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ABSTRACT

In this thesis, I have translated a few flavors of exoplanet timeseries measurements
into constraints on exoplanet orbital parameters, and used these to make inferences
about planet formation. I begin by introducing the two main observational tech-
niques I used to perform these analyses: optical interferometry and stellar radial
velocity monitoring. I then discuss some of the big open questions of exoplanet
formation, particularly the mechanism for forming giant planets close to and far
from their stars, where core accretion is thought to be too inefficient to form giant
planet cores in time for them to accrete atmospheres.

High cadence radial velocity monitoring enables advances in our understanding
of stellar activity, the fundamental stumbling block in the path to discovering and
characterizing planets like the Earth. In my second thesis chapter, I present an
argument that previously published RV-derived activity models of the PMS star
V1298 Tau suffer from overfitting, casting doubt on published mass estimates of the
young planets in the system which necessitated rapid contraction after formation, in
tension with formation theory. I walk through several potential explanations for this
overfitting, pointing out that the star has a strong differential rotation signal which is
not included in published model fits, and encourage broader use of cross validation
techniques in stellar activity model evaluation.

Optical interferometry, particularly using the VLTI/GRAVITY instrument, enables
astrometry measurements that are orders of magnitude more precise than contem-
porary coronographic instruments, which translates to precise orbital parameters.
In my third thesis chapter, I present and analyze two new VLTI/GRAVITY astro-
metric measurements of a young, widely separated planet and use them to make a
preliminary argument that the planet’s eccentricity is low or moderate. This sets an
upper limit on the time (relative to disk dispersal) that the planet attained its current
wide separation, and downweights the possibility of scattering after disk dispersal.

In the next two chapters, I showcase my contributions to two widely used open-
source orbit-fitting software toolkits: orbitize! and radvel. I highlight two
major new features of orbitize! that are available in the main code base as of the
release of version 2: jointly fitting radial velocity measurements and jointly fitting
absolute astrometry measurements. In the radvel chapter, I motivate and describe
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an updated Gaussian Process regression model for stellar activity modeling that
reduces the potential for overfitting.
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2.1 A tour of the RVs scrutinized in this study. The CARMENES and
HARPS-N RVs are published in SM21, and the HIRES RVs are
new in this study. Takeaway: the RV variability of V1298 Tau is
hundreds of m/s, which is similar across all three instruments. The
variability is significantly greater than the instrumental errors (which
are included, but too small to see for the majority of points on this plot). 20

2.2 SM21 preferred model prediction and contemporaneous observed
data. The HIRES data have been scaled and offset by linear parame-
ters that minimize the residual spread with respect to the GP model,
and the median 4p𝑃𝑄𝑃2 CARMENES data RV zero-point value was
been applied in order to more easily compare both datasets with the
model expectations. Top: mean model prediction (gray solid line),
together with contemporaneous HARPS-N (black), CARMENES
(red), and HIRES (purple) RVs overplotted. Bottom: model residu-
als, together with 1- and 2-𝜎 GP uncertainty bands (shaded dark and
light grey regions, respectively). Takeaway: The preferred SM21
model is overfitting to the HARPS-N data, which can be seen in
the increased spread about the residual=0 line for both HIRES and
CARMENES data during epochs with contemporaneous HARPS-N
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Another visualization of Figure 2.2. Histograms of the RV residu-
als, given in units of standard deviations from the mean prediction.
Takeaway: The broader and more uniform distribution of HIRES
and CARMENES residuals relative to the HARPS residuals is an-
other hallmark of overfitting. . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Same as Figure 2.2, except that the model prediction is computed by
conditioning on a randomly-selected 80% subset of the HARPS-N
data, as described in the text, as the residuals are computed for the
20% subset that was held-out. Takeaway: The effect seen in Figure
2.2 cannot be explained by instrument- or wavelength-dependent sys-
tematics, because the same larger residuals are seen within the data
taken by only HARPS-N. . . . . . . . . . . . . . . . . . . . . . . . . 27
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2.5 Another visualization of Figure 2.4. Same as Figure 2.3, except
computed using the same method as for 2.4. Takeaway: the larger
and more uniform spread of residuals for HARPS-N data on which
the model was conditioned provides more evidence that the preferred
SM21 model is overfitting. . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Lomb-scargle periodogram of all RV data presented in SM21, and 2-
component sinusoidal fit passed through the same window function.
Top: Periodogram of all RVs (solid purple line) and a 2-component
sinusoidal fit to the data (filled grey). Middle/bottom: same, but
zoomed in. The rotation period, its harmonic, and its 1d aliases
are labeled. Takeaway: the dominant Lomb-Scargle periodogram
structure can be explained as harmonics and aliases of a single period
at 2.91d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.7 HARPS-N RVs and contemporaneous LCO photometry from SM21,
phase-folded to the rotation period and colored by observation time.
Top: LCO photometry. Bottom: HARPS-N RVs, with fitted jitter
values from the preferred SM21 fit added to the error bars. 1- and
2-component sinusoidal fits are also shown. Takeaway: the presence
of a strong periodogram peak at Prot/2 results from the higher-order
shape of the RV rotation pattern. This pattern is not present in the
LCO photometry, which is approximately sinusoidal over the rotation
period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



xiii

2.8 Smoothed activity-only component of the preferred model of SM21,
together with the Keplerian model components. Top: 100 random
draws from the posterior describing the planet b Keplerian are also
shown, to illustrate that this effect holds true across the posterior, and
not simply for one point estimate. The light gray solid line shows the
full activity-only model component, and the darker grey shows this
model averaged over a (randomly chosen) 11.2 d timescale. (Note that
the same pattern holds when choosing a slightly different smoothing
timescale; i.e., this is not a result of aliasing.) Shaded grey regions
indicate where there are observations. Bottom: same as top, but
with a zoomed-in y axis. Takeaways: the activity-only component
changes suddenly in windows of time where there are observations.
When the activity-only component is averaged over shorter-timescale
variations, the GP contributes to the fit on timescales similar to
the Keplerians, even interfering destructively at some times. This
casts doubt on the reality of the Keplerian signals reported in SM21,
indicating that they may be favored because of overfitting. . . . . . . 36
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2.9 A tour of the relevant photometry of the star V1298 Tau. Panel a:
detailed view of the K2 photometry (purple points), with a beating
envelope over-plotted in solid pink. The beating envelope is drawn to
illustrate the effect of spot beating on overall variability amplitude,
not to precisely fit the data. The envelope drawn is constructed from
the beating of three sinusoids at 2.70, 2.85, and 3.00 d. Signatures of
beating can be seen by eye: two peaks of different amplitudes phase
up toward the end of the K2 baseline, producing a single-peaked
variability pattern and a larger overall variability amplitude. Panel
b: detailed view of the TESS photometry (purple points). Beating
characteristics are also visible, although the baseline is shorter than
that of K2. Panels c, d, and e: relative views of K2, LCO, and
TESS photometry, emphasizing relative time baseline and variability
amplitude. A typical error bar for each dataset is also shown in the
bottom left corner of each panel. The differences in wavelength cov-
erage and flux dilution between the K2, LCO, and TESS photometry
largely account for the overall differences in amplitude of the sig-
nals. Both the K2 and TESS data cover less than one complete beat
period of the two largest-amplitude periodic signals, but the LCO
photometry (which is contemporaneous with the RVs of SM21) cov-
ers a longer time baseline. Panel e: All photometry, plotted on the
same panel to emphasize relative time elapsed between each dataset.
Takeaway: differential rotation effects are visible by eye in both the
K2 and TESS datasets. . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.10 Lomb-Scargle periodograms of the photometric data shown in Figure
2.9. Top: Zoom-in on the presumed rotation period, showing several
nearby peaks in all three datasets. Bottom: Same as top over a
wider period range. Takeaway: multiple closely-related periodicities
are visible in Fourier space for all three photometric datasets, more
evidence for differentially rotating active regions. . . . . . . . . . . . 40



xv

2.11 Demonstration of the impact of constructing separate covariance ma-
trices and adding the log(likelihoods). Compare with Figure 2.12.
The data and best-fit parameters are for K2-131, published in Dai et al.
(2017), for demonstration purposes only. Top: GP mean prediction
(black solid line) and 1-𝜎 uncertainties (purple filled), together with
the HARPS-N data points on which the GP is conditioned (purple
points). Middle: Same as top, but for PFS data. Bottom: Residuals
with respect to the GP mean prediction. Takeaway: When separate
covariance matrices for each RV instrument are used, contemporane-
ous data are uncorrelated in the model, allowing additional degrees
of freedom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.12 Same as Figure 2.11 (in particular, using the exact same data and GP
hyperparameters), but here a single covariance matrix is constructed,
following the suggestion in Section 2.4. Takeaway: Constructing
a single covariance matrix requires that GP predictions for separate
instruments are scalar multiples of one another, which is more con-
sistent with physical expectations and results in a more constrained
model than one with a separate covariance matrix for each instrument. 44

3.1 Detections of HIP 65426 b with VLTI/GRAVITY. Both periodogram
power maps visualizes the 𝜒2 fit to the interferometric observables
assuming a point source, after removing the contribution of the star
using a 4th order polynomial. The outer dashed grey circle indicates
the effective fiber field of view (60mas in diameter), and the red
circles indicate the most probable planet position at each epoch. The
planet is detected at high confidence in both epochs (periodogram
power > 500). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Planetary radial velocity predictions from the accepted fit (purple
histogram), together with the HDS planetary RV measurement from
Petrus et al. (2021) (dashed black line, with 1-𝜎 range shaded grey).
Takeaway: The planetary RV measurement does not constrain the
orbital parameters, beyond breaking the 180◦ degeneracy for Ω and
𝜔. A planetary RV of -3 km/s is also allowed, given the astrometry
alone, but is disfavored because of the relative RV measurement. . . . 57
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3.3 An example converged MCMC run that was used to determine that
the chains were sufficiently burned-in. A random subset of 100 chains
are plotted as a function of step number. The similar distribution of
walkers at each step is an indication that the number of burn-in and
total steps is adequate, and that the resulting posterior estimates are
trustworthy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4 An example unconverged MCMC run that was used to determine that
more burn-in steps were needed in order to rule out non-convergence.
A random subset of 100 chains are plotted as a function of step
number. The color gradient from left to right (getting darker toward
the right) indicates that the chains are not fully converged. As an
aside, because they are bimodal for astrometry-only orbits, Ω and 𝜔
are good parameters to use for assessing convergence. . . . . . . . . 60

3.5 Sky-projected visualization of the posterior of the orbit fit #4 de-
scribed in the text. Left: 100 orbit tracks projected onto the plane
of the sky, colored by elapsed time. The astrometric data are visible
as pink points in the bottom left corner of the panel. Middle col-
umn: the same 100 posterior orbits (grey) in separation (top) and
position angle (bottom) vs time, together with the astrometric data
used for orbit-fitting. Right column: the same 100 posterior or-
bits (grey), together with earlier (bottom) and later (top) astrometric
measurements taken with VLTI/GRAVITY. 1- and 2-𝜎 error ellipses
are shaded in dark and light pink, respectively. Takeaway: The
two VLTI/GRAVITY epochs are ∼50x more precise than existing
astrometric measurements of HIP 65426, and reduce the posterior
uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Corner plot of the posterior of the accepted orbit fit, using all data
and assuming a uniform eccentricity prior. Diagonal panels show
marginalized 1D histograms of posterior elements, and off-diagonals
show 2D covariances between posterior elements. 1, 2, and 3-𝜎
contours are outlined in the covariance panels, and individual pos-
terior samples outside of the 3-𝜎 boundaries are plotted directly as
black dots. Takeaway: the 1D marginalized posterior distributions
of semimajor axis and inclination are well constrained. Strong co-
variances are apparent, in particular between eccentricity, inclination,
and semimajor axis. . . . . . . . . . . . . . . . . . . . . . . . . . . 64
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3.7 Relative constraining power of the astrometric data for semimajor axis
(top), eccentricity (middle), and inclination (bottom). The results of
the following fits are shown and compared: (1) only literature as-
trometry (i.e. no GRAVITY data; grey), (2) literature astrometry and
the first epoch of GRAVITY data (dark pink outline), (3) literature
astrometry and the second epoch of GRAVITY data (light pink out-
line), (4) only GRAVITY astrometry (i.e. no literature data), and (5)
all astrometric data (i.e. the accepted fit; purple outline). Takeaway:
most of the constraining power of the fit comes from the GRAVITY
data, evident by the similarity between the GRAVITY-only fit and the
accepted fit. In addition, neither GRAVITY point alone drives the
fit, as evidenced by the similarity between fits (2) and (3). In other
words, the posterior preference for moderate eccentricities is robust
to the possibility that one of the two GRAVITY epochs is an outlier. . 65

3.8 1D marginalized eccentricity posteriors for fits with uniform (purple)
and linearly decreasing (pink) priors on eccentricity. The priors
themselves are also plotted as lines of the same colors. Takeaway:
the eccentricity posterior depends on the choice of prior. However,
both the linearly decreasing prior and the uniform prior result in
posterior peaks at moderate eccentricity values. . . . . . . . . . . . . 66

3.9 Maximum log(likelihood) as a function of eccentricity. Although the
maximum a posteriori eccentricity is moderate (∼ 0.5), the maximum
likelihood occurs at lower eccentricities. This allows us to understand
the shape of the eccentricity posterior (Figure 3.8); the likelihood is
slightly higher at lower eccentricities, but the prior volume here is
lower. The posterior “drop-off” at higher eccentricities is caused by a
real decrease in likelihood. More eccentric orbits are less consistent
with the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.10 GRAVITY and SINFONI K-band spectra comparison. Top: GRAV-
ITY (grey) and SINFONI (purple) 1𝜎 flux confidence intervals are
shown as filled bands. The SINFONI spectrum was resampled onto
the GRAVITY wavelength grid using spectres (Carnall, 2017).
Bottom: The residuals, with propagated uncertainties, are shown
relative to the flux=0 line. Takeaway: the agreement between these
two independent datasets is excellent. . . . . . . . . . . . . . . . . . 71
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3.11 Results of forward-modeling the photometric and spectral data of
HIP 65426 b by comparing with the BT-SETTL CIFIST model grid.
Posteriors over the free parameters in the fit, as well radius, a de-
rived parameter, are shown. Fits performed using GRAVITY K-band
spectra are shown in purple, and fits performed using SIFNONI K-
band spectra are shown in pink. The GP hyperparameters (defined
as in Wang et al., 2020 Equation 4) to the SPHERE IFS spectral
data (length scale and amplitude) are shown as well. Takeaways: as
expected, log 𝑔 correlates strongly with radius and Teff . Two families
of solutions are apparent at high (1.3 𝑅𝐽) and low (0.9 𝑅𝐽) radii. . . . 72

3.12 BT-SETTL CIFISTmodels representing the two posterior peaks shown
in Figure 3.11, together with the SPHERE IFS data. Top: both
models, resampled onto the SPHERE IFS wavelength grid using
spectres (Carnall, 2017), and multiplied by a scalar chosen to
minimize the sum of squared residuals for the SPHERE IFS data
alone. The SPHERE IFS data are shown as blue points, with error
bars representing their reported statistical uncertainties. Middle: the
low-Teff model (dashed purple line), SPHERE IFS data, and Gaussian
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C h a p t e r 1

INTRODUCTION

1.1 Introduction to the Exoplanet Zoo
The first exoplanets (Wolszczan and Frail, 1992) were discovered two years before I
was born, and in my lifetime the number of known planets has grown exponentially
to over 5000. While the first planets were discovered around pulsars, astronomers
have since discovered planets around cool M dwarfs (Dressing and Charbonneau,
2013), white dwarfs (Vanderburg et al., 2020), evolved stars (Grunblatt et al., 2023),
hot A stars (Lagrange et al., 2009), brown dwarfs (Chauvin et al., 2004), and solar
analogues (Mayor and Queloz, 1995) (among other flavors of hosts). These planets
span orders of magnitude of size and orbital period (Figure 1.1) and cover the gamut
of eccentricities (e.g., O’Toole et al., 2009). Exoplanets have been detected using
a variety of techniques (Figure 1.1), each of which has strengths and weaknesses.
The three methods most relevant to this thesis are transit, radial velocity (RV), and
direct imaging. The transit technique, by geometric probability, is most sensitive to
planets closest to their host stars, while imaging is biased toward massive, young,
and widely separated planets. The RV technique also preferentially detects close-in
planets, but as observing baselines increase, it is becoming more sensitive to more
widely-separated planets. All three techniques are discussed in detail in Section 1.3.

With such a wealth of data at our disposal, exoplanet scientists are beginning to
focus on: 1) individual characterization of exoplanets, or systems of exoplanets, and
2) looking for population-level trends. The two papers that make up the bulk of my
thesis are studies of individual stellar systems that dive into what these particular
objects can tell us about planet formation. Even though we have detected thousands
of exoplanets, the vast majority of them are billions of years old, whereas the planet
formation process unfolds on a scale of millions of years. At these mature ages, many
of physical “clues” imprinted during formation (see next section) have disappeared.
The small number of known young planets makes it difficult to do large statistical
studies to probe formation conditions. However, we can still learn a lot from detailed
characterizations of individual young systems, as I aim to show in this thesis.

In this section, I have highlighted a few of the major observational results of the
past three decades of exoplanet astrophysics, with the goal of communicating to
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Figure 1.1: The exoplanet zoo as of May 10, 2023, using data from the NASA
Exoplanet Archive. This figure only includes planets discovered via one of the
three major methods discussed in this thesis: transit, radial velocity, and imaging.
Due to selection effects, the imaged population is generally younger, more massive,
and more widely separated than the transit and RV populations. However, some
transiting and/or RV-detected planets are also young. The positions of Jupiter,
Saturn, and Earth are shown for reference.

the reader some of the incredible diversity of exoplanet characteristics and habitats.
The next section discusses the open questions in exoplanet astrophysics that I focus
on in this document. In Section 1.3, I focus on the main observational techniques I
will use in this thesis. Finally, Section1.4 includes an argument for the importance
of high quality software in this field. I outline the rest of the thesis document in
Section 1.5.

1.2 Open Questions in Planet Formation
How do Cold Jupiters Form?
The existence of cold Jupiters (1≲M≲13 𝑀𝐽 , 𝑎 ≳10 au) is unexpected from a for-
mation theory perspective. These planets exist at disk locations where the classical
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timescale to form a core sufficiently massive to undergo runaway accretion is sig-
nificantly longer than the protoplanetary disk lifetime (Bowler, 2016). Therefore,
for in situ formation to be viable, rocky planetary cores must have formed more
quickly than previously expected in order for the cores to have enough time to enter
the runaway accretion phase and obtain massive envelopes. Ex-situ formation via
standard core accretion and subsequent outward migration is another possibility
(e.g. Lega et al. 2021). Direct in-situ gravitational collapse is not expected to occur
in the inner region of the protoplanetary disk: not only does the disk need to be
Toomre-unstable, but also the local disk cooling time needs to be short enough to
allow the formation of self-gravitating clumps (Rafikov, 2005). For cold Jupiters,
however, in-situ gravitational collapse is a possibility, albeit complicated by the very
fast inward migration timescales expected for any formed clumps (Nayakshin, 2017),
as well as the uncertainty around how smaller giant planets (closer to Jupiter-mass)
stop accreting gas after collapsing early in the lifetime of the disk (Drazkowska et al.,
2022). Figure 1.2 beautifully illustrates these two alternate formation pathways for
cold Jupiters.

Objects that formed rapidly (e.g., via gravitational collapse) are generally expected to
retain more heat from their formation, resulting in a higher initial entropy, whereas
slower formation processes (e.g., via core accretion) result in a lower formation
entropy. Giant planets “forget” their initial entropy over time, and within a few
Myr progress along the Kelvin-Hemholtz cooling track (Marley et al., 2007). This
makes young giant planets important formation probes. Their observed masses
and radii can be compared with expected cooling tracks calculated from different
initial entropy assumptions, and therefore constrain the “efficiency” of the formation
process. This motivates precise mass and radius measurements for young cold
Jupiters, of which we know of precious few.

Mass and radius (which directly trace initial entropy) are not the only observational
formation tracers for cold Jupiters. Another class of observational clues is dynamical
constraints. In particular, eccentricity (e.g., Bowler, Blunt, and Nielsen, 2020a,
Dupuy et al. 2019) and the various flavors of obliquity (e.g., the angle between the
star’s rotation axis and the planet’s rotation axis, and the angle between the star’s
rotation axis and the planet’s orbital axis; Bryan et al., 2016, Bowler et al., 2023)
probe formation and evolution history, as discussed in much more detail in Chapter 3.
Another important class of constraints is atmospheric metallicity (generally relative
to the host star) and atmospheric C/O ratio (Öberg, Murray-Clay, and Bergin, 2011).
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How do Small Highly Irradiated Planets Form?
The formation and evolution of small irradiated planets (orbital periods of ≲ 30
days) is also highly uncertain. Super-Earths and sub-Neptunes, which are planets
in the radius range 1-4 𝑅⊕ for which there are no analogues in our solar system,
have been revealed to be very common: the super-Earth occurrence rate has been
estimated at 30% (Zhu et al., 2018) based on Kepler results, as compared to less
than 1% for cold Jupiters between 10 and 100 au (Nielsen et al., 2019). Fulton
et al. (2017) famously revealed a gap in the radius number distribution of planets
1-4 𝑅⊕ using Kepler data, which is interpreted as a dichotomy between bare rocky
cores (“super-Earths”) and rocky planets with voluminous H/He envelopes (“sub-
Neptunes”). The formation pathways for these planets are unclear, and since the
Kepler sample is (on average) several Gyr old (Berger et al., 2020), dedicated studies
of young systems, particularly mass, radius, and age measurements, are necessary
to gain insight.

As an example of how bulk physical properties constrain the formation processes of
super-Earth and sub-Neptune progenitors, Owen (2020) walks through a procedure
for estimating the entropy of formation for young rocky planets with inflated H/He
envelopes (presumably ∼0.5 𝑅𝐽 , but see Chapter 2 for more discussion on this).
taking into account several processes that would slow or reverse envelope accretion
(in particular, two classes of mechanisms have been proposed: mechanisms that
increase the entropy of the interior, and so slow accretion, and mechanisms that result
in extra mass loss after accretion, called “boil-off”). Precise mass measurements (as
well as well-known radii and ages) are needed to distinguish between these scenarios
(20% for the young star V1298 Tau, studied in Chapter 2). This requirement
motivates careful study of the stellar activity on young stars like V1298 Tau to
enable such measurements and push forward our understanding of the formation of
planets with rocky cores.

1.3 Observational Techniques
In this thesis, I study five previously discovered planets in two planetary systems.
In this section, I provide some background on the techniques used to discover these
planets, and the complementary techniques I used to study them.

Transits and Radial Velocities
The four planets orbiting V1298 Tau (Chapter 2) were initially discovered using the
transit method (Winn, 2010), which works by observing the periodic dimming of a



5

Figure 1.2: The two major possible pathways for the formation of cold Jupiters: core
accretion, the slow build up of material over Myr, and gravitational collapse, the
rapid collapse of material due to disk instabilities, which happens on approximately
the dynamical timescale. This figure was designed by Suchitra Narayanan and Sarah
Blunt, and drawn by Suchitra. Inspired by a figure by Tom Dunne (available at
https://www.americanscientist.org/article/why-does-nature-form-exoplanets-easily.

star’s brightness caused by a planet occulting the stellar surface. Planetary transits
have a characteristic shape (Kreidberg, 2015), and occur periodically (modulo transit
timing variations due to planetary interactions), which helps to identify them as
bona fide planetary signals. The depth of the transit signal constrains Rp/R∗, which,
together with an independent constraint on the stellar radius R∗, gives the planet
radius. The measurement of accurate stellar radii is a topic unto itself (Fulton et al.,
2017), but this is out of the scope of this thesis.

Transit-derived planet radii already give us insight into the planet as a “world” (e.g.,
the radii of small, presumably rocky planets are inconsistent with the presence of an
extended H/He envelope, Zeng et al., 2019) but an understanding of a planet’s bulk
composition, atmosphere size and metallicity, and bulk metallicity (among other
interesting derivable quantities) depends on independent measurements of mass.
Masses for transiting planets can be derived from the magnitudes of transit timing
variations (Agol and Fabrycky, 2018), but this technique only works for planets
in multiple systems with detectable timing variations. The mass measurement
technique most relevant to this thesis is the radial velocity detection method (Lovis
and Fischer, 2010).

The radial velocity method is one of the oldest exoplanet detection techniques, having
discovered the first planet around a main sequence (MS) star in 1995. It works by
relating a star’s velocity along the observer’s line of right to the (non-relativistic,
relative) Doppler shift measured from stellar spectral lines:

https://www.americanscientist.org/article/why-does-nature-form-exoplanets-easily
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k · v∗ = 𝑐
𝜆B − 𝜆0

𝜆0
, (1.1)

where k · v∗ is the measured radial velocity, 𝜆B is the wavelength (of an absorption
line center, for example) that would be measured in the International Celestial
Reference System (IRCS), a reference frame with the solar system barycenter at
rest at frame center, and 𝜆0 is the actual measured wavelength. The new RV data
in this thesis were taken with Keck/HIRES (Vogt et al., 1994), a cross-dispersed
echelle spectrograph. Stellar light is passed through a warm iodine gas cell, which
imprints a forest of absorption lines on the spectrum. The HIRES Doppler pipeline
(Butler et al., 1996a)1 combines a high-resolution iodine spectrum taken in a lab, an
iodine-free “template” observation of the star being observed, and a three Gaussian
PSF model into a forward model of the stellar spectrum. A radial velocity is derived
from a stellar spectrum by jointly fitting for the PSF parameters and a RV offset on 2
“chunks” of the spectrum. The average and statistical uncertainties of the resulting
chunks are taken to be the measurement and observational uncertainty. The iodine
cell technique on HIRES gives a characteristic RV uncertainty of 1 m s−1.

More modern methods of measuring radial velocities abound, from technological
innovations like the use of wavelength calibrators more precise and stable than iodine
cells (e.g., laser frequency combs, Steinmetz et al., 2008) to statistical methods like
line-by-line radial velocities (Dumusque, 2018). As I write this document, the field
is moving from the era of precise radial velocities (PRV; ∼m s−1 precision) into the
era of extremely precise radial velocities (EPRV; ∼cm s−1 precision). While EPRV
instruments still face technical challenges to obtaining ever-higher RV precision,
most in the field agree that the limiting factor in EPRV analyses is not instrumental,
but astrophysical.

In addition to planetary orbits, stellar surface processes can also induce appar-
ent Doppler shifts. Asteroseismic oscillations, asymmetries in surface granulation
patterns, rotationally modulated signals from magnetic surface features like spots,
plage, and faculae, and multi-year activity cycles reflecting magnetic dynamo pro-
cesses may all change the measured radial velocity signals. (See Section 5.2 for more
detail.) Spot signals in particular are problematic, because they are (quasi)-periodic,
and can occur on timescales similar to planetary orbits.

Young stars are particularly magnetically active, and vary up to km s−1 due to spots
(e.g., Figure 2.1). For this reason, Doppler surveys looking to find and understand

1Runnable from the link: https://nexsci.caltech.edu/tools/prv_index.shtml

https://nexsci.caltech.edu/tools/prv_index.shtml
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Figure 1.3: RVs of the active star V1298 Tau taken with the NEID spectrograph
over 7 hours. While there is a clear increasing RV trend over the time period due
to the spot activity, the RVs are stable at the tens of cm s−1 level over timescales
shorter than an hour. This figure hightlights that active stars are not more active at
all timescales, just on the rotation timescale.

planets have historically avoided these stars. However, the field is beginning to
recognize young stars as a way to “isolate” spot activity; while large magnetic
fields translate to a high spot filling fraction, the asteroseismic (Aerts, 2021) and
granulation RV signals are not expected to be larger than those of their mature
counterparts. To drive this point home, Figure 1.3 shows very high-cadence (several
measurements per hour) RVs of V1298 Tau (Chapter 2) taken with the NEID
spectrograph over a 7-hour timescale.2 Although there is clear trend due to the
activity, the star is coherent at the tens of cm s−1 level over timescales less than an
hour.

The first chapter of my thesis studies V1298 Tau in detail, and in particular proposes
a new methodology for evaluating activity models.

Direct Imaging
Exoplanet direct imaging was achieved successfully for the first time in 2004 (Chau-
vin et al., 2004), and in the intervening two decades has enabled detailed spectral
and orbital characterization of individual objects. Imaging exoplanets requires a
confluence of technology, both hardware and software. On the hardware side, imag-
ing relies on adaptive optics (AO; Hampson et al., 2021), which itself is tied to

2These data are courtesy of PI Shreyas Vissapragada.
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wavefront deformation sensing and real-time control algorithms, and coronagraphy
(Ruane et al., 2018). On the software side, dedicated image post-processing algo-
rithms such as KLIP (Soummer, Pueyo, and Larkin, 2012), a PCA-based algorithm
for modeling the observed PSF, are necessary to image exoplanets at high contrast
ratios.

Classical exoplanet imaging instruments have seen orders of magnitude of improve-
ment in astrometric precision through software and hardware improvements (Bowler,
2016), but the resolution of a standard telescope is still fundamentally limited by
the diffraction limit: 𝜃 = 𝜆

𝐷
. For the longest-period exoplanets typically amenable

to imaging, with orbital periods of decades to tens of thousands of years, obtaining
astrometric precision high enough to translate to meaningful orbital constraints is
often impossible. The typical suggestion is to focus on the shortest-period imaged
planets, which exhibit enough orbital motion to be detectable with classical imag-
ing technology, or to wait years or decades until orbital curvature can be detected.
However, the interferometer VLTI/GRAVITY (Gravity Collaboration et al., 2017)
is changing the game.

