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ABSTRACT

We know quantum field theory is unitary. However, since the early 1980s, there have
been numerous attempts to construct quantum field theories where time evolution
is non-unitary. Some of these endeavors aimed to address the issue of black hole
information loss, as non-unitary evolution does not necessarily require information
preservation. Some wanted to use it as a modification of quantum mechanics to
allow objective collapse. Some wanted to construct classical-quantum gravity which
could serve as an alternative to quantum gravity.

I embarked on a similar path, attempting to construct a Lorentz covariant non-unitary
quantum field theory. At a certain point, I believed we were making significant
progress. However, I gradually realized that our construction faced serious problems.
We took a lot of assumptions and results from unitary quantum field theory for
granted, and used them without justification. After struggling with it for a long
time, I decide to make a complete reversal and prove that non-unitary quantum field
theories fundamentally conflict with Lorentz covariance.

There are three approaches to constructing a Lorentz covariant non-unitary QFT.
The first approach involves constructing a theory based on unitary quantum field
theory, where a system is coupled to an environment. If we only consider the system
and trace out the environment, the resulting equation of motion appears non-unitary.
In this case, unitarity emerges as an emergent property. The second approach is to
propose a theory from scratch where the time evolution is fundamentally non-unitary,
described by the Lindblad master equation. Both in the emergent and fundamentally
non-unitary theories, the dynamics are intended to be Lorentz covariant. The third
approach employs the Schwinger-Keldysh formalism to construct a path integral,
and examines the symmetry of the Keldysh action within the path integral. It is
assumed that, similar to quantum field theory, the non-unitary theory will possess
the same symmetry as the Keldysh action.

Regrettably, none of these three classes of theories prove successful. This thesis
thoroughly analyzes the issues associated with these three constructions. The most
significant problems include:

1, The fundamental assumption that the quantum fields (and their excitations) form
a unitary representation of the Lorentz group is invalid, and they cannot form a
non-unitary representation either.
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2, The system Hamiltonian in the Lindblad equation is ill-defined and does not
transform as the first component of a Lorentz four-vector.

3, Even if we overlook the aforementioned inconsistencies, the dynamics fail to
produce expected results when applied to phenomena such as particle decay, as they
exhibit a preferred reference frame.

4, The symmetry of the Keldysh action does not guarantee the corresponding sym-
metry in the dynamics. Invariant Keldysh actions can correspond to non-covariant
equations of motion.

In conclusion, the Lorentz symmetry is incompatible with non-unitary quantum
field theories.
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C h a p t e r 1

INTRODUCTION

1.1 Background and motivations
In 1974, Stephen Hawking made the groundbreaking discovery of Hawking radiation
(Hawking, 1974). In his efforts to address the resulting black hole information para-
dox, Hawking later proposed an intriguing possibility: the evolution of a pure state
into a mixed state (Hawking, 1982). This idea has sparked numerous discussions
among researchers.

The most famous contribution came from Banks, Peskin, and Susskind (BPS)
(Banks, Peskin, and Susskind, 1984), who highlighted the conflict between local-
ity and energy-momentum conservation in such theories. Srednicki (M. Srednicki,
1993) briefly examined the constraints imposed by Lorentz covariance and claimed
that the BPS toy model satisfied Lorentz covariance (although this was later proven
incorrect). Unfortunately his conditions for Lorentz covariance are not accurate (as
discussed in Chapter 5).

In 2007, John Preskill and David Poulin initiated a project (Poulin, 2017) aimed at
constructing a theory that evades the constraints highlighted by BPS while maintain-
ing Lorentz symmetry. The objective was to develop a theory where the fundamental
time evolution is non-unitary but potentially suppressed at low energy scales, thereby
ensuring the predictions of the theory remains consistent with our daily experiences.

Furthermore, a Lorentz covariant non-unitary theory has the potential to provide a
mathematical foundation for objective collapse theories, which have long struggled
to reconcile with Lorentz covariance. Additionally, such a theory is necessary
in the context of post-quantum classical gravity, where gravity is assumed to be
fundamentally classical and the dynamics of quantum systems coupled to gravity
become non-unitary. Jonathan Oppenheim et al. (Oppenheim and Weller-Davies,
2022) are actively engaged in constructing such a theory, envisioning it as an
alternative to the full quantum gravity.

The non-unitarity of quantum field theory can also arise when a system is coupled
to the environment, and we trace out the environment and only look at the system.
This scenario corresponds to the infinite-dimensional extension of open quantum
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systems in the field of quantum information science, where non-unitarity emerges
naturally. Alicki et al. (Alicki, Fannes, and Verbeure, 1986) laid the mathematical
groundwork for such theories and applied them to describe particle decay.

The dynamics of all the aforementioned theories are described by the Lindblad
master equation (Lindblad, 1976). They were constructed such that the Lorentz
transformation on the Lindblad equations are Lorentz covariant.

Another class of theories, based on Lindblad equations, incorporates Lorentz sym-
metry through the analysis of the Keldysh action. John Preskill initially proposed
the use of the Schwinger-Keldysh path integral formalism to construct fundamen-
tally non-unitary quantum field theories (Preskill, 2007). Building upon his leaked
notes, Avinash et al. developed the renormalization of certain "super-Lagrangian"
models within the framework of open system quantum field theory (Avinash, Jana,
Loganayagam, et al., 2017; Avinash, Jana, and Rudra, 2019). Jonathan Oppenheim
et al. are also working towards constructing a classical-quantum gravity theory using
this formalism, aiming to provide an alternative to full quantum gravity (Oppenheim
and Weller-Davies, 2023).

1.2 To work or not to work, that is the question
When I started in the summer of 2016, I was also trying to construct a non-unitary
quantum field theory that is Lorentz covariant. But what I am showing in this thesis
is the opposite, that such theories cannot work.

I started with building a more solid conceptual and mathematical foundation by
going back to the asymptotic past Hilbert space, and tried to add interaction to the
original Preskill-Poulin model. At some point, I thought we were close to our goals.
However, over the years, I noticed something was not right. First I noticed that, in
order to keep Lorentz covariance, spatial translation also needs to be non-unitary.
This is contrary to what other researchers believe. Then I discovered that our
fundamental assumption that the field forms a unitary representation of the Lorentz
group, or more precisely,𝑈 (Λ)𝑎(𝑝)𝑈 (Λ)† = 𝑎(Λ𝑝), which all previous researchers
assumed, is not consistent with non-unitary time evolution.

I realized that what we have been doing might be wrong from the beginning. I
felt very frustrated and did not know what to do. One option was to just make
some hand-waving arguments to explain these uncomfortable facts, try to apply the
theory to do some computations that can potentially be verified by experiments, and
claim we were successful. The other was to turn 180 degrees around, and to prove
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that Lorentz covariant quantum field theories cannot be constructed. Obviously, if
we successfully constructed such a theory, it would be much more exciting than to
prove it cannot be constructed. After struggling about it for some time, I decided to
be completely honest. If I can clearly and decisively prove that non-unitarity QFT
is fundamentally inconsistent with the Lorentz symmetry, it would help clarify a
lot of misunderstandings among the community, and give a conclusive answer to
this forty-year-old problem. Even if the result is not as exciting as the other way
around, this would still be real contribution to our understanding of foundational
questions in physics. My original motivation when I chose to study physics, was
exactly to better understand the foundational questions in physics, NOT to get some
great results and become a famous physicist.

After working in the opposite direction for about one year, I discovered more and
more evidence supporting my decision. We have taken too many things from unitary
QFT for granted, without carefully checking whether those assumptions and results
are still valid in non-unitary settings. And in most cases, they are not. I organized
these results in the following way.

In order to construct a non-unitary QFT that is Lorentz covariant, there are three ap-
proaches. The first is to start from the framework of unitary QFT. The mathematical
and conceptual constructions are the same. The system field we are interested in is
considered as a part of the global system, which is fundamentally unitary. However,
since we only have access to the system field, and have no access to the environment
it couples to, the reduced dynamics of the system field will look non-unitary. This
is a direct extension of the theory of open quantum systems in quantum information
science, with the additional constraint that it has to be Lorentz covariant. In this
framework, the non-unitarity is due to our lack of knowledge of the environment.
In another word, it is emergent.

The second approach is to start from scratch, to construct a theory that is funda-
mentally non-unitary. The dynamics would be the same as the first approach, but
the conceptual and the mathematical framework would be different. Ideally, there
should be a parameter 𝛾 that controls the non-unitarity. In the limit 𝛾 goes to zero,
the theory will approach unitary QFT. In my opinion, this approach is closer to
what Preskill and Oppenheim wanted, a fundamentally non-unitary theory that can
potentially serve as the solution to the black information paradox, or an alternative
to the full quantum gravity.

In the above two approaches, the Lorentz symmetry is seen at the level of the
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dynamics. The equation of motion–the Lindblad equation–is Lorentz covariant. In
the third approach, it is slightly different. As Preskill suggested, we look at the
Keldysh action. In the path integral formulation of the normal quantum field theory,
the invariance of the action always corresponds to the covariance of the equation of
motion. It was believed that a similar relationship holds in non-unitary quantum field
theory, that a Lorentz invariant Keldysh action corresponds to a Lorentz covariant
dynamics. Therefore, we can focus on constructing a Lorentz invariant Keldysh
action, that can be solved, and at the same time, preserves the vacuum state as a
stable point.

Unfortunately, as I discovered, none of the above three approaches work. The major
inconsistencies are:

1. the inconsistencies with the representation of the sLorentz group, both unitary
and non-unitary.

2. the problem with non-unitary spatial translation.

3. the invalid assumption that the system Hamiltonian transforms as the first com-
ponent of a Lorentz four-vector.

4. even if we disregard the above difficulties, these theories would not work as
expected, since there will be a preferred time frame.

5. the invalid assumption that an invariant Keldysh action corresponds to covariant
dynamics.

Because of these issues, we can draw the conclusion that Lorentz covariant non-
unitary quantum field theories cannot be constructed.

1.3 The organization of this thesis
This thesis is organized as follows:

In the second chapter, I discussed the problem with the fundamentally non-unitary
construction. I mainly focused on the conflict between the Lorentz symmetry and the
representation of the Lorentz group. It turns out that the quantum field cannot form
a representation of the Lorentz group, either unitary or non-unitary. I also discussed
the issue with non-unitary spatial translation, and the case with non-Markovian
dynamics.

In the third chapter, I discussed the problem with the emergent non-unitary theories.
I started with the problem of the representation of the Lorentz group, which is
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slightly different from the unitary case in the second chapter. I also discussed
the assumption that the system Hamiltonian transforms as the first component of a
Lorentz four-vector. Finally, I discussed the problem with the preferred time frame,
which is also shared with the fundamentally non-unitary construction, since the
dynamics of these two are the same.

In the fourth chapter, I discussed the construction based on the Schwinger-Keldysh
formalism. It has been believed that a symmetric Keldysh action will lead to a
symmetric dynamics, just like the case of the path integral in quantum field theory.
However, this is not the case for Lindblad dynamics. The equation of motion,
the Lindblad equation, is completely different from the Euler-Lagrange equation
obtained from extremizing the Keldysh action, so they will not share its symmetry.
I further showed that in the case of the Lorentz symmetry, invariant Keldysh actions
actually comes from non-covariant equations of motion.

In the fifth chapter, I discussed the Lorentz transformation properties of operators
and quantum channels that are defined as an integration on a time slice. It is
widely believed that in quantum field theory, the momentum operator 𝑃𝜈, defined
as an integration of stress tensor on a time slice 𝑃𝜈 :=

∫
𝑑𝑥3𝑇0𝜈 (𝑥), transforms as a

Lorentz vector. Some prominent physicists believe that a Lindblad quantum channel
acting on an operator defined as an integration on a time slice could transform as
the time derivative of that operator. These two views are incorrect. Operators
and quantum channels defined as integrations on a time slice in general transform
covariantly under the Lorentz transformation only if two conditions are met: 1, the
integrand should contain an operator which is the time-like component of a Lorentz
four-vector; 2, some conservation conditions are met.

Chapter six is a by-product of this thesis research, in which I analyzed the physical
meaning of the momentum eigenstates. We were trying to construct an operational
experiment in which we can measure some quantities to test if the theory is Lorentz
covariant. And we were using momentum eigenstates and wavepackets. However,
after careful analysis, I found out that, contrary to popular belief, momentum eigen-
states cannot be interpreted as plane-waves. In fact, the physical plane-waves should
be coherent states, and as a result, wavepackets are superpositions of coherent states.

Chapter seven summarizes the thesis with concluding remarks.
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C h a p t e r 2

NON-UNITARY LORENTZ COVARIANT THEORY CANNOT
BE CONSTRUCTED

In this chapter, we analyze the theories where time evolution is fundamentally non-
unitary. We will analyze the theories where the non-unitarity is emergent (i.e.,
open system quantum field theories) in the next chapter. These two classes of
theories share similar dynamics, but are constructed on different conceptual and
mathematical foundations. This chapter mainly focuses on the issues with the
construction, especially the issues of the representation of the Lorentz group. We
will leave the issues of self-Hamiltonian and dynamics to the next chapter.

As introduced in the first chapter, the closest to success in this genre is the Preskill-
Poulin Theory. I have spent years trying to make it well-defined, and to extend it to
interacting field theory. In this chapter, I first introduce the basic constructions, and
the issue with non-unitary spatial translations. Then we focus on the fundamental
assumption that the field in the theory forms a unitary representation of the Lorentz
group, which is inconsistent with the non-unitary time evolution. I also analyze the
possibility of the non-unitary representation of the Lorentz group, as suggested by
Oppenheim (Oppenheim and Weller-Davies, 2022) and Diosi (Diosi, 2022).

2.1 Basic constructions
We first introduce the framework of the Preskill-Poulin theory, which is the closest
to success in that genre. This construction starts from the level of space-time
foliation and Hilbert spaces. The time evolution is fundamentally non-unitary, but
can approach unitarity when the parameter 𝛾 controlling non-unitarity is taken to
zero, and the theory converges to normal unitary quantum field theory.

The fundamental time evolution is non-unitary, as described by the Lindblad equa-
tion

𝜕𝑡𝜌 = −𝑖[𝐻, 𝜌] + 𝛾
∫

𝑑𝑝𝜔𝑝

(
𝑎(𝑝)𝜌𝑎(𝑝)† − 1

2
{𝑎†(𝑝)𝑎(𝑝), 𝜌}

)
(2.1)

where 𝑑𝑝 := 𝑑3𝑝

(2𝜋)32𝜔𝑝
is the Lorentz invariant integration measure. The term in the

integrand is the non-unitary dressing to the normal unitary time evolution, which
corresponds to environmentally induced decoherence in open system quantum field
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theories. The operator 𝑎(𝑝) in the integrand is called the jump operator. In the
original Preskill-Poulin theory, since they want the vacuum to be a stable point,
they only used annihilation jump operators, but in principle there can be more
complicated operators as well.

To see the Lorentz covariance property, it is better to transform it into the Heisenberg
picture. (Part of the reason is that 𝑈 (Λ)†𝜌(𝑡)𝑈 (Λ) is not well defined. We address
this issue later.)

It is assumed that the quantum field in this theory forms a unitary representation of
the Lorentz group. The Lorentz transformations are generated by unitary generators
𝑈 (Λ)

𝑈 (Λ)𝑎(𝑝)𝑈 (Λ)† = 𝑎(Λ𝑝) (2.2)

We can rewrite the Lindblad equation in the Heisenberg picture and further gener-
alize it to include other jump operators 𝑄𝑎 (𝑝)

𝜕0𝐴 = 𝑖[𝑃0, 𝐴]

+
∑︁
𝑎,𝑏

𝛾𝑎𝑏

∫
𝑑𝑝𝑝0

(
𝑄†𝑎 ( ®𝑝)𝐴𝑄𝑏 ( ®𝑝) +

1
2
{𝑄†𝑎 ( ®𝑝)𝑄𝑏 ( ®𝑝), 𝐴}

)
. (2.3)

where𝑈 (Λ)𝑄𝑎 (𝑝)𝑈 (Λ)† = 𝑄𝑎 (Λ𝑝)

It is not hard to show that 𝑈 (Λ) acting on Eqn (2.3) by conjugation will yield a
Lorentz covariant form by using the invariance of the measure 𝑑𝑝.

(In Ref.(M. Srednicki, 1993), the author claimed that one general Lorentz-covariant
framework is

𝜕0𝜌 = −𝑖[𝑃0, 𝜌] − 𝑔
∫

𝑑Σ0 [𝜑(®𝑥 ), [𝜑(®𝑥 ), 𝜌]] .
Here ®𝑥 specifies a point on the spacelike hypersurface Σ whose unit normal defines
the time direction, and 𝑑Σ𝜇 = 1

6𝜀
𝜇𝑖 𝑗 𝑘𝑑𝑥𝑖𝑑𝑥 𝑗𝑑𝑥𝑘 . However, this turns out to be

incorrect, as discussed in detail in Chapter 5.)

It can also be shown that the time evolution of the operators commutes with the
Lorentz transformation

exp[LΛ𝑏 [𝑈 (Λ)†𝐴𝑈 (Λ)]] = 𝑈 (Λ)† exp[L𝑏 [𝐴]]𝑈 (Λ) (2.4)
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where L𝑏 [𝐴] generates the time evolution along a time-like vector 𝑏. These are ba-
sically the same properties with the non-fundamental quantum open system version,
as described in (Alicki, Fannes, and Verbeure, 1986).

It should be noted that, in his seminar at KITP (Poulin, 2017), Poulin claimed that
although time evolution is non-unitary, spatial translations are still generated by the
momentum operator 𝑃. Poulin did not give detailed constructions or derivations to
show why this is the case, nor did he explained whether it conflicts with Lorentz
covariance. We found out that this could not be the case. With a non-unitary time
evolution, Lorentz covariance would require non-unitary spatial translation, as we
show as follows. We construct the framework of non-unitary quantum field theory
from the most basic level. This is applicable to the Preskill-Poulin theory, and can
also reduce to unitary QFT when the coupling 𝛾 goes to 0 in Eqn (2.1).

We choose a foliation of space-time labeled by a reference system (𝑥, 𝑡). At each
time slice 𝑡, we associate a Hilbert space ℋ(𝑡). For now let us focus on the free
theory, which furnishes a Fock space structure. There is a natural isomorphism
between the Hilbert spaces defined on 𝑡 and 𝑡 +𝜏. If we use the Fock space structure,
|𝑝⟩ ∈ ℋ(𝑡) is identified with |𝑝⟩ ∈ ℋ(𝑡 + 𝜏) (up to a global phase). This natural
isomorphism is not the same as the time evolution map as in the unitary QFT, since
time evolution is not unitary here. (Strictly speaking, |𝑝⟩ is outside of the physical
Hilbert since it cannot be normalized, but in this paper, we would not go to that level
of mathematical rigor.) Def: An operator 𝑂 that acts on the Hilbert space ℋ(𝑡)
maps a vector |𝜙⟩ ∈ ℋ(𝑡) to another vector |𝜓⟩ = 𝑂 |𝜙⟩ ∈ ℋ(𝑡). We notate it as
𝑂 (𝑡) . (There are also operators that map an operator from the Hilbert space on one
time slice to another, which we will see later.)

Some operators may have a spatial dependence 𝑂 (𝑡) (®𝑥). To be more precise, this
notation means there is a family of operators 𝑂 (𝑡) (®𝑥) parameterized by spatial
location ®𝑥 on the time slice. Here I deliberately make 𝑡 and 𝑥 on different footings,
since their meanings are different. I am tempted to call them field operators.

We can define a super-operator that maps one𝑂 (𝑡) (®𝑥) to another operator at the same
time slice but a different spatial location. We call it a displacement super-operator.

