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Protein degradation coupled to
Nonsense-mediated mRNA decay

1



2

ABSTRACT

Translation of mRNAs containing premature termination codons (PTCs) results
in truncated protein products with deleterious effects. Nonsense-mediated decay
(NMD) is a surveillance pathway responsible for detecting PTC containing tran-
scripts. While the molecular mechanisms governing mRNA degradation have been
extensively studied, the fate of the nascent protein product remains largely un-
characterized. In part 1 of this thesis, we use a fluorescent reporter system in
mammalian cells to reveal a selective degradation pathway specifically targeting the
protein product of an NMD mRNA. We show that this process is post-translational,
and dependent on the ubiquitin proteasome system. To systematically uncover fac-
tors involved in NMD-linked protein quality control, we conducted genome-wide
flow cytometry-based screens. Our screens recovered known NMD factors, but
suggested protein degradation did not depend on the canonical ribosome-quality
control (RQC) path-way. A subsequent arrayed screen demonstrated that protein
and mRNA branches of NMD rely on a shared recognition event. Our results estab-
lish the existence of a targeted pathway for nascent protein degradation from PTC
containing mRNAs, and provides a reference for the field to identify and characterize
required factors.
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C h a p t e r 1

INTRODUCTION TO NONSENSE-MEDIATED MRNA DECAY

1.1 mRNA degradation
Translation lies at the very center of every process in biology. The ribosome
synthesizes all proteins in our cells, making its function and accuracy essential
prerequisites for the proper operation of all cellular pathways. This importance
is highlighted by a plethora of diseases caused by alterations in the translation
machinery, with even subtle deviations from normal having great effects in the
health of the whole proteome (Lee et al., 2006).

It is hence not surprising that cells have evolved a myriad of mechanisms to regulate
translation. These processes ensure that the information encoded in the mRNA
is faithfully converted into proteins (Steffen and Dillin, 2016), safeguarding the
proteome against the errors inherent to any biological process. But even if such
mechanisms were faultless, they are still dependent on a correct template. A perfect
translation is of no use if the mRNA contains errors.

This problem is imperative for the cell. Errors in the mRNA can arise from a variety
of sources, including genetic mutations, transcriptional errors, RNA processing
defects, etc. (Maquat and Carmichael, 2001). Most importantly, its effects are
much more severe than translational errors. A single mRNA can undergo translation
around 2,000 to 4,000 times on average (Schwanhäusser et al., 2011). In the presence
of errors, this can result in the production of thousands of incorrect proteins. This
amplification effect, together with the far-reaching consequences of malfunctioning
proteins, makes it crucial that mechanisms controlling the quality of mRNA exist in
the cell.

Severely damaged mRNAs (such as those lacking a 5’ cap or a poly(A) tail) can
be easily recognized by the cellular machinery (Shoemaker and Green, 2012). But
those with more subtle changes, like mutations in the coding sequence, pose a greater
challenge for the cell. Unlike proteins, in which these errors can be identified by their
inability to fold, a mutated mRNA offers no biophysical clue for its detection, and
must therefore be recognized co-translationally. This principle defines a series of
co-translational mRNA surveillance pathways whereby the ribosome not only reads
the mRNA, but also scans it in search of errors. (Karamyshev and Karamysheva,
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2018). In my PhD, I studied one of those pathways, nonsense-mediated mRNA
decay (NMD), and analyzed its tight link with translation.

1.2 Nonsense-mediated mRNA decay (NMD)
NMD is an eukaryotic co-translational mRNA quality control pathway that surveys
translation and recognizes, targets and degrades select mRNAs. The discovery of
NMD emerged from studies of the genetic disease 𝛽-thalassemia, a blood disorder
caused by reduced or absent mRNA of the beta chain of hemoglobin (𝛽-globin) (Benz
Jr., Swerdlow, and Forget, 1975). In 1979, the 𝛽-globin mRNA of a 𝛽-thalassemia
patient was first sequenced. A single point mutation, leading to the appearance of a
premature termination codon (PTC), was identified as the molecular culprit (Chang
and Kan, 1979). Subsequent studies showed that a PTC could reduce the half-life of
mRNAs across all eukaryotes (Maquat, Kinniburgh, et al., 1981) through a pathway
that was coined Nonsense-mediated mRNA decay.

PTCs can arise for a variety of reasons, including genomic insertions, deletions, or
even single point mutations along the coding sequence (named nonsense mutations)
(He and Jacobson, 2015). mRNAs with PTCs encode for truncated proteins, which
can be aggregation-prone, lose or gain activities, or even act as dominant negative
factors. This has broad implications in human disease. Out of the nearly 7,000
known rare genetic disorders, approximately 30% arise as a consequence of a pre-
mature termination codon (Miller and Pearce, 2014). The list includes diseases such
as factor X deficiency (Millar et al., 2000), von Willebrand disease (Schneppenheim
et al., 2001), Retinitis pigmentosa (Rosenfeld et al., 1992), etc.

Beyond nonsense mutations, NMD has been shown to modulate around 10% of
the human transcriptome (Celik, He, and Jacobson, 2017). This includes mRNAs
with upstream open reading frames (uORF), with introns downstream the normal
termination codon (Mendell et al., 2004) and mRNAs with defective alternative
splicing (Lewis, Green, and Brenner, 2003). Intriguingly, NMD also targets many
apparently normal wild-type mRNAs (Lelivelt and Culbertson, 1999; He, Li, et al.,
2003; Rehwinkel et al., 2005). While these transcripts have lower codon optimality
and a higher rate of out-of-frame translation in average, the exact mechanism and
how this process is controlled is yet a mystery of the field (Celik, Baker, et al., 2017).
This regulatory function underscores the importance of NMD in the cell, not only
as a mechanism against errors, but also as a wide-ranging gene expression control
pathway of a significant portion of the genome.
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The selection criteria for NMD substrates are based on the effects of a premature
termination codon. The position of the start and the stop codons define three
fragments in every mRNA: a coding sequence, and a 5’ and 3’ Untranslated Region
(UTR). A nonsense mutation results in the lengthening of the 3’UTR at the expense
of the coding sequence. This has two important implications: i) The proteins
that interact with the 3’UTR become further from the stop codon. Some of those
proteins, such as the Poly(A)-binding protein (PABP), are known to interact with the
translation machinery and promote efficient termination (Amrani et al., 2004; Behm-
Ansmant et al., 2007). This function is compromised as the distance to the stop
codon increases, reducing termination efficiency. ii) proteins that exclusively bind
the coding sequence would find themselves bound to the new lengthened 3’UTR.
It is believed that a combination of these two factors, as sensed by the ribosome
during translation termination, is the molecular cue that triggers degradation of the
mRNA by NMD (Maquat, Kinniburgh, et al., 1981).

1.3 EJC-dependent Nonsense-mediated mRNA decay

Figure 1.1: EJC-dependent Nonsense-mediated mRNA decay. A nonsense mutation can lead to
the deposition of an Exon Junction Complex (EJC) downstream of the premature termination codon.
The factors UPF1, UPF2 and UPF3 can bridge the EJC to the terminating ribosome and trigger
degradation by NMD.
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The most widely studied branch of NMD is the one dependent on the splicing of
pre-mRNAs (Shoemaker and Green, 2012). Most mammalian genes contain introns,
which are removed by the spliceosome co-transcriptionally (Hoskins and Moore,
2012). In this process, the spliceosome deposits a protein complex called the Exon
Junction Complex (EJC) 24 nucleotides upstream of each exon-exon junction. This
complex transfers the positional information of the splicing events from the nucleus
to the cytoplasm (Woodward et al., 2017). Importantly, the stop codon of the vast
majority of mammalian genes is located in the last exon. Therefore, the EJCs
of a normal mRNA are always located in the coding sequence (Brogna and Wen,
2009). A PTC in other than the last exon would lead to the appearance of an EJC
in the 3’UTR. An EJC located more than 20-24 nucleotides downstream from the
termination codon flags the presence of a PTC and triggers mRNA degradation by
NMD.

Although the precise molecular mechanisms are not entirely clear, there is a widely
recognized model on how NMD occurs. The central NMD factor is UPF1, an
RNA-dependent helicase and ATPase that mediates NMD in all tested eukaryotes
(Kurosaki, Popp, and Maquat, 2019). UPF2 and UPF3B are also central to NMD.
UPF3B associates with the EJC, and is considered one of its peripheral components
(Singh et al., 2012). UPF2 associates with UPF3B at the EJCs. In the presence
of a PTC, the UPF3B-UPF2 complex recruits UPF1 and stimulate its ATPase and
helicase activities (Chamieh et al., 2008). This occurs through a change in UPF1’s
conformation. Free UPF1 exhibits a closed conformation, driven by the interaction
of its terminal domains (Fiorini, Boudvillain, and Le Hir, 2013). UPF2 interacts with
one of such terminal domains: the cysteine- and histidine-rich zinc finger domain
(CH domain) at UPF1’s N-terminus. This induces a relaxed open conformation that
activates UPF1 (Kadlec et al., 2006).

The ATPase-dependent helicase activity of UPF1 promotes mRNA degradation by
translocating along the substrate and recruiting decay factors. The exact role of
UPF1’s translocation is unclear. Different studies support that the role of UPF1
helicase activity is to disassemble and displace mRNA-bound proteins that would
otherwise hinder RNA degradation (Fiorini, Bagchi, et al., 2015). However, a
subsequent study concluded that UPF1 ATPase activity is involved in promoting
efficient translation termination and ribosome release (Serdar, Whiteside, and Baker,
2016). This study argues that it is the terminating ribosome that hinders mRNA
degradation, and not downstream mRNA-binding proteins as previously thought.
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Which of the two models is correct (if any) has not yet been elucidated.

Another key event necessary for mRNA degradation is the recruitment of the kinase
SMG1 in the context of translation termination (Yamashita et al., 2001). In a
canonical termination event, the release factors eRF1 and eRF3 are recruited to the
stop codon to release the nascent peptide from the ribosome. When a ribosome
terminates in a PTC, the release factors interact with both UPF1 and SMG1 to form
the so-called SMG1-UPF1-eRFs (SURF) complex (Kashima et al., 2006). The
interaction of the SURF complex with the downstream EJC activates SMG1, which
phosphorylates Upf1 on both its N- and C-terminus. This phosphorylation event is
essential for NMD activation and is thought to serve as a commitment step towards
mRNA degradation (Kurosaki, Li, et al., 2014).

Upf1 phosphorylation triggers NMD through the recruitment of a number of fac-
tors. These include the endonuclease SMG6, as well as the adaptors proteins
SMG5-SMG7 and PNRC2, which connect UPF1 to the mRNA degradation ma-
chinery (Durand, Franks, and Lykke-Andersen, 2016). PNRC2 interacts with the
DCP2 decapping complex, which elicits 5’-to-3’ mRNA degradation (Cho, Kim,
and Kim, 2009; Lai et al., 2012). SMG6 targets the mRNA via an endonucle-
olytic cleavage near the PTC (Eberle et al., 2009). The cleavage generates a 5’
product that is degraded 3’-to-5’ by both the exosome (Schmid and Jensen, 2008)
and the exoribonuclease DIS3L2 (Malecki et al., 2013), and a 3’ product that is
degraded by the exoribonuclease XNR1 after being stripped off its bound factors
by UPF1’s helicase activity (Franks, Singh, and Lykke-Andersen, 2010)). Finally,
the heterodimer SMG5-SMG7 acts as an adaptor for the CCR4-NOT deadenylation
complex, which promotes 3’-to-5’ exonucleolytic degradation of the target (Loh,
Jonas, and Izaurralde, 2013).

The interplay between the SMG5-SMG7 and the SMG6 degradation branches has
been the subject of intense study. These branches are considered to be independent
from each other, as knock-down of a single one only partially inhibit NMD (Metze
et al., 2013). Because the downregulation of SMG6 impairs NMD to a larger ex-
tent than the knock-down of SMG7, it is thought that endonucleolytic cleavage is
the predominant strategy for mRNA degradation by NMD (Colombo et al., 2017).
Nevertheless, the two branches are considered to be redundant, since the knock-
down of one appears to be partially compensated by the other (Metze et al., 2013).
Intriguingly, a recent paper challenged this notion and provided evidence for depen-
dency between the SMG5-SMG7 and SMG6 branches (Boehm et al., 2020). The
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papers shows that knocking-down SMG7 (as made in all previous studies) is insuf-
ficient to abolish its function, and that a complete depletion is required to observe
a significant effect in NMD. The authors show that complete inactivation of the
SMG5-SMG7 pathway also inhibits the SMG6 one, supporting a hierarchy between
the two branches. Under this new model, the SMG5-SMG7 heterodimer would first
be recruited to phosphorylated UPF1, which would then trigger SMG6 activity and
mRNA degradation.

1.4 Contributions of this thesis
While many studies have investigated the mechanisms of mRNA degradation, the
link between NMD and translation has been understudied. Since NMD is a co-
translational pathway, the degradation of the target mRNA is inextricably associated
with the production of a truncated protein. This contradicts the goal of NMD,
which is to prevent the production of such truncated products. In the first part of
my thesis, I outline our efforts to investigate this conundrum. In Chapter 2, we
designed and built a set of NMD fluorescent reporters that deconvolute protein and
mRNA degradation, a long-standing challenge in the field. We used the reporter
system to discover a novel protein degradation pathway coupled to NMD, which
we demonstrated to be dependent on the ubiquitin-proteasome system. Finally, we
performed whole-genome CRISPR screens to uncover factors involved in this novel
pathway.

References

Amrani, Nadia et al. (2004). “A faux 3’-UTR promotes aberrant termination and
triggers nonsense-mediated mRNA decay.” In: Nature 432.7013, pp. 112–118.

Behm-Ansmant, Isabelle et al. (2007). “A conserved role for cytoplasmic poly (A)-
binding protein 1 (PABPC1) in nonsense-mediated mRNA decay.” In: The EMBO
Journal 26.6, pp. 1591–1601.

Benz Jr., Edward J., Paul S. Swerdlow, and Bernard G. Forget (1975). “Absence
of functional messenger RNA activity for beta globin chain synthesis in ß0-
thalassemia.” In: Blood 45.1, pp. 1–10.

Boehm, Volker et al. (2020). “Nonsense-mediated mRNA decay relies on "two-factor
authentication" by SMG5-SMG7.” In: bioRxiv, pp. 2020–07.

Brogna, Saverio and Jikai Wen (2009). “Nonsense-mediated mRNA decay (NMD)
mechanisms.” In: Nature Structural & Molecular Biology 16.2, pp. 107–113.



9

Celik, Alper, Richard Baker, et al. (2017). “High-resolution profiling of NMD targets
in yeast reveals translational fidelity as a basis for substrate selection.” In: Rna
23.5, pp. 735–748.

Celik, Alper, Feng He, and Allan Jacobson (2017). “NMD monitors translational
fidelity 24/7”. In: Current genetics 63.6, pp. 1007–1010.

Chamieh, Hala et al. (2008). “NMD factors UPF2 and UPF3 bridge UPF1 to the exon
junction complex and stimulate its RNA helicase activity.” In: Nature structural
& molecular biology 15.1, pp. 85–93.

Chang, Judy C and Yuet Wai Kan (1979). “beta 0 thalassemia, a nonsense mutation
in man.” In: Proceedings of the National Academy of Sciences 76.6, pp. 2886–
2889.

Cho, Hana, Kyoung Mi Kim, and Yoon Ki Kim (2009). “Human proline-rich nuclear
receptor coregulatory protein 2 mediates an interaction between mRNA surveil-
lance machinery and decapping complex.” In: Molecular cell 33.1, pp. 75–86.

Colombo, Martino et al. (2017). “Transcriptome-wide identification of NMD-
targeted human mRNAs reveals extensive redundancy between SMG6-and SMG7-
mediated degradation pathways.” In: RNA 23.2, pp. 189–201.

Durand, Sébastien, Tobias M Franks, and Jens Lykke-Andersen (2016). “Hyper-
phosphorylation amplifies UPF1 activity to resolve stalls in nonsense-mediated
mRNA decay.” In: Nature communications 7.1, pp. 1–12.

Eberle, Andrea B et al. (2009). “SMG6 promotes endonucleolytic cleavage of non-
sense mRNA in human cells.” In: Nature structural & molecular biology 16.1,
pp. 49–55.

Fiorini, Francesca, Debjani Bagchi, et al. (2015). “Human Upf1 is a highly proces-
sive RNA helicase and translocase with RNP remodelling activities.” In: Nature
communications 6.1, pp. 1–10.

Fiorini, Francesca, Marc Boudvillain, and Herve Le Hir (2013). “Tight intramolec-
ular regulation of the human Upf1 helicase by its N-and C-terminal domains.” In:
Nucleic acids research 41.4, pp. 2404–2415.

Franks, Tobias M, Guramrit Singh, and Jens Lykke-Andersen (2010). “Upf1 ATPase-
dependent mRNP disassembly is required for completion of nonsense-mediated
mRNA decay.” In: Cell 143.6, pp. 938–950.

He, Feng and Allan Jacobson (2015). “Nonsense-mediated mRNA decay: degrada-
tion of defective transcripts is only part of the story”. In: Annual review of genetics
49, p. 339.

He, Feng, Xiangrui Li, et al. (2003). “Genome-wide analysis of mRNAs regulated
by the nonsense-mediated and 5’ to 3’ mRNA decay pathways in yeast.” In:
Molecular cell 12.6, pp. 1439–1452.



10

Hoskins, Aaron A. and Melissa J. Moore (2012). “The spliceosome: a flexible,
reversible macromolecular machine.” In: Trends in Biochemical Sciences 37.5,
pp. 179–188.

Kadlec, Jan et al. (2006). “Crystal structure of the UPF2-interacting domain of
nonsense-mediated mRNA decay factor UPF1.” In: RNA 12.10, pp. 1817–1824.

Karamyshev, Andrey L and Zemfira N Karamysheva (2018). “Lost in translation:
ribosome-associated mRNA and protein quality controls”. In: Frontiers in Genet-
ics 9, p. 431.

Kashima, Isao et al. (2006). “Binding of a novel SMG-1–Upf1–eRF1–eRF3 com-
plex (SURF) to the exon junction complex triggers Upf1 phosphorylation and
nonsense-mediated mRNA decay.” In: Genes & Development 20.3, pp. 355–367.

Kurosaki, Tatsuaki, Wencheng Li, et al. (2014). “A post-translational regulatory
switch on UPF1 controls targeted mRNA degradation.” In: Genes & Development
28.17, pp. 1900–1916.

Kurosaki, Tatsuaki, Maximilian W. Popp, and Lynne E. Maquat (2019). “Quality
and quantity control of gene expression by nonsense-mediated mRNA decay.” In:
Nature Reviews Molecular Cell Biology 20.7, pp. 406–420.

Lai, Tingfeng et al. (2012). “Structural basis of the PNRC2-mediated link between
mRNA surveillance and decapping.” In: Structure 20.12, pp. 2025–2037.

Lee, Jeong Woong et al. (2006). “Editing-defective tRNA synthetase causes protein
misfolding and neurodegeneration”. In: Nature 443.7107, pp. 50–55.

Lelivelt, Michael J. and Michael R. Culbertson (1999). “Yeast Upf proteins required
for RNA surveillance affect global expression of the yeast transcriptome.” In:
Molecular and Cellular Biology 19.10, pp. 6710–6719.

Lewis, Benjamin P., Richard E. Green, and Steven E. Brenner (2003). “Evidence for
the widespread coupling of alternative splicing and nonsense-mediated mRNA
decay in humans.” In: Proceedings of the National Academy of Sciences 100.1,
pp. 189–192.

Loh, Belinda, Stefanie Jonas, and Elisa Izaurralde (2013). “The SMG5–SMG7 het-
erodimer directly recruits the CCR4–NOT deadenylase complex to mRNAs con-
taining nonsense codons via interaction with POP2.” In: Genes & Development
27.19, pp. 2125–2138.

Malecki, Michal et al. (2013). “The exoribonuclease Dis3L2 defines a novel eu-
karyotic RNA degradation pathway.” In: The EMBO Journal 32.13, pp. 1842–
1854.

Maquat, Lynne E. and Gordon G. Carmichael (2001). “Quality control of mRNA
function”. In: Cell 104.2, pp. 173–176.

Maquat, Lynne E., Alan J. Kinniburgh, et al. (1981). “Unstable 𝛽-globin mRNA in
mRNA-deficient 𝛽0 thalassemia”. In: Cell 27.3, pp. 543–553.



