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ABSTRACT

The well-known quote by George Box states that "All models are wrong, but some
are useful", and the controls and robotics communities alike have followed a simi-
lar paradigm to make significant theoretical and practical advances in the study of
controllable systems to date. However, recent robotic system requirements include
formal considerations for system safety, especially as we engineer systems that are
required to work alongside us in our daily lives. As such, current research directions
require analyses that consider these inaccurate system models, our inaccurate under-
standing of the environments in which these systems operate, and their combined
effects on safe, effective system operation, e.g. the canonical autonomous driving
problem in exceedingly difficult-to-model urban environments. Recently, this has
led to burgeoning efforts in a formal study of controller verification. Specifically,
verification denotes the process of determining whether a controller steers its system
to exhibit desired behaviors despite the variety of environments the system might
face during operation, e.g. whether the autonomous car’s controller successfully
drives the car to a destination without crashing into obstacles or pedestrians along
the way. However, formalization of such a verification pipeline has proved difficult
to date, especially since both the models we use for controller synthesis and our
understanding of system environments are typically inaccurate.

As a result, this thesis describes our efforts in the development of a formal verification
pipeline that addresses a few key challenges in traditional approaches to safety-
critical system verification. The first contribution centers on difficult, reactive test
synthesis. By test synthesis, we mean the construction of a (potentially difficult)
environment in which we require the system under test to perform its objective, e.g.
placement of parked cars around which an autonomous vehicle must park. Typically
phrased as an optimization problem over the space of allowable environments, these
tests are "static" insofar as they do not react to the system’s choices made during
the test. We posit that such reactivity could more accurately identify worst-case
system behavior. As a result, we phrase reactive, maximally difficult test synthesis
as a game-theoretic optimization problem, leveraging the same control theoretic
tools that facilitate safety-critical controller synthesis—control barrier functions
and signal temporal logic. We prove that our proposed synthesis technique is always
solvable and always produces a realizable test environment. Finally, we showcase
our results by synthesizing reactive tests for both single and multi-agent systems.
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The second set of contributions centers on our efforts in uncertainty quantification.
Due to un-modeled system and environmental aspects affecting system evolution in
unpredictable ways, real-life systems need not realize the same paths every time. As
such, typical analyses phrase verification as an optimization problem minimizing the
expected value of a function over system trajectories with the expectation taken over
this path variability, the distribution for which is assumed to be known. However,
we posit that such an analysis should be risk-aware, i.e. account for this variability
in a more principled fashion than an expectation-specific analysis, and should not
assume apriori knowledge of the distribution corresponding to path variability, as it
will be unknown in practice. To that end, we develop methods to bound a subset of
risk measures for random variables whose distributions are unknown. This subset
includes both Value-at-Risk and other, coherent risk measures heavily utilized in
the controls and robotics communities. Simultaneously, we note that the same
procedure can be applied to a wide class of non-convex optimization problems. In
doing so, we develop a percentile-based optimization approach that rapidly identifies
percentile solutions to optimization problems, i.e. a 90-th percentile solution is as
good as 90% of solutions in the considered decision space.

The third set of contributions focuses on the application of the prior mathemati-
cal developments to facilitate both risk-aware safety-critical system verification and
controller synthesis. We phrase risk-aware controller verification as a risk-measure
identification problem and utilize the prior bounding results to provide an efficient,
dimensionally-independent verification procedure. Then, we phrase risk-aware con-
troller synthesis as an optimization problem maximizing the bound provided by our
risk-aware verification method and show this problem is solvable by the percentile
optimization methods mentioned prior. Finally, we lay the foundation for the utiliza-
tion of the aforementioned mathematical developments in other aspects of controls
and robotics and communities more broadly. We show how risk-measure bounding
can augment models both offline and online to robustify safety-critical controllers,
how percentile optimization can facilitate "optimal" input selection and guarantee
generation for non-convex finite-time optimal controllers, and how multiple appli-
cations of the percentile approach can also bound the optimality gap of reported
percentile solutions. We showcase all these results on hardware for multiple systems
and highlight the data efficiency of our proposed approaches.
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shown in Figure 4.2. As before, the true EVaR𝛼 (𝑋) is shown in black. 60
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4.7 Shown above is an application of our percentile optimization proce-
dure to identify "good" paths for a traveling salesman problem [142].
By uniformly sampling 𝑁 = 299 paths from the set of all possible
paths 𝑃 with |𝑃 | = 362880, we can identify (left) a path that is in the
99-th percentile of all paths. This procedure also repeatably identifies
"good" paths, a.k.a "good" decisions, as shown in the figure on the
right. If we take the minimum number of samples offered by Theo-
rem 9 to identify a path that is in the 95-th percentile with minimum
probability 1 − 10−6, we see that over 200 trials—taking 𝑁 = 270
samples each time—all determined paths are in the 95-th percentile
asV(𝐹 (𝑝∗)) ≤ 𝜖 = 0.05. . . . . . . . . . . . . . . . . . . . . . . . 64

4.8 Validation Data for Section 4.5 corresponding to Theorem 10. (Top)
100 reported upper bounds V∗

𝑁𝑣
using Theorem 10 with desired con-

fidence equal to 0.7. (Middle) 100 reported upper bounds V∗
𝑁𝑣

with
confidence 0.999. (Bottom) Running fraction over 2000 trials of re-
ported upper bounds V∗

𝑁𝑣
exceeding the true optimality gap G(𝑝∗

𝑁𝑝
)

at confidence level 0.999. Notice how the fraction of upper bounds
exceeding the optimality gap increases as we increase confidence
(top to middle), and the running fraction of upper bounds exceed-
ing the optimality gap converges to our desired confidence (bottom),
corroborating Theorem 10. . . . . . . . . . . . . . . . . . . . . . . . 71

4.9 Validation data for Section 4.5. We claim that by varying the amount
of information used to generate the variance function V, we can
change the baseline probability 𝑝 of sampling a decision whose vari-
ance exceeds the optimality gap of a given percentile solution (such
decisions are highlighted in orange). Notice that as the volume frac-
tions 𝜒 occupied by the chosen information set 𝐷 decreases, we see
a corresponding increase in the baseline probability 𝑝. Section 4.5
discusses why this inverse relationship holds. . . . . . . . . . . . . . 73
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4.10 Validation data for Section 4.5 in support of Theorem 11. We claim
that we can upper bound the optimality gap of successive applications
of percentile methods to solve appropriate optimization problems.
Shown above in red are the calculated upper bounds for the black
lines corresponding to the 99% cutoff value of optimality gaps for
percentile solutions to a nonlinear model predictive controller. For
the three separate percentile methods shown, we’re able to upper
bound the true value every time, corroborating Theorem 11. . . . . . 75

5.1 The above figure provides context for why we choose to take a ran-
domized, risk-aware approach to verification. Doing so lets us upper
bound by an 𝜖 ∈ [0, 1] the weighted volume of the states in the
red region shown. For verification purposes, this bounds the total
risk of sampling trajectories whose robustness 𝑟 < −𝑟∗

𝑉
as stated in

Proposition 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 We upper bound the risk measures of a multi-agent robotic system

when its state trajectory is evaluated through a robustness metric.
Shown above is this upper bounding procedure for both CVaR (left)
and EVaR (right). For each of the 50 trials, the upper bounds (red)
for both risk measures are indeed greater than or equal to their "true"
counterparts (black). These "true" counterparts were calculated by
taking 20000 samples of the randomized system robustness 𝑅 (Defi-
nition 22), and the distribution of samples is shown (blue). The fact
that the upper bounds are indeed upper bounds over all trials serves
as a numerical confirmation of Corollaries 16 and 17. They also sup-
port the repeatability of our procedure in identifying upper bounds to
𝑔-entropic risk measures with high probability. . . . . . . . . . . . . 87
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5.3 We can utilize all sample-based bounds developed in Chapters 4
and 5 to formalize a pipeline for risk-aware controller synthesis,
the results for which are shown here. Our goal is to identify a
parameterized controller that maximizes a lower bound on worst-case
system performance, i.e. minimizes an upper bound, R(𝑝, 0.95, 0.1),
over a set of controller parameters 𝑝 ∈ 𝑃. Shown above in blue is the
distribution of this upper bound for all controller parameters 𝑝 ∈ 𝑃
and was generated by taking 20000 uniform parameter samples 𝑝
and evaluating R(𝑝, 0.95, 0.1). As per the decision selection process
detailed in Chapter 4, our goal is to identify a controller in the 99-th
percentile with respect to minimization of this upper bound with the
true 99-th percentile cutoff shown in black and all controllers yielding
upper bounds to its left lying in the 99-th percentile. As can be seen,
our identified solution (red) achieves an upper bound in at least the
99-th percentile. This serves as a numerical confirmation of both
Theorem 9 and Corollary 18 insofar as we evaluated the minimum
number of controllers prescribed, 𝑁 = 459 controllers, to calculate
our solution which meets our desired criteria. . . . . . . . . . . . . . 93

5.4 A comparison between the baseline controller provided with the
robotarium—the controller that was probabilistically verified in Sec-
tion 5.2—and our calculated controller identified in Figure 5.3. Our
risk-aware policy synthesis goal is to identify a controller in the 99-th
percentile with respect to maximizing the lower bound on the ex-
pected worst-case system performance in the worst 10% of cases—
i.e. maximizes a lower bound on −CVaR0.1(−𝑅) as expressed in
Proposition 2. Shown above is the distribution of this random-
ized robustness 𝑅 for the calculated controller (𝑅calc in red) and
the baseline controller provided with the robotarium (𝑅base black).
As can be seen, the calculated controller outperforms the baseline
controller insofar as the worst-case robustness value for 10% of cases
−VaR0.1(−𝑅calc) ≥ −VaR0.1(−𝑅base), and the expected value in the
worst 10% of cases −CVaR0.1(−𝑅calc) ≥ −CVaR0.1(−𝑅base) as well. 94
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6.1 All data for our experimental pipeline. (Top Left) Data for calculation
of a probabilistic sim2real gap Λ∗𝑁 for the Robotarium. Per Theo-
rem 13, we expect that after observing 600 randomly sampled errors,
our reported sim2real gapΛ∗𝑁 = 0.198 is greater than any sample-able
gap with minimum probability 99.5% with 95% confidence. Com-
paring Λ∗𝑁 to the true cutoff after taking 2400 samples verifies this
inequality and supports Theorem 13. (Top Right) Data for sim2real
gap calculation for the quadruped. True cutoffs are not shown as
we did not exhaustively sample gaps. (Bottom) Verification data for
both controllers against their respective uncertain models. Note that
in both cases, we sampled 300 trajectories to calculate a minimum
safety value 𝑠∗

𝑁
which, according to Corollary 20, should be less than

any sample-able safety value with minimum probability 99% with
95% confidence. Taking 20000 safety samples and calculating the
true cutoffs against the sampled data shows that this inequality holds
verifying Corollary 20. . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 As part of our risk-aware synthesis pipeline, we verify controllers
against an uncertain model. Shown above is an example randomized
test scenario for controller development. The test scheme remains
the same for the two different systems (Robotarium and quadruped)
as their controller objectives are similar. . . . . . . . . . . . . . . . . 106

6.3 Since we verified our controllers against the uncertain model pro-
duced by our procedure, we expect that the closed-loop hardware
systems should realize similar, satisfactory behavior. Indeed, for the
first 10 runs on the quadruped and the first 40 runs on the Robotarium,
the agents were able to avoid static/moving obstacles and navigate to
their goals successfully, despite a wide variety of randomized test sce-
narios. The first four runs for both systems are depicted above. This
ability to synthesize and verify controllers in simulation, with confi-
dence that similar behaviors will manifest in the true system without
requiring additional testing, is the main benefit of our proposed ap-
proach. Paths for all tests are shown in orange, and the quadruped is
highlighted in white. The multi-level control architecture is depicted
in Figure 6.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
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6.4 Our procedure detailed in Section 6.2 increases the confidence that
those controllers that pass the verification step will exhibit similar
performance on hardware as they did in simulation, even if we did
not directly verify the controller on hardware. This increased confi-
dence arises through our verification of the uncertain model, whose
reachable set we prove encapsulates true system evolution to high
probability. This can be seen in the figures above, as the quadruped’s
evolution (blue) lies within its associated uncertain simulator’s pre-
dictions (gold). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.5 Example Surfaces-at-Risk at risk-levels 𝜖 ∈ [0.1, 0.05, 0.01] for a
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for the indexed scalar random variables 𝑆𝑥 comprising each process
𝑆 are provided on the axes. Sample realizations of the stochastic pro-
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C h a p t e r 1

INTRODUCTION

The current landscape of robotics research heavily emphasizes the collective desire
to engineer systems that reliably assist us in our daily lives and in the same scenarios
in which we live them [1]–[3]. For example, we ask these systems to cook us our
food [4]–[6], assist the sick and elderly [7]–[10], explore space on our behalf [11]–
[13], and perhaps most prominently, drive us places [14]–[17]. To provide for this
requirement on safe and reliable assistance, the control and robotics communities
have pushed for a formal study of these concepts in recent years, e.g. in the context of
control barrier functions [18], temporal logic [19], [20], and safe model predictive
control [21]–[23] among other formalizations [24]–[26]. In these contexts, the
nominal safety-critical controller synthesis paradigm follows a well-worn path: (1)
develop a model for the system of interest (from first principles, system identification,
or otherwise); (2) develop a safety-critical controller against simulations over this
nominal model, likely leveraging the control-theoretic safety tools mentioned prior;
(3) implement the controller on the system of interest; and (4) tune parameters until
the controller exhibits the desired behavior reliably [27]–[31].

Simultaneously, to address the philosophical impact of that last step in the apriori
controller-synthesis paradigm, the same two communities have recently seen a large
push in the study of verification [32]–[34]. Succinctly, verification references the
process of determining whether a controlled system exhibits its desired behavior in
the environments in which it is required to operate, e.g. whether an autonomous
car successfully drives individuals to their destinations despite any weather patterns
or traffic conditions it may face. Then as mentioned, interest in a formal study of
verification arose due to the discrepancy between safety-critical controller perfor-
mance in simulation and on hardware—discrepancies in safety-critical performance
between steps (2) and (3) of the aforementioned pipeline. For context, this variance
arises as our models are oftentimes inaccurate representations of reality. Indeed, it
is for this reason that most major robotics companies have teams of dedicated testing
engineers to test and verify their specific systems before widespread production.
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1.1 Motivating Questions and Corresponding Contributions
This thesis’ contributions will center on a few advancements in verification and
their utilization in a verifiable controller synthesis pipeline. To motivate these
contributions, note first that verification has a well-studied history, from its roots in
model checking [35], [36] to recent information-theoretic results [37], [38].

Reactive Difficult Test Generation: However, the first set of motivating questions
arises from difficult test generation, which is typically phrased as an optimization
problem in recent works [38]–[41]. Typically, the decision spaces for these optimiza-
tion problems correspond to static environments frustrating the controller’s ability
to realize the desired system behavior. A canonical example in the autonomous
driving literature concerns the placement of static cars around which the ego agent
is required to navigate and safely park. While static tests are interesting, reactive
tests, e.g. a situation where another car reacts to park in the same space chosen by the
ego agent, might provide more useful information on worst-case system behavior.
As such, the first two questions addressed are as follows:

1. How can we generate reactive, difficult tests of system behavior?

(C) We develop a game-theoretic test-synthesis technique for nonlinear safety-
critical systems subject to timed reach-avoid specifications.

2. What can we guarantee about such a method?

(C) We guarantee that the aforementioned test-synthesis method will always
produce a realizable test of system behavior, i.e. the game-theoretic
optimization problem always has a solution, and that this solution is the
most difficult test of system behavior at the system state 𝑥 in question.

Risk-Aware Controller Verification and Synthesis: The second set of motivating
questions arises from the canonical verification optimization problems leveraged in
the information-theoretic works cited prior [39]–[41]. Intuitively, robots need not
realize the same path every time, even when asked to repeat the same behavior.
As such, each of the aforementioned works identifies worst-case expected system
behavior over the uncertain paths the system may realize. However, each realized
path is still a physical system behavior that should be accounted for in a holistic
verification analysis. Indeed the robotics community has argued for a risk-aware
accounting of uncertainty during synthesis [42], [43] by leveraging the risk measures
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popularized for similar analyses carried out in the financial community [44], [45].
However, the primary hindrance in our ability to directly implement such risk-aware
analyses, is that we lack knowledge of the uncertainties affecting system evolution,
and as such, have no knowledge of the distribution we aim to analyze. As such, the
second set of questions is as follows:

3. How do we calculate risk measures for random variables whose distributions
are unknown?

(C) We construct a randomized convex optimization problem, solvable by
existing scenario optimization techniques, that produces upper bounds
for value-at-risk and a large subset of coherent risk measures. We also
provide probabilistic guarantees on the accuracy of these upper bounds.

(C) We extend this risk-measure estimation procedure to rapidly synthesize
percentile solutions to a large class of non-convex optimization problems.
Here, percentile solutions are those solutions that outperform fractions
of the decision space, i.e. a solution s∗ is in the 90%-ile, if it is better at
optimizing for an objective than 90% of other decisions s ∈ S.

4. Can we leverage these methods to formalize a pipeline for risk-aware con-
troller synthesis and verification?

(C) We phrase risk-aware controller verification — typically posed as an op-
timization problem in the existing information-theoretic literature — as
a risk-measure identification problem. Then, we leverage the prior risk-
measure estimation results to provide conservative, probabilistic verifi-
cation statements for arbitrary nonlinear safety-critical systems subject
to any quantifiable behavioral specification.

(C) We phrase risk-aware controller synthesis as an optimization problem
solvable via the percentile methods developed prior and exhibit the
efficacy of generated controllers both in simulation and on hardware.

Probabilistic Guarantees for Optimal Control: The third set of motivating ques-
tions arose from our prior contributions and their potential applications to all facets
of the controller synthesis paradigm, e.g. model synthesis and validation, con-
troller generation, and controller implementation. Specifically, we know our system
models are inaccurate, prompting efforts in the learning community to identify this
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model mismatch, i.e. the sim2real gap, at least as it concerns controller performance
on hardware [46]–[48]. However, this procedure can be phrased as a non-convex
optimization problem, and as such, is potentially solvable via the percentile method
developed prior. In other veins, nonlinear optimal controllers are practically difficult
to use given the computational complexity of finding a terminal invariant set [49]–
[53] and the understanding that determination of solution optimality is equivalent to
solving a Hamilton-Jacobi-Bellman problem [54]. As such, could percentile meth-
ods offer efficient means of identifying useful solutions? Similarly, parameter tuning
for controller synthesis has been expressed as a non-convex optimization problem
solvable by Bayesian methods [55]–[57]. However, these methods do not typically
allow for risk-aware objectives and have unknown sample complexities. As such,
could the prior risk-measure bounding and percentile methods resolve these issues?
These notions lead to the third set of questions which are as follows:

5. Can we verify the models we use for controller synthesis?

(C) We pose sim2real gap identification as a verification problem address-
able by the aforementioned risk-aware verification pipeline. We demon-
strate the accuracy of the reported sim2real gap bounds on a multi-agent
unicycle system and a quadruped.

6. Can we translate controller guarantees in simulation to hardware?

(C) We construct discrete-time stochastic nonlinear system models leverag-
ing the prior sim2real gap identification results. Then, using the prior
verification pipeline, we verify the safety-critical controller against the
stochastic model. Then, we demonstrate that those controllers that ex-
hibit a high probability of realizing effective behavior on the stochastic
model similarly exhibit satisfactory performance on hardware.

7. Can we efficiently identify control inputs for (potentially) non-convex optimal
controllers?

(C) We show that all finite-time optimal control problems subject to torque
bounds are solvable by percentile optimization techniques. Furthermore,
we demonstrate the efficacy of these approaches on hardware.

(C) We phrase the generation of controller guarantees as a verification prob-
lem and utilize the prior risk-measure estimation results to probabilisti-
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cally determine recursive feasibility and maximum runtimes of nonlinear
finite-time optimal controllers directly on hardware.

8. Can we determine the sub-optimality of any of these approaches in their
respective veins?

(C) We define a variance function over the information set generated by
taking a percentile solution to a non-convex optimization problem. Then,
we show that maximizing this variance function via a second application
of the same percentile method provides an upper bound on the optimality
gap of the reported percentile solution.

1.2 Structure
Chapter 2: This chapter reviews control barrier functions and signal temporal logic
— two concepts heavily utilized throughout the thesis.

Chapter 3: This chapter details the efforts made in reactive test synthesis —
motivating questions (1) and (2) from the prior section.

Chapter 4: This chapter details the efforts made in uncertainty quantification —
motivating questions (3) and (8) in the prior section.

Chapter 5: This chapter details the efforts made in risk-aware controller synthesis
and verification — motivating question (4) in the prior section.

Chapter 6: This chapter details the efforts made in the utilization of percentile
optimization techniques to facilitate guarantees across all aspects of the controller
synthesis paradigm — motivating questions (5)-(7) in the prior section.

Chapter 7: This chapter summarizes the contributions along with their impact and
discusses future directions.
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C h a p t e r 2

REVIEWING CONTROL BARRIER FUNCTIONS AND SIGNAL
TEMPORAL LOGIC

2.1 Control Barrier Functions
Continuous Time
Inspired by barrier methods in optimization (see Chapter 3 of [58]), control barrier
functions are a tool used to ensure safety in safety-critical systems that are control-
affine, i.e. with state 𝑥 and control input 𝑢:

¤𝑥 = 𝑓 (𝑥) + 𝑔(𝑥)𝑢, 𝑥 ∈ X ⊆ R𝑛, 𝑢 ∈ U ⊆ R𝑚 . (2.1)

Here, X is the state space, and U is the input space. Control Barrier Functions
(CBFs) are defined against an inequality using class-K𝑒 functions 𝛼 : R → R.
These functions are such that 𝛼(0) = 0 and 𝑟 ≥ 𝑠 ⇐⇒ 𝛼(𝑟) ≥ 𝛼(𝑠). Then, a
control barrier function is defined as follows.

Definition 1. A control barrier function ℎ : R𝑛 → R is a differentiable function
satisfying the following inequality ∀ 𝑥 ∈ X and for some class-K𝑒 function 𝛼:

sup
𝑢∈R𝑚

[
𝜕ℎ

𝜕𝑥
( 𝑓 (𝑥) + 𝑔(𝑥)𝑢)

]
≥ −𝛼(ℎ(𝑥)).

Similarly, we can define a time-varying control barrier function (TVCBF) as follows.

Definition 2. A time-varying control barrier function ℎ : R𝑛 × R≥0 → R is a
differentiable function satisfying the following inequality ∀ (𝑥, 𝑡) ∈ X ×R≥0 and for
some class-K𝑒 function 𝛼:

sup
𝑢∈R𝑚

[
𝜕ℎ

𝜕𝑥
( 𝑓 (𝑥) + 𝑔(𝑥)𝑢) + 𝜕ℎ

𝜕𝑡

]
≥ −𝛼(ℎ(𝑥, 𝑡)). (2.2)

In practice, these functions are utilized to guarantee the forward invariance of their
0-superlevel sets C, defined as follows for a TVCBF, as a CBF can be seen as a
special class of their time-varying counterparts:

C = {(𝑥, 𝑡) ∈ X × R≥0 | ℎ(𝑥, 𝑡) ≥ 0} . (2.3)
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To formalize that notion of forward invariance, we can define the set of control
inputs satisfying the inequality (2.2):

𝐾𝑐𝑏 𝑓 (𝑥, 𝑡) =
{
𝑢 ∈ U

�� ¤ℎ(𝑥, 𝑢, 𝑡) ≥ −𝛼(ℎ(𝑥, 𝑡))} . (2.4)

Then, let 𝜙𝑈𝑡 (𝑥0) denote the flow of the control affine system (2.1) from the initial
condition 𝑥0 ∈ X when steered by a controller𝑈 : X × R≥0 →U, i.e.

𝜙𝑈0 (𝑥0) = 𝑥0, and ¤𝜙𝑈𝑡 (𝑥0) = 𝑓

(
𝜙𝑈𝑡 (𝑥0)

)
+ 𝑔

(
𝜙𝑈𝑡 (𝑥0)

)
𝑈

(
𝜙𝑈𝑡 (𝑥0), 𝑡

)
. (2.5)

From the study of nonlinear dynamical systems, we know that each solution 𝜙𝑈 (𝑥0)
has an interval of existence 𝐼 ⊆ R≥0 ∪ {∞}, a set of times over which the solution
exists. Then a subset 𝐴 ⊂ X×R≥0 being forward invariant corresponds to the notion
that the flow of the dynamical system always remains within the set 𝐴 for all times
𝑡 in the flow’s interval of existence 𝐼.

Definition 3. Let 𝜙𝑈 (𝑥0) be the flow of a nonlinear system as per equation (2.5),
let 𝐼 ⊆ R≥0 ∪ {∞} be its interval of existence, and let 𝐴 ⊂ X × R≥0. The set 𝐴 is
forward invariant for the solution 𝜙𝑈 (𝑥0) if and only if ∀ 𝑡 ∈ 𝐼, (𝜙𝑈𝑡 (𝑥0), 𝑡) ∈ 𝐴.

Then (TV)CBFs are useful insofar as they prescribe a (time-varying) set of control
inputs such that if a controller 𝑈 always chooses inputs in the corresponding set,
the 0-superlevel set of the (TV)CBF will be rendered forward invariant. Phrased
formally, the corresponding theorem will follow [18].

Theorem 1. Let 𝜙𝑈 (𝑥0) be the flow of a nonlinear system as per equation 2.5 with
an interval of existence 𝐼, let ℎ be a TVCBF as per Definition 2 with 0-superlevel
set C as per equation (2.3), and let the valid input set at any state and time pair
𝐾𝑐𝑏 𝑓 (𝑥, 𝑡) be as per equation (2.4) for this TVCBF ℎ. Then, if (𝑥0, 0) ∈ C

𝑈

(
𝜙𝑈𝑡 (𝑥0), 𝑡

)
∈ 𝐾𝑐𝑏 𝑓

(
𝜙𝑈𝑡 (𝑥0), 𝑡

)
∀ 𝑡 ∈ 𝐼 =⇒ C is forward invariant.

Discrete Time
Keeping with existing terminology, continuous-time control barrier functions are
simply referred to as control barrier functions, though their discrete-time counter-
parts are referred to as discrete-time control barrier functions. That being said, the
purpose of these functions remains the same. Only the system abstraction changes.
Specifically, for discrete-time control barrier functions, we assume the nominal
nonlinear system model is as follows [59]:

𝑥𝑘+1 = 𝑓 (𝑥𝑘 , 𝑢𝑘 ), 𝑥𝑘 ∈ X ⊂ R𝑛, 𝑢𝑘 ∈ U ⊂ R𝑚 . (2.6)
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The definition of a discrete control barrier function stems immediately from the
system dynamics (2.6) — this definition is adapted from Definition 2 in [60]:

Definition 4. For the discrete-time control system (2.6), a discrete time-varying
control barrier function ℎ : R𝑛 × R≥0 → R satisfies the following condition for
some class-Ke function 𝛼 such that ∀ (𝑥, 𝑡) ∈ X × R≥0:

∃ 𝑢𝑘 ∈ U s. t. ℎ(𝑥𝑘+1, 𝑡𝑘+1) − ℎ(𝑥𝑘 , 𝑡𝑘 ) ≥ −𝛼(ℎ(𝑥𝑘 ), 𝑡𝑘 ).

Then, these discrete-time control barrier functions can similarly be used to guarantee
forward invariance of their 0-superlevel sets. As this invariance guarantee mirrors
the same continuous-time exposition, the corresponding definitions and theoretical
statements will not be reproduced for the sake of brevity.

2.2 Signal Temporal Logic
Signal Temporal Logic (STL) allows for succinct representation of complex time-
varying system behavior [19]. STL formulas 𝜓 are defined recursively as follows:

𝜓 ::= 𝜇 | ¬𝜓 | 𝜓1 ∨ 𝜓2 | 𝜓1 ∧ 𝜓2 | 𝜓1 U[𝑎,𝑏] 𝜓2.

Here, 𝑎, 𝑏 ∈ R≥0 ∪ {∞}, 𝑎 ≤ 𝑏, and 𝜇 denotes an atomic proposition which is
evaluated over states 𝑥 ∈ R𝑛 and returns a boolean value if a function 𝑏𝜇 : R𝑛 → R
is positive at 𝑥:

𝜇(𝑥) = True ⇐⇒ 𝑏𝜇 (𝑥) ≥ 0, ⟦𝜇⟧ = {𝑥 ∈ R𝑛 | 𝑏𝜇 (𝑥) ≥ 0}. (2.7)

We denote signals 𝑠 : R≥0 → R𝑛 and the space of all signals SRn
= {𝑠 | 𝑠 : R≥0 →

R𝑛}. Then, we denote that a signal 𝑠 satisfies a specification 𝜓 at time 𝑡 via the
notation (𝑠, 𝑡) |= 𝜓. The satisfaction operator |= is defined recursively as follows1:

(𝑠, 𝑡) |= 𝜇 ⇐⇒ 𝜇(𝑠(𝑡)) = True,

(𝑠, 𝑡) |= ¬𝜓 ⇐⇒ (𝑠, 𝑡) ̸|= 𝜓,
(𝑠, 𝑡) |= 𝜓1 ∨ 𝜓2 ⇐⇒ (𝑠, 𝑡) |= 𝜓1 ∨ (𝑠, 𝑡) |= 𝜓2,

(𝑠, 𝑡) |= 𝜓1 ∧ 𝜓2 ⇐⇒ (𝑠, 𝑡) |= 𝜓1 ∧ (𝑠, 𝑡) |= 𝜓2,

(𝑠, 𝑡) |= 𝜓1 U[𝑎,𝑏] 𝜓2 ⇐⇒ ∃ 𝑡′ ∈ [𝑡 + 𝑎, 𝑡 + 𝑏] s. t. ((𝑠, 𝑡′) |= 𝜓2) ∧ . . .
(∀ 𝑡′′ ∈ [𝑡 + 𝑎, 𝑡′] (𝑠, 𝑡′′) |= 𝜓1) .𝑑

1There are two conventions for defining the until operator U. We adopt the convention that
the signal must, at at least one point in time, simultaneously satisfy both 𝜓1 and 𝜓2, and the other
convention does not require such a satisfaction overlap. As will be shown in sections to follow,
this convention more accurately models typically use-cases in robotics where the specification to be
satisfied for all time is typically a safety specification, i.e. obstacle avoidance.
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Furthermore, every STL specification 𝜓 comes equipped with a robustness measure
𝜌 that evaluates signals 𝑠 ∈ SRn . If for some time 𝑡 ∈ R≥0, 𝜌(𝑠, 𝑡) ≥ 0, then the
signal 𝑠 satisfies the specification 𝜓 [19], [36], [61], [62].

Definition 5. A function 𝜌𝜓 : SRn ×R+ → R is a robustness measure for an STL
specification 𝜓 if 𝜌𝜓 (𝑠, 𝑡) ≥ 0 ⇐⇒ (𝑠, 𝑡) |= 𝜓.

Example 1. Let 𝜓 = ¬(True U[0,2] ( |𝑠(𝑡) | > 2)), then any real-valued signal 𝑠 :
R≥0 → R satisfies 𝜓 at time 𝑡, i.e. (𝑠, 𝑡) |= 𝜓 if ∀ 𝑡′ ∈ [𝑡, 𝑡 + 2], |𝑠(𝑡′) | ≤ 2. The
corresponding robustness measure 𝜌𝜓 (𝑠, 𝑡) = min𝑡′∈[𝑡,𝑡+2] 2 − |𝑠(𝑡′) |.

While robustness measures defined according to Definition 5 align with the propo-
sition definition in equation (2.7) and prior work in the controls community [63],
[64], it is not the only way of defining such a measure, e.g. see Definition 3 of [19]
or Section 2.3 in [61].
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C h a p t e r 3

REACTIVE TEST SYNTHESIS

This chapter was adapted from:

[1] P. Akella, M. Ahmadi, R. M. Murray, and A. D. Ames, “Barrier-Based Test
Synthesis for Safety-Critical Systems Subject to Timed Reach-Avoid Specifi-
cations,” Transactions on Automatic Control (Submitted), arXiv:2301.09622,
arXiv:2301.09622, Jan. 2023. doi: 10.48550/arXiv.2301.09622. arXiv:
2301.09622 [eess.SY],

[2] P. Akella, M. Ahmadi, R. M. Murray, and A. D. Ames, “Formal test synthesis
for safety-critical autonomous systems based on control barrier functions,”
2020 59th IEEE Conference on Decision and Control (CDC), pp. 790–795,
2020. doi: 10.1109/CDC42340.2020.9303776,

The first step in any verification procedure involves running the system to be verified
through a series of tests and evaluating system performance. While the following
chapters will focus more on the procedure as a whole, this chapter will focus on that
initial testing step. Specifically, herein we detail our efforts in the generation of a
reactive test-synthesis method for nonlinear safety-critical systems subject to timed
reach-avoid specifications. As the test-synthesis problem has been well studied in
existing literature, we will first start with a more in-depth review of existing work in
this vein, before mentioning our specific contributions in this chapter.

3.1 Introduction
For safety-critical autonomous systems where failure can mean loss of human life,
e.g. autonomous cars, autonomous flight vehicles, etc, it is natural to ask the follow-
ing question: does the system’s controller effectively render the system safe while
steering it in satisfaction of its objective? Prior work in the literature approaches this
question in two distinct ways. The first line of work aims to develop methods to ver-
ify whether a given controller ensures that its system satisfies its desired objective,
despite any perturbation from an allowable set. Termed verification, the develop-
ment and application of these techniques are of widespread study, but they are not the
immediate focus of this chapter [36], [65]–[69]. The second version of this problem
arises primarily in the test and evaluation of safety-critical cyber-physical systems.
Here, either a high-dimensional state space or a requirement to search over system
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trajectories frustrates the immediate application of the aforementioned verification
techniques. As such, there is a non-trivial amount of work aimed at systematically
generating more difficult tests of the onboard control architecture and evaluating sys-
tem performance with rising test difficulty. Additionally, the vast majority of these
techniques require a-priori knowledge of the controller-to-be-tested and a simulator
of the system-controller pair. In a related and, to the best of our knowledge, a less
explored vein, we believe the search for problematic system behavior independent
of apriori controller knowledge is dually useful, as will be further explained.

Related Work
A growing area in the test and evaluation literature (T&E) centers on the design and
generation of tests utilizing a simulator of the system-under-test (SUT) [70]. Here,
a test corresponds to a specific environment setup in which test engineers evaluate
the SUT’s ability to satisfy a specified set of behaviors—the system objective. To
facilitate a rigorous objective satisfaction analysis, these objectives are oftentimes
expressed as linear or signal temporal logic specifications which come equipped
with specification satisfaction methods [71], [72]. For signal temporal logic specif-
ically, each specification comes equipped with a robustness measure—functions
over state signal trajectories whose positive evaluation corresponds to specification
satisfaction. To that end, some current work focuses on developing smoother robust-
ness measures and using them as specification satisfaction monitors for real-time
adaptation [73]–[77].

The test-synthesis question stems naturally from the existence of such robustness
measures. More specifically, provided a quantifiable set of phenomena that can
frustrate specification satisfaction, the motivating question asks whether one can
determine phenomena that minimize this robustness measure. Here, decreasing ro-
bustness indicates increasing test difficulty as if a system has negative robustness with
respect to specification satisfaction, then it has failed to satisfy this specification—
its objective [72]. Each of the pre-eminent tools for automated test synthesis and
falsification of system simulators expresses this parameter search as an optimization
problem—S-Taliro [41], Breach [40], and more recently, VerifAI in conjunction
with SCENIC [39]. Indeed there has also been a wealth of work using these tools to
generate difficult tests of system behavior for multiple systems [78]–[83]. There has
also been work on optimally generating tests for specific controllers, independent of
these tools [84]–[87].
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The overarching goal of test generation, however, is to uncover problematic true
system behavior without exhaustively testing the true system. As such, there has
been some work aimed at taking difficult simulator tests and realizing them on the real
SUT [88]. However, significantly more work aims at adapting the aforementioned
tools to generate successively harder tests of real-system behavior [89]–[92]. As
such, these tests fall into two categories. Namely, they are controller-specific and
static test cases insofar as they usually identify one parameter in a parametric set of
disturbances that can frustrate system specification satisfaction for a given controller.

Provided that the goal of test synthesis is to determine difficult tests of system
behavior, we posit that this study can and should be done controller-independent, as
what is difficult for the system to achieve should be independent of the controller
used to steer it. Furthermore, while static tests can uncover problematic system
behavior, a time-varying environment might identify more problematic phenomena,
as expressed in the static and reactive autonomous car example mentioned in the prior
chapter. As such, we endeavor to develop a formal method for generating adversarial,
controller-agnostic, and time-varying tests of safety-critical system behavior.

Summary of Contributions in this Chapter
Our contributions are five-fold and will be itemized as follows:

1. For both continuous and discrete-time systems, we develop game-theoretic,
adversarial test-synthesis procedures based on control barrier functions and
timed reach-avoid specifications. Subject to some assumptions on the system
to be tested, these techniques satisfy the following criteria:

• they are guaranteed to produce a realizable test of system behavior, and

• they are provably the most difficult test of system behavior at that system
state.

2. We extend our continuous-time analysis to develop a test-synthesis procedure
for tests that perturb the system dynamics directly. We similarly prove the
existence and maximal difficulty of tests in this setting as well.

3. We extend our discrete-time analysis to develop a predictive test-synthesis
procedure that is guaranteed to be realizable and maximally difficult.

4. We extend both our continuous and discrete-time test-synthesis techniques to
the scenario when the feasible space of tests may be time-varying or otherwise
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Figure 3.1: A general flowchart of our test-synthesis procedure for safety-critical
systems subject to Timed-Reach Avoid Specifications as described in Chapter 3.
We assume the specification 𝜓 that influences the safe controller is express-able via
control barrier functions ℎ 𝑓 , ℎ𝑔. Simultaneously, these same barrier functions are
used in a game-theoretic test-synthesis procedure that exploits model knowledge to
develop tests that are provably realizable and maximally difficult.

constrained. In this setting, we prove that our method is guaranteed to produce
realizable and maximally difficult tests of system behavior.

5. We showcase the results of our test-generation procedure for each case. For
the unconstrained examples, we showcase our results in simulation, mention
some deficiencies resolved in our constrained extensions, and showcase the
results of our constrained test-synthesis procedure by testing a quadruped
robot’s ability to navigate while avoiding moving obstacles.

For context, we restrict our study to timed reach-avoid specifications, a subset of
STL specifications, as they are commonly used in the controls literature to represent
basic robotic objectives, e.g. reach a goal and avoid obstacles [63], [93], [94].

Chapter Structure
To start, Section 3.2 will set up and formally state the problem under study in this
chapter. Then, Section 3.3 details our adversarial test-synthesis procedure in the
continuous setting and illustrates our main results in continuous time through a
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simple example. Likewise, Section 3.4 details our results in the discrete setting
and illustrates these results through a simple example as well. Finally, Section 3.5
extends the results of both of the prior sections by developing a test-synthesis
procedure that has similar guarantees on existence and difficulty in a constrained
test-synthesis scenario where the space of feasible tests varies with time or the
system state. The same section also details the application of our test-synthesis
procedure to provide difficult tests for a quadrupedal system in its satisfaction of a
simple objective. Before starting, we will briefly define some notation.

Notation
The set Z+ = {0, 1, 2, . . . }. A function 𝛼 : (−𝑏, 𝑎) → R ∪ {−∞,∞} where
𝑎, 𝑏 ∈ R++, is an extended class-𝜅 function 𝜅𝑒 if and only if 𝛼(0) = 0, and for
𝑟 > 𝑠, 𝛼(𝑟) > 𝛼(𝑠). For any set 𝐴 define |𝐴| to be the cardinality of 𝐴, i.e. the
number of elements in 𝐴. For a function 𝑓 : 𝑋 → 𝑌 we say 𝑓 ∈ 𝐶𝑘 (𝑋) if 𝑓 has
at least 𝑘 (partial) derivatives and its 𝑘-th (partial) derivative(s) is/are continuous,
i.e. for 𝑥 ∈ R2, 𝑓 = 𝑥𝑇𝑥 ∈ 𝐶2(R2). For a set 𝐴, 2𝐴 is the set of all subsets of 𝐴,
i.e. 2𝐴 = {𝐵 | 𝐵 ⊆ 𝐴}. Finally, we define two common STL specifications used
throughout the chapter:

F[𝑎,𝑏] 𝜇 = True U[𝑎,𝑏] 𝜇, G[𝑎,𝑏] 𝜇 = ¬(F[𝑎,𝑏] ¬𝜇). (3.1)

Here, F[𝑎,𝑏] 𝜇 indicates a specification where 𝜇 is to be true at some time 𝑡′ ∈
[𝑡 + 𝑎, 𝑡 + 𝑏] with respect to some initial time 𝑡. Likewise, G[𝑎,𝑏] 𝜇 indicates a
specification where 𝜇 is to be true for all times 𝑡′ ∈ [𝑡 + 𝑎, 𝑡 + 𝑏] given an initial time
𝑡. Oftentimes, safety specifications require continued satisfaction of a predicate 𝜇.
In these cases, we will use the shorthand G∞ 𝜇.

3.2 Problem Formulation and Statement
To formally state the problem under study in this chapter, we will describe some
common definitions and assumptions.

