Hard vs. Soft Bounds
in Probabilistic Robustness Analysis
And
Generalized Source Coding

and Optimal Web Layout Design

Thesis by

Xiaoyun Zhu

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology

Pasadena, California

2000
(Submitted May 16th, 2000)

ii

© 2000
Xiaoyun Zhu
All Rights Reserved

1

To My Parents

v

Acknowledgements

I have been extremely fortunate to pursue my doctoral degree in such a dynamic
and stimulating environment as Caltech, and to share my graduate vears with such
a group of talented, kind, and interesting people. First of all, I owe myv deepest
gratitude to my advisor, John Doyle, whose great vision and deep insights in science
and engineering have always been a source of inspiration. My research has always
been enlightened by his never ending effort in pursuing the big picture. Meanwhile,
his devotion to athletic activities, and his caring attention to charity, reminded me
about the other side of life.

Additionally. T have benefited from the help of many other professors in Caltech.
I thank Richard Murray for giving me the opportunity to have hands-on experience
with the helicopter experiment. This early experience offered me a chance to touch on
the reality of controlling a physical system. I thank Mani Chandy for the discussions
during our group meetings when I started working on the Web lavout problem. for
his little inspiring toy problems and his demonstration of the mathematically elegant
way to treat them. Finally, I would like to acknowledge Michelle Effros and Thomas
Hou, who along with John, Richard, and Mani, served on my thesis committee.

I extend my gratitude to my colleagues. To Yun Huang and Jie Yu. for the
enjovable collaboration on various topics of research, which contributed greatly to
Chapter 4 and Chapter 13 of this thesis, respectively. To James Primbs, for numnerous
conversations on a broad range of subjects, and particularly, for his availability and
willingness to help and his patience to correct my English in speaking and writing.
To Sven Khatri and Pablo Parrilo, for collaboration and discussions on probabilistic
robustness analysis resulting in Chapter 3 and Chapter 5. To Monica Ginnelli, my
officemate, for kindly taking phone messages for me, and sharing thoughts on work
and life in general.

Thanks also go to Charmaine, Shauna and Michelle, the secretaries of CDS de-

v
partment. for helping me resolve all sorts of little problems and tolerating such an-
Hnovances.

I dedicate my work to my parents. Their constant support and unconditional
love have alwavs been the most reliable force that I can depend on. From an early
stage of my life, they set an example of how to be honest, hard working and warm-
hearted. They provided me with a warm and happyv place called home, and meanwhile,
encouraged me to pursue things in the larger world.

I treasure my friends’ help in the cause. Without their sustained friendship my
life would be much emptier. 1 still vividly remember Xin An. Guangvang Wang,
Sikun Lan and many others’ help when [first came to the states. Without them 1
could not have overcome the roughness rather quicklv. When I need help, there is one
thing I am sure, Gang Qu and Zhe Jin would never turn me down, no matter how
far away they are and how busy they are. And when I needed a ride during the dark
carless days, Yong Wang always volunteered. I am fortunate to have my roommate,
Jennifer Jiang, whose cooking I greatly enjoved whenever I was too busy. Finally, I
have been lucky to have Helen Si to share the happiness and roughness of life through
my graduate vears at Caltech.

Last but certainly not least. T thank my husband Qing, for loving me, supporting
me, being patient with me, and most importantly. for showing me how to always keep

faith in life no matter what it puts us through.

vi

Abstract

Part 1

The relationship between hard vs. soft bounds and probabilistic vs. worst-case
problem formulations for robustness analysis has been a source of some apparent
confusion in the control community, and this thesis attempts to clarify some of these
issues. Essentially, worst-case analysis involves computing the maximum of a func-
tion which measures performance over some set of uncertainty. Probabilistic analysis
assumes some distribution on the uncertainty and computes the resulting probability
measure on performance. Exact computation in each case is intractable in general.
In the past most research focused on computing hard bounds on worst-case perfor-
mance. This thesis explores the use of both hard and soft bounds in probabilistic
robustness analysis, and investigates the computational complexity of the problems
through extensive numerical experimentation. We focus on the simplest possible prob-
lem formulations that we believe reveal the difficulties associated with more general
probabilistic analysis.

By extending the standard structured singular value p framework to allow for
probabilistic descriptions of uncertainty, probabilistic yu is defined, which character-
izes the probability distribution of some performance function. The computation of
probabilistic p involves approximating the level surface of the function in the pa-
rameter space, which is even more complex than the worst-case p computation, a
well-known NP-hard problem. In particular, providing sufficiently tight bounds in
the tail of the distribution is extremely difficult. This thesis proposes three different
methods for computing a hard upper bound on probabilistic u, whose tightness can
be tested by comparison with the soft bound provided by Monte-Carlo simulations.
At the same time, the efficiency of the soft bounds can be significantly improved with
the information from the hard bound computation. Among the three algorithms pro-

posed, the LC-BNB algorithm is proven by numerical experiments to provide the best

vii
average performance on random examples. One particular example is shown in the

end to demonstrate the effectiveness of the method.

Part 11

The design of robust and reliable networks and network services has become an
increasingly challenging task in today’s Internet world. To achieve this goal, under-
standing the characteristics of Internet traffic plays a more and more critical role.
Empirical studies of measured traffic traces have led to the wide recognition of self-
similarity in network traffic. Moreover, a direct link has been established between the
self-similar nature of measured aggregate network traffic and the underlying heavy-
tailed distributions of the Web traffic at the source level.

This thesis provides a natural and plausible explanation for the origin of heavy
tails in Web traffic by introducing a series of simplified models for optimal Web layout
design with varying levels of realism and analytic tractability. The basic approach
is to view the minimization of the average file download time as a generalization of
standard source coding for data compression, but with the design of the Web layout
rather than the codewords. The results, however, are quite different from standard
source coding, as all assumptions produce power law distributions for a wide variety
of user behavior models.

In addition, a simulation model of more complex Web site layouts is proposed,
with more detailed hyperlinks and user behavior. The throughput of a Web site
can be maximized by taking advantage of information on user access patterns and
rearranging (splitting or merging) files on the Web site accordingly, with a constraint
on available resources. A heuristic optimization on random graphs is formulated, with
user navigation modeled as Markov Chains. Simulations on different classes of graphs
as well as more realistic models with simple geometries in individual Web pages all
produce power law tails in the resulting size distributions of the files transferred from
the Web sites. This again verifies our conjecture that heavy-tailed distributions result
naturally from the tradeoff between the design objective and limited resources, and

suggests a methodology for aiding in the design of high-throughput Web sites.

viil

Contents
Acknowledgements v
Abstract vii

I Hard vs. Soft Bounds in Probabilistic Robustness Anal-

ysis 1
1 Introduction 3
1.1 Backgroundo 4
1.1.1 Worst-Case vs. Probabilistic Robustness Analysis 4

1.1.2 The Monte-Carlo Approach 6

1.1.3 Hard Bounds vs. Soft Bounds 8

1.2 Outlineof Part I 9
1.3 Notation 11

2 The i Paradigm 13
2.1 The General Framework 13
2.1.1 Linear Fractional Transformations 13

2.1.2 Definitionof po.o oo 15

2.1.3 p Upper Bound and Lower Bound 17

2.2 PurelyReal po 18
2.3 Implicit po 21

3 Probabilistic 23
3.1 The General Framework 23

3.2 Purely Probabilistic oo 24

X

4 Branch and Bound 29
4.1 A Naive Brand and Bound Algorithm 29
4.2 Branch and Bound for g Computation 31
4.3 Branch and Bound for Probabilistic 4 — The BNB Algorithm 34

4.3.1 The BNB Algorithm 35
432 Two Special Caseso 36
4.3.3 Numerical Experiments 38

5 u with Linear Cuts 43
51 Definition e 43
5.2 Upper Bound Computation 45

52.1 Elliptical Cut o 45
5.2.2 TImplicit Method oo 46
5.2.3 Parallelogram Method 49
5.3 Numerical Examples o oo 50

6 Linear Cuts for Probabilistic 4 — The LC Algorithm 55
6.1 Probabilistic 4 Upper Bound using Linear Cuts 55
6.2 Numerical Experimentso 58

6.2.1 Rank-one Matriceso 58
6.2.2 Random Decaying Matrices 58
6.2.3 General Random Matrices 60

7 The Mixed LC-BNB Algorithm 61
7.1 The Algorithm o 61
7.2 Numerical Experiments 0oL 63
7.3 Comparison of Three Methods 64
7.4 The LC-BNB Algorithm vs. Standard Monte-Carlo 67

8 Concluding Remarks 69
8.1 SUmMmMALY . . .« o e e e e 69

8.2 Future Directions e 70

X

II Generalized Source Coding and Optimal Web Layout

Design

9 Introduction
9.1 Related Work,
9.2 OQutlineof Part IT

10 Self-Similar Network Traffic and Heavy-Tailed Distributions
10.1 Self-Similar Random Processes
10.2 a-Stable Distributions o000
10.3 Heavy-Tailed Distributions
10.4 Self-Similarity Through High-Variability
10.5 Heavy Tails in WWW File Transfers

11 Generalized Source Coding
11.1 Data Compression
11.2 Generalized Source Coding
11.3 Application to WWW
11.4 Comparison with Data,

12 A More General PLR Model and Optimal Web Layout Design
12.1 One-Dimensional Web Layout Model
12.2 Web Sites of Multiple Documents

13 Simulations of Graph-Based Web Layout Models
13.1 Web Sites as Random Graphs
13.1.1 The Markov Chain Model
13.1.2 Optimization through Splitting and Merging
13.2 Simulations on Random Graphs
13.2.1 Initialization of the Graph Model
13.2.2 Heuristic Optimization and Simulation Results

13.2.3 Two Special Cases

73

75
76
79

83
84
86
88
89
90

93
93
94
96
97

99
100
106

13.2.4 Summary 124

13.3 A More Realistic Model L 125
13.3.1 Generation of Web Page Geometry 125

13.3.2 Simulation Results 126

13.4 Future Improvements of Graph-Based Models 130

14 Concluding Remarks 133
14.1 Summary and Discussion 133
14.2 Future Directions 135

A Proof of the Asymptotic Results in Chapter 12 137
A.1 For the Gaussian Distribution 138
A.2 For the Cauchy Distribution 138
A.3 Properties of the Operator ‘~* 139

Bibliography 140

List

1.1

2.1
2.2
2.3

3.1
3.2

4.1
4.2
4.3
4.4

4.5

4.6
4.7

4.8
4.9
4.10
411

4.12
4.13

5.1

xil

of Figures

Monte-Carlo simulation.

Linear Fractional Transformation.
Standard Interconnected System (S1).
Standard Implicit System (S2).

