
Methods for Robust Learning-Based Control

Thesis by
Michael O’Connell

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy in Space Engineering

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2023
Defended May 3rd, 2023

ii

© 2023

Michael O’Connell
ORCID: 0000-0001-6681-8823

All rights reserved

iii

ACKNOWLEDGEMENTS

First, I would like to thank my advisor, Professor Soon-Jo Chung. Prof. Chung
has been a great source of support, beginning at the University of Illinois, where
he was my undergraduate academic and research advisor for most of my time there,
through my time at Caltech working on my PhD. I would also like to thank a number
of other professors who have provided guidance and support, including Professors
Yisong Yue and Joel Burdick, who are on my defense committee, and Professor
Anima Anandkumar. Thank you to Professor Sergio Pellegrino for serving on my
defense committee and qualifying exam committee, and for always being ready to
inquire about any student’s research.

I would also like to thank my many collaborators, especially Drs. Xichen Shi,
Guanya Shi, Matthew Anderson, and Kamyar Azizzadenesheli, and Patrick Spieler
and Joshua Cho, for their insight, discussions, and willingness to hear out my some-
times barely-coherent ideas. I have also had a great number of external collaborators,
who have provided valuable insights and feedback throughout my PhD, as well as
supported the projects that I worked on. I would especially like to mention my col-
laborators at Jump Aero. This leads me to thanking the number of funding sources
that have supported my research, including the Vought Fellowship, the Raytheon
Company, Defense Advanced Research Projects Agency (DARPA), and Supernal.

Next I would like to thank many of the groups at Caltech that make the Caltech expe-
rience so unique. First, Michele Judd and the staff and affiliates of the Keck Institute
for Space Studies, for providing invaluable opportunities and guidance for profes-
sional growth, and for providing a great community of students and researchers.
Next, I would like to thank the Caltech Alpine Club for being an inspiring commu-
nity of outdoor weekend warriors, and especially Dr. Jacqueline Dowling for being
co-president of the club with me during and for being a great ski buddy, and all
the other rad club members, with whom I have spent many hours wandering in the
wilderness. And, I would like to thank the Caltech Wind Orchestra, especially Dr.
Glenn Price, Professor Paul Asimow, and Professor Bill Bing, for providing a warm
and welcoming community within the Caltech.

I would like to thank my friends, from all stages, who have provided support and
encouragement, including my sousaphone+ friends, let’s-road-trip-literally-across-
the-country friends, fellow brewers and beer aficionados, the first year GALCIT

iv

cohort, and many others.

Finally, I would like to thank my family and friends for their support throughout
my academic journey. My parents, Mike and Amy O’Connell, have always been
supportive of my many interests and are ready to lend a keen ear for anything at all.
My siblings Billy and Ellen O’Connell have always been great camping buddies,
bike-shopping advisors, and friends, and our late dog, Riley, was an inspiring and
accomplished bunny hunter.

The work presented in this thesis would not have been possible without the help and
support of these people, and many others who I am surely forgetting, who have been
supportive and encouraging through all the toughest parts of grad school.

v

ABSTRACT

This thesis addresses the general problem of improving control, safety, and relia-
bility of multi-rotor drones in various challenging conditions by introducing novel
deep-learning-based approaches. These approaches are designed to tackle specific
issues that multi-rotor drones face during operation, such as near-ground trajectory
control, high-speed wind disturbances, actuation delays, and motor failures. The
thesis is organized into four main chapters, plus an introduction and conclusion.
Each of the main chapters focuses on a unique approach to address a particular chal-
lenge of deep-learning-based control methods. Chapter 2 presents Neural-Lander, a
deep-learning-based robust nonlinear controller that significantly improves quadro-
tor control performance during landing by accounting for complex aerodynamic ef-
fects. This chapter addresses key challenges to incorporating learned residual dy-
namics into a control architecture, laying the groundwork for the subsequent chap-
ters. Chapters 3 and 4 introduce Neural-Fly, a learning-based approach that uses
Domain Adversarially Invariant Meta-Learning (DAIML) and adaptive control to
enable rapid online learning and precise flight control under a wide range of wind
conditions. Chapter 5 proposes a lightweight augmentation method that enhances
trajectory tracking performance for UAVs by effectively compensating for motor dy-
namics and digital transport delays. This method is extensible to a range of control
methods, including learning-based approaches. Chapter 6 explores a novel sparse
failure identification method for detecting and compensating for motor failures in
over-actuated UAVs, contributing to the development of robust fault detection and
compensation strategies for a safer and more reliable operation. This method builds
on the Neural-Fly online learning framework and extends it to handle a wider range
of conditions, including complete actuator failures. Together, these chapters address
key challenges in safe and reliable learning-based control and demonstrate the po-
tential of deep-learning-based control methods.

vi

PUBLISHED CONTENT AND CONTRIBUTIONS

[1] M. O’Connell, G. Shi, X. Shi, et al., “Neural-Fly enables rapid learning for
agile flight in strong winds,” Science Robotics, May 4, 2022. doi: 10.1126/
scirobotics . abm6597. [Online]. Available: https : / / www . science .
org/doi/full/10.1126/scirobotics.abm6597 (visited on 05/13/2022),
M.O. and G.S. contributed equally to this work, and they are both listed as
first authors. M.O. led the design of the adaptive controller, substantially con-
tributed to the design of the learning algorithm, led the hardware experiments,
and substantially participated in writing the manuscript. This article is in-
cluded in Chapters 3 and 4.

[2] G. Shi, K. Azizzadenesheli, M. O’Connell, S.-J. Chung, and Y. Yue, “Meta-
adaptive nonlinear control: Theory and algorithms,” Advances in Neural In-
formation Processing Systems, vol. 34, pp. 10 013–10 025, Dec. 6, 2021. [On-
line]. Available: https : / / proceedings . neurips . cc / paper / 2021 /
hash/52fc2aee802efbad698503d28ebd3a1f-Abstract.html (visited
on 03/27/2023),
M.O. helped propose and study the idea of adapting the last layer of the neural
network, and conducted simulation validations for all the proposed methods.

[3] X. Shi, M. O’Connell, and S.-J. Chung, “Numerical predictive control for
delay compensation,” Sep. 30, 2020. arXiv: 2009.14450 [cs, eess]. [On-
line]. Available: http://arxiv.org/abs/2009.14450 (visited on 09/21/2021),
M.O. implemented and conducted experiments for the proposedmethods, and
helped write the manuscript.

[4] G. Shi, X. Shi,M. O’Connell, et al., “Neural lander: Stable drone landing con-
trol using learned dynamics,” in 2019 International Conference on Robotics
and Automation (ICRA), May 2019, pp. 9784–9790. doi: 10.1109/ICRA.
2019.8794351,
G.S., X.S., andM.O. contributed equally to this work.M.O. substantially con-
tributed to the design of the method and led the hardware experiments. This
article is included in Chapter 2.

https://doi.org/10.1126/scirobotics.abm6597
https://doi.org/10.1126/scirobotics.abm6597
https://www.science.org/doi/full/10.1126/scirobotics.abm6597
https://www.science.org/doi/full/10.1126/scirobotics.abm6597
https://proceedings.neurips.cc/paper/2021/hash/52fc2aee802efbad698503d28ebd3a1f-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/52fc2aee802efbad698503d28ebd3a1f-Abstract.html
https://arxiv.org/abs/2009.14450
http://arxiv.org/abs/2009.14450
https://doi.org/10.1109/ICRA.2019.8794351
https://doi.org/10.1109/ICRA.2019.8794351

vii

TABLE OF CONTENTS

Acknowledgements . iii
Abstract . v
Published Content and Contributions . vi
Table of Contents . vi
List of Illustrations . ix
List of Tables . xv
Chapter 1: Introduction . 1
Chapter 2: Neural-Lander: Stable Control Using Black-Box Residual Models 5

2.1 Introduction . 5
2.2 Problem Statement: Quadrotor Landing 7
2.3 Dynamics Learning using DNN . 8
2.4 Neural-Lander Controller Design 10
2.5 Nonlinear Stability Analysis . 11
2.6 Experiments . 13
2.7 Conclusions . 20

Chapter 3: Neural-Fly: Offline Learning for Rapid and Robust Online Adap-
tation . 24
3.1 Introduction . 24
3.2 Results . 32
3.3 Discussion . 41
3.4 Materials and Methods . 44

Chapter 4: Analysis, Proofs, and Implementation of Neural-Fly 60
4.1 Drone Configuration Details . 60
4.2 The Expressiveness of the Learning Architecture 62
4.3 Hyperparameters for DAIML and the Interpretation 64
4.4 Discrete Version of the Proposed Controller 66
4.5 Stability and Robustness Formal Guarantees and Proof 67
4.6 Gain Tuning . 72
4.7 Force Prediction Performance . 72
4.8 Localization Error Analysis . 74

Chapter 5: First Order Delay Compensation for Nonlinear Control Methods . 77
5.1 Introduction . 77
5.2 Multirotor Dynamics with Actuation Delays 79
5.3 Delay Compensation Control . 80
5.4 Numerical Experiments . 84
5.5 Conclusion . 89

Chapter 6: Neural Fly for Fault Tolerance 92
6.1 Introduction . 93
6.2 Preliminaries . 95

viii

6.3 Methods . 97
6.4 Experimental Validation . 112
6.5 Conclusion . 114

Chapter 7: Conclusion . 120

ix

LIST OF ILLUSTRATIONS

Number Page
2.1 Composite image of landing sequence and plot of training data.

(a) Composite image of an Intel Aero drone landing sequence; (b)
Training data trajectory. Part I (0 to 250 s) contains maneuvers at
different heights (0.05 m to 1.50 m). Part II (250 s to 350 s) includes
random G, H, and I motions for maximum state-space coverage. . . . 14

2.2 Visualization of ground effect prediction performance. (a) Learned
5̂0,I compared to the ground effect model with respect to height I,
with EI = EG = EH = 0 m/s, ' = �, u = 6400 RPM. Ground truth
points are from hovering data at different heights. (b) Learned 5̂0,I

with respect to rotation speed = (I = 0.2 m, EI = 0 m/s), compared to
�) measured in the bench test. (c) Heatmaps of learned 5̂0,I versus
I and EI. (Left) ReLU network with spectral normalization. (Right)
ReLU network without spectral normalization. 15

2.3 Neural-network ground effect prediction. Baseline Controller and
Neural-Lander performance in take-off and landing. Means (solid
curves) and standard deviations (shaded areas) of 10 trajectories. . . . 17

2.4 Neural-Lander performance with difference numbers of hidden
layers. Neural-Lander performance in take-off and landing with
different DNN capacities. 1 layer means f̂0 = �x + b; 0 layer means
f̂0 = b; Baseline means f̂0 ≡ 0. 18

2.5 Neural-Lander performance tracking a trajectory close to an ob-
stacle. (a) Heatmaps of learned 5̂0,I versus G and H, with other in-
puts fixed. (Left) ReLU network with spectral normalization. (Right)
ReLU network without spectral normalization. (b) Tracking perfor-
mance and statistics. 19

x

3.1 Agile flight through narrow gates. (A) Caltech Real Weather Wind
Tunnel system, the quadrotor UAV, and the gate. In our flight tests,
the UAV follows an agile trajectory through narrow gates, which are
slightly wider than the UAV itself, under challenging wind condi-
tions. (B-C) Trajectories used for the gate tests. In (B), the UAV fol-
lows a figure-8 through one gate, with wind speed 3.1 m/s or time-
varying wind condition. In (C), the UAV follows an ellipse in the
horizontal plane through two gates, with wind speed 3.1 m/s. (D-E)
Long-exposure photos (with an exposure time of 5 s) showing one
lap in two tasks. (F-I) High-speed photos (with a shutter speed of
1/200s) showing the moment the UAV passed through the gate and
the interaction between the UAV and the wind. 25

3.2 Offline meta-learning and online adaptive control design. (A) The
online adaptation block in our adaptive controller. Our controller
leverages the meta-trained basis function q, which is a wind-invariant
representation of the aerodynamic effects, and uses composite adap-
tation (that is, including tracking-error-based and prediction-error-
based adaptation) to update wind-specific linear weights 0̂. The out-
put of this block is the wind-effect force estimate, 5̂ = q0̂. (B) The il-
lustration of our meta-learning algorithm DAIML. We collected data
fromwind conditions {F1, · · · , F } and applied Algorithm 1 to train
the q net. (C) The diagram of our control method, where the gray part
corresponds to (A). Interpreting the learned block as an aerodynamic
force allows it to be incorporated into the feedback control easily. . . 27

xi

3.3 Training data collection. (A) The xyz position along a two-minute
randomized trajectory for data collection with wind speed 8.3 km/h
(3.7 m/s), in the Caltech Real Weather Wind Tunnel. (B) A typical
10-second trajectory of the inputs (velocity, attitude quaternion, and
motor speed PWM command) and label (offline calculation of aero-
dynamic residual force) for our learning model, corresponding to the
highlighted part in (A). (C) Histograms showing data distributions in
different wind conditions. (C)Left: distributions of the G-component
of the wind-effect force, 5G . This shows that the aerodynamic effect
changes as the wind varies. (C) Right: distributions of the pitch, a
component of the state used as an input to the learning model. This
shows that the shift in wind conditions causes a distribution shift in
the input. 33

3.4 t-SNE plots showing the evolution of the linear weights (0∗) dur-
ing the training process. As the number of training epochs increases,
the distribution of 0∗ becomesmore clusteredwith similar wind speed
clusters near each other. The clustering also has a physical meaning:
after training convergence, the right top part corresponds to a higher
wind speed. This suggests that DAIML successfully learned a basis
function q shared by all wind conditions, and the wind-dependent in-
formation is contained in the linear weights. Compared to the case
without the adversarial regularization term (using U = 0 in Algorithm
1), the learned result using our algorithm is also more explainable, in
the sense that the linear coefficients in different conditions are more
disentangled. 35

3.5 Depiction of the trajectory tracking performance of each con-
troller in several wind conditions. The baseline nonlinear con-
troller can track the trajectory well, however, the performance sub-
stantially degrades at higher wind speeds. INDI, L1, and Neural-
Fly-Constant have similar performance and improve over the nonlin-
ear baseline by estimating the aerodynamic disturbance force quickly.
Neural-Fly and Neural-Fly-Transfer use a learned model of the aero-
dynamic effects and adapt the model in real time to achieve lower
tracking error than the other methods. 38

xii

3.6 Mean tracking errors of each lap in different wind conditions.
This figure shows position tracking errors of different methods as
wind speed increases. Solid lines show the mean error over 6 laps
and the shade areas show standard deviation of themean error on each
lap. The gray area indicates the extrapolation region, where the wind
speeds are not covered in training. Our primary method (Neural-Fly)
achieves state-of-the-art performance even with a strong wind distur-
bance. 40

3.7 Outdoor flight setup and performance. Left: In outdoor experi-
ments, a GPS module is deployed for state estimation, and a weather
station records wind profiles. The maximum wind speed during the
test was around 17 km/h (4.9 m/s). Right: Trajectory tracking per-
formance of Neural-Fly. 42

4.1 Training and validation loss. The evolution of the 5 loss on the
training data and validation data in the training process, from three
random seeds. Both mean (the solid line) and standard deviation (in
the shaded area) are presented. Training with the adversarial regu-
larization term (U = 0.1) has similar behaviors as U = 0 (no regular-
ization) in the early phase before 300 training epochs, except that it
converges slightly faster. However, the regularization term effectively
avoids over-fitting and has smaller error on the validation dataset after
300 training epochs. 64

4.2 Importance of domain-invariant representation. 66
4.3 Measured residual force versus adaptive control augmentation,

5̂ . Wind-effect x- and z-axis force prediction for different methods, 5̂
and 8

∫
?̃dC, compared with the online residual force measurement,

5 . The integral term in the nonlinear baseline method and the 5̂ term
in the adaptive control methods, including the Neural-Fly methods,
all act to compensate for the measured residual force. INDI, L1, and
Neural-Fly-Constant estimate the residual force with sub-second lag,
however adjusting the gains to decrease the lag increases noise am-
plification. Neural-Fly and Neural-Fly-Transfer have reduced the lag
in estimating the residual force but have some model mismatch, es-
pecially at higher wind speeds. 73

xiii

4.4 Localization inconsistency. Typical difference between the Opti-
Trackmotion capture positionmeasurement, ?mocap, and the EKF po-
sition estimate, ?EKF, corrected for theOptitrack delay. Themean dif-
ference corresponds to a constant offset between the center of mass,
which the EKF tracks, and the centroid of reflective markers, which
the OptiTrack measures. The standard deviation corresponds to the
root-mean-square error between the two measurements. 75

5.1 Hierarchy of control systems for a multirotor. A typical drone,
such as Crazyflie 2.0, has a slower outer position loop (100 Hz) than
inner attitude loop (500 Hz), with even slower motor dynamics (20 Hz). 79

5.2 Timeline of periodic sample-based control with discrete signal
delays and actuator dynamics. At every C8, the computed signal
u(C8) takes Δ[to reach the actuator. 80

5.3 Simulation results tracking a fast circle trajectory. Intel Aero and
Crazyflie 2.0 simulation tracking a 2 m wide circle in the GH-plane
with a period of 3 s, starting from hover at the origin. Top plots show
steady state trajectory, bottom plots show last 6 s of flights. 87

5.4 Simulation results tracking a fast Figure-∞ trajectory. Intel Aero
and Crazyflie 2.0 simulation tracking a Figure-∞ in the GI-plane,
starting from hover at the origin. The periods are 4 s and 5 s, respec-
tively. Top plots show steady state trajectory, bottom plots show last
6 s of flights. 87

5.5 Heatmap showing performance degradation with increasing de-
lays for the proposed delay compensation controller and the base-
line differential flatness controller. Heat map plots of RMS posi-
tion tracking error, in meters, versus the position control loop com-
puter delay and motor delay for the Intel Aero simulation tracking the
4 s figure-∞ in Fig. 5.4. Top: proposed delay compensation control
scheme. Bottom: baseline nonlinear controller based on differential
flatness. 89

6.1 The test aircraft vehicle design (Left) picture of the vehicle. (Right)
schematic of the implemented system. This figure was provided by
Joshua Cho. 112

xiv

6.2 Attitude response given an inboard motor failure. (top) Baseline
ArduCopter response, (middle) adapting to an unknown failure using
the ℓ1-regularized motor efficiency adaptation given in (6.86) and the
allocation algorithm given in (6.13) and (6.14), and (bottom) adapt-
ing to a known failure with updated control allocation computed on-
line using (6.13) and (6.14). The ℓ1-regularized efficiency adaptation
results correspond to the first failure in Fig. 6.3. 113

6.3 Estimated motor efficiencies. The ℓ1-regularized efficiency adapta-
tion method is able to correctly isolate the failures instantly in some
cases and after 5-10 s for other cases. The adaptation takes a few
seconds to forget failures that have been corrected. 115

xv

LIST OF TABLES

Number Page
3.1 Tracking error statistics in cm for different wind conditions. Two

metrics are considered: root-mean-square (RMS) and mean. 40
4.1 Drone configuration details. Configurations of the custom-built

drone and the Intel Aero drone with propeller guards. 60
4.2 Hardware comparison. Hardware configuration comparison with

other quadrotors that demonstrate state-of-the-art trajectory tracking.
Direct comparisons of performance are difficult due to the varying
configurations, controller tuning, and flight arenas. However, most
methods require extremelymaneuverable quadrotors and onboard/off-
board computation power to achieve state-of-the-art performance, while
Neural-Fly achieves state-of-the-art performance on more standard
hardware with all control running onboard. 61

4.3 Hyperparameters used in DAIML. 65
5.1 Simulation parameters for two drones of different sizes. 84
5.2 Summary of controllers definitions. 86
5.3 Summary of trajectory tracking performance. 88

1

C h a p t e r 1

INTRODUCTION

The use of uninhabited aerial vehicles (UAVs) has grown rapidly in recent years,
with applications ranging from casual consumer camera drones to autonomous com-
mercial delivery and transportation, and even high-tech stealth aircraft. Each of
these applications presents a unique set of challenges, but all require precise con-
trol of the vehicle to achieve the desired performance. For instance, drone delivery
necessitates reliable transportation of goods to residential and commercial areas in
various weather conditions; drone-based first responder and search and rescue tasks
demand safe navigation through remote wilderness settings, roadside accidents, and
dense urban environments; and urban air mobility calls for flying cars to closely fol-
low a planned path to avoid collisions with other vehicles in so-called urban canyons,
which present numerous challenges to vehicle navigation and control.

The diverse set of UAV applications share a common requirement for absolute safety
and reliability during operations, creating many challenges in their design, opera-
tion, and control. We will focus on several challenges specific to the control of
UAVs. For example, the system must be able to operate in a wide range of con-
ditions, such as high wind speeds, which is further complicated by complex urban
environments that can create turbulent airflows. The system must also be able to
operate in the presence of faults, such as a failure of an actuator, which not only
must be quickly detected and compensated for to prevent total loss of control but
also must be addressed to allow a safe landing. Finally, any control system must be
integrated into a verifiable architecture; this often leads to a hierarchy of controllers,
which enables each layer to be independently verified but results in computational
overhead and delays in the control loop. In this thesis, we will focus on addressing
these challenges through safe, robust, and agile learning-based control methods.

UAV control algorithms demonstrate impressive performance in controlled environ-
ments and on highly maneuverable systems, and UAV hardware is rapidly progress-
ing. Agile flight control has been demonstrated on several systems, and impressive
results have been achieved on a range of systems from quadcopters in laboratory
environments [1], [2] to military aircraft in controlled testbeds [3]. Delivery drones
and self-driving cars are being rolled out in limited environments, with companies

2

such as Amazon running very early trials of their Prime Air delivery service [4] and
Waymo deploying their self-driving cars after accumulating over 1 million miles of
passenger-only autonomous driving [5]. Urban air mobility is still in the early stages
of development, with many companies racing to develop small-scale electric aircraft
to revolutionize urban transportation.

By examining this short list of current capabilities, we can identify several current
limitations of state-of-the-practice and state-of-the-art advanced control systems.
The most advanced and capable methods often rely on very fast and aggressive con-
trol methods. This results in a tightly coupled control hierarchy [6], which must
be painstakingly designed and tuned for each vehicle configuration, operating con-
dition, and application, or which relies on the underlying maneuverability of the
vehicle to force the desired behavior from the system [7]. Either way, the design
of control methods is further complicated by external factors such as difficult-to-
navigate environments and weather conditions, and the likelihood of faults on large-
scale systems. From these complexities, we see that the design space for control
methods is both extremely large and necessarily large for the wide deployment of
UAVs. However, the scale of the systems we are working with is also a great asset
and opens the door to new methods of data-driven control. In this thesis, we will
address problems presented by the complexity of the design space through a fusion
of classic control methods and black-box learning methods, that is, methods which
can leverage both physics-based models and data-driven methods to achieve robust
and agile control of UAVs under a wide range of conditions.

In particular, this thesis will focus on a class of learning-based control methods
which we call residual-learning-based control. This scheme concentrates on learn-
ing the difference between the desired and actual system response, or residual, and
using that model to predict the system response to disturbances. This approach is
similar to many recent adaptive control methods, which are formulated to quickly
react to residual disturbances. However, by leveraging experience, in the form of
recorded flight data, and the synthesizing power ofmachine learning, we can develop
a model of the residual dynamics that can anticipate and proactively compensate
for disturbances. This approach allows us to achieve a Goldilocks zone of control
methods that are stable, robust, and agile while being able to learn and continuously
improve the performance of the control system. The following four chapters discuss
key considerations and challenges in the design of learning-based control systems
for UAVs.

3

In Chapter 2, we tackle challenges of residual learning to counter unmodeled dis-
turbances. Firstly, we show how to overcome non-affine control equations resulting
from residual learning by using the previous control command as input to the neu-
ral network, solving for the new command using fixed-point iteration. Secondly,
we demonstrate that a Lipschitz bounded learned model guarantees a control so-
lution and enables the fixed-point iteration scheme. Finally, we provide stability
analysis of the closed-loop system, showing that it is robust to errors in the learned
model. We tested this residual learning framework on a quadrotor UAV during land-
ing and near-object flights, where ground effect causes significant aerodynamic dis-
turbances. This lays the groundwork for the following chapters, by establishing a
framework for residual learning-based control and demonstrating its effectiveness
in the presence of unmodeled disturbances.

In Chapter 3, we extend the offline learning of Chapter 2 to online learning of distur-
bances in varying exogenous conditions, with additional details discussed in Chap-
ter 4. Our method is called Neural-Fly. Instead of learning the unmodeled distur-
bances as a neural network, we learn a representation of the disturbances as a set
of basis functions that only depend on the endogenous factors such as the vehicle
state. A novel formulation of meta-learning disentangles the effects of the exoge-
nous conditions from the endogenous state so that only a set of mixing coefficients
must be updated in new wind conditions. To update the model in real-time, we use a
robust adaptive control law, which does not require persistent excitation of the rep-
resentation and mitigates the effects of error in the learned model. We demonstrate
this approach on a quadrotor UAV in a wind tunnel, where we show that Neural-
Fly outperforms state-of-the-art control methods in mitigating wind disturbances
while tracking an agile trajectory. This work demonstrates an effective approach to
online learning of disturbances in varying exogenous conditions.

In Chapter 5, we show how to improve general controller performance in the pres-
ence of large delays. In particular, we address the problem of dead time delay re-
sulting from digital control computation time and communication delays, and of
physical delays in the system, such as the time it takes for a motor to spin up to the
commanded speed. We find that a first-order compensation scheme not only approx-
imates the ideal delay compensation but also significantly improves the robustness of
the controller to both dead time and physical delays. We demonstrate this approach
on a quadrotor UAV in a simulation environment, where we show that first-order de-
lay compensation recovers the performance of the controller in the presence of large

4

delays. Furthermore, this method is compatible with a variety of control methods,
including residual learning-based control.

In Chapter 6, we examine two competing fault-tolerant control schemes and meth-
ods to incorporate residual learning for robust fault compensation. First, we look
at residual learning-based fault-tolerant control, where the learned model is used
to predict the fault and command a fault compensation. Although this method is
effective, it relies on the availability of sufficient control bandwidth and lower-level
control design to achieve the fault compensation. Second, we look at a fault-tolerant
control scheme that builds on standard control schemes but computes a new con-
trol allocation that directly compensates for the fault. Both of these frameworks are
tested on octocopter UAV platforms. Finally, we discuss some considerations for fu-
ture work incorporating residual learning into these fault-tolerant control schemes.

This thesis explores the potential of residual-learning-based control methods to ad-
dress the challenges of UAV control in complex environments and situations. By
combining classic control methods with black-box learning approaches, we aim to
achieve robust and agile control of UAVs under various conditions. Through ex-
tensive analysis and experimentation, we demonstrate the effectiveness of the pro-
posed methods in overcoming unmodeled disturbances, adapting to varying exoge-
nous conditions, compensating for large delays, and incorporating fault tolerance.
By addressing these challenges, our work contributes to the ongoing development
and large-scale deployment of UAVs for a wide range of applications, ultimately
pushing the boundaries of what these versatile aerial platforms can achieve.

5

C h a p t e r 2

NEURAL-LANDER: STABLE CONTROL USING BLACK-BOX
RESIDUAL MODELS

Abstract
Precise near-ground trajectory control is difficult for multi-rotor drones, due to the
complex aerodynamic effects caused by interactions betweenmulti-rotor airflow and
the environment. Conventional control methods often fail to properly account for
these complex effects and fall short in accomplishing smooth landing. In this pa-
per, we present a novel deep-learning-based robust nonlinear controller (Neural-
Lander) that improves control performance of a quadrotor during landing. Our ap-
proach combines a nominal dynamics model with a Deep Neural Network (DNN)
that learns high-order interactions. We apply spectral normalization (SN) to con-
strain the Lipschitz constant of the DNN. Leveraging this Lipschitz property, we
design a nonlinear feedback linearization controller using the learned model and
prove system stability with disturbance rejection. To the best of our knowledge, this
is the first DNN-based nonlinear feedback controller with stability guarantees that
can utilize arbitrarily large neural nets. Experimental results demonstrate that the
proposed controller significantly outperforms a Baseline Nonlinear Tracking Con-
troller in both landing and cross-table trajectory tracking cases. We also empirically
show that the DNN generalizes well to unseen data outside the training domain.

2.1 Introduction
Unmanned Aerial Vehicles (UAVs) require high precision control of aircraft po-
sitions, especially during landing and take-off. This problem is challenging largely
due to complex interactions of rotor andwing airflowswith the ground. The aerospace
community has long identified such ground effect that can cause an increased lift
force and a reduced aerodynamic drag. These effects can be both helpful and dis-
ruptive in flight stability [1], and the complications are exacerbated with multiple
rotors. Therefore, performing automatic landing of UAVs is risk-prone, and requires
expensive high-precision sensors as well as carefully designed controllers.

Compensating for ground effect is a long-standing problem in the aerial robotics
community. Prior work has largely focused on mathematical modeling (e.g., [2]) as
part of system identification (ID). These models are later used to approximate aero-

6

dynamics forces during flights close to the ground and combined with controller de-
sign for feed-forward cancellation (e.g., [3]). However, existing theoretical ground
effect models are derived based on steady-flow conditions, whereas most practi-
cal cases exhibit unsteady flow. Alternative approaches, such as integral or adaptive
control methods, often suffer from slow response and delayed feedback. [4] employs
Bayesian Optimization for open-air control but not for take-off/landing. Given these
limitations, the precision of existing fully automated systems for UAVs are still in-
sufficient for landing and take-off, thereby necessitating the guidance of a human
UAV operator during those phases.

To capture complex aerodynamic interactions without overly-constrained by conven-
tional modeling assumptions, we take a machine-learning (ML) approach to build
a black-box ground effect model using Deep Neural Networks (DNNs). However,
incorporating such models into a UAV controller faces three key challenges. First,
it is challenging to collect sufficient real-world training data, as DNNs are notori-
ously data-hungry. Second, due to high-dimensionality, DNNs can be unstable and
generate unpredictable output, which makes the system susceptible to instability in
the feedback control loop. Third, DNNs are often difficult to analyze, which makes
it difficult to design provably stable DNN-based controllers.

The aforementioned challenges pervade previousworks usingDNNs to capture high-
order non-stationary dynamics. For example, [5], [6] use DNNs to improve system
ID of helicopter aerodynamics, but not for controller design. Other approaches aim
to generate reference inputs or trajectories from DNNs [7]–[10]. However, these ap-
proaches can lead to challenging optimization problems [7], or heavily rely on well-
designed closed-loop controller and require a large number of labeled training data
[8]–[10]. A more classical approach of using DNNs is direct inverse control [11]–
[13] but the non-parametric nature of a DNN controller also makes it challenging to
guarantee stability and robustness to noise. [14] proposes a provably stable model-
based Reinforcement Learning method based on Lyapunov analysis, but it requires
a potentially expensive discretization step and relies on the native Lipschitz constant
of the DNN.

Contributions. In this paper, we propose a learning-based controller, Neural-Lander,
to improve the precision of quadrotor landing with guaranteed stability. Our ap-
proach directly learns the ground effect on coupled unsteady aerodynamics and ve-
hicular dynamics. We use deep-learning for system ID of residual dynamics and
then integrate it with nonlinear feedback linearization control.

7

We train DNNs with layer-wise spectrally normalized weight matrices. We prove
that the resulting controller is globally exponentially stable under bounded learning
errors. This is achieved by exploiting the Lipschitz bound of spectrally normal-
ized DNNs. It has earlier been shown that spectral normalization of DNNs leads to
good generalization, i.e., stability in a learning-theoretic sense [15]. It is intriguing
that spectral normalization simultaneously guarantees stability both in a learning-
theoretic and a control-theoretic sense.

We evaluateNeural-Lander on trajectory tracking of quadrotor during take-off, land-
ing and cross-table maneuvers. Neural-Lander is able to land a quadrotor much
more accurately than a Baseline Nonlinear Tracking Controller with a pre-identified
system. In particular, we show that compared to the baseline, Neural-Lander can
decrease error in I axis from 0.13 m to 0, mitigate G and H drifts by as much as 90%,
in the landing case. Meanwhile, Neural-Lander can decrease I error from 0.153 m
to 0.027 m, in the cross-table trajectory tracking task.¹ We also demonstrate that
the learned model can handle temporal dependency, and is an improvement over the
steady-state theoretical models.

2.2 Problem Statement: Quadrotor Landing
Given quadrotor states as global position p ∈ R3, velocity v ∈ R3, attitude rotation
matrix ' ∈ SO(3), and body angular velocity 8 ∈ R3, we consider the following
dynamics:

¤p = v, < ¤v = <g + 'fD + f0, (2.1a)
¤' = '((8), � ¤8 = �8 × 8 + 3D + 30, (2.1b)

where < and � are the mass and inertia matrices of the system, respectively, ((·) is
skew-symmetric mapping. g = [0, 0,−6]> is the gravity vector, fD = [0, 0,)]> and
3D = [gG , gH, gI]> are the total thrust and body torques from four rotors predicted by
a nominal model. We use (= [), gG , gH, gI]> to denote the output wrench. Typi-
cal quadrotor control input uses squared motor speeds u = [=2

1, =
2
2, =

2
3, =

2
4]
>, and is

linearly related to the output wrench (= �0u, with

�0 =

[2) 2) 2) 2)
0 2) ;arm 0 −2) ;arm

−2) ;arm 0 2) ;arm 0
−2& 2& −2& 2&

]
, (2.2)

where 2) and 2& are rotor force and torque coefficients, and ;arm denotes the length
of rotor arm. The key difficulty of precise landing is the influence of unknown dis-
turbance forces f0 = [50,G , 50,H, 50,I]> and torques 30 = [g0,G , g0,H, g0,I]>, which

¹Demo videos: https://youtu.be/FLLsG0S78ik

https://youtu.be/FLLsG0S78ik

8

originate from complex aerodynamic interactions between the quadrotor and the
environment.

Problem Statement: We aim to improve controller accuracy by learning the un-
known disturbance forces f0 and torques 30 in (2.1). As we mainly focus on landing
and take-off tasks, the attitude dynamics is limited and the aerodynamic disturbance
torque 30 is bounded. Thus position dynamics (2.1a) and f0 will our primary con-
cern. We first approximate f0 using a DNNwith spectral normalization to guarantee
its Lipschitz constant, and then incorporate the DNN in our exponentially-stabilizing
controller. Training is done off-line, and the learned dynamics is applied in the on-
board controller in real-time to achieve smooth landing and take-off.

2.3 Dynamics Learning using DNN
We learn the unknown disturbance force f0 using a DNNwith Rectified Linear Units
(ReLU) activation. In general, DNNs equipped with ReLU converge faster during
training, demonstrate more robust behavior with respect to changes in hyperparame-
ters, and have fewer vanishing gradient problems compared to other activation func-
tions such as sigmoid [16].

ReLU Deep Neural Networks
A ReLU deep neural network represents the functional mapping from the input x to
the output 5 (x,)), parameterized by the DNN weights) = ,1, · · · ,, !+1:

5 (x,)) = , !+1q(, ! (q(, !−1(· · · q(,1x) · · ·)))), (2.3)

where the activation function q(·) = max(·, 0) is called the element-wise ReLU
function. ReLU is less computationally expensive than tanh and sigmoid because
it involves simpler mathematical operations. However, deep neural networks are
usually trained by first-order gradient-based optimization, which is highly sensitive
on the curvature of the training objective and can be unstable [17]. To alleviate this
issue, we apply the spectral normalization technique [15].