Definitions and Common Assumptions
To generate a test-synthesis procedure, we need to first formally define a test and
the system specifications we aim to test through our procedure. We will start with
the latter and use it to formalize the former. As mentioned, we restrict our analysis
to timed reach-avoid specifications as these are commonly used specifications in
the robotics literature [63], [95]–[97]. These specifications are defined as follows,
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where F and G were defined in equation (3.1):

𝜓 = F[0,𝑡max] 𝜇 ∧ 𝑗∈J G∞ 𝜔 𝑗 . (3.2)

Here, J = {1, 2, . . . , |J |} is merely a set of indices demarcating different safety
objectives the system is to maintain, and 𝑡max denotes the time by which the objective
𝜇 is to be achieved. To briefly remark, it is possible to group together all safety
objectives 𝜔 𝑗 into one overarching safety objective �̄� and collapse specifications of
the form in (3.2) to read as: 𝜓 = 𝜓 = F[0,𝑡max] 𝜇 ∧ G∞ �̄�. However, as will arise in
the analysis to follow, finding a barrier function for the combined proposition �̄� will
likely prove far more difficult than finding a barrier function for each component
specification. As a result, the above definition keeps in mind the practicality of
identifying such barrier functions, though theoretically there is no difference. That
being said, this leads to the first assumption in our work.

Assumption 1. We assume the specification 𝜓 (3.2) is satisfiable.

Assumption 1 restricts against mutually exclusive or conflicting safety objectives
in the overarching specification form (3.2). We make this assumption as from a
test-generation perspective, determining tests for a specification that could never
be satisfied is irrelevant. Any test for such an unsatisfiable specification would be
hard as the system could never satisfy its objective by definition. That being said,
determining the satisfiability of a given signal temporal logic specification is the
subject of current work [98]. To elucidate the specifications of this form, we will
provide an example.

Example 2. Consider an idealized unicycle system on a 2-d plane. Let this system’s
goal be to navigate to a region defined as the 0-superlevel set of a function ℎ𝐹 :
R2 → Rwhile avoiding a set of obstacles defined as the conjunction of the 0-sublevel
sets of multiple other functions ℎ𝐺

𝑗
: R2 → R, ∀ 𝑗 ∈ J = {1, 2, . . . }. See Figure 3.2

for an illustration. Then, the system’s specification 𝜓 = F∞ 𝜇 ∧ 𝑗∈J G∞ ¬𝜔 𝑗 where
⟦𝜇⟧ = Cℎ𝐹 and ⟦¬𝜔 𝑗⟧ = Cℎ𝐺

𝑗
. For 𝜓 to satisfy Assumption 1, there must be at least

one set of obstacle and goal locations wherein the robot is capable of navigating to
the goal while avoiding all obstacles, i.e. the goal shouldn’t always be at infinity or
always encapsulated by obstacles.

Continuing with Example 2, the most natural test of this agent’s behavior would be
to see if it could satisfy its specification irrespective of the locations of obstacles
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Figure 3.2: Example setup for Example 2. The agent is shown via the blue arrow,
the obstacles via the black circles of varying sizes, and the goal via the golden
circle. The 0-superlevel and sublevel sets of control barrier functions corresponding
to these objectives follow the same color scheme as shown in the legend.

in its environment. The specific setup of obstacle locations would correspond to a
specific test. This notion underlies how we will formalize tests. To start, we will
formally define the system’s environment.

Definition 6. The environment 𝐸 is the state of the world in which the system
operates including the state of the system itself, e.g. the cave in which a robot is
traversing coupled with any motor failures the robot may have suffered, the airspace
in which a jet flies along with any engine failures, etc. The state of the environment
will be represented through the environment state vector 𝑥𝐸 .

Here, we note that the environment’s state vector 𝑥𝐸 may be large, indeed even
infinite, for real-life systems. As such, if we wanted to test and evaluate a system’s
ability to satisfy its specification independent of the environment it might face, we
need some way of modeling at least part of the environment to understand its effects
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on system specification satisfaction. Note, this does not imply that we know and can
model everything about our system’s intended environment. Rather, we assume that
there exists some subset of this environment that we can model and can effectively
use to test system behavior, e.g. we can model wind speeds a drone might face
during operation and will test our drone by requiring it to satisfy its objective when
subject to a set of wind-speeds that we can realize through our model. As such, we
will make the following definition segmenting the system’s environment into the set
of modelable phenomena and un-modelable phenomena.

Definition 7. The state 𝑥𝐸 of the environment 𝐸 can be segmented into the system
state 𝑥, a set of modelable phenomena 𝑑 ∈ D, and a set of un-modelable phenomena
𝑤 ∈ W, i.e. 𝑥𝑇

𝐸
= [𝑥𝑇 , 𝑑𝑇 , 𝑤𝑇 ]𝑇 . The space of modelable phenomena D is the

feasible test space and each 𝑑 ∈ D is a test parameter vector.

For Example 2 then, the environment 𝐸 is the 2-d plane within which the agent
operates and the obstacles lie. Here, the environment state 𝑥𝐸 can be segmented
into the agent’s state, modelable obstacle locations 𝑑 ∈ D, and un-modelable table
friction, signal delays, motor constants, etc, all of which comprise 𝑤 ∈ W. As
motivated earlier, an example test would correspond to placing the obstacles at
known locations apriori and then allowing the agent to try navigating to its goal.
This motivates our definition of a test that will follow.

Definition 8. A test is a specific environment setup modeled by a specific test
parameter vector 𝑑 ∈ D.

Per this definition, the outcome of the agent navigating to its goal need not be
the same for two similar tests—this is primarily due to the lack of knowledge of
𝑤 ∈ W. However as these variables are un-modelable, we cannot restrict them
during a test. As a result, when we formalize our test-generation procedure, we
will only focus on determining a suitable choice of test parameter vector 𝑑, as the
unknown phenomena 𝑤 are by definition, unknown. Also, we would expect that
running the same test twice might yield different outcomes each time. This scenario
oftentimes happens in reality, e.g. running the same robot twice and experiencing
slightly different behaviors each time, due to friction, battery power loss, etc. We
will extend Example 2 to better illustrate Definition 8.

Example 3. In the setup in Example 2, let each obstacle be defined as the interior of
a circle and define ⟦𝜔 𝑗⟧ = {𝑥 | ∥𝑥−𝑑 𝑗 ∥ ≤ 𝑟 𝑗 } for each 𝑗 ∈ J . Then, define a vector
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𝑑 = [𝑑1, 𝑟1, 𝑑2, 𝑟2, . . . ] ∈ R3|J |. Each specific vector 𝑑 constitutes a set of known
obstacle locations. Requiring the agent to navigate to its goal in an environment 𝐸
formed from that choice of obstacle locations 𝑑 is an example test.

Our goal is to constructively determine adversarial, time-varying tests of system be-
havior with respect to satisfaction of a timed reach-avoid specification in a controller-
agnostic fashion. We first note that as a direct consequence of Definition 8, we can
define a time-varying test as one where the test parameter vector 𝑑 varies with time,
i.e. an adversarial test law would be a function T : R+ → D. For Example 3, a
time-varying test would correspond to a scenario where the obstacles are moving
while the agent is navigating to its goal. To facilitate the development of such a
procedure, we require one assumption on the existence of control barrier functions
corresponding to the timed reach-avoid specification 𝜓 (3.2) that the system is to
satisfy. This assumption permits us to make a relation between the satisfaction of the
specification 𝜓 and the positivity of their corresponding control barrier functions.

Assumption 2. Let 𝜇, 𝜔 𝑗 be predicates comprising the timed reach-avoid specifi-
cation 𝜓 (3.2). We assume there exists ∀ 𝑗 ∈ J ,

ℎ𝐺𝑗 : R𝑛 × D → R s. t. ℎ𝐺𝑗 (𝑥, 𝑑) ≥ 0 ⇐⇒ 𝑥 ∈ ⟦𝜔 𝑗⟧,
ℎ𝐹 : R𝑛 × D → R s. t. ℎ𝐹 (𝑥, 𝑑) ≥ 0 ⇐⇒ 𝑥 ∈ ⟦𝜇⟧,

where each ℎ𝐺
𝑗

and ℎ𝐹 are (discrete) control barrier functions as per Definition 1.

For context, Assumption 2 is not too restrictive. It builds off prior work that
constructs control barrier functions for single/multi-agent systems subject to signal
temporal logic specifications more broadly [63], [93], [94], [99]–[101]. As timed
reach-avoid specifications are a subset of signal temporal logic specifications, and
the existence of control barrier functions for these types of signal temporal logic
tasks has been determined apriori, we will simply assume their existence for the
time being. Now we can formally state the problem under study in this chapter.

Problem Statement
As mentioned, our goal is to develop an adversarial, time-varying test-generation
procedure for safety-critical systems in a controller-agnostic fashion. Ideally, we
would also like to develop a procedure that works for both continuous and discrete-
time systems. Furthermore, we would like our generated tests to be maximally
difficult with respect to a difficulty metric. As a first step in developing a concrete
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problem statement, we would like to formalize a test difficulty metric—some func-
tion that is minimized at a given state 𝑥 by the hardest test vector 𝑑 at that state 𝑥.
To that end, we will first define a space of feasible inputsU(𝑥, 𝑑).

Definition 9. The instantaneous feasible input space U(𝑥, 𝑑) ⊆ U is the space
of inputs satisfying the following condition: if ∀ 𝑡 ≥ 0 (respectively all 𝑘 ∈ Z+),
the control inputs 𝑢 ∈ U(𝑥(𝑡), 𝑑) (respectively 𝑢 ∈ U(𝑥𝑘 , 𝑑)), the resulting state
trajectory 𝑥(𝑡) (respectively 𝑥𝑘 ) satisfies 𝜑 ≜ ∧ 𝑗∈J G∞ 𝜔 𝑗 , i.e. (𝑥, 0) |= 𝜑.

Effectively, the feasible input space U(𝑥, 𝑑) is the space of inputs that steer the
system in satisfaction of its safety specifications G∞ 𝜔 𝑗 in equation (3.2). On a
related note, we will also require a function that discriminates between feasible
input choices taken by the system in satisfaction of its desired objective F[0,𝑡max] 𝜇.
We will define this action discriminator function 𝑣 as follows.

Definition 10. The action discriminator is a function 𝑣 : X ×D ×U → R with D
the feasible test space as per Definition 7 that satisfies the following condition: if
∀ 𝑡 ≥ 0 (respectively all 𝑘 ∈ Z+), the control inputs 𝑢 are such that 𝑣(𝑥(𝑡), 𝑑, 𝑢) ≥ 0
(respectively 𝑣(𝑥𝑘 , 𝑑, 𝑢) ≥ 0), then the resulting state trajectory 𝑥(𝑡) (respectively
𝑥𝑘 ) satisfies 𝜑 = F[0,𝑡max] 𝜇, i.e. (𝑥, 0) |= 𝜑.

Now, we can use the feasible input spaceU(𝑥, 𝑑) and our action discriminator 𝑣 to
formalize our controller-agnostic difficulty measure.

Definition 11. An instantaneous difficulty metric𝑀 : X×D → R has a well-defined
minimizer ∀ 𝑥 ∈ X,

T(𝑥) = argmin
𝑑∈D

𝑀 (𝑥, 𝑑),

that satisfies one of the two conditions below for the same state 𝑥,

U(𝑥,T(𝑥)) = ∅, or T(𝑥) = argmin
𝑑∈D

max
𝑢∈U(𝑥,𝑑)

𝑣(𝑥, 𝑑, 𝑢).

Here, U(𝑥, 𝑑) is the system’s feasible input space as per Definition 9, and 𝑣 is the
action discriminator as per Definition 10.

Intuitively then, our difficulty metric 𝑀 quantifies test difficulty through minimiz-
ing the "maximum possible increment" the system could take towards satisfying
its desired objective 𝜇 while maintaining its safety specifications 𝜔 𝑗 . Here, the
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"maximum possible increment" to satisfaction is provided through the action dis-
criminator 𝑣 which closely resembles the robustness measures traditional to signal
temporal logic [72], [75], [102]. Effectively, our action discriminator is an instan-
taneous version of this robustness measure in that it assigns positive values to those
system actions 𝑢 which bring the system closer to satisfying its objective. It is
this instantaneous notion that allows us to develop time-varying tests. As such, our
formal problem statement will follow.

Problem 1. For both control system abstractions (2.1) or (2.6), let the system’s op-
erational specification 𝜓 satisfy equation (3.2). Then, for either system abstraction,
develop (perhaps different) adversarial test-synthesis procedures T : X → D that

• are guaranteed to produce a realizable test, i.e. ∀ 𝑥 ∈ X, ∃ 𝑑 ∈ D such that
𝑑 = T(𝑥);

• are the most difficult tests of system behavior at that state, independent of
control input, i.e. T(𝑥) = argmin𝑑∈D 𝑀 (𝑥, 𝑑) for some difficulty measure 𝑀
that satisfies definition 11.

Here, we note that while we have defined our specifications to be evaluated over
continuous time, they can still be used to express specifications for discrete-time
systems [93], [96], [99], [103]. In the discrete case, time is indexed by 𝑘 ∈ Z+ as
opposed to the continuous analog where time is measured on the positive reals.

3.3 Continuous-Time Test Generation
This section states and proves the first half of our main results in this chapter, the de-
velopment of an adversarial, time-varying test-synthesis procedure for continuous,
control-affine control systems of the form (2.1) subject to timed reach-avoid specifi-
cations 𝜓 of the form in (3.2). We will briefly describe the overarching methodology
behind our approach, state the developed minimax problem for test synthesis, and
end with two theorems regarding its use.

Overarching Idea: Based on the recursive definition of the satisfaction relation |=,
a controller for the nominal system (2.1) guarantees system satisfaction of the timed
reach-avoid specification 𝜓 in (3.2) if and only if,

∀ 𝑡 ≥ 0, 𝑥(𝑡) ∈ ∩ 𝑗∈J ⟦𝜔 𝑗⟧, and ∃ 𝑡′ ∈ [0, 𝑡max] s. t. 𝑥(𝑡′) ∈ ⟦𝜇⟧. (3.4)
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Based on Assumption 2, the requirement in equation (3.4) translates to the following
statement, with C as the 0-superlevel set for the control barrier function shown as a
subscript:

∀ 𝑡 ≥ 0, 𝑥(𝑡) ∈
⋂
𝑗∈J
Cℎ𝐺

𝑗
, and ∃ 𝑡′ ∈ [0, 𝑡max] s. t. 𝑥(𝑡′) ∈ Cℎ𝐹 . (3.5)

Without loss of generality, we can assume that at 𝑡 = 0,

𝑥(0) ∈
⋂
𝑗∈J
Cℎ𝐺

𝑗
, and 𝑥(0) ∉ Cℎ𝐹 , (3.6)

as otherwise, the system would either never be able to satisfy 𝜓—as it started in an
unsafe region, i.e. 𝑥(0) ∉ ⟦𝜔 𝑗⟧ for at least one 𝑗 ∈ J—or it would satisfy 𝜓 by
remaining stationary. Neither case is interesting from a test-synthesis perspective.
Hence, as each ℎ𝐺

𝑗
and ℎ𝐹 is a control barrier function, one way of transitioning

from the starting condition (3.6) to the end condition (3.5) is for the controller to
satisfy the following inequalities for some functions 𝛼, 𝛼 𝑗 ∈ 𝜅𝑒 and 𝜏 > 0:

¤ℎ𝐹 (𝑥(𝑡), 𝑑, 𝑢) ≥ −𝛼
(
ℎ𝐹 (𝑥(𝑡), 𝑑)

)
+ 𝜏, ∀ 𝑡 ∈ [0, 𝑇],

¤ℎ𝐺𝑗 (𝑥(𝑡), 𝑑, 𝑢) ≥ −𝛼 𝑗
(
ℎ𝐺𝑗 (𝑥(𝑡), 𝑑)

)
, ∀ 𝑡 ≥ 0.

The above conditions provide us a way of generating quantifiably adversarial tests—
generate tests that are designed to minimize satisfaction of these inequalities.

Statement of Continuous-Time Results
To formalize this satisfaction minimization idea mentioned prior, we will first specify
a set of feasible inputsU(𝑥, 𝑑) and an action discriminator function 𝑣 as follows:

U(𝑥, 𝑑) =
{
𝑢 ∈ U

���� ¤ℎ𝐺𝑗 (𝑥, 𝑑, 𝑢) ≥ −𝛼 𝑗 (ℎ𝐺𝑗 (𝑥, 𝑑)) , ∀ 𝑗} , (3.7)

𝑣(𝑥, 𝑑, 𝑢) = ¤ℎ𝐹 (𝑥, 𝑑, 𝑢) − 𝜏, for some 𝜏 > 0. (3.8)

Here, we first note that U(𝑥, 𝑑) identifies those inputs 𝑢 ∈ U that satisfy the
CBF condition expressed in Definition 1 for the barrier functions ℎ𝐺

𝑗
. As such, by

Theorem 1 and Assumption 2, we know thatU(𝑥, 𝑑) is a valid feasible input space
as per Definition 9. Likewise, for some 𝜏 > 0, 𝑣 is also a valid action discriminator
as per Definition 10. As we want to keep our test-synthesis framework controller-
agnostic, we will initially propose the following minimax problem over all feasible
inputs in equation (3.7) as our test synthesizer:

T(𝑥) = argmin
𝑑∈D

max
𝑢∈U(𝑥,𝑑)

¤ℎ𝐹 (𝑥, 𝑑, 𝑢). (3.9)
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Remark on Local/Global Conservatism: However, this proposed synthesis tech-
nique has two shortcomings. First, our proposed synthesis technique may suffer
from a local-global problem—that by determining a worst-case test at a given state
𝑥 we find a time-varying test sequence T(𝑥(𝑡)) that is only locally optimal, i.e.
locally difficult but not globally difficult. Rectifying this shortcoming while main-
taining our controller-agnostic approach would require us to optimize over control
sequences in the inner maximization problem in (3.9). As we assume nonlinear
dynamics in (2.1), however, this would result in a non-convex inner maximization
problem wherein it would be difficult to determine the feasibility of any resulting
minimax problem. In the proposed case, we can guarantee both feasibility and
maximal test difficulty. That being said, the determination of tests that are globally
difficult and verifying wholistic system behavior is the subject of future chapters.

The second shortcoming is that it may be the case that there exist test parameter
vectors 𝑑 ∈ D such that the feasible input spaceU(𝑥, 𝑑) = ∅, as we have made no
effort to restrict against this scenario. In these cases, the inner maximization problem
would be ill-posed, frustrating any further analysis. However, were there such a test
parameter vector 𝑑, we would like to identify it as a worst-case test. Indeed this is
one of the conditions we used to define our difficulty metric in Definition 11. To
facilitate analysis in the scenario where the feasible input space might be empty
then, we will define a function F which filters a solution based on the emptiness
(or lack thereof) of a provided set. More accurately, for two scalars 𝜖, 𝜁 ∈ R, an
arbitrary set 𝐴 ⊂ R𝑚, and a vector 𝑎 ∈ R𝑚, define F as follows:

F (𝜖, 𝑎, 𝐴, 𝜁) =

𝜖 if 𝑎 ∈ 𝐴,

𝜁 else.
(3.10)

Then, we will make one assumption on the system dynamics (2.1), the feasible test
space D, and our control barrier functions.

Assumption 3. Both the state space X and the feasible test space D are compact,
the input spaceU is a compact polytope in R𝑚, and ℎ𝐹 , ℎ𝐺

𝑗
∈ 𝐶1(X × D).

For context, Assumption 3 is not that restrictive. First, we restrict the space of
feasible tests D to a compact set as we do not expect our test parameter vector 𝑑
to tend to ±∞. Furthermore, if 𝑑 is bounded, we expect our realized test to be
capable of taking values on the boundary. For an example, consider Example 3
where the obstacles are allowed to take center locations on the boundary of the
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hyper-rectangle in which they are confined. Then, the assumptions of compactness
on the state space X and polytopic compactness of the input space U are satisfied
by most torque-bounded robotic systems. Finally, the assumption of continuity of
the control barrier functions and their first partial derivatives is an easily satisfied
restriction on the smoothness of our control barrier functions. For an example,
consider Example 2 where this holds.

Then, we will define a minimum satisfaction value 𝑚 that meets the following
inequality ∀ 𝑑 ∈ D and 𝑥 ∈ X:

𝑚 ≤ min
𝑢∈U, 𝑥∈X, 𝑑∈D

¤ℎ𝐹 (𝑥, 𝑑, 𝑢). (3.11)

While it is unclear at the moment whether such an 𝑚 exists, we will formally prove
its existence in the proof for Theorem 2 to follow. Now, we can formally state our
test-synthesis procedure, with F as in (3.10), 𝑚 as in equation (3.11), andU(𝑥, 𝑑)
as per equation (3.7).

T(𝑥) = argmin
𝑑∈D

max
𝑢∈U

F
(
¤ℎ𝐹 (𝑥, 𝑑, 𝑢), 𝑢,U(𝑥, 𝑑), 𝑚

)
. (3.12)

This leads to our first theorem in this chapter—that minimax problem (3.12) is
guaranteed to have a solution ∀ 𝑥 ∈ X.

Theorem 2. Let Assumption 3 hold. The test synthesizer in (3.12) has a solution
𝑑 ∈ D for every 𝑥 ∈ X, i.e.

∀ 𝑥 ∈ X ∃ 𝑑 ∈ D s. t. 𝑑 = T(𝑥).

Concerning the second aspect of our problem statement then, we can define an
instantaneous, controller-agnostic difficulty measure 𝑀 : X×D → R as the interior
maximization problem in (3.12).

𝑀 (𝑥, 𝑑) = max
𝑢∈U

F
(
¤ℎ𝐹 (𝑥, 𝑑, 𝑢), 𝑢,U(𝑥, 𝑑), 𝑚

)
. (3.13)

As in the case of defining a set of feasible inputs, we need to show that this difficulty
measure satisfies the conditions in Definition 11 to be valid. This leads to the
following Lemma.

Lemma 1. 𝑀 as defined in equation (3.13) is a difficulty measure as per Definition 11
with feasible input spaceU(𝑥, 𝑑) as per equation (3.7) and action discriminator 𝑣
as per equation (3.8).
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Then, Theorem 2 and Lemma 1 directly provide for the following corollary regarding
minimization of 𝑀 .

Corollary 1. Let Assumption 3 hold. The test synthesizer in (3.12) minimizes the
difficulty measure 𝑀 in (3.13) over all 𝑑 ∈ D, i.e.

T(𝑥) = argmin
𝑑∈D

𝑀 (𝑥, 𝑑)

Proof of Continuous-Time Results
This section will contain all necessary lemmas and proofs for all theoretical results
stated in Section 3.3. To start, we will reiterate a known result from the study of
minimax problems as taken from the proof for Theorem 1 in [104]:

Lemma 2. (From Theorem 1 in [104]) Let X and Y be compact sets, and let
𝑓 : X×Y→ R be a function that is continuous in both its arguments. The following
minimax problem has a solution, i.e.

∃ 𝑥∗ ∈ X, 𝑦∗ ∈ Y s. t. 𝑓 (𝑥∗, 𝑦∗) = min
𝑥∈X

max
𝑦∈Y

𝑓 (𝑥, 𝑦).

Second, for any state 𝑥, we can partition the space of feasible tests D into a set that
does not permit feasible inputs and its complement:

Γ(𝑥) ≜ {𝑑 ∈ D | U(𝑥, 𝑑) = ∅}. (3.14)

With Lemma 2 and Γ above, we can prove Theorem 2.

Proof: This proof will follow a case-by-case argument. These cases are (Case 1)
Γ(𝑥) ≠ ∅ and (Case 2) Γ(𝑥) = ∅. Here, Γ(𝑥) is as defined in (3.14).

Case 1 Γ(𝑥) ≠ ∅: In this case, ∀ 𝑑 ∈ Γ(𝑥), U(𝑥, 𝑑) = ∅. By definition of F in
equation (3.10), this implies that ∀ 𝑑 ∈ Γ(𝑥)

F
(
¤ℎ𝐹 (𝑥, 𝑑, 𝑢), 𝑢,U(𝑥, 𝑑), 𝑚

)
= 𝑚, ∀ 𝑢 ∈ U, (3.15)

with 𝑚 as in equation (3.11). As mentioned earlier, we still need to formally
prove that such an 𝑚 exists. This arises through the application of the Extreme
Value Theorem. As ℎ𝐹 ∈ 𝐶1(X × D) by Assumption 3 and the dynamics in
(2.1) are control-affine, ¤ℎ𝐹 (𝑥, 𝑑, 𝑢) is continuous in all three of its arguments. By
compactness of the feasible spaces for the minimization problem in (3.11), Extreme
Value Theorem guarantees a solution to the same minimization problem, and setting
𝑚 to be that solution suffices to prove the existence of 𝑚.
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For the remainder of the proof, we will use the notation offered by 𝑀 in equa-
tion (3.13) to represent the value of the inner maximization problem in equa-
tion (3.12). To prove the required result then, we need to show that 𝑀 (𝑥, 𝑑) is
lower bounded by some value and that there exists some 𝑑 ∈ D that achieves this
value. To start, we claim that 𝑀 (𝑥, 𝑑) ≥ 𝑚, ∀ 𝑑 ∈ D. This is easily verifiable for
all 𝑑 ∈ Γ(𝑥) by equality (3.15). It remains to show this lower bound works for all
𝑑 ∈ D such that 𝑑 ∉ Γ(𝑥). This stems from the definition of 𝑚 in equation (3.11).
For each 𝑑 ∉ Γ(𝑥),U(𝑥, 𝑑) ≠ ∅. As a result,

𝑀 (𝑥, 𝑑) = max
𝑢∈U(𝑥,𝑑)

¤ℎ𝐹 (𝑥, 𝑑, 𝑢) ≥ 𝑚, ∀ 𝑑 ∈ D ∩ Γ(𝑥)𝐶 .

To finish the proof for this case, at least one test parameter vector 𝑑 ∈ D must ensure
that 𝑀 (𝑥, 𝑑) = 𝑚, and any vector 𝑑 ∈ Γ(𝑥) satisfies this criterion.

Case 2 Γ(𝑥) = ∅: In this case, we note that the inner maximization problem in the
feedback law (3.12) is equivalent to a Linear Program:

min
𝑑∈D

max
𝑢∈R𝑚

𝑐(𝑑)𝑇𝑢, (3.16)

subject to 𝐴𝑢 ≤ 𝑏, (≡ 𝑢 ∈ U),
𝐶 (𝑑)𝑢 ≤ 𝑘 (𝑑), (≡ 𝑢 ∈ U(𝑥, 𝑑)).

LP duality turns equation (3.16) into the following:

min
𝑑∈D,𝜆≥0,𝜇≥0

max
𝑢∈R𝑚


𝑐(𝑑)
−𝜆
−𝜇


𝑇 

𝑢

𝐴𝑢 − 𝑏
𝐶 (𝑑)𝑢 − 𝑘 (𝑑)

 . (3.17)

For minimax problem (3.17), we note that if we further constrain the inner maxi-
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mization problem such that 𝑢 ∈ U, this does not change the solution:

min
𝑑∈D,𝜆≥0,𝜇≥0

max
𝑢∈U


𝑐(𝑑)
−𝜆
−𝜇


𝑇 

𝑢

𝐴𝑢 − 𝑏
𝐶 (𝑑)𝑢 − 𝑘 (𝑑)

 (3.18)

= min
𝑑∈D,𝜆≥0,𝜇≥0,𝛾≥0

max
𝑢∈R𝑚


𝑐(𝑑)
−𝜆
−𝜇
−𝛾



𝑇 
𝑢

𝐴𝑢 − 𝑏
𝐶 (𝑑)𝑢 − 𝑘 (𝑑)

𝐴𝑢 − 𝑏


,

= min
𝑑∈D,𝛽≥0,𝜇≥0

max
𝑢∈R𝑚


𝑐(𝑑)
−𝛽
−𝜇


𝑇 

𝑢

𝐴𝑢 − 𝑏
𝐶 (𝑑)𝑢 − 𝑘 (𝑑)

 ,
= (3.17).

Additionally, for any 𝑑 ∈ D, minimax problem (3.17) has a solution. This stems
from the fact that Γ(𝑥) = ∅, and as a result,U(𝑥, 𝑑) is a non-empty, closed polytope
inR𝑚 (see equation (3.14) for reference). Therefore, the inner maximization problem
in (3.16) has a solution, and via LP duality, so to does (3.17) have a solution.
Furthermore, as minimax problem (3.18) is equivalent to minimax problem (3.17),
so to does (3.18) have a solution for any 𝑑 ∈ D. In addition, the 𝑑-dependent
Lagrange multipliers for this solution 𝜆∗(𝑑) < ∞ and 𝜇∗(𝑑) < ∞, as a solution 𝑢∗

exists. As this is valid ∀ 𝑑 ∈ D, we note that ∃ 𝑀𝜆 < ∞ and 𝑀𝜇 < ∞ such that
𝜆∗(𝑑) ≤ 𝑀𝜆 and 𝜇∗(𝑑) ≤ 𝑀𝜇 element-wise ∀ 𝑑 ∈ D. If this were not the case,
then there exists at least one 𝑑 ∈ D such that 𝜆∗(𝑑) → ∞ or 𝜇∗(𝑑) → ∞, implying
infeasibility of the inner maximization problem in (3.16), which is a contradiction.
As a result, we can uniformly upper bound 𝜆, 𝜇 in (3.18):

(3.16) = min
𝑑∈D,

0≤𝜆≤𝑀𝜆,
0≤𝜇≤𝑀𝜇

max
𝑢∈U


𝑐(𝑑)
−𝜆
−𝜇


𝑇 

𝑢

𝐴𝑢 − 𝑏
𝐶 (𝑑)𝑢 − 𝑘 (𝑑)

 . (3.19)

Finally, the minimax problem (3.19) satisfies the conditions for Lemma 2, guaran-
teeing a solution, i.e. ∃ 𝑑 ∈ D such that 𝑑 = T(𝑥).

For an arbitrary 𝑥 ∈ X, the cases above prove that ∃ 𝑑 ∈ D such that 𝑑 = T(𝑥). As
the state 𝑥 was left arbitrary, this result is valid ∀ 𝑥 ∈ X, completing the proof.
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This concludes the proof for Theorem 2. Next, we will prove Lemma 1, to show
that we minimize a valid difficulty measure with our proposed approach.

Proof: This proof will proceed in a case-by-case fashion as had the proof for
Theorem 2. These cases will be Γ(𝑥) ≠ ∅ (Case 1) and Γ(𝑥) = ∅ (Case 2), with
Γ(𝑥) as defined in equation (3.14). In both cases, however, we know via Theorem 2
that there exists a minimizer T(𝑥) of our proposed state-based difficulty metric 𝑀 .
Here, T(𝑥) is defined in equation (3.12) and 𝑀 is defined in equation (3.13).

Case 1 Γ(𝑥) ≠ ∅: In this case, we know via the proof for Theorem 2 that the
minimizer T(𝑥) ∈ Γ(𝑥). As a result,U(𝑥,T(𝑥)) = ∅. As such, we know that in this
case, any minimizers 𝑑 of 𝑀—which are guaranteed to exist via Theorem 2—are
such that U(𝑥, 𝑑) = ∅. As such, they satisfy the first criteria for 𝑀 to be a valid
difficulty measure as per Definition 11.

Case 2 Γ(𝑥) = ∅: In this case, we know via the proof for Theorem 2 that the
minimizer T(𝑥) yields a non-empty feasible input space, i.e. U(𝑥,T(𝑥)) ≠ ∅.
As a result, by definition of T(𝑥) in equation (3.12), the filtration function F
in equation (3.15), and the action discriminator 𝑣 in equation (3.8) we have the
following equality:

T(𝑥) = argmin
𝑑∈D

max
𝑢∈U(𝑥,𝑑)

𝑣(𝑥, 𝑑, 𝑢).

As such, the minimizer T(𝑥) satisfies the second condition for 𝑀 to be a valid
difficulty metric in this case.

As the choice of 𝑥 ∈ X was left arbitrary, the prior logic holds ∀ 𝑥 ∈ X, thus
concluding the proof that 𝑀 as per equation (3.13) is a valid difficulty measure as
per Definition 11.

Finally, Corollary 1 is a direct consequence of Theorem 2 and Lemma 1.

Proof: This is a consequence of Theorem 2 and Lemma 1.

Corollaries—Perturbing the System Dynamics
In the prior section, we stated and proved two theorems regarding the existence and
maximal difficulty of the adversarial, time-varying tests generated by our proposed
technique, minimax problem (3.12). However, this setting only accounts for the
scenario where the test permits perturbation of the truth regions for the timed reach-
avoid predicates 𝜇 and 𝜔 𝑗 (by Assumption 2). What if instead, we wanted a test
where we simulated a motor failure, increased or decreased system friction, or other
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system-specific failures? This changes the system dynamics as follows, where the
dependence of the dynamics 𝑓 , 𝑔 on 𝑑 correspond to simulations of motor failure
and the 𝐶𝑑 term corresponds to increased or decreased friction:

¤𝑥 = 𝑓 (𝑥, 𝑑) + 𝑔(𝑥, 𝑑)𝑢 + 𝐶𝑑, 𝐶 ∈ R𝑛×𝑝 . (3.20)

Here, we can prove that our proposed test-synthesis procedure is still guaranteed to
produce realizable and maximally difficult tests, as expressed through the following
two Corollaries. Corollary 2 states that our synthesizer in (3.12) is still guaranteed
to produce realizable tests of system behavior in this setting. Likewise, Corollary 3
proves that these tests are maximally difficult with respect to the same difficulty
metric 𝑀 as in (3.13). In both cases, all time derivatives are taken with respect to
the dynamics in equation (3.20). We will start first with Corollary 2.

Corollary 2. Let the system dynamics be as in (3.20), let Assumption 3 hold, and
let 𝑓 and 𝑔 both be continuous in 𝑑. The test synthesizer in (3.12) is guaranteed to
have a solution 𝑑 ∈ D ∀ 𝑥 ∈ X, i.e.

∀ 𝑥 ∈ X ∃ 𝑑 ∈ D s. t. 𝑑 = T(𝑥).

Proof: The proof for this corollary follows in the footsteps of the proof for Theorem 2
in a similar case-by-case fashion. We can partition the feasible test space D with
Γ(𝑥) as defined prior in equation (3.14), and set up the same two cases as prior.
In the first case, Γ(𝑥) ≠ ∅ and changing the system dynamics does not change
the outcome. The optimal solution T(𝑥) ∈ Γ(𝑥). However, the latter case where
Γ(𝑥) = ∅ does change slightly. The interior maximization problem is still a Linear
Program, and the entire chain of logic until equation (3.19) still holds. However,
to proceed with the last step and use Lemma 2 to complete the proof, we need to
guarantee that the matrix multiplication in equation (3.19) is continuous in 𝑑, 𝜆, 𝜇
and 𝑢. Continuity in 𝜆, 𝜇, and 𝑢 is assured via linearity in those terms. Finally,
continuity in 𝑑 is assured via the assumptions of continuity in the statement of
Corollary 2. As a result, we can use Lemma 2, thus completing the proof.

Next, Corollary 3 will prove the optimal difficulty of the tests generated via our
synthesizer in the perturbed setting.

Corollary 3. Let the system dynamics be as in (3.20), let Assumption 3 hold, and let
𝑓 and 𝑔 all be continuous in 𝑑. The test synthesizer in (3.12) minimizes the difficulty
measure 𝑀 in equation (3.13), i.e.,

T(𝑥) = argmin
𝑑∈D

𝑀 (𝑥, 𝑑).
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Proof: This is a consequence of Corollary 2.

Continuous-Time Examples
In this section, we will illustrate our main results through examples extending
Examples 2 and 3. For completeness, we will state the system dynamics as follows:

𝑥 =


𝑥

𝑦

𝜃

 , ¤𝑥 =

cos 𝜃 0
sin 𝜃 0

0 1

︸      ︷︷      ︸
𝑔(𝑥)

𝑢, 𝑥 ∈ [−1, 1]2 × [0, 2𝜋],

𝑢 = [𝑢1, 𝑢2]𝑇 ∈ [−0.2, 0.2] × [−1, 1] .

(3.21)

Equation (3.21) implies that X = [0, 1]2 × [0, 2𝜋] and U = [−0.2, 0.2] × [−1, 1],
and both satisfy the conditions for Assumption 3. To generate a minimax test
synthesizer of the form in equation (3.12) we require a system specification and
associated control barrier functions. For our example, our specification

𝜓 = F 𝜇 ∧ 𝑗∈J G𝜔 𝑗 ,

⟦𝜇⟧ = {𝑥 ∈ X | ∥𝑃𝑥 − 𝑔∥ ≤ 0.25} ,
⟦𝜔 𝑗⟧ =

{
𝑥 ∈ X | ∥𝑃𝑥 − 𝑜 𝑗 ∥ ≥ 0.175

}
.

Here, 𝑔 ∈ R2 denotes the center of a goal region the system is to enter, 𝑜 𝑗 ∈ R2

denotes the center of an obstacle the system is to stay away from, and 𝑃 projects the
system state onto the 𝑥 − 𝑦 plane. Then, the control barrier functions for 𝜓 1 are

ℎ𝐹 (𝑥) = 0.252 − ∥𝑃𝑥 − 𝑔∥22,
ℎ𝐺𝑗 (𝑥, 𝑜 𝑗 ) = ∥𝑃𝑥 − 𝑜 𝑗 ∥22 − 0.1752,

𝜕ℎ𝐹

𝜕𝑥
= −2𝑃𝑇 (𝑃𝑥 − 𝑔),

𝜕ℎ𝐺
𝑗

𝜕𝑥
= 2𝑃𝑇 (𝑃𝑥 − 𝑜 𝑗 ).

(3.22)

Additionally, it is easily verifiable that both control barrier functions above satisfy
the conditions for Assumptions 2 and 3. In this case, ℎ𝐹 (𝑥) ≥ 0 ⇐⇒ 𝑥 ∈ ⟦𝜇⟧ and
ℎ𝐺
𝑗
(𝑥, 𝑜 𝑗 ) ≥ 0 ⇐⇒ 𝑥 ∈ ⟦𝜔 𝑗⟧. Finally, we need to formalize our test parameter

vector 𝑑 and the space in which it lives. Continuing with Example 3, we will
assume the only perturbable objects in the environment are the center locations of

1Note multiple other control barrier functions could have been formed for this problem, though
for simplicity we provide the ones in equation (3.22).
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Figure 3.3: Minimization of the difficulty measure 𝑀 defined in the continuous
test-generation examples section provided in this chapter. Notice that in each of the
three cases shown, the output of the minimax test synthesizer accurately identifies
a test that minimizes the corresponding difficulty measure—the color bar is shown
on the right-hand side. This result was theorized in Corollary 1.

our obstacles 𝑜 𝑗 . We will assume the number of obstacles 𝑁𝑜 = |J |, resulting in
the following test parameter vector:

𝑑 = [𝑜𝑇1 , 𝑜
𝑇
2 , . . . ]

𝑇 , 𝑑 ∈ D = [−1, 1]2𝑁𝑜 ⊂ R2𝑁𝑜 . (3.23)

For this example setting, our minimax testing law T, feasible input space U(𝑥, 𝑑),
and difficulty measure 𝑀 are as follows, with J = {1} as we will show examples
with only one obstacle:

U(𝑥, 𝑑) =
{
𝑢 ∈ U

����� 𝜕ℎ𝐺1𝜕𝑥 𝑇

𝑢 ≥ −10ℎ𝐺1 (𝑥, 𝑜1)
}
,

𝑀 (𝑥, 𝑑) = max
𝑢∈U

F
(
𝜕ℎ𝐹

𝜕𝑥

𝑇

𝑢, 𝑢,U(𝑥, 𝑑),−5

)
, (3.24)

T(𝑥) = argmin
𝑑∈D

max
𝑢∈U

F
(
𝜕ℎ𝐹

𝜕𝑥

𝑇

𝑢, 𝑢,U(𝑥, 𝑑),−5

)
. (3.25)

Finally, we note that all optimization problems to be solved in this section will utilize
a variant of the algorithm described in [105].

Figure Analysis: It is evident that the example autonomous agent setting described
in equation (3.21) with corresponding control barrier functions in equation (3.22)
and 𝑑 defined in equation (3.23) satisfies the conditions for Theorem 2 and Corol-
lary 1. As a result, we would expect that our test synthesizer T defined in equa-
tion (3.25) should always produce a realizable test of system behavior ∀ 𝑥 ∈ X.
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Γ(x)

Γ(x)

Figure 3.4: Example obstacle placements produced by our test-synthesis procedure
defined in Section 3.3 (Top Left) Feasible, partitioned test space. Notice how twenty
different solutions to the same minimax problem all yield a test parameter vector
inside the white region as theorized in the proof for Theorem 2. (Top Right) Four
specific tests generated by the same test synthesizer. (Bottom) Figures showing the
same information as above for a different system state.

