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ABSTRACT

Synthetic biology is a rapidly evolving interdisciplinary field that combines prin-
ciples from biology, bioengineering, biochemistry, and computational sciences to
design and engineer new biological systems for various applications. This thesis
focuses on addressing the challenges in engineering large and complex biological
circuits. We develop modular modeling frameworks, formal theory, and computer-
assisted design (CAD) tools for design and analysis of biological systems at a larger
scale.

This thesis introduces a new problem of robustness in structured model reduction
of dynamical systems and provides bounds on a robustness distance metric for
linear and nonlinear systems. With this theory, we show the discrimination and
quantification of different mathematical models, considering resource loading effects
in biological circuits.

Using our proposed model reduction robustness theory and its associated software
development, we build a modeling, analysis, and parameter identification pipeline.
This pipeline is demonstrated through the characterization of DNA recombination
enzymes in a cell-free protein expression system. This pipeline is a general approach
to systematically develop mathematical models, infer parameters from experimental
data, and guide experimental design choices.

Identification of parameters in detailed mathematical models is a major challenge in
synthetic biology where only sparse data is available. This prevents the application
of our detail-driven modeling approach to larger biological systems. Hence, to
address this limitation, we present a formal methods-based approach for specifying
and synthesizing implementations for the design of biological circuits. We present a
contract-based design framework for synthetic biology. We write formal description
of design objectives at a higher level of abstraction without modeling the details
of each component. This design framework facilitates the design and prediction of
complex synthetic biological circuits at scale.

Overall, this thesis contributes to the advancement of synthetic biology by provid-
ing novel modeling frameworks, analysis methods, and design approaches. These
contributions aim to enable the design and analysis of complex biological systems
and foster the systematic engineering of biological circuits.
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C h a p t e r 1

INTRODUCTION

Synthetic biology aims to use engineering principles to design and create new bi-
ological systems for a variety of applications, such as creating biological sensors,
intelligent probiotics, and living materials. For instance, an important problem in
healthcare is the lack of complete understanding of various disease mechanisms.
Synthetic biology holds the potential to engineer cells that track and comprehend
disease-affected metabolites [1], [2]. Current approaches in designing biological
circuits rely on tuning of components to work in a specific set of conditions [3],
including the host organism [4], growth conditions [5], genetic context [6], and
many other factors. As a result, the state of the art in engineering biological circuits
is limited to systems of the order of ten engineered components. Additionally, un-
derstanding the underlying mechanisms guiding fundamental biological discovery
is also limited by scale. In order to design and analyze biological systems at a larger
scale, we need modular modeling frameworks, formal theory, and computer-assisted
design (CAD) tools. This thesis presents new contributions in all three of these di-
rections. A graphical summary of the contributions is given in Figure 1.1.

Chapter 1 describes synthetic biology examples from engineered bacterial cell pop-
ulations and cell-free extracts to motivate the need and utility of mathematical
modeling. In Chapter 2, we present a new method to build and discriminate be-
tween various models for the systems discussed in Chapter 1. With the methodology
in Chapter 2 and our development of an iterative parameter inference framework,
we apply the modeling tools to models of gene expression in cell-free systems.
Finally, we note the limitations of the approach in Chapters 2 and 3 as it is not easily
scaled to large system designs (hundreds or thousands of components). Here, we
present a contract-based design approach in Chapter 4 for biological circuit design
at larger scale. Chapter 4 also touches on synthesis of phenomenological models
from specifications written as contracts. An ideal design framework would allow a
scientist to go from the specifications (the leftmost panel in Figure 1.1) to detailed
implementation models (the rightmost panel in Figure 1.1). We discuss these future
directions of research in Chapter 5 of this thesis.
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Figure 1.1: An overview of the thesis: Modeling Frameworks for Modular and
Scalable Biological Circuit Design.

1.1 Engineering biology
Synthetic biology is an interdisciplinary field that builds on principles of (1) genet-
ics from biology, (2) DNA engineering from bioengineering, (3) chemical synthesis
and metabolic engineering from biochemistry, and (4) systematic modeling-based
design from computational and mathematical sciences. It is widely accepted in the
scientific community that research in synthetic biology has two main classifications:
top-down and bottom-up. As the names suggest, the top-down approach entails
working with living biological organisms (commonly bacteria [7], yeast [8] or hu-
man cells [9]) and changing their genetic components for a particular engineering
application. The toggle switch [10] and the repressilator [11] system are two ex-
amples of this approach. On the other hand, bottom-up synthetic biology involves
starting with individual bio-chemical components such as DNA sequences [12], cell
extracts [13], enzymes [14] etc. in order to achieve complex systems with functions
that either mimic a biological organism or serve an engineering goal. For the better
part of the last two decades, the top-down approach has taken precedence and shown
great promise in a wide variety of engineering and health applications [15], [16].
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More recently, bottom-up synthetic biology has been gaining some traction as
well [17], especially due its modular subsystem design and integration approach.
However, a majority of this progress in complex biological circuit design for both
top-down and bottom-up synthetic biology has been a result of persistent trial-and-
error testing without any clear systematic design approach. In other disciplines such
as aerospace engineering, mathematical modeling plays a central role in part and
system design. For instance, airplanes are not built by starting with big metal pieces
and trying out combinations or exploring the full design space but rather emerge as
a result of careful characterization and integration of smaller parts together. One
could even argue that this systematic approach is one of the key reasons for the
pivotal success of electrical, aerospace, or mechanical engineering. We would like
to emulate this success for biological systems and bioengineering applications by
developing modeling frameworks and system integration design approaches that are
generally applicable to a large class of engineered biological systems.

1.2 Modeling framework for biological circuits
Mathematical modeling has been extensively used in the design of engineering sys-
tems [18]. Synthesis methods for linearized approximations of subsystems have
shown great promise in the design process. The comprehensively developed the-
ory of linear algebra, feedback control, and analysis has aided in the unimpeded
growth of modeling based design of engineering systems. Nonlinear analysis has
also played its role in simulating complicated processes such as in fluids and solid
dynamics [19]. However, the extension of linear control design and nonlinear anal-
ysis approaches has not quite made its mark on synthetic biology yet. The reasons
for this are diverse, although a common theme is that generalization of results across
different biological systems is hard due to strong context-dependence. As a result,
researchers have only been able to use particular mathematical models to describe
various biological effects to aid with system design, such as resource loading [20],
stochasticity [21], noise [22], and host-cell effects [23]. The state of the art in
engineering biological circuits is limited by scale where some of the most complex
systems that have been engineered [24], [25] have order of ten engineered compo-
nents. Similarly, understanding the underlying mechanisms guiding fundamental
biological discovery is also limited by scale. In order to design and analyze biolog-
ical systems at a larger scale, we need modeling frameworks and computer-assisted
design (CAD) tools. In this thesis, we build these standardized software for the
modeling and analysis of biological systems.
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In a collaborative effort, we have developed a unique biological model compila-
tion Python package called BioCRNpyler [26]. This tool can quickly build large
biological system models from simple high-level specifications. For example, a gene
regulatory network model with hundreds of species and reactions can be compiled
in less than ten lines of Python code with an option to tune the granularity of the
modeling details. A similar software tool called OneModel [27] has been developed
recently which can also build differential-algebraic equation models. However, a
few key limitations of these software limit their accessibility and compatibility for
building models of systems. On the other hand, modeling tools such as iBioSim [28],
Tellurium [29], and COPASI [30] provide a much more accessible framework for
building biological system models but cannot be scaled to build large system models
easily.

Training mathematical models with biological data is an integral step in any model-
ing effort. Formal systems design methods in engineering make use of mathematical
models and data from characterized components and their environments. To imitate
this for biological system analysis, it is crucial to integrate experimental data with
complex biological system models. In this thesis, we extend the biological simu-
lation software package called Bioscrape [31] to implement easy-to-use Bayesian
inference methods. However, Bioscrape only supports time-series data and only a
few built-in simulation and analysis tools. For wider adoption of the system analysis
and identification tools in Bioscrape, it is vital to develop software that can support
multiple data modalities.

For the modeling tools described above, the user implicitly chooses the detail of
the models and the underlying assumptions. In this way, all mathematical mod-
els are “reduced models” where the modeling details are decided depending on
the hypothesis under study. Reduced-order modeling is ubiquitous in all engineer-
ing applications. Controller synthesis or system design makes considerable use of
reduced-order implementations in many applications. Abstracting away the details
of a system model to focus on modeling the properties of interest and its inter-
actions is an important insight that is commonly used in control systems’ design.
Reduced models are also useful to specify the desired objectives or the perfor-
mance specifications of a system. To meet these objectives, the designer needs to
map the specifications to the mechanistic implementations and also mathematically
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characterize this mapping [32]–[34] in order to understand and analyze the system
performance. However, the current modeling paradigm in synthetic biology does
not explicitly account for conditions when the system operates in situations where
the underlying assumptions are not satisfied.

In this thesis, we present a new model reduction method and associated software
tool called AutoReduce. We also further develop on BioCRNpyler (a detailed chem-
ical reaction modeling software) and Bioscrape (a biological model simulator and
inference toolbox). With these, we create a modeling framework that can be used to
systematically build mathematical models of tunable granularity, assess the good-
ness of models, and use these tools in an iterative pipeline to guide larger system
designs.

1.3 Motivating examples
We present three motivating examples from synthetic biology where system model-
ing, simulation, and analysis have led to useful results. We also discuss some of the
limitations with these approaches and highlight the advances that this thesis makes
in bridging the existing gaps.

Wound healing
Synthetic biology can be used to engineer efficient drugs [1], metabolic path-
ways [35], and track cell populations [2] for precision medicine. Robust and
dynamical sensing of the disease biomarkers could provide an exciting perspec-
tive on designing diagnostic tools for treatment. For example, the process of wound
healing in humans involves complex control of many different kinds of cellular
consortia in tandem. To use bacterial cells as a proof-of-concept to demonstrate and
control the process of wound healing, we need to engineer cells such that we can
precisely control the population of each cell and the ratio of a particular type of cell
with others.

We built a phenomenological ordinary differential equation model of an engineered
two-member bacterial community to show that we can control the density and com-
position of the bacterial consortia [7]. In this system model, we have two different
cell types (𝐶1 and 𝐶2). Each cell type expresses a toxin that kills itself but at the
same time activates an anti-toxin that rescues the other cell type. In this way, we
expect the system to demonstrate population and ratiometric control.
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Figure 1.2: A part of the wound healing system design where in vivo circuits are
designed to control the population of both cell types A and B while also maintaining
a desired ratio of the cells. Plots are simulations of cell density (total population)
and composition (cell fraction). Each colored curve represents seeding a community
at a unique composition and density. Without intercellular signal degradation, we
observe that the density converges to a steady state while composition does not
converge. But, with signal degradation we observe that the disturbances are rejected
as the consortium maintains the population and the composition.

In our first iteration of the model simulations, although the population was robustly
controlled to the desired fixed point, we observed that the composition control was
not robust to disturbances introduced in the system. By analyzing the stability of the
system, we predicted that active degradation of quorum sensing signals mediated
by the AiiA degradase enzymes robustly adapts to a desired set-state for population
of each cell and the desired composition [7]. The biological circuit that we studied
is shown in Figure 1.2 and the associated simulations of the ODE model that we
developed are also shown.

Engineering disturbance rejection in bacteria
Similar to the previous motivating example on wound healing and population con-
trol, modeling and simulations can also be used to study layered feedback control
circuits [36]. In this system, a combination of a slow-but-accurate and fast-but-
inaccurate feedback is used to achieve precise control of protein expression even in
the presence of environmental disturbances.

Feedback control theory using linearization of system model is used to validate
the performance of the systems in silico. Further exploration using the nonlinear
model is used to explain the observed system behavior. This is another example that
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On the other hand, a trans negative feedback may be engineered that does not fully
recover to the desired set point but rejects the disturbance quickly. The two different
feedback mechanisms are shown as repression arrows in the circuit diagram.

highlights the importance of phenomenological models for engineered biological
systems. But this may not always be the case, as shown with the next example.

Optimizing artificial cell systems
Cell-free synthetic biology [37] and artifical cell-like system design [38] are bur-
geoning research areas within synthetic biology. With cell-free systems, we hope
to engineer larger biological circuits without strong context-dependence that comes
from complex processes of living cells. However, batch-to-batch variability of cell-
free systems and their short “runtime” are major drawbacks. To address these issues,
mathematical models could be developed that reliably predict the protein expression
in a cell-free system. In particular, for cell-free systems like PURE [39], all compo-
nents of the mixture are known, so we may expect that a detailed mechanistic model
can capture all possible interactions. This has the potential to accurately predict the
performance of cell-free based circuits and artificial cell systems.

The motivating examples above highlight the vast possibilities where mathe-
matical modeling can play a crucial role and point out some of the gaps in the
current modeling frameworks and design tools. In Chapter 2, we present the theory
of assessing robustness of reduced-order models. Using this theory, we develop a
modeling framework that can be used to certify the goodness of different models.
We apply this framework to model biological systems presented here as motivating
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Figure 1.4: The role of mathematical modeling in predicting protein expression
in cell-free protein expression systems. Due to the relatively lower complexity of
mechanisms in cell-free systems as compared with living cells, detailed chemical
reaction network models may be built that would accurately predict the protein
expression.

examples — negative feedback in robustly controlling bacterial protein expression,
and gene expression models. We expand on the gene expression models in the
cell-free protein expression system context in Chapter 3. In this chapter, we also
present a modeling and analysis pipeline that is generally applicable to engineered
biological systems. Finally, in Chapter 4 and Chapter 5, we present a new theoretical
framework based on assume-guarantee contracts for predictive and compositional
system modeling.
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C h a p t e r 2

BUILDING BIOLOGICAL SYSTEM MODELS

2.1 Introduction
We consider the problem of systematically building reduced biological system mod-
els from detailed system descriptions. We derive results on the robustness of the
error in structured model reduction for both linear and nonlinear dynamical systems.
The robustness of structured model reduction is a well-studied problem for singu-
larly perturbed dynamical systems. However, singular perturbation theory requires
the system dynamics to be in time-scale separable form which is not generally pos-
sible for physical system models. We present a more general robustness analysis
approach that does not require the system to be in the standard singular perturbation
form. Moreover, with our method, we give robustness guarantees to each reduced
model with respect to parametric uncertainties in all model parameters.

In this chapter, we define a new problem for the robustness of error in structured
model reduction of dynamical systems. We derived bounds on a robustness distance
metric for linear and nonlinear dynamical systems using two different approaches.
The linear analysis approach quantifies the robustness in model reduction that de-
pends on the Lyapunov matrix and the parameter derivative of the system matrix.
For nonlinear dynamical systems, we develop a sensitivity analysis-based approach
to elucidate the robustness analysis similar to the linear analysis approach. We also
prove that for linear systems both methods lead to equivalent results.

Our novel problem setup of estimating robustness in model reduction leads to inter-
esting new results in the mathematical modeling of a gene expression system. We
derive a new mathematical model that can capture the effects of resource loading
in gene expression. Under different biologically plausible conditions such as weak
ribosome binding strength, RNA polymerase loading, our approach can computa-
tionally discriminate between different possible reduced models and quantify its
performance guarantees.
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Chemical reaction network modeling
A chemical reaction network (CRN) is a set of species and chemical reactions
where each reaction is associated with a rate function or propensity that models
the changes in the species’ concentrations or counts. Under certain assumptions,
CRNs can be written as ordinary differential equations (ODEs) and then numerically
integrated [40]. CRNs can also be simulated stochastically by using the reactions
to generate continuous-time Markov chains. [41] or by writing a chemical master
equation [42]. CRNs are prevalent in biological system modeling as they can
represent systems in a mechanistic manner and provide flexibility in the choice of
simulation frameworks. CRN theory is an extensively studied topic with applications
in various sub-fields such as mathematical modeling [43], computer science [44],
and thermodynamics [45]. Despite the strong theoretical underpinnings of CRN
modeling, many biological system models in practice are empirical and heuristic-
driven. This is due to the lack of information about the possible chemical reactions
in a system and the even harder problem of estimating the reaction propensities given
the sparse experimental evidence. We classify these models as phenomenological
in nature and discuss them next.

Phenomenological modeling
The lack of mechanistic details of various biological processes prompts us toward
higher abstractions and model the phenomena of the biological system in question.
Such phenomenological models are often easier to fit the observed experimental
data, but lack the mechanistic details of the system. More importantly, the correct-
ness of phenomenological models is dependent on many implicit assumptions. It is
important to monitor these assumptions when using these models in practice to avoid
incorrect conclusions from the model under conditions that violate the underlying
assumptions. The task of constructing correct models is made more challenging by
the difficulty in discerning between correct and incorrect models using experimental
data [46]–[48]. Hence, it is important to construct system specifications that guar-
antee certain sets of behaviors under explicitly stated assumptions. Such models can
be used to reject incorrect models based on unsatisfiability of the assumptions or the
guarantees. We discuss such models as specifications in detail in Chapter 4. In this
chapter, we explore the mapping between the detailed models (for example, CRNs)
and their reduced-order representations (towards phenomenological models). Us-
ing this mapping, we provide a computational framework to systematically build
biological system models under given mechanistic assumptions about the system.
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Reduced-order modeling
For applications of control theory to physical system design, a reduced model is
commonly used that describes the dynamics of interest in lower dimensions to sim-
plify the design process. Reduced models are used to specify the desired objectives
or the performance specifications of a system. To meet these objectives, the designer
needs to map the reduced models to the level of system design and also mathemati-
cally characterize this mapping to understand and analyze system performance. For
biological systems, this is a challenge that hinders the use of mathematical models
in experimental designs and analysis to some extent.

For model-based design of biological circuits, we need to develop mathematical
models that map system design specifications to mechanistic details. Commonly
used phenomenological models are based on empirical information and their pa-
rameters describe lumped properties of the system that are effective in explaining
the observed experimental data [7], [10], [11], [31], [49] by solving the inverse
problem [50] but have not been readily used for forward engineering of biological
circuits [51]. Towards that end, to explore different design possibilities one needs
to carefully justify the validity of the underlying assumptions for each model [52].
Time-scale separation is one of the most common properties exhibited by biological
systems. For example, the half-life of an mRNA in E. coli is around 100 seconds
whereas the average half-life for a protein is of the order of a few hours. Hence, it
is important to consider the effects of this assumption on biological system models.

Structured model reduction
Singular perturbation theory [53] is the formal way of deriving mathematical models
for system dynamics with time-scale separation. For such systems, it is common to
separate the dynamics into fast and slow modes. Then, singular perturbation theory
can be used to derive reduced models that accurately represent the dynamics of in-
terest. A key feature of singular perturbation theory is that the states of the reduced
model are a subset of the states of the full model. In other words, the structure of
the model and the meaning of the states and parameters is conserved by construc-
tion in any reduced model obtained using singular perturbation theory. This is not
automatically the case in other model reduction techniques where transformations
are introduced [54], [55] and hence in such techniques, the meanings of the states
may not be preserved.
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We define structured model reduction as the set of model reduction methods where
the states of the reduced models are a strict subset of the states of the full model.
The advantage of structured model reduction techniques is that an explicit mapping
between the full and the reduced model is readily available [34]. Moreover, since
the parameters and the states in the reduced model have the same meaning as in
the full model, the design outputs and analysis results obtained using the reduced
model can easily be given context and compared with the full model [56]. This is
especially relevant for biological system modeling as it is often important to map the
reduced dynamics to the mechanistic details. However, due to the strict condition
on the possible reduced model states, structured model reduction methods suffer
from the limitation that the choice of reduced models is restricted and dependent on
the modeling details of the full system. That is, for a given full model it may not
always be possible to analytically derive a reduced model. Other model reduction
methods that are projection-based or those which preserve the input-output mapping
are better in that respect. Here, we focus on the former class of model reduction
problems that preserve the modeling structure in the reduced models and hence
more relevant for biological systems.

Metrics for model reduction
The goal with any model reduction problem is to minimize the error in the perfor-
mance of the reduced model when compared to the full model. This error perfor-
mance criterion can be general and depend on trajectories of all states and output
variables, or specific, such as minimizing a particular metric of interest. Singular
perturbation theory for model reduction and its error analysis is a widely studied
topic in the literature [57]–[59] for different system and control design settings. A
commonly used method for model reduction that is derived from the singular per-
turbation concept of time-scale separation is the quasi-steady-state approximation
(QSSA) method [60]–[63]. Here, a subset of states is assumed to be at steady-state
and hence their dynamics are collapsed to algebraic relationships. Error analy-
sis for QSSA based model reduction [64]–[66] has been studied as well. However,
robustness of these model reduction methods is not as widely studied in the literature.

Robust control design is a well-studied problem in control theory. The extensions
of robust control theory to singularly-perturbed systems are studied in [67] and [68].
Similarly, robust stability analysis of adaptive control problems, linear time-varying
systems, and the general parametric uncertainty problems has been of interest as
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well [69], [70]. A complementary, although not as widely applicable, approach to
study the robustness of systems is to use sensitivity analysis of system variables or
derived properties under parameter variations. Due to the success of robust control
design methods [69] for different applications, the more holistic approach of sen-
sitivity analysis for robustness estimates has not received much attention. In [71],
sensitivities of singular values are used to give estimates for robustness properties
of a linear feedback system. The advantage of such a method is that it analyzes the
effect of multiple parametric uncertainties and hence can be used to enhance the
usual robust stability approaches.

Our problem statement is motivated by this sensitivity analysis approach for ro-
bustness and by the lack of existing results for robustness estimates of error in
structured model reduction. In particular, we give robustness guarantees for the
error in model reduction under parametric uncertainties. Using linear analysis, we
give a robustness metric for QSSA-style model reduction of linear dynamical sys-
tems. We present a complementary approach that employs sensitivity analysis of the
error in model reduction to estimate the robustness under parametric uncertainties.
This approach works for nonlinear dynamical systems as well. We demonstrate our
method with the help of common biomolecular system examples. Using our results
on the model reduction robustness metric, we derive a new mathematical model for
gene expression that accounts for ribosomal loading better than the commonly used
models in the literature.

2.2 Mathematical preliminaries
We denote an eigenvalue of a matrix 𝑃 by _(𝑃). The maximum eigenvalue will be
denoted by _max(𝑃). For a state-dependent matrix 𝑃(𝑥) we denote the maximum
eigenvalue of 𝑃 over all values of 𝑥 by _max𝑥

(𝑃). We consider the Euclidean 2-norm
for vectors. For example, we use the notation ∥𝑥∥ for the 2-norm of 𝑥 ∈ R𝑛 and
similarly for matrices ∥·∥ represents the induced 2-norm.

Problem formulation
We start by formulating the problem for linear system dynamics and then focus on
the nonlinear systems next. The full linear system model is given by the following
autonomous state-space equation

¤𝑥 = 𝐴(\)𝑥, 𝑦 = 𝐶𝑥, 𝑥(0) = 𝑥0, (2.1)
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where 𝑥 ∈ R𝑛 are state variables, the output vector is 𝑦 ∈ R𝑘 , and \ =
[
\1, \2, ..., \𝑝

]𝑇
is the vector of all model parameters. We consider a structured model reduction
where the dynamics of a subset of states (𝑥𝑐) are collapsed (converted to algebraic
relationships) on account of being at quasi-steady-state. The remaining states are
the states of the reduced model, 𝑥. The reduced model is given by

¤̂𝑥 = �̂�(\)𝑥, �̂� = �̂�𝑥, 𝑥(0) = 𝑥0, (2.2)

where 𝑥 ∈ R�̂� are the reduced state variables and �̂� ∈ R𝑘 is the output vector. We
assume that the full and the reduced model have the same number of outputs but
different dynamics. Throughout this chapter, we also assume that both the full and
the reduced systems are asymptotically stable and observable. This model reduction
corresponds to a time-scale separation in the dynamics of the full model where the
meaning of all states and parameters is retained in the reduced model. It is a relaxed
form of singular perturbation theory based model reduction in that it does not require
the system to be in the standard separable form, which is a hard condition to satisfy
for general system dynamics, as we will see next.

Singular perturbation theory [53] is the standard way to derive reduced models
and bounds on error in model reduction for the problem statement given above.
However, to use singular perturbation theory the system dynamics need to be sepa-
rable according to the different time scales. For the problem formulation above, the
requirement would be that we can write the dynamics in the following form,

¤̂𝑥 = 𝐴11𝑥 + 𝐴12𝑥𝑐,

𝜖 ¤𝑥𝑐 = 𝐴21𝑥 + 𝐴22𝑥𝑐,
(2.3)

where 𝐴11 ∈ R�̂�×�̂�, 𝐴22 ∈ R(𝑛−�̂�)×(𝑛−�̂�) , and similarly we have 𝐴12 and 𝐴21. Now,
under the condition that 𝜖 → 0 and Hurwitz 𝐴22, we get the reduced model as in
equation (2.2) with,

¤̂𝑥 = (𝐴11 − 𝐴12𝐴
−1
22 𝐴21)𝑥 := �̂�𝑥. (2.4)

In Figure 2.1, the block diagram for a system with time-scale separation is given.
Using singular perturbation theory, conditions can be derived under which the error
in model reduction converges to zero:

∥𝑥 − 𝑥∥ ≤ 𝑂 (𝜖) (2.5)

for a time-scale separation parameter 𝜖 ∈ [0, 𝜖∗]. The error in model reduction
goes to zero as 𝜖 → 0. This is the standard model reduction problem using singular
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Figure 2.1: Structured model reduction of a linear system. The 1/𝑠 block represents
an integrator.

perturbation to separate the time scales of the model where the dynamics of the
“fast” states of the system (𝑥𝑐) are collapsed to zero when 𝜖 → 0 and the dynamics
of the “slow” states (𝑥) is the reduced dynamics.

Under uncertainties in the system dynamics, it is important to analyze the ro-
bustness of the model reduction. The results on robustness for singular perturbation
based model reduction either focus on robust controller design under uncertainties
for singularly perturbed systems [67], [68] or analyze the effect on the time-scale
separation parameter 𝜖 due to uncertainties. Recently, a singular perturbation mar-
gin [72] (similar to the gain margin and phase margin definitions) has been proposed
to assess the robust stability of singularly perturbed systems under uncertainties. It
is defined using the 𝜖∗ given in the error approximation equation (2.5). This frame-
work can be used to compute a robustness estimate of the model reduction error
for the singular perturbation method. An extension of this robust stability margin
for nonlinear dynamics is given in [73]. Despite the rich body of literature on sin-
gular perturbation theory, the major limitation of such a model reduction approach
remains that the system dynamics must be written in the standard form (2.3). As
stated in [74], for physical systems it is usually not straightforward to put a model
in the singularly perturbed form since the choice of combination(s) of parameters
to be considered small is not always clear. Hence, the relaxed approach of using
QSSA is common for various applications.
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In QSSA, the dynamics of a set of states are collapsed to zero to get the reduced-order
model. The choice of states to be collapsed is usually driven by known time-scale
separations in the system model. Although QSSA is a widely used approach it does
not necessarily guarantee error performance as in equation (2.5). The limitation
of QSSA is that the mathematical justification and conditions for approximating a
variable to be at a steady-state are not always obvious. As a result, there could
be many possibilities of reduced models and so it is the designer’s task to find a
“correct” QSSA based model reduction. Towards that end, in [66], a structured
model reduction algorithm is presented that guides the choice of collapsed states so
that the error between the output of the full and the reduced models is minimized.
Other QSSA error analysis [64] approaches can also be used for this purpose. In
this chapter, we briefly discuss model reduction error results for QSSA further. Our
main focus is on the problem of robustness of this structured model reduction, that
is, how robust a particular model reduction is under parametric uncertainties.

To formulate this problem, we first construct an augmented state-space system
that consists of variables of the full and the reduced model together:

𝑥 :=

[
𝑥

𝑥

]
.

We denote all augmented variables similarly with a bar on top of the usual variables.
So,

�̄� :=

[
𝐴 0
0 �̂�

]
.

For the augmented state variable, we can write the following state-space system,

¤̄𝑥 = �̄�(\)𝑥, Z = �̄�𝑥, 𝑥(0) =
[
𝑥0

𝑥0

]
, (2.6)

where Z is the error in model reduction defined as Z = 𝑦 − �̂�, hence �̄� =

[
𝐶 −�̂�

]
.

To study the robustness of the structured model reduction (that is the robustness
of deriving the particular reduced model (𝑥, �̂�) under uncertainties in model pa-
rameters) we need an upper bound on ∥Z ∥ as the parameters \ vary. For the linear
augmented system we can write the following by solving for Z (𝑡, \),

Z (𝑡, \) = �̄�𝑒 �̄�𝑡𝑥(0), (2.7)

where Z ∈ R𝑘 .
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Lemma 1 (See [75]). For a Hurwitz matrix 𝐴, the norm of the matrix exponential
is bounded above as 𝑒𝐴𝑡 ≤ 𝑒−|` |𝑡

for all 𝑡 ≥ 0, where ` is the logarithm norm of 𝐴 [76]. For the log-norm induced
by the 2-norm, we have that

`(𝐴) = _max(𝐴 + 𝐴𝑇 )
2

,

and for Hurwitz 𝐴, ` is always negative.

We use this to give an important result on the derivative of the matrix exponential
with respect to a parameter.

Lemma 2. The derivative of the matrix exponential 𝑒𝐴𝑡 with respect to a parameter
\𝑖 is given by

𝜕𝑒𝐴𝑡

𝜕\𝑖
=

∫ 𝑡

0
𝑒(𝑡−𝜏)𝐴

𝜕𝐴

𝜕\𝑖
𝑒𝜏𝐴𝑑𝜏. (2.8)

If 𝐴 is Hurwitz, the norm of the derivative of the matrix exponential with \𝑖 is
bounded above by 𝜕𝑒𝐴𝑡𝜕\𝑖

 ≤
𝜕𝐴𝜕\  𝑡𝑒−|` |𝑡 (2.9)

where |` | is the absolute value of the log-norm of 𝐴 as in Lemma 1.

Proof. The first part of the lemma (in equation (2.8)) is a result proven in [77] and
a simplified version is given in [78] and [79]. An alternate proof for equation (2.8)
is presented here. For a linear system, ¤𝑥 = 𝐴𝑥, we can write the solution 𝑥(𝑡) =

𝑒𝐴𝑡𝑥(0), where 𝑒𝐴𝑡 is the matrix exponential. Now, for a parameter \𝑖, we can write

𝜕𝑥(𝑡)
𝜕\𝑖

= 𝑒𝐴𝑡
𝜕𝑥(0)
𝜕\𝑖

+ 𝜕𝑒
𝐴𝑡

𝜕\𝑖
𝑥(0),

using the product rule of differentiation. Define

𝑆(𝑡) :=
𝜕𝑥(𝑡)
𝜕\𝑖

, (2.10)

so we have,

𝑆(𝑡) = 𝑒𝐴𝑡𝑆(0) + 𝜕𝑒
𝐴𝑡

𝜕\𝑖
𝑥(0), (2.11)

and write ¤𝑆(𝑡) using equation (2.10) and ¤𝑥 = 𝐴𝑥 as

𝑑𝑆

𝑑𝑡
= 𝐴

𝜕𝑥

𝜕\𝑖
+ 𝜕𝐴
𝜕\𝑖

𝑥 = 𝐴𝑆 + 𝜕𝐴
𝜕\𝑖

𝑥.



