-following incentives during each stage of scheduling horizon
while also correcting the missing payment problem that arises ex-post.

3.3 Experiments
To explore the impact of uncertainty on dispatch efficiency and pricing, we present
a simple test case with gas generators, renewables, and load. We consider a power
system with a gas combined-cycle (C.C.) plant, a gas peaker plant, solar, wind,
and load in a single bus network (no line constraints). The gas plants are ramp
constrained whereas the renewables are not. Cost functions are linear and are
parameterized by their marginal cost. All parameters for the generators are given in
Table 3.1.

Generator Pmin (MW) Pmin (MW) Ramp Rate (%
Pmax/hour)

Cost ($/MWh)

Gas C.C. 350 550 25% 50
Gas Peaker 100 120 200% 70
Solar 0 250 NA 0
Wind 0 350 NA 0

Table 3.1: Generator parameters for test case. Ramp constraints on fossil generators
limit the speed of their setpoint changes from hour to hour.

We obtained 24 hour load and renewable generation profiles from CAISO from
Sep. 9, 2021 [21]. These include both forecast day-ahead trajectories and the
actual, realized real-time trajectories, all of which were normalized to 1000MW
peak demand. Sample realizations of the true trajectories were simulated by adding
zero-mean Gaussian noise to the actual real-time trajectories
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Algorithm 1 was implemented to clear the market in a rolling fashion. The dispatch
horizon for a single run of the market is 24 hours, consisting of 289 individual
stages: one DA dispatch and RT dispatches every 5 minutes.

The first stage (𝑡 = 0) is the DA unit commitment problem. Due to the non-
zero minimum generation of the gas generators, unit commitment is needed to
dispatch them efficiently. The unit commitment problem makes use of a 24-hour
ahead hourly DA forecast, also obtained from the CAISO data. We fix the unit
commitment statuses of the gas generators for each of the hours in the scheduling
horizon at their optimal values.2 The subsequent stages are RT stages and the market
is cleared every 5 minutes. We assume that a perfect demand and renewable forecast
is available for the current interval.

We implement the three mechanisms discussed in Section 3.1 for dispatching in RT.
First is myopic scheduling, where only the current interval’s cost and constraints are
optimized but generator ramping constraints bind the current decision to the realized
dispatch from the previous interval. This is a deterministic problem, as demand and
renewable generation are assumed to be known, and does not account for the cost
of future decisions in the scheduling horizon. Second is multi-interval lookahead
scheduling with a 3-hour lookahead horizon (36 5-min intervals). A real-time point
forecast for the lookahead horizon is computed by taking the point-wise mean of the
real-time forecast samples. Third is a multi-interval chance-constrained lookahead
problem, where the constraints for the advisory periods hold probabilistically and
the objective function is the expected cost for the advisory periods. This formulation
exploits a probabilistic (vs. point) forecast of uncertainty over the lookahead horizon.

Figure 3.2 shows the dispatch trajectories for each of the generators in the system
under optimal ex-post scheduling. Note that due to its high cost relative to the other
generators, the gas peaker is only active during the peak demand hours when the
ramp needs of the system exceed available capacity.

Figure 3.3 presents the benefits of scheduling with lookahead and stochastic forward
cost policies. When the forecast error is zero, including forward cost policies is more
costly than myopic scheduling. This is due to the inherent conservatism and robust-
ness to uncertainty that these policies provide. However, as uncertainty increases,

2In North American ISOs, there is often a financial settlement in the DA market. Although
our formulations accommodate a financially settled DA market, we do not empirically analyze the
DA market settlement in this work, as intertemporal coupling and uncertainty do not arise in the
formation of the DA prices.
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Figure 3.2: DA (dashed line) and optimal RT (solid line) dispatch trajectories for
generators and load over a 24 hour scheduling horizon.

Figure 3.3: Total dispatch cost of the different pricing schemes under increasing
forecast error. Forecast error is defined as the mean absolute percentage deviation
from the true trajectory realization.

myopic scheduling becomes more costly than uncertainty-aware scheduling due to
load shedding actions and sub-optimal dispatch of higher cost generators

Finally, we show how our proposed market clearing price (3.7) decomposes into its
constituent components in Figure 3.4. The majority of the price relates to the uniform
energy price, which is the shadow price of the power balance constraint. However,
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for the ramp-constrained gas generator, there are additional terms that compensate
them for the opportunity cost of the system operator’s imperfect scheduling under
uncertainty.

Figure 3.4: Price trajectory 𝝅∗
𝑖,𝑡

for the gas combined-cycle generator under𝜎 = 10%
forecast uncertainty for different real-time forecast methodologies.

Under high forecast uncertainty, myopic scheduling results in having to dispatch the
more expensive gas peaker during ramping events. Lookahead dispatch with point
forecasts results dispatching the peaker less often for binding ramping constraints but
more during other intervals due to the cost of uncertain dispatch. Chance-constrained
lookahead dispatch is able to avoid most of the binding ramping constraints at the
expense of more precautionary dispatches due to uncertainty.

3.4 Conclusion
In this chapter, we have presented a mechanism for pricing uncertainty in a multi-
stage dispatch setting. Our mechanism builds on recent work in multi-interval
pricing and stochastic optimization for economic dispatch. We show how several
paradigms for stochastic economic dispatch, including multi-interval dispatch and
chance-constrained dispatch, are accommodated in our formulation without needing
to modify the price formation. Ongoing work includes examining the impact of
our price on the system operator’s merchandizing surplus, comparison of multi-
settlement and single-settlement pricing methodologies, and empirical comparisons
with other pricing methodologies, such as the standard LMP and the R-TLMP
proposed in [57].

Acknowledgements: The authors gratefully acknowledge insightful conversations
with Subhonmesh Bose (UIUC), Nathan Dahlin (UIUC), and Feng Zhao (ISO NE).
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C h a p t e r 4

PRICING FLEXIBILITY OF SHIFTABLE DEMAND IN
ELECTRICITY MARKETS

In this chapter, we move to consider pricing mechanisms for load resources in
markets. The traditional paradigm of generation following load is being transformed
as variable, non-dispatchable resources like solar and wind are an ever increasing
share of the generation mix. This creates situations, typically during midday, where
there is an excess near-zero marginal cost renewable generation which must be
curtailed in order to maintain supply-demand balance. While this scenario might
have seemed far-fetched even a few years ago, it is already occurring in major
markets. On October 11, 2020, renewables met more that 100% of the total demand
in Southern Australia for several hours [111]. In the CAISO (California Independent
System Operator) market, solar regularly provides more that 60% of total generation
during the afternoon and reached an all-time peak of 80% in May 2019 [105]. Due
to a generation queue dominated by renewables and a 100% zero-emission target
for 2045, over-generation from renewables will become increasingly common in the
California and other large markets [119].

Storage and demand response are two approaches for shifting surplus renewable
generation from peak midday hours to periods of higher demand. In an influential
2017 report, researchers at Lawrence Berkeley National Lab analyzed opportunities
for demand response and proposed the "Shape-Shift-Shed-Shimmy" taxonomy of
flexible loads [74]. They argue that each type of load flexibility is applicable for
a particular timescale and use case. Shift flexibility, where the total energy con-
sumed over the time horizon (e.g., 24 hours) remains constant but can be shifted
between time intervals, is identified as the form of demand response best suited to
accommodate renewable over-generation. Sources of shiftable load include elec-
tric vehicle charging, commercial and residential HVAC, and non-time-sensitive
industrial processes.

Mechanisms and incentives for offering demand response have been extensively
studied but most often they focus on direct compensation for load shedding or
peak shaving. Demand response programs implemented by ISOs (Independent
System Operators) and utilities tend to be tailored to that same goal. Despite the
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calls for attention, mechanisms for Shift flexibility in particular remain relatively
understudied [74, 83]. The operational benefits of dispatching shiftable loads are
clear to market operators, but as existing markets do not invite significant demand-
side participation, from the consumer’s point of view the advantages are less clear.
This motivates the core questions of this work: Is a flexible load better off offering
its shiftable demand to the market operator than not? And, if not, can we redesign
the market to encourage loads to offer shiftable demand to the marketplace?

Contributions. The answers are No and Yes. We prove that there is incentive
misalignment in traditional market designs where flexible loads may prefer not to
expose their flexibility to the marketplace. To address this, we introduce a new
mechanism where loads have incentives to offer flexibility and generator incentives
remain aligned with the social welfare objective. More specifically, this work makes
the following contributions.

First, we establish a market and utility model for analyzing shiftable demand. Ours
is a variant of the multi-interval market, extensively studied with ramping inequality
constraints [58, 140, 69, 65] where equality constraints are added to couple the
demand consumption in all periods. Our framework for load utility is derived from
the load utility model implied by the standard economic dispatch formulation.

Second, we identify a fundamental incentive incompatibility for loads offering
flexible dispatch while being compensated with the standard electricity spot price.
We show in Theorem 8 that even in very simple scenarios, loads are worse off under
flexible dispatch, even as generators capture more profit and the efficiency of the
dispatch solution improves. This counter-intuitive situation arises from the interplay
between the time-coupling demand constraint and the power balance constraint that
holds in each time interval.

Third, we propose a new multi-interval economic dispatch market that corrects
the demand-side incentive incompatibility. Our mechanism preserves core features
of the existing structure while making some novel changes: we add inequality
constraints to constrain the demand allocation and clear the generation and demand
sides of the market separately in a two-step procedure that ensures supply-demand
balance and revenue adequacy. Loads that offer flexibility are compensated for
deviating from their nominal baseline with a flexibility price, defined in Section 4.3,
while inflexible loads continue to pay the baseline spot price for energy. Our main
result, Theorem 10, proves that loads have incentives to offer flexibility under the
new market design without disturbing dispatch-following incentives for generators.
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Finally, in Section 4.4 we present a case study using generation data from CAISO.
The case study highlights the importance of ensuring that shiftable loads have incen-
tives to bid their flexibility into the marketplace. Our results show that curtailment
of renewable generation can be eliminated, leading to a 15% reduction in the net
generation costs.

Related work. This chapter builds on and contributes to three areas of the literature
on electricity markets: (1) mechanisms for demand response, (2) multi-interval
dispatch, and (3) incentive alignment in mechanism design.

Demand response has been extensively explored in both the academic literature
and in practice. In both contexts, interest in demand response has mainly centered
around rate-based demand reduction [122, 39, 70, 1] and incentive-based programs
[23]. In the former category are time-of-use pricing [37], critical-peak pricing [61],
and real-time pricing [5], all schemes which use a given price schedule to incentivize
loads to consume energy during lower-cost periods. In the latter group are programs
like direct load control [46] and emergency demand reduction [3] in which loads are
given lump-sum or per-event payments by the system operator in exchange for the
curtailment. Such programs are popular in practice since they lower demand and
spot prices during peak load hours.

A drawback of many of these existing designs is that they tend to emphasize a
particular variety of demand response—load shedding—and do not explicitly offer
incentives for other types of flexible load. The demand response taxonomy in [74]
identifies four major types of demand response, each requiring their own dispatch
and incentive structures. A general mathematical formulation for optimal dispatch of
flexible load is notably given in [83] but the formulation therein assumes knowledge
of demand-side value functions. In practice these are very difficult to determine,
partly for practical reasons (there are seldom opportunities for loads to reveal their
price elasticity) and partly due to historical reasons (electricity has always been
treated as an “on-demand” commodity) [72]. We are not aware of any works that
formally analyzes incentives for offering shiftable demand—identified as the most
significant potential source of demand-side flexibility in [74]—while also retaining
the established economic dispatch market structure.

Another important theme in the demand response literature is strategic behavior by
loads when reporting their baseline energy consumption. Because demand response
almost always defined as a reduction from a baseline, there can be incentives for
loads to inflate their baselines to give the appearance of a larger load reduction in



66

real-time. There are a number of works that analyzed incentives for misreporting
and proposed mechanisms to discourage it [24, 132, 90, 31, 95]. While we retain
the concept of a baseline in this work for convenience, our model is compatible with
schemes to limit the incentives to misreport it, e.g., [96].

Multi-interval markets are of growing interest as a way to guarantee reliable elec-
tricity dispatch in the face of uncertain generation. Several substantial works have
explored multi-interval market design including [58, 140, 69, 65]. The intertemporal
constraints in all of these are limited to ramping limits, which only couple adjacent
time periods. In contrast, along the lines of the model proposed in [83], our work
considers equality constraints on demand consumption that couple all time periods
together. This type of inter-temporal constraint introduces a particular incentive
misalignment—a focus of this chapter.

More broadly, our work connects to the topic of mechanism design. Analysis of
incentive and participation constraints in market mechanisms was pioneered by
Hurwicz, Groves, and Ledyard, among others [56, 75]. The study of incentives in
electricity markets has a rich history beginning with the seminal work of Schweppe
[118] and has strongly influenced subsequent research on congestion pricing [62,
25] and non-convex pricing [55, 67, 81, 8]. In addition there has been research
on market manipulation by generators, e.g., through market power and/or strategic
curtailment of renewable generation. Some notable recent results in this direction
include [116, 112, 14, 76]. While this body of work establishes a framework
for analyzing electricity market incentives, it does so almost exclusively for the
generation side of the market [89]. Efficiently dispatching demand-side resources
to meet system needs requires similar evaluation of incentive structures.

4.1 Market model
We study an economic dispatch market for energy that the market operator (e.g.,
ISO/RTO) uses to calculate dispatch quantities and settlement prices. Our model
is distinctive from the standard short-term setting in several important ways. First,
we consider a multi-interval market with intertemporal equality constraints, which
are necessary to model shiftable demand. This contrasts with an existing body of
work on multi-interval markets with intertemporal inequality constraints. Second,
we explicitly model and dispatch the demand side of the market. Typically demand
is taken to be fixed with only generation being variable. Third, we evaluate the
welfare of both generators and loads in our analysis of incentives. As loads are the
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participants providing demand response flexibility, explicitly incorporating them
into the social welfare formulation is crucial for quantifying the impacts of flexibility.

Market participants
The market has 𝑁 generators, indexed by 𝑖, and operates over discrete time horizon
of length 𝑇 , indexed by 𝑡. The energy produced by generator 𝑖 in interval 𝑡 is
denoted by 𝑝𝑖,𝑡 ∈ R. We denote generators’ production over the time horizon with
the generation matrix P ∈ R𝑁×𝑇 . It is sometimes convenient to refer to individual
row/columns of this matrix. The 𝑡-th column, the market production vector for time
𝑡, is p𝑡 = [𝑝1,𝑡 , . . . , 𝑝𝑁,𝑡]⊤ ∈ R𝑁 . Analogously, the 𝑖-th row, generator 𝑖’s production
across the entire time horizon, is denoted p𝑖 = [𝑝𝑖,1, . . . , 𝑝𝑖,𝑇 ]⊤ ∈ R𝑇 . Generator cost
functions 𝑐𝑖,𝑡 (𝑝𝑖,𝑡) : R → R+ are assumed to be convex, monotonically increasing,
sub-differentiable, and zero-crossing. This last property requires that 0 ∈ dom(𝑐𝑖,𝑡)
and 𝑐𝑖,𝑡 (0) = 0. For convenience, we refer to the total cost function for each generator
as

𝑐𝑖 (p𝑖) =
∑︁
𝑡

𝑐𝑖,𝑡 (𝑝𝑖,𝑡).

The market includes𝑀 demand participants, which we refer to as loads, indexed by 𝑗 .
Each load consumes a fixed amount of energy 𝐸 𝑗 over the𝑇 periods. We use 𝑑 𝑗 ,𝑡 ∈ R
to denote the the energy consumed by load 𝑗 in interval 𝑡. Like with generators, we
stack the 𝑑 𝑗 ,𝑡 into a demand matrix D ∈ R𝑀×𝑇 . We refer to the 𝑡-th column with
d𝑡 = [𝑑1,𝑡 , . . . , 𝑑𝑀,𝑡]⊤ ∈ R𝑀 and the 𝑗-th row with d 𝑗 = [𝑑 𝑗 ,1, . . . , 𝑑 𝑗 ,𝑇 ]⊤ ∈ R𝑇 .
Loads do not have preference functions that vary with consumption in each time
interval. However, they do report a preferred baseline in each interval 𝑑0

𝑗 ,𝑡
∈ R. 𝐸 𝑗

is defined in terms of the cumulative baseline consumption of load 𝑗 :

𝐸 𝑗 =
∑︁
𝑡

𝑑0
𝑗 ,𝑡 .

The use of a baseline is a common assumption in demand response (see e.g., [122])
that we retain here in order to provide a natural definition of flexibility Δ 𝑗 as the
amount that the actual dispatch d 𝑗 deviates from load 𝑗’s preferred baseline d0

𝑗
:

Δ 𝑗 := d 𝑗 − d0
𝑗
.

Market mechanism
The structure of bids, the market clearing procedure, and the settlement structure
are laid out in the following steps:
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1. All participants (loads, generators) submit their bids. For loads, this takes the
form of a triple

(𝐸 𝑗 , d 𝑗 , d 𝑗 ) ∈ R+ × R
𝑇
+ × R𝑇+

that consists of their energy requirement and lower/upper bounds on con-
sumption in each time period.1 For generators, the bid takes the form of a
pair

(𝑐𝑖, p𝑖) ∈ C × R𝑇+

C is the set of all functions 𝑐 : R𝑇+ → R that are convex, monotonically
increasing, and contain the origin. Generators only submit their upper bounds
on production; to avoid non-convexities arising from unit commitment, gen-
eration lower bounds are assumed to be 0.

2. The market operator collects bids and solves a market clearing optimization
problem, defined in (4.1a) - (4.1e). Its solution provides an allocation of
energy to each participant (the dispatch) and a unit price for energy in each
time period.

3. Generators are obligated to produce the dispatch quantities and are paid the
unit price for whatever they produce. Loads must consume the dispatch quanti-
ties and must pay the unit price for whatever they consume. If any participant
deviates from the dispatch schedule, the market operator has the ability to
administratively penalize the violator, e.g., via large monetary penalties or
exclusion from the market.2

The centerpiece of the market structure is the market clearing optimization problem
in Step 2. We study a version of the economic dispatch problem used by ISOs, made
distinctive in our case by the multi-interval setting and the inclusion of intertemporal
equality constraints. For the sake of focusing our analysis on the impacts of these
unique features, we do not consider unit commitment, start-up/no-load costs, and
line congestion. We also ignore ramping constraints (i.e., intertemporal inequality
constraints) for both loads and generators. As previously mentioned, these have
been studied extensively on the generation side of market in [65, 140, 69, 58]
among others. Finally, we consider a “single-shot” market-clearing procedure where
dispatch quantities and prices are determined at the beginning of the dispatch horizon

1As d 𝑗 is assumed to be non-negative, all components of the bid are non-negative.
2This requirement reflects the auction design of most North American ISOs, see e.g., Section

2.1 in [33].
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and adhered to through the remainder of it.3 Relaxing these simplifying assumptions
is discussed as future work in the Conclusion but we note here that incentive
misalignment for loads arises even in the most straightforward setting of the problem.

The market clearing optimization problem is as follows:

min
p 𝑗 ,d 𝑗 ∀𝑖, 𝑗

∑︁
𝑖

𝑐𝑖 (p𝑖) (4.1a)

subject to

𝜆𝑡 ⊥ 1⊤d𝑡 − 1⊤p𝑡 = 0 ∀𝑡 (4.1b)

𝜌 𝑗 ⊥ 1⊤d 𝑗 = 𝐸 𝑗 ∀ 𝑗 (4.1c)

𝜇−𝑖 , 𝜇
+
𝑖 ⊥ 0 ≤ p𝑖 ≤ p𝑖 ∀𝑖 (4.1d)

𝜂−𝑗 , 𝜂
+
𝑗 ⊥ d

𝑗
≤ d 𝑗 ≤ d 𝑗 ∀ 𝑗 (4.1e)

In the above, (4.1a) is the total generation cost; (4.1b) are the power balance con-
straints in each interval; (4.1c) enforces that each load’s energy requirement 𝐸 𝑗
is met over the time horizon (these are the intertemporal equality constraints); and
(4.1d) - (4.1e) ensure that the dispatch satisfies participants’ minimum and maximum
production/consumption limits.

Given an optimal solution to (4.1), the time-varying non-negative energy price 𝜋𝑡 is
defined for all 𝑡 as

𝜋𝑡 := 𝜆∗𝑡 (4.2)

where 𝜆∗𝑡 is the optimal dual variable for (4.1b).

By offering flexibility in the form of a box constraint on demand as in (4.1e), the
efficiency of the dispatch is improved. This is expressed in the following theorem.

Theorem 7. Let OPT0 be the optimal value of problem (4.1a) - (4.1e) when 𝑑
𝑗 ,𝑡

=

𝑑 𝑗 ,𝑡 = 𝑑0
𝑗 ,𝑡

for all 𝑗 and 𝑡, assuming it exists. Let OPT be the optimal value of the
problem where 𝑑

𝑗 ,𝑡
< 𝑑0

𝑗 ,𝑡
< 𝑑 𝑗 ,𝑡 for at least one 𝑗 or 𝑡. Then OPT ≤ OPT0.

Theorem 7 states that dispatching demand-side flexibility offers benefits to the
market allocation in the form of lower cost (greater efficiency). A proof of this
result follows immediately from the fact that relaxing constraint (4.1e) results in
a large feasible set, which therefore gives a lower bound on the optimal value in

3The only assumption needed to support this is that the d0
𝑗

are known at 𝑡 = 1 and do not adjust
over the course of the time horizon.
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the case where the constraint is tight. The existence of OPT is guaranteed by the
existence of OPT0.

Notice that the formulation of economic dispatch in (4.1) reduces to the standard
setting (𝑇 independent sequential economic dispatch problems) when d

𝑗
= d 𝑗 = d 𝑗 .

In this situation, constraints (4.1c) and (4.1e) are redundant and d𝑡 in (4.1b) can be
replaced by d0

𝑡 .

Utility models for generators and loads
An important goal of this work is to evaluate whether the market allocation, given
by the optimal primal solution of (4.1), and the market-clearing price, given by the
optimal dual variable of (4.1b), are aligned with the individual incentives. To study
this question we need to introduce definitions of utility and the individual utility
maximization problem for both loads and generators.

Let 𝜋 ∈ R𝑇+ be the vector of market-clearing energy prices for the time horizon.
We assume all agents are price takers and define the following utility models for
generators and loads respectively.

Definition 4. Let p𝑖 ∈ R𝑇 be generator 𝑖’s production vector and P𝑖 be its private
constraint set

P𝑖 =
{
p𝑖 ∈ R𝑇

��� 0 ≤ p𝑖 ≤ p𝑖
}
⊆ R𝑇 .

Generator 𝑖’s utility is defined as

𝑢𝑖 (p𝑖; 𝜋) := 𝜋⊤p𝑖 − 𝑐𝑖 (p𝑖). (4.3)

We assume a generator acts rationally when facing the given price schedule 𝜋 and
therefore seeks to maximize its utility with

arg max
p𝑖

𝑢𝑖 (p𝑖; 𝜋)

s.t. p𝑖 ∈ P𝑖 .
(4.4)

In contrast to generators, loads do not have a cost function and are only constrained
by a required amount of energy to be delivered over the time horizon, 𝐸 𝑗 . Instead
we assume that there is a constant utility value 𝑈 𝑗 ∈ R+ that represents the value a
load receives from having 𝐸 𝑗 satisfied. We assume that the load is indifferent to how
energy is allocated across the intervals, as long as 𝐸 𝑗 is delivered and upper/lower
consumption limits are respected.
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Definition 5. Let d 𝑗 ∈ R𝑇 be load 𝑗’s consumption vector and D 𝑗 be its private
constraint set,

D 𝑗 =

{
d 𝑗 ∈ R𝑇

��� d
𝑗
≤ d 𝑗 ≤ d 𝑗 , 1⊤d 𝑗 = 𝐸 𝑗

}
⊆ R𝑇 .

Load 𝑗’s utility is defined as

𝑢 𝑗
(
d 𝑗 ; 𝜋

)
= 𝑈 𝑗 − 𝜋⊤d 𝑗 . (4.5)

We again assume each load acts rationally when facing the given price schedule 𝜋
and therefore seeks to maximize its utility with

arg max
d 𝑗

𝑢 𝑗 (d 𝑗 ; 𝜋)

s.t. d 𝑗 ∈ D 𝑗 .

(4.6)

A feature of this presentation of utility that deserves comment and justification is
our representation of the positive “value” component of load utility with a constant
𝑈 𝑗 . This choice is made to align with the classical auction-based economic dispatch
model in Section 4.1. Specifically, if we use utility functions (4.3) and (4.5) to
construct the market’s social welfare maximization problem subject to a shared
market clearing constraint and private feasibility constraints, we get exactly the
auction-based economic dispatch model (i.e., cost minimization) of the market
described by (4.1). To see this, recall that the market’s social welfare maximization
problem is

max
p𝑖 ,d 𝑗 ∀𝑖, 𝑗

∑︁
𝑖

𝑢𝑖 (p; 𝜋) +
∑︁
𝑗

𝑢 𝑗 (d 𝑗 ; 𝜋)

s.t. 1⊤p𝑡 = 1⊤d𝑡 ∀𝑡
p𝑖 ∈ P𝑖 ∀𝑖
d 𝑗 ∈ D 𝑗 ∀ 𝑗

(4.7)

At an optimal point p∗
𝑖
, d∗

𝑗
∀𝑖, 𝑗 of (4.7),

1⊤p∗
𝑡 − 1⊤d∗

𝑡 = 0 ∀𝑡
⇒

∑︁
𝑖

p𝑖 −
∑︁
𝑗

d 𝑗 = 0
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Plugging in (4.3) and (4.5) into the objective function of (4.7), we get∑︁
𝑖

𝑢𝑖 (p; 𝜋) +
∑︁
𝑗

𝑢 𝑗 (d 𝑗 ; 𝜋) =
∑︁
𝑖

𝜋⊤p𝑖 − 𝑐𝑖 (p𝑖) +
∑︁
𝑗

𝑈 𝑗 − 𝜋⊤d 𝑗

=
∑︁
𝑗

𝑈 𝑗 −
∑︁
𝑖

𝑐𝑖 (p𝑖) + 𝜋⊤
(∑︁
𝑖

p𝑖 −
∑︁
𝑗

d 𝑗
)

=
∑︁
𝑗

𝑈 𝑗 −
∑︁
𝑖

𝑐𝑖 (p𝑖)

It is clear that the objective function of (4.7) differs from (4.1a) by only a constant
factor and the constraint sets of the two problems are identical. Therefore, they have
the same optimal solution (although the optimal value differs by a factor of

∑
𝑗 𝑈 𝑗 ).

