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ABSTRACT

In the first part of the thesis, a systematic way to construct topological invariants of
gapped states of quantum lattices systems is proposed. It provides a generalization
of the Berry phase and its equivariant analogue to systems with locality in arbitrary
dimensions. For a smooth family of gapped ground states in 𝑑 dimensions, it gives
a closed (𝑑 + 2)-form on the parameter space which generalizes the curvature of
the Berry connection. Its cohomology class is a topological invariant of the family.
When the family is equivariant under the action of a compact Lie group𝐺, topological
invariants take values in the equivariant cohomology of the parameter space. These
invariants unify and generalize the Hall conductance and the Thouless pump. We
prove quantization properties of the invariants for low-dimensional invertible systems.

In the second part, we discuss the properties of the invariant associated with the Hall
conductance for 2d lattice systems with𝑈 (1)-symmetry. We define anyonic states
associated with the flux insertions and relate their statistics to this invariant. We also
provide the construction of states realizing chiral topological order with a non-trivial
value of this invariant. The construction is based on the data of a unitary regular
vertex operator algebra.
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C h a p t e r 1

INTRODUCTION

One of the most significant discoveries in theoretical physics over the last four
decades is the existence of topological order. It arises in quantum matter at zero
temperature with a non-vanishing energy gap for local excitations, examples of
which include topological insulators and fractional quantum Hall liquids. It was
realized that some properties of such systems are robust against perturbations that
do not close the gap, leading to the emergence of new phases of matter known as
topological or gapped phases. They do not fit into the traditional Landau paradigm
and provide a playground for fascinating phenomena of topological nature. These
include fractional statistics of quasi-particles and universal anomalous transport of
energy and current, making topological phases of matter an exciting area of study for
physicists.

It is natural to ask how to characterize and classify topological phases of quantum
matter at zero temperature. Since systems with the same gapped ground state can
be deformed into each other without phase transitions, all the information about the
phase must be encoded in the entanglement pattern of the ground-state wave function
[64]. It is, however, remarkably hard to extract this information from the knowledge
of the wave-function directly since the universal properties are encoded in a rather
non-local way. This non-locality manifests itself in the existence of topological
excitations and/or topological transport and implies the impossibility to disentangle
the ground state by a locality-preserving adiabatic evolution.

Many classifications schemes of topological phases of matter have been proposed over
the years. Phases of gapped non-interacting fermions can be classified using𝐾-theory,
as pointed out in the pioneering works [57, 56, 43]. However, these methods do not
generalize to interacting systems. It is believed that at least some class of interacting
gapped phases can be captured by topological quantum field theories (TQFT). While
TQFT had a great impact on our intuition about the behavior of topologically ordered
systems and provides a guess for what sort of universal information characterizes them,
it is remarkably hard to give a microscopic justification for this belief. In particular,
it is mysterious how the underlying geometry if the field theoretic description can
emerge from something microscopic like particles and spins.
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To pose the problem mathematically, one needs to choose a suitable microscopic
model for “matter". As it is difficult to deal with quantum systems of many particles
with Coulomb-like potential in full generality, one often considers some effective but
still microscopic lattice systems with arbitrary rapidly-decaying interactions1. One
may hope that once the physical and mathematical principles behind the classification
of topological phases of such such systems are understood, they can also be applied
to real matter that consists of atoms.

In this thesis, we apply methods of quantum statistical mechanics and operator algebra
to gapped states of quantum lattice systems. We give a mathematical definition of
various topological invariants of such states and prove some of their properties.

In Chapter 2, we define a class of models we are working with and introduce a
formalism that will be used in the reminder of the work. We discuss how densities
and currents of physical quantities can be defined on the lattice and prove a version
of a Noether theorem. We also give a mathematical formalization of the notion of a
topological phase by introducing a special class of automorphisms of the algebra of
observables.

In Chapter 3, we provide the first application of our formalism. We describe a
systematic way to produce topological invariants of gapped states or smooth families
of gapped states in the same topological phase originating from Berry curvature.
They give a generalization of Berry classes to the many-body setting and for 𝑑-
dimensional lattice systems take values in the degree-(𝑑 + 2) de Rham cohomology
of the parameter space. Higher Berry classes allow one to probe the topology of
the space of gapped states and to detect high-codimension critical loci in the phase
diagram where the gap closes [30]. In the case of invertible quantum lattice systems,
higher Berry classes were first discussed by Kitaev [41]; for general gapped systems
explicit formulas for them were written down in [38] using a choice of a family of
Hamiltonians. Our construction makes it clear that higher Berry classes depend only
on the family of states, not the Hamiltonians used to define them. We also introduce
equivariant version of Berry classes for systems with a Lie group symmetry and
show that they unify and generalize Hall conductance and Thouless pump invariants.
Our main technical tools are the Lieb-Robinson bound in the form proved in [50, 47]
and the linear integral transforms introduced in [25, 40, 55].

Chapter 4 is devoted to the analysis of invertible states of one-dimensional systems.
We prove that all invertible states are in the trivial phase. We also show, that higher

1Long-range Coulomb-like interactions are often screened
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Berry classes for families of such states are quantized.

In Chapter 5 we give a more detailed analysis of 2d gapped states with𝑈 (1)-symmetry.
We relate the equivariant Berry class 𝜎 defined in Chapter 3 to the Hall conductance
and show how one can explicitly construct states representing anyons that correspond
to vortices. Using the properties of these vortices, we give a proof that for invertible
systems the numerical value of 𝜎 is quantized and takes values in 2Z or Z depending
on whether the systems is bosonic or fermionic.

The last Chapter 6 aims to introduce a new class of states of 2d lattice systems which
describe chiral topological order. The construction is based on the data of a unitary
regular vertex operator algebra and provides a realization of the topological order
associated with this vertex algebra. We provide various evidence for that, but our
account in this chapter will be more expository.
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Notation

• ℱ∞ - the Fréchet space of functions R𝑟≥0 → R which decay at infinity faster
than any power of 𝑟 and topologized by a sequence of norms

∥ 𝑓 ∥𝛼 := sup
𝑟≥0
(1 + 𝑟)𝛼 | 𝑓 (𝑟) |, 𝛼 ∈ N0.

A sequence 𝑓𝑘 , 𝑘 ∈ N, converges to 0 iff ∥ 𝑓𝑘 ∥𝛼 → 0 for all 𝛼.

• ℱ
+
∞ - subset of monotonically decreasing non-negative functions from ℱ∞.

• \ : R→ R - the indicator function of [0,∞).

• The diameter of a subset 𝑋 ⊂ R𝑑 is defined by

diam(𝑋) := sup
𝑥,𝑦∈𝑋

|𝑥 − 𝑦 |.

• The distance between any subsets 𝑋 and 𝑌 is defined by

dist(𝑋,𝑌 ) := inf
𝑥∈𝑋,𝑦∈𝑌

|𝑥 − 𝑦 |.

• 𝜒𝑌 - the indicator function of 𝑌 ⊂ R𝑑 , i.e., 𝜒𝑌 (𝑥) = 1 if 𝑥 ∈ 𝑌 and 𝜒𝑌 (𝑥) = 0
if 𝑥 ∉ 𝑌 .

• The complement of a subset 𝑋 is denoted 𝑋𝑐.

• An open ball of radius 𝑟 with the center at 𝑥 ∈ R𝑑 is defined by 𝐵𝑥 (𝑟) := {𝑦 ∈
R𝑑 : |𝑥 − 𝑦 | < 𝑟}. Its complement in R𝑑 is denoted 𝐵𝑐𝑥 (𝑟).

• Fin(Λ) - the set of finite subsets of a set Λ. It is a directed set with respect to
inclusion.

• For a Hilbert spaceH, byB(H) we denote the𝐶∗-algebra of bounded operators
on H.

• For a state 𝜓 of a 𝐶∗-algebra 𝒜, we denote the evaluation of 𝜓 on A ∈ 𝒜 by
⟨A⟩𝜓 .

• For a spin system, the tracial state (or the infinite temperature state) is denoted
⟨ · ⟩∞.

• The GNS representation of a state 𝜓 is denoted (𝜋𝜓 ,H𝜓 , |𝜓⟩).

• The conditional expectation value of A ∈ 𝒜ℓ on 𝒜𝑋 is denoted A|𝑋 .
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C h a p t e r 2

QUANTUM SPIN SYSTEMS

The goal of this preliminary chapter is to define the class of models we are working
with and introduce the terminology. We assume that the reader is familiar with some
basics of quantum statistical mechanics (see, e.g., [11, 12]) and only give proper
description of non-standard notions and facts.

In Section 2.1, we introduce 𝐶∗-algebras of quasi-local observables 𝒜 for lattice
systems. We also define a certain dense subalgebra 𝒜𝑎ℓ ⊂ 𝒜 of observables with
rapidly-decaying localization which we call the algebra of almost local observables.
This subalgebra is not complete with respect to the norm topology of 𝒜, but it is
complete with respect to a topology defined by a non-decreasing family of norms
labeled by a non-negative integer. Such topological vector spaces are known as
(graded) Fréchet spaces. The central role played by 𝒜𝑎ℓ and its relatives necessitates
a systematic use of calculus in Fréchet spaces as described, for example, in [24].

In Section 2.2, we define a differential graded Fréchet-Lie algebra (DGFLA) as-
sociated with a quantum spin system which encodes all local1 Hamiltonians, their
densities, currents, and their higher analogs. We prove that the cohomology of this
DGFLA vanishes. This kinematic result implies, among other things, that any local
continuous symmetry of a local lattice Hamiltonian gives rise to a local conserved
current. Since the relation between symmetries and local conservation laws is usually
referred to as the Noether theorem, we call the DGFLA attached to a lattice system the
local Noether complex. The current corresponding to a symmetry is not unique, but
the ambiguity can be completely described. Non-uniqueness of the energy current,
in particular, is the cause of many complications in the theory of heat transport, see,
e.g., [16]. The effect of these ambiguities on the standard Kubo-Greenwood formulas
for transport coefficients has been studied in [7, 39]. Hopefully, our results help
clarify such issues, at least for lattice systems.

In Section 2.3, we define a certain class of automorphisms of the algebra that
corresponds to the evolution of the system performed by a Hamiltonian with rapidly
decaying interactions. The main use of such automorphisms is to defined an

1In the sense that interactions are either finite-range or decay faster than any power of the distance.



6

equivalence relation on gapped states of lattice systems that we describe in Section
2.4 via quasi-adiabatic evolution in a sense of [28].

2.1 Algebra of observables
Lattices

Definition 2.1. We say that a subset Λ ⊂ R𝑑 is uniformly discrete if

𝜖 := inf
𝑗 ,𝑘∈Λ
𝑗≠𝑘

| 𝑗 − 𝑘 | > 0. (2.1)

Definition 2.2. We say that a subset Λ ⊂ R𝑑 is relatively dense if

𝚫 := sup
𝑥∈R𝑑

inf
𝑗∈Λ
|𝑥 − 𝑗 | < ∞. (2.2)

Definition 2.3. A Delone subset Λ ⊂ R𝑑 is a countable subset that is uniformly
discrete and relatively dense.

In what follows we consider Delone subsets with the metric on R𝑑 being rescaled
so that 𝚫 < 1/2. Then every open ball of diameter 1 has a nonempty intersection
with Λ, and the cardinality of the intersection is upper bounded by 𝐶𝑑𝜖𝑑 for some 𝐶𝑑
depending only on 𝑑. Elements of Λ are called sites.

Functions
We will denote by ℱ∞ the space of functions R𝑟≥0 → R which decay at infinity faster
than any power of 𝑟 . We denote the subset of monotonically decreasing non-negative
functions by ℱ

+
∞. The space ℱ∞ is a Fréchet space topologized by a sequence of

norms (see Appendix A.1 for a brief reminder on seminorms and the topologies on
vector spaces defined by countable families of seminorms)

∥ 𝑓 ∥𝛼 := sup
𝑟≥0
(1 + 𝑟)𝛼 | 𝑓 (𝑟) |, 𝛼 ∈ N0. (2.3)

A sequence 𝑓𝑘 , 𝑘 ∈ N, converges to 0 iff ∥ 𝑓𝑘 ∥𝛼 → 0 for all 𝛼.

Finally, \ : R→ R will denote the indicator function of [0,∞).

Quasi-local algebra
To a finite set Γ and a collection of separable Hilbert spaces {V 𝑗 } 𝑗∈Γ, one can
associate the Hilbert space VΓ =

⊗
𝑗∈Γ V 𝑗 and the 𝐶∗-algebra 𝒜Γ = B(

⊗
𝑗∈Γ V 𝑗 ).

By convention, 𝒜∅ := C.
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Let 𝑆 be a (possibly-infinite) set, and let {V 𝑗 } 𝑗∈𝑆 be a collection of separable Hilbert
spaces. The set Fin(𝑆) of finite subsets of 𝑆 is a directed set with the order given
by the inclusion. For for a pair Γ, Γ′ ∈ Fin(𝑆) with Γ ⊆ Γ′, there is a canonical
homomorphism of ∗-algebras 𝑒ΓΓ′ : 𝒜Γ → 𝒜Γ′ given by 𝑎 → 𝑎 ⊗ 1VΓ′\Γ . The data(
{𝒜Γ}Γ∈Fin(𝑆) , {𝑒ΓΓ′}Γ,Γ′∈Fin(𝑆)

)
defines the direct system of ∗-algebras. We define

the ∗-algebra 𝒜ℓ as the direct limit 𝒜ℓ := lim−−→
Γ

𝒜Γ and call it the algebra of local

observables. For A ∈ 𝒜ℓ, the minimal set Γ such that A belongs to 𝒜Γ is called the
support of A. We define the 𝐶∗-algebra 𝒜 as the norm completion of 𝒜ℓ and call it
the algebra of quasi-local observables.

Let Λ ⊂ R𝑑 be a Delone subset. By a (bosonic) lattice system on Λ, we mean a
collection of separable Hilbert spaces {V 𝑗 } 𝑗∈Λ and the associated algebras of local
and quasi-local observables. By the abuse of notation, we denote lattice systems by
𝒜 assuming that it contains the information about the lattice Λ and {V 𝑗 } 𝑗∈Λ. By a
(bosonic) spin system, we mean a bosonic lattice system with uniformly bounded
{dimV 𝑗 } 𝑗∈Λ. The maximal value of dimV 𝑗 is called the maximal spin of a spin
system. If we replace the Hilbert spaces {V 𝑗 } 𝑗 with Z/2Z graded Hilbert spaces and
tensor products with Z/2Z graded tensor products, we get a definition of fermionic
lattice systems or fermionic spin systems.

Remark 2.1. In the following, except for Chapter 6 or unless otherwise specified,
for simplicity we consider only bosonic spin systems. Most results can be straightfor-
wardly generalized to the case of fermionic spin systems, and some modifications
needed for that are mentioned explicitly in the text. We believe that many results can
also be generalized to the case of lattice systems with infinite-dimensional on-site
Hilbert spaces.

We say that a lattice system has (internal) 𝐺-symmetry for a compact Lie group 𝐺, if
each V 𝑗 is equipped with a unitary representation of 𝐺. Every such representation
can be written as direct sum of irreducible unitary representations each of which is
finite-dimensional.

There is a natural monoidal structure on systems. Given two systems 𝒜 and 𝒜′ on R𝑑

we can consider the stack or the composition of two systems denoted 𝒜 ⊗𝒜′ with the
lattice being the union of two lattices, and Hilbert spaces for a site 𝑗 ∈ Λ ∪ Λ′ being
V 𝑗 ⊗ V′

𝑗
if 𝑗 ∈ Λ ∩ Λ′ and V 𝑗 (respectively, V′

𝑗
) if 𝑗 ∈ Λ and 𝑗 ∉ Λ′ (respectively, if

𝑗 ∈ Λ′ and 𝑗 ∉ Λ).
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Let 𝒜 be a spin system on a lattice Λ. For any 𝑗 ∈ Λ we let Π 𝑗 : 𝒜ℓ → 𝒜ℓ

be the averaging over local unitaries supported at 𝑗 , i.e., for any B ∈ 𝒜ℓ we let
Π 𝑗 (B) =

∫
𝑈B𝑈∗𝑑` 𝑗 (𝑈), where 𝑑` 𝑗 (𝑈) is the Haar measure on the group of

unitary elements of 𝒜𝑗 normalized so that
∫

1 𝑑` 𝑗 (𝑈) = 1. It is well-known that Π 𝑗

is positive and does not increase the norm. The maps Π 𝑗 for different 𝑗 commute,
therefore for any Γ ∈ Fin(Λ) we can define ΠΓ :=

∏
𝑗∈Γ Π 𝑗 . For 𝑋 ⊂ R𝑑 we let

Π𝑋 := lim−−→
Γ⊂𝑋

ΠΓ. (2.4)

We will use without comment various obvious properties of the averaging maps Π𝑋 ,
for example Π𝑋 ◦ Π𝑌 = Π𝑋∪𝑌 for any 𝑋,𝑌 ⊂ R𝑑 . The following simple estimate is
also sometimes useful:

∥A − Π𝑋 (A)∥ ≤ sup
B∈𝒜𝑋

∥ [A,B] ∥
∥B∥ . (2.5)

Note that ΠΛ = lim−−→
Γ

ΠΓ maps any B ∈ 𝒜ℓ to the center of 𝒜ℓ and thus can be thought

of as a state (i.e., a positive normalized linear function) on 𝒜ℓ. We will denote it
⟨·⟩∞ since it is the infinite temperature state. This state can also be defined as the
unique tracial state on 𝒜ℓ. More generally, for any 𝑋 ⊂ R𝑑 we define the conditional
expectation value 𝒜ℓ → 𝒜𝑋 by

A ↦→ A|𝑋 := Π𝑋𝑐 (A). (2.6)

Conditional expectation value does not increase the norm.

Almost local algebras
The algebra 𝒜 of quasi-local observable of a lattice system has a rather rough
dependence on the geometry of the ambient space. For example, it does not capture
the metric or even the dimensionality of the space.

More sensitive algebras can be produced by a completion of the algebra 𝒜ℓ in the
norm or a family of norms which depends on the geometry. One way to produce such
a norm is to choose a decaying function ℎ : R≥0 → R≥0 and a point 𝑥 ∈ R. Then

∥A∥ℎ,𝑥 := ∥A∥ + sup
𝑟

(
ℎ(𝑟) inf

B∈𝒜𝐵𝑥 (𝑟 )
∥A −B∥

)
(2.7)

is a norm. There is no canonical choice of ℎ or 𝑥.

The central role of this manuscript is played by a certain subalgebra 𝒜𝑎ℓ ⊂ 𝒜 of
quasi-local observables which decay rapidly at infinity. Roughly speaking, 𝒜𝑎ℓ
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consists of quasi-local observables which on a ball of radius 𝑟 can be approximated
by local observables with an O(𝑟−∞) error. Such an algebra corresponds to the
completion in the norms of the form above with ( 𝑓 , 𝑥) being of the form ((1+ 𝑟)𝛼, 𝑗)
for 𝛼 ∈ N and fixed 𝑗 ∈ Λ.

To define 𝒜𝑎ℓ we first introduce some notation. For any A ∈ 𝒜, 𝑥 ∈ R𝑑 , and 𝑟 ≥ 0
let

𝑓𝑥 (A, 𝑟) := inf
B∈𝒜𝐵𝑥 (𝑟 )

∥A −B∥. (2.8)

This is a monotonically decreasing non-negative function of 𝑟 which takes values in
[0, ∥A∥], approaches zero as 𝑟 →∞, and for any 𝑥 ∈ R𝑑 and any 𝑟 ≥ 0 satisfies the
triangle inequality:

𝑓𝑥 (A1 +A2, 𝑟) ≤ 𝑓𝑥 (A1, 𝑟) + 𝑓𝑥 (A2, 𝑟). (2.9)

Thus for a fixed 𝑥 ∈ R𝑑 and fixed 𝑟 ≥ 0 𝑓𝑥 (·, 𝑟) is a seminorm on 𝒜. Note for future
use that if Γ ∈ Fin(Λ) and A ∈ 𝒜Γ, then 𝑓𝑥 (A, 𝑟) = 0 for any 𝑟 > diam({𝑥} ∪ Γ),
and thus 𝑓𝑥 (A, 𝑟) ≤ ∥A∥\ (𝑟 − diam({𝑥} ∪ Γ)).

Given 𝑏(𝑟) ∈ ℱ∞ we will say that an observable A ∈ 𝒜 is 𝑏-localized at 𝑥 if
𝑓𝑥 (A, 𝑟) ≤ 𝑏(𝑟) for all 𝑟 . Note that for such an observable 𝑓𝑥 (A, 𝑟) ∈ ℱ+∞.

For 𝑗 ∈ Λ, let us define the norms

∥A∥′𝑗 ,𝛼 := ∥A∥ + sup
𝑟

(1 + 𝑟)𝛼 𝑓 𝑗 (A, 𝑟), 𝛼 ∈ N. (2.10)

Lemma 2.1. Let 𝒜𝑎𝑙 be a ∗-subalgebra 𝒜𝑎𝑙 ⊂ 𝒜, and let us fix 𝑗 ∈ Λ. The following
characterizations of 𝒜𝑎ℓ are all equivalent:

(1) 𝒜𝑎ℓ is a subspace of 𝒜 defined by the condition ∥A∥′
𝑗 ,𝛼
< ∞ for all 𝛼 ∈ N.

(2) 𝒜𝑎ℓ consists of elementsA ∈ 𝒜 which are 𝑏-localized at 𝑗 for some 𝑏(𝑟) ∈ ℱ+∞.

(3) 𝒜𝑎ℓ is the completion of the algebra 𝒜ℓ with respect to the norms ∥ · ∥′
𝑗 ,𝛼

,
𝛼 ∈ N.

𝒜𝑎ℓ thus defined does not depend on 𝑗 .

Proof. The implication (1)⇒ (2) follows directly from the definition of the norms
∥ · ∥′

𝑗 ,𝛼
. The definition of the completion with respect to norms implies (3)⇒ (1).
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To show that (2) implies (3), let {A(𝑛)} be a sequence of observables A(𝑛) ∈ 𝒜𝐵 𝑗 (𝑛)

for 𝑛 ∈ N for which the infimum in the definition of 𝑓 𝑗 (A, 𝑛) is reached: 𝑓 𝑗 (A, 𝑛) =
∥A −A(𝑛) ∥. We have

∥A −A(𝑛) ∥′𝑗 ,𝛼 = ∥A −A(𝑛) ∥ + sup
𝑟

(1 + 𝑟)𝛼 𝑓 𝑗 (A −A(𝑛) , 𝑟) ≤

≤ 𝑓 𝑗 (A, 𝑛) + sup
𝑟≥𝑛
(1 + 𝑟)𝛼 𝑓 𝑗 (A, 𝑟). (2.11)

Therefore {A(𝑛)} converges in the norms ∥ · ∥′
𝑗 ,𝛼

to A.

Independence of 𝑗 is manifest in the characterization (2). □

Definition 2.4. The space of almost local observables 𝒜𝑎ℓ is the ∗-subalgebra
satisfying the equivalent characterizations of Lemma 2.1.

As recalled in Appendix A.1, one can use the family of norms ∥ · ∥′
𝑗 ,𝛼

for a fixed
𝑗 ∈ Λ to define a topology on 𝒜𝑎ℓ. In Appendix A.2 we show that this topology on
𝒜𝑎ℓ does not depend on 𝑗 and turns 𝒜𝑎ℓ into a Fréchet algebra.

Lie algebras
The algebras 𝒜Γ, 𝒜ℓ define the Lie algebras with the bracket being the commutator.
The elements of the quotient by the ideal generated by the identity can be identified
with the equivalence classes of observables [A] under A ∼ A + _ for _ ∈ C. We
denote by 𝔡Γ, 𝔡𝑙 the real subalgebras of these quotients, elements of which correspond
to equivalence classes [A] of skew-self-adjoint observables A∗ = −A. We also
define the Lie algebra 𝔡𝑎𝑙 as the completion of 𝔡𝑙 with respect to the norms

∥a∥ 𝑗 ,𝛼 := sup
𝑟

(1 + 𝑟)𝛼 𝑓 𝑗 (a, 𝑟) (2.12)

where
𝑓𝑥 (a, 𝑟) := inf

B∈𝒜𝐵𝑥 (𝑟 )
∥A −B∥ (2.13)

and A ∈ 𝒜𝑎ℓ is any lift of a ∈ 𝔡𝑙 . Since the bracket is continuous, 𝔡𝑎𝑙 is a Fréchet-Lie
algebra. Elements of 𝔡𝑎𝑙 define derivations of the algebra 𝒜, which preserve 𝒜𝑎ℓ.
For a ∈ 𝔡𝑎𝑙 , we denote the value of the corresponding map a : 𝒜 → 𝒜 on A ∈ 𝒜
by a(A).

When all on-site Hilbert spaces are finite-dimensional, we can identify 𝔡Γ, 𝔡𝑙 , 𝔡𝑎𝑙 with
the Lie algebra of traceless skew-self-adjoint elements of 𝒜Γ, 𝒜ℓ, 𝒜𝑎ℓ, respectively.
For A ∈ 𝒜𝑎ℓ, sometimes we write A ∈ 𝔡𝑎𝑙 if A = −A∗ and ⟨A⟩∞ = 0. Note that for
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any A ∈ 𝔡𝑙 , 𝔡𝑎𝑙 we have ∥A∥ ≥ 𝑓𝑥 (A, 0) ≥ ∥A∥/2 for any 𝑥 ∈ R𝑑 . Therefore, upon
restriction to traceless anti-self-adjoint observables one can replace the norms (2.10)
with an equivalent set of norms

∥A∥ 𝑗 ,𝛼 := sup
𝑟

(1 + 𝑟)𝛼 𝑓 𝑗 (A, 𝑟), 𝛼 ∈ N0. (2.14)

In this work we will mostly work with traceless anti-self-adjoint observables and
then will use the norms (2.14). Two other equivalent sets of norms are defined in
Appendix A.4.
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2.2 Hamiltonians and currents
Interactions
A Hamiltonian for an infinite spin system is an unbounded densely-defined real
derivation of the algebra 𝒜. The Hamiltonians of physical interest usually have the
form

A ↦→
∑︁

Γ∈Fin(Λ)
ΦΓ (A) (2.15)

where ΦΓ ∈ 𝔡Γ satisfies Φ∗
Γ
= −ΦΓ. Typically one also assumes that supΓ∥ΦΓ∥ < ∞.

In the mathematical physics literature the function Φ : Fin(Λ) → 𝔡𝑙 , Γ ↦→ ΦΓ, is
known as an interaction.

The domain of such a derivation depends on how rapidly ∥ΦΓ∥ decays with the size
of Γ. As a minimum, it should be defined everywhere on 𝒜ℓ. Further, it should
be possible to exponentiate a physically sensible derivation to an automorphism of
𝒜 to defined a dynamics of a spin system. Before we can describe suitable decay
conditions, however, we need to deal with the fact that the map from interactions
to derivations is many-to-one and that there is a large “gauge freedom" in choosing
the function Φ for a given derivation. Any decay condition on Φ should respect this
freedom. Unfortunately, it is not straightforward to describe this “gauge freedom.”
To rectify the situation, one may impose a suitable “gauge condition” on Φ so that
a derivation determines Φ uniquely. One natural condition is to demand that for
any proper inclusion Γ′ ⊂ Γ and any A ∈ 𝔡Γ′ one has ⟨ΦΓA⟩∞ = 0. This condition
implies that ΦΓ is not localized on any proper subset of Γ. Its advantage is that
it does not depend on any choices. But this gauge condition is difficult to work
with when the interaction has exponential or slower than exponential decay because
the number of finite subsets of 𝐵 𝑗 (𝑟) ∩ Λ grows as 𝑒𝐶𝑟𝑑 . Later we will describe a
convenient but non-canonical “gauge condition” on Φ.

Another drawback of describing a Hamiltonian via an interaction Φ is that there is
no natural notion of energy density (and therefore also of energy current). As an
alternative, we may study derivations of the form

𝛿h : A ↦→
∑︁
𝑗∈Λ
[h 𝑗 ,A], (2.16)

where each h 𝑗 is a traceless anti-self-adjoint observable which in some sense is
localized in the neighborhood of the site 𝑗 and can be interpreted as 𝑖 times the
energy density on this site. The gauge freedom is present in this approach as well,
since the observables h 𝑗 are not uniquely determined by the derivation 𝛿h. However,



13

it is fairly straightforward to parameterize this gauge freedom and to define a class of
derivations which is mathematically natural and is large enough to describe lattice
systems with rapidly decaying interactions.

For that, we introduce a certain chain complex, which we call the complex of currents.
We first describe this complex for finite-range interactions, and then show how to
complete it to a complex of rapidly decaying currents using a family of norms, in the
same way as the algebra 𝒜ℓ can be completed to 𝒜𝑎ℓ.

The complex of finite-range currents
Definition of the complex

For any non-negative integer 𝑞 we define a uniformly local (UL) 𝑞-chain as a
skew-symmetric function a : Λ𝑞+1 → 𝔡𝑙 for which there are constants 𝐶 > 0 and
𝑅 > 0 such that for any { 𝑗0, 𝑗1, ..., 𝑗𝑞} ⊂ Λ and any 𝑎 ∈ {0, 1, ..., 𝑞} we have
a 𝑗0... 𝑗𝑞 ∈ 𝔡𝐵 𝑗𝑎 (𝑅) and ∥a 𝑗0... 𝑗𝑞 ∥ ≤ 𝐶. The smallest possible value of 𝑅 is called
the range of a. If the distance between any 𝑗𝑎 and 𝑗𝑏 is greater than 2𝑅, then
a 𝑗0... 𝑗𝑞 = 0. The space of UL 𝑞-chains will be denoted 𝐶𝑞 (𝔡𝑙). The boundary
operator 𝜕𝑞 : 𝐶𝑞 (𝔡𝑙) → 𝐶𝑞−1(𝔡𝑙) has the form(

𝜕𝑞a
)
𝑗1... 𝑗𝑞

:=
∑︁
𝑗0∈Λ

a 𝑗0 𝑗1... 𝑗𝑞 . (2.17)

Since a 𝑗0 𝑗1... 𝑗𝑞 is skew-symmetric in indices, we have 𝜕𝑞 ◦ 𝜕𝑞+1 = 0 for all 𝑞. Note
that to any UL 0-chain a : 𝑗 ↦→ a 𝑗 one can attach a derivation of 𝒜ℓ

𝛿a : A ↦→
∑︁
𝑗∈Λ

a 𝑗 (A). (2.18)

We will call derivations of this form UL derivations. Physically, they correspond to
finite-range Hamiltonians. It is easy to see that a UL derivation 𝛿a is not affected
if we add to a an exact 0-chain. We will show that this is the only gauge freedom
associated to UL derivations. That is, we will show that the space of UL derivations
is isomorphic to the zeroth homology 𝐻0(𝔡𝑙) of the complex

. . .
𝜕2→ 𝐶1(𝔡𝑙)

𝜕1→ 𝐶0(𝔡𝑙) → 0. (2.19)

Homology

To compute the homology of (𝐶•(𝔡𝑙), 𝜕), we introduce the following definition.
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𝑌1

𝑌2
𝑌3

Figure 2.1: Let Λ ⊂ R2 be the lattice (Z + 1
2 )

2 with two-dimensional on-site Hilbert
spaces. Let 𝜎𝑖(𝑥,𝑦) be the Pauli matrix observables on site (𝑥, 𝑦). The brick decom-
position of A = 𝜎𝑧
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has three terms A𝑌1 = 𝜎𝑧
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𝜎𝑥
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, A𝑌2 = 𝜎𝑥
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+
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( 7
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7
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for bricks 𝑌1, 𝑌2, 𝑌3 shown on the picture.

Definition 2.5. A brick is a subset of R𝑑 of the form {(𝑥1, . . . , 𝑥𝑑) : 𝑛𝑖 ≤ 𝑥𝑖 < 𝑚𝑖, 𝑖 =
1, . . . , 𝑑}, where 𝑛𝑖 and 𝑚𝑖 are integers satisfying 𝑛𝑖 < 𝑚𝑖. The empty brick is the
empty subset.

We denote the set of all bricks in R𝑑 together with the empty brick by B𝑑 . B𝑑 is a
poset with respect to inclusion.2 Any finite subset of Λ is contained in some brick.

Recall that for any 𝑌 ⊂ R𝑑 we let 𝔡𝑌 = 𝔡𝑙 ∩𝒜𝑌 . Clearly, if 𝑍 ⊂ 𝑌 , then 𝔡𝑍 ⊂ 𝔡𝑌 .
For any 𝑌 ∈ B𝑑 we define 𝔡𝑌 to be the orthogonal complement of the subspace∑︁

𝑍∈B𝑑
𝑍⊊𝑌

𝔡𝑍 (2.20)

in 𝔡𝑌 with respect to the inner product ⟨A,B⟩ := ⟨A∗B⟩∞. Elements of 𝔡𝑌 are
anti-self-adjoint traceless local observables which are localized on 𝑌 but not on any
brick which is a proper subset of 𝑌 . It is easy to see that for any 𝑌 ∈ B𝑑 we have a
direct sum decomposition 𝔡𝑌 =

⊕
𝑍∈B𝑑 ,𝑍⊆𝑌 𝔡

𝑍 and 𝔡𝑙 =
⊕

𝑌∈B𝑑 𝔡
𝑌 . For any A ∈ 𝔡𝑙

we will denote by A𝑌 its component in 𝔡𝑌 . For an example of a brick decomposition
see Fig. 2.1. Clearly, if A ∈ 𝔡𝑋 , then A𝑌 = 0 whenever 𝑌 ∩ 𝑋 = ∅. Additional
properties of the brick expansion can be found in Appendix A.3.

Let ℎ𝑞 : 𝐶𝑞 (𝔡𝑙) → 𝐶𝑞+1(𝔡𝑙) be a map defined by

ℎ𝑞 (a) 𝑗0... 𝑗𝑞+1 =
∑︁
𝑌∈B𝑑

𝑞+1∑︁
𝑘=0
(−1)𝑘 𝜒𝑌 ( 𝑗𝑘 )|𝑌 ∩ Λ|a

𝑌

𝑗0... �̂�𝑘 ... 𝑗𝑞+1
, (2.21)

2In fact it is a lattice. That is, every two elements of B𝑑 have a join and a meet in B𝑑 .
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where �̂�𝑘 denotes the omission of 𝑗𝑘 . Since the sum over𝑌 is finite, ℎ𝑞 is well-defined.
Note that ℎ𝑞−1 ◦ 𝜕𝑞 + 𝜕𝑞+1 ◦ ℎ𝑞 = id for any 𝑞 > 0. Therefore we have the following

Theorem 2.1. 𝐻𝑞 (𝔡𝑙) = 0 for all 𝑞 > 0.

To describe the homology in degree zero, we introduce the following definition.

Definition 2.6. Let 𝔇𝑙 be the space of bounded functions A : B𝑑 → 𝔡𝑙 , 𝑌 ↦→ A𝑌 ,
such that

• A𝑌 ∈ 𝔡𝑌 ,

• A𝑌 = 0 for all 𝑌 of sufficiently large diameter.

We also extend the definition of 𝜕𝑞 and ℎ𝑞 by introducing maps 𝜕0 : 𝐶0(𝔡𝑙) → 𝔇𝑙

and ℎ−1 : 𝔇𝑙 → 𝐶0(𝔡𝑙) defined by

(𝜕0a)𝑌 :=
∑︁
𝑗∈Λ

a𝑌𝑗 , (2.22)

ℎ−1(A) 𝑗 :=
∑︁
𝑌∈B𝑑

𝜒 𝑗 (𝑌 )
|𝑌 ∩ Λ|A

𝑌 . (2.23)

Note that the sums on the r.h.s. of both expressions are finite and thus well-defined.
We have

ℎ𝑞−1 ◦ 𝜕𝑞 + 𝜕𝑞+1 ◦ ℎ𝑞 = id, 𝑞 ≥ 0, (2.24)

𝜕0 ◦ ℎ−1 = id. (2.25)

Theorem 2.2. 𝐻0(𝔡𝑙) is isomorphic to 𝔇𝑙 and to the space of UL derivations.

Proof. To any UL 0-chain a we attach a function 𝑌 ↦→ A𝑌 =
∑
𝑗 a𝑌

𝑗
. The sum over 𝑗

is finite. It is easy to see that this function belongs to 𝔇𝑙 . Furthermore, it is trivially
checked that if the 0-chain a is exact, then the corresponding function vanishes. Thus
we get a map 𝜌𝑙 : 𝐻0(𝔡𝑙) → 𝔇𝑙 .

This map is surjective because a right inverse exists: to an element A of 𝔇𝑙 one
can attach a UL 0-chain ℎ−1(A). To prove injectivity, suppose that a UL 0-chain a
satisfies

∑
𝑗 a𝑌

𝑗
= 0 for all 𝑌 ∈ B𝑑 . For any 𝑗 , 𝑘 ∈ Λ let

b 𝑗 𝑘 =
∑︁
𝑌∈B𝑑

𝜒 𝑗 (𝑌 )
|𝑌 ∩ Λ|a

𝑌
𝑘 −

∑︁
𝑌∈B𝑑

𝜒𝑘 (𝑌 )
|𝑌 ∩ Λ|a

𝑌
𝑗 . (2.26)
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It is straightforward to check that the collection of observables b 𝑗 𝑘 defines a UL
1-chain, and that 𝜕b = a. Thus the map 𝜌𝑙 is an isomorphism.

By definition of UL derivations, the map from 𝐻0(𝔡𝑙) to UL derivations defined
by (2.16) is surjective. To prove injectivity, suppose 𝛿a = 0 for some UL 0-chain a.
Then for any A ∈ 𝒜ℓ we have ∑︁

𝑌∈B𝑑
[A𝑌 ,A] = 0, (2.27)

where A𝑌 =
∑
𝑗 a𝑌

𝑗
is an element of 𝔡𝑌 . Let us pick an arbitrary brick 𝑍 ∈ B𝑑 . Then

for any A ∈ 𝒜𝑍 the sum in (2.27) truncates to those 𝑌 which have a nonempty
intersection with 𝑍 . Thus if we define a traceless local observable B by

B =
∑︁

𝑌∈B𝑑 ,𝑌∩𝑍≠∅
A𝑌 , (2.28)

then B = 1𝑍 ⊗ B̃, where B̃ ∈ 𝒜
𝑍
. Therefore B𝑋 = 0 for any brick 𝑋 such that

𝑋 ⊆ 𝑍 . On the other hand, from the definition of B we have that for such bricks
B𝑋 = A𝑋 . Since 𝑍 was arbitrary, we conclude that A𝑌 = 0 for all 𝑌 ∈ B𝑑 . □

Thus, the augmented complex

. . .
𝜕2→ 𝐶1(𝔡𝑙)

𝜕1→ 𝐶0(𝔡𝑙)
𝜕0→ 𝔇𝑙 → 0 (2.29)

is contractible with a contracting homotopy ℎ𝑞, 𝑞 ≥ −1. We call it the uniformly
local Noether complex. It is graded by integers 𝑞 ≥ −1.

For any F ∈ 𝔇𝑙 we denote the action of the corresponding UL derivation on A ∈ 𝔡𝑙
by F(A). Explicitly, F(A) = ∑

𝑌 [F𝑌 ,A] .

Brackets

An important property of the space of UL derivations 𝔇𝑙 is that it has the structure of
a Lie algebra. This is easiest to see if we identify it with 𝐻0(𝔡𝑙). For given F,G ∈ 𝔇𝑙

and f, g ∈ 𝐶0(𝔡𝑙) such that F = 𝜕f and G = 𝜕g, the Lie bracket can be defined by

{F,G} := 𝜕 ( [f, g}) (2.30)

where the components of a UL 0-chain [f, g} are defined as a finite sum

[f, g} 𝑗 :=
∑︁
𝑘∈Λ
[f𝑘 , g 𝑗 ] . (2.31)
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The bracket [·, ·} on 0-chains is not skew-symmetric and awkward to work with. But
one can express it through a more natural structure which exists on the augmented
complex 𝐶•(𝔡𝑙) → 𝔇𝑙 : the structure of a 1-shifted dg-Lie algebra. This means that
there is a degree 1 bracket {·, ·} on the augmented complex which is graded-skew-
symmetric:

{f, g} = −(−1) ( |f|+1) ( |g|+1){g, f}, (2.32)

satisfies the graded Jacobi identity:

(−1) ( |f|+1) ( |h|+1){f, {g, h}} + (−1) ( |g|+1) ( |f|+1){g, {h, f}}+
+ (−1) ( |h+1) ( |g|+1){h, {f, g}} = 0, (2.33)

and the graded Leibniz rule:

𝜕{f, g} = {𝜕f, g} + (−1) |f|+1{f, 𝜕g}. (2.34)

Here | · | denotes the degree of a chain. For f ∈ 𝐶𝑝 (𝔡𝑙), g ∈ 𝐶𝑞 (𝔡𝑙), F ∈ 𝔇𝑙 the
bracket is defined by

{f, g} 𝑗0... 𝑗𝑝+𝑞+1 :=
1
𝑝!𝑞!
[f 𝑗0... 𝑗𝑝 , g 𝑗𝑝+1... 𝑗𝑝+𝑞+1] + (signed permutations), (2.35)

{F, g} 𝑗0... 𝑗𝑞 := F
(
g 𝑗0... 𝑗𝑞

)
, (2.36)

while the bracket of two UL derivations is defined to be their Lie bracket eq. (2.30).
Then for any two UL 0-chains f, g we can write

[f, g} = {𝜕f, g}. (2.37)

The non-skew-symmetric bracket [·, ·} on 0-chains is an example of a “derived
bracket” [6].

There is an injective Lie algebra homomorphism from 𝔡𝑙 to the Lie algebra of
UL derivations 𝔇𝑙 which sends B ∈ 𝔡𝑙 to the derivation A ↦→ [B,A]. One can
describe the image of this homomorphism more intrinsically by making the following
definition.

Definition 2.7. An element A ∈ 𝔇𝑙 is called summable if A𝑌 ≠ 0 only for finitely
many bricks.

Physically, summable UL derivations correspond to interactions which are localized
at a point. Obviously, summable UL derivations form a Lie sub-algebra of 𝔇𝑙 . In
the following we identify it with 𝔡𝑙 .
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𝐴2

𝐴0 𝐴1

Figure 2.2: An example of a conical partition of R2.

Integration

If we interpret a 0-chain b ∈ 𝐶0(𝔡𝑙) as a density of energy or some other physical
quantity, then it is natural to define energy in a region 𝐴 as a derivation b𝐴 ∈ 𝔇𝑙 which
acts on A ∈ 𝔡𝑙 by b𝐴 (A) =

∑
𝑗∈𝐴 [b 𝑗 ,A] . Equivalently, b𝑌

𝐴
=

∑
𝑗∈𝐴 b𝑌

𝑗
. Generalizing

this, for any b ∈ 𝐶𝑞 (𝔡𝑙) the contraction of b with regions 𝐴0, ..., 𝐴𝑞 ⊂ R𝑑 is a
derivation b𝐴0...𝐴𝑞 ∈ 𝔇𝑙 defined by

b𝑌𝐴0...𝐴𝑞
=

∑︁
𝑗𝑘∈𝐴𝑘 , 𝑘=0,...,𝑞

b𝑌𝑗0... 𝑗𝑞 . (2.38)

We may interpret b𝐴0...𝐴𝑞 as an “integral” of b over 𝐴0, ..., 𝐴𝑞. Since chains are
antisymmetric in 𝑗𝑎, without loss of generality we can assume that the regions are
non-intersecting.