Interferometers in general overcome the 𝜆
𝐷

limit (in the absence of impossibly
large apertures) by using several separated apertures, rendering the fundamental
resolution limit 𝜃 = 𝜆

𝑏
, where 𝑏 is now the baseline between the apertures rather

than the diameter of a single aperture. Light collected by each of these apertures
has a slightly different path length, which translates to phase differences that vary
as a function of position on the sky. The light entering the various apertures is then
recombined and interfered, and the resulting fringes can be analyzed to give high
spatial resolution measurements. Using only two apertures allows an observer to
achieve high resolution only along one spatial dimension, so multiple baselines are
typically used to achieve a high degree of spatial localization in two dimensions.

Radio astronomers have been using interferometers to achieve high spatial resolution
for much longer than infrared (IR) astronomers, in part because of the 𝜆 dependence
of the resolution equation; it is difficult to achieve high spatial resolution at long
wavelengths without the assistance of interferometry. In addition, IR interferometry
faces challenges that radio interferometry does not. First, the much smaller IR
wavelengths necessitate a high degree of spatial coherence; a 0.1 𝜇m shift is a
negligible fraction of a 3 cm wavelength, but constitutes a 20% phase shift for a 0.5
𝜇m photon. In addition, the distribution of spatial scales of atmospheric turbulence
translates to a very short coherence time of IR radiation propagating through the
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atmosphere (∼ 1 ms), much shorter than that of radio wavelengths. This limits a
naive IR interferometer to integration times shorter than the atmospheric coherence
timescale, and therefore to detections of only the brightest objects.

The Very Large Telescope Interferometer (VLTI) is a set of four 8 m telescopes
designed to overcome these limitations in order to obtain precise astrometry at
IR wavelengths. Its new beam-combining instrument, VLTI/GRAVITY, saw first
light in 2017 (Gravity Collaboration et al., 2017), and since then has been making
∼ 𝜇as-level astrometric measurements of stars orbiting the galactic center, directly
detecting exoplanets, and more.

The dual-field ability of VLTI/GRAVITY enables the detection of faint companions
with optical interferometry, giving exquisite relative astrometric precision. Light
from the bright primary star can be used for beam stabilization, while light from
the fainter, secondary source can be directed to the science spectrometer, relying on
simultaneous beam stabilization performed on light from the primary. As a point of
comparison, Mt. Wilson’s CHARA interferometer, a comparable facility, recently
underwent an upgrade to add AO capabilities (Anugu et al., 2020), but lacks the
dual-field capability that makes VLTI/GRAVITY so effective for exoplanet imaging.

Beam stabilization with VLTI/GRAVITY is achieved by a combination of adaptive
optics and fringe tracking, which are performed fully independently. The AO system
ensures that the sources are coupled efficiently to the single-mode fibers, while
fringe tracking (i.e., using a control algorithm to stabilize the interference fringes)
does the “heavy lifting” of computing and correcting for precise non-common
path differences between light coming from each of the apertures introduced by
atmospheric turbulence. The AO-corrected beams are also fed through single-mode
fibers that spatially filter the light, removing all but the lowest spatial frequency
mode. This filters high-frequency noise introduced by the turbulent atmosphere.

A next crucial ingredient of VLTI/GRAVITY is laser metrology. In order to make
precise astrometric measurements using the dual-field capabilities, the optical path
difference (OPD) between the science target and the phase reference must be known
as exactly as possible. Because the paths of the two objects through the telescope
and VLTI/GRAVITY itself are slightly different (due to e.g., nonuniformities in the
optics which change over time with local temperature, pressure, and other factors),
the VLTI/GRAVITY instrument propagates a suite of lasers through the instrument
to continuously measure the OPD, and yet another control algorithm is deployed to
correct for these OPDs.
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These four major ingredients: AO, single mode fibers, laser metrology, and dual-
field fringe tracking, allow for minute-long coherent integrations, phase-referenced
astrometry of objects at fainter than 15 m𝐾 , and a limiting magnitude of 17 m𝐾 . This
translates to relative astrometric measurements with 𝜇as precision of faint objects,
and even high-contrast imaging capability.

The four UTs provide
(4
2
)
= 6 unique baselines. The actual interfering of beams

occurs on a silicon chip, which interferes the beams from these 6 baselines, which
are then used to reconstruct the precise position of the object.

In addition to precise relative astrometry, VLTI/GRAVITY is equipped with a Wol-
laston prism to make polarization measurements, and two spectrometers to simul-
taneously obtain spectra of the science target and the fringe-tracking object. The
fringe-tracking spectrometer is optimized for a high readout-rate, and has only 6
spectral pixels, while the science spectrometer is optimized for ∼ minute-long in-
tegrations, and allows the user to select from spectral resolutions of R=22, 500,
and 4500 depending on the brightness of the target and user preference. Both
spectrometers cover a spectral range of 1.95-2.45 𝜇m.

GRAVITY astrometry is not just better in theory; it is better in practice (e.g.,
Nowak et al., 2020, (Hinkley et al., 2022)). Figure 1.4 shows uncertainties of ac-
tual measurements taken for HIP 65426 b, the imaged planet studied in Chapter
3. The interferometric measurements by GRAVITY are two orders of magnitude
more precise than measurements taken by SPHERE and NaCo, advanced pieces of
technology in their own rights. Following up exoplanets that have been discovered
and astrometrically monitored by classical coronagraphic instruments with VLTI/-
GRAVITY allows us to “speed up time”: we no longer need to wait 10 years to
observe orbital curvature of widely separated objects. Chapter 3 of this thesis dives
deep into the orbital constraints we can obtain with a small number of epochs of
GRAVITY astrometry, and relates these back to the big picture understanding of
how HIP 65426 b, and exoplanets like it, formed.

1.4 The Importance of Software
Over the past decade, astronomers have begun to recognize the crucial role of
software engineering in transformative science. Many of my thesis projects have
centered around writing good code, so I want to get up on a high horse for a moment
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Figure 1.4: This figure highlights the improvement in uncertainties for the interfero-
metric instrument VLTI/GRAVITY over contemporary coronographic instruments.
Each pink ellipse (in various shades) shows the 1𝜎 observational uncertainty of
a relative astrometric measurement of HIP 65426 b taken with either SPHERE or
NaCo. The two purple ellipses (small, at center) show the GRAVITY error bars to
scale.
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to emphasize why it is important for scientists to think about how to write code
well.3

A central tenet of good science is reproducibility. New discoveries, particularly those
that push the limits of current instruments and techniques, are not simply trusted; the
measurements are repeated with other instruments, the relevant equations checked
and rechecked, and the model assumptions questioned and varied. Easy-to-read,
open-source software greatly speeds up this process of independent “checking of
work,” on the instrumentation, observation, analysis, and theory fronts. Open-
sourcing software is critical; this practice enables early bug discovery and line by
line comparison of independent codes using different approaches. Software that is
easy to read is also crucially important for reproducibility. As an intern at Google,
I was impressed how often best practices emphasized reducing the “cognitive load”
of someone reading your software. How many pieces of information would a code
reviewer have to hold in their mind simultaneously as they read through this nested
for loop? Could I simplify the logic so that it would be more easily understandable?
Writing readable code is not just good practice; it leads to more people understanding
and questioning a code, which leads to robust, bug-free software. An impressive set
of examples of the value of reproducible, open-source software is the results from
early-release science (ERS) with JWST. As an example, Rustamkulov et al. (2023)
used separate open-source reductions of JWST data to produce independent spectra,
to remarkable agreement. The open-source nature of each of the codes used allowed
the teams to “hit the ground running” as soon as the data were available, easily
compute and compare results, and produce Nature-worthy results, specifically clear
CO2 and water transmission features, in a matter of weeks.

A next tenet of good science is testing. Not all science involves testing hypotheses,
especially in exoplanet astrophysics, which also emphasizes exploration that is not
necessarily seeking to test a particular idea. On the whole, however, science moves
forward by developing and testing theories. The process of testing theories is
creative and difficult (which is why observational/experimental astrophysics is a
whole field), and relies heavily on good engineering. Designing tests that are
plausible and informative is challenging! The same is true for software testing,
which is so much more than checking that your code runs to completion. The
codes we use for paradigm-shifting discoveries need to have a barrage of innovative
tests thrown at them. Just as we do when developing theories, we need to think

3I (of course) still have a lot to learn about software development best practices!
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up “antagonistic” tests that probe every conceivable edge case and actively try to
make the code fail. I have much personal experience with the utility of writing
good tests; tests that I have written for orbitize! have caught a wide variety of
bugs before the code went to production (and after), from syntax errors introduced
by a last-minute accidental keyboard slap to swaps in stellar mass and total mass
variables that were unimportant for most of the objects we fit, but caused crucial
inaccuracies for more massive secondaries.

To summarize, accurate, reproducible science relies on scientists and engineers
investing time in their software.

1.5 Thesis Outline
The first two chapters (Chapter 2 and Chapter 3) of this thesis are studies of two
individual stars using different techniques. Each seeks to ultimately answer the
question of how these individual systems formed, and using those inferences to
shed light on planetary formation as a whole. Chapter 2 is mostly methodological,
using cross validation to argue that the published masses of the star V1298 Tau are
unreliable, then brainstorming why. Chapter 3 focuses on what new information
VLTI/GRAVITY astrometry lends to our understanding of the orbit of the young
planet HIP 65426 b, and consequently what new information we can learn about
the planet’s formation. It too is methodological, seeking to provide a framework for
how to interpret eccentricity posteriors of directly imaged planets.

Chapter 4 presents version 2 of orbitize!, a Python package for fitting the orbits of
directly imaged planets (featured in Chapter 3). The chapter details the motivation
for and implementation of each of the major new features in the new version of the
code, giving examples throughout. Chapter 5 presents an updated Gaussian Process
regression prescription for the radial velocity fitting software radvel, aimed at
preventing overfitting (and featured in Chapter 2). This chapter motivates and
explains Gaussian Process regression and its application to stellar activity, and lays
out the changes in the new implementation. Both packages are open-source and
available to use.

Finally, in Chapter 6, I summarize, discuss future directions, and conclude.
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C h a p t e r 2

OVERFITTING AFFECTS THE RELIABILITY OF RADIAL
VELOCITY MASS ESTIMATES OF THE V1298 TAU PLANETS

Submitted to the Astronomical Journal

S. Blunt, A. Carvalho, T. J. David, C. Beichman, J. K. Zink, E. Gaidos, A.
Behmard, L. G. Bouma, D. Cody, F. Dai, D. Foreman-Mackey, S. Grunblatt, A. W.
Howard, M. Kosiarek, H. A. Knutson, R. A. Rubenzahl, C. Beard, A. Chontos, S.

Giacalone, T. Hirano, M. C. Johnson, J. Lubin, J. M. Akana Murphy, E. A.
Petigura, J. Van Zandt, & L. Weiss

2.1 Abstract
Mass, radius, and age measurements of young (≲ 100 Myr) planets have the power
to shape our understanding of planet formation. However, young stars tend to be
extremely variable in both photometry and radial velocity, which makes constraining
these properties challenging. The V1298 Tau system of four ∼0.5 RJ planets transit-
ing a pre-main sequence star presents an important, if stress-inducing, opportunity
to directly observe and measure the properties of infant planets. Suárez Mascareño
et al. (2021, hereafter SM21) published radial-velocity-derived masses for two of the
V1298 Tau planets using a state-of-the-art Gaussian Process regression framework.
The planetary densities computed from these masses were surprisingly high, imply-
ing extremely rapid contraction after formation in tension with most existing planet
formation theories. In an effort to further constrain the masses of the V1298 Tau
planets, we obtained 36 RVs using Keck/HIRES, and analyzed them in concert with
published RVs and photometry. Through performing a suite of cross validation
tests, we found evidence that the preferred model of SM21 suffers from overfitting,
defined as the inability to predict unseen data, rendering the masses unreliable. We
detail several potential causes of this overfitting, many of which may be important
for other RV analyses of other active stars, and recommend that additional time and
resources be allocated to understanding and mitigating activity in active young stars
such as V1298 Tau.
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Young Planets as Probes of Formation
Planet formation is an uncertain process. Giant planets are thought to form with
large radii, inflated due to trapped heat, then cool and contract over the first few
hundred Myr of their lives (Marley et al., 2007). However, the accretion efficiency of
the formation process, which sets the planets’ initial entropy and radii, spans orders
of magnitude of uncertainty. The processes sculpting the post-formation masses
and radii of smaller terrestrial exoplanets are also uncertain. Young, terrestrial
planets also have uncertain initial entropies, and for highly irradiated planets, the
unknown rate of photoevaporation (itself due to uncertainties in a planet’s migration
history, among other physical unknowns) during and after formation compounds
this ambiguity (Lopez, Fortney, and Miller, 2012, Owen and Wu, 2013, Chen and
Rogers, 2016, Owen, 2020).

Measuring the masses, radii, and ages of newly-formed planets presents a path
forward (Owen, 2020). Young moving groups provide rigorous age constraints, and
relatively model-independent methods of measuring planetary radii exist for both
young directly-imaged and transiting planets (for transiting planets in particular, only
stellar radius model dependencies impact the inferred planetary radius). However,
in both situations, few model-independent mass measurements exist. For transiting
planets, there are two complementary methods for measuring planetary masses:
transit timing variations (TTVs), and stellar radial velocity (RV) timeseries.

Measuring RV masses of young planets is a difficult task, so some advocate to
rely on transit timing variations (TTVs) alone to measure masses of young planets.
However, not all planets transit, and only planets in multi-planet systems at or near
mean motion resonance exhibit TTVs (Fabrycky et al., 2014). Even in systems
that do, individual TTV mass posteriors are often covariant, since TTVs to first
order constrain the planetary mass ratio (Lithwick, Xie, and Wu, 2012, Petigura
et al., 2020). In an ideal scenario, both RVs and TTVs would be used to jointly
constrain planetary masses in a given system, reducing posterior uncertainty and
TTV degeneracies.

Stellar Activity & Overfitting
As the instrumental errors of extremely precise RV instruments approach 10 cm s−1,
and as the RV community begins to target more active stars, accurately modeling
astrophysical noise is becoming more and more critical. Young stars present a
particular challenge. These are highly magnetically active (Johns-Krull, 2007),
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with starspots that occupy significant fractions of the stellar surface and induce RV
variations on the order of ∼km s−1 (Saar and Donahue, 1997). These RV variations
are hundreds of times larger than the activity signals of older quiet stars typically
targeted by RV surveys and complicate the detection of planet-induced Doppler
shifts from even close-in Jupiter-mass planets (e.g., Huerta et al., 2008; Prato et al.,
2008).

Other assumptions and/or information can be leveraged to model the activity signal,
even if the signal isn’t easily understandable from the RVs themselves. A widely used
practice involves independently constraining the rotation period from a photometric
timeseries, then using an informed prior on the rotation period to model the RVs
(e.g., Grunblatt, Howard, and Haywood, 2015). Other related examples include
specifying a quasi-periodic kernel for a Gaussian Process regression (GPR) model
(i.e., assuming that the stellar activity has a quasi-periodic form), or modeling the
RVs jointly with other datasets. The latter approach achieves better model constraints
either by explicitly modeling the relationship between the datasets (e.g., Rajpaul et
al., 2015) or by sharing hyperparameters between datasets (e.g., Grunblatt, Howard,
and Haywood, 2015, López-Morales et al., 2016).

As is true for every model-fitting process, misspecifying the stellar activity model
(i.e., fitting a model that is not representative of the process that generated the data)
or allowing too many effective degrees of freedom can lead to overfitting.

Overfitting is a concept ubiquitous in machine learning, and in particular is often
used to determine when a model has been optimally trained. One algorithm for
determining whether a model is overfitting is as follows1: divide the data into
a “training” set and an “evaluation” set (a common split is 80%/20%), and begin
optimizing the model using just the training set. At each optimization step, calculate
the goodness-of-fit metric for the model on the evaluation set, which is otherwise
omitted from the training process altogether. This method of evaluating a model’s
ability to successfully predict new, or “out-of-sample,” data is known as cross
validation (CV).

The classic observed behavior is that the goodness-of-fit metrics for both the training
and evaluation set improve as the model fits the training data better and better. At a
certain point, the model begins to overfit to the training data, and the goodness-of-fit
metric for the evaluation data worsens. This is because the model parameters have

1See also Cale et al. (2021), who define overfitting in terms of reduced 𝜒2 in the context of RV
activity modeling
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begun to reproduce the noise in the training set, at the expense of reproducing the
signal common to both datasets. A model that is overfitting, then, can be defined as
one that predicts the observations in a training set better than those in an evaluation
set. An overfitting model fits aspects of the data that are not predictable or common
to the entire data set, e.g., noise.

The optimally trained model is selected not by its performance relative to the training
data, but by its performance relative to the evaluation data, which was omitted from
the training process altogether. Making an analogy to Bayesian model comparison,
we could imagine a similar process where the goodness-of-fit is evaluated for an
“evaluation set” left out of the training process (i.e., posterior computation using
MCMC, nested sampling, etc.) for a series of models. One benefit of this method
over, e.g., formal Bayesian model comparison is that it also provides an easily-
interpretable absolute metric for how well the model fits the data: if the evaluation
set goodness-of-fit is significantly worse than that of the training set, we know the
model is misspecified, even if it has (comparatively) the lowest Bayesian evidence.

In this study, we apply the CV technique as defined above to evaluate the predic-
tiveness of one particular model fit to one particular star. This is intended as a
case study, aiming to inspire further investigation into the extent of and causes of
overfitting in RV modeling of young, active stars.

V1298 Tau
V1298 Tauri (hereafter V1298 Tau) is a young system of four ≳ 0.5 𝑅𝐽 planets
transiting a K-type pre-main sequence (PMS) star (David et al., 2019a, David et al.,
2019b). Very few transiting planets have been discovered around PMS stars (other
notable systems being AU Mic, Plavchan et al., 2020, Cale et al., 2021, Zicher et al.,
2022, Klein et al., 2022; K2-33, David et al., 2016; DS Tuc, Newton et al., 2019,
Benatti et al., 2019; HIP 67522 Rizzuto et al., 2020; Kepler 1627A, Bouma et al.,
2022; and TOI 1227, Mann et al., 2022). David et al. (2019a) reported the discovery
of V1298 Tau b, a 0.9 𝑅𝐽 object with an orbital period of 24d. David et al. (2019b)
discovered three additional planets in the system: V1298 Tau c at 8d, V1298 Tau d
at 12d, and a single-transiting object, V1298 Tau e.

It is unclear from their radii (0.5 − 1R𝐽) alone whether these planets are gas giants
that contracted rapidly after forming, or young terrestrial or mini-Neptune planets,
which will lose a large fraction of their atmospheres to photoevaporation (Owen and
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Wu, 2013) and/or core-powered mass loss (Ginzburg, Schlichting, and Sari, 2018)
as they age.

Suárez Mascareño et al. (2021), hereafter SM21, presented over 100 RVs of the
system with four different instruments, and used a suite of Gaussian Process (GP)
models in an effort to isolate the RV signals of the outer two transiting planets (b
and e), finding masses of 0.64 and 1.16 𝑀𝐽 for each respectively. Combined with
radii of 0.91 and 0.78 𝑅𝐽 , this implied high densities of 1.2 and 3.6 g cm−3. Such
high densities would require rapid contraction after within the 23 Myr lifetime of
the system and place the outer V1298 Tau planets at the upper density boundary
of even mature field exoplanets, where few theories predict planets to exist. Since
V1298 Tau e only transited once while observed with K2, SM21 did not have a
period constraint from transits, and derived a period of 40.2 ± 0.9 d from their RV
measurements. After the publication of SM21, Feinstein et al. (2022) published
updated ephemerides of all four planets using TESS photometry, including a second
transit of planet e. They placed a strict lower limit of 42 d on V1298 Tau e’s period,
in tension with the value from SM21. In addition, Tejada Arevalo, Tamayo, and
Cranmer (2022) performed a dynamical stability analysis using the mass measure-
ments reported in SM21, finding that 97% of system configurations consistent with
the SM21 posteriors are gravitationally unstable over the lifetime of the system.

SM21 performed a rigorous and state-of-the-art analysis, comparing several complex
models with Bayesian methods. However, several independent lines of evidence
appear to call the masses they report into question: the tension with formation
theory discussed in SM21, the updated planet e orbital period of Feinstein et al.
(2022), and the improbability of long-term stability derived by Tejada Arevalo,
Tamayo, and Cranmer (2022).

This Paper
The purpose of this paper is two-fold: 1) to demonstrate the use of CV to show
that the preferred model of SM21 is overfitting the RVs, and 2) to point out several
potential causes of the overfitting, which are not unique to SM21 but common
throughout the literature. We do not attempt to update the mass estimates for the
V1298 Tau planets in this paper. We also do not attempt to prove that the mass
estimates published in SM21 are incorrect, but instead seek to call into question
their reliability. Our argument is that future joint models of the stellar activity and
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planetary signals of V1298 Tau will need to prove their predictiveness in order to
be trustworthy.

The structure of this paper is as follows: in Section 2.2, we review the literature
data scrutinized in this paper and describe one additional contemporaneous RV
dataset taken with Keck/HIRES. In section 2.3, we demonstrate that the preferred
model of SM21 is overfitting. Section 2.4 discusses several potential causes of this
overfitting, and advises modelers on how to detect and/or avoid these subtle pitfalls.
In particular, Section 2.4 argues that differential rotation is an important effect for
V1298 Tau, and must be modeled carefully. We conclude in Section 2.5. We also
provide an appendix that provides a geometric interpretation of how GPR penalizes
complexity.

2.2 Data
Throughout this paper, we reference several data sets: three photometric time series
measured by different instruments and three RV timeseries derived from spectra
measured by different instruments. Each dataset is detailed in the subsections
below. All of the photometry is shown in Figure 2.9, and all of the RVs are shown
in Figure 2.1.

K2 photometry
We downloaded EVEREST-processed (Luger et al., 2016, Luger et al., 2018) K2
lightcurves for V1298 Tau using the lightkurve package (Lightkurve Collabora-
tion et al., 2018). We used built-in lightkurve functions to remove nans, remove
outliers, and normalize the data.

LCO photometry
We obtained ground-based LCO photometry verbatim from SM21.

TESS photometry
We obtained TESS lightcurves from Feinstein et al. (2022), who combined timeseries
photometry of V1298 Tau from TESS Sectors 43 and 44. Feinstein et al. (2022)
used the 2-minute light curve created by the Science Processing Operations Center
pipeline (SPOC; Jenkins et al., 2016), and binned those observations to 10 mins.
We normalized the data for each TESS orbit separately, following Feinstein et al.
(2022).
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Figure 2.1: A tour of the RVs scrutinized in this study. The CARMENES and
HARPS-N RVs are published in SM21, and the HIRES RVs are new in this study.
Takeaway: the RV variability of V1298 Tau is hundreds of m/s, which is similar
across all three instruments. The variability is significantly greater than the instru-
mental errors (which are included, but too small to see for the majority of points on
this plot).

SM21 RVs
We obtained CARMENES and HARPS-N RVs directly from SM21. We note that
SM21 excluded infrared-arm CARMENES RVs in its analysis, and we do the same
here.

HARPS-N RVs are wavelength calibrated using a ThAr lamp, and the HARPS-N
spectrograph covers 360-690 nm.

The visible arm of the CARMENES instrument covers the spectral range 520-960
nm, and spectra from this instrument are wavelength calibrated using a Fabry-Perot
etalon, anchored using hollow cathode lamps.
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Keck/HIRES RVs
Between November 16, 2018, and February 6, 2020, we obtained 36 RVs using
the HIRES spectrograph on the Keck I telescope (Vogt et al., 1994). Wavelength
calibration was performed by passing starlight through a warm iodine cell, and data
reduction was performed using the California Planet Search pipeline described in
Howard et al. (2010), which is adapted from Butler et al. (1996b). All HIRES
RVs used in this study are given in Table 2.1. Some of these RVs were previously
published in Johnson et al., 2022, and the processing is identical in that paper and
this. The same stellar template, constructed from two stellar spectra taken on 24 Oct
2019 UT without the iodine in the light path, was used to derive RVs in both studies.
In-transit RVs from that study have been excluded here. Spectra were typically taken
using the C2 decker (14” x 0.861”), which enables sky subtraction, and is the CPS
HIRES observer “decker of choice” for stars fainter than V∼10. However, a CPS
HIRES observer “rule of thumb” is to use the shorter B5 decker (3.5” x 0.861”)
in poor seeing conditions, as the Doppler pipeline sky subtraction algorithm is
unreliable when the stellar PSF fills the slit. Sky subtraction is not performed under
such conditions. Accordingly, 7 RVs published here were calculated from spectra
using the B5 decker. In both modes, HIRES has a resolving power of ∼60,000, and
the iodine cell spectral grasp translates to contributions to the RV from wavelengths
between 500 and 620 nm (Butler et al., 1996b).

2.3 Cross Validation Tests
Our intention in collecting additional RVs of V1298 Tau with HIRES was to jointly
analyze these data together with literature data and update the masses published in
SM21. However, early on in the analysis, we noticed clues that made us question our
assumptions. In particular, the new data we had collected did not seem consistent
with the models of SM21. In addition, many tested models converged on results
that were physically unreasonable or clearly inconsistent with subsets of the data.
We ultimately decided to test the predictive capability of the SM21 model that we
were using as our starting point, as a check on our own assumptions. This section
details the outcome of those experiments.

The main finding of this paper is that the median parameter estimate of the preferred
model of SM21 (their 4p𝑃𝑄𝑃2) is overfitting. For convenience, we will refer to this
model throughout the rest of this paper as the “SM21 preferred model.” Showing that
a point estimate is overfitting does not necessarily indicate that every model spanned
by the posterior is overfitting. However, since the preferred model presented by
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Table 2.1: New HIRES RV Data. Epochs are reported in units of BJDTDB, with a
2457000 offset applied.

jd - 2457000 RV [m s−1] RV error [m s−1]
1438.9463 387.47 7.885
1443.8205 -193.32 8.528
1443.9573 -87.96 7.941
1443.9682 -77.17 7.073
1443.9792 -92.67 8.609
1444.1566 -19.40 8.403
1476.8089 190.28 11.712
1479.0060 30.83 10.269
1490.7912 246.54 10.047
1491.7549 0.31 8.804
1508.9196 -56.33 9.530
1509.7900 163.24 12.032
1528.7841 -58.17 9.752
1532.7701 -78.17 10.465
1559.7316 261.44 9.531
1568.7290 -23.72 9.683
1569.7376 -94.99 11.022
1723.1354 -0.31 8.617
1724.0917 -26.27 9.648
1733.0739 -44.28 9.662
1743.9965 37.42 10.460
1765.9266 -138.49 11.108
1774.9154 287.77 9.431
1777.0163 94.72 9.400
1787.9817 -239.82 10.006
1794.8691 34.79 8.829
1795.9062 95.70 8.246
1796.9165 -90.09 8.827
1797.9532 292.26 8.131
1845.8966 375.28 9.472
1852.7705 -259.55 9.593
1855.8832 -68.08 16.101
1870.8459 318.54 8.901
1879.8314 282.03 9.115
1880.8314 222.22 8.493
1885.8611 306.95 19.622
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SM21 (their figure 11) appears approximately Gaussian around the MAP estimates
of the parameters relevant for us, (except for the kernel parameter C and the white
noise jitter for CARMENES, which both peak at effectively 0), we assume that
the MAP and median for this fit are close enough to make no difference, and that
inferences made about the median fit hold true for other high-probability areas of
parameter space.

Our goal was to test the predictiveness of the preferred SM21 model2 using CV. In
an ideal situation, we would do this by evaluating the model’s performance on new
HARPS-N data, unseen by the trained model. Lacking this, we constructed two
ad hoc “validation sets:” a timeseries of Keck/HIRES data contemporaneous with
the SM21 HARPS-N data, and the CARMENES data presented in SM21 (that the
model was also trained on, but which were treated as independent from the HARPS-
N data; see section 2.4). By chance, this results in a nearly perfect 80%/20% split for
both validation sets (80.3%/19.7% for HARPS-N/CARMENES, and 78.9%/21.1%
for HARPS-N/HIRES). In Figures 2.2 and 2.3, we show two visualizations of the
results of performing CV on these two validation sets. Figure 2.2 shows the GP
prediction of the SM21 preferred model, together with the HARPS-N data on which
it was trained and conditioned. The contemporaneous HIRES data and CARMENES
data and their residuals are overplotted. Figure 2.3 shows the residuals of this fit,
given in terms of standard deviations from the mean GP prediction. In both figures,
the residuals of the HIRES and CARMENES data have a much wider spread about 0
than the HARPS-N points. Because our intention was to evaluate the existing model,
we did not re-train the GP hyperparameters in order to compute the prediction shown
in Figure 2.2. Rather, we used the median parameters of the SM21 4p𝑃𝑄𝑃2 model,
conditioned on the HARPS-N data published in that study, to predict RV values at
each of the CARMENES and HIRES epochs.

Our interpretation of the difference in residual distributions shown in these two
figures is that the preferred SM21 model fits data included in its training set (i.e.,
the HARPS-N data) significantly better than contemporaneous data not included.
In other words, the model is not predictive. This is a hallmark of overfitting,
and indicates that the preferred SM21 model is not representative of the process
generating the data.

An important counter-interpretation is that the V1298 Tau RVs measured by HARPS-
N, HIRES, and CARMENES show different activity signals, and not that the pre-

2conditioned on the HARPS-N data of SM21; see Section 2.4.



24

ferred SM21 model is overfitting. In particular, starspots cooler than the stellar
photosphere cause RVs collected in redder bands, where the contrast between spot
and photosphere is lower, to show lower variability amplitudes (e.g., Carpenter,
Hillenbrand, and Skrutskie, 2001; Prato et al., 2008; Mahmud et al., 2011). In
addition, we expect different instruments to have different RV zero-point offsets.
Importantly, these two effects cannot explain the increased out-of-sample resid-
ual spread observed in Figures 2.2 and 2.33; the preferred SM21 model fitted the
CARMENES zero-point offset, white noise jitter value, and activity amplitude, and
those values have been applied to the CARMENES data. To account for the potential
differences between the HIRES and HARPS-N RVs, we applied an RV zero-point
offset and scale factor (0.76) that minimizes the residual spread (i.e., we applied a
best-fit linear model to the HIRES data in order to minimize 𝜒2 with respect to the
GP model prediction). See section 2.4 for further discussion of this point.