Definition of purely probabilistic p.

Separation of the parameterset.,

Branch and bound algorithm.

Tree of branches and the pruning process.
LB

== vs. problem size, with 50 problems of each size, without branching.

UB

% vs. problem size, for the same 50 problems of each size, after branch-
ing 10 times. Lo
No. of branches vs. problem size for various tolerances, for the worst
problem out of 50 in each size.
Branch and bound for probabilistic
Hard upper bound and soft bound on P(7) for a size 4 problem, after
branching 100 times, 0.9 <~ <1.
Special case 1 — M isidentity.
Special case 2 — M isrank-one. L.
Soft bounds on P(7) for different kinds of problems for n = 4.

hubpnp(‘x’) and sbgyp(‘0’) vs. problem size, with 20 problems of each

SIZC. o e e

rtenp = S2BNE v problem size, for the same 20 problems of each size.

A rank-one example, ya(M) =1landv=0.8.

Implicit system (S3) constructed for linear cuts.

15
21

26

27

30
30
32

32

33
34

36
37
38
39

40
41
42

47

6.1

6.2

7.1
7.2
7.3

10.1

11.1

12.1
12.2
12.3
12.4
12.5

12.6

13.1
13.2

13.3
13.4

13.5

BAand BAje.
Upper bound for p with linear cuts: Example 1.

Upper bound for g with linear cuts: Example 2.

shi
Tt%c = L vs. problem size for 60 random decaying matrices, with
LC

20 matrices of each size.o

e
td
BNB

vs. problem size for the same 60 random decaying matrices. . .

hubpc_pnp(’x’) and sbpc_pyp('0’) for 80 general random matrices.
b
rtLc—-BNB = H for the same 80 random matrices.

Average rt = ;2> vs. problem size with three different algorithms.

Cumulative distributions P; vs. [; of Web file transfers (in megabytes)

and codewords from data compression.

Comparison of DC and WWW data (I;, ;) with the results of the PLR
model (I;, P), 1> 2.,

Document of size L. oo
Dividing the document. L 0oL
A one-dimensional Web site. Lo
P! vs. I; for Web file transfers. (p(x) is exponential.)
P! vs. I; for Web file transfers. (Top: p(z) is Gaussian, p = —30,

o = 20; Bottom: p(z) is Cauchy, A=100.)

Cumulative distributionof [,,,.

Graph model of a random Web site with N, 4. = 1000 and Ny = 2.
Graph models of two random Web sites with N,,,q. = 500 and different
degrees of connectivity. Left: Ny, = 1; Right: Ny =3,
Cost function J vs. no of iterations, N, o4, = 1000, Nyjpr = 2.
P! vs. [; for Web file transfers before optimization and after 350 itera-
tions, Npoge = 1000, Nyjne = 2. . o« o o 0 0 o 0 0 oo
P! vs. [; for unique files after 350 iterations, Nyoge = 1000, Nyjng = 2.

50
o1
52

92

98

100
101
102
104

106
108

114

xiv
13.6 Mixed P! vs. [; for transferred files and mixed P} vs. [; for unique files
from 10 random Web sites, each with N, = 1000, before and after
the optimization. Lo
13.7 P} vs. ; for file transfers in a chain-like Web site before and after the
optimization, Npgee = 100. L
13.8 P! vs. [; of file transfers from a tree-like Web site before and after the
optimization, Nyoqe = 500, My =25, oL
13.9 Cost function J vs. no. of iterations, Nyoq. = 1000, Nypp = 2.
13.10P} vs. I; for Web file transfers before optimization and after 470 itera-
tions, Npoge = 1000, Ny = 2. . . . o . 0 . o . o o
13.11P%* wvs. I; for Web file transfers after 470 iterations, Npege = 1000,
Nimk =20 0 0 0 e
13.12Mixed P! vs. [; for transferred files and mixed P vs. [; for unique files
from 10 random Web sites, each with N,,,4. = 500, before and after

the optimization. L oL

121

123

124
127

128

128

XV

List of Tables

2.1 Time estimates for exact computation of purely real p.
5.1 Comparison of average upper bounds achieved by three different methods. 53

7.1 Comparison of average ratios obtained by three different algorithms. . 66

Part 1

Hard vs. Soft Bounds in

Probabilistic Robustness Analysis

Chapter 1 Introduction

In control engineering accurate prediction of a system’s behavior and successtul con-
trol of the system are almost infeasible without the use of a model — a mathematical
description of the underlving physical svstem that is being studied. However, no
mathematical models are perfect, whether the model is derived from first principles,
obtained using “black box” methodologies from empirical data, or a mixture of both.
Possible sources that lead to discrepancy between the model and the real svstem
include noise and disturbances from the environment where the svstem lives and op-
crates, possible variations of the parameter values used in the model, or intentional
emplovment of a simpler model on a highly complex svstem in order for the model to
be analytically tractable and eventually usable in design and simulations. Examples
of the latter would be the use of a lower order model which neglects higher order
dynamics, or the use of a linear model as an approximation for a nonlinear system.
The above factors are considered as “uncertainty” associated with the corresponding
model. Control design without taking into account model uncertainty can lead to
instability or performance deterioration, which may sometimes result in catastrophic
system failure. The subject of robust control involves the development of systematic
tools for dealing with model uncertainty in order to reduce the risk of system failure
as much as possible and achieve high performance specifications even in the face of

uncertainty. These tools can be coarsely divided into the following three categories:

Uncertainty modeling: A mathematical infrastructure for quantification of uncer-
tainty for it to be incorporated into system analysis and design. This essentially
involves mathematical descriptions of a “set” of models instead of a single model,

which allows for a more complete characterization of a physical system.

Robustness analysis: Theories and computational tools developed to predict the

behavior of the model when the description of the uncertainty has been provided.

3

Robust control synthesis: Controller design methodologies that guarantee stabil-

ity and performance for the set of models that describe the underlying system.

The focus of this thesis is on robustness analysis, and in particular, probabilistic

robustness analysis.

1.1 Background

1.1.1 Worst-Case vs. Probabilistic Robustness Analysis

In robustness analysis there are essentially two problem formulations: worst-case ro-
bustness analysis and probabilistic robustness analysis. In worst-case analysis, the
major concern is the worst outcome for a system in the presence of uncertainty. Math-
ematically it involves finding the maximum of a function which measures the system’s
performance over some set of parameters or operators that describes the uncertainty.
In probabilistic analysis, the question of interest is what is the probability of bad per-
formance. To answer this question, a probabilistic description of the uncertainty is
required, then the resulting probability measure on the performance can be evaluated.

Much effort in the history of worst-case robustness analysis has been devoted
to characterizing conditions of guaranteed stability and performance for uncertain
systems that are described by a set of models. The small gain theorem introduced
by Zames [77] in 1965 was the first significant milestone in addressing this issue. It
states that an interconnected system is guaranteed to be stable if both systems in the
loop are stable and the loop gain is less than one, which provided an exact robust
stability test with respect to unstructured dynamic uncertainty. However, a set of
models using unstructured uncertainty could be much larger than necessary to cover
the real system. The introduction of structured or block diagonal uncertainty and the
structured singular value p by Doyle [24] and Safonov [64] in 1982 provided a much
less conservative framework for analyzing systems with various types of uncertainties.
In particular, the usefulness and flexibility of the p framework as a robustness analysis

tool are due to the fact that many robust stability and performance problems can be

4
recast as p computation problems with appropriate types of uncertainty structure.

On the other hand, a worst-case paradigm can be overly conservative for many
practical applications. When applying this framework to robust control design, the
resources available will be used to guard against some worst-case event, which may
only happen with extremely small probability that can be neglected for engineering
purposes. In general, the probability distribution of a system’s performance largely
depends on the distribution of the uncertainty that comes into play. Suppose the un-
certainty consists of a set of parameters. If it is known a priori that some parameter
values are highly unlikely compared with others, it seems unwise to treat them equally
rather than to take advantage of this information in stability and performance analy-
sis. Although a probabilistic framework may not always be appropriate, it does arise
naturally in some engineering practices. For example, estimating the yield of chips
as the result of some manufacturing process, or assessing the risk of failures for some
complex engineering systems such as chemical process facilities and space systems,
based on probabilities of component failures [50]. In these situations, probability dis-
tributions on the uncertainty has natural interpretations or can be obtained through
a combination of expert opinion and empirical data [2]. Other work in choosing prob-
ability distributions for uncertainty include the study of the worst-case distribution
of uncertain parameters by Barmish [10]. Once the probability distribution on the
uncertainty is given, the problem becomes how to compute the resulting probability
distribution on the system’s performance.

In general, exact computation for robustness analysis, either worst-case or prob-
abilistic, is intractable. It is quite easy to see intuitively why this might be so, even
for linear systems with parametric uncertainty. Suppose that for fixed parameters we
can compute some function f to obtain a measure of performance and the cost to do
so is C, and that we have n uncertain parameters. Suppose that we want to compute
f for r values in each parameter in order either to estimate the maximum (worst-
case) or average (probabilistic) performance, or to estimate the probability that f
exceeds some threshold. The total number of possible combinations of parameter

values is then 7™ and the cost of all the evaluations is Cr™. Thus the growth rate in

o
n is exponential, which means that the addition of even a few parameters to a model
can cause severe increases in computation. This intuition is supported by theoretical
results that show that even for linear models with parametric uncertainty, evaluating
virtually any robustness measure is NP hard in the number of parameters [12]. Al-
though the computational implication of NP-hardness is still a fundamentally open
question in the field of computational complexity, saying that a problem is NP-hard
is generally taken to mean that the problem cannot be computed in polynomial time
in the number of parameters in its worst case. It is important to note that being
NP-hard is a property of the problem itself, not any particular algorithm. The fact
that p computation is NP-hard strongly suggests that given any algorithm, there will
be problems for which the algorithm cannot find g in polynomial time. In fact, even
the approximation problem for p is NP-hard [31]. That is, computing p to within a
constant factor of the optimum is NP-hard. So it is a “hard” NP-hard problem from
the point of view of computational complexity. If anything, a probabilistic frame-
work makes this even more difficult since the computation is more involved. Efficient

computational schemes are needed to deal with this complexity.