Note that if all the regions 𝐴0, ..., 𝐴𝑞 are infinite, then in general the derivation
b𝐴0...𝐴𝑞 is not summable. For the contraction to be a summable derivation (that is,
an element of 𝔡𝑙), one needs to choose the regions 𝐴0, . . . , 𝐴𝑞 with some care. For
our purposes the following set of regions will suffice. Let us pick a point 𝑝 ∈ R𝑑

and a triangulation of 𝑆𝑑−1 as a boundary of a 𝑑-simplex. Let 𝜎0, . . . , 𝜎𝑑 be its open
(𝑑 − 1)-simplices and let 𝐴𝑎, 𝑎 = 0, . . . , 𝑑, be an open subset of R𝑑 which in polar
coordinates has the form R+ × 𝜎𝑎. We will say that 𝐴𝑎 is a conical region with base
𝜎𝑎 and apex 𝑝. More generally, for a fixed 𝑝 and a fixed triangulation of 𝑆𝑑−1 into
𝑑 + 1 simplices we say that an open set 𝐴𝑎 is an eventually conical region with apex
𝑝 and base 𝜎𝑎 if outside of a ball 𝐵𝑝 (𝑟) it coincides with R+ × 𝜎𝑎. We say that an
ordered partition (𝐴0, ..., 𝐴𝑑) of R𝑑 with Λ being in the interior is a conical partition,
if 𝐴0, ..., 𝐴𝑑 are eventually conical regions with an apex 𝑝 and bases 𝜎0, ..., 𝜎𝑑 (see
Fig. 2.2). To any conical partition (𝐴0, ..., 𝐴𝑑) and a UL 𝑑-chain b one can attach an
element of 𝔡𝑙 :

b𝐴0...𝐴𝑑
=

∑︁
𝑗𝑘∈𝐴𝑘 , 𝑘=0,...,𝑑

b 𝑗0... 𝑗𝑑 (2.39)
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which is the contraction of b with 𝐴0, . . . , 𝐴𝑑 . This sum is finite. Note that the
expression (2.39) does not depend on the ordering of the simplices 𝜎𝑎 provided they
correspond to a fixed orientation of 𝑆𝑑−1 and changes sign when the orientation is
flipped. A version of Stokes’ theorem holds: (𝜕c)𝐴0...𝐴𝑑

= 0 for any c ∈ 𝐶𝑑+1(𝔡𝑙).

Remark 2.2. With any conical partition (𝐴0, ..., 𝐴𝑑) we can also associate an
integrated version of the complex eq. (2.29) of Čech type. Let Δ𝑘 be the set of
(𝑑 − 𝑘 − 1)-simplices of the triangulation of 𝑆𝑑−1 as a boundary of a 𝑑-simplex. For
any 𝜎 ∈ Δ𝑘 there is an associated set of cones {𝐴𝑖0 , ..., 𝐴𝑖𝑘 }. We denote the image of
the contraction of 𝐶𝑘 (𝔡𝑙) with {𝐴𝑖0 , ..., 𝐴𝑖𝑘 } by 𝔇(𝜎)

𝑙
. Each 𝔇

(𝜎)
𝑙

is a Lie subalgebra
of 𝔇𝑙 . Then we have an exact sequence

𝔡𝑙 −→
⊕
𝜎∈Δ𝑑−1

𝔇
(𝜎)
𝑙
−→

⊕
𝜎∈Δ𝑑−2

𝔇
(𝜎)
𝑙
−→ ... −→

⊕
𝜎∈Δ0

𝔇
(𝜎)
𝑙
−→ 𝔇𝑙 (2.40)

with the differential being a sum of signed injections.

The complex of rapidly decaying currents
In the same way as 𝔡𝑙 can be completed to 𝔡𝑎𝑙 using a family of norms, the space
𝐶𝑞 (𝔡𝑙), 𝑞 ∈ N0, of UL 𝑞-chains can be completed using the norms

∥a∥𝛼 := sup
𝑟

(1 + 𝑟)𝛼 𝑓 (a, 𝑟) = sup
𝑎∈{0,1,...,𝑞}

sup
𝑗0,..., 𝑗𝑞∈Λ

∥a 𝑗0... 𝑗𝑞 ∥ 𝑗𝑎 ,𝛼, 𝛼 ∈ N0 (2.41)

where
𝑓 (a, 𝑟) := sup

𝑎∈{0,1,...,𝑞}
sup

𝑗0,..., 𝑗𝑞∈Λ
𝑓 𝑗𝑎 (a 𝑗0... 𝑗𝑞 , 𝑟) (2.42)

is defined for any a ∈ 𝐶𝑞 (𝔡𝑙). We call the completed space the space of uniformly
almost local (UAL) 𝑞-chains and denote it by 𝐶𝑞 (𝔡𝑎𝑙). This means that any element
a ∈ 𝐶𝑞 (𝔡𝑎𝑙) can be represented by a sequence {a(𝑛)}, 𝑛 ∈ N of UL 𝑞-chains
a(𝑛) ∈ 𝐶𝑞 (𝔡𝑙) such that for any 𝛼 ∈ N0 ∥a(𝑛) − a(𝑚) ∥𝛼 can be made arbitrarily small
by taking arbitrary sufficiently large 𝑛, 𝑚.

Lemma 2.2. The following characterizations of UAL chains are all equivalent:

(1) A skew-symmetric function a : Λ𝑞+1 → 𝔡𝑎𝑙 defines an element of 𝐶𝑞 (𝔡𝑎𝑙) if
∥a∥𝛼 < ∞ for any 𝛼 ∈ N.

(2) A skew-symmetric function a : Λ𝑞+1 → 𝔡𝑎𝑙 defines an element of 𝐶𝑞 (𝔡𝑎𝑙) if
there is a function 𝑏(𝑟) ∈ ℱ∞ such that for any 𝑗0, ..., 𝑗𝑞 the observable a 𝑗0... 𝑗𝑞
is 𝑏-localized at 𝑗𝑎 for any 𝑎 ∈ {0, 1, ..., 𝑞}.
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(3) 𝐶𝑞 (𝔡𝑎𝑙) is the completion of 𝐶𝑞 (𝔡𝑙) with respect to the norms ∥ · ∥𝛼.

Proof. As in Lemma 2.1 the implication (3)⇒ (1) is straightforward.

If all the norms are finite, the function 𝑓 (a, 𝑟) can be upper-bounded by an element
of ℱ+∞. Therefore (1) implies (2).

It is left to show (2)⇒ (3). Let {a(𝑛)} be a sequence of elements of 𝐶𝑞 (𝔡𝑙) such
that a(𝑛)

𝑗0... 𝑗𝑞
is a best possible approximation of a 𝑗0... 𝑗𝑞 by a traceless observable on

𝔡𝐵 𝑗0 (𝑛)∩𝐵 𝑗1 (𝑛)∩...∩𝐵 𝑗𝑞 (𝑛) . Lemma A.1 implies

∥a 𝑗0... 𝑗𝑞 − a(𝑛)
𝑗0... 𝑗𝑞
∥ ≤ 2(2𝑞 + 1)𝑏(𝑛). (2.43)

Therefore for any 𝑎 ∈ {0, . . . , 𝑞} one has

𝑓 𝑗𝑎

(
a 𝑗0... 𝑗𝑞 − a(𝑛)

𝑗0... 𝑗𝑞
, 𝑟

)
≤ 2(2𝑞 + 1)min(𝑏(𝑟), 𝑏(𝑛)) (2.44)

and therefore
∥a − a(𝑛) ∥𝛼 ≤ 2(2𝑞 + 1) sup

𝑟≥𝑛
(1 + 𝑟)𝛼𝑏(𝑟). (2.45)

Thus the sequence {a(𝑛)} converges in the norms ∥ · ∥𝛼 to a. Therefore (2)⇒ (3). □

We use the family of norms ∥ · ∥𝛼 to define a topology on 𝐶𝑞 (𝔡𝑎𝑙) as discussed in
Appendix A.1. Characterization (3) implies that this topology turns 𝐶𝑞 (𝔡𝑎𝑙) into a
Fréchet space. Two other equivalent families of norms are described in Appendix
A.4.

Similarly, the space 𝔇𝑙 can be completed using the norms

∥F∥𝑏𝑟𝛼 := sup
𝑌∈B𝑑
(1 + diam(𝑌 ))𝛼∥F𝑌 ∥ < ∞, ∀𝛼 ∈ N0. (2.46)

The resulting space is denoted by 𝔇𝑎𝑙 , and the resulting space of derivations of 𝔡𝑎𝑙
is called the space of UAL derivations.

In Appendix A.4 we show that the boundary map 𝜕, the contracting homotopy ℎ,
the bracket {·, ·}, and the contraction maps on 𝐶•(𝔡𝑙) can be extended to maps on
𝐶•(𝔡𝑎𝑙) continuous in the Fréchet topology. Therefore we have the complex

. . .
𝜕2→ 𝐶1(𝔡𝑎𝑙)

𝜕1→ 𝐶0(𝔡𝑎𝑙) → 0 (2.47)

and the corresponding augmented exact complex

. . .
𝜕2→ 𝐶1(𝔡𝑎𝑙)

𝜕1→ 𝐶0(𝔡𝑎𝑙)
𝜕0→ 𝔇𝑎𝑙 → 0 (2.48)
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with the structure of a 1-shifted dg-Fréchet-Lie algebra. We call the latter the
uniformly almost local Noether complex or simply Noether complex and denote it N•.
It is graded by integers 𝑞 ≥ −1. The existence of the extension of the contracting
homotopy ℎ implies

Theorem 2.3 (Local Noether theorem). The Noether complex N• is exact.

Remark 2.3. The space of UAL derivations 𝔇𝑎𝑙 can be regarded as a subspace of
the space of interactions satisfying the following “gauge condition”: ΦΓ ∈ 𝔡𝑌 if
Γ = 𝑌 ∩ Λ for a brick 𝑌 ∈ B𝑑 and ΦΓ = 0 otherwise.

It is convenient for the following sections to define localization criteria for derivations
from 𝔇𝑎𝑙 . For 𝑓 ∈ ℱ+∞, we say that F is 𝑓 -local if ∥F𝑌 ∥ ≤ 𝑓 (diam(𝑌 )). For a region
𝐴 and 𝑓 ∈ ℱ+∞, we say that F is 𝑓 -localized on 𝐴, if ∥F𝑌 ∥ ≤ 𝑓 (sup𝑥∈𝑌 dist(𝑥, 𝐴)).
We say that F is almost localized on 𝐴, if it is 𝑓 -localized for some 𝑓 ∈ ℱ+∞.

There is an injective Lie algebra homomorphism from 𝔡𝑎𝑙 to the Lie algebra of UAL
derivations which sends B ∈ 𝔡𝑎𝑙 to the derivation A ↦→ [B,A]. One can describe
this sub-space more intrinsically by making the following definition.

Definition 2.8. An element F ∈ 𝔇𝑎𝑙 is called summable if the infinite sum
∑
𝑌 F𝑌 is

absolutely convergent in the Fréchet topology of 𝔡𝑎𝑙 .

The image of 𝔡𝑎𝑙 under the embedding into 𝔇𝑎𝑙 consists precisely of summable
elements of 𝔇𝑎𝑙 . Physically, summable UAL derivations correspond to interactions
which are approximately localized at a point. Summable UAL derivations obviously
form a Lie sub-algebra of 𝔇𝑎𝑙 . In fact, it is easy to see that they form an ideal.

Finally, the contraction of any b ∈ 𝐶𝑑 (𝔡𝑎𝑙) with a conical partition (𝐴0, ..., 𝐴𝑑) of R𝑑

gives a summable element of 𝔇𝑎𝑙 , as Prop. A.10 shows. Moreover the corresponding
map 𝐶𝑑 (𝔡𝑎𝑙) → 𝔡𝑎𝑙 is continuous. As in the Remark 2.2, there is an almost local
version of the integrated complex eq. (2.40).

Relation to energy and charge currents
As mentioned in the introduction, currents on a lattice can be defined using the
language of chains. Consider a lattice system with finite-range interactions. The
dynamics for such a system is described by a Hamiltonian that can be regarded (after
multiplication by 𝑖) as a UL derivation H. The Hamiltonian density can be defined
as a UL 0-chain h such that H = 𝜕h. Obviously, for a fixed H the 0-chain h is far



22

from unique. The ambiguity can be fully characterized, since by Theorem 2.2 any
two choices of h differ by a boundary 𝜕 of a 1-chain. Once h is fixed, we can define
an energy current j𝐸 : Λ × Λ→ 𝒜ℓ as a solution of the equation∑︁

𝑘

[h𝑘 , h 𝑗 ] = −
∑︁
𝑘

j𝐸𝑘 𝑗 . (2.49)

The observable j𝐸
𝑘 𝑗

represents the energy flow from site 𝑗 to site 𝑘 . It is natural
to require j𝐸

𝑗 𝑘
to be traceless, so that there is no energy flow between sites in the

infinite-temperature state. Since h is finite-range, it is also natural to require j𝐸
𝑗 𝑘

to
vanish whenever 𝑗 and 𝑘 are sufficiently far apart, and to be localized near 𝑗 and
𝑘 . Thus j𝐸 is a UL 1-chain. The equation (2.49) can be written using the algebraic
operations on the UL Noether complex:

{H, h} = −𝜕j𝐸 . (2.50)

Note that this equation for j𝐸 is guaranteed to have a solution because by the properties
of the shifted Lie bracket the l.h.s. is closed, 𝜕{H, h} = {H,H} = 0, and thus exact.
Similarly, a Hamiltonian H with rapidly decaying interactions can be regarded as a
self-adjoint UAL 0-chain h such that H = 𝜕h, while an energy current is defined to
be a self-adjoint UAL 1-chain j𝐸 solving the equation (2.50). Both in the UL and
UAL cases, the equation has an obvious solution:

j𝐸𝑘 𝑗 = −[h𝑘 , h 𝑗 ], (2.51)

which can be written using the operations on the Noether complexes as

j𝐸 = −1
2
{h, h}. (2.52)

Triviality of 𝐻1(𝔡𝑙) and 𝐻1(𝔡𝑎𝑙) ensures that any other solution differs from (2.52)
by an exact 1-chain.

Similarly, a continuous one-parameter symmetry of a lattice system is encoded into a
charge density which, after multiplication by 𝑖, can be viewed as a 0-chain q (usually
assumed to be uniformly local). The Hamiltonian H is said to be q-invariant if the
derivations corresponding to q and H commute, {𝜕q,H} = 0. If the symmetry group
is compact, using the average over the group action we can always make sure that the
Hamiltonian density h satisfies {𝜕q, h} = 0 . A current for the symmetry generated
by q is a UL or UAL 1-chain j solving the equation∑︁

𝑘

[h𝑘 , q 𝑗 ] = −
∑︁
𝑘

j𝑘 𝑗 . (2.53)
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This equation can also be written using index-free notation:

{H, q} = −𝜕j. (2.54)

A solution always exists because the l.h.s. is closed. Any two solutions differ by an
exact 1-chain. If {𝜕q, h} = 0, one can write an explicit solution

j = −{h, q}. (2.55)

From the above discussion, it is clear that all densities and currents have ambiguities.
However they can be fully characterized, and one expects that physical quantities,
such as transport coefficients in linear response theory, are not affected by this “gauge
freedom.” Transformation properties of Kubo formulas under such re-definitions of
the Hamiltonian density have been analyzed in [7, 39].

2.3 Locally generated automorphisms
To describe an evolution of a lattice system in the Heisenberg picture, we need
to specify a family of automorphisms Aut(𝒜) of the algebra 𝒜. In this section
we describe how such families can be produced by integrating the derivations in
𝔇𝑎𝑙 or continuous one-parameter families of derivations. Such an evolution can be
interpreted as an evolution by the Hamiltonian that corresponds to the derivation.

Let 𝐶 ( [0, 1],𝔇𝑎𝑙) be the Fréchet space of 𝔇𝑎𝑙-valued functions on the interval
[0, 1] (see Appendix A for a brief discussion of functions valued in Fréchet spaces).
In Appendix B.2 we show that for any G ∈ 𝐶 ( [0, 1],𝔇𝑎𝑙) there is a unique one-
parameter family of automorphisms 𝛼G : [0, 1] → Aut(𝒜), the value of which on
𝑠 ∈ [0, 1] we denote by 𝛼(𝑠)G , such that for any A ∈ 𝒜𝑎ℓ the curve 𝑠 ↦→ 𝛼

(𝑠)
G (A) is

continuously differentiable and solves the differential equation

𝑑𝛼
(𝑠)
G (A)
𝑑𝑠

= 𝛼
(𝑠)
G (G(𝑠) (A)) (2.56)

with the initial condition 𝛼(0)G = id. We call such one-parameter families locally
generated paths (LGP). One may also regard G as a component of a continuous
𝔇𝑎𝑙-valued 1-form G𝑑𝑠 on [0, 1]. In what follow we will not distinguish between
this 1-form and the function G and for any continuous 𝔇𝑎𝑙-valued 1-form F denote
by 𝛼F a unique one-parameter family of automorphisms 𝛼F : [0, 1] → Aut(𝒜𝑎ℓ)
defined by

𝑑𝛼
(𝑠)
F (A) = 𝛼

(𝑠)
F (F(𝑠) (A)). (2.57)
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We also write 𝛼(𝑠)F for a family of automorphisms generated by a constant UAL
derivation F ∈ 𝔇𝑎𝑙 .

The map G ↦→ 𝛼G from continuous 1-parameter families of UAL derivations to
LGPs is clearly 1-1. This allows us to identify the set of LGPs of unit time with the
Fréchet space 𝐶 ( [0, 1],𝔇𝑎𝑙) and thus make the former into a Fréchet manifold. The
set of such LGPs also has a group structure. The composition 𝛼F ◦ 𝛼G of two LGPs
is an LGP generated by G(𝑠) + (𝛼(𝑠)G )

−1(F(𝑠)). The inverse 𝛼−1
F is an LGP generated

by −(𝛼(𝑠)F )
−1(F(𝑠)). By Prop. B.2, both the composition and the inverse are smooth

maps of Fréchet spaces and thus the set of LGPs of unit time is a Fréchet-Lie group.
Its Lie algebra is 𝐶 ( [0, 1],𝔇𝑎𝑙) with the Lie bracket

{F,G}(𝑠) =
∫ 𝑠

0
({F(𝑢),G(𝑠)} − {G(𝑢), F(𝑠)}) 𝑑𝑢. (2.58)

Definition 2.9. We say that an automorphism 𝛽 ∈ Aut(𝒜) is locally generated
(LGA) if there exist F ∈ 𝐶 ( [0, 1],𝔇𝑎𝑙), such that 𝛽 = 𝛼

(1)
F .

Remark 2.4. It is plausible that the group of LGAs is a Fréchet-Lie group integrating
the Lie algebra of UAL derivations 𝔇𝑎𝑙 . The group of LGPs is supposed to be the
group of based continuous paths in the group of LGAs.

The action of LGAs and LGPs on observables can be extended to an action on UAL
derivations and chains in a straightforward way:(

𝛼
(𝑠)
G (a)

)
𝑗0... 𝑗𝑞

= 𝛼
(𝑠)
G

(
a 𝑗0... 𝑗𝑞

)
, a ∈ 𝐶𝑞 (𝔡𝑎𝑙), (2.59)(

𝛼
(𝑠)
G (A)

)𝑌
=

∑︁
𝑍∈B𝑑

(
𝛼
(𝑠)
G

(
A𝑍

))𝑌
, A ∈ 𝔇𝑎𝑙 . (2.60)

By Proposition B.2, this action is jointly continuous and smooth.

We say that an LGA 𝛽 is 𝑓 -local for some 𝑓 ∈ ℱ
+
∞ if there exist 𝑓 -local F ∈

𝐶 ( [0, 1],𝔇𝑎𝑙) such that 𝛽 = 𝛼
(1)
F . We say that it is 𝑓 -localized on a region 𝐴 ⊂ R𝑑

if F is 𝑓 -localized on 𝐴. We say that it is almost localized on a region 𝐴 ⊂ R𝑑 if it is
𝑓 -localized on 𝐴 for some 𝑓 ∈ ℱ+∞.

Remark 2.5. Suppose F ∈ 𝐶 ( [0, 1],𝔇𝑎𝑙) is 𝑓 -localized on a finite region so that
F(𝑠) = adA(𝑠) for some traceless A(𝑠) ∈ 𝒜𝑎ℓ. There is a canonical family of
unitaries U(𝑠), such that 𝛼(𝑠)F = AdU(𝑠) . It is defined by the solution of the equation
𝑑
𝑑𝜙
U(𝑠) = U(𝑠)A(𝑠).
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Let M be a finite-dimensional manifold. We say that a family of LGPs of unit time
𝛽𝑚 = 𝛼F𝑚

, 𝑚 ∈ M, is smooth, if the corresponding map F : M → 𝐶 ( [0, 1],𝔇𝑎𝑙)
is smooth (smooth here means that derivatives of all orders exist, see Appendix
A for a further discussion). This is equivalent to saying that G(𝑠, 𝑚) is jointly
continuous in 𝑠 and 𝑚 and infinitely differentiable in 𝑚. As explained in Remark
B.1, to any such family of LGPs one can assign a smooth 1-form 𝜔𝛽 ∈ Ω1(M,𝔇𝑎𝑙)
satisfying 𝑑

(
𝛽(1) (A)

)
= 𝛽(1)

(
𝜔𝛽 (A)

)
for any A ∈ 𝔡𝑎𝑙 . The 1-form 𝜔𝛽 is flat, i.e.,

𝑑𝜔𝛽 + 1
2 {𝜔𝛽, 𝜔𝛽} = 0.

Similarly, we can define smooth families of LGAs.

Definition 2.10. A smooth family of LGAs 𝛽 over M is a family of LGAs for which
there exists G ∈ Ω1(M,𝔇𝑎𝑙) such that for any smooth path 𝛾 : [0, 1] →M one has
𝛽𝛾(𝑠) = 𝛽𝛾0 ◦ 𝛼

(𝑠)
𝛾∗G.

Note that for a smooth family of LGAs 𝛽 the corresponding G is unique and satisfies
𝑑G + 1

2 {G,G} = 0.

2.4 States
Recall that a state of a unital 𝐶∗-algebra 𝒜 is a positive linear functional 𝜓 : 𝒜 → C
such that 𝜓(1) = 1, while a pure state is an extremal point of the convex set of states.

Notation 2.1. We prefer to use a non-standard notation and denote the evaluation
𝜓(A) of a state 𝜓 on a given observable A ∈ 𝒜 by ⟨A⟩𝜓 as it is common in the
physics literature.

With every state one can associate a representation that is canonical up to isomorphism
using Gelfand–Naimark–Segal construction. We denote it by (𝜋𝜓 ,H𝜓 , |𝜓⟩) where
H𝜓 is a Hilbert space, |𝜓⟩ ∈ H𝜓 is a cyclic vector, 𝜋𝜓 : A→ B(H𝜓), and call it a
GNS representation. We have ⟨A⟩𝜓 = ⟨𝜓 |𝜋𝜓 (A) |𝜓⟩.

States of lattice systems
We say that a state 𝜓 of a lattice system 𝒜 is a product state, if for any A,B ∈ 𝒜ℓ

with disjoint supports we have ⟨AB⟩𝜓 = ⟨A⟩𝜓 ⟨B⟩𝜓 . We say that 𝜓 is factorized, if
it is a pure product state. For a region 𝐴, we let 𝜓 |𝐴 be the state on 𝒜𝐴 obtained
by the restriction of 𝜓 to the subalgebra 𝒜𝐴 ⊂ 𝒜. A spin system 𝒜 has a unique
tracial state (or infinite temperature state) denoted ⟨ · ⟩∞ defined by the property
⟨AB⟩∞ = ⟨BA⟩∞. We define the average ⟨a⟩𝜓 of an element of 𝔡𝑎𝑙 to be the average
⟨A⟩𝜓 of its (unique) traceless representative A ∈ 𝒜𝑎ℓ, a = adA.



26

For any state 𝜓 and an automorphism 𝛼 ∈ Aut(𝒜), one can define a new state
𝜓′ = 𝜓 ◦ 𝛼 given by ⟨A⟩𝜓′ := ⟨𝛼(A)⟩𝜓 . We say that a derivation F does note
excite the state 𝜓 or preserves the state 𝜓, if ⟨F(A)⟩𝜓 = 0 for any A ∈ 𝒜ℓ. For an
observable A ∈ 𝒜, we say that A does not excite the state, if the same holds for the
derivation adA( · ) := [A, · ]. Similarly, for an automorphism 𝛼 ∈ Aut(𝒜), the same
notion means 𝜓 ◦ 𝛼 = 𝜓.

In this work we are mostly interested in states of spin systems at zero temperature,
and therefore all states on the whole system will be pure. A pure state 𝜓 is said to be a
ground state of a Hamiltonian H ∈ 𝔇𝑎𝑙 if for any A ∈ 𝒜𝑎ℓ one has −𝑖⟨A∗H(A)⟩𝜓 ≥ 0.
Any such state is necessarily invariant under the 1-parameter group of automorphisms
generated by H [12].

Gapped states
One of the main objectives of the present work is the analysis of topological properties
of the class of gapped states defined as follows.

Definition 2.11. A pure state 𝜓 is said to be a gapped ground state of H ∈ 𝔇𝑎𝑙 with
a gap greater or equal than Δ > 0 if −𝑖⟨A∗H(A)⟩𝜓 ≥ Δ

(
⟨A∗A⟩𝜓 − |⟨A⟩𝜓 |2

)
for any

A ∈ 𝒜𝑎ℓ. If 𝜓 satisfies the above condition for some unspecified choice of H ∈ 𝔇𝑎𝑙

and Δ > 0, we will say that 𝜓 is gapped. We will also say that a derivation H ∈ 𝔇𝑎𝑙

is gapped if there exists a state 𝜓 which is a gapped ground state for H (such a state
need not be unique).

Warning 2.1. The notion of a gapped state depends on the class of Hamiltonians one
allows. States which are gapped for one class of Hamiltonians may not be gapped
for another class with a faster decay of interactions. In this work, unless specified
explicitly, by gapped state we always mean gapped for the Hamiltonians from 𝔇𝑎𝑙 .

Remark 2.6. If 𝜓 is a gapped ground state of H ∈ 𝔇𝑎𝑙 , then 𝜓 is the only vector
state in the GNS representation of 𝜓 which is the ground state of H. Further, if
�̂� is the generator of the 1-parameter group of automorphisms 𝛼H(𝑠) in the GNS
representation of 𝜓, then �̂� is a positive operator annihilating the vacuum vector,
and its spectrum on the orthogonal complement of the vacuum vector is contained in
[Δ, +∞).
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Topological phases

Definition 2.12. We say that two states 𝜓 and 𝜓′ of a lattice system 𝒜 are LGA-
equivalent, if there is an LGA 𝛼 ∈ Aut(𝒜), such that 𝜓 = 𝜓′ ◦ 𝛼.

Given states 𝜓 and 𝜓′ of lattice systems 𝒜 and 𝒜
′, respectively, one has a natural

state of the composite systems 𝒜 ⊗𝒜
′ denoted 𝜓 ⊗ 𝜓′.

Definition 2.13. We say that two states 𝜓 and 𝜓′ of possibly different lattice systems
𝒜 and 𝒜

′ are stably LGA-equivalent if there are lattice systems 𝒜 and �̃�′ satisfying
𝒜 ⊗ 𝒜 � 𝒜

′ ⊗ �̃�′, a factorized states 𝜓0 of 𝒜, a factorized states 𝜓′0 of �̃�′ such
that 𝜓 ⊗ 𝜓0 is LGA-equivalent to 𝜓′ ⊗ 𝜓′0.

Being in the same phase defines an equivalence relation on states of lattice systems.
If two states are stably LGA-equivalent we say that they are in the same topological
phase or simply phase. A monoidal structure on states of spin systems induces a
monoid structure the set of phases.

Warning 2.2. While it is reasonable to say that two stably LGA-equivalent states
model physical systems in the same topological phase, we do not intend to say
that it is a complete definition, as there might be two states which are not stably
LGA-equivalent, but describe systems which are equivalent from physical perspective.

In the following by topological invariants of states we mean properties which are the
same for any two stably LGA-equivalent states.

The notion of a topological phase can be generalized to the case of systems with
a Lie group symmetry 𝐺 in a straightforward way. We say that two 𝐺-invariant
states are in the same 𝐺-invariant phase, if they are stably LGA-equivalent and the
corresponding LGA can be generated by a 𝐺-invariant path of UAL derivations.

Invertible phases
There is a natural class of states representing the invertible part of the monoid of
phases introduced by Kitaev [41] that forms an abelian group.

Definition 2.14. Let𝜓 be a pure state of a lattice system𝒜. We say that𝜓 is invertible,
if there is another system 𝒜

′ with a pure state 𝜓 and an LGA 𝛼 ∈ Aut(𝒜 ⊗𝒜′), such
that the state (𝜓 ⊗ 𝜓′) ◦ 𝛼 is factorized. In this case, we say that the state 𝜓′ is an
inverse of 𝜓.
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Given a state𝜓⊗𝜓′ of a composite system𝒜⊗𝒜′ and an observableA ∈ 𝒜⊗𝒜′, one
can define a partial average ⟨A⟩𝜓′ ∈ 𝒜 that on observables of the formO⊗O′ ∈ 𝒜⊗𝒜′

is given by ⟨O ⊗ O′⟩𝜓′ = ⟨O′⟩𝜓′O. The value on general observables is obtained by
the linear extension. Note that ∥⟨A⟩𝜓′ ∥ ≤ ∥A∥. In particular, for A ∈ 𝒜𝑎ℓ we have

𝑓 𝑗 (⟨A⟩𝜓′ , 𝑟) = inf
B∈𝒜𝐵𝑗 (𝑟 )

∥B − ⟨A⟩𝜓′ ∥ ≤ inf
B∈(𝒜⊗𝒜′)𝐵𝑗 (𝑟 )

∥⟨B −A⟩𝜓′ ∥ ≤

≤ inf
B∈(𝒜⊗𝒜′)𝐵𝑗 (𝑟 )

∥B −A∥ = 𝑓 𝑗 (A, 𝑟). (2.61)

Hence, if A is 𝑔-localized at 𝑗 , then so is ⟨A⟩𝜓′ . Using this fact we can extend the
partial averaging to 𝐶𝑞 (𝔡𝑎𝑙), and since any F ∈ 𝔇𝑎𝑙 can be represented as 𝜕f for
some f ∈ 𝐶0(𝔡𝑎𝑙), we can also extend the partial averaging to 𝔇𝑎𝑙 .

Proposition 2.1. An invertible state 𝜓 is gapped.

Proof. Let 𝜓′ be a inverse of 𝜓, and let 𝛼 be an LGA of the composite system, such
that Ψ0 = (𝜓 ⊗ 𝜓′) ◦ 𝛼 is factorized. Let us choose UAL Hamiltonian F for the
composite system such that Ψ0 is a gapped ground state for F with a gap greater than
Δ > 0 (we can choose F to be 𝜕f for an on-site 0-chain f). Then (𝜓 ⊗ 𝜓′) is a gapped
ground state for 𝛼(F). Let H be a UAL Hamiltonian obtained from 𝛼(F) by partial
averaging over 𝜓′. Then for any A ∈ 𝒜 we have

− 𝑖⟨A∗H(A)⟩𝜓 = −𝑖⟨𝛼(B∗)𝛼(F(B))⟩𝜓⊗𝜓′ = −𝑖⟨B∗F(B)⟩Ψ0 ≥

≥ Δ

(
⟨B∗B⟩Ψ0 − |⟨B⟩Ψ0 |2

)
= Δ

(
⟨A∗A⟩𝜓 − |⟨A⟩𝜓 |2

)
(2.62)

where B = 𝛼−1(A ⊗ 1). Thus, 𝜓 is a gapped ground state for H with a gap greater
than Δ > 0. □
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C h a p t e r 3

BERRY CLASSES FOR GAPPED STATES OF SPIN SYSTEMS

A bosonic system without any locality can be modeled by the algebra of bounded
operators on a Hilbert space H. Pure states of the system correspond to self-adjoint
rank-1 projectors 𝑃 in B(H) that defines a line in the Hilbert space. All such
projectors can be continuously (in the natural topology) deformed into each other,
that can be interpreted as the absence of non-trivial gapped phases of such systems.
However, the space of all such projectors is not contractible as it has non-trivial second
homotopy group. In particular, given a smooth family of self-adjoint projectors (that
defines a smooth family of states) parameterized by a smooth compact manifold M,
we can construct a 2-form 𝑓 = Tr(𝑃𝑑𝑃𝑑𝑃) ∈ Ω2(M, 𝑖R) that gives the celebrated
Berry curvature. A non-triviality of the cohomology class [ 𝑓 /(2𝜋𝑖)] ∈ 𝐻2(M,Z),
which we call the Berry class, gives an obstruction to the contractibility of such a
family.

One may wonder if analogous invariants exist for many-body systems with locality.
As the Berry curvature is extensive with respect to the system size, its value diverges
in the thermodynamic limit and it is unclear how to make sense of it for a microscopic
model without imposing any translational symmetry1.

The physics heuristic, based on the assumption that at long distances a gapped
system can be effectively described by a field theory, suggests that with every smooth
family of systems, one can associate a de Rham cohomology class taking values in
𝐻𝑑+2(M,R). Indeed, for a (𝑑 +1)-dimensional effective field theory on a manifold Σ,
one can write down a topological term in the effective action that has the form

∫
𝐵
𝑓 ∗𝜔,

where 𝜔 is a closed (𝑑 + 2)-form on the space of parameters X, 𝐵 is a manifold such
that 𝜕𝐵 = Σ and 𝑓 is a map 𝑓 : 𝐵→ X. If the systems have a Lie group symmetry,
one can also use gauge fields to construct topological terms. In particular, one can
write down the Chern-Simons topological terms for any even 𝑑. All such topological
terms are characterized by the equivariant cohomology 𝐻𝑑+2

𝐺
(M,R) which may be

non-trivial even if M is a point. In particular, by Chern-Weil theory, the space of
Chern-Simons forms of degree 2𝑘 + 1 is 𝐻2𝑘+2(𝐵𝐺,R) that agrees with 𝐻4

𝐺
(pt,R).

1If the lattice has a translational symmetry with the fundamental domain of a finite volume (e.g.,
Z𝑑 symmetry of a cubic lattice on R𝑑) and if each state of the family is invariant under it, one can talk
about the Berry curvature per unit cell.
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The goal of this chapter is to define topological invariants of families of gapped states
of spin system (possibly with an internal symmetry described by a connected Lie
group 𝐺) which take values in 𝐻𝑑+2

𝐺
(M,R) and are obtained by solving a suitable

Maurer-Cartan equation. We call them 𝐺-equivariant Berry classes. We show that
the usual Berry class, the Hall conductance, and the Thouless pump invariants are all
particular instances of this invariant. More generally, when M = pt, the equivariant
cohomology can be identified with the space of 𝐺-invariant polynomials on the
Lie algebra 𝔤 of 𝐺. Thus, for any even 𝑑, our construction attaches a 𝐺-invariant
polynomial of degree (𝑑 + 2)/2 to a 𝐺-invariant gapped state in 𝑑 dimensions. This
is in agreement with the TQFT approach, which predicts that topological invariants
of such systems should take values in the space of Chern-Simons forms of degree
𝑑 + 1. It is well known that the latter arise from invariant polynomials on the Lie
algebra.

We start with formulating a condition on a state that allows us to construct the
invariant in Section 3.1. It can be stated as an exactness of the subcomplex of the
Noether complex that consists of derivations and chains preserving the state. We
show that it is satisfied for any gapped state. In Section 3.2, we give a definition of
a smooth family of states based on the idea of quasi-adiabatic evolution [28] and
introduce a differential graded Fréchet-Lie algebra of differential forms taking values
in derivations and chains associated with it. We use this algebra to define higher
Berry classes and their equivariant analogues in Sections 3.3 and 3.4, respectively.
We describe various examples at the end of the chapter.

3.1 Complexes associated to gapped states
Given a pure state 𝜓, one can study the algebras of observables, Hamiltonians or
currents which preserve it. Recall that a UAL derivation F does not excite 𝜓 if for any
A ∈ 𝔡𝑎𝑙 one has ⟨F(A)⟩𝜓 = 0. Such derivations form a Lie sub-algebra in 𝔇𝑎𝑙 which
we denote 𝔇𝜓

𝑎𝑙
. Similarly, the Lie sub-algebra 𝔡𝜓

𝑎𝑙
⊂ 𝔡𝑎𝑙 consists of B ∈ 𝔡𝑎𝑙 such that

⟨[B,A]⟩𝜓 = 0 for all A ∈ 𝔡𝑎𝑙 . We also define a subcomplex 𝐶•(𝔡𝜓𝑎𝑙) ↩→ 𝐶•(𝔡𝑎𝑙) of
chains that do not excite 𝜓 and the complex

. . .
𝜕2→ 𝐶1(𝔡𝜓𝑎𝑙)

𝜕1→ 𝐶0(𝔡𝜓𝑎𝑙)
𝜕0→ 𝔇

𝜓

𝑎𝑙
→ 0 (3.1)

of chains and derivations that do not excite 𝜓. The latter is a sub-complex of the
UAL Noether complex N•. We will denote it N𝜓

• . The space of 𝑘-cycles of N𝜓

will be denoted 𝑍𝑘 (N𝜓). As usual, the 𝑘-th homology group of the complex is the
quotient of the space of 𝑘-cycles by the subspace of 𝑘-boundaries.
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Our first goal of this chapter is to prove the following:

Theorem 3.1 (Local Noether theorem for gapped states). Let 𝜓 be a gapped state of
a spin system. Then the homology 𝐻•(N𝜓) is trivial. Moreover, there is a continuous
map ℎ𝜓

𝑘
: 𝑍𝑘 (N𝜓) → N

𝜓

𝑘+1 such that 𝜕𝑘+1 ◦ ℎ𝜓𝑘 = Id.

As we will see later, the exactness of the complex of state-preserving currents
provides a natural way to construct invariants of states and families of states.

To analyze the homology of complex N𝜓 we will make use of certain linear maps
defined by means of integral transforms. For any H ∈ 𝔇𝑎𝑙 and a piecewise-continuous
function 𝑓 : R→ R satisfying 𝑓 (𝑡) = O( |𝑡 |−∞) we define a map ℐH, 𝑓 : 𝒜𝑎ℓ → 𝒜𝑎ℓ

by

ℐH, 𝑓 (·) :=
∫ +∞

−∞
𝑓 (𝑡)𝛼(𝑡)H (·)𝑑𝑡. (3.2)

It is shown in Appendix A.5 that ℐH, 𝑓 is well-defined and continuous. More precisely,
for any 𝑎-localized A ∈ 𝔡𝑎𝑙 we have

∥ℐH, 𝑓 (A)∥ 𝑗 ,𝛼 ≤ 𝐶𝛼∥A∥ 𝑗 ,𝛼, 𝛼 ∈ N0 (3.3)

where 𝐶𝛼 > 0 depends on H, 𝑓 and 𝑎. This estimate implies that ℐH, 𝑓 is continuous
but is stronger than continuity because 𝐶𝛼 does not depend on 𝑗 . In other words, the
map ℐH, 𝑓 is equicontinuous w. r. to a family of metrics on 𝔡𝑎𝑙 labeled by 𝑗 . This
ensures that ℐH, 𝑓 extend to continuous chain maps ℐH, 𝑓 : N• → N•. On 𝑘-chains
with 𝑘 ≥ 0 it is defined by

ℐH, 𝑓 (a) 𝑗0... 𝑗𝑘 = ℐH, 𝑓 (a 𝑗0... 𝑗𝑘 ), (3.4)

while on derivations it is defined by

ℐH, 𝑓 (A)𝑌 =
∑︁
𝑍

(
ℐH, 𝑓 (A𝑍 )

)𝑌
. (3.5)

If 𝛼(𝑡)H preserves a state 𝜓, then ℐH, 𝑓 preserves the subspace 𝔡𝜓
𝑎𝑙

and the subcomplex
N𝜓 . Indeed, for any A,B ∈ 𝔡𝑎𝑙 we have

⟨[ℐH, 𝑓 (A),B]⟩𝜓 =

∫ +∞

−∞
𝑓 (𝑡)⟨[A, 𝛼(−𝑡)H (B)]⟩𝜓𝑑𝑡. (3.6)

Therefore if A ∈ 𝔡𝜓
𝑎𝑙

, then ℐH, 𝑓 (A) ∈ 𝔡𝜓𝑎𝑙 .

If 𝜓 is a gapped ground state of H, then with a clever choice of 𝑓 a stronger result
holds.
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Lemma 3.1. Let 𝜓 be a gapped ground state of H ∈ 𝔇𝑎𝑙 with a gap greater or equal
than Δ > 0. Let 𝑤Δ(𝑡) be an even continuous function 𝑤Δ(𝑡) = O( |𝑡 |−∞) satisfying∫
𝑤Δ(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡 = 0 for |𝜔| > Δ′ for some 0 < Δ′ < Δ and

∫
𝑤Δ(𝑡)𝑑𝑡 = 1. 2 Then

for any A ∈ 𝔡𝑎𝑙 and B ∈ 𝔡𝑎𝑙 we have

⟨ℐH,𝑤Δ
(A)B⟩𝜓 = ⟨ℐH,𝑤Δ

(A)⟩𝜓 ⟨B⟩𝜓 , (3.7)

and thus ℐH,𝑤Δ
(A) ∈ 𝔡𝜓

𝑎𝑙
and ℐH,𝑤Δ

(N•) ⊆ N
𝜓
• .

Proof. Let 𝜋𝜓 be the GNS representation corresponding to 𝜓 and 𝑑𝑃𝜔, 𝜔 ∈ R, be
the projection-valued measure on R corresponding to the self-adjoint operator �̂�.
Then

⟨ℐH,𝑤Δ
(A)B⟩𝜓 =

∫ +∞

−∞
𝑑𝜔

∫ +∞

−∞
𝑑𝑡 𝑤Δ(𝑡)𝑒−𝑖𝜔𝑡 ⟨0|𝜋𝜓 (A)𝑑𝑃𝜔𝜋𝜓 (B) |0⟩ =

=

∫ +Δ′

−Δ′
𝑑𝜔

∫ +∞

−∞
𝑑𝑡 𝑤Δ(𝑡)𝑒−𝑖𝜔𝑡 ⟨0|𝜋𝜓 (A)𝑑𝑃𝜔𝜋𝜓 (B) |0⟩ =

=

∫ +∞

−∞
𝑑𝑡 𝑤Δ(𝑡)⟨A⟩𝜓 ⟨B⟩𝜓 = ⟨ℐH,𝑤Δ

(A)⟩𝜓 ⟨B⟩𝜓 . (3.8)

□

Using this lemma, one easily obtains the following result.

Lemma 3.2. For any H ∈ 𝔇𝑎𝑙 with a gapped ground state 𝜓 there exists h𝜓 ∈ 𝐶0(𝔡𝜓𝑎𝑙)
such that H = 𝜕h𝜓 .

Proof. Let 𝑤Δ = O( |𝑡 |−∞) be a function as in the statement of Lemma 3.1, and
suppose H = 𝜕h for some h ∈ 𝐶0(𝔡𝑎𝑙). Let h𝜓 = ℐH,𝑤Δ

(h). Then for any A ∈ 𝒜𝑎ℓ

we have

𝜕h𝜓 (A) =
∫ +∞

−∞
𝑤Δ(𝑡)𝛼(𝑡)H H(𝛼(−𝑡)H (A))𝑑𝑡 =

∫ +∞

−∞
𝑤Δ(𝑡)H(A)𝑑𝑡 = H(A). (3.9)

□

Remark 3.1. The construction of h𝜓 by means of the map ℐH,𝑤Δ
is due to Kitaev

[40].

Another interesting choice for 𝑓 is described in the next lemma.
2Such functions exist [26, 4]. See Lemma 2.3 from [4] for an explicit example.
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Lemma 3.3. Let 𝜓 be a gapped ground state of H ∈ 𝔇𝑎𝑙 . Let𝑊Δ(𝑡) = O( |𝑡 |−∞) be
an odd piecewise-continuous function defined for 𝑡 > 0 by𝑊Δ( |𝑡 |) = −

∫ ∞
|𝑡 | 𝑤Δ(𝑠)𝑑𝑠.