Another potential explanation for the phenomenon observed in Figures 2.2 and 2.3
is that the activity signals observed by HARPS-N, CARMENES, and HIRES are
fundamentally different; i.e., the signal observed by one instrument is not a linear
combination of the signal observed by another. This might occur because, for ex-
ample, all three instruments have ∼km/s instrumental systematics relative to one
another, or because the shape of the activity signal changes significantly with wave-
length. To rule out this explanation and provide more evidence that the effect we’re
seeing is actually overfitting, and not instrument-specific differences, we repeated
the experiment above using only HARPS-N data. We randomly selected 80% of
the HARPS-N data published in SM21, conditioned the preferred SM21 model on
that subset, and computed the residuals for the random “held-out” 20%. The results
are shown in Figures 2.4 and 2.5. Even though these held-out 20% were included
in the training process (i.e., they informed the values of the hyperparameters), we
observed substantially larger residuals than for the conditioned-on subset. This
experiment provides additional evidence for overfitting, and not instrumental- or
wavelength-dependent systematics.

It is worth noting that we distinguish between residual distributions (Figures 2.4 and
2.3) “by-eye” in this paper, but this technique will not generalize for more similar
residual distributions. Residual diagnostic tests (see Caceres et al., 2019 for an
example) will be helpful in generalizing this methodology.

3assuming that stellar activity signals observed by different instruments can be described as
linear combinations; see Section 2.4.
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Figure 2.2: SM21 preferred model prediction and contemporaneous observed data.
The HIRES data have been scaled and offset by linear parameters that minimize the
residual spread with respect to the GP model, and the median 4p𝑃𝑄𝑃2 CARMENES
data RV zero-point value was been applied in order to more easily compare both
datasets with the model expectations. Top: mean model prediction (gray solid line),
together with contemporaneous HARPS-N (black), CARMENES (red), and HIRES
(purple) RVs overplotted. Bottom: model residuals, together with 1- and 2-𝜎 GP
uncertainty bands (shaded dark and light grey regions, respectively). Takeaway:
The preferred SM21 model is overfitting to the HARPS-N data, which can be seen
in the increased spread about the residual=0 line for both HIRES and CARMENES
data during epochs with contemporaneous HARPS-N data.
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Figure 2.3: Another visualization of Figure 2.2. Histograms of the RV residuals,
given in units of standard deviations from the mean prediction. Takeaway: The
broader and more uniform distribution of HIRES and CARMENES residuals relative
to the HARPS residuals is another hallmark of overfitting.

2.4 Potential Causes of Overfitting
This section points out several potential causes of the overfitting described in the
previous section, and advises on how to detect and/or ameliorate these effects. We
do not attempt to quantify the effect of each of these on the overfitting discussed
in the previous section, but intend this as a qualitative discussion. Many of these
effects are potentially relevant for stars other than V1298 Tau.

Importantly, this is not a list of “mistakes,” but a list of assumptions we questioned
throughout the process of trying to explain why the preferred SM21 fit was overfit-
ting. We encourage future close investigation of each of these phenomena, both for
V1298 Tau and other objects. This list is not exhaustive.

Correlated Datasets vs Datasets that Share Hyperparameters
The mathematical formalism in this section is essentially identical to that of Cale
et al. (2021, see their section 3.2), but was developed independently. We encourage
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Figure 2.4: Same as Figure 2.2, except that the model prediction is computed
by conditioning on a randomly-selected 80% subset of the HARPS-N data, as
described in the text, as the residuals are computed for the 20% subset that was held-
out. Takeaway: The effect seen in Figure 2.2 cannot be explained by instrument-
or wavelength-dependent systematics, because the same larger residuals are seen
within the data taken by only HARPS-N.
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Figure 2.5: Another visualization of Figure 2.4. Same as Figure 2.3, except com-
puted using the same method as for 2.4. Takeaway: the larger and more uniform
spread of residuals for HARPS-N data on which the model was conditioned provides
more evidence that the preferred SM21 model is overfitting.

readers to compare our explanations, and we ask readers to also cite Cale et al.
(2021) whenever referencing Section 2.4 of this paper.

There is a difference between correlated measurements that are allowed to have dif-
ferent GP amplitudes and datasets that share GP hyperparameters but are themselves
uncorrelated. We are motivated to stress this distinction by the need in RV timeseries
fitting to write down the joint likelihood of a model applied to datasets taken from
several different instruments. As a concrete example, let’s consider three fictional
RV data points, the first two from HIRES and the next one from CARMENES, to
which we would like to fit a GP model. Because of the different bandpasses of
HIRES and CARMENES, we might expect the same stellar activity signal to have
a different amplitude when observed by these two instruments. However, we might
expect the time-characteristics of the signals to be identical. In other words, we
expect the CARMENES activity signal to be a scalar multiple of the HIRES
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activity signal.4 As discussed in Section 2.3, this assumption is borne out, at least
to first order, in observations of other active stars at different wavelengths (see, e.g.,
Mahmud et al., 2011, who investigated the RV activity of the T-Tauri object Hubble
I 4 with contemporaneous infrared and optical spectra taken with different instru-
ments), but this point warrants further scrutiny. Comparing the variability of active
stars with different instruments, as well as the variability of the sun with different
solar instruments, is an important endeavor.

Another important caveat is the use of different techniques for computing RVs from
stellar spectra (e.g., the iodine/forward-modeling technique of HIRES vs simultane-
ous reference/CCF technique of CARMENES and HARPS-N). Switching from one
of these techniques to another is not expected to affect an astronomer’s ability to
recover common Keplerian signals, but spot activity is not a simple Doppler shift.
More work is needed to understand and model spot activity at the spectral level.
We proceed by assuming that modeling the same spectrum using an iodine/forward-
model and with a simultaneous ThAr lamp reference (as an example) will only
change the effective wavelength range of the spectrum that is used to compute RV,
and therefore affect only the amplitude of spot-induced variations.

Assuming linearly-related GPs for different instruments, we can write down the joint
covariance matrix for our three fictional data points, allowing unique amplitude terms
𝑎C and 𝑎H for each dataset, and assuming an arbitrary kernel function k𝑖, 𝑗 describing
the covariance between RVs at times t𝑖 and t 𝑗 :

𝐶joint =
©­­«
𝑎2

H𝑘0,0 𝑎2
H𝑘0,1 𝑎H𝑎C𝑘0,2

𝑎2
H𝑘1,0 𝑎2

H𝑘1,1 𝑎H𝑎C𝑘1,2

𝑎C𝑎H𝑘2,0 𝑎C𝑎H𝑘2,1 𝑎2
C𝑘2,2

ª®®¬ . (2.1)

Optimizing the hyperparameters of a fit that uses this covariance matrix to define
the GP likelihood will give the desired result.

SM21, following many other fits in the literature, constructed an independent covari-
ance matrix for each RV instrument in their dataset and summed the log(likelihoods)
given by these together. This allows each RV dataset to be independent; i.e., a dat-
apoint taken by HIRES is not correlated with a datapoint taken at exactly the same
time by CARMENES. Figures 2.11 and 2.12 illustrate the difference between these
two likelihood definitions for data for a different object (chosen because it is easier
to see the effect using this dataset).

4With different RV offsets as well, so technically a linear combination, not just a scalar multiple.
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This assumption of independent data for each instrument effectively adds additional
free parameters to a model, and makes it more susceptible to overfitting. This is also
why, in Figures 2.2 and 2.3, we could demonstrate that the preferred SM21 model
was overfitting by comparing the model prediction conditioned on HARPS-N data
to the CARMENES data; the CARMENES data influenced the final values of the
hyperparameters, since they were shared between the two Gaussian processes, but
otherwise the datasets were treated as independent.

To go along with this paper, we will release a new version of radvel (Fulton et al.,
2016), built on tinygp (Foreman-Mackey et al., 2022), that treats the models for
different instruments as correlated, but allows each instrument its own GP amplitude,
white noise jitter term, and RV zero-point offset term.5 The difference between the
previous version of radvel and this version is also illustrated in Figures 2.11 and
2.12 in the Appendix.

Future work should continue to test this assumption by obtaining simultaneous (or
near simultaneous) RVs for a variety of stellar types with different instruments,
across a wide range of bandpasses.

Prot and Prot/2
Another practice that may have made the SM21 preferred fit susceptible to overfitting
involves constructing a GP kernel with one term at the rotation period and another
term at its first harmonic. In other words, the SM21 preferred model kernel has the
following form:

𝐶𝑖 𝑗 = 𝑓1(𝑃rot) + 𝑓2(𝑃rot/2), (2.2)

To understand the motivation for this, we first need to scrutinize the RV signal in
Fourier space. Figure 2.6 shows the Lomb-Scargle periodogram of all RV data
presented in SM21, zooming in on two important parts of period space. There are
four extremely significant peaks in the RVs, which can all be explained with a single
periodic signal at 2.91d, the rotation period identified by SM21. Along with a strong
peak at 2.91d (hereafter Prot), there is a signal at Prot/2, which is often observed in
RVs of stars showing starspot-induced variability (Nava et al., 2020). The other
two strongly significant peaks can be explained as 1-day aliases of Prot and Prot/2.
In other words, the dominant RV signal is periodic, but requires a two-component

5This is slightly different from the GP prescription in juliet (Espinoza, Kossakowski, and
Brahm, 2018), which does not allow different amplitudes for individual RV instruments.
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sinusoidal fit (i.e., it needs more terms in its Fourier expansion) in order for the fit to
reproduce the shape of the curve. This is visualized in Figure 2.7, which shows the
RVs phase-folded to Prot. In summary, the RV curve comprises a single periodic
pattern, but that pattern is not a simple sinusoid.

The preferred SM21 model kernel sums two approximately quasi-periodic terms,
one at Prot and one at Prot/2, because the approximate quasi-periodic kernel used in
SM21 (SM21 equation 1; derived in Foreman-Mackey et al., 2017) is less flexible
than the standard quasi-periodic kernel (SM21 equation 3). In other words, the
approximate kernel is less capable of fitting non-sinusoidal shapes. However, each
term was modeled with its own independent exponential decay timescale. This adds
an additional free parameter to the fit, which exacerbates the potential for overfitting.

The most straightforward way to address this is to construct a model with fewer
unnecessary free parameters, for example by equating the parameters L1 and L2 in
SM21 equation 1. A more complicated suggestion, which would be an excellent
avenue for further study, is to leverage the correlation between the photometry and
RVs, following, for example, Rajpaul et al. (2015). This requires assuming (or
fitting for) a relationship between a photometric datapoint and an RV datapoint at
the same time. Our preliminary investigations along these lines indicate that the FF’
formalism, which models an RV signal as a function of a simultaneous photometric
(F) dataset and the time derivative of the photometric dataset (F’; Aigrain, Pont,
and Zucker, 2012), does not allow for a good phenomenological match between
the LCO photometry and the contemporaneous RVs, but the derivative of the LCO
photometry appears to fit better (i.e., the RV curve appears to be possible to model
as a linear combination of the F’ component only)6. Future work could write down
a joint GP formalism that models RVs as the time derivative of the photometry (such
a formalism would be very similar to that of Rajpaul et al., 2015).

Regardless, in order to be confident in the relationship between the photometry and
the RVs, as well as to pick out the components of the RV that do not occur at Prot,
we suggest a very high-cadence (several observations per night) RV follow-up
campaign with contemporaneous photometry7 in order to develop a high-fidelity
model of the stellar variability8. It is important to note that this campaign need

6This was also noted in SM21.
7As of 1-30-23, V1298 Tau will unfortunately not be reobserved with TESS through year 6. We

used tess-point (Burke et al., 2020) to make this determination.
8It is worth pointing out that similar strategies have been successful before, e.g., to measure the

mass of Kepler-78 b (Pepe et al., 2013, Howard et al., 2010)
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not be performed by an RV instrument with 30 cm s−1 precision; Johnson et al.
(2022) demonstrated 6-7 m s−1 RMS precision with HIRES over several hours, even
though the stars moves by hundreds of m s−1 over even a single night. This level of
instrumental RV error should be sufficient to understand the stellar activity, so long
as the cadence is as high as possible.

Keplerian Parameters Enable Overfitting in the Presence of Un-modeled Noise
A Keplerian signal has five free parameters (semi-amplitude, eccentricity, argument
of periastron, time of periastron, and period). A model with two Keplerian signals
therefore has 10 additional free parameters than a model without. To first order, more
free parameters means more model flexibility. This problem can be addressed using
model comparison, which penalizes complexity. However, if there is un-modeled
noise in the data, including additional Keplerian signals in the model can lead to
overfitting; for example, high eccentricity Keplerian models have similar properties
to delta functions, which have relatively “flat” RV curves, except for a spike in RV
near periastron. With insufficient sampling, outlier data points can be overfit with
eccentric Keplerian signals.

A common worry in the RV modeling community is that using GPR to model stellar
activity will “soak up” Keplerian signals, leading to underestimates of Keplerian
RV semi-amplitudes (discussed in Aigrain and Foreman-Mackey, 2022), even when
modeled jointly. However, we find evidence for the opposite effect in the SM21
preferred fit: that the Keplerian signals function as extra parameters that make the
model susceptible to overfitting, and the GP is forced to compensate. Examining
Figure 2.8, which shows the contributions to the mean model prediction from the
Keplerians and the activity-only portion of the mean GP model9, we find that the
activity model interferes with the Keplerian model where RV data exists. This is
seen most readily when smoothing the activity model over several rotation periods
(effectively low-pass filtering the activity model).

We can explain this behavior by imagining that there is some un-modeled noise
source in the data that is inconsistent with Keplerian motion or quasi-periodic
variability (see next section). If some non-physical combination of parameters fits
the data better at an epoch with many data points that is affected by this noise source,
this may outweigh the negative Bayesian evidence contributions from 1) the added
complexity and 2) the worse fit at epochs with fewer data points. We would then

9The activity-only portion is isolated following SM21, subtracting the Keplerian mean model
from the total mean GP prediction.
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Figure 2.6: Lomb-scargle periodogram of all RV data presented in SM21, and
2-component sinusoidal fit passed through the same window function. Top: Pe-
riodogram of all RVs (solid purple line) and a 2-component sinusoidal fit to the
data (filled grey). Middle/bottom: same, but zoomed in. The rotation period, its
harmonic, and its 1d aliases are labeled. Takeaway: the dominant Lomb-Scargle
periodogram structure can be explained as harmonics and aliases of a single period
at 2.91d.
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Figure 2.7: HARPS-N RVs and contemporaneous LCO photometry from SM21,
phase-folded to the rotation period and colored by observation time. Top: LCO
photometry. Bottom: HARPS-N RVs, with fitted jitter values from the preferred
SM21 fit added to the error bars. 1- and 2-component sinusoidal fits are also shown.
Takeaway: the presence of a strong periodogram peak at Prot/2 results from the
higher-order shape of the RV rotation pattern. This pattern is not present in the LCO
photometry, which is approximately sinusoidal over the rotation period.
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expect the Keplerian model to oversubtract at epochs with fewer data points (e.g.,
around jd = 1725 in Figure 2.8).

This effect suggests that the Keplerian signals in the SM21 preferred fit are not
a viable description of the RV variability at timescales greater than the rotation
period. More effort certainly needs to be spent understanding this phenomenon, but
in the meantime we suggest performing CV tests in order to detect overfitting of this
nature.

Differential Rotation
The previous subsections all argue that the preferred SM21 fit had too many free
parameters (or effective free parameters) that allowed the model to overfit. In other
words, we have argued that a simpler model (one for which the GP predictions
for each instrument are scalar multiples of each other, a single period is present
in the kernel, and no Keplerian signals are present in the model) would be more
predicitive, albiet perhaps with larger uncertainties. In this section, we suggest that
this much simpler proposed model is still insufficient, because the host star has
multiple, differentially rotating, active regions.

Differential rotation may not be the un-modeled noise source that we propose is
affecting the SM21 preferred fit. The conclusions of this paper do not change if
this is true. We discuss it here because it is potentially widely relevant, especially
for young stars. We call for more work on modeling and understanding differential
rotation in RVs.

Evidence for a Strong Differential Rotation Signal from Photometry

In the K2 and TESS photometry of V1298 Tau (Figure 2.9), two periodic signals of
different amplitudes are visible by eye. These peaks are coherent in phase towards the
end of both baselines, producing a larger overall photometric variability amplitude.
Although each baseline covers only a portion of the beat periods implied by these
different periods coming into and out of phase, the beating “envelope” is still easily
distinguished. To guide the eye, we over-plotted the shape of the beating envelope
formed by the three dominant periods in the Lomb-Scargle periodogram of the K2
data.

Multiple closely-related periodicities are also apparent in the periodograms of the
K2 and TESS data (and the LCO data, albeit at lower significance, potentially due
to the lower cadence of that dataset; Figure 2.10). In particular, over both the K2
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Figure 2.8: Smoothed activity-only component of the preferred model of SM21,
together with the Keplerian model components. Top: 100 random draws from the
posterior describing the planet b Keplerian are also shown, to illustrate that this
effect holds true across the posterior, and not simply for one point estimate. The
light gray solid line shows the full activity-only model component, and the darker
grey shows this model averaged over a (randomly chosen) 11.2 d timescale. (Note
that the same pattern holds when choosing a slightly different smoothing timescale;
i.e., this is not a result of aliasing.) Shaded grey regions indicate where there are
observations. Bottom: same as top, but with a zoomed-in y axis. Takeaways:
the activity-only component changes suddenly in windows of time where there are
observations. When the activity-only component is averaged over shorter-timescale
variations, the GP contributes to the fit on timescales similar to the Keplerians,
even interfering destructively at some times. This casts doubt on the reality of the
Keplerian signals reported in SM21, indicating that they may be favored because of
overfitting.
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and TESS baselines, a dominant periodicity at 2.85 and 2.92 d, respectively, and
two less prominent periodicities (one at a larger period, and one at a smaller period)
are present. The multiple periodicities in the light curve, visible both in the shape of
the beating envelope and in Fourier space, have often been interpreted as a smoking
gun of differential rotation (see, e.g., Lanza, Rodono, and Zappala, 1994, Frasca
et al., 2011). It is important to note, however, that short spot lifetimes may also
produce the observed photometric pattern, and have been shown in simulations to be
easily confused with differential rotation (see, e.g., Basri and Shah, 2020). Longer
photometric time baselines than are available in the photometric data presented in
this paper are needed to distinguish between the two. The conclusion of this section
(that there is a noise source visible in photometry that is un-modeled in the SM21
preferred model) would remain unchanged in this case, but this interpretation has
important implications for future modeling efforts. That the signals arise from a
close binary is ruled out by the multiple nearby periods in the light curve (rotation
of two tidally extended binary stars can produce a similar pattern, but with a single
period), while astroseismic pulsations are ruled out by the amplitude and period of
the variability; V1298 Tau is a PMS 1.2M⊙ star with log 𝑔=4.48 (SM21), which we
would expect to be oscillating on the scales of minutes and ≲1 ppt, not days and 20
ppt (Chaplin and Miglio, 2013; see their Figure 3).

Effect on RVs

Assuming that V1298 Tau is differentially rotating, it is possible that the combination
of a multiply periodic structure with insufficient cadence is leading the GP to prefer
a more complex model. In other words, the data is not consistent with a quasi-
periodic structure, so a simple quasi-periodic model will not be preferred over a
more complex model (e.g., one with Keplerians at longer periods), even if neither is
predictive. Even a secondary active region with 5% the RV amplitude of the primary
structure (reasonable given the photometric amplitude ratios) would incur an RV
variability of 20 m/s, significantly greater than the instrumental floor of HARPS-N,
CARMENES, and HIRES.

An important clarification is that this conclusion is consistent with the discussion in
Section 2.4. Although there is a clear periodic 2.91 d signal visible in Figure 2.7,
there is also ∼200 m s−1 of scatter around this signal. It is possible that this scatter
may contain coherent signals at other periods that are unresolvable with the current
RV cadence.
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Complicating this already complicated story is the fact that the dominant periodicity
appears to change over time (Figure 2.10). This provides further motivation for our
major recommendation, first given in Section 2.4: V1298 Tau appears to be a
multiply-periodic star with evolving periodicity. A high-cadence (several data
points per night) RV campaign is necessary to construct a high-fidelity activity
model. The high cadence is necessary to resolve the close periodicities due to
apparent differential rotation. Care should be taken to ensure that the periods do
not evolve significantly over the observing baseline, or that this effect is sufficiently
modeled.

2.5 Summary & Discussion
In this study, we have presented evidence that the preferred model of SM21 is
overfitting using two ad hoc “validation” data sets: one set of contemporaneous
HIRES and CARMENES data, and one set of artificially held-out HARPS-N data.
The effects that we have proposed may be responsible for the non-predictiveness of
the preferred SM21 model are:

• The RV datasets from different instruments are treated as uncorrelated, al-
lowing the model more freedom. We will release a new version of radvel
removing this assumption.

• The SM21 preferred model includes two summed quasi-periodic terms at Prot

and Prot/2 in their kernel, each with its own free exponential decay parameter.
This additional free parameter grants the model unnecessary flexibility.

• The SM21 model also includes parameters describing eccentric Keplerian
signals, which grant even more degrees of freedom.

• We find evidence from multiple independent photometric datasets that this
star has a strong differential rotation signal, indicating that a singly (quasi)-
periodic activity model is insufficient. This explains why more complex
models were favored over simpler models in SM21, even though the preferred
model fell victim to overfitting.

The first point, in particular, warrants further scrutiny for stars across a range of ages
and spectral types. We argued in Section 2.4 that RV datasets taken by instruments
with different bandpasses and calculated using different RV extraction techniques
should be linear combinations of each other, recapitulating the observation made
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Figure 2.9: A tour of the relevant photometry of the star V1298 Tau. Panel a:
detailed view of the K2 photometry (purple points), with a beating envelope over-
plotted in solid pink. The beating envelope is drawn to illustrate the effect of spot
beating on overall variability amplitude, not to precisely fit the data. The envelope
drawn is constructed from the beating of three sinusoids at 2.70, 2.85, and 3.00 d.
Signatures of beating can be seen by eye: two peaks of different amplitudes phase
up toward the end of the K2 baseline, producing a single-peaked variability pattern
and a larger overall variability amplitude. Panel b: detailed view of the TESS
photometry (purple points). Beating characteristics are also visible, although the
baseline is shorter than that of K2. Panels c, d, and e: relative views of K2, LCO,
and TESS photometry, emphasizing relative time baseline and variability amplitude.
A typical error bar for each dataset is also shown in the bottom left corner of each
panel. The differences in wavelength coverage and flux dilution between the K2,
LCO, and TESS photometry largely account for the overall differences in amplitude
of the signals. Both the K2 and TESS data cover less than one complete beat period
of the two largest-amplitude periodic signals, but the LCO photometry (which is
contemporaneous with the RVs of SM21) covers a longer time baseline. Panel
e: All photometry, plotted on the same panel to emphasize relative time elapsed
between each dataset. Takeaway: differential rotation effects are visible by eye in
both the K2 and TESS datasets.
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Figure 2.10: Lomb-Scargle periodograms of the photometric data shown in Figure
2.9. Top: Zoom-in on the presumed rotation period, showing several nearby
peaks in all three datasets. Bottom: Same as top over a wider period range.
Takeaway: multiple closely-related periodicities are visible in Fourier space for all
three photometric datasets, more evidence for differentially rotating active regions.
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in Cale et al. (2021), but this assumption may not be true. Contemporaneous RV
datasets made by different instruments will help test this assumption.

These authors have devoted significant person- and computer-power to producing a
fit to the data presented here that take into account all of these effects. However,
we have found that jointly fitting all the data using only a single rotation period
forces all of the instrumental GP amplitudes to 0. We interpret this as evidence
that a singly (quasi)-periodic GP model is incapable of fitting the data (i.e., a
more complex model is needed), and differential rotation provides a ready (but not
sole) explanation. However, the differential rotation effects are very complicated
to disentangle with the current dataset.10 Again, we suggest a high-cadence RV
campaign to resolve the multiple, nearby periodicities in the RVs and construct a
high-fidelity model.

One important detail to note is that the GP kernel which best-fits a highly active,
rapid-rotator like V1298 Tau may be wholly inappropriate to fit the activity signal
of an older, quieter, Sun-like star. In young, rapid-rotators, the activity signal is
relatively long-lived, often stable across several observation epochs (e.g., Yu et al.,
2019; Carvalho et al., 2021).

On the other hand, Sun-like stars have much shorter-lived spots, sometimes evolving
over the course of one or two week observing campaigns (Giles, Collier Cameron,
and Haywood, 2017; Namekata et al., 2019). A GP kernel describing the activity
of Sun-like stars should be more flexible, allowing for more rapidly changing and
decaying signals. While a single kernel may be capable of spanning these regimes
of period evolution, the attempt to construct one should be made with caution. For
the time being, the best approach may be to treat the two regimes of activity with
unique kernels.

This analysis is imperfect and incomplete. Many of the effects we have discussed
are subtle, and we encourage others to study them further. This analysis has also
evolved (quite a lot) over the preparation of this study.

There are many exciting follow-up avenues for the V1298 Tau system. First, an
independent determination of the planet masses with TTVs would be enormously
helpful in providing a “check” for RV modelers. Second, we believe it is worthwhile
to explore modeling frameworks for V1298 Tau that explicitly model the relationship
between contemporaneous photometry, activity indices, and multiple RV datasets.

10Although we highly encourage others to try!
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These frameworks (such as that of Rajpaul et al., 2015 and Cale et al., 2021)
move beyond sharing hyperparameters between contemporaneous photometric and
RV datasets and allow a function of one dataset to be directly correlated with the
other, decreasing the overfitting potential. In the longer term, comparing or jointly
modeling these data with Doppler tomographic information and spectrum-level
measurements, as in Yu et al. (2019), Finociety et al. (2021), and Klein et al. (2022)
will provide even stronger constraints.

In addition to working toward an optimal physical model of all available data, it is
worth investigating alternative statistical modeling pathways to GPR, especially low
computational cost techniques like autoregressive moving average (ARMA) models
(Feigelson, Babu, and Caceres, 2018, Durbin and Koopman, 2001). ARMA models
treat the 𝑖th datapoint as a linear combination of past data points and model residu-
als, and “training” involves optimizing the linear coefficients. Directly comparing
models constructed with ARMA and GPR would be a worthwhile exercise in general
for datasets containing stellar activity, and in particular for young, active stars.

We believe that understanding the RV variability of young stars is an endeavor that
will pay dividends in the near future. The relative long-term stability of activity on
young stars allows for detailed study of a given spot geometry and its impact on both
photometric and spectroscopic observations across multiple bands. As we work
to understand how to best fit activity with GPs, young stars, particularly WTTSs,
provide good laboratories on which to test our techniques.

Just as we validate the performance of a new instrument on stars with large, well-
studied Keplerian signals, we must, as a field, validate the performance of our
activity-modeling techniques on stars with large, well-studied activity signals before
we can trust activity-models applied to Sun-like stars at 30 cm s−1 precision11. This
starts by allocating resources to the construction of high-cadence RV datasets of
young stars, and continues by studying a) the relationship between RVs and auxiliary
data, such as photometry and activity indices, b) the best phenomenological models
(kernels, etc) for the data, c) the best methods for validating a given model’s accuracy,
and d) the cadence needed to resolve periodic signals (and combinations of signals).
We believe that these studies, on young stars, will pave the way for stellar activity
models with 30 cm s−1 predictive capability, on which the characterization of Earth
2.0 depends.

11In fact, the activity-to-Keplerian ratio of 1000 m s−1: 50 m s−1 for warm giant planets around
a young star like V1298 Tau is reminiscent of the 1 m s−1 : 10 cm s−1 ratio for an Earth around a
Sun-like star.
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Figure 2.11: Demonstration of the impact of constructing separate covariance ma-
trices and adding the log(likelihoods). Compare with Figure 2.12. The data and
best-fit parameters are for K2-131, published in Dai et al. (2017), for demonstration
purposes only. Top: GP mean prediction (black solid line) and 1-𝜎 uncertainties
(purple filled), together with the HARPS-N data points on which the GP is condi-
tioned (purple points). Middle: Same as top, but for PFS data. Bottom: Residuals
with respect to the GP mean prediction. Takeaway: When separate covariance
matrices for each RV instrument are used, contemporaneous data are uncorrelated
in the model, allowing additional degrees of freedom.
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Figure 2.12: Same as Figure 2.11 (in particular, using the exact same data and
GP hyperparameters), but here a single covariance matrix is constructed, following
the suggestion in Section 2.4. Takeaway: Constructing a single covariance matrix
requires that GP predictions for separate instruments are scalar multiples of one
another, which is more consistent with physical expectations and results in a more
constrained model than one with a separate covariance matrix for each instrument.
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2.6 Appendix: Gaussian Processes and Occam’s Razor
Many introductions to GPR (e.g., Aigrain and Foreman-Mackey, 2022) mention that
the GP likelihood has an “Occam’s razor” term built in that penalizes complexity.
This section briefly reviews GPR, then outlines a geometrical interpretation of the
complexity penalty in order to further readers’ understanding.

A Gaussian process regression model parameterizes the covariance between data
points using a kernel function. A statistician may pick an arbitrary function (subject
to certain mathematical requirements, see Rasmussen and Williams, 2006 for the
gory details) to be the kernel, which can then be used to calculate the covariance
between any two data points. As an example, let’s consider the periodic kernel:

𝐶𝑖 𝑗 = 𝜂
2
1 exp

−
sin2( 𝜋 |𝑡𝑖−𝑡 𝑗 |

𝑃rot
)

𝜂2
3

 , (2.3)

where 𝜂1 is the amplitude, 𝑃rot is the variability period (often the star’s rotation
period), and 𝜂3 is the harmonic complexity, or degree of “wiggly-ness” of the
repeating signal. Given this model for the covariance of our data, and some data,
we can make a prediction, which is the conditional probability distribution over
expected values at new measurement times. This is referred to as conditioning a GP
on a set of data.

