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ABSTRACT 

Carbocationic intermediates play an important role in the construction of complex 

molecules, from biosynthetic pathways in nature to the synthesis of natural products by 

organic chemists. In contrast to tricoordinated carbocations, dicoordinated vinyl 

carbocations have received less attention in the development of methods to form 

challenging carbon–carbon (C–C) bonds. However, the Nelson lab has recently disclosed 

a powerful catalytic platform for generating vinyl carbocations, which were then shown to 

proceed through carbon–hydrogen (C–H) insertion reactions to construct C–C bonds. This 

thesis further expands upon catalytic reactions of using vinyl carbocations to construct C–

C bonds in a selective fashion.  

To begin, a brief introduction that surveys C–C bond forming reactions of vinyl 

carbocations will be highlighted. These include seminal stoichiometric studies that have 

since been expanded to other catalytic systems. The discussion of experimental work 

outlined in this thesis commences with the development of a main group-catalyzed 

approach towards accessing a-vinylated esters through the trapping of vinyl carbocations 

with silyl ketene acetals to form sterically congested quaternary carbon centers fused to 

tetrasubstituted olefins. Next, a Claisen-type rearrangement will be discussed, which is a 

result of trapping vinyl carbocations with allyl ethers to form an allyl vinyl oxonium 

intermediate in situ that can subsequently undergo a [3,3] sigmatropic rearrangement. 

Finally, the last method that will be highlighted includes the development of an asymmetric 

C–H insertion reaction of vinyl carbocations to forge bicyclic products in a highly 

enantioselective fashion. Ultimately, this thesis work has expanded the scope of catalytic 

vinyl carbocation reactions that form C–C bonds selectively. 
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Chapter 1 

Carbon–Carbon Bond-Forming Reactions via Vinyl Cation Intermediates 

 

1.1 INTRODUCTION 

Carbocations are enabling intermediates for the construction of carbon–carbon (C–

C) bonds that have found broad utility in a variety of synthetic organic chemistry 

transformations.1 In recent years, a subset of carbocations known as vinyl carbocations 

have shown their utility as powerful intermediates to forge C–C bonds.2 However, 

compared to tricoordinated carbocations, vinyl cations and their reactivity have been less 

explored. The existence of vinyl cations was first suggested in the 1940s by Jacobs and 

Searles.3 Since the initial discovery of vinyl cations, studies of these intermediates have 

been conducted by Rappaport, Grob, Hanack, Schleyer, and Stang, among others, to assess 

and further explore the reactivity of such intermediates.4–12 This chapter will focus 

specifically on studies that involve vinyl cations in C–C bond-forming reactions. To that 

end, three general reactions of which C–C bonds are forged via vinyl cations will be 

highlighted: 1) rearrangements, 2) arylation reactions via Friedel–Crafts-type mechanism, 
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and 3) C–H insertion reactions.  

Before discussing C–C bond-forming reactions of vinyl cations, it is important to 

first review common strategies for generating vinyl cation intermediates. The examples 

discussed in this chapter include forming vinyl cations through five general strategies: 1) 

ionization of vinyl leaving groups through solvolysis or Lewis acid abstraction, 2) 

decomposition of a-diazo-β-hydroxy carbonyls, 3) activation of alkynes through 

protonation, 4) activation of alkynes through electrophilic addition, and 5) Lewis acid 

activation of alkynes. As seen from these general strategies, common vinyl cation 

precursors that will be discussed in this chapter include those with ionizable vinyl groups, 

such as vinyl trifluoromethanesulfonates and vinyl(phenyl)iodonium salts. Additionally, 

vinyl cations are also commonly generated from alkynes through Brønsted or Lewis acid 

activation, as well as through addition of alkynes into electrophiles. Once the vinyl cation 

is generated, the reactive intermediate can proceed through one of the above mentioned C–

C bond-forming reactions. 

Relevant reports of forging C–C bonds with vinyl cations that do not fall under one 

of the mentioned categories will be discussed in the following chapters. The studies chosen 

for discussion in this chapter aim to highlight a range of methods, including both 

stoichiometric and catalytic approaches. Finally, reactions that have been developed as part 

of this thesis work will not be included in this chapter, as detailed discussions of these 

reactions will follow in Chapters 2–4. 

1.2 C–C BOND-FORMING REACTIONS  

1.2.1 Rearrangements of Vinyl Cations 

To begin, examples of vinyl cation intermediates undergoing rearrangements 
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including ring contraction and expansion events will be highlighted. Although some of 

these rearrangements involve subsequent steps that do not include C–C bond formation via 

vinyl cation intermediates, these studies are critical to understanding the reactivity and 

stability of these intermediates. As such, a discussion of these rearrangements is warranted 

in this chapter. 

 

Scheme 1.1. Schleyer, Hanack, Stang: solvolysis studies of cyclic vinyl triflates. 

 

 

In the early 1970s, Schleyer, Hanack, and Stang disclosed a study measuring the rate 

of solvolysis of cyclic vinyl trifluoromethanesulfonates (triflates) in aqueous polar solvents 

at elevated temperatures, which resulted in the formation of vinyl cation intermediates.13 

Ketone products were observed as a result of water trapping the vinyl cation intermediates. 

Since vinyl cations are sp-hybridized, the relative rates of solvolysis for cyclic vinyl 

triflates 1–4 decrease with decreasing ring size, highlighting the instability of bent vinyl 

cations from vinyl triflates 3 and 4 (Scheme 1.1A). In this way, vinyl cations are analogous 

to cyclic alkynes, where accessing smaller than 8-membered cyclic alkynes results in only 

OTf

OTf OTf OTf OTf

>>>

krel 3.4 3.2 x 10–1 3.0 x 10–4 1.1 x 10–5

OTf
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OTf

krel 1 10

60% aq EtOH

125 ºC

O

50% yield

ring 
contraction H2O

1 2 3 4 5

A) Relative rates of solvolysis of cyclic vinyl triflates

B) Ring contraction of 2-substituted vinyl triflate

5 6 7 8

3
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transient and unstable intermediates.14 However, it was found that vicinal alkyl substituents 

can enhance the rate of solvolysis 10-fold, as seen with vinyl triflate 3 vs 5. By subjecting 

vinyl triflate 5 to the reaction conditions, the expected substituted cyclohexanone product 

was not observed, and instead, cyclopentanone 8 was obtained in 50% yield (Scheme 

1.1B). The authors rationalized this as the initial cyclic vinyl cation 6 undergoing a ring 

contraction via an alkyl migration to generate the comparably more stable linear vinyl 

cation 7, which is subsequently trapped with water to produce 8. This ring contraction is 

not possible with vinyl triflate 3, as a monosubstituted vinyl cation would be formed. While 

the rearrangement results in the formation of another vinyl cation intermediate that is 

subsequently quenched by solvent, this report ultimately represents one of the earliest 

reported examples of vinyl cations forming a C–C bond. 

Next, Pellicciari and coworkers investigated rearrangements of destabilized vinyl 

cations generated by treating a-diazo-β-hydroxy esters (9a–c) with boron trifluoride etherate 

(Scheme 1.2).15 Due to the instability of the vinyl cation as a result of being adjacent to an 

electron-withdrawing ester, vinyl cation 1 (10a–c) undergoes ring expansion via a 1,2-alkyl 

shift to form the more stable intermediate, vinyl cation 2 (11a–c). Another ring contraction 

can lead to the allyl cation (12a–c), which is then trapped by benzene solvent via Friedel–

Crafts-type mechanism. The authors noted that for cyclobutane a-diazo-β-hydroxy ester 9a, 

cyclopentene 13 was obtained in 51% yield. This suggested that the second ring contraction 

rearrangement (11a to 12a) did not proceed, which was likely a result of a high energy barrier 

for rearrangement of 11a due to the ring strain of the cyclobutenyl allyl cation intermediate 

12a. However, for the 5-membered a-diazo-β-hydroxy ester (9b), a mixture of products (14 

and 15) was observed as a result of trapping both 11b and 12b. The authors suggested that  
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this is perhaps a result of a high barrier to the allyl cation intermediate, ultimately resulting 

in an unselective mixture of products. In contrast, for the 6-membered a-diazo-β-hydroxy 

ester analog (9c), the major product (16) was obtained in 74% yield, which was a result of 

trapping the allyl cation 12c after both ring expansion of 10c followed by ring contraction of 

11c. 

 

Scheme 1.2. Pellicciari: rearrangements of destabilized vinyl cations.  
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to products 18 and 19 (Scheme 1.3).16,17 They demonstrated that once vinyl cation 20 is 

formed, alkyl migration can lead to either intermediates 21 or 22, but migration of the more 

electron-rich group was favored. For example, migration of an n-pentyl substituent was 

slightly favored over methyl migration, resulting in a 1.7:1 ratio between products 18 and 19, 

which were formed from intramolecular C–H insertion of vinyl cation intermediates 21 and 

22 into the methyl C–H bond of the t-butyl substituent. Moreover, a secondary cyclohexyl 

substituent was favored over the methyl, now in a 16:1 ratio.  

 

Scheme 1.3. Brewer: migratory aptitude of alkyl substituents. 
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including catalytic protocols, have been developed to harness vinyl cations and their 

reactions with arenes, both in an inter- and intramolecular fashion. This section of the chapter 

discusses some of these reports.   

As previously discussed, early studies of vinyl cations involved solvolysis of vinyl 

triflates in aqueous polar solvents, which resulted in the trapping of vinyl cation 

intermediates with solvent or water to generate ketone products.13 In the late 1970s, Stang 

disclosed that cyclic and acyclic vinyl triflates could also be solvolyzed in arene solvents at 

elevated temperatures, which ultimately furnished products that resulted from trapping of the 

cation with the arene solvent via a Friedel–Crafts mechanism.18,19 These results represent 

some of the earliest examples of forming C–C bonds via vinyl cation intermediates in an 

intermolecular fashion. For example, by subjecting vinyl triflate 23 to various arenes (24a–

c) in the presence of 2,6-di-tert-butyl-4-methylpyridine (25) at 120 ºC, arylated products 

26a–c were accessed in good yields (Scheme 1.4). Products 26a and 26b were formed in 

85% and 79% yield, respectively, from Friedel–Crafts with anisole (24a) and benzene (24b). 

In addition, product 26c, resulting from Friedel–Crafts with electron-poor chlorobenzene 

24c, was also furnished in 80% yield. The selectivity for the arylated products resulted from 

favoring alkylation at the activated positions of the arene. To note, a non-nucleophilic base, 

2,6-di-tert-butyl-4-methylpyridine (25), was added to quench the acid generated from the 

Friedel–Crafts reaction. 
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Scheme 1.4. Stang: solvolysis of vinyl triflate in arene solvent. 

 

 

If the resulting vinyl cation could make a stable allene or alkyne product via E1-type 

pathways, arylation was not observed. For example, trimethyl vinyl triflate 27 led to no 
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described as a tar-like material as a result of facile deprotonation of the vinyl cation 
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Scheme 1.5. Stang: trialkyl vinyl triflate fails to undergo arylation reaction. 
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membered variant (3) did not furnish 31 (Scheme 1.6). This is likely due to the high energy 

of the intermediate as a result of the strained ring system. As previously mentioned, the 

solvolysis of 6-membered vinyl triflate 3 in aqueous polar ethanol was 104 times slower than 

the 7-membered variant (2).  

 

Scheme 1.6. Stang: solvolysis of cyclic vinyl triflates in anisole.  
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ionization, where the orientation of the arene was largely retained. If the arene and the vinyl 

cation did dissociate, then the traditional Friedel–Crafts product ratio would be expected, 

favoring the para isomer. 

 

Scheme 1.7. Okuyama: vinyl(phenyl)iodonium salts as vinyl cations precursors for 

arylation reaction. 
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Scheme 1.8. Ponra: acid-catalyzed intermolecular coupling of aldehydes and alkynes.  

 

 

Li and coworkers disclosed a catalytic Lewis acid strategy to couple phenols (43) with 

phenyl acetylenes (44) in an intermolecular fashion via Friedel–Crafts to access diaryl 

substituted alkenes (45) (Scheme 1.9).22 First, the proposed mechanism begins with Lewis 

acid activation of the phenol (43) to generate (46), which results in a proton transfer to the 

alkyne to generate the vinyl cation intermediate (47). The phenyl borate species (46) acts as 

the counter anion to the vinyl cation, forming an ion pair. Then, an ortho selective Friedel–

Crafts reaction occurs to generate diaryl substituted alkenes. The authors attributed the ortho 

selectivity towards the ion pair of the phenyl borate with the vinyl cation, but further 

mechanistic evidence was not provided.  

 

Scheme 1.9. Li: Lewis acid-catalyzed coupling of phenols and alkynes. 
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Another Lewis acid-catalyzed approach towards coupling alkynes (48) with arenes 

(49) in an intermolecular fashion to access di- and triaryl products (50) was reported by Sun 

and coworkers (Scheme 1.10).23 Here, the proposed mechanism begins with the activation 

of alkynes with a Sc(OTf)3 Lewis acid that is paired with a phosphoric acid to generate vinyl 

cations that can proceed through intermolecular Friedel–Crafts with heteroarenes, like 

benzofuran. It is important to note that without the Lewis acid, products resulting from [4 + 

2] cycloadditions were obtained instead, highlighting the necessity of Lewis acid activation 

of the alkyne to form the vinyl cation intermediate. 

 

Scheme 1.10. Sun: Lewis acid-catalyzed coupling of alkynes with heteroarenes.  
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Scheme 1.11. Niggemann: carboarylation of alkynes.   
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Scheme 1.12. Gaunt: alkyne addition to Cu–aryl electrophile and cyclization.  

 

 

In 2018, Nelson and coworkers disclosed that vinyl cations could be generated through 

the ionization of vinyl triflates using catalytic quantities of a Lewis acid in nonpolar solvents. 

Herein, a Lewis acidic silylium species paired with a weakly coordinating mono-carborane 

Ar

R2

OH

RR R3 R3

R2 Ar
Ca(NTf2)2 (5 mol%)

Bu4NPF6 (2.5 mol%)
+

R2
R R R3

R2
Ar

Ar

R3 Friedel–Crafts

CH3NO2, 40 ºC
up to 93% yield

addition

–OH– ionization

+

51

52 53

53

54

55

R2

R

I
TfO

Ar

diaryliodonium triflate

+
CuCl (2.5 mol%)

DCE, DTBP, 50 ºC

Ar
R2

up to 92% yield

LnCuIII Ar
TfO

Cl

aromatic 
electrophile

R

56
57

58 59



Chapter 1 – Carbon–Carbon Bond-Forming Reactions via Vinyl Cation Intermediates   
 

14 

anion (60) abstracts a triflate from vinyl triflate 3 to generate Et3SiOTf (61) and the resulting 

vinyl cation (62) (Scheme 1.13).26 Due to the hyper Lewis acidity of the silylium species, 

even strained cyclic vinyl cations could be generated. Once the vinyl cation is formed, it can 

react with an arene to form a cationic Wheland intermediate (63). Tautomerization leads to 

tertiary carbocation 64, and finally reduction of the cation by stoichiometric Et3SiH (65) 

furnishes the final product (66) and regenerates the silylium species. The key to this reactivity 

is the use of the WCA. After ionization of the vinyl triflate, the vinyl cation intermediate is 

paired with this non-basic and non-nucleophilic anion. This anion does not quench the cation 

via elimination or substitution, ultimately allowing for the reactive vinyl cation to react with 

arenes as well as aliphatic hydrocarbons, which will be discussed in section 1.2.3.  

 

Scheme 1.13. Nelson: catalytic cycle for reductive arylation of vinyl triflates. 
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previously discussed solvolysis reaction of vinyl triflates, which were unsuccessful in 

obtaining the desired arylated products using cyclic triflates with less than 7 carbons.18,19 

Similarly, in previous studies by Stang, trialkyl vinyl triflates did not afford the desired 

reactivity (Scheme 1.5). 

 

Scheme 1.14. Nelson: examples of products accessed via reductive arylation.  
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section of this chapter discusses current reports of such reactivity.  

One of the early examples of C–H insertion of vinyl cations was reported by Metzger 

and coworkers. Prior to this work, they had reported a hydroalkylation reaction, where the 

addition of Et3Al2Cl3 to alkyl chloroformate 74 generated isopropyl cation 75, which can 

then add across alkenes and be subsequently reduced to the alkane product.27 They expected 

that by moving from alkenes to alkynes (76), vinyl cation 77 would allow access to the 

analogous hydroalkylation product (78). However, by expanding the system from alkenes to 

alkynes in the presence of SiEt3H, cyclopentane product 80 was isolated with little formation 

of the desired hydroalkylation product 78 (Scheme 1.15).28 The authors proposed that once 

the isopropyl cation 76 adds to the alkyne and vinyl cation 77 is formed, a concerted C–H 

insertion proceeds to form intermediate 79, as the activation energy for a concerted process 

was approximately 1.9 kcal/mol. After C–H insertion, the resulting tertiary carbocation 79 

was subsequently reduced. The cyclopentane product 80 was accessed in 79% yield as a 

4.6:1 mixture of diastereomers. 

 

Scheme 1.15. Metzger: concerted C–H insertion of vinyl cations.  
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Scheme 1.16. Yamamoto: Brønsted acid-catalyzed cyclization reaction. 
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proceed, and through the elimination of intermediate 86, (82) is formed. Mechanistic 

investigation of these two pathways was not disclosed. This report represents the first 

example of a C–H activation of an unactivated C(sp3)–H bond via Brønsted acid catalysis.  

As discussed in section 1.2.2, Gaunt and coworkers have developed an alkyne 

carboarylation reaction, utilizing diaryliodonium salts (56) and catalytic CuCl to generate 

an electrophilic aromatic reagent (57) that can react with alkynes (Scheme 1.12).25 They 

have further expanded this system to generate substituted cyclopentene products via C–H 

insertion of vinyl cations. Similarly, addition to phenyl acetylenes (87) forms the 

substituted vinyl cation intermediate. The cation reacts with the appended alkyl chain via 

C–H insertion to furnish the cyclopentene products (88) in up to 78% yield (Scheme 

1.17).30 

 

Scheme 1.17. Gaunt: alkyne cyclization cascade to furnish cyclopentenes. 
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concerted C–H insertion of vinyl cation intermediate 91 is likely operative to form the C–

C bond in intermediate 92, which is subsequently deprotonated to 90.  

 

Scheme 1.18. Gaunt: enantioenriched alkyne cyclization study. 
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Scheme 1.19 Nelson: catalytic cycle for hydrocarbon C–H insertion reactions. 
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hydrocarbon molecules by utilizing reactive vinyl cation intermediates, which can react with 

inert C(sp3)–H bonds at room temperature.  

Nelson and coworkers later disclosed milder Lewis acidic lithium conditions (as 

compared to silylium conditions) for generating vinyl cations that could then undergo C–

H insertion reactions in an intramolecular fashion. Here, a lithium Lewis acid paired with 

a WCA was still a competent Lewis acid for the ionization of vinyl triflates (98) (Scheme 

1.21).31 In contrast to the silylium conditions, olefinic products (99–101) were obtained. 

Stoichiometric LiHMDS was required to turn over the catalytic system by deprotonation 

of the cationic intermediate after C–H insertion. Moreover, heteroatom moieties, like 

methoxy groups, boronates, and triflamides, were tolerated under these milder conditions, 

allowing access to products 99–101. 

 

Scheme 1.21. Nelson: C–H insertion reactions of vinyl cations generated under basic 

conditions. 
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This section of Chapter 1 discusses C–C bond-forming reactions of vinyl cations that 

proceed through C–H insertion reactions. Compared to Friedel–Crafts reactivity, fewer 

methods have been developed to take advantage of this powerful approach towards forging 

C–C bonds through C–H insertion reactions.   

1.3 CONCLUDING REMARKS 

In conclusion, vinyl cations are powerful intermediates for the construction of C–C 

bonds. Since the early studies by Schleyer, Hanack, and Stang, a variety of methods have 

been developed to construct various carbocyclic frameworks via these intermediates. This 

chapter first discussed examples of vinyl cations undergoing alkyl migrations. The 

rearrangements of vinyl cations are driven by the formation of more stable vinyl cation 

intermediates, and this is largely demonstrated for strained, cyclic vinyl cations. The next 

section of this chapter portrays both stoichiometric and catalytic methods that involve vinyl 

cations proceeding through Friedel–Crafts reactions. This reactivity was first demonstrated 

by Stang in the 1970s through the solvolysis of vinyl triflates in arene solvent, and then 

later by Okuyama and coworkers through the solvolysis of vinyl(phenyl)iodonium salts. 

More recently, methods have been developed utilizing Brønsted and Lewis acid catalysts 

for coupling alkynes with arenes, both in an inter- and intramolecular fashion. However, it 

was not until the recent work by Nelson and coworkers that vinyl cations could be 

generated in a catalytic fashion through triflate abstraction from a Lewis acid catalyst, 

which stands in contrast to the solvolysis studies as well as vinyl cation formation from 

alkyne precursors. Through their developed catalytic platform, vinyl cations were observed 

to undergo arylation reactions readily, including strained, cyclic vinyl triflates that were 

previously challenging substrates in solvolysis studies. Lastly, the third and final 
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component of this chapter was a brief discussion of C–H insertion reactions of vinyl 

cations. Up until recently, the majority of the reports were limited to generating vinyl 

cations from alkyne starting materials for subsequent C–H insertion reactions. Now with 

the developed catalytic methods by Nelson and coworkers, vinyl cations can be generated 

from simple vinyl sulfonates derived from ketones that can engage in C–H insertion 

reactions to form C–C bonds.  

Despite these advantages of the catalytic platforms developed by Nelson and 

coworkers, challenges still exist with these methodologies (Scheme 1.22). For example, in 

intermolecular reactions using alkanes with more than one site for C–H insertion, multiple 

isomers are generated. This is seen in the case of n-hexane (102), where product 103 is 

formed as a mixture of isomers. Moreover, transannular C–H insertion from vinyl triflate 

104 also yields an unselective mixture of olefinic products 105 due to unselective 

deprotonation under the lithium/basic conditions. 

 

Scheme 1.22. Current challenges in C–H insertion reactions of vinyl cations. 
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These challenges presented an opportunity for further advancement of selective 

reactions. Thus, my PhD studies focused on developing selective C–C bond-forming 

reactions utilizing vinyl carbocation intermediates. First, this has been demonstrated through 

the optimization of a reaction platform that traps vinyl carbocations with carbon-centered 

nucleophiles to form sterically congested quaternary carbon centers. The second method that 

has been investigated is a sigmatropic rearrangement that relies on trapping vinyl 

carbocations with allyl ethers to generate a cationic intermediate that can subsequently 

rearrange, resulting in selective C–C bond formation. The third method developed is an 

enantioselective C–H insertion reaction. This method accesses products in a highly selective 

fashion, in terms of enantioselectivity, diastereoselectivity, and olefin isomer selectivity. The 

following chapters will discuss these reactions in detail. 
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Chapter 2 

a–Vinylation of Ester Equivalents via Main Group Catalysis for the 

Construction of Quaternary Centers† 

 

2.1 INTRODUCTION 

All-carbon quaternary centers are critical structural motifs found in various natural 

products and pharmaceutical drug molecules.1 Along with increasing the structural 

complexity of molecules, these moieties have been shown to enhance the potency, 

selectivity, and metabolic stability of bioactive compounds targeted in drug discovery 

campaigns.1e For example, Mould and coworkers showed in the development of reversible 

inhibitors for lysine specific demethylase 1 (LSD1), a histone that plays a role in cancers 

such as leukemia, that the introduction of a quaternary center to 106 to afford 107 more 

 
† Portions of this chapter have been adapted from Williams, C. G.; Nistanaki, S. K.; Wells, 
C. W.; Nelson, H. M. a-Vinylation of Ester Equivalents via Main Group Catalysis for the 
Construction of Quaternary Centers. Org. Lett. 2023, 25, 3591–3595. DOI: 
10.1021/acs.orglett.3c00535. Copyright © 2023 American Chemical Society. 
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than doubled the molecule’s potency towards its target, increased its half-life in mouse 

microsomes, and improved hERG inhibition liability (Scheme 2.1).2  

 

Scheme 2.1. Enhanced pharmacokinetics through installation of quaternary center. 

 

 

Despite these clear advantageous effects, the construction of quaternary centers is 

still a challenging synthetic problem due to the high steric environment they contain.3 

While enolate alkylation is a known strategy towards accessing quaternary centers, this 

approach is typically limited to the construction of C(sp3)–C(sp3) bonds, with few examples 

of Michael-type additions of 1,3-dicarbonyl compounds into activated alkynes reported.4 

Moreover, various transition metal-catalyzed methodologies have been developed to form 

C(sp3)–C(sp2) bonds to access products of type 108 through cross-coupling of aryl and 

alkenyl electrophiles (109) with enolate equivalents (110) (Scheme 2.2).5 Many of these 

include a-vinylation or a-arylation of ketone enolates or their derivatives using transition 

metals, such as palladium, nickel, copper, or ruthenium.6 In particular, a-vinylation of 

enolate equivalents is a powerful approach towards accessing b,g-unsaturated carbonyl 
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motifs, which are prevalent in bioactive natural products and medicines (112 and 113, 

Scheme 2.3).7  

 

Scheme 2.2. Transition metal-catalyzed a-vinylation of enolates. 

 

 

Scheme 2.3. Examples of bioactive molecules with a-vinylated carbonyl motifs. 

 

 

While useful, two drawbacks of current catalytic a-vinylation methods exist: (1) the 

requirement of transition metal catalysts that can encompass laborious ligand syntheses 

and (2) limitations in constructing sterically-congested motifs via the use of fully-
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method using stoichiometric base for accessing a-vinylated carbonyl compounds, though 
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the use of less substituted vinyl electrophiles.6a,c,d,f Therefore, there is a clear need for new 

methods to access a-vinylated quaternary centers bearing fully substituted vinyl 

electrophiles. To note, tetrasubstituted olefins are attractive functional groups in the 

pharmaceutical industry as they are present in bioactive molecules, such as the anti-cancer 

agents tamoxifen and etacstil.9 In analogy to well-established enolate alkylation chemistry 

and precedent from stoichiometric flash photolysis studies performed by Mayr10, it was 

hypothesized that catalytically generated electrophilic vinyl carbocations (115) from 114 

could be directly trapped by enolate equivalents (116) to form a-vinylated carbonyl 

compounds (117) (Scheme 2.4). Mild catalytic methods for the generation of vinyl cations 

 from vinyl sulfonates have been reported recently using lithium/weakly coordinating 

anion (WCA) salts as the catalyst11, which are significantly less expensive than transition 

metals used in previous a-vinylation methods.12 Moreover, given that increased 

substitution of vinyl sulfonates enables more facile ionization, it was hypothesized that this 

approach would allow for the generation of fully-substituted vinyl carbocations that could 

directly engage in a nucleophilic attack by enolate equivalents.13,14  

 

Scheme 2.4. a-Vinylation of enolate equivalents via vinyl carbocations. 
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Herein we report a main group-catalyzed a-vinylation reaction to construct highly 

congested quaternary centers fused to tetrasubstituted olefins. During the late-stage 

preparation of this manuscript, Chen and coworkers disclosed trapping vinyl cations with 

silyl enol ethers to access difluoromethylene-skipped enones utilizing squareamide 

additives; however, though complementary to this report, this method does not appear to 

enable access to the sterically congested motifs of interest to this study.15 

2.2 REACTION OPTIMIZATION 

With reaction conditions inspired by previous work11, initial studies commenced with 

exploring methyl ester silyl ketene acetal 116a and vinyl tosylate 114, and gratifyingly, the 

desired product (117a) was observed using 10 mol% [Li]+[B(C6F5)4]– with 1.5 equivalents 

of LiHMDS in o-DFB solvent with a 45% yield (Table 2.1, entry 1). We elected to utilize 

vinyl tosylates as the vinyl cation precursor because they are bench-stable, crystalline 

solids that could tolerate full substitution on the olefin and electron-rich aromatic moieties, 

thereby expanding the scope of substrates that could be employed.11,14,16 The reaction in 

other solvents, such as o-DCB and cyclohexane, was not as efficient (entries 2–3), but 

when the reaction was performed in PhCF3, a 45% yield was also obtained (entry 4). 

Product was not observed when the reaction was performed without [Li]+[B(C6F5)4]– 

catalyst (entry 5), but an increase in yield was observed by omitting the use of base (entry 

6). Interestingly, in previous studies from our group, a stoichiometric lithium base was 

required for catalyst turnover.11,14 The yield was further improved by doubling the 

equivalents of 116a (entry 7). Other alkoxy groups on the silyl ketene acetal were also 

briefly surveyed, and it was found that using ethyl ester derived silyl ketene acetal 116b 
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resulted in an improvement in yield (entry 8). However, by implementing a bulkier 

isopropyl variant (116c), a significant drop in yield was observed, likely due to Lewis acid-

mediated dealkylation of the silyl ketene acetal and product, supported by mass 

spectrometry experiments (entry 9).  

 

Table 2.1. Reaction optimization. 
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diminished from the NMR yield obtained previously (Table 2.1, entry 8). Notably, 

tetrasubstituted olefins could be constructed, and this methodology tolerates substitution at 

the vinyl tosylate olefin to access various structures (119a and 119b). More electron-rich 

vinyl tosylates (118c and 118d) were also tolerated, furnishing products 119c and 119d in 

good yields. The scalability of the reaction was demonstrated by isolating 119c in 78% 

yield on a 1.0 mmol scale. Biphenyl product 119e was also isolated in good yield. 

Brominated and iodinated substrates (118f and 118g) were also compatible with the 

reaction conditions, delivering vinylation products 119f and 119g, albeit in slightly 

diminished yields. Current organometallic methods to access a-vinylated carbonyl 

compounds often rely on the use of palladium and nickel, which are typically incompatible 

with aryl halides.  

 

Scheme 2.5. Scope of vinyl tosylates.a 
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2.3.2 Scope of Silyl Ketene Acetals 

Upon exploration of the vinyl cation precursor, the silyl ketene acetal coupling 

component was also investigated (Scheme 2.6). Products arising from the a-vinylation of 

methoxy dimethyl silyl ketene acetal 116a were isolated in moderate yields (117a and 

122a).  Moreover, it was found that unsymmetrical silyl ketene acetals 120a and 120b 

afforded products 122b and 122c in good yields (70% and 69%, respectively), notably with 

122c possessing a bulky benzyl substituent on the newly formed quaternary center. 

Additionally, a silyl ketene acetal bearing a cyclic cyclopentyl moiety (120c) was also 

competent in the reaction, which resulted in the formation of product 122d in 40% yield. 

These types of sterically encumbered scaffolds (tetrasubstituted olefin fused quaternary 

centers) are challenging to construct in a concise and catalytic manner, making this a useful 

method for the construction of a-vinylated quaternary centers. In addition to fully 

substituted silyl ketene acetals, trisubstituted variants (120d and 120e) also proved 

successful in this reaction, leading to products 122e (75% yield) and 122f (58% yield). A 

phenyl substituent on the silyl ketene acetal (120f) delivered 122g, albeit in diminished 

yield. It is important to note that products 122e–g are isolated without olefin isomerization 

to the corresponding a,b-unsaturated ester.  
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Scheme 2.6. Scope of silyl ketene acetals.a 
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TMSOTs (127). 
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bYield determined by 19F NMR using C6F6 as an internal standard.

122a, 80% yield

MeO

O

122b, 70% yield

EtO

O

Tol
nPr

122e, 75% yield

EtO

O

Tol
nBu

122d, 40% yield

EtO

O

Tol

Ph

122f, 58% yield

EtO

O

Ph

OMe

MeO

O

Bn

TolEtO

O

Ph

122c, 69% yield

122g, 27% yield

117a, 42% yield (62% yield)b

MeO

O

F

R
[Li]+[B(C6F5)4]– (10 mol%)

PhCF3 (0.1M)
70–100 °C

Ar
R

R

OTs

+ R3O

O

R3O

OTMS
R2

R2 R2 R2
Ar

R

116a, 120a–f 114, 118a–c, 121 117a, 122a–g



Chapter 2 – a–Vinylation of Ester Equivalents via Main Group Catalysis for the 
Construction of Quaternary Centers   
 

38 

Scheme 2.7. Proposed catalytic cycle for a-vinylation of silyl ketene acetals.  
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Scheme 2.8. Control experiments to support the proposed mechanism. 

 

 

2.5 INVESTIGATION OF ELECTROPHILIC ADDITION TO ALKYNES 

In efforts to study other methods for the generation of vinyl cations that could directly 

engage in intermolecular a-vinylation, the electrophilic alkylation of alkynes was explored, 

which has been a reported strategy to access vinyl carbocation intermediates.18 It was 

hypothesized that a tethered alkyl chain bearing an appropriate leaving group could be 

cyclized onto an alkyne through Lewis acid activation of the leaving group, and the 

resulting vinyl cation could then be trapped by silyl ketene acetals in an intermolecular 

fashion as discussed above (Scheme 2.9).  
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Scheme 2.9. a-Vinylation of esters from alkyne starting materials.a 

 

 

The alkyne difunctionalization cascade enabled substitution at distal positions of the 

product to generate further complexity. To this end, it was discovered that alkyne substrates 

with an appended tosylate group (130a–b) could engage in alkyne 

alkylation/intermolecular nucleophilic trapping cascades to deliver tetrasubstituted olefin 

products 131a–c (Scheme 2.9). In the case where a secondary tosylate 130b was employed, 

which resulted in an unsymmetrical cyclopentane ring upon cyclization, a single olefin 

isomer was isolated in good yield for products 131b and 131c highlighting a selective 

addition step to forge tetrasubstituted E-olefins. These results highlight an alternative, 

alkyne difunctionalization approach for accessing sterically congested carbonyl 

compounds, which complement the vinyl tosylate ionization approach outlined in this 

study.  
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2.6 CONCLUDING REMARKS 

In conclusion, two main group-catalyzed approaches towards accessing sterically 

congested a-vinylated ester products through the trapping of vinyl cations with silyl ketene 

acetals are disclosed. Many of the catalytic approaches towards accessing a-vinylated ester 

products rely on transition metal catalysis, while here, a simple main group salt is utilized 

in this transformation. Additionally, methods to construct a-vinylated carbonyl products 

bearing a tetrasubstituted alkene adjacent to a quaternary center are limited. This study 

opens the door towards further application of catalytically-generated vinyl cation 

intermediates in synthesis, as well as offers the possibility to access these products in an 

asymmetric fashion. Overall, vinyl cations are underutilized reactive intermediates in 

catalysis, and this work highlights their ability to form sterically congested motifs. 
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2.7 EXPERIMENTAL SECTION 

2.7.1 Materials and Methods 

Unless otherwise stated, all reactions were performed in an MBraun or VAC 

glovebox under nitrogen atmosphere with ≤ 0.5 ppm O2 levels. All glassware and stir-bars 

were dried in a 160 °C oven for at least 12 hours and cycled directly into the glovebox for 

use. Solid substrates were dried on high vacuum over P2O5 overnight. All solvents were 

rigorously dried before use. 1,2-Dichloroethane, benzene, and trifluorotoluene were 

degassed and dried in a JC Meyer solvent system and stored inside a glovebox. 

Cyclohexane was distilled over potassium. o-Difluorobenzene was distilled over CaH2. All 

other solvents used for substrate synthesis were dried in a JC Meyer solvent system. 

Diisopropylamine was distilled over CaH2 prior to use. [Li]+[B(C6F5)4]– salt was 

synthesized according to literature procedure.19 Preparatory thin layer chromatography 

(TLC) was performed using Millipore silica gel 60 F254 pre-coated plates (0.25 mm) and 

visualized by UV fluorescence quenching. SiliaFlash P60 silica gel (230-400 mesh) was 

used for flash chromatography. NMR spectra were recorded on a Bruker 400 MHz with 

Prodigy cryoprobe (1H, 13C, 31P, 11B), a Bruker 400 MHz (1H, 13C, 19F), a Varian 300 MHz 

(1H, 19F), and a Bruker AV-500 (1H, 13C). 1H NMR spectra are reported relative to CDCl3 

(7.26 ppm) unless noted otherwise. Data for 1H NMR spectra are as follows: chemical shift 

(ppm), multiplicity, coupling constant (Hz), integration. Multiplicities are as follows: s = 

singlet, d = doublet, t = triplet, dd = doublet of doublet, dt = doublet of triplet, ddd = doublet 

of doublet of doublet, td = triplet of doublet, qd = quartet of doublets, m = multiplet. 

Structural assignments were made with additional information from gCOSY, gHSQC, and 
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gHMBC experiments. 13C NMR spectra are reported relative to CDCl3 (77.1 ppm) unless 

noted otherwise. IR Spectra were record on a Thermo Scientific Nicolet iS50 FT-IR and 

are reported in terms of frequency absorption (cm-1). High resolution mass spectra (HR-

MS) were recorded on an Agilent 6230 time-of-flight LC/MS (LC/TOF) using electrospray 

ionization (ESI) or acquired by the Caltech Mass Spectral Facility by Field Ionization/Field 

Desorption mass spectrometry using a JEOL AccuTOF GC-Alpha (JMS-T2000GC) mass 

spectrometer interfaced with an Agilent 8890 GC system.  Ions were detected as 

M+.  (Radical cations). All commercial chemicals and reagents were used as received, 

unless otherwise noted. Lithium hexamethyldisilazide was purchased from Sigma Aldrich 

as a solid and brought in the glovebox as received. 

2.7.2 Preparation of Vinyl Tosylates 

The procedure outlined above was used to prepare vinyl tosylate substrates from the 

corresponding ketone, which was either commercially available or synthesized from 

reported literature procedures through Grignard-addition to the aldehyde or benzonitrile. 

 

 

1-(4-fluorophenyl)-2-methylpropan-1-one (132) was prepared according to literature 

procedures and matched the NMR data in the literature.20 
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1-(4-fluorophenyl)-2-methylprop-1-en-1-yl 4-methylbenzenesulfonate (114) 

To a flame-dried flask was added 132 (3.00 g, 1.0 equiv, 18.05 mmol) and THF (60.0 mL). 

This solution was cooled to 0 ºC, and then a solution of KOtBu (3.05 g, 1.5 equiv, 27.1 

mmol) in THF (27.0 mL) was added dropwise. The resulting solution was then stirred at 0 

ºC for 2 hours. Next, solid Ts2O (8.84 g, 1.5 equiv, 27.1 mmol) was added to the enolate 

solution with vigorous stirring, and then the solution was allowed to warm to room 

temperature and stirred for 1.5 hours (solution turns thick). The reaction was diluted with 

ethyl acetate (30 mL) and water (30 mL). The organic layer was separated, and the aqueous 

layer was extracted with ethyl acetate (3 x 20 mL), dried over Na2SO4, filtered, 

concentrated in vacuo, and purified by silica flash column chromatography (7% diethyl 

ether in hexanes) to give vinyl tosylate 114 (3.8 g, 66% yield). 

1H NMR (400 MHz, CDCl3)  δ 7.46 (d, J = 8.3 Hz, 2H), 7.17 – 7.06 (m, 4H), 6.83 (t, J = 

8.7 Hz, 2H), 2.36 (s, 3H), 1.88 (s, 3H), 1.73 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 162.2 (d, J = 248.1 Hz), 144.4, 140.1, 134.3, 131.3 (d, J = 

8.3 Hz), 130.0 (d, J = 3.2 Hz), 129.2, 127.8, 126.7, 114.7 (d, J = 21.6 Hz), 21.5, 19.9, 19.0. 

19F NMR (282 MHz, CDCl3) δ -112.9. 

FT-IR (neat film NaCl): 3069, 2994, 2920, 2861, 1601, 1508, 1366, 1189, 1177, 1082, 

995, 844, 784, 669 cm-1. 

HR-MS (ESI) m/z: [M+K]+ Calculated for C17H17FO3S 320.0883; Found 320.0883. 

 

 

OTs

F
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cyclohexylidene(phenyl)methyl 4-methylbenzenesulfonate (118a) 

To a flame-dried flask was added commercially available cyclohexyl(phenyl)methanone 

(2.00 g, 1.0 equiv, 10.6 mmol) and THF (32.0 mL). This solution was cooled to 0 ºC, and 

then a solution of KOtBu (1.78 g, 1.5 equiv, 15.9 mmol) in THF (15.9 mL) was added 

dropwise. The resulting solution was then stirred at 0 ºC for 2 hours. Next, solid Ts2O (5.19 

g, 1.5 equiv, 15.9 mmol) was added to the enolate solution with vigorous stirring, and then 

the solution was allowed to warm to room temperature and stirred for 1.5 hours (solution 

turns thick). The reaction was diluted with ethyl acetate (50 mL) and water (50 mL). The 

organic layer was separated, and the aqueous layer was extracted with ethyl acetate (3 x 20 

mL), dried over Na2SO4, filtered, concentrated in vacuo, and purified by silica flash column 

chromatography (5% ethyl acetate in hexanes) to give vinyl tosylate 118a (1.01 g, 28% 

yield). 

1H NMR (400 MHz, CDCl3) δ 7.48 – 7.40 (m, 2H), 7.22 – 7.10 (m, 5H), 7.09 – 7.01 (m, 

2H), 2.40 (t, J = 5.8 Hz, 2H), 2.34 (s, 3H), 2.17 (t, J = 5.7 Hz, 2H), 1.65 – 1.46 (m, 6H). 

13C NMR  (101 MHz, CDCl3) δ 144.2, 138.8, 134.5, 133.8, 133.6, 129.7, 129.2, 128.04, 

128.02, 127.8, 30.0, 28.9, 27.8, 27.2, 26.3, 21.6. 

FT-IR (neat film NaCl): 3057, 2929, 2854, 1599, 1446, 1368, 1187, 1176, 1002, 786, 700, 

555 cm-1. 

HR-MS (ESI) m/z: [M+K]+ Calculated for C20H22O3S 342.1290; Found 342.1294. 

 

OTs
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2-methyl-1-phenylprop-1-en-1-yl 4-methylbenzenesulfonate (188b) 

To a flame-dried flask was added commercially available 2-methyl-1-phenylpropan-1-one 

(2.96 g, 1.0 equiv, 20.0 mmol) and THF (65.0 mL). This solution was cooled to 0 ºC, and 

then a solution of KOtBu (3.81 g, 1.7 equiv, 34.0 mmol) in THF (34.0 mL) was added 

dropwise. The resulting solution was then stirred at 0 ºC for 2 hours. Next, a solution of 

Ts2O (9.79 g, 1.5 equiv, 30.0 mmol) in THF (50.0 mL) was added to the enolate solution 

with vigorous stirring, and then the solution was allowed to warm to room temperature and 

stirred for 1.5 hours (solution turns thick). The reaction was diluted with ethyl acetate (50 

mL) and water (50 mL). The organic layer was separated, and the aqueous layer was 

extracted with ethyl acetate (3 x 20 mL), dried over Na2SO4, filtered, concentrated in vacuo, 

and purified by silica flash column chromatography (10% diethyl ether in hexanes) to give 

vinyl tosylate 118b (3.5 g, 58% yield). 

1H NMR (400 MHz, CDCl3) δ 7.44 (d, J = 8.4 Hz, 2H), 7.20 – 7.11 (m, 5H), 7.10 – 7.03 

(m, 2H), 2.33 (s, 3H), 1.89 (s, 3H), 1.75 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 144.3, 141.3, 134.4, 134.0, 129.6, 129.3, 128.0, 127.9, 

127.8, 126.5, 21.6, 20.1, 19.2. 

FT-IR (neat film NaCl): 3057, 3031, 2995, 2918, 2860, 2860, 1598, 1492, 1444, 1363, 

1306, 1272, 1189, 1175, 1085, 1071, 1033, 992, 890, 820, 804, 789, 709, 698, 671, 582, 

557, 544 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C17H19O3S 303.1049; Found 303.1050.  

 

OTs
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2-methyl-1-(p-tolyl)propan-1-one (133) was prepared according to literature procedures 

and matched the NMR data in the literature.20 

 

 

2-methyl-1-(p-tolyl)prop-1-en-1-yl 4-methylbenzenesulfonate (118c) 

To a flame-dried flask was added 133 (1.64 g, 1.0 equiv, 10.1 mmol) and THF (33.0 mL). 

This solution was cooled to 0 ºC, and then a solution of KOtBu (1.93 g, 1.7 equiv, 17.2 

mmol) in THF (17.2 mL) was added dropwise. The resulting solution was then stirred at 0 

ºC for 2 hours. Next, a solution of Ts2O (4.96 g, 1.5 equiv, 15.2 mmol) in THF (25.3 mL) 

was added to the enolate solution with vigorous stirring, and then the solution was allowed 

to warm to room temperature and stirred for 1.5 hours (solution turns thick). The reaction 

was diluted with ethyl acetate (30 mL) and water (30 mL). The organic layer was separated, 

and the aqueous layer was extracted with ethyl acetate (3 x 20 mL), dried over Na2SO4, 

filtered, concentrated in vacuo, and purified by silica flash column chromatography (7% 

diethyl ether in hexanes) to give vinyl tosylate 118c (1.2 g, 38% yield). 

1H NMR (400 MHz, CDCl3) ) δ 7.45 – 7.34 (m, 2H), 7.03 – 6.98 (m, 2H), 6.98 – 6.93 (m, 

2H), 6.91 – 6.84 (m, 2H), 2.28 (s, 3H), 2.21 (s, 3H), 1.78 (s, 3H), 1.67 (s, 3H).  

13C NMR (101 MHz, CDCl3) δ 144.2, 141.4, 137.9, 134.6, 131.2, 129.5, 129.2, 128.5, 

128.1, 125.9, 21.7, 21.4, 20.2, 19.2. 

O

OTs
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FT-IR (neat film NaCl): 3029, 2994, 2919, 2861, 1598, 1511, 1449, 1365, 1307, 1189, 

1176, 1082, 993, 830, 812, 784, 670, 560 cm-1.  

HR-MS (ESI) m/z: [M+Na]+ Calculated for C18H20NaO3S 339.1025; Found 339.1026.  