18

Solving for 𝑆(𝑡), we get,

𝑆(𝑡) = 𝑒𝐴𝑡𝑆(0) +
∫ 𝑡

0
𝑒𝐴(𝑡−𝜏)

𝜕𝐴

𝜕\𝑖
𝑥(𝜏)𝑑𝜏.

Since 𝑥(𝜏) = 𝑒𝐴𝜏𝑥(0), we can simplify the above equation and write

𝑆(𝑡) = 𝑒𝐴𝑡𝑆(0) +
[∫ 𝑡

𝑜

𝑒𝐴(𝑡−𝜏)
𝜕𝐴

𝜕\𝑖
𝑒𝐴𝜏𝑑𝜏

]
𝑥(0).

Comparing this with equation (2.11), we get the desired result for the derivative of
the matrix exponential

𝜕𝑒𝐴𝑡

𝜕\𝑖
=

∫ 𝑡

𝑜

𝑒𝐴(𝑡−𝜏)
𝜕𝐴

𝜕\𝑖
𝑒𝐴𝜏𝑑𝜏.

To prove the second part, given in equation (2.9), write the norm of the derivative
of the matrix exponential with respect to a parameter \𝑖 as𝜕𝑒𝐴𝑡𝜕\𝑖

 = ∫ 𝑡

0
𝑒(𝑡−𝜏)𝐴

𝜕𝐴

𝜕\𝑖
𝑒𝜏𝐴𝑑𝜏

 ≤
∫ 𝑡

0

𝑒(𝑡−𝜏)𝐴 𝜕𝐴𝜕\𝑖
 𝑒𝜏𝐴 𝑑𝜏.

Now using the result of Lemma 1, since 𝐴 is Hurwitz, we have,𝜕𝑒𝐴𝑡𝜕\𝑖

 ≤
𝜕𝐴𝜕\𝑖

 ∫ 𝑡

0
𝑒−(𝑡−𝜏) |` |𝑒−𝜏 |` |𝑑𝜏.

Solving the above integral, we get the desired result:𝜕𝑒𝐴𝑡𝜕\𝑖

 ≤
𝜕𝐴𝜕\𝑖

 𝑡𝑒−|` |𝑡 . □

Note that under our assumption of asymptotically stable full and reduced models, the
augmented block-diagonal matrix �̄� is Hurwitz. So, with the result from Lemma 1,
we can conclude that the error dynamics given in equation (2.7) converges to zero
at steady-state. In this way, we have set up the problem to focus solely on the
analysis of the robustness of model reduction while assuming that the problem
of minimizing the model reduction error has already been addressed. For a given
structured model reduction (and hence the corresponding augmented system above),
we can get a bound on the error in model reduction as the model parameters vary to
give a robustness estimate for this model reduction. We construct a normalized [80]
robustness distance estimate for this purpose by computing the change in error with
parameter perturbations around any nominal values given by \∗

𝑖
:

𝑑𝑅 =

𝑝∑︁
𝑖=1

\∗
𝑖Z (𝑡, \∗
𝑖
)
 ·

 𝜕Z𝜕\𝑖
����
\𝑖=\

∗
𝑖

 , (2.12)
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where Z (𝑡, \∗
𝑖
) is the non-zero error in model reduction for 𝑡 > 0 and parameter

\𝑖 = \
∗
𝑖
. We define the sensitivity of the error with respect to a parameter \𝑖 in the

equation above as 𝑆Z :

𝑆Z =
𝜕Z

𝜕\𝑖
,

where 𝑆Z ∈ R𝑘 . Using this distance estimate, we propose the following robustness
metric to determine the performance of reduced models under parameter uncertain-
ties:

𝑅 =
1

1 + 𝑑𝑅
. (2.13)

Clearly, for any reduced model we have that 𝑅 ∈ (0, 1) with 𝑅 → 0 corresponding to
worst robust performance and 𝑅 → 1 corresponding to the best robust performance.
Hence, our goal is to compute 𝑅 (through a bound on the norm of 𝑆Z ) to give a
robustness metric for each possible reduced model. The results in the next section
give upper bounds to the norm of 𝑆Z for linear and nonlinear system settings. With
the help of some examples, we then demonstrate the computation of the robustness
metric as discussed above using these bounds on

𝑆Z. Finally, to decide a particular
reduced model we may use a combination of the error and the robustness metrics to
choose a particular reduced model in a given parameter regime.

2.3 Robustness of reduced models
Linear system — Uncertain initial conditions
In this section, we consider the uncertainties in the initial conditions — 𝑥(0) of a
linear system. We can use this result to assess the robust performance of different
possible structured model reductions when the initial conditions are dependent on
the uncertain model parameters.

Theorem 1. For the structured model reduction of the autonomous linear sys-
tem (2.1) to the reduced form of system (2.2) by using time-scale separation and
quasi-steady-state approximation under uncertain initial conditions, the norm of the
sensitivity of the error in model reduction 𝑆Z is bounded above by𝑆Z2

2 ≤ _max(𝑃)
𝜕𝑥(0)𝜕\𝑖

2

2
,

where 𝑃 is the Lyapunov matrix that solves the equation �̄�𝑇𝑃 + 𝑃�̄� = −�̄�𝑇�̄�.

Proof. We have the 2-norm [69] of 𝑆Z defined as:𝑆Z2
2 =

∫ ∞

0
𝑆Z (𝑡)𝑇𝑆Z (𝑡)𝑑𝑡.
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Using equation (2.7), we can write 𝑆Z for a parameter \𝑖 as

𝑆Z = �̄�𝑒
�̄�𝑡 𝜕𝑥(0)

𝜕\𝑖
,

since we have assumed that the matrices �̄� and �̄� are not dependent on parameters.
The norm of 𝑆Z then becomes𝑆Z2

2 =

∫ ∞

0

(
𝜕𝑥(0)
𝜕\𝑖

)𝑇
𝑒 �̄�

𝑇 𝑡�̄�𝑇�̄�𝑒 �̄�𝑡
(
𝜕𝑥(0)
𝜕\𝑖

)
𝑑𝑡. (2.14)

From [81, Ch.5], we know that for an observable asymptotically stable system, there
exists a unique matrix 𝑃 that solves the Lyapunov equation �̄�𝑇𝑃 + 𝑃�̄� = −�̄�𝑇�̄�
given by the observability Gramian:

𝑃 = lim
𝑁→∞

𝑊o(𝑁) = lim
𝑁→∞

∫ 𝑁

0
𝑒 �̄�

𝑇 𝑡�̄�𝑇�̄�𝑒 �̄�𝑡𝑑𝑡,

where 𝑊o(𝑁) is the observability Gramian. Substituting this into equation (2.14)
gives us the desired result:𝑆Z2

2 =

(
𝜕𝑥(0)
𝜕\𝑖

)𝑇 [∫ ∞

0
𝑒 �̄�

𝑇 𝑡�̄�𝑇�̄�𝑒 �̄�𝑡𝑑𝑡

] (
𝜕𝑥(0)
𝜕\𝑖

)

⇒
𝑆Z2

2 ≤ _max (𝑃)
𝜕𝑥(0)𝜕\𝑖

2

2
. □

Linear system — Uncertain system dynamics
Now we consider the case where the system dynamics given by the �̄�(\) matrix is
dependent on uncertain parameters. For simplicity we denote �̄�(\) := �̄�, noting
that it is parameter-dependent.

Theorem 2. For the structured model reduction of the autonomous linear sys-
tem (2.1) to the reduced form of system (2.2) by using time-scale separation and
quasi-steady-state approximation under uncertain system dynamics, the norm of the
sensitivity of the error in model reduction 𝑆Z is bounded above by

𝑆Z2
2 ≤ �̃�

𝜕 �̄�𝜕\𝑖
2

2

�̄�𝑇�̄�
2 ∥𝑥(0)∥

2
2 ,

where �̃� = 1/4 |` |3 and ` is dependent on �̄� as given in Lemma 1.
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Proof. Write the norm of 𝑆Z as𝑆Z2
2 =

∫ ∞

0
𝑆Z (𝑡)𝑇𝑆Z (𝑡)𝑑𝑡. (2.15)

To derive the bounds, we first write the partial derivative of Z (𝑡, \) with respect to
a parameter \𝑖 as given in equation (2.7),

𝑆Z =
𝜕Z

𝜕\𝑖
= �̄�

𝜕𝑒 �̄�𝑡

𝜕\𝑖
𝑥(0), (2.16)

assuming that the output matrix �̄� and the initial conditions are independent of
model parameters. We can write the norm of 𝑆Z as,

𝑆Z2
=

∫ ∞

0
𝑥(0)𝑇

(
𝜕𝑒 �̄�𝑡

𝜕\𝑖

)𝑇
�̄�𝑇�̄�

(
𝜕𝑒 �̄�𝑡

𝜕\𝑖

)
𝑥(0)𝑑𝑡 ≤

∫ ∞

0

𝜕𝑒 �̄�𝑡𝜕\𝑖

2 �̄�𝑇�̄� ∥𝑥(0)∥2 𝑑𝑡.

Using the result from Lemma 2, we can write,𝑆Z2 ≤
𝜕 �̄�𝜕\𝑖

2 �̄�𝑇�̄� ∥𝑥(0)∥2
∫ ∞

0
𝑡2𝑒−2|` |𝑡𝑑𝑡.

We can evaluate the integral above by parts:∫ ∞

0
𝑡2𝑒−2|` |𝑡𝑑𝑡 =

1
4 |` |3

.

We get the desired result for the norm of 𝑆Z by substituting this integral,𝑆Z2 ≤ 1
4 |` |3

𝜕 �̄�𝜕\𝑖
2 �̄�𝑇�̄� ∥𝑥(0)∥2 .

The robustness metric 𝑅 follows by using the above bound and equation (2.13). □

Corollary 2.1. Under simultaneous parametric uncertainties in system dynamics
and initial conditions, we can write the norm of 𝑆Z as𝑆Z2

2 ≤ _max(𝑃)
𝜕𝑥(0)𝜕\𝑖

2

2
+ 1

4 |` |3

𝜕 �̄�𝜕\𝑖
2

2

�̄�𝑇�̄�
2 ∥𝑥(0)∥

2
2

+ 1
2 |` |2

𝜕 �̄�𝜕\𝑖


2

�̄�𝑇�̄�
2 ∥𝑥(0)∥2

𝜕𝑥(0)𝜕\𝑖


2

(2.17)

where 𝑃 is the Lyapunov matrix and ` depends on �̄� as in Lemma 1.

Proof. Using the product rule for the derivative of Z (𝑡, \) in equation (2.7), we can
prove the desired result by combining the results from Theorem 1 and 2 and working
out the algebra for other terms that appears in the total derivative equation. □
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Nonlinear dynamics — Model reduction robustness
For nonlinear system dynamics, the approach above to derive the bound on the
robustness guarantee does not work because we cannot obtain the error dynamics
analytically as was possible for linear dynamics in equation (2.7). An alternate
approach for deriving a bound on the sensitivity of the error is using local sensitivity
analysis. Consider the following nonlinear dynamics of the full system

¤𝑥 = 𝑓 (𝑥, \), 𝑦 = 𝐶𝑥, 𝑥(0) = 𝑥0. (2.18)

The reduced nonlinear model is given using similar notation

¤̂𝑥 = 𝑓 (𝑥, \), �̂� = �̂�𝑥, 𝑥(0) = 𝑥0. (2.19)

For both the full and the reduced dynamics, we assume that 𝑓 : 𝐸 ⊂ R𝑛 → R𝑛,
𝑓 : �̂� ⊂ R�̂� → R�̂� are locally Lipschitz functions and initial conditions 𝑥(0) ∈ 𝐸 ,
𝑥(0) ∈ �̂� . The local Lipschitz continuity gives us that the solutions 𝑥(𝑡) and 𝑥(𝑡)
exist and are unique for a finite time interval. We further assume that equilibrium
points 𝑥∗ ∈ R𝑛, 𝑥∗ ∈ R�̂� exist and there is no finite escape time. See [82, Corollary
2.5] for the sufficient smoothness conditions that are needed on the system dynamics
for these assumptions to hold. We make these assumptions throughout this chapter
for any nonlinear function describing the system dynamics.

Theorem 3. For the structured model reduction of the nonlinear dynamical sys-
tem (2.18) to the reduced system (2.19) by using time-scale separation and quasi-
steady-state approximation, the norm of the sensitivity of the error in model reduc-
tion, 𝑆Z is bounded above by𝑆Z2

2 ≤ _max�̄�
(𝑃(𝑥))

𝑆0
2

2 + 2
∫ ∞

0

�̄�𝑇𝑃(𝑥)𝑆2 𝑑𝑡 + _max�̄�
( ¤𝑃(𝑥))

∫ ∞

0

𝑆2
2 𝑑𝑡

(2.20)
where 𝑃(𝑥) is a matrix that solves the Lyapunov equation 𝐽 (𝑥)𝑇𝑃(𝑥) + 𝑃(𝑥)𝐽 (𝑥) =
−�̄�𝑇�̄� at the point 𝑥(𝑡) = 𝑥 in the augmented nonlinear system trajectory. Here 𝐽 (𝑥)
is the Jacobian matrix at 𝑥, �̄� is the sensitivity to parameter, and 𝑆 is the sensitivity
coefficients vector of the augmented system, given by:

𝐽 (𝑥) =
[
𝜕 𝑓

𝜕𝑥
0

0 𝜕 𝑓

𝜕𝑥

]
, �̄� =


𝜕 𝑓

𝜕\𝑖

𝜕 𝑓

𝜕\𝑖

 , 𝑆 =


𝜕𝑥
𝜕\𝑖

𝜕𝑥
𝜕\𝑖

 .
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Proof. At the point 𝑥(𝑡) = 𝑥 in the augmented nonlinear system trajectory, write the
sensitivity system equations [80] for a parameter \𝑖 ∈ \:

¤̄𝑆 = 𝐽 (𝑥)𝑆 + �̄� , 𝑆Z = �̄�𝑆.

For the norm of the sensitivity of the error, we can write𝑆Z2
2 =

∫ ∞

0
𝑆�̄�𝑇�̄�𝑆𝑑𝑡.

For every 𝑥, given that there exists a matrix 𝑃(𝑥) = 𝑃𝑇 (𝑥) ≻ 0 such that 𝐽 (𝑥)𝑇𝑃(𝑥) +
𝑃(𝑥)𝐽 (𝑥) = −�̄�𝑇�̄�, consider a function 𝑉 (𝑆) = 𝑆𝑇𝑃(𝑥)𝑆. Differentiating this
function with respect to time, we have that

𝑑𝑉

𝑑𝑡
= 𝑆𝑇 (𝐽𝑇𝑃 + 𝑃𝐽)𝑆 + 𝑆𝑇 ¤𝑃(𝑥)𝑆 + (�̄�𝑇𝑃𝑆 + 𝑆𝑇𝑃�̄�).

For simplicity of exposition, we denote 𝑃(𝑥) as 𝑃 noting that this is a state-dependent
Lyapunov matrix, similarly 𝐽 is a state-dependent Jacobian matrix of the augmented
nonlinear system evaluated at 𝑥(𝑡) = 𝑥. Integrating the expression above from 0 to
∞ and then substituting the expression for

𝑆Z2
2, we get𝑆Z2

2 =

∫ ∞

0
−𝑑𝑉
𝑑𝑡
𝑑𝑡 +

∫ ∞

0
𝑆𝑇 ¤𝑃𝑆𝑑𝑡 +

∫ ∞

0
(�̄�𝑇𝑃𝑆 + 𝑆𝑇𝑃�̄�)𝑑𝑡,

𝑆Z2
2 = − lim

𝑡→∞
𝑉 (𝑆(𝑡)) +𝑉 (𝑆(0)) +

∫ ∞

0
𝑆𝑇 ¤𝑃𝑆𝑑𝑡 +

∫ ∞

0
(�̄�𝑇𝑃𝑆 + 𝑆𝑇𝑃�̄�)𝑑𝑡.

Since, 𝑃 is a positive semi-definite matrix, 𝑉 will be a non-negative function [74].
Using this fact and denoting 𝑆(0) := 𝑆0, we have the inequality𝑆Z2

2 ≤ 𝑆𝑇0𝑃𝑆0 +
∫ ∞

0
𝑆𝑇 ¤𝑃𝑆𝑑𝑡 +

∫ ∞

0
(�̄�𝑇𝑃𝑆 + 𝑆𝑇𝑃�̄�)𝑑𝑡. (2.21)

For the first part of this equation, we can write𝑆𝑇0𝑃𝑆0
 ≤ _max�̄�

(𝑃)
𝑆0

2
,

where we compute the maximum eigenvalue of 𝑃 over all points 𝑥. Note that if the
initial conditions are independent of all model parameters then 𝑆0 = 0. Similarly,
we get, ∫ ∞

0
𝑆𝑇 ¤𝑃𝑆𝑑𝑡

 ≤ _max�̄�
( ¤𝑃)

∫ ∞

0

𝑆2
𝑑𝑡.

Evaluating the last part in equation (2.21) proves the theorem, combined with the
above results: ∫ ∞

0

(
�̄�𝑇𝑃𝑆 + 𝑆𝑇𝑃�̄�

)
𝑑𝑡 ≤ 2

∫ ∞

0

�̄�𝑇𝑃𝑆2 𝑑𝑡.

□
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Remark. For computational purposes, we may modify the bound above as𝑆Z2
2 ≤ _max�̄�

(𝑃)
𝑆(0)2

2 + 2𝑁 sup
𝑡

�̄�𝑇𝑃𝑆2 + 𝑁_max�̄�
( ¤𝑃) sup

𝑡

𝑆2
2 (2.22)

where 𝑁 > 0 is a time at which the system solution is arbitrarily close to the equilib-
rium point, that is, ∥𝑥(𝑁) − 𝑥∗∥ < 𝜖 for some 𝜖 > 0 and 𝑥∗ is the equilibrium point
for the augmented nonlinear dynamical system. Since we compute 𝑃(𝑥) at every
time step, we can also compute ¤𝑃(𝑥) numerically. Further, a direct computation for
𝑆Z is also possible but the bounds that we give may be used as interpret-able metrics
for system performance analysis.

Equivalence of the two results for linear dynamics
A direct comparison of the results in Corollary 2.1 (robustness estimate for linear
dynamics) and Theorem 3 (robustness estimate for nonlinear dynamics) is not evi-
dent. But for the special case of linear dynamics, we have the closed-form solutions
for 𝑆(𝑡) and �̄� (𝑡). Using these we can evaluate the bound given in Theorem 3
further.

Claim. The bound on the sensitivity of the error in model reduction when obtained
using sensitivity analysis approach (as in equation (2.20)) is same as the bound
obtained using direct linear analysis approach (as given in equation (2.17)). In
particular, we have that,

2
∫ ∞

0

( 𝜕 �̄�𝜕\𝑖 𝑥
)𝑇
𝑃𝑆

 𝑑𝑡 ≤ 1
4 |` |3

𝜕 �̄�𝜕\𝑖
2 �̄�𝑇�̄� ∥𝑥(0)∥2

+ 1
2 |` |2

𝜕 �̄�𝜕\𝑖
 �̄�𝑇�̄� ∥𝑥(0)∥ 𝜕𝑥(0)𝜕\𝑖

 . (2.23)

Note that the first term in equation (2.17), for linear system bound, and equa-
tion (2.20), for nonlinear system bound, is the same. The first term corresponds to
the parametric uncertainty in the initial conditions, which is the same for both the
linear and the nonlinear result. Also, the third term in the nonlinear bound in equa-
tion (2.20) is equal to zero for the case of linear system dynamics as the Lyapunov
matrix, 𝑃(𝑥) is independent of the state value, that is, 𝑃(𝑥) = 𝑃. So, the derivative
of 𝑃 is zero. Hence we have removed the first and the third term in the comparison
above. So, we show in the proof below that the sensitivity analysis based method
to compute the bound on

𝑆(Z)2 (equation (2.20)) also leads to exactly the same
bound as given in the direct linear analysis approach in equation (2.17) for the case
of linear dynamics.
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Proof. To prove the above claim, we start by evaluating the different parts of the
left hand side expression using the closed-form solutions for linear dynamics. First,
note that from the sensitivity equation [80] for a linear system we have that

¤̄𝑆 = �̄�𝑆 + 𝜕 �̄�
𝜕\𝑖

𝑥(𝑡).

Solving the equation above for 𝑆(𝑡) and taking the norm we get𝑆(𝑡) ≤
𝑒 �̄�𝑡𝑆(0) + ∫ 𝑡

0
𝑒 �̄�(𝑡−𝜏)

𝜕 �̄�

𝜕\𝑖
𝑥(𝜏)𝑑𝜏


≤ 𝑒−|` |𝑡

𝑆(0) + 𝜕 �̄�𝜕\𝑖
 ∥𝑥(0)∥ 𝑡𝑒−|` |𝑡 (2.24)

using Lemma 1 and 2. Similarly, for
�̄�, we have�̄� = 𝜕 �̄�𝜕\𝑖 𝑥

 ≤
𝜕 �̄�𝜕\𝑖

 ∥𝑥(0)∥ 𝑒−|` |𝑡 . (2.25)

Finally, for the Lyapunov matrix, we know that

∥𝑃∥ =
∫ ∞

0
𝑒 �̄�

𝑇 𝑡�̄�𝑇�̄�𝑒 �̄�𝑡𝑑𝑡

 ,
using the observability Gramian. Using Lemma 1, we have

∥𝑃∥ ≤
∫ ∞

0
𝑒−|` |𝑡

�̄�𝑇�̄� 𝑒−|` |𝑡𝑑𝑡.
So,

∥𝑃∥ ≤
�̄�𝑇�̄� ∫ ∞

0
𝑒−2|` |𝑡𝑑𝑡,

which gives us that
∥𝑃∥ ≤ 1

2 |` |
�̄�𝑇�̄� . (2.26)

Substituting the equations (2.24), (2.25), and (2.26) into the left hand size of equa-
tion (2.23), we get the desired result that proves our claim. □

Although the two approaches give equivalent results for linear dynamics, the advan-
tage with the sensitivity analysis approach is that it is a general method that can be
used for nonlinear dynamical systems as well.
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Controlled nonlinear systems
Next, we consider the structured model reduction of a controlled nonlinear dynamical
system. The nonlinear system dynamics are then given by,

¤𝑥 = 𝑓 (𝑥, \) + 𝑔(𝑥, \)𝑢,
𝑦 = 𝐶𝑥, 𝑥(0) = 𝑥0.

(2.27)

The reduced nonlinear model is given using similar notation

¤̂𝑥 = 𝑓 (𝑥, \) + �̂�(𝑥, \)𝑢,
�̂� = �̂�𝑥, 𝑥(0) = 𝑥0.

(2.28)

Here, we have assumed a scalar input 𝑢 for simplicity of exposition. The results
that follow can be derived for systems with multiple inputs as well but with more
complicated algebra.

Theorem 4. For the structured model reduction of the nonlinear controlled dynam-
ics (2.27) to the reduced dynamics (2.28), the norm of the sensitivity of the error 𝑆Z
is bounded above by,𝑆Z2

2 ≤ _max�̄�
(𝑃)

𝑆0
2 + 2

∫ ∞

0

(�̄�𝑇𝑓 𝑃𝑆+ 𝑢𝑇𝑆𝑇 𝐽𝑇𝑔 𝑃𝑆 + �̄�𝑇𝑔 𝑃𝑆𝑢) 𝑑𝑡
+ _max�̄�

( ¤𝑃)
∫ ∞

0

𝑆2
𝑑𝑡

if there exists 𝑃(𝑥) = 𝑃(𝑥)𝑇 ≻ 0 such that 𝑃(𝑥)𝐽 𝑓 (𝑥) + 𝐽 𝑓 (𝑥)𝑇𝑃(𝑥) = −�̄�𝑇�̄� at the
point 𝑥(𝑡) = 𝑥 in the augmented nonlinear system trajectory. Here 𝐽 𝑓 (𝑥), 𝐽𝑔 (𝑥) and
�̄� 𝑓 , �̄�𝑔 are the Jacobian and parameter sensitivity matrices of augmented nonlinear
functions 𝑓 and �̄�, respectively.

Proof. The proof follows similar to the proof of the previous theorem by defining a
function 𝑉 (𝑆) = 𝑆𝑇𝑃(𝑥)𝑆 at every point 𝑥 in the system trajectory and calculating
the bound for

𝑆Z.
For the augmented system we can write the sensitivity coefficients as

𝑆 =
𝜕𝑥

𝜕\𝑖
,

where \𝑖 ∈ \. Using chain rule at point 𝑥(𝑡) = 𝑥 in the system trajectory, we can
derive the sensitivity system equation given by

¤̄𝑆 =
(
𝐽 𝑓 (𝑥)𝑆 + �̄� 𝑓

)
+

(
𝐽𝑔 (𝑥)𝑆 + �̄�𝑔

)
𝑢,
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for a scalar 𝑢 and Jacobian matrices 𝐽 𝑓 and 𝐽𝑔 are state-dependent. Consider a
function 𝑉 (𝑆) = 𝑆𝑇𝑃(𝑥)𝑆 for 𝑃(𝑥) = 𝑃(𝑥)𝑇 ≻ 0 that satisfies the conditions given
in the theorem statement. Note that we drop the 𝑥 notation from 𝐽 𝑓 , 𝐽𝑔, 𝑃 for
simplicity. Taking the derivative of 𝑉 with respect to time, we can write,

𝑑𝑉

𝑑𝑡
= ¤̄𝑆𝑇𝑃𝑆 + 𝑆𝑇𝑃 ¤̄𝑆 + 𝑆𝑇 ¤𝑃𝑆.

Substituting for ¤̄𝑆 we get

𝑑𝑉

𝑑𝑡
= 𝑆𝑇

(
𝑃𝐽 𝑓 + 𝐽𝑇𝑓 𝑃

)
𝑆 + 𝑢𝑇𝑆𝑇 𝐽𝑇𝑔 𝑃𝑆 + 𝑆𝑇𝑃𝐽𝑔𝑆𝑢 +

(
𝑆𝑇𝑃�̄� 𝑓 + �̄�𝑇𝑓 𝑃𝑆

)
+

(
𝑆𝑇𝑃�̄�𝑔𝑢 + 𝑢𝑇 �̄�𝑇𝑔 𝑃𝑆

)
+ 𝑆𝑇 ¤𝑃𝑆,

Now if there exists a matrix 𝑃 = 𝑃𝑇 such that

𝑃𝐽 𝑓 + 𝐽𝑇𝑓 𝑃 = −�̄�𝑇�̄�,

then we get the following bound by manipulating the 2-norm of 𝑆Z and denoting
𝑆(0) := 𝑆0,𝑆Z2

2 ≤ 𝑆𝑇0𝑃𝑆0 + 2
∫ ∞

0

(𝑢𝑇𝑆𝑇 𝐽𝑇𝑔 𝑃𝑆 +
�̄�𝑇𝑓 𝑃𝑆 + 𝑢𝑇 �̄�𝑇𝑔 𝑃𝑆) 𝑑𝑡 + ∫ ∞

0
𝑆𝑇 ¤𝑃𝑆𝑑𝑡.

We can simplify the above to get the desired result,𝑆Z2
2 ≤ _max�̄�

(𝑃)
𝑆0

2 + 2
∫ ∞

0

(𝑢𝑇𝑆𝑇 𝐽𝑇𝑔 𝑃𝑆 +
�̄�𝑇𝑓 𝑃𝑆 + 𝑢𝑇 �̄�𝑇𝑔 𝑃𝑆) 𝑑𝑡

+ _max�̄�
( ¤𝑃)

∫ ∞

0

𝑆2
𝑑𝑡. □

The results above assumed that the outputs of the system are linearly related to the
states 𝑦 = 𝐶𝑥, however, we can derive similar results even without this assumption.

Theorem 5. For the system dynamics in equation (2.27) with output dynamics given
by 𝑦 = ℎ(𝑥, \) and the reduced model dynamics given in equation (2.28) with output
dynamics given by �̂� = ℎ̂(𝑥, \), the norm of the sensitivity of error is bounded above
by,𝑆Z2

2 ≤ _max�̄�
(𝑃)

𝑆(0)2 + 2
∫ ∞

0

(�̄�𝑇𝑓 𝑃𝑆2
+

𝑢𝑇𝑆𝑇 𝐽𝑇𝑔 𝑃𝑆 + �̄�𝑇𝑔 𝑃𝑆𝑢) 𝑑𝑡
+ 2

�̄�ℎ2
2 + _max�̄�

( ¤𝑃)
∫ ∞

0

𝑆2
𝑑𝑡
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if there exists 𝑃(𝑥) = 𝑃(𝑥)𝑇 ≻ 0 such that 𝐽 𝑓 (𝑥)𝑇𝑃(𝑥) + 𝑃(𝑥)𝐽 𝑓 (𝑥) = −�̄�𝑇1 �̄�1,
where

�̄�1 =

[
1 −1

] [
𝐽ℎ (𝑥) 0

0 𝐽ℎ (𝑥)

]
Δ
= 𝐶𝑒𝐽ℎ (𝑥),

and 𝐽∗(𝑥), �̄�∗ refer to the Jacobian and the parameter sensitivity matrices for each
nonlinear function, respectively, at a point 𝑥(𝑡) = 𝑥 in the system trajectory given
by:

𝐽∗(𝑥) =
[
𝐽∗(𝑥) 0

0 𝐽∗(𝑥)

]
, �̄�∗ =

[
𝑍∗

�̂�∗

]
, ∗ : 𝑓 , 𝑔, ℎ.

Proof. For every point 𝑥(𝑡) = 𝑥, we write the sensitivity of the error in model
reduction for a parameter \𝑖 ∈ \ using chain rule:

𝑆Z =
𝑑 (ℎ − ℎ̂)
𝑑\𝑖

=

(
𝜕ℎ

𝜕𝑥

) (
𝜕𝑥

𝜕\𝑖

)
+

(
𝜕ℎ

𝜕\𝑖

)
−

[(
𝜕ℎ̂

𝜕𝑥

) (
𝜕𝑥

𝜕\𝑖

)
+

(
𝜕ℎ̂

𝜕\𝑖

)]
.

Define the Jacobians 𝐽ℎ (𝑥), 𝐽ℎ (𝑥), parameter sensitivity matrices 𝑍ℎ, �̂�ℎ for ℎ and
ℎ̂, respectively, and substitute back to write,

𝑆Z =

[
1 −1

] [
𝐽ℎ (𝑥) 0

0 𝐽ℎ (𝑥)

] [
𝑆

𝑆

]
+

[
1 −1

] [
𝑍ℎ

�̂�ℎ

]
,

𝑆Z = �̄�1𝑆 + 𝐶𝑒 �̄�ℎ,

where

�̄�1 :=
[
1 −1

] [
𝐽ℎ (𝑥) 0

0 𝐽ℎ (𝑥)

]
, 𝐶𝑒 :=

[
1 −1

]
.