Importantly, Gaussian process regression does not inherently involve training (i.e.,
parameter tuning, generally via an optimization and/or MCMC step). Gaussian
process regression is just the process of using a parametrization of your covariance
matrix to predict the values and uncertainties of new data points given existing data
points.

The “training” part comes in when you are optimizing the hyperparameters of your
kernel (optionally jointly with parameters of a mean function, which could be a
function of Keplerian orbital parameters). Now, it becomes important to compute a
statistic describing how well your GP model fits your data, so that you can optimize
the (hyper)parameters to obtain your result. This is where the Gaussian process
likelihood comes in:

log 𝑝(𝑑 |𝑚) = −𝑁
2

log 2𝜋 − 1
2

r 𝑇C−1r − 1
2

log |C|, (2.4)

where C is the covariance matrix computed for the times at which you have data,
𝑁 is the number of measurements, and r is the vector of residuals (data - mean
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model). The first term is a constant, and does not change as a function of the kernel
hyperparameters, and the second term is analogous to 𝜒2 (in fact, it reduces to 𝜒2 in
the limit of no off-diagonal covariance). The second term describes how well your
mean model and correlated noise description matches your data. The third term is
the “Occam’s razor” term that penalizes complexity.

To understand how the third term penalizes complexity, recall that the determinant
of a matrix can be understood as the hypervolume between vectors defined by the
columns of the matrix. To make this concrete, consider the 3x3 identity matrix:

©­­«
1 0 0
0 1 0
0 0 1

ª®®¬ . (2.5)

The vectors defined by the columns of this matrix are (1,0,0), (0,1,0), and (0,0,1).
The volume of the 3D shape defined by these vectors (the unit cube) is 1, the same
as the matrix determinant!

The i-th column vector of a covariance matrix can be interpreted as the vector
of covariances between a data point taken at t𝑖 and every other data point in the
dataset. The determinant of this matrix, then, is the hypervolume defined by these
covariance vectors. A perfectly covariant matrix, in which all data points are
perfectly correlated, will consist of all 1s12, and the covariance vectors will all
“point” in the same direction. This results in a third-term contribution of:

−1
2

log |C| = −1
2

log 0

= −(−∞)
= ∞.

(2.6)

A matrix of perfectly independent data points, on the other hand, is (a scalar multiple
of) the identity matrix. The covariance vectors all “point” in orthogonal directions.
This matrix results in a third-term contribution of:

−1
2

log |C| = −1
2

log 1

= 0.
(2.7)

12Or a scalar multiple of the matrix of all 1s.
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This exercise demonstrates that the determinant of the covariance matrix quantifies
how “clustered” the covariance vectors corresponding to each data point are in
hyperspace. More clustered covariance vectors get a big likelihood boost, while
less clustered/more independent covariance vectors get a smaller boost. Figure 5.3
in Rasmussen and Williams, 2006 decomposes the likelihood contributions of the
second and third terms in Equation 2.4, illustrating how they combine to produce a
local likelihood maximum in parameter space for a toy model.
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3.1 Abstract
Giant exoplanets have been directly imaged over orders of magnitude of orbital
separations, prompting theoretical and observational investigations of their forma-
tion pathways. In this paper, we present new VLTI/GRAVITY astrometric data
of HIP 65426 b, a cold, giant exoplanet at a projected separation of 92 au from
its primary. Leveraging GRAVITY’s astrometric precision, we present an updated
eccentricity posterior that disfavors large eccentricities. The eccentricity posterior
is still prior-dependent, and we extensively interpret and discuss the limits of the
posterior constraints presented here. We also perform updated spectral comparisons
with self-consistent forward-modeled spectra, finding a best fit ExoREM model with
solar metallicity and C/O=0.6. An important caveat is that it is difficult to estimate
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robust errors on these values, which are subject to interpolation errors as well as
potentially missing model physics. Taken together, the orbital and atmospheric con-
straints paint a preliminary picture of formation inconsistent with scattering after
disk dispersal. Further work is needed to validate this interpretation.

3.2 Introduction
The existence of cold Jupiters (CJs) at large separations (10s of au) is a formation
puzzle. Direct imaging surveys have revealed that these planets are intrinsically
rare, with an occurrence rate of about 1% (Bowler and Nielsen, 2018), but given
that the nominal core formation timescale at typical CJ separations is much longer
than the disk dispersal timescale (Armitage, 2020), we would not expect CJs to
exist at all, assuming in-situ core accretion. Direct gravitational collapse within a
disk is an alternative to core accretion, but with its own issues, particularly very
fast migration after formation (Nayakshin, 2017, Vorobyov and Elbakyan, 2018).
The CJ population is quite diverse, with masses spanning an order of magnitude
and separations spanning several (Bowler, 2016), so it is also possible that multiple
formation mechanisms are at play.

The eccentricities of CJs are a useful tracer of formation history, both at the popula-
tion level (Bowler, Blunt, and Nielsen, 2020a), and for individual systems. Marleau
et al. (2019) conducted a detailed investigation of possible formation scenarios via
core accretion for the ∼14 Myr CJ HIP 65426 b (Table 3.1). At a projected separa-
tion of 92 au (Chauvin et al., 2017), this object is significantly farther from its star
than, for example, the famous HR 8799 planets (at 16, 26, 41, and 72 au, Wang et al.,
2018), and therefore even more of a challenge for formation via core accretion. Mar-
leau et al. (2019) derived distributions over the initial mass and luminosity of HIP
65426 b under several assumptions of post-formation entropy, then coupled these
initial conditions with N-body simulations to investigate which models could match
the present-day conditions of the planet. They varied the initial number of planets in
the system, and included prescriptions for type I and II migration in a protoplanetary
disk. Through a suite of such simulations, they found two families of explanations
for HIP 65426 b’s current separation and luminosity. The first is core formation
at close separations, followed by outward scattering and subsequent runaway gas
accretion at the present-day location. The slower timescale of type II migration
and subsequent disk dispersal allows the planet to remain in place after scattering
and damps the post-scattering eccentricity. The second scenario is similar, except
runaway accretion and subsequent disk dispersal occur before scattering. Under this
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scenario, most simulations resulted in a high (>0.5) present-day eccentricity for HIP
65426 b. A third scenario the authors mentioned but did not investigate in detail
is the prospect of in-situ formation, invoking a more rapid core formation process
than typically assumed, such as pebble accretion (Lambrechts and Johansen, 2014,
Rosenthal and Murray-Clay, 2018). This scenario would presumably result in a
circular orbit.

In summary, Marleau et al. (2019) propose three statistically distinct formation
pathways via core accretion for HIP 65426 b: 1) in-situ formation, resulting in a
circular orbit, 2) scattering before disk dispersal, resulting in a low-to-moderate ec-
centricity orbit, and 3) scattering after disk dispersal, resulting in a high eccentricity
orbit. Both scenarios 2 and 3 are often accompanied by an inner giant planet. An
important caveat is that these are not hard-and-fast distinctions; an eccentricity of
0, even with no model uncertainty, would not unequivocally rule out two of the
three scenarios. However, such a measurement will allow us to assign statistical
probabilities to each formation scenario by comparing with the population synthesis
outputs of studies like Marleau et al. (2019). Precise measurements of eccentricity
will also better constrain the population-level eccentricity distribution of CJs, which
is currently still prior-dependent (Nagpal et al., 2023), allowing us to model the
formation mechanisms responsible for the population as a whole.

HIP 65426 b has been astrometrically monitored since its discovery by Chauvin
et al. (2017), and previous papers report an essentially unconstrained eccentricity
posterior that reproduces the prior (Chauvin et al., 2017, Cheetham et al., 2019,
Carter et al., 2022). In this paper, we update the orbit model of HIP 65426 b
using new astrometry from the optical interferometer VLTI/GRAVITY (∼50x more
precise than previous astrometry) as part of the ExoGRAVITY project (Lacour et al.,
2020).

Spectral and photometric measurements of HIP 65426 b have also been used to
infer the planet’s atmospheric properties. Petrus et al. (2021) recovered a bimodal
posterior by comparing the HIP 65426 b measurements with BT-Settl CIFIST
models, with one small radius (∼1𝑅𝐽) peak and one larger radius peak (∼1.2𝑅𝐽).
Their Exo-REM comparisons yielded broader posteriors encompassing both of these
possibilities, as Exo-REM predictions were only available for the K-band at the time,
and they could not compare with all available data. These yielded Teff=1560±100𝐾 ,
log 𝑔 < 4.40, a slightly super-solar metallicity of 0.05+0.24

−0.22, and an upper limit on the
C/O ratio (≤ 0.55). Carter et al. (2022) subsequently published 7 long-wavelength
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Table 3.1: Relevant physical properties of HIP 65426 A and b
quantity value source

Stellar spectral type A2V Carter et al. (2022)
Stellar mass 1.96 ± 0.04 Chauvin et al., 2017

Moving group membership Lower Centaurus-Crux, 14 ± 4 Myr Gagné et al. (2018)
Stellar parallax 9.30 ± 0.03 mas Gaia DR3 (Gaia Collaboration et al., 2016,

Gaia Collaboration et al., 2022)
Hot-start planetary mass estimate 7.1 ± 1.2 𝑀𝐽 Carter et al. (2022)
Hot-start planetary radius estimate 1.44 ± 0.03 𝑅𝐽 Carter et al. (2022)

Hot-start planetary Teff 1283+25
−31 K Carter et al. (2022)

Table 3.2: Observing log. NEXP, NDIT, and DIT denote the number of exposures,
the number of detector integrations per exposure, and the detector integration time,
respectively. 𝜏0 is the atmospheric coherence time during each exposure. The fiber
pointing is the placement of the science fiber relative to the fringe tracking fiber
(which is placed on the central star). HD 91881 and HD 73900 are two binary
systems used for phase referencing.

Date UT time Target NEXP/NDIT/DIT Airmass 𝜏0 Seeing Fiber pointing
Start End ΔRA/ΔDEC [mas]

2021-01-07 06:22:05 06:48:54 HD 91881 8 / 64 / 1 s 1.05–1.10 6.6–8.0 ms 0.51–0.65′′ -1108,710
2021-01-07 06:59:10 07:57:00 HIP 65426 b 4 / 8 / 100 s 1.38–1.64 5.0–6.6 ms 0.61–1.19′′ 416,-704
2021-01-07 08:03:17 08:06:18 HIP 65426 A 2 / 64 / 1 s 1.35–1.36 4.6–5.4 ms 1.05–1.23′′ 0,0
2022-01-23 05:16:56 05:30:01 HD 73900 6 / 64 / 1 s 1.05–1.10 13.2–20.4 ms 0.41–0.57′′ -825,-455
2022-01-23 05:42:05 05:55:37 HD 91881 6 / 64 / 1 s 1.38–1.64 6.4–13.8 ms 0.30–0.67′′ -1108,710
2022-01-23 06:08:31 06:51:52 HIP 65426 b 6 / 4 / 100 s 1.35–1.36 5.4–13.9 ms 0.54–0.72′′ 418,-699

photometric datapoints of HIP 65426 b using the NIRCAM and MIRI instruments,
and used them to update the empirical bolometric luminosity and of the planet to
log L/L⊙ = (-4.31, -4.14). Together with hot-start cooling models, they used this
luminosity estimate to infer a planetary mass, radius, and effective temperature
(given in Table 3.1). They found that an independent comparison to the BT-Settl
CIFIST grid yielded a good fit, but resulted in an unphysically small planetary radius
of 1.06 ± 0.05 𝑅𝐽 (consistent with the smaller radius mode of Petrus et al., 2021).

This paper is structured as follows: in Section 2.2, we present our new GRAVITY
data, including two new astrometric epochs and a new K-band spectrum. In Section
3.4, we present our updated orbital solution and discuss the significance of our
eccentricity measurement in detail. In Section 3.5, we compare all existing pho-
tometry and spectra measurements of HIP 65426 with self-consistent model spectra
to update our understanding of the planet’s atmospheric properties, finding results
that are consistent with but more precise than previous work, keeping in mind that
systematic uncertainties in these fits are likely underestimated. Finally, in Section
2.5 we discuss the implications of our orbital and atmospheric inferences and call
for additional observational and theoretical work.
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3.3 Data
We observed HIP 65426 b on the 7th of January, 2021 and the 23rd of January,
2022 as part of the ExoGRAVITY Large Program (ESO Program ID 1104.C-0651,
Lacour et al., 2020). We used the European Southern Observatory (ESO) Very
Large Telescope Interferometer (VLTI)’s four 8.2m Unit Telescopes (UTs) and
the GRAVITY instrument (Gravity Collaboration et al., 2017). The observations
primarily used the “off-axis dual field” mode, in which the roof mirror is used to
split the telescope field into two. The star light goes to the fringe tracker to correct
for atmospheric perturbations (Lacour et al., 2019a). The exoplanetary light goes
to the spectrograph configured with the medium resolution grism (R=500). Phase
referencing of the metrology is obtained by swapping on a binary just before the
observation. On 2021-01-07 we used the binary system HD 91881, and on 2022-01-
23 we used two binary systems: HD 73900 and HD 91881. During the night of the
2021-01-07, we also performed a sequence of “on-axis single-field” observations
of the host star to calibrate the spectrum of the planet for that night. The second
night of observations does not have an on-axis calibrator, and so we do not consider
the spectrum of the planet from those observations. The observing log, presented
in Table 3.2, records the length of the observations, the number of files recorded
and the atmospheric conditions. The placement of the science fiber was based
on preliminary orbit predictions fit to the available relative astrometry at the time
using the whereistheplanet1 software (Wang, Kulikauskas, and Blunt, 2021),
and resulted in an efficient coupling of the planet flux into the science fiber.

We calculated the complex visibilites of the host and the companion, which were
phase-referenced with the metrology system using observations of the binary calibra-
tor HD 91881, using the Public Release 1.5.0 (1 July 20212) of the ESO GRAVITY
pipeline (Lapeyrere et al., 2014). We decontaminated the flux of the planet due to
the host using a custom python pipeline (see Appendix A, Gravity Collaboration
et al., 2020), which treats the contamination as a polynomial dependent on time and
baseline: a polynomial of fourth order was used for stellar light suppression.

We obtained the astrometric position of the planet relative to the star at each epoch by
analysing the phase of the ratio of coherent fluxes, computing a periodogram power
map over the fiber’s field-of-view (Figure 3.1). The mean astrometric position is
taken to be the minimum 𝜒2 value of this map. We estimated the uncertainty on

1http://www.whereistheplanet.com
2https://www.eso.org/sci/software/pipelines/gravity/

http://www.whereistheplanet.com
https://www.eso.org/sci/software/pipelines/gravity/
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Table 3.3: New relative astrometry of HIP 65426 b presented in this paper. 𝜎ΔR.A.
and 𝜎ΔDec. denote the uncertainties in astrometric position, and 𝜌ΔR.A.,ΔDecl. denotes
the correlation between the 𝜎ΔR.A. and 𝜎ΔDec. measurements.

Date ΔR.A. ΔDecl. 𝜎ΔR.A. 𝜎ΔDecl. 𝜌ΔR.A.,ΔDecl.
[jd − 2400000.5] [mas] [mas] [mas] [mas]

59221.312 415.613 0.107 -708.133 0.073 -0.095
59602.271 416.269 0.035 -705.051 0.035 -0.224

Table 3.4: Astrometric measurements from the literature used in the orbit fits
presented in this paper. Here, RVpl indicates a measurement of the planet’s radial
velocity relative to the primary. Making this measurement involved separately
measuring the absolute radial velocity of the planet and the absolute radial velocity
of the star, subtracting these quantities, and propagating the uncertainty.

Date separation (𝜌) 𝜎𝜌 position angle (P.A.) 𝜎P.A. RVpl 𝜎RVpl reference
[jd − 2400000.5] [mas] [deg] [mas] [deg] [km s−1] [km s−1]

57538.4 830.4 4.9 150.28 0.22 – – Chauvin et al. (2017)
57565.5 830.1 3.2 150.14 0.17 – – Chauvin et al. (2017)
57791.0 827.6 1.5 150.11 0.15 – – Chauvin et al. (2017)
57793.1 828.8 1.5 150.05 0.16 – – Chauvin et al. (2017)
57891.0 832 3 149.52 0.19 – – Cheetham et al. (2019)
57892.0 850 20 148.5 1.6 – – Cheetham et al. (2019)
58250.0 822.9 2.0 149.85 0.15 – – Cheetham et al. (2019)
58250.0 826.4 2.4 149.89 0.16 – – Cheetham et al. (2019)
58263.5 – – – – 14 15 Petrus et al. (2021)

each astrometric measurement using the scatter of mean astrometric values between
individual exposures. These new astrometric datapoints are provided in Table 3.3.

We then extracted the ratio of the coherent flux between the two sources at the
location of the companion, generating a contrast spectrum from 2 to 2.5 microns.
We converted this contrast spectrum into a flux calibrated spectrum by multiplying
it by a BT-NextGen (Allard, Homeier, and Freytag, 2012) spectrum fit to archive
photometry of the host. We noted a tension between the absolute flux of the resultant
spectrum and published SPHERE K-band photometry (Chauvin et al., 2017). For
our 2021-01-07 observation, 𝐹𝐾2 = 1.40 × 10−16 W/m2/𝜇m vs the SPHERE value
𝐹𝐾2 = 7.21×10−17 W/m2/𝜇m. We opted to integrate the GRAVITY spectrum over
the Paranal/IRDIS_D_K12_2 filter and scale the GRAVITY spectrum by ×0.52 to
match the SPHERE K2 photometry. The existing SPHERE photometry matches the
existing SINFONI spectrum (described more and compared with our new GRAVITY
spectrum in Section 3.5) without any scaling factor applied.

The fluxes, uncertainties, and inter-channel flux covariances are available as a
machine-readable table published along with this paper.
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Figure 3.1: Detections of HIP 65426 b with VLTI/GRAVITY. Both periodogram
power maps visualizes the 𝜒2 fit to the interferometric observables assuming a point
source, after removing the contribution of the star using a 4th order polynomial.
The outer dashed grey circle indicates the effective fiber field of view (60mas in
diameter), and the red circles indicate the most probable planet position at each
epoch. The planet is detected at high confidence in both epochs (periodogram
power > 500).
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Literature Data
Literature spectral and photometric data used in this study (all of which are plot-
ted in Figure 3.14) come from several sources. The VLT/SPHERE IFS spectra at
Y-H (0.96 − 1.64 𝜇m) bands, four photometric VLT/SPHERE measurements at H2
(𝜆0 = 1.593 𝜇m and Δ𝜆 = 0.11 𝜇m) and H3 (𝜆0 = 1.667 𝜇m and Δ𝜆 = 0.12 𝜇m),
at K1 (𝜆0 = 2.1025 𝜇m and Δ𝜆 = 0.204 𝜇m) and K2 (𝜆0 = 2.2550 𝜇m and
Δ𝜆 = 0.218 𝜇m) bands, and two NACO measurements at Lp (𝜆0 = 3.80 𝜇m,
Δ𝜆 = 0.62 𝜇m) and Mp (𝜆0 = 4.78 𝜇m, Δ𝜆 = 0.59 𝜇m) bands were originally
published in Cheetham et al. (2019). An additional NACO point obtained using
the NB405 filter was originally published in Stolker et al. (2020). The medium-
resolution SINFONI spectrum at K band come from Petrus et al. (2021). All spectral
and photometric data (with the exception of the SINFONI data, which were kindly
provided by S. Petrus) were accessed from species3(version 0.5.5).

3.4 Orbit Analysis
In order to understand how our new GRAVITY data constrains the orbit of HIP 65426
b, we performed seven different orbit-fits, varying the data subset used and the priors
applied. These fits use literature data from Table 3.44 and new VLTI/GRAVITY
data from Table 3.3. The results are summarized in Table 3.6 and described in more
detail below. We used version 2.1.3 of orbitize! (Blunt et al., 2020) for all fits,
taking advantage of the ability to fit companion RVs introduced in version 2.0.0.
orbitize! is a Bayesian tool for computing the posteriors over orbital elements
of directly-imaged exoplanets, and is intended to meet the orbit-fitting needs of the
high-contrast imaging community. All orbit fits used the following orbital basis:
semimajor axis (a), eccentricity (ecc), inclination (inc, with inc=0 defined to be a
face-on orbit), argument of periastron (𝜔p), position angle of nodes (Ω), and epoch
of periastron, defined as fraction of the orbital period past a specified reference date
(see Blunt et al. (2020) section 2.1 for a bit more detail). We use mjd=58859 as the
reference date in this paper. Following the suggestion in Householder and Weiss
(2022), we also explicitly specify here that we assume that 𝜔p is defined relative to
the longitude of ascending node, which in turn is defined as the intersection point
between the orbit track and the line of nodes when the object is moving away from
the observer. Our coordinate system is illustrated in Figure 1 of Blunt et al., 2020.
An interactive tutorial is also available to help users build an intuitive understanding

3https://github.com/tomasstolker/species/blob/main/species/data/companion_data.json
4There are additional astrometric datapoints given in Stolker et al. (2020) and Carter et al. (2022)

which were excluded because of their large error bars.
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of the coordinate system5. We used the same priors on all parameters as given in
Blunt et al. (2020), unless otherwise specified.

The orbit fits presented in this paper include two types of data: relative astrometry,
and companion radial velocities. The ability to fit companion radial velocities is
new in orbitize! since the publication of Blunt et al. (2020), so we discuss it
in a bit of detail here. Following standard practice (e.g. Chapter 1 of Seager,
2010), orbitize! by default defines orbital parameters (a, e, etc.) as those of
the relative orbit, meaning that astrometric and radial velocity measurements of the
secondary are both assumed to be relative to the primary.6 In order to use the RV
measurement of Petrus et al. (2021) in our orbit fits, we therefore subtracted the
absolute measurement of the planet’s RV (derived from the planetary spectrum)
and an independent measurement of the star’s RV derived from 78 HARPS spectra
of the primary (see Section 4.2 of Petrus et al., 2021 for details), and propagated
the uncertainties in both measurements.7 Relative companion RV measurements
like this do not allow us to measure a dynamical mass for the companion, but have
the potential to reduce posterior uncertainties of the relative orbit. However, the
uncertainty on the available companion RV measurement is too large to meaningfully
constrain the orbital parameters beyond the constraints from the relative astrometry
(see Figure 3.2). It does, however, reduce the 180◦ degeneracy between Ω and
𝜔, which usually shows up as double-peaked posteriors on those parameters for
relative-astrometry-only orbits. A more precise planetary RV would uniquely orient
the planet in 3D space (to within the orbital parameter uncertainties). Figure 3.2
shows the RV predictions for each orbit in the posterior of our accepted fit, together
with the measurement from Petrus et al., 2021. The current uncertainties of the
companion and stellar RVs of HIP 65426 A and b limit the ability of the relative RV
to constrain the orbit fit.

We performed the following orbit fits (summarized in Table 3.6). All fits included
the companion RV as described in the above paragraph.

5https://github.com/sblunt/orbitize/blob/main/docs/tutorials/show-me-the-orbit.ipynb
6When radial velocity measurements are available for both the star and the planet, orbitize!

instead assumes that planetary and stellar RV measurements are relative to the system barycenter.
7It is important to note that systematic offsets in the wavelength solutions used for the HARPS

and SINFONI spectra (not to mention RV offsets due to astrophysical variability, such as pulsations)
would affect the RV value derived here. However, the RV value derived from the SINFONI data is
not sufficiently precise to impact our measurements of eccentricity and inclination, the main focus
of this paper. Therefore we do not investigate any potential systematics in detail.
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Figure 3.2: Planetary radial velocity predictions from the accepted fit (purple his-
togram), together with the HDS planetary RV measurement from Petrus et al. (2021)
(dashed black line, with 1-𝜎 range shaded grey). Takeaway: The planetary RV
measurement does not constrain the orbital parameters, beyond breaking the 180◦
degeneracy for Ω and 𝜔. A planetary RV of -3 km/s is also allowed, given the
astrometry alone, but is disfavored because of the relative RV measurement.

1. Only including literature data from SPHERE and NACO (i.e. no GRAVITY
data)

2. Literature data plus the earlier epoch of GRAVITY astrometry

3. Literature data plus the later epoch of GRAVITY astrometry

4. Literature data plus both epochs of GRAVITY astrometry

5. Both epochs of GRAVITY data alone (i.e. no literature data)

6. Fit 4, except fixing eccentricity to 08

7. Fit 4, except applying a decreasing prior on eccentricity.
8Note that 𝜔𝑝 and 𝜏58849 are undefined for a circular orbit.
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For the final fit, we used the following prior distribution, following Nielsen et al.
(2008)9:

𝑝(𝑒) ∝ −2.18𝑒. (3.1)

Fits 1–5 were performed in order to assess the outlier sensitivity of our fits, as
well as to understand the relative constraining power of the GRAVITY astrometry
and the less precise literature measurements. The final two fits were performed to
understand the prior dependence of the inferred eccentricity, as well as the impact of
the eccentricity-inclination degeneracy (see, e.g., Ferrer-Chávez, Wang, and Blunt,
2021).

For all fits, we used the ptemcee implementation of emcee (Vousden, Farr, and
Mandel, 2016; Foreman-Mackey et al., 2013), a parallel-tempered affine-invariant
MCMC sampling algorithm. All runs used 20 temperatures and 1000 walkers. After
an initial burn-in period of 100,000 steps, each walker was run for 100,000 steps.
Every 100th step was saved.10 The chains were examined visually to determine
whether they had converged (see Figures 3.3 and 3.4), and the 100,000 steps of each
chain post-burn-in were kept as the posterior estimate.

We applied Gaussian priors on parallax and total mass using the values given in Table
3.1. Both parameters do not significantly correlate with any other fit parameters,
and the marginalized posteriors on these parameters reproduce their priors (visible,
for example, in Figure 3.6).

The Impact of GRAVITY
Figures 3.5 and 3.6 visualize the posterior of fit #4, using all astrometric data and
assuming a uniform prior on eccentricity, and Figure 3.7 compares each of the orbit
fits that use varying data subsets. These plots show the transformative impact of
GRAVITY data on the orbital uncertainties. The semimajor axis, eccentricity, and
inclination posteriors all tighten significantly after including just two GRAVITY
astrometric epochs. Figure 3.7 also shows that the results of a preference for
moderate eccentricity and near edge-on inclination are robust to outliers, by showing
nearly identical posterior distributions regardless of which GRAVITY epoch is used
in the fit. It is also apparent from Figure 3.7 that the majority of the orbital parameter
information is coming from the two GRAVITY epochs, as evident by the similarity

9The linear coefficient was shared via private communication by E. Nielsen.
10In orbitize!, this configuration corresponds to the following variable definitions: num_temps

= 20; num_walkers = 1000; num_steps = 1_000_000_000; burn_steps = 100_000;
thin = 100.
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Figure 3.3: An example converged MCMC run that was used to determine that
the chains were sufficiently burned-in. A random subset of 100 chains are plotted
as a function of step number. The similar distribution of walkers at each step is
an indication that the number of burn-in and total steps is adequate, and that the
resulting posterior estimates are trustworthy.

between the accepted fit and the GRAVITY-only fit. This test highlights the power
of GRAVITY precision astrometry, but also warrants a warning: any unquantified
systematics in the GRAVITY data could significantly change the recovered orbital
parameters. The orbital constraints reported here rely heavily on the detailed work
that the exoGRAVITY team has undertaken to extract accurate astrometry (e.g.
Lacour et al., 2019b, Gravity Collaboration et al., 2020). HIP 65426 b should
continue to be astrometrically monitored by GRAVITY in order to redistribute the
impact of the two GRAVITY epochs reported here.

A Moderate Eccentricity?
All of the orbit fits that include GRAVITY data show a preference for moderate
eccentricities (𝑒 ∼ 0.5). In order to understand the significance of this preference, we
performed an additional fit using a linearly descending eccentricity prior (Equation
3.1). Figure 3.8 shows that the eccentricity posterior is prior-dependent, even though
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Figure 3.4: An example unconverged MCMC run that was used to determine that
more burn-in steps were needed in order to rule out non-convergence. A random
subset of 100 chains are plotted as a function of step number. The color gradient
from left to right (getting darker toward the right) indicates that the chains are not
fully converged. As an aside, because they are bimodal for astrometry-only orbits,
Ω and 𝜔 are good parameters to use for assessing convergence.

both a linearly decreasing and a uniform eccentricity prior result in preferences for
non-zero eccentricities. We next performed a series of maximum-likelihood fits,
fixing eccentricity to a specific value for each, in order to examine how the changing
maximum likelihood value was influencing the posterior shape. The results of this
test are shown in Figure 3.9. This figure shows that the maximum likelihoods
achieved by low (e < 0.2) and moderate (e = 0.5) orbits are comparable, but that
the highest achieveable maximum likelihood occurs at low eccentricities. This plot,
along with Figures 3.6 and 3.8 allow us to construct the following explanation of the
shape of the eccentricity posterior: at low (e < 0.2) eccentricities, likelihood is high,
but prior volume is low (i.e. there are “fewer” circular orbits that fit the data well,
even though those that do fit tend to fit very well). At moderate eccentricities, prior
volume is high, and likelihood is still very good, leading to a posterior peak. At
high eccentricities (e>0.6), prior volume is very high, but likelihood is low, leading
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to a decreasing posterior probability as a function of eccentricity. The “uptick” at
very high eccentricities (e>0.8) is caused by a degeneracy between eccentricity and
inclination (see Ferrer-Chávez, Wang, and Blunt, 2021 for a detailed discussion),
together with a nonlinear relationship between eccentricity and sky projection. As
the eccentricity asymptotically approaches 1, the corresponding inclination must
increase more and more rapidly to reproduce the astrometric data (see the covariance
between eccentricity and inclination in Figure 3.6). This causes a characteristic
“banana-shaped” covariance, typical of incomplete orbits (see Blunt et al., 2019
for another example in the context of an incomplete radial velocity orbit). We can
explain the maximum a posteriori (MAP) shift to lower eccentricities when using
a linearly decreasing prior, therefore, as occurring because the prior volume at
moderate and high eccentricities decreases when we switch to a linearly decreasing
eccentricity prior.