 

 

1-([1,1'-biphenyl]-4-yl)-2-methylpropan-1-ol (134) 

Procedure adapted from the reported literature.21 To a flame-dried flask was added 

commercially available [1,1'-biphenyl]-4-carbaldehyde (3.00 g, 1.0 equiv, 16.46 mmol) 

and THF (16 mL), and this flask was cooled to 0 ºC. Then, 2M isopropylmagnesium 

chloride (8.2 mL, 1 equiv, 16.46 mmol) was added dropwise and the reaction was allowed 

to stir at 0 ºC. Upon full consumption of starting material, saturated NH4Cl was added, and 

the crude reaction was extracted with ethyl acetate (3x 20 mL). The combined organic 

layers were washed with water, followed by brine, and then dried with Na2SO4 and 

concentrated in-vacuo. Pure material was obtained by silica flash column chromatography 

(15% ether in hexanes) to afford white solid 134 (1.1 g, 29% yield).  

1H NMR (500 MHz, CDCl3) δ 7.66 – 7.62 (m, 4H), 7.50 (dd, J = 8.4, 6.9 Hz, 2H), 7.46 – 

7.44 (m, 2H), 7.42 – 7.37 (m, 1H), 4.49 (d, J = 6.8 Hz, 1H), 2.07 (h, J = 6.7 Hz, 1H), 1.10 

(d, J = 6.6 Hz, 3H), 0.91 (d, J = 6.8 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 142.8, 141.0, 140.4, 128.9, 127.4, 127.2, 127.1, 127.0, 

79.9, 35.4, 19.2, 18.4. 

FT-IR (neat film NaCl): 3390, 3056, 3028, 2957, 2870, 1600, 1486, 1468, 1405, 1384, 

1365, 1175, 1029, 1016, 1007, 836, 761, 737, 696, 574, 507 cm-1. 

Ph

OH
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HR-MS (ESI) m/z: [M–H2O]+ Calculated for C16H17 209.1325; Found 209.1329.  

 

 

1-([1,1'-biphenyl]-4-yl)-2-methylpropan-1-one (135) 

To a flame-dried flask was added PCC (2.03 g, 2.0 equiv, 9.43 mmol) and DCM (19 mL). 

134 was then added dropwise. The resulting solution was stirred until the starting material 

was fully consumed, as monitored by TLC. Upon completion, the reaction was plugged 

through a short silica plug with DCM and then concentrated to afford 135, which was used 

without further purification (0.953 g, 90% yield). NMR data matched those reported in the 

literature.22 

 

 

1-([1,1'-biphenyl]-4-yl)-2-methylprop-1-en-1-yl 4-methylbenzenesulfonate (118e) 

To a flame-dried flask was added 135 (0.953 g, 1.0 equiv, 4.25 mmol) and THF (14.2 mL). 

This solution was cooled to 0 ºC, and then a solution of KOtBu (715 mg, 1.5 equiv, 6.37 

mmol) in THF (6.4 mL) was added dropwise. The resulting solution was then stirred at 0 

ºC for 2 hours. Next, solid Ts2O (2.08 g, 1.5 equiv, 6.37 mmol) was added to the enolate 

solution with vigorous stirring, and then the solution was allowed to warm to room 

temperature and stirred for 1.5 hours (solution turns thick). The reaction was diluted with 

ethyl acetate (30 mL) and water (30 mL). The organic layer was separated, and the aqueous 

layer was extracted with ethyl acetate (3 x 20 mL), dried over Na2SO4, filtered, 

Ph

O

OTs

Ph
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concentrated in vacuo, and purified by silica flash column chromatography (15% diethyl 

ether in hexanes) to give vinyl tosylate 118e (838 mg, 52% yield). 

1H NMR (400 MHz, CDCl3)  δ 7.53 – 7.49 (m, 2H), 7.49 – 7.42 (m, 4H), 7.38 – 7.32 (m, 

3H), 7.21 – 7.16 (m, 2H), 7.08 – 7.01 (m, 2H), 2.29 (s, 3H), 1.93 (s, 3H), 1.82 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 144.7, 140.2, 134.3, 132.9, 131.2, 131.0, 129.4, 128.1, 

127.4, 122.2, 21.7, 20.1, 19.2. 

FT-IR (neat film NaCl): 3031, 2993, 2918, 2858, 1598, 1486, 1366, 1189, 1176, 1082, 

992, 848, 808, 789, 755, 735, 698, 670, 586, 571, 552 cm-1. 

HR-MS (ESI) m/z: [M+Na]+ Calculated for C23H22NaO3S 401.1182; Found 401.1184.  

 

 

1-(4-bromophenyl)-2-methylprop-1-en-1-yl 4-methylbenzenesulfonate (118f) 

To a flame-dried flask was added commercially available 1-(4-bromophenyl)-2-

methylpropan-1-one (1.00 g, 1.0 equiv, 4.40 mmol) and THF (14.7 mL). This solution was 

cooled to 0 ºC, and then a solution of KOtBu (741 mg, 1.5 equiv, 6.61 mmol) in THF (6.6 

mL) was added dropwise. The resulting solution was then stirred at 0 ºC for 2 hours. Next, 

solid Ts2O (2.16 g, 1.5 equiv, 6.61 mmol) was added to the enolate solution with vigorous 

stirring, and then the solution was allowed to warm to room temperature and stirred for 1.5 

hours (solution turns thick). The reaction was diluted with ethyl acetate (30 mL) and water 

(30 mL). The organic layer was separated, and the aqueous layer was extracted with ethyl 

acetate (3 x 20 mL), dried over Na2SO4, filtered, concentrated in vacuo, and purified by 

OTs

Br
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silica flash column chromatography (15% diethyl ether in hexanes) to give vinyl tosylate 

118f (1.2 g, 71% yield). 

1H NMR (400 MHz, CDCl3) δ 7.45 (d, J = 8.3 Hz, 2H), 7.26 – 7.22 (m, 2H), 7.12 – 7.08 

(m, 2H), 7.01 – 6.96 (m, 2H), 2.38 (s, 3H), 1.88 (s, 3H), 1.74 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 144.7, 140.2, 134.3, 132.9, 131.2, 131.0, 129.4, 128.0, 

127.4, 122.2, 21.7, 20.1, 19.2. 

FT-IR (neat film NaCl): 3066, 2991, 2920, 2858, 1597, 1589, 1485, 1448, 1367, 1190, 

1175, 1083, 993, 835, 812, 785, 734, 664, 589, 559 cm-1. 

HR-MS (FD) m/z: [M•]+  Calculated for C17H17BrO3S 380.0076; Found 380.0082.  

 

 

1-(4-methoxyphenyl)-2-methylprop-1-en-1-yl 4-methylbenzenesulfonate (121)  

To a flame-dried flask was added commercially available 1-(4-methoxyphenyl)-2-

methylpropan-1-one (4.80 g, 1.0 equiv, 26.9 mmol) and THF (87 mL). This solution was 

cooled to 0 ºC, and then a solution of KOtBu (5.14, 1.7 equiv, 45.8 mmol) in THF (46 mL) 

was added dropwise. The resulting solution was then stirred at 0 ºC for 2 hours. Next, a 

solution of Ts2O (13.2 g, 1.5 equiv, 40.4 mmol) in THF (67 mL) was added to the enolate 

solution with vigorous stirring, and then the solution was allowed to warm to room 

temperature and stirred for 1.5 hours (solution turns thick). The reaction was diluted with 

ethyl acetate (30 mL) and water (30 mL). The organic layer was separated, and the aqueous 

layer was extracted with ethyl acetate (3 x 20 mL), dried over Na2SO4, filtered, 

concentrated in vacuo, and purified by silica flash column chromatography (15% diethyl 

MeO

OTs



Chapter 2 – a–Vinylation of Ester Equivalents via Main Group Catalysis for the 
Construction of Quaternary Centers   
 

52 

ether in hexanes) to give vinyl tosylate 121 (5.4 g, 60% yield). The purified material 

matched the NMR data in the literature.23 

 

The following vinyl tosylate 118d was prepared according to the above scheme.   

 

 

 

(4-(tert-butyl)phenyl)(cyclohexyl)methanone (136) 

136 was synthesized by following a reported procedure.24 To a flask was added magnesium 

turnings (1.96 g, 1.5 equiv, 80.6 mmol) and the flask was flame-dried 3x under vacuum. 

THF (81 mL) was then added with a spec of iodine. 1-bromo-4-(tert-butyl)benzene ( 17.7 

mL, 1.9 equiv, 102 mmol) was added, and then the reaction flask was gently heated with a 

heat gun until the reaction initiated, as indicated by dissipation of iodine color. The reaction 

was then stirred until all magnesium turnings had been consumed. Upon consumption of 

magnesium, the reaction was cooled to 0 ºC, and a solution of N-methoxy-N-

methylcyclohexanecarboxamide (9.20 g, 1.0 equiv, 53.4 mmol) in THF (179 mL) was 

added dropwise. Upon consumption of the starting material in about 10 minutes (TLC 60% 

ethyl acetate in hexanes), saturated NH4Cl was added to quench the reaction. The reaction 

was then extracted with ethyl acetate (3x), and the combined organics were washed with 

O

N

O
O

aryl–MgBr
(1.5 equiv)

O
Ts2O (1.5 equiv)

KOtBu (1.5–1.7 equiv)

THF, 0 ºC to rt

OTs
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water, then brine, dried with Na2SO4, and concentrated in vacuo. The crude material was 

flashed via silica flash column chromatography (20% ethyl acetate in hexanes) to afford 

colorless oil 136 (4.0 g, 30% yield) which matched reported literature spectra.25 

 

 

 

(4-(tert-butyl)phenyl)(cyclohexylidene)methyl 4-methylbenzenesulfonate (118d) 

To a flame-dried flask was added 136 (1.00 g, 1.0 equiv, 4.09 mmol) and THF (13.3 mL). 

This solution was cooled to 0 ºC, and then a solution of KOtBu (689 mg, 1.5 equiv, 6.14 

mmol) in THF (6.14 mL) was added dropwise. The resulting solution was then stirred at 0 

ºC for 2 hours. Next, solid Ts2O (2.00 g, 1.5 equiv, 6.14 mmol) was added to the enolate 

solution with vigorous stirring, and then the solution was allowed to warm to room 

temperature and stirred for 1.5 hours (solution turns thick). The reaction was diluted with 

ethyl acetate (30 mL) and water (30 mL). The organic layer was separated, and the aqueous 

layer was extracted with ethyl acetate (3 x 20 mL), dried over Na2SO4, filtered, 

concentrated in vacuo, and purified by silica flash column chromatography (7% diethyl 

ether in hexanes) to give vinyl tosylate 118d (340 mg, 21% yield). 

1H NMR (400 MHz, CDCl3) δ 7.41 – 7.33 (m, 2H), 7.10 – 7.06 (m, 2H), 7.02 – 6.96 (m, 

4H), 2.48 – 2.43 (m, 2H), 2.30 (s, 3H), 2.17 (s, 2H), 1.65 – 1.50 (m, 6H), 1.25 (s, 9H). 

13C NMR (101 MHz, CDCl3) δ 151.0, 143.7, 139.0, 134.8, 133.2, 130.5, 129.4, 129.1, 

128.0, 124.6, 34.6, 31.4, 30.1, 29.0, 27.8, 27.3, 26.4, 21.6. 

FT-IR (neat film NaCl): 2962, 2929, 2854, 1598, 1449, 1366, 1187, 1175, 1106, 1094, 

1021, 1003, 981, 903, 844, 825, 812, 780, 730, 667, 579, 569, 556 cm-1.  

OTs
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HR-MS (ESI) m/z: [M+Na]+ Calculated for C24H30NaO3S 421.1808; Found 421.1809.    

 

 The following vinyl tosylate 118g was prepared according to the above scheme.   

 

 

(2-aminophenyl)(cyclohexyl)methanone (137) 

Following a reported procedure26, to a flame-dried flask, 2-aminobenzonitrile (12.0 g, 1.0 

equiv, 101.6 mmol) was suspended in THF (101 mL) and the flask was cooled to 0 ºC. 

Then, 1M cyclohexylmagnesium bromide (290 mL, 3.0 equiv, 305 mmoL) was added 

dropwise. After addition was complete, the reaction was warmed to room temperature. 

Starting material was consumed after about 4 hours (monitored by TLC). The reaction was 

then cooled to 0 ºC, and water was slowly added, followed by conc. HCl. The reaction was 

then extracted with diethyl ether 3x, and the combined organics were dried with MgSO4 

and concentrated. The crude reaction mixture was purified via silica flash column 

chromatography (20% ether/hexanes) to afford  137 (14.9 g, 72% yield). NMR spectra 

matched those reported in the literature.26 

 

O

NH2

O

Ts2O (1.5 equiv)
KOtBu (1.5 equiv)

THF, 0 ºC to rt

OTs

alkyl —MgBr
(3 equiv)CN

NH2 NH2

O

I

TsOH•H2O (3 equiv) 
NaNO2 (2 equiv) 

KI (2.5 equiv)

MeCN, H2O
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cyclohexyl(2-iodophenyl)methanone (138) 

Following a reported procedure27, p-toluenesulfonic acid monohydrate (11.2 g, 3.00 equiv, 

59.0 mmol) was added to a flask with MeCN (80 mL), followed by 137 (4.00 g, 1.0 equiv, 

19.7 mmol). The solution was cooled to 0 ºC, and a solution of NaNO2 (2.71 g, 2.0 equiv, 

39.4 mmol) in water (6 mL) was added dropwise over 5 minutes. Then, a solution of KI 

(8.17 g, 2.50 equiv, 49.2 mmol) in water ( 8 mL) was added slowly. The reaction was 

allowed to stir at 0 ºC for 10 additional minutes, then was warmed to room temperature 

and stirred for 3 hours. Water was then added and then the reaction was basified to pH 9 

with saturated NaHCO3. Saturated Na2S2O3 was added next. The reaction was then 

extracted with EtOAc (3x 250 mL), and the combined organic layers were washed with 

brine and dried with Na2SO4, and then concentrated. Pure product 138 was obtained via 

silica flash column chromatography (2% -->6% diethyl ether in hexanes and matched the 

reported spectra (5.10 g, 83% yield).28 

 

 

cyclohexylidene(2-iodophenyl)methyl 4-methylbenzenesulfonate (118g) 

To a flame-dried flask was added 138 (2.50 g, 1.0 equiv, 7.96 mmol) and THF (30 mL). 

This solution was cooled to 0 ºC, and then a solution of KOtBu (1.34 g, 1.5 equiv, 11.9 

mmol) in THF (45 mL) was added dropwise. The resulting solution was then stirred at 0 

O

I

OTs

I
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ºC for 2 hours. Next, solid Ts2O (3.90 g, 1.5 equiv, 11.9 mmol) was added to the enolate 

solution with vigorous stirring, and then the solution was allowed to warm to room 

temperature and stirred for 1.5 hours (solution turns thick). The reaction was diluted with 

ethyl acetate (30 mL) and water (30 mL). The organic layer was separated, and the aqueous 

layer was extracted with ethyl acetate (3 x 20 mL), dried over Na2SO4, filtered, 

concentrated in vacuo, and purified by silica flash column chromatography (15% diethyl 

ether in hexanes) to give vinyl tosylate 118g (3.05 g, 82% yield). 

1H NMR (500 MHz, CDCl3) δ 7.63 (dd, J = 7.9, 1.2 Hz, 1H), 7.52 – 7.47 (m, 2H), 7.23 

(dtd, J = 15.9, 7.9, 6.3 Hz, 2H), 7.07 (d, J = 8.0 Hz, 2H), 6.87 (td, J = 7.5, 1.9 Hz, 1H), 

2.51 (ddd, J = 13.6, 6.9, 4.8 Hz, 1H), 2.37 (ddd, J = 13.0, 7.6, 4.8 Hz, 1H), 2.33 (s, 3H), 

1.93 (t, J = 5.8 Hz, 2H), 1.65 (h, J = 5.5 Hz, 2H), 1.60 – 1.48 (m, 4H). 

13C NMR (126 MHz, CDCl3) δ 144.1, 139.3, 139.1, 138.7, 135.2, 134.5, 132.9, 129.8, 

129.2, 127.8, 127.5, 100.1, 30.3, 28.4, 27.6, 27.1, 26.4, 21.7. 

FT-IR (neat film NaCl): 3064, 2927, 2853, 1598, 1460, 1448, 1431, 1364, 1307, 1257, 

1232, 1209, 1188, 1175, 1117, 1095, 1051, 1018, 1002, 979, 827 cm-1. 

HR-MS (ESI) m/z: [M+Na]+ Calculated for C20H21INaO3S 491.0148 Observed: 491.0143. 
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2.7.3 Preparation of Silyl Ketene Acetals 

The general reaction scheme outlined above was used to prepare silyl ketene acetals from 

commercially available esters and was adapted from the literature.29 To a flame-dried flask 

was added diisopropylamine (1.1 equiv) and THF (0.66 M) and cooled to 0 ºC. Then, a 

solution of 2.5 M  n-Butyllithium (1.1 equiv) was added dropwise, and the solution was 

allowed to warm to room temperature and stirred for 30 minutes. The reaction was then 

cooled to -78 ºC and the appropriate ester was added dropwise (1.0 equiv), and the resulting 

solution was stirred for 1 hour at -78 ºC. TMSCl (1.2 equiv) was subsequently added 

dropwise at -78 ºC, and the reaction was allowed to slowly warm up to room temperature 

overnight. The reaction was then concentrated in-vacuo, and then pentanes was then added. 

The suspension was filtered through a pad of celite, concentrated once more, and then 

distilled for purification to afford colorless oils.    

 

 

((1-methoxy-2-methylprop-1-en-1-yl)oxy)trimethylsilane (116a) was purchased and 

used as received. 

 

 

O

OTMS

General scheme:

O

O
R3 R2

R1

O

OTMS
R3 R21) LDA (1.1 equiv)

2) TMSCl (1.2 equiv) R1
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((1-ethoxy-2-methylprop-1-en-1-yl)oxy)trimethylsilane (116b) was prepared according 

to the described procedure on 30.00 mmol scale (50% yield, 3 g) and matches reported 

spectra.30 

 

 

((1-ethoxy-2-methylpent-1-en-1-yl)oxy)trimethylsilane (120a) (mixture of E/Z 

isomers) was prepared according to the described procedure on 30.0 mmol scale (60% 

yield, 4 g) and obtained as a mixture of E/Z isomers (E/Z ratio 60:40). The compound 

matches reported spectra.31 

 

 

((1-methoxy-2-methyl-3-phenylprop-1-en-1-yl)oxy)trimethylsilane (mixture of E/Z 

isomers) (120b) was prepared according to the described procedure on 12.9 mmol scale 

(60% yield) with E/Z ratio = 6.4:1. The compound matches the reported literature.32 

 

 

(cyclopentylidene(ethoxy)methoxy)trimethylsilane (120c) was prepared according to 

the described procedure on 37.3 mmol scale (50% yield, 4 g). 

O

OTMS

O

OTMS

O

OTMS

Ph

TMSO

O
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1H NMR (400 MHz, CDCl3) δ 3.85 – 3.72 (m, 2H), 2.24 – 2.16 (m, 2H), 2.12 (dddd, J = 

8.3, 4.6, 2.4, 1.0 Hz, 2H), 1.61 – 1.56 (m, 4H), 1.22 (t, J = 7.1 Hz, 3H), 0.20 (s, 9H). 

13C NMR (101 MHz, CDCl3) δ 145.9, 102.2, 64.1, 28.4, 27.8, 27.2, 27.0, 15.2, 0.3. 

FT-IR (neat film NaCl): 2955, 2898, 2867, 2845, 2357, 1713, 1443, 1389, 1315, 1252, 

1232, 1215, 1178, 1150, 1081, 1028, 1005, 949, 875, 845, 756, 697 cm-1. 

HR-MS (FI) m/z: [M•]+ Calculated for C11H22O2Si 214.1402; Found 214.1389. 

 

 

((1-ethoxyhex-1-en-1-yl)oxy)trimethylsilane (120d) (mixture of E/Z isomers) was 

prepared according to the described procedure on 30.2 mmol scale (60% yield, 4 g) and 

was obtained as a mixture of E/Z isomers (E/Z ratio = 94:6). Product was assigned as E 

olefin isomer by comparing to similar silyl ketene acetals.33 

1H NMR (400 MHz, CDCl3) δ 3.82 (q, J = 7.1 Hz, 2H), 3.72 (t, J = 7.3 Hz, 1H), 1.99 – 

1.93 (m, 2H), 1.31 – 1.25 (m, 4H), 1.22 (t, J = 7.1 Hz, 3H), 0.89 (m, 3H), 0.21 (s, 9H). 

13C NMR (101 MHz, CDCl3) δ 152.8, 87.2, 63.3, 33.2, 24.5, 22.5, 15.2, 14.2, 0.02. 

FT-IR (neat film NaCl): 2958, 2932, 2873, 2861, 1737, 1466, 1373, 1251, 1178, 1110, 

1038, 845, 729, 677 cm-1. 

HR-MS (FI) m/z: [M•]+ Calculated for C11H24O2Si 216.1540; Found 216.1545.  

 

    

O

TMSO

O

OTMS
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(E)-((1-ethoxy-3-methylbut-1-en-1-yl)oxy)trimethylsilane (120e) (mixture of E/Z 

isomers) was prepared according to the described procedure on 30.0 mmol scale (70% 

yield) with E/Z ratio = 98:2. The compound matches the reported literature.34 

 

 

((1-ethoxy-2-phenylvinyl)oxy)trimethylsilane (mixture of E/Z isomers) (120f) was 

prepared according to the described procedure on 30.0 mmol scale (40% yield) with E/Z 

ratio = 1:21. The compound matches the reported literature.35 

 

2.7.4 Preparation of Alkyne Cyclization Substrates 

 

Tosylate 130a was prepared according to above scheme.  

 

 

6-(p-tolyl)hex-5-yn-1-ol (139) 

This compound was prepared according to a reported procedure36 and all spectra match 

reported.37 

 

O

OTMS
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6-(p-tolyl)hex-5-yn-1-yl 4-methylbenzenesulfonate (130a) 

Alcohol 139 (800 mg, 1.0 equiv, 4.25 mmol) was dissolved in dry DCM (30 mL) in a 

flame-dried flask. The solution was cooled to 0 ºC, then DMAP (5.2 mg, 0.01 equiv, 0.04 

mmol) was added, followed by 4-toluenesulfonyl chloride (Ts-Cl) (972 mg, 1.2 equiv, 5.10 

mmol) add as solids in one portion. Then, dry (distilled over CaH2) triethylamine (0.71 mL, 

1.2 equiv, 5.10 mmol) was added dropwise. The mixture was allowed to warm to room 

temperature slowly overnight. The next morning, the reaction was quenched with 1M HCl 

(aq), and extracted with DCM three times. The combines organics were dried over Na2SO4, 

filtered, concentrated, then purified via silica column flash chromatography (10% ethyl 

acetate in hexanes) to afford pure tosylate 130a (1.0 g, 69% yield) as a thick colorless oil 

which solidifies upon cooling. 

1H NMR (400MHz, CDCl3) δ 7.84 – 7.76 (m, 2H), 7.38 – 7.29 (m, 2H), 7.29 – 7.21 (m, 

2H), 7.12 – 7.05 (m, 2H), 4.09 (t, J = 6.3 Hz, 2H), 2.44 (s, 3H), 2.37 (t, J = 6.9 Hz, 2H), 

2.33 (s, 3H), 1.83 (tt, J = 8.1, 6.0 Hz, 2H), 1.68 – 1.57 (m, 2H). 

13C NMR (101 MHz, CDCl3) δ 144.8, 137.8, 133.2, 131.5, 129.9, 129.1, 128.0, 120.7, 

88.2, 81.4, 70.2, 28.1, 24.7, 21.7, 21.5, 18.8.  

FT-IR (neat film NaCl): 2951, 2922, 1509, 1355, 1188, 1172, 1097, 1019, 813, 689, 661, 

552, 525 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C20H23O3S+: 343.1368; Found 343.1366. 

 

OTs
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Tosylate 130b was prepared according to the above scheme.  

 

 

6-(p-tolyl)hex-5-ynal (140) 

Following a reported procedure.38 To a flame-dried flask containing silica gel (2.0 g) and 

PCC (1.37g, 1.5 equiv, 6.37 mmol) was added dry DCM (50 mL). Then, a solution of 

alcohol 139 (800 mg, 1.0 equiv, 4.25 mmol) dissolved in 10 mL dry DCM was added 

dropwise. The reaction flask was sealed and heated to 35 ºC overnight. The next morning, 

the reaction mixture was filtered through a pad of silica and washed through with DCM. 

The filtrate was concentrated, affording analytically pure (by NMR) material (140) that 

matched reported literature38 and was taken forward as is. 

 

 

7-(p-tolyl)hept-6-yn-2-ol (141) 

Aldehyde 140 (600 mg, 1.0 equiv, 3.22 mmol) was dissolved in 10 mL dry THF in a flame-

dried Schlenk flask then cooled to 0 ºC. A solution of methylmagnesium bromide (1.6 mL, 

1.5 equiv, 4.8 mmol) in THF (3 M solution) was added dropwise. After warming to room 

O

OH

OH OH

1) PCC (1.5 equiv)
SiO2 (8 equiv)

2) MeMgBr (1.5 equiv
THF, 0ºC —> rt OTs

Ts–Cl (1.05 equiv)
DMAP (1 mol%)

pyridine
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temperature for 30 minutes, the reaction was complete by TLC analysis and was quenched 

with saturated ammonium chloride. The mixture was extracted with diethyl ether three 

times, and the combined organics were dried over Na2SO4, filtered, and concentrated. 

Purification via silica gel flash chromatography (20% ethyl acetate in hexanes) afforded 

pure alcohol (141) as a colorless oil (460 mg, 71% yield). 

1H NMR (400MHz, CDCl3) δ 7.32 – 7.24 (m, 2H), 7.09 (ddt, J = 7.2, 1.5, 0.8 Hz, 2H), 

3.88 (h, J = 6.1 Hz, 1H), 2.44 (t, J = 6.7 Hz, 2H), 2.33 (s, 3H), 1.82 – 1.55 (m, 4H), 1.23 

(dd, J = 6.1, 0.7 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 137.5, 131.4, 128.9, 89.1, 80.9, 67.7, 38.4, 25.0, 23.6, 21.4, 

19.4.  

FT-IR (neat film NaCl): 3351, 2964, 2924, 2886, 1509, 1455, 1373, 1176, 1105, 1085, 

979, 942, 816, 525 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C14H19O+: 203.1430: Found 203.1439. 

 

 

7-(p-tolyl)hept-6-yn-2-yl 4-methylbenzenesulfonate (130b) 

Alcohol 141 (385 mg, 1.0 equiv, 1.9 mmol) was dissolved in 1.2 mL dry pyridine (distilled 

over CaH2) in an oven-dried dram vial equipped with a stir bar. The vial was cooled to 0 

ºC, then DMAP (0.2 mg, .1 mol%, 0.002 mmol) was added followed by tosyl chloride (381 

mg, 1.05 equiv, 2.0 mmol) as a solid. The mixture was stirred for 1 hour at 0 ºC then 

allowed to warm to room temperature overnight. The next morning, the mixture was 

filtered and diluted with cold diethyl ether and cold 4M HCl (aq). After vigorously shaking 

OTs
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this mixture, the organic layer was removed and the aqueous layer was extracted with cold 

diethyl ether twice more. The combined organics were washed with cold 4M HCl twice 

more, then washed with water twice, then washed with brine. The organic layer was dried 

over Na2SO4, filtered, and concentrated. Purification via silica gel flash chromatography 

(10% ethyl acetate in hexanes) afforded tosylate 130b as a colorless oil (435 mg, 64% 

yield). 

1H NMR (400MHz, CDCl3) δ 7.74 – 7.67 (m, 2H), 7.21 (d, J = 8.0 Hz, 2H), 7.17 (m, 2H), 

7.02 – 6.95 (m, 2H), 4.64 – 4.51 (m, 1H), 2.31 (s, 3H), 2.25 – 2.18 (m, 5H), 1.71 – 1.54 

(m, 2H), 1.53 – 1.33 (m, 2H), 1.19 (d, J = 6.3 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 144.6, 137.7, 134.5, 131.5, 129.9, 129.1, 127.8, 120.8, 

88.4, 81.3, 80.1, 35.7, 24.2, 21.7, 21.5, 21.0, 19.0.  

FT-IR (neat film NaCl): 2935, 2868, 1598, 1509, 1453, 1354, 1188, 1174, 1098, 1043, 

893, 816, 663, 577, 556 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C21H25O3S+: 357.1524 ; Found 357.1519.  

 

2.7.5 a-Vinylation of Silyl Ketene Acetals 

 

General Procedure 1: All reactions were conducted in a well-maintained glove box (O2, 

H2O <0.5 ppm) on 0.2 mmol scale unless otherwise noted. To an oven dried dram vial with 

a magnetic stir bar was added [Li]+[B(C6F5)4]- (13.7 mg, 0.02 mmol, 0.1 equiv). To this 

R
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was added trifluorotoluene (2 mL), and the corresponding silyl ketene acetal (3 equiv). 

Substrate (0.2 mmol, 1.0 equiv) was added and the reaction was allowed to stir at 80 °C in 

a metal heating block placed on an IKA hot plate for 12 hours (unless otherwise noted). 

The reactions were monitored by TLC, typically using 10% diethyl ether in hexanes for 

the mobile phase and stained with KMnO4 (a-vinylation products are typically higher in 

Rf than the starting tosylate and are very distinguishable when stained with KMnO4 ). Upon 

completion of reaction, the reaction mixture was removed from the glovebox and diluted 

with ether containing a drop of triethylamine. This was pushed through a plug of 

triethylamine treated silica gel in a pipette. The reaction mixture was concentrated in vacuo  

to give the crude material. The crude material was purified by silica flash chromatography 

on triethylamine treated silica gel (typically 100% hexanes with 0.1%TEA à 1% diethyl 

ether in hexanes with 0.1% TEA à 2% diethyl ether in hexanes with 0.1% TEA)  and then 

dried on high vacuum to obtain material that is pure by 1H NMR.  

 

 

methyl 3-(4-fluorophenyl)-2,2,4-trimethylpent-3-enoate (117a) 

Following General Procedure 1: To an oven dried dram vial with a magnetic stir bar was 

added [Li]+[B(C6F5)4]- (13.7 mg, 0.02 mmol, 0.1 equiv). To this was added trifluorotoluene 

(2 mL), and silyl ketene acetal 116a (105 mg, 0.60 mmol, 3 equiv). Vinyl tosylate 114 

(64.1 mg, 0.2 mmol, 1.0 equiv) was added and the reaction was allowed to stir at 80 °C in 

a metal heating block placed on an IKA hot plate for 12 hours. The reaction mixture was 

MeO

O

F
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removed from the glovebox and diluted with ether containing a drop of triethylamine. This 

was pushed through a plug of triethylamine treated silica gel in a pipette and concentrated 

in vacuo  to give the crude material. The crude material was purified by silica flash 

chromatography on triethylamine treated silica gel (2% diethyl ether in hexanes with 0.1% 

TEA) to give a colorless oil 117a (21.0 mg, 42% yield).   

1H NMR (300 MHz, CDCl3) δ 7.04 – 6.96 (m, 4H), 3.73 (s, 3H), 1.65 (s, 3H), 1.36 (s, 3H), 

1.15 (s, 6H). 

13C NMR (126 MHz, CDCl3) δ 179.6, 161.5 (d, J = 244.2 Hz), 138.3 (d, J = 3.4 Hz), 137.6, 

131.1, 131.0 (d, J = 7.6 Hz), 114.9 (d, J = 21.0 Hz), 52.3, 45.9, 27.6, 23.9, 20.7. 

19F NMR (282 MHz, CDCl3) δ -116.9. 

FT-IR (neat film NaCl): 2976, 2948, 2873, 1731, 1601, 1506, 1251, 1220, 1138, 844, 584, 

337. 

HR-MS (ESI) m/z: [M+K]+ Calculated for C15H20FO2 251.1447; Found 251.1445. 

 

 

ethyl 3-(4-fluorophenyl)-2,2,4-trimethylpent-3-enoate (117b) 

Following General Procedure 1: To an oven dried dram vial with a magnetic stir bar was 

added [Li]+[B(C6F5)4]- (13.7 mg, 0.02 mmol, 0.1 equiv). To this was added trifluorotoluene 

(2 mL), and the silyl ketene acetal 116b (113 mg, 0.60 mmol, 3 equiv). Vinyl tosylate 114 

(64.1 mg, 0.2 mmol, 1.0 equiv) was added and the reaction was allowed to stir at 80 °C in 

metal heating block placed on an IKA hot plate for 12 hours. The reaction mixture was 

EtO

O

F
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removed from the glovebox and diluted with ether containing a drop of triethylamine. This 

was pushed through a plug of triethylamine treated silica gel in a pipette and concentrated 

in vacuo  to give the crude material. The crude material was purified by silica flash 

chromatography on triethylamine treated silica gel (2% diethyl ether in hexanes with 0.1% 

TEA) to give a colorless oil 3b (26.5 mg, 50% yield).   

1H NMR (400 MHz, CDCl3) δ 7.08 – 6.92 (m, 4H), 4.18 (q, J = 7.1 Hz, 2H), 1.66 (s, 3H), 

1.35 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H), 1.14 (s, 6H). 

13C NMR (101 MHz, CDCl3) δ 179.0, 161.5 (d, J = 244.2 Hz), 138.5 (d, J = 3.6 Hz), 137.7, 

131.0, 130.9 (d, J = 7.7 Hz), 114.8 (d, J = 21.0 Hz), 60.8, 45.9, 27.6, 23.9, 20.9, 14.4. 

19F NMR (282 MHz, CDCl3) δ -117.1. 

FT-IR (neat film NaCl): 2977, 2934, 2873, 1726, 1600, 1506, 1469, 1383, 1249, 1219, 

1172, 1155, 1136, 1090, 1028, 857, 830, 810, 774, 733, 584, 538 cm-1. 

HR-MS (ESI) m/z: [M+H]+ C16H22FO2 265.1598; Found 265.1603.  

 

 

methyl 3-cyclohexylidene-2,2-dimethyl-3-phenylpropanoate (122a) 

Following General Procedure 1: To an oven dried dram vial with a magnetic stir bar was 

added [Li]+[B(C6F5)4]- (13.7 mg, 0.02 mmol, 0.1 equiv). To this was added trifluorotoluene 

(2 mL), and silyl ketene acetal 116a (105 mg, 0.60 mmol, 3 equiv). Vinyl tosylate 118a 

(68.5 mg, 0.2 mmol, 1.0 equiv) was added and the reaction was allowed to stir at 80 °C in 

metal heating block placed on an IKA hot plate for 12 hours. The reaction mixture was 

MeO

O
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removed from the glovebox and diluted with ether containing a drop of triethylamine. This 

was pushed through a plug of triethylamine treated silica gel in a pipette and concentrated 

in vacuo  to give the crude material. The crude material was purified by silica flash 

chromatography on triethylamine treated silica gel (2% diethyl ether in hexanes with 0.1% 

TEA) to give a colorless oil 122a (43.5 mg, 80% yield).   

1H NMR (300 MHz, CDCl3) δ 7.33 – 7.26 (m, 2H), 7.24 – 7.16 (m, 1H), 7.13 – 6.95 (m, 

2H), 3.73 (s, 3H), 2.09 –2.07 (m, 2H), 1.74 – 1.68 (m, 2H), 1.57 – 1.44 (m, 4H), 1.40 – 

1.32 (m, 2H), 1.15 (s, 6H). 

13C NMR (126 MHz, CDCl3) δ 180.1, 142.1, 138.3, 135.6, 129.5, 127.9, 126.1, 52.2, 45.6, 

33.8, 31.2, 28.4, 28.0, 27.6, 26.8. 

FT-IR (neat film NaCl): 3054, 3018, 2974, 2924, 2852, 1728, 1457, 1443, 1249, 1137, 

1129, 774, 761, 703 cm-1. 

HR-MS (ESI) m/z: [M+K]+ Calculated for C18H25O2 273.1855; Found 273.1846. 

 

 

ethyl 3-cyclohexylidene-2,2-dimethyl-3-phenylpropanoate (119a) 

Following General Procedure 1: To an oven dried dram vial with a magnetic stir bar was 

added [Li]+[B(C6F5)4]- (13.7 mg, 0.02 mmol, 0.1 equiv). To this was added trifluorotoluene 

(2 mL), and the silyl ketene acetal 116b (113 mg, 0.60 mmol, 3 equiv). Vinyl tosylate 118a 

(68.5 mg, 0.2 mmol, 1.0 equiv) was added and the reaction was allowed to stir at 80 °C in 

metal heating block placed on an IKA hot plate for 12 hours. The reaction mixture was 

EtO

O
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removed from the glovebox and diluted with ether containing a drop of triethylamine. This 

was pushed through a plug of triethylamine treated silica gel in a pipette and concentrated 

in vacuo  to give the crude material. The crude material was purified by silica flash 

chromatography on triethylamine treated silica gel (2% diethyl ether in hexanes with 0.1% 

TEA) to give a colorless oil 119a (47.0 mg, 82% yield).   

1H NMR (300 MHz, CDCl3) δ 7.33 – 7.26 (m, 2H), 7.25 – 7.20 (m, 1H), 7.10 – 7.00 (m, 

2H), 4.17 (q, J = 7.1 Hz, 2H), 2.11 (m, 2H), 1.78 – 1.66 (m, 2H), 1.58 – 1.45 (m, 4H), 1.42 

– 1.34 (q, J = 6.1 Hz, 2H), 1.30 (t, J = 7.1 Hz, 3H), 1.15 (s, 6H). 

13C NMR (126 MHz, CDCl3) δ 179.5, 142.3, 138.2, 135.8, 129.5, 127.9, 126.1, 60.7, 45.6, 

33.8, 31.3, 28.4, 28.1, 27.6, 26.8, 14.4. 

FT-IR (neat film NaCl): 3054, 2975, 2925, 2852, 1725, 1489, 1468, 1444, 1383, 1363, 

1293, 1248, 1171, 1155, 1137, 1030, 853, 774, 760, 704, 531, 406 cm-1. 

HR-MS (ESI) m/z: [M+Na]+ Calculated for C19H26NaO2 309.1825; Found 309.1818.  

 

 

ethyl 2,2,4-trimethyl-3-phenylpent-3-enoate (119b) 

Following General Procedure 1: To an oven dried dram vial with a magnetic stir bar was 

added [Li]+[B(C6F5)4]- (13.7 mg, 0.02 mmol, 0.1 equiv). To this was added trifluorotoluene 

(2 mL), and the silyl ketene acetal 116b (113 mg, 0.60 mmol, 3 equiv). Vinyl tosylate 118b 

(60.5 mg, 0.2 mmol, 1.0 equiv) was added and the reaction was allowed to stir at 80 °C in 

metal heating block placed on an IKA hot plate for 12 hours. The reaction mixture was 

removed from the glovebox and diluted with ether containing a drop of triethylamine. This 

EtO

O
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was pushed through a plug of triethylamine treated silica gel in a pipette and concentrated 

in vacuo  to give the crude material. The crude material was purified by silica flash 

chromatography on triethylamine treated silica gel (2% diethyl ether in hexanes with 0.1% 

TEA) to give a colorless oil 119b (35.0 mg, 72% yield).   

1H NMR (300 MHz, CDCl3) δ 7.33 – 7.27 (m, 2H), 7.25 – 7.20 (m, 1H), 7.08 – 7.01 (m, 

2H), 4.19 (q, J = 7.1 Hz, 2H), 1.67 (s, 3H), 1.36 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H), 1.16 (s, 

6H). 

13C NMR (126 MHz, CDCl3) δ 179.2, 142.7, 138.7, 130.1, 129.5, 128.0, 126.1, 60.7, 45.9, 

27.6, 23.9, 20.9, 14.4. 

FT-IR (neat film NaCl): 3055, 2977, 2933, 2872, 1727, 1490, 1469, 1443, 1383, 1362, 

1249, 1137, 1085, 1029, 933, 862, 775, 764, 703, 632, 455 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C16H23O2 247.1693; Found 247.1701.  

 

 

ethyl 2,2,4-trimethyl-3-(p-tolyl)pent-3-enoate (119c) 

Following General Procedure 1 with slight modifications; performed on 1.0 mmol scale: 

To a flame dried 50 mL Schlenk flask with a magnetic stirbar which was brough inside a 

glovebox, was added [Li]+[B(C6F5)4]- (68.6 mg, 0.10 mmol, 0.1 equiv). To this was added 

trifluorotoluene (10 mL), and the silyl ketene acetal 116b (565 mg, 3.0 mmol, 3 equiv). 

Vinyl tosylate 118c (316 mg, 1.0 mmol, 1.0 equiv) was added. The reaction was then sealed 

with a glass stopper and heated outside the glovebox at 80 ºC in an oil bath for 12 hours. 

The reaction mixture was then cooled to room temperature and diluted with ether 

EtO

O
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containing 1% triethylamine. This was pushed through a small plug of triethylamine treated 

silica gel and concentrated in vacuo  to give the crude material. The crude material was 

purified by silica flash chromatography on triethylamine treated silica gel (3% diethyl ether 

in hexanes with 0.1% TEA) to give a colorless oil 119c (200 mg, 78% yield).   

 

1H NMR (400 MHz, CDCl3) δ 7.14 – 7.08 (m, 2H), 6.96 – 6.88 (m, 2H), 4.18 (q, J = 7.1 

Hz, 2H), 2.35 (s, 3H), 1.66 (s, 3H), 1.36 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H), 1.15 (s, 6H). 

13C NMR (101 MHz, CDCl3) δ 179.3, 139.6, 138.5, 135.5, 130.1, 129.4, 128.6, 60.7, 45.9, 

27.6, 23.9, 21.3, 20.9, 14.4. 

FT-IR (neat film NaCl): 2976, 2931, 2871, 1727, 1510, 1468, 1446, 1382, 1248, 1136, 

1028, 932, 856, 815, 731, 529, 485 cm-1.  

HR-MS (ESI) m/z: [M+H]+ Calculated for C17H25O2  261.1849; Found 261.1862.  
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ethyl 3-(4-(tert-butyl)phenyl)-3-cyclohexylidene-2,2-dimethylpropanoate (119d) 

Following General Procedure 1: To an oven dried dram vial with a magnetic stir bar was 

added [Li]+[B(C6F5)4]- (13.7 mg, 0.02 mmol, 0.1 equiv). To this was added trifluorotoluene 

(2 mL), and the silyl ketene acetal 116b (113 mg, 0.60 mmol, 3 equiv). Vinyl tosylate 118d 

(79.7 mg, 0.2 mmol, 1.0 equiv) was added and the reaction was allowed to stir at 80 °C in 

a metal heating block placed on an IKA hot plate for 12 hours. The reaction mixture was 

removed from the glovebox and diluted with ether containing a drop of triethylamine. This 

was pushed through a plug of triethylamine treated silica gel in a pipette and concentrated 

in vacuo  to give the crude material. The crude material was purified by silica flash 

chromatography on triethylamine treated silica gel (2% diethyl ether in hexanes with 0.1% 

TEA) to give a colorless oil 119d (62.0 mg, 91% yield).   

1H NMR (400 MHz, CDCl3) δ 7.28 (d, J = 8.1 Hz, 3H), 6.95 (d, J = 7.9 Hz, 2H), 4.16 (q, 

J = 7.1 Hz, 2H), 2.09 (t, J = 5.6 Hz, 2H), 1.75 – 1.71 (m, 2H), 1.51 (dd, J = 8.4, 3.2 Hz, 

3H), 1.37 (q, J = 5.9 Hz, 2H), 1.32 (s, 9H), 1.29 (t, J = 7.1 Hz, 4H), 1.14 (s, 6H). 

13C NMR (101 MHz, CDCl3) δ 179.7, 148.7, 139.1, 138.0, 135.7, 129.0, 124.6, 60.7, 45.7, 

34.5, 33.8, 31.6, 31.3, 28.5, 28.1, 27.6, 26.8, 14.4. 

FT-IR (neat film NaCl): 3023, 2967, 2927, 2853, 1726, 1507, 1467, 1446, 1383, 1363, 

1267, 1249, 1138, 1112, 1029, 853, 834, 805, 574, 409 cm-1.  

HR-MS (ESI) m/z: [M+H]+ Calculated for C23H35O2  343.2632; Found 343.2633.  
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ethyl 3-([1,1'-biphenyl]-4-yl)-3-cyclohexylidene-2,2-dimethylpropanoate (119e) 

Following General Procedure 1: To an oven dried dram vial with a magnetic stir bar was 

added [Li]+[B(C6F5)4]- (13.7 mg, 0.02 mmol, 0.1 equiv). To this was added trifluorotoluene 

(2 mL), and the silyl ketene acetal 116b (113 mg, 0.60 mmol, 3 equiv). Vinyl tosylate 118e 

(75.7 mg, 0.2 mmol, 1.0 equiv) was added and the reaction was allowed to stir at 80 °C in 

a metal heating block placed on an IKA hot plate for 12 hours. The reaction mixture was 

removed from the glovebox and diluted with ether containing a drop of triethylamine. This 

was pushed through a plug of triethylamine treated silica gel in a pipette and concentrated 

in vacuo  to give the crude material. The crude material was purified by silica flash 

chromatography on triethylamine treated silica gel (2% diethyl ether in hexanes with 0.1% 

TEA) to give a colorless oil 119e (56.0 mg, 87% yield).   

1H NMR (400 MHz, CDCl3) δ 7.64 – 7.61 (m, 2H), 7.58 – 7.54 (m, 2H), 7.44 (t, J = 7.7 

Hz, 2H), 7.33 (td, J = 7.2, 1.3 Hz, 1H), 7.15 – 7.09 (m, 2H), 4.21 (q, J = 7.1 Hz, 2H), 1.70 

(s, 3H), 1.42 (s, 3H), 1.31 (t, J = 7.1 Hz, 3H), 1.20 (s, 6H). 

13C NMR (101 MHz, CDCl3) δ 179.2, 141.8, 141.1, 138.9, 138.3, 130.4, 130.0, 128.9, 

127.2, 127.1, 126.6, 60.8, 45.9, 27.7, 24.0, 20.9, 14.6. 