We also expect this generated test to minimize the difficulty measure 𝑀 defined
in equation (3.24). Figure 3.3 shows this result for three separate system states
𝑥 = [−0.5, 0.5, 0]𝑇 , 𝑥 = [0.5,−0.5, 0]𝑇 , and 𝑥 = [0, 0, 0]𝑇 . Specifically, notice how
the red "x" indicating the solution to the test synthesizer (3.25) always lies within
the minimizing region of 𝑀 (𝑥, 𝑑) at that state 𝑥—the white region in each graph.
Indeed, over 1000 randomized runs where the initial state 𝑥 is perturbed uniformly
over the state-space X in equation (3.21), the test synthesizer finds a test parameter
𝑑 such that 𝑀 (𝑥, 𝑑) = −5, where −5 is the minimum value. Figure 3.4 goes a
step farther and shows 8 example tests generated by our test synthesizer. As shown



32

in the left-hand side figures in Figure 3.4, each of the twenty solutions to the test
synthesizer in (3.25) lies in the partitioning set Γ(𝑥) within the feasible test space
D. Solutions are shown via red "x"-es and Γ(𝑥) via the white regions in both left-
hand side figures. This phenomenon of the solutions lying within the non-empty set
Γ(𝑥) is expected via the proof for Theorem 2 as Γ(𝑥) ≠ ∅. Specifically, the reason
Γ(𝑥) ≠ ∅ is that we have not constrained against the obstacle lying on top of the
agent to be tested. Due to the agent’s limited actuation capacity, overlapping the
obstacle with the agent results in an infeasible control barrier function condition,
renderingU(𝑥, 𝑑) = ∅. This fact is corroborated through the 8 example tests shown
on the right-hand side. In each of these tests, the obstacle lies atop the agent which
is located at the base of the arrow and is heading in the direction the arrow indicates.
Ideally, we would like to constrain against such trivial solutions in our test-synthesis
framework, and our efforts in that vein will be detailed in a section to follow.

3.4 Discrete-Time Test Generation
Similar to the prior section, this section will state and prove the latter half of our main
results: the development of an adversarial, time-varying test-synthesis procedure
for discrete-time control systems of the form in (2.6) subject to timed reach-avoid
specifications 𝜓 as in (3.2). As before, we will briefly describe the overarching
methodology behind our approach, state the developed minimax problem for test
synthesis, and end with two, similar theorems to the continuous case.

Overarching Idea: As in the continuous case, Assumption 2 lets us express sat-
isfaction of the reach-avoid specification 𝜓 (3.2) via control barrier functions and
their 0-superlevel sets. Specifically, ∀ 𝑘 ∈ Z+ and 𝑘max = min{𝑘 ∈ Z+ | 𝑡max ≤ 𝑘Δ𝑡}
for some Δ𝑡 ≥ 0, the discrete state trajectory 𝑥𝑘 ∀ 𝑘 ∈ Z+ satisfies 𝜓 at 𝑘 = 0, i.e.
(𝑥, 0) |= 𝜓 if and only if:

𝑥𝑘 ∈
⋂
𝑗∈J
Cℎ𝐺

𝑗
and ∃ 𝑘 ∈ {0, 1, . . . , 𝑘max} s. t. 𝑥𝑘 ∈ Cℎ𝐹 .

As in the continuous setting, we will also make the same assumption on the starting,
system state as expressed in equation (3.6):

𝑥0 ∈
⋂
𝑗∈J
Cℎ𝐺

𝑗
and 𝑥0 ∉ Cℎ𝐹 .

Here however lies a difference. If we naively used the same control barrier function
decrement conditions in Definition 4 to identify inequalities to constrain a minimax
problem for test generation, the resulting inner maximization problem would not be
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concave. As a result, we would not be able to use Theorem 2 and its proof to gain
any insight into this scenario. However, the reason we required concavity of the
inner maximization problem was that concavity guaranteed a solution—a feasible
control input for a given test parameter vector 𝑑. To facilitate the provision of similar
guarantees, we will make the following assumption.

Assumption 4. The input spaceU for the discrete-time system (2.6) and the feasible
test space D are finite, i.e. |U| < ∞ and |D| < ∞.

For context, this assumption is easily satisfied by any system described by a finite-
action Markov Decision Process with the space of feasible tests corresponding to
edges that can be turned on/off.

In this setting, we can still define a space of feasible inputs U(𝑥, 𝑑) and an action
discriminator 𝑣 as we did for the continuous setting.

U(𝑥, 𝑑) =
{
𝑢 ∈ U

���� ∀ 𝑗 ∈ J ℎ𝐺𝑗 ( 𝑓 (𝑥, 𝑢), 𝑑) ≥ 0
}
, (3.26)

𝑣(𝑥, 𝑑, 𝑢) = ℎ𝐹 ( 𝑓 (𝑥, 𝑢), 𝑑) − ℎ𝐹 (𝑥, 𝑑) − 𝜏, 𝜏 > 0. (3.27)

In effect then, our proposed test synthesizer will be very similar to its continuous-
time counterpart. Specifically, we will still have an outer minimization problem over
a space of feasible tests. Additionally, the goal is to minimize the maximum possible
increment in a control barrier function subject to the enduring positivity of multiple
other control barrier functions. Keeping these parallels in mind, the statement
and results for our proposed, adversarial, time-varying discrete-time test-synthesis
procedure will follow.

Statement of Discrete-Time Results
To provide a parallel to the continuous setting, we first define a difference function
for the incremental change in a control barrier function after an action.

Δℎ(𝑥, 𝑢, 𝑑) = ℎ ( 𝑓 (𝑥, 𝑢), 𝑑) − ℎ(𝑥, 𝑑).

Then, our proposed test-generation method is as follows:

T(𝑥) = argmin
𝑑∈D

max
𝑢∈U

F
(
Δℎ𝐹 (𝑥, 𝑢, 𝑑), 𝑢,U(𝑥, 𝑑), 𝑚

)
. (3.28)

Here, F is defined in equation (3.15). In the discrete setting, the definition of 𝑚
changes slightly and will be reproduced here:

𝑚 ≤ min
𝑢∈U, 𝑥∈X, 𝑑∈D

Δℎ𝐹 (𝑥, 𝑢, 𝑑) .
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As before, we have not formally stated whether such an 𝑚 exists. However, we
will prove its existence in the proofs to follow. Intuitively though, 𝑚 is defined as
the lower bound to a finite series of finite optimization problems, each of which
is guaranteed to have a solution. Therefore, so too is 𝑚 guaranteed to exist. As
before, this results in our second theorem which states that minimax problem (3.28)
is guaranteed to have a solution ∀ 𝑥 ∈ X.

Theorem 3. Let Assumption 4 hold. The test synthesizer in (3.28) is guaranteed to
have a solution 𝑑 ∈ D for every 𝑥 ∈ X:

i.e., ∀ 𝑥 ∈ X ∃ 𝑑 ∈ D s. t. 𝑑 = T(𝑥).

Additionally, we can also define a very similar difficulty measure �̄� as to its con-
tinuous counterpart 𝑀 as in equation (3.13):

�̄� (𝑥, 𝑑) = max
𝑢∈U

F
(
Δℎ𝐹 (𝑥, 𝑢, 𝑑), 𝑢,U(𝑥, 𝑑), 𝑚

)
. (3.29)

As before, we need to prove that our proposed difficulty measure satisfies Defini-
tion 11. The following lemma expresses this statement.

Lemma 3. �̄� as defined in equation (3.29) is a valid difficulty measure as per
Definition 11 with feasible input space U(𝑥, 𝑑) as per equation (3.26) and action
discriminator 𝑣 as per equation (3.27).

Finally, with respect to this difficulty measure �̄� we have another corollary regarding
the optimal difficulty of the generated tests:

Corollary 4. Let Assumption 4 hold. The test synthesizer in (3.28) minimizes the
difficulty measure �̄� in (3.29) over all 𝑑 ∈ D, i.e.

T(𝑥) = argmin
𝑑∈D

�̄� (𝑥, 𝑑).

As before, we will prove these statements in the next section.

Proof of Discrete-Time Results
Similar to Section 3.3, before stating the proofs of both main results in the discrete-
time setting, we will first state a useful Lemma.

Lemma 4. For any non-empty, finite set 𝐴 ⊂ R, ∃ 𝑚, 𝑀 ∈ R s.t.,

𝑚 ≤ 𝑎 ≤ 𝑀, ∀ 𝑎 ∈ 𝐴.
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The proof of Theorem 3 will follow.

Proof: This proof amounts to two separate uses of Lemma 4 and will follow a
similar partitioning analysis as in the continuous setting. We will group the cases
for expediency. Specifically, we can define a barred-Gamma set similar to its
counterpart in equation (3.14). WithU(𝑥, 𝑑) the feasible input set (3.26),

Γ̄(𝑥) = {𝑑 ∈ D | U(𝑥, 𝑑) = ∅}. (3.30)

We will also use the notation offered by �̄� in equation (3.29) to denote the value of
the inner maximization problem in equation (3.28). Then, in the discrete-setting we
can rewrite minimax problem (3.28) with �̄� (𝑥, 𝑑) as follows, based on the definition
of F in equation (3.15):

T(𝑥) = argmin
𝑑∈D


�̄� (𝑥, 𝑑) if 𝑑 ∉ Γ̄(𝑥)

𝑚 else.

Then, the two cases can be resolved simultaneously. If Γ̄(𝑥) = ∅, the above
optimization problem collapses to a minimization of �̄� (𝑥, 𝑑). Each �̄� (𝑥, 𝑑) is
guaranteed to exist via Lemma 4, and as a result, a solution to the larger optimization
problem is guaranteed to exist via Lemma 4 as the space of all tests D is finite. In
the event that Γ̄(𝑥) ≠ ∅, then any choice of 𝑑 ∈ Γ̄(𝑥) yields 𝑚 ≤ �̄� (𝑥, 𝑑′) ∀ 𝑑′ ∈
D ∩ Γ̄(𝑥)𝐶 . As such the choice of 𝑑 ∈ Γ̄(𝑥) solves the above optimization problem.
This holds ∀ 𝑥 ∈ X, thus concluding the proof.

Likewise, the proof for Lemma 3 will follow.

Proof: We will follow a case-by-case analysis with the cases offered by Γ̄(𝑥) defined
in equation (3.30). In either case however, as per Theorem 3, we know that there
exists a 𝑑 ∈ D ∀ 𝑥 ∈ X that solves minimax problem (3.28). By definition of
the proposed difficulty measure �̄� in equation (3.29), so to do these solutions also
minimize �̄� . To be clear in the remainder of this proof, we will call these solutions
𝑑∗ mimicking the notation used in Definition 11. Then, in the event that Γ̄(𝑥) ≠ ∅,
by the proof for Theorem 3 we know that 𝑑∗ ∈ Γ̄(𝑥). As a result, U(𝑥, 𝑑∗) = ∅
by definition of Γ̄(𝑥) in equation (3.30). Therefore, �̄� satisfies the first condition
for being a difficulty measure. In the second case, Γ̄(𝑥) = ∅ and by the proof for
Theorem 3 and definition of the action discriminator 𝑣 in equation (3.27),

𝑑∗ = argmin
𝑑∈D

max
𝑢∈U(𝑥,𝑑)

Δℎ𝐹 (𝑥, 𝑢, 𝑑),

= argmin
𝑑∈D

max
𝑢∈U(𝑥,𝑑)

𝑣(𝑥, 𝑑, 𝑢) + 𝜏.
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Therefore, in the case where Γ̄(𝑥) = ∅, �̄� satisfies the second condition to be a
difficulty measure as per Definition 11.

The proof of Corollary 4 then stems from Theorem 3 and Lemma 3.

Proof: This is a consequence of Theorem 3 and Lemma 3.

Corollaries—Predictive Test Synthesis
As mentioned, the discrete setting also permits us to predict future system states
as well. We will show that generating tests in this predictive framework amounts
to a simple change in notation, with the majority of the prior section’s analysis
carrying over. To start, we will assume an arbitrary 𝑁-step horizon for predictive
test synthesis. To do so requires a few definitions. The first will provide a notational
simplification for arbitrary, finite 𝑁-step horizon state predictions.

u = [𝑢1, 𝑢2, . . . , 𝑢𝑁 ], f (𝑥, u, 2) = 𝑓 ( 𝑓 (𝑥, 𝑢1), 𝑢2),
𝑥𝑁u = f (𝑥, u, 𝑁).

(3.31)

Then, we can define the set of feasible input sequences and an action discrim-
inator satisfying Definition 10. Here, we note that u and 𝑥𝑁u are as defined in
equation (3.31), andU𝑁 = U ×U . . . 𝑁 times.

U𝑁 (𝑥, 𝑑) =
{

u ∈ U𝑁

����� ∀ 𝑗 ∈ J , ℎ𝐺𝑗 (
𝑥𝑁u , 𝑑

)
≥ 0

}
, (3.32)

Δ𝑁ℎ(𝑥, u, 𝑑) = ℎ
(
𝑥𝑁u , 𝑑

)
− ℎ(𝑥, 𝑑), (3.33)

𝑣(𝑥, 𝑑, 𝑢) = Δ𝑁ℎ𝐹 (𝑥, u, 𝑑) − 𝜏. (3.34)

With these terms, we can propose a predictive test-synthesis procedure that is
similar to its one-step counterpart in (3.28). Our proposed test-synthesis procedure
and difficulty measure �̃� are as follows:

T(𝑥) = argmin
𝑑∈D

max
u∈U𝑁

𝜉𝑁 (𝑥, u, 𝑑), (3.35)

�̃�𝑁 (𝑥, 𝑑) = max
u∈U𝑁

𝜉𝑁 (𝑥, u, 𝑑), (3.36)

𝜉𝑁 (𝑥, u, 𝑑) = F
(
Δ𝑁ℎ𝐹 (𝑥, u, 𝑑), u,U𝑁 (𝑥, 𝑑), 𝑚

)
.

As prior, we define 𝑚 as follows:

𝑚 ≤ min
u∈U𝑁 , 𝑥∈X, 𝑑∈D

Δ𝑁ℎ𝐹 (𝑥, u, 𝑑).

Then, the next corollary formally states that the test-synthesis procedure in equa-
tion (3.35) is guaranteed to produce realizable tests of system behavior.
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Corollary 5. Let Assumption 4 hold. The test synthesizer in (3.35) is guaranteed to
have a solution 𝑑 ∈ D ∀ 𝑥 ∈ X, i.e.,

∀ 𝑥 ∈ X, ∃ 𝑑 ∈ D s. t. 𝑑 = T(𝑥).

Proof: The proof for this corollary follows directly in the footsteps of the proof for
Theorem 3. More aptly, for any choice of finite prediction horizon 𝑁 , we can make
the following redefinition:

𝑥𝑘+1 = 𝑥𝑁u = f (𝑥𝑘 , u, 𝑁) = 𝑓 (𝑥𝑘 , u). (3.37)

This redefinition effectively constructs a new, single-step discrete-time system whose
input spaceU𝑁 is still finite. Then, Theorem 3 provides the desired result.

In a similar fashion, we can also prove that the proposed difficulty measure �̄�𝑁 is a
valid difficulty measure as per Definition 11.

Lemma 5. �̃�𝑁 as defined in equation (3.36) is a valid difficulty measure as per
Definition 11 with feasible input spaceU𝑁 (𝑥, 𝑑) as per equation (3.32) and action
discriminator 𝑣 as per equation (3.34).

Proof: Following the same redefinition as in equation (3.37), we find that our
proposed difficulty measure �̄�𝑁 collapses to a one-step difficulty measure where
the input spaceU𝑁 is still finite. Then, Lemma 3 provides the desired result.

In a similar fashion, we can also formally state and prove that the tests generated by
minimax problem (3.35) are maximally difficult.

Corollary 6. Let Assumption 4 hold. The test synthesizer in (3.35) minimizes the
difficulty measure �̃� in (3.36) over all 𝑑 ∈ D, i.e.

T(𝑥) = argmin
𝑑∈D

�̃�𝑁 (𝑥, 𝑑).

Proof: Again, this Corollary stems directly from Corollary 5.

Examples
Figure 3.5 provides a picture for our example in this section—the placement of
obstacles on a discrete grid to frustrate an agent’s ability to reach its goal. The agent
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Figure 3.5: Example discrete time setting for the examples referenced in Section 3.4.

is modeled as a discrete transition system:

𝑥𝑘+1 =


𝑥𝑘 ± [1, 0] if 𝑢𝑘 = left (−) or right (+)

𝑥𝑘 ± [0, 1] if 𝑢𝑘 = down (−) or up (+)

𝑥𝑘 if 𝑢𝑘 = stay or action infeasible.︸                                                        ︷︷                                                        ︸
𝑓 (𝑥𝑘 ,𝑢𝑘)

𝑥𝑘 ∈ {0, 1, 2, . . . , 9}2 = X,
𝑢𝑘 ∈ {left, right, up, down, stay} = U

Our test parameter 𝑑 and specification 𝜓 are as follows, with 𝑔 = [𝑔0, 𝑔1] ∈ X the
goal-cell:

𝑑 = [𝑑0, 𝑑1], 𝑑 ∈ D ⊆ X, and 𝜓 = F∞ 𝜇 ∧G∞ 𝜔,

⟦𝜇⟧ = {𝑔} , ⟦𝜔⟧ =
{
𝑥 ∈ X

�� 𝑥 ≠ 𝑑} .
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Figure 3.6: Depiction of the gradient function 𝑅∗ utilized to generate example control
barrier functions, with an obstacle placed at the center for depiction purposes.

To construct a variable discrete barrier function then, we will first define a reward
matrix 𝑅(𝑑) inspired by the work done in [60].

𝑅(𝑑) = argmax
𝑉∈R10×10

1𝑇𝑉1 (3.38)

subject to 𝑉 [𝑔0, 𝑔1] = 10,

𝑉 [𝑑0, 𝑑1] = −10,

𝑉 [𝑥0
𝑘 , 𝑥

1
𝑘 ] =

∑︁
𝑢∈U

0.2𝑉 [𝑥0
𝑘+1, 𝑥

1
𝑘+1],

∀ 𝑥𝑘 ∈ X, 𝑥𝑘 = [𝑥0
𝑘 , 𝑥

1
𝑘 ] .

We note that the optimization problem in equation (3.38) is almost always solvable.
For more curious readers, please reference hitting times and absorption probabilities
for Markov Chains in [106]. The only cases precluding a solution occur when the two
sets overlap, i.e. the goal overlaps with at least one obstacle, yielding an inconsistent
feasible set. As such, we will modify this reward matrix 𝑅(𝑑) to generate our barrier
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Figure 3.7: Shown above is a series of color plots indicating the difficulty measure
defined in the discrete-time examples subsection. The difficulty measure varies with
goal location as it is influenced by a barrier function dependent on the goal location.
As can be seen in each of the three cases above, however, the test synthesizer
accurately identifies a test that minimizes this difficulty measure—it places the
obstacle shown via the red "x" over the goal. The associated color bar is to the right.

functions, i.e. 𝑅∗(𝑑) ∈ R10×10, and

𝑅∗(𝑑) [𝑖, 𝑗] =



0 if (3.38) is infeasible,

10.1 if 𝑖 = 𝑔0, 𝑗 = 𝑔1,

−10.1 if 𝑖 = 𝑑0, 𝑗 = 𝑑1,

𝑅(𝑑) [𝑖, 𝑗] else.

ℎ𝐹 (𝑥, 𝑑) = 𝑅∗(𝑑) [𝑥0, 𝑥1] − 10,

ℎ𝐺 (𝑥, 𝑑) = 𝑅∗(𝑑) [𝑥0, 𝑥1] + 10.

Figure 3.6 depicts our resulting 𝑅∗(𝑑) after this procedure, for an example case
where 𝑑 = [5, 5] and the goal 𝑔 = [7, 9]. Then, the specific versions of our
feedback law and difficulty measure are as follows, with 𝑑 representing the grid cell
location of our single obstacle:

U(𝑥, 𝑑) = {𝑢 ∈ U | ℎ𝐺 ( 𝑓 (𝑥, 𝑢), 𝑑) ≥ 0},

�̄� (𝑥, 𝑑) = max
𝑢∈U

F
(
Δℎ𝐹 (𝑥, 𝑢, 𝑑), 𝑢,U(𝑥, 𝑑),−15

)
, (3.39)

T(𝑥) = argmin
𝑑∈D

max
𝑢∈U

F
(
Δℎ𝐹 (𝑥, 𝑢, 𝑑), 𝑢,U(𝑥, 𝑑),−15

)
. (3.40)

Figure Analysis: Over 1000 randomized trials wherein the system’s initial state and
goal are chosen randomly such that they don’t overlap, the test synthesizer (3.40)
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satisfactorily identifies a test parameter 𝑑 for each case such that 𝑑 minimizes the
difficulty measure �̄� in (3.39) at that state 𝑥. This should also be expected as
the proofs in the discrete-time case mirror their continuous counterparts and the
continuous feedback law also exhibited a similar capacity to identify realizable
and maximally difficult tests. To that end, Figure 3.7 portrays both the optimal
obstacle setup overlaid on the difficulty measure contour map for the state/goal pair
listed. As can be seen in each of the three cases shown, the test synthesizer (3.40)
accurately identifies an obstacle location that minimizes the corresponding difficulty
measure—the color bar indicating evaluations of the difficulty measure is shown on
the right-hand side. Additionally, we can see that in each of the cases, the optimal
obstacle location is to place the obstacle directly on top of the goal. We expect
this behavior to be the most difficult test, as in this scenario, there is nothing the
system could ever do to reach its goal while simultaneously satisfying its safety
specification. In the following section, we will revisit this example and constrain
against such tests to yield a more useful outcome.

3.5 Extensions—Constrained Test Synthesis
In this section, we will extend our prior results on the guaranteed realizability and
maximal difficulty of our test-synthesis procedure(s), when the space of feasible tests
D is a function of time and the system state. This lets us constrain against trivial
test cases such as (but not limited to) obstacles overlapping with the agent/goal.

Corollaries for Constrained Testing
To start, we assume there exists a set-valued function that maps from the state space
X and time 𝑡 to R𝑝.

D : X × R+ → 2R
𝑝

s. t. D(𝑥, 𝑡) = D ⊂ R𝑝 .

This results in the following change to the test synthesizer for the continuous setting
in equation (3.12):

T(𝑥, 𝑡) = argmin
𝑑∈D(𝑥,𝑡)

max
𝑢∈U

F
(
¤ℎ𝐹 (𝑥, 𝑑, 𝑢), 𝑢,U(𝑥, 𝑑), 𝑚

)
, (3.41)

𝑚 ≤ min
𝑢∈U, 𝑥∈X, 𝑑∈D(𝑥,𝑡)

¤ℎ𝐹 (𝑥, 𝑑, 𝑢).

In the discrete setting, we will directly mention the change with respect to the
predictive test-synthesis framework. Our test-synthesis procedure is as follows,
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with Δ as defined in equation (3.33).

T(𝑥, 𝑡) = argmin
𝑑∈D(𝑥,𝑡)

max
u∈U𝑁

𝜉 (𝑥, u, 𝑑), (3.42)

𝜉 (𝑥, u, 𝑑) = F
(
Δℎ𝐹 (𝑥, u, 𝑑) , u,U𝑁 (𝑥, 𝑑), 𝑚

)
,

𝑚 ≤ min
u∈U𝑁 ,𝑥∈X,𝑑∈D(𝑥,𝑡)

Δℎ𝐹 (𝑥, u, 𝑑) .

As the space of feasible tests is now variable, we need to change the statements of
Assumptions 3 and 4 to match. The analog of Assumption 3 is as follows.

Assumption 5. Each feasible test spaceD ∈ R(D) is a compact set, the input space
U for the continuous time system (2.1) is a closed, convex polytope in R𝑚, and
ℎ𝐹 , ℎ𝐺

𝑗
∈ 𝐶1(X × D).

Likewise, the analog of Assumption 4 is as follows.

Assumption 6. The input space U for the discrete-time system (2.6) is finite, and
each feasible test space D ∈ R(D) is also finite.

Then, we can state and prove the following corollaries guaranteeing the realizability
of the tests generated by each feedback law.

Corollary 7. Let Assumption 5 hold. The test synthesizer in (3.41) is guaranteed to
have a solution 𝑑 ∈ D(𝑥, 𝑡) ∀ 𝑥 ∈ X, 𝑡 ∈ R+, i.e.,

∀ 𝑥 ∈ X, 𝑡 ∈ R+ ∃ 𝑑 ∈ D(𝑥, 𝑡) s. t. 𝑑 = T(𝑥, 𝑡).

Proof: This is an application of Theorem 2 for each D ∈ R(D) which is assumed
to be compact via Assumption 5.

Corollary 8. Let Assumption 6 hold. The test synthesizer in (3.42) is guaranteed to
have a solution 𝑑 ∈ D(𝑥, 𝑡) ∀ 𝑥 ∈ X, 𝑡 ∈ R+, i.e.,

∀ 𝑥 ∈ X, 𝑡 ∈ R+ ∃ 𝑑 ∈ D(𝑥, 𝑡) s. t. 𝑑 = T(𝑥, 𝑡).

Proof: This is an application of Corollary 5 for each D ∈ R(D) which is assumed
to be finite via Assumption 6.

These modified test-generation laws also minimize their respective difficulty mea-
sures over the constrained test-generation set D(𝑥, 𝑡).
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Corollary 9. Let Assumption 5 hold. The test synthesizer (3.41) minimizes the
difficulty measure 𝑀 (3.13) over all 𝑑 ∈ D(𝑥, 𝑡), i.e.

T(𝑥) = argmin
𝑑∈D(𝑥,𝑡)

𝑀 (𝑥, 𝑑).

Proof: This proof stems from the application of Corollary 1 ∀ D ∈ R(D).

In the discrete setting, we have the following corollary.

Corollary 10. Let Assumption 6 hold. The test synthesizer (3.42) minimizes the
difficulty measure �̃� (3.36) over all 𝑑 ∈ D(𝑥, 𝑡), i.e.

T(𝑥) = argmin
𝑑∈D(𝑥,𝑡)

�̃� (𝑥, 𝑑).

Proof: This proof stems via repeated application of Corollary 6 for each finite set
D ∈ R(D).

Remark on Environment Dynamics: Sometimes, there may exist torque bounds
on ¤𝑑, e.g. environment dynamic constraints, and as stated the mentioned approach
could not account for such constraints. However, one could augment the system
state to include the modelable state of the environment, e.g. the overall "state" 𝑥
would be the state of the system-under-test 𝑥𝑠 and the state of the modelable aspect
of the environment subject to dynamic constraints 𝑑𝑡 . Then, the test-generation
procedure would provide the dynamics 𝑑 that the modelable environment states 𝑑𝑡
must follow. See [107] for work in this vein.

Applications to a Constrained Hardware Test
The constrained test-synthesis results permit us to start applying our procedure to
testing hardware systems in their operating environments. Specifically, we test a
quadruped’s ability to navigate to a goal while avoiding moving robots attempting
to block its path. To start, we idealize the quadruped as a single integrator system:

¤𝑥 = 𝑢, 𝑥 ∈ X ≜ [−1, 4] × [−2, 3], 𝑢 ∈ U ≜ [−5, 5]2.

To construct our specification 𝜓 and our test parameter vector 𝑑, we will denote the
goal as 𝑔 = [3.5, 2.5]𝑇 and the obstacle agent locations on the 2-d plane as 𝑜 𝑗 ∈ X.
Then 𝜓 is as follows:

⟦𝜇⟧ = {𝑥 ∈ R2 | ∥𝑥 − 𝑔∥ ≤ 0.3},
⟦𝜔 𝑗⟧ = {𝑥 ∈ R2 | ∥𝑥 − 𝑜 𝑗 ∥ ≥ 0.3},

𝜓 = F∞ 𝜇 ∧ 𝑗=1,2 G∞ 𝜔 𝑗 .
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The combined locations of these obstacles will be our test parameter vector, i.e.
𝑑 = [𝑜𝑇1 , 𝑜

𝑇
2 ]
𝑇 ∈ X2.

To generate tests, our barrier functions ℎ𝐹 and ℎ𝐺
𝑗

and test space map D are as
follows (here 𝑥 is the quadruped’s planar position, i.e. 𝑥 = [𝑥1, 𝑥2] ∈ X and for a
scalar 𝜖 ∈ R, ⌊𝜖⌋ denotes rounding down and ⌈𝜖⌉ denotes rounding up):

ℎ𝐹 (𝑥) = 0.3 − ∥𝑥 − 𝑔∥, ℎ𝐺𝑗 (𝑥, 𝑑) = ∥𝑥 − 𝑜 𝑗 ∥ − 0.3,

𝑑 = [𝑜𝑇1 , 𝑜
𝑇
2 ]
𝑇 ∈ D(𝑥) ≜ {⌊𝑥1⌋, ⌊𝑥2⌋} × {⌈𝑥1⌉, ⌈𝑥2⌉}.

As an example then D(𝑥 = [0.3, 1.7]) = {0, 1} × {1, 2}. For testing purposes,
we will calculate the optimal obstacle locations offline and direct the obstacles to
move between the identified grid points at test time. Theoretically, the identified
grid points should correspond to the most difficult test of quadruped behavior while
it ambulates within a grid cell—asking the obstacles to move between grid points
as the quadruped moves between grid cells should likewise be more difficult. We
repeated the experiment twice, and recorded the minimum value of both barrier
functions:

ℎ(𝑥, 𝑑) = min
𝑗=1,2

ℎ𝐺𝑗 (𝑥, 𝑑),

for the entire multi-system trajectory. The corresponding time-series data is shown
in Figure 3.8.

Figure Analysis: In both tests, the quadruped tries "cutting" corners between grid
cells, as at least one of the obstacles moves to the associated grid point that the
quadruped is trying to move through. This causes a momentary loss of safety as
evidenced by the sharp spike where the minimum barrier value goes negative (around
20 seconds). The quadruped quickly corrects this mistake and resumes its normal
trajectory while repeating this cutting behavior a few more times. That being said, it
maintains a positive barrier value both times. This references the "dip" in the yellow
trajectory around 45 seconds, and the two "dips" in the blue trajectory around 60
and 70 seconds. Figure 3.8 depicts this momentary loss of safety. This procedure,
however, shows an example implementation of our worst-case tests on hardware
systems. Additionally, it shows that the tests that we theorize to be the most difficult
uncover problematic system behavior as required of our testing procedure.

3.6 Conclusion
This chapter detailed our efforts to develop an adversarial test synthesis approach
for autonomous systems based on control barrier functions and timed reach-avoid
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Figure 3.8: Depiction of the safety failure identified during the implementation of
the constrained testing procedure described in Section 3.5. The goal is to determine
moving obstacle locations defined at the vertices of a 5 × 5 grid, while a quadruped
ambulates to a goal (off-screen). Shown above are depictions of the trial whose
time-series data for the composite barrier function is shown in yellow. Around 20
seconds, we see the quadruped (Left) start to try to cut corners between grid cells.
(Middle) This sends a signal to our test-synthesis procedure to ask the obstacle to
move to cut off its path. (Right) The quadruped reacts to the moving obstacle, but
slowly, causing the momentary lapse in safety as signified by the sharp spike in the
barrier function going negative. The obstacle waypoints were chosen by our test-
synthesis technique. Repeating this experiment from the same starting procedure
once more, yielded similar behavior as signified by the blue trajectory.

specifications. We proved that our approach will always produce realizable and
maximally difficult tests of system behavior as our synthesis techniques are guaran-
teed to have solutions that minimize a corresponding difficulty measure—a concept
we introduce and define. Finally, we show the efficacy of our procedure in generat-
ing tests for simple toy examples useful in a real-world context—unicycle systems
and grid-world abstractions, both of which are used for baseline navigation control
algorithms in other works. We also show how such an abstraction can easily be
extended to a useful hardware system test—testing a quadruped’s ability to navigate
within a grid while avoiding obstacles. However, just because a system passes a
difficult test does not equate to a verification statement. As such, the chapters to
follow will detail efforts made to streamline risk-aware verification and controller
synthesis. To facilitate the statement of these contributions, the next chapter details
our efforts in uncertainty quantification.
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C h a p t e r 4

UNCERTAINTY QUANTIFICATION

This chapter was adapted from:

[1] P. Akella, A. Dixit, M. Ahmadi, J. W. Burdick, and A. D. Ames, “Sample-
Based Bounds for Coherent Risk Measures: Applications to Policy Synthesis
and Verification,” The Artificial Intelligence Journal (Under Review), Apr.
2022. doi: 10.48550/arXiv.2204.09833. arXiv: 2204.09833 [cs.AI],

[2] P. Akella and A. D. Ames, “Bounding Optimality Gaps for Non-Convex
Optimization Problems: Applications to Nonlinear Safety-Critical Systems,”
62nd Conference on Decisions and Control (Submitted), Apr. 2023. doi:
10.48550/arXiv.2304.03739. arXiv: 2304.03739 [math.OC],

[3] P. Akella, M. Ahmadi, and A. D. Ames, “A Scenario Approach to Risk-
Aware Safety-Critical System Verification,” arXiv e-prints, arXiv:2203.02595,
Mar. 2022. doi: 10.48550/arXiv.2203.02595. arXiv: 2203.02595
[eess.SY],

As mentioned prior, this chapter and the chapters to follow will focus on the verifi-
cation pipeline more broadly. Specifically, we motivated earlier in the introduction
that one of the primary hindrances to theoretical advancements in verification cen-
ters on our inability to calculate risk measures over system state trajectories. This
inability arises as we typically do not have perfect knowledge of the uncertainties
affecting system evolution, and as such, the distribution over realized paths is simi-
larly unknown. Therefore, before formalizing a pipeline for risk-aware verification,
this chapter details our efforts in uncertainty quantification. Specifically, it details
our procedure to bound risk measures for random variables whose distributions are
unknown, the application of the same principles to rapidly generate percentile solu-
tions for non-convex optimization problems, and how multiple applications of the
percentile method produce a bound on the optimality gap of the reported percentile
solution. To start, we will provide a more in-depth analysis of existing work that
highlights the need for the risk-aware contributions we detail herein.

4.1 Introduction
The problem of optimal policy generation under uncertainty has been well-studied
in the learning community, most notably via Reinforcement Learning [108]–[112].
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In this setting, the agent-environment interaction is modeled via a Markov Decision
Process (MDP) where the state of the agent-environment pair is assumed to lie in
some finite set [113]. Then, the agent’s action at an initial state determines the set of
states from which the successive state is randomly sampled according to some distri-
bution. Each such transition is assigned a reward via a reward function, resulting in
the traditional Reinforcement Learning policy generation problem—determining a
policy that maximizes the expected, time-discounted reward achievable by the agent
undergoing such uncertain transitions. The Partially Observable Markov Decision
formulation of this problem is considered in [114]–[117].

However, for safety-critical control applications, expectation-maximization policies
fail to consider variances in outcomes which could lead to catastrophic behavior [42].
This underscores the need to formally consider risk in both policy development and
verification. To that end, Majumdar et al. [43] argue that coherent risk measures [44]
like Conditional-Value-at-Risk (CVaR) and Entropic-Value-at-Risk (EVaR) which
underlie the treatment of financial risk utilized by the vast majority of the world’s
banks [45], should similarly underlie the formal treatment of risk in robotics. This
paradigm is also shared broadly within the learning and control communities, since
these 𝑔-entropic risk measures like CVaR and EVaR exhibit nice mathematical
properties, e.g. convexity, and permit a formal assessment of risk previously unac-
counted for by non-coherent risk measures like Value-at-Risk. In short, this has led
to the widespread adoption of these coherent risk measures as the de facto standard
for formal consideration of risk in policy generation [43], [118]–[124].

While there exist a plethora of policy synthesis techniques in a risk-sensitive setting,
there exist few verification techniques—especially for 𝑔-entropic risk measures—
that account for unstructured uncertainty. For example, numerous works propose
risk-aware verification procedures for specific systems [125]–[127]. These methods
verify their systems of interest against existing widespread standards, e.g. in [127]
the authors verify a multi-agent collaborative robotic system against the international
standards for safe human-robot interaction, ISO 10218 [128], [129]. As such, the
verification analyses in these works are limited to their specific systems of interest,
and risk is typically defined against the corresponding standard. In effect, these
works do not use the same notion of risk as utilized in policy development. For more
abstract, black-box approaches to verification, Corso et al. provide a very nice survey
of existing techniques [130]. In short, however, the existing verification techniques
that account for uncertain system measurements, e.g. Bayesian Optimization [131],
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[132] or Reinforcement Learning [133], [134], follow the same expectation-specific
analysis that prompted interest in a risk-aware approach.

Motivating Questions and Chapter Contributions
This inability to address risk-aware verification through the same risk measures
utilized for policy development stems primarily from the inability to evaluate these
measures over unknown probability distributions. While there exist concentration
inequalities for specific coherent risk measures [135]–[138], there do not exist
similar bounds for other risk measures, e.g. Value-at-Risk, Entropic-Value-at-Risk,
etc. Furthermore, traditional risk-aware policy synthesis schemes typically assume
apriori knowledge of the uncertainties affecting system evolution, though practically
we have little knowledge of these distributions. To address our inability to evaluate
risk measures for unknown probability distributions and lay the foundation for
risk-aware verification and synthesis in the next chapter, we detail the following
contributions in this chapter:

1. We detail our efforts in the provision of procedures providing probabilistic
upper bounds for Value-at-Risk and any 𝑔-entropic risk measure — a large
subset of coherent risk measures.

2. We develop a percentile optimization procedure that leverages the prior risk-
measure estimation method to provide percentile solutions to a wide class of
non-convex optimization problems. Specifically, for an optimization problem
with decision variables s in a decision space S, a percentile solution s∗ in the
90%-ile outperforms 90% of decisions s′ ∈ S with respect to optimizing for
the objective in question.

3. Finally, we show how multiple applications of the same percentile approach
can bound the optimality gap of percentile solutions to a wide class of non-
convex optimization problems.

Chapter Structure
To start, Section 4.2 reviews scenario optimization and introduces the risk measures
studied. Then, Section 4.3 details our efforts in upper-bounding risk-measure eval-
uation for scalar random variables whose distributions are unknown. Section 4.4
leverages these upper-bounding results to provide a method that outputs percentile
solutions to a wide class of non-convex optimization problems. Finally, Section 4.5
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details how one can apply the same percentile optimization technique twice to also
bound the optimality gap of a reported percentile solution.

Remark on a purely probabilistic viewpoint: A central approach taken in this
chapter will be to classify outcomes of the random variable of interest as either
useful — greater than a risk-measure of interest — or not. As such, the work
detailed in this chapter can also be viewed from a purely probabilistic lens, if the
current treatment, which caters more to the robotics and controls community, is
found wanting. Intuitively, the detailed approach to risk-measure bounding can be
viewed as taking enough samples of a random variable until we receive a sample
that exceeds a cutoff value of interest. This is an event known to occur with
non-zero probability even if we do not know the underlying distribution, as this
non-zero probability arises via the definition of these risk measures. As such,
identifying such a sample is equivalent to transforming risk-measure estimation into
a Bernoulli random variable sampling problem with known success probabilities.
Therefore, you will see the corresponding confidence of 1− (1− 𝜖)𝑁 arising in most
theoretical results in this chapter, where 𝜖 corresponds to the success probability for
the corresponding Bernoulli random variable and 𝑁 the number of samples taken of
such a variable while searching for success. Keeping this intuitive approach in mind,
the chapter can be viewed as a guide on how to construct this Bernoulli random
variable for each risk measure studied and for any scalar random variable 𝑋 .

4.2 Reviewing Scenario Optimization and Risk Measures
Scenario Optimization
Scenario optimization identifies robust solutions to uncertain convex optimization
problems of the following form [139]:

q∗ = argmin
q∈Q⊂R𝑑

𝑐𝑇 q,

subject to q ∈ Q𝛿, 𝛿 ∈ Δ.
(UP)

Here, (UP) is an uncertain program as 𝛿 is a sample of some random variable
in the probability space Σ = (Δ, F , P). Here, Δ is the sample space, F is the
(perhaps unknown) event space, andP is the (perhaps) unknown probability measure.
Convexity is assured via an assumed convexity in the constraint spaces Q and
Q𝛿, where the latter is the subspace of Q defined by the associated sample 𝛿 ∈
Δ. Furthermore, since Δ is typically a set of infinite cardinality, i.e. |Δ| = ∞,
identification of a solution q∗ such that q∗ ∈ Q𝛿 ∀ 𝛿 ∈ Δ is typically infeasible.
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Figure 4.1: An example of using scenario optimization to calculate the smallest
circle radius required to encapsulate at least 0.987 of the probability mass of the
underlying random variable with which samples were taken. In this case, samples 𝛿
are the randomly sampled points on the 2-d plane shown in black, the overarching
decision space is the positive reals, and the sample-specific constraint spaces Q𝛿 =

{𝑟 ∈ R+ | 𝑟 ≥ ∥𝛿∥}. Hence, the specific uncertain program would be to minimize
the radius 𝑟 subject to 𝑟 ∈ Q𝛿 for all sample-able 𝛿.

To resolve this issue, scenario optimization solves a related optimization problem
formed from a set of 𝑁 samples 𝛿 and provides a probabilistic guarantee on the
robustness of the corresponding solution q∗

𝑁
. Specifically, given an 𝑁-sized set of

samples {𝛿j}Nj=1, we could construct the following scenario program:

q∗𝑁 = argmin
q∈Q⊂R𝑑

𝑐𝑇 q,

subject to q ∈ Q𝛿𝑖
, ∀ 𝛿𝑖 ∈ {𝛿j}Nj=1 .

(RP-N)

Then, we require the following assumption.

Assumption 7. The scenario program (RP-N) is solvable for any 𝑁-sample set
{𝛿j}Nj=1 and has a unique solution q∗

𝑁
.

Assumption 7 guarantees the existence of a scenario solution q∗
𝑁

for (RP-N) for any
provided sample set {𝛿j}Nj=1. As such, we can define a set containing those samples
𝛿 ∈ Δ for which the scenario solution q∗

𝑁
does not lie in the corresponding constraint

set Q𝛿, i.e. 𝐹 (q) = {𝛿 ∈ Δ | q ∉ Q𝛿}.With this set definition we can formally define
the violation probability of our solution.