While the choice of 𝑈 𝑗 does not impact the optimal solution, intuitively, it should
be a positive number, large enough so that 𝑈 𝑗 − 𝜋⊤d 𝑗 > 0 for most realizations of
𝜋 and d 𝑗 . However this condition is not necessary for our analysis of prices and
dispatch quantities.

4.2 Participation incentives
Our first set of results focuses on understanding the consequences of dispatching
flexibility via the classical market formulation described in the previous section. We
show in this section that, though dispatch-following incentives for generators remain
intact, participation incentives for loads are misaligned and offering flexibility (i.e.,
d
𝑗
< d 𝑗 ) to the market operator is not necessarily rational.

Participation incentives for loads
Participation constraints affect a rational agent’s behavior. In particular, given a
choice to enter into a market/mechanism or not, it is expected that a rational agent
only does so if their utility is higher under participation than their best alternative.
To put this precisely for the case of loads in our model, let d0

𝑗
be the allocation a

load receives outside of the flexibility mechanism (i.e., the load simply consumes
its reported baseline). Let d′

𝑗
be the allocation a load receives by participating in the

mechanism. 𝑗’s participation constraint is satisfied if and only if 𝑢 𝑗 (d′
𝑗
) ≥ 𝑢 𝑗 (d0

𝑗
).

Once a participant submits its bid to the market operator, it is obliged to obey the
dispatch instruction that comes in return when the market is cleared. We show in
the following theorem that, depending on the market outcome, loads can end up
worse off by offering flexibility under the energy price in (4.2), despite the increase
in efficiency that flexibility offers to the market as a whole (established in Theorem
7).
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Theorem 8. Assume the baseline solution d0
𝑗
∀ 𝑗 is feasible for (4.1a) - (4.1e). Under

the market dispatch (4.1a) - (4.1e) and energy price 𝜋𝑡 given in (4.2), participation
constraints for loads are are not guaranteed. That is, there exist choices of param-
eters 𝑐𝑖 (·), d0

𝑗
, p𝑖, d 𝑗 , d 𝑗 with 𝑑

𝑗 ,𝑡
< 𝑑 𝑗 ,𝑡 for some 𝑗 , 𝑡 such that 𝑢 𝑗 (d′

𝑗
) < 𝑢 𝑗 (d0

𝑗
) for

some 𝑗 .

Proof. Our proof takes the form of a counterexample. Consider a market environ-
ment with 2 time periods: 𝑡 = 1, 2. There is a single load with demand given by
d = [𝑑1, 𝑑2]⊤ and a single generator with generation given by p = [𝑝1, 𝑝2]⊤. The
unit generation costs are c = [1, 2]⊤ and the baseline demand is d0 = [2, 2]⊤. Thus
𝐸 = 4. Generation is constrained by p = [0, 0]⊤, p = [3, 3]⊤, and demand by
d = d0(1 − 𝛼) ≤ d0(1 + 𝛼) = d, where 𝛼 ∈ [0, 1]. We parameterize the demand
lower/upper bounds with the constant 𝛼 to allow us to vary the offered flexibility
between 0 (𝛼 = 0) and its maximum (𝛼 = 1).4

Market dispatch model (4.1a) - (4.1e) with these parameters gives the following
optimization problem:

min
𝑝,𝑑

𝑐⊤p

s.t. 𝜆 ⊥ p = d

1⊤d = 4

0 ≤ p ≤ 3 · 1

2(1 − 𝛼) · 1 ≤ d ≤ 2(1 + 𝛼) · 1.

(4.8)

By (4.2) the energy price vector is 𝜋 = 𝜆∗. We assume the value constant for the load
is 0 and take the optimal solution of (4.8) to be (p′, d′, 𝜆′), we have the following
form of load utility:

𝑢(d′) = −𝜆′⊤d′.

We solve (4.8) for 𝛼 ∈ [0, 1] and compute demand utility 𝑢(d′;𝛼). Since 𝛼
parameterizes the "amount" of flexibility demand offers, increasing values of 𝛼
correspond to greater demand flexibility (looser bounds on min/max consumption
in each interval). The results are shown in Figure 4.1.

4𝛼 = 1 is the maximum because demand cannot be negative. The upper bound does not have
the same restriction as the lower one but we stick to a single parameter here for simplicity.
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Figure 4.1: Demand utility vs. 𝛼 ∈ [0, 1]

Maximum consumer utility of −5 is reached as 𝛼 ↑ 0.5 and 𝑢(d0) ≥ 𝑢(d) only for
𝛼 < 0.5. That is, the demand is worse off by offering for 𝛼 ≥ 0.5 than none at all.
In fact, if we had chosen the parameters differently (e.g., 𝑑0 arbitrarily close to 𝑝 in
one interval), the demand participation constraint is violated for all 𝛼 > 0. □

Remark: We retain the standard price-taking assumption in the above proof. With
a single generator, this may be practically unrealistic. At the expense of greater
complexity additional generators can be considered without changing the qualitative
behavior we highlight. The purpose of the proof is to demonstrate that incentive
violations arise even in the simplest of market settings.

Analyzing which generation constraints in (4.1d) bind as 𝛼 varies in the counterex-
ample above gives insight into how misaligned incentives for loads come about.

Analogously to how a marginal generator 𝑖 can be defined in the single-period
economic dispatch, we define a marginal pair: generator and interval (𝑖, 𝑡). If
𝑝𝑖,𝑡 − 1⊤d0

𝑡
≥ 0, then flexible demand can shift to 𝑡 from costlier intervals to take

advantage of this excess supply without changing the price 𝜆𝑡 . However, once
the upper bound is exceeded for the marginal pair (i.e., 1⊤d0

𝑡
> 𝑝𝑖,𝑡), 𝜆∗𝑡 jumps up

to the marginal cost of the next cheapest marginal pair. This surprising behavior
occurs because time periods are coupled together through constraint (4.1c) Adding
constraints on d 𝑗 that prevent this jump motivates the mechanism proposed in
Section 4.3.

Participation incentives for generators
The previous section addresses the incentive misalignment for loads under the
standard market structure. One may worry that a similar misalignment happens for
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generators. In this section we show that there is no such issue on the generator side
of the market, i.e., that utility-maximizing decisions of the generators exactly match
the dispatch decision by the market operator.

Specifically, the following theorem states that the optimal solution of the market
dispatch problem (4.1a) - (4.1e) provides dispatch following incentives to generators,
provided we treat generators as pricetakers. Along the way, we also show that
generators do not have negative profit (i.e., participation constraints are satisfied).
Throughout, we make the standard assumption that (4.1a) - (4.1e) has a feasible
point.

Theorem 9. Let p∗
𝑖
, d∗

𝑗
∀𝑖, 𝑗 be the optimal primal solutions of (4.1a) - (4.1e). The

energy prices are 𝜋 := 𝜆∗ where 𝜆∗ is the vector of optimal dual variables for
constraint (4.1b). Then

p∗
𝑖 = arg max

p𝑖
𝑢𝑖 (p𝑖; 𝜋)

s.t. p𝑖 ∈ P𝑖

Further, 𝑢𝑖 (p∗
𝑖
) ≥ 0.

Proof. Start by forming the Lagrangian for (4.1a) - (4.1e):

ℒ(p𝑖, d 𝑗 ;𝜆, 𝜌 𝑗 , 𝜇±𝑖 , 𝜂±𝑗 ) =
∑︁
𝑖

𝑐𝑖 (p𝑖)

+
∑︁
𝑡

𝜆𝑡 (1⊤d𝑡 − 1⊤p𝑡) +
∑︁
𝑗

𝜌 𝑗1⊤d 𝑗

+ 𝜇+𝑖
⊤(p𝑖 − p𝑖) − 𝜇−𝑖 ⊤(p𝑖 − p

𝑖
)

+ 𝜂+𝑗
⊤(d 𝑗 − d 𝑗 ) − 𝜂−𝑗 ⊤(d 𝑗 − d

𝑗
)

We assume that (4.1a) - (4.1e) has a feasible point. Let (p∗
𝑖
, d∗

𝑗
, 𝜆∗, 𝜌∗

𝑗
, 𝜇±

𝑖
∗
, 𝜂±
𝑖
∗)

denote its optimal solution, which exists because the 𝑐𝑖 are continuous and the
feasible set is compact. Compactness follows from constraint (4.1d) where it can
be seen that all entries of p∗

𝑖
and d∗

𝑗
must be finite. Strong duality holds because all

constraints are affine and the objective function is convex (see e.g., Prop. 5.3.1 in
[12]).

Therefore the following KKT stationarity condition for holds for every 𝑖:

𝜕ℒ

𝜕p𝑖
(p∗
𝑖 ) = ∇𝑐𝑖 (p∗

𝑖 ) − 𝜆∗ + 𝜇+𝑖
∗ − 𝜇−𝑖 ∗ = 0 (4.9)
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We compute the derivative of the 𝜆 term by noting that

𝜕

𝜕𝑝𝑖,𝑡

∑︁
𝑡

𝜆𝑡 (1⊤p𝑡 − 1⊤d𝑡) = 𝜆𝑡

Stacking this equation for each 𝑡 into vector form gives

𝜕

𝜕p𝑖

∑︁
𝑡

𝜆𝑡 (1⊤p𝑡 − 1⊤d𝑡) = 𝜆.

The price vector, as defined in (4.2), is 𝜋 = 𝜆∗. Thus (4.9) is

∇𝑐𝑖 (p∗
𝑖 ) − 𝜋 + 𝜇+𝑖

∗ − 𝜇−𝑖 ∗ = 0 (4.10)

Next, we rewrite (4.4) equivalently as a minimization of −𝑢𝑖 over the same feasible
set and take its Lagrangian.5

ℒ𝑖 (p𝑖; 𝜇±𝑖 ) = 𝑐𝑖 (p𝑖) − 𝜋⊤p𝑖 + 𝜇+𝑖
⊤(p𝑖 − p𝑖) − 𝜇−𝑖 ⊤(p𝑖 − p𝑖)

The KKT stationarity condition is

𝜕ℒ𝑖

𝜕p𝑖
= ∇𝑐𝑖 (p𝑖) − 𝜋 + 𝜇+𝑖 − 𝜇−𝑖 = 0 (4.11)

It is clear that p𝑖 = p∗
𝑖
, 𝜋 = 𝜆∗, 𝜇±

𝑖
= 𝜇±

𝑖
∗ is a solution to (4.11) because (p∗

𝑖
, 𝜆∗, 𝜇±

𝑖
∗)

satisfies (4.10).

Now we show that p∗
𝑖

satisfies participation constraints. Outside of the mechanism,
the generator would produce p𝑖 = 0 with 𝑢𝑖 (0) = 0. This is because we assumed
that 𝑐𝑖 (0) = 0. We need to show that 0 is a lower bound for 𝑢𝑖 (p∗

𝑖
).

In (4.10), when 𝜇+
𝑖,𝑡
∗
> 0 then 𝜇−

𝑖,𝑡
∗ = 0 as only one of the lower/upper bounds can

be attained at a time. But if 𝜇−
𝑖,𝑡
∗ > 0 then 𝑝∗

𝑖,𝑡
= 0. When 𝜇+

𝑖,𝑡
∗
= 𝜇−

𝑖,𝑡
∗ = 0, then

𝑝∗
𝑖,𝑡
> 0 and 𝜕𝑐𝑖,𝑡

𝜕𝑝𝑖,𝑡
(𝑝∗
𝑖,𝑡
) = 𝜋𝑡 . Therefore 𝜋𝑡 𝑝∗𝑖,𝑡−𝑐𝑖,𝑡 (𝑝∗𝑖,𝑡) = 0. Finally, when 𝜇+

𝑖,𝑡
∗
> 0,

then 𝜇−
𝑖,𝑡
∗ = 0 and 𝜕𝑐𝑖,𝑡

𝜕𝑝𝑖,𝑡
(𝑝∗
𝑖,𝑡
) < 𝜋𝑡 . So 𝜋𝑡 𝑝∗𝑖,𝑡 − 𝑐𝑖,𝑡 (𝑝∗𝑖,𝑡) > 0. In each of these three

situations we get that 𝑢𝑖 (p∗
𝑖
) ≥ 0.

□

Note that this theorem extends a well-known result for single-period economic
dispatch to our multi-interval setting with equality constraints.

5Note that we use the same names for primal/dual variables in the individual problem as in the
market dispatch problem. Although these variables do not represent the same quantities, we hope
this is not cause for confusion.
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4.3 Incentivizing flexibility
Section 4.2 highlights that loads have an incentive not to reveal their flexibility
under the standard market design where only the energy price is used for settlement.
This is problematic since exploiting the flexibility of loads is essential for system
reliability, avoiding curtailment of renewable energy, and improving the economic
efficiency of the dispatch. This section presents the main contribution of the chapter:
a new market design that ensures both loads and generation have incentives that are
aligned with the market operator’s and, specifically, provides incentives for loads to
reveal their flexibility to the market. First we introduce the market design and prove
its incentive properties and following, in Section 4.4, we illustrate the market design
using a case study.

A market design for flexibility
Our proposed design adopts a similar structure to the standard market while intro-
ducing three important components: (1) a small number of additional constraints on
the demand allocation, (2) a time-varying price 𝜅𝑡 for flexibility, and (3) a two-stage
market clearing scheme for the demand side of the market.

Before presenting the mechanism we must introduce some notation. First, let the
constant

𝑐min := min
𝑖,𝑡

𝜕𝑐𝑖,𝑡

𝜕𝑝𝑖,𝑡
(𝑝0
𝑖,𝑡)

be the smallest marginal cost (over all 𝑖 and 𝑡) under the baseline allocation. Sec-
ond, define T ⊆ {1, . . . , 𝑇} to be the subset of intervals for which it is true that
𝜕𝑐𝑖,𝑡
𝜕𝑝𝑖,𝑡

(𝑝0
𝑖,𝑡
) = 𝑐min for at least one 𝑖 ∈ {1, . . . , 𝑁}. T c is the set of all intervals that

do not meet this condition. Together, T ¤∪ T c = {1, . . . , 𝑇}.6 In what follows, we
assume that neither T and T c is empty. Third, for each 𝑡 ∈ T , define a generator
index set

I𝑡 := {𝑖 | 𝜕𝑐𝑖,𝑡
𝜕𝑝𝑖,𝑡

(𝑝0
𝑖,𝑡) = 𝑐min} ⊆ {1, . . . , 𝑁}.

Fourth, define
𝑃

cap
𝑡 :=

∑︁
𝑖∈I𝑡

𝑝
cap
𝑖,𝑡

6In the real-world scenario of renewable curtailment, 𝑐min = 0 (since marginal cost of renewables
is taken to be 0) and T is simply the set of intervals for which renewables are curtailed.



78

where

𝑝
cap
𝑖,𝑡

= arg max
𝑝∈R

𝑝

s.t.
𝜕𝑐𝑖,𝑡

𝜕𝑝𝑖,𝑡
(𝑝) = 𝑐min

𝑝 ≤ 𝑝𝑖,𝑡

This (regrettably heavy) notation makes precise the amount of available excess
capacity at the lowest price 𝑐min in the baseline dispatch. Observe that when the 𝑐𝑖
are linear, 𝑝cap

𝑖,𝑡
= 𝑝𝑖,𝑡 for 𝑖 ∈ I𝑡 .

With this notation in hand, we summarize the structure of the market mechanism.
Additional discussion of each step is provided following the exposition of the pro-
cedure.

1. Generators submit bids (𝑐𝑖, p𝑖) and loads submit bids (d0
𝑗
, d

𝑗
, d 𝑗 ) to the market

operator.

2. Market operator collects bids, forms the market-clearing optimization problem
(4.1a) - (4.1e) with the additional constraint d 𝑗 = d0

𝑗
, and produces a baseline

solution (p0
𝑖
, d0

𝑗
, 𝜋0) ∀𝑖, 𝑗 .

3. Market operator re-solves (4.1a) - (4.1e) with the addition of three new con-
straints:

1⊤d𝑡 ≤ 𝑃
cap
𝑡 ∀𝑡 ∈ T (4.12a)

𝑑 𝑗 ,𝑡 ≥ 𝑑0
𝑗 ,𝑡 ∀ 𝑗 , ∀𝑡 ∈ T (4.12b)

𝑑 𝑗 ,𝑡 ≤ 𝑑0
𝑗 ,𝑡 ∀ 𝑗 , ∀𝑡 ∈ T c (4.12c)

An interim solution and prices are computed: (p̃𝑖, d̃ 𝑗 , �̃�) ∀𝑖, 𝑗 .

4. The market operator defines a flexibility price

𝜅 = 𝜅(d0
𝑗 , d̃ 𝑗 , 𝜋

0, �̃�) ∈ R𝑇 (4.13)

as a function of optimal solutions of the two market clearing problems. (We
discuss the precise form of 𝜅 in Section 4.3.)

5. The market operator solves a demand dispatch problem (4.14a) - (4.14f),
producing a final allocation for demand: d∗

𝑗
∀ 𝑗 .
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6. Generators are dispatched to produce energy p̃𝑖 at price �̃�. Loads are dis-
patched to consume energy d∗

𝑗
at price 𝜋0 and contribute flexibility Δ∗

𝑗
com-

pensated with price 𝜅.

We now walk through the steps in more detail, beginning with Step 2. Step 2
establishes a baseline allocation that is used later in the procedure to ensure that
participation constraints are satisfied.

In Step 3, additional inequalities (4.12a) - (4.12c) constrain the demand dispatch to
a desirable region. (4.12a) enforces that the total demand does not exceed the total
maximum capacity of the cheapest generator(s) in the interval—provided that there
is spare capacity under the baseline solution. (4.12b) ensures that demand can only
increase if there is excess cheapest generation in a period. (4.12c) guarantees that
demand can only decrease during intervals where all of the cheapest generation is
already dispatched. These additional linear inequalities only add |T | +𝑇 constraints
to the market dispatch problem, which already has (1 + 𝑀 + 𝑁)𝑇 + 𝑀 constraints.
Due to the assumption that T and T c are non-empty, a solution to (4.12a) - (4.12c)
exists: namely D0.

Step 4 defines a flexibility unit price 𝜅. The definition of a flexibility price is central
to our proposed mechanism. Rather than enforce a specific price function, here we
present properties that a price of flexibility should satisfy. Later in Section 4.3 we
provide examples that satisfy the given properties. Before introducing them, we first
we define the concept of a flexibility surplus.

Definition 6. The flexibility surplus 𝑆 :=
∑
𝑡 (𝜋0

𝑡 − �̃�𝑡)1⊤d̃𝑡 is the difference between
the total demand-side energy payment if demand were paying baseline energy price
𝜋0
𝑡 and the total demand-side payment when demand pays the price, �̃�𝑡 . Because of

Lemma 12 (below) and constraint (4.1c), 𝑆 ≥ 0. We interpret 𝑆 as the improvement
in welfare (over the baseline) of the demand side of the market as a whole when the
dispatch d̃𝑡 optimally utilizes flexibility.

Now we establish properties that should be satisfied by a flexibility price 𝜅:

• 𝜅 is uniform (each load faces the same 𝜅)

• 𝜅𝑡 ≥ 0 when
∑
𝑗 Δ 𝑗 ,𝑡 ≥ 0 and 𝜅𝑡 ≤ 0 when

∑
𝑗 Δ 𝑗 ,𝑡 ≤ 0. This means that

the payment for both up and down flexibility is non-negative, as at least some
flexibility in both directions is necessary to dispatch shiftable demand.
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• The sum of all flexibility payments equals the flexibility surplus:
∑
𝑡 𝜅𝑡1⊤(d̃𝑡−

d0
𝑡 ) = 𝑆.

This last property is natural, as our scheme distributes the surplus arising from the
increased economic efficiency of the flexibility dispatch to the loads that provide
this flexibility. Another desirable property we seek when constructing 𝜅𝑡 is that its
magnitude should reflect the value of flexibility to the system in interval 𝑡.

Step 5 maximizes social welfare for the demand side of the market given flexibility
price 𝜅 and energy price 𝜋0. In order to construct this welfare maximization problem,
we need to update the definition of demand utility with a term that quantifies the
benefit that comes from offering flexibility.

Definition 7. Let d 𝑗 ∈ R𝑇 be load 𝑗’s consumption vector and 𝜅 and 𝜋 be the
flexibility and energy price vectors, respectively. d0

𝑗
is the load’s reported baseline.

Then demand utility is given by

𝑢∗𝑗 (d 𝑗 ; 𝜋, 𝜅, d0
𝑗 ) = 𝑈 𝑗 − 𝜋⊤d 𝑗 + 𝜅⊤(d 𝑗 − d0

𝑗 )

Next, we solve a demand allocation optimization where the total demand dispatch
amount in each interval is fixed to be equal to the total interim demand dispatch
from Step 3. This allows the settlement for the generation side of the market to
remain unaffected by the redistribution on the demand side.

max
d 𝑗 ∀ 𝑗

∑︁
𝑗

𝑢∗𝑗 (d 𝑗 ) (4.14a)

subject to

1⊤d 𝑗 = 𝐸 𝑗 ∀ 𝑗 (4.14b)

d
𝑗
≤ d 𝑗 ≤ d 𝑗 ∀ 𝑗 (4.14c)

𝑑 𝑗 ,𝑡 ≥ 𝑑0
𝑗 ,𝑡 ∀ 𝑗 , ∀𝑡 ∈ T (4.14d)

𝑑 𝑗 ,𝑡 ≤ 𝑑0
𝑗 ,𝑡 ∀ 𝑗 , ∀𝑡 ∈ T c (4.14e)

1⊤d𝑡 = 1⊤d̃𝑡 ∀𝑡 (4.14f)

The optimal solution of the above problem d 𝑗 ∗ determines the actual consumption
of load 𝑗 over the horizon.

Finally, Step 6 settles the market with (p̃𝑖 ∀𝑖, �̃�) for generators and (d∗
𝑗
∀ 𝑗 , 𝜋0, 𝜅) for

loads. Load 𝑗 pays 𝜋0⊤d∗
𝑗

for energy because it is the price it would have payed in
the baseline scenario. The load receives 𝜅⊤Δ∗

𝑗
for deviating by Δ∗

𝑗
from its baseline.



81

Analyzing participation incentives
The following theorem establishes properties for both generator and load utility
under the proposed market mechanism and settlement scheme. We show that
incentives are aligned on both sides of the market.

Theorem 10. Let (p̃𝑖, d∗
𝑗
,Δ∗

𝑗
) be the energy and flexibility allocation from the market

mechanism. Let (�̃�, 𝜋0, 𝜅) be the corresponding energy and flexibility prices. Then

(i) (p̃𝑖, d∗
𝑗
,Δ∗

𝑗
) clears the market;

(ii) (p̃𝑖, d∗
𝑗
,Δ∗

𝑗
, �̃�, 𝜋0, 𝜅) is revenue neutral for the market operator;

(iii) (p̃𝑖, �̃�) provides dispatch-following incentives for generators and satisfies their
participation constraints;

(iv) (d∗
𝑗
,Δ∗

𝑗
, 𝜋0, 𝜅) satisfies participation constraints for loads. Specifically, for

each 𝑗 ,
𝑢∗𝑗 (d∗

𝑗 ; 𝜋
0, 𝜅, d0

𝑗 ) ≥ 𝑢 𝑗 (d0
𝑗 ; 𝜋

0);

(v) For 𝑗 for which Δ∗
𝑗 ,𝑡

= 0 for all 𝑡 (no flexibility offered),

𝑢∗𝑗 (d∗
𝑗 ; 𝜋

0, 𝜅, d0
𝑗 ) ≤ 𝑢 𝑗 (d̃ 𝑗 ; �̃�);

For 𝑗 for which |Δ∗
𝑗 ,𝑡
| > 0 for some 𝑡 (flexibility offered),∑︁
𝑗

𝑢∗𝑗 (d∗
𝑗 ; 𝜋

0, 𝜅, d0
𝑗 ) ≥

∑︁
𝑗

𝑢 𝑗 (d̃ 𝑗 ; �̃�).

Statement (v) is of particular importance and highlights that loads are better off
offering flexibility than not: no load becomes worse off than at its baseline con-
sumption but loads that do offer flexibility are (weakly) better off as a group than
those that do not.

Before proving this theorem, we present and prove two lemmas. Let d0 and p0 be
the optimal primal solutions to (4.1a) - (4.1e) in the baseline case (i.e., d = d), and
let 𝜆0 be the associated optimal dual variable for (4.1b). In the presence of flexible
demand, that is, 𝑑

𝑗 ,𝑡
< 𝑑 𝑗 ,𝑡 for some 𝑡 and 𝑗 , we get the following result.

Lemma 11. Let d̃ 𝑗 for all 𝑗 be optimal solutions of (4.1a) - (4.1e) with added
constraints (4.12a - 4.12c). Then for all 𝑗

𝑢 𝑗 (d̃ 𝑗 ) ≥ 𝑢 𝑗 (d0
𝑗 ).
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The proof of this claim requires another technical lemma, which we state and
prove below before returning to the proof of Lemma 11. To proceed, we associate
dual variables 𝛽 ∈ R|T |, 𝛾+ ∈ R|T |, 𝛾− ∈ R|T c | with constraints (4.12a) - (4.12c)
respectively.

Lemma 12. 𝜆0
𝑡 ≥ �̃�𝑡 for 𝑡 ∈ T c.

Proof of Lemma 12. Let (P̃, D̃, �̃�, �̃�, �̃�±, 𝜂±, 𝛽, �̃�±) be the optimal primal/dual solu-
tion of (4.1a) - (4.1e) with added constraints (4.12a) - (4.12c). The arguments for
the existence of this solution and the existence of strong duality are the same as
those given in the proof of Theorem 9 (see Appendix ??).7

For each 𝑡, there is a set of marginal generators N𝑡 ⊆ {1, . . . , 𝑛}. By its definition, a
marginal unit produces strictly between its upper and lower bounds. Therefore, for
𝑖 ∈ N𝑡

�̃�+𝑖,𝑡 = �̃�
−
𝑖,𝑡 = 0.

The KKT stationarity condition w.r.t. p𝑡 is

𝜕ℒ

𝜕p𝑡
(p̃𝑡) = ∇𝑐(p̃𝑡) − �̃�𝑡1 + �̃�+𝑡 − �̃�−𝑡 = 0. (4.15)

From this equation we have that for all 𝑖 ∈ N𝑡 ,

�̃�𝑡 =
𝜕𝑐𝑖,𝑡

𝜕𝑝𝑖,𝑡

(
𝑝𝑖,𝑡

)
. (4.16)

That is, all marginal costs are equal in that time for the marginal units.