Then for any A ∈ 𝔡𝑎𝑙 we have

A −ℐH,𝑊Δ
(H(A)) = ℐH,𝑤Δ

(A). (3.10)

Proof. Straightforward computation. □

Remark 3.2. The map ℐH,𝑊Δ
first appeared in [55].

In what follows we will use a shorthand 𝑡𝜓 for the chain map ℐH,𝑤Δ
: N• → N• with

𝑤Δ chosen as in Lemma 3.1 and a shorthand I𝜓 for the chain map ℐH,𝑊Δ
: N• → N•

with𝑊Δ chosen as in Lemma 3.3. These chain maps preserve the subcomplex N
𝜓
• .

In addition 𝑡𝜓 maps N• to N
𝜓
• . Finally, they satisfy an identity

a − I𝜓 ({H, a}) = 𝑡𝜓 (a), ∀a ∈ N•. (3.11)

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let H ∈ 𝔇𝑎𝑙 be a gapped Hamiltonian for 𝜓. By Lemma 3.2,
there exists h𝜓 ∈ 𝐶0(𝔡𝜓𝑎𝑙) such that 𝜕h𝜓 = H. For any f ∈ N•, let

𝑠𝜓 (f) = I𝜓
(
{h𝜓 , f}

)
. (3.12)

𝑠𝜓 is a continuous linear map N𝑘 → N𝑘+1 which maps N𝜓

𝑘
to N

𝜓

𝑘+1. Now suppose
a ∈ 𝑍𝑘 (N𝜓). By Prop. A.7 a = 𝜕b, where b = ℎ(a) ∈ N𝑘+1 is a continuous linear
function of a. The identity (3.11) implies

a = 𝜕𝑡𝜓 (b) + 𝜕𝑠𝜓 (a) = 𝜕 (𝑡𝜓 ◦ ℎ(a) + 𝑠𝜓 (a)). (3.13)

Therefore we can set ℎ𝜓 = 𝑡𝜓 ◦ ℎ + 𝑠𝜓 . □

Remark 3.3. The vanishing of 𝐻•(N𝜓) can also be explained as follows. Eq. (3.11)
implies that 𝑠𝜓 induces a contracting homotopy on the quotient complex N•/N𝜓

• ,
therefore the homology of N•/N𝜓

• is trivial. The homology of the UAL Noether
complex is also trivial. Therefore the long exact sequence of homology groups (in
the category of vector spaces) corresponding to the short exact sequence

0→ N
𝜓
• → N• → N•/N𝜓

• → 0 (3.14)

implies that 𝐻•(N𝜓) is trivial. However, for our purposes it is important to know
that a continuous linear map ℎ𝜓 inverting 𝜕 exists.
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In the following sections we will define invariants of gapped states and smooth
families of gapped states under LGA-equivalence. The definition depends exclusively
on the existence of a derivation H ∈ 𝔇𝜓

𝑎𝑙
and a map I𝜓 with the properties described

above3.

3.2 Smooth families of states of spin systems
Let M be a compact connected smooth manifold. Consider a family of states 𝜓
parameterized by M. We denote a state at the point 𝑚 ∈ M by 𝜓𝑚 : 𝒜 → C. The
averaging over states defines a function ⟨ · ⟩𝜓 : M→ C.

Definition 3.1. A smooth family of states 𝜓 over M is a family of states for which
there exists G ∈ Ω1(M,𝔇𝑎𝑙) such that for any smooth path 𝛾 : [0, 1] →M one has
𝜓𝛾(𝑠) = 𝜓𝛾(0) ◦ 𝛼(𝑠)𝛾∗G.

Remark 3.4. As explained in Appendix A.5, the result of A. Moon and Y. Ogata [48]
implies that for a smooth family of gapped UL Hamiltonians H ∈ Ω0(M,𝔇𝑎𝑙) with a
unique gapped ground state 𝜓𝑚 ∀𝑚 ∈ M and such that the function M ↦→ ⟨A⟩𝜓 is
smooth for all A ∈ 𝒜𝑎ℓ, the family 𝜓 is smooth in the sense of Definition 3.1.

Proposition 3.1. A family of states 𝜓 is smooth if and only if for any observable
A ∈ 𝒜𝑎ℓ the function M ↦→ ⟨A⟩𝜓 is smooth and satisfies

𝑑⟨A⟩𝜓 = ⟨G(A)⟩𝜓 (3.15)

for some G ∈ Ω1(M,𝔇𝑎𝑙). That is, a family of states 𝜓 is smooth iff it is parallel
with respect to the connection 𝑑 + G on the trivial vector bundle with fiber 𝒜𝑎ℓ.

Proof. Pick a point 𝑚0 ∈ M. For any 𝑚 ∈ M there is a smooth path 𝛾 : [0, 1] → 𝑀

with 𝛾(0) = 𝑚0, 𝛾(1) = 𝑚, and by assumption ⟨A⟩𝜓𝛾 (𝑠) = ⟨𝛼
(𝑠)
𝛾∗G(A)⟩𝜓𝑚0

. By Prop.
B.1 this function is smooth and its derivative at 𝑠 = 1 is ⟨𝛾∗(1)G(A)⟩𝜓𝑚

. This implies
(3.15). Conversely, eq. (3.15) implies that for any such path 𝛾 and any A ∈ 𝒜𝑎ℓ the
function 𝑠 ↦→ ⟨(𝛼(𝑠)

𝛾∗G)
−1(A)⟩𝜓𝛾 (𝑠) is constant. Therefore 𝜓𝛾(𝑠) = 𝜓𝛾(0) ◦ 𝛼(𝑠)𝛾∗G. □

Corollary 3.1. Let {U(a)} be an open cover of M. A family of states 𝜓 over M is
smooth if and only if it is smooth over each element of the cover.

3The existence of I𝜓 roughly means that any restriction of an arbitrary state-preserving Hamiltonian
to a region (that in general does not preserve the state) can be modified at the boundary of the region,
so that the resulting Hamiltonian still preserves the state. A similar property has been considered in
[3].
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Proof. The only if direction is obvious. Now suppose one is given a 𝔇𝑎𝑙-valued
1-form G(a) on each U(a) such that 𝜓 is parallel with respect to each of them. Then
we can construct G on M with respect to which 𝜓 is parallel using a partition of
unity for some open cover subordinate to {U(a)}. □

If every element of the cover {U(a)} is smoothly contractible, one can also describe
a smooth family of states using locally-defined smooth families of LGPs.

Proposition 3.2. Let {U(a)} be a finite cover such that each element is smoothly
contractible. A family 𝜓𝑚, 𝑚 ∈ M, is smooth if and only if there is a state 𝜓0 and
smooth families (𝛽(a))𝑚, 𝑚 ∈ U(a) , of LGPs such that 𝜓𝑚 = 𝜓0 ◦ (𝛽(a)) (1)𝑚 for any
𝑚 ∈ U(a) and any a.

Proof. Suppose 𝜓𝑚 is parallel with respect to G ∈ Ω1(M,𝔇𝑎𝑙). We pick a point
𝑚0 ∈ M and let 𝜓0 = 𝜓𝑚0 . For every a let 𝛾 (a) : U(a) × [0, 1] → M be a smooth
homotopy between the map of U(a) to 𝑚0 and the identity map. We regard it as a
smooth family of paths in M based at 𝑚0 and labeled by 𝑚 and let (𝛽(a))𝑚 := 𝛼

𝛾
(a)∗
𝑚 G.

In the opposite direction, given families of LGPs 𝛽(a) we can define G =
∑

a 𝑓
(a)𝜔(a) ,

where 𝜔(a) := 𝜔𝛽 (a) and 𝑓 (a) is a partition of unity. Since the family of states 𝜓 is
parallel with respect to the connection 𝑑 + 𝜔(a) on each U(a) , it is also parallel with
respect to 𝑑 + G. □

Given a smooth family of states 𝜓𝑚, 𝑚 ∈ M, one may ask whether it is possible to
choose a globally defined smooth family of LGPs 𝛽𝑚,𝑚 ∈ M, such that 𝜓𝑚 = 𝜓0◦𝛽𝑚.
Since the space of LGPs is smoothly contractible, this is possible only if the family
of states is smoothly homotopic to a constant family. For 𝑑 = 0, when the algebra
𝒜𝑎ℓ is simply the algebra of operators on a finite-dimensional Hilbert space H,
it is well known that not all families of states are homotopic to a constant family.
Indeed, for 𝑑 = 0 a smooth family of states is the same as a smooth line bundle
L over M. If the 1st Chern class of this line bundle is non-trivial, the family is
not homotopic to a constant one. If 𝜓𝑚 is a ground state of a family of gapped
Hamiltonians parameterized by M, it is the cohomology class of the Berry curvature
which provides an obstruction for the existence of a globally defined family of LGPs.
Below we will construct similar obstructions (“higher Berry classes”) for smooth
families of gapped states with 𝑑 > 0. This includes smooth families of ground states
of gapped finite-range Hamiltonians.
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To construct these obstructions we will use a bi-complex of differential forms taking
values in the complex N =

(
𝐶•(𝔡𝑎𝑙)

𝜕−→𝔇𝑎𝑙

)
:

. . .
𝜕→ Ω•(M, 𝐶1(𝔡𝑎𝑙))

𝜕→ Ω•(M, 𝐶0(𝔡𝑎𝑙))
𝜕→ Ω•(M,𝔇𝑎𝑙)

𝜕→ 0, (3.16)

with the second differential being the de Rham differential 𝑑. Itt will be convenient to
use a cohomological rather than homological grading on N and accordingly denote
its degree 𝑘-component by N𝑘 . Then 𝑑 has bi-degree (1, 0), while 𝜕 has bi-degree
(0, 1). We will also shift the grading on N so that 𝔇𝑎𝑙 sits in degree 0 and the
bracket has degree 0. Then N• becomes a defferential graded Fréchet-Liet algebra
(DGFLA).

The bi-complex (3.16) is a graded tensor product of the DGFLA N• and the
supercommutative algebra Ω•(M,R). Therefore it has a natural graded bracket
which makes it into a graded Lie algebra. Explicitly, the bracket of decomposable
elements g ⊗ 𝜙 and h ⊗ \, g, h ∈ N•, 𝜙, \ ∈ Ω•(M,R), is

[g ⊗ 𝜙, h ⊗ \] = (−1) |𝜙 | |h| [g, h] ⊗ (𝜙 ∧ \). (3.17)

The space Ω•(M,N•) equipped with the total differential 𝑑 + 𝜕 and the bracket is a
DGFLA.

When Ω•(M,N•) is regarded as a complex with respect to 𝜕, it has a sub-complex
consisting of chains and derivations preserving 𝜓 pointwise on M:

. . .
𝜕→ Ω•(M, 𝐶1(𝔡𝜓𝑎𝑙))

𝜕→ Ω•(M, 𝐶0(𝔡𝜓𝑎𝑙))
𝜕→ Ω•(M,𝔇

𝜓

𝑎𝑙
) 𝜕→ 0. (3.18)

We will denote it Ω•(M,N•
𝜓
). This sub-complex is not preserved by 𝑑. But if the

family (M, 𝜓) is parallel with respect to G ∈ Ω1(M,𝔇𝑎𝑙), then it is preserved by
a “covariant differential” 𝐷 := 𝑑 + {G, ·}. Indeed, for any b ∈ Ω𝑚 (M,N

𝑞

𝜓
) and any

A ∈ 𝒜𝑎ℓ we have

⟨{𝐷b,A}⟩𝜓 = ⟨𝐷{b,A}⟩𝜓 + (−1)𝑞+𝑚 ⟨{b, 𝐷A}⟩𝜓 = 𝑑⟨{b,A}⟩𝜓 = 0. (3.19)

𝐷 has bi-degree (1, 0) and supercommutes with 𝜕 provided we flip the sign of 𝜕
on odd-degree forms. It also satisfies 𝐷2 = {F, ·}, where the “curvature” F :=
𝑑G + 1

2 {G,G} ∈ Ω
2(M,𝔇𝑎𝑙) is covariantly constant: 𝐷F = 0. In addition,

⟨F(A)⟩𝜓 = ⟨𝐷2A⟩𝜓 = 𝑑2⟨A⟩𝜓 = 0. (3.20)

Therefore F ∈ Ω2(M,𝔇
𝜓

𝑎𝑙
).
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Remark 3.5. The above properties of 𝐷 and F mean that Ω•(M,N•
𝜓
) equipped

with 𝐷 + 𝜕 is a curved differential graded Lie algebra (CDGLA) with curvature F,
while the inclusion of (Ω•(M,N•

𝜓
), 𝐷 + 𝜕) into (Ω•(M,N•), 𝑑 + 𝜕) is a morphism

of CDGLAs.

Theorem 3.2. Let (M, 𝜓) be a smooth family of gapped states parameterized by
a compact connected manifold M. Then the complex (3.18) is exact with respect
to 𝜕. Moreover, there is a continuous linear map ℎ

𝜓

M
from Ω•(M, 𝑍 𝑘 (N𝜓)) to

Ω•(M,N𝑘−1
𝜓
) which is right inverse to 𝜕.

Remark 3.6. Since all states in a smooth family are related by LGAs, to check
whether a family is gapped it is sufficient to check whether any particular state in the
family is gapped.

Proof of Theorem 3.2. Let us fix a finite smoothly contractible cover {U(a)} and
families of LGPs 𝛽(a) , such that 𝜓𝑚 = 𝜓0 ◦ (𝛽(a)) (1)𝑚 for some 𝜓0. Since 𝜓0 is
gapped, the complex (3.18) becomes exact if we replace the family 𝜓𝑚 with the
constant family 𝜓0. The corresponding right inverse to 𝜕 is the map ℎ𝜓0 from
Theorem 3.1. Then the right inverse to 𝜕 for the restriction of (3.18) to U(a)

is ℎ𝜓
U(a)

= (𝛽(a)) (1) ◦ ℎ𝜓0 ◦ ((𝛽(a)) (1))−1. Then picking a partition of unity 𝑓 (a)

subordinate to the cover we get a right inverse to 𝜕 on the whole M by letting
ℎ
𝜓

M
=

∑
a 𝑓
(a)ℎ𝜓

U(a)
.

□

3.3 Higher Berry classes
For 𝑑 = 0, we have 𝔇𝑎𝑙 = 𝔡𝑎𝑙 . A smooth family of pure states can be identified with
a smooth family of self-adjoint rank-1 projectors 𝑃 in 𝒜𝑎ℓ parameterized by M. The
gapped condition is vacuous for 𝑑 = 0. Then F is a closed 2-form on M with values
in 𝔇𝑎𝑙 which commutes with 𝑃. If one defines a 2-form 𝑓 = ⟨F⟩𝜓 = Tr𝑃F, then 𝑓 is
closed and purely imaginary. If we identify G with the adiabatic connection arising
from a family of gapped Hamiltonians for which 𝜓 is the family of ground states,
then 𝑓 is the curvature of the Berry connection.

For 𝑑 > 0 the expression ⟨F⟩𝜓 does not make sense since the derivation F need not
be summable (i.e., the Berry curvature is divergent in the thermodynamic limit).
Instead, following [41, 37], we will define descendants of F and use them to construct
an element of Ω𝑑+2(M, 𝔡

𝜓

𝑎𝑙
) whose average will be a closed (𝑑 + 2)-form on M.
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Let d = 𝑑 + 𝜕. If (M, 𝜓) is parallel with respect to 𝐷 = 𝑑 + G, then using
Theorem 3.2 we can recursively build g(𝑛) ∈ Ω𝑛+2(M,N−𝑛−1

𝜓
), 𝑛 ≥ 0, such that

G• := G +∑∞
𝑛=0 g(𝑛) satisfies the Maurer-Cartan (MC) equation

dG• + 1
2
{G•,G•} = 0. (3.21)

Indeed, the MC equation is equivalent to the following system of equations:

F = −𝜕g(0) , (3.22)

𝐷g(𝑛) + 1
2

𝑛−1∑︁
𝑘=0

{
g(𝑘) , g(𝑛−1−𝑘)

}
= −𝜕g(𝑛+1) , 𝑛 = 0, 1, 2, . . . (3.23)

It is straightforward to check that if the first 𝑛 equations are satisfied, then the
left-hand side of the (𝑛 + 1)-st equation is annihilated by 𝜕. Therefore by Theorem
3.2 a solution for g(𝑛+1) exists.

Any solution to the MC equation defines a differential D = d+G• onΩ•(M,N•)which
preserves Ω•(M,N•

𝜓
) and satisfies D2 = 0. The differential D turns Ω•(M,N•

𝜓
) into

a DGFLA. Note also that

𝑑⟨g(𝑛)⟩𝜓 = −⟨𝜕g(𝑛+1)⟩𝜓 , (3.24)

where we have used ⟨{g(𝑘) , ·}⟩𝜓 = 0.

For a 𝑑-dimensional system and any conical partition (𝐴0, ..., 𝐴𝑑) of R𝑑 we have
an evaluation operation ⟨( · )𝐴0...𝐴𝑑

⟩ : Ω•(M,N•) → Ω•(M, 𝑖R) that takes value
⟨a𝐴0...𝐴𝑑

⟩𝜓 if a ∈ Ω•(M,N−𝑑−1) and is 0 otherwise.

Let
𝑓 := ⟨G•𝐴0𝐴1...𝐴𝑑

⟩𝜓 ∈ Ω𝑑+2(M, 𝑖R). (3.25)

We have
𝑑𝑓 = 𝑑⟨g(𝑑)

𝐴0𝐴1...𝐴𝑑
⟩𝜓 = −⟨(𝜕g(𝑑+1))𝐴0𝐴1...𝐴𝑑

⟩𝜓 = 0. (3.26)

Therefore 𝑓 defines a de Rham cohomology class [ 𝑓 ] ∈ 𝐻𝑑+2(M, 𝑖R). Clearly, 𝑓 is
the same for all orderings of (𝐴0, ..., 𝐴𝑑) which correspond to the same orientation
of bases on 𝑆𝑑−1. Note also that 𝑓 is locally computable: if we truncate the sum
defining g(𝑑)

𝐴0𝐴1...𝐴𝑑
by replacing each 𝐴𝑎 with 𝐴𝑎 ∩ 𝐵𝑝 (𝑟), this will modify 𝑓 only by

an O(𝑟−∞) quantity.

One and the same smooth family of states can be parallel with respect to many
different connections G ∈ Ω1(M,𝔇𝑎𝑙), and for a fixed connection G, the solution of
the descent equation (3.21) is also far from unique. We will now show that the class
[ 𝑓 ] is not affected by these choices and defines an invariant of (M, 𝜓).
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Theorem 3.3. The class [ 𝑓 ] ∈ 𝐻𝑑+2(M, 𝑖R) defines an invariant of the family of
states (M, 𝜓). In particular, it does not depend on the choice of G• or a conical
partition (𝐴0, ..., 𝐴𝑑) (provided it corresponds to some fixed orientation of 𝑆𝑑−1).

Proof. Suppose we have changed the regions 𝐴0, . . . , 𝐴𝑑 by reassigning a finite
region 𝐴0 → 𝐴0 + 𝐵 and 𝐴1 → 𝐴1 − 𝐵. Then

Δ 𝑓 = ⟨g(𝑑)
𝐵(𝐴0+𝐴1)𝐴2...𝐴𝑑

⟩𝜓 = −⟨𝜕g(𝑑)
𝐵𝐴2...𝐴𝑑

⟩𝜓 = 𝑑⟨g(𝑑−1)
𝐵𝐴2...𝐴𝑑

⟩𝜓 (3.27)

Thus [ 𝑓 ] does not depend on the choice of 𝐴0, . . . , 𝐴𝑑 for a fixed triangulation of
𝑆𝑑−1. The same argument combined with local computability implies that [ 𝑓 ] does
not depend on the choice of the triangulation of 𝑆𝑑−1.

Let us fix a map ℎ𝜓
M

as in Theorem 3.2. Using ℎ𝜓
M

, for any two choices G,G̃ of
the connection on a given family of states (M, 𝜓) we can construct solutions g•,
g̃• of the MC equation eq. (3.21). Let h and h̃ be the elements of Ω1(M, 𝐶0(𝔡𝑎𝑙))
such that G = 𝜕h and G̃ = 𝜕h̃. Since ⟨[G − G̃, ·]⟩ = 0, we have G − G̃ = 𝜕k for
some k ∈ Ω1(M, 𝐶0(𝔡𝜓𝑎𝑙)). For a half-space 𝐴 defined by 𝑥 > 0 for some linear
coordinate 𝑥 on R𝑑 we let ĥ 𝑗 = h 𝑗 + 𝜒𝐴 ( 𝑗)k 𝑗 . Then Ĝ = 𝜕ĥ is a connection which
preserves the family (M, 𝜓) and interpolates between G for 𝑥 ≪ 0 and G̃ for 𝑥 ≫ 0.
Starting with Ĝ and using ℎ𝜓

M
we can construct a solution ĝ• of the descent equation

that interpolates between g• and g̃•. The corresponding class [ 𝑓 ] ∈ 𝐻𝑑+2(M,Z) is
independent of the choice of conical partition, and therefore by choosing the apex of
a conical partition with sufficiently large and negative 𝑥 (resp. sufficiently large and
positive 𝑥) we can make it arbitrary close to the class [ 𝑓 ] corresponding to G• (resp.
the class [ 𝑓 ] corresponding to G̃•). Hence [ 𝑓 ] = [ 𝑓 ] = [ 𝑓 ].

It is left to show that for a fixed conical partition (𝐴0, ..., 𝐴𝑑) and a fixed G the class
[ 𝑓 ] does not depend on the choice of the solution of the MC equation eq. (3.21). Let
g• be any solution of the MC equation, and let g•

𝑘
be a solution obtained from G, g(0) ,

...,g(𝑘−1) using ℎ𝜓
M

. Let [ 𝑓 ] and [ 𝑓𝑘 ] be the corresponding classes. Note that [ 𝑓0]
depends only on G and ℎ𝜓

M
. Similarly to the argument from the previous paragraph,

since 𝜕 (g(𝑘)
𝑘+1 − g(𝑘)

𝑘
) = 0 for any 𝑘 we can construct ĝ•

𝑘,𝑘+1 that interpolates between
g•
𝑘

and g•
𝑘+1. Hence we have [ 𝑓𝑘 ] = [ 𝑓𝑘+1]. By definition [ 𝑓 ] = [ 𝑓𝑑+1], and therefore

[ 𝑓 ] = [ 𝑓0], which does not depend on the choice of g•. □

Remark 3.7. For families of invertible states, it is expected that the class [ 𝑓 /(2𝜋𝑖)] ∈
𝐻𝑑+2(M, 𝑖R) can be refined. In particular, it lies in the image of 𝐻𝑑+2(M, 𝑖Z) →
𝐻𝑑+2(M, 𝑖R) for systems of dimension 𝑑 ≤ 2. We give proof of this for 1d spin
systems in Section 4.2.
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3.4 Equivariant higher Berry classes
Let 𝐺 be a compact connected Lie group with the Lie algebra 𝔤. In this section we
define equivariant higher Berry classes for gapped states and their smooth families in
the presence of𝐺-symmetry. They generalize the Hall conductance of𝑈 (1)-invariant
gapped 2d states defined in [34] and the Thouless pump [61] and its analogs in higher
dimensions [37].

We assume that each on-site Hilbert spaceV 𝑗 is acted upon by a unitary representation
of 𝐺. Let 𝛾 : 𝐺 → Aut(𝒜) be the corresponding homomorphism. We denote
the derivations corresponding to the infinitesimal generators of the symmetry by
Q ∈ 𝔇𝑎𝑙 ⊗ 𝔤∗, that is on 𝐺 we have 𝑑𝛾 (𝑔) ( · ) = 𝛾 (𝑔) (Q(𝑔)

\
( · )), where \ = 𝑔−1𝑑𝑔 ∈

Ω1(𝐺, 𝔤) is the Maurer-Cartan form.

Let M be a manifold with a smooth 𝐺-action 𝐿𝑔 : M → M, 𝑔 ∈ 𝐺. Let 𝑣 ∈
Γ(𝑇M) ⊗ 𝔤∗ be the vector fields corresponding to this action. If we choose a basis 𝑟𝑎

for 𝔤∗, then we can write 𝑣 =
∑
𝑎 𝑣𝑎 ⊗ 𝑟𝑎, where 𝑣𝑎 is a vector field on M. There is

an induced 𝐺-action on Ω•(M,R) via the pullback 𝜔 ↦→ 𝐿∗
𝑔−1𝜔. Infinitesimally, it is

given by L𝑣 =
∑
𝑎 L𝑣𝑎 ⊗ 𝑟𝑎 where L𝑣𝑎 = ]𝑣𝑎𝑑 + 𝑑]𝑣𝑎 is the Lie derivative along 𝑣𝑎.

Let Sym• 𝔤∗ be the ring of polynomial functions on 𝔤. We regard it as a graded
vector space, with linear functions on 𝔤 sitting in degree 2. 𝐺 acts on it via the
co-adjoint action Ad∗𝑔. To define the Cartan model for the equivariant cohomology
𝐻•
𝐺
(M,R) we consider the graded vector space Ω•(M,R) ⊗ Sym• 𝔤∗ equipped with

degree-1 maps 𝑑 ⊗ 1, ]𝑣 =
∑
𝑎 ]𝑣𝑎 ⊗ 𝑟𝑎, and a degree-2 map L𝑣 = ]𝑣𝑑 + 𝑑]𝑣 . Then the

complex of the Cartan model Ω•
𝐺
(M,R) is defined to be (Ω•(M,R) ⊗ Sym• 𝔤∗)𝐺 ,

where ( · )𝐺 denoted the 𝐺-invariant part, with the differential being 𝑑𝐶 = 𝑑 + ]𝑣.
Note that 𝑑2

𝐶
= L𝑣 vanishes when restricted to Ω•

𝐺
(M,R).

Let (M, 𝜓) be a smooth family of gapped states over a compact connected manifold
M.

Definition 3.2. A family (M, 𝜓) is called 𝐺-equivariant if 𝜓𝑚 ◦ 𝛾 (𝑔) = 𝜓𝐿
𝑔−1 (𝑚) for

all 𝑚 ∈ M and all 𝑔 ∈ 𝐺.

We can define equivariant analogs of differential forms taking values in observables,
derivations and chains. They are annihilated by L𝑣 − Q. There is an averaging
operation that projects spaces of such differential forms to their 𝐺-equivariant
subspaces:

( · )𝐺 =

∫
𝐺

𝑑`𝐺 (𝑔) 𝛾 (𝑔) (𝐿∗𝑔 (Ad∗
𝑔−1 ( · ))), (3.28)



41

where `𝐺 is the Haar measure with the normalization
∫
𝐺
𝑑`𝐺 (𝑔) = 1. The existence

of this operation ensures that 𝐺-equivariant versions of the complexes (3.16) and
(3.18) are exact.

Given a smooth 𝐺-equivariant family of gapped states (M, 𝜓), we consider the
complex of equivariant differential forms Ω•

𝐺
(M,N•) which is the totalization

of (Ω•(M,N•) ⊗ Sym• 𝔤∗)𝐺 with elements of 𝔤∗ being assigned degree 2. Let
d𝐶 = 𝑑𝐶 + 𝜕. Then using the 𝐺-equivariant version of Theorem 3.2 we can
recursively build

g(𝑛) ∈
⊕

0≤2𝑘≤𝑛+2
(Ω𝑛+2−2𝑘

𝐺 (M,N−𝑛−1
𝜓 ) ⊗ Sym𝑘 𝔤∗)𝐺 , 𝑛 ≥ 0,

such that G• := G +∑∞
𝑛=0 g(𝑛) satisfies

d𝐶G• + 1
2
{G•,G•} + Q = 0 (3.29)

so that for D𝐶 = d𝐶 + G• we have D2
𝐶
= L𝑣 − Q that vanishes on Ω•

𝐺
(M,N•).

Similarly to the previous subsection, we can define the evaluation operation
⟨( · )𝐴0...𝐴𝑑

⟩ : Ω•
𝐺
(M,N•) → Ω•

𝐺
(M, 𝑖R). For a conical partition (𝐴0, ..., 𝐴𝑑)

we define an equivariant differential form

𝑓 = ⟨G•𝐴0...𝐴𝑑
⟩𝜓 ∈ Ω•𝐺 (M, 𝑖R) (3.30)

which is closed with respect to 𝑑𝐶 . In general, unlike in the non-equivariant case, this
form is not homogeneous when regarded as an ordinary form. The form 𝑓 represents
a class of total degree 𝑑 + 2 in the equivariant cohomology:

[ 𝑓 ] = [⟨G•𝐴0...𝐴𝑑
⟩𝜓] ∈ 𝐻•𝐺 (M, 𝑖R). (3.31)

In the same way as in Theorem 3.3 one can show that this class is independent of the
choice of (𝐴0, ..., 𝐴𝑑) (provided it corresponds to some fixed orientation of 𝑆𝑑−1)
and G•, and therefore defines an invariant of the family (M, 𝜓).

Example 3.1 (Hall conductance). Let 𝑑 = 2, M = pt and 𝐺 = 𝑈 (1). The
corresponding state 𝜓 must be 𝑈 (1)-invariant. For 𝐺 = 𝑈 (1) we can identify
(Sym𝑘+1 𝔤∗)𝐺 � R via the isomorphism that sends the minimal integral element
𝑡⊗(𝑘+1) to 1. It is easy to see from the Maurer-Cartan equation eq. (3.29) that G•

only has components of even chain degree. Let m(2𝑘) be the component of G• of
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chain degree 2𝑘 . The lowest two components of eq. (3.29) are

Q = −𝜕m(0) , (3.32)
1
2
{m(0) ,m(0)} = −𝜕m(2) . (3.33)

In more detail, eq. (3.32) says that the derivation Q has the form

Q(A) = −
∑︁
𝑗∈Λ
[m(0)

𝑗
,A], (3.34)

where for all 𝑗 ∈ Λ the observable m(0)
𝑗
∈ 𝔡𝜓

𝑎𝑙
is𝑈 (1)-invariant and does not excite

𝜓. Eq. (3.33) reads in components:

[m(0)
𝑗
,m(0)

𝑘
] = −

∑︁
𝑙∈Λ

m(2)
𝑙 𝑗 𝑘
, (3.35)

where the observables m(2)
𝑙 𝑗 𝑘
∈ 𝔡

𝜓

𝑎𝑙
are 𝑈 (1)-invariant and do not excite 𝜓. The

contraction of m(2) with a conical partition 𝐴0, 𝐴1, 𝐴2 defines an invariant

𝜎 (2) := 4𝜋𝑖⟨m(2)
𝐴0𝐴1𝐴2

⟩𝜓 ∈ 𝐻4
𝑈 (1) (pt,R) � R. (3.36)

In Section 5.1 we discuss this invariant in more detail. We show that for ground
states of gapped Hamiltonians in two dimensions (𝜎 (2)/2𝜋) coincides with the Hall
conductance and prove that for invertible bosonic states 𝜎 ∈ 2Z, while for invertible
fermionic states 𝜎 ∈ Z.

Example 3.2 (Non-abelian Hall conductance). The case of 𝑑 = 2, M = pt and

arbitrary Lie group 𝐺 is similar to example above, but now m(0) ∈
(
𝐶0(𝔡𝜓𝑎𝑙) ⊗ 𝔤∗

)𝐺
,

satisfying Q = −𝜕m(0) , and m(2) ∈
(
𝐶2(𝔡𝜓𝑎𝑙) ⊗ Sym2𝔤∗

)𝐺
solving

[m(0)
𝑗
,m(0)

𝑘
] = −

∑︁
𝑙∈Λ

m(2)
𝑙 𝑗 𝑘
. (3.37)

The contraction of m(2) with a conical partition 𝐴0, 𝐴1, 𝐴2 defines an invariant

𝜎 (2) := 4𝜋𝑖⟨m(2)
𝐴0𝐴1𝐴2

⟩𝜓 ∈ 𝐻4
𝐺 (pt,R) � (Sym2𝔤∗)𝐺 . (3.38)

For a simple Lie algebra 𝔤 we have (Sym2𝔤∗)𝐺 � R. This agrees with the expectation
that the response of a gapped 2d system with a symmetry𝐺 to a background gauge field
is described by a 3d Chern-Simons action whose coefficient (level) is a topological
invariant.



43

Example 3.3 (Higher-dimensional generalizations of the Hall conductance). More
generally, let us take M = pt but consider an arbitrary 𝑑 and an arbitrary compact
Lie group𝐺. Let 𝜓 be a𝐺-invariant gapped state. As before, G• only has components
of even chain degree. Let m(2𝑘) be the component of G• of chain degree 2𝑘 . For
𝑑 = 2𝑘 the contraction with 𝐴0, ..., 𝐴𝑑 defines an invariant

𝑖⟨m(2𝑘)
𝐴0...𝐴2𝑘

⟩𝜓 ∈ (Sym𝑘+1 𝔤∗)𝐺 � 𝐻2𝑘+2
𝐺 (pt,R). (3.39)

Example 3.4 (Thouless pump and its generalizations). Let 𝐺 = 𝑈 (1) act trivially
on M and 𝜓 be a smooth family of𝑈 (1)-invariant states parameterized by M. We
may identify 𝔤∗ � R. Let t(𝑘) ∈ (Ω𝑘 (M,N−𝑘−1

𝜓
) ⊗ 𝔤∗)𝐺 be the component of G•

of chain degree 𝑘 and form degree 𝑘 , 𝑘 = 0, 1, . . .. The Maurer-Cartan equation
(3.29) implies an infinite number of equations for t(𝑘) , the first three of which look as
follows:

Q = −𝜕t(0) , (3.40)

𝐷t(0) = −𝜕t(1) , (3.41)

𝐷t(1) + {g(0) , t(0)} = −𝜕t(2) . (3.42)

For 𝑑 = 1 and M = 𝑆1 the invariant
∫
𝑆1 ⟨t(1)𝐴0𝐴1

⟩𝜓 computes the charge pumped through
any point of the system in the process of the adiabatic evolution along a loop 𝑆1 in
the parameter space.

For 𝑑 = 𝑘 and 𝛼 ∈ 𝐻𝑘 (M,Z) the invariant
∫
𝛼
⟨t(𝑘)
𝐴0𝐴1...𝐴𝑘

⟩𝜓 is a higher-dimensional
generalization of the Thouless pump introduced in [38].

Finally, let us discuss an example of a family of 1d states with a nonzero non-
equivariant higher Berry class. (Other examples of families with a nonzero higher
Berry class appeared in [63].)

Example 3.5. The family is associated with a compact connected Lie group 𝐺 and
a 𝐺-invariant 2d state in the trivial phase but with a nonzero non-abelian Hall
conductance (such 2d states are known as Symmetry Protected Topological states).

Let us consider a two-dimensional lattice system (Λ,𝒜) with an action of 𝐺 as
defined in Section 3.4. Since Q = 𝜕q for q ∈ 𝐶0(𝔡𝑎𝑙) ⊗ 𝔤∗, for any Γ ⊂ R2 we
can define an action of 𝐺 generated by Q|Γ = qΓ. We denote the corresponding
homomorphism by 𝛾Γ : 𝐺 → Aut(𝒜). We denote the left-invariant Maurer-Cartan
form by \ := 𝑔−1 𝑑𝑔 ∈ Ω1(𝐺, 𝔤).
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Let 𝜓0 be a factorized pure state. Let 𝛽 be an LGP such that the state 𝜔 = 𝜓0 ◦ 𝛽(1)

is also 𝐺-invariant, with a 𝐺-action defined by Q ∈ (𝔇𝑎𝑙 ⊗ 𝔤∗)𝐺 . The equivariant
Berry class eq. (3.38) for 𝜔 defines an invariant quadratic form 𝜎 (2) on 𝔤. This form
is the non-abelian analog of the Hall conductance.

Let (𝐴0, 𝐴1, 𝐴2) be a conical partition. We define a smooth family of states (M, 𝜓)
with M = 𝐺, such that at a point 𝑔 ∈ 𝐺 we have 𝜓𝑔 = 𝜓0 ◦ 𝛽(1) ◦𝛾 (𝑔)𝐴0

◦ (𝛽(1))−1. Note
that though the state is defined on a two-dimensional lattice, far from the boundary
of 𝐴0 it is almost factorized. Hence we may call it “quasi-one-dimensional."

We have
𝑑⟨A⟩𝜓 = ⟨{𝛽(1) (𝛾−1

𝐴0
(q𝐴0)),A}⟩𝜓 . (3.43)

Since Q ∈ (𝔇𝜔
𝑎𝑙
⊗ 𝔤∗)𝐺 , there are𝐺-invariant q̃ ∈ 𝐶0(𝔡𝜔𝑎𝑙) ⊗ 𝔤

∗ and k ∈ 𝐶1(𝔡𝑎𝑙) ⊗ 𝔤∗

such that q = q̃ − 𝜕k. Therefore (M, 𝜓) is a family of quasi-one-dimensional states
parallel with respect to G = 𝛽(1) (𝛾−1

𝐴0
(k
𝐴0𝐴0
(\))) ∈ Ω1(𝐺,𝔇𝑎𝑙).

We have

𝛾𝐴0 ◦ (𝛽(1))−1
(
𝑑G + 1

2
{G,G}

)
=

= {q𝐴0 (\), k𝐴0𝐴0
(\)} + k

𝐴0𝐴0
(𝑑\) + 1

2
{k
𝐴0𝐴0
(\), k

𝐴0𝐴0
(\)} =

= −1
2
{q̃

𝐴0
(\), q̃𝐴0 (\)} = −

1
2
{q̃𝐴1 (\), q̃𝐴0 (\)} −

1
2
{q̃𝐴2 (\), q̃𝐴0 (\)}. (3.44)

Hence the contraction of the Berry class [ 𝑓 ] ∈ 𝐻3(M, 𝑖R) for a family (M, 𝜓) with
[M] is given by

⟨[ 𝑓 ], [M]⟩ =
∫
𝐺

𝑓 =

=
1
2
⟨
∫
𝐺

{q𝐴0 (\) − k
𝐴0𝐴0
(\), {q̃𝐴1 (\), q̃𝐴0 (\)}}⟩𝜔 =

= −1
4
⟨
∫
𝐺

{q̃𝐴1 (\), {q̃𝐴0 (\), q̃𝐴0 (\)}}⟩𝜔 =

= −1
6
⟨
∫
𝐺

{q̃𝐴1 (\), q̃𝐴0 (𝑑\)}⟩𝜔 =
1

12𝜋𝑖

∫
𝐺

⟨\, 𝑑\⟩𝜎 (2) . (3.45)

Note that all derivations inside the averages ⟨ · ⟩𝜔 belong to the subspace of summable
derivations 𝔡𝜔

𝑎𝑙
, and therefore the average is well-defined. If 𝜎 (2) does not vanish,

the Berry class [ 𝑓 ] is non-trivial.
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C h a p t e r 4

INVERTIBLE STATES OF 1D SPIN SYSTEMS

This chapter is devoted to the analysis of invertible states of one-dimensional spin
systems. In Section 4.1 we prove that all invertible states are in the trivial phase,
while in Section 4.2, we prove quantization of Berry classes for families of such
states.

4.1 A classification of invertible states of 1d spin systems
In this section we show that any invertible state of a 1d bosonic1 spin system is stably
LGA-equivalent to a factorized state. For simplicity of the exposition, we assume
that the lattice of the spin system is Λ � Z ⊂ R. A general case can be treated
similarly. By the origin of a half-line on R we mean its boundary point.

We will say that a pure 1d state has bounded entanglement entropy if the entanglement
entropies of all intervals [ 𝑗 , 𝑘] ⊂ Z are uniformly bounded.

Remark 4.1. It was shown by Matsui [46] that if 𝜓 has bounded entanglement
entropy then it has the split property: the von Neumann algebras M𝐴 = Π𝜓 (𝒜𝐴)′′

and M�̄� = Π𝜓 (𝒜�̄�)′′ for a half-line 𝐴 (and the GNS representation (𝜋𝜓 ,H𝜓)) are
Type I von Neumann algebras. Since they are each other’s commutants and generate
B(H𝜓), they must be Type I factors. Thus M𝐴 ≃ B(H𝐴) for some Hilbert space H𝐴,
and the restriction 𝜓 |𝐴 to a half-line 𝐴 can be described by a density matrix 𝜌𝐴 on
H𝐴. In fact, [46] shows that H𝐴 can be identified with the GNS Hilbert space of one
of the Schmidt vector states of 𝜓, which are all unitarily equivalent.

Lemma 4.1. Invertible 1d states have bounded entanglement entropy.

Proof. Suppose we have a state 𝜓 obtained from a factorized state 𝜓0 by conjugations
with almost local unitaries U 𝑗 and U𝑘 which are 𝑔-localized at sites 𝑗 and 𝑘 ,
respectively, for some 𝑔 ∈ ℱ+∞. We have

|⟨U 𝑗U𝑘A𝑙U
∗
𝑘U
∗
𝑗 ⟩𝜓0 − ⟨A𝑙⟩𝜓0 | ≤ (𝑔( | 𝑗 − 𝑙 |) + 𝑔( |𝑘 − 𝑙 |)) ∥A𝑙 ∥. (4.1)

By Fannes’ inequality [19], the entropy of the site 𝑙 in the state 𝜓 is bounded by
ℎ( | 𝑗 − 𝑙 |) + ℎ( |𝑘 − 𝑙 |) for some ℎ ∈ ℱ

+
∞ that depends only on 𝑔 and the maximal

1This is not true in the case of fermionic systems: Kitaev chain provides a counter-example.
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spin. Therefore such a state has a uniform bound on the entanglement entropy of any
interval [ 𝑗 , 𝑘]. Since any LGA can be written as a composition of conjugations with
unitaries almost localized at 𝑗 and 𝑘 and LGAs which are generated by derivations
strictly localized inside [ 𝑗 , 𝑘] and outside [ 𝑗 , 𝑘], and since the stack of an invertible
state with its inverse is LGA-equivalent to a factorized state, the same is true for any
invertible state. □

Let 𝜓 be a possibly mixed state on a half-line 𝐴 which is 𝑓 -close (see Definition C.1)
at the origin of 𝐴 to a pure factorized state 𝜓0 on 𝐴. By Corollary 2.6.11 of [11], 𝜓
is normal in the GNS representation of 𝜓0 and can be described by a density matrix.

Lemma 4.2. Let 𝜓 be a pure 1d state on 𝒜. Suppose 𝜓 is 𝑓 -close at 0 to a pure
factorized state 𝜔+ on [0, +∞) and is 𝑓 -close at 0 to a pure factorized state 𝜔− on
(−∞, 0). Then it is 𝑔-close at 0 on the whole line to 𝜔+ ⊗𝜔− for some 𝑔 ∈ ℱ+∞ which
depends only on 𝑓 and the maximal spin.