1.1.2 The Monte-Carlo Approach

There are several approaches to overcoming the apparent intractability of worst-
case or probabilistic robustness analysis. An indirect approach which is well-known
and has been the industry standard for decades is so-called Monte-Carlo simula-
tion [63, 69]. Suppose the joint probability distribution of the uncertain parameters
pi, @ =1,...,nis given. Figure 1.1 shows the special case where p; are independently
distributed, which may not be true in general. To experimentally estimate the distri-
bution on the performance function f, one can compute f at random samples of p;
generated according to its distribution. This can then be subjected to standard sta-
tistical tests like any experimental data to produce “soft” bounds through hypothesis
tests. The beauty of the Monte-Carlo approach is that the accuracy of the estimates

trivially does not depend on the dimension of the parameter space, so there is no

pl \
P /\ — .| Simulation Model ——
2 -~
K E f(p,.pyseeby) S

estimated probability

D JQ_> distribution on f

pdf on parameters

Figure 1.1: Monte-Carlo simulation.

growth whatsoever in the computation cost with the number of parameters [17]. The
only cost is that of the function evaluation itself and the number of times it must be
repeated to obtain a statistically significant sample size. Furthermore, Monte-Carlo
can be applied to any simulation or experiment, so it is applicable to many problems
that lack the mathematical structure for more systematic analysis.

The main difficulty with the Monte-Carlo soft bounds approach is it does not
actually compute the probability distribution of performance, but only indirectly
assesses it. That is, we do not obtain hard bounds like “the model achieves the
desired performance 99% of the time,” but instead we obtain soft bounds like “we
can be 95% confident based on the experimental data that the model achieves the
desired performance 99% of the time.” What this means more precisely is that a
model that has acceptable performance for 99% of the assumed uncertainty set would
produce data as good as what we have observed for 95% of repeated experiments. The
actual probability distributions remain unknown, and would require the prohibitive
computation of multidimensional integrals with the inherent intractability described
in the previous subsection, so it is still possible that the true probabilities are much
worse than 99%. The need to use such confidence levels can be particularly annoying
when they are not naturally motivated or when estimating the probability of rare
events with high confidence levels, which requires an enormous number of Monte-

Carlo trials.

7
On the other hand, we may simply want to know if anything bad can happen for
some set of parameters, and there is no natural way to interpret the probability distri-
bution of the parameters or the resulting probability distribution of the performance.
In this case, a worst-case problem formulation may be more appropriate. While it
is possible, in principle, to use Monte-Carlo to estimate soft bounds on worst-case
performance, this is much more awkward than its conventional use and is unlikely to

be practical.

1.1.3 Hard Bounds vs. Soft Bounds

There are alternatives to the Monte-Carlo technique that provide different and com-
plementary answers, and the development of such alternatives has been a driving
force behind much research in robust control theory for the last twenty years. The
difficulty is that if we want to avoid soft estimates, we must overcome the worst case
intractability implied by the NP-hardness of our problems. The approach that has
proven to be most successful involves computing hard bounds, as opposed to the soft
bounds provided by Monte-Carlo, and refining the bounds by using branch and bound
(B&B) techniques. A good example is the development of computationally tractable
upper and lower bounds for p and many efficient algorithms to compute and improve
them [30, 75, 11, 76, 53, 54, 52].

The hard bounds approach has been primarily used to compute worst-case per-
formance, but it could in principle be used to compute hard bounds on probabilistic
measures as well. Similarly, Monte-Carlo could be used to obtain soft bounds on
worst-case performance, although it would require possibly unverifiable assumptions
on the models. Nevertheless, it is somewhat artificial to exclusively associate Monte-
Carlo and probabilistic problem formulations, although historically most research
has focused on computing hard bounds for worst case, and little attention has been
focused on computing hard bounds for probabilistic measures. However, as was men-
tioned previously, the Monte-Carlo simulation becomes extremely inefficient when it

is used to assess the probability of rare events, because a large number of samples

8
will be wasted on benign events. In this case it is desirable to have some kind of hard
bounds on the tail of the distribution.

The big advantage of hard bounds for either worst-case or probabilistic is that they
are guaranteed and can be refined by branch and bound. The potential difficulty is
that there exist examples for which this refinement may take prohibitively long. For
many worst-case problems, it seems that such examples are extremely rare to the
point that it is unlikely that anyone would ever encounter one without specifically
constructing it. It is interesting to note that this is true of course with essentially all
numerical algorithms, even those we think of as polynomial time, such as eigenvalue
and singular value computation. For these problems, however, there is a much clearer
picture of the nature of “hard” problems, whereas for the problems in robustness
analysis, the evidence is entirely numerical.

The problem of finding hard bounds on probability distributions has received
almost no attention in the robust control literature. Since it involves essentially
bounding the integral of some complex function over some parameter space, it appears
harder than the corresponding worst-case problem of computing the maximum value

of the function. Investigation of this problem is the focus of this thesis.

1.2 Outline of Part [

The main contribution of this thesis is that it is the first attempt to develop com-
putable hard bounds for probabilistic robustness analysis as a complement to soft
bounds provided by traditional statistical methods, such as Monté-—Carlo simulations.
Probabilistic p is introduced as an extension of the structured singular value p from
the worst-case to the probabilistic framework. We explore the possibility of applying
branch and bound techniques in computing hard upper bounds and improving soft
bounds on probabilistic ¢ and investigate the technical difficulty and computational
challenges associated with the problem. In addition, more intelligent computational
schemes are developed accordingly to cope with the complexity of the problem.

The thesis starts with a review in Chapter 2 of the structured singular value p

9
in its standard framework, which is a useful tool for analyzing robust stability and
robust performance from a worst-case perspective. Computationally tractable upper
and lower bounds for p are described. In addition, purely real p and implicit p are
discussed which will be used in later chapters.

In Chapter 3 the standard p framework is extended to allow probabilistic uncer-
tainty descriptions with which probabilistic p is defined. Further simplification of the
description leads to the definition of purely probabilistic u, which corresponds to the
complementary cumulative distribution of a performance function. The relationship
between standard p as a worst-case measure and purely probabilistic i as a distribu-
tion leads to the possibility of using a combination of the standard p upper bound and
a branch and bound algorithm to compute hard upper bounds and soft bounds on
probabilistic . The rest of the thesis is devoted to the development of three different
algorithms for implementing this idea. Their performance is tested through extensive
numerical experimentation and an overall comparison will be provided at the end of
this thesis.

Chapter 4 briefly reviews branch and bound as a general optimization technique
and demonstrates through numerical experiments how a naive branch and bound al-
gorithm can effectively improve the upper and lower bound computation for standard
1, but fails to obtain sufficiently tight bounds for purely probabilistic p. Analysis
of two special cases reveals the fact that the difficulty in the computation is also
present with rank-one problems, for which exact bounds are available in the worst-
case computation. Intuition into rank-one problems motivated the study of p with
richer classes of uncertainty descriptions, including spherical p and elliptical p [39, 58]
introduced by Khatri and Parrilo and p with linear cuts [82] discussed in the next
chapter.

w4 with linear cuts is defined when linear constraints are included to describe the
real parametric uncertainty in the p formulation. Three methods for computing up-
per bounds for p with linear cuts are described in Chapter 5, including the elliptical
method that employs the elliptical g upper bound, the implicit method that imple-

ments the linear constraint through an implicit system, and the parallelogram method

10
that augments the uncertainty set so that the standard p upper bound can be used.
These three methods are compared though numerical experiments, which rank the
implicit method above the other two in terms of average performance.

Using the results in Chapter 5, a probabilistic ;4 upper bound using linear cuts
is presented in Chapter 6. When applied to rank-one problems or problems that are
close to rank-one, the linear cut algorithm either provides the exact bound or out-
performs the naive branch and bound algorithm with axially aligned cuts. However,
its performance on general random matrices is unsatisfactory, which motivated the
search for more intelligent algorithms to deal with general random matrices.

The last algorithm presented in Chapter 7 is a mixture of the naive branch and
bound algorithm and the linear cut algorithm. It combines the strengths of both
algorithms so that better bounds on probabilistic ¢ can be computed. Numerical
experiment results verify that the average performance of the last algorithm is much
greater than the previous two algorithms. The advantage of this algorithm com-
pared to a standard Monte-Carlo simulation algorithm is also demonstrated through
a particular example.

Finally, some concluding remarks and suggestions for future research are given in

Chapter 8.

1.3 Notation

The notation in this thesis is fairly standard. If M is a matrix, then M7, M* denote
the transpose and complex conjugate transpose of M, respectively. The same con-
vention applies to a vector x. Ker(M) is the kernel of M. The n x n identity matrix
will be denoted by I,,, I is used when the dimension is obvious. Zero matrices will be
denoted by 0. diag[A;,- -, Ay] is a block diagonal matrix with A;’s on the diagonal.

The maximum singular value of a matrix M is denoted by (M). For a square
matrix M, p(M) and p,(M) denote the spectral radius and the real spectral radius,
respectively, while), (M) denotes the maximum positive real eigenvalue. When M

has no (positive) real eigenvalues, p,(M) (A (MA)) = 0. Tr(M) is the trace of M,

11
and det(M) is the determinant of M.

For z € C", ||z|| denotes the vector 2-norm, while for a matrix A € C**", ||M]|
stands for the induced 2-norm, e.g., ||M|| = &(M).

The Hadamard (or Schur) element-wise product of two matrices A = [a;;] and
B = [b;;] of the same dimensions is defined as A o B = [a;;b;;]. It will be used later
to specify particular matrix structures.

For an uncertainty structure A, BA: = {A € A : [JA]| <1}. B(Ag,r) denotes
the axially aligned hyperrectangle centered at Ay, and the vector r contains the half
lengths of the sides. The volume of a region R € R" is denoted by V(R). For two
sets Ry and Ry in R", R\ R, denotes the set {A: A€ Ry, A ¢ Ry}.

12

Chapter 2 The y Paradigm

This chapter reviews the definition of the structured singular value p, its relationship
with Linear Fractional Transformations (LFTs), and it upper and lower bound com-
putation. A special case that only involves real parametric uncertainty is discussed.

In the end an extension of y to implicit systems is described.

2.1 The General Framework

The use of p in the study of robust stability and performance is motivated by its close
relationship with Linear Fractional Transformations (LFTs), a general class of linear
feedback loops used to define the set of models associated with the uncertain system.

See [56] for an in-depth discussion on LFTs.

2.1.1 Linear Fractional Transformations

My My

My My
with M, € CY" and My € C™*™ . Then the block diagram in Figure 2.1 defines an

LFT, denoted by A x M.

Let M € Cntm)x(+m) and A € C"*". M can be partitioned as M =

Figure 2.1: Linear Fractional Transformation.

13
We say that the LF'T A x M is well posed if and only if there exists a unique

solution to the following loop equations:

Yy = Mul’ -+]VIQU
z = M21£L' + _Z\/IQQU (21)
r = Ay.

When the LFT is well posed, it uniquely defines a mapping from v — z, i.e.,
2z = (A x M)u, where

AxM: = M22 -+ lWQlA(I - MHA)_lMlg. (22)

From this formulation, it is easy to see that the LFT A x M is well posed if and
only if the matrix I — M7; A is nonsingular. If [— M;; A is singular, there are infinitely
many solutions to (2.1), in which case ||z|| and ||y|| could be arbitrarily large. Then
the system is in some sense unstable.

The above LF'T defined is called an upper LFT. Similarly, a lower LFT M %A can
be defined as

MxA: = Mu + M12A<] - MQQA)“lMQI. (23)

LFTs are a natural generalization of state space representations of linear time

A B
invariant (LTT) systems. When M = ;and A = 1],
cC D

AxM=D+C(zI —A)~'B (2.4)

becomes the transfer function of a discrete-time system. By including various types
of uncertainty operators into A, the LFT system defined in Figure 2.1 can represent
a fairly general class of uncertain systems, for which robust stability and performance
can be analyzed by studying the well posedness of the LFT with respect to appropriate

set of uncertainties.

14
2.1.2 Definition of u

If the use of LFTs in modeling uncertain systems laid down a basis for robustness
analysis, then the introduction of the structured singular value p provided a useful
tool for directly evaluating stability and performance in the set of models described
by the LFT.

As can be seen in the previous section, the well posedness of the LF'T system
AxM completely depends on the feedback interconnection between A and M;;. This
interconnection is pulled out of Figure 2.1 and shown in Figure 2.2, where M;; is

renamed as M for simplicity. A represents the uncertainty in the system.

Y

A

M e

Figure 2.2: Standard Interconnected System (S1).

The structured singular value p addresses the existence of nontrivial solutions to
the loop equations

y =Mz (2.5)

T = Ay.

It is easy to see that there are no nontrivial solutions to (2.5) if and only if the matrix
I — M A is nonsingular, which is equivalent to the well posedness of the LE'T defined
in Figure 2.1 when M = My;.

The uncertainty matrix A has a block diagonal structure in general. The kinds
of blocks included depends on the types of uncertainties and performance objectives
for each specific problem. The general p framework accommodates real parameter
variations, change of frequencies, and unmodeled dynamics, which are represented by

repeated real scalars, repeated complex scalars, and full complex blocks, respectively.

15
Let m,, m, and m¢c be three nonnegative integers (m = m, + m, + m¢ < n) that
specify the number of uncertainty blocks of each type. Then let the m-tuple of positive

integers

,C = (kl, e 7ka, ka+1; s ’kmr+mc7 km7,+mc+1, [P ,k’m) (26)

correspond to the dimensions of individual blocks, with " k; = n. The set of

allowable uncertainties is defined as follows:

A = {diag[0i e, 60 Do 65Tk s 308 T iy A JAS]
6T € R, 6¢ € C, AY € Chmrtmetixhmrtmeti},
(2.7)
For a given perturbation A € A, its “size” is measured by the co-norm ||A|| =
o(A). Accordingly, BA is the unit-norm bounded set in A.
The definition of the structured singular value yu is a generalization of the singular

value and the spectral radius for matrices.

Definition 2.1 For M € C"", the structured singular value pua(M) with respect to

a given block structure A is defined as

1
nalM): = e A TA € A, det(l = MA) = 0 (28)

unless det(I — MA) # 0,YA € A, in which case pa(M): = 0.

In the other words, mf) measures the “size” of the smallest perturbation in the
space of allowable A which makes the matrix I — M A singular. As a consequence,

the following theorem holds.

Theorem 2.2 (Well Posedness [78]) The LFT A x M 1is well posed for all A €
BA if and only if pa(Myy) < 1.

The above theorem states that p provides an exact test for robust stability. Using

i for robust performance analysis is based on the following theorem.

16
Given two uncertainty structures A; and Ay, define a new structure
Ay

A = . A1€A1, AQEAQ . (29)
Ag

Theorem 2.3 (Main Loop Theorem [78])

pa, (M) <1

pa(M) <1 <=
SUPA,eBA, Haq (A1 x M) < 1.

The main loop theorem enables the robust performance test to be recast as a p
computation problem, with A, representing all the uncertainties, and A, reflecting

the performance objective. For details and examples see [78].

2.1.3 u Upper Bound and Lower Bound

The u problem with the uncertainty structure A defined in (2.7) is referred to as the
“mixed p” problem, because A contains both real and complex uncertainty blocks.
It has been proven that computation of the mixed g is NP-hard [12]. Fortunately,
there are upper and lower bounds for g with polynomial time algorithms.

The lower bound is based on the following alternative definition of u:

pa(M) = sup p(MA) = sup A.(MA) (2.10)
A€BA AeBA

The above optimization problem is not convex, so there are no guarantees of
finding the global optimum. A power iteration algorithm can be used to search for
the optimum [75, 53]. Although the iteration is not not guaranteed to converge, and
even if it converges, it may converge to a local maximum, it is faster and has better
global convergence than standard optimization.

On the other hand, an upper bound 7in (M) can be constructed using Linear

17
Matrix Inequalities (LMIs) [30]:

Tia (M) = })ngec{ﬁ >0: M*DM + j(GM — M*G) — 3*D < 0}

De
(2.11)
where
D: ={diag\D1,... ,Dpsmedidi, o vrs-o s daadi |
{diag[D, + k1ot e dk,,] (2.12)
O<Di:D;€Ckiin, di>0},
and
G: = {diag|Gy,... ,Gp,,0,...,0]: G; =G e Chixkiy, (2.13)

The upper bound in (2.11) is a generalized eigenvalue problem (GEVP), which
can be solved using an interior point method for LMIs [51, 11]. D and G are called
“scaling matrices,” which are used to exploit the block diagonal structure of A and the
phase information in the real parameters, respectively. The optimization is convex,
but the optimum does not achieve p in general, and there can be large gaps between
the optimal upper bounds and the real values of u.

Based on the above discussions, we can see that although both upper and lower
bounds are computationally tractable, they are not guaranteed to be tight because
there exist problems where either the lower bound or the upper bound can be poor.
This is the motivation for using branch and bound techniques to refine the bounds,

which will be reviewed in Chapter 4.

2.2 Purely Real pu

The mixed p reviewed in the previous section is the most standard p formulation,
which accounts for both real parameter variations and unmodeled dynamics. This
formulation will not be used in this thesis. Instead, we will focus on a much simpler

setting, where only real parametric uncertainty is considered. The reason will become

18
clear after the notion of probabilistic y is introduced later in this chapter. It is also
assumed that all the real parameters are nonrepeated to further simplify the notation.

Hence, the uncertainty structure that will be used throughout this thesis is
A: = {diag[o1,... 0] : & € R}. (2.14)

The structured singular value i defined with the uncertainty structure in (2.14) is a
special case of the one in Definition 2.1. It is referred to as the “purely real u,” or “u on
a box.” The second name comes from the fact that the set BA = {A € A : ||A]| <1}
in this case is the the unit box in R”. ‘

Similar to the case of mixed p, computing purely real y is also NP-hard [12]. The
lower bound for purely real y involves a non-convex optimization of \,.(MA) on the
unit box BA, based on (2.10). And there is no gap between its optimum and pa (M).
Here we will take a step further and assume that M is real. The class of y problems
with real M is encountered when M is constructed from state space representations

of systems using ‘A, B, C, D’ matrices. The following lemma is taken from [74].

Lemma 2.4 For a real matriz M € R™" and an uncertainty structure A defined in
(2.14), it suffices to consider perturbations at the vertices of the allowed perturbation

set.

The above lemma says that in the special case defined above, the maximum of the
optimization in (2.10) must be achieved on the vertices of the unit box. Therefore, 1
can be computed exactly by checking a finite number of points. However, the required
computation grows exponentially with problem size, which is consistent with the NP-
hardness nature of the problem. To illustrate how fast this growth can be, Table 2.1
shows the computation time needed to check \.(MA) on all the 2" vertices of BA
versus problem size n. Times are estimates for a SUN Ultra Sparc workstation.

Obviously, even though the computation seems trivial, the growth rate of the time
required is devastating for large problems. Again instead of computing p directly,

lower bound and upper bound of x4 are computed using polynomial time algorithms.

19

Problem Size (n)
4 8 | 16 32 64
0.01]03] 5 3 19x10"
sec | sec | min | years | years

Table 2.1: Time estimates for exact computation of purely real u.

The upper bound for the mixed g in (2.11) is reduced to
fia(M) = gg}{ﬁ >0: M'DM — 3*D < 0} (2.15)
where
D = {diag[dl,d2,... ,d,]: d; > 0}. (2.16)

Note that the G scaling is not necessary here since M is real and §; are nonre-
peated [74].

Suppose Tip (M) = 3%, then it is guaranteed that the matrix I — M A is nonsingular
for all A € ﬁ%BA. So the search for the minimum £ is essentially a scaling on BA
to find the biggest box in R" in which I — M A is invertible.

When BA is only scaled along the directions of m parameters (m < n), while
the sizes of other n — m parameters remain fixed, the skew version of purely real u

can be defined. In this case, with appropriate ordering of the parameters, the upper

n—m

bound is identical to the one in (2.15) with 3? replaced by , . This
[Vt
upper bound will be used later for p with linear cuts in Chapter 6.

Skew p can be generalized to the mixed p case, where it is typically used for the
computation of robust performance. The idea is to fix the size of the uncertainty
block while changing the scale of the performance block so that the guaranteed level

of performance can be found.

20
2.3 Implicit p

The above p framework can be extended to implicit systems. An implicit framework
allows one to add algebraic constraints to the standard interconnected system (S1),

as shown in Figure 2.3.

A

Y x
M
C

;

Figure 2.3: Standard Implicit System (S2).

Implicit p addresses the existence of nontrivial solutions to the loop equations
defined in Figure 2.3, with the constraint Cz = 0 posed on the output of A. The
definition of implicit 1 and its upper bound given in [57] (simplified for the purely

real case) follow. The implicit 4 upper bound will be used in later chapters.

Definition 2.5 For the implicit system (S2), the structured singular value pa(C, M)
is defined as

1
MA(C7 M) =)
- AM
min{z(A): A €A, Ker # 0} (2.17)
C
I—AM _
unless Ker =0,YA € A, in which case ua(C,M): = 0.
C

Let C'; be the matrix whose columns form a basis for Ker(C). Then the following

is an upper bound on pa(C, M).

pA(an4)::ggg{ﬂ:>0: C*(M*DM — 3*D)C, < 0}. (2.18)

21

Chapter 3 Probabilistic u

The standard p framework reviewed in the previous chapter is essentially a worst-
case paradigm. The computation of p is equivalent to the search for the largest set
of perturbations so that stability or performance criterion is satisfied by the system
with all possible perturbations in the set. This approach can be overly conservative
in situations where the above set can be greatly enlarged at the expense of a small
risk, especially when a probabilistic description of the uncertainty is appropriate and
available. It appears natural to use this information in assessing the probability of
instability or poor performance, which can help setting tradeoffs when design decisions
are made. This chapter extends the standard p framework to include probabilistic
descriptions for the uncertainty A in the interconnected system (2.2). This new
framework is referred to as the probabilistic p framework, to be distinguished from

the standard p framework which only deals with worst-case robustness problems.

3.1 The General Framework

An early investigation of probabilistic 4 was done in [81], where (M A) was chosen
as the performance measure of the system with perturbation A. Assume that the
distribution of A is given. The objective is to compute the resulting complementary

cumulative distribution of the performance function:
P() = P (MA) > 1], (3.1)

A more general framework for probabilistic ;1 was described in [38], where the

A
uncertainty A consists of two parts: A = P , where A, is the part of the
0 Ay

uncertainty that admits a probabilistic description, and A, is the rest where only

22
the worst-case is concerned. The most natural way to think of this separation is A,
contains the real parametric uncertainty blocks, while A, consists of the stability
and performance blocks. For example, if A, = 27'I for a discrete-time system, the

probability of the system achieving stability is given by

Plua, (M xA,) < 1]. (3.2)
o 2710)
And if A, = , where Ay is a complex full block and |[A|| < v, then
0 Ay
the probability of the system being stable and achieving the performance level 7 is
given by
I 0
P {ua, MxA, | <1]. (3.3)
0 —};I

Monte-Carlo simulation can be used to estimate the above probabilities. The
difficulty is, each sample trial involves a p calculation, which is NP-hard itself. When
a large number of samples are required, the overall computation is hardly tractable.
For special classes of problems where A,, has rather simple structure, like in the case of
(3.2) or (3.3), p equals its upper bound, then the computation become more feasible.
However, it is not clear yet how to compute hard bounds on these probabilities. As
a starting point, we will focus in this thesis on a much simplified case: the purely

probabilistic case, which is discussed in the next section.

3.2 Purely Probabilistic p

In the case where the uncertainty description is purely probabilistic, A = A,. Since
it is hard to interpret probability distributions on unmodeled dynamics, we would
further assume that A contains only real parametric uncertainties, i.e., A € A where
A is defined in (2.14). Moreover, in most practical applications the uncertain pa-

rameters vary in a bounded set. Without loss of generality, it is always assumed that

23
A € BA because other cases can be easily normalized by appropriate scaling on rows
and columns of M. To define probabilistic i in this purely real case, we need to first
define a p-type function to be consistent with the general setting. Considering that
pa(M) = maxacpa A\ (MA), it is natural to choose A, (MA) as in [81]. Later dis-
cussion shows that this choice happens to be consistent with the notion of “stability”

for this purely real case.

Definition 3.1 The purely probabilistic u is defined as

pa(M,0) =~ if PMN(MA)>9]=a.

The superscript ‘P’ emphasizes the probabilistic setting. In addition to specifying
the matrix M and the associated uncertainty structure A as in the standard p case,
one more parameter is needed to define probabilistic y — the risk level a. The
relationship between « and ~ is demonstrated in Figure 3.1. Suppose the function
XT(M A) provides some inverse performance measure of the system, i.e., the higher the
function, the worse the performance, then « is a variable for all possible performance
levels, with pa(M) as its worst case. « = P(v), where P(v) is defined in (3.1),
corresponds to the complementary distribution of the performance function at a given
level v. Each given « uniquely determines «, and vice versa. A natural question in
engineering is given a threshold v on the performance, what is the probability of the
system exceeding this threshold. Therefore, in the real computation, we pick ~ first,
and compute the corresponding risk @ = P(v). Note that v should be less than
pa (M), otherwise P(y) = 0.

For a given performance level v, a parameter choice A is considered as a “bad

event” if \,(MA) > v. Let Ry denote the “region of bad events”, i.e.,

Ry: ={A: A€ BA,)\(MA) >y} (3.4)

24

(M) 1
_. 08
3
S
o« 06
=
1l
>
0.4
CA
0.2¢
0 .
0 0.2 0.4 0.6 0.8 1
a=P(7)

Figure 3.1: Definition of purely probabilistic p.

Then

P(y) = /R p(A)dA, (3.5)

where p(A) is the probability density function of A, so [z, P(A)dA = 1. For sim-
plicity, we would assume that A is uniformly distributed in BA, in which case,

P(y) = —%’%. Similarly, we can define the “region of good events” as
R,: ={A:A € BA, \(MA) < ~}. (3.6)

Since V(Rgy) = V(BA) — V(Ry), all we need to find P(v) is to compute the volume
of either Ry or R,. So the critical issue here is to characterize the separation of these

two regions, i.e., the level surface of the function

L,: ={A:A € BA, \(MA) =~}. (3.7)

25
The definition of the purely probabilistic u in [38] is slightly different, which is

based on the invertibility of the matrix I — %A‘ Let
M
S, ={A:A e BA, det(l — —A) =0} (3.8)
v

be the boundary of singularity, dividing BA into two subsets, then the volume of the
subset that does not contain the origin defines probabilistic ;. The motivation behind
this definition is that there is no real notion of stability in the purely probabilistic
p setting. The only issue here is the existence of nontrivial solutions in the loop
equations from the feedback interconnection in Figure 2.2, which is determined.by
the singularity of I — MA. There exist problems where there is a gap between the
two surfaces L. and S, for v sufficiently lower than ua(M). However, when v is
close to pa(M), Ly and S, are always the same, which means the two separations
are equivalent. Since we are mainly interested in the probability of rare events, we
would assume that v is close enough to the worst-case throughout this thesis, so
we will not distinguish between L. and S, from now on, and refer to them as the
“separating surface” between R, and R, with respect to certain performance level

v. This separation is illustrated in the following two-dimensional example.

1

0.8

0.6

0.4}

0.2r

05 1

Figure 3.2: Separation of the parameter set.

26

Exact computation of P(v) depends on exact characterization of the above sep-
aration of BA, which is intractable in general. There are two alternative ways to
approximate P(v). One is the Monte-Carlo simulation which samples the whole
parameter set and estimates P(v) by the frequency of the occurrence of the “bad
samples”. This estimate will be referred to as the “soft bound”, because it is neither
an upper bound nor a lower bound, and it has no guarantees. When P(v) is extremely
small, i.e., at the tail of the distribution, the Monte-Carlo method becomes highly
inefficient because a large number of samples would be wasted on benign events.

Moreover, we may want some guaranteed information rather than just soft bounds,
in which case hard bounds on the real distribution are highly desirable. The rest of
this thesis is devoted to developing computable upper bounds on P(7). The basic
idea is using the standard p upper bound to identify regions where the matrix I — M A
is guaranteed to be invertible, or the function A,(MA) is guaranteed to be below 7,
then this region has to be contained in the region of good events R,. One such region
(separated by dashed lines) is demonstrated in Figure 3.2. Let Rg denote the union
of all such regions, and R, = BA\RQ. Rg represents the guaranteed good region
and Rb represents the potentially bad region. Then Rg CR,= Ry C flb. Since
P(y) = T/V(_(g‘f\)—)> -‘7[((5% is an upper bound on P(v), which will be referred to as the
“hard upper bound” in general. On the other hand, more accurate soft bounds can
be obtained by only sampling the potentially bad region R instead of the whole
parameter set. The improvement becomes more significant when the volume of Ry
becomes smaller. Both the hard upper bound and the soft bound can be refined using
branch and bound type of algorithms, which is the topic of the next chapter.

A link exists between the above method and another variance reduction technique—
importance sampling (IS). Instead of uniform sampling, an IS method chooses a
proper distribution function p(-) that approximates the shape of the target function
and generates samples based on this distribution. It is particularly useful for esti-
mating the probability of rare events. In our method, we pick p(A) =1 for A € Ry,

and 0 otherwise, which is a special case of general IS, also a stronger result since hard

bound computation guarantees no information is lost when throwing away BA\Rb.

27

Chapter 4 Branch and Bound

Branch and Bound (B&B) is a general technique for computing improved bounds
for a given optimization problem. There is a history of applying B&B schemes for
robustness analysis in control [7, 22, 67]. However these authors have not specifically
addressed the problem of avoiding exponential growth in computational expense with
problem size. In [54], Newlin and Young proposed using B&B to quickly improving the
bounds for mixed p with median-sized problems (n < 100), which aimed at producing
a “practical” scheme with typical polynomial time computation. The effectiveness of
this scheme was verified by extensive numerical experiments.

In general, B&B algorithms are useful for those optimization problems whose
bounds depend on the domain of the problem. The idea is to refine the bounds on
the global optimum by dividing the original domain of optimization into subdomains
and computing local bounds on these new domains, until the gap between the global
bounds is within certain tolerance. Experience has shown that the average quality
of the bounds themselves is critical. The intuition behind this is that there are
occasionally bad problems where the bounds are poor, but that branching creates
new problems where the bounds are good. For this to be successful, the bounds
must be good on average so that the branching process moves bad problems into
easy problems. Interestingly, it has seemed less critical that the branching scheme
be particularly clever. These points can be readily illustrated in the simple B&B
algorithm described in the next section and the numerical experiment results shown

afterwards.

4.1 A Naive Brand and Bound Algorithm

A naive branching scheme is shown in Figure 4.1. The algorithm consists of a simple

heuristic to choose a branch variable, followed by splitting that variable into two equal

28

branch

UB

ub 1 e
true optimum - - -l ------------- -,
- lb,

LB

Figure 4.1: Branch and bound algorithm.

parts, creating two new independent problems on which the bounds are computed.
(A more sophisticated algorithm would optimize both the variable chosen and the
location of the cut.) The global lower bound (LB) is the maximum over all the local
lower bounds (Ib;) and the global upper bound (UB) is the maximum over all the
local upper bounds (ub;). All the old and new branches form a tree structure, as
shown in Figure 4.2. The branches that are crossed out on the tree are those that
have a local upper bound below the global lower bound. This process is referred to
as a “pruning process.” It is essential that branches be pruned effectively to avoid

exponential growth in the number of branches.

Bo

Bi1 B2

Figure 4.2: Tree of branches and the pruning process.

29
4.2 Branch and Bound for ; Computation

This section demonstrates how branch and bound can be used to effectively improve
upper and lower bounds for i in the worst-case framework. As our first numerical ex-
periment, we computed these bounds on the purely real u discussed in Section 2.2 for
matrices M of size 4, 8, 16, 32, and 64, with 50 matrices of each size. The elements of
the matrices were zero mean normally distributed pseudorandomly generated floating
point numbers. The bounds either achieved a normalized error of 1073 or a maxi-
mum number of iterations were run. Figure 4.3 shows the ratio of the lower bound
(LB) to the upper bound (UB) for all the problems tested. The z-axis shows n —
the number of real parameters in A, which is referred to as the size of the problem.
Note that the bounds degrade somewhat with problem size. If the relative error in
the bounds is defined as e = 1 — %, then for n = 4, most problems have e < 10%),
while for n = 64, all the problems have e > 10%. However, even for n = 64, the error
never exceeds 20%. This means the bounds have moderately good quality on average.
Unfortunately, there are occasionally poor bounds for any size problem, where poor
here means the ratio is not in the typical range for that size.

Figure 4.4 shows the results of applying the simple branch and bound scheme
described in the previous section to the same problems as in Figure 4.3, with 10
branches performed on each problem. Note that this made substantial improvements
in the quality of the bounds, with only a small fraction of the size 64 problems
remaining with an error of greater than 10%. Figure 4.5 focuses on the worst problems
for each problem size and plots the number of branches required to achieve a given
level for the error, such as 15%, 10%, 5%, 2% and 1%. Since this is a log-log scale,
straight lines indicate polynomial growth, and flat lines indicate no growth.

It is not clear what the growth rates are for small percentages, as the 2% and 1%
cases where only done up to size 16. Beyond that, the computation time was too
great (several hours per problem) to be practical on individual workstations. Note
that the worst problem required exactly 3 branches for each problem size to reach

15%, and that 10% was easily achieved for all problem sizes. This further supports

30

0.98 -

Reasielol ;|

096 -

0.94f

- @EBDGD GO0 Q@Y

OO

0.92

[Sge}

0-88 o

086k - ,,,,, . é

LB/ UB
(]
©
T
o
o}
o fo ooobomom@ @
CORDOMD DB OO0 - @
@
i

€]
Q0O O EETIDITD

0182-v - G PN BN s

0.8 i ' x i .

Figure 4.3: {;—g— vs. problem size, with 50 problems of each size, without branching.

0.98F -

0.96_ B
0.94r- .
0.92r- -

0.9

LB/UB

0.88_., -
og86L- e FERTEREE N ,,,,,,,, e
0.841 oo N L

0.82+ : . R .

o5 . . ; ; ;
4 8 16 32 64

Figure 4.4: ﬁ% vs. problem size, for the same 50 problems of each size, after branching
10 times.

31

No. of branches

4 8 16 32 64
No. of parameters

Figure 4.5: No. of branches vs. problem size for various tolerances, for the worst
problem out of 50 in each size.

the notion that branch and bound can easily take the worst-case problems and get
them to roughly the level that the bounds achieve on average, but not much better.
It is possible that more sophisticated branching schemes would improve on this, and
certainly the branch and bound algorithms are embarrassingly parallelizable, but
we have not yet explored these possibilities. Of course, there must exist truly bad
examples where even very clever branch and bound fails (or P=NP), but these seem
so rare that they are very unlikely to be encountered in practice. This latter assertion
must be supported by exactly the type of numerical experiments we are showing here.

The point of these numerical experiments is to underscore the point that branch
and bound can be used effectively to overcome the inherent intractability of worst-
case robustness analysis. The key seems to be to have good bounds, where good
here means good on average. Even naive branching schemes can then be relatively

effective in refining the bounds in those cases where they are poor.

4.3 Branch and Bound for Probabilistic 1 — The
BNB Algorithm

In this section the goal is to apply branch and bound techniques to probabilistic
robustness analysis similar to the way it was used for worst-case. In Chapter 3, a
function P(v) was defined as the complementary distribution of the function A, (A A),
which is the risk that certain performance threshold ~ is exceeded. Using the idea
proposed in the end of Chapter 3. two kinds of bounds can be computed on P(~) by

using branch and bound, as illustrated in Figure 4.6.

Hard upper bound Suppose BA is divided into two regions By and B,. An upper
bound on P(~) can be computed if the upper bound of A, (MA) on one region,
say, By, is below ~. Then there is no coutribution whatsoever from the region

B, to P(v). Henee, R, € By, which leads to P(y) < %%.

Soft bound A soft bound on P(~) can be obtained through the Monte-Carlo simu-
lation in By, the potentially bad region. With the hard bound excluding benign

regions of the parameter space, the soft bound can be produced more efficiently.

Bl

bl ——
v Y

— ub?2

Figure 4.6: Branch and bound for probabilistic .

The following subsection describes how the above hard upper bound and the soft
bound can be refined by a simple branch and bound algorithm. To distinguish it
from other algorithms introduced in later chapters, it is referred to as “the BNB
algorithm”. The corresponding hard upper bound and soft bound are denoted by

hubpyp and sbpyp, respectively.

33
4.3.1 The BNB Algorithm

1. The branching scheme is fairly similar to the one in the naive B&B algorithm
in Section 4.1. This time, only standard g upper bound is computed, and the

branches that are pruned are those whose upper bounds are below 7.
2. Let Ry be the union of the remaining branches, then Ry C Ry, Hence,

hubgyp: = VV(—(B{E% (4.1)

3. Sample R, and compute A\, (MA) on each sample. Suppose the total number

of samples is N and the number of samples for which A, (MA) > v is N;. Then
sbpyp: = 3]—\]\% X hubgnp. (4.2)

The soft bound can be used to test the tightness of the hard upper bound. On
the other hand, as can be seen in (4.2), with the help of the hard bound, the effective
sample size in the soft bound increases from N to #;;g For extremely small P(v),
if hubpnp is a tight bound, the above improvement can be quite significant.

To illustrate the relationship between the hard upper bound and the soft bound,
in Figure 4.7 the two bounds for a particular size 4 problem are shown. The matrix
was normalized so that pa (M) = 1. The y-axis indicates v, and the z-axis (on a logyg
scale) indicates the corresponding values of the hard upper bound and the soft bound
on P(7). When ~ varies from 0.9 to 1, two bounds on the tail of the true distribution
are formed. In the figure the lower boundary of the rectangles represents the hard
upper bound while the solid line represents the soft bound. As in the standard p
computation, there always exists a gap between the two kinds of bounds, which gives
some measure of their quality. From the experience of a great number of numerical
experiments we know that the extension of branch and bound techniques from the
worst-case to probabilistic computation is not trivial. Some insights can be obtained

in the two special cases discussed in the next subsection.

34

0.99+- b

0.981

0.97r

0.96

> 095

0.94 -

0.93

0.921

0.91

0.9 1 1
Z6 -5 -4 -3 -2

log,(P(Y))

Figure 4.7: Hard upper bound and soft bound on P(y) for a size 4 problem, after
branching 100 times, 0.9 <~ < 1.

4.3.2 Two Special Cases

The two cases considered here are in a sense the extreme ends of the space of examples,
but for which we can analytically compute probability distributions. Without loss of
generality, assume pa (M) = 1. Let € = 1—, then P(y) = P(e) = P[\(MA) > 1—¢].

For M = I, \,(AM) = max(4;). As an example the parameter set BA for n = 2
is shown in Figure 4.8. The shaded area indicates the region where \.(MA) > 1 — .

It is easy to see that

m@:1wu—§w. (4.3)

Note that P(e) — 1 as n — oo, which means the bad events become dominant in
terms of probability for high dimensional problems. In standard g computation the
bounds are exact so there is no need to branch. It is hard to use the naive branch
and bound algorithm to get hard bounds on P(¢) though, as the function achieves its
maximum on all the faces of BA with any §; = 1. Whichever parameter we choose

to cut, both of the two new branches have the same bound.

Figure 4.8: Special case 1 — M is identity.

As the opposite extreme suppose M is rank-one and has already been scaled by

DMD™! so that M = aa”, where a = [ay ap -+ a,)" € R" and [|a|| = 1. Then

M(AM) = Z azd;. (4.4)

Note that this function is linear in the parameters ¢;. The importance of this fact
will be discussed later. The worst case is achieved at the vertex where §; = 1, for all
i. Again, the bounds for the standard p are exact so no branching is required. It is
easily checked, however, that our branch and bound scheme to bound the probability
distribution is prohibitively expensive, even though we can compute]5(6) analytically.
In the simplest case where af = %, for all 7, it can be shown that

P(e) < (

G

"

- (4.5)

where the equality holds for ¢ < 2. It is possible to get]5(6) in general but the

formula is messy. It is easy to show that this is the hardest case (]5(6) is smallest
for fixed € and n) for all the rank-one matrices with p = 1. For general rank-one
problems we have

3 (3)"/ |

Pe) = > ()"

n! - !

: (4.6)

if 55 <1, 4=1,2,... ,n. The minimum is achieved when a? = %, for all 7, which

is exactly the simplest case considered above. Note that in contrast to the A being

identity case, P (€) — 0 very rapidly as n — oo, which means the bad events become

36

extremely rare as the size of the problem grows bigger.

2e

Figure 4.9: Special case 2 — M is rank-one.

In both cases, it is trivial to obtain bounds for p in the worst-case formulation,
and apparently extremely difficult to compute hard bounds on probabilistic i by the
naive application of branch and bound. The rank-one problem appears particularly
problematic, and we would expect general random matrices to have similar charac-
teristics. As the first step in verifying this, we generated 20 random matrices of size
4 with 10 of them being rank-one and 10 of them not. All of them were normal-
ized to have ua(M) = 1. Then we computed the soft bound on P(v) (or P(e)) for
0.95 <~ < 1 in the neighborhood of the worst case. The average values of the soft
bounds are shown in Figure 4.10, with the dashed line and the solid line representing
the rank-one matrices and the general random matrices, respectively. The dotted line
represents the theoretical value of P(7) for the worst rank-one problem as in (4.5).
This plot clearly shows that in the neighborhood of the worst-case, the general ma-
trices have very similar characteristics as the rank-one matrices. Unfortunately, we
know form the previous analysis that we cannot easily compute accurate hard bounds
on the rank-one problem, so we can reasonably anticipate having similar difficulties
with general random matrices. This has been verified by numerical experiments, as

is shown in the next subsection.

4.3.3 Numerical Experiments

The BNB algorithm was tested on 80 random matrices of size 2, 4, 6, and 8, with 20
matrices of each size. The matrices were generated using MATLAB ‘randn’ command.

The results are shown in Figure 4.11 and Figure 4.12. We set v = 1 * ua(M) and

37

0.99+ E
0.98+ -
-
0.97 E
solid: general random matrices \
. A\
0.96} dashed: rank~one random matrices B
dotted: the worst rank—one case (thearetical)
" A
0.95 1 L I 5 \
-9 -8 -7 -6 -5

g1 (PCY)

Figure 4.10: Soft bounds on P(~) for different kinds of problems for n = 4.

1 = 0.9 so that v is close to the worst case. When pa (M) is not available, the lower
bound for pa(M) is used. For each problem BA is branched 200 times. The ratio
of sbpnyp to hubgyp is denoted by rigyp. This notation is used for the results from
the other methods in later chapters as well.

In Figure 4.11, instead of comparing the bounds for each individual problem, we
focus more on the overall performance of the algorithm by showing all the bounds
together. Each mark (‘x’” or ‘0’) corresponds to one problem. The hubgyp is shifted
slightly to the left for easiness of comparison. Obviously the sbpyp decreases expo-
nentially with the size of the problem n, while the average hubgy g hardly varies with
n. The gap between them becomes larger very quickly as n increases. For n = 6 and
n = 8, hubpyp and sbpnp are orders of magnitude apart. Note that for n = 8 only
18 data points are displayed, since sbgyp = 0 for the other two problems, meaning
none of the samples hit R,. Figure 4.12 shows the ratio between these two bounds
for all the problems, with each ‘o’ representing one problem. The rigyp decays ex-
ponentially with n, with an average of 0.8001, 0.1986, 0.0090 and 0.0004 for size 2, 4,

6 and 8 respectively, indicating the fast performance degradation with the growth of

38

log) 0(hubBNB) & log) 0(sbBNB)

[y

Figure 4.11: hubgyp(‘x’) and sbgyp(‘0’) vs. problem size, with 20 problems of each
size.

the problem size. For n = 8 this average was computed using 18 problems because
the other two have rigyg = 0.

A natural suspicion for the poor performance of the BNB algorithm is that the
quality of the bounds for the worst-case p are not accurate enough to exclude the
benign regions effectively. But further numerical experiments suggest that this is not
the case. First, we can get fairly tight (within 1%) worst-case bounds after branching
a certain number of times for problems of the size we were testing. Second, recall that
we can compute exact bounds by checking all the vertices of BA, which is feasible
for n < 8. Thus we can recompute the probability bounds on the same matrices used
above but with exact worst-case bounds and compare the results. We did this and it
made no significant difference.

The question is: What is the intrinsic difficulty behind the apparent intractability
of the computation? Interestingly, this difficulty seems to be present even in rank-one
problems, which are both trivial from a worst-case perspective and can be treated
analytically. According to the previous analysis, in the rank-one case, the performance

function is linear in the uncertain parameters, which means that the surface S., that

log, (sbg g / UG o)

s ; . ; ‘ . ;

N
~
)
o -

Figure 4.12: rigyp = ffﬁs—% vs. problem size, for the same 20 problems of each size.

separates Ry from R, is a hyperplane in R". An example is shown in Figure 4.13. The
true region of bad events R} is a simplex at the corner of BA. The shaded region is
Rb, a union of hypercubes used in the BNB algorithm to capture Ry. However, after
branching 100 times, there is still quite a gap between these two sets. Essentially
what the BNB algorithm does is gridding the separating surface S, using axially
aligned cuts, which is conceivably not an intelligent way to approximate a hyperplane.
Instead, a single linear cut along the hyperplane will isolate Ry immediately. For this
separation to be feasible, we need to develop a way to bound the performance function
on a more exotic region than just a hypercube. However, the standard p framework
only concerns uncertainty set with bounded oo-norm. This is the motivation for

introducing p with linear cuts in the next chapter.

40

1 T T T T T

0.8~

0.6

- 1

0.4- 1
. solid line: Sy i

o rectangles: remaining branches after 100 cuts

0 i 1 1 L i i i L]
0 0.2 04 0.6 0.8 1

Figure 4.13: A rank-one example, ua(M) =1 and v = 0.8.

41

Chapter 5 p with Linear Cuts

The need to compute hard bounds on purely probabilistic p for rank-one problems
motivated the research of y with uncertainties in more exotic regions than the stan-
dard oo-norm bounded sets, for example, spherical p [39], elliptical p [39] and p with
linear cuts [82]. Among these extensions to the standard p framework, p with linear
cuts is the most relevant to this thesis, which considers real parametric uncertainty
with linear constraints. Its definition is described in the first section. Then three
methods are presented to develop computable upper bounds for p with linear cuts.
Comparison of these three methods will be shown through numerical examples in the

last section.

5.1 Definition

Let 6 = [61,...,6,]T € R" be the diagonal of the real parametric uncertainty A. In
addition to the standard oo-norm constraint on A, we consider the following linear

constraint in the space of ¢:
IcT6] < 1, (5.1)

where ¢ = [c1,¢a, ... ,c,]7 € R" is the constant coefficient vector with ||c|] = 1. The
quantity |¢T'd] is a semi-norm on §. For any constant 3 € R, the set {§ : ¢7'6 = 3}
defines a hyperplane in R” to which the distance from the origin is |3|. The vector ¢
is the normal vector of this hyperplane. Therefore, (5.1) defines the closed region in
R" between the two hyperplanes {0 : ¢/'§ = £1}.

Let BA,. denote the set defined by a combination of the standard oco-norm con-

42

straint and the linear constraint in equation (5.1), i.e.,
BA,: ={AcA:|A<1& |58 <1} (5.2)

Definition 5.1 For M € R*™ ", u with linear cuts is defined as

1
~ min{8: A € BA,, det(I — SMA) = 0}

pagc(M): (5.3)

unless det(I — MA) # 0,YA € A, in which case pa.(M): =0.

In the other words, the interconnected system (S1) is well-posed for all A € Z%B A
if and only if a1o(M) < 8, where 3BA.: ={A € A:[|A]| < §and [¢7d] < §}. If
only the linear constraint |c'd| < 4 is scaled while the unit box BA remains fixed,

the skew version of BA,. can be defined as
1
BA;, ;: ={A € A: Al <1and 6] < B} (5.4)

Definition 5.2 For M € R"*", the skew version of p with linear cuts is defined as

1
~ min{|c75] : A € BA,det(I — MA) =0}

Ha (M) (5.5)

unless det(I — MA) # 0,YA € BA, in which case pi; (M): =0.

Equivalently, the interconnected system (S1) is well-posed for all A € BA], ; if
and only if pj (M) < 8.

Like in the standard yp case, computing either pia . or pj , is NP-hard. Since
it is more convenient to use the skew version of y with linear cuts when applying
branch and bound in probabilistic g bound computation, we will focus in the rest of
this chapter on obtaining a computable upper bound on P - Three methods for
achieving this goal will be described in the next section. All of them can be easily

modified to provide an upper bound on pa . as well.

43
5.2 Upper Bound Computation

5.2.1 Elliptical Cut

The linear constraint defined in (5.1) can be viewed as the limit of a sequence of
hyperellipsoids in the parameter space as the eccentricity goes to infinity. So the
recent result of spherical p presented in [39] can be used to obtain an upper bound on
@ with linear cuts. Spherical p is a generalization of the standard p, with spherical
constraints on the uncertainty. Although it is a special case of the generalized p
defined in [16], an LMI-based upper bound for the spherical 1 with a general “nominal
system” M was provided in [39], while [16] only discussed the case when M is a rank-

one matrix. The above result was also generalized to p with ellipsoidal constraints
6TPs < 1,P > 0. ‘ (5.6)

Definition 5.3 For M € R™™", u for a hyperellipsoid is defined by

1
JAM): = . 5.7
pae(M) min{V6éTPé : A € A,det(I — MA) =0} 5-7)
An upper bound on pa (M) is given by
Fao() = inf (8 MT(P~ o D)M < #°D}. 658)

The construction of using elliptical cuts to approximate linear cuts follows. Let
T = [c C,]7, where c is as defined in (5.1), and C is the matrix whose columns

form an orthonormal basis for Ker(c). So T is a unitary matrix. Let

1
P=T7'ST =T"«diag[l,—,... ,—]|*T. (5.9)

2
op o

Then the level set Lg = {6 : VT P§ = —é—} describes the hyperellipsoid with %, G
being the lengths of the axes. When ; — oo(i = 2,... ,n), Lg approaches the hyper-

planes {6 : ¢"d = £5}. So the bound in (5.8) with P in the extreme case provides an

44
upper bound on p with purely linear constraints. By combining this bound with the
standard g upper bound in (2.15), an upper bound on Ha (M) can be constructed
as

i, le(M)y = inf {8>0: M"(D,+ P oDy)M < Dy + 3°D,}.

D1eD, D3>0

(5.10)

However, with the high eccentricity of the ellipsoid, the upper bound achieved is very
conservative. The conservativeness decreases when the eccentricity becomes lower,
at the cost of worse approximation of the hyperplanes. The method implemented
intersects a high eccentricity ellipse with a less eccentric one to try to improve the
performance, which results in a nonconvex optimization problem because of the free-

dom in the choice of the ellipses.

5.2.2 Implicit Method

For p with linear cuts, (5.1) represents a constraint in the operator space A, which
must be converted to a signal constraint to cast uj . as a standard implicit ;1 problem.
Based on this intuition, the implicit system in Figure 5.1 can be constructed to
perform linear cuts on BA.

Note that k7 € R" is an arbitrary row vector, and K = [1,1,... ,1]7 k" € R,

Theorem 5.4
px(C, M) < 8 = pag(M) < B

A M 00
where A = { A CAEAGER, M=| K 0 0], C=[01].
do K0 0
Proof:

First, it is easy to show that for any A € %BAlC, there exists a dp such that
Ae %BA by letting 8y = ¢’'6, hence, 6(A) < % and |cT§| < % — 5(A) < 213-

o A

- A

> do
2w o0 o KA
I K 0 0 R
U1 kT 0 O :507)1
l—' 0 CT —1

0

Figure 5.1: Implicit system (S3) constructed for linear cuts.

Second, we claim that for any A € %B[& and any z € R*"\{0}, let v; = kTz, then

(7§~)1 =0 = (I —AM)z #0.
Now we show this claim is true.

na(C, 1) < B

1. I—AM
— VAEBBA, Ker =0

C

— Vz e R¥N\{0}, C2=0 = (I-AM)z#0

(5.11)

(5.12)

46

With the interconnection in (S3), for any x € R*\{0}, we can define

doU1

where v; = kT2 € R and v = Av = dv; € R™.

Simple calculation shows that

éZ =0 <<= (CT(S — 50)?]1 = O,
(I-AM)z=0 <= (I-AM)z=0.

Hence, (5.12) holds implies that (5.11) holds.

Combining the above two steps together, we have shown that for any A € %BAZC
and any x € R"\{0}, (I — AM)z # 0, i.e, det(I — AM) # 0. Hence, pa (M) < .
O

Remark: The converse of the above theorem is not necessarily true. It depends
on the free parameter k£ in the implicit system. Specific conditions on k£ can be
imposed to make the converse true, which will not be discussed here since it is not
critical to our goal — finding a computable upper bound for p with linear cuts. This
theorem tells us that an upper bound fér the implicit system (S3) is also an upper
bound on pa 1.(M). To compute an upper bound for the i ;.(M), the skew version

of implicit p is used, whose upper bound is identical to the one in (2.18) with 52
IQn
replaced by
62
The computation of fij ;.(M) involves the following issues:
e Permutations on the rows and columns of M are needed such that A consists
of n 2 x 2 repeated real scalar blocks and one real scalar. The upper bound
formula actually used in the computation is a bit more involved than (2.18) due

to the existence of the repeated scalar blocks. Proper generalization involves

the use of both D and G scaling matrices, in a way that is similar to the mixed

47

p upper bound in (2.11).

e The quality of the bounds depends largely on the choice of the vector k in M.
If k£ is included into the optimization, the problem becomes biconvex, i.e., it is
convex in D and G for fixed &, and convex for k for fixed D and G. There are
no guarantees in finding the global optimum. A good heuristic is to pick & as
the input vector of M corresponding to its maximum singular value to make
M more like a rank-one matrix, due to the fact that the upper bound is exact
when M is rank-one. And the performance of the upper bounds achieved is
much better than those with random chosen k. When the bound achieved with
the above k is still not good enough, the algorithm optimizes over D, G and k

alternatively to improve the bound.

e It may be useful to have redundant constraints to improve the computation.

5.2.3 Parallelogram Method

The third method is fairly similar to the implicit formulation, in the sense that both
are converting the linear constraint |¢7d| < 1 into the norm constraint on a scalar
09, and the matrix dimension is augmented in both cases. The difference is, in this
method, only the standard p computation is involved. The cost is some extra regions
outside BA,, have to be included when checking for singularity of I — MA.

Again define

50 = 6161 -+ 6252 + -+ Cn5n. (513)

Therefore,

7] < 1= 0] < 1.

Let A = diag[dy, 6,05, . .. , 0, 0], then

A = P, APy, (5.14)

48

where
- . - ~T
1 —¢; 0 —¢3 O —¢, 0 L L g L ¢ Lo
1 Cc1 c1 c1
0 0 1 0 1
P = 0 1 , Pr = 0 1
0 1 0 1

Let M = PrMP;. Then the skew p upper bound on MA(M) is also an upper
bound on pj ; (M). This follows from the definition of 1 and the existence of non-
trivial solutions to the loop equations. Be noted that the unit ball BA does not map
to BA,. using (5.14). The mapping of BA contains BA,.. A simple example for

n = 2 is shown in Figure 5.2. The potential conservativeness of this bound is obvious.

Figure 5.2: BA and BA,..

In this example the norm constraint on 4y is lost when the problem is reformulated.

Leaving out different ;s will result in different extra regions. If the §; with the

maximum |¢;| is chosen, the volume of the extra region is minimized, which will be
a heuristic used to, hopefully, minimize the conservativeness of the bound. This
heuristic is supported by numerical experience. The excess regions can be excluded

by adding an implicit constraint as presented in Section 5.2.2.

5.3 Numerical Examples

Rank-one problems are the motivation for doing linear cuts. So random rank-one
matrices were used to test the effectiveness of the above methods. It turns out, like

the standard p upper bound, the upper bounds achieved on pf (M) with all the three

49
methods are exact when M is rank-one, which is not surprising because essentially
the elliptical cut and implicit methods are just extensions of the standard p upper
bound, and the parallelogram method employs the standard p computation directly,
and the conservativeness caused by extra regions does not exist in the rank-one case,
assuming the cuts are appropriately aligned with the level sets.

For general random matrices, where each element is random, the relative perfor-
mance of the different methods varies with the problem. Figure 5.3 shows the results
for a particular random problem of size 2, for which the elliptical cut method works
better than the implicit method, while the parallelogram method does not achieve
any bound because of its conservativeness. In another size 2 example shown in Fig-
ure 5.4, both the implicit method and the parallelogram method achieve the exact

bound while the performance of the elliptical cut is fairly poor.

p:

~1.5 - solid:. elliptical :

dashed: implicit

x: boundary of singularity
i

i 1
-2 -1.5 -1 -0.5

Figure 5.3: Upper bound for p with linear cuts: Example 1.

For both problems pa(M) = 2, and the normal vector c is chosen to be the
gradient of the function A,(MA) at the vertex p where the worst case is achieved.
The curve marked by ‘x’ indicates the boundary where the singularity of I — MA

occurs.

—1.5- solid: efliptical .
dashed; implicit & paralielogram
x: boundary of singularity

_2 i i i l L L i
-2 -15 -1 -0.5 é) 05 1 15 2

|

Figure 5.4: Upper bound for i with linear cuts: Example 2.

Table 5.1 shows the results of applying the three methods for computing upper
bounds to 150 random matrices of size 2, 3, and 4, with 50 matrices of each size. The
problems are constructed so that 1 is a guaranteed lower bound on ,w“AJC(M), but the
actual value is unknown. So an upper bound close to 1 is known to be good, but
no conclusions can be made for upper bounds that are far from 1. However, relative
performance of the bounds can be observed by comparing the bounds obtained by
different methods. For some problems, the parallelogram and ellipsoid method are
unable to find any bound to jijy ,.(M). The entries in the column labeled ‘#’ indicate
the number of problems for which that method is able to compute an upper bound.
The entries in the column labeled ‘avg. ub’ is the average upper bound computed
for the problems on which a bound is obtained with the associated method. The
implicit method gives by far the best bounds, especially as the problem size increases.
The computation cost is not listed since different LMI solvers have been used. By
experience the implicit and parallelogram methods are fairly compatible in terms of
computation time, while the elliptical method is the most time-consuming because

the algorithm used tries to solve a nonconvex optimization problem. The implicit is

51
hands down the best of the three methods. Unfortunately, the absolute quality of the
bounds remains unknown without a lower bound. The development of a lower bound

for p with linear cuts can be a subject for future research.

Size n=2 n=3 n=4
Method | # | avg. ub | # | avg. ub | # | avg. ub
Implicit | 50 | 1.0540 |50 | 1.1320 | 50 | 1.4947
Parallel. | 50 | 1.1882 | 50 | 1.6123 | 48 | 2.3534
Elliptical | 50 | 1.2376 | 32 | 1.8136 | 22 | 3.4617

Table 5.1: Comparison of average upper bounds achieved by three different methods.

92

Chapter 6 Linear Cuts for Probabilistic
1t — The LC Algorithm

Our objective is to compute hard bounds and soft bounds on purely probabilistic p,
since its exact computation is intractable. Direct application of the naive branch and
bound algorithm with axially aligned cuts (the BNB algorithm) to computing bounds
on probabilistic u failed to give satisfactory solutions, as was shown in Chapter 4.
The introduction of g with linear cuts in the previous chapter provided an alternative
by adding linear constraints to the set of parameters, which was motivated by the
_ analysis of rank-one problems. In the next section the upper bound for p with linear
cuts 1s applied to compute a hard upper bound on purely probabilistic p, which helps
the computation of the soft bound as well. Numerical experiment results on various

kinds of random matrices will be demonstrated afterwards.

6.1 Probabilistic © Upper Bound using Linear Cuts

First let us quickly review the formulation of the purely probabilistic x problem. The
function P(+y) defines the complementary cumulative distribution of certain perfor-
mance function, in particular A\,(MA). When the parameter A is uniformly dis-
tributed in the unit box BA, evaluating P(7) is equivalent to accurately separating
the region of bad events Ry from the rest of the parameter set. In the special case
when M is rank-one, the separating surface S, becomes a hyperplane in R". Then
the best way to isolate Ry is to use a linear cut aligned with S,. For problems that
are not rank-one, the separating surface S, can be of any shape, in which case the
linear cut will only be an approximation. The accuracy of this approximation needs
to be tested via numerical experiments.

The idea of using linear cuts to compute an upper bound on P(7) follows. Suppose

33

pa(M) = 1. If for a given v < 1 the upper bound for the skew version of p with

linear cuts 7% ,.(2) < f, then it is guaranteed that A\, (MA) on the region BA; , =
Hael™ lc,8

A€ A :JJAl €1 and|c"é < L}. Making no contribution to P(v), the region
g

BAj, 5 can be removed, and the volume of the remaining region will be an upper

bound on P(v).

The following is an implementation of the above method. This algorithm will

be referred to as “the LC algorithm.” The hard upper bound and the soft bound

computed are denoted by hubyc and sbrc, respectively.

ot

. For random matrix M, compute \.(MA) on all the vertices of BA to obtain

pa(M) and the worst-case vertex P. Scale M = M]‘{M).
Compute the function gradient at P, denoted by ¢, and let ¢ = —-%., then ¢

Hall?

will be the unit normal vector of the cutting hyperplanes.

Compute £k by singular value decomposition of M, construct the implicit system

(M,C’) with %4—, k, and c.

Compute ESAJC(%) using implicit p upper bound. Suppose the lowest bound

achieved is 8*. Optimize over k if §* is not good enough.

Cut BA with the two hyperplanes {¢f§ = ib,l-} Suppose the remaining two
corners around P and —P are R; and R,. Check the vertices in R, if any
of them are “bad”, mark R, as “bad” region as well as Ry, and hubrc =
V(R1)+V (R V(R;)

TN); otherwise only R, is “bad” and hubrc = V(BA)

Generate N random samples uniformly in the bad region, compute A\.(MA) on

these samples, denote the number of bad samples as [V, then sb; - = —N—_—-hNu%z—g.

The following technical issues need to be considered.

e Due to the special structure of the purely real y problem, ua (M) can be com-

puted by checking all the vertices of BA, which is only feasible for problems

with small size because of the exponential growth in the number of vertices. For

54
bigger problems the idea is using standard B&B first to identify potentially bad
regions, then performing linear cuts to see if any bad corners can be isolated.

This idea will be explored in the next chapter.
The resulting hub,c may be conservative due to the following problems:

a) The bad region R, contains multiple corners of BA so that a single linear
cut cannot isolate all of them at the same time. This may be an artifice of

random matrices instead of a characteristic of real physical systems.

b) The shape of the separating surface S, may be complicated even near the
worst case such that a hyperplane is not a good approximation for it,
although we expect most problems to be close to rank-one near their worst

cases, as predicted as Chapter 4.

¢) The upper bound for p with linear cuts is not tight enough.

Problem a) and b) raise the question of what kind of matrices are more rep-
resentative of the problems from the real world. Apparently purely random
matrices are not very good in this sense. So the matrices used in our numerical
tests are so-called “random decaying matrices”, where each element M (i,) is
a random floating point number with normal distribution A (0, —(Z.fT)z), a slