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ABSTRACT

Rayleigh's problem of an infinite flat plate set into uniform
motion impulsively in its own plane is studied by using Grad's equations
and boundary conditions developed fran the kinetic theory of gases, .For
a heat insulated plate and a small impulsive velocity (low Mach number),
only tangential shear stress and velocity and energy (heat) flow
parallel to the plate are generated, while the pressure, density, and
temperature of the gas remain unchanged. Moreover, no normal velocity,
nomal stress, or nomal energy flow is developede Near the start of the
motion the flow behaves like a "free-molecule flow", and all physical
quantities are analytic functions of the flow parameters and time, The
results obtained for M"large time" however 6 add to the growing lack of
confidence 1n the Bumett-type séries expansions in powers of mean free
pathe Although such expansions are obtained here, they are poorly
convergent and inappropriate to the problems To replace ﬂzeée unsatis-
factory solutions, approximate closed-form solutions valid for all values
of the time are developed, which agree with the free-molecule values for
small time and >t.he classical Raylelgh solution for large time, This
technique may be useful in studying more general flow problems within

the framework of the kinetic theory of gasess
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I. INTRODUCTION

The problem of an infinite flat plate set into uniform motion
in its own plane in an "incompressible! viscous fluid was first treated
by Rayleigh.l For a compressible fluid the problem has been examined
for "small" times by Howarthz, for "arge" times by Van Dyke3, ‘and,
recently, for “intermediate" times by Stewartson's (Here the time is
measured in terms of the parameter azt/,).)-x- Howarth® queétidned the
significance of his solution because of the extremely short time
interval during which the pressure on the plate surface decays to a
fraction of its value immediately after the start of the motion, For
standard conditions of initial temperature and pressure, the plate
pressure falls to one-half of its maximum value in 5 x 10"29 seconds s
and to one=tenth of this value in I!.()"8 seconds, as compared with an
average time T between successive collisions of a molecule of about

=10 seconds. Over such short time intervals there are only a few

10
collisions per molecule, and the gas can no longer be treated on the
basis of the Navier«Stokes equations, In fact, for t/z = 0(1) one would
expect that the situation corresponds more closely to "free-molecule!
flow, where the collisions between the gas molecules and the plate
surface are much more important than the collisions between molecules in
the gase

These considerations suggest that Rayleight's pi'oblem should be

attacked by means of the kinetic theory of gases in order to detemine

#* The gquantity (azt/p )% is proportional to the ratio of the speed
of sound to_the rate of diffusion of vorticity, Altematively, the
parameter a2t/> = Re/M2 is proportional to the ratio of the elapsed
time from the start of the motion tg the average time hetween successive
collisions of a molecule, © (Re/M,° =L/3 t/ ).



the initial history of the important physical quantities and the manner
in vhich these quantities approach the behavior predicted by the Navier-
Stokes equations for t/z >> l. In this way the whole time-history is
treated within a single theoretical framework. Of course, the present
problem is highly idealized because of the absence of a leading edge,

but the results obtained for the well-defined Rayleigh problem should
provide a qualitative understanding of molecular effects in more complex
cases, Jjust as Rayleigh's original solution contributed to the under-
standing of boundary layer flows and the concept of similariby at high
Reynolds numbers. TFor example, when the free siream Mach number of a
steady flow is very high, the intense heating of the gas near the surface
plays the most important role in creating pressure disturbances propa-
gating away from the surface, In this case, a certain analogy exists
between Rayleigh's problem and the development of the steady flow down-
stream of the leading edge of a thin, flat plate, One of the eventual
tasks of the present study is to clarify this analogy and to distinguish
carefully between molecular effects and viscous effects: that would
ordinarily be expected at low local Reynolds numbers within the Navier-
Stokes frameworke This particular example is cited aléo to emphasize
that this study is not confined to the special case of a highly-rarefied
gas, where the mean free path is always large compared to any significant
physical dimension, We are mainly interested in flows of low or moderate
density, in which the lateral dimensions of the flow field are initially
of the order of the local mean free path and eventually grow to be large

compared with the mean free pathe



Previous studies of molecular effects in Rayleigh's problem have
dealt mainly with the #first~order" influence of velocity-slip and
temperatufe-jump at the plate surface, The Rayleigh problem in slip-
flow was first investigated by Schaafs ¢ The classical heat conduction
equation governing the velocity component parallel to the plate for a
fluid of constant properties was used. Instead of the usual boundary
condition that the gas moves with the plate, Schaaf imposed the "slip"
boundary condition, He solved this system for the tangential velocity
component and obtained the skin friction by differentiation, The
Rayleigh problem was then related to the steady boundary layer flow
over a semi~infinite plate by the transformation x = KUt, where x is the
distance from the leading edge along the plate in the boundary layer
flow, U and t are, respectively, the impulsive plate velocity and time
in the unsteady Rayleigh problem, and K is a numerical constant, If
one accepts the Burnett equations as the approximate system in the slip=-
flow region, then Schaaf's approach is well justified for the R_a.yleigh
problem in slip-flow at low Mach number, In this case, ‘the non=linear
higher order Burnett tems in the expression for the viscous shearing
stress may be neglected, and hence the momentum equati&n in the direction
parallel to the plate remains exactly the same as that used by Rayleighe
The only difference then lies in the boundary conditionse Although
Schaaf's analysis is wvalid only in the slip-flow regime, he nevertheless
extrapolated his results over the whole range. For free molecule flow
he obtains a finite skin friction twice the correct valus, The same
remark applies also to the slip velocity, which would be equal to the

plate velocity when extrapolated from Schaaf's result to free molecule



flow, while the correct value is half of the plate wvelocity for a
diffusively-reflecting surface. Since the momentum transferred from the
plate to *Ehe gas differs by a factor of two in the two cases, so does
the skin friction coefficient,

The trend of the variation of skin friction coefficient with the
parameter YRe/M, predicted by Schaaf's theory, is followed surprisingly
well by the experiments of Sheman6 s Who measured the drag force on a
number of plates in steady flow under the following conditions: (1)

Mach number between 2.3 and 2.9, and Reynolds number between 30 and 800
per inch; (2) Mach number between 2,7 and 3,6, and Reynolds number
between 55 and 1850 per inch; and (3) Mach numbers of 0.2 and 0.6, and
Reynolds number between 15 and 480 per inch, However, no direct com-
parison between theory and experiment can be made because Schaaf's
analysis does not take into account the effects of the interaction between
the shock wave and the viscous layer in supersonic flow, and the effect

of the finite length of the plate,

Mirels7 extended Schaaf's work to the case of vaﬁab]e fluid
properties, By transforming céord:i.nates and assuming [ /= constant, he
was able to solve for the gas velocity component paraliel to the plate
separately from other unknown quantities, The Rayleigh problem wWas then
related to the steady boundary layer flow over a flat plate, Mirels also
extrapolated his results over the whole flow regime and like Schaaf
obtained twice the correct values of slip velocity and skin friction for
free molecule flow, Mirels'! work seems less satisfactory than that of
Schaaf, If the impulsive velocity of the plate in Rayleigh's problem is

large enough to warrant consideration of compressibility, then the con-



ventional Navier=Stokes equations would be inadequate in describing the
problem in the slip~flow,

An.analysis similar to Schaaf's was made by Kane8 for the heat
transfer from a flat plate with a temperature=-jump boundary condition.

The energy equation of the Navier-Stokes'! framework was nnearized by
neglecting dissipation and regarding the fluid propertieé as constant.
Thus, the linearized energy equation with the temperature-jump boundary
condition corresponds to the linearized momentum equation with the welocity
slip boundary condition in Schaaf's analysis, The same method of solution
was employed, and the heat transfér obtained, Kane's result wuld also

be valid only for low Mach number flow, since in general the energy
equation can not be linearized, This heat transfer analysis was extended
later to cylinders, Spheres9, and coneslo.

By dealing directly with the steady, uniform flow over a semi~
infinite flat plate, Maslend obtained the second approximation to the
laminar boundary layer in slip flow, He assumed that the welocities and
the thermodynamic properties of the fluid may be expandéd in powers of
the small quantity € = (M Y7¥)/(/Re), which is essentially the ratio of
the molecular mean free path to the boundary layer thickness, By intro-
ducing these expansions into the Burnett equations and also‘ into the
velocity-slip and the temperature-jump boundary conditions, one finds
that the conventional boundary layer equations with wvelocity slip and
temperature jump boundary conditions are correct to the order of €',

The Burnett terms give contributions of the order of £'° and highers
The second approximation, correct to the order of €, indicates a

decrease in heat transfer and for supersonic flow an increase in skin



friction. For subsonic flow there is no first order shear effects The
change in heat transfer is caused by the slip, but the effect on the
“skin fricfion is comnected with the interaction between the boundary
layer and the external flow, Maslen also obtained the incompressible
Rayleigh solution (Appendix D, Reference 11) and found the same subsonic
features: namely, zero first-order shear and a decrease in heat transfer,
Independently of Maslen, Non'vze:i.lerl2 also investigated the
laminar boundary layer in slip flow at low Mach numbers., He obtained
the boundary layer equations with the velocity slip and the temperature
jump boundary conditions as the governing system. correct up to the order
of 1/Re, This bowndary layer problem with slip was transformed to one
without slip referred to a "plane of no slip", which is at a distance
£ below the flat plate. (See Fig. 1l.)

Oz rtorzrorrrrrrarrrrrr7 777 7 7 77 7 7 7 777777777 X

- u=0 No Slip

FIGURE 1



However, the temperature of the gas at the plane of no-slip, T, , is
different from the temperature of the gas at the actual surface, Tw‘ In
general, é:b Yy==tyu=0, T, # T... For zero heat transfer in low Mach
number flow, it was found that Ip= T4e In this case, Nonweller found a
skin friction increase due to slip as a product of dp/dx and M/ YRe , If
the pressure gradient dp/dx is zero, then slip has no fifst order shear
effects The effect of slip alone is solely responsible for a heat trans-
fer decrease, Nonweiler also found no effect of temperature jump on
skin friction in the cases he studied, _

All the resulis discussed above, as restricted by the framework
used, are applicable only to the border regime between continuum and
slip flow and could not be expected to hold over the whole domain, Two
approaches have been employed to investigate molecular effects in the
flow over a flat plate: namely, the study of the Rayleigh problem and
the study of the steady boundary layer flow, In the latter case, the
problem is not well-defined because of the presence of the leading edge,
near which the molecular effects are most important, A‘E any rate, one
thing is clear: the ratio M/ YRe is the fundamentally-important flow
parameter, However, in the boundary layer approach thé assumption that
the various quantities could be expanded in powers of this parameter is
questionable, and the conclusion that the velocity slip has no immediate
effect on the skin friction is rather unsatisfactory,

Near the start of the Rayleigh motion, as mentioned before, one
expects the flow to resemble a "free-molecule" flow, In the usuval free-~
molecule flow analysis the incident molecules are supposed to be

characterized by the Maxwell distribution function based on conditions



Ufar® from the surface. In Rayleigh's problem this distribution
function will be modified as soon as a sufficient number of the first
reflected ‘rﬁolecules have had time to collide with the new incident
molecules, Therefore, the behavior of the flow quantities in the initial
stages should be described by means of a suitable expansion prdcedure in
terms of the parameter t/z ~ at/L~ Re/Mz. Apparently the idea of
improving upon the free molecule flow values by seeking solutions of the
Maxwell~Boltzmann equation in terms of power series in 1/L originated
with Jaffé, Keller™ applied Jaffé's method to the problem of determining
the drag on a moving body as well as to the problem of free expansion,
but only the first approximation is given explicitly. The general
expressions thus obtained for the dfag on a convex body in the free
molecule flow are the same as those obtained by Heinemann”and others,
Heinemann followed the physical approach of obtaining the drag on
'arbitraxy convex bodies in free-molecule flow by considering the momentum
imparted by the gas molecules to the body. The usual assumption of
monatomic gas and Maxwellian molecular velocity distribﬁtion far from the
body was made, and formulas for the drag of a flat plate, a sphere, a
cylinder, and an ellipsoid were given, TFor the particular cases of a
flat plate moving perpendicular to its plane, Heinemamn also obtained a
second approximation for the surface pressure to take acecount of those
molecules that collide once in the gase