Definition 12. The violation probability 𝑉 (q) is defined as the probability of sam-
pling a constraint 𝛿 to which q is not robust, i.e. 𝑉 (q) = P[𝛿 ∈ 𝐹 (q)] .
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Then, we have the following theorem:

Theorem 4 (Adapted from Theorem 1 in [139]). Let Assumption 7 hold. The
following inequality is true, with 𝑉 as per Definition 12:

P𝑁
[
𝑉

(
q∗𝑁

)
> 𝜖

]
≤

𝑑−1∑︁
𝑖=0

(
𝑁

𝑖

)
𝜖 𝑖 (1 − 𝜖)𝑁−𝑖 .

In Theorem 4 above, 𝑁 is the number of sampled constraints 𝛿 for the scenario
program (RP-N), q∗

𝑁
is the scenario solution to the corresponding scenario program,

𝑉 (q∗
𝑁
) is the violation probability of that solution as per Definition 12, 𝑑 is the

dimension of the decision variable q, and P𝑁 is the induced probability measure
over sets of 𝑁-samples of 𝛿 given the probability measure P for 𝛿. An example
scenario solution is shown in Figure 4.1.

𝑔-Entropic Risk Measures
Risk measures 𝜑 map scalar random variables 𝑋 to the real line. More accurately,
consider a probability space (Ω, F , 𝑃) with the sample space Ω, the event space F ,
and a probability measure 𝑃. A scalar random variable (R.V.) 𝑋 is a mapping from
the sample space to the real-line, i.e. 𝑋 : Ω → R. The space of all scalar random
variables defined for this probability space is �̃� = {𝑋 | 𝑋 : Ω → R}. For 𝑝 ≥ 1,
we define 𝐿𝑝 as the space of all random variables with 𝑝-bounded expectation, i.e.
𝐿𝑝 = {𝑋 ∈ �̃� | E[|𝑋 |𝑝] < ∞}, and 𝐿∞ is the set of all bounded scalar random
variables. Then, a risk measure 𝜑 maps from a subset X ⊆ �̃� to the extended
real-line R ∪ {−∞,∞}, i.e. 𝜑 : X → R ∪ {−∞,∞}. A coherent risk measure is
defined as follows1 [44].

Definition 13. A coherent risk measure 𝜑 : X ⊆ �̃� → R ∪ {−∞,∞} satisfies the
following four properties:

1. Translation Invariance: 𝜑(𝑋 + 𝑐) = 𝜑(𝑋) + 𝑐,

2. Sub-Additivity: 𝜑(𝑋1 + 𝑋2) ≤ 𝜑(𝑋1) + 𝜙(𝑋2), 𝑋1, 𝑋2 ∈ X,

3. Monotonicity: If 𝑋1, 𝑋2 ∈ X and 𝑋1(𝜔) ≤ 𝑋2(𝜔) ∀ 𝜔 ∈ Ω, then 𝜑(𝑋1) ≤
𝜑(𝑋2),

1Typically, we see the translation invariance property in Definition 13 written as 𝜑(𝑋 + 𝑐) =
𝜑(𝑋) − 𝑐 and similarly, the monotonicity property written as 𝜑(𝑋1) ≥ 𝜑(𝑋2) subject to the same
conditions. We make the aforementioned changes to align with our definitions of CVaR and EVaR
as per Definitions 16 and 17, which represents a shift in the intuitive meaning of these measures as
compared to the financial literature.
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Figure 4.2: Example of three common risk measures at risk-level 𝜖 ∈ (0, 1]—Value-
at-Risk (VaR𝜖 (𝑋)), Conditional-Value-at-Risk (CVaR𝜖 (𝑋)), and Entropic-Value-at-
Risk (EVaR𝜖 (𝑋))—for a scalar random variable 𝑋 .

4. Positive Homogeneity: 𝜑(𝜆𝑋) = 𝜆𝜑(𝑋), ∀ 𝑋 ∈ X, 𝜆 ≥ 0.

Ahmadi-Javid [140] defines 𝑔-entropic risk measures as those risk measures satis-
fying the following definition (Adapted from Definition 5.1 in [140]):

Definition 14. Let 𝑔 : R → R be a convex function with 𝑔(1) = 0 and let 𝛽 ≥ 0.
The 𝑔-entropic risk measure with divergence level 𝛽 ER𝑔,𝛽 is defined as follows,
with 𝑃 the probability measure for 𝑋 , "𝑄 ≪ 𝑃" denoting absolute continuity of 𝑄
with respect to 𝑃, and 𝑑𝑄

𝑑𝑃
the Radon-Nikodym derivative:

ER𝑔,𝛽 (𝑋) ≜ sup
𝑄∈P

E𝑄 [𝑋],

P =

{
𝑄

���� 𝑄 ≪ 𝑃,

∫
𝑔

(
𝑑𝑄

𝑑𝑃

)
𝑑𝑃 ≤ 𝛽

}
.

All such 𝑔-entropic risk measures are coherent risk measures as expressed in Theo-
rem 3.2 in [140]. Of more immediate use, however, will be their representation as
infimum problems, as mentioned in the following theorem.

Theorem 5 (Adapted from Theorem 5.1 in [140]). Let 𝑔 be a closed convex function
with 𝑔(1) = 0 and 𝛽 ≥ 0. For a random variable 𝑋 ∈ 𝐿∞ with probability measure 𝑃
and a 𝑔-entropic risk measure ER𝑔,𝛽 as per Definition 14, the following equivalency
holds with 𝑔∗ the convex-conjugate [141] of 𝑔:

ER𝑔,𝛽 (𝑋) = inf
𝑡>0,𝜇∈R

𝑡

[
𝜇 + E𝑃

[
𝑔∗

(
𝑋

𝑡
− 𝜇 + 𝛽

)] ]
(4.1)

Finally, a few common risk measures—Value-at-Risk (VaR), Conditional-Value-at-
Risk (CVaR), and Entropic-Value-at-Risk (EVaR)—are defined below.
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Definition 15. The Value-at-Risk level 𝜖 ∈ [0, 1], denoted as VaR𝜖 (𝑋), is the
infimum over 𝜁 ∈ R of 𝜁 such that samples 𝑥 of the scalar random variable 𝑋 with
distribution 𝜋 lie below 𝜁 with probability greater than or equal to 1 − 𝜖 , i.e.

VaR𝜖 (𝑋) = inf{𝜁 | P𝜋 [𝑥 ≤ 𝜁] ≥ 1 − 𝜖]}.

Definition 16. The Conditional-Value-at-Risk level 𝜖 ∈ (0, 1], denoted as CVaR𝜖 (𝑋),
is the expected value of all samples 𝑥 of the scalar random variable 𝑋 with distribu-
tion 𝜋 that are greater than or equal to the Value-at-Risk level 𝜖 for 𝑋 , i.e.

CVaR𝜖 (𝑋) = E𝜋 [𝑥 | 𝑥 ≥ VaR𝜖 (𝑋)] = inf
𝑧∈R

𝑧 + E𝜋 [max(𝑋 − 𝑧, 0)]
𝜖

.

Definition 17. The Entropic-Value-at-Risk level 𝜖 ∈ (0, 1] denoted as EVaR𝜖 (𝑋)
is defined as the infimum over 𝑧 > 0 of the Chernoff bound for the scalar random
variable 𝑋 with distribution 𝜋, i.e.

EVaR𝜖 (𝑋) = inf
𝑧>0

1
𝑧

ln

(
E𝜋

[
𝑒𝑧𝑋

]
𝜖

)
The relationship between the three risk measures is shown in Figure 4.2. Notably,
for a random variable 𝑋 and some risk level 𝜖 ∈ (0, 1], VaR𝜖 (𝑋) ≤ CVaR𝜖 (𝑋) ≤
EVaR𝜖 (𝑋), as shown in [140].

4.3 Upper Bounding Risk Measures
For all contributions detailed in this section, we will denote as 𝑋 a scalar random
variable whose distribution 𝜋 is unknown. Then, provided 𝑁 independently chosen
samples 𝑥𝑖 of 𝑋 , we can construct the following scenario program:

𝜁∗𝑁 = argmin
𝜁∈R

𝜁,

subject to 𝜁 ≥ 𝑥𝑖, ∀ 𝑥𝑖 ∈ {𝑥𝑘 }𝑁𝑘=1.

(UB-RP-N)

Then our first result on upper bounding the Value-at-Risk of 𝑋 follows.

Theorem 6. Let 𝜁∗
𝑁

be the solution to (UB-RP-N) for a set of 𝑁 samples {𝑥𝑘 }𝑁𝑖=𝑘 of
a random variable 𝑋 with unknown distribution 𝜋. The following statement is true
∀ 𝜖 ∈ [0, 1] and with VaR𝜖 (𝑋) as defined in Definition 15:

P𝑁𝜋 [𝜁∗𝑁 ≥ VaR𝜖 (𝑋)] ≥ 1 − (1 − 𝜖)𝑁 .
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Figure 4.3: To upper bound 𝑔-entropic risk measures, we motivate that we first
must be able to upper bound the expected value of a scalar random variable 𝑋 . The
figure above is an example of our ability to do this as per Theorem 7. Here, we
upper bound (red) the expected value (black) of a multi-modal random variable 𝑋
by taking 𝑁 = 20 samples of 𝑋 and knowing its upper bound 𝑢𝑏 = 5. The true
distribution (blue) was calculated numerically by taking 20000 samples of 𝑋 .

Proof: By Theorem 4, we have that

P𝑁𝜋
[
P𝜋 [𝑥 ≤ 𝜁∗𝑁 ] ≥ 1 − 𝜖

]
≥ 1 − (1 − 𝜖)𝑁 .

Then the result stems via the definition of Value-at-Risk per Definition 15.

To start upper bounding 𝑔-entropic risk measures, we will first take a slight detour
and provide a method to upper bound the expected value of random variables whose
distributions are unknown. We will leverage this procedure in our approach to upper
bound 𝑔-entropic risk measures which will follow this next subsection.

Upper Bounding Expectations
We will split this procedure into two steps. For the first step, if we have a scalar R.V.
𝑋 with upper bound 𝑢𝑏 ∈ R, a cutoff 𝑐 ∈ R, and the probability mass of samples 𝑥
of 𝑋 that lie below this cutoff, i.e. P𝜋 [𝑥 ≤ 𝑐], then we can upper bound the expected
value of 𝑋 with this cutoff 𝑐 and upper bound 𝑢𝑏:

E𝜋 [𝑋] =
∫
R
𝑠𝜋(𝑠) 𝑑𝑠 ≤ 𝑐 P𝜋 [𝑥 ≤ 𝑐] + 𝑢𝑏 (1 − P𝜋 [𝑥 ≤ 𝑐]). (4.2)

Theorem 7 to follow, formally states that we can employ Theorem 6 to identify such
a cutoff 𝑐 and upper bound E𝜋 [𝑋] without knowledge of its distribution 𝜋 provided
we know a (perhaps) loose upper bound 𝑢𝑏 ∈ R.
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Figure 4.4: The second step to upper bounding 𝑔-entropic risk measures is upper
bounding the expected value of a function 𝑓 of a scalar random variable 𝑋 with
unknown distribution 𝜋. Above is an example of us upper bounding in red the
E𝜋 [ 𝑓 (𝑋)] as shown in black, where 𝑓 (𝑥) = −1

𝑥2+1 for the multi-modal random
variable 𝑋 whose expectation we upper-bounded in Figure 4.3. To generate this
upper bound we took 𝑁 = 20 samples of the random variable 𝑌 = 𝑓 (𝑋) and the
distribution was calculated by taking 20000 samples. We formally prove our ability
to do this upper bound in Corollary 11.

Theorem 7. Let 𝑋 be a scalar R.V. with samples 𝑥, unknown distribution function
𝜋, and upper bound 𝑢𝑏 ∈ R such that P𝜋 [𝑥 ≤ 𝑢𝑏] = 1. Furthermore, let 𝜁∗

𝑁
be the

solution to (UB-RP-N) for a set of 𝑁 independent and identically drawn samples
{𝑥𝑘 }𝑁𝑘=1 of 𝑋 . The following statement is true ∀ 𝜖 ∈ [0, 1]:

P𝑁𝜋
[
E𝜋 [𝑋] ≤ 𝜁∗𝑁 (1 − 𝜖) + 𝑢𝑏𝜖

]
≥ 1 − (1 − 𝜖)𝑁 . (4.3)

Proof: First, by Theorem 6 and the definition of VaR𝜖 (𝑋) in Definition 15,

P𝑁𝜋
[
P𝜋 [𝑥 ≤ 𝜁∗𝑁 ] ≥ 1 − 𝜖

]
≥ 1 − (1 − 𝜖)𝑁 .

Then by equation (4.2) we have the following inequality:

E𝜋 [𝑋] ≤ 𝜁∗𝑁 P𝜋 [𝑥 ≤ 𝜁∗𝑁 ] + 𝑢𝑏 (1 − P𝜋 [𝑥 ≤ 𝜁∗𝑁 ]). (4.4)

To finish the proof, we note that the right-hand side of the inequality (4.4) is
maximized when this probability P𝜋 [𝑥 ≤ 𝜁∗

𝑁
] equals its lower bound 1 − 𝜖 , as

𝑢𝑏 ≥ 𝜁∗𝑁 . As this lower bound holds with minimum probability 1 − (1 − 𝜖)𝑁 , the
result holds with the same probability, resulting in (4.3).

The second step needed to bound functions of the random variable 𝑋 is to note that
if we have a function 𝑓 : R → R, then 𝑌 ≜ 𝑓 (𝑋) is another random variable with
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samples 𝑦 and distribution 𝜋𝑌 . Provided𝑌 has an upper bound 𝑢𝑏, then we can upper
bound E𝜋𝑌 [𝑌 ] = E𝜋 [ 𝑓 (𝑋)]. This result does not require 𝑋 to be bounded, only the
image of 𝑋 under 𝑓 needs to be bounded as expressed in the following corollary.

Corollary 11. Let 𝑋 be a scalar R.V. with samples 𝑥 and distribution 𝜋. Let
𝑓 : R → R and let 𝑌 = 𝑓 (𝑋) be another scalar R.V. with samples 𝑦 = 𝑓 (𝑥),
distribution 𝜋𝑌 , and upper bound 𝑢𝑏 such that P𝜋𝑌 [𝑦 ≤ 𝑢𝑏] = 1. Furthermore, let
𝜁∗
𝑁

be the solution to (UB-RP-N) for a set of 𝑁 samples {𝑦𝑘 = 𝑓 (𝑥𝑘 )}𝑁𝑘=1 of 𝑌 . The
following statement is true ∀ 𝜖 ∈ [0, 1].

P𝑁𝜋
[
E𝜋 [ 𝑓 (𝑋)] ≤ 𝜁∗𝑁 (1 − 𝜖) + 𝑢𝑏𝜖

]
≥ 1 − (1 − 𝜖)𝑁 .

Proof: This result stems via Theorem 7 where E𝜋𝑌 [𝑌 ] = E𝜋 [ 𝑓 (𝑋)].

Upper Bounding 𝑔-Entropic Risk Measures
With Corollary 11, we can upper bound a large class of 𝑔-entropic risk measures, in-
cluding Conditional-Value-at-Risk and Entropic-Value-at-Risk. To do so for general
𝑔-entropic risk measures as per Definition 14, we require that the convex conjugate
𝑔∗ of 𝑔 maps from the reals to the reals, i.e. 𝑔∗ : R → R, and also has an upper
bound when applied to samples 𝑥 of the random variable 𝑋 .

Assumption 8. 𝑋 is a scalar random variable with samples 𝑥, distribution 𝜋, and
upper bound ℓ ∈ R such that P𝜋 [𝑥 ≤ ℓ] = 1. ER𝑔,𝛽 is a 𝑔-entropic risk measure as
per Definition 14 with respect to some 𝛽 ≥ 0 and closed convex function 𝑔 such that
𝑔(1) = 0. 𝑔∗ : R→ R is the convex-conjugate for 𝑔, and 𝑔∗ has an upper bounding
function 𝑢𝑏 : 𝐷 ⊂ R2 → R satisfying the following probabilistic inequality:

𝐿 (𝑥, 𝜇, 𝑡) ≜ 𝑡
(
𝜇 + 𝑔∗

(𝑥
𝑡
− 𝜇 + 𝛽

))
, (4.5)

P𝜋 [𝐿 (𝑥, 𝜇, 𝑡) ≤ 𝑢𝑏 (𝜇, 𝑡)] = 1 ∀ 𝜇 ∈ R, 𝑡 > 0. (4.6)

Finally, 𝜁∗
𝑁
(𝜇, 𝑡) is the solution to (UB-RP-N) for a set of 𝑁-samples {𝑦𝑘 =

𝐿 (𝑥𝑘 , 𝜇, 𝑡)}𝑁𝑘=1 of the random variable 𝑌 = 𝐿 (𝑋, 𝜇, 𝑡) for some 𝜇 ∈ R, 𝑡 > 0.

For context, this assumption is not too restrictive, as it is easily satisfied by both
CVaR and EVaR for any risk level 𝛼 ∈ (0, 1], and we will show this in a later
section. Then via Corollary 11, we can upper bound the objective function in (4.1)
and transform (4.1) into an optimization problem over a set of sampled values
{𝑥𝑘 }𝑁𝑘=1 of 𝑋 which is easily solvable. The formal statement of this procedure is
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provided in the following lemma, theorem, and corollary. The lemma will state that
we can upper bound the expected value of the convex conjugate 𝑔∗ applied to 𝑋 , and
the theorem will utilize this lemma to provide a high confidence upper bound on
the 𝑔-entropic risk measure of interest. The corollary will formalize a relationship
between the confidence in our estimate and our sample complexity.

Lemma 6. Let Assumption 8 hold. Then, ∀ 𝜖 ∈ [0, 1], 𝜇 ∈ R, 𝑡 > 0,

P𝑁𝜋
[
E𝜋 [𝐿 (𝑋, 𝜇, 𝑡)] ≤ 𝜁∗𝑁 (𝜇, 𝑡) (1 − 𝜖) + 𝑢𝑏 (𝜇, 𝑡)𝜖

]
≥ 1 − (1 − 𝜖)𝑁 .

Proof: This is a direct application of Corollary 11.

Theorem 8. Let Assumption 8 hold. Then, ∀ 𝜖 ∈ [0, 1],

P𝑁𝜋

[
𝐸𝑅𝑔,𝛽 (𝑋) ≤ inf

𝑡>0, 𝜇∈R
𝜁∗𝑁 (𝜇, 𝑡) (1 − 𝜖) + 𝑢𝑏 (𝜇, 𝑡)𝜖

]
≥ 1 − (1 − 𝜖)𝑁 .

Proof: Via Theorem 5, the 𝑔-entropic risk measure ER𝑔,𝛽 can be represented via an
infimum, and by linearity of the expectation operator and the definition of 𝐿 in (4.5),
we have the following equality:

ER𝑔,𝛽 (𝑋) = inf
𝑡>0,𝜇∈R

E𝜋 [𝐿 (𝑋, 𝜇, 𝑡)] .

Then the result holds via Lemma 6.

Corollary 12. Let Assumption 8 hold, 𝛾 ∈ [0, 1), and 𝜖 ∈ (0, 1). If for all 𝜇 ∈ R
and 𝑡 > 0, 𝜁∗

𝑁
(𝜇, 𝑡) is the solution to (UB-RP-N) for a set of 𝑁 samples {𝑥𝑘 }𝑁𝑘=1 of

the random variable 𝑋 where 𝑁 ≥ log(1−𝛾)
log(1−𝜖) , then

P𝑁𝜋

[
𝐸𝑅𝑔,𝛽 (𝑋) ≤ inf

𝑡>0, 𝜇∈R
𝜁∗𝑁 (𝜇, 𝑡) (1 − 𝜖) + 𝑢𝑏 (𝜇, 𝑡)𝜖

]
≥ 𝛾.

Proof: Use Theorem 8 where 𝑁 ≥ log(1−𝛾)
log(1−𝜖) =⇒ 1 − (1 − 𝜖)𝑁 ≥ 𝛾.

To summarize, Theorem 8 states that we can upper bound the 𝑔-entropic risk
measure of a random variable 𝑋 with unknown distribution 𝜋 provided that we
know an upper bounding function 𝑢𝑏 for a function 𝐿 of the random variable 𝑋 .
Corollary 12 provides the minimum number of samples 𝑁 required to determine
this upper bound with confidence 𝛾 ∈ [0, 1).
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Specializing to CVaR and EVaR
Ahmadi-Javid [140] identifies the convex conjugate function 𝑔∗ and parameter 𝛽
with which CVaR can be recast as a 𝑔-entropic risk measure.

Remark 1. The Conditional-Value-at-Risk level 𝛼 ∈ (0, 1] can be recast as a 𝑔-
entropic risk measure with convex conjugate function 𝑔∗(𝑥) = 1

𝛼
max{𝑥, 0} and

scalar parameter 𝛽 = 0 [140].

Then, to use Theorem 8 we must show that the CVaR satisfies Assumption 8.

Lemma 7. The Conditional-Value-at-Risk for any risk-level 𝛼 ∈ (0, 1] satisfies
Assumption 8.

Proof: To start, CVaR for any risk-level 𝛼 is a 𝑔-entropic risk measure with
𝑔∗(𝑥) = 1

𝛼
max{𝑥, 0} and 𝛽 = 0. As a result, a solution 𝜁∗

𝑁
(𝜇, 𝑡) will always

exist for (UB-RP-N) as it is the solution to a linear program minimizing a scalar
decision variable subject to a finite set of lower bounds taking values in R. Then,
to prove that the Conditional-Value-at-Risk at any risk level 𝛼 ∈ (0, 1] satisfies
Assumption 8, it suffices to identify an upper bounding function 𝑢𝑏 : 𝐷 ⊂ R2 → R
under the assumption that the scalar random variable 𝑋 with distribution 𝜋 and
samples 𝑥 has an upper bound ℓ ∈ R such that P𝜋 [𝑥 ≤ ℓ] = 1. This function 𝑢𝑏 will
be defined as follows:

𝐿 (𝑥, 𝜇, 𝑡) = 𝑡
(
𝜇 + 1

𝛼
max

{𝑥
𝑡
− 𝜇, 0

})
, 𝑢𝑏 (𝜇, 𝑡) = 𝐿 (ℓ, 𝜇, 𝑡). (4.7)

Since this upper bounding function satisfies inequality (4.6) in Assumption 8, CVaR
∀ 𝛼 ∈ (0, 1] satisfies Assumption 8.

As the Conditional-Value-at-Risk satisfies Assumption 8, we can use 𝑢𝑏 (4.7) to
provide high-confidence estimates on CVaR𝛼 (𝑋) ∀ 𝛼 ∈ (0, 1].

Corollary 13. Let 𝑋 be a scalar random variable with samples 𝑥, distribution 𝜋,
and upper bound ℓ ∈ R such that P𝜋 [𝑥 ≤ ℓ] = 1. Let 𝛼 ∈ (0, 1], 𝜖 ∈ [0, 1],
and 𝐿, 𝑢𝑏 be as defined in (4.7) with respect to this upper bound ℓ and constant
𝛼. Furthermore, let 𝜁∗(𝜇, 𝑡) be the solution to (UB-RP-N) for a set of 𝑁-samples
{𝑦𝑘 = 𝐿 (𝑥𝑘 , 𝜇, 𝑡)}𝑁𝑘=1 of the random variable 𝑌 = 𝐿 (𝑋, 𝜇, 𝑡). Then,

P𝑁𝜋

[
CVaR𝛼 (𝑋) ≤ inf

𝜇∈R, 𝑡>0
𝜁∗𝑁 (𝜇, 𝑡) (1 − 𝜖) + 𝑢𝑏 (𝜇, 𝑡)𝜖

]
≥ 1 − (1 − 𝜖)𝑁 .
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Figure 4.5: A specific 𝑔-entropic risk measure, the Conditional-Value-at-Risk for
any risk-level 𝛼 ∈ (0, 1] should be upper-boundable via our scenario approach as
expressed in Corollary 13. Shown above is an example of our scenario approach
in bounding CVaR𝛼=0.1(𝑋) for the R.V. 𝑋 whose distribution is shown in blue. To
generate the upper bound shown in red, we required 𝑁 = 45 samples of 𝑋 . The true
CVaR0.1(𝑋) is shown in black.

Proof: This is a direct application of Theorem 8 due to Lemma 7.

To use Theorem 8 to provide an upper bound on the Entropic-Value-at-Risk for
any risk level 𝛼 ∈ (0, 1], we will follow a similar procedure as we followed for
the Conditional-Value-at-Risk. First, Ahmadi-Javid [140] identifies the convex
conjugate function 𝑔∗ and parameter 𝛽 which enables Entropic-Value-at-Risk to be
cast as a 𝑔-entropic risk measure.

Remark 2. The Entropic-Value-at-Risk level𝛼 ∈ (0, 1] can be recast as a 𝑔-entropic
risk measure with convex conjugate function 𝑔∗(𝑥) = 𝑒𝑥−1 and scalar parameter
𝛽 = − ln(𝛼) [140].

Then, we note that EVaR for any risk-level 𝛼 ∈ (0, 1] satisfies Assumption 8.

Lemma 8. The Entropic-Value-at-Risk for any risk-level 𝛼 ∈ (0, 1] satisfies As-
sumption 8.

Proof: This proof follows the proof of Lemma 7 insofar as it suffices to identify an
upper bounding function 𝑢𝑏 : 𝐷 ⊂ R2 → R satisfying the probabilistic inequality
in Assumption 8 where 𝑔∗(𝑥) = 𝑒𝑥−1 and 𝛽 = − ln(𝛼). The following function 𝑢𝑏
suffices, with ℓ the upper bound for 𝑋:

𝐿 (𝑥, 𝜇, 𝑡) = 𝑡
(
𝜇 + 𝑒 𝑥

𝑡
−𝜇−ln(𝛼)−1

)
, 𝑢𝑏 (𝜇, 𝑡) = 𝐿 (ℓ, 𝜇, 𝑡). (4.8)



60

−1 0 1 2 3 4 5

samples x

0

200

400

600

re
la

ti
ve

fr
eq

u
en

cy

Upper Bounding EVaRα(X)

VaR0.10(X)

CVaR0.10(X)

EVaR0.10(X)

upper bound

Figure 4.6: A culmination of our approach to upper-bounding 𝑔-entropic risk mea-
sures. Shown above is our attempt to upper bound the Entropic-Value-at-Risk at
risk level 𝛼 = 0.1 of the scalar multi-modal random variable 𝑋 whose distribution
is shown in blue. To calculate this upper bound (red) with 𝑁 = 20 samples of 𝑋 , we
used the same method that we used to determine the upper bound for CVaR𝛼 (𝑋) in
Figure 4.5. We formally state our capacity to do this in Corollary 14. Notice that the
true VaR𝛼 (𝑋) ≤ CVaR𝛼 (𝑋) ≤ EVaR𝛼 (𝑋) as also shown in Figure 4.2. As before,
the true EVaR𝛼 (𝑋) is shown in black.

Since EVaR𝛼 ∀ 𝛼 ∈ (0, 1] satisfies Assumption 8, we can use 𝑢𝑏 (4.7) to provide
high-confidence estimates on EVaR𝛼 (𝑋) ∀ 𝛼 ∈ (0, 1].

Corollary 14. Let 𝑋 be a scalar random variable with samples 𝑥, distribution 𝜋,
and upper bound ℓ ∈ R such that P𝜋 [𝑥 ≤ ℓ] = 1. Let 𝛼 ∈ (0, 1], 𝜖 ∈ [0, 1],
and 𝐿, 𝑢𝑏 be as defined in (4.8) with respect to this upper bound ℓ and constant
𝛼. Furthermore, let 𝜁∗

𝑁
(𝜇, 𝑡) be the solution to (UB-RP-N) for a set of 𝑁-samples

{𝑦𝑘 = 𝐿 (𝑥𝑘 , 𝜇, 𝑡)}𝑁𝑘=1 of the random variable 𝑌 = 𝐿 (𝑋, 𝜇, 𝑡). Then,

P𝑁𝜋

[
EVaR𝛼 (𝑋) ≤ inf

𝜇∈R, 𝑡>0
𝜁∗𝑁 (𝜇, 𝑡) (1 − 𝜖) + 𝑢𝑏 (𝜇, 𝑡)𝜖

]
≥ 1 − (1 − 𝜖)𝑁 .

Proof: This is an application of Theorem 8 via Lemma 8.

4.4 Percentile Optimization
Interestingly, the concepts underlying the prior risk-measure estimation results can
also be leveraged to produce rapid solutions to a wide class of non-convex op-
timization problems. To simplify the description of that procedure in this sec-
tion, we will assume a general optimization problem of the following form, where
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𝐽 : S ⊆ R𝑛 → R for some positive integer 𝑛 and general domain S is a cost function:

min
s∈S

𝐽 (s). (4.9)

For our candidate problem (4.9), we further assume that the decision space S and
cost function 𝐽 satisfy the following assumption:

Assumption 9. The decision space S has bounded volume, i.e. if S is a discrete
collection of elements, then there are finitely many elements in S, or if it is a
continuous subset of R𝑛, then

∫
S

1 𝑑 s < ∞. Likewise, the cost function 𝐽 is also
bounded over S, i.e. ∃ 𝑚, 𝑀 ∈ R such that 𝑚 ≤ 𝐽 (s) ≤ 𝑀 ∀ s ∈ S.

This assumption is not too restrictive, as a large class of optimization problems falls
under this setting. This lets us define a volume fraction function V : 2S → R that
outputs the volume fraction of a subset 𝐴 of S:

V(𝐴) =
∫
𝐴

1 𝑑 s∫
S

1 𝑑 s
. (4.10)

Finally, let 𝐹 : S→ 2S be a set-valued function that identifies the space of decisions
s′ ∈ S that are "better" than the provided decision s, i.e.

𝐹 (s) = {s′ ∈ S | 𝐽 (s′) < 𝐽 (s)}. (4.11)

Then intuitively, by percentile optimization, we hope to identify solutions s∗ that out-
perform some user-defined percent of the decision space S. As an example aligning
with the prior definitions, a solution s∗ would be in the 90%-ile, ifV(𝐹 (s)) ≤ 0.1.
Phrased formally, the problem statement is as follows.

Problem 2. For any 𝜖 ∈ (0, 1) devise a method to find a decision s ∈ S such that s
is at least in the 100(1− 𝜖)-th percentile of all possible decisions s ∈ S with respect
to the cost function 𝐽, i.e. find a decision s such thatV(𝐹 (s)) ≤ 𝜖 , withV defined
in equation (4.10) and 𝐹 defined in equation (4.11).

Sampling Methods for Identification of "Good" Decisions
First, we note that for a uniform distribution over the decision space S, the probability
of sampling a decision s ∈ 𝐴 ⊂ S is equivalent to the volume fraction of 𝐴.

Lemma 9. Let Assumption 9 hold. The following is true withV as in (4.10):

PU[S] [s ∈ 𝐴] = V(𝐴).
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Proof: As the distribution is uniform,

PU[S] [s ∈ 𝐴] =
∫
𝐴

1 𝑑 s∫
S

1 𝑑 s
= V(𝐴).

Second, we note that (4.9) can be recast as an uncertain program similar to (UP).
Specifically, let 𝑋 be a random variable whose distribution is the uniform distribution
over S, i.e. U[S]. Then, the corresponding random cost is 𝑌 = 𝐽 (𝑋). This random
cost variable 𝑌 has its own samples 𝑦 and (unknown) distribution 𝜋𝑌 , letting us
construct an uncertain program with respect to samples 𝑦 of 𝑌 :

𝜁∗ = argmax
𝜁∈R

𝜁,

subject to 𝜁 ≤ 𝑦, 𝑦 ∈ R.
(UP-G)

This uncertain program (UP-G) also has an analagous scenario program:

𝜁∗𝑁 = argmax
𝜁∈R

𝜁, (RP-G)

subject to 𝜁 ≤ 𝑦𝑖, 𝑦𝑖 ∈ {𝑦𝑘 = 𝐽 (s𝑘 )}𝑁𝑘=1, 𝑋 ∼ U[S] with samples s .

This scenario program is crucial to our approach for two reasons which we will
prove in the theorem to follow. First, there exists a sampled decision s𝑖 in the set of
all sampled decisions {s𝑘 }𝑁𝑘=1 such that the cost of this decision is equivalent to the
scenario solution 𝜁∗

𝑁
, i.e. 𝐽 (s𝑖) = 𝜁∗𝑁 . Second, via Theorem 4 we can upper bound

the probability of sampling another decision s′ ∈ S such that 𝐽 (s′) < 𝜁∗
𝑁
= 𝐽 (s𝑖). Via

Lemma 9, such a probability corresponds to the volume fraction of those decisions
s′ ∈ S that are "better" than s𝑖, i.e. this probability corresponds to V(𝐹 (s𝑖)). As a
result, to determine a decision s ∈ S that is "better" than a predetermined volume
fraction 𝜖 ∈ (0, 1) of all possible decisions s′ ∈ S with confidence 𝛾 ∈ [0, 1), we
just need to take enough samples of 𝑋 and solve (RP-G).

Theorem 9. Let 𝜖 ∈ (0, 1), let 𝛾 ∈ [0, 1), let Assumption 9 hold, let 𝜁∗
𝑁

be the
solution to (RP-G) for an 𝑁-sample set {s𝑘 }𝑁𝑘=1 of 𝑋 , letV be as defined in (4.10),
and let 𝐹 be as defined in (4.11). If 𝑁 ≥ log(1−𝛾)

log(1−𝜖) then with minimum probability 𝛾,
there exists at least one sampled decision s𝑖 ∈ {s𝑘 }𝑁𝑘=1 that is in the 100(1 − 𝜖)-th
percentile of all possible decisions s ∈ S, i.e.,

∃ s𝑖 ∈ {s𝑘 }𝑁𝑘=1 s. t. P𝑁U[S] [V(𝐹 (s𝑖)) ≤ 𝜖] ≥ 𝛾, and 𝜁∗𝑁 = 𝐽 (s𝑖).
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Proof: First, for any finite sample set {s𝑘 }𝑁𝑘=1 there exists a decision s𝑖 ∈ {s𝑘 }𝑁𝑘=1
such that 𝜁∗

𝑁
= 𝐽 (s𝑖). This is due to the fact that (RP-G) is a linear program

maximizing a scalar decision variable subject to a series of upper bounds that take
values in R. As a result, 𝜁∗

𝑁
must equal one of its upper bounds to be a valid solution

to (RP-G), and as such, it must be equal to 𝐽 (s𝑖) for at least one s𝑖 ∈ {s𝑘 }𝑁𝑘=1.

Then via Theorem 4, the following inequality holds for our scenario solution 𝜁∗
𝑁

,
where the violation probability 𝑉 (𝜁∗

𝑁
) = PU[S] [𝐽 (s) < 𝜁∗𝑁 ]:

P𝑁U[S] [PU[S] [𝐽 (s) < 𝜁∗𝑁 ] ≤ 𝜖] ≥ 1 − (1 − 𝜖)𝑁 . (4.12)

By definition of 𝐹 in (4.11), (4.12) can be recast as follows for some s𝑖 ∈ {s𝑘 }𝑁𝑘=1:

P𝑁U[S] [PU[S] [s ∈ 𝐹 (s𝑖)] ≤ 𝜖] ≥ 1 − (1 − 𝜖)𝑁 .

Via Lemma 9 we can replace the inner probability withV(𝐹 (s𝑖)):

P𝑁U[S] [V(𝐹 (s𝑖)) ≤ 𝜖] ≥ 1 − (1 − 𝜖)𝑁 .

Then, as 𝑁 ≥ log(1−𝛾)
log(1−𝜖) , 𝜖 ∈ (0, 1) and 𝛾 ∈ [0, 1), 1 − (1 − 𝜖)𝑁 ≥ 𝛾.

To summarize, Theorem 9 states that if we want to find a "good" solution to (4.9)
with minimum probability 𝛾—"good" insofar as it is in the 100(1− 𝜖)-th percentile
of all decisions s ∈ S for minimizing 𝐽—that we are required to evaluate at minimum
𝑁 ≥ log(1−𝛾)

log(1−𝜖) uniformly randomly chosen decisions s ∈ S. If we evaluate the cost
function 𝐽 for each such sampled decision in our sample set {s𝑘 }𝑁𝑘=1, at least one
decision s𝑖 ∈ {s𝑘 }𝑁𝑘=1 is guaranteed, with minimum probability 𝛾, to produce a
cost 𝐽 (s𝑖) that is in the 100(1 − 𝜖)-th percentile of all possible rewards achievable.
Hence, this decision s𝑖 that produces this cost 𝐽 (s𝑖) is also guaranteed, with minimum
probability 𝛾, to be in the 100(1 − 𝜖)-th percentile of all possible decisions s ∈ S
with respect to the cost function 𝐽.

Remark on sample complexity: From Theorem 9, one correct though (perhaps)
unintuitive result is that the number of samples required to produce a percentile
solution with a required confidence is independent of the "size" of the decision
space S. More specifically, let there be two continuous decision spaces S1, S2 with
volumes 𝑉1, 𝑉2 respectively such that 𝑉1 < 𝑉2, and let 𝐽 be a cost function defined
over both spaces. The prior theoretical result states that if one wished to identify
a solution in the 95-th percentile with 95% confidence in both spaces with respect
to the same cost function 𝐽, we are required to evaluate at least 59 samples. Note,



64

−5 0 5

x

−4

−2

0

2

4

y

1

2
3

4

5
6

7

8

9
Identified Path N =9

nodes

path

0 100 200

trial number

0.00

0.02

0.04

Repeatability N =8

V(F (p∗))

ε

Figure 4.7: Shown above is an application of our percentile optimization procedure
to identify "good" paths for a traveling salesman problem [142]. By uniformly
sampling 𝑁 = 299 paths from the set of all possible paths 𝑃 with |𝑃 | = 362880, we
can identify (left) a path that is in the 99-th percentile of all paths. This procedure
also repeatably identifies "good" paths, a.k.a "good" decisions, as shown in the figure
on the right. If we take the minimum number of samples offered by Theorem 9 to
identify a path that is in the 95-th percentile with minimum probability 1− 10−6, we
see that over 200 trials—taking 𝑁 = 270 samples each time—all determined paths
are in the 95-th percentile asV(𝐹 (𝑝∗)) ≤ 𝜖 = 0.05.

this sample requirement does not scale with the volume of the decision space. This
result arises as percentiles are normalized quantities with respect to the volume of
the underlying decision space. In other words, the volume fraction of decisions in
the 95-th percentile of a given space will be at least 5%, and this is true regardless of
the size of the space. As such, uniformly sampling over the space, would similarly
have a 5% chance of identifying such a solution, again, independent of the size of
the underlying space. Theorem 9 leverages this fact to provide the minimum sample
complexity of identifying such solutions with a given confidence, and from a purely
probabilistic lens, this can be viewed as transforming the optimization problem to
a Bernoulli random variable sampling problem. To note, this is the same intuitive
transformation underlying the risk-measure estimation results in the prior sections.

Examples
This section provides a few examples of applying Theorem 9 to finding paths for the
traveling salesman problem (TSP) that are in the 99-th percentile of all possible paths
achievable [142]. Specifically, TSP references the identification of a permutation
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of integers 𝑃 = [𝑖1, 𝑖3, 𝑖6, . . . ] where such a permutation minimizes the summation
of a function 𝑑 : Z+ × Z+ → R. That is, if we define a finite set of integers
𝐼 ⊂ Z+, we can also define a set 𝑃 ⊂ 2𝐼 of all permutations of integers in 𝐼, i.e.
𝑃 = {𝑝 = (𝑖1, . . . , 𝑖 |𝐼 |) | ∀ 𝑖 𝑗 ∈ 𝐼, 𝑖 𝑗 ∈ 𝑝 and 𝑖 𝑗 appears only once in 𝑝}. Then, the
optimization problem is:

min
𝑝∈𝑃

|𝐼 |−1∑︁
𝑘=1

𝑑 (𝑝𝑘 , 𝑝𝑘+1) + 𝑑 (𝑝 |𝐼 |, 𝑝1).

Note, this problem satisfies Assumption 9, with
∫
𝑃

1 𝑑𝑠 = |𝑃 | < ∞, implying that
we should be able to identify a "good" solution per Theorem 9.

Figure Analysis: Specifically then, we will randomly generate 9 nodes 𝑛𝑖 ∈
[−5, 5]2 ⊂ R2. Our cost function 𝑑 (𝑖, 𝑗) = ∥𝑛𝑖−𝑛 𝑗 ∥. As we have generated 9 nodes,
the cardinality of the set of all possible permutations |𝑃 | = 9! = 362880. However,
according to Theorem 9, if we want a permutation 𝑝 ∈ 𝑃 that is in the 99-th percentile
with 95% confidence, then we need to uniformly sample 𝑁 ≥ log(1−𝛾=0.05)

log(1−𝜖=0.99) ≈ 299
permutations 𝑝 ∈ 𝑃 and evaluate their corresponding costs. Doing this procedure
once, we identified a permutation 𝑝∗ ∈ 𝑃 that was in the 99.9997-th percentile of
all paths as shown on the left in Figure 4.7. This one case shows the utility of our
sample approach in providing "good" solutions to difficult optimization problems
insofar as we only had to evaluate 299/362880 ≈ 0.0008 of all possible paths to
generate a very good one. Indeed, the method also repeatably identifies "good"
solutions as shown on the right in Figure 4.7. In this case, we required a path in the
95-th percentile with minimum probability 1 − 10−6 for a case where we randomly
generated 8 nodes 𝑛𝑖 ∈ [−5, 5]2 ⊂ R2. In every case, the identified path 𝑝∗ was in
the 95-th percentile as evidenced byV(𝐹 (𝑝∗)) ≤ 𝜖 .