11

Mendell, Joshua T. et al. (2004). “Nonsense surveillance regulates expression of
diverse classes of mammalian transcripts and mutes genomic noise”. In: Nature
Genetics 36.10, pp. 1073–1078.

Metze, Stefanie et al. (2013). “Comparison of EJC-enhanced and EJC-independent
NMD in human cells reveals two partially redundant degradation pathways.” In:
RNA 19.10, pp. 1432–1448.

Millar, D. et al. (2000). “Molecular analysis of the genotype-phenotype relationship
in factor VII deficiency”. In: Human Genetics 107.4, pp. 327–342.

Miller, Jake N. and David A. Pearce (2014). “Nonsense-mediated decay in genetic
disease: friend or foe?” In: Mutation Research/Reviews in Mutation Research 762,
pp. 52–64.

Rehwinkel, Jan et al. (2005). “Nonsense-mediated mRNA decay factors act in con-
cert to regulate common mRNA targets.” In: RNA 11.10, pp. 1530–1544.

Rosenfeld, Philip J. et al. (1992). “A null mutation in the rhodopsin gene causes
rod photoreceptor dysfunction and autosomal recessive retinitis pigmentosa”. In:
Nature genetics 1.3, pp. 209–213.

Schmid, Manfred and Torben Heick Jensen (2008). “The exosome: a multipurpose
RNA-decay machine.” In: Trends in Biochemical Sciences 33.10, pp. 501–510.

Schneppenheim, Reinhard et al. (2001). “Expression and characterization of von
Willebrand factor dimerization defects in different types of von Willebrand dis-
ease”. In: Blood, The Journal of the American Society of Hematology 97.7,
pp. 2059–2066.

Schwanhäusser, Björn et al. (2011). “Global quantification of mammalian gene
expression control”. In: Nature 473.7347, pp. 337–342.

Serdar, Lucas D., DaJuan L. Whiteside, and Kristian E. Baker (2016). “ATP hydrol-
ysis by UPF1 is required for efficient translation termination at premature stop
codons.” In: Nature Communications 7.1, pp. 1–8.

Shoemaker, Christopher J. and Rachel Green (2012). “Translation drives mRNA
quality control”. In: Nature Structural & Molecular Biology 19.6, pp. 594–601.

Singh, Guramrit et al. (2012). “The cellular EJC interactome reveals higher-order
mRNP structure and an EJC-SR protein nexus.” In: Cell 151.4, pp. 750–764.

Steffen, Kristan K. and Andrew Dillin (2016). “A ribosomal perspective on pro-
teostasis and aging”. In: Cell Metabolism 23.6, pp. 1004–1012.

Woodward, Lauren A. et al. (2017). “The exon junction complex: a lifelong guardian
of mRNA fate.” In: Wiley Interdisciplinary Reviews: RNA 8.3, e1411.

Yamashita, Akio et al. (2001). “Human SMG-1, a novel phosphatidylinositol 3-
kinase-related protein kinase, associates with components of the mRNA surveil-
lance complex and is involved in the regulation of nonsense-mediated mRNA
decay.” In: Genes & Development 15.17, pp. 2215–2228.



12

C h a p t e r 2

COUPLED PROTEIN QUALITY CONTROL DURING
NONSENSE-MEDIATED MRNA DECAY

Inglis, Alison J et al. (2023). “Coupled protein quality control during nonsense-
mediated mRNA decay”. In: Journal of Cell Science 136.10. doi: 10.1242/
jcs.261216. url: https://journals.biologists.com/jcs/article/
136/10/jcs261216/310674.

2.1 Introduction
Like other mRNA surveillance pathways, NMD substrates are recognized and tar-
geted for degradation co-translationally (Belgrader, Cheng, and Maquat, 1993;
Wang, Vock, et al., 2002; Zhang and Maquat, 1997), resulting in the synthesis
of a potentially aberrant nascent polypeptide chain. Pathways such as no-go and
non-stop mRNA decay rely on a coordinated protein quality control pathway, known
as ribosome associated quality control (RQC) to both rescue the ribosome and con-
comitantly target the nascent protein for degradation (Doma and Parker, 2006;
Frischmeyer et al., 2002; Juszkiewicz et al., 2018; Van Hoof et al., 2002). In both
cases, a terminally stalled ribosome or a collided di-ribosome triggers ribosome
splitting (Becker et al., 2011; Pisareva et al., 2011; Shao, Brown, et al., 2015; Shao,
Murray, et al., 2016; Shoemaker and Green, 2012) and nascent chain ubiquitination
by the E3 ligase LTN1 (facilitated by NEMF, TAE2, and P97) (Brandman, Stewart-
Ornstein, et al., 2012; Defenouillère et al., 2013; Lyumkis et al., 2014; Shao, Brown,
et al., 2015; Shao, Von der Malsburg, and Hegde, 2013; Verma, Oania, et al., 2013).
The ubiquitinated nascent chain is then released from the ribosome by the endonu-
clease ANKZF1 (Vms1 in yeast) for degradation by the proteasome (Zurita Rendón
et al., 2018; Verma, Reichermeier, et al., 2018).

Given the potential dominant negative and proteotoxic effects of even small amounts
of a truncated NMD substrate, it has been suggested that a similar protein quality
control pathway may exist to recognize and degrade nascent proteins that result
from translation of NMD mRNAs. Indeed, proteins produced from PTC-containing
mRNAs are less stable than those from normal transcripts (Kuroha, Tatematsu, and
Inada, 2009; Kuroha, Ando, et al., 2013; Pradhan et al., 2021; Udy and Bradley,
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2022). However, these observations are largely based on comparison of truncated
products with longer, potentially more stable polypeptides, making it difficult to
distinguish NMD-linked protein degradation from general cellular quality control
mechanisms. While recent work has directly tested this using a full-length protein
product, there remains no defined mechanism of targeting and degradation, nor
direct evidence for the involvement of the ubiquitin-proteasome pathway (Chu et
al., 2021; Udy and Bradley, 2022). Furthermore, though it has been postulated
that components of the RQC are involved in turnover of nascent NMD substrates
(Arribere and Fire, 2018; Chu et al., 2021), the factors required for this process have
not been systematically investigated. Because NMD is triggered at a stop codon
unlike no-go and non-stop decay, a putative NMD-coupled protein quality control
pathway may require a fundamentally different strategy to initiate nascent protein
degradation.

Here we describe a reporter system that we have used to identify and interro-
gate a coupled protein quality control branch of NMD. We demonstrated that in
addition to triggering mRNA degradation, NMD concomitantly coordinates degra-
dation of the nascent polypeptide via the ubiquitin-proteasome pathway. Using this
reporter system, we systematically identified factors required for NMD-coupled pro-
tein degradation, which are distinct from the canonical rescue factors of the RQC.
Characterization of a coupled protein-degradation branch of NMD represents a new
facet of our understanding of how the cell ensures the integrity and composition of
its proteome, and sheds further light on the interplay between mRNA and protein
quality control.

2.2 Results
A reporter strategy to decouple mRNA and protein quality control in NMD
To identify a putative NMD-linked protein quality control pathway, we developed a
reporter system that uncouples mRNA and protein quality control during NMD. The
reporter consists of a single open reading frame expressing GFP and RFP, separated
by a viral 2A sequence that causes peptide skipping (Wang, Wang, et al., 2015)
(Fig. 2.1A, Fig. S2.1A). A robust example of an endogenous NMD substrate is the
beta-globin gene with a nonsense mutation at codon 39, which results in a premature
stop codon followed by an intron (Zhang, Sun, et al., 1998). We therefore reasoned
that positioning the first intron of the human 𝛽-globin gene into the 3’ UTR of our
reporter after the stop codon would also lead to its recognition as an NMD substrate,
as has been previously reported (Chu et al., 2021; Durand and Lykke-Andersen,



14

2013; Pereverzev et al., 2015). We confirmed that the exogenous 𝛽-globin intron is
efficiently spliced (Fig. S2.1B), and observed that the mRNA levels of the NMD
reporter were 5-fold lower than a matched non-NMD control (Fig. 2.1B). We
found that the GFP fluorescence of the NMD reporter and control correlated with
their respective mRNA levels, as directly measured by qPCR, suggesting that GFP
fluorescence can be used as a proxy for transcript levels (Fig. S2.1D). Further, we
saw that knockdown of the core NMD factor UPF1 specifically increased the GFP
fluorescence of the NMD reporter (Fig. S2.1E-H), but had no effect on the matched
control. We therefore concluded that our fluorescent reporter is recognized and
degraded in an NMD-dependent manner. Finally, to ensure that these effects did not
result solely from the increase in translation associated with the presence of an EJC
(Nott, Le Hir, and Moore, 2004), we also generated a reporter containing an EJC
immediately following the stop codon, which is not recognized as an NMD substrate
(inert EJC, Fig. 2.1A) (Nagy and Maquat, 1998). Indeed, the mRNA levels of this
inert EJC construct were similar to our unspliced control (Fig. S2.1C).

After establishing that our reporters are subject to NMD-dependent mRNA degra-
dation as expected, we sought to exploit them to determine whether there was an
additional pathway dedicated to nascent protein degradation. For this, our reporter
design has two important physical features. First, it can be used to deconvolute post-
transcriptional versus post-translational effects on reporter levels. Upon translation,
the GFP is released by the 2A sequence while the RFP remains tethered to the ribo-
some until the termination codon, where NMD is initiated by interaction between the
downstream EJC and the ribosome. We reasoned that if there is an NMD-coupled
pathway that triggers degradation of the nascent polypeptide, it would thus act only
on the RFP but not the released GFP, resulting in a reduction in the RFP:GFP ratio
in comparison to a matched control. In contrast, if NMD functions only in mRNA
degradation, we would expect a decrease in both the RFP and GFP levels but would
observe no change in the RFP:GFP ratio. Second, these reporters can specifically
distinguish nascent protein degradation by a coupled protein quality control path-
way from non-specific recognition by general cellular quality control machinery.
Canonical NMD substrates contain PTCs that result in translation of a truncated
protein, which may be misfolded and thus recognized and degraded by non-specific
cytosolic quality control pathways (Popp and Maquat, 2013). By instead using an
intact RFP moiety that is recognized as an NMD substrate only because of an intron
in its 3’ UTR, any destabilization of RFP must result from a coordinated event that
occurs prior to its release from the ribosome.
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Figure 2.1: Destabilization of nascent proteins from PTC-containing mRNAs. (A) Schematic
of the reporter strategy used to monitor protein and mRNA degradation in NMD. GFP and RFP are
encoded in a single open reading frame separated by a viral 2A sequence. Either one or two introns
derived from the 𝛽-globin gene are inserted after the stop codon (NMD1 and NMD2, respectively).
To control for the documented stimulation in translation that results from the presence of an EJC
(Nott, Le Hir, and Moore, 2004), we created a reporter in which the intron was positioned twelve
nucleotides after the stop codon, a distance insufficient for recognition as an NMD substrate (inert
EJC) (Nagy and Maquat, 1998). (B) T-Rex HEK293 cell lines stably expressing either the control
or the NMD2 reporter were induced with doxycycline for 24 hours and the total mRNA was then
purified. Relative mRNA levels were determined by RT-qPCR using two sets of primers that anneal
to the very 5’ region of the GFP and 3’ region of the RFP open reading frames, respectively. The
results were normalized to the control and the standard deviation from three independent experiments
is displayed. (C) T-Rex HEK293 cell lines stably expressing the indicated reporters were analyzed by
flow cytometry. The ratio of RFP:GFP fluorescence, normalized to the control reporter, is depicted as
a histogram and quantified in Fig.S2E. (D) HEK293T cells were transiently transfected with versions
of the control and NMD2 reporters in which the 2A sequence was scrambled, resulting in tethering
of both GFP and RFP to the ribosome at the stop codon. Cells were analyzed by flow cytometry
after 24 hours and quantified in Fig. S2.2E.

Indeed, using flow cytometry, we observed a decrease in RFP:GFP fluorescence
for an NMD substrate compared to a matched control, in two different cell lines
(Fig. 2.1C, Fig. S2.2A). Addition of a second 𝛽-globin intron to the 3’ UTR (Hoek
et al., 2019) resulted in a larger decrease in both the mRNA levels and RFP:GFP
fluorescence, suggesting the two effects may be tightly coordinated (Hoek et al.,
2019). While this decrease in RFP:GFP levels was consistent with NMD-dependent
protein quality control, we sought to exclude several alternative models that could
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also account for this observation. First, we swapped the order of the RFP and GFP to
rule out that differential maturation and/or turnover rates of the fluorophores could
explain the decrease in RFP:GFP ratio (Fig. S2.2B, 2.2C) (Amrani et al., 2004;
Balleza, Kim, and Cluzel, 2018). A similar effect was observed for this ’reverse’
reporter, as previously reported (Chu et al., 2021). Second, we considered whether
the decrease in RFP:GFP ratio could be the result of NMD-dependent deadenylation
and 3’ to 5’ exonuclease degradation of the reporter mRNA (Chen and Shyu, 2003;
Mitchell and Tollervey, 2003; Takahashi, Araki, Sakuno, et al., 2003). However,
we detected no difference in the relative mRNA levels of the RFP and GFP coding
regions of the NMD substrate (Fig. 2.1B), confirming that the effect must occur
post-transcriptionally. Finally, we addressed two related possibilities: whether slow
translational termination, which was shown to occur on NMD substrates in yeast,
though potentially not mammals (Amrani et al., 2004; Karousis et al., 2020), or
SMG6-dependent endonucleolytic cleavage of the mRNA at the stop codon could
explain the RFP:GFP ratio decrease (Eberle et al., 2009). The former could result
in increased dwell time of the ribosome at the stop codon when the 30 C-terminal
residues of RFP remain occluded in the ribosomal exit tunnel and could potentially
affect RFP folding and therefore fluorescence. The latter would lead to production of
full-length GFP but truncated RFP, and would be consistent with models proposed
for putative NMD-coupled protein quality control in C. elegans (Arribere and Fire,
2018). However, appending a flexible linker to the C-terminus of RFP to ensure it
is fully emerged from the ribosome at the stop codon did not affect the RFP:GFP
ratio (Fig. S2.2D). This is consistent with the very long maturation time of RFP
( mins-hours (Balleza, Kim, and Cluzel, 2018)), which is therefore unlikely to
be affected by any putative dwell time ( ms-s; (Amrani et al., 2004)) at the stop
codon. Conversely, scrambling the 2A sequence, such that both the GFP and RFP
are tethered to the ribosome at the stop codon, abolished the ratio difference (Fig.
2.1D, Fig. S2.2E). Together these data exclude that the NMD-dependent decrease
in RFP:GFP ratio is due to changes in translation rate, processivity, peptide release,
endonucleolytic cleavage, or preferential 3’-5’ degradation.

NMD-dependent protein degradation occurs via the ubiquitin proteasome
pathway
Having established that an NMD-dependent decrease in RFP fluorescence occurs
post-translationally, we tested whether inhibition of the ubiquitin-proteasome path-
way could rescue the observed phenotype. We found that both the proteasome
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inhibitor MG132 and the E1 ubiquitin-activating enzyme inhibitor MLN7243 specif-
ically increased the RFP:GFP ratio of the NMD reporter (Fig. 2.2A; Fig. S2.3A,
C-D). Importantly, this increase was due to an effect on RFP and not GFP (Fig.
2.2B, Fig. S2.3B), consistent with the model that NMD-dependent protein degra-
dation acts post-translationally and selectively toward the polypeptide associated
with the ribosome at the PTC. To confirm that the observed changes in fluorescence
reflect changes at the protein level, we directly tested for stabilization of RFP upon
E1 enzyme inhibition by western blotting (Fig. S2.3D). The apparent absence of
truncated RFP would be consistent with a model in which NMD-dependent protein
quality control is initiated at the stop codon. Finally, we directly observed a marked
increase in ubiquitination of RFP, but not GFP, when expressed from our NMD
reporter compared with a matched control, excluding potential indirect effects of
ubiquitin-proteasome pathway inhibition (Fig. 2.2C). Therefore, we concluded that
in addition to its well-characterized role in mRNA degradation, NMD also triggers
degradation of nascent proteins via the ubiquitin proteasome pathway.

Identification of factors required for NMD-coupled protein quality control
Using our characterized NMD2 reporter, we systematically identified factors re-
quired for the protein degradation arm of NMD using a fluorescence-activated cell
sorting (FACS)-based CRISPR interference (CRISPRi) (Horlbeck et al., 2016) and
CRISPR knockout (CRISPR-KO) screen (Fig. 2.3A). We reasoned that the knock-
down screen would enable study of essential proteins, including the core NMD
factors UPF1 and UPF2 (Hart et al., 2017). Conversely, the knockout screen would
identify factors that require near-complete depletion to induce a measurable phe-
notype, which can lead to false negatives in CRISPRi screens (Rosenbluh et al.,
2017). To do this, we engineered two K562 human cell lines that expressed an
inducible NMD2 reporter either alone or with the CRISPRi silencing machinery
(Gilbert et al., 2014). We transduced the CRISPRi cell line with a single guide
RNA (sgRNA) library targeting all known protein-coding open reading frames as
previously described (hCRISPRi-v2) (Horlbeck et al., 2016). For the knockout
screen, we used a novel 100,000 element library that targets all protein encoding
genes ( 5 sgRNA/gene), which we used to simultaneously deliver both the genome
wide sgRNA library and Cas9.

We hypothesized that depletion of factors required for NMD-coupled protein quality
control would stabilize RFP, thereby increasing the RFP:GFP ratio. However,
depletion of factors that impede NMD-coupled protein quality control would further
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Figure 2.2: NMD-dependent protein degradation occurs via the ubiquitin proteasome pathway.
(A) Flow cytometry analysis of HEK293T cells transiently transfected with either the con- trol or
NMD2 reporter (Fig. 2.1A) and treated with the proteasome inhibitor MG132 or DMSO for 6
hours. See quantification in Fig. S2.4A (B) K562 CRISPRi cells stably expressing an inducible
NMD2 reporter were treated with either MG132 or DMSO after induction of the reporter and an-
alyzed by flow cytometry. Shown are the GFP (left) and RFP (right) channels for the indicated
conditions displayed as a histogram, with fold change quantified in Fig. S2.4B. (C) HEK293T
cells, stably expressing an HA-tagged ubiquitin (HA-Ub) were transiently transfected with either
the control or NMD2 reporter (modified to incorporate a 3xFLAG tag at the N-terminus of RFP).
To stabilize ubiquitinated species, cells were treated with MG132 prior to lysis. RFP was im-
munoprecipitated with anti-FLAG resin and GFP was purified using a GFP nanobody coupled to
streptavidin resin (Pleiner et al., 2020). Ubiquitinated species were detected by western blotting
for HA-Ub. The quantification of three independent replicates is shown below, with the means and
standard deviations plotted.

decrease the RFP:GFP ratio. For the CRISPRi screen, after eight days of knockdown,
we sorted cells with high and low RFP:GFP ratios via FACS, and identified sgRNAs
enriched in those cells by deep sequencing. For the knockout screen we isolated cells
with perturbed RFP:GFP ratios on days eight, ten and twelve post infection of the
CRISPR-KO library. We postulated that essential genes would be better represented
at the earlier time points before their depletion becomes lethal, while factors that
require complete depletion and/or have longer half-lives would be detected at later
time points.

In both the knockdown and knockout screens, we find substantial differences between
the hits identified here and those from earlier screens designed to identify factors
primarily involved in NMD-dependent mRNA degradation (Alexandrov, Shu, and
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Steitz, 2017; Baird et al., 2018; Sun et al., 2011; Zinshteyn et al., 2021) suggesting
our reporter reflects a distinct aspect of the NMD pathway (Fig. 2.3B-D, Fig. S2.4A).
However, we also identified several splicing and core NMD factors as effectors of the
RFP:GFP ratio. For example, we found that the core component of the EJC, CASC3
(Gerbracht et al., 2020) is required for NMD-coupled protein degradation (Fig.
2.3B, 2.3D). Furthermore, depletion of several known NMD factors—UPF1, UPF2,
UPF3B, SMG6—increased the RFP:GFP ratio of our NMD-reporter. Additionally,
we also identified factors that appeared to enhance the degradation of RFP relative
to GFP. On day eight of the knockout screen, we found that several essential factors
required for 5’ to 3’ mRNA degradation were enriched in the population of cells with
lower RFP:RFP fluorescence (Fig. 2.3C). The phenotype scores for these essential
factors decreased from day 8 to day 12, likely due to guide drop out, thereby
validating the importance of examining the knock-out screen across multiple time
points (Fig. S2.4A). Together, these results suggest a single, shared recognition step
for both the mRNA and protein quality control branches of NMD, which requires
recognition of an intact EJC downstream of the stop codon via interactions between
the canonical NMD factors and the ribosome.

NMD-coupled protein quality control is not mediated by canonical RQC factors
Notably absent in both the knockdown and knockout screen were canonical com-
ponents of the RQC pathway, suggesting that NMD substrates may rely on an
alternative strategy for nascent protein degradation. Because the CRISPRi screen
was performed using the same platform and conditions as earlier reporter screens for
non-stop decay—including the same cell type, sgRNA library, and sampling time
point—the screens are directly comparable (Hickey et al., 2020). While depletion
of RQC factors including PELO and the E3 ubiquitin ligase LTN1 were identified in
the non-stop reporter screen, neither are significant hits for NMD-dependent protein
degradation in our system (Fig. 2.4A, 2.4B). We directly verified that LTN1 knock-
down has no effect on our NMD reporter, or the ‘reverse’ reporter, but did have a
marked effect on the fluorescence ratio of an established non-stop decay substrate
(Fig. 2.4C-D, Fig. S2.4B-C). We therefore concluded that NMD-coupled protein
degradation is mediated by a different set of factors.

Factors required for NMD-coupled protein quality control
Hits from the FACS based reporter screens were validated using an arrayed screen
with a matched control. These data confirmed that knockdown of CASC3 increased
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Figure 2.3: Systematic characterization of factors required for NMD-coupled protein quality
control. (A) Schematic of the workflow. (B) Volcano plot of the RFP:GFP stabilization phenotype
(log2 for the three strongest sgRNAs per gene) and Mann–Whitney p values from the genome-wide
CRISPRi screen, with each point representing one gene. Genes falling outside the dashed lines are
statistically significant. Notable hits causing an increase in the RFP to GFP ratio are shown in light
blue and include known NMD factors, the splicing factor CASC3, and the E3 ligase CNOT4. DDX6,
a known suppressor of NMD, which causes a lower RFP to GFP ratio, is shown in purple. (C)
Volcano plot as in (B) for the genome-wide CRISPR knock-out screen sorted at the day 8 timepoint.
Factors that cause a decrease in RFP relative to GFP include genes involved in mRNA de-capping,
DDX6, and the 5’-3’ exonuclease XRN1. (D) As in (C) but for day 12. In blue are shown known
NMD factors and the E3 ligase CNOT4. Highlighted genes can be tracked across the three days of
screening in Fig. S2.4A.

both the GFP levels and the RFP:GFP ratio of our NMD reporter (Fig. 2.5, Fig.
S2.5A, C, E). The effect of CASC3 (also referred to as MLN51) depletion on our
reporter is consistent with its established role as a splicing factor and a critical
core component of the EJC (Le Hir, Izaurralde, et al., 2000; Bono et al., 2006).
Knockdown of the 5’ decapping enzyme DCP1A also increased GFP levels, but
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Figure 2.4: NMD-linked protein degradation is not mediated by the canonical RQC pathway.
(A) Volcano plot of the NMD2 reporter CRISPRi screen as in Fig 3A. Highlighted in black are
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which would usually be degraded due to the lack of a stop codon) conducted using identical conditions
as in (A) (Hickey et al., 2020). (C) K562 CRISPRi cells stably expressing either an inducible NMD2
reporter or a constitutively expressed non-stop reporter with matched GFP and RFP fluorophores (in
this case, a functionally equivalent non-stop reporter with two separate promoters, one driving GFP,
and the other RFP conjugated to the triple helix moiety; as in Hickey, 2020) were infected with a
sgRNA targeting the E3 ligase LTN1. The RFP to GFP ratios for NMD2, and the GFP to RFP ratio
for the non-stop reporter as determined by flow cytometry are displayed as a histogram and quantified
in Fig. S2.4B. (D) K562 CRISPRi cells expressing a reversed version of the NMD2 reporter (rev-
NMD2) were infected with an sgRNA against LTN1 and analyzed as in (C) and quantified in Fig.
S2.4C.

decreased the RFP:GFP ratio. We confirmed these phenotypes were generalizable
using our reverse GFP:RFP reporter (Fig. S2.5B, D, F).

Having observed that the nascent protein is directly ubiquitinated and degraded by
the proteasome (Fig. 2.2), we were particularly interested in identifying an E3 ubiq-
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Figure 2.5: Validation of factors involved in NMD-coupled protein quality control. Factors of
interest were individually depleted by sgRNA in K562 Zim3 CRISPRi cells expressing the indicated
reporter. Displayed are the RFP:GFP ratios for the NMD2 (top) and control (bottom) reporters as
determined by flow cytometry, see Fig. S2.5A, C, E for quantification. Similar results were obtained
using reverse reporters as in Fig. S2.5B, D, F.

uitin ligase responsible for targeting the NMD-linked nascent chain for degradation.
The core NMD factor UPF1 is an E3 ubiquitin RING ligase (Takahashi, Araki, Ohya,
et al., 2008) and thus would be well-positioned to mediate nascent chain degradation
during NMD. Previous studies have demonstrated that UPF1 stimulates proteasomal
degradation of proteins expressed from NMD-targeted mRNA transcripts in yeast,
with reporter stability significantly increased in upf1 knockout strains; however,
the mechanism underlying this phenotype is unclear and a direct role in nascent
chain ubiquitination by UPF1 was not shown (Kuroha, Tatematsu, and Inada, 2009).
UPF1 was identified as a weak hit in our CRISPRi screen (Fig. 2.3B), and its deple-
tion resulted in a shift in the RFP:GFP ratio of the NMD reporter (Fig. S2.1F-H).
However, rescue of UPF1 knockdown with a RING mutant that disrupts binding
with E2 ubiquitin-conjugating enzymes (Feng, Jagannathan, and Bradley, 2017)
phenocopied wild-type UPF1 in restoring both the GFP levels and RFP:GFP ratio
of our NMD reporter (Fig. S2.6). This result would be inconsistent with a role for
the RING domain of UPF1 in ubiquitination of the nascent protein, and suggests
that the involvement of UPF1 may instead be upstream of the protein degradation
branch. In addition to UPF1, we identified four other E3 ubiquitin ligases in either
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the knockdown and knockout screen (KEAP1, MYLIP, CBLL1, and TRIM25). The
RING ligase CNOT4 was the only hit to be identified in both screens; however, its
effect was not specific to NMD substrates (Fig 2.5, Fig. S2.5E-G), despite efficient
depletion (Fig. S2.5G). It therefore is more likely playing a general role in cellular
proteostasis, but is unlikely to be specifically involved in NMD-coupled nascent
chain degradation.Figure 6
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Figure 2.6: NMD-coupled protein quality control is dependent on endonucleolytic cleavage of
the mRNA by SMG6. (A) HEK293T cells were treated with siRNA against SMG6 for 48 hours, then
were transiently transfected with the control reporter. The cells were analyzed by flow cytometry
after 24 hours (see quantification in Fig. S2.7A). (B) HEK293T cells were treated with siRNA
against SMG6 for 48 hours, then were transiently transfected with an siRNA-resistant version of
either wild-type SMG6 or a PIN domain mutant (D1353A) along with the NMD2 reporter. The cells
were analyzed by flow cytometry after 24 hours (see quantification in Fig. S2.7B). Similar results
were obtained with reverse reporters (Fig. S2.7D). (C) Levels of SMG6 in the samples from (B)
were analyzed by western blotting against SMG6.

Additionally, the endonuclease SMG6 was also identified as a strong hit in both the
knock-down and knockout screens (Fig. 2.3). Cleavage by SMG6 is considered a
commitment step to degradation of NMD mRNAs, and we sought to determine if
the branchpoint of the protein and mRNA degradation pathways was upstream or
downstream from this event. To do this we first used small interfering RNA (siRNA)
to deplete SMG6, and observed a considerable increase in the RFP:GFP ratio of our
NMD reporter compared to its matched control (Fig. 2.6A-B, Fig. S2.7A-B). This
phenotype could be rescued by ectopic expression of wild-type, but not a dominant
negative inactive mutant Glavan et al., 2006, SMG6 for both our NMD and reverse
reporters (Fig. 2.6B-C, Fig. S2.7B-D). Therefore, we concluded that the function
SMG6 is required for both mRNA and nascent-chain degradation in NMD, and in
both cases depends on its endonuclease activity.
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2.3 Discussion
Recognition of an NMD-substrate occurs co-translationally, necessarily resulting in
the production of a nascent, potentially cytotoxic polypeptide chain. NMD typically
reduces the mRNA level of its substrates 2–50 fold, depending on the transcript and
function of the resulting protein product: a reduction that may not be sufficient to
maintain proteostasis in the cell. As such, there has been consideration of whether
NMD leverages an additional, post-translational pathway to directly target these
nascent proteins for degradation (Chu et al., 2021; Kuroha, Tatematsu, and Inada,
2009; Pradhan et al., 2021; Udy and Bradley, 2022).

There are two plausible strategies by which protein degradation of NMD nascent
chain may occur. Since many NMD substrates are truncated and thus likely to
misfold, they expose hydrophobic degrons that will be recognized by general cy-
tosolic quality control machinery. However, this type of uncoordinated clearance
strategy would risk the cell’s exposure to transient dominant negative or gain-of-
function activity of these truncated or aberrant proteins. In contrast, a coordinated
protein quality control pathway that co-translationally initiates protein degradation
prior to dissociation from the ribosome would be more consistent with other mRNA
surveillance pathways. Indeed, tight coupling of quality control to biogenesis is a
strategy used throughout biology to ensure robust and efficient clearance of mRNA
and protein products that fail during their maturation (Rodrigo-Brenni and Hegde,
2012).

In the case of NMD, the lack of a robust in vitro reconstitution system; the difficulty
of deconvoluting post-transcriptional versus post-translational effects on expression
of NMD substrates; and the putative contribution of generalized quality control in
turnover of the classical truncated NMD substrates has made it difficult to definitively
identify this type of coordinated pathway. Using a fluorescent reporter strategy that
addresses several of these technical challenges, we demonstrated that in mammals,
NMD relies on a coupled protein quality control branch to concomitantly target the
nascent protein for degradation via the ubiquitin proteasome pathway.

A coupled protein quality control branch of NMD
We propose the following working model for protein quality control during NMD in
mammals (Fig. 2.7). As the ribosome reaches the stop codon during translational
elongation, the protein composition of the downstream mRNA serves as the primary
cue for initiating NMD. At this point, the nascent polypeptide remains tethered to
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the ribosome via the peptidyl tRNA. We postulate that the early recognition steps
between the mRNA and protein quality control branches of NMD are shared, and rely
on core NMD factors such as UPF1, UPF2, UPF3b, and CASC3. NMD-coupled
quality control is thus initiated through the canonical pathway for recognition of
PTC-containing mRNAs that involves binding between the ribosome, NMD factors,
and the downstream EJC (Gerbracht et al., 2020; Chamieh et al., 2008; Czaplinski
et al., 1998; Kim, Kataoka, and Dreyfuss, 2001; Le Hir, Gatfield, et al., 2001).
However, because our screens were designed to specifically query factors required
for NMD-coupled protein quality control, we find substantial differences between
hits identified here and those reported from earlier NMD RNA-degradation screens
(Alexandrov, Shu, and Steitz, 2017; Baird et al., 2018; Sun et al., 2011; Zinshteyn
et al., 2021). This discrepancy suggests that following recognition of an NMD
substrate, the mRNA and protein quality control pathways diverge, relying on distinct
sets of factors to target and degrade either the mRNA or nascent protein. However,
the pathways are strictly linked, as evidenced by the requirement for endonucleolytic
mRNA cleavage by SMG6 for efficient protein degradation.Figure 7
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Figure 2.7: Model for NMD-coupled protein quality control. When the ribosome reaches the
stop codon, NMD substrates are recognized in a context-dependent manner. These early recognition
steps initiate two parallel pathways that rely on distinct suites of factors to concomitantly degrade the
mRNA and nascent protein. We postulate that NMD-coupled quality control results in ubiquitination
of the nascent protein prior to its release from the ribosome where it subsequently degraded by the
proteasome.

We favor a model in which degradation of the nascent polypeptide is initiated prior
to its release from the ribosome, as is common to other mRNA surveillance path-
ways and would minimize potential exposure of an aberrant protein to the cytosol.
Consistent with this model we (i) found that only the nascent polypeptide tethered
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to the ribosome at the stop codon is subjected to NMD-coupled degradation (Fig.
2.1D, Fig. 2.2B); and (ii) we observe an NMD-specific destabilization of an intact,
folded protein compared to a matched control. We therefore concluded that the
nascent protein must be somehow ‘marked’ for degradation prior to its dissociation
from the ribosome. However, our data is consistent with earlier studies that suggest
that multiple rounds of translation are required before an mRNA is committed to
NMD-dependent degradation (Hoek et al., 2019). We similarly observe incomplete
degradation of the nascent chain (RFP), in line with only a proportion of ribosomes
eliciting NMD-dependent ubiquitination. Following ubiquitination of the nascent
protein, it can then be safely released into the cytosol for degradation by the pro-
teasome. In contrast to non-stop and no-go mRNA decay where the primary cue
for protein quality control is ribosome stalling (Brandman and Hegde, 2016), NMD
is initiated at a stop codon and thus may utilize the typical strategy for nascent
protein release and ribosome recycling. The manner by which the nascent protein
is recognized as emanating from an NMD substrate is unclear: it has been sug-
gested that at least in yeast, termination at PTCs may occur more slowly than at
a canonical stop codon, which could provide a kinetic window for ubiquitination
of the nascent protein (Amrani et al., 2004); however, no evidence for this has
been found in human cells (Karousis et al., 2020). We therefore cannot differen-
tiate whether nascent protein ubiquitination occurs simultaneously or immediately
following translational termination, but we favor a model where ubiquitination is
initiated prior to dissociation of the nascent chain from the ribosome.

A potential role for the RQC pathway in NMD-coupled protein quality control
Several non-mutually exclusive models have been proposed for how to coordi-
nate ubiquitination of the nascent protein chain prior to release. Experiments in
Drosophila and C. elegans have suggested that at least in some systems, NMD and
non-stop decay may be coupled, and levels of some mRNAs and their associated pro-
tein products are regulated by both pathways (Arribere and Fire, 2018; Hashimoto
et al., 2017). A forward genetic screen in C. elegans further identified the canon-
ical RQC factor PELO (the functional ortholog of dom34/Pelota) as required for
repression of an NMD reporter. Based on these and other experiments, the authors
proposed a model whereby quality control by NMD in initiated by endonucleolytic
cleavage of the mRNA upstream of the stop codon by SMG6. Translation of the
resulting truncated mRNA would result in stalling of subsequent ribosomes at its
3’ end, triggering further repression at both the mRNA and protein level by the
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non-stop decay and RQC pathways (Arribere and Fire, 2018).

If a similar mechanism was occurring in mammalian cells, post-translational degra-
dation of NMD substrates would depend on the canonical RQC factors including
the E3 ubiquitin ligase LTN1, and the ribosome rescue factors pelota and HBS1.
However, the majority of RQC factors were not significant hits in either of our
screens, though were identified in an earlier non-stop decay screen performed using
matched conditions (Hickey et al., 2020). Further, depletion of LTN1 directly did
not affect our NMD reporter under conditions that robustly stabilized a non-stop
decay substrate (Fig. 2.4C). These results suggest that at least for the class of NMD
substrates represented by our reporter, NMD-coupled protein degradation does not
rely on the canonical RQC pathway. Together these data suggest a functional sepa-
ration of nonsense and non-stop decay in mammals, as was observed in S. cerevisiae
Arribere and Fire, 2018 and is consistent with the distinct molecular players iden-
tified by NMD versus non-stop mRNA decay screens (Hodgkin et al., 1989; Leeds
et al., 1991; Pulak and Anderson, 1993; Wilson, Meaux, and Hoof, 2007).

Direct ubiquitination of the nascent NMD polypeptide
The simplest model for NMD-coupled protein degradation is the direct recruitment
of an E3 ligase that ubiquitinates the nascent chain while it remains tethered to the
ribosome. Earlier studies have suggested that UPF1, a RING domain E3 ubiquitin
ligase and core NMD factor that interacts with both the ribosome and eukaryotic re-
lease factors, could carry out this role. UPF1 knockdown has been shown to stabilize
protein products produced from NMD substrates mRNAs (Kuroha, Tatematsu, and
Inada, 2009; Kuroha, Ando, et al., 2013; Feng, Jagannathan, and Bradley, 2017; Park
et al., 2020; Kadlec et al., 2006; Takahashi, Araki, Ohya, et al., 2008). Consistent
with these reports, UPF1 was identified in our knockdown screen, and depletion of
UPF1 stabilized both the mRNA and protein levels of our NMD reporter. However,
we found that point mutations to UPF1 that specifically affect its ability to recruit its
E2 ubiquitin-conjugating enzyme while leaving its ribosome-binding and helicase
domains intact, did not have any effect on the protein-degradation phenotype of our
reporter.

We therefore concluded that UPF1 is required for NMD-coupled protein quality
control, but plays a role that does not depend on its E3 ubiquitin ligase activity. To
reconcile these results with previous studies, we propose that UPF1 is involved in
the early recognition steps of NMD substrates, which affects both the mRNA and
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protein degradation branches of NMD. However, our data are inconsistent with a
direct role for UPF1 in ubiquitination of the nascent polypeptide. A dedicated E3
ubiquitin ligase that specifically recognizes nascent chains from NMD substrates
was not identified through either the knockdown or knockout genome-wide screens.
This is either a limitation of the reporter design, or more likely suggests redundancy
between E3s in the recognition event.

Implications of nascent protein degradation in proteostasis
The identification of a tightly coupled protein degradation branch of NMD has sev-
eral immediate implications. Most notably, destabilization at the post-translational
level will increase the suppression of NMD substrates. Though we find the effects
of NMD-coupled protein degradation on our reporters to be modest ( 2-fold), in the
context of the cell or an organism, this additional level of regulation may be critical
to prevent deleterious or off-target effects. Effects on these fluorescent reporters,
which are both over-expressed and in which phenotypes require degradation of the
remarkably stable RFP moiety, may also underestimate the true effect size on an
endogenous substrate. There are numerous physiologically relevant examples where
NMD’s role in transcriptome regulation, and subsequent production of potentially
aberrant proteins, require stringent clearance of the nascent product. During histone
production, synthesis must be tightly regulated in a manner coupled to the progres-
sion of the cell cycle, and the production of even small amounts of downregulated
proteins could be problematic. Our results also have implications for viral infection.
Co-translational protein degradation is thought to be a key source of peptides for
MHC presentation (Balistreri et al., 2014; Fontaine et al., 2018; Wada et al., 2018;
Yewdell and Nicchitta, 2006), with viral messages often targeted by NMD.

Finally, NMD plays an important role in a wide range of genetic diseases: over
one third of all human genetic disorders are caused by PTC-creating mutations,
including muscular dystrophy and cystic fibrosis. While generally protective, for
numerous disease-causing mutations the NMD pathway contributes to pathogenesis
by suppressing expression of partially functional mutant proteins ( 11% of mutations
that cause human disease (Mort et al., 2008). The characterization of a second,
parallel branch of NMD and the initial identification of potential factors involved in
NMD-coupled protein quality control therefore may represent a valuable platform
from which to identify potential targets for the new therapeutic strategies.
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2.4 Materials and methods
Plasmids and antibodies
Reporter constructs for expression in mammalian cells were generated in either
the pcDNA5/FRT/TO (Thermo Scientific) backbone (for expression in HEK293T
cells) or the SFFV-tet3G lentiviral backbone with a 3’ WPRE element (for inducible
expression in K562 cells, from (Jost et al., 2017)). To create the NMD reporters
described in Fig. 2.1, a fragment of the beta-globin gene spanning the last 221
nucleotides of exon 2 (the last 35 nucleotides for inert EJC), intron 2 and 129
nucleotides of exon 3 was amplified via PCR from human genomic DNA as described
previously (Pereverzev et al., 2015). Either one or two copies were inserted into
the 3’ UTR of a plasmid encoding GFP-P2A-RFP to generate NMD1 and NMD2
respectively. In the lentiviral constructs, the reporters were inserted in reverse
orientation to prevent splicing of the introns during lentiviral production. The
presence of functional introns was checked via PCR, using primers that should span
the introns (Fig. S2.1B). For this, the RNeasy kit (#74104, Qiagen) was used to
purify total RNA from HEK293T transiently expressing the NMD1, 2, or the inert
EJC reporter. cDNA was obtained by reverse transcription using the SuperScript III
First Strand Synthesis SuperMix (#11752, Invitrogen). PCR amplification from this
cDNA with respective primers generated a shorter fragment than that of the reporter
plasmids, indicating the introns have been spliced out efficiently.