FT-IR (neat film NaCl): 3056, 3026, 2976, 2933, 2908, 2872, 1725, 1600, 1485, 1468, 

1447, 1383, 1249, 1136, 1028, 1008, 933, 859, 767, 737, 697, 567, 435, 409 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C22H27O2 323.2006; Found 323.2017.  
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ethyl 3-(4-bromophenyl)-2,2,4-trimethylpent-3-enoate (119f) 

Following General Procedure 1: To an oven dried dram vial with a magnetic stir bar was 

added [Li]+[B(C6F5)4]- (13.7 mg, 0.02 mmol, 0.1 equiv). To this was added trifluorotoluene 

(2 mL), and the silyl ketene acetal 116b (113 mg, 0.60 mmol, 3 equiv). Vinyl tosylate 118f 

(76.3 mg, 0.2 mmol, 1.0 equiv) was added and the reaction was allowed to stir at 100 °C 

in a metal heating block placed on an IKA hot plate for 12 hours. The reaction mixture was 

removed from the glovebox and diluted with ether containing a drop of triethylamine. This 

was pushed through a plug of triethylamine treated silica gel in a pipette and concentrated 

in vacuo  to give the crude material. The crude material was purified by silica flash 

chromatography on triethylamine treated silica gel (2% diethyl ether in hexanes with 0.1% 

TEA) to give a colorless oil 119f (27.0 mg, 42% yield).  

1H NMR (300 MHz, CDCl3) δ 7.44 (dd, J = 8.4, 1.7 Hz, 2H), 6.93 (dd, J = 8.2, 1.8 Hz, 

2H), 4.18 (qd, J = 7.1, 1.4 Hz, 2H), 1.66 (s, 3H), 1.35 (s, 3H), 1.29 (dd, J = 7.7, 6.1 Hz, 

3H), 1.14 (d, J = 1.8 Hz, 6H). 

13C NMR (126 MHz, CDCl3) δ 178.9, 141.6, 137.5, 131.3, 131.2, 131.0, 120.2, 60.8, 45.7, 

27.6, 23.9, 20.9, 14.4. 

FT-IR (neat film NaCl): 2976, 2932, 2872, 1726, 1483, 1469, 1383, 1248, 1136, 1028, 

1012, 932, 819, 731, 689, 523, 419 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C16H22BrO2 325.0798; Found 325.0802.  
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ethyl 3-cyclohexylidene-3-(2-iodophenyl)-2,2-dimethylpropanoate (119g) 

Following General Procedure 1: To an oven dried dram vial with a magnetic stir bar was 

added [Li]+[B(C6F5)4]- (13.7 mg, 0.02 mmol, 0.1 equiv). To this was added trifluorotoluene 

(2 mL), and the silyl ketene acetal 116b (113 mg, 0.60 mmol, 3 equiv). Vinyl tosylate 118g 

(93.7 mg, 0.2 mmol, 1.0 equiv) was added and the reaction was allowed to stir at 80 °C in 

a metal heating block placed on an IKA hot plate for 12 hours. The reaction mixture was 

removed from the glovebox and diluted with ether containing a drop of triethylamine. This 

was pushed through a plug of triethylamine treated silica gel in a pipette and concentrated 

in vacuo  to give the crude material. The crude material was purified by silica flash 

chromatography on triethylamine treated silica gel (2% diethyl ether in hexanes with 0.1% 

TEA) to give a colorless oil 119g (56.7 mg, 69% yield).   

1H NMR (400 MHz, CDCl3) δ 7.85 (dd, J = 8.0, 1.2 Hz, 1H), 7.29 (td, J = 7.4, 1.2 Hz, 

1H), 7.22 (dd, J = 7.7, 1.9 Hz, 1H), 6.97 – 6.85 (m, 1H), 4.22 – 4.15 (m, 2H), 2.16 (dqt, J 

= 10.2, 6.9, 3.8 Hz, 2H), 1.77 – 1.57 (m, 5H), 1.51 (m 6H), 1.33 (d, J = 7.1 Hz, 3H), 1.06 

(s, 3H). *note: one of the methyl peaks is buried with other peaks at 1.51 ppm. 

13C NMR (101 MHz, CDCl3) δ 179.2, 147.6, 139.8, 139.0, 136.6, 130.8, 127.9, 127.7, 

102.0, 60.9, 45.8, 33.7, 31.4, 28.6, 27.70, 27.68, 27.2, 26.7, 14.5. 

FT-IR (neat film NaCl): 3056, 2978, 2927, 2853, 1724, 1635, 1461, 1445, 1384, 1244, 

1138, 1030, 1013, 856, 756, 733, cm-1.  

HR-MS (ESI) m/z: [M+H]+ Calculated for C19H26IO2 413.0972; Found 413.0986.  
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ethyl 2,4-dimethyl-2-propyl-3-(p-tolyl)pent-3-enoate (122b) 

Following General Procedure 1: To an oven dried dram vial with a magnetic stir bar was 

added [Li]+[B(C6F5)4]- (13.7 mg, 0.02 mmol, 0.1 equiv). To this was added trifluorotoluene 

(2 mL), and the silyl ketene acetal 120a (130 mg, 0.60 mmol, 3 equiv). Vinyl tosylate 118c 

(63.3 mg, 0.2 mmol, 1.0 equiv) was added and the reaction was allowed to stir at 80 °C in 

a metal heating block placed on an IKA hot plate for 12 hours. The reaction mixture was 

removed from the glovebox and diluted with ether containing a drop of triethylamine. This 

was pushed through a plug of triethylamine treated silica gel in a pipette and concentrated 

in vacuo  to give the crude material. The crude material was purified by silica flash 

chromatography on triethylamine treated silica gel (3.5% diethyl ether in hexanes with 

0.5% TEA) to give a colorless oil 122b (40.5 mg, 70% yield).   

1H NMR (400 MHz, CDCl3) δ 7.09 (dddd, J = 6.9, 2.8, 1.9, 1.0 Hz, 2H), 6.96 – 6.89 (m, 

2H), 4.17 (qd, J = 7.2, 0.7 Hz, 2H), 2.35 (s, 3H), 1.67 (s, 3H), 1.55 – 1.47 (m, 1H), 1.33 (s, 

3H), 1.32 – 1.24 (m, 5H), 1.20 (s, 3H), 1.13 – 1.04 (m, 1H), 0.79 (t, J = 7.2 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 178.5, 139.8, 138.4, 135.4, 130.4, 129.8, 129.6, 128.6, 

128.5, 60.5, 49.5, 42.3, 24.4, 24.2, 21.3, 22.0, 18.0, 14.9, 14.4. 

FT-IR (neat film NaCl): 2961, 2933, 2872, 1726, 1510, 1456, 1374, 1303, 1216, 1138, 

1039, 816 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C19H29O2 289.2162; Found 289.2170.  
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methyl 2-benzyl-3-(4-methoxyphenyl)-2,4-dimethylpent-3-enoate (122c) 

Following General Procedure 1: To an oven dried dram vial with a magnetic stir bar was 

added [Li]+[B(C6F5)4]- (13.7 mg, 0.02 mmol, 0.1 equiv). To this was added trifluorotoluene 

(2 mL), and the silyl ketene acetal 120b (150 mg, 0.60 mmol, 3 equiv). Vinyl tosylate 121 

(66.5 mg, 0.2 mmol, 1.0 equiv) was added and the reaction was allowed to stir at 80 °C in 

a metal heating block placed on an IKA hot plate for 12 hours. The reaction mixture was 

removed from the glovebox and diluted with ether containing a drop of triethylamine. This 

was pushed through a plug of triethylamine treated silica gel in a pipette and concentrated 

in vacuo  to give the crude material. The crude material was purified by silica flash 

chromatography on triethylamine treated silica gel (4% ethyl acetate in hexanes with 0.5% 

TEA) to give a colorless oil 122c (47.0 mg, 69% yield).   

1H NMR (400 MHz, CDCl3) δ 7.25 – 7.19 (m, 3H), 7.06 – 7.02 (m, 2H), 6.97 (dd, J = 8.4, 

2.2 Hz, 1H), 6.81 (dd, J = 8.4, 2.8 Hz, 1H), 6.66 (dd, J = 8.4, 2.8 Hz, 1H), 6.21 (dd, J = 

8.4, 2.2 Hz, 1H), 3.76 (s, 3H), 3.71 (s, 3H), 2.92 (d, J = 13.1 Hz, 1H), 2.83 (d, J = 13.2 Hz, 

1H), 1.71 (s, 3H), 1.38 (s, 3H), 1.14 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 178.5, 157.7, 138.0, 136.7, 134.9, 131.8, 131.0, 130.8, 

130.3, 127.8, 126.5, 113.3, 112.9, 55.2, 52.0, 50.8, 45.1, 24.9, 24.2, 21.0. 

FT-IR (neat film NaCl): 3085, 3029, 2993, 2934, 2836, 1726, 1606, 1507, 1454, 1372, 

1284, 1242, 1202, 1175, 1103, 1035, 909, 849, 829, 743, 701, 598, 548 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C22H27O3 339.1955; Found 339.1960.  
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ethyl 1-(2-methyl-1-(p-tolyl)prop-1-en-1-yl)cyclopentane-1-carboxylate (122d) 

Following General Procedure 1: To an oven dried dram vial with a magnetic stir bar was 

added [Li]+[B(C6F5)4]- (13.7 mg, 0.02 mmol, 0.1 equiv). To this was added trifluorotoluene 

(2 mL), and the silyl ketene acetal 120c (130 mg, 0.60 mmol, 3 equiv). Vinyl tosylate 118c 

(63.3 mg, 0.2 mmol, 1.0 equiv) was added and the reaction was allowed to stir at 80 °C in 

a metal heating block placed on an IKA hot plate for 12 hours. The reaction mixture was 

removed from the glovebox and diluted with ether containing a drop of triethylamine. This 

was pushed through a plug of triethylamine treated silica gel in a pipette and concentrated 

in vacuo  to give the crude material. The crude material was purified by silica flash 

chromatography on triethylamine treated silica gel (3% diethyl ether in hexanes with 0.5% 

TEA) to give a colorless oil 122d (23.0 mg, 40% yield).   

1H NMR (400 MHz, CDCl3) δ 7.14 – 7.06 (m, 2H), 6.98 (d, J = 8.0 Hz, 2H), 4.18 (q, J = 

7.1 Hz, 2H), 2.35 (s, 3H), 2.22 – 2.14 (m, 2H), 1.72 (s, 3H), 1.53 – 1.48 (m, 4H), 1.37 (s, 

3H), 1.29 (t, J = 7.1 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 178.1, 140.4, 138.9, 135.4, 131.1, 129.4, 128.6, 60.7, 57.9, 

38.2, 24.5, 23.9, 21.4, 21.3, 14.4. 

FT-IR (neat film NaCl): 2954, 2871, 1722, 1509, 1450, 1384, 1365, 1321, 1230, 1175, 

1160, 1105, 1031, 860,. 814, 585, 533 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C19H27O2 287.2006; Found 287.2003.  
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ethyl 2-(2-methyl-1-(p-tolyl)prop-1-en-1-yl)hexanoate (122e) 

Following General Procedure 1: To an oven dried dram vial with a magnetic stir bar was 

added [Li]+[B(C6F5)4]- (13.7 mg, 0.02 mmol, 0.1 equiv). To this was added trifluorotoluene 

(2 mL), and the silyl ketene acetal 120d (130 mg, 0.60 mmol, 3 equiv). Vinyl tosylate 118c 

(63.3 mg, 0.2 mmol, 1.0 equiv) was added and the reaction was allowed to stir at 80 °C in 

a metal heating block placed on an IKA hot plate for 12 hours. The reaction mixture was 

removed from the glovebox and diluted with ether containing a drop of triethylamine. This 

was pushed through a plug of triethylamine treated silica gel in a pipette and concentrated 

in vacuo  to give the crude material. The crude material was purified by silica flash 

chromatography on triethylamine treated silica gel (1% ethyl acetate in hexanes with 0.5% 

TEA) to give a colorless oil 122e (43.0 mg, 75% yield).   

1H NMR (400 MHz, CDCl3) δ 7.14 – 7.01 (m, 2H), 6.95 – 6.72 (m, 2H), 4.07 (qd, J = 7.1, 

1.5 Hz, 2H), 3.65 (t, J = 7.4 Hz, 1H), 2.32 (s, 3H), 1.88 (s, 3H), 1.72 – 1.63 (m, 1H), 1.48 

(s, 3H), 1.42 – 1.33 (m, 1H), 1.31 – 1.24 (m, 4H), 1.21 (t, J = 7.1 Hz, 3H), 0.89 – 0.83 (m, 

3H). 

13C NMR (101 MHz, CDCl3) δ 174.2, 137.8, 135.8, 132.8, 131.8, 129.5, 128.6, 60.3, 48.6, 

30.0, 29.97, 22.9, 22.8, 21.3, 20.5, 14.4, 14.2. 

FT-IR (neat film NaCl): 2956, 2927, 2860, 1732, 1510, 1446, 1367, 1217, 1175, 1128, 

1112, 1032, 817, 728, 568 cm-1.  

HR-MS (ESI) m/z: [M+Na]+ Calculated for C19H28NaO2 311.1982; Found 311.1984. 

EtO

O
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ethyl 2-isopropyl-4-methyl-3-phenylpent-3-enoate (122f) 

Following General Procedure 1: To an oven dried dram vial with a magnetic stir bar was 

added [Li]+[B(C6F5)4]- (13.7 mg, 0.02 mmol, 0.1 equiv). To this was added trifluorotoluene 

(2 mL), and the silyl ketene acetal 120e (121 mg, 0.60 mmol, 3 equiv). Vinyl tosylate 118b 

(60.5 mg, 0.2 mmol, 1.0 equiv) was added and the reaction was allowed to stir at 80 °C in 

a metal heating block placed on an IKA hot plate for 12 hours. The reaction mixture was 

removed from the glovebox and diluted with ether containing a drop of triethylamine. This 

was pushed through a plug of triethylamine treated silica gel in a pipette and concentrated 

in vacuo  to give the crude material. The crude material was purified by silica flash 

chromatography on triethylamine treated silica gel (3% diethyl ether in hexanes with 0.5% 

TEA) to give a colorless oil 122f (30.0 mg, 58% yield).   

1H NMR (400 MHz, C6D6) δ 7.25 – 7.18 (m, 4H), 7.13 – 7.08 (m, 1H), 3.95 (q, J = 7.1 

Hz, 2H), 3.51 (d, J = 11.0 Hz, 1H), 2.20 (dp, J = 10.9, 6.5 Hz, 1H), 1.83 (s, 3H), 1.47 (s, 

3H), 1.01 (d, J = 6.4 Hz, 3H), 0.93 (t, J = 7.1 Hz, 3H), 0.91 (d, J = 6.7 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 173.5, 141.1, 133.5, 132.0, 129.8, 127.8, 126.4, 77.4, 60.1, 

57.1, 29.9, 28.1, 23.2, 21.5, 20.9, 20.6, 14.3. 

FT-IR (neat film NaCl):  2959, 2927, 2870, 1735, 1366, 1278, 1234, 1178, 1120, 1033, 

702 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C17H25O2 261.1849; Found 261.1845. 
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ethyl 4-methyl-2-phenyl-3-(p-tolyl)pent-3-enoate (122g) 

Following General Procedure 1: To an oven dried dram vial with a magnetic stir bar was 

added [Li]+[B(C6F5)4]- (13.7 mg, 0.02 mmol, 0.1 equiv). To this was added trifluorotoluene 

(2 mL), and the silyl ketene acetal 120f (142 mg, 0.60 mmol, 3 equiv). Vinyl tosylate 118c 

(63.3 mg, 0.2 mmol, 1.0 equiv) was added and the reaction was allowed to stir at 80 °C in 

a metal heating block placed on an IKA hot plate for 12 hours. The reaction mixture was 

removed from the glovebox and diluted with ether containing a drop of triethylamine. This 

was pushed through a plug of triethylamine treated silica gel in a pipette and concentrated 

in vacuo  to give the crude material. The crude material was purified by silica flash 

chromatography on triethylamine treated silica gel (3% diethyl ether in hexanes with 0.5% 

TEA) to give a colorless oil 122g (17.0 mg, 27% yield).   

1H NMR (400 MHz, CDCl3) 7.25 – 7.17 (m, 3H), 7.17 – 7.11 (m, 2H), 7.01 – 6.96 (m, 

2H), 6.84 – 6.71 (m, 2H), 5.05 (s, 1H), 4.08 (q, J = 7.1 Hz, 2H), 2.28 (s, 3H), 1.88 (s, 3H), 

1.56 (s, 3H), 1.17 (t, J = 7.1 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 172.7, 138.2, 137.8, 135.7, 132.8, 132.3, 129.9, 129.4, 

128.3, 128.0, 126.7, 60.8, 55.2, 23.0, 21.2, 20.9, 14.2. 

FT-IR (neat film NaCl):  2959, 2927, 2870, 1735, 1366, 1278, 1234, 1178, 1120, 1033, 

702 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C21H25O2 309.1849; Found 309.1855. 
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2.7.6 Cyclization Cascade Reactions 

 

General Procedure 2: All reactions were conducted in a well-maintained glove box (O2, 

H2O <0.5 ppm) on 0.2 mmol scale unless otherwise noted. To an oven dried dram vial with 

a magnetic stir bar was added [Li]+[B(C6F5)4]- (13.7 mg, 0.02 mmol, 0.1 equiv). To this 

was added trifluorotoluene (4 mL), and the corresponding silyl ketene acetal (3 equiv). 

Substrate (0.2 mmol, 1.0 equiv) was added and the reaction was allowed to stir at 80 °C in 

a metal heating block placed on an IKA hot plate for 24 hours. The reactions were 

monitored by TLC, typically using 10% diethyl ether in hexanes for the mobile phase (a-

vinylation products are typically higher in Rf than the starting tosylate). Upon completion 

of reaction, the reaction mixture was removed from the glovebox and diluted with ether 

containing a drop of triethylamine. This was pushed through a plug of triethylamine treated 

silica gel in a pipette. The reaction mixture was concentrated in vacuo to give the crude 

material, which was purified by silica flash chromatography on triethylamine treated silica 

gel (typically 1–2% diethyl ether in hexanes with 0.1% triethylamine)  and then dried on 

high vacuum to obtain material that is pure by 1H NMR.  

 

OTs

Ar EtO

O

Ar
[Li]+[B(C6F5)4]– (10 mol%)

PhCF3 (0.05M), 80 ºC

EtO

OTMSGeneral Reaction Scheme
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ethyl 3-cyclopentylidene-2,2-dimethyl-3-(p-tolyl)propanoate (131a) 

Following General Procedure 2: To an oven dried dram vial with a magnetic stir bar was 

added [Li]+[B(C6F5)4]- (13.7 mg, 0.02 mmol, 0.1 equiv). To this was added trifluorotoluene 

(4 mL), and the silyl ketene acetal 116b (113.0 mg, 3 equiv, .6 mmol). Alkyl tosylate 130a 

(68.5 mg, 1.0 equiv, 0.2 mmol) was added and the reaction was allowed to stir at 80 °C in 

a metal heating block placed on an IKA hot plate for 24 hours. The reaction mixture was 

removed from the glovebox and diluted with ether containing a drop of triethylamine. This 

was pushed through a plug of triethylamine treated silica gel in a pipette and concentrated 

in vacuo to give the crude material. The crude material was purified by silica flash 

chromatography on triethylamine treated silica gel (2% diethyl ether in hexanes with 0.1% 

TEA) to give a colorless oil 131a (31.9 mg, 56% yield). 

1H NMR (400 MHz, CDCl3) δ 7.15 – 7.08 (m, 2H), 7.00 – 6.92 (m, 2H), 4.17 (q, J = 7.1 

Hz, 2H), 2.34 (s, 3H), 2.16 (tt, J = 7.1, 1.4 Hz, 2H), 1.85 (tt, J = 7.4, 1.2 Hz, 2H), 1.69 – 

1.57 (m, 2H), 1.51 – 1.40 (m, 2H), 1.28 (t, J = 7.1 Hz, 3H), 1.18 (s, 6H). 

13C NMR (101 MHz, CDCl3) δ 178.5, 141.8, 140.0, 135.6, 135.5, 129.0, 128.8, 60.6, 46.5, 

34.0, 30.4, 27.5, 26.6, 25.8, 21.3, 14.3.  

FT-IR (neat film NaCl): 2971, 2953, 2867, 1726, 1509, 1466, 1382, 1248, 1134, 1030, 806 

cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C19H27O2+: 287.2006 ; Found 287.2013.  
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ethyl 2,2-dimethyl-3-(2-methylcyclopentylidene)-3-(p-tolyl)propanoate (131b) 

Following General Procedure 2: To an oven dried dram vial with a magnetic stir bar was 

added [Li]+[B(C6F5)4]- (13.7 mg, 0.02 mmol, 0.1 equiv). To this was added trifluorotoluene 

(4 mL), and the silyl ketene acetal 116b (113.0 mg, 3 equiv, .6 mmol). Alkyl tosylate 130b 

(71.3 mg, 0.2 mmol, 1.0 equiv) was added and the reaction was allowed to stir at 80 °C in 

a metal heating block placed on an IKA hot plate for 24 hours. The reaction mixture was 

removed from the glovebox and diluted with ether containing a drop of triethylamine. This 

was pushed through a plug of triethylamine treated silica gel in a pipette and concentrated 

in vacuo to give the crude material. The crude material was purified by silica flash 

chromatography on triethylamine treated silica gel (1% à 2% diethyl ether in hexanes 

with 0.1% TEA) to give a colorless oil 131b (42.1 mg, 70% yield). *The olefin isomer (E) 

was assigned on the basis of NOESY NMR.  

1H NMR (400 MHz, CDCl3) δ 7.14 – 7.06 (m, 2H), 6.98 (ddd, J = 11.9, 7.4, 1.5 Hz, 2H), 

4.24 – 4.08 (m, 2H), 2.35 (s, 3H), 2.32 (s, 1H), 2.25 – 2.09 (m, 2H), 1.79 – 1.68 (m, 1H), 

1.67 – 1.54 (m, 2H), 1.34 – 1.20 (m, 4H), 1.17 (s, 3H), 1.12 (s, 3H), 0.66 (d, J = 7.1 Hz, 

3H). 

13C NMR (101 MHz, CDCl3) δ 178.7, 146.6, 138.9, 135.8, 135.5, 130.2, 129.2, 128.8, 

128.0, 60.5, 46.5, 38.4, 33.8, 29.0, 27.0, 26.3, 24.1, 21.3, 20.2, 14.3. 

FT-IR (neat film NaCl): 2973, 2954, 2867, 1728, 1509, 1467, 1382, 1247, 1133, 1030 cm-

1. 

O
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HR-MS (ESI) m/z: [M+H]+ Calculated for C20H29O2+: 301.2162 ; Found 301.2170. 

 

 

Ethyl (E)-1-((2-methylcyclopentylidene)(p-tolyl)methyl)cyclopentane-1-carboxylate 

(131c) 

Following General Procedure 2: To an oven dried dram vial with a magnetic stir bar was 

added [Li]+[B(C6F5)4]- (13.7 mg, 0.02 mmol, 0.1 equiv). To this was added trifluorotoluene 

(4 mL), and the silyl ketene acetal 120c (128.6 mg, 3 equiv, 0.6 mmol). Alkyl tosylate 130b 

(71.3 mg, 1.0 equiv, 0.2 mmol) was added and the reaction was allowed to stir at 80 °C in 

a metal heating block placed on an IKA hot plate for 24 hours. The reaction mixture was 

removed from the glovebox and diluted with ether containing a drop of triethylamine. This 

was pushed through a plug of triethylamine treated silica gel in a pipette and concentrated 

in vacuo to give the crude material. The crude material was purified by silica flash 

chromatography on triethylamine treated silica gel (1% à 2% diethyl ether in hexanes 

with 0.1% TEA) to give a colorless oil 131c (27.1 mg, 42% yield). The olefin isomer (E) 

was assigned on the basis of NOESY NMR. Trace amounts of a second compound appear 

in NMR which may correspond to the Z isomer, though integration of its integral suggests 

<5%, and isolation of sufficient quantities of this minor product could not be achieved to 

definitively assign it as the Z isomer.   
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1H NMR (400 MHz, CDCl3) δ 7.13 – 7.03 (m, 3H), 7.02 – 6.95 (m, 1H), 4.17 (qq, J = 

10.8, 7.1 Hz, 2H), 2.39 – 2.19 (m, 7H), 2.19 – 2.07 (m, 1H), 1.79 – 1.39 (m, 9H), 1.33 – 

1.19 (m, 4H), 0.64 (d, J = 7.0 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 177.4, 147.8, 139.7, 135.7, 135.4, 130.0, 129.2, 128.7, 

128.0, 60.0, 58.5, 38.3, 37.9, 36.5, 33.9, 29.8, 24.2, 23.9, 21.3, 19.9, 14.4.  

FT-IR (neat film NaCl): 2953, 2869, 1723, 1508, 1450, 1229, 1175, 1157, 1106, 1031, 823 

cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C22H31O2+: 327.2319 ; Found 327.2330. 

 

2.7.7 Mechanistic Studies 

 

To an oven dried dram vial with a magnetic stir bar was added [Ph3C]+[B(C6F5)4]- (4.6 mg, 

0.005 mmol, 0.1 equiv). To this was added trifluorotoluene (0.5 mL), and then 

triethylsilane (1.60 µL, 0.01 mmol, 0.2 equiv). ((1-methoxy-2-methylprop-1-en-1-

yl)oxy)trimethylsilane (116a) (26.1 mg, 0.150 mmol, 3 equiv) was added next, and then 

finally vinyl tosylate 114 (16.0 mg, 0.05 mmol, 1.0 equiv) was added and the reaction was 

allowed to stir at 80 °C in a metal heating block placed on an IKA hot plate for 12 hours. 

The reaction mixture was removed from the glovebox and diluted with ether containing a 

drop of triethylamine. This was pushed through a plug of triethylamine treated silica gel in 

F
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a pipette and concentrated in vacuo  to give the crude material. The 47% yield of 117a was 

determined by 19F NMR using C6F6 as an internal standard. 

 

 

To an oven dried dram vial with a magnetic stir bar was added [Li]+[B(C6F5)4]- (3.14 mg, 

0.005 mmol, 0.1 equiv) and LiHMDS (12.5 mg, 1.5 equiv, 0.075 mmol). To this was added 

trifluorotoluene (0.5 mL) and ethyl isobutyrate (128) (20.1 µL, 3 equiv, 0.150 mmol). 

Vinyl tosylate 114 (16.0 mg, 0.05 mmol, 1.0 equiv) was added and the reaction was allowed 

to stir at 80 °C in a metal heating block placed on an IKA hot plate for 12 hours. The 

reaction mixture was removed from the glovebox and diluted with ether containing a drop 

of triethylamine. This was pushed through a plug of triethylamine treated silica gel in a 

pipette and concentrated in vacuo  to give the crude material, which was determined by 

TLC and 1H NMR to give no conversion to the desired product. 

 

 

To an oven dried dram vial with a magnetic stir bar was added [Li]+[B(C6F5)4]- (3.14 mg, 

0.005 mmol, 0.1 equiv). To this was added trifluorotoluene (0.5 mL) and silyl ketene acetal 
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116b  (28.3 mg, 3 equiv, 0.150 mmol). Isobutyrophenone 129 (7.5 µL, 0.05 mmol, 1.0 

equiv) was added and the reaction was allowed to stir at 80 °C in a metal heating block 

placed on an IKA hot plate for 12 hours. The reaction mixture was removed from the 

glovebox and diluted with ether containing a drop of triethylamine. This was pushed 

through a plug of triethylamine treated silica gel in a pipette and concentrated in vacuo  to 

give the crude material, which was determined by TLC and 1H NMR to give no conversion 

to the desired product. 
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Chapter 3 

Cationic Claisen-Type Cascade Reactions Enabled by Vinyl Cation 

Capture† 

 

3.1 INTRODUCTION 

Since its discovery in the early 1900s, the Claisen rearrangement of allyl vinyl ethers 

(142) to access a-allylated ketone products (143) has earned considerable attention due to 

its synthetic utility and intriguing mechanism (Scheme 3.1).1–3 One of the challenges 

associated with the classical Claisen rearrangement is the synthesis of the requisite allyl 

vinyl ether. Enolate alkylation can be problematic due to unselective O- vs. C-alkylation, 

and the potential for generating E/Z olefin isomers, which challenge selective product 

formation.4,5 Other strategies involve olefin isomerization6–13, leaving group elimination14, 

C–O cross coupling15–18, alkyne hydroalkoxylation19,20, carbonyl alkenylation21–26, and 

 
† This research was performed in collaboration with Sepand K. Nistanaki, Woojin Lee, and 
Krista Dong. 
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metal-catalyzed vinyl ether exchange.27–29  

 

Scheme 3.1. Claisen rearrangement of allyl vinyl ethers and associated challenges. 

 

 

Methods for the in-situ generation and subsequent direct [3,3] rearrangement of allyl 

vinyl ethers eliminates the need for vinyl ether isolation (which can be unstable under 

acidic conditions),30,31 and offers an attractive strategy to rapidly generate complexity from 

simple reaction partners. Such an approach has been applied to several transition metal-

catalyzed reactions, such as Buchwald’s Cu-catalyzed C(sp2)–O cross coupling of vinyl 

iodides (144) with allyl alcohols (145) to form allyl vinyl ether 142 in-situ, which can then 

subsequently rearrange to the product (143) under the reaction conditions at elevated 

temperatures (Scheme 3.2).32 Another approach includes Au-catalyzed hydroalkoxylation 

of alkynes (146) to again access 142 in-situ.33–35 Other approaches include Pd-catalyzed 

vinyl ether exchange36 and Rh-catalyzed elimination37 and O–H insertion of diazo 

compounds.38 While these reports demonstrate the synthetic utility of intermolecular 

Claisen cascade reactions, they require transition metal catalysts and high reaction 

temperatures to affect the thermal [3,3] rearrangement of unactivated substrates.  
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Scheme 3.2. Claisen cascade reactions via transition metal catalysis. 

 

 

An alternative approach stems from Bellus and co-workers’ report that highly 

electrophilic dichloroketenes (147) can be trapped by allyl ethers (148) to form zwitterionic 

intermediates (149) that undergo fast [3,3] sigmatropic rearrangement to form allylated 

dichloresters 150 (Scheme 3.3).39–41 MacMillan and Nubbemeyer have expanded on this 

work by demonstrating that simpler acyl chlorides (151) could similarly engage 

allylamines (152) via Lewis acid catalysis, wherein a charged intermediate (153) undergoes 

rearrangement at room temperature to generate allylated amides (154) (Scheme 3.3).42–44  

 

Scheme 3.3. Charge-accelerated Claisen rearrangements via electrophile trapping. 
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This aza-Claisen approach has been expanded to Lewis acid activation of allenoates45 

and additions to ketiminium ions46,47, all of which have several attractive features including 

(1) the ability to couple two components in an intermolecular Claisen cascade reaction, and 

(2) an acceleration effect imparted by charge, enabling rearrangements to occur at 

significantly lower temperatures. However, these aza-Claisen type reactions are limited to 

specific products that could be accessed, largely predicted by the heteroatom-stabilized 

electrophile that can be generated. This ultimately challenges its application in more 

classical aliphatic Claisen rearrangements, which have found significant utility in synthetic 

chemistry. 

 

Scheme 3.4. This work: cationic Claisen cascade via main group catalysis. 

 

 

Inspired by the ability to generate allyl vinyl ethers through transition metal-

catalyzed cross coupling reactions and the documented accelerating effects of charge in 

sigmatropic rearrangements39,42,47–51, we envisioned a strategy that could merge the two in 

a transition metal-free catalytic platform. We hypothesized that generation of a high energy 

vinyl carbocation through ionization of vinyl tosylates (114) would precede reaction with 

weakly nucleophilic allyl ethers (155) to generate a vinyl oxonium cation (156) poised to 

undergo a charge-accelerated [3,3] sigmatropic rearrangement to form a-allylated ketones 
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(157) (Scheme 3.4). Ultimately, this unites two readily accessible starting materials, as 

vinyl tosylates are derived from simple ketones and allyl ethers are easily synthesized. 

3.2 REACTION OPTIMIZATION 

Based on previous work utilizing Li+ weakly coordinating anion (WCA) salts to 

ionize vinyl sulfonates52, we began exploring the reactions of allyl ethers 158a and 158b 

with vinyl tosylate 118a in the presence of commercially-available [Ph3C]+[B(C6F5)4]–, 

which generates Lewis acidic [Li]+[B(C6F5)4]– in the presence of LiHMDS (Table 3.1). We 

initially found that ethyl allyl ether 158a and diallyl ether 158b in the presence of 10 mol%  

[Ph3C]+[B(C6F5)4]– and stoichiometric LiHMDS furnished a-allylated ketone 159 after 2 

hours of heating at 80 ºC, presumably arising from the proposed [3,3] rearrangement  

(Table 3.1, entries 1–2). However, full starting material consumption was not observed. 

Next, silyl allyl ethers (155, 158c–e) were surveyed. While sterically bulky silyl allyl 

ethers, such as triisoproyl (TIPS) (158c) resulted in no product despite full consumption of 

starting tosylate, less bulky tert-butyldimethylsilyl (TBS) allyl ether (158d) produced 159 

in 41% yield (entries 3 and 4). Moving to even smaller triethylsilyl (TES) allyl ether 158e 

and trimethylsilyl (TMS) allyl ether 155 provided notably improved yields (Table 3.1, 

entries 5–6). This is likely due to the increased accessibility of the nucleophilic oxygen 

resulting from reduced steric bulk of the appended silyl group. Lowering the equivalences 

of 155 from 2.0 to 1.5 lowered the yield (entry 7), but by increasing the amount of LiHMDS 

to 2.5 equivalents furnished 159 in 87% yield after only 2 hours of heating (entry 8). 

Decreasing the catalyst loading to 5 mol% resulted in lower yield (entry 9). The presence 

of both catalyst and LiHMDS was crucial for productive chemistry (entries 10 and 11).  
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Table 3.1. Reaction optimization of Claisen cascade reaction. 

 

 

3.3 INVESTIGATION OF SCOPE FOR CLAISEN REARRANGEMENT 

3.3.1 Scope of Vinyl Tosylates  

To explore the generality of this reaction, a range of vinyl tosylates were prepared 

and subjected to the optimized reaction conditions. We were pleased to find that a range of 

sterically-congested products could be accessed in moderate-to-good yield (Scheme 3.5). 

First, ketone 159 was isolated on a 2.0 mmol scale in 84% yield. Cyclohexyl and 

cyclopentyl substituents on the vinyl tosylate (118a and 160a) furnished products 161a and 

161b in moderate yields. Lewis basic heterocyclic substrates containing piperidine (160b), 

tetrahydropyran (160c), and dihydrobenzofuran (160h) groups were compatible with these 

Lewis acidic conditions, delivering allylated products (161c, 161d, and 161n) in 50–71% 

aYields determined by 1H NMR using MeNO2 as an internal standard.

[Ph3C]+[B(C6F5)4]— (cat.)
LiHMDS (X equiv)

PhCF3 (0.1 M), 80 ºC, 2 hr
Ph

OTs

R
O+ Ph

O

YieldaEntry

1

2

3 0%

4

56%5

78%

7

87%

9

0%10

trace

R

Et (158a)

allyl (158b)

TIPS (158c)

TES (158e)

TMS (155)

TMS (155)

TMS (155)

TMS (155)

41%

LiHMDS

1.5 equiv

1.5 equiv

1.5 equiv

1.5 equiv

2.5 equiv

2.5 equiv

0 equiv

1.5 equiv

Catalyst

10 mol%

10 mol%

10 mol%

10 mol%

10 mol%

10 mol%

0 mol%

10 mol%

8

TMS (155) 2.5 equiv5 mol%

58%

59%

2.0 equiv

2.0 equiv

2.0 equiv

2.0 equiv

2.0 equiv

2.0 equiv

2.0 equiv

2.0 equiv

Ether

2.0 equiv

6

TMS (155) 1.5 equiv10 mol% 44%1.5 equiv

118b 159

TBS (158d) 2.0 equiv 10 mol% 1.5 equiv 41%

11

155, 158a–e
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yield. Both electron-rich (118c, 118d, and 160e) and -deficient (118f and 160g) vinyl 

tosylates led to the desired products in moderate-to-good yields. Notably, aryl bromides 

(118f) and iodides (118g), which can be labile under transition metal-catalyzed processes, 

were also well-tolerated. Diaryl vinyl tosylates could also undergo the tandem C–O 

coupling/Claisen rearrangement reaction to form products 161j–n in good yields. 

However, through optimization it was found that better yields were obtained with diallyl 

ether 158b instead of 155 with this substrate class. Variation of the alkyl substituents were 

demonstrated, wherein sterically-congested isopropyl product 161l could be accessed with 

slightly diminished yield.  

 

Scheme 3.5. Scope of vinyl tosylates for Claisen rearrangement.  
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159, 84% yield

Ph

O

O

I

161id, 61% yield

Ar
R

R

OTs

+ TMSO

159, 161a–n118a–g, 160a–h 155
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aIsolated yield after column chromatography on 0.20 mmol scale with 155 (2 equiv) unless otherwise noted. b0.05 M, 20 mol% 
catalyst, 100 ºC, 24  hr, 1.5 equiv LiHMDS. c0.05 M, 3 equiv LiHMDS. dDiallyl ether (158b) (2 equiv) used instead of TMS allyl 
ether (155). e95 ºC.
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3.3.2 Scope of TMS Allyl Ethers  

After the vinyl tosylate coupling partner was explored, the allyl ether component 

(163a–c) was also surveyed (Scheme 3.6). By using terminally alkylated allyl ethers (163a, 

163b) branched products (164a–d) were selectively accessed in good yields, up to 81% 

yield. Using these mild conditions to access branched a-allylated ketone products offers 

an alternative approach to transition-metal catalyzed formation of branched ketone 

products.53 Additionally, it was found that cyclohexene product 164e could also be formed 

in 62% yield.  

 

Scheme 3.6. Scope of TMS allyl ether to access branched products. 

 

 

Despite the initial success of surveying ethers to access branched a-allylated 

products, other ethers (165a and 165b) did not prove as fruitful (Scheme 3.7). Although 

vinyl tosylate 118b was consumed, no desired product was observed by crude NMR. 

Instead, oligomeric products are suspected to be the result, as indicated by broad peaks in 

the crude NMR spectra. With ether 165a, <5% of the desired product could be determined 

by NMR. The failure of ether 165a could be rationalized in two ways: the rearrangement 
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of the allyl vinyl ether intermediate could perhaps be too sterically challenged, or it is also 

possible that the phenyl could be directly reacting with the vinyl cation via Friedel–

Crafts.54,55 When testing vinyl ether 165b, it was surprising that no product was observed. 

However, studies have been reported that methyl substituents at that position can decelerate 

the rearrangement.3  

 

Scheme 3.7. Unsuccessful TMS Ethers for Claisen cascade reaction. 

 

 

3.4 MECHANISTIC STUDIES 

3.4.1 Support for Proposed Claisen Rearrangement 

Following our substrate scope studies, we carried out experiments to probe the 

mechanism. Vinyl sulfonate ionization by Li-WCA salts has been previously demonstrated 

as an effective strategy to generate vinyl carbocations catalytically by our group.52 

Moreover, we observed in the present study that running the reaction in benzene solvent 

resulted in significant Friedel-Crafts reactivity to form 167, which is a known reaction 
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pathway of vinyl carbocations (Scheme 3.8).54,55 We propose that in non-nucleophilic 

solvents such as trifluorotoluene, weakly nucleophilic silyl ethers are capable of trapping 

electrophilic vinyl cations. 

 

Scheme 3.8. Support for vinyl cation intermediacy. 

 

 

Since TMS allyl ether does have a Lewis basic oxygen center, an alternative reaction 

pathway could involve Lewis acid activation of the allyl ether to generate 168, which can 

then undergo nucleophilic attack from the vinyl tosylate via a SN2’ mechanism (Scheme 

3.9). To probe this hypothesis, methoxy vinyl ether 169 was prepared, as if this was the 

operative mechanism, this vinyl ether variant should also be competent under this reaction 

pathway. However, no reaction with 169 was observed under the optimized reaction 

conditions. This outcome thus supports the proposed intermediacy of a vinyl cation 

intermediate that gets trapped with TMS allyl ether.  

 

Scheme 3.9. Probing alternative reaction pathway via TMS allyl ether activation. 
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The proposed Claisen rearrangement was also probed by performing the developed 

reaction with deuterated allyl TMS ether 155-D2 (Scheme 3.10). 155-D2 was prepared and 

subjected to the optimized reaction conditions, furnishing product 159-D2 with no sign of 

deuterium incorporation at the allylic position by NMR. This result is consistent with a 

concerted [3,3] rearrangement. To note, the yield of 159-D2 was moderately lower than the 

developed reaction with TMS allyl ether 155. This is attributed to the fact that 155-D2 had 

to be synthetically prepared, as opposed to commercially available 155, and due to 

volatility of the ether, residual solvent and silicone grease remained in the ether sample. 

This ultimately seemed to impact the efficiency of the reaction, but nonetheless the product 

was obtained in moderate yield.  

 

Scheme 3.10. Claisen rearrangement with deuterated TMS allyl ether. 

 

 

We next wanted to address our hypothesis that an initial cationic vinyl silyloxonium 

intermediate was undergoing a charge-accelerated Claisen rearrangement (Scheme 3.11). 

While the reactions in this study are heated to 80 ºC, this temperature is required to achieve 

efficient ionization of the vinyl tosylate to generate a high energy vinyl carbocation; the 

proposed cationic [3,3] rearrangement could be facile at lower temperatures, especially if 

the rearrangement is accelerated by a charged intermediate. We therefore prepared allyl 

vinyl ether 170 and found that the neutral Claisen rearrangement is sluggish at 80 ºC (<5% 
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yield after 1 hour) in PhCF3 solvent. However, it was found that the addition of catalytic 

[SiEt3]+[B(C6F5)]– resulted in rapid conversion to the Claisen product (159) at room 

temperature within 30 minutes (Scheme 3.11). The Lewis acidic silylium species likely 

coordinates to the Lewis basic oxygen center of the allyl vinyl ether, resulting in charged 

intermediate 171. This is consistent with our proposal and reported accelerating effects of  

Claisen rearrangements induced by positive charge.39,42,47–51  

 

Scheme 3.11. Neutral vs cationic Claisen rearrangement of allyl vinyl ether. 

 

 

Based on the conducted mechanistic experiments, our proposed mechanism 

commences with in-situ generation of the Lewis acidic [Li]+[B(C6F5)4]–, denoted as 

[Li]+[WCA]– (Scheme 3.12).52 Ionization of vinyl tosylate 118b generates a vinyl 

carbocation (124)56, which is trapped by the allyl ether nucleophile (155) to generate a 

silyloxonium (174) that is poised to undergo a cationic [3,3] sigmatropic rearrangement to 

175. Following the rearrangement, desilylation by LiHMDS generates N(TMS)3 (176) 

(observed by GC-FID) and ketone product 159, while also regenerating catalytic 

[Li]+[B(C6F5)4]–.  
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Scheme 3.12. Proposed mechanism of Claisen cascade reaction.  

 

 

3.4.2 Product Distribution of Substituted Ethers 

During our scope studies we found that ether 163a gave low yields of a secondary 

product which was ultimately characterized as 164f (20:1 ratio of 164a/164f) (Scheme 

3.13). Since deuterated allyl ether 155-D2 demonstrated clean conversion to a single 

observable isotopomer, this result was unexpected and suggested a competing [1,3] 

rearrangement could be operative. Therefore, a constitutional isomer of the allyl ether 

(163d) was prepared and subjected to the reaction conditions, which furnished primarily 

the expected linear product (164f) arising from [3,3], but some amount of the branched 
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Lewis acids can lead to a mixture of products resulting from both [1,3] and [3,3] 

rearrangements.57–59  

 

Scheme 3.13. Product distribution of methyl substituted ethers.  

 

 

3.5 CONCLUDING REMARKS 

In summary, we have disclosed a new catalytic C–O coupling/Claisen rearrangement 

cascade reaction using simple, commercially-available borate salts as catalysts. The 

reaction was demonstrated on various substrates, showcasing the ability to construct 

sterically-hindered C–C bonds. Notably, this reaction uses simple starting materials, such 

as vinyl tosylates that are readily accessed from ketones and silyl allyl ethers that are often 

commercially available or synthesized in a single step from commercial alcohols. 

Mechanistic experiments were conducted, and these experiments support a cationic [3,3] 

rearrangement of a silyloxonium intermediate produced upon trapping of a catalytically-

generated vinyl cation by allyl ether. Additional mechanistic and computational studies are 

underway to further understand this rearrangement.  
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3.6 EXPERIMENTAL SECTION 

3.6.1 Materials and Methods 

Unless otherwise stated, all reactions were performed in an MBraun or VAC 

glovebox under nitrogen atmosphere with ≤ 0.5 ppm O2 levels. All glassware and stir-bars 

were dried in a 160 °C oven for at least 12 hours and cycled directly into the glovebox for 

use. Solid substrates were dried on high vacuum over P2O5 overnight, and liquid substrates 

were dried in a glovebox by passing through activated neutral alumina. All solvents were 

rigorously dried before use. Benzene and trifluorotoluene were degassed and dried in a JC 

Meyer solvent system and stored inside a glovebox. Cyclohexane was distilled over 

potassium. o-Difluorobenzene was distilled over CaH2. All other solvents used for 

substrate synthesis were dried in a JC Meyer solvent system. Preparatory thin layer 

chromatography (TLC) was performed using Millipore silica gel 60 F254 pre-coated plates 

(0.25 mm) and visualized by UV fluorescence quenching. SiliaFlash P60 silica gel (230-

400 mesh) was used for flash chromatography. NMR spectra were recorded on a Bruker 

400 MHz with Prodigy cryoprobe (1H, 13C), a Bruker 400 MHz (1H, 19F), and a Varian 500 

MHz (1H). 1H NMR spectra are reported relative to CDCl3 (7.26 ppm) unless noted 

otherwise. Data for 1H NMR spectra are as follows: chemical shift (ppm), multiplicity, 

coupling constant (Hz), integration. Multiplicities are as follows: s = singlet, d = doublet, t 

= triplet, dd = doublet of doublet, dt = doublet of triplet, ddd = doublet of doublet of 

doublet, td = triplet of doublet, m = multiplet. 13C NMR spectra are reported relative to 

CDCl3 (77.1 ppm) unless noted otherwise. IR Spectra were record on a Thermo Scientific 

Nicolet iS50 FT-IR and are reported in terms of frequency absorption (cm-1). High 

resolution mass spectra (HR-MS) were recorded on an Agilent 6230 time-of-flight LC/MS 
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(LC/TOF) using electrospray ionization (ESI) or acquired by the Caltech Mass Spectral 

Facility by Field Ionization/Field Desorption mass spectrometry using a JEOL AccuTOF 

GC-Alpha (JMS-T2000GC) mass spectrometer interfaced with an Agilent 8890 GC 

system.  Ions were detected as M+ (radical cations). All commercial chemicals and 

reagents were used as received, unless otherwise noted. Solid lithium hexamethyldisilazide 

and potassium hexamethyldisilazide were purchased from Sigma Aldrich and brought in 

the glovebox as received. Trityl tetrakis(pentafluorophenyl)borate was purchased from TCI 

and brought in the glovebox and used as received. Commercial allyloxytrimethylsilane 

(155) (Sigma Aldrich) and diallylether (158b) (TCI) were dried by passing through 

activated neutral alumina in a glovebox. TMSCl was distilled prior to use. Other reagents 

include: imidazole (Fisher Scientific), KOtBu (Sigma Aldrich), iodomethane and 

iodoethane (Oakwood Chemicals), Ts2O (Oakwood Chemicals), and DMEA (Oakwood 

Chemicals). Commercial alcohols were purchased from Sigma Aldrich, Oakwood 

Chemicals, and Fisher Scientific. 