Now, consider a function 𝑉 (𝑆) = 𝑆𝑇𝑃(𝑥)𝑆 and proceed in a similar way as in the
proof of previous results to write

𝑆Z2
2,𝑆Z2

2 =

∫ ∞

0
𝑆𝑇�̄�𝑇1 �̄�1𝑆𝑑𝑡 +

∫ ∞

0
�̄�𝑇ℎ𝐶

𝑇
𝑒 𝐶𝑒 �̄�ℎ𝑑𝑡

=

∫ ∞

0
𝑆𝑇�̄�𝑇1 �̄�1𝑆𝑑𝑡 + 2

�̄�ℎ2
2 .

Using the result from Theorem 4 and 𝐽 𝑓 (𝑥)𝑇𝑃(𝑥) + 𝑃(𝑥)𝐽 𝑓 (𝑥) = −�̄�𝑇1 �̄�1, we get
the desired result. □

Remark. For all results on robustness estimate, it is possible to further simplify
the bounds using the method in [66] to express this bound only in terms of 𝑥, the
reduced state variables and 𝑥c, the collapsed state variables. This might be useful to
generate algorithms to efficiently compute the robustness bounds.
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Input-output mapping
For forced nonlinear systems, in addition to the error and the robustness metric,
it is also important to consider the input-output mapping so that the response of a
reduced model for an input is similar to that of the full model. If the mapping from
𝑢 ↦→ 𝑦 is linear, the computation of induced system norms is a well studied topic,
see for example [83]. However, for general nonlinear systems, this is still an active
research area [84] with results only available under certain structural conditions on
the system dynamics. Similar to the gap-metric for linear systems [85], [86], there
have been a few results on computation of the gap metric for nonlinear systems [87].
We can use similar computational results in our model reduction procedure by as-
signing the gap metric to each nonlinear reduced-order model.

On the other hand, if we are only interested in the response to an input at steady-state
or at a fixed number of points in the response, then we can linearize the dynamics
at these points and assess the induced system norm for each reduced model and use
this as a metric while choosing a reduced-order model. For the system operator
𝐻 : 𝑢 ↦→ 𝑦, we define,

𝛾(𝐻) := sup
𝑢≠0

∥𝐻𝑢∥
∥𝑢∥ . (2.29)

2.4 A new Python package for automated model reduction — AutoReduce
Given a well-behaved full system model (linear or nonlinear) under the stability
assumptions, we develop an automated model reduction pipeline based on QSSA
and our results on the robustness of model reduction. In the first step, we solve
the time-scale separation problem to obtain all possible reduced models. Then, we
may numerically bound the error in the model reduction for each reduced model as
shown in [66] or compute an error metric (∥Z ∥ = ∥𝑦 − �̂�∥) by directly simulating
the system. The latter method also works for nonlinear dynamical systems. We may
reject any reduced model at this stage that does not exhibit the desired level of error
performance. However, to make a clear choice of a reduced model, we compute a
robustness metric for each reduced model using the results in the previous section.
Finally, if the system is controlled then we may use the input-output mapping metric
as well for the linearized system dynamics to determine the performance of a reduced
model in terms of the input-output response. Note that it is not required to explore
the space of all possible reduced models to compute any of the proposed metrics.
This is especially important for large system models where symbolically computing
all possible reduced models would be computationally infeasible. Hence, for large



30

system models, we can compute a heuristically chosen set of reduced models. Then,
we can compute the error, robustness, and input-output mapping metrics as desired
for the reduced models of interest.

We provide an implementation of these model reduction tools in a package called
AutoReduce. This package is available as an open-source project on GitHub [88].
The software is based on Python Sympy [89] and works by loading a Systems Biol-
ogy Markup Language (SBML) [90] model to import any biological system model.
The following important tools are available in this software:

Conservation laws
Using conservation laws, we can eliminate states that are conserved from the im-
ported SBML model. We integrate this approach in our method similar to the
method in [91]. The conservation laws can be explicitly defined or automatically
computed in AutoReduce. These are used in the software package accordingly to
eliminate state variables and compute the reduced-order models.

Time-scale separation
To solve the time-scale separation problem for a given model, the package methods
can be used to set the dynamics of the given states to collapse (𝑥c) to zero and to
automatically substitute back into the dynamics for the reduced state variables (𝑥).
This method automates the QSSA procedure and can be used to compute QSSA
based reduced models without specifying parameter values.

Comparison metrics
The performance metrics discussed above are implemented in this package as well.
For any pair of full model and reduced model, metrics such as the norm of the error
(∥Z ∥) or the robustness metric (

𝑆Z) can be computed.

2.5 Biomolecular system examples
In this section, we apply our model reduction robustness estimate results to biomolec-
ular systems to demonstrate the utility of our approach.
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Enzymatic reaction dynamics
For the enzymatic reaction system, we can write a chemical reaction network model
using mass-action kinetics for the following reactions:

𝐸 + 𝑆
𝑎−⇀↽−
𝑑
𝐶

𝑘−→ 𝑃 + 𝐸. (2.30)

The full mass-action kinetics based model with four species is given by:

𝑑𝑆

𝑑𝑡
= −𝑎𝐸𝑆 + 𝑑𝐶, 𝑑𝐶

𝑑𝑡
= 𝑎𝐸𝑆 − (𝑑 + 𝑘)𝐶

𝑑𝐸

𝑑𝑡
= −𝑎𝐸𝑆 + 𝑑𝐶 + 𝑘𝐶, 𝑑𝑃

𝑑𝑡
= 𝑘𝐶.

For this example, we discuss the standard model reduction approach using the sin-
gular perturbation method along with our automated model reduction approach.
Recall that for singular perturbation theory approach it is important to separate the
dynamics analytically according to the time scales, which might not be possible for
general system dynamics. But for this example, it is possible to derive the reduced
model using singular perturbation theory as well.

We write the conservation laws for this system as 𝐸 = 𝐸tot −𝐶 and 𝑆 +𝐶 + 𝑃 = 𝑆tot,
where 𝐸tot and 𝑆tot are the total enzyme and substrate concentrations, respectively.
We also specify that the output of interest for this system is concentration of 𝑃, the
product species.

For singular perturbation approach, we manually simplify [40, Ch.3] the system
dynamics to write the system with conservation laws in the required form (2.3):

𝜖
𝑑𝐶

𝑑𝑡
=
𝑘

𝐾𝑑
(𝐸tot − 𝐶) (𝑆tot − 𝐶 − 𝑃) − 𝑘𝐶 − 𝜖 𝑘𝐶,

𝑑𝑃

𝑑𝑡
= 𝑘𝐶,

where 𝐾𝑑 = 𝑑/𝑎 and the small parameter 𝜖 := 𝑘/𝑑. When 𝜖 → 0, we obtain
the reduced model. For singular perturbation theory based model reduction, a sin-
gular perturbation margin (SPM) has been proposed in the literature to assess the
robustness of model reduction [92]. The SPM evaluates the maximum value of 𝜖
such that the singularly perturbed system dynamics are unstable. But for biolog-
ically relevant parameters the dynamics given above do not become unstable and
hence we do not have a metric to compute the robustness of model reduction directly.
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The automated model reduction package first eliminates the two state-variables
𝐸 and 𝑆 based on the conservation laws. In the next step, it solves for time-scale
separation to obtain a possible reduced-order model. For this reduced model, we
computed the error metric (∥Z ∥ = 4.2 × 10−3) as well as the robustness metric
over the model initial conditions and parameters [88]. If the system performance is
satisfactory, then we can conclude that the final reduced model is given by:

𝑑𝑃

𝑑𝑡
= 𝐾𝐿�̄�,

where 𝐾𝐿 = 𝑘𝐸tot is the lumped parameter and �̄� is a function of 𝐸tot, 𝑆tot and model
parameters given by

�̄� =
𝑆tot − 𝑃
𝑆tot + 𝐾𝑚

where 𝐾𝑚 = (𝑑 + 𝑘)/𝑎. All of the simulations, and code required for computations
for this example is available at [88]. An important distinction with our automated
computational method to derive reduced models is that any spurious conditions are
easier to catch. For this example, it is shown in [93, Ch.3] that the commonly
used model derived above fails to capture the true dynamics under certain parameter
regimes. The robustness properties of the model reduction would inform the analysis
whenever such a condition may occur.

For all biologically relevant parameter values in the enzymatic reaction system, the
response does not become unstable. So, we may not be able to use the singular
perturbation margin (SPM) to estimate robustness of this model reduction [92].
However, our method is still applicable as it depends on computing the sensitivity
of the system states to the parameters.

Gene expression — Design space exploration
With this example, we demonstrate that a two-state ribosome and protein model can
robustly capture the chemical reaction dynamics of gene expression. We analytically
derive phenomenological models for gene expression with exactly known mappings
to the mechanistic details. We explore the modeling assumptions of time-scale
separation [94]–[96], conservation laws [91], [93], [97] and prove the robustness of
various models under certain parametric conditions.

For gene expression, a two-state model is commonly used [10], [11], [98]–[100]
in the literature that models the dynamics of the mRNA (𝑇) and the protein concen-
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tration (𝑋) as a function of the DNA copy number (𝐺) and regulatory effects:

𝑑𝑇

𝑑𝑡
= 𝑘𝑡𝑥 𝑓𝑡𝑥 (𝐺, ·) − 𝑑𝑇𝑇

𝑑𝑋

𝑑𝑡
= 𝑘𝑡𝑙 𝑓𝑡𝑙 (𝑇) − 𝑑𝑋𝑋,

where 𝑘𝑡𝑥 is defined as the transcription rate and 𝑘𝑡𝑙 is the translation rate. Similarly,
𝑑𝑇 and 𝑑𝑋 are the degradation and dilution parameters for the transcript and the
protein, respectively. The function 𝑓𝑡𝑥 (·) is usually a Hill function dependent on the
mechanism of transcriptional regulation (activation or repression). For constitutive
expression, this is assumed to be a constant function of the DNA copy number,
𝑓𝑡𝑥 (𝐺) = 𝑘𝐺. Similarly, 𝑓𝑡𝑙 (·) could be a constant or a Hill function dependent
on the transcriptional regulation mechanism [93]. Clearly, the parameters in this
model and any parameters in the Hill functions all have empirical meanings but an
analytical relationship with the mechanistic reaction rates is usually obscured [33].
Moreover, a closer analysis would show that such phenomenological models are
only valid under certain assumptions and parameter regimes.

The full CRN model

The full chemical reaction network (CRN) model for the expression of protein 𝑋
from a single gene𝐺 is described in Table 2.1. In this CRN, the gene𝐺 is transcribed
by RNA polymerase (𝑃) to an mRNA transcript 𝑇 via a complex (𝐶1) formation
reaction. Then, the transcript 𝑇 binds to the ribosome 𝑅 to form the second complex
𝐶2, which then translates to express the protein 𝑋 . Under the assumption of mass-
action kinetics for all reactions, the ordinary differential equation (ODE) model can
be derived as shown on the right in Table 2.1. We refer to this as the full CRN model
for the rest of this chapter.

Reduced-order modeling

For the CRN model, the first step is to solve for the conserved quantities in the
model. We assume that the total RNA polymerase in the system and the total
ribsomes remain conserved. From Table 2.1, we observe that

𝑑𝑃

𝑑𝑡
+ 𝑑𝐶1
𝑑𝑡

= 0,
𝑑𝑅

𝑑𝑡
+ 𝑑𝐶2
𝑑𝑡

= 0.

Hence, for constants 𝑃tot and 𝑅tot, we have that 𝑃tot = 𝑃 + 𝐶1 and 𝑅tot = 𝑅 + 𝐶2.
These conservation laws can be used to eliminate 𝐶1 and 𝐶2. AutoReduce can
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Table 2.1: Gene expression model.

CRN ODE model Nominal Parameter Values

𝐺 + 𝑃
𝑘𝑏𝑝−−−⇀↽−−−
𝑘𝑢𝑝

𝐶1
𝑑𝑃
𝑑𝑡

=
(
𝑘𝑢𝑝 + 𝑘𝑡𝑥

)
𝐶1 𝑘𝑏𝑝 = 80,

−𝑘𝑏𝑝𝐺𝑃 𝑘𝑢𝑝 = 2

𝐶1
𝑘𝑡 𝑥−−→ 𝐺 + 𝑃 + 𝑇 𝑑𝐶1

𝑑𝑡
= 𝑘𝑏𝑝𝐺𝑃 −

(
𝑘𝑢𝑝 + 𝑘𝑡𝑥

)
𝐶1 𝑘𝑡𝑥 = 0.5

𝑇 + 𝑅
𝑘𝑏𝑟−−⇀↽−−
𝑘𝑢𝑟

𝐶2
𝑑𝑇
𝑑𝑡

= 𝑘𝑡𝑥𝐶1 + (𝑘𝑢𝑟 + 𝑘𝑡𝑙) 𝐶2 𝑘𝑏𝑟 = 80,

−𝑘𝑏𝑟𝑇𝑅 − 𝑑𝑇𝑇 𝑘𝑢𝑟 = 2

𝐶2
𝑘𝑡𝑙−−→ 𝑇 + 𝑅 + 𝑋 𝑑𝑅

𝑑𝑡
= (𝑘𝑢𝑟 + 𝑘𝑡𝑙) 𝐶2 − 𝑘𝑏𝑟𝑇𝑅 𝑘 𝑡𝑙 = 0.5

𝑇
𝑑𝑇−−→ ∅ 𝑑𝐶2

𝑑𝑡
= 𝑘𝑏𝑟𝑇𝑅 − (𝑘𝑢𝑟 + 𝑘𝑡𝑙) 𝐶2 𝑑𝑇 = 0.5

𝑋
𝑑𝑋−−→ ∅ 𝑑𝑋

𝑑𝑡
= 𝑘𝑡𝑙𝐶2 − 𝑑𝑋𝑋 𝑑𝑋 = 0.01

obtain these conservation laws automatically by using symbolic computations in the
differential equations. After substituting the conservation laws using AutoReduce,
we obtain the following reduced-order model,

𝑑𝑃

𝑑𝑡
= (𝑘𝑡𝑥 + 𝑘𝑢𝑝) (𝑃tot − 𝑃) − 𝑘𝑏𝑝𝐺𝑃,

𝑑𝑇

𝑑𝑡
= 𝑘𝑡𝑥 (𝑃tot − 𝑃) + (𝑘𝑡𝑙 + 𝑘𝑢𝑟) (𝑅tot − 𝑅) − 𝑘𝑏𝑟𝑅𝑇 − 𝑑𝑇𝑇,

𝑑𝑅

𝑑𝑡
= (𝑘𝑡𝑙 + 𝑘𝑢𝑟) (𝑅tot − 𝑅) − 𝑘𝑏𝑟𝑅𝑇,

𝑑𝑋

𝑑𝑡
= 𝑘𝑡𝑙 (𝑅tot − 𝑅) − 𝑑𝑋𝑋.

(2.31)

Next, we obtain various reduced models under different time-scale separation as-
sumptions. Recall that we denote all reduced-order model variables with a hat to
differentiate the corresponding variable in the full model, for example, in a reduced
model the protein species will be represented as �̂� and the corresponding species
in the full model is denoted by 𝑋 . All variables denote the concentrations for each
species and parameters take appropriate units. Furthermore, we define the following
lumped parameter notations which appear as Hill function activation parameters in
the reduced model expressions that we derive next.

𝐾0 :=
𝑘𝑡𝑙 + 𝑘𝑢𝑟
𝑘𝑏𝑟

, 𝐾1 :=
𝑘𝑡𝑥 + 𝑘𝑢𝑝
𝑘𝑏𝑝

, 𝐾𝑑 :=
𝑘𝑡𝑙 + 𝑘𝑢𝑟
𝑑𝑇

(2.32)
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The mRNA transcript (𝑇) and protein (�̂�) model

Under the assumption that the free ribosomes and the RNA polymerase dynamics
are at QSS (that is ¤𝑅 = 0, ¤𝑃 = 0), we obtain the following model with only the
mRNA transcript and the protein dynamics as a function of the DNA copy number
𝐺:

𝑑𝑇

𝑑𝑡
= 𝑘𝑡𝑥𝑃tot

(
𝐺

𝐾1 + 𝐺

)
− 𝑑𝑇𝑇

𝑑�̂�

𝑑𝑡
= 𝑘𝑡𝑙𝑅tot

𝑇

𝐾0 + 𝑇
− 𝑑𝑋 �̂� .

(2.33)

The free ribosome (�̂�) and protein (�̂�) model

Under the assumption that the mRNA transcript and the RNA polymerase dynamics
are at QSS (that is ¤𝑇 = 0, ¤𝑃 = 0), we obtain the following model with only the free
ribosome and the protein dynamics:

𝑑�̂�

𝑑𝑡
=
𝑑𝑇 (𝑅𝑡𝑜𝑡 − �̂�)
𝐾−1

0 �̂� + 𝐾−1
𝑑

− 𝑘𝑡𝑥𝑃𝑡𝑜𝑡
(

𝐺

𝐾1 + 𝐺

) (
�̂�

�̂� + 𝐾0
𝐾𝑑

)
𝑑�̂�

𝑑𝑡
= 𝑘𝑡𝑙 (𝑅tot − 𝑅) − 𝑑𝑋 �̂� . (2.34)

Similar to the ribosome-protein ([�̂�, �̂�]) and the mRNA transcript-protein models
([𝑇, �̂�]), it is possible to derive the polymerase-protein ([�̂�, �̂�]) and the only protein
model ([�̂�]). The detailed equations for these two models are not presented here
for brevity, but their performance is shown in Figures 2.2, 2.3, 2.5, and 2.3.

The available free ribosome (�̂�Δ) and protein (�̂�) model

We define the available free ribosomes in the gene expression system as �̂�Δ = 𝑅tot−�̂�.
Substituting �̂� for 𝑅tot − �̂�Δ, we can derive a new reduced-order model from the[
�̂� �̂�

]
model — the �̂�Δ model:

𝑑�̂�Δ

𝑑𝑡
= 𝑘𝑡𝑥𝑃𝑡𝑜𝑡

(
𝐺

𝐾1 + 𝐺

) (
𝑅tot − �̂�Δ

𝑅tot − �̂�Δ + 𝐾0
𝐾𝑑

)
−

(
𝑑𝑇

𝐾−1
0

(
𝑅tot − �̂�Δ

)
+ 𝐾−1

𝑑

)
�̂�Δ,

𝑑 �̂�

𝑑𝑡
= 𝑘𝑡𝑙 �̂�Δ − 𝑑𝑋 �̂� . (2.35)

This model simplifies the robustness analysis that follows. Note that the �̂�Δ model
closely resembles the commonly used gene expression model and all of its terms are
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Figure 2.2: Performance of the gene expression models under different biological
conditions. (A) We observe that for weaker binding of RNA polymerase to the
promoter region of the DNA, the time-response of the full CRN model is slower
as it takes a longer time to reach steady-state. The mathematical model with only
the mRNA transcript and protein dynamics is unable to capture this effect since
this binding reaction is assumed to be at quasi-steady-state in this model. On the
other hand, the �̂�Δ model, which describes the dynamics of the free ribosome and
the protein is able to capture the effect. Note that the performance of the [�̂�, �̂�]
and the �̂�Δ model are equivalent. (B) With decreasing ribosome binding strength,
none of the reduced models perfectly capture the full CRN dynamics, but still, the
ribosome-protein model is the closest in error performance to the full model.

exactly similar to the mRNA transcript and protein model but scaled by a ribosome
count factor. We give three statements regarding the error performance analysis and
the tightness of the robustness guarantees for the reduced models that we derived
above.
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Figure 2.3: Performance of the gene expression models under different biological
conditions. (A) With decreasing total RNA polymerase, the time-response of the full
model is slower and only the ribosome-protein ([�̂�, �̂�]) model is able to account
for this effect. (B) With a very high amount of total RNA polymerase and the
total ribosome count in the system, all models reach steady-state faster. (C) Under
strong RNA polymerase binding to the DNA and high transcription rate, we see that
all models exhibit good error performance. These can be understood as the ideal
conditions under which using a one-state protein dynamics model is also justified.

Gene expression – Robustness statement 1
For the gene expression CRN model in Table 2.1, it is not possible to derive
reduced models using singular perturbation theory since it is not clear how we
could transform the system dynamics to the standard form (as in equation (2.3)).
So, we used QSSA to derive accurate reduced models in certain parameter regimes
as shown in [101]. In particular, we consider the reduced model with the mRNA
and protein dynamics to justify the following statement.

Statement 1. For a nonlinear system, the linear analysis approach in Theorem 2
gives a tighter robustness guarantee than the direct nonlinear approach in Theo-
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rem 3.

Justification. For the reduced model in equation (2.33), we have the states 𝑇 and
�̂� that represent the mRNA and protein, respectively. We can obtain a linearized
dynamics at every point in the system trajectory. So for a point 𝑥∗ = [𝑃∗, 𝑇∗, 𝑅∗, 𝑋∗],
we have the following system matrices:

𝐴 =



−𝐺𝑘𝑏𝑝 0 0 0
−𝑘𝑡𝑥 − 𝑘𝑢𝑝

−𝑘𝑡𝑥 −𝑘𝑏𝑟𝑅∗ −𝑘𝑏𝑟𝑇∗ 0
−𝑑𝑇 −𝑘𝑡𝑙 − 𝑘𝑢𝑟

0 −𝑘𝑏𝑟𝑅∗ −𝑘𝑏𝑟𝑇∗ 0
−𝑘𝑡𝑙 − 𝑘𝑢𝑟

0 0 −𝑘𝑡𝑙 −𝑑𝑋


,

�̂� =


−𝑑𝑇 0
𝑅tot𝑘𝑡𝑙

𝑇∗+ 𝑘𝑡𝑙+𝑘𝑢𝑟
𝑘𝑏𝑟

−𝑑𝑋

 .
We can then derive 𝜕𝐴

𝜕\𝑖
for each parameter \𝑖 ∈ \ to compute the robustness estimate

bounds for this system using the result in Theorem 2.

The robustness bound on
𝑆Z for each parameter with time is shown in Figure 2.4.

As discussed earlier, an alternative approach is to use the result in Theorem 3 to
derive bounds directly for the nonlinear systems. With this method, we get a time-
integrated result for

𝑆Z, which is of the order of 104 whereas we see in Figure 2.4
that the bound on

𝑆Z with the linearization approach is of the order of 102.
Hence, the linear analysis approach (from Theorem 2) gives less conservative results
than the direct nonlinear approach (from Theorem 3) but requires the linearization
approximation at every point in the system trajectory, so it may not always be
accurate and feasible. □

Gene expression — Robustness statement 2
We discuss the robustness performance of the different reduced models derived
above in the following statements.

Statement 2. The error between the �̂�Δ model and the full CRN model is ro-
bust to perturbations in the binding/unbinding of ribosome to the mRNA transcript
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Figure 2.4: Robustness estimates using the result given in Theorem 2 for a gene
expression system. Observe that the model reduction error Z is most sensitive to
the translation parameter 𝑘𝑡𝑙 . This observation is consistent with the result obtained
using the nonlinear approach [101, Fig.2].

(𝑘𝑏𝑟 , 𝑘𝑢𝑟), and also total resources (both RNA polymerase, 𝑃tot and ribosome, 𝑅tot).
Only the perturbations in the translation rate (𝑘𝑡𝑙) and the protein degradation (𝑑𝑋)
parameters significantly affect the error performance of the �̂�Δ model.

Justification. To demonstrate robustness of the �̂�Δ model, we can look at the sen-
sitivity of the error between the �̂�Δ model and the full CRN model to various
parameter perturbations. Define the error as Z := 𝑋 − �̂� , where 𝑋 and �̂� represent
the protein concentration in the full CRN model and the �̂�Δ model, respectively.
In the case where the error Z between the two models is within acceptable bounds,
we additionally desire that this error is not sensitive to any of the parameters. The
sensitivity of the error to perturbation in a parameter \𝑖 is given by 𝑆Z = 𝜕Z/𝜕\𝑖.
Hence, this “fragility metric” 𝑆Z must be minimized to achieve higher robustness.
Analyzing the rate of change of 𝑆Z with time for different parameters can justify the
statement.

To analytically derive ¤𝑆Z , we use the equation 𝑆Z = �̄�𝑆 to write

¤𝑆Z =
( [
𝐶 −�̂�

] ) ( [
𝐽 0
0 𝐽

] [
𝑆

𝑆

]
+

[
𝑍

�̂�

])
.

For the model parameters \𝑖 ∈ {𝑘𝑡𝑥 , 𝑘𝑏𝑝, 𝑘𝑢𝑝, 𝑘𝑏𝑟 , 𝑘𝑢𝑟 , 𝑃tot, 𝑅tot}, we have the dy-
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Figure 2.5: Robustness analysis of gene expression models. The figure shows the
fragility of different models for all model parameters as computed by the sensitivity
of the error in protein 𝑋 concentration between the full model and the reduced mod-
els under different conditions. The weighted robustness distance, the normalized
robustness metric, and the normed error in model reduction are labeled for each
reduced model in each condition. The combined decision metric 𝑟 , with weights
𝑤1 = 1, 𝑤2 = 0.3, is used to choose one final model in each of the four conditions
as shown by the red box. (A) Ideal parameter conditions under which all reduced
models have similar error performance that is close to the full model. The one-state
model with only the protein dynamics has the best performance for the combined
metric on error and robustness. (B) Under the condition of limited RNA polymerase
resources, we get that the mRNA transcript-protein model has the best performance.

namics of 𝑆Z given by

¤𝑆Z = 𝑘𝑡𝑙
𝜕

(
�̂�Δ − �̂�Δ

)
𝜕\𝑖

− 𝑑𝑋𝑆Z . (2.36)
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For the protein degradation rate \𝑖 = 𝑑𝑋 , we have

¤𝑆Z = 𝑘𝑡𝑙
𝜕

(
�̂�Δ − �̂�Δ

)
𝜕𝑑𝑋

− Z − 𝑑𝑋𝑆Z . (2.37)

For the translation rate \𝑖 = 𝑘𝑡𝑙 , we have

¤𝑆Z = 𝑘𝑡𝑙
𝜕

(
�̂�Δ − �̂�Δ

)
𝜕𝑘𝑡𝑙

+
(
�̂�Δ − �̂�Δ

)
− 𝑑𝑋𝑆Z . (2.38)

From equations (2.36) – (2.38), we have that for all positive parameter values and
stable models, the dynamics of 𝑆Z are convergent to a fixed point. More importantly,
the fragility metric, 𝑆Z directly depends on the translation rate 𝑘𝑡𝑙 and the protein
degradation rate 𝑑𝑋 , proving the assertion of the statement above. Also, for 𝑘𝑡𝑙 and
𝑑𝑋 , we see that an extra term appears in the error sensitivity dynamics implying
higher fragility of the �̂�Δ model under perturbations to the translation rate and the
protein degradation rate. □

Figures 2.2 and 2.3 shows the error performance of the �̂�Δ model under various
biologically plausible parameter conditions and assumptions. The Euclidean norm
of 𝑆Z is plotted in Figures 2.5 and 2.6 to compare the robustness of the �̂�Δ model
alongside other models in different biologically plausible parameter conditions.
Using

𝑆Z we can obtain a weighted sum to compute the robustness distance 𝑑𝑅
for each reduced model using equation (2.12). A normalized robustness metric 𝑅 is
also shown for the reduced models. To choose a particular reduced model for each
parameter condition, we use a linear combination of the error and the robustness
distance defined as:

𝑟 := 𝑤1 ∥Z ∥ + 𝑤2𝑑𝑅, (2.39)

where 𝑤1 and 𝑤2 are free parameters that can be chosen to weigh the error and the
robustness performance, respectively. This metric can be used as a single scalar
to compare the reduced models, lower 𝑟 implies better performance. Similar to
the result above, we give the following statement for the transcript and the protein
model.

Statement 3. Gene expression — Robustness statement 3
The mathematical model with the mRNA transcript and protein dynamics, given in
equation (2.33), captures the full CRN model dynamics under the assumption of
unlimited ribosomal resources and fast binding reactions. As a result, the error
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Figure 2.6: Robustness analysis of gene expression models. The figure shows the
fragility of different models for all model parameters as computed by the sensitivity
of the error in protein 𝑋 concentration between the full model and the reduced
models under different parameter conditions. The weighted robustness distance, the
normalized robustness metric, and the normed error in model reduction are labeled
for each reduced model in each parameter condition. The combined decision metric
𝑟, with weights 𝑤1 = 1, 𝑤2 = 0.3, is used to choose one final reduced model in
each of the four conditions as shown by the red box. (A) Under the condition of
weak RNA polymerase binding strength, we get that the mRNA transcript-protein
model has the best performance. (B) Under the condition of weak ribosome binding
strength, we get that the ribosome-protein model ([�̂�, �̂�]) has the best performance
as all other models have a much higher error and lower robustness.

performance of the transcript-protein model is directly dependent on the mRNA-
ribosome binding/unbinding parameters and the translation parameter. Hence,
unlike the �̂�Δ model, this model is not robust to perturbations in 𝑘𝑏𝑟 , 𝑘𝑢𝑟 , and 𝑅tot

in addition to 𝑘𝑡𝑙 and 𝑑𝑋 .
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Justification. Similar to the justification of Statement 2, we can analyze the dynamics
of the sensitivity of the error to parameter perturbations for the mRNA transcript
and protein dynamical model. For the translation rate, that is \𝑖 = 𝑘𝑡𝑙 ,

¤𝑆Z = 𝑘𝑡𝑙
𝜕�̂�Δ

𝜕𝑘𝑡𝑙
− 𝑘𝑡𝑙𝑅tot𝐾0(

𝐾0 + 𝑇
)2
𝜕𝑇

𝜕𝑘𝑡𝑙
+ �̂�Δ − 𝑅tot𝑇

𝐾0 + 𝑇
+ 𝑘𝑡𝑙𝑅tot𝑇

𝑘𝑏𝑟
(
𝐾0 + 𝑇

)2 − 𝑑𝑋𝑆Z . (2.40)

For the protein degradation parameter \𝑖 = 𝑑𝑋 ,

¤𝑆𝑒 = 𝑘𝑡𝑙
𝜕�̂�Δ

𝜕𝑑𝑋
− 𝑘𝑡𝑙𝑅tot𝐾0(

𝐾0 + 𝑇
)2
𝜕𝑇

𝜕𝑑𝑋
− Z − 𝑑𝑋𝑆Z . (2.41)

For the total ribosome count, \𝑖 = 𝑅tot, we have,

¤𝑆𝑒 = 𝑘𝑡𝑙
𝜕�̂�Δ

𝜕𝑅tot
− 𝑘𝑡𝑙𝑅tot𝐾0(

𝐾0 + 𝑇
)2

𝜕𝑇

𝜕𝑅tot
− 𝑘𝑡𝑙𝑇

𝐾0 + 𝑇
− 𝑑𝑋𝑆Z . (2.42)

For the ribsome-transcript binding parameter, \𝑖 = 𝑘𝑏𝑟 , we have,

¤𝑆Z = 𝑘𝑡𝑙
𝜕�̂�Δ

𝜕𝑘𝑏𝑟
− 𝑘𝑡𝑙𝑅tot𝐾0(

𝐾0 + 𝑇
)2

𝜕𝑇

𝜕𝑘𝑏𝑟
−

𝑘𝑡𝑙𝐾
2
0𝑅tot𝑇(

𝐾0 + 𝑇
)2 (𝑘𝑡𝑙 + 𝑘𝑢𝑟)

− 𝑑𝑋𝑆Z . (2.43)

For the ribsome-transcript unbinding parameter, \𝑖 = 𝑘𝑢𝑟 , we have,

¤𝑆Z = 𝑘𝑡𝑙
𝜕�̂�Δ

𝜕𝑘𝑢𝑟
− 𝑘𝑡𝑙𝑅tot𝐾0(

𝐾0 + 𝑇
)2

𝜕𝑇

𝜕𝑘𝑢𝑟
+ 𝑘𝑡𝑙𝑅tot𝐾0𝑇(
𝐾0 + 𝑇

)2 (𝑘𝑡𝑙 + 𝑘𝑢𝑟)
− 𝑑𝑋𝑆Z . (2.44)

For all other parameters, we have,

¤𝑆Z = 𝑘𝑡𝑙
𝜕�̂�Δ

𝜕𝑘𝑢𝑟
− 𝑘𝑡𝑙𝑅tot𝐾0(

𝐾0 + 𝑇
)2

𝜕𝑇

𝜕𝑘𝑢𝑟
− 𝑑𝑋𝑆Z . (2.45)

From equations (2.40) – (2.45), we can conclude that 𝑆Z directly depends on the
total ribosome count, 𝑅tot, the binding/unbinding parameters of the transcript with
ribosome, 𝑘𝑏𝑟 , 𝑘𝑢𝑟 , the translation rate, 𝑘𝑡𝑙 , and the protein degradation rate, 𝑑𝑋 .
This is in contrast with the results for the �̂�Δ model where the dynamics of 𝑆Z only
depend on the translation rate and the protein degradation rate. Hence, the �̂�Δ model
is robust to all other parameters whereas the transcript-protein model is fragile to
all of these parameters, proving the statement assertion. □

We scale up the above analysis by using a gene expression model that consists of
endonuclease mediated mRNA degradation as well.
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Gene expression with endonuclease mediated mRNA degradation
To investigate the scalability of this approach, we expand on the gene expression
example by including enzymatic degradation of the mRNA transcript mediated by
endonucleases. Here we have this enzymatic degradation in addition to the basal
degradation rate 𝑑𝑇 . The CRN and the corresponding mass-action ODE model is
given in Table 2.2.