4.5 Bounding Optimality Gaps
While percentile techniques will rapidly produce "good" solutions to non-convex
optimization problems, the sub-optimality of these solutions remains unclear. This
section details a method to bound the optimality gaps of percentile solutions. To
formally bound these gaps, we must first define them. To that end, consider the same
general optimization problem as per (4.9). The optimality gap is defined as follows.

Definition 18. For general optimization problems of the form in (4.9), the optimality
gap of a decision s ∈ S, denoted as G(s), is the deviance between the decision and
optimal values, i.e. G(s) = 𝐽 (s) − 𝐽∗.
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Then as we aim to bound percentile solutions to (4.9), we will assume that we have
already taken a percentile approach to solving (4.9).

Assumption 10. Let 𝐼1 = {(s𝑖, 𝐽 (s𝑖))}
𝑁𝑝

𝑖=1 be a set of 𝑁𝑝 decisions and costs for
decisions s𝑖 sampled independently via U[S], with 𝜁∗

𝑁𝑝
the minimum sampled cost

and s∗
𝑁𝑝

the (perhaps) non-unique decision with minimum cost.

Then our formal problem statement follows.

Problem 3. Let Assumption 10 hold, and let the optimality gap G be as per Defini-
tion 18. Identify a non-arbitrarily large upper bound to G(s∗

𝑁𝑝
) and the probability

with which this bound holds.

Results for Bounded Optimization Problems
First, we note that if Assumption 10 holds, we can define the following variance
function V over the set 𝐼1:

V : S→ R s. t. V(s) = min
s𝑖∈𝐷⊆𝐼1

|𝐽 (s) − 𝐽 (s𝑖) |. (4.13)

The restriction of s ∈ 𝐷 ⊆ 𝐼1 in the definition of V above is purely for practical
purposes. From a theoretical standpoint, one could use the entire information set 𝐼1
to define V, but this tends to increase sample requirements as will be discussed in
sections to follow (e.g. Figure 4.9)

Intuitively then, we aim to maximizeV via a percentile method to identify a variance
that supersedes the optimality gap G(s∗

𝑁𝑝
) of our chosen decision. To do so, we first

require the following fairness assumption — that it is possible to sample variances
at least as large as the optimality gap, as otherwise, it would be impossible to take a
percentile approach. Formally, let Ω𝑟 be the 𝑟-level set of V:

Ω𝑟 = {s ∈ S | V(𝑠) ≤ 𝑟}. (4.14)

Assumption 11. Let the variance function V be as per (4.13), let the optimality gap
G be as per Definition 18, let V be as per (4.10), let Ω𝑟 be as per (4.14), and let
Assumption 10 hold. The level set ΩG(𝑠∗

𝑁𝑝
) of decisions whose variance is at most

the optimality gap of s∗
𝑁𝑝

does not encompass S, i.e.

V
(
S \ΩG(s∗

𝑁𝑝
)
)
> 0. (4.15)

Second, we have the following result regarding level sets Ω.
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Lemma 10. Let Ω𝑟 be as defined in (4.14) and letV be as per (4.10). The following
statements are all equivalent.

𝑟 ≥ 𝑠
(1)
⇐⇒ Ω𝑟 ⊇ Ω𝑠

(2)
⇐⇒ V(Ω𝑟) ≥ V(Ω𝑠)

(3)
⇐⇒ PU[S] [Ω𝑟] ≥ PU[S] [Ω𝑠]

Proof: The first equivalency stems via the definition of Ω𝑟 in (4.14). The second
equivalency stems via the definition of the volume fraction function in (4.10). Fi-
nally, the third equivalency stems via the uniform distribution assigning probabilistic
weight to subsets of 𝐴 ⊆ S equivalent toV(𝐴).

Third, based on our fairness assumption, we know there exists a non-zero probability
of sampling decisions such that their variances are at least the optimality gap.

Lemma 11. Let Assumption 11 hold, then there exists 𝑝 > 0 corresponding to the
probability of uniformly sampling a decision s ∈ S \ΩG(s∗

𝑁𝑝
) , i.e.

PU[S]
[
S \ΩG(s∗

𝑁𝑝
)
]
= 𝑝 > 0. (4.16)

Proof: The result holds by definition of the uniform distribution over S and equa-
tion (4.15).

Then the main result in the utilization of a percentile approach to upper bound the
optimality gap stems from the prior lemmas and assumption. Formally, we aim to
take a percentile approach to the following optimization problem:

max
s∈S

V(s), (4.17)

which results in the following theorem.

Theorem 10. Let Assumptions 9 and 11 hold, let 𝑝 satisfy (4.16), let 𝐼2 = {(s𝑖,V(s𝑖))}𝑁𝑣

𝑖=1
be a set of 𝑁𝑣 decisions s𝑖 independently sampled from U[S] with their correspond-
ing variances as per (4.13) and with V∗

𝑁𝑣
the maximum sampled variance. Then,

∀𝜖 ∈ [0, 𝑝], V∗
𝑁𝑣

exceeds the optimality gap of the percentile solution with confi-
dence 1 − (1 − 𝜖)𝑁𝑣 , i.e.

P𝑁𝑣

U[S]

[
V∗𝑁𝑣
≥ G(s∗𝑁𝑝

)
]
≥ 1 − (1 − 𝜖)𝑁𝑣 . (4.18)

Proof: First, we know there exists a 𝑝 > 0 satisfying (4.16) via Lemma 11. Second,
we know that for the optimization problem (4.17), the decision space S and objective
function V are bounded — this stems via Assumption 9. This permits us to take
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a percentile approach to solving (4.17). Via Theorem 9 and looking at (4.17) as a
minimization, we have the following result for all 𝜖 ∈ [0, 1]:

P𝑁𝑣

U[S]
[
PU[S]

[
V(s) ≤ V∗𝑁𝑣

]
≥ 1 − 𝜖

]
≥ 1 − (1 − 𝜖)𝑁𝑣 .

The set in the interior probability corresponds to the level set of V∗
𝑁𝑣

, i.e.

P𝑁𝑣

U[S]

[
PU[S]

[
ΩV∗

𝑁𝑣

]
≥ 1 − 𝜖

]
≥ 1 − (1 − 𝜖)𝑁𝑣 .

Finally, via (4.16), we know that the probability of sampling a decision in the level
set corresponding to the optimality gap is 1 − 𝑝. Restricting to 𝜖 ∈ [0, 𝑝] which
implies that 1 − 𝜖 ≥ 1 − 𝑝 and substituting terms in the inequality above, we have
the following result.

P𝑁𝑣

U[S]

[
PU[S]

[
ΩV∗

𝑁𝑣

]
≥ PU[S]

[
ΩG(s∗

𝑁𝑝
)
] ]
≥ 1 − (1 − 𝜖)𝑁𝑣 .

Then, the final result holds due to Lemma 10.

In summary, Theorem 10 tells us that if we wish to bound the optimality gap of a
percentile solution, we need to evaluate the variance of 𝑁𝑣 uniform samples s from
S with respect to a subset of the information set 𝐼1 utilized to generate the percentile
solution. In practice, however, the exact probability 𝑝 of sampling decisions with
large enough variance will be unknown to the practitioner apriori. In these cases, it
suffices to assume a small enough value for 𝜖 , i.e. 10−2 or smaller, is smaller than
𝑝. Examples along this vein will be provided in the following section. Notably, this
result implies that we can utilize percentile methods to both identify decisions that
outperform a large fraction of the decision space and also determine their optimality
gap. Indeed, this result holds even for non-convex optimization problems, provided
they satisfy Assumption 9.

Producing Solutions with Maximum Optimality Gaps
The prior section provides a method to determine the upper bound on the optimality
gap of a provided solution via a secondary sampling scheme. This section provides
a method to remove the secondary sampling requirement for similar optimization
problems to be solved successively. In other words, consider the following general
form of optimization problems, where each instance 𝑙 satisfies Assumption 9:

𝐽 𝑙∗ = min
s∈S𝑙

𝐽 𝑙 (s), (S𝑙 , 𝐽 𝑙) ∈ O, 𝑙 ∈ 𝐿. (4.19)

Furthermore, we assume that it is possible to randomly sample indices 𝑙 from 𝐿,
e.g. via the uniform distribution.
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Example Setting: Here, O is a set containing pairs of objective functions and
decision spaces. To provide an example consistent with the sections to follow,
consider the following nonlinear dynamical system with state 𝑥 and input 𝑢:

𝑥𝑘+1 = 𝑓 (𝑥𝑘 , 𝑢𝑘 ), 𝑥 ∈ X, 𝑢 ∈ U (4.20)

Provided a cost function over states and inputs, state constraints, and torque bounds,
we can construct the following finite-time optimal controller with horizon 𝐻 for the
aforementioned system. Here, all state constraints are projected to input constraints
through prediction over the model (4.20):

argmin
u=(𝑢0,𝑢1,...,𝑢𝐻−1)∈U𝐻

𝐽 (u, 𝑥𝑘 ), (FTOCP)

subject to u ∈ U(𝑥𝑘 ) ⊆ U𝐻 .

The aforementioned finite-time optimal controller (FTOCP) collapses to the form
in (4.19) if we consider an optimality set O indexed by states 𝑥 ∈ X — a specific
form of indexing more generally referred to via 𝑙 ∈ 𝐿 in (4.19).

Key Insight: The critical insight for this section then is as follows. If we were to
randomly sample via a distribution 𝜋 over O, optimization problems of the form
in (4.19) and calculate the optimality gap G𝑙 of percentile solutions for that problem,
the corresponding gap is a sample of some real-valued random variable. By taking
multiple independent samples of this random variable, we can leverage Theorem 6
to provide a probabilistic upper bound on this random variable, i.e. a probabilistic
upper bound on achievable optimality gaps. To do so, we require a definition.

Definition 19. Let G(𝑁𝑝) be a real-valued random variable with distribution 𝜋G

and samples g defined as follows: (1) Uniformly sample an index 𝑙 ∈ 𝐿, (2) Take a
percentile approach to solve (4.19) corresponding to this sampled index 𝑙, producing
the solution s𝑙∗

𝑁𝑝
, (3) Calculate and report as a sample g, the optimality gap G𝑙

(
s𝑙∗
𝑁𝑝

)
.

Then, we can upper bound the optimality gaps of percentile solutions to all opti-
mization problems formed in the set O, to some minimum probability. The formal
statement will follow.

Theorem 11. Let G(𝑁𝑝) be as per Definition 19, and let {g𝑖}𝑅𝑖=1 be a set of 𝑅
independent samples ofG(𝑁𝑝) with g∗

𝑅
the maximum such sample. Then∀ 𝜖 ∈ [0, 1],

percentile solutions to optimization problems (4.19) will exhibit optimality gaps less
than g∗

𝑅
with minimum probability 1 − 𝜖 and confidence 1 − (1 − 𝜖)𝑅, i.e.

P𝑅𝜋G

[
P𝜋G [g ≤ g∗𝑅] ≥ 1 − 𝜖

]
≥ 1 − (1 − 𝜖)𝑅 .
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Proof: Stems via Theorem 6.

In short, if we wish to remove the secondary sampling requirement for the deter-
mination of optimality gaps, we need to be able to calculate the optimality gap for
at least 𝑅 independently chosen optimization problems of the form (4.19). Doing
so permits us to make a general statement on the maximum achievable optimality
gaps, to some minimum probability. Now, we will provide a few examples.

Validating Theorem 10 — Traveling Salesman
To validate Theorem 10 we can revisit the same traveling salesman problem refer-
enced in the prior section. To repeat for the sake of completeness, the Traveling
Salesman Problem (TSP) is a classic non-convex path planning problem referencing
the identification of the path of the shortest distance traversing each node in a set
once. Mathematically, consider a set of waypoints 𝑊 = {𝑤1, 𝑤2, . . . , 𝑤 |𝑊 |} 𝑤𝑖 ∈
R2 and the set of all paths over these waypoints 𝑃 = {(𝑖1, 𝑖2, . . . , 𝑖 |𝑊 |) | 𝑖 𝑗 ∈
{1, 2, . . . , |𝑊 |}, 𝑖 𝑗 ≠ 𝑖𝑘 , ∀ 𝑗 ≠ 𝑘}. Then the Traveling Salesman Problem is to

min
𝑝∈𝑃

|𝑊 |−1∑︁
𝑖=0
∥𝑝𝑖 − 𝑝𝑖+1∥ + ∥𝑝0 − 𝑝 |𝑊 | ∥.

For a graph with 10 nodes and 3628800 possible paths, evaluating 𝑁𝑝 = 5000 paths
and picking the best one identifies a path 𝑝∗

𝑁𝑝
in the 99.9%-ile with at least 99%

confidence according to Theorem 9. Using a subset 𝐷 of the corresponding infor-
mation set 𝐼1 for the determination of such a percentile solution (see Assumption 10
for the definition of 𝐼1), we define a variance function V as per equation (4.13).
Finally, to validate the probabilistic results of Theorem 10, we can also calculate
the true probability 𝑝 of uniformly sampling paths that exhibit a variance higher
than the optimality gap of our proposed solution G(𝑝∗

𝑁𝑝
) — this is the minimum

probability assumed to exist via Assumption 11 and defined in equation (4.16). For
this particular node set and percentile solution 𝑝∗

𝑁𝑝
the probability 𝑝 = 0.1083.

Figure Analysis: To validate the results of Theorem 10, we solved for the minimum
number of samples 𝑁𝑣 required to determine an upper bound V∗

𝑁𝑣
to G(𝑝∗

𝑁𝑝
) with

minimum confidence 0.7 — top figure in Figure 4.8 requiring 11 samples— and
minimum confidence 0.999 — middle figure in Figure 4.8 requiring 61 samples.
Both of these minimum sample requirements were identified by setting 𝜖 = 𝑝

in (4.18) and solving for the minimum integer 𝑁𝑣 required to make the right-hand
side greater than or equal to our desired confidence. For each confidence level, we
performed 100 separate trials and reported the maximum variance V∗

𝑁𝑣
produced
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Figure 4.8: Validation Data for Section 4.5 corresponding to Theorem 10. (Top)
100 reported upper bounds V∗

𝑁𝑣
using Theorem 10 with desired confidence equal

to 0.7. (Middle) 100 reported upper bounds V∗
𝑁𝑣

with confidence 0.999. (Bottom)
Running fraction over 2000 trials of reported upper bounds V∗

𝑁𝑣
exceeding the true

optimality gap G(𝑝∗
𝑁𝑝
) at confidence level 0.999. Notice how the fraction of upper

bounds exceeding the optimality gap increases as we increase confidence (top to
middle), and the running fraction of upper bounds exceeding the optimality gap
converges to our desired confidence (bottom), corroborating Theorem 10.

by each trial according to Theorem 10. As can be seen in the corresponding data,
increasing the confidence increases the likelihood that the corresponding reported
result V∗

𝑁𝑣
exceeds the true optimality gap G(𝑝∗

𝑁𝑝
) — the red 𝑥’es in the middle

figure are all above the black, dashed line, whereas a few dip below the same line
in the top figure when we report solutions with lower confidence. Furthermore,
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by repeating the procedure once more at confidence 0.999, taking 2000 separate
verification runs, and recording whether V∗

𝑁𝑣
≥ G(𝑝∗

𝑁𝑝
) per run, we can get a

sense of the true, running probability that V∗
𝑁𝑣
≥ G(𝑝∗

𝑁𝑝
). As can be seen in the

bottom figure, this probability converges to 0.999 — the lower bound expected by
Theorem 10. Notably, though, this result implies that we were able to identify a
path in the 99%-ile that was no more than 1.12 times the length of the optimal path,
by only evaluating 5061 paths, less than 0.14% of the overall decision space.

Increasing Success Probabilities — Benchmark Functions
In a brief remark after defining the variance function in equation (4.13), we men-
tioned that by specific choice of a subset 𝐷, one could increase the baseline prob-
ability 𝑝 of uniformly choosing samples that exhibit a higher variance than the
optimality gap of the reported percentile solution. This section provides evidence
in support of that statement for a few benchmark optimization problems. The one
referenced in Figure 4.9, the 2-d Rastigrin function [143], is as follows:

min
𝑥∈[−5.12,5.12]2

20 +
2∑︁
𝑖=1
(𝑥2
𝑖 − 10 cos(2𝜋𝑥𝑖)). (4.21)

Both the decision space and objective function are bounded, permitting a percentile
solution to (4.21). Following Theorem 9 and taking 𝑁𝑝 = 100 samples for such
an approach, we generate the information set 𝐼1 and percentile solution 𝑥∗

𝑁𝑝
. Then,

by choice of a subset 𝐷 of 𝐼1 for the definition of the variance function in (4.13),
we claim we can vary the baseline probability 𝑝 of sampling decisions that exhibit
a higher variance than the true optimality gap. To show this, define 𝜒 to be the
volume fraction the subset 𝐷 in (4.13) occupies of 𝐼1, i.e. 𝜒 = 1 implies 𝐷 = 𝐼1 and
𝜒 = 0.05 implies that 𝐷 contains 1/20-th as many elements as 𝐼1.

Figure Analysis: Figure 4.9 portrays the results of varying the volume fraction
𝜒 of decisions 𝐷 utilized to generate the variance function V per equation (4.13).
The decisions highlighted in orange are those that exhibit a higher variance than
the optimality gap of the reported solution. Notice that as 𝜒 decreases, 𝑝 increases
as indicated in the titles. This inverse relationship arises as if we consider two
sets 𝐷1 ⊂ 𝐷2 utilized for generation of the variance functions V1,V2, respectively,
then ∀ s ∈ S, V1(𝑠) ≥ V2(𝑠) by definition of V as a minimization problem.
In other words, decreasing the amount of information provided to the variance
function increases the corresponding conservativeness of the resulting function,
which increases the likelihood of sampling a, now more conservative, upper bound
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Figure 4.9: Validation data for Section 4.5. We claim that by varying the amount
of information used to generate the variance function V, we can change the baseline
probability 𝑝 of sampling a decision whose variance exceeds the optimality gap of a
given percentile solution (such decisions are highlighted in orange). Notice that as
the volume fractions 𝜒 occupied by the chosen information set 𝐷 decreases, we see
a corresponding increase in the baseline probability 𝑝. Section 4.5 discusses why
this inverse relationship holds.

Name 𝑁𝑝 𝑁𝑣 expected
success

probability (4.18)

true
success

probability

average
runtime

(ms)

R-2 300 300 0.95 ≈ 1 5.18
R-10 300 300 0.95 ≈ 1 5.17
Ack 300 300 0.95 ≈ 1 5.28
Ble 300 300 0.95 ≈ 1 5.17
Levi 300 300 0.95 ≈ 1 5.31
Himm 300 300 0.95 ≈ 1 5.30

Table 4.1: Data for Section 4.5 for the (R-2) Rastigrin 2-D, (R-10) Rastigrin 10-D,
(Ack) Ackley, (Ble) Beale, Levi, and (Himm) Himmelblau benchmark problems.

on the optimality gap. In practice, and in the examples provided in the prior section,
using a dilation 𝜒 = 0.1 proved most effective, though studying if there exists an
optimal volume fraction remains an open problem and the subject of future work.

Table Description: By increasing the success probability 𝑝 of sampling decisions
whose variance exceeds the optimality gap, we can "blindly" use Theorem 10
to bound the optimality gap of percentile solutions to benchmark optimization
problems. Table 4.1 shows our data in this vein. For each benchmark optimization
problem, we produced a percentile solution using 𝑁𝑝 = 300 samples, constructed a
variance functionV using 10% of the information set 𝐼1 generated via the percentile
method, and took 𝑁𝑣 = 300 samples to identify the probabilistic maximum variance
V∗
𝑁𝑣

. Under the assumption that 𝑝 ≥ 0.01, Theorem 9 tells us that V∗
𝑁𝑣
≥ G(𝑥∗

𝑁𝑝
)
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with 95% probability — column 4 in Table 4.1. Indeed, over 5000 trials following
the above procedure for each optimization problem, we were successfully able to
identify a valid upper bound every time. Additionally, as the sampling method only
requires the evaluation of sampled points, which is relatively quick, the procedure
takes very little time to implement, as seen in the rightmost column.

Validating Theorem 11 — Nonlinear MPC
To validate the results of Theorem 11, we require a series of optimization problems
of the form in (4.19). Keeping with the example provided in Section 4.5, we aim
to bound the optimality gap of percentile solutions for a Nonlinear MPC controller
steering the Robotarium robots [144] — a collection of agents modelable via unicycle
dynamics. Formally, let 𝑥 ∈ X = [−1.6, 1.6] × [−1.2, 1.2] × [0, 2𝜋] be the system
state, and let 𝑢 ∈ U = [−0.2, 0.2] × [−𝜋, 𝜋] be the control input space. Then,

𝑥𝑘+1 = 𝑥𝑘 +

cos (𝑥𝑘 [3]) 0
sin (𝑥𝑘 [3]) 0

0 1

 𝑢𝑘 (Δ𝑡 = 0.033)

︸                                            ︷︷                                            ︸
𝑓 (𝑥𝑘 ,𝑢𝑘)

.

Furthermore, each agent has a Lyapunov controller 𝑈 steering it to a provided
waypoint 𝑤 ∈ W:

𝑈 : X ×W ≜ [−1.6, 1.6] × [−1.2, 1.2] → U.

We will use 𝑈 to construct our MPC algorithm, which provides waypoints to steer
the system around static and moving obstacles toward at least one goal. Formally,
we overlay an 8×5 grid onW and define the space of operating environmentsD as
those environments that: (1) have 8 static obstacles (SO) and 3 goals (𝑔), (2) have
controlled (𝑥𝑎) and uncontrolled (𝑥𝑜) agent starting positions outside static obstacles
and goals, and (3) have at least one feasible path from the controlled agent’s starting
location to one of the three goals. A vector 𝑑 = [𝑥𝑎, 𝑥𝑜, SO, 𝑔] ∈ D corresponds
to one such environmental setup. To account for collisions, consider the following
barrier function ℎ, where 𝑃 = [I2×2 02×1] projects system states to the plane [145]:

ℎ(𝑥𝑎, 𝑥𝑜, 𝑑) =

−5 in SO cell,

∥𝑃(𝑥𝑎 − 𝑥𝑜)∥ − 0.18 else.

Then the nominal NMPC algorithm minimizes 𝑆 :W → R— a function outputting
the shortest path distance from a waypoint to the closest goal — while ensuring that
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Figure 4.10: Validation data for Section 4.5 in support of Theorem 11. We claim
that we can upper bound the optimality gap of successive applications of percentile
methods to solve appropriate optimization problems. Shown above in red are the
calculated upper bounds for the black lines corresponding to the 99% cutoff value of
optimality gaps for percentile solutions to a nonlinear model predictive controller.
For the three separate percentile methods shown, we’re able to upper bound the true
value every time, corroborating Theorem 11.

the existing Lyapunov controller𝑈 renders the barrier ℎ positive for the next 5 time
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steps, i.e., ∀ 𝑗 = 1, 2, . . . , 5,

𝑤∗𝑘 = argmin
𝑤∈W

𝑆(𝑤), (NMPC-A)

subject to 𝑥
𝑗

𝑘
= 𝑓 (𝑥 𝑗−1

𝑘
, 𝑢 𝑗−1), (a)

𝑥0
𝑘 = 𝑥𝑘 , (b), (c) (b)

ℎ(𝑥 𝑗
𝑘,𝑎
, 𝑥𝑜, 𝑑) ≥ 0 (c)

𝑢 𝑗−1 = 𝑈

(
𝑥
𝑗−1
𝑘
, 𝑤

)
, (d)

0.05 ≤ ∥𝑤 − 𝑥𝑘 ∥ ≤ 0.2.

To ease sampling requirements, we consider an augmented cost 𝐽 that outputs 100
whenever a waypoint 𝑤 fails to satisfy constraints (a)-(d) in (NMPC-A), yielding
the following:

𝑤𝑑∗ = argmin
𝑤∈W

𝐽 (𝑤, 𝑑), (NMPC-B)

subject to 0.05 ≤ ∥𝑤 − 𝑥∥ ≤ 0.2.

Finally, we note that (NMPC-B) is equivalent to (4.19), if we consider as index set
𝐿, the environment set D.

Figure Analysis: To validate the results of Theorem 11 we uniformly sample 𝑅 =

459 different environments 𝑑 ∈ D and calculate a percentile solution to (NMPC-B)
with 𝑁𝑝 = 200 samples, Figure 4.10-(a); 𝑁𝑝 = 300 samples, Figure 4.10-(b); and
𝑁𝑝 = 500 samples, Figure 4.10-(c). We calculate the optimality gap for each solution
by performing gradient descent on the best out of 2000 uniformly chosen samples
and reporting the final value as the true optimal value. According to Theorem 11,
in each case we should produce an upper bound on optimality gaps g∗

𝑅
that exceeds

sample-able optimality gaps g with at least 99% probability and 99% confidence.
To validate this statement, we uniformly sampled 50000 more environments 𝑑 ∈ D
and followed the prior scheme for each percentile case to determine the distribution
of sample-able optimality gaps. This data is reflected as the distributional data you
see in each subfigure in Figure 4.10. As can be seen, in each case the reported upper
bound g∗

𝑅
exceeds the true 99% cutoff. Furthermore, as the number of samples taken

for the percentile solution increases, the upper bound decreases. This is expected
as we are providing a solution in a higher percentile each time. To emphasize the
utility of this result for controls, say we wished to implement a percentile procedure
with 𝑁𝑝 = 300 samples to provide "good" waypoints optimizing for (NMPC-B).
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Offline calculation of this optimality gap would provide confidence that in practice,
we would, with 99% probability and with 99% confidence, be choosing waypoints
within 0.03𝑚 of the optimal waypoint at every iteration. Notably, we would not have
to solve the non-convex program and repetitively sample variances at each time step
to make this statement.

4.6 Conclusion
This chapter detailed our efforts in uncertainty quantification. Specifically, it detailed
a procedure for upper bounding risk-measure evaluation of scalar random variables
whose distributions are unknown for Value-at-Risk and 𝑔-entropic risk measures.
Then, extending these results, it detailed a percentile optimization technique for
non-convex optimization problems that rapidly produces solutions outperforming a
large fraction of the decision space with respect to optimizing for a certain objective.
Finally, it mentioned how utilizing the same percentile optimization technique on a
variance function defined over the information set generated by taking a percentile
approach permits upper bounding of the optimality gap of the reported percentile
solution. Following chapters will leverage these mathematical results to formalize
pipelines for risk-aware verification and controller synthesis and make probabilistic
guarantees for optimal control.
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C h a p t e r 5

RISK-AWARE SYNTHESIS AND VERIFICATION

This chapter was adapted from:

[1] P. Akella, A. Dixit, M. Ahmadi, J. W. Burdick, and A. D. Ames, “Sample-
Based Bounds for Coherent Risk Measures: Applications to Policy Synthesis
and Verification,” The Artificial Intelligence Journal (Under Review), Apr.
2022. doi: 10.48550/arXiv.2204.09833. arXiv: 2204.09833 [cs.AI],

[2] P. Akella, M. Ahmadi, and A. D. Ames, “A Scenario Approach to Risk-
Aware Safety-Critical System Verification,” arXiv e-prints, arXiv:2203.02595,
Mar. 2022. doi: 10.48550/arXiv.2203.02595. arXiv: 2203.02595
[eess.SY],

With the mathematical setup offered by the prior chapter, this chapter will focus
on pipelines for both risk-aware safety-critical controller verification and synthesis.
Specifically, we detail how we can phrase risk-aware controller verification as a risk-
measure estimation problem for a random variable whose distribution is unknown.
As such, we can utilize the bounding methods detailed in the prior chapter to facilitate
data-efficient risk-aware verification that is provably dimensionally independent.
Similarly, we can optimize to maximize the lower bound provided by such a bounding
procedure to phrase risk-aware controller synthesis as an optimization problem
solvable by percentile methods. As such, reported controllers have intuitive meaning
insofar as a controller in the 90%-ile, is better than 90% of controllers we could
have possibly developed for a given system, subject to the parameter set provided for
controller synthesis. As both problems of verification and policy synthesis under
uncertainty have been well-studied, this chapter will start with a brief review of
existing work and mention how our contributions fit into the broader picture.

5.1 Introduction
As mentioned in the introduction for the prior chapter, the problem of optimal
policy generation under uncertainty has been well-studied in both the learning
and controls communities, most notably via Reinforcement Learning [108]–[112].
However, as motivated earlier, most of these works synthesize policies to maximize
an expected reward. For safety-critical control applications, failing to consider
variances in outcomes could lead to catastrophic behavior [42]. Indeed this is why
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the community at large is advocating for a risk-aware approach utilizing the same
risk measures popularized by the financial community [43], [45], and this advocacy
has led to the widespread study of risk-aware policy synthesis in both communities.

As the prior chapter laid the groundwork for the calculation of risk measures for
random variables whose distributions are unknown, it has removed the primary
hindrance in our ability to take a risk-aware approach to safety-critical controller
verification. As such we can now ask whether we can use these bounds to provide
high-confidence statements on system performance in a risk-aware setting. Further-
more, the previously cited risk-aware controller generation works typically require
apriori understanding of the underlying uncertainty — whether via direct knowledge
or in a distributionally-robust sense. Granted, risk-aware Reinforcement Learning
does not require such knowledge, and existing convergence bounds guarantee that
repeated iteration will eventually identify a satisfactory policy [121]–[124]. How-
ever, if we can determine a basic sample requirement for our risk measure bounds,
and if the result of policy synthesis is the identification of satisfactory policies, can
we provide similar sample requirements for the synthesis of satisfactory risk-aware
policies and the relative complexity in identifying better policies?

Summary of Chapter Contributions
Our contributions will be itemized as follows.

1. We rephrase risk-aware verification as a risk measure determination problem
for a random variable whose distribution is unknown. This permits us to
use our prior results to generate high-confidence verification statements for
arbitrarily complex robotic systems with limited system information.

2. We rephrase risk-aware synthesis as an optimization problem solvable by
percentile-based methods, whose objective is to maximize the lower bound
offered by the prior risk-aware verification procedure.

3. To showcase the efficacy of our work, we verify and synthesize a controller
for a cooperative three-agent robotic system that avoids self-collisions while
each agent traverses to its goal. We also show that our synthesized controller
outperforms the baseline controller with which the system is equipped by
default, at least with respect to the risk measures utilized for our risk-aware
verification and synthesis analyses.
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Chapter Structure
Section 5.2 details our efforts in risk-aware safety-critical system verification, and
Section 5.3 details our efforts in risk-aware safety-critical controller synthesis.

5.2 Risk-Aware Verification
An important application of the sample-based bounds derived in the prior chap-
ter arises in safety-critical system verification where system evolution is partially
stochastic due to unmodeled dynamics, noise, etc. In this section, we will detail
how we can reformulate safety-critical system verification as a risk measure deter-
mination problem. This reformulation lets us use our prior results to easily bound
system performance in a cooperative multi-agent system setting.

Notation and Problem Setting
For our system under study, X is the state space, U is the input space, and Θ is a
known space of parameters 𝜃 influencing the system’s controller 𝑈. Furthermore,
we assume the system is subject to stochastic noise 𝜉 with an unknown distribution
𝜋𝜉 (𝑥, 𝑢, 𝑡) over R𝑛.

¤𝑥 = 𝑓 (𝑥, 𝑢) + 𝜉, 𝑥 ∈ X ⊂ R𝑛, 𝑢 ∈ U ⊂ R𝑚, (5.1)

𝑢 = 𝑈 (𝑥, 𝜃), 𝜃 ∈ Θ ⊂ R𝑝,

𝜉 ∼ 𝜋𝜉 (𝑥, 𝑢, 𝑡),
∫
X
𝜋𝜉 (𝑥, 𝑢, 𝑡, 𝑠) 𝑑𝑠 = 1 ∀ 𝑥, 𝑢, 𝑡.

We denote 𝑥𝜃𝑡 as our closed-loop system solution at time 𝑡—note that the parameter 𝜃
does not change over a trajectory—and 𝑥𝜃 corresponds to our closed-loop solution:

¤𝑥𝜃𝑡 = 𝑓

(
𝑥𝜃𝑡 ,𝑈

(
𝑥𝜃𝑡 , 𝜃

))
+ 𝜉, 𝑥𝜃 ∈ SRn

, SRn
= {𝑠 : R≥0 → R𝑛}

Verification work typically assumes the existence of a robustness metric 𝜌—a func-
tion that maps state trajectory signals to the real line, with positive evaluations of
the metric indicating system objective satisfaction [19].

Definition 20. A robustness metric 𝜌 is a function that maps from the signal space
to the reals, i.e. 𝜌 : SRn → [−𝑎, 𝑏], 𝑎, 𝑏 ∈ R++. Furthermore, a signal 𝑠 is
"accepted" by the robustness metric 𝜌, i.e. exhibits the desired properties encoded
by the robustness metric 𝜌, if and only if 𝜌(𝑠) ≥ 0.

Remark 3. Here, we note that Definition 20 differs from the traditional statement of
robustness measures in Signal Temporal Logic as per Definition 5 in Chapter 2 —
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the former does not depend on time whereas the latter does. This notational change
reflects the notion that for robotic systems, we always evaluate signal satisfaction of
a behavior from time 0 onwards, i.e. our robot, once it has been turned on, should
start satisfying the criteria required of it.

Examples of robustness metrics 𝜌 include the minimum value of a control barrier
function ℎ over some pre-specified time horizon [145], [146], or the robustness
metrics of Signal Temporal Logic [19], [96] as provided in Chapter 2. As the
existence and construction of these functions have been well-studied, we will simply
assume their existence for the time being [61], [147], [148].

For risk-aware verification, the uncertainty arises through the uncertainty 𝜉 entering
the system dynamics in (5.1). Hence, the robustness 𝜌 of a closed loop trajectory
𝑥𝜃 , i.e. 𝜌(𝑥𝜃), is a scalar random variable 𝑅(𝑥0, 𝜃) with some distribution 𝜋𝑅 (𝑥0, 𝜃)
dependent on the initial condition 𝑥0 and parameter 𝜃.

Definition 21. The trajectory-specific robustness, 𝑅(𝑥0, 𝜃), is a scalar-valued ran-
dom variable with distribution 𝜋𝑅 (𝑥0, 𝜃) corresponding to the closed-loop robustness
𝜌(𝑥𝜃) of trajectories 𝑥𝜃 emanating from the initial condition (𝑥0, 𝜃) ∈ X0 × Θ ≜ Φ.

By further uniformly sampling initial conditions and parameters from their respec-
tive spaces i.e. sampling (𝑥0, 𝜃) from U[X0×Θ], we generate the scalar randomized
robustness variable 𝑅 with distribution 𝜋𝑅 that was studied in [149].

Definition 22. The holistic system robustness, 𝑅, is a scalar random variable with
distribution 𝜋𝑅 and samples 𝑟 denoting the closed-loop robustness 𝜌(𝑥𝜃) of trajecto-
ries 𝑥𝜃 whose initial condition and parameter (𝑥0, 𝜃) were sampled uniformly from
X0 × Θ, i.e. (𝑥0, 𝜃) ∼ U[X0 × Θ ≜ Φ].

The goal of risk-aware verification then would be to identify risk measures for this
holistic system robustness random variable 𝑅 as per Definition 22, i.e. identify
VaR𝛼 (𝑅), CVaR𝛼 (𝑅) or EVaR𝛼 (𝑅) for some 𝛼 ∈ (0, 1]. Since we do not know the
distribution 𝜋𝑅 of 𝑅, however, direct identification of these risk measures is difficult.
Therefore, we will instead identify upper bounds for these risk measures— 𝑟∗

𝑉
for

VaR𝛼 (−𝑅), 𝑟∗𝐶 for CVaR𝛼 (−𝑅) and 𝑟∗
𝐸

for EVaR𝛼 (−𝑅) —that are upper bounds
with some minimum probability—𝜖𝑉 , 𝜖𝐶 , 𝜖𝐸 respectively.
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Problem 4. For the scalar random variable 𝑅 with distribution 𝜋𝑅 as per Defini-
tion 22, devise a method to determine upper bounds 𝑟∗

𝑉
, 𝑟∗
𝐶
, 𝑟∗
𝐸
∈ R with correspond-

ing probabilities 𝜖𝑉 , 𝜖𝐶 , 𝜖𝐸 ∈ [0, 1] such that for some 𝛼 ∈ (0, 1],

P𝜋𝑅 [𝑟∗𝑉 ≥ VaR𝛼 (−𝑅)] ≥ 1 − 𝜖𝑉 ,
P𝜋𝑅 [𝑟∗𝐶 ≥ CVaR𝛼 (−𝑅)] ≥ 1 − 𝜖𝐶 ,
P𝜋𝑅 [𝑟∗𝐸 ≥ EVaR𝛼 (−𝑅)] ≥ 1 − 𝜖𝐸 .

Here, VaR𝛼 (−𝑅),CVaR𝛼 (−𝑅), EVaR𝛼 (−𝑅) are the risk measures defined in Def-
initions 15-17 respectively.

Upper Bounds for Risk-Aware Verification
To start, we will first motivate why bounding robustness risk measures is useful, as
the procedure is non-standard when compared with existing literature. It is easiest
to see this utility in bounding robustness risk evaluation for Value-at-Risk. Here, we
aim to identify the probabilistic cutoff 𝑟∗

𝑉
for the random variable −𝑅, as it will let

us bound the weighted volume of the initial conditions and parameters (𝑥0, 𝜃) ∈ Φ
which have the potential of yielding trajectories whose robustness 𝑟 < −𝑟∗

𝑉
. A

motivating example of this is shown in Figure 5.1, and we can show this volume
bounding as follows. First, we define a function 𝐵 : R → R outputting the total
probability of sampling a trajectory whose robustness is strictly less than a cutoff
𝑦 ∈ R. In what follows, 𝜋𝑅 (𝑥0, 𝜃) is the distribution of 𝑅(𝑥0, 𝜃) as per Definition 21:

𝐵(𝑦) =
∫
Φ

1
𝛽

∫ 𝑦

−∞
𝜋𝑅 (𝑥0, 𝜃, 𝑠) 𝑑𝑠 𝑑 (𝑥0, 𝜃), (5.2)

𝛽 =

∫
Φ

1 𝑑 (𝑥0, 𝜃).

As such, 𝑟∗
𝑉

is a holistic characterization of system behavior.

Proposition 1. Let 𝑅 be the holistic robustness random variable as per Definition 22,
let 𝐵 be as per equation (5.2), and let 𝛼 ∈ (0, 1]. Then,

0 ≥ 𝑟∗𝑉 ≥ VaR𝛼 (−𝑅) =⇒ 𝐵(0) ≤ 𝛼

Proof: To start, we have the following integral inequality:∫
Φ

1
𝛽

∫ ∞

−𝑟∗
𝑉

𝜋𝑅 (𝑥0, 𝜃, 𝑠) 𝑑𝑠 𝑑 (𝑥0, 𝜃) ≥ 1 − 𝛼.

Furthermore, as 𝜋𝑅 is a valid probability distribution,∫
Φ

1
𝛽

∫ ∞

−𝑟∗
𝑉

𝜋𝑅 (𝑥0, 𝜃, 𝑠) 𝑑𝑠 𝑑 (𝑥0, 𝜃) + 𝐵(−𝑟∗𝑉 ) = 1.
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Figure 5.1: The above figure provides context for why we choose to take a ran-
domized, risk-aware approach to verification. Doing so lets us upper bound by an
𝜖 ∈ [0, 1] the weighted volume of the states in the red region shown. For verifica-
tion purposes, this bounds the total risk of sampling trajectories whose robustness
𝑟 < −𝑟∗

𝑉
as stated in Proposition 1.

As a result, 𝐵(−𝑟∗
𝑉
) ≤ 𝛼. Then, as 𝜋𝑅 (𝑥0, 𝜃, 𝑠) ∈ [0, 1], ∀ 𝑠 ∈ R, for all 𝑎 ≤ 𝑏,

𝐵(𝑎) ≤ 𝐵(𝑏). Since −𝑟∗
𝑉
≥ 0 and 𝐵(−𝑟∗

𝑉
) ≤ 𝛼 then, so to is 𝐵(0) ≤ 𝛼.

Therefore, if we fix a minimum probability by choosing an 𝛼 ∈ (0, 1] and find
that the corresponding probabilistic robustness lower bound −𝑟∗

𝑉
≥ 0, then the

total probability 𝐵(0) of sampling a trajectory whose robustness 𝑟 < 0 is bounded
above by 𝛼. As we uniformly sample initial conditions and parameters (𝑥0, 𝜃), this
total probability 𝐵(0) also corresponds to the weighted volume of initial conditions
and parameters (𝑥0, 𝜃) ∈ Φ which could yield trajectories 𝑥𝜃 whose robustness
𝜌(𝑥𝜃) < 0. The weights 𝑤(𝑥0, 𝜃) for this weighted volume is the probability of that
initial condition and parameter pair (𝑥0, 𝜃) realizing such a trajectory, i.e.

𝐵(0) =
∫
Φ

𝑤(𝑥0, 𝜃)
𝛽

𝑑 (𝑥0, 𝜃),

𝑤(𝑥0, 𝜃) =
∫ 0

−∞
𝜋𝑅 (𝑥0, 𝜃, 𝑠) 𝑑𝑠.

If there were no uncertainty in our system, i.e. if (5.1) was deterministic, then
𝐵(0) directly corresponds to an upper bound on the volume fraction of those initial
condition and parameter pairs that yield trajectories whose robustness 𝜌(𝑥𝜃) < 0.

Simplicity in Finding r∗V: Now that we have motivated why we might want to find
such a probabilistic bound 𝑟∗

𝑉
, it remains to find such a bound. Here we can leverage

our prior results in the following corollary.
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Corollary 15. Let 𝜁∗
𝑁

be the solution to (UB-RP-N) for an 𝑁-sample set {𝑥𝑘 =

−𝑟𝑘 }𝑁𝑘=1 of the random variable 𝑅 with distribution 𝜋𝑅 as per Definition 22. Then,

∀ 𝛼 ∈ (0, 1], P𝑁𝜋𝑅
[
𝑟∗𝑉 ≜ 𝜁

∗
𝑁 ≥ VaR𝛼 (−𝑅)

]
≥ 1 − (1 − 𝛼)𝑁 .

Proof: This results from Theorem 6.

Corollary 15 tells us that we can identify an estimate 𝜁∗
𝑁

to our desired statistic 𝑟∗
𝑉

for
any confidence level 1−𝛼 if we take a sufficiently large number of samples 𝑁 of the
random variable 𝑅. However, it does not state how many samples 𝑁 are required to
determine this estimate with high probability. Theorem 12 formalizes this sample
requirement. Specifically, Theorem 12 states that the number of samples 𝑁 required
to achieve high confidence 𝛾 in our estimate 𝜁∗

𝑁
is only a function of the desired risk

level 𝛼 and confidence 𝛾.

Theorem 12. Let 𝛼, 𝛾 ∈ (0, 1), and let 𝜁∗
𝑁

be the solution to (UB-RP-N) for an
𝑁-sample set {𝑥𝑘 = −𝑟𝑘 }𝑁𝑘=1 of the random variable 𝑅 with distribution 𝜋𝑅 as per
Definition 22. Then,

𝑁 ≥ log(1 − 𝛾)
log(1 − 𝛼) =⇒ P𝑁𝜋𝑅

[
𝑟∗𝑉 ≜ 𝜁

∗
𝑁 ≥ VaR𝛼 (−𝑅)

]
≥ 𝛾.

Proof: Via Corollary 15 we have the following inequality:

P𝑁𝜋𝑅
[
P𝜋𝑅 [𝑟 ≥ −𝜁∗𝑁 ] ≥ 1 − 𝛼

]
≥ 1 − (1 − 𝛼)𝑁 .

As 1 − 𝛼 ∈ (0, 1), if 𝑁 ≥ log(1−𝛾)
log(1−𝛼) then substituting and simplifying the right-hand

side of the above inequality provides the desired result.

Notably, Theorem 12’s result is independent of the dimension of the system’s state
and parameter space, i.e. independent of ℓ where X0 × Θ ⊆ Rℓ. This is why
we claim we have made a step towards sample-efficient risk-aware safety-critical
system verification, as independent of system complexity, Theorem 12 identifies
the minimum number of samples required to verify system behavior. These results
on dimensional scaling also hold for our procedures to upper bound coherent risk
measure evaluation of the randomized robustness variable, as will be described.

Specializing to CVaR and EVaR: First, we note that via Definitions 22 and 20, the
negation of the holistic system robustness 𝑅 has a probabilistic upper bound 𝑎 ∈ R,
i.e. P𝜋𝑅 [−𝑟 ≤ 𝑎] = 1. Therefore, we can directly apply Corollaries 13 and 14 to
solve Problem 4. To formally state our results in this vein, we will redefine the loss
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function 𝐿 and upper bounding function 𝑢𝑏 for each risk measure in this specific
application. Here, 𝑎 is the upper bound for −𝑅:

𝐿 (𝑥, 𝜇, 𝑡) = 𝑡
(
𝜇 + 1

𝛼
max

{𝑥
𝑡
− 𝜇, 0

})
, 𝑢𝑏 (𝜇, 𝑡) = 𝐿 (𝑎, 𝜇, 𝑡), (CVaR)

𝐿 (𝑥, 𝜇, 𝑡) = 𝑡
(
𝜇 + 𝑒 𝑥

𝑡
−𝜇−ln(𝛼)−1

)
, 𝑢𝑏 (𝜇, 𝑡) = 𝐿 (𝑎, 𝜇, 𝑡). (EVaR)

First, we have that we can upper bound CVaR𝛼 (−𝑅) ∀ 𝛼 ∈ (0, 1].

Corollary 16. Let 𝑅 be a scalar R.V. as per Definition 22, let 𝛼 ∈ (0, 1], let
𝐿, 𝑢𝑏 be as defined in equation (CVaR) with respect to this 𝛼, let 𝜖 ∈ (0, 1) and
𝛾 ∈ [0, 1), and let 𝜁∗

𝑁
(𝜇, 𝑡) be the solution to (UB-RP-N) for a set of 𝑁-samples

{𝑦𝑘 = 𝐿 (−𝑟𝑘 , 𝜇, 𝑡)}𝑁𝑘=1 of the random variable𝑌 = 𝐿 (−𝑅, 𝜇, 𝑡), where 𝑁 ≥ log(1−𝛾)
log(1−𝜖) .

Then,

P𝑁𝜋𝑅

[
𝑟∗𝐶 ≜ inf

𝜇∈R, 𝑡>0
𝜁∗𝑁 (𝜇, 𝑡) (1 − 𝜖) + 𝑢𝑏 (𝜇, 𝑡)𝜖 ≥ CVaR𝛼 (−𝑅)

]
≥ 𝛾.

Proof: This is an application of Corollary 13 with 𝐿 and 𝑢𝑏 as per equation (CVaR).
The R.V. −𝑅 has as its upper bound 𝑎 ∈ R as per Definitions 20 and 22. Finally, as
𝑁 ≥ log(1−𝛾)

log(1−𝜖) , 1 − (1 − 𝜖)𝑁 ≥ 𝛾.

Likewise, we can also upper bound EVaR𝛼 (−𝑅) ∀ 𝛼 ∈ (0, 1].

Corollary 17. Let 𝑅 be a scalar random variable as per Definition 22, let 𝛼 ∈ (0, 1],
let 𝐿, 𝑢𝑏 be as defined in equation (EVaR) with respect to this 𝛼, let 𝜖 ∈ (0, 1) and
𝛾 ∈ [0, 1), and let 𝜁∗

𝑁
(𝜇, 𝑡) be the solution to (UB-RP-N) for a set of 𝑁-samples

{𝑦𝑘 = 𝐿 (−𝑟𝑘 , 𝜇, 𝑡)}𝑁𝑘=1 of the random variable𝑌 = 𝐿 (−𝑅, 𝜇, 𝑡), where 𝑁 ≥ log(1−𝛾)
log(1−𝜖) .

Then,

P𝑁𝜋𝑅

[
𝑟∗𝐸 ≜ inf

𝜇∈R, 𝑡>0
𝜁∗𝑁 (𝜇, 𝑡) (1 − 𝜖) + 𝑢𝑏 (𝜇, 𝑡)𝜖 ≥ EVaR𝛼 (−𝑅)

]
≥ 𝛾.

Proof: This is an application of Corollary 14 and follows in the footsteps of the
proof for Corollary 16.

Examples
To showcase the results of Corollary 16 and 17, we will verify a cooperative
multi-agent robotic system. Specifically, we will identify lower bounds on ex-
pected worst-case system performance, i.e. upper bounds on both CVaR0.1(−𝑅)
and EVaR0.1(−𝑅), for a multi-agent system that is to avoid self-collisions while
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each agent reaches their respective goal. As a case study, we will use the Georgia
Tech Robotarium, wherein all the robots can be modeled as unicycles [150]:

𝑥 =


𝑥,

𝑦,

𝜃

 , ¤𝑥 =

𝑣 cos(𝜃),
𝑣 sin(𝜃),
𝜔,

 , 𝑢 = [𝑣, 𝜔]𝑇 ,

X = [−1, 1] × [−0.6, 0.6] × [0, 2𝜋], 𝑀 = [𝐼2, 02𝑥1] .

(5.3)

As mentioned in [150], a Lyapunov-based controller drives each agent 𝑥𝑖 to their de-
sired orientation 𝑥𝑖

𝑑
∈ X, and control inputs are filtered in a barrier-based quadratic

program to ensure that robots do not collide when multiple robots are moving simul-
taneously [145]. As a result, this barrier-based filter provides a natural robustness
measure as per Definition 20. Let the state vector for all 3 robots x𝑇 = [𝑥1𝑇 , 𝑥2𝑇 , 𝑥3𝑇 ].
Then, we can generate two, key functions. One function, ℎ𝑔, that the system hopes
to keep positive, and another function, ℎ 𝑓 , that the system hopes to make positive
over its trajectory. Here, 𝑥𝑖, 𝑥𝑖

𝑑
are the states and desired poses for robot 𝑖:

ℎ𝑔 (x) = min
𝑖≠ 𝑗 , 𝑖, 𝑗∈[1,2,3]

∥𝑀 (𝑥𝑖 − 𝑥 𝑗 )∥ − 0.15. (5.4)

ℎ 𝑓 (x) = max
𝑖∈[1,2,3]

0.1 − ∥𝑀 (𝑥𝑖 − 𝑥𝑖𝑑)∥. (5.5)

Intuitively, ℎ𝑔 (x) ≥ 0 implies that the robots are sufficiently far apart, and ℎ 𝑓 (x) ≥ 0
means that all robots are sufficiently close to their goal. From these two functions, we
construct our robustness measure 𝜌 for a state-signal x𝜃 where 𝜃𝑇 = [𝑥1𝑇

𝑑
, 𝑥2𝑇
𝑑
, 𝑥3𝑇
𝑑
]:

𝜌𝑔 (x𝜃) = min
𝑡∈[0,30]

ℎ𝑔

(
x𝜃𝑡

)
, 𝜌 𝑓 (x𝜃) = max

𝑡∈[0,30]
ℎ 𝑓

(
x𝜃𝑡

)
,

𝜌(x𝜃) =


𝜌𝑔 (x𝜃), if 𝜌𝑔 (x𝜃), 𝜌 𝑓 (x𝜃) ≥ 0,

max
{
𝜌𝑔 (x𝜃),−0.1

}
, if 𝜌𝑔 (x𝜃) < 0,

max
{
𝜌 𝑓 (x𝜃),−0.1

}
, else.

(5.6)

If 𝜌(x𝜃) ≥ 0 then, all 3 robots stayed at least 0.15 meters from each other for 30
seconds—as ℎ𝑔 (x𝜃𝑡 ) ≥ 0, ∀ 𝑡 ∈ [0, 30]—and reached within 0.1 meters of their
goal within 30 seconds—as ℎ 𝑓 (x𝜃𝑡 ) ≥ 0, for some 𝑡 ∈ [0, 30]. Furthermore, we
also know this robustness measure 𝜌 outputs values that are always greater than or
equal to −0.1. This robustness measure 𝜌 also lets us specifically define our holistic
system robustness 𝑅 in this case. For this example, samples 𝑟 of 𝑅 arise when we
first uniformly randomly sample initial locations and parameters (x0, 𝜃) from their
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Figure 5.2: We upper bound the risk measures of a multi-agent robotic system when
its state trajectory is evaluated through a robustness metric. Shown above is this
upper bounding procedure for both CVaR (left) and EVaR (right). For each of the 50
trials, the upper bounds (red) for both risk measures are indeed greater than or equal
to their "true" counterparts (black). These "true" counterparts were calculated by
taking 20000 samples of the randomized system robustness 𝑅 (Definition 22), and
the distribution of samples is shown (blue). The fact that the upper bounds are indeed
upper bounds over all trials serves as a numerical confirmation of Corollaries 16
and 17. They also support the repeatability of our procedure in identifying upper
bounds to 𝑔-entropic risk measures with high probability.

respective spaces below:

X0 = {x ∈ X3 | ℎ𝑔 (x) ≥ 0.3}, Θ = {x ∈ X3 | ℎ𝑔 (x) ≥ 0.3}.

Then, we record the corresponding state trajectory of the multi-agent system x𝜃 for
at-least 30 seconds. The holistic system robustness sample 𝑟 = 𝜌(x𝜃) then, with 𝜌
as defined in (5.6).

Verifying a 3 Robot System: Our goal is to determine an upper bound on both the
CVaR𝛼 (−𝑅) and EVaR𝛼 (−𝑅) with 𝛼 = 0.1 for the three robots as they carry out their
task. Furthermore, we hope to determine this upper bound with 95% confidence,
i.e. 𝛾 = 0.95, and we require that 𝜖 = 0.02. For this case, Corollaries 16 and 17
require that we take at minimum 𝑁 ≥ 149 samples of our holistic system robustness
𝑅 to determine this upper bound. As a result, we uniformly sampled 𝑁 = 149
initial conditions and parameters (x0, 𝜃) from X0 × Θ, recorded the corresponding
state trajectories x𝜃 , and recorded their robustnesses 𝑟 = 𝜌(x𝜃). We also repeated
this data collection procedure 50 times to ensure that our results are repeatable, and
to identify the true CVaR𝛼 (−𝑅) and EVaR𝛼 (−𝑅) we repeated this data collection
procedure once more but took 𝑁 = 20000 samples instead. If Corollaries 16 and 17
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are correct, then with 95% confidence, we expect that our sampled upper bounds
for the 50 trials performed are greater than or equal to their true counterparts. All
this data is shown in Figure 5.2, and as prior, the black lines indicate the true risk
measure evaluation and all red lines are the upper bounds generated per trial. As can
be seen, all generated upper bounds are indeed upper bounds for their counterparts
which serves as a numerical confirmation of Corollaries 16 and 17 and also of the
repeatability of our procedure in identifying upper bounds to these risk measures.

Brief Remark on Relative Bound Tightness: Figure 5.2 does prompt one question,
however. Specifically, it appears the upper bounds for CVaR are tighter than those
for EVaR. We anticipate this might arise as CVaR is a less conservative risk measure
than EVaR. As a result, for a given confidence level 𝛾 in our upper bound, the upper
bound for EVaR will likely be looser on account of this conservatism.

5.3 Risk-Aware Policy Synthesis
Finally, we can now combine the sample-based approaches developed in all prior
sections and chapters. Specifically, we will phrase risk-aware policy synthesis as an
optimization problem where the objective function accounts for uncertainty in initial
system states, controller inputs, and system evolution, and the design space accounts
for the uncertainty during optimal policy synthesis. To "solve" this optimization
problem, we will use the sample-based approach to identifying "good" policies as
developed in Chapter 4. Here, each policy sample taken is the result of our sample-
based verification approach detailed in the prior section. As a result, we detail a
risk-aware policy synthesis technique with tractable sample requirements that easily
scales to high-dimensional systems and potentially non-convex policy objectives.

Setting and Problem Statement
Specifically, we still focus on a general class of systems with the state space, X; the
input space,U; a space of problem parameters Θ that the controller𝑈 must account
for. The discrepancy with (5.1) arises in the parameterization of the controller𝑈 via
the parameter space 𝑃 of controller parameters. As before, we assume the system is
subject to some stochastic noise 𝜉 with an unknown distribution 𝜋𝜉 (𝑥, 𝑢, 𝑡) over R𝑛.

¤𝑥 = 𝑓 (𝑥, 𝑢) + 𝜉, 𝑥 ∈ X ⊂ R𝑛, 𝑢 ∈ U ⊂ R𝑚,
𝑢 = 𝑈 (𝑥, 𝜃, 𝑝), 𝜃 ∈ Θ ⊂ R𝑙 , 𝑝 ∈ 𝑃 ⊂ R𝑠, (5.7)

𝜉 ∼ 𝜋𝜉 (𝑥, 𝑢, 𝑡),
∫
X
𝜋𝜉 (𝑥, 𝑢, 𝑡, 𝑠) 𝑑𝑠 = 1 ∀ 𝑥, 𝑢, 𝑡.
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As before, we will define 𝑥𝜃,𝑝𝑡 as the solution to our closed-loop system at time 𝑡,
given the initial condition 𝑥0 ∈ X0 ⊆ X, an accounting parameter 𝜃 ∈ Θ, and a set
of controller parameters 𝑝 ∈ 𝑃.

¤𝑥𝜃,𝑝𝑡 = 𝑓

(
𝑥
𝜃,𝑝
𝑡 ,𝑈

(
𝑥
𝜃,𝑝
𝑡 , 𝜃, 𝑝

))
+ 𝜉, 𝑥𝜃,𝑝 ∈ SRn

, SRn
= {𝑠 : R≥0 → R𝑛}.

Then, our goal will be to identify a set of parameters 𝑝 ∈ 𝑃 such that the ensuing
controller𝑈 is better than, say, 90% of any possible controller we could develop by
changing parameters 𝑝 ∈ 𝑃. To delineate between controllers, we aim to maximize
the lower bound on the robustness risk of the closed-loop system—the lower bound
outputted by the sample-based risk-aware verification approach detailed in the prior
section. Specifically, choosing a parameter 𝑝 ∈ 𝑃 defines a closed-loop system—
that system for which the controller 𝑈 is parameterized via this parameter 𝑝. Then
for this system, we can calculate a lower bound on the Conditional-Value-at-Risk of
the system’s robustness 𝜌 over the entire space of initial conditions and accounting
parametersX0×Θ—this is Corollary 16. We could follow a similar process for upper
bounding the Entropic-Value-at-Risk as well. However, we will focus on CVaR for
brevity as the procedure for any other risk measures is effectively the same. As such,
the natural risk-aware policy synthesis aim is to maximize this lower bound.

Formally stating this problem first requires a modification of Definition 22 for the
parameterized setting.

Definition 23. The parameterized holistic system robustness, 𝑅𝑝, is a scalar random
variable with distribution 𝜋𝑅𝑝

and samples 𝑟𝑝 denoting the closed-loop robust-
ness 𝜌(𝑥𝜃,𝑝) of trajectories 𝑥𝜃,𝑝 whose initial condition and parameter (𝑥0, 𝜃) were
sampled uniformly from X0 × Θ and whose controller 𝑈 is parameterized via the
controller parameter 𝑝 ∈ 𝑃 as per equation (5.7)

Per Corollary 16, if we fix the parameter 𝑝 for the controller 𝑈, we can generate
an upper bound 𝑟∗

𝐶,𝑝
on CVaR𝛼 (−𝑅𝑝) for any 𝛼 ∈ (0, 1] with high-confidence.

As we study only CVaR in this section, we will drop the subscript 𝐶 for 𝑟∗
𝐶,𝑝

to
simplify notation. Mathematically, this lets us generate a mappingR from controller
parameter 𝑝, confidence 𝛾, and risk-level 𝛼, to the upper bound 𝑟∗𝑝 generated with
confidence 𝛾 for CVaR𝛼 (−𝑅𝑝). Implicit in this function definition will be the
number of samples 𝑁R we take of the initial conditions and accounting parameters
(𝑥0, 𝜃) from the uniform distribution over X0 × Θ:

R(𝑝, 𝛾, 𝛼) = 𝑟∗𝑝, s. t. P𝑁R𝜋𝑅𝑝

[
𝑟∗𝑝 ≥ CVaR𝛼 (−𝑅𝑝)

]
≥ 𝛾. (5.8)
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Then, by Definitions 15 and 16, we have the following proposition indicating that
the risk map R serves as a high-confidence lower bound on the expected worst-case
system performance.

Proposition 2. Let R be as defined in equation (5.8) for some 𝛾 ∈ [0, 1) and 𝛼 ∈
(0, 1]. The following inequality holds, with 𝜋𝑅𝑝

the distribution of the parameterized
holistic system robustness 𝑅𝑝 defined in Definition 23:

P𝑁R𝜋𝑅𝑝

[
−R(𝑝, 𝛾, 𝛼) ≤ E𝜋𝑅𝑝

[𝑟 | 𝑟 ≤ VaR1−𝛼 (𝑅𝑝)]
]
≥ 𝛾.

Proof: By definition of CVaR𝛼 for any risk-level 𝛼 ∈ (0, 1] in Definition 16, we
have the following equivalency:

CVaR𝛼 (−𝑅𝑝) = E𝜋𝑅𝑝
[𝑟𝑝 | − 𝑟𝑝 ≥ VaR𝛼 (−𝑅𝑝)] .

Then by definition of VaR and a symmetry argument when flipping the random
variable of interest, we have the following equality:

−CVaR𝛼 (−𝑅𝑝) = E𝜋𝑟𝑝 [𝑟𝑝 | 𝑟𝑝 ≤ VaR1−𝛼 (𝑅𝑝)] .

Then the desired inequality stems from the definition of R in equation (5.8).

As a result, we state that the goal of policy synthesis should be to minimize
R(𝑝, 𝛾, 𝛼). Specifically, minimization of R(𝑝, 𝛾, 𝛼) over 𝑃 for some fixed 𝛾, 𝛼
corresponds to the identification of a set of controller parameters 𝑝 ∈ 𝑃 such that in
the worst 100𝛼% of cases, the expected minimum system robustness is maximized.
Since the robustness measure 𝜌 outputs positive numbers for those trajectories that
satisfy the desired behavior (Definition 20), if this maximum lower bound were pos-
itive, then the expected performance in the worst 100𝛼% of cases would still exhibit
satisfactory behavior. This leads to the nominal, risk-aware synthesis problem:

min
𝑝∈𝑃
R(𝑝, 𝛾, 𝛼), for some 𝛾, 𝛼 ∈ (0, 1), (5.9)

which is similar to the general problem (4.9) studied in the prior chapter. The
decision space 𝐷 = 𝑃 and the reward function 𝑅 = −R(𝛾, 𝛼). We can also rewrite
the volume fraction functionV (4.10) and "better" policy map 𝐹 (4.11):

V(𝐴) =
∫
𝐴

1 𝑑𝑥∫
𝑃

1 𝑑𝑥
, 𝐹 (𝑝, 𝛾, 𝛼) = {𝑝′ ∈ 𝑃 | R(𝑝′, 𝛾, 𝛼) < R(𝑝, 𝛾, 𝛼)} . (5.10)

This lets us formally define the problem under study for this section.
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Problem 5. Let R be as defined in (5.8) with respect to some 𝛼 ∈ (0, 1] and
𝛾 ∈ (0, 1). Let 𝜖 ∈ (0, 1) as well. Find a set of controller parameters 𝑝 ∈ 𝑃 such
that the corresponding controller𝑈 is at-least in the 100(1 − 𝜖)-th percentile of all
possible controllers with respect to minimization of R, i.e. find 𝑝 ∈ 𝑃 such that
V(𝐹 (𝑝)) ≤ 𝜖 whereV, 𝐹 are defined in (5.10).

Identification of "Good" Risk-Aware Policies
To start, Problem 5 is a refinement of Problem 2. As such, we start by constructing
a similar scenario program to (RP-G):

𝜁∗𝑁 = argmin
𝜁∈R

𝜁, (RP-PS)

subject to 𝜁 ≥ 𝑦𝑖, 𝑦𝑖 ∈ {𝑦𝑘 = R(𝑝𝑘 , 𝛾, 𝛼)}𝑁𝑘=1 ,

𝑝𝑘 are drawn uniformly from 𝑃.

Then, identification of "good" policies is a direct consequence of Theorem 9, as
stated in the following corollary.

Assumption 12. R is as defined in equation (5.8) with respect to some 𝛼 ∈ (0, 1]
and 𝛾1 ∈ [0, 1). 𝜖 ∈ (0, 1), 𝛾2 ∈ [0, 1), 𝜁∗𝑁 is the solution to (RP-PS) for a set of
𝑁-samples {𝑦𝑘 = R(𝑝𝑘 , 𝛾1, 𝛼)}𝑁𝑘=1 where each 𝑝𝑘 was drawn uniformly from 𝑃,
andV, 𝐹 are as defined in equation (5.10).

Corollary 18. Let Assumption 12 hold. If 𝑁 ≥ log(1−𝛾2)
log(1−𝜖) , then with minimum

probability 𝛾2 there exists at least one parameter set 𝑝𝑖 ∈ {𝑝𝑘 }𝑁𝑘=1 whose associated
controller 𝑈 is at-least in the 100(1 − 𝜖)-th percentile of controllers possible with
respect to minimizing R, i.e.

∃ 𝑝𝑖 ∈ {𝑝𝑘 }𝑁𝑘=1, s. t. P𝑁U[𝑃] [V(𝐹 (𝑝𝑖)) ≤ 𝜖] ≥ 𝛾2, and 𝜁∗𝑁 = R(𝑝𝑖, 𝛾1, 𝛼).

Proof: This is a direct application of Theorem 9.

To summarize, for each uniformly sampled controller parameterization 𝑝 ∈ 𝑃, we
evaluate the corresponding controller 𝑈 against 𝑁R uniformly sampled initial con-
ditions and accounting parameters (𝑥0, 𝜃) ∈ X0 × Θ and evaluate the robustness
𝜌(𝑥𝜃,𝑝) of the corresponding trajectories. By evaluating enough such trajectories,
we generate—via Corollary 16 and Proposition 2—a lower bound −𝑟∗ on the ex-
pected worst-case system performance in the worst 100𝛼% of cases. By repeating
this procedure for enough samples—𝑁 ≥ log(1−𝛾2)

log(1−𝜖) samples—we are guaranteed
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with minimum probability 𝛾2 to find at least one parameter set 𝑝𝑖 in the sampled set
{𝑝𝑘 }𝑁𝑘=1 such that the corresponding controller𝑈 is at-least in the 100(1− 𝜖)-th per-
centile of all possible controllers with respect to maximizing this lower bound. This
probabilistic guarantee is due to Theorem 9. As we also provide a minimum sample
requirement on the number of controllers required to be tested in this procedure, we
state that we have a fundamental sample requirement to generate "good" risk-aware
policies with high confidence. Furthermore, as this sample requirement is based on
both our desired confidence 𝛾 and desired percentile level 1− 𝜖 , this procedure also
identifies the relative complexity in the identification of a "better" policy, insofar as
it provides a sample requirement for doing so.

Examples
In this section, we will synthesize a risk-aware controller for the cooperative multi-
agent system whose controller was verified in Section 5.2, and we will show that
the synthesized controller outperforms the baseline controller when accounting for
worst-case system performance. To reiterate, we will use the robotarium as a case
study again, where the robots can be modeled as unicycles [150]. The dynamics are
the same as in (5.3) in Section 5.2.

Different from the verification case in Section 5.2, however, we will now assume that
the hybrid Lyapunov-barrier controller the robots are equipped with [150] is now
to be optimized. Since we only assume knowledge of the controller parameters 𝑝
and not the specific controller form𝑈, we will refrain from specifying the controller
in favor of stating that the controller parameters we can vary are the gains for the
Lyapunov controller: approach angle gain 𝑝1, desired angle gain 𝑝2, rotation error
gain 𝑝3, and decay constant 𝑝4 for the barrier filter. As such, the space of parameters

𝑃 = [0.2, 5]3 × [0.1, 200], 𝑝1,2,3 ∈ [0.2, 5]3, 𝑝4 ∈ [0.1, 200] .

To determine a "good" parameter set 𝑝 ∈ 𝑃 without knowledge of how these
parameters affect the controller𝑈, we require a robustness measure 𝜌 (Definition 20)
to act as a determiner of satisfactory system performance. As such, we will use the
same robustness measure 𝜌 in equation (5.6) in Section 5.2 to facilitate a risk-aware
verification comparison between our to-be-calculated controller and the baseline
controller for the Robotarium. To be clear, we will reproduce this robustness
measure 𝜌 in its application to our parameterized system trajectories x𝜃,𝑝, where
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Figure 5.3: We can utilize all sample-based bounds developed in Chapters 4 and 5
to formalize a pipeline for risk-aware controller synthesis, the results for which are
shown here. Our goal is to identify a parameterized controller that maximizes a
lower bound on worst-case system performance, i.e. minimizes an upper bound,
R(𝑝, 0.95, 0.1), over a set of controller parameters 𝑝 ∈ 𝑃. Shown above in blue is the
distribution of this upper bound for all controller parameters 𝑝 ∈ 𝑃 and was generated
by taking 20000 uniform parameter samples 𝑝 and evaluating R(𝑝, 0.95, 0.1). As
per the decision selection process detailed in Chapter 4, our goal is to identify a
controller in the 99-th percentile with respect to minimization of this upper bound
with the true 99-th percentile cutoff shown in black and all controllers yielding
upper bounds to its left lying in the 99-th percentile. As can be seen, our identified
solution (red) achieves an upper bound in at least the 99-th percentile. This serves
as a numerical confirmation of both Theorem 9 and Corollary 18 insofar as we
evaluated the minimum number of controllers prescribed, 𝑁 = 459 controllers, to
calculate our solution which meets our desired criteria.

ℎ𝑔, ℎ 𝑓 are as defined in equations (5.4) and (5.5) respectively:

𝜌𝑔 (x𝜃,𝑝) = min
𝑡∈[0,30]

ℎ𝑔

(
x𝜃,𝑝𝑡

)
, 𝜌 𝑓 (x𝜃,𝑝) = max

𝑡∈[0,30]
ℎ 𝑓

(
x𝜃,𝑝𝑡

)
,

𝜌(x𝜃,𝑝) =


𝜌𝑔 (x𝜃,𝑝), if 𝜌𝑔 (x𝜃,𝑝), 𝜌 𝑓 (x𝜃,𝑝) ≥ 0,

max
{
𝜌𝑔 (x𝜃,𝑝),−0.1

}
, if 𝜌𝑔 (x𝜃,𝑝) < 0,

max
{
𝜌 𝑓 (x𝜃,𝑝),−0.1

}
, else.

Then, to take a sample 𝑟𝑝 of our randomized robustness 𝑅𝑝 as per Definition 23, we
first uniformly sample (𝑥0, 𝜃) from the spaces below:

X0 = {x ∈ X3 | ℎ𝑔 (x) ≥ 0.3}, Θ = {x ∈ X3 | ℎ𝑔 (x) ≥ 0.3}.

Then we evaluate the robustness of the corresponding state trajectory, i.e. 𝑟𝑝 =

𝜌(x𝜃,𝑝). Our goal is to identify a parameter set 𝑝 ∈ 𝑃 that minimizes the upper bound
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Figure 5.4: A comparison between the baseline controller provided with the
robotarium—the controller that was probabilistically verified in Section 5.2—and
our calculated controller identified in Figure 5.3. Our risk-aware policy synthesis
goal is to identify a controller in the 99-th percentile with respect to maximizing
the lower bound on the expected worst-case system performance in the worst 10%
of cases—i.e. maximizes a lower bound on −CVaR0.1(−𝑅) as expressed in Propo-
sition 2. Shown above is the distribution of this randomized robustness 𝑅 for the
calculated controller (𝑅calc in red) and the baseline controller provided with the
robotarium (𝑅base black). As can be seen, the calculated controller outperforms
the baseline controller insofar as the worst-case robustness value for 10% of cases
−VaR0.1(−𝑅calc) ≥ −VaR0.1(−𝑅base), and the expected value in the worst 10% of
cases −CVaR0.1(−𝑅calc) ≥ −CVaR0.1(−𝑅base) as well.

𝑟∗𝑝 for CVaR𝛼=0.1(−𝑅𝑝) identified with 95% confidence with 𝑁R = 149 samples. By
definition of R in equation (5.8), this results in the following optimization problem,
reminiscent of (5.9)

min
𝑝∈𝑃
R(𝑝, 0.95.0.1), 𝑁R = 149.

As such, we hope to identify a policy that is in the 99−th percentile with 99%
confidence, i.e. 𝛾 = 0.99 and 𝜖 = 0.01.

Figure Analysis: According to Corollary 18, to generate a parameter set 𝑝𝑖 ∈
𝑃 whose controller 𝑈 is in the 99-th percentile of all controllers with minimum
probability 𝛾 = 0.99, we are required to test 𝑁 ≥ 459 uniformly randomly sampled
parameters 𝑝 ∈ 𝑃. After doing so, we identified a parameter set 𝑝𝑖 ∈ 𝑃 that
realized an upper bound R(𝑝𝑖, 0.95, 0.1) = −0.1489. As can be seen in Figure 5.3,
the controller corresponding to this policy is indeed in at least the 99-th percentile
with respect to all controllers achievable via this parameterization. This serves as a
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numerical confirmation of Corollary 18 and Theorem 9. Figure 5.4 shows data for
the comparison between the distribution of the robustness of trajectories realized
by this controller 𝑈calc with the baseline controller with which the robotarium
comes equipped𝑈base. Notice that our identified controller outperforms the baseline
robotarium controller for our robustness measure of interest, indicating that our
synthesized policy was safer — in a risk-aware sense — than the on-board policy.

5.4 Conclusion
This chapter detailed our efforts in the formalization of risk-aware controller veri-
fication and synthesis pipelines. Specifically, it detailed how risk-aware controller
verification can be posed as a risk-measure estimation problem and leveraged math-
ematical results from a prior chapter to identify the estimate. Similarly, it detailed
how risk-aware controller synthesis can be expressed as an optimization problem
maximizing the lower bound offered by the prior risk-measure estimation procedure.
Finally, it detailed the application of these techniques on a few simulated examples.
However, the success of these techniques on simulated problems motivates questions
as to their applicability in all aspects of the controller synthesis paradigm, including
hardware implementations of verified controllers. Describing these results is the
focus of the next chapter.
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C h a p t e r 6

PROBABILISTIC GUARANTEES FOR OPTIMAL CONTROL

This chapter was adapted from:

[1] P. Akella, W. Ubellacker, and A. D. Ames, “Safety-Critical Controller Verifi-
cation via Sim2Real Gap Quantification,” 2023 International Conference on
Robotics and Automation (ICRA) (Accepted), arXiv:2209.09337, Sep. 2022.
doi: 10.48550/arXiv.2209.09337. arXiv: 2209.09337 [eess.SY].

[2] P. Akella, S. X. Wei, J. W. Burdick, and A. D. Ames, “Learning Distur-
bances Online for Risk-Aware Control: Risk-Aware Flight with Less Than
One Minute of Data,” Conference on Learning for Dynamics and Control
(L4DC) (Accepted), arXiv:2212.06253, arXiv:2212.06253, Dec. 2022. doi:
10.48550/arXiv.2212.06253. arXiv: 2212.06253 [eess.SY],

[3] P. Akella, W. Ubellacker, and A. D. Ames, “Probabilistic Guarantees for
Nonlinear Safety-Critical Optimal Control,” 2023 International Confer-
ence Intelligent Robots and Systems (IROS) (Submitted), arXiv:2303.06258,
Mar. 2023. doi: 10.48550/arXiv.2303.06258. arXiv: 2303.06258
[math.OC],

Finally, this last chapter of the thesis will detail how we can utilize all the prior
methods—developed to provide guarantees for safety-critical system verification —
to facilitate controller synthesis across all aspects of the nominal synthesis paradigm.
Effectively, this chapter "closes the loop" on the duality between verification and
synthesis, at least with respect to the provided methods. To that end, it will describe
our efforts in model verification, controller synthesis (both offline and online) against
stochastic models generated from the prior verification procedure, and the utility of
percentile methods to rapidly generate "good" control inputs for finite-time optimal
controllers and facilitate guarantee determination for the same optimal controllers.
To start, we will provide a more in-depth introduction of related works corresponding
to the contributions detailed in the chapter.

6.1 Introduction
The nominal controller synthesis process for safety-critical systems follows a well-
worn path: (1) develop a model for the system of interest (from first principles,
system identification, or otherwise); (2) develop a controller in simulation based on
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this model; (3) implement the controller on the safety-critical system of interest; and
(4) tune controller parameters until the system exhibits the desired behavior. This
chapter details how we can leverage the prior results in test synthesis and verification
to facilitate rapid, verifiable controller synthesis for safety-critical systems. In addi-
tion, not only can we streamline the controller synthesis and verification processes,
but we will also be able to rapidly synthesize control inputs for optimal controllers
using our sample-based percentile optimization procedures as well.

To that end, the first of our results will offer a method that aims to mitigate the
need for extensive—and perhaps expensive—hardware testing and verification, by
simultaneously verifying the simulator used for controller synthesis and the con-
troller itself. Our desire to augment existing model generation techniques stems
from a desire to leverage extensive prior work in system identification and reduced-
order-model control. More specifically, System identification specifically deals with
techniques aimed at generating models that more closely align with the system-to-
be-modeled and is a very well-studied field [151]–[159]. Despite the capability of
these existing methods to generate good models, they oftentimes fail to capture rarer
system behavior, i.e. corner cases, stochastic disturbances, etc. Moreover, prior
work indicates that reduced order models are oftentimes sufficient to express under-
lying system physics [160]–[162]. These simpler models are also often leveraged
in autonomy stacks for complex systems. Additionally, augmenting these reduced
order models with uncertainty bounds and accounting for these bounds through
robust control [161], [163], input-to-state stabilizing barrier functions [146], [164],
[165], or other techniques, i.e. learning [166]–[168], tends to yield safe and reliable
controllers. This prompts the question then: how should the "correct" uncertainty
bound be determined? If we use too large a bound, the controller might be too con-
servative, and if we use too small a bound, then the controller could be unsafe. Our
first set of results will provide an offline method to answer this question, whereas
the second set will provide an online, more conservative method.

The third set of results will dive deeper into the control loop and provide probabilis-
tic guarantees on percentile approaches to input generation for finite-time optimal
controllers. The interest in this vein stems from the fact that optimal controllers
provide a natural way of expressing and segmenting disparate control objectives, as
can be easily seen in works regarding model predictive control (MPC) [169]–[171],
control barrier functions [145], [146], [172], and optimal path planning [173]–[175],
among others. However, optimization problems becoming central to controller syn-
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thesis resulted in newer problems such as determining whether solutions exist, e.g.
recursive feasibility in MPC, determining the efficiency with which solutions can be
identified to inform control loop rates, and determining the optimality of identified
solutions in non-convex optimization settings. Recent years have seen tremendous
strides in answering these questions, but areas of improvement still exist. For ex-
ample, advances in Nonlinear MPC still require assumptions on the existence of
control invariant terminal sets and stabilizing controllers for recursive feasibility,
though identification of such items for general nonlinear systems remains a diffi-
cult problem [49]–[53]. In general, determination of solution optimality for MPC
problems is equivalent to solving the Hamilton-Jacobi-Bellman equation which is
known to be difficult [54]. For path-planning problems, RRT* and other, sampling-
based methods are known to be probabilistically complete, i.e. they will produce
the optimal solution given an infinite runtime, though sample-complexity results for
sub-optimal solutions are few [174], [176], [177]. Finally, there are similarly few
theoretical results on the time complexity of these controllers on hardware systems,
as such an analysis is heavily dependent on the specific hardware.

Summary of Chapter Contributions
Our contributions in this vein will be itemized as follows:

1. We provide an offline procedure to calculate a norm bound on the uncertainty
between a provided model and its corresponding system. This bound effec-
tively reads as: with minimum probability 1 − 𝜖 , the evolution of the system
at one time-step will lie within a calculated polytopic set centered on the state
prescribed by model evolution.

2. We synthesize and verify controllers against an uncertain model generated in
the prior step, resulting in a pipeline for safety-critical controller synthesis
and verification that translates to hardware performance.

3. We define a new type of disturbance model, a Surface-at-Risk, and provide
an online procedure to calculate such a surface using the method detailed in
contribution (1). By augmenting the model for a drone online, we leverage ex-
isting input-to-state-stable control-Lyapunov results to demonstrate the ability
of this procedure to robustify a controller mid-flight with limited system data.

4. We provide theoretical guarantees on the provable sub-optimality of percentile-
based optimization procedures on producing input sequences for general,
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finite-time optimal control problems.

5. We provide an algorithm for determining the probability with which a black-
box controller is successively feasible on existing system hardware.

6. We provide an algorithm to determine a probabilistic upper bound on hardware-
specific controller runtimes.

Chapter Structure
First, Section 6.2 details our offline model augmentation approach addressing con-
tributions (1) and (2) detailed above. Second, Section 6.3 details the online version
of the same procedure, referencing contribution (3) in the prior section. Third and
finally, Section 6.4 details the application of percentile approaches to facilitate "op-
timal" input selection and guarantee generation for finite-time optimal controllers.
This references contributions (4)-(6) as mentioned in the prior section.

6.2 Offline Model Augmentation via Sim2Real Gap Calculation
Our method for sim2real gap quantification will express the identification of such a
gap as a convex optimization problem with (perhaps) infinite constraints, and we will
take a percentile approach to solve this problem. This approach will yield a robust
result—a large enough sim2real gap—that holds with some minimum probability.

Defining the Gap
First, we denote our true system via 𝑥 and our nominal model via 𝑥, i.e. ∀ 𝑘, 𝑗 =
0, 1, 2, . . . ,

True: 𝑥𝑘+1 = 𝑓 (𝑥𝑘 , 𝑢𝑘 ), 𝑥𝑘,𝑘+1 ∈ X, 𝑢𝑘 ∈ U,
Sim: 𝑥 𝑗+1 = 𝑓 (𝑥 𝑗 , �̂� 𝑗 ), 𝑥 𝑗 , 𝑗+1 ∈ X̂, �̂� 𝑗 ∈ Û.

(SYS)

As an example consistent with the demonstrations to follow, the true system could
be a quadruped with the representative nominal model a unicycle system.