Proof. Since the states are split, we can describe them using density matrices on
appropriate Hilbert spaces. The decomposition of Z into the union (−∞,−𝑛) ⊔ Γ𝑛 ⊔
(𝑛, +∞) gives rise to a tensor product decomposition H = H−𝑛 ⊗HΓ𝑛 ⊗H+𝑛 . Let 𝜓+𝑛
and 𝜔+𝑛 be restrictions of 𝜓 and 𝜔+ to (𝑛, +∞), and 𝜓−𝑛 and 𝜔−𝑛 be restrictions of 𝜓
and 𝜔− to (−∞,−𝑛). Let 𝜌±𝑛 and 𝜎±𝑛 be the corresponding density matrices. Let 𝜓𝑛
be a restriction of 𝜓 to (−∞,−𝑛) ∪ (𝑛, +∞) with the corresponding density matrix
𝜌𝑛. We have

∥𝜌±𝑛 − 𝜎±𝑛 ∥1 ≤ 𝑓 (𝑛). (4.2)

Since trace norm is multiplicative under tensor product, we have

∥(𝜌−𝑛 ⊗ 𝜌+𝑛 ) − (𝜎−𝑛 ⊗ 𝜎+𝑛 )∥1 ≤ ∥𝜌−𝑛 − 𝜎−𝑛 ∥1 + ∥𝜌+𝑛 − 𝜎+𝑛 ∥1 ≤ 2 𝑓 (𝑛). (4.3)

On the other hand, Fannes’ inequality implies that for sufficiently large 𝑛 the entropy
of 𝜌±𝑛 is upper-bounded by ℎ(𝑛), where ℎ ∈ ℱ+∞ depends only on 𝑓 and the maximal
spin. Therefore mutual informations 𝐼 (𝜌−𝑛 : 𝜌+𝑛 ) are also upper-bounded by ℎ(𝑛),
and the quantum Pinsker inequality implies

∥𝜌𝑛 − (𝜌−𝑛 ⊗ 𝜌+𝑛 )∥1 ≤ 2
√︁
ℎ(𝑛). (4.4)

Combining this with eq. (4.3), we get

∥𝜌𝑛 − (𝜎−𝑛 ⊗ 𝜎+𝑛 )∥1 ≤ 2 𝑓 (𝑛) + 2
√︁
ℎ(𝑛). (4.5)

□
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We say that a set of (ordered) eigenvalues {_ 𝑗 } has 𝑔-decay for some 𝑔 = ℱ
+
∞ if

Y(𝑘) ≤ 𝑔(log(𝑘)), where Y(𝑘) = ∑∞
𝑗=𝑘+1 _ 𝑗 .

Lemma 4.3. Let 𝜓 be a state on a half-line 𝐴 which is 𝑓 -close at the origin of 𝐴 to
a pure factorized state 𝜓0 for 𝑓 ∈ ℱ+∞. Then its density matrix (in the GNS Hilbert
space of this factorized state) has eigenvalues with 𝑔-decay for some 𝑔 ∈ ℱ+∞ that
depends only on 𝑓 and the maximal spin. Conversely, for any density matrix on a
half-line 𝐴 (in the GNS Hilbert space of a pure factorized state) whose eigenvalues
have 𝑔-decay there is a state on that half-line which has the same eigenvalues and is
𝑓 -close at the origin of 𝐴 to this pure factorized state. Furthermore, one can choose
𝑓 ∈ ℱ+∞ so that it depends only on 𝑔 and the maximal spin.

Proof. Without loss of generality, we assume 𝐴 = R≥0. Suppose 𝜓 is 𝑓 -close to
a pure factorized state at 0. It can be purified on the whole line (e.g., in a system
consisting of the given system on a half-line and its reflected copy on the other
half-line). Moreover, by Lemma 4.2 we can choose this pure state to be 𝑓 ′-close at 0
to a pure factorized state on the whole line for some 𝑓 ′ ∈ ℱ+∞ that depends only on 𝑓 .
By Proposition C.2, it can be produced from a pure factorized state on the whole
line by a unitary observable U which is ℎ-localized at 0 for some ℎ ∈ ℱ

+
∞ which

depends only on 𝑓 ′. Let |𝜓0⟩ be a GNS vector for the corresponding factorized state
𝜓0. By Lemma A.1 of [35], there is ℎ′ ∈ ℱ+∞ such that for any 𝑟 > 0 there is a unitary
observable U(𝑟) ∈ 𝒜ℓ with the support on Γ𝑟 = 𝐵𝑟 (0) such that

∥𝜋𝜓0 (U) |𝜓0⟩ − 𝜋𝜓0 (U(𝑟)) |𝜓0⟩∥ ≤ ℎ′(𝑟). (4.6)

On the other hand we have

∥𝜋𝜓0 (U) |𝜓0⟩ − 𝜋𝜓0 (U(𝑟)) |𝜓0⟩∥ ≥ ∥𝜌 − 𝜌(𝑟) ∥1 (4.7)

where 𝜌 is the density matrix for 𝜓 and 𝜌(𝑟) is the density matrix for Π𝜓0 (U(𝑟)) |𝜓0⟩
on 𝐴. The tracial distance between any two density matrices 𝜌 and 𝜌′ can be bounded
from below in terms of their eigenvalues [60]:

∥𝜌 − 𝜌′∥1 ≥
∞∑︁
𝑗=1
|_ 𝑗 (𝜌) − _ 𝑗 (𝜌′) |, (4.8)

where the eigenvalues _𝑖 are ordered in decreasing order. Applying this to 𝜌 and 𝜌(𝑟)

and noting that 𝜌(𝑟) has rank at most dimH𝐴∩Γ𝑟 , we get

∥𝜌 − 𝜌(𝑟) ∥1 ≥ Y(dimH𝐴∩Γ𝑟 ). (4.9)
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Combining (4.6), (4.7) and (4.9) we get

Y(dimH𝐴∩Γ𝑟 ) ≤ ℎ′(𝑟). (4.10)

Since dimH𝐴∩Γ𝑟 is upper-bounded by exp(𝑐𝑟) for some positive constant 𝑐, we have
Y(𝑘) ≤ 𝑔(log(𝑘)) for some 𝑔 ∈ ℱ+∞ which depends only on 𝑓 and 𝑐.

Conversely, suppose we are given a density matrix on a half-line 𝐴 with eigenvalues
_1 ≥ _2 ≥ .... We may assume that the dimension of 𝒜𝐴 is infinite, since otherwise
the statement is obviously true. Pick any pure factorized state 𝜓0 on 𝐴 and choose
a basis in each on-site Hilbert space V 𝑗 , 𝑗 ∈ 𝐴, such that for all 𝑗 the first basis
vector gives the state 𝜓0 |𝒜𝑗

. This gives a lexicographic basis |𝑛⟩, 𝑛 ∈ N, in the GNS
Hilbert space of 𝜓0. By our assumption on the boundness of 𝑑 𝑗 = dim V 𝑗 , there
is a positive constant 𝑐 such that for any 𝑟 and any 𝑛 < 𝑒𝑐𝑟 the vector state |𝑛⟩⟨𝑛|
coincides with 𝜓0 outside of Γ𝑟 . Therefore the state

∑∞
𝑛=1 _𝑛 |𝑛⟩⟨𝑛| is 𝑓 -close at 0 to

𝜓0, where 𝑓 (𝑟) = 𝑔(𝑐𝑟). □

By Lemma 4.3 any restriction 𝜓 |𝐴 of a state 𝜓 with 𝑔-decay of Schmidt coefficients
to a half-line 𝐴 can be purified by a state on �̄�, which is 𝑓 -close at the origin of 𝐴 to
a pure factorized state for some 𝑓 ∈ ℱ+∞ that depends on 𝑔 only. We call such state a
truncation of 𝜓 to 𝐴. Clearly, if 𝜔 is a truncation of 𝜓 to 𝐴, then 𝜔|𝐴 = 𝜓 |𝐴. The
following lemma shows that truncations exist for all invertible states.

Lemma 4.4. Let 𝜓 be an invertible state with an inverse 𝜓′, such that that Ψ = 𝜓 ⊗𝜓′

can be produced by an 𝑓 -local LGA 𝛽 from a pure factorized state Ψ0 = 𝜓0 ⊗ 𝜓′0.
Then 𝜓 has 𝑔-decay of Schmidt coefficients for some 𝑔 = ℱ

+
∞ that depends only on 𝑓 .

Proof. By Lemma 4.1 and the results of [46], Ψ, 𝜓, and 𝜓′ have the split property.
Therefore for any half-line 𝐴 ⊂ Z the corresponding GNS Hilbert spaces factorize
into Hilbert spaces for 𝐴 and Hilbert spaces for �̄�, and the restrictions 𝜓 |𝐴, 𝜓′|𝐴,
Ψ|𝐴 can be described by density matrices 𝜌𝐴, 𝜌′

𝐴
and 𝑃𝐴 in the Hilbert spaces for 𝐴

[46]. The restriction of Ψ ◦ 𝛽 on �̄� is 𝑓 -close at the origin of 𝐴 to a pure factorized
state, and therefore by Lemma 4.3 the density matrix 𝑃𝐴 has 𝑔-decay of Schmidt
coefficients for some 𝑔 ∈ ℱ+∞ that depends on 𝑓 . Since 𝑃𝐴 = 𝜌𝐴 ⊗ 𝜌′𝐴, the same is
true for 𝜌𝐴 and 𝜌′

𝐴
.

□

Lemma 4.5. Any truncation of an invertible state 𝜓 to any half-line is in a trivial
phase.
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Proof. Let 𝜓 be an invertible state on 𝒜 with an inverse 𝜓′ such that that Ψ = 𝜓 ⊗ 𝜓′

can be produced by an LGA (𝛼(1)F )
−1 with 𝑓 -local F ∈ 𝐶 ( [0, 1],𝔇𝑎𝑙) from a pure

factorized state Ψ0 = 𝜓0 ⊗ 𝜓′0.

For 𝑘 ∈ Z, let 𝜙𝑘 be a truncation of 𝜓 to [𝑘,∞), and let 𝜙′
𝑘

be a truncation of 𝜓′ to
[𝑘,∞). Since by Lemma 4.2 (𝜙𝑘 ⊗ 𝜙′𝑘 ) ◦ 𝛼F| [𝑘,∞) is 𝑔-close at 𝑘 to 𝜓0 ⊗ 𝜓′0 for some
𝑔 ∈ ℱ+∞ that depends on 𝑓 only, Proposition C.2 implies that 𝜙𝑘 is invertible with the
inverse 𝜙′

𝑘
. Let 𝜙𝑘 be a pure state on𝒜 (1) ⊗𝒜 (2) , where𝒜 (1) and𝒜 (2) are two copies

of 𝒜, with the following two properties: (1) its restriction to (−∞, 𝑘) coincides
with the factorized pure state (𝜓0 ⊗ 𝜓0) | (−∞,𝑘); (2) its restriction to 𝐴 = [𝑘, +∞) is a
purification of𝜓 |𝐴 on𝒜 (1)

𝐴
by some state on𝒜 (2)

𝐴
which is 𝑓 ′-close at 𝑘 to a factorized

state for some 𝑓 ′ ∈ ℱ+∞ that depends on 𝑓 only. The existence of such a state follows
from Lemma 4.4. Similarly, we can define a state 𝜙′

𝑘
on 𝒜

′(1) ⊗𝒜
′(2) which is an

inverse of 𝜙𝑘 . We let 𝛼(1)
G̃

be an LGA that maps 𝜙𝑘 ⊗ 𝜙′𝑘 to 𝜓0 ⊗ 𝜓0 ⊗ 𝜓′0 ⊗ 𝜓
′
0. G̃

can be chosen to be vanishing on (−∞, 𝑘) and 𝑔′-local with 𝑔′ ∈ ℱ+∞ depending on
𝑔 only.

Let us first show that the state 𝜓0⊗ 𝜙𝑘 ⊗𝜓′0⊗𝜓0 can be transformed into 𝜙𝑘 ⊗𝜓′0⊗𝜓0

by applying a certain LGA 𝛽, then an LGA ℎ2-localized at 𝑘 (for some ℎ2 ∈ ℱ+∞),
and finally the inverse of 𝛽. The sequence of steps is shown schematically in Fig. 1,
where it is also indicated that 𝛽 is a composition of two LGAs described in more
detail below.

Equivalently, we can apply 𝛽 to both states and then show that the resulting states are
related by an LGA ℎ2-localized at 𝑘 . 𝛽 is a composition of two LGAs. The first one
has the form Id ⊗ Id ⊗𝛼(1)G , where 𝛼(1)G maps 𝜓′0 ⊗ 𝜓0 to 𝜙′

𝑘
⊗ 𝜙𝑘 , see Fig. 1. The

second one has the form Id ⊗𝛼(1)F| [𝑘+1,∞)
⊗ Id. The product of these two LGAs maps

the two states of interest to the states Ξ𝑘 ⊗ 𝜙𝑘 and Ξ̃𝑘 ⊗ 𝜙𝑘 , where both Ξ𝑘 and Ξ̃ are
ℎ1-close at 𝑘 to the same pure factorized state on 𝒜 ⊗𝒜 ⊗𝒜′. Here ℎ1 ∈ ℱ+∞ which
depends only on 𝑓 . By Proposition C.2 Ξ𝑘 and Ξ̃𝑘 are related by a conjugation with
a unitary observable which is ℎ2-localized at 𝑘 for some ℎ2 ∈ ℱ+∞ depending only on
𝑓 .

Let us fix 𝐿 ∈ N. Since the state 𝜙′
𝑘

on 𝒜
(1) ⊗𝒜

(2) is invertible, by Lemma 4.4 its
restriction to (−∞, 𝑘 + 𝐿) has �̃�-decay of Schmidt coefficients with �̃� depending only
on 𝑓 . Also, since the restriction of the state 𝜙′

𝑘
to (−∞, 𝑘) is factorized, the nonzero

Schmidt coeffients are the same as for the state 𝜙𝑘 | [𝑘,𝑘+𝐿) . In particular, the number of
nonzero Schmidt coefficients does not exceed the dimension of 𝒜[𝑘,𝑘+𝐿) ⊗𝒜[𝑘,𝑘+𝐿) .
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Let us tensor 𝒜 (1) ⊗𝒜 (2) with 𝒜
(3) ⊗𝒜 (4) . By the proof of Lemma 4.3 one can find

a state 𝜒𝑘 on 𝒜
(1)
[𝑘,𝑘+𝐿) ⊗ 𝒜

(2)
[𝑘,𝑘+𝐿) ⊗ 𝒜

(3)
[𝑘,𝑘+𝐿) ⊗ 𝒜

(4)
[𝑘,𝑘+𝐿) which is a purification of

𝜙𝑘 | [𝑘,𝑘+𝐿) on 𝒜
(1)
[𝑘,𝑘+𝐿) ⊗𝒜

(2)
[𝑘,𝑘+𝐿) and such that its restriction to 𝒜

(3)
[𝑘,𝑘+𝐿) ⊗𝒜

(4)
[𝑘,𝑘+𝐿)

is ℎ-close to a factorized state at 𝑘 + 𝐿 for some ℎ ∈ ℱ+∞ that depends on 𝑓 only. The
state 𝜒𝑘 can be produced from (𝜓0 ⊗ 𝜓0 ⊗ 𝜓0 ⊗ 𝜓0) | [𝑘,𝑘+𝐿) by a conjugation with a
unitary V(0) ∈ 𝒜 (1)[𝑘,𝑘+𝐿) ⊗𝒜

(2)
[𝑘,𝑘+𝐿) ⊗𝒜

(3)
[𝑘,𝑘+𝐿) ⊗𝒜

(4)
[𝑘,𝑘+𝐿) .

Consider the states 𝜓0 | [𝑘,∞) ⊗𝜓0 | [𝑘,∞) ⊗ 𝜙𝑘 | [𝑘,∞) and 𝜒𝑘 ⊗ (𝜓0 | [𝑘+𝐿,∞) ⊗𝜓0 | [𝑘+𝐿,∞) ⊗
𝜙𝑘+𝐿) on the algebra𝒜 (3)[𝑘,∞)⊗𝒜

(4)
[𝑘,∞)⊗𝒜

(1)
[𝑘,∞)⊗𝒜

(2)
[𝑘,∞) (see Fig. 4.2). They are stably

related by an almost local unitary which is ℎ′-localized at 𝑘 + 𝐿, with ℎ′ ∈ ℱ+∞ which
depends only on 𝑓 . Indeed, we can first tensor both states with 𝜓′0 ⊗ 𝜓

′
0 ⊗ 𝜓0 ⊗ 𝜓0

restricted to [𝑘, +∞), then produce on these ancillas the state 𝜙′
𝑘
⊗ 𝜙𝑘 with a 𝑔′-local

LGA, and apply 𝛼(1)
G̃| (−∞,𝑘+𝐿)

◦ 𝛼(1)
G̃| [𝑘+𝐿,∞)

acting on the tensor product of the original

states and 𝜙′
𝑘

in an obvious way. In the same way as in the previous paragraph one
can argue that these states are related by an almost local at 𝑘 + 𝐿 unitary. This implies
that the original states are also related by almost local at 𝑘 + 𝐿 unitary U(0) .

We have shown that the states 𝜙𝑘 and 𝜙𝑘+𝐿 are related (after tensoring with a total
of six copies of factorized states 𝜓0 and 𝜓′0) by a conjugation with an almost local
unitary U(0) followed by a conjugation with a strictly local unitary V(0) . Similarly, we
can construct such unitaries U(𝑛) , V(𝑛) relating stabilizations of 𝜙𝑘+𝑛𝐿 and 𝜙𝑘+(𝑛+1)𝐿 .
By Lemma B.6 we can choose 𝐿 such that an ordered product of conjugations with∏∞
𝑛=0 U

(𝑛) is an LGA. Since V(𝑛) commute with U(𝑛
′) for 𝑛 < 𝑛′, an ordered product∏∞

𝑛=0 V
(𝑛)U(𝑛) is equal to

∏∞
𝑚=0 V

(𝑚)∏∞
𝑛=0 U

(𝑛) and therefore is also an LGA. By
construction it relates 𝜙𝑘 to a factorized state, and therefore 𝜙𝑘 is in the trivial phase.

□

Theorem 4.1. Any invertible bosonic 1d state 𝜓 of a spin system is in the trivial
phase.

Proof. Let 𝜓′ be an inverse state for 𝜓, and let (𝛼(1)F )
−1 be an LGA with 𝑓 -local F

that produces (𝜓 ⊗ 𝜓′) from a pure factorized state (𝜓0 ⊗ 𝜓′0). It enough to show
that the state 𝜓0 ⊗ 𝜓 ⊗ 𝜓′0 ⊗ 𝜓0 on 𝒜

(1) ⊗𝒜 (2) ⊗𝒜′(3) ⊗𝒜 (4) is in the trivial phase.

Let 𝐴 be a half-line [0,∞). Since 𝒜
(1)
𝐴

is identical to 𝒜
(2)
𝐴

there is a pure state
on 𝒜

(1)
�̄�
⊗ 𝒜

(2)
𝐴

identical to 𝜓. Let 𝜔− its truncation to �̄�. Similarly, let 𝜔+ be a
truncation to 𝐴 of a pure state on 𝒜

(2)
�̄�
⊗ 𝒜

(1)
𝐴

identical to 𝜓. By Lemma 4.5, the
state (𝜔− ⊗ 𝜔+) ⊗ 𝜓′0 ⊗ 𝜓0 is in the trivial phase. Therefore it is enough to show that
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Figure 4.1: The sequence of steps that transforms 𝜓0⊗𝜙𝑘 ⊗𝜓′0⊗𝜓0 into 𝜙𝑘 ⊗𝜓′0⊗𝜓0.
The regions shaded in blue denote the entangled parts of 𝜓, while the regions shaded
in red denote the entangled parts of 𝜓′. The regions where the state is close to a
factorized state are schematically indicated by a faded shading.

Figure 4.2: States 𝜙𝑘 and 𝜒𝑘 ⊗ (𝜓0 |𝑘+𝐿,∞ ⊗ 𝜓0 |𝑘+𝐿,∞ ⊗ 𝜙𝑘+𝐿)

(𝜔− ⊗ 𝜔+) ⊗ 𝜓′0 ⊗ 𝜓0 and 𝜓0 ⊗ 𝜓 ⊗ 𝜓′0 ⊗ 𝜓0 are related by an LGA. In fact, as we
show below, such an LGA can be chosen to be almost localized at 0.

First, we apply to both states an LGA which acts only on the last two factors and
produces 𝜓′⊗𝜓 out of 𝜓′0⊗𝜓0. This gives us 𝜓0⊗𝜓⊗𝜓′⊗𝜓 and (𝜔−⊗𝜔+) ⊗𝜓′⊗𝜓.

Second, we apply a composition of 𝛼(1)F| �̄�
and 𝛼(1)F|𝐴 on 𝒜

(2) ⊗ 𝒜
′(3) to states (𝜔− ⊗

𝜔+) ⊗ 𝜓′ and 𝜓0 ⊗ 𝜓 ⊗ 𝜓′ on 𝒜
(1) ⊗ 𝒜

(2) ⊗ 𝒜
′(3) . This transformation is shown

schematically in Fig. 4.3. By Lemma 4.2 this gives two states which are both 𝑔-close
at 0 to a pure factorized state 𝜓0 ⊗𝜓0 ⊗ 𝜓′0 on 𝒜

(1) ⊗𝒜 (2) ⊗𝒜′(3) , for some 𝑔 ∈ ℱ+∞.
By Proposition C.2 these states are related by a conjugation with an almost local
unitary. Applying the first two steps backwards we conclude that the two original
states are related by an LGA almost localized at 0.

□

4.2 Quantization of the Berry class for 1d invertible states.
Let 𝜓 be a smooth family of zero-dimensional states parameterized by a smooth
compact manifold M. In this case the Berry class [ 𝑓 ] ∈ 𝐻2(M, 𝑖R) defined in
Chapter 3 is quantized, i.e., [ 𝑓 /(2𝜋𝑖)] belongs to the image on the canonical map
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Figure 4.3: The sequence of steps that transforms 𝜓0 ⊗ 𝜓 ⊗ 𝜓′0 ⊗ 𝜓0 into (𝜔− ⊗
𝜔+) ⊗ 𝜓′0 ⊗ 𝜓0. The coloring in the same as in Fig. 4.1.

𝐻2(M, 𝑖Z) → 𝐻2(M, 𝑖R) and therefore

1
2𝜋𝑖

∫
Σ

𝑓 ∈ Z (4.11)

for any closed two-dimensional submanifold Σ ⊂ M. One can deduce it by
contemplating 𝑓 as a curvature of a 1-form gauge field. Mathematically, such
a gauge field describes a connection on the canonical line bundle over M. If
{𝑈 (a)}a∈𝐼 is good2 open cover of M, then a connection can be defined by a pair
(ℎ(ab) ∈ 𝐶∞(𝑈 (ab) ,𝑈 (1)), 𝑎 (a) ∈ Ω1(𝑈 (a) , 𝑖R)) satisfying

ℎ(ab)ℎ(bc) = ℎ(ac) , (4.12)

𝑎 (a) − 𝑎 (b) = ℎ(ab)−1𝑑ℎ(ab) , (4.13)

where 𝑈 (ab) = 𝑈 (a) ∩ 𝑈 (b) . The existence of such a pair with 𝑓 = 𝑑𝑎 (a) implies
quantization of [ 𝑓 /(2𝜋𝑖)].

In this section, we prove the quantization of the Berry class [ 𝑓 ] ∈ 𝐻3(M, 𝑖R)
for a family of invertible states 𝜓 of 1d spin systems parameterized by a smooth
manifold M, i.e., we show that [ 𝑓 /(2𝜋𝑖)] belongs to the image on the canonical map
𝐻3(M, 𝑖Z) → 𝐻3(M, 𝑖R) and therefore

1
2𝜋𝑖

∫
Σ

𝑓 ∈ Z (4.14)

for any closed three-dimensional submanifold Σ ⊂ M. By analogy with the
zero-dimensional case, we contemplate 𝑓 as a curvature of a 2-form gauge field.

2By good we mean that all charts and all their non-empty intersections are diffeomorphic to an
open ball.
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Mathematically, such a gauge field corresponds a connection on a line bundle
gerbe over M that can be defined by a triple (ℎ(abc) ∈ 𝐶∞(𝑈 (abc) ,𝑈 (1)), 𝑎 (ab) ∈
Ω1(𝑈 (ab) , 𝑖R), 𝑏 (a) ∈ Ω2(𝑈 (a) , 𝑖R)) satisfying

ℎ(abc)ℎ(acd) = ℎ(abd)ℎ(bcd) , (4.15)

𝑎 (ab) − 𝑎 (ac) + 𝑎 (bc) = ℎ(abc)−1𝑑ℎ(abc) , (4.16)

𝑏 (a) − 𝑏 (b) = 𝑑𝑎 (ab) , (4.17)

where 𝑈 (abc) = 𝑈 (a) ∩𝑈 (b) ∩𝑈 (c) . The existence of such a triple with 𝑓 = 𝑑𝑏 (a)

implies quantization of [ 𝑓 /(2𝜋𝑖)].

Remark 4.2. LetO× be the sheaf of smooth𝑈 (1)-valued functions onM andΩ𝑛 be the
sheaf of smooth purely imaginary 𝑛-forms on M. Then the triple (ℎ(abc) , 𝑎 (ab) , 𝑏 (a))
can be interpreted as a degree-2 Deligne-Beilinson 2-cocycle is a 2-cocycle of the
totalization of the Čech cochain complex with coefficients in the complex of sheaves

[O×
𝑑 log
−−−−→ Ω1 𝑑−→ Ω2] . (4.18)

Deligne-Beilinson cocycle
Let𝜓 be a smooth family of invertible states of 1d spin systems over a compact smooth
manifold M. In the proof of quantization of [ 𝑓 /(2𝜋𝑖)], without loss of generality
we can assume that each state of the family is LGA-equivalent to a factorized state
𝜓0. Indeed, we can always stack 𝜓 with a constant family of states 𝜓′ given by an
inverse of any state of the family 𝜓. The resulting family 𝜓 ⊗ 𝜓′ has the same Berry
class [ 𝑓 ].

We pick a partition (𝐴0, 𝐴1) of R into half-lines and a connection G• that contains
(G, g(0) , g(1)) and defines the 3-form 𝑓 = ⟨g(1)

𝐴0𝐴1
⟩𝜓 .

Let us choose smooth families of LGAs 𝛽(a) , 𝛽(a)0 , 𝛽
(a)
1 over 𝑈 (a) such that 𝛽(a) :=

𝛽
(a)
0 ◦ 𝛽

(a)
1 , 𝜓0 = 𝜓 ◦ 𝛽(a) with 𝛽

(a)
0 , 𝛽

(a)
1 being almost localized on 𝐴0 and 𝐴1,

respectively. Since 𝜓 = 𝜓0 ◦ 𝛽(a)−1, we can also choose smooth families of uniformly
almost localized at the apex of (𝐴0, 𝐴1) unitaries U(ab) ∈ 𝐶∞(𝑈 (ab) ,𝒜𝑎ℓ) such that
⟨U(ab)−1𝑑U(ab)⟩∞ = 0 and 𝜓 = 𝜓 ◦ 𝛽(ab) for 𝛽(ab) = AdU(ab) ◦𝛽(a)1 ◦ (𝛽

(b)
1 )
−1. We

define smooth families of unitaries U(abc) = 𝛽(ab) (U(bc))U(ab) (U(ac))−1 over𝑈 (abc) .
Since U(abc) preserves the family of states, its average ⟨U(abc)⟩𝜓 defines a smooth
𝑈 (1)-valued function. On𝑈 (abcd) we have

U(abc)U(acd) = 𝛽(ab) (U(bcd))U(abd) (4.19)
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and therefore
⟨U(abc)⟩𝜓 ⟨U(acd)⟩𝜓 = ⟨U(abd)⟩𝜓 ⟨U(bcd)⟩𝜓 . (4.20)

Thus, ⟨U(abc)⟩𝜓 defines a Čech 2-cocycle and a cohomology class in 𝐻2(M,O×) �
𝐻3(M,Z).

We define B(ab) = 𝛽(ab)−1𝑑𝛽(ab) ∈ Ω1(𝑈 (ab) ,𝔇𝜓

𝑎𝑙
). By local Noether theorem

for gapped states we can choose A(a) ∈ Ω1(𝑈 (a) ,𝔇𝑎𝑙) that differs from G|𝐴0 −
𝛽(a) (𝛽(a)−1𝑑𝛽(a)) |𝐴1 by a smooth family Ω1(𝑈 (a) , 𝔡𝑎𝑙) uniformly almost localized
at the apex of (𝐴0, 𝐴1) and therefore interpolates between G far from 𝐴1 and
−𝛽(a) (𝛽(a)−1𝑑𝛽(a)) far from 𝐴0. Note that B(ab) interpolates between 0 and (A(b) −
𝛽(ab)−1(A(a))).

By setting3

ℎ(abc) := ⟨U(abc)⟩𝜓 , (4.21)

𝑎 (ab) = ⟨(B(ab) − A(b) + 𝛽(ab)−1(A(a)))⟩𝜓 , (4.22)

𝑏 (a) = ⟨(𝑑A(a) + 1
2
{A(a) ,A(a)} − g(0)

𝐴0
)⟩𝜓 , (4.23)

with
ℎ(abc)−1𝑑ℎ(abc) = ⟨(𝛽(bc)−1(B(ab)) − B(ac) + B(bc))⟩, (4.24)

𝑑𝑎 (ab) = ⟨(𝛽(ab)−1(𝑑A(a) + 1
2
{A(a) ,A(a)}) − (𝑑A(b) + 1

2
{A(b) ,A(b)}))⟩, (4.25)

𝑑𝑏 (a) = −⟨𝐷g(0)
𝐴0
⟩ = −⟨g(1)

𝐴0𝐴1
⟩ = − 𝑓 , (4.26)

we get the triple (ℎ(abc) , 𝑎 (ab) , 𝑏 (a)) satisfying the relations eq. (4.15) and− 𝑓 = 𝑑𝑏 (a) .
That implies quantization of the Berry class [ 𝑓 /(2𝜋𝑖)].

Remark 4.3. In contrast to the zero-dimensional case, the construction of a connec-
tion and its curvature 𝑓 on a line bundle gerbe involves various choices and therefore
is far from being canonical. Nevertheless, the cohomology class in 𝐻3(M,Z) that
defines the isomorphism class of line bundle gerbes is unambiguous as it is mapped
to the Berry class.

Remark 4.4. Note that if there is a smooth family of LGAs 𝛽 over M such that
𝜓0 = 𝜓 ◦ 𝛽, then the Berry class vanishes. Therefore non-triviality of [ 𝑓 /(2𝜋𝑖)]
gives an obstruction to the existence of such 𝛽.

3Note that all derivations inside the averages below are almost localized at a point.
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C h a p t e r 5

HALL CONDUCTANCE AS THE TOPOLOGICAL INVARIANT

Quantization of the Hall conductance of insulating two-dimensional materials at low
temperatures is one of the most remarkable phenomena in condensed matter physics.
Starting with the seminal work of Laughlin [44], many theoretical explanations of
this phenomenon have been proposed which vary in their assumptions and degree
of rigor. For systems of non-interacting fermions with either an energy gap or a
mobility gap there are several proofs that zero-temperature Hall conductance 𝜎𝐻𝑎𝑙𝑙
times 2𝜋ℏ/𝑒2 is an integer in the infinite-volume limit [62, 9, 10, 8, 1]. In particular,
Laughlin’s flux-insertion argument was made rigorous in this setting by Avron, Seiler
and Simon [1]. The case of interacting systems is more involved, since quantization
of Hall conductance generally holds only in the absence of topological order. Much
progress can be made using the relation between 𝜎𝐻𝑎𝑙𝑙 and the curvature of the Berry
connection of the system compactified on a large torus. This line of work originated
with Avron and Seiler [2] and culminated in the proof by Hastings and Michalakis
that for a gapped system on a large torus with a non-degenerate ground state the
difference between 2𝜋ℏ𝜎𝐻𝑎𝑙𝑙/𝑒2 and the nearest integer is almost-exponentially small
in the size of the system 𝐿, as defined in [29] (see also [5] for a simplified proof).

In this chapter, we apply the formalism described above to the case of 2d spin
systems with𝑈 (1) symmetry. Since it allows to work directly in the thermodynamic
limit rather than on a particular compact surface, it gives a way to define the Hall
conductance as an invariant of a phase that can be computed locally. As was already
mentioned in Example 3.1, this topological invariant is a particular case of an
equivariant higher Berry class 𝜎 which is defined for any state with acyclic Noether
complex N

𝜓
• that makes it manifestly independent of a parent gapped Hamiltonian

for the state. We confirm this claim in Section 5.1.

We further show that for states for which this invariant is defined, there is a natural
way to produce new states which can be interpreted as vortices or magnetic flux
insertions. Such states may represent states from different superselection sectors
and correspond to abelian anyons. We compute the charge and the statistic of such
anyons and relate it to 𝜎 in Section 5.2 providing a formalization of the argument
from [59]. Using these results, we give proof of the quantization 𝜎 ∈ Z for invertible
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states in Section 5.3. For bosonic invertible spin systems, our methods allow us to
show 𝜎 ∈ 2Z which is stronger than the result from [29, 5].

5.1 𝑈 (1)-equivariant Berry class as a Hall conductance
In this section we consider 2d spin systems with on-site𝑈 (1) symmetry. We denote
the automorphism that corresponds to a group element 𝑔 = 𝑒𝑖𝜙 by 𝛾 (𝜙) ∈ Aut(𝒜).
It is generated by a constant derivation Q ∈ 𝔇𝑎𝑙 . As we require 𝑈 (1) action to
be on-site, Q is given by 𝜕q for a 0-chain q ∈ 𝐶0(𝔡𝑎𝑙) such that q 𝑗 ∈ 𝔡 𝑗 . We can
interpret q 𝑗 as the operator of the charge on site 𝑗 . For a region 𝐴, we let 𝛾 (𝜙)

𝐴
be the

automorphism generated by a constant derivation q𝐴. It corresponds to the action of
the symmetry restricted to the region 𝐴.

In the following we often use conical partitions of the 2d plane (as defined in Section
2.2) and call them tripartitions.

Definition 5.1. Let 𝒜 be a 2d spin system with on-site𝑈 (1) symmetry. We say that
a pure𝑈 (1)-invariant state 𝜓 of 𝒜 has no local spontaneous symmetry breaking if
there exist𝑈 (1)-invariant k ∈ 𝐶1(𝔡𝑎𝑙) such that q̃ := q − 𝜕k does not excite 𝜓.

Informally, a state 𝜓 has no local spontaneous symmetry breaking if the action of the
charge operator inside a region on this state can be compensated by the action of a
UAL Hamiltonian almost localized on the boundary of this region. Indeed, for any
region 𝐴, since q̃𝐴 does not excite the state, the action of q𝐴 can be compensated by
the action of k𝐴�̄�.

Remark 5.1. In the Definition 5.1, we can equivalently require the existence of
𝑈 (1)-invariant q̃ ∈ 𝐶0(𝔡𝜓𝑎𝑙) satisfying 𝜕q̃ = Q as the existence of k would follow
from local Noether theorem 2.3.

Remark 5.2. Note that if 𝜓 has no local spontaneous symmetry breaking, then so
does any state 𝜓 ◦ 𝛽 for a𝑈 (1)-invariant LGA 𝛽. Indeed, for the state 𝜓 ◦ 𝛽 we can
use 𝛽−1(q̃) instead of q̃.

Example 5.1. Any gapped𝑈 (1) invariant state has no local spontaneous symmetry
breaking as the existence of q̃ follows from local Noether theorem for gapped states
3.1. More explicitly, given a choice of a gapped𝑈 (1)-invariant Hamiltonian H ∈ 𝔇𝑎𝑙

we can always choose𝑈 (1)-invariant h ∈ 𝐶0(𝔡𝑎𝑙) such that H = 𝜕h. Then we can
set k to be ℐH,𝑊Δ

(−j) where ℐH,𝑊Δ
is the map from Lemma 3.3 and j := −{h, q} is

the electric current.
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For a state with no local spontaneous symmetry breaking 𝜓, one can define the
following topological invariant:

Proposition 5.1. Let 𝜓 be a pure 𝑈 (1)-invariant state with no local spontaneous
symmetry breaking. Choose k and a tripartition (𝐴0, 𝐴1, 𝐴2). Then

𝜎 := 2𝜋𝑖⟨{k, 𝜕k}𝐴0𝐴1𝐴2⟩𝜓 (5.1)

does not depend on the choice of the tripartition, the choice of k, and is the same for
any two states related by a𝑈 (1)-invariant UAL evolution.

Proof. Note that 𝜕⟨{k, 𝜕k}⟩𝜓 = ⟨{q − q̃, q − q̃}⟩𝜓 = 0, where we have used that
{q, q} = 0 and ⟨{q̃, · }⟩𝜓 = 0. The conservation of the 2-current ⟨{k, 𝜕k}⟩𝜓 implies
that the contraction ⟨{k, 𝜕k}𝐴0𝐴1𝐴2⟩𝜓 does not depend on the tripartition.

Let 𝑋 and𝑌 be the right and the upper half-plane, respectively. As 𝜎 does not depend
on the choice of the tripartition, we have 𝜎 = 2𝜋𝑖⟨[k𝑋𝑋𝑐 , k𝑌𝑌 𝑐 ]⟩𝜓 . Suppose we have
a different choice of the current k that we denote k′. We have ⟨[k𝑋𝑋𝑐 , k𝑌𝑌 𝑐 ]⟩𝜓 =

⟨[q𝑋 , k𝑌𝑌 𝑐 ]⟩𝜓 = ⟨[k′
𝑋𝑋𝑐 , k𝑌𝑌 𝑐 ]⟩𝜓 = ⟨[k′

𝑋𝑋𝑐 , q𝑌 ]⟩𝜓 = ⟨[k′
𝑋𝑋𝑐 , k′𝑌𝑌 𝑐 ]⟩𝜓 . Therefore 𝜎

does not depend on the choice of k.

We can always split a 𝑈 (1)-invariant derivation F = F+ + F− into 𝑈 (1)-invariant
derivations F+, F− almost localized on an upper and a lower half-plane, respectively.
Therefore, it is enough to show the invariance of 𝜎 under a 𝑈 (1)-invariant UAL
evolution that is almost localized on a half-plane 𝑋 . Let 𝛽 be the corresponding
LGA. We can compute 𝜎 for the state 𝜓 ◦ 𝛽 using a tripartition with the apex in an
opposite half-plane 𝑋𝑐 far away from 𝑋 , where its value coincides with the value
of 𝜎 for the state 𝜓. Since 𝜎 does not depend on the tripartition, it is the same for
states 𝜓 and 𝜓 ◦ 𝛽. □

Remark 5.3. If 𝜓 is a gapped 𝑈 (1)-invariant state, then 𝜎 coincides with the
equivariant Berry class from Example 3.1. Indeed, we have ⟨{k, 𝜕k}𝐴0𝐴1𝐴2⟩𝜓 =

⟨{k, q − q̃}𝐴0𝐴1𝐴2⟩𝜓 = ⟨{k, q + q̃}𝐴0𝐴1𝐴2⟩𝜓 while 𝜕{k, q + q̃} = −{q̃, q̃} = 2 𝜕m(2) .
Thus, we have 𝜎 = 4𝜋𝑖⟨m(2)

𝐴0𝐴1𝐴2
⟩𝜓 = −4𝜋𝑖⟨[q̃𝐴0 , q̃𝐴1]⟩𝜓 .

Let us show that for gapped states, 𝜎/2𝜋 is nothing but the zero-temperature Hall
conductance. Suppose 𝜓 is a ground state of a gapped𝑈 (1)-invariant Hamiltonian
H. As noted in Example 5.1, we can set k = ℐH,𝑊Δ

({h, q}) where 𝑊Δ(𝑡) is the
function from Lemma 3.3 and h is a𝑈 (1)-invariant 0-chain such that H = 𝜕h. Let
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𝑝

𝐶

𝐴 𝐵

Figure 5.1: A tripartition (𝐴, 𝐵, 𝐶) with the apex 𝑝.

𝐽 𝑗 𝑘 := 𝑖 𝜋𝜓 (j 𝑗 𝑘 ) be the images of the components of the electric current in the GNS
representation of 𝜓. We denote the operator that corresponds to the Hamiltonian
by 𝐻. Let 𝑋 and 𝑌 be the right and the upper half-planes, respectively. The Hall
conductance is given by the Kubo formula [54]

𝜎𝐻𝑎𝑙𝑙 =
∑︁
𝑗∈𝑋

∑︁
𝑘∈𝑋𝑐

∑︁
𝑙∈𝑌

∑︁
𝑚∈𝑌 𝑐

𝑖⟨0|𝐽 𝑗 𝑘 (1 − 𝑃)
1
𝐻2 (1 − 𝑃)𝐽𝑙𝑚 |0⟩ − (𝑋 ↔ 𝑌 ) (5.2)

where |0⟩ is a cyclic vector for the GNS representation and 𝑃 = |0⟩⟨0|. Although the
regions 𝑋, 𝑋𝑐, 𝑌 ,𝑌 𝑐 are non-compact, the quadruple sum is absolutely convergent
and thus well-defined. To see this, we note that for any two observables A and B we
have

⟨0|𝜋𝜓 (A) (1 − 𝑃)
1
𝐻2 (1 − 𝑃)𝜋𝜓 (B) |0⟩ =

= ⟨ℐH,𝑊Δ
(A)ℐH,𝑊Δ

(B)⟩𝜓 − ⟨ℐH,𝑊Δ
(A)⟩

𝜓
⟨ℐH,𝑊Δ

(B)⟩𝜓 . (5.3)

Therefore we can rewrite the formula for the Hall conductance in terms of correlators
of almost local observables k 𝑗 𝑘 = −ℐH,𝑊Δ

(j 𝑗 𝑘 ):

𝜎𝐻𝑎𝑙𝑙 =
∑︁
𝑗∈𝑋

∑︁
𝑘∈𝑋𝑐

∑︁
𝑙∈𝑌

∑︁
𝑚∈𝑌 𝑐

𝑖⟨k 𝑗 𝑘k𝑙𝑚⟩ − (𝑋 ↔ 𝑌 ) = 𝑖⟨[k𝑋𝑋𝑐 , k𝑌𝑌 𝑐 ]⟩𝜓 = 𝜎/(2𝜋).

(5.4)

5.2 Vortices and their statistics
Given a 𝑈 (1)-invariant state 𝜓 with no local spontaneous symmetry breaking, a
choice of k ∈ 𝐶1(𝔡𝑎𝑙) and a point 𝑝 ∈ R2, one can produce a natural class of states
that can be interpreted as states of a vortex (unit of magnetic flux) at 𝑝. To define it,
let us make a choice of a tripartition (𝐴, 𝐵, 𝐶) with the apex at 𝑝 (see Fig. 5.2a). Let
𝜐
(𝜙)
𝐴𝐵𝐶

be the path of LGAs generated by (q𝐴 − k𝐴𝐵). The states of interest have the
form 𝜓 ◦ 𝜐(2𝜋)

𝐴𝐵𝐶
.

Remark 5.4. Alternatively, we can consider the path of LGAs �̃�(𝜙)
𝐴𝐵𝐶

= 𝜐
(𝜙)
𝐴𝐵𝐶
◦ 𝛾 (−𝜙)

𝐴

that is generated by 𝛾 (𝜙)
𝐴
(k𝐵𝐴) which is almost localized on the path 𝐴𝐵 as �̃�(2𝜋)

𝐴𝐵𝐶
=

𝜐
(2𝜋)
𝐴𝐵𝐶

.
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Proposition 5.2. Two vortex states at the same point 𝑝 but with different choices of
tripartitions (𝐴, 𝐵, 𝐶) are related by an almost local unitary.

Lemma 5.1. Let X ∈ 𝔇𝑎𝑙 and Y ∈ 𝔇𝑎𝑙 such that [X,Y] ∈ 𝔡𝑎𝑙 . Then the automor-
phism 𝛼

(𝑡)
X ◦ 𝛼

(𝑡)
Y ◦ (𝛼

(𝑡)
X+Y)

−1 is a conjugation with an almost local unitary.

Proof. We have

𝑑

𝑑𝑡

(
𝛼
(𝑡)
X ◦ 𝛼

(𝑡)
Y ◦ (𝛼

(𝑡)
X+Y)

−1
)
=

∫ 1

0
𝑑𝑠

(
𝛼
(𝑡)
X ◦ 𝛼

(𝑠)
Y ◦ [X,Y] ◦ 𝛼

(𝑡−𝑠)
Y ◦ (𝛼(𝑡)X+Y)

−1
)
.

(5.5)
Therefore,

(
𝛼
(𝑡)
X ◦ 𝛼

(𝑡)
Y ◦ (𝛼

(𝑡)
X+Y)

−1
)

is generated by
∫ 1

0 𝑑𝑠 𝛼
(𝑡)
X+Y (𝛼

(𝑠−𝑡)
Y ( [X,Y])) ∈

𝔡𝑎𝑙 . □

Proof of Proposition 5.2. We can change the paths 𝐵𝐶, 𝐶𝐴, and 𝐴𝐵 by reassigning
a cone-like region 𝐸 from one cone of the tripartition to another (so that the resulting
tripartition is still well-defined). By Lemma 5.1, in order to show that 𝜐𝐴𝐵𝐶 changes
by composition with AdU for some almost local unitary U, it is enough to show that
the change X of the generating derivation Y = q𝐴 − k𝐴𝐵 is such that [X,Y] ∈ 𝔡𝑎𝑙 and
𝜓 ◦ 𝛼(2𝜋)X can be produced from 𝜓 by conjugation with an almost local unitary.

If we vary 𝐵𝐶 this way, we have X = k𝐸𝐴 that is almost localized at the origin. If we
vary 𝐴𝐶, then X = (q𝐸 − k𝐸𝐵). We have k𝐸𝐵 ∈ 𝔡𝑎𝑙 and [q𝐸 , q𝐴 − k𝐴𝐵] ∈ 𝔡𝑎𝑙 , while
q𝐸 generates the identity automorphism at 𝜙 = 2𝜋. Finally, if we vary 𝐴𝐵, then a
change of the generating derivation is given by (q̃𝐸 − k𝐶𝐸 ). We have k𝐶𝐸 ∈ 𝔡𝑎𝑙 and
[q̃𝐸 , q𝐴 − k𝐴𝐵] = [q̃𝐸 , q̃𝐴] + [q̃𝐸 , k𝐴𝐶] ∈ 𝔡𝑎𝑙 , while q̃𝐸 generates the automorphism
that preserves 𝜓. □

Remark 5.5. If the state 𝜓 is gapped, one can also relate vortex states for different
choices of k. Suppose we have another choice of k which we denote k′. Since
𝜕 (k′ − k) ∈ 𝐶0(𝔡𝜓𝑎𝑙), by local Noether theorem for gapped states 3.1 there is
k̃ ∈ 𝐶1(𝔡𝑎𝑙), such that 𝜕 (k′ − k) = 𝜕k̃. By local Noether theorem 2.3, there
is n ∈ 𝐶2(𝔡𝜓𝑎𝑙) such that k′ = k + k̃ + 𝜕n. One can split the cone 𝐴 into two
sub-cones 𝐴′ and 𝐴′′ so that (q𝐴 − k𝐴𝐵 − k̃𝐴𝐵) = (q̃𝐴′ + k𝐴𝐶) + (q̃𝐴′′ − k̃𝐴𝐵) and
[q̃𝐴′ + k𝐴𝐶 , q̃𝐴′′ − k̃𝐴𝐵] ∈ 𝔡𝑎𝑙 . Since (q̃𝐴′′ − k̃𝐴𝐵) generates automorphism that
preserves 𝜓, by Lemma 5.1 and Proposition 5.2 modification of k by k̃ produces
the vortex states related to the original one by an almost local unitary. The lemma
also implies that the same is true for modification of k by 𝜕n as it changes k𝐴𝐵 by
n𝐴𝐵𝐶 ∈ 𝔡𝑎𝑙 .



60

𝐶

𝐴 𝐵

(a)

𝐶

𝐴 𝐵
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Figure 5.2: Creation, annihilation and transport of vortices. The shaded region
covers sites, for which q 𝑗 are involved.

The Proposition 5.2 has an important consequence. Let A be an observable almost
localized at a point 𝑥 at distance 𝑟 from the apex 𝑝 of a tripartition (𝐴, 𝐵, 𝐶). Let us
choose a cone Σ with the apex at 𝑝 and not containing 𝑥. We can choose another
tripartition (𝐴′, 𝐵′, 𝐶′) obtained by a rotation around the apex so that the path 𝐴′𝐵′

is inside Σ. Then using Proposition 5.2, we get

⟨A⟩
𝜓◦𝜐 (2𝜋 )

𝐴𝐵𝐶

= ⟨UAU−1⟩
𝜓◦𝜐 (2𝜋 )

𝐴′𝐵′𝐶′
+ O(𝑟−∞) =

= ⟨A⟩
𝜓◦𝜐 (2𝜋 )

𝐴′𝐵′𝐶′
+ O(𝑟−∞) = ⟨A⟩𝜓 + O(𝑟−∞). (5.6)

This implies that almost local observables localized in any cone with the apex at 𝑝
and far from 𝑝 cannot detect the presence of a vortex at 𝑝. (This statement, however,
might not be true if we consider local observables localized on a ring around 𝑝. In
this case one cannot deform the paths such that there is no intersection between the
ring and these paths.) In particular, this implies that for a gapped state 𝜓 and any
choice of the corresponding gapped H ∈ 𝔇𝑎𝑙 , the state 𝜓 ◦ 𝜐(2𝜋)

𝐴𝐵𝐶
has finite energy.

We can also compute the charge of the vortex. The following proposition shows that
it is given by 𝜎.

Proposition 5.3. Let �̃� = 𝜓 ◦ 𝜐(2𝜋)
𝐴𝐵𝐶

be a vortex state at 𝑝. Let 𝐷 = 𝐵𝑝 (𝑟). Then
⟨q𝐷⟩�̃� − ⟨q𝐷⟩𝜓 = −𝑖𝜎 + O(𝑟−∞).

Proof. We have

𝛼
(𝜙)
q𝐴−k𝐴𝐵

(q𝐷)−q𝐷 =

∫ 𝜙

0
𝛼
(𝑠)
q𝐴−k𝐴𝐵

( [q𝐴−k𝐴𝐵, q𝐷])𝑑𝑠 =
∫ 𝜙

0
𝛼
(𝑠)
q̃𝐴+k𝐴𝐶

( [−k𝐴𝐵, q𝐷])𝑑𝑠 =

=

∫ 𝜙

0
𝛼
(𝑠)
q̃𝐴
( [q𝐷 , k𝐴𝐵])𝑑𝑠 + O(𝑟−∞) =

∫ 𝜙

0
𝛼
(𝑠)
q̃𝐴
( [q𝐷 , k𝐴𝐵])𝑑𝑠 + O(𝑟−∞). (5.7)
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Therefore,

⟨q𝐷⟩�̃� − ⟨q𝐷⟩𝜓 = ⟨𝛼(2𝜋)q𝐴−k𝐴𝐵
(q𝐷) − q𝐷⟩𝜓 =

= ⟨
∫ 2𝜋

0
𝛼
(𝑠)
q̃𝐴
( [q𝐷 , k𝐴𝐵])𝑑𝑠⟩𝜓 + O(𝑟−∞) =

∫ 2𝜋

0
[k𝐷𝐷𝑐 , k𝐴𝐵]𝑑𝑠 + O(𝑟−∞) = −𝑖𝜎.

(5.8)

□

Similarly, one can define a family of LGAs �̄�(𝜙)
𝐴𝐵𝐶

generated by (q𝐵 + q𝐶 − k𝐵𝐴)
with the same properties (see Fig. 5.2b) and the state 𝜓 ◦ �̄�(2𝜋)

𝐴𝐵𝐶
. Note that

𝜐
(𝜙)
𝐴𝐵𝐶
◦ �̄�(𝜙)

𝐴𝐵𝐶
◦ 𝛾 (−𝜙) = Id as

𝑑

𝑑𝜙

(
𝜐
(𝜙)
𝐴𝐵𝐶
◦ �̄�(𝜙)

𝐴𝐵𝐶
◦ 𝛾 (−𝜙)

)
=

= 𝜐
(𝜙)
𝐴𝐵𝐶
◦ (q𝐴 + q𝐵 + q𝐶) ◦ �̄�(𝜙)𝐴𝐵𝐶 ◦ 𝛾

(−𝜙) − 𝜐(𝜙)
𝐴𝐵𝐶
◦ �̄�(𝜙)

𝐴𝐵𝐶
◦ Q ◦ 𝛾 (−𝜙) = 0. (5.9)

Therefore 𝜓 ◦ 𝜐(2𝜋)
𝐴𝐵𝐶
◦ �̄�(2𝜋)

𝐴𝐵𝐶
= 𝜓. It is natural to interpret this state as an anti-vortex.

By applying automorphisms 𝜐(2𝜋) and �̄�(2𝜋) at different points and choosing the
paths 𝐴𝐵 so that they do not overlap, one can create several vortices and anti-vortices
at different locations.

In general, a vortex state cannot be produced by an action of an almost local observable
(or even a quasi-local observable) on the ground state. However, one can create a
vortex-anti-vortex pair by acting on the ground state with an LGA that is 𝑓 -localized
on a finite interval for 𝑓 that depends on the localization of k (and therefore is a
conjugation with an almost local unitary). For example, suppose one wants to create
a vortex at the point 𝐴𝐵𝐷 and an anti-vortex at 𝐵𝐶𝐴 (see Fig. 5.2c). This can be
accomplished using an automorphism generated by 𝛾 (𝜙)

𝐴+𝐶 (k𝐵𝐴). By the Remark 2.5,
there is a canonical path of almost local unitaries that corresponds to the path of
LGAs 𝛼(𝜙)

𝛾𝐴+𝐶 (k𝐵𝐴) .

To study the transport of vortices along paths, we will first define the set of vortex
configurations and paths of interest. We only consider configurations with a finite
number of vortices, so the set of initial and final positions of vortices is always finite.
These positions are vertices of a trivalent graph, some of whose edges connect the
vertices and some go off to infinity. The paths needed to define vortex states are
paths on this graph. For simplicity we will assume that the graph is a tree. The edges
of the graph need not be straight lines or segments, but we need to assume that they
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\𝐶

\𝐴 \𝐵

𝐶

𝐴 𝐵

Figure 5.3: Admissible paths 𝐴𝐵, 𝐵𝐶, and 𝐶𝐴 meeting at the point 𝐴𝐵𝐶.

do not come close to each other. One way to achieve this is the following recursive
procedure. Let us fix an angle \𝑐 and a vertex 𝑝 with adjacent regions 𝐴,𝐵,𝐶 (see
Fig.5.3). Removing 𝑝 will cause the graph to fall into three components each of
which is itself a tree. We require that each component is contained in an eventually
conical region with the apex at 𝑝 such that the angles between adjacent boundaries
of different regions are greater than \𝑐. Then for each component, we take the vertex
connected to 𝑝 as the basepoint and repeat the procedure. Any trivalent graph which
satisfies these requirements will be called admissible.

Lemma 5.2. Let (𝐴, 𝐵, 𝐶) be an admissible tripartition of the plane. Then the
path of LGAs 𝛼(𝜙)q̃𝐴

◦ 𝛼(𝜙)q̃𝐵
◦ 𝛼(𝜙)q̃𝐶 ◦ 𝛾

(−𝜙) is generated by p ∈ 𝐶 ( [0, 2𝜋], 𝔡𝜓
𝑎𝑙
) that is

𝑓 -localized at the apex of (𝐴, 𝐵, 𝐶) for some 𝑓 that depends on the localization of q̃
only and ⟨p(𝜙)⟩𝜓 = 𝑖𝜙 𝜎/(4𝜋).

Proof. We have

𝑑

𝑑𝜙

(
𝛼
(𝜙)
q̃𝐴
◦ 𝛼(𝜙)q̃𝐵

◦ 𝛼(𝜙)q̃𝐶 ◦ 𝛾
(−𝜙)

)
= 𝛼

(𝜙)
q̃𝐴
◦ (q̃𝐴+𝐵) ◦ 𝛼(𝜙)q̃𝐵

◦ (q̃𝐶 −Q) ◦ 𝛼(𝜙)q̃𝐶 ◦ 𝛾
(−𝜙) =

=

∫ 𝜙

0
𝑑𝑠

(
𝛼
(𝜙)
q̃𝐴
◦ 𝛼(𝑠)q̃𝐵

◦ [q̃𝐴, q̃𝐵] ◦ 𝛼(𝜙−𝑠)q̃𝐵
◦ 𝛼(𝜙)q̃𝐶 ◦ 𝛾

(−𝜙)
)
. (5.10)

Therefore the path of LGAs is generated by p ∈ 𝐶 ( [0, 2𝜋], 𝔡𝑎𝑙) where

p(𝜙) =
∫ 𝜙

0
𝑑𝑠 𝛾 (𝜙) (𝛼(−𝜙)q̃𝐶 (𝛼

(𝑠−𝜙)
q̃𝐵
( [q̃𝐴, q̃𝐵]))). (5.11)

Since all automorphisms and derivations preserve𝜓, we have ⟨p(𝜙)⟩𝜓 = 𝜙⟨[q̃𝐴, q̃𝐵]⟩𝜓 =

𝑖𝜙 𝜎/(4𝜋). □

Let us consider a processes shown on Fig. 5.4. We assume that the graph formed
by the lines and vertices is admissible and the distances between triple points are
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𝐶′

𝐴′ 𝐵′

𝐵′′

𝐶′′𝐴′′ 𝐶′

𝐴′ 𝐵′

𝐵′′

𝐶′′𝐴′′

Figure 5.4: Transport of vortices.

𝐶′

𝐴′ 𝐵′

𝐵′′

𝐶′′𝐴′′ 𝐶′

𝐴′ 𝐵′

𝐵′′

𝐶′′𝐴′′

Figure 5.5: Transport of vortices along intersecting paths.

bigger than some 𝐿. In the first process we consequently produces two vortex-anti-
vortex pairs so that the vortex of the first pair is annihilated by the anti-vortex of
the second. We denote the corresponding unitaries performing the transport by
U𝐴 and U𝐵. In the second process, we create a vortex-anti-vortex pair directly.
The corresponding unitary is denoted U𝐴𝐵. Combining eq. (5.9), the proof of
Lemma 5.2 and applying it to the path of unitaries U𝐴𝛾

(𝜙)
𝐴
(U𝐵𝛾

(𝜙)
𝐵
(U∗

𝐴𝐵
)), we get

⟨U𝐵U𝐴U
∗
𝐴𝐵
⟩𝜓 = 𝑒𝑖𝜋𝜎/2 + O(𝐿−∞).

We see that vortex-transport operators, for large paths 𝐿 →∞ without “sharp" turns,
compose in the expected way except for a phase 𝑒𝜋𝑖𝜎/2. Similarly, one can show that
if one transports a vortex so that shaded regions intersect (see Fig. 5.5), one gets a
phase 𝑒−𝜋𝑖𝜎/2.

One can create vortices and anti-vortices at the corners of a rectangle using transport
operators 12 and 34 (see Fig. 5.6) and then annihilate them in a different order
by applying transport operators 23 followed by 41. After the application of the
operator 23 one gets the inverse of the application of the operator 41 times a phase
factor 𝑒𝜋𝑖𝜎/2𝑒𝜋𝑖𝜎/2. Therefore the net result of this operation is multiplication of the
vacuum vector by 𝑒𝜋𝑖𝜎 plus O(𝐿−∞) corrections.
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𝐶 𝐷

𝐴

𝐵

2 4

31

Figure 5.6: One first creates vortex/anti-vortex pairs by operators 12 and 34 (shaded
in red), and then annihilates them by first applying operator 23, and then 41 (shaded
in blue).

5.3 Quantization for invertible phases
In general, one cannot create a single vortex by applying some almost local or even
quasi-local observable to the ground state vector, i.e., the single-vortex state and
the ground state can belong to different superselection sectors. However, invertible
systems are special in this regard.

Proposition 5.4. Let 𝜓 be an invertible𝑈 (1)-invariant state of a spin system 𝒜 with
𝑈 (1) symmetry. Choose a corresponding k and a tripartition (𝐴, 𝐵, 𝐶) with the apex
at 𝑝. Then a vortex state �̃� = 𝜓 ◦ 𝜐(2𝜋)

𝐴𝐵𝐶
can be produced from 𝜓 by a conjugation

with an almost local unitary.

Proof. Let (𝒜, �̄�) be the inverse of (𝒜, 𝜓), and let 𝛽 be an LGA such that (𝜓⊗�̄�)◦𝛽 =

Ψ0 for a factorized state Ψ0 on 𝒜 ⊗𝒜.

Since 𝜐(2𝜋)
𝐴𝐵𝐶

is 𝑓 -localized on the path 𝐴𝐵 for some 𝑓 ∈ ℱ
+
∞ that depends on the

localization of k only, the restriction of the state (�̃� ⊗ �̄�) ◦ 𝛽 to 𝐶 is 𝑔-close at 𝑝 to
Ψ0 |𝐶 for some 𝑔 ∈ ℱ+∞ depending on 𝑓 . Choose a cone𝐶′′ inside𝐶 and a tripartition
(𝐴′, 𝐵′, 𝐶′) with the same apex such that the path 𝐴′𝐵′ is contained inside 𝐶′′. Let
�̃�′ = 𝜓 ◦𝜐(2𝜋)

𝐴′𝐵′𝐶′ . Since 𝜐(2𝜋)
𝐴′𝐵′𝐶′ is 𝑓 ′-localized on the path 𝐴𝐵 for some 𝑓 ′ ∈ ℱ+∞ that

depends on the localization of k only, the restriction of the state (�̃�′ ⊗ �̄�) ◦ 𝛽 to 𝐶𝑐 is
𝑔′-close at 𝑝 to Ψ0 |𝐶𝑐 for some 𝑔′ ∈ ℱ+∞ depending on 𝑓 ′. By Proposition 5.2, states
�̃� and �̃�′ are related by an almost local unitary. Therefore, the restrictions of the state
(�̃� ⊗ �̄�) ◦ 𝛽 to 𝐶 and to 𝐶𝑐 are 𝑔′′-close at 𝑝 to Ψ0 |𝐶 and Ψ0 |𝐶𝑐 , respectively, for
some 𝑔′′ ∈ ℱ+∞. By the same proof as in Lemma 4.2, we conclude that (�̃� ⊗ �̄�) ◦ 𝛽
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is ℎ-close at 𝑝 to Ψ0 for some ℎ ∈ ℱ+∞, and therefore, by Proposition C.2 there is a
unitary V𝐴𝐵𝐶 ∈ 𝒜𝑎ℓ, such that (�̃� ⊗ 𝜓′) ◦ 𝛽 = Ψ0 ◦ AdV𝐴𝐵𝐶

. □

Remark 5.6. For an admissible tripartition (𝐴, 𝐵, 𝐶), the localization of the unitary
V𝐴𝐵𝐶 that produces a vortex state depends on the localization of k only.

The fact that a vortex can be produced by an almost local unitary implies that it has
an integer charge as an operator representing Q in the GNS representation has an
integer spectrum. Together with Proposition 5.3, it gives

Corollary 5.1. Let 𝜓 be an invertible𝑈 (1)-invariant state of a spin system 𝒜. Then
𝜎 ∈ Z.

The relation between the statistics of vortices and the invariant 𝜎, allows us to prove
a stronger result.

Theorem 5.1. Let 𝜓 be an invertible𝑈 (1)-invariant state of a spin system 𝒜. Then
𝜎 ∈ Z. Moreover, if the system is bosonic, then 𝜎 ∈ 2Z.

Proof. Firstly, we consider the case of a bosonic spin system.

By Proposition 5.4 and Remark 5.6, for a fixed choice of k, there is 𝑓 ∈ ℱ+∞ such
that any vortex state constructed using an admissible graph can be produced by an
almost local unitary which is 𝑓 -localized at the point of the vortex.

Let us consider the partition of the plane depicted on Fig. 5.7 with segments
connecting triple points having length 𝐿. Let V1 and V2 be almost local unitary
observables creating vortices at points 1 and 2 as shown on Fig. 5.7a and Fig. 5.7b,
let W1̄2 be a transport operator shown on Fig. 5.7c, and let |0⟩ be the cyclic vector in
the GNS representation (𝜋𝜓 ,H𝜓) of 𝜓. Then, using the results from Section 5.2, we
have

|0⟩ = 𝜋𝜓
(
(V−1

2 V1) (V2V
−1
1 )

)
|0⟩ + O(𝐿−∞) =

= 𝑒−𝜋𝑖𝜎/2𝜋𝜓
(
V−1

2 V1W1̄2

)
|0⟩ + O(𝐿−∞) = 𝑒−𝜋𝑖𝜎 |0⟩ + O(𝐿−∞). (5.12)

As 𝐿 can be chosen to be arbitrarily large, we have 𝜎 ∈ 2Z.

For fermionic systems the arguments are the same, but the unitaries V1,2 relating the
vortex states to the ground state can either (both) preserve or flip fermionic parity. In
the former case, the unitaries have even fermionic parity, and the same arguments as
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Figure 5.7: The processes corresponding to V1, V2 and W1̄2.

above show that 𝜎 ∈ 2Z. In the latter case, they have odd fermionic parity, and thus
operators creating vortices at widely separated points anti-commute up to O(𝐿−∞)
terms. The above argument then shows that 𝜎 is an odd integer. Thus vortices are
bosons or fermions depending on whether 𝜎 is even or odd, in agreement with [59].

□
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C h a p t e r 6

STATES OF 2D LATTICE SYSTEMS FROM VERTEX ALGEBRAS

It is believed that topological phases of matter in two dimensions can be classified by
(2 + 1)-dimensional unitary topological quantum field theories (TQFT) and that the
whole information about this TQFT is encoded in the entanglement structure of the
ground state. In particular, for any such topological field theory, there should be a
pure state of a lattice model on R2 that has the corresponding topological order.

There is a big class of non-chiral topological orders that can be realized by tensor
network states defined using the Turaev-Viro construction. The string-net models
introduced by M. Levin and X.-G. Wen [45, 23, 14] provide parent commuting
projector Hamiltonians for such states. The situation is very different for chiral
topological order as only a few chiral interacting topological models have been
solved exactly [40]. One of the main features of such states is the non-existence of a
boundary with short-range correlations. When the boundary modes of the system
with such a ground state can be described by a conformal field theory, this obstruction
manifests itself in the central charge of the chiral Virasoro algebra.

It was suggested a long time ago that the wave function of electrons for the ground
state of a fractional quantum hall system is related to some vertex operator algebra
[49], generalizing Laughlin’s wave function. Similar ideas have been used to propose
various candidates for chiral topologically ordered states of lattice systems [33, 58,
53]. While some expected properties of such states can be checked numerically, it is
difficult to verify analytically that they are representatives of the correct topological
phase. To the best of our knowledge, no general proposal exists for an arbitrary
unitary TQFT. Even a lattice state for the simplest non-trivial invertible bosonic
phase, known as Kitaev’s 𝐸8 phase, has not been described explicitly.

In this chapter, we propose class of states of lattice systems with infinite-dimensional
on-site Hilbert spaces1 associated with any simple unitary regular vertex operator
algebra. We show that the states from this class are well-defined in the thermodynamic
limit and have exponentially decaying correlations. We argue that they have the
topological order associated with the vertex operator algebra and propose a way to

1The entanglement of each site in the construction is finite. The states can be well approximated
by replacing the infinite-dimensional spaces with finite-dimensional ones of large enough dimension.
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insert anyons. In particular, we obtain a lattice realization of a fractional quantum
Hall state with such a topological order2. We argue that our states belong to the
class for which flux insertions and the topological invariant associated with the Hall
conductance can be defined in a similar way as in Chapter 5, and show that the latter
coincides with the expected value. The usage of infinite-dimensional on-site Hilbert
spaces allows us to use the full power of conformal invariance and get analytic results
by relating state averages of observables of a lattice system to correlators of a certain
auxiliary tensor network statistical model that was recently introduced in [13]. It also
allows us to map the problems of computing invariants of states and determining
the properties of topological excitations to evaluations of correlation functions in
CFT which can be done exactly. We emphasize that our chiral states are not tensor
network states. However, we show that they can be obtained as a limit of a family of
non-chiral tensor network states together with a decoupled complex conjugated copy.

Our exposition would be more informal in this chapter compared to the previous ones.
We give a precise description of the class of states and show that it is well-defined,
but we only sketch the proofs of various properties. A more detailed account needs a
generalization of the methods from previous chapters to the case of lattice systems
with infinite-dimensional on-site Hilbert spaces and will appear elsewhere.

6.1 General construction
Preliminaries
Vertex operator algebra

Let V be a simple unitary regular vertex operator algebra with the vacuum vector
|0⟩ ∈ V and vertex operators 𝑌 (·, 𝑧) : V→ End V[[𝑧±1]]. The energy-momentum
tensor (the vertex operator for the conformal element) is denoted𝑇 (𝑧) = ∑

𝑛∈Z 𝐿𝑛𝑧
−𝑛−2

with the central charge 𝑐. Let Rep(V) be the category of representations of V, which
has the structure of a unitary modular tensor category [31]. We denote the finite
set of simple objects of Rep(V) by 𝐼 with the trivial object denoted 𝑎 = 1 and with
the dual label being �̄�. We let V(𝑎) be the corresponding modules, and let V(𝑎) be
the corresponding Hilbert spaces. We choose an orthonormal basis 𝑒(𝑎)𝑚 in V(𝑎) and
the corresponding basis |𝑒(𝑎)𝑚 ⟩ in V(𝑎) labeled by integers 𝑚 ∈ N0 such that |𝑒(𝑎)𝑚 ⟩
are eigenvectors of 𝐿0 with the weight ℎ(𝑎) (𝑚) and ℎ(𝑎) (𝑚) ≤ ℎ(𝑎) (𝑚′) if 𝑚 < 𝑚′.
When we omit the label 𝑎, we mean 𝑎 = 1.

2For an integer quantum Hall phase, a commuting projector Hamiltonian model has been proposed
in [17].
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By the state-operator correspondence, any vector |𝑒𝑚⟩ ∈ V on the boundary of the
unit disk 𝐷 can be obtained by the insertion of 𝑌 (𝑒𝑚, 0). More generally, if we have
a holomorphic embedding of the unit disk 𝜑 : 𝐷 → C, in order to obtain a state |𝑒𝑚⟩
on the boundary of the closure of the image, we need to insert (see, e.g., Section 5.4
of [20])

O𝜑 (𝑒𝑚) := 𝑌 (𝑅𝜑𝑒𝑚, 𝜑(0)) (6.1)

where

𝑅𝜑 = 𝑣
𝐿0
0 exp

( ∞∑︁
𝑚=1

𝑣𝑚𝐿𝑚

)
= exp

( ∞∑︁
𝑚=1

𝑣𝑚

𝑣𝑚0
𝐿𝑚

)
𝑣
𝐿0
0 (6.2)

and 𝑣𝑛 ∈ C are given by the solution of

𝑣0 exp
( ∞∑︁
𝑚=1

𝑣𝑚𝑧
𝑚+1𝜕𝑧

)
𝑧 = 𝜑(𝑧) − 𝜑(0). (6.3)

We also introduce ⟨𝛼, 𝜑| as the covector that is parallel to ⟨0|O𝜑 (𝛼)† and normalized
such that ⟨𝛼, 𝜑|O𝜑 (𝛼) |0⟩ = 1.

Evaluation maps

Let Γ be a finite set, and let VΓ :=
⊗

𝑗∈Γ V 𝑗 where V 𝑗 � V. Let 𝜑Γ := {𝜑 𝑗 } 𝑗∈Γ be a
collection of holomorphic embeddings 𝜑 𝑗 : 𝐷 → C of open unit disks with disjoint
images, which closures we denote by 𝐵 𝑗 . The vector |ΨΓ⟩ ∈ VΓ is defined by

⟨ΨΓ |𝑒𝑚Γ
⟩ = ⟨

∏
𝑗∈Γ

O𝜑 𝑗
(𝑒𝑚 𝑗
)⟩ (6.4)

where |𝑒𝑚Γ
⟩ :=

⊗
𝑗∈Γ |𝑒𝑚 𝑗

⟩ ∈ VΓ. This vector is well-defined since ⟨ΨΓ |ΨΓ⟩ is
given by the partition function on the Riemann surface obtained by gluing two copies
of C\{𝐵 𝑗 } 𝑗∈Γ along the boundaries of 𝐵 𝑗 (in the sector with only the states of the
trivial module running through the tubes connecting the holes) and therefore is finite.
We denote the corresponding pure state on the algebra B(VΓ) of bounded operators
on VΓ by ΨΓ : B(VΓ) → C. We can interpret VΓ as the Hilbert space for chiral
modes living on the boundaries of 𝐵 𝑗 .

Let Γ∗ be a pointed set Γ ⊔ {∗} obtained by adjoining a new element ∗, and let
VΓ∗ := V ⊗ VΓ. If, in addition to the data from the previous paragraph, we have a
holomorphic embedding 𝜑∗ : 𝐷 → C such that its image contains all {𝐵 𝑗 } 𝑗∈Γ, we
can define a vector |ΨΓ∗⟩ ∈ VΓ∗ by

⟨ΨΓ∗ |𝑒𝑚∗𝑒𝑚Γ
⟩ = ⟨𝑒𝑚∗ , 𝜑∗ |

∏
𝑗∈Γ

O𝜑 𝑗
(𝑒𝑚 𝑗
)⟩. (6.5)
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This vector defines a natural pure state ΨΓ∗ of modes on the boundary of Σ that is the
closure of (Im 𝜑∗)\

(⋃
𝑗∈Γ 𝐵 𝑗

)
.

Conformal field theory

When we say CFT, we always mean the diagonal (or Cardy case [22]) conformal field
theory associated with V. We denote the anti-holomorphic sector by V. The Hilbert
space on a circle is HCFT =

⊕
𝑎∈𝐼

(
V(𝑎) ⊗ V

(𝑎))
. The topological line defects and

the elementary conformal boundary conditions [15] for the diagonal CFT are labeled
by elements of 𝐼. We denote the Hilbert space of states on the interval with the left
boundary condition 𝑎 and the right boundary condition 𝑏 by H(𝑎𝑏) . We choose a
basis |𝑒(𝑎𝑏)𝑚 ⟩, 𝑚 ∈ N0 ordered by weights. We also use Ĥ :=

⊕
𝑎,𝑏∈𝑀 H(𝑎𝑏) .

An elementary conformal boundary condition on the outer part of the disk of radius
𝑟 < 1 corresponds to the state on the circle

|𝑎⟩ = 𝑟−𝑐/6
∑︁
𝑏∈𝐼

𝑆𝑎𝑏√
𝑆1𝑏

∞∑︁
𝑚=0

𝑟2ℎ (𝑏) (𝑚) |𝑒(𝑏)𝑚 ⟩ ⊗ |𝑒(𝑏)𝑚 ⟩ ∈ HCFT (6.6)

where 𝑟−𝑐/6 is the Liouville factor for the disk, and 𝑆𝑎𝑏 are the components of the 𝑆
matrix. Their linear combinations

|𝑏⟩⟩ = (𝑆1𝑏)1/2
∑︁
𝑎∈𝐼

𝑆∗𝑏𝑎 |𝑎⟩ = 𝑟
−𝑐/6

∞∑︁
𝑚=0

𝑟2ℎ (𝑏) (𝑚) |𝑒(𝑏)𝑚 ⟩ ⊗ |𝑒(𝑏)𝑚 ⟩ (6.7)

are called the Ishibashi states. We extensively use the linear combination of
elementary boundary conditions (or topological line defects) that corresponds to the
Ishibashi state of the vacuum

|1⟩⟩ = (𝑆11)1/2
∑︁
𝑎∈𝐼

𝑆1𝑎 |𝑎⟩ = 𝑟−𝑐/6
∞∑︁
𝑚=0

𝑟2ℎ(𝑚) |𝑒𝑚⟩ ⊗ |𝑒𝑚⟩. (6.8)

We call it cloaking linear combination following [13], where its various properties
are discussed. In particular, any topological line defect can freely pass through a
hole with the cloaking linear combination of boundary conditions without changing
the correlation functions

= . (6.9)

The discussion about the state-operator correspondence can be generalized to bulk
and boundary field insertions of the diagonal CFT. For a holomorphic embedding
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𝑓 : 𝐷 → C of the unit disk, we denote the bulk field insertion at 𝑓 (0) that produces
|𝛼⟩ ⊗ |�̄�⟩ ∈ V(𝑎) ⊗ V

(𝑎)
on the boundary of the image by O

(𝑎)
𝑓
(𝛼 ⊗ �̄�). For 𝑓 that

maps the interval [−1, 0] to the boundary with the elementary boundary condition 𝑎,
the interval [0, 1] to the boundary with the elementary boundary condition 𝑏 and
the upper half-disk to the bulk, the boundary field insertion at 𝑓 (0) that produces
an open state vector |𝛼⟩ ∈ H(𝑎𝑏) on the image of the upper half-circle is denoted
O
(𝑎𝑏)
𝑓
(𝛼).

Chiral state
Let Λ be the two-dimensional lattice which we identify with Z2 ⊂ C. The elements
of the lattice are called sites, while the segments connecting two neighboring sites
are called edges. The dual lattice is denoted Λ∨. The location of 𝑗 ∈ Λ or 𝑗 ∈ Λ∨ on
the complex plane is denoted 𝑧 𝑗 ∈ C. For a finite subset Γ ⊂ Λ we let the algebra
of observables of the finite lattice system on Γ be 𝒜Γ :=

⊗
𝑗∈Γ B(V 𝑗 ). When V is

fermionic, we use the graded tensor product. In the thermodynamic limit, we define
the algebra of quasi-local observables 𝒜 on Λ, which is the norm completion of the
algebra of local observables 𝒜ℓ defined by the canonical direct limit 𝒜ℓ := lim−−→

Γ

𝒜Γ.

We considerΓ ⊂ Λ that are the sets of sites inside the square {𝑧 ∈ C : | Re(𝑧) |, | Im(𝑧) | <
𝑁 + 1/2} for some 𝑁 ∈ N. As explained in Section 6.1, to each such subset we
can associate vectors |ΨΓ⟩ ∈ VΓ and |ΨΓ∗⟩ ∈ VΓ∗ if we choose a collection of
holomorphic embeddings 𝜑Γ∗ := {𝜑 𝑗 } 𝑗∈Γ∗ of the unit disk. To fix this data, we
choose a function 𝑓 (𝑧) that maps the unit disk into the interior of the square with
vertices at (±1 ± 𝑖)Y for 0 < Y < 1/2 and let 𝜑 𝑗 (𝑧) := 𝑓 (𝑧) + 𝑧 𝑗 . We also fix some
𝜑∗ such that Im 𝜑∗ is given by the square from the first sentence of this paragraph.
The resulting surface Σ is the square Im 𝜑∗ with a collection of holes at each site of
Γ (see Fig. 6.1).

In the following, for convenience, we choose a particular one-parameter family of
functions 𝑓 (𝑧) defined in eq. (D.6) with the parameter 𝜏 > 0 that characterizes the
size of the holes. When 𝜏 → 0, the holes almost touch each other, while when 𝜏
is large, the holes are very small. To emphasize the dependence on 𝜏, we write Σ𝜏,
Ψ𝜏,Γ and Ψ𝜏,Γ∗

The norm ⟨Ψ𝜏,Γ∗ |Ψ𝜏,Γ∗⟩ is given by the partition function on the Riemann surface
obtained by gluing two copies of Σ𝜏 in the sector with only the states of the trivial
module running through the tubes connecting the holes. Alternatively, it is given
by the partition function of CFT on Σ𝜏 with the cloaking linear combinations of
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Figure 6.1: The surface Σ𝜏 and its partition into elementary blocks.

elementary boundary conditions. It can be computed by cutting the resulting surface
along the edges of Λ and gluing using the usual rules (see Fig. 6.1). Such a
decomposition defines a tensor network statistical model that is similar to the one
introduced in [13]. Note that when the holes are large, the necks of the elementary
blocks are very thin, and therefore the states with non-zero weight running through
the necks are suppressed.

We claim that the direct limit of the restriction of the state Ψ𝜏,Γ∗ to 𝒜Γ over Γ ⊂ Λ

exists and defines a pure state Ψ𝜏 on 𝒜. In Appendix D.3, we argue that it is true at
least for sufficiently small but finite 𝜏 using the cluster expansion, though we believe
that it is true for any 𝜏. We also show that the state Ψ𝜏 has exponential decay of
correlations of local observables.

Remark 6.1. While we have fixed the lattice to be a square lattice and the shape
of the holes, we believe that construction works for any (not necessarily ordered)
lattice and holes around sites that homogeneously fill the plane so that the widths
of the necks of all elementary blocks are uniformly bounded. In particular, for the
cluster expansion to work, we only need all the holes to be relatively close to each
other so that all the necks are sufficiently thin.

Remark 6.2. We can make the correlation length arbitrarily small by choosing a
small enough value of 𝜏. When 𝜏 grows, the holes shrink, and each site becomes
more and more disentangled. However, the correlation length grows with 𝜏 since the
necks of the elementary blocks become thicker and the states running through the
necks are becoming less and less suppressed. Therefore, decreasing the size of the
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holes homogeneously does not allow to disentangle the sites without destroying the
locality.

Remark 6.3. The states Ψ𝜏,Γ and Ψ𝜏,Γ∗ almost coincide in the bulk, and therefore
we can also get Ψ𝜏 by taking the thermodynamic limit of Ψ𝜏,Γ. The advantage of
working with Ψ𝜏,Γ∗ over Ψ𝜏,Γ is that the former has decaying correlations for any two
distant observables of 𝒜Γ, while the latter has relatively large correlations between
distant observables near the boundary (as the decay of such correlations is only
polynomial). The entanglement with the modes living in the auxiliary factor V in VΓ∗

effectively localizes the boundary correlations.

Remark 6.4. One can analogously define states on a finite lattice modeling the
system on an arbitrary Riemann surface. In this case, one generally has a non-trivial
space of conformal blocks, and each basis element gives its own state.

In the remainder of the chapter, we give arguments in support of the fact that Ψ𝜏 has
the topological order associated with the vertex algebra V.

Local perturbations

One natural way to modify the state Ψ𝜏 locally is to insert a vertex operator into the
defining correlator eq.(6.5) for ΨΓ∗ (such that the resulting vector in VΓ∗ is non-zero)
and take the thermodynamic limit. Such an insertion corresponds to a change of
an element of the tensor network statistical model that computes the averages of
observables in the state Ψ𝜏. The analysis from Appendix D.3 implies that the change
of the expectation values of observables outside a large disk around the insertion
exponentially decays with the size of the disk. Using this, one can argue that the
modified state can be obtained from Ψ𝜏 by an almost local3 unitary observable (see
Appendix C).

A local variation of the moduli of the Riemann surface Σ𝜏 (e.g., changing the size
of a hole) corresponds to the insertion of a certain combination of vertex operators
from the Virasoro subalgebra, and therefore can also be performed by an almost local
unitary observable. The localization of the observable (i.e., the rate of decay of the
“tails") depends on the correlation length. Suppose a global variation of the moduli
is composed of local changes which keep the correlation length bounded. Using

3By almost local, we mean that the observable can be approximated by a local one with the error
(in the operator norm) that decays rapidly (faster than any power) with the diameter of the support
(see [36] for a precise characterization).
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unitaries for local changes, one can construct a finite time Hamiltonian evolution, with
the Hamiltonian being a sum of almost local terms, that performs the global change.
Therefore, states related by such a global variation are in the same topological phase.
In particular, the states Ψ𝜏 are in the same phase for different values of 𝜏 as long as
the correlation length stays finite.

One can also modify the state by entangling it with ancillas. If we describe the
initial ancillary state as a pure state of the trivial module living on the boundary of a
decoupled disk, one can create a “wormhole" between this disk and Σ𝜏 (i.e., cutting
a small disk out of each surface and gluing the boundaries) by inserting a certain
combination of vertex operators as only the states of the trivial module are running
through this wormhole. Hence, the modified state can be obtained from the original
one by an almost local unitary which entangles the sites of the lattice with the ancilla.
By inverting the process, we can disentangle any single site of the lattice system.
Note, however, that in this way, we can not disentangle all the spins of the system
keeping the correlation length finite (see Remark 6.2).

Anyons

One can also modify the state Ψ𝜏 by inserting non-trivial modules of V. A choice of
a holomorphic embedding of the open unit disk 𝜐 : 𝐷 → Σ𝜏 and a vector 𝛼(𝑎) ∈ V(𝑎)

gives the map V(𝑎) ⊗ VΓ → C that evaluates the amplitude on the Riemann surface
with fixed state vectors |𝛼(𝑎)⟩ ∈ V(𝑎) , |𝑒(𝑎)𝑚∗ ⟩ ∈ V(𝑎) , {|𝑒𝑚 𝑗

⟩ ∈ V 𝑗 } 𝑗∈Γ on the
boundaries of the closures of the images of 𝜐, 𝜑∗, {𝜑 𝑗 } 𝑗∈Γ, respectively. Therefore 𝜐
and 𝛼(𝑎) define |Ξ(𝑎)

𝜏,Γ∗
⟩ ∈ V(𝑎)

Γ∗
:= V(𝑎) ⊗ VΓ. We interpret the thermodynamic limit

Ξ
(𝑎)
𝜏 of the corresponding state on 𝒜Γ as a state of the anyon of type 𝑎 localized on

sites in the vicinity of the image of 𝜐. More generally, one can insert several anyons
by choosing a collection of embeddings of open unit disks into Σ𝜏, a collection of
elements of the modules, and an element of the corresponding space of conformal
blocks. The determination of braiding properties is reduced to the analysis of the
correlation functions of CFT.

By the arguments from the previous subsection, one can move anyons (or create
particle-antiparticle pairs) on the lattice using a Hamiltonian evolution, with the
Hamiltonian being a sum of almost local terms localized along the path. In particular,
a non-trivial anyon inside a large ring can be detected by an observable of the algebra
that performs a transport of an anyon with non-trivial braiding around the ring. It
implies that Ξ(𝑎)𝜏 is not related to Ψ𝜏 by an almost local unitary observable.
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Figure 6.2: The surfaces Σ̃𝜎 (on the left) and Σ𝜏,𝜎 (on the right).

Doubled state and invertibility
While the averages in the state Ψ𝜏 can be computed using an auxiliary tensor network
statistical model, the state itself is not defined as a tensor network state. However,
there is a natural family of tensor network states Φ𝜏 (𝜎), 𝜎 ∈ (0,∞) of the doubled
system, such that in the limit 𝜎 → ∞ one gets Ψ𝜏 ⊗ Ψ𝜏, where Ψ𝜏 is the state
obtained by complex conjugation.

Let us first define Φ𝜏 (𝜎) using the correlation functions of CFT operators. Let Σ̃𝜎
be the surface obtained by taking the closure of Im 𝜑∗ after removing the images
of 𝑓 (𝑧) + 𝑧𝑘 for each 𝑘 ∈ Λ∨ (see Fig. 6.2), where 𝑓 (𝑧) is given by 𝑓 (𝑧) with 𝜏
replaced by 𝜎. We define |Φ𝜏,Γ (𝜎)⟩ ∈ VΓ ⊗ VΓ by

⟨Φ𝜏,Γ (𝜎) |𝑒𝑚Γ
𝑒𝑚Γ
⟩ = ⟨

∏
𝑗∈Γ

O𝜑 𝑗
(𝑒𝑚 𝑗

⊗ 𝑒𝑚 𝑗
)⟩CFT

Σ̃𝜎
(6.10)

with the cloaking linear combination of boundary conditions along the boundary of
Σ̃𝜎. Alternatively, one can define the components of |Φ𝜏,Γ (𝜎)⟩ as a correlator of
the vertex algebra on a Riemann surface obtained by gluing two copies of Σ̃𝜎 in the
sector with only the states of the trivial module running through the holes.

We claim that the direct limit of the state Φ𝜏,Γ (𝜎) over Γ ⊂ Λ exists and defines a
pure state Φ𝜏 (𝜎) on 𝒜 ⊗𝒜 with exponential decay of correlations. In the same way
as for Ψ𝜏, one can show that this claim holds at least for small enough 𝜏 using the
cluster expansion.