3.6.2   Preparation of Vinyl Tosylates 

For the preparation of vinyl tosylates 114 and 118a–g, see section 2.7.2 and Appendix 1 

for spectra data. Vinyl tosylates 160a–h and 162 were prepared from ketones that were 

either commercially available or synthetically prepared according to the following 

procedure: 

 

Ph

O
R

R

Ts2O (1.5 equiv)
KOtBu (1.5–1.7 equiv)

THF, 0 ºC to rt
Ph

OTs
R

R

synthesized or 
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General Procedure 1: To a flame-dried flask, commercially available ketone or otherwise 

synthetically made (1.0 equiv), was dissolved in THF (0.33 M). The solution was cooled 

to 0 ºC, and then a solution of KOtBu (1.5–1.7 equiv, 1 M THF) was added dropwise. The 

resulting solution was then stirred at 0 ºC for 2 hours. Next, Ts2O (1.5 equiv) was added as 

a solution in THF (0.6 M) to the enolate solution with vigorous stirring, and then the 

solution was allowed to warm to room temperature and stirred until completion. Once 

starting material is consumed, the reaction was diluted with EtOAC and water. The organic 

layer was separated, and the aqueous layer was extracted 3x, dried over Na2SO4, filter, 

concentrated in vacuo, and purified by silica flash column chromatography (ether/hexanes) 

to give vinyl tosylate.  

 

 

cyclopentylidene(phenyl)methyl 4-methylbenzenesulfonate (160a) was prepared 

according to General Procedure 1  from commercially available ketone on a 15.0 mmol 

scale (2.6g, 53% yield). 

1H NMR (400 MHz, CDCl3) δ 7.59 – 7.49 (m, 2H), 7.20 – 7.07 (m, 7H), 2.54 (dtd, J = 7.4, 

3.6, 1.4 Hz, 2H), 2.42 (qt, J = 5.6, 2.6 Hz, 2H), 2.35 (s, 3H), 1.68 (dqd, J = 5.5, 4.3, 2.0 

Hz, 4H). 

13C NMR (101 MHz, CDCl3) δ 144.4, 138.9, 138.4, 134.8, 134.4, 129.3, 128.1, 127.8, 

127.8, 127.7, 127.6, 31.6, 31.0, 27.2, 25.7, 21.6. 

FT-IR (neat film NaCl): 3056, 2956, 2869, 1598, 1494, 1445, 1366, 1292, 1259, 1189, 

1175, 1095, 997, 951, 820, 805, 784, 697, 552 cm-1. 

OTs
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HR-MS (FI+) m/z: [M] Calculated for C19H20O3S 328.1133; Found 328.1139. 

 

 

phenyl(1-((trifluoromethyl)sulfonyl)piperidin-4-yl)methanone (177) 

To a flame dried flask, commercially available 4-Benzoylpiperidine hydrochloride (1.10 g, 

1.0 equiv, 4.9 mmol) was added followed by dry DCM (16 mL). Dry triethylamine (3.4 

mL, 5 equiv, 24.4 mmol) was added next and the reaction was cooled to 0 ºC. Anhydrous 

Tf2O ( 900 uL, 1.1 equiv, 5.4 mmol) was then added and the reaction was allowed to warm 

to room temperature and stir overnight. The next day water was added and the organic layer 

was washed 3x with water and then dried over Na2SO4. The crude reaction mixture was 

purified via flash column chromatography 10 à 15% ethyl acetate/hexanes to afford 177 

as a solid (600 mg, 38%).  

1H NMR (500 MHz, CDCl3) δ 7.95 – 7.91 (m, 2H), 7.64 – 7.56 (m, 1H), 7.50 (t, J = 7.8 

Hz, 2H), 3.99 (d, J = 13.2 Hz, 2H), 3.53 – 3.45 (m, 1H), 3.29 (s, 2H), 2.05 – 1.99 (m, 2H), 

1.92 (dtd, J = 14.4, 10.6, 4.1 Hz, 2H). 

13C NMR (101 MHz, CDCl3) δ 200.9, 135.4, 133.5, 128.9, 128.25, 120.1 (q, J = 323.1 

Hz), 45.9, 28.1. 

19F NMR (376 MHz, CDCl3) δ -74.2. 

FT-IR (neat film NaCl): 2951, 2871, 1677, 1597, 1582, 1448, 1381, 1367, 1337, 1313, 

1296, 1269, 1228, 1183, 1145, 1110, 1062, 950, 844, 784, 763, 703, 688, 667, 586, 578, 

469 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C13H15F3NO3S+ 322.0720; Found 322.0734.  

NTf

O
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phenyl(1-((trifluoromethyl)sulfonyl)piperidin-4-ylidene)methyl 4-

methylbenzenesulfonate (160b) was prepared according to General Procedure 1 from 

177 on a 1.8 mmol scale (500 mg, 56% yield). 

1H NMR (400 MHz, CDCl3) δ 7.48 – 7.37 (m, 2H), 7.25 – 7.14 (m, 3H), 7.14 – 7.03 (m, 

4H), 3.89 – 3.14 (broad m, 4H), 2.66 (broad, 2H), 2.42 (t, J = 5.8 Hz, 2H), 2.35 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 144.8, 142.1, 133.8, 132.4, 129.6, 129.5, 128.9, 128.2, 

128.0, 126.1, 120.1 (q, J = 323.2 Hz), 47.3, 47.1, 29.4, 28.3, 21.6. 

19F NMR (376 MHz, CDCl3) δ -75.6. 

FT-IR (neat film NaCl): 3059, 2926, 2878, 1598, 1388, 1370, 1226, 1187, 1175, 1150, 

1095, 1017, 947, 867, 785, 701, 676, 590, 553 cm-1. 

HR-MS (ESI) m/z: [M+Na]+ Calculated for C20H20F3NNaO5S2 498.0627; Found 

498.0626. 

 

 

phenyl(tetrahydro-4H-pyran-4-ylidene)methyl 4-methylbenzenesulfonate (160c) was 

prepared according to General Procedure 1 from commercially available ketone on a 15.8 

mmol scale (3.5, 64% yield). 

1H NMR (400 MHz, CDCl3) δ 7.50 – 7.39 (m, 2H), 7.15 (dddd, J = 12.3, 7.9, 6.5, 3.3 Hz, 

5H), 7.11 – 7.04 (m, 2H), 3.72 (t, J = 5.5 Hz, 2H), 3.67 – 3.59 (m, 2H), 2.53 (dd, J = 5.9, 

5.1 Hz, 2H), 2.34 (s, 3H), 2.32 (m, 2H). 

NTf

OTs

O

OTs
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13C NMR (101 MHz, CDCl3) δ 144.5, 140.2, 134.1, 133.1, 129.6, 129.3, 128.6, 128.4, 

128.1, 128.0, 68.3, 68.2, 30.5, 29.3, 21.6. 

FT-IR (neat film NaCl): 3057, 2962, 2910, 2847, 1598, 1493, 1366, 1295, 1188, 1174, 

1094, 1014, 988, 785, 699, 574, 557 cm-1. 

HR-MS (ESI) m/z: [M+Na]+ Calculated for C19H20NaO4S 367.0975; Found 367.0982.  

 

 

2-methyl-1-(m-tolyl)propan-1-one (178) was prepared according to literature procedure60 

and matched the NMR data in the literature.61 

 

 

2-methyl-1-(m-tolyl)prop-1-en-1-yl 4-methylbenzenesulfonate (162) was prepared 

according to General Procedure 1 from 178 on a 15.4 mmol scale (0.546 g, 11% yield). 

1H NMR (400 MHz, CDCl3) δ 7.46 – 7.38 (m, 2H), 7.07 – 7.01 (m, 3H), 7.00 – 6.91 (m, 

2H), 6.84 (tt, J = 1.7, 0.8 Hz, 1H), 2.34 (s, 3H), 2.15 (s, 3H), 1.90 (s, 3H), 1.75 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 144.1, 141.5, 137.3, 134.5, 133.6, 130.1, 129.1, 128.6, 

128.0, 127.6, 126.9, 126.2, 21.6, 21.2, 20.1, 19.1. 

FT-IR (neat film NaCl): 2993, 2918, 2860, 1599, 1450, 1364, 1189, 1175, 1083, 1019, 

911, 822, 805, 791, 714, 674, 587, 569, 549 cm-1. 

HR-MS (ESI) m/z: [M+Na]+ Calculated for C18H20NaO3S 339.1025; Found 339.1027. 

 

O

OTs
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Vinyl tosylates 160d–h were prepared according to the following reaction scheme: 

 

General Procedure 2: Diaryl vinyl tosylate substrates were synthesized according to 

published literature procedures from the corresponding Weinreb amide62,63 or 

commercially available ketones. The tosylation step follows a known literature procedure 

for diaryl vinyl tosylate substrates.64,65  

 

 

(E)-1,2-diphenylbut-1-en-1-yl 4-methylbenzenesulfonate (160d) was prepared 

according to known literature procedures from commercially available 1,2-diphenylbutan-

1-one and spectra matched the reported literature.64 

 

 

2-phenyl-1-(p-tolyl)propan-1-one (179) 

To a flame dried flask, commercially available 2-phenyl-1-(p-tolyl)ethan-1-one (1.17 g, 1 

equiv, 5.54 mmol) was added followed by THF (11 mL) and cooled to 0 ºC. Then, a 

N

O
Ar2O

MgBrAr1
(1.5–2 equiv)

THF, 0 ºC
Ar1

O
Ar2

 R–I (1.05 equiv)
KOtBu (1.1 equiv)

THF, 0 ºC to rt

Ar1

O
Ar2

Ar1

OTs

Ar2

R

Ts2O (2.0 equiv)
LiHMDS (2.0 equiv)
DMEA (2.0 equiv)

PhMe/DCM, rt

R = Me, Et, IPr

R

OTs

O
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solution of KOtBu (747 mg, 1.2 equiv, 6.65 mmol) in THF (7 ml) was added dropwise. 

The reaction was allowed to stir for 20 minutes, and then iodomethane (0.38 mL, 1.1 equiv, 

6.1 mmol) was added dropwise. The reaction was allowed to warm to room temperature 

and stirred until starting material was consumed as determined by TLC (5% diethyl 

ether/hexanes). Then, 2M HCl was added and the reaction was extracted EtOAc 3x. The 

combined organics were washed with water, brine, and then dried of MgSO4. The crude 

mixture was purified via flash column chromatography 3% diethyl ether/pentanes to afford 

an oil 179 (0.852 g, 73% yield), which matched the NMR data in the literature.66  

 

 

(E)-2-phenyl-1-(p-tolyl)prop-1-en-1-yl 4-methylbenzenesulfonate (160e) was prepared 

according to known literature procedure for similar vinyl tosylates64: to a flame dried 

Schlenk flask was added LiHMDS (1.27 g, 2 equiv, 7.6 mmol) inside of a glovebox. The 

Schlenk flask was removed and anhydrous PhMe (8.4 mL) was added followed by DMEA 

(0.82 mL, 2 equiv, 7.6 mmol). To another flame dried flask was added 179 (0.852 g, 1 

equiv, 3.8 mmol) followed by anhydrous PhMe (3.8 mL). The ketone solution was then 

added dropwise to the LiHMDS solution at room temperature. The reaction was allowed 

to stir for 20 minutes. To another flame dried flask was added Ts2O (2.48 g, 2 equiv, 7.6 

mmol) with anhydrous DCM (20 mL). The Ts2O solution was then added dropwise to the 

enolate solution with vigorous stirring. Note: the solution becomes very thick. The reaction 

was monitored by TLC (20% diethyl ether/hexanes), and after 1 hour it was complete. A 

few mLs of 1M NaOH was then added, and the solution became homogenous. Additional 

OTs
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water was added, and then reaction was extracted 3x with diethyl ether. The combined 

organics were then dried over Na2SO4 and the crude mixture was concentrated in vacuo. 

The material was purified by flash column chromatography (5% diethyl ether/hexanes) to 

afford pure 160e as a white solid (600 mg, 43% yield).  

1H NMR (400 MHz, CDCl3) δ 7.55 – 7.47 (m, 2H), 7.20 – 7.14 (m, 3H), 7.13 – 7.09 (m, 

2H), 7.07 – 7.01 (m, 2H), 6.80 (d, J = 8.2 Hz, 2H), 6.75 – 6.69 (m, 2H), 2.37 (s, 3H), 2.18 

(s, 3H), 2.17 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 144.4, 143.6, 140.2, 137.7, 134.5, 131.1, 130.2, 129.8, 

129.3, 128.8, 128.2, 128.1, 127.1, 21.7, 21.3, 19.9. 

FT-IR (neat film NaCl): 3054, 3028, 2921, 2861, 1598, 1442, 1367, 1190, 1176, 1085, 

1040, 967, 854, 823, 814, 768, 760, 700, 670, 581, 558, 545 cm-1. 

HR-MS (ESI) m/z: [M+Na]+ Calculated for C23H22NaO3S 401.1182; Found 401.1184. 

 

 

(E)-3-methyl-1,2-diphenylbut-1-en-1-yl 4-methylbenzenesulfonate (160f) was prepared 

according to literature procedure and matched the NMR data in the literature.64 

 

 

1-(4-fluorophenyl)-2-phenylbutan-1-one (180)  

To a flame dried flask, commercially available 1-(4-fluorophenyl)-2-phenylethan-1-one 

OTs

O

F
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(750 mg, 1 equiv, 3.50 mmol) was added followed by THF (7 mL) and cooled to 0 ºC. 

Then, a solution of KOtBu (471 mg, 1.2 equiv, 4.20 mmol) in THF (3.8 ml) was added 

dropwise. The reaction was allowed to stir for 20 minutes, and then iodoethane (0.37 mL, 

1.3 equiv, 4.55 mmol) was added dropwise. The reaction was allowed to warm to room 

temperature and stirred until starting material was consumed as determined by TLC (5% 

diethyl ether/hexanes). Then, 2M HCl was added and the reaction was extracted EtOAc 

3x. The combined organics were washed with water, brine, and then dried of MgSO4. The 

crude mixture was purified via flash column chromatography 3% diethyl ether/pentanes to 

afford an oil 180 (780 mg, 92% yield), which matched the NMR data in the literature.65  

 

 

(E)-1-(4-fluorophenyl)-2-phenylbut-1-en-1-yl 4-methylbenzenesulfonate (160g) was 

prepared according to known literature procedures from 180. Spectra matched the reported 

literature.65 

 

 

2-(2,3-dihydrobenzofuran-5-yl)-1-phenylethan-1-one (181) was prepared according to 

a known literature procedure from commercially available 2,3-dihydrobenzofuran-5-acetic 

acid.67 

1H NMR (400 MHz, CDCl3) δ 8.10 – 7.96 (m, 2H), 7.61 – 7.51 (m, 1H), 7.46 (ddt, J = 8.3, 

OTs

F

O O
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6.7, 1.2 Hz, 2H), 7.10 (d, J = 1.9 Hz, 1H), 6.99 (ddt, J = 8.2, 2.0, 0.8 Hz, 1H), 6.74 (d, J = 

8.1 Hz, 1H), 4.54 (t, J = 8.7 Hz, 2H), 4.21 (s, 2H), 3.18 (t, J = 8.7 Hz, 2H). 

13C NMR (101 MHz, CDCl3) δ 198.2, 159.2, 136.7, 133.2, 129.2, 128.7, 128.7, 127.6, 

126.3, 126.1, 109.4, 71.4, 44.9, 29.8. 

FT-IR (neat film NaCl): 3057, 2961, 2894, 1675, 1615, 1596, 1579, 1489, 1447, 1321, 

1275, 1241, 1197, 1103, 982, 941, 926, 804, 750, 689, 591, 518 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C16H15O2 239.1067; Found 237.1070.   

 

 

2-(2,3-dihydrobenzofuran-5-yl)-1-phenylpropan-1-one (182) 

To a flame dried flask was added 181 (600 mg, 1 equiv, 2.52 mmol) followed by THF (5 

mL) and cooled to 0 ºC. Then, a solution of KOtBu (367 mg, 1.3 equiv, 3.27 mmol) in THF 

(3 ml) was added dropwise. The reaction was allowed to stir for 20 minutes, and then 

iodomethane (0.2 mL, 1.3 equiv, 3.27 mmol) was added dropwise. The reaction was 

allowed to warm to room temperature and stirred until starting material was consumed as 

determined by TLC (15% diethyl ether/hexanes). Then, 2M HCl was added and the 

reaction was extracted EtOAc 3x. The combined organics were washed with water, brine, 

and then dried of MgSO4. The crude mixture was purified via flash column 

chromatography 3% diethyl ether/pentanes to afford white solid 182 (0.380 g, 60% yield.  

1H NMR (400 MHz, CDCl3) δ 8.01 – 7.92 (m, 2H), 7.50 – 7.44 (m, 1H), 7.42 – 7.34 (m, 

2H), 7.10 (t, J = 1.5 Hz, 1H), 7.03 (ddd, J = 8.2, 2.0, 1.0 Hz, 1H), 6.70 (d, J = 8.2 Hz, 1H), 

4.63 (q, J = 6.8 Hz, 1H), 4.51 (td, J = 8.7, 1.2 Hz, 2H), 3.14 (td, J = 8.6, 3.0 Hz, 2H), 1.50 

O O
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(d, J = 6.9 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 200.7, 159.2, 136.6, 133.5, 132.8, 128.8, 128.5, 127.9, 

127.7, 124.2, 109.6, 71.4, 47.3, 29.8, 19.8. 

FT-IR (neat film NaCl): 3059, 2972, 2929, 2895, 1679, 1596, 1490, 1448, 1371, 1341, 

1234, 1107, 1002, 982, 957, 944, 811, 739, 693 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C17H17O2 253.1223; Found 253.1214.  

 

 

(E)-2-(2,3-dihydrobenzofuran-5-yl)-1-phenylprop-1-en-1-yl 4-

methylbenzenesulfonate (160h) was prepared according to known literature 

procedure64,65 for similar vinyl tosylates from 182: to a flame dried Schlenk flask was 

added LiHMDS (2.8 g, 2 equiv, 16.6 mmol) inside of a glovebox. The Schlenk flask was 

removed and anhydrous PhMe (18.5 mL) was added followed by DMEA (2.1 mL, 2 equiv, 

16.6 mmol). To another flame dried flask was added 182 (2.1 g, 1 equiv, 8.3 mmol) 

followed by anhydrous PhMe (8.3 mL). The ketone solution was then added dropwise to 

the LiHMDS solution at room temperature. The reaction was allowed to stir for 20 minutes. 

To another flame dried flask was added Ts2O (5.4 g, 2 equiv, 16.6 mmol) with anhydrous 

DCM (42 mL). The Ts2O solution was then added dropwise to the enolate solution with 

vigorous stirring. Note: the solution becomes very thick. The reaction was monitored by 

TLC (20% diethyl ether/hexanes), and after 1 hour it was complete. A few mLs of 1M 

NaOH was then added, and the solution became homogenous. Additional water was added, 

and then reaction was extracted 3x with diethyl ether. The combined organics were then 

TsO

O
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dried over Na2SO4 and the crude mixture was concentrated in vacuo. The material was 

purified by flash column chromatography (15% diethyl ether/hexanes) to afford pure 160h 

as a white solid (2.0 g, 59% yield).  

1H NMR (400 MHz, CDCl3) δ 7.55 – 7.43 (m, 2H), 7.11 – 7.06 (m, 2H), 7.04 – 6.97 (m, 

1H), 6.95 – 6.90 (m, 4H), 6.89 (q, J = 1.3 Hz, 1H), 6.75 (ddd, J = 8.3, 1.9, 0.9 Hz, 1H), 

6.55 (d, J = 8.2 Hz, 1H), 4.51 (t, J = 8.7 Hz, 2H), 3.06 (t, J = 8.7 Hz, 2H), 2.35 (s, 3H), 

2.18 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 159.3, 144.4, 142.8, 134.5, 134.3, 132.1, 130.9, 129.9, 

129.3, 128.9, 128.1, 127.5, 127.0, 125.4, 109.0, 71.4, 29.6, 21.6, 20.2. 

FT-IR (neat film NaCl): 3055, 2919, 2858, 1609, 1598, 1490, 1444, 1366, 1236, 1189, 

1176, 1038, 972, 943, 834, 773, 698, 676, 559 cm-1. 

HR-MS (ESI) m/z: [M+K]+ Calculated for C24H26NO4S 424.1577; Found 424.1577. 

 

3.6.3 Preparation of Silyl Ethers 

Silyl ethers 163a–c and 165b were prepared according to reported procedure.68 

 

General Procedure 3: To a flame-dried flask was added solid imidazole (2 equiv) followed 

by dry DCM solvent to achieve 3 M concentration relative to imidazole. While under N2 

atmosphere, alcohol was added neat (1 equiv) then cooled to 0 ºC. Freshly distilled TMS–

Cl (2 equiv) was added slowly dropwise while at 0 ºC, and the stirring mixture was allowed 

to warm to room temperature slowly overnight. The next morning, the reaction was 

R
OH

R
OTMS

imidazole (2 equiv)
TMSCl (2 equiv)

DCM, 0 ºC—> rt
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quenched with water, then the DCM layer was separated out. The aqueous layer was 

washed once more with pentane, and the combined organics were washed with brine then 

plugged through a short pad of silica gel. The filtrate was concentrated cold (0 ºC) and 

purified by either distillation or silica flash column chromatography as specified below. 

All pure silyl ethers were cycled into a nitrogen-filled glovebox and dried further by 

passing the neat material through activated neutral alumina. 

 

 

(E)-(but-2-en-1-yloxy)trimethylsilane (163a)  

Prepared according to above General Procedure 3 on 3.8 g (53.00 mmol) scale of starting 

commercially-available alcohol. The product was purified via silica gel flash 

chromatography (2% diethyl ether in pentane, visualized by KMnO4 stain) and 

concentrated at 0 ºC to obtain pure silyl ether 163a as a colorless oil, 4.8 g (53 % yield). 

Spectra matched reported literature.69 

 

 

 

(E)-(hex-2-en-1-yloxy)trimethylsilane (163b)  

Prepared according to above General Procedure 3 on 2.00 g (20.00 mmol) scale of starting 

commercially-available alcohol. The product was purified via silica gel flash 

chromatography (2% diethyl ether in pentane, visualized by KMnO4 stain) and 

concentrated at 0 ºC to obtain pure silyl ether 163b as a colorless oil, 2.50 g (72% yield). 

Spectra matched reported literature.69 

OTMS

OTMS
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(cyclohex-2-en-1-yloxy)trimethylsilane (163c) 

Prepared according to above General Procedure 3 on 1.00 g (10.20 mmol) scale of starting 

commercially-available alcohol. The product was purified via silica gel flash 

chromatography (2% diethyl ether in pentane, visualized by KMnO4 stain) and 

concentrated at 0 ºC to obtain pure silyl ether as a colorless oil, 1.40 g (81 % yield). Spectra 

matched reported literature.70 

 

 

trimethyl((2-methylallyl)oxy)silane (165b) 

Prepared according to General Procedure 3 on 59.4 mmol scale. The product was purified 

by flash column chromatography (3% diethyl ether/pentanes, visualized by KMnO4 stain) 

to afford an oil (4 g, 47% yield). Spectra matched reported literature.71 

 

Silyl ethers 163d and 165a were prepared according to a reported procedure72: 

 

General Procedure 4: To a flame dried flask was added commercially available alcohol in 

anhydrous DCM to achieve 0.018 M. Iodine was then added (0.01 equiv). Distilled HMDS 

(0.8 equiv) was then added dropwise. The reaction was monitored by TLC (visualization 

by KMnO4 stain) and starting material was consumed after 30 minutes. Na2S2O3 (about 

4g/1 mmol of alcohol) was added to the reaction and stirred for an additional 30 minutes. 

OTMS

OTMS

R
OH

R
OTMS

I2 (0.01 equiv)
HMDS (0.8 equiv)

DCM,  rt
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The solution was then filtered through a pad of silica gel and washed with DCM. The 

solution was concentrated at 0 ºC and purified by flash column chromatography (3% 

diethyl ether/pentanes) to afford an oil.  

 

 

(but-3-en-2-yloxy)trimethylsilane (163d) 

Prepared according to General Procedure 4 on 24.4 mmol scale. The product was purified 

by flash column chromatography (3% diethyl ether/pentanes, visualized by KMnO4 stain) 

to afford an oil (1.5 g, 43% yield). Spectra matched reported literature.73 

 

 

(cinnamyloxy)trimethylsilane (165a) 

Prepared according to General Procedure 4 on 11.0 mmol scale. The product was purified 

by flash column chromatography (3% diethyl ether/pentanes) to afford a yellow solid (2.0 

g, 90% yield). Spectra matched reported literature.72 

 

 

 

 

 

 

 

 

OTMS

OTMSPh



Chapter 3 – Cationic Claisen-Type Cascade Reactions Enabled by Vinyl Cation Capture   
 

202 

3.6.4 Catalytic Claisen Cascade Coupling Reaction 

 

General Procedure A: All catalytic Claisen cascade coupling reactions were conducted in 

a well-maintained glove box (O2, H2O <0.5 ppm) on 0.2 mmol scale (of vinyl tosylate 

substrate). To a dram vial equipped with a magnetic stir bar was added [Ph3C]+[B(C6F5)4]– 

catalyst (10 mol%), followed by LiHMDS (2.5 equivalents), followed by PhCF3 solvent (2 

mL). To this mixture was then added neat silyl allyl ether (2.0 equivalents) followed by 

solid vinyl tosylate (1 equivalent). The reaction was then sealed with a Teflon cap and 

heated for 2–5 hours depending on the substrate (reaction temperature were typically 80 

ºC, but for a few substrates higher reaction temperatures were required as indicated below). 

The reactions were monitored by TLC, typically using 10% ethyl acetate in hexanes for 

the mobile phase. Once the reaction was completed, the vial was removed from the 

glovebox. The reaction was diluted with diethyl ether and plugged through silica gel 

(pushing through with diethyl ether) and concentrated in vacuo. The crude material was 

purified by flash column chromatography, (typically 2–10% diethyl ether/hexanes, 

depending on the product polarity) then dried on high vacuum to obtain material that is 

pure by 1 H NMR.  

General Procedure B: A slightly modified procedure was followed when substrates 

Ar
R

OTs

R
Ar R

O

R

[Ph3C]+[B(C6F5)4]– (10 mol%)
LiHMDS (2.5 equiv)

PhCF3 (0.1M)
80–95 ºC, 2–5 hr2.0 equiv

+

Ar1
R

OTs

Ar2

+

OTMS

Ar1

O

Ar2

[Ph3C]+[B(C6F5)4]– (10 mol%)
LiHMDS (2.5 equiv)

PhCF3 (0.1M)
80–95 ºC, 3 hr

2.0 equiv

O

2

R

Procedure A:

Procedure B:
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contained an additional aryl group in the α-position. While Procedure A still worked for 

this substrate class, it was found through optimization that diallyl ethers provided improved 

yields over silyl ally ethers. Therefore, the only modification for General Procedure B as 

compared to General Procedure A is that diallyl ether is used instead of TMS allyl ether, 

according to the graphic above.   

 

 

2,2-dimethyl-1-phenylpent-4-en-1-one (159) 

Following the General Procedure A with 118b. The reaction was complete after 2 hr. The 

product was purified by silica gel flash column chromatography (2% diethyl ether/hexanes) 

to obtain 31.7 mg of a pale yellow oil (84% yield). The spectra matched reported 

literature.74  

 

 

(1-allylcyclohexyl)(phenyl)methanone (161a) 

Following the General Procedure A with 118a. The reaction was complete after 2 hr. The 

product was purified by silica gel flash column chromatography (3% diethyl ether/hexanes) 

to obtain 35.4 mg of a pale yellow oil (78% yield). The spectra matched reported 

literature.75 

O

O
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(1-allylcyclopentyl)(phenyl)methanone (161b) 

Following the General Procedure A with 160a. The reaction was complete after 2 hr. The 

product was purified by silica gel flash column chromatography (3% diethyl ether/hexanes) 

to obtain 26.0 mg of a pale yellow oil (61% yield). 

1H NMR (400 MHz, CDCl3) δ 7.89 – 7.82 (m, 2H), 7.52 – 7.46 (m, 1H), 7.45 – 7.37 (m, 

2H), 5.59 (ddt, J = 17.3, 10.1, 7.2 Hz, 1H), 4.96 – 4.82 (m, 2H), 2.60 (dt, J = 7.2, 1.3 Hz, 

2H), 2.32 (dddd, J = 14.5, 7.5, 4.0, 1.5 Hz, 2H), 1.78 (dddd, J = 13.0, 7.2, 3.6, 1.2 Hz, 2H), 

1.72 – 1.61 (m, 4H). 

13C NMR (101 MHz, CDCl3) δ 205.7, 137.2, 134.4, 131.8, 128.9, 128.3, 117.8, 58.9, 44.4, 

35.9, 25.7. 

FT-IR (neat film NaCl): 3074, 2953, 2868, 1672, 1597, 1578, 1446, 1275, 1216, 1179, 

1009, 918, 716, 693, 430 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C15H19O 215.1430; Found 215.1428. 

 

 

(4-allyl-1-((trifluoromethyl)sulfonyl)piperidin-4-yl)(phenyl)methanone (161c) 

Following the General Procedure A with 160b with slight modification. Reaction was ran 

at 0.05M with 20 mol% [Ph3C]+[B(C6F5)4]– and 1.5 equiv of LiHMDS at 100 ºC for 24 hr. 

The product was purified by silica gel flash column chromatography (10% diethyl 

O

O

NTf
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ether/hexanes then 40% DCM/hexanes) to obtain 38.0 mg of clear oil (53% yield). 

1H NMR (400 MHz, CDCl3) δ 7.76 – 7.69 (m, 2H), 7.57 – 7.51 (m, 1H), 7.48 – 7.42 (m, 

2H), 5.65 (ddt, J = 16.8, 10.2, 7.4 Hz, 1H), 5.15 – 5.06 (m, 2H), 3.74 (dd, J = 12.9, 4.4 Hz, 

2H), 3.09 (broad singlet, 2H), 2.66 (dt, J = 7.4, 1.2 Hz, 2H), 2.49 (d, J = 14.0 Hz, 2H), 1.71 

(ddd, J = 14.1, 11.5, 4.2 Hz, 2H). 

13C NMR (101 MHz, CDCl3) δ 205.3, 138.1, 132.1, 131.5, 128.8, 127.9, 120.2 (q, J = 

323.1 Hz), 119.6, 50.3, 44.2, 33.8. 

19F NMR (282 MHz, CDCl3) δ -75.63. 

FT-IR (neat film NaCl): 3078, 2977, 2927, 2886, 1672, 1597, 1449, 1387, 1342, 1226, 

1184, 1135, 1053, 1004, 945, 765, 705, 591, 495 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C16H19F3NO3S 362.1032; Found 362.1031. 

 

 

(4-allyltetrahydro-2H-pyran-4-yl)(phenyl)methanone (161d) 

Following the General Procedure A with 160c with slight modification. Reaction was ran 

at 0.05M with 3.0 equiv of LiHMDS. The reaction was complete after 12 hr. The product 

was purified by silica gel flash column chromatography (15% diethyl ether/hexanes) to 

obtain 22.3 mg of a pale yellow oil (50% yield). 

1H NMR (400 MHz, CDCl3) δ 7.72 – 7.66 (m, 2H), 7.52 – 7.46 (m, 1H), 7.45 – 7.39 (m, 

2H), 5.69 (ddt, J = 16.8, 10.2, 7.4 Hz, 1H), 5.11 – 5.03 (m, 2H), 3.77 (dt, J = 11.9, 4.2 Hz, 

2H), 3.44 (ddd, J = 11.9, 10.1, 2.6 Hz, 2H), 2.65 (dt, J = 7.4, 1.2 Hz, 2H), 2.33 – 2.27 (m, 

2H), 1.71 (ddd, J = 14.1, 10.2, 4.1 Hz, 2H). 

O
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13C NMR (101 MHz, CDCl3) δ 206.9, 139.0, 132.5, 131.4, 128.5, 127.8, 118.9, 65.1, 50.2, 

43.6, 34.5. 

FT-IR (neat film NaCl): 3075, 2957, 2922, 2850, 1672, 1447, 1299, 1218, 1107, 1032, 

976, 919, 793, 733, 699, 553 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C15H19O2 231.1380; Found 231.1375. 

 

 

2,2-dimethyl-1-(p-tolyl)pent-4-en-1-one (161e) 

Following the General Procedure A with 118c. The reaction was complete after 2 hr. The 

product was purified by silica gel flash column chromatography (3% diethyl ether/hexanes) 

to obtain 31.2 mg of a pale yellow oil (77% yield).  

1H NMR (400 MHz, CDCl3) δ 7.67 – 7.57 (m, 2H), 7.24 – 7.16 (m, 2H), 5.71 (ddt, J = 

16.7, 10.2, 7.3 Hz, 1H), 5.06 – 4.96 (m, 2H), 2.50 (dt, J = 7.3, 1.2 Hz, 2H), 2.38 (s, 3H), 

1.32 (s, 6H). 

13C NMR (101 MHz, CDCl3) δ 207.9, 141.6, 136.1, 134.3, 128.9, 128.3, 118.2, 47.7, 45.3, 

26.0, 21.6. 

FT-IR (neat film NaCl): 3076, 2977, 2927, 2873, 1671, 1640, 1608, 1468, 1386, 1251, 

1171, 963, 917, 827, 755, 564 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C14H19O 203.1430; Found 203.1428.   

 

O
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(1-allylcyclohexyl)(4-(tert-butyl)phenyl)methanone (161f) 

Following the General Procedure A with 118d. The reaction was complete after 2 hr. The 

product was purified by silica gel flash column chromatography (3% diethyl ether/hexanes) 

to obtain 44.0 mg of a pale yellow oil (77% yield). 

1H NMR (400 MHz, CDCl3) δ 7.65 – 7.60 (m, 2H), 7.42 – 7.36 (m, 2H), 5.70 (ddt, J = 

15.9, 11.0, 7.4 Hz, 1H), 5.05 – 4.98 (m, 2H), 2.56 (dt, J = 7.4, 1.3 Hz, 2H), 2.26 – 2.18 (m, 

2H), 1.58 – 1.35 (m, 6H), 1.33 (s, 9H), 1.31 – 1.25 (m, 2H). 

13C NMR (101 MHz, CDCl3) δ 208.3, 154.2, 137.1, 133.7, 127.7, 125.1, 117.9, 52.5, 43.6, 

34.9, 34.5, 31.3, 26.1, 23.0. 

FT-IR (neat film NaCl): 3076, 2960, 2931, 2865, 1668, 1639, 1605, 1452, 1364, 1269, 

1222, 1192, 1109, 995, 913, 844, 834, 716 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C21H31O 285.2213; Found 285.2212.  

 

 

1-([1,1'-biphenyl]-4-yl)-2,2-dimethylpent-4-en-1-one (161g) 

Following the General Procedure A with 118e. The reaction was complete after 2 hr. The 

product was purified by silica gel flash column chromatography (3% diethyl ether/hexanes) 

to obtain 39.2 mg of a white solid (74% yield). 

1H NMR (400 MHz, CDCl3) δ 7.81 – 7.77 (m, 2H), 7.64 – 7.60 (m, 4H), 7.49 – 7.44 (m, 

O

tBu
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2H), 7.42 – 7.36 (m, 1H), 5.75 (ddt, J = 16.8, 10.3, 7.3 Hz, 1H), 5.08 – 5.00 (m, 2H), 2.53 

(dt, J = 7.4, 1.2 Hz, 2H), 1.37 (s, 6H). 

13C NMR (101 MHz, CDCl3) δ 208.1, 143.8, 140.2, 137.6, 134.3, 129.1, 128.7, 128.1, 

127.3, 126.9, 118.3, 47.8, 45.2, 26.0. 

FT-IR (neat film NaCl): 3076, 3031, 2977, 2931, 1670, 1604, 1487, 1468, 1387, 1251, 

1222, 1173, 965, 918, 850, 749, 679, 415 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C19H21O 265.1587; Found 265.1588.  

 

 

1-(4-bromophenyl)-2,2-dimethylpent-4-en-1-one (161h) 

Following the General Procedure A with 118f. The reaction was complete after 6 hr. The 

product was purified by silica gel flash column chromatography (3% diethyl ether/hexanes) 

to obtain 31.2 mg of a pale yellow oil (58% yield). 

1H NMR (400 MHz, CDCl3) δ 7.54 (s, 4H), 5.69 (ddt, J = 16.9, 10.2, 7.3 Hz, 1H), 5.06 – 

4.97 (m, 2H), 2.47 (dt, J = 7.3, 1.2 Hz, 2H), 1.31 (s, 6H). 

13C NMR (101 MHz, CDCl3) δ 207.7, 137.8, 134.0, 131.6, 129.7, 125.9, 118.6, 47.9, 45.2, 

25.9. 

FT-IR (neat film NaCl): 3076, 2977, 2931, 2873, 1675, 1584, 1483, 1468, 1393, 1249, 

1073, 1010, 919, 836, 758 cm-1. 

HR-MS (FD+) m/z: [M] Calculated for C13H15BrO 266.0306; Found 266.0219.  

 

O
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(1-allylcyclohexyl)(2-iodophenyl)methanone (161i) 

Following the General Procedure B with 118g. The reaction was complete after 2 hr. The 

product was purified by silica gel flash column chromatography (3% diethyl ether/hexanes) 

to obtain 43.4 mg of a colorless oil (61% yield). 

1H NMR (400 MHz, CDCl3) δ 7.89 (dd, J = 8.0, 1.1 Hz, 1H), 7.34 (td, J = 7.5, 1.2 Hz, 

1H), 7.22 (dd, J = 7.7, 1.6 Hz, 1H), 7.06 (ddd, J = 8.0, 7.3, 1.7 Hz, 1H), 5.84 (ddt, J = 16.0, 

11.3, 7.4 Hz, 1H), 5.14 – 5.07 (m, 2H), 2.57 (dt, J = 7.3, 1.2 Hz, 2H), 1.91 (ddd, J = 13.2, 

9.0, 4.0 Hz, 2H), 1.67 – 1.60 (m, 2H), 1.56 – 1.46 (m, 5H), 1.38 – 1.29 (m, 1H). 

13C NMR (101 MHz, CDCl3) δ 210.9, 145.5, 140.6, 134.2, 130.4, 127.2, 125.9, 118.1, 

92.6, 52.2, 39.8, 33.2, 25.6, 22.1. 

FT-IR (neat film NaCl): 3073, 2929, 2856, 1688, 1638, 1581, 1453, 1425, 1278, 1218, 

1016, 996, 913, 765, 744, 653, 632 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C16H20IO 355.0553; Found 355.0553. 

 

 

2-ethyl-1,2-diphenylpent-4-en-1-one (161j) 

Following the General Procedure B with 160d. The reaction was complete after 3 hr. The 

product was purified by silica gel flash column chromatography (3% diethyl ether/hexanes) 

to obtain 39.6 mg of a pale yellow oil (75% yield). Spectra match reported literature.76 
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2-methyl-2-phenyl-1-(p-tolyl)pent-4-en-1-one (161k) 

Following the General Procedure B with 160e. The reaction was complete after 3 hr. The 

product was purified by silica gel flash column chromatography (3% diethyl ether/hexanes) 

to obtain 35.0 mg of a pale yellow oil (66% yield). 

1H NMR (400 MHz, CDCl3) δ 7.42 – 7.31 (m, 4H), 7.30 – 7.26 (m, 3H), 7.07 – 6.97 (m, 

2H), 5.51 (dddd, J = 17.0, 10.2, 7.6, 6.9 Hz, 1H), 5.00 – 4.90 (m, 2H), 2.83 (ddt, J = 13.8, 

7.7, 1.1 Hz, 1H), 2.74 (ddt, J = 13.7, 6.9, 1.3 Hz, 1H), 2.29 (s, 3H), 1.57 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 202.7, 144.0, 142.4, 134.2, 133.9, 129.9, 129.0, 128.9, 

128.7, 126.9, 126.3, 118.4, 54.3, 44.9, 23.9, 21.5. 

FT-IR (neat film NaCl): 3061, 3026, 2977, 2924, 1672, 1606, 1496, 1446, 1376, 1241, 

1183, 966, 972, 916, 830, 745, 702, 597 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C19H21O 265.1587; Found 265.1588.  

 

 

2-isopropyl-1,2-diphenylpent-4-en-1-one (161l) 

Following the General Procedure B with 160f at 95 ºC. The reaction was complete after 3 

hr. The product was purified by silica gel flash column chromatography (3% diethyl 

ether/hexanes) to obtain 23.0 mg of a pale yellow oil (41% yield). 

O
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1H NMR (400 MHz, CDCl3) δ 7.51 – 7.40 (m, 2H), 7.37 – 7.26 (m, 4H), 7.23 – 7.12 (m, 

4H), 5.60 (dddd, J = 17.1, 10.2, 7.6, 6.9 Hz, 1H), 5.01 – 4.78 (m, 2H), 3.22 (ddt, J = 14.4, 

7.5, 1.2 Hz, 1H), 2.89 (ddt, J = 14.4, 6.9, 1.5 Hz, 1H), 2.65 (hept, J = 6.7 Hz, 1H), 0.82 

(dd, J = 6.7, 3.9 Hz, 6H). 

13C NMR (101 MHz, CDCl3) δ 201.8, 139.8, 137.0, 133.4, 131.7, 130.2, 128.9, 128.0, 

127.8, 127.0, 118.3, 61.8, 38.7, 30.8, 30.4, 19.7, 17.4, 15.4. 

FT-IR (neat film NaCl): 3059, 3023, 2962, 2877, 1675, 1596, 1578, 1445, 1384, 1265, 

1212, 1181, 916, 747, 705, 692, 647 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C20H23O 279.1743; Found 279.1739. 

 

 

2-ethyl-1-(4-fluorophenyl)-2-phenylpent-4-en-1-one (161m) 

Following the General Procedure B with 160g. The reaction was complete after 3 hr. The 

product was purified by silica gel flash column chromatography (3% diethyl ether/hexanes) 

to obtain 38.0 mg of a pale yellow oil (68% yield). Spectra match reported literature.76 

 

 

2-(2,3-dihydrobenzofuran-5-yl)-2-methyl-1-phenylpent-4-en-1-one (161n) 

Following the General Procedure B with 160h. The reaction was complete after 3 hr. The 

product was purified by silica gel flash column chromatography (7% diethyl ether/hexanes) 

O
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to obtain 41.2 mg of a pale yellow oil (71% yield). 

1H NMR (400 MHz, CDCl3) δ 7.53 – 7.42 (m, 2H), 7.41 – 7.34 (m, 1H), 7.23 (ddt, J = 7.9, 

6.7, 1.2 Hz, 2H), 7.14 – 7.01 (m, 2H), 6.78 (d, J = 8.3 Hz, 1H), 5.52 (dddd, J = 17.1, 10.2, 

7.7, 6.9 Hz, 1H), 5.04 – 4.82 (m, 2H), 4.58 (t, J = 8.7 Hz, 2H), 3.24 – 3.14 (m, 2H), 2.79 

(ddt, J = 13.7, 7.6, 1.1 Hz, 1H), 2.71 (ddt, J = 13.7, 6.8, 1.3 Hz, 1H), 1.52 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 203.7, 159.2, 137.2, 135.4, 134.4, 131.6, 129.6, 128.1, 

127.9, 125.8, 123.1, 118.3, 109.6, 71.5, 53.8, 44.9, 29.9, 23.9. 

FT-IR (neat film NaCl): 3072, 2979, 2941, 2361, 2342, 2292, 2252, 1674, 1639, 1614, 

1596, 1493, 1445, 1374, 1235, 1183, 1110, 1039, 982, 972, 943, 918, 822, 798, 735, 716, 

695, 660, 626 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C20H21O2 293.1536; Found 293.1543. 

 

 

2,2,3-trimethyl-1-phenylpent-4-en-1-one (164a) 

Following the General Procedure A with 118b and 163a. The reaction was complete after 

2 hr. The product was purified by silica gel flash column chromatography (15–18% 

benzene/hexanes) to obtain 30.5 mg of a pale yellow oil (75% yield). 

1H NMR (400 MHz, CDCl3) δ 7.66 – 7.62 (m, 2H), 7.48 – 7.43 (m, 1H), 7.42 – 7.37 (m, 

2H), 5.75 (ddd, J = 17.0, 10.4, 8.1 Hz, 1H), 5.06 – 4.98 (m, 2H), 2.88 (dqt, J = 7.8, 6.8, 1.0 

Hz, 1H), 1.26 (s, 3H), 1.22 (s, 3H), 0.97 (d, J = 6.8 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 209.7, 139.7, 130.8, 128.2, 127.7, 116.1, 50.9, 44.4, 24.1, 

21.6, 15.4. 
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FT-IR (neat film NaCl): 3075, 2970, 2927, 2874, 1674, 1598, 1462, 1444, 1389, 1253, 

1176, 1135, 1002, 965, 915, 714, 699 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C14H19O 203.1430; Found 203.1430. 