To provide a method of comparing the evolution of the two systems in (SYS), we
will define two maps—𝑀𝑥 which projects the true system state 𝑥 to the model state
𝑥, and 𝑀𝑢 which extends the model input �̂� to the true system input 𝑢:

𝑀𝑥 : X → X̂, 𝑀𝑢 : Û × X → U. (MAPS)

These maps in (MAPS) let us formalize the gap we aim to identify between the two
systems. First, we assume that we can command an input 𝑢 to the true system by
prescribing an input �̂� that we would provide to our associated model. Then, we
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define via𝑂 an observation function which measures the projected true system state
𝑀𝑥 (𝑥𝑘 ) at some time-step 𝐾 , i.e., ∀ 𝑘 = 0, 1, . . . , 𝐾 ,

𝑥𝑘+1 = 𝑓 (𝑥𝑘 , 𝑀𝑢 (�̂�, 𝑥𝑘 )), 𝑂 (𝑥0, �̂�) = 𝑀𝑥 (𝑥𝐾). (OBS)

To put all these maps in the context of the quadruped/unicycle model example, the
underlying control loop operates at 1 kHz and provides a natural discrete abstraction
at that time step. Since, we desire our unicycle model to update at 10 Hz, 𝐾 = 100,
and we observe projected true system evolution every 10 Hz. 𝑀𝑥 is just the projection
of the quadruped state to its unicycle components. Likewise, 𝑀𝑢 is the underlying
control loop that runs at 1 kHz to realize the commanded forward walking speed
and rotation. While these maps seem abstract, we will provide examples in a section
to follow.

This observation map 𝑂 in (OBS) permits us to quantify a discrepancy between
model evolution and observed true system evolution. However, we only want to
make this comparison when the projection of the initial state 𝑀𝑥 (𝑥0) ∈ X̂—as
otherwise, the projected initial state is not addressed by our representative model.
This results in the following space definition and problem statement:

Π(𝑀𝑥) =
{
𝑥 ∈ X | 𝑀𝑥 (𝑥) ∈ X̂

}
(6.1)

Definition 24. Let 𝑂 be as defined in (OBS), 𝑓 ,X, Û be as defined in (SYS), and
Π(𝑀𝑥) be as defined in (6.1). The sim2real gap Λ ∈ R is such that,

Λ = sup
(𝑥0,�̂�)∈Π(𝑀𝑥)×Û

𝑂 (𝑥0, �̂�) − 𝑓 (𝑀𝑥 (𝑥0), �̂�)
 . (6.2)

Quantifying the Gap
We express identification of the sim2real gap Λ in (6.2) as an optimization problem:

Λ = argmin
𝑟∈R

𝑟, (6.3)

subject to 𝑟 ≥
𝑂 (𝑥0, �̂�) − 𝑓 (𝑀𝑥 (𝑥0), �̂�)

 ,
. . .∀ (𝑥0, �̂�) ∈ Π(𝑀𝑥) × Û

This problem is (likely) impossible to solve as posed, as we have no knowledge of
all the constraints. So, taking inspiration from the prior chapters, we aim instead
to find a "good" solution to (6.3) via a percentile approach. Such a solution will
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only hold with some minimum probability 𝜖 ∈ [0, 1). Although, we can make 𝜖
arbitrarily close to 1 with enough samples.

Description of our Approach: Our approach hinges on the ability to independently
draw state and input samples from a static distribution 𝜋 over the combined state and
input spaces X × Û. In the experimental demonstrations to follow, we will argue
and show evidence that our chosen method produces independent samples from an
unknown distribution 𝜋. However, the specifics of crafting such a distribution will
likely be different for different system/model pairs — this is where we anticipate a
large portion of future work in this vein to lie. So, for the moment, we will simply
assume the existence of such a distribution 𝜋 formalized as follows:

Definition 25. The comparison distribution 𝜋 maps subsets of the combined state
and model input space X × Û—as defined in (SYS)—to [0, 1] i.e. ∀ 𝐴 ⊆ X ×
Û, 𝜋(𝐴) ∈ [0, 1]. Furthermore, 𝜋 "covers" the space of states and inputs generating
constraints for (6.3), i.e., 𝜋

(
Π(𝑀𝑥) × Û

)
= 1.

Using this comparison distribution 𝜋, we can construct a scenario program for sets

of 𝑁 samples
{(
𝑥𝑙0, �̂�

𝑙
)}𝑁
𝑙=1

of state and input pairs (𝑥0, �̂�) distributed by 𝜋:

Λ∗𝑁 = argmin
𝑟∈R

𝑟, (6.4)

subject to 𝑟 ≥
𝑂 (𝑥 𝑗0, �̂�) − 𝑓 (

𝑀𝑥 (𝑥0), �̂� 𝑗
) ,

. . .∀ (𝑥 𝑗0, �̂�
𝑗 ) ∈

{(
𝑥𝑙0, �̂�

𝑙
)}𝑁
𝑙=1
.

The resulting solution Λ∗𝑁 approaches the true sim2real gap Λ as the number of
samples 𝑁 increases, as stated in the following theorem.

Theorem 13. Let Λ∗𝑁 be the solution to (6.4) with 𝑂 as defined in (OBS), 𝑓 as
defined in (SYS), and 𝜋 as defined in Definition 25. Then, ∀ 𝜖 ∈ [0, 1]

𝑆1 ≜ P𝜋
[
Λ∗𝑁 ≥

𝑂 (𝑥0, �̂�) − 𝑓 (𝑀𝑥 (𝑥0), �̂�)
] ,

P𝑁𝜋 [𝑆1 ≥ 1 − 𝜖] ≥ 1 − (1 − 𝜖)𝑁 .
In other words, Λ∗𝑁 is larger than the sim2real gap for any sampled state and input
pair (𝑥0, �̂�) from 𝜋 with minimum probability 1 − 𝜖 and confidence 1 − (1 − 𝜖)𝑁 .

Proof: This proof follows directly from Theorem 4, noting that the violation prob-
ability 𝑉 (Λ∗𝑁 ) = 1 − 𝑆1.

In other words, Theorem 13 states that the solution Λ∗𝑁 to (6.4) is a decent approxi-
mation of the sim2real gap Λ.
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Verifying against Uncertain Models
Now, we can leverage this approximate sim2real gap Λ∗𝑁 to facilitate controller
synthesis and verification in simulation. This section details those efforts.

Constructing a Valid Uncertain Model: To start, we can use the resulting proba-
bilistic sim2real gap Λ∗𝑁 from (6.4) to augment our nominal model 𝑥 in (SYS) and
define an uncertain system denoted via 𝑥. Specifically, we will first define a feasible
space of disturbances, with 2-norm ∥ · ∥:

𝐷 = {𝑑 ∈ R𝑛 | ∥𝑑∥ ≤ Λ∗𝑁 (as per (6.4))}, (6.5)

and use 𝐷 to define our uncertain system:

𝑥 𝑗+1 = 𝑓 (𝑥 𝑗 , �̂� 𝑗 ) + 𝑑 𝑗 , 𝑑 𝑗 ∼ U[𝐷], (6.6)

with U[𝐷] the uniform distribution over 𝐷. If we define a one-step reachable space
provided a model state and input (𝑥, �̂�) ∈ X̂ × Û,

R(𝑥, �̂�) =
{
𝑓 (𝑥, �̂�) + 𝑑, ∀ 𝑑 ∈ 𝐷

}
, (6.7)

then we have the following result regarding the evolution of the true system and this
reachable space.

Corollary 19. Let 𝑂 be as defined in (OBS), R be as defined in (6.7), 𝑀𝑥 be as
defined in (MAPS), 𝜋 be as per Definition 25, and Λ∗𝑁 be as defined in (6.4). Then,
∀ 𝜖 ∈ [0, 1],

𝑆2 ≜ P𝜋 [𝑂 (𝑥0, �̂�) ∈ R(𝑀𝑥 (𝑥0), �̂�)] ,
P𝑁𝜋 [𝑆2 ≥ 1 − 𝜖] ≥ 1 − (1 − 𝜖)𝑁 .

In other words, the probability that the observed evolution of the true system𝑂 (𝑥0, �̂�)
lies in the reachable space of our uncertain model R(𝑀𝑥 (𝑥0), �̂�) is at least 1 − 𝜖
with confidence 1 − (1 − 𝜖)𝑁 .

Proof: This is a direct application of Theorem 13, as for any state and input pair
(𝑥0, �̂�) ∈ X × Û, Λ∗𝑁 ≥

𝑂 (𝑥0, �̂�) − 𝑓 (𝑀𝑥 (𝑥0), �̂�)
 iff 𝑂 (𝑥0, �̂�) ∈ R(𝑀𝑥 (𝑥0), �̂�),

by definition of R in (6.7) and 𝐷 in (6.5).

In other words, Corollary 19 tells us that even though a single step of our uncertain
model (6.6) may not be an accurate representation of our true system’s evolution,
the space of all possible single-step evolutions does, to high probability, contain the
evolution of our true system at the next time-step.
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For controller synthesis and verification then, Corollary 19 tells us that our uncertain
model is a decent approximator of true system behavior. Therefore, any controller
that exhibits good performance on the uncertain model, should likewise exhibit
good performance on the true system. Quantification of "good" performance and
verifying a controller’s ability to realize "good" performance is the subject of the next
subsection, which follows from the risk-aware probabilistic verification procedure
detailed in Section 5.2 in Chapter 5.

Verifying against Safety Metrics: First, provided a parameterized controller Û :
X̂ × Θ → Û with parameter 𝜃 ∈ Θ and noise sequence 𝜉 where 𝜉 𝑗 = 𝑑 ∼ U[𝐷],
we define 𝜙 to be the closed-loop trajectory to our uncertain model (6.6), i.e. with
𝐽 > 0 and 𝑥0 = 𝑥0,

𝜙Û(𝑥0, 𝜉, 𝜃, 𝐽) = 𝑥𝐽 , 𝑥 𝑗+1 = 𝑓

(
𝑥 𝑗 , Û(𝑥 𝑗 , 𝜃)

)
+ 𝜉 𝑗 . (6.8)

Second, inspired by traditional safety measures, e.g. barrier functions over the
system state, we define safety metrics h to be functions over system trajectories that
only output positive numbers for trajectories exhibiting the desired safe behavior:

h
(
𝜙Û (𝑥0, 𝜉, 𝜃)

)
≥ 0 ⇐⇒

𝜙Û (𝑥0, 𝜉, 𝜃) exhibits

desired safe behavior.
(6.9)

Examples of safety metrics include robustness measures from Signal Temporal
Logic [19] or the minimum value of a barrier function over a finite-time hori-
zon [145].

Ideally, we would like for our controller Û to only ever realize trajectories 𝜙Û(𝑥0, 𝜉, 𝜃)
with a positive evaluation under this safety metric h. To check for this positivity,
we will implement a value-at-risk approach to robustness estimation, as detailed in
Section 5.2. Specifically, we will first draw (𝑥0, 𝜃) uniformly from X̂ × Θ. Then,
we will evaluate the safety of one trajectory emanating from that initial condition
𝑥0 with that parameter 𝜃, i.e. record 𝑠 = h

(
𝜙Û (𝑥0, 𝜉, 𝜃)

)
for some valid noise-

sequence 𝜉 1. Repeating this procedure 𝑁 times to take 𝑁 such samples 𝑠𝑖 and create
the dataset {𝑠𝑖}𝑁𝑖=1, we then define 𝑠∗

𝑁
= min{𝑠𝑖}𝑁𝑖=1. Then, via Theorem 6, we have

the following result:

Corollary 20. Let the uncertain system trajectory 𝜙Û(𝑥0, 𝜉, 𝜃) be as defined in (6.8),
the safety metric h be as defined in (6.9), {𝑠𝑖}𝑁𝑖=1 be the safety values of 𝑁 sampled

1Note that according to the general risk-aware pipeline presented in Section 5.2, taking samples
𝑠 in this fashion corresponds to taking a sample of the holistic system robustness measure 𝑅 as per
Definition 22.
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trajectories 𝜙Û(𝑥0, 𝜉, 𝜃) with initial conditions and parameters (𝑥0, 𝜃) drawn from
U[X̂×Θ], and 𝑠∗

𝑁
= min{𝑠𝑖}𝑁𝑖=1. Then,∀ 𝜖 ∈ [0, 1] and abbreviating U[X̂×Θ] = 𝜋0,

𝑆3 ≜ P𝜋0, 𝜉 𝑗∼U[𝐷] ∀ 𝑗=1,2,...
[
𝑠 ≥ 𝑠∗𝑁

]
,

P𝑁
𝜋0, 𝜉 𝑗∼U[𝐷] ∀ 𝑗=1,2,... [𝑆3 ≥ 1 − 𝜖] ≥ 1 − (1 − 𝜖)𝑁 .

In other words, the probability that 𝑠∗
𝑁

will be smaller than any sample-able safety
value 𝑠 is at minimum 1 − 𝜖 with confidence 1 − (1 − 𝜖)𝑁 .

Proof: This is an application of Theorem 6.

This completes the theoretical statement of our proposed pipeline for safety-critical
controller verification via sim2real gap quantification. For the intermediate syn-
thesis step, one can use any method they like, e.g. robust control methods [178],
[179], input-to-state-stable Lyapunov or barrier functions [146], [164], [180], [181],
etc. Practitioners could even parameterize controllers and implement the risk-aware
synthesis step outlined in Section 5.3. The emphasis here is on verifying the result-
ing controller against the uncertain model and using Corollary 20 to discriminate
between better controllers (those with a higher minimum probability of realizing
safe trajectories) and worse controllers (those with a lower minimum probability).
By Theorem 13 and Corollary 20 we know that our uncertain model is a decent
representor of system behavior. Therefore, those controllers with a high probability
of exhibiting desired safe behavior in the uncertain simulator should likely have a
high probability of exhibiting safe behavior on hardware. We will demonstrate this
procedure on two hardware platforms: the Robotarium [144] and a quadruped.

Experimental Demonstrations
We will describe our procedure’s implementation on both systems simultaneously,
as we aim to represent both systems with the same model abstraction, a unicycle:

𝑥𝑘+1 = 𝑓 (𝑥𝑘 , 𝑢𝑘 ), 𝑥𝑘,𝑘+1 ∈ X, 𝑢𝑘 ∈ U, 𝑡𝑘+1 − 𝑡𝑘 = Δ𝑡

𝑥 𝑗+1 = 𝑥 𝑗 + Δ𝑡

cos (𝑥 [3]) 0
sin (𝑥 [3]) 0

0 1

 �̂� 𝑗 , 𝑥 𝑗 , 𝑗+1 ∈ X̂, �̂� 𝑗 ∈ Û.
The parameters for each system are as follows (Robotarium (R) and Quadruped (Q)):

(R) X̂ = [−1.6 × 1.6] × [−1, 1] × [0, 2𝜋]; Û = [−0.2, 0.2] × [−𝜋, 𝜋]; Δ𝑡,Δ𝑡 =
0.033.
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Figure 6.1: All data for our experimental pipeline. (Top Left) Data for calculation of
a probabilistic sim2real gap Λ∗𝑁 for the Robotarium. Per Theorem 13, we expect that
after observing 600 randomly sampled errors, our reported sim2real gapΛ∗𝑁 = 0.198
is greater than any sample-able gap with minimum probability 99.5% with 95%
confidence. Comparing Λ∗𝑁 to the true cutoff after taking 2400 samples verifies this
inequality and supports Theorem 13. (Top Right) Data for sim2real gap calculation
for the quadruped. True cutoffs are not shown as we did not exhaustively sample gaps.
(Bottom) Verification data for both controllers against their respective uncertain
models. Note that in both cases, we sampled 300 trajectories to calculate a minimum
safety value 𝑠∗

𝑁
which, according to Corollary 20, should be less than any sample-

able safety value with minimum probability 99% with 95% confidence. Taking
20000 safety samples and calculating the true cutoffs against the sampled data
shows that this inequality holds verifying Corollary 20.

(Q) X̂ = [−2.5, 2.5]2× [0, 2𝜋]; Û = [−0.15, 0.15] × [−0.3, 0.3]; Δ𝑡 = 0.001, and
Δ𝑡 = 0.1.

For both systems, we can read true state data 𝑥 to recover the idealized unicycle state
𝑥. Therefore, 𝑀𝑥 is just a projection for both systems. The Robotarium permits
unicycle-like commands to their agents resulting in 𝑀𝑢 = 𝐼2×2. On the other hand,
the quadruped has a lower-level walking controller that operates at 1 kHz to realize
commanded forward walking and yaw angular velocities [182]. As a result, 𝑀𝑢 for
the quadruped is this pre-built walking controller. Finally, our observation maps:

(R) 𝑂𝑅 (𝑥0, �̂�) = 𝑀𝑥 (𝑥1) - read the projected true state after one time-step, and,

(Q) 𝑂𝑄 (𝑥0, �̂�) = 𝑀𝑥 (𝑥100) - read the projected true state after 100 time-steps.

Sampling from the Comparison Distribution: To calculate the discrepancy be-
tween the system and our chosen model, we will sample from the comparison
distribution 𝜋 (Definition 25) with the steps listed below:
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Figure 6.2: As part of our risk-aware synthesis pipeline, we verify controllers
against an uncertain model. Shown above is an example randomized test scenario
for controller development. The test scheme remains the same for the two different
systems (Robotarium and quadruped) as their controller objectives are similar.

(𝑥0) We uniformly randomly sample a planar position 𝑥 from X̂. Then, we send
both agents to the waypoint 𝑥 using a Lyapunov controller built on top of the
input maps 𝑀𝑢 for both systems. Once the system reaches a ball of 0.1 m
around the desired waypoint, we stop and record the resulting state as 𝑥0.

(�̂�) We uniformly randomly sample an input �̂� from Û. Then, we command the
system with this input for 50 true-system time-steps for the Robotarium and
1000 true-system time-steps for the quadruped. We command this input for
an extended period to approximate the randomized initial location that we had
before sampling 𝑥0 so that subsequent samples drawn from this procedure are
drawn effectively independently.

Probabilistic Sim2Real Gap Calculation: For the Robotarium, we collected 2400
observations and used the first 600 to calculate constraints for (6.4). This provided
a sim2real gap constant Λ∗𝑁 = 0.198 which, according to Theorem 13, is greater
than any sampled sim2real gap with minimum probability 99.5% with minimum
confidence 95%. Figure 6.1 (a) shows the probabilistic sim2real gap Λ∗𝑁 overlaid on
a histogram of sampled sim2real gaps to approximate the underlying distribution.
Notice that since Λ∗𝑁 is greater than the 99.5% cutoff, this corroborates Theorem 13.
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Figure 6.3: Since we verified our controllers against the uncertain model produced
by our procedure, we expect that the closed-loop hardware systems should realize
similar, satisfactory behavior. Indeed, for the first 10 runs on the quadruped and the
first 40 runs on the Robotarium, the agents were able to avoid static/moving obstacles
and navigate to their goals successfully, despite a wide variety of randomized test
scenarios. The first four runs for both systems are depicted above. This ability
to synthesize and verify controllers in simulation, with confidence that similar
behaviors will manifest in the true system without requiring additional testing, is
the main benefit of our proposed approach. Paths for all tests are shown in orange,
and the quadruped is highlighted in white. The multi-level control architecture is
depicted in Figure 6.2.

Figure 6.1 (b) shows similar results for the quadruped after taking 100 observations.
The true cutoff value is not shown as we did not exhaustively sample observations
to approximate the underlying distribution. Although, with Theorem 13 and the
Robotarium results, we are confident that the calculated sim2real gap is greater than
any sample-able gap with minimum probability 97% and with confidence 95%.

Safety-Critical Controller Verification: Figure 6.2 shows the general controller
architecture for which we aim to identify parameters such that the resulting controller
�̂� has a high probability of rendering satisfactory behavior on the uncertain model.
To synthesize such a controller, we use a safety metric h as per (6.9) that outputs
−1 if the agent crashes into either a static or moving obstacle and outputs the
Manhattan distance traveled along the shortest feasible path to a goal—the orange
line in Figure 6.2—if it successfully avoids crashes within 200 time-steps. We do
not formally define this metric as it is not central to the paper’s concept.

For both systems, we iterated through at least 10 different sets of controllers Û with
parameter spaces, Θ defined as follows:

(R) All possible setups of 10 static obstacles, 3 goals, and 1 initial condition cell
in an 8 × 5 grid such that a feasible path exists between the initial cell and
at least one goal. This is in addition to the starting locations and movement
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Figure 6.4: Our procedure detailed in Section 6.2 increases the confidence that
those controllers that pass the verification step will exhibit similar performance on
hardware as they did in simulation, even if we did not directly verify the controller on
hardware. This increased confidence arises through our verification of the uncertain
model, whose reachable set we prove encapsulates true system evolution to high
probability. This can be seen in the figures above, as the quadruped’s evolution
(blue) lies within its associated uncertain simulator’s predictions (gold).

directions of 3, uncontrolled moving obstacles.

(Q) All possible setups of 5 static obstacles, 1 goal, and 1 initial condition cell
in a 5 × 5 grid such that a feasible path exists between the initial cell and the
goal.

Once we found controllers that, according to Corollary 20, had a minimum satisfac-
tion probability of at least 99% with 95% confidence, we implemented these con-
trollers Û𝑅, Û𝑄 on their respective systems, the Robotarium and the quadruped. In
each verification step, we evaluated the controllers under 500 randomized scenarios—
500 test scenarios we would have otherwise had to run on real systems were we not
using our uncertain model to approximate true-system behavior. Figures 6.1 (c) and
(d) show the verification data for the finalized controllers Û𝑅, Û𝑄 , respectively, with
the distribution approximated by evaluating 20000 randomized scenarios.

According to our pipeline then, for the fact that we verified our controllers—
Corollary 20—against an uncertain model which has a high probability of rep-
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resenting true system behavior—Theorem 13 and Corollary 19—these controllers
should similarly exhibit satisfactory behavior on their true systems when imple-
mented. Figure 6.3 depicts the first four tests undergone by both systems—they
completed their tasks in these tests as expected. We ran 40 more randomized tests
for the Robotarium, drawing from the same parameter spaceΘ as described earlier—
all successes. Similarly, we ran 10 more tests for the Quadruped drawing from its
respective parameter spaceΘ—all successes. We expected this level of performance
since the controllers exhibited a high probability of realizing desired safe behaviors
on their respective uncertain models that encapsulated true system behavior. Ad-
ditionally, we can see that encapsulation of true system behavior in Figure 6.4, as
the quadruped’s trajectory (blue) lies within the gold simulation prediction regions.
Furthermore, we only had to run tests on hardware to calculate the sim2real gap and
did not have to run any more tests to make these statements on system performance.

6.3 Online Disturbance Model Learning
Whereas the prior section detailed an offline method for uncertain model generation
and controller synthesis, this section offers an online method to learn a disturbance
model during operation, that can be leveraged to robustify controllers using existing
input-to-state-stable and input-to-state-safe techniques. Succinctly, we utilize a
scenario approach with a bounded variance assumption to identify points on a
Surface-at-Risk — a concept we will define. Then, we fit, via Gaussian Process
Regression (GPR), a model of the Surface-at-Risk based on these sampled points.
As such, we will first briefly overview Gaussian Process Regression.

A Brief Overview of Gaussian Process Regression
Let 𝑓 : 𝑋 → R be an unknown function that we aim to represent by taking
noisy samples 𝑦 of 𝑓 at points 𝑥 ∈ 𝑋 , where the noise 𝜉 is assumed to be sub-
Gaussian [183]–[185]. Let X = {𝑥𝑖}𝑁𝑖=1 be a set of 𝑁 points 𝑥 ∈ 𝑋 and Y be the
corresponding set of noisy observations, i.e. Y = {𝑦𝑖 = 𝑓 (𝑥𝑖) + 𝜉, ∀ 𝑥𝑖 ∈ X}.
Furthermore, let 𝑘 : 𝑋 × 𝑋 → R be a positive-definite kernel function. Then,
a gaussian process is uniquely defined by its mean function 𝜇 : 𝑋 → R and its
variance function 𝜎 : 𝑋 → R. These functions are defined as follows, with 𝑘𝑁 (𝑥) =
[𝑘 (𝑥, 𝑥𝑖)]𝑥𝑖∈X, K = [𝑘 (𝑥𝑖, 𝑥 𝑗 )]𝑥𝑖 ,𝑥 𝑗∈X, 𝑦1:𝑁 = [𝑦𝑖]𝑦𝑖∈Y, and 𝜆 = (1 + 2

𝑁
) [184]:

𝜇𝑁 (𝑥) = 𝑘𝑁 (𝑥)𝑇 (K + 𝜆𝐼𝑁 )−1 𝑦1:𝑁 , 𝜎𝑁 (𝑥) = 𝑘𝑁 (𝑥, 𝑥), (6.10)

𝑘𝑁 (𝑥, 𝑥′) = 𝑘 (𝑥, 𝑥′) − 𝑘𝑁 (𝑥)𝑇 (K𝑁 + 𝜆𝐼)−1 𝑘𝑁 (𝑥′).
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Figure 6.5: Example Surfaces-at-Risk at risk-levels 𝜖 ∈ [0.1, 0.05, 0.01] for a
Weiner Process (Left) and Binomial Process (Right). Distributions for the indexed
scalar random variables 𝑆𝑥 comprising each process 𝑆 are provided on the axes.
Sample realizations of the stochastic processes are shown in black, with Surfaces-
at-Risk shown via colored lines.

Lastly, each kernel function has a space of functions it can reproduce to point-wise
accuracy, it’s Reproducing Kernel Hilbert Space (RKHS). Under the assumption
that the function to-be-fitted 𝑓 has bounded norm in the RKHS of the chosen kernel
𝑘 , GPR guarantees high-probability representation of 𝑓 as formalized in the theorem
below, taken from [184]:

Theorem 14. Let 𝑓 : 𝑋 → R, X = {𝑥𝑖}𝑁𝑖=1 be a set of 𝑁 points 𝑥 ∈ 𝑋 , Y = {𝑦𝑖 =
𝑓 (𝑥𝑖) + 𝜉}𝑥𝑖∈X be a set of noisy observations 𝑦𝑖 of 𝑓 (𝑥𝑖) with 𝑅 sub-gaussian noise
𝜉, and 𝑘 : 𝑋 × 𝑋 → R be a positive-definite kernel function. If 𝑓 has 𝐵-bounded
RKHS norm for some 𝐵 > 0, i.e. ∥ 𝑓 ∥𝑅𝐾𝐻𝑆 ≤ 𝐵, then, with 𝜇𝑁 and 𝜎𝑁 as per (6.10)
and with minimum probability 1 − 𝛿,

|𝜇𝑁 (𝑥) − 𝑓 (𝑥) | ≤
©«
𝐵 + 𝑅

√√√√√
2 ln

√︂
det

(
(1 + 2

𝑁
)𝐼𝑁 + K𝑁

)
𝛿

ª®®®®®¬
𝜎𝑁 (𝑥), ∀ 𝑥 ∈ 𝑋.

Surfaces-at-Risk for Scalar Stochastic Processes
This section formally defines a Surface-at-Risk for a scalar stochastic process — the
specific structure we aim to fit via GPR. Given a probability space (Ω, F , P) with Ω

a sample space, F a 𝜎-algebra over Ω defining events, and P a probability measure,
we define a scalar stochastic process 𝑆 over the indexed space X as a collection
of scalar random variables 𝑆𝑥 : Ω → R, i.e. 𝑆 = {𝑆𝑥}𝑥∈X . Here, each scalar
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random variable 𝑆𝑥 has a (perhaps) different distribution 𝜋𝑥 : R→ [0, 1] such that
probability of 𝑆𝑥 taking values in 𝐴 ⊆ R, i.e. P𝜋𝑥 [𝑆𝑥 ∈ 𝐴 ⊆ R], is well-defined.

Then, the Surface-at-Risk for a scalar stochastic process is a similar collection of
the Values-at-Risk of the underlying scalar random variables constituting the scalar
stochastic process. Note that Value-at-Risk was defined in a prior chapter (see
Definition 15 in Chapter 4).

Definition 26. The Surface-at-Risk level 𝜖 ∈ [0, 1] of a scalar stochastic process 𝑆
indexed by the set X is the indexed collection of the Values-at-Risk level 𝜖 of each
random variables 𝑆𝑥 comprising 𝑆 (Value-at-Risk is defined in Definition 15):

SaR𝜖 (𝑆, 𝑥) = VaR𝜖 (𝑆𝑥).

Figure 6.5 shows a few examples of Surfaces-at-Risk for varying risk-levels 𝜖 overlaid
on realizations of common stochastic processes.

The Risk-Aware Disturbance-Norm Identification Problem
From a risk-aware standpoint, we aim to identify a Surface-at-Risk as per Defi-
nition 26 for a scalar stochastic process 𝑆 indexed over the model state-space X̂.
Sample realizations of this process correspond to disturbance norms the system
might experience at any given model state 𝑥 ∈ X̂. To formally state this problem, we
will first denote our true system via 𝑥 and sim model via 𝑥, i.e. ∀ 𝑘, 𝑗 = 0, 1, 2, . . . ,
(perhaps) different state and input spaces, and process noise 𝜉 with (unknown and
perhaps) state-dependent distribution 𝜋. Note that this is the same true and model
system discrepancy studied in the offline version of this problem in Section 6.2:

True: 𝑥𝑘+1 = 𝑓 (𝑥𝑘 , 𝑢𝑘 ) + 𝜉, 𝑥𝑘 ∈ X, 𝑢𝑘 ∈ U, 𝜉 ∼ 𝜋,
Sim: 𝑥 𝑗+1 = 𝑓 (𝑥 𝑗 , �̂� 𝑗 ), 𝑥 𝑗 ∈ X̂, �̂� 𝑗 ∈ Û.

(SYS)

As an example consistent with the demonstration to follow, the true system would
be a drone, with our reduced-order simulator model a single integrator. The true
state would be the drone’s position and orientation, and the true input would be the
rotor torques. Meanwhile, the model state would be the drone’s position in 3-space,
and the model input would be the desired velocity.

To identify the discrepancy between the systems in (SYS), we define two maps: 𝑀𝑥 ,
which projects the true state 𝑥 to the model state 𝑥, and 𝑀𝑢, which extends the model
input �̂� to the true input 𝑢, e.g. 𝑀𝑢 provides rotor torques to realize the desired
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velocity in 3-space. Note, these are the same maps as defined in the prior section:

𝑀𝑥 : X → X̂, 𝑀𝑢 : Û × X → U. (MAPS)

To note, we only assume the existence of these maps and the ability to use them,
we do not assume that they are unique, we know their analytic form, etc. To put
these maps in the context of our drone example, the drone’s underlying controller
operates at 1 kHz making the true-system time step 1 ms. Since we aim to provide
model inputs at 50 Hz, 𝐾 = 20. 𝑀𝑥 is just the projection of our drone’s position in 3-
space, and 𝑀𝑢 is the on-board controller that takes in a commanded 3-space velocity
— model input �̂� — and updates rotor speeds at 1 kHz to achieve that velocity.
These maps will be further explained in an example section to follow. Finally, we
assume that after some amount of true system time-steps 𝐾 > 0, we can observe
projected true system evolution. We denote 𝐾 as the time-dilation parameter and
the observation function 𝑂 is defined as follows:

𝑥𝑘+1 = 𝑓 (𝑥𝑘 , 𝑀𝑢 (�̂�, 𝑥𝑘 )), 𝑂 (𝑥0, �̂�) = 𝑀𝑥 (𝑥𝐾). (OBS)

These maps let us define the projected evolution of our true system, i.e. evolution
of 𝑥 𝑗 = 𝑀𝑥 (𝑥𝐾 𝑗 ), when driven by a feedback controller 𝑈 : X̂ → Û. Comparing
projected and sim model evolution results in the discrepancy 𝑑 we aim to learn:

𝑥 𝑗+1 = 𝑓 (𝑀𝑥 (𝑥𝐾 𝑗 ),𝑈 (𝑀𝑥 (𝑥𝐾 𝑗 )) + 𝑑,
𝑑 = 𝑂 (𝑥𝐾 𝑗 ,𝑈 (𝑀𝑥 (𝑥𝐾 𝑗 )) − 𝑓 (𝑀𝑥 (𝑥𝐾 𝑗 ),𝑈 (𝑀𝑥 (𝑥𝐾 𝑗 )),
𝛿 = ∥𝑑∥, and is a random sample with distribution 𝜋𝑥 : R→ [0, 1] . (6.11)

Then, inspired by the input-to-state-safe barrier and input-to-state-stable Lyapunov
works whose robust controllers only require information on the 2-norm of this
disturbance 𝑑, we aim to learn a probabilistic upper bound on ∥𝑑∥ by taking samples
of indexed random variables 𝑆𝑥 comprising a disturbance-norm stochastic process
𝑆 indexed by X̂ as in (SYS).

Definition 27. The disturbance-norm stochastic process 𝑆 = {𝑆𝑥}𝑥∈X̂ where sam-
ples of each random variable 𝑆𝑥 correspond to norms 𝛿 of disturbances 𝑑 as defined
in equation (6.11). The variability in norm samples 𝛿 arises through the assumed
process noise 𝜉 in the true system dynamics in (SYS).

Remark on Residuals: If we only consider a deterministic discrepancy between
the true and sim models, then the disturbances 𝑑 as per (6.11) would correspond to
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residual dynamics, and our procedure would fit a surface to the norm of the residual
dynamics (learning residual dynamics has a well-studied history, see [186]–[189]
and citations within). The discrepancy between these approaches and ours is that
we also learn a probabilistic bound on the norm of any stochastic, model-state-
dependent disturbances that affect the system during operation. This is why we
represent the discrepancies as a stochastic process and fit a Surface-at-Risk, which
provides a natural way to reason about risk-aware disturbance rejection in a context
including model errors and stochastic uncertainty.

Furthermore, we assume our disturbance-norm stochastic process is indexed over
the model state space X̂ as opposed to the true state space X as we only assume
the ability to measure the projected state 𝑥 𝑗 = 𝑀𝑥 (𝑥𝐾 𝑗 ). Therefore, we can only
correspond sampled disturbance norms 𝛿 to points in the projected state space X̂.
Then, our goal is to identify a "close" upper bound to the Surface-at-Risk for this
disturbance-norm stochastic process at some risk-level 𝜖 ∈ [0, 1].

Problem 6. Identify an upper bound to the Surface-at-Risk at some risk-level 𝜖 ∈
[0, 1] for the disturbance-norm stochastic process 𝑆 as per Definition 27 with
Surfaces-at-Risk as defined in Definition 26. Specifically, identify an estimate SR𝜖
such that,

SR𝜖 (𝑆, 𝑥) ≥ SaR𝜖 (𝑆, 𝑥), ∀ 𝑥 ∈ X̂. (6.12)

While the aforementioned upper bound SR𝜖 could be arbitrarily large and sat-
isfy (6.12), we aim to find a "close" upper bound to the true Surface-at-Risk level 𝜖
to facilitate risk-aware control.

Fitting a Disturbance-Norm Surface-at-Risk
For identifying such an upper bound SR𝜖 , we first note that even for stochastic
processes whose sample realizations are non-differentiable, their Surfaces-at-Risk
are relatively smooth — see Figure 6.5 for examples. Intuitively, we expect the
disturbance norms 𝛿𝑖, 𝛿 𝑗 at "close" model states 𝑥𝑖, 𝑥 𝑗 ∈ X̂ are similarly "close":

Assumption 13. For the disturbance-norm stochastic process 𝑆 in Definition 27, the
Surface-at-Risk at a given risk-level 𝜖 ∈ [0, 1] has bounded discrepancy. In other
words, ∃ 𝛼, 𝛽 ∈ R≥0 such that,

∀ 𝑥𝑖, 𝑥 𝑗 ∈ X̂, ∥𝑥𝑖 − 𝑥 𝑗 ∥ ≤ 𝛼 =⇒ | SaR𝜖 (𝑆, 𝑥𝑖) − SaR𝜖 (𝑆, 𝑥 𝑗 ) | ≤ 𝛽.



114

Notably, this assumption only implies a bounded discrepancy, and not continuity,
e.g. a bounded piecewise continuous function would have bounded variance as per
our assumption. We will verify that this assumption holds for the data set we collect
in the experimentation section to follow.

Second, we need to take (perhaps noisy) unbiased samples of SR𝜖 (𝑆, 𝑥) for a given
model state 𝑥 ∈ X̂. By equation (6.12), SR𝜖 (𝑆, 𝑥) ≥ VaR𝜖 (𝑆𝑥), and we can define
one sample 𝛿 𝑗 of 𝑆𝑥 𝑗 as follows, where𝑂 is as per (OBS), and 𝑀𝑥 is as per (MAPS):

𝛿 𝑗 = ∥𝑂 (𝑥𝐾 𝑗 ,𝑈 (𝑀𝑥 (𝑥𝐾 𝑗 )) − 𝑓 (𝑀𝑥 (𝑥𝐾 𝑗 ),𝑈 (𝑀𝑥 (𝑥𝐾 𝑗 ))∥, 𝑥 𝑗 = 𝑀𝑥 (𝑥𝐾 𝑗 ). (6.13)

Then, we can group multiple samples 𝛿 𝑗 for sequential model states visited during
operation, i.e. 𝛿 𝑗 , 𝛿 𝑗+1, . . . for 𝑥 𝑗 , 𝑥 𝑗+1, . . . to produce an upper bound to at least one
Value-at-Risk level 𝜖 of a sampled random variable, i.e. VaR𝜖 (𝑆𝑥 𝑗 ),VaR𝜖 (𝑆𝑥 𝑗+1), . . . .
To do so, we require the following theorem, stated for 𝑁 scalar random variables 𝑋
with (perhaps) different distributions 𝜋.

Theorem 15. Let {𝑋𝑖}𝑁𝑖=1 be a collection of 𝑁 scalar random variables with (per-
haps) different distributions {𝜋𝑖}𝑁𝑖=1, and let {𝑥𝑖}𝑁𝑖=1 be a set of 𝑁 samples of these
random variables, one sample per each random variable, i.e. 𝑥𝑖 is a sample of 𝑋𝑖.
Then, for any 𝜖 ∈ [0, 1], the probability that at least one sample 𝑥ℓ ∈ {𝑥𝑖}𝑁𝑖=1 is
greater than the Value-at-Risk level 𝜖 of its corresponding random variable 𝑋ℓ is at
least 1 − (1 − 𝜖)𝑁 , i.e. with VaR as per Definition 15 and ∀ 𝜖 ∈ [0, 1],

P𝜋1,𝜋2,...,𝜋𝑁

[
∃ 𝑥ℓ ∈ {𝑥𝑖}𝑁𝑖=1 s. t. 𝑥ℓ ≥ VaR𝜖 (𝑋ℓ)

]
≥ 1 − (1 − 𝜖)𝑁 .

Proof: Consider a random variable 𝑋ℓ ∈ {𝑋𝑖}𝑁𝑖=1. The probability of taking a
sample 𝑥ℓ of 𝑋ℓ such that 𝑥ℓ ≥ VaR𝜖 (𝑋ℓ) is less than or equal to 𝜖 by Definition 15.
The same line of reasoning holds ∀ 𝑋ℓ ∈ {𝑋𝑖}𝑁𝑖=1. As such, the probability that no
sample 𝑥ℓ ∈ {𝑥𝑖}𝑁𝑖=1 is greater than the corresponding Value-at-Risk level 𝜖 is less
than or equal to (1 − 𝜖)𝑁 , yielding our result.

Our procedure for generating unbiased samples of the upper bound SR𝜖 stems
directly from Theorem 15 and Assumption 13. First, we let the system evolve
for NRV model time-steps and collect one norm sample 𝛿 𝑗 per model state 𝑥 𝑗
visited during operation. This norm sample 𝛿 𝑗 is calculated as per (6.13). Second,
Theorem 15 guarantees that the largest norm sample 𝛿∗𝑗 is greater than the Value-at-
Risk level 𝜖 for its corresponding indexed random variable 𝑆𝑥∗

𝑗
with some minimum

probability. Third, if all norm samples were drawn from indexed random variables
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Algorithm 1 Fitting a Disturbance-Norm Surface-at-Risk
Data: 𝛼, 𝛽 for Assumption 13, an integer NRV > 0 for Theorem 15 corresponding

to the number of random variables to sample, time-step dilation parameter
𝐾 > 0 between true system evolution and model evolution as per (OBS), and
𝑘 : X̂ × X̂ → R a kernel function

1 Initialize: s = 0, X = [], Y = []
2 References: Disturbance Norm samples 𝛿 𝑗 as per (6.13) and projector 𝑀𝑥 as

per (MAPS)
3 while True do
4 Initialize empty data-set, i.e. Ds = [ ]
5 for 𝑗 = NRV · s,NRV · s+1, . . . ,NRV(s+1) − 1 do
6 Collect state-indexed disturbance norm samples, i.e. Ds ← Ds ∪ (𝛿 𝑗 , 𝑥 𝑗 =

𝑀𝑥 (𝑥𝐾 𝑗 ))
7 end
8 Augment GP state dataset with Ds: X← X∪ 𝑥NRV (s+1)−1
9 Augment GP norm dataset with Ds: Y← Y∪ max{𝛿ℓ ∈ D} + 𝛽

10 Fit 𝜇s, 𝜎s as per (6.10) with data sets X,Y. s++
11 end

𝑆𝑥 𝑗 whose indices 𝑥 𝑗 were "close", i.e. ∥𝑥𝑠 − 𝑥𝑟 ∥ ≤ 𝛼 ∀ 𝑥𝑟 ≠ 𝑥𝑠 ∈ {𝑥 𝑗+𝑖}𝑁−1
𝑖=0 and

for some 𝛼 > 0, we can use Assumption 13 to augment the largest norm sample
𝛿∗𝑗 by a constant 𝛽 > 0. The sum is, with minimum probability 1 − (1 − 𝜖)𝑁 , an
unbiased, non-noisy sample of SR𝜖 (𝑆, 𝑥 𝑗 ). Algorithm 1 formalizes this procedure
and our main theoretical result follows.