Next, we claim that no generator produces more than its baseline; that is 𝑝𝑖,𝑡 ≤ 𝑝0
𝑖,𝑡

for all 𝑖 ∈ {1, . . . , 𝑛}. In the baseline scenario there are three groups of generators:
those producing at their upper bound, those producing at their lower bound, and
the marginal units. Those already at their upper bound are unable to increase their
production. Increasing the production of a unit at its lower bound would incur a
higher cost than increasing production by the same amount for a marginal unit. In
(4.16) we argued that all marginal units have the same marginal cost at the optimal
point. Therefore they all would increase production or all decrease. Due to the
convexity and monotonicity of the cost functions, a decrease in production would
result in a lower value for 𝜆𝑡 by (4.16).

7We assumed previously that a baseline solution exists for (4.1a) - (4.1e). A feasible point for
(4.1a - 4.1e) with added constraints (4.12a - 4.12c) is just this baseline solution.
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This leaves two remaining possibilities: 1) at least one generator at its upper bound
in the baseline case decreases its production or 2) a marginal unit decreases its
production. In the first case, 𝜆𝑡 is unaffected since its value is determined by
the cost function of a marginal unit. In the second case, due to the convexity and
monotonicity of the cost functions, a decrease in production would result in a smaller
value of 𝜆𝑡 by (4.16).

For all 𝑡 ∈ T c, 𝑑 𝑗 ,𝑡 ≤ 𝑑0
𝑗 ,𝑡

for each 𝑗 by constraints (4.12c). Thus we have
1⊤d̃𝑡 ≤ 1⊤d0

𝑡 for 𝑡 ∈ T c. By the power balance constraint (4.1b),

1⊤p̃𝑡 ≤ 1⊤p0
𝑡 .

From this we conclude that for at least one 𝑖 ∈ N𝑡 , 𝑝0
𝑖,𝑡

≥ 𝑝𝑖,𝑡 . Since we take the cost
functions to be convex and if 𝑝0

𝑖,𝑡
≥ 𝑝𝑖,𝑡 ∀𝑖 as we showed just above, then

𝜕𝑐𝑖,𝑡

𝜕𝑝𝑖,𝑡
(𝑝0
𝑖,𝑡) ≥

𝜕𝑐𝑖,𝑡

𝜕𝑝𝑖,𝑡
(𝑝𝑖,𝑡) (4.17)

We conclude that
𝜆0
𝑡 ≥ �̃�𝑡 .

□

Proof of Lemma 11. We take the aggregate marginal cost curve of (4.1a) - (4.1e) to
be left continuous. This is equivalent to always picking the smallest value of the
subgradient of

∑
𝑖 𝑐𝑖 (p𝑖) in the KKT condition for p𝑖 when the subgradient is not

unique.

For 𝑡 ∈ T , the following are true:

• 𝑑 𝑗 ,𝑡 ≥ 𝑑0
𝑗 ,𝑡

for all 𝑗 by primal feasibility from constraint (4.12b);

• 𝜆0
𝑡 = �̃�𝑡 = 𝑐min because of (4.12c). By definition of T , 𝑐min is always the

marginal cost in T . Note that this claim requires the assumption from the
beginning of the proof. Otherwise, when constraint (4.12a) is tight, it could
occur that �̃�𝑡 > 𝜆0

𝑡 .

Analogously for 𝑡 ∈ T c we have:

• 𝑑 𝑗 ,𝑡 ≤ 𝑑0
𝑗 ,𝑡

for all 𝑗 by primal feasibility from constraint (4.12c);
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• �̃�𝑡 ≤ 𝜆0
𝑡 by Lemma 12.

By definition of the price 𝜋, 𝜋0 ≥ �̃� follows from the above. We have also established
that 𝑑 𝑗 ,𝑡 ≥ 𝑑0

𝑗 ,𝑡
only when �̃�𝑡 = 𝜆0

𝑡 = 𝑐min. Otherwise, 𝑑 𝑗 ,𝑡 ≤ 𝑑0
𝑗 ,𝑡

.

By definition of load utility in (4.5), we have that

𝑢 𝑗 (d̃ 𝑗 ) = 𝑈 𝑗 −
∑︁
𝑡∈T

�̃�𝑡𝑑 𝑗 ,𝑡 −
∑︁
𝑡∈T c

�̃�𝑡𝑑 𝑗 ,𝑡

= 𝑈 𝑗 −
∑︁
𝑡∈T

𝑐min𝑑 𝑗 ,𝑡 −
∑︁
𝑡∈T c

�̃�𝑡𝑑 𝑗 ,𝑡

≥ 𝑈 𝑗 −
∑︁
𝑡∈T

𝑐min𝑑
0
𝑗 ,𝑡 −

∑︁
𝑡∈T c

𝜋0
𝑡 𝑑

0
𝑗 ,𝑡

= 𝑢 𝑗 (d0
𝑗 ).

□

Proof of Theorem 10. We prove each statement from the theorem in order, making
use of the two technical lemmas just presented.

(i) First note that D̃ is a feasible solution for (4.14b) - (4.14f). The optimal solution
D∗ of (4.14a) - (4.14f) satisfies 1⊤d∗

𝑡 = 1⊤d̃𝑡 for all 𝑡 due to primal feasibility.8
Similarly, the generation dispatch P̃ satisfies 1⊤p̃𝑡 = 1⊤d̃𝑡 for all 𝑡 by constraint
(4.1b) and primal feasibility. Therefore 1⊤p̃𝑡 = 1⊤d∗

𝑡 for all 𝑡. Note that this is
equivalent to

∑
𝑖 p̃𝑖 =

∑
𝑗 d∗

𝑗
.

(ii) Total generation revenue is given by

Revgen =
∑︁
𝑡

�̃�𝑡1⊤p̃𝑡 =
∑︁
𝑡

�̃�𝑡1⊤d̃𝑡

Total energy payments from demand are

Paydemand =
∑︁
𝑡

𝜋0
𝑡 1⊤d∗

𝑡 =
∑︁
𝑡

𝜋0
𝑡 1⊤d̃𝑡

Total flexibility payments to loads are

Revflex = 𝜅⊤
∑︁
𝑗

Δ∗
𝑗

=
∑︁
𝑡

𝜅𝑡1⊤(d∗
𝑡 − d0

𝑡 )

= 𝑆

8A feasible solution exists: observe that D̃ satisfies constraints (4.14b - 4.14f). An optimal value
is attained because the objective function is continuous and the feasible set is compact.
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Revenue neutrality is the condition when

Paydemand − Revgen = Revflex.

By the definition of 𝑆, this condition is satisfied.

(iii) The proof of this result follows exactly the one for Theorem 9. The KKT sta-
tionarity condition for p𝑖 is unaffected by the addition of constraints (4.12a) - (4.12c).

(iv) By primal feasibility of d∗
𝑗

in (4.14a - 4.14f), 𝑑∗
𝑗 ,𝑡

≥ 𝑑0
𝑗 ,𝑡

for 𝑡 ∈ T and
𝑑∗
𝑗 ,𝑡

≤ 𝑑0
𝑗 ,𝑡

for 𝑡 ∈ T c. In the proof of Lemma 11 (see Appendix ??) we showed that
𝜋0
𝑡 = 𝜆

0
𝑡 = 𝑐min for 𝑡 ∈ T and 𝑐min < 𝜋

0
𝑡 for all 𝑡 ∈ T c. As a consequence,∑︁

𝑡∈T
𝜋0
𝑡 𝑑

∗
𝑗 ,𝑡 −

∑︁
𝑡∈T

𝜋0
𝑡 𝑑

0
𝑗 ,𝑡 = 𝑐min

∑︁
𝑡∈T

(𝑑∗𝑗 ,𝑡 − 𝑑0
𝑗 ,𝑡)

By primal feasibility of d∗
𝑗

and d0
𝑗

from constraints (4.1c) and (4.14b) we have that∑︁
𝑡

𝑑∗𝑗 ,𝑡 = 𝐸 𝑗 =
∑︁
𝑡

𝑑0
𝑗 ,𝑡

⇒
∑︁
𝑡∈T

𝑑∗𝑗 ,𝑡 +
∑︁
𝑡∈T c

𝑑∗𝑗 ,𝑡 =
∑︁
𝑡∈T

𝑑0
𝑗 ,𝑡 +

∑︁
𝑡∈T c

𝑑0
𝑗 ,𝑡

⇒
∑︁
𝑡∈T

(𝑑∗𝑗 ,𝑡 − 𝑑0
𝑗 ,𝑡) = −

∑︁
𝑡∈T c

(𝑑∗𝑗 ,𝑡 − 𝑑0
𝑗 ,𝑡)

Then

𝑐min
∑︁
𝑡∈T

(𝑑∗𝑗 ,𝑡 − 𝑑0
𝑗 ,𝑡) = −𝑐min

∑︁
𝑡∈T c

(𝑑∗𝑗 ,𝑡 − 𝑑0
𝑗 ,𝑡)

≥ −
∑︁
𝑡∈T c

𝜋0
𝑡 (𝑑∗𝑗 ,𝑡 − 𝑑0

𝑗 ,𝑡)
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By construction of 𝜅, 𝜅𝑡Δ 𝑗
𝑡 ≥ 0 ∀ 𝑗 , 𝑡. Putting everything together,

𝑢∗𝑗 (d∗
𝑗 ; 𝜋

0, 𝜅) = 𝑈 𝑗 −
∑︁
𝑡∈T

𝑐min𝑑
∗
𝑗 ,𝑡 −

∑︁
𝑡∈T c

𝜋0
𝑡 𝑑

∗
𝑗 ,𝑡 +

∑︁
𝑡

𝜅𝑡Δ
∗
𝑗 ,𝑡

≥ 𝑈 𝑗 −
∑︁
𝑡∈T

𝑐min𝑑
∗
𝑗 ,𝑡 −

∑︁
𝑡∈T c

𝜋0
𝑡 𝑑

∗
𝑗 ,𝑡

= 𝑈 𝑗 −
∑︁
𝑡∈T

𝑐min𝑑
∗
𝑗 ,𝑡 −

∑︁
𝑡∈T c

𝜋0
𝑡 𝑑

∗
𝑗 ,𝑡

+
(∑︁
𝑡∈T

𝑐min𝑑
0
𝑗 ,𝑡 +

∑︁
𝑡∈T c

𝜋0
𝑡 𝑑

0
𝑗 ,𝑡

)
−

(∑︁
𝑡∈T

𝑐min𝑑
0
𝑗 ,𝑡 +

∑︁
𝑡∈T c

𝜋0
𝑡 𝑑

0
𝑗 ,𝑡

)
= 𝑈 𝑗 −

∑︁
𝑡∈T

𝑐min(𝑑∗𝑗 ,𝑡 − 𝑑0
𝑗 ,𝑡) −

∑︁
𝑡∈T c

𝜋0
𝑡 (𝑑∗𝑗 ,𝑡 − 𝑑0

𝑗 ,𝑡)

−
(∑︁
𝑡∈T

𝑐min𝑑
0
𝑗 ,𝑡 +

∑︁
𝑡∈T c

𝜋0
𝑡 𝑑

0
𝑗 ,𝑡

)
≥ 𝑈 𝑗 −

∑︁
𝑡∈T

𝑐min𝑑
0
𝑗 ,𝑡 +

∑︁
𝑡∈T c

𝜋0
𝑡 𝑑

0
𝑗 ,𝑡

= 𝑈 𝑗 −
∑︁
𝑡

𝜋0
𝑡 𝑑

𝑗 ,0
𝑡

= 𝑢 𝑗 (d0; 𝜋0)

(v) Let Mflex ⊆ {1, . . . , 𝑀} be the index set of loads whose flexibility is dispatched.
Complementarily, Mc

flex ⊆ {1, . . . , 𝑀} is the index set of loads whose flexibility is
not dispatched. For 𝑗 ∈ Mc

flex,

𝑢∗𝑗 (d∗
𝑗 ; 𝜋

0) = 𝑈 𝑗 − 𝜋0⊤d∗
𝑗

≤ 𝑈 𝑗 − �̃�⊤d̃ 𝑗
= 𝑢 𝑗 (d̃ 𝑗 ; �̃�).

(4.18)

The inequality comes from the fact proved in Lemma 12.
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Finally we show the second statement in (v):∑︁
𝑗

𝑢∗𝑗 (d∗
𝑗 ; 𝜋

0, 𝜅) =
∑︁
𝑗∈Mflex

𝑢∗𝑗 (d∗
𝑗 ; 𝜋

0, 𝜅) +
∑︁
𝑗∈Mc

flex

𝑢∗𝑗 (d∗
𝑗 ; 𝜋

0)

=
∑︁
𝑗

𝑈 𝑗 − Paydemand + Revflex

=
∑︁
𝑗

𝑈 𝑗 − Revgen

=
∑︁
𝑗

𝑈 𝑗 −
∑︁
𝑗

�̃�⊤d̃ 𝑗

=
∑︁
𝑗∈Mflex

𝑢 𝑗 (d̃ 𝑗 ; �̃�) +
∑︁
𝑗∈Mc

flex

𝑢 𝑗 (d̃ 𝑗 ; �̃�)

From (4.18) we have that
∑
𝑗∈Mc

flex
𝑢 𝑗 (d̃ 𝑗 ; �̃�) ≥

∑
𝑗∈Mc

flex
𝑢∗
𝑗
(d∗

𝑗
; 𝜋0, 𝜅). The sequence

of equalities implies ∑︁
𝑗∈Mflex

𝑢∗𝑗 (d∗
𝑗 ; 𝜋

0, 𝜅) ≥
∑︁
𝑗∈Mflex

𝑢 𝑗 (d̃ 𝑗 ; �̃�).

□

A price for flexibility
A core piece of our proposed market design is the flexibility price 𝜅. How to properly
compensate demand for flexibility is a challenging open question. Flexibility, as
defined in this work, is a public good: in the interim, energy price-only settlement
(P̃, D̃, �̃�), even those loads who do not offer relaxed bounds on their consumption
(i.e., offer flexibility to the market) still benefit from others that do by enjoying a
lower price. To address this, our mechanism directly pays flexible loads that based
on how much of the flexibility they offer is dispatched. We proceed in two stages:
first we define a flexibility price 𝜅 that satisfies certain desirable properties (Step 4
in the mechanism); and second, we compute an allocation of energy and flexibility
that maximizes individual utility while also respecting the previously-determined
generation dispatch (Step 5 in the mechanism).

To this point, we have made the second stage concrete with (4.14a) - (4.14f) but we
have not yet given specific examples of flexibility prices that satisfy the desirable
properties of 𝜅 listed in Step 4 above. In this section we propose three different
flexibility prices, commenting on their relative advantages. An interesting future
research direction is to explore other forms of this price.
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Optimization-based

Our first approachis to directly solve an optimization problem with the properties
listed in Step 4 as constraints.

min
𝜅∈R𝑇

𝑓 (𝜅)

s.t. 𝑆 =
∑︁
𝑡

𝜅𝑡1⊤(d̃𝑡 − d0
𝑡 )

𝜅𝑡 ≥ 0 ∀𝑡 ∈ T
𝜅𝑡 ≤ 0 ∀𝑡 ∈ T c

A benefit of this approach is that the choice of an objective function 𝑓 (𝜅) can be made
in order to enforce desired structural properties. For example, setting 𝑓 (𝜅) = | |𝜅 | |2
yields a smooth price schedule. If prices that weight high-value time-periods more
are desired, then one could have 𝑓 (𝜅) = | |𝜅 | |1.9

The adaptability of this formulation of 𝜅 is its main advantage. One potential
disadvantage is that it does not yield a closed-form representation of 𝜅 in general,
which could make the price difficult to interpret. The subsequent two designs we
consider provide closed-form representations of 𝜅.

Budget-balance

A contrasting formulation of 𝜅 is based on the market operator’s budget balance
condition: ∑︁

𝑡

�̃�𝑡1⊤p̃𝑡 =
∑︁
𝑡

𝜋0
𝑡 1⊤d∗

𝑡 −
∑︁
𝑡

𝜅𝑡1⊤
(
d∗
𝑡 − d0

𝑡

)
(4.19)

This condition states that the total payments to generators equals the total energy
payments from demand minus the total flexibility payments to loads. Noting that
1⊤p̃𝑡 = 1⊤d̃𝑡 = 1⊤d∗

𝑡 and enforcing equality for each 𝑡 separately, we solve for (4.19)
for 𝜅𝑡 to get

𝜅𝑡 :=
(
𝜋0
𝑡 − �̃�𝑡

)
1⊤d∗

𝑡

1⊤
(
d∗
𝑡 − d0

𝑡

) .
This form of 𝜅𝑡 satisfies our desired properties but it does have an important draw-
back. When 𝑡 ∈ T , �̃�𝑡 = 𝜋0

𝑡 = 𝑐min, which implies that 𝜅𝑡 = 0. So, 𝜅𝑡 is never strictly
positive, which leads to only down-flexibility (Δ𝑡 < 0) being rewarded. Further, for

9If 𝑓 (𝜅) is a norm, then this formulation has the additional property that 𝜅𝑡 = 0 only if
1⊤ (d̃𝑡 − d0

𝑡 ) = 0. This means that intervals that do not dispatch flexibility will not have a non-zero
price.
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𝑡 ∈ T , 𝜅𝑡 = 0 and so the prices do not capture the time-varying value of flexibility
for those intervals. The following design avoids these disadvantages.

Flexibility surplus

Another closed-form version of 𝜅𝑡 can be defined using the flexibility surplus:

𝜅𝑡 =


𝑆
2

𝑃
cap
𝑡 −1⊤d0

𝑡∑
𝑡 𝑃

cap
𝑡 −1⊤d0

𝑡

1
1⊤(d̃𝑡−d0

𝑡 ) , 𝑡 ∈ T
𝑆
2

�̃�𝑡∑
𝑡 𝜋𝑡

1
1⊤(d̃−

𝑡 d0
𝑡 ) , 𝑡 ∈ T c

This form of 𝜅𝑡 is the product of three terms in both cases. The first, 𝑆
2 , divides

the total flexibility surplus evenly between up- and down-flexibility periods. The
second term distributes that half-surplus amongst the time intervals. For 𝑡 ∈ T ,
an interval receives an amount proportional to its surplus (i.e., curtailed) lowest-
cost generation. For 𝑡 ∈ T c, an interval receives the amount proportional to the
interim price �̃�𝑡 in that time period. The third term divides by the total allocation of
flexibility, as determined by the dispatch from (4.1a) - (4.1e) with (4.12a) - (4.12c).

Like the previous two flexibility prices, this 𝜅 satisfies all of the desired properties
including budget balance. Its two-part specification reflects the different function
flexibility has in T versus T c. In T , flexibility allows otherwise-curtailed low-cost
generation to be dispatched. In T c, flexibility allows for lesser amounts of more-
costly generation to be dispatched. While this formulation addresses the zero-price
shortcoming of the budget-balance formulation and has a closed form representation,
it is vulnerable to volatility when 1⊤d∗

𝑡 − 1⊤d0
𝑡 is small.

Comparing these three formulations, it is worth highlighting that, while a closed-
form 𝜅might be desirable for reasons convenience and interpretability, the optimized-
based approach is more principled and adaptable. For this reason we choose to
implement that version of the flexibility price in the case study in the next section.

4.4 Case study
We conclude the chapter with a demonstration of the our new market dispatch of
flexibility on a test case derived from the real-world CAISO market. Our numerical
results show a significant increase in utility for loads when they allow their flexibility
to be dispatched by the market operator, thus highlighting the value of redesigning
the market to ensure participation incentives of loads are aligned.
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(a) Baseline dispatch (demand does not offer flex-
ibility)
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(b) Flexible dispatch (demand offers flexibility)
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(c) Individual load profile for 𝑗 = 29: baseline
(black) and flexible dispatch (red)

Figure 4.2: Comparison of the baseline market with the proposed market design in
a CAISO case study.
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Setup
Disaggregated demand-side data for bulk electricity markets is not readily available
[52]. We therefore take existing publicly-available generation and aggregate load
data from CAISO and simulate a demand side to to the market. Our simulations
are implemented in Python and all optimization problems are solved with CVXPY
[40, 4]. The simulations were run on a 2019 MacbookPro (2.8 GHz Quad-Core i7,
16GB RAM).

Throughout our experiments, we ran the single-shot market mechanism described
in Section 4.3, which assumes an accurate demand forecast, and computed the
flexibility price 𝜅 using the optimization-based formulation.

The test cases are constructed as follows. Generation time series data, disaggregated
by resource type (e.g., renewable, hydro, coal), from July 2, 2020 is obtained from
[20]. The data have observations every 5 minutes for 24 hours (288 total). At
their peak, renewables (e.g., wind, solar, small hydro, biomass) account for approx.
60% of the net generation. We clean the data by removing trivial generation
resources like batteries and negative values for solar generation at night (due to
concentrating solar); the result is 6 generation resource types: renewables, natural
gas, large hydro, nuclear, coal, and external imports from adjacent control areas.
The aggregate demand 𝐷0 profile is obtained from the resulting net generation. We
scale up the entire renewable profile by 220% so that there is a set of intervals T
where renewable generation alone exceeds aggregate demand and thus renewables
must be curtailed. As we noted previously, this scenario is not (yet) the case in
California but in other markets has already begun occurring [111].

We assume that conventional generation types and imports are dispatchable up and
down without ramping limits, whereas renewables can only be curtailed. We also
make the simplifying assumption that conventional generation can produce any
amount from 0 to their upper limits, which are taken from the original data to be the
maximum production at any point in the 24 hour window. Unit cost data in $/MWh
are the Variable O&M costs for 2020 from EIA’s Annual Energy Outlook, see Table
1 in [35]. Unit costs for imports were assumed to be the average of costs for the
other generation types present in our simulation.

The aggregate demand profile from the CAISO data (black dotted line in Figure
4.2a) is disaggregated proportionally into individual load profiles. These profiles
are then perturbed with random noise to introduce temporal variability to the relative
fraction of the aggregate each individual load consumes. The number of individual
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loads 𝑚 can be set arbitrarily and in our case study here, 𝑚 = 30.10 Half of these
were designated inflexible loads and the other half to flexible loads. Centered around
each of the individual flexible load profiles are upper and lower bound profiles for
the consumption of each load in each time interval. These bounds are generated with
a sinusoidal function which allows parametric scaling of flexibility by varying the
amplitude and phase. We note here that despite not being able to access real-world
load profiles, our load disaggregation scheme produces qualitatively similar results
to the load shapes in [45]. The baseline load profile (black) and the flexibility range
(grey) are shown for the market in aggregate in Figure 4.2a and for an individual
load in Figure 4.2c.

Results
Figure 4.2 provides a detailed contrast between the traditional baseline market
design, under which shiftable demands do not offer their flexibility, and the proposed
design of this work, under which shiftable demands have incentives to expose their
flexibility. The reduction of curtailment of renewable generation that results from
shiftable demands is immediately clear from these figures.

In more detail, Figure 4.2a shows the generation dispatch as well as the baseline
aggregate demand. The available aggregate flexibility is shown as a light grey
overlay. Notice that renewables are curtailed between hours 8 and 17, as there is an
excess supply available to meet the baseline aggregate demand 𝐷0.

Figure 4.2a should be contrasted with Figure 4.2b, which shows the market dis-
patch (aggregate shown in red) when flexible demand is utilized. The flexibility
upper/lower bounds (grey) and the baseline aggregate demand (dotted black) are
superimposed for comparison. Load is dispatched up in periods with curtailed
renewable (hours 8 - 17) and dispatched down during the remaining hours to com-
pensate. In this simulation, for the hours when load is dispatched down, the lower
bound on flexibility is often tight whereas the upper bound is not attained at any point
over the time horizon. This highlights the point that both up- and down-flexibility
are required in equal amounts due to the equality constraint for total demand over the
time horizon (e,g., (4.1c), 4.14b). The limiting factor for shiftable loads to increase
demand during the middle of the day (and therefore reduce renewable curtailment)
could actually be their inability to reduce its demand at other times.

Rigure 4.2c drills deeper and considers the profile of an individual load. This
10Experiments with other values of 𝑚 did not change results qualitatively.
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Figure 4.3: Illustration of energy prices �̃� and 𝜋0 (top) and flexibility price 𝜅 (bottom)
in the CAISO case study.

figure shows that feasibility of the flexible market dispatch for the load is indeed
satisfied, as required by the constraints in (4.14b) - (4.14e). The black curve shows
the baseline demand d0

𝑗
for load 𝑗 = 29 and the red curve shows the dispatch with

flexibility d∗
𝑗
. Both trajectories respect the upper and lower flexibility bounds d 𝑗 , d 𝑗 .

Further, all loads (and therefore the aggregate load as well) change their dispatch
under the flexibility dispatch allocation in the same direction (i.e., up or down) in
each interval. This is due to constraints (4.12b) and (4.12c), without which the
undesirable scenario where some loads increase and other simultaneously decrease
their consumption could occur.

The case study also provides a concrete illustration of many of the properties of
prices we proved previously. In particular, the top panel of Figure 4.3 shows this
graphically that the baseline price 𝜋0 is a lower bound for �̃�, a property proven in
Lemma 12. The lower panel of Figure 4.3 illustrates that the flexibility price 𝜅
satisfies its desired properties in that it is positive when up-flexibility is dispatched
and negative when down-flexibility is dispatched. Its magnitude also reflects a time-
varying value of flexibility; specifically, 𝜅𝑡 is most positive during the middle of the
day when renewables have peak capacity and load should be dispatched up to utilize
them and is most negative early and late in the day when expensive conventional
generation dominates the generation mix and load should be dispatched down to
reduce cost.

In Table 4.1 we quantify the economic value of the proposed market design as
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Table 4.1: Total revenue, cost, and utility for generation and demand in CAISO case
study. Amounts are in millions.

Amounts shown are in millions
Baseline With Flexibility % change

Total Generation Revenue $11.91 $10.58 -11.14
Total Generation Cost $6.39 $5.39 -15.62
Total Generation Utility (profit) $5.52 $5.19 -5.95
Total Demand Cost $11.91 $10.90 -8.49
Total Demand Utility $-11.91 $-10.58 +11.14
Total Flexibility Payment $0.00 $0.32 —

compared to the baseline design by comparing market participant utility gains/losses
between the two scenarios. The first observation from this table is that the demand
side of the market increases its utility by 11% over the baseline while only needing
to re-dispatch 10% of its total load. As flexibility is provided by the demand side of
the of the market, our mechanism increases their utility to compensate.

The second observation is that each load individually is at least as well off under the
flexibility mechanism as under the baseline scenario, but loads that offer flexibility
are better off than those that do not. This can be seen by comparing total demand cost
of $10.90 to the total demand utility of -$10.58. The difference in the magnitudes
of these values is exactly the flexibility payment of $0.32. Inflexible loads pay for
energy but do not receive any benefit from the flexibility payment, which only goes
to flexible loads.