Def: D𝑎 [𝑂 (𝑡) (®𝑥)] := 𝑂 (𝑡) (®𝑥 + ®𝑎)

At this stage this definition of displacement is abstract, purely dependent on the
relationship between operators. We want such super-operators to satisfy the additive
property: D𝑏 [D𝑎 [𝑂 (𝑡) (®𝑥)]] = 𝑂 (𝑡) (®𝑥 + ®𝑎 + ®𝑏) = D𝑎+𝑏 [𝑂 (𝑡) (®𝑥)].
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Aside from this, we have not imposed any other restrictions on the relationship be-
tween operators on the same time slice but at different locations, so this relationship
can be arbitrary. Later we will see that Lorentz covariance is one restriction, based
on which we derive the form of the displacement operator.

Operators like 𝑎 (𝑡) (𝑝) have no spatial label, but a momentum label. Such labels tell
us how they map one vector in the Fock space to another one.

The time translation/evolution super-operator E𝜏 maps an operator that acts onℋ(𝑡)
to an operator acting on ℋ(𝑡 + 𝜏).

Def: E𝜏 [𝑂 (𝑡)] : |𝜙⟩ ∈ℋ(𝑡 + 𝜏) → |𝜓⟩ ∈ℋ(𝑡 + 𝜏). Here 𝜏 is purely in the temporal
direction.

(All labels are implicitly assumed to be real numbers, unless declared otherwise.)

We can now notate 𝑂 (𝑡) acting on Hilbert space ℋ(𝑡) as 𝑂 (𝑡). And for field
operators, we can write it as 𝑂 (𝑡, ®𝑥). Hence E𝜏 [𝑂 (𝑡, ®𝑥)] := 𝑂 (𝑡 + 𝜏, ®𝑥).

Let us think about the relationship between time and spatial translation. We want it
to commute, which means if we first translate𝑂 (𝑡, ®𝑥) to𝑂 (𝑡, ®𝑥 + ®𝑎), and then evolve
it for time duration 𝜏 and get 𝑂 (𝑡 + 𝜏, ®𝑥 + ®𝑎), we should get the same result if we
first time translate and then spatially translate:

E𝜏 [D𝑎 [𝑂 (𝑡, ®𝑥)]] = 𝑂 (𝑡 + 𝜏, ®𝑥 + ®𝑎) = D𝑎 [E𝜏 [[𝑂 (𝑡, ®𝑥)]] (2.5)

Here we drop the superscript of the spatial translation super-operator since it is clear
which Hilbert space it acts on.

Now let us look at how the Lorentz transformations act on operators. The text-
book definition is, if we want to change our coordinate from 𝑥 to 𝑥′ = Λ−1𝑥, the
corresponding (scalar) operator should change according to

𝑈 (Λ)−1𝜙(𝑥)𝑈 (Λ) = 𝜙(Λ−1𝑥) (2.6)

To simplify notation, in the following I will replace Λ−1 with Λ, so the new frame
is 𝑥′ = Λ𝑥, and the corresponding transformation is 𝑈 (Λ)𝜙(𝑥)𝑈 (Λ)−1 = 𝜙(Λ𝑥).
In our case, we also assume the Lorentz group is represented unitarily. The super-
operator U(Λ) maps an operator defined in one time slice 𝑡 to an operator defined
in another time slice in the boosted frame 𝑡′ with a different foliation.

U(Λ) : 𝑂 (𝑡) → 𝑂 (𝑡
′) = 𝑈 (Λ)𝑂 (𝑡)𝑈†(Λ)
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= 𝑒𝑖𝜔𝜇𝜈𝑀
𝜇𝜈

𝑂 (𝑡)𝑒−𝑖𝜔𝜇𝜈𝑀
𝜇𝜈

.

This satisfies the composition rule 𝑈 (Λ)𝑈 (Λ′) = 𝑈 (ΛΛ′). For infinitesimal trans-
formations, we can write

𝑈 (Λ) = 𝐼 + 𝑖𝜔𝜇𝜈𝑀𝜇𝜈

where 𝑀𝜇𝜈 are the generators of the Lorentz transformations. From the composition
rules we can get the Lie algebra satisfied by these generators.

From above we can see that𝑈†(Λ) maps a vector from ℋ(𝑡′) to ℋ(𝑡) .

Now let us think about what Lorentz invariance/covariance mean. After we do a
active boost 𝑥′ = Λ−1𝑥, we want a (family of) scalar operators to transform in the
following way

𝑈 (Λ)𝑂 (𝑡, ®𝑥)𝑈 (Λ)−1 := 𝑂 (Λ𝑥) = 𝑂 (Λ0
0𝑡 + Λ

0
𝑖 𝑥
𝑖,Λ

𝑗

0𝑡 + Λ
𝑗

𝑖
𝑥𝑖)

This means that under a the Lorentz transformation, an operator 𝑂 (𝑡, ®𝑥) acting on
Hilbert space ℋ(𝑡) associated with location ®𝑥, will be transformed into an operator
acting on Hilbert space ℋ(𝑡′) associated with the time slice in the transformed
frame 𝑡′ = Λ0

0𝑡 +Λ
0
𝑖
𝑥𝑖 , with the location ®𝑥′ = Λ

𝑗

0𝑡 +Λ
𝑗

𝑖
𝑥𝑖. Note that two operators at

the same time slice but different locations will be transformed into Hilbert spaces of
DIFFERENT time slices in the new frame. This is because after a boost, the points
in the original time slice {(𝑡, ®𝑥) |𝑥𝑖 ∈ {−∞,∞}} will be in different time slices in the
new frame.

It seems it is not well defined to do a the Lorentz transformation for an operator that
does NOT have a spatial label, because we do not know after the transformation
which Hilbert space it acts on. This is actually not that surprising, since the Lorentz
transformation is fundamentally transforming space and time by mixing them. If an
operator has no spatial Label, what are we going to mix time with?

Another way to understand this is, as in the case of unitary QFT, 𝑀𝜇𝜈 acting on
scalar field operator as 𝑥𝜇𝜕𝜈 − 𝑥𝜈𝜕𝜇. Without 𝑥𝜇 in the argument, the derivative is
just 0. (Actually, even in unitary QFT, the derivation of how 𝑀𝜇𝜈 acts on a scalar
operator already assumes that the scalar operator is a function of 𝑥𝜇.)

The only exception seems to be for operators with a label of four-momentum, such
as 𝑎(𝑝), as 𝑝 is in some sense the Fourier transformed 𝑥. We will discuss this later.

We can also derive how derivatives of scalar operators transform, which we skip
here.
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2.2 Problem with non-unitary spatial translation
In the above discussion, D𝑑 is supposed to translate operators in the same Hilbert
space, i.e. in purely spatial direction. Similarly, E𝑏 is supposed to evolve the
operators from one time slice to another, i.e, in purely time direction. But when
we do a the Lorentz transformation, we will get EΛ𝑏 and DΛ𝑑 . We have to extend
the definition for EΛ𝑏, since previously E is only defined in the time direction of
the chosen frame. EΛ𝑏 is defined as follow. We choose another frame (call it the
primed frame) in which Λ𝑏 is the coordinate of time direction, where 𝑏 is in time
direction. In the primed frame, each time slice is associated with a Hilbert space.
And EΛ𝑏 generates the time evolution for operators defined in those Hilbert spaces.
An operator 𝑂 (𝑡, ®𝑥) in the old frame is labeled as 𝑈 (Λ)𝑂 (𝑡, ®𝑥)𝑈 (Λ)† in the new
frame. Similarly, we can defineDΛ𝑑 , where 𝑑 is in pure space direction. We say that
time and space translation super-operators are consistent or covariant with Lorentz
covariance if they satisfy the following conditions:

𝑈 (Λ)E𝑏 [𝑂 (𝑡, ®𝑥)]𝑈 (Λ)† = EΛ𝑏 [𝑈 (Λ)𝑂 (𝑡, ®𝑥)𝑈 (Λ)†] (2.7)

𝑈 (Λ)D𝑑 [𝑂 (𝑡, ®𝑥)]𝑈 (Λ)† = DΛ𝑑 [𝑈 (Λ)𝑂 (𝑡, ®𝑥)𝑈 (Λ)†] (2.8)

We can generalize 𝑏 to be a portion of a time-like curve, and 𝑑 a portion of a
space-like curve. In short, E and D commute with U, which clearly must hold,
otherwise there is no way to claim the theory is Lorentz covariant.

LHS means first move 𝑏(𝑑) in the old frame, then do the boost to the new frame.
Let’s do the calculation for Eqn 2.8 to see how LHS=RHS. In the old frame

𝐿𝐻𝑆 = 𝑈 (Λ) [𝑂 (𝑥 + 𝑑)]𝑈 (Λ)†

= 𝑂 (Λ𝜇
𝜈 (𝑥𝜈 + 𝑑𝜈))extract spatial component of Λ𝑑 to form DΛ𝑖

𝜈𝑑
𝜈

= DΛ𝑖
𝜈𝑑

𝜈 [𝑂 (Λ𝜇
𝜈 𝑥

𝜈 + Λ0
𝜈𝑑

𝜈))]extract temporal component of Λ𝑑to form EΛ0
𝜈𝑑

𝜈

= DΛ𝑖
𝜈𝑑

𝜈 [EΛ0
𝜈𝑑

𝜈 [𝑂 (Λ𝜇
𝜈 𝑥

𝜈)]
= DΛ𝑖

𝜈𝑑
𝜈 [EΛ0

𝜈𝑑
𝜈 [𝑈 (Λ)𝑂 (𝑡, ®𝑥)𝑈 (Λ)†]

= 𝑅𝐻𝑆 = DΛ𝑑 [𝑈 (Λ)𝑂 (𝑡, ®𝑥)𝑈 (Λ)†]

This means
DΛ𝑑 = DΛ𝑖

𝜈𝑑
𝜈 ◦ EΛ0

𝜈𝑑
𝜈

Namely, the displacement super-operator in the new frame, can be decomposed as
the displacement in the old frame plus the time evolution of the old frame. Since the
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time evolution channel EΛ0
𝜈𝑑

𝜈 is non-unitary, if DΛ𝑖
𝜈𝑑

𝜈 is unitary, their composition
DΛ𝑑 must always be non-unitary. And if DΛ𝑖

𝜈𝑑
𝜈 is non-unitary, their composition

DΛ𝑑 must always be non-unitary, unless in the very special case when they happen to
cancel out, which cannot be the general case since Λ and 𝑑 are completely arbitrary.
Hence, we can conclude that the displacement super-operator is also non-unitary.

To prove this I only used the definition of space and time translation, and Lorentz
transformation must commute with time translation. Nothing more.

It is thus clear that in our case of non-unitary field theory, time evolution is non-
unitary, but spatial translation should also be non-unitary. We will discuss the
physical implications about this later.

2.3 Conflict with unitary representation of the Lorentz group
Almost all previous discussions and constructions, including the Preskill-Poulin
theory as discussed above, assumed that the quantum field forms a unitary repre-
sentation of the Lorentz group (Eqn (2.2)). Or equivalently

𝑈 (Λ) |𝑝⟩ = |Λ𝑝⟩ (2.9)

In fact, this leads to contradictions both physically and mathematically.

Let us first look at 𝑎(Λ𝑝). Assume 𝑎(𝑝) is an operator in the Hilbert space associated
with the time slice 𝑡0, 𝑎(𝑝) ∈ ℋ(𝑡0). 𝑎(Λ𝑝) may mean two things. The first is
an operator living in the same Hilbert space, but with a different momentum label.
Namely, 𝑎(Λ𝑝) will annihilate a state in the same time-slice Hilbert space, but with
different four-momentum |Λ𝑝⟩. In other words, we actively change the physical
state, the configuration of the time-slice 𝑡0 from |𝑝⟩ to |Λ𝑝⟩.

The second is that the operator 𝑎(Λ𝑝) is living on a time-slice in the boosted frame.
For example, it may describe the situation of the time slice of a boosted observer. This
corresponds to the passive transformation: we did not change anything physically,
but just have a different observer. However, since the Lorentz boost mixes space
and time, the time-slice in the boosted frame will contain part of the information
not only of the original time-slice 𝑡0, but all the time-slices in the old frame.

While this is fine in unitary QFT, since in any time slice, |𝑝⟩ will stay the same, it is
problematic in non-unitary theories. Due to non-unitary time evolution, the states
of the time-slices after 𝑡0 will not stay |𝑝⟩ in general. Unless in the very special case
that |𝑝⟩ is the stable state of the Lindblad equation, they will in general evolve into
mixed states.
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More explicitly, the physical configuration of the time slice at time 𝑡0 in lab frame is
|Λ𝑝⟩⟨Λ𝑝 |. According to an observer in the lab frame, at time 𝑡1, the physical state
would be

𝜌(𝑡1) = 𝑒−𝑖L(𝑡1−𝑡0) |Λ𝑝⟩⟨Λ𝑝 |

This would be a mixed state in general. The boosted time-slice containing |Λ𝑝⟩
will have intersections with those future time-slices, where the state is mixed.
Say it intersects with time slice 𝑡1 at position ®𝑥1. Now, two observers both do a
measurement around the neighborhood of (𝑡1, ®𝑥1). The observer in the boosted
frame will get a result corresponding to a pure state, since according to him, the
physical situation in his time slice is described by |Λ𝑝⟩. However, for the observer
in the lab frame, he will get a result corresponding to a mixed state, since for him,
the time slice is described by the mixed state 𝑒−𝑖L(𝑡1−𝑡0) |Λ𝑝⟩⟨Λ𝑝 | that evolved from
the original pure state |Λ𝑝⟩⟨Λ𝑝 |. While according to the observer in the boosted
frame, the physical state is still the pure state |Λ𝑝⟩⟨Λ𝑝 | The fact that two observers
can tell the difference between inertial frames directly violates Lorentz covariance.

This contradiction is more obvious mathematically. In unitary QFT,𝑈 (Λ)𝑎(𝑝)𝑈 (Λ)† =
𝑎(Λ𝑝) can either be treated as an assumption, or derived from other assumptions or
definitions. In non-unitary theories, we already see the assumption𝑈 (Λ)𝑎(𝑝)𝑈 (Λ)† =
𝑎(Λ𝑝) contradicts with Lorentz invariance, as discussed above. This cannot be de-
rived as well, since in order to derive it, we need the equation of motion to be the
Klein-Gordon equation, well in the non-unitary cases, the equation of motion is the
Lindblad equation.

In the unitary QFT,𝑈 (Λ)𝑎(𝑝)𝑈 (Λ)† = 𝑎(Λ𝑝) can be derived as follow. From field
quantization of free scalar fields

𝜙(𝑥) :=
∫

𝑑𝑝

(
𝑎𝑝𝑒

𝑖𝑝𝑥 + 𝑎†𝑝𝑒−𝑖𝑝𝑥
)

One can solve for
𝑎(𝑝)† = −𝑖

∫
𝑑3𝑥𝑒𝑖𝑝𝑥

←→
𝜕 0𝜙(𝑥) (2.10)

In fact, Eqn 2.10 can be treated as the definition of creation operators, especially in
the cases of interacting theories. Now let us look at how the Lorentz transformation
works on both sides of Eqn 2.10.
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𝑅𝐻𝑆 = −𝑖
∫

𝑑3𝑥𝑈 (Λ)𝑒𝑖𝑝𝑥←→𝜕 0𝜙(𝑥)𝑈 (Λ)†

= −𝑖
∫

𝑑3𝑥 [𝑈 (Λ)𝑒𝑖𝑝𝑥𝜕0𝜙(𝑥)𝑈 (Λ)† − 𝑖𝑝0𝑒𝑖𝑝𝑥𝑈 (Λ)𝜙(𝑥)𝑈 (Λ)†]

= −𝑖
∫

𝑑3𝑥𝑒𝑖𝑝𝑥 [(Λ−1)0𝜇𝜕𝜇𝜙(Λ𝑥) − 𝑖𝑝0𝜙(Λ𝑥)]

Let us mode expend 𝐿𝐻𝑆

𝐿𝐻𝑆 = 𝑎(Λ𝑝)† = −𝑖
∫

𝑑3𝑥 [𝑒𝑖Λ𝑝𝑥𝜕0𝜙(𝑥) − 𝑖(Λ𝑝)0𝑒𝑖Λ𝑝𝑥𝜙(𝑥)]

Now, how do we make sense of LHS=RHS?

Inspired by Sidney Coleman (Coleman, 2011), we need to rewrite the integration∫
𝑑3𝑥 =

∫
𝑑4𝑥𝑛0𝛿(𝑥 · 𝑛), where 𝑛 = (1, 0, 0, 0) is a unit vector pointing in the time

direction of the original frame.

𝑅𝐻𝑆 = −𝑖
∫

𝑑4𝑥𝑛𝜌𝛿(𝑥 · 𝑛)𝑒𝑖𝑝𝑥 [(Λ−1)𝜌𝜇𝜕𝜇𝜙(Λ𝑥) − 𝑖𝑝𝜌𝜙(Λ𝑥)]

Change integration variable 𝑦 = Λ𝑥 and define 𝑛′ := Λ𝑛, 𝑛𝜌 = (Λ−1)𝜈𝜌𝑛′𝜈 = Λ𝜈𝜌𝑛
′𝜈

𝑅𝐻𝑆 = −𝑖
∫

𝑑4𝑦Λ𝜈𝜌𝑛
′𝜈𝛿(𝑦 · 𝑛′)𝑒𝑖𝑝·Λ−1𝑦 [(Λ−1)𝜌𝜇𝜕𝜇𝜙(𝑦) − 𝑖𝑝𝜌𝜙(𝑦)]

= −𝑖
∫

𝑑4𝑦Λ𝜈𝜌 (Λ−1)𝜌𝜇𝑛′𝜈𝛿(𝑦 · 𝑛′)𝑒𝑖Λ𝑝·𝑦 [𝜕𝜇𝜙(𝑦) − 𝑖(Λ𝑝)𝜇𝜙(𝑦)]

= −𝑖
∫

𝑑4𝑦𝑛′𝜌𝛿(𝑦 · 𝑛′)𝑒𝑖Λ𝑝·𝑦 [𝜕𝜌𝜙(𝑦) − 𝑖(Λ𝑝)𝜌𝜙(𝑦)]

= −𝑖
∫

𝑑4𝑥𝑛′𝜌𝛿(𝑥 · 𝑛′)𝑒𝑖Λ𝑝·𝑥 [𝜕𝜌𝜙(𝑥) − 𝑖(Λ𝑝)𝜌𝜙(𝑥)]

On the other hand

𝐿𝐻𝑆 = −𝑖
∫

𝑑4𝑥𝑛𝜌𝛿(𝑥 · 𝑛) [𝑒𝑖Λ𝑝𝑥𝜕𝜌𝜙(𝑥) − 𝑖(Λ𝑝)𝜌𝑒𝑖Λ𝑝𝑥𝜙(𝑥)]

We can see that RHS almost equals LHS, except in RHS, 𝑛′ replaced 𝑛. This means
that RHS was defined on a different time slice 𝑛′ from LHS, and the surface now is
𝑡′ = 0. So how can these two be equal?