To define it as a tensor network state, let Σ𝜏,𝜎 be the surface obtained by removing
the images of 𝜑Γ from Σ̃𝜎 (see Fig. 6.2). We can cut the surface Σ𝜏,𝜎 along the
edges of the lattice Λ∨ to decompose it into elementary blocks. Each block gives a
map V ⊗ V ⊗ Ĥ⊗4 → C that defines a tensor network state with the physical space
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being V ⊗ V and with the auxiliary Hilbert space being Ĥ on each leg. In Appendix
D.2, we explain how one can get an expression for the components of the map in
terms of the CFT correlation functions on the unit disk.

The parameter 𝜏 gives an upper bound on the correlation length of the states Φ𝜏 (𝜎)
for any 𝜎, that follows from the auxiliary statistical model obtained by cutting along
the edges of Λ in the same way as in Section 6.1. When 𝜎 is large, the presence of
the holes near the sites of the dual lattice is negligible, and the state Φ𝜏 (𝜎) is locally
close to the tensor product of pure states Ψ𝜏 and Ψ𝜏. On the contrary, when 𝜎 → 0,
the holes are large, and the individual spins become more and more disentangled.
One can produce Φ𝜏 (𝜎) from Ψ𝜏 ⊗ Ψ𝜏 by creating "wormholes" (with only the
states of the trivial module running though it) at each site of the dual lattice. As
argued in Section 6.1, each wormhole can be created by an almost local unitary. The
localization of such unitaries would not be affected if some wormholes have already
been created. Hence, one can compose such creation processes to argue that both
states are in the same topological phase. The same argument does not work if one
tries to disentangle the state Φ𝜏 (𝜎) by disconnecting the necks of the tensor network
since the states of non-trivial modules are running through them.

The situation is special when V is a holomorphic vertex operator algebra, i.e., 𝐼 = {1}.
In that case, there is only a single boundary condition, and only one state running
through the legs of the tensor network is not suppressed in the limit 𝜎 → 0. The
state Φ𝜏 (𝜎) can be completely disentangled into a factorized state, and since Φ𝜏 (𝜎)
is in the same phase as Ψ𝜏 ⊗ Ψ𝜏, the state Ψ𝜏 is invertible with the inverse being
Ψ𝜏. We conjecture that the states Ψ𝜏 for holomorphic vertex algebras with different
values of 𝑐 are in different invertible phase.

Remark 6.5. It is believed that invertible bosonic phases in two dimensions are
classified by 𝑐 ∈ 8Z [42]. Our construction produces a candidate for a state in a
non-trivial invertible phase for any holomorphic vertex operator algebra, including
a representative of Kitaev’s 𝐸8 phase, which is believed to be a generator of all
invertible phases. It would be desirable to show that any holomorphic vertex operator
algebra gives a state in the same topological phase as a stack of several 𝐸8 states.

Remark 6.6. While in this note we do not provide explicit parent Hamiltonians,
we want to point out that given a parent Hamiltonian 𝐻 for a tensor network state
Φ𝜏 (𝜎) we can construct a Hamiltonian for Ψ𝜏 by applying to 𝐻 a uniformly almost
local unitary evolution that produces Φ𝜏 (𝜎) from Ψ𝜏 ⊗ Ψ𝜏 and taking the partial
average of the result over Ψ𝜏. In particular, it provides a parent gapped Hamiltonian
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Figure 6.3: The action of the 𝑈 (1) charge on a region 𝐴 can be implemented by
inserting

∫
𝜕𝐴
𝐽 (𝑧) 𝑑𝑧2𝜋𝑖 into the defining correlator eq. (6.4).

in the invertible case (since Φ𝜏 (𝜎) can be produced from a factorized state by a
uniformly almost local unitary Hamiltonian evolution and hence gapped).

Internal Lie-group symmetry
Suppose V has a𝑈 (1)-symmetry at level 𝑘 . Let 𝐽 (𝑧) be the corresponding current
with the operator product expansion

𝐽 (𝑧)𝐽 (𝑤) = 𝑘

(𝑧 − 𝑤)2
+ ... (6.11)

Our lattice model associated with V naturally has the on-site 𝑈 (1)-symmetry that
corresponds to the𝑈 (1) action on the vacuum module. The state Ψ𝜏 is𝑈 (1)-invariant.
For a region 𝐴, let 𝑄𝐴 be the generator of𝑈 (1) action on sites inside 𝐴. We have

⟨Ψ𝜏,Γ |𝑄𝐴 |𝑒𝑚Γ
⟩ = ⟨

(∮
𝜕𝐴

𝑑𝑧

2𝜋𝑖
𝐽 (𝑧)

) ∏
𝑗∈Γ

O𝜑 𝑗
(𝑒𝑚 𝑗
)⟩. (6.12)

As argued in Appendix C, there is a self-adjoint almost local observable 𝐾 (𝑧) ∈ 𝒜
such that the difference between the state vector for the state affected by the insertion
of 𝐽 (𝑧) and the vector 𝐾 (𝑧) |Ψ𝜏⟩ is proportional to |Ψ𝜏⟩. This observable can be
chosen to be𝑈 (1)-invariant using averaging over𝑈 (1) action. Since the action of𝑄𝐴

corresponds to the insertion of the integral of 𝐽 (𝑧) along 𝜕𝐴, it can be compensated
by the integral of 𝐾 (𝑧) over 𝜕𝐴, which corresponds to a uniformly almost local
Hamiltonian localized on 𝜕𝐴.

Using 𝐾 (𝑧), in a way similar to Chapter 5, we can define an analog of a 𝑈 (1)-
equivariant Berry class of spin systems 𝜎 for our lattice system that is given by

𝜎 = 2𝜋𝑖⟨
[∫

Im𝑧=0

𝑑𝑧

2𝜋𝑖
,

∫
Re𝑤=0

𝑑𝑤

2𝜋𝑖

]
𝐽 (𝑧)𝐽 (𝑤)⟩CFT

Σ𝜏
. (6.13)
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Only the singular term contributes to the integral. Since[∫
Im𝑧=0

𝑑𝑧

2𝜋𝑖
,

∫
Re𝑤=0

𝑑𝑤

2𝜋𝑖

]
1

(𝑧 − 𝑤)2
=

1
2𝜋𝑖

, (6.14)

we have 𝜎 = 𝑘 .

One can similarly consider the case of V with 𝐺-symmetry for a compact Lie group
𝐺. The analog of a 𝐺-equivariant Berry class of spin systems for the state Ψ𝜏 can be
identified with the level of the 𝐺-current subalgebra.

6.2 Examples
Free fermions
The vertex operator algebra of a single Weyl fermion is generated by the fields

𝜓(𝑧) =
∑︁
𝑛∈Z

𝜓−1/2−𝑛𝑧
𝑛, (6.15)

�̄�(𝑧) =
∑︁
𝑛∈Z

�̄�−1/2−𝑛𝑧
𝑛 (6.16)

with {�̄�𝑛, 𝜓𝑚} = 𝛿𝑚+𝑛,0, {�̄�𝑛, �̄�𝑚} = {𝜓𝑛, 𝜓𝑚} = 0 and the operator product expan-
sion (OPE)

�̄�(𝑧)𝜓(𝑤) = 1
𝑧 − 𝑤 + ... (6.17)

Each site of the lattice system has infinitely many fermionic modes labeled by
𝑟 ∈ Z + 1/2. The entanglement of modes in the state Ψ𝜏 decays with |𝑟 | so that
modes with large |𝑟 | are almost disentangled.

We have𝑈 (1) currents

𝐽 (𝑧) =
∑︁
𝑛∈Z

𝑧𝑛𝐽−𝑛−1 =: �̄�(𝑧)𝜓(𝑧) : (6.18)

and the corresponding on-site𝑈 (1) symmetry action for the lattice model. The class
𝜎 from eq. (6.13) of Ψ𝜏 is given by the level of the𝑈 (1)-current algebra that, in our
case, is equal to 1.

The lattice state Ψ𝜏 is free, i.e., the average of any observable can be expressed
through the two-point functions of the fermionic creation and annihilation operators
using Wick’s theorem. These two-point functions define a projector in the single
particle Hilbert space that fully characterizes the many-body free state. The index of
the projector determines whether the state is in a non-trivial phase [9, 1, 40]. The
doubled free state always has the𝑈 (1) symmetry that swaps the fermionic modes,
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and its 𝜎 is given by the index of the projector of the original system. Therefore the
index of the projector for Ψ𝜏 for a single Weyl fermion is 2.

The vertex algebra of a single Majorana-Weyl fermion is generated by

𝜒(𝑧) =
∑︁
𝑛∈Z

𝜒−1/2−𝑛𝑧
𝑛 (6.19)

with {𝜒𝑛, 𝜒𝑚} = 𝛿𝑚+𝑛,0 and the OPE

𝜒(𝑧)𝜒(𝑤) = 1
𝑧 − 𝑤 + ... (6.20)

Its double gives the Weyl fermion, and therefore the index of the projector of the
state corresponding to this vertex algebra is 1.

The states Φ𝜏 (𝜎) are also free and have the trivial index. They give a path between a
factorized state and Ψ𝜏 ⊗ Ψ𝜏 that shows invertibility of Ψ𝜏.

Free bosons
With every finite rank lattice 𝐿 equipped with a positive symmetric bilinear form
𝐾 : 𝐿 × 𝐿 → Z, one can associate the vertex operator algebra of free periodic bosons
with the OPE

𝜙𝑎 (𝑧)𝜙𝑏 (𝑤) = −𝐾𝑎𝑏 log(𝑧 − 𝑤) + ... (6.21)

Depending on whether the lattice is even or odd, we can generate examples of chiral
states of bosonic and fermionic lattice systems.

𝐸8 state

The simplest non-trivial free bosonic system that has no anyons is given by free
periodic bosons 𝜙𝑎, 𝑎 = 1, ..., 8 with

⟨𝜙𝑎 (𝑧)𝜙𝑏 (𝑤)⟩ = −(𝐶−1)𝑎𝑏 log(𝑧 − 𝑤) (6.22)

where (𝐶−1)𝑎𝑏 is the inverse of the Cartan matrix of 𝐸8. The corresponding state Ψ𝜏
is invertible, as discussed in Section 6.1.

𝑈 (1)𝑚 state

Let us now consider the topologically ordered states produced by a single periodic
boson with

⟨𝜙(𝑧)𝜙(𝑤)⟩ = − 1
𝑚

log(𝑧 − 𝑤) (6.23)
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𝐶

𝐴 𝐵

Figure 6.4: The partition of the plane into three cone-like regions.

for 𝑚 ∈ 2Z. The simple modules are labeled by 𝑝 = 0, ..., 𝑚 − 1. The module with
label 𝑝 corresponds to the field 𝑒𝑖𝑝𝜙.

The system has𝑈 (1) symmetry 𝐽 (𝑧) = 𝑖𝜕𝜙 at level 𝑘 = 1/𝑚

𝐽 (𝑧)𝐽 (𝑤) = 1/𝑚
(𝑧 − 𝑤)2

+ ... (6.24)

Therefore the resulting state realizes a fractional quantum Hall topological order
with 𝜎 = 1/𝑚.

Using 𝐾 (𝑧) from Section 6.1, we can define the analogs of vortex states from Section
5.2. For a tripartition (𝐴, 𝐵, 𝐶), let 𝐾𝐴𝐵 be the derivation that corresponds to the
integral of 𝐾 (𝑧) along the path 𝐴𝐵. The action of (𝑄𝐴 − 𝐾𝐴𝐵) on Ψ𝜏 corresponds
to the insertion of

∫
𝐴𝐵

𝑑𝑧
2𝜋𝑖 𝐽 (𝑧) where the integral is performed along the half-line

𝐴𝐵. Since 𝐽 (𝑧) = 𝑖𝜕𝜙, the state with the unit of flux and the state obtained by the
insertion of 𝑒𝑖𝜙 into the apex of the tripartition are related by an almost local unitary.
Thus, both states represent an anyon with fractional charge 𝜎 = 1/𝑚.
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A p p e n d i x A

TOPOLOGY OF ALGEBRAS OF OBSERVABLES

A.1 Fréchet spaces
A seminorm on a real or complex vector space 𝑉 is a map 𝑉 → R, 𝑣 ↦→ ∥𝑣∥ such
that ∥𝑣∥ ≥ 0 for all 𝑣 ∈ 𝑉 , ∥𝑣 + 𝑣′∥ ≤ ∥𝑣∥ + ∥𝑣′∥ for all 𝑣, 𝑣′ ∈ 𝑉 , and ∥𝑐𝑣∥ = |𝑐 |∥𝑣∥
for all 𝑣 ∈ 𝑉 and all scalars 𝑐. A seminorm is a norm if ∥𝑣∥ = 0 implies 𝑣 = 0.

A Fréchet space is a complete Hausdorff topological vector space whose topology
is determined by a countable family of seminorms ∥ · ∥𝛼, 𝛼 ∈ N0. A base of
neighborhoods of zero for such a topology consists of sets

𝑈(𝛼1,Y1)...(𝛼𝑛,Y𝑛) = {𝑣 ∈ 𝑉 : ∥𝑣∥𝛼𝑖 < Y𝑖, 𝑖 = 1, . . . , 𝑛}, (A.1)

where 𝑛 ∈ N, 𝛼𝑖 ∈ N0, and Y𝑖 > 0. Any finite-dimensional Euclidean vector space
is a special case where all the seminorms happen to be the same and equal to the
Euclidean norm.

In this work we will be often dealing with a situation where the seminorms satisfy
∥ · ∥0 ≤ ∥ · ∥1 ≤ ∥ · ∥2 ≤ . . .. One calls such Fréchet spaces graded Fréchet spaces.
Then the sets𝑈𝛼,Y = {𝑣 ∈ 𝑉 : ∥𝑣∥𝛼 < Y}, 𝛼 ∈ N0, also form a base of neighborhoods
of zero. A linear map 𝑓 : 𝑉 → 𝑉 ′ between graded Fréchet spaces is continuous iff
for any 𝛼 ∈ N0 there is a 𝛽 ∈ N0 and a constant 𝐶𝛼 such that ∥ 𝑓 (𝑣)∥𝛼 ≤ 𝐶𝛼∥𝑣∥𝛽.
The Cartesian product of two graded Fréchet spaces 𝑉,𝑉 ′ is also a graded Fréchet
space, with the seminorms ∥(𝑣, 𝑣′)∥𝛼 = ∥𝑣∥𝛼 + ∥𝑣′∥′𝛼.

Different families of seminorms on 𝑉 may define the same topology; in that case
one says that the families are equivalent. A family of seminorms ∥ · ∥′

𝛽
, 𝛽 ∈ N0 is

equivalent to a family ∥ · ∥𝛼, 𝛼 ∈ N0, if for any 𝛽 there is an 𝛼 and a constant 𝐶𝛽
such that ∥ · ∥′

𝛽
≤ 𝐶𝛽∥ · ∥𝛼, and vice versa, for any 𝛼 there is an 𝛽 and a constant 𝐶′𝛼

such that ∥ · ∥𝛼 ≤ 𝐶′𝛼∥ · ∥′𝛽.

If 𝑋 is a compact topological space and 𝑉 is a graded Fréchet space, then the space
𝐶 (𝑋,𝑉) of continuous 𝑉-valued functions on 𝑋 is also a graded Fréchet space. The
corresponding family of seminorms is ∥ 𝑓 ∥𝛼 = sup𝑥∈𝑋 ∥ 𝑓 (𝑥)∥𝛼, 𝛼 ∈ N0. In the
case when 𝑋 = [𝑎, 𝑏] ⊂ R elements of 𝐶 ( [𝑎, 𝑏], 𝑉) are called continuous curves
in 𝑉 . Most basic rules of calculus (such as the existence of integrals of continuous
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functions, the Fundamental Theorem of Calculus, the Mean Value Theorem, the
continuous dependence of integrals of continuous functions on parameters, etc.)
hold in the setting of continuous functions on regions in R𝑛 valued in a Fréchet space
𝑉 , see [24] for a review.

If 𝑋 is a non-compact topological space which is a union of compact subsets
𝐾0 ⊂ 𝐾1 ⊂ . . . such that 𝐾𝑖 ⊆ int(𝐾𝑖+1) for all 𝑖, then 𝐶 (𝑋,𝑉) is a Fréchet
space whose topology can be defined using seminorms ∥ 𝑓 ∥𝑛,𝛼 = sup𝑥∈𝐾𝑛

∥ 𝑓 (𝑥)∥𝛼,
𝑛, 𝛼 ∈ N0. This topology is independent of the choice of the compact subsets 𝐾𝑖.
Similar seminorms are also useful when defining Fréchet topology on spaces of
smooth functions and differential forms on manifolds. Let M be a compact manifold
of dimension 𝑀 and 𝑉 be a graded Fréchet space. A function 𝑓 : M → 𝑉 is
called smooth iff derivatives of all orders exist and are continuous. In particular, a
smooth function 𝑓 : [𝑎, 𝑏] → 𝑉 is called a smooth curve in 𝑉 . The space of smooth
𝑉-valued functions on M is denoted 𝐶∞(M, 𝑉). One can define a Fréchet topology
on 𝐶∞(M, 𝑉) as follows. First, we choose an atlas

{(
𝑈 (a) , ^ (a) : 𝑈 (a) → R𝑀

)}
for

M. Then we define a family of seminorms labeled by a chart index a, a compact
subset 𝐾 (a)𝑛 ⊂ 𝑈 (a) , 𝑘 ∈ N0 , and 𝛼 ∈ N0:

∥ 𝑓 ∥a,𝑛,𝑘,𝛼 = max
a

max
|𝐼 |≤𝑘

sup
𝑚∈𝐾 (a)𝑛

∥𝜕𝐼 𝑓 (𝑚)∥𝛼 . (A.2)

Here 𝐼 = {𝑖1, . . . , 𝑖𝑀} ∈ N𝑀0 , is a multi-index and |𝐼 | = ∑𝑀
𝑞=1 𝑖𝑞. Similarly, one can

define a Fréchet topology on the space of smooth 𝑝-forms Ω𝑝 (M, 𝑉) by regarding
the restriction of a 𝑝-form 𝜔 to𝑈 (a) as a collection of

(𝑀
𝑝

)
𝑉-valued functions. One

can show that the topologies thus defined do not depend on the choice of the atlas.

We will also need the notion of a possibly nonlinear smooth map from a Fréchet space
𝑊 to a Fréchet space 𝑉 . One says that 𝑓 : 𝑊 → 𝑉 is continuously differentiable if
the directional derivative

𝑑𝑓 (𝑤,Δ𝑤) = lim
𝑡→0

𝑓 (𝑤 + 𝑡Δ𝑤) − 𝑓 (𝑤)
𝑡

(A.3)

exists and is a continuous function on𝑊 ×𝑊 . Iterating this definition, one says that
a function 𝑓 : 𝑊 → 𝑉 is smooth if directional derivatives of all orders exist and
are continuous functions on𝑊 ×𝑊 × . . .. In particular, continuous linear maps are
smooth. So are continuous bilinear maps from𝑊 ×𝑊′ to 𝑉 . Composition of smooth
maps is smooth, other basic rules of calculus also hold true [24]. We will use these
notions to construct certain smooth maps from a manifold M to a Fréchet space 𝑉 as
compositions of smooth maps from M to a Fréchet space𝑊 and smooth maps from
𝑊 to 𝑉 .
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A.2 Algebra of almost local observables
Fix 𝑗 ∈ Λ. Since ∥ · ∥′

𝑗 ,𝛼
are norms and 𝒜𝑎ℓ is complete in these norms, the topology

induced by ∥ · ∥′
𝑗 ,𝛼

makes 𝒜𝑎ℓ into a complete Hausdorff space, and therefore into a
Fréchet space.

Proposition A.1. 𝒜𝑎ℓ is a Fréchet algebra.

Proof. For any A,A′ ∈ 𝒜𝑎ℓ and all 𝑟 ≥ 0 one has

𝑓 𝑗 (AA′, 𝑟) ≤ 𝑓 𝑗 (A, 𝑟) 𝑓 𝑗 (A′, 𝑟) + ∥A∥ 𝑓 𝑗 (A′, 𝑟) + ∥A′∥ 𝑓 𝑗 (A, 𝑟) ≤

≤ 3
2

(
∥A∥ 𝑓 𝑗 (A′, 𝑟) + ∥A′∥ 𝑓 𝑗 (A, 𝑟)

)
. (A.4)

Therefore for any 𝛼 ∈ N one has

∥AA′∥′𝑗 ,𝛼 ≤
3
2
∥A∥′𝑗 ,𝛼∥A′∥′𝑗 ,𝛼 (A.5)

that implies joint continuity of the multiplication. □

Proposition A.2. The topology on 𝒜𝑎ℓ defined by the norms ∥ · ∥′
𝑗 ,𝛼

for a fixed 𝑗 ∈ Λ
is independent of the choice of 𝑗 .

Proof. For any 𝑗 , 𝑘 ∈ Λ with 𝑅 = | 𝑗 − 𝑘 | we have 𝑓 𝑗 (A, 𝑟 + 𝑅) ≤ 𝑓𝑘 (A, 𝑟). Hence

∥A∥′𝑗 ,𝛼 ≤ ∥A∥ + sup
𝑟

(1 + 𝑟 + 𝑅)𝛼 𝑓𝑘 (A, 𝑟) ≤ (1 + 𝑅)𝛼∥A∥′𝑘,𝛼 . (A.6)

Therefore the families of norms {∥ · ∥′
𝑗 ,𝛼
} and {∥ · ∥′

𝑘,𝛼
} are equivalent. □

Lemma A.1. Let 𝑗 , 𝑘 ∈ Λ. Suppose an observable A ∈ 𝒜 satisfies 𝑓 𝑗 (A, 𝑟) ≤ Y1

and 𝑓𝑘 (A, 𝑟) ≤ Y2. Let B ∈ 𝒜𝐵 𝑗 (𝑟)∩𝐵 𝑗 (𝑟) be a best possible approximation of A on
𝐵 𝑗 (𝑟) ∩ 𝐵𝑘 (𝑟). Then

∥A −B∥ ≤ Y1 + Y2 +min(Y1, Y2). (A.7)

Proof. Let A(1) and A(2) be best possible approximations of A on 𝐵 𝑗 := 𝐵 𝑗 (𝑟) and
𝐵𝑘 := 𝐵𝑘 (𝑟), respectively, and let B(1) (resp. B(2)) be a best possible approximation
of A(1) (resp. A(2)) on 𝐵 𝑗 𝑘 := 𝐵 𝑗 (𝑟) ∩ 𝐵𝑘 (𝑟). Then

∥A −B∥ ≤ ∥A −B(1) ∥ ≤ ∥A −A(1) ∥ + ∥A(1) −B(1) ∥ ≤
≤ Y1 + ∥Π𝐵𝑘\𝐵 𝑗𝑘

(A(1) −A(2))∥ ≤ 2Y1 + Y2. (A.8)

□
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A.3 Brick expansion
A brick inR𝑑 is a subset ofR𝑑 of the form {(𝑥1, . . . , 𝑥𝑑) : 𝑛𝑖 ≤ 𝑥𝑖 < 𝑚𝑖, 𝑖 = 1, . . . , 𝑑},
where 𝑛𝑖 and 𝑚𝑖 are integers satisfying 𝑛𝑖 < 𝑚𝑖. The empty subset is also regarded
as a brick. A unit brick is a brick with 𝑚𝑖 = 𝑛𝑖 + 1 for all 𝑖. The intersection of
any two bricks is a brick. The set of all bricks in R𝑑 (including the empty set) is
denoted B𝑑 . It is a poset with a partial order given by inclusion. This poset has a
lower bound (the empty set) and is locally finite (i.e., for any two bricks 𝑌,𝑌 ′ ∈ B𝑑
the set {𝑍 ∈ B𝑑 , 𝑌 ≤ 𝑍 ≤ 𝑌 ′} is finite).

In Section 2.2, we defined the subspace 𝔡𝑌 ⊂ 𝔡𝑌 as an orthogonal complement of∑︁
𝑍∈B𝑑
𝑍⊊𝑌

𝔡𝑍 (A.9)

with respect to the inner product ⟨A,B⟩ = ⟨A∗B⟩∞. One can give a more explicit
description of this subspace using a Pauli basis of 𝒜ℓ. This is a basis obtained by
choosing an orthonormal self-adjoint basis E𝑘

𝑗
, 𝑘 = 0, . . . , 𝑑2

𝑗
− 1, 𝑑 𝑗 := dimV 𝑗 for

each 𝒜𝑗 (where the inner product is the same as above) so that E0
𝑗

is the identity
element in 𝒜𝑗 . The resulting basis elements of 𝒜ℓ can be labeled by functions
a : Λ→ N0 with a( 𝑗) < 𝑑2

𝑗
which vanish outside of a finite set. The identity element

in 𝒜ℓ corresponds to a being identically zero. If we denote by supp(a) ∈ Fin(Λ)
the support of a, then a basis for 𝔡𝑌 consists of those Ea for which supp(a) is
nonempty and supp(a) ⊆ 𝑌 . A basis for 𝔡𝑌 consists of those Ea for which, in
addition, supp(a) ⊈ 𝑍 for any brick 𝑍 ⊊ 𝑌 . Note that since 𝚫 < 1/2, every unit
brick (and therefore also every nonempty brick) contains at least one point of Λ.
Therefore 𝔡𝑌 is nonzero for every nonempty brick 𝑌 . For any A ∈ 𝔡𝑙 we have

A|𝑌 =
∑︁

𝑌 ′∈B𝑑 ,𝑌 ′⊆𝑌
A𝑌

′
. (A.10)

Recall [32] that to any locally finite poset 𝑃 which is bounded from below one can
attach its Möbius function `𝑃 : 𝑃× 𝑃→ Z. This function has the following property.
Let 𝑓 : 𝑃→ 𝑉 be any function with values in a vector space𝑉 . Let us define another
function 𝑔 : 𝑃→ 𝑉 by 𝑔(𝑦) = ∑

𝑧≤𝑦 𝑓 (𝑧). Then 𝑓 can be expressed through 𝑔 by

𝑓 (𝑦) =
∑︁
𝑧≤𝑦

`𝑃 (𝑧, 𝑦)𝑔(𝑧). (A.11)

The function `𝑃 (𝑧, 𝑦) is uniquely defined by this property if we demand `(𝑧, 𝑦) = 0
for 𝑧 ≰ 𝑦. The Möbius functions is multiplicative under Cartesian product: if 𝑃,𝑄
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are locally finite posets bounded from below, and 𝑃 ×𝑄 is given the obvious partial
order, then `𝑃×𝑄 = `𝑃 · `𝑄 .

Proposition A.3. For any A ∈ 𝔡𝑙 we have ∥A𝑌 ∥ ≤ 4𝑑 ∥A∥.

Proof. Note first that the poset B𝑑 is the Cartesian product of 𝑑 copies of B1. The
Möbius function of B1 is easily computed:

`B1 ( [𝑛′, 𝑚′), [𝑛, 𝑚)) =

(−1) (𝑛′−𝑛)+(𝑚−𝑚′) , if (𝑛′ − 𝑛), (𝑚 − 𝑚′) ∈ {0, 1},

0, otherwise.
(A.12)

Therefore `B𝑑 (𝑌 ′, 𝑌 ) ∈ {0, 1,−1} for all 𝑌 ′, 𝑌 ∈ B𝑑 and is nonzero if and only if the
integers 𝑛𝑖, 𝑚𝑖 and 𝑛′

𝑖
, 𝑚′

𝑖
defining𝑌 and𝑌 ′ satisfy𝑚𝑖−𝑚′𝑖 ∈ {0, 1} and 𝑛′

𝑖
−𝑛𝑖 ∈ {0, 1}

for all 𝑖. Applying the inversion formula to (A.10) we get

A𝑌 =
∑︁

𝑌 ′∈B𝑑 ,𝑌 ′⊆𝑌
`𝑑 (𝑌 ′, 𝑌 )A|𝑌 ′ . (A.13)

Since the sum on the r.h.s. contains exactly 4𝑑 terms, and since ∥A|𝑌 ∥ ≤ ∥A∥, we
get the desired estimate. □

Similarly, if for any A ∈ 𝔡𝑎𝑙 we define A𝑌 to be the 𝔡𝑌 component of A|𝑌 ∈ 𝔡𝑌 , then
we have the following estimate.

Proposition A.4. For any 𝑎 ∈ ℱ+∞ and any A ∈ 𝔡𝑎𝑙 which is 𝑎-localized at 𝑗 ∈ Λ
we have

∥A𝑌 ∥ ≤ 𝑏(diam({ 𝑗} ∪ 𝑌 )) (A.14)

where
𝑏(𝑟) = 22𝑑+1𝑎(max(0, 𝑟/(2

√
𝑑) − 2)). (A.15)

Proof. Let 𝐽 = (𝐽1, . . . , 𝐽𝑑) be a point of Z𝑑 such that |𝐽 − 𝑗 | < 1/2 (such a point
exists because we normalized the metric so that 𝚫 < 1/2). Suppose a nonempty brick
𝑌 ∈ B𝑑 is defined by integers 𝑛𝑖 < 𝑚𝑖, 𝑖 = 1, . . . , 𝑑. Let 𝐾 = max{|𝑚1−𝐽1 |, ..., |𝑚𝑑−
𝐽𝑑 |, |𝑛1−𝐽1 |, ..., |𝑛𝑑−𝐽𝑑 |}. Let 𝑍 be the brick [𝐽1−𝐾, 𝐽1+𝐾) × . . .× [𝐽𝑑−𝐾, 𝐽𝑑 +𝐾)
and let 𝑍′ = [𝐽1 − 𝐾 + 1, 𝐽1 + 𝐾 − 1) × . . . × [𝐽𝑑 − 𝐾 + 1, 𝐽𝑑 + 𝐾 − 1). Obviously, 𝑍
contains both 𝑌 and 𝑍′. It is also easy to see that 𝐵 𝑗 (𝑟) ⊂ 𝑍 for all 𝑟 < 𝐾 − 1/2, and
𝐵 𝑗 (𝑟) ⊂ 𝑍′ for all 𝑟 < 𝐾 − 3/2. Note also that 𝑌 contains a unit brick which does
not intersect 𝑍′, and thus 𝑌 contains at least one point of Λ which is not in 𝑍′.
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Since diam({ 𝑗} ∪ 𝑌 ) ≤ 2𝐾
√
𝑑, for 𝐾 < 2 we get diam({ 𝑗} ∪ 𝑌 ) < 4

√
𝑑, and thus

𝑏(diam({ 𝑗} ∪ 𝑌 )) = 22𝑑+1𝑎(0). Note also that ∥A|𝑌 ∥ ≤ ∥A∥ ≤ 2𝑎(0). Therefore
by Prop. A.3 we have ∥A𝑌 ∥ ≤ 22𝑑+1𝑎(0) and the condition (A.14) is satisfied.

It remains to consider the case 𝐾 ≥ 2. For any 𝑟 > 0 let B(𝑟) be a best possible
approximation of A on a ball 𝐵 𝑗 (𝑟). Since 𝐵 𝑗 (𝐾 −2) ⊂ 𝑍′, B(𝐾−2) |𝑌 is supported on

the brick𝑌 ∩ 𝑍′. Since𝑌 contains points of Λ which are not in𝑌 ∩ 𝑍′,
(
B(𝐾−2)

)𝑌
= 0

and thusA𝑌 = (A−B(𝐾−2))𝑌 . Therefore by Prop. A.3 we get ∥A𝑌 ∥ ≤ 22𝑑+1𝑎(𝐾−2).
Since diam({ 𝑗} ∪ 𝑌 ) ≤ 2𝐾

√
𝑑, the condition (A.14) is satisfied. □

Corollary A.1. For any A ∈ 𝒜𝑎ℓ the sum
∑
𝑌∈B𝑑 A

𝑌 Fréchet-converges to A.

Proof. By the above lemma, ∥A𝑌 ∥ 𝑗 ,𝛼 ≤ (1+ 𝑟)𝛼𝑏(𝑟), where 𝑟 = diam({ 𝑗} ∪𝑌 ) and
𝑏(𝑟) ∈ ℱ+∞. This proves convergence. By eq. (A.10), the sum is A. □

A.4 Chains
Other families of norms
In the body of the work, 𝔡𝑎𝑙 was defined as a completion of 𝔡𝑙 with respect to a
family of norms ∥ · ∥ 𝑗 ,𝛼 where 𝑗 ∈ Λ was fixed and 𝛼 ranged over N0 . Sometimes it
is useful to consider two other natural families of norms on 𝔡𝑙 labeled by the same
data:

∥A∥𝑐𝑒𝑣𝑗 ,𝛼 := sup
𝑟

(1 + 𝑟)𝛼∥A −A|𝐵 𝑗 (𝑟) ∥. (A.16)

∥A∥𝑏𝑟𝑗 ,𝛼 := sup
𝑌∈B𝑑
(1 + diam({ 𝑗} ∪ 𝑌 ))𝛼∥A𝑌 ∥. (A.17)

For a fixed 𝑗 , all three family of norms are non-decreasing with 𝛼.

Proposition A.5. The families of norms {∥ · ∥ 𝑗 ,𝛼}, {∥ · ∥𝑐𝑒𝑣.𝑗 ,𝛼
}, and {∥ · ∥𝑏𝑟

𝑗 ,𝛼
} define

the same topology on 𝔡𝑙 , and thus give rise to the same completion 𝔡𝑎𝑙 .

Proof. To show the equivalence of two non-decreasing families of norms, we need
to show that each norm from the first family is upper-bounded by a multiple of a
norm from the second family, and vice versa.

It follows directly from the definition that ∥A∥ 𝑗 ,𝛼 ≤ ∥A∥𝑐𝑒𝑣𝑗 ,𝛼 for all 𝛼 ∈ N0 and all
A ∈ 𝔡𝑙 .

Prop. A.4 implies

∥A𝑌 ∥ ≤ 22𝑑+1 𝑓 𝑗

(
A,max

(
0,

1
2
√
𝑑

diam({ 𝑗} ∪ 𝑌 ) − 2
))
. (A.18)
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Hence ∥A∥𝑏𝑟
𝑗 ,𝛼
≤ 𝐶𝛼∥A∥ 𝑗 ,𝛼 for some 𝐶𝛼 > 0.

Finally, let us show that ∥A∥𝑐𝑒𝑣
𝑗 ,𝛼

is upper-bounded by a multiple of ∥A∥𝑏𝑟
𝑗 ,𝛼+2𝑑+1. For

any observable A ∈ 𝔡𝑙 and any brick 𝑌 ⊂ 𝐵 𝑗 (𝑟) we have A𝑌 |𝐵 𝑗 (𝑟) = A𝑌 . Therefore

A −A|𝐵 𝑗 (𝑟) =
∑︁

𝑌⊈𝐵 𝑗 (𝑟)

(
A𝑌 −A𝑌 |𝐵 𝑗 (𝑟)

)
, (A.19)

and thus
∥A −A|𝐵 𝑗 (𝑟) ∥ ≤ 2

∑︁
𝑌⊈𝐵 𝑗 (𝑟)

∥A𝑌 ∥. (A.20)

Since for any 𝑌 ⊈ 𝐵 𝑗 (𝑟) we have diam({ 𝑗} ∪ 𝑌 ) ≥ 𝑟, we get

∥A∥𝑐𝑒𝑣𝑗 ,𝛼 ≤ 2𝐶𝑑 ∥A∥𝑏𝑟𝑗 ,𝛼+2𝑑+1, (A.21)

where we have used ∑︁
𝑌∈B𝑑
(1 + diam(𝑌 ∪ { 𝑗}))−(2𝑑+1) ≤ 𝐶𝑑 (A.22)

for some constant 𝐶𝑑 that depends on 𝑑 only. □

Similarly, in addition to {∥ · ∥𝛼} on 𝐶𝑞 (𝔡𝑎𝑙) we can introduce families of norms:

∥a∥𝑐𝑒𝑣𝛼 = sup
𝑎∈{0,1,...,𝑞}

sup
𝑗0,..., 𝑗𝑞∈Λ

∥a 𝑗0... 𝑗𝑞 ∥𝑐𝑒𝑣𝑗𝑎 ,𝛼, (A.23)

∥a∥𝑏𝑟𝛼 = sup
𝑎∈{0,1,...,𝑞}

sup
𝑗0,..., 𝑗𝑞∈Λ

∥a 𝑗0... 𝑗𝑞 ∥𝑏𝑟𝑗𝑎 ,𝛼 . (A.24)

Prop. A.5 implies that all these families of norms are equivalent with the following
dominance relations

∥a∥𝛼 ≤ ∥a∥𝑐𝑒𝑣𝛼 , ∥a∥𝑐𝑒𝑣𝛼 ≤ 𝐶∥a∥𝑏𝑟𝛼+2𝑑+1, ∥a∥𝑏𝑟𝛼 ≤ 𝐶𝛼∥a∥𝛼 . (A.25)

Continuity of chain maps
Proposition A.6. The boundary operator 𝜕𝑞 : 𝐶𝑞 (𝔡𝑎𝑙) → 𝐶𝑞−1(𝔡𝑎𝑙) for 𝑞 ≥ 0 is
well defined and continuous.

Proof. For 𝑞 = 0, let a ∈ 𝐶0(𝔡𝑎𝑙). Then

∥𝜕a∥𝑏𝑟𝛼 ≤ sup
𝑌∈B𝑑

∑︁
𝑗∈Λ
(1 + diam(𝑌 ∪ { 𝑗}))𝛼∥a𝑌𝑗 ∥ ≤ 𝐶∥a∥𝑏𝑟.𝛼+𝑑+1 (A.26)
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where we have used ∑︁
𝑗∈Λ
(1 + diam(𝑌 ∪ { 𝑗}))−(𝑑+1) ≤ 𝐶 (A.27)

for some constant 𝐶 that depends on the lattice only.

Similarly, for 𝑞 > 0, let a ∈ 𝐶𝑞 (𝔡𝑎𝑙). Then

∥𝜕a∥𝑏𝑟𝛼 ≤
≤ sup
𝑌∈B𝑑

sup
𝑎∈{1,...,𝑞}

sup
𝑗1,..., 𝑗𝑞∈Λ

∑︁
𝑗0∈Λ
(1 + diam(𝑌 ∪ { 𝑗𝑎}))𝛼∥a𝑌𝑗0... 𝑗𝑞 ∥ ≤

≤ 𝐶′∥a∥𝑏𝑟𝛼+𝑑+1 (A.28)

for some constant𝐶′ that depends on the lattice only. Thus, the map 𝜕𝑞 is well-defined
and continuous for any 𝑞 ≥ 0. □

Recall that on UL chains we have a map ℎ𝑞 : 𝐶𝑞 (𝔡𝑙) → 𝐶𝑞+1(𝔡𝑙) for 𝑞 ≥ −1 defined
by

ℎ𝑞 (a) 𝑗0... 𝑗𝑞+1 =
∑︁
𝑌∈B𝑑

𝑞+1∑︁
𝑘=0
(−1)𝑘 𝜒𝑌 ( 𝑗𝑘 )|𝑌 ∩ Λ|a

𝑌

𝑗0... �̂�𝑘 ... 𝑗𝑞+1
(A.29)

for 𝑞 ≥ 0 and

ℎ−1(A) 𝑗0 =
∑︁
𝑌∈B𝑑

𝜒𝑌 ( 𝑗0)
|𝑌 ∩ Λ|A

𝑌 (A.30)

for 𝑞 = −1, that gives a contracting homotopy for the augmented complex 𝐶•(𝔡𝑙) →
𝔇𝑙 , i.e., ℎ𝑞−1 ◦ 𝜕𝑞 + 𝜕𝑞+1 ◦ ℎ𝑞 = id and 𝜕0 ◦ ℎ−1 = id.

Proposition A.7. The map ℎ𝑞 extends to a continuous linear map ℎ𝑞 : 𝐶𝑞 (𝔡𝑎𝑙) →
𝐶𝑞+1(𝔡𝑎𝑙), that gives a contracting homotopy for the augmented complex 𝐶•(𝔡𝑎𝑙) →
𝔇𝑎𝑙 .

Proof. For a ∈ 𝐶𝑞 (𝔡𝑎𝑙) with 𝑞 ≥ 0 we have

∥ℎ𝑞 (a)∥𝑏𝑟𝛼 ≤ (𝑞 + 2)∥a∥𝑏𝑟𝛼 . (A.31)

Similarly, for A ∈ 𝔇𝑎𝑙

∥ℎ−1(A)∥𝑏𝑟𝛼 ≤ ∥A∥𝑏𝑟𝛼 . (A.32)

□

Proposition A.8. The bracket {·, ·} : 𝐶𝑝 (𝔡𝑎𝑙)×𝐶𝑞 (𝔡𝑎𝑙) → 𝐶𝑝+𝑞+1(𝔡𝑎𝑙) for 𝑝, 𝑞 ≥ −1
is well defined and jointly continuous.
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Proof. Let A,B ∈ 𝔡𝑎𝑙 and 𝑗 , 𝑘 ∈ Λ. By the definition eq. (2.8) we can choose
A𝑛 ∈ 𝒜𝐵 𝑗 (𝑛) , such that ∥A −A𝑛∥ ≤ 𝑓 𝑗 (A, 𝑛). Then for A(𝑛) = A𝑛+1 −A𝑛 we have

A =
∑︁
𝑛∈N0

A(𝑛) , (A.33)

with A(𝑛) ∈ 𝒜𝐵 𝑗 (𝑛+1) and ∥∑∞𝑚≥𝑛A(𝑚) ∥ ≤ 𝑓 𝑗 (A, 𝑛). Similarly we define B(𝑛) so
that ∥∑∞𝑚≥𝑛B(𝑚) ∥ ≤ 𝑓𝑘 (B, 𝑛). Let C(𝑛,𝑚) = [A(𝑛) ,B(𝑚)]. Clearly, C(𝑛,𝑚) = 0 if
| 𝑗 − 𝑘 | ≥ 𝑛 +𝑚 + 2. On the other hand, for | 𝑗 − 𝑘 | < 𝑛 +𝑚 + 2 the observable C(𝑛,𝑚)

is localized on a ball of radius 2(𝑚 + 𝑛 + 2) centered at 𝑗 and has a norm bounded
from above by 8 𝑓 𝑗 (A, 𝑛) 𝑓𝑘 (B, 𝑚). Then we have an estimate

sup
𝑟

(1 + 𝑟)𝛼 𝑓 𝑗 (C(𝑛,𝑚) , 𝑟) ≤ 8(1 + 2(𝑚 + 𝑛 + 2))𝛼 𝑓 𝑗 (A, 𝑛) 𝑓𝑘 (B, 𝑚). (A.34)

Hence

∥ [A,B] ∥ 𝑗 ,𝛼 ≤ 8
∑︁

𝑛,𝑚∈N0

(1 + 2(𝑚 + 𝑛 + 2))𝛼 𝑓 𝑗 (A, 𝑛) 𝑓𝑘 (B, 𝑚). (A.35)

Moreover, for any 𝛼 ≥ 0 we have an estimate∑︁
𝑛∈N0

(𝑛 + 1)𝛼 𝑓 𝑗 (A, 𝑛) ≤ ∥A∥ 𝑗 ,𝛼+2
∑︁
𝑛∈N

1/(𝑛 + 1)2. (A.36)

Therefore
∥ [A,B] ∥ 𝑗 ,𝛼 ≤ 𝐶𝛼∥A∥ 𝑗 ,𝛼+2∥B∥𝑘,𝛼+2 (A.37)

where 𝐶𝛼 is some constant depending on 𝛼 only.

Similarly, for any a ∈ 𝐶𝑝≥0(𝔡𝑎𝑙) and b ∈ 𝐶𝑞≥0(𝔡𝑎𝑙) we have

∥{a, b}∥𝛼 ≤ 𝐶𝛼,𝑝,𝑞 ∥a∥𝛼+2∥b∥𝛼+2 (A.38)

for some constant 𝐶𝛼,𝑝,𝑞.

For A ∈ 𝔇𝑎𝑙 and b ∈ 𝐶𝑞 (𝔡𝑎𝑙) using eq. (A.28) we have

∥{A, b}∥𝑏𝑟𝛼 = ∥ [𝜕 (ℎ−1(A)), b] ∥𝑏𝑟𝛼 ≤ 𝐶𝛼,𝑞 ∥A∥𝑏𝑟𝛼+𝑑+3∥b∥𝛼+𝑑+3 (A.39)

for some constant 𝐶𝛼,𝑞, where ℎ−1 is a contracting homotopy from Proposition A.7.

Finally, for A,B ∈ 𝔇𝑎𝑙 we have

∥{A,B}∥𝑏𝑟𝛼 = ∥𝜕{A, ℎ−1(B)}∥𝑏𝑟𝛼 ≤ 𝐶𝛼∥A∥𝑏𝑟𝛼+2𝑑+4∥B∥
𝑏𝑟
𝛼+2𝑑+4. (A.40)

Thus the map {·, ·} is well-defined and continuous.

□
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Proposition A.9. The contraction b𝐴0...𝐴𝑞 ∈ 𝔇𝑎𝑙 of b ∈ 𝐶𝑞 (𝔡𝑎𝑙) with regions
𝐴0, ..., 𝐴𝑞 is a well-defined and continuous.

Proof. By the same argument as in the proof of the Proposition A.6, we have

∥b𝐴0 ∥𝑏𝑟.𝛼 ≤ 𝐶∥b∥𝑏𝑟.𝛼+𝑑+1 (A.41)

where b𝐴0 ∈ 𝐶𝑞−1(𝔡𝑎𝑙) is a (possibly partial) contraction defined by

(b𝐴0)𝑌𝑗1... 𝑗𝑞 :=
∑︁
𝑗0∈𝐴0

b𝑌𝑗0... 𝑗𝑞 . (A.42)

Therefore
∥b𝐴0...𝐴𝑞 ∥𝑏𝑟.𝛼 ≤ 𝐶𝑞+1∥b∥𝑏𝑟.𝛼+(𝑞+1) (𝑑+1) . (A.43)

□

Proposition A.10. For any conical partition (𝐴0, ..., 𝐴𝑑) of R𝑑 the contraction
(·)𝐴0...𝐴𝑑

is en element of 𝔡𝑎𝑙 and defines a linear continuous map (·)𝐴0...𝐴𝑑
:

𝐶𝑑 (𝔡𝑎𝑙) → 𝔡𝑎𝑙 .

Proof. Without loss of generality, we can assume that all 𝐴𝑎 are conical regions,
since otherwise the map (·)𝐴0...𝐴𝑑

differs from a contraction with a conical partition
by a manifestly continuous linear map.

Let 𝑝 ∈ R𝑑 be the apex of (𝐴0, ..., 𝐴𝑑). Note that the number of tuples { 𝑗0, ..., 𝑗𝑑}
such that 𝑗𝑎 ∈ 𝐴𝑎 and | 𝑗𝑎 − 𝑝 | ≤ 𝑅 is less than 𝐶𝑅𝑑 (𝑑+1) for some constant 𝐶. Also
not that when at least one 𝑗𝑎 belongs to 𝐵𝑐𝑝 (𝑅) we have diam({ 𝑗0, ..., 𝑗𝑞}) ≤ 𝐶′𝑅 for
some constant𝐶′. In the latter case by Lemma A.1 we have ∥b 𝑗0... 𝑗𝑑 ∥ ≤ 3 𝑓 (b, 𝐶′𝑅/2)
for any b ∈ 𝐶𝑑 (𝔡𝑎𝑙).

Hence for any b ∈ 𝐶𝑑 (𝔡𝑎𝑙) we have

𝑓𝑝 (b𝐴0...,𝐴𝑑
, 𝑟) ≤ 𝐶 (𝑟/2)𝑑 (𝑑+1) 𝑓 (b, 𝑟/2)+

+
∞∑︁
𝑛=0

𝐶′′(1 + 𝑛 + 𝑟/2)𝑑 (𝑑+1) 𝑓 (b, 𝐶′(𝑛 + 𝑟/2)/2) (A.44)

for some constant 𝐶′′, that implies

∥b𝐴0...,𝐴𝑑
∥𝑝,𝛼 ≤ 𝐶𝛼∥b∥𝛼+𝑑 (𝑑+1)+2. (A.45)

□
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A.5 Ground states of gapped Hamiltonians
For any H ∈ 𝔇𝑎𝑙 and a piecewise-continuous function 𝑓 : R → R satisfying
𝑓 (𝑡) = O( |𝑡 |−∞) let ℐH, 𝑓 : 𝒜𝑎ℓ → 𝒜𝑎ℓ be the map

ℐH, 𝑓 (·) :=
∫ +∞

−∞
𝑓 (𝑡)𝛼(𝑡)H (·)𝑑𝑡. (A.46)

Lemma A.2. The map ℐH, 𝑓 is a well-defined continuous map.

Proof. Let us choose ℎ ∈ ℱ+∞ such that

sup
𝑗∈Λ

∑︁
𝑌∋ 𝑗

diam(𝑌 )≥𝑟

∥H𝑌 ∥ ≤ ℎ(𝑟). (A.47)

By Theorem 2.1 from [47], for any A ∈ 𝒜𝐵 𝑗 (𝑅) and B ∈ 𝒜𝐵𝑐
𝑗
(𝑅+𝑟) with 𝑟 > 1 and

any 0 < 𝜎 < 1 we have

∥ [𝛼H(𝑡) (A),B] ∥
∥A∥∥B∥ ≤ 𝐶1𝑅

𝑑𝑒𝑣𝑡−𝑟
1−𝜎 + 𝐶2𝑡𝑅

𝑑 (1 + 𝑟)𝑑ℎ(𝑟𝜎)+

+ 𝐶3𝑡𝑒
𝑣𝑡−𝑟1−𝜎

𝑅2𝑑𝑟𝜎+𝑑ℎ(𝑟𝜎) (A.48)

for some constants 𝐶1, 𝐶2, 𝐶3, 𝑣 independent of 𝑗 , 𝑡, 𝑟, 𝑅.

Let 𝑡0 = 𝑟1−𝜎/2𝑣. Then

∥ [ℐH, 𝑓 (A),B] ∥
∥A∥∥B∥ ≤

≤ 2
(∫ 𝑡0

0
| 𝑓 (𝑡) | ∥ [𝛼H(𝑡) (A),B] ∥

∥A∥∥B∥ 𝑑𝑡

)
+ 4

∫ ∞

𝑡0

| 𝑓 (𝑡) |𝑑𝑡 ≤

≤ 2𝐶′𝑅2𝑑 (𝐶1𝑡0𝑒
𝑣𝑡0−𝑟1−𝜎 + 𝐶2𝑡

2
0 (1 + 𝑟)

𝑑ℎ(𝑟𝜎)+

+ 𝐶3𝑡
2
0𝑒
𝑣𝑡0−𝑟1−𝜎

𝑟𝜎+𝑑ℎ(𝑟𝜎)) + 4
∫ ∞

𝑡0

| 𝑓 (𝑡) |𝑑𝑡 =: 𝑔(𝑅, 𝑅 + 𝑟) (A.49)

for some constant 𝐶′. Since 𝑔(𝑟/2, 𝑟) ∈ ℱ∞, in the same way as in eq. (B.8), we get
an estimate for any A ∈ 𝒜ℓ

𝑓 𝑗 (ℐH, 𝑓 (A), 𝑟) ≤ 𝑓 𝑗 (A, 𝑟/2) + 2∥A∥𝑔(𝑟/2, 𝑟) + 2 𝑓 𝑗 (A, 𝑟/2)𝑔(𝑟/2, 𝑟), (A.50)

which implies
∥ℐH, 𝑓 (A)∥′𝑗 ,𝛼 ≤ 𝐶𝑔,𝛼∥A∥′𝑗 ,𝛼, 𝛼 ∈ N0 (A.51)

for some 𝐶𝑔,𝛼 > 0. Therefore ℐH, 𝑓 : 𝒜𝑎ℓ → 𝒜𝑎ℓ is well-defined and continuous.

□
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Remark A.1. The version of the Lieb-Robinson bounds proved in [4] is sufficient
to prove the existence of the map ℐH, 𝑓 for UL Hamiltonians or Hamiltonians with
exponential decay, but not for arbitrary UAL Hamiltonians. It was pointed to us
by Bruno Nachtergaele that the case of UAL Hamiltonians can be dealt with using
the improved Lieb-Robinson bounds from [47, 18]. Further implications of these
improved bounds for gapped Hamiltonians are studied in [51].

Using the result of [48] one can show that a smooth family of gapped UL Hamiltonians
under certain additional assumptions defines a smooth family of gapped states in
the sense of Definition 3.1 (though we expect that a similar result should hold for a
smooth family of gapped UAL Hamiltonians):

Proposition A.11. Let M be a compact manifold, and let H be a 𝔇𝑙-valued function
which is smooth when regarded as 𝔇𝑎𝑙-valued function. Suppose for any 𝑚 ∈ M the
derivation H𝑚 is gapped with a unique ground state 𝜓𝑚. Suppose also that for any
A ∈ 𝒜𝑎ℓ the average ⟨A⟩𝜓𝑚

is a smooth function on M. Then 𝜓 is a smooth family
of gapped states.

Proof. Since M is compact, there exists Δ > 0 which bounds from below the gap of
H𝑚 for any 𝑚 ∈ M.

Let us define G ∈ Ω1(M,𝔇𝑎𝑙) by G = −ℐH,𝑊Δ
(𝑑H), where𝑊Δ(𝑡) = O( |𝑡 |−∞) is an

odd function such that
∫
𝑊Δ(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡 = 𝑖

𝜔
for |𝜔 | > Δ′ for some 0 < Δ′ < Δ (see

Lemma 3.3).

For any smooth path 𝑝 : [0, 1] →M the family 𝑝∗H satisfies the conditions of the
Theorem 1.3 from [48] that guarantees 𝑝∗𝜓(𝑠) = 𝑝∗𝜓(0) ◦ 𝛼(𝑠)

𝑝∗G.

□
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A p p e n d i x B

SOME CONSEQUENCES OF THE LIEB-ROBINSON BOUND

B.1 Reproducing functions
We say that 𝑓 : R≥0 → R≥0 is reproducing for Λ, if

𝐶 𝑓 := sup
𝑗 ,𝑘∈Λ

∑︁
𝑙∈Λ

𝑓 ( | 𝑗 − 𝑙 |) 𝑓 ( |𝑙 − 𝑘 |)
𝑓 ( | 𝑗 − 𝑘 |) < ∞. (B.1)

Note that 1/(1 + 𝑟)a is reproducing for any Λ ⊂ R𝑑 if a > 𝑑, but not every 𝑓 ∈ ℱ+∞
is reproducing.

Lemma B.1. For any 𝑓 ∈ ℱ+∞ there is 𝑓 ∈ ℱ+∞ that upper-bounds 𝑓 and 𝐴 > 0 such
that 𝑓 (𝑟) 𝑓 (𝑠)/ 𝑓 (𝑟 + 𝑠) ≤ 𝐴 for all 𝑟, 𝑠 ∈ R≥0.

Proof. Without loss of generality we can assume 𝑓 (0) = 1/2.

Let ℎ(𝑟) := −(log 𝑓 (𝑟)). This is a monotonically increasing positive function. If
ℎ(𝑟) ≥ 𝐶𝑟 + 𝐷 for some 𝐶 > 0, the function 𝑓 (𝑟) = 𝑒−𝐶𝑟−𝐷 satisfies the required
conditions (with 𝐴 = 𝑒−𝐷). Otherwise, let ℎ̃(𝑟) = 𝑟 inf0≤𝑠≤𝑟 (ℎ(𝑠)/𝑠) and 𝑓 = 𝑒−ℎ̃(𝑟) .
It is easy to check that 𝑓 satisfies the required conditions. □

Lemma B.2. Any 𝑓 ∈ ℱ+∞ can be upper-bounded by 𝑓 ∈ ℱ+∞ which is reproducing
for Λ.

Proof. By Lemma B.1 𝑓 can be upper-bounded by 𝑓 ′ ∈ ℱ+∞ such that for some 𝐴 > 0
we have 𝑓 ′(𝑟) 𝑓 ′(𝑠) ≤ 𝐴 𝑓 ′(𝑟 + 𝑠) for any 𝑟, 𝑠 ∈ R≥0. Let 𝑓 (𝑟) = 𝐵

√︁
𝑓 ′(𝑟)/(1+ 𝑟)𝑑+1

with 𝐵 =
√︁
∥ 𝑓 ′∥2𝑑+2. Then 𝑓 (𝑟) ≥ 𝑓 ′(𝑟) for all 𝑟 ≥ 0 and

∑︁
𝑙∈Λ

𝑓 ( | 𝑗 − 𝑙 |) 𝑓 ( |𝑙 − 𝑘 |) = 𝐵2
∑︁
𝑙∈Λ

√︁
𝑓 ′( | 𝑗 − 𝑙 |)

(1 + | 𝑗 − 𝑙 |)𝑑+1

√︁
𝑓 ′( |𝑙 − 𝑘 |)

(1 + |𝑙 − 𝑘 |)𝑑+1
≤

≤ 𝐵2
∑︁
𝑙∈Λ

𝐴1/2√︁ 𝑓 ′( | 𝑗 − 𝑘 |)
(1 + | 𝑗 − 𝑙 |)𝑑+1(1 + |𝑙 − 𝑘 |)𝑑+1

≤

≤ 𝐶′𝐴1/2𝐵2
√︁
𝑓 ′( | 𝑗 − 𝑘 |)

(1 + | 𝑗 − 𝑘 |)𝑑+1
= 𝐶′𝐴1/2𝐵 𝑓 ( | 𝑗 − 𝑘 |) (B.2)

where 𝐶′ is some constant that depends on the lattice Λ only. □
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Lemma B.3. For any sequence { 𝑓𝑛}, 𝑛 ∈ N of functions 𝑓𝑛 ∈ ℱ
+
∞ converging to

𝑓 ∈ ℱ+∞, there is a reproducing for Λ function 𝑔 ∈ ℱ+∞ that upper-bounds 𝑓 and 𝑓𝑛

for any 𝑛 ∈ N.

Proof. Let �̃�(𝑟) := sup𝑛∈N 𝑓𝑛 (𝑟). We have an estimate

∥�̃�∥𝛼 ≤ sup
𝑛∈N
∥ 𝑓𝑛 − 𝑓 ∥𝛼 + ∥ 𝑓 ∥𝛼 . (B.3)

Since 𝑓𝑛 converges to 𝑓 , this implies �̃� ∈ ℱ∞ and thus can be upper-bounded by a
function from ℱ

+
∞. Hence by Lemma B.2 there exists 𝑔 ∈ ℱ+∞ which is reproducing

and upper-bounds �̃� and 𝑓 . □

B.2 Locally generated automorphisms
Proposition B.1. For any G ∈ 𝐶 ( [0, 1],𝔇𝑎𝑙), there is a family of automorphisms
𝛼G : [0, 1] → Aut(𝒜) such that ∀A ∈ 𝒜𝑎ℓ and ∀𝑠 ∈ [0, 1] we have 𝛼(𝑠)G (A) ∈ 𝒜𝑎ℓ

and the function 𝛼G(A) : [0, 1] → 𝒜𝑎ℓ, 𝑠 ↦→ 𝛼
(𝑠)
G (A) is continuously differentiable

and satisfies
𝑑𝛼
(𝑠)
G (A)
𝑑𝑠

= 𝛼
(𝑠)
G (G(𝑠) (A)). (B.4)

Proof. To show this we invoke the version of the Lieb-Robinson bound from [27, 50,
52] for an interaction defined in terms of G𝑌 , 𝑌 ∈ B𝑑 .

Let ℎ ∈ ℱ
+
∞ be the function ℎ(𝑟) = sup𝑠 sup𝑌 :diam(𝑌 )≥𝑟 ∥G𝑌 (𝑠)∥. We can choose

𝑔 ∈ ℱ+∞ (e.g., we can take 𝐴(ℎ(𝑟))𝛼 for some constants 𝐴 and 0 < 𝛼 < 1) such that

sup
𝑗 ,𝑘∈Λ

sup
𝑠

∑︁
𝑌∈B𝑑
𝑌∋ 𝑗 ,𝑘

∥G𝑌 (𝑠)∥
𝑔( | 𝑗 − 𝑘 |) ≤ 1. (B.5)

Moreover, by Lemma B.2 𝑔 can be chosen to be reproducing, with a reproducing
constant 𝐶𝑔 > 0.

Let {Γ𝑛} be an exhausting sequence of bricks. Let G(𝑛) = G|Γ𝑛 . It is easy to see that
for any A ∈ 𝒜ℓ the sequence of 𝒜𝑎ℓ-valued functions {G(𝑛) (𝑠) (A)} converges to
G(𝑠) (A) in the Fréchet topology of 𝐶 ( [0, 1],𝒜𝑎ℓ).

Let 𝛼G(𝑛) be the family of automorphisms of 𝒜Γ𝑛 defined by

𝑑𝛼
(𝑠)
G(𝑛) (A)
𝑑𝑠

= 𝛼
(𝑠)
G(𝑛) (G

(𝑛) (𝑠) (A)). (B.6)
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and the initial condition 𝛼(0)G(𝑛) = id. It is well-known that such an automorphism
exists and is unique (it is the holonomy of the parallel transport with respect to the
connection 𝑑

𝑑𝑠
+ G(𝑛) on a trivial bundle with fiber 𝒜Γ𝑛). We extend 𝛼G(𝑛) to the

whole 𝒜ℓ in the obvious way. Theorem 2.1 from [4] (or more precisely, its version
for time-dependent interactions from [52]) then guarantees the following estimate

∥ [𝛼(𝑠)G(𝑛) (A),B] ∥
∥A∥∥B∥ ≤ 2

𝐶𝑔
(𝑒2𝐶𝑔𝑠 − \ (𝑅 − 𝑟))

∑︁
𝑗∈𝐵 𝑗 (𝑟)
𝑘∈𝐵𝑐

𝑗
(𝑅)

𝑔( | 𝑗 − 𝑘 |) =: 2ℎ(𝑟, 𝑅) (B.7)

for any A ∈ 𝒜𝐵 𝑗 (𝑟) and B ∈ 𝒜𝐵𝑐
𝑗
(𝑅) , while Theorem 2.2 in [50] proves the existence

of the limit lim𝑛→∞ 𝛼
(𝑠)
G(𝑛) =: 𝛼(𝑠)G ∈ Aut(𝒜) satisfying the same estimate. We have

an estimate

𝑓 𝑗 (𝛼(𝑠)G (A), 𝑟) ≤ 𝑓 𝑗 (𝛼(𝑠)G (A
(𝑟/2)), 𝑟) + ∥A −A(𝑟/2) ∥ ≤

≤ ∥𝛼(𝑠)G (A
(𝑟/2)) − (𝛼(𝑠)G (A

(𝑟/2))) |𝐵 𝑗 (𝑟) ∥ + 𝑓 𝑗 (A, 𝑟/2) ≤
≤ 2∥A(𝑟/2) ∥ℎ(𝑟/2, 𝑟) + 𝑓 𝑗 (A, 𝑟/2) ≤
≤ 𝑓 𝑗 (A, 𝑟/2) + 2∥A∥ℎ(𝑟/2, 𝑟) + 2 𝑓 𝑗 (A, 𝑟/2)ℎ(𝑟/2, 𝑟), (B.8)

where A(𝑟/2) is a best possible approximation of A on 𝐵 𝑗 (𝑟/2) and we used (2.5) to
go from the second to the third line. This implies

∥𝛼(𝑠)G (A)∥
′
𝑗 ,𝛽 ≤ 𝐶𝑔,𝛽∥A∥′𝑗 ,𝛽, 𝛽 ∈ N0 (B.9)

for some 𝐶𝑔,𝛽 > 0. Therefore 𝛼(𝑠)G (A) ∈ 𝒜𝑎ℓ for any A ∈ 𝒜𝑎ℓ.

Let A ∈ 𝒜ℓ. Eq. (B.6) implies

𝛼
(𝑠+Δ𝑠)
G(𝑛) (A) − 𝛼

(𝑠)
G(𝑛) (A) =

∫ 𝑠+Δ𝑠

𝑠

𝛼
(𝑢)
G(𝑛)

(
G(𝑛) (𝑢) (A)

)
𝑑𝑢. (B.10)

Since according to Theorem 2.2 of [50] 𝛼(𝑠)G(𝑛) (A) converges in norm to its 𝑛→∞
limit uniformly in 𝑠 on any compact subset of R, we may exchange the limit 𝑛→∞
and integration and get

𝛼
(𝑠+Δ𝑠)
G (A) − 𝛼(𝑠)G (A) =

∫ 𝑠+Δ𝑠

𝑠

𝛼
(𝑢)
G (G(𝑢) (A)) 𝑑𝑢. (B.11)

To deduce this for general A ∈ 𝒜𝑎ℓ, we choose a sequence of local observables
A(𝑛) converging to A in the Fréchet topology and use the uniform convergence
of G(𝑠) (A(𝑛)) to G(𝑠) (A) on [0, 1] and Prop. A.8 to show that (B.11) holds for
A ∈ 𝒜𝑎ℓ.

□



96

Lemma B.4. The map 𝛼(1) : 𝐶 ( [0, 1],𝔇𝑎𝑙) ×𝒜𝑎ℓ → 𝒜𝑎ℓ, (G,A) ↦→ 𝛼
(1)
G (A) is

continuous.

Proof. First, let us show continuity in G. Let {ΔG𝑛 (𝑠)}, 𝑛 ∈ N0, be a sequence in
𝐶 ( [0, 1],𝔇𝑎𝑙) converging to 0. Note that by Lemma B.3 we can find 𝑔 ∈ ℱ+∞, such
that for any 𝑛 eq. (B.5) holds for G replaced with G + ΔG𝑛. Therefore eq. (B.8)
implies

∥𝛼(𝑢)G+ΔG𝑛
(A)∥′𝑗 ,𝛼 ≤ 𝐵𝛼∥A∥′𝑗 ,𝛼 (B.12)

for any 𝑢 ∈ [0, 1] and any 𝑛 ∈ N0 and some constants 𝐵𝛼 > 0 depending on 𝑔 only.
Hence

∥𝛼(1)G+ΔG𝑛
(A) − 𝛼(1)G (A)∥

′
𝑗 ,𝛼 =

= ∥
∫ 1

0
𝑑𝑢

𝑑

𝑑𝑢

(
𝛼
(𝑢)
G+ΔG𝑛

(𝛼(𝑢)−1
G (𝛼(1)G (A)))

)
∥′𝑗 ,𝛼 ≤

≤ 𝐵𝛼
∫ 1

0
𝑑𝑢∥(ΔG𝑛 (𝑢))

(
𝛼
(𝑢)−1
G (𝛼(1)G (A))

)
∥′𝑗 ,𝛼 ≤

≤ �̃�𝛼∥A∥′𝑗 ,𝛼+𝑑+3∥ΔG𝑛∥𝑏𝑟𝛼+𝑑+3 (B.13)

for some constant �̃�𝛼. Here we have used the same estimate as in (A.39). Since the
r.h.s. converges to zero as 𝑛→∞, this proves continuity in G.

To show joint continuity, we similarly choose 𝑔 for a converging sequence (G𝑛,A𝑛) →
(G,A). Then

∥𝛼(1)G+ΔG(A + ΔA) − 𝛼
(1)
G (A)∥

′
𝑗 ,𝛼 ≤ ∥𝛼

(1)
G+ΔG(ΔA)∥

′
𝑗 ,𝛼+

+ ∥𝛼(1)G+ΔG(A) − 𝛼
(1)
G (A)∥

′
𝑗 ,𝛼 ≤ 𝐵𝛼∥ΔA∥′𝑗 ,𝛼+
+ ∥𝛼(1)G+ΔG(A) − 𝛼

(1)
G (A)∥

′
𝑗 ,𝛼 . (B.14)

□

Corollary B.1. The map 𝛼 : 𝐶 ( [0, 1],𝔇𝑎𝑙) × [0, 1] × 𝒜𝑎ℓ → 𝒜𝑎ℓ, (G, 𝑠,A) ↦→
𝛼G(𝑠) (A) is continuous.

Proof. Consider the “rescaling map” _ : 𝐶 ( [0, 1],𝔇𝑎𝑙) × [0, 1] → 𝐶 ( [0, 1],𝔇𝑎𝑙),
(G, 𝑠) ↦→ _(G, 𝑠) (𝑢) = 𝑠G(𝑠𝑢). It is easy to check that this map is continuous. It
is also straightforward to check that 𝛼(G, 𝑠,A) = 𝛼(1) (_(G, 𝑠),A). Therefore by
Lemma B.4 the map 𝛼 is continuous. □
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Proposition B.2. The map 𝛼(1) : 𝐶 ( [0, 1],𝔇𝑎𝑙) ×𝒜𝑎ℓ → 𝒜𝑎ℓ defined by (G,A) ↦→
𝛼
(1)
G (A) is smooth.

Proof. 𝛼(1)G (A) is linear in A and by Lemma B.4 is jointly continuous in G and A.
Therefore it is sufficient to show that it is a smooth function of G. As in the proof of
Lemma B.4, we write

𝛼
(1)
G+𝑡ΔG(A) − 𝛼

(1)
G (A) =

=

∫ 1

0

𝑑

𝑑𝑢

[
𝛼
(𝑢)
G+𝑡ΔG ◦ 𝛼

(𝑢)−1
G ◦ 𝛼(1)G (A)

]
𝑑𝑢 =

= 𝑡

∫ 1

0
𝛼
(𝑢)
G+𝑡ΔG

(
ΔG(𝑢)

(
𝛼
(𝑢)−1
G ◦ 𝛼(1)G (A)

))
𝑑𝑢. (B.15)

Using Cor. B.1, we get

lim
𝑡→0

𝛼
(1)
G+𝑡ΔG(A) − 𝛼

(1)
G (A)

𝑡
=

∫ 1

0
𝛼
(𝑢)
G

(
ΔG(𝑢)

(
𝛼
(𝑢)−1
G ◦ 𝛼(1)G (A)

))
𝑑𝑢. (B.16)

This shows that the directional derivative of 𝛼(1) with respect to G exists. Moreover,
by Cor. B.1 and Prop. A.8 the derivative is continuous. Iterating the argument, we
infer that 𝛼(1)G (A) is a smooth function of G. □

Remark B.1. It follows from the above computation that if G is a smooth𝐶 ( [0, 1],𝔇𝑎𝑙)-
valued function on a manifold M, then 𝛼(1)G (A) is a smooth 𝒜𝑎ℓ-valued function on
M whose 𝑑M-derivative is given by

𝑑M𝛼
(1)
G (A) =

∫ 1

0
𝛼
(𝑢)
G

(
𝑑MG(𝑢)

(
(𝛼(𝑢)G )

−1 ◦ 𝛼(1)G (A)
))
𝑑𝑢. (B.17)

Somewhat schematically, we can also write

(𝛼(1)G )
−1 ◦ 𝑑M𝛼(1)G =

∫ 1

0

(
(𝛼(1)G )

−1 ◦ 𝛼(𝑢)G

)
(𝑑MG(𝑢))𝑑𝑢. (B.18)

This formula is schematic because 𝛼(1)G is a function on M valued in automorphisms
of 𝒜𝑎ℓ, and we do not introduce any topology on the set of automorphisms. The
proper interpretation of this formula is as follows. Note that the r.h.s. of eq. (B.18)
is an element of Ω1(M,𝔇𝑎𝑙). Let us denote it 𝜔G. Then for any B ∈ 𝒜𝑎ℓ the 1-form
(𝛼(1)G )

−1 ◦ 𝑑M𝛼(1)G (B) ∈ Ω
1(M,𝒜𝑎ℓ) is equal to 𝜔G(B). More generally, if B is a

smooth 𝒜𝑎ℓ-valued function on M, then

𝑑M𝛼
(1)
G (B) = 𝛼

(1)
G (𝑑MB + 𝜔G(B)) . (B.19)

This implies that the covariant differential 𝑑M + 𝜔G( · ) on the trivial bundle with
fiber 𝒜𝑎ℓ is flat, i.e., 𝑑M𝜔G + 1

2 {𝜔G, 𝜔G} = 0.
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B.3 Discrete Lieb-Robinson bound

Lemma B.5. Given observables {A𝑖}∞𝑖=0 such that
∑
𝑖 ∥A𝑖 − 1∥ converges,

∏
𝑖 A𝑖 =

A0A1 . . . exists as an observable.

Proof. Let C𝑛 =
∏𝑛
𝑖=0 A𝑖 and B𝑖 = A𝑖+1 − 1. Then

C𝑛 =

𝑛−1∑︁
𝑖=0

C𝑖B𝑖 + C0. (B.20)

This implies ∥C𝑛∥ ≤
∑𝑛−1
𝑖=0 ∥B𝑖∥∥C𝑖∥ + ∥C0∥, which by Gronwall’s lemma implies

∥C𝑛∥ ≤ ∥C0∥ exp

(
𝑛−1∑︁
𝑖=0
∥B𝑖∥

)
≤ ∥C0∥ exp

( ∞∑︁
𝑖=0
∥B𝑖∥

)
< ∞.

Thus the right hand side of equation (B.20) converges absolutely. □

Corollary B.2. Given strictly local unitaries V𝑘 on [(−𝑘 − 1/2)𝐿, (𝑘 + 1/2)𝐿]
with ∥V𝑘 − 1∥ ≤ ℎ((𝑘 + 1/2)𝐿) for some ℎ ∈ ℱ

+
∞, the product V0V1V2... exists.

Furthermore, it is 𝑓 -localized at 0 for some 𝑓 ∈ ℱ+∞ determined by ℎ.

Proof. As ℎ(𝑟) = O(𝑟−∞) and ∥V𝑘 −1∥ ≤ ℎ((𝑘 +1/2)𝐿), ∑𝑘 ∥V𝑘 −1∥ ≤ ∑
𝑘 ℎ((𝑘 +

1/2)𝐿) converges. Therefore, the product C∞ = V0V1V2 . . . exists by the lemma
above. Let C𝑛 = V0V1V2...V𝑛 and B𝑖 = V𝑖+1 − 1. Then

C𝑛 =

𝑛−1∑︁
𝑖=0

C𝑖B𝑖 + C0. (B.21)

For any A ∈ 𝒜𝑗 ,

∥ [C∞,A] ∥ = ∥ [
∞∑︁
𝑖=0

C𝑖B𝑖 + C0,A] ∥ ≤
∑︁

(𝑖+ 1
2 )𝐿> 𝑗

∥ [C𝑖B𝑖,A] ∥

≤ 2∥A∥
∑︁

(𝑖+ 1
2 )𝐿> 𝑗

∥B𝑖∥ ≤ 2∥A∥
∑︁

(𝑖+ 1
2 )𝐿> 𝑗

ℎ((𝑖 + 1/2)𝐿). (B.22)

Thus, we may let 𝑓 (𝑟) = ∑
𝑠>𝑟 ℎ(𝑠) = O(𝑟−∞). □

Lemma B.6. Let Λ be a 1-dimensional lattice with sites 𝑗 ∈ Z ⊂ R. For any 𝑓 ∈ ℱ+∞
there is 𝐿 ∈ N such that any ordered composition

−−−−−→∏∞
𝑛=−∞𝛽

(𝑛) of LGAs 𝛽(𝑛) which
are 𝑓 -localized at 𝑗 = 𝑛𝐿 for 𝑛 ∈ Z is an LGA.
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Proof. First, note that it is enough to show this for
−−−−→∏∞
𝑛=0𝛽

(𝑛) . Second, to prove the
latter it is enough to show that with an appropriate choice of 𝐿 for any 𝑓 -localized at 0

observable A the observable (
←−−−−∏𝑁
𝑛=1𝛽

(𝑛) (A) is almost localized at 0 with localization
depending on 𝑓 only (in particular, independent of 𝑁), and that as 𝑁 → ∞ it
converges in the norm to some element of 𝒜.

Let U(𝑛) = 𝑒𝑖B
(𝑛) be a unitary that corresponds to 𝛽(𝑛) . It can be represented

as a product (V(𝑛)0 V
(𝑛)
1 V

(𝑛)
2 ...) of strictly local unitaries V

(𝑛)
𝑘

on 𝐵𝑛 ((𝑘 + 1
2 )𝐿) :=

[(𝑛 − 𝑘 − 1
2 )𝐿, (𝑛 + 𝑘 +

1
2 )𝐿], so that ∥V(𝑛)

𝑘
− 1∥ ≤ ℎ((𝑘 + 1

2 )𝐿) for some ℎ ∈ ℱ+∞
that depends on 𝑓 only. This is achieved by letting (V(𝑛)0 V

(𝑛)
1 ...V

(𝑛)
𝑘
) = 𝑒

𝑖B|
𝐵𝑛 ( (𝑘+ 1

2 )𝐿) .

Since conjugation of a strictly local observable A with a unitary U strictly local in
the localization set of A does not change the property ∥A − 1∥ < Y and preserves
the localization set, we can rearrange unitaries V(𝑛)

𝑘
in the product

(V(1)0 V
(1)
1 V

(1)
2 ...) (V(2)0 V

(2)
1 V

(2)
2 ...)...(V(𝑁)0 V

(𝑁)
1 V

(𝑁)
2 ...) (B.23)

in the following order:

(Ṽ(1)0 ) (Ṽ
(2)
0 Ṽ

(1)
1 ) (Ṽ

(3)
0 Ṽ

(2)
1 Ṽ

(1)
2 )...(Ṽ

(𝑛)
0 Ṽ

(𝑛−1)
1 ...Ṽ

(1)
𝑛−1)..., (B.24)

where Ṽ
(𝑛)
𝑘

is obtained from V
(𝑛)
𝑘

by conjugation with V
(𝑚)
𝑙

with 𝑚, 𝑙 satisfying
𝑛 + 1 ≤ 𝑚 ≤ 𝑛 + 𝑘 and 0 ≤ 𝑙 ≤ 𝑛 + 𝑘 − 𝑚. Importantly, Ṽ(𝑛)

𝑘
is strictly local on

the same interval as V(𝑛)
𝑘

and still satisfies ∥Ṽ(𝑛)
𝑘
− 1∥ ≤ ℎ((𝑘 + 1

2 )𝐿). The infinite
product eq. (B.24) is a well-defined almost-local observable by Corollary B.2.
Indeed, ∥Ṽ(𝑛)0 Ṽ

(𝑛−1)
1 ...Ṽ

(1)
𝑛−1−1∥ ≤ ∑𝑛

𝑖=1 ∥Ṽ
(𝑖)
𝑛−𝑖 −1∥ by repeatedly applying inequality

∥AB−1−A+A∥ ≤ ∥A∥∥B−1∥ + ∥A−1∥. Since for any fixed 𝑁 we have V(𝑛)
𝑘

= 1
for 𝑛 > 𝑁 , ∥Ṽ(𝑛)0 Ṽ

(𝑛−1)
1 ...Ṽ

(1)
𝑛−1−1∥ ≤ ∑𝑁

𝑖=1 ∥Ṽ
(𝑖)
𝑛−𝑖−1∥ ≤ ∑𝑁

𝑖=1 ℎ((𝑛−𝑖+
1
2 )𝐿) satisfies

the assumption of Corollary B.2. After this rearrangement the infinite product eq.
(B.24) still converges to the same unitary observable as eq. (B.23).

Let Ũ(𝑛) = Ṽ
(𝑛)
0 ...Ṽ

(1)
𝑛−1. We can represent A =

∑∞
𝑝=0 A𝑝 with

∑𝑛
𝑝=0 A𝑝 = A|𝐵0 (𝑛+1/2) .

Let A(0)𝑝 := A𝑝, A(𝑛)𝑝 :=
∑𝑛−1
𝑘=0 Ũ

(𝑛)∗ [A(𝑘)𝑝 , Ũ(𝑛)]. Note that A(𝑛)𝑝 ∈ 𝒜𝐵0 (𝑝+ 1
2 )

for

𝑛 ≤ 𝑝, and A
(𝑛)
𝑝 ∈ 𝒜𝐵0 (𝑛+ 1

2 )
for 𝑛 > 𝑝. Therefore we have

∥A(𝑛)0 ∥ =
𝑛−1∑︁
𝑘=0
∥ [A(𝑘)0 , Ũ(𝑛)] ∥ ≤

𝑛−1∑︁
𝑘=0

𝑛−1∑︁
𝑙> 𝑛−𝑘−1

2

∥ [A(𝑘)0 , Ṽ
(𝑛−𝑙)
𝑙
] ∥ ≤

≤
𝑛−1∑︁
𝑘=0

∞∑︁
𝑙> 𝑛−𝑘−1

2

2∥A(𝑘)0 ∥ℎ((𝑙 +
1
2
)𝐿) ≤ 2

𝑛−1∑︁
𝑘=0
∥A(𝑘)0 ∥𝑔𝑛−𝑘 (B.25)
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where 𝑔𝑛 := 𝑔(𝑛𝐿/2) for 𝑔(𝑛) :=
∑∞
𝑙≥𝑛 ℎ(𝑙).

By Lemma B.2, any function 𝑔 ∈ ℱ
+
∞ can be upper-bounded by a reproducing

function �̃� ∈ ℱ
+
∞. We can further upper-bound �̃�(𝑟) by a reproducing function

𝑔′(𝑟) = 𝐴�̃�(𝑟)𝛼/𝑟a ∈ ℱ+∞ for some constants 𝐴, 0 < 𝛼 < 1 and a > 𝑑. Since 1/𝑟a is
also reproducing, we have

𝐴2
𝑛−1∑︁
𝑘=1

�̃�(𝑘𝐿/2)𝛼�̃�((𝑛 − 𝑘)𝐿/2)𝛼
(𝑘𝐿/2)a ((𝑛 − 𝑘)𝐿/2)a <

𝐶

𝐿a
𝐴
�̃�(𝑛𝐿/2)𝛼
(𝑛𝐿/2)a , (B.26)

and therefore for 𝑔′𝑛 := 𝑔′(𝑛𝐿/2) ≥ 𝑔𝑛 we have
∑𝑛−1
𝑘=1 𝑔

′
𝑘
𝑔′
𝑛−𝑘 < (𝐶/𝐿

a)𝑔′𝑛 for some
constant 𝐶. By changing 𝐿 one can make (𝐶/𝐿a) < 1/2. Therefore one can choose
𝐿 so that for 𝑎𝑛 = 2𝑛𝑔′𝑛 we have

2(𝑔𝑛 · 1 + 𝑔𝑛−1𝑎1 + 𝑔𝑛−2𝑎2 + ... + 𝑔1𝑎𝑛−1) ≤
≤ 2(𝑔′𝑛 · 1 + 2𝑔′𝑛−1𝑔

′
1 + 4𝑔′𝑛−2𝑔

′
2 + ... + 2(𝑛 − 1)𝑔′1𝑔

′
𝑛−1) ≤ 2𝑛𝑔′𝑛 = 𝑎𝑛. (B.27)

Together with eq. (B.25) this implies that ∥A(𝑛)0 ∥/∥A0∥ can be upper-bounded by
𝑎𝑛 = O(𝑛−∞), and the sequence

∑𝑛
𝑘=0 A

(𝑘)
0 converges in the norm to some element,

which is almost localized at 0. By construction the localization depends on 𝑓 only.

In the same way one can estimate the norms of A(𝑛+𝑝)𝑝 for 𝑛, 𝑝 > 0 and bound
∥A(𝑛+𝑝)𝑝 ∥/∥A𝑝 ∥ by a sequence 𝑎𝑛 = O(𝑛−∞). Together with ∥A𝑝 ∥ = ∥

∑𝑝

𝑞=0 A
(𝑞)
𝑝 ∥

that ensures convergence of
∑∞
𝑝=0

∑∞
𝑛=0 A

(𝑛)
𝑝 to some almost localized at 0 observable

with localization depending on 𝑓 only.

□
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A p p e n d i x C

LOCAL PERTURBATIONS

Definition C.1. Let 𝑓 : R≥0 → R≥0 be a non-increasing function. We say that two
states 𝜓, 𝜓′ : 𝒜Λ → C of a 𝑑-dimensional lattice system 𝒜Λ are 𝑓 -close at 𝑥 ∈ R𝑑 if
for any 𝒜 ∈ 𝒜𝐵𝑐

𝑟 (𝑥) and 𝑟 > 0 we have

|⟨A⟩𝜓′ − ⟨A⟩𝜓 | ≤ 𝑓 (𝑟)∥A∥. (C.1)

If there exit𝐶, 𝑎 > 0 and 𝑥 ∈ R𝑑 such that the states are 𝑓 -close at 𝑥 for 𝑓 (𝑟) = 𝐶𝑒−𝑎𝑟 ,
we say that two states are exponentially close.

Proposition C.1. Let 𝑓 : R≥0 → R≥0 be a non-increasing function, such that
lim𝑟→∞ 𝑓 (𝑟) = 0. If two pure states 𝜓, 𝜓′ : 𝒜 → C of a lattice system 𝒜Λ are
𝑓 -close at 𝑥 for some 𝑥 ∈ R𝑑 , then there is a unitary element U ∈ 𝒜Λ such that
𝜓 = 𝜓′ ◦ AdU.

Proof. By Corollary 2.6.11 [11], both states are unitarily equivalent. Hence, they
are vector states in the same Hilbert space that can be chosen to be space of the GNS
representation associated with 𝜓. Let us choose the corresponding state vectors |𝜓⟩
and |𝜓′⟩. By Kadison transitivity theorem, one vector can be produced from another
by a unitary element U of 𝒜. □

Corollary C.1. The theorem also implies that there is a self-adjoint observable
K ∈ 𝒜 such that |𝜓′⟩ −K|𝜓⟩ is proportional to |𝜓⟩.

The goal of this section is study the situations in which the observable U from
Proposition C.1 can be chosen to be almost local.

We start with recalling well-known facts about the fidelity 𝐹 (𝜌, 𝜎) := (∥√𝜌
√
𝜎∥1)2

of quantum states on a separable Hilbert space described by density matrices 𝜌 and
𝜎. Firstly, the fidelity satisfies Fuchs van de Graaf inequalities

1 −
√︁
𝐹 (𝜌, 𝜎) ≤ 1

2
∥𝜌 − 𝜎∥1 ≤

√︁
1 − 𝐹 (𝜌, 𝜎). (C.2)

Secondly, by Uhlmann’s theorem, one can identify the fidelity 𝐹 (𝜌, 𝜎) with the the
maximal overlap |⟨𝜒𝜌 |𝜒𝜎⟩|2 of unit vectors |𝜒𝜌⟩, |𝜒𝜎⟩ ∈ H ⊗H′ for some H′ � H

representing purifications of 𝜌 and 𝜎 on H ⊗H′.
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Proposition C.2. Let 𝜓 be a pure state on 𝒜 which is 𝑓 -close at the origin to a
factorized state 𝜓0 for some 𝑓 (𝑟) = O(𝑟−∞). Then 𝜓 and 𝜓0 are unitarily equivalent
and one can be produced from the other by a conjugation with a unitary U ∈ 𝒜𝑎ℓ

with localization that depend on 𝑓 only.

Proof. Unitary equivalence of states 𝜓 and 𝜓0 follows from Proposition C.1. Let
(Π0,H0, |0⟩) be the GNS data for 𝜓0. The state 𝜓 is a vector state corresponding to
|𝜓⟩ ∈ H0. Let V𝑛 be a subspace of H0 spanned by vectors which can be produced
from |0⟩ by an observable localized on Γ𝑛. Note that V1 ⊂ V2 ⊂ V3 ⊂ ....