Table 2.2: Gene expression with endonuclease mediated mRNA degradation

CRN ODE model Nominal Parameter Values

𝐺 + 𝑃
𝑘𝑏𝑝−−−⇀↽−−−
𝑘𝑢𝑝

𝐶1
𝑑𝑃
𝑑𝑡

=
(
𝑘𝑢𝑝 + 𝑘𝑡𝑥

)
𝐶1 − 𝑘𝑏𝑝𝐺𝑃 𝑘𝑏𝑝 = 80, 𝑘𝑢𝑝 = 2

𝐶1
𝑘𝑡 𝑥−−→ 𝐺 + 𝑃 + 𝑇 𝑑𝐶1

𝑑𝑡
= 𝑘𝑏𝑝𝐺𝑃 − (𝑘𝑢𝑝 + 𝑘𝑡𝑥) 𝐶1 𝑘𝑡𝑥 = 0.5

𝑇 + 𝑅
𝑘𝑏𝑟−−⇀↽−−
𝑘𝑢𝑟

𝐶2
𝑑𝑇
𝑑𝑡

= 𝑘𝑡𝑥𝐶1 + (𝑘𝑢𝑟 + 𝑘𝑡𝑙) 𝐶2

−𝑘𝑏𝑟𝑇𝑅 + 𝑘𝑢𝑒𝐶3 − 𝑘𝑏𝑒𝑇𝐸 − 𝑑𝑇𝑇 𝑘𝑏𝑟 = 80, 𝑘𝑢𝑟 = 2

𝐶2
𝑘𝑡𝑙−−→ 𝑇 + 𝑅 + 𝑋 𝑑𝑅

𝑑𝑡
= (𝑘𝑢𝑟 + 𝑘𝑡𝑙) 𝐶2 − 𝑘𝑏𝑟𝑇𝑅 𝑘 𝑡𝑙 = 0.5

𝑇 + 𝐸
𝑘𝑏𝑒−−−⇀↽−−−
𝑘𝑢𝑒

𝐶3
𝑑𝐶2
𝑑𝑡

= 𝑘𝑏𝑟𝑇𝑅 − (𝑘𝑢𝑟 + 𝑘𝑡𝑙) 𝐶2 𝑘𝑏𝑒 = 10, 𝑘𝑢𝑒 = 2

𝐶3
𝑑𝐸−−→ 𝐸 𝑑𝐸

𝑑𝑡
= (𝑘𝑢𝑖 + 𝑑𝐸 )𝐶3 − 𝑘𝑏𝑒𝑇𝐸 𝑑𝐸 = 0.1

𝑇
𝑑𝑇−−→ ∅ 𝑑𝐶3

𝑑𝑡
= 𝑘𝑏𝑒𝑇𝐸 − (𝑘𝑢𝑒 + 𝑑𝐸 )𝐶3 𝑑𝑇 = 0.5

𝑋
𝑑−→ ∅ 𝑑𝑋

𝑑𝑡
= 𝑘𝑡𝑙𝐶2 − 𝑑𝑋𝑋 𝑑𝑋 = 0.01

Observe that in this model we have the following conservation law relationships,

𝑑𝑃

𝑑𝑡
+ 𝑑𝐶1
𝑑𝑡

= 0,
𝑑𝑅

𝑑𝑡
+ 𝑑𝐶2
𝑑𝑡

= 0,
𝑑𝐸

𝑑𝑡
+ 𝑑𝐶3
𝑑𝑡

= 0.

Hence, for constants 𝑃tot, 𝑅tot, and 𝐸tot, we can write

𝑃 + 𝐶1 = 𝑃tot, 𝑅 + 𝐶2 = 𝑅tot, 𝐸 + 𝐶3 = 𝐸tot.

Using these algebraic relationships, we can eliminate the complexes 𝐶1, 𝐶2, and 𝐶3

to obtain a reduced ODE model. Next, we explore various time-scale separation
assumptions that may be used to get further reduced models and discuss their
performance and robustness with respect to the model parameters.
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The mRNA transcript and protein dynamical model

Assuming that the dynamics of all species in the model other than the mRNA
transcript 𝑇 and the protein 𝑋 are at quasi-steady-state, we get the following model.
Observe that a new degradation Hill function term appears in the dynamics of the
mRNA transcript that is dependent on the endonuclease binding parameters

𝑑𝑇

𝑑𝑡
= 𝑘𝑡𝑥𝑃tot

𝐺

𝐾1 + 𝐾1𝐺
− 𝑑𝐸𝐸tot

𝑇

𝐾2 + 𝑇
− 𝑑𝑇𝑇

𝑑�̂�

𝑑𝑡
= 𝑘𝑡𝑙𝑅tot

𝑇

𝐾0 + 𝑇
− 𝑑𝑋 �̂� (2.46)

where 𝐾2 is a new lumped parameter that is the Hill activation parameter for the
endonuclease binding,

𝐾2 =
𝑑𝐸 + 𝑘𝑢𝑒
𝑘𝑏𝑒

.

Modeling the dynamics of available free ribosomes

As before, we define the available free ribosomes in the system as �̂�Δ = 𝑅tot − �̂�.
Using this definition and assuming that the dynamics of all species in the model
other than the free ribosomes, the mRNA transcript, and the protein are at quasi-
steady-state we get the following model.

𝑑𝑇

𝑑𝑡
= 𝑘𝑡𝑥𝑃tot

𝐺

𝐾1 + 𝐺
+ (𝑘𝑡𝑙 + 𝑘𝑢𝑟) �̂�Δ − 𝑑𝐸𝐸tot

𝑇

𝐾2 + 𝑇
− 𝑘𝑏𝑟 (𝑅tot − �̂�Δ)𝑇 − 𝑑𝑇𝑇

𝑑�̂�Δ

𝑑𝑡
= 𝑘𝑏𝑟 (𝑅tot − �̂�Δ)𝑇 − (𝑘𝑡𝑙 + 𝑘𝑢𝑟) �̂�Δ,

𝑑 �̂�

𝑑𝑡
= 𝑘𝑡𝑙 �̂�Δ − 𝑑𝑋 �̂� (2.47)

Note that the model with only �̂�Δ and the protein �̂� dynamics does not work in
this case since the enzymatic degradation reactions for the mRNA transcript are
significant for the overall dynamics. So, either 𝑇 or 𝐸 is necessary in the ribosome
and protein model to get satisfactory performance. As a result, we can also obtain a
reduced model with

[
�̂� �̂� �̂�

]
as the states. The performance of all of the possible

reduced models is shown in Figures 2.7 and 2.8.

Although a similar robustness analysis as shown in Statements 2 and 3 can be
done for this system dynamics, it would be easier to numerically compute a bound
on 𝑆Z for all reduced models. The heatmap of the Euclidean norm of this metric is
shown in Figure 2.9. We use the upper bound for the norm of 𝑆Z to compute the
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Figure 2.7: Performance of the gene expression with endonuclease mediated mRNA
degradation models under different biological conditions. (A) We observe that for
weaker binding of RNA polymerase to the promoter region of the DNA implies a
slower time-response which is only captured perfectly by the free ribosome model
that also models the endonuclease dynamics. The mathematical model with only
the mRNA transcript and protein dynamics is unable to capture this effect since this
binding reaction is assumed to be at quasi-steady-state in this model, but it is the
only two-state model for this system with a satisfactory steady-state performance.
(B) With decreasing ribosome binding strength, none of the reduced models per-
fectly capture the full CRN dynamics, but still, the ribosome-protein model with
endonuclease dynamics ([�̂�, �̂� , �̂�) is the closest in error performance to the full
model.

robustness estimate for each model parameter. The AutoReduce software can be
used to compute the model equations and these metrics.

Population control — Non-identifiability analysis
We discuss a population control synthetic biological circuit example to demonstrate
the application of model reduction to improve parameter inference. Using this
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Figure 2.8: Performance of the gene expression with endonuclease mediated mRNA
degradation models under different biological conditions. (A) We observe a similar
effect with decreasing total RNA polymerase in the system. (B) With a very high
amount of cellular resources, all models reach steady-state faster. (C) Under weak
endonuclease binding, we observe that only the model that explicitly models the
endonuclease dynamics gives good performance.

example, we also show how our approach can be used to analytically obtain the
non-identifiable manifold description for a system. We consider a synthetic circuit
that controls the population density and composition of a two-member bacterial
consortium [7], [102]. In this circuit, under the control of two inducer input signals,
each cell kills itself by expressing a toxin protein (ccdB). Each cell type rescues the
other cell type by producing a signal that activates the expression of an anti-toxin
(ccdA) in its partner cell. There are two different fluorescent signal readouts corre-
sponding to the population of each cell type, given by 𝐿1 and 𝐿2 in the model. The
circuit schematic is shown in Figure 2.10-A, B. For the mathematical model, we
denote the average concentration of the toxin protein (ccdB) in the cell population
with 𝑁𝑖, 𝑖 = 1, 2. Similarly, the anti-toxin (ccdA) is denoted by 𝐴𝑖. Finally, the
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Figure 2.9: Robustness analysis of gene expression models with endonuclease
mediated degradation of mRNA. The heatmaps show the norm of 𝑆Z for each
model parameter. Lower 𝑆Z implies better robust performance. (A): Robustness of
the reduced models under ideal parameter conditions corresponding to unlimited
resources as shown in Figure 2.8-B where the error for all reduced models is the
minimum. Using the combined decision metric 𝑟 = 𝑤1 ∥Z ∥ + 𝑤2𝑑𝑅, we get that
the reduced model with the states 𝑇, �̂�, �̂� is the best choice. (B): For weak RNA
polymerase binding strength, we obtain that the 𝑇, �̂�, �̂� model performs better
compared to the other reduced models. (C): Under weak ribosome binding strength
condition, we get that the reduced model consisting of �̂�, �̂� , �̂� as its states has the
best performance. (D): Under limited resources, the 𝑇, �̂�, �̂� model is again able to
capture the full CRN dynamics with the least error and most robustness.

concentration of AHL signals in the consortia is given by 𝑅𝑖 for each signal. The
description of the model parameters and their values are given in Table 2.3. For
more details on the parameter values and system description, the reader is referred
to [7].

In this mathematical model, an intrinsic assumption is that the signal transport
is instantaneous as the dynamics of transport of signals across cell membranes is
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not explicitly modeled. The inducer signals, denoted by 𝐿 and 𝐼, are the two inputs
to the system. The mathematical model is given by the following ODEs:

𝑑𝑁1
𝑑𝑡

= 𝛽𝑅1

(
𝑙𝑅1 +

𝑅2
1

𝐾𝑅1 + 𝑅2
1

)
− 𝑘𝑏𝐴1𝑁1 − 𝑑𝑇𝑁1

𝑑𝐴1
𝑑𝑡

= 𝐾𝑟𝛽𝑅2

(
𝑙𝑅2 +

𝑅2
2

𝐾𝑅2 + 𝑅2
2

)
− 𝑘𝑏𝐴1𝑁1 − 𝑑𝑇 𝐴1

𝑑𝑅1
𝑑𝑡

= 𝛽𝑡𝑎𝑐

(
𝑙𝑡𝑎𝑐 +

𝐼2

𝐾𝑡𝑎𝑐 + 𝐼2

)
𝐿1 − 𝑑𝑆𝑅1

𝑑𝑅2
𝑑𝑡

= 𝛽𝑠𝑎𝑙

(
𝑙𝑠𝑎𝑙 +

𝐿2

𝐾𝑠𝑎𝑙 + 𝐿2

)
𝐿2 − 𝑑𝑆𝑅2 (2.48)

𝑑𝑁2
𝑑𝑡

= 𝛽𝑅2

(
𝑙𝑅2 +

𝑅2
2

𝐾𝑅2 + 𝑅2
2

)
− 𝑘𝑏𝐴2𝑁2 − 𝑑𝑇𝑁2

𝑑𝐴2
𝑑𝑡

= 𝐾𝑟𝛽𝑅1

(
𝑙𝑅1 +

𝑅2
1

𝐾𝑅1 + 𝑅2
1

)
− 𝑘𝑏𝐴2𝑁2 − 𝑑𝑇 𝐴2

𝑑𝐿1
𝑑𝑡

= 𝑘𝐶

(
1 − 𝐿1 + 𝐿2

𝐶𝑚𝑎𝑥

)
𝐿1 − 𝑑𝑐𝐿1

𝑁1
𝐾𝑡𝑜𝑥 + 𝑁1

− 𝑑𝐿1

𝑑𝐿2
𝑑𝑡

= 𝑘𝐶

(
1 − 𝐿1 + 𝐿2

𝐶𝑚𝑎𝑥

)
𝐿2 − 𝑑𝑐𝐿2

𝑁2
𝐾𝑡𝑜𝑥 + 𝑁2

− 𝑑𝐿2.

We cannot use singular perturbation theory to reduce this system model since it
is not clear how this model can be expressed in the standard form for singular pertur-
bation framework. Using our automated model reduction method, we obtain various
possible reduced models for this system and choose the “best” reduced model based
on the performance metrics we discussed. Since the full model has two output
variables (𝐿1 and 𝐿2), any reduced model for this system must have these two output
variables so that the reduced model may be used effectively for parameter inference.

With our approach, we obtain four different reduced models each with four states.
Using the performance metrics discussed earlier, we choose the reduced-order model
in equation (2.49) since it is the most robust reduced-model (with the least robustness
metric for the given parameters). The advantages of using this reduced model for
parameter identification are clear since the reduced models only have 13 parameters
(compared to 24 in the full model). Further, since an analytical mapping between
the full and the reduced models is available, we can determine the non-identifiable
manifold that could assist in the identifiability analysis for this model [47].
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Figure 2.10: Model reduction for population and composition control of a bac-
terial consortium. (A): Two-member population and composition control circuit
schematic. The two inducer inputs (labeled 1 and 2 in cyan) activate the ccdB
expression in 𝐿1 and 𝐿2 cell strains, respectively. AHL signals diffuse out of each
cell type to signal the expression of anti-toxin (ccdA) in the other cell type. The
anti-toxin sequesters away the toxin protein to rescue the cell population. (B): A
simple schematic demonstrating the proliferation and death of each cell type under
input signals. (C-1 – C-4): Reduced models obtained using our automated model
reduction approach. Each reduced model has four states. Two of these states are the
output signals which are never reduced in our method. The other two states in each
reduced model are labeled in the Figure. (D): Total population (𝐿1 + 𝐿2) obtained
on simulating each reduced model and the full model. As we can see, the error
performance for all of these four reduced models is satisfactory. (E): Population
composition (𝐿1/𝐿2) for the reduced models and the full model. Composition con-
trol is a feature of this circuit that the reduced models demonstrate as well, although
the dynamics of population composition are not fully captured. (F): Robustness
analysis for each reduced model gives us a guide to choose a particular reduced
model given the parameters in the full model. The heatmap shows the norm of the
sensitivity of error in model reduction

𝑆Z with respect to the model parameters.
The decision metric 𝑟 = 𝑤1 ∥Z ∥ + 𝑤2𝑑𝑅 is then used to choose the reduced model
given in (C-1) since it has the least 𝑟.

The error and robustness performance for all the reduced models is given in Fig-
ure 2.10-D–F. The decision metric 𝑟 with weights 𝑤1 = 1, 𝑤2 = 0.5, is lowest for the
reduced model with both of the toxin-states. Hence, we choose this reduced model.
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The dynamics for this model are given by:

𝑓1 =

(
𝑙𝑅1 +

𝛽𝑅1𝑥
2
7

𝑥2
7 + 𝐾𝐼0

)
− 𝑑𝑇𝑥1 −

𝛽𝑅2𝑘𝑏𝑥1

(
𝐾𝑎0𝑙𝑅2 + 𝑥2

8

)
𝑘𝑏𝑥1𝑥

2
8 + 𝐾𝑎0𝑘𝑏𝑥1 + 𝑑𝑇𝑥2

8 + 𝐾𝑎0𝑑𝑇
,

𝑓2 =

(
𝑙𝑅2 +

𝛽𝑅2𝑥
2
8

𝑥2
7 + 𝐾𝑎0

)
− 𝑑𝑇𝑥5 −

𝛽𝑅1𝑘𝑏𝑥5
(
𝐾𝐼0𝑙𝑅1 + 𝑥2

7
)

𝑘𝑏𝑥5𝑥
2
7 + 𝐾𝐼0𝑘𝑏𝑥5 + 𝑑𝑇𝑥2

7 + 𝐾𝐼0𝑑𝑇
,

𝑓3 = 𝑘𝑐

(
1 − 𝑥7 + 𝑥8

𝐶𝑚𝑎𝑥

)
𝑥7 −

𝑑𝑐𝑥1𝑥7
𝑥1 + 𝐾𝑡𝑜𝑥

− 𝑑𝑥7,

𝑓4 = 𝑘𝑐

(
1 − 𝑥7 + 𝑥8

𝐶𝑚𝑎𝑥

)
𝑥8 −

𝑑𝑐𝑥5𝑥8
𝑥5 + 𝐾𝑡𝑜𝑥

− 𝑑𝑥8.

(2.49)

Here 𝑥 =

[
𝑥1 𝑥5 𝑥7 𝑥8

]𝑇
and the exact expressions for the lumped parameters

are available part of our software package, AutoReduce, on GitHub [88].

2.6 Conclusion
Our main result in this chapter gives a closed-form expression for the robustness
guarantee of structured model reduction of linear dynamical systems. We show two
different methods to derive this result — a direct linear analysis approach for the
linear systems and a sensitivity analysis based approach that also works for non-
linear dynamics. The advantage of our method is that the system does not need to
be in the standard form as in singular perturbation theory and that we can compute
the robustness of the model reduction error with respect to each model parameter
individually for a holistic analysis of different possible model reductions.

We demonstrated the applications of our model reduction approach to biological
system examples. The exploration of design space by changing experimentally tun-
able parameters in the models as shown in Figures 2.2 and 2.3 is an important step
towards using mathematical models for biological circuit design. There are two
main advantages to this approach:

1. For any complex biological circuit, a single gene expression would usually
form a small part of the design. Hence, interpreting the key states and
parameters involved in tuning its dynamics is important for the modular design
of the complete circuit.

2. For parameter identification, reduced models are commonly used but it is
important to verify the correctness of these reduced models. The automated
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model reduction method discussed in this chapter is a step towards that goal
as it provides a mapping of the reduced models with the full model alongside
the performance guarantees. Further, due to parameter lumping, the reduced
models have fewer number of parameters, improving the parameter identifia-
bility of the system given measurement data [46], [47]. The non-identifiable
manifolds are analytically known as well.
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Table 2.3: Model parameters

S.no. Parameters Description Unit Guess
1 𝛽𝑅1 Max transcription rate of con./hr 6

inducible promoter (for 𝑁1 and 𝐴2)
2 𝑙𝑅1 Leak constant of N/A 2e-3

inducible promoter (for 𝑁1 and 𝐴2)
3 𝐾𝑅1 Activation constant of con. 430

inducible promoter (for 𝑁1 and 𝐴2)
4 𝑘𝑏 Binding rate between toxin 1/con.hr 30

and anti-toxin
5 𝛽𝑅2 Max transcription rate of con./hr 6

inducible promoter (for 𝑁2 and 𝐴1)
6 𝑙𝑅2 Leak constant of inducible N/A 2e-3

promoter (for 𝑁2 and 𝐴1)
7 𝐾𝑅2 Activation constant of inducible con. 190

promoter (for 𝑁2 and 𝐴1)
8 𝛽𝑡𝑎𝑐 Max transcription rate of con./hr 19.8e-3

inducible promoter (for 𝑅1)
9 𝑙𝑡𝑎𝑐 Leak constant of inducible N/A 1.5e-3

promoter (for 𝑅1)
10 𝐾𝑡𝑎𝑐 Activation constant of con. 1.4e5

inducible promoter (for 𝑅1)
11 𝛽𝑠𝑎𝑙 Max transcription rate of con./hr 14.4e-3

inducible promoter (for 𝑅2)
12 𝑙𝑠𝑎𝑙 Leak constant of inducible N/A 2.1e-4

promoter (for 𝑅2)
13 𝐾𝑠𝑎𝑙 Activation constant of inducible con. 13

promoter (for 𝑅2)
14 𝑘𝐶 Cell division rate 1/hr 0.6
15 𝐶𝑚𝑎𝑥 Population cap conc. 5500
16 𝑑𝑐 Cell death rate 1/conc.hr 0.8
18 𝐼 Max induced I (input 1) concentration con. 1e6
20 𝐿 Max induced L (input 2) concentration con. 324
21 𝐾𝑡𝑜𝑥 Repression coefficient of toxin con. 1

to proliferation
22 𝑑𝑆 Degradation constant of AHL signals 1/hr 0.5
23 𝑑 Basal degradation of each cell 1/hr 0.1
24 𝑑𝑇 Basal degradation of toxins and antitoxins 1/hr 1.5
25 𝐾𝑟 Ribosome scaling factor N/A 5
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C h a p t e r 3

A BIOLOGICAL MODELING, ANALYSIS, AND LEARNING
PIPELINE

3.1 Introduction
We aim to use the reduced-order modeling framework discussed in Chapter 2 to
guide the design of a broader class of biological system models. Towards that end,
we need an automated method to build detailed chemical reaction network models
and then use the reduced model in a parameter inference pipeline to learn and predict
system dynamics.

In this chapter, we develop a modeling, analysis, and parameter identification
pipeline to guide the design of biological systems. To create this pipeline, we
build on three Python tools:

1. BioCRNpyler, for compiling chemical reaction network models at various
levels of detail and then switching mechanisms “ON” or “OFF” systematically
to explore modeling hypotheses,

2. AutoReduce, for dimensionality reduction of models, conservation analysis
of CRNs, and metrics for goodness of reduced models, and

3. Bioscrape, for simulations and parameter identification. We extend the Bio-
scrape package by developing an easy-to-use parameter identification wrapper
around the Python emcee software. The Bioscrape inference package can also
be used to validate models using distributional data from flow cytometry, and
end-point data under multiple conditions.

We demonstrate this pipeline by characterizing two DNA recombination enzymes
called integrases and excisionases in cell-free protein expression system. We sys-
tematically obtain a hierarchy of mathematical models for this system using these
tools. Then, we use experimental data to validate our mathematical models. Finally,
with validated mathematical models, we guide the experimental design choices
(such as the ratio of integrase and excisionase enzyme). In this way, we are able to
accurately quantify the enzyme action in cell-free systems.
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A review of biological modeling tools
To apply the mathematical modeling framework developed in the previous chapter,
it is crucial to integrate it with other tools that can simulate the models and infer
parameters.

Over the past few years, there has been widespread adoption of software tools in syn-
thetic biology research for modeling, simulation, analysis, data exchange, and design
optimizations. The focus on bio-design automation and rational design in synthetic
biology has led to this enthusiastic acceptance of software tools. A few examples
include Synthetic Biology Open Language (SBOL)/Systems Biology Markup Lan-
guage (SBML) compatible tools (for data and model standardization) [90], [103],
COPASI [30] (for modeling and simulation), iBioSim [28] (for CAD-style circuit
modeling), Tellurium [29] (for text scripting of circuit models), promoter/RBS cal-
culators [104], [105] (for prediction of transcription/translation initiation rates), and
automated design recommendation tools [106], [107].

The rise in tools for specific tasks has led to their integration into pipelines and repos-
itories like SynBioHub [108], Galaxy SynBioCAD [109], and Infobiotics [110].
SynBioHub is a platform that facilitates the integration of software and data for
synthetic biological designs so that users can easily share and reproduce system
designs in a standardized format. Similarly, an end-to-end metabolic design portal
called Galaxy SynBioCAD chains tools together into various workflows for common
design and analysis tasks such as genetic design, flux balance analysis, and pathway
benchmarking. While SynBioHub is focused on the standardization of software and
data used in synthetic biology pipelines, Galaxy SynBioCAD allows for automated
engineering and analysis workflows for designing metabolic pathways. A similar
experimental design automation software that focuses on the test and learn parts
of the design-build-test-learn cycle called RoundTrip [111] has been developed re-
cently.

An important aspect of rational synthetic biology design that is not addressed by
these approaches is model-guided design, or forward engineering, where specifica-
tions of circuits can be converted to mathematical models with parameters inferred
from experimental data. A software suite that claims to integrate modeling, simula-
tion, and verification for synthetic biological circuits was recently presented, called
the Infobiotics Workbench [110]. Infobiotics develops a domain-specific language
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Figure 3.1: An iterative Python pipeline for modeling, analysis, and learning of
biological circuits. In the first iteration, we build the CRN model for subsystem
#1 and then obtain the minimal representation suitable for parameter identifica-
tion. Bayesian inference is used to find parameter distributions. The results of the
Bayesian inference are fed back into the more detailed model that is built in the
second iteration. The previously identified context and circuit parameters are fixed
in this larger model so that the analysis can now focus on the new parts introduced
in the circuit. For each iteration, a CRN model is compiled using BioCRNpyler, this
is the white-box modeling step that includes the mechanistic details of the system.
With AutoReduce, we obtain a hierarchy of lower dimensional ODE models under
different modeling assumptions. We call this grey-box modeling because we can
tune the granularity of the models. Finally, we validate the model parameters in the
reduced model by using Bioscrape.

for synthetic biology circuits to write specifications and provides a Java-based GUI
platform for modeling and analyses. It is clear from these recent efforts that, for
scalable biological circuit design, there is a need for open-source, user-friendly, and
easy-to-access modeling and analysis pipelines that work alongside experimental
data in a design-build-test-learn cycle.

Towards that end, we present an automated Python pipeline for iterative model-
ing, model reduction, analysis, and parameter identification of synthetic biological
circuits. We further develop the Python software packages — BioCRNpyler [26] (to
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build models), AutoReduce [112] (to obtain reduced models), and Bioscrape [31]
(for simulations, analysis, and Bayesian inference using Emcee [113]) — to create
the computational framework shown in Figure 3.1.

A key idea with the proposed pipeline is its iterative nature by breaking down
the system analysis into smaller parts. Once we learn the parameters of subsystem
#1 and the system context, we fix these parameters for the next iteration. In this way,
the parameterization of the model with both subsystem #1 and #2 is feasible and
leads to reliable predictions that can guide the experimental design for the bigger
system. This process of system identification and learning by parts to guide the
design of more complex circuits can be extremely important for scalable biological
circuit design and analysis. The proposed pipeline is a step in this direction. Further,
the pipeline uses standardized data and model formats to allow for interoperability
of tools and integration with other existing pipelines. To demonstrate the tools,
we apply this pipeline to characterize an integrase and excisionase-mediated DNA
recombination circuit in a cell-free extract.

A short review of DNA recombination circuits
Recombinase-based circuits are circuits that utilize the unique functionality of phage
integrases. Phage integrases are responsible for catalyzing the site-specific insertion
of bacteriophage DNA into a host genome. These enzymes utilize specific attach-
ment sites found in both the phage and host DNA: attP and attB, respectively. Upon
integration of the phage DNA into the host genome, the attachment sites attL and
attR are formed [114]. This insertion can then be reversed by the expression of
a similar enzyme called, excisionase. Excisionases work in conjunction with the
integrases to excise the phage DNA from the host DNA, restoring the original attB
and attP sites [115]. Further research and characterization of these enzymes led to
the discovery that the presence of anti-parallel attB and attP sites in the same strand
of DNA leads to the inversion of the flanked segment, generating anti-parallel attL
and attR sites. This attL and attR flanked DNA segment can then be reverted to its
original orientation by an integrase-excisionase complex [116].

To date, recombinase-based circuits with various functionality and applications have
been designed and experimentally validated. For example, event ordering detection
circuits [117], gene networks that count [118], and Boolean logic and memory cir-
cuits [119] have been created in living cells using recombinases. Although there
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has been progress in exploring the mechanisms for enzyme-mediated DNA recom-
bination, the dynamics and characteristics of integrases and excisionases have not
yet been fully quantified. In order to accelerate the design and implementation of
increasingly complex recombinase circuits, novel methods are required to efficiently
quantify their complex dynamics.

We used the proposed modeling and analysis pipeline to study the dynamical models
of integrases and excisionases. We anticipate our pipeline providing a foundation
to guide further design and implementation of increasingly complex recombinase
circuits. In applying this pipeline, we built mathematical models and validated the
mechanistic parameters for Bxb1 – a well-characterized and studied serine integrase-
excisionase system [120]–[122]. This pipeline, however, can be used to characterize
general biological systems to guide the design of progressively complex circuits.

For the demonstrative example of DNA recombination circuits:

1. We develop new chemical reaction network (CRN) mechanisms in BioCRN-
pyler for integrase action to flip a promoter and the excisionase action to reverse
it. These mechanisms model the details of the intermediate complexes and
the binding rates of integrase to the DNA, excisionase to the integrase, the
complexes, and to the DNA. With model reduction and in silico analysis, we
show which mechanisms describe the expected behavior and then validate
these models with in vitro cell-free data.