Let us take the differences of the two,

𝐿𝐻𝑆 − 𝑅𝐻𝑆 = −𝑖
∫

𝑑4𝑥 [𝑛𝜌𝛿(𝑥 · 𝑛) − 𝑛′𝜌𝛿(𝑥 · 𝑛′)]𝑒𝑖Λ𝑝·𝑥 [𝜕𝜌𝜙(𝑥) − 𝑖(Λ𝑝)𝜌𝜙(𝑥)]
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Note 𝑛𝜌𝛿(𝑥 · 𝑛) = 𝜕𝜌𝜃 (𝑥 · 𝑛),

𝐿𝐻𝑆 − 𝑅𝐻𝑆 = −𝑖
∫

𝑑4𝑥𝜕𝜌 [𝜃 (𝑥 · 𝑛) − 𝜃 (𝑥 · 𝑛′)]𝑒𝑖Λ𝑝·𝑥 [𝜕𝜌𝜙(𝑥) − 𝑖(Λ𝑝)𝜌𝜙(𝑥)]

Now integrate by parts and drop the surface term

𝐿𝐻𝑆 − 𝑅𝐻𝑆 = −𝑖
∫

𝑑4𝑥 [𝜃 (𝑥 · 𝑛) − 𝜃 (𝑥 · 𝑛′)]𝜕𝜌 [𝑒𝑖Λ𝑝·𝑥 [𝜕𝜌𝜙(𝑥) − 𝑖(Λ𝑝)𝜌𝜙(𝑥)]]

= −𝑖
∫

𝑑4𝑥 [𝜃 (𝑥 · 𝑛) − 𝜃 (𝑥 · 𝑛′)] [(𝜕𝜌𝑒𝑖Λ𝑝·𝑥) [𝜕𝜌𝜙(𝑥) − 𝑖(Λ𝑝)𝜌𝜙(𝑥)]

+ 𝑒𝑖Λ𝑝·𝑥 [𝜕𝜌𝜕𝜌𝜙(𝑥) − 𝑖(Λ𝑝)𝜌𝜕𝜌𝜙(𝑥)]]]

= −𝑖
∫

𝑑4𝑥 [𝜃 (𝑥 · 𝑛) − 𝜃 (𝑥 · 𝑛′)] [𝑒𝑖Λ𝑝·𝑥 [𝑖(Λ𝑝)𝜌𝜕𝜌𝜙(𝑥) + 𝑚2𝜙(𝑥)]

+ 𝑒𝑖Λ𝑝·𝑥 [𝜕2𝜙(𝑥) − 𝑖(Λ𝑝)𝜌𝜕𝜌𝜙(𝑥)]]]

= −𝑖
∫

𝑑4𝑥 [𝜃 (𝑥 · 𝑛) − 𝜃 (𝑥 · 𝑛′)]𝑒𝑖Λ𝑝·𝑥{𝜕2𝜙(𝑥) + 𝑚2𝜙(𝑥)}

Now we can see that the last term above will be equal to zero if the Klein-Gordon
equation is satisfied!

This is exactly the case in unitary QFT for the free scalar field, where Klein-Gordon
equation is the EOM. This is how we derive𝑈 (Λ)𝑎(𝑝)𝑈 (Λ)† = 𝑎(Λ𝑝).

However, in non-unitary theories, the EOM is the Lindblad equation, and in general
𝜕2𝜙(𝑥) + 𝑚2𝜙(𝑥) ≠ 0 . This means mathematically, 𝑈 (Λ)𝑎(𝑝)𝑈 (Λ)† ≠ 𝑎(Λ𝑝).
Since the Lorentz covariance properties in all the previous research including the
Preskill-Poulin theory, crucially rely on the unitary representation of the Lorentz
boost Eqn 2.2, they are thus not self consistent.

(One might argue that based on the above derivation, for interacting QFT, Klein-
Gordon equation is not the EOM, hence 𝑈 (Λ)𝑎(𝑝)𝑈 (Λ)† ≠ 𝑎(Λ𝑝) as well. How-
ever, for interacting QFT, we do not understand the structure of the Hilbert space
in the scattering region. We only understand the asymptotic Hilbert space, which
furnishes a Fock space structure as well. Hence, in the above derivation, we
should replace 𝑎(𝑝)† with 𝑎𝑖𝑛 (𝑝)†, and 𝜙(𝑥) with 𝜙𝑖𝑛 (𝑥), where the operators
with subscripts live in the asymptotic Hilbert spaces. And in the asymptotic past,
𝜕2𝜙𝑖𝑛 (𝑥) + 𝑚2𝜙𝑖𝑛 (𝑥) = 0. The same applies for the asymptotic future case.

This argument cannot be applied for non-unitary theories. This is because the free
unitary QFT corresponds to the non-unitary QFT where the Hamiltonian is free (or
quadratic). But the theory is still fundamentally non-unitary, regardless of whether
we go into the asymptotic past.)
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2.4 Inconsistencies with non-unitary representation of the Lorentz group
One potential method to resolve the above contradiction is to use non-unitary gen-
erators for the Lorentz boosts, as suggested by Diosi (Diosi, 2022) and Oppen-
heim (Oppenheim and Weller-Davies, 2022). However, after close inspections, we
found that this approach is unacceptable on conceptual, mathematical and physical
grounds, as we show as follows.

The central idea to find out the non-unitary boost generators, as suggested by
Oppenheim, is to dress the unitary generators with dissipation. Since a the Lorentz
boost can be understood as a rotation in space-time, one can construct such generators
by updating the time evolution and/or spatial translation generators with dissipative
super-operators. For example, Oppenheim suggests that, since in unitary QFT, the
generators for the Lorentz boost are

𝑄0𝑖
𝑈 =

∫
𝑑3𝑥

(
𝑥0𝑇0𝑖 − 𝑥𝑖𝑇00

)
(2.11)

one can generalize these to non-unitary super-operators Q0𝑖 [·]

Q0𝑖 [𝑂 (𝑥)] = − 𝑖[
∫

𝑑3𝑦
(
𝑦0𝑇0𝑖 − 𝑦𝑖𝑇00

)
, 𝑂 (𝑥)]

+ 𝑖
∫

𝑑𝑦3𝑦𝑖D[𝑂 (𝑥)]

where D[𝑂 (𝑥)] is the non-unitary contribution. (They have different kinds of
D[𝑂 (𝑥)] corresponding to different physical interpretations.) Intuitively, 𝑖

∫
𝑑𝑦3𝑦𝑖D[𝑂 (𝑥)]

is dressing the term 𝑖[
∫
𝑑3𝑦𝑦𝑖𝑇00, 𝑂 (𝑥)], which schematically corresponds to a

small movement in the time direction. (Remember 𝐻 =
∫
𝑑3𝑥𝑇00, and 𝐻 and

D[𝑂 (𝑥)] together generate time evolution in the Lindblad equation.)

Such theories have the following difficulties. Firstly, it is taking assumptions and
conclusions from unitary QFT without justification. We need to remember how we
derived Eqn 2.11 in Unitary QFT. It comes from variation of the Lagrangian with
respect to an infinitesimal tensor

𝐷L = 𝜖𝜆𝜎𝑥
𝜆𝜕𝜎L = 𝜕𝜇 [𝜖𝜆𝜎𝑥𝜆𝑔𝜇𝜎L]

From the Noether theorem, we find the conserved current

𝐽𝜇 = 𝜋𝜇𝜖𝜆𝜎𝑥
𝜆𝜕𝜎𝜙 − 𝜖𝜆𝜎𝑥𝜆𝑔𝜇𝜎L

= 𝜖𝜆𝜎

(
𝜋𝜇𝑥𝜆𝜕𝜎𝜙 − 𝑥𝜆𝑔𝜇𝜎L

)
.
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Since this current must be conserved for all six independent anti-symmetric matrices
𝜖𝜆𝜎, the quantity inside the parentheses that is anti-symmetric in 𝜆 and 𝜎 must be
conserved, i.e. 𝜕𝜇𝑀𝜇𝜆𝜎 = 0, where

𝑀𝜇𝜆𝜎 =

(
𝜋𝜇𝑥𝜆𝜕𝜎𝜙 − 𝑥𝜆𝑔𝜇𝜎L

)
− (𝜆↔ 𝜎)

= 𝑥𝜆 (𝜋𝜇𝜕𝜎𝜙 − 𝑔𝜇𝜎L) − (𝜆↔ 𝜎)
= 𝑥𝜆𝑇 𝜇𝜎 − 𝑥𝜎𝑇 𝜇𝜆

Correspondingly, the conserved charges that generate space-time rotations/boosts
are

𝑄𝜆𝜎 =

∫
𝑑3𝑥𝑀0𝜆𝜎 =

∫
𝑑3𝑥

(
𝑥𝜆𝑇0𝜎 − 𝑥𝜎𝑇0𝜆

)
. (2.12)

By imposing canonical commutation relationship [𝜙(𝑥),Π(𝑥)] = 𝑖 where Π(𝑥) =
𝜕L
𝜕 ¤𝜙(𝑥) , one can show that

[𝑄𝜆𝜎, 𝜙(𝑥)] = 𝑖𝑥𝜆𝜕𝜎𝜙(𝑥) − 𝑖𝑥𝜎𝜕𝜆𝜙(𝑥). (2.13)

We can see that in order to derive Eqn 2.12, we need to extremize the Lagrangian
and use the Noether theorem. However, for the non-unitary theory, there is no
Lagrangian description to start with. Although it may be formulated in Schwinger-
Keldysh form, and some related literature uses the terms like “Keldysh-action” or
“super-Lagrangian”, these are not equivalent to the action and Lagrangian in unitary
QFT, since extremizing them would not yield the equation of motion, and there is
no Noether theorem to give us the conserved charges that generate the symmetries.
(See Chapter 5 for a detailed analysis) Hence, there is no way to justify that directly
dressing Eqn 2.12 with dissipation would serve as the non-unitary boost generators,
since the foundations to derive 𝑄𝜆𝜎 do not exist in non-unitary theories. Moreover,
since time evolution is non-unitary, energy conservation is explicitly broken, and
we will not have a conserved stress energy tensor 𝑇 𝜇𝜈 at all, dressing

∫
𝑑3𝑥𝑥𝑖𝑇00

with
∫
𝑑𝑥3𝑥𝑖D[𝑂 (𝑥)] with the hope that it generates the non-unitary boost, makes

even less sense.

Mathematically, such a non-unitary boost acting on the Lindblad equation will hardly
be Lorentz covariant. In unitary QFT, an infinitesimal the Lorentz boost Λ = 1 + 𝛿𝜖
is generated by𝑈 (1 + 𝛿𝜖) = 𝐼 + 𝑖𝜖𝜆𝜎𝑄𝜆𝜎, and we can show that

𝑈 (Λ)𝜙(𝑥)𝑈 (Λ)† = 𝜙(Λ𝑥) (2.14)

However, this ceases to be true under the non-unitary boost Q0𝑖, even if we tem-
porarily ignore the conceptual difficulties discussed above. Assuming the Lorentz
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boost on 𝜙(𝑥) is generated byVΛ [𝜙(𝑥)] = exp[𝑖Λ0𝑖Q0𝑖 [𝜙(𝑥)]], since

Q0𝑖 [𝜙(𝑥)] = 𝑖𝑥0𝜕𝑖𝜙(𝑥) − 𝑖𝑥𝑖𝜕0𝜙(𝑥) + 𝑖
∫

𝑑𝑦3𝑦𝑖D[𝜙(𝑥)]

the third term will mess things up when we try to reorganize the terms into closed
forms like 𝜙(Λ𝑥). This actually makes sense, since a dissipative channel will
generally introduce noise to the operator, just like it will map a pure state into a
mixed state.

And withoutVΛ [𝜙(𝑥)] = 𝜙(Λ𝑥), it is hard to justify that the Lorentz transformation
acting on the equation of motion, the Lindblad equation, will be in a covariant form,
like the equation with the unitary generator.

Moreover, whether Q0𝑖 satisfies the Poincare algebra is not clear as well. Unlike
the unitary case, now the commutation relationship depends on the structure of the
non-unitary term D[·]. Without knowing the explict D[·] there is no way to check
whether the Poincare algebra is satisfied.

Even if some special D[·] could satisfy Poincare algebra, there are no guarantees
that they generate the Lorentz boosts for all operators. This is a very serious problem
that would make this theory not viable and computation impossible.

In unitary QFT, Eqn 2.14 guarantees 𝑈 (Λ)𝑂 [𝜙(𝑥)]𝑈 (Λ)† = 𝑂 [𝜙(Λ𝑥)], where
𝑂 [𝜙(𝑥)] is any polynomial in 𝜙(𝑥).

For example,𝑈 (Λ)𝜙(𝑥)2𝑈 (Λ)† = 𝑈 (Λ)𝜙(𝑥)𝑈 (Λ)†𝑈 (Λ)𝜙(𝑥)𝑈 (Λ)† = 𝜙(Λ𝑥)2.

It also gives us the crucial property of the correlation functions. This is because

⟨0|𝜙(𝑥)𝜙(𝑦) |0⟩ = ⟨0|𝑈 (Λ)𝜙(𝑥)𝑈 (Λ)†𝑈 (Λ)𝜙(𝑦)𝑈 (Λ)† |0⟩ = ⟨0|𝜙(Λ𝑥)𝜙(Λ𝑦) |0⟩
(2.15)

Where we used the fact that the vacuum state is invariant under the Lorentz trans-
formation.

However, when dissipative channels are involved, even ifVΛ [𝜙(𝑥)] = 𝜙(Λ𝑥), it does
not necessarily mean VΛ [𝜙(𝑥)2] = 𝜙(Λ𝑥)2. The structure of a generic dissipative
channel is

V[𝑂] =
𝑖∑︁
𝐾𝑖𝑂𝐾

†
𝑖

(2.16)

This means in generalV[𝜙(𝑥)2] ≠ V[𝜙(𝑥)]2.

As a result, while the non-unitary boost generators VΛ may generate the Lorentz
boost for field operators 𝜙(𝑥), it will not generate the Lorentz boost for other
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generators 𝑂 (𝑥). This means VΛ do not really serve the role as the Lorentz boost
generators.

Let us see what it means for correlation functions. Because of the structure of the
non-unitary generators Eqn 2.16, in general

⟨0|𝜙(𝑥)𝜙(𝑦) |0⟩ ≠ ⟨0|
𝑖∑︁
𝐾𝑖𝜙(𝑥)𝐾†𝑖

𝑗∑︁
𝐾 𝑗𝜙(𝑦)𝐾†𝑗 |0⟩ = ⟨0|𝜙(Λ𝑥)𝜙(Λ𝑦) |0⟩

(2.17)
Namely, correlation functions are no longer Lorentz invariant.

Finally, the physical results of non-unitary boost generators are not acceptable. Such
non-unitary channels will inevitably boost pure states into mixed states, except in
the very special cases where the input pure state is a stable point of the channel.
For example, Q0𝑖 will in most cases boost a single particle pure state like |𝑝⟩⟨𝑝 |
into a mixture of multi-particle states. This is fundamentally different than that
in the unitary case, where a single particle pure state |𝑝⟩⟨𝑝 | will be boosted into
another single particle state with a different momentum |Λ𝑝⟩⟨Λ𝑝 |, which is what
we originally mean by boosting.

One way to interpret this phenomenon is that when we are boosted in the frame
of the observer with a constant speed, that observer will not see a pure state for
the reason discussed above. However, if we take the active view of the boost,
which simply means changing the speed/momentum of the state, obviously, a single
particle pure state should be boosted into another single particle pure state, just like
in the unitary case. This means physically, active transformations are generated
by unitary generators, while passive transformations (that change coordinates) will
be generated by non-unitary generators. This is fundamentally different from any
other physical theory, where passive and active transformations are represented in
the same way.

In fact, that a Lorentz boost will boost a pure state into a mixed state seems to
contradict the notion of Lorentz covariance directly. Since it suggests that some
observers are special (the ones corresponding to the pure state). In a Lorentz
covariant theory, observers traveling at different constant speeds are equivalent,
since they cannot tell any differences by local measurements. While in this case,
they can, as long as they can measure the purity of some localized states.
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2.5 Non-Markovian dynamics are even worse
Finally, we would like to point out that although the above discussion is based on
Markovian time evolution, all the difficulties in either the unitary or non-unitary
Lorentz boost still exist when the dynamics is non-Markovian. In fact, moving to
non-Markovian dynamics would not save the theory, but will make the problems
even worse.

Let us think about the corresponding quantum open system theory which has the
same dynamics. The Markovian process means the reservoir (the environment that
interacts with the system) is either infintely large, so that the change to the reservoir
due to system-reservoir interaction is negligible, or the reservoir is refreshed con-
stantly back to the initial state. And as a result, the back reaction to the system does
not depend on the memory of the reservoir. On the contrary, in a non-Markvoian pro-
cess, the memory of the reservoir does matter, and as a result the Lindblad equation
describing the evolution of the system can depend explicitly on time. Ref. (Zhang,
2018) derived the non-Markovian Lindblad equation for a finite-dimensional system
in an open quantum system setting,

𝑑𝜌(𝑡)
𝑑𝑡

=
1
𝑖
[�̃�𝑆 (𝑡, 𝑡0), 𝜌(𝑡)] +

∑︁
𝑖 𝑗

�̃�𝑖 𝑗 (𝑡, 𝑡0)𝐿𝑎†
𝑖
,𝑎 𝑗
[𝜌(𝑡)]

+
∑︁
𝑖 𝑗

[2𝜸𝑖 𝑗 (𝑡, 𝑡0) ± �̃�𝑖 𝑗 (𝑡, 𝑡0)]𝐿𝑎 𝑗 ,𝑎
†
𝑖

[𝜌(𝑡)] , (2.18)

where the super-operator 𝐿
𝑎𝑖 ,𝑎

†
𝑗

[𝜌(𝑡)] is defined as the standard Lindblad operator

𝐿
𝑎𝑖 ,𝑎

†
𝑗

[𝜌(𝑡)] ≡ 𝑎𝑖𝜌(𝑡)𝑎†𝑗 −
1
2
𝑎
†
𝑗
𝑎𝑖𝜌(𝑡) −

1
2
𝜌(𝑡)𝑎†

𝑗
𝑎𝑖 . (2.19)

and 𝑡0 notates the initial condition. The explicit time dependence of the system
Hamiltonian and effective coupling coefficient matrix will break the Lorentz covari-
ance. The non-Markovian Lindblad equation, even though generalized to infinite
dimension, and written in the Lorentz covariant Heisenberg picture form like in Eqn
(2.3), with some simplifying assumptions regarding the effective coupling coeffi-
cient matrix,

𝜕0𝐴 =𝑖[𝑃0(𝑡, 𝑡0), 𝐴] + 𝛾𝑎𝑏 (𝑡, 𝑡0)
∫

𝑑𝑝𝑝0(
𝑄†𝑎 ( ®𝑝)𝐴𝑄𝑏 ( ®𝑝) +

1
2
{𝑄†𝑎 ( ®𝑝)𝑄𝑏 ( ®𝑝), 𝐴}

)
will not transform covariantly under conjugation of unitary boost generators 𝑈 (Λ),
let alone the more complicated non-unitary boost generators.
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In conclusion, neither unitary nor non-unitary boost generators could be consistent
with non-unitary time evolution, as we have shown, from conceptual, mathematical
and physical grounds. There are other difficulties of the non-unitary QFT as well,
but we think this is the most serious problem. This seems to suggest that the
objective collapse theories of the quantum measurement problems, which have a
similar mathematical formulation and dynamics, cannot be consistent with Lorentz
covariance as well.
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C h a p t e r 3

OPEN QUANTUM FIELD THEORY CANNOT BE LORENTZ
COVARIANT

3.1 Introduction
Consider a global system consisting of the system and the environment. The dy-
namics of the global system is unitary and Lorentz covariant, just like in the normal
quantum field theory. But if we only have access to the system and have no control of
the environment, the system is described by the theory of quantum open system. Is it
possible that the reduced dynamics, which is non-unitary, is still Lorentz covariant?

This question has been discussed since the 1980s. One side of the discussion is moti-
vated by fundamental interests. The reduced non-unitary dynamics phenomenology
has the same description as a theory in which the time evolution is fundamentally
non-unitary, as pointed out in (Banks, Peskin, and Susskind, 1984), and that fun-
damental non-unitarity could potentially serve as the solution to the Black Hole
information paradox, as suggested by Hawking in (Hawking, 1982). On the other
side, the reduced dynamics is interesting by itself, which can be applied to describe
the decay of unstable particles (Alicki, Fannes, and Verbeure, 1986) . Alicki et al. in
Ref. (Alicki, Fannes, and Verbeure, 1986) laid out the mathematical foundation of
such reduced non-unitary dynamics, which according to them is Lorentz covariant.

In Chapter 2, we pointed out that if a theory is fundamentally non-unitary, it cannot
be Lorentz covariant. One of the must serious problems is that the representation
of the Lorentz group, be it unitary or not, would not make sense in non-unitary
dynamics. There are some differences for the case here, where the dynamics of the
underlying global system is unitary, and the non-unitarity arises because we only
have access to the system. However, this emergent non-unitarity still conflicts with
the Lorentz covariance. One major issue is still the representation of the Lorentz
group, although it is different from the fundamental non-unitary theory.

Moreover, for the equation of motion to be Lorentz covariant, one crucial assumption
is that the self-Hamiltonian of the system would transform as the first component of
the four-momentum operator. We find out that this assumption is invalid.