Model Selection

There exist many model selection metrics a statistician can use to pick an “optimal”
model. In this section, we briefly explain two such metrics, drawing heavily from
Gelman, Hwang, and Vehtari (2014), and use them to support the explanation in the
previous section.

We can choose to define a model’s “goodness” by its ability to predict unseen data
points. A “good” model will predict new, unseen data better than a “bad” model.
However, a posterior comprises many models, each with its own probability based
on existing data. In addition, we do not know a priori what we expect unseen data
to look like; this is the purpose of model fitting. The logic Gelman, Hwang, and
Vehtari (2014) review is that one can define the “expected (log) predictive density”
(elpd) for a new data point as the expected posterior probability of the new datapoint,
weighted by the probability of the new datapoint itself (typically unknown):

elpd =

∫
log 𝑝post(𝑦𝑖) 𝑓 (𝑦𝑖)𝑑𝑦 (3.2)

where 𝑝post is the posterior probability, 𝑦𝑖 is an unseen data point, and 𝑓 (𝑦) is the
unknown physical function generating new data. Taking it one step further, we can
aim to compute the expected log pointwise predictive density (elppd), which sums
the elpd for each new datapoint over an arbitrary-sized unseen dataset. The problem
is then determining an estimator of this expected predictive density. (See Gelman,
Hwang, and Vehtari, 2014 section 2.3 for more detail).
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Both the AIC and the WAIC take the approach of defining the elppd of a new
datapoint as the sum of two terms: the first term represents the model’s ability to
predict existing datapoints, and the second term is an overfitting penalty. They differ
in their definitions of each of these terms. Both of these estimators converge to the
actual lppd under certain conditions.

The AIC computes the first term as the probability of the existing data given the
maximum likelihood model. The second term is simply the number of free param-
eters in the model. This definition has the pleasing property of being an unbiased
estimator of the lppd for Gaussian posteriors which were computed using a flat
prior. It may already be clear that we will choose to argue that the AIC is insuffi-
cient for the orbit described in this paper, as the orbital posterior (see Figure 3.6)
is quite non-Gaussian. In addition, effects of prior volume are important, and the
maximum likelihood estimate (which is the only relevant quantity for the AIC) is
different from the MAP estimate for both eccentricity priors discussed in the pre-
vious section. Because the maximum likelihood estimate is approximately equal
for the free-eccentricity and fixed-eccentricity models, while the number of free
parameters differs, we can understand why the AIC metric favors the ecc=0 model
(Table 3.5).

The WAIC uses the whole posterior, not just the maximum likelihood estimate, to
compute both the first and second terms. Because of this, Gelman, Hwang, and
Vehtari, 2014 call it a “a more fully Bayesian approach for estimating the out-of-
sample expectation.” The first term is exactly the average predictive density for
all existing datapoints (Gelman, Hwang, and Vehtari, 2014 Eq 5), and the second
term has a few definitions in the literature. In this article, we define the WAIC
using Gelman, Hwang, and Vehtari (2014) Eq 12, which sets the overfitting term
to be the sum of the variances of the lppd values of individual existing datapoints.
Under this definition, a model which is overfitting will have (on average) smaller
variances in predicted posterior probabilities of existing datapoints. Because the
WAIC includes information from the whole posterior, implicitly taking into account
effects of prior volume, we might expect that the WAIC is a better predictor for
our thoroughly non-Gaussian posterior. Indeed, the WAIC shows a much less clear
distinction between the various eccentricity models than the AIC (Table 3.5). The
circular model is still preferred, but only by ΔWAIC=1, which many authors argue
is “essentially indistinguishable.” This motivates us to argue that, although the
AIC prefers the fixed ecc=0 model, the three models are indistinguishable in terms
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Table 3.5: Model comparison metrics for orbit-fits including all available astrometric
data and varying the eccentricity prior. Note: for the AIC computation, Mtot and
parallax were not included in the number of free parameters, since they were both
highly constrained by their respective priors.

uniform e prior linear e prior e=0
AIC 46.0 46.0 40.0

WAIC 42.4 42.1 41.6

Figure 3.5: Sky-projected visualization of the posterior of the orbit fit #4 described in
the text. Left: 100 orbit tracks projected onto the plane of the sky, colored by elapsed
time. The astrometric data are visible as pink points in the bottom left corner of the
panel. Middle column: the same 100 posterior orbits (grey) in separation (top) and
position angle (bottom) vs time, together with the astrometric data used for orbit-
fitting. Right column: the same 100 posterior orbits (grey), together with earlier
(bottom) and later (top) astrometric measurements taken with VLTI/GRAVITY. 1-
and 2-𝜎 error ellipses are shaded in dark and light pink, respectively. Takeaway:
The two VLTI/GRAVITY epochs are ∼50x more precise than existing astrometric
measurements of HIP 65426, and reduce the posterior uncertainty.

of expected predictive ability. In other words, we do not rule out a moderate
eccentricity.

3.5 Spectral Analysis
The GRAVITY K-band spectrum (R=500) published in this work overlaps in wave-
length coverage almost completely with the higher-resolution SINFONI spectrum
(R∼5600), and therefore does not add significant spectral information to the HIP
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Figure 3.6: Corner plot of the posterior of the accepted orbit fit, using all data
and assuming a uniform eccentricity prior. Diagonal panels show marginalized 1D
histograms of posterior elements, and off-diagonals show 2D covariances between
posterior elements. 1, 2, and 3-𝜎 contours are outlined in the covariance panels,
and individual posterior samples outside of the 3-𝜎 boundaries are plotted directly
as black dots. Takeaway: the 1D marginalized posterior distributions of semimajor
axis and inclination are well constrained. Strong covariances are apparent, in
particular between eccentricity, inclination, and semimajor axis.
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Figure 3.7: Relative constraining power of the astrometric data for semimajor axis
(top), eccentricity (middle), and inclination (bottom). The results of the following
fits are shown and compared: (1) only literature astrometry (i.e. no GRAVITY
data; grey), (2) literature astrometry and the first epoch of GRAVITY data (dark
pink outline), (3) literature astrometry and the second epoch of GRAVITY data
(light pink outline), (4) only GRAVITY astrometry (i.e. no literature data), and
(5) all astrometric data (i.e. the accepted fit; purple outline). Takeaway: most of
the constraining power of the fit comes from the GRAVITY data, evident by the
similarity between the GRAVITY-only fit and the accepted fit. In addition, neither
GRAVITY point alone drives the fit, as evidenced by the similarity between fits
(2) and (3). In other words, the posterior preference for moderate eccentricities is
robust to the possibility that one of the two GRAVITY epochs is an outlier.
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Figure 3.8: 1D marginalized eccentricity posteriors for fits with uniform (purple)
and linearly decreasing (pink) priors on eccentricity. The priors themselves are also
plotted as lines of the same colors. Takeaway: the eccentricity posterior depends
on the choice of prior. However, both the linearly decreasing prior and the uniform
prior result in posterior peaks at moderate eccentricity values.

Table 3.6: 68% marginalized posterior credible intervals for each free parameter/or-
bital elements in each of the orbit fits described in section 3.4.

it name a [au] ecc inc [deg] 𝜔p [deg] Ω [deg] 𝜏58849 𝜋 [mas] Mtot [𝑀⊙]
literature data only 92.5+88.7

−32.0 0.58+0.29
−0.38 109.5+20.5

−11.2 181.6+107.6
−128.9 171.9+163.9

−45.3 0.36+0.30
−0.17 9.30 ± 0.03 1.96 ± 0.04

literature + GRAVITY epoch 1 66.1+28.3
−12.7 0.64+0.26

−0.31 105.6+13.9
−5.0 195.6+74.0

−95.9 156.9+171.0
−8.1 0.44 ± 0.15 9.30 ± 0.03 1.96 ± 0.04

literature + GRAVITY epoch 2 66.3+27.2
−13.0 0.63 ± 0.27 105.4+14.9

−4.8 194.3+70.5
−101.6 156.5+172.2

−7.6 0.43 ± 0.15 9.30 ± 0.03 1.96 ± 0.04
all data 61.1+10.4

−5.5 0.55 ± 0.15 109.0+4.4
−3.1 189.4+25.0

−19.0 154.9+5.8
−3.4 0.44 ± 0.08 9.30 ± 0.03 1.96 ± 0.04

GRAVITY data only 61.4+9.7
−5.1 0.55 ± 0.14 109.6+4.4

−2.9 190.3+25.8
−19.3 155.4+7.2

−3.6 0.44 ± 0.07 9.30 ± 0.03 1.96 ± 0.04
all data, ecc. fixed to 0 91.4 ± 0.5 =0 102.9 ± 0.6 – 153.1 ± 0.3 – 9.30 ± 0.03 1.96 ± 0.04

all data, decreasing ecc. prior 72.5+12.9
−7.5 0.31 ± 0.13 105.3+2.0

−1.8 187.0+35.8
−30.3 153.8+2.9

−2.1 0.45 ± 0.11 9.30 ± 0.03 1.96 ± 0.04
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Figure 3.9: Maximum log(likelihood) as a function of eccentricity. Although the
maximum a posteriori eccentricity is moderate (∼ 0.5), the maximum likelihood
occurs at lower eccentricities. This allows us to understand the shape of the eccen-
tricity posterior (Figure 3.8); the likelihood is slightly higher at lower eccentricities,
but the prior volume here is lower. The posterior “drop-off” at higher eccentricities
is caused by a real decrease in likelihood. More eccentric orbits are less consistent
with the data.

Table 3.7: 68% credible intervals of posterior fits to self-consistent model spectra
grids. G is short for GRAVITY (i.e. the GRAVITY K-band spectrum was included
in the fit), and Si is short for SINFONI (i.e. the SINFONI K-band spectrum was
included in the fit). “yes GP” means that a Gaussian Process regression was enabled
for the SPHERE IFS spectrum, the hyperparameter constraints for which are reported
in the table.

fit name Teff [K] log 𝑔 𝜋 [mas] log 𝑙SPHERE 𝐴SPHERE [Fe/H] C/O R [𝑅𝐽 ] RVSINFONI
BT-Settl (G only, yes GP) 1637 ± 8 3.85 ± 0.03 9.3+0.03

−0.04 0.2+0.2
−0.1 0.4+0.3

−0.2 – – 1.0 ± 0.01 –
1477+8

−7 3.93 ± 0.07 9.3 ± 0.03 0.3+0.1
−0.0 0.6 ± 0.1 – – 1.19 ± 0.03 –

BT-Settl (Si only, yes GP) 1624+8
−7 3.89 ± 0.04 9.3 ± 0.03 0.4 ± 0.1 0.5 ± 0.1 – – 0.99 ± 0.01 75395+1

−2
1469+5

−4 3.71+0.07
−0.06 9.3 ± 0.03 0.4 ± 0.1 0.6 ± 0.1 – – 1.24 ± 0.02 75396+1

−2
BT-Settl (G only, no GP) 1639 ± 7 3.85 ± 0.03 9.3 ± 0.03 – – – – 1.0 ± 0.01 –

1487+7
−6 3.96+0.05

−0.06 9.3 ± 0.03 – – – – 1.17+0.03
−0.02 –

BT-Settl (Si only, no GP) 1630 ± 7 3.92 ± 0.03 9.31 ± 0.03 – – – – 0.97 ± 0.01 75389+1
−2

1475+5
−4 3.81+0.07

−0.06 9.3 ± 0.03 – – – – 1.21+0.02
−0.03 75378 ± 1

Exo-REM (Si+G, yes GP) 1337 ± 9 3.52+0.03
−0.02 9.3 ± 0.03 0.4 ± 0.1 0.5 ± 0.1 0.15+0.08

−0.1 0.595+0.008
−0.009 1.51+0.03

−0.02 18 ± 8
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65426 b SED. However, it is an independent constraint on the K-band spectrum.
In this section we first compare the GRAVITY and SINFONI spectra, finding good
agreement, then globally compare the HIP 65426 b spectral data with self-consistent
atmosphere models to update our understanding of this object’s atmosphere.

In Figure 3.10, we plot the GRAVITY and SINFONI spectra. The agreement is
excellent. Both spectra agree in magnitude11 and shape.

Following Petrus et al. (2021), we derived atmospheric properties for HIP 65426 b
by comparing with two sets of self-consistent atmospheric model grids: BT-SETTL
CIFIST 2011c12 (Allard et al., 2003, Allard et al., 2007, Allard, Homeier, and
Freytag, 2011) and Exo-REM (Allard, Homeier, and Freytag, 2012, Charnay et
al., 2018), excellent summaries of which are given in Section 3.1 of Petrus et al.
(2021). In the temperature range relevant for HIP 65426 b, the major advantages of
Exo-REM include 1) ability to explore non-solar metallicities, and 2) the success of
the Exo-REM cloud prescription at reproducing observations of dusty planets (like
HIP 65426 b) near the L-T transition (Charnay et al., 2018). Ultimately, however,
we are interested in comparing constraints from multiple independent models.

We used species (Stolker et al., 2020) to perform comparisons to both sets of
models. In all cases, we computed posteriors using the pyMultinest (Buchner
et al., 2014) Python interface to multinest (Feroz and Hobson, 2008, Feroz,
Hobson, and Bridges, 2009, Feroz et al., 2019) with 1000 live points. The results
of all atmosphere model fits are shown in Table 3.7.

BT-SETTL CIFIST

We performed four variations of BT-SETTL CIFIST comparisons to our full spectral
dataset, by 1) using either the GRAVITY or SINFONI spectrum13 in order to compare
their relative constraining power, and 2) fitting for correlated noise in the SPHERE
IFS data, following Wang et al. (2020) (see their Equation 4). All fits performed
in this and the next section are summarized in Table 3.7. The results of the two
fits allowing correlated noise in the SPHERE data are shown in Figure 3.11. The
fit only including GRAVITY data is shown in purple, and the fit only including
SINFONI data is shown in pink. The two fits are consistent overall, as we would

11Bearing in mind that the raw extracted GRAVITY spectrum was scaled to match the SPHERE
K-band photometry (which overlap in wavelength)

12https://phoenix.ens-lyon.fr/Grids/BT-Settl/CIFIST2011c/
13Although we downsampled the resolution of the SINFONI spectrum in order to compare with

the GRAVITY spectrum in Figure 3.10, we fit the SINFONI spectrum at its native resolution.



69

expect given the consistency of the spectra themselves. Like Petrus et al. (2021) (but
unlike Carter et al. (2022)), we also recover a bimodal posterior in surface gravity
and effective temperature, regardless of which of the two K-band spectra we use.

Our initial BT-SETTL CIFIST fits allowed a free RV offset parameter for the SIN-
FONI data, but this value consistently converged to unphysically large values, per-
haps indicating an underlying problem with the model grid. We therefore opted to
fix the RV of the SINFONI data to 0 for the fits presented here. Toggling on and off
a GP for the SPHERE data does not significantly impact the physical parameters in-
ferred, even though there are clear correlated residuals in the SPHERE data (Figure
3.12). The SPHERE residuals are visualized in Figure 3.12, where both modes are
plotted along with the SPHERE IFS data. Toggling on a GP for this dataset allows
the model to treat the deviations from both models as correlated noise, perhaps
due to imperfect speckle subtraction at the planet location, photometric calibration
errors due to telluric absorption, and/or model imperfections.

Exo-REM

Because the agreement between theBT-SETTL CIFISTmodel fits is good regardless
of whether we use the SINFONI or GRAVITY spectrum, we only perform Exo-REM
fits using both datasets.

The available Exo-REM grid is computed for a grid of metallicities, allowing us
estimate the atmospheric metallicity and C/O ratio. However, the grid we used
only computes predictions out to 5 𝜇m, so we excluded the two longer-wavelength
JWST/MIRI photometry for these fits. The results are shown in Figures 3.13 and
3.14, and summarized in Table 3.7. A solar metallicity with a C/O ratio of 0.6
is preferred. We find GP parameters for the SPHERE dataset that are consistent
with the results from the BT-Settl CIFIST fits (previous section), a good sanity
check that the model is similarly treating correlated noise in both cases. We also
recover a planetary radial velocity value consistent with that reported in Petrus
et al., 2021, which is an excellent sanity check given that their planetary RV was
computed by cross-correlation with the SINFONI spectrum alone, and not through
SED fitting. Unsurprisingly, our lower-resolution GRAVITY spectrum does not
permit a direct RV measurement. The effective temperature recovered by this fit is
about 150K lower than the low-temperature BT-SETTL CIFIST mode, increasing
our overall confidence in this low-temperature interpretation. However, the surface
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gravity value pushes against the low-gravity end of the grid, which casts doubt on
the results of this fit.

The constraints we derived in this analysis are significantly more precise than those
reported in Petrus et al. (2021), because at the time of that paper’s publication the
Exo-REM grid predictions were only available for K-band. We were able to use the
updated Exo-REM grid to compare with all available spectral information. However,
the uncertainties are likely underestimated, in particular because these fits do not
account for interpolation errors, an important point that we discuss in more detail
in the next section.

From scrutinizing the residuals shown in Figure 3.14, it is also clear that the NACO
and JWST photometry beyond 3 𝜇m is systematically higher than the Exo-REM
models. Therefore, in addition to potentially underestimated errors due to un-
modeled physics in the atmosphere grid, interpolation errors, and correlated noise
in the SPHERE IFS spectrum, the best fit is still not perfect, again pointing to
potential inaccuracies in our comparison. Future work could attempt to fit offsets to
the three NACO points in order to reduce the discrepancy, and/or inflate the errors
in these or other spectral datapoints. Altogether, the values and errors derived from
grid comparison should be treated with caution.

3.6 Discussion & Conclusion
Interpreting the Eccentricity Constraints
Because of the strong degeneracy between eccentricity and inclination, it is most
straightforward to report constraints on these parameters in two dimensions.14 For
fit # 4, including all available astrometry and applying a uniform eccentricity prior,
the 1-𝜎 upper limit on both parameters is e=0.7/inc=110◦, and the 2-𝜎 upper limit is
e=0.8/inc=120◦. Applying a non-uniform, linearly decreasing prior on eccentricity,
which previous work shows is appropriate for the cold Jupiter population (Bowler,
Blunt, and Nielsen, 2020a, Nagpal et al., 2023), tightens these upper limits even
more. These are still tenuous constraints, but they are driven by the likelihood, not
just by the prior. This is the first time we are obtaining eccentricity posteriors on this
object that do not simply reproduce the prior. It is worth emphasizing the difficulty
of measuring the eccentricity of an object almost 100 au from its star; previous
studies of this object report that it would take 5-10 years of orbit monitoring before
resolving orbital curvature and constraining HIP 65426 b’s eccentricity. With the

14The direction of orbital motion on the plane of the sky constrains the inclination to > 90◦.
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Figure 3.10: GRAVITY and SINFONI K-band spectra comparison. Top: GRAV-
ITY (grey) and SINFONI (purple) 1𝜎 flux confidence intervals are shown as filled
bands. The SINFONI spectrum was resampled onto the GRAVITY wavelength grid
using spectres (Carnall, 2017). Bottom: The residuals, with propagated uncer-
tainties, are shown relative to the flux=0 line. Takeaway: the agreement between
these two independent datasets is excellent.

precision of VLTI/GRAVITY, we are able to “speed up time” and obtain eccentricity
constraints sooner, with fewer measurements. Other directly imaged exoplanets with
well-constrained eccentricities are generally much closer to their stars (e.g. 𝛽 Pic b
and c, at 3 and 10 au).

A potentially useful outcome of this paper is a generalize-able prescription for
interpreting eccentricity posterior for incomplete orbits. To have confidence in an
eccentricity measurement from a posterior, we suggest showing that the eccentricity
posterior is:

• prior-independent, that is, driven by the likelihood and not phenomenologi-
cally different under different prior assumptions,

• inconsistent with a circular orbit, ideally beyond 3-𝜎 for varied prior assump-
tions, and

• not dependent on a single data point.
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Figure 3.11: Results of forward-modeling the photometric and spectral data of HIP
65426 b by comparing with the BT-SETTL CIFIST model grid. Posteriors over
the free parameters in the fit, as well radius, a derived parameter, are shown. Fits
performed using GRAVITY K-band spectra are shown in purple, and fits performed
using SIFNONI K-band spectra are shown in pink. The GP hyperparameters (defined
as in Wang et al., 2020 Equation 4) to the SPHERE IFS spectral data (length scale
and amplitude) are shown as well. Takeaways: as expected, log 𝑔 correlates strongly
with radius and Teff . Two families of solutions are apparent at high (1.3 𝑅𝐽) and low
(0.9 𝑅𝐽) radii.
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Figure 3.12: BT-SETTL CIFISTmodels representing the two posterior peaks shown
in Figure 3.11, together with the SPHERE IFS data. Top: both models, resampled
onto the SPHERE IFS wavelength grid using spectres (Carnall, 2017), and multi-
plied by a scalar chosen to minimize the sum of squared residuals for the SPHERE
IFS data alone. The SPHERE IFS data are shown as blue points, with error bars
representing their reported statistical uncertainties. Middle: the low-Teff model
(dashed purple line), SPHERE IFS data, and Gaussian Process 1−𝜎 uncertainties
(solid purple band; computed using the MAP GP parameters). Bottom: same as
middle, but the high-Teff model is shown as a solid pink line, and GP uncertainties
as a pink band. Takeaway: there are correlated residuals in the SPHERE passband
for both of the Teff modes recovered from comparisons to the BT-Settl CIFIST
grid, which we model with a squared-exponential Gaussian process.
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Figure 3.13: Exo-REM posterior fits to all data, showing 2D covariances and 1D
marginalized posteriors over fitted model parameters and derived parameters (radius,
luminosity, and mass). Also see Figure 3.14. Note: parallax is denoted 𝜛 here, and
𝜋 elsewhere in the text. Takeaways: the Exo-REM derived atmosphere parameters
are about 150K lower than the low-Teff BT-SETTL CIFIST parameters (Figure
3.11). The surface gravity hits the edge of the available grid. A slightly super-solar-
metallicity atmosphere with a C/O ratio of 0.6 is favored, although there are likely
systematic errors unaccounted for in this fit.
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Figure 3.14: Full best-fit model SED from comparison with the Exo-REM grid,
together with all fitted spectral data. Top: transmission functions of photometric
bands (each plotted as a data point with errors immediately beneath). Middle:
MAP model spectrum, along with 100 random draws from the posterior (in grey;
difficult to distinguish from MAP spectrum). The spectral data are plotted as points
with error bars. The horizontal bars of the photometry points indicate their spectral
bandpass. The corresponding band-integrated model predictions are overplotted as
empty symbols. Bottom: MAP model residuals. Takeaways: Overall, the model
spectrum fits well. Correlated noise is visible in the residuals of the SPHERE
dataset. The NACO and JWST/NIRCAM points beyond 3 𝜇m are underestimated
by the model.
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HIP 65426 b does not yet satisfy the first two criteria, so continued orbital moni-
toring with VLTI/GRAVITY will be important to robustly measure its eccentricity.
Planetary RVs with sub-km s−1 precision (Figure 3.2), which could be obtained with
high spectral resolution instruments like CRIRES, would also further constrain the
eccentricity (e.g., Snellen et al., 2014, Schwarz et al., 2016).

With these caveats in mind, the posteriors presented in this paper favor a low or
moderate eccentricity. Given the results of Marleau et al., 2019, this is a preliminary
hint that HIP 65426 b did not attain its current position via scattering after disk
dispersal.

Interpreting the Atmosphere Constraints
First, it is important to understand the limits of the spectral interpretation approach
we have taken in this paper. Self-consistent grid modeling involves interpolating
spectra in multiple dimensions during the spectral inversion, while the variations of
the synthetic spectra along the grid are not linear in these dimensions (e.g. Czekala
et al., 2015, Petrus et al., 2021). Missing or incorrect physics in the model grids,
therefore, is not the only source of error. Performing atmospheric retrievals to
evaluate the grid comparison results of this study is an important next step.

Keeping this limitation in mind, in this work we repeated the analysis presented
in Petrus et al. (2021), which compared the available spectral and photometric
data of HIP 65426 b with the self-consistent BT-Settl and Exo-REM grids. This
work benefited from additional data (in particular, the medium-resolution K-band
GRAVITY spectrum, an additional NACO photometric point presented in Stolker
et al., 2020, and the JWST photometery presented in Carter et al., 2022), and the
expanded capability of Exo-REM to handle data outside of K-band. Like Petrus et al.
(2021), we recovered two modes in our BT-Settl posterior fit, regardless of which
K-band spectrum we use and whether we included a correlated noise model for the
SPHERE IFS data: one at a higher radius of 1.2 𝑅𝐽 , and one at a lower radius of
1.0 𝑅𝐽 . Both modes are significantly below the hot-start radius of 1.4 𝑅𝐽 derived in
Carter et al., 2022, reinforcing the tension that paper originally pointed out.

Like Petrus et al. (2021), we only recover a single posterior mode when comparing
with the Exo-REM grid, which is about 150K cooler than the coolest MAP BT-Settl
fit. The Gaussian process hyperparameters applicable to the SPHERE datasets are
consistent across both grids, which we interpret as correlated observational noise,
but which could also be a systematic problem common to both grids. The Exo-REM
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fit posterior favors a slightly super-solar metallicity and a C/O ratio of 0.6. However,
the log 𝑔 posterior hits the edge of the grid, so we strongly encourage skepticism of
these derived values. The C/O ratio, metallicity, and other atmosphere properties
we present here are consistent but more precise than those presented in Petrus et al.
(2021), keeping in mind that the systematic errors are likely underestimated. A
planetary metallicity relative to its host star’s is generally expected to reflect its
formation condition (Öberg, Murray-Clay, and Bergin 2011, Madhusudhan, Amin,
and Kennedy 2014); in particular, formation via gravitational instability is generally
held to produce an object with the same metallicity as its primary. In order to
interpret HIP 65426 b’s metallicity, it is important to understand the primary’s
metallicity. Because HIP 65426 A is a fast rotator with few spectral lines, a direct
metallicity measurement is difficult, but if we take the metallicity of other members
of its moving group as representative, it should be approximately sub-solar, modulo
scatter among individual stars. (see Section 4.3 of Petrus et al., 2021).

Taken with a big grain of salt, the super-solar metallicity of HIP 65426 b, expected
∼sub-solar metallicity of HIP 65426 A, and the planetary C/O ratio of 0.6, as
constrained by comparison with the Exo-REM grid, are consistent with formation
via core accretion past the CO snowline (Öberg, Murray-Clay, and Bergin 2011).
The exact location of this snowline for HD 163296, which has a similar mass to
HIP 65426 A, was observed to be 75 au (Qi et al. 2015, Petrus et al. 2021). This
(very tentative, with many caveats, see, e.g., Mollière et al. 2022) picture provides a
parallel constraint on the picture of how HIP 65426 b attained its current separation
by setting an outer limit on the initial formation location before any scattering
occurred.

Future Directions
Continued orbital monitoring, both with VLTI/GRAVITY and spectrographs capa-
ble of measuring additional planetary RVs will refine the eccentricity measurement
of HIP 65426 b over the next few years, allowing us more insight into this specific
planet’s formation and further constraining the population-level eccentricity distri-
bution of cold Jupiters. Uncertainties of ∼ km s−1 or below are needed for relative
RV measurements of HIP 65426 b to constrain orbital parameters like a and ecc, mo-
tivating observation with high resolution spectrographs like CRIRES. Other tracers
of formation condition that will be measurable in the near future include the planet’s
obliquity (Sepulveda et al., 2023), dynamical mass (hopefully measurable upon the
release of Gaia timeseries data), and spin (from high resolution spectra). Further
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atmospheric characterization work, particularly retrievals that jointly model bulk
atmosphere properties and trace chemical species fingerprints (see, e.g. Xuan et al.,
2022) represent an important parallel path toward assessing the trustworthiness of
the metallicity and C/O ratio, which will be helpful for pinpointing the formation
location of HIP 65426 b. Xuan et al. (2022) showed that high resolution spectra are
sensitive to a broader range of atmospheric pressures than lower-resolution spec-
tra, leading to more robust abundance measurements, motivating high resolution
measurements of HIP 65426 b in particular.

It is worth mentioning that the rapid rotation and early spectral type15 of the primary
star, HIP 65426 A, precludes precise RV measurements, so a dynamical mass
measurement will rely entirely on the combination of relative (i.e. from high
contrast imaging) and absolute (i.e. from Gaia) astrometry. However, radial velocity
monitoring of the planet, together with continued relative astrometric monitoring,
may allow for the detection of unseen inner companions, through Keplerian effects
on the host star (Lacour et al., 2021) and/or planet-planet interactions (Covarrubias,
Blunt, and Wang, 2022).

More theoretical work is also needed in order to interpret these results. In particular,
population-level studies à la Marleau et al., 2019 could be conducted for alternate
plausible formation pathways, particularly more rapid core formation via pebble
accretion and gravitational instability in the protoplanetary disk. It would also be
interesting to compare the existing measurements of other formation tracers, for
example orbital inclination, metallicity, and C/O ratio, with their corresponding
predictions in existing models.

VLTI/GRAVITY is a powerful instrument. This study has mostly focused on its abil-
ity to refine orbital eccentricity measurements in order to make dynamical inferences
useful for commenting on planet formation. However, the ExoGRAVITY program
is actively investigating a number of other scientific questions and observational
constraints, particularly precise dynamical mass measurements and bolometric lu-
miniosities (e.g., Hinkley et al., 2023).

Planet formation is a complex process, and we will need a diverse set of observational
and theoretical tools to unravel its secrets. This paper represents a small step toward
better constraints and deeper understanding.