Let 𝑛0 be such that 𝑓 (𝑛0) < 1/2. Let us temporarily fix 𝑛 ≥ 𝑛0 and not indicate it
explicitly. Let us estimate the angle between the vector |𝜓⟩ and the subspace V = V𝑛.
The Hilbert space H0 is isomorphic to HΓ ⊗HΓ̄, where the Hilbert spaces HΓ and
HΓ̄ carry representations of 𝒜Γ and 𝒜Γ̄, respectively. The restrictions of vector
states 𝜓 and 𝜓0 to 𝒜Γ̄ can be described by density matrices 𝜌 and 𝜌0 on HΓ̄. The
density matrix 𝜌0 is pure, but 𝜌 is mixed, in general. We have

∥𝜌 − 𝜌0∥1 ≤ Y (C.3)

where Y = 𝑓 (𝑛) ∈ (0, 1). Fuchs–van de Graaf inequality implies that for fidelity we
have

𝐹 (𝜌, 𝜌0) := ∥(𝜌)1/2(𝜌0)1/2∥1 ≥ 1 − Y
2
. (C.4)

Let

|𝜓⟩ =
𝑁∑︁
𝑖=1

√︁
_𝑖 |[𝑖⟩ ⊗ |b𝑖⟩ (C.5)

be the Schmidt decomposition of |𝜓⟩. Here 𝑁 ≤ dimHΓ, |[𝑖⟩, 𝑖 = 1, . . . , 𝑁, are
orthonormal vectors in HΓ, |b𝑖⟩, 𝑖 = 1, . . . , 𝑁, are orthonormal vectors in HΓ̄, and
_𝑖, 𝑖 = 1, . . . , 𝑁, are positive numbers satisfying

∑
𝑖 _𝑖 = 1. Since |0⟩ is factorized,

its Schmidt decomposition contains only a single term:

|0⟩ = |0Γ⟩ ⊗ |0Γ̄⟩. (C.6)

Let 𝑎𝑖 = ⟨b𝑖 |0Γ̄⟩. The fidelity of 𝜌 and 𝜌0 can be expressed in terms of _𝑖 and 𝑎𝑖:

𝐹 (𝜌, 𝜌0) =
(∑︁
𝑖

_𝑖 |𝑎𝑖 |2
)1/2

. (C.7)
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We define |𝑣⟩ = ∑
𝑖

√
_𝑖𝑎
∗
𝑖
|[𝑖⟩ and let

|𝜒⟩ =
(∑︁
𝑘

_𝑘 |𝑎𝑘 |2
)−1/2

|𝑣⟩ ⊗ |0Γ̄⟩. (C.8)

Then it is easy to see that

|⟨𝜓 |𝜒⟩| =
(∑︁
𝑖

_𝑖 |𝑎𝑖 |2
)1/2

= 𝐹 (𝜌, 𝜌0) ≥ 1 − Y
2
. (C.9)

Since Y < 1/2, |𝜓⟩ is not orthogonal to the subspace V.

For any 𝑛 ≥ 𝑛0 let |𝜒𝑛⟩ ∈ V𝑛 be as above (geometrically, it is the normalized
projection of |𝜓⟩ to V𝑛). The estimate (C.9) implies

|⟨𝜒𝑛 |𝜒𝑛+1⟩| ≥ 1 − 2Y𝑛, (C.10)

where Y𝑛 = 𝑓 (𝑛). Let U𝑛0 = 𝑒𝑖G𝑛0 be a unitary localized on Γ𝑛0 that implements a
rotation of |0⟩ to |𝜒𝑛0⟩ with ∥G𝑛0 ∥ ≤ 𝜋. We can also choose unitary observables U𝑛
for 𝑛 ≥ 𝑛0 localized on Γ𝑛+1 and satisfying ∥1 − U𝑛∥ ≤ (4Y𝑛)1/2 which implement
rotations of |𝜒𝑛⟩ to |𝜒𝑛+1⟩, and which therefore can be written as U𝑛 = 𝑒𝑖G𝑛 for
an observable G𝑛 local on Γ𝑛+1 with ∥G𝑛∥ ≤ 2(2Y𝑛)1/2. The ordered product of
all such unitaries over 𝑛 ≥ 𝑛0 can be written as U = 𝑒𝑖G. By construction, this
unitary maps |0⟩ to |𝜓⟩. Moreover, since ∥G𝑛∥ ≤ 2(2 𝑓 (𝑛))1/2 for 𝑛 ≥ 𝑛0, G is
𝑔-localized for some MDP function 𝑔(𝑟) = O(𝑟−∞) that only depends on 𝑓 (𝑟), and
∥G∥ ≤ ∑∞

𝑛=𝑛0
2(2 𝑓 (𝑛))1/2 + 𝜋, a quantity that also depends only on 𝑓 (𝑟).

□

To generalize the result for states which are not necessarily factorized at infinity, we
need some additional requirements.

Definition C.2. Let 𝑓 : R≥0 → R≥0 be a non-increasing function. We say that a
state 𝜓 : 𝒜 → C of a lattice system 𝒜Λ has an 𝑓 -decay of mutual correlations, if for
any finite disjoint subsets 𝑋,𝑌 ⊂ Λ and any O ∈ 𝒜𝑋∪𝑌 , we have

|⟨O⟩𝜓 − ⟨O⟩𝜓 |𝑋⊗𝜓 |𝑌 | ≤ 𝑓 (𝑟)∥O∥, (C.11)

where 𝑟 is the distance between 𝑋 and 𝑌 . If there exists 𝑓 ∈ O(𝑟−∞), such that 𝜓
has 𝑓 -decay, we say that 𝜓 has a rapid decay of mutual correlations. If there exist
𝐶, 𝑎 > 0 such that 𝜓 has 𝑓 -decay for 𝑓 = 𝐶𝑒−𝑎𝑟 , we say that 𝜓 has an exponential
decay of mutual correlations.
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Remark C.1. The conditions of the Definition C.2 implies what is usually meant by
rapid or exponential decay of correlations, as the latter correspond to the special
case O = O𝑋O𝑌 for O𝑋 ∈ 𝒜𝑋 , O𝑌 ∈ 𝒜𝑌 . In general, it is a stronger condition.

Lemma C.1. Let H𝐴, H𝐵, H𝐶 be separable Hilbert spaces, and let Y, 𝛼, 𝛿 ∈ R>0.
Let |𝜒⟩ and |𝜒′⟩ be unit vectors on H𝐴 ⊗H𝐵 ⊗H𝐶 , such that 1) ∥|𝜒′⟩ − |𝜒⟩∥ ≤

√
Y,

2) ∥𝜌′
𝐵𝐶
− 𝜌𝐵𝐶 ∥1 ≤ 𝛼, 3) ∥𝜌𝐴𝐶 − 𝜌𝐴 ⊗ 𝜌𝐶 ∥1 ≤ 𝛿2 and ∥𝜌′

𝐴𝐶
− 𝜌′

𝐴
⊗ 𝜌′

𝐶
∥1 ≤ 𝛿2, where

𝜌𝑋 and 𝜌′
𝑋

are density matrices for the restrictions of |𝜒⟩⟨𝜒 | and |𝜒′⟩⟨𝜒′| to 𝑋 ∈
{𝐴, 𝐵, 𝐶, 𝐴𝐵, 𝐵𝐶, 𝐴𝐶}, respectively. Then there is a unitary U𝐴𝐵 ∈ B(H𝐴 ⊗H𝐵)
such that ∥U𝐴𝐵 − 1∥ ≤

√
Y + 𝛿 +

√
2𝛿 + 𝛼 and ∥|𝜒′⟩ − U𝐴𝐵 |𝜒⟩∥ ≤ 𝛿 +

√
2𝛿 + 𝛼.

Proof. In the proof, we implicitly use that ∥|𝜙′⟩ − |𝜙⟩∥ ≤
√
𝜖 is equivalent to

Re⟨𝜙′|𝜙⟩ ≥ 1 − 𝜖
2 for any unit vectors |𝜙′⟩, |𝜙⟩ in a Hilbert space.

By the first Fuchs van de Graaf inequality and Uhlmann’s theorem for 𝜌𝐴𝐶 and
𝜌𝐴 ⊗ 𝜌𝐶 , there is a purification | �̃�⟩ of 𝜌𝐴 ⊗ 𝜌𝐶 such that |⟨�̃� |𝜒⟩| ≥ (1 − 𝛿2/2) and
∥| �̃�⟩ − |𝜒⟩∥ ≤ 𝛿. Let �̃�𝑋 be the density matrix for the restriction of | �̃�⟩⟨�̃� | to 𝑋 .
By the second Fuchs van de Graaf inequality we have ∥ �̃�𝐵𝐶 − 𝜌𝐵𝐶 ∥1 ≤ 2𝛿 and
therefore ∥𝜌′

𝐵𝐶
− �̃�𝐵𝐶 ∥1 ≤ 2𝛿 + 𝛼. By the first Fuchs van de Graaf inequality and

Uhlmann’s theorem, there is a vector | �̃�′⟩ that purifies �̃�𝐵𝐶 such that ⟨𝜒′| �̃�′⟩ ∈ R
and ⟨𝜒′| �̃�′⟩ ≥ 1 − (2𝛿 + 𝛼)/2. Hence, we have

∥ �̃�′⟩ − | �̃�⟩∥ ≤
√

2𝛿 + 𝛼 +
√
Y + 𝛿. (C.12)

The states | �̃�⟩⟨�̃� | and | �̃�′⟩⟨�̃�′| have no correlations between 𝐴 and 𝐶 and their
restriction to 𝐵𝐶 coincide. Therefore, there is a unitary U𝐴𝐵 ∈ B(H𝐴 ⊗ H𝐵)
such that U𝐴𝐵 | �̃�⟩ = | �̃�′⟩. Moreover, eq. (C.12) implies that we can satisfy
∥U𝐴𝐵 − 1∥ ≤

√
Y + 𝛿 +

√
2𝛿 + 𝛼. We also have ∥U𝐴𝐵 |𝜒⟩ − |𝜒′⟩∥ ≤ ∥|𝜒⟩ − | �̃�⟩∥ +

∥| �̃�′⟩ − |𝜒′⟩∥ ≤ 𝛿 +
√

2𝛿 + 𝛼. □

Proposition C.3. Let 𝜓 and 𝜓′ be pure states of a lattice system 𝒜. Suppose both
states have 𝑓 -decay of mutual correlations and are 𝑓 -close to each other at 0. Then
there is an almost local unitaryU ∈ 𝒜𝑎ℓ, such that 𝜓 = 𝜓′◦AdU, andU is 𝑔-localized
at 0 with 𝑔 depending on 𝑓 only. Moreover, if 𝑓 is rapidly decaying (exponentially
decaying), then so is 𝑔.

Proof. By Proposition C.1, the states 𝜓 and 𝜓′ are unitarily equivalent. Let us choose
the Hilbert space H for the GNS representation of one of the states, and let us choose
state vectors |𝜓⟩, |𝜓′⟩ ∈ H representing 𝜓 and 𝜓′, respectively.
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Let {𝑟𝑛}𝑛∈N0 be an increasing sequence of real numbers, 𝐴𝑛 := 𝐵𝑟𝑛−1 (0), 𝐵𝑛 :=
𝐵𝑐𝑟𝑛−1

(0) ∩ 𝐵𝑟𝑛 (0), 𝐶𝑛 := 𝐵𝑐𝑟𝑛 (0), 𝛿𝑛 :=
√︁
𝑓 (𝑟𝑛 − 𝑟𝑛−1), 𝛼𝑛 := 𝑓 (𝑟𝑛),

√
Y𝑛 := 𝛿𝑛−1 +√

2𝛿𝑛−1 + 𝛼𝑛−1 for 𝑛 > 1 and √Y𝑛=1 := ∥|𝜓′⟩ − |𝜓⟩∥. We iteratively apply Lemma
C.1 for every 𝑛 to get a sequence of unitaries U𝑛 ∈ 𝒜𝐵𝑟𝑛 (0) such that ∥U𝑛 − 1∥ ≤
√
Y𝑛 +
√
Y𝑛+1 and ∥|𝜓′⟩ − U(𝑛) |𝜓⟩∥ ≤ √Y𝑛+1, where U(𝑛) := U𝑛...U1 ∈ 𝒜𝑟𝑛 .

We can choose {𝑟𝑛}𝑛∈N0 such that the sequence {√Y𝑛}𝑛∈N0 converges to 0. For
example, one can take 𝑟𝑛 = 𝑛2𝑅 for some 𝑅 ∈ R. Since ∥U𝑛 −U𝑛−1∥ ≤

√
Y𝑛 +
√
Y𝑛+1,

{U𝑛}𝑛∈N0 converges in the norm to someU ∈ 𝒜Λ. Moreover, if 𝑓 is superpolynomially
(or exponentially) decaying, then U is almost local (or exponentially local). □

Lemma C.2. Let |𝜒⟩ be a unit vector on H𝐴 ⊗ H𝐵 ⊗ H𝐶 and A ∈ B(H𝐴) such
that 1) ∥𝜌𝐴𝐶 − 𝜌𝐴 ⊗ 𝜌𝐶 ∥ ≤ 𝛿2, 2) ∥A∥ = 1 and ∥A|𝜒⟩∥ ≤ Y. Then there is a
constant 𝑐 ∈ C and a self-adjoint K ∈ B(H𝐵𝐶) such that ∥𝑐 +K∥ ≤ 2(Y + 𝛿) and
∥(𝑐 +K −A) |𝜒⟩∥ ≤ 𝛿(1 + 2Y + 2𝛿).

Proof. By the first Fuchs van de Graaf inequality and Uhlmann’s theorem for 𝜌𝐴𝐶
and 𝜌𝐴 ⊗ 𝜌𝐶 , there is a purification | �̃�⟩ of 𝜌𝐴 ⊗ 𝜌𝐶 such that |⟨�̃� |𝜒⟩| ≥ (1 − 𝛿2/2)
and ∥| �̃�⟩ − |𝜒⟩∥ ≤ 𝛿. Then ∥A| �̃�⟩∥ ≤ Y + 𝛿. Since | �̃�⟩⟨�̃� | has no correlations
between 𝐴 and 𝐶, there is 𝑐 ∈ C and a self-adjoint K ∈ B(H𝐴 ⊗ H𝐵) with
|𝑐 |, ∥K∥ ≤ (Y + 𝛿) such that A| �̃�⟩ = (𝑐 +K) | �̃�⟩. We have ∥𝑐 +K∥ ≤ 2(Y + 𝛿) and
∥(𝑐 +K −A) |𝜒⟩∥ ≤ ∥(𝑐 +K −A)∥∥ | �̃�⟩ − |𝜒⟩∥ ≤ 𝛿(1 + 2Y + 2𝛿). □

Proposition C.4. Let 𝜓 and 𝜓′ be pure states of a lattice system 𝒜. Suppose both
states have 𝑓 -decay of correlations and are 𝑓 -close to each other at 0. Then there
is an almost local unitary U ∈ 𝒜𝑎ℓ, such that 𝜓 = 𝜓′ ◦ AdU, and U is 𝑔-localized
at 0 with 𝑔 depending on 𝑓 only. Moreover, if 𝑓 is rapidly decaying (exponentially
decaying), then so is 𝑔.

Proof. Since |𝜓′⟩ = U|𝜓⟩, and since we can representU as a sum of local observables
with norms rapidly decaying with the size of the support, to show the existence of K,
it is enough to consider the case |𝜓′⟩ = A|𝜓⟩ for a local observable A.

Assume the support of A is inside 𝐷𝑟 . Suppose we have found 𝑐𝑟 ∈ C and a self-
adjoint K𝑟 with the support on 𝐷𝑟 such that ∥(A− 𝑐𝑟 −K𝑟) |𝜓⟩∥ ≤ Y∥(A− 𝑐𝑟 −K𝑟)∥
for some Y. Let 𝛿 = 𝐶𝑒−𝛼𝑟 . Lemma C.2 allows us to find 𝑐3𝑟 ∈ C and a self-adjoint
K3𝑟 with the support on 𝐷3𝑟 such that ∥𝑐3𝑟 +K3𝑟 ∥ ≤ 2(Y + 𝛿)∥(A − 𝑐𝑟 −K𝑟)∥ and
∥(A − 𝑐𝑟 −K𝑟 − 𝑐3𝑟 −K3𝑟) |𝜓⟩∥ ≤ 𝛿(1 + 2Y + 2𝛿)∥(A − 𝑐𝑟 −K𝑟)∥.
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We can iterate the procedure, in the same way as for unitaries above, to find 𝑐(𝑛)

and K(𝑛) on 𝐷𝑅𝑛
such that ∥𝑐(𝑛) +K(𝑛) ∥ and ∥(A − ∑𝑛

𝑙=0(𝑐(𝑙) +K(𝑙))) |𝜓⟩∥ decay
exponentially with 𝑅𝑛. The sum of K(𝑛) gives a desired K. □
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A p p e n d i x D

TENSOR NETWORKS FROM CFT

D.1 Weierstrass elliptic function
LetΛ be the lattice 𝑛1𝜔1+𝑛2𝜔2, 𝑛1, 𝑛2 ∈ Z generated by𝜔1, 𝜔2 ∈ C. The Weierstrass
elliptic function is defined by

℘𝜔1,𝜔2 (𝑧) = ℘Λ(𝑧) :=
1
𝑧2 +

∑︁
_∈Λ\{0}

(
1

(𝑧 − _)2
− 1
_2

)
, (D.1)

℘′𝜔1,𝜔2
(𝑧) = ℘′Λ(𝑧) := −

∑︁
_∈Λ

(
2

(𝑧 − _)3

)
. (D.2)

Any elliptic function is a rational function of ℘Λ(𝑧) and ℘′
Λ
(𝑧). Some useful

constants are 𝑒1 = ℘Λ(𝜔1/2), 𝑒2 = ℘Λ(𝜔2/2), 𝑒3 = ℘Λ((𝜔1 + 𝜔2)/2) and 𝑔2 =

−4(𝑒1𝑒2 + 𝑒2𝑒3 + 𝑒1𝑒3) = 60𝐺4, 𝑔3 = 4𝑒1𝑒2𝑒3 = 140𝐺6, where

𝐺𝑘 =
∑︁

_∈Λ\{0}
_−𝑘 . (D.3)

We have

℘′Λ(𝑧)
2 = 4℘Λ(𝑧)3−𝑔2℘Λ(𝑧)−𝑔3 = 4(℘Λ(𝑧)−𝑒1) (℘Λ(𝑧)−𝑒2) (℘Λ(𝑧)−𝑒3). (D.4)

The inverse of ℘Λ(𝑧) is given by

𝑢Λ(𝑤) := −
∫ ∞

𝑤

𝑑𝑦√︁
4𝑦3 − 𝑔2𝑦 − 𝑔3

= −
∫ ∞

𝑤

𝑑𝑦√︁
4(𝑦 − 𝑒1) (𝑦 − 𝑒2) (𝑦 − 𝑒3)

. (D.5)

D.2 The shape of the holes and the basic tensor
Let us set 𝑛 = 4. Consider cylinders with the coordinate 𝑤 ∼ 𝑤 +1 and cuts along the
half-lines [ 𝑘

𝑛
, 𝑘
𝑛
− 𝑖∞], 𝑘 = 0, 1, 2, 3. We assign such cylinders to sites of the square

lattice, such that for a given site, each cut corresponds to one of the four adjacent
edges, and glue them along the cuts corresponding to the same edge to produce a
Riemann surface. Let 𝑢Λ(𝑧) be the inverse of the Weierstrass function ℘Λ for the
lattice Λ and 𝑒1 = ℘Λ((1 + 𝑖)/2). The function 𝑢Λ(𝑒1𝑒

−4𝜋𝑖𝑤) maps the Riemann
surface to the plane such that the circles with constant Im𝑤 are mapped to contours
around sites of Λ or Λ∨ depending on weather Im𝑤 > 0 or Im𝑤 < 0. The size of
the region inside the contour is controlled by | Im𝑤 |.
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𝜏

𝜎

Ĥ

Ĥ

ĤĤ V ⊗ V

Figure D.1: The cylinder and its image under the map 𝑢Λ(𝑒1𝑒
−4𝜋𝑖𝑤) to the unit

square. The region (−𝜎) ≤ Im𝑤 ≤ 𝜏 gives the elementary block.

We set the function 𝑓 (𝑧) from Section 6.1 to be

𝑓 (𝑧) = 𝑢Λ(𝑒1𝑧
−2𝑒4𝜋𝜏) (D.6)

so that the image of the Riemann surface after removal of Im𝑤 > 𝜏 and Im𝑤 < (−𝜎)
defines Σ𝜏,𝜎 where 𝜏, 𝜎 > 0. The image of the region (−𝜎) ≤ Im𝑤 ≤ 𝜏 on a single
cylinder defines the elementary block (Fig. D.1). It is convenient to work with such
Σ𝜏,𝜎 since the parameters 𝜏 and 𝜎 have a simple geometric interpretation on the
cylinder. In the limit 𝜎 →∞ we get the surface Σ𝜏.

If we only remove Im𝑤 < (−𝜎), the cylinder defines the map ⟨𝑇𝜎 | : Ĥ⊗4 → C that
is the amplitude of the elementary block (with filled inner hole) with fixed states
on the necks. It vanishes on basis elements |𝑒(𝑎1𝑏1)

𝑚1 ...𝑒
(𝑎𝑛𝑏𝑛)
𝑚𝑛

⟩ that do not satisfy
𝑏𝑘 = 𝑎𝑘+1. To express it through correlation functions of CFT on the unit disk1, one
should find a holomorphic map 𝑤 → b (𝑤) of the elementary block into the unit disk
as shown in Fig. D.2 and functions 𝑔0(𝑧),..., 𝑔𝑛−1(𝑧) such that 𝑔𝑘 maps the upper
half of the unit disk into the white region near 𝑒

2𝜋𝑖𝑘
𝑛 . Then

⟨𝑇𝜎 |𝑒(𝑎1𝑎2)
𝑚1 ...𝑒

(𝑎𝑛𝑎1)
𝑚𝑛

⟩ = 𝑒𝐴𝐿 (𝜎,𝜏) (𝑆11)3/2⟨
( 𝑛∏
𝑘=1

O
(𝑎𝑘𝑎𝑘+1)
𝑔𝑘 (𝑒(𝑎𝑘𝑎𝑘+1)𝑚𝑘

)
)
⟩CFT
𝐷 (D.7)

where 𝑒𝐴𝐿 is the overall Liouville factor that does not depend on the boundary
conditions or states and is not relevant in the following. We can take

b (𝑤) =
©«

1 +
√︃

cosh2(𝑛𝜋𝜎) tanh2(𝑛𝜋𝑖(𝑤 + 𝑖𝜎)) − sinh2(𝑛𝜋𝜎)
cosh(𝑛𝜋𝜎) (1 − tanh(𝑛𝜋𝑖(𝑤 + 𝑖𝜎)))

ª®®¬
1/𝑛

, (D.8)

1See Section 6 of [13] for a similar computation.
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Figure D.2: The images of the maps 𝑔0, 𝑔1, 𝑔2, 𝑔3, ℎ are shown in white with the
black dots being the images of 0.

𝑔𝑘 (𝑧) = 𝑒
2𝜋𝑖𝑘
𝑛

(
𝑖 − tanh (𝑛𝜋𝜎/2) 𝑧
𝑖 + tanh (𝑛𝜋𝜎/2) 𝑧

)1/𝑛
. (D.9)

Note that when 𝜎 → 0, the components ⟨𝑇𝜎 |𝑒(𝑎1𝑎2)
𝑚1 ...𝑒

(𝑎𝑛𝑎1)
𝑚𝑛

⟩ are suppressed by
tanh (𝑛𝜋𝜎/2) to the power of the total weight of basis elements, as can be seen from
the rotation map eq. (6.2). That allows us to get an upper bound on the components.
More precisely, for any 𝛽 we can find 𝜎0, such that for any 0 < 𝜎 < 𝜎0 we have

|⟨𝑇𝜎 |𝑒(𝑎1𝑎2)
𝑚1 ...𝑒

(𝑎𝑛𝑎1)
𝑚𝑛

⟩|
|⟨𝑇𝜎 |𝑒(11)

0 ...𝑒
(11)
0 ⟩|

≤ exp

(
−𝛽

𝑛∑︁
𝑘=1

ℎ(𝑎𝑘𝑎𝑘+1) (𝑚𝑘 )
)
. (D.10)

The map ⟨𝑇𝜏 | defines the statistical model for the computation of averages in the state
Ψ𝜏 as we discuss in Appendix D.3.

When 𝜏 is finite, the cylinder defines the map ⟨𝑇𝜏,𝜎 | : V ⊗V ⊗ Ĥ⊗4 → C. To express
it through correlation functions of CFT on the unit disk, in addition to 𝑔𝑘 , we need
the function ℎ(𝑧) = b ( 1

2𝜋𝑖 log(𝑧𝑒−2𝜋𝜏)) which maps the unit disk to the white region
in the center in Fig. (D.2). We have

⟨𝑇𝜏,𝜎 |𝛼�̄�𝑒(𝑎1𝑎2)
𝑚1 ...𝑒

(𝑎𝑛𝑎1)
𝑚𝑛

⟩ = 𝑒𝐴𝐿 (𝜎,𝜏) (𝑆11)3/2⟨
( 𝑛∏
𝑘=1

O
(𝑎𝑘𝑎𝑘+1)
𝑔𝑘 (𝑒(𝑎𝑘𝑎𝑘+1)𝑚𝑘

)
)
Oℎ (𝛼⊗�̄�)⟩CFT

𝐷

(D.11)
where |𝛼�̄�⟩ ∈ V ⊗ V. The tensor network state defined using the map ⟨𝑇𝜏,𝜎 | gives
the state Φ𝜏 (𝜎).

Remark D.1. We have discussed only the maps Ĥ⊗4 → C and V ⊗ V ⊗ Ĥ⊗4 → C
corresponding to the blocks in the interior of the network. The maps corresponding
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to blocks on the boundary can be defined by contracting the outward legs with some
elements of Ĥ, corresponding to attaching the boundaries, in a straightforward way.

D.3 Cluster expansion for the auxiliary tensor network
In this section, we first recall standard facts about the cluster expansion for statistical
models, also known as the polymer expansion. We follow Ch. 5 of [21]. We then
apply it to tensor networks coming from our construction. We will use it to prove that
the states Ψ𝜏 defined in the main text are well-defined in the thermodynamic limit, at
least for a small enough value of 𝜏, and that the correlators decay exponentially with
the distance.

General setup

Let Γ be a set equipped with a function 𝑤 : Γ→ C and a binary relation that contains
the diagonal. We call elements of Γ polymers; 𝑤(𝛾) is the weight of a polymer
𝛾 ∈ Γ. If (𝛾1, 𝛾2) does not belong to the binary relation, we write 𝛾1 ∩ 𝛾2 = ∅ and
say that the polymers do not intersect. Otherwise, we write 𝛾1 ∩ 𝛾2 ≠ ∅. A subset of
polymers Γ′ ⊂ Γ is called disconnected if all its elements do not intersect with each
other. The partition function is defined by

𝑍 =
∑︁
Γ′

∏
𝛾∈Γ′

𝑤(𝛾) (D.12)

where the sum is over all disconnected subsets Γ′ ⊂ Γ.

We call a collection 𝑋 of elements of Γ a cluster if the graph of intersections2 𝐺 (𝑋)
of 𝑋 is connected. The index of a cluster 𝑋 is defined to be

𝐼 (𝑋) :=
∑︁
𝐻

(−1) |𝐸 (𝐻) | (D.13)

where the sum is over all connected subgraphs 𝐻 of 𝐺 (𝑋) and |𝐸 (𝐻) | is the number
of edges in 𝐻. If a collection 𝑋 is not a cluster, we set 𝐼 (𝑋) = 0. Then, formally, we
have

log 𝑍 =
∑︁
𝑛≥1

∑︁
𝛾1∈Γ

...
∑︁
𝛾𝑛∈Γ

1
𝑛!
𝐼 ({𝛾1, ..., 𝛾𝑛})

𝑛∏
𝑖=1

𝑤(𝛾𝑖) =

=
∑︁
𝑋∈𝐶

𝐼 (𝑋)∏
𝛾∈Γ 𝑛𝑋 (𝛾)!

∏
𝛾∈𝑋

𝑤(𝛾) =:
∑︁
𝑋∈𝐶

W(𝑋) (D.14)

2The graph of intersections is the graph with vertices being the elements of 𝑋 and edges being
pairs {𝛾1, 𝛾2} such that 𝛾1 ∩ 𝛾2 ≠ ∅.
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Figure D.3: Each red point is the vertex of 𝑉𝐺 . The edges 𝐸𝐺 are not shown, but they
connect two neighboring red points. A square containing some vertex 𝑣 corresponds
to the piece of the surface that defines the vector |𝑇 (𝑣)⟩ ∈ ⊗𝑒∋𝑣Ĥ.

where 𝑛𝑋 (𝛾) is the number of times the element 𝛾 appears in 𝑋 and 𝐶 is the set
of clusters. This expansion is convergent provided a certain sufficient condition is
satisfied. We will use the following criterion (Theorem 5.4 from [21]). Suppose
there is a function | · | : Γ→ R>0 such that for any 𝛾 ∈ Γ we have

1
|𝛾 |

∑︁
𝛾′:𝛾∩𝛾′≠∅

|𝑤(𝛾′) |𝑒 |𝛾′ | ≤ 1 (D.15)

and ∑︁
𝛾′
|𝑤(𝛾′) |𝑒 |𝛾′ | < ∞. (D.16)

Then for any 𝛾1 ∈ Γ we have

1 +
∑︁
𝑛≥2

∑︁
𝛾2

...
∑︁
𝛾𝑛

|𝐼 ({𝛾1, ..., 𝛾𝑛}) |
(𝑛 − 1)!

𝑛∏
𝑖=2
|𝑤(𝛾𝑖) | ≤ 𝑒 |𝛾1 | . (D.17)

In particular, it guarantees the convergence of the cluster expansion eq. (D.14).

CFT tensor network

To compute the averages of observables in the state Ψ𝜏,Γ∗ , we introduce an auxiliary
statistical model.

Let 𝑉 , 𝐸 , 𝐹 be the set of vertices, edges, and faces of the infinite square grid defined
by the dual lattice Λ∨. We choose the same orientation on each edge and face. Let
𝐺 be the subgraph of size (2𝑁) × (2𝑁) as show in Fig. (D.3). The corresponding



112

sets of vertices, edges, and faces are denoted by 𝑉𝐺 , 𝐸𝐺 , 𝐹𝐺 , respectively. Let us cut
the surface Σ𝜏 into simple blocks, as shown in Fig. D.3. Each block containing a
vertex 𝑣 ∈ 𝑉𝐺 defines a map ⟨𝑇 (𝑣) | :

⊗
𝑒∋𝑣 Ĥ→ C where 𝑒 ∈ 𝐸𝐺 . The components

of the map can be computed as explained in Appendix D.2. The space of states
of the model is H𝐺 =

⊗
𝑒∈𝐸𝐺

Ĥ𝑒, where Ĥ𝑒 � Ĥ is the space associated with
each edge of 𝐸𝐺 . Using a natural pairing on each Ĥ𝑒, the contracted maps ⟨𝑇 (𝑣) |
compute the partition function of the CFT on Σ𝜏 with the cloaking combination of
elementary boundary conditions. We label the basis elements of H𝐺 by a function
𝑃 : 𝐹 → 𝐼 that is constant on 𝑓 ∉ 𝐹𝐺 , and a function 𝐽 : 𝐸 → N0 with 𝐽 (𝑒) = 0 for
𝑒 ∉ 𝐸𝐺 . A pair (𝑃, 𝐽) is called a configuration. The function 𝑃 defines the choice
of elementary boundary conditions on each boundary, while the function 𝐽 defines
the corresponding vectors in Ĥ. Hence, each configuration (𝑃, 𝐽) defines a basis
element |𝑣, 𝑃, 𝐽⟩ ∈ ⊗𝑒∋𝑣Ĥ𝑒 for each vertex 𝑣 ∈ 𝑉𝐺 . We define the weight𝑊 (𝑃, 𝐽)
of a configuration (𝑃, 𝐽) by the contraction of ⟨𝑇 (𝑣) |𝑣, 𝑃, 𝐽⟩⟨𝑣, 𝑃, 𝐽 |. The partition
function of the model is given by

𝑍 =
∑︁
𝑃,𝐽

𝑊 (𝑃, 𝐽). (D.18)

Let 𝐴 be a connected set of faces on the lattice Λ, and let 𝑆 = {𝑠1, ..., 𝑠𝑘 } be the set
of edges of 𝐸𝐺 intersecting the boundary of 𝐴 (see Fig. D.4). The contraction of
maps ⟨𝑇 (𝑣) | for 𝑣 that belong to faces of 𝐴 defines a map ⟨𝑇𝐴 | :

⊗
𝑠∈𝑆 Ĥ𝑠 → C or

the corresponding vector |𝑇𝐴⟩ ∈
⊗

𝑠∈𝑆 Ĥ𝑠. Similarly, we can define ⟨𝑇�̄� | for the
complementary set �̄� := 𝐹𝐺\𝐴. The partition function is given by ⟨𝑇�̄� |𝑇𝐴⟩

Any local observable A ∈ 𝒜 with the support inside 𝐴 gives another canonical map
⟨𝑂 (A) | :

⊗
𝑠∈𝑆 Ĥ𝑠 → C. Note that ⟨𝑂 (1) | = ⟨𝑇𝐴 |. The average of the observable

A can be expressed by

⟨A⟩Ψ𝜏,Γ∗ =
⟨𝑇�̄� |𝑂 (A)⟩
⟨𝑇�̄� |𝑇𝐴⟩

. (D.19)

Note that ∥|𝑂 (A)⟩∥ ≤ ∥A∥∥|𝑇𝐴⟩∥.

In the following, we analyze the model in the regime of small 𝜏. When 𝜏 is small,
the system energetically prefers the configurations with constant 𝑃 and 𝐽 (𝑒) = 0, and
we can perform the cluster expansion around this point. We show that there is 𝜏0

such that for any 0 < 𝜏 < 𝜏0 the cluster expansion converges, and the correlations
decay exponentially. We use the fact that for any 𝛽 there is 𝜏𝛽 such that for 𝜏 < 𝜏𝛽
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Figure D.4: 𝐴 consists of four faces forming a square. The edges of 𝑆 are parallel to
violet segments.

the following bound holds

|⟨𝑇 (𝑣) |𝑒(𝑎1𝑎2)
𝑚1 ...𝑒

(𝑎𝑛𝑎1)
𝑚𝑛

⟩|
|⟨𝑇 (𝑣) |𝑒(𝑎𝑎)0 ...𝑒

(𝑎𝑎)
0 ⟩|

≤ exp

(
−𝛽

𝑛∑︁
𝑘=1

ℎ(𝑎𝑘𝑎𝑘+1) (𝑚𝑘 )
)

(D.20)

as argued in Appendix D.2.

We first analyze the model for a holomorphic V, so that 𝐼 = {1}. Then we discuss
the modifications for general V.

Single vacuum

Suppose V is holomorphic. In this case, there is only one sector 𝑎 = 1, and the
configurations are labeled only by functions 𝐽. We omit 𝑃 in this subsection. We
also renormalize all ⟨𝑇 (𝑣) | so that the lowest weight components are equal to 1. For
a configuration 𝐽, we say that an edge 𝑒 is activated if 𝐽 (𝑒) > 0. We can apply the
cluster expansion with polymers being connected sets of edges and with the weight of
a polymer being the sum of𝑊 (𝐽) over configurations 𝐽 such that the set of activated
edges coincides with the polymer.

Let |𝛾 | be the number of edges in 𝛾. Then for any 𝑒 ∈ 𝐸𝐺 we have

∑︁
𝛾∋𝑒
|𝑤(𝛾) |𝑒 |𝛾 | ≤

∑︁
𝑙≥1

𝑛𝑙𝑒
𝑙

( ∞∑︁
𝑚=1

𝑒−2𝛽ℎ(𝑚)
) 𝑙

(D.21)
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where 𝑛𝑙 is the number of connected subsets of 𝐸𝐺 intersecting 𝑒 of cardinality
𝑙. The sum in the brackets is related to the character of V, and for regular V with
modular Rep(V) can be made arbitrarily small by varying 𝛽. Since3 𝑛𝑙 ≤ 42𝑙 , for a
large enough 𝛽 the cluster expansion convergence criteria eq. (D.15) and eq. (D.16)
are satisfied for any 𝑁 . Moreover, by eq.(D.17), for large enough 𝛽 we have∑︁

𝑋:supp(𝑋)∋𝑒
|W(𝑋) |𝑒𝑐 |𝑋 | ≤ 1 (D.22)

and therefore ∑︁
𝑋:|𝑋 |≥𝑅

supp(𝑋)∋𝑒

|W(𝑋) | ≤ 𝑒−𝑐𝑅 (D.23)

for any 𝑒 ∈ 𝐸𝐺 and 𝑅 > 0, where W(𝑋) is the weight of the cluster defined in eq.
(D.14), |𝑋 | is the number of edges appearing in the polymers of 𝑋 and 𝑐 is some
constant.

The averages eq. (D.19) correspond to the contraction with (⟨𝑇�̄� |𝑇𝐴⟩)−1 |𝑇�̄�⟩. Let
us write |𝑇 (𝑁)

�̄�
⟩ in this paragraph to indicate the dependence on 𝑁 . We can use the

cluster expansion to compute the overlap of normalized vectors for consecutive 𝑁

⟨𝑇 (𝑁+1)
�̄�

|𝑇 (𝑁)
�̄�
⟩⟨𝑇 (𝑁)

�̄�
|𝑇 (𝑁+1)
�̄�

⟩

⟨𝑇 (𝑁+1)
�̄�

|𝑇 (𝑁+1)
�̄�

⟩⟨𝑇 (𝑁)
�̄�
|𝑇 (𝑁)
�̄�
⟩

(D.24)

with the polymers and clusters living in the tensor networks obtained by gluing
two complements of 𝐴 of the original networks along the edges of 𝑆. Note that
the clusters which do not intersect simultaneously the boundary and 𝑆 cancel. The
remaining clusters have at least as many edges as the distance between 𝐴 and the
boundary, and eq.(D.23) implies that their contribution decays exponentially with 𝑁 .
Similarly, the norms of (⟨𝑇 (𝑁)

�̄�
|𝑇𝐴⟩)−1⟨𝑇 (𝑁)

�̄�
| are upper bounded, and since they have

unit overlap with |𝑇𝐴⟩, the thermodynamic limit 𝑁 →∞ exists. Therefore the state
Ψ𝜏 is well-defined.

Suppose now we have two observables A ∈ B(V𝐴) and B ∈ B(V𝐵) localized in
disjoint collections of plaquettes 𝐴 and 𝐵 with the corresponding sets of edges 𝑆𝐴
and 𝑆𝐵 intersecting the boundaries of the regions. To find a bound on |⟨AB⟩Ψ𝜏

−
⟨A⟩Ψ𝜏

⟨B⟩Ψ𝜏
|, we can compute the normalized overlap of vectors |𝑇

𝐴𝐵
⟩ and |𝑇�̄�𝑇�̄�⟩ :=

3That can be argued as follows. For each connected subset of edges and a vertex 𝑣 that belongs to
it, there is a path of length 2𝑙 that starts at 𝑣 and crosses each edge exactly twice. The number of all
paths of length 2𝑙 starting at some fixed vertex of 𝑒 and crossing 𝑒 is bounded by 42𝑙 .
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|𝑇�̄�⟩ ⊗ |𝑇�̄�⟩ corresponding to the contraction of |𝑇 (𝑣)⟩ in the complement of the
corresponding regions. The cluster expansion of

⟨𝑇
𝐴𝐵
|𝑇�̄�𝑇�̄�⟩⟨𝑇�̄�𝑇�̄� |𝑇𝐴𝐵⟩

⟨𝑇�̄�𝑇�̄� |𝑇�̄�𝑇�̄�⟩⟨𝑇𝐴𝐵 |𝑇𝐴𝐵⟩
(D.25)

on the corresponding glued tensor networks has the contribution only from clusters
intersecting both 𝐴 and 𝐵. They have at least as many edges as the shortest distance
𝑅 between 𝐴 and 𝐵. Therefore using eq.(D.23) one can get

∥𝜌𝐴𝐵 − 𝜌𝐴 ⊗ 𝜌𝐵∥1 ≤ 𝐶min( |𝑆𝐴 |, |𝑆𝐵 |) ∥A∥∥B∥𝑒−𝛼𝑅 (D.26)

for some constants 𝐶, 𝛼 and for density matrices 𝜌𝐴, 𝜌𝐵, 𝜌𝐴𝐵 corresponding to the
restrictions of the state Ψ𝜏 to the supports 𝐴 and 𝐵 of the observables A and B,
respectively. In particular, we have

|⟨AB⟩Ψ𝜏
− ⟨A⟩Ψ𝜏

⟨B⟩Ψ𝜏
| ≤ 𝐶min( |𝑆𝐴 |, |𝑆𝐵 |) ∥A∥∥B∥𝑒−𝛼𝑅 . (D.27)

Thus correlations between observable in the state Ψ𝜏 have exponential decay. Simi-
larly, if one modifies the state Ψ𝜏 by a local insertion of vertex operators (as in Section
6.1), the change of the expectation values of observables decays exponentially with
the distance between the insertions and the support of the observable.

Multiple vacua

For a non-holomorphic V, the polymers would be again the subsets of connected
edges of 𝐸𝐺 . For a configuration (𝑃, 𝐽), an edge 𝑒 is activated (i.e., the state running
through the corresponding neck has a non-zero weight) if 𝐽 (𝑒) > 0 or if 𝑃 has
different values on the adjacent faces. The weight of a polymer is given by the sum
of𝑊 (𝑃, 𝐽) over all configurations (𝑃, 𝐽) which set of activated edges coincides with
the polymer. Note that 𝑃 of the configurations contributing to the weight has the
same value in each connected component of the partition of the plane defined by the
polymer. For a given 𝑃, we can replace the elementary boundary condition around
each hole (defined by 𝑃) with the trivial elementary boundary condition and the
appropriate topological defect around the hole. For the computation of the weight of
a given polymer 𝛾, we can reconnect all the topological defects in deactivated necks
as the states running through those necks must have zero weight. Each reconnection
of defects with label 𝑎 gives a factor (𝑆1𝑎/𝑆11)−1. The resulting configuration has
contractible topological defects near the vertices inside each connected component
(which give a factor (𝑆1𝑎/𝑆11)) and topological defects running along the edges of the
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polymer. That allows to show that the contribution of a collection of non-intersecting
polymers to the partition function is given by the product of weights. We have a
bound

|𝑤(𝛾) | ≤ ©«
∑︁
𝑎,𝑏

∑︁
𝑚:ℎ (𝑎𝑏) (𝑚)>0

𝑒−𝛽ℎ
(𝑎𝑏) (𝑚)ª®¬

|𝛾 |

(D.28)

that can be made arbitrarily small by varying 𝛽, and therefore, in the same way as for
holomorphic V, for a large enough 𝛽 the cluster expansion convergence criteria eq.
(D.15) and eq. (D.16) are satisfied for any 𝑁 .

We can organize the cluster expansion in a similar way to show that, at least for large
enough 𝛽 (or small enough 𝜏), the averages of observables ⟨A⟩Ψ𝜏

are well-defined
in the thermodynamic limit, and the correlators of two local observables decay
exponentially with the distance between their supports. Modifications of the state
Ψ𝜏 by a local insertion of vertex operators can also be treated similarly, while for
insertions of non-trivial modules (see Section 6.1) the arguments are no longer
applicable since it may not be possible to contract the topological defects after the
reconnections. That is consistent with the fact that the averages of observables on
an annulus might be affected by an insertion of an anyon into the center even if the
annulus is very large.
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