2. We show an experimental validation of the mathematical models of the in-
tegrase and excisionase mediated DNA recombination circuit in a cell-free
system. After compiling, reducing, and parameterizing our model from ex-
perimental data, we are able to accurately model the effect of integrase and
excisionase gene concentrations on fluorescent reporter output. For example,
on adding higher integrase DNA concentrations, our models correctly predict
the experimental observation that the reporter expression increases while it
decreases as more excisionase is expressed.

3.2 Modeling integrase activity in cell-free systems
To characterize the integrase activity independent of the excisionase, we use a two
plasmid system — (1) Bxb1 integrase expressing plasmid fused with CFP to measure
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Figure 3.2: Modeling of integrase expression and activity in cell-free systems. The
circuit consists of two plasmids, one expressing the Bxb1 integrase and the other
with a reversed promoter upstream of the YFP reporter. The integrase activity
flips the promoter so that YFP is expressed. BioCRNpyler is used to convert this
abstract system description into a CRN model written as an SBML file with 20
species (annotated in the figure) and 29 parameters (details in Table A3 and online).
All species definitions in the model are given in the model species section in the
Appendix A.

integrase expression, and (2) a YFP plasmid that gets activated on integrase action
(shown in Figure 3.2). Using this circuit, we characterize the integrase expression
in a cell-free extract and its flipping action on a promoter to control the fluorescent
reporter expression.

Towards this first goal, we model the two plasmid system in a cell-free extract
using a detailed mechanistic chemical reaction network (CRN) with mass-action
kinetics using BioCRNpyler. In BioCRNpyler, a CRN is compiled by specifying the
circuit parts as Component objects, their interactions as Mechanism objects, and
the context for the circuit as a Mixture. For the integrase circuit, we create an inte-
grase component and two new mechanisms — a simple integrase flipper mechanism
with one reaction that converts the inactive DNA to active by flipping the promoter
direction and a detailed integrase flipper mechanism that models the binding reac-
tions of the integrase to various DNA sites. Finally, to compile a CRN model, we
use an existing BioCRNpyler mixture, TxTlMixture to model the cell-free context
and resources. The detailed reactions for this model are given in Figure 3.5A. We
simulate this CRN model using Bioscrape (shown in Figure 3.3) to explore the

https://github.com/ayush9pandey/integrase-excisionase-characterization/wiki#parameters-for-bxb1-integrase-expression-and-action-in-cell-free
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Simulation and Sensitivity Analysis Using Bioscrape
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Figure 3.3: Simulation and analysis of integrase expression and activity in cell-free
systems using Bioscrape. The simulations predict the CFP and YFP expressions
under different initial conditions. The sensitivity analysis shows the most influential
parameters for the time course of YFP expression.

design space and the resource-loading effects. However, the detailed model is infea-
sible to fit the experimental data due to the problem of unidentifiability [123] and
high-dimensionality. Hence, we use the methodology described in Chapter 2 of this
thesis to automatically derive potential reduced models for this system. First, we
derive and apply the conservation laws to reduce the system model. Then, we apply
quasi-steady state approximation (QSSA) to obtain reduced models under different
assumptions. Using model reduction performance metrics, we choose reduced mod-
els that recover the desired properties (integrase flipping, fluorescent reporter levels,
and any other important context effects), shown in Figure 3.4 as M-3. The model
reduction methods and the related performance metrics are discussed in the Methods
section at the end of this chapter. To obtain a further reduced model, we abstract
the context by switching off resource-dependent mechanisms for transcription and
translation in BioCRNpyler. Then, we further reduce the one-step transcription and
translation model using QSSA and assuming the abundance of certain species to
obtain a minimal ODE model (M-4). It is evident from Figure 3.4 that the model
M-4 recovers the commonly used Hill function, however, no heuristics were used in
deriving this model. We export this model as SBML for further analysis.

At each step in the model reduction hierarchy, the number of states and the pa-
rameters are reduced. For better accuracy of the reduced model, the user may
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Model Reduction using AutoReduce

where

1. CRN model:
BioCRNpyler

2. Conservation laws and QSSA:
AutoReduce

3. Context Abstraction:
BioCRNpyler

4. QSSA:
AutoReduce

ODE model with
𝐶𝑖1 ,𝑇𝑖 ,𝐶𝑎 ,𝑇

at QSS

ODE model with
𝐶𝑖2 ,𝐶𝑖 ,𝐶2
at QSS

1-step TL
ODE model
(8 states)

1-step TX
ODE model
(8 states)

No mRNA deg
ODE model
(8 states)

CRN model (M1)
with 20 states

ODE model (M2) with 
conservation laws

ODE model (M3)
with 𝐶𝑖 ,𝑇𝑖 ,𝐶𝑎 ,𝑇

at QSS

Minimal model (M4)
with 1-step TX-TL

and QSSA

Model: M2 Model: M3 Model: M4

Analysis at each step:

Bioscrape

Figure 3.4: A hierarchy of reduced models for integrase expression and activity in
cell-free systems using AutoReduce. The CRN model is reduced in multiple steps
with AutoReduce. First, the conservation laws are determined (as shown in C-2) and
a reduced model is obtained symbolically. This reduced model has 5 fewer states
than the full model and is further reduced using QSSA. Multiple reduced models are
possible at this stage, out of which one model, M3, is selected (tick marked in the
figure) based on the error performance metric as computed by AutoReduce. Then, a
minimal model is obtained by abstracting the details and further reducing the model
using QSSA and species abundance assumptions. The minimal ODE model (M4)
is shown in C-4. The simulations for reduced models (M2, M3, and M4) are also
shown.

choose a model that is higher up in the hierarchy, whereas, for faster parameter
inference, the minimal model with the fewest parameters may be chosen. The com-
putational run time to obtain each reduced model varies from a few seconds up to a
maximum of a few minutes on an i7-6700K Intel CPU laptop with 16GB of RAM.

For the minimal model, we find the identifiable parameters as the most sensitive
parameters affecting the measurements. The sensitivity analysis tools in Bioscrape
(shown in Figure 3.5B) show the sensitivity of each model parameter with time for
each output measurement (CFP and YFP). For the identifiable parameters, we use
Bayesian inference tools in Bioscrape to fit the cell-free data (see Figure 3.5B and
the inference section in Methods).
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A. Mean Integrase Expression (CFP) and Activity (YFP)

B. System Identification By Parts Using Bioscrape
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Figure 3.5: Experimental data and system identification by parts of cell-free integrase expression
and activity. (A) Mean background-subtracted fluorescence data for the integrase circuit in the cell-
free extract. (B) We identify the system by parts, that is, we first select the integrase expression part
of the circuit and run sensitivity analysis to find out its identifiable parameters. We observe that 𝑘𝑖 is
the only sensitive parameter and hence, we run Bayesian inference to identify the posterior parameter
distribution for 𝑘𝑖 . The model fit alongside the data is shown in the rightmost column. Once we
have identified this part, we fix the corresponding parameter, 𝑘𝑖 , and run the sensitivity analysis
for YFP output. We identify all parameters that YFP is sensitive to. The corner plot shows the
posterior distributions of each parameter alongside their correlations with 75% confidence contours.
The mismatch in the data and the model is due to the minimal model not capturing the plateauing
expression as cell-free extract stops protein expression.
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The parameter inference algorithm is implemented in Bioscrape as a plug-and-play
Python wrapper for the emcee package that implements a Markov Chain Monte
Carlo (MCMC) sampler for Bayesian inference. We import the SBML file for the
model and the experimental data as CSV and then run the inference after choosing
appropriate MCMC parameters (see Appendix A). After running the sampler, we
obtain posterior distributions for the parameters which are then used for plotting the
identified model simulation against the experimental data. Hence, the “full-stack”
Python pipeline of modeling, design-space exploration, sensitivity analysis, model
reduction, and parameter inference gives us a validated mathematical model for
cell-free integrase activity.

Modeling excisionase activity in cell-free systems
Integrase action activates the output fluorescence protein expression by recombining
the attP-attB site on the DNA to the attL-attR site so that the promoter is flipped
towards the protein coding sequence. To accurately control this expression, we
use the reverse directionality factor, or the excisionase enzyme, which can reverse
the promoter direction by changing from the attL-attR site back to the “inactive”
attP-attB site on the DNA. We design a new plasmid that expresses the excisionase
fused with mScarlet to measure the excisionase expression (see Figure 3.6).

We build on the integrase models (both detailed and simplified mechanisms) shown
in the previous section to develop excisionase mechanisms. We hypothesize that the
excisionase can have two possible mechanisms to reverse the integrase activity:

1. The excisionase binds to the integrase and the resulting complex then binds
to the attL-attR site on the DNA to flip it to the attP-attB site. The integrase-
excisionase complex may also bind to the attP-attB site, sequestering the site
from further recombinations.

2. The excisionase binds to the integrase-bound DNA sites to form a complex
that then flips the promoter region or keeps it sequestered.

With BioCRNpyler, it is possible to switch ON any one or both of these mechanisms
when compiling the CRN model. See Figure 3.6 for the list of chemical reactions.
We compile a detailed integrase-excisionase model in BioCRNpyler with these
mechanisms added into the same TxTlMixture as was used for the integrase model.
This model consists of 30 species and 54 parameters.
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Figure 3.6: CRN models for excisionase expression and activity in cell-free extract
using BioCRNpyler. We obtain a CRN for the circuit with both integrase and exci-
sionase in cell-free extract by describing the circuit specifications in BioCRNpyler.
The resulting model has 30 species (annotated in the figure) and 54 reaction rate
parameters (details in the Table A4 and online). The species definitions are given
in Appendix A on model species.

For this model, we predict various parameter values from the characterization of
the integrase circuit in cell-free extract. We use the identified and validated pa-
rameters for the cell-free extract resources, integrase expression, and integrase
action in the excisionase model. The integrase action parameters in this model
are context-dependent, so, we allow for these to be updated as we validate using
the integrase-excisionase cell-free data. However, we keep the cell-free resource
parameters constant as they model the total resources provided by the extract.

We analyze the sensitivities of each parameter in this model to the output and
run simulations under various conditions to predict the excisionase action a priori.
This guides our design choices of choosing the excisionase plasmid levels relative to
the integrase plasmid levels. As we vary integrase plasmid initial conditions from
0 to 2 nM, we observe that varying the excisionase initial conditions from 0 to 1
nM gives accurate control of output protein desired levels of expression. This is
the design choice we made for the cell-free experiments with both integrase, exci-

https://github.com/ayush9pandey/integrase-excisionase-characterization/wiki#parameters-for-bxb1-excisionase-expression-and-action-in-cell-free
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sionase, and reporter plasmids (resulting in vitro data shown in Figure 3.9). These
forward design choices driven by mathematical models were made possible due to
the characterization of a smaller part of this circuit (the integrase-reporter circuit),
the detailed models, their sensitivity analyses, and with preliminary excisionase-
reporter cell-free experiments.

Simulation and Sensitivity Analysis Using Bioscrape for Integrase-Excisionase Model
YFP sensitivity in full modelintegrase

excisionase excisionase
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Figure 3.7: Analysis for excisionase expression and activity in cell-free extract using
Bioscrape. We show the simulation for the CRN model. In this model, we use the
identified integrase parameters to predict the excisionase activity. We observe that
as more excisionase is expressed, YFP expression falls down. The sensitivity of
each parameter in the CRN model with time is shown in the sensitivity analysis
heatmaps.

To validate the mathematical models by identifying parameter values from the
experimental data, we need to reduce the dimension of the parameter space of the
detailed model. Although the detailed model captures a range of behavior, such as
resource loading and competition, it is infeasible for parameter identification due to
the unidentifiability of its large parameter space. So, we use AutoReduce to reduce
the models in multiple steps.
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Figure 3.8: Mathematical models for excisionase expression and activity in cell-free
extract obtained using AutoReduce and BioCRNpyler. Using AutoReduce, we find
the conservation laws in the CRN model given by BioCRNpyler. After applying
conservation laws, we further reduce the dimensionality of the integrase-excisionase
system by assuming species at a quasi-steady state (QSS). Finally, we abstract the
context of resource details modeled using BioCRNpyler and reduce these models
further using AutoReduce to obtain a minimal model (M8). The chosen reduced
models are marked with a tick while a cross indicates discarded reduced model.
The simulations for three reduced models are shown — M6, M7, and M8. The
computational run time to derive these reduced models are similar to the integrase
reduced models, varying from a few seconds to a few minutes.

This model reduction process is shown in Figure 3.8 which starts at automatically
deriving and applying the conservation laws, then proceeds to QSSA, and finally,
context abstraction with BioCRNpyler to derive a minimal ODE model (M-8 in
Figure 3.8). This minimal model is suitable for parameter identification as it contains
only 5 states and 17 parameters out of which 4 parameters are most sensitive to YFP
expression (see Figure 3.9B).
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B. System Identification By Parts Using Bioscrape
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Figure 3.9: Experimental data and system identification by parts of integrase and
excisionase expression and activity in cell-free extracts. (A) Mean background-
subtracted fluorescence data for the integrase-excisionase circuit in cell-free extract.
As more integrase is added, more YFP is expressed until the maximum possible
expression is reached at 1.5nM integrase. With higher excisionase levels, we observe
a decreasing gradient of YFP levels. (B) To identify the model parameters, we set
the previously identified integrase parameters and update accordingly to account for
loading effects. In the second iteration, we infer the parameters for the mScarlet
expression. Finally, we identify the sensitive set of parameters for YFP. In the right
panels, we show the identified parameter distributions and the data plotted alongside
the model simulations.
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Using the identified parameters, we are able to characterize and predict the excision-
ase activity in reversing the integrase action, their relative strengths, and the ratios
required for accurate protein level prediction. The experimental data and the param-
eter identification steps for excisionase characterization are shown in Figure 3.9.

3.3 Conclusion
We present a new in silico pipeline to assist the design-build-test-learn process in
synthetic and systems biology. This pipeline consists of user-friendly, open-source,
Python software packages that have been developed with community input and sup-
port standardized models written in SBML. We build on three Python packages
to formulate the pipeline presented in this chapter, which starts by building de-
tailed reaction network models for biological circuits, reducing the detailed models
to simpler ODEs, and seamlessly connecting these models to experimental data
through Bayesian inference. All software packages demonstrated in this chapter are
Python-based (for easy integration with other tools and pipelines) and have an active
discussion and issue support forums through Github.

We demonstrate the application of this pipeline with a novel circuit design in a
cell-free protein synthesis system. We build a three-plasmid system consisting of
DNA recombination enzymes, integrases, and excisionases. With the help of this
pipeline, we characterize the expression and action of integrases and their reverse
directionality factors, excisionases. This characterization involves detailed reaction
network models, ODE models under various assumptions with a clear indication of
when each model is valid, and posterior parameter distributions for model parame-
ters that fit the experimental data.

We quantify the expression strengths of integrase, excisionase, and the reporter
while also quantifying their relative effects on the output fluorescence measure-
ment. Particularly, we show control of output protein expression at various levels
with experimental data that is backed by mathematical models. We postulate that
predictable DNA recombination-based control of protein expression adds an alter-
native design choice for biological circuit designs. This characterization of circuit
parts in the cell-free system with mathematical models would allow for such com-
plex circuit designs that use integrases and excisionases for precise control of protein
expression. While further characterization and experimentation, particularly with
regard to loading effects, are needed to fully realize the potential of these compo-
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nents, the computational pipeline we have developed is flexible enough to support
these future research directions.

To further illustrate the potential for using our characterized parts to design larger
circuits, we have provided a Python notebook on our Github [124] repository that
contains modeling and extensions of recombination-based circuits discussed in the
literature. This notebook includes the modeling and simulation of a recombination-
based AND logic gate circuit [125] that can be easily constructed using the character-
ized CRN mechanisms from this study. We also model a DNA recombination-based
finite state machine [125]. These models serve as a useful resource for exploring the
design space of DNA recombination-based circuits and allow users to easily build
upon the results of our study to create larger circuits using the characterized parts.
By making this resource available, we hope to encourage the development of DNA
recombination-based circuits and demonstrate the utility of our work.

3.4 Methods
Model reduction methods
We used a variety of model reduction techniques to derive reduced models in this
chapter. We chained these methods in an automated workflow by developing the
Python model reduction software, AutoReduce [112]. First, all CRN models with
mass-action kinetics admit a set of conservation laws. The underlying theory and
the derivation of conservation laws is a well-studied topic in CRN theory [126]. We
implemented Python methods in AutoReduce to search the conservation laws in a
given model (not necessarily a mass-action CRN), computation of reduced models
with conservation law substitutions, and symbolic manipulation of the model as
well as numerical computations for symbolic models. For CRNs with mass-action
kinetics, we find that the derived conservation laws with AutoReduce are mass con-
servation laws, such as the total RNA polymerase being conserved as the sum of
free polymerase, and all species in the model with a bound polymerase. Similarly,
we have conservation laws for total DNA, total ribosomes, total endonucleases, and
other resources.

After applying conservation laws, we used quasi-steady state approximation (QSSA)
to further reduce the models. The built-in automated QSSA tools in AutoReduce
were used for this purpose. By applying QSSA iteratively to reduced models, we
obtain further reduced models. The details of the species that were assumed to

https://github.com/ayush9pandey/integrase-excisionase-characterization/blob/main/Building%20more%20recombination%20biocircuits.ipynb
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be at QSS are shown in Figures 3.4 and 3.8. For both full models (the integrase
action and integrase-excisionase action), we obtain a set of reduced models, each
with different assumptions in the derivation of the reduced model. These are shown
as flowcharts in Figures 3.4 and 3.8. Some reduced models were amenable to even
further reduction in dimensionality by introducing species abundance assumptions.
For example, on assuming abundance of RNA polymerase (𝑃tot), we may write
the terms like 𝑃tot − 𝐶 as approximately equal to 𝑃tot where 𝐶 is an intermediate
low concentration complex species. Such assumptions were only true under certain
parameter conditions and for certain reduced models, hence, did not always lead
to correct reduced models (see the section on performance metrics in Methods for
more on how we validate a reduced-order model). Nevertheless, with the Python
tools in AutoReduce and our further additions to it, exploration of the space of
models is quick. Finally, we extended AutoReduce to develop wrappers for easy
import and export of SBML files so that the tool can be seamlessly connected to
existing pipelines.

Context abstraction with BioCRNpyler
BioCRNpyler allows the modeling of biological systems in different contexts and
modeling details with the use of built-in Mixtures (objects that model the context-
dependent and global effects) and Mechanisms (objects that capture the modeling
detail for a process). In this chapter, we utilize this key functionality of BioCRNpyler
to explore the design space and possible hypothesis for integrase and excisionase-
based DNA recombination. We developed two integrase action mechanisms —
a simple mechanism that models the flipping of attP-attB promoter sequence to
attL-attR in one step, and a detailed mechanism that models the same process but
with binding events involving integrase binding to the different DNA sites. For
excisionase action, the exact mechanism and binding steps are unknown, so we
model all possible steps and explore the hypothesis with our iterative pipeline and
the experimental data. We model the excisionase binding to DNA already bound
with integrase on the attP-attB or the attL-attR sites as the first hypothesis of the
excisionase mechanism. Once excisionase binds at the attL-attR site already bound
with integrase, it flips the sequence to attP-attB. Another potential mechanism by
which excisionase may reverse the directionality of the promoter is by binding to
the integrase first and forming an integrase-excisionase complex. This complex,
when bound with the DNA at the attL-attR site, flips the promoter to attP-attB.
Further, the sequestration mechanism for excisionase is also modeled by including
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the reactions in which the excisionase binds to the attP-attB site, hence, preventing
integrase to act on it. We add all of these mechanisms to the library of BioCRN-
pyler mechanisms so that they can be used to build CRN models in different mixtures.

We use the TxTlExtract mixture in BioCRNpyler along with the mechanisms
described above to build detailed CRN models. In the iterations of the pipeline,
as described in Figure 3.4 and 3.8, we switch mechanisms ON or OFF to abstract
the details of the model and switch Mixtures to build simpler or detailed models.
In conclusion, the context abstraction with BioCRNpyler is achieved by building
mechanisms and mixtures and simply choosing the mixture to use for context and
the mechanisms for the modeling detail.

Reduced model performance metrics
Each reduced model obtained in this chapter was tested for its performance against
the full model by computing different metrics. We used the metrics developed in
Chapter 2 of this thesis for this purpose. First, we computed the normed error
metric, Z , for each reduced model:

Z = ∥𝑦 − �̂�∥2
2 ,

where 𝑦 and �̂� are the outputs of the full and the reduced model, respectively. In all
cases analyzed in this chapter, we derived reduced models where the outputs of the
full model were never collapsed since these are the signals which are measured. For
most cases, the error performance metric sufficed in rejecting the reduced models,
however, two other metrics that were shown to be useful in deciding among equally
good error-performance models are:

1. Error sensitivity: It was shown that when normed error performance is of the
same order for two or more reduced models, we can compute the sensitivity
of the error with respect to each parameter in the model to choose a reduced
model whose error is least sensitive to parameter perturbations.

2. Input-output map: For each reduced model, we computed an input-output
system gain using linear systems theory [69] by first linearizing the model
around a point of interest. This input-output gain was then compared with the
gain of the full model to ensure the fidelity of the reduced models.
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Using these error metrics, we decided which reduced model to choose as shown in
Figures 3.4 and 3.8. The computation of the metrics for all reduced models shown
in this chapter is available with the associated Python code on Github [124].

Data analysis and parameter inference
Standard Python libraries (NumPy [127] and Matplotlib [128]) were used for the
analysis and plotting of experimental data. Three main analysis and optimization
tools were used in this chapter:

Numerical simulations

The Cython-based tool Bioscrape [31] provides access to fast simulators suited to
simulate CRN models even under stiff conditions that are commonly observed in
mass-action ODE simulations. Although Bioscrape provides both deterministic and
stochastic simulation tools we used only deterministic simulations for the analyses
in this chapter. The Python wrappers available in Bioscrape were used to import
SBML files from BioCRNpyler and AutoReduce to run simulations. All simulations
shown in this chapter were performed using Bioscrape.

Sensitivity analysis

We extended the suite of analysis tools in Bioscrape by developing local sensitivity
analysis methods. The local sensitivity coefficients are computed at each time point
as

𝑠𝑖 𝑗 =
𝑑𝑥𝑖

𝑑𝑝 𝑗
,

where 𝑥𝑖 is the i-th state and 𝑝 𝑗 is the j-th parameter. The sensitivity coefficients
are arranged in a tensor of size length of timepoints × number of parameters ×
number of states. The computation of sensitivity coefficients is done by using the
direct method [80]. Various options to control the accuracy, normalization, and
integration methods are available to the user. Full documentation of the sensitivity
analysis was added to the Bioscrape documentation on Github [129]. In Figures 3.3
and 3.7, we used the sensitivity analysis method to assess which parameters were
most effective for each model. In Figures 3.5 and 3.9, we used the sensitivity
analysis to find identifiable parameters from the data and guide a by-parts parameter
inference process.
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Bayesian inference using MCMC

We used time-series fluorescence reporter measurements to validate the mathemat-
ical models. Towards that end, we optimized the parameters in the model using
Bayesian inference. We find probability distributions for parameters given the ex-
perimental data (posterior distributions) and then sample the parameter values from
the posterior to simulate the model to plot alongside the data. Bayes’ rule is the
underlying principle for this approach:

P(𝑝 𝑗 |𝑦𝑖) =
P(𝑦𝑖 |𝑝 𝑗 ) × P(𝑝 𝑗 )
P(𝑝 𝑗 , 𝑦𝑖)

∝ P(𝑦𝑖 |𝑝 𝑗 ) × P(𝑝 𝑗 )

log
(
P(𝑝 𝑗 |𝑦𝑖)

)
∝ logP(𝑦𝑖 |𝑝 𝑗 ) + logP(𝑝 𝑗 ),

where 𝑝 𝑗 consists of the parameters for which we want the probability distribution
given the data instance(s) 𝑦𝑖. The probability distribution P(𝑦𝑖 |𝑝 𝑗 ) is called the
model likelihood since it is proportional to the likelihood of seeing the data 𝑦𝑖 given
that the parameters take the value 𝑝 𝑗 . We implemented multiple ways in which this
likelihood can be computed by simulating the model at the given parameter values
𝑝 𝑗 and comparing the model against the data. For example, the likelihood may
be computed with Bioscrape as the normed difference between the model outputs
and experimental measurements over time or it may be computed as the maximum
error between the simulation and the data. We implemented a total of 6 methods to
compute the model likelihood. The Bioscrape documentation [129] describes these
in detail.

For the parameter inference in this chapter, we used the deterministic trajectory
likelihood which computes the normed error between the model and the data for all
time in the data trajectories. The probability distribution P(𝑝 𝑗 ) is the prior probabil-
ity distribution that gives each parameter value a probability of being the true value
from the prior information about the parameters. We implemented multiple prior
probability distributions in Bioscrape including, Gaussian, uniform, log-normal,
log-uniform, beta, and more. A custom function may also be used as a prior prob-
ability distribution for a parameter. Bioscrape documentation describes their usage
in detail. Since all models used in this chapter are models that describe biophysi-
cal processes, the parameters have mechanistic meanings, hence, priors were used
to constrain the parameter inference according to the biological prior knowledge
about each parameter. To compute each parameter sample, we use the Python em-
cee [113] package that implements a Markov Chain Monte Carlo (MCMC) sampler.
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This MCMC sampler proposes the next parameter sample by assessing how the pre-
vious sample performed. For more details on the sampling algorithm, the reader is
referred to the emcee documentation [113]. In conclusion, we developed Bioscrape
inference as a black-box wrapper that imports experimental data and an SBML
model to be used for parameter inference with emcee. Code for all data analysis,
parameter inference, and related documentation are available on Github [124].
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APPENDIX A

A.1 Raw data and concentration calibration
The raw fluorescence data for the integrase and reporter circuit shown in Figure 3.2
is shown in Figure A1. For the excisionase expression (mScarlet fluorescence) and

integraseintegraseintegraseintegraseintegrase

A
.U
.

A
.U
.

Figure A1: Cell-free fluorescence data for the integrase and reporter expression cir-
cuit. The raw measurements are in arbitrary units. We process these measurements
by subtracting the background and calibrating the fluorescence to concentration
units. Note that error bars are only shown once in every 30 points for clarity.

its action on the reporter, the raw fluorescence data for CFP (integrase expression),
mScarlet (excisionase expression), and YFP (reporter) is shown in Figure A2. We
calibrated the plate reader fluorescence reading to obtain absolute concentration
measurements for the cell-free experiments. The calibration factors are given in
Table A1 where arbitrary units [AU] = Slope · [uM] + Offset.

Measurement Slope Offset
CFP 12796.23 -6248.64
mScarlet 9886.58 166.59
YFP 44451.55 294

Table A1: Calibration factors for cell-free experiments

A.2 Model species
In the integrase model (shown in Figure 3.2), each variable represents the concen-
tration of the model species. 𝐺𝑖 is the integrase plasmid, 𝑃 is RNA polymerase
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Figure A2: Cell-free fluorescence data for the integrase, excisionase, and reporter
expression circuit. The raw measurements are in arbitrary units. We process these
measurements by subtracting the background and calibrating the fluorescence to
concentration units. Note that error bars are only shown for every 18 points.

(RNAP) and 𝐶𝑖1 is the binding complex between RNAP and the gene. 𝑇𝑖 is the
mRNA transcript that codes for the Bxb1-CFP (𝐼) protein. The binding complex
between mRNA and ribosome, 𝑅, is denoted as 𝐶𝑖2 . The reporter plasmid is called
𝑈 in its “inactive” state (that is, when the promoter is in the reverse direction) and
𝐴 in its “active” state. RNAP binds to the reporter gene to form the complex 𝐶1 to
transcribe the reporter mRNA 𝑇 , which then binds to the ribosome (𝑅) to form 𝐶2.
The YFP concentration is denoted as 𝑌 . For the integrase activity, we use 𝑛𝑖 for the
cooperativity of integrase binding to the inactive gene, 𝑈, to form the complex, 𝐶𝑖.
The integrase flipping reaction forms the active complex, 𝐶𝑎, which then reversibly
forms the active reporter plasmid, 𝐴.

We model the degradation of mRNA and its complexes by the endonucleases in
cell-free extracts. The endonuclease concentration is denoted by 𝐸 , which forms
complexes 𝐶𝑒𝑖 , 𝐶𝑒𝑟𝑖 , 𝐶𝑒, and 𝐶𝑒𝑟 when it binds to the integrase mRNA transcript,
the ribosome-bound integrase mRNA transcript, the reporter transcript, and the
ribosome-bound reporter mRNA transcript, respectively.

In the integrase-excisionase model (shown in Figure 3.6), we have the transcription
and translation of the Xis-mScar gene (𝐺𝑒) that expresses the fused excisionase-
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mScarlet protein (𝐸0). The corresponding transcript is denoted as 𝑇𝑒, the RNAP-
gene complex as 𝐶𝑒1 , and the transcript-ribosome binding complex as 𝐶𝑒2 . For the
excisionase action, we introduce two mechanisms. In the first mechanism, the ex-
cisionase, with a cooperativity of 𝑛𝑒, binds to the integrase-bound “active” reporter
plasmid, 𝐶𝑎, with attL-attR sites to form the complex 𝐶𝑒. The excisionase flips
the promoter direction in this complex to form 𝐶𝑟 , which is the “inactive” complex
with both integrase and excisionase bound at the attB-attP site. Then, this com-
plex reversibly unbinds to give out free integrase, excisionase, and the “inactive”
reporter plasmid, 𝑈. In the second excisionase mechanism, the excisionase binds
to the integrase forming the complex 𝐶𝑖𝑒. The excisionase may also bind to the
integrase-bound DNA, 𝐶𝑖, forming 𝐶𝑟 , to sequester the integrase from flipping 𝐶𝑖
to 𝐶𝑎. Finally, the integrase-excisionase complex, 𝐶𝑖𝑒, binds to both the “inac-
tive” and the “active” DNA (𝑈 and 𝐴) to form complexes 𝐶𝑟 and 𝐶𝑒, respectively.
Similar to the endonuclease-mediated degradation of integrase and reporter mRNA
and their complexes, the excisionase mRNA and its complexes are also degraded.
The endonuclease binds to the excisionase mRNA to form 𝐶𝑒𝑒 and it binds to the
ribosome-bound excisionase mRNA, 𝐶𝑒2 , to form the complex 𝐶𝑒𝑟𝑒 .

A.3 Parameter values
All parameter values and simulation conditions for all models in this chapter are
available on Github [124]. To summarize some of these findings, we provide
key parameter values for the detailed and minimal models as tables below. Note
that we identified the posterior distributions (and hence, the uncertainties) for the
parameters in the minimal models. The corner plots in Figures 3.5 and 3.9 show
these uncertainties in each identified parameters. The reader is referred to the
source code [124] for more details on statistical convergence, prior distributions,
initial guesses, and posterior distributions with uncertainties.