 

 

1-(4-fluorophenyl)-2,2,3-trimethylpent-4-en-1-one (164b) 

Following the General Procedure A with 114 and 163a. The reaction was complete after 

4.5 hr. The product was purified by silica gel flash column chromatography (3% diethyl 

ether/hexanes) to obtain 21.5 mg of a pale yellow oil (49% yield). 

1H NMR (400 MHz, CDCl3) δ 7.77 – 7.70 (m, 2H), 7.11 – 7.05 (m, 2H), 5.73 (ddd, J = 

17.1, 10.4, 8.2 Hz, 1H), 5.06 – 4.96 (m, 2H), 2.86 (dqt, J = 7.8, 6.8, 1.0 Hz, 1H), 1.26 (s, 

3H), 1.22 (s, 3H), 0.96 (d, J = 6.9 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 207.5, 164.3 (d, J = 252.2 Hz), 139.5, 135.3 (d, J = 3.5 

Hz), 130.6 (d, J = 8.7 Hz), 116.2, 115.3 (d, J = 21.4 Hz), 50.9, 44.6, 24.0, 21.8, 15.4. 

19F NMR (282 MHz, CDCl3) δ -108.5. 

FT-IR (neat film NaCl): 3076, 2974, 2935, 2876, 1674, 1600, 1506, 1463, 1236, 1158, 

967, 590 cm-1. 

HR-MS (ESI) m/z: [M+Na]+ Calculated for C14H17FNaO 243.1156; Found. 243.1162. 

 

 

2,2,3-trimethyl-1-(m-tolyl)pent-4-en-1-one (164c) 
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Following the General Procedure A with 162 and 163a. The reaction was complete after 

2.5 hr. The product was purified by silica gel flash column chromatography (3% diethyl 

ether/hexanes) to obtain 33.3 mg of a pale yellow oil (77% yield). 

1H NMR (400 MHz, CDCl3) δ 7.47 – 7.39 (m, 2H), 7.29 – 7.26 (m, 2H), 5.75 (ddd, J = 

16.9, 10.3, 8.1 Hz, 1H), 5.07 – 4.98 (m, 2H), 2.88 (dqt, J = 7.8, 6.8, 1.0 Hz, 1H), 2.38 (s, 

3H), 1.25 (s, 3H), 1.20 (s, 3H), 0.97 (d, J = 6.8 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 210.0, 139.8, 138.0, 131.5, 128.4, 127.9, 124.6, 116.1, 

50.9, 44.3, 24.2, 21.63, 21.61, 15.4. 

FT-IR (neat film NaCl): 3076, 2974, 2934, 2876, 1673, 1602, 1464, 1388, 1261, 1161, 

1132, 999, 975, 916, 846, 749, 698, 531 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C15H21O 217.1587; Found 217.1585. 

 

 

2,2-dimethyl-1-phenyl-3-vinylhexan-1-one (164d) 

Following the General Procedure A with 118b and 163b. The reaction was complete after 

2 hr. The product was purified by silica gel flash column chromatography (15–18% 

benzene/hexanes) to obtain 37.1 mg of a pale yellow oil (81% yield). 

1H NMR (400 MHz, CDCl3) δ 7.65 – 7.60 (m, 2H), 7.47 – 7.36 (m, 3H), 5.55 (ddd, J = 

17.0, 10.2, 9.5 Hz, 1H), 5.14 – 4.95 (m, 2H), 2.61 (td, J = 9.8, 3.3 Hz, 1H), 1.37 – 1.26 (m, 

2H), 1.25 (s, 3H), 1.24 – 1.22 (m, 1H), 1.21 (s, 3H), 1.09 – 0.99 (m, 1H), 0.77 (t, J = 7.2 

Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 209.8, 139.7, 138.2, 130.7, 128.2, 127.7, 118.1, 50.9, 32.1, 

Ph
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25.0, 21.4, 20.9, 13.9. 

FT-IR (neat film NaCl): 3074, 2959, 2932, 2872, 1674, 1597, 1466, 1444, 1387, 1250, 

1177, 1001, 974, 955, 916, 699 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C16H23O 231.1743; Found 231.1742. 

 

 

2-(cyclohex-2-en-1-yl)-2-methyl-1-phenylpropan-1-one (164e) 

Following the General Procedure A with 118b and 163c. The reaction was complete after 

4 hr. The product was purified by silica gel flash column chromatography (3% diethyl 

ether/hexanes) to obtain 28.5 mg of a pale yellow oil (62% yield). Spectra matched reported 

literature.77 

 

3.6.5 Mechanistic Studies 

3.6.5.1 Support for vinyl cation intermediacy 

To a dram vial equipped with a magnetic stir bar was added [Ph3C]+[B(C6F5)4]– 

catalyst (10 mol%), followed by LiHMDS (2.5 equiv), followed by benzene solvent (0.5 

mL). To this mixture was then added neat silyl allyl ether 155 (2 equiv) followed by 118b 

(1 equiv). The reaction was then sealed with a Teflon cap and heated for 2 hours at 80 ºC. 

Once the reaction was complete, the vial was removed from the glovebox. The reaction 

was diluted with diethyl ether and plugged through silica gel (pushing through with diethyl 

ether) and concentrated in vacuo. The yield was determined to be 65% yield by qNMR 

using nitromethane as an internal standard for 167 by comparing the NMR to the known 

Ph

O
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literature for 167.78  

 

 

3.6.5.2 Activation of allyl ether: 

First, (1-methoxy-2-methylprop-1-en-1-yl)benzene 169 was prepared according to 

a reported literature procedure79:  

 

To a flame dried flask equipped with a stir bar was added 60% wt NaH (0.36 g, 9.0 mmol, 

3 equiv), NMP (18 mL), and commercially available 2-methyl-1-phenylpropan-1-one 129 

(0.45 mL, 3.0 mmol, 1 equiv). Trimethyl phosphate (1.0 mL, 9.0 mmol, 3 equiv) was then 

added. The flask was then equipped with a reflux condenser and heated at 120 ºC for 24 

hours. After this time, the reaction was cooled to room temperature, and by TLC analysis 

(5% diethyl ether/hexanes) the reaction was complete with the formation of one more 

nonpolar spot. The reaction was then worked up by diluting with diethyl ether and washing 

with water. The aqueous layer was then extracted 2x with diethyl ether. The combined 

organic layers were dried over Na2SO4 and concentrated in vacuo to obtain a crude oil, 

which was then purified by flash column chromatography using 2.5% diethyl ether/hexanes 

with 0.1% triethylamine to afford 407 mg (84% yield) of a colorless oil 169. Spectra 

matched the reported literature.79  

Ph

OTs [Ph3C]+[B(C6F5)4]– (10 mol%)

benzene (0.1M)
80 °C, 2 hr

Ph

Ph

167
65% yield

118b
2 equiv

+ LiHMDS (2.5 equiv)
TMSO

155

O NaH (3 equiv)
trimethyl phosphate (3 equiv)

NMP, 120 ºC, 24 hr

OMe

84% yield
169129
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The mechanistic experiment was performed on a 0.050 mmol scale inside a well-

kept glovebox. To a dram vial equipped with a magnetic stir bar was added 

[Ph3C]+[B(C6F5)4]– catalyst (10 mol%), followed by LiHMDS (2.5 equiv), followed by 

PhCF3 solvent (0.5 mL). To this mixture was then added neat 155 (2 equiv) followed by 

169  (1 equiv). The reaction was then sealed with a Teflon cap and heated for 2 hours at 80 

ºC. After 2 hours, the reaction was removed from the glovebox. By TLC analysis, no new 

product spots were apparent (5% diethyl ether/hexanes).  

 

 

 

3.6.5.3 Claisen rearrangement with deuterated TMS allyl ether: 

 

 

Allyl-1-d2 alcohol (184) was first prepared according to a known literature 

procedure.80 To a flame dried flask was added LAD (2.52 g, 0.64 equiv, 60.1 mmol) 

followed by anhydrous diethyl ether (130 mL), and this solution was cooled to 0 ºC. Neat 

acrolyl chloride 183 (8.50 g, 1 equiv, 93.9 mmol) was added dropwise to the LAD solution. 

After the addition was complete, the reaction was allowed to warm up to room temperature 

and stirred for 3.5 hours, and at this time starting material appeared to be consumed by 

TLC (visualization by KMnO4 stain). The reaction was cooled back to 0 ºC, and 2.5 mL of 

169

Ph

OMe [Ph3C]+[B(C6F5)4]– (10 mol%)

PhCF3 (0.1M)
80 °C, 2 hr

no reaction

2 equiv

+ LiHMDS (2.5 equiv)
TMSO

155

OH

D D

OTMS

D DCl

O LAD (2 equiv)

Et2O

imidazole (2.5 equiv)

TMS–Cl (2 equiv)
DMF 155-D2183 184
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15% aq. NaOH was added dropwise. Then, 7.5 mL of H2O was added dropwise. The 

reaction was then allowed to warm to room temperature and stir for an additional 15 

minutes. MgSO4 was added and stirred for 15 additional minutes. The reaction was then 

sonicated for 10 minutes and filtered. The solids were washed with twice with 25 mL of 

diethyl ether. The crude reaction was then carried forward to the protection step.  

Next, ((allyl-1,1-d2)oxy)trimethylsilane 155-D2 was prepared by the procedure for 

silyl ethers in section 3.6.3 (with slight modification). Assuming quantitative yield from 

the previous step, imidazole (15.2 g, 2.5 equiv, 223 mmol) was added to the allyl-1-d2 

alcohol (184) in ether. The reaction was cooled to 0 ºC and distilled TMSCl (24 mL, 2.0 

equiv, 178 mmol) was added dropwise. After addition was complete, the reaction was 

warmed up to room temperature and stirred until starting material had been fully consumed 

(~2 hours). 25 mL water was charged dropwise to quench residual TMSCl. After stirring 

for 10 minutes, the aqueous layer was extracted with 3 x 25 mL pentane. The combined 

organic layers were washed with brine and dried over Na2SO4. Due to the volatility of the 

product, the crude mixture was concentrated in vacuo at 0 ºC to approximately ~50 mL. 

Then, the compound was purified via fractional distillation at 135 ºC to obtain 155-D2. To 

note, residual ether and silicon grease remained in the ether. 

1H NMR (400 MHz, CDCl3) δ 5.92 (dd, J = 17.1, 10.4 Hz, 1H), 5.25 (dd, J = 17.1, 1.8 Hz, 

1H), 5.10 (dd, J = 10.4, 1.8 Hz, 1H), 0.13 (s, 9H). 

13C NMR (101 MHz, CDCl3) δ 137.0, 114.6, -0.5. 

HR-MS (FI+) m/z: [M] Calculated for C6H12D2OSi 132.0939; Found 132.0937. 
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The above mechanistic experiment was performed on a 0.050 mmol scale inside a 

well-kept glovebox. To a dram vial equipped with a magnetic stir bar was added 

[Ph3C]+[B(C6F5)4]– catalyst (10 mol%), followed by LiHMDS (2.5 equivalents), followed 

by PhCF3 solvent (0.5 mL). To this mixture was then added 155-D2 (10.0 equiv) followed 

by vinyl tosylate 118b  (1 equiv). The reaction was then sealed with a Teflon cap and heated 

for 2 hours at 80 ºC. After 2 hours, the reaction was removed from the glovebox, and the 

crude reaction mixture was plugged through silica gel with diethyl ether and concentrated 

in vacuo. By qNMR, product 159-D2 was obtained in 60% yield with no observation of 

other deuterated isomer. 

1H NMR (400 MHz, CDCl3) 7.69 – 7.62 (m, 2H), 7.48 – 7.36 (m, 3H), 5.77 – 5.65 (m, 

1H), 2.49 (d, J = 7.3 Hz, 2H), 1.32 (s, 6H). 

13C NMR (101 MHz, CDCl3) δ 209.0, 139.2, 134.0, 130.9, 128.2, 127.8, 47.8, 45.0, 25.9. 

HR-MS (FI+) m/z: [M] Calculated for C13H14D2O 190.1327; Found 190.1328. 

 

3.6.5.4 Neutral vs Cationic Claisen Rearrangement 

Allyl vinyl ether 170 was prepared according to a known literature procedure81: 

 

Ph

OTs [Ph3C]+[B(C6F5)4]– (10 mol%)

PhCF3 (0.1M)
80 °C, 2 hr

Ph

O

159-D2
60% yield

10 equiv

no D 
observed

DD

+ LiHMDS (2.5 equiv)
TMSO

118b

DD

155-D2

O KHMDS (1.2 equiv)
18-crown-6 (1.2 equiv)

TsO+

O

51% yield

(1.2 equiv)
–78 ºC –> rt

170
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 To a flame dried flask, 18-crown-6 (2.14 g, 1.2 equiv, 8.10 mmol) was added 

followed by THF (34 mL). The solution was sparged with argon for 10 minutes. To another 

flame dried flask, KHMDS (1.62 g, 1.2 equiv, 8.10 mmol) was added inside of a well-kept 

glovebox and then brought outside of the glovebox. Toluene (16.2 mL) was then added to 

the KHMDS, and this solution was then sparged with argon for 10 minutes. The solution 

of 18-crown-6 was then cooled to –78 ºC and the KHMDS solution was then added. Next, 

2-methyl-1-phenylpropan-1-one was added dropwise. The yellow solution was allowed to 

stir at –78 ºC for 1 hour. Then, allyl 4-methylbenzenesulfonate (1.86 g, 1.3 equiv, 8.77 

mmol) was added dropwise at –78 ºC. The reaction was allowed to slowly warm up to 

room temperature and stirred overnight. The reaction was then analyzed by TLC (5% 

diethyl/hexanes), which showed complete consumption of starting material with one major, 

more polar spot formed. The reaction was then worked up by first cooling to 0 ºC and 

adding saturated NH4Cl. Diethyl ether was then added, and the reaction was extracted 3x. 

The combined organic layers were dried with MgSO4 and concentrated in vacuo. The crude 

material was then purified by flash column chromatography in 3% diethyl/ether with 0.1% 

triethylamine. A pure oil (170) was obtained (650 mg, 51% yield).  

1H NMR (400 MHz, C6D6) δ 7.41 – 7.31 (m, 2H), 7.17 – 7.11 (m, 3H), 7.09 – 7.03 (m, 

1H), 5.83 (ddt, J = 17.2, 10.7, 5.4 Hz, 1H), 5.17 (dq, J = 17.2, 1.8 Hz, 1H), 5.00 (dq, J = 

10.4, 1.5 Hz, 1H), 3.91 (dt, J = 5.4, 1.6 Hz, 2H), 1.92 (s, 3H), 1.62 (s, 3H). 

13C NMR (101 MHz, C6D6) δ 148.3, 136.4, 135.3, 129.9, 128.3, 127.7, 116.2, 115.7, 70.1, 

19.8, 18.1.  

FT-IR (neat film NaCl): 3080, 3059, 3021, 2987, 2913, 2857, 1672, 1647, 1600, 1490, 

1443, 1421, 1381, 1287, 1214, 1136, 1072, 1047, 1024, 985, 920, 883, 843, 775, 700, 559, 
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419 cm-1. 

HR-MS (FI+) m/z: [M] Calculated for C13H16O 188.1201; Found 188.1203. 

 

Neutral Claisen test: To a dram vial equipped with a magnetic stir bar inside the glovebox 

was added allyl vinyl ether 170 (9.5 mg, 0.050 mmol) followed by 0.5 mL of PhCF3. The 

reaction was heat at 80 ºC for 1 hour. After the hour, the reaction was brought outside of 

the glovebox and concentrated in vacuo. By qNMR (nitromethane as internal standard), 

<5% of the rearranged product 159 was obtained with about 95% of 170 remaining. 

 

 

Cationic Claisen test: To a dram vial equipped with a magnetic stir bar inside the glovebox 

was added [Ph3C]+[B(C6F5)4]– (4.6 mg, 10 mol%). PhCF3 (0.5 mL) was then added, 

followed by Et3SiH (1.20 µL, 15 mol%). The mixture was then stirred at room temperature 

for 15 minutes. Then, allyl vinyl ether 170 (9.5 mg, 1 equiv, 0.050 mmol) was added and 

the reaction was allowed to stir at room temperature for 30 minutes. The reaction was 

brought outside of the glovebox, plugged through silica gel and washed with diethyl ether, 

and concentrated in vacuo. By qNMR (nitromethane as internal standard), the starting allyl 

vinyl ether 170 was fully consumed and 159 was observed in 64% yield.  

 

170

Ph

O
PhCF3 (0.1M)

80 ºC, 1 hr

< 5%

O

Ph
+ 95% unreacted 
starting material

159

170

Ph

O

159
64% yield

[SiEt3]+[B(C6F5)4]– 

(10 mol%)

rt, 30 min

full conversion

O

Ph
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3.6.5.5 Product distribution of substituted ethers: 

 

 

The following mechanistic experiment was performed on a 0.050 mmol scale inside 

a well-kept glovebox, and the two reactions were set up side by side. To a dram vial 

equipped with a magnetic stir bar was added [Ph3C]+[B(C6F5)4]– catalyst (10 mol%), 

followed by LiHMDS (2.5 equiv), followed by PhCF3 solvent (0.5 mL). To this mixture 

was then added either silyl ether 163a (2 equiv) or 163d (5 equiv, as it was determined that 

more equivalences lead to higher yield) followed by vinyl tosylate 118b (1 equiv). The 

reactions were then sealed with a Teflon cap and heated for 2 hours at 80 ºC. After 2 hours, 

the reactions were removed from the glovebox, and aliquots were taken for GC analysis. 

The ratios were determined as indicated in the above scheme. To note, 163d formed a small 

amount of the other olefin isomer (11:1 E:Z).  

 Product 164f was further purified by HPLC (85:15 MeCN:H2O). However, 

separating the E/Z mixture from product 164a was unsuccessful. Product 164f has been 

previously reported in the literature as a mixture of isomers82, and thus could be correctly 

identified. The GC trace of the purified mixture thus contains the E/Z isomers in addition 

to product 164a.  
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20 1
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O
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GC-FID traces:  

The following GC trace is of the crude reaction mixture using silyl ether 163a: 

 

 

The following GC trace is of the crude reaction mixture using silyl ether 163d: 

 

 

The following GC trace is of purified product 164a: 
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O

164a

Ph

O

164f

Ph

O
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O
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The following GC trace is of purified product 164f (with traces of minor Z isomer at 6.14 

min and with traces of 164d at 5.97 min): 

 

  

Ph

O

164f
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Chapter 4 

Catalytic Asymmetric C–H Insertion Reactions of Vinyl Carbocations† 

 

4.1 INTRODUCTION 

Carbocationic intermediates play a crucial role in the synthesis of natural products 

and pharmaceutical drugs.1 Although these reactive intermediates are engaged in 

stereoselective processes in nature,2,3 exerting enantiocontrol over carbocations with 

synthetic catalysts remains challenging.1 Typically, high levels of selectivity are only 

routinely seen in reactions of carbocations that are either resonance- or heteroatom-

stabilized.4–7 However, dicoordinated carbocations, such as aryl and vinyl cations, have 

thus far been excluded from the field of asymmetric catalysis, likely due to the lack of 

catalytic methods to generate these reactive intermediates and their high reactivity once 

 
† Portions of this chapter have been adapted from Nistanaki, S. K.; Williams, C. G.; 
Wigman, B.; Wong, J. J.; Haas, B. C.; Popov, S.; Werth, J.; Sigman, M. S.; Houk, K.N.; 
Nelson, H. M. Catalytic asymmetric C–H insertion reactions of vinyl carbocations. Science 
2022, 378, 1085–1091. Copyright © 2022 American Association for the Advancement of 
Science. 
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they are formed.8 As briefly mentioned in Chapter 1, our group has developed catalytic 

methods to generate vinyl carbocations that are capable of undergoing facile insertion into 

unactivated C(sp3)–H bonds (Scheme 4.1).9,10 In these insertion reactions, stereocenters are 

often created (184 and 186), which prompted us to investigate their application in 

asymmetric catalysis. 

 

Scheme 4.1. Stereocenters formed via C–H insertion reactions of vinyl cations.  

 

 

In addition to the inherent challenge of controlling the stereochemistry of a C–H 

insertion event involving a reactive vinyl cation intermediate, another challenge is the fact 

that these vinyl cations are generated catalytically using weakly coordinating anions 

(WCAs). These anions are non-basic and non-nucleophilic, which prevents unproductive 

E1 or SN1 reactions of the vinyl cation intermediates.11 Since there are only a few examples 

of chiral WCAs reported,12,13 which have yet to be successful in asymmetric catalysis, we 

became interested in imidodiphosphorimidate (IDPi) Brønsted acids developed by List and 

coworkers for several reasons.14 First, these IDPi acids are known to have a confined active 

93

[Ph3C]+[HCB11Cl11]– (2 mol%)
Et3SiH (1.5 equiv)
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site that has been referred to as an enzyme mimic.14 We believed this confinement effect 

could be vital to achieve high enantiocontrol over C–H insertion reactions of vinyl 

cations.15,16 Additionally, the List group has also demonstrated success in employing these 

acids in highly enantioselective reactions that are proposed to proceed through 

carbocationic intermediates.17,18 For example, protonation of 187 with an IDPi acid is 

proposed to form the non-classical cation paired with the IDPi chiral anion (189).17 Due to 

the confinement of the cation within the IDPI active site, stereoselective reactions were 

achieved, such as a Friedel–Crafts reaction with 1,3,5-trimethoxybenzene to form 190 with 

high enantioselectivity (Scheme 4.2).  

 

Scheme 4.2. List’s enantioselective reaction via non-classical carbocation. 

 

 

These IDPi acids have also been reported to undergo protodesilylation with allyl 

silanes to generate a silylated IDPI species, which can subsequently be used in 

enantioselective reactions via Lewis acid catalysis.19 With this precedent, a proposed 

catalytic cycle for an enantioselective C–H insertion reaction is shown in Scheme 4.3. First, 

as supported by List and coworkers, IDPi Brønsted acid (191) can undergo 

protodesilylation with an allyl silane (192) to form the silylated IDPi 193 with the release 

of propene (194).19 This species is then proposed to be sufficiently Lewis acidic to ionize 
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vinyl tosylate 195 to generate the vinyl cation/chiral anion pair (196). Then, due to the 

confined nature of the IDPi active site, an enantioselective C–H insertion event is proposed 

to form intermediate 198. Deprotonation would result in product 199 with the regeneration 

of the IDPi acid (191).  

 

Scheme 4.3. Proposed catalytic cycle for enantioselective C–H insertion of vinyl 

cations using IDPi Brønsted acids. 

 

 

4.2 INVESTIGATION OF STRAINED-RING PRODUCT MOTIFS 

4.2.1 Product Selectivity Challenges 

While developing a highly selective C–H insertion reaction of vinyl carbocation 

intermediates, many substrates were investigated to achieve this goal. Like our reported C–

H insertion reactions using WCAs,9,10 unselective product formation was still a challenge. 

For example, unselective deprotonation of 198 can lead to multiple olefin isomers (199a–
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c), and this was still true for using IDPi catalysts as the counter anion, where three different 

olefin isomers were often obtained (Scheme 4.4). In addition to olefin isomer selectivity, 

diastereoselectivity was also a challenge, which was further complicated by olefin isomer 

selectivity.   

 

Scheme 4.4. Challenges of olefin isomer selectivity and diastereoselectivity.  

 

 

4.2.2 Investigation of Cyclohexyl Vinyl Tosylates  

With the challenges of combatting not only enantioselectivity but also olefin isomer 

selectivity and diastereoselectivity, one class of substrates was particularly compelling. 

The use of cyclohexyl vinyl tosylate 202 was hypothesized to lead to selective product 

formation of a single olefin isomer and diastereomer (Scheme 4.5). Once the vinyl 

carbocation is formed (203), insertion into the cyclohexyl moiety would generate 

intermediate 204. Given that deprotonation at the bridgehead carbon would lead to an anti-

Bredt olefin isomer,20 there is only one C–H bond that can be deprotonated to furnish 

strained-ring products 205. Moreover, this C–H insertion event would allow direct access 

to the strained bicyclo[3.2.1]octane ring system, which are prevalent motifs in various 
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bioactive natural product scaffolds (206–208) (Scheme 4.6).21–23  

 

Scheme 4.5. C–H insertion to access [3.2.1]carbocycles. 

 

 

Scheme 4.6. Natural products containing bicyclo[3.2.1]octanes. 

 

 

Given that a chiral product is only obtained with Ar ≠Ar2 (Scheme 4.5), vinyl tosylate 

202a possessing an aryl group with a m-t-Bu substituent was prepared and screened, and it 

was found that bicyclic product 205a could be formed (Table 4.1). 202a was screened 

against various IDPi catalysts, and IDPi 209 possessing a p-Cl phenyl substituent on the 

3,3’ position of the BINOL scaffold proved to be the most promising. Reaction 

optimization thus commenced with IDPi 209 and tris(triethylsilyl) allylsilane (allyl 

Si(TES)3, vide infra), and it was found that 205a could be formed in 80% ee, albeit in 35% 

yield at 55 ºC (Table 4.1, entry 1). Given this promising enantioselectivity, efforts  
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were focused on increasing the yield of the reaction. Increasing the concentration of the 

reaction had minimal effect on the yield but did cause a slight decrease in enantioselectivity 

(entries 2 and 3). Decreasing the catalyst loading to 15 mol% at various concentrations also 

had little effect on the yield (entries 4 and 5). However, by raising the temperature from 55 

ºC to 60 ºC at 0.025 M, the yield increased from 36% to 43% (entry 6). The yield was 

further improved by raising the temperature to 65 ºC, at which 205a was formed in 50% 

yield and 77% ee (entry 7).  

 

Table 4.1. Reaction optimization of the synthesis of [3.2.1]carbocycles.a  

 

Ph

TsO

tBu
Ph

tBu

IDPi 209 (X mol%)
allyl Si(TES)3 (1.3 equiv)
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X ºC, 72 hr
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1
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3 32%

4

43%

5

50%7
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77%
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55 ºC

60 ºC

65 ºC

55 ºC
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20 mol%
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After the reaction was optimized, vinyl tosylates 202b and 202c were prepared and 

subjected to the reaction conditions (Scheme 4.7). Product 205b was isolated in 46% yield 

with 73% ee. Obtaining this level of enantioselectivity on this all-hydrocarbon substrate 

was quite encouraging, as the only differentiating features between the two aryl rings were 

two dimethyl substituents. Additionally, biphenyl vinyl tosylate 202c furnished the strained 

ring 205c in 55% yield with 73% ee. Overall, accessing these strained ring products not 

only demonstrated that moderate levels of enantioselectivity could be obtained with all 

hydrocarbon scaffolds but also showed that C–H insertion reactions of vinyl cations is a 

powerful C–C bond forming strategy for the construction of challenging ring systems.  

 

Scheme 4.7. Catalytic asymmetric synthesis of strained bicycles.a 
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4.2.3 Product Elaboration of [3.2.1] Carbocycles 

Given the high energy of the strained [3.2.1] carbocycles and potential for further 

reactivity, it was hypothesized that perhaps these enantioenriched products could be 

elaborated to generate other useful enantioenriched motifs. In particular, upon oxidation of 

the strained olefin,24 the ring could cleave to furnish enantioenriched 1,3-

diketocyclohexanes 210a–c (Scheme 4.8). It was found that by subjecting 205a–c to 

pyridinium chlorochromate (PCC) in DCM and heating at 45 ºC, enantioenriched 

cyclohexanes 210a–c could be obtained in good yields. Notably, the products possessed 

excellent enantiospecificity (es). Additionally, 210c was isolated as a solid and upon 

recrystallization, highly enantioenriched material (>99% ee) was obtained. With the 

recrystallized material in hand, an X-ray structure was obtained, further confirming the 

identity of the products and indicating the absolute stereochemistry. Current catalytic 

methods to access enantioenriched 1,3-diketocyclohexanes are limited to 

desymmetrization of anhydrides, after which additional steps are required to convert the 

resulting carboxylic acid to scaffolds such as 210a–c,25 highlighting a strategic application 

of this reaction.   
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Scheme 4.8. Product elaboration to enantioenriched 1,3-diketocyclohexanes.a 
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piperidine fragment, could furnish bicycle product 213a in 72% yield and 91% ee. Notably, 
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Scheme 4.9. Enantioselective C–H insertion reaction of piperidine substrate.  

 

 

Although the yield was satisfactory (72% yield) for 213a, conversion of starting 

material was still only about 81% after 72 hours due to the poor activity of IDPi 211. 

Moreover, it was a concern that more electron-poor substrates (i.e. substrates with higher 

barriers for ionization) resulted in significantly lower yield than vinyl tosylate 212a. With 

that in mind, efforts were focused on optimizing the reaction further to obtain higher 

conversion without losing enantioselectivity.  

Based on our proposed mechanism (Scheme 4.3), we hypothesized that conversion 

of the reaction could be improved by tuning the silyl group on the allyl silane, given that 

the silylated IDPi (193) was likely the active catalyst in the reaction. At first, we proposed 

that perhaps conversion was low due to the bulkiness of the TIPS group on the allyl silane, 

which caused steric hinderance around the silicon center and thus made ionization more 

challenging. Therefore, allyl trimethylsilane (allyl TMS) was tested. To our surprise, the 

yield of 213a was dramatically worse, forming the product in only 34% yield (38% 

conversion) after 72 hours. Luckily, the enantioselectivity was not dramatically influenced 
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(Scheme 4.10).  

 

Scheme 4.10. Allyl TMS leads to poor conversion of vinyl tosylate. 

 

 

With allyl TMS negatively impacting reaction conversion, we decided to move in the 

opposite direction and test allyl silanes that were even more sterically congested than allyl 

TIPS. We were inspired by Lambert’s studies on the effects of steric bulk on silylium ion 

coordination, wherein Si(TMS)3+ (214) paired with a WCA generated a near trivalent 

silylium cation, in contrast to trialkyl silylium cation 215, which formed a tetravalent Si-

center by coordination to solvent or counter anion (Scheme 4.11).26,27 Moreover, these 

results were also consistent with the δ 29Si that Olah had predicted for a trivalent Me3Si+ 

species.28 We hypothesized that a more trivalent silylium species may possess stronger 

Lewis acidity, and thus may enhance reaction rates due to more facile ionization to generate 

vinyl cations.  

 

Scheme 4.11. Trivalent silicon centers with bulky tris(silyl) groups. 
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Therefore, allyl Si(TES)3 (216) was prepared and tested. Gratifyingly, in our system, we 

observed a positive correlation between silane size and activity, and 212a was fully 

consumed after 72 hours to afford 213a in 91% yield with 91% ee (Scheme 4.12). 

 

Scheme 4.12. Allyl Si(TES)3 leads to full conversion. 

 

 

4.3.2 Examples of Enantioselective C–H Insertion Reaction 

With this improved activity from allyl Si(TES)3 and encouraging enantioselectivity 

on our model substrate, we explored the scope of this reaction with selected examples 

displayed in Scheme 4.13. The transformation proved compatible with substitution at both 

of the aryl rings on the substrate, delivering insertion products in moderate to good yields 

with excellent enantioselectivity (up to 93% ee) and diastereoselectivity (>20:1 d.r.). In 

addition to alkyl substituents on the phenyl ring of vinyl tosylates 212a–c, both electron-

withdrawing and electron-donating groups were also tolerated (212d–f). Additionally, a 

single recrystallization of 213d resulted in highly enantioenriched material (>99% ee). 

Moreover, functional groups labile in many transition metal-catalyzed processes (213g, 

213h) were compatible, highlighting this method’s complementarity to transition metal-

catalyzed C(sp3)–H functionalization platforms. 
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Scheme 4.13. Enantioselective C–H insertion reaction of piperidine substrates.  

 

 
 
4.4 CONCLUDING REMARKS 

In conclusion, we developed a highly enantioselective C–H insertion reaction of 

vinyl cations. This work represents the first example of controlling the enantioselectivity 

of a reaction proceeding through these dicoordinated carbocations. Ultimately, this was 

successful through the use of confined IDPi Brønsted acids, which generated a silylium 

species Lewis acidic enough to ionize vinyl tosylates. Two different classes of substrates 

were optimized, suggesting that this reaction platform could be further applied to other 

types of substrates to access other C–H insertion products with good selectivity.   
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4.5 EXPERIMENTAL SECTION 

4.5.1 Materials and Methods 

Unless otherwise stated, all reactions were performed in an MBraun glovebox 

under nitrogen atmosphere with ≤ 0.5 ppm O2 levels. All glassware and stir-bars were dried 

in a 160 °C oven for at least 12 hours and cycled directly into the glovebox for use. Solid 

substrates were dried on high vacuum over P2O5 overnight. All solvents were rigorously 

dried before use. Cyclohexane was distilled over potassium. o-Difluorobenzene was 

distilled over CaH2. 1,2-Dichloroethane and trifluorotoluene were degassed and dried in a 

JC Meyer solvent system and stored inside a glovebox. All other solvents used for substrate 

synthesis were dried in a JC Meyer solvent system. Silanes were dried by distillation over 

CaH2 or dried on high vacuum over P2O5 overnight before being stored in a glovebox. 

Triethylamine and diisopropylamine were distilled over CaH2 prior to use. Tf2O was 

purified by distillation over P2O5. Preparatory thin layer chromatography (TLC) was 

performed using Millipore silica gel 60 F254 pre-coated plates (0.25 mm) and visualized by 

UV fluorescence quenching. SiliaFlash P60 silica gel (230-400 mesh) was used for flash 

chromatography. Purification by preparative HPLC was done on an Agilent 1200 series 

instrument with a reverse phase Alltima C18 (5µ, 25 cm length, 1 cm internal diameter) 

column. Measurements of enantiomeric excess (% ee) were performed using an Agilent 

1260 infinity chiral HPLC using Daicel CHIRALPAK® or Daicel CHIRALCEL® columns 

(4.6 × 250mm, 5 µm particle size) and hexanes/isopropanol as the mobile phase. NMR 

spectra were recorded on a Bruker 400 MHz with Prodigy cryoprobe (1H, 13C, 31P, 11B), a 

Bruker 400 MHz (1H, 13C, 19F) and a Varian 300 MHz (1H, 19F). 1H NMR spectra are 

reported relative to CDCl3 (7.26 ppm), C6D6 (7.16 ppm), d6-Acetone (2.05 ppm), or d6-
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DMSO, (2.50 ppm) unless noted otherwise. Data for 1H NMR spectra are as follows: 

chemical shift (ppm), multiplicity, coupling constant (Hz), integration. Multiplicities are 

as follows: s = singlet, d = doublet, t = triplet, dd = doublet of doublet, dt = doublet of 

triplet, ddd = doublet of doublet of doublet, td = triplet of doublet, m = multiplet. 13C NMR 

spectra are reported relative to CDCl3 (77.1 ppm), C6D6 (128.0 ppm), d6-Acetone (29.8 

ppm), or d6-DMSO (39.5 ppm) unless noted otherwise. IR Spectra were record on a Perkin 

Elmer Spectrum BXII FT-IR spectrometer and are reported in terms of frequency 

absorption (cm-1). High resolution mass spectra (HR-MS) were recorded on an Agilent 

6230 time-of-flight LC/MS (LC/TOF) using electrospray ionization (ESI) or acquired by 

the Caltech Mass Spectral Facility on a JEOL JMS-T2000 AccuTOF GC-Alpha time-of-

flight mass spectrometer using Field Desorption (FD) ionization or an electron ionization 

source. Crystallographic data were obtained by the Beckman Institute Crystallography 

Facility and by the UCLA J.D. McCullough Laboratory of X-ray Crystallography. All 

commercial chemicals and reagents were used as received, unless otherwise noted. KOtBu, 

Ts2O (97%), and 4-chloroboronic acid were purchased form Sigma-Aldrich and used as 

received. Bromomethyl methyl ether (MOM-Br) was ordered from Oakwood Chemicals 

and distilled before used. 1,1'-Bi-2-naphthol (R & S), EDCI, diiodine, 4-

piperidinemethanol, Tf2O, imidazole, triphenylphosphine, DMAP, N,O-

dimethylhydroxylamine hydrochloride, 2-phenylacetophenone, cyclohexylacetic acid, 

tert-butyl 4-(hydroxymethyl)piperidin-1-carboxylate, octafluoronaphthalene, 

pentachlorobenzenethiol, trifluoromethanesulfonamide, methyl 2,2-difluoro-2-

(fluorosulfonyl)acetate, and sodium pentoxide were all ordered from Oakwood chemicals 

and used as received. 
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4.5.2 Preparation of Vinyl Tosylates 

Scheme for the synthesis of cyclohexyl vinyl tosylate substrates: 

 

The general procedure outlined above was used to prepare diaryl cyclohexyl vinyl tosylate 

substrates from cyclohexyl acetic acid-derived Weinreb amide, which was prepared 

according to a published procedure.29 The tosylation step generates the E isomer shown as 

the major isomer, but some Z isomer is also produced, which is typically more polar in Rf 

and could be separated out via column chromatography. While both the Z and E isomer of 

the vinyl tosylate give similar results in C–H insertion reactions (activity and 

enantioselectivity), only the E isomer was used for experiments. *If the vinyl tosylate is 

impure after column chromatography, pure material could be obtained via recrystallization 

from hexanes/ethyl acetate or hexanes/diethyl ether. 

 

 

2-cyclohexyl-1-phenylethan-1-one (214) 

Magnesium turnings (1.97 g, 1.5 equiv, 81.0 mmol) were flame-dried under high vacuum 

in a round bottom flask (x3) then suspended in dry THF (81 mL). Bromobenzene (10.7 

mL, 1.9 equiv, 102.6 mmol) was added followed by a small grain of I2. The solution was 

allowed to stir with gentle heating via a heat gun until the purple-brown color of the I2 
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disappears. The suspension was then stirred until all the magnesium turnings are visibly 

consumed. At this point, the reaction is cooled to 0 ºC then a solution of 2-cyclohexyl-N-

methoxy-N-methylacetamide29 (10.0 g, 1.0 equiv, 54.0 mmol) in dry 180 mL THF is added 

dropwise. The reaction was monitored closely by TLC to determine starting material 

consumption (usually 5–20 minutes), then quenched with 30 mL saturated ammonium 

chloride while at 0 ºC. The reaction was extracted with ethyl acetate (x3), then the 

combined organics were washed with water, brine, dried over Na2SO4, and concentrated in 

vacuo. Pure material was obtained via silica flash column chromatography (20% ethyl 

acetate/hexanes), furnishing ketone 214 as a colorless oil (9.5 g, 87%), and NMR data 

matched the published spectra.30 

 

 

2-(3-(tert-butyl)phenyl)-2-cyclohexyl-1-phenylethan-1-one (215) 

Following a slightly-modified reported procedure31: To a flame-dried Schlenk flask was 

added (IPr)Pd(acac)Cl (93.4 mg, 0.02 equiv, 0.15 mmol) and sodium t-pentoxide (1.22 g, 

1.5 equiv, 11.1 mmol), and these solids were vac/backfilled with N2 (x3). Anhydrous PhMe 

was then added (7.5 mL), followed by commercially available 1-bromo-3-(tert-

butyl)benzene (2.6 mL, 2.0 equiv, 14.8 mmol) and ketone 214 (1.50 g, 1.0 equiv, 7.41 

mmol). The Schlenk flask was then sealed and heated to 70 ºC. When the reaction reached 

completion (usually 12–14 hours later), the reaction was cooled to room temperature and 

diluted with water. The solution was extracted with diethyl ether (x3), and the organics 

Ph

O
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were then washed with brine and dried with MgSO4 and concentrated in vacuo. Pure 

material was via flash column chromatography (2à3% ether/hexanes), furnishing ketone 

215 as a yellow oil (1.2 g, 48% yield).  

1H NMR (400 MHz, CDCl3) δ 8.01 – 7.95 (m, 2H), 7.50 – 7.46 (m, 1H), 7.42 – 7.37 (m, 

2H), 7.34 (q, J = 1.5 Hz, 1H), 7.24 – 7.18 (m, 2H), 7.14 (dt, J = 6.1, 2.4 Hz, 1H), 4.30 (d, 

J = 10.2 Hz, 1H), 2.35 – 2.23 (m, 1H), 1.87 – 1.80 (m, 1H), 1.69 – 1.61 (m, 3H), 1.29 (m, 

11H), 1.12 (s, 2H), 1.01 – 0.92 (m, 1H), 0.84 (td, J = 13.1, 10.2 Hz, 1H). 

13C NMR (101 MHz, CDCl3) δ 201.0, 151.6, 138.1, 137.7, 132.8, 128.6, 128.6, 128.3, 

126.3, 126.0, 123.9, 60.5, 41.3, 34.8, 32.8, 31.5, 30.9, 26.7, 26.4, 26.3. 

FT-IR (neat film NaCl): 2925, 2851, 1678, 1597, 1447, 1200, 690 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C24H31O: 335.2375; Measured: 355.2369. 

 
 

   

(E)-2-(3-(tert-butyl)phenyl)-2-cyclohexyl-1-phenylvinyl 4-methylbenzenesulfonate 

(202a) 

To a flame-dried Schlenk flask was added 30% Wt KH (2.28 g, 5 equiv, 17.04 mmol) then 

suspended in THF (8 mL). In a separate flask, a solution of ketone 215 (1.14 g, 1.0 equiv, 

3.41 mmol) in THF (4 mL) was prepared and added dropwise to the KH suspension. The 

flask was then sealed and heated to 60 ºC for 7 hr. Then, the enolate solution was cooled 

to room temperature and Ts2O (1.67 g, 1.5 equiv, 5.11 mmol) was added at once to the 

Ph

OTs
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enolate solution with vigorous stirring (solution turns thick). Once the reaction was 

completed by TLC analysis (10% ether/hexanes), the reaction was quenched with water 

very slowly and extracted with ethyl acetate (x3). The combined organics were washed 

once with brine, dried over Na2SO4, filtered, concentrated in vacuo, and purified by silica 

flash column chromatography (8% diethyl ether/hexanes) to yield vinyl tosylate 202a as a 

white solid (600 mg, 36% yield). The olefin isomer was confirmed to be E on the basis of 

X-ray crystallographic analysis.  

1H NMR (400 MHz, CDCl3) δ 7.64 – 7.46 (m, 2H), 7.16 – 7.05 (m, 4H), 6.95 – 6.88 (m, 

2H), 6.88 – 6.82 (m, 4H), 6.80 (dt, J = 7.4, 1.5 Hz, 1H), 2.99 (tt, J = 12.0, 3.1 Hz, 1H), 2.36 

(s, 3H), 1.68 (ddt, J = 9.9, 6.6, 3.5 Hz, 4H), 1.60 (s, 1H), 1.35 – 1.26 (m, 2H), 1.14 (s, 9H), 

1.08 (td, J = 12.9, 4.0 Hz, 2H), 1.02 – 0.95 (m, 1H). 

13C NMR (101 MHz, CDCl3) δ 150.4, 144.5, 142.6, 140.6, 136.2, 134.6, 134.4, 129.7, 

129.4, 128.4, 128.2, 127.3, 127.21, 127.18, 127.21, 123.4, 40.0, 34.5, 31.2, 31.1, 26.5, 25.9, 

21.7. 

FT-IR (neat film NaCl): 2926, 2853, 1599, 1450, 1372, 1189, 1177, 1094, 1003, 970, 913, 

842, 804, 783, 711 cm-1. 

HR-MS (ESI) m/z: [M+Na]+ Calculated for C31H36NaO3S: 511.2277; Measured: 

511.2286. 

 

 

2-cyclohexyl-2-(3,5-dimethylphenyl)-1-phenylethan-1-one (216) 

Ph

O
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Following a slightly-modified reported procedure31: To a flame-dried Schlenk flask was 

added (IPr)Pd(acac)Cl (93.4 mg, 0.02 equiv, 0.15 mmol) and sodium t-pentoxide (1.22 g, 

1.5 equiv, 11.1 mmol), and these solids were vac/backfilled with N2 (x3). Anhydrous PhMe 

was then added (7.5 mL), followed by commercially available 1-bromo-3,5-

dimethylbenzene (2.0 mL, 2.0 equiv, 14.8 mmol) and ketone 214 (1.50 g, 1.0 equiv, 7.41 

mmol). The Schlenk flask was then sealed and heated to 70 ºC. When the reaction reached 

completion (usually 12–14 hours later), the reaction was cooled to rt and diluted with water. 

The solution was extracted with diethyl ether (x3), and the organics were then washed with 

brine and dried with MgSO4 and concentrated in vacuo. Pure material was via flash column 

chromatography (5% ether/hexanes), furnishing ketone 216 as a yellow oil (1.8 g, 79% 

yield).  

1H NMR (400 MHz, CDCl3) δ 8.09 – 7.89 (m, 2H), 7.51 – 7.45 (m, 1H), 7.44 – 7.35 (m, 

2H), 6.98 – 6.89 (m, 2H), 6.82 (dt, J = 1.7, 0.9 Hz, 1H), 4.22 (d, J = 10.3 Hz, 1H), 2.27 (m, 

7H), 1.85 – 1.78 (m, 1H), 1.69 – 1.61 (m, 3H), 1.38 – 1.28 (m, 2H), 1.22 – 1.09 (m, 2H), 

1.00 – 0.92 (m, 1H), 0.89 – 0.80 (m, 1H). 

13C NMR (101 MHz, CDCl3) δ 201.0, 138.2, 138.0, 137.9, 132.8, 128.8, 128.63, 128.61, 

126.8, 60.2, 41.3, 32.8, 31.0, 26.7, 26.4, 26.3, 21.5 cm-1. 