Even if we ignore these difficulties, the non-unitary quantum open system field
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theory does not work as desired, since it does not apply to multiple particles with
different momenta.

This paper is organized as follows. In section II, we introduce the main features of
the non-unitary quantum open system field theory, and why Alicki et al. thought it
is Lorentz covariant. In section III, we discuss the conflict with the representation
of the Lorentz boost. In section IV, we discuss the unjustified assumption that the
system Hamiltonian could transform in a Lorentz covariant fashion. In section V,
we discuss the problems when applied to a multi-particle system. In section VI, we
summarize the results, and clarify the potential confusion related to experiments
with atomic clocks that confirm time dilation.

3.2 Non-unitary quantum open system field theory
We start with the Heisenberg picture. Consider a system with algebra of observables
ℬ(ℋ), all bounded operators on a Hilbert space ℋ; as states of the system we
consider the expectation functional defined by means of density matrices 𝜌 on ℋ.
The irreversible time evolution from time 𝑡 = 0 up to time 𝑡 is given by the dynamical
map Γ𝑡 , which is linear and complete positive and trace preserving (CPTP).

Γ𝑡 : 𝑂 ∈ ℬ(ℋ) → Γ𝑡 [𝑂] ∈ ℬ(ℋ)

Restricting to Markovian cases, Γ𝑡 satisfies the following

Γ0 = 1, Γ𝑡1Γ𝑡2 = Γ𝑡1+𝑡2 ,

where 𝑡1, 𝑡2 ∈ 𝑅+. It is clear that {Γ𝑡 |𝑡 ∈ 𝑅+} is a representation of the semigroup
𝑅+ into a one-parameter semigroup of unity preserving CPTP maps of ℬ(ℋ).

Under the uniform continuity condition of the map

Γ : 𝑡 → Γ𝑡 X,

there exists a generator Lindbladian 𝐿 such that

Γ𝑡 = exp(𝑡𝐿)

In relativistic settings, 𝑅+ is replaced by the future cone

ℱ = {𝑏 ∈ 𝑅4 |𝑏2 = (𝑏, 𝑏) ≥ 0, 𝑏0 ≥ 0}

ℱ is an additive semi-subgroup of 𝑅4.
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For 𝑎, 𝑏 ∈ ℱ, we have the semigroup property

Γ𝑎Γ𝑏 = Γ𝑎+𝑏

and Poincare covariance property

𝑈 (𝑎,Λ)Γ𝑏𝑈 (𝑎,Λ)† = ΓΛ𝑏 . (3.1)

In Eqn(3.1), we directly used unitary representation 𝑈 (𝑎,Λ). This is different in
the fundamentally non-unitary theory, where the representation can in principle
be non-unitary, as discussed in chapter 2. This is because, for the theory here,
the non-unitarity arises due to the lack of information about the environment. The
underlying theory of the global system is still unitary, and has a unitary representation
of Poincare group𝑈 (𝑎,Λ). Clearly𝑈 (𝑎,Λ) works on all observables of the system
and the system plus environment. It is thus natural to use 𝑈 (𝑎,Λ) here. In fact,
all previous literature regarding non-unitary time evolution assumed 𝑈 (𝑎,Λ) by
default, no matter if the non-unitarity is fundamental or emergent.

As argued by Alicki et al., we can apply Γ𝑎 on bosonic fields 𝜙 to describe its decay
process. With 𝑎(𝑝) the usual annihilation operators, we have 𝑈 (Λ)𝑎(𝑝)𝑈 (Λ)† =
𝑎(Λ𝑝). We can find that Γ𝑏 = exp(𝑏𝜇𝐿𝜇), where

𝐿𝜇 [𝑂] =
∫

𝑑𝑝𝑝𝜇

(
𝑖[𝑎(𝑝)†𝑎(𝑝), 𝑂] + 𝛾

2
{𝑎(𝑝)†𝑎(𝑝), 𝑂}

)
(3.2)

where 𝑑𝑝 := 𝑑3𝑝

(2𝜋)3 is the Lorentz invariant measure, and 𝑂 is an operator on 𝜙.

We can see that the time component of Eqn (3.2) gives us the normal Lindblad
equation

𝜕0 [𝑂] = 𝑖[𝑃0, 𝑂] +
𝛾

2

∫
𝑑𝑝𝑝0

(
{𝑎(𝑝)†𝑎(𝑝), 𝑂}

)
(3.3)

where 𝐻𝑠 := 𝑃0 =
∫
𝑑𝑝𝑝0𝑎(𝑝)†𝑎(𝑝) is the Hamiltonian for the system. Eqn (3.3) is

manifestly Lorentz covariant, as applying𝑈 (Λ) by conjugation on it just transforms
to different component in Eqn (3.2). Here it is assumed that 𝐻𝑠 can indeed be
considered as the time component of a four-vector operator 𝑃𝜇. This assumption is
widely used in the community, however, as we discuss in Section IV, it cannot be
justified.

We can also show that the time evolution of the operators commute with the Lorentz
transformation:

𝑈 (Λ)Γ𝑏 [𝑂]𝑈 (Λ)† = ΓΛ𝑏 [𝑈 (Λ)𝑂𝑈 (Λ)†] .
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Alicki et al. further discussed an example of how to apply it to describe the decay
of moving particles. We will discuss this later.

3.3 Contradictions with unitary representation of the Lorentz group
In Chapter 2, we discussed the difficulties with the Lorentz representation of a
fundamentally non-unitary theory. In this case, when the non-unitarity is emergent,
the problems are slightly different, but the result is the same, namely, the non-
unitarity conflicts with the unitary representation of the Poincare group.

First of all, in the fundamentally non-unitary case, the representation of the Poincare
group may be either unitary or non-unitary, at least in theory. Here, the represen-
tation has to be unitary. This is because in the underlying unitary quantum field
theory, the representation is unitary 𝑈 (Λ). This representation will transform both
the system and the environment field in the global theory. When we trace out the
environment,𝑈 (Λ) obviously still works on the system field operators.

Could it be the case that a different representation of Poincare group 𝑉 (Λ) only
works on the system field but not the environment field? The answer is no, simply
because if that is the case, it will lead to non-localities. Consider the system field
𝜙(𝑥) coupled to the environment field 𝜓(𝑥) by the term 𝜙(𝑥)𝜓(𝑥)2. If 𝑉 (Λ) only
acts on 𝜙(𝑥), it will directly lead to non-locality

𝑉 (Λ)𝜙(𝑥)𝜓(𝑥)2𝑉 (Λ)† = 𝜙(Λ𝑥)𝜓(𝑥)2 (3.4)

Hence, the only Poincare representation in this case, is the same one as in the global
theory, namely,

𝑈 (Λ)𝑎(𝑝)𝑈 (Λ)† = 𝑎(Λ𝑝) (3.5)

Here 𝑎(𝑝) is the annihilation operator for the free mode of the system field. As
we discussed in Chapter 2, Eqn (3.5) is invalid when the theory is fundamentally
non-unitary. This is because for Eqn (3.5) to hold, the Klein-Gordon equation must
be satisfied. While in that theory, it does not, since the equation of motion is the
Lindblad equation. The situation is different here, and there is a way to avoid the
contradiction as in Chapter 2. This is because, in the global theory, the fundamental
time evolution is unitary, and we can go back to the asymptotic past Hilbert space,
where the theory is asymptotically free. On the other hand, in the fundamentally
non-unitary theory, there is no asymptotic past Hilbert space where the theory is
asymptotically unitary, so that the Klein-Gordon equation is satisfied.



26

Consider a system field 𝜙(𝑥) coupled to the environment field 𝜓(𝑥) through the term
L𝑖𝑛𝑡 . The total Hamiltonian density is

H =
1
2
(𝜕2 + 𝑚2)𝜙(𝑥) + 1

2
(𝜕2 + 𝑀2)𝜓(𝑥) − L𝑖𝑛𝑡

In the asymptotic past Hilbert space,H equals the free Hamiltonian density for both
fields,

𝑙𝑖𝑚
𝑡→−∞

H =
1
2
(𝜕2 + 𝑚2

𝑖𝑛)𝜙𝑖𝑛 (𝑥) +
1
2
(𝜕2 + 𝑀2

𝑖𝑛)𝜓𝑖𝑛 (𝑥)

As the result, the Klein-Gordon equation is satisfied for 𝜙𝑖𝑛 (𝑥). Hence, at least in
the asymptotic past(future) Hilbert space, Eqn (3.5) is valid.

However, this does not solve the full problem, since Eqn (3.5) is valid ONLY
in the asymptotic past(future) Hilbert space. In the scattering regime, where the
interaction is turned on, it no longer works, since the Klein-Gordon equation is no
longer satisfied. More importantly, it is the scattering regime that we are mainly
interested in. Because only in this regime, can we trace out the environment and
get emergent non-unitary dynamics for the system. While in the asymptotic past
(future) Hilbert space, since the system field 𝜙𝑖𝑛 (𝑥) and the environment field 𝜓𝑖𝑛 (𝑥)
decouple, after tracing out the environment the dynamics of the system field is still
unitary.

There is one interesting example that merits a deeper investigation. Consider the case
for linear coupling, where L𝑖𝑛𝑡 = 𝑔𝜙(𝑥)𝜓(𝑥). Let 𝑎(𝑝)† and 𝑏(𝑝)† be the creation
operators that create one excitation of 𝜙(𝑥) and 𝜓(𝑥) in the mode 𝑝 respectively.
Precisely speaking, when the interaction is turned on, the notion of particle no longer
makes sense since 𝑎(𝑝)† is time dependent and no longer creates a momentum
eigenstate |𝑝⟩. However, in the case where 𝑔 is small enough compared to the self
Hamiltonian, we can treatL𝑖𝑛𝑡 as a perturbation around the free theory, and continue
using 𝑎(𝑝)† as if it creates a (slightly modified) system particle. This is also what
we assumed when we traced out the environment and derived the Lindblad equation.
Still, 𝑈 (Λ)𝑎(𝑝)𝑈 (Λ)† = 𝑎(Λ𝑝) is invalid, for the reasons discussed above, but the
special structure of L𝑖𝑛𝑡 might save us.

Due toL𝑖𝑛𝑡 being linear, it is possible to construct two new fields, 𝜙1(𝑥) and 𝜙2(𝑥), as
the linear combination of 𝜙(𝑥) and 𝜓(𝑥), such that the Lagrangian density expressed
in the new fields is free.

L =
1
2
[(𝜕𝜙1(𝑥)) · (𝜕𝜙1(𝑥)) − 𝑚2

1𝜙
2
1(𝑥) + (𝜕𝜙2(𝑥)) · (𝜕𝜙2(𝑥)) − 𝑚2

2𝜓2(𝑥)2]
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Let 𝜙1 = 𝑎11𝜙 + 𝑎12𝜓, 𝜙2 = 𝑎21𝜙 + 𝑎22𝜓,

2L = [(𝜕𝜙1(𝑥)) · (𝜕𝜙1(𝑥)) − 𝑚2
1𝜙

2
1(𝑥) + (𝜕𝜙2(𝑥)) · (𝜕𝜙2(𝑥)) − 𝑚2

2𝜓2(𝑥)2]
= (𝑎11𝜕𝜙 + 𝑎12𝜕𝜓) · (𝑎11𝜕𝜙 + 𝑎12𝜕𝜓) + (𝑎21𝜕𝜙 + 𝑎22𝜕𝜓) · (𝑎21𝜕𝜙 + 𝑎22𝜕𝜓)
− 𝑚2

1(𝑎11𝜙 + 𝑎12𝜓)2 − 𝑚2
2(𝑎21𝜙 + 𝑎22𝜓)2

= (𝑎2
11 + 𝑎

2
21) (𝜕𝜙)

2 + (𝑎2
11 + 𝑎

2
22) (𝜕𝜓)

2 − (𝑚2
1𝑎

2
11 + 𝑚

2
2𝑎

2
21)𝜙

2 − (𝑚2
1𝑎

2
12 + 𝑚

2
2𝑎

2
22)𝜓

2

+ (2𝑎11𝑎12 + 2𝑎21𝑎22)𝜕𝜙 · 𝜕𝜓 + (2𝑚2
1𝑎11𝑎12 + 2𝑚2

2𝑎21𝑎22)𝜙𝜓

Comparing terms, we get

𝑎2
11 + 𝑎

2
21 = 𝑎2

11 + 𝑎
2
22 = 1

(𝑚2
1𝑎

2
11 + 𝑚

2
2𝑎

2
21) = 𝑚

2

(𝑚2
1𝑎

2
12 + 𝑚

2
2𝑎

2
22) = 𝑀

2

𝑎11𝑎12 + 𝑎21𝑎22 = 0

(2𝑚2
1𝑎11𝑎12 + 2𝑚2

2𝑎21𝑎22) = 𝑔

Solving the above six equations for six unknown variables, we can get 𝑎𝑖 𝑗 and
𝑚1, 𝑚2, although the results are too cumbersome to be included here.

Now the new field 𝜙1(𝑥) and 𝜙2(𝑥) are completely free, so we can mode expand
them

𝜙1(𝑥) =
∫

𝑑𝑝𝑐(𝑝)𝑒𝑖𝑝𝑥 + 𝑐(𝑝)†𝑒−𝑖𝑝𝑥

𝜙2(𝑥) =
∫

𝑑𝑝𝑑 (𝑝)𝑒𝑖𝑝𝑥 + 𝑑 (𝑝)†𝑒−𝑖𝑝𝑥

And𝑈 (Λ)𝑐(𝑝)𝑈 (Λ)† = 𝑐(Λ𝑝) is valid in the whole space-time.

However, this is not really what we want. What we want is a system that is (weakly)
coupled to the environment. And when we trace out the environment field, its
dynamics will be described by the Lindblad equation. The 𝜙1 particle as created by
𝑐† (𝑝) is the combination of our system and environment particles. Since we cannot
measure the environment, we will not be able to measure 𝜙1 as well. Besides, the
𝜙1 is just a normal free Klein-Gordon field, which we are not interested in. What
we are interested in is original system field, because its non-unitary dynamics could
potentially be used to describe interesting phenomena such as particle decay.

As we can see in the above examples, only in free theory, would𝑈 (Λ)𝑎(𝑝)𝑈 (Λ)† =
𝑎(Λ𝑝) hold. While for our non-unitary field, it does not. As a result, our non-unitary
field cannot form a unitary representation of the Poincare group as expected.
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3.4 System Hamiltonian and Momentum operators do not form a four-momentum
In general, to make the Lindblad equation Eqn (3.3) fully covariant, a key assumption
is that the system Hamiltonian𝐻𝑠 will transform as the first component of the Lorentz
four-momentum operator 𝑃𝜇 under the Lorentz transformation. Although this looks
plausible, as we find out, this assumption is invalid.

In quantum open system theory, we define system Hamiltonian 𝐻𝑠 as the part of the
total Hamiltonian that only includes the operator acting on the system. In the limit
of the system-environment coupling going to 0, 𝐻𝑠 drives the time evolution of the
system. As the coupling turns on, the time evolution will be affected by the coupling
to the environment, and the equation of motion becomes the Lindblad equation as
a result. With such a definition of 𝐻𝑠, it will not form a four-momentum operator
with some “system momentum operator 𝑃𝑖𝑠” . The first reason is, that such “system
momentum operator 𝑃𝑖𝑠” cannot be well-defined.

Let us remember how we define Hamiltonian and momentum operators, and why
they form a four-momentum operator in quantum field theory. There are two ways
to define them. The first one comes from Noether theorem and the stress-energy
tensor.

𝑃𝜇 :=
∫

𝑑3𝑥𝑇0𝜇

𝑃𝜇 as defined here can be proven to transform as a four-vector operator under the
Lorentz transformation in the same way as described in the above section. The key
step of the proof is by using the conservation of the stress-energy tensor 𝜕𝜇𝑇 𝜇𝜈 = 0.

Such a definition of the global four-momentum operator cannot be generalized to
define the “system momentum operator”. This is because the system is not a closed
system due to the interaction with the environment. There is no spatial and temporal
translation invariance for the system alone, and we cannot use the Noether theorem
to get the conserved Noether charge correspondingly. As a result, we cannot define
the system momentum operator as 𝑃𝜇𝑠 :=

∫
𝑑3𝑥𝑇

0𝜇
𝑠 , simply because we don’t know

what this 𝑇0𝜇
𝑠 is, what it means physically, how we compute or define it, etc.

One might really want to push the limit, and define the system field operator by
manually making all terms in 𝑇0𝜇 that involve the environment field operator to be
0. This is the same as dropping all the terms in the full Lagrangian that involve
the environment field operator, and applying the Noether theorem on the remaining
terms. Yet this will not do the job, because the resulting 𝑇0𝜇

𝑠 is not conserved. And
without the conservation of 𝑇0𝜇

𝑠 , we cannot prove that 𝑃𝜇𝑠 :=
∫
𝑑3𝑥𝑇

0𝜇
𝑠 transforms
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as a four-vector operator, for the exact same reason as in the previous section and
Chapter 2.

Another way to define the Hamiltonian and momentum operators in QFT is to
define them as the generators of temporal and spatial translation. This method
cannot be applied to define 𝑃𝜇𝑠 either. The time evolution is generated by the global
Hamiltonian, or the Lindbladian for the system alone by approximation. The system
Hamiltonian 𝐻𝑠 as defined above does not generate the time evolution for the system
at all. For spatial translation, it is also generated by the global momentum operator.
There are no ways to define some 𝑃𝑖𝑠 that generates the spatial translation for the
system alone, and that forms a four-momentum with 𝐻𝑠.

Some readers may point out the special case in Eqn (3.2), where if the system
Hamiltonian is defined as 𝐻𝑠 :=

∫
𝑑𝑝𝜔𝑎(𝑝)†𝑎(𝑝) , it seems one can define a

four-momentum operator

𝑃
𝜇
𝑠 :=

∫
𝑑𝑝𝑝𝜇𝑎(𝑝)†𝑎(𝑝)

where𝐻𝑠 can be considered as the first component 𝑃0
𝑠 that transforms properly under

the Lorentz transformations.

There are a few caveats. Most importantly, if we define 𝑎(𝑝)† as the opera-
tor that creates a free mode of the system field, it will not transform as desired
𝑈 (Λ)𝑎(𝑝)†𝑈 (Λ)† = 𝑎(Λ𝑝)†, due to the coupling with the environment, as dis-
cussed in Section II. Even if we pretend this problem does not exist, there are
still other difficulties. The first is that this only applies to the free theory, where
𝐻𝑠 :=

∫
𝑑𝑝𝜔𝑎(𝑝)†𝑎(𝑝) = 1

2 (𝜕
0𝜙)2 + 1

2 (𝜕
𝑖𝜙)2 + 1

2𝑚
2𝜙2. This is because only in free

theory, can we expand the field operators 𝜙(𝑥) into modes as created by 𝑎(𝑝)†

𝜙(𝑥) =
∫

𝑑𝑝𝑎(𝑝)†𝑒−𝑖𝑝𝑥 + ℎ.𝑐.

This breaks down whenever we introduce any interactions. For example, if we
add a simplest 𝜙3 interaction term, we cannot write the system Hamiltonian 𝐻𝑠 :=∫
𝑑𝑝𝜔𝑎(𝑝)†𝑎(𝑝) = 1

2 (𝜕
0𝜙)2 + 1

2 (𝜕
𝑖𝜙)2 + 1

2𝑚
2𝜙2 + 𝜆𝜙3 into 𝑎(𝑝) and 𝑎(𝑝)†since

the field is no longer free.

Even if someone may want to do this as an “approximation” (which is completely
unjustified), this will not serve the purpose. The additional self interaction term
will explicitly break the Lorentz covariance. This is because, the reason that the
free Hamiltonian 𝐻𝑠 :=

∫
𝑑𝑝𝜔𝑎(𝑝)†𝑎(𝑝) = 1

2 (𝜕
0𝜙)2+ 1

2 (𝜕
𝑖𝜙)2+ 1

2𝑚
2𝜙2 transforms
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nicely is that after the mode expansion and some computation, we end up with∫
𝑑𝑝𝑝0𝑎(𝑝)†𝑎(𝑝). The key here is 𝑝0 provides the desired the Lorentz label.