It will be interesting to see if solutions of Rayleigh's problem
obtained in the present study take the fom of series expansiéns in the
parameter t/z for small times. Conceivably such solutions developed

from the free molecule flow regime, combined with the proper solutions



for large time, may cover most of the range of interest,

Perhaps the most comprehensive attempt to obtain a general
appromeaté solution of the Maxwell-Boltzmann equation is that of H,
Gradt®, In Grad's method the molecular distribution function £(, ¥, t)
is expanded in terms of Hermmite polynomials depending only on t , where
€ is the molecular velocity vector, X is the space vector, and + is
the time, The first term of this series expansion is the Maxwell dise-
tribution function based on local quantities. The coefficients of the
higher termms are taken as the new state variables, which are functions
of %, t, and these coefficients are identified with the imonerts® of
the distribution function with respect to g e The £irst moment gives the
flux density of molecules, while the higher moments are essen‘bia]ly the
nomaf?:hear stresses and the heat flux quantities, which are now re-
garded as separate dependent variables, not explicitly related to the
derivatives of —'5: and T (absolute temperature) with respect to Xs By
stopping the expansion after a finite number of termms and substituting
the Hermite polynomial series for £(% , X, t) into the Maxwell-Boltzmann
equation, a system of partial differential equations for pressure, den=
sity, welocity, stresses, and heat flux quantities of the gas is obtained,
The usual egquations expressing conservation of mass, momentum, and energy
are always included in the general set, This system of equations should
govern all possible flow regimes from free molecule flow to the inviseid
or Euler flow,

Grad's boundary conditions at a solid swrface are derived by
introducing a single "reflection parametert, ot , which is similar to the

Maxwell-Smoluchowski concepis of reflection coefficient and energy
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accommodation coefficient, This parameter denotes the fraction of
molecules that is reflected specularly, Considering the special case of
a perfectlsr reflecting wall for which o= 1, Grad found three of the
moments are required to vanishe By working on these three moments for
the general case of 0 < &< 1, he obtained three boundary conditions,
However, Grad's mathematical argument of deriving these boundary con-
ditions may be interpreted physically by applying the conservation laws
of mass, momentum, and energy. These boundary conditions are therefore
re~derived in Section II.B from a physical point of view.

Because of the uncertainty over the actual physical ieflection
process, it is thought sufficient at the present time to take the tan-
gential momentum reflection coefficient ¢ and the energy accommodation
coefficient o' as identical and the normal momentum reflection coefficient
0~/ introduced by Schaaf and Belll6 as unity, These assumptions are
equivalent to Grad!s introduction of a single reflection parameter o¢ ,

The equality 0" = oV is correct only if the reflection process is
actually as simple as Maxwéll supposed; le.¢s, a certain :fracticn 10
of the incident molecules is reflected like light rays, while the rest
are reflected diffusely with a Maxwell distribution coifesponding to the
surface temperature TW. Hurlbut's17 molecular beam experiments on the
scattering of air and nitrogen from solid surfaces (steel, aluminum,
glass) show that 0 is very close to unitye. Hurlbut remarks that these
results do not imply that almost all molecules are reflected diffusely,
but that probably a certain fraction are reflected elastically fram tilt
planes with a random orientation over the surface, This explanation may

account for the fact that many investigators have found o' to he signifi~
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cantly less than unity while 0= ls Once a sound theoretical foundation
is established, it might be possible to obtain «' and ¢ indirectly by
independer;t measurements of surface pressure and heat transfer rate (or
surface temperature), just as the ordinary coefficient of viscosity is
obtained from the flow rate in Poiseuille motion,

For very violent processes in which the gas is fa.f from the
equilibrium state, Grad's formulation may be inadequate, or even incorrect,
but for a wide class of flow problems the contracted thirteen-moment
method is probably sufficients In each case, a comparison pf the magni-
tude of the neglected higher moments with those fetained mué‘b be made a
posteriori in order to test the validity of the approximation, Grad's
nmethod has been applied to the plane shock wavel® and to the classical
problem of the steady flow between two concentric rotating cyl:lnders”.
A recent extensionzo of Grad's method to "rough sphere" molecules to
include rotational degrees of freedom and ‘relaxation processes would
seem to be premature, as long as the theoretical foundations of the
simpler model are not yet firmly established,

In Grad's work18 on the steady plane shock wave, it was found
that 'bhé solution breaks down for shocks stronger than :M = 1,65, which
could be taken as the limit of validity of Grad's thirteen-moment
equations, The Navier-Stokes solution for the shock profile begins
to deviate from the thirteen-moment result at about M = 1,2 According
to Grad, then, this point of M = 1.2 shock strength marks the limit of
applicability of the Navier-Siokes equations, although fomally the
shock solution exists for infinite strength shock in 'bhe Navier-3Stokes

frameworke# On the other hand, Gilbargzl concluded there is nothing in

-# Of course, relaxation effects would have to be taken into accamts



12

the shock wave study so far to suggest that the classical continuunm
theory is not fully adequate to describe the flowe The mcent experi-
nent of Sﬁennan22 begins with M = 1,72, while Grad's theory ceases to
hold beyond M = 1,65, Consequently, no direct comparison could be made
therees In short, the question of which system best describes ihe
structure of a shock wave is still in dispute and has to be settled by
further research, both theoretical and experimental,

From the above consideratiors, it is safe to say: (1) Grad's
thirteen-moment equations are sufficiently flexible to describe most
flows in which there is no shock wave stronger than that oi‘ normal on-
coming Mach number ¥ = 1,65, This last difficulty is certainly avoided
in the present study; (2) Although the Navier-Stokes framework yields a
formal solution of the shock wave problem even for infinitely strong
shocks, the Havier-Stokes'! solution for Rayleigh's problem breaks down
completely in the initial stage of the flow, giving infinite skin
friction, Therefore, the classical equations of Navier-Stokes are
definitely not applicable to the study of the initial phases of Rayleigh!s
problem, |

In the present investigation, Grad's thir’oeen-mbment method is
applied to Rayleigh's problem, The boundary conditions ars restated for
the case of a moving surface, and the equivalent assumptions ¢ =«t and
g' = 1 are retained, At this stage the original restriction to a.mon-
atomic gas 1s thought not to be too severes In general, the problem is
highly non~linear; therefore, this phase of the study deals with the

case in which the plate velocity is small compared with the speed of
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sound in the gas before the start of the motion, The differential
equations and boundary conditions are linearized, and momentum and energy
are uncouﬁled. In other words, the problem is purposely simplified to
the point where the molecwlar effects associated with a purely-tangential
motion should be clearly discernible, Solutions obtained in this case
should provide a basis for attacking Rayleigh's problem with arbitrary
plate velocity, where the pressure, temperature, and velocity fields are
interrelated and the problem is more complicated,
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II. EQUATIONS OF MOTION AND BOUNDARY CONDITIONS

A. Maxwell-Boltzmam Equation and Grad's Method of Solutionit

The basic equaticn of the kinetic theory of gases is the well-

known HMaxwell-Boltzmann integro-differential equations
aF =z = V- =
o +55%, =J |5~ 8| (FE=FR) redrdeds (2.1)

where
t = time
X4 = Cartesian coordinates, 1 =1, 2, 3
§1 = component of molecular velocity vector §
F(5,%,t) = molecular distribution function, so that F(£,%,t) d¥ dt = nun~
- ber of molecules in the physical volume dX around ¥ having
velocities within dZ of g .

I£-£1= relative speed between two molecules before collision

ry € = polar coordinates in plane through first molecule perpendic-
ular to initial trajectory of second molecule (See Fige 2.)

r = perpendicular from first molecule to rela‘tn.ve path of second
before collision
€ = polar angle

subscript 1 refers to the second molecule which is colliding with the
first

prime ' refers to guantities after collision

repeated indices denote summation

# Tor details, see Reference 15,
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MOLECULE

FIGURE 2

The left-hand side of Eqs (2.1) represents the net rate of increase
in the number of molecules in the elementary wvolume dxl * dx, ¢ dx3
caused by change with time and by £1lux through all six facess The righte
hand side is the gain in number of molecules entering the velocity
range 4§ e d§2 . d§3 s less those leaving due to the effect of collision
between molecuies.

In the derivation of the Maxwell-Bolizmamn equation (2;1) the

following assumptions are involved:

(1) Point Molecules Physically, this statement implies a mona-
tomic gas for which the molecular distribution function may be written
as a function of % , ¥, and t alone. Also, the ratio of specific heats

and the Prandtl number are, respectively,



_ % _5
y= -C—zr_g—
E_:C/’_=£_ (2 2)
A 3 ¢

(2) Complete Collision This assumption states that there exists

a time interval dt, which is large compared to the average durétion of a
collision, T #, bul small compared to the average time hetween collisions,
T

T¥<c<dt << T
The usual binary collision assumption states merely thatz=* is small
compared to T, The more stringent condition here allows incomplete
collisions to be ignored (dt>>v%), and at the same time the possible
interference of a third molecule to be ignored too (dt<<7T ), ‘The con-
dition z# << T is equivalent to the condition that the size of a
molecule is much smaller than the mean free path L, which restricts the

consideration to dilute gases,

(3) Slowly Varying Molecular Distribution Funct:_i.on This
restriets the distribution funé‘bion to be essentially cénsta.nt over a
distance comparable to the size of a molecule but does not réstrict the
variation in the distribution function over distances éomparable to the
mean free path,

(4) Molecular Chaos Any special way of choosing a group of

molecules has no influence on the distribution of velocities,

It is also to be noted that the effect of the extemal forces on
the distribution function X, (3F/054), where X, is the component of
external forces per unit mass, has been neglected on the left~hand side

of Eqe (2¢1)s
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It is convenient to initroduce the mass density

fex,t)=mF (5%, 1) (2.3)

m being the mass of a molecule, Then, the various moments may be

defined as follows:
5 — d—e—
[ e =/f(§’ eI s (2.4)

where the integral is extended over the whole three~-dimensional velocity

space. Obviously, f is the average mass density. Also
- - } > =
X t)= & ol
LA )= 5| 55 (2.5)

is the macroscopic flow velocity, For higher moments, which depend on

the molecular velocity relative to the mass flow velocity, the intrinsie

velocity
— > — ""_ 5 z t
C(E X, t)= §-w (X, t) (2.6)
is introduced, so that
F. (Xt ‘i/Cg—C- dg
’ 2 (2.7)
= P SJJJ‘ + lbp'\l'
where
p = hydrostatic pressure
Sij =1 i=j
=0 173
with
"Fb‘/; - 3/> /bz:z} =0 (2.8)
and
S{/’k ()—Z’f;) =[C‘_-CJ- CK][ dg (209)

with
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S{'/" = -

(2.,10)
The temperature is defined as proportional to the mean kinetic
energy measured with respect to the flow velocity 4. For a monatomic
gas, the kinetic energy per unit mass is 3/2 RT, where R is the gas

constant, An element of kinetic energy is 2 f &% dZ ; therefore,

/ 2 g
%RT=JT/—2LCJE4§

_37
=7
by Eqs. (2.7) and (2.8), or
b— pRT C (2.11)

which is the equation of state.

The physical meaning of the second moment, Pi;j’ is the stress
tensor due to molecular motion, since c; ej £ dx d—g is the- rate at
which the j-component momentum is transferred in the i-direction,
Similarly, the contracted third moment S, = 2 f ¢; ¥ 0% £ af is twice
the rate of txé.nsfer of kinetic energy per unit area with respect to the
mean motion, W, i.e., twice the heat flow, From Egs, (2.9) and (2,10)

one has
S.(Xt) =/cn.c‘ d§ =29, (X, )
Hereafter, the more cormon quantity 9 will be used throughout instead
of the original quantity Si introduced by Grade
Multiplying both sides of the Maxwell-Boltzmann equation (2,1)

by 1, £ s and £°, respectively, and integrating, one obtains



3P , o o=

au; , oue, [ 3P | ok

a—f%—wg*faxﬁ%ﬁf" (241Ls)
%4_ (“nﬁ)f ZP aUJL Z J aX, z: =0 (2015)

in which the definitions of the moments have been employed, Immediately,
one recognizes Eqs. (2,13)-(2,15) to be the conservation equations of
mass, momentum, and energy for a monatomic gas,

By assuming a special form of the molecular distribution function,
dependent upon only temperature, pressure (or density), flow velocity,
and their gradients in the fluid, the stresses Psj and the heat fluxes
q may be expressed in terms of these quantities, Thus, the system of
conservation equations (2.13)-(2,15) becomes a determinate one, Included
within this scheme are the Euler equations, the Navier-Stokes equations,
and the Burnett equations, All these equations are, in some sense,
successive approximations to the Maxwell-Bolizmann equa’éion.

A new method of solving the Maxwell-Boltzmann equation has teen
developed by Gradls. The method is supposed to give mc;re general
solutions than that of Hilbert, Enskog, and Chapmane The essential
feature of Grad's method is that the departure of the distribution
function from Maxwellian is taken to be linearly dependent on stresses
and heat fluxes, which are not assumed to depend explicitly on tem=
perature, pressure, mean velocity, and their gradients,

An expression for the molecular distribution function is assumed,

of the fom
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- > [ - i Wy (n)._,
fEAY) - f )(x,wl}/v‘Z;é & )]t (g)} (2.16)
n=1
where
®_, P _ct .
22 RT
fay ot €° (2.17)

= local Maxwellian dn.stnbut:.on, not exactly the equ:.l:.br:.um
distribution, since ¢(id) and T can be i‘unc‘b:.ons of X and ¢

QJQ:é/ffﬁmdg' (2.18)

= Hermite coefficlents, which are essentially state
variables (Cf. Eq. (2.2).)

]‘5 = Hermite polynomials of order n, which are known functions

JE7 = v -4, - (2.19)

/f”)=v~u—sz—(u Sk-}U’S + &, 8’;/), b

in which ¥ is the dimensionless intrinsic ‘velocity

C =v/RT (2.20)

where ¢ is defined by Eq. (2.6). Substituting Eq. (2.19) into Eq. (2.18)

a. =0
2 FL
a® =Lt
g P (2.21)
3 230..
LJ/( ‘Ji(
FlrT

The first significant coefficients are the stresses a; 5= pij/p and

the heat £low aﬂ;;.’ - 2% .

FIRT
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By taking a sufficiently large number of terms in the Hemmite
expansion (2.16), Grad believes it is possible to approximate f to
any desiréd order, However, it is assumed that the gas is sufficiently
close to equilibrium for the distribution function £ to be approximated
by three tems. '

From Egse (2.19)~(2.21), a simple expansion of Eqe (2.16) is

- Py LG : -
][ / [“2/’/376’9'~ /gRCT(/ ‘527)} (2.22)

It is interesting to compare expansion (2.22) with Enskog's

solution to the Maxwell-Boltzmann equation for slowly-varying f.lowz3

IRVASIES IER)

= fw) { /1B, +m85§b.+m8+c*+‘/;+v7g+ 7,{;10};}

where Bys Bys eses By are constants detemmined by the following five

conditions
[§¢ 43 -0

Jf@s $ag=0 i=1J <3
J P s 5, a8 =0
§ i = component of molecular velocity vector -§’
£(0) - Maxwellian distribution function
m = mass of a gas molecule

¢ = intrinsic velocity = % - u

u = flow velocity

o = (§-u)+ (5,-u )+ (5-u,)



22

[2f _JoT c*\oT
14 =—§‘/75Z_737(%_£ﬁ)91}75“)

sl ) B (s eI (55 4 e)

155 %rge ) gs(% ) 52 gﬂgﬁ@)

Ve, '/, are obtained from ; by changing x, into x5, X

H
respectively, and 5 into § ., §5; ¢ 3

7{’(6), $@)are functions of ¢ and the constants of gas only

As already mentioned, Enskog!s form of the molecular _distribu'bion
function depends only on temperature, density (or pressure), flow
velocity, and their gradients, The time dependence of Enskog's solution
is through that of temperature, density (or pressure), and flow velocity
of the gas, However, in Grad's expansion (2,16), the Hemite coefficients
ai(n) vary with time directly as well as temperature, pmssﬁre, and flow
velocitye Arbitrary initial values may be assigned to Pij and qQ (ct.

Eqe (2.21) ) and subsequent values determined from the partial differ-
ential equations (2,23),
If one replaces p, j and q, in expansion (2.22) by the following

Navier-Stokes! approximation:

_ au‘J 2 ol
Ib ( D)C ) /L SJ (’Xk

- _ o7
A oX;

where &« and ) are the coefficients of viscosity and heat conductivity,

respectively, then it is seen that Grad's expansion (2.22) will take the
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form of Enskog's solutions

The expansion (2,22) is valid for all flows in which the macro-
scopic vaﬁables do not vary by a large amount over a mean free path,
The variation allowed is sufficient to include the study of shock waves
of medium strength, particularly shocks whose normal component-oi‘ the
on-coming Mach number is less than 1.65.% In addition, the basic
assumptions for the Boltzmann equation are always imposed,

By substituting expansion (2422) into Eq, (2.1) and recalling Eq.
(2.3)f = nF, ‘one obtains the Grad equations, add_ing the conservation
equations (2,13) to (2.15) and the equation of state (2.11)‘ for

completeness

af+"(f“r)=0

ou: ., U | 3F . | dhr _
o6 TUr Xt /’ ox. TP ke

2 3“1‘A2 ol,, 2 02
at 9& Mrp)t 3PS+ 5hesit 3 =0

/’=fRT

" (2.23)
21: a)c (“”b) ?ﬁ ax*a)'c”s air) ’LP”‘ g»t tIir %r

_z au 25 ou
5 hai U 2 r
frs 3 2Xs r’b( X ox, yax,}*/w g =0

;Z‘ dX (Mrj)‘f‘ au‘ + 23 oUr FE Qc oUp FRT 31%/‘

r % X
. Zp ORT _ Furfop  ofis 55RT 2P g
tz Sk, (axr o) rat X, T30

The last two equations above are the same as Eq, (5.18) of

# See Introduction, page 11, or Reference 18.
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Reference 15, except that 5; has been replaced by Zqi, as in Ege (2.12);
and By/m by RI/64 , as in Eqe (5.30) of Reference 15.

In érad's system, the stresses and the heat fluxes are regarded
as new dependent variables governed by additional equations rather than
being expressed explicitly in temms of the state variables and \their
gradients, These additional equations, i.e., the last two of Eq, (2.23),
which make the system determinate, may be called, respectively, the stress
and the heat equations, It is to be noted that the Euler equations, the
Navier-Sickes equations, and the Burnett equations may be deduced from
the Grad equations.® Consequently, the Grad equations cover a larger
part of the manifold of the solutions to the Boltzmann equation than the

others do,

Be Boundary Conditions in Grad's Method

Together with the partial differential equations, Grad also gives
the general boundary conditions, Considering the boundary perpendicular
to the xl- direction and the condition that a certain ffaction o of the
incident molecules is specularly reflected and that the remaining
molecules are absorbed by the wall and re-emitted with .a. Maxwellian

distribution at the temperature of the wall, T

w> one writes the boundary

condition as

<

f*(g,,i,gj) - df‘(—§1,§2,§3)+ke'2ﬁ'f 5>0  (2.2h)

where

# He Te Yangs "Reduction of Grad Thirteen-Moment Equations to
Burnett Equations for Slip Flow", (unpublished), GAICIT, 195k
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in which f(&)=F(E+47(5)
| f’”{é’):o for & <0

J(€) =0 20r 550

and k is determined by the condition that the wall does not collect

molecules, iceey W = Oe (See Fig. 3)

.
>
> X
N
v o)

\\\\\\\\\\\\_‘ ANNANNNNN\Y
’ =

FIGURE 3

The boundary conditions were originally derived by Grad on a
mathematical ground of symmetry consideration in the specularly reflected
cases For better understanding, these boundary conditions will be re-
derived here from a physical viewpoint based on conservation lawse

For the present third approximation, the molecular distribution
function is given by expansion (2,22), In the two dimensional case, one
has
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Uy = 0
e I P13 70 P23 O (2.25)
q3 = 0
pn + P22 0 from Eq‘ (2'8)

Writing out expansion (2.22) and using relations (2,25), we have the

molecular distribution function for the incident molecules,

Smw) (5w ST

][ (%,,5., %)— (Z—m‘?;}z e ZRT

B B, BaGus )
' 2pPRT 2PRT PRT

(2.26)

_ 5w Llssw), L(5mu) ) 36w, 2,60 »OLY
PRT PRT ~ SP(RT)* &P(RT):  SP(RT)S

ﬂz (g)—dj)z(gz—u?) + 32(,&_[*{2)3 3+ M
SP(RT)S  SP(RDY SP(RT®

The molecular distribution function for the specularly reflected molecules
is obtained by replacing § by - §, , in expression (2.26). The Max-

wellian distribution function at the wall temperature is, by Eqe (2,17),

) §,{T§:+§:
7&;— =/C e 2R 7w _ (2.27)

where

for

T (=TRT)E
The mass of molecules striking the unit area of the wall is

0o /od ol
ot =/d§3/ dngg,f*(g,,i/gs) o,
— o0 o2 0

Substituting Eq. (2.26) in the above expression and carrying out the
integration, we get, with w; = O at the wall
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/
+ P+'P
= /57}%7” (2.28)

Similarly, the mass of molecules leaving the unit area of wall in

7

specular reflection is

[w o0 0
o = | 45 45 5 000
—0d — o e . (2‘29)

_ OcP+:2LP”
RTTRT

The mass of molecules leaving in Maxwellian reflection is, by Eq. (2.27),

<& Al A
kmw___ /Cf 6 ZRZ:;— OLga 6 ZRTw—dg;,/gl e RKTM"C{,g’
—od — D —po N (2.30)
= k 2z (RT,.)"

By conservation of mass, the mass of molecules striking the wall should
be equal to that leavinge Equating expression (2.28) to the sum of

expressions (2.29) and (2.30), one has

f.i;_z—tﬁ = o{ _P;—‘?-Lﬁ > 2
== = k=27 (RT,.)

Hence,

Y e pPtip
ZW(EE)REET{_ (2031)

The tangential momentum brought to the unit area of the wall by

the incident molecules is

M+=/ dgaf(gz—uz)dgzj (§,~%)][+(§,§:,§s)4§1
i .

—- D — ol o

B~ N
= SIzmRT

(2.32)



28

The tangential momentum carried away from the uwnit area of the wall by

the specularly reflected molecules is

. o0 od o}
O(‘M~= d/ d'ga/ (g_z—u".z)dgz (g;—“‘)][—(*g’/ 5‘2153)d'g1
Tl —e —oa . (2.33)
_ _ R __ﬁ_) ‘
o ( < +5/zmaT
and that carried by the molecules emitted diffusely from the surface is
© __& it &y L&
K Mw_ =k e R d»%j(g{"“-‘)e Zm‘:’chz/( § e R?;lrgl

-~ - (203)

— D

=-k2m(RT:) e,

By conservation of momentum, we have
M e o M T+ k M -

or

/72 9 —_ _ﬁ:a_ _L _ 2
e o sy Aonten

Putting in k as given by Eq, (2.31) and simplifying, we obtain

b, 2l-Vus I 20-0% ___,
P +C/+O¢J(27TRT}—‘<1([ fzp) T 5(1+0Opb [z7RT (2.35)

The kinetic energy with respect to the mean mot;ion, @, brought to

the unit area of the wall by the incident molecules is

Q ol [£¢]
T B O T

~00  —0d
£
T 2

7T)

The kinetic energy with respect to the mean motion carried away from the

(2.36)

4]

= % -/-(2/7"%}?,)(5

unit area of the wall by molecules in specular reflection is
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cf =t j ds, j ds, j (5-)| (5 W5+ 55| [ 16,5.8,)45,
S o (2437)
2 (2 20) ()

and that carried away by molecules in Maxwellian reflection is |
0o 00 0 . §frshs]
KE,, = 3// d§3/ at‘s‘z/(ﬁ,—Mz)l(g,—%){*(%“zﬁ%\:}e Do s,
= k7 (RT.)" (4R T+ 1)

= X

By conservation of energy, we have
Ef=o E +kEo
Using Bqse (2.36), (2.37), and (2.38)
2 ifaps 25) (B = o o lope 28) (5
+ k7 (RTer ) (4R Tar + 13 )

Putting in k as given by Eq. (2,31) and simplifying, we get

/- ?" 2};{~ TW)( 2}9 RTJ ° (2.39)

It is to be noted that the boundary condition u = 0 has been

(z_vr)%ﬂ_, LA
RT) P [+

used throughout in the foregoing calculation,
To sum up, the appropriate boundary conditions for the Grad

equations (2,23) are the followings

oo (2.10)
Fe, RU=Vus ¢, b (-1,
P (reuemrT)EV T 2P/t 5(#e)p (RTRTA 0 (2.41)



The last two boundary conditions are the same as Eqs. (6.30) and (6.31)
in Reference 15, as originally derived by Grad, with S; replaced by 2q4.
However, it is to be noted that in Reference 15 the factor % was missing
in the last tem of the last equation, The first boundary condition
states that the wall does not collect or emit gas moleculés. ' The second
one states that a tangential stress or a tangential heat flow at the
boundary is assoclated with a tangential slip velocity of the stream,
The third one states, roughly, that a normal heat flow is associated
with a temperature jump between the wall and the adjacent gas,

For flows not too far from the equilibrium state,

pll<< Ps Tw=T’ u=0

the last two boundary conditions simplify to

Ez 210w, 2(/-c009, _ :
F+(/+06)(277R7-)i:+ 5(1+o)p (TR T* Y (2.43)
g, 40~ o B Y | | .
% F*H—o«(/“?*r;»)“o (2.1L)

which are the boundary conditions (6,30) and (6,31) in Reference 15,
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IIT, RAYIEIGH'S PROBIEM FOR THE CASE OF SMALL IMPULSIVE VELOCITY

Ae Formulation of Rayleigh's Problem in General

Rayleigh's problem consists of the study of the flow above an
infinite flat piate suddenly accelerated from rest to uniform motion
with velocity, Us There are two independent variables: namely, the time,
t, and the coordinate normal to the plate, yo There is no variation of
flow properties along the plate, viz., 2( )/ox = O, The dependent vari-
ables are the density f , the pressure p (or the 'bemperaturé T as related
by the equation of state (2,11)), the velocity components, u and v, the
stresses Pyxs pxy’ and pyy’ and the heat fluxes q, and qy, making a
total of nine, TFor Rayleigh's problem, the system of Grad equations

(2.23) becomes:

Continuity:
oU-

_f_+ (D I 59 = 0 (31)
Momentums

2 au ok

=T fi =0 (3.2)

L U B A -
Erergy:

2P BP 3

ERET ;wgé; (5/) _@9)9!1* é %q =0 (3.1

State:

P =)DRT (305)
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Stress:

4
P v 0% (h by 3p) o Lm0 (3.6)

535‘5 af’;‘ +</D +,@3) “Loap 2,2 aj)‘ /iym

oy 53y T E (3.7)
aﬁ}yfua ( Pk pad, I A, E,b 8
It 93)?3 Shyaytis o5 * 1z oy | (3.8)
Heat:
e, p0&x Tq  Toou, 5 Byob 7 FPhx 3P, ﬁ-”i" D&H__"éaﬁ-‘i__gz 0(349)
ot a4 5}/335x332f332f oY oy fp oy 3m ¢

3%, 2% /6 bs\oP (5P, P Fos\ ey Py OB zl’
BB RS IR B sty oo

The initial conditions for the gas field originally at rest are

as follows, with the subscript O denoting undisturbed quantities:

wlo. y) = 0
Uio,y)= 0
floyr=f
plo.y= F
(Top=T)
blog= 0 (3.11)
figlo.g)= 0
Foy Lo, 9= O
T.(09)= ©
T loy= 0

At the surface of the plate y = 0, the boundary conditions
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(2.40) to (2.42) become

Ut o)=o (3.12)

Eéy(t) 2{1~4) wb- U(I f9tt) N 2 )~ Dl t) -0 (3.1
P, (1+o<)(zmt)z[7(t)] 2pid)) " slHe0Gn profTis) - (3.13)

(zv) 2, 4~ Tar @,(t)( Tw) (1+ Fyy(t}){gﬁzu} 0 (3.14)
[ Ptﬂ e | T v Tzp BTN 2] ArTw J

where ot = fraction of the incident molecules specularly reflected
from the plate
U = impulsive velocity of the plate
T v temperature of the plate

At y = ©©, all the dependent variables are required to be finites

Be Linearization of Equations of Motion and Boundary Condi tions

The system of partial differential equations (3.1) to (3,10) for
Rayleigh's problem is highly non-linear and, hence, extremely difficult
to solve. However, if we limit ourselves to the special case where the
plate impulsive velocity, U, is small, and where the temperature difference
between the plate and the undisturbed gas, Tg=T o’ is small, then the
equations as well as the boundary conditions are linearized. The study
of the simplified problem should throw some light on the general problem
of arbitrary impulsive velocity,

Under the assumptions of small impulsive velocity and small

temperature difference, one may write



127 = W

o= v’

Po=Rrs

po= brp

T o= 7, +7

b = b (3.15)
fog = Fy

foy = /’93/

1, = 4

4, = 34

where the primed quantities denote small perturbations in the undisturbed

quantitiess The coefficient of viscosity depends on the temperature only:

- 13)
Hence,

_ 7-1 w_ 4 7 .
/a_/u,,(Hf) = M, +f - (3.16)

Now, substitute expressions (3.15) and (3.16) in Egs. (3.1} %o

(3.10)s The system of partial differential equations becomes

Zap -0 (3.17)
w, L% (3.18)

EC f’;ag =0 (3419)



where Q(t,y) is any physical quantity,

by 2 p 2 3 >
2t '3°a§ /5a§9 /};ﬁx =0

% +fi?*§‘%‘*£ fg = 0
S IRE A R o

and the equation of state (3.5) becomes

P=rR{LT +T°F)

c . PR
A

The initial conditions are, from (3.,11)

Q (o,y)=0

merely that there is no initial disturbances
The boundary conditions (3.12) to (3.1L4) are linearized as

v(t,0) =0

(3.20)

(3421)

(3422)

(3423)

(3e2L)

(3.25)

(3426)

(3.27)

(3.28)

The above conditions state

(3.29)
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Eg'(t,% 20~ wiw-y , 2(-e0 9. cte) 5
fo Ure0fmRRR [T, % " sCHolRA AT, I (3430)

&ﬁy(fo) 4-(1~00 ,}_ Tur /‘_;L,(t,o),_~
(%5

B ey l - %r | 0 (3.31)

and these boundary conditions take the same form as (2.43) a.ndi(2.l|l&)
for flows not too far from equilibrium,

It is also interesting to note that Eqs. (3.18), (3.22), and
(3.2h) with boundary condition (3.30) completely detemine the quantities
induced parallel to the plate motion: namely, the tangential flow
velocity, uj the tangential shearing stress ny' s and the tangential
heat flow qx'. The other quantities like normal flow velocity v!,
density f ', pressure p', temperature T', normal stiresses Pyx’ , pw‘ s
and normal heat flow q ! are governed by Egs. (3417), (3419), (3.20),
(3.21), (3.23), (3.25), and the boundary conditions (3.29) and (3.31)s
In other words ,» momentwnm and energy are not coupled, The dynamic
effects of the plate impulsive velocity, U, and the themal effects of
the temperature difference between the plate and the unciisturbed gas,
T, = To’ may be treated separately and then superposed_.

The characteristics of the linearized system (3.17) to (3.25)

are found by the vanishing of the determinant (3.32)
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0 £ o0

0

0

o 0 1 O

0

42lag
IS

LU
tolr?

0
(3+32)

0O 0 0
0 dt dy
(3e33)

0

0 dt dy 0O
-0

0

0

0 dt d&r O
0

0

0

0
0

0
0 dt dy O

0

0 dt dy O
0

0

0

0 dt dy O
0

0
0

0

04
dy
adt
Y
dt

0
0 dt dy O

0 0 dt dy O
0
From the above, we obtain

dt dy O O
where
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a,= ,/rff7;=/3§}i7; is the isentropic speed of sound
in the undisturbed monatomic gas

and
dy _
= oo
g/ggi/g +/o4 B :1/3(/3i Jod N (3.34)
ot 5 £ 5 °

The solution dy/dt = O means that the particle path is one
characteristice The solutions (3.33) and (3.34) represent character-
istic directions at "soundspeeds® dy/dt, different from the isentropic
soundspeed which is the characteristic slope from the Euler. equations,

All the characteristics obtained here are identical to those given by

Grad in Reference 15, except that due to linearization, the present
characteristics are straight lines and are known in advances It is to

be noted that the characteristics (3.33) are associated with the tangential
quantities u? ’ p}w', and qx' dependent upon the impulsive velocity of

the plate U, while the characteristies (3.3L) are associated with the

rest of quantities dependent upon the temperature difference Tw - T 0®

Ce lLaplace Transfomm Solutions of the linearized Rayleigh Problem

To solve the linearized equations (3,17) to (3.25), we apply the
Laplace transform defined byz"" 25

fe—St Q (t.y)dt= Q (sy) (3.35)

where
Q(t,y) is a function defined for all positive. values of the
variable t
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s is the transform variable

Q(s,y) is called the Laplace Transform of Q(t,y).

By definition of (3.35), we have the following:

= o2 0
-5t t,4) -5t ! -st o
Jé, s é@__(_‘d_/dt= e Q(t,g)] +8/65Q(f,y/dv

(3436)
o ~Q(0y) 1 5Q(sy)
j;*”@“ 4 g5 - %f@ q(49)96 = 2 q(s4) (3437)
and for Qo be;ng a constant
[ o Q, % - Q.+ G

4]

By using Egs. (3.35) to (3.38) and the initial conditions (3.28),
we transform the partial differential equations (3.17) to (3.25) into

the .fo]lowing systen of ordinary differential equations:

i

L =257 (3.3
ﬁgé = psZ (3.0)

j%’ wgg =Asv (3Ja)

25 *?%;% 2P (u2)
$47 12450 = 2feali Gaz)
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The equation of state (3.27) transfomms into

R T

“vkﬂ

0
JD

The boundary conditions (3.29) to (3.31) transform to

v (8,0)= 0
Ralso,  2(~e) | 2 ) 7 (s0)_ 0
/:; +U+OU(277R7°~)’?'L 50) 5 Ibc', J
Y ‘ = \
(277) 3y0) | 4{I=-0 | (,_ E’) L, ey G0 -0
RTs 3 JFe | VA 45 )"

From Egs. (3.40) and (3.L46),

W - 1 by
ACERET,
To. ) di
Z %5+§/% ay

Substituting Eqse (3.52) and (3.53) into Eqe (3.4b),

(3als)
(3.15)

522 ) 4 (3.46)

b 28)5 o)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3453)
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or

£ 5
d,f’ 5ES /&)(3572/&)

\y ,&15‘7‘/0//;:

X_y = 0

Since pxy' should not be infinite at y = 0 , we have

Lo = A® e T

where

o s s (5* )(35+2/z)
7()__‘1/ 3é/5‘+/o/’;)

(3e54)

(3455)

(3.56)

A(s) is an arbitrary function to be detemined from the boundary

condition (3.50), and the radical is taken to be real and positive,

From Egse (3052) and (3053)

_ 7
wo= As) & jSFD 572 o2 RS
f s

Z/D ‘I'/OZ
Vaia'd

_ £ / '
- 35 —-s(>+ 35+ (s)
sza A(S) Jo / 5/) g} ) fSH
ssuEJ 2ls 042

(3.57)

(3458)

To evaluate A(s), we substitute Eqse (3.55), (3457), and (3.58), into

the boundary condition (3,50)

% o
(/+o<)(<mce7°g ! _/gf 5*/&)(35*27 1] 3 /5; (5+—)(3S
T fj /s 5 7 7
2 +/o/¢a f‘swzj 4/5'*/0/‘0
Hence,
/
As)=FHM,

Hi(}]_r)% +(/+g S )/?5(s+ 2)(3s+zf2)

2/s+/0hk
4,

i 5
S
y,

(3.59)
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where

M, = U/ao = Mach number of the moving plate

U = impulsive velocity of the plate

<

s E
a, = |37 = isentropic speed of sound of the undisturbed fluid

Substituting the expression (3.59) into Egse (3455), (3.57), and (3.58)

ool

we find the transformed tangential stress, velocity, and heat flowss

follows:
. U / -fy
/bxg =]bo @ a,_ﬂ_ T .o e . (3.60)
T&J—o ( 5 /7)/ 35(5+
(3sr2z 2 (as +/a/ii )
v / 6»-f($)y ) (3,61)
22 | /_s(e_/w_/oz) s (s
/—-D(. (5-”’) 35+2ﬂ 5 35+2/(}
.CT / " - fes)y
/_ (—215+/0,wa)(35fzﬁ) p e’ (3.62)
35(5+ +3 (?5"'/7‘,)
vhere
Ibo I
£ s(stz)(3s2%
f(s)= i{ (st)( 2, | C (3.56)

a’OJ 3(2is+i0f2 )

The rest of the transfomed quantities, such as nommal velocity
s density f s Dressure p', temperature T', normal stresses pmc s pyy s

and nomal heat £lux qy » arevg:.ven by Egse (A.l?) to (Ae223) in the

Appendix,
It is interesting to note once again from expressions (3.60) to

(3462) and (A.17) to (A.23) that the effect of the impulsive velocity U
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of the flat plate and the effect of the temperature difference T, - T,
between the plate and the undisturbed gas are separated by linearization.
Gonsequentiy, the Rayleigh's problem of an infinite flat plate suddenly
accelerated to uniform motion with a small impulsive velocity and a

small temperature difference is split into two parts: .

(1) The impulsive velocity U gives rise to the tangential quantities,
viZesshearing stress pxy’ tangential velocity u, and heat flow along the
plate q ., as obtained in Egs. (3.60) to (3.62).

(2) The temperature difference Ty = To produces the rest of the
disturbances: namely, pressure p', normal stresses Dy, Pyys vertical
velocity v, density P! (temperature T'), and heat flow nomal to the
plate qys as found in Egs. (A.17) to (A.23).

This separation of effects is made possible mainly because the
energy dissipation temms, such as pxy (ou/oy) in the energy equation
(3¢4) and {u(t) - U}a in the boundary condition (3.1k4), were neglected
in the linearizing procedure, When the impulsive velocity, as well as
the temperature difference, is large, the situation would certainly be
different,

Our main concem in the present problem is the effect due to
impulsive velocity Us FPhysically, neglecting the temperature difference
corresponds to the case of a heat insulated plate, for which the con-
dition g | =0 requires T, = T, [Cfs Ba. (A23) and Eq. (4.16)

y=o
which gives B(s) = 0 for Tw =17 o’J In the following sections, Rayleigh's

problem of an insulated flat plate at low Mach number will be investigated
in detail,
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We may foresee the nature of the solutions by examining Egs.
(3.60) to (3.62). For small time, most of the contributions to the
qumti‘bies‘pm, u, and 9 would come from ;Txy, u, and q_x, respectively,
when s is large. From Egs. (3.60) to {3.62) we see that when s is large,
"p’m, u, and g, are all of the fom e & 7%° , which gives step=
functions in (1t - ﬁ,—a, ) ¢ For large time, the contributions to Pyys
u, and q, would come from ITJRV" u, and q—x when s is small, which are of
the form ﬁ[ e"f%/g s +e =5 R e-ﬁy;/? s respectivelye, The
corresponding inversion functions are diffusive in character. These
distindt features of the solutions for small and large values of the time
are just what one would have expected: namely, during the initial stage
of the motion, the quantities pxy’ u, and q, are impulsively developed
as step functions in y and the region of main influence grows linearw
1y with. time; for later times, these quantities are diffused out
smoothly in the whole space by viscosity, and the viscous layer grows

ESJ_‘E .
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IV. THE HEAT INSUIATED PIATE

For a heat insulated plate, there is no heat transfer between the

plate and the adjacent gas. Symbolically
9,60)= 9 (ty)l =0 for all te (k1)
9 ) ly=0

Taking the Laplace transfom as defined in Eqe (3.35)

9, (50 =0 for all s. (L.2)

From expression (4.23) in the Appendix, we see that the condition (4.2)
requires

T = T . (,403)

i.ees the temperature of the flat plate is the same as that of the
undisturbed gas.

Therefore, for Rayleigh's problem of an insulated infinite flat
plate suddenly accelerated to unifomm motion with a small velocity U, we
have from expressions (A.17) to (4.23) with 1 - (Tu/To) = 0,

S,

plco’ pm:'l:o’ vl:O’ f!co, Tt .-.-.0, qy{:O

t =
Pyy

Thus, Eq. (3.15) becomes

u = ul
v = 0
on
p = P next
° page)
T = 7T o = Tw



Pxy T Py
P = 0
44 (bels)

i,es, the density, the pressure, and the temperature of the gas remain
unchangeds no normal velocity, normal stress, or normal heat flow is
developed, The impulsive velocity gives rise to tangentiél vélocity,
tangential stress, and tangential energy (heat) flux only.

However, it is important to note that the solutions for the tan=-
gential quantities pxy’ u, and q, so obtained apply whether the plate is
insulated or not, because of the separability of effects in the linearized
problem, For a non-insulated plate, in addition to pxy’ u, and Qys We
superpose the other quantities p?', Pyys Pyys vy, £, Tty and qy
obtained by inverting Eqs. (A.17) to (4.23).

Ao Discussion of the Transformed Quantities in the s-Plane

In expressions (L4.4) the non-vanishing perturbation quantities u,

Pyy? and q_are to be obtained by inverting Egs. (3.60) to (3.62)

/ —]c(s)g

o ]

“ BB £ _2s(s02) (3.60)
J (3s+z£)(z/5+/gl§)

by (59)=

— / —-]L(s)é/
wuls,p=U
MY T Sanik) © (3.61)

J s{1+2 —2—
Felis fi F)ssafe) ( 5‘35+2/§D>
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— / —f

I G y=pU fey 62

* “szvs /(2/3+/a}%)(35+2/£1;) z(9 /:) © (3.62)
/-af30 | 35(5*/§) +§ 751

where

Cd

b 2 [sr oo F
< / 3(2/5+/o/§>)

2
n

(3456)

The shear stress pxy’ gas velocity u, tangential energy transfer A

are given by the inversion in'begra12h:

C+ivo
/?(,y(t,y)'—‘:z%;f es’f/@(w) s (L.5)
C ~ 500 .
where ¢ is a constant greater tiuan the real part of all the singularities
of 'ﬁm (s,y)s and similar integrals for u and Qe |
From expressions (3.60) to (3.62), we see that the functions

-I;-xy’- v, and g all have branch points at

_A

. 1,
T T P (4.6)

and also poles at roots of each denominator,s (For o(= 0, the roots

of the denominafor in Eqe (3.60) are 0, =eh92(p /iy)s =e6L9(p o//’o)‘ )
A1l three denominators are essentially positive for real positive

s and will not vanish, This property is demonstrated Ly representing the

complex variable in polar coordinates as

s = ret® where '8 | < 7/2 (Le7)

and the other three factors in the radical accordingly as shown in Fig,
b



48

Im. s X = branch points
0 - poles for Py (s,¥)
s =0

-pl S"""thgz(
S - plane 5 =t 9(p07//¢,°?

Rl s

FIGURE L

The radical in the denominator of the function p_g may thus be written

as

j. 35(5*/%) _ /Jr,.g it L(8+6,-6,-9,) .0)

J(3s +z/%}(z/s +/a/%) izl

with notations shown in Fige Lhe Now

e+ 0, -0, -6 | - |8 -0, - (6, -6y |
<|e- 91( | 02 - 065)

<] 8| +[8y |

3

< |8|+l18| = 280

But |8{<7/2 for s having positive real part
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Blesey-0,-0 |<lol<T2

Hence the radical (L.8) has positive real part and the denominator of

the function -p;; given by Eqe (3.60) will not vanish for any s with
positive real part., In other words, the function _Exy has no po}.es in the
half-plane Rl s > O, Likewise, we show the same for 1 and Ex' To sum
up, we have the following statements

All the three functions u, and Ay given by expressions

(3,60) to (3.61) have nop’?ngulam'bles in the half-plane (4.9)

Rl s >0,

Physically, this must be so; otherwise, the quantities Pyy> u, and q,
inverted from Integral (Lh.5) will diverge with time,

However, we are not going to apply the inversion integral (4.5),
since the complete sclutions are not only laborious to obtain, but also
inconvenient to use, Instead, we shall find solutions suitable for
small and large values of the time, which together would covér most of
the flow regime, and also approximate solutions which apply to the whole
regime,

From expi'essions (3.60) to (3.62) we see that the function 5}:y (s,¥),
uls,y), and Ex(s,y) have singularities only in the finite s-plane and
are regular for | s| sufficiently large, We may then expand these
functions in powers of 1/s and invert them tem by temm to obtain
' solutions pw(t,y) > u(t,y), and qx('b,y) for small values of the time as
in Heaviside's series expansion, For large values of the time, one
expands these functions in powers of s and then inverts.TZS

To obtain approximate solutions for all values of the time, we

try to approximate the functions ';‘;xy, u, and ‘q‘X of Egs. (3.60) to (3.62)
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by simpler functions that can be easily inverted. These simpler functions
are chosen in such a way that the regular behavior at s =°° and the
Singular behavior at s = 0 are retained, while the singularities with
moduli between O and o are collapsed into a singularity simpler in
nature, By inverting these simpler functions, we are able to o‘btain
approximate solutions which approach the exact solutions for small values
and large values of the time and which satisfactorily approximate the
exact solutions for intermediate values of the time, The detailed
discussions of the different approximations to the transfoms will be

taken up in the next section,

Bs Comparison of Approximations to the Transforms

In this section, we shall compare the exact expressions (3.60) to
(3+62) with their different approximations, which are series expansions
in p'owers of 1/s, in powers of s, and a simple approximate form for all
values of s, corresponding respectively to solutions pw(t,y) s u(t,y),
and qx('b,y) for small values of the time, for large values o:f.‘ the time,
and approximate solutions for all values of the time, I_"‘or simpliecity,
we consider in detail only the expression (3.60) for —Exy in the special
case of y = 0 and o= 0, i.e., the shear stress at a diffusively
reflecting wall which interests us moste But the argument applies also
~ to the other two expressions (3.,61) and (3.62) as well as to the general
case of y # 0O and o ¥ O,

From expression (3.60) withy = 0 and ol = 0, we have

/?cq{So) /
A I Zes 1810542
/Z (5 2 ),J (3

(L.20)

\HI

&’S(’ﬂ’s +1)

5+2_) (2/ F5+10)
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Fey(5.0) Ay

The numerical values of o, VSe ‘s are computed from Eq. (L4.10)
and tabulated in Table 1, By expanding the function ﬁ‘/j}%f) given
by Eqe (L.10) in powers of 1/s, we have
— | _b! 4217 1,23/
ey (5.0) . / \h ) 235 (B[ 588,]70 3087 [f;,
A4 M, 137, 621 ”SAFffJé_( S, 2 }
A0 " 35 2 Uz Yerd
(he11)
2 3
= 0569 ﬁ"ag/ —.247 (}Si)+ 0785 —%—é—)»ﬂ ]

Eqe (Lell) is an approximation to Eq. (4.10) for large values of s. The
nunerical calculations are entered in Table 1,

In order to obtain solutions for the shear stress pxy'for /¢

or _q’;t >> 1, we shall make use of the method of asymptotic e:&pansions
given in Reference 25.i# According to this approach, an asymptotic
expansion of Q(t) for large t can be deduced from the behavior of G(s)
near its singularity with the algebraically largest real part, In our
case the singularity with largest real part lies at s = 0, If Q(s) can

be expanded near the origin as
- = r-/ o n—i
]Q(s) =Z @,,S _,LZ b,s” * : (4e12)
n=0 n=0 ‘
then Q(t) has the asymptotic expansion for large t
L
Q W~ a,++ Z( Vb (neg)t * (Le13)

Expanding the function EW(S’O) given by Eqe (4s10) in the fomm

of Eq. (Le12), we have

# For detailed discussion of the conditions under which the
expansion is valid and the proof of the general result, see § 126,
Ppe 279=282, Reference 25,
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1

R | R B Bl

S
5~}l§

(ho1ls)

3 2
=290/ ﬁ’ 1 /—/253 —ﬁ-"s +1-07/ 525 = 7/5( :5)27'-20.,2/(%"5)_..,.

Eqe (L.1i) is an approximation to Eqs (4.10) for small values of s, The
numerical values are entered in Table 1, From Eq. (Ll.1h) or Table 1, it
is clear that the convergence of the series (h,14) becomes poor when
(/(’o/pc) s = L0, or W 2 o1, which corresponds to
W = Y375 ( YRe )/Mo < 0(10)s In other words, the
asymptotic series in the brackets of Eq. (L.14) is useful only in a
narrow region around the origin, This result implies that the Burnette
type expansion of the solution for ny(t’f’) is inappropriate for YRe/M

< 10, or t/z< 100 (see Section IV,E,1)s Therefore, it is necessary
to find approximate solutions which will properly bridge the gap
between the initial free molecule flow and the later classical Rayleigh
motione |

First we have to find a simple approximate expression to Eq. (4.10)

for all values of s, For s large, it is seen from Eq. (Lell) that the

Xy !
dominant term for @(5’-9) is B 6f— Ao e For s small,
L (/ 70 A )
Eqe (Le1L) shows that the dominant temm 1s F—/ i o Therefore,
SA4F
~the simplest approximation is as follows:
Fulog_ / (4+15)

FoM ([ B %o 7 s
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for all values of s, Of course, the approximation is very good for the
small and large values of s, The numerical calculation is carried out
and tabulafed in Table 1, which is also plotted as Fige 5e

From Table 1 and Fige. 5, it is clear that the approximation (4.15)
to the exact expression (h.lo) is satisfactory. Eqe (415) gives values
lower than those given by Eq. (4.10), but the maximum deviation which

occurs in the range 5 < l’;’s ‘The function

Ey (s0
Ao M,

to the singularity having largest modulus, which is of the order
l /40 ’

given by Eq, (4.,10) is regular for s ranging from infinity down

= 0(1), so the expansion (L.11) is useful for o0 < ”—;’—” s[ < 1,
For small s, the expansion is valid for a domain between 0 and the singular-
ity having smallest modulus, which is close to the origin, so the range of
validity is limited. Based on these observations, we shall obtain sclutions
for small values of the time by inverting expansion (L.1l) and solutions
for large values of the time by inverting approximate expression (L,15)

to replace the unsatisfactory expansion (L.1L).

Ce Solutions Suitable for Small Values of the Time

By expanding EJQT given by Eq. (3.60) in powers of 1/s, we obtain

U } FLSN CD-— | 2(131{3_5_ f ) !
Fx\y (S f/) 5 I.ro< 3_]T+ 6__F-: 6421—— /lo -5— —_ m—/—“—a - /37/(4&1 S2
~xi0* 35 =2 5 ] (Le16)
*

hl-o( fr 42) = 9

— "L 364 2 N é 7 _—E
. /a;;o 5%% /uia (H:W‘? / 056, 7)£— . 009, 64 4”% *O( ) s

( ) B ’

By inverting¥# and expanding the exponent, we have

# See Table of Transforms, Formulas 61, 62, and 63, pe 298,
Reference 2,
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el
a=p / | RNs By 5y, 25 BY
’ZH“'”“’E; [+ [3m 62 j#r 6 /"ﬂ(z’L 421 %)+42J2—;/% a,
/XA /0 35 /—dZ+J35
A 1
J+X T 421 + .3064- 5 9y ] ' (h-o-n-?)
_J/ oL 7‘058’8’ }3, (t /Ea»a)+ 318 +.130 Pizi(t_ig}+2//f> 54 .
/+ocF VA 2 I/‘O¢.7T 6 za, 21 <, ME az
( /35 ) EYers
5
+O (%) ¢ > T ;:La
5 4
=0 0<t <J7—}— a,

Similarly, expanding the functions u, ?q;' given by Eqs. (3.61)
and (3.62) in powers of 1/s and inverting term by tem, we obtain

( ¥t 515 2
| Sl e s /»( 5 4) 25 R Y
Gy = o °
“ty UH_OLTHJL[/ /-/o(ﬁ_f_i/“t-/— 4-2/—/"’
~ojlo " s o io 5
— (L.18)
172 87 5 &} [+ [T 6% i\ 5 g
; /[I—OL//+6+/5 I~ 70 5047 45 ﬁf(t"gl——a,')_'_ 13- ji’ﬁf]i’{g 1.? 12.5)/’ Y 5 ﬂ)
(17t 6T [ e AT 2 /7‘067 & RENA @R 2
o S Efg s
w2l ELY 00 t >332
~o o<t < =2
j [ }ﬂvz_g%
[~}7o2 £ 1R5 kY
q(ty)= /’U/M T, o /= ﬂ7_,,+é/7( L)t e e,
=y /0o 5 : (1‘_.19)

e

2
{2 200 S YN ], 2
0 504 PD (t- BT %) w2 'T 25 f&l 5 Y
+139) 22 [ 2 —)

e
3
6 +d 2 7 : 2 a,
R R At
54t 3 s Y
o2l i + 0(t%) t>5 L
J
5 9

=0 0<T<mT &,
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For a fixed small value of the time, the distribution of tangential
stress, pxy’ tangential energy flow, Qs and tangential gas velocity, u,
normal to the plate surface is represented in Figs, 6 and 7, where the
mmbers 1, 2, and 3 designate the number of terms taken in evaluating
the functions,. |

From Eqs. (L417) to (Le19), the parameter in the small time

solution is

Rt 32U sk | 3k
Mo 5o 3P DT 5 ME (L. 20)
where
Re = instantaneous Reynolds number = (f v? v)/n,
M, = Mach muber =U/a, = U/ Y(5/3){po/to)

. at <
For small values of the time, or ’;,,o /\’az(,Tt ~ % </ the solution

in series expansions of this paraneter is indeed satisfac'bory.

From Figs, 6 and 7, we see that when a heat insulated infinite
flat plate is suddenly accelerated into wniform motien with a small
impulsive velocity U, the gas far from the plate is not at all dis-
turbed at first, because the gas molecules there are not aware of the
plate motion yete Only the gas close enough to the plate is affected
by the motione Within a thin layer y <45:'— a, t, where t = 0(2)y iece,
t is of the order of the time between two successive collisions of a gas
- molecule, the gas as a whole moves with the plate at a fraction of the
impulsive velocity U as shown in Fig, 7. Also the tangential stress and
the tangential energy flux are developed as shown in Fige 6. This thin
layer grows linearly with time at the rate of (Y21/ 5)ag, which is one

of the characteristic slopes dy/dt found in Eq, (3.33)
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A discussion of some of the other physical aspects of these

solutions is given in Section V,

Solutions for Large Values of the Time

De
The formal solutions for the quantities pxy’ u, and q. at large

times are obtained by expanding EJW’ uw, and ax given by Egs. (3.60) to
(3461) in the form of Eqe (Lel2), and writing out the asymptotic solutions

in the form of Eqe (Le13)s Thus,
4 J Ao 3
/ _/70/E§E758/S»f0(5 )
By (s9)~f & = e ° (he21)
y /f: Hocr/f_ é% ‘ngé/;is 4 0(s)
and '
> (L, v/ U (Mo 1+ 7 LY
Rt~k b |- e e 4|4
/ . (La22)
Uroffamr 10,13\ A , [0’ s /7’-06 (4a)” o Y2 1T 1 P
ThGx7e 800)/%‘+((/~o€)324 e ) ),r— (g?ﬁ%‘g%}%:f oc/fx P! 32//1}
+ O(%%
Similarly, we obtain
3
__M__ (/+0‘)/LT_L_: AN (a1 e Y
wuity)~U \ { I “(; (1P, 2 g(ﬁ)“‘(‘(wfi'z—o)%ﬁ:
5z
I+, | jirefr 153 1) 33, 7\ (Lo23)
T o e e e
(H\XJ /1 5
(/-a<)377 3# A ((c%/’l&) )ﬂ .?i gﬁiﬁéaj&} ta"'O('z:Ls)} }‘
/ g o Ry
9,9)~hUz ( %ﬁ[ﬁ;‘ I,%z—o St fiz 2 o L-BlR4 i},,i (ho2s)
-/-O{*},)]

where ))o = coefficient of kinematic viscosity = /uo/f o
As we have seen in the previous section the expansions for small s
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such as Eqe (L.21) are good approximations for 0 < I(no/po) s‘ <0l .
In other words, solutions (4.22) to (L4e2i) are convergent only for
su.t‘ficient]& large values of the time, i.ee, t/c > 0(200), These
solutions are included here for comparison with the approximate solutions
to be found below,

In the previous section an approximate expression for SW(S,O)
(Eqe (1415)) was found by combining the dominant tems for large and small
s. Evidently the same procedure can be employed for 'ﬁw(s,y) s Dbrovided
that the quantity £(s) in the exponential term e~ (s)y (Egs. (3.60) and
(3.56)) is approximated by the dominant terms —(—E%Jr@) for

27 &, ./Z
large and small s, ie.ee,

(2l 6")s+/5/7’7

By inverting¥ expression (L.25), we obtain

75:2%}/% /s (L,25)

S!Q‘

Fyls9)=h

: A BT
U ! //i/p%cz ;(;—g_g) ;; //—a,,t) y
bt y)=F & e € o35 ebdis 45 en 2 > A A,
R P P 68 T 7)) (he26)
=0 o<t < =2

R %%
This closed-form solution for the shear stress pﬁ’ is not only the proper

solution for large values of the time but also the approximate solution

for all values of the time, ILetting t — O and bearing in mind y = 0(t),

we have
. U /
Jie hy(t.y)=p & S GhT t> Jé 2
]—OL /O 35

This expression for pxy(t,y) is the first term of the small time solution

(Ls16), which gives the free-molecule shear stress based on Grad's

3% See Table of Operations, Formula 12, p. 294 and Table of
Transfomms, Fomula 87, pe 300, Reference 2L,
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distribution function (2.22). By letting t — oo and making use of the

asymptotic fomulas# for the complementary error function

-xR
e 2z 41 6!
erfc. % ~ X o {/_u(zx)ﬁzflzx)‘f_ 3120
we obtain
gl
/rIY) t = y— —_—— ﬁat
t;w&y( y) ﬁa/ﬂji_ﬂt 6
5,
oYXy by EQO (h.ZO)
pUP | A | |
- tg)=dol L o % .
t/lw Fy(£.9) € for all y (h.28)

which is, of course, the classical Rayleigh resul‘b.l

In other words, the closed form approximate solution (L.26)
gives the exact description of the gas behavior for both extremely small
and extremely large values of the time, In the initial phase, the flow,
impulsively started, is a free-molecule one,and the thin layer grows
linearly with time, During the later stages, the flow is diffusive
in nature with the viscous layer growing as Y% and may be treated as a
continuum, as Ra&leigh first did, For intermediate values of the time,
Eqe (4.26) givés an approximate description of the flow field, which is
essentially a diffusive layer bounded by a wave-front travelling at the
speed (}’Z_i/S)ao. In Fige 8, the distribution of shear stress Pyy With
~ respect to y for a fixed intermediate time is shown. For sufficiently

large values of time, for which y = 0(JT), we may rewrite Bq. (4.26) as

# See, for instance, Dwight, He Be: Table of Integrals, 2nd Ed,,
pe 129, The MacMillan Company, New York, 19L7.
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- J - BEE ik
_p U D/:: 7 éj_ 2t Gr 6Bl |2 J5 /za
by 9)=5 2, 7 37, o2l et sl el e rafr ekl 2[‘% (L. 29)
j~el /0 35 = /o 35

which is agéin represented in Fige 9, It is clear that for sufficiently
large values of the time, the shear stress distribution is close to
Rayleigh's result.

In a similar nmanner, the proper large time solution for the tan-

gential energy flux 9, is found to be

. ) | e @) o (el
L (BY) =l ae e Terfe (altt m——p—
9t o | FHEE

b sl i) | 5 y (h.30)
J_aaa‘l:
-be e ”Q(/’/_z,,t( SHJ) t>2
=0

0<f</%%;

wWhere

£

a_ //:a [+l E—’:I: /[1+<>< P 1t fTr 24

b & frm, 6 |/mef ]2 3 i)/ J— {10 5
{0 " &

wlw

Like Eqe (h.26), Eqe (k.30) is also an approximate solution of the
quantity gy for all values of the time, The discussion of the properties
of Pyy (t,y) also applies to qx(t,y).

The situation for the gas velocity u(t,y) is a 1ittle different,

The dominant tems in the expansions for large and small s are, respectively
[ Eq. (3.61)]3

54

T ey _FE

T (54)=2 U( =ehs !+0617r—<_5 e s large (Le31)
5 1042 /5 Ao

_ / -2 5

Ay 7 c s small (he32)

SeFeElEs s
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Here the leading temms in both denominators are of the order s, and hence
no approximate expression for all s, like Eq. (L.25), can be obtained

for the transfom u(s,y)e Therefore, for the velocity of the gas, we
shall ;abtain a closed-form solution valid only for large values of the
time rather than for all values of the time. It is obizined by inverbing*
(he32)0

ol ) R TR =
Lc(ttj)=Uer£.(2 @_t)@ R Cerk (e B zj_) tlage (40 33)

However, for the special case y = 0, it is possible to approximate

U(1/s) - u(s,0) for all values of s, since the dominant tems there are
of different orders, The velocity slip U - u(t,0) obtained by inverting
U(1/s) = u(s,0) will be given in Section IVeEe2e ‘

Ee The Skin Friction, the Slip Velocity, and the Tangential Energy (Heat)

Flux of the Gas Adjacent to the Heat Insulated Plate

In this section, we are going to study the quantities which
interest us most, viz., the skin friction, the slip velocity, and the
tangential energy (heat) flux of the gas adjacent to the_ plates 41l
these quantities are obtained by setting y = O in the expressions for
pr’ u, and 9, found in the previous section,

So far we have not specified the surface condition of the plate;
in other words, the parameter « is rather arbitrary, and it may vary
from of = ] for specular reflection to o = 0 for diffusive reflection.

In the numerical calculation that follows, we consider the case o« =0,

# See Table of Transforms Formula 86, p. 300, Reference 2,
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viz., the gas molecules impinging on the surface of the plate are
temporarily absorbed and later re-emitted in a random fashion, such that

they give up all their momentum to the plate.

1, The Skin Friction Coefficient

The instantaneous skin friction coefficient is defined as

¢ - é}%) a3

By putting y = 0 and o(= 0 in Egse (4.17), (L.22), and (4.26) and
using definitions (L.3L) and (L.20), we obtain the following expressions
for the skin friction coefficient:

M, = 0.683|/-0.090 6 }?e Aﬁ;ﬂJ O(%C.;} t small (L.35)

M, c — 125 e [/ s 392M¢+42/ M" +O(b.’e ) t large (Le36)
fe |

MaCf% 0.683 e<0‘342 ) erfz. (0342 % ) all ¢t (4437)

The free molecule value of the skin friection coefficient based on
Grad's distribution function is obtained by letting + — 0 in either
Eq. (4435) or Eq. (1.36) or by substituting Eqs (L.27) into Eq. (le3h)

&
= —__5_ = . t —— O + o 8
M = i 653 _ (4438)
35

which is to be compared with the conventional free molecule skin

friction coefficient based on Maxwellian distribution

MGz} [z 2 o0 (k-39)
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The deviation is due to the different molecular distribution functions
used, which will be discussed in Section IV,E.2. The Rayleigh result is
obtained by letting t — ©° in either Eq. (Le36) or BEg, (Le37) or by
substituting Eq. (4.28) into Eq. (h.3h)

MOC:.’Z’* MOJ_=/./,28 % -b~—->oo (h.ho)

The results of the numerical calculation of the skin friction coefficient
based on Eqs. (Le35) to (L4.37) are tabulated in Table 2 and are also
plotted in Fig, 10,

From Fig. 10, we may make the following statements:

(1) Te series solution (4.35) in powers of the parameter
(Re/Moz) ~ bt/ is indeed quite accurate for small values of the time
(t/= £ 1)« As more and more of the reflected molecules collide with
the incident molecules the thickness of the layer influenced by the
moving plate grows (see also Fig. 6) and the skin-friction decreases
with time, _

(2) On the other hand, the solution for larg:la‘ tiﬁe- in inverse
powers of (Remdz) ~ t/z is of very limited usefulness, When Moz/Re = 0,01
t.hé second term in the expression for Cp (Eqe (L4.36)) is only one per cent
of the first tem, but the third tem is already LO per cent as large as
the second, Clearly, the Burnett-type expansion is inappropriate, at
“least for Rayleigh's problem.

(3) The approximate solution (le37) presented here is not only
the appropriéte solution for large vdlues of the time, but is also a
satisfactory solution for all times, This approximate solution approaches

the exact free molecule solution and the exact Rayleigh solution at the
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respective limits and gives the right trend of the skin friction,
which is enveloped by the free molecule and the Rayleigh values, It is
to be noted that the approximate solution (4,37) might slightly under-

estimate the skin friction coefficient,

2. Slip Velocity

The slip velocity is defined as the difference between the
velocity of the flat plate and the velocity of the gas adjacent to the
plate, U - u(t,0)s The Laplace transform of this quantity is
U(1/s) - u(s,0)s From Egs. (L.31) and (4.32), we obtain the approximation
/

J
Us—_u'<50) U/,«-d 77T

5
T ezl o (heh)
//+;L _f_ S5l 15
y 5

In the denominator of Eq. (h.hl) the first tem is the dominant temm for
large s or small t, and the second is the dominant temm for small s or
largé te These two terms are not of the same order, so the approximation
is possible for the whole s range, and its inversion would be valid for
all times, l

By inverting* Eq. (h.l41), we have

=4
o JZ | (7
#[TF (H‘idﬂ\'; "/;)’%t {/~oc /g; 71/7_/,
- /_L_E_ (Bfz. < Felin 5 UE R |
U LLC'L'O) U/-,&o( ?77+i ) e/‘][}.\ H_‘XIZE_,Q //‘Ot (h.hZ)
/~& & ey 5

Putting y = 0 and X = 0 in Eqs. (4.18) and (4,23), o =0 in
Eq. (Loh2), and uwsing Eq. (L.20) we obtain the following solutions for

the slip velocity:

% See Table of Transforms, Fomula L3, p. 297, Reference 2,
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/_ Lb(é:())___ 0.627— 0.0847 %;2.,4.0,0/015 /)/E?_ —/-Of%) t small (ho)-l-B)
3 5 s
J- “__%O_): 0.9/3 - f/f’{ —z.ogél—/g%% +0./47 %"i fO(-//;,Z;_) t large (Lolk)
0
JFe \2
-388 54
/_%b}o/g 0.627 3{ Mol erfe (-339%) all t  (L.k5)

The results of the numerical calculations are tabulated in Table
3 and are ploited in Fig, 1l.

From Fige 11, we see that the velocity slip at zero time is 63%
rather than the conventional 50% for free molecule flow based on the
Maxwellian distribution far from the plate surface. According to Grad's
approximate solution of the Maxwell-Boltzmann equation, the distribution
functioﬁ near the plate surface deviates from Maxwellian just as soon
as a finite stress and energy flux are generated (Cfe Eqe (2,22))e 1In
other words, in this scheme the distribution function experiences a
Hjump® at t = O"', and this fact accounts for the difference between the
present results and those of conventional free-molecule flow., (See
also Section V.j

According to Fige 11, the velocity slip is less than 107 when
YRe/M, > 10, and less than 1% swhen )/R‘e'/moe 100, For )ff't'é'/ﬁo > 100,
the no-slip boundary condition certainly applies, The _appmmate formula

" (L.u5) is seen to be somewhat less accurate than that for the skin

friction.
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3¢ Energy Flux Parallel to the Plate Surface

By putting ¥ = 0 and o = 0 in Egs. (4e19), (h.2h), and (L.30)
and using Eqe (Le20) we obtain the following solutions for the tangential

energy flux,

9. L, (t0) e ﬁ’c
73 T

BT = 0.373|/=0/728 1% . +O( ) t small (L.h6)

9,6.0 Mo M, My

ST 4] s 2080 'k O(ﬁei) t large (LJl7)

0./20 22, Jo ’i

j;(*OJN (0394 ¢ n/ZOM*[(-/55,7m-.474)6 M {szomséé)m}

all +  (Ll.k8)
—5003’32
~ (1557~ .474)€ em@ [( /R0,5~u- 366)%]} :

In using Eq. (L.h8), the computation of error functions with complex
argunents is involved, Computation of this kind may be facilitated by
the use of Reference 26, However, we shall not carry out the involved
compubation here, Instead, we shall investigate the limj.ting values of
Eqe (L.1i8) and give a much simpler inté:polation formula,.

From Eq. (h.48) we have

L 374—%3) 50394-(5948) = 0.373

t—=o [
L 2.t 0) _ 0
v /o

These are the leading terms of Eqs. (hel6) and (4.L7), respectively,
Now Eqe (L.48) is obtained by putting y = 0 and <= 0 in Eq,
(4e30), which is in tum inverted from approximate transfoms to Egqe

(3.62)e In that approximate transform, there were three terms in the
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denominators: namely,

5 Y
- / A s

()= — _ £
=Y (%/?g’*?)s +§/§Tﬁ_§/@§/§[g e

The first tem in the denominator is the dominant term for large s, and
the last two terms for small s, The third temm is included to make
certain that qx(t,y) should be a function of Y% for large, times
(small s), For purposes of numerical calculation it is sufficient to
take only one term for small s. Thus,
CRCrp—
X 2

(& %*f)“%fi

Putting of = 0 and inverting*, one has
Ee

— 048 s

9, (o) = 0.373C ° (Lehs9)
We shall use Eq. (L.h9) instead of Eqs (Ll8) for our computation, The
results are tabulated in Table L and plotted in Fig. 12, Fige 12 shows
there is an appreciable amount of energy (or heat) flux élong the plate
during the initial stage of the motion, although 2T/ 2x= 0O, At
later times , ( YRe/M) > 100,  the tangential heat flow is practically
zeroe Eq. (L19) approximates the tangential energy flux suprisingly
well for all values of the time, For large values of the time, Eq. (LJ17)
~ shows that the quantity a9y is a high order of infinitesimal, namely
a = 0( 2).

# See Table of Transfomrms, Formula 8, p. 295, Reference 2.
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Fo Comparison with Schaaf's Solution for Wall Shear Stress p.(t,0)

The closed~form approximate solution for the shear stress is
given by Eqes (L.26)s TFor the special case of o= 0, we have

> IS
/ 3an §/fal‘(/27at) 354# ,
Fybg) = &L = o O B e el =6 y ),wii
)

.377‘ éjz/ "L 5 4 27 4
* 35 J4t () Erai) g, ey
=0 0<t<Frz
from which the wall shear stress is
ahk
/ o 1/3_5
B, Gi=2l A
ﬁ_y (t 0) fa a)o /ﬁ_ﬁém 6{‘/%; 35)16,\[5 (Fj‘%ﬁ) all t (h-.sl)
N0 35 35

Te corresponding quantities obtalned by Schaai‘s, using the lin-

earized Navier-Stokes equation and a slip boundary condition, are,

respectively,
gﬂy(t ff)'/%, 6 6 2 6/‘7% (/_-i; +»€,/Z_t) . | (}4052)
w2t 5t
/I?Ly (t,D) = L/ e L €P7Q (To,) ()-1-053)

where L' is the mean free path used in Reference 5, The expressions for
pxy(t,o) in Eqse (4.51) and (L.53) are of the same form, but the
numerical constants are different, However, the expression (L.50) and
(Le52) for pxy(t:Y) away from the surface are very different, Our

solution of Grad equations contains the inherent wave characteristics

in the tern /- = while Schaaf's result (L.52) is diffusive

in nature, Of course, for sufficiently large time, pxy(t,y) given by



68

Eqe {4.50) is also diffusive, as shown in Ege. (L.29). In other words,

near the start of the motion the shear stress satisfies a wave equé.tion

of the form ?’;’2‘1 =b° aag"”; » where b is a constant, and not the

’aﬂg _ a E(.g
3z 4 24>

Navier-Stokes equation At the plate surface, however,

the difference in character between the two solutions disappeazs; and
only the numerical constantis are different,
In Grad's framework %’: = 2 JAE o Therefore, if we

arbitrarily define an "effective mean free path" so that

NI ) -
= e 35 1 t = t =
N7
and solve the linearized Navier-Stokes equations Pyy ==l %%,’— and