Third is that generators are worse off under the flexibility mechanism due to a
lower energy price �̃�. Dispatching flexibility improves the overall efficiency (i.e.,
generation cost) of the dispatch but because the spot price decreases as well, that
benefit is not captured by generators, instead going to the loads. From a generator’s
point of view, this is not desirable as it will lower their profits individually and
collectively. However we remark that any improvement in market efficiency is
likely to lower generator profits (for additional discussion of these see [72]). That
does not mean that improvements in market efficiency ought to be avoided though.
Rather, we take the view that incentives for improving system efficiency should be
aligned with those of the market participants who actually provide the efficiency-
improving service. In the setting we explore in this work, the deserving participants
are flexible loads with shiftable demand.
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4.5 Conclusion
This chapter focuses on a crucial and under-explored aspect of demand response
markets: the incentives of loads with shiftable demand to expose flexibility to the
market operator. We first show that relying on the energy spot price alone to compen-
sate loads—as the standard market design does—leads to incentive misalignment:
demand might end up worse off bidding flexibly than inflexibly. Our market mech-
anism addresses this shortcoming in two parts. The first constrains the total amount
of flexibility that can be dispatched in each period, ensuring that costly generators
cannot be dispatched. The second introduces a flexibility price and distributes the
surplus that arises from the more efficient dispatch to loads that offer flexibility.

The flexibility price serves two useful purposes. One is to provide a time-varying
signal to loads about the most profitable times to offer their flexibility to the market.
A second value of the flexibility is to correct a free-rider problem that arises in
an energy price-only market: flexibility is a public good, which means that all
loads benefit from flexibility whether they contribute it themselves or not. In our
mechanism, the flexibility payment, which is the product of flexibility price and
flexibility dispatch, is only non-zero for flexible loads.

Importantly, our proposed mechanism has the same basic structure as the current
economic dispatch market design, which provides a pathway to adoption. In this
work though, our model sets aside several real-world electricity market features
like startup costs, ramping constraints, line congestion, and rolling window market
clearing. These undeniably impact market dispatch and are the focus of large portion
of research on electricity market design. However they are typically evaluated
without considering a responsive demand side of the market. In contrast, our focus
here is on the mechanism for incorporating shiftable demand into the economic
dispatch framework and analyzing the incentives that result. It will be important in
future work to tease out how the above-mentioned generation-side characteristics
interact with the demand-side structure in our model.

Finally, another important open problem motivated by our work relates to flexibility
pricing. Our market design shows how to incorporate a flexibility price into the
marketplace and proposes three potential designs for flexibility prices. The flexibil-
ity prices we introduce satisfy the minimal desired properties, but each have some
drawbacks and thus a further exploration of the design of flexibility prices is an im-
portant research question. In particular, is there a stable and interpretable flexibility
price, aligned both with individual and social welfare objectives, that incentivizes
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loads to bid their flexibility into the market?
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Microgrid Operating System (OS)
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The second part of the thesis addresses the theme of decentralization by proposing
an operating system for microgrids and distribution networks to help them meet
the challenges of managing a distributed power resources. Realizing a 24/7 low-
carbon, resilient, and reliable energy system calls for a paradigm shift towards
active monitoring and real-time control in low-voltage distribution grids. Over a
decade of research in the R&D community has resulted in significant advances in
optimization and algorithms, providing ever more powerful tools for controlling
and exploiting the latent flexibility present in distributed energy systems. However,
two major obstacles to unlocking this potential in practical setting are 1) the lack
of reliable real-time timeseries data and 2) the challenge of obtaining sufficiently
detailed system-level models of the infrastructure. In this work, we present the
design and implementation of a Microgrid Operating System (Microgrid OS) to
bridge this gap in data and modeling.

The Microgrid OS is a software platform that provides the foundation for a col-
lection of energy services applications such as demand response, carbon reduction,
peak shaving, and state estimation. It does so by monitoring, modeling, and in some
applications, controlling a network of heterogeneous hardware such as batteries, PV,
EV chargers, and flexible load. In Chapter 5 we motivate the particular issues that
DERs face in scaling and describe the three layers of the Microgrid OS architecture:
data, models, and optimization. In the remaining chapters, we present implementa-
tion of Microgrid OS components undertaken thus far in a real-world testbed on the
Caltech campus.

In Chapter 6 we present our practical experience designing and deploying a network
of internet-connected smart electrical meters on the Caltech campus for the purpose
of building a high-quality, granular energy dataset. In addition to collecting stan-
dard measurements like current, voltage, and power magnitudes, we also sample raw
current and voltage waveforms to obtain phasors, with inter-meter synchronization
accomplished with internet time protocols. Our low-cost synchrophasor imple-
mentation has the potential to yield synchrophasors for all nodal injections within
a network, facilitating the use of data-driven topology and parameter estimation
algorithms.

In Chapter 7 we share our work building a “Digital Twin” of the Caltech power sys-
tem, which provides the foundation for downstream applications in system planning,
control, and optimization. The Digital Twin models the complex and heterogeneous
campus electrical network, which includes a variety of electrical, sensing, and com-
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munication components. Our core contribution is a flexible, comprehensive network
modeling schema that bridges capabilities of standard distribution system model-
ing tools (e.g., OpenDSS) and component/building-level models. The schema is
applicable to any low-voltage multi-phase electrical network, from single-building
microgrids up to distribution systems.

The Caltech Digital Twin includes: 1) topology and line parameters for a three-phase
electrical network consisting of four high-voltage substations, two power plants, and
approximately one hundred buildings, connected by thousands of buses, switches,
lines, circuit breakers, and transformers; 2) real-time voltage, current, and power
flow data from hundreds of meters in the network; 3) real-time generation data from
on-site distributed generation sources including a gas co-gen plant, a steam turbine,
fuel cells, and rooftop PV arrays; and 4) real-time temperature and HVAC data from
buildings.

We discuss our software architecture for large-scale data collection, storage, analysis
and visualization, with careful considerations to scalability and security. The back
end of the software platform consists of data collection interfaces, data processing,
and modeling modules. The front end consists of a browser-based visualization
interface that allows users to interact with the network in real time and explore
various scenarios at various levels of spatial and temporal granularity.

The data and modeling layers of the Microgrid OS provide a foundation for a
collection of optimization applications, including energy cost reduction, power
factor correction, and carbon emissions reduction. In Chapter 8 we detail several
applications supported by the Microgrid OS related to power quality correction
(volt-var control, power-factor correction), state estimation (topology and parameter
estimation), and infrastructure planning (optimal storage placement and sizing).
These applications were developed in collaboration with university campus facilities
managers, distribution utilities, and industrial partners.
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C h a p t e r 5

DISTRIBUTED ENERGY RESOURCES (DERS) AND THEIR
CHALLENGES

DER technologies facilitate decentralization because they enable the production of
energy at the point of consumption, reducing reliance on centralized power plants
and utility grids. DER technologies allow customers to generate their own energy
from renewable sources such as solar panels, wind turbines, and geothermal systems.

By producing their own energy, individuals and communities can reduce their
dependence on centralized power grids and potentially even sell excess energy
back to the grid. This creates a more decentralized energy system, where power
generation is distributed across multiple smaller sources rather than being controlled
by a few large power plants. Moreover, DER technologies allow for greater control
and customization over energy production and consumption, enabling individuals
and communities to tailor their energy usage to their specific needs and preferences.

In the past 15 to 20 years, rapid growth of distributed energy resource (DERs) has
been driven by advances in fundamental hardware, falling costs, and increasing
demand for clean energy. The most crucial lever in these advances has been the
swiftly (and sometimes exponentially) decreasing costs and production scale of
critical building block technologies since 2008: photovoltaic modules, lithium
ion batteries, electric vehicles, and wind turbines. Figure 5.1 shows exponential
decreases in solar costs of the last three decades and and Figure 5.2 shows the 5x
decreases in lithium-ion battery pack prices over the last decade.

One of the outcomes of these cost and scale trends is that wind and solar are the
cheapest energy generation technologies as Figure 5.3 demonstrates. Renewables
now compete favorably against combined-cycle gas in terms of cost of new capac-
ity. In addition, renewables have additional revenue opportunities from production
tax credits, power purchase agreements with large corporate buyers, and portfolio
mandates from state and local governments.

In Figure 5.4 it is clear that this trend is only accelerating as interconnection queues
in North American ISOs are now dominated by renewables and storage [114].

In addition to falling capital costs, these technologies have the common characteristic
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Figure 5.1: Per-watt solar module prices from 1980 - 2022 [51]. The exponential
decrease in cost is sometimes referred to as Swanson’s Law [49].

Figure 5.2: Average lithium-ion battery prices from 2013-2022 in $/kWh [17]. Both
cell and pack costs have enjoyed similar magnitude decreases in unit costs.

in that they fundamentally facilitate decentralization. This contrasts with traditional
generation technologies like gas, oil, nuclear, and coal which require large, megawatt
or gigawatt scale to be logistically and financially viable. In contrast, solar generation
plants can scale from sizes of hundreds of watts to hundreds of megawatts using the
same fundamental components. There are similar dynamics for battery storage and
wind. Despite this however, DERs do face significant challenges in scaling up further
and faster due to the complexities of managing a large number of interconnected
devices. DERs have transitioned to a regime where limits on their proliferation are
determined by control and integration complexity rather than production cost.
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Figure 5.3: Levelized cost of energy (LCOE) in $/kWh for various generation
technologies in the US, 2009-2022 [16]. Onshore wind and utility-scale solar have
the lowest LCOE of any generator types since 2018.

Figure 5.4: US generation capacity additions by generator type, 2000-2023 [129].
Passage of the Investment and Recovery Act in late 2022 has spurred significant
additional capacity additions for renewable and storage in 2023.

5.1 Challenges for scaling DERs
We identify the following key challenges in scaling decentralized DERs: 1) in-
teroperability of DER component technologies; 2) limited capacity in distribution
networks to accommodate distributed generation; 3) limitations in current power
system management practices; 4) lack of revenue opportunities in markets.

The first challenge of making DERs interoperable is mainly related to the diversity
of DERs and the lack of standardization in their data, communication, and control
protocols. Key difficulties are:
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• Heterogeneity: DERs are manufactured by different vendors and targeted
towards diverse end-use applications and customers.

• Communication: Standardized communication protocols for DERs are rapidly
developing but still immature. DERs may use and support of various com-
munication protocols depending on their manufacturer, making it difficult to
integrate them into a single cohesive system.

• Security: DERs are vulnerable to cyber-attacks, and ensuring interoperability
without compromising security can be challenging. Security measures must
be built into the system to ensure that DERs are protected from cyber threats.

• Data: DERs generate large amounts of data, and managing this data can be a
challenge. Data management systems must be in place to ensure that data is
accurate, reliable, and accessible.

The second challenge of integrating large numbers of DERs into distribution grids
arises because distribution systems were not historically engineered to support bi-
directional power flow and numerous, independent power producing devices. Inte-
grating large amounts of DERs into the distribution grid requires significant plan-
ning and coordination across various stakeholders, including utilities, regulators,
and DER providers. Some key obstacles are:

• Power quality: DERs can cause power quality issues such as harmonic dis-
tortion, flicker, and voltage instability (both over and under voltage). These
issues can cause disruptions to sensitive equipment and affect power quality.

• Capacity limitations: The existing infrastructure, such as lines, transformers,
and power protection devices, may have capacity limitations that prevent
the integration of additional DERs. Uncontrolled addition of DERs into
distribution feeders can lead to equipment failures, outages, and increased
cost from upgrading network infrastructure.

• Coordination and control: Integrating large amounts of DERs requires coor-
dination and control of various elements of the power system, including dis-
tribution transformers, switchgear, and protection devices. Advanced control
systems and algorithms must be put in place to ensure efficient and effective
coordination.
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• Regulation: Regulatory barriers such as interconnection standards, net meter-
ing policies, outdated grid access rules, and long wait times for interconnection
hinders the integration of DERs.

The third challenge we identify for integrating large numbers of DERs are the
policies and procedures that system operators (e.g., distribution utilities, facilities
managers) use to plan and operate their systems. The basic problem is that power
systems were not designed with a decentralized architecture in mind. This manifests
itself in the following ways:

• Limited visibility: Traditional control systems have limited visibility into the
performance of DERs, which can make it challenging to manage and control
their output. Without real-time data on the performance of DERs, operators

• Reactive response: Many utilities utilize crude and reactive response measures
to manage DERs, such as reducing output or disconnecting them from the grid.
This can result in their inefficient use and limit their potential benefits to the
grid.

• Lack of communication: Many utilities do not have effective means of real-
time communication with DERs, which can hinder their effective coordina-
tion and control. Scalable and easily deployable communication systems are
needed to help DERs seamlessly into the grid and that their performance is
optimized.

The fourth challenge in scaling DERs are the lack of opportunities for generating
revenue to cover fixed and operating costs and drive investment. In contrast to
traditional bulk generators, DERs typically cannot participate in ISO-run energy or
ancillary services markets. Although there is significant regulatory interest around
this issue and utilities and ISOs are currently studying ways to integrate DERs, they
still must justify their installation costs exclusively based on avoided cost metrics
or fuzzy calculations about the value of reliability. Despite this current state of
affairs, DERs have significant potential to contribute to markets for energy, demand
response, ancillary services, capacity, and carbon.

• Energy Trading: DERs can participate in energy trading markets to sell excess
energy back to the grid or to other participants. This can be achieved through
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virtual power plants, which aggregate small-scale resources to act as a larger
power plant.

• Demand Response: DERs can participate in demand response programs to re-
duce energy consumption during peak demand periods. This can be achieved
through smart thermostats, energy storage systems, and other technologies.

• Ancillary Services: DERs can provide ancillary services such as frequency
regulation, voltage stabilization, fast ramping services, and reactive power
support to the grid. These services are necessary to maintain grid stability
and reliability and the fast-response characteristics of DER inverters are very
well suited to providing ancillary service.

• Capacity Markets: DERs can participate in capacity markets, where they can
earn capacity credits for providing energy during peak load hours. This is
particularly relevant to battery storage.

• Carbon Markets: DERs that generate clean energy or reduce emissions can
participate in carbon markets and earn credits for their contributions to reduc-
ing greenhouse gas emissions.

These market opportunities are likely to grow as more DERs are deployed and as
energy markets become more decentralized and flexible. However, there is an urgent
need for scalable dispatch and control mechanisms to realize the market participation
potential of DERs.

5.2 Layered architecture for DER control
Layered architecture is a technology design paradigm that separates different com-
ponents of a system into distinct layers, each of which has a specific function and
interacts with other layers in a well-defined manner. Each layer provides services to
the layer above it and consumes services from the layer below it. Layered architec-
tures provide several benefits for complex, interconnected technologies including:

• Modularity: Each layer can be developed and tested independently of the
others, making it easier to maintain and update the system over time.

• Scalability: A layered architecture can be designed to scale horizontally, by
adding more instances of a layer, or vertically, by adding more layers to the
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stack. This allows the system to handle increasing amounts of data or traffic
without sacrificing performance.

• Separation of Concerns: A layered architecture separates the concerns of a
system into different layers, each with its own responsibilities. This promotes
a cleaner design and makes it easier to debug and troubleshoot problems.

• Flexibility: Layers can be added, removed, or modified as needed, without
affecting the other layers. This makes it easier to adapt the system to changing
business requirements or technology trends.

• Security: A layered architecture can be designed to provide security at each
layer with clearly-defined access points into each.

In the information technology (IT) sector, layered architectures have facilitated
rapid scaling of innovations with examples that include TCP/IP protocols, open
systems architecture (OSI), and virtualized or cloud computing stacks. In contrast,
the electric power industry has a long history of vertical integration, which is the
ownership and control of different stages in the production and distribution of
electricity by a single company. The origins of this vertical structure can be traced
back to the early days of electrification in the late 19th and early 20th centuries.

The early direct current (DC) power distribution systems championed by the Edison
Illuminating Company, which was the first investor-owned electric utility, owned
and operated the generating stations and the distribution lines to end customers
[60]. Due to the low voltages inherent in this system design, it scaled poorly over
longer transmission distances. The proliferation of alternating current (AC) trans-
mission and distribution systems provided one of the first examples of how layered
architectures enhanced the scalability of electric power. AC power can be easily
and efficiently transformed from low to high voltages and back. This allows for
power networks to be separated into distinct regions with their own operating char-
acteristics and processes. Despite this innovation, the natural monopoly attribute
of electric utilities meant that vertical integration of the power industry persisted
through much of the 20th century.

In an attempt to drive more efficiency in the utility industry and reign in repeated
rate increases, the U.S. government passed the Energy Policy Act of 1992, which led
to the restructuring of the electric power industry and the separation of generation,
transmission, and distribution functions. This resulted in the establishment of
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competitive electricity markets, where generation companies could sell electricity
to load serving entities (e.g., utility companies) as well as other market participants.
These changes spurred investment in new, more efficiency generation technologies
and opened the industry to competition [100].

Despite these advances, the power system is still primarily a relatively small
(∼10,000) set of bulk generators and load centers connected with a transmission
network. Distribution utilities still manage their distribution networks in a central-
ized, top-down fashion. However, this operational paradigm is poorly suited to a
power system comprised of millions of controllable generation and load devices. As
these proliferate due to fast-paced improvements in battery storage, solar modules,
electric vehicles, and thermal electrification, layered architectures have an important
role to play in managing the ballooning complexity and stochasticity of the system.

The main conceptual contribution of this part of the thesis is a layered system
architecture for DERs and microgrids. We will first present this architecture and
then argue for how it addresses the four aforementioned challenges to scaling DERs.

The bottom-most layer of the DER stack consists of the hardware infrastructure. The
top-most layer is a set of applications that the hardware can support. In between
are control and communication layers that link the hardware to the applications. A
schematic of this architecture is presented in Figure 5.5.

The hardware layer includes 1) generation resources such as solar PV and diesel
generators, 2) storage such as electrochemical batteries and thermal storage (hot/cold
water, sand), 3) loads like electric vehicles, heat pumps, and 4) network infrastructure
like transformers, lines, breakers, and switchboards.

The communication layer consists of typical industrial automation protocols such
as Modbus and BACNet, as well as new standards targeted towards DERs from
organizations like SunSpec and OpenADR.

The application layer consists of standard objectives such as utility retail rate op-
timization (e.g., peak shaving, time-of-use, demand charge) and wholesale market
participation (DA and RT energy, frequency regulation, ancillary services) as well as
new market opportunities such as carbon footprint minimization, capacity services,
and utility grid services (power factor correction, voltage correction).

Our main technical contribution in this part of the thesis is the design and
implementation of a data, modeling, and control layer that links the application
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Figure 5.5: DA (dashed line) and optimal RT (solid line) dispatch trajectories for
generators and load over a 24 hour scheduling horizon.

layer with the hardware layer in the DER hourglass. We call this layer the
Microgrid OS.

Within the Microgrid OS layer, shown in Figure 5.6, there are three core strata:
Data, Models & Learning, and Optimization & Control. Each of these strata serves
as the foundation for the one above it.

The Data block in Figure 5.6 consists of:

• Hardware and software interfaces for data collection;

• Timeseries databases;

• Timeseries data cleaning, error detection, and aggregation;
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Figure 5.6: Three core functionalities of the Microgrid OS

• Network asset databases (including GIS data).

Examples of inputs into the Data block are interfaces with power meters, existing
databases of timeseries data, and network assets (e.g., OpenDSS, Cyme) or singleline
diagrams. The output of the Data block is an organized, consistent, relational dataset
where timeseries are linked to specific quantities at specific locations/devices in the
network model.

The Modeling & Learning block in Figure 5.6 consists of:

• Network and component model schema;

• Statistical timeseries models

• Data-derived network models

• Thermal building models

• End-user behavior models

Examples of the the models contained in the Models and Learning block are both
first-principles models, such as the admittance matrices for power networks and heat
transfer differential equations describing thermal systems, in addition to models
learned from data, examples of which include statistical forecasts of timeseries
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and predictive models for end-user behavior (e.g., EV charging arrival processes,
building usage).

Finally, the Optimization and Control block leverages the models and data below to
pose optimal control problems for planning and operating aggregations of DERs. In
Chapter 8, we present several examples of such problems that we have explored in
real-world systems, including optimal sizing of energy storage systems for reliabil-
ity, microgrid co-design in electricity markets, and optimal battery placement and
operation for voltage support in distribution networks.

The Microgrid OS and the Data-Models-Optimization paradigm in particular ad-
dress the four challenges to scaling DERs presented at the outset of this part of the
thesis. Interoperability of DERs is advanced by isolating interaction with hardware
assets to a set of interfaces (i.e., APIs) which translate data and control signals into
a common format within the Microgrid OS independent of the particular DER be-
ing interfaced with. The limited capacity of distribution networks to accommodate
DERs is mitigated by the network models that are core to the Microgrid OS. These
network models are prerequisites for accurate powerflow simulations and real-time
state estimation algorithms, which allow planners to identify opportunities for DER
expansion in their systems (e.g., hosting capacity) and enable operators to control
DERs to respect physical constraints in the system. Limitations in current power
system control practices often derive from a lack of visibility into the system in
real time and incomplete knoweldge about the infrastructure that is being managed.
By centralizing and coupling multiple different data types (e.g., timeseries data,
assets databases, singleline diagrams) into a single, cohesive models, operators gain
situational awareness over their systems and can take decisions in an informed,
data-driven manner. Finally, the Microgrid OS provides the technical capabilities of
communication and control for complex systems of DERs (e.g., campus microgrids)
to be able to participate in utility and ISO market programs. Grid operators need
to be able to both send dispatch signals to DERs (or aggregations of them) and
receive telemetry validating that the resources produced or consumed as scheduled.
The Microgrid OS provides a single portal for operators to communicate with and
dispatch of DERs by translating grid signals into operational setpoints for each
resource.
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5.3 The Caltech Microgrid Testbed
The design principles for the Microgrid OS are general to any low-voltage distri-
bution system, from single buildings up to large, multi-phase distribution systems
with thousands of customer endpoints. However, the microgrid on the Caltech
campus has presented an ideal testbed for understanding challenges in workplace
decarbonization and for the testing of new technologies to overcome them. Despite
Caltech’s small size, its energy infrastructure is large and complex (see Figure 5.7.
The electricity, heating, and cooling needs correspond to those of ∼20,000 people
in California. In 2020, Caltech consumed 108,934 MWh of electricity with a peak
demand of about 19.2MW.In recent years, we have produced ∼100% of our elec-
tricity onsite on an annual basis. The main generation resources on campus are a
12.5MW gas co-generation plant, 4MW of fuel cells (Bloom Energy), and 2MW of
rooftop solar panels distributed across 15 arrays.

Figure 5.7: Map of Caltech Microgrid power generation assets. Source: 2020
Caltech Facilities Master Plan

The greenhouse gas (GHG) emissions have been rising steadily until Caltech’s
implementation of a Climate Action Plan, starting in 2008, to reduce its annual GHG
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emissions. It has been tracking its yearly targets till about 2015. In 2020, Caltech
emitted 64,517 mTCO2e against the Climate Action Goal of 51,000 mTCO2e. Of
this emission, 92% is due to electric, heating and cooling loads on campus, including
both Scope 1 and Scope 2 emissions

The Caltech campus has approximately 120 buildings connecting by a 2.4kV dis-
tribution network. Transformers in each building convert this voltage to 480V or
208Y/120V services for distribution to electrial panels within the buildings. There
are four substations that connect to 3 17kV feeders from the utility grid. Within
the Central Utility Plant on campus, there is also a 4.16kV service connect to large
HVAC chillers and the cogen plant.

In the remaining chapters in this part of the thesis, we present further details of
the Microgrid OS through a set of related implementation projects on the Caltech
campus. These projects retain a focus on the data acquisition and system modeling
components of the architecture, as these functions are a main obstacle to successful
deployment of DERs at scale and to applying advanced control methodologies in
practice.
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C h a p t e r 6

DATA: METER CALTECH

This chapter of the thesis presents a deployment project at Caltech to collect real-
time, reliable, and granular data on the operation of the campus energy system. This
project has unfolded in several phases. The first phase (Section 6.1) consisted of
interfacing with and integrating the existing building management system (BMS)
database that Caltech Facilities manages with the Microgrid OS. The second, ongo-
ing phase involves (Sections 6.2-6.3) installing high-resolution smart meters on all
of significant load and generation assets around campus, for the purpose of collect-
ing both phase and magnitude data on electricity injections and line flows. The third
phase (Section 6.4) involves building a network model for the electric microgrid,
translating individual electric singleline diagrams and assorted asset databases into a
coherent, system-wide network model that enables graph analysis and optimization.

6.1 Building Management System Data
Caltech has a building management system built on top of Niagara’s Tridium frame-
work. The system consists of a network of jaces, each of which aggregates a set of
sensors and actuators connected serially. The two communication protocols used in
the system are Modbus (both serial and TCP/IP) and BACNet. The data from the
jaces is aggregated in a centralized “Histories” repository where each data register is
recorded in a separate .csv timeseries file. In total, there are approximately 85,000
timerseries in the database with date timestamps ranging from 2015 to the present.

The baseline granularity of the data is 15 min average values, although a small
number of sensors have higher/lower resolution. The datapoints we focused on
corresponded to electric meters, hot/cold water meters, and building temperature
sensors. The values recorded for electric meters are (typically):

• Phase-to-phase voltage RMS magnitudes (V)

• Phase current RMS magnitudes (A)

• Power factor averaged across 3 phases

• Total 3-phase real power (kW)
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• Total 3-phase energy (kWh)

• Total 3-phase reactive power(kVar)

• Total 3-phase apparent power (kVA)

Notably the model of meter most prevalent in the Caltech network, Schneider
Electric’s PM800 series, does not compute the per-phase power factor. In addition,
there is significant variation from meter to meter in which of the above quantities
are included and how they are labeled.

The hot/cold water meters typically measure the following quantities:

• Supply temperature (◦F)

• Return temperature (◦F)

• Flow rate(gallons/min)

Temperature sensors collect air temperatures in ◦F inside of individual rooms or
building zones.

The first challenge in making sense of the BMS data was identifying which se-
ries corresponded to which building and which specific physical elements they
were measuring. Due to incomplete record keeping, it was not possible to do this
thoroughly. Naming conventions are used inconsistently through the data and the
jace-to-building mapping (which would at least allow one to physically locate a
sensor within a particular building) is not one-to-one. Although we were able to
identify the locations of most electrical meters by manually cross-checking with the
single-line diagrams, there is no equivalent set of diagrams for the hot/cold water
distribution loops and therefore we were only able to associate water meters, at best,
with a particular building.

A second challenge in making use of the BMS data is its poor quality and com-
pleteness. Of the series present in the histories database, at least 25% have no data
as shown in Figure 6.1. Missing chunks of data are common and data errors are
frequent. These data errors stem from multiple causes including Modbus configu-
rations issues, sensor configuration errors, and communication network outages. In
addition, data is not well maintained in the BMS database. Figure 6.2 shows that at
various points the size of the BMS database decreases, indicating mass data losses.
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This makes it clear that while data may be collected, it is not retained over time for
analysis.