FT-IR (neat film NaCl): 2919, 2849, 1678, 1598, 1446, 1199, 727 cm -1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C22H27O: 307.2062; Measured: 307.2058. 
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(E)-2-cyclohexyl-2-(3,5-dimethylphenyl)-1-phenylvinyl 4-methylbenzenesulfonate 

(202b) 

To a flame-dried Schlenk flask was added 30% wt KH (3.88 g, 5 equiv, 29.0 mmol) then 

dissolved in THF (14 mL). In a separate flask, a solution of ketone 216 (1.78 g, 1.0 equiv, 

5.81 mmol) in THF (7 mL) was prepared and added dropwise to the KH solution. The flask 

was then sealed and heated to 60 ºC for 7 hours. Then, the enolate solution was cooled to 

room temperature and Ts2O (2.84 g, 1.5 equiv, 8.71 mmol) was added at once to the enolate 

solution with vigorous stirring (solution turns thick). Once the reaction was completed by 

TLC analysis (10% ether/hexanes), the reaction was quenched with water very slowly and 

extracted with ethyl acetate (x3). The combined organics were washed once with brine, 

dried over Na2SO4, filtered, concentrated in vacuo, and purified by silica flash column 

chromatography (7% à 8% à 10% diethyl ether/hexanes) to yield vinyl tosylate 202b as 

a white solid (490 mg, 18% yield). The olefin isomer is assigned to be E on the basis of 

NOESY NMR (observe NOE correlations between phenyl ring and 3,5-dimethylphenyl 

ring).  

1H NMR (400 MHz, CDCl3) δ 7.64 – 7.41 (m, 2H), 7.15 – 7.10 (m, 2H), 6.97 – 6.86 (m, 

5H), 6.78 (dt, J = 1.6, 0.8 Hz, 1H), 6.57 (dt, J = 1.6, 0.8 Hz, 2H), 2.96 (tt, J = 11.9, 3.1 Hz, 

1H), 2.37 (s, 3H), 2.18 (s, 6H), 1.72 – 1.57 (m, 5H), 1.28 (dtd, J = 13.5, 9.8, 3.6 Hz, 2H), 

1.10 – 0.94 (m, 3H). 

13C NMR (101 MHz, CDCl3) δ 144.4, 142.3, 140.2, 136.9, 136.2, 134.5, 134.4, 129.6, 

Ph
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129.4, 128.6, 128.2, 128.1, 127.4, 127.2, 40.0, 31.0, 26.5, 25.9, 21.7, 21.4. 

FT-IR (neat film NaCl): 2926, 2853, 1598, 1444, 1369, 1188, 1176, 1094, 1033, 1001, 

968, 914, 824, 772, 695, 669 cm-1. 

HR-MS (ESI) m/z: [M+Na]+ Calculated for C29H32NaO3S: 483.1964; Measured: 

483.1973. 

 

 

2-([1,1'-biphenyl]-4-yl)-2-cyclohexyl-1-phenylethan-1-one (217) 

Following a slightly-modified reported procedure31: To a flame-dried Schlenk flask was 

added (IPr)Pd(acac)Cl (93.4 mg, 0.02 equiv, 0.15 mmol) and sodium t-pentoxide (1.22 g, 

1.5 equiv, 11.1 mmol), and these solids were vac/backfilled with N2 (x3). Anhydrous PhMe 

was then added (7.5 mL), followed by commercially available 4-bromo-1,1'-biphenyl (3.46 

g, 2.0 equiv, 14.8 mmol) and ketone 214 (1.50 g, 1.0 equiv, 7.41 mmol). The Schlenk flask 

was then sealed and heated to 70 ºC. When the reaction reached completion (usually 12–

14 hours later), the reaction was cooled to room temperature and diluted with water. The 

solution was extracted with diethyl ether (x3), and the organics were then washed with 

brine and dried with MgSO4 and concentrated in vacuo. Pure material was obtained via 

flash column chromatography (5% ether/hexanes), furnishing ketone 217 as a white solid 

(1.8 g, 69% yield).  

1H NMR (400 MHz, CDCl3) δ 8.08 – 7.96 (m, 2H), 7.57 – 7.48 (m, 5H), 7.46 – 7.38 (m, 

6H), 7.34 – 7.29 (m, 1H), 4.37 (d, J = 10.2 Hz, 1H), 2.39 – 2.28 (m, 1H), 1.86 (ddt, J = 

Ph

O

Ph
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12.4, 3.7, 1.9 Hz, 1H), 1.73 – 1.62 (m, 3H), 1.44 – 1.30 (m, 2H), 1.27 – 1.12 (m, 2H), 1.07 

– 0.96 (m, 1H), 0.94 – 0.85 (m, 1H). 

13C NMR (101 MHz, CDCl3) δ 200.9, 140.8, 139.9, 137.9, 137.2, 133.0, 129.4, 128.9, 

128.7, 128.6, 127.5, 127.3, 127.1, 59.8, 41.4, 32.8, 31.0, 26.7, 26.4, 26.3. 

FT-IR (neat film NaCl): 3027, 2928, 2850, 1680, 1596, 1580, 1485, 1447, 1409, 1344, 

1284, 1251, 1200, 1178, 1073, 1002, 957, 909, 844, 819, 760, 735, 692 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C26H27O: 355.2062; Measured: 355.2059. 

 

        
(E)-2-([1,1'-biphenyl]-4-yl)-2-cyclohexyl-1-phenylvinyl 4-methylbenzenesulfonate 

(202c) 

To a flame-dried Schlenk flask was added 30% Wt KH (3.45 g, 5 equiv, 25.8 mmol) then 

dissolved in THF (12.6 mL). In a separate flask, a solution of ketone 217 (1.83 g, 1.0 equiv, 

5.16 mmol) in THF (6 mL) was prepared and added dropwise to the KH solution. The flask 

was then sealed and heated to 40 ºC for 7 hours. Then, the enolate solution was cooled to 

room temperature and Ts2O (2.53 g, 1.5 equiv, 7.74 mmol) was added at once to the enolate 

solution with vigorous stirring (solution turns thick). Once the reaction was completed by 

TLC analysis (10% ether/hexanes), the reaction was quenched with water very slowly and 

extracted with ethyl acetate (x3). The combined organics were washed once with brine, 

dried over Na2SO4, filtered, concentrated in vacuo, and purified by silica flash column 

chromatography (8% diethyl ether/hexanes) to yield vinyl tosylate 202c as a white solid 

Ph

OTs

Ph
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(412 mg, 16% yield). The olefin isomer is assigned to be E on the basis of NOESY NMR 

(observe NOE correlations between tosylate and piperidine protons). The olefin isomer 

was confirmed to be E on the basis of X-ray crystallographic analysis. 

1H NMR (400 MHz, CDCl3) δ 7.60 – 7.49 (m, 4H), 7.44 – 7.36 (m, 4H), 7.34 – 7.28 (m, 

1H), 7.17 – 7.11 (m, 2H), 7.07 – 7.01 (m, 2H), 7.00 – 6.92 (m, 3H), 6.92 – 6.85 (m, 2H), 

3.03 (tt, J = 12.1, 2.9 Hz, 1H), 2.37 (s, 3H), 1.77 – 1.66 (m, 4H), 1.64 – 1.57 (m, 1H), 1.32 

(qt, J = 12.3, 2.9 Hz, 2H), 1.18 – 1.04 (m, 2H), 0.98 (dtd, J = 13.0, 9.6, 3.4 Hz, 1H). 

13C NMR (101 MHz, CDCl3) δ 145.0, 143.1, 141.0, 140.2, 139.9, 136.2, 134.83, 134.82, 

131.3, 130.2, 129.9, 129.3, 128.6, 128.0, 127.9, 127.8, 127.4, 126.8, 40.6, 31.5, 26.9, 26.4, 

22.1. 

FT-IR (neat film NaCl): 3028, 2928, 2853, 1598, 1486, 1446, 1370, 1218, 1189, 1091, 

1033, 1002, 959, 911, 858, 839, 812, 782, 733, 696, 666, 622 cm-1. 

HR-MS (ESI) m/z: [M+Na]+ Calculated for C33H32NaO3S: 531.1964; Measured: 

531.1969. 

 

Representative scheme for the synthesis of N-Tf piperidinyl iodide: 

 

 

(1-((trifluoromethyl)sulfonyl)piperidin-4-yl)methanol (218) 

N
H

OH

N
Tf

OH

N
Tf

I
Tf2O (1.02 equiv)
NEt3 ( 1.2 equiv)

DCM, 0 ºC to rt

53% yield

PPh3 (1.5 equiv)
I2 ( 1.5 equiv)

Imidazole (1.5 equiv)

DCM, 0 ºC to rt

92% yield

N
Tf

OH
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To a flame-dried flask with a magnetic stir bar was added commercially available 

piperidin-4-ylmethanol (9.80 g, 1.0 equiv, 85.0 mmol) followed by 140 mL dry DCM and 

14.2 mL of freshly distilled (over CaH2) triethylamine (10.33 g, 1.2 equiv, 102.1 mmol). 

The solution was cooled to 0 ºC and allowed to stir for 20 minutes at this temperature. 

Then, freshly dried and distilled (over P2O5) Tf2O (24.48 mmol, 1.02 equiv, 86.79 mmol) 

was added dropwise very slowly over the course of ~20 minutes. The reaction was allowed 

to stir at 0 ºC for 2 hours, then warmed to room temperature and allowed to stir overnight. 

The next morning, the reaction was cooled again to 0 ºC and quenched with water and 

extracted with DCM (x3). The combined organics were dried over Na2SO4, filtered, then 

concentrated in vacuo. The crude material was purified via silica flash column 

chromatography (20% diethyl ether in DCM, product stains with KMnO4 TLC stain) to 

yield alcohol 218 as a white solid (11.2 g, 53% yield). 

1H NMR (400 MHz, CDCl3) δ 3.99 (d, J = 13.1 Hz, 2H), 3.55 (d, J = 6.3 Hz, 2H), 3.04 (t, 

J = 12.7 Hz, 2H), 1.95 – 1.82 (m, 2H), 1.80 – 1.58 (m, 1H), 1.45 (br s, 1H), 1.41 – 1.27 (m, 

2H). 

13C NMR (101 MHz, CDCl3) δ 120.2 (q, J = 323 Hz), 66.9, 46.8, 37.8, 28.6. 

19F NMR (376 MHz, CDCl3) δ -75.2 (br s). 

FT-IR (neat film NaCl): 3333, 2927, 1447, 1385, 1227, 1184, 1150, 1124, 1049, 980, 939, 

762, 708, 683 cm-1. 

HR-MS (FD) m/z: [M•]+ Calculated for C7H12F3NO3S: 247.0490; Measured: 247.0481. 
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4-(iodomethyl)-1-((trifluoromethyl)sulfonyl)piperidine (219) 

To a flame-dried flask with a magnetic stir bar was added PPh3 (18.1 g, 1.5 equiv, 69.2 

mmol) and imidazole (4.7 g, 1.5 equiv, 69.2 mmol). The solids were dissolved in 145 mL 

dry DCM then cooled to 0 ºC. After stirring at this temperature for 20 minutes, solid I2 

(17.6g, 1.5 equiv, 69.2 mmol) was added in three portions and allowed to stir for another 

30 minutes at 0 ºC under N2. Then, a solution of alcohol 218 (11.4 g, 1.0 equiv, 46.1 mmol) 

in 30 mL dry DCM was added dropwise and the reaction was allowed to warm up to room 

temperature overnight. The next morning (SM consumed by TLC) saturated aqueous 

Na2S2O3 was added and then subsequently extracted with DCM (x3). The combined 

organics were dried over Na2SO4, filtered, concentrated in vacuo, then purified via silica 

flash column chromatography (20% diethyl ether in hexanes) to yield pure iodide 219 as a 

white solid (15.2 g, 92% yield).  

1H NMR (400 MHz, CDCl3) δ 3.93 (dt, J = 13.3, 2.5 Hz, 2H), 3.11 (d, J = 6.5 Hz, 2H), 

3.01 (t, J = 12.8 Hz, 2H), 2.30 – 1.81 (m, 2H), 1.63 (m, 1H), 1.39 – 1.24 (m, 2H). 

13C NMR (101 MHz, CDCl3) δ 120.0 (q, J = 323.4 Hz), 46.4, 37.4, 32.2, 11.9. 

19F NMR (376 MHz, CDCl3): δ -75.3 (br s). 

FT-IR (neat film NaCl): 2946, 2881, 1466, 1447, 1391, 1355, 1296, 1254, 1228, 1190, 

1143, 1062, 1039, 993, 977, 945, 846, 810, 764, 709, 683, 668, 620 cm-1. 

HR-MS (FD) m/z: [M•]+ Calculated for C7H11F3INO2S: 356.9507; Measured: 356.9493. 

 

 

N
Tf

I



Chapter 4 – Catalytic Asymmetric C–H Insertion Reactions of Vinyl Carbocations   
 

327 

Representative scheme for the synthesis of N-Tf piperidinyl vinyl tosylate substrates: 

 

The general procedure outlined above was used to prepare N-Tf piperidinyl vinyl tosylate 

substrates from the corresponding aryl acetic acid-derived Weinreb amides, which were 

prepared according to published procedures.32 The procedure for synthesis of aryl 

acetophenones was adopted from Schindler et al.33 The tosylation step generates the E 

isomer shown as the major isomer, but some Z isomer is also produced, which is typically 

more polar in Rf and could be separated out via column chromatography. While both the Z 

and E isomer of the vinyl tosylate give similar results in C–H insertion reactions (activity 

and enantioselectivity), only the E isomer was used for experiments unless otherwise noted.  

*If the vinyl tosylate is impure after column chromatography, pure material could be 

obtained via recrystallization from hexanes/ethyl acetate or hexanes/diethyl ether.  

 

 

2-phenyl-1-(p-tolyl)ethan-1-one (220) was prepared according to literature procedures 

and matched the NMR data in the literature.34 

N

O
Ar2O

MgBrAr1
(1.5–2 equiv)

THF, 0 ºC
Ar1

O
Ar2

X

I

(1.05 equiv)

KOtBu (1.1 equiv)

THF, 0 ºC to rt

Ar1

O
Ar2

X

Ar1

OTs

Ar2 X

Ts2O (1.6 equiv)
KOtBu (1.6 equiv)

THF, 0 ºC to rt

General scheme:

X = NTf, CH2

O
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2-phenyl-1-(p-tolyl)-3-(1-((trifluoromethyl)sulfonyl)piperidin-4-yl)propan-1-one 

(221)  

To a flamed-dried flask was added KOtBu (293 mg, 1.1 equiv, 2.6 mmol). This flask was 

evacuated under vacuum and backfilled with nitrogen three times. To this was added THF 

(8 mL), and the flask was cooled to 0 ºC. To this flask was added ketone 220 (0.50 g, 1.0 

equiv, 2.4 mmol) in THF (4 mL), and the solution was stirred at 0 ºC for 20 minutes. To 

this was added a solution of iodide 219 (892 mg, 1.05 equiv, 2.50 mmol) in THF (4 mL). 

The reaction flask was allowed to warm up to room temperature overnight and quenched 

by addition of saturated aqueous NH4Cl (10 mL). The aqueous layer was extracted with 

ethyl acetate (3x 15 mL), dried over Na2SO4, filtered, concentrated in vacuo, and purified 

by silica flash column chromatography (5% ethyl acetate in hexanes) to yield ketone 221 

as a white solid (788 mg, 75% yield). 

1H NMR (300 MHz, CDCl3) δ 7.84 (d, J = 8.1 Hz, 2H), 7.28 – 7.23 (m, 5H), 7.17 (d, J = 

8.1 Hz, 2H), 4.63 (t, J = 7.5 Hz, 1H), 4.09 – 3.66 (m, 2H), 2.90 (q, J = 13.0 Hz, 2H), 2.29 

– 2.04 (m, 3H), 1.98 – 1.63 (m, 1H), 1.50 – 1.13 (m, 3H). 

13C NMR (101 MHz, CDCl3) δ 198.6, 144.1, 139.3, 133.9, 129.3, 129.0, 128.7, 127.9, 

127.2, 120.0 (q, J = 323.7 Hz), 50.0, 46.7, 40.08, 32.82, 31.91, 21.57. 

19F NMR (282 MHz, CDCl3) δ -75.2. 

FT-IR (neat film NaCl): 2919, 1675, 1604, 1460, 1387, 1182, 1149, 1118, 1047, 949, 937, 

706 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C22H25F3NO3S: 440.1507; Measured: 

O

NTf
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440.1509. 

 

 
 
2-phenyl-1-(p-tolyl)-3-(1-((trifluoromethyl)sulfonyl)piperidin-4-yl)prop-1-en-1-yl 4-

methylbenzenesulfonate (212a) 

To a flame-dried flask was added KOtBu (666 mg, 1.5 equiv, 5.94 mmol) and THF (15 

mL). This solution was cooled to 0 ºC and ketone 221 (1.74 g, 1.0 equiv, 3.9 mmol) was 

added dropwise as a solution in THF (10 mL). This solution was stirred at 0 ºC for 1 hour. 

To this was added p-toluenesulfonic anhydride (1.94 g, 1.5 equiv, 5.94 mmol) as a fine 

suspension in THF (15 mL). This solution was allowed to warm to room temperature and 

stirred for 1 hour. The reaction was diluted with ethyl acetate (30 mL) and 1M aqueous 

NaOH (10 mL). The organic layer was separated, and the aqueous layer was extracted with 

ethyl acetate (3 x 20 mL), dried over Na2SO4, filtered, concentrated in vacuo, and purified 

by flash column chromatography (1% à 20% ether in hexanes). The new spot was 

collected (lower in Rf than starting ketone), which correspond to the E vinyl tosylate as 

212a (942 mg, 40% yield, white solid). The olefin isomer is assigned to be E on the basis 

of NOESY NMR (observe NOE correlations between tosylate and piperidine fragments). 

Consistent with this assignment, the chemical shift of the allylic methylene protons (2.73 

ppm) is congruent to similarly reported E diaryl vinyl tosylates (typically ~2.7 ppm for 

allylic methylene), which are distinct from the reported Z isomer chemical shift (typically 

~2.3 ppm for allylic methylene of corresponding Z vinyl tosylate).35  

OTs

NTf
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1H NMR (400 MHz, CDCl3) δ 7.45 (d, J = 8.3 Hz, 2H), 7.21 – 7.14 (m, 3H), 7.09 (d, J = 

8.1 Hz, 1H), 7.02 (dd, J = 6.6, 2.9 Hz, 2H), 6.80 – 6.62 (m, 2H), 3.84 (d, J = 13.0 Hz, 2H), 

2.89 (s, 1H), 2.69 (d, J = 6.3 Hz, 2H), 2.37 (s, 3H), 2.18 (s, 3H), 1.71 (d, J = 11.8 Hz, 2H), 

1.44 – 1.17 (m, 3H). 

13C NMR (101 MHz, CDCl3) δ 144.9, 144.4, 138.2, 137.9, 134.3, 131.6, 130.2, 129.8, 

129.2, 129.2, 128.4, 128.1, 127.9, 127.3, 120.1 (q, J = 323.3 Hz), 46.6, 38.7, 33.0, 31.4, 

21.5, 21.2. 

19F NMR (282 MHz, CDCl3) δ -75.3 (br s). 

FT-IR (neat film NaCl): 2927, 1598, 1386, 1226, 1188, 1150, 1049, 971, 941, 849 cm-1. 

HR-MS (EI-MS) m/z: [M+K]+ Calculated for C29H30F3NO5S2K: 632.1155; Measured: 

632.1166. 

 

 

1-(4-cyclopropylphenyl)-2-phenylethan-1-one (222)  

Magnesium turnings (546 mg, 1.75 equiv, 22.5 mmol) were flame-dried under high 

vacuum in a round bottom flask (x3) then suspended in dry THF (64 mL). Commercially 

available 1-bromo-4-cyclopropylbenzene (5.06 g, 2.0 equiv, 25.7 mmol, 3.4 mL) was 

added followed by a small grain of I2. The solution was allowed to stir with gentle heating 

via a heat gun until the purple-brown color of the I2 disappears. The suspension was then 

stirred until all the magnesium turnings are visibly consumed. At this point, the reaction 

was cooled to 0 ºC, and then a solution of N-methoxy-N-methyl-2-phenylacetamide (2.30 

g, 1.0 equiv, 12.80 mmol) in 6.4 mL THF was added dropwise. The reaction was monitored 

O
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closely by TLC to determine starting material consumption (usually 5–20 minutes), then 

quenched with 30 mL saturated aqueous ammonium chloride while at 0 ºC. The reaction 

was extracted with diethyl ether (x3), then the combined organics were washed with brine, 

dried over MgSO4, filtered through a short pad of silica (wash through with diethyl ether), 

and concentrated in vacuo. Pure material was obtained via silica flash column 

chromatography (7.5% ether/hexanes), furnishing ketone 222 as a white solid (2.6 g, 86%).  

1H NMR (400 MHz, CDCl3) δ 7.91 – 7.84 (m, 2H), 7.31 – 7.25 (m, 2H), 7.25 – 7.17 (m, 

3H), 7.11 – 7.05 (m, 2H), 4.21 (s, 2H), 1.90 (ddd, J = 8.4, 5.1, 3.4 Hz, 1H), 1.06 – 0.98 (m, 

2H), 0.78 – 0.69 (m, 2H). 

13C NMR (101 MHz, CDCl3) δ 197.2, 150.6, 135.0, 134.1, 129.5, 129.0, 128.8, 126.9, 

125.7, 45.5, 15.9, 10.5. 

FT-IR (neat film NaCl): 1676, 1604, 1459, 1411, 1328, 1044, 812, 713 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C17H17O: 237.1274; Measured: 237.1275. 

 

 

1-(4-cyclopropylphenyl)-2-phenyl-3-(1-((trifluoromethyl)sulfonyl)piperidin-4-

yl)propan-1-one (223) 

To a flamed-dried flask was added KOtBu (1.16 g, 1.1 equiv, 10.36 mmol). This flask was 

evacuated under vacuum and backfilled with nitrogen three times. To this was added THF 

(24 mL), and the flask was cooled to 0 ºC. To this flask was added ketone 222 (2.22 g, 1.0 

equiv, 9.4 mmol) in THF (20.5 mL), and the solution was stirred at 0 ºC for 20 minutes. 

To this was added a solution of iodide 219 (3.53 g, 1.05 equiv, 9.89 mmol) in THF (16 

O

NTf
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mL). The reaction flask was allowed to warm up to room temperature overnight, and 

quenched by addition of saturated aqueous NH4Cl (10 mL). The aqueous layer was 

extracted with ethyl acetate (3x 15 mL), dried over Na2SO4, filtered, concentrated in vacuo, 

and purified by silica flash column chromatography (15 à 20% diethyl ether in hexanes) 

to yield ketone 223 as a white solid (2.6 g, 59% yield). 

1H NMR (400 MHz, CDCl3) δ 7.84 (d, J = 8.5 Hz, 2H), 7.32 – 7.23 (m, 4H), 7.19 (tddd, J 

= 5.6, 4.9, 3.3, 2.6 Hz, 1H), 7.04 (d, J = 8.4 Hz, 2H), 4.62 (dd, J = 8.1, 6.7 Hz, 1H), 3.87 

(tt, J = 12.8, 2.1 Hz, 2H), 2.90 (dt, J = 22.2, 12.7 Hz, 2H), 2.19 (ddd, J = 14.4, 8.1, 6.5 Hz, 

1H), 1.94 – 1.81 (m, 2H), 1.81 – 1.65 (m, 2H), 1.48 – 1.23 (m, 3H), 1.07 – 0.96 (m, 2H), 

0.71 (qd, J = 4.8, 2.6 Hz, 2H). 

13C NMR (101 MHz, CDCl3) δ 198.6, 150.7, 139.6, 133.9, 129.2, 129.0, 128.1, 127.4, 

125.7, 120.2 (q, J = 323.4 Hz), 77.5, 77.2, 76.8, 50.2, 46.90, 46.88, 40.3, 33.0, 32.1, 15.8, 

10.57, 10.55. 

19F NMR (376 MHz, CDCl3) δ -75.2. 

FT-IR (neat film NaCl): 3007, 2936, 1674, 1604, 1566, 1493, 1453, 1415, 1386, 1273, 

1253, 1226, 1186, 1146, 1117, 1049, 998, 949, 910, 823, 728, 709, 610 cm-1. 

HR-MS (ESI) m/z: [M+Na]+ Calculated for C24H26F3NNaO3S: 488.1478; Measured: 

488.1471. 

 

 

 (E)-1-(4-cyclopropylphenyl)-2-phenyl-3-(1-((trifluoromethyl)sulfonyl)piperidin-4-

yl)prop-1-en-1-yl 4-methylbenzenesulfonate (212b) 

OTs

NTf
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To a flame-dried flask was added ketone 223 (1.00 g, 1.0 equiv, 2.15 mmol) and dry THF 

(2.60 mL). A 1.0 M solution of LiOtBu in THF (3.2 mL) was added dropwise and stirred 

at room temperature for 30 minutes. Then, p-toluenesulfonic anhydride (1.05 g, 1.5 equiv, 

3.22 mmol) in THF (5.6 mL) was added dropwise to the enolate solution with vigorous 

stirring, and then the solution was allowed to warm to room temperature (solution turns 

thick). This solution was then stirred for 1 hour. The reaction was quenched with NaHCO3 

(10 mL) and extracted with diethyl ether (3 x 15 mL). The combined organic layers were 

washed with brine, dried over Na2SO4, filtered, concentrated in vacuo, and purified by 

silica flash chromatography (20% diethyl ether in hexanes) to give vinyl tosylate 212b (300 

mg, 23% yield). The olefin isomer is assigned to be E on the basis of NOESY NMR 

(observe NOE correlations between tosylate and piperidine fragments). Consistent with 

this assignment, the chemical shift of the allylic methylene protons (2.72 ppm in CDCl3) 

is congruent to similarly reported E diaryl vinyl tosylates (typically ~2.7 ppm for allylic 

methylene in CDCl3), which are distinct from the reported Z isomer chemical shift 

(typically ~2.3 ppm for allylic methylene of corresponding Z vinyl tosylate in CDCl3).35  

1H NMR (400 MHz, CDCl3) δ 7.47 – 7.36 (m, 2H), 7.22 – 7.13 (m, 3H), 7.13 – 6.99 (m, 

4H), 6.70 (d, J = 8.4 Hz, 2H), 6.54 (d, J = 8.3 Hz, 2H), 3.85 (dd, J = 13.3, 4.0 Hz, 2H), 

2.89 (s, 2H), 2.72 (d, J = 6.0 Hz, 2H), 2.36 (s, 3H), 1.71 (tdd, J = 8.4, 5.3, 2.8 Hz, 3H), 

1.38 (dt, J = 11.9, 6.1 Hz, 3H), 0.95 – 0.85 (m, 2H), 0.53 (dt, J = 6.6, 4.6 Hz, 2H). 

13C NMR (101 MHz, CDCl3) δ 145.1, 144.4, 144.3, 138.4, 134.5, 131.7, 130.3, 129.9, 

129.3, 129.3, 128.5, 128.0, 127.4, 124.6, 123.9 ( J = 323.9 HZ), 46.7, 38.9, 33.2, 31.5, 31.5, 

21.6, 15.2, 9.7. 

19F NMR (376 MHz, CDCl3) δ -75.2. 
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FT-IR (neat film NaCl): 2924, 1598, 1444, 1387, 1226, 1188, 1177, 1149, 1116, 1049, 

968, 941, 848, 830, 812, 777, 757, 707 cm-1. 

HR-MS (ESI) m/z: [M+Na]+ Calculated for C31H32F3NNaO5S2: 642.1566; Measured: 

642.1586. 

 

 

1-(4-(tert-butyl)phenyl)-2-phenylethan-1-one (224) was prepared according to literature 

procedures and matched the NMR data in the literature.34 

 

 

1-(4-(tert-butyl)phenyl)-2-phenyl-3-(1-((trifluoromethyl)sulfonyl)piperidin-4-

yl)propan-1-one (225)  

To a flamed-dried flask was added KOtBu (734 mg, 1.1 equiv, 6.54 mmol). This flask was 

evacuated under vacuum and backfilled with nitrogen three times. To this was added THF 

(15 mL), and the flask was cooled to 0 ºC. To this flask was added ketone 224 (1.50 g, 1.0 

equiv, 5.94 mmol) in THF (13 mL), and the solution was stirred at 0 ºC for 20 minutes. To 

this was added a solution of iodide 219 (2.23 g, 1.05 equiv, 6.24 mmol) in THF (10 mL). 

The reaction flask was allowed to warm up to room temperature overnight, and quenched 

by addition of saturated aqueous NH4Cl (10 mL). The aqueous layer was extracted with 

ethyl acetate (3x 15 mL), dried over Na2SO4, filtered, concentrated in vacuo, and purified 

O

O

NTf
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by silica flash column chromatography (10% diethyl ether in hexanes) to yield ketone 225 

as a white solid (2.0 g, 70% yield). 

1H NMR (400 MHz, CDCl3) δ 7.94 – 7.88 (m, 2H), 7.44 – 7.39 (m, 2H), 7.30 (d, J = 4.9 

Hz, 4H), 7.25 – 7.19 (m, 1H), 4.66 (dd, J = 8.2, 6.7 Hz, 1H), 3.89 (tdt, J = 13.0, 4.4, 2.4 

Hz, 2H), 3.04 – 2.80 (m, 2H), 2.22 (ddd, J = 14.4, 8.2, 6.5 Hz, 1H), 1.89 (dp, J = 13.2, 2.7 

Hz, 1H), 1.81 – 1.71 (m, 2H), 1.47 – 1.30 (m, 3H), 1.30 (s, 9H). 

13C NMR (101 MHz, CDCl3) δ 198.7, 157.1, 139.5, 134.0, 129.3, 128.8, 128.2, 127.4, 

125.8, 120.2 (q, J = 323.9 Hz), 77.5, 77.2, 76.8, 50.3, 46.91, 46.88, 40.4, 35.2, 33.0, 32.08, 

32.05, 31.2. 

19F NMR (376 MHz, CDCl3) δ -75.8. 

FT-IR (neat film NaCl): 2963, 2870, 1676, 1603, 1387, 1268, 1226, 1186, 1147, 1117, 

1051, 949, 709 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C25H31F3NO3S: 482.1971; Measured: 

482.1972. 

 

 

(E)-1-(4-(tert-butyl)phenyl)-2-phenyl-3-(1-((trifluoromethyl)sulfonyl)piperidin-4-

yl)prop-1-en-1-yl 4-methylbenzenesulfonate (212c) 

To a flame-dried flask was added KOtBu (708 mg, 1.6 equiv, 6.31 mmol) and THF (9 mL). 

This solution was cooled to 0 ºC and ketone 225 (1.90 g, 1.0 equiv, 3.95 mmol) was added 

dropwise as a solution in THF (14 mL). This solution was stirred at 0 ºC for 2 hours. To 

this was quickly added solid toluenesulfonic anhydride (2.06 g, 1.6 equiv, 6.31 mmol) with 

OTs

NTf
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vigorous stirring, and then the solution was allowed to warm to room temperature (solution 

turns thick). After 1.5 hours, the reaction was diluted with ethyl acetate (15 mL) and water 

(15 mL). The organic layer was separated, and the aqueous layer was extracted with ethyl 

acetate (3 x 10 mL), dried over Na2SO4, filtered, concentrated in vacuo, and purified by 

silica flash column chromatography (15% diethyl ether in hexanes) to give vinyl tosylate 

212c (1.0 g, 40% yield). The olefin isomer is assigned to be E on the basis of NOESY 

NMR (observe NOE correlations between tosylate and piperidine fragments). Consistent 

with this assignment, the chemical shift of the allylic methylene protons (2.77 ppm in 

CDCl3) is congruent to similarly reported E diaryl vinyl tosylates (typically ~2.7 ppm for 

allylic methylene in CDCl3), which are distinct from the reported Z isomer chemical shift 

(typically ~2.3 ppm for allylic methylene of corresponding Z vinyl tosylate in CDCl3).35  

1H NMR (400 MHz, CDCl3) δ 7.38 (d, J = 8.4 Hz, 2H), 7.21 – 7.15 (m, 3H), 7.06 – 6.98 

(m, 4H), 6.86 – 6.81 (m, 2H), 6.76 – 6.69 (m, 2H), 3.87 (dd, J = 13.3, 3.9 Hz, 2H), 2.90 (t, 

J = 10.8 Hz, 2H), 2.77 (d, J = 6.2 Hz, 2H), 2.31 (s, 3H), 1.79 – 1.68 (m, 2H), 1.46 – 1.32 

(m, 3H), 1.17 (s, 9H). 

13C NMR = (101 MHz, CDCl3) δ 151.1, 145.1, 144.2, 138.4, 134.6, 132.0, 130.2, 129.7, 

129.4, 129.3, 128.5, 128.1, 127.4, 124.40, 120.2 (app q, J = 323.5 Hz), 46.8, 39.0, 34.6, 

33.30, 33.28, 33.26, 33.2, 31.6, 31.3, 21.7. 

19F NMR (282 MHz, CDCl3) δ -75.3. 

FT-IR (neat film NaCl): 2960, 1598, 1444, 1389, 1227, 1177, 1150, 1116, 1065, 1049, 

971, 942, 913, 852, 839, 812, 779, 760, 732, 707 cm-1. 

HR-MS (ESI) m/z: [M+K]+ Calculated for C32H36F3KNO5S2: 674.1619; Measured: 

674.1622. 
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1-(4-fluorophenyl)-2-phenylethan-1-one (226) was prepared according to literature 

procedures and matched the NMR data in the literature.36 

 

 

1-(4-fluorophenyl)-2-phenyl-3-(1-((trifluoromethyl)sulfonyl)piperidin-4-yl)propan-

1-one (227)  

To a flamed-dried flask was added KOtBu (576 mg, 1.1 equiv, 5.13 mmol). This flask was 

evacuated under vacuum and backfilled with nitrogen three times. To this was added THF 

(12 mL), and the flask was cooled to 0 ºC. To this flask was added ketone 226 (1.00 g, 1.0 

equiv, 4.67 mmol) in THF (10 mL), and the solution was stirred at 0 ºC for 20 minutes. To 

this was added a solution of iodide 219 (1.75 g, 1.05 equiv, 4.90 mmol) in THF (8 mL). 

The reaction flask was allowed to warm up to room temperature overnight, and quenched 

by addition of saturated aqueous NH4Cl (10 mL). The aqueous layer was extracted with 

ethyl acetate (3x 15 mL), dried over Na2SO4, filtered, concentrated in vacuo, and purified 

by silica flash column chromatography (10% diethyl ether in hexanes) to yield ketone 227 

as a white solid (1.45 g, 70% yield). 

1H NMR (400 MHz, CDCl3) δ 8.02 – 7.88 (m, 2H), 7.32 – 7.19 (m, 5H), 7.11 – 6.98 (m, 

2H), 4.58 (t, J = 7.4 Hz, 1H), 3.89 (ddt, J = 15.1, 12.8, 2.1 Hz, 2H), 2.92 (d, J = 15.3 Hz, 
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2H), 2.18 (ddd, J = 14.4, 7.8, 6.6 Hz, 1H), 1.88 (dt, J = 12.8, 2.5 Hz, 1H), 1.79 (dt, J = 

13.7, 6.7 Hz, 1H), 1.71 (dt, J = 12.9, 2.6 Hz, 1H), 1.44 – 1.23 (m, 3H). 

13C NMR (101 MHz, CDCl3) δ 197.6, 165.8 d, J = 255.5 Hz), 139.1, 132.9 (d, J = 3.0 Hz), 

131.5 (d, J = 9.2 Hz), 129.4, 128.1, 127.6, 120.2 (q, J = 323.9 Hz), 116.0, 115.8, 77.5, 77.2, 

76.8, 50.5, 46.9, 40.2, 32.9, 32.1, 32.0. 

19F NMR (376 MHz, CDCl3) δ -75.8, -104.8. 

FT-IR (neat film NaCl): 2929, 1680, 1597, 1505, 1448, 1386, 1275, 1226, 1187, 1155, 

1118, 1052, 948, 741, 709 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C21H22F4NO3S: 444.1251; Measured: 

444.1252. 

 

 

(E)-1-(4-fluorophenyl)-2-phenyl-3-(1-((trifluoromethyl)sulfonyl)piperidin-4-yl)prop-

1-en-1-yl 4-methylbenzenesulfonate (212d)  

To a flame-dried flask was added KOtBu (555 mg, 1.6 equiv, 4.94 mmol) and THF (7 mL). 

This solution was cooled to 0 ºC and ketone 227 (1.37 g, 1.0 equiv, 3.09 mmol) was added 

dropwise as a solution in THF (11 mL). This solution was stirred at 0 ºC for 2 h. To this 

was quickly added solid toluenesulfonic anhydride (1.61 g, 1.6 equiv, 4.94 mmol). This 

solution was allowed to warm to room temperature and stirred for 1.5 hours. The reaction 

was diluted with ethyl acetate (15 mL) and water (15 mL). The organic layer was separated, 

and the aqueous layer was extracted with ethyl acetate (3 x 10 mL), dried over Na2SO4, 

filtered, concentrated in vacuo, and purified by silica flash column chromatography (25% 
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diethyl ether in hexanes) to give vinyl tosylate 212d (700 mg, 38% yield) as a white solid. 

The olefin isomer is assigned to be E on the basis of NOESY NMR (observe NOE 

correlations between tosylate and piperidine fragment). Consistent with this assignment, 

the chemical shift of the allylic methylene protons (2.71 ppm in CDCl3) is congruent to 

similarly reported E diaryl vinyl tosylates (typically ~2.7 ppm for allylic methylene in 

CDCl3), which are distinct from the reported Z isomer chemical shift (typically ~2.3 ppm 

for allylic methylene of corresponding Z vinyl tosylate in CDCl3).35 

1H NMR (400 MHz, CDCl3) δ 7.55 – 7.36 (m, 2H), 7.24 – 7.16 (m, 3H), 7.13 (d, J = 8.1 

Hz, 2H), 7.04 – 6.96 (m, 2H), 6.89 – 6.78 (m, 2H), 6.66 – 6.54 (m, 2H), 3.93 – 3.76 (m, 

2H), 2.89 (t, J = 10.8 Hz, 2H), 2.71 (d, J = 6.0 Hz, 2H), 2.38 (s, 3H), 1.72 (dd, J = 12.8, 

2.8 Hz, 2H), 1.46 – 1.28 (m, 3H).  

13C NMR = (101 MHz, CDCl3) δ 162.2 (d, J = 249.3 Hz) 145.0, 143.9, 138.0, 134.4, 132.8, 

131.9 (d, J = 8.4 Hz), 129.8 (d, J = 3.5 Hz),129.5, 129.3, 128.7, 128.0, 127.7, 120.2 (q, J = 

323.5 Hz), 114.8, 114.6, 46.7, 38.9, 33.2, 31.6, 21.7. 

19F NMR (282 MHz, CDCl3) δ -75.3, -112.3. 

FT-IR (neat film NaCl): 3052, 2927, 2874, 1649, 1600, 1508, 1493, 1445, 1385, 1334, 

1306, 1276, 1227, 1189, 1178, 1150, 1116, 1080, 1065, 1049, 975, 942, 911, 852, 814, 

776, 760, 735, 708, 673 cm-1. 

HR-MS (ESI) m/z: [M+Na]+ Calculated for C28H27F4NNaO5S2: 620.1159; Measured: 

620.1170. 
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2-(4-fluorophenyl)-1-(4-methoxyphenyl)ethan-1-one (228) 

Prepared according to literature procedures and matched the NMR data in the literature.37 

 

 

2-(4-fluorophenyl)-1-(4-methoxyphenyl)-3-(1-((trifluoromethyl)sulfonyl)piperidin-4-

yl)propan-1-one (229)  

To a flamed-dried flask was added KOtBu (884 mg, 1.1 equiv, 7.88 mmol). This flask was 

evacuated under vacuum and backfilled with nitrogen three times. To this was added THF 

(18 mL), and the flask was cooled to 0 ºC. To this flask was added ketone 228 (1.750 g, 1 

equiv, 7.164 mmol) in THF (16 mL), and the solution was stirred at 0 ºC for 20 minutes. 

To this was added a solution of iodide 219 (2.69 g, 1.05 equiv, 7.52 mmol). The reaction 

flask was allowed to warm up to room temperature overnight, and quenched by addition of 

saturated aqueous NH4Cl (10 mL). The aqueous layer was extracted with ethyl acetate (3x 

15 mL), dried over Na2SO4, filtered, concentrated in vacuo, and purified by silica flash 

column chromatography (30% diethyl ether in hexanes) to yield ketone 229 as a white solid 

(2.00 g, 59% yield). 

1H NMR (400 MHz, CDCl3) δ 7.98 – 7.90 (m, 2H), 7.30 – 7.23 (m, 2H), 7.04 – 6.95 (m, 

2H), 6.93 – 6.85 (m, 2H), 4.63 (dd, J = 8.1, 6.8 Hz, 1H), 3.96 – 3.86 (m, 2H), 3.84 (s, 3H), 

2.93 (q, J = 13.7 Hz, 2H), 2.24 – 2.16 (m, 1H), 1.88 (dt, J = 12.4, 2.6 Hz, 1H), 1.80 – 1.71 

(m, 2H), 1.44 – 1.26 (m, 3H). 
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13C NMR (101 MHz, CDCl3) δ 197.6, 163.8, 162.0 (d, J = 246.2 Hz), 135.4 (d, J = 3.3 

Hz), 131.0, 129.6 (d, J = 8.0 Hz), 129.3, 120.2 (q, J = 323.5 Hz), 116.2, 116.0, 114.0, 55.6, 

49.0, 46.9, 40.4, 33.0, 32.0. 

19F NMR (376 MHz, CDCl3) δ -75.2, -115. 2. 

FT-IR (neat film NaCl): 2941, 1672, 1600, 1575, 1508, 1460, 1421, 1385, 1313, 1252, 

1226, 1172, 1151, 1117, 1049, 1030, 949, 836, 709 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C22H24F4NO4S: 474.1357; Measured: 

474.1356. 

 

 

(E)-2-(4-fluorophenyl)-1-(4-methoxyphenyl)-3-(1-

((trifluoromethyl)sulfonyl)piperidin-4-yl)prop-1-en-1-yl 4-methylbenzenesulfonate 

(212e)  

To a flame-dried flask was added KOtBu (728 mg, 1.6 equiv, 6.49 mmol) and THF (10.6 

mL). This solution was cooled to 0 ºC and ketone 229 (1.92 g, 1.0 equiv, 4.06 mmol) was 

added dropwise as a solution in THF (10.5 mL). This solution was stirred at 0 ºC for 2 

hours. To this was quickly added solid toluenesulfonic anhydride (2.12 g, 1.6 equiv, 6.49 

mmol). This solution was allowed to warm to room temperature and stirred for 1.5 hours. 

The reaction was diluted with ethyl acetate (15 mL) and water (15 mL). The organic layer 

was separated, and the aqueous layer was extracted with ethyl acetate (3 x 10 mL), dried 

over Na2SO4, filtered, concentrated in vacuo, and purified by silica flash column 
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chromatography (25% ether in hexanes) to give vinyl tosylate 212e (1.0 g, 40% yield). The 

olefin isomer is assigned to be E on the basis of NOESY NMR (observe NOE correlations 

between tosylate and piperidine fragments). Consistent with this assignment, the chemical 

shift of the allylic methylene protons (2.68 ppm in CDCl3) is congruent to similarly 

reported E diaryl vinyl tosylates (typically ~2.7 ppm for allylic methylene in CDCl3), 

which are distinct from the reported Z isomer chemical shift (typically ~2.3 ppm for allylic 

methylene of corresponding Z vinyl tosylate in CDCl3).35  

1H NMR (400 MHz, CDCl3) δ 7.44 (d, J = 8.4 Hz, 2H), 7.13 – 7.07 (m, 2H), 7.02 – 6.96 

(m, 2H), 6.91 – 6.84 (m, 2H), 6.79 – 6.73 (m, 2H), 6.47 – 6.40 (m, 2H), 3.85 (dt, J = 12.2, 

2.9 Hz, 2H), 3.69 (s, 3H), 2.90 (t, J = 12.0 Hz, 2H), 2.68 (d, J = 6.2 Hz, 2H), 2.37 (s, 3H), 

1.74 – 1.66 (m, 2H), 1.37 (dt, J = 12.2, 6.1 Hz, 3H). 

13C NMR = (101 MHz, CDCl3) δ 161.9 (d, J = 247.4 Hz), 159.4, 145.2, 144.6, 134.5, 134.4 

(d, J = 3.4 Hz), 131.4, 131.1 (d, J = 7.8 Hz), 130.2, 129.4, 128.0, 125.7, 120.2 (app q, J = 

323.5 Hz), 115.8, 115.6, 113.2, 55.3, 46.7, 38.8, 33.3, 31.6, 21.7. 

19F NMR (282 MHz, CDCl3) δ -75.3, -114.2 

FT-IR (neat film NaCl): 2941, 1604, 1509, 1464, 1446, 1385, 1295, 1251, 1226, 1189, 

1177, 1151, 1115, 1095, 1067, 1049, 972, 943, 855, 839, 815, 784, 728, 709 cm -1. 

HR-MS (ESI) m/z: [M+Na]+ Calculated for C29H29F4NNaO6S2: 650.1265; Measured: 

650.1279. 
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1,2-bis(4-methoxyphenyl)-3-(1-((trifluoromethyl)sulfonyl)piperidin-4-yl)propan-1-

one (230)  

To a flamed dried flask was added KOtBu (674 mg, 1.1 equiv, 6.01 mmol). This flask was 

evacuated under vacuum and backfilled with nitrogen three times. To this was added THF 

(14 mL), and the flask was cooled to 0 ºC. To this flask was added commercially available 

1,2-bis(4-methoxyphenyl)ethan-1-one (1.40 g, 1.0 equiv, 5.46 mmol) in THF (12 mL), and 

the solution was stirred at 0 ºC for 20 minutes. To this was added a solution of iodide 219 

(2.05 g, 1.05 equiv, 6.24 mmol). The reaction flask was allowed to warm up to room 

temperature overnight, and quenched by addition of saturated aqueous NH4Cl (10 mL). 

The aqueous layer was extracted with ethyl acetate (3x 15 mL), dried over Na2SO4, filtered, 

concentrated in vacuo, and purified by silica flash column chromatography (20% diethyl 

ether in hexanes) to yield ketone 230 as a white solid (1.80 g, 68% yield). 

1H NMR (400 MHz, CDCl3) δ 7.97 – 7.92 (m, 2H), 7.22 – 7.16 (m, 2H), 6.90 – 6.85 (m, 

2H), 6.85 – 6.80 (m, 2H), 4.57 (t, J = 7.4 Hz, 1H), 3.90 (ddd, J = 16.8, 8.1, 6.1 Hz, 2H), 

3.82 (s, 3H), 3.75 (s, 3H), 2.93 (q, J = 13.8 Hz, 2H), 2.16 (ddd, J = 14.3, 7.9, 6.6 Hz, 1H), 

1.88 (dt, J = 13.2, 2.7 Hz, 1H), 1.79 – 1.69 (m, 2H), 1.45 – 1.26 (m, 3H). 