When adding the interacting terms, be it 𝜙3 or 𝜙4, the mode expansion of them will
only be 𝑂 [𝑎(𝑝)]3or 𝑂 [𝑎(𝑝)]4, and we will not get that 𝑝0 provides the desired the
Lorentz label.

When we try to Lorentz transform the Lindblad equation, the covariance breaks
down explicitly. This is because to show the Lorentz covaraince of the Lindblad
equations Eqn (3.3) and Eqn (3.2), we must either define the system Hamiltonian part
as a component of a four-momentum operator, or write it into modes that transform
properly. In the interacting theory, we can do neither, for the reason discussed above.
As a result, we would be left with

𝜕0 [𝑂] = 𝑖[
1
2
(𝜕0𝜙)2+1

2
(𝜕𝑖𝜙)2+1

2
𝑚2𝜙2, 𝑂]+𝛾

2

∫
𝑑𝑝𝑝0

(
𝑎(𝑝)†𝑂𝑎(𝑝) − {𝑎(𝑝)†𝑎(𝑝), 𝑂}

)
If we do a Lorentz transformation, the self-Hamiltonian term would explicitly breaks
the Lorentz covariance, since it is the only term that doesn’t have a Lorentz index.
(As a side note, in normal free QFT, the momentum operator obtained through
Noether theorem is 𝑃 = −

∫
𝑑3𝑥Π(𝑥)∇𝜙(𝑥). When an interacting term like 𝜆𝜙3 is

added to the Lagrangian it is also added to the Hamiltonian, but 𝑃 stays the same.)

3.5 Problem of preferred time frame
Even if we ignore the above difficulties in constructing this theory, it still will not
work as expected. The reason is, it can only be applied to a single point-like particle.
It cannot be applied when there are multiple particles with different momentum.

In Ref. Alicki, Fannes, and Verbeure, 1986, Alicki et al. applied this theory
to describe particle decay. Basically, they evolve the particle number operator
𝑛𝑝 = 𝑎

†
𝑝𝑎𝑝 as follows:

𝑛𝑝 (𝑏) = E∗𝑏 [𝑛𝑝 (0)] = 𝑛𝑝 (0)𝑒−𝛾𝑝𝑏 .

Here 𝑏 = (𝑡, ®𝑣𝑡) is aligned with the direction of the momentum 𝑝, and ®𝑣 = ®𝑝/𝑝0,
and E∗𝑏 = exp(𝑏𝜇𝐿𝜇) is the time evolution super operator as introduced in Section
II. This object is manifestly Lorentz invariant, as it should be.

However, there is a very strong restriction, that we have to evolve operators along one
particular direction 𝑏 = (𝑡, ®𝑣𝑡). This basically selects one preferred time direction.
Let us think about the case where 𝑏𝑙𝑎𝑏 is our lab frame time vector 𝑏𝑙𝑎𝑏 = (𝑡𝑙𝑎𝑏, 0).
For a particle with non-zero momentum 𝑝, at time 𝑡𝑙𝑎𝑏 it will arrive at location ®𝑥. If
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we evolve with the lab frame time vector, instead of the inertial time of the particle,
we end up with

𝑛𝑝 (𝑏𝑙𝑎𝑏) = E∗𝑏 [𝑛𝑝 (0)] = 𝑛𝑝 (0)𝑒−𝛾𝐸𝑡𝑙𝑎𝑏

Since 𝐸𝑡𝑙𝑎𝑏 is not Lorentz invariant, this result is manifestly frame dependent, so
that different observers will read different numbers of remaining particles. This
clearly is not acceptable. (This is the “incorrect” method in the Preskill paradox.)

Let us consider another example. Say we have some other particles with momentum
𝑞. How do we use this theory to describe these two groups of particles together?
If we chose to evolve alone 𝑏𝑝 ,which is aligned with the direction of 𝑝, the total
particle number operator 𝑛 = 𝑛𝑝 + 𝑛𝑞,

𝑛(𝑏) = E∗𝑏 [𝑛(0)] = 𝑛𝑝 (0)𝑒−𝛾𝑝𝑏 + 𝑛𝑞 (0)𝑒−𝛾𝑞𝑏

= 𝑛𝑝 (0) exp[−𝛾(𝑝0𝑡 − ®𝑝2𝑡/𝑝0)] + 𝑛𝑞 (0) exp[−𝛾(𝑞0𝑡 − ®𝑞 · ®𝑝𝑡/𝑝0)]
= 𝑛𝑝 (0) exp[−𝛾𝑚2/𝑝0)] + 𝑛𝑞 (0) exp[−𝛾(𝑞0𝑡 − ®𝑞 · ®𝑝𝑡/𝑝0)] .

Here in the third line, we used the relativistic energy-momentum relation 𝑝2
0 − ®𝑝

2 =

𝑚2. We can see that, in the first term, we got the correct result for particles with
momentum 𝑝, but the second term does not work, since 𝑞 is not aligned in the
direction of 𝑝.

Now, let us look at the difference in the result for these two methods, namely evolving
with the internal time 𝑏𝑖𝑛𝑡 or lab time 𝑏.

𝑛𝑝 (𝑏𝑖𝑛𝑡)/𝑛𝑝 (𝑏) = 𝑒−𝛾 ®𝑝·
®𝑏

We can see the difference is the spatial damping term. Namely, if at time 𝑡𝑙𝑎𝑏, the
lab is at spatial location ®𝑥 = 0, and the particle is at spatial location ®𝑥 = ®𝑏, the
difference is exactly as if there is a spatial damping factor between 0 and ®𝑏.

Let us look at this from a different angle. For the field decomposition in unitary
QFT

𝜙(𝑥) =
∫

𝑑𝑝𝑎𝑝𝑒
−𝑖𝑝𝑥 + 𝑎†𝑝𝑒𝑖𝑝𝑥 ,

if we want to evolve this field from 𝑥 to 𝑥 + 𝑏, we should use

E∗𝑏 [𝜙(𝑥)] =
∫

𝑑𝑝𝑎𝑝𝑒
−𝑖𝑝(𝑥+𝑏)𝑒−

𝛾

2 𝑝𝑏 + 𝑎†𝑝𝑒𝑖𝑝(𝑥+𝑏)𝑒−
𝛾

2 𝑝𝑏 .

If instead, we choose to evolve the field only with our lab frame time 𝑏𝑙𝑎𝑏 = (𝑡𝑙𝑎𝑏, 0),
we have
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E∗𝑏𝑙𝑎𝑏 [𝜙(𝑥)] =
∫

𝑑𝑝𝑎𝑝𝑒
−𝑖𝑝𝑥𝑒−𝑖𝐸𝑡𝑙𝑎𝑏𝑒−

𝛾

2 𝐸𝑡𝑙𝑎𝑏 + 𝑎†𝑝𝑒𝑖𝑝𝑥𝑒−𝑖𝐸𝑡𝑙𝑎𝑏𝑒−
𝛾

2 𝐸𝑡𝑙𝑎𝑏 .

These two fields differ by a factor of 𝑒−𝑖 ®𝑝·®𝑏(1−
𝑖𝛾

2 ) and 𝑒𝑖 ®𝑝·®𝑏(1+
𝑖𝛾

2 ) . However, if we
somehow believe that fields at spatial location ®𝑥 and the spatial location ®𝑥 + ®𝑏 differ
by a factor generated by the displacing super operator D∗𝑐 , where 𝑐 is a space-like
vector, then

D∗𝑐 [𝜙(𝑥)] =
∫

𝑑𝑝𝑎𝑝𝑒
−𝑖𝑝(𝑥+𝑐)𝑒−

𝛾

2 𝑝𝑐 + 𝑎†𝑝𝑒𝑖𝑝(𝑥+𝑐)𝑒−
𝛾

2 𝑝𝑐

We can show
E∗𝑏 [𝜙(𝑥)] = D∗𝑏−𝑏𝑙𝑎𝑏 [E

∗
𝑏𝑙𝑎𝑏 [𝜙(𝑥)]]

This is to say, there is an intrinsic spatial damping factor between field operators at
different spatial locations. In this way, we can avoid the problem of the preferred
time, and regain Lorentz invariance/covariance. For example, if we want to compute
the correlation

⟨𝜙(𝑥 + 𝑏)𝜙(𝑥)⟩

(here the notation 𝜙(𝑥 + 𝑏)is a little sloppy) , we can either evolve the left field
operator to the point that we want to make the measurement 𝑥 + 𝑏 by E∗𝑏 [𝜙(𝑥)]. Or
we evolve the field with our lab frame time E∗𝑏𝑙𝑎𝑏 [𝜙(𝑥)], but since the measurement
is at 𝑥 + 𝑏, not 𝑥 + 𝑏𝑙𝑎𝑏, we need to displace the field operator to the desired point
using D∗

𝑏−𝑏𝑙𝑎𝑏 .

Let us go back to the case of particle decay. If we can agree with the following,

1) If we evolve an operator to some space-time point, operationally, we are supposed
to “measure” it at that point.

For example, when we say we want to measure the two-point correlation function
⟨𝜙(𝑥 + 𝑏)𝜙(𝑥)⟩, we are supposed to measure the field strength at 𝑥 and at 𝑥 + 𝑏. In
QFT classes, some professors say we create a particle at 𝑥 using 𝜙(𝑥), and compute
the probably we can detect it at 𝑥 +𝑏, using ⟨𝜙(𝑥 +𝑏)𝜙(𝑥)⟩. This implicitly assumed
that the particle is evolved from 𝑥 to 𝑥 + 𝑏. This is actually very imprecise, if not
simply wrong, since firstly, the two-point correlation function cannot be interpreted
in that way, and secondly, the two-point correlation function cannot be directly
measured in reality. What happens is we use an Unruh-DeWitt detector with a
trajectory 𝑥(𝜏) = (𝑡 (𝜏), ®𝑥(𝜏)), and try to deduce

𝑊 (𝜏) = ⟨𝜙(𝑥(𝜏))𝜙(𝑥(0))⟩
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by the transition probability 𝑃 of the two-level system with some proper settings.

In our non-unitary case, the corresponding physical picture is, the Unruh-DeWitt
detector would start at location 𝑥(0) and end at location 𝑥(𝜏). We should either run
the Lindblad equation along the trajectory of the Unruh-DeWitt detector and end up
at 𝑥(𝜏), just as for the “correct” method in John’s paradox. Or we evolve with the
lab frame time, but then displace the field to the ending point of the Unruh-DeWitt
detector.

2) We are going to assume the existence of point-like particle, and ignore the
uncertainty principle for now.

Say there is a source in our lab, at spatial location 0. At time 𝑡 = 0, we have a
number of particles �̂�(0) =

∫
𝑑𝑝𝑎

†
𝑝𝑎𝑝. We evolve this operator with the lab frame

time 𝑡𝑙𝑎𝑏
�̂�(𝑡𝑙𝑎𝑏, 0) = E∗𝑡𝑙𝑎𝑏 ,0 [�̂�(0)]

This is the number of the particles at the source at (𝑡𝑙𝑎𝑏, 0). Basically, the observer
is sitting with this source in the lab, and measures the number at a later time.

However, when the particles have nonzero momentum, they are not going to stay
at the source with the observer. For particle with momentum 𝑝, after lab frame
time 𝑡𝑙𝑎𝑏, it will arrive at location ®𝑥. In order to compute the number of particles
at location (𝑡𝑙𝑎𝑏, ®𝑥), there are two ways. The first is to evolve the number operator
with the world line of these particles 𝑏 = (𝑡𝑙𝑎𝑏, ®𝑥).

�̂�(𝑏) = E∗𝑏 [�̂�(0)] = 𝑒−𝛾𝑝𝑏�̂�(0)

This is the “correct method” in John’s paradox.

The second way is to first evolve the number operator with the lab frame time 𝑡𝑙𝑎𝑏,
and then displace it to the desired location, where we have the assistant who does
the measurement.

�̂�(𝑏) = D∗®𝑥 [E∗𝑏 [�̂�(0)]] = 𝑒−𝛾𝑝𝑏�̂�(0)

Using my non-unitary displacement operator, we can see that these two methods
yield the same result.

Now, what if we want to know the total number of particles emitted from this source
at lab time 𝑡𝑙𝑎𝑏? Then

𝑛𝐶 =

∫
®𝑥∈𝐶

𝑑®𝑥D∗®𝑥 [E∗𝑏 [�̂�(0)]]
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where 𝐶 is the time slice at 𝑡𝑙𝑎𝑏.

One may want to see how 𝑛𝐶 transforms under a Lorentz transformation. The result
is invariant, if one does it correctly. After the Lorentz transformation, the points
on 𝐶 are no longer on the same time slice of the boosted observer. Hence, the
physical meaning of 𝑁𝐶 is, the observer hired an army of assistants distributed on
the time slice 𝐶 (in reality only those in the light cone are needed), and after they
all did the measurement at 𝑡𝑙𝑎𝑏, the observer adds them up. If for some reason the
observer is no longer sitting with the source but moving, he will see those assistants
doing measurements at different times. After they all finished, the observer adds the
numbers together. And the result will be the same.

3.6 Summary and remarks
In summary, due to the difficulties discussed above, quantum open system field
theory cannot be considered as Lorentz covariant. Some readers may wonder why,
if particle decay is a Lorentz covariant process, the theory aiming to describe it is
not Lorentz covariant? Firstly, it is not clear what we mean by saying particle decay
is a Lorentz covariant process. The global dynamics including the particle and the
environment is indeed fully Lorentz covariant, but it does not mean that after tracing
out the environment, the reduced dynamics for the system is still Lorentz covariant.
In fact, as we have shown here, the claim that the reduced dynamics is Lorentz
covariant cannot be justified.

One may further argue that there have been many experiments using atomic clocks
that verified that unstable particles travelling at higher speed have a longer lifetime
that matches relativistic predictions. While this is true, it does not mean the reduced
dynamics is the Lorentz covariant. There are two ways to understand it.

Firstly, when we say some process is Lorentz covariant, what we mean is that the
same process viewed by a different observer in a different reference frame will
appear in a covariant fashion. The Lorentz transformation is a transformation into
a different reference frame, as we discussed in the above sections. However, the
atomic clock experiments don’t involve observers in different reference frames. One
just measures the initial and final particle numbers, and compares with the results
of another process in which the atomic clock is stationary. It is not one process
observed by observers in different frames, but two different process.

Secondly, the atomic clock experiment just verifies that the special relativity is
correct. One can argue that the key fact is that the global dynamics is Lorentz
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covariant. This alone will guarantee that time dilation factor. Whether the reduced
dynamics is Lorentz covariant is irrelevant. Or even further, this just verifies that
relativity is correct. Think about the experiment of a ruler being shorter when
moving faster. This simply means that special relativity is correct, not that the
theory describing the ruler is Lorentz covariant. In fact, even if some complicated
unstable particles cannot be described by the seemingly Lorentz covariant dynamics,
they should still have a longer lifetime when moving at a faster speed.
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C h a p t e r 4

SYMMETRIES IN KELDYSH ACTIONS DO NOT TRANSLATE
INTO CORRESPONDING DYNAMICAL SYMMETRIES

4.1 Introduction
The Schwinger-Keldysh path integral is a powerful tool in condensed matter physics,
which enables us to compute various correlation functions for non-equilibrium
systems. It has been extended to study driven-dissipative open quantum systems
(Sieberer, Buchhold, and Diehl, 2016). It has also been introduced to study more
fundamental physics. John Preskill first proposed to use Schwinger-Keldysh path
integral formalism to construct a fundamentally non-unitary quantum field theory, in
order to solve the black hole information paradox. Inspired by his notes, Avinash et
al. worked out the renormalization of some “super-Lagrantians” of the open system
quantum field theory (Avinash, Jana, Loganayagam, et al., 2017; Avinash, Jana, and
Rudra, 2019). Jonathan Oppenheim et al. are trying to build a classical-quantum
gravity based on such formalism, which they hope could serve as a alternative to the
full quantum gravity (Oppenheim and Weller-Davies, 2023).

One of the main reasons the above authors used Schwinger-Keldysh path integral
to construct a fundamentally non-unitary open quantum field theory, is that they
think that a Lorentz invariant Keldysh action would guarantee a Lorentz covariant
dynamics, just as in the path integral formulation of the quantum field theory, a
Lorentz invariant action guarantees a Lorentz covariant dynamics. And for a theory
to be as fundamental as to serve as a potential solution to the black hole information
paradox, or a potential candidate for quantum gravity, Lorentz covariance is clearly
a necessity.

However, unfortunately, this is not the case. Lorentz-invariant Keldysh actions
do not guarantee Lorentz covariant dynamics. In fact, this is not limited to the
Lorentz symmetry. Any on-shell symmetry that a Keldysh action processes will
not automatically translates into the corresponding dynamical symmetry. In this
chapter, we use the Lorentz symmetry to illustrate this point.

Indeed, the Schwinger-Keldysh formalism is very similar to the path integral. There
is a Keldysh action that corresponds to the action. Both are tools to compute various
correlation functions. However, one key is missing – the action principle. The
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way the Keldysh action is derived means that such formulation does not have the
structure of the action principle. Extremizing the Keldysh action does not yield
the desired equation of motion, which provides the full information of the physical
system (with canonical commutation relationship).

In fact, if we assume there is a Noether theorem for the Keldysh action, and try to
work out the symmetry generators from the Keldysh in the same way as the unitary
quantum field theory, we find out something very interesting. In order to make sure
that the Lindblad equation has same symmetry with the Keldysh action, we have to
change one fundamental assumption of the quantum field theory. One underlying
assumption of quantum field theory (Whiteman axiom) is that field operators form
a (unitary) representation of the Poincare group. But for the Keldysh theory, we
need to upgrade this assumption to that the super-operators form a representation of
the Lorentz group. This means that the open quantum field theory constructed from
Keldysh actions will be categorically different from quantum field theory. There
are no guarantee that it could be self-consistent (in fact, I believe it is not). Those
theories would be out of the scope of this thesis (which focus on quantum field
theory).

In this chapter, we point out the following facts and results:

1, in classical mechanics and quantum field theory, if the action is invariant up to
a boundary term (or is quasi-symmetric), the Euler-Lagrange equation, obtained by
extremizing the action, has the same symmetry, or is covariant (form-invariant). The
dynamical equation of motion, which is the same as the Euler-Lagrange equation, is
thus covariant. (However, the same covariant equation of motion may also be derived
from an action that does not have the same symmetry. This means even in classical
mechanics and quantum field theory, there is not a one to one correspondence
between an invariant action and a covariant dynamics.(Castillo and Moreno-Ruiz,
2017))

2, in the Schwinger-Keldysh path integral, the dynamical equation of motion, which
is the Lindblad equation, is NOT obtained by directly extremizing the Keldysh
action. And because of the way the Keldysh action is derived, extremizing the
Keldysh action will not yield the desired equation of motion. As the result, the
symmetry of the Keldysh action would not be automatically shared by the equation
of motion.

3, Some Lorentz-invariant Keldysh actions can be derived from non-covariant equa-
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tions of motion. This means Lorentz invariance of the Keldysh action cannot be a
criterion for the covariance of the dynamics.

4.2 Keldysh action from Lindblad equations
We first derive the Keldysh action from the Lindblad master equation. While the
Keldysh action can be derived by other methods, in this context we focus on the ones
that correspond to Lindblad equations. The Lindblad master equation is dynamical
equation of open quantum systems. Given a physical system that couples with the
environment which we have no control of, after tracing out the environment and
making the Born-Markov approximation, one can derive the standard Lindblad form
of master equation:

𝜕𝑡𝜌(𝑡) := L[𝜌(𝑡)] = −𝑖[𝐻, 𝜌(𝑡)] + Σ
𝑛
(𝑄𝑛𝜌(𝑡)𝑄†𝑛 −

1
2
{𝑄†𝑛𝑄𝑛, 𝜌(𝑡)}) (4.1)

.Here𝐻 is the system Hamiltonian,𝑄𝑛 are a set of jump operators, which correspond
to the effect on the system due to the interaction with the environment. The super-
operator L[·] is called the Liouvillian, which generates the time evolution of the
density operator.