Table A2: Cell-free global resources

Parameter Description Value Unit
𝑃tot Total RNAP in cell-free mixture 200 nM
𝑅tot Total ribosomes in cell-free mixture 400 nM
𝐸tot Total endonucleases in cell-free mixture 30 nM
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Table A3: Integrase and reporter model parameters in cell-free extract

Name Description Value Unit
𝑎𝑖 Binding rate of integrase to attP-attB DNA site 10 nM−𝑛𝑖hour−1

𝑑𝑖 Unbinding rate of integrase from the DNA 1 hour−1

𝑘𝑖𝑛𝑡 Flipping rate of integrase 0.1 hour−1

𝑎𝑟 Unbinding rate of integrase and attL-attR complex 0.033 hour−1

𝑑𝑟 Binding rate of integrase and attL-attR site on DNA 0.5 nM−𝑛𝑖hour−1

𝑘𝑏𝑝𝑖 Binding rate of RNAP to transcribe integrase-mRNA 100 nM−1hour−1

𝑘𝑢𝑝𝑖 Unbinding rate of RNAP from the integrase DNA 1 hour−1

𝑘𝑡 𝑥𝑖 Transcription rate of integrase expressing mRNA 0.25 hour−1

𝑘𝑏𝑟𝑖 Binding rate of ribosome to the integrase mRNA 100 nM−1hour−1

𝑘𝑢𝑟𝑖 Unbinding rate of ribosome 1 hour−1

from the integrase mRNA
𝑘𝑡𝑙𝑖 Translation rate of integrase-CFP expression 0.013 hour−1

𝑛𝑖 Cooperativity of integrase action 3 –
𝑘 int Integrase flipping rate 0.1 hour−1

𝑘𝑏𝑝 Binding rate of RNAP to transcribe reporter mRNA 80 nM−1hour−1

𝑘𝑢𝑝 Unbinding rate of RNAP from the reporter DNA 2 hour−1

𝑘𝑡 𝑥 Transcription rate of the reporter mRNA 0.3 hour−1

𝑘𝑏𝑟 Binding rate of ribosome to the reporter mRNA 80 nM−1hour−1

𝑘𝑢𝑟 Unbinding rate of ribosome from 2 hour−1

the reporter mRNA
𝑘𝑡𝑙 Translation rate of the reporter 0.03 hour−1

𝑑𝑏𝑇𝑖 Binding rate of RNAase to the integrase mRNA 20 nM−1hour−1

𝑑𝑢𝑇𝑖 Unbinding rate of RNAase 2 hour−1

from the integrase mRNA
𝑑𝑇𝑖 RNAase mediated degradation 0.005 hour−1

rate of integrase mRNA
𝑑𝑏𝑅𝑇𝑖 Binding rate of RNAase to 20 nM−1hour−1

the ribosome bound integrase mRNA
𝑑𝑢𝑅𝑇𝑖 Unbinding rate of RNAase 2 hour−1

from ribosome bound integrase mRNA
𝑑𝑅𝑇𝑖 RNAase mediated degradation rate 0.005 hour−1

of ribosome bound integrase mRNA complex
𝑑𝑏𝑇 Binding rate of RNAase to the reporter mRNA 10 nM−1hour−1

𝑑𝑢𝑇 Unbinding rate of RNAase 2 hour−1

from the reporter mRNA
𝑑𝑇 RNAase mediated degradation rate 0.001 hour−1

of reporter mRNA
𝑑𝑏𝑅𝑇 Binding rate of RNAase to 10 nM−1hour−1

the ribosome bound reporter mRNA
𝑑𝑢𝑅𝑇 Unbinding rate of RNAase 2 hour−1

from ribosome bound reporter mRNA
𝑑𝑅𝑇 RNAase mediated degradation rate 0.005 hour−1

of ribosome bound reporter mRNA complex
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Table A4: Integrase-excisionase model parameters in cell-free extract

Name Description Value Unit
𝑎𝑒1 Binding rate of excisionase to integrase 2 nM−𝑛𝑒hour−1

bound attL-attR site on the DNA
𝑑𝑒1 Unbinding rate of excisionase from 0.01 hour−1

integrase bound attL-attR site on the DNA
𝑎𝑠1 Binding rate of integrase to excisionase 0.02 nM−1hour−1

𝑑𝑠1 Unbinding rate of integrase from excisionase 1 hour−1

𝑎𝑒2 Binding rate of integrase-excisionase complex 1 nM−𝑛𝑒hour−1

to the attL-attR site on the DNA
𝑑𝑒2 Unbinding rate of integrase-excisionase complex 0.02 hour−1

from the attL-attR site on the DNA
𝑎𝑠2 Binding rate of excisionase to integrase 0.02 nM−𝑛𝑒hour−1

bound attP-attB site on the DNA
𝑑𝑠2 Unbinding rate of excisionase from 0.05 hour−1

integrase bound attP-attB site on the DNA
𝑎𝑟1 Unbinding rate of integrase, excisionase, and 0.02 hour−1

the attP-attB site on the DNA from their complex
𝑑𝑟1 Binding rate of integrase, excisionase, and 0.01 nM−(𝑛𝑒+𝑛𝑖 )hour−1

the attP-attB site on the DNA to form a complex
𝑎𝑟2 Binding rate of integrase-excisionase complex to 0.02 nM−𝑛𝑒hour−1

the attP-attB site on the DNA
𝑑𝑟2 Unbinding rate of integrase-excisionase complex and 0.01 hour−1

the attP-attB site on the DNA from their complex
𝑘𝑏𝑝𝑒 Binding rate of RNAP to transcribe 100 nM−1hour−1

excisionase mRNA
𝑘𝑢𝑝𝑒 Unbinding rate of RNAP from the excisionase DNA 1 hour−1

𝑘𝑡 𝑥𝑒 Transcription rate of excisionase expressing mRNA 0.292 hour−1

𝑘𝑏𝑟𝑒 Binding rate of ribosome to the 100 nM−1hour−1

excisionase mRNA
𝑘𝑢𝑟𝑒 Unbinding rate of ribosome from the 1 hour−1

excisionase mRNA
𝑘𝑡𝑙𝑒 Translation rate of excisionase-mScarlet expression 0.011 hour−1

𝑛𝑒 Cooperativity of excisionase action 4 –
𝑘exc Excision rate 0.7 hour−1

𝑘𝑡 𝑥 Transcription rate of the reporter-mRNA 0.4 hour−1

𝑘𝑡𝑙 Translation rate of the reporter 0.08 hour−1

𝑑𝑏𝑇𝑒 Binding rate of RNAase to the excisionase mRNA 20 nM−1hour−1

𝑑𝑢𝑇𝑒 Unbinding rate of RNAase from the 2 hour−1

excisionase mRNA
𝑑𝑇𝑒 RNAase mediated degradation 0.005 hour−1

of excisionase mRNA expression
𝑑𝑏𝑅𝑇𝑒 Binding rate of RNAase to 20 nM−1hour−1

the ribosome bound excisionase mRNA
𝑑𝑢𝑅𝑇𝑒 Unbinding rate of RNAase 2 hour−1

from ribosome bound excisionase mRNA
𝑑𝑅𝑇𝑒 RNAase mediated degradation rate 0.005 hour−1

of ribosome bound excisionase mRNA complex
Note that some integrase parameters are updated in the parameter identification process as the
context changes in this more complex circuit.
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A.4 Parameter inference and unidentifiability
MCMC sampler for inference of integrase-reporter circuit

Figure A3: MCMC chains for identification of integrase model parameters given
the integrase-reporter cell-free experiments.

In this section, we show the parameter inference results in detail for the integrase
model and the integrase-excisionase model. The parameter inference uses exper-
imental data from cell-free experiments. The same cell-free mixture (extract and
buffer) is used for all experiments shown in this chapter to ensure that the context-
dependent parameters remain constant throughout. For the integrase expression and
action (model shown in Figure 3.2), the MCMC chains for the identified parameters
are shown in Figure A3.
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As discussed in the main text, we use system identification by parts to identify
parameters sequentially using the sensitivities of the measurements to different pa-
rameters. The first step of parameter identification uses CFP measurement to identify
𝑘𝑖 as suggested by sensitivity analysis (see Figure 3.5B). We run the MCMC sampler
for 1000 steps, 10 walkers, and a Gaussian prior on 𝑘𝑖 with a mean value of 0.23
and a standard deviation equal to 1. To identify the integrase action and reporter
expression parameters, 𝑘𝑖𝑛𝑡 , 𝑛, 𝐾𝐼 , and 𝑘 , we use YFP measurement as suggested
by the sensitivity analysis. For this MCMC sampler, we use 40 walkers for 10000
steps and Gaussian priors on all parameters. The mean values used in the priors for
𝑘𝑖𝑛𝑡 , 𝑛, 𝐾𝐼 , and 𝑘 are 0.05, 2, 3330, and 0.0001 while the standard deviations used
are 10, 2, 1000, and 0.1, respectively. The total runtime for this parameter inference
was 50 minutes on a personal computer with an Intel i7-6700 processor and 16GB
of RAM.

Identified integrase model and data
We sample from posterior parameter distributions and run model simulations. We
plot the simulations of the identified models together with the experimental data.
These results are shown for both the CFP and YFP measurements in Figures A4
and A5, respectively.

MCMC sampler for inference of integrase-excisionase circuit
Here we describe the MCMC sampler used to infer the parameters of the integrase-
excisionase and reporter circuit (model shown in Figure 3.6). The MCMC chains for
the identified parameters are shown in Figure A6. First, we use the CFP measurement
to re-estimate 𝑘𝑖 in this updated context and then use the mScarlet measurement to
infer 𝑘𝑒. See sensitivity analyses of the different outputs (CFP, mScarlet, and YFP)
to model parameters in Figure 3.7. We run the MCMC sampler for 1000 steps, 10
walkers, and Gaussian priors on 𝑘𝑖 and 𝑘𝑒 with mean values set at 0.26 (previously
identified maximum likelihood value) for 𝑘𝑖 and 0.3 for 𝑘𝑒. Both priors are used with
a standard deviation equal to 5. Further, to identify the integrase and excisionase
action, and reporter expression parameters, 𝑘𝑖𝑛𝑡 , 𝑑𝑖, 𝑎𝑒2 , 𝑎𝑠1 , 𝑑𝑠1 , and 𝑘 , we use YFP
measurements as suggested by the sensitivity analysis. For this MCMC sampler, we
use 20 walkers for 20000 steps and Gaussian priors on all parameters. The mean
values used in the priors for 𝑘𝑖𝑛𝑡 , 𝑑𝑖, 𝑎𝑒2 , 𝑘𝑒, 𝑎𝑠1 , 𝑑𝑠1 , and 𝑘 are 0.2, 500, 0.02, 𝑘𝑒
(previously identified), 0.1, 100, and 2 while the standard deviations used are 5,
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Figure A4: Model simulations with posterior parameter values plotted alongside
CFP measurement. Observe that the model fits the data well for most conditions,
however, for higher reporter plasmid concentration the fit worsens. See the dis-
cussion on loading effects in Material and Methods for more information on this
observation.

Figure A5: Model simulations with posterior parameter values plotted alongside
YFP measurement. Observe that the minimal model (derived automatically from
a detailed CRN model) does not fit the dynamics as cell-free extract stops protein
expression. This is a result of context abstraction steps in obtaining this minimal
model. Since the effects of resource usage are not modeled in this minimal model,
the YFP expression in the model does not saturate as quickly as the observed data.
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Figure A6: MCMC chains for identification of integrase-excisionase model param-
eters using the data from cell-free experiments.

1000, 5, 0.1 · 𝑘𝑒, 5, 100, and 10, respectively. The total runtime for this parameter
inference was 24 hours on a personal computer with an Intel i7-6700 processor and
16GB of RAM.
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Identified excisionase model and data
We sample from posterior parameter distributions and run model simulations. We
plot the simulations of the identified models together with the experimental data.
These results are shown for all three measurements: CFP, mScarlet, and YFP in
Figures A7, A8, and A9, respectively. As it is clear from the runtime, an increase

Figure A7: Model simulations with posterior parameter values plotted alongside
CFP measurement.

Figure A8: Model simulations with posterior parameter values plotted alongside
mScarlet measurement.

in the dimension of the parameter inference problem from 3 to 6 led to a significant
increase in runtime from around 1 hour to 24 hours. This is an expected curse
of dimensionality, which leads to difficulty in inferring the parameters of detailed
models. In the model-data fits shown above, the CFP and mScarlet measurements
agree with the fitted model simulations, but, the YFP measurements do not perfectly
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Figure A9: Model simulations with posterior parameter values plotted alongside
YFP measurement. Note that although the model qualitatively captures the YFP
expression but does not fit the data very well for some of the conditions. This is a
result of a computational tradeoff in choosing a lower dimensional model for fea-
sible parameter identification. The detailed model would capture the experimental
behavior but it is infeasible to estimate 54 parameters with Bayesian inference.

fit the model predictions. The qualitative trends of the YFP expression are predicted
correctly but since we are only identifying 6 parameters out of a total of 54 in the
detailed model, these inaccuracies are expected.
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C h a p t e r 4

CONTRACT-BASED MODELING AND DESIGN

4.1 Main contributions
We provide a new perspective on using formal methods to model specifications
and synthesize implementations for the design of biological circuits. In synthetic
biology, design objectives are rarely described formally. We present an assume-
guarantee contract framework to describe biological circuit design objectives as
formal specifications. In our approach, these formal specifications are implemented
by circuits modeled by ordinary differential equations, yielding a design framework
that can be used to design complex synthetic biological circuits at scale.

We use a contract-based design software called Pacti [130] to aid the design of
engineered biological systems. We consider a conditional guide RNA trigger-
based [131] biological NAND logic gate with three subsystems. Two of the three
subsystems can be chosen from a library of sensors that we have constructed using
experimental data. We use the quotient operation on contracts to infer a specification
of the missing third subsystem that needs to be designed. Further, once a nominal
set of three subsystems have been chosen, we use contract composition as part of
an optimization strategy to maximize the system fold-change, defined as the ratio
between the on and off levels of the system’s output.

Using the same approach of quotient-then-composition, we scale the design op-
timization to systems with five and then seven components. Finally, we show the
design-space exploration of a large biological circuit with 1001 different possibilities
to find successful designs.
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4.2 Introduction
Research in synthetic biology has accelerated in the past decade due to its enormous
promise in engineering biological systems for desired behavior. As discussed in
Chapter 1, the synthetic biology applications range from biomedicine to engineered
living materials and environmental remediation. Mathematical modeling has played
a key role in the foundations of synthetic biology. In two papers published in 2000,
dynamical systems were used to successfully analyze the oscillatory response of the
repressilator [11] and the bistability in the toggle switch [10]. Since then, mathemat-
ical modeling has been extensively used to study the design of engineered biological
systems [132]. Phenomenological models of gene regulation in synthetic biological
circuits, such as activation and repression, have seen the most success in various
applications [100], [133]–[135]. These models use simple nonlinear functions to
model the biological circuit phenomena representing their input-output behavior. On
the other hand, detailed models of mechanisms and metabolic pathways have long
been used in systems biology to quantitatively study various properties of biological
systems [136]. This kind of detailed modeling is important in engineered biological
systems, as well. For example, chemical reaction network models of protease-based
biosensors have been developed to engineer optimized logic gates [137]. Similarly,
detailed mathematical models have been used to amplify biofuel production [138]
and to characterize fluorescent protein maturation [139]. A review article on the
current modeling practices in synthetic biology [140] provides further references on
this topic.

The choice of using a detailed or a phenomenological model is made according
to the problem at hand. From a design standpoint, the development of models
is necessary to decide when to use the circuits described by these models. This
is a central focus of this thesis as seen in Chapters 2 and 3. In Chapter 2, we
demonstrated the importance of exploring the underlying assumptions in reduced
models and proved conditions under which different gene expression models are
valid. On similar lines, in Chapter 3, we explored reduced models of the integrase
and excisionase enzymes in cell-free to predict the induction ratios. However, until
now, all of these results have used the detailed modeling of the mechanisms of each
component in the system. The curse of dimensionality is evident in the analysis
shown in Chapter 3. The parameter inference-based system design for a system
with 3 components took around 1 hour while for a system with 6 components took
around 24 hours. As a result, the approaches discussed until this point in the thesis
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are not easily scaled to large system designs.

As system complexity increases, we believe that it is necessary to develop a complete
design methodology that begins with a top-level description of the system’s objective
and guides the designer in the generation of an implementation that can be proved
to meet the specification. This is the one of the main contributions of this chapter.
Our methodology decouples reasoning about component specifications from rea-
soning about the modeling details of each component. This allows understanding
the system’s specification by analyzing the specifications of the subsystems. This
methodology allows designers to focus on particular aspects of the design process
at various levels of detail while ensuring that other aspects of the design are not
forgotten. Current design approaches in synthetic biology do not model system
specifications mathematically, but rather informally. As a consequence, the result-
ing mathematical models obtained are often disconnected from the specifications.
It is thus difficult to answer whether the obtained models behave according to the
specifications.

In this chapter, we apply the theoretical foundations for scalable engineered sys-
tem design and related tools to enable compositional design of synthetic biology
circuits. We use a recently developed contract-based design tool called Pacti [130],
to certify system behavior against a specification through scales of model complex-
ity. Using Pacti, we present a subsystem specification synthesis and composition
strategy to predict system response. We validate these predictions with in vivo
experimental data.

The state of the art of biocircuit design
The current synthetic biological circuit design process is largely heuristic-driven,
where scientists makes design decisions based on their experience. Various model-
ing and computational tools assist the scientist in this process. Analysis of circuit
design by developing ODE models and running simulations is used to validate pro-
posed hypotheses. Other modeling formalisms such as chemical reaction-based or
stochastic/partial differential equations are also used similarly. Design decisions
and predictions are sometimes possible using such simulations. For example, in
Chapter 3 of this thesis, different abstractions of chemical reaction network models
are developed to predict the level of inducers to use in a system design with three
components to achieve the desired output. Similarly, mathematical analysis of fixed
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points, oscillations [141], resource competition [142], and other modeling detail
driven predictions are commonly employed in circuit design. But, a major disad-
vantage of this approach is that it does not scale well with the number of components
in the circuit and hence cannot be used to predict larger circuit designs. Context-
dependence of each component and modularity are big challenges that cannot be
easily tackled in detailed modeling approaches.

Recently, we have seen a rise in computational design approaches that guide the
engineering of proteins. For example, a design and optimization framework, called
SAMPLE, [143] performs a combinatorial exploration of the DNA sequence space to
maximize the protein fitness landscape. However, the protein design frameworks are
limited to the design of proteins and not generalizable to bio-circuits where multiple
proteins, enzymes, and other components interact to achieve complex system-level
behavior.

For synthetic biological circuit design, design automation techniques and algo-
rithms to propose circuit designs that achieve desired circuit behavior have been
proposed. Cello [24] is a design tool that has been successfully used for designing
large Boolean logic gate circuits based on a high-level language that describes the
desired circuit behavior. It uses a library of characterized DNA parts for circuit
design. On similar lines, a bio-design vision [144] was recently shared that vouches
for co-design of hardware, software, and wetware together acting as compilers of
large genetic circuits. Our design methodology shares similar principles where
system designs are proposed in a modular way by using input-output relationships
of each component. We discuss this in more detail next.

Scaling system designs
As discussed, mathematical models have been used to study the behavior of biolog-
ical systems and analyze various properties. However, current experimental design
approaches in synthetic biology are largely heuristics and trial-and-error based,
hence, difficult to scale. We believe that the design framework presented here holds
the potential to address this issue of scale due to its generality in writing system
specifications and in decoupling the modeling details of each component from their
specification. Using our approach, we can synthesize missing specifications given
a larger system design and also predict behavior of systems by exploring the design
space.
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Our design methodology is centered on contract-based design [145]. At the heart of
contract-based design are assume-guarantee contracts, which are formal specifica-
tions that distinguish between the responsibilities of a component and the assump-
tions made on its environment. Contracts come with a rich algebra. Contract-based
methodologies have been developed for digital circuit design, aircraft power distri-
bution systems [146], and certain classes of control systems [147]. Contract-based
design is an engineering methodology used in systems engineering to provide modu-
larity and guaranteed performance for systems with multiple components interacting
in a complex fashion [148].

Recently, we developed a contract-based design and analysis software package
called Pacti [130]. Pacti is an open-source Python package for carrying out com-
positional system analysis and design. Pacti represents components in a system
using assume-guarantee specifications. Pacti can be used to obtain sensible system
specifications from the specifications of the constituent subsystems. It can also be
used to compute specifications of missing subsystems that need to be added to a
design in order to meet an objective and diagnose inconsistent design errors when
interconnecting components.

With the use of Pacti, we envision speeding up the experimental design process
for synthetic biology in three ways: 1) by developing a characterized library of parts
as assume-guarantee contracts using existing experimental data, 2) by constrain-
ing the design-space to automatically catch design errors and incompatible system
components, and 3) by finding specifications of missing parts using the quotient
operation on contracts.

We demonstrate the application of our methodology with the design of various
engineered biological circuits — a transcriptional control-based AND logic gate, a
dCas9-mediated NAND logic gate, and scaled in silico designs of biological circuits.
We also validate our computational predictions with in vivo experimental data. We
discuss how contracts help us to meet a system-wide specification when we have a
partial implementation of the system available. Finally, we show how our method-
ology can be extended to seamlessly connect the specification of a component with
its models and implementations.
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From specifications to implementations
System design starts by writing the desired objectives mathematically so that any
proposed implementation can be validated against the desired objectives. This prac-
tice of formally writing mathematical specifications is common in many areas of
engineering. Often, it is possible to map these specifications to detailed imple-
mentation models [145], [149] as well to create system synthesis and integration
pipelines. In this chapter, we explore an approach to write detailed models using
domain knowledge for synthetic biological circuits starting from assume-guarantee
contract specifications.

4.3 A contract-based design primer
Contract-based design [145] is a methodology by which a system is implemented
by starting from a specification expressed as a contract and proceeding through a
process of successive refinements, each of them adding increasing amounts of detail
to the implementation.

The design process begins with a contract for the system we wish to implement
and with a library of components that will be used to construct such a system. Each
component in the library is represented by a contract. A mapping process identifies
a set of elements from the library whose composition implements the top-level con-
tract. If an implementation cannot be found, it may be the case that the library is
insufficiently populated to implement the given specification. In this case, we can
identify the contract specification of an element we need to add to the library to meet
the specification. On the other hand, when an implementation is obtained by the
mapping process, we have either reached our goal, or we may need to determine ad-
ditional details of the candidate implementation. In the latter situation, the result of
the mapping process can become the “top-level” contract input of the next mapping
step that adds more details to the implementation. In other words, the design pro-
cess can repeat as many times as needed until all details of the design are determined.

In contract-based design, the library of components consists of contracts; hence, we
have to characterize as a contract every component we wish to add to our library.
Since there are various kinds of analyses we may wish to perform on the system,
there can be multiple contracts that can be associated with a given element. For ex-
ample, we may keep separate the functionality specification from the performance.
The multiple angles from which we can look at components are called viewpoints.
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Operating on formal specifications offers the advantage that we keep separate the
purpose of the system from its implementation details. This allows the designer to
carry out analysis at the specification level, without getting distracted by detailed
models. Moreover, by keeping separate the various viewpoints of the design, the
designer can focus on a given type of analysis without worrying about the specifics
of other aspects.

Formal aspects of assume-guarantee contracts
Assume-guarantee contracts are formal specifications that distinguish between (i)
assumptions made on the environment and (ii) responsibilities attributed to the ob-
ject being specified when it operates in an environment that meets the assumptions
of the contract. An assume-guarantee contract C is thus a pair (𝑎, 𝑔) of constraints
denoting assumptions and guarantees, respectively. We say that a component is an
environment for the contract if it meets the constraints 𝑎; we say a component is an
implementation for a contract if it meets the guarantees 𝑔 provided it operates in an
environment for the contract, i.e., if it meets the constraint 𝑎 → 𝑔, where the arrow
is logical implication (i.e., 𝑎 → 𝑏 = 𝑎 ∨ ¬𝑏). For a treatment of assume-guarantee
contracts and their algebraic aspects, see [150]–[153].

We assume that constraints come from a Boolean algebra, i.e., there are well-defined
notions of conjunction, disjunction, and negation for constraints. The Boolean al-
gebra of constraints generates a partial order on contracts called refinement. We say
that C = (𝑎, 𝑔) refines C′ = (𝑎′, 𝑔′) (or that C′ abstracts C) when the environments
of C′ are environments of C and the implementations of C are implementations
of C′, i.e., when 𝑎′ ≤ 𝑎 and 𝑎 → 𝑔 ≤ 𝑎′ → 𝑔′. We say that two contracts are
equivalent if they have the same environments and the same implementations. Note
that any contract (𝑎, 𝑔) is equivalent to the contract (𝑎, 𝑎 → 𝑔). A contract in this
form is said to be in saturated or canonical form.

Suppose we have two components obeying contracts C and C′, respectively, and we
want to obtain the specification of the system built using these two components. The
contract operation of composition gives us the smallest contract in the refinement
order obeyed by the system.
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The closed-form expression for composition [152] is

C ∥ C′ =

(
(𝑎 ∧ 𝑎′) ∨ (𝑎 ∧ ¬𝑔) ∨ (𝑎′ ∧ ¬𝑔′),
(𝑎 → 𝑔) ∧ (𝑎′ → 𝑔′)

)
.

The composition operation is monotonic in the refinement order, i.e., composing by
bigger contracts yields bigger results. As the composition is the smallest contract
obeyed by the system, the system also obeys any abstraction of the composition
operation. This observation will be used to provide results of composition that are
closer to the intuition of a designer.

In addition to building systems using components, we are sometimes interested
in finding components that allow us to meet a goal system-level specification. Sup-
pose we wish to implement a system having a specification C, and we have available
a subsystem obeying a contract C′. We want to find the specification of a second
subsystem whose composition with the existing subsystem satisfies the top-level
specification C. The largest such contract in the refinement order is given by the
operation of quotient, whose explicit form [151] is

C/C′ =

(
𝑎 ∧ (𝑎′ → 𝑔′),
(𝑎′ ∧ 𝑔) ∨ ¬𝑎 ∨ (𝑎′ ∧ ¬𝑔′)

)
.

Since the quotient is the biggest specification that completes the system, any con-
tract smaller than the quotient also completes the system. As before, we will find it
convenient to refine the quotient to provide contracts that match the intuition of the
designer.

In addition to composing and decomposing systems, contracts offer support for
multi-viewpoint design [154]. As we discussed, we are also interested in carrying
out analysis of systems by focusing on one aspect of the system. This aspect may
be functionality or performance. This means that we can assign to each component
in our system several contracts, one for each viewpoint. The operation of contract
conjunction, or weak merging, can be used to summarize into a single contract two
viewpoints of the same object. Conjunction is given by the expression

C ∧ C′ = (𝑎 ∨ 𝑎′, (𝑎 → 𝑔) ∧ (𝑎′ → 𝑔′)) .

4.4 Contract-based design in synthetic biology
We explore the application of Pacti to aid the design of engineered biological
systems. First, we consider a NAND logic biological circuit design.
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Figure 4.1: Specification-based synthetic biology using Pacti. (A) The goal with
the biocircuit design is to measure the plant protein expression under control of
engineered bacteria near its roots. (B) The bacterial cell is engineered as a NAND
logic gate.

4.5 NAND gate design
Consider the system schematic shown in Figure 4.1a, where we are interested in
measuring the level of a protein expressed by a plant under control of bacteria in
the rhizosphere. The input in the overall system design is a target gene of interest
introduced in the soil through bacteria. The goal is to measure the protein expression
of the plant in response to the target gene input. The way we detect whether this
gene is present is with many different complex biological processes and the output
of whether we detect the gene, is read out from the plant leaf. So, the input is
the gene of interest that we want to detect and the output is the protein production
out of the plants. Designing such a biological system is difficult due to the lack of
information about key biological mechanisms, absence of characterization data for
system parts, unknown effects of the soil context, and many other context-dependent
factors. There are many biological processes that would need to be engineered to
build a system like this. In this chapter, we only focus on the design of a small part
of the overall system — the engineered bacteria acting as a NAND logic biosensor.

This NAND gate system has two inputs and one output. To sense the two in-
puts, we need to design two sensing subsystems. A third subsystem that represses
the top-level system output when both inputs are sensed is also required. In this
way, a minimum of three subsystems are required to build a NAND logic system.
A possible biological implementation of the NAND logic is shown in Figure 4.1b.
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The two sensing subsystems can be chosen from a library of sensors that we have
constructed using experimental data from the literature. We use the quotient opera-
tion on contracts to infer a specification of the missing third subsystem that needs to
be designed. Further, once a nominal set of three subsystems have been chosen, we
use contract composition as part of an optimization strategy to maximize the system
fold-change, defined as the ratio between the on and off levels of the system’s output.
We say that an input or an output is “ON” when its level is higher than a minimum
threshold, and is “OFF” when its level is lower than a maximum threshold. We
formalize these notions with polyhedral constraints in the contract descriptions.

For the candidate NAND gate design, we have a sensor with tetracycline (aTc)
input that outputs a dCas9 protein, a Salicylate (Sal) sensor that outputs the xRFP-
guide RNA, and a dCas9 repressor subsystem, which takes as inputs the xRFP-guide
RNA and the dCas9 proteins. When both inputs to this repressor subsystem are ON,
it suppresses the output [131], RFP, a red fluorescent protein. RFP is also the output
of the top-level system. RFP is ON only when either of the sensors inputs are OFF.
In this way, the system behavior is that of a NAND logic gate. We will denote the
contract for the sensors as CaTc, CSal, and the contract for dCas9 repression mecha-
nism as CdCas9.

We address the following three design tasks in this chapter:

1. Characterized library of parts as assume-guarantee contracts: Using
existing experimental data from the literature, we present a library of sensors
as assume-guarantee contracts that can be used to reason about specifications
of diverse biological circuits. In particular, we use the transcription factor-
based sensor array in the “Marionette” cell lines [100] to construct a library of
14 sensors. In this way, we write the contracts CaTc and CSal from the library
of sensors.

2. Finding specifications of missing parts: In synthetic biology, it is common
to have parts in the system for which no characterization data is available.
Using quotient operation on contracts, we can find the constraints that this
missing part must satisfy to meet the desired top-level criteria. Here, we find
the missing contract of the dCas9-mediated repression mechanism, CdCas9, for
which characterization data is not easily measurable.
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3. Speeding up the experimental design: Current experimental design ap-
proaches in synthetic biology are heavily reliant on screening experiments
where all possible choices are explored experimentally to choose the one that
works. This is not only time consuming and expensive but also does not
scale beyond three or four independent choices. With the use of Pacti, we
demonstrate how scientists may describe the desired top-level behavior as
contracts and then computationally choose from a library of available parts
to ensure that the components meet the top-level system specification. In this
chapter, we find the specification of the sensors that meet the top-level criteria
on fold-change of the circuit response. Given an implementation of CdCas9

and for a fixed choice of subsystem 2: CaTc, we aim to find the best choice
for the first sensor (choose specification for subsystem 1) that maximizes the
top-level system fold-change.