15Hot, early-type stars have few spectral lines, and rapid rotators have broad spectral lines, which
both decrease RV precision.
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C h a p t e r 4

ORBITIZE! VERSION 2

This chapter describes work that I have led myself, collaborated on, and/or
reviewed, with a focus on lines of code that I have personally written.1 However,
orbitize! is a collaborative project, and it is difficult to separate out features

that are solely attributable to me or to others. I try to be as inclusive as possible in
the following sections by explicitly naming major contributors for each module, but
since the focus is on what I personally did, I do not go into a huge amount of detail
about who did what. Parts of this chapter will be submitted to the Journal of Open

Source Software, and on that paper, all orbitize! v2 contributors (including
those who contributed legacy code) will be appropriately credited.

4.1 Origin Story & Scope of this Chapter
As an undergrad researcher, I led a paper describing the Orbits for the Impatient
algorithm (Blunt et al., 2017), a method for fitting the orbits of directly imaged
planets. The original OFTI code was implemented in IDL, and was not publicly
available. Over my post-bacc year at Caltech (2017-2018), Jason Wang and I
collaborated with a small group of others to port the OFTI algorithm to Python,
add an additional MCMC backend computation option that Jason had previously
implemented, and make the merged code open-source. The resulting software
package was orbitize!, version 1 of which we officially released in late 2018 and
published in PASP in the following year (Blunt et al., 2020).

Some exciting uses of orbitize! v1 include: determination of the population-level
eccentricity distributions of directly imaged planets and brown dwarfs, pointing to
distinct formation mechanisms for the two populations (Bowler, Blunt, and Nielsen,
2020a), the first obliquity measurement (constraints on the planetary spin, stellar
spin, and orbital plane angular momentum vectors) of a planetary mass companion
(Bryan et al., 2020), and orbital constraints for the first exoplanet directly imaged
with JWST (Carter et al., 2022).

1GitHub keeps track of who contributed each line of code, so if you want to, you can check!
This metric is not perfect, however; for example, if I port some IDL code to Python and add it to
GitHub, GitHub will credit only me, not the original author of the IDL code. It also, of course, does
not take into account conversations or pair programming.
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Since the publication of Blunt et al. (2020), myself and the orbitize! team have
been hard at work adding new features and expanding the code’s functionality. This
chapter describes a subset of the new additions to the code in version 2, released in
2021, and since.

4.2 How orbitize! Works
orbitize! turns data into orbits. More specifically, relative kinematic measure-
ments of a secondary (which I will refer to as a planet throughout this section, but
which could just as easily be a white dwarf, MS star, or other massive companion)
and its primary are converted to posteriors over orbital parameters through Bayesian
analysis.

orbitize! hinges on the two-body problem, which describes the paths of two
bodies gravitationally bound to each other. The solution of the two-body problem
(see Seager, 2010 Chapter 2) describes the motion of each body as a function of
time, given parameters determining the position and velocity of both objects at a
particular epoch. There are many basis sets (orbital bases) that can be used to
describe an orbit, which can then be solved using Kepler’s equation. It is important,
then, to be explicit about coordinate systems. I coded up an interactive visualization
to define and help users understand our coordinate system, which you can check out
here2. Blunt et al. (2020) also hosts a video of myself walking through a recording
where I use and explain the coordinate system. Several still frames from that video
are reproduced in Figure 4.1.

In its “standard” mode, orbitize! assumes that the user only has relative astro-
metric data to fit. To obtain these measurements, an astronomer takes an image
containing two point sources3 and measures the position of the planet relative to
the star in angular coordinates. In the orbitize! coordinate system, relative R.A.
and decl. can be expressed as the following functions of orbital parameters (Green,
1985):

2https://github.com/sblunt/orbitize/blob/main/docs/tutorials/show-me-the-orbit.ipynb
3This is extremely simplified and not exactly accurate for high-contrast imaging, but I do not

think additional detail would be beneficial here.

https://github.com/sblunt/orbitize/blob/main/docs/tutorials/show-me-the-orbit.ipynb
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Figure 4.1: Stills from the show-me-the-orbit visualization of the orbitize! co-
ordinate system. Positive radial velocity is described as moving away from the
observer, and Ω=𝜔=0 describes an orbit with periastron pointed towards the North
celestial pole.

ΔR.A. = 𝜋𝑎(1 − 𝑒 cos E)
[
cos 2 𝑖

2
sin ( 𝑓 + 𝜔p +Ω) − sin 2 𝑖

2
sin ( 𝑓 + 𝜔p −Ω))

]
Δdecl. = 𝜋𝑎(1 − 𝑒 cos E)

[
cos 2 𝑖

2
cos ( 𝑓 + 𝜔p +Ω) + sin 2 𝑖

2
cos ( 𝑓 + 𝜔p −Ω)

]
(4.1)

where 𝑎, 𝑒, 𝜔p, Ω, and 𝑖 are orbital parameters, and 𝜋 is the system parallax. f is
the true anomaly, and E is the eccentric anomaly, which are related to elapsed time
through Kepler’s equation and Kepler’s third law:
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𝑀 = 2𝜋( 𝑡
𝑃
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1 − 𝑒 tan

𝐸

2
)
] (4.2)

Kepler’s equation is transcendental and nonlinear, and must in general be solved
numerically. orbitize! employs two Kepler solvers to convert between mean
and eccentric anomaly: one that is efficient for the highest eccentricities (Mikkola,
1987), and Newton’s method in other cases, which is more efficient for the average
orbit needing to be solved. See Blunt et al. (2020) for more detail.

From scrutinizing the set of equations 4.1 and 4.2, it is possible to understand how
relative astrometry measurements constrain orbital parameters, and to understand
a few important inherent degeneracies. First, notice that the individual component
masses do not show up anywhere in this equation set. Thus, it is impossible
to measure dynamical masses for either the primary or the secondary using just
relative astrometry. That said, if the mass of the planet can be safely assumed to
be negligible compared to the mass of the star, then the total mass derived from
Keplerian analysis can be treated as a constraint on the dynamical mass of the
primary. In practice, the reverse logic is often employed: an independent constraint
on the mass of the primary (from e.g., spectroscopic analysis) is used as a prior on
the total mass when the planet mass is small and can be ignored.

A second important degeneracy is between semimajor axis 𝑎, total mass 𝑀tot, and
parallax 𝜋. If we just had relative astrometric measurements and no external knowl-
edge of the system parallax, we would not be able to distinguish between a system
that has larger distance and larger semimajor axis (and therefore larger total mass,
assuming a fixed period) from a system that has smaller distance, smaller semimajor
axis, and smaller total mass. Luckily, we live in an era where parallax measurements
are excellent overall thanks to the Gaia mission (Gaia Collaboration et al., 2016), and
strict priors can often be applied to parallax, breaking the degeneracy and enabling
dynamical mass measurements of stars (when planet mass is negligible). However,
this degeneracy is important to understand when considering the impact of potential
biases in parallax or stellar mass measurements.
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Figure 4.2: Posterior distributions over Ω and 𝜔𝑝 for GJ 504 b, computed via the
OFTI algorithm using data from Kuzuhara et al. (2013). The 180◦ symmetry in
both posteriors, discussed in the text, is apparent.

A final degeneracy I would like to point out concerns the argument of periastron 𝜔𝑃
and the position angle of nodes Ω. Equation 4.1 is invariant to the transformation:

𝜔
′
𝑝 = 𝜔𝑝 + 𝜋
Ω

′
= Ω − 𝜋

(4.3)

which creates a 180◦ degeneracy between particular values of 𝜔𝑝 and Ω, and
a characteristic “double-peaked” structure in marginalized 1D posteriors of these
parameters (see Figure 4.2 for an example). Physically, this degeneracy comes about
because relative astrometry alone only constrains motion in the plane of the sky; an
orbit tilted toward the observer, with the planet moving away from the observer has
the same projection on the plane of the sky as an orbit tilted away from the observer,
with the planet moving toward the observer. In practice, this degeneracy is handy,
because if the 𝜔𝑝/Ω posteriors do not appear identical before and after 180◦, it is
generally an indication that the MCMC chains are unconverged.

Although the degeneracies between individual component masses, parallax and
semimajor axis, and “the omegas” are baked into the equations describing relative
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astrometric measurements, the small orbital fractions over which directly imaged
planets are observed introduces additional uncertainties and degeneracies. Because
direct imaging today is sensitive to only planets at large separations from their stars
(≳ 200𝑚𝑎𝑠), directly imaged planets have orbital periods of in the best cases years,
and in the worst cases thousands or tens of thousands of years (Bowler, 2016).
The short orbital fractions over which we can observe these objects translates to
often broad orbital posteriors which are similar to the priors. A common recurring
degeneracy for incomplete orbits is between eccentricity and inclination (Blunt et
al., 2019; Ferrer-Chávez, Wang, and Blunt, 2021; Chapter 3 of this thesis); in the
absence of complete information about the orbital acceleration over the entire orbit,
the observed data can be equally well explained by a more inclined, circular orbit, and
by a more face-on, eccentric orbit. Directly imaged planets often have astrometric
measurements that are change approximately linearly in time, which translates to:
1) broad posteriors, and 2) strong eccentricity-inclination degeneracies.

Because the shapes of the posteriors of directly imaged planet orbits are often mul-
timodal, highly covariant, and non-Gaussian, many standard posterior computation
tools, such as the widely used Affine-invariant MCMC sampler emcee (Foreman-
Mackey et al., 2013) struggle to converge. This motivated the development of
the OFTI algorithm, and the incorporation of other specialized sampling tools,
such as MCMC with parallel tempering (Vousden, Farr, and Mandel, 2016), into
orbitize!.

For more details about how orbitize! sets up likelihood, defines priors, and
computes posteriors, I refer readers to Blunt et al. (2020) and Blunt et al. (2017).

4.3 Jointly Fitting Radial Velocities
Including RVs in the Model
In the orbitize! coordinate system, and relative to the system barycenter, the
radial velocity of the planet due to the gravitational influence of the star is:

𝑟𝑣𝑝 ( 𝑓 ) =
√︄

𝐺(
1 − 𝑒2)𝑀∗ sin 𝑖 (𝑀tot)−1/2 𝑎−1/2(cos(𝜔𝑝 + 𝑓 ) + 𝑒 cos𝜔𝑝), (4.4)

and the radial velocity of the star due to the gravitational influence of the planet is:

𝑟𝑣∗( 𝑓 ) =
√︄

𝐺(
1 − 𝑒2)𝑀𝑝 sin 𝑖 (𝑀tot)−1/2 𝑎−1/2(cos(𝜔∗ + 𝑓 ) + 𝑒 cos𝜔∗), (4.5)



86

where 𝜔∗ is the argument of periastron of the star’s orbit, which is equal to 𝜔𝑝 +
180◦.

In these equations, the individual component masses m𝑝 and m∗ enter. This means
radial velocity measurements break the total mass degeneracy and enable measure-
ments of individual component masses (“dynamical” masses). Crucially, however,
radial velocities of a planet do not enable dynamical mass measurements of the
planet itself, but of the star4. RV measurements of high-contrast companions are
increasingly common (e.g., Snellen et al., 2014, Petrus et al., 2021) and increasingly
precise thanks to high-resolution instruments like CRIRES (Kaeufl et al., 2004) and
KPIC (Pezzato et al., 2019). The RV measurements of high-contrast companions
are typically made relative to the star, not the barycenter, which in fact translates to
a constraint not on the star’s dynamical mass, but on the total mass.

Radial velocity measurements also break the Ω/𝜔 degeneracy discussed in the
previous section, uniquely orienting the orbit in 3D space.

How it Works
orbitize! can perform joint fits of RV and astrometric data in two different
ways, which have complementary applications. The first method was primarily
implemented by Roberto Tejada Arevalo and Vighnesh Nagpal, with discussion
and guidance primarily contributed by Lea Hirsch, myself, and Jason Wang. I
implemented and tested the calculation of secondary RVs, and reorganized the API
for computing radial velocities. This method is automatically triggered when an
orbitize! user inputs radial velocity data. orbitize! automatically parses
the data sets up an appropriate model, then runs the user’s Bayesian computation
algorithm of choice to jointly constrain all free parameters in the fit. orbitize!
can handle both primary and secondary RVs, and fits for the appropriate dynamical
masses when RVs are present; when primary RVs are included, orbitize! fits for
the dynamical masses of secondary objects, and vice versa. Instrumental nuisance
parameters (RV zeropoint offset, 𝛾, and white noise jitter, 𝜎) for each RV instrument
are also included as additional free parameters in the fit if the user specifies different
instrument names in the data file.

The second method of jointly fitting RV and astrometric data in orbitize! is a
feature I designed and primarily implemented. Jorge Llop-Sayson became an expert

4This is very often misunderstood; people see “RV” and ask why we can not get a planetary
dynamical mass.
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in the use of this feature, wrote a tutorial (linked in the previous section) on how
to use it, and added new features to the implementation. This method separates
out the fitting of radial velocities and astrometry, enabling a user to fit “one at a
time,” and combine the results in a Bayesian framework. First, a user performs a
fit to just the radial velocity data using, for example, radvel (but can be any radial
velocity orbit-fitting code)5. The user then feeds the numerical posterior samples
into orbitize! through the orbitize.priors.KDEPrior object. This prior
creates a representation of the prior using kernel density estimation6 (Scott, 2015),
which can then be used to generate random prior samples or compute the prior
probability of a sample orbit. Importantly, this prior preserves covariances between
input parameters, allowing orbitize! to use an accurate representation of the RV
posterior to constrain the fit. I often refer to this method as the “posteriors as priors”
method, since posteriors output from a RV fitting code are, through KDE sampling,
being applied as priors in orbitize!.

In implementing and testing this method, I also wrote a separate orbitize! mod-
ule7 which a) converts arbitrary radvel outputs to orbitize!-readable prior sam-
ples, and computes predicted separation as a function of input epoch. This method
is particularly useful for proposals; the posterior positions of planets known through
only RV monitoring can be predicted and plotted using only a radvel posterior
chain.

How to Use It
Detailed tutorials for both joint fitting methods are publicly available on theorbitize!
documentation website8.

Validation
orbitize! maintains a suite of unit tests, many of which were specifically written
to make sure that the features described in this section are working correctly. Specifi-
cally, interested readers are directed to: test_secondary_rvs.py, test_radvel_utils.py,
test_mcmc_rv.py, test_kepler_solver.py, and test_kde_and_ndinterpolator.py.

5There are several advantages to fitting RVs separately using a dedicated RV orbit-fitting package,
which are discussed more in Section 4.3.

6A truly awesome visualization of which is shown at https://mathisonian.github.io/kde/
7https://github.com/sblunt/orbitize/blob/main/orbitize/radvel_utils/compute_sep.py
8Joint fitting: https://orbitize.readthedocs.io/en/latest/tutorials/RV_MCMC_Tutorial.html;

trained fitting: https://orbitize.readthedocs.io/en/latest/tutorials/Using_nonOrbitize_Posteriors_as_Priors.html

https://github.com/sblunt/orbitize/blob/main/tests/test_secondary_rvs.py
https://github.com/sblunt/orbitize/blob/main/tests/test_radvel_utils.py
https://github.com/sblunt/orbitize/blob/main/tests/test_mcmc_rv.py
https://github.com/sblunt/orbitize/blob/main/tests/test_kepler_solver.py
https://github.com/sblunt/orbitize/blob/main/tests/test_kde_and_ndinterpolator.py
https://mathisonian.github.io/kde/
https://github.com/sblunt/orbitize/blob/main/orbitize/radvel_utils/compute_sep.py
https://orbitize.readthedocs.io/en/latest/tutorials/RV_MCMC_Tutorial.html
https://orbitize.readthedocs.io/en/latest/tutorials/Using_nonOrbitize_Posteriors_as_Priors.html
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For the purposes of this document, I set up an experiment to demonstrate and validate
both of the RV fitting methods inorbitize!, which should produce identical results.

Figure 4.3 shows a simulated dataset of relative astrometry and stellar radial velocity
measurements. I generated 100 epochs of simultaneous relative astrometry and
RV measurements, uniformly spaced between MJD=51550 and 52650, using the
following orbital parameters: sma=50 au, ecc=0.5, inc=𝜋/4, total mass=1.2 𝑀⊙,
plx=60 mas, M𝑝 = 0.5 𝑀⊙, 𝜔 = Ω = 0, 𝜏 = 0.8. I added Gaussian noise with
amplitude 2 mas and 2 km s−1 to each dataset, respectively. I first ran orbitize!
using the joint constraint method, not fitting for instrumental nuisance parameters
(𝜎 and 𝛾) for simplicity. I chose a well-constrained orbit to test the code’s ability
to correctly recover the input orbital parameters. Figure 4.4 shows a subset of the
fitted parameter posteriors, together with the underlying true values from which the
data were generated, shown as solid pink lines. To generate these results, I used the
parallel tempered MCMC implementation in orbitize!, with 1000 walkers and
20 temperatures. I generated 1e6 total samples, discarding the first 1e3 samples as
burn-in. These chains are likely not completely converged, but even this minimal
run resulted in posteriors consistent with the underlying true values.

I next performed the same test using the “trained” orbitize! KDE prior method.
I first performed an independent radvel fit to only the RV data, the results of
which are shown in Figure 4.5. I applied uniform priors to all parameters9 and
fixed 𝜎 and 𝛾 to 0, as in the joint orbitize! fit. The next step is creating a
KDE representation of the RV posterior. orbitize! does this automatically, using
scipy.stats.gaussian_kde, but it is important to choose the bandwidth of the
KDE kernel correctly. Figures 4.6 and 4.7 show the samples from the RV posterior
together with samples from the KDE representation using two different bandwidths,
highlighting the need to check that the chosen bandwidth allows for an accurate KDE
representation of the posterior. Having determined an appropriate KDE bandwidth,
I then ran orbitize! on just the astrometric simulated data, and recovered the
posteriors shown in Figure 4.8. I used the same MCMC parameters as for the
joint test: 1000 walkers and 20 temperatures. I again generated 1e6 total samples,
discarding the first 1e3 samples as burn-in. Again, these chains are likely not totally
converged, but the minimal run gives totally consistent results.

9When using this method of jointly fitting RVs + astrometry, it is important to keep track of all
priors that are applied, as one could accidentally end up “doubly” applying priors. For example, if
I set a log-uniform prior on K when running the radvel fit, then also set a log-unifom prior on the
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Figure 4.3: Simulated data used to test the RV+astrometry fitting capabilities of
orbitize!. The left panel shows the simulated astrometry, and the right panel
shows simulated stellar radial velocities. Data were generated assuming masses of
0.7 and 0.5 𝑀⊙, parallax of 60 mas, 𝑎=2au, e=0.5, inc=45 degrees, 𝜔=Ω=0, and
𝜏=0.8 (assuming the standard 𝜏ref=58849, see Section 3.4. Random Gaussian noise
with 𝜎 of 2mas (for astrometry) and 2 km s−1 (for RVs) was (somewhat arbitrarily)
chosen and applied to all data.

Applications
There are many applications of jointly fitting RVs and astrometry, and I will highlight
a few here, citing relevant papers along the way. I will also discuss situations in
which users might choose to use the joint fit or trained fit methods in orbitize!.

Jointly Fitting Planetary RVs

As outlined in this Section, jointly fitting planetary RVs does not allow for a dynam-
ical mass measurement of the planet. However, these types of measurements can:

secondary mass when running the subsequent orbitize! fit, I have effectively applied two priors
on secondary mass.
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Figure 4.4: Selected marginalized posterior elements for the joint RV + astrometry
orbitize! fit to data shown in Figure 4.3 described in the text. Purple histograms
show posterior samples, and pink solid lines denote underlying truth values from
which the data were generated.
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Figure 4.5: radvel fit to the simulated dataset shown in Figure 4.3. Top: all
simulated RV data, together with the maximum a posteriori RV orbit model. Middle:
residuals to the MAP fit. Bottom: phase-folded RVs to the MAP recovered period.
Uncertainties in recovered orbital parameters are shown in the top right corner of
this panel.
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Figure 4.6: Posterior samples for the fit shown in Figure 4.5 (purple), and samples
drawn from its KDE representation using the default bandwidth (pink). The default
bandwidth is too wide, resulting in a KDE representation that does not capture sharp
boundaries. Compare with Figure 4.7.
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Figure 4.7: Posterior samples for the fit shown in Figure 4.5 (purple), and samples
drawn from its KDE representation using a bandwidth of 0.1 (pink). This smaller
bandwidth results in a better KDE representation than that shown in Figure 4.7.
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Figure 4.8: Selected marginalized posterior elements for the trained RV + astrometry
orbitize! fit to data shown in Figure 4.3 described in the text. Purple histograms
show posterior samples, and pink solid lines denote underlying truth values from
which the data were generated. Compare with Figure 4.4.
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a) break the Ω/𝜔 degeneracy, uniquely orienting the orbit in 3D space10, b) confirm
that a companion is gravitationally bound to its primary, a canonical problem for
companions discovered via high-contrast imaging, and c) reduce orbital parameter
posterior uncertainty. In particular, planetary RV measurements have been shown
to break the inclination/eccentricity degeneracy (Schwarz et al., 2016). It is also
worth pointing out that planetary RV measurements are a feature of high spectral
resolution studies of directly imaged companions, typically carried out to study the
companions’ atmospheres.

The first application is useful for obliquity constraints, which themselves are a tracer
of dynamical formation and evolution (Bowler et al., 2023). Most obliquity mea-
surements that have been made to date are not true 3D obliquities, but projected
obliquities on the plane of the sky (see Bowler et al., 2023 for the direct imaging case
and Rubenzahl et al., 2021 for the transit case). The limiting factor is the orientation
of the stellar rotation vector in 3D space. Stellar inclination can be determined
through astroseismology (Zhang et al., 2021) or a combination of spectroscopic
vsin 𝑖 determination and photometric monitoring, but determining the position an-
gle of nodes (Ω) of the star’s angular momentum vector has not been possible until
recently. Kraus et al. (2020) presented the first fully 3D obliquity measurement of an
exoplanet (i.e., orienting both the orbital angular momentum vector and the stellar
rotation angular momentum vector in 3D space) by interferometrically measuring
the photocenter shift of a star across the Br𝛾 absorption line. There is interest in the
community in performing these types of measurements for other stars and obtain-
ing more 3D stellar angular momentum vector measurements, but joint planetary
RV+astrometric fitting capabilities are needed to turn these stellar measurements
into obliquity constraints.

The second application is more of a sanity check than an interesting scientific
constraint, as generally companions being studied at high spectral resolution will
already have passed several rounds of checks testing that the companion is not
an unbound background star. However, it is still worth mentioning, as labeling
candidate companions as background stars is difficult, and multiple rounds of checks
are needed (see e.g., Nielsen et al., 2017, which showed that the imaged companion
HD 131399 Ab, published in Wagner et al., 2016, was in fact a background star).

10Stellar RVs also have this ability, but not every primary star is amenable to RV measurement. For
example, hot and rapidly rotating stars, common directly imaged planet hosts, make RV measurements
difficult.
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Petrus et al. (2021) used their RV measurement of the planet HIP 65426 b was
consistent with orbital motion around the primary HIP 65426 A.

The third application is straightforward to understand: more data gives better con-
straints. However, there is some subtlety to how precise planetary RVs need to be in
order to achieve improved orbital constraints. Because of the low SNR of planetary
companions (both because of their intrinsic faintness and because of contaminating
stellar light), it is challenging to obtain high enough spectral resolution measure-
ments of high-contrast companions in order to derive precise RV measurements.
Typical uncertainties are on the order of a few km s−1. However, higher spectral
resolution measurements are possible, and have been made for a few planets (e.g., 𝛽
Pic b, Snellen et al., 2014). I recently dPI’ed a CRIRES proposal (PI: Simon Petrus)
to obtain high resolution spectra of the exoplanet HIP 65426 b, both to study the
exoplanet’s atmosphere at high spectral resolution, and to obtain a higher precision
planetary RV measurement. Chapter 3 discusses the eccentricity of HIP 65426 b
in detail, but the constraints from existing data are still inconclusive. However, the
expected RVs of HIP 65426 b are significantly different assuming a zero or moderate
eccentricity (see Figure 4.9) because of the eccentricity-inclination degeneracy; the
same (small) amount of orbital motion in the plane of the sky can be explained as
an orbit that is either less eccentric and closer to edge-on (with more orbital motion
in the radial direction) or more eccentric and closer to face-on (with less orbital
motion in the radial direction). RV measurements of HIP 65426 b will help us better
constrain the planet’s eccentricity, and therefore its formation history.

Jointly Fitting Stellar RVs

The major application of jointly fitting stellar radial velocities and astrometry is
measuring dynamical masses. The joint fitting capabilities of orbitize! are
most useful when both the RV and astrometric datasets are (individually) not very
constraining. A common scenario is: a star has been RV monitored for years, and
has a measured RV trend (i.e., the star’s radial velocity increases linearly over time),
indicative of a long-period companion whose orbit has not been resolved. Follow-up
imaging is performed, and a companion is discovered, and a few epochs of relative
astrometric measurements are added to the dataset. The reverse also occurs for
companions discovered with imaging that are then followed up with radial velocities.
This series of events most commonly plays out for massive, super-planetary mass
companions (e.g., brown dwarfs and MS companions, such as HD 104304, Schnupp
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Figure 4.9: The predicted radial velocity of HIP 65426 b for each posterior sample
assuming (in purple) a uniform prior on eccentricity, and (in pink) a fixed circular
eccentricity. With sub-km s−1 RV precision, RV measurements of HIP 65426 b will
enable improved eccentricity constraints.

et al., 2010, Howard and Fulton, 2016; and even compact objects, e.g., HD 159062,
Hirsch et al., 2019), but also happens for planets (e.g., the discovery of 𝛽 Pictoris c,
Lagrange et al., 2019, Nowak et al., 2020).

The value of dynamical mass measurements of young planets has been discussed
in several places in this thesis (see the Introduction and Chapter 2), but it is worth
highlighting the value of precise dynamical masses for other objects as well. Many
M dwarfs, in particular, have been shown to be anomalously inflated relative to
model expectations (Boyajian et al., 2012, Kesseli et al., 2018, Pegues et al., 2021).
Theories explaining this phenomenon range from magnetic spot activity to mea-
surement systematics to binary effects. Stassun et al. (2011) and (Pegues et al.,
2021) specifically call for more dynamical mass measurements of widely separated
M dwarf companions, particularly those near the fully convective boundary, in order
to make progress on this issue. This motivates my ongiong work with Vighnesh
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Nagpal on the HD 104304 G-M binary, which we have been working to characterize
with RVs and astrometry (Nagpal et al., 2021).

Joint fitting of the RV and astrometric datasets simultaneously is generally more
efficient when fitting either dataset alone would lead to MCMC chains struggling to
converge. In other words, if the orbit fraction is low in both datasets, fitting them
jointly will often speed up convergence time by reducing or breaking the multi-
modal parameter degeneracies (e.g. between Ω/𝜔) that would exist if fitting each
dataset independently.

Training on Stellar RVs

Using the trained fitting method of orbitize! is preferable when the RV fit is
complicated in its own right. For example, an RV dataset with significant stellar
activity may warrant a full separate orbit fit (see the next chapter), the relevant
orbital parameter posteriors of which can then be applied as priors in the astrometry
fit. To illustrate the utility of this functionality, I direct readers to Llop-Sayson et al.
(2021). I performed the RV fit published in this paper, and Jorge used the joint
fitting capabilities of orbitize! to produce constraints on the orbit of 𝜖 Eridani. I
reproduce the portion of this paper that I wrote below.

Mawet et al. (2019) performed a thorough series of tests to evaluate the
possibility that 𝜖 Eridani b is an artifact of stellar activity, finding that
the ∼7 yr orbital period is distinct from periods and harmonics of the
periodicities in the S𝐻𝐾 activity indicator timeseries. Our aim is not
to recapitulate their analysis, but to update their orbital solution using
the additional data obtained since the paper’s publication, which spans
approximately half of one orbital period of 𝜖 Eridani b.

Mawet et al. (2019) identified three peaks in a Lomb-Scargle peri-
odogram of the RVs that rose above the 1% eFAP: one at the puta-
tive planet period of 7.3 yr, one at 2.9 yr, and one at 11d. Applying
RVSearch (Rosenthal et al., 2021a) to the full dataset, we recover this
structure of peaks. Like Mawet et al. (2019), we also identify two major
periods in the S𝐻𝐾 timeseries for both HIRES and APF, which coincide
with the 11 d and 2.9 yr periods in the RVs. We interpret these as
the signatures of rotationally-modulated stellar activity and a long-term
activity cycle, respectively. To investigate the effects of these signals
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on the physical parameters of planet b, we performed two separate RV
orbit-fits using RadVel (Fulton et al., 2018) to try different priors on
the Gaussian Process (GP) timescale for modeling the stellar activity.
In each of these fits, we assume a one-planet orbital solution, param-
eterized as √𝑒𝑏 cos𝜔𝑏,

√
𝑒𝑏 sin𝜔𝑏, T𝑐𝑜𝑛 𝑗,𝑏, P𝑏, K𝑏. We also included

RV offset (𝛾) and white noise (𝜎) parameters for each instrument in the
fit, treating the four Lick velocity datasets independently to account for
instrumental upgrades as in Mawet et al. (2019). Finally, we allowed an
RV trend ¤𝛾.11

In the first fit, we included a GP noise model to account for the impact
of rotationally-modulated magnetic activity on the RVs (Rajpaul et
al., 2015). We used a quasi-periodic kernel, following (Mawet et al.,
2019). This kernel has hyperparameters 𝜂2, the exponential decay
timescale (analagous to the lifetime of active regions on the stellar
disk), 𝜂3, the stellar rotation period, and 𝜂4, which controls the number
of local maxima in the RVs per rotation period, and 𝜂1, the amplitude
of the GP mean function, which we treated as independent for each
instrument dataset. Following López-Morales et al. (2016), we fixed
𝜂4 to 0.5, which allows approximately two local maxima per rotation
period. In this first fit, we allowed 𝜂2 and 𝜂3 to vary in the range (0,
100d). We calculated a Markov chain representation of the posterior
using emcee (Foreman-Mackey et al., 2013), We visually inspected
the chains to ensure appropriate burn-in and production periods. In
total, the chain contained 450080 samples. The resulting orbital and
nuisance parameters are given in Table 4.1. Both the orbital parameters
and the GP hyperparameters are well constrained; in particular, the
marginalized posterior over the rotation period 𝜂3 is Gaussian about the
expected period of 11d. The data allow a trend, although the value is
consistent with no trend at the 1𝜎 level, which allows us to conclude that
there is no evidence in the current data for a RV trend. One non-intuitive
feature of this fit is a preference for extremely small values (10−6 m/s)
of white noise jitter for the second Lick dataset. Even when we ran a fit
requiring that all jitter values be at least 0.5 m/s, the posterior peaked
at this lower bound. This may be evidence that much of the noise in
this particular dataset is correlated, and therefore well-modeled by the

11The reference epoch for 𝛾, ¤𝛾, ¥𝛾 was 2457454.642028.
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GP noise model. It could also indicate that the reported observational
uncertainties are overestimated for this dataset. Whatever the reason,
there are fewer than 10 measurements that are affected by the value
of this jitter parameter, and neither the orbital parameters nor the GP
timescale parameters are affected by its particular value.