Modifications of the NMD constructs were created by either replacing the P2A site
with a glycine-serine linker of identical length for the linked constructs (Fig. 2.1D),
reversing the order of the GFP and RFP for the ‘reverse’ constructs as in (Chu et al.,
2021), or appending the villin headpiece domain (bVHP) downstream of the RFP
(Fig. S2.2D). For immunoprecipitation experiments, a FLAG tag was appended to
the N-terminus of RFP (Fig. 2.2C). Of note, mCherry and mEGFP versions of the
GFP and RFP were used throughout this study, but for simplicity are referred to as
GFP and RFP.

cDNA for UPF1 was acquired from Addgene (#99146) and cloned downstream of a
BFP-P2A sequence contained in a lentiviral backbone. This was driven by an EF1𝛼
promoter from an upstream ubiquitous chromatin opening element (UCOE). The
main isoform of UPF1 (isoform 2) was used, as it has been more comprehensively
characterized (Nicholson et al., 2014; Fritz et al., 2022). A mutant of UPF1 with
mutations in the RING domain (S134A, N148A, T149A) that disrupts binding with
E2 ligases was also acquired from Addgene (#99144). Plasmids containing siRNA-
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resistant FLAG-tagged SMG6 (wild-type and a D1353A mutant) were a kind gift
from Niels Gehring.

To generate knock-downs, single guides against LTN1 (GACTCTGAGCACTCA-
GACCC), CASC3 (GTGCGTAAGTACCTCGCCGG), and DCP1A (GGCGCT-
GAGTCGAGCTGGGC) were generated by annealed cloning of top and bottom
oligonucleotides (Integrated DNA Technologies, Coralville, IA) into a lentivi-
ral pU6-sgRNA EF1𝛼-Puro-T2A-BFP vector digested with BstXI/BlpI (Addgene,
#84832). BFP was removed when the color interfered with the reporter con-
struct. In certain cases, we used a programmed dual sgRNA guide vector (Ad-
dgene #140096) to increase the efficiency of knock-down such as for UPF1 (GGC-
CGCTCGCAGCCTAGAGC and GTTCGAGGGGAGCTGAGGCG) and CNOT4
(GGAGACTCTCAGCTTTCGGT and GGGGCCACCATCTTACATTA).

The following antibodies were used in this study: FLAG (#A2220, Sigma, 1:10,000),
HA (#A2095, Sigma, 1:1,000), UPF1 (#A300-038A, Bethyl, 1:1,000), 𝛼-tubulin
(#T9026, Sigma, 1:5,000), CNOT4 (#12564-1-AP, Proteintech, 1:1,000), SMG6
(#ab87539, Abcam, 1:1,000). Antibodies against GFP and RFP were a kind gift from
Ramanujan Hegde. Secondary antibodies used were HRP-conjugated anti-Rabbit
(#170-6515, BioRad, 1:5,000) and anti-Mouse (#172-1011, BioRad, 1:5,000), and
HRP-conjugated Donkey anti-Goat (ab97110, Abcam, 1:5,000).

siRNAs
Pre-designed Silencer Select siRNAs were ordered from ThermoFisher: control
(scrambled 1) and SMG6 (s23489).

Mammalian cell culture
HEK293T cells were grown in Dulbecco’s modified eagle medium (DMEM) with
10% FBS (Atlanta Biologicals, #S11550) and 2 mM L-glutamine (Invitrogen,
#25030081). siRNA treatments were performed according to manufacturer’s in-
structions in a 6-well plate with 30 pmol of each siRNA, allowing knock-down for
a total of 72 hours. siRNA treated cells were transiently transfected with 1 𝜇g of
reporter construct DNA 24 hours prior to harvesting.

Stable HEK293 cell lines were generated using Flp-In 293 T-Rex cells purchased
from Thermo Fisher Scientific (USA) (RRID: CVCL_U427). Cell lines were grown
in DMEM supplemented with 2 mM glutamine, 10% (w/v) FBS, 15 µg/ml Blasti-
cidine S, and 100 µg/ml Zeocin. The open-reading frame to be integrated into the
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genomic FRT site was cloned into the pcDNA5/FRT/TO vector backbone and cell
lines were generated according to the manufacturer’s protocol. Briefly, the reporter
construct was transfected together with pOG44 Flp-In recombinase in a 9:1 ratio
using Trans-IT 293 transfection reagent (Mirus, USA) according to the manufac-
turer’s instructions. 48 hours after transfection, 100 µg/ml Hygromycin B was used
to select for cells that had undergone successful integration.

K562-dCas9-BFP-KRAB Tet-On cells were grown in RPMI-1640 medium with
L-Glutamine and HEPES supplemented with 10% Tet System Approved FBS, 100
units/mL penicillin and 100 𝜇g/mL streptomycin (Invitrogen, #15140148). For cer-
tain reporter assays, K562 CRISPRi Zim3-hygro Tet-On cells were used to promote
better knock-down (Replogle et al., 2022). Cells were maintained at a confluency
between 0.5–2 × 106 cells/ml. All cells were tested for contamination regularly.

Lentivirus
Lentivirus was produced by co-transfecting HEK293T cells with two packaging
plasmids (pCMV-VSV-G and delta8.9, Addgene #8454) and the desired plasmid
using TransIT-293 (Mirus) transfection reagent. 48 hours after transfection, the
supernatant was collected, centrifuged and flash frozen. In all instances, virus was
rapidly thawed prior to transfection. Virus for the genome-wide CRISPRi screen
was generated using this method.

Virus generation for genome wide CRISPR knockout screen HEK-293T cells were
seeded at a density of 750,000 cells/ml in 20 ml viral production medium: IMDM
(Thermo Fisher Scientific #1244053) supplemented with 20% inactivated fetal
serum (GeminiBio #100-106). After 24 hours, media was changed to fresh viral
production medium. At 32 hours post-seeding, cells were transfected with a mix con-
taining 76.8 𝜇L Xtremegene-9 transfection reagent (Sigma Aldrich #06365779001),
3.62 𝜇g pCMV-VSV-G (Plasmid #8454, Addgene), 8.28 𝜇g psPAX2 (Plasmid
#12260, Addgene), and 20 𝜇g sgRNA plasmid and Opti-MEM (Thermo Fisher
Scientific #11058021) to a final volume of 1 ml. Media was changed 16 hours later
to fresh viral production medium. At 48 hours after transfection, virus was collected
and filtered through a 0.45 𝜇m filter, aliquoted, and stored at -80°C until use.

Generation of K562 reporter cell lines for screening
K562 reporter reporter cell lines were generated by co-transfecting our control or
NMD2 viral vectors along with a tet activator element into K562 wild type or K562-
dCas9-BFP-KRAB Tet-On cell lines at one copy number per cell. Positive cells
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were isolated via FACS on a BD FACSAria2 and grown up to create monoclonal
cell lines.

Flow cytometry analysis
HEK293T cells were analyzed by flow cytometry 24 hours after either transient
transfection with indicated reporters. T-Rex HEK293 cells stably expressing des-
ignated reporters were induced for 24 hours prior to harvesting for flow cytometry.
For this, cells were first incubated with trypsin before collection, pelleted, and
resuspended in 300 𝜇L of PBS containing 1 𝜇M Sytox Blue Dead Cell Stain (Ther-
moFisher, #S34857) and analyzed on a Miltenyi Biotech MACSQuant VYB Flow
Cytometer. For certain experiments, such as treatment with MG132, K562-dCas9-
BFP-KRAB Tet-On NMD2 or control monoclonal cell lines (also used for screening)
were induced for 24 hours with 1 𝜇g/ml doxycycline. For transient reporter experi-
ments, K562 Zim3 or KRAB CRISPRi cells were spinfected at a confluency 0.5 ×
106 cells/ml. Media was supplemented with 8 𝜇g/ml polybrene (Millipore Sigma,
#107689-100G) and the lentivirus of interest was added to the well. The components
were mixed by pipetting, and immediately spun down at 1000xg for 2 hours at 30
°C. Expression of the reporter constructs was induced with 1 𝜇g/ml doxycycline and
cells were typically analyzed 24 hours later unless otherwise indicated. To generate
knock-down, cells were spinfected with both guide and reporter, allowed to grow
for 8-10 days and the induced with doxycycline. Guide positive cells were selected
with 1 𝜇g/lL puromycin for three days. Flow cytometry data was analyzed either in
FlowJo v10.8 Software (BD Life Sciences) or Python using the FlowCytometryTools
package.

qPCR analysis
Relative mRNA levels were determined by quantitative PCR. Total cellular RNA
was purified from cells using the RNeasy kit (#74104, Qiagen), treated with DNase
I (#18068015, Invitrogen) and reverse transcribed using the SuperScript III First
Strand Synthesis SuperMix (#11752, Invitrogen), before being subjected to analysis
on a StepOnePlus Real-Time PCR system. The relative expression ratios between
sample cDNA levels were then analyzed, using primers that amplified either GFP
and RFP, and the housekeeping gene HPRT1 (IDT, Hs.PT.58v.45621572). Each set
of primers was checked against a standard dilution curve, and the primer efficiencies
were between 90 and 110%. The efficiencies were considered in the expression ratio
calculation. The primers used were: GFP (fwd: ATTGGACGGAGACGTGAATG,
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rev: GTTTCCCGGTAGTGCAGATAA) and RFP (fwd: CCCGCAGACATTCCT-
GATTA, rev: AGTCCTGAGTCACTGTAACAAC).

Inhibition of the ubiquitin-proteasome pathway
To look at the effect of MG132 treatment on the NMD2 reporter as shown in Fig.
2.2A, wild-type HEK293T cells were transiently transfected with FLAG-tagged
versions of the reporter constructs. 18 hours later, cells were then treated with
either 10 𝜇M of the proteasome inhibitor MG132 (Calbiochem, #474790), or a
DMSO control for 6 hours. To test the effect of E1 inhibition, this was modified
such that cells were treated with either 10 𝜇M of the E1 inhibitor MLN7243 or
DMSO for 8 hours. To allow for blotting, cells were then harvested and lysed in
1% SDS. The lysates were normalized to GFP protein levels by serial dilutions
and Western-blotting. The normalized lysates were analyzed by SDS-PAGE and
Western-blotting using Anti-FLAG and Anti-GFP antibodies. For Fig. 2.2B, our
K562 CRISPRi NMD2 monoclonal cell line was induced with 1 𝜇g/ml doxycycline
for 10 hours and subsequently treated with 10 𝜇M MG132 or DMSO for 6 hours.
Cells were harvested and analyzed by flow cytometry on an Attune NxT Flow
Cytometer.

To directly observe ubiquitination of RFP and GFP (Fig. 2.2C), we generated a
stable cell line constitutively expressing HA-tagged ubiquitin in HEK293T cells,
with a BFP marker. These cells were transiently transfected with reporters where
the RFP was FLAG-tagged, and incubated for 42 hours. Cells were then treated
with 10 𝜇M MG132 for 6 hours. For blots, cells were harvested by first being
resuspended in lysis buffer (50 mM Hepes pH 7.4, 100 mM KOAc, 2 mM MgAc2, 1
× proteasome inhibitor, 1 mM DTT, 50 𝜇M PR-619, 10 𝜇g/ml digitonin) and left on
ice for 15 minutes. Mechanical lysis was performed with 10 strokes of a glass dounce
and total samples were taken. The amount of RFP and GFP in each sample was
determined using a plate reader. Samples for RFP and GFP immunoprecipitations
(IPs) were normalized to equivalent RFP and GFP levels, respectively, using HA-
Ub-containing cell lysate to maintain the total protein concentration. For the RFP IP:
SDS was added to 1% final concentration, and the samples were boiled. They were
then diluted with IP buffer (50 mM Hepes pH 7.4, 100 mM KOAc, 2 mM MgAc2,
1% Triton) to a final concentration of 0.1% SDS. Samples were immunoprecipitated
with Anti-FLAG M2 affinity resin (Millipore-Sigma) and eluted with SDS. For the
GFP IPs: SDS was added to 1% final concentration, then samples were diluted with
IP buffer without boiling. Magnetic beads (Pierce) were coupled to a biontinylated
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version of a GFP nanobody as described previously (Pleiner et al., 2020), and then
were used to immunoprecipitate GFP. Samples were eluted with SDS. The resulting
samples were analyzed by Western blotting.

CRISPRi knockdown screen
The genome-scale CRISPRi screen was performed similarly to previously described
screens (Gilbert et al., 2014; Horlbeck et al., 2016). The hCRISPRi-v2 compact
library (containing 5 sgRNAs per gene, Addgene pooled library #83969) was trans-
duced in duplicate into 330 million K562-dCas9-BFP-KRAB Tet-On-NMD2 cells
at MOI < 1 (percentage of transduced cells 48 hours after infection as measured
by BFP positive cells: 20%-40%). Cells were grown in 1L of media in 1L spin-
ner flasks (Bellco, SKU: 1965-61010) for the duration of the screen. 48 hours after
spinfection, cells were selected with 1 mg/ml puromycin for 3 days. After a 36 hours
recovery, cells were induced with 1 𝜇g/ml doxycycline for 24 hours and sorted on
a FACS AriaII Fusion Cell Sorter. The cells were maintained at 0.5 × 106 cells/ml
for the duration of the screen. This ensured that the culture was maintained at an
average coverage of more than 1000 cells per sgRNA for the whole screen.

Cells with high BFP (transduced cells) and with both GFP and RFP signal (success-
fully induced) were gated. Cells were sorted according to the RFP:GFP ratio of this
population.

Around 40 million cells with either the highest (30%) and the lowest (30%) RFP:GFP
ratio were collected, pelleted and flash-frozen. Genomic DNA was purified using
the Nucleospin Blood XL kit (Takara Bio, #740950.10) and amplified with barcoded
primers by index PCR. The library ( 264 bp) was purified using SPRIbeads (Bulldog
Bio, CNGS005), its concentration measured by Qubit fluorometer (Invitrogen) and
its integrity checked by Agilent 2100 Bioanalyzer. Samples were analyzed using
an Illumina HiSeq2500 high throughput sequencer. Sequencing reads were aligned
to the CRISPRi v2 library sequences, counted and quantified (Horlbeck et al.,
2016). Generation of negative control genes and calculation of phenotype scores
and Mann-Whitney p-values was performed as described previously (Gilbert et al.,
2014; Horlbeck et al., 2016). Gene-level phenotypes and counts are available in
Supplementary Table 1.

K562 genome-wide CRISPR knockout screen
A genome-wide lentiviral sgRNA library in a Cas9-containing vector (Supplemen-
tary Table 3) was used to transduce 500 million a monoclonal K562 cell line con-
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taining a tet element and the NMD2 reporter. All other conditions were identical to
those used for the CRISPRi KD screen. Cells were induced either at 7, 9, or 11 days
with 1 𝜇 g/ml doxycycline for 24 hours and sorted on a FACS Aria II Fusion cell
Sorter on days 8, 10, or 12. Data was processed using the pipeline described above
and validated by analysis using MAGeCK (Li et al., 2014). Gene-level phenotypes
and counts are available in Supplementary Table 2.

For extraction of genomic DNA, QIAamp DNA Blood Maxiprep Kit (Qiagen) was
used according to manufacturer’s instructions with the following modifications: 500
µL of a 10 mg/ml solution of ProteinaseK in water was used in place of QIAGEN
Protease; incubation with ProteinaseK and Buffer AL was performed overnight;
centrifugation steps after Buffer AW1 and AW2 were performed for 2 min and 5
min, respectively; gDNA was eluted for 5 min using 1 ml of water preheated to
70 °C, followed by centrifugation for 5 min. gDNA concentration was determined
using the Qubit dsDNA HS Assay kit (Thermo Fisher Scientific #Q32851).
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2.5 Supplementary section

 
Fig. S2. NMD-linked protein degradation is independent of cell type, fluorescent protein 
identity and reporter design. (A) K562 CRISPRi cells were virally infected with the control 
and NMD2 reporters and were then analyzed by flow cytometry after 24 hours of doxycycline 
induction. Box plots showing the results of three biological replicates are shown below. (B) 
HEK293T cells were transiently transfected with the reversed reporters (in which the GFP and 
RFP order is reversed), and were analyzed after 24 hours. A box plot showing three biological 
replicates is below. Note that the NMD1 reverse reporter was used. (C) As in A but for the 

Figure S2.1: NMD-linked protein degradation is independent of cell type, fluorescent protein
identity and reporter design. (A) K562 CRISPRi cells were virally infected with the control and
NMD2 reporters and were then analyzed by flow cytometry after 24 hours of doxycycline induction.
Box plots showing the results of three biological replicates are shown below. (B) HEK293T cells
were transiently transfected with the reversed reporters (in which the GFP and RFP order is reversed),
and were analyzed after 24 hours. A box plot showing three biological replicates is below. Note
that the NMD1 reverse reporter was used. (C) As in A but for the reverse reporters. (D) HEK293T
cells were transiently transfected with reporters in which a hydrophilic linker domain (bVHP) was
inserted between the RFP and the stop codon to ensure the RFP would be fully emerged from the
ribosome at the stop codon. The cells were analyzed by flow cytometry after 24 hours, and the results
are shown as a histogram. A box plot showing three biological replicates is shown below. (E) A box
plot showing quantification of three biological replicates for the flow cytometry data shown in Fig.
2.1D.
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Fig. S3. The ubiquitin-proteasome system mediates NMD-linked nascent protein 
degradation. (A) A box plot showing three biological replicates for the flow cytometry data 
presented in Fig. 2A. (B) The effect of MG132 treatment on GFP and RFP levels was quantified 
as fold change for GFP and RFP as shown in Fig. 2B, with three biological replicates plotted. (C) 
HEK293T cells were transiently transfected with either control or NMD2 reporters. After 16 
hours, the cells were treated for 8 hours with either 10 µM MLN7243 or a matched DMSO 
control. Cells were then harvested and analyzed by flow cytometry. The results from three 
biological replicates are shown on the right. (D) Cells were treated as in (C), but were lysed in 
1% SDS after MLN7243 treatment. The lysates were boiled and subjected to SDS-PAGE and 
Western blotting. Samples were normalized to GFP to control for RNA degradation. No RFP 
degradation products were observed, as seen in the long RFP exposure. 

 
 
 
 

 
 

Figure S2.2: The ubiquitin-proteasome system mediates NMD-linked nascent protein degra-
dation. (A) A box plot showing three biological replicates for the flow cytometry data presented in
Fig. 2A. (B) The effect of MG132 treatment on GFP and RFP levels was quantified as fold change for
GFP and RFP as shown in Fig. 2B, with three biological replicates plotted. (C) HEK293T cells were
transiently transfected with either control or NMD2 reporters. After 16 hours, the cells were treated
for 8 hours with either 10 𝜇M MLN7243 or a matched DMSO control. Cells were then harvested
and analyzed by flow cytometry. The results from three biological replicates are shown on the right.
(D) Cells were treated as in (C), but were lysed in 1% SDS after MLN7243 treatment. The lysates
were boiled and subjected to SDS-PAGE and Western blotting. Samples were normalized to GFP to
control for RNA degradation. No RFP degradation products were observed, as seen in the long RFP
exposure.
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Fig. S4. CRISPR knock-out screen progression across different time points and 
quantification of NMD dependence on RQC factors. (A) Shown are volcano plots from days 8, 
10, and 12 of the knockout CRISPR screen with factors of interest highlighted. Some genes may 
drop out over the course of the screen, and so show highest phenotype scores at day 8 (e.g. DCP2). 
Conversely, other genes require a longer time period to be depleted, and show increased effects on 
the reporter at later time points (e.g. CASC3). The full dataset is available in Supplemental Table 

Figure S2.3: CRISPR knock-out screen progression across different time points and quantifi-
cation of NMD dependence on RQC factors. (A) Shown are volcano plots from days 8, 10, and 12
of the knockout CRISPR screen with factors of interest highlighted. Some genes may drop out over
the course of the screen, and so show highest phenotype scores at day 8 (e.g. DCP2). Conversely,
other genes require a longer time period to be depleted, and show increased effects on the reporter at
later time points (e.g. CASC3). (B) A box plot showing the results from three biological replicates of
the effect of knocking down the RQC E3 ligase LTN1 on the NMD reporter (NMD2) or the non-stop
reporter (MALAT1) as shown in Fig. 4C. (C) As in (A) for the effects of LTN1 knock down on the
reverse NMD2 reporter as show in Fig. 2.4D.
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Fig. S5. Validation of the screen hits. (A) Box plots showing the effect of knockdown of CASC3 
on the control and NMD2 reporters in K562 Zim3 CRISPRi cells (histograms shown in Fig. 5) 
across three biological replicates. (B) CASC3 was CNOT4 were depleted by sgRNA for 8 days in 
K562 Zim3 CRISPRi cells expressing either the reverse NMD2 reporter or the reverse control 

Figure S2.4: Validation of the screen hits. (A) Box plots showing the effect of knockdown of
CASC3 on the control and NMD2 reporters in K562 Zim3 CRISPRi cells (histograms shown in Fig.
5) across three biological replicates. (B) CASC3 was CNOT4 were depleted by sgRNA for 8 days
in K562 Zim3 CRISPRi cells expressing either the reverse NMD2 reporter or the reverse control
reporter. Displayed are the RFP:GFP ratios for reporters as determined by flow cytometry after 24
hours of induction. Box plots showing three biological replicates are shown next to each histogram.
(C, D) As above for DCP1A. (E, F) As above for CNOT4. (G) CNOT4 depletion was confirmed by
Western blot.
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Fig. S6. The role of UPF1’s E3 ligase activity in NMD-linked protein degradation. (A) K562 
CRISPRi cells stably expressing the inducible NMD2 reporter were constructed to stably express 
one copy of either BFP, a FLAG-conjugated wild-type UPF1, or a FLAG-conjugated mutant 
UPF1 (S134A, N148A, T149A) with disruptions that abolish association with E2 conjugating 
enzymes. WT or mutant UPF1 was separated from BFP by a viral P2A sequence, allowing us to 
use BFP as a proxy for UPF1 infection. These cells were then infected with dual sgRNA guides 
targeting UPF1 or a non-targeting control. Note that rescue constructs were resistant to the 
sgRNA. After 8 days of knockdown, the NMD2 reporter was induced with doxycycline for 24 
hours, after which cells were harvested and analyzed by flow cytometry. GFP levels are shown 
in (A) and the RFP:GFP ratios are shown in (B), with the quantification of three biological 
replicates below. (C) UPF1 wild-type and mutant over-expression levels were confirmed by 
Western blotting in the K562 line stably expressing NMD2.  
 
 
 
 
 
 
 
 
 
 
 

Figure S2.5: The role of UPF1’s E3 ligase activity in NMD-linked protein degradation. (A) K562
CRISPRi cells stably expressing the inducible NMD2 reporter were constructed to stably express
one copy of either BFP, a FLAG-conjugated wild-type UPF1, or a FLAG-conjugated mutant UPF1
(S134A, N148A, T149A) with disruptions that abolish association with E2 conjugating enzymes.
WT or mutant UPF1 was separated from BFP by a viral P2A sequence, allowing us to use BFP as a
proxy for UPF1 infection. These cells were then infected with dual sgRNA guides targeting UPF1
or a non-targeting control. Note that rescue constructs were resistant to the sgRNA. After 8 days of
knockdown, the NMD2 reporter was induced with doxycycline for 24 hours, after which cells were
harvested and analyzed by flow cytometry. GFP levels are shown in (A) and the RFP:GFP ratios are
shown in (B), with the quantification of three biological replicates below. (C) UPF1 wild-type and
mutant over-expression levels were confirmed by Western blotting in the K562 line stably expressing
NMD2.
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Fig. S7. The effect of SMG6 is independent of fluorescent protein order. (A) Box plots 
showing the effect of SMG6 depletion on the control reporter (Fig. 6A) across three biological 
replicates. (B) As in (A) for effects of SMG6 depletion on NMD2 with rescue by the wild type 
and mutant SMG6. (C) HEK293T cells were treated with siRNA against SMG6 for 48 hours, 
then were transiently transfected with the reversed control reporter. Cells were analyzed by flow 
cytometry after 24 hours, and the experiment was performed in triplicate (results plotted below). 
(D) HEK293T cells were treated with an siRNA against SMG6 as in (C), then were transfected 
with an siRNA-resistant version of either wild-type SMG6 or a PIN domain mutant version and 
the reversed NMD reporter. The cells were analyzed by flow cytometry after 24 hours. A box 
plot showing the results from three biological replicates is shown. 

Figure S2.6: The effect of SMG6 is independent of fluorescent protein order. (A) Effect of
SMG6 depletion on the control reporter (Fig. 2.6A) across three biological replicates. (B) As in
(A) for NMD2 with rescue by the wild type and mutant SMG6. (C) HEK293T cells were treated
with siRNA against SMG6 for 48 hours, then were transiently transfected with the reversed control
reporter. Cells were analyzed in triplicate by flow cytometry after 24 hours. (results plotted below).
(D) HEK293T cells were treated with an siRNA against SMG6, transfected with an siRNA-resistant
version of either wild-type SMG6 or a PIN domain mutant version and the reversed NMD reporter,
and analyzed by flow cytometry after 24 hours. A box plot showing the results from three biological
replicates is shown.
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ABSTRACT

Current cell atlas projects aim to curate representative datasets, cell-types, and
marker genes for tissues across an organism. Despite their ubiquity, atlas projects
rely on duplicated and manual effort to curate marker genes and annotate cell-
types. Importantly, the lack of data-compatible tools and a fixed representation
of the atlas make their reanalysis near-impossible. To overcome these challenges,
we present a collection of data, algorithms, and tools to automate cataloging and
analyzing cell-types across all tissues in an organism. We leveraged this work to
build a Human Commons Cell Atlas comprising 2.9 million cells across 27 tissues
that can be easily updated and that is structured to facilitate custom analyses. To
showcase the flexibility of the atlas, we demonstrate that it can be used for isoform
analyses. In particular, we study cell-type specificity of isoforms of OAS1, which
has recently been shown to offer SARS-CoV-2 protection in certain individuals that
display higher expression of the p46 isoform. Using our Commons Cell Atlas, we
localize the OAS1 p44b isoform to the testis, and find that it is specific to germ line
cells. By virtue of enabling customized analyses via a modular and dynamic atlas
structure, the Commons Cell Atlas should be useful for exploratory analyses that
are intractable within the rigid framework of current gene-centric static atlases.
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C h a p t e r 3

INTRODUCTION

3.1 Classification of cells
“Among all the marvels I have discovered in nature, these are the most marvelous
of all." –Antonie van Leeuwenhoek

Back in the 17th century, two scientists peered through the lenses of their micro-
scopes and uncovered the mystery of the basic unit of living systems. Robert Hooke
and Antonie van Leeuwenhoek described the cell as the structural unit of life for the
first time, laying the foundation for the field of cell biology (Hooke, 1665; Leeuwen-
hoek, 1977). Ever since then, scientists have sought to classify and characterize
cells in order to understand the living organisms of which they are a part.

For centuries, researchers have relied on the visual appearance of cells as the basis
for their classification into different cell-types (Arendt et al., 2016). Physical traits,
like cell shape (e.g., rods and cones in the retina) or internal structures (e.g., mast
cells in the immune system) have been used to distinguish between cell-types. With
the advent of new biological techniques, the criteria for cell classification expanded
to include additional features, such as surface protein expression (Delmonte and
Fleisher, 2019), and the secretion of certain molecules (Romer and Sussel, 2015).
However, the development of novel technologies based on Next-Generation Se-
quencing (NGS) brought about a paradigm shift: to no longer rely on just one or a
few defining features, but rather to classify cells according to their complete gene
expression profile (Trapnell, 2015) (Fig 3.1).

3.2 Single Cell RNA-seq
Single-cell RNA sequencing (scRNA-seq) enables the dissection of gene expression
at the single-cell level (Tang et al., 2009; Chen, Ning, and Shi, 2019). There
are several different scRNA-seq technologies available, all of them following the
same basic steps (Jovic et al., 2022). First, individual cells are isolated, which can
be achieved by a number of methods, including fluorescence-activated cell sorting
(FACS) (Soumillon et al., 2014), and microfluidic systems (Macosko et al., 2015;
Klein et al., 2015). Second, the transcripts of each cell are converted to cDNA and
tagged with a Unique Molecular Identifier (UMI). Last, the cDNA is amplified, and
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Figure 3.1: A new level of resolution for cell-type classification. scRNA-seq allows to quantify
the expression of all genes for each individual cell of a given sample, enabling the classification
of cell-types based on the full transcriptome rather than a limited set of features. In addition, new
cell-types that were indistinguishable through other methods can be defined and characterized.

the resulting library is sequenced by NGS to identify and quantify the transcripts that
were present in each original cell. During this process, transcripts coming from each
cell are uniquely barcoded, which allows subsequent computational demultiplexing
(Jovic et al., 2022).

The outcome of DNA sequencing is saved in a FASTQ file, where each entry (referred
to as a read) represents the original sequence of a molecule in the library (Robinson,
Piro, and Jäger, 2017). The reads are then aligned to a reference to count the number
of occurrences of each gene or transcript in the FASTQ reads. This reference can
contain the entire sequence of the genome, as used by alignment methods like STAR
(Dobin et al., 2013), or just the transcriptome, as used by methods like kallisto (Bray
et al., 2016). Next, transcripts originating from the same cell are grouped together
using their corresponding barcode sequences; and reads originating from the same
molecule are collapsed using their UMIs. The result of this process is a gene count
matrix, in which each entry displays the number of molecules that mapped to the
respective gene in the corresponding cell (Chen, Ning, and Shi, 2019).

Filtering and normalization of the gene count matrix are essential steps that must
be taken before any statistical analysis can be performed on the data (Hu et al.,
2022). While a unique barcode is assigned to the transcripts of each cell, not all
barcodes present in the data correspond to real cells. The use of a knee plot to
identify barcodes with low UMI counts is a popular technique for filtering out low-
quality cells. Once filtered, the matrix needs to be normalized to achieve two goals:
i) depth-normalize the data and ii) stabilize the variance. Depth-normalization
refers to adjusting the gene expression values in each cell to account for differences
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in sequencing depth, while variance stabilization aims to remove the gene mean-
variance relationship, which is considered technical. Once the matrix is normalized,
cells can be classified into subpopulations according to their gene expression profiles,
and statistical analysis can be performed to gain a better understanding of the
biological processes at play.

3.3 Single cell atlases
The advent of scRNA-seq has paved the way for addressing once-intractable prob-
lems in biology. scRNA-seq has been used to discover and define new cell-types,
examine the temporal progression of developmental processes (Behjati et al., 2014),
explore gene regulatory networks (Akers and Murali, 2021) and study random al-
lelic gene expression (Deng et al., 2014). Many of these goals have been achieved
through the generation of so-called single cell atlases, which constitute a prime ex-
ample of how scRNA-seq has enabled us to gain a deeper understanding of cellular
diversity and function.

A single cell atlas can be defined as a comprehensive catalog of gene expression
profiles of individual cells within a given tissue or organism. The first single cell
atlases were created in the early 2010s (Kolodziejczyk et al., 2015), and since
then, several large-scale projects have been established, including the Human Cell
Atlas (HCA) (Lindeboom, Regev, and Teichmann, 2021), the Tabula Muris project
(Consortium et al., 2018), and the BRAIN Initiative Cell Census Network (Ecker
et al., 2017). These atlases have profiled millions of individual cells from various
tissues and organs, providing unprecedented insights into the diversity and function
of cells within complex biological systems.

3.4 Contribution of this thesis
Single cell atlases hold enormous potential, but in their current form have two sig-
nificant limitations, namely that raw data is difficult to access and atlases are "static",
i.e., it is challenging to reprocess results in response to new data or annotations.
In the second part of my thesis, I outline my efforts to address these challenges.
In Chapter 4, I describe the development of a novel tool to extract metadata from
genomic databases, an essential step needed to efficiently build atlases that wasn’t
available. In Chapter 5, we performed the first ever comprehensive benchmark of
normalization methods across an entire cell atlas, providing quantitative results on
the performance and suitability of each method and proposing a novel statistical
method that outperforms other existing ones. Moreover, we have developed a suite
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of tools that solve fundamental challenges in scRNA-seq processing, such as a fully
automated method to filter low quality cells and a novel cell-type assignment algo-
rithm that outperforms the current gold standard (Chapter 6). Using these tools, we
have created an open-access framework to build single cell atlases for any organism.
By virtue of its modular nature, the framework can be customized to build atlases
that allow researchers to tackle novel research questions that are inaccessible to
current atlases, such as the study of isoform expression (Chapter 6). Using this
framework, we built the first completely reproducible Human Cell Atlas, encom-
passing 27 organs from 525 datasets (Chapter 7). All the elements of the atlas can
be both downloaded and updated, from the raw data to the cell-type marker genes.
Finally, we used this atlas to study the cell-type specificity of OAS1 isoforms, a
previously unexplored question with high clinical relevance (Chapter 7).
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C h a p t e r 4

METADATA RETRIEVAL FROM GENOMICS DATABASES
WITH FFQ

Gálvez-Merchán, Ángel et al. (2023). “Metadata retrieval from sequence databases
with ffq.” In: Bioinformatics 39.1, btac667. doi: 10.1093/bioinformatics/
btac667. url: https://academic.oup.com/bioinformatics/article/
39/1/btac667/6971839.

4.1 Introduction
The extraordinarily large volume of user-generated sequencing data available in
public databases is increasingly being utilized in research projects alongside novel
experiments (Simon et al., 2018; Razmara et al., 2019; Lung et al., 2020; Rajesh
et al., 2021; Hippen and Greene, 2021; Wartmann et al., 2021; Kasmanas et al.,
2021; Huang et al., 2021; Klie et al., 2021; Booeshaghi et al., 2022). Collation of
metadata is crucial for effective use of publicly available data. Accurate metadata
can provide information about the samples assayed and can facilitate the acquisition
of raw data. For example, sra-tools enables users to query and download data from
the National Center for Biotechnology Information Sequence Read Archive (NCBI
SRA), which currently hosts 13.67 PB of data. An alternative to sra-tools is the
pysradb tool (Choudhary, 2019). pysradb was developed to access metadata from the
Sequence Read Archive (SRA), using metadata obtained from the regularly updated
SRAdb SQLite database (Zhu et al., 2013). MetaSRA adds additional standardized
metadata on top of the SRAdb SQLite database (Bernstein, Doan, and Dewey, 2017)
and also provides an API for accessing them. While these and other tools (Mahi
et al., 2019; Li, Li, and Yu, 2018; Eaton, 2020; Bernstein, Gladstein, et al., 2020)
have proven to be very useful, they provide access to a limited scope of databases.
We developed FetchFastQ (ffq) to facilitate metadata retrieval from a diverse set of
databases, including

1. National Center for Biotechnology Information Sequence Read Archive (SRA)
and Gene Expression Omnibus (GEO),

2. European Molecular Biology Lab-European Bioinformatics Institute European
Nucleotide Archive (EMBL-EBI ENA),
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3. DNA Data Bank of Japan Gene Expression Archive (DDBJ GEA), and

4. Encyclopedia of DNA Elements (ENCODE) database (Davis et al., 2018).

In order to facilitate a modular architecture for ffq, we first studied the structure of
these databases in detail to identify commonalities and relationships between them
(Fig. 4.1). The SRA, ENA, and DDBJ databases all follow a similar hierarchical
structure where studies are grouped into samples, experiments, and runs, a shared
architecture that is useful and likely the result of the longstanding International
Nucleotide Sequence Database Collaboration (INSDC) between the ENA, NCBI,
and DDBJ. We note that the Genome Sequence Archive (GSA) (Chen et al., 2021)
is not a member of the INSDC. However it also uses a similar hierarchical structure
for its database, and regularly ingests data from the SRA, but does not expose its
publicly available data for programmatic access.

Figure 4.1: Metadata retrieval. ffq fetches and returns metadata as a JSON object by traversing
the database hierarchy. Subsets of the database hierarchy can be returned by specifying -l [level].

The consistent database schemas used by members of the INSDC greatly simplifies
metadata retrieval for ffq. For example, GEO accession codes are grouped hierarchi-
cally through Series and Samples and have external relations to SRA accession codes
for raw sequencing data submitted to the SRA. This enables ffq to fetch metadata
and processed data from GEO that submitters have associated with raw sequencing
data stored in the SRA.
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4.2 Description
Based on the database architectures, we created ffq to fetch metadata using database
accessions or paper DOIs as input. Importantly, ffq only fetches metadata and links
to data files and does not offer data downloading. This deliberate design decision
was motivated by the UNIX philosophy “Make each program do one thing well”
(McIlroy, Pinson, and Tague, 1978).

The ffq options are summarized below:

ffq [accession(s)] where [accession] can be any of the following: SR(R/X/S/P),
ER(R/X/S/P), DR(R/X/S/P), GS(E/M), ENC(SR/BS/DO), CXR, SAM(N/D/EA/EG),
DOI.

ffq [-l level] [accession(s)] where [level] defines the hierarchy in the database to
which data is subset data.

ffq [–ftp] [–aws] [–gcp] [–ncbi] [accession(s)] where the flags correspond to the
types of data-storage links for the raw data.

ffq [-o out] [–split] [accession(s)] where [out] corresponds to a path on disk to save
the JSON file and [–split] splits the metadata from multiple accessions into their
own file.

The ffq codebase consists of 58 functions and 2,198 lines of code across six files and
relies on only four software dependencies. Users supply an accession or DOI and the
tool returns metadata for the sequencing data associated with that accession or DOI.
Accession-based ffq metadata retrieval uses the NCBI Entrez programming utilities,
ENA API, GEO FTP, and ENCODE API to programmatically access metadata
with HTTP requests. DOI-based metadata retrieval first converts the DOI to the
manuscript title via the CrossRef API (Hendricks et al., 2020) and then retrieves
all study accessions associated with the manuscript title with the ENA search API.
The reliance on these external dependencies can make it challenging to track API
updates that may break ffq functionality. To provide resilience to such changes,
we have implemented extensive quality control via an automated testing framework
that validates behavior against all external APIs and five Python versions (3.6, 3.7,
3.8, 3.9, and 3.10) that cover 78% of the code. This makes it easy to detect and
address API updates within ffq. Once fetched, metadata is returned as a Javascript
Object Notation (JSON) object. Run times for metadata retrieval vary depending on
database up-time, server connection speed, and database rate-limiting, but generally
we find that ffq can download metadata at a rate of 10s per sample. This rate
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includes short and deliberate delays we have added between HTTP requests to
prevent a perceived Denial-of-Service. External factors may impact ffq’s ability
to fetch metadata that are independent of the tool. Internet connection, improperly
formatted accessions, missing or incomplete metadata are some of the failure modes
that users may face. To aid users in debugging missing or incomplete metadata,
custom exceptions have been implemented and possible failure modes and caveats
have been listed in the documentation.

4.3 Usage and documentation
The ffq tool is written in Python and can be installed with pip and conda. Users supply
an accession or DOI and the tool returns metadata for the associated sequencing
data. The JSON-return objects make ffq interoperable with other tools such as jq
for easy command-line parsing. Additionally, ffq’s modularity and simplicity make
it extensible to other genomic databases. By leveraging existing APIs, ffq offers
a lightweight solution for querying data that is guaranteed to be more up-to-date
than tools that rely on regular database builds. These features enable researchers to
use ffq to refine research questions. For example, ffq can be used to fetch publicly
available scRNAseq data, which can be preprocessed with existing tools (Melsted
et al., 2019) and compared against newly generated data (Fig. 4.2). Alternatively,
ffq can be used for sequencing quality control; sequencing reads can be fetched with
ffq and piped into common command-line tools to count the number of reads or
assess the per-base quality scores. These and other use cases are explained in the
ffq documentation. The modularity of ffq makes possible streamwise processing of
publicly available FASTQ files for any number of applications.