13C NMR (101 MHz, CDCl3) δ 197.9, 163.6, 158.8, 131.6, 131.1, 129.6, 129.1, 120.2 (q, 

J = 323.1 Hz), 114.6, 113.9, 55.6, 55.3, 49.1, 46.9, 40.2, 32.9, 32.1, 32.0. 

19F NMR (376 MHz, CDCl3) δ -75.2. 

FT-IR (neat film NaCl): 2937, 1670, 1600, 1574, 1510, 1463, 1420, 1385, 1310, 1251, 

1182, 1147, 1119, 1031, 949, 830, 709 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C23H27F3NO5S: 486.1557; Measured: 

486.1567. 
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(E)-1,2-bis(4-methoxyphenyl)-3-(1-((trifluoromethyl)sulfonyl)piperidin-4-yl)prop-1-

en-1-yl 4-methylbenzenesulfonate (212f)  

To a flame-dried flask was added KOtBu (621 mg, 1.6 equiv, 5.54 mmol) and THF (9 mL). 

This solution was cooled to 0 ºC and vinyl tosylate 230 (1.68 g, 1.0 equiv, 3.46 mmol) was 

added dropwise as a solution in THF (9 mL). This solution was stirred at 0 ºC for 2 hours. 

To this was added solid toluenesulfonic anhydride (1.8 g, 1.6 equiv, 5.54 mmol). This 

solution was allowed to warm to room temperature and stirred for 1.5 hours. The reaction 

was diluted with ethyl acetate (15 mL) and water (15 mL). The organic layer was separated, 

and the aqueous layer was extracted with ethyl acetate (3 x 10 mL), dried over Na2SO4, 

filtered, concentrated in vacuo, and purified by silica flash column chromatography (25% 

diethyl ether in hexanes) to give vinyl tosylate 212f (620 mg, 28% yield). The olefin isomer 

is assigned to be E on the basis of 1H NOESY NMR (observe NOE correlations between 

tosylate and piperidine fragments). Consistent with this assignment, the chemical shift of 

the allylic methylene protons (2.66 ppm in CDCl3) is congruent to similarly 

reported E diaryl vinyl tosylates (typically ~2.7 ppm for allylic methylene in CDCl3), 

which are distinct from the reported Z isomer chemical shift (typically ~2.3 ppm for allylic 

methylene of corresponding Z vinyl tosylate in CDCl3).35  

1H NMR (400 MHz, CDCl3) δ 7.45 (d, J = 8.4 Hz, 2H), 7.13 – 7.08 (m, 2H), 6.95 – 6.91 

(m, 2H), 6.81 – 6.77 (m, 2H), 6.73 – 6.68 (m, 2H), 6.47 – 6.41 (m, 2H), 3.89 – 3.80 (m, 
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2H), 3.75 (s, 3H), 3.68 (s, 3H), 2.89 (t, J = 12.0 Hz, 2H), 2.66 (d, J = 6.5 Hz, 2H), 2.37 (s, 

3H), 1.73 – 1.67 (m, 2H), 1.42 – 1.26 (m, 3H). 

13C NMR = (101 MHz, CDCl3) δ 159.2, 158.8, 144.5, 144.4, 134.7, 131.4, 130.7, 130.5, 

130.4, 129.4, 128.1, 126.2, 120.2 (q, J = 323.9 Hz), 114.0, 113.1, 55.3, 55.2, 46.8, 38.8, 

33.3, 31.5, 21.7. 

19F NMR (282 MHz, CDCl3) δ -75.2. 

FT-IR (neat film NaCl): 2933, 2838, 1606, 1573, 1510, 1464, 1385, 1291, 1248, 1226, 

1176, 1150, 1115, 1067, 1033, 969, 942, 837, 783, 732, 708, 668 cm-1. 

HR-MS (ESI) m/z: [M+Na]+ Calculated for C30H32F3NNaO7S2: 662.1464; Measured: 

662.1485. 

 

 

2-(4-iodophenyl)-N-methoxy-N-methylacetamide (231) 

Prepared according to similar published procedures,32 to a flame-dried flask was added 

commercially-available 2-(4-iodophenyl)acetic acid (5.0 g, 1.0 equiv, 19.1 mmol), N,O-

dimethylhydroxylammonium chloride (2.8 g, 1.5 equiv, 28.6 mmol), and EDCI (5.5 g, 1.5 

equiv, 28.6 mmol). While under N2 atmosphere, 80 mL of dry DCM was then added. Then, 

DMAP (3.50 g, 1.5 equiv, 28.6 mmol) was added as a solid in one portion and the mixture 

was allowed stir overnight under N2 at room temperature. The next morning, the reaction 

was quenched with water and extracted with DCM (x3). The combined organics were 

washed with 1M HCl twice, then washed with brine, then dried over Na2SO4 and filtered. 
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Concentration afforded a tan solid that was pure by NMR, and was taken forward as is (5.4 

g, 93% yield).  

1H NMR (400 MHz, CDCl3) δ 7.69 – 7.58 (m, 2H), 7.09 – 6.99 (m, 2H), 3.71 (s, 2H), 3.63 

(s, 3H), 3.19 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 171.8, 137.6, 134.6, 131.5, 92.3, 61.4, 38.9, 32.3. 

FT-IR (neat film NaCl): 2932, 1670, 1400, 998, 682 cm -1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C10H13INO2: 305.9985; Measured: 305.9988. 

 

 

2-(4-iodophenyl)-1-(p-tolyl)ethan-1-one (232) was prepared according to similar 

reported procedure.33 Magnesium turnings (818 mg, 1.8 equiv, 33.63 mmol) were flame-

dried under high vacuum in a round bottom flask (x3) then suspended in dry THF (144 

mL). 1-Bromo-4-methylbenzene (6.66 g, 2.2 equiv, 38.9 mmol) was added followed by a 

small grain of I2. The solution was allowed to stir with gentle heating via a heat gun until 

the purple-brown color of the I2 disappears. The suspension was then stirred until all the 

magnesium chunks are visibly consumed. At this point, the reaction is cooled to 0 ºC then 

Weinreb amide 231 (5.40 g, 1.0 equiv, 17.70 mmol) was added dropwise. The reaction is 

monitored closely by TLC to determine starting material consumption (usually 5–20 

minutes), then quenched with 30 mL saturated ammonium chloride while at 0 ºC. The 

reaction is extracted with diethyl ether (x3), then the combined organics are washed with 

brine, dried over MgSO4, filtered through a short pad of silica (wash through with diethyl 

ether), and concentrated in vacuo. Pure material was obtained via silica flash column 
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chromatography (15% ethyl acetate/hexanes with 2% DCM to help with solubility), 

furnishing ketone 232 as a  white solid (2.85 g, 48% yield).  

1H NMR (400 MHz, CDCl3) δ 7.91 – 7.79 (m, 2H), 7.74 – 7.51 (m, 2H), 7.30 – 7.19 (m, 

2H), 7.07 – 6.87 (m, 2H), 4.18 (s, 2H), 2.39 (s, 3H).  

13C NMR (101 MHz, CDCl3) δ 196.8, 144.4, 137.8, 134.5, 134.0, 131.7, 129.5, 128.8, 

92.5, 44.9, 21.8. 

FT-IR (neat film NaCl): 2933, 1677, 1606, 1482, 1444, 1385, 1252, 1183, 1146, 1049, 

1006, 948, 815, 765, 709 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C10H13INO2: 337.0084; Measured: 337.0084. 

 

 

2-(4-iodophenyl)-1-(p-tolyl)-3-(1-((trifluoromethyl)sulfonyl)piperidin-4-yl)propan-1-

one (233) 

To a flamed-dried flask was added KOtBu (0.88 g, 1.1 equiv, 7.9 mmol). This flask was 

evacuated under vacuum and backfilled with nitrogen three times. To this was added THF 

(11 mL), and the flask was cooled to 0 ºC. To this flask was added ketone 232 (2.4 g, 1.0 

equiv, 7.1 mmol) in THF (15 mL), and the solution was stirred at 0 ºC for 20 minutes. To 

this was added a solution of iodide 219 (2.7 g, 1.05 equiv, 7.5 mmol) in THF (10 mL). The 

reaction flask was allowed to warm up to room temperature overnight, and quenched by 

addition of saturated aqueous NH4Cl (10 mL). The aqueous layer was extracted with ethyl 

acetate (3x 15 mL), dried over Na2SO4, filtered, concentrated in vacuo, and purified by 
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silica flash column chromatography (15% ether in hexanes) to yield ketone 233 as a white 

solid (2.7 g, 67% yield). 

1H NMR (400 MHz, CDCl3) δ 7.83 (d, J = 8.3 Hz, 2H), 7.62 (d, J = 8.3 Hz, 2H), 7.25 – 

7.17 (m, 2H), 7.04 (d, J = 8.4 Hz, 2H), 4.65 – 4.54 (m, 1H), 3.90 (tq, J = 13.0, 2.0 Hz, 2H), 

2.93 (q, J = 13.4 Hz, 2H), 2.37 (s, 3H), 2.18 (ddd, J = 14.4, 8.0, 6.6 Hz, 1H), 1.87 (dt, J = 

12.7, 2.7 Hz, 1H), 1.79 – 1.70 (m, 2H), 1.42 – 1.25 (m, 3H). 

13C NMR (101 MHz, CDCl3) δ 198.4, 144.5, 139.2, 138.3, 133.8, 130.1, 129.6, 128.9, 

120.2 (q, J = 323.5 Hz), 92.9, 49.6, 46.8, 40.1, 33.0, 32.1, 32.0, 21.8. 

19F NMR (376 MHz, CDCl3) δ -75.1 

FT-IR (neat film NaCl): 2933, 1677, 1606, 1482, 1444, 1385, 1226, 1183, 1146, 1049, 

1006, 948 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C22H24F3INO3S: 566.0468; Measured: 

566.0466. 

 

 

 (E)-2-(4-iodophenyl)-1-(p-tolyl)-3-(1-((trifluoromethyl)sulfonyl)piperidin-4-yl)prop-

1-en-1-yl 4-methylbenzenesulfonate (212g)  

To a flame-dried flask was added KOtBu (302 mg, 1.6 equiv, 2.69 mmol) and THF (4.4 

mL). This solution was cooled to 0ºC and ketone 233 (0.950 g, 1.0 equiv, 1.68 mmol) was 

added dropwise as a solution in THF (4.4 mL). This solution was stirred at 0 ºC for 2 hours. 

To this was quickly added solid toluenesulfonic anhydride (877 mg, 1.6 equiv, 2.69 mmol). 

OTs

I

NTf
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This solution was allowed to warm to room temperature and stirred for 1.5 hours. The 

reaction was diluted with ethyl acetate (15 mL) and water (15 mL). The organic layer was 

separated, and the aqueous layer was extracted with ethyl acetate (3 x 10 mL), dried over 

Na2SO4, filtered, concentrated in vacuo, and purified by silica flash column 

chromatography (25% ether in hexanes) to deliver vinyl tosylate 212g (475 mg, 39% yield). 

The olefin isomer is assigned to be E on the basis of NOESY NMR (observe NOE 

correlations between tosylate and piperidine fragments). Consistent with this assignment, 

the chemical shift of the allylic methylene protons (2.67 ppm in CDCl3) is congruent to 

similarly reported E diaryl vinyl tosylates (typically ~2.7 ppm for allylic methylene in 

CDCl3), which are distinct from the reported Z isomer chemical shift (typically ~2.3 ppm 

for allylic methylene of corresponding Z vinyl tosylate in CDCl3).35  

1H NMR (400 MHz, CDCl3) δ 7.50 (d, J = 8.4 Hz, 2H), 7.43 (d, J = 8.4 Hz, 2H), 7.13 – 

7.05 (m, 2H), 6.80 – 6.70 (m, 6H), 3.85 (dd, J = 13.2, 3.9 Hz, 2H), 3.05 – 2.79 (m, 2H), 

2.67 (d, J = 5.9 Hz, 2H), 2.37 (s, 3H), 2.20 (s, 3H), 1.74 – 1.64 (m, 2H), 1.42 – 1.24 (m, 

5H). 

13C NMR = (101 MHz, CDCl3) δ 145.5, 144.7, 138.5, 138.0, 137.7, 134.4, 131.3, 130.7, 

130.2, 123.0, 129.4, 128.5, 128.0, 120.2 (app q, J = 323.7 Hz), 93.2, 46.7, 38.7, 33.3, 31.7, 

31.5, 22.8, 21.7, 21.4, 14.3. 

19F NMR (282 MHz, CDCl3) δ -75.2. 

FT-IR (neat film NaCl): 2921, 1597, 1483, 1446, 1387, 1226, 1177, 1150, 1115, 1049, 

973, 942, 849, 825, 763, 724, 708 cm-1. 

HR-MS (ESI) m/z: [M+Na]+ Calculated for C29H29F3INNaO5S2: 742.0376; Measured: 

742.0385. 
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(3-(4-bromophenyl)propoxy)triisopropylsilane (234) 

To a flame-dried flask equipped with a stir bar was added imidazole (3.1g, 2.0 equiv, 46.49 

mmol), commercially available 3-(4-bromophenyl)propan-1-ol (5.0 g, 1.0 equiv, 23.25 

mmol), and DMF (29 mL). The solution is then cooled to 0 ºC and allowed to stir for 20 

minutes before adding neat TIPS–Cl dropwise. The reactions was completed after 2 hours 

by TLC analysis (15% diethyl ether in hexanes). The reaction was quenched with saturated 

ammonium chloride and extracted with 1% diethyl ether in pentane (x3), and the combined 

organics were washed with water, then brine, then filtered through a pad of silica gel, then 

concentrated in vacuo. Further purification of the crude material was achieved via silica 

TIPSCl (1.4 equiv)
Imidazole (2 equiv)

DMF, 0 ºC to rt

82% yield

Pd(dba)2 (7 mol%)
dppf (9 mol%)

NaOtBu (1.5 equiv)

THF, 75 ºC

53% yield

O

Ts2O (1.6 equiv)
KOtBu (1.6 equiv)

THF, 0 ºC to rt

50% yield

OTs

NTf

OTIPS

O

NTf

OTIPS

OTIPS

Br

OH

Br

TBAF•(H2O)3 
(1.2 equiv)

THF, 0 ºC to rt

76% yield

OTs

NTf

OH
212h

O1.1 equiv

N
Tf

I

(1.05 equiv)

KOtBu (1.1 equiv)

THF, 0 ºC to rt

80% yield

TIPSO

234 235

236 237

Br

OTIPS
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flash column chromatography (3% diethyl ether in hexanes) to afford aryl bromide 234 as 

a colorless oil (7.1 g, 82% yield).  

1H NMR (400 MHz, CDCl3) δ 7.43 – 7.35 (m, 2H), 7.12 – 7.04 (m, 2H), 3.70 (t, J = 6.2 

Hz, 2H), 2.71 – 2.63 (m, 2H), 1.88 – 1.77 (m, 2H), 1.17 – 1.00 (m, 21H). 

13C NMR (101 MHz, CDCl3) δ 141.4, 131.4, 130.4, 119.5, 62.4, 34.6, 31.6, 18.1, 12.1. 

FT-IR (neat film NaCl): 2942, 2865, 1488, 1461, 1387, 1247, 1107, 1072, 1011, 882, 809, 

717, 67 cm-1. 

HR-MS (FD) m/z: [M•]+ Calculated for C18H31BrOSi: 370.1328; Measured: 370.1298. 

 

 

1-(p-tolyl)-2-(4-(3-((triisopropylsilyl)oxy)propyl)phenyl)ethan-1-one (235) 

Following a reported procedure,38 a flame-dried Schlenk flask was charged with NaOtBu 

(2.56 g, 1.5 equiv, 26.65 mmol) and dppf (886 mg, 0.09 equiv, 1.59 mmol). The flask was 

evacuated and back-filled with N2 (x3). Then, degassed THF (36 mL) was added followed 

by aryl bromide 234 (6.60 g, 1.0 equiv, 17.77 mmol), followed by Pd(dba)2 (715 mg, 0.07 

equiv, 1.24 mmol). After 5 minutes of stirring, commercially-available 1-(p-tolyl)ethan-1-

one (2.62 g, 1.1 equiv, 19.55 mmol) was then added. The flask was then sealed with a glass 

stopper and heated to 75 ºC overnight. The next morning, the reaction was quenched with 

water and extracted with diethyl ether (x3) and the combined organics were washed with 

brine, dried over Na2SO4, filtered, and concentrated in vacuo. Silica flash chromatography 

(4% diethyl ether in hexanes) afforded pure ketone 235 as a slightly-yellow oil (4.0 g, 53% 

yield).  

O OTIPS
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1H NMR (400 MHz, CDCl3) δ 7.96 – 7.89 (m, 2H), 7.28 – 7.20 (m, 2H), 7.23 – 7.13 (m, 

4H), 4.22 (s, 2H), 3.72 (t, J = 6.3 Hz, 2H), 2.74 – 2.65 (m, 2H), 2.39 (s, 3H), 1.91 – 1.80 

(m, 2H), 1.18 – 1.01 (m, 21H). 

13C NMR (101 MHz, CDCl3) δ 197.4, 143.9, 140.9, 134.2, 132.0, 129.3, 129.2, 128.8, 

62.6, 45.1, 34.6, 31.8, 21.7, 18.1, 12.1. 

FT-IR (neat film NaCl): 3024, 2941, 2891, 2864, 2726, 1900. 1806, 1678, 1606, 1572, 

1513, 1463, 1381, 1328, 1276, 1222, 1196, 1180, 1149, 1104, 1066, 1013, 996, 964, 918, 

882, 809, 770, 721, 681, 658 cm-1. 

HR-MS (ESI) m/z: [M+K]+ Calculated for C27H40KO2Si: 463.2429; Measured: 463.2428 

 

 

1-(p-tolyl)-3-(1-((trifluoromethyl)sulfonyl)piperidin-4-yl)-2-(4-(3-

((triisopropylsilyl)oxy)propyl)phenyl)propan-1-one (236) 

To a flame-dried flask was added ketone 235 (3.95 g, 1.0 equiv, 9.3 mmol) then dissolved 

in THF (30 mL) and cooled to 0 ºC. In a separate flask, a freshly-prepared solution of 

KOtBu (1.14 g, 1.1 equiv, 10.2 mmol) in THF (30 mL) was added dropwise to the ketone 

while at 0 ºC. The yellow solution was allowed to stir at 0 ºC for 20 minutes. Then, a 

solution of iodide 219 (3.48 g, 1.05 equiv, 9.7 mmol) in THF (10 mL) was added dropwise 

then allowed to warm to room temperature overnight. The next morning, the reaction was 

quenched with saturated ammonium chloride and extracted with diethyl ether (x3). The 

combined organics were washed once with brine, dried over Na2SO4, filtered, concentrated 

O

NTf

OTIPS
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in vacuo, and purified by silica flash column chromatography (10% diethyl ether in 

hexanes) to yield ketone 236 as a white solid (4.9 g, 81% yield).  

1H NMR (400 MHz, CDCl3) δ 7.91 – 7.84 (m, 2H), 7.23 – 7.16 (m, 4H), 7.13 (d, J = 8.1 

Hz, 2H), 4.64 (t, J = 7.4 Hz, 1H), 3.97 – 3.83 (m, 2H), 3.67 (t, J = 6.3 Hz, 2H), 3.01 – 2.86 

(m, 2H), 2.69 – 2.61 (m, 2H), 2.36 (s, 3H), 2.26 – 2.14 (m, 1H), 1.95 – 1.69 (m, 5H), 1.50 

– 1.24 (m, 3H), 1.15 – 0.94 (m, 21H). 

13C NMR (101 MHz, CDCl3) δ 198.9, 144.0, 141.4, 136.6, 134.1, 129.4, 129.3, 128.9, 

127.9, 120.2 (q, J = 323.6 Hz), 62.6, 49.8, 46.8, 40.1, 34.5, 32.9, 32.0 (d, J = 9.3 Hz), 31.7, 

21.6, 18.1, 12.0. 

19F NMR (376 MHz, CDCl3) δ -75.1 (br s). 

FT-IR (neat film NaCl): 2941, 2865, 1679, 1606, 1461, 1389, 1227, 1182, 1147, 1110, 

1052, 997, 949, 882, 818, 763, 709, 680 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C34H51F3NO4SSi: 654.3254; Measured: 

654.3266. 

 

 

(E)-1-(p-tolyl)-3-(1-((trifluoromethyl)sulfonyl)piperidin-4-yl)-2-(4-(3-

((triisopropylsilyl)oxy)propyl)phenyl)prop-1-en-1-yl 4-methylbenzenesulfonate (237) 

To a flame-dried flask was added ketone 236 (4.70 g, 1.0 equiv, 7.20 mmol) then dissolved 

in THF (35 mL) and cooled to 0 ºC. In a separate flask, a freshly-prepared solution of 

KOtBu (1.29 g, 1.60 equiv, 11.52 mmol) in THF (25 mL) was added dropwise to the ketone 

OTs

NTf

OTIPS
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while at 0 ºC. The yellow solution was allowed to stir at 0 ºC for 90 minutes. Then, Ts2O 

(3.76 g, 1.6 equiv, 11.52 mmol) was added as a solid in one portion to the enolate solution 

with vigorous stirring then allowed to warm to room temperature (solution turns thick). 

After the reaction was completed by TLC analysis (20% diethyl ether in hexanes), the 

reaction was quenched with water and extracted with diethyl ether (x3). The combined 

organics were washed once with brine, dried over Na2SO4, filtered, concentrated in vacuo, 

and purified by silica flash column chromatography (15% diethyl ether in hexanes) to yield 

pure 237 as a white solid (2.90 g, 50% yield). The olefin isomer is assigned to be E on the 

basis of NOESY NMR (observe NOE correlations between tosylate and piperidine protons, 

as well as between the two aryl rings). Consistent with this assignment, the chemical shift 

of the allylic methylene protons (2.68 ppm in CDCl3) is congruent to similarly reported E 

diaryl vinyl tosylates (typically ~2.7 ppm for allylic methylene in CDCl3), which are 

distinct from the reported Z isomer chemical shift (typically ~2.3 ppm for allylic methylene 

of corresponding Z vinyl tosylate in CDCl3).35 

1H NMR (400 MHz, CDCl3) δ 7.49 – 7.41 (m, 2H), 7.09 (d, J = 8.1 Hz, 2H), 7.01 (d, J = 

8.2 Hz, 2H), 6.96 – 6.89 (m, 2H), 6.75 (d, J = 8.3 Hz, 2H), 6.70 (d, J = 8.1 Hz, 2H), 3.85 

(dd, J = 13.4, 3.8 Hz, 2H), 3.65 (t, J = 6.3 Hz, 2H), 2.95 – 2.85 (m, 2H), 2.71 – 2.60 (m, 

4H), 2.37 (s, 3H), 2.18 (s, 3H), 1.87 – 1.67 (m, 4H), 1.47 – 1.29 (m, 3H), 1.15 – 0.98 (m, 

21H). 

13C NMR (101 MHz, CDCl3) δ 144.7, 144.5, 141.5, 137.8, 135.4, 134.4, 131.6, 130.7, 

129.8, 129.2, 129.1, 128.6, 128.2, 128.0, 120.2 (q, J = 323.8 Hz), 62.4, 46.7, 38.8, 34.2, 

33.0, 31.7, 31.4, 21.5, 21.2, 17.7, 12.0. 

19F NMR (376 MHz, CDCl3) δ -75.3 (br s). 
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FT-IR (neat film NaCl): 3027, 2939, 2866, 1598, 1511, 1463, 1393, 1333, 1245, 1227, 

1171, 1151, 1101, 1070, 1049, 972, 942, 910, 882, 850, 815, 781, 736, 708, 684 cm-1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C41H57F3NO6S2Si: 808.3349; Measured: 

808.3371. 

 

 

(E)-2-(4-(3-hydroxypropyl)phenyl)-1-(p-tolyl)-3-(1-

((trifluoromethyl)sulfonyl)piperidin-4-yl)prop-1-en-1-yl 4-methylbenzenesulfonate 

(212h) 

To a scintillation vial equipped with a stir bar was added silyl ether 237 (2.20 g, 1.0 equiv, 

2.72 mmol), followed by dry THF (5 mL). The solution was cooled to 0 ºC then a freshly 

prepared solution of TBAF•(H2O)3 (1.03 g, 1.2 equiv, 3.26 mmol) in 5 mL of dry THF was 

added dropwise then allowed to warm to room temperature. After 30 minutes, reaction was 

completed by TLC analysis. The reaction was quenched with saturated ammonium chloride 

and subsequently extracted with ethyl acetate (x3). The combined organics were dried over 

Na2SO4, filtered, concentrated in vacuo, then purified by silica flash chromatography (20% 

à 50% à 70% ethyl acetate in hexanes) to afford pure alcohol 212h as a white solid (1.35 

g, 76% yield). The olefin isomer is assigned to be E as it was directly derived from 

compound 237, which was characterized to be the E vinyl tosylate. To further validate this, 

NOESY NMR was conducted and validated this assignment (observe NOE correlations 

between tosylate and piperidine protons, as well as between the two aryl rings).35  
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1H NMR (400 MHz, CDCl3) δ 7.45 (app d, J = 8.4 Hz, 2H), 7.09 (app d, J = 8.5 Hz, 2H), 

7.00 (app d, J = 8.2 Hz, 2H), 6.92 (app d, J = 8.2 Hz, 2H), 6.77 – 6.66 (m, 4H), 3.85 (dd, J 

= 13.1, 4.0 Hz, 2H), 3.63 (t, J = 6.4 Hz, 2H), 2.90 (t, J = 12.0 Hz, 2H), 2.70 – 2.59 (m, 4H), 

2.37 (s, 3H), 2.18 (s, 3H), 1.90 – 1.79 (m, 2H), 1.75 – 1.67 (m, 2H), 1.45 – 1.27 (m, 4H). 

13C NMR (101 MHz, CDCl3) δ 144.9, 144.6, 141.1, 138.0, 135.8, 134.5, 131.6, 130.7, 

129.9, 129.4, 129.3, 128.6, 128.3, 128.0, 62.3, 46.7, 38.8, 34.0, 33.2, 31.8, 31.5, 21.7, 21.3. 

*CF3 quartet not apparent. 

19F NMR (376 MHz, CDCl3) δ -75.3 (br s). 

FT-IR (neat film NaCl): 3300, 2931, 1386, 1226, 1176, 1151, 1050, 968, 942, 825 cm-1. 

HR-MS (ESI) m/z: [M+NH4]+ Calculated for C32H40F3N2O6S2: 669.2280; Measured: 

669.2287. 

 

4.5.3 Preparation of Catalysts 

Synthesis of binol precursors: 

 

 
 

(S)-((2,2'-bis(methoxymethoxy)-6,6'-bis(trifluoromethyl)-[1,1'-binaphthalene]-3,3'-

diyl)bis(4,1-phenylene))bis(pentafluoro- λ6-sulfane) (238) 

OMOM
OMOM

F3C

F3C I

I

OMOM
OMOM

F3C

F3C

SF5

SF5

PinB

SF5

Pd(PPh3)4 (10 mol%)
Na2CO3 (5 equiv)

THF/PhMe/H2O, 85 ºC

(S)

from Ref 40

2.85 equiv

(S)
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Following a similar reported procedure,39 MOM-protected (S)-3,3'-diiodo-6,6’-

bis(trifluoromethyl)-BINOL (prepared according to published protocol40) (5.0 g, 1.0 equiv, 

6.56 mmol) was added to an oven-dried Schlenk flask, followed by Na2CO3 (3.5 g, 5 equiv, 

32.80 mmol), and p-SF5 aryl BPin (6.50 g, 3.0 equiv, 19.7 mmol). The flask was 

vac/backfilled with N2 three times, then THF (112 mL), toluene (112 mL), and water (60 

mL) were added. The mixture was the degassed by sparging with nitrogen while vigorously 

stirring for 30 minutes. Then, under positive N2 gas flow, solid Pd(PPh3)4 (758 mg, 0.1 

equiv, 0.65 mmol) was added in one portion. The flask was then sealed and heated to 85 

ºC overnight. The next morning, starting material had been consumed by TLC. Water was 

added to the reaction and extracted with ethyl acetate three times. The combined organics 

were washed with brine, dried over Na2SO4, filtered, and concentrated in vacuo. The crude 

material was purified via flash chromatography (4% diethyl ether in hexanes) to obtain 

MOM BINOL 238 mixed with the starting aryl Bpin, but was carried forward to the 

deprotection step as is (see next step). 

1H NMR (400 MHz, CDCl3) δ 8.26 (s, 2H), 8.10 (s, 2H), 7.94 – 7.82 (m, 8H), 7.52 (dd, J 

= 9.0, 1.9 Hz, 2H), 7.38 (d, J = 8.9 Hz, 2H), 4.40 (s, 4H), 2.36 (s, 6H). 

13C NMR (101 MHz, CDCl3) δ 155.2 – 152.1 (m), 141.7, 135.1, 135.0, 132.2, 129.9, 129.6, 

128.1, 127.8, 127.4, 126.4, 126.3 (m), 126.0, 122.1, 99.3, 56.2. *CF3 carbon (typically a 

quartet) difficult to see due to peak overlap, not included.  

19F NMR (376 MHz, CDCl3) δ 85.60 – 82.21 (m), 63.02 (d, J = 149.7 Hz), -62.44. 

FT-IR (neat film NaCl): 2981, 1634, 1602, 1448, 1436, 1398, 1362, 1331, 1293, 1249, 

1194, 1164, 1144, 1129, 1100, 1082, 1068, 1002, 963, 916, 836, 738, 654 cm-1. 

HR-MS (FD) m/z: [M•]+ Calculated for C38H26F16O4S2: 914.1017; Measured: 914.1002. 
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(S)-3,3'-bis(4-(pentafluoro-λ 6-sulfaneyl)phenyl)-6,6'-bis(trifluoromethyl)-[1,1'-

binaphthalene]-2,2'-diol (239) 

MOM-protected BINOL 238 was dissolved in 1,4-dioxane (42 mL). Then, 9 mL of 6 M 

aq. HCl was added dropwise. The reaction was then sealed and heated to 85 ºC overnight, 

by which time starting material is consumed by TLC forming a more polar spot. Saturated 

aqueous bicarbonate solution was then added (~35 mL), and the mixture was extracted with 

DCM three times. The combined organics were washed with brine, dried over Na2SO4, 

filtered, concentrated, and purified via flash chromatography (10% ethyl acetate in 

hexanes) to obtain BINOL 239 as a white solid (4.0 g, 73% yield over two steps from 

diiodo precursor).  

1H NMR (400 MHz, CDCl3) δ 8.31 – 8.26 (m, 2H), 8.18 (s, 2H), 7.99 – 7.87 (m, 4H), 7.83 

(d, J = 8.6 Hz, 4H), 7.56 (dd, J = 8.9, 1.9 Hz, 2H), 7.33 – 7.24 (m, 2H), 5.44 (s, 2H). 

13C NMR (101 MHz, CDCl3) δ 155.1–152.9 (m), 151.9, 140.0, 134.6, 133.3, 130.3, 130.0, 

128.4, 127.4, 127.1, 126.7 (m), 126.3 (m), 125.1, 124.2 (q, J = 272.1 Hz), 111.9. 

19F NMR (376 MHz, CDCl3) δ 84.1 (p, J = 150.3 Hz), 62.9 (d, J = 149.8 Hz), -62.3. 

FT-IR (neat film NaCl): 3534, 2341, 1632, 1608, 1502, 1452, 1400, 1334, 1317,1294, 

1241, 1198, 1175, 1163, 1131, 1101, 1071, 945, 911, 836, 780, 739, 708, 667, 624, 604 

cm-1. 

OH
OH

F3C

F3C

SF5

SF5

HCl

dioxane/H2O

73% over 2 steps
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HR-MS (ESI) m/z: [M-H]- Calculated for C34H17F16O2S2: 825.0420; Measured: 825.0415. 

 

 

(S)-3,3'-bis(4-chlorophenyl)-2,2'-bis(methoxymethoxy)-1,1'-binaphthalene (240) 

Following a similar procedure as above39, MOM-protected 3,3’-diiodo BINOL (1.40 g, 1 

equiv, 2.24 mmol) was added to an oven-dried Schlenk flask, followed by Na2CO3 (1.18 

g, 5 equiv, 11.2 mmol), and the aryl boronic acid (1.4 g, 4 equiv, 8.94 mmol). The flask 

was vac/backfilled with N2 three times, then THF (38 mL), toluene (38 mL), and water (18 

mL) were added. The mixture was the degassed by sparging with nitrogen while vigorously 

stirring for 30 minutes. Then, under positive N2 gas flow, solid Pd(PPh3)4 (258 mg, 0.1 

equiv, 0.224 mmol) was added in one portion. The flask was then sealed and heated to 85 

ºC overnight. The next morning, starting material had been consumed by TLC. Water was 

added to the reaction and extracted with ethyl acetate three times. The combined organics 

were washed with brine, dried over Na2SO4, filtered, and concentrated in vacuo. The crude 

material was purified via flash chromatography (2.5% diethyl ether in hexanes) to obtain 

MOM BINOL 240 as a white solid (1.1 g, 81% yield). 

1H NMR (400 MHz, CDCl3) δ 7.93 (s, 2H), 7.90 (d, J = 8.2 Hz, 2H), 7.75 – 7.68 (m, 4H), 

7.49 – 7.41 (m, 6H), 7.33 – 7.26 (m, 4H), 4.40 (dd, J = 5.9, 0.6 Hz, 2H), 4.35 (dd, J = 5.9, 

0.6 Hz, 2H), 2.37 (s, 6H). 

OMOM
OMOM

I

I

OMOM
OMOM

Cl

Cl

(HO)2B

Cl

Pd(PPh3)4 (10 mol%)
Na2CO3 (5 equiv)

THF/PhMe/H2O, 85 ºC

81% yield

4 equiv

(S) (S)
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13C NMR (101 MHz, CDCl3) δ 151.3, 137.6, 134.4, 133.8, 133.6, 131.1, 130.9, 130.7, 

128.7, 128.0, 126.7, 126.7, 126.5, 125.5, 98.8, 56.1. 

FT-IR (neat film NaCl): 2930, 1590, 1492, 1427, 1387, 1352, 1246, 1157, 1091, 1015, 

996, 967, 909, 830, 750, 731 cm -1. 

HR-MS (ESI) m/z: [M+Na]+ Calculated for C36H28Cl2NaO4: 617.1257; Measured: 

617.1255. 

 

 

(S)-3,3'-bis(4-chlorophenyl)-[1,1'-binaphthalene]-2,2'-diol (241) 

MOM-protected BINOL 240 was dissolved in 54 mL of DCM/MeOH (1:1) in an oven-

dried flask equipped with a stir bar. Then, 2.7 mL of conc. HCl is added slowly dropwise. 

The mixture is allowed to stir at room temperature overnight, by which time starting 

material is consumed by TLC forming a more polar spot. Saturated aqueous bicarbonate 

solution was then added (~40 mL), and the mixture was extracted with DCM three times. 

The combined organics were washed with brine, dried over Na2SO4, filtered, concentrated, 

and purified via flash chromatography (10% diethyl ether in hexanes) to obtain BINOL 

241 a white solid (818 mg, 89% yield), which matched published NMR spectra.41 
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OH

Cl
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Preparation of phosphorimidoyl trichloride: prepared according to procedures published 

by List from the corresponding sulfonamide: 

 

 

((trifluoromethyl)sulfonyl)phosphorimidoyl trichloride (242) was prepared according 

to published procedures.42 

 

 

((perfluoronaphthalen-2-yl)sulfonyl)phosphorimidoyl trichloride (243) was prepared 

according to published procedures.19 

 

Preparation of IDPi catalysts: 

 

All IDPi catalysts were made in a similar manner as reported by List et al.43 An oven-dried 

Schlenk flask was cycled into an inert atmosphere glovebox, and the corresponding 
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phosphorimidoyl trichloride was weighed into it (2.1 equiv). The Schlenk flask was then 

sealed with a septa, brought out of the glovebox, and put under N2 atmosphere. To the 

Schlenk flask was then added dry toluene solvent (to achieve 0.33 M in BINOL), followed 

by the BINOL under positive N2 flow (2.1 equiv). In cases where the phosphorimidoyl 

trichloride reagent is a solid, the BINOL was added first followed by toluene. To the 

homogeneous solution was added freshly distilled (over CaH2) triethylamine (16 equiv) 

and the mixture was allowed to stir at room temperature. After 20 minutes of stirring at 

room temperature, dried HMDS (distilled over CaH2) was added dropwise (1 equiv), then 

the Schlenk flask was sealed with a ground glass stopper and heated at 120 ºC while sealed 

for 3 days. After this time, the reaction was cooled to room temperature, quenched with 

1M HCl, and allowed to stir vigorously for 10 minutes before extracting the mixture with 

DCM (x3). The combined organics were dried over Na2SO4, filtered, and concentrated in 

vacuo. The crude material was purified by silica flash chromatography (0% à 10% ethyl 

acetate in benzene) to obtain pure IDPi after concentration in vacuo. This material was then 

dissolved in DCM and stirred vigorously with 6M aq. HCl for 10 minutes. The DCM layer 

is separated out and washed once more with 6M aq. HCl. The DCM layer was concentrated 

down, and azeotroped from dry toluene (x3), then dry benzene (x2), then dry DCM/Hex to 

obtain typically white or off-white solids which are further dried under high vacuum over 

P2O5 overnight before cycling into an inert atmosphere glovebox. 
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IDPi-211 

1H NMR (400 MHz, d6-DMSO) δ 8.85 (s, 2H), 8.76 (s, 2H), 8.68 (s, 2H), 8.53 (s, 2H), 

8.09 – 7.97 (m, 8H), 7.82 (dd, J = 9.2, 1.9 Hz, 2H), 7.41 – 7.32 (m, 2H), 7.21 (d, J = 8.6 

Hz, 4H), 7.00 (t, J = 9.3 Hz, 4H), 6.59 (d, J = 8.6 Hz, 4H). 

13C NMR (101 MHz, d6-DMSO) δ 152.4 – 152.0 (m), 151.5 – 151.2 (m), 149.9 – 149.1 

(m), 146.7 – 146.4 (m), 145.5 (t, J = 6.4 Hz), 145.0 (t, J = 4.9 Hz), 144.2 – 143.7 (m), 

142.6 – 142.2 (m), 141.6 – 141.3 (m), 140.8 – 139.8 (m), 139.4 – 139.0 (m), 138.7, 

138.5, 138.2 – 137.6, 136.9 – 136.5 (m), 133.1, 132.8, 132.4, 132.3, 131.9, 131.5, 130.5, 

129.8, 129.5, 128.8, 128.3, 128.1, 128.0, 127.3, 126.9, 126.7, 126.5, 126.2, 125.9, 125.5, 

125.3, 125.2, 124.0, 122.8 (m), 122.6, 122.2, 121.7, 120.1, 119.9, 110.0 – 109.6 (m), 

106.9 – 106.3 (m). *other peaks not apparent. 

19F NMR (376 MHz, d6-DMSO) δ 87.0 (m), 64.3 (d, J = 255.0 Hz), 63.9 (d, J = 254.6 

Hz), -61.0, -61.2 – -61.8 (m), -113.8 (dd, J = 77.4, 18.0 Hz), -133.9 (d, J = 20.1 Hz), -

143.3 (dt, J = 76.3, 17.5 Hz), -146.6 (dd, J = 45.9, 28.5 Hz), -149.2 (dt, J = 56.5, 19.4 

Hz), -152.0, -155.2 (q, J = 14.0 Hz). 

31P NMR (161 MHz, d6-DMSO) δ -1.39. 

FT-IR (neat film NaCl): 1643, 1491, 1416, 1295, 1139, 1068, 960, 913, 851, 836 cm -1. 

HR-MS (ESI) m/z: [M-H]- Calculated for C88H32F46N3O8P2S6: 2385.9259; Measured 

2385.9247. 
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IDPi-209 

1H NMR (400 MHz, CDCl3) δ 8.01 (dd, J = 8.3, 1.2 Hz, 2H), 7.97 (s, 2H), 7.93 (dd, J = 

8.3, 1.1 Hz, 2H), 7.71 (ddd, J = 8.2, 6.6, 1.4 Hz, 2H), 7.59 (dd, J = 8.6, 1.3 Hz, 2H), 7.56 

– 7.51 (m, 2H), 7.46 (ddd, J = 8.2, 6.3, 1.6 Hz, 2H), 7.35 – 7.25 (m, 11H), 7.17 (d, J = 4.7 

Hz, 3H), 6.90 – 6.80 (m, 4H), 6.39 – 6.29 (m, 4H). 

13C NMR (101 MHz, CDCl3) δ 143.7 (t, J = 5.1 Hz), 143.4 (app t), 134.7, 134.1, 133.9, 

133.8, 132.8, 132.6, 132.3, 132.0, 131.9, 131.8, 131.7, 131.3, 131.0, 130.4, 128.9, 128.8, 

128.4, 127.8, 127.7, 127.2, 127.1, 127.0, 126.6, 123.7, 123.7, 123.6, 122.1, 119.5 (q, J = 

321.4 Hz). 

19F NMR (376 MHz, CDCl3) δ -78.4. 

31P NMR (162 MHz, CDCl3) δ -13.5. 

FT-IR (neat film NaCl): 2933, 1493, 1311, 1189, 1150, 1105, 990, 967, 900, 844, 829, 

731 cm-1. 

HR-MS (ESI) m/z: [M-H]- Calculated for C66H36Cl4F6N3O8P2S2: 1380.0053; Measured 

1380.0050. 
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4.5.4 Catalytic Asymmetric C–H Insertion Reactions of Vinyl Cations 

 

General Procedure A: C–H insertion into appended cyclohexyl ring 

 All C–H insertion reactions were conducted in a well-maintained glove box (O2, H2O <0.5 

ppm) on 0.15 mmol scale unless otherwise noted. To a dram vial equipped with a magnetic 

stir bar was added IDPi-209 catalyst (15 mol%) followed by cyclohexane solvent (dried 

over potassium) to achieve 0.025M relative to vinyl tosylate. Then, 2-allyl-1,1,1,3,3,3-

hexaethyl-2-(triethylsilyl)trisilane (1.3 equiv) was added. To this mixture was then added 

the corresponding vinyl tosylate in solid form in one portion. The reaction was then sealed 

with a Teflon cap and heated to 65–75 ºC for 72 hours (unless otherwise noted). (Note: 

reaction mixture is typically heterogeneous at room temperature, but readily goes 

homogeneous once heated with stirring and typically remains homogeneous during the 

entire course of the reaction until it is completed.) The reactions were monitored by TLC, 

typically using 5–10% diethyl ether in hexanes for the mobile phase (C–H insertion 

products are typically higher in Rf than the starting vinyl tosylate). Once the reaction was 

completed, the vial was removed from the glovebox. A few drops of triethylamine were 

then added then diluted with DCM. The homogeneous solution was then plugged through 

silica gel (pushing through with DCM), concentrated in vacuo, and analyzed by 1H NMR 

using nitromethane as an internal standard for qNMR analysis. The crude material was 

purified by flash column chromatography (typically 0–1% benzene in hexanes or 0-1% 

diethyl ether in hexanes) then dried on high vacuum to obtain material that is pure by 1H 

IDPi-2 (15 mol%)
allyl Si(TES)3 (1.3 equiv)

cyclohexane (0.025M)
65–75 ºC, 72 hr

Ar1

OTs

Ar2 Ar1 Ar2
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NMR. The enantiomeric excess of the material was then assessed by chiral HPLC. In cases 

where trace impurities (<5%) were observed on the chiral HPLC trace, further purification 

via reverse phase preparatory HPLC was performed to obtain analytical quantities of high-

purity material to ensure accurate enantiomeric excess determination based on peak 

integration.  

 

 

6-(3-(tert-butyl)phenyl)-7-phenylbicyclo[3.2.1]oct-6-ene (205a) 

Following General Procedure A: To a dram vial equipped with a stir bar was added IDPi-

209 (31.1 mg, 0.15 equiv, 0.0225 mmol), cyclohexane (6.0 mL), and 2-allyl-1,1,1,3,3,3-

hexaethyl-2-(triethylsilyl)trisilane (80.9 mg, 1.3 equiv, 0.195 mmol). To this solution was 

added vinyl tosylate 202a (73.3 mg, 1.0 equiv, 0.15 mmol). The reaction was sealed with 

a Teflon cap and heated to 65 ºC for 72 hours, then the reaction was removed from the 

glovebox and a few drops of triethylamine were added to quench the reaction and diluted 

further with DCM. This homogeneous mixture was then plugged through silica gel with 

DCM, concentrated in vacuo, and purified by flash column chromatography (1% benzene 

in hexanes) to give 205a as a colorless oil (23.0 mg, 48% yield). This material was 

determined by chiral HPLC to be 77% ee.  

1H NMR (400 MHz, CDCl3) δ 7.29 – 7.26 (m, 3H), 7.23 (ddd, J = 7.9, 6.8, 0.9 Hz, 2H), 

7.18 (dd, J = 3.6, 1.6 Hz, 2H), 7.13 – 7.08 (m, 1H), 3.05 – 2.93 (m, 2H), 2.36 (dtd, J = 10.6, 

4.5, 2.9 Hz, 1H), 1.82 (dddd, J = 17.8, 8.9, 5.9, 2.5 Hz, 1H), 1.72 (ddt, J = 9.3, 6.4, 2.9 Hz, 

Ph
tBu
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1H), 1.67 – 1.56 (m, 5H), 1.15 (s, 9H). 

13C NMR (101 MHz, CDCl3) δ 150.6, 139.2, 139.0, 138.4, 137.1, 128.3, 128.2, 128.0, 

126.6, 125.7, 124.7, 123.5, 46.7, 46.0, 44.5, 34.6, 31.3, 26.0, 25.5, 19.5. 

FT-IR (neat film NaCl): 2931, 2854, 1596, 1461, 901, 767, 698 cm -1. 

HR-MS (EI) m/z: [M•]+ Calculated for C24H28: 316.2191; Measured: 316.2182. 