We can write the formal solution of Eqn (4.1)

𝜌(𝑡) = 𝑒𝑡L𝜌(0)

Just as we did in the path integral of quantum field theory, we can split the time
evolution into infinitesimal time steps 𝛿𝑡 = 𝑡

𝑁
, and write

𝑒𝑡L = 𝑙𝑖𝑚
𝑁→∞
(1 + 𝛿𝑡L)𝑁

Applying this expression to the time dependent density matrix, we find

𝜌(𝑡) = [ 𝑙𝑖𝑚
𝑁→∞

[
𝑎= 1]𝑁

∏
(1 + 𝛿𝑡 (𝑎)L)𝑁 ]𝜌(0)

where the time step 𝛿𝑡 (𝑎) = 𝑡 (𝑎) − 𝑡 (𝑎−1) = 𝑡
𝑁

. The partition function is

𝑍 (𝑡) = 𝑇𝑟 [𝜌(𝑡)] = 𝑇𝑟 ( [ 𝑙𝑖𝑚
𝑁→∞

[
𝑎= 1]𝑁

∏
(1 + 𝛿𝑡 (𝑎)L)𝑁 ]𝜌(0)) (4.2)

To derive the path integral of 𝑍 (𝑡), we need to insert sets of basis. When the
Hamiltonian and jump operators can be expressed by creation and annihilation
operators, as is the case in condensed matter physics, the typical choice is the
coherent state basis (assuming we are working with bosonic fields).
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|𝜙⟩ = 𝑒Σ𝑖𝜙𝑖𝑏
†
𝑖 |0⟩

where 𝑏†
𝑖

is the creation operator of the bosonic field, and the variable (𝑖) labels
a complete set of single particle quantum states in the relevant system. In the
continuous case, 𝑖 can be replaced by 𝑝, which labels the momentum of the mode.
|𝜙⟩ is the eigenstate of the annihilation operator 𝑏𝑖 |𝜙⟩ = 𝜙𝑖 |𝜙⟩.

We can normalize these coherent states to form a complete basis

1 =

∫
𝐷 [𝜙∗, 𝜙] |𝜙⟩⟨𝜙|

where
∫
𝐷 [𝜙∗, 𝜙] = ∏

𝑖

∫ 𝑑𝜙𝑖𝑑𝜙
∗
𝑖

𝜋
𝑒−𝜙

∗
𝑖
𝜙𝑖 ].

One difference with path integral quantum field theory is that we need to insert
complete basis to both the left and right of the density operator 𝜌. As the result,
we will have two time series, labeled with + and - respectively. Basically, at time
step 𝑎, we insert coherent basis 1𝑎+ and 1𝑎− from the left and right of the density
operator 𝜌(𝑡) (𝑎) respectively, and then apply the infinitesimal evolution 1+𝛿𝑡 (𝑎+1)L,
and repeat the process.

𝑍 (𝑡) = 𝑇𝑟
(
...

[
(1 + 𝛿𝑡 (𝑎+1)L)

(
1𝑎+𝜌(𝑡) (𝑎)1𝑎−

)]
...

)
=

∫
𝐷 [𝜙∗𝑁+, 𝜙𝑁+]𝐷 [𝜙∗𝑁−, 𝜙𝑁−] ...𝐷 [𝜙∗𝑎+, 𝜙𝑎+]𝐷 [𝜙∗𝑎−, 𝜙𝑎−] ...

𝑇𝑟

(
|𝜙𝑁+⟩⟨𝜙𝑁+ |...[(1 + 𝛿(𝑎+1)𝑡 L)|𝜙𝑎+⟩⟨𝜙𝑎+ |𝜌(𝑡) (𝑎) |𝜙𝑎−⟩⟨𝜙𝑎− |] ...|𝜙𝑁−⟩⟨𝜙𝑁− |

)
At time step 𝑎, we would need to evaluate terms like |𝜙𝑎+⟩⟨𝜙𝑎+ |𝐻 |𝜙𝑎−1+⟩⟨𝜙𝑎−1+ |...
|𝜙𝑎−1−⟩⟨𝜙𝑎−1− |𝜙𝑎−⟩⟨𝜙𝑎− | and |𝜙𝑎+⟩⟨𝜙𝑎+ |𝑄†𝑄 |𝜙𝑎−1+⟩⟨𝜙𝑎−1+ |...|𝜙𝑎−1−⟩⟨𝜙𝑎−1− |𝜙𝑎−⟩⟨𝜙𝑎− |.
When the Hamilton and jump operators can be expressed as functions of creation
and annihilation operators 𝐻 = 𝐻 (𝑏†, 𝑏), 𝑄 = 𝑄((𝑏†, 𝑏)), and when the jump
operators 𝑄 are normal ordered, we will have relationships like

|𝜙𝑎+⟩⟨𝜙𝑎+ |𝐻 |𝜙𝑎−1+⟩⟨𝜙𝑎−1+ | = 𝐻 (𝜙∗𝑎+, 𝜙𝑎−1+) |𝜙𝑎+⟩⟨𝜙𝑎+ |𝜙𝑎−1+⟩⟨𝜙𝑎−1+ |

After careful computation, (detailed procedures can be seen from Ref. Michael
Buchhold, 2015), we will be able to get

𝑍 (𝑡) =
∫

𝐷 [𝜙∗, 𝜙]𝑒𝑖KSKS =

∫ 𝑡 𝑓

𝑡𝑖

𝑑𝑡 [𝜙∗+𝑖𝜕0𝜙+ − 𝜙∗−𝑖𝜕0𝜙− − 𝑖L(𝜙∗+, 𝜙+, 𝜙∗−, 𝜙−)]
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where

L(𝜙∗+, 𝜙+, 𝜙∗−, 𝜙−) = −𝑖(𝐻 (𝜙∗+, 𝜙+) − 𝐻 (𝜙∗−, 𝜙−))−

𝛾Σ
𝑛

(
𝑄†𝑛𝑄𝑛 (𝜙∗+, 𝜙+) +𝑄†𝑛𝑄𝑛 (𝜙∗−, 𝜙−) − 2𝑄𝑛 (𝜙∗+, 𝜙+)𝑄†𝑛 (𝜙∗−, 𝜙−)

)
If the Hamiltonian and jump operators are easily expressed in other operators, we
usually choose the corresponding eigenstate basis for insertion, and the derived form
of the Keldysh action will be slight different. For example, when the Hamiltonian
and jump operators are easily expressed in field operators 𝜙(𝑥) and its conjugate
momentum operators 𝜋(𝑥), we insert their eigenstate basis instead. When the
Lindblad equation is of the form

¤𝜌(𝑡) =
∫

𝑑𝑥3𝑖[−H , 𝜌(𝑡)] + 𝛾𝑖 𝑗 [𝑄𝑖𝜌(𝑡)𝑄†𝑗 −
1
2
{𝑄†

𝑗
𝑄𝑖, 𝜌(𝑡)}])

where 𝑄𝑖 = 𝑄𝑖 (𝜙(𝑥), 𝜋(𝑥),∇𝜙(𝑥)), a Keldysh action can be derived

KS =

∫ 𝑡 𝑓

𝑡𝑖

𝑑𝑡

∫
𝑑𝑥3 [𝜋+ ¤𝜙+ − 𝜋− ¤𝜙− − 𝑖L(𝜙∗+, 𝜙+, 𝜙∗−, 𝜙−)] (4.3)

where

L(𝜙∗+, 𝜙+, 𝜙∗−, 𝜙−) = −𝑖(H (𝜙∗+, 𝜙+) − H (𝜙∗−, 𝜙−))

−𝛾𝑖 𝑗
(
𝑄
†
𝑖
𝑄 𝑗 (𝜙∗+, 𝜙+) +𝑄†𝑖𝑄 𝑗 (𝜙∗−, 𝜙−) − 2𝑄 𝑗 (𝜙∗+, 𝜙+)𝑄†𝑖 (𝜙

∗
−, 𝜙−)

)
4.3 Equation of motion is not the Euler-Lagrange equations from Keldysh

actions
From the above construction, we can see that the Schwinger-Keldysh path integral
is very similar to the path integral in QFT, except for one key difference: there are
two time series, one for the left field and one for the right field. Because of this
key difference, there is no action principle that by extremizing the Keldysh action
we can get the equation of motion. And the lacking of action principle means that
unlike the path integral in QFT, even if the Keldysh action looks Lorentz invariant,
the corresponding dynamics is not guaranteed Lorentz covariant.

Let us remember ourselves that, in the path integral in QFT, why the action and
equation of motion have the same symmetry. The invariant action leads to a covariant
Euler-Lagrange equation, which is obtained by extremzing the action. And if the
equation of motion is the same with the Euler-Lagrange equation, as is the case here,
it will share the same symmetry (Castillo and Moreno-Ruiz, 2017).
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This is not the case for the Keldysh action in the Schwinger-Keldysh path integral.
In the Keldysh action, the left and right field operators, which we introduce because
L acts on both the right and left of the density operator, are treated as independent
field variables. If we extremize the Keldysh action in the same way when we
extremze the action, we will end up with a set of coupled differential equations of
the left and right fields. This is completely different from the desired equation of
motion, i.e., the Lindblad equation. extremizing the Keldysh action will give us
some equations that are Lorentz covariant, but they do not contain full information
of the physical system. From them, we cannot reconstruct the Lindblad equation.
While we can derive the Lindblad equation starting from the Keldysh action, it is
not by extremzing the Keldysh action. As the result, there are no grantee that a
invariant Keldysh action gives a covariant dynamics. In fact, the way we derive the
Lindblad equation from the Keldysh action require us to choose a time frame, and
that breaks Lorentz covariance.

Let us see a simply example. Assuming the Lindblad equation is

KS =

∫
𝑑4𝑥

𝑖

2
(𝜕𝜇𝜙+𝜕𝜇𝜙+ − 𝑚2𝜙2

+) −
𝑖

2
(𝜕𝜇𝜙−𝜕𝜇𝜙− − 𝑚2𝜙2

−) −
𝛾

2
(𝜙+ − 𝜙−)2

We can reorganize the fields, namely, do the Keldysh rotation

𝜙𝑐 :=
1
√

2
(𝜙+ + 𝜙−)

𝜙𝑞 :=
1
√

2
(𝜙+ − 𝜙−)

so
𝜙+ =

𝜙𝑐 + 𝜙𝑞√
2

𝜙− =
𝜙𝑐 − 𝜙𝑞√

2
And the Keldysh Lagrangian is

KL =
𝑖

4
[(𝜕𝜙𝑐 + 𝜕𝜙𝑞)2 − 𝑚2(𝜙𝑐 + 𝜙𝑞)2] −

𝑖

4
[(𝜕𝜙𝑐 − 𝜕𝜙𝑞)2 − 𝑚2(𝜙𝑐 − 𝜙𝑞)2] − 𝜆𝜙2

𝑞

= 𝑖[𝜕𝜙𝑐 · 𝜕𝜙𝑞 − 𝑚2𝜙𝑐𝜙𝑞] − 𝜆𝜙2
𝑞 (4.4)

Assume the Keldysh Lagrangian (Eqn 4.4) has an action principle, and directly
apply Euler-Lagrange equations

𝜕𝜇
𝜕KL
𝜕 (𝜕𝜇𝜙𝑐)

=
𝜕KL
𝜕𝜙𝑐
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𝜕KL
𝜕𝜙𝑐

= 𝑖𝑚2𝜙𝑞

𝜕KL
𝜕 (𝜕𝜇𝜙𝑐)

= 𝑖𝜕𝜇𝜙𝑞

𝜕𝜇
𝜕KL
𝜕 (𝜕𝜇𝜙𝑐)

= 𝑖𝜕2𝜙𝑞

so the E-L equation for 𝜙𝑐 is
𝜕2𝜙𝑞 = 𝑚

2𝜙𝑞 (4.5)

Eqn 4.5 has the standard free KG solution

𝜙𝑞 =

∫
𝑑𝑝𝑎(𝑝)𝑒𝑖𝑝𝑥 + ℎ.𝑐.

The E-L equation for 𝜙𝑞 is

𝜕𝜇
𝜕KL
𝜕 (𝜕𝜇𝜙𝑞)

=
𝜕KL
𝜕𝜙𝑞

𝜕KL
𝜕𝜙𝑞

= 𝑖𝑚2𝜙𝑐 − 2𝜆𝜙𝑞

𝜕𝜇
𝜕KL
𝜕 (𝜕𝜇𝜙𝑞)

= 𝑖𝜕2𝜙𝑐

hence

𝑖𝜕2𝜙𝑐 = 𝑖𝑚
2𝜙𝑐 − 2𝜆𝜙𝑞

(𝜕2−𝑚2)𝜙𝑐 = 2𝑖𝜆𝜙𝑞 (4.6)

Eqn (4.5 and 4.6) are clearly Lorentz covariant, since they are obtained by directly
extremzing a Lorentz invariant Keldysh action. The physical meaning of them is
interesting. If we treat 𝜙𝑐 as the classical average of the field in the saddle point
approximation, and set 𝜙𝑞 = 0 as in Section 3.2 of Alex Kamenev’s note (Kamenev,
2004), we will have the classical field satisfies the free Klein-Gordon equation like
a free theory. However, from the underlying physics, we know that this model
corresponds to the physical situation that infinite particles will be created (Banks,
Peskin, and Susskind, 1984; M. Srednicki, 1993), it is not likely that the mean field
looks like free.

Directly from Eqn (4.5 and 4.6), it does not seem we can reconstruct the original
Lindblad dynamics. Hence we can see that the Euler-Lagrange equation obtained
by extremizing the Keldysh action is different from the equation of motion. As a
result, there is no basis to believe that the symmetry of the Keldysh action is share
by the equation of motion.
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4.4 Lorentz invariant Keldysh actions from not Lorentz covariant EOMs
We can also see that some Lorentz invariant Keldysh action can be derived from
a Lindblad equation that is NOT Lorentz covariant. This should not surprise us
since the invariance of the Keldysh action is causally independent with the covariant
equation of motion.

For example, consider the following Lindblad equation

𝜕𝑡𝜌(𝑡) = −𝑖
1
2
[(𝜕0𝜙)2+(𝜕𝑖𝜙)2+𝑚2𝜙2, 𝜌(𝑡)]+𝛾

∫
𝑑𝑥3𝜙(𝑥)𝜌(𝑡)𝜙(𝑥)−1

2
{𝜙(𝑥)2, 𝜌(𝑡)}

(4.7)
This describes the physics of a scalar field coupled to a classical Gaussian random
source 𝐽, as first introduced by Banks, Peskin and Susskind (Banks, Peskin, and
Susskind, 1984; M. Srednicki, 1993). It can be described by a Lagrangian density
L = 1

2 (𝜕𝜙)
2 − 1

2𝑚
2𝜙2 − 𝐽𝜙 (M. Srednicki, 1993). These authors think that the

theory is the Lorentz covariant because it has an invariant Lagrangian L. This
is actually not correct. Remember 𝐽 is a classical Gaussian random source, not
a quantum operator. When we do a the Lorentz transformation by conjugation of
𝑈 (Λ),𝑈 (Λ) only acts on quantum operators, not on classical functions. Hence, the
correct transformation is

𝑈 (Λ)L𝑈 (Λ)† = 1
2
(𝜕𝜙(Λ𝑥))2 − 1

2
(𝑚𝜙(Λ𝑥))2 − 𝐽 (𝑥)𝜙(Λ𝑥)

As we can see, the Lorentz transformation generates non-locality, because 𝜙(Λ𝑥)
is now coupled to the source at a different location. This is clearly not Lorentz
invariant.

Interestingly, the corresponding Keldysh actionKS obtained from Eqn (4.7) by the
method in Section II is Lorentz invariant (Oppenheim and Weller-Davies, 2022).

KS =

∫
𝑑4𝑥

𝑖

2
(𝜕𝜇𝜙+𝜕𝜇𝜙+−𝑚2𝜙2

+)−𝑖𝑔𝜙4
+−
𝑖

2
(𝜕𝜇𝜙−𝜕𝜇𝜙−−𝑚2𝜙2

−)+𝑖𝑔𝜙4
−−
𝛾

2
(𝜙+−𝜙−)2

However, the equation of motion – Eqn (4.7) is not Lorentz covariant, contrary to
the belief of (Oppenheim and Weller-Davies, 2022; Banks, Peskin, and Susskind,
1984; M. Srednicki, 1993). This can be seen as follow.

Let us write Eqn (4.7) in a more covaraint Heisenberg picture form

𝜕0𝑂 = 𝑖[𝑃0, 𝑂 (𝑥)] + 𝛾
∫

𝑑𝑥3𝜙(𝑥)𝑂𝜙(𝑥) + 1
2
{𝜙(𝑥)2, 𝑂})
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In the unitary term, 𝑃0 = 1
2 (𝜕𝜙)

2 + 1
2𝑚

2𝜙2 =
∫
𝑑𝑝𝑝0𝑎(𝑝)†𝑎(𝑝), where 𝑑𝑝 :=

𝑑3𝑝

(2𝜋)32𝜔𝑝
is the Lorentz invariant measure. We can see that the unitary term transforms

in the same way as left hand side.

𝐿𝐻𝑆 = 𝑈 (Λ)𝜕0𝑂′𝑈 (Λ)† = (Λ−1)0𝜇𝜕𝜇𝑂′

Here𝑂 will also be the Lorentz transformed. But since we don’t know exactly what
it is, we will keep the general form and write it as 𝑂′ .

𝑈 (Λ)𝑖[𝑃0, 𝑂]𝑈 (Λ)† = [
∫

𝑑𝑝𝑝0𝑎(Λ𝑝)†𝑎(Λ𝑝), 𝑂′]Let 𝑞 = Λ𝑝

= [
∫

𝑑𝑞(Λ−1𝑞)0𝑎(𝑞)†𝑎(𝑞), 𝑂′]

= (Λ−1)0𝜇 [
∫

𝑑𝑞𝑞𝜇𝑎(𝑞)†𝑎(𝑞), 𝑂′]

Here the crucial part is because 𝑑𝑝 is invariant, the term 𝑝0 will provide us the
(Λ−1)0𝜇, which is the same the Lorentz matrix that we get by transforming 𝜕0.

However, the non-unitary terms will not transform in this way. Let us look at the∫
𝑑𝑥3𝜙(𝑥)𝑂𝜙(𝑥) first. We can convert it into momentum basis by using the mode

expansion 𝜙(𝑥) =
∫
𝑑𝑝𝑎(𝑝)†𝑒𝑖𝑝𝑥 + 𝑎(𝑝)𝑒−𝑖𝑝𝑥 ,

𝑈 (Λ)
∫

𝑑𝑥3𝜙(𝑥)𝑂𝜙(𝑥)𝑈 (Λ)†

= 𝑈 (Λ) [
∫

𝑑𝑥3𝑑𝑝𝑑𝑞(𝑎(𝑝)†𝑒𝑖𝑝𝑥 + 𝑎(𝑝)𝑒−𝑖𝑝𝑥)𝑂 (𝑎(𝑞)†𝑒𝑖𝑞𝑥 + 𝑎(𝑞)𝑒−𝑖𝑞𝑥)]𝑈 (Λ)†

=

∫
𝑑𝑥3𝑑𝑝𝑑𝑞(𝑎(Λ𝑝)†𝑒𝑖𝑝𝑥 + 𝑎(Λ𝑝)𝑒−𝑖𝑝𝑥)𝑂′(𝑎(Λ𝑞)†𝑒𝑖𝑞𝑥 + 𝑎(Λ𝑞)𝑒−𝑖𝑞𝑥)

=

∫
𝑑𝑥3𝑑𝑝′�̃�𝑞′(𝑎(𝑝′)†𝑒𝑖Λ−1𝑝′𝑥 + 𝑎(𝑝′)𝑒−𝑖Λ−1𝑝′)𝑂′(𝑎(𝑞′)†𝑒𝑖Λ−1𝑞′ + 𝑎(𝑞′)𝑒−𝑖Λ−1𝑞′)

We can see that there are no terms like 𝑝0 which provides us (Λ−1)0𝜇, so this term
will nottransform in the same fashion as 𝜕0𝑂 and 𝑖[𝑃0, 𝑂]. We can see it more
clearly by looking at the case where the argument of 𝑂 is not 𝑥.∫

𝑑𝑥3𝜙(𝑥)𝑂𝜙(𝑥) =
∫

𝑑𝑥3𝑑𝑝𝑑𝑞(𝑎(𝑝)†𝑒𝑖𝑝𝑥 + 𝑎(𝑝)𝑒−𝑖𝑝𝑥)𝑂 (𝑎(𝑞)†𝑒𝑖𝑞𝑥 + 𝑎(𝑞)𝑒−𝑖𝑞𝑥)

=

∫
𝑑𝑥3𝑑𝑝𝑑𝑞 [𝑎(𝑝)†𝑂𝑎(𝑞)†𝑒𝑖(𝑝+𝑞)𝑥 + ℎ.𝑐. + 𝑎(𝑝)𝑂𝑎(𝑞)†𝑒𝑖(𝑞−𝑝)𝑥 + ℎ.𝑐.

=

∫
𝑑𝑝 [𝑎(𝑝)†𝑂𝑎(−𝑝)† + ℎ.𝑐. + 𝑎(𝑝)𝑂𝑎(𝑝)† + ℎ.𝑐.
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Doing a the Lorentz transformation on the above term, we can see

𝑈 (Λ)
∫

𝑑𝑥3𝜙(𝑥)𝑂𝜙(𝑥)𝑈 (Λ)† =
∫

𝑑𝑞 [𝑎(𝑞)†𝑂′𝑎(−𝑞)†+ℎ.𝑐.+𝑎(𝑞)𝑂′𝑎(𝑞)†+ℎ.𝑐.

This differs with the unitary term by (Λ−1)0𝜇, as pointed out before. The {𝜙(𝑥)2, 𝑂}
term will have exactly the same problem.

As the result, even though Eqn (4.7) has a invariant Keldysh action, it does not
transform covariantly under the Lorentz transformation. Hence, there is no one to
one correspondence between the invariance of the super action and the covariance
of the dynamics. (See Chapter 5 for a more detailed discuss about the Lorentz
transformation properties.)

4.5 Symmetry, invariance and covariance
From the above sections, we can see that Lorentz invariance in Keldysh actions do
not correspond to covariant Lindblad equations. Hence, having a invariant Keldysh
action does not mean the theory is Lorentz covariant. Some readers may argue that,
maybe the true the Lorentz symmetry means the invariance of the Keldysh action,
instead of the covariance of the Lindblad equation. This is incorrect.

Physicists, especially field theorist, may be more familiar with invariance, and tend
to think the Lagrangian/action plays a more fundamental role. But this is not the
case here. What we care most, is how a physical system changes with time, namely,
the equation of motion. When the physical system has some symmetry, under
that symmetry transformation, the equation of motion will be form invariant, or
covariant. At the same time, some quantitative objects, such as a functional that
maps a field operator in to a number, could be invariant under that symmetry group.
Usually, it is not easy to see whether a equation of motion is covariant, while it
would be much easier to see whether that quantitative object is invariant. This is
why we like to use the invariance of that object (the action) as the criteria to judge
whether the physical system has such symmetry.

In classical mechanics and quantum field theory, the invariance of the action guar-
antees the covariance of the equation of motion. This is because, extremizing the
action gives us the Euler-Lagrange equation, which serves as the equation of motion
of the system. (Castillo and Moreno-Ruiz, 2017)

In the case for non-unitary Lindblad dynamics, the things are different. Our starting
point is the Lindblad equation, which is the equation of motion. The Keldysh action
is a object derived from the Lindblad equation, as we have shown. More importantly,
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extremizing the Keldysh action would not give us the equation of motion. This is
why we believe that in the non-unitary cases, when we say a physical system has
some symmetry, we really mean the equation of motion (the Lindblad equation) is
covariant. And the invariance of Keldysh action cannot serve as the criteria to judge
whether the physical system has such symmetry.

4.6 the Lorentz Transformation on density matrix
We have mentioned that if we want to the Lorentz transform the Lindblad equation,
we have to do it in the Heisenberg picture form. The main reason is, we cannot the
Lorentz transform a density operator 𝜌(𝑡), both conceptually, mathematically and
physically.

When we do a the Lorentz transformation on a field operator,

𝑈 (Λ)𝜙(𝑥)𝑈 (Λ)† = 𝜙(Λ𝑥)

the argument of 𝜙(𝑥) has four components, so we can multiply it with a the Lorentz
matrixΛ𝜇

𝜈 . However, a density operator 𝜌(𝑡) is defined on a Hilbert space associated
with a time slice. It specifies the initial conditions of the time slice (or a local patch
of the time slice). Hence, it only have a time index, but no spatial index. As the
result, it makes no sense to do something like𝑈 (Λ)𝜌(𝑡)𝑈 (Λ)†. We don’t know how
to do it at all.

One may argue that in the case of point-like particle, we would be able to do it, since
it will have a definite location. However, a point-like particle with precise location
will have infinite energy, so it is outside of the physical Hilbert space.

One may also argue that we can the Lorentz transform every point on the time slice.
This will notwork as well. If we do it, those points will be transformed into different
time slices in the new frame. So after this imaginary the Lorentz transformation, the
density matrix will describe different locations at different time slices. This makes
no sense.

Finally, as discussed in Chapter 2, doing a the Lorentz transformation on the density
matrix, which means transforming initial conditions on a time slice, we would face
the problem non-unitary boost. A the Lorentz transformation is fundamentally a
mixing of space and time. When the time evolution is non-unitary, the effect of a
the Lorentz transformation would involve non-unitary process as well, and this will
lead to many difficulties, as discussed in details in Chapter 2.
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In fact, in the non-unitary cases, when the initial density operator is given, the initial
condition on the initial time slice is set. This also select a preferred time frame.
This directly contradict with the Lorentz symmetry, which says every inertial frames
should be equivalent. And because the starting point of the Schwinger-Keldysh path
integral is the density operator, it wound not be serve a criteria for the Lorentz
covariance from this angle, even if we ignore the issue of the missing of action
principle as discussed above.

In summary, the symmetric of a open quantum system is independent of the sym-
metry of the Keldysh action, especially in the case of the Lorentz symmetry.
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C h a p t e r 5

THE LORENTZ TRANSFORMATION PROPERTIES OF
OPERATORS AND QUANTUM CHANNELS THAT ARE

DEFINED AS AN INTEGRATION ON A TIME SLICE

5.1 Introduction
Many physicists many believe that in quantum field theory, the Momentum operator
𝑃𝜈 transforms as a the Lorentz vector. For example, in the second section of
Quantum field theory by Mark Srednicki, one of the most used textbook of quantum
field theory nowadays,

“For example, consider the energy-momentum four-vector 𝑃𝜈, where 𝑃0 is the
Hamiltonian 𝐻 and 𝑃𝑖 are the components of the total three-momentum operator.
We expect𝑈 (Λ)−1𝑃𝜈𝑈 (Λ) = Λ𝜈𝜇𝑃

𝜇.”(Mark Srednicki, 2007)

Here the momentum operator is defined as an integration of the stress tensor over a
time slice

𝑃𝜈 :=
∫

𝑑𝑥3𝑇0𝜈 (𝑥) (5.1)

Some physicists even believe that an object defined as integrations of operators on
a time slice could transform in the same way as the first time derivative 𝜕𝑡 . For
example , in the context of open quantum field theory, the dynamics of the system
is described by the Lindblad master equations, such as

𝜕𝑡𝜌(𝑡) = −𝑖[𝐻, 𝜌(𝑡)] + 𝛾
∫

𝑑𝑥3(𝜙(𝑥)𝜌(𝑡)𝜙(𝑥) − 1
2
{𝜙(𝑥)2, 𝜌(𝑡)}) (5.2)

Eqn (5.2)describes the physics of a scalar field is coupled to a Gaussian random
source, as in the famous paper by Bank, Peksin and Susskind (PBS) in 1983 (Banks,
Peskin, and Susskind, 1984).

In fact, Eqn (5.2) can be treated as an extension of the Lindblad equations from
finite dimension to infinite dimension. Exponentiating it will give us a quantum
channel that maps the density matrix from time 𝑡 to 𝑡 + 𝑑𝑡.

𝜌(𝑡 + 𝑑𝑡) = 𝑒𝑑𝑡L𝜌(𝑡)

where

L[𝜌(𝑡)] = 𝜕𝑡𝜌(𝑡) = −𝑖[𝐻, 𝜌(𝑡)] + 𝛾
∫

𝑑𝑥3(𝜙(𝑥)𝜌(𝑡)𝜙(𝑥) − 1
2
{𝜙(𝑥)2, 𝜌(𝑡)})
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The operators such 𝜙(𝑥) is called jump operators, which describes the effect of the
system due to interaction with the environment. There can be other types of jump
operators as well.

Prominent physicists such as BPS (Banks, Peskin, and Susskind, 1984), Srednicki
(M. Srednicki, 1993), Oppenheim (Oppenheim and Weller-Davies, 2022), believe
that the PBS theory is the Lorentz covariant, and that the term 𝛾

∫
𝑑𝑥3𝜙(𝑥)𝜌(𝑡)𝜙(𝑥)−

1
2 {𝜙(𝑥)

2, 𝜌(𝑡)}) transform in the same fashion as 𝜕𝑡𝜌(𝑡). Srednicki (M. Srednicki,
1993) further modified the integration into

𝜕0𝜌(𝑡) = −𝑖[𝐻, 𝜌(𝑡)] + 𝛾
∫

𝑑Σ0(𝜙(𝑥)𝜌(𝑡)𝜙(𝑥) − 1
2
{𝜙(𝑥)2, 𝜌(𝑡)}) (5.3)

where 𝑑Σ𝜇 := 𝜖 𝜇𝑖 𝑗 𝑘𝑑𝑥𝑖𝑑𝑥 𝑗𝑑𝑥𝑘 carries a vector index. He argued that Eqn (5.3) can
the “weakest possible form” of Lorentz covariance which can be demanded of a
Lindblad equation. The rationale could be that 𝐻 = 𝑃0 already carries a the Lorentz
index, by writing the integration measure as 𝑑Σ0, it provides a vector index, so every
terms in the equation carries the same the Lorentz index, and the equation is thus
Lorentz covariant.

Unfortunately, as we find out, these are not correct. Operators and objects defined
as integrations on a time slice in general do not transform covariantly under the
Lorentz transformation. Only when two conditions are met, they can be treated as
transforming as the Lorentz scalar, vector, etc.

The first condition is that the integrand should contain an operator which is the
time-like component of a the Lorentz four-vector. One common example is 𝑃𝜈 :=∫
𝑑𝑥3𝑇0𝜈.

The second condition is that some conservation conditions should be met. For the
𝑃𝜇 case, the condition is that the stress energy tensor is conserved 𝜕𝜇𝑇 𝜇𝜈 = 0.

We well analyze these two conditions in detail as follow.

5.2 conservation requirements
We consider the second condition first.

Let us try to do a the Lorentz transformation on both sides of Eqn (5.1).

𝐿𝐻𝑆 = 𝑈 (Λ)𝑃𝜈𝑈 (Λ)† = (Λ−1)𝜈𝜇𝑃𝜇 = (Λ−1)𝜈𝜇
∫

𝑑𝑥3𝑇0𝜇 (Λ𝑥)
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𝑅𝐻𝑆 = 𝑈 (Λ)
∫

𝑑𝑥3𝑇0𝜈 (𝑥)𝑈 (Λ)†

= (Λ−1)𝜈𝜇 (Λ−1)0𝜎
∫

𝑑𝑥3𝑇𝜎𝜇 (Λ𝑥)

Why could LHS equal RHS?

Let us use the trick to rewrite the integration to

𝑃𝜈 =

∫
𝑑𝑥4𝛿(𝑥 · 𝑛)𝑛𝜇𝑇 𝜇𝜈 (𝑥)

where 𝑛 = (1, 0, 0, 0) is the unit vector pointing to the time direction.

𝑅𝐻𝑆 = 𝑈 (Λ)
∫

𝑑𝑥4𝛿(𝑥 · 𝑛)𝑛𝜇𝑇 𝜇𝜈 (𝑥)𝑈 (Λ)†

= (Λ−1)𝜇𝜎 (Λ−1)𝜈𝜏
∫

𝑑𝑥4𝛿(𝑥 · 𝑛)𝑛𝜇𝑇𝜎𝜏 (Λ𝑥)

Change integration variable 𝑦 = Λ𝑥 and define 𝑛′ := Λ𝑛, so 𝑛𝜇 = (Λ−1)𝜌𝜇𝑛′𝜌

𝑅𝐻𝑆 = (Λ−1)𝜇𝜎 (Λ−1)𝜈𝜏
∫

𝑑𝑦4𝛿(𝑦 · 𝑛′) (Λ−1)𝜌𝜇𝑛′𝜌𝑇𝜎𝜏 (𝑦)

= (Λ−1)𝜈𝜏
∫

𝑑𝑦4𝛿(𝑦 · 𝑛′)𝑛′𝜎𝑇𝜎𝜏 (𝑦) (5.4)

𝐿𝐻𝑆 = (Λ−1)𝜈𝜏𝑃𝜏 = (Λ−1)𝜈𝜏
∫

𝑑𝑥4𝛿(𝑥 · 𝑛)𝑛𝜌𝑇 𝜌𝜏 (𝑥) (5.5)

Comparing Eqn (5.4) to Eqn (5.5), we can see the only difference is the integration
surface is changed from 𝑥0 = 0 to 𝑦0 = 0. So how can these two be equal?

Let us take the difference of these two. Note that 𝑛𝜇𝛿(𝑥 · 𝑛) = 𝜕𝜇𝜃 (𝑥 · 𝑛),

𝐿𝐻𝑆 − 𝑅𝐻𝑆 = (Λ−1)𝜈𝜏
∫

𝑑𝑥4𝑛𝜌𝑇
𝜌𝜏 (𝑥) [𝛿(𝑥 · 𝑛) − 𝛿(𝑥 · 𝑛′)]

= (Λ−1)𝜈𝜏
∫

𝑑𝑥4𝑇 𝜌𝜏 (𝑥)𝜕𝜌 [𝜃 (𝑥 · 𝑛) − 𝜃 (𝑥 · 𝑛′)]
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Perform integration by part, and not that in the far future or past 𝜃 (𝑥 · 𝑛) = 𝜃 (𝑥 · 𝑛′),
so the surface term vanishes. And we are left with

𝐿𝐻𝑆 − 𝑅𝐻𝑆 = (Λ−1)𝜈𝜏
∫

𝑑𝑥4𝜕𝜌𝑇
𝜌𝜏 (𝑥) [𝜃 (𝑥 · 𝑛) − 𝜃 (𝑥 · 𝑛′)]

For this to vanish, we need to have 𝜕𝜌𝑇 𝜌𝜏 (𝑥) = 0 satisfied.

The above calculation shows that, for 𝑈 (Λ)𝑃𝜈𝑈 (Λ)† = (Λ−1)𝜈𝜇𝑃𝜇 to hold, we need
the conservation of the stress tensor. The reason behind this is that, when we do a the
Lorentz transformation on a operator defined as the spatial integration over a time
slice, that time slice is transform to a new one. And when we take the difference
between the original operator and the transformed operator, for that to vanish, we
need the integrand to vanish.

Another example is the creation operator 𝑎(𝑝)†. This has been discussed in Section
2.4 in detail.

5.3 first component requirement
Now let us take a look at how the quantum channel defined by Eqn (5.2) transforms
under the Lorentz transformation. Directly transforming Eqn (5.2) by conjugating
𝑈 (Λ) is controversial, because it would involve 𝑈 (Λ)𝜌(𝑡)𝑈 (Λ)†, which is not well
defined, since 𝜌(𝑡) is defined on the whole time slice, and only carries one time like
variable 𝑡. However, we can look at the Heisenberg picture version of it, which acts
on operators.

𝜕0𝑂 = 𝑖[𝐻,𝑂] + 𝛾
∫

𝑑𝑥3𝜙(𝑥)𝑂 (𝑥)𝜙(𝑥) + 1
2
{𝜙(𝑥)2, 𝑂 (𝑥)})

Let us try to see explicitly if the RHS does transform like the LHS. We can just
focus the 𝜙(𝑥)𝑂 (𝑥)𝜙(𝑥) since the others have the same transformation property.

𝑅𝐻𝑆 = 𝑈 (Λ)
∫

𝑑𝑥3𝜙(𝑥)𝑂 (𝑥)𝜙(𝑥)𝑈 (Λ)† =
∫

𝑑𝑥4𝛿(𝑛 · 𝑥)𝑛0𝜙(Λ𝑥)𝑂 (Λ𝑥)

(define 𝑦 = Λ𝑥, 𝑛′ = Λ𝑛)

=

∫
𝑑𝑦4𝛿(𝑛 · Λ−1𝑦)𝑛0𝜙(𝑦)𝑂 (𝑦)𝜙(𝑦)

=

∫
𝑑𝑦4𝛿(Λ𝑛 · 𝑦)𝑛0𝜙(𝑦)𝑂 (𝑦)𝜙(𝑦)

=

∫
𝑑𝑦4𝛿(𝑛′ · 𝑦) (Λ−1𝑛′)0𝜙(𝑦)𝑂 (𝑦)𝜙(𝑦)

= (Λ−1)0𝜇
∫

𝑑𝑦4𝛿(𝑛′ · 𝑦)𝑛′𝜇𝜙(𝑦)𝑂 (𝑦)𝜙(𝑦)
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On the other hand, since

𝐿𝐻𝑆 = 𝑈 (Λ)𝜕0𝑂𝑈 (Λ)† = (Λ−1)0𝜇𝜕 �̄�𝑂′

It seems that one can indeed 𝑐𝑙𝑎𝑖𝑚 that
∫
𝑑𝑥3𝜙(𝑥)𝑂 (𝑥)𝜙(𝑥) do transform as the

same way as 𝜕0𝑂.

However, if one write
∫
𝑑𝑥3𝜙(𝑥)𝑂 =

∫
𝑑𝑥4𝛿(𝑛 · 𝑥)𝑛0, the result of the calculation is

𝑅𝐻𝑆 =

∫
𝑑𝑥4𝛿(𝑛 · 𝑥)𝑛0𝜙(Λ𝑥)𝑂 (Λ𝑥)

( define 𝑦 = Λ𝑥, 𝑛′ = Λ𝑛)

=

∫
𝑑𝑦4𝛿(𝑛 · Λ−1𝑦)𝑛0𝜙(𝑦)𝑂 (𝑦)𝜙(𝑦)

=

∫
𝑑𝑦4𝛿(Λ𝑛 · 𝑦)𝑛0𝜙(𝑦)𝑂 (𝑦)𝜙(𝑦)

=

∫
𝑑𝑦4𝛿(𝑛′ · 𝑦) (Λ−1𝑛′)0𝜙(𝑦)𝑂 (𝑦)𝜙(𝑦) (Λ−1𝑛′)0 = (Λ−1) 𝜇0 𝑛

′
𝜇

= (Λ−1) 𝜇0
∫

𝑑𝑦4𝛿(𝑛′ · 𝑦)𝑛′𝜇𝜙(𝑦)𝑂 (𝑦)𝜙(𝑦)

one can 𝑐𝑙𝑎𝑖𝑚 it transforms as 𝜕0𝑂. The computation are almost exactly the same.

And writing
∫
𝑑𝑥3 =

∫
𝑑𝑥4𝛿(𝑛 · 𝑥)𝑛0 or

∫
𝑑𝑥3 =

∫
𝑑𝑥4𝛿(𝑛 · 𝑥)𝑛0 seems arbitrary,

since they at most differ by a sign depending on the convention one uses.

So, how can one term transform as both covariant and covariant vector?