To investigate the impact of the long-term activity cycle on the marginal-
ized orbital parameter posteriors, we performed another fit identical to
the one described above, except we required that 𝜂2 and 𝜂3 vary between
1yr and the ∼ 30 yr observation baseline. The marginalized posteriors
for 𝜂2 and 𝜂3 were broad, with power across the entire allowed space,
although the period parameter 𝜂3 showed local maxima at both ∼ 1100
d and ∼ 2000 d. The marginalized 1 d posteriors for both of these
parameters did not vary with those of any of the orbital parameters,
allowing us to conclude that the long-term activity cycle, while some-
what present in the RVs, did not significantly affect the derived values
of the orbital parameters. We therefore adopt the rotation-only GP fit
described above.

Our derived orbital parameters, account for the effect of rotationally-
modulated stellar noise, are very similar to those of Mawet et al. (2019)
(see their Table 3). We derive an orbital period of 2671+17

−23 days, a
slightly reduced median semiamplitude of 10.3 m s−1, and a low median
eccentricity of 0.067. We show the series of RV measurements, the
residuals to the fit and the phase folded RV curve in Fig. 4.10.

The remainder of this paper uses the RV constraints derived in the section quoted
above as priors for an orbitize! fit using upper limits on the planet location as well
as Hipparcos/Gaia relative astrometry (see next section). The ability to separately
treat the stellar activity greatly simplified the workflow and utility of the orbitize!
fit.

4.4 Jointly Fitting Absolute Astrometric Data
Up to this point, I have only discussed relative astrometry, which is a measurement
of a secondary’s position with respect to the primary. However, it is also possible
to measure absolute astrometry of individual stars by precisely tracking their sky
positions relative to “fixed” background stars at large distances. Timeseries of
absolute astrometry measurements enable orbit constraints. In the orbitize!
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Figure 4.10: Multi-panel plot showing the data, maximum a posteriori model fit
and residuals. (a) Time series of radial velocities from all data sets, (b) residuals
to the RV fit, (c) phase-folded RV curve. The maximum probability one-planet
model is overplotted (blue), as well as the binned data (red dots). Reproduced from
Llop-Sayson et al. (2021).
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Table 4.1: RV Fit MCMC Posteriors for 𝜖 Eridani.
Parameter Credible Interval Maximum Likelihood Units
Modified MCMC Step Parameters
𝑃𝑏 2671+17

−23 2661 days
𝑇conj𝑏 2460017+76

−32 2460023 JD
𝑇peri𝑏 2460054+680

−690 2460235 JD
𝑒𝑏 0.055+0.067

−0.039 0.046
𝜔𝑏 57.3+80.2

−154.7 2.1 ◦

𝐾𝑏 10.34+0.95
−0.93 10.33 m s−1

Other Parameters
𝛾lick4 −1.0+2.7

−2.6 −0.9 m s−1

𝛾lick3 10.0 ± 4.9 9.9 m s−1

𝛾lick2 7.5+5.6
−5.7 7.6 m s−1

𝛾lick1 4.4+6.2
−6.1 4.5 m s−1

𝛾hiresj 2 ± 1 2 m s−1

𝛾harps 16442.5+3.2
−3.1 16442.4 m s−1

𝛾ces 16446.6+5.7
−5.5 16446.6 m s−1

𝛾apf −0.9 ± 1.3 −0.9 m s−1

¤𝛾 −0.00026+0.00063
−0.0006 −0.00026 m s−1 d−1

¥𝛾 ≡ 0.0 ≡ 0.0 m s−1 d−2

𝜎lick4 5.17+1.1
−0.95 5 m s−1

𝜎lick3 5.6+2.1
−2.3 5.3 m s−1

𝜎lick2 2.3+3.6
−1.4 0.5 m s−1

𝜎lick1 7.2+3.5
−3.7 7.4 m s−1

𝜎hiresj 2.36+0.46
−0.41 2.26 m s−1

𝜎harps 4.8+2.2
−2.7 4.3 m s−1

𝜎ces 8.1+3.8
−4.5 7.3 m s−1

𝜎apf 3.64+0.62
−0.55 3.51 m s−1

𝜂1,apf 7.82+0.97
−0.92 7.71 m s−1

𝜂1,hiresj 6.92+0.64
−0.59 6.78 m s−1

𝜂1,ces 7.5+4.1
−4.7 7.0 m s−1

𝜂1,harps 5.7+2.3
−3.0 5.3 m s−1

𝜂1,lick,fischer 8.7+1.3
−1.4 8.0 m s−1

𝜂2 37.6+6.4
−5.4 36.4 days

𝜂3 11.68+0.14
−0.13 11.66 days

𝜂4 ≡ 0.5 ≡ 0.5
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coordinate system discussed in the previous subsections of this chapter, the absolute
offset in stellar position due to orbital motion of a planet is:

ΔR.A.∗ = −
𝑀𝑝

𝑀tot
𝜋𝑎(1 − 𝑒 cos E)

[
cos 2 𝑖

2
sin ( 𝑓 + 𝜔p +Ω) − sin 2 𝑖

2
sin ( 𝑓 + 𝜔p −Ω))

]
Δdecl.∗ = −

𝑀𝑝

𝑀tot
𝜋𝑎(1 − 𝑒 cos E)

[
cos 2 𝑖

2
cos ( 𝑓 + 𝜔p +Ω) + sin 2 𝑖

2
cos ( 𝑓 + 𝜔p −Ω)

]
(4.6)

which is equal to - 𝑀𝑝

𝑀tot
multiplied by the relative astrometry measurements. As

with the introduction of RV measurements, adding absolute astrometry enables
dynamical mass measurements of the planet when combined with relative astrometry
measurements, motivating joint fits. (Alone, absolute astrometry constrains the
quantity 𝑀𝑝𝑀tot

2/3.)

Fitting absolute astrometry is complicated for many reasons. A (relatively) straight-
forward complication is that absolute stellar position timeseries fits must also fit for
the star’s parallactic ellipse and proper motion. In practice, these parameters can be
treated as free parameters in an orbit fit, and jointly constrained along with an orbit
model.

A messier complication is handling the available absolute astrometry data. In the
remainder of this section, I briefly recap the method of Nielsen et al. (2019), describe
its implementation in orbitize! (code that I designed, wrote, and tested), and
point to a second method whose implementation was led by Jason Wang.

The goal of the Nielsen et al. method is to use absolute astrometric measurements
from Hipparcos (van Leeuwen, 2007), a space satellite from the 1990s, along with a
single astrometric measurement from Gaia, to jointly constrain an orbit model. The
Hipparcos + Gaia combination of absolute astrometry data has been used to great
success. In general, Hipparcos and Gaia can both be used separately to measure
proper motion, and the baseline between them gives a change in proper motion
over time, or acceleration (presumably due to orbital motion). The 20 yr baseline
between the two missions makes the combination especially sensitive to longer-
period companions (e.g., Xuan and Wyatt, 2020, Lubin et al., 2022). Methods
like this, using Gaia data in any form, are “stop-gaps” until individual astrometric
measurements from Gaia are made public; the reported Gaia astrometric quantities
available today are fitted quantities, but we do not have access to the underlying data
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or model parameters. This is not true for Hipparcos, for which we have individual
astrometric measurements.

The first issue Nielsen et al. (and Snellan et al., before them) had to contend with
was reconstructing the timeseries Hipparcos measurements. The individual star
Hipparcos intermediate astrometric data (IAD), computed in an impressive full-
survey reduction by van Leeuwen (2007), are not publicly available as individual
measurements, but as residuals to astrometric model fits. Equations 1-4 in Nielsen
et al. (2019) use these residuals and the reported model parameters to reconstruct
the underlying data points. Some of the residuals published in van Leeuwen (2007)
were corrupted (Brandt et al., 2021), which Nielsen et al. addressed by proposing
that a user “re-fit” the IAD using the best-fit model parameters reported by van
Leeuwen (2007) (a sanity check I have taken to calling “the Nielsen test”). Results
of the Nielsen test (performed with orbitize!12) for 𝛽 Pictoris are shown in Figure
4.11. A nominal Nielsen test fit has five parameters: parallax, proper motion (in
RA and decl), and RA/decl offsets from the Hipparcos reported positions. Given
a file for a particular star containing Hipparcos residuals and model fit parameters,
orbitize! can automatically perform a Nielsen test to establish that the IAD are
appropriate to use before being incorporated into an orbit fit.

The math in Nielsen et al. (2019) is clearly laid out, so I will not rehash it here except
to point out that Equation 10 contains a typo (which I’ve also made Eric aware of).
The corrected equation is:

𝑓 =

(
𝐺

√︂
2

9𝐷
+ 1 −

(
2

9𝐷

))3/2

. (4.7)

Having reconstructed the Hipparcos IAD, we can proceed with orbit fitting. If
directed by a user to incorporate Hipparcos IAD, orbitize! automatically sets
up and performs an orbit fit jointly constraining the astrometric and orbital pa-
rameters, using astropy.coordinates to forward-model the parallactic ellipse.
Code for the orbitize! Hipparcos IAD fitting implementation is available at
https://github.com/sblunt/orbitize/blob/main/orbitize/hipparcos.py13 Unit tests rele-
vant to this module include: test_hipparcos.py and test_abs_astrometry.py. A peda-
gogical tutorial is hosted at https://orbitize.readthedocs.io/en/latest/tutorials/Hipparcos_IAD.html.

12The source code is available at https://orbitize.readthedocs.io/en/latest/tutorials/Hipparcos_IAD.html
13I encourage you to look at this code! I’m proud of the way I wrote this module.

https://github.com/sblunt/orbitize/blob/main/orbitize/hipparcos.py
https://github.com/sblunt/orbitize/blob/main/tests/test_hipparcos.py
https://github.com/sblunt/orbitize/blob/main/tests/test_abs_astrometry.py
https://orbitize.readthedocs.io/en/latest/tutorials/Hipparcos_IAD.html
https://orbitize.readthedocs.io/en/latest/tutorials/Hipparcos_IAD.html
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Figure 4.11: Results of the Nielsen test for 𝛽 Pic. Using the Hipparcos IAD mea-
surements, reconstructed from the best-fit model parameters and residuals reported
in van Leeuwen (2007), posteriors over the 5-parameter astrometric model are re-fit
and reported in red. The expected outcome, based on the van Leeuwen reported
parameters and uncertainties, is shown in black. The excellent agreement indicates
that the reconstructed IAD are suitable for orbit-fitting.
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In order to validate my implementation, I set up and repeated “case 3” in Nielsen
et al. (2019), a single-planet 𝛽 Pictoris b fit including relative astrometry, Hipparcos
and Gaia absolute astrometry, and a planetary radial velocity measurement (it goes
without saying, hopefully, that the fit in Eric’s paper was performed using indepen-
dent, closed-source software). This test is also included in the main orbitize!
code base14. The result is shown in Figure 4.12. Even though our fit uses the eDR3
Gaia position, and the Nielsen et al. test uses the DR2 Gaia position, the results are
consistent well within 1-𝜎: for example we recover a planetary dynamical mass of
13.7+6.1

−3.8 𝑀𝐽 , whereas Nielsen et al. recover 12.8+5.5
−3.2 𝑀𝐽 .

A parallel treatment of fitting Hipparcos and Gaia data is developed in Brandt (2018),
and has been implemented in orbitize! by Jason Wang. The major differences
between this method and the Nielsen et al. method described above are: 1) the
Brandt et al. method does not use the individual IAD Hipparcos measurements, but
instead uses three proper motion vectors computed from: 1) the reported Gaia proper
motion, 2) the change in reported Gaia and Hipparcos astrometric positions, divided
by the time baseline, and 3) the proper motion over the Hipparcos baseline, which
itself is computed from a linear combination of two separate Hipparcos reductions
with inflated errors. An important caveat to this method is that it does not fit for
the parallax or proper motion, but assumes these values from the reported Gaia
measurements. It therefore relies on the accuracy of these measurements.

Published work using orbitize! has used both methods to constrain exoplanet and
brown dwarf dynamical masses (e.g., Brandt method: Hinkley et al., 2023; Nielsen
method: Nowak et al., 2020).

14orbitize/tests/end-to-end-tests/betaPic_hipIAD.py

https://github.com/sblunt/orbitize/blob/main/tests/end-to-end-tests/betaPic_hipIAD.py
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Figure 4.12: Fit results for “case 3” of Nielsen et al. (2019), a single-planet 𝛽
Pictoris b fit including relative astrometry, Hipparcos + Gaia absolute astrometry,
and a planetary radial velocity measurement. Compare with Nielsen et al. (2019)
Figure 7. The results appear identical, validating the implementation.
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C h a p t e r 5

A NEW-AND-IMPROVED GAUSSIAN PROCESS REGRESSION
MODULE FOR RADVEL

Parts of this chapter will be submitted to the Journal of Open-Source Software.
The ideas about wavelength dependence of stellar activity signals were developed
in conversation with Jared Siegel. A new version of radvel will be released soon

that implements the model described here.

5.1 radvel

radvel is open-source software written in Python and C, primarily developed by
BJ Fulton, Erik Petigura, and myself. Like orbitize!, it is an orbit-fitting code,
although its intended audience is the radial velocity planet detection community,
and therefore its methodology is different than that of orbitize!. radvel is quite
flexible; it has an object-oriented model fitting interface (Figure 5.1) that allows
users to customize the orbital basis used to fit a set of RVs, the priors applied
(including the ability to fix or free individual model parameters when performing
a fit), and the number of Keplerian signals that make up the model. radvel
users primarily deal with RV timeseries with many potentially low SNR planet
signals whose orbital periods have been independently determined by, for example,
some flavor of periodic signal analysis (Hara et al., 2017). radvel posteriors
are typically Gaussian, with low covariance between individual parameters, so
convergence speed is not a priority, and most posterior-computation techniques
work just fine (a fundamentally different situation than the typical orbitize! use
case of a high-SNR, low orbit-fraction, single-planet signal).

As of Version 1.1.01, radvel has added Gaussian Process capabilities for jointly
modeling correlated stellar noise and planetary Doppler signals. This capability,
and a more recent update, are described in detail in the rest of this chapter.

5.2 Motivation & Gaussian Process Model Description
Separating out the impacts of stellar activity and planetary signals on radial velocity
(RV) measurements is widely accepted to be the most important problem in radial
velocity exoplanet science today (e.g., Collier Cameron, 2018), and one that will

1https://github.com/California-Planet-Search/radvel/releases/tag/v1.1.0

https://github.com/California-Planet-Search/radvel/releases/tag/v1.1.0
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Parameter 
container for information specific to an 

orbit or noise model parameter

Parameters 
container for Parameter objects

RVModel 
callable object that uses Parameters object

to compute RV signature from planet orbit model

RVLikelihood 
object with a method for computing 𝛘2 likelihood

that stores information about a dataset 
and an RVModel object

CompositeLikelihood
container for multiple RVLikelihood objects

Posterior 
object with a method for computing model probability 

Prior
callable object that calculates prior probability

*

*

Data
radial velocity time series data*

Figure 5.1: Class diagram for the RadVel package showing the relationships be-
tween the various objects contained within the RadVel package. Arrows point from
attributes to their container objects (i.e. a radvel.Parameter object is an attribute of
a radvel.Parameters object). Pertinent characteristics are summarized beneath each
object. An asterisk next to an arrow indicates that the container object typically
contains multiple attribute objects of the indicated type. This figure was constructed
by myself, and was originally published in Fulton et al. (2017).

be critical to solve in order to discover and characterize Earth-like planets around
Sun-like stars. Deriving an exoplanet-induced Doppler shift from a star’s spectrum
relies on our ability to either simultaneously model or remove Doppler shifts induced
by stellar surface processes.

Stellar activity processes can be orders of magnitude greater amplitude than plane-
tary signals (e.g., on the Sun, activity is at the level of 1 m s−1, while the RV shift
induced by the Earth is 10 cm s−1). In addition, they occur across timescales span-
ning orders of magnitude. On timescales of seconds to minutes, stars jiggle due to
stochastically excited sound waves propagating through their interiors (p-mode as-
teroseismic oscillations). The asymmetric bulk motion of the stellar surface toward
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or away from the observer introduces Doppler shifts. On timescales of minutes, stel-
lar surface granulation due to asymmetries in photosphere convection affects the RV
measurement. Both of these effects are typically mitigated by lengthening exposure
times (or taking a series of exposures, for bright stars), effectively averaging over
p-mode oscillations and granulation noise (Dumusque et al., 2011). This strategy
will likely need to be revised as we enter the era of extremely precise radial velocity
(EPRV) instruments like NEID with instrumental precision of tens of cm s−1, but
this discussion is beyond the scope of this chapter. On timescales of the stellar
rotation period (∼ 1 day, for the fastest rotators, to hundreds of days for the slowest),
active regions dominate the activity signal. On the sun, we observe clusters of dark
magnetized sunspots covering generally a few percent of the solar surface, which
contribute to the RV signal by blocking first blueshifted then redshifted photosphere
as they rotate across the solar surface. We also observe brighter magnetized regions
(faculae and plage) that cover a larger fraction of the solar surface and primarily
contribute to RV signal by suppressing convection through magnetic pressure. The
quiet sun has a net blueshift due to convection (upwelling plasma is hotter, and
therefore brighter, than sinking plasma), so convection suppression results in a net
redshift. Because the pattern of faculae and plage across the solar surface is asym-
metric, this convective blueshift suppression is also variable on the timescale of
stellar rotation (Aigrain, Pont, and Zucker, 2012).

When RV astronomers say “stellar activity” we are typically referring to the impacts
of rotationally-modulated active regions (both bright faculae/plage and dark spots)
on RV signals. These active regions are not static; sunspots evolve over timescales
of one to a few rotation periods, and the overall occurrence of spots and plage
is known to vary on an 11-year “solar cycle” on the sun, which is understood as
magnetic energy oscillating between storage in poloidal and toroidal components
(Muñoz-Jaramillo, Nandy, and Martens, 2009).2. RV baselines are typically too
short to observe these long-period cycles on other stars, but surveys with the longest
baselines are beginning to be able to probe magnetic activity cycles (Rosenthal et al.,
2021b).

Modeling rotationally-modulated stellar activity is difficult. Stellar surfaces are
complex, with brightness patterns that vary not only as a function of 2D location on
the stellar surface but also as a function of wavelength of observation. Compounding
the problem of this large parameter space is the difficulty of obtaining RV data with

2A truly fantastic visualization of this dynamo can be found at https://svs.gsfc.nasa.gov/3521.

https://svs.gsfc.nasa.gov/3521
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sufficient cadence to understand the activity. Even a single stellar spectrum is
expensive, and weather, time allocation committees, and cost can interfere with the
construction of a high quality and high cadence dataset.

Gaussian process regression (GPR) was originally introduced as a “stop-gap” mea-
sure for jointly modeling planetary signals and stellar activity while more physically-
motivated stellar activity models were developed, but is widely used today to jointly
model stellar activity and planetary signals. Personally, I believe that GPR will be
an important tool in the hunt for Earth 2.0, and at the same time that the current
models are quite flexible, and require more physical constraints. The following
description deepens and builds on the material in Section 2.6 in order to give the
reader some background in this important statistical technique, then describes the
GPR model that I constructed and implemented as part of my thesis. The back-
ground GPR material in this section draws heavily from Rasmussen and Williams
(2006), Foreman-Mackey (2018), and Aigrain and Foreman-Mackey (2022).

A staple model-fitting prescription in astrophysics is Bayesian 𝜒2 regression. Given
a model prediction, m which uses model parameters 𝜃, data y, and observational
uncertainties 𝜎, the model log-likelihood is:

L(𝜽) ≡ 𝑝(y | 𝜽) =
𝑁∏
𝑖=1

L𝑖 =

𝑁∏
𝑖=1

{
1

√
2𝜋𝜎𝑖

exp

[
− (𝑦𝑖 − 𝑚𝑖)2

2𝜎2
𝑖

]}
(5.1)

=
1√︁

2𝜋 |K|
exp

(
−1

2
(y − m)TK−1(y − m)

)
(5.2)

where the second line is given in an equivalent matrix formulation. K is called
the covariance matrix, and in the standard 𝜒2 model fitting formulation, all of its
off-diagonal elements are zero, while the diagonal elements are 𝜎2

𝑖
:

𝐾𝑖 𝑗 = 𝛿𝑖 𝑗𝜎
2
𝑖 . (5.3)

In words, the 𝜒2 likelihood is the probability of drawing the N existing data points
from an N-dimensional Gaussian model centered on the model prediction vector,
where the width of the Gaussian in the 𝑖th dimension corresponds to the observational
uncertainty on the 𝑖th datapoint.

So far, I have restricted the discussion to 𝜒2 likelihood, but having recast this more
familiar model-fitting problem into the equivalent problem of drawing from an N-
dimensional Gaussian, the jump to Gaussian Process regression (GPR) is not so



112

extreme. The first tenet of GPR is removing the assumption that the off-diagonal
elements in the covariance matrix K must be zero. This allows datapoints to have
nonzero correlations in the likelihood model, and therefore for the likelihood to
describe “correlated noise.” Removal of this assumption is not unique to GPR;
for example, a dataset might have empirically computed covariances between dat-
apoints that can be incorporated into the model using the same equation above.
The special sauce of Gaussian Process regression is modeling this covariance be-
tween datapoints functionally. This is often called “nonparametric regression,” but
it might be more accurately referred to as “semi-parametric” regression. Rather than
forward-modeling m, one forward-models the covariance structure by specifying its
functional form.

GPR is used widely in the machine learning community to model datasets with
correlated noise. Even if the modeler does not know the functional form of the
process generating the correlated noise, they can use GPR to model it in a data-
driven way. Assumptions or prior knowledge about the correlated noise can also
be incorporated into the model in a Bayesian framework, making it attractive to
astronomers; for example, the timescale over which the noise is coherent can be
assumed, and fixed to a certain value, or included as a free model parameter, in
which case a Bayesian prior can be applied. These properties make GPR a powerful
and flexible tool for pattern-fitting.

In order to model the rotationally-modulated activity signal of an active star, we can
construct the following GPR model, using Equation 5.2 to compute likelihood. We
set m=0, effectively assuming that all of the stellar signal can be treated as correlated
noise. To model planetary signals, m becomes the Keplerian prediction.

m = 0

𝐾𝑖 𝑗 = 𝑘
(
𝑡𝑖, 𝑡 𝑗 , 𝜙

)
+ 𝛿𝑖 𝑗𝜎2

𝑖

𝑘
(
𝑡𝑖, 𝑡 𝑗 , 𝜙

)
= 𝜂2

1 · exp

−
(𝑡 − 𝑡′)2

𝜂2
2

−
sin2

(
𝜋(𝑡−𝑡′)
𝜂4

)
𝜂2

3


(5.4)

𝜙 represents the Gaussian process hyperparameters (parameters of the kernel func-
tion used to construct the covariance matrix). For this kernel, the “quasi-periodic”
kernel, 𝜙 is a vector consisting of 𝜂1, 𝜂2, 𝜂3, and 𝜂4. 𝜂1 is the amplitude of the
Gaussian process, analogous to the amplitude of the correlated deviation from RV=0
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due to stellar activity. 𝜂2 is the characteristic “lifetime” of an active region, or in
other words how long a given RV signal due to stellar activity will be coherent for.
𝜂4 is the rotation period, and 𝜂3, which is sometimes called the harmonic complexity
(Nicholson and Aigrain, 2022) or periodic lengthscale, and which I like to call the
shape parameter, requires a bit more explanation. Figure 5.2 shows the impact of
this parameter on the best-fit GPR models of a noisy dataset. Importantly, for this
experiment, the active region lifetime, 𝜂2, is set to infinity; in other words, this is a
strictly periodic kernel, and the model is unchanging over time. The impact of 𝜂3

is to allow more or fewer “wiggles” in the correlated noise model, which must then
repeat exactly after each period. Small values of 𝜂3 are the most wiggly, and larger
values less so. For very large values of 𝜂3 (e.g., 𝜂3=10, bottom panel of the figure),
the mean model prediction is flattened out relative to the true amplitude of the gen-
erating function. Figures 5.3 and 5.4 show comparable experiments illustrating the
impacts of 𝜂2 and 𝜂4.

From scrutinizing the quasi-periodic kernel function (Eq 5.4), we can observe where
physical constraints can be levied. 𝜂4, the rotation period, is most straightforward
to understand. A common strategy is to monitor a star one wishes to model with
photometry, determine the rotation period from photometric variations (there is
much discussion about the best way to do this– autocorrelation, e.g., Holcomb et al.,
2022; periodogram analysis; GPR, etc), then set an informed prior on this parameter
when modeling RVs. Another widely used method is to jointly model RVs and
photometry or simultaneous activity indices, allowing all of these data, which in
principle share a single rotation period, to jointly constrain this parameter (e.g.,
Suárez Mascareño et al., 2021).

A less common strategy for introducing physical constraints is to set a prior on 𝜂2,
the characteristic active region lifetime, based on either observations of the specific
star of interest and/or the theoretically expected or observed distribution from a
population of similar objects (Basri and Shah, 2020; Giles, Collier Cameron, and
Haywood, 2017). Approaches vary on what to do about 𝜂3, and here I will contribute
only a warning: the shape parameter of the same activity signal need not be the
same in photometry and RVs. This is apparent from looking at, e.g., Figure 2.7,
which shows contemporaneous RVs and photometry of V1298 Tau phase-folded to
the period of the largest-amplitude rotation signal. The photometric and RV data
have different shapes. More work is needed in general to sufficiently model the
relationship between photometry and RV activity signals, and for now I will content
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Figure 5.2: The impact of 𝜂3 on the best-fit model for a noisy dataset drawn from
a sinusoid. Each panel shows the same noisy dataset (grey points) drawn from a
true underlying model (pink dashed curve). The black curve shows the best-fit GPR
model prediction, given a fixed value of the shape parameter 𝜂3 (the value of which
is given in the bottom left corner of each panel).
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Figure 5.3: The impact of 𝜂2 on the best-fit model for a noisy dataset drawn from
a sinusoid. Compare with Figure 5.2; the setup is the same, except in this figure,
the shape parameter 𝜂3 is held constant, while the exponential decay timescale 𝜂2
is varied. I am sure it is apparent why these parameters are often a) confusing
and confused with one another, and b) degenerate in model fits. 𝜂2 controls the
characteristic amount of time over which the periodic pattern evolves.
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Figure 5.4: The impact of 𝜂4, the period, on the best-fit model for a noisy dataset
drawn from a sinusoid. Compare with Figures 5.2 and 5.3. To make this figure, 𝜂2,
the exponential decay timescale, has been set to ∞ (i.e., same setup for Figure 5.2).
𝜂4 controls the periodic timescale over which the GP pattern must repeat exactly.
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myself with just the warning that the assumption of the same 𝜂3 for both data types
may not be valid.

Having explained in general how GPR is applied to model rotationally-modulated
stellar activity signals in RVs, I will now explain an observation and subsequent
model modification I made during my PhD. This model modification was proposed
in parallel by Cale et al. (2021). This description builds on the description in Section
2.4.

The insight that motivated the modification I made relates to the way RV datasets
from different instruments are treated in the “classical” GPR framework.3 When
applying a parametric model to a dataset, it is sufficient to compute the likelihood
for each dataset separately, then multiply them together. To make this concrete, we
can imagine fitting a sine curve to some data taken by two independent instruments.
We might generate model predictions for a proposed parameter vector (period, say),
compute a likelihood for each individual datapoint, then multiply them together to
obtain the overall likelihood using Equation 5.1. In practice, astronomers will define
a function that computes log(likelihood) given a set of data, then add these values
together in loop applied to several sets of data to compute a total likelihood. This
choice is often not specified; for example Suárez Mascareño et al. (2021) performs
GPR this way, but I only realized this after explicitly asking the first author.

My insight was that adding log(likelihood) for a GPR model applied to two inde-
pendent datasets leads to the (potentially) unintended consequence that data from
different instruments ends up being treated as uncorrelated in the model. This is
visualized in Figures 2.11 and 2.12. Constructing a single covariance matrix for the
entire RV dataset, as discussed in Section 2.4, reduces effective degrees of freedom
in the model, making the model less susceptible to overfitting. This tweaked model
was also constructed to be more consistent with physical expectations, which I dis-
cuss more in Section 5.4 below. However, the relationship between radial velocities
taken by instruments with different spectral efficiencies needs to be studied further.