Theorem 16. Let 𝛼, 𝛽,NRV, s, 𝜇s, 𝜎s, and 𝑘 be as defined in Algorithm 1, let 𝐵 > 0,
let SaR be the Surface-at-Risk measure as per Definition 26 for some risk-level
𝜖 ∈ [0, 1], let 𝑆 be the disturbance-norm stochastic process as per Definition 27,
and let Assumption 13 hold for each data set Ds in lines 5-7 of Algorithm 1 with
respect to the given parameters 𝛼, 𝛽. If ∥ SR𝜖 (𝑆)∥𝑅𝐾𝐻𝑆 ≤ 𝐵, then with minimum
probability

(
1 − (1 − 𝜖)NRV

)s the following holds ∀ 𝑥 ∈ X̂ and ∀ s = 1, 2, . . . :

|𝜇s(𝑥) − SR𝜖 (𝑆, 𝑥) | ≤ 𝐵𝜎s(𝑥), 𝜇s(𝑥) + 𝐵𝜎s(𝑥) ≥ SaR𝜖 (𝑆, 𝑥).

Proof: First, by the assumptions above, we know that for each data set Ds in
lines 5-7 of Algorithm 1, we have taken one sample 𝛿 𝑗 of NRV (potentially) different
random variables 𝑆𝑥 𝑗 . By Theorem 15, we know that with minimum probability
1 − (1 − 𝜖)NRV , the maximum sample 𝛿∗𝑗 ≜ max{𝛿ℓ ∈ D} is greater than the
Value-at-Risk of its corresponding random variable VaR𝜖 (𝑆𝑥∗

𝑗
) (VaR is defined in

Definition 15). Since we assume Assumption 13 holds for each such set of random
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variables, then we know that with minimum probability 1 − (1 − 𝜖)NRV , the sum
𝛿∗𝑗 +𝛽 is greater than the value-at-risk level 𝜖 of any sampled random variable, i.e.
the sum 𝛿∗𝑗 +𝛽 is a non-noisy estimate of SR𝜖 (𝑆, 𝑥), ∀ 𝑥 ∈ Ds. Hence, repeating
this same argument for each data point in X,Y and setting 𝑅 = 0, as each sampled
point is a non-noisy sample of our upper-bounding surface, we recover the results
of Theorem 14 with minimum probability (1 − (1 − 𝜖)NRV)s:

|𝜇s(𝑥) − SR𝜖 (𝑆, 𝑥) | ≤ 𝐵𝜎s(𝑥), ∀ 𝑥 ∈ X̂. (6.14)

Our final result holds by unraveling the absolute-value inequality in (6.14), asSR𝜖 (𝑆)
is an upper-bounding surface for SaR𝜖 (𝑆).

Learning Disturbance Models Mid-Flight
Finally, to showcase the efficacy of our algorithm that learns a disturbance model
online, we aimed to robustify a drone’s controller mid-flight by recording discrepan-
cies between model and true system evolution. All flight tests are performed at the
Caltech Center for Autonomous Systems and Technology arena which is equipped
with an Optitrack motion capture system that samples and streams the rotor-craft
pose at 190 Hz. We belay a safeguard tether to the drone (weights 2.46 kg) with a
∼200 g passive weight attached on the other end to partially eliminate tether slack,
which is another source of uncertainty. Figure 6.6 depicts the two types of flight
paths taken, wherein we aimed to realize complex behaviors commonly asked of
drones, e.g. ascent and descent with both headwind and tailwind, circulating low
to the ground, and taking off vertically in the presence of transverse wind. All
disturbing winds were realized by The Caltech Real Weather Wind Tunnel, and
windspeed information was not made available to the baseline controller. This
baseline controller was developed against a single integrator model, and as such, it
outputs 3-space velocities at 50 Hz for the drone to follow. The velocities provided
by this controller are tracked by the drone’s onboard flight controller, a Hex Cube
Orange running a PX4 autopilot [190].

With respect to the mathematical setting in Section 6.3 then, we do not know our
true system dynamics, though we model the system as a single integrator:

𝑥 𝑗+1 = 𝑥 𝑗+�̂� 𝑗 (Δ𝑡 = 0.02), 𝑥 𝑗 ∈ [−2, 2]2 × [1.2, 2]︸                 ︷︷                 ︸
X̂

, �̂� 𝑗 ∈ [−0.8, 0.8]2 × [−0.5, 0.5]︸                            ︷︷                            ︸
Û

.

The state projection map 𝑀𝑥 as in (MAPS) reads the drone’s position in 3-space.
The input map 𝑀𝑢 corresponds to the onboard PX4 controller that maps true drone
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Figure 6.6: Depictions of the two types of periodic trajectories implemented in our
drone experiments described in the experimentation subsection of Section 6.3. These
trajectories approximate difficult types of behaviors commonly asked of drones,

states 𝑥 ∈ X and commanded 3-space velocities �̂� ∈ Û to rotor speeds at 1 kHz. As
we update these desired velocities at 50 Hz, our time-dilation parameter 𝐾 = 20 for
Algorithm 1. Finally, our observation function𝑂 as per (OBS) outputs the projected
true-system 3-space position after 𝐾 true-system time-steps, and our disturbance-
norm samples 𝛿 as per (6.13) are defined as follows:

𝛿 𝑗 = ∥𝑂 (𝑥𝐾 𝑗 ,𝑈 (𝑀𝑥 (𝑥𝐾 𝑗 )) − (𝑥 𝑗 +𝑈 (𝑀𝑥 (𝑥𝐾 𝑗 ))Δ𝑡∥, 𝑥 𝑗 = 𝑀𝑥 (𝑥𝐾 𝑗 ).

The baseline controller𝑈 : X̂ → Û is a discrete-time Lyapunov controller designed
to send the single-integrator system to a provided waypoint and does not take
into account complex aerodynamic effects, e.g. ground effects, transverse wind,
and tethered disturbances, which are challenging to model and can degrade flight
performance when ignored [191], [192]. Furthermore, the number of random
variables sampled per data-collection step NRV = 60, and we used the squared-
exponential kernel function with length-scale parameter ℓ = 1.0 for all experiments.

Our desired outcomes were twofold. First, we fit an upper bound to the disturbance-
norm Surface-at-Risk level 𝜖 = 0.05 over the course of one traversal of the desired
flight path. In this initial flight path, we only implement the baseline controller
and augment this controller if the system takes longer than 10 seconds to reach
within 0.1 m of the subsequent waypoint along the desired path. As each path
comprises fewer than 6 waypoints, this ensures that our learned model considers
less than a minute of data for all experiments on both flight paths. These cutoff times
were specifically chosen to highlight the efficiency of our method with limited data.
Second, on all subsequent flight paths, we provide from our fitted surface the norm
of disturbances that the Lyapunov controller should reject while providing velocity
commands. As such, we expect performance improvements from our augmented
controller in the form of traversal time speedups through the series of waypoints,
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Figure 6.7: Fitted SaR𝜖=0.05 for the four experiments depicted in Figure 6.6, with 𝛼𝐷
the maximum distance between two sampled states for GPR, and 𝛽𝐷 the maximum
discrepancy between two sampled disturbance norms. Over all four experiments,
we see a consistent 2× speedup in flight path times after implementation of the
augmented controller — a qualitative result we expect as per Theorem 16, as we fit
an upper bound to disturbance norms at 95% probability.

as subsequent waypoints are provided once the drone reaches within 0.1 m of the
current, commanded waypoint, and the drone’s controller should account for the
vast majority of disturbances caused by wind, ground, and tether effects as we fitted
an upper bound to the disturbance-norm Surface-at-Risk level 𝜖 = 0.05.

Discussion of Results
We performed four sets of experiments: (A) Hovering and moving while maintaining
a 0.15 m height above ground (see right in Figure 6.6); (B) Ascent, descent, and
vertical take-off without any wind (see left in Figure 6.6); (C) The same flight path
as (B) but with a 0.6 m/s transverse wind; (D) The same flight path as (B) and (C)
but with a 2 m/s transverse wind. The wind flows from left to right when looking at
the setup in Figure 6.6.

Figure 6.7 shows the fitted SaR𝜖=0.05 for each of the four experiments (A)-(D) ran
on the drone, as labeled prior. As mentioned, in all cases we see at least a 2×
speedup in flight path times when implementing the augmented controller, with as
much as a 5× speedup in the hovering case (A). Furthermore, we were also able to
verify Assumption 13 with respect to the data sets we collected for each experiment.
Specifically for (A), we assumed that for states within 𝛼 = 1m, their Values-at-
Risk level 𝜖 = 0.05 would not change by more than 𝛽 = 0.05. As can be seen
in the title of the associated subfigure in Figure 6.7, the reported values from data
are smaller than their assumed counterparts, indicating that Assumption 13 held
over this experiment, at least with respect to the collected data. For the remaining
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experiments, the assumed 𝛼, 𝛽 values were as follows: (B) 𝛼 = 3m, 𝛽 = 0.05, (C)
𝛼 = 3m, 𝛽 = 0.1, and (D) 𝛼 = 3m, 𝛽 = 0.2. Therefore, as we can see from the
associated titles in Figure 6.7, we are similarly able to verify that Assumption 13
held over each of these cases as well — at least with respect to the data collected. As
such, we expected a significant increase in performance according to Theorem 16
as was realized in all four cases with respect to flight path time speedups. All
experiments can also be seen in our supplementary video here [193].

6.4 Probabilistic Guarantees for Finite-Time Optimal Controllers
The prior two sections in this chapter leveraged the prior, risk-aware verification
results to provide procedures to validate models both online and offline. Then,
using existing work in input-to-state-safe and input-to-state-stable control, we ro-
bustified controllers either before or during operation by leveraging these validated,
augmented models. That being said, both of these procedures aimed to streamline
risk-aware controller synthesis and verification by validating the models we use in
either procedure. This section takes it one step further and describes how simi-
lar techniques can facilitate "optimal" input selection and guarantee generation for
finite-time optimal controllers. Our desire to do so arises as optimal controllers
provide a natural way of expressing and segmenting disparate control objectives, as
can be easily seen in works regarding model predictive control (MPC) [169]–[171],
control barrier functions [145], [146], [172], and optimal path planning [173]–[175],
among others. Therefore, the ability to rapidly "solve" and provide guarantees for
these non-convex optimal controllers, would facilitate their everyday use and the
translation-to-practice of the ease of expressing these control objectives. To keep
this section self-contained then, we will start with a brief motivation.

General Motivation and Problem Statements
We assume the existence of a nonlinear discrete-time system whose dynamics 𝑓 are
(potentially) unknown:

𝑥𝑘+1 = 𝑓 (𝑥𝑘 , 𝑢𝑘 , 𝑑), 𝑥 ∈ X, 𝑢 ∈ U, 𝑑 ∈ D . (6.15)

Here, X ⊆ R𝑛 is the state space, U ⊆ R𝑚 is the input space, and D ⊆ R𝑝 is
the space of variable objects in our environment that we can control, e.g. center
locations of obstacles and goals for path-planning examples, variable wind-speeds
for a drone, etc. Provided this dynamics information, a cost 𝐽, state constraints, and
input constraints, one could construct a Nonlinear Model Predictive Controller of
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the following form (with 𝑗 ∈ [0, 1, . . . , 𝐻 − 1]):

u∗ = argmin
u=(𝑢0,𝑢1,...,𝑢𝐻−1)∈U𝐻

𝐽 (u, 𝑥𝑘 , 𝑑), (NMPC)

subject to 𝑥
𝑗+1
𝑘

= 𝑓 (𝑥 𝑗
𝑘
, 𝑢 𝑗 , 𝑑),

𝑥0
𝑘 = 𝑥𝑘 ,

𝑥
𝑗+1
𝑘
∈ X 𝑗+1

𝑘
,

𝑢 𝑗 ∈ U.

For the analysis to follow, however, we note that the general NMPC problem posed
in (NMPC) can be posed as the following Finite-Time Optimal Control Problem.

argmin
u=(𝑢0,𝑢1,...,𝑢𝐻−1)∈U𝐻

𝐽 (u, 𝑥𝑘 , 𝑑), (FTOCP)

subject to u ∈ U(𝑥𝑘 , 𝑑) ⊆ U𝐻 .

Here, 𝐽 is a bounded (perhaps) nonlinear cost function, and U is a set-valued
function outputting a constraint space for input sequences that (potentially) depends
on the initial system and environment states (𝑥𝑘 , 𝑑), respectively. Specific examples
following this general form will be provided in the experimentation sections to
follow. Finally, 𝐻 > 0 is the horizon length for the finite-time optimal control
problem. Then, the three problem statements to-be-considered will follow.

Problem 7. Develop a procedure to identify input sequences u that are in the
100(1 − 𝜖)%-ile for some 𝜖 ∈ (0, 1] with respect to solving (FTOCP).

Problem 8. Develop a procedure to determine whether (FTOCP) is recursively
feasible.

Problem 9. Develop a procedure to upper bound maximum controller runtimes for
optimal controllers of the form in (FTOCP) on their respective hardware instanti-
ations, i.e. the maximum elapsed time for producing an input (sequence) on the
physical robot during operation.

Percentile-Based Input Selection
Problem 7 references the development of an efficient method to solve (FTOCP). To
that end, we aim to take a percentile method as described in Chapter 4. As a result,
our corollary in this vein stems directly from Theorem 9, though we will make one
clarifying assumption.
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Assumption 14. Let 𝐽 andU be as per (FTOCP), letV be as per (4.10) with respect
to the decision space U(𝑥𝑘 , 𝑑), and let 𝐹 be as per (4.11) with respect to this cost 𝐽
and U(𝑥𝑘 , 𝑑). Furthermore, let 𝐽 be bounded over U(𝑥𝑘 , 𝑑), and let U(𝑥𝑘 , 𝑑) be a
set of bounded volume (or finitely many elements if a discrete set) for any choice of
(𝑥𝑘 , 𝑑) ∈ X × D (these sets defined in (6.15)). Finally, let {(u𝑖, 𝐽 (u𝑖, 𝑥𝑘 , 𝑑))}𝑁𝑖=1 be
a set of 𝑁 uniformly sampled sequences u𝑖 from U(𝑥𝑘 , 𝑑) with their corresponding
costs, and let u∗

𝑁
be the (potentially) non-unique sequence with minimum cost.

Corollary 21. Let Assumption 14 hold and let 𝜖 ∈ (0, 1]. Then, u∗
𝑁

is in the
100(1− 𝜖)%-ile with respect to minimizing 𝐽 at the current system and environment
state (𝑥𝑘 , 𝑑) with minimum confidence 1 − (1 − 𝜖)𝑁 , i.e.,

P𝑁U[U(𝑥𝑘 ,𝑑)]
[
V(𝐹 (u∗𝑁 )) ≤ 𝜖

]
≥ 1 − (1 − 𝜖)𝑁 .

Proof: Stems directly via Theorem 9.

In short, Corollary 21 tells us that if we have a finite-time optimal control problem of
the form in (FTOCP), where for some system and environment state (𝑥𝑘 , 𝑑), the cost
function 𝐽 is bounded over a bounded decision space U(𝑥𝑘 , 𝑑), then we can take a
percentile approach to identify input sequences that are better than a large fraction of
the space of all feasible input sequences. Notably, this statement is made independent
of the convexity, or lack thereof, of (FTOCP), making it especially useful for non-
convex MPC. Furthermore, as is done in the quadrupedal experimentation section
to follow, one can further optimize over the outputted percentile solution u∗

𝑁
via

gradient descent — should gradient information be available. The resulting solution
then retains the same confidence on existing within the same percentile, while
also being efficient to calculate. This does introduce new questions. Namely, will a
percentile solution always exist, and how efficiently can we calculate these sequences
on hardware? These questions will be answered in the sections to follow.

Determining Recursive Feasibility
Problem 8 references the development of an algorithm to efficiently determine the
recursive feasibility of (FTOCP). To ease the statement of the theoretical results
to follow, we indicate via |U(𝑥𝑘 , 𝑑) | the "size" of the constraint space U(𝑥𝑘 , 𝑑)
for (FTOCP), with |∅| = 0. Additionally, we will assume that there exists some
controller𝑈 that either utilizes the aforementioned percentile method in Section 6.4
or some other technique to produce (approximate) solutions to (FTOCP), i.e.

∃ 𝑈 : X × D → U s. t. 𝑈 (𝑥, 𝑑) = 𝑢 ∈ U. (6.16)
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Furthermore, we will indicate via the following notation, the evolution of our system
under this controller𝑈, provided an initial system and environment state:

𝑥+ [𝑥, 𝑑] = 𝑓 (𝑥,𝑈 (𝑥, 𝑑), 𝑑).

This allows us to formally define recursive feasibility.

Definition 28. An optimal controller of the form in (FTOCP) is recursively feasible
if and only if for all system and environment states, the feasible space for (FTOCP)
is non-empty for successive timesteps, i.e.

∀ (𝑥, 𝑑) ∈ X × D, |U(𝑥, 𝑑) | > 0 =⇒ |U(𝑥+ [𝑥, 𝑑], 𝑑) | > 0.

As motivated earlier, we can express recursive feasibility determination as an opti-
mization problem. Specifically, let our cost function 𝐶 be as follows:

𝐶 (𝑥, 𝑑) =


1 if |U(𝑥, 𝑑) | > 0 =⇒ |U(𝑥+ [𝑥, 𝑑], 𝑑) | > 0,

−1 else.
(6.17)

We can generate a minimization problem provided this cost function𝐶 over the joint
state space X × D:

min
𝑥∈X, 𝑑∈D

𝐶 (𝑥, 𝑑). (6.18)

If the solution to (6.18) were positive, then (FTOCP) is recursively feasible. Like-
wise, if the solution were negative, then there exists a counterexample. As a result,
not only can we express recursive feasibility determination as an optimization prob-
lem, but this problem is also of the same form as in (4.9), permitting a probabilistic
solution approach as expressed in the following assumption and corollary.

Assumption 15. Let𝐶 be as per (6.17), letX,D be as per (6.15) and also be spaces
of bounded volume, let {𝐶 (𝑥𝑖, 𝑑𝑖)}𝑁𝑖=1 be a set of 𝑁 cost evaluations of decision
tuples (𝑥𝑖, 𝑑𝑖) sampled independently via U[X × D] ≜ 𝜇, let 𝜁∗

𝑁
be the minimum

cost evaluation, and let 𝜖 ∈ [0, 1].

Corollary 22. Let Assumption 15 hold. Then if 𝜁∗
𝑁
= 1, (FTOCP) is successively

feasible with minimum probability 1− 𝜖 and with minimum confidence 1− (1− 𝜖)𝑁 .

Proof: By Theorem 9 we have that:

P𝑁𝜇
[
P𝜇

[
𝐶 (𝑥, 𝑑) ≥ 𝜁∗𝑁

]
≥ 1 − 𝜖

]
≥ 1 − (1 − 𝜖)𝑁 .
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By definition of 𝐶 in (6.17), if 𝜁∗
𝑁

= 1, then with minimum probability 1 − 𝜖 ,
|U(𝑥, 𝑑) | > 0 =⇒ |U(𝑥+ [𝑥, 𝑑], 𝑑) | > 0. In other words, with minimum probability
1− 𝜖 , if (FTOCP) were feasible at the prior time step, then it will also be feasible at
the next time step, i.e. successively feasible.

In other words, Corollary 22 tells us that to probabilistically determine whether a
given finite-time optimal control problem is successively feasible, it is sufficient
to identify at least one input in the constraint space for successive optimization
problems starting at 𝑁 randomly sampled state pairs (𝑥, 𝑑). Determining at least
one such input could be achieved by querying the corresponding controller 𝑈 or
some other desired method. Notably, this does not guarantee recursive feasibility
as that would correspond to the optimal value of (6.18) being positive. However,
with arbitrarily high probability, we can provide guarantees that even hardware
controllers will be successively feasible for sampled state pairs (𝑥, 𝑑) ∈ X × D,
which is the underlying requirement for recursive feasibility as per Definition 28.

Determining Hardware-Specific Controller Runtimes
Lastly, Problem 9 references the development of an algorithm to efficiently identify
maximum controller runtimes on existing system hardware. To address this from a
probabilistic perspective, we will first define some notation. To start, we will use the
same controller 𝑈 as per equation (6.16). We also denote via 𝑇 a timing function
that outputs the evaluation time for querying the controller 𝑈 at a given state pair
(𝑥, 𝑑), i.e. 𝑇 : X ×D → R++. Then we can nominally express maximum controller
runtime determination as an optimization problem:

max
𝑥∈X, 𝑑∈D

𝑇 (𝑥, 𝑑). (6.19)

Under the fairness assumption that the controller does have a bounded runtime,
however, identification of a probabilistic maximum runtime is solvable via proba-
bilistic optimization procedures as outlined by Theorem 9. As prior, we will state a
clarifying assumption and the formal corollary statement will follow.

Assumption 16. Let 𝑇 be as per (6.19), letX,D be as per (6.15) and be of bounded
volume, let {𝑇 (𝑥𝑖, 𝑑𝑖)}𝑁𝑖=1 be a set of 𝑁 controller runtimes for state pairs (𝑥𝑖, 𝑑𝑖)
sampled independently via U[X ×D] ≜ 𝜇, let 𝜁∗

𝑁
be the maximum runtime, and let

𝜖 ∈ [0, 1].

Corollary 23. Let Assumption 16 hold. The probability of sampling a state pair
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AgentGoal

Obstacles

Figure 6.8: Experimental setup for Quadruped reach-avoid tests.

whose controller runtime is at most 𝜁∗
𝑁

is at-least 1− 𝜖 with confidence 1− (1− 𝜖)𝑁 :

P𝑁𝜇
[
P𝜇

[
𝑇 (𝑥, 𝑑) ≤ 𝜁∗𝑁

]
≥ 1 − 𝜖

]
≥ 1 − (1 − 𝜖)𝑁 .

Proof: Via Theorem 9,

P𝑁𝜇
[
P𝜇

[
−𝑇 (𝑥, 𝑑) ≥ −𝜁∗𝑁

]
≥ 1 − 𝜖

]
≥ 1 − (1 − 𝜖)𝑁 ,

and flipping the innermost inequality provides the result.

In short then, Corollary 23 tells us that probabilistic determination of maximum
controller runtimes stems easily by recording controller runtimes for 𝑁 randomly
sampled scenarios identified through 𝑁 randomly sampled system and environment
state pairs (𝑥, 𝑑) from X × D. Now, we will showcase the efficacy of these prob-
abilistic approaches to optimal input selection and guarantee generation, on a few
hardware examples. We will start with a quadrupedal example.

Quadrupedal Walking
Reach Avoid Navigation Task: In the quadruped example, the agent is tasked to
reach a specific goal location (green) while avoiding static obstacles (yellow) within
a 5m by 4m space. The agent and obstacles move and can be placed continuously
within this space. The set of all environments D corresponds to the set of all
setups, including goals, robot starting locations, and obstacles, that satisfy the
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Figure 6.9: Depictions of the randomized environments D for the Quadruped
experiments. Yellow boxes are static obstacles, the goal is shown in green (not
visible in all images), and a cartoon of the computed plan is shown in blue.

aforementioned conditions while allowing for at-least one feasible path to the goal.
Figure 6.8 depicts an example setup, with Figure 6.9 showing multiple examples of
viable environments in D.

FT-OCP formulation: We formulated quadrupedal navigation as an optimal control
problem of the form in (FTOCP). We consider as states, the position of the robot
within a bounded rectangleX = [0, 5]×[0, 4]. Individual inputs are discrete changes
in position with bounded magnitude, with corresponding 𝐻-length input sequence u
a finite horizon of positional waypoints. Mathematically, the state-dependent subset
of permissible sequencesU𝐻

𝑝 (𝑥) is as follows, with 𝑗 ∈ [0, 1, . . . , 𝐻 − 2]:

U𝐻
𝑝 (𝑥) =

{
u ∈ U𝐻

�����∥𝑢0 − 𝑥∥ ≤ 0.03, and ,

∥𝑢 𝑗+1 − 𝑢 𝑗 ∥ ≤ 0.03.

}
U(𝑥𝑘 , 𝑑) then further constrains u to remain within a feasible set of states via a
discrete barrier-like condition. To define that feasible state set, for 𝐷 obstacle
positions let 𝑑 = [𝑑𝑇1 , 𝑑

𝑇
2 , . . . , 𝑑

𝑇
𝐷
]𝑇 ∈ R2×𝐷 . Then with a collision radius 𝑟, the

feasible state set is:

F (𝑑) = {𝑥 ∈ X | | |𝑥 − 𝑑 𝑗 | | ≥ 𝑟 ∀ 𝑗 = 1, ..., 𝐷}.
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Figure 6.10: Solving the FT-OCP for the quadruped reach-avoid experiment. (a)
generates uniformly random feasible input sequence samples. (b) selects the best
sample according to cost function 𝐽 (u, 𝑥𝑘 , 𝑑𝑘 ). Finally, (c) leverages the differen-
tiability of 𝐽 to further improve the choice of u via constrained gradient descent.

Then we can define the overall constrained input space U(𝑥, 𝑑) as follows, with
𝑥0 = 𝑥, 𝑥 𝑗+1 = 𝑓 (𝑥 𝑗 , 𝑢 𝑗 , 𝑑), and ∀ ℓ ∈ 0, 1, . . . , 𝐻:

U(𝑥, 𝑑) =
{
u ∈ U𝐻

𝑝 (𝑥) | 𝑥ℓ ∈ F (𝑑)
}
. (6.20)

Here, the discrete-time dynamics are simply 𝑓 (𝑥, 𝑢, 𝑑) = 𝑥 + 𝑢. Finally, with
goal state 𝑥𝑑 , we have our cost function 𝐽 as follows, again with 𝑥0 = 𝑥 and
𝑥 𝑗+1 = 𝑓 (𝑥 𝑗 , 𝑢 𝑗 , 𝑑):

𝐽 (u, 𝑥, 𝑑) = 10| |𝑥𝐻 − 𝑥𝑑 | | +
𝐻−1∑︁
𝑖=0
| |𝑥𝑖+1 − 𝑥𝑖 | |. (6.21)

This cost simultaneously rewards the final waypoint when closer to the goal and
rewards a shorter overall path length. As a result, the overall finite-time optimal
control problem is:

u∗ = argmin
u∈U𝐻

𝐽 (u, 𝑥𝑘 , 𝑑) as per (6.21), (6.22)

subject to u ∈ U(𝑥𝑘 , 𝑑) as per (6.20).

Solving the FT-OCP: To solve (6.22), we employ the procedure described in Section
6.4. We employ rejection sampling over the input space U𝐻 to generate samples
u ∈ U(𝑥𝑘 , 𝑑) until we collect 1000 such samples. From this collection of samples,
we choose the minimum cost sample by evaluating 𝐽 (u, 𝑥𝑘 , 𝑑). This sample meets
our guarantees as described in Corollary 21. However, we recognize that our cost
function is differentiable in u, and we can employ constrained gradient descent [194]
to further improve the solution. This process is illustrated in Figure 6.10.
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Figure 6.11: Quadruped Hardware data when (top) taking a percentile method
to solve the quadruped’s finite-time-optimal controller, and (bottom) calculating
a probabilistic cutoff on maximum controller runtime for the same controller. In
both cases, the red lines corresponding to (top) the identified path and (bottom)
the reported maximum controller runtime are to the left and right, respectively, of
their corresponding, true probabilistic cutoffs. This affirms Corollaries 21 and 23
insofar as the identified values satisfy their corresponding probabilistic statements.
Numeric distributions were calculated by evaluating 5000 random samples.

Experiments and Results: Tests were performed for both random and curated
obstacle locations, with care taken to reject samples without a feasible path to
the goal. The quadruped was given a random start position and orientation, and
a fixed goal, 𝑥𝑑 . (6.22) was solved using a Python implementation of the above
procedure at ∼1.5 Hz, taking 𝑥𝑘 to be the position of the quadruped as measured
by an Optitrack motion capture system. An IDQP-based walking controller [182]
tracked the computed plan with tangent angles along the desired path used as desired
quadruped heading for tracking purposes.

By Corollary 21, choosing the best out of 1000 uniformly chosen waypoint sequences
implies that the best sequence u∗

𝑁
should be in the 99%-ile with 99.995% confidence.

This is indeed the case as can be seen in the data portrayed at the top of Figure 6.11,
corroborating Corollary 21. Both Corollaries 22 and 23 were also corroborated
by recording successive feasibility and controller runtimes for 1000 randomized
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Figure 6.12: Experimental setup for Robotarium reach-avoid tests.

instances of the percentile method applied to (6.22). In all cases, the controller
was successively feasible, and the maximum controller runtime was 0.92 seconds.
Comparing against another 5000 random samples affirms that the reported maximum
runtime exceeded the 99%-ile cutoff, while the controller was successively feasible
in all instances as well. The data for runtimes is shown at the bottom of Figure 6.11.
Qualitatively speaking, however, the proposed procedure produces a valid, collision-
free plan in all tested scenarios. This plan ultimately leads to the quadruped reaching
the desired goal in many scenarios. However, some obstacle placements lead to local
minima that cannot be escaped, as this is a finite-time method. Increasing the horizon
𝐻 allows for success in these conditions but requires a trade-off in execution time.
These results are elucidated in the supplemental video.

Multi-Agent Verification
Figure 6.12 depicts the reach-avoid scenario for the Robotarium [144] agents which
can be modeled as unicycle systems, i.e. with 𝑥𝑘 ∈ X, 𝑢𝑘 ∈ U:

𝑥𝑘+1 = 𝑥𝑘 + (Δ𝑡 = 0.033)

cos (𝑥𝑘 [3]) 0
sin (𝑥𝑘 [3]) 0

0 1

 𝑢𝑘︸                                            ︷︷                                            ︸
𝑓 (𝑥𝑘 ,𝑢𝑘 ,𝑑)

.
(6.23)
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Figure 6.13: Experimental depictions of the randomized environments D for the
Robotarium as described in Section 4.5. The black squares correspond to static
obstacles, the green squares correspond to goals for the ego-agent whose shortest
path from its starting cell is shown in orange, and the red squares correspond to the
un-controlled agent’s goal.

Here, X = [−1.6, 1.6] × [−1.2, 1.2] × [0, 2𝜋] and U = [−0.2, 0.2] × [−𝜋2 ,
𝜋
2 ].

Additionally, each agent comes equipped with a Lyapunov controller 𝑈 that steers
the agent to a provided waypoint 𝑤 ∈ W:

𝑈 : X × D ×W ≜ [−1.6, 1.6] × [−1.2, 1.2] → U.

The environment space D consists of the grid locations of 8 static obstacles on an
8 × 5 grid overlaid on the state space X, the cells of 3 goals on the same grid, the
starting position in X of another, un-controlled moving agent that is at-least 0.3
meters away from the ego agent of interest, and the un-controlled agent’s goal cell
on the same grid. No static obstacles are allowed to overlap with any of the goals,
though the un-controlled agent’s goal may overlap with at least one of the goals of
the ego agent, and the setup of static obstacles must always allow for there to exist at
least one path to one of the ego agent’s goals. Figure 6.13 shows multiple examples
of environment setups within D.

NMPC Formulation: Based on the setup of static obstacles and goal locations on
the grid, we define a function 𝑆 : W → R+ that outputs the length of the shortest
feasible path to a goal from a provided planar waypoint. Should no feasible path
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Figure 6.14: Robotarium Hardware data when (top) taking a percentile method
to solve the multi-agent finite-time optimal controller, and (bottom) calculating a
probabilistic cutoff on maximum controller runtime for the same controller. In both
cases, the red lines corresponding to (top) the identified waypoint and (bottom)
the reported maximum controller runtime are to the left and right, respectively, of
their corresponding, true probabilistic cutoffs. In other words, the identified values
satisfy their corresponding probabilistic statements, affirming Corollaries 21 and 23.
Numeric distributions were calculated by evaluating 5000 random samples.

exist from a waypoint 𝑤 ∈ W, 𝑆(𝑤) = 100 to indicate infeasibility. Inspired by
discrete control barrier function theory [59], we define a control barrier function ℎ
which accounts for both the ego agent state 𝑥𝑎 and the un-controlled agent state 𝑥𝑜
(with 𝑃 = [𝐼2×2 02×1]):

ℎ(𝑥𝑎, 𝑥𝑜) =

−5 in static obstacle cell,

∥𝑃(𝑥𝑎 − 𝑥𝑜)∥ − 0.18 else.

Then, provided ℎ(𝑥𝑎, 𝑥𝑜) ≥ 0, the ego agent hasn’t crashed into a static obstacle and
is maintaining at least a distance of 0.18 m from the un-controlled agent.

This permits us to define an NMPC problem as follows with the dynamics 𝑓 as
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per (6.23) and ∀ 𝑗 ∈ [1, 2, 3, 4, 5]:

𝑤∗𝑘 = argmin
𝑤∈W

𝑆(𝑤), (NMPC-A)

subject to 𝑥
𝑗

𝑘
= 𝑓 (𝑥 𝑗−1

𝑘
, 𝑢 𝑗−1, 𝑑), (a)

𝑥0
𝑘 = 𝑥𝑘 , (b), (c) (b)

ℎ(𝑥 𝑗
𝑘,𝑎
, 𝑥𝑜) ≥ 0 (c)

𝑢 𝑗−1 = 𝑈

(
𝑥
𝑗−1
𝑘
, 𝑑, 𝑤

)
, (d)

0.05 ≤ ∥𝑤 − 𝑥𝑘 ∥ ≤ 0.2.

To ease sampling then, we will consider an augmented cost 𝐽 that outputs 100
whenever a waypoint 𝑤 fails to satisfy constraints (a)-(d) in (NMPC-A). Then we
define the NMPC problem to-be-solved as follows:

𝑤∗𝑘 = argmin
𝑤∈W

𝐽 (𝑤), (NMPC-B)

subject to 0.05 ≤ ∥𝑤 − 𝑥𝑘 ∥ ≤ 0.2.

Results: By Corollary 21, if we wish to take a percentile approach to determine a
waypoint 𝑤∗

𝑁
in the 95%-ile with 99.4% confidence we need to evaluate 𝑁 = 100

uniformly chosen waypoints from the constraint space for (NMPC-B). Figure 6.14
shows the cost of the outputted waypoint sequence compared against 5000 randomly
sampled values, and as can be seen, the outputted waypoint 𝑤∗

𝑁
is indeed in the 95%-

ile, confirming Corollary 21. Calculating this controller’s runtime in 460 randomly
sampled initial state and environment scenarios yielded a probabilistic maximum
𝜁∗
𝑁

= 0.043 seconds. According to Corollary 23, this maximum runtime should
be an upper bound on the true, 99% cutoff on controller runtimes with confidence
99% — and as can be seen in Figure 6.14, 𝜁∗

𝑁
exceeds the true value. Finally,

to corroborate Corollary 22, we evaluated the recursive feasibility cost function 𝐶
as per (6.17) in each of the same 460 randomly sampled scenarios from prior. In
each scenario, the percentile controller was successively feasible, indicating that
with 99% probability the controller will be successively feasible. Evaluating the
same cost for 5000 more uniformly chosen samples resulted in the controller being
successively feasible each time, corroborating Corollary 22.

6.5 Conclusion
This chapter detailed the application of our risk-measure bounding and percentile
optimization procedures to various aspects of the nominal controller synthesis



132

paradigm. Specifically, we used a combination of both procedures to develop
stochastic system models offline, against which we can synthesize and verify con-
trollers that exhibit similar performance on hardware as exhibited on the stochastic
simulator. Next, we provided an online procedure to learn a disturbance Surface-
at-Risk, a concept we introduced, with limited system data. By leveraging existing
input-to-state stable Lyapunov results, we can query this disturbance Surface-at-
Risk to robustify controllers during operation as we showed on a drone mid-flight.
Finally, we detailed how percentile optimization methods could facilitate input se-
lection and guarantee generation for finite-time non-convex optimal controllers, as
the guarantees can be expressed as optimization problems themselves.
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C h a p t e r 7

SUMMARY AND FUTURE WORK

As mentioned in the first introductory chapter, the premise of this thesis was to detail
our efforts in the development of a risk-aware verification pipeline that addressed
a few key challenges hindering theoretical development in black-box safety-critical
system verification. As such, in Chapter 3 we focused on a precursor to the verifi-
cation pipeline, difficult test generation. Specifically, we mentioned how traditional
test generation methods phrase difficult test synthesis as an optimization problem.
As such, these methods yield "static" tests insofar as they do not react to system
choices made during the test, and they are controller-specific insofar as the objec-
tive for said optimization problem depends on the controller for the system under
test. However, we posited that what is difficult for a system to achieve should be
independent of the controller used to steer it and that reactive tests should help
uncover more problematic system behavior than static tests. To that end, we de-
tailed the development of a reactive, controller-agnostic test-synthesis method for
both continuous and discrete-time systems subject to reach-avoid signal temporal
logic specifications. We showed that this method, phrased as a game-theoretic opti-
mization problem, always has a solution, and this solution corresponds to the most
difficult test of system behavior at that state. Finally, we showcased the ability of
this method to generate realizable and difficult tests on hardware, by performing the
tests provided by the procedure on a quadruped in satisfaction of a simple objective.

Chapter 4 focused on the verification pipeline as a whole and mentioned that the
primary hindrance to theoretical development in this vein is our inability to calculate
risk measures for random variables whose distributions are unknown. Additionally,
both risk-aware verification and controller synthesis are traditionally expressed as
(non-convex) optimization problems, and despite recent advances in learning-based
optimization, e.g. Bayesian Optimization, Thompson Sampling, etc, identifying
optimal solutions to these non-convex problems remains difficult. As a result, this
chapter detailed our efforts in risk-measure estimation for random variables whose
distributions are unknown. This was to facilitate risk-aware verification in the
following chapter. Likewise, we mentioned how the same methods could generate
percentile solutions to non-convex optimization problems, laying the groundwork for
risk-aware controller synthesis in the following chapter. Finally, we mentioned how
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multiple applications of a percentile approach could also bound the sub-optimality
of a provided percentile solution, and showcased these results on a few benchmark
optimization problems including the traveling salesman problem.

Chapter 5 leveraged the mathematical foundation offered by the prior chapter to for-
malize our risk-aware safety-critical controller verification and synthesis pipelines.
Specifically, we mentioned how risk-aware verification can be phrased as a risk-
measure estimation problem and utilized the prior bounding schemes to provide
probabilistic verification statements for safety-critical systems subject to any signal
temporal logic specification. As this method outputs a probabilistic lower bound on
achievable system robustnesses, we noted that risk-aware controller synthesis can
be intuitively expressed as an optimization problem to design controllers that maxi-
mize this probabilistic lower bound. Furthermore, we provided sample-complexity
results for both risk-aware verification and synthesis and showed the efficacy of our
approaches on a few simulated examples. Lastly, by verifying both the produced,
risk-aware controller and the baseline controller for the simulator utilized, we show
that our procedure provides a noticeable increase in safe performance, as expected
via our optimization-based approach.

Finally, Chapter 6 started to utilize these mathematical results in different contexts
related to safety-critical control. Specifically, we mentioned how we can determine
model inaccuracies, i.e. the sim2real gap, by phrasing such a determination as a
risk-measure estimation problem and can produce a stochastic model that provably
approximates real-world system evolution by utilizing the determined bound. Then,
we can synthesize and verify controllers in simulation against this stochastic model,
to produce controllers that exhibit reliable performance on hardware. Extending this
offline approach, we also offered an approach to learn disturbance models online with
limited system data which can be leveraged using existing input-to-state stable results
to robustify controllers mid-operation. We showcased the results of this online
procedure by robustifying a drone’s controller mid-flight. Finally, we detailed how
percentile optimization schemes can facilitate optimal input selection and guarantee
generation for non-convex optimal controllers and similarly showcased our results
on multiple hardware systems as well.

7.1 Future Work
One vein of future work concerns extensions to our uncertainty quantification results
mentioned in Chapter 4. First, the risk-measure estimation results are accurate but
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conservative. Due to their utilization in all aspects of the mentioned risk-aware ver-
ification and synthesis pipelines, reducing this conservatism would directly impact
our ability to generate safe, effective, and verified controllers that do not unneces-
sarily sacrifice performance. Second, decreasing the conservatism of the reported
optimality gap upper bounds would increase our confidence that the reported per-
centile solutions are "close" to optimality. Another vein of work concerns the
utilization of these methods more broadly. For example, risk-aware controller veri-
fication is just one type of verification problem. The notion of verification, however,
exists broadly in multiple fields. As such, we believe there is a tremendous amount
of interdisciplinary work involving the quantification of assumption or objective
satisfaction and the successive application of these risk-aware verification results
to make verification statements in a variety of other fields. In a similar vein, one
could also utilize the risk-aware synthesis results to inform sub-optimal but useful
decision selection in these areas as well. Game theoretic decision-making is a prime
example here. Specifically, the identification of Nash equilibria for non-convex min-
max games remains an exceedingly difficult problem. However, verifying whether
a given decision pair outperforms a large fraction of possible decision pairs is a
well-posed verification problem. Similarly, the identification of "optimal" decision
pairs in a percentile sense is a well-posed percentile optimization problem as well.
Genetic design is yet another example. Here, we can view the gene to be designed
as a vector of elements taking values in a discrete set. Quantifying an objective to be
optimized and saturating the corresponding function corresponds to an optimization
problem easily addressed by a percentile approach. From a philosophical standpoint
then, the aim would be to start viewing optimization problems as the lens through
which we select "good" decisions. From that point, we can start to leverage exist-
ing control theoretic tools and our percentile method to rapidly synthesize useful
decisions in arbitrary contexts across multiple fields.
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