Let us look back at the claim by Srednicki. He thinks 𝑑Σ𝜇 := 𝜖 𝜇𝑖 𝑗 𝑘𝑑𝑥𝑖𝑑𝑥 𝑗𝑑𝑥𝑘 can
give the vector index to get the term transform like 𝜕𝜇. But I can also write the
integration measure as 𝑑Σ𝜇 = 1

6𝜀𝜇𝑖 𝑗 𝑘𝑑𝑥
𝑖𝑑𝑥 𝑗𝑑𝑥𝑘 . These two terms are essentially the

same, at most differ by a sign.

Our answer is, because 𝑛 = (1, 0, 0, 0), there is simply just one component in the
four-vector that exists, which is the original term. All other three are zero by
definition. We cannot combine something with three zeros to form a four-vector,
and claim it transforms covariantly as a the Lorentz four-vector.

In fact, because 𝑛 = (1, 0, 0, 0), the results of the above two calculations, (Λ−1)0𝜇
∫
𝑑𝑦4𝛿(𝑛′·

𝑦)𝑛′𝜇𝜙(𝑦)𝑂 (𝑦)𝜙(𝑦) and (Λ−1) 𝜇0
∫
𝑑𝑦4𝛿(𝑛′ · 𝑦)𝑛′𝜇𝜙(𝑦)𝑂 (𝑦)𝜙(𝑦) are exactly the

same, as they should be.

From the above analysis we can conclude that, yes, the integration over the time
slice

∫
𝑑𝑥3 can serve to contract with the time-like component of the first vector
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in the integrand. But if there is no time-like component of the first vector in the
integrand to contract with, it will notserve to provide a the Lorentz index, such
that the operator or quantum channel can transform as a contravariant or covariant
vector.

In summary, we can see that an operator or quantum channel can indeed transform
covariantly under the Lorentz transformation, if the above two conditions are met.
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C h a p t e r 6

UNDERSTANDING MOMENTUM EIGENSTATES

One of the key assumptions of the non-unitary Lorentz covariant QFT is

𝑈 (Λ) |𝑝⟩ = |Λ𝑝⟩ (6.1)

However, it is not clear if this assumption is valid in the non-unitary setting. In
this chapter, we are going to look deep into the issues. We start from clarifying the
physical meaning of momentum eigenstates |𝑝⟩. We analyze why Eqn (6.1) makes
sense in unitary QFT, and why it does not make sense in non-unitary QFT.

6.1 Momentum eigenstates are not plane-waves
It is widely believed among physicists that momentum eigenstates |𝑝⟩ are “plane-
waves”, and superposition of them are wave packets. For example, in Peskin
and Schroeder’s "An Introduction to Quantum Field Theory", one of the standard
textbook for QFT, around Eqation 4.65,

"A wavepacket representing some desired state |𝜙(𝑥)⟩ can be expressed as

|𝜙(𝑥)⟩ =
∫

𝑑3𝑘

(2𝜋)3
√

2𝐸𝑘
𝜙(𝑘) |𝑘⟩ (6.2)

where 𝜙(𝑘) is the Fourier transform of the spatial wavefunction, and |𝑘⟩ is a one-
particle state of momentum k in the interacting theory. "(Michael E. Peskin, 1995)

In Srednicki’s Quantum field theory, another standard textbook of QFT, one can also
find similar statements (Mark Srednicki, 2007).

But why is this true? If we are in such a state, can we do any measurements to show
that we are indeed in a plane-wave state?

In this chapter, We will analysis this problem in detail. We show that, country to the
popular belief, momentum eigenstates are not plane-wave states, and superposition
of them do not make a wave packet. In fact, the physical states that has the property
of plane-waves are (second quantized) coherent states.

Let us first look at what a plane-wave means in classical physics. We say a field 𝐸
is a plane-wave in space-time if it is has the following form

𝐸 (®𝑥, 𝑡) = 𝐸0 cos[ ®𝑝 · ®𝑥 − 𝜔𝑡 + 𝜙0] (6.3)
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This basically says the field amplitude is oscillating in time and space, with wave
length 𝜆 = 2𝜋

𝑝
.

Moreover, the field is propagating in the space-time. This means the wave front will
start from the source and propagate further as time goes by. At one point in time,
there are portions in space where the amplitudes of the field is 0, since the wave
front has not arrived yet.

Do the momentum eigenstates |𝑝⟩ have such properties? The answer is no.

Firstly, |𝑝⟩ is stationary and not dynamical, as it is an eigenstate of the (Free)
Hamiltonian. If we are in |𝑝⟩ state, which specifies the situation on the whole time
slice, we will not see the propagating behavior, that the wave has not arrived at some
point in the time-slice yet but will arrive later. The excitation is spread out on the
whole time-slice already.

Operationally, if a team of experimentalists try to detect the excitation at different
locations on a time-slice, they should always find the same result on average, as
required by the position-momentum uncertainty principle.

Secondly, we cannot measure the oscillating behavior or confirm that the wavelength
is inversely proportional to 𝑝. The only information encoded in |𝑝⟩ is that it is an
eigenstate of 𝑃 and 𝐻 operators. If we can measure the energy density, we will
find it is uniform across the time slice. We can measure the field amplitude with
a detector such as an Unruh-DeWitt detector, which couples our field to some two
level system

𝐻𝐷 = 𝜆𝜒(𝜏) [𝜎+(𝜏) + 𝜎−(𝜏)]𝜙[𝑥𝐷 (𝜏)] (6.4)

where 𝜒(𝜏) is the switching function, 𝜏 is the proper time of the detector,𝜎+(𝜏), 𝜎−(𝜏)
are ladder operators of the two level system, 𝑥𝐷 (𝜏) is the trajectory of the detector
parameterized by proper time, and 𝜙 is our field to detect.

When measuring the field amplitude with this detector, since the trace of the state
with this operator is 0 everywhere, the detector will never click.

𝑇𝑟 [|𝑝⟩⟨𝑝 |𝜙(𝑥)] = ⟨𝑝 |
∫

𝑑𝑝𝑎𝑝𝑒
𝑖𝑝𝑥 + 𝑎†𝑝𝑒−𝑖𝑝𝑥 |𝑝⟩ = 0 (6.5)

This means |𝑝⟩ will not display any property of a classical plane-wave. It is thus
incorrect to interpret |𝑝⟩ as plane wave states.
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In fact, the quantum state closest to the classical plane-wave is the (second-quantized)
coherent state (for bosonic systems).

|𝛼𝑝⟩ = 𝑒−
|𝛼𝑝 |2

2

∞∑︁
𝑛=0

𝛼𝑛𝑝√
𝑛!
|𝑛𝑝⟩ (6.6)

Here the subscript 𝑝 is the wave vector, and |𝑛𝑝⟩ means 𝑛 excitations in momentum
mode 𝑝. This state is different from the first-quantized coherent states in undergrad-
uate quantum mechanics textbooks, for the reasons as follow.

Some readers may wonder that quantum mechanical coherent states are localized
in phase space, so how can they be plane-wave, which are have a fixed wave vector
(momentum), but are spread out in position space? The reasons are as follow.

When we say coherent states, we mean two classes of states. The first is coherent
states in quantum optics. Such states are localized in quadrature space, as spanned
by quadrature operators

𝑋 =
1
2
(𝑎† + 𝑎), 𝑃 =

𝑖

2
(𝑎† − 𝑎) (6.7)

They are not localized in the physical phase spaces. For example, a quantum optical
coherent state in a single momentum mode 𝑘 has one fixed wave vector 𝑘 , and are
spread out in space.

The second class of states are first quantized coherent states, which is usually
describing the motion of (massive) physical systems. Such states are indeed localized
in the phase space. They usually describe the state of some localized physical
systems such as a pendulum or some other forms of harmonic oscillators. The
particle numbers (of the physical systems) are fixed. For example the amount of
atoms in the harmonic oscillators are fixed and not fluctuating. What is quantized
is the motion or excitation of the physical system.

But the coherent states correspond to plane-waves are second-quantized states, in
which particle numbers are fluctuating.

We will find the field amplitude when we measure the field operator 𝜙(𝑥) in a
coherent state |𝛼𝑝⟩

¯𝜙(𝑥) = 𝑇𝑟 [|𝛼𝑝⟩⟨𝛼𝑝 |𝜙(𝑥)] = 𝛼𝑝𝑒𝑖𝑝𝑥 + 𝛼∗𝑝𝑒−𝑖𝑝𝑥 (6.8)

= 2|𝛼𝑝 |𝑐𝑜𝑠[ ®𝑝 · ®𝑥 − 𝜔𝑡] (6.9)

This is exactly what a plane-wave should behave, as in Eqn (6.3).
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In reality, we are never able to prepare momentum eigenstates. Our experimental
setup is local, so we cannot prepare a state that suddenly fills out the whole space.
In quantum optics experiments, what we actually create are by Gaussian operations,
such as displacement, squeezing, passing through beam splitters, and detections. We
usually use attenuated coherent states to approximate single photon states. When we
need to know when the single photo has been created, we use spontaneous parametric
down-conversion to create entangled photon pairs and detect one of them. There
are other constructions of single photon source, such as Nitrogen vacancy center,
but those are further away from either momentum eigenstates or plane-waves.

6.2 Superpositions of |𝑝⟩ are not wave packets
Another common misunderstanding is superpersition of momentum eigenstates
forms a wave packet (Mark Srednicki, 2007; Michael E. Peskin, 1995). A clas-
sical wave packet has an field amplitude that is localized around some space-time
region. However, the field amplitude of states which are claimed to be wave packets

| 𝑓 (𝑝)⟩ =
∫

𝑑𝑝 𝑓 (𝑝) |𝑝⟩

are not localized. If we measure the amplitude using the Unruh-DeWitt detector,
we will get 0 everywhere again.

The quantum states that actually describe wave packets are superpositions of coher-
ent states.

| 𝑓𝛼 (𝑝)⟩ =
∫

𝑑𝑝 𝑓 (𝑝) |𝛼𝑝⟩ (6.10)

Let us compute the result of the the amplitude measurement of these states.

¯𝜙(𝑥) = 𝑇𝑟 [| 𝑓𝛼 (𝑝)⟩⟨| 𝑓𝛼 (𝑝) |𝜙(𝑥)] = 𝛼𝑝𝑒𝑖𝑝𝑥 + 𝛼∗𝑝𝑒−𝑖𝑝𝑥 = 2|𝛼𝑝 |𝑐𝑜𝑠[ ®𝑝 · ®𝑥 − 𝜔𝑡]

=

∫
𝑑𝑘𝑑𝑞𝑑𝑝 𝑓 (𝑘)∗ 𝑓 (𝑞)⟨𝛼𝑘 |𝑎𝑝𝑒𝑖𝑝𝑥 |𝛼𝑞⟩ + ⟨𝛼𝑘 |𝑎†𝑝𝑒−𝑖𝑝𝑥 |𝛼𝑞⟩

=

∫
𝑑𝑘𝑑𝑝 𝑓 (𝑘)∗ 𝑓 (𝑝)𝑒𝑖𝑝𝑥 ⟨𝛼𝑘 |𝛼𝑝⟩ +

∫
𝑑𝑝𝑑𝑞 𝑓 (𝑝)∗ 𝑓 (𝑞)𝑒−𝑖𝑝𝑥 ⟨𝛼𝑝 |𝛼𝑞⟩

=

∫
𝑑𝑘𝑑𝑝 𝑓 (𝑘)∗ 𝑓 (𝑝)𝑒𝑖𝑝𝑥𝑒−

|𝛼𝑘 |2+𝛼𝑝 |2−2𝛼∗
𝑘
𝛼𝑝

2 +
∫

𝑑𝑞𝑑𝑝 𝑓 (𝑝)∗ 𝑓 (𝑞)𝑒−𝑖𝑝𝑥𝑒−
|𝛼𝑞 |2+𝛼𝑝 |2−2𝛼∗𝑝 𝛼𝑞

2

=

∫
𝑑𝑘𝑑𝑝 𝑓 (𝑘)∗ 𝑓 (𝑝)𝑒𝑖𝑝𝑥𝑒−

|𝛼𝑘 |2+𝛼𝑝 |2−2𝛼∗
𝑘
𝛼𝑝

2 +
∫

𝑑𝑘𝑑𝑝 𝑓 (𝑝)∗ 𝑓 (𝑘)𝑒−𝑖𝑝𝑥𝑒−
|𝛼𝑘 |2+𝛼𝑝 |2−2𝛼∗𝑝 𝛼𝑘

2

For simplicity, let us assume both 𝑓 (𝑘) and 𝛼𝑘 are real.

¯𝜙(𝑥) =
∫

𝑑𝑘𝑑𝑝 𝑓 (𝑘) 𝑓 (𝑝) (𝑒𝑖𝑝𝑥 + 𝑒−𝑖𝑝𝑥)𝑒−
(𝛼𝑘−𝛼𝑝 )2

2
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Clearly, once the integrations are carried out, the only variable left is 𝑥, as desired.

To see more clearly, if all amplitudes 𝛼𝑝 are equal, this further reduces to

¯𝜙(𝑥) = 2[
∫

𝑑𝑘 𝑓 (𝑘)]
∫

𝑑𝑝 𝑓 (𝑝) (𝑒𝑖𝑝𝑥 + 𝑒−𝑖𝑝𝑥)

= 𝑐𝑜𝑛𝑠𝑡 (ℱ𝑓 [𝑥] +ℱ𝑓 [−𝑥])

where ℱ𝑓 [𝑥] are Fourier transformations. This result depends on 𝑥, and if 𝑓 (𝑝)
are chosen wisely, Eqn 6.10 can surely be localized around some space-time region.
This means Eqn 6.10 will have the properities of a desired wavepacket.

6.3 The physical meaning of momentum eigenstates
One potential objection the readers may raise is, you theory of quantum plane wave
and wave packet relies on the fact that you choose to measure the field operator 𝜙(𝑥)
to get the wave-like oscillating behaviors. If one measure some other operators,
such as

𝑂 (𝑥) =
∫

𝑑𝑝𝑎†𝑝𝑎𝑝𝑐𝑜𝑠[𝑝𝑥] (6.11)

, one can also show that 𝑂 (𝑥) oscillates in space-time or the corresponding wave-
packets localize in space-time.

It is true that the oscillatory part comes from the observable, not from the state. But
it does not mean that any observable makes sense. Let us step back a little to look
at the quantum to classical correspondence. Quantum states 𝜌 correspond to a unit
region in the classical phase-space. Quantum operators 𝑂 correspond to a classical
observable. In classical physics, when we say the EM wave is a plane-wave, we
mean that if we measure the EM field amplitude at different locations in space-time,
the results are correlated in ways like 𝑐𝑜𝑠[ ®𝑝 · ®𝑥 −𝜔𝑡]. The direct correspondence in
quantum physics is that if we measure the EM field operator at different locations in
space-time, the results are correlated in ways like 𝑐𝑜𝑠[ ®𝑝 · ®𝑥 − 𝜔𝑡]. It is thus natural
to measure the field operators, which directly correspond to field amplitudes. On
the other hand, the observable 6.11 is arbitrary, without a clear physical meaning.
While it is true that the 𝑎†𝑝𝑎𝑝 may be related to excitation number (density), there
is no reason to multiply it by 𝑐𝑜𝑠[𝑝𝑥], if not for the sole objective to make it look
like a plane-wave. But for the field operator, the 𝑒𝑖𝑝𝑥 comes directly from field
quantization, which is natural and necessary.
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One may further argue that if we quantize the field in a different way, such as

𝜙(𝑥) :=
∫

𝑑𝑝𝑎𝑝𝑎
†
𝑝𝑒
𝑖𝑝𝑥 + 𝑎†𝑝𝑎𝑝𝑒−𝑖𝑝𝑥 (6.12)

, we will have the desired oscillation when measuring ⟨𝑝 |𝜙(𝑥) |𝑝⟩. But this quanti-
zation scheme is not the quantum field theory we are working on, and may not be
self-consistent for various reasons.

The physical meaning of momentum eigenstates are clearer in Heisenberg picture.
They provides a common reference frame for operators. Operators evolve and
accumulate phases, and these phases are relative to momentum eigenstates, which
span the free Hilbert space.

We can construct the Hilbert space of quantum field theory as follow. We choose
a foliation of space-time labeled by a reference system (𝑥, 𝑡). At each time slice
𝑡, we associate a Hilbert space ℋ(𝑡). For now let us focus on the free theory,
which furnishes a Fock space structure. There is a natural isomorphism between the
Hilbert spaces defined on 𝑡 and 𝑡 + 𝜏. |𝑝⟩ ∈ℋ(𝑡) is identified with |𝑝⟩ ∈ℋ(𝑡 + 𝜏)
(up to a global phase). We do not label |𝑝⟩ with time. One reason is that all |𝑝⟩
in different Hilbert spaces are identified with each other, since there is a natural
isomorphism between the Hilbert spaces defined on different time slices. The other
reason is the time-energy uncertainty. Since |𝑝⟩ are eigenstates of the Hamiltonian,
it has a definite energy (density). If we label |𝑝, 𝑡⟩ as some quantum mechanics
textbook did, when doing the Lorentz transformation, we will get into trouble.

But what about time-energy uncertainty in this setting? If we say |𝑝⟩ lies in a Hilbert
space defined on a time-slice 𝑡, does it mean that |𝑝⟩ is on this precise time 𝑡? If so,
how do we explain the fact that it has a precise time and energy together?

Let us look at space-momentum dimension. |𝑝⟩ has a precise momentum (density),
but it is completely delocalized in space. This means the configuration of every
point in space are the same. In other words, |𝑝⟩ describes the situation in the whole
time-slice.

In analogy, |𝑝⟩ has a precise energy (density), so it must be completely delocalized
in time. This means that at every point in time, the configuration should be the
same. This also means that, |𝑝⟩ should be stationary in time. If we know we are in
the state |𝑝⟩ at some time, we will be in |𝑝⟩ at any time in the future, and we were
in |𝑝⟩ at any time in the past.
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This actually makes sense, since |𝑝⟩ is the eigenstate of the Hamiltonian. Its
evolution will only acumulate a global phase, which is not physically measurable.

This is also consistent with Lorentz covariance. |𝑝⟩ spans the whole space. When
we do a Lorentz covariance, we will mix space and time. As space runs from −∞
to +∞, time should do the same as well.

We thus run into trouble in non-unitary cases, since in those cases, |𝑝⟩ will evolve
non-unitarily, thus will not stay as |𝑝⟩ in general, unless in the very special case that
|𝑝⟩ is the stable state of the Lindblad equation.
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C h a p t e r 7

CONCLUDING REMARKS

This thesis explored the possible ways of constructing a non-unitary quantum field
theory that satisfies the Lorentz symmetry. Due to the conceptual, mathematical,
and physical inconsistencies, as analyzed in the previous chapters, I have to conclude
that non-unitary quantum field theory is fundamentally inconsistent with the Lorentz
symmetry.

I would like to point out that these inconsistencies are fundamental and cannot be
overlooked. As physicists, we are used to making various approximations. But here,
the issues are different. We are not trying to make approximations to perform some
useful computation. We are trying to build a fundamental theory aiming at solving
fundamental problems. the Lorentz symmetry has to be exact. The definitions have
the be clear. The assumptions have to make sense. Some physicists acknowledged
the difficulties I pointed out, yet they want to ignore these issues and move on as if
they don’t exist. I could not agree with this attitude.

I had thought that a Lorentz covariant non-unitary quantum field theory can be
constructed, and presented our results at a few conferences. In one of them, I met
Professor Sandip Trivedi, who happened to be one of John’s first PhD students at
Caltech. After I told him what I was working on, he revealed that John had suggested
that he work on this problem back in the 1980s; however, he declined. I realized John
wanted to construct a non-unitary quantum field for so many years. In some sense,
I feel regretted that I may have disappointed him, since as I have shown, this does
not work. But on the other hand, I feel relived, since my research gives a conclusive
answer to this old question. This would help to clarify the misunderstandings in this
field for so many years. Even though the final result is not positive and encouraging
as we anticipated, we gained a small yet deeper understanding of the physical nature.
This makes my time and efforts meaningful and rewarding.
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