72 - 24
A=

3% =% 3y s with the slip boundary condition

- P

we obtain an expression for pxy(t,o) identical to Eqe (Le51)e
At the present time it is not clear whether the result obtained
by the purely formal process is coincidental and resiricted to Rayleigh's

problem, or is suggestive for more general flow problemse
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Ve DISCUSSION AND CONCLUSION

According to the solution of Rayleigh's problem by means of Grad's
thirteen-moment approximation, a time interval corresponding to 50-100
collisions per molecule is required to transform the initially-discontin-
uous, step-function distribution of gas welocity into the classical
Rayleigh distribution with a negligibly small Wslip®" at the surfacee#

As anticipated from qualitative physical considerations (Introduc‘bion)
the flow behaves initially like a free-molecule flow, and all physical
quantities are analytic functions of the parameter t/z , or Re/Moa.
Although the solutions for t/z = 0(1) seem to be satisfactory in most
respects, the persistence of a sharp wave-front carrying discontinuities
in u, p;w, and q, is somewhat surprising, This behavior appears to be
inherenf. in Grad's method, One might expect thal some of the fastest
molecules near the plate surface would always be able to travel ahead of
the wave, so that the wave front would be smoothed out. (Of ‘co‘urse steep
gradients would be expected around some “average™ wave-fmnt.) For this
reason (and others) it is desirable to' investigate Rayleigh's problem
with the aid o:f.'r the linearized Maxwell-Boltzmann equation, as Wang

Chang and Uhlenbeck?! have done for some simple steady flows. Naturally
this study will be guided by the results of the present investigation.

In spite of this criticism of Grad's method, the present results
~ suggest that other simple bubt fundamental non-steady flow problems
should be explored by means of the linearized Grad equations. In

# This time interval is about 10 times longer than the transit
time across a steady, plane shock wave of moderate strength in a
monatomic gas,
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addition, the character of the solutions obtained for t/t = 0(1)
encourages us to believe that Rayleigh's problem with arbitrary impulsive
velocity (high Mach number) can be attacked by means of series expansions
in t/ for Ysmall time", combined with solutions of the Navier-Stokes
equations for large time, '

In this connection, it is desirable to derive boundary conditions
from a physical point of view. The conservation laws of mass, momentunm,
and energy will be employede Also separate momentum reflection and energy
accommodation coefficients will be introduced, Furthermore, in the energy
consideration, the frame of reference will be fixed on the béundary
itself rather than moving with the average flow velocity W, so that the
new energy flux qq can be identified with the more familiar heat transfer
rate,

The character of the present solutions of Rayleigh's problem for
lé,rgé time adds to the growing lack of confidence in the Chapnan-Enskog-
Burnett method of successive approximations, Unlike Wang Chang and
Uhlenbeck¥*, we were able to obtain asymptotic series expénsiom in povers
of mean free path (more precisely, Moz/Re) » but just when the devia-
tions from Rayleigh's solution become interesting the cénvergence of
these series is so poor that they are practically useless, Grad's

method avoids this difficulty, because the explicit relation between the

# For the problem of heat conduction between two infinite parallel
flat plates, and also for the planar Couette flow, the solutions obtained
by Wang Chang and Uhlenbeck are not analytic in the limit of small mean
free path (d/L—°c) where "d" is spacing between plates, This behavior
may be comnected with the particular geometry involved, Even in the
Knudsen limit (d/L — 0) they experienced convergence difficulties, for
which they offer a simple physical explanation, tut these difficulties
did not appear in the Couette flow between two rotating cylinders.
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distribution function and the stress and energy flux quantities in no
way implies a series expansion of the Bumett i{ype. By utilizing this
£ reedom we are able to obtain approximate solutions of Rayleigh's

problem for low Mach number that are valid for all values of the time,

Tt remains to exploit this technique for more general flow problemse
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APPENDIX

LAPLACE TRANSFORMS OF v!, P 1', p', TV, pxx', pyy" and qy'

From Egs. (30}42)9 (30)43), and (30}45)

5,2 1 dy i 5
3 dy T 3 p dy 3

N I B

-3 os+/to) %

= 5/l ¢, VL7

4_(1%5*/‘0)}‘35
Hence,

vt _ 4_ S _/ ) .
/; - f): S +4i2 (Aol)
Eﬁx =_zl 94 or &%z—zl' Yy (A.a)

From EQ_S. (30}41)’ (BOBg)s and (hth?)

s ap’

= 4. |

U__E\?(}+§;fﬁ g (4.3)
Wad-)

P _ ol A ), 4 s A

f‘ﬁ?@‘s}\l 3 5+/77° )d—f/‘ . (aek)

g _f f{af_r s ‘i—'_iﬁ»L(, s s P!

AT I E D SeE)aE| a9

Substituting expressions (A4.3), (Aelt), and (A.5) into Eqe (3.42) and
simplifying

9. BVEF B s ci6h_ 2 BRNAF 3 55 s a5 h o 2b5)_
(F”ﬂ‘a)fw‘ﬁs(z—ss*frﬁr)** Lo g s s )0 (A46)



76

Keeping in mind that p! should vanish at y = o , we have

. s f,(s)v‘éfa(s) - /2“9 i)k
P = st)e/ Tl rcoedht Fugt (AeT)

vhere /(5)=_5+"5“—5“§ = - (448)

]g(s) _j333454 1296 5 .5, 138 b ﬁ

6257 " IRE 4, T 25 up (4e9)

2 & i.

E
Z

and B(s) and C(s) are arbitrary functions to be determined from the

boundary conditions (3.49) and (3.51)s Differentiate Eqe (A+7)

d/b - _B(s) _}_)g 5 75(5)"’ 1(5)6 ’P Z‘QLS);?TH
IDo = ¥ % ,5 . Heo

ileeey
C(s)=-B(s) f%{sj)—J’-—;(z

Then expression (A.7) becomes

£ s fls)»h ), £ 6s)- f(s)
p'=Bs) 6~//>j L5+l [ hio / . Tz
(s~ £, 52k (A+10)

Differentiating Eqe (A,10) with respect to y successively, we have

= A 5)+f{s) ( -
afP ﬁ (5).,.)f(5) - _§ Ls ( 7(;(5)
5(5)/ B 2 :7 P. fo = 597 Z, f R 51 P ! (A.11)

NS
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{ 7L;(S,Hf(5) jy s 7‘,(5) )‘zas)y

P j) /5 l-—— ° —-SI- il
ap BRI 2 _25+—e{()[fs)+f et IR e el FE (8422)

d;s El DI .P 7C(s)-r (5}
/a,

s Fo- frs):ﬂ‘
_ » Bz Zss T E -
From Eqs. (A.1) and (A.5) we have, using Egs. (A.11l) and (4.13),
e s [ [foEe
@H L’:o B8 (S.) 5 +/£;,_q 1= 'f/ (s)~ f(s) (-AOJJ-‘)
q =~B(S)£E / 7£[5)+7C’(5) 76() (Ae25)
Y lyms = fos(s+ ,Z")( z;.;) /i, .

Substituting Eqs. (A.1l) and (A.15) in the boundary condition (3.51)

7ok 2wy 5 | / /ﬁ £ (5)t fulo
T lFE) BOZ2 S5 B)(se2ls) rx Y h©
Qo /( >

| ! S /75(5)'/'7[2(5) _ Tar
+B6 7 ( + ()—Fu6) /);—(/-_T: )

Hence,

Tury | fo \| 513t a1} fs i 1) +fis) }
Be=(1-27) & () f?(fz_zrr)f (s+5—")jﬁ,i Zoif I h{/ﬂ% ") - (Aa6)
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From Egs. (4.10), (A.l), (2.2), (A.3), (Al), and (A.5), we then have

. _ i’i (5)+ 1f5) 5 (s)-E,
,b/_—_—'B[S) ejf’z ;_s’t ’)E;(S)?")E(s) j 5&&3
e © (4.17)
P 4 S y
s =558 7 (A.18)
7 >
A =zl (A+19)
i ji%(a B ] :
ro= Bls) 3 51‘/% 4/2h(5 3 /705—){7%{5)+7215))
- jﬁ’—i Fi(5)+hus) _jﬁ,é 7£,(s)~f;{5JL (A.20)
T = o
15 s F@+he
—_ A —_ = E 3
= (s),i;—s——r (f(sﬂ (s))@‘J’b < Ese
_ jf_ s **-,(s) f® (a.21)
—Jf,(s) INSNCACRN
T b I
h’,f’o AR (4.22)
9 - —B(S) Y ,']L S iﬂ';g sh M’%%-ii‘i%ﬁ pZS f—%‘g
SRSl vy o L Sl *)

) F@ % s L9 fily
)% it (;})eJ’bz L5+ _({,(5) f(ﬁj)@j:%j}J (Ae23)

where £,(s), £5(s), and B(s) are given by Egs. (A.8), (4.9), and (4.16),

respectively. .
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TABLE 1

COMPARISON OF LAPLACE TRANSFORM SOLUTIONS

FOR SURFACE SHEAR STRESS l>?
Ho Original Large s Small s Approximate
A Eq. (4.10) Eqge(ho11l) | Eqe(liell) | Eqe{k.15)
0 o0 o0 (%)
«0001 12763 127.,5 126,42
«001 39434 39425 38,09
01 11.k2 11.45 10,52
«05 he37
ol 2,82 36430 3463 2.378
2 L9513 L0k
olt 1.032 «839
.5 «363 «933 995 701
N o Thk «605
1l 483 l72 26,2 «395
3 .178 o176 «151
10 .0558 «0556 <0498
50 20113 .0113 +0107
100 «0057 «0057 «0054
1,000 »00057 «00057 #00056
10,000 +000057 »000057 +000057
oo 0 0 R ¢
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TABIE 2

TIME HISTORY OF SKIN FRICTION COEFFICIENT M Cp IN RAYLEIGH'S PROBLEM

small

Free large
YEe/M Molecule | Rayleigh time tine Approximate
€/"o Eqe (11438)| Eqe (bh0) | Ea. Eqe Eqe (Le37)
(Le35) | (Le36)
0 «683 «683 683
«01 ‘ 683 #681
ol «683 «658
«316 o677 «607
.5 0668 ‘569
1 627 h7.6 L83
1414 +583 l127
2 «56l «532 1,923 o36h.
3 o612 53k «287
h 313 0236
5' 2,886 0232 +198
8 o1 o13h
10 0113 «l112 109
. 100 ‘ 0113 011
1,000 00113 0011 +0011
10,000 «00011 +00011




TABIE 3

TIME HISTORY OF SLIP VELOCITY
1= u(t,0)/0 IN RAYIEIGH'S PROBLEM

small time large time Approximate
YRe/, Eqe (l.43) Eqe (bebl) Eqe (1.L5)
0 627 627
001 0627 .625
ol 626 <601
#316 #8619 o5L9
. «607 511
1 #9553 ~1e313 125
1.hlk «500 371
2 Li56 «200 «312
3 0712 »228 22
L . +196 «197
5 <166 «165
8 +110 110
100 <009 +009
1,000 +0009 0009
10,000 +000009 +000009
co 0 0




TABIE L

TIME HISTORY OF TANGENTIAL ENERGY (HEAT) FLUX

qx(t,O) /po U IN RAYLEIGH'S PROBLEM

small time large time Approximate
Yee/u, Eqo (4eli6) Bas (balb?) Equ (heh9)
0 #373 373
01 373 «373
ol 0372 «372
«316 «366 «367
o5 «357 +359
1 o311 3.49 0321
1.h1k «254 277
2 o15h o2li2 «205
3 “0010805 00%8 0097
L 0199 «03L
5 +0098 +0089
8 +00229 «00003
10 00116 «000000
100 «000001 « 000000
1,000 +000000 «000000
10,000 »000000 »000000
o0 1) )
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FIXED SMALL TIME
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