Figure 6.1: BMS timeseries with the percentage on the horizontal axis indicating
the proportion of data present, based on a 15-minute time resolution. Horizontal
axis values larger than 100% correspond to series with a sub 15-minute resolution.

Figure 6.2: Number of timeseries in the BMS database vs. time. Sudden decreases
in the data correspond to episodes where data was deleted or lost.

One common data corruption mode is shown in Figures 6.3a and 6.3b, where un-
physical values of approximately 65,000 are interspersed with actual data points.
We believe this is due to a register configuration error in the data processing pipeline
but it was not feasible to locate and correct any of the errors of this type due to
the complexity and inaccessibility of the configuration settings. In addition, the
real and reactive power values shown in Figures 6.3(a) and 6.3(b) are not physically
consistent with the apparent power magnitude in Figure 6.3(c), leading to a lack of
confidence in the accuracy of the recorded values.1

1In our conversations with Caltech Facilities analysts and engineers, skepticism about the validity
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(a) kW

(b) kVar

(c) kVA

Figure 6.3: 5-min resolution kW, kVar, and kVA data from a meter in Annenberg
Center, April - May 2021. Non-physical values for active and reactive power suggest
sensor, communication, or database configuration errors within the BMS.

A third challenge, pertaining particularly to the electric meter data, is its crude
resolution. In the time domain, data are averaged over 15 minutes. In the data
domain, values are rounded to the nearest whole number for many registers (e.g.,
voltage) and are averages across phases (e.g., power factor). For the downstream
tasks we seek to use this data for, such as power factor correction or phase balancing,
the data does not have sufficiently granularity. Compounding this is the significant
lag from real-time in updating the database. Data streams in from the sensors in
the network unpredictably and there can be a lag of several hours from when a
measurement is taken and when it is recorded in the database.

of BMS data is a common theme. They report not relying on BMS data at all, due to the frequency
of obvious errors and gaps.
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Despite these shortcomings, the BMS data are the most complete dataset available
for energy use on campus. We implemented an API that would allow us to scrape
new (as well as historical) data via HTTP get requests from the BMS database
every 15 minutes. We implemented functionality to efficiently interleave incoming
timeseries segments with our existing record, which was necessary given the multi-
hour, unpredictable lag in BMS updates. This database provides the most complete
record available of the thermal and electrical energy use on the Caltech campus.
However, for the aforementioned reasons, dataset was not sufficiently granular,
reliable, or complete to perform real-time monitoring and control. To address these
shortcomings we embarked on a project, discussed in the next section, to install
higher-resolution metering hardware and implement robust data processing pipeline
to collect data from these meters in a consistent, organized manner.

6.2 Smart Meter Installation
In collaboration with Caltech Facilities Department, we have been deploying eGauge-
brand smart meters to measure building load switchboards and DERs through the
campus. The goal of the Meter Caltech project is to install meters on all of the
building loads and distributed generation sources in the campus microgrid. This
would correspond to approximately 120 - 150 individual meters.

The meter hardware we selected for the project is manufactured by eGauge Metering
Systems. Their EG4015 series meter, shown in Figure 6.4, accomodates 15 current
transformer (CT) inputs and can measure one set of 4-phase (ABCN) voltages up to
480V phase-to-phase. Measurements on all channels are recorded in the device’s
onboard memory every second. The onboard data can be accessed by a HTTP-based
API over an Ethernet connection. Time stamping of measurements is implemented
with Network Time Protocol (NTP). By working with Egauge engineers over the
course of this project, we were able to introduce support for Precision Time Pro-
tocol (PTP) in the firmware for significantly enhanced precision in measurement
alignment. (This will be discussed in further detail in Section 6.3.) The meter’s
oscilloscope function allows snapshots of waveforms on any channel to be recorded.
The device’s internal clock has a resolution of 1 microsecond and in practice, we
observed that datapoints are sampled on each channel approximately every 400 mi-
croseconds, corresponding to a sampling frequency of 2.5kHz. This is sufficient to
resolve harmonics up to 1.25kHz.

The installations of the meters themselves in switchboards called for careful ac-
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Figure 6.4: Egauge meter Model EG4015 has inputs for 15 CTs and 4 voltage
connections for 480V phase-to-phase.

counting during the installation process of what physical elements (i.e., conductors
and buses) were being instrumented with CTs and voltage taps. One of the short-
comings in the BMS dataset that necessitated the smart metering deployment in the
first place was poor accounting during the commissioning process of what physical
components measurements actually corresponded to. For each placement of a CT or
voltage tap, we tracked precisely which physical element in the network model (see
Section 6.4) the sensor was being associated with. This detailed accounting during
the installation phase was crucial to realizing the value of accurate measurements
later on.

Given the magnitude of the metering deployment undertaking, the project is being
implemented in three phases: (0) an initial test phase in a single building (Annenberg
Center) to validate the suitability of the meter hardware and measurement quality; (1)
a deployment of an additional 20 meters in the self-contained subnetwork connected
to one of the campus substations; (2) complete metering of the remainder of campus
injections.

Phase 0: Annenberg Center
Phase 0 of Meter Caltech consisted of installing two Egauge meters on the two
main switchboards in Annenberg Center. The goals of this initial phase were
1) to understand the procedures required to install meters and CTs on building
switchboards 2) to validate that the Egauge meters could record high-resolution,
real-time electrical data 3) to confirm that we could communicate with the meters
over the campus data network and stream data from the meters to our database server
in real time.
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As indicated in Figure 6.5, Annenberg Center is fed by two independent 2.4kV
feeders from Substation 2. The medium-voltage feeders are transformed down to
480V L-L and terminate in two main switchboards, which are not connected by any
tie circuit breaker as is commonly the case in other buildings. Main switchboard A
(MSA) feeds the building load and main switchboard B (MSB) supplies power to a
data center. There is a 56kW rooftop PV array that feeds the main busbar of MSA.

Figure 6.5: Annenberg Center single-line diagram. The solar PV (SPV) connects
to MSA. The black and grey incoming feeders link the buildings to Substation 2.

Figure 6.6 provides more detail on which breakers within the MSA and MSB panels
we installed CTs. On each of the switchboards, we obtained a voltage reference from
the three main busbars. We then measured the current flows in the main busbars
with rope CTs on each phase and and additional four of 3-phase circuits feeding the
main busbars with split-core CTs on each phase. This redundant sensor arrangement
allowed us to validate and quantify the current measurement accuracy at the busbar
node with Kirchhoff’s Current Law.

CT capacities were sized to the ampacity of the circuit breaker for the feed being
measured. 16" Rogowksi coil CTs manufactured by Accuenergy were used on the
main busbars (see Figure 6.7) and 200-400A revenue-grade split-core CTs manu-
factured by Continental Control Systems were used on the other lines. The CTs
guarantee measurement error of less than 1% for current magnitudes and less than
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Figure 6.6: Schematic for installing meters on Annenberg Center MSA and MSB. CT
connections are shown in blue and voltage connections are purple. The meters are
protected by a small 20A breaker installed in a spare breaker slot in the switchboard
or directly in the meter housing.

1◦ for phase angles.

Figure 6.7: 1600A Rogowksi coil CTs (orange loops) on the main lines feeding the
busbars of MSB in Annenberg.

Voltage references were obtained either via the protection breaker in a spare slot in
the switchboard or tapping directly into the copper busbars (Figure 6.8.

Each meter was enclosed in a polycarbonate case and connected to the switch-
board via steel electrical conduit with separate pipes for high-voltage wiring and
low-voltage wiring (Figure 6.9(a)). A small 20A breaker was installed inside the
enclosure to protect the meter (Figure 6.9(b)). The meter itself is powered directly
from the voltage taps and draws a negligible amount of power (max. ∼ 12W).
Network connectivity was obtained via a Cat6e Ethernet connection directly to a
Caltech campus network patch panel.

Following successful installation of the two meters in Phase 0 and initial validation
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Figure 6.8: Installation of voltage taps via a 20A breaker in the main busbars of
Annenberg Center main switchboard MSA.

of the data, we proceeded to Phase 1. The data collected in Phase 0 will be discussed
in detail in Section 6.3.

Phase 1: Substation 3 Subnetwork
Phase 1 of the metering project consisted of installing an additional 20 eGauge
meters on the sub-network of the Caltech campus microgrid serviced by Substation
3. This sub-network consists of 6 buildings, 2 solar arrays, 5 Bloom Energy natural
gas fuel cells, 1 electrical substation, 1 EV charging array, and 3 grid interconnection
points to the 17kV PWP distribution feeders. The buildings served by this substation
are among the largest and most power-intensive on the campus and also had very
poor data quality in the BMS, thus making this subnetwork a high-priority for
metering. The redundant topologies of their switchgear (A and B main breakers
connected by an open Tie breaker) often required that two meters be installed in
every building, each with its own voltage reference. In addition, the injections from
the PV and fuel cell DERs in the subnetwork are not measured and collected in the
BMS, thus enabling the metering coverage from Phase 1 to fill gaps in the existing
Caltech Facilities dataset.

The singleline diagram for Substation 3 sub-network is shown in Figure 6.10 with
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(a) Meter enclosure (right) mounted on the
wall and connected via electrical conduits to

the main switchboard (left)

(b) Inside the eGauge meter enclosure.
Power/voltage connections are on the left

side of the device and CT sensor connections
are on the underside. The enclosure chassis
is grounded to the switchboard ground bar.

Figure 6.9: eGauge meter enclosure installed on the MSB main switchboard in
Annenberg Center.

red stars showing the rough placement of the eGauge meters. To meter the medium-
voltage 17kV lines in the substation itself, we used the existing control power
transformers installed in the substation switchgear. Our strategy was to place 5A
Continental Control Systems CTs on the existing current loops and to multiply our
readings by the turns ratio of the already-installed control power transformers. We
validated that this approach provided sufficient accuracy in Phase 0. We compared
measurements from existing current loops of the CTs mounted within the Annenberg
Center MSA switchboard with direct measurements from Rogowksi coil CTs on the
main busbars. Errors between the two signals were no larger than sensor noise
(< 1%).

Due to the large number of meters that were installed in the Substation 3 network,
we collaborated with Caltech campus information security (IMSS) to deploy a
dedicated virtual local area network (VLAN) for the meters and our data storage
server. This VLAN enables secure communication with the meters and protects our
data collection infrastructure. As of the writing of this thesis, Phase 1 is complete
with all 20 meters having been installed and commissioned.

Phase 2: Remainder of campus network
The remaining phase of Meter Caltech consists replicating what we did in Phases 0
& 1 in the remainder of the campus microgrid. This involves installing an additional
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Figure 6.10: Singleline diagram of the Substation 3 sub-network with eGauge meter
locations indicated by red stars.

100-120 meters. We will prioritize placing meters in the following locations:

• Remaining substations 1, 2 & 4 (including all PWP grid interconnection
points);

• Central Plant and Satellite Plant generation assets and chilled water loads;

• Remaining Bloom Energy fuel cells (∼2MW);

• Buildings and parking structures with rooftop PV arrays.

This prioritization allows us to fill urgent gaps in our timeseries dataset for the cam-
pus DERs and incoming grid power connections. Once these priorities are complete,
which will require approximately 50 additional meters, we plan to complete the me-
tering of the remaining building switchboards. For these building meters, we will
explore using meters from different manufacturers (the Microgrid OS is hardware
agnostic) and experiment with methods to make the installation and commissioning
processes smoother and more scalable.
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6.3 Smart Meter Data
The principal rationale for installing our own metering infrastructure was to obtain
reliable, comprehensive electrical data for all of the power injection (generation and
load) sources in the network. In particular, the quantities are collecting are:

• Per-phase current RMS magnitudes and phase angles;

• Phase-to-neutral (or phase-to-phase) voltage RMS magnitudes and phase an-
gles;

• Per-phase power factor;

• Per-phase real and reactive power injections (where possible).

Note that the phase angles are all with respect to an onboard reference for each meter
(typically the 𝐿1 channel, which corresponds to phase A voltage 𝑉𝑎).

An example of the total three-phase mains power data from Annenberg MSA is
shown in Figure 6.11.

Figure 6.11: Total 3-phase power on Annenberg MSA switchboard. The upper
green curve is the power generated by the rooftop PV array and red curve is the
aggregate building load.

The waveform capture function of the eGauge smart meter allows current and voltage
signals to be recorded in the time domain over short durations. An example of this
data is shown in Figure 6.12. As would be expected, the voltage waveforms are
corrupted by very little noise and maintain a consistent 120◦ offset between the
phases. On the other hand, the current waveforms have significant distortion and
fluctuate rapidly in response to changes in building load.
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Figure 6.12: Waveform capture data for a 0.35 second window. The horizontal axis
are Unix Epoch timestamps.

Using the eGauge Python API, we collect magnitudes and angles every second in
our timeseries database as well as 1-second-long waveform captures every 5 seconds
for all current and voltage channels.

Phasor data synchronization
One of our principal objectives in installing the eGauge meters was to implement
them as a low-cost phasor measurement units (PMUs). This capability is not
present in standard revenue power meters such as the Schneider Electric PM800
that is prevalent in the Caltech system. A PMU’s main function is to record phasors
in different locations in the network with respect to a common time reference
(schematic in Figure 6.13). For high-quality PMUs, this tight time synchronization
is accomplished using a GPS signal. In our case, we conducted experiments to
understand whether standard internet timekeeping protocols Network Time Protocol
(NTP) and Precision Time Protocol (PTP) could provide sufficient accuracy.

In order to limit measurement errors due to meter synchronization to less than 1◦ (or
0.28%), it is necessary to have measurement timestamps aligned with an accuracy
of less than 0.1 milliseconds (ms). To validate that this was possible, we conducted
the following experiment. We sent 150 repeated 0.25-second long capture requests
every 1 second to the L3 channels(𝐶-phase voltage) of two eGauge meters in the
Chen Neuroscience building. The signals were recorded simultaneously on both
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Figure 6.13: Schematic of phase offsets between meters in different locations within
the electrical network, synchronized via network time servers.

meters and phase angles were calculated using the Fast Fourier Transform method.
Given the stability of the voltage waveforms, we observed in separate experiments
on the same device that the phase of any given waveform would drift negligibly over
the period of several minutes. We then sought to observe the distribution of phase
offsets between the signals on the different meters over the measurement window.
To obtain sufficient measurement accuracy, it was necessary to have high-precision
measurements over the 2.5-minute capture window in the form of small variance of
the phase offset distribution. Our results are shown in Figure 6.14. The variance
of the distribution we observe is 0.1 degrees, which suggests phase alignment at or
below the tolerance required on average. This was both the case when timestamps
were provided via PTP and when NTP was used (although in this case, the server
polling interval needed to be quite small, otherwise the drift of the internal meter
clocks would be unacceptably large). The initial synchronization experiments have
been promising and we continue to conduct further tests to validate the reliability
of the synchrophasor measurements for the other meters in the network and under
various communication network loading conditions.

With sufficient time synchronization accuracy, a network of eGauges, such as the
one we have installed in the Substation 3 subnetwork, produce a set of synchropha-
sors. This kind of data has many critical downstream use cases, such as harmonic
disturbance detection and algorithmic power system state estimation (see for exam-
ple the author’s work in [123, 77]. Despite its utility, our dataset is the first of its
kind (as far as the author is aware) due to the expense of traditional PMU hardware
deployment. In typical use cases in low-voltage systems, a small number of PMUs
(costing $10,000+ each) are deployed temporarily in network feeders to collect data
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Figure 6.14: Distribution of phase offsets of the 𝐶-phase voltages of two meters in
the Chen Neuroscience building. The meters are measuring voltages on different
buses, leading to the average 11 degree phase difference between the signals. The
small variance of the measurement distribution suggests accurate meter timestamp
alignment.

on suspected power quality issues. In our deployment, data is collected continu-
ously from our meters whose total installed cost is approximately $5,000 ($1500 for
hardware, $3500 for installation). The dramatically lower cost of our hardware and
the permanent installation of the meters on switchboards allow us to build a dataset
that is novel for distribution networks.

6.4 Network Components and Connectivity
Along with the timeseries data discussed in the previous sections of this chapter,
the other main data type in our models is network assets and their connectivity.
The principal way of storing this data in practice is in set of electrical diagrams
called single-line diagrams. A single-line diagram is a simplified network drawing
that represents the electrical connections and components of a power system or
electrical distribution system in a single line format. It is a basic representation of
the system that uses symbols to represent the major components, such as generators,
transformers, circuit breakers, switches, and loads, and their connections.

The purpose of a single-line diagram is to provide a clear, concise overview of
the power system or distribution system, showing the flow of electrical power from
the source to the loads, and the protection and control devices used to manage the
flow of power. The diagram does not provide detailed information on the physical
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layout or specific details of the components, but rather presents a simplified view
of the system for ease of understanding. Thus the single-line diagram is both a
form of asset database and and network configuration diagram. In practice, these
diagrams are the most reliable and oftentimes only record of the electrical system
configuration. Single-line diagrams are generated using CAD software but are then
converted to pdf images or printed out and stored (see an example in Figure 6.10).
Because of their data format, singleline diagrams are challenging to maintain as the
network configuration evolves over time and therefore, the actual system state can
be significantly different than what is contained in the diagrams.

The task for this part of the data pipeline was converting the single-line diagrams
from images to computer-parsable network models which can be more easily main-
tained and updated. We followed several steps to complete this task. First was
manual annotation of a set of single-line diagrams of the Caltech network. Second
was defining a set of component models for the elements in the system. Third was
translating the manual annotations into a structured element schema with consistent
naming and tagging of elements. Finally, we discuss ongoing work on automated
methods for parsing the single-line diagrams.

Manual annotation
Our single-line diagram dataset for the Caltech microgrid consists of seven separate
diagrams that cover the four substations, Central and Satellite plants, and connecting
medium voltage lines. The diagrams include all elements down to the main switch-
boards (480V or 208V level) in each building. We focused on two tasks for the
annotations: 1) identifying the set of elements present in the system and 2) defining
a name for each element. This process was highly tedious and took a team of 4
people several months to accomplish (see Figure 6.15 for an example of a single
building). Lessons learned motivated us to pursue automated methods for parsing
the diagrams.

Component models and model schema
Using our learning from the manual annotation process, as well as conventions from
standard distribution system modeling packages such as OpenDSS [103], we defined
a core set of power system components that spanned the following categories:

• Electrical system components (e.g., buses, lines, transformers, breakers, fuses)

• Generation and load sources (e.g., generators, PV, batteries, motors, loads)
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Figure 6.15: Annotated single-line diagram for Keck Lab

• Aggregations of components (e.g., switchboards, panels, buildings)

These components were formalized into a defined json object schema and all of
the elements in the Caltech diagrams were manually written into a set of json files.
Consistent naming and a formal schema allowed network structure and connectivity
to be coded into the definition of the elements. For example, the from-bus and to-bus
of a line element are linked by unique name strings to their bus objects which are
defined elsewhere in the json file. The json schema is useful for formalizing the
attributes of each component and introducing basic type checking and formatting
constraints. An example of an object definition for a PV array is shown in Figure
6.16

Automated object detection
Due to the structured form of the single-line diagrams and the tedious, time-
consuming process of manually annotating and converting them, we are currently
exploring methods to accelerate the process using annotation tools and computer
vision techniques.

One thrust of our approach is using computer vision methods such as template
filtering and convolutional neural networks to perform object recognition on the
model elements present in singleline diagrams. A second thrust is an human-in-the-
loop annotation pipeline to correct errors in the automatically detected objects and
to refine the model definition using expert input. These components interact with
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Figure 6.16: json schema object for a PV array.

each other to leverage the scalability of computer vision algorithms while retaining
the flexibility of human annotation. Figure 6.17 shows a flowchart of the detection-
annotation-model software pipeline currently being developed. The input into the
pipeline is a single-line diagram image and the output is a set of model json files.

Figure 6.17: Flowchart for human-in-the-loop single-line diagram annotation
pipeline.

Thus far, we have developed the annotation tool and are using it to build a labeled
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dataset that can be used to train and evaluate object detection methods. However, just
on its own, the annotation tool speeds up the human annotation process by greater
than 20x, reducing the author’s time to annotate a building’s singleline diagram
from 6 hours to 20 minutes. The interface we have developed is shown in Figure
6.18.

Figure 6.18: Human-in-the-loop annotation tool for single-line diagrams. The
model schema is an input into the tool, limiting the available elements the annotator
may select from to elements in the model.

By inserting algorithmic enhancements such as text recognition and object recogni-
tion into the annotation pipeline, we seek to reduce the need for human annotation
to near-zero and provide a completely automated method for producing reliable,
labeled computer-readable network models.
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C h a p t e r 7

MICROGRID DIGITAL TWIN

This chapter presents the software system we have designed and built to integrate
timeseries and network data into a cohesive digital model of the energy system.
Building on top of the timeseries and network model data discussed in Chapter 6,
the Digital Twin provides a multi-scale model—from component to system level—of
the energy system. Again, although the initial design and deployment of the Digital
Twin was done in the Caltech system, the software is generic to any distribution
system and we intend to deploy it to other campuses in the near future.

The inputs to the Digital Twin platform are data sources; specifically, timeseries and
network model files. The output of the platform is a cohesive, integrated system
model that users can interact with, visualize, and optimize. To achieve this, we have
implemented and are continuing to develop the following key functional blocks:

1. Data interfaces;

2. Data processing modules

3. Data integration

4. Model learning

5. Visualization & interaction.

The high-level interactions between these blocks are illustrated in Figure 7.1.

The data interfaces allow any measurement device to stream data into the Digital
Twin timeseries database. The data processing modules perform error detection,
cleaning, and organizing of the ingested data. Data integration combines data from
different sources (e.g., different types of meters, network models, GIS data) and
combines them into a single, relational database with consistent data conventions.
Model learning learns patterns or parameters of the existing data; examples include
applications timeseries forecasting and line admittance estimation. Visualization is
a user-facing interface that allows planners and operators to explore the real-time
and historical states of the entire energy system.
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Figure 7.1: Digital Twin system architecture diagram

Implementation details of the Digital Twin are not the focus of this chapter. Nonethe-
less, implementing the system described here is a major software development effort.
Figure 7.2 shows a block diagram of the compute, data storage, and and software
modules that comprise our prototype production environment. We are leveraging
virtualized computing (VMWare) for data processing and web hosting, an onsite
network attached storage system (NAS) for timeseries data storage, and Amazon
Web Services (AWS) S3 storage for archival data storage. Our codebase is mostly
Python, with the front end dashboard based on the Dash and Plotly frameworks.
Timeseries are stored in organized directories of csv and parquet files.

The Digital Twin platform is designed to be extensible and modular, with a base data
model easily supporting the addition of new functionality. The work presented in
this thesis does not represent an end point of its development and a team of software
engineers and graduate students continues to develop it actively. In the rest of this
chapter, we will discuss our work so far in each of the five functional blocks listed
above.

7.1 Data interfaces
Data interfaces are a set of APIs that communicate with databases and hardware.
Each of these APIs need to be customized to the particular requirements of the asset
it interfaces. However, the output of each API, regardless of its input, produces data
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Figure 7.2: Digital Twin software system architecture block diagram.

in a consistent format internal to the Digital Twin.

We first implemented an HTTP-based API to collect time series data at regular
15-min intervals from the Caltech building management system Histories database
(Niagara Iridium framework). Implementation challenges involved automated cre-
dential authentication and parsing of the native BMS data format.

We then implemented APIs for Egauge meters in a similar fashion, although rather
than a single database interface, each smart meter required individual authentication
and data pull requests. We are in the process of building similar APIs for other smart
meter brands.

APIs for hardware control are also under development. To control DERs such as
battery storage systems, we are designing and implementing Modbus TCP-based
interfaces to be able to read register tables and write setpoints to them.

7.2 Data Processing
The data processing functionality of the Digital Twin ingests the raw timeseries
data and subsequently cleans, transforms, and analyzes it make to make it suitable
for monitoring, analysis, and control. This automated data correction pipeline is
necessary to make the data from meters and single-line diagrams useful in real time.
Some of the capabilities we have implemented are

• Data cleaning: identifying and correcting errors, outliers, or missing data
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points in the timeseries data through interpolation and resampling;

• Pattern recognition: grouping similar timeseries data based on their charac-
teristics, such as their patterns, trends, or seasonality;

• Anomaly detection: identifying unusual patterns, events, or outliers in the
timeseries data that deviate from the normal behavior of the system;

• Data transformation: converting or rescaling timeseries data into useful for-
mats. Examples include normalization, aggregation, and unit transformations;

• Physics-based checks: applying physical sanity checks on the data (e.g., power
factor magnitudes must be less than 1 and must be consistent with real and
reactive power magnitudes).

An example of our anomaly and pattern detection implementation is displayed in
Figure 7.3. We use the autocorrelation of the signal to infer the presence of seasonal
patterns and thresholds tuned on the data to identify likely outliers or missing data.

Figure 7.3: Detection of daily seasonality (blue) and outliers/missing data (green)
in a power (kW) timeseries for a Caltech building.

7.3 Data integration
The motivating principle of the Digital Twin platform is to synthesize the heteroge-
neous data produced by and related to energy systems into a cohesive system model.
One of the critical steps in accomplishing this is integrating data of diverse types
from diverse sources. These types include

• Timeseries data (e.g., meter data, weather data);

• Geographic (GIS) location data;

• Electrical network diagram image files;
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• Tabular asset databases (e.g., excel files).

Additional data sources that we have worked thus far are power system models in
standard formats (e.g., OpenDSS, Cyme, Powerworld, MatPower).

The key to having all of these data sources “talk” to each other is to perform
semantic indexing. Semantic indexing is the process of associated a single, internally
consistent set of names (or keys) with all of the data objects. This key set can then
be used to link data objects with each other in an automated fashion.

In our model, the hub of the semantic indexing system is the network model intro-
duced in Section 6.4. This model leverages the grammar of json Schema to define
element, data and object types and serves as the single source of truth of object
naming. Any data source that joins the platform’s database must first be specified
and labeled in the network model schema. The use of a file schema enables easy
application of units tests to each new element (to check correctness) and to the
entire network model (to validate semantic consistency across elements). Further,
it allows the model itself to be stored and distributed in a human-readable and
widely-supported json format.

For an example, the timeseries data representing the power production of the PV
array shown in Figure 6.16 would have a label linking it to the (unique) name of this
PV array in the json files. Although seemingly trivial, implementing a consistent
set of labels is the single most important step in data integration. In our real-world
experience in power systems, poor or inconsistent labeling is the largest painpoint
in building high-quality models.

The process of funneling raw data into a single set of semantic labels is non-trivial
and its exact requirements will depend on the project or application. Defining a
network model for a set of computerized, well-labeled databases is a straightforward,
computer-based data parsing task. When the data are unorganized, not digitized, or
poorly maintained, some degree of manual annotation is unavoidable.