Spectral Normalization
Spectral normalization stabilizes DNN training by constraining the Lipschitz con-
stant of the objective function. Spectrally normalizedDNNs have also been shown to
generalize well [18], which is an indication of stability in machine learning. Mathe-
matically, the Lipschitz constant of a function ‖ 5 ‖Lip is defined as the smallest value
such that

∀x, x′ : ‖ 5 (x) − 5 (x′)‖2/‖x − x′‖2 ≤ ‖ 5 ‖Lip.

9

It is known that the Lipschitz constant of a general differentiable function 5 is the
maximum spectral norm (maximum singular value) of its gradient over its domain
‖ 5 ‖Lip = supx f(∇ 5 (x)).

The ReLU DNN in (2.3) is a composition of functions. Thus we can bound the
Lipschitz constant of the network by constraining the spectral norm of each layer
6; (x) = q(, ;x). Therefore, for a linear map 6(x) = ,x, the spectral norm of each
layer is given by ‖6‖Lip = supx f(∇6(x)) = supx f(,) = f(,). Using the fact that
the Lipschitz norm of ReLU activation function q(·) is equal to 1, with the inequality
‖61 ◦ 62‖Lip ≤ ‖61‖Lip · ‖62‖Lip, we can find the following bound on ‖ 5 ‖Lip:

‖ 5 ‖Lip ≤ ‖6!+1‖Lip · ‖q‖Lip · · · ‖61‖Lip =
!+1∏
;=1

f(, ;). (2.4)

In practice, we can apply spectral normalization to the weight matrices in each layer
during training as follows:

,̄ = ,/f(,) · W 1
!+1 , (2.5)

where W is the intended Lipschitz constant for theDNN. The following lemma bounds
the Lipschitz constant of a ReLU DNN with spectral normalization.

Lemma 2.3.1. For a multi-layer ReLU network 5 (x,)), defined in (2.3) without an
activation function on the output layer. Using spectral normalization, the Lipschitz
constant of the entire network satisfies:

‖ 5 (x,)̄)‖Lip ≤ W,

with spectrally-normalized parameters)̄ = ,̄1, · · · , ,̄ !+1.

Proof. As in (2.4), the Lipschitz constant can be written as a composition of spectral
norms over all layers. The proof follows from the spectral norms constrained as in
(2.5). �

Constrained Training
We apply gradient-based optimization to train the ReLU DNN with a bounded Lip-
schitz constant. Estimating f0 in (2.1) boils down to optimizing the parameters) in
the ReLU network in (2.3), given the observed value of x and the target output. In
particular, we want to control the Lipschitz constant of the ReLU network.

10

The optimization objective is as follows, where we minimize the prediction error
with constrained Lipschitz constant:

minimize
)

)∑
C=1

1
)
‖yC − 5 (xC ,))‖2

subject to ‖ 5 ‖Lip ≤ W. (2.6)

In our case, yC is the observed disturbance force and xC is the observed state and con-
trol input. According to the upper bound in (2.4), we can substitute the constraint by
minimizing the spectral norm of the weights in each layer. We use stochastic gra-
dient descent (SGD) to optimize (2.6) and apply spectral normalization to regulate
the weights. From Lemma 2.3.1, the trained ReLU DNN has a Lipschitz constant.

2.4 Neural-Lander Controller Design
Our Neural-Lander controller for 3-D trajectory tracking is constructed as a nonlin-
ear feedback linearization controller whose stability guarantees are obtained using
the spectral normalizaion of the DNN-based ground-effect model. We then exploit
the Lipschitz property of the DNN to solve for the resulting control input using
fixed-point iteration.

Reference Trajectory Tracking
The position tracking error is defined as p̃ = p−p3 . Our controller uses a composite
variable s = 0 as a manifold on which p̃(C) → 0 exponentially:

s = ¤̃p + Λp̃ = ¤p − vA (2.7)

withΛ as a positive definite or diagonal matrix. Now the trajectory tracking problem
is transformed to tracking a reference velocity vA = ¤p3 − Λp̃.

Using the methods described in Sec. 2.3, we define f̂0 (' , u) as the DNN approxi-
mation to the disturbance aerodynamic forces, with ' being the partial states used
as input features to the network. We design the total desired rotor force f3 as

f3 = ('fD)3 = f̄3 − f̂0,with f̄3 = < ¤vA − Es − <g. (2.8)

Substituting (2.8) into (2.1), the closed-loop dynamics would simply become <¤s +
 Es = & , with approximation error & = f0 − f̂0. Hence, p̃(C) → 0 globally and
exponentially with bounded error, as long as ‖& ‖ is bounded [19]–[21].

Consequently, desired total thrust)3 and desired force direction :̂3 can be computed
as

)3 = f3 · :̂ , and :̂3 = f3/‖f3 ‖ , (2.9)

11

with :̂ being the unit vector of rotor thrust direction (typically I-axis in quadrotors).
Using :̂3 and fixing a desired yaw angle, desired attitude '3 can be deduced [22].
We assume that a nonlinear attitude controller uses the desired torque 33 from rotors
to track '3 (C). One such example is in [21]:

33 = � ¤8A − �8 × 8A − l (8 − 8A), (2.10)

where the reference angular rate 8A is designed similar to (2.7), so that when 8 →
8A , exponential trajectory tracking of a desired attitude '3 (C) is guaranteed within
some bounded error in the presence of bounded disturbance torques.

Learning-based Discrete-time Nonlinear Controller
From (2.2), (2.9) and (2.10), we can relate the desired wrench (3 = [)3 , 3>3]

> with
the control signal u through

�0u = (3 =

[(
f̄3 − f̂0 (' , u)

)
· :̂

33

]
. (2.11)

Because of the dependency of f̂0 on u, the control synthesis problem here is non-
affine. Therefore, we propose the following fixed-point iteration method for solv-
ing (2.11):

u: = �−1
0 (3 (u:−1) , (2.12)

where u: and u:−1 are the control input for current and previous time-step in the
discrete-time controller. Next, we prove the stability of the system and convergence
of the control inputs in (2.12).

2.5 Nonlinear Stability Analysis
The closed-loop tracking error analysis provides a direct correlation on how to tune
the neural network and controller parameter to improve control performance and
robustness.

Control Allocation as Contraction Mapping
We first show that the control input u: converges to the solution of (2.11) when all
states are fixed.

Lemma 2.5.1. Define mapping u: = F (u:−1) based on (2.12) and fix all current
states:

F (u) = �−1
0

[(
f̄3 − f̂0 (' , u)

)
· :̂

33

]
. (2.13)

12

If f̂0 (' , u) is !0-Lipschitz continuous, and f(�−1
0) · !0 < 1; then F (·) is a contrac-

tion mapping, and u: converges to unique solution of u∗ = F (u∗).

Proof. ∀u1, u2 ∈ U with U being a compact set of feasible control inputs; and
given fixed states as f̄3 , 33 and :̂ , then:

‖F (u1) − F (u2)‖2 =

�−1
0

(
f̂0 (' , u1) − f̂0 (' , u2)

)

2

≤ f(�−1
0) · !0 ‖u1 − u2‖2 .

Thus, ∃ U < 1, s.t ‖F (u1) − F (u2)‖2 < U ‖u1 − u2‖2. Hence, F (·) is a contraction
mapping. �

Stability of Learning-based Nonlinear Controller
Before continuing to prove the stability of the full system, we make the following
assumptions.

Assumption 1. The desired states along the position trajectory p3 (C), ¤p3 (C), and
¥p3 (C) are bounded.

Assumption 2. One-step difference of control signal satisfies ‖u: − u:−1‖ ≤ d ‖s‖
with a small positive d.

Here we provide the intuition behind this assumption. From (2.13), we can derive
the following approximate relation with Δ(·): = ‖(·): − (·):−1‖:

ΔD: ≤ f(�−1
0)

(
!0ΔD:−1 + !0ΔZ:

+ <Δ ¤EA,: + _max(E)ΔB: + Δg3,:
)
.

Because update rate of attitude controller (> 100 Hz) and motor speed control (>
5 kHz) are much higher than that of the position controller (≈ 10 Hz), in practice,
we can safely neglect ΔB: , Δ ¤EA,: , and ΔZ: in one update (Theorem 11.1 [23]). Fur-
thermore, Δg3,: can be limited internally by the attitude controller. It leads to:

ΔD: ≤ f(�−1
0)

(
!0ΔD:−1 + 2

)
,

with 2 being a small constant and f(�−1
0) · !0 < 1 from Lemma. 2.5.1, we can

deduce that ΔD rapidly converges to a small ultimate bound between each position
controller update.

Assumption 3. The learning error of f̂0 (' , u) over the compact sets ' ∈ Z, u ∈ U
is upper bounded by n< = sup'∈Z,u∈U ‖& (' , u)‖, where & (' , u) = f0 (' , u)−f̂0 (' , u).

13

DNNs have been shown to generalize well to the set of unseen events that are from
almost the same distribution as training set [24], [25]. This empirical observation
is also theoretically studied in order to shed more light toward an understanding of
the complexity of these models [18], [26]–[28]. Based on the above assumptions,
we can now present our overall stability and robustness result.

Theorem 2.5.2. Under Assumptions 1-3, for a time-varying p3 (C), the controller
defined in (2.8) and (2.12) with _min(E) > !0d achieves exponential convergence
of composite variable s to error ball limC→∞ ‖s(C)‖ = n</(_min(E) − !0d) with
rate ((_min(E) − !0d) /<. And p̃ exponentially converges to error ball

lim
C→∞
‖p̃(C)‖ = n<

_min(Λ) (_min(E) − !0d)
(2.14)

with rate _min(Λ).

Proof. We begin the proof by selecting a Lyapunov function as V(s) = 1
2<‖s‖

2,
then by applying the controller (2.8), we get the time-derivative ofV:

¤V = s>
(
− Es + f̂0 (': , u:) − f̂0 (': , u:−1) + & (': , u:)

)
≤ −s> Es + ‖s‖(‖ f̂0 (': , u:) − f̂0 (': , u:−1)‖ + n<).

Let _ = _min(E) denote the minimum eigenvalue of the positive-definite matrix
 E. By applying the Lipschitz property of f̂0 Lemma 2.3.1 and Assumption 2, we
obtain

¤V ≤ −2 (_−!0d)
<

V +
√

2V
<
n< .

Using the Comparison Lemma [23], we defineW(C) =
√
V(C) =

√
</2‖s‖ and

¤W = ¤V/
(
2
√
V

)
to obtain

‖s(C)‖ ≤ ‖s(C0)‖ exp
(
−_ − !0d

<
(C − C0)

)
+ n<

_ − !0d
.

It can be shown that this leads to finite-gain L? stability and input-to-state stabil-
ity (ISS) [29]. Furthermore, the hierarchical combination between s and p̃ in (2.7)
results in limC→∞ ‖p̃(C)‖ = limC→∞ ‖s(C)‖/_min(Λ), yielding (2.14). �

2.6 Experiments
In our experiments, we evaluate both the generalization performance of our DNN as
well as the overall control performance of Neural-Lander. The experimental setup is

14

(a) (b)

Part I Part II

Figure 2.1: Composite image of landing sequence and plot of training data. (a)
Composite image of an Intel Aero drone landing sequence; (b) Training data trajec-
tory. Part I (0 to 250 s) contains maneuvers at different heights (0.05 m to 1.50 m).
Part II (250 s to 350 s) includes random G, H, and Imotions for maximum state-space
coverage.

composed of a motion capture system with 17 cameras, a WiFi router for communi-
cation, and an Intel Aero drone, weighing 1.47 kg with an onboard Linux computer
(2.56 GHz Intel Atom x7 processor, 4 GB DDR3 RAM). We retrofitted the drone
with eight reflective infrared markers for accurate position, attitude and velocity es-
timation at 100Hz. The Intel Aero drone and the test space are shown in Fig. 2.1(a).

Bench Test
To identify a good nominal model, we first measured the mass, <, diameter of the
rotor, �, the air density, d, gravity, 6. Then we performed bench test to determine
the thrust constant, 2) , as well as the non-dimensional thrust coefficient �) =

2)
d�4 .

Note that �) is a function of propeller speed =, and here we picked a nominal value
at = = 2000 RPM .

Real-World Flying Data and Preprocessing
To estimate the disturbance force f0, an expert pilot manually flew the drone at differ-
ent heights, and we collected training data consisting of sequences of state estimates
and control inputs {(p, v, ', u), y} where y is the observed value of f0. We utilized
the relation f0 = < ¤v − <g − 'fD from (2.1) to calculate f0, where fD is calculated
based on the nominal 2) from the bench test in Sec. 2.6. Our training set is a single
continuous trajectory with varying heights and velocities. The trajectory has two
parts shown in Fig. 2.1(b). We aim to learn the ground effect through Part I of the
training set, and other aerodynamics forces such as air drag through Part II.

15

Training set
domain

Training set
domain

New
domain

New
domain

(a)

(b)

(c)

Figure 2.2: Visualization of ground effect prediction performance. (a) Learned
5̂0,I compared to the ground effect model with respect to height I, with EI = EG =

EH = 0 m/s, ' = �, u = 6400 RPM. Ground truth points are from hovering data
at different heights. (b) Learned 5̂0,I with respect to rotation speed = (I = 0.2 m,
EI = 0 m/s), compared to �) measured in the bench test. (c) Heatmaps of learned
5̂0,I versus I and EI. (Left) ReLU network with spectral normalization. (Right)
ReLU network without spectral normalization.

16

DNN Prediction Performance
We train a deep ReLU network f̂0 (' , u) = f̂0 (I, v, ', u), with I, v, ', u correspond-
ing to global height, global velocity, attitude, and control input. We build the ReLU
network using PyTorch [30]. Our ReLU network consists of four fully-connected
hidden layers, with input and the output dimensions 12 and 3, respectively. We use
spectral normalization (2.5) to constrain the Lipschitz constant of the DNN.

We compare the near-ground estimation accuracy our DNN model with existing 1D
steady ground effect model [1], [3]:

) (=, I) = =2

1 − `(�8I)2
2) (=) = =22) (=0) + 5̄0,I, (2.15)

where) is the thrust generated by propellers, = is the rotation speed, =0 is the idle
RPM, and ` depends on the number and the arrangement of propellers (` = 1 for a
single propeller, but must be tuned for multiple propellers). Note that 2) is a function
of =. Thus, we can derive 5̄0,I (=, I) from) (=, I).

Fig. 2.2(a) shows the comparison between the estimated f0 from DNN and the the-
oretical ground effect model (2.15) at different I (assuming) = <6 when I = ∞).
We can see that our DNN can achieve much better estimates than the theoretical
ground effect model. We further investigate the trend of 5̄0,I with respect to the ro-
tation speed =. Fig. 2.2(b) shows the learned 5̂0,I over the rotation speed = at a given
height, in comparison with the �) measured from the bench test. We observe that
the increasing trend of the estimates 5̂0,I is consistent with bench test results for �) .

To understand the benefits of SN, we compared 5̂0,I predicted by the DNNs trained
both with and without SN as shown in Fig. 2.2(c). Note that EI from −1 m/s to 1 m/s
is covered in our training set, but −2 m/s to −1 m/s is not. We observe the following
differences:

1. Ground effect: 5̂0,I increases as I decreases, which is also shown in Fig. 2.2(a).

2. Air drag: 5̂0,I increases as the drone goes down (EI < 0) and it decreases as
the drone goes up (EI > 0).

3. Generalization: the spectral normalized DNN is much smoother and can also
generalize to new input domains not contained in the training set.

In [18], the authors theoretically show that spectral normalization can provide tighter
generalization guarantees on unseen data, which is consistent with our empirical

17

final error: zero
final error: 0.13 m

mean L1 error: 0.007 m
mean L1 error: 0.072 m

mean L1 error: 0.021 m
mean L1 error: 0.032 m

Baseline

Baseline

Baseline

Baseline

Figure 2.3: Neural-network ground effect prediction. Baseline Controller and
Neural-Lander performance in take-off and landing. Means (solid curves) and stan-
dard deviations (shaded areas) of 10 trajectories.

observation. We will connect generalization theory more tightly with our robustness
guarantees in the future.

Baseline Controller
Wecompared theNeural-Lander with a BaselineNonlinear TrackingController. We
implemented both a Baseline Controller similar to (2.7) and (2.8) with f̂0 ≡ 0, as
well as an integral controller variation with vA = ¤p3 − 2Λp̃−Λ2

∫ C

0 p̃(g)3g. Though
an integral gain can cancel steady-state error during set-point regulation, our flight
results showed that the performance can be sensitive to the integral gain, especially

18

0 2 4 6 8 10 12 14 16
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

po
sit

io
n

(m
)

4 layers (error: 0)
1 layer (error: 0.07m)
0 layer (error: 0.08m)
Baseline (error: 0.12m)

Figure 2.4: Neural-Lander performance with difference numbers of hidden lay-
ers. Neural-Lander performance in take-off and landing with different DNN ca-
pacities. 1 layer means f̂0 = �x + b; 0 layer means f̂0 = b; Baseline means f̂0 ≡ 0.

during trajectory tracking. This can be seen in the demo video.²

Setpoint Regulation Performance
First, we tested the two controllers’ performance in take-off/landing, by commanding
position setpoint p3 , from (0, 0, 0), to (0, 0, 1), then back to (0, 0, 0), with ¤p3 ≡ 0.
From Fig. 2.3, we can conclude that there are two main benefits of our Neural-
Lander. (a) Neural-Lander can control the drone to precisely and smoothly land
on the ground surface while the Baseline Controller struggles to achieve 0 terminal
height due to the ground effect. (b) Neural-Lander can mitigate drifts in G− H plane,
as it also learned about additional aerodynamics such as air drag.

Second, we testedNeural-Lander performancewith different DNNcapacities. Fig. 2.4
shows that compared to the baseline (f̂0 ≡ 0), 1 layer model could decrease I error
but it is not enough to land the drone. 0 layer model generated significant error
during take-off.

In experiments, we observed the Neural-Lander without spectral normalization can
even result in unexpected controller outputs leading to crash, which empirically im-
plies the necessity of SN in training the DNN and designing the controller.

Trajectory Tracking Performance
To show that our algorithm can handlemore complicated environmentswhere physics-
based modelling of dynamics would be substantially more difficult, we devise a task

²Demo videos: https://youtu.be/FLLsG0S78ik

https://youtu.be/FLLsG0S78ik

19

(a)

(b)

table

desired trajectory

Mean X error

Mean Y error

Mean Z error

Z variance

0.079m

0.052m

0.027m

0.014m

0.126m

0.061m

0.153m

0.026m

Figure 2.5: Neural-Lander performance tracking a trajectory close to an obsta-
cle. (a) Heatmaps of learned 5̂0,I versus G and H, with other inputs fixed. (Left)
ReLU network with spectral normalization. (Right) ReLU network without spectral
normalization. (b) Tracking performance and statistics.

of tracking an elliptic trajectory very close to a table with a period of 10 seconds
shown in Fig. 2.5. The trajectory is partially over the table with significant ground
effects, and a sharp transition to free space at the edge of the table. We compared
the performance of both Neural-Lander and Baseline Controller on this test.

In order to model the complex dynamics near the table, we manually flew the drone
in the space close to the table to collect another data set. We trained a new ReLU
DNN model with G-H positions as additional input features: f̂0 (p, v, ', u). Simi-
lar to the setpoint experiment, the benefit of spectral normalization can be seen in
Fig. 2.5(a), where only the spectrally-normalized DNN exhibits a clear table bound-
ary.

20

Fig. 2.5(b) shows thatNeural-Lander outperformed the Baseline Controller for track-
ing the desired position trajectory in all G, H, and I axes. Additionally, Neural-Lander
showed a lower variance in height, even at the edge of the table, as the controller cap-
tured the changes in ground effects when the drone flew over the table.

In summary, the experimental results with multiple ground interaction scenarios
show that much smaller tracking errors are obtained by Neural-Lander, which is es-
sentially the nonlinear tracking controller with feedforward cancellation of a spectrally-
normalized DNN.

2.7 Conclusions
In this paper, we present Neural-Lander, a deep-learning-based nonlinear controller
with guaranteed stability for precise quadrotor landing. Compared to the Baseline
Controller, Neural-Lander is able to significantly improve control performance. The
main benefits are (1) our method can learn from coupled unsteady aerodynamics and
vehicle dynamics to provide more accurate estimates than theoretical ground effect
models, (2) our model can capture both the ground effect and other non-dominant
aerodynamics and outperforms the conventional controller in all axes (G, H, and I),
and (3) we provide rigorous theoretical analysis of our method and guarantee the
stability of the controller, which also implies generalization to unseen domains.

Future work includes further generalization of the capabilities of Neural-Lander
handling unseen state and disturbance domains, such as those generated by a wind
fan array.

ACKNOWLEDGEMENT
The authors thank Joel Burdick and Daniel Pastor Moreno. The work is funded in
part by Caltech’s Center for Autonomous Systems and Technologies and Raytheon
Company.

References

[1] I. C. Cheeseman and W. E. Bennett, “The effect of the ground on a helicopter
rotor in forward flight,” H.M. Stationery Office, 3021, 1957. [Online]. Avail-
able: https://reports.aerade.cranfield.ac.uk/handle/1826.2/
3590 (visited on 06/06/2023).

[2] K. Nonaka andH. Sugizaki, “Integral slidingmode altitude control for a small
model helicopter with ground effect compensation,” in American Control
Conference (ACC), 2011, IEEE, 2011, pp. 202–207.

https://reports.aerade.cranfield.ac.uk/handle/1826.2/3590
https://reports.aerade.cranfield.ac.uk/handle/1826.2/3590

21

[3] L. Danjun, Z. Yan, S. Zongying, and L.Geng, “Autonomous landing of quadro-
tor based on ground effect modelling,” in Control Conference (CCC), 2015
34th Chinese, IEEE, 2015, pp. 5647–5652.

[4] F. Berkenkamp, A. P. Schoellig, and A. Krause, “Safe controller optimization
for quadrotors with Gaussian processes,” in Proc. of the IEEE International
Conference on Robotics and Automation (ICRA), 2016, pp. 493–496. [On-
line]. Available: https://arxiv.org/abs/1509.01066.

[5] P. Abbeel, A. Coates, andA.Y.Ng, “Autonomous helicopter aerobatics through
apprenticeship learning,” The International Journal of Robotics Research,
vol. 29, no. 13, pp. 1608–1639, 2010.

[6] A. Punjani and P. Abbeel, “Deep learning helicopter dynamics models,” in
2015 IEEE International Conference on Robotics and Automation (ICRA),
May 2015, pp. 3223–3230. doi: 10.1109/ICRA.2015.7139643.

[7] S. Bansal, A. K. Akametalu, F. J. Jiang, F. Laine, and C. J. Tomlin, “Learning
quadrotor dynamics using neural network for flight control,” in Decision and
Control (CDC), 2016 IEEE 55th Conference on, IEEE, 2016, pp. 4653–4660.

[8] Q. Li, J. Qian, Z. Zhu, X. Bao, M. K. Helwa, and A. P. Schoellig, “Deep
neural networks for improved, impromptu trajectory tracking of quadrotors,”
in Robotics and Automation (ICRA), 2017 IEEE International Conference on,
IEEE, 2017, pp. 5183–5189.

[9] S. Zhou, M. K. Helwa, and A. P. Schoellig, “Design of deep neural net-
works as add-on blocks for improving impromptu trajectory tracking,” in
2017 IEEE 56th Annual Conference on Decision and Control (CDC), Dec.
2017, pp. 5201–5207. doi: 10.1109/CDC.2017.8264430.

[10] C. Sánchez-Sánchez and D. Izzo, “Real-time optimal control via deep neural
networks: Study on landing problems,” Journal of Guidance, Control, and
Dynamics, vol. 41, no. 5, pp. 1122–1135, 2018.

[11] S. Balakrishnan and R. Weil, “Neurocontrol: A literature survey,” Mathemat-
ical and Computer Modelling, vol. 23, no. 1-2, pp. 101–117, 1996.

[12] M. T. Frye and R. S. Provence, “Direct inverse control using an artificial neu-
ral network for the autonomous hover of a helicopter,” in Systems, Man and
Cybernetics (SMC), 2014 IEEE International Conference on, IEEE, 2014,
pp. 4121–4122.

[13] H. Suprijono and B. Kusumoputro, “Direct inverse control based on neural
network for unmanned small helicopter attitude and altitude control,” Journal
of Telecommunication, Electronic and Computer Engineering (JTEC), vol. 9,
no. 2-2, pp. 99–102, 2017.

https://arxiv.org/abs/1509.01066
https://doi.org/10.1109/ICRA.2015.7139643
https://doi.org/10.1109/CDC.2017.8264430

22

[14] F. Berkenkamp, M. Turchetta, A. P. Schoellig, and A. Krause, “Safe model-
based reinforcement learning with stability guarantees,” in Proc. of Neural
Information Processing Systems (NIPS), 2017. [Online]. Available: https:
//arxiv.org/abs/1705.08551.

[15] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normalization
for generative adversarial networks,” Feb. 16, 2018. arXiv: 1802.05957 [cs,
stat]. [Online]. Available: http://arxiv.org/abs/1802.05957 (visited
on 09/02/2021).

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in Neural Information Pro-
cessing Systems, 2012, pp. 1097–1105.

[17] T. Salimans and D. P. Kingma, “Weight normalization: A simple reparam-
eterization to accelerate training of deep neural networks,” in Advances in
Neural Information Processing Systems, 2016, pp. 901–909.

[18] P. L. Bartlett, D. J. Foster, andM. J. Telgarsky, “Spectrally-normalizedmargin
bounds for neural networks,” in Advances in Neural Information Processing
Systems, 2017, pp. 6240–6249.

[19] J.-J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, N.J:
Prentice Hall, 1991, 459 pp., isbn: 978-0-13-040890-7.

[20] S. Bandyopadhyay, S.-J. Chung, and F. Y. Hadaegh, “Nonlinear attitude con-
trol of spacecraft with a large captured object,” Journal of Guidance, Con-
trol, and Dynamics, vol. 39, no. 4, pp. 754–769, Apr. 2016, issn: 0731-5090,
1533-3884. doi: 10.2514/1.G001341. [Online]. Available: https://arc.
aiaa.org/doi/10.2514/1.G001341 (visited on 03/09/2022).

[21] X. Shi, K. Kim, S. Rahili, and S.-J. Chung, “Nonlinear control of autonomous
flying cars with wings and distributed electric propulsion,” in 2018 IEEE
Conference on Decision and Control (CDC), Miami Beach, FL: IEEE, Dec.
2018, pp. 5326–5333, isbn: 978-1-5386-1395-5. doi: 10.1109/CDC.2018.
8619578. [Online]. Available: https://ieeexplore.ieee.org/document/
8619578/ (visited on 08/25/2020).

[22] D. Morgan, G. P. Subramanian, S.-J. Chung, and F. Y. Hadaegh, “Swarm as-
signment and trajectory optimization using variable-swarm, distributed auc-
tion assignment and sequential convex programming,”The International Jour-
nal of Robotics Research, vol. 35, no. 10, pp. 1261–1285, Sep. 1, 2016, issn:
0278-3649.doi: 10.1177/0278364916632065. [Online]. Available: https:
//doi.org/10.1177/0278364916632065 (visited on 06/06/2023).

[23] H. K. Khalil, Nonlinear Systems, 3rd Edition. Prentice Hall, 2002. [Online].
Available: https : / / www . pearson . com / content / one - dot - com /
one-dot-com/us/en/higher-education/program.html (visited on
09/02/2021).

https://arxiv.org/abs/1705.08551
https://arxiv.org/abs/1705.08551
https://arxiv.org/abs/1802.05957
https://arxiv.org/abs/1802.05957
http://arxiv.org/abs/1802.05957
https://doi.org/10.2514/1.G001341
https://arc.aiaa.org/doi/10.2514/1.G001341
https://arc.aiaa.org/doi/10.2514/1.G001341
https://doi.org/10.1109/CDC.2018.8619578
https://doi.org/10.1109/CDC.2018.8619578
https://ieeexplore.ieee.org/document/8619578/
https://ieeexplore.ieee.org/document/8619578/
https://doi.org/10.1177/0278364916632065
https://doi.org/10.1177/0278364916632065
https://doi.org/10.1177/0278364916632065
https://www.pearson.com/content/one-dot-com/one-dot-com/us/en/higher-education/program.html
https://www.pearson.com/content/one-dot-com/one-dot-com/us/en/higher-education/program.html

23

[24] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding
deep learning requires rethinking generalization,” arXiv preprint arXiv:1611.03530,
2016.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 2016, pp. 770–778.

[26] B. Neyshabur, S. Bhojanapalli, D.McAllester, andN. Srebro, “A pac-bayesian
approach to spectrally-normalized margin bounds for neural networks,” arXiv
preprint arXiv:1707.09564, 2017.

[27] G.K.Dziugaite andD.M.Roy, “Computing nonvacuous generalization bounds
for deep (stochastic) neural networks with many more parameters than train-
ing data,” arXiv preprint arXiv:1703.11008, 2017.

[28] B. Neyshabur, S. Bhojanapalli, D.McAllester, andN. Srebro, “Exploring gen-
eralization in deep learning,” in Advances in Neural Information Processing
Systems, 2017, pp. 5947–5956.

[29] S.-J. Chung, S. Bandyopadhyay, I. Chang, and F. Y. Hadaegh, “Phase syn-
chronization control of complex networks of Lagrangian systems on adaptive
digraphs,” Automatica, vol. 49, no. 5, pp. 1148–1161, 2013.

[30] A. Paszke, S. Gross, S. Chintala, et al., “Automatic differentiation in Py-
Torch,” presented at the Advances in Neural Information Processing Systems,
2017.

24

C h a p t e r 3

NEURAL-FLY: OFFLINE LEARNING FOR RAPID AND
ROBUST ONLINE ADAPTATION

3.1 Introduction
The commoditization of uninhabited aerial vehicles (UAVs) requires that the con-
trol of these vehicles become more precise and agile. For example, drone delivery
requires transporting goods to a narrow target area in various weather conditions;
drone rescue and search require entering and searching collapsed buildings with lit-
tle space; urban air mobility needs a flying car to follow a planned trajectory closely
to avoid collision in the presence of strong unpredictable winds.

Unmodeled and often complex aerodynamics are among themost notable challenges
to precise flight control. Flying in windy environments (as shown in Fig. 3.1) in-
troduces even more complexity because of the unsteady aerodynamic interactions
between the drone, the induced airflow, and the wind (see Fig. 3.1(F) for a smoke
visualization). These unsteady and nonlinear aerodynamic effects substantially de-
grade the performance of conventional UAV control methods that neglect to ac-
count for them in the control design. Prior approaches partially capture these effects
with simple linear or quadratic air drag models, which limit the tracking perfor-
mance in agile flight and cannot be extended to external wind conditions [1], [2].
Although more complex aerodynamic models can be derived from computational
fluid dynamics [3], such modelling is often computationally expensive, and is lim-
ited to steady non-dynamic wind conditions. Adaptive control addresses this prob-
lem by estimating linear parametric uncertainty in the dynamical model in real time
to improve tracking performance. Recent state-of-the-art in quadrotor flight control
has used adaptive control methods that directly estimate the unknown aerodynamic
force without assuming the structure of the underlying physics, but relying on high-
frequency and low-latency control [4]–[7]. In parallel, there has been increased
interest in data-driven modeling of aerodynamics (e.g., [8]–[11]), however existing
approaches cannot effectively adapt in changing or unknown environments such as
time-varying wind conditions.

In this article, we present a data-driven approach called Neural-Fly, which is a deep-
learning-based trajectory tracking controller that learns to quickly adapt to rapidly-

25

Figure 3.1: Agile flight through narrow gates. (A) Caltech Real Weather Wind
Tunnel system, the quadrotor UAV, and the gate. In our flight tests, the UAV follows
an agile trajectory through narrow gates, which are slightly wider than the UAV
itself, under challenging wind conditions. (B-C) Trajectories used for the gate tests.
In (B), the UAV follows a figure-8 through one gate, with wind speed 3.1 m/s or
time-varying wind condition. In (C), the UAV follows an ellipse in the horizontal
plane through two gates, with wind speed 3.1 m/s. (D-E) Long-exposure photos
(with an exposure time of 5 s) showing one lap in two tasks. (F-I) High-speed photos
(with a shutter speed of 1/200s) showing the moment the UAV passed through the
gate and the interaction between the UAV and the wind.

26

changing wind conditions. Our method, depicted in Fig. 3.2, advances and offers
insights into both adaptive flight control and deep-learning-based robot control. Our
experimental demonstrates that Neural-Fly achieves centimeter-level position-error
tracking of an agile and challenging trajectory in dynamic wind conditions on a
standard UAV.

Ourmethod has twomain components: an offline learning phase and an online adap-
tive control phase used as real-time online learning. For the offline learning phase,
we have developed Domain Adversarially Invariant Meta-Learning (DAIML) that
learns a wind-condition-independent deep neural network (DNN) representation of
the aerodynamics in a data-efficient manner. The output of the DNN is treated as a
set of basis functions that represent the aerodynamic effects. This representation is
adapted to different wind conditions by updating a set of linear coefficients that mix
the output of the DNN. DAIML is data efficient and uses only 12 total minutes of
flight data in just 6 different wind conditions to train the DNN. DAIML incorporates
several key features which not only improve the data efficiency but also are informed
by the downstream online adaptive control phase. In particular, DAIML uses spec-
tral normalization [8], [12] to control the Lipschitz property of the DNN to improve
generalization to unseen data and provide closed-loop stability and robustness guar-
antees. DAIML also uses a discriminative network, which ensures that the learned
representation is wind-invariant and that the wind-dependent information is only
contained in the linear coefficients that are adapted in the online control phase.

For the online adaptive control phase, we have developed a regularized composite
adaptive control law, which we derived from a fundamental understanding of how
the learned representation interacts with the closed-loop control system and which
we support with rigorous theory. The adaptation law updates the wind-dependent
linear coefficients using a composite of the position tracking error term and the aero-
dynamic force prediction error term. Such a principled approach effectively guar-
antees stable and fast adaptation to any wind condition and robustness against im-
perfect learning. Although this adaptive control law could be used with a number
of learned models, the speed of adaptation is further aided by the concise represen-
tation learned from DAIML.

Using Neural-Fly, we report an average improvement of 66 % over a nonlinear track-
ing controller, 42 % over an L1 adaptive controller, and 35 % over an Incremental
Nonlinear Dynamics Inversion (INDI) controller. These results are all accomplished
using standard quadrotor UAV hardware, while running the PX4’s default regulation

27

Velocity

Attitude

PWM

Learned

basis function

net

Drone state

Wind-invariant
representation

Adaptive

control

Wind-specific
linear coefficients

Residual
force prediction

Adaptation
set

Training
set

net

Least
squares Domain

adversarially
invariant

meta-learning
(DAIML)

SGD

Dataset from
K wind

conditions

A Online adaptation B Offline meta-learning

C Control diagram

Learned basis
function

Feedforward

Gravity

Feedback

+ Model

kinematics

Flight

control unit

Nominal

dynamics

Online adaptation block

Desired

trajectory

-

Drone state

 Residual
force error

Tracking-based adaptation

Prediction-based adaptation

Tr
ac

ki
ng

 e
rro

r

Adaptive

 control

+

Tracking-based

adaptation

Prediction-based

adaptation

Vehicle plant

Figure 3.2: Offline meta-learning and online adaptive control design. (A) The
online adaptation block in our adaptive controller. Our controller leverages themeta-
trained basis function q, which is a wind-invariant representation of the aerodynamic
effects, and uses composite adaptation (that is, including tracking-error-based and
prediction-error-based adaptation) to update wind-specific linear weights 0̂. The
output of this block is the wind-effect force estimate, 5̂ = q0̂. (B) The illustration
of our meta-learning algorithm DAIML. We collected data from wind conditions
{F1, · · · , F } and applied Algorithm 1 to train the q net. (C) The diagram of our
control method, where the gray part corresponds to (A). Interpreting the learned
block as an aerodynamic force allows it to be incorporated into the feedback control
easily.

28

attitude control. Our tracking performance is competitive even compared to related
work without external wind disturbances and with more complex hardware (for ex-
ample, [4] requires a 10-time higher control frequency and onboard optical sensors
for direct motor speed feedback). We also compare Neural-Fly with two variants
of our method: Neural-Fly-Transfer, which uses a learned representation trained on
data from a different drone, and Neural-Fly-Constant, which only uses our adap-
tive control law with a trivial non-learning basis. Neural-Fly-Transfer demonstrates
that our method is robust to changes in vehicle configuration and model mismatch.
Neural-Fly-Constant, L1, and INDI all directly adapt to the unknown dynamics
without assuming the structure of the underlying physics, and they have similar
performance. Furthermore, we demonstrate that our method enables a new set of
capabilities that allow the UAV to fly through low-clearance gates following agile
trajectories in gusty wind conditions (Fig. 3.1).

Related Work for Precise Quadrotor Control
Typical quadrotor control consists of a cascaded or hierarchical control structure
which separates the design of the position controller, attitude controller, and thrust
mixer (allocation). Commonly-used off-the-shelf controllers, such as PX4, design
each of these loops as proportional-integral-derivative (PID) regulation controllers
[13]. The control performance can be substantially improved by designing each layer
of the cascaded controller as a tracking controller using the concept of differential
flatness [14], or, as has recently been popular, using a single optimization-based
controller such as model predictive control (MPC) to directly compute motor speed
commands from desired trajectories. State-of-the-art tracking performance relies
on MPC with fast adaptive inner loops to correct for modeling errors [4], [7], how-
ever, this approach requires full custom flight controllers. In contrast, our method is
designed to be integrated with a typical PX4 flight controller, yet it achieves state-
of-the-art flight performance in wind.

Prior work on agile quadrotor control has achieved impressive results by considering
aerodynamics [2], [4], [7], [11]. However, those approaches require specialized on-
board hardware [4], full custom flight control stacks [4], [7], or cannot adapt to exter-
nal wind disturbances [2], [11]. For example, state-of-the-art tracking performance
has been demonstrated using incremental nonlinear dynamics inversion to estimate
aerodynamic disturbance forces, with a root-mean-square tracking error of 6.6 cm
and drone ground speeds up to 12.9 m/s [4]. However, [4] relies on high-frequency
control updates (500 Hz) and direct motor speed feedback using optical encoders to

29

rapidly estimate external disturbances. Both are challenging to deploy on standard
systems. [7] simplifies the hardware setup and does not require optical motor speed
sensors and has demonstrated state-of-the-art tracking performance. However, [7]
relies on a high-rate L1 adaptive controller inside a model predictive controller and
uses a racing drone with a fully customized control stack. [11] leverages an aerody-
namic model learned offline and represented as Gaussian Processes. However, [11]
cannot adapt to unknown or changing wind conditions and provides no theoretical
guarantees. Another recent work focuses on deriving simplified rotor-drag models
that are differentially flat [2]. However, [2] focuses on horizontal, GH−plane trajec-
tories at ground speeds of 4 m/s without external wind, where the thrust is more
constant than ours, achieves ∼6 cm tracking error [2], uses an attitude controller
running at 4000 Hz, and is not extensible to faster flights as pointed out in [11].

Relation between Neural-Fly and Conventional Adaptive Control
Adaptive control theory has been extensively studied for online control and identi-
fication problems with parametric uncertainty, for example, unknown linear coeffi-
cients for mixing known basis functions [15]–[20]. There are three common aspects
of adaptive control which must be addressed carefully in any well-designed system
and which we address in Neural-Fly: designing suitable basis functions for online
adaptation, stability of the closed-loop system, and persistence of excitation, which
is a property related to robustness against disturbances. These challenges arise due
to the coupling between the unknown underlying dynamics and the online adapta-
tion. This coupling precludes naive combinations of online learning and control.
For example, gradient-based parameter adaptation has well-known stability and ro-
bustness issues as discussed in [15].

The basis functions play a crucial role in the performance of adaptive control, but
designing or selecting proper basis functionsmight be challenging. A good set of ba-
sis functions should reflect important features of the underlying physics. In practice,
basis functions are often designed using physics-informed modeling of the system,
such as the nonlinear aerodynamic modeling in [21]. However, physics-informed
modeling requires a tremendous amount of prior knowledge and human labor, and
is often still inaccurate. Another approach is to use random features as the basis
set, such as random Fourier features [22], [23], which can model all possible un-
derlying physics as long as the number of features is large enough. However, the
high-dimensional feature space is not optimal for a specific system because many of

30

the features might be redundant or irrelevant. Such suboptimality and redundancy
not only increase the computational burden but also slow down the convergence
speed of the adaptation process.

Given a set of basis functions, naive adaptive control designs may cause instability
and fragility in the closed-loop system, due to the nontrivial coupling between the
adapted model and the system dynamics. In particular, asymptotically stable adap-
tive control cannot guarantee robustness against disturbances and so exponential
stability is desired. Even so, often, existing adaptive control methods only guar-
antee exponential stability when the desired trajectory is persistently exciting, by
which information about all the coefficients (including irrelevant ones) is constantly
provided at the required spatial and time scales. In practice, persistent excitation
requires either a succinct set of basis functions or perturbing the desired trajectory,
which compromises tracking performance.

Recent multirotor flight control methods, including INDI [4] and L1 adaptive con-
trol, presented in [5] and demonstrated inside a model predictive control loop in [7],
achieve good results by abandoning complex basis functions. Instead, these meth-
ods directly estimate the aerodynamic residual force vector. The residual force is ob-
servable, thus, these methods bypass the challenge of designing good basis functions
and the associated stability and persistent excitation issues. However, these meth-
ods suffer from lag in estimating the residual force and encounter the filter design
performance trade of reduced lag versus amplified noise. Neural-Fly-Constant only
uses Neural-Fly’s composite adaptation law to estimate the residual force, and there-
fore, Neural-Fly-Constant also falls into this class of adaptive control structures. The
results of this article demonstrate that the inherent estimation lag in these existing
methods limits performance on agile trajectories and in strong wind conditions.

Neural-Fly solves the aforementioned issues of basis function design and adaptive
control stability, using newly developed methods for meta-learning and composite
adaptation that can be seamlessly integrated together. Neural-Fly uses DAIML and
flight data to learn an effective and compact set of basis functions, represented as
a DNN. The regularized composite adaptation law uses the learned basis functions
to quickly respond to wind conditions. Neural-Fly enjoys fast adaptation because
of the conciseness of the feature space, and it guarantees closed-loop exponential
stability and robustness without assuming persistent excitation.

Related to Neural-Fly, neural network-based adaptive control has been researched
extensively, but by and large was limited to shallow or single-layer neural networks

31

without pretraining. Some early works focus on shallow or single-layer neural net-
works with unknown parameters which are adapted online [19], [24]–[27]. A recent
work applies this idea to perform an impressive quadrotor flip [28]. However, the
existing neural network-based adaptive control work does not employ multi-layer
DNNs, and lacks a principled and efficient mechanism to pretrain the neural net-
work before deployment. Instead of using shallow neural networks, recent trends
in machine learning highly rely on DNNs due to their representation power [29].
In this work, we leverage modern deep-learning advances to pretrain a DNN which
represents the underlying physics compactly and effectively.

Related Work in Multi-environment Deep-Learning for Robot Control
Recently, researchers have been addressing the data and computation requirements
for DNNs to help the field progress towards the fast online-learning paradigm. In
turn, this progress has been enabling adaptable DNN-based control in dynamic en-
vironments. The most popular learning scheme in dynamic environments is meta-
learning, or “learning-to-learn,” which aims to learn an efficient model from data
across different tasks or environments [30]–[32]. The learned model, typically rep-
resented as a DNN, ideally should be capable of rapid adaptation to a new task or
an unseen environment given limited data. For robotic applications, meta-learning
has shown great potential for enabling autonomy in highly-dynamic environments.
For example, it has enabled quick adaptation against unseen terrain or slopes for
legged robots [33], [34], changing suspended payload for drones [35], and unknown
operating conditions for wheeled robots [36].

In general, learning algorithms typically can be decomposed into two phases: of-
fline learning and online adaptation. In the offline learning phase, the goal is to
learn a model from data collected in different environments, such that the model
contains shared knowledge or features across all environment, for example, learning
aerodynamic features shared by all wind conditions. In the online adaptation phase,
the goal is to adapt the offline-learned model, given limited online data from a new
environment or a new task, for example, fine-tuning the aerodynamic features in a
specific wind condition.

There are two ways that the offline-learned model can be adapted. In the first class,
the adaptation phase adapts the whole neural network model, typically using one or
more gradient descent steps [30], [33], [35], [37]. However, due to the notoriously
data-hungry and high-dimensional nature of neural networks, for real-world robots

32

it is still impossible to run such adaptation on-board as fast as the feedback control
loop (e.g., ∼100Hz for quadrotor). Furthermore, adapting the whole neural network
often lacks explainability and robustness and could generate unpredictable outputs
that make the closed-loop unstable.

In the second class (including Neural-Fly), the online adaptation only adapts a rel-
atively small part of the learned model, for example, the last layer of the neural
network [36], [38]–[40]. The intuition is that, different environments share a com-
mon representation (e.g., the wind-invariant representation in Fig. 3.2(A)), and the
environment-specific part is in a low-dimensional space (e.g., the wind-specific lin-
ear weight in Fig. 3.2(A)), which enables the real-time adaptation as fast as the con-
trol loop. In particular, the idea of integrating meta-learning with adaptive control
is first presented in our prior work [38], later followed by [39]. However, the rep-
resentation learned in [38] is ineffective and the tracking performance in [38] is
similar as the baselines; [39] focuses on a planar and fully-actuated rotorcraft sim-
ulation without experiment validation and there is no stability or robustness anal-
ysis. Neural-Fly instead learns an effective representation using our meta-learning
algorithm calledDAIML, demonstrates state-of-the-art tracking performance on real
drones, and achieves non-trivial stability and robustness guarantees.

Another popular deep-learning approach for control in dynamic environments is ro-
bust policy learning via domain randomization [41]–[43]. The key idea is to train the
policy with random physical parameters such that the controller is robust to a range
of conditions. For example, the quadrupedal locomotion controller in [41] retains its
robustness over challenging natural terrains. However, robust policy learning opti-
mizes average performance under a broad range of conditions rather than achieving
precise control by adapting to specific environments.

3.2 Results
In this section, we first discuss the experimental platform for data collection and ex-
periments. Second, we discuss the key conceptual reasoning behind our combined
method of our meta-learning algorithm, called DAIML, and our composite adaptive
controller with stability guarantees. Third, we discuss several experiments to quan-
titatively compare the closed-loop trajectory-tracking performance of our methods
to a nonlinear baseline method and two state-of-the-art adaptive flight control meth-
ods, and we observe our methods reduce the average tracking error substantially. In
order to demonstrate the new capabilities brought by our methods, we present agile

33

flight results in gusty winds, where the UAV must quickly fly through narrow gates
that are only slightly wider than the vehicle. Finally, we show our methods are also
applicable in outdoor agile tracking tasks without external motion capture systems.

Figure 3.3: Training data collection. (A) The xyz position along a two-minute
randomized trajectory for data collection with wind speed 8.3 km/h (3.7 m/s), in the
Caltech Real Weather Wind Tunnel. (B) A typical 10-second trajectory of the inputs
(velocity, attitude quaternion, and motor speed PWM command) and label (offline
calculation of aerodynamic residual force) for our learning model, corresponding to
the highlighted part in (A). (C) Histograms showing data distributions in different
wind conditions. (C) Left: distributions of the G-component of the wind-effect
force, 5G . This shows that the aerodynamic effect changes as the wind varies. (C)
Right: distributions of the pitch, a component of the state used as an input to the
learning model. This shows that the shift in wind conditions causes a distribution
shift in the input.

Experimental Platform
All of our experiments are conducted at Caltech’s Center for Autonomous Systems
and Technologies (CAST). The experimental setup consists of an OptiTrack motion
capture system with 12 infrared cameras for localization streaming position mea-
surements at 50 Hz, a Wi-Fi router for communication, the Caltech Real Weather
Wind Tunnel for generating dynamic wind conditions, and a custom-built quadrotor
UAV. The Real Weather Wind Tunnel is composed of 1296 individually controlled
fans and can generate uniform wind speeds of up to 43.6 km/h in its 3x3x5m test
section. For outdoor flight, the drone is also equipped with a Global Positioning

34

System (GPS) module and an external antenna. We now discuss the design of the
UAV and the wind condition in detail.

UAV Design We built a quadrotor UAV for our primary data collection and all
experiments, shown in Fig. 3.1(A). The quadrotor weighs 2.6 kg with a thrust to
weight ratio of 2.2. The UAV is equipped with a Pixhawk flight controller running
PX4, an open-source commonly used drone autopilot platform [13]. The UAV in-
corporates a Raspberry Pi 4 onboard computer running a Linux operating system,
which performs real-time computation and adaptive control and interfaces with the
flight controller throughMAVROS, an open-source set of communication drivers for
UAVs. State estimation is performed using the built-in PX4 Extended Kalman Fil-
ter (EKF), which fuses inertial measurement unit (IMU) data with global position
estimates from OptiTrack motion capture system (or the GPS module for outdoor
flight tasks). The UAV platform features a wide-X configuration, measuring 85 cm
in width, 75 cm in length, and 93 cm diagonally, and tilted motors for improved yaw
authority. This general hardware setup is standard and similar to many quadrotors.
We refer to the supplementary materials (4.1) for further configuration details.

We implemented our control algorithm and the baseline control methods in the posi-
tion control loop in Python, and run it on the onboard Linux computer at 50 Hz. The
PX4 was set to the offboard flight mode and received thrust and attitude commands
from the position control loop. The built-in PX4 multicopter attitude controller was
then executed at the default rate, which is a linear PID regulation controller on the
quaternion error. The online inference of the learned representation is also in Python
via PyTorch, which is an open source deep-learning framework.

To study the generalizability and robustness of our approach, we also use an Intel
Aero Ready to Fly drone for data collection. This dataset is used to train a represen-
tation of the wind effects on the Intel Aero drone, which we test on our custom UAV.
The Intel Aero drone (weighing 1.4 kg) has a symmetric X configuration, 52 cm in
width and 52 cm in length, without tilted motors (see the supplementary materials
for further details).

Wind Condition Design To generate dynamic and diverse wind conditions for
the data collection and experiments, we leverage the state-of-the-art Caltech Real
Weather Wind Tunnel system (Fig. 3.1(A)). The wind tunnel is a 3 m by 3 m array
of 1296 independently controllable fans capable of generating wind conditions up to

35

Training epoch 0 Training epoch 30 Training epoch 90

0.0 m/s
1.3 m/s
2.5 m/s
3.7 m/s
4.9 m/s
6.1 m/s

Without adversarial loss (= 0)
Training epoch 90

t-SNE plots of the linear coefficients (a *) in the training process

Figure 3.4: t-SNE plots showing the evolution of the linear weights (0∗) during
the training process. As the number of training epochs increases, the distribution
of 0∗ becomes more clustered with similar wind speed clusters near each other. The
clustering also has a physical meaning: after training convergence, the right top
part corresponds to a higher wind speed. This suggests that DAIML successfully
learned a basis function q shared by all wind conditions, and the wind-dependent
information is contained in the linear weights. Compared to the case without the
adversarial regularization term (using U = 0 in Algorithm 1), the learned result
using our algorithm is also more explainable, in the sense that the linear coefficients
in different conditions are more disentangled.

43.6 km/h. The distributed fans are controlled in real-time by a Python-basedAppli-
cation Programming Interface (API). For data collection and flight experiments, we
designed two types of wind conditions. For the first type, each fan has uniform and
constant wind speed between 0 km/h and 43.6 km/h (12.1 m/s). The second type
of wind follows a sinusoidal function in time, e.g., 30.6+8.6 sin(C) km/h. Note that
the training data only covers constant wind speeds up to 6.1 m/s. To visualize the
wind, we use 5 smoke generators to indicate the direction and intensity of the wind
condition (see examples in Fig. 3.1 and Video 1).

Offline Learning and Online Adaptive Control Development
Data Collection and Meta-Learning using DAIML To learn an effective rep-
resentation of the aerodynamic effects, we have a custom-built drone follow a ran-
domized trajectory for 2 minutes each in six different static wind conditions, with
speeds ranging from 0 km/h to 22.0 km/h. However, in experiments we used wind
speeds up to 43.6 km/h (12.1 m/s) to study how our methods extrapolate to un-
seen wind conditions (e.g., Fig. 3.6). The data is collected at 50 Hz with a to-
tal of 36, 000 data points. Figure 3.3(A) shows the data collection process, and
Fig. 3.3(B) shows the inputs and labels of the training data, under one wind con-
dition of 13.3 km/h (3.7 m/s). Figure 3.3(C) shows the distributions of input data

36

(pitch) and label data (G−component of the aerodynamic force) in different wind
conditions. Clearly, a shift in wind conditions causes distribution shifts in both in-
put domain and label domain, which motivates the algorithm design of DAIML. The
same data collection process is repeated on the Intel Aero drone, to study whether
the learned representation can generalize to a different drone.

On the collected datasets for both our custom drone and the Intel Aero drone, we
apply the DAIML algorithm to learn two representations q of the wind effects. The
learning process is done offline on a normal desktop computer, and depicted in
Fig. 3.2(B). Figure 3.4 shows the evolution of the linear coefficients (0∗) during the
learning process, where DAIML learns a representation of the aerodynamic effects
shared by all wind conditions, and the linear coefficient contains the wind-specific
information. Moreover, the learned representation is explainable in the sense that the
linear coefficients in different wind conditions are well disentangled (see Fig. 3.4).
We refer to the “Materials and Methods” section for more details.

Baselines and the Variants of Our Method We briefly introduce three variants
of our method and the three baseline methods considered (details are provided in
the “Materials and Methods” section). Each of the controllers is implemented in
the position control loop and outputs a force command. The force command is fed
into a kinematics block to determine a corresponding attitude and thrust, similar to
[14], which is sent to the PX4 flight controller. The three baselines include: glob-
ally exponentially-stabilizing nonlinear tracking controller for quadrotor control [8],
[44], [45], incremental nonlinear dynamics inversion (INDI) linear acceleration con-
trol [4], and L1 adaptive control [5], [7]. The primary difference between these
baseline methods and Neural-Fly is how the controller compensates for the unmod-
eled residual force (that is, each baseline method has the same control structure, in
Fig. 3.2(C), except for the estimation of the 5̂). In the case of the nonlinear base-
line controller an integral term accumulates error to correct for the modeling error.
The integral gain is limited by the stability of the interaction with the position and
velocity error feedback leading to slow model correction. In contrast, both INDI
and L1 decouple the adaptation rate from the PD gains, which allow for fast adap-
tation. Instead, these methods are limited by more fundamental design factors, such
as system delay, measurement noise, and controller rate.

Our method is illustrated in Fig. 3.2(A,C) and replaces the integral feedback term
with an adapted learning term. The deployment of our approach depends on the

37

learned representation function q, and our primary method and two variants con-
sider a different choice of q. Neural-Fly is our primary method using a represen-
tation learned from the dataset collected by the custom-built drone, which is the
same drone used in experiments. Neural-Fly-Transfer uses the Neural-Fly algo-
rithmwhere the representation is trained using the dataset collected by the aforemen-
tioned Intel Aero drone. Neural-Fly-Constant uses the online adaptation algorithm
from Neural-Fly, but the representation is an artificially designed constant mapping.
Neural-Fly-Transfer is included to show the generalizability and robustness of our
approach with drone transfer, i.e., using a different drone in experiments than data
collection. Finally, Neural-Fly-Constant demonstrates the benefit of using a better
representation learned from the proposed meta-learning method DAIML. Note that
Neural-Fly-Constant is a composite adaptation form of a Kalman-filter disturbance
observer, that is a Kalman-filter augmented with a tracking error update term.

Trajectory Tracking Performance
We quantitatively compare the performance of the aforementioned control meth-
ods when the UAV follows a 2.5 m wide, 1.5 m tall figure-8 trajectory with a lap
time of 6.28 s under constant, uniform wind speeds of 0 km/h, 15.1 km/h (4.2 m/s),
30.6 km/h (8.5 m/s), and 43.6 km/h (12.1 m/s) and under time-varyingwind speeds
of 30.6 + 8.6 sin(C) km/h (8.5 + 2.4 sin(C) m/s).

The flight trajectory for each of the experiments is shown in Fig. 3.5, which in-
cludes a warm-up lap and six 6.28 s laps. The nonlinear baseline integral term
compensates for the mean model error within the first lap. As the wind speed in-
creases, the aerodynamic force variation becomes larger, and we notice a substantial
performance degradation. INDI and L1 both improve over the nonlinear baseline,
but INDI is more robust than L1 at high wind speeds. Neural-Fly-Constant out-
performs INDI except during the two most challenging tasks: 43.6 km/h and si-
nusoidal wind speeds. The learning-based methods, Neural-Fly and Neural-Fly-
Transfer, outperform all other methods in all tests. Neural-Fly outperforms Neural-
Fly-Transfer slightly, which is because the learned model was trained on data from
the same drone and thus better matches the dynamics of the vehicle.

In Table 3.1, we tabulate the root-mean-square position error and mean position
error values over the six laps for each experiment. Figure 3.6 shows how the mean
tracking error changes for each controller as the wind speed increases, and includes
the standard deviation for the mean lap position error. In all cases, Neural-Fly and

38

Figure 3.5: Depiction of the trajectory tracking performance of each controller
in several wind conditions. The baseline nonlinear controller can track the trajec-
tory well, however, the performance substantially degrades at higher wind speeds.
INDI, L1, and Neural-Fly-Constant have similar performance and improve over the
nonlinear baseline by estimating the aerodynamic disturbance force quickly. Neural-
Fly and Neural-Fly-Transfer use a learned model of the aerodynamic effects and
adapt the model in real time to achieve lower tracking error than the other methods.

Neural-Fly-Transfer outperform the state-of-the-art baseline methods, including the
30.6 km/h, the 43.6 km/h, and the sinusoidal wind speeds all of which exceed the
wind speed in the training data. All of these results presents a clear trend: adaptive
control substantially outperforms the nonlinear baseline which relies on integral-
control, and learning markedly improves adaptive control.

Agile Flight Through Narrow Gates
Precise flight control in dynamic and strong wind conditions has many applications,
such as rescue and search, delivery, and transportation. In this section, we present
a challenging drone flight task in strong winds, where the drone must follow agile
trajectories through narrow gates, which are only slightly wider than the drone. The
overall result is depicted in Fig. 3.1 and Video 1. As shown in Fig. 3.1(A), the gates
used in our experiments are 110 cm in width, which is only slightly wider than the
drone (85 cm wide, 75 cm long). To visualize the trajectory using long-exposure
photography, our drone is deployed with four main light emitting diodes (LEDs) on
its legs, where the two rear LEDs are red and the front two are white. There are also

39

several small LEDs on the flight controller, the computer, and the motor controllers,
which can be seen in the long-exposure shots.

Task Design We tested our method on three different tasks. In the first task (see
Fig. 3.1(B,D,F-I) and Video 1), the desired trajectory is a 3 m by 1.5 m figure-8 in the
G−I plane with a lap time of 5 s. A gate is placed at the left bottom part of the trajec-
tory. The minimum clearance is about 10 cm, as seen in Fig. 3.1(I), which requires
that the controller precisely tracks the trajectory. The maximum speed and accel-
eration of the desired trajectory are 2.7 m/s and 5.0 m/s2, respectively. The wind
speed is 3.1 m/s. The second task (see Video 1) is the same as the first one, except
that it uses a more challenging, time-varying wind condition, 3.1+1.8 sin(2c5 C)m/s.
In the third task (see Fig. 3.1(C,E) and Video 1), the desired trajectory is a 3 m by
2.5 m ellipse in the G − H plane with a lap time of 5 s. We placed two gates on the
left and right sides of the ellipse. As with the first task, the wind speed is 3.1 m/s.

Performance For all three tasks, we used our primary method, Neural-Fly, where
the representation is learned using the dataset collected by the custom-built drone.
Figure 3.1(D,E) are two long-exposure photos with an exposure time of 5 s, which
is the same as the lap time of the desired trajectory. We see that our method pre-
cisely tracked the desired trajectories and flew safely through the gates (see Video
1). These long-exposure photos also captured the smoke visualization of the wind
condition. We would like to emphasize that the drone is wider than the LED light
region, since the LEDs are located on the legs (see Fig. 3.1(A)). Figure 3.1(F-I) are
four high-speed photos with a shutter speed of 1/200s. These four photos captured
the moment the drone passed through the gate in the first task, as well as the complex
interaction between the drone and the wind. We see that the aerodynamic effects are
complex and non-stationary and depend on the UAV attitude, the relative velocity,
and aerodynamic interactions between the propellers and the wind.

Outdoor Experiments
We tested our algorithm outdoors in gentle breeze conditions (wind speedsmeasured
up to 17 km/h). An onboard GPS receiver provided position information to the
EKF, giving lower precision state estimation, and therefore less precise aerodynamic
residual force estimation. Following the same aforementioned figure-8 trajectory,
the controller reached 7.5 cm mean tracking error, shown in Fig. 3.7.

40

0.0 4.2 8.5 12.1
Wind speed [m/s]

3.2

5.6

10.0

17.8

31.6

Tr
ac

ki
ng

 e
rro

r [
cm

]
Interpolation region

Extrapolation region
(not covered in training)

Mean tracking error in each lap

Nonlinear
INDI
L1
NF-Constant
NF-Transfer
NF
PID

Figure 3.6: Mean tracking errors of each lap in different wind conditions. This
figure shows position tracking errors of different methods as wind speed increases.
Solid lines show the mean error over 6 laps and the shade areas show standard devia-
tion of the mean error on each lap. The gray area indicates the extrapolation region,
where the wind speeds are not covered in training. Our primary method (Neural-
Fly) achieves state-of-the-art performance even with a strong wind disturbance.

Table 3.1: Tracking error statistics in cm for different wind conditions. Two
metrics are considered: root-mean-square (RMS) and mean.

Method
Wind speed

0 m/s 4.2 m/s 8.5 m/s 12.1 m/s 8.5+
2.4sin(C)

m/s
RMS Mean RMS Mean RMS Mean RMS Mean RMS Mean

Nonlinear 11.9 10.8 10.7 9.9 16.3 14.7 23.9 21.6 31.2 28.2
INDI 7.3 6.3 6.4 5.9 8.5 8.2 10.7 10.1 11.1 10.3
L1 4.6 4.2 5.8 5.2 12.1 11.1 22.7 21.3 13.0 11.6

NF-Constant 5.4 5.0 6.1 5.7 7.5 6.9 12.7 11.2 12.7 12.1
NF-Transfer 3.7 3.4 4.8 4.4 6.2 5.9 10.2 9.4 8.8 8.0

NF 3.2 2.9 4.0 3.7 5.8 5.3 9.4 8.7 7.6 6.9

41

3.3 Discussion
State-of-the-art Tracking Performance
When measuring position tracking errors, we observe that our Neural-Fly method
outperforms state-of-the-art flight controllers in all wind conditions. Neural-Fly uses
deep-learning to obtain a compact representation of the aerodynamic disturbances
and incorporates that representation into an adaptive control design to achieve high
precision tracking performance. The benchmark methods used in this article are
nonlinear control, INDI, and L1 and performance is compared tracking an agile
figure-8 in constant and time-varying wind speeds up to 43.6 km/h (12.1 m/s). Fur-
thermore, we observe amean tracking error of 2.9 cm in 0 km/h wind, which is com-
parable with state-of-the-art tracking performance demonstrated on more aggressive
racing drones [4], [7] despite several architectural limitations such as limited con-
trol rate in offboard mode, a larger, less maneuverable vehicle, and without direct
motor speed measurements. All our experiments were conducted using the stan-
dard PX4 attitude controller, with Neural-Fly implemented in an onboard, low cost,
and “credit-card sized” Raspberry Pi 4 computer. Furthermore, Neural-Fly is robust
to changes in vehicle configuration, as demonstrated by the similar performance of
Neural-Fly-Transfer.

To understand the fundamental tracking-error limit, we estimate that the localization
precision from the OptiTrack system is about 1 cm, which is a practical lower bound
for the average tracking error in our system (see more details in the supplementary
material, 4.8). This is based on the fact that the difference between the OptiTrack
position measurement and the onboard EKF position estimate is around 1 cm.

To achieve a tracking error of 1 cm, remaining improvements should focus on re-
ducing code execution time, communication delays, and attitude tracking delay. We
measured the combined code execution time and communication delay to be at least
15 ms and often as much as 30 ms. A faster implementation (such as using C++ in-
stead of Python) and streamlined communication layer (such as using ROS2’s real-
time features) could allow us to achieve tracking errors on the order of the localiza-
tion accuracy. Attitude tracking delay can be substantially reduced through the use
of a nonlinear attitude controller (e.g., [45]). Our method is also directly extensible
to attitude control because attitude dynamics match the Euler-Lagrange dynamics
used in our derivations. However, further work is needed to understand the interac-
tion of the learned dynamics with the cascaded control design when implementing
a tracking attitude controller.

42

weather station

GPS

2.0 1.5 1.0 0.5 0.0 0.5
x [m]

7.00

7.25

7.50

7.75

8.00

8.25

8.50

8.75

z [
m

]

Outdoor tracking performance
RMS error=8.2cm, mean error=7.5cm

1

3

10

30

>50

Tr
ac

ki
ng

 e
rro

r [
cm

]

Figure 3.7: Outdoor flight setup and performance. Left: In outdoor experiments,
a GPS module is deployed for state estimation, and a weather station records wind
profiles. The maximum wind speed during the test was around 17 km/h (4.9 m/s).
Right: Trajectory tracking performance of Neural-Fly.

We have tested our control method in outdoor flight to demonstrate that it is robust
to less precise state estimation and does not rely on any particular features of our
test facility. Although control and estimation are usually separately designed parts
of an autonomous system, aggressive adaptive control requires minimal noise in
force measurement to effectively and quickly compensate for unmodeled dynamics.
Testing our method in outdoor flight, the quadrotor maintains precise tracking with
only 7.5 cm tracking error on a gentle breezy day with wind speeds around 17 km/h.

Challenges Caused by Unknown and Time-varying Wind Conditions
In the real world, the wind conditions are not only unknown but also constantly
changing, and the vehiclemust continuously adapt. We designed the sinusoidal wind
test to emulate unsteady or gusty wind conditions. Although our learned model is
trained on static and approximately uniform wind condition data, Neural-Fly can
quickly identify changing wind speed and maintains precise tracking even on the
sinusoidal wind experiment. Moreover, in each of our experiments, the wind condi-
tions were unknown to the UAV before starting the test yet were quickly identified
by the adaptation algorithm.

Ourwork demonstrated that it is possible to repeatably and quantitatively test quadro-
tor flight in time-varying wind. Our method separately learns the wind effect’s de-
pendence on the vehicle state (i.e., the wind-invariant representation in Fig. 3.2(A))
and the wind condition (i.e., the wind-specific linear weight in Fig. 3.2(A)). This
separation allows Neural-Fly to quickly adapt to the time-varying wind even as the
UAV follows a dynamic trajectory, with an average tracking error below 8.7 cm in

43

Table 3.1.

Computational Efficiency of Our Method
In the offline meta-learning phase, the proposed DAIML algorithm is able to learn
an effective representation of the aerodynamic effect in a data efficient manner. This
requires only 12 minutes of flight data at 50 Hz, for a total of 36,000 data points. The
training procedure only takes 5 minutes on a normal desktop computer. In the on-
line adaptation phase, our adaptive control method only takes 10 ms to compute on
a compact onboard Linux computer (Raspberry Pi 4). In particular, the feedforward
inference time via the learned basis function is about 3.5 ms and the adaptation up-
date is about 3.0 ms, which implies the compactness of the learned representation.

Generalization to New Trajectories and New Aircraft
It is worth noting that our control method is orthogonal to the design of the desired
trajectory. In this article, we focus on the figure-8 trajectory which is a commonly
used control benchmark. We also demonstrate our method flying a horizontal ellipse
during the narrow gate demonstration Fig. 3.1. Note that our method supports any
trajectory planners such as [1] or learning-based planners [46]. In particular, for
those planners which require a precise and agile downstream controller (e.g., for
close-proximity flight or drone racing [1], [10]), our method immediately provides
a solution and further pushes the boundary of these planners, because our state-
of-the-art tracking capabilities enable tighter configurations and smaller clearances.
However, further research is required to understand the coupling between planning
and learning-based control near actuation limits. Future work will consider using
Neural-Fly in a combined planning and control structure such as MPC, which will
be able to handle actuation limits.

The comparison betweenNeural-Fly andNeural-Fly-Transfer show that our approach
is robust to changing vehicle design and the learned representation does not depend
on the vehicle. This demonstrates the generalizability of the proposed method run-
ning on different quadrotors. Moreover, our control algorithm is formulated gener-
ally for all robotic systems described by the Euler-Langrange equation (see “Mate-
rials and Methods”), including many types of aircraft such as [21].

44

3.4 Materials and Methods
Overview
We consider a general robot dynamics model:

" (@) ¥@ + � (@, ¤@) ¤@ + 6(@) = D + 5 (@, ¤@, F) (3.1)

where @, ¤@, ¥@ ∈ R= are the = dimensional position, velocity, and acceleration vec-
tors, " (@) is the symmetric, positive definite inertia matrix, � (@, ¤@) is the Cori-
olis matrix, 6(@) is the gravitational force vector and D ∈ R= is the control force.
Most importantly, 5 (@, ¤@, F) incorporates unmodeled dynamics, and F ∈ R< is an
unknown, hidden state used to represent the underlying environmental conditions,
which is potentially time-variant. Specifically, in this article, F represents the wind
profile (for example, the wind profile in Fig. 3.1), and different wind profiles yield
different unmodeled aerodynamic disturbances for the UAV.

Neural-Fly can be broken into two main stages, the offline meta-learning stage and
the online adaptive control stage. These two stages build a model of the unknown
dynamics of the form

5 (@, ¤@, F) ≈ q(@, ¤@)0(F), (3.2)

where q is a basis or representation function shared by all wind conditions and cap-
tures the dependence of the unmodeled dynamics on the robot state, and 0 is a set
of linear coefficients that is updated for each condition. In the supplementary ma-
terial (4.2), we prove that the decomposition q(@, ¤@)0(F) exists for any analytic
function 5 (@, ¤@, F). In the offline meta-learning stage, we learn q as a DNN using
our meta-learning algorithm DAIML. This stage results in learning q as a wind-
invariant representation of the unmodeled dynamics, which generalizes to new tra-
jectories and new wind conditions. In the online adaptive control stage, we adapt
the linear coefficients 0 using adaptive control. Our adaptive control algorithm is
a type of composite adaptation and was carefully designed to allow for fast adapta-
tion while maintaining the global exponential stability and robustness of the closed
loop system. The offline learning and online control architectures are illustrated in
Fig. 3.2(B) and Fig. 3.2(A,C), respectively.

Data Collection
To generate training data to learn a wind-invariant representation of the unmodeled
dynamics, the drone tracks a randomized trajectory with the baseline nonlinear con-
troller for 2 minutes each in several different static wind conditions. Figure 3.3(A)

45

illustrates one trajectory under the wind condition 13.3 km/h (3.7 m/s). The set of
input-output pairs for the : th such trajectory is referred as the : th subdataset, �F: ,
with the wind condition F: . Our dataset consists of 6 different subdatasets with
wind speeds from 0 km/h to 22.0 km/h (6.1 m/s), which are in the white interpola-
tion region in Fig. 3.6.

The trajectory follows a polynomial spline between 3 waypoints: the current posi-
tion and two randomly generated target positions. The spline is constrained to have
zero velocity, acceleration, and jerk at the starting and ending waypoints. Once the
end of one spline is reached, a new random spline is generated and the process re-
peats for the duration of the training data flight. This process allows us to generate
a large amount of data using a trajectory very different from the trajectories used
to test our method, such as the figure-8 in Fig. 3.1. By training and testing on dif-
ferent trajectories, we demonstrate that the learned model generalizes well to new
trajectories.

Along each trajectory, we collect time-stamped data [@, ¤@, D]. Next, we compute the
acceleration ¥@ by fifth-order numerical differentiation. Combining this acceleration
with (3.1), we get a noisy measurement of the unmodeled dynamics, H = 5 (G, F)+n ,
where n includes all sources of noise (e.g., sensor noise and noise from numerical
differentiation) and G = [@; ¤@] ∈ R2= is the state. Finally, this allows us to define the
dataset, D = {�F1 , · · · , �F }, where

�F: =

{
G
(8)
:
, H
(8)
:

= 5 (G (8)
:
, F:) + n (8):

}#:
8=1

(3.3)

is the collection of #: noisy input-output pairs with wind condition F: . As we
discuss in the “Results” section, in order to show DAIML learns a model which can
be transferred between drones, we applied this data collection process on both the
custom-built drone and the Intel Aero RTF drone.

The Domain Adversarially Invariant Meta-Learning (DAIML) Algorithm
In this section, we will present the methodology and details of learning the repre-
sentation function q. In particular, we will first introduce the goal of meta-learning,
motivate the proposed algorithm DAIML by the observed domain shift problem
from the collected dataset, and finally discuss key algorithmic details.

Meta-Learning Goal Given the dataset, the goal of meta-learning is to learn a
representation q(G), such that for any wind condition F, there exists a latent variable

46

0(F) which allows q(G)0(F) to approximate 5 (G, F) well. Formally, an optimal
representation, q, solves the following optimization problem:

min
q,01,··· ,0

 ∑
:=1

#:∑
8=1

H (8)
:
− q(G (8)

:
)0:

2
, (3.4)

where q(·) : R2= → R=×ℎ is the representation function and 0: ∈ Rℎ is the latent
linear coefficient. Note that the optimal weight 0: is specific to each wind condition,
but the optimal representation q is shared by all wind conditions. In this article,
we use a deep neural network (DNN) to represent q. In the supplementary material
(Section S2), we prove that for any analytic function 5 (G, F), the structure q(G)0(F)
can approximate 5 (G, F) with an arbitrary precision, as long as the DNN q has
enough neurons. This result implies that the q solved from the optimization in (3.4)
is a reasonable representation of the unknown dynamics 5 (G, F).

Domain Shift Problems One challenge of the optimization in (3.4) is the inherent
domain shift in G caused by the shift in F. Recall that during data collection we have
a program flying the drone in different winds. The actual flight trajectories differ
vastly from wind to wind because of the wind effect. Formally, the distribution of
G
(8)
:

varies between : because the underlying environment or context F has changed.
For example, as depicted by Fig. 3.3(C), the drone pitches into the wind, and the
average degree of pitch depends on the wind condition. Note that pitch is only one
component of the state G. The domain shift in the whole state G is even more drastic.

Such inherent shifts in G bring challenges for deep-learning. The DNN qmay mem-
orize the distributions of G in different wind conditions, such that the variation in the
dynamics { 5 (G, F1), 5 (G, F2), · · · , 5 (G, F)} is reflected via the distribution of G,
rather than the wind condition {F1, F2, · · · , F }. In other words, the optimization
in (3.4) may lead to over-fitting and may not properly find a wind-invariant repre-
sentation q.

To solve the domain shift problem, inspired by [47], we propose the following ad-
versarial optimization framework:

max
ℎ

min
q,01,··· ,0

 ∑
:=1

#:∑
8=1

(

H (8)
:
− q(G (8)

:
)0:

2
− U · loss

(
ℎ(q(G (8)

:
)), :

))
, (3.5)

where ℎ is another DNN that works as a discriminator to predict the environment
index out of wind conditions, loss(·) is a classification loss function (e.g., the cross
entropy loss), U ≥ 0 is a hyperparameter to control the degree of regularization, :

47

Algorithm 1: Domain Adversarially Invariant Meta-Learning (DAIML)
Hyperparameter: U ≥ 0, 0 < [≤ 1, W > 0
Input: D = {�F1 , · · · , �F }
Initialize: Neural networks q and ℎ
Result: Trained neural networks q and ℎ

1 repeat
2 Randomly sample �F: from D
3 Randomly sample two disjoint batches �0 (adaptation set) and � (training

set) from �F:

4 Solve the least squares problem 0∗(q) = arg min0
∑
8∈�0

H (8)
:
− q(G (8)

:
)0

2

5 if ‖0∗‖ > W then
6 0∗ ← W · 0∗

‖0∗‖ ⊲ normalization
7 Train DNN q using stochastic gradient descent (SGD) and spectral

normalization with loss∑
8∈�

(

H (8)
:
− q(G (8)

:
)0∗

2
− U · loss

(
ℎ(q(G (8)

:
)), :

))
8 if rand() ≤ [then
9 Train DNN ℎ using SGD with loss

∑
8∈� loss

(
ℎ(q(G (8)

:
)), :

)
10 until convergence

is the wind condition index, and (8) is the input-output pair index. Intuitively, ℎ and
q play a zero-sum max-min game: the goal of ℎ is to predict the index : directly
from q(G) (achieved by the outer max); the goal of q is to approximate the label
H
(8)
:

while making the job of ℎ harder (achieved by the inner min). In other words,
ℎ is a learned regularizer to remove the environment information contained in q.
In our experiments, the output of ℎ is a −dimensional vector for the classification
probabilities of conditions, and we use the cross entropy loss for loss(·), which is
given as

loss
(
ℎ(q(G (8)

:
)), :

)
= −

 ∑
9=1
X: 9 log

(
ℎ(q(G (8)

:
))>4 9

)
(3.6)

where X: 9 = 1 if : = 9 and X: 9 = 0 otherwise and 4 9 is the standard basis function.

Design of the DAIML Algorithm Finally, we solve the optimization problem in
(3.5) by the proposed algorithm DAIML (described in Algorithm 1 and illustrated
in Fig. 3.2(B)), which belongs to the category of gradient-based meta-learning [31],
but with least squares as the adaptation step. DAIML contains three steps: (i) The

48

adaptation step (Line 4-6) solves a least squares problem as a function of q on the
adaptation set �0. (ii) The training step (Line 7) updates the learned representation
q on the training set �, based on the optimal linear coefficient 0∗ solved from the
adaptation step. (iii) The regularization step (Line 8-9) updates the discriminator ℎ
on the training set.

We emphasize important features of DAIML: (i) After the adaptation step, 0∗ is a
function of q. In other words, in the training step (Line 7), the gradient with respect
to the parameters in the neural network q will backpropagate through 0∗. Note
that the least-square problem (Line 4) can be solved efficiently with a closed-form
solution. (ii) The normalization (Line 6) is to make sure ‖0∗‖ ≤ W, which improves
the robustness of our adaptive control design. We also use spectral normalization
in training q, to control the Lipschitz property of the neural network and improve
generalizability [8], [10], [12]. (iii) We train ℎ and q in an alternating manner. In
each iteration, we first update q (Line 7) while fixing ℎ and then update ℎ (Line
9) while fixing q. However, the probability to update the discriminator ℎ in each
iteration is [≤ 1 instead of 1, to improve the convergence of the algorithm [48].

We furthermotivate the algorithm design using Fig. 3.3 and Fig. 3.4. Figure 3.3(A,B)
shows the input and label from one wind condition, and Fig. 3.3(C) shows the distri-
butions of the pitch component in input and the G−component in label, in different
wind conditions. The distribution shift in label implies the importance of meta-
learning and adaptive control, because the aerodynamic effect changes drastically
as the wind condition switches. On the other hand, the distribution shift in input
motivates the need of DAIML. Figure 3.4 depicts the evolution of the optimal lin-
ear coefficient (0∗) solved from the adaptation step in DAIML, via the t-distributed
stochastic neighbor embedding (t-SNE) dimension reduction, which projects the 12-
dimensional vector 0∗ into 2-d. The distribution of 0∗ is more and more clustered
as the number of training epochs increases. In addition, the clustering behavior
in Fig. 3.4 has a concrete physical meaning: right top part of the t-SNE plot cor-
responds to a higher wind speed. These properties imply the learned representa-
tion q is indeed shared by all wind conditions, and the linear weight 0 contains the
wind-specific information. Finally, note that qwith 0 training epoch reflects random
features, which cannot decouple different wind conditions as cleanly as the trained
representation q. Similarly, as shown in Fig. 3.4, if we ignore the adversarial reg-
ularization term (by setting U = 0), different 0∗ vectors in different conditions are
less disentangled, which indicates that the learned representation might be less ro-

49

bust and explainable. For more discussions about U we refer to the supplementary
materials (4.3).

Robust Adaptive Controller Design
During the offline meta-training process, a least-squares fit is used to find a set of
parameters 0 that minimizes the force prediction error for each data batch. However,
during the online control phase, we are ultimately interested in minimizing the po-
sition tracking error, and we can improve the adaptation using a more sophisticated
update law. Thus, in this section, we propose a more sophisticated adaptation law
for the linear coefficients based upon a Kalman-filter estimator. This formulation
results in automatic gain tuning for the update law, which allows the controller to
quickly estimate parameters with large uncertainty. We further boost this estimator
into a composite adaptation law, that is the parameter update depends both on the
prediction error in the dynamics model and on the tracking error, as illustrated in
Fig. 3.2. This allows the system to quickly identify and adapt to new wind condi-
tions without requiring persistent excitation. In turn, this enables online adaptation
of the high dimensional learned models from DAIML.

Our online adaptive control algorithm can be summarized by the following control
law, adaptation law, and covariance update equations, respectively.

DNF = " (@) ¥@A + � (@, ¤@) ¤@A + 6(@)︸ ︷︷ ︸
nominal model feedforward terms

− B︸︷︷︸
PD feedback

−q(@, ¤@)0̂︸ ︷︷ ︸
learning-based feedforward

(3.7)

¤̂0 = −_0̂︸︷︷︸
regularization term

−%q>'−1(q0̂ − H)︸ ︷︷ ︸
prediction error term

+%q>B︸ ︷︷ ︸
tracking error term

(3.8)

¤% = −2_% +& − %q>'−1q% (3.9)

where DNF is the control law, ¤̂0 is the online linear-parameter update, % is a covariance-
likematrix used for automatic gain tuning, B = ¤̃@+Λ@̃ is the composite tracking error,
H is the measured aerodynamic residual force with measurement noise n , and , Λ,
',&, and _ are gains. The structure of this control law is illustrated in Fig. 3.2. Fig-
ure 3.2 also shows further quadrotor specific details for the implementation of our
method, including the kinematics block, where the desired thrust and attitude are
determined from the desired force from (3.7). These blocks are discussed further in
the “Implementation Details” section.

In the next section, we will first introduce the baseline control laws, D̄ and DNL.
Then we discuss our control law DNF in detail. Note that DNF not only depends on

50

the desired trajectory, but also requires the learned representation q and the linear
parameter 0̂ (an estimation of 0). The composite adaptation algorithm for 0̂ is dis-
cussed in the following section.

In terms of theoretical guarantees, the control law and adaptation law have been de-
signed so that the closed-loop behavior of the system is robust to imperfect learning
and time-varying wind conditions. Specifically, we define 3 (C) as the representation
error: 5 = q · 0 + 3 (C), and our theory shows that the robot tracking error expo-
nentially converges to an error ball whose size is proportional to ‖3 (C)+n ‖ (i.e., the
learning error and measurement noise) and ‖ ¤0‖ (i.e., how fast the wind condition
changes). Later in this section we formalize these claims with the main stability
theorem and present a complete proof in the supplementary materials.

Nonlinear Control Law We start by defining some notation. The composite ve-
locity tracking error term B and the reference velocity ¤@A are defined such that

B = ¤@ − ¤@A = ¤̃@ + Λ@̃ (3.10)

where @̃ = @−@3 is the position tracking error andΛ is a positive definite gainmatrix.
Note when B exponentially converges to an error ball around 0, @ will exponentially
converge to a proportionate error ball around the desired trajectory @3 (C) (see 4.5).
Formulating our control law in terms of the composite velocity error B simplifies the
analysis and gain tuning without loss of rigor.

The baseline nonlinear (NL) control law using PID feedback is defined as

DNL = " (@) ¥@A + � (@, ¤@) ¤@A + 6(@)︸ ︷︷ ︸
nonlinear feedforward terms

− B − �
∫

B3C︸ ︷︷ ︸
PID feedback

. (3.11)

where and � are positive definite control gain matrices. Note a standard PID
controller typically only includes the PI feedback on position error, D feedback on
velocity, and gravity compensation. This only leads to local exponential stability
about a fixed point, but it is often sufficient for gentle tasks such as a UAV hovering
and slow trajectories in static wind conditions. In contrast, this nonlinear controller
includes feedback on velocity error and feedforward terms to account for known dy-
namics and desired acceleration, which allows good tracking of dynamic trajectories
in the presence of nonlinearities (e.g., " (@) and � (@, ¤@) are nonconstant in attitude
control). However, this control law only compensates for changing wind conditions

51

and unmodeled dynamics through an integral term, which is slow to react to changes
in the unmodeled dynamics and disturbance forces.

Our method improves the controller by predicting the unmodeled dynamics and dis-
turbance forces, and, indeed, in Table 3.1 we see a substantial improvement gained
by using our learning method. Given the learned representation of the residual dy-
namics, q(@, ¤@), and the parameter estimate 0̂, we replace the integral term with the
learned force term, 5̂ = q0̂, resulting in our control law in (3.7). Neural-Fly uses
q trained using DAIML on a dataset collected with the same drone. Neural-Fly-
Transfer uses q trained using DAIML on a dataset collected with a different drone,
the Intel Aero RTF drone. Neural-Fly-Constant does not use any learning but in-
stead uses q = � and is included to demonstrate that the main advantage of our
method comes from the incorporation of learning. The learning-based methods,
Neural-Fly and Neural-Fly-Transfer, outperform Neural-Fly-Constant because the
compact learned representation can effectively and quickly predict the aerodynamic
disturbances online in Fig. 3.5. This comparison is further discussed in the supple-
mentary materials (4.7).

Composite Adaptation Law We define an adaptation law that combines a track-
ing error update term, a prediction error update term, and a regularization term in
(3.8) and (3.9), where H is a noisy measurement of 5 , _ is a damping gain, % is a
covariance matrix which evolves according to (3.9), and & and ' are two positive
definite gain matrices. Some readers may note that the regularization term, pre-
diction error term, and covariance update, when taken alone, are in the form of a
Kalman-Bucy filter. This Kalman-Bucy filter can be derived as the optimal estima-
tor that minimizes the variance of the parameter error [49]. The Kalman-Bucy filter
perspective provides intuition for tuning the adaptive controller: the damping gain
_ corresponds to how quickly the environment returns to the nominal conditions,
& corresponds to how quickly the environment changes, and ' corresponds to the
combined representation error 3 and measurement noise for H. More discussion on
the gain tuning process is included in 4.6. However, naively combining this param-
eter estimator with the controller can lead to instabilities in the closed-loop system
behavior unless extra care is taken in constraining the learned model and tuning the
gains. Thus, we have designed our adaptation law to include a tracking error term,
making (3.8) a composite adaptation law, guaranteeing stability of the closed-loop
system (see Theorem 3.4.1), and in turn simplifying the gain tuning process. The
regularization term allows the stability result to be independent of the persistent

52

excitation of the learned model q, which is particularly relevant when using high-
dimensional learned representations. The adaptation gain and covariance matrix, %,
acts as automatic gain tuning for the adaptive controller, which allows the controller
to quickly adapt to when a new mode in the learned model is excited.

Stability and Robustness Guarantees First we formally define the representa-
tion error 3 (C), as the difference between the unknown dynamics 5 (@, ¤@, F) and
the best linear weight vector 0 given the learned representation q(@, ¤@), namely,
3 (C) = 5 (@, ¤@, F) −q(@, ¤@)0(F). The measurement noise for the measured residual
force is a bounded function n (C) such that H(C) = 5 (C) + n (C). If the environment
conditions are changing, we consider the case that ¤0 ≠ 0. This leads to the following
stability theorem.

Theorem 3.4.1. If we assume that the desired trajectory has bounded derivatives
and the system evolves according to the dynamics in (3.1), the control law (3.7), and
the adaptation law (3.8) and (3.9), then the position tracking error exponentially
converges to the ball

lim
C→∞
‖@̃‖ ≤ sup

C

[
�1‖3 (C)‖ + �2‖n (C)‖ + �3 (_‖0(C)‖ + ‖ ¤0(C)‖)

]
, (3.12)

where �1, �2, and �3 are three bounded constants depending on q, ', &, ,Λ, " ,
and _.

Implementation Details
Quadrotor Dynamics Nowwe introduce the quadrotor dynamics. Consider states
given by global position, ? ∈ R3, velocity E ∈ R3, attitude rotation matrix ' ∈
SO(3), and body angular velocity l ∈ R3. Then dynamics of a quadrotor are

¤? = E, < ¤E = <6 + ' 5D + 5 , (3.13a)
¤' = '((l), � ¤l = �l × l + gD, (3.13b)

where < is the mass, � is the inertia matrix of the quadrotor, ((·) is the skew-
symmetric mapping, 6 is the gravity vector, 5D = [0, 0,)]> and gD = [gG , gH, gI]> are
the total thrust and body torques from four rotors predicted by the nominal model,
and 5 = [5G , 5H, 5I]> are forces resulting from unmodeled aerodynamic effects due
to varying wind conditions.

We cast the position dynamics in (3.13a) into the form of (3.1), by taking " (@) =
<�, � (@, ¤@) ≡ 0, and D = ' 5D. Note that the quadrotor attitude dynamics (3.13b)

53

is also a special case of (3.1) [15], [50], and thus our method can be extended to
attitude control. We implement our method in the position control loop, that is we
use our method to compute a desired force D3 . Then the desired force is decomposed
into the desired attitude '3 and the desired thrust)3 using kinematics (see Fig. 3.2).
Then the desired attitude and thrust are sent to the onboard PX4 flight controller.

Neural Network Architectures and Training Details In practice, we found that
in addition to the drone velocity E, the aerodynamic effects also depend on the drone
attitude and the rotor rotation speed. To that end, the input state G to the deep neural
network q is a 11-d vector, consisting of the drone velocity (3-d), the drone attitude
represented as a quaternion (4-d), and the rotor speed commands as a pulse width
modulation (PWM) signal (4-d) (see Fig. 3.2 and 3.3). The DNN q has four fully-
connected hidden layers, with an architecture 11 → 50 → 60 → 50 → 4 and
Rectified Linear Units (ReLU) activation. We found that the three components of
the wind-effect force, 5G , 5H, 5I, are highly correlated and sharing common features,
so we use q as the basis function for all the component. Therefore, the wind-effect
force 5 is approximated by

5 ≈

q(G) 0 0

0 q(G) 0
0 0 q(G)



0G

0H

0I

 , (3.14)

where 0G , 0H, 0I ∈ R4 are the linear coefficients for each component of the wind-
effect force. We followed Algorithm 1 to train q in PyTorch, which is an open source
deep-learning framework. We refer to the supplementary material for hyperparam-
eter details (4.3).

Note that we explicitly include the PWM as an input to the q network. The PWM
information is a function of D = ' 5D, which makes the controller law (e.g., (3.7))
non-affine in D. We solve this issue by using the PWM from the last time step as
an input to q, to compute the desired force D3 at the current time step. Because we
train q using spectral normalization (see Algorithm 1), this method is stable and
guaranteed to converge to a fixed point, as discussed in [8].

Controller Implementation For experiments, we implemented a discrete form of
the Neural-Fly controllers, given in 4.4. For INDI, we implemented the position and
acceleration controller from Sections III.A and III.B in [4]. ForL1 adaptive control,
we followed the adaptation law first presented in [6] and used in [7] and augment
the nonlinear baseline control with 5̂ = −DL1 .

54

Acknowledgements
We thank M. Anderson for help configuring the quadrotor platform, and M. Ander-
son and P. Spieler for help troubleshooting hardware. We also thank N. Badillo and
L. Pabon Madrid for help in experiments.

This research was developed with funding from the Defense Advanced Research
Projects Agency (DARPA). This research was also conducted in part with funding
from Raytheon Technologies. The views, opinions, and/or findings expressed are
those of the authors and should not be interpreted as representing the official views
or policies of the Department of Defense or the U.S. Government. The experiments
reported in this article were conducted at Caltech’s Center for Autonomous Systems
and Technologies (CAST).

References

[1] P. Foehn, A. Romero, andD. Scaramuzza, “Time-optimal planning for quadro-
tor waypoint flight,” Science Robotics, Jul. 21, 2021. [Online]. Available:
https://www.science.org/doi/abs/10.1126/scirobotics.abh1221
(visited on 09/08/2021).

[2] M. Faessler, A. Franchi, and D. Scaramuzza, “Differential flatness of quadro-
tor dynamics subject to rotor drag for accurate tracking of high-speed trajec-
tories,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 620–626,
Apr. 2018, issn: 2377-3766. doi: 10.1109/LRA.2017.2776353.

[3] P. Ventura Diaz and S. Yoon, “High-fidelity computational aerodynamics of
multi-rotor unmanned aerial vehicles,” in 2018 AIAA Aerospace Sciences
Meeting, ser. AIAA SciTech Forum, American Institute of Aeronautics and
Astronautics, Jan. 7, 2018. doi: 10.2514/6.2018-1266. [Online]. Avail-
able: https://arc.aiaa.org/doi/10.2514/6.2018-1266 (visited on
03/27/2023).

[4] E. Tal and S. Karaman, “Accurate tracking of aggressive quadrotor trajecto-
ries using incremental nonlinear dynamic inversion and differential flatness,”
IEEE Transactions on Control Systems Technology, vol. 29, no. 3, pp. 1203–
1218, May 2021, issn: 1558-0865. doi: 10.1109/TCST.2020.3001117.

[5] S. Mallikarjunan, B. Nesbitt, E. Kharisov, E. Xargay, N. Hovakimyan, and
C. Cao, “L1 adaptive controller for attitude control of multirotors,” in AIAA
Guidance, Navigation, and Control Conference,Minneapolis,Minnesota: Amer-
ican Institute of Aeronautics and Astronautics, Aug. 13, 2012, isbn: 978-1-
60086-938-9. doi: 10.2514/6.2012-4831. [Online]. Available: https:
//arc.aiaa.org/doi/10.2514/6.2012-4831 (visited on 03/04/2022).

[6] J. Pravitra, K. A. Ackerman, C. Cao, N. Hovakimyan, and E. A. Theodorou,
“L1-adaptive MPPI architecture for robust and agile control of multirotors,”

https://www.science.org/doi/abs/10.1126/scirobotics.abh1221
https://doi.org/10.1109/LRA.2017.2776353
https://doi.org/10.2514/6.2018-1266
https://arc.aiaa.org/doi/10.2514/6.2018-1266
https://doi.org/10.1109/TCST.2020.3001117
https://doi.org/10.2514/6.2012-4831
https://arc.aiaa.org/doi/10.2514/6.2012-4831
https://arc.aiaa.org/doi/10.2514/6.2012-4831

55

in 2020 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), Oct. 2020, pp. 7661–7666. doi: 10.1109/IROS45743.2020.
9341154.

[7] D. Hanover, P. Foehn, S. Sun, E. Kaufmann, and D. Scaramuzza, “Perfor-
mance, precision, and payloads: Adaptive nonlinear MPC for quadrotors,”
Sep. 9, 2021. arXiv: 2109.04210 [cs]. [Online]. Available: http://arxiv.
org/abs/2109.04210 (visited on 09/16/2021).

[8] G. Shi, X. Shi,M. O’Connell, et al., “Neural lander: Stable drone landing con-
trol using learned dynamics,” in 2019 International Conference on Robotics
and Automation (ICRA), May 2019, pp. 9784–9790. doi: 10.1109/ICRA.
2019.8794351,

[9] G. Shi, W. Hönig, Y. Yue, and S.-J. Chung, “Neural-swarm: Decentralized
close-proximity multirotor control using learned interactions,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA), May 2020,
pp. 3241–3247. doi: 10.1109/ICRA40945.2020.9196800.

[10] G. Shi,W. Hönig, X. Shi, Y. Yue, and S.-J. Chung, “Neural-swarm2: Planning
and control of heterogeneous multirotor swarms using learned interactions,”
IEEE Transactions on Robotics, vol. 38, no. 2, pp. 1063–1079, Apr. 2022,
issn: 1941-0468. doi: 10.1109/TRO.2021.3098436.

[11] G. Torrente, E. Kaufmann, P. Fohn, and D. Scaramuzza, “Data-driven MPC
for quadrotors,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 3769–
3776, Apr. 2021, issn: 2377-3766, 2377-3774. doi: 10.1109/LRA.2021.
3061307. [Online]. Available: https://ieeexplore.ieee.org/document/
9361343/ (visited on 10/08/2021).

[12] P. L. Bartlett, D. J. Foster, andM. J. Telgarsky, “Spectrally-normalizedmargin
bounds for neural networks,” in Advances in Neural Information Processing
Systems, vol. 30, Curran Associates, Inc., 2017. [Online]. Available: https:
//proceedings.neurips.cc/paper/2017/hash/b22b257ad0519d4500539da3c8bcf4dd-
Abstract.html (visited on 11/18/2022).

[13] L. Meier, P. Tanskanen, L. Heng, G. H. Lee, F. Fraundorfer, and M. Polle-
feys, “PIXHAWK -A micro aerial vehicle design for autonomous flight using
onboard computer vision,” Autonomous Robots, vol. 33, no. 1-2, pp. 21–39,
Aug. 2012, issn: 0929-5593. doi: 10.1007/s10514-012-9281-4. [Online].
Available: https://graz.pure.elsevier.com/en/publications/
pixhawk-a-micro-aerial-vehicle-design-for-autonomous-flight-
using (visited on 08/31/2021).

[14] D.Mellinger andV.Kumar, “Minimum snap trajectory generation and control
for quadrotors,” in 2011 IEEE International Conference on Robotics and Au-
tomation, May 2011, pp. 2520–2525. doi: 10.1109/ICRA.2011.5980409.

[15] J.-J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, N.J:
Prentice Hall, 1991, 459 pp., isbn: 978-0-13-040890-7.

https://doi.org/10.1109/IROS45743.2020.9341154
https://doi.org/10.1109/IROS45743.2020.9341154
https://arxiv.org/abs/2109.04210
http://arxiv.org/abs/2109.04210
http://arxiv.org/abs/2109.04210
https://doi.org/10.1109/ICRA.2019.8794351
https://doi.org/10.1109/ICRA.2019.8794351
https://doi.org/10.1109/ICRA40945.2020.9196800
https://doi.org/10.1109/TRO.2021.3098436
https://doi.org/10.1109/LRA.2021.3061307
https://doi.org/10.1109/LRA.2021.3061307
https://ieeexplore.ieee.org/document/9361343/
https://ieeexplore.ieee.org/document/9361343/
https://proceedings.neurips.cc/paper/2017/hash/b22b257ad0519d4500539da3c8bcf4dd-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/b22b257ad0519d4500539da3c8bcf4dd-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/b22b257ad0519d4500539da3c8bcf4dd-Abstract.html
https://doi.org/10.1007/s10514-012-9281-4
https://graz.pure.elsevier.com/en/publications/pixhawk-a-micro-aerial-vehicle-design-for-autonomous-flight-using
https://graz.pure.elsevier.com/en/publications/pixhawk-a-micro-aerial-vehicle-design-for-autonomous-flight-using
https://graz.pure.elsevier.com/en/publications/pixhawk-a-micro-aerial-vehicle-design-for-autonomous-flight-using
https://doi.org/10.1109/ICRA.2011.5980409

56

[16] P. A. Ioannou and J. Sun, Robust Adaptive Control. PTR Prentice-Hall, 1996,
856 pp., isbn: 978-0-13-439100-7. Google Books: TIYqAQAAMAAJ.

[17] M. Krstic, Ι. Κανελλακóπουλος, P. V. Kokotovic, and P. V. Kokotović, Non-
linear and Adaptive Control Design. Wiley, Jun. 14, 1995, 592 pp., isbn:
978-0-471-12732-1. Google Books: wxkoAQAAMAAJ.

[18] K. S. Narendra and A.M. Annaswamy, Stable Adaptive Systems. Courier Cor-
poration, Jul. 12, 2012, 514 pp., isbn: 978-0-486-14142-8. Google Books:
CRJhmsAHCUcC.

[19] J. A. Farrell and M. M. Polycarpou, Adaptive Approximation Based Control.
John Wiley & Sons, Ltd, 2006, isbn: 978-0-471-78181-3. doi: 10.1002/
0471781819.fmatter. [Online]. Available: https://onlinelibrary.
wiley.com/doi/abs/10.1002/0471781819.fmatter (visited on 08/31/2021).

[20] K. Wise, E. Lavretsky, and N. Hovakimyan, “Adaptive control of flight: The-
ory, applications, and open problems,” in 2006 American Control Conference,
Jun. 2006, 6 pp.-. doi: 10.1109/ACC.2006.1657677.

[21] X. Shi, P. Spieler, E. Tang, E.-S. Lupu, P. Tokumaru, and S.-J. Chung, “Adap-
tive nonlinear control of fixed-wing VTOL with airflow vector sensing,” in
2020 IEEE International Conference on Robotics and Automation (ICRA),
May 2020, pp. 5321–5327. doi: 10.1109/ICRA40945.2020.9197344.

[22] A. Rahimi and B. Recht, “Random features for large-scale kernel machines,”
in Advances in Neural Information Processing Systems, vol. 20, Curran As-
sociates, Inc., 2007. [Online]. Available: https://proceedings.neurips.
cc/paper/2007/hash/013a006f03dbc5392effeb8f18fda755-Abstract.
html (visited on 11/18/2022).

[23] S. Lale, K. Azizzadenesheli, B. Hassibi, and A. Anandkumar, “Model learn-
ing predictive control in nonlinear dynamical systems,” in 2021 60th IEEE
Conference on Decision and Control (CDC), Dec. 2021, pp. 757–762. doi:
10.1109/CDC45484.2021.9683670.

[24] J. Nakanishi, J. Farrell, and S. Schaal, “A locally weighted learning compos-
ite adaptive controller with structure adaptation,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, vol. 1, Sep. 2002, 882–889
vol.1. doi: 10.1109/IRDS.2002.1041502.

[25] F.-C. Chen and H. Khalil, “Adaptive control of a class of nonlinear discrete-
time systems using neural networks,” IEEE Transactions on Automatic Con-
trol, vol. 40, no. 5, pp. 791–801, May 1995, issn: 1558-2523. doi: 10.1109/
9.384214.

[26] E. N. Johnson and A. J. Calise, “Limited authority adaptive flight control
for reusable launch vehicles,” Journal of Guidance, Control, and Dynamics,
vol. 26, no. 6, pp. 906–913, Nov. 2003, issn: 0731-5090, 1533-3884. doi:
10.2514/2.6934. [Online]. Available: https://arc.aiaa.org/doi/10.
2514/2.6934 (visited on 10/10/2021).

http://books.google.com/books?id=TIYqAQAAMAAJ
http://books.google.com/books?id=wxkoAQAAMAAJ
http://books.google.com/books?id=CRJhmsAHCUcC
https://doi.org/10.1002/0471781819.fmatter
https://doi.org/10.1002/0471781819.fmatter
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471781819.fmatter
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471781819.fmatter
https://doi.org/10.1109/ACC.2006.1657677
https://doi.org/10.1109/ICRA40945.2020.9197344
https://proceedings.neurips.cc/paper/2007/hash/013a006f03dbc5392effeb8f18fda755-Abstract.html
https://proceedings.neurips.cc/paper/2007/hash/013a006f03dbc5392effeb8f18fda755-Abstract.html
https://proceedings.neurips.cc/paper/2007/hash/013a006f03dbc5392effeb8f18fda755-Abstract.html
https://doi.org/10.1109/CDC45484.2021.9683670
https://doi.org/10.1109/IRDS.2002.1041502
https://doi.org/10.1109/9.384214
https://doi.org/10.1109/9.384214
https://doi.org/10.2514/2.6934
https://arc.aiaa.org/doi/10.2514/2.6934
https://arc.aiaa.org/doi/10.2514/2.6934

57

[27] K. Narendra and S. Mukhopadhyay, “Adaptive control using neural networks
and approximate models,” IEEE Transactions on Neural Networks, vol. 8,
no. 3, pp. 475–485, May 1997, issn: 1941-0093. doi: 10.1109/72.572089.

[28] M. Bisheban and T. Lee, “Geometric adaptive control with neural networks
for a quadrotor in wind fields,” IEEE Transactions on Control Systems Tech-
nology, vol. 29, no. 4, pp. 1533–1548, Jul. 2021, issn: 1558-0865. doi: 10.
1109/TCST.2020.3006184.

[29] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 7553 May 2015, issn: 1476-4687. doi: 10.1038/
nature14539. [Online]. Available: https://www.nature.com/articles/
nature14539 (visited on 11/18/2022).

[30] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast
adaptation of deep networks,” in International Conference on Machine Learn-
ing, PMLR, Jul. 17, 2017, pp. 1126–1135. [Online]. Available: https://
proceedings.mlr.press/v70/finn17a.html (visited on 08/31/2021).

[31] T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey, “Meta-learning in
neural networks: A survey,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 44, no. 9, pp. 5149–5169, Sep. 2022, issn: 1939-3539.
doi: 10.1109/TPAMI.2021.3079209.

[32] G. Shi, K. Azizzadenesheli, M. O’Connell, S.-J. Chung, and Y. Yue, “Meta-
adaptive nonlinear control: Theory and algorithms,” Advances in Neural In-
formation Processing Systems, vol. 34, pp. 10 013–10 025, Dec. 6, 2021. [On-
line]. Available: https : / / proceedings . neurips . cc / paper / 2021 /
hash/52fc2aee802efbad698503d28ebd3a1f-Abstract.html (visited
on 03/27/2023),

[33] A. Nagabandi, I. Clavera, S. Liu, et al., “Learning to adapt in dynamic, real-
world environments through meta-reinforcement learning,” Feb. 27, 2019.
arXiv: 1803 . 11347 [cs, stat]. [Online]. Available: http : / / arxiv .
org/abs/1803.11347 (visited on 08/11/2021).

[34] X. Song, Y. Yang, K. Choromanski, et al., “Rapidly adaptable legged robots
via evolutionary meta-learning,” in 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Oct. 2020, pp. 3769–3776. doi:
10.1109/IROS45743.2020.9341571.

[35] S. Belkhale, R. Li, G. Kahn, R.McAllister, R. Calandra, and S. Levine, “Model-
based meta-reinforcement learning for flight with suspended payloads,” IEEE
Robotics and Automation Letters, vol. 6, no. 2, pp. 1471–1478, Apr. 2021,
issn: 2377-3766. doi: 10.1109/LRA.2021.3057046.

[36] C. D. McKinnon and A. P. Schoellig, “Meta learning with paired forward
and inverse models for efficient receding horizon control,” IEEE Robotics
and Automation Letters, vol. 6, no. 2, pp. 3240–3247, Apr. 2021, issn: 2377-
3766. doi: 10.1109/LRA.2021.3063957.

https://doi.org/10.1109/72.572089
https://doi.org/10.1109/TCST.2020.3006184
https://doi.org/10.1109/TCST.2020.3006184
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://www.nature.com/articles/nature14539
https://www.nature.com/articles/nature14539
https://proceedings.mlr.press/v70/finn17a.html
https://proceedings.mlr.press/v70/finn17a.html
https://doi.org/10.1109/TPAMI.2021.3079209
https://proceedings.neurips.cc/paper/2021/hash/52fc2aee802efbad698503d28ebd3a1f-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/52fc2aee802efbad698503d28ebd3a1f-Abstract.html
https://arxiv.org/abs/1803.11347
http://arxiv.org/abs/1803.11347
http://arxiv.org/abs/1803.11347
https://doi.org/10.1109/IROS45743.2020.9341571
https://doi.org/10.1109/LRA.2021.3057046
https://doi.org/10.1109/LRA.2021.3063957

58

[37] I. Clavera, J. Rothfuss, J. Schulman, Y. Fujita, T. Asfour, and P. Abbeel,
“Model-based reinforcement learning via meta-policy optimization,” in Pro-
ceedings of The 2nd Conference on Robot Learning, PMLR, Oct. 23, 2018,
pp. 617–629. [Online]. Available: https://proceedings.mlr.press/
v87/clavera18a.html (visited on 11/18/2022).

[38] M. O’Connell, G. Shi, X. Shi, and S.-J. Chung. “Meta-learning-based robust
adaptive flight control under uncertainwind conditions.” arXiv: 2103.01932.
(Mar. 4, 2021), [Online]. Available: http://arxiv.org/abs/2103.01932
(visited on 09/23/2021), preprint.

[39] S. Richards, N.Azizan, J.-J. Slotine, andM. Pavone, “Adaptive-control-oriented
meta-learning for nonlinear systems,” in Robotics: Science and Systems XVII,
Robotics: Science and Systems Foundation, Jul. 12, 2021, isbn: 978-0-9923747-
7-8. doi: 10.15607/RSS.2021.XVII.056. [Online]. Available: http://
www.roboticsproceedings.org/rss17/p056.pdf (visited on 03/15/2023).

[40] M. Peng, B. Zhu, and J. Jiao. “Linear representationmeta-reinforcement learn-
ing for instant adaptation.” arXiv: 2101.04750 [cs, stat]. (Jan. 12, 2021),
[Online]. Available: http://arxiv.org/abs/2101.04750 (visited on
11/18/2022), preprint.

[41] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning
quadrupedal locomotion over challenging terrain,” Science Robotics, vol. 5,
no. 47, eabc5986, Oct. 21, 2020, issn: 2470-9476.doi: 10.1126/scirobotics.
abc5986. arXiv: 2010.11251. [Online]. Available: http://arxiv.org/
abs/2010.11251 (visited on 08/18/2021).

[42] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain
randomization for transferring deep neural networks from simulation to the
real world,” in 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Sep. 2017, pp. 23–30. doi: 10.1109/IROS.2017.
8202133.

[43] F. Ramos, R. Possas, and D. Fox, “BayesSim: Adaptive domain randomiza-
tion via probabilistic inference for robotics simulators,” in Robotics: Science
and Systems XV, Robotics: Science and Systems Foundation, Jun. 22, 2019,
isbn: 978-0-9923747-5-4. doi: 10.15607/RSS.2019.XV.029. [Online].
Available: http://www.roboticsproceedings.org/rss15/p29.pdf
(visited on 11/18/2022).

[44] D. Morgan, S.-J. Chung, and F. Y. Hadaegh, “Swarm assignment and trajec-
tory optimization using variable-swarm, distributed auction assignment and
model predictive control,” in AIAA Guidance, Navigation, and Control Con-
ference, ser. AIAA SciTech Forum, American Institute of Aeronautics and
Astronautics, Jan. 2, 2015. doi: 10.2514/6.2015-0599. [Online]. Avail-
able: https://arc.aiaa.org/doi/10.2514/6.2015-0599 (visited on
03/06/2022).

https://proceedings.mlr.press/v87/clavera18a.html
https://proceedings.mlr.press/v87/clavera18a.html
https://arxiv.org/abs/2103.01932
http://arxiv.org/abs/2103.01932
https://doi.org/10.15607/RSS.2021.XVII.056
http://www.roboticsproceedings.org/rss17/p056.pdf
http://www.roboticsproceedings.org/rss17/p056.pdf
https://arxiv.org/abs/2101.04750
http://arxiv.org/abs/2101.04750
https://doi.org/10.1126/scirobotics.abc5986
https://doi.org/10.1126/scirobotics.abc5986
https://arxiv.org/abs/2010.11251
http://arxiv.org/abs/2010.11251
http://arxiv.org/abs/2010.11251
https://doi.org/10.1109/IROS.2017.8202133
https://doi.org/10.1109/IROS.2017.8202133
https://doi.org/10.15607/RSS.2019.XV.029
http://www.roboticsproceedings.org/rss15/p29.pdf
https://doi.org/10.2514/6.2015-0599
https://arc.aiaa.org/doi/10.2514/6.2015-0599

59

[45] X. Shi, K. Kim, S. Rahili, and S.-J. Chung, “Nonlinear control of autonomous
flying cars with wings and distributed electric propulsion,” in 2018 IEEE
Conference on Decision and Control (CDC), Miami Beach, FL: IEEE, Dec.
2018, pp. 5326–5333, isbn: 978-1-5386-1395-5. doi: 10.1109/CDC.2018.
8619578. [Online]. Available: https://ieeexplore.ieee.org/document/
8619578/ (visited on 08/25/2020).

[46] Y.K.Nakka, A. Liu, G. Shi, A. Anandkumar, Y.Yue, and S.-J. Chung, “Chance-
constrained trajectory optimization for safe exploration and learning of non-
linear systems,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 389–
396, Apr. 2021, issn: 2377-3766. doi: 10.1109/LRA.2020.3044033.

[47] Y. Ganin, E. Ustinova, H. Ajakan, et al. “Domain-adversarial training of neu-
ral networks.” arXiv: 1505.07818 [cs, stat]. (May 26, 2016), [Online].
Available: http://arxiv.org/abs/1505.07818 (visited on 08/23/2022),
preprint.

[48] I. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., “Generative adversarial
nets,” in Advances in Neural Information Processing Systems, vol. 27, Cur-
ran Associates, Inc., 2014. [Online]. Available: https://proceedings.
neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-
Abstract.html (visited on 11/18/2022).

[49] R. E. Kalman and R. S. Bucy, “New results in linear filtering and prediction
theory,” Journal of Basic Engineering, vol. 83, no. 1, pp. 95–108, Mar. 1,
1961, issn: 0021-9223. doi: 10 . 1115 / 1 . 3658902. [Online]. Available:
https://asmedigitalcollection.asme.org/fluidsengineering/
article/83/1/95/426820/New-Results-in-Linear-Filtering-and-
Prediction (visited on 09/21/2021).

[50] R. M.Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction to Robotic
Manipulation, 1st ed. CRC Press, 1994, isbn: 978-1-315-13637-0. doi: 10.
1201/9781315136370. [Online]. Available: https://www.taylorfrancis.
com/books/9781351469791 (visited on 09/21/2021).

https://doi.org/10.1109/CDC.2018.8619578
https://doi.org/10.1109/CDC.2018.8619578
https://ieeexplore.ieee.org/document/8619578/
https://ieeexplore.ieee.org/document/8619578/
https://doi.org/10.1109/LRA.2020.3044033
https://arxiv.org/abs/1505.07818
http://arxiv.org/abs/1505.07818
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://doi.org/10.1115/1.3658902
https://asmedigitalcollection.asme.org/fluidsengineering/article/83/1/95/426820/New-Results-in-Linear-Filtering-and-Prediction
https://asmedigitalcollection.asme.org/fluidsengineering/article/83/1/95/426820/New-Results-in-Linear-Filtering-and-Prediction
https://asmedigitalcollection.asme.org/fluidsengineering/article/83/1/95/426820/New-Results-in-Linear-Filtering-and-Prediction
https://doi.org/10.1201/9781315136370
https://doi.org/10.1201/9781315136370
https://www.taylorfrancis.com/books/9781351469791
https://www.taylorfrancis.com/books/9781351469791

60

C h a p t e r 4

ANALYSIS, PROOFS, AND IMPLEMENTATION OF
NEURAL-FLY

This chapter provides additional details on the methods presented in Chapter 3, in-
cluding important theoretical results regarding the expressiveness of the DAIML-
learning algorithm in Sec. 4.2 and the stability and robustness of the online adapta-
tion algorithm in Sec. 4.5.

4.1 Drone Configuration Details
Table 4.1 presents the configuration information of the custom-built drone (Fig. 3.1(A))
and the Intel Aero drone. We use both drones for data collection and use the custom-
built drone exclusively for experiments.

Custom-built drone Intel Aero drone
Weight 2.53 kg 1.47 kg
Thrust-to-weight ratio 2.2 1.6
Rotor tilt angle 12◦ front, 10◦ rear 0◦
Diameter 85 cm wide, 75 cm long 52 cm wide, 52 cm long
Configuration Wide-X4 X4
On-board computer Raspberry Pi 4 Intel Aero computing

board (Atom x7 proces-
sor)

Flight controller Pixhawk 4 running PX4 Aero Flight Controller
running PX4

Table 4.1: Drone configuration details. Configurations of the custom-built drone
and the Intel Aero drone with propeller guards.

Precision tracking for drones often relies on specialized hardware and optimized
vehicle design, whereas our method achieves precise tracking using improved dy-
namics prediction through online learning. Although most researchers report the
numeric tracking error of their method, it can be difficult to disentangle the im-
provement of the controller resulting from the algorithmic advancement versus the
improvement from specialized hardware. For example moment of inertia generally
scales with the radius squared and the lever arm for the motors scales with the ra-
dius, so the attitude maneuverability roughly scales with the inverse of the vehicle
radius. Similarly, high thrust to weight ratio provides more attitude control author-

61

Neural-Fly INDI [1] Differen-
tially flat
linear drag
[2]

Gaussian
Process
MPC [3]

Flight computer Raspberry
Pi 4

– laptop laptop

Flight controller Pixhawk 4 STM32H7
(400 MHz)

Raceflight
Revolt

?

Flight controller firmware PX4 custom ? ?
Mass [kg] 2.53 0.609 0.610 0.8
Total width [cm] 85 ? ? ?
Propeller diameter [in] 11 5 6 ?
Motor Spacing [cm] 39* 18 – ?
Thrust-to-weight ratio [-] 2.2 ? 4 5
Motion capture frequency [Hz] 100 360 200 100
MPC control frequency [Hz] – – – 50
Position control frequency [Hz] 50 ? 55 ?
Attitude control frequency [Hz] <1000 2000 4000 ?
Motor speed feedback No Optical

encoders
(5 kHz)

No No

? indicates information not provided
– indicates information not applicable
* front to back

Table 4.2: Hardware comparison. Hardware configuration comparison with other
quadrotors that demonstrate state-of-the-art trajectory tracking. Direct comparisons
of performance are difficult due to the varying configurations, controller tuning, and
flight arenas. However, most methods require extremely maneuverable quadrotors
and onboard/offboard computation power to achieve state-of-the-art performance,
while Neural-Fly achieves state-of-the-art performance on more standard hardware
with all control running onboard.

ity during high acceleration maneuvers. More powerful motors, electronic speed
controllers, and batteries together allow faster motor response time further improv-
ing maneuverability. Thus, state-of-the-art (SOTA) tracking performance usually
requires specialized hardware often used for racing drones, resulting in a vehicle
with greater maneuverability than our platform, a higher thrust to weight ratio, and
using high-rate controllers sometimes even including direct motor RPM control. In
contrast, our custom drone is more representative of typical consumer drone hard-
ware. A detailed comparison with the hardware from some recent work in agile
flight control is provided in Table 4.2.

62

4.2 The Expressiveness of the Learning Architecture
In this section, we theoretically justify the decomposition 5 (G, F) ≈ q(G)0(F). In
particularly, we prove that any analytic function 5̄ (G, F) : [−1, 1]= × [−1, 1]< → R
can be split into aF-invariant part q̄(G) and aF-dependant part 0̄(F) in the structure
q̄(G)0̄(F) with arbitrary precision n , where q̄(G) and 0̄(F) are two polynomials.
Further, the dimension of 0̄(F) only scales polylogarithmically with 1/n .

We first introduce the following multivariate polynomial approximation lemma in
the hypercube proved in [4].

Lemma 4.2.1. (Multivariate polynomial approximation in the hypercube) Let
5̄ (G, F) : [−1, 1]= × [−1, 1]< → R be a smooth function of [G, F] ∈ [−1, 1]=+< for
=, < ≥ 1. Assume 5̄ (G, F) is analytic for all [G, F] ∈ C=+< with<(G2

1 + · · · + G
2
= +

F2
1 + · · · +F

2
<) ≥ −C2 for some C > 0, where<(·) denotes the real part of a complex

number. Then 5̄ has a uniformly and absolutely convergent multivariate Chebyshev
series

∞∑
:1=0
· · ·

∞∑
:==0

∞∑
;1=0
· · ·

∞∑
;<=0

1:1,··· ,:=,;1,··· ,;<):1 (G1) · · ·):= (G=));1 (F1) · · ·);< (F<).

Define B = [:1, · · · , :=, ;1, · · · , ;<]. The multivariate Chebyshev coefficients satisfy
the following exponential decay property:

1B = $

(
(1 + C)−‖B‖2

)
.

Note that this lemma shows that the truncated Chebyshev expansions

C? =
?∑

:1=0
· · ·

?∑
:==0

?∑
;1=0
· · ·

?∑
;<=0

1:1,··· ,:=,;1,··· ,;<):1 (G1) · · ·):= (G=));1 (F1) · · ·);< (F<)

will converge to 5̄ with the rate $ ((1 + C)−?
√
=+<) for some

C > 0, i.e., sup[G,F]∈[−1,1]=+< ‖ 5̄ (G, F) − C? (G, F)‖ ≤ $ ((1 + C)−?
√
=+<). Finally, we

are ready to present the following representation theorem.

Theorem 4.2.2. 5̄ (G, F) is a function satisfying the assumptions in Lemma 4.2.1.
For any n > 0, there exist ℎ ∈ Z+, and two Chebyshev polynomials q̄(G) : [−1, 1]= →
R1×ℎ and 0̄(F) : [−1, 1]< → Rℎ×1 such that

sup
[G,F]∈[−1,1]=+<

‖ 5̄ (G, F) − q̄(G)0̄(F)‖ ≤ n

and ℎ = $ ((log(1/n))<).

63

Proof. First note that there exists ? = $

(
log(1/n)√
=+<

)
such that

sup[G,F]∈[−1,1]=+<

 5̄ (G, F) − C? (G, F)

 ≤ n . To simplify the notation, define

6(G, :, ;) = 6(G1, · · · , G=, :1, · · · , :=, ;1, · · · , ;<)
= 1:1,··· ,:=,;1,··· ,;<):1 (G1) · · ·):= (G=)

6(F, ;) = 6(F1, · · · , F<, ;1, · · · , ;<) =);1 (F1) · · ·);= (F<).

Then we have

C? (G, F) =
?∑

:1,··· ,:==0

?∑
;1,··· ,;<=0

6(G, :1, · · · , :=, ;1, · · · , ;<)6(F, ;1, · · · , ;<).

Then we rewrite C? as C? (G, F) = q̄(G)0̄(F):

q̄(G)> =



∑?

:1,··· ,:==0 6(G, :1, · · · , :=, ; = [0, 0, · · · , 0])∑?

:1,··· ,:==0 6(G, :1, · · · , :=, ; = [1, 0, · · · , 0])∑?

:1,··· ,:==0 6(G, :1, · · · , :=, ; = [2, 0, · · · , 0])
...∑?

:1,··· ,:==0 6(G, :1, · · · , :=, ; = [?, ?, · · · , ?])


0̄(F) =



6(F, ; = [0, 0, · · · , 0])
6(F, ; = [1, 0, · · · , 0])
6(F, ; = [2, 0, · · · , 0])

...

6(F, ; = [?, ?, · · · , ?])


.

Note that the dimension of q̄(G) and 0̄(F) is

ℎ = (? + 1)< = $

((
1 + log(1/n)
√
= + <

)<)
= $ ((log(1/n))<) .

�

Note that Theorem 4.2.2 can be generalized to vector-valued functions with bounded
input space straightforwardly. Finally, since deep neural networks are universal ap-
proximators for polynomials [5], Theorem 4.2.2 immediately guarantees the expres-
siveness of our learning structure, i.e., q(G)0(F) can approximate 5 (G, F) with ar-
bitrary precision, where q(G) is a deep neural network and â includes the linear
coefficients for all the elements of 5 . In experiments, we show that a four-layer
neural network can efficiently learn an effective representation for the underlying
unknown dynamics 5 (G, F).

64

0 200 400 600 800 1000
Training epoch

1

2

3

The f loss on the training data
= 0.1
= 0.0

0 200 400 600 800 1000
Training epoch

0.4

0.6

0.8

1.0

1.2

The f loss on the validation data

Figure 4.1: Training and validation loss. The evolution of the 5 loss on the training
data and validation data in the training process, from three random seeds. Bothmean
(the solid line) and standard deviation (in the shaded area) are presented. Training
with the adversarial regularization term (U = 0.1) has similar behaviors as U = 0 (no
regularization) in the early phase before 300 training epochs, except that it converges
slightly faster. However, the regularization term effectively avoids over-fitting and
has smaller error on the validation dataset after 300 training epochs.

4.3 Hyperparameters for DAIML and the Interpretation
We implemented DAIML (Algorithm 1) using PyTorch, with hyperparameters re-
ported in Table 4.3. We iteratively tuned these hyperparameters by trial and error.
We notice that the behavior of the learning algorithm is not sensitive to most of the
parameters in Table 4.3. The training process is shown in Fig. 4.1, where we present
the 5 loss curve on both training set and validation set using three random seeds.
The 5 loss is defined by

∑
8∈� ‖H

(8)
:
− q(G (8)

:
)0∗‖2 (see Line 7 in Algorithm 1), which

reflects how well q can approximate the unknown dynamics 5 (G, F). The validation
set we considered is from the figure-8 trajectory tracking tasks using the PID and
nonlinear baseline methods. Note that the training set consists of a very different set
of trajectories (using random waypoint tracking, see Results) , and this difference
is for studying whether and when the learned model q starts over-fitting during the
training process.

We emphasize a few important parameters as follows. (i) The frequency 0 < [≤ 1
is to control how often the discriminator ℎ is updated. Note that [= 1 corresponds to
the case that q and ℎ are both updated in each iteration. We use [= 0.5 for training
stability, which is also commonly used in training generative adversarial networks
[6]. (ii) The regularization parameter U ≥ 0. Note that U = 0 corresponds to the
non-adversarial meta-learning case which does not incorporate the adversarial reg-
ularization term in (3.5). From Fig. 4.1, clearly a proper choice of U can effectively
avoid over-fitting. Moreover, another benefit of having U > 0 is that the learned
model is more explainable. As observed in Fig. 3.4, U > 0 disentangles the linear

65

Architecture of q net 11→ 50→ 60→ 50→ 4 with ReLU
activation functions

Architecture of ℎ net 4 → 128 → 6 with ReLU activation
functions

Batch size of �0 128
Batch size of � 256

Loss function for ℎ Cross-entropy loss
Learning rate for training q 0.0005
Learning rate for training ℎ 0.001

Discriminator training frequency, [0.5
Normalization constant, W 10
Regularization constant, U 0.1

Table 4.3: Hyperparameters used in DAIML.

coefficients 0∗ between wind conditions. However, if U is too high it may degrade
the prediction performance, so we recommend using relatively small value for U
such as 0.1.

The importance of having a domain-invariant representation. We use the fol-
lowing example to illustrate the importance of having a domain-invariant represen-
tation q(G) for online adaptation. Suppose the data distribution in wind conditions 1
and 2 are %1(G) and %2(G), respectively, and they do not overlap. Ideally, we would
hope these two conditions share an invariant representation and the latent variables
are distinct (0 (1) and 0 (2) in the first line in Fig. 4.2 shown below). However, because
of the expressiveness of DNNs, q may memorize %1 and %2 and learn two modes
q1(G) and q2(G). In the second line in the following figure, q1 and q2 are triggered
if G is in %1 and %2, respectively (1G∈%1 and 1G∈%2 are indicator functions), such that
the latent variable 0 is identical in both wind conditions. Such an overfitted q is not
robust and not generalizable: for example, if the drone flies to %1 in wind condition
2, the wrong mode q1 will be triggered.

The key idea to tackle this challenge is to encourage diversity in the latent space,
which is why we introduced a discriminator in DAIML. Figure 3.4 shows DAIML
indeed makes the latent space much more disentangled.

66

Figure 4.2: Importance of domain-invariant representation.

4.4 Discrete Version of the Proposed Controller
In practice, we implement Neural-Flyon a digital system, and therefore, we require
a discrete version of the controller. The feedback control policy D remains the same
as presented in the main body of this article. However, the adaptation law must be
integrated, and therefore we must be concerned with both the numerical accuracy
and computation time of this integration, particularly for the covariance matrix %.
During the development of our algorithm, we observed that a naive one-step Euler
integration of the continuous time adaptation law would sometimes result % becom-
ing non-positive-definite due to a large ¤% magnitude and a coarse integration step
size (see [7] for more discussion on the positive definiteness of numerical integration
of the differential Riccati equation). To avoid this issue, we instead implemented the
adaptation law in two discrete steps, a propagation and an update step, summarized
as below. We denote the time at step : as C: , the value of a parameter before the up-
date step but after the propagation step with a subscript C−

:
, and the value after both

the propagation and update step with a subscript C+
:
. The value used in the controller

is the value after both the propagation and update steps, that is 0̂(C:) = 0̂C+
:
. During

the propagation step in (4.1) and (4.2) both â and % are regularized. Then, in the
update step in (4.4) and (4.5), % and â are updated according to the gain in (4.3).
This mirrors a discrete Kalman filter implementation [8] with the tracking error term
added in the update step. The discrete Kalman filter exactly integrates the contin-
uous time Kalman filter when the prediction error 4, tracking error B, and learned
basis functions q are constant between time steps ensuring the positive definiteness

67

of %.

0̂C−
:
= (1 − _ΔC:)︸ ︷︷ ︸

damping

0̂C+
:−1

(4.1)

%C−
:
= (1 − _ΔC:)2%C+

:−1
+&ΔC: (4.2)

 C: = %C−: q
>
C:

(
qC:%C−: q

>
C:
+ 'ΔC:

)−1
(4.3)

0̂C+
:
= 0̂C−

:
− C:

(
qC: 0̂C−: − HC:

)
︸ ︷︷ ︸

prediction error adaptation

− %C−
:
q>C: BC:︸ ︷︷ ︸

tracking error adaptation

(4.4)

%C+
:
=

(
� − C:qC:

)
%C−

:

(
� − C:qC:

)> + C:'ΔC: >C: (4.5)

4.5 Stability and Robustness Formal Guarantees and Proof
We divide the proof of (3.12) into two steps. First, in Theorem 4.5.1, we show that
the combined composite velocity tracking error and adaptation error, ‖ [B; 0̃] ‖, ex-
ponentially converges to a bounded error ball. This implies the exponential con-
vergence of B. Then in Corollary 4.5.1.1 we show that when B is exponentially
bounded, @̃ is also exponentially bounded. Combining the exponential bound from
Theorem 4.5.1 and the ultimate bound fromCorollary 4.5.1.1 proves Theorem 3.4.1.

Before discussing the main proof, let us consider the robustness properties of the
feedback controller without considering any specific adaptation law. Taking the dy-
namics (3.1), control law (3.7), the composite velocity error definition (3.10), and
the parameter estimation error 0̃ = 0̂ − 0, we find

" ¤B + (� +)B = −q0̃ + 3 (4.6)

We can use the Lyapunov functionV = B>"B under the assumption of bounded 0̃
to show that

lim
C→∞
‖B‖ ≤

supC ‖3 − q0̃‖_max(")
_min()_min(")

(4.7)

Taking this results alone, one might expect that any online estimator or learning
algorithm will lead to good performance. However, the boundedness of 0̃ is not
guaranteed; Slotine and Li discuss this topic thoroughly [9]. In the full proof below,
we show the stability and robustness of the Neural-Fly adaptation algorithm.

First, we introduce the parameter measurement noise n̄ , where n̄ = H − q0. Thus,
n̄ = n + 3 and ‖n̄ ‖ ≤ ‖n ‖ + ‖3‖ by the triangle inequality. Using the above
closed loop dynamics (4.6), the parameter estimation error 0̃, and the adaptation

68

law (3.8) and (3.9), the combined velocity and parameter-error closed-loop dynam-
ics are given by[

" 0
0 %−1

] [
¤B
¤̃0

]
+

[
� + q

−q) q>'−1q + _%−1

] [
B

0̃

]
=

[
3

q>'−1n̄ − %−1_0 − %−1 ¤0

]
(4.8)

3

3C

(
%−1

)
= −%−1 ¤%%−1 = %−1

(
2_% −& + %q>'−1q%

)
%−1

(4.9)

For our stability proof, we rely on the fact that %−1 is both uniformly positive definite
and uniformly bounded, that is, there exists some positive definite, constant matri-
ces � and � such that � � %−1 � �. Dieci and Eirola [7] show the slightly weaker
result that % is positive definite and finite when q is bounded under the looser as-
sumption & � 0. Following the proof from [7] with the additional assumption that
& is uniformly positive definite, one can show the uniform definiteness and uniform
boundedness of %. Hence, %−1 is also uniformly positive definite and uniformly
bounded.

Theorem 4.5.1. Given dynamics that evolve according to (4.8) and (4.9), uniform

positive definiteness and uniform boundedness of %−1, the norm of

[
B

0̃

]
exponentially

converges to the bound given in (4.10) with rate U.

lim
C→∞

[
B

0̃

]

 ≤ 1
U_min(M)

(
sup
C

‖3‖ + sup
C

(‖q>'−1n̄ ‖) + _max(%−1) sup
C

(‖_0 + ¤0‖)
)

(4.10)

where U andM are functions of q, ', &, , " and _, and _min(·) and _max(·) are
the minimum and maximum eigenvalues of (·) over time, respectively. Given Corol-
lary 4.5.1.1 and (4.10), the bound in (3.12) is proven. Note _max(%−1) = 1/_min(%)
and a sufficiently large value of _min(%) will make the RHS of (4.10) small.

Proof. Now consider the Lyapunov functionV given by

V =

[
B

0̃

]> [
" 0
0 %−1

] [
B

0̃

]
(4.11)

69

This Lyapunov function has the derivative

¤V = 2

[
B

0̃

]> [
" 0
0 %−1

] [
¤B
¤̃0

]
+

[
B

0̃

]> [
¤" 0
0 3

3C

(
%−1)] [

B

0̃

]
(4.12)

= −2

[
B

0̃

]> [
� + q

−q) q>'−1q + _%−1

] [
B

0̃

]
+ 2

[
B

0̃

]> [
3

q>'−1n̄ − %−1_0 − %−1 ¤0

]
+

[
B

0̃

]> [
¤" 0
0 3

3C

(
%−1)] [

B

0̃

]
(4.13)

= −2

[
B

0̃

]> [
 q

−q) q>'−1q + _%−1

] [
B

0̃

]
+ 2

[
B

0̃

]> [
3

q>'−1n̄ − %−1_0 − %−1 ¤0

]
+

[
B

0̃

]> [
0 0
0 2_%−1 − %−1&%−1 + q>'−1q

] [
B

0̃

]
(4.14)

= −
[
B

0̃

]> [
2 0
0 q>'−1q + %−1&%−1

] [
B

0̃

]
+ 2

[
B

0̃

]> [
3

q>'−1n̄ − %−1_0 − %−1 ¤0

]
(4.15)

where we used the fact ¤" − 2� is skew-symmetric. As , %−1&%−1, " , and %−1

are all uniformly positive definite and uniformly bounded, and q>'−1q is positive
semidefinite, there exists some U > 0 such that

−
[
2 0
0 q>'−1q + %−1&%−1

]
� −2U

[
" 0
0 %−1

]
(4.16)

for all C.

Define an upper bound for the disturbance term � as

� = sup
C

[

3

q>'−1n̄ − %−1_0 − %−1 ¤0

]

 (4.17)

and define the functionM,

M =

[
" 0
0 %−1

]
(4.18)

By (4.16), the Cauchy-Schwartz inequality, and the definition of theminimum eigen-
value, we have the following inequality for ¤V:

¤V ≤ −2UV + 2

√
V

_min(M)
� (4.19)

70

Consider the related systems,W whereW =
√
V, 2 ¤WW = ¤V, and the following

three equations hold

2 ¤WW ≤ −2UW2 + 2�W√
_min(M)

(4.20)

¤W ≤ −UW + �√
_min(M)

(4.21)

By the Comparison Lemma [10],

√
V =W ≤ e−UC

(
W(0) − �

U
√
_min(M)

)
+ �

U
√
_min(M)

(4.22)

and the stacked state exponentially converges to the ball

lim
C→∞

[
B

0̃

]

 ≤ �

U_min(M)
(4.23)

This completes the proof. �

Next, we present a corollary which shows the exponential convergence of @̃ when B
is exponentially stable.

Corollary 4.5.1.1. If ‖B(C)‖ ≤ � exp(−UC) + �/U for some constants �, �, and U,
and B = ¤̃@ + Λ@̃, then

‖@̃‖ ≤ e−_min (Λ)C ‖@̃(0)‖ +
∫ C

0
e−_min (Λ) (C−g)�e−Ugdg +

∫ C

0
e−_min (Λ) (C−g) �

U
dg

(4.24)

thus ‖@̃‖ exponentially approaches the bound

lim
C→∞
‖@̃‖ ≤ �

U_min(Λ)
(4.25)

Proof. From the Comparison Lemma [10], we can easily show (4.24). This can be
further reduced as follows.

‖@̃‖ ≤ e−_min (Λ)C ‖@̃(0)‖ + �e−_min (Λ)C
∫ C

0
e(_min (Λ)−U)gdg +

∫ C

0
e−_min (Λ) (C−g) �

U
dg

(4.26)

≤ e−_min (Λ)C ‖@̃(0)‖ + �e−UC − e−_min (Λ)C

_min(Λ) − U
+
�

(
1 − e−_min (Λ)C

)
U_min(Λ)

(4.27)

Taking the limit, we arrive at (4.25)

�

71

With the following corollary, we will justify that U is strictly positive even when
q ≡ 0, and thus the adaptive control algorithm guarantees robustness even in the
absence of persistent excitation or with ineffective learning. In practice, we expect
some measurement information about all the elements of 0, that is, we expect a
non-zero q.

Corollary 4.5.1.2. If q ≡ 0, then the bound in (4.10) can be simplified to

lim
C→∞

[
B

0̃

]

 ≤ sup ‖3‖ + _max(%−1) sup(‖_0 + ¤0‖)
min (_, _min()/_max(")) _min(M)

(4.28)

Proof. Assuming q ≡ 0 immediately leads to U of

U = min
(
1
2
_min(%−1&), _min()

_max(")

)
(4.29)

q ≡ 0 also simplifies the ¤% equation to a stable first-order differential matrix equa-
tion. By integrating this simplified ¤% equation, we can show % exponentially con-
verges to the value % =

&

2_ . This leads to bound in (4.28).

�

We now introduce another corollary for the Neural-Fly-Constant, when q = �. In
this case, the regularization term is not needed, as it is intended to regularize the
linear coefficient estimate in the absence of persistent excitation, so we set _ = 0.
This corollary also shows that Neural-Fly-Constant is sufficient for perfect tracking
control when 5 is constant; though in this case, even the nonlinear baseline controller
with integral control will converge to perfect tracking. In practice for quadrotors,
we only expect 5 to be constant when the drone air-velocity is constant, such as in
hover or steady level flight with constant wind velocity.

Corollary 4.5.1.3. If q ≡ �, & = @�, ' = A �, _ = 0, and %(0) = ?0� is diagonal,
where @, A and ?0 are strictly positive scalar constants, then the bound in (4.10) can
be simplified to

lim
C→∞

[
B

0̃

]

 ≤ ((
1 + A−1) supC ‖ 5 − 0‖+n/A

)
_max(")

_min()_min(M)
(4.30)

Proof. Under these assumptions, the matrix differential equation for % is reduced to
the scalar differential equation

3?

3C
= @ − ?2/A (4.31)

72

where %(C) = ?(C)�. This equation can be integrated to find that ? exponentially
converges to ? =

√
@A. Then by (4.16), U ≤

√
@/A and U ≤ _min()/_max(").

If we choose @ and A such that
√
@/A = _min()/_max("), then we can take U =

_min()/_max("). Then, the error bound reduces to

lim
C→∞

[
B

0̃

]

 ≤ �_max(")
_min()_min(M)

(4.32)

Take 0 as a constant. Then ¤0 = 0, 3 = 5 − 0, and � is bounded by

� ≤
(
1 + A−1

)
sup
C

‖ 5 − 0‖ + n/A (4.33)

�

4.6 Gain Tuning
The attitude controller was tuned following the method in [11]. The gains for all the
position controllers tested were tuned on a step input of 1 m in the x-direction. The
proportional (P) and derivative (D) gains were tuned using the baseline nonlinear
controller for good rise time with minimal overshoot or oscillations. The same P
and D gains were used across all methods.

The integral and adaptation gains were tuned separately for each method. In each
case, the gains were increased to minimize response time until we observed having
large overshoot, noticeably jittery, or oscillatory behavior. For L1 and INDI this
gave a first-order filters with a cutoff frequency of 5 Hz. For each of the Neural-
Fly methods, we used ' = A � and & = @�, where A and @ are a scalar values. The
tuning method gave an ' gains similar to the measurement noise of the residual
force, a & values on the order of 0.1, and _ values of 0.01.

4.7 Force Prediction Performance
The section discusses Fig. 4.3, which is useful for understanding why learning im-
proves force prediction (which in turn improves control).

For the nonlinear baseline method, the integral (I) term compensates for the average
wind effect, as seen in Fig. 4.3. Thus, the UAV trajectory remains roughly centered
on the desired trajectory for all wind conditions, as seen in Fig. 3.5. The relative ve-
locity of the drone changes too quickly for the integral-action to compensate for the
changes in the wind effect. Although increasing the I gain would allow the integral
control to react more quickly, a large I gain can also lead to overshoot and instability,
thus the gain is effectively limited by the combined stability of the P, D, and I gains.

73

Figure 4.3: Measured residual force versus adaptive control augmentation, 5̂ .
Wind-effect x- and z-axis force prediction for different methods, 5̂ and 8

∫
?̃dC,

compared with the online residual force measurement, 5 . The integral term in the
nonlinear baseline method and the 5̂ term in the adaptive control methods, including
the Neural-Flymethods, all act to compensate for themeasured residual force. INDI,
L1, and Neural-Fly-Constant estimate the residual force with sub-second lag, how-
ever adjusting the gains to decrease the lag increases noise amplification. Neural-
Fly and Neural-Fly-Transfer have reduced the lag in estimating the residual force but
have some model mismatch, especially at higher wind speeds.

74

Next, consider the two SOTA baseline methods, INDI and L1, along with the non-
learning version of our method, Neural-Fly-Constant. These methods represent dif-
ferent adaptive control approaches that assume no prior model for the residual dy-
namics. Instead, each of these methods effectively outputs a filtered version of the
measured residual force and the controller compensates for this adapted term. In
Fig. 4.3, we observe that each of these methods has a slight lag behind the measured
residual force, in gray. This lag is reduced by increasing the adaptation gain, how-
ever, increasing the adaptation gain leads to noise amplification. Thus, these reactive
approaches are limited by some more inherent system properties, like measurement
noise.

Finally, consider the two learning versions of our method, Neural-Fly and Neural-
Fly-Transfer. These methods use a learned model in the adaptive control algorithm.
Thus, once the linear parameters have adapted to the current wind condition, the
model can predict future aerodynamic effects with minimal changes to the coeffi-
cients. As we extrapolate to higher wind speeds and time-varying conditions, some
model mismatch occurs and is manifested as discrepancies between the predicted
force, 5̂ , and the measured force, 5 , as seen in Fig. 4.3. Thus, our learning-based
control is limited by the learning representation error. This matches the conclusion
drawn in our theoretical analysis, where tracking error scales linearly with represen-
tation error.

4.8 Localization Error Analysis
We estimate the root mean squared position localization precision to be about 1 cm.
This is based on a comparison of our two different localization data sources. The
first is the OptiTrack motion capture system, which uses several infrared motion
tracking cameras and reflective markers on the drone to produce a delayed measure-
ment the position and orientation of the vehicle. The PX4 flight controller runs an
onboard extended Kalman filter (EKF) to fuse the OptiTrack measurements with
onboard inertial measurement unit (IMU) measurements to produce position, ori-
entation, velocity, and angular rate estimates. In offline analysis, we correct for the
delay of the OptiTrack system, and compare the position outputs of the OptiTrack
system and the EKF. Typical results are shown in Fig. 4.4. The fixed offset between
the measurements occurs because the OptiTrack system tracks the centroid of the re-
flective markers, where the EKF tracks the center of mass of the vehicle. Although
the EKF must internally correct for this offset, we do not need to do so in our offline
analysis because the offset is fixed. Thus, the mean distance between the OptiTrack

75

5 10 15 20 25 30 35 40
t [s]

3

4

5

6

7

8
||p

EF
K

p m
oc

ap
||

[c
m

]

Localization inconsistency for PID baseline in no wind

actual
mean
one-
two-

Figure 4.4: Localization inconsistency. Typical difference between the OptiTrack
motion capture position measurement, ?mocap, and the EKF position estimate, ?EKF,
corrected for the Optitrack delay. The mean difference corresponds to a constant off-
set between the center of mass, which the EKF tracks, and the centroid of reflective
markers, which the OptiTrack measures. The standard deviation corresponds to the
root-mean-square error between the two measurements.

position and the EKF position corresponds to the distance between the center of
mass and the center of vision, and the standard deviation of that distance is the root-
mean-square error of the error between the two estimates. Averaged over all the data
from experiments in this paper, we see that the standard deviation is 1.0 cm. Thus,
we estimate that the localization precision has a standard deviation of about 1.0 cm.

References

[1] E. Tal and S. Karaman, “Accurate tracking of aggressive quadrotor trajecto-
ries using incremental nonlinear dynamic inversion and differential flatness,”
IEEE Transactions on Control Systems Technology, vol. 29, no. 3, pp. 1203–
1218, May 2021, issn: 1558-0865. doi: 10.1109/TCST.2020.3001117.

[2] M. Faessler, A. Franchi, and D. Scaramuzza, “Differential flatness of quadro-
tor dynamics subject to rotor drag for accurate tracking of high-speed trajec-
tories,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 620–626,
Apr. 2018, issn: 2377-3766. doi: 10.1109/LRA.2017.2776353.

[3] G. Torrente, E. Kaufmann, P. Fohn, and D. Scaramuzza, “Data-driven MPC
for quadrotors,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 3769–
3776, Apr. 2021, issn: 2377-3766, 2377-3774. doi: 10.1109/LRA.2021.
3061307. [Online]. Available: https://ieeexplore.ieee.org/document/
9361343/ (visited on 10/08/2021).

[4] L. N. Trefethen, “Multivariate polynomial approximation in the hypercube,”
Proceedings of the American Mathematical Society, vol. 145, no. 11, pp. 4837–
4844, Jun. 8, 2017, issn: 0002-9939, 1088-6826. doi: 10 . 1090 / proc /

https://doi.org/10.1109/TCST.2020.3001117
https://doi.org/10.1109/LRA.2017.2776353
https://doi.org/10.1109/LRA.2021.3061307
https://doi.org/10.1109/LRA.2021.3061307
https://ieeexplore.ieee.org/document/9361343/
https://ieeexplore.ieee.org/document/9361343/
https://doi.org/10.1090/proc/13623
https://doi.org/10.1090/proc/13623

76

13623. [Online]. Available: https://www.ams.org/proc/2017-145-
11/S0002-9939-2017-13623-5/ (visited on 03/27/2023).

[5] D. Yarotsky, “Error bounds for approximations with deep ReLU networks,”
Neural Networks, vol. 94, pp. 103–114, Oct. 1, 2017, issn: 0893-6080. doi:
10.1016/j.neunet.2017.07.002. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0893608017301545 (vis-
ited on 03/27/2023).

[6] I. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., “Generative adversarial
nets,” in Advances in Neural Information Processing Systems, vol. 27, Cur-
ran Associates, Inc., 2014. [Online]. Available: https://proceedings.
neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-
Abstract.html (visited on 11/18/2022).

[7] L. Dieci and T. Eirola, “Positive definiteness in the numerical solution of Ric-
cati differential equations,” Numerische Mathematik, vol. 67, no. 3, pp. 303–
313, Apr. 1, 1994, issn: 0945-3245. doi: 10.1007/s002110050030. [On-
line]. Available: https://doi.org/10.1007/s002110050030 (visited on
09/23/2021).

[8] R. E. Kalman, “A new approach to linear filtering and prediction problems,”
Journal of Basic Engineering, vol. 82, no. 1, pp. 35–45, Mar. 1, 1960, issn:
0021-9223. doi: 10.1115/1.3662552. [Online]. Available: https://doi.
org/10.1115/1.3662552 (visited on 09/21/2021).

[9] J.-J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, N.J:
Prentice Hall, 1991, 459 pp., isbn: 978-0-13-040890-7.

[10] H. K. Khalil, Nonlinear Systems, 3rd Edition. Prentice Hall, 2002. [Online].
Available: https : / / www . pearson . com / content / one - dot - com /
one-dot-com/us/en/higher-education/program.html (visited on
09/02/2021).

[11] “Multicopter PID tuning guide (advanced/detailed) | PX4 user guide.” (), [On-
line]. Available: https://docs.px4.io/master/en/config_mc/pid_
tuning_guide_multicopter.html (visited on 09/17/2021).

https://doi.org/10.1090/proc/13623
https://doi.org/10.1090/proc/13623
https://www.ams.org/proc/2017-145-11/S0002-9939-2017-13623-5/
https://www.ams.org/proc/2017-145-11/S0002-9939-2017-13623-5/
https://doi.org/10.1016/j.neunet.2017.07.002
https://www.sciencedirect.com/science/article/pii/S0893608017301545
https://www.sciencedirect.com/science/article/pii/S0893608017301545
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://doi.org/10.1007/s002110050030
https://doi.org/10.1007/s002110050030
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://www.pearson.com/content/one-dot-com/one-dot-com/us/en/higher-education/program.html
https://www.pearson.com/content/one-dot-com/one-dot-com/us/en/higher-education/program.html
https://docs.px4.io/master/en/config_mc/pid_tuning_guide_multicopter.html
https://docs.px4.io/master/en/config_mc/pid_tuning_guide_multicopter.html

77

C h a p t e r 5

FIRST ORDER DELAY COMPENSATION FOR NONLINEAR
CONTROL METHODS

Abstract
Actuation delays that exist in motor dynamics and computation hardware onmultiro-
tors hinder their tracking accuracy during aggressive trajectories when not properly
considered. On smaller drones, such effects are especially apparent as basic flight
computers and motors cause delays that have similar timescale as vehicles’ inertial
dynamics. In this work, we present a light-weight augmentation method that enables
trajectory tracking controllers for multirotors to handle motor dynamics and digital
transport delays. We show that a simple one-step forward prediction is a first-order
approximation of a conventional delay-compensating predictive controller. Using
parameters from two real small quadrotors, we conduct numerical experiments to
demonstrate that: (1) our proposed method achieve comparable level of trajectory
tracking performance to a state-of-the-art differential flat controller when a simple
regulation attitude controller is augmented; (2) the combined multi-level delay com-
pensationmethod further improves the tracking accuracy becomes essential for large
system delays.

5.1 Introduction
Multirotor trajectory planning and control have been extensively studied during re-
cent years. Differential flatness property of the multirotor dynamics enables its fast
and agile flights [1], even under moderate air drag [2]. The motor dynamics and
computation delay in this type of vehicle has largely been ignored, due to it hap-
pening on a much faster timescale compared to the vehicle’s position and attitude
dynamics. For high accuracy tracking of increasing aggressive trajectories, such
delays can become crucial in further improving control performance. A multirotor
typically uses electric motors to drive propellers, where rotor speed or pitch angle is
controlled via input signals to achieve desired thrust. In either case, delays in actu-
ation come from digital, electrical and mechanical sources within the system. This
can be especially detrimental when the delay time-scale is on the same order as the
vehicle’s inertial dynamics. On the other hand, with the sensitivity to total weight
of flying vehicles, onboard computation is always limited compared to ground plat-

78

forms. Thus digital delays due to discrete computing architecture will pose further
hurdles for high performing flight control.

In general, actuation delays occur naturally in a variety of physical and cyber-physical
systems. Time-delayed dynamics have been an active area of research since its in-
troduction in 1946 [3]–[6], and it is seeing continued interest with the populariza-
tion of vast computer networks and internet-of-things (IoT) accompanied by sub-
stantial communication lags [7], [8]. Delay compensation techniques have also
been widely used in control of power electronics [9], [10] and reinforcement learn-
ing settings [11]. For linear systems, delay for unstable processes is often mod-
eled as first or second order plus dead time (FOPDT or SOPDT). Classical linear
feedback control can be applied and closed-loop system behavior is analyzed with
transfer function approaches. It was shown that properly designed proportional-
integral-derivative (PID) controllers can act as a delay compensator [12]. Other
popular techniques include relay-based identification [13] and proportional-integral-
proportional-derivative (PI-PD) control [14]. For nonlinear systems, the usual con-
sensus on the challenge of continuous delays is that the state space becomes infi-
nite dimensional. Thus, instead of being described by ordinary differential equa-
tions (ODEs), these systems need to be modeled as functional differential equations
(FDEs) or transport partial differential equations (PDEs) [5], [6]. Accordingly, their
analysis requires additional mathematical tools such as Lyapunov-Krasovskii func-
tionals [15], [16]. A prominent class of delay compensation methods rely on state
predictions of some kind. This idea was first proposed as the Smith-predictor [4],
and has been expanded to handle unstable processes [17], increase robustness against
uncertainties [18], or adapt to varying delays [19]. In theory, predictor-based meth-
ods can handle arbitrarily large delays for forward complete and strict-feedforward
systems [20].

The FDE or PDE modeling approach has the underlying assumption that input sig-
nal is continuous in time. For multirotor control systems run on digital computers,
this assumption becomes less valid as command update frequency, system transport
delay, and time constant for actuator dynamics exist on similar time-scales. In this
work, we kept those restrictions in mind and elect to use light weight augmenta-
tions that help baseline controllers cope with various delays in the system without
incurring heavy computation burden.

79

Position

Control

Attitude

Control

Vehicle Dynamics Actuator Dynamics

Mixer

Figure 5.1: Hierarchy of control systems for a multirotor. A typical drone, such
as Crazyflie 2.0, has a slower outer position loop (100 Hz) than inner attitude loop
(500 Hz), with even slower motor dynamics (20 Hz).

5.2 Multirotor Dynamics with Actuation Delays
We start from a conventional six degree-of-freedom (DOF) dynamicsmodel formul-
tirotor. The system states are defined by inertial position p, velocity v, attitude as
rotation matrix R ∈ ($ (3), and body angular rate 8. The overall equations of
motion are expressed as:

¤p = v, ¤v = g + Rf1, (5.1)
¤R = RS(8), J ¤8 = S(J8)8 + 31, (5.2)

where J ∈ R3×3 is the inertia matrix, g is the constant gravity vector in the inertial
frame and S(·) : R3 → ($ (3) is a skew-symmetric mapping such that a×b = S(a)b.
External forces and moments are split into two parts as

f1 = f) + f�, and 31 = 3) + 3�. (5.3)

f� and 3� are state or time dependent aerodynamic components, which can be mod-
eled via various methods [2], [21]. f) and 3) are generated by rotor thrusts and
moments.

In this work, we only consider the flat multirotor with = ≥ 4 propellers which can
generate f) = [) ; 0; 0] with collective thrust) =

∑=
8=1)8 in body I-axis. Never-

theless, three-dimensional moments 3) = [g),G; g),H; g),I] are achievable. We often
denote the output wrench

w =

[
)

3)

]
∈ R4 (5.4)

as a combination of collective thrust and body moments. From the physical config-
uration of the rotors, we can obtain a linear mapping between an output wrench w

80

Figure 5.2: Timeline of periodic sample-based control with discrete signal delays
and actuator dynamics. At every C8, the computed signal u(C8) takes Δ[to reach
the actuator.

and a vector of actuator forces (= [)1; . . . ;)=]:

w = B(, B ∈ R4×=. (5.5)

Through rotor properties and bench testing, we can safely assume that (can be
controlled through input signals u = [D1; . . . ; D=]. We elect to use a sample-based
first-order plus dead time (SBFOPDT) model to represent the discrete and the con-
tinuous delays in the actuation system:

¤(= −�[(+ �[u′, u′(C) = u(C8),
with C ∈ [C′8 , C′8+1), �[= diag(_[1 , . . . , _[=).

(5.6)

�[is a positive definite diagonal matrix whose entries are the first order gains for
motors. It typically indicates how fast the propellers spin-up to the target speed. As
illustrated in Fig. 5.2, the signal u(C8) is computed at a periodic sampling time C8 then
delayed by Δ[when it is received by the actuator as u′(C′

8
) and held constant for the

duration of the period between [C′
8
, C′
8+1).

5.3 Delay Compensation Control
Multirotor Position and Attitude Controllers
Multirotor controllers often hierarchically consist of outer loop position controller,
and inner loop attitude controller. Before addressing the actuation delay issue, we
will start from a set of nonlinear feedback controllers similar to the ones used in [22].
Along desired position p3 (C) and attitude R3 (C) trajectories, we can define a refer-
ence velocity and a reference angular rate as

vA = ¤p3 −K?p̃, (5.7)

8A = R̃>83 −K@q̃E . (5.8)

81

The position tracking error is p̃ = p − p3 . The attitude tracking error is represented
via a error rotation matrix R̃ = R>

3
R and a error quaternion q̃ = [@̃0; q̃E]. K? and

K@ are positive definite gain matrices. Thus we can drive desired force and torque
as

f̄ = −g + ¤vA −KE (v − vA), (5.9)

3̄ = J ¤8A − S(J8)8A −Kl (8 − 8A) (5.10)

in order to achieve exponential convergence of a desired position and attitude. Sim-
ilarly, KE and Kl are also positive definite gain matrices. For better trajectory track-
ing performance, we can also analytically derive the derivatives of vA and 8A . ¤vA is
simple differentiation from (5.7)

¤vA = ¥p3 −K?p̃. (5.11)

¤8A is more involved, as we need to take the derivative of rotation matrix R̃. After
algebraic simplification, we can get

¤8A = R̃> ¤83 − S(8)R̃>83

− 1
2

K@ (@̃0I + S(q̃E)) (8 − R̃>83).
(5.12)

Multirotor dynamics have been proved to be differential flat, thus methods from
[1] can be applied to obtain quantities 83 and ¤83 from a 5th-order differentiable
trajectory p3 (C).

Delay Compensation at Position Control Level
A persistent issue that comes with multirotor hierarchical controller is the determi-
nation of attitude, i.e., solving R3f1 = f̄. Based on the desired force f̄ from (5.9),
a typical selection of the desired I-axis of the vehicle without considering aerody-
namics disturbance f� is ẑ3 = f̄/

f̄

, which consequently determines the full desired
attitude R3 given yaw angle command. Although there are extensions of this sim-
ple method that explicit take into account drag forces [2] or general aerodynamic
forces [22], they all disregard the time needed for the attitude error to converge.

From (5.2), a high-order dynamics of ¤̄f can be constructed and compensated for
during control design; however, doing so inevitably requires information of accel-
eration and jerk of the vehicle. Instead, we propose a simplified substitute for this
high-order dynamics with a FOPDT model:

¤f1 = −� 5 f1 + � 5 f3 (C − Δ 5),
with � 5 = diag(_GH, _GH, _I).

(5.13)

82

This model approximates the high-order dynamics using first-order delays. Since
5 1 is expressed in the body frame, its delays are represented in two parts: (1) _GH
denotes the delay in attitude convergence; (2) _I denotes the delay from) in body
I-axis. The model also take into account discrete transport delay Δ 5 internal to the
hardware. In practice, Δ 5 includes the time needed for position controller to finish
computing.

Theorem 5.3.1. The following delay compensation controller

f3 = f̄ +
(
�−1
5 + Δ 5

) ¤̄f (5.14)

derived from the desired force computed in the position controller (5.9), exponen-
tially stabilizes the FOPDT system (5.13) f1 → f̄ when truncated to first-order.

Proof. We can approximate (5.13) to first-order as

¤f1 = −� 5 f1 + � 5 f3 − � 5Δ 5
¤f3 + O(Δ2

5).

By defining a force error e 5 = f1 − f̄ and substituting (5.14) into the above approxi-
mation, we can write the error dynamics of e 5 as

¤e 5 = −� 5 e 5 − � 5Δ 5

(
�−1
5 + Δ 5

)
¥f3 + O(Δ2

5)

= −� 5 e 5 + O(¥f3) + O(Δ2
5).

When neglecting the higher-order terms of Δ2
5
and ¥f3 , it can be shown that e 5 → 0

exponentially with rate _min(� 5). �

From the hierarchy illustrated in Fig. 5.1, Theorem 5.3.1 states a method to com-
pensate for delays in inner loop controllers by adjusting desired force f3 according
to (5.14). Without loss of generality, we neglect aerodynamics disturbance f� when
determining desired collective thrust)3 and attitude R3:

)3 = f3 · ẑ, and ẑ3 = f3/‖f3 ‖ , (5.15)

where ẑ and ẑ3 are the unit vectors for vehicle’s current and desired I-axis. It is
straightforward to compute desired attitude R3 from ẑ3 when desired yaw angle is
also specified [1]. Methods from [2], [22] can also be used in place of (5.15) without
affecting derivations of further compensations of delays in the following section.

83

Delay Compensation at Mixer Level
Combining (5.10) and (5.15) from the position and attitude controllers, we assemble
the desired wrench vector w3 to be

w3 =

[
)3

33

]
∈ R4. (5.16)

Similarly as before, we neglect aerodynamic moments 3� and choose 33 = 3̄ for
simplicity. We denote the process that calculate u from w3 as the mixer. Sometimes
it is also referred as control allocation. Figure 5.1 shows its location within the
control stack. We are ready to state a delay compensated mixer in the following
theorem.

Theorem 5.3.2. Considering the actuator FOPDT delay model (5.6) and a control
mapping (5.5), the following mixer with delay compensation

u = B−1w3 +
(
�−1
[+ Δ[

)
B−1 ¤w3 (5.17)

exponentially stabilizes the wrench error w→ w3 when truncated to first-order.

Proof. Similar to the proof given in Theorem 5.3.1, we can approximate (5.6) to
first-order as

¤(= −�[(+ �[u − �[Δ[¤u + O(Δ2
[).

Let wrench error be eF = w −w3 . When substituting (5.17) and the above approxi-
mation into (5.5), the error dynamics can be written as

¤eF = B ¤(− ¤w3

= −B�[B−1eF + ¤w3 + B�[Δ[B−1 ¤w3 − B�[Δ[¤u
− ¤w3 + O(Δ2

[)
= −B�[B−1eF + O(¥w3) + O(Δ2

[).

When neglecting the higher order terms of Δ2
[and ¥w3 , it can be shown that eF → 0

exponentially with rate _min(�[). �

At this stage, we augment a baseline position and attitude controller such as the ones
from (5.9) and (5.10) with delay compensation techniques. It accounts for delays at
both the position control level as well as the mixer level with tunable parameters� 5 ,
Δ 5 , �[, and Δ[.

84

Table 5.1: Simulation parameters for two drones of different sizes.

Intel Aero Crazyflie 2.0
mass < 2.40 kg 0.033 kg
inertia �G 3.60 × 10−3 kg m2 1.57 × 10−5 kg m2

�H 3.60 × 10−3 kg m2 1.66 × 10−5 kg m2

�I 7.20 × 10−3 kg m2 2.93 × 10−5 kg m2

arm length 30 cm 4.6 cm
thrust-to-weight 1.43 1.41
pos ctrl freq 50 Hz 100 Hz
pos ctrl delay Δ 5 20 ms 10 ms
att ctrl freq 250 Hz 500 Hz
ang ctrl freq 500 Hz 500 Hz
motor gain �[50 Hz 20 Hz
mixer delay Δ[2 ms 2 ms

5.4 Numerical Experiments
Simulation Setups
In this section, we use numerical simulations to study the effects that delay com-
pensation techniques at different levels have on the trajectory tracking performance
of two quadrotor drones based on real world hardware settings. The two drones of
interest are the Intel Aero Ready to Fly Drone and the Crazyflie 2.0. Table 5.1 lists
various physical properties as well as computation parameters of the two platforms.

The two quadrotor platforms are 10 times different in size and 100 times different
in mass and inertia, yet the control-related delays and time-scales are on the same
order of magnitude.

Definition of Different Controllers for Comparisons
In order to see the benefits of different delay compensation techniques, we select sev-
eral controllers to compare their performances on different trajectories. The details
about each of them are introduced below with a summary listed in Table 5.2.

Cascaded PID

First, we show that our method can extend a common cascaded PID controller for
quadrotors. The position control is similar to (5.9) with a PID feedback component

85

and a feedforward component:

f3 = −g + ¥p3 −K%p̃ −K�
¤̃p −K�

∫
p̃3C. (5.18)

The attitude determination is the same as in (5.15). And the attitude controller is a
regulation PID feedback on 8:

8A = −K@q̃E, 8̃ = 8 − 8A ,

33 = −K%,l8̃ −K�,l
¤̃8 −K�,l

∫
8̃3C.

(5.19)

The mixer without delay compensation technique is simply

u = B−1w3 . (5.20)

Common commercial flight controllers such as BetaFlight and PX4 [23] deploy sim-
ilar attitude control laws and mixers as (5.19) and (5.20).

Position Level Delay Compensation

Next, we use the position controller (5.9), the associated delay compensation (5.14)
described in Sec. 5.3, and the regulation PID (5.19) for attitude control described
above to showcase high-level compensation can drastically improve performance
even low-level attitude control is only of a regulation type.

Differential Flatness

We can use nonlinear attitude controller described in (5.8) and (5.10) to achieve
better tracking performance if desired angular rate 83 and angular acceleration ¤83

along our trajectory p3 (C) is calculated using (5.11) and (5.12) and differential flat-
ness properties of multirotor dynamics. This formulation has been vastly used in
aggressive trajectory tracking of multirotor drones to achieve state-the-art perfor-
mances.

Mixer Level Delay Compensation

Built on top of differential flatness controller above, the actuation delays of the mo-
tors can be compensated using (5.17).

86

Table 5.2: Summary of controllers definitions.

Abbrev. Name Position Control Attitude Control Mixer
Casc. PID (5.15) and (5.18) (5.19) (5.20)
Pos. DC (5.9), (5.14) and (5.15) (5.19) (5.20)
Diff. Flat. (5.9) and (5.15) (5.10) (5.20)
Mixer DC (5.9) and (5.15) (5.10) (5.17)
Comb. DC (5.9), (5.14) and (5.15) (5.10) (5.17)

Combined Delay Compensation

Finally, the combined method where both the position level and the mixer level de-
lay compensation are applied to differential flatness controller are included as the
theoretical performance ceiling of the techniques proposed in this work.

Comparisons of Trajectory Tracking Performance
From Fig. 5.3 and Table 5.3, we see that all the control methods except the Cas-
caded PID approach perform well tracking the xy-plane circular trajectory, with the
combined delay compensation method performing best by a small margin. This is
primarily because the desired thrust along the circle is constant, so methods that
compensate for thrust delays do not offer an advantage on this particular trajectory.
The Intel Aero drone, which runs the position control on a separate flight computer,
runs the position control loop at a slower frequency. This is one of the main rea-
sons for degraded performance compared to the Crazyflie platform, which runs the
position control on the flight controller.

In contrast to the circular trajectory, the figure-∞ trajectory has a significant varia-
tion in thrust along the desired trajectory. Consequently, in Fig. 5.4 and Table 5.3,
we observe the performance improvement the delay compensation approaches we
propose, which explicitly account for thrust delay and other system delays. Partic-
ularly surprising is that the Position Compensation approach for the Crazyflie plat-
form outperforms the differential flatness control with a significantly simpler attitude
controller.

Combined Delay Compensation Technique on System with High Delay
As Fig. 5.3 and 5.4 as well as Table 5.3 show that the delay compensation at both
position control and mixer levels improve tracking performance over baseline meth-
ods. The combined delay compensation has about 10% reduction in error for circu-

87

−2 0 2
x [m]

−1

0

1

y
[m

]

Intel Aero - 3s Circle

0.0 1.5 3.0 4.5 6.0
t [s]

0.0

0.5

1.0

po
s.

er
ro

r [
m

]

Casc. PID
Pos. DC
Comb. DC

(a) Intel Aero 3 s Circle

−2 0 2
x [m]

−1

0

1

y
[m

]

Crazyflie - 3s Circle

0.0 1.5 3.0 4.5 6.0
t [s]

0.0

0.5

1.0

po
s.

er
ro

r [
m

]

Casc. PID
Pos. DC
Comb. DC

(b) Crazyflie 2.0 3 s Circle

Figure 5.3: Simulation results tracking a fast circle trajectory. Intel Aero and
Crazyflie 2.0 simulation tracking a 2 m wide circle in the GH-plane with a period of
3 s, starting from hover at the origin. Top plots show steady state trajectory, bottom
plots show last 6 s of flights.

−1.0 −0.5 0.0 0.5 1.0
x [m]

−0.5

0.0

0.5

z [
m

]

Intel Aero - 4s figure-∞

0 2 4 6 8
t [s]

0.0

0.2

0.4

0.6

po
s.

er
ro

r [
m

] Casc. PID
Pos. DC
Diff. Flat.
Mixer DC
Comb. DC

(a) Intel Aero 4 s Figure-∞

−1 0 1
x [m]

−0.5

0.0

0.5

z [
m

]

Crazyflie - 5s figure-∞

0.0 2.5 5.0 7.5 10.0
t [s]

0.0

0.2

0.4

0.6

po
s.

er
ro

r [
m

] Casc. PID
Pos. DC
Diff. Flat.
Mixer DC
Comb. DC

(b) Crazyflie 2.0 5 s Figure-∞

Figure 5.4: Simulation results tracking a fast Figure-∞ trajectory. Intel Aero and
Crazyflie 2.0 simulation tracking a Figure-∞ in the GI-plane, starting from hover at
the origin. The periods are 4 s and 5 s, respectively. Top plots show steady state
trajectory, bottom plots show last 6 s of flights.

88

Table 5.3: Summary of trajectory tracking performance.

Intel Aero
Trajectory Controller ‖p̃‖RMS [cm]

Circle (3 s)

Casc. PID 24.5
Pos. DC 7.10
Diff. Flat. 6.88
Mixer DC 6.91
Comb. DC 6.04

Figure-∞ (4 s)

Cascaded PID 16.3
Pos. DC 7.29
Diff. Flat. 6.44
Mixer DC 5.51
Comb. DC 4.41

Crazyflie 2.0

Circle (3 s)

Cascaded PID 21.9
Pos. DC 4.58
Diff. Flat. 3.42
Mixer DC 3.47
Comb. DC 3.04

Figure-∞ (5 s) Cascaded PID 8.31
Pos. DC 3.07
Diff. Flat. 4.46
Mixer DC 2.64
Comb. DC 2.23

lar trajectories in both drones, and 50% reduction for Figure-∞ trajectories. Such
observation motivates us to investigate further its capabilities when trajectories be-
come more aggressive, or similarly during high delay situations. We conducted the
same trajectory tracking task as in Fig. 5.4 for Intel Aero comparing Diff. Flat. and
Comb. DC method, at the same time varied motor delay and signal delay values for
the simulations. As shown in Fig. 5.5, a drastic improvement of delay compensation
controllers in RMS error can be observed for both high motor and/or high signal
delays. A Diff. Flat. controller struggles as signal delays are over 100 ms. It also
indicates that the proposed method handles the mixed delay sources with ease, as
combination of continuous and discrete delays persist in these simulations.

89

0 50 100 150 200
101

102

2 × 101
3 × 101
4 × 101
6 × 101

M
ot

or
 D

el
ay

 [m
s]

Comb. DC

0.00

0.08

0.16

0.24

0 50 100 150 200
Pos. Computer Delay [ms]

101

102

2 × 101
3 × 101
4 × 101
6 × 101

M
ot

or
 D

el
ay

 [m
s]

Diff. Flat.

0.00

0.08

0.16

0.24

RMS Pos. Error [m]

Figure 5.5: Heatmap showing performance degradation with increasing delays
for the proposed delay compensation controller and the baseline differential
flatness controller. Heat map plots of RMS position tracking error, in meters, ver-
sus the position control loop computer delay and motor delay for the Intel Aero
simulation tracking the 4 s figure-∞ in Fig. 5.4. Top: proposed delay compensation
control scheme. Bottom: baseline nonlinear controller based on differential flatness.

5.5 Conclusion
We proposed simple augmentation techniques for different levels of multirotor tra-
jectory tracking controllers. We utilized first-order approximations as surrogate
models for high-order attitude dynamics and designed a controller that compensate
for force delays that stem from lags in attitude and collective thrust command. When
applying differential flat control to trajectory tracking tasks, we proposed further
upgrades by deploying mixer level delay compensation that accounts for motor dy-
namics. Both methods consider not only the continuous dynamics of the multirotor,
but also discrete signal delays due to the computation hardware. When comparing to
existing methods on realistic simulations, a position level strategy can achieve com-
parable result to differential flat control even though the former used only regulation
control in attitude. The combined delay compensation techniques showed further
improvement to achieve the best results overall, and was proved essential when sys-
tem delays are further increased. Overall, our method is simple yet highly effective.
The real world motivated simulation settings pave ways for the application of our
proposal on real hardware experiments in the future.

90

References

[1] D.Mellinger andV.Kumar, “Minimum snap trajectory generation and control
for quadrotors,” in 2011 IEEE International Conference on Robotics and Au-
tomation, May 2011, pp. 2520–2525. doi: 10.1109/ICRA.2011.5980409.

[2] M. Faessler, A. Franchi, and D. Scaramuzza, “Differential flatness of quadro-
tor dynamics subject to rotor drag for accurate tracking of high-speed trajec-
tories,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 620–626,
2017.

[3] Y. Z. Tsypkin, “The systems with delayed feedback,” Avtomathika i Telemech,
vol. 7, pp. 107–129, 1946.

[4] O. J. Smith, “A controller to overcome dead time,” ISA Journal, vol. 6, pp. 28–
33, 1959.

[5] J.-P. Richard, “Time-delay systems: An overview of some recent advances
and open problems,” Automatica, vol. 39, no. 10, pp. 1667–1694, 2003.

[6] M. Krstic, Delay Compensation for Nonlinear, Adaptive, and PDE Systems.
Springer, 2009.

[7] H. Gao, T. Chen, and J. Lam, “A new delay system approach to network-based
control,” Automatica, vol. 44, no. 1, pp. 39–52, 2008.

[8] R. A. Gupta and M.-Y. Chow, “Networked control system: Overview and re-
search trends,” IEEE Transactions on Industrial Electronics, vol. 57, no. 7,
pp. 2527–2535, 2009.

[9] P. Cortes, J. Rodriguez, C. Silva, and A. Flores, “Delay compensation in
model predictive current control of a three-phase inverter,” IEEE Transac-
tions on Industrial Electronics, vol. 59, no. 2, pp. 1323–1325, 2011.

[10] M. Lu, X.Wang, P. C. Loh, F. Blaabjerg, and T. Dragicevic, “Graphical evalu-
ation of time-delay compensation techniques for digitally controlled convert-
ers,” IEEE Transactions on Power Electronics, vol. 33, no. 3, pp. 2601–2614,
2017.

[11] E. Schuitema, L. Buşoniu, R. Babuška, and P. Jonker, “Control delay in rein-
forcement learning for real-time dynamic systems: A memoryless approach,”
in IEEE/RSJ International Conference on Intelligent Robots and Systems,
2010, pp. 3226–3231.

[12] A. Visioli, Practical PID Control. Springer Science &BusinessMedia, 2006.

[13] P. K. Padhy and S. Majhi, “Relay based PI–PD design for stable and unsta-
ble FOPDT processes,” Computers & Chemical Engineering, vol. 30, no. 5,
pp. 790–796, 2006.

[14] S.Majhi andD.Atherton, “Online tuning of controllers for an unstable FOPDT
process,” IEE Proceedings-Control Theory and Applications, vol. 147, no. 4,
pp. 421–427, 2000.

https://doi.org/10.1109/ICRA.2011.5980409

91

[15] V. L. Kharitonov and A. P. Zhabko, “Lyapunov–Krasovskii approach to the
robust stability analysis of time-delay systems,” Automatica, vol. 39, no. 1,
pp. 15–20, 2003.

[16] F. Mazenc, S.-I. Niculescu, and M. Krstic, “Lyapunov–Krasovskii function-
als and application to input delay compensation for linear time-invariant sys-
tems,” Automatica, vol. 48, no. 7, pp. 1317–1323, 2012.

[17] M. A. Henson and D. E. Seborg, “Time delay compensation for nonlinear
processes,” Industrial & Engineering Chemistry Research, vol. 33, no. 6,
pp. 1493–1500, 1994.

[18] Y.-H. Roh and J.-H. Oh, “Robust stabilization of uncertain input-delay sys-
tems by sliding mode control with delay compensation,” Automatica, vol. 35,
no. 11, pp. 1861–1865, 1999.

[19] D. Bresch-Pietri andM.Krstic, “Adaptive trajectory tracking despite unknown
input delay and plant parameters,” Automatica, vol. 45, no. 9, pp. 2074–2081,
2009.

[20] M.Krstic, “Input delay compensation for forward complete and strict-feedforward
nonlinear systems,” IEEE Transactions on Automatic Control, vol. 55, no. 2,
pp. 287–303, 2009.

[21] G. Shi, X. Shi,M. O’Connell, et al., “Neural lander: Stable drone landing con-
trol using learned dynamics,” in 2019 International Conference on Robotics
and Automation (ICRA), May 2019, pp. 9784–9790. doi: 10.1109/ICRA.
2019.8794351,

[22] X. Shi, K. Kim, S. Rahili, and S.-J. Chung, “Nonlinear control of autonomous
flying cars with wings and distributed electric propulsion,” in 2018 IEEE
Conference on Decision and Control (CDC), Miami Beach, FL: IEEE, Dec.
2018, pp. 5326–5333, isbn: 978-1-5386-1395-5. doi: 10.1109/CDC.2018.
8619578. [Online]. Available: https://ieeexplore.ieee.org/document/
8619578/ (visited on 08/25/2020).

[23] L. Meier, P. Tanskanen, L. Heng, G. H. Lee, F. Fraundorfer, and M. Polle-
feys, “PIXHAWK -A micro aerial vehicle design for autonomous flight using
onboard computer vision,” Autonomous Robots, vol. 33, no. 1-2, pp. 21–39,
Aug. 2012, issn: 0929-5593. doi: 10.1007/s10514-012-9281-4. [Online].
Available: https://graz.pure.elsevier.com/en/publications/
pixhawk-a-micro-aerial-vehicle-design-for-autonomous-flight-
using (visited on 08/31/2021).

https://doi.org/10.1109/ICRA.2019.8794351
https://doi.org/10.1109/ICRA.2019.8794351
https://doi.org/10.1109/CDC.2018.8619578
https://doi.org/10.1109/CDC.2018.8619578
https://ieeexplore.ieee.org/document/8619578/
https://ieeexplore.ieee.org/document/8619578/
https://doi.org/10.1007/s10514-012-9281-4
https://graz.pure.elsevier.com/en/publications/pixhawk-a-micro-aerial-vehicle-design-for-autonomous-flight-using
https://graz.pure.elsevier.com/en/publications/pixhawk-a-micro-aerial-vehicle-design-for-autonomous-flight-using
https://graz.pure.elsevier.com/en/publications/pixhawk-a-micro-aerial-vehicle-design-for-autonomous-flight-using

92

C h a p t e r 6

NEURAL FLY FOR FAULT TOLERANCE

Abstract
Unmanned Aerial Vehicles (UAVs) are increasingly employed in various applica-
tions, emphasizing the need for robust fault detection and compensation strategies
to ensure safe and reliable operation. This study presents a novel sparse failure
identification method for detecting and compensating for motor failures in octoro-
tor UAVs. This algorithm is an extension of the learning-based control framework,
Neural-Fly. The proposedmethod leverages a reformulation of theNeural-Fly online
adaptation algorithm and a unique allocation update approach to prevent saturation
and improve tracking performance in the presence of modeling errors and actuator
faults. Preliminary results demonstrate the ability to isolate a single motor failure
within one second and rebalance the system, with the UAV remaining controllable
and experiencing minimal performance degradation. The proposed allocation up-
date approach outperforms existing methods, improving maximum torque without
saturation at hover by more than 50% compared to the pseudoinverse method. When
direct motor speed sensing is available, the proposed allocation algorithm and con-
trol architecture enables almost instantaneous system correction. While the method
shows promise in handling single motor failures, its performance in the presence of
multiple motor failures requires further investigation. Future work will focus on ad-
dressing this limitation, comparing the proposed method with other adaptive control
algorithms, and refining efficiency estimation techniques. The findings of this study
contribute to the development of robust fault detection and compensation strategies
for UAVs, enhancing their safety and reliability in a wide range of applications.

93

6.1 Introduction
Uninhabited aerial vehicles (UAVs) carry the potential to revolutionize a diverse
range of industries. From emergency response services to last-mile delivery, the ap-
plications are vast and continually expanding. However, the promise of this technol-
ogy comes with significant challenges. Stricter safety requirements, especially for
operation in populated areas, demand UAVs that can tolerate a wide array of faults.
The cost of failure in this context isn’t just financial, it’s potentially catastrophic, in-
volving risks to bystanders and infrastructure. As such, UAV systems must maintain
a high safety and reliability margin during all phases of operation.

Operation of UAVs typically includes several modes such as vertical take-off and
landing, hover and approach phases, and a cruise stage. Transitioning smoothly
and safely between these different modes, often in highly dynamic environments,
is a complex and demanding task. Further complicating the matter, many next-
generation aircraft prototypes feature highly redundant control actuators. While this
redundancy aims to ensure sufficient control authority to recover in the event of a
failure, it also increases the complexity of the control system. Standard practice is
to evaluate the system through a fault tree analysis, considering all foreseeable fail-
ure scenarios. However, the potential for unseen failures becomes more likely with
growing system complexity. This poses a significant challenge: how to design and
implement reliable fault-tolerant control systems capable of handling this complex-
ity and diversity of potential failure scenarios.

The existing body of research commonly dissects the complex problem of recovering
from faults into discrete steps, with a primary focus either on fault diagnosis—which
includes detection, isolation, and identification—or on fault-tolerant control. Recent
surveys, such as those by [1] and [2], provide comprehensive overviews of various
fault diagnosis methodologies. Importantly, a fault-tolerant architecture must extend
beyond diagnosis, possessing the capability to adjust the control system in response
to identified faults.

On the other hand, a considerable portion of work on fault-tolerant control (FTC)
concentrates on recovery from faults without taking into account the steps for fault
diagnosis. Control allocation algorithms emerge as particularly useful in this con-
text [3]–[7]. These algorithms serve dual purposes: they are tools for designing ro-
bust vehicle configurations [4], [5], and they can be used for on-the-fly to response
to identified faults [3]–[5]. In a related vein, [8] presents methods for analyzing
vehicle performance limits under specific, enumerated failure scenarios.

94

Lastly, there is a substantial body of work that addresses both fault diagnosis and
fault-tolerant control concurrently. Early studies in the field, such as [9], [10], uti-
lized the InteractingMultiple Model approach. This method propagates a likelihood
of enumerated failure cases and then uses that likelihood to fuse the ideal estimated
state or control command for each isolated failure. More recent work focuses on iso-
lating the most likely fault, and then performs discrete switching between nominal
and fault-compensating control schemes [11]–[13]. Certain studies, like [14], build
upon adaptive control tools, but are limited by the need for persistent excitation of
the failure detection signal. [15] addresses this limitation by recording key previous
measurements, while [16] uses both output tracking performance and direct sensor
measurements to design robust control schemes.

Following this line of thought, it’s important to note that many robust control algo-
rithms and adaptive control algorithms, originally developed for other contexts, can
be applied effectively to fault-tolerant control. This is especially true in the case of
benign failures, as illustrated by the methods presented in [17]–[23]. These strate-
gies deliver impressive and agile performance under nominal conditions. For highly
over-actuated vehicles, these methods prove to be an appropriate solution for han-
dling benign faults. However, their effectiveness dwindles in severe cases where the
controllability of the system is dramatically reduced or altered.

While numerous methodologies exist for fault detection, isolation, and fault-tolerant
control, there is a significant gap in addressing and correcting for unforeseen fail-
ures, which were not considered during the design of the fault mitigation system.
In response to this challenge, we propose a method applicable to a wide range of
over-actuated systems. The proposed approach caters to faults that are not directly
sensed, but are inferred from the aircraft’s response to control commands. Addi-
tionally, our method is designed to recover the original performance of the system,
enabling safe recovery from any operational mode. Building upon prior work in
[17], we incorporate an online-learning-based scheme, which facilitates precise and
agile control even amidst faults.

The first significant contribution of this work is a sparse-fault-identification exten-
sion to the online learning control system, Neural-Fly [17]. The second contribu-
tion is a novel control allocation scheme that effectively leverages both the learned
dynamics and failure identification. This scheme redesigns the control allocation
matrix to maintain the original system performance and maximize control authority.
Lastly, we demonstrate our method’s effectiveness through simulated and real-world

95

tests on an octorotor, providing a practical and compelling example of our approach.

6.2 Preliminaries
System Dynamics
Consider dynamics of the form

¤G = 5 (G) + �(C)D + 5res(G, D, C) + 3 (C). (6.1)

where G ∈ R= is the =-dimensional state vector, 5 (G) is a known nominal dynamics
model, �(C) is an unknown control actuation matrix that is approximated by �0 ≈
�(C) when the system operates nominally, D ∈ R< is the <-dimensional control in-
put, 5res(G, D, C) incorporates unknown residual dynamics, and 3 (C) is random noise.
Without loss of generality, assume that D ∈ [0, 1]< and gmax,8 = maxD | (�0D)8 |.

For small enough 6, the system is exponentially stabilized by the feedback lineariza-
tion control law,

D= = �0
−1
' g3 , g3 = (− (G − G3) + ¤G3 − 5 (G)), (6.2)

where is a positive definite gain matrix, G3 and ¤G3 are the desired state and deriva-
tive of the desired state, respectively, and �0

−1
'

is any right pseudoinverse of �0 such
that �0�0

−1
'

= I.

We consider actuator faults of the form

�(C) = �� (C) (6.3)

� (C) =


[1(C) 0 . . . 0

0 [2(C) . . . 0
...

...
. . .

...

0 0 . . . [< (C)


(6.4)

where [8 (C) ∈ [0, 1] is the efficiency factor for the 8th actuator at time C.

Assume that we have a noisy measurement, H, of 6(G, D, C), the error in the nominal
model,

H = 6(G, D, C) + n
6(G, D, C) = ¤G − 5 (G) − �0D = 5res(G, D, C) + �0(I − � (C))D, (6.5)

where n (C) > 0 is white noise.

96

Control Allocation Problem
The control allocation problem is to find a mapping from the desired control force,
g3 , to the desired actuator commands, D3 , such that the desired force is realized.
Thus, for a given control actuation matrix, �̂, the control allocation problem reduces
to:

D3 := �g3
s.t. �̂D3 = g3

=⇒ �̂� = I, (6.6)

that is, to find a matrix, �, that is a right inverse of �̂.

Note that when �̂� is not diagonal, the system will have some control-induced cross
coupling between the control axes. If �̂� is diagonal but not the identity matrix, then
there will not be any control-induced cross coupling, but the system will not achieve
the expected performance.

Overview of NF for Feedback Compensation of Learned and Adapted Dynam-
ics
By following prior work [17], [24], it is straightforward to extend the nominal control
law with a learned residual model of the faulty dynamics, 6̂NF(G, D, C) ≈ 6(G, D, C),
that is simultaneously learning the original residual and the actuator failures. How-
ever, as we will discuss in this section, this framework can break down in the case
of actuator failures. [24] showed that spectral normalization of a learned residual
model for 6 guarantees the existence of a stabilizing control solution and robustness
of the augmented control. [17] extended the learned-residual control framework
to online learning of dynamics, allowing effective and robust adaptation of a pre-
trained model to a time-varying conditions. The learned model of the dynamics is
incorporated into the control scheme with the following iteratively updated control
law:

DNF,: = �0
−1
' (− (G − G3) + ¤G3 − 5 (G) − 6̂NF(G, D:−1, C)). (6.7)

where the fixed point iteration 6̂(G, D:−1, C) ≈ 6̂(G, D: , C) is used to handle the non-
affine control problem that arises from the learned model. To ensure stability, the
fixed point iteration requires that the Lipschitz constant of the iteration is less than
one, which is true when

f(�0
−1
') · LD (6̂(G, D, C)) < 1 (6.8)

where f(�0
−1
'
) is the spectral norm of �0

−1
'

and LD (6̂(G, D, C)) is the Lipschitz con-
stant of 6̂(G, D, C) with respect to D. Furthermore, [24] showed that the exponential

97

convergence rate of the closed-loop system depends on the convergence rate of this
fixed-point iteration. In particular, the exponential convergence rate, U, is propor-
tional to (_max ()−d), where d bounds the one-step difference in the control input,
such that ‖D: − D:−1‖ ≤ d‖G̃: ‖ ≈ d‖G̃:−1‖. Because of this Lipschitz constant re-
quirement, the control law in (6.7) can break down in the presence of faults.

6.3 Methods
Control allocation through online optimization
First, we introduce two common choices for control allocation matrix, one prior
approach, and then propose a novel control allocation algorithm that maximizes
control authority. Because these methods do not explicitly consider the time-varying
nature of the system, we will simply denote the control actuation matrix of interest
as �.

Moore-Penrose Pseudoinverse Allocation

A natural choice for the control allocation matrix, �, is the Moore-Penrose right
pseudoinverse, given by

� = �† = �>
(
��>

)−1 (6.9)

Note that for controllable overactuated systems, i.e., the type of system we are con-
sidering, � is a wide, full row rank matrix, so (��>)−1 is well-defined. This choice
of control allocation matrix yields the minimum norm control input given any de-
sired torque command, that is,

�pinv =
argmin� max‖g‖2=1 ‖�g‖2

s.t. �� = I
. (6.10)

However, the minimum norm solution does not account for actual power usage or
control saturation. Thus, it is not often the best choice.

Maximum Control Authority Allocation

For a symmetric multirotor, we can design a control allocation matrix that maxi-
mizes control authority by choosing thrust and torque factors that independently cre-
ate the maximum thrust and moments. A multirotor is symmetric when �sign(�>)
is diagonal. The maximum torque along the 8’th axis is produced when Dgmax,8 =

max
(
sign(�>)(·,8) , 0

)
, where (�>)(·,8) is the 8’th column of �> andmax is the element-

98

wise maximum, here. Thus, the allocation matrix that yields maximum control au-
thority along each control axis, independently, is

�mca = sign(�>) (6.11)

On most multirotors and every a symmetric multirotor, this allocation scheme will
not work under a single motor failure. For example, consider a perfectly sensed
motor failure, such that � = �0� (C), where �0 represents the nominal, symmetric
system. Any single motor failure will cause (�0�)sign((�0�)>) to become non-
diagonal. This leads to cross coupling in the different control axis and significantly
degraded tracking performance. Thus, for fault-tolerant control, we must consider
more sophisticated allocation algorithms.

Kim’s Control Allocation

[5] proposes the following allocation algorithm:

�kim =
argmin� ‖�‖� + 1

<

∑<
8=1 |�(0,8) −mean(�(0,·)) |

s.t. �� = I, �(0,·) ≥ 0
(6.12)

The first term in the cost function, ‖�‖� , is the Frobenius norm of �, which is
used as a surrogate for the control effort. The second term distributes the thrust
among the motors as evenly as possible. The constraints ensure that the solution is
a valid control allocation matrix for � and that the thrust factors are non-negative.
However, we find that under an outboard motor failure for our system in Sec. 6.4,
some thrust factors are 0with non-zero torque factors. Thus, there are infinitesimally
small torque commands can cause the control to saturate.

Proposed Allocation Algorithm

Do to the limitations of prior approaches, we propose the following allocation algo-
rithm. This method directly maximizes the control authority at a nominal operating
point, where the thrust equals the (scaled) weight of the vehicle, <. Furthermore,
this formulation is not only convex, but also it is a linear program. Thus, it can be
solved efficiently using, for example using the [25], [26]

The thrust for a given set of motor speeds is given by �0 (1,·)D. Thus, to achieve the
maximum thrust with no torque, that is g3 = [1; 0; 0; 0], we must have D3 = �g3 =

�(·,1) . Similarly, to achieve the maximum torque along the 8th axis while producing
< thrust, we must have D3 = �g3 = <�(·,1) + �(·,8) . Since the vehicle is asymmetric,

99

we must consider both the positive and negative torque along each axis. Accounting
for actuation limits, this leads

�̄NFF = argmax �(1,·)�(·,1) +
∑=
8=2 �(8,·)

(
<�(·,1) + �(·,8)

)
� −∑=

8=2 �(8,·)
(
<�(·,1) − �(·,8)

)
s.t. �(2:4,·)�(·,0) = 0, �(·,1) ≥ 0, �(·,1) ≤ 1,

�((1,3,4),·)�(·,2) = [<, 0, 0]>,
0 ≤

(
<�(·,1) + �(·,8)

)
≤ 1, 0 ≤

(
<�(·,1) − �(·,8)

)
≤ 1,

�((1,2,4),·)�(·,3) = [<, 0, 0]>,
0 ≤

(
<�(·,1) + �(·,8)

)
≤ 1, 0 ≤

(
<�(·,1) − �(·,8)

)
≤ 1,

�((1,2,3),·)�(·,4) = [<, 0, 0]>,
0 ≤

(
<�(·,1) + �(·,8)

)
≤ 1, 0 ≤

(
<�(·,1) − �(·,8)

)
≤ 1

(6.13)

For failure scenarios, ��̄NFF ≠ I due to the reduced control authority, however,
��̄NFF is diagonal. Thus, we simply must rescale �̄NFF to ensure that ��̄NFF = I.
Thus, the final control allocation matrix is given by

�NFF = �̄NFF
(
��̄NFF

)−1 (6.14)

Under nominal conditions, this exactly reproduces the solution from (6.11). Further-
more, under a single motor failure, this algorithm will maintain maximum control
authority while maintaining the nominal performance characteristics of the system.

Motor Efficiency Adaptation as an Extension of Learned Dynamics
Consider the following learning architectures and control laws, which are all models
for the error in the nominal model, (6.5).

6̂NF(G, D) = q(G, D)0̂, DNF = (�0)−1
' (− 5 (G) − G̃ − 6̂NF) (6.15)

6̂B(G, D) = (�̂ − �0)D, DB = �̂−1
' (− 5 (G) − G̃) (6.16)

6̂eff(G, D) = �0(�̂ − I)D, Deff = (�0�̂)−1
' (− 5 (G) − G̃) (6.17)

6̂NFF(G, D) = �0(�̂ − I)D + q(G, D)0̂,
DNFF = (�0�̂)−1

' (− 5 (G) − G̃ − q(G, D)0̂) (6.18)

6̂NF is the learned dynamics model from [17], 6̂B is full actuation matrix adaptation,
6̂eff ismotor efficiency adaptation, and 6̂NFF is the proposedmethod, which combines

100

motor efficiency adaptation and learned dynamics. In the next section, Sec. 6.3, we
will discuss online adaptation of the full control actuation matrix, (6.16) and some
challenges of this approach. Then, we will continue our analysis only for (6.18),
since (6.17) and (6.15) are special cases of (6.18).

Full Actuation Matrix Adaptation
To simplify the notation, define �̄ = �̂ − �0. Consider the continuous time cost
function

� (�̄) =
∫ C

0
e−(C−A)/_1

H − �̄D

2 dA + _2‖�̄‖2� (6.19)

=

∫ C

0
e−(C−A)/_1tr

[
(H − �̄D) (H − �̄D)>

]
dA + _2tr

(
�̄�̄>

)
(6.20)

=

∫ C

0
e−(C−A)/_1tr

[
HH> − 2�̄DH> + �̄DD>�̄

]
dA + _2tr

(
�̄�̄>

)
(6.21)

Since this is convex and quadratic in �, we can easily find the solution by looking
for the critical point. We are using the following notation:

[
m�

m�̄

]
8 9
= m�

m�̄8 9
.

m�

m�̄
=

∫ C

0
e−(C−A)/_1

[
0 − 2HD> + 2�̄DD>

]
dA + _22�̄ (6.22)

 �̄

(
_2I +

∫ C

0
e−(C−A)/_1DD>dA

)
=

∫ C

0
e−(C−A)/_1HD>dA (6.23)

�̄ =

∫ C

0
e−(C−A)/_1HD>dA

(
_2I +

∫ C

0
e−(C−A)/_1DD>dA

)−1

︸ ︷︷ ︸
%

(6.24)

Now we can derive a recursive update law for �̄. Starting with %,

¤% = −%
d
(
%−1)
dC

% (6.25)

= −%
(
DD> − 1

_1

∫ C

0
e−(C−A)/_1DD>dA

)
% (6.26)

= −%
(
DD> − 1

_1

(
%−1 − _2I

))
% (6.27)

¤% =
1
_1
% − %

(
_2
_1
I + DD>

)
%. (6.28)

Then we can compute ¤̄�.

¤̄� =

(
HD> − 1

_1

∫ C

0
e−(C−A)/_1HD>dA

)
%

101

+
∫ C

0
e−(C−A)/_1)HD>dA

(
1
_1
% − %

(
_2
_1
I + DD>

)
%

)
(6.29)

= HD>% − �̄
(
DD> + _2

_1
I

)
% (6.30)

¤̄� = −
(
�̄D − H

)
D>% − _2

_1
�̄% (6.31)

As we will see later, it is useful to consider a composite adaptation law, that is an
adaptation law that depends on both �̄D − H and B, given by

¤̄� = −
(
�̄D − H

)
D>% − _2

_1
�̄% + BD>% (6.32)

The closed loop dynamics are given by

" (@) ¥@ + � (@, ¤@) ¤@ + 6(@) = �D (6.33)

D = �̄†(" (@) ¥@A + � (@, ¤@) ¤@A + 6(@) − B) (6.34)

�̃ = �̄ + �0 − �↔ � = �̄ + �0 − �̃ (6.35)

" ¤B + (� +)B = −�̃(�̄ + �0) (" ¥@A + � ¤@ + 6(@) − B) (6.36)

Take the following Lyapunov function

V = B>" (@)B + ‖�̃‖2F,%−1 (6.37)

‖�̃‖2F,%−1 , tr
[
�̃%−1�̃>

]
(6.38)

V(B, �̃) = B>" (@)B + tr
[
�̃%−1�̃>

]
(6.39)

then

¤V = 2B>" ¤B + B> ¤"B + 2tr
(
�̃%−1 ¤̃�>

)
+ tr

(
�̃

d
dC

(
%−1

)
�̃>

)
(6.40)

= 2B>
(
−(� +)B − �̃D

)
+ B>"B (6.41)

+ 2tr
(
�̃%−1

(
−

(
�̃D

)
D>% − _2

_1
�̄% + BD>%

)>)
+ tr

(
�̃

(
DD> − 1

_1

(
%−1 − _2I

))
�̃>

)
= −2B> B − 2B>�̃D + 2tr

(
�̃%−1 (

BD>%
)>) (6.42)

+ 2tr
(
�̃

(
−DD>�̃> − _2

_1
�̄>

))

102

+ 2tr
(
_2
_1
�̃(� − �0)>

)
− 2tr

(
_2
_1
�̃(� − �0)>

)
+ tr

(
�̃DD>�̃> − 1

_1
�̃%−1�̃> + _2

_1
�̃�̃>

)
= −2B> B − 2tr

(
_2
_1
�̃(� − �0)>

)
(6.43)

+ tr
(
−�̃DD>�̃> − 1

_1
�̃%−1�̃> − _2

_1
�̃�̃>

)
¤V = −2B> B − tr

(
�̃

(
DD> + 1

_1
%−1 + _2

_1
I

)
�̃>

)
(6.44)

− 2tr
(
_2
_1
�̃(� − �0)>

)
Lemma 6.3.1. Note that for matrices � ∈ R=×<, � ∈ R<×<, and � ∈ R<×<, if
� > � and rank(�) = =, then tr (�(� − �)�>) > 0.

Proof. For any G ∈ R=, if G ≠ 0 and rank(�) = = then �>G ≠ 0. When � − � > 0,
we also have the G>�(� − �)�>G > 0, and thus �(� − �)�> > 0. Since the trace
of a matrix is equal to the sum of the eigenvalues of a matrix, and all the eigenvalues
of a positive definite matrix are positive, tr (�(� − �)�>) > 0. �

Define U > 0 as the exponential convergence rate of the system such that(
DD> + 1

_1
%−1 + _2

_1
I

)
> 2U%−1 and (6.45)

 > U". (6.46)

Aside. We can slightly tighten the convergence bound since � −� > 0 is sufficient
but not necessary for tr (�(� − �)�>) > 0. In particular, (6.45) can be loosened
to ∑

8

eig8

((
DD> + 1

_1
%−1 + _2

_1
I

)
− 2U%−1

)
> 0 (6.47)

where eig8 is the 8’th eigenvalue of the matrix.

Define � =
_2
_1

%1/2(� − �0)>

. Then
¤V ≤ −2UV + 2

√
V� (6.48)

Consider the related systemW whereW =
√
V and 2W ¤W = ¤+ . Then, from

(6.48),

2W ¤W ≤ −2UW2 + 2W� (6.49)

103
¤W ≤ −UW + �. (6.50)

Consider another related system, F(C), defined by ¤F(C) = −UF(C)+� (C) andF(0) =
W(0). The solution to F(C) is

F(C) = e−UCF(0) +
∫ C

0
e−U(C−A)� (A)dA, (6.51)

which can be bounded by

F(C) ≤ e−UC
(
F(0) − sup

C

� (C)
U

)
+ sup

C

� (C)
U

(6.52)

By the Comparison Lemma [27],
√
V =W ≤ F(C), (6.53)

thus
√
V and also ‖G̃‖ exponentially converges to the ball

‖G̃‖ ≤
√
V ≤ BD?C

�

U
(6.54)

While this shows stability of the system, convergence of the system can be slow. This
is an inherent limitation of directly adapting all parameters of the control actuation
matrix. Furthermore, this method can be sensitive to noise or non-zero 5res, which
we have not considered here. In the next section, we will focus on adaptation of the
efficiency factors, which enables faster adaptation, and therefore faster convergence.

Kalman Filter Based Adaptation and ℓ2 Regularized Least Squares
With some simple rearrangements, we can write the Kalman Filter based composite
adaptation law following [17]. To see that the Kalman filter adaptation will follow
[17], consider the following rearrangements.

6̂NFF =

[
�0* q

] [
[̂ − 1
0̂

]
(6.55)

where [̂ = diag(�̂), and (6.56)

* = diag(D) (6.57)

Then, the Kalman filter based adaptation law is given by[
¤̂[
¤̂0

]
= −l 5

[
[̂ − 1
0̂

]
+ %

[
�0* q

]>
'−1

(
H −

[
�0* q

] [
[̂ − 1
0̂

])

104

+ %
[
�0* q

]>
G̃ (6.58)

¤% = −2l 5 % +& − %
([
�0* q

]>
'−1

[
�0* q

])
% (6.59)

A similar ℓ2-regularized least squares with exponential forgetting formulation can
also be derived, which takes the form[

¤̂[
¤̂0

]
= −W

[
[̂ − 1
0̂

]
+ %

[
�0* q

]>
'−1

(
H −

[
�0* q

] [
[̂ − 1
0̂

])
+ %

[
�0* q

]>
G̃ (6.60)

¤% = l 5 % − %
([
�0* q

]> [
�0* q

]
+ Γ

)
% (6.61)

where Γ is a diagonal positive definite matrix that controls the regularization cost in
the least squares problem. Note that the closed from solution for % is given by

% ≡
(∫ C

0
4−l 5 (C−A)

[
�0* q

]> [
�0* q

]
3A + Γ

)−1
. (6.62)

The proof of stability largely follows that of [17] once the closed loop dynamics
have been sufficiently rearranged, as we do below in (6.85). There are two added
complexities in the proof, which are that the disturbance term becomes a function of
>3 and that uniform boundedness of % now depends on uniform boundedness of.
Although we will omit the proof, and address these challenges for the ℓ1-regularized
adaptation law in the next section; the proof for the ℓ2-regularized adaptation law
and Kalman filter adaptation law follows exactly the same form, except for the form
of the regularization term and % update equation.

The ℓ2-regularized and Kalman-filter-based methods are not necessarily able to cor-
rectly identify the underlying faults, but the estimated efficiencies vector is sufficient
to stabilize and re-balance the system. Both of these results are a result of a lack of
persistent excitation. Because we are considering an over-actuated system, and be-
cause we control the design of the control allocation matrix, the control allocation
can be perturbed to obtain persistent excitation without affecting tracking perfor-
mance. This would require constantly updating the allocation scheme to excite dif-
ferent modes in the system, while still satisfying the key allocation constraint, (6.6).

Instead, we will consider an alternate regularizationmethod in the following section,
which encourages sparse failure identification.

105

Sparse Failure Identification
In this section, we will consider an update policy similar to the ℓ2-regularized adap-
tive update law in the last section, except we will use an ℓ1-regularized update pol-
icy. This is a common regularization term for sparse parameter estimation, because
it encourages sparse solutions without requiring a hard constraint on the number of
non-zero parameters or iteration through many non-zero parameter combinations.

Discrete Update Law

Consider the following least squares loss function.

�: ([̂, 0̂) =
:∑
8=0

e(−l 5 (C:−C8)) ‖H8 − 6̂NFF‖22 + W[‖[̂ − 1‖1 + W0 ‖0̂‖22 (6.63)

First, simplify the loss function by moving [̂ and 0̂ outside the summation and defin-
ing [̄ = [̂ − 1.

�: ([̂, 0̂) =
:∑
8=0

e(−l 5 (C:−C8)) (H8 − 6̂)> (H8 − 6̂) + W[‖[̄‖1 + W0 ‖0̂‖22 (6.64)

=

:∑
8=0

e(−l 5 (C:−C8))
(
H>8 H8 − 2H>8 6̂ + 6̂>6̂

)
+ W[‖[̄‖1 + W0 ‖0̂‖22 (6.65)

=

(
:∑
8=0

e(−l 5 (C:−C8))H>8 H8

)
− 2

(
:∑
8=0

e(−l 5 (C:−C8))H>8
[
�0*8 q8

]) [
[̄

0̂

]
+

[
[̄> 0̂>

] (
:∑
8=0

e(−l 5 (C:−C8))
[
*8�

>
0 �0*8 *8�

>
0 q8

q>
8
�0*8 q>

8
q8

]) [
[̄

0̂

]
+ W[‖[̄‖1 + W0 ‖0̂‖22 (6.66)

This is a convex function of [̄ and 0̂, so we can easily solve for the optimal [̄ and 0̂
using a number of numerical solving tools. During online computation, we can
quickly incorporate a new measurement by scaling the old summation terms by
exp (−l 5 (C: − C:−1)) and adding the k’th term. Then we can solve for the optimal
[̄ and 0̂ using a numerical solver as needed. Note, that we can also easily derive a
recursive solution for the optimal 0̂, with a simplified update step to quickly incor-
porate newmeasurements and a step for computation of the optimal 0̂ given the most
recently computed [̄, which would require solving a linear system of equations.

106

Continuous Update Law

The analogous continuous time adaptation law for [̂ can be found from the following
cost function:

� ([̄) =
∫ C

0
e−l 5 (C−A) ‖H − �* (A)[̄‖2 dA + 2W‖[̄‖1 (6.67)

=

∫ C

0
e−l 5 (C−A)

(
H>H − 2H>�*[̄ + [̄>*�>�*[̄

)
dA + 2W‖[̄‖1 (6.68)

Note that we have dropped back to the simpler case of (6.17), though the full con-
tinuous time stability analysis for (6.18) follows similarly under the assumption of
Lipschitz boundedness of q.

First, approximate the ℓ1 norm such that

‖[̄‖1 ≈
∑
8

√
[̄2
8
+ n = ‖[̄‖1,n and lim

n→0

∑
8

√
[̄2
8
+ n = ‖[̄‖1 (6.69)

Then the cost function in (6.68) is approximated � ([̄, n) such that limn→0 � ([̄, n) =
� ([̄), where � ([̄, n) is given by

� ([̄) ≈ � ([̄, n) =
∫ C

0
e−l 5 (C−A)

(
H>H − 2H>�0*[̄ + [̄>*�>0 �0*[̄

)
dA

+ 2W
∑
8

√
[̄2
8
+ n (6.70)

Since this cost function is convex in [̄, the minimum value is obtained when m�
m[̄

= 0,
as follows.

m�

m[̄
=

∫ C

0
e−l 5 (C−A)

(
−2*�>0 H + 2*�>0 �0*[̄

)
dA + 2W


[̄1√
[̄2

1 + n
,

[̄2√
[̄2

2 + n
, · · ·


(6.71)

m�

m[̄
= 0

©­­«Wdiag
©­­«


1√
[̄2

1 + n
,

1√
[̄2

2 + n
, · · ·


ª®®¬ +

∫ C

0
e−l 5 (C−A)* (A)�>0 �0* (A)dA

ª®®¬ [̄
=

∫ C

0
e−l 5 (C−A)* (A)�>0 HdA (6.72)

107

[̄ =
©­­«Wdiag

©­­«


1√
[̄2

1 + n
,

1√
[̄2

2 + n
, · · ·


ª®®¬ +

∫ C

0
e−l 5 (C−A)* (A)�>0 �0* (A)dA

ª®®¬
−1

︸ ︷︷ ︸
%

·
∫ C

0
e−l 5 (C−A)* (A)�>0 HdA (6.73)

Note for some 8, if [̄8 = 0 (typically for ℓ1 norm minimization), then 1√
[̄2
8
+n

= 1√
n
.

Otherwise, as limn→0
1√
[̄2
8
+n

= 1
|[̄8 | .

Now we can derive a recursive update law for [̄. Starting with %:

¤% = −%
d
(
%−1)
dC

%

= −%
©­­«Wdiag

©­­«


[̄1(
[̄2

1 + n
)3/2 , · · ·


ª®®¬ +* (C)�>0 �0* (C)

−l 5

∫ C

0
e−l 5 (C−A)* (A)�>0 �0* (A)dA

)
%

= −%
©­­«Wdiag

©­­«


[̄1(
[̄2

1 + n
)3/2 , · · ·


ª®®¬ +* (C)�>0 �0* (C)

−l 5

©­­«%−1 − Wdiag
©­­«


1√
[̄2

1 + n
,

1√
[̄2

2 + n
, · · ·


ª®®¬
ª®®¬
ª®®¬ % (6.74)

¤% = l 5 % − %
©­­«Wdiag

©­­«

[̄1 + l 5 [̄

2
1 + l 5 n(

[̄2
1 + n

)3/2 , · · ·

ª®®¬ +* (C)>�>0 �0* (C)

ª®®¬ %. (6.75)

Then we can compute ¤̄[.

¤̄[= %

(
* (C)>�>0 H(C) − l 5

∫ C

0
e−l 5 (C−A)* (A)�>0 H(A)dA

)
+

©­­«l 5 % − %
©­­«Wdiag

©­­«

[̄1 + l 5 [̄

2
1 + l 5 n(

[̄2
1 + n

)3/2 , · · ·

ª®®¬ +* (C)�>0 �0* (C)

ª®®¬ %
ª®®¬

·
(∫ C

0
e−l 5 (C−A)* (A)�>0 H(A)dA

)
(6.76)

108

= %

(
* (C)>�>0 H − l 5 %

−1[̄
)

(6.77)

+
©­­«l 5 % − %

©­­«Wdiag
©­­«

[̄1 + l 5 [̄

2
1 + l 5 n(

[̄2
1 + n

)3/2 , · · ·

ª®®¬ +* (C)�>0 �0* (C)

ª®®¬ %
ª®®¬ %−1[̄

= %* (C)>�>0 H − l 5 [̄ + l 5 [̄

− %
©­­«Wdiag

©­­«

[̄1 + l 5 [̄

2
1 + l 5 n(

[̄2
1 + n

)3/2 , · · ·

ª®®¬ +* (C)�>0 �0* (C)

ª®®¬ [̄ (6.78)

¤̄[= %* (C)>�>0 (H − �0* (C)[̄) − W% · diag
©­­«

[̄1 + l 5 [̄

2
1 + l 5 n(

[̄2
1 + n

)3/2 , · · ·

ª®®¬ · [̄ (6.79)

Stability Analysis

Again, for the continuous stability analysis we will focus on (6.17), however, the
analysis for (6.18) follows similarly. Assume that we design a control allocation
matrix � such that �0�̂� = I. The closed loop dynamics are

¤G = 5= (G) + �Deff + 6(G, D, C) (6.80)

= 5= (G) + �0�D + 3 (C) (6.81)

= 5= (G) + �0� (�0�̂)−1
' (− (G − G3) + ¤G3) + 3 (C) (6.82)

= 5= (G) +
(
�0�̂ (�0�̂)−1

' + �0(� − �̂) (�0�̂)−1
'

)
(− (G − G3) + ¤G3 − 5= (G))

(6.83)

= − (G − G3) + ¤G3 − �0�̃D (6.84)
¤̃G = − G̃ − �0*[̃ + 3 (C) (6.85)

where [̃ = [̂ − [, G̃ = G − G3 , and 6(G, D, C) has been lumped into 3 (C).

As we will see later, it is useful to consider a composite adaptation law, which is a
modification of the adaptation law from (6.79) that includes both �0*[̄ − H and G̃,
given by

¤̄[= %*�>0 (H − �0*[̄) − W%diag
©­­«

[̄1 + l 5 [̄

2
1 + l 5 n(

[̄2
1 + n

)3/2 , · · ·

ª®®¬ · [̄ + %*�>0 G̃ (6.86)

Stability can be shown with the following Lyapunov function:

V = G̃>G̃ + [̃>%−1[̃ =

[
G̃ [̃

]>
M

[
G̃ [̃

]
, (6.87)

109

where M =

[
I 0
0 %−1

]
(6.88)

The derivative is computed as follows:

¤V = 2G̃> ¤̃G + 2[̃>%−1 ¤̃[+ [̃>
d
(
%−1)
dC

[̃ (6.89)

= −2G̃> G̃ − 2G̃>�0*[̃

2[̃>%−1 ©­­«%*�>0 (H − �0*[̄) − W%diag
©­­«

[̄1 + l 5 [̄

2
1 + l 5 n(

[̄2
1 + n

)3/2 , · · ·

ª®®¬ · [̄

+%*�>0 G̃ − ¤[
)

+ [̃>
©­­«−l 5 %

−1 + Wdiag
©­­«

[̄1 + l 5 [̄

2
1 + l 5 n(

[̄2
1 + n

)3/2 , · · ·

ª®®¬ +* (C)�>0 �0* (C)

ª®®¬ [̃
(6.90)

= −2G̃> G̃ − 2G̃>�0*[̃ + 2G̃>3

+ 2[̃>*�>0 (3 − �0*[̃) − 2W[̃>diag
©­­«

[̄1 + l 5 [̄

2
1 + l 5 n(

[̄2
1 + n

)3/2 , · · ·

ª®®¬ · [̄

+ 2[̃>*�>0 G̃ − 2[̃>%−1 ¤[− l 5 [̃
>%−1[̃

+ W[̃>diag
©­­«

[̄1 + l 5 [̄

2
1 + l 5 n(

[̄2
1 + n

)3/2 , · · ·

ª®®¬ [̃ + [̃>*�>0 �0*[̃ (6.91)

= −2G̃> G̃ + 2G̃>3

+ 2[̃>*�>0 (3 − �0*[̃) − 2W[̃>diag
©­­«

[̄1 + l 5 [̄

2
1 + l 5 n(

[̄2
1 + n

)3/2 , · · ·

ª®®¬ · ([̃ + [)

− 2[̃>%−1 ¤[− l 5 [̃
>%−1[̃ + W[̃>diag

©­­«

[̄1 + l 5 [̄

2
1 + l 5 n(

[̄2
1 + n

)3/2 , · · ·

ª®®¬ [̃ (6.92)

= −2G̃> G̃ + 2G̃>3

− [̃>
©­­«*�>0 �0* − Wdiag

©­­«

[̄1 + l 5 [̄

2
1 + l 5 n(

[̄2
1 + n

)3/2 , · · ·

ª®®¬ − l 5 %

−1ª®®¬ [̃

110

+ 2[̃>
©­­«*�>0 3 − Wdiag

©­­«

[̄1 + l 5 [̄

2
1 + l 5 n(

[̄2
1 + n

)3/2 , · · ·

ª®®¬ · [− %−1 ¤[

ª®®¬ (6.93)

= −
[
G̃

[̃

]> 
2 0

0 *�>0 �0* + Wdiag

([
[̄1+l 5 [̄2

1+l 5 n(
[̄2

1+n
)3/2 , · · ·

])
+ l 5 %

−1


[
G̃

[̃

]

+ 2

[
G̃

[̃

]> 
3

*�>0 3 − Wdiag

([
[̄1+l 5 [̄2

1+l 5 n(
[̄2

1+n
)3/2 , · · ·

])
· [− %−1 ¤[

 (6.94)

Following from the definition of %−1, %−1 is bounded and uniformly positive defi-
nite. Thus, there exists some U > 0 such that

−

2 0

0 *�>0 �0* + Wdiag

([
[̄1+l 5 [̄2

1+l 5 n(
[̄2

1+n
)3/2 , · · ·

])
+ l 5 %

−1

 ≤ −2U

[
I 0
0 %−1

]
(6.95)

Note that, when %−1 is symmetric, uniformly bounded, and uniformly positive def-
inite, %−1/2 and %1/2 exist and are symmetric, uniformly positive definite, and uni-
formly bounded. Using (6.94) and (6.95) and the Cauchy-Schwartz inequality, ¤V
can be bounded, as follows:

¤V ≤ −2U

[
G̃

[̃

]> [
I 0
0 %−1

] [
G̃

[̃

]
+ 2

[
I 0
0 %−1/2

] [
G̃

[̃

]

·



3

%1/2*�>0 3 − W%
1/2diag

([
[̄1+l 5 [̄2

1+l 5 n(
[̄2

1+n
)3/2 , · · ·

])
· [− %−1/2 ¤[



(6.96)

= −2U+ + 2
√
+� (6.97)

where � =



3

%1/2*�>0 3 − W%
1/2diag

([
[̄1+l 5 [̄2

1+l 5 n(
[̄2

1+n
)3/2 , · · ·

])
· [− %−1/2 ¤[



111

Consider the related systemW whereW =
√
V and 2W ¤W = ¤+ . Then, from

(6.97),

2W ¤W ≤ −2UW2 + 2W� (6.98)
¤W ≤ −UW + �. (6.99)

Consider another related system, F(C), defined by ¤F(C) = −UF(C)+� (C) andF(0) =
W(0). The solution to F(C) is

F(C) = e−UCF(0) +
∫ C

0
e−U(C−A)� (A)dA, (6.100)

which can be bounded by

F(C) ≤ e−UC
(
F(0) − sup

C

� (C)
U

)
+ sup

C

� (C)
U

(6.101)

By the Comparison Lemma [27],
√
V =W ≤ F(C), (6.102)

thus
√
V and also ‖G̃‖ exponentially converges to the ball

‖G̃‖ ≤
√
V ≤ BD?C

�

U
(6.103)

Seemingly, the proof is complete at this point. However, we have not yet shown that
� is bounded. By assumption, [, 3, and ¤[are uniformly bounded, and �0, W, l 5 ,
and n are constants. � is uniformly bounded if %1/2, %−1/2, [̄, and * are initially
bounded and continuous.

%1/2 and %−1/2 are uniformly bounded if %−1 is uniformly positive definite and uni-
formly bounded, respectively. Uniform positive definiteness is guaranteed by uni-
form positive definiteness of [̄. Uniform boundedness is guaranteed by uniform
boundedness of* and [̄.

[̄ is uniformly bounded if [is uniformly bounded and [̃ is uniformly bounded.

* is uniformly bounded if G̃ is uniformly bounded and (�0[̄)−1
' is uniformly bounded.

For the case of (6.18) * also is a function of q, leading to the additional condition
that q be bounded, which can be guaranteed if q is Lipschitz bounded.

While precise conditions for uniform boundedness of (�0[̄)−1
' is difficult to write

out, it is clear that [̄ → 0 as W → ∞. We also observe that %1/2 ∼ *, [̄, so

112

Figure 6.1: The test aircraft vehicle design (Left) picture of the vehicle. (Right)
schematic of the implemented system. This figure was provided by Joshua Cho.

for small W, � will be dominated by the term %1/2*�>0 3. For sufficiently large
W, (�0[̄)−1

' is bounded. Lastly, for very large W, no adaptation will occur, and the
system will maintain the baseline performance. Thus, there is an inherent design
trade off between the degree of regularization and the nominal modeling errors not
captured by the efficiency adaptation model, in the case of (6.17), or the learning
representation error in the case of (6.18).

6.4 Experimental Validation
Hardware Setup
Neural-Fly for Fault Tolerancewas deployed on a custom-built octocopter (Fig. 6.1,
left) based upon the Autonomous Flying Ambulance [28], an eVTOL UAV specif-
ically designed to maximize controllability when one or more motors fail. The oc-
tocopter has a maximum motor-to-motor distance of 1.57 m and has a mass of ap-
proximately 8.58 kg. The aircraft is stabilized using ArduCopter [29] running on
a Cube Orange+, and uses IMUs, barometers, magnetometers and an RTK GNSS
to provide the state estimate. The motors are controlled via Dshot with telemetry,
allowing the RPM of the motors to be measured directly from the ESCs, providing
near-instant feedback of the achieved motor speed. The aircraft is configured as a
Dynamic Scripting Matrix frame class, allowing the control allocation matrix to be
updated in-flight.

A NanoPi M4V2 is used as the companion computer, allowing NFF to run entirely
onboard the aircraft. The ROS2-enabled companion computer receives state es-
timate information and mirrored PWM commands from ArduCopter via standard
interfacing. The transfer of the control allocation matrix to ArduCopter is imple-
mented through a dedicated UART port between the two computers, with a LUA
script on the Cube Orange+ capturing, verifying, and updating control allocation

113

Figure 6.2: Attitude response given an inboard motor failure. (top) Base-
line ArduCopter response, (middle) adapting to an unknown failure using the ℓ1-
regularized motor efficiency adaptation given in (6.86) and the allocation algorithm
given in (6.13) and (6.14), and (bottom) adapting to a known failure with updated
control allocation computed online using (6.13) and (6.14). The ℓ1-regularized ef-
ficiency adaptation results correspond to the first failure in Fig. 6.3.

matrix at 10 Hz (Figure 6.1, right). A second LUA script running on the Cube Or-
ange+ is used to trigger motor failures, and can take inputs from either ROS or the
R/C transmitter to trigger the motor failure.

This architecture allows for the control allocationmatrix to be updated in-flight with-
out overburdening the ArduCopter flight controller. On the NanoPi, the efficiency
adaptation algorithm incorporates new measurements in under 1 ms. The compu-
tation of the current estimate of the control actuation matrix takes less than 5 ms,
and resolving the control allocation matrix takes less than 5 ms. This enables mea-
surements to be incorporated essentially as fast as the raw sensor data is available,
and the control allocation matrix is updated at 10 Hz, which is about as fast as the
ArduCopter flight controller can accept updates.

Experimental performance
Neural-Fly for Fault Tolerancewas tested at theNorth Fieldwhich is part of Caltech’s
Athletics and Recreation Facilities. The North Field is a turf field that measures
approximately 150 m by 100 m, allowing for safe flight testing of the aircraft.

114

Figure 6.2 shows the attitude response of the aircraft to an inboard motor failure at
hover. The baseline ArduCopter response does not include any adaptation algorithm
and relies on the built-in controller to stabilize the aircraft. The ℓ1-regularized ef-
ficiency adaptation method uses the sparse failure identification method in (6.86)
and the control allocation algorithm in (6.13) and (6.14) to rebalance the system in
real time. The known failure case uses the same control allocation algorithm, but
directly senses the motor failure.

The known failure case demonstrates the ideal system response to a sudden motor
failure. Although the failure is perfectly known, it is not known a priori, and the
motors take time to spin up to the desired speed. The ℓ1-regularized efficiency
adaptation method is able to recover the desired roll and pitch response as quickly
as the known failure case, but the yaw response is slower, and it maintains similar
maximum roll, pitch, and yaw errors. The baseline ArduCopter response is able to
recover the roll and pitch, but more slowly than the other two methods, and it does
not recover the desired yaw.

Figure 6.3 shows the motor efficiency estimates for the same experiment, and in-
cludes four back to back inboard motor failures. The adaptation algorithm is able to
correct for the failures almost instantly. The adaptation algorithm is also able to for-
get the failures that have been corrected, but it takes a few seconds to do so. During
the third failure where motor 5 is turned off, the wrong motor is initially identified
as the failed motor, but the algorithm corrects itself. Furthermore, the system still
recovers the desired attitude response, even though the wrong motor is identified as
the failed motor. Future tests will reset the adaptation algorithm between tests to
ensure that the tests are independent.

6.5 Conclusion
In this research, we set out to develop a method for detecting and compensating
for motor failures in multirotor UAVs. Our proposed sparse failure identification
method has shown promising results, successfully isolating a failed motor within
one second and rebalancing the system even when the estimated efficiency does not
reach the true value. We also introduced the maximum-control-authority allocation
scheme which has shown significant improvements over previous work, particularly
in maximizing and maintaining control authority in the presence of a fault.

However, the proposed method’s performance in the face of multiple motor fail-
ures requires further exploration. Another area for improvement is incorporating a

115

Figure 6.3: Estimated motor efficiencies. The ℓ1-regularized efficiency adaptation
method is able to correctly isolate the failures instantly in some cases and after 5-10 s
for other cases. The adaptation takes a few seconds to forget failures that have been
corrected.

learned model of the dynamics to more accurately estimate the efficiency values by
reducing the effects of unmodeled dynamics.

Despite these areas for further investigation, our research represents a significant
step forward in developing robust fault detection and compensation strategies for
UAVs. By enhancing the safety and reliability of UAV operations, our work holds
potential to contribute to a wide range of applications, from emergency response to
last-mile delivery.

Future work will not only address the limitations outlined but will also focus on
dynamic testing of the proposed method, incorporating more aggressive maneuvers
and higher speeds. The ultimate goal is to continue paving the way towards more
resilient, adaptable, and safe UAV systems.

Acknowledgements
I would like to thank Dr. Matthew Anderson and Joshua Cho for their help in this
work, especially for their work setting up and conducting hardware experiments, and
Joshua Cho for providing the diagram included in Fig. 6.1.

116

References

[1] G. K. Fourlas and G. C. Karras, “A survey on fault diagnosis methods for
uavs,” in 2021 International Conference on Unmanned Aircraft Systems (ICUAS),
Jun. 2021, pp. 394–403. doi: 10.1109/ICUAS51884.2021.9476733.

[2] R. Puchalski and W. Giernacki, “UAV fault detection methods, state-of-the-
art,” Drones, vol. 6, no. 11, p. 330, 11 Nov. 2022, issn: 2504-446X. doi:
10.3390/drones6110330. [Online]. Available: https://www.mdpi.com/
2504-446X/6/11/330 (visited on 02/23/2023).

[3] M. W. Oppenheimer, D. B. Doman, and M. A. Bolender, “Control allocation
for over-actuated systems,” in 2006 14th Mediterranean Conference on Con-
trol and Automation, Jun. 2006, pp. 1–6. doi: 10.1109/MED.2006.328750.

[4] X. Shi, K. Kim, S. Rahili, and S.-J. Chung, “Nonlinear control of autonomous
flying cars with wings and distributed electric propulsion,” in 2018 IEEE
Conference on Decision and Control (CDC), Miami Beach, FL: IEEE, Dec.
2018, pp. 5326–5333, isbn: 978-1-5386-1395-5. doi: 10.1109/CDC.2018.
8619578. [Online]. Available: https://ieeexplore.ieee.org/document/
8619578/ (visited on 08/25/2020).

[5] K. Kim, S. Rahili, X. Shi, S.-J. Chung, and M. Gharib, “Controllability and
design of unmannedmultirotor aircraft robust to rotor failure,” inAIAA Scitech
2019 Forum, San Diego, California: American Institute of Aeronautics and
Astronautics, Jan. 7, 2019, isbn: 978-1-62410-578-4. doi: 10 . 2514 / 6 .
2019 - 1787. [Online]. Available: https : / / arc . aiaa . org / doi / 10 .
2514/6.2019-1787 (visited on 01/30/2023).

[6] T. A. Johansen and T. I. Fossen, “Control allocation—a survey,” Automat-
ica, vol. 49, no. 5, pp. 1087–1103, May 1, 2013, issn: 0005-1098. doi: 10.
1016/j.automatica.2013.01.035. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0005109813000368 (vis-
ited on 03/30/2021).

[7] O. Harkegard, “Efficient active set algorithms for solving constrained least
squares problems in aircraft control allocation,” in Proceedings of the 41st
IEEE Conference on Decision and Control, 2002., vol. 2, Las Vegas, NV,
USA: IEEE, 2002, pp. 1295–1300, isbn: 978-0-7803-7516-1. doi: 10.1109/
CDC.2002.1184694. [Online]. Available: http://ieeexplore.ieee.
org/document/1184694/ (visited on 09/13/2022).

[8] S. Fuhrer, S. Verling, T. Stastny, and R. Siegwart, “Fault-tolerant flight control
of a VTOL tailsitter UAV,” in 2019 International Conference on Robotics and
Automation (ICRA), May 2019, pp. 4134–4140. doi: 10.1109/ICRA.2019.
8793467.

[9] C. Rago, R. Prasanth, R. Mehra, and R. Fortenbaugh, “Failure detection and
identification and fault tolerant control using the IMM-KF with applications

https://doi.org/10.1109/ICUAS51884.2021.9476733
https://doi.org/10.3390/drones6110330
https://www.mdpi.com/2504-446X/6/11/330
https://www.mdpi.com/2504-446X/6/11/330
https://doi.org/10.1109/MED.2006.328750
https://doi.org/10.1109/CDC.2018.8619578
https://doi.org/10.1109/CDC.2018.8619578
https://ieeexplore.ieee.org/document/8619578/
https://ieeexplore.ieee.org/document/8619578/
https://doi.org/10.2514/6.2019-1787
https://doi.org/10.2514/6.2019-1787
https://arc.aiaa.org/doi/10.2514/6.2019-1787
https://arc.aiaa.org/doi/10.2514/6.2019-1787
https://doi.org/10.1016/j.automatica.2013.01.035
https://doi.org/10.1016/j.automatica.2013.01.035
https://www.sciencedirect.com/science/article/pii/S0005109813000368
https://www.sciencedirect.com/science/article/pii/S0005109813000368
https://doi.org/10.1109/CDC.2002.1184694
https://doi.org/10.1109/CDC.2002.1184694
http://ieeexplore.ieee.org/document/1184694/
http://ieeexplore.ieee.org/document/1184694/
https://doi.org/10.1109/ICRA.2019.8793467
https://doi.org/10.1109/ICRA.2019.8793467

117

to the eagle-eye UAV,” in Proceedings of the 37th IEEE Conference on Deci-
sion and Control (Cat. No.98CH36171), vol. 4, Dec. 1998, 4208–4213 vol.4.
doi: 10.1109/CDC.1998.761963.

[10] H. Blom and Y. Bar-Shalom, “The interacting multiple model algorithm for
systems with Markovian switching coefficients,” IEEE Transactions on Auto-
matic Control, vol. 33, no. 8, pp. 780–783, Aug./1988, issn: 00189286. doi:
10.1109/9.1299. [Online]. Available: http://ieeexplore.ieee.org/
document/1299/ (visited on 03/30/2023).

[11] M. Saied, H. Shraim, C. Francis, I. Fantoni, and B. Lussier, “Actuator fault
diagnosis in an octorotor UAV using sliding modes technique: Theory and
experimentation,” in 2015 European Control Conference (ECC), Jul. 2015,
pp. 1639–1644. doi: 10.1109/ECC.2015.7330772.

[12] A. Freddi, S. Longhi, and A. Monteriù, “Actuator fault detection system for a
mini-quadrotor,” in 2010 IEEE International Symposium on Industrial Elec-
tronics, Jul. 2010, pp. 2055–2060. doi: 10.1109/ISIE.2010.5637750.

[13] D. Rotondo, A. Cristofaro, T. A. Johansen, F. Nejjari, and V. Puig, “Detection
of icing and actuators faults in the longitudinal dynamics of small UAVs using
an LPV proportional integral unknown input observer,” in 2016 3rd Confer-
ence on Control and Fault-Tolerant Systems (SysTol), Sep. 2016, pp. 690–
697. doi: 10.1109/SYSTOL.2016.7739829.

[14] A. Vahidi, A. Stefanopoulou, and H. Peng, “Recursive least squares with for-
getting for online estimation of vehicle mass and road grade: Theory and ex-
periments,” Vehicle System Dynamics, vol. 43, no. 1, pp. 31–55, Jan. 2005,
issn: 0042-3114, 1744-5159. doi: 10.1080/00423110412331290446. [On-
line]. Available: http://www.tandfonline.com/doi/abs/10.1080/
00423110412331290446 (visited on 12/08/2022).

[15] G. Chowdhary and E. Johnson, “Concurrent learning for convergence in adap-
tive control without persistency of excitation,” in 49th IEEE Conference on
Decision and Control (CDC), Dec. 2010, pp. 3674–3679. doi: 10.1109/
CDC.2010.5717148.

[16] E. N. Johnson and A. J. Calise, “Limited authority adaptive flight control
for reusable launch vehicles,” Journal of Guidance, Control, and Dynamics,
vol. 26, no. 6, pp. 906–913, Nov. 2003, issn: 0731-5090, 1533-3884. doi:
10.2514/2.6934. [Online]. Available: https://arc.aiaa.org/doi/10.
2514/2.6934 (visited on 10/10/2021).

[17] M. O’Connell, G. Shi, X. Shi, et al., “Neural-Fly enables rapid learning for
agile flight in strong winds,” Science Robotics, May 4, 2022. doi: 10.1126/
scirobotics . abm6597. [Online]. Available: https : / / www . science .
org/doi/full/10.1126/scirobotics.abm6597 (visited on 05/13/2022),

https://doi.org/10.1109/CDC.1998.761963
https://doi.org/10.1109/9.1299
http://ieeexplore.ieee.org/document/1299/
http://ieeexplore.ieee.org/document/1299/
https://doi.org/10.1109/ECC.2015.7330772
https://doi.org/10.1109/ISIE.2010.5637750
https://doi.org/10.1109/SYSTOL.2016.7739829
https://doi.org/10.1080/00423110412331290446
http://www.tandfonline.com/doi/abs/10.1080/00423110412331290446
http://www.tandfonline.com/doi/abs/10.1080/00423110412331290446
https://doi.org/10.1109/CDC.2010.5717148
https://doi.org/10.1109/CDC.2010.5717148
https://doi.org/10.2514/2.6934
https://arc.aiaa.org/doi/10.2514/2.6934
https://arc.aiaa.org/doi/10.2514/2.6934
https://doi.org/10.1126/scirobotics.abm6597
https://doi.org/10.1126/scirobotics.abm6597
https://www.science.org/doi/full/10.1126/scirobotics.abm6597
https://www.science.org/doi/full/10.1126/scirobotics.abm6597

118

[18] M. Faessler, A. Franchi, and D. Scaramuzza, “Differential flatness of quadro-
tor dynamics subject to rotor drag for accurate tracking of high-speed trajec-
tories,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 620–626,
Apr. 2018, issn: 2377-3766. doi: 10.1109/LRA.2017.2776353.

[19] N. Hovakimyan, E. Lavretsky, and C. Cao, “Adaptive dynamic inversion via
time-scale separation,” in Proceedings of the 45th IEEE Conference on De-
cision and Control, Dec. 2006, pp. 1075–1080. doi: 10.1109/CDC.2006.
377287.

[20] S. Mallikarjunan, B. Nesbitt, E. Kharisov, E. Xargay, N. Hovakimyan, and
C. Cao, “L1 adaptive controller for attitude control of multirotors,” in AIAA
Guidance, Navigation, and Control Conference,Minneapolis,Minnesota: Amer-
ican Institute of Aeronautics and Astronautics, Aug. 13, 2012, isbn: 978-1-
60086-938-9. doi: 10.2514/6.2012-4831. [Online]. Available: https:
//arc.aiaa.org/doi/10.2514/6.2012-4831 (visited on 03/04/2022).

[21] D. Hanover, P. Foehn, S. Sun, E. Kaufmann, and D. Scaramuzza, “Perfor-
mance, precision, and payloads: Adaptive nonlinear MPC for quadrotors,”
Sep. 9, 2021. arXiv: 2109.04210 [cs]. [Online]. Available: http://arxiv.
org/abs/2109.04210 (visited on 09/16/2021).

[22] J. Pravitra, K. A. Ackerman, C. Cao, N. Hovakimyan, and E. A. Theodorou,
“L1-adaptive MPPI architecture for robust and agile control of multirotors,”
in 2020 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), Oct. 2020, pp. 7661–7666. doi: 10.1109/IROS45743.2020.
9341154.

[23] E. Tal and S. Karaman, “Accurate tracking of aggressive quadrotor trajec-
tories using incremental nonlinear dynamic inversion and differential flat-
ness,” in 2018 IEEE Conference on Decision and Control (CDC), Dec. 2018,
pp. 4282–4288. doi: 10.1109/CDC.2018.8619621.

[24] G. Shi, X. Shi,M. O’Connell, et al., “Neural lander: Stable drone landing con-
trol using learned dynamics,” in 2019 International Conference on Robotics
and Automation (ICRA), May 2019, pp. 9784–9790. doi: 10.1109/ICRA.
2019.8794351,

[25] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling language
for convex optimization,” Journal of Machine Learning Research, vol. 17,
no. 83, pp. 1–5, 2016.

[26] A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd, “A rewriting system
for convex optimization problems,” Journal of Control and Decision, vol. 5,
no. 1, pp. 42–60, 2018.

[27] H. K. Khalil, Nonlinear Systems, 3rd Edition. Prentice Hall, 2002. [Online].
Available: https : / / www . pearson . com / content / one - dot - com /
one-dot-com/us/en/higher-education/program.html (visited on
09/02/2021).

https://doi.org/10.1109/LRA.2017.2776353
https://doi.org/10.1109/CDC.2006.377287
https://doi.org/10.1109/CDC.2006.377287
https://doi.org/10.2514/6.2012-4831
https://arc.aiaa.org/doi/10.2514/6.2012-4831
https://arc.aiaa.org/doi/10.2514/6.2012-4831
https://arxiv.org/abs/2109.04210
http://arxiv.org/abs/2109.04210
http://arxiv.org/abs/2109.04210
https://doi.org/10.1109/IROS45743.2020.9341154
https://doi.org/10.1109/IROS45743.2020.9341154
https://doi.org/10.1109/CDC.2018.8619621
https://doi.org/10.1109/ICRA.2019.8794351
https://doi.org/10.1109/ICRA.2019.8794351
https://www.pearson.com/content/one-dot-com/one-dot-com/us/en/higher-education/program.html
https://www.pearson.com/content/one-dot-com/one-dot-com/us/en/higher-education/program.html

119

[28] E. Tang, P. Spieler, M. Anderson, and S.-J. Chung, “Design of the next-
generation autonomous flying ambulance,” inAIAA Scitech 2021 Forum, VIR-
TUAL EVENT: American Institute of Aeronautics and Astronautics, Jan. 11,
2021, isbn: 978-1-62410-609-5. doi: 10.2514/6.2021-1514. [Online].
Available: https://arc.aiaa.org/doi/10.2514/6.2021-1514 (visited
on 02/23/2023).

[29] ArduPilot. “ArduPilot,” ArduPilot. (), [Online]. Available: https://ardupilot.
org/.

https://doi.org/10.2514/6.2021-1514
https://arc.aiaa.org/doi/10.2514/6.2021-1514
https://ardupilot.org/
https://ardupilot.org/

120

C h a p t e r 7

CONCLUSION

This thesis has addressed numerous challenges to ensure safe and reliable learning-
based control methods. Black-box algorithms can be difficult to verify under all
possible conditions; however, by combining a black-box algorithm with classical
control methods, the methods presented here not only demonstrate safe and reliable
learning-based control, but also outperform state-of-the-art algorithms in agile flight
control. The key challenges addressed in this thesis include overcoming unmodeled
disturbances, adapting to varying exogenous disturbances, compensating for delays,
and fault-tolerant control.

In Chapter 2, we outlined the fundamental considerations for learning residual dy-
namics in a reliable control architecture. This led to three key insights. First, spectral
normalization ensures the existence of a control solution and stability of the control
equations. Second, the nonlinear control equations presented by the neural network
can be solved quickly and accurately using a fixed point iteration scheme. Third,
we proved the robustness of the system, demonstrating that the tracking error scales
linearly with the learning error.

In Chapters 3 and 4, we extended the residual-learning-based control framework to
online-learning of exogenous disturbances. This work built on the idea of linearly
separating the dependence on exogenous and endogenous factors. The endogenous
dependence was represented by a neural network and trained offline using DAIML,
a novel formulation of meta-learning. This learning algorithm was designed to de-
couple the correlation between the training data and training conditions, allowing
effective and non-overfit modeling of the endogenous dependence. The neural net-
work was updated in real-time and incorporated into the control architecture using
a robust adaptive control scheme. This adaptive control scheme does not require
persistent excitation of the neural network. The robustness of Neural-Fly was thor-
oughly studied, showing that the tracking error is linearly bounded by the represen-
tation error of the neural network. Neural-Fly outperformed state-of-the-art control
algorithms when implemented on the same hardware and tested in various wind
conditions, demonstrating that robust and reliable online-learning-based control is
achievable.

121

In Chapter 5, we proposed a first-order delay compensation for handling thrust and
attitude control delays. The residual-learning-based control schemes considered in
this thesis achieve their robustness, in part, by limiting the scope of the learning
problem. Thus, the residual learning is unable to correct for system time-delays.
This was a key motivation for studying this first-order delay compensation approach.
In quadrotor simulation results, this method was shown to maintain nominal con-
trol performance even as dead time and motor response delays increased to 100 ms.
This method is lightweight and adds minimal overhead, allowing for easy incorpo-
ration into existing control architectures, such as the residual-learning-based control
frameworks considered in this thesis. Further work is needed to estimate varying de-
lay times in real systems and to understand noise amplification limits of this method.

In Chapter 6, we studied methods to extend residual-learning-based control schemes
from Chapters 2 to 4 to fault-tolerant control by adapting the control at the mixer
level. The previous methods are limited in how they can respond to faults, as they
only apply a residual correction to the system. By adapting the control at the mixer
level, we can extend residual-learning-based control to handle a wider range of dis-
turbances, including actuator faults. Further work is needed to accurately isolate
multiple simultaneous faults.

The proposed residual-learning-based control methods have the potential to signifi-
cantly improve the performance, reliability, and safety of UAVs in various real-world
applications, such as delivery services, search and rescue, and urban air mobility.
Chapters 2 to 4 demonstrate reliable ways to incorporate learning into controlsys-
tems today, allowing for more agile and precise control. Chapters 5 and 6 address
fundamental limitations in the types of disturbances that can be corrected for by
residual-learning-based control schemes.

Future research should explore the use of residual-learning-based control schemes in
more complex systems, such as VTOL aircraft and legged robots. Further research
is needed to address the limitations of the methods in Chapters 5 and 6. Future work
should also explore the use of residual-learning-based control schemes in motion
planning and state estimation.

The work presented in this thesis represents a significant step forward in the devel-
opment of safe and reliable learning-based control methods. Residual learning can
correct for unmodeled disturbances reliably, and the methods presented here can
be incorporated into existing control architectures to enable more precise and agile
control. As UAV technology continues to evolve and learning algorithms continue

122

to progress, the insights and methods presented in this thesis will serve as both a
demonstration of the potential of learning-based control and a foundation for key
considerations in the development of safe and reliable learning-based control sys-
tems.

	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	List of Illustrations
	List of Tables
	Introduction
	Neural-Lander: Stable Control Using Black-Box Residual Models
	Introduction
	Problem Statement: Quadrotor Landing
	Dynamics Learning using DNN
	Neural-Lander Controller Design
	Nonlinear Stability Analysis
	Experiments
	Conclusions

	Neural-Fly: Offline Learning for Rapid and Robust Online Adaptation
	Introduction
	Results
	Discussion
	Materials and Methods

	Analysis, Proofs, and Implementation of Neural-Fly
	Drone Configuration Details
	The Expressiveness of the Learning Architecture
	Hyperparameters for DAIML and the Interpretation
	Discrete Version of the Proposed Controller
	Stability and Robustness Formal Guarantees and Proof
	Gain Tuning
	Force Prediction Performance
	Localization Error Analysis

	First Order Delay Compensation for Nonlinear Control Methods
	Introduction
	Multirotor Dynamics with Actuation Delays
	Delay Compensation Control
	Numerical Experiments
	Conclusion

	Neural Fly for Fault Tolerance
	Introduction
	Preliminaries
	Methods
	Experimental Validation
	Conclusion

	Conclusion