4.4 Discussion
While ffq facilitates downloading of data from numerous genomic databases, the
results retrieved are only useful to the extent that the metadata uploaded is mean-
ingful and complete. Meaningful and complete user-generated data underlies the
curation of genomic references essential for comparative genomic data analysis
(Luebbert and Pachter, 2022). Unfortunately, there is little to no standardization of
user-uploaded sequencing metadata (Wang, Lachmann, and Ma’ayan, 2019; Rajesh
et al., 2021), and metadata descriptions can become exceedingly complex for current
multiplexed experiments, where different assays with distinct data types are com-
bined. Improvement of metadata uploading in machine-readable standard formats
is essential if publicly available genomic data are to be usable by scientists in the
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Figure 4.2: Example use case. Publicly available scRNAseq data is fetched with ffq and quantified
with kb-python to generate a gene count matrix. The ffq command is underlined.

future. Users who wish to refine research questions with complete and accurate
publicly available data will benefit from ffq. By providing direct links to sequencing
data and metadata, ffq allows any number of downstream procedures that operate on
sequencing reads. Importantly, the modularity of ffq enables streamwise processing
of data and metadata that obviates the need for large amounts of storage and lessens
the cost of computing.
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C h a p t e r 5

DEPTH NORMALIZATION FOR SINGLE-CELL GENOMICS
COUNT DATA

Booeshaghi, A. Sina et al. (2022). “Depth normalization for single-cell genomics
count data.” In: bioRxiv, pp. 2022–05. doi: 10.1101/2022.05.06.490859.
url: https://www.biorxiv.org/content/10.1101/2022.05.06.
490859v1.abstract.

5.1 Introduction
A central theme in single-cell RNA-seq “count normalization” is the importance of
achieving depth normalization alongside variance stabilization (Vallejos et al., 2017;
Evans, Hardin, and Stoebel, 2018; Robinson and Oshlack, 2010). While variance
stabilization has been studied for over 85 years (Bartlett, 1936), the question of
how to achieve both variance stabilization and depth normalization is unsolved. An
important condition that is often overlooked when evaluating normalization and
variance-stabilization methods is that structure must be preserved in the data, which
is why classic variance stabilizing transformations are monotonic by design (Doob,
1935). This is why the constant transformation, which sets all counts equal to each
other and results in a fully variance-stabilized matrix with all cell depths equal, is
not a good normalization.

While many methods have been proposed for single-cell RNA-seq normalization
(Cole et al., 2019; Tian et al., 2019; You et al., 2021; Lytal, Ran, and An, 2020;
Borella et al., 2022; Ahlmann-Eltze and Huber, 2021; Breda, Zavolan, and Nimwe-
gen, 2021), the approach of equalizing depth for all cells, often to a “size factor”
such as ten thousand (CP10k) or one million (CPM), followed by the application of
a variance stabilizing transform like log plus one (log1p) is most popular. These
methods are implemented in the widely used Seurat and Scanpy (Wolf, Angerer,
and Theis, 2018) programs, but they do not explicitly model cell depth as a covari-
ate. The recently published sctransform method (Hafemeister and Satĳa, 2019),
which has quickly become the most widely used normalization method for single-
cell RNA-seq, aims to address the challenge of variance stabilization and depth
normalization by transforming data to Pearson residuals derived from a regularized
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negative binomial regression. This regression-based method includesincorporates
sequencing depth as a covariate in a model, rather than usingutilizing a size factor
(Anders and Huber, 2010). However, despite the claims in (Hafemeister and Satĳa,
2019), benchmarking of sctransform in (Crowell et al., 2020) shows that the method
fails to completely remove the effects of variable depth. The authors of the bench-
marking study show that as a result, sctransform produces “unacceptably high false
discovery rates [when used for differential expression].” Similarly, (Urban et al.,
2009) find that sctransform performs poorly (see their Figure 3) and the veracity of
the claim in (Hafemeister and Satĳa, 2019) that sctransform “can successfully re-
move the influence of technical characteristic from downstream analyses” is brought
into question by the authors’ own results. Figure 6 of their paper shows a UMAP
plot of 33,148 PBMCs that the authors claim displays “a gradient that is correlated
with sequencing depth” for log-normalized data, but not for data normalized with
sctransform (Fig. 5.1a).

The figure belies this claim. Contrary to the authors’ assertions, an examination
of the plots shows that the Monocytes have a depth gradient with both methods.
While this may be due to challenges in interpreting the UMAP embeddings (Chari,
Banerjee, and Pachter, 2021), it could also be an indication that both methods fail
to depth normalize the data. Furthermore, a differential expression benchmark
of sctransform in (Hafemeister and Satĳa, 2019) shows that it produces almost
no false positives, whereas a similar benchmark in a later paper (Choudhary and
Satĳa, 2022) shows the opposite (Fig. 5.1b, c, d). Aside from questions about
depth normalization, it is also unclear whether sctransform is effective at variance
stabilization (Ahlmann-Eltze and Huber, 2021). These issues raise the question of
how effective sctransform, or any other currently used method, is at achieving both
depth normalization and variance stabilization.

Furthermore, an analysis of how normalization is used in practice, shows that
normalization methods are applied in a task-specific manner, resulting in numerous
normalizations sometimes being mixed together in a single analysis. For example,
sctransform is not, in practice, a single method for computing Pearson residuals from
raw counts, but rather a program that implements multiple normalization methods,
where each method is used for a different task in the standard Seurat workflow.
This highlights the importance of benchmarking the fundamental properties of
each normalization technique in a way that is motivated by, and cognizant of, the
downstream analysis tasks it may be applied to. In this paper we evaluate several
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Figure 5.1: Questions about the efficacy of the sctransform depth normalization. (a) A repro-
duction of Figure 6 from (Hafemeister and Satĳa, 2019) shows a UMAP generated from the 10x
Genomics “33k PBMCs from a Healthy Donor, v1 Chemistry” dataset, where the data has been
normalized with the log1 pCP10k transform. The figure on the right shows a UMAP generated from
the raw data normalized with sctransform. The authors state that “..correlations [between locations of
embedded cells and sequencing depth] are strikingly reduced for Pearson residuals [in comparison to
log-normalized data” but the difference for Monocytes (circled in red) does not look striking. (b) A
differential expression control experiment from (Hafemeister and Satĳa, 2019) showing sctransform
greatly reduces false positive genes in comparison to the log transform whereas (c) the opposite is
shown in a similar control experiment in (Choudhary and Satĳa, 2022). The figures are all licensed
under CC BY 4.0, and have been reproduced from the papers they were published in with only minor
modifications (cropping, the addition of arrows and circles, and addition of number in the plot shown
in (c)).
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commonly used normalization methods based on how they perform with respect to
three criteria that are crucial for common analysis methods: variance stabilization,
normalization, and monotonicity of the transformations.

5.2 Results
Evaluation criteria
In considering how to evaluate normalization methods, we focused on downstream
applications and their respective assumptions. Dimensionality reduction with PCA
is an initial step in many analyses that relies on equal gene variances. If variance is
not stabilized, genes with a high variance may have an outsized impact on the singular
values solely due to having a high mean (Nguyen and Holmes, 2019). Similarly,
without depth-normalization, the key step of identifying genes that are differentially
expressed between cell types, may yield false-positive genes simply due to certain
groups of cells being sampled more deeply than others (Robinson and Oshlack,
2010). An additional property of normalization techniques that is important for tasks
such as marker gene selection is monotonicity of the transformations, especially for
constructing heatmaps or similar visualizations.

To assess effectiveness of variance stabilization, we plotted the mean of each gene
vs. its variance across cells, and measured the coefficient of variation of the gene
variance (CV) after transformation as a scale-independent measure of the effective-
ness of variance stabilization. Depth normalization was assessed by plotting, for
each cell, the total raw cell counts vs. the total transformed cell counts. Since the
total abundance of a gene per cell may not be measured with respect to an absolute
scale, we computed the r2 correlation with raw cell depth as a proxy for the extent
to which raw cell counts were reflected in the transformed data. Finally, for each
cell, we computed the Spearman rank correlation between cells prior to, and af-
ter, transformation to measure deviations from a monotonic transformation. These
three metrics allow for quantifying the trends observed in the three plots and offer a
measure of the effectiveness of each normalization technique.

To verify that these metrics are reasonable for benchmarking normalization meth-
ods, we first examined cells from a NIH/3T3 mouse cell line dataset published in
(Svensson, 2020) and studied in (Ahlmann-Eltze and Huber, 2021). We found that
these metrics, which we computed for each normalization technique, were concor-
dant with the analysis performed in (Ahlmann-Eltze and Huber, 2021), and provided
useful summaries of the performance of different normalization techniques.
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Benchmarks of 526 datasets
In recognition of the fact that the patterns we observed in 10xv3_NIH_3T3 were
not necessarily representative of other datasets, we analyzed a further 525 datasets
of which 437 passed quality control. We evaluated eight normalization techniques;
in addition to sctransform, we selected seven other methods based on their use
in popular single-cell RNA-seq analysis packages, as well as a novel method we
decided to investigate after examining initial results (see Methods). The most
widely used approach for depth normalization and variance stabilization is depth
normalization of cell counts to ten thousand counts (CP10k), followed by variance
stabilization of the gene counts with the log(x+1) transform (denoted by log1p, with
the combined procedures denoted log1pCP10k). This is the default in the Seurat
and Scanpy packages. Seurat and Scanpy also recommend an additional scaling step
(scalelog1pCP10k) for some analyses. Scaling consists of two steps: centering gene
expression values by subtracting the mean expression of each gene, and equalizing
gene variances by dividing the counts for each gene by the standard deviation
(computed across cells). We also benchmarked a method that has been adapted for
single-cell RNA-seq from bulk RNA-seq, namely cell depth normalization to the
mean cell depth, followed by log1p (log1pPF). This “proportional fitting” approach,
our name for the method because the first step constitutes one step of iterative
proportional fitting (Deming and Stephan, 1940), is similar to log1pCP10k (Love,
Huber, and Anders, 2014), and is the method underlying the Monocle single-cell
analysis package (Cao et al., 2019). We also tested the square root transformation that
forms a part of the scprep package default transformation, as well as a log1pCPM,
which is a popular option in Seurat, and is similar to log1pCP10k but with a scaling
factor of one million rather than ten thousand. Finally, we included a benchmark of
PF for completeness.

Our benchmarks revealed high variability in the extent of variance stabilization for
any given method (Fig. 5.2a); to the extent that even though one method might
be better at stabilizing variance than another, on one dataset it may produce worse
results than the inferior method on another. For example, the sqrt transformation
results in a CV of 1.61 for GSM3738540 whereas the log1p transformation yields a
higher CV of 6.78 for GSM3396184. Some datasets are also particularly sensitive to
the method used. The sqrt transformation gives a CV of 9.45 for GSM3178783 and
46.53 for GSM3396177, whereas the log1p transformation gives consistent results
for these datasets with 5.77 GSM3178783 and 5.8 for GSM3396177; interestingly
there is even a slight reversal in behavior. This highlights the importance of large-
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scale benchmarking for evaluating normalization methods.

Figure 5.2: Benchmarking normalization techniques on 437 of 526 datasets passing filter. (a)-
(c) demonstrate metrics computed on all genes, a task which is computationally intractable to compute
on sctransform and scalelog1pCP10k due to their size. (d)-(f) demonstrate metrics computed on a
subset of genes as identified by sctransform’s default gene filtering. (Methods). (a) and (d) show
the coefficient of variation on the gene variances for each dataset. (b) and (e) show the Pearson r2
between the raw cell depth and the transformed cell depth. (c) and (f) show one minus the absolute
value of the mean Spearman r on the raw vs transformed cell. A bar is plotted to the mean of each
distribution (also marked with a red circle). The 10xv3_nih_3t3 dataset is marked with a blue circle.

The sctransform method subsets the genes analyzed (see Methods), so to compare
sctransform to other methods we redid the analysis of each method with respect to
the sctransform selected genes (Fig. 5.2d); we found the results to be qualitatively
consistent with the full analysis using all genes. In terms of depth normalization,
we found that even methods that claim to normalize for depth, e.g., sctransform,
do not succeed in completely removing depth effects and retain information about
depth in the normalized data (Fig. 5.2e). Popular normalization methods such as
log1pCP10k are similar in terms of removing the effects of depth on downstream
analysis (Fig. 5.2b, 2e). The sctransform normalized cells, for example, exhibit
similar cell-depth correlation (r2 = 0.37) as log1pPF cells (r2 = 0.43) on average,
with some sctransform normalized datasets exhibiting very high depth correlation.
Finally, while most transformations are monotonic, we find that sctransform scram-
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bles the rank order of genes in individual cells (Fig. 5.2c, f), a straightforward result
of the normalization procedure that can negatively influence downstream analy-
ses if not taken into consideration. Variance stabilization Our analysis of current
normalization methods shows that they exhibit a stark tradeoff between variance
stabilization and depth normalization. To understand the implications of each nor-
malization technique we analyzed data from (Angelidis et al., 2019), as studied in
(Ahlmann-Eltze and Huber, 2021).

Interestingly, there has been much focus on variance stabilization, perhaps because
variance stabilization has a long history dating back to (Bartlett, 1936). A rela-
tionship between expression levels of a gene and its variance can mask biological
variation and affect data analysis methods such as PCA as a result of technical ar-
tifacts (e.g., sampling). Highly expressed genes may dominate PCA components,
regardless of biologically meaningful variation. When analyzing angelidis_2019
we found that PF, like the raw counts, was not variance stabilized resulting in non-
uniform PC loadings corresponding to low entropy for genes (Fig. 5.2a), with PC
loadings increasing with increasing gene mean. sctransform had the highest entropy,
a finding that can be explained by the heuristic clipping procedure performed on the
gene variances (Choudhary, 2019).

To address this problem, approximations to variance stabilizing transforms, such as
log1p or sqrt are used, often in conjunction with a depth normalization step such as
PF, CP10k, and CPM. Variance stabilizing transforms like log1p and sqrt reduce the
CV of the genes from angelidis_2019 by a factor of 29.1 and 7.9, respectively (from
98.8 to 3.4 and 12.5). The addition of depth normalization step does not greatly
affect the CV for log1pPF (3.0). Therefore normalization techniques that include a
variance stabilization step will greatly reduce the effects that highly expressed, and
thus highly variable, genes have on PC components.

The log transformation is often used with a pseudocount, and the size of the pseu-
docount can be seen to reflect assumptions about the extent of overdispersion
(Ahlmann-Eltze and Huber, 2021; Booeshaghi and Pachter, 2021). For negative
binomial data, the overdispersion is the constant 𝛼 in a quadratic mean (𝜇) - vari-
ance (𝜎2) relationship of 𝜎2 = 𝜇 + 𝛼 𝜇2. Depth normalizations prior to logarithmic
transformation with a pseudocount of 1 therefore reflect assumptions about the
overdispersion as reflected in the size factor. As pointed out in (Ahlmann-Eltze and
Huber, 2021), a large size factor represents an assumption of high overdispersion.
For example, (Ahlmann-Eltze and Huber, 2021) show that scaling counts with a size
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factor of one million by computing CPM in a scRNAseq dataset with an average of
5,000 counts per cell, is equivalent to using a pseudo-count of 0.005. This amounts
to assuming an overdispersion of 𝛼 = 50. This calculation is based on a variance
stabilizing approximation derived by the Delta method that yields a pseudocount of
1/4𝛼; interestingly, there is some disagreement over the denominator of the pseudo-
count as 1/2𝛼 (Anscombe, 1948) is frequently preferred. In a simulation study (see
Methods), we found that in the range of relevant overdispersion parameters, 1/4𝛼
provides a slightly better variance stabilizing transform than 1/2𝛼.

Our results (Fig. 5.3) reflect the different assumptions about overdispersion under-
lying the use of log1pPF, log1pCP10k, or log1pCPM depth-normalization, however
they also show that a smaller CV is not necessarily indicative of better variance
stabilization. For example, the CPM assumption of overdispersion, that is at least
two orders of magnitude larger than present in biological datasets, results in overcor-
rection and the removal of biological variation (Ahlmann-Eltze and Huber, 2021)
and results in the smallest CV in angelidis_2019 of 1.7. The sqrt transformation did
not perform as well at stabilizing the variance as log1p, which is not surprising given
the overdispersion (relative to the Poisson distribution) of single-cell RNA-seq data.
As noted previously, many methods display a linear relationship between gene mean
and gene variance for cells with very low counts. This phenomenon is well known
and is a consequence of Theorem 1 of (Warton, 2018). The sctransform method is
an exception, because when the program computes the Pearson residuals, the stan-
dard deviation for each gene is artificially required to be at least nzmedian/5 where
nzmedian is the median number of counts for each gene computed over non-zero
cells (Choudhary, 2019).

The log1pPF method, which stabilizes the variance after depth normalization, per-
forms well in all metrics, a result which is consistent with the findings of (Ahlmann-
Eltze and Huber, 2021). Overall, while some methods achieve better variance
stabilization than others since they better match the overdispersion characteristics of
biological data (e.g., log1p vs. sqrt), even sqrt is effective at achieving an absolute
reduction in the coefficient of variation of variance, which explains its adequacy
in scprep. Similarly, while log1pCP10k is preferable to log1pCPM, the use of
log1pCPM does not preclude obtaining some meaningful results in analysis (Chen
et al., 2021). Indeed, all current variance stabilization procedures are heuristics
that ignore the fact that Poisson and negative binomial distributions may arise due
to biophysical stochasticity in bursty transcription and RNA degradation (Amrhein,
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Figure 5.3: Cell-type level metrics. Three metrics are computed for cells within the Type 2
pneumocytes from angelidis_2019 for all normalization methods. (a) The fraction entropy of the
PC1 loadings for all genes as a fraction of the max entropy. (b) The number of false-positive DE
genes. (c) The absolute value of the mean within-cell-type-pairwise Spearman r.

Harsha, and Fuchs, 2019; Jahnke and Huisinga, 2007). The development of “mech-
anistically justified normalization” is a pressing challenge for single-cell RNA-seq
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analysis. Implicit use of cell depth Current depth normalization procedures that are
applied alongside variance stabilization procedures implicitly assume that differ-
ences in cell-count depth is a technical artifact due to sampling differences between
cells, rather than the result of different numbers of RNA molecules in different cells.
While this assumption may be flawed, in the absence of effective data and proce-
dures for assessing variation in the amount of RNA between cells, normalization for
cell sequencing depth is essential. This is because standard statistical tests that are
employed in Seurat and Scanpy, such as the t-test and wilcoxon rank-sum, do not
explicitly model cell-depth as a technical covariate.

To investigate the effect that poor depth-normalization can have on analysis, we
selected two subsets of cells from Type 2 pneumocytes with high and low depth,
respectively (see Methods). An analysis of the number of differential expressed
genes detected after transformation with different methods shows that poor depth
normalization can lead to many false positives (Fig. 5.3b). Interestingly, the default
normalization used for differential expression analysis in Seurat and Scanpy (CP10k)
finds 1,490 false-positive DE genes, about seven times more than log1pPF (Love,
Huber, and Anders, 2014), which is used in (Cao et al., 2019), and has been recently
recommended again (Ahlmann-Eltze and Huber, 2021). In comparison, sctransform
finds 442 DE genes, about twice as many as log1pPF and about three times fewer
than log1pCP10k.

Depth normalization is also important for identifying clusters with biologically
meaningful gene-expression patterns. Standard clustering techniques first construct
a cell-cell distance matrix based on a distance metric. Next, a k-nearest neighbor
graph is constructed from the distance matrix with tools such as annoy (Bernhards-
son, 2018). Finally, graph-partition methods, e.g., Louvain (Blondel et al., 2008)
or Leiden (Traag, Waltman, and Van Eck, 2019), identify “communities” of cells in
this graph that exhibit similar expression patterns. In the absence of proper depth
normalization, cell-cell distances, computed with metrics like the l1 distance can be
correlated with cell depth. For Type 2 Pneumocytes in angelidis_2019, the cell-cell
distances were correlated with cell depth when normalized with sctransform (0.71)
and scalelog1pCP10k (0.54) but not with PFlog1pPF (0.06). Proper depth normal-
ization ensures that the k-nearest neighbor graph can be built with a distance metric
that is cell-depth independent and results in cell communities that exhibit similar
gene expression patterns.

The interpretation of PCA requires confidence that explained variation is biological
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rather than technical (Lun 2018) and in the absence of depth normalization, PCA
components can correlate strongly with cell depth. Normalization techniques that
do not include a final depth-normalization step, like sqrt, log1p, and log1pCP10k,
demonstrate a high correlation with PC1. Techniques that end with a depth nor-
malization step like PF and PFlog1pPF, and techniques that model cell depth as a
covariate, exhibit lower correlation with PC1 with the former exhibiting almost no
relation to PC1. In the absence of depth normalization, subsequent analyses that
rely on PCA, such as clustering or UMAP, may produce results that are affected by
technical artifacts, rather than reflecting biological structure (Fig. 5.1a).

Finding markers versus differential expression
Classic variance stabilizing transformations such as the logarithm or square root
functions are monotonic, a property that is rarely highlighted, but is of crucial
importance. For instance, monotonicity of the transformation applied to single-cell
RNA-seq counts is important for the task of finding marker genes.

The term “marker gene identification” is frequently used interchangeably with “dif-
ferential expression” as noted in (Dumitrascu et al., 2021), but the two tasks are not
the same. Differential expression analysis, which is the task of identifying genes
exhibiting significantly different expression between groups of cells yields what can
be considered a set of computational marker genes. However such genes may not
constitute useful experimental markers, i.e., genes that mark cell types in a way
that is experimentally actionable. Experimental marker genes for a group of cells
are not only statistically differential with respect to other cells, but also specifically
expressed (i.e., not present in high abundance in other cells). Thus, while experi-
mental markers will be included in computational markers, not all computational
markers are experimental markers.

One popular approach for identifying experimental marker genes is manual inspec-
tion of heatmaps, because in principle these can allow for identifying genes that not
only distinguish among cell types, but that are also exceptionally highly expressed
within cell types (Bonnycastle et al., 2019). The accurate depiction of gene expres-
sion in heatmaps is challenging due to the wide range of gene expression in typical
experiments. To address this problem, programs such as Seurat and Scanpy scale
the gene expression values across cells, by normalizing them to have mean zero and
variance 1, and then clip extreme values for each gene. These values are visualized
using a continuous color scale.
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However, the use of heatmaps to identify marker genes requires some care. First,
the additional scaling step introduces a non-monotonic transformation on cells that
can scramble the relative expression of two marker genes within a cell type, possibly
even reversing the ranking between them. For example in the angelidis_2019 dataset,
Syce2 is a DE gene for Red Blood Cells that switches ranking within the Eosinophils
cell type, from rank 76 to rank 41 out of 96 top DE genes, after the heatmap scaling
procedure (Methods). Secondly, by only selecting genes that are highly expressed
between cell types, one may successfully identify computational markers that may
not be appropriate experimental markers due to the low expression of those markers
within that cell type relative to other genes.

Use of monotonic transformations for normalizations results in cells within a cell
type exhibiting a pairwise Spearman r correlation of 1 whereas for transformations
such as sctransform the Spearman correlation can be much lower (Fig. 5.3c).
By avoiding an initial scrambling of genes within cells, further heatmap scaling
procedures can then be applied to create two heatmaps that more faithfully represent
gene expression ranking within and across cells.

Scalable normalization
Compute resource constraints imposes practical limits on matrix operations. One
issue that arises in the context of normalization is that some methods transform
sparse matrices into dense matrices that can surpass standard RAM availability.
For example, we found that the scalelog1pCP10k matrix ERX2756720 was 219
times larger than the log1p sparse matrix. Memory and speed requirements can
inhibit scalable computation on increasingly large scRNA-seq datasets and drive
higher cloud-computing costs (Supplementary Table 1 of (Melsted et al., 2021)).
In contrast, sparse matrices have been used for high-performance computing for
a long time (Orchard-Eays, 1956; Markowitz, 1957), and can drastically reduce
the memory overhead required to perform memory-intensive computations. While
recently developed “sketching” procedures (Hao et al., 2022) that subsample matrix
operations for scalable computation may provide workarounds for dense matrices,
we believe that sparsity will remain an important consideration for normalization
transformations for the foreseeable future.

The PFlog1pPF heuristic
The Seurat and Scanpy workflows offer users the ability to choose different matrix
types for different analysis tasks. This is a good design decision, in principle,
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because different tasks make different assumptions on the count matrix. However,
without clear guidelines or appropriate defaults, matrix managers like the Seurat
and AnnData objects can confuse users and make analysis error-prone. A single
normalization technique resulting in a single (sparse) matrix can make data sharing
and reproducibility more straightforward.

While depth normalization is achieved perfectly with proportional fitting (PF), the
addition of a log1p transform in log1pPF does reintroduce some depth heterogeneity
(Fig. 5.2b). The importance of depth normalization therefore motivated us to ex-
plore adding an additional proportional fitting step to log1pPF. We hypothesized that
an additional round of proportional fitting might achieve depth equalization with-
out drastically affecting variance stabilization. We tested this method (PFlog1pPF)
and found that to be the case on 10xv3_nih_3T3, angelidis_2019, and the other
benchmark datasets.

We observed that PFlog1pPF can be seen to only slightly decrease variance stabi-
lization (Fig. 5.2a) while ensuring depth normalization and monotonicity. With the
addition of a PF step, gene variance CV suffers only slightly making PFlog1pPF
comparable to sqrt with the additional benefit of full depth normalization of PF
resulting in almost no false-positive differentially expressed genes (Fig. 5.3b).
PFlog1pPF also recapitulates cell-type marker gene expression for angelidis_2019
and is consistent with other normalization techniques tested in (Ahlmann-Eltze and
Huber, 2021). Additionally, PCA components computed on PFlog1pPF have sim-
ilar loadings to log1pPF (Fig 5.3a) and within-celltype pairwise gene expression
rankings are better preserved than sctransform and scalelog1pCP10k (Fig. 5.3c)
both of which exhibit high concordance.

5.3 Discussion
Count normalization is a crucial first step in all scRNAseq analysis that, in principle,
comprises a single step in a standard workflow. However in practice normalization
is a collection of techniques, data representations, analysis types, and visualizations
that interact with each other in non-obvious and frequently undocumented ways.
In Seurat and Scanpy, the analysis software used for the majority of scRNAseq
analysis, some normalization implementations can also limit users by requiring
large amounts of memory. Thus, while users frequently think of normalization as a
single data transformation step in analyses, it is often not; the software engineering
choices made by developers of the tools used can affect analyses in unpredictable,
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and sometimes unintended ways.

Despite the complexity of normalization in practice, much work on scRNAseq
has focused on statistical details that, while important, are not necessarily the pri-
mary determinants of results. For example, the debate over whether gene-specific
over-dispersion parameters should be used when computing Pearson residuals (Hafe-
meister and Satĳa, 2019; Lause, Berens, and Kobak, 2021; Choudhary and Satĳa,
2022) ignores the fact that Pearson residuals are not the result of a monotonic
transformation, and they create dense matrices that can lead to significant analysis
limitations (Borella et al., 2022). These problems have significant implications for
common tasks such as finding marker genes, as discussed above. Newer methods
that explicitly couple statistical methods with software engineering considerations
are needed; we examined several recent publications proposing new ideas but re-
stricted the paper to widely used methods common in existing workflows (Brown
et al., 2021; Breda, Zavolan, and Nimwegen, 2021; Borella et al., 2022; Bacher
et al., 2017). A detailed analysis and review of these methods is an important next
step. Furthermore, normalization should ideally include modeling of transcriptional
dynamics so as to be able to evaluate the contribution of technical noise to count
data (Gorin and Pachter, 2023).

We have argued that a single, sparse, variance-stabilized and depth-normalized
matrix on which all analysis and visualizations are performed can simplify current
workflows. The PFlog1PF heuristic we have proposed is a monotonic transform on
the raw counts that results in a fully depth normalized matrix and offers variance
stability similar to sqrt. Importantly, we have shown that for downstream analysis,
PFlog1pPF effectively stabilizes variance for PCA, produces low false-positive DE
genes, and has the same within cell-type Spearman correlation as unnormalized
matrices. Having said that, we believe it is an interesting challenge to develop more
principled approaches that achieve depth normalization and variance stabilization
while preserving sparsity and respecting monotonicity

Regardless of the normalization transformation that is applied, our work shows that
assessment of data quality and normalization effectiveness is crucial in practice.
Measures such as the overdispersion, coefficient of variation of the transformed-
gene variances, and raw to transformed cell-depth Pearson correlation ought to be
collected as part of standard quality control of experiments. It’s also crucial that
practitioners understand the assumptions implicit in the normalizations applied, and
the implications for interpretation of results, such as whether variation is technical
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or biological.

5.4 Methods
Preprocessing
Raw matrices were filtered by removing cells beneath a selected knee-plot threshold.
The knee plot and threshold used for each dataset are reported in the dataset folders.
Datasets for which the average count per cell was less than 818.46 (the average count
per cell in angelidis_2019) were not used in Fig. 5.1.

Collecting metadata
Dataset metadata was collected with the ffq program version 0.2.1 available at
https://github.com/pachterlab/ffq by running ‘ffq -l 2 -o DATASETID_metadata.json
DATASETID‘. 18 out of the 526 datasets processed did not have metadata associated
with their dataset ID.

Normalizing matrices
We applied seven normalization methods to the cell-filtered matrix: PF, sqrt, log1p,
log1pCP10k, log1pPF, log1pCPM, PFlog1pPF. The normalization transformations
were computed by running the ‘norm_sparse.sh‘ script.

We then ran ‘norm_sctransform.sh‘ on the original cell-filtered matrix to generate
the sctransform matrix. The sctransform function was called with:

var_features_n = number_of_genes_in_dataset, vst_flavor = "v2",

and default parameters. In order to perform a uniform analysis, we filtered the origi-
nal cell-filtered matrix to the set of genes returned by sctransform- since sctransform
has a built-in gene filtering step.

We then ran ‘norm_sparse.sh‘ to create the seven normalized matrices mentioned
above, and finally ran ‘norm_cp10k_log_scale.sh‘ to create the scalelog1pCP10k
matrix.

Running sctransform
We performed all of our benchmarks of sctransform with v2. The sctransform v1
regression model has been shown to be overspecified (Lause, Berens, and Kobak
2021) and has been superseded by v2. We opted to benchmark sctransform v2 over
analytical Pearson residuals as the latter’s validation consisted of comparing two
dimensional t-SNE embeddings computed on the principle components, to compare
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and contrast methods on simulated and ground truth data.

In order to run sctransform v2, a one-line modification was made to pysctrans-
form.py (in the develop branch), namely casting ‘params[“order”]‘ as a numpy array
with ‘npy.asarray(params["order"])‘ in line 333. This modification fixed an issue
described in https://github.com/saketkc/pySCTransform/issues/4#issue-912930103
which was causing the pip-installed version of pySCTransform not to work. An addi-
tional modification to the pySCTransform code allowed for the corrected counts ma-
trix to be returned- line 759 ‘return (vst_out["residuals"], vst_out["corrected_counts"])‘.

Computing dataset metrics
For each normalization method we computed three metrics: the coefficient of vari-
ation on the transformed-gene variances (CV), the Pearson r2 correlation between
the transformed-cell counts and the raw cell counts, and the average Spearman
r between the transformed-cell counts and the raw cell counts. The CV was
computed by calculating the variance for each gene, across all cells, and then
calculating the variance and mean across all genes, and dividing the two. The
Pearson r2 was computed by summing the transformed cell counts and running
’sklearn.linear_model.LinearRegression().fit()’ followed by score() on the trans-
formed cell counts and the raw cell counts. The average Spearman r was computed
by first performing paired stats.spearmanr on all transformed-raw cell pairs and then
taking the mean.

Computing cell-type metrics
Cell-type metrics were computed on cells from the Type 2 pneumocytes in the ange-
lidis_2019 dataset. For each normalization method, ‘sklearn.decomposition.PCA()‘
was run with n_components=1 and svd_solver=”full” and the absolute value of the
loadings were l1-normalized. The entropy was computed with ‘scipy.stats.entropy()‘
and the max entropy was computed with ‘np.log(ngenes)‘. Additionally, the Pearson
r2 was computed on PC1, derived from PCA on the normalized matrix, and raw-cell
depth.

To compute the number of false-positive DE gene genes, we performed differential
expression on two groups of cells: 500 cells with the highest raw-cell count and
500 cells with the lowest raw-cell count. Then, for each normalization method, we
performed differential expression as previously described (Booeshaghi et al. 2021).
The number of differentially expressed genes with a corrected p-value less than 0.01
were recorded.
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To compute the average pairwise-Spearman gene-rank correlation, we first found the
smallest non-zero difference in counts between entries in each normalization matrix.
We added a random number between zero and one-fourth of this minimum to each
gene vector to break ties. After adjusting the matrix counts, pairwise-Spearman
correlations were calculated on all cells and the average was computed.

To compute the correlation between pairwise-difference in cell depth and pairwise
l1 distance, for each matrix we subsampled to 1,000 cells and then computed all
pairwise differences in cell depth by running ‘sklearn.metrics.pairwise_distances‘
with metric=”l1” on the cell sums. Then we computed the pairwise l1 distances in
the same manner but on with the entire gene vectors. Lastly,
‘sklearn.linear_model.LinearRegression.fit()‘ and ‘score()‘ were used to compute
the Pearson correlation.

Computing matrix metrics
The following matrix-level metrics were computed for each matrix, on both all genes
and those subset by sctransform: the number of cells (ncells), the number of genes
(ngenes), the number of non-zero entries in the matrix (nvals), the fraction of non-
zero entries (density), the average depth per cell (avg_per_cell), the average depth
per gene (avg_per_gene), the minimum depth per cell (min_cell), the maximum
depth per cell (max_cell), the total number of counts in the matrix (total_count),
the empirical overdispersion (overdispersion). These metrics were computed with
‘metrics_matrix.sh‘.

Creating multi-panel normalization figure
For each dataset and normalization, the following three plots were made: 1. a
scatterplot of the transformed gene variance vs raw gene mean, 2. a scatterplot of
the transformed cell depth vs raw cell depth, and 3. a histogram of the distribution of
transformed-to-raw cell Spearman rank correlations. To make visualization easier,
a min-max procedure was performed to scale the x and y axes of plot 2 where
the min cell depth was subtracted from each cell and the result was divided by
the max cell depth. These figures were made on all genes, for normalizations
that were computationally tractable, and on the gene subset by sctransform for all
normalizations.

Plotting styles for the gene mean-variance relationship In order to consistently
visualize variance stabilization of normalization procedures against each other, we
plotted all transformations on a log-log axis with the x and y-axis limits set equal.
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We also plotted the identity line y equals x to illustrate the asymptotic behavior of
the mean-variance relationship for genes with small mean.

Pseudocount simulation
We simulated negative binomial count data for 8,000 genes, g1, g2, . . . , g8000,
as follows: we first drew the mean expression for each gene from an exponential
distribution with mean 3, obtaining 𝜇1, 𝜇2, . . . , 𝜇8000. We considered the overdis-
persion parameters 𝛾 = 0.3, 0.5, 1, 1.5, 2, 3, 4, 5. This spans a larger range than
is evident in typical single-cell RNA-seq experiments, but is informative. For each
gene we generated gene counts for 10,000 cells from a negative binomial distribu-
tion with mean 𝜇i and overdispersion 𝛾k to form a 10,000 cells x 8,000 genes count
matrix. We then filtered this data to remove genes with average count less than 4.
Two hundred simulations were performed for each parameter setting.

Generating heatmaps
The top 100 expressed genes were found for each cell type in angelidis_2019. Then
a cell type x gene matrix was made by averaging the expression of all cells within a
cell type on the set of top 100 genes for that cell type. Lastly, the genes within each
cell type were ranked from lowest to highest expressed using ‘scipy.stats.rankdata()‘
and the matrix of ranks was plotted on a heatmap.

To create the cell and gene-scaled cell x gene heatmaps, the top 96 DE genes for all
cell types were selected and the cell x gene matrix on those 96 genes was scaled to
unit variance and zero mean using ‘sklearn.preprocessing.scale()‘ across the cells
to create the gene-scaled heatmap, and across the genes to create the cell-scaled
heatmap. To find genes that switch rank, we first rank the raw gene expression
within a cell type for the top marker genes, and then compare gene ranks to scaled
(mean zero and variance one) gene expression ranks.

Data and code availability
All data and code to reproduce the figures and results in the paper are available at
https://github.com/pachterlab/BHGP_2022.
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C h a p t e r 6

ALGORITHMS FOR A COMMONS CELL ATLAS

6.1 Introduction
Cell atlas projects like the Human Cell Atlas (HCA) aim to produce “reference”
maps for all cells in the human body (Regev et al., 2017). Specifically, the stated
goal of the HCA is "To create [...] reference maps of all human cells [...] as a basis
for both understanding human health and diagnosing, monitoring, and treating
disease" (Lindeboom, Regev, and Teichmann, 2021). This aim, shared by various
atlas projects like Azimuth (Hao et al., 2021) and Tabula Sapiens (Consortium* et
al., 2022), entails generating a catalogue of cell types, states, locations, transitions,
and lineages in all cells in the human body using a variety of data sources.

However, these current atlas projects, have multiple drawbacks that limit the scale
of data preprocessing and the generation of new reference maps. First, quantifica-
tions are often limited to the gene-level and do not distinguish between spliced and
unspliced forms (Rozenblatt-Rosen et al., 2017). Second, compatible tools for rean-
alyzing processed data are lacking. Third, the data is not necessarily preprocessed
uniformly, introducing computational variability (Delorey et al., 2021). Fourth, the
infrastructure of current atlases is static, limiting the ease with which new cell-
type, markers and reference transcriptomes can be used to update quantifications.
Finally, the task of annotating cell-types from marker gene lists is a manual and
time-intensive process (Clarke et al., 2021). Addressing these challenges will be
essential in facilitating data reprocessing and creating reference maps in light of the
increasing volume of single-cell data being generated.

In order to overcome these drawbacks in current atlas design, we developed a set
of algorithms and tools that enable the creation of what we called the Commons
Cell Atlas (CCA) infrastructure. This infrastructure allows uniform single cell data
preprocessing, and generates atlases that can easily incorporate new data, as well as
updated information such as marker genes or cell-type definitions.

6.2 Results
To facilitate the generation of single cell atlases, we developed a collection of tools,
’mx’ and ’ec’, that operate on cell by feature (gene/isoform/protein/peak) matrices
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and marker equivalence class files, respectively. These tools solve key algorithmic
and infrastructure problems in scRNA-seq preprocessing, namely barcode filtering,
automated cell type assignment, marker gene selection, and iterative data reprocess-
ing (You et al., 2021).

The first step in single-cell data analysis is filtering out low quality cells (You et
al., 2021). This is usually achieved by using a knee plot, where the user has to
visually find the inflection point that separates good from bad cells (Macosko et al.,
2015). However, this method is manual and subjective, and therefore unsuitable for
automated and reproducible data analysis. We solved this problem by implementing
’mx filter’, which runs a Gaussian Mixture Model (Reynolds et al., 2009) on the
1D histogram of the UMI counts. The tool uses the fact that inflection points in
a knee plot correspond to points between peaks in the 1D histogram (Fig. 6.1).
Therefore, by finding the points of maximum entropy (i.e. maximum uncertainty
for the GMM model (Benavent, Ruiz, and Sáez, 2009)), ’mx assign’ can identify the
corresponding knee and use it to filter out cells in an automated and efficient way.
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Figure 6.1: Filtering low quality cells with ’mx filter’. Finding the point of maximum entropy
between two Gaussians is equivalent to find the knee in a knee plot.

Next, we aimed to address cell-type annotation, a time-consuming task that relies
on manual effort to sift through literature and lists of differentially expressed genes
(Hay et al., 2018). This procedure also suffers from the double-dipping problem,
where statistically significant genes are found by testing on groups of cells that were
defined based on the differential expression of that same set of genes. Other tools,
such as CellAssign (Zhang et al., 2019), address this issue by using a predefined set
of marker genes for assignment. However, they still suffer from long runtimes and
high memory usage (Zhang et al., 2019). We developed ’mx assign’, which takes in
a single-cell matrix and a marker gene file and performs cell-type assignment using
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a modified Gaussian Mixture Model (GMM). The ’mx assign’ algorithm operates on
the submatrix of marker genes, like standard algorithms such as CellAssign, but is
different in two ways. First, instead of joining multiple batches together to perform
assignment (Zhang et al., 2019), we perform assignments on a per matrix basis.
Second, assignments are not performed on gene expression, but on the rank of the
gene across cells. Because the Euclidean distance between ranked data is a constant
factor multiple of the Spearman correlation, our method effectively assigns cells by
Spearman correlation rather than Euclidean distance (Hotelling and Pabst, 1936).

We benchmarked ’mx assign’ against CellAssign on simulated data generated using
the Splatter package (Zappia, Phipson, and Oshlack, 2017). We first assessed the
accuracy of CellAssign and ’mx assign’ on a varying number of marker genes across
different number of cell types. We found that ’mx assign’ accurately assigns cells to
celltypes with as few as three marker genes per celltype while CellAssign performs
less accurately on fewer genes (Fig. 6.2A). Next, we tested the robustness of each
algorithm to the mis-specification of marker genes. We simulated the selection
of a bad marker gene by setting its counts to 0 for all cells in the sample. We
observed that CellAssign loses the ability to correctly assign the cell-type after the
misidentification of 10 marker genes, while ’mx assign’ remains highly accurate
even with a single correct marker and 14 incorrect ones (Fig. 6.2B). Finally, we
benchmarked the runtime of each algorithm as a function of the number of cells to
be assigned. ’mx assign’ was 350 times faster than Cellassign at assigning 8,000
cells, demonstrating the efficiency of our algorithm (Fig. 6.2C).

A B C

Figure 6.2: Benchmarking ’mx assign’. (A) ’mx assign’ is more accurate than CellAssign with
fewer marker genes. (B) Results from ’mx assign’ remain robust in the presence of misidentified
marker genes. (C) ’mx assign’ runs 350 times faster than CellAssign.

Our suite of tools include other key steps in scRNA-seq processing, such as nor-
malization (’mx norm’) and quality control (’mx inspect’), as well as other more
general matrix manipulation procedures whose utility extends beyond single cell
matrices. With all these tools in hand, we set to design a workflow and associated
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infrastructure for the reproducible generation of single cell atlas, which we named
the Commons Cell Atlas (CCA). The workflow, illustrated in Fig. 6.3, consists on a
series of ’mx’ and ’ec’ commands that can efficiently and modularly process count
matrices. The final output of the workflow; the filtered, normalized and assigned
matrix, constitutes the unit of the Commons Cell Atlas, which can be constantly
modified by the automated and continuous running of the tools. The infrastructure
is hosted on Github, making any Commons Cell Atlas easily accessible, as well as
highly collaborative. We envision the creation of Commons Cell Atlas for many
organisms, as well as for many purposes, each of which will grow and evolve as we
learn more about the system of study.
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Figure 6.3: The Commons Cell Atlas infrastructure. The workflow, composed of ’mx’ and ’ec’
commands, can process raw single cell data in an efficient and reproducible manner. All elements in
the figure are updatable and dynamic.

6.3 Discussion
The "single-cell atlas" has, over the past decade, gained a specific meaning within
the field of genomics (Quake, 2022). It is widely understood that a single-cell atlas
constitutes a collection of single-cell genomics datasets, along with defined clusters
of cells that are labeled as cell types according to marker genes. We posit that a
single-cell atlas includes the tools used for building, querying and analyzing the
constituent data. With the CCA methods framework, we have developed several
of the key tools for single-cell atlases. Our tools, such as ‘mx assign‘, have been
developed according to design criteria that facilitate scaling to large numbers of
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samples, and regenerating / updating of atlases. In this way, the tools we have
developed make a Commons Cell Atlas a "living" atlas, where data can easily be
added, annotations and metadata improved, and cell type annotations regenerated
with the addition of new information.

The tools we have developed are all transparent, facilitate reproducible research,
are well-documented making them usable, and have been evaluated in rigorous
benchmarking. We expect that this standard will be of value in other atlas projects,
and the modular nature of the CCA infrastructure makes possible easy adoption of
our tools for other projects. The CCA methods are also all licensed under the BSD-2
license making them freely usable both in academia and industry.

6.4 Methods
Data simulation
We simulated scRNA-seq data using the R package Splatter (Zappia, Phipson, and
Oshlack, 2017) with default parameters, 10,000 genes, a DE probability of 0.2 and
an even probability for each of the simulated groups. We performed simulations
varying the number of cells (1000, 2000, 4000 and 8000) and the number of groups
(2, 4, 6, and 8).

Assignment benchmarking
We benchmarked CellAssign and mx assign using the simulated data described
above. We followed the same approach as (Zhang et al., 2019) to select marker
genes. Both CellAssign and ’mx assign’ were run with default parameters for all
the simulated datasets varying the number of marker genes used for the assignment.
We calculated the accuracy by comparing the assignment labels of each method to
the group ground truth from the Splatter output. For the robustness benchmark,
we chose one group and set the expression of each of its markers to 0 one by one
in random order, and we measured the accuracy of the assignment as above. For
the runtime benchmark, we ran mx assign and CellAssign on the simulated dataset
containing 8 groups and 1,000, 2,000, 4,000 or 8,000 cells using 15 markers per
group. The runtime was calculated using the results for 3 independent runs for each
condition.

Code availability
The code, as well as the complete documentation for each tool can be found in the
following repositories:
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’mx’: https://github.com/pachterlab/mx

’ec’: https://github.com/pachterlab/ec
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C h a p t e r 7

A HUMAN COMMONS CELL ATLAS REVEALS CELL TYPE
SPECIFICITY FOR OAS1 ISOFORMS

7.1 Introduction
The innate immune system plays a crucial role in defending the body against viruses
(Takeuchi and Akira, 2009; Koyama et al., 2008; Carty, Guy, and Bowie, 2021). One
of the key components of this system is Oligoadenylate synthetase 1 (OAS1), a pro-
tein that gets activated during viral infection through its binding to double-stranded
RNA (Melchjorsen et al., 2009). Activated OAS1 produces 2’,5’-oligoadenylates,
promoting the activity of RNase L and triggering the degradation of cellular and
viral RNAs to halt viral replication (Hovanessian and Justesen, 2007). Importantly,
the last exon of the human OAS1 gene undergoes alternative splicing, leading to
the production of isoforms with unique C-terminal sequences (Di, Elbahesh, and
Brinton, 2020). Because of their distinct antiviral activities (Soveg et al., 2021), the
differential expression of OAS1 isoforms correlates with susceptibility to certain
viruses (Li et al., 2017). For example, the expression of OAS1-p46 has been shown
to provide protection against viral infections such as West Nile virus (Lim et al.,
2009), Dengue virus (Lin et al., 2009), Hepatitis C virus (El Awady et al., 2011),
and most recently, SARS-CoV-2 (Zhou et al., 2021). Given the clinical relevance,
several studies have investigated the regulation of the expression of OAS1 isoforms,
with a particular focus on the impact of various SNPS on the relative isoform abun-
dance (Li et al., 2017). However, no study has explored whether this regulation
is tissue or cell-type specific. This question is significant: an OAS1 isoform can
only protect against a virus if it is expressed in the cell-type the virus infects. The
tropism of the virus could therefore render a protective OAS1’s SNP useless, even
if the protective isoform is overall overexpressed across the body.

A single cell atlas is the ideal tool to study cell-type specific OAS1 isoform regu-
lation. There are a number of available cell atlases that together contain data from
most human organs, such as the Human Cell Atlas (Rozenblatt-Rosen et al., 2017),
the adult human cell atlas (He et al., 2020), Tabula Sapiens (Consortium* et al.,
2022), the Human Cell Landscape (Han et al., 2020), Descartes (Cao et al., 2020),
and Azimuth (Hao et al., 2021). However, our attempts to use these atlases for
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our research question uncovered three important limitations. First, current atlases
exclusively provide gene-level expression data, and lack information on isoforms.
This deficiency is not minor, as evidenced by the growing body of literature sup-
porting the critical role of isoform expression in major biological processes (Wang
et al., 2008; Chaponnier and Gabbiani, 2004; Warren et al., 2003), as well as in the
identification and definition of cell-types (Booeshaghi et al., 2021). Second, current
cell atlas projects depend on assay-specific preprocessing tools that can introduce
computationally-induced batch effects that can be challenging to identify and cor-
rect. Finally, cell atlas are static objects that cannot be easily updated or re-processed
to facilitate interpretation of data according to the continuous stream of new find-
ings emerging from single cell studies. To address these limitations and study the
cell-type specificity of OAS1 isoforms in humans, we created a Human Commons
Cell Atlas using the Commons Cell Atlas (CCA) infrastructure (See Chapter 6).

7.2 Results
Building the Human Commons Cell Atlas

A B

Figure 7.1: The Human Commons Cell Atlas. (A) 2D representation of the atlas. Cells were
downsampled to match the number of coordinates of the Vitruvian man maintaining the original
proportions by tissue. (B) Heatmap displaying the z-score of the average rank of select tissue marker
genes calculated across tissues

The Human CCA comprises over 2.9 million cells from 525 publicly available
scRNA-seq datasets across 27 tissues (Fig. 7.1A). These datasets were compiled
from publicly available single-cell RNA-seq datasets deposited across GEO, SRA,
ENA and DDBJ (Barrett et al., 2010; Leinonen, Sugawara, et al., 2010; Leinonen,
Akhtar, et al., 2010; Ogasawara et al., 2020). This collection of data consisted of
147 billion sequencing reads. We chose to start with raw FASTQs, instead of gene
count matrices, which is crucial for i) ensuring a uniform read alignment strategy
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and barcode error correction, and ii) enabling isoform quantification, which is lost
when counts are aggregated at the gene level. Data and metadata were downloaded
and organized by “observation”. This term maps to the GEO sample accession
(GSM), and refers to a group of FASTQ files coming from a single sample and
experiment.

Atlas building requires uniform processing to minimize computational variability.
To that end, we leveraged the recently developed kallisto | bustools (’kb-python’)
program (Melsted et al., 2019) to generate all 525 gene count matrices from raw
sequencing data. The Human Commons Cell atlas was built in about two weeks
(305 hours), with less than 8GB of memory usage. Reads were pseudoaligned to
the human transcriptome, cell barcodes were corrected within hamming-1 distance
of a barcode “onlist”, and naÏve UMI collapsing was performed to generate gene
counts (see Methods).

Gene-level Human CCA
In order to study OAS1 expression, we first sought to assess the suitability and
robustness of the Human CCA for computationally identifying tissue-level marker
genes (Fig. 7.1B. We first performed differential expression between the 27 tissues
on the rank of all genes and identified tissue-level markers from the list of DE genes.
We identified genes that are highly and specifically expressed in tissues, with most
of them representing bona fide markers for each tissue. The list of genes include the
LPL gene (encoding Lipoprotein Lipase) in adipose tissue (Zechner et al., 2000),
the RLBP1 gene (encoding Retinaldehyde Binding Protein 1) in eye (Morimura,
Berson, and Dryja, 1999), and the SFPTC gene (encoding pulmonary-associated
surfactant protein C) in lung (Tredano et al., 2004) (Fig 7.1B). These findings serve
as a positive control on the atlas’s ability to join tissue-level groupings and prior
known marker genes.

We then sought to identify if the OAS1 gene exhibits tissue-level specificity. As
expected given its crucial function, OAS1 was detected in most tissues, without
significant enrichment in any particular one (Fig. 7.2A). Notably, OAS1 was up-
regulated in lung samples from COVID-19 infected individuals, which is consistent
with OAS1 being a type I interferon (IFN)-induced gene (Melchjorsen et al., 2009)
(Fig 7.2B).
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Figure 7.2: Cell-type specificity of OAS1 isoforms. (A) Average normalized OAS1 gene expression
by dataset. Results for lung, the tissue with highest expression, are highlighted in blue. (B)
Normalized OAS1 expression in lung datasets by health status of the individual. (C) Diagram of the
4 main OAS1 isoforms we found in our data. (D) Relative OAS1 isoform expression in all tissues
except testis, and testis. OAS1-p44b is highly and specifically expressed in testis. (E) Validation of
testis cell-type assignments. The clusters indicate that cells from the same cell-type are frequently
neighbors in the K-Nearest Neighbor Graph. (F) OAS1-p44b is the main OAS1 isoform in germ
cells undergoing spermatogenesis.

Isoform-level Human CCA
The expression of isoforms within genes can vary greatly, even when the overall
gene expression remains unchanged (Booeshaghi et al., 2021). This information
is lost in currently published atlases, which fail to quantify transcript isoforms.
We hypothesized that OAS1 isoforms exhibited tissue-level specificity. To test this
hypothesis, we rebuilt our atlas at the isoform level leveraging transcript compat-
ibility counts (See Methods) (Ntranos et al., 2019). However, since most of the
publicly available single-cell data derives from 3’ technologies, our quantification
was limited to isoforms with distinct 3’ ends.

OAS1 isoform cell-type specificity
We leveraged the unique 3’UTR of OAS1 isoforms to study their differential ex-
pression. We found that, out of the 11 OAS1 isoforms annotated in the human
transcriptome, only 4 of them were significantly expressed across the atlas: p46,
p42, p48 and p44-b (Fig. 7.2C). We failed at detecting cell-type specificity of the
protective isoform p46 (Zhou et al., 2021), which exhibited broad expression across
all tissues and was among the most highly expressed isoforms alongside p42 (Fig.
7.2D). The least expressed isoform, p44-b, was responsible for only around 10% of
the total OAS1 expression. This is in line with studies consistently showing that
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amplifying the p44b isoform by qPCR is difficult due to its very low or undetectable
expression level (Noguchi et al., 2013; Iida et al., 2021). Interestingly, we found
that this trend was reversed in testis, with p44b accounting for almost 60% of total
OAS1 expression and being the predominant isoform (Fig. 7.2D).

To investigate if OAS1-p44b expression was cell-type specific, we assigned cell-
types using ‘mx assign‘. We validated the output of ‘mx assign‘ by calculating, for
each cell, the percentage of cells belonging to the same cell-type within their 20-
nearest neighbors (Zhang, 2016). Cells from the same cell-type clustered together,
validating our assignment results (Fig. 7.2E). We observed that the high OAS1-
p44b expression was specific to germ cells undergoing spermatogenesis, where
p44b represented over 80% of total OAS1 expression (Fig. 7.2F). To discard any
possible artifacts caused by pseudoalignment, we visualized the alignments of one
of the testis samples (GSM3302525) and observed high density of reads mapping
to OAS1’s exon 8, which is unique to the isoform p44b. Moreover, this result was
not sample or paper-dependent, with Round Spermatids across all testis samples
expressing high levels of OAS1-p44b.

Screen of cell-type specific isoform switching
Given the ability of the human CCA to quantify isoforms with distinct 3’ UTRs, we
decided to screen for cell-type specific isoform switching within testis (Fig. 7.3).
We found genes with differential isoform usage in all cell-types except for T-cells.
Some of the hits, such as IFT27 in Spermatocytes, have been shown to have essential
roles within the testis (Zhang et al., 2017). Our results suggest that some of these
roles may be carried out by specific isoforms, and that isoform switching may have
be an important regulatory mechanism in a number biological processes.

7.3 Discussion
The question of how to organize a single-cell atlas is complex, and there is little
agreement on even the most basic questions, such as what constitutes a “cell-type”.
In addition to conceptual problems, engineering challenges abound. Single-cell ge-
nomics datasets are growing in both number and size, and it is non-trivial to engineer
atlases so that they can be updated when new datasets or biology are discovered. As
we have demonstrated, the Commons Cell Atlas concept offers a solution to many
of these problems by virtue of reframing single-cell atlases as a dynamic collection
of data and, crucially, tools for processing, querying and interpreting the data. Our
isoform analysis was possible thanks to this design principle; in order to obtain iso-
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Figure 7.3: Quantifying isoforms with distinct 3’ UTRs. Examples of cell-type specific isoform
switches in testis.

form quantifications we needed to reprocess the data several times. Other questions
may demand alternative atlas processing that, with the Commons Cell Atlas archi-
tecture, should be tractable to implement. Most importantly, the Commons Cell
Atlas principle dictates that there is no definitive Commons Cell Atlas, but rather
numerous Commons Cell Atlases that are customized and specific to the questions
being explored.

One of the main aims of cell atlases is to provide a comprehensive characterization
and classification of cells (Regev et al., 2017), which relies heavily on identifying
their cell-type. The cell-type assignments within the Commons Cell Atlas can be
constantly updated, thereby enabling continual refinement of the derived results as
new information emerges. To show that this is a feasible strategy, we obtained
all marker genes from single cell publications whose data was not used to build
the atlas. Despite data and marker genes coming from different sources, we were
able to successfully assign cells from most tissues in the atlas, as measured by the
percentage of same-cell-type neighbors (as shown in Fig. 7.2E for testis). We expect
that these assignments will change as we learn more about each tissue, enabled by
the dynamism and efficiency of the Common Cell Atlas infrastructure.

The pivotal function of OAS1 in innate immunity has been well-established, and
recent studies have demonstrated that differential expression of its isoforms can
affect susceptibility to viruses, including SARS-CoV-2 (Zhou et al., 2021). The work
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described here enables the study of this differential expression across organs and cell-
types, providing a valuable resource for our understanding of viral immunity. We
have used our Human Commons Cell Atlas to discover previously unknown cell-type
specificity for an OAS1 isoform. Interestingly, this isoform was deemed undetectable
across many studies, and our atlas provides an explanation for this results. Our
finding is preliminary, and a comprehensive assessment of p44b function and activity
in the testis is beyond the scope of our paper. But our discovery highlights the utility
of a Commons Cell Atlas, and more generally, points towards the importance of
carefully assessing isoform cell-type specificity.

The Human Cell Atlas is composed of 27 tissues, 526 cell-types and 3,554 marker
genes. The whole atlas is hosted on Github, and it is therefore readily available to
download, inspect, modify and use. We envision that the Human Commons Cell
Atlas will constantly evolve as we increase our knowledge on tissues and cell-types,
moving away from the idea of achieving a "final" or "complete" atlas. For as long
as we continue discovering new cell-types, developing new single cell technologies,
and gathering new single cell data, the Human Commons Cell Atlas and all its
derived results will continue to grow and improve.

7.4 Methods
Downloading data
Datasets accession were obtained from the following database (Svensson, Veiga
Beltrame, and Pachter, 2020). Metadata and links to raw data were collected using
the ffq program version 0.2.1 (available at https://github.com/pachterlab/ffq) by
running ‘ffq DATASETID’.

Preprocessing data
Reads from each dataset were pseudoaligned to the human transcriptome, which
was obtained by running textit‘kb ref -i index.idx -g t2g.txt -d human’. Reads were
uniformly processed using the textit’kallisto | bustools’ python wrapper textit’kb-
python’, running the command ‘kb count -i index.idx -g t2g.txt -x [technology]’.

Filtering matrices
To filter the gene count matrices, barcodes with low UMIs were filtered with ‘mx
filter’, which uses a derivation of the knee plot approach (See Chapter 6). Barcodes
with more than 40% mitochondrial genes were discarded.
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Normalizing matrices
Gene count matrices were normalized using ‘mx norm’, which uses the log1pPF
method (See Chapter 6).

Marker genes curation
A list of marker genes for each tissue was generated from supplementary tables
of single cell publications containing differential expression information. Markers
were selected applying filters to the corrected p-value, log fold change, and per-
centage of cells expressing the gene. A Google Colab notebook that downloads the
supplementary table, filters it, and generates a markers file is available at the Human
Cell Atlas repository for each tissue.

Cell-type assignment and validation
Cell-types were assigned running ‘mx assign‘ on each individual dataset using the
marker gene file generated above. Assignments were validated by calculating, for
each cell, the percentage of cells that belong to the same cell-type in the k-nearest
neighbors (KNN) graph, with k=20, within each dataset. The KNN graph was
calculated using the union of marker genes of the corresponding tissue.

2D representation of the atlas
To create a 2D latent space in which cells from the same tissue are neighbors, we
used MCML (Chari, Banerjee, and Pachter, 2021) with the fracNCA parameter set
to 1 (this is, optimizing only the Neighborhood Component Analysis (Goldberger et
al., 2004) (NCA) loss). We then calculated the pairwise distances of each cell’s 2D
coordinates to the Vitruvian man 2D coordinates, using the L_1 norm or manhattan
distance. The distances were used as input to the scipy ‘linear_sum_assignment’
function to map the 2D latent space to the 2D shape coordinates, assigning each cell
coordinate to a shape coordinate while minimizing the total cost or distance (as per
the distance matrix).

Tissue-level markers
For each dataset, we calculated the average expression of each gene across all cells,
and used that value to rank each gene in the dataset. The gene ranks of datasets
from the same tissue were averaged, resulting in a tissues x genes matrix. Genes
with high value in one tissue and low in the others were selected, and the Z-scores
across tissues were plotted using a heatmap.
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OAS1 gene expression by tissue
The average normalized OAS1 expression for each dataset was calculated across all
cells. Each data point in Fig. 7.2A and B corresponds to a different dataset.

Isoform quantification
A transcript Compatibility Counts (TCC) matrix for each sample was obtained by
running ‘bustools count’ without the ‘–genecount’ option on the bus files generated
after pseudoaligning the raw reads. Transcript abundances were quantified using
the EM algorithm by running ‘kallisto quant-tcc’ on the TCC matrices. The tran-
script abundance matrix of each sample was normalized within each cell-type using
log1pPF. The normalized matrix was then subsetted to isoforms that i) derived from
genes with more than one isoform, ii) had reads in the samples that mapped uniquely
to it and iii) had a minimum average normalized expression of 0.002 per cell.

Data and code availability
The Human Commons Cell Atlas can be accessed here: https://github.com/cellatlas/human
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