The top-level system specifications
For the top-level system design, we write the contracts for a system with two inputs
and one output such that it behaves like a NAND logic gate. We use an experimental
implementation of a working NAND gate as a starting point to calibrate the desired
contract specifications to real experimental measurements. For the NAND gate in
Figure 4.1B, we have the experimental data for the implementation where input 1
is the Salicylate (Sal) sensor that is engineered to express the xRFP guide RNA
and the input 2 is the tetracycline (aTc) sensor that expresses dCas9. The measured
output is the fluorescence of the red fluorescent protein signal. The circuit diagram
is shown in Figure 4.2a and the ideal NAND logic behavior is shown in Figure 4.2b.

The control in the circuit design measures the RFP signal with changing Sal con-
centrations but with a non-functional guide RNA. This is the leaky response of the
circuit, and we use this data to compute the leak-related parameters in the contracts.
We use the data for titration of the Sal input to characterize the linear regime contracts
that model the transition of the input from zero to higher values and corresponding
decrease in the RFP values from high (leaky) values to lower values.

Since the experimental data does not contain the titration for aTc, we syntheti-
cally create the data for how the output varies with aTc (mirroring the response
of RFP to Sal). The in vivo experimental data for this NAND gate is shown in
Figure 4.2c. This is a preliminary experimental data with one replicate for the
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Figure 4.2: The desired top-level NAND logic contracts using a candidate circuit
implementation. (A) The candidate NAND logic circuit implementation using the
Sal and the aTc sensors for subsystem 1 and 2. (B) Ideal NAND logic behavior
truth table. We desire a low output value (shown in blue) when both inputs are high
and the output remains at a high value (shown in red) for all other conditions. (C)
The experimental data for the candidate NAND logic circuit implementation (data
courtesy of Shuwen (Eric) Lei, Caltech). (D) The top-level contract guarantees for
different viewpoints – off, linear, and saturation. These are 2D plots for guarantees
with aTc fixed at a high value and Sal being the independent variable changing on
the X-axis. These correspond to the experimental setup. Finally, in (E) we show the
3D illustration of all NAND logic top-level system contract guarantees.

NAND gate implementation in an engineered Marionette strain of E. coli where
RFP fluorescence was measured. We observe that as soon as Sal reaches a high
value of 20 when aTc is also high, the RFP signal drastically reduces from 5264
to 214 (arbitrary units). However, when the guide RNA is not functional, we
observe leaky RFP expression with changing values of Sal. The leaky output re-
sponse is shown corresponding to the row labeled with aTc 0, which is a proxy
for the dCas9 repression of RFP being non-functional. We create three viewpoints
for the top-level contracts: the off region, the linear region, and the saturation region.
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For each of the conditions of the NAND logic behavior, we write the contracts:

Coff,off
sys =(0.000325 ≤ aTc ≤ 0.00325 ∧ 2 ≤ Sal ≤ 20,

4211 − 2.566 · Sal − 12.83 · aTc ≤ RFP

≤ 7317 − 2.566 · Sal − 12.83 · aTc),
Clin1

sys =(0.00325 ≤ aTc ≤ 0.0156 ∧ 20 ≤ Sal ≤ 800,

4251 − 5.121 · Sal − 146.3 · aTc ≤ RFP

≤ 7370 − 5.414 · Sal − 146.3 · aTc),
Con,on

sys =(0.0156 ≤ aTc ≤ 0.0312 ∧ 800 ≤ Sal ≤ 1600, 873.6 − 0.9193 · Sal

− 0.1839 · aTc ≤ RFP ≤ 1250 − 2.02 × 10−5 · Sal − 2.02 × 10−5 · aTc),
Con,off

sys =(0.0156 ≤ aTc ≤ 0.0312 ∧ 2 ≤ Sal ≤ 20,

4211 − 2.566 · Sal − 0.1839 · aTc ≤ RFP (4.1)

≤ 7317 − 2.566 · Sal − 2.02 × 10−5 · aTc),
Clin2

sys =(0.0156 ≤ aTc ≤ 0.0312 ∧ 20 ≤ Sal ≤ 800,

4251 − 5.121 · Sal − 0.1839 · aTc ≤ RFP

≤ 7370 − 5.414 · Sal − 2.02 × 10−5 · aTc),
Coff,on

sys =(0.000325 ≤ aTc ≤ 0.00325 ∧ 800 ≤ Sal ≤ 1600,

4211 − 0.9193 · Sal − 12.83 · aTc ≤ RFP

≤ 7317 − 2.02 × 10−5 · Sal − 12.83 · aTc),
Clin3

sys =(0.00325 ≤ aTc ≤ 0.0156 ∧ 800 ≤ Sal ≤ 1600,

4251 − 0.9193 · Sal − 146.3 · aTc ≤ RFP

≤ 7370 − 2.02 × 10−5 · Sal − 146.3 · aTc).

Here, we include the contracts for each input condition and the transition between
those conditions. A 3D visualization of the guarantees of all the top-level contracts
is shown in Figure 4.2d. With the desired top-level system objectives written as
contract specifications, we can propose component system designs and optimiza-
tion over choice of components using the algebra on assume-guarantee contracts.
Towards that end, we first build a library of parts of engineered biosensors using
experimental data.

Modeling the specifications and constructing a library of sensors
First we represent a set of sensors using contracts. We build a library of sensor
contracts using the experimental data for the sensors in the Marionette bacterial cell
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Figure 4.3: The assume-guarantee contracts for the Marionette sensor library. The
three viewpoints for each sensor in the Marionette bacterial cell strain are shown
in the shaded regions. The OFF region, described by Coff

𝑠 , is depicted in red. The
linear region, described by Clin

𝑠 is depicted in green. Finally, the saturation region,
described by Csat

𝑠 , is depicted in blue. The dashed lines show a possible candidate
implementation for each sensor that satisfies the contracts. The first vertical dashed
line in each plot shows the 𝑢start value for each sensor and the second vertical dashed
line shows 𝑢K, the activation constant for the sensor.

strain [100]. Each sensor has three characteristic behaviors: 1) the off state, where
the output stays close to zero (the non-zero expression in this state is termed as
“leaky response”), 2) the linear rate of output, where the output responds linearly
to the input (in log scale), and 3) the saturation state, where the output saturates to
a maximum constant value. The three contracts for a sensor, 𝑠, with input 𝑢 and
output 𝑦 are

Coff
𝑠 = (0.08𝑢start ≤ 𝑢 ≤ 𝑢start, 𝑚

off
1 𝑢 + 𝑏

off
1 ≤ 𝑦 ≤ 𝑚off

2 𝑢 + 𝑏
off
2 ), (4.2)

Clin
𝑠 = (𝑢start ≤ 𝑢 ≤ 𝑢K, 𝑚

lin
1 𝑢 + 𝑏

lin
1 ≤ 𝑦 ≤ 𝑚lin

2 𝑢 + 𝑏
lin
2 ), (4.3)

Csat
𝑠 = (𝑢K ≤ 𝑢 ≤ 8𝑢K, 𝑚

sat
1 𝑢 + 𝑏

sat
1 ≤ 𝑦 ≤ 𝑚sat

2 𝑢 + 𝑏
sat
2 ), (4.4)

where 𝑚 and 𝑏 are the slopes and the intercepts of each affine relation respectively.
The constant 𝑢start is the trigger value at which sensor starts responding to the input,
and 𝑢K is the activation constant for the sensor. Each of these constants are computed
using the Marionette sensor characterization experimental data for each sensor. Note
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that for the convenience of notation, we have removed the subscript 𝑠 from each
of the constants. We show the computation for one set of constants: 𝑚off

1 , 𝑚
off
2 and

𝑏off
1 , 𝑏

off
2 . These are the slope and the intercept of the linear relations between the

output 𝑦 and the input 𝑢 in the OFF region. We compute these as follows:

𝑦1
leak := 𝑦leak + 𝜎𝑦leak, 𝑦2

leak := 𝑦leak − 𝜎𝑦leak

𝑚off
1 =

0.1𝑦1
leak − 𝑦

1
leak

0.08𝑢start − 𝑢start
, 𝑏off

1 = 𝑦1
leak − 𝑚

off
1 𝑢start

𝑚off
2 =

0.1𝑦2
leak − 𝑦

2
leak

0.08𝑢start − 𝑢start
, 𝑏off

2 = 𝑦leak
2 − 𝑚off

2 𝑢start

Here, 𝑦leak is the experimental measurement of the leaky output for sensor 𝑠 and 𝜎
is the standard deviation to allow for a range of behaviors in the implementation of
the sensor contract. The minimum observable output value is arbitrarily chosen to
be equal to 0.1𝑦leak at the input value of 0.08𝑢start and the maximum input value has
been arbitrarily set at 8𝑢K.

The contracts for the three viewpoints for all of the 14 sensors are illustrated in
Figure 4.3. The allowed range of behaviors are shaded and a candidate implemen-
tation of the sensors that would satisfy the contracts is also shown.

4.6 Contract quotient to find the specifications of missing parts
Suppose that we have chosen the two sensors (subsystems 1 and 2) from the library,
and we are also given a desired top-level system contract Csys that the system must
meet. We use the quotient in Pacti to find the specification of the missing object:
the dCas9 repression mechanism (subsystem 3). This design synthesis problem is
described in Figure 4.4.

Using Sal to express the xRFP gRNA and aTc to express the dCas9, we have

C0
Sal =(1.8 ≤ Sal ≤ 22.5, 0.0001808 + 4.709 × 10−5 · Sal ≤ xRFP∧

xRFP ≤ 2.355 × 10−5 + 0.0003.616 · Sal),
C1

Sal =(645 ≤ Sal ≤ 5160,

0.2502 + 7.656 × 10−5Sal · Sal ≤ xRFP ≤ 1.921 + 0.0005879 · Sal),
C0

aTc =(0.000288 ≤ aTc ≤ 0.0036, 0.0001904 + 0.2826 · aTc ≤ dCas9∧
dCas9 ≤ 2.261 × 10−5 + 2.38 · aTc),

C1
aTc =(0.013 ≤ aTc ≤ 0.104, 0.1698 + 3.265 · aTc ≤ dCas9 ≤ 1.43 + 27.5 · aTc),
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Figure 4.4: Finding the missing subsystem using quotient of contracts for synthesis
of system designs. From the experimental implementation of the NAND logic with
Sal-xRFP guide RNA and aTc-dCas9 together silencing constitutively expressed
RFP, we find out the design specifications on the dCas9 repression mechanism.

here we have replaced the superscript “off” with “0” and “on” with “1” for brevity.
For the top-level system, we use the C0

sys and C1
sys viewpoints defined in equa-

tion (4.1). Using the quotient, we obtain the inactive and the active viewpoints for
the dCas9 repression subsystem, Cinactive

dCas9 and Cactive
dCas9. The proposition that follows

after the next Lemma guides the computation of the dCas9 repression contract,
CdCas9, as the quotient of the top-level contract from the composition of the sensor
contracts in different viewpoints.

Lemma 3 (Preliminaries on Assume-Guarantee Contracts [153]). We write the
following relations between the binary operations on assume-guarantee contracts,
C and C′,

C/C′ = C • (C′)−1, (4.5)

where / is the quotient operator and • represents strong merging on contracts [153].
We also have

C ∥ C′ = (C−1 • C′−1)−1. (4.6)

where ∥ represents contract composition. Finally, we note that conjunction and
disjunction are related as

(C ∧ C′)−1 = (C)−1 ∨ (C′)−1. (4.7)
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Proposition 1. The dCas9 repression mechanism specification is the conjunction
of two quotient contracts that correspond to the dCas9 repression being active or
inactive — (1) the quotient of the composition of the sensor contracts when they are
“on” from the “on” top-level contract, and (2) the quotient of the composition of the
sensor contracts when they are “off” from the “off” top-level contract. We have,

CdCas9 =

[
C0

sys/
(
C0

aTc ∥ C0
Sal

)
∧ C1

sys/
(
C0

aTc ∥ C0
Sal

)]
∨

[
C0

sys/
(
C1

aTc ∥ C0
Sal

)
∧ C1

sys/
(
C1

aTc ∥ C0
Sal

)]
∨

[
C0

sys/
(
C0

aTc ∥ C1
Sal

)
∧ C1

sys/
(
C0

aTc ∥ C1
Sal

)]
∨

[
C0

sys/
(
C1

aTc ∥ C1
Sal

)
∧ C1

sys/
(
C1

aTc ∥ C1
Sal

)]
≥

[
C0

sys/
(
C0

aTc ∥ C0
Sal

)]
∧

[
C1

sys/
(
C1

aTc ∥ C1
Sal

)]
:= Cinactive

dCas9 ∧ Cactive
dCas9.

Proof. For the top-level system and the sensors, we have two contracts – the off and
the on viewpoint, so we have

Cs = C0
s ∧ C1

s , (4.8)

where 𝑠 is “sys” for the top-level system, “Sal” for the Sal sensor and “aTc” for the
aTc sensor. For the dCas9 repression mechanism, we write,

C̄dCas9 = Csys/(CaTc ∥ CSal) ,

= Csys/
(
(C0

aTc ∧ C1
aTc) ∥ (C0

Sal ∧ C1
Sal)

)
.

Using relation in equation (4.5), we write,

C̄dCas9 = Csys •
(
(C0

aTc ∧ C1
aTc) ∥ (C0

Sal ∧ C1
Sal)

)−1
.

Now, using equation (4.6), we can write

C̄dCas9 = Csys •
[
(C0

aTc ∧ C1
aTc)

−1 • (C0
Sal ∧ C1

Sal)
−1] .

= Csys •
[(
(C0

aTc)
−1 ∨ (C1

aTc)
−1

)
•

(
(C0

Sal)
−1 ∨ (C1

Sal)
−1

)]
,

using the relation between conjunction and disjunction in equation (4.7). We dis-
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tribute the merging operation • over ∨ to write,

C̄dCas9 = Csys •
[((

(C0
aTc)

−1 ∨ (C1
aTc)

−1
)
• (C0

Sal)
−1

)
∨

((
(C0

aTc)
−1 ∨ (C1

aTc)
−1

)
• (C1

Sal)
−1

)]
,

= Csys •
[(
(C0

aTc)
−1 • (C0

Sal)
−1

)
∨

(
(C1

aTc)
−1 • (C0

Sal)
−1

)
∨

(
(C0

aTc)
−1 • (C1

Sal)
−1

)
∨

(
(C1

aTc)
−1 • (C1

Sal)
−1

)]
, (4.9)

≥ Csys •
[(
(C0

aTc)
−1 • (C0

Sal)
−1

)
∨

(
(C1

aTc)
−1 • (C1

Sal)
−1

)]
.

In the last step, since quotient gives us the largest specification of the missing
component that will meet the top-level specification, we can refine the quotient
to remove the cross-terms. Converting the merge operations to composition and
quotient using equations (4.5) and (4.6), we get

C̄dCas9 ≥ Csys •
[(
C0

aTc ∥ C0
Sal

)−1
∨

(
C1

aTc ∥ C1
Sal

)−1
]

= Csys •
[(
C0

aTc ∥ C0
Sal

)
∧

(
C1

aTc ∥ C1
Sal

)]−1
(4.10)

= Csys/
[(
C0

aTc ∥ C0
Sal

)
∧

(
C1

aTc ∥ C1
Sal

)]
.

From equation (4.8), for the desired top-level specification, we have that

Csys = C0
sys ∧ C1

sys.

So, we can further simplify the quotient,

C̄dCas9 ≥
(
C0

sys ∧ C1
sys

)
/
[(
C0

aTc ∥ C0
Sal

)
∧

(
C1

aTc ∥ C1
Sal

)]
=

(
C0

sys ∧ C1
sys

)
•

[(
C0

aTc ∥ C0
Sal

)
∧

(
C1

aTc ∥ C1
Sal

)]−1

=

(
C0

sys ∧ C1
sys

)
•

[(
C0

aTc ∥ C0
Sal

)−1
∨

(
C1

aTc ∥ C1
Sal

)−1
]
,

and since • distributes over ∧, we have,

C̄dCas9 ≥ C0
sys •

[(
C0

aTc ∥ C0
Sal

)−1
∨

(
C1

aTc ∥ C1
Sal

)−1
]

∧ C1
sys •

[(
C0

aTc ∥ C0
Sal

)−1
∨

(
C1

aTc ∥ C1
Sal

)−1
]

≥ C0
sys •

(
C0

aTc ∥ C0
Sal

)−1
∧ C1

sys •
(
C1

aTc ∥ C1
Sal

)−1
(4.11)

= C0
sys/

(
C0

aTc ∥ C0
Sal

)
∧ C1

sys/
(
C1

aTc ∥ C1
Sal

)
:= Cinactive

dCas9 ∧ Cactive
dCas9,
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where we define

CdCas9 := Cinactive
dCas9 ∧ Cactive

dCas9

with

Cinactive
dCas9 = C0

sys/
(
C0

aTc ∥ C0
Sal

)
(4.12)

and

Cactive
dCas9 = C1

sys/
(
C1

aTc ∥ C1
Sal

)
. (4.13)

To arrive at the full expression for C̄dCas9 as in the statement of the proposition, we
can use the expression in equation (4.9) before refinement and expand similar to the
steps in equation (4.11). □

Given the choice of sensors and the top-level contract, the contracts for the dCas9
mechanism are given by

Cinactive
dCas9 = (0.000306 ≤ dCas9 ≤ 0.007452 ∧ 0.0002926 ≤ xRFP ≤ 0.007027 ,

4212 − 5.619 · dCas9 − 7335 · xRFP ≤ RFP ≤ 7325 − 33.82 · dCas9

−4.362 × 104 · xRFP
)

(4.14)

Cactive
dCas9 = (0.2964 ≤ dCas9 ≤ 2.195 ∧ 0.3891 ≤ xRFP ≤ 2.769 ,

3878 − 0.006968 · dCas9 − 1616 · xRFP ≤ RFP ≤ 1250 − 0.2114 · xRFP

−4.613 × 10−6 · dCas9
)
.

(4.15)

The contract for the dCas9 repression mechanism can be refined further by relaxing
the assumptions and constraining the guarantees. The two sensor outputs feed the
inputs of the dCas9 repression, hence, refining the dCas9 repression contract allows
a wider range of sensor output measurements. We write a refined contract to allow
more sensor choices from our constructed library:

Cactive
dCas9 = (0.2964 ≤ dCas9 ≤ 2.195 ∧ 0.26 ≤ xRFP ≤ 2.889 ,

3770 − 0.006968 · dCas9 − 1616 · xRFP ≤ RFP ≤ 1000 − 0.2114 · xRFP

−4.613 × 10−6 · dCas9
)
.

(4.16)
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Figure 4.5: Contract guarantees of the dCas9 repression mechanism. (a) The dCas9
inactive contract, and (b) the dCas9 active contract guarantees for fixed dCas9 values
and varying xRFP. (c) The dCas9 inactive contract, and (d) the dCas9 active contract
guarantees for fixed xRFP values and varying dCas9.

This resulting contract for subsystem 3 guarantees that it represses the RFP level
dependent on its inputs, xRFP and dCas9. We can provide this missing-component
contract to an expert for independent implementation. The guarantees for this
synthesized contract are visualized in Figure 4.5.

Contract composition and sensor selection
Now that we have the missing dCas9 repression mechanism specification, we can
use it to optimize the choice of sensors by exploring the design space. We find the
optimal choice of sensor to use from the library of 14 sensors that we constructed
earlier. To optimize, we consider the commonly desired metric in synthetic biology
— the fold-change of the output measurement.

We choose and fix the aTc sensor for our subsystem 2 (𝑠2 in Figure 4.6a). With
CdCas9 available, we can go through the library of remaining 13 sensors to choose the
sensing behavior for subsystem 1 (𝑠𝑖 in Figure 4.6a). Using a contract composition-
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based strategy, we can predict the fold-change of the RFP level for all choices of
sensors. Finally, we predict the sensor that maximizes the top-level fold change.
This methodology is illustrated in Figure 4.6.

Top-level fold change

Predicted
Experimental

A B

C

Choose a 
sensor

Characterized
library of sensors

aTc

pChoice

xRFP

pTet

dCas9

xRFP gRNA dCas9

dCas9 Repression

pConst

RFP
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IPTG

Ara

Cho
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DHBA
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Ery
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xRFP
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xRFP gRNA dCas9

dCas9 Repression
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RFP
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For each ,
Composition

aTc

pChoice

xRFP
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dCas9

dCas9 Repression
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RFP

sys

For each ,
Composition

Incompatible 
composition design 

error log

Predict fold-change

Input 

Figure 4.6: Prediction and validation of system fold-change by design-space explo-
ration using a contract composition-based strategy. (a) We use the library of sensor
contracts that we have developed in Pacti to choose the first subsystem (𝑠1) in the
NAND gate design (marked in orange). We iterate over the library of sensors by
choosing the sensor 𝑠𝑖 to use as the first subsystem. (b) First, we compose 𝑠𝑖 with
𝑠2 (the fixed aTc sensor) to obtain 𝑐𝑖. Then, we compose the dCas9 repression
mechanism contract (𝑠3) with 𝑐𝑖. Pacti captures any incompatibility related design
errors in these composition computations. These design errors are stored (shown in
red box). In this way, some sensor choices in the library are rejected. Finally, (c)
we predict the fold-change of the system with different sensor choices and compare
with the fold-change obtained experimentally.

Our prediction strategy corresponds to the experimental implementations of this
biological circuit with the aTc as the fixed sensor that outputs dCas9. We imple-
mented the NAND biological circuit as shown in Figure 4.2 and tested two different
sensor choices for subsystem 1 – Sal and OHC14. As discussed above, we have used
the data for the Sal sensor to compute the quotient for the missing specification of
the dCas9 repression mechanism. The output measurements of RFP when OHC14
sensor was used instead of Sal has not been used. Hence, the OHC14 data acts as a
good testing dataset for our prediction.
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The contract for aTc, CaTc, is given in three viewpoints as described above by
using 𝐾 = 0.013, 𝑦max = 1, start = 0.0036, and 𝑦leak = 4.9 × 10−3. For subsys-
tem 3, we use the dCas9 active and inactive contracts derived using the quotient
in equations (4.12) and (4.16). For each sensor in the library with contract Cs𝑖 ,
we use Pacti to compute the system-level contract by composing the chosen sensor
contract, with the available subsystem contracts: Csys = CaTc ∥ Cs𝑖 ∥ CdCas9. When
computing this composition for some of the sensors in the library, Pacti returns
the error “unsatisfiable in the given context.” This means that the guarantees of
this sensor are insufficient to meet the assumptions of the component to which it
drives outputs (the dCas9 repressor subsystem). Thus, Pacti allows us to identify
potential design errors. Using the active dCas9 repression mechanism specification
in equation (4.16), we get that the sensors DAPG, Cuma, Van, Ara, Nar, Acr, and
Ery lead to a design error. Hence, these sensors choices are rejected. For example,
for DAPG, we get the following output from Pacti,

The elimination of variables

[‘dCas9’, ‘xRFP’, ‘RFP’]

by refining terms

[

dCas9 <= 2.195

-dCas9 <= -0.2964

xRFP <= 2.889

-xRFP <= -0.26

]

in context

[

-aTc <= -0.013

aTc <= 0.104

-DAPG <= -1.7

DAPG <= 13.6

-26.39 aTc + dCas9 <= 1.372

4.384 aTc - dCas9 <= -0.228

-0.07227 DAPG + xRFP <= 3.317

0.01177 DAPG - xRFP <= -0.5401

] was not possible.
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Figure 4.7: The prediction of fold-change of the NAND logic biological circuit.
Each sensor in the library has a different response function that is captured in
the assume-guarantee contracts. Some choices out of the 13 available sensors are
rejected as they are incompatible with the desired system specifications. We show
the fold-change computed from the experimental implementation (one replicate in
an engineered Marionette strain of E. coli) of the circuit alongside the prediction
using Pacti.

This suggests that the xRFP guide RNA levels produced by using the DAPG sensor
were not sufficient to activate the dCas9 repression mechanism at the desired level.
Hence, this sensor choice is rejected. Figure 4.6b visually describes this approach.

We predict the system behavior using the sensor choices that yield valid composi-
tions. We use the fold change of the system 𝐹 = RFPon/RFPoff as a performance
criterion and predict the fold-change for each choice of sensor. We also predict
the sensor choice that maximizes the fold-change. The predicted fold-change for
all sensors is shown in Figure 4.7. From this results, we predict that the highest
fold-change for the NAND gate can be achieved by using the “IPTG” sensor.

We validate our predictions using the experimentally observed fold-changes for
the Sal and the OHC14 sensors. The comparison of the experimental and the pre-
dicted fold-change is shown in Figure 4.6c. We observe that for the Sal sensor, the
predicted fold-change is close to the experimentally observed fold-change of RFP.
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This is expected since we used the Sal sensor data to find the specification of the
dCas9 repression mechanism. However, we did not use the data for OHC14 but even
for this sensor choice, our predicted RFP fold-change is quite close to the experi-
mental observation. It is important to note here that in this contract-based design
approach, we did not model the explicit details of any of the sensors. Instead, we
simply used the input-output characterization of each component to characterize the
input-output response of the dCas9 repression mechanism. Using this synthesized
specification, we predict the behavior of the system under various choices and the
computational results are close to the experimental observations.

4.7 From specifications to implementations
In this section, we consider an example of a biological AND gate to demonstrate the
use of contracts to develop a methodology that lets designers write specifications
as assume-guarantee contracts and then systematically obtain implementations of
the contracts. We also show how the contract-based design approach that we have
discussed until now for static predictions can also be extended to model dynamical
aspects of systems.

Σ1

Σ2

Σ3
𝑦

𝑢1

𝑢2

𝑥1

𝑥2

Figure 4.8: Composition of three subsystem models to achieve AND logic gate
implementation in an engineered biological system.

First, we provide an overview of the system we are constructing, a biological AND
gate. We introduce the contracts of the components comprising the system using
two viewpoints: one for functionality and one for timing. Then we compose the
contracts to obtain the specification of the entire system by using the properties of
the components. We compose the models of each contract to verify that this compo-
sition meets the top-level specification we obtained. Then, starting from a top-level
specification of the system and the specification of a partial implementation, we
obtain the specification of a missing component that enables us to meet the top-level
specification. We synthesize a model from this specification, and we show that the
resulting composition of models implements the top-level specification.
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Consider the design of an AND gate with inputs 𝑢1 and 𝑢2 and one output 𝑦.
A biological circuit design to achieve the AND logic has been built and validated
in [155]. This design is a composition of three subsystems that interact, as shown
in Figure 4.8. In [155], the inputs 𝑢1 and 𝑢2 are chemical inducer signals (salicylate
and arabinose, respectively), and the output 𝑦 is the fluorescence of green fluores-
cent protein (GFP). Let the output of subsystem Σ1 be 𝑥1 that models the expression
of an amber suppressor tRNA called supD in [155]. Similarly, the output 𝑥2 of
Σ2 models the transcription of the mRNA that codes for the T7 RNA polymerase
enzyme. However, the translation of the mRNA (𝑥2) is only possible when 𝑥1 is also
present. When both 𝑥1 and 𝑥2 are present, the translation of the T7 RNA polymerase
can occur, which activates the T7 promoter in Σ3 that codes for a fluorescent protein
GFP, the output 𝑦 of the system. The top-level specification for the AND gate is
given in Table 4.1.

Specifications for timing constraints
We can write the specification for the subsystem Σ1 by describing the assumptions
and guarantees of the biological design. We assume that at time 𝑡 = 𝜏𝑢1 we have
𝑢1 ≥ 𝑢1min , and 𝑢1 stays over this threshold. The contract C1 = (𝑎1, 𝑔1) for Σ1

guarantees that 𝑥1 ≥ 𝑥1min at time 𝑡 ≤ 𝜏𝑢1 + 𝑡1. Here 𝑢1 is the salicylate inducer
concentration, and 𝑥1 is the expression level of the supD gene that is downstream of
the pSal promoter.

We split our specification in two viewpoints. First, we have a functionality viewpoint
that says that 𝑥1 ≥ 𝑥1min follows from 𝑢1 ≥ 𝑢1min . The other is a timing viewpoint
that says that the event 𝜏𝑥1 , defined as the time when 𝑥1 ≥ 𝑥1min , happens at most 𝑡1

𝑢1 𝑢2 𝑦

0 0 𝑦𝜖

𝑢1min 0 𝑦𝜖

0 𝑢2min 𝑦𝜖

𝑢1min 𝑢2min 𝑦∗

For 𝑢1 ≥ 𝑢1min , 𝑢2 ≥ 𝑢2min:

𝑦∗ ≥ 𝐹𝑦𝜖 , 𝑡 ≤ 𝜏𝑦

Table 4.1: The static AND gate specifications are such that when both inputs 𝑢1 and
𝑢2 are greater than their specified minimum values, we have 𝑦∗ ≥ 𝐹𝑦𝜖 , where 𝐹 > 1
is the desired fold change in output compared to the leaky output 𝑦𝜖 . The dynamic
specifications add that the output achieves the desired fold-change in time 𝑡 ≤ 𝜏𝑦.
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time units after the event 𝜏𝑢1 , defined as the time when 𝑢1 ≥ 𝑢1min . That is, we have
the following two contract viewpoints:

C 𝑓

1 = (𝑢1 ≥ 𝑢1min , 𝑥1 ≥ 𝑥1min) and

C𝑡1 = (1, 𝜏𝑥1 ≤ 𝜏𝑢1 + 𝑡1),

where 1 in the assumptions of the last contract represents the top element of the
constraint lattice, i.e., the Boolean value “true.”

For Σ2, we have the input 𝑢2 (arabinose) that activates the pBAD promoter to
express the T7Ptag gene downstream. For this subsystem, if we assume that at
𝑡 = 𝜏𝑢2 , 𝑢2 crosses the threshold 𝑢2 ≥ 𝑢2min , then the subsystem specification guar-
antees that 𝑥2 ≥ 𝑥2min at time 𝑡 ≤ 𝜏𝑢2 + 𝑡2. The functionality and timing contracts
C2 = (𝑎2, 𝑔2) for Σ2 are

C 𝑓

2 = (𝑢2 ≥ 𝑢2min , 𝑥2 ≥ 𝑥2min) and

C𝑡2 = (1, 𝜏𝑥2 ≤ 𝜏𝑢2 + 𝑡2),

where 𝜏𝑥2 is, as before, the event when 𝑥2 crosses the threshold 𝑥2 ≥ 𝑥2min .

For Σ3, we have inputs 𝑥1, the tRNA supD, and 𝑥2, the engineered T7 RNA poly-
merase transcript from Σ1 and Σ2, respectively. The translation of T7 RNA poly-
merase occurs only in presence of both 𝑥1 and 𝑥2 that then drives the production of
the output, 𝑦, the green fluorescent protein. Under the assumptions that 𝑥1 ≥ 𝑥1min

and 𝑥2 ≥ 𝑥2min starting at some 𝑡 = max(𝜏𝑥1 , 𝜏𝑥2), Σ3 guarantees that the output 𝑦
is at least 𝐹 > 1 fold-change higher than the leaky expression output 𝑦𝜖 at time
𝜏𝑦 ≤ 𝑡3 + max{𝜏𝑥1 , 𝜏𝑥2}. Hence, the contracts for Σ3 are

C 𝑓

3 = (𝑥1 ≥ 𝑥1min ∧ 𝑥2 ≥ 𝑥2min , 𝑦 ≥ 𝐹𝑦𝜖 ) and

C𝑡3 = (1, 𝜏𝑦 ≤ max{𝜏𝑥1 , 𝜏𝑥2} + 𝑡3).