For the Caltech microgrid deployment of the Digital Twin, we have combined manual
and automated annotation to merge the following sets of data into our model:

• 15-minute electrical and thermal timeseries data from the BMS

• 15-minute historical timeseries data on DER generation from Excel files
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• 1-second electrical timeseries data from eGauge smart meters (includes mag-
nitudes and waveform/phasor data)

• GIS building data from Open Street Map [104]

• Manually annotated building and DER GIS data

• Paper and pdf single-line diagrams

• csv files of building-to-meter mappings and DER inventories

Based on the learning from this data integration process, we have begun imple-
menting some human-in-the-loop (HIL) tools to speed up human annotation where
necessary (see Section 6.4 for more detail). It is our observation that HIL tools can
offer over 10-100x speedups in certain tasks that are not yet amenable to end-to-end
automation (e.g., network diagram parsing). Further development of the Digital
Twin will focus on developing more of these tool modules in the data interface and
data processing layers. In particular, we will prioritize 1) tools to annotate and name
the elements in the network model and 2) APIs to connect with DERs and sensors
that support the Modbus protocol. The Modbus protocol is nearly universally sup-
ported in industrial automation and IoT applications and will allow the Digital Twin
to scalably connect to a wide range of DERs.

7.4 Models from data
Building upon the preceding data processing and assimilation steps described thus
far, we apply learning and inference techniques to derive additional structure and
insight into the network model. The particular learning methods depend on the
downstream applications. In this section, we discuss two particular applications that
are the focus of ongoing research or software development: timeseries forecasting
and topology/parameter estimation.

Example: timeseries forecasting
Time series forecasting is the process of predicting future values of a time series
based on its past behavior and possibly a set of contemporaneous covariates. A time
series is a sequence of data points recorded over time, typically at regular intervals,
such as hourly, daily, weekly, or monthly. Timeseries forecasting is a core task in
planning, operating, and analyzing energy systems with the main applications being
load forecasting and renewable energy production forecasting. Applications that are
market facing involve forecasting of electricity prices.
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Timeseries forecasting methods generally fall into two categories: point forecasts
and probabilistic forecasts. A point forecast is the forecaster’s single best prediction
of the variable of interest at some point in the future. In the probabilistic setting,
the variable of interest is modeled as a random variable and a probabilistic forecast
takes the form of a predictive distribution over future outcomes. The Digital Twin
software architecture supports any forecasting algorithm that accommodates the
input/output formats of the API.

Figure 7.4 displays our implementation of an autoregressive ARIMA point forecast-
ing algorithm on the aggregate Caltech campus chilled water production. Using
weather forecasts as covariates, we are able to forecast the series accurately up to
seven days in advance.

Figure 7.4: Point forecast of Caltech’s campus chilled water load. An ARIMA
variant, SARIMAX, uses weather forecasts as covariates and accounts for strong
daily seasonality in the timeseries.

Probabilistic methods for energy forecasting are the objects of increasing interest
in the research literature and are being called for by operators who are in need of
quantifying uncertainty in forecasts of key system parameters. The author’s recent
work on hierarchical probabilistic forecasting using deep autoregressive forecasting
methods established the state-of-art performance in this task, which is particularly
suited to the structured setting of energy forecasting [113]. We are currently working
to integrate probabilistic forecasts into the Digital Twin data processing pipeline.

Example: topology and parameter state estimation
Even when singleline diagrams of the electrical system are available, the difficultly
in maintaining them over time typically results in the electrical topology being quite
different in reality from what the diagrams suggest. Research in the last decade
on the problem of topology and parameter estimation from data has resulted in
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numerous algorithms for recovering the network state from current, voltage, and
power state measurements.1

We are developing several algorithms to perform network state estimation using the
data collected by the Digital twin, focusing on approaches for sample efficiency [77,
78] and estimation accuracy [123]. The data necessary to support such algorithms
typically consists of synchrophasors for all power injection sources (we collect this
data from eGauge meters; see Section 6.3) in the connected network. The inferred
topology can be used to identify errors in switch and breaker statuses in the network
model (e.g., Figure 7.5 as well as estimate unknown 3-phase line impedances.

7.5 Visualization
We have implemented a dashboard interface for the Digital Twin to allow users to
interact and explore data and models. The dashboard is a critical tool for visualizing
the timeseries data and for making the data accessible/downloadable for further
detailed analysis. It also makes the connection between timeseries data and the
network model explicit by allowing users to click on components in the singleline
diagrams and visualize the timeseries data associated with them (e.g., the energy
generation timeseries from a PV array).

The dashboard is also a platform that supports human-based editing of the network
model. We have found that clear, comprehensive visualization drastically speeds
up the model review process for expert annotators. Therefore, to meet this need,
we immediately render whatever functionality that is implemented in the back end
(e.g., anomaly detection, forecasting, network modeling) through the dashboard.

1Despite the algorithmic progress, few of these algorithms have actually been validated on
real-world settings due to the challenges of acquiring synchrophasor datasets.
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Figure 7.5: Computer-parsable singleline diagram generated from the network
schema for the Kerckhoff Building at Caltech. Switch and breaker positions are
taken from singleline sources but may not represent actual positions. State estima-
tion algorithms can be used to validate or correct their statuses.



141

Figure 7.6: Caltech Digital Twin dashboard system overview
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C h a p t e r 8

OPTIMIZATION AND CONTROL OF DERS

In this final chapter of the thesis, we present three projects related to the optimization
and control of microgrids and distribution grids. These projects are examples of
energy services applications that sit on top of the data and model layers in the
Microgrid OS in Figure 5.5.

In Section 8.1, we introduce a methodology for optimizing the infrastructure in-
vestment for a grid-connected microgrid participating in wholesale energy markets.
We incorporate both physical and financial constraints (e.g., debt financing, market
constraints) into the problem formulation to optimize the payback period for the
microgrid site.

In Section 8.2, we show how to optimally size a battery system to provide resilience
(as well as cost and emissions reductions) to a commercial building with rooftop
PV. We optimize the cost of the battery system to meet the desired level of reliability
and outage duration for the building’s critical loads.

In Section 8.3, we detail a novel approach to voltage control in a large distribution
feeder using distributed energy storage assets. We solve an optimal battery location
problem while accounting for multi-phase power flow equation constraints, physical
constraints on voltage and line flows, and physical constraints on the locations of
the batteries. It is shown that controlling the charge and discharge of the fleet
of optimally placed batteries during peak load conditions can steer the voltage
deviations at customer nodes to be within nominal ranges.

8.1 Microgrid co-design in electricity markets
The purpose of this section is to model the finances of the installation and operation
of a zero-carbon microgrid consisting of solar (PV), battery energy storage, and
commercial building load. The goal will be to model both microgrid and market
operation of the system and to optimize the installed capacities of PV and battery,
as well as the market operations over the life of the system.
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Assumptions
We make the following assumptions about the microgrid model and the market
participation:

• Solar will be placed on the roof of an existing commercial building(s) and that
there is sufficient space on site for the batteries. The property acquisition cost
and/or recurring least cost will not be included in investment or operational
costs.

• We assume that building load, solar, and battery injections feed into the same
bus in a main switchboard. This basically means that there is a single-bus
network with no losses. Powerflow equations reduce to power balance.

• The battery cannot charge from the grid.

• When the power produced onsite by the microgrid is insufficient to meet
building load, power can be drawn from the utility grid at the volumetric retail
rate.

• Market participation and consumption from the utility grid cannot happen
simultaneously.

Notation
See Table 8.1.

Vector quantities denoted in boldface (e.g., x). The 𝑡-th energy of x is denoted 𝑥𝑡 . In
some of the formulations we need to introduce auxiliary variables. Auxiliary binary
variables are denoted with 𝑧𝑡 and auxiliary continuous variables are denoted with
𝑣𝑡 . Appropriate superscripts will be added to these variables to distinguish them.

Capacity and operational optimization
We will go through the constraints for the system (i.e., powerflow), the PV con-
straints, the battery constraints, and the balance-of-system (BOS) constraints.

Constraints
The units of the u and x power injection variables are given as watts (W). This number
represents the average power injection over interval 𝑡. Care must be taken when
converting from these variables to quantities with units of energy (Wh) such as usoc

that the correct conversion is done (will depend on the length of the interval). When
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Variable Domain Unit Description
|=|=|=|=| 𝑡 [1, . . . , 𝑇] hour index of hourly interval
𝑖 [1, . . . , 𝑁] year index of year
𝑇 Z+ number of hours in the simulation. 𝑇 is

not necessarily 8760 × 𝑁
𝑁 Z+ number of years in the simulation (e.g.,

25)
ubatt R𝑇 MWac Battery charge (−) or discharge (+). 𝑡-

th entry is 𝑢batt
𝑡

upv R𝑇+ MWac PV production 𝑡-th entry is 𝑢pv
𝑡

uload R𝑇+ MWac Building load 𝑡-th entry is 𝑢load
𝑡

usoc R𝑇+ MWh Battery state of charge 𝑡-th entry is 𝑢soc
𝑡

xDA R𝑇 MWh Energy sold to day-ahead market
xRT R𝑇 MWh Energy sold to real-time market
xPPA R𝑇 MWh Energy sold to PPA offtaker
xDSP R𝑇 MWh Energy procured from distribution ser-

vice provider (DSP)
xREC R𝑇 MWhg Quantity of renewable energy sold as a

renewable energy credit (REC)
𝜷 R𝑇+ MWac Random variable representing the

building load trajectory
𝜶 [0, 1]𝑇 MWac Random variable representing the solar

production as a fraction of its nameplate
capacity

𝑟xfmr [0, 1] Transformer loss (1 = no loss)
𝑟 ITC [0, 1] fraction of upfront capital cost eligible

for investment tax credit
𝑟 tax

sales [0, 1] Sales tax rate on capital investment
𝑟 tax

state,income [0, 1] State tax rate on income
𝑟 tax

federal,income [0, 1] Federal tax rate on income
𝑟debt [0, 1] Fraction of investment costs serviced by

debt

Table 8.1: Definition of variables and parameters. 𝑐𝑡 and 𝑥𝑡 are variables. All other
symbols are parameters.

we enforce power balance, for example, equality of average power injections over
each interval is being enforced, as opposed to equality of instantaneous injections.

Power balance The powerflow equations consist of the power balance at the point of
common coupling (PCC) with the grid.

𝑟xfmr(𝑢batt
𝑡 + 𝑢pv

𝑡 − 𝑢load
𝑡 ) = 𝑥RT

𝑡 + 𝑥PPA
𝑡 − 𝑥DSP

𝑡 ∀𝑡 (8.1a)
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All of the quantities in (8.1) are positive. The signs preceding each term are
determined by the convention illustrated in Figure 8.1.1 𝑟xfmr ∈ [0, 1] is the loss
associated with transformer stepup.

The 𝑥RT, 𝑥PPA, and 𝑥DSP quantities cannot be sold simultaneously (they must each
represent a “unique” Wh). However, 𝑥REC can be sold unbundled for the same Wh
that is sold in the power markets. We can theoretically sell as many RECs as there
are Whs produced by the solar array. Since we enforce that the battery only charged
from the PV and not from the grid, we can simply sum up the microgrid 𝑢 quantities
to get the clean power exported to the grid.

max{0, 𝑢batt
𝑡 + 𝑢pv

𝑡 − 𝑢load
𝑡 } = 𝑥REC

𝑡 ∀𝑡

The max expression is necessary because sometimes the microgrid imports energy
from the distribution grid to feed building load (although not to charge the battery as
enforced by a complementarity constraint below). Unfortunately this constraint is
non-convex (equality constraint with ReLu). We will propose a lifted mixed-integer
linear equivalent.2

There are two cases.

Case 1: 𝑢batt
𝑡 + 𝑢pv

𝑡 − 𝑢load
𝑡 ≤ 0 ⇒ 𝑥REC

𝑡 = 0. Introduce a binary variable 𝑧rec,1
𝑡 ∈

{0, 1} and take 𝑧rec,1
𝑡 = 1 ⇒ 𝑥REC

𝑡 = 0. The set of constraints that enforces this case
is

0 ≤ 𝑥REC
𝑡 ≤ 𝑀 (1 − 𝑧rec,1

𝑡 ) ∀𝑡 (8.2a)

𝑢batt
𝑡 + 𝑢pv

𝑡 − 𝑢load
𝑡 ≤ 𝑀 (1 − 𝑧rec,1

𝑡 ) ∀𝑡 (8.2b)

The value of 𝑀 will be chosen so that it doesn’t constrain the values of 𝑥REC or the
𝑢 variables when 𝑧rec,1

𝑡 = 0.

Case 2: 𝑢batt
𝑡 + 𝑢pv

𝑡 − 𝑢load
𝑡 > 0 ⇒ 𝑥REC

𝑡 = 𝑢batt
𝑡 + 𝑢pv

𝑡 − 𝑢load
𝑡 . Introduce a binary

variable 𝑧rec,2
𝑡 ∈ {0, 1} and take 𝑧rec,2

𝑡 = 1 ⇒ 𝑥REC
𝑡 = 𝑢batt

𝑡 + 𝑢pv
𝑡 − 𝑢load

𝑡 . The set of
1In general, the “𝑢” variables represent quantities within the microgrid and the “𝑥” variables

represent quantities on the grid side.
2Equivalent in the sense that any 𝑢 and 𝑥 satisfying the max formulation will also satisfy the

lifted version, and vice versa.
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constraints that enforces this case is

− 𝑀 (1 − 𝑧rec,2
𝑡 ) ≤ 𝑥REC

𝑡 − 𝑢batt
𝑡 − 𝑢pv

𝑡 + 𝑢load
𝑡 ≤ 𝑀 (1 − 𝑧rec,2

𝑡 ) ∀𝑡 (8.3a)

𝑢batt
𝑡 + 𝑢pv

𝑡 − 𝑢load
𝑡 ≥ −𝑀 (1 − 𝑧rec,2

𝑡 ) ∀𝑡 (8.3b)

Finally we want one case or the other so we enforce

𝑧
rec,1
𝑡 + 𝑧rec,2

𝑡 = 1 ∀𝑡 (8.4a)

𝑧
rec,1
𝑡 , 𝑧

rec,2
𝑡 ∈ {0, 1} ∀𝑡 (8.4b)

𝑀 ≥ 0 is a non-negative constant that should be chosen so that it doesn’t additionally
constrain the varaibles when the case is not active. In principle, this value of 𝑀
could be different for each of the four constraints above. However, a sufficient
condition for this to happen is that

𝑀 ≥ max{|𝑥REC
𝑡 |, |𝑢batt

𝑡 + 𝑢pv
𝑡 − 𝑢load

𝑡 |} ∀𝑡

Setting 𝑀 = YBOS satisfies this.

A final note: these constraints are a minimum set of requirements to constrain 𝑥REC
𝑡 .

Additional constraints can be added to accommodate more complicated rules; e.g.,
bundled REC constraints. Also note that this formulation relies on on non grid
charging for the battery. If grid charging is allowed, then microgrid “net” needs to
be changed.

PCC
Microgrid (-) Utility Grid (+)

xISO

xDSP

uBATT

uPV

uLOAD

xPPA

xREC

Figure 8.1: Positive sign indicates export to grid, negative sign indicates import
from grid.

Building Load Building load is assumed to follow a known-in-advance timeseries
𝜷 ∈ R𝑇+ . This means building load is non-controllable. These constraints can be
expanded to allow for a controllable load trajectory.
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𝑢load
𝑡 = 𝛽𝑡 ∀𝑡 (8.5a)

PV

The PV production is curtailable and can vary between 0 and the maximum available
power. The maximum available power is given by the DC nameplate capacity 𝑦PV

scaled by a parameter timeseries 𝜶 ∈ [0, 1]𝑇 which represents the fraction of AC
PV power produced by the PV inverter in each time interval.3 The 𝜶 parameter
combines all losses from max theoretical DC power production (in W) to actual AC
injection by the inverter (in W), including DC-AC conversion losses, DC losses (in
wiring and panels), soiling, shading, clouds, etc. The DC nameplate capacity is
constrained by the parameter YPV, the site’s max physical capacity.4

0 ≤ 𝑢pv
𝑡 ≤ 𝑦PV𝛼𝑡 ∀𝑡 (8.6a)

0 ≤ 𝑦PV ≤ YPV (8.6b)

Battery

Standard battery constraints with integer variables 𝑧c
𝑡 , 𝑧d

𝑡 to prevent simultaneous
charge/discharge. We define an extra variable for the total battery injection 𝑢batt

𝑡

which is positive when discharging and negative when charging.

𝑢batt
𝑡 = 𝑢d

𝑡 − 𝑢c
𝑡 ∀𝑡 (8.7a)

Given that we seek to simultaneously optimize capacity as well as charging operation,
3For this optimization, we take the powerfactor to be 1, so that all power produced by the inverter

is real. At a later point, we could introduce 𝑞, for example if we want to offer grid services to the
utility.

4I assume that the DC nameplate is a parameter of each panel that scales with its physical area
(𝑚2).
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the first two of the following constraints present bilinear integer constraints.

0 ≤ 𝑢c
𝑡 ≤ 𝑧c

𝑡 𝑦
BATT ∀𝑡

0 ≤ 𝑢d
𝑡 ≤ 𝑧d

𝑡 𝑦
BATT ∀𝑡

0 ≤ 𝑦BATT ≤ Ybatt

𝑧c
𝑡 + 𝑧d

𝑡 ≤ 1 ∀𝑡
𝑧c
𝑡 , 𝑧

d
𝑡 ∈ {0, 1} ∀𝑡

These can be replaced by the following lifted constraint set, with additional variables
𝑣c
𝑡 , 𝑣

d
𝑡 ∈ R introduced. The formulation is given in vectorized notation.

0 ≤ 𝑢c
𝑡 ≤ 𝑣c

𝑡 ∀𝑡 (8.8a)

0 ≤ 𝑢d
𝑡 ≤ 𝑣d

𝑡 ∀𝑡 (8.8b)

𝑣c
𝑡 ≤ 𝑌BATT𝑧c

𝑡 ∀𝑡 (8.8c)

𝑣d
𝑡 ≤ 𝑌BATT𝑧d

𝑡 ∀𝑡 (8.8d)

𝑌BATT(𝑧c
𝑡 − 1) ≤ 𝑣c

𝑡 − 𝑦BATT ≤ 0 ∀𝑡 (8.8e)

𝑌BATT(𝑧d
𝑡 − 1) ≤ 𝑣d

𝑡 − 𝑦BATT ≤ 0 ∀𝑡 (8.8f)

𝑧c
𝑡 + 𝑧d

𝑡 ≤ 1 ∀𝑡 (8.8g)

𝑧c
𝑡 , 𝑧

d
𝑡 ∈ {0, 1} ∀𝑡 (8.8h)

Note that in the original formulation, 𝑧c
𝑡 = 0 ⇒ 𝑢c

𝑡 = 0. In (8.8), 𝑧c
𝑡 = 0 ⇒ 𝑣c

𝑡 =

0 ⇒ 𝑢c
𝑡 = 0 from (8.8a),(8.8c). (8.8e) implies the 3rd constraint from the original

formulation. In the original formulation, 𝑧c
𝑡 = 1 ⇒ 0 ≤ 𝑢c

𝑡 ≤ 𝑦BESS. In (8.8),
𝑧c
𝑡 = 1 ⇒ 𝑣c

𝑡 = 𝑦
BATT. With this equivalence, (8.8c) enforces the 3rd constraint in

the original formulation and (8.8a) recovers the 1st.

The remaining battery constraints enforce the SOC update and SOC constraints.
It is assumed that the units of SOC are Watt-hours (Wh) and the duration of each
charge/discharge action is 1 hour. If the interval is not one hour, then a scaling term
will need to be introduced into (8.9a).
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𝑥SOC
𝑡 = 𝑥SOC

𝑡−1 + 𝜂𝑐𝑢c
𝑡 −

1
𝜂𝑑
𝑢d
𝑡 ∀𝑡 (8.9a)

SOCmin𝑦
SOC ≤ 𝑥SOC

𝑡 ≤ SOCmax𝑦
SOC ∀𝑡 (8.9b)

𝑥SOC
0 = SOC0 (8.9c)

𝑥SOC
𝑇 = SOC 𝑓 (8.9d)

0 ≤ 𝑦SOC ≤ 𝑌SOC (8.9e)

Note that there is an additional variable 𝑥SOC
0 introduced for convenience. The SOC

variable 𝑥SOC
𝑡 is the state of charge at the end of interval 𝑡, after the charge/discharge

action has occurred; 𝑥SOC
𝑡−1 is the SOC at the beginning of interval 𝑡. It is in units

of energy to allow us to optimize both the power 𝑦BATT and energy 𝑦SOC capacity
of the battery. If we desire to fix the E-P ratio of the battery, then add a constraint
𝑦SOC = 𝑅𝑦BATT.

We might also like to enforce that the battery does not charge from grid power and
only uses solar to charge. This means that we need to enforce the complementarity
constraint

𝑢c
𝑡 𝑥

DSP
𝑡 = 0 ∀𝑡

Since we already have integer variables defined for both battery charging (8.8a) and
grid power (8.11d), we simply add a constraint

𝑧c
𝑡 + 𝑧DSP

𝑡 ≤ 1 ∀𝑡 (8.10a)

This complementarity constraint is sufficient to enforce no grid charging because
we assume that 𝑥RT ≥ 0.

Market dispatch

The surplus power generated by the microgrid, beyond what is needed to serve
building load, can be sold into markets. We consider three scenarios

1. RT market dispatch only

2. DA-RT market dispatch

3. PPA pricing
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In the 3rd scenario, all power is dispatched and paid a fixed $ per MWh price.
Simultaneously to all of these scenarios, we consider it possible that the surplus
power can earn REC revenues (value stacking). When selling power into any of
these markets, we enforce that power cannot be simultaneously bought from the
utility.

RT dispatch only The DA commitment is always zero in this scenario and the
excess produced by the microgrid is scheduled and sold in to the RT ISO market.
When the RT price is positive, it will always be profitable to sell; when the price is
negative, it will be unprofitable. Therefore we allow for curtailment to 0 of the RT
commitment.

DA-RT dispatch only In this scenario, we allow a financial DA commitment to
be made and settled in advance at the DA price 𝑝DA. A RT adjustment is allowed
and the final, physical power provided to the grid in RT is 𝑥RT. The settlment rule is

𝑝DA
𝑡 𝑥DA

𝑡 + 𝑝RT
𝑡 (𝑥RT

𝑡 − 𝑥DA
𝑡 )

𝑥DA
𝑡 must be physical, in that if there is no RT adjustment, the 𝑥DA

𝑡 commitment is
physically realizable. Therefore, we must enforce 0 ≤ 𝑥DA

𝑡 ≤ 𝑦BOS. However, it not
necessary to enforce any of the complementarity constraints.

PPA In this scenario, all excess power is sold at the PPA price.

We wish to enforce that the microgrid (1) can only sell excess power5 at the LMP
into the wholesale markets and (2) can only buy power at retail rates from the
utility. Furthermore, we wish to enforce that the microgrid cannot do (1) and
(2) simultaneously (during the same interval). This can be accomplished with
complementarity constraints.

𝑥RT
𝑡 𝑥DSP

𝑡 = 0 ∀𝑡
𝑥PPA
𝑡 𝑥DSP

𝑡 = 0 ∀𝑡

The total amount of power that can be injected (positive or negative) through the
PCC (point of common coupling) with the distribution service provider’s (DSP)
grid is physically capped by 𝑦BOS.6 We also enforce for accounting purposes, none
of 𝑥RT, 𝑥DSP, 𝑥PPA can individually exceed 𝑦BOS.

5"Excess" defined as max{0, 𝑢batt + 𝑢pv − 𝑢load}.
6Capping the total injection by 𝑦BOS simultaneously controls both the grid-side injection |𝑥RT

𝑡 +
𝑥PPA
𝑡 − 𝑥DSP

𝑡 | and the microgrid injection |𝑢batt + 𝑢pv − 𝑢load | through the power balance constraint
(8.1).
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The original set of market dispatch constraints with the complementarity constraints
is

0 ≤ 𝑦BOS ≤ YBOS

|𝑥RT
𝑡 + 𝑥PPA

𝑡 − 𝑥DSP
𝑡 | ≤ 𝑦BOS ∀𝑡

0 ≤ 𝑥RT
𝑡 ≤ 𝑦BOS ∀𝑡

0 ≤ 𝑥DA
𝑡 ≤ 𝑦BOS ∀𝑡

0 ≤ 𝑥DSP
𝑡 ≤ 𝑦BOS ∀𝑡

0 ≤ 𝑥PPA
𝑡 ≤ 𝑦BOS ∀𝑡

𝑥RT
𝑡 𝑥DSP

𝑡 = 0 ∀𝑡
𝑥PPA
𝑡 𝑥DSP

𝑡 = 0 ∀𝑡

First, |𝑥RT
𝑡 − 𝑥DSP

𝑡 | ≤ 𝑦BOS is redundant and can be replaced by 𝑥RT
𝑡 + 𝑥PPA

𝑡 ≤
𝑦BOS. The typical procedure is used to turn the bilinear equality constraint into an
equivalent set of mixed-integer linear (MIL) constraints by introducing auxiliary
integer variables 𝑧ISO

𝑡 , 𝑧DSP
𝑡 , and 𝑧PPA

𝑡 .

0 ≤ 𝑦BOS ≤ YBOS

𝑥RT
𝑡 + 𝑥PPA

𝑡 ≤ 𝑦BOS ∀𝑡
0 ≤ 𝑥RT

𝑡 ≤ 𝑦BOS𝑧ISO
𝑡 ∀𝑡

0 ≤ 𝑥DSP
𝑡 ≤ 𝑦BOS𝑧DSP

𝑡 ∀𝑡
0 ≤ 𝑥PPA

𝑡 ≤ 𝑦BOS𝑧PPA
𝑡 ∀𝑡

𝑧ISO
𝑡 + 𝑧DSP

𝑡 ≤ 1 ∀𝑡
𝑧PPA
𝑡 + 𝑧DSP

𝑡 ≤ 1 ∀𝑡
0 ≤ 𝑥DA

𝑡 ≤ 𝑦BOS ∀𝑡
𝑧ISO
𝑡 , 𝑧DSP

𝑡 , 𝑧PPA
𝑡 ∈ {0, 1} ∀𝑡

This reformulation brings up a similar problem as with the battery constraints, where
a mixed-integer bilinear term in the RHSs of the second and third constraints has
been introduced. We handle it in a similar way by introducing auxiliary variables
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𝑣ISO
𝑡 , 𝑣DSP

𝑡 , 𝑣PPA
𝑡 ∈ R.

0 ≤ 𝑦BOS ≤ YBOS (8.11a)

𝑥RT
𝑡 + 𝑥PPA

𝑡 ≤ 𝑦BOS ∀𝑡 (8.11b)

0 ≤ 𝑥RT
𝑡 ≤ 𝑣ISO

𝑡 ∀𝑡 (8.11c)

0 ≤ 𝑥DSP
𝑡 ≤ 𝑣DSP

𝑡 ∀𝑡 (8.11d)

0 ≤ 𝑥PPA
𝑡 ≤ 𝑣PPA

𝑡 ∀𝑡 (8.11e)

𝑣ISO
𝑡 ≤ YBOS𝑧ISO

𝑡 ∀𝑡 (8.11f)

𝑣DSP
𝑡 ≤ YBOS𝑧DSP

𝑡 ∀𝑡 (8.11g)

𝑣PPA
𝑡 ≤ YBOS𝑧PPA

𝑡 ∀𝑡 (8.11h)

YBOS(𝑧ISO
𝑡 − 1) ≤ 𝑣ISO

𝑡 − 𝑦BOS ≤ 0 ∀𝑡 (8.11i)

YBOS(𝑧DSP
𝑡 − 1) ≤ 𝑣DSP

𝑡 − 𝑦BOS ≤ 0 ∀𝑡 (8.11j)

YBOS(𝑧PPA
𝑡 − 1) ≤ 𝑣PPA

𝑡 − 𝑦BOS ≤ 0 ∀𝑡 (8.11k)

𝑧ISO
𝑡 + 𝑧DSP

𝑡 ≤ 1 ∀𝑡 (8.11l)

𝑧PPA
𝑡 + 𝑧DSP

𝑡 ≤ 1 ∀𝑡 (8.11m)

0 ≤ 𝑥DA
𝑡 ≤ 𝑦BOS ∀𝑡 (8.11n)

𝑧ISO
𝑡 , 𝑧DSP

𝑡 , 𝑧PPA
𝑡 ∈ {0, 1} ∀𝑡 (8.11o)

Objective function
The objective function of the optimization problem will account for the present
value of all fixed and variable costs associated with the microgrid investment.7 We
seek to optimize the total net present value 𝑃 of the project over its entire term.

The items to be considered as part of this profit/loss are:

• Capacity cost for solar

• Capacity cost for battery (for both power and energy)

• Capacity cost for balance-of-system (BOS) equipment including utility trans-
former, switchgear (ATS), telemetry. This can be thought of as the cost o the
grid connection.

• O&M for solar, battery, and BOS
7A minor caveat to this is that we won’t consider the fixed, non-capacity dependent costs (e.g.,

property expense) in the objective function, since they won’t influence the optimal solution. Such
costs will be included in the full cash flow calculation however.
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• Degradation cost for battery (get from SAM) We won’t consider cell degra-
dation variable cost for now. Rather, just assume a replacement time period
and have that be capacity-scaled expense baked into 𝐹BATT.

• Retail energy cost (can include variable and demand charge)

• Revenue from DART markets

• Revenue from RECs. RECs are currently levied in units of $ per MWh on
renewable energy. Eligible power for RECs is anything produced by the solar
array, which is potentially stored in the battery.

• Revenue from a power purchase agreement (PPA)

• Taxes, incentives, depreciation schedules, cost of financing, and discount
rates.

Define 𝑓 (y) to be the revenue-cost associated with capacity-scaling investments
and 𝑔(x) be the revenue-cost associated with variable, ongoing production. The
basic difference is the same as that between fixed and variable costs. Although
items like O&M cost, debt interest payments are ongoing, they are all scaled by
the initial capital investment and therefore truly are fixed costs. Items like income
tax, production tax credit (PTC), and market revenues are part of the variable costs
because they depend on how much power the microgrid produces.

NPV 𝑃 is then defined
𝑃 = 𝑓 (y) + 𝑔(x) (8.12)

Components of fixed costs

• Installation cost (direct capital cost, indirect capital cost, sales tax). The
components of direct cost include module and inverter costs, balance of system
equipment (conduit, cables), and installer labor and overhead. SAM also adds
a contigency fee to this (e.g., 4%) but not sure if this is needed. Components
of indirect cost include permitting and environmental studies, engineering
overhead, and grid interconnection fees. Unlike SAM, we do not include land
cost.

• O&M cost (fixed annual, annual by capacity, battery cell replacement cost)

• Debt cost
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• Investment tax credit (ITC)

• Utility connection charge

Components of variable costs

• REC revenues

• ISO revenues

• PPA revenues

• Utility volumetric charge

• Utility demand charge

• Production tax credit (PTC)

• Income taxes assessed on all income less interest and depreciation. For this
reason, we need to calculate the depreciation schedule, which then becomes
a fixed parameter in the optimization.

Next, we define the cost functions explicitly.

Capacity costs

There are two categories of costs that scale with the installed capacities 𝑦PV, 𝑦BATT,
and 𝑦BOS, namely capital (or investment) cost and fixed, annualized costs (e.g.,
O&M). We do not consider fixed annual costs that do not vary with capacity because
they do not affect the optimization solution (however they do affect the cashflow).
We assume that both kinds of costs are unit costs, in $ per unit of capacity.

The upfront unit capital cost (in year 0) is scaled by the cost of capital. We show in
Section 8.1 that the present value of financing is a multiplicative scaling term 𝐴. The
cost of servicing debt is also future discounted because the principal and interest
payments will be paid for with future case. However, when calculating the interest
and principal payments scheuldes, future discounting should not be considered,
because they are computed in nominal year-0 dollars.

Define

c =


𝐶pv

𝐶batt

𝐶bos

 , 𝑓𝑖 =


𝐹

pv
𝑖

𝐹batt
𝑖

𝐹bos
𝑖

 , y =


𝑦PV

𝑦BATT

𝑦BOS
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The total year-0 capital cost is given by

𝑓1(y) := c⊤y(1 + 𝑟debt𝐴 − 𝑟 ITC

1 + 𝑟NPV ) (8.13)

The investment tax credit 𝑟 ITC is applied to the upfront (year 0) investment cost and
since we apply the tax credit as a positive cash flow (rather than an offset of a tax bill
otherwise due) in year 1, we discount its NPV by one year at rate 𝑟NPV. 𝑟debt ∈ [0, 1]
is the fraction of the upfront capital cost serviced by debt.

The O&M portion of the fixed cost is discounted using the NPV formulation with a
give rate 𝑟NPV.8 The total present value (in year 0) of the ongoing fixed costs is

𝑓2(y) :=
𝑁∑︁
𝑖=1

1
(1 + 𝑟NPV)𝑖

(𝐹PV
𝑖 𝑦PV + 𝐹BATT

𝑖 𝑦BATT + 𝐹BOS
𝑖 𝑦BOS) (8.14)

Then the total capacity cost with sales and income taxes applied is

𝑓 (y) := − 𝑓1(y) (1 + 𝑟 tax
sales) − 𝑓2(y) (1 + 𝑟 tax

income) (8.15)

Variable costs and revenues

Variable costs and revenues scale with the amount of power produced by the micro-
grid. Taxed future net earnings (revenues minus costs) are discounted by 𝑟NPV and
have taxes applied.

The variable costs consist of a volumetric charge from utility for energy plus a
demand charge. For simplicity, we will assume that the demand charge is applied
over the entire year, although in reality the billing period is probably shorter.

𝑔1(x) =
𝑇∑︁
𝑡=1

𝑝DSP
𝑡 𝑥DSP

𝑡 + 𝑝DC max
𝑡

{𝑥DSP
𝑡 }

The revenues come from three sources: ISO markets, PPA, and RECs. The unit
of variable cost/revenue is $ per MWh.9 The production tax credit 𝑝PTC

𝑡 ∈ R+ is
a $-per-MWh credit for all energy produced and sold into ISO and PPA markets.
Since the battery is charged by solar, any energy export from the microgrid is eligible
for the PTC. We apply the REC price to the net of solar production, building load,

8We assume that inflation is baked into this discount rate (i.e., nominal discount rate).
9If the interval is anything but an hour, there will need to be a scaling term introduced into 𝑔 to

convert between MW and MWh.



156

and battery charging. This is valid because we enforce that the battery can only be
charged by solar. Other more complicated constraints can be implemented in (8.1b).

𝑔2(x) =
𝑇∑︁
𝑡=1

𝑝RT
𝑡 𝑥RT

𝑡 +(𝑝DA
𝑡 −𝑝RT

𝑡 )𝑥DA
𝑡 +𝑝PPA

𝑡 𝑥PPA
𝑡 +

𝑝PTC
𝑡

1 − 𝑟 tax
income

(𝑥RT
𝑡 +𝑥PPA

𝑡 )+𝑝REC
𝑡 𝑥REC

𝑡

We scale the PTC by 1− 𝑟 tax
income because it will be multiplied by the same in the next

expression and the PTC should be counted as a straight positive, untaxed cashflow.

The convention is that revenues are positive and costs are negative. 𝑟 tax
income is the

combined federal and state income tax rate.

𝑔(x) :=
𝑁∑︁
𝑖=1

1 − 𝑟 tax
income

(1 + 𝑟NPV)𝑖
(−𝑔1(x) + 𝑔2(x)) (8.16)

The tax rate is applied to both positive and negative values of 𝑔(x) because a negative
profit incurs a positive tax benefit, which is treated as a positive cashflow for that
year.

Debt and interest

The objective of this section is to show that the cost of financing debt can be included
as a parameter of the optimization problem. This may not be obvious due to the
non-linear compounding of interest and potentially complicated debt repayment
schedules.

For this section, let 𝐶 ∈ R+ be the unit cost of investment quantity 𝑦 ∈ R+, and let
𝑟debt ∈ [0, 1] be the fraction of investment cost serviced by debt. Without financing
(𝑟debt = 1), the present value (in year 0) of total investment cost is

TC = 𝐶𝑦

In the financed case, the amount𝐶𝑦(1−𝑟debt) is paid upfront in year 0, and a loan for
the rest 𝐶𝑦𝑟debt is taken out and repaid over 𝑁 years (in actual dollars) plus interest,
giving a total cost of

TC = 𝐶𝑦(1 − 𝑟debt) + 𝐿 + 𝐼

𝐿 and 𝐼 are the present values of the principal of the loan of 𝐶𝑦𝑟debt and interest
paid on it respectively.10

10Interest needs to be computed on 𝐶𝑦𝑟debt, not 𝐿!
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The question is whether we can write 𝐿 + 𝐼 = 𝑦𝐴 for some 𝐴, which may only
depend on some constants like discount rate, loan interest rate, etc. This will allows
the total cost to be expressed as

TC = 𝑦 (𝐶 (1 − 𝑟debt) + 𝐴)︸                 ︷︷                 ︸
:=�̃�

In other words, the form of the investment cost term stays the same, but �̃� replaces
𝐶. This means that the objective function of the optimization problem remains
linear in the decision variable 𝑦.

First, some notation is presented. Let 𝐵0 be the quantity of the loan (i.e., 𝐶𝑦𝑟debt)
and 𝐵𝑖 be the remaining principal balance at the beginning of year 𝑖.11 Let 𝑟 int be
the interest rate, and 𝑁 be the loan term. Let 𝑏𝑖 be the principal payment and 𝑠𝑖 be
the interest payment due in period 𝑖. By definition, the sum of principal payments
is 𝐵0.

𝐵0 =

𝑁∑︁
𝑖=1

𝑏𝑖

and the sum of interest payments is

𝐼 =

𝑁∑︁
𝑖=1

𝑠𝑖

The interest payment in period 𝑖 is

𝑠𝑖 = 𝑟
int𝐵𝑖

and remaining balance at the beginning of period 𝑖 is

𝐵𝑖 =


𝐵𝑖−1 − 𝑏𝑖, 𝑖 = 2, . . . , 𝑁

𝐵0, 𝑖 = 1

We will now show that 𝐿 and 𝐼 can be computed in closed form for two commonly
used repayment schedules: even total payments and even principal payments.

11Nothing is paid down in year 0, so 𝐵1 = 𝐵0.
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Even total payments In this amortization scheme, the total of principal and in-
terest payments in each period (i.e., one year) is a constant. The relation that holds
between two successive time periods is

𝑏𝑖 + 𝑠𝑖 = 𝑏𝑖−1 + 𝑠𝑖−1

⇔ 𝑏𝑖 + 𝑟 int𝐵𝑖 = 𝑏𝑖−1 + 𝑟 int𝐵𝑖−1

⇔ 𝑏𝑖 + 𝑟 int(𝐵𝑖−1 − 𝑏𝑖−1) = 𝑏𝑖−1+𝑖−1

⇔ 𝑏𝑖 = 𝑏𝑖−1(1 + 𝑟 int)

Each principal payment can therefore be written in terms of the last 𝑏𝑁 which allows
us to solve back for each 𝑏𝑖:

𝑏𝑖 =
𝑏𝑁

(1 + 𝑟 int)𝑁−𝑖

⇒ 𝐵0 = 𝑏𝑁

𝑁∑︁
𝑖=1

1
(1 + 𝑟 int)𝑁−𝑖

⇔ 𝐵0 =
𝑏𝑁

(1 + 𝑟 int)𝑁
𝑁∑︁
𝑖=1

(1 + 𝑟 int)𝑖

⇔ 𝐵0 =
𝑏𝑁

(1 + 𝑟 int)𝑁

(
(1 + 𝑟 int)𝑁+1 − (1 + 𝑟 int)

𝑟 int

)
⇒ 𝑏𝑁 = 𝐵0

𝑟 int(1 + 𝑟 int)𝑁

(1 + 𝑟 int)𝑁+1 − (1 + 𝑟 int)

⇒ 𝑏𝑖 = 𝐵0
𝑟 int(1 + 𝑟 int)𝑖

(1 + 𝑟 int)𝑁+1 − (1 + 𝑟 int)

To get the present value of the principal 𝐿, each 𝑏𝑖 needs to be discounted by the
appropriate multiple of 𝑟NPV:

𝐿 =

𝑁∑︁
𝑖=1

𝑏𝑖

(1 + 𝑟NPV)𝑖
= 𝐵0

𝑟 int

(1 + 𝑟 int)𝑁+1 − (1 + 𝑟 int)

𝑁∑︁
𝑖=1

(1 + 𝑟 int)𝑖
(1 + 𝑟NPV)𝑖︸                                                ︷︷                                                ︸

:=Nasty1
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Next, calculate the annual interest payment 𝑠𝑖 due.

𝑠𝑖 = 𝑟
int𝐵𝑖

= 𝑟 int

𝐵0, 𝑖 = 1

𝐵𝑖−1 − 𝑏𝑖, 𝑖 = 2 . . . , 𝑁

= 𝑟 int

𝐵0, 𝑖 = 1

𝐵0 −
∑𝑖−1
𝑘=1 𝑏𝑘 , 𝑖 = 2 . . . , 𝑁

= 𝑟 int

𝐵0, 𝑖 = 1

𝐵0

(
1 − 𝑟 int

(1+𝑟 int)𝑁+1−(1+𝑟 int)
∑𝑖−1
𝑘=1(1 + 𝑟 int)𝑘

)
, 𝑖 = 2 . . . , 𝑁

= 𝑟 int

𝐵0, 𝑖 = 1

𝐵0

(
1 − 𝑟 int

(1+𝑟 int)𝑁+1−(1+𝑟 int)
(1+𝑟 int)𝑖−(1+𝑟 int)

𝑟 int

)
, 𝑖 = 2 . . . , 𝑁

= 𝑟 int

𝐵0, 𝑖 = 1

𝐵0

(
1 − (1+𝑟 int)𝑖−(1+𝑟 int)

(1+𝑟 int)𝑁+1−(1+𝑟 int)

)
, 𝑖 = 2 . . . , 𝑁

The yearly 𝑠𝑖 is discounted by the appropriate factor of 𝑟NPV and summed to get 𝐼.

𝐼 =

𝑁∑︁
𝑖=1

𝑠𝑖

(1 + 𝑟NPV)𝑖

= 𝐵0 𝑟
int

(
1

1 + 𝑟NPV +
𝑁∑︁
𝑖=2

1
(1 + 𝑟NPV)𝑖

(
1 − (1 + 𝑟 int)𝑖 − (1 + 𝑟 int)

(1 + 𝑟 int)𝑁+1 − (1 + 𝑟 int)

))
︸                                                                                 ︷︷                                                                                 ︸

:=Nasty2

Therefore, we can write

𝐿 + 𝐼 = 𝐵0 ×
(
Nasty1 + Nasty2

)
To get the expression for �̃� when 𝐵0 = 𝐶𝑦𝑟debt, we have

�̃� = 𝐶 + 𝐶𝑟debt(Nasty1 + Nasty2)

Even principal payments In this amortization scheme, the principal payments in
each period (i.e., one year) are constant. Therefore

𝑏𝑖 =
𝐵0
𝑁
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𝐿 is then

𝐿 =
𝐵0
𝑁

𝑁∑︁
𝑖=1

1
(1 + 𝑟NPV)𝑖

= 𝐵0
1 − 1

𝑁 (1+𝑟NPV)𝑁

𝑟NPV︸            ︷︷            ︸
Nasty3

The annual interest payment is

𝑠𝑖 = 𝑟
int


𝐵0, 𝑖 = 1

𝐵0 −
∑𝑖−1
𝑘=1 𝑏𝑘 , 𝑖 = 2 . . . , 𝑁

= 𝑟 int

𝐵0, 𝑖 = 1

𝐵0

(
1 − 𝑖−1

𝑁

)
, 𝑖 = 2 . . . , 𝑁

Discounting each 𝑠𝑖 by appropriate factor gives the present value of the interest

𝐼 =

𝑁∑︁
𝑖=1

𝑠𝑖

(1 + 𝑟NPV)𝑖

= 𝐵0

(
1

1 + 𝑟NPV +
𝑁∑︁
𝑖=2

1 − 𝑖−1
𝑁

(1 + 𝑟NPV)𝑖

)
︸                                 ︷︷                                 ︸

:=Nasty4

Therefore, here we can also write

𝐿 + 𝐼 = 𝐵0 × (Nasty3 + Nasty4)

To get the expression for �̃� when 𝐵0 = 𝐶𝑦𝑟debt, we have

�̃� = 𝐶 + 𝐶𝑟debt(Nasty3 + Nasty4)

Taxes and incentives

There are taxes on investments (fixed costs), which include sales and property taxes,
and taxes on cashflows (variable costs/revenues), which include state and federal
income tax. The ITC and PTC are accounted for as positive cashflows (in year 0 for
ITC) and ongoing for PTC.

The tax basis for investment taxes includes (taken from SAM Installation Costs
module)
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• Sales tax on total direct costs (excludes permitting, land, engineering overhead,
and grid interconnection costs) in year 0

• Sales tax on total installed cost

The tax basis for income taxes includes

• Any revenue from markets (DART, REC, PPA)

• Operating costs (fixed and variable)

• Depreciation expense

• Interest payments on debt

Taxable income does not include principal payments on debt or investment/production
tax credits. For now, we assume that the tax basis for federal and state taxes is the
same. We do not include the adjustment to the taxable cashflow that arises from de-
preciation because it does not affect the optimal solution. The depreciation shield in
each year is solely a consequence of the depreciation schedule and the total amount
of depreciation will not change depending on how it is depreciated.

Optimization problem
Combining constraints and objective function from the previous sections, our
capacity-operational optimization problem is

max
y,x𝑡

𝑃 (8.17a)

s.t. (8.1) − (8.11) (8.17b)

Note that some integer and auxiliary variables are not explicitly included here as
optimization variables. So, really what is meant is that there exist such variables
along with y, x𝑡 that satisfy (8.1) - (8.11). This optimization problem is a mixed-
integer linear program.

Cash flow
We have optimized most of the ingredients of the cash flow in the objective func-
tion of the optimization. However there are some details about how taxes and
depreciation are handled that are currently outside the scope of the optimization.
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One key point about how we compute cash flow is that we do not separately consider
value of inflation. Rather, it is baked into the nominal discount rate 𝑟NPV. To
determine the real discount rate 𝑟discount, we can use the following relation

1 + 𝑟NPV = (1 + 𝑟discount) (1 + 𝑟 inflation)

We should also discount the future value of the combined principal and interest
payments because these will be cash flows.

The approach should be to calculate the entire cashflow of the project in nominal
year-0 dollars and then discount that timeseries.

We will use the following steps to generate cashflow timeseries for the project term.

1. Run optimization problem to generate “optimal” y, x, and u. The x solution
gives a prospective operational schedule over the project term.

2. Compute investment cost, which is the total installed cost times the sales tax
(assume 5% rate).

3. Use operational fixed cost and variable cost/revenue values to generate annual
cashflows from operations. This will necessitate combining aspects of y and
x. The result of this step should be the EBITDA.

4. Compute the depreciation basis and schedule. From SAM, “The depreciable
basis is the sum of the total installed cost and total construction financing cost,
less the sum of investment-based incentives and 50% of any investment tax
credits.” Sum depreciation expense with EBITDA to get profit before taxes.

5. Compute state and federal taxes. The tax basis consists of EBITDA, depre-
ciation expense, interest payments (but not principal). We assume that state
taxes are computed first and whatever the state tax expense is needs to be
considered a positive cash flow for the purpose of computing the federal tax.
This is taken to be the only difference between federal and state tax bases.

6. Apply tax credits. The ITC is assumed to be a positive cashflow applied in
year 1. The PTC will be a applied in real dollar amounts to the MWh of
production in each year.

7. Get net cash flow for each year and discount appropriately.



163

Simulation design
This section contains a few comments on the implementation of this optimization
problem. For the most part, it follows the formulation in these notes.

One key parameter to pick is𝑇 . For computational reasons, we cannot optimize every
hour of every year for 25 years ahead. What seems to be possible is to pick𝑇 = 8760
which is one year. What’s not clear is how we model load growth, degradation in
system components (PV degradation, inverter efficiency loss), weather changes etc.

The demand charge is implemented by introducing an auxiliary variable 𝑥DC along
with the constraints

𝑥DC ≥ 𝑥DSP
𝑡 ∀𝑡

The demand charge is then 𝑝DC𝑥DC.

Sample results
We apply our methodology to case study in the Texas ERCOT market. We sim-
ulate the market operation of a microgrid over a 25-year time horizon at a node
near Houston. The microgrid is located in an industrial park composed of several
warehouses with capacity for significant solar. The buildings draw a small amount
of load. It is assumed that there is 2MW interconnection limit and space at the
site for a maximum of 5MW of rooftop solar. The objective of the optimization
problem is to determine the rooftop PV and energy storage capacities that should be
installed to minimize the payback period of the infrastructure. In addition, we add
a nonnegative profit constraint to ensure that the project is net profitable.

Cost data is taken from the National Renewable Energy Lab (NREL) Annual Tech-
nology Baseline for commercial solar and storage [98] and market data are acquired
from the ERCOT energy price database.

Our results show a payback period of 9 years when the microgrid’s onsite generation
and storage are able to offset a majority of building load and gain additional revenue
by trading the excess power into the day-ahead and real-time energy markets.

The results from this optimization were used as a basis for an $80M grant application
to the US Department of Energy’s Grid Resilience and Innovation Partnerships
(GRIP) program for the installation of a similar microgrid in ERCOT. Our partners
in the project application were a large commerical real estate developer which would
serve as the site host and provide financing and an energy trading firm which would
handle the interaction with the ERCOT spot market.
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Figure 8.2: Microgrid operational and financial optimal solutions. The first panel
shows the generation/consumption trajectories for building load and microgrid
DERs. The second panel shows the market schedules for the net injection of the
microgrid at the interconnection point. The third panel displays the market prices
for DART markets and utility rates. The fourth panel shows the annual discounted
cash flows for the project. The fifth panel dispalys the cumulative discounted cash
flows for the project.

8.2 Resiliency planning for BESS
In this section, we explore a planning application of microgrid optimization. We
consider a system operator that seeks to install a battery energy storage system
(BESS) at a building with existing rooftop solar, so that solar generation, battery
injections, building load, and grid power are aggregated at the building’s main
switchboard. These components for a building-level microgrid which can provide
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benefits in 1) resiliency to outages and load shedding, 2) carbon emissions reduction,
and 3) energy cost reduction. Our objective is to optimally size the battery with
respect to cost to provide a given level of resiliency. In addition, we will quantify
the ancillary benefits the battery would provide in terms of energy cost reduction
and carbon emissions reduction.

For an expository case study, we focus on Baxter Hall on the Caltech campus, which
has 115kW of rooftop PV already installed an average building load of ∼100kW.
We assume that the the building load and PV production can be measured but not
controlled. We also assume that the output from the BESS inverter with unity
powre factor can be controlled continuously throughout its charge-discharge range.
A schematic of the micorgrid is shown in Figure 8.3. It is expected that the power
capacity capacity of the battery should be roughly proportionate to the building’s
load and that the energy capacity of the battery should depend on the length of the
outage.

BUILDING LOAD
(avg. 100kW)

GRIDSWITCHBOARD

BATTERY
(75kW, 8hr)

Solar PV
(125kW capacity)

BAXTER LECTURE HALL

Figure 8.3: Schematic for a PV-BESS-Load building microgrid at Baxter Hall on
the Caltech campus

Note that although the methodology used in this case study is fully generalizable,
the precise outcomes presented are illustrative only and actual benefits will vary
depending on the building size, load profile, and available PV.

Defining resilience
To quantify resilience and the impact a BESS has on it, we adopt the methodology
in [130] to triage load into three tiers: Tier 1 loads are mission critical and must be
served 100% of the time. Tier 2 loads are critical but can be curtailed if necessary
to preserve Tier 1 loads. However, over the duration of the outage, 80% of the Tier
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2 load should be met. Tier 3 loads are discretionary and can be curtailed but should
be satisfied on average 25% of the time.

Each organization can specify what proportion of its load belongs each tier. Define
𝑅1, 𝑅2, and 𝑅3 as the proportion of Tier 1,2 & 3 load, respectively. It must hold that

𝑅1,𝑡 + 𝑅2,𝑡 + 𝑅3,𝑡 = 1 ∀𝑡 = 1, . . . , 𝑇

We consider a nominal load profile d ∈ R𝑇 where 𝑇 is the number of periods in
a prospective outage. Given resiliency levels 𝑅𝑖, the following defines the load
profiles for each tier of load:

d𝑖 := 𝑅𝑖d, 𝑖 ∈ {1, 2, 3}

If desired, time-varying resiliency levels 𝑅𝑖,𝑡 can be defined as well.

A 100% resiliency level means that the available power supplying the building (sum
of grid, BESS, and PV), denoted by u𝑡 ∈ R𝑇 , satisfies

𝑢𝑡 ≥
∑︁
𝑖

𝑑𝑖,𝑡 ∀𝑡 = 1, . . . , 𝑇 .