5.3 How to Use it
The version of radvel that incorporates this model is working and validated, but
currently requires some optimization before being released publicly. Nevertheless,

3“Classical” is perhaps too strong of a word here. It is often unclear how authors are choosing
to model multiple independent datasets. Part of the motivation for my V1298 Tau paper was to point
out that this modeling choice is not standardized and often unclear in the literature, but likely impacts
reported constraints.
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the code is available on this GitHub branch: https://github.com/California-Planet-
Search/radvel/tree/tinygp. In writing this implementation, I gutted and re-wrote
the radvel Gaussian Process back-end (the original implementation, which has
been used since 2018, I also wrote). These are breaking changes, although existing
radvel setup files and scripts using the API only require small modifications in
order to use the new code. These changes are outlined for a sample script using
the API in the code snippet below. While the user interface and API are very
similar, the backend is completely different. The code is now built on jax by
way of tinygp. jax is Google software that provides “replacements” for numpy
functions to enable just-in-time compilation and execution on GPUs (and/or TPUs).
The matrix inversion and determinant computation steps of computing a Gaussian
Process likelihood are computationally intensive (GP likelihood calculation scales as
O(n3)), but parallelizable, so being able to run code on GPUs will speed up runtime
significantly and enable application to larger datasets (e.g., Foreman-Mackey et al.,
2017).

I include a tutorial of how to use the new code below, based on the data and model
published in Dai et al. (2017). I originally wrote this tutorial in 2018 when the first
version of the Gaussian Process code that I wrote in radvel was released, and I
updated it to use the new underlying model in 2022, highlighting changes one would
have to make in order to use the new tinygp implementation. This version of the
tutorial can be compared to the version publicly hosted on the radvel documentation
website4.

1 import numpy as np
2 import pandas as pd
3 import os
4 import radvel
5 import radvel.likelihood
6 from radvel.plot import orbit_plots , mcmc_plots
7 from scipy import optimize
8
9 # read in data from Dai et al 2017

10 data = pd.read_csv(os.path.join(radvel.DATADIR,’k2-131.txt’), sep=’ ’)
11
12 t = np.array(data.time)
13 vel = np.array(data.mnvel)
14 errvel = np.array(data.errvel)
15 tel = np.array(data.tel)
16
17 telgrps = data.groupby(’tel’).groups

4https://radvel.readthedocs.io/en/latest/tutorials/GaussianProcess-tutorial.html

https://radvel.readthedocs.io/en/latest/tutorials/GaussianProcess-tutorial.html
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18 instnames = telgrps.keys()
19
20 # initialize Keplerian model
21 nplanets=1
22 params = radvel.Parameters(nplanets,basis=’per tc secosw sesinw k’)
23 params[’per1’] = radvel.Parameter(value=0.3693038)
24 params[’tc1’] = radvel.Parameter(value=2457582.9360)
25 params[’sesinw1’] = radvel.Parameter(value=0.,vary=False) # fix eccentricity = 0
26 params[’secosw1’] = radvel.Parameter(value=0.,vary=False)
27 params[’k1’] = radvel.Parameter(value=6.55)
28 params[’dvdt’] = radvel.Parameter(value=0.,vary=False)
29 params[’curv’] = radvel.Parameter(value=0.,vary=False)
30
31 # initialize GP parameters at Dai+ published values
32 # hyperparameters are shared between instruments except activity amplitudes.
33 params[’gp_amp_harps -n’] = radvel.Parameter(value=25.0) # eta1
34 params[’gp_amp_pfs’] = radvel.Parameter(value=25.0)
35 params[’gp_explength’] = radvel.Parameter(value=13.4) # eta2
36 params[’gp_perlength’] = radvel.Parameter(value=0.54) # eta3
37 params[’gp_per’] = radvel.Parameter(value=9.64) # eta4

38
39 gpmodel = radvel.model.RVModel(params)
40
41 jit_guesses = {’harps-n’:0.5, ’pfs’:5.0}
42
43 likes = []
44 def initialize(tel_suffix):
45
46 # instantiate a separate likelihood object for each instrument.

47
48 indices = telgrps[tel_suffix]

49
50 # <<<<<<<<< changed on tinygp branch <<<<<<<<

51 # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

52 like = radvel.likelihood.RVLikelihood(

53 gpmodel, t[indices], vel[indices], errvel[indices],

54 suffix=’_’+tel_suffix

55 )

56 # >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

57
58 # add in instrumental nuisance parameters

59 like.params[’gamma_’+tel_suffix] = radvel.Parameter(

60 value=np.mean(vel[indices]), vary=False, linear=True

61 )

62 like.params[’jit_’+tel_suffix] = radvel.Parameter(

63 value=jit_guesses[tel_suffix], vary=True

64 )

65 likes.append(like)

66
67
68 for tel in instnames:
69 initialize(tel)
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70
71 # define the likelihood and posterior
72
73 # <<<<<<<<< changed on tinygp branch <<<<<<<<
74 # <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
75 gplike = radvel.likelihood.GPLikelihood(likes)
76 # >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
77
78 gppost = radvel.posterior.Posterior(gplike)
79
80 # apply same priors as Dai+
81 gppost.priors += [radvel.prior.Gaussian(’per1’, 0.3693038, 0.0000091)]
82 gppost.priors += [radvel.prior.Gaussian(’tc1’, 2457582.9360, 0.0011)]
83 gppost.priors += [radvel.prior.Jeffreys(’k1’, 0.01, 10.)]
84 gppost.priors += [radvel.prior.Jeffreys(’gp_amp_pfs’, 0.01, 100.)]
85 gppost.priors += [radvel.prior.Jeffreys(’gp_amp_harps -n’, 0.01, 100.)]
86 gppost.priors += [radvel.prior.Jeffreys(’jit_pfs’, 0.01, 10.)]
87 gppost.priors += [radvel.prior.Jeffreys(’jit_harps -n’, 0.01,10.)]
88 gppost.priors += [
89 radvel.prior.Gaussian(’gp_explength’, 13.4, sqrt(2))

90 ]
91 gppost.priors += [
92 radvel.prior.Gaussian(’gp_per’, 9.64, 0.12 )

93 ]
94 gppost.priors += [
95 radvel.prior.Gaussian(’gp_perlength’, 0.54, 0.10)

96 ]
97
98 # run MCMC
99 chains = radvel.mcmc(gppost,nrun=100,ensembles=3,savename=’rawchains.h5’)

100
101 # make a plot visualizing the RV data and model
102 GPPlot = orbit_plots.GPMultipanelPlot(
103 gppost,

104 subtract_gp_mean_model=False,

105 subtract_orbit_model=False

106 )
107 fig, axes = GPPlot.plot_multipanel()
108
109 # make a corner plot visualizing the posterior
110 Corner = mcmc_plots.CornerPlot(gppost, chains) # posterior distributions
111 Corner.plot()

The first plot output by this tutorial is Figure 2.12, and the second is reproduced
below as Figure 5.5.
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Figure 5.5: Posterior samples returned by the code snippet computing a GP model
for K2-131 in section 5.3. Keplerian elements like Keplerian semi-amplitude are
constrained jointly with Gaussian process hyperparameters like 𝜂2. The Gaussian
process amplitude parameters are unique to each instrument, in accordance with the
model described in this chapter, but other hyperparameters that are more fundamen-
tally tied to stellar processes (i.e., the rotation period, 𝜂3 are shared across and jointly
constrained by all RV data. From visual inspection, these chains are not completely
converged, but this is unimportant since this plot is meant to help visualize the
model-fitting process, rather than be interpreted as new scientific constraints.
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5.4 Validating the Model
Validating the GPR model I have outlined in the previous sections involves two steps:
first validating that the model is implemented correctly, and second validating that
the model assumptions are correct.

The first test I performed seeking to provide evidence that the model was imple-
mented correctly was to code up a visualization of the GP prediction for a model with
two different datasets. This visualization became Figure 2.12. As expected, the GP
predictions appeared to be linear combinations, with constraints coming from both
datasets. I then ran a full MCMC fit to the K2-131 dataset shown in this figure (the
results of which are shown in Figure 5.5), and compared it to the outputs of the same
test using the current version of radvel, which assumes uncorrelated GPs for each
instrument (the results of the same test using the old radvel GP implementation
are shown in Figure 5.6 for comparison, and the relevant parameters are directly
overplotted in Figure 5.7). Here are a few “sanity checks” I performed:

• Overall, the posteriors for the two tests are similar. The rotation period, 𝜂4,
planet semi-amplitude, and active region lifetime are within 1𝜎. In both cases,
the posteriors are similar to those of Dai et al. (2017), who modeled all data
as if it came from a single instrument using independent software.

• When the GPs are treated as correlated (i.e., when I use the new model), the
GP shape parameter posterior, 𝜂3, is on average larger than when the GPs
are treated as uncorrelated. This means that the GP is not allowed to be as
“wiggly.” This is consistent with the story that when effective free parameters
are removed, noise is less able to be treated as signal.

• The average of the Gaussian Process amplitude posteriors of the two instru-
ments in the correlated GP case (𝜂1,pfs and 𝜂1,harps−n is consistent with the
single Gaussian process amplitude (𝜂1) posterior in the uncorrelated GP case.

I also repeated this test after 1) adding a large arbitrary offset to all of the HARPS-N
RVs, and 2) multiplying all of the HARPS-N RVs by 0.01 to test that only the
recovered 𝛾 and 𝜂1 values were affected.

The next step in validating the model is checking that the underlying model itself,
outside of the implementation details, is valid. This is an open problem, as there is a
lot of physics in stellar activity that is not understood. I hope to spend time over the
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Figure 5.6: Posterior samples computed for a fit to the same K2-131 RVs analyzed
in the code snippet in this section. Compare with Figure 5.5. The only difference
between this result and the result shown in Figure 5.5 is that this result uses the
current version of radvel, which assumes uncorrelated Gaussian Processes for
each instrument.
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Figure 5.7: Direct comparison of relevant parameters shown in Figure 5.6 and 5.5.
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next few years researching this further. However, I have done several preliminary
checks and thought experiments that I will detail below.

The first piece of evidence that it is valid to treat stellar activity signals as linear
combinations comes from actual data. For observations of some active pre-MS
T-Tauri stars, such as Hubble I 4, the radial velocity signals, to first order, appear
by-eye to be proportional (Figure 5.8). The phased cadence of these observations is
still quite low, however, and it is difficult to tell whether the RV curves have different
shapes as a function of wavelength. A similar phenomenological trend has been
found in preliminary comparisons of simultaneous observations of the Sun-as-a-
star with high resolution spectrographs: solar RVs taken with different instruments
appear to be proportional to one another (Lily Zhao, private communication). This
is the very beginning of these types of investigations, however, and more work (and
higher quality contemporaneous data across a range of bandpasses) is needed to test
this assumption.

We can also attempt to theoretically model the wavelength-dependence of stellar
activity in order to justify or refute the assumption of stellar activity proportionality.
As discussed previously, active regions are thought to affect RV measurements in
two ways: blocking light from the photosphere coming from either the red- or blue-
shifted side of the star, and suppressing the net convective blueshift on the stellar
surface. Aigrain, Pont, and Zucker (2012) constructed the following model of a
single point-like spot’s effect on the stellar RV signature:

𝐹 (𝑡) = 𝑓MAX{cos 𝛽(𝑡); 0}
ΔRVrot(𝑡) = −𝐹 (𝑡)𝑉eq cos 𝛿 sin 𝜙(𝑡) sin 𝑖

ΔRVc(𝑡) = 𝐹 (𝑡)𝛿𝑉c𝜅 cos 𝛽(𝑡),

(5.5)

where 𝐹 (𝑡) is the stellar flux, 𝑓 = 2(1 − 𝑐) (1 − cos𝛼) is the flux decrease when the
spot is at the disk center, 𝑐 is the spot contrast, 𝛽 is the angle between the spot area
vector and the line of sight, and 𝛼 is the angular radius of the spot on the stellar
surface (in this model assumed to be small).

The resulting RV perturbations from this point spot for the rotation and convective
suppression components are given below the flux variation equation. Additional
variables defined here are as follows: V𝑒𝑞 is the equatorial velocity, 𝜙(𝑡) is the
rotation phase of the spot, 𝛿 is the spot latitude, 𝛿𝑉𝑐 is the change in convective
velocity due to the spot, and 𝜅 is the ratio of the magnetized area to the spot area.
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Figure 5.8: Radial velocities of Hubble I 4, from Mahmud et al. (2011). Optical
RVs are from the Tull spectrograph, and NIR RVs are in the K-band, and taken
with IRTF. The median of the NIR and visible RV datasets has been subtracted
off, and the data have been phased to the 1.5459d stellar rotation period identified
in Mahmud et al. (2011). Takeaway: to first order, the proportionality of stellar
activity signals appears consistent with the data for this star, but higher cadence data
are needed.

Scrutinizing ΔRVrot(𝑡), I see only a single wavelength-dependent parameter: 𝐹 (𝑡).5
Because both the spot brightness and the blocked photosphere brightness change as
a function of wavelength, 𝐹 (𝑡) will too. Therefore, we would expect RV variations
due to blocking of rotationally-induced Doppler shifts to be scalar multiples at
different wavelengths.

It is worth reiterating at this point that this model makes several potentially important
simplifications, in particular that spots are small relative to the stellar surface (a
simplification that is not present in the original Dorren (1987) model upon which

5Veq also changes as a function of depth in the atmosphere (Christensen-Dalsgaard and Thomp-
son, 2007), but for the Sun at least this is a small enough change relative to the location of the
photosphere so as to make no difference. It is perhaps worth checking for other stars with stronger
differential rotation signals.
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this formalism is based) and that their contrast is independent of viewing angle. This
model also ignores the flux contributions of bright magnetic features like faculae
and plage, the contrasts of which do vary strongly from star center to limb (Hirayama
and Moriyama, 1979). These and other assumptions will need to be tested against
high-cadence data.

On the Sun, the suppression of convective blueshift is thought to dominate the
activity signal over rotation timescales (Meunier, Desort, and Lagrange, 2010). Un-
like in ΔRVrot(𝑡), I see several potentially wavelength-dependent components in
the ΔRV𝑐 (𝑡) term. The magnetized area may change as a function of depth in the
stellar atmosphere (analogous to wavelength of observation), and the convective
velocity also changes as a function of atmospheric depth (e.g., Cretignier et al.,
2020). In fact, Bauer et al. (2018) found a strong relationship between convective
zone depth and the R’HK activity metric, alluding to the importance of understand-
ing convective blueshift suppression in modeling activity signals. However, all of
these proportionalities should be constant in time, assuming that they do not change
significantly with viewing angle.

This analysis suggests that the assumption of proportionality may only be valid
when either the rotational component or the convective component dominate. When
they are of roughly equal magnitude, however, the differences between convective
blueshift velocity and magnetized area as a function of photosphere temperature
mean that both components do not scale the same way with wavelength, making
for more complicated relationship between the activity signals. On the Sun, this
checks out because the convective component does dominate the RV signal. I think
this is an intruiging direction for further thought and research, particularly using
new techniques by Siegel et al (in prep) to separate out the convective and rotational
components of radial velocity measurements by computing radial velocities using
lines forming at different formation heights.

A shortcoming of this model worth mentioning that is worth mentioning is that it
does not account for instrumental systematics, which must be treated separately.

5.5 Applications
This feature is brand-new and not yet available on pypi. Its capabilities were
highlighted in Chapter 2, and, modulo small changes to existing scripts (pointed out
in the code snippet in this chapter), it can be used as a “drop-in” replacement for
“classical” GPR in the future.
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Figure 5.9: HARPS-N data of V1298 Tau, from Suárez Mascareño et al., 2021,
phase-folded to the major rotation period of the star at 2.9 days. Points are colored
by elapsed time since the first observation (darker points were taken earlier). In the
left panel, only the stellar activity portion of the preferred SM21 model (see Chapter
2) is shown, and in the right panel, the full model fit, incorporating stellar activity
and Keplerian parameters, is shown. The models are extremely similar, highlighting
the outsized impact of the stellar activity contribution.

The two panels shown in Figure 5.9 illustrate the importance of preventing overfitting
in models that jointly fit stellar activity signals and small planetary Doppler signals.
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C h a p t e r 6

FUTURE DIRECTIONS

6.1 Radial Velocity Frontiers
In (E)PRV science, the clear next frontier is understanding stellar activity. Op-
erational RV instruments are consistently achieving Doppler precisions of tens of
cm s−1, which means that we are no longer limited by our ability to measure RV
shifts precisely, but by our understanding of stellar activity. The importance of
high-quality datasets cannot be overstated here. Dedicated solar feeds for EPRV
spectrographs (e.g., SoCal; Rubenzahl et al., in prep) are currently obtaining ex-
tremely high cadence (i.e., exposures every day, as often as readout time and weather
allow) datasets of the Sun. These datasets will be invaluable stellar activity probes,
particularly as more IR EPRV instruments come online. However, solar datasets
alone will not be sufficient. We know that the Sun is not a “typical” star in many
respects, and we will need datasets of comparable quality across diverse stellar ac-
tivity archetypes. Older stars with faculae-dominated activity signals, more similar
to the Sun, will also need to be monitored intensively, lest we start fitting “noise” in
the solar activity signal to the detriment of our understanding of stellar activity more
generally. A white paper on this topic, one of the outcomes of the recent EPRV
conference, is in preparation.

In addition to improving our understanding of old stars like our Sun, high-cadence
RV datasets of young, spot-dominated stars like V1298 Tau will be critically im-
portant to help us develop a physical understanding of how starspots impact radial
velocity measurements. For V1298 Tau in particular, constructing a contempora-
neous RV dataset that spans optical and IR bandpasses will not only be a helpful
resource for this individual star, potentially enabling revised planet mass measure-
ments, but for researchers seeking to understand stellar activity as a whole. Because
young stars “isolate” spot activity from other sources of astrophysical and instru-
mental noise (by nature of the amplitude of this activity being orders of magnitude
larger than for stars typically targeted by RV surveys), obtaining this dataset for
V1298 Tau should be high priority as we enter the EPRV era.

Aside from more and better data, there are several modeling avenues I believe are
worth pursuing for V1298 Tau, which will be broadly valuable for understanding
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stellar activity. First, I think more time spent modeling the photometry will be
fruitful. Much of the current literature on photometric modeling either uses very
high-quality data for stars that have continuous photometric monitoring over the
observational baseline (i.e., Kepler targets, Frasca et al., 2011), or does not treat
differential rotation (e.g., Luger et al., 2018, which does contain a differential rotation
prescription but runs into technical issues; individual spots are “stretched” out as they
rotate differentially, which is perhaps nonphysical). Developing a viable photometric
model will, I believe, go a long way for V1298 Tau. Independent constraints on the
spot sizes and evolution timescales, stellar activity cycle timescale, and periods of
the dominant active latitudes at each RV epoch will provide much needed physical
priors on RV activity models.

Another important modeling avenue involves deriving relationships between all
available datasets, and using them to maximize the constraint of each epoch of
data. As an example, I mentioned in Chapter 2 an empirical correlation between
the photometry derivative and RV when the two are phased to the dominant spot
rotation period of 2.91d. This relationship could be explored and validated, then
used to reduce effective free parameters in a model that jointly fits the RVs and
photometry.

A final direction I believe is worth pursuing is going back to the fundamental
methodology of deriving RVs from spectra, a current hot topic (for good reason,
in my opinion) in RV exoplanet science. There are, in my view, two parallel
approaches to mitigating stellar activity signals: methods that seek to empirically
reduce scatter, for example by only using activity-insensitive lines to compute an
RV signal, and methods that seek to understand and model activity signals. One
popular scatter-reducing idea is line-by-line (e.g., Dumusque, 2018) analysis, which
involves separately computing RV measurements for individual spectral lines, then
performing outlier-rejection, or otherwise using only consistent lines to compute the
final RV measurement. Another scatter-reducing idea is using machine learning,
particularly algorithms like convolutional neural networks originally developed for
image-recognition, to compute RVs directly from a time series of raw spectra (e.g.,
de Beurs et al. 2022). The current “state of the art” for these empirical scatter-
reducing methods is ∼20-50% Doppler error reduction, several orders of magnitude
off from the necessary reduction needed to detect 8 cm s−1 rocky-planet signals
around G-dwarfs with 1 m s−1 activity levels. A newer idea in the second category
of better understanding activity, which I think holds much promise for young stars,
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is performing formation-temperature dependent RV calculations (Al Moulla et al.,
2022). This idea has the potential to separate out convective and rotational RV
activity components (Siegel et al., in prep), which could lead to deep insights for
young stars, and V1298 Tau in particular. This idea is still in its infancy.

Next Steps for radvel
radvel is a tool intended for state-of-the-art RV modeling, and it should continue
to evolve as best practices for stellar activity mitigation change. The next immediate
step for radvel is optimizing and publicly releasing the new Gaussian Process
prescription described in Chapter 2, which should be a short and straightforward
process. In the slightly longer-term, I think it will be important to study the
wavelength dependence of stellar activity timeseries in order to evaluate the model
I presented in Chapter 5. As I mentioned above, I am excited about the potential of
deriving independent RV datasets as a function of formation temperature, and think
that this will be a useful methodology for separating the convective and rotational
components of stellar activity, and testing the model I presented.

6.2 Frontiers in Exoplanet Imaging
On the optical interferometry front, there are many exciting future avenues for un-
derstanding young planets. Refining our dynamical understanding of individual
planetary systems is top priority here, as better individual constraints will also
lead to better population-level constraints. The ExoGRAVITY team is closely
monitoring ∼25 directly-imaged planets and brown dwarfs, with the goal to refine
individual orbital measurements, particularly eccentricities and obliquities, over the
next few years. With refined orbital parameters (and a slightly larger sample, tak-
ing into account the ∼10 more recent discoveries), the team will be able to revisit
the population-level eccentricity (Bowler, Blunt, and Nielsen, 2020b) and obliq-
uity (Bowler et al., 2023) distributions of these populations. I see this exercise as
analogous to the revision of stellar radii in the era of Kepler that eventually led to
the discovery of the super-Earth/sub-Neptune radius gap; the directly-imaged planet
and brown dwarf populations are likely composed of sub-populations that formed
differently. These differences may imprint features in the eccentricity and obliq-
uity distributions that are “washed out” with the current level of orbital precision.
GRAVITY measurements will, hopefully, bring these distributions into sharper
focus, revealing features shaped by different underlying physics.



132

In order to better constrain the orbit of HIP 65426 b (Chapter 3 specifically, I believe
that the most helpful next step is more measurements, both additional interferometric
epochs and/or high spectral resolution RV measurements of the planet itself. There
are also several physical quantities that I believe would be helpful to have better the-
oretical predictions for: in particular, the differing expectations for the dynamical
and atmospheric properties of the planet as a function of core formation timescale
(in particular, how the predictions change when pebble accretion or another more
rapid core formation process is invoked) would help us make better inferences about
how the planet’s present-day properties relate to its formation conditions. A grav-
itational instability parameter study would also be extremely insightful. Obliquity
predictions, in particular, would be valuable, since the obliquity of the planetary
orbit (relative to the stellar spin axis) is measurable with current data and (as far as
I am aware) has not been explicitly predicted from existing models.

A parallel effort in direct imaging studies over the next few years will be further
developing our understanding of cold Jupiter atmospheres. For HIP 65426 b,
performing full Bayesian retrievals is the next logical step, both for evaluating
the radius, metallicity, and C/O constraints derived in this thesis using forward-
modeling of self-consistent atmosphere models, which are limited in the parameter
space they explore, and for evaluating the models themselves. For the population of
cold Jupiters as a whole, more retrieval studies seeking to specifically evaluate the
trustworthiness of parameters derived from these models (such as C/O; Xuan et al.,
2022) will increase our confidence in physically interpreting the values in spectral
fitting corner plots.

Another exciting general avenue in exoplanet orbit modeling is looking for non-
Keplerian motion in astrometric residuals due to planet-planet interactions (e.g.
Covarrubias, Blunt, and Wang, 2022, who showed that VLTI/GRAVITY will be
sensitive to planet-planet effects in HR 8799 within 5 years) or moons (Ruffio et al.,
2023) is an exciting and surprisingly realistic goal. The number of directly-imaged
multi-planet systems is small, but growing (e.g., 𝛽 Pictoris, Nowak et al., 2020;
HD 209458 Hinkley et al., 2023), and multi-planet effects are already evident in
newly-revealed multi-planet systems like 𝛽 Pictoris (Lacour et al., 2021). Such
measurements give independent dynamical mass measurements. Non-Keplerian
motion as an independent mass-measurement technique for directly-imaged objects
is important in and of itself; as stressed in Section 1.2, masses of cold Jupiters are
crucial probes of formation, but most directly imaged planets we know of do not
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have dynamical mass measurements, either because their host stars are too active (or
too early type, or too quickly rotating, etc.) for radial velocity measurements, and/or
because their absolute astrometric or RV signals are too small to be measurable
with available data. However, a very widely separated planet with very little orbital
motion around its primary, and therefore small astrometric and RV signals, could
still have a nearby moon that enables a direct dynamical mass measurement. Exo-
moon searches are also interesting from a formation theory standpoint in their own
right, but this is beyond the scope of this document.

Next Steps for orbitize!
Like radvel, orbitize! is a toolkit for the direct-imaging community, and it
should continue to grow in functionality and accessibility. An important immediate
next step is the publication of a dedicated v2 documentation paper.

In the mid-term, a priority for the collaboration is benchmarking the two absolute
astrometry implementations against one another. I also think that more effort should
be spent visualizing fits to Hipparcos and Gaia measurements. Another consistent
thread of effort among our collaboration is improving the efficiency of calculation,
both by optimizing existing code and by developing and/or implementing additional
backend algorithms. Porting existing rejection sampling algorithms like OFTI and
TheJoker (Price-Whelan et al., 2017) to GPUs and other accelerated computing
environments will help with this, as will adapting these algorithms to work on
datasets of mixed type (e.g., both RVs and astrometry). Implementing the 𝛼-deep
probabilistic inference formalism published in Sun et al. (2022) is another important
priority.

The orbitize! collaboration maintains a list of open issues1, and readers should
feel free to submit their own issues with additional ideas.

Over the next decade, the orbitize! team will focus on 1) preparing for and
(once available) developing methods for incorporating Gaia timeseries data prod-
ucts into orbit-fits, and 2) preparing for the launch of the Nancy Grace Roman
Space Telescope. The sensitivity of Gaia is highly uncertain, and depends on the
ultimate astrometric precision Gaia is able to obtain. This is difficult to determine
from current data, since the community currently only has access to derived data
products (e.g., parallax), and not raw intermediate data. Nevertheless, Gaia data
will likely push the absolute astrometric detection limits towards shorter orbital

1https://github.com/sblunt/orbitize/issues

https://github.com/sblunt/orbitize/issues


134

periods (comparable to and shorter than the Gaia mission lifetime, rather than the
Hipparcos-Gaia baseline), and (hopefully) lower masses. Figure 3 of Brandt et al.
(2021) shows an example simulated improvement for Gaia timeseries data relative
to Gaia+Hipparcos accelerations for 𝛽 Pictoris. Absolute astrometry from Gaia can
be combined with relative astrometry and radial velocity measurements to refine
orbits and dynamical masses of cold Jupiters, as well as to reveal (or not) previously
undetected inner planets to cold Jupiters, which will be important for continued
progress on the question of whether very widely separated cold Jupiters like HIP
65426 form via scattering (Bryan et al., 2016).

Preparing for the launch of Roman will bring its own set of challenges. Roman will
image planets much closer to their stars than the current generation of exoplanet
imagers, and most, if not all, of these will have prior radial velocity measurements.
Although Roman is primarily a technology demonstration, it is expected to achieve
visible-light contrast of 10−8 at 200 mas, which means that it is expected to be
sensitive to giant planets in reflected light. This will mark a fundamental shift in the
direct-imaging community; from young, self-luminous planets that are most visible
in the infrared, to older, reflecting planets first discovered with RV2. Tools like RV
“deconfusers” (Pogorelyuk et al., 2022) that assign radial velocity signals to each of
the detected points of light in a Roman image of a multi-planet system will need to
be developed, tested, and integrated into the orbitize! ecosystem.

6.3 The Next 50 Years
The Astro2020 Decadal Survey (National Academies of Sciences and Medicine,
2021) established that one of the three major goals of astrophysics over the next
decade is to identify and characterize potentially habitable planets. There are two
complementary pathways that the report proposes will be used for this landmark
achievement: 1) radial velocity detection around Sun-like stars, and subsequent
imaging at high spectral resolution, and 2) transit detection around M-dwarfs, and
subsequent characterization via transmission spectroscopy. Both avenues have pros
and cons; a clear advantage of the M-dwarf opportunity is the relative signal sizes
of Earth-like planets in the habitable zone. Both radial velocity and transit signals
are significantly larger, and Earth-like signals, especially transits, are detectable
with current technology (e.g., the Tierras Observatory; Garcia-Mejia et al., 2020).
Although Sun-like stars are more massive, and have more widely-separated habit-
able zones, which translate to smaller transit and RV signals, they are two major

247 Uma is a canonical Roman target; Smith et al. (2022).
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advantages over M-dwarfs: first, that the only known habitable planet (ours) orbits a
solar-type star, and second, that the high-energy flux environments of M-dwarfs may
make circum-M dwarf planets inhospitable for life (Shields, Ballard, and Johnson,
2016). I am personally more interested in the first pathway, although both will
(and should) be rigorously pursued over the timeline of my career. Studying Earth
analogues is a goal I want to spend my career building up to, and I believe that
building expertise in imaging and radial velocity detection is a step in this direction.

In order to discover Earth-like planets around Sun-like stars, we will need to un-
derstand stellar activity. RV instrumentation improvements (both hardware and
software) will help, but we are already at the order of magnitude of Doppler pre-
cision that we will need. Stellar activity is by far the confounding factor here. On
the imaging side, the Astro2020 report set up a clear (if still extremely challeng-
ing) technological development path towards the 10−11 intensity contrast we will
need to be able to achieve to image habitable-zone Earths. The Roman Space tele-
scope, which will achieve contrasts of 10−8, a significant improvement over today’s
state-of-the-art of 10−4-10−5, is a stepping stone toward the next great observatory
(“LuvEX”), intended to image Earths.

In 50 years, I hope that we will be able to approach the imaging and characterization
of other Earths with refined observational and analytical techniques, a thorough and
well-tested theory of planet formation and evolution, and a sense of adventure.
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