For all of these contracts, we also write the contract Coff
𝑖

for the condition where
the input 𝑢𝑖 ≤ 𝑢𝑖min and similarly for the timing viewpoint. These contracts can be
constructed similar to the approach discussed in the previous section for the NAND
gate.

Generating specifications of the system
Now that we have the specifications for the three elements of the system, we seek
the specification of the entire system. First, we use the operation of composition to
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obtain the specification of the subsystem consisting of components Σ1 and Σ2. So,
using Pacti, we can compute C 𝑓

123 = C 𝑓

1 ∥ C 𝑓

2 ∥ C 𝑓

3 and C𝑡123 = C𝑡1 ∥ C𝑡2 ∥ C𝑡3. We
get,

C 𝑓

123 =
(
(𝑢1 ≥ 𝑢1min ∧ 𝑢2 ≥ 𝑢2min), 𝑦 ≥ 𝐹𝑦𝜖

)
,

C𝑡123 = (1, 𝜏𝑦 ≤ max{𝜏𝑢1 + 𝑡1, 𝜏𝑢2 + 𝑡2} + 𝑡3).

These contracts give us a specification for the entire system. They only refer to
variables that lie at the interface between the system and its environment, namely
𝑢1, 𝑢2, and 𝑦; there is no mention of 𝑥1 and 𝑥2. This allows us to “black-box” the
system so that it can be used as a component of a more involved system.

From specifications to dynamical models
We explore the link between the contract specifications and the component models
as differential equations. As discussed above, the formal specifications describe the
desired functional and timing objectives for the system. By developing dynamical
models with biological details from these specifications, we can map the desired ob-
jectives to system implementations. We first develop first-order dynamical models
by employing standard functions to convert time delays and function gain to dynam-
ical equations. Then we add more detail to these models. A flow chart summarizing
this process is shown in Figure 4.9.

For Σ1, we can write the following equation:

𝑥1(𝑡) = 𝑥1(0) + 𝑘1

(
1 − 𝑒−

𝑡−𝜏𝑢1
𝑡1

)
· 𝑠(𝑡 − 𝜏𝑢1),

where 𝑠(·) is the step function such that for 𝑡 < 𝜏𝑢1 , 𝑥1(𝑡) = 𝑥1(0) and for 𝑡 ≥ 𝜏𝑢1 ,
𝑥1(𝑡) = 𝑥1(0) + 𝑘1(1 − 𝑒−(𝑡−𝜏𝑢1 )/𝑡1). The parameter 𝑘1 is given according to the
specification in the contract as

𝑘1 =
𝑒(𝑥1min − 𝑥1(0))

𝑒 − 1
,

so that at 𝑡 = 𝜏𝑥1 , we have 𝑥(𝑡) = 𝑥1min . Note that this is an implementation of the
contract C1 since it guarantees that 𝑥1(𝑡) ≥ 𝑥1min when the assumption 𝑢1 ≥ 𝑢1min

is satisfied. Further, the timing contract is also satisfied as the implementation
guarantees that 𝑥1 ≥ 𝑥1min at time 𝑡 ≥ 𝜏𝑥1 . The input is modeled as an ideal activator
function by using the step function. Following a similar approach for Σ2, we have

𝑥2(𝑡) = 𝑥2(0) + 𝑘2

(
1 − 𝑒−

𝑡−𝜏𝑢2
𝑡2

)
· 𝑠(𝑡 − 𝜏𝑢2),
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Figure 4.9: Contract-based design allows us to compute a system specification from
the specifications of the system’s components. The system-level contract has the
property that its implementations are the compositions of the implementations of
the component contracts. This property holds even if we keep adding detail to our
models.

where
𝑘2 =

𝑒(𝑥2min − 𝑥2(0))
𝑒 − 1

.

Finally, for Σ3, define 𝜏𝑥 := max(𝜏𝑥1 , 𝜏𝑥2). We have

𝑦 = 𝑦𝜖 + 𝑘3

(
1 − 𝑒−

𝑡−𝜏𝑥
𝑡3

)
· 𝑠(𝑡 − 𝜏𝑥),

where
𝑘3 =

𝑒(𝐹 − 1)𝑦𝜖
𝑒 − 1

.

We now derive differential equations that will enable us to make a clearer connection
between the first-order models and models that are more descriptive of biological
implementations. We differentiate the equations for 𝑥1, 𝑥2, and 𝑦 with respect to
time to obtain

¤𝑥1 =
(
𝑘𝑥1 − 𝑑𝑥1𝑥1

)
· 𝑠(𝑡 − 𝜏𝑢1),

¤𝑥2 =
(
𝑘𝑥2 − 𝑑𝑥2𝑥2

)
· 𝑠(𝑡 − 𝜏𝑢2),

¤𝑦 =
(
𝑘𝑦 − 𝑑𝑦𝑦

)
· 𝑠(𝑡 − 𝜏𝑥),

(4.17)

where

𝑘𝑥1 =
𝑘1 + 𝑥1(0)

𝑡1
=
𝑒𝑥1min − 𝑥1(0)

(𝑒 − 1)𝑡1
, 𝑑𝑥1 =

1
𝑡1
,

𝑘𝑥2 =
𝑘2 + 𝑥2(0)

𝑡2
=
𝑒𝑥2min − 𝑥1(0)

(𝑒 − 1)𝑡2
, 𝑑𝑥2 =

1
𝑡2
,

𝑘𝑦 =
𝑘3 + 𝑦𝜖
𝑡3

=
(𝑒𝐹 − 1)𝑦𝜖
(𝑒 − 1)𝑡3

, 𝑑𝑦 =
1
𝑡3
.
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In the ODE model, for 𝑡 < 𝜏𝑢1 we have ¤𝑥1 = 0, so we set the boundary condition as
𝑥1(𝑡) = 𝑥1(0) for all 𝑡 < 𝜏𝑢1 . Similarly, we write the initial conditions as boundary
values for 𝑥2(𝑡) and 𝑦(𝑡).

Remark: The dynamical model shown above follows from the component spec-
ifications written as contracts. Hence, the parameters in the models are functions of
the component specifications. Numerical simulations of the dynamical models are
shown in Figure 4.10. The simulations show that the composition of all system mod-
els is a valid implementation of the system-level contract specification we computed.

Observe that in the first expression of equation (4.17), for all 𝑡 ∈ [0, 𝜏𝑢1), we have
¤𝑥1 = 0 and for all 𝑡 ∈ [𝜏𝑢1 ,∞), ¤𝑥1 = 𝑘𝑥1 − 𝑑𝑥1𝑥1. If the initial condition 𝑥1(0) = 0,
then we can simplify the differential equation to ¤𝑥1 = 𝑘𝑥1𝑠(𝑡 − 𝜏𝑢1) − 𝑑𝑥1𝑥1 since
the step function multiplied with the linear degradation term is redundant. We can
follow a similar procedure for all equations in (4.17) to write ODE models such
that the inputs to each subsystem activates its response through the production term.
Under the assumption that the initial conditions are 𝑥1(0) = 𝑥2(0) = 𝑦(0) = 0, we
have

¤𝑥1 = 𝑘𝑥1 · 𝑠(𝑡 − 𝜏𝑢1) − 𝑑𝑥1𝑥1

¤𝑥2 = 𝑘𝑥2 · 𝑠(𝑡 − 𝜏𝑢2) − 𝑑𝑥2𝑥2

¤𝑦 = 𝑘𝑦 · 𝑠(𝑡 − 𝜏𝑥) − 𝑑𝑦𝑦.

(4.18)

The composition of subsystems gives us an implementation of the top-level system
contract as

¤𝑦 = 𝑘𝑦 · 𝑠(max(𝜏𝑢1 + 𝑡1, 𝜏𝑢2 + 𝑡2)) − 𝑑𝑦𝑦

by using the contract definitions.

We have shown the synthesis of dynamical models for the subsystems and their
composition from the specification contracts. However, these first-order models are
not descriptive of biological implementations. As a result, it is not possible to map
the design objectives to the controllable parameters in the implementation. In order
to expand the model to include details of biological mechanisms, we observe that the
first-order models use an ideal activation function — the step function. A common
activation function used in the mathematical modeling of biological systems is a Hill
function. An activation Hill function (rate = 𝑢𝑛/(𝑢𝑛+𝐾𝑛)) models activation as slow
growth (rate ≪ 1) until a threshold (𝐾) is reached, then, an ultra-sensitive response
to asymptotically reach the maximum value (rate = 1). From our development of the
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Figure 4.10: Simulations for each subsystem, Σ𝑖, 𝑖 = {1, 2, 3} and the composed
system Σ are shown in the figure. Dotted and dashed lines represent the assumptions
and guarantees, respectively, while the solid lines show an implementation of the
contract.

mathematical models shown above, we can use a Hill function in place of the step
function to model the non-ideal activation characteristics of an activatable promoter
in the genetic circuit. An expanded model can be written as

¤𝑥1 = 𝑘𝑥1

𝑢
𝑛1
1

𝑢
𝑛1
1 + 𝑢𝑛1

1min

− 𝑑𝑥1𝑥1

¤𝑥2 = 𝑘𝑥2

𝑢
𝑛2
2

𝑢
𝑛2
2 + 𝑢𝑛2

2min

− 𝑑𝑥2𝑥2

¤𝑦 = 𝑘𝑦
𝑥
𝑛𝑥1
1

𝑥
𝑛𝑥1
1 + 𝑥𝑛𝑥1

1min

𝑥
𝑛𝑥2
2

𝑥
𝑛𝑥2
2 + 𝑥𝑛𝑥1

2min

− 𝑑𝑦𝑦.

(4.19)

Note that in the limit of 𝑛1 → ∞, 𝑛2 → ∞, and 𝑛𝑥1 , 𝑛𝑥2 → ∞, the respective
Hill functions converge to a step function with the threshold 𝜏 variables defined
according to the activation constants specified in the design: 𝑢1min , 𝑢2min , 𝑥1min , and
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𝑥2min . Hence, the model in equation (4.19) converges to the dynamical model in
equation (4.18).

Remark: For a biological implementation, Hill function coefficients are usually
constrained to 𝑛𝑖 ≤ 4, where 𝑖 denotes the subscripts for 𝑛 above. With this addi-
tional constraint, the Hill function model may not meet the guarantees even when
the assumptions are satisfied. We can offset this by letting the first-order model
satisfy the guarantees such that 𝑦 > 𝐹𝑦𝜖 at 𝑡 ≪ 𝜏𝑥 + 𝑡3 so that even with a limited
Hill coefficient, the detailed model can satisfy the stated guarantees in the contract.

Finally, we can expand the model in equation (4.19) to a chemical reaction network
(CRN) model of the circuit implementation by using model reduction techniques
such as conservation laws, state transformations, and time-scale separation, as dis-
cussed in [26], [34], [40], [112] and related papers. The expansion to CRN models
is out of scope for this thesis and may be addressed in future research.

Design synthesis of missing subsystem
Similar to the NAND gate example, we can use the quotient operation on contracts
to find the specification of a missing component in the system. Then, using the
method above to synthesize ODE models from contracts, we can propose dynamical
implementation model for a component that is missing in the system. Suppose that
we are given a specification for the entire system:

C 𝑓
𝑠 =

(
(𝑢1 ≥ 𝑢1min ∧ 𝑢2 ≥ 𝑢2min), 𝑦 ≥ 𝑦min

)
,

C𝑡𝑠 =
(
1, 𝜏𝑦 ≤ max{𝜏𝑢1 , 𝜏𝑢2} + 𝑡3

)
.

Suppose we also have available the specification of a subsystem, say the composition
of Σ1 and Σ2 — C 𝑓

12 and C𝑡12 as computed above. The question is, what is the
specification of an element that we have to add to C 𝑓

12 and to C𝑡12 so that the resulting
implementation meets the system-level specifications, C 𝑓

𝑠 and C𝑡𝑠? The largest
specification with this property is given by the contract quotient. Using Pacti, we
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compute the quotient C̄ 𝑓
𝑞 = C 𝑓

𝑠 /C 𝑓

12 and C̄𝑡𝑞 = C𝑡𝑠/C𝑡12:

C̄ 𝑓
𝑞 =

©«
𝑢1 ≥ 𝑢1min ∧ 𝑢2 ≥ 𝑢2min∧
𝑥1 ≥ 𝑥1min ∧ 𝑥2 ≥ 𝑥2min ,

𝑦 ≥ 𝑦min

ª®®®¬ ,
C̄𝑡𝑞 =

©«
𝜏𝑥1 ≤ 𝜏𝑢1 + 𝑡1 ∧ 𝜏𝑥2 ≤ 𝜏𝑢2 + 𝑡2,
(𝜏𝑦 ≤ max{𝜏𝑢1 , 𝜏𝑢2} + 𝑡3)∨
¬(𝜏𝑥1 ≤ 𝜏𝑢1 + 𝑡1 ∧ 𝜏𝑥2 ≤ 𝜏𝑢2 + 𝑡2)

ª®®®¬ .
We can refine these two contracts by removing references to the inputs 𝑢1 and 𝑢2:

C 𝑓
𝑞 =

(
𝑥1 ≥ 𝑥1min ∧ 𝑥2 ≥ 𝑥2min ,

𝑦 ≥ 𝑦min

)
,

C𝑡𝑞 =
(
1, 𝜏𝑦 ≤ max{𝜏𝑥1 − 𝑡1, 𝜏𝑥2 − 𝑡2} + 𝑡3

)
.

Observe that any implementation of this contract is guaranteed to satisfy the system-
level specification when it operates in conjunction with an implementation of C12.
We now look for an implementation of C𝑞. We can propose a first-order model using
the following expression:

𝑦(𝑡) = 𝑘3

(
1 − 𝑒−

𝑡−𝜏𝑥
𝑡3

)
· 𝑠(𝑡 − 𝜏𝑥), (4.20)

where we define 𝜏𝑥 := max(𝜏𝑥1 − 𝑡1, 𝜏𝑥2 − 𝑡2) and

𝑘3 = 𝑘o
𝑒(𝑦min − 𝑦(0))

𝑒 − 1
.

The dynamical model is given by

¤𝑦 =
(
𝑘𝑦 − 𝑑𝑦𝑦

)
· 𝑠(𝑡 − 𝜏𝑥),

where
𝑘𝑦 =

𝑘3
𝑡3

𝑑𝑦 =
1
𝑡3
.

With 𝑘o = 1, this model satisfies the guarantees such that 𝑦 = 𝑦min at the required
timing guarantee 𝑡 = 𝜏𝑥 + 𝑡3. This synthesized dynamical implementation model can
be expanded further to include the modeling details specific to a synthetic biology
implementation by using a Hill activator function (similar to model in (4.19)) instead
of the step function. As discussed in the previous subsection, the biological imple-
mentation with a Hill function has an additional constraint on the Hill coefficient.
To offset this, we set 𝑘o > 1 so that the model in (4.20) satisfies 𝑦 > 𝑦min at a time
𝑡 < 𝜏𝑥 + 𝑡3. In this way, the biological implementation with the Hill functions also
satisfies the guarantees as shown in Figure 4.11.
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Figure 4.11: Synthesis of missing subsystem using the quotient operation of con-
tracts. The dotted and dashed lines show the contract assumptions and guaran-
tees, respectively, while solid lines show implementations. Here 𝜏𝑢 is defined as
𝜏𝑢 := max{𝜏𝑢1 , 𝜏𝑢2}.

4.8 Summary
We presented a contract-based design framework for synthetic biology. Current
modeling practices in synthetic biology are limited to system analysis and inverse
problems for system identification. Our results are a step towards a design framework
that reasons about system properties using contracts and is capable of correlating
implementations with specifications. We demonstrated a predictive design frame-
work where we used contracts to predict the specifications of an internal biological
mechanism. Using this specification, we predicted the performance of various
design choices in a system design. We also showed how we could reason about
system-level properties by composing the contracts of the components; then we
composed the dynamical models for each component and verified that their com-
position satisfied the system-level contract. From the dynamical implementations,
we derived detailed models that are closer to a biological implementation. With
this approach, we can speed up the experimental library screening steps in circuit
design and use subsystem specifications to predict compositional system behavior.
The assume-guarantee contract-based design approach is fully general, so we expect
to extend the results in this chapter to include context effects and assist parameter
screening in biological circuit designs.
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C h a p t e r 5

FUTURE RESEARCH: SCALING MODEL-GUIDED DESIGN

5.1 The interplay between implementation and phenomenological models
An interesting future direction would be to extend the model reduction robustness
results for the expression of multiple genes together to explore retroactivity [156] and
its effects on various phenomenological models used for the design of such systems.
This study would be a step in building towards a modular design framework [157] that
considers the design of multiple modules together with their context-dependence.
The contract-based design approach in Chapter 4 is one such modular and scalable
design framework.

Representing large system models in phenomenological terms is a challenging task
which would require going beyond QSSA based model reduction presented in Chap-
ter 2 of this thesis. Hence, derivation of reduced models by introducing defined
coordinate transformations for states and parameters might be worth investigating
as well. Heuristic guidance is another approach that may be used for model reduc-
tion of large system models. The greedy algorithm in [66] is a possible direction
to apply our results to large biological network models. More research on similar
lines could improve the scalability of the tools discussed in Chapter 2. Finally, we
would also like to note that to compute the robustness metric, new theoretical results
on sensitivity of the model reduction error with respect to simultaneous multiple
parameter co-variations could give new insights. Using sensitivities for robustness
analysis is not as widely explored for nonlinear system analysis and hence building
on the results in this thesis could lead to alternative robustness analysis methods.

On the other hand, from the design point of view, it is important to develop novel
nonlinear model transformation algorithms that can transform phenomenological
models to larger nonlinear models of a prescribed mathematical structure. Towards
that end, it would be interesting to develop a computational method based on non-
linear ODE modeling and chemical reaction network theory that can transform a
given nonlinear dynamical model into a desired coordinate structure while preserv-
ing specified properties.
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On the lines of the preliminary results in Chapter 4, we could comprehensively
develop “approximately equivalent” classes of nonlinear functions that are relevant
to biological system design. Tunable granularity of these models under structural
constraints provided by the contracts may provide a way towards platform-based
design [149] for synthetic biology. Here, the assume-guarantee contracts would
describe the design specifications such as the dynamic range, robustness to distur-
bance, time constants, or period of oscillations whereas the most detailed model
serves as a circuit implementation guide for the biologist designing the circuits. Fi-
nally, integrating the results in Chapter 2 of this thesis would allow one to quantify
the mapping between models of different granularity.

5.2 Modeling and simulation frameworks
There are two noteworthy limitations of the modeling framework presented in Chap-
ter 3 of this thesis, both of which are also open research problems in systems and
synthetic biology:

1. Scalable biological circuit design: Although the computational pipeline pre-
sented Chapter 3 applies to larger biological circuits as well, it is only demon-
strated for circuits with 3-4 components. Various challenges limit our ability
to quantify and model larger circuits. From the biological standpoint, it is
still unclear how the context changes and affects the performance when more
components are added to a system. On the other hand, parameter identifi-
cation for higher dimensional problems is computationally inefficient, which
presents another bottleneck in validating larger circuit models. Towards this
end, integrating the results in Chapter 4 with the software pipeline presented
in Chapter 3 might lead to fruitful new design tools for synthetic biology.

2. In this thesis, we have shown that reduced models can be systematically
obtained from detailed models for computationally feasible parameter infer-
ence. But, in some cases, we observe that the reduced models are unable
to fit the experimental data (for example, the plateauing of fluorescence as
the cell-free extract runs out of resources). This requires further develop-
ment of characterized library of parts that are utilized in synthetic biology.
A well-characterized library of sensors was used in Chapter 4 to reliably
predict system performance. Hence, future experimental and computational
efforts on carefully characterizing biological circuit parts in varying contexts
is crucial.
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5.3 Scaling up biological circuit designs
The utility of our design methodology in Chapter 4 is apparent when scaling the
analysis presented until this point to larger circuit designs.

Fold-change prediction for a larger circuit
In Chapter 4, we considered the design of a NAND logic biological circuit that was
built out of two sensors from a library of 14 sensors and a dCas9-mediated repres-
sion subsystem for which we synthesized the specification. Using the synthesized
specification of the dCas9-mediated repression, we predicted the fold-change of the
system under different sensor choices. This system had a total of four components
— the sensor expressing dCas9, the sensor expressing the guide RNA [131], [158],
the dCas9-mediated repression mechanism, and the constitutive RFP expression. To
demonstrate the scalable nature of our approach, we consider an expanded circuit
design.

In the expanded circuit design, the guide RNA is expressed in two parts that bind
together to create the functional guide RNA. The proposed circuit diagram is shown
in Figure 5.1A. In a candidate implementation of this circuit, we have the IPTG
sensor from the Marionette library that expresses one half of the xLuxR guide RNA
and the OHC14 sensor expresses the other half. These two combine together to form
the functional xLuxR guide RNA. As before, aTc is used to express dCas9, which
then binds with the guide RNA to repress the LuxR regulator. The LuxR regulator
in turn represses the GFP signal. So, when all three inputs (IPTG, OHC14, and aTc)
are “on”, the GFP repression turns off, leading to high GFP expression. In this way,
this circuit has an AND logic (data shown in Figure 5.1B). For this circuit, in total,
we have 7 components.

The contract-based design approach discussed in Chapter 4 can be easily ex-
tended for this circuit design. We can construct the contracts for all sensors using
the library of assume-guarantee contracts for the Marionette library. We also have
the specification for the dCas9-mediated repression mechanism from the NAND
gate circuit design. So, other than the gRNA binding mechanism (see Figure 5.1A),
we have contracts for all other subsystems. Using quotient, we find a specification
for this missing part. The top-level contract is constructed using the experimental
implementation of the candidate circuit design. We construct the top-level contracts
Con

sys, Coff
sys and a library of regulator contracts shown in Figure 5.1C. We have CdCas9



122
A

B

C

D

(A
.U
.)

(nM)

(nM)

(uM) (uM)

(nM)

(u
M

)

Top-level contract (off) Top-level contract (on)

LuxR off contract LuxR on contract

IPTG aTc

LuxR 
repression

DNA assembly

gRNA1

DNA assembly

dCas9

LuxR gRNA dCas9

dCas9 Repression

OHC14

DNA assembly

gRNA2

gRNA1 gRNA2

LuxR

Guide RNA binding

pLux

GFP

Figure 5.1: Application of contract-based design to a larger circuit design. (A) The
circuit diagram for the dCas9-repression mechanism based three-input AND logic
gate. A candidate implementation of this circuit is shown with IPTG, OHC14, aTc
to repress LuxR, which represses GFP. (B) The experimental data for the circuit that
is used to construct the top-level contracts for the system as IPTG and OHC14 is
titrated at different concentrations (data courtesy of Shuwen (Eric) Lei, Caltech).
(C) The top-level system contracts constructed using the experimental data and the
contracts for the LuxR regulator constructeed using the data from the Marionette
library. (D) The predicted fold-change with different choices of regulators. The
LuxR prediction is shown alongside the experimental fold-change.

from the contract-based design of the dCas9-based NAND gate. Then, we compute
the quotient for CgRNA-bind as

Con
sensors = Con

IPTG ∥ Con
OHC14 ∥ Con

aTc,

Con
all = Con

sensors ∥ Cactive
dCas9 ∥ Coff

LuxR,

CgRNA-bind = Con
sys/Con

all ,
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where Cactive
dCas9 is the active dCas9 repression mechanism contract and we use the

Coff
LuxR viewpoint for the LuxR regulator because the LuxR is repressed when the

dCas9 is active. In turn, the output GFP signal is turned on when LuxR is off.
The quotient gives the contract for the binding of gRNA 1 and gRNA 2 to form
the functional xLuxR guide RNA. Following a similar process, we compute the
contract CgRNA-unbind using the top-level contract when GFP is off, corresponding to
the sensors (IPTG and OHC14) being off. We justified the use of this methodology
with contract viewpoints earlier in Chapter 4.

Using this specification from quotient, we explore the choice of the regulator to
use instead of LuxR to repress GFP. Similar to the NAND logic design, we compute
the GFP fold-change by computing the composition of all subsystems to find the
top-level contract in the on and the off conditions.

We explore the four regulator choices from the Marionette library (PhlFAM, Cym-
RAM, LuxR, VanRAM) to avoid crosstalk with the IPTG, OHC14, and aTc sensors
which are fixed choices. The fold-change prediction for the LuxR regulator is com-
pared with the experimental data from the candidate circuit implementation (see
Figure 5.1C. We observe that our fold-change prediction is close to the fold-change
observed in the one replicate of the GFP fluorescence measurement in a Marionette
strain of E. coli. If instead of LuxR, a different regulator is used to repress GFP,
then we follow a similar process as above to compute the system fold-change. The
prediction with different regulators is shown in Figure 5.1D.

A limitation of this approach is that the in vivo data is usually not calibrated to
concentration units and reported in arbitrary units. With arbitrary units, the quan-
tification of the input-output behavior in the assume-guarantee contracts needs to
be re-calibrated for each circuit iteration. For example, we modified the contract
for the dCas9-mediated repression that was synthesized in the NAND gate design
so that it was compatible with the AND gate design. This is due to the change in
the output fluorescence levels that were measured in the experiments. Similarly, we
modified the assumptions of the regulators to predict the top-level fold-change for
all four regulators. With the default values for the regulator, composition would
not be compatible, so we focused on using the guarantees to compute the output
fold-change. Standardized measurements and normalization in the contract-based
design approach may address these issues. The specification abstraction in assume-
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guarantee contracts is a general framework that can be used to write contracts such
that desired properties of the subsystems are the variables in the contracts instead
of the measured signals. The experimental measurements may be used to compute
those properties and the contract-based design framework can be applied on the
analysis of the desired properties.

Large scale design-space exploration with Pacti
Finally, we discuss the scaling of the contract-based design approach from explor-
ing only a few possibilities to a large number of design choices. We consider a
hypothetical cascaded circuit schematic shown in Figure 5.2 that consists of a total
of 7 subsystems. Four input sensors 𝑠𝑖 may be chosen from the Marionette sensor
library that we constructed in Chapter 4. The outputs from these four sensors feed
two processor subsystems which then in turn feed another processor that produces
the final output 𝑦. With four sensors to choose from a total of 14, we have a total of
1001 (14 choose 4) design possibilities for this system. With Pacti, we can quickly

Figure 5.2: A hypothetical circuit design to demonstrate the scalability of our design
methodology based on Pacti. We have four sensor choices 𝑠𝑖, 𝑖 ∈ [1, 2, 3, 4] from
the library of 14 sensors which feed three subsequent processors, Σ𝑖, 𝑖 ∈ [1, 2, 3].
The final system output is 𝑦.

explore this design space by composing the system. We compute

C1 =
(
(C𝑠1 ∥ C𝑠2) ∥ CΣ1

)
C2 =

(
(C𝑠3 ∥ C𝑠4) ∥ CΣ2

)
Csys = C1 ∥ C2 ∥ Σ3.
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On an AMD Ryzen Threadripper PRO 3955WX 16-Cores @ 3.8927 GHz and up to
32 threads, this space exploration ran in 4.4 seconds. A total of 82,428 composition
operations were invoked. The smallest contract had 2 constraints and 2 variables,
and the largest had 6 constraints and 6 variables. Out of all 1001 design possibilites
hundreds of sensor choices are rejected as they are incompatible with the contracts
for any of the Σ𝑖’s. The result of this exploration is a list of successful design choices
and a prediction of how each would perform. Given the choice of contracts for this
in silico exploration, we obtained a total of 547 successful designs and all others
were rejected.

We can also use a quotient-then-compose design strategy as before with this system.
Suppose that we had experimental data for a fixed choice of 𝑠𝑖, 𝑖 ∈ [1, 2, 3, 4] and
corresponding measurements of 𝑦. Also, assume that we have the specification
for the composition of Σ1 and Σ2. This specification may be possible by using
results from a previous partial experiment. Once we have these contracts, we can
use quotient to find out the specification for Σ3. Then, we can fix Σ3, and explore
optimal sensor choices or explore different specifications for Σ1 or Σ2. In this way,
we can make reliable predictions for an experimental implementation of the system
by learning from the experimental data for a partial implementation.

Speeding up the experimental design process
Usually, biological circuit design entails multiple experimental iterations to nail
down controllable parameters such as promoter strengths, input levels, ribosome
binding strengths, and physical conditions like pH and temperature. In our approach,
we can explore the design possibilities using the input-output characteristics of each
component to study the context effects and iteratively study larger system designs.
Further, since the parameters of the implementation models are mapped to the
system objectives, these controllable aspects in the experimental design can be
manipulated accordingly. Hence, a formal design framework serves to minimize
the experimental trial-and-error steps required to successfully design a biological
circuit. Moreover, we can analyze how uncontrollable parameters corresponding
to the internal biological mechanisms in the implementation relate to the system
objectives.
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Resource loading effects on system design
Engineered circuits with gene expression are dependent on cellular resources such
as RNA polymerase, ribosome, ATP, and nucleic acids. For each subsystem to
function as desired, a minimum level of these resources is required. At the same
time, due to the resources being used by a subsystem, loading or retroactivity effects
are commonly observed experimentally. Various system analysis approaches in
the literature have analyzed retroactivity using mathematical models [156], [159],
[160]. The contract-based design framework that we proposed in Chapter 4 can
be easily scaled to describe such environmental assumptions as well. For example,
consider RNA polymerase, ribosome, and ATP as three resources required for gene
expression. We can add a resource viewpoint, C𝑟 , to the contracts for the subsystems
in addition to the timing, C𝑡 , and the functionality, C 𝑓 , viewpoints. The resource
viewpoint contract for subsystem Σ1 can be written as

C𝑟1 =

(
𝑟P

in > 𝑟
P
1min

∧ 𝑟R
in > 𝑟

R
1min

∧ 𝑟A
in > 𝑟

A
1min
,

(𝑟P
1 = 𝑟P

1𝐿
) ∧ (𝑟R

1 = 𝑟R
1𝐿
) ∧ (𝑟A

1 = 𝑟A
1𝐿
)

)
.

This contract states that if the input resources for polymerase (𝑟P
in), ribosome (𝑟R

in),
and ATP (𝑟A

in), exceed minimum thresholds 𝑟X
1min

, then the component Σ1 will con-
sume a given amount of said resources (𝑟X

1 = 𝑟X
1min

). We can use this viewpoint
to analytically detect when our system may not function due to starvation from a
given resource. This viewpoint also models the amount of loading each subsystem
causes to other subsystems. We anticipate diverse future directions stemming from
the research presented in this thesis as we build towards model-guided design for
large-scale synthetic biological systems.
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