A 0% resiliency level means that 𝑢𝑡 = 0 ∀𝑡. In order to meet the criteria in [130], it
must at least be true that

𝑢𝑡 ≥ 𝑑1,𝑡 ∀𝑡 = 1, . . . , 𝑇 .

By scaling 𝑅2 from 0 to 1 − 𝑅1, overall resilience levels from 𝑅1 to 100% can be
calibrated. Note that according to [130], the resilience of Tier 1 load guaranteed in
each interval but the resilience of Tier 2 load is only guaranteed on average.

For an example of how the resilience of a system can be defined, let 𝑅1 = 0.2 and
𝑅2 = 0.3. Then 𝑅3 = 0.5. In this example, a “20% resilient” system would serve all
of Tier 1 load for the duration of the outage but none of Tier 2 & 3 load. A “40%
resilient” system would meet all of the Tier 1 load and at least 2/3 of the cumulative
Tier 2 load during the outage. However, there may be periods where less than 2/3
of Tier 2 load is being served and others where more than 2/3 is being served. An
“80% resilient” system meets all of Tier 1 load, all of Tier 2 load, and 3/5 of Tier
3 load on average. However, there may still be periods where not all of Tier 2 load
is satisfied, but if there were to be the case, then there would conversely be periods
where more than all of Tier 2 load would need to be satisfied.
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Quantifying the resiliency benefit
A principal benefit of placing a BESS in a building is that it can be controlled to
satisfy building load in the event of an outage in the Caltech or utility distribution
systems.12 The resiliency a BESS would afford a building depends on its energy
capacity and the size of critical building load. The combination of rooftop PV and
battery—when controlled optimally—can provide significant reliability benefits for
the building.

For the experiments here and all that follow in this section, we consider the same
Baxter Hall scenario introduced above, with a building with 90.3kW of load on
average and a peak load of 257.5kW during the week of August 22-29, 2022. The
minimum load during this week was 41.1kW.13 The 115kW nameplate PV array on
the roof, producing 5600kWh over the entire weak and ∼110kW at peak every day.
PV generation was derived from the solar radiation profiles for Pasadena during that
same week [120].

In these simulations, we assume that a 75kW/600kWh (8hr) battery has been installed
so that it injects power into the main building switchboard (see Figure 8.3) and
supporting load when there is no grid power. We then vary the outage duration from
1 to 24 hours and calculate how much load shed must occur if the battery is being
discharged. These results are presented in Table 8.2. During short outages of less
than 1 hour, the battery can support nearly all of the nominal building load. For all
outages up to 24 hours in length that begin both at 12am and 12pm, the battery is
able to provide power for both Tier 1 and Tier 2 loads, with a large portion of the
Tier 3 load being covered for short outages.14

Optimally sizing a battery system for resilience
Next, we pose the question: to guarantee a given level of resilience (e.g., 60%), how
big must a battery system be? The answer will depend on the load profile, available
building-connected PV, and the definitions of Tier 1,2 &3 loads.

We address this question by solving an optimization problem (8.18). The objective
is to minimize the cost of buying a battery while still meeting reliability criteria.
These criteria are encoded as constraints on the optimal solution. Because load

12A battery would serve a similar purpose as the fuel cells on the Caltech campus or the emergency
diesel generators in many high-priority buildings.

13For the month of August 2022, average load was 87.4kW and peak load was 292.9kW, so this
week is representative of summertime load conditions.

14Assumes the 10%,15%,75% breakdown of load into Tiers 1,2,3 presented in [130].
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Outage Scenarios Loadshed without battery Loadshed with battery
<1 hour outage @ 12am 100% 0%
2 hour outage @ 12am 100% 12%
4 hour outage @ 12am 100% 56%
12 hour outage @ 12am 70% 58%
24 hour outage @ 12am 72% 67%
<1 hour outage @ 12pm 55% 0%
2 hour outage @ 12pm 56% 24%
4 hour outage @ 12pm 64% 49%
12 hour outage @ 12pm 75% 65%
24 hour outage @ 12pm 71% 65%

Table 8.2: Comparison of building load that is shed in various outage scenarios.
“100%” means all of building load is shed during outage; “0%” means that no load
is shed.

management and battery scheduling during the outage is necessary to realize the
resiliency benefit of the battery, we include a set of constraints on the operation of
the battery and the battery-solar-building microgrid.

max
𝑈max,𝐸max

𝑐u𝑈
max + 𝑐e𝐸

max + 𝜆 | |u − d1 − d2 | |2 (8.18a)

s.t. 𝑢𝑡 = 𝑠𝑡 + 𝑢d
𝑡 − 𝑢c

𝑡 ∀𝑡 (8.18b)

0 ≤ 𝑢c
𝑡 ≤ 𝑧c

𝑡𝑈
max ∀𝑡 (8.18c)

0 ≤ 𝑢c
𝑡 ≤ 𝑧d

𝑡𝑈
max ∀𝑡 (8.18d)

𝑧c
𝑡 + 𝑧d

𝑡 ≤ 1 ∀𝑡 (8.18e)

𝑧c
𝑡 , 𝑧

d
𝑡 ∈ {0, 1} ∀𝑡 (8.18f)

𝑥𝑡+1 = 𝑥𝑡 + 𝜂𝑐𝑢c
𝑡 −

1
𝜂𝑑
𝑢d
𝑡 ∀𝑡 (8.18g)

SOCmin𝐸max ≤ 𝑥𝑡 ≤ SOCmax𝐸max ∀𝑡 (8.18h)

𝑥0 = SOC0 (8.18i)

𝑢𝑡 ≥ 𝑑1,𝑡 ∀𝑡 (8.18j)∑︁
𝑡

𝑢𝑡 ≥ 0.8
∑︁
𝑡

𝑑2,𝑡 + 0.25
∑︁
𝑡

𝑑3,𝑡 (8.18k)

1 ≤ 𝐸max

𝑈max ≤ 10 (8.18l)

The objective function (8.18a) is the sum of energy and power capacity costs and
a regularization term, weighted by scalar 𝜆 ∈ R, on the net load curtailment. This



169

term promotes the smoothness and uniqueness of the curtailed Tier 2 load pro-
file. (Without it, the charge/discharge of the battery can be very noisy.) Constraint
(8.18b) ensures power balance during an outage (all building load must be met by a
combination of PV power, denoted 𝑠𝑡 , and BESS power, denoted by the difference
𝑢d
𝑡 − 𝑢c

𝑡 ). Constraints (8.18c-i) enforce operational constraints on the battery, with
variables 𝑧c

𝑡 and 𝑧d
𝑡 introduced to enforce complementarity of charge/discharge ac-

tions 𝑢c
𝑡 and 𝑢d

𝑡 . Constraints (8.18j) and (8.18k) encode the resiliency requirements
from the methodology in [130]. Constraint (8.18l) ensures that the energy-to-power
ratio stays within reasaonble ranges (between a 1 hour and 10 hour battery). Opti-
mization problem (8.18)is a mixed-integer second-order cone program, efficiently
solvable in practice with a MISOC solver such as Gurobi.

Table 8.3 summarizes the remaining parameters in the case study that appear in
(8.18). We adopt the default partition of nominal load into tiers given in [130].

Parameter Value Description
𝑐u $965.83/kW Cost of battery power capacity15

𝑐e $237.64/kWh Cost of battery energy capacity16

𝜂𝑐 0.95 Charging efficiency of modern li-ion battery system
𝜂𝑑 0.95 Discharging efficiency of modern li-ion battery system
SOC0 1.0 Battery state-of-charge when outage begins (assume

full)
𝑅1 10% Tier 1 load, cannot be curtailed
𝑅2 15% Tier 2 load, can be curtailed up to 20%
𝑅3 75% Tier 3 load, discretionary load
𝜆 0.01 Smoothing parameter to enforce uniqueness

Table 8.3: Parameters for optimization problem (8.18)

The optimal solutions of optimization problem (8.18) are displayed in teh pliots in
Figure 8.4.

The first panel shows the load and solar profiles for the week of Aug 22-29, 2022
without any battery injections. The load is disaggregated into tiers, with the Tier 1
load being a constant 10% of the average load (rather than varying with time). Thus
only the priority and discretionary loads in Tiers 2 and 3 fluctuate with time.

The second panel of Figure 8.4 shows the combined solar and battery net generation
profile in relation to the same load profiles. Optimal charge/discharge of the battery
over a two day outage results in no curtailment of Tier 1 loads, only 20% curtailment
of Tier 2 loads, and 75% curtailment of Tier 3 loads.
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Figure 8.4: Simulation of battery and load microgrid operation at Baxter Hall over
48 hours in August 2022. The first panel shows nominal operation with significant
curtailment of critical load. The second panel shows optimal discharge of the battery
to meet critical and priority loads when PV generation is not available. The last
panel shows the added cost of resilience that a battery incurs over the building’s
energy cost baseline (and over the ∼15-year lifespan of the battery).

The third panel of Figure 8.4 shows the results of an ablation study on the cost
premium of reliability, as provided by a BESS system. To Compute the annual
baseline energy cost of the building, we use the Pasadena Water & Power’s large
commercial time-of-use volumetric rate for energy ($/kWh) and apply a demand
charge to the single 15-min monthly peak ($/kW). We divide the demand charge
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by 2 to account for the fact that the August peak is likely to be higher than during
the rest of the year, thus yielding a more realistic estimate of annual energy cost.
We then scale the battery size (and cost) so that it can meet progressively longer
outage durations (shown on the horizontal axis). This battery cost is then divided
by the asset lifespan cost of supplying energy building, yielding the additional “cost
of reliability” shown on the vertical axis. Remarkably, resilience to outages of up
to 48 hours can be had for as little as +10% of the cost of supplying the building’s
energy.

Our calculations show that total energy provided by solar could meet 65% of ag-
gregate building load over the week. However, the solar profile does not match
the building’s profile, which is where a battery could provide significant resilience
value for critical building loads.

Cost and emissions reduction
Given that grid outages are rare (despite their potentially significant impact), the
BESS can be controlled to provide decarbonization and cost benefits to the campus
while simultaneously maintaining its primary resiliency function. For decarboniza-
tion, load shifting is necessary to minimize consumption during periods of high-
carbon intensity. For cost efficiency, peak shaving of building load in response to
time-of-use schedules and demand charge peaks can reduce energy cost significantly.

In situations where there is a tradeoff between resiliency, decarbonization, and
cost reduction, multiple objectives can be co-optimized to yield the greatest net
benefit. The relative weighting of each objective can be set to tailor specific appli-
cation scenarios. In this scenario, the complementary timing of the optimal battery
charge/discharge schedules suggest that resiliency, emissions, and cost reduction
benefits can all be value stacked without sacrificing any one particularly.

Figure 8.5 shows a 14% reduction in the weekly energy cost for the building, which is
achieved by discharging during peak demand. These savings are realized with brief
and infrequent discharges (see panel 2). Figure 8.6 shows a modest 5% reduction
is weekly CO2 emissions for the building, which is achieved by cycling the battery
daily to shift load from high-carbon intensity periods to low-carbon intensity periods
on the grid. Given that peak load shaving opportunities come during the day and
decarbonization load shifting opportunities occur at night, these two objectives are
compatible and their benefits are additive.

Operating the Baxter Hall 75kW/600kWh BESS over a 10-year span, its net CO2
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Figure 8.5: Battery charge/discharge
schedules and state-of-charge trajectories
optimized for time-of-use energy cost
minimization.
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Figure 8.6: Battery charge/discharge
schedules and state-of-charge trajectories
optimized for carbon emissions reduction.

reduction would be

(20 kgCO2e/day) · (365 days/year) · 10 years ≈ 73, 000 kgCO2e (8.19)

which corresponds to 0.61 kgCO2e avoided per dollar of investment. This figure
will almost certainly increase in the future, as higher solar PV penetration leads to a
more aggressive duck curve and greater difference in carbon intensity between day
and night.

The net energy cost reduction over the same 10 year span would be

(3 $/day) · (365 days/year) · 10 years ≈ $120, 000 (8.20)

which roughly breaks even with the initial investment in the bESS. Remarkably,
the return on investment can be driven higher—up to a factor of 5x over a 10-year
period—if we choose a smaller battery (e.g., 20kWh capacity), due to the peak
shaving events being infrequent and short. However, this comes at a tradeoff of
lesser resiliency benefits.
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BESS testbed at Caltech
Based on the findings in the experiments above, we are collaborating with Caltech
Facilities to deploy a 80kW/4hr BESS system at a Caltech building in Fall 2023.
Although the resiliency, decarbonization, and cost reduction benefits that the BESS
will provide will be modest at this small scale, the pilot project offers a low-risk
investment to validate and quantify these benefits in a real-world test bed. If this
pilot is successful, it will provide a template for scaling up to additional Caltech
buildings and to a scale sufficient (likely >2MW) to positively impact reliability
of the entire Caltech campus. In addition, the hardware testbed will give us the
opportunity to deploy and refine hardware-software interfaces discussed in Section
7.1. While such interfaces are straightforward in concept, their implementation is
invovled and will provide important lessons for scalable deployment in the future.

Conclusions
Based on the simulations and scenarios explored in this section, our main finding is
that a small BESS system deployed at a building with critical load and rooftop solar
offers significant resiliency benefits to critical loads. In addition, we observe that:

• Even a small-sized battery (∼10kWh) can be extremely efficient at peak shav-
ing, reducing demand charge. The 10-year net cost saving can be as much as
5x the initial investment;

• The cost-optimal battery size (kW) and duration (kWh) depend on the building
location, the load profile, and the main objective (resiliency, decarbonization,
cost reduction);

• Despite the fact that we presented the Baxter Hall, with rooftop PV, as the
case study, buildings without rooftop PV likely provide even greater cost and
emission reductions due to the comparatively greater time-shifting impact of
the BESS.

8.3 Voltage control in a distribution feeder
Increasing penetration of distributed renewable generation and accelerating electrifi-
cation of vehicles and heating/cooling loads have the potential to erode power quality
in distribution feeders. For example, voltage magnitudes at customer endpoints far
away from the substation can often drop below minimum acceptable values (±5%
per-unit (p.u.) during summer peak load hours. Correcting these issues traditionally
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requires upgrades to physical infrastructure like conductors and transformers so that
larger loads at the network edge can be accommodated at nominal voltage levels.
Pasadena Water & Power (PWP) is exploring a new approach that places a fleet
of small batteries (5kW/28kWh) strategically throughout the grid and control them
during peak loading conditions to prevent voltage violations.

Project objectives. In this project, we collaborate with PWP to study the following
questions:

• At which nodes should the batteries be placed to optimally impact customer
endpoint voltage?

• How should the charging/discharging processes of the batteries be scheduled
to support voltage during peak load conditions?

The answers to these questions depend on load pattern as well as control objectives
and constraints. For example, objectives may include minimizing voltage deviations
from their nominal values or capital investment. Constraints may include voltage
limits, line limits, budget, availability of state information, and limited communica-
tion and control capabilities.

Method
In collaboration with PWP, we have developed a mathematical model of the PWP
feeder and a systematic method to answer this type of questions. The core of this
method is the formulation of a general-purpose multi-phase optimal power flow
(OPF) problem that takes into account of energy use in the feeder as well as various
control objectives and constraints. We have used this method to determine optimal
battery placement assuming power injections from batteries are fully controllable.
Extensions of this work address control strategies for the batteries that account for
the limited observability and communication capabilities of the inverters.

Implementing distributed voltage control in real distribution networks requires tack-
ling several modeling challenges. First is simulating unbalanced multi-phase power
flow. We adopt the linearized 3-phase power flow model for which distribution line
losses are assumed to be relatively small (< 10%) and voltages phasors are approx-
imately balanced. The second is incorporating power losses due to transformers
which, despite being ubiquitous in real-world distribution grids, are often ignored
in powerflow studies. The feeder under consideration in this project has three tiers
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coupled by a combination of single- and multi-phase transformers. We model the
electrical properties of multi-phase transformers (in both𝑌𝑌 and Δ𝑌 configurations)
using admittance matrices derived from equivalent circuit representations. Finally,
limited observability of the network below the substation requires simulation of
realistic loading patterns.

The goal is to place a limited number of batteries at strategic locations in the
distribution network and then charge/discharge them to correct voltage deviations.
We formulate the battery location problem as a mixed-integer linear program with a
binary variable associated with the placement decision for each node in the network.
We impose a constraint on the total battery capacity in the system and model
limits on battery charge/discharge rates and states of charge. Network constraints
include linearized multi-phase powerflow equations and voltage bounds at all nodes.
Power demand from customers is modeled by disaggregating time series of the net
injection at the substation according to defined end-user load profiles. The objective
of the optimization is to minimize the sum of the deviations of voltage magnitudes
from nominal values at customer endpoints. We solve this multi-interval network
optimization problem to optimality to obtain the battery placement locations and
corresponding charge/discharge schedules. The current charge/discharge schedules
assume full communication and control capability of the batteries.

Technical details
We first introduce our model and some basic definitions.

Preliminaries and notation

A distribution network is composed of buses and lines connecting these buses.
It is usually multi-phase and radial. A distribution network is a directed graph
G := (N , E) Let N := {0, 1, . . . , 𝑛} denote a set of buses in a distribution network
where 0 represents the substation bus and let N+ ≔ {1, . . . , 𝑛}. The substation bus
in the network often has a fixed voltage 𝑉0. The set of lines E contains ordered
pairs (𝑖, 𝑗) if there is a line 𝑖 → 𝑗 between buses 𝑖 ∈ N and 𝑗 ∈ N . We write
𝑖 ∼ 𝑗 if either 𝑖 → 𝑗 or 𝑗 → 𝑖. We consider a three-phase network and let 𝑎, 𝑏, 𝑐
denote the three phases and let Φ𝑖 ⊆ {𝑎, 𝑏, 𝑐} denote the phases of bus 𝑖 ∈ N and
Φ𝑖 𝑗 ⊆ {𝑎, 𝑏, 𝑐} denote the phases of line 𝑖 ∼ 𝑗 . For each bus 𝑖 ∈ N , we let 𝑉𝜙

𝑖
be

its phase-𝜙 complex voltage for any 𝜙 ∈ Φ𝑖 and define 𝑉𝑖 B [𝑉𝜙
𝑖
]𝜙∈Φ𝑖 . Moreover,

for each bus 𝑖 ∈ N , let 𝐼𝜙
𝑖

denote the current of phase 𝜙 ∈ Φ𝑖 for bus 𝑖 and define
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𝐼𝑖 B [𝐼𝜙
𝑖
]𝜙∈Φ𝑖 and let 𝑠𝜙

𝑖
denote the complex power injection of phase 𝜙 ∈ Φ𝑖 of bus

𝑖 and define 𝑠𝑖 B [𝑠𝜙
𝑖
]𝜙∈Φ𝑖 . For each line 𝑖 ∼ 𝑗 , we let 𝐼𝜙

𝑖 𝑗
denote the current of phase

𝜙 ∈ Φ𝑖 𝑗 from bus 𝑖 to 𝑗 and define 𝐼𝑖 𝑗 B [𝐼𝜙
𝑖 𝑗
]𝜙∈Φ𝑖 . Finally, we denote by 𝑧𝑖 𝑗 the

phase impedance matrix and we assume it is full-rank and define 𝑦𝑖 𝑗 B 𝑧𝑖 𝑗
−1. Our

goal is to control voltages in the distribution network G during fixed time horizons
T B {1, . . . , 𝑇}. In the remainder of this article, we use 𝑉𝑖 (𝑡), 𝐼𝑖 (𝑡) and 𝑠𝑖 (𝑡) to
represent the voltage, current and power injection for bus 𝑖 at time 𝑡 ∈ T .

Table 8.4 below summarizes the notation.

Table 8.4: Nomenclature and Notation.

Indices and Sets
𝑖, 𝑗 Indices of buses T Set of time horizons
N Set of buses E Set of lines
Φ𝑖 Set of phases of bus 𝑖 Φ𝑖 𝑗 Set of phases of line 𝑖 ∼ 𝑗

Parameters
𝑉 ref

0 Fixed substation voltage
𝑉
𝜙

𝑖
Voltage of phase-𝜙 for bus 𝑖 𝑉𝑖 Voltages of all phases for bus 𝑖

𝐼
𝜙

𝑖
Current of phase-𝜙 for bus 𝑖 𝐼𝑖 Current of all phases for bus 𝑖

𝐼
𝜙

𝑖 𝑗
Current of phase-𝜙 for line 𝑖 ∼ 𝑗 𝐼𝑖 𝑗 Current of all phases for line 𝑖 ∼ 𝑗

𝑠
𝜙

𝑖
Power injection of phase-𝜙 for bus 𝑖 𝑠𝑖 Power injection of all phases for bus 𝑖

𝑧𝑖 𝑗 Phase impedance matrix 𝛾, 𝛽 Battery charging/discharging rate limits
𝑉
𝜙

𝑖
, 𝑉

𝜙

𝑖 Voltage bounds for bus 𝑖
Decision Variables
𝑃 Battery locations

Battery placement optimization

Our goal is to solve the following battery placement optimization problem based on
the bus injection model (BIM) [86] subject to given battery dynamics and voltage
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regulation constraints:

min
𝑃

∑︁
𝑡∈T

∑︁
𝑖∈N+

L (𝑉𝑖 (𝑡)) (8.21a)

subject to: (8.21b)

(BIM) 𝑠𝑖 (𝑡)=
∑︁
𝑗 :𝑖∼ 𝑗

diag
[
𝑉𝑖 (𝑡)Φ𝑖 𝑗

(
𝑉𝑖 (𝑡)Φ𝑖 𝑗 −𝑉 𝑗 (𝑡)Φ𝑖 𝑗

)𝐻
𝑦𝐻𝑖 𝑗

]
, 𝑖 ∈ N , 𝑡 ∈ T

(8.21c)

(Battery Dynamics) 𝑠𝑖 (𝑡)= 𝑠𝑖 (𝑡 − 1) + 𝑃𝑖𝑒𝑖 (𝑡 − 1), 𝑖 ∈ N+, 𝑡 ∈ T (8.21d)

𝑒𝑖 (𝑡)∈ [𝛾, 𝛽], 𝑖 ∈ N+, 𝑡 ∈ T (8.21e)∑︁
𝑖∈N+

𝑃𝑖= ℓ, 𝑃𝑖 ∈ {0, 1}, 𝑖 ∈ N+ (8.21f)

(Voltage Regulation) 𝑉0= 𝑉
ref
0 , 𝑉

𝜙

𝑖 ≤
���𝑉𝜙𝑖 (𝑡)��� ≤ 𝑉𝜙𝑖 , 𝑖 ∈ N+, 𝜙 ∈ Φ𝑖 (8.21g)

where ℓ > 0 denote the number of batteries to be allocated and 𝑃 = (𝑃1, . . . , 𝑃𝑛)
and L : C3 → R+ denotes some loss function for voltage regulation.

Linearized branch Flow model

Optimization (8.21) is not computationally efficient to solve. Therefore, we follow
the LPF proposed in [53] and consider the following linearized optimization.

min
𝑃

∑︁
𝑡∈T

∑︁
𝑖∈N+

L (𝑉𝑖 (𝑡)) (8.22a)

subject to: (8.22b)

(LPF with Transformers) 𝑠0 = −
∑︁
𝑘∈N+

𝑠
Φ0
𝑘

(8.22c)

Λ𝑖 𝑗 = −
∑︁

𝑘∈Down( 𝑗)
𝑠
Φ𝑖 𝑗

𝑘
(8.22d)

𝑆𝑖 𝑗 = 𝛾
Φ𝑖 𝑗diag(Λ𝑖 𝑗 ) (8.22e)

𝑣𝑖 = 𝑣
Φ𝑖
0 −

∑︁
(𝑘,𝑙)∈P𝑖

[
𝑆𝑘𝑙𝑧

𝐻
𝑘𝑙 + 𝑧𝑘𝑙𝑆

𝐻
𝑘𝑙

]
𝑖 ∈ N+ (8.22f)

(Battery Dynamics) 𝑠𝑖 (𝑡)= 𝑠𝑖 (𝑡 − 1) + 𝑃𝑖𝑒𝑖 (𝑡 − 1), 𝑖 ∈ N+, 𝑡 ∈ T (8.22g)

𝑒𝑖 (𝑡)∈ [𝛾, 𝛽], 𝑖 ∈ N+, 𝑡 ∈ T (8.22h)∑︁
𝑖∈N+

𝑃𝑖= ℓ, 𝑃𝑖 ∈ {0, 1}, 𝑖 ∈ N+ (8.22i)

(Voltage Regulation) 𝑉0= 𝑉
ref
0 , 𝑉

𝜙

𝑖 ≤
���𝑉𝜙𝑖 (𝑡)��� ≤ 𝑉𝜙𝑖 , 𝑖 ∈ N+, 𝜙 ∈ Φ𝑖

(8.22j)
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where P 𝑗 denotes the path from bus 0 to bus 𝑗 and Down( 𝑗) denotes the downstream
of 𝑗 for 𝑗 ∈ N+ and 𝑣𝑖 = 𝑉𝑖𝑉𝐻𝑖 for all 𝑖 ∈ N .

Optimal battery placement results
The modeling and simulation were done using a feeder from the PWP network with
approximately 800 buses and 600 customers, which draw ∼2MW in peak aggregate
load. Currently, deviations from nominal voltages as large as 13% p.u. are observed
for some customers at some times (see Figure 8.7).

Figure 8.7: Voltage magnitudes in the PWP feeder. Blue indicates overvoltage and
red indicates undervoltage. Green is approximately 1 p.u. A significant number of
nodes in the feeder experience undervoltage while the substation voltages are above
the nominal range.

The optimal battery placement results from optimization problem (8.21) are shown
in Figure 8.8. Candidate locations were constrained to be in the 240V regions of
the network due the 240V nominal voltage of the battery inverters. In addition,
some power poles were not suitable for mounting batteries due to physical con-
straints. These placement conditions were incorporated into (8.21) as an extra set
of constraints on the integer placement variables.

Our powerflow simulations show that a collection of 15 batteries, each with a
capacity of 27.5kWh and discharge rate of 5kW, discharged over 4 midday peak-
load hours can correct nodal voltages to be within the required ±5% p.u. tolerance
(see Figure 8.9).
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Figure 8.8: Dark blue circles show the optimal battery placement locations. The
selected nodes are typically at the end of long or over-loaded lateral lines in the
feeder.

Ongoing work focuses on designing controllers for the batteries, which face com-
munication constraints and allow for limited customization of their on-board power
electronics. Such approaches include optimizing open-loop time-of-use settings
based on historical and projected network load and designing centralized feedback
controllers that are robust to communication lags and noisy or infrequent network
state measurements.
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Figure 8.9: Voltage magnitudes in the PWP feeder. Blue indicates overvoltage and
red indicates undervoltage. Green is approximately 1 p.u. All nodal voltages are
corrected to within ±5% p.u. when batteries are discharged optimally at peak feeder
load.
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