HPLC (CHIRALCEL ODH column) 99.9:0.1 (hex/iPrOH) 0.5mL/min; tminor (8.02 min), 

tmajor (8.43 min); 77% ee. 

 

 

6-(3,5-dimethylphenyl)-7-phenylbicyclo[3.2.1]oct-6-ene (205b) 

Following General Procedure A: To a dram vial equipped with a stir bar was added IDPi-

209 (31.1 mg, 0.15 equiv, 0.0225 mmol), cyclohexane (6.0 mL), and 2-allyl-1,1,1,3,3,3-

hexaethyl-2-(triethylsilyl)trisilane (80.9 mg, 1.3 equiv, 0.195 mmol). To this solution was 

added vinyl tosylate 202b (69.1 mg, 1.0 equiv, 0.15 mmol). The reaction was sealed with 

a Teflon cap and heated to 65 ºC for 72 hours, then the reaction was removed from the 

glovebox and a few drops of triethylamine were added to quench the reaction and diluted 

further with DCM. This homogeneous mixture was then plugged through silica gel with 

DCM, concentrated in vacuo, and purified by flash column chromatography (0.5% diethyl 

ether in hexanes) to give insertion product 205b as a pale yellow oil (20.0 mg, 46% yield). 

This material was determined by chiral HPLC to be 73% ee.  

1H NMR (400 MHz, CDCl3) δ 7.29 – 7.26 (m, 2H), 7.23 – 7.19 (m, 2H), 7.18 – 7.12 (m, 

Ph
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1H), 6.90 – 6.86 (m, 2H), 6.85 – 6.81 (m, 1H), 2.96 (dp, J = 13.5, 2.5 Hz, 2H), 2.35 – 2.31 

(m, 1H), 2.21 (s, 6H), 1.83 (dt, J = 11.5, 4.3 Hz, 1H), 1.70 – 1.56 (m, 6H). 

13C NMR (101 MHz, CDCl3) δ 139.3, 138.4, 137.9, 137.7, 128.4, 128.2, 128.1, 126.5, 

125.9, 46.7, 46.2, 44.5, 25.8, 25.7, 21.5, 19.5. 

FT-IR (neat film NaCl): 2926, 2853, 1598, 1443, 836, 765, 694 cm -1. 

HR-MS (EI) m/z: [M•]+ Calculated for C22H24: 288.1878; Measured: 288.1874. 

HPLC (CHIRALCEL ODH column) 99.9:0.1 (hex/iPrOH) 0.5mL/min; tminor (8.37 min), 

tmajor (10.82 min); 73% ee. 

 

 

6-([1,1'-biphenyl]-4-yl)-7-phenylbicyclo[3.2.1]oct-6-ene (205c) 

Following General Procedure A: to a dram vial equipped with a stir bar was added IDPi-

209 (31.1 mg, 0.15 equiv, 0.0225 mmol), cyclohexane (6.0 mL), and 2-allyl-1,1,1,3,3,3-

hexaethyl-2-(triethylsilyl)trisilane (80.9 mg, 1.3 equiv, 0.195 mmol). To this solution was 

added vinyl tosylate 202c (76.3 mg, 1.0 equiv, 0.15 mmol). The reaction was sealed with 

a Teflon cap and heated to 65 ºC for 72 hours, then the reaction was removed from the 

glovebox and a few drops of triethylamine were added to quench the reaction and diluted 

further with DCM. This homogeneous mixture was then plugged through silica gel with 

DCM, concentrated in vacuo, and purified by flash column chromatography (1% benzene 

in hexanes) to give insertion product 205c as a white viscous oil (27.5 mg, 55% yield). This 

material was determined by chiral HPLC to be 73% ee.  

Ph

Ph
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1H NMR (400 MHz, CDCl3) δ 7.61 – 7.57 (m, 2H), 7.48 – 7.40 (m, 4H), 7.37 – 7.30 (m, 

5H), 7.27 (d, J = 4.5 Hz, 1H), 7.26 – 7.23 (m, 2H), 7.22 – 7.17 (m, 1H), 3.10 – 2.93 (m, 

2H), 2.38 (dtd, J = 10.6, 4.4, 2.6 Hz, 1H), 1.88 – 1.78 (m, 1H), 1.71 – 1.58 (m, 6H). 

13C NMR (101 MHz, CDCl3) δ 141.0, 139.5, 139.2, 138.4, 138.0, 136.8, 128.9, 128.5, 

128.4, 128.2, 127.3, 127.0, 126.9, 126.8, 46.7, 46.2, 44.4, 25.9, 25.7, 19.5. 

FT-IR (neat film NaCl): 2924, 2853, 761, 697 cm -1. 

HR-MS (ESI) m/z: [M+H]+ Calculated for C26H25: 337.1951; Measured: 337.1946. 

HPLC (CHIRALCEL ODH column) 99.9:0.1 (hex/iPrOH) 0.5mL/min; tminor (11.2 min), 

tmajor (13.16 min); 73% 

 

 

General Procedure B: C–H Insertion into appended N-Tf piperidine group. 

All C–H insertion reactions were conducted in a well-maintained glove box (O2, H2O <0.5 

ppm) on 0.1 mmol scale unless otherwise noted. To a dram vial equipped with a magnetic 

stir bar was added IDPi 211 catalyst followed by cyclohexane solvent (dried over 

potassium), followed by 2-allyl-1,1,1,3,3,3-hexaethyl-2-(triethylsilyl)trisilane. To this 

mixture was then added the corresponding vinyl tosylate in solid form in one portion. The 

reaction was then sealed with a Teflon cap and heated to 65 ºC for 72 hours (unless 

otherwise noted). (Note: reaction mixture is typically heterogeneous at room temperature, 

but readily goes homogeneous once heated with stirring and typically remains 

homogeneous during the entire course of the reaction.) The reactions were monitored by 

IDPi (12 mol%)
allyl Si(TES)3 (1.3 equiv)

cyclohexane (0.1–0.2 M)
65–75 ºC, 72–96 hr

Ar
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TLC, typically using 5–15% ethyl acetate in hexanes for the mobile phase (C–H insertion 

products are typically higher in Rf than the starting vinyl tosylate). Once the reaction was 

completed, the vial was removed from the glovebox. A few drops of triethylamine were 

then added then diluted with DCM. The homogeneous solution was then plugged through 

silica gel (pushing through with 1:1 DCM/diethyl ether), concentrated in vacuo, and 

analyzed by 1H NMR using nitromethane as an internal standard for qNMR analysis. The 

crude material was purified by flash column chromatography (typically 0–10% diethyl 

ether or ethyl acetate in hexanes) then dried on high vacuum to obtain material that is pure 

by 1H NMR. The enantiomeric excess of the material was then assessed by chiral HPLC. 

In cases where trace impurities (<5%) were observed on the chiral HPLC trace, further 

purification via reverse phase preparatory HPLC was performed to obtain analytical 

quantities of high-purity material to ensure accurate enantiomeric excess determination 

based on peak integration. Many of the products from this reaction could be recrystallized 

from hexanes to obtain highly enantioenriched material (typically >99% ee) by heating in 

hexanes solvent and allowing to cool to room temperature or to –30 ºC. Note: unless 

otherwise noted, characterization of all C–H insertion products by NMR required heating 

to 90 ºC in d6-DMSO which was necessary to prevent peak broadening of the N-Tf 

piperidine protons (due to the Perlin effect) and also to obtain accurate integration values.44 

Room temperature NMR in CDCl3 could be used to obtain NMR yields, given that the 

diagnostic styrenyl olefin peak is sharp (only the N-Tf piperidine protons are broadened 

due to the Perlin effect). 
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(4aR,7R,7aR)-6-phenyl-7-(p-tolyl)-2-((trifluoromethyl)sulfonyl)-2,3,4,4a,7,7a-

hexahydro-1H-cyclopenta[c]pyridine (213a) 

Following General Procedure B: To a dram vial equipped with a stir bar was added IDPi 

211 (28.7 mg, 0.12 equiv, 0.012 mmol), cyclohexane (0.5 mL), and 2-allyl-1,1,1,3,3,3-

hexaethyl-2-(triethylsilyl)trisilane (53.9 mg, 1.3 equiv, 0.13 mmol). To this solution was 

added vinyl tosylate (E)-212a (59.4 mg, 1.0 equiv, 0.1 mmol). The reaction was sealed 

with a teflon cap and heated to 65 ºC for 72 hours, the reaction was removed from the 

glovebox and a few drops of triethylamine were added to quench the reaction and diluted 

further with DCM. This homogeneous mixture was then plugged through silica gel with 

DCM/diethyl ether (1:1), concentrated in vacuo, and purified by flash column 

chromatography (4% diethyl ether in hexanes) to give insertion product 213a as a white 

solid (34.1 mg, 81% yield). This solid was determined by chiral HPLC to be in 91% ee. 

Note: the Z vinyl tosylate isomer could also be used and gives rise to similar results, i.e. 

yield, enantioselectivity, diastereoselectivity. 

1H NMR (400 MHz, d6-DMSO, 90 ºC) δ 7.39 – 7.31 (m, 2H), 7.28 – 7.21 (m, 2H), 7.21 – 

7.15 (m, 1H), 7.14 – 7.07 (m, 4H), 6.40 (dd, J = 2.4, 1.5 Hz, 1H), 4.08 (d, J = 5.2 Hz, 1H), 

3.73 (dd, J = 13.3, 5.4 Hz, 1H), 3.57 (ddd, J = 12.0, 7.6, 4.1 Hz, 1H), 3.47 (td, J = 13.1, 5.6 

Hz, 2H), 3.29 – 3.11 (m, 1H), 2.39 (tt, J = 7.1, 5.3 Hz, 1H), 2.27 (s, 3H), 2.07 (dddd, J = 

13.9, 7.6, 6.1, 4.1 Hz, 1H), 1.76 (dtd, J = 14.5, 7.5, 4.1 Hz, 1H). 

TfN
H

H

Ph
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13C NMR (101 MHz, d6-DMSO, 90 ºC) δ 143.8, 138.6, 135.0, 134.9, 130.4, 128.6, 127.6, 

126.9, 126.5, 125.7, 119.5 (q, J = 324.8 Hz), 52.9, 46.8, 45.6, 43.9, 26.4, 19.9. 

19F NMR (376 MHz, d6-DMSO, 90 ºC) δ -75.3. 

FT-IR (neat film NaCl): 2916, 1383, 1225, 1214, 1189, 1055, 1008, 764 cm-1. 

HR-MS (FD-MS) m/z: [M]+ Calculated for C22H22F3NO2S: 421.1323; Measured: 

421.1317 

HPLC (ChiralPak ADH column) 98:02 (hex/iPrOH) 1mL/min; tmajor (4.89 min), tminor (6.09 

min); 91% ee. 

 

 
((4aR,7R,7aR)-7-(4-cyclopropylphenyl)-6-phenyl-2-((trifluoromethyl)sulfonyl)-

2,3,4,4a,7,7a-hexahydro-1H-cyclopenta[c]pyridine (213b) 

Following General Procedure B: To a dram vial equipped with a stir bar was added IDPi-

211 (28.7 mg, 0.12 equiv, 0.012 mmol), cyclohexane (0.5 mL), and 2-allyl-1,1,1,3,3,3-

hexaethyl-2-(triethylsilyl)trisilane (53.9 mg, 1.3 equiv, 0.13 mmol). To this solution was 

added vinyl tosylate 212b (62.0 mg, 1.0 equiv, 0.1 mmol). The reaction was sealed with a 

Teflon cap and heated to 65 ºC for 72 hours, then the reaction was removed from the 

glovebox and a few drops of triethylamine were added to quench the reaction and diluted 

further with DCM. This homogeneous mixture was then plugged through silica gel with 

DCM/diethyl ether (1:1), concentrated in vacuo, and purified by flash column 

TfN
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chromatography (5% diethyl ether in hexanes) to give insertion product 213b as a white 

solid (36.2 mg, 81% yield). This material was determined by chiral HPLC to be 92% ee.  

1H NMR (400 MHz, d6-DMSO, 90 ºC) δ 7.32 – 7.28 (m, 2H), 7.23 – 7.18 (m, 2H), 7.16 – 

7.12 (m, 1H), 7.09 – 7.05 (m, 2H), 6.99 – 6.95 (m, 2H), 6.36 (dd, J = 2.4, 1.5 Hz, 1H), 4.03 

(dt, J = 5.1, 1.7 Hz, 1H), 3.69 (dd, J = 13.3, 5.4 Hz, 1H), 3.57 – 3.34 (m, 3H), 3.18 – 3.13 

(m, 1H), 2.34 (tt, J = 7.1, 5.2 Hz, 1H), 2.02 (dddd, J = 13.8, 7.6, 6.1, 4.2 Hz, 1H), 1.84 (tt, 

J = 8.4, 5.1 Hz, 1H), 1.72 (dtd, J = 14.4, 7.4, 4.1 Hz, 1H), 0.90 – 0.85 (m, 2H), 0.62 – 0.56 

(m, 2H). 

13C NMR (101 MHz, d6-DMSO, 90 ºC) δ 143.8, 141.2, 138.7, 135.0, 130.5, 127.6, 126.9, 

126.6, 125.7, 125.4, 119.5 (q, J = 324.9 Hz), 52.9, 46.8, 45.6, 43.9, 26.4, 14.2, 8.1 (other 

signal not detected, likely under solvent peak). 

19F NMR (376 MHz, d6-DMSO, 90 ºC) δ -75.0. 

FT-IR (neat film NaCl): 2917, 1459, 1387, 1226, 1189, 1148, 952, 762 cm -1. 

HR-MS (ESI) m/z: [M+NH4]+ Calculated for C24H28F3N2O2S: 465.1818; Measured: 

465.1816. 

HPLC (ChiralPak ADH column) 98:02 (hex/iPrOH) 1mL/min; tmajor (5.78 min), tminor (7.01 

min); 92% ee. 

 

 

(4aR,7R,7aR)-7-(4-(tert-butyl)phenyl)-6-phenyl-2-((trifluoromethyl)sulfonyl)-

2,3,4,4a,7,7a-hexahydro-1H-cyclopenta[c]pyridine (213c) 

TfN
H

H

Ph
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Following General Procedure B: To a dram vial equipped with a stir bar was added IDPi-

211 (28.7 mg, 0.12 equiv, 0.012 mmol), cyclohexane (0.5 mL), and 2-allyl-1,1,1,3,3,3-

hexaethyl-2-(triethylsilyl)trisilane (53.9 mg, 1.3 equiv, 0.13 mmol). To this solution was 

added vinyl tosylate 212c (63.7 mg, 1.0 equiv, 0.1 mmol). The reaction was sealed with a 

Teflon cap and heated to 65 ºC for 72 hours, then the reaction was removed from the 

glovebox and a few drops of triethylamine were added to quench the reaction and diluted 

further with DCM. This homogeneous mixture was then plugged through silica gel with 

DCM/diethyl ether (1:1), concentrated in vacuo, and purified by flash column 

chromatography (4% diethyl ether in hexanes) to give insertion product 213c as a white 

solid (44.5 mg, 96% yield). This material was determined by chiral HPLC to be 88% ee.  

1H NMR (400 MHz, d6-DMSO, 90 ºC) δ 7.34 – 7.30 (m, 2H), 7.30 – 7.26 (m, 2H), 7.21 

(tt, J = 6.6, 1.0 Hz, 2H), 7.17 – 7.11 (m, 3H), 6.37 (dd, J = 2.4, 1.4 Hz, 1H), 4.05 (dt, J = 

4.9, 1.7 Hz, 1H), 3.71 (dd, J = 13.2, 5.5 Hz, 1H), 3.48 (td, J = 8.0, 4.3 Hz, 2H), 3.39 (dd, J 

= 13.3, 7.3 Hz, 1H), 3.20 – 3.13 (m, 1H), 2.36 (tt, J = 7.3, 5.2 Hz, 1H), 2.06 – 1.98 (m, 

1H), 1.74 (dtd, J = 14.2, 7.1, 4.4 Hz, 1H), 1.24 (s, 9H). 

13C NMR (101 MHz, d6-DMSO, 90 ºC) δ 148.2, 143.9, 138.6, 135.1, 130.5, 127.7, 127.5, 

127.3, 127.0, 126.7, 126.6, 125.8, 124.8, 119.6 (app q, J = 324.7 Hz), 53.0, 46.8, 45.8, 

43.9, 39.4, 33.6, 30.7, 26.4. 

19F NMR (376 MHz, d6-DMSO, 90 ºC) δ -75.0. 

FT-IR (neat film NaCl): 2964, 1387, 1226, 1188, 1149, 762 cm -1. 

HR-MS (FD) m/z: [M•]+ Calculated for C25H28F3NO2S: 463.1793; Measured: 463.1797. 

HPLC (ChiralPak ADH column) 98:02 (hex/iPrOH) 1mL/min; tmajor (4.05 min), tminor (4.95 

min); 88% ee. 
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(4aR,7R,7aR)-7-(4-fluorophenyl)-6-phenyl-2-((trifluoromethyl)sulfonyl)-

2,3,4,4a,7,7a-hexahydro-1H-cyclopenta[c]pyridine (213d) 

Following General Procedure B: To a dram vial equipped with a stir bar was added IDPi-

211 (28.7 mg, 0.12 equiv, 0.012 mmol), cyclohexane (0.5 mL), and 2-allyl-1,1,1,3,3,3-

hexaethyl-2-(triethylsilyl)trisilane (53.9 mg, 1.3 equiv, 0.13 mmol). To this solution was 

added vinyl tosylate 212d (59.76 mg, 1.0 equiv, 0.1 mmol). The reaction was sealed with 

a Teflon cap and heated to 75 ºC for 96 hours, then the reaction was removed from the 

glovebox and a few drops of triethylamine were added to quench the reaction and diluted 

further with DCM. This homogeneous mixture was then plugged through silica gel with 

DCM/diethyl ether (1:1), concentrated in vacuo, and purified by flash column 

chromatography (5% diethyl ether in hexanes) to give insertion product 213d as a white 

solid (24.3 mg, 57% yield). This material was determined by chiral HPLC to be 87% ee. 

[Note: this material could be recrystallized from hexanes to give material that was >99% 

enantiomeric excess.] 

1H NMR (400 MHz, d6-DMSO, 90 ºC) δ 7.33 – 7.28 (m, 2H), 7.22 (dddd, J = 8.1, 6.5, 2.4, 

1.2 Hz, 4H), 7.18 – 7.13 (m, 1H), 7.11 – 7.00 (m, 2H), 6.39 (dd, J = 2.5, 1.5 Hz, 1H), 4.11 

(dt, J = 5.1, 1.7 Hz, 1H), 3.72 (dd, J = 13.3, 5.4 Hz, 1H), 3.57 – 3.37 (m, 3H), 3.21 – 3.14 

(m, 1H), 2.37 (tt, J = 7.1, 5.2 Hz, 1H), 2.03 (dddd, J = 13.9, 7.6, 6.0, 4.2 Hz, 1H), 1.74 (dtd, 

J = 14.5, 7.4, 4.2 Hz, 1H). 
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13C NMR (101 MHz, d6-DMSO, 90 ºC) δ 160.6 (d, J = 242.6 Hz), 143.7, 137.8 (d, J = 3.1 

Hz), 134.8, 130.8, 128.9 (d, J = 8.0 Hz), 127.7, 126.7, 125.8, 119.5 (app q, J = 324.7 Hz), 

114.9, 114.6, 52.5, 46.7, 45.6, 43.9, 26.4 (other signal not detected, likely under solvent 

peak). 

19F NMR (376 MHz, d6-DMSO, 90 ºC) δ -75.0, -116.7 

FT-IR (neat film NaCl): 2921, 1508, 1386, 1224, 1189, 1147, 1068, 758 cm-1. 

HR-MS (FD) m/z: [M•]+ Calculated for C21H19F4NO2S: 425.1073; Measured: 425.1062 

HPLC (ChiralPak ADH column) 98:02 (hex/iPrOH) 1mL/min; tmajor (6.42 min), tminor (7.21 

min); 87% ee. 

  

 

(4aR,7R,7aR)-6-(4-fluorophenyl)-7-(4-methoxyphenyl)-2-((trifluoromethyl)sulfonyl)-

2,3,4,4a,7,7a-hexahydro-1H-cyclopenta[c]pyridine (213e) 

Following General Procedure B: To a dram vial equipped with a stir bar was added IDPi-

211 (28.7 mg, 0.12 equiv, 0.012 mmol), cyclohexane (1.0 mL), and 2-allyl-1,1,1,3,3,3-

hexaethyl-2-(triethylsilyl)trisilane (53.9 mg, 1.3 equiv, 0.13 mmol). To this solution was 

added vinyl tosylate 212e (63.0 mg, 1.0 equiv, 0.1 mmol). The reaction was sealed with a 

Teflon cap and heated to 65 ºC for 72 hours, then the reaction was removed from the 

glovebox and a few drops of triethylamine were added to quench the reaction and diluted 

further with DCM. This homogeneous mixture was then plugged through silica gel with 
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DCM/diethyl ether (1:1), concentrated in vacuo, and purified by flash column 

chromatography (10% diethyl ether in hexanes) to give insertion product 213e as a sticky 

opaque solid (35.6 mg, 78% yield). This material was determined by chiral HPLC to be 

91% ee. 

1H NMR (400 MHz, d6-DMSO, 90 ºC) δ 7.36 – 7.30 (m, 2H), 7.12 – 7.08 (m, 2H), 7.03 – 

6.98 (m, 2H), 6.85 – 6.80 (m, 2H), 6.33 (dd, J = 2.4, 1.5 Hz, 1H), 4.01 (dt, J = 5.3, 1.7 Hz, 

1H), 3.71 (s, 3H), 3.70 –3.65 (m, 1H), 3.53 (ddt, J = 11.7, 7.6, 4.1 Hz, 1H), 3.42 (td, J = 

12.8, 5.6 Hz, 2H), 3.17 – 3.10 (m, 1H), 2.34 (tt, J = 7.0, 5.3 Hz, 1H), 2.02 (dddd, J = 13.8, 

7.5, 6.0, 4.0 Hz, 1H), 1.71 (dtd, J = 14.1, 7.6, 4.1 Hz, 1H). 

13C NMR (101 MHz, d6-DMSO, 90 ºC) δ 160.9 (d, J = 244.6 Hz), 157.7, 142.9, 133.4, 

131.6 (d, J = 3.2 Hz), 130.37, 130.36, 128.1, 127.7 (d, J = 8.0 Hz), 119.5 (q, J = 324.8 Hz), 

114.5, 114.3, 113.8, 54.6, 52.6, 46.9, 45.6, 43.9, 26.5 (other signal not detected, likely 

under solvent peak). 

19F NMR (376 MHz, d6-DMSO, 90 ºC) δ -75.0, -115.0. 

FT-IR (neat film NaCl): 2929, 1736, 1609, 1509, 1459, 1387, 1303, 1226, 1185, 1149, 

1098, 1037, 987, 952, 831, 806 cm-1. 

HR-MS (FD) m/z: [M•]+ Calculated for C22H21F4NO3S: 455.1178; Measured: 455.1200. 

HPLC (ChiralPak ADH column) 95:05 (hex/iPrOH) 1mL/min; tmajor (6.74 min), tminor (7.95 

min); 91% ee. 
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(4aR,7R,7aR)-6,7-bis(4-methoxyphenyl)-2-((trifluoromethyl)sulfonyl)-2,3,4,4a,7,7a-

hexahydro-1H-cyclopenta[c]pyridine (213f) 

Following General Procedure B: To a dram vial equipped with a stir bar was added IDPi-

211 (28.7 mg, 0.12 equiv, 0.012 mmol), cyclohexane (1.0 mL), and 2-allyl-1,1,1,3,3,3-

hexaethyl-2-(triethylsilyl)trisilane (53.9 mg, 1.3 equiv, 0.13 mmol). To this solution was 

added vinyl tosylate 212f (64.0 mg, 1.0 equiv, 0.1 mmol). The reaction was sealed with a 

Teflon cap and heated to 65 ºC for 72 hours, then the reaction was removed from the 

glovebox and a few drops of triethylamine were added to quench the reaction and diluted 

further with DCM. This homogeneous mixture was then plugged through silica gel with 

DCM/diethyl ether (1:1), concentrated in vacuo, and purified by flash column 

chromatography (15% diethyl ether in hexanes) to give insertion product 213f as a sticky 

white solid (28.1 mg, 60% yield). This material was determined by chiral HPLC to be 93% 

ee. 

1H NMR (400 MHz, d6-DMSO, 90 ºC) δ 7.26 – 7.21 (m, 2H), 7.12 – 7.08 (m, 2H), 6.85 – 

6.80 (m, 2H), 6.80 – 6.76 (m, 2H), 6.21 (t, J = 1.9 Hz, 1H), 3.97 (d, J = 4.9 Hz, 1H), 3.71 

(d, J = 3.0 Hz, 6H), 3.67 (m, 1H), 3.53 – 3.35 (m, 3H), 3.13 (d, J = 6.9 Hz, 1H), 2.31 (q, J 

= 6.4 Hz, 1H), 2.01 (ddd, J = 13.9, 6.8, 2.4 Hz, 1H), 1.71 (ddt, J = 10.3, 7.4, 3.2 Hz, 1H). 

13C NMR (101 MHz, d6-DMSO, 90 ºC) δ 158.3, 157.6, 143.5, 133.8, 128.1, 127.7, 127.0, 

119.5 (q, J = 324.8 Hz), 113.8, 113.4, 54.7, 54.6, 52.7, 46.8, 45.7, 43.9, 39.2, 26.5. 
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19F NMR (376 MHz, d6-DMSO, 90 ºC) δ -75.0 

FT-IR (neat film NaCl): 2926, 1607, 1511, 1463, 1386, 1249, 1226, 1180, 1148, 1065, 

1037, 986, 952, 831 cm -1. 

HR-MS (ESI) m/z: [M+NH4]+ Calculated for C23H28F3N2O4S: 485.1716; Measured: 

485.1711. 

HPLC (ChiralPak ADH column) 90:10 (hex/iPrOH) 1mL/min; tmajor (6.90 min), tminor (8.24 

min); 93% ee. 

 

 

(4aR,7R,7aR)-6-(4-iodophenyl)-7-(p-tolyl)-2-((trifluoromethyl)sulfonyl)-2,3,4,4a,7,7a-

hexahydro-1H-cyclopenta[c]pyridine (213g) 

Following General Procedure B: To a dram vial equipped with a stir bar was added IDPi-

211 (28.7 mg, 0.12 equiv, 0.012 mmol), cyclohexane (0.5 mL), and 2-allyl-1,1,1,3,3,3-

hexaethyl-2-(triethylsilyl)trisilane (53.9 mg, 1.3 equiv, 0.13 mmol). To this solution was 

added vinyl tosylate 212g (72.0 mg, 1.0 equiv, 0.1 mmol). The reaction was sealed with a 

Teflon cap and heated to 65 ºC for 72 hours, then the reaction was removed from the 

glovebox and a few drops of triethylamine were added to quench the reaction and diluted 

further with DCM. This homogeneous mixture was then plugged through silica gel with 

DCM/diethyl ether (1:1), concentrated in vacuo, and purified by flash column 
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chromatography (5% diethyl ether in hexanes) to give insertion product 213g as a clear oil 

(29.8 mg, 54% yield). This material was determined by chiral HPLC to be 90% ee.  

1H NMR (400 MHz, d6-DMSO, 90 ºC) δ 7.64 – 7.47 (m, 2H), 7.12 – 7.08 (m, 2H), 7.06 

(s, 4H), 6.42 (dd, J = 2.5, 1.5 Hz, 1H), 4.02 (dt, J = 5.4, 1.7 Hz, 1H), 3.67 (dd, J = 13.3, 

5.3 Hz, 1H), 3.53 (ddd, J = 11.9, 7.4, 4.2 Hz, 1H), 3.47 – 3.36 (m, 2H), 3.16 – 3.10 (m, 

1H), 2.34 (tt, J = 7.0, 5.3 Hz, 1H), 2.24 (s, 3H), 2.02 (dddd, J = 13.8, 7.4, 6.0, 4.0 Hz, 1H), 

1.70 (dtd, J = 14.1, 7.8, 4.1 Hz, 1H). 

13C NMR (101 MHz, d6-DMSO, 90 ºC) δ 142.9, 138.4, 136.5, 135.1, 134.7, 131.7, 128.7, 

127.9, 127.0, 119.5 (app q, J = 324.7 Hz), 92.1, 52.7, 46.9, 45.5, 43.9, 39.45, 26.4, 20.0. 

19F NMR (376 MHz, d6-DMSO, 90 ºC) δ -74.9 

FT-IR (neat film NaCl): 2932, 1738, 1514, 1486, 1385, 1225, 1187, 1002, 952, 814 cm -1. 

HR-MS (ESI) m/z: [M+Na]+ Calculated for C22H21F3INNaO2S: 570.0182; Measured: 

570.0191. 

HPLC (ChiralPak ADH column) 98:02 (hex/iPrOH) 1mL/min; tmajor (6.94 min), tminor (9.92 

min); 90% ee. 

 

 

3-(4-((4aR,7R,7aR)-7-(p-tolyl)-2-((trifluoromethyl)sulfonyl)-2,3,4,4a,7,7a-hexahydro-

1H-cyclopenta[c]pyridin-6-yl)phenyl)propan-1-ol (213h) 
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Following a slightly modified version of General Procedure A: To a dram vial equipped 

with a stir bar was added IDPi-211 (28.7 mg, 0.12 equiv, 0.012 mmol), cyclohexane (0.5 

mL), and 2-allyl-1,1,1,3,3,3-hexaethyl-2-(triethylsilyl)trisilane (95.4 mg, 2.3 equiv, 0.23 

mmol). To this solution was added vinyl tosylate 212h (65.2 mg, 1.0 equiv, 0.1 mmol). 

The reaction was sealed with a Teflon cap and heated to 65 ºC for 72 hours. After this time, 

the reaction was removed from the glovebox and to the reaction vial was added 1 mL of a 

freshly prepared solution of TBAF•(H2O)3 in THF (0.05M) at room temperature and 

allowed to stir overnight. The next morning, saturated aqueous ammonium chloride was 

added to the reaction vial (~2 mL) then the mixture was extracted with ethyl acetate three 

times. The combined organics were dried over Na2SO4, filtered, concentrated in vacuo, 

then purified via flash chromatography (1% à 2% diethyl ether in DCM) to obtain free 

alcohol 213h as a white solid (30.7 mg, 64% yield). This material was determined by chiral 

HPLC to be in 87% ee.  

1H NMR (400 MHz, d6-DMSO, 90 ºC) δ 7.25 – 7.15 (m, 2H), 7.12 – 6.98 (m, 6H), 6.30 

(dd, J = 2.4, 1.5 Hz, 1H), 4.00 (dt, J = 5.0, 1.7 Hz, 1H), 3.69 (dd, J = 13.3, 5.4 Hz, 1H), 

3.56 – 3.32 (m, 5H), 3.15 (q, J = 6.9 Hz, 1H), 2.57 – 2.52 (m, 2H), 2.33 (tt, J = 7.2, 5.2 Hz, 

1H), 2.24 (s, 3H), 2.02 (dddd, J = 13.9, 7.6, 6.0, 4.2 Hz, 1H), 1.79 – 1.62 (m, 3H). 

13C NMR (101 MHz, d6-DMSO, 90 ºC) δ 143.7, 140.8, 138.8, 134.9, 132.3, 129.4, 128.6, 

127.5, 126.9, 125.6, 119.5 (q, J = 324.8 Hz), 59.7, 53.0, 46.8, 45.6, 43.8, 33.4, 30.8, 26.4, 

19.9. 

19F NMR (376 MHz, d6-DMSO, 90 ºC) δ -74.9.  

FT-IR (neat film NaCl): 3366 (br s), 2919, 2859, 1732, 1653, 1561, 1512, 1447, 1386, 

1269, 1226, 1186, 1148, 1065, 1045, 984, 952, 819, 735, 606. 
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HR-MS (ESI) m/z: [M+H]+ Calculated for C25H29F3NO3S: 480.1815; Measured: 

480.1809. 

HPLC (ChiralPak ADH column) 90:10 (hex/iPrOH) 1mL/min; tmajor (7.86 min), tminor (9.69 

min); 87% ee. 

 

4.5.5 Product Manipulation 

Oxidative cleavage of bicyclo[3.2.1]octenes: 

 

 

 
(3-benzoylcyclohexyl)(3-(tert-butyl)phenyl)methanone (210a) 

Following a similar reported procedure24: To a dram vial equipped with a stir bar was added 

bicycle 205a (16.2 mg, 1.0 equiv, 0.0512 mmol) and DCM (1.0 mL). To this solution was 

added PCC (55.2 mg, 5.0 equiv, 0.256 mmol). The reaction was sealed with a Teflon cap 

and heated to 45 ºC for 18 hours. The reaction was then cooled to room temperature, diluted 

with DCM, plugged through silica gel with DCM, and concentrated in vacuo. The crude 

material was purified by flash column chromatography (10% diethyl ether in hexanes) to 

give diketone 210a as a viscous oil (13.4 mg, 75% yield). The relative stereochemistry was 

assigned based on NOESY NMR. This material was determined by chiral HPLC to be 77% 

ee (100% es).  

Ph Ar

PCC (5 equiv)
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Ph Ar

OO
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1H NMR (400 MHz, C6D6) δ 8.27 (t, J = 1.9 Hz, 1H), 7.91 – 7.84 (m, 2H), 7.70 (ddd, J = 

7.7, 1.7, 1.1 Hz, 1H), 7.36 (ddd, J = 7.8, 2.1, 1.1 Hz, 1H), 7.16 – 7.06 (m, 4H), 3.15 (tt, J 

= 11.8, 3.5 Hz, 1H), 3.05 (tt, J = 11.9, 3.5 Hz, 1H), 2.12 (ddq, J = 11.8, 3.6, 1.8 Hz, 1H), 

2.04 (dt, J = 13.6, 11.7 Hz, 1H), 1.84 (dtt, J = 11.7, 3.4, 1.8 Hz, 1H), 1.76 (dtt, J = 11.7, 

3.3, 1.8 Hz, 1H), 1.61 (dt, J = 13.1, 3.3 Hz, 1H), 1.53 – 1.45 (m, 2H), 1.24 – 1.20 (m, 1H), 

1.19 (s, 9H). 

13C NMR (101 MHz, CDCl3) δ 203.0, 202.7, 152.0, 136.3, 136.0, 133.1, 130.3, 128.8, 

128.4, 128.3, 125.6, 125.2, 45.2, 45.1, 35.0, 31.9, 31.4, 29.2, 29.1, 25.6. 

FT-IR (neat film NaCl): 2926, 2852, 1680, 1596, 1447, 1367, 1252, 1205, 1179, 1007, 

960, 697 cm -1. 

HR-MS (ESI) m/z: [M+Na]+ Calculated for C24H28NaO2: 371.1982; Measured: 371.1990. 

HPLC (CHIRALCEL ODH column) 95:5 (hex/iPrOH) 1.0 mL/min; tmajor (9.74 min), tminor 

(11.75 min); 77% ee (100% es) 

 

 
(3-benzoylcyclohexyl)(3,5-dimethylphenyl)methanone (210b) 

Following a similar reported procedure24: To a dram vial equipped with a stir bar was added 

bicycle 205b (16.2 mg, 1.0 equiv, 0.0512 mmol) and DCM (1.0 mL). To this solution was 

added PCC (55.2 mg, 5.0 equiv, 0.256 mmol). The reaction was sealed with a Teflon cap 

and heated to 45 ºC for 18 hours. The reaction was then cooled to room temperature, diluted 

with DCM, plugged through silica gel with DCM, and concentrated in vacuo. The crude 

material was purified by flash column chromatography (10% diethyl ether in hexanes) to 
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give diketone 210b as a viscous oil (13.4 mg, 75% yield). The relative stereochemistry was 

assigned based on NOESY NMR.  This material was determined by chiral HPLC to be 

74% ee (101% es).  

1H NMR (400 MHz, C6D6) δ 7.89 – 7.85 (m, 2H), 7.65 (d, J = 1.7 Hz, 2H), 7.15 – 7.05 

(m, 3H), 6.85 (t, J = 1.5 Hz, 1H), 3.17 – 3.09 (m, 1H), 3.04 (tt, J = 11.8, 3.5 Hz, 1H), 2.11 

(dt, J = 5.1, 2.4 Hz, 1H), 2.09 (s, 6H), 1.86 (dtt, J = 11.6, 3.4, 1.7 Hz, 1H), 1.79 – 1.74 (m, 

1H), 1.63 – 1.58 (m, 1H), 1.56 – 1.40 (m, 3H), 1.19 (dt, J = 13.1, 3.6 Hz, 1H). 

13C NMR (101 MHz, CDCl3) δ 203.2, 202.7, 138.4, 136.5, 136.3, 134.7, 133.1, 128.8, 

128.4, 126.1, 45.20, 45.18, 31.8, 29.9, 29.2, 29.1, 25.6, 21.4. 

FT-IR (neat film NaCl): 2921, 1677, 1598, 1301, 696 cm -1. 

HR-MS (ESI) m/z: [M+Na]+ Calculated for C22H24NaO2: 343.1669; Measured: 343.1682. 

HPLC (ChiralPak ADH column) 90:10 (hex/iPrOH) 1.0mL/min; tminor (8.42 min), tmajor 

(10.29 min); 74% ee (101% es). 

 

      
 
(3-([1,1'-biphenyl]-4-carbonyl)cyclohexyl)(phenyl)methanone (210c) 

Following a similar reported procedure24: To a dram vial equipped with a stir bar was added 

bicycle 205c (17.7 mg, 1.0 equiv, 0.0526 mmol) and DCM (1.0 mL). To this solution was 

added PCC (56.7 mg, 5.0 equiv, 0.263 mmol). The reaction was sealed with a Teflon cap 

and heated to 45 ºC for 18 hours. The reaction was then cooled to rt, diluted with DCM, 

plugged through silica gel with DCM, and concentrated in vacuo. The crude material was 

purified by flash column chromatography (10% diethyl ether in hexanes) to give 210c as a 
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white solid (13.0 mg, 67% yield). The relative and absolute stereochemistry was assigned 

based on X-ray crystallographic analysis. This material was determined by chiral HPLC to 

be 72% ee (99% es). Recrystallization from n-hexane/DCM affords highly enantioenriched 

material (>99% ee).  

1H NMR (400 MHz, C6D6) δ 7.99 – 7.94 (m, 2H), 7.94 – 7.85 (m, 2H), 7.46 – 7.40 (m, 

4H), 7.25 – 7.20 (m, 2H), 7.17 (t, J = 1.4 Hz, 1H), 7.15 – 7.06 (m, 3H), 3.14 – 3.02 (m, 

2H), 2.15 – 2.06 (m, 2H), 1.86 – 1.76 (m, 2H), 1.65 – 1.60 (m, 1H), 1.52 – 1.44 (m, 2H), 

1.24 – 1.20 (m, 1H). 

13C NMR (101 MHz, CDCl3) δ 202.7, 202.3, 145.8, 140.0, 136.26, 134.9, 133.1, 129.1, 

129.0, 128.8, 128.4, 128.3, 127.5, 127.4, 45.2, 45.1, 31.7, 29.3, 29.2, 25.7. 

FT-IR (neat film NaCl): 2921, 2852, 1678, 1602, 1446, 1405, 1372, 1260, 1210, 1001, 

768, 744, 696, 661, 607 cm -1. 

HR-MS (ESI) m/z: [M+Na]+ Calculated for C26H24NaO2: 391.1669; Measured: 391.1671. 

HPLC (ChiralPak ADH column) 80:20 (hex/iPrOH) 1.0mL/min; tmajor (15.56 min), tminor 

(17.31 min); 72% ee (99% es). 
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4.5.6 Chiral HPLC Traces of Enantioenriched Products 
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*Recrystallized once from hexanes. 
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A4.1 GENERAL EXPERIMENTAL 

For compounds 202a, 202c, and 210c: Low-temperature diffraction data (f-and w-

scans) were collected on a Bruker AXS D8 VENTURE KAPPA diffractometer coupled to 

a PHOTON II CPAD detector with Cu Ka radiation (l = 1.54178 Å) from an IμS micro-

source for the structures. The structures were solved by direct methods using SHELXS1 

and refined against F2 on all data by full-matrix least squares with SHELXL-20172 using 

established refinement techniques3. All non-hydrogen atoms were refined anisotropically. 

All hydrogen atoms were included into the model at geometrically calculated positions and 

refined using a riding model. The isotropic displacement parameters of all hydrogen atoms 

were fixed to 1.2 times the U value of the atoms they are linked to (1.5 times for methyl 

groups). All disordered atoms were refined with the help of similarity restraints on the 1,2- 

and 1,3-distances and displacement parameters as well as enhanced rigid bond restraints 

for anisotropic displacement parameters. Structures were solved by Dr. Michael Takase 

(Caltech). All crystallographic data are available free of charge from the Cambridge 

Crystallographic Data Centre under CCDC 2201595, CCDC 2201596, and CCDC 

2201598.  

A4.1.1 X-Ray Crystal Structure Analysis for 210c 

 

Compound 210c (V22218) crystallizes in the monoclinic space group P21 with one 

molecule in the asymmetric unit. One of the phenyl groups was disordered over two 

positions. 210c is found under CCDC 2201598. 

Ph

OO

Ph
210c
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Figure A4.1. X-Ray crystal structure for 210c [V22218]. 

 

 

 

Table A4.1. Crystal data and structure refinement 210c [V22218]. 

Identification code  V22218 

Empirical formula  C26 H24 O2 

Formula weight  368.45 

Temperature  100(2) K 

Wavelength  1.54178 Å 

Crystal system  Monoclinic 

Space group  P21 

Unit cell dimensions a = 5.5839(6) Å a= 90°. 

 b = 8.1627(8) Å b= 95.375(7)°. 

 c = 21.343(2) Å g = 90°. 

Volume 968.53(17) Å3 

Z 2 

Density (calculated) 1.263 Mg/m3 
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Absorption coefficient 0.611 mm-1 

F(000) 392 

Crystal size 0.500 x 0.300 x 0.100 mm3 

Theta range for data collection 2.079 to 74.607°. 

Index ranges -6<=h<=6, -10<=k<=10, -26<=l<=26 

Reflections collected 19856 

Independent reflections 3903 [R(int) = 0.0866] 

Completeness to theta = 67.679° 99.9 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7538 and 0.5473 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3903 / 331 / 290 

Goodness-of-fit on F2 1.137 

Final R indices [I>2sigma(I)] R1 = 0.0609, wR2 = 0.1512 

R indices (all data) R1 = 0.0726, wR2 = 0.1592 

Absolute structure parameter 0.0(3) 

Extinction coefficient n/a 

Largest diff. peak and hole 0.248 and -0.240 e.Å-3 
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A4.1.2 X-Ray Crystal Structure Analysis for 202a 

 

 
 
Compound 202a (V22217) crystallizes in the triclinic space group P-1 with one molecule 

in the asymmetric unit. 202a is found under CCDC 2201596. 

 
Figure A4.1. X-Ray crystal structure for 202a [V22217]. 

 

 

Table A4.2. Crystal data and structure refinement 202a [V22217]. 

Crystal data and structure refinement for V22217. 

Identification code  V22217 

202a

Ph

OTs
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Empirical formula  C31 H36 O3 S 

Formula weight  488.66 

Temperature  100(2) K 

Wavelength  0.71073 Å 

Crystal system  Triclinic 

Space group  P-1 

Unit cell dimensions a = 6.7390(16) Å a= 92.283(18)°. 

 b = 12.140(4) Å b= 92.888(16)°. 

 c = 16.476(4) Å g = 93.361(11)°. 

Volume 1342.6(6) Å3 

Z 2 

Density (calculated) 1.209 Mg/m3 

Absorption coefficient 0.150 mm-1 

F(000) 524 

Crystal size 0.300 x 0.300 x 0.150 mm3 

Theta range for data collection 2.131 to 36.320°. 

Index ranges -11<=h<=11, -20<=k<=20, -27<=l<=23 

Reflections collected 66538 

Independent reflections 12989 [R(int) = 0.0631] 

Completeness to theta = 25.242° 99.9 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7471 and 0.6672 

Refinement method Full-matrix least-squares on F2 
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Data / restraints / parameters 12989 / 0 / 320 

Goodness-of-fit on F2 1.027 

Final R indices [I>2sigma(I)] R1 = 0.0467, wR2 = 0.1152 

R indices (all data) R1 = 0.0690, wR2 = 0.1256 

Extinction coefficient n/a 

Largest diff. peak and hole 0.587 and -0.411 e.Å-3 
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A4.1.3 X-Ray Crystal Structure Analysis for 202c 

 

Compound 202c (V22220) crystallizes in the monoclinic space group P21/c with one 

molecule in the asymmetric unit. 202c is found under CCDC 2201595. 

 

Figure A4.3. X-Ray crystal structure for 202c [V22220]. 

 

Table A4.3. Crystal data and structure refinement 202c [V22220]. 

Crystal data and structure refinement for V22220. 

Identification code  V22220 

Empirical formula  C33 H32 O3 S 

202c

Ph

OTs

Ph
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Formula weight  508.64 

Temperature  100(2) K 

Wavelength  1.54178 Å 

Crystal system  Monoclinic 

Space group  P21/c 

Unit cell dimensions a = 16.1897(12) Å a= 90°. 

 b = 6.1288(6) Å b= 102.694(5)°. 

 c = 26.7552(19) Å g = 90°. 

Volume 2589.8(4) Å3 

Z 4 

Density (calculated) 1.305 Mg/m3 

Absorption coefficient 1.370 mm-1 

F(000) 1080 

Crystal size 0.300 x 0.050 x 0.050 mm3 

Theta range for data collection 2.798 to 74.415°. 

Index ranges -20<=h<=20, -7<=k<=7, -32<=l<=33 

Reflections collected 28009 

Independent reflections 5302 [R(int) = 0.0629] 

Completeness to theta = 67.679° 100.0 %  

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.7538 and 0.5273 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 5302 / 0 / 335 
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Goodness-of-fit on F2 1.031 

Final R indices [I>2sigma(I)] R1 = 0.0401, wR2 = 0.1013 

R indices (all data) R1 = 0.0492, wR2 = 0.1075 

Extinction coefficient n/a 

Largest diff. peak and hole 0.505 and -0.488 e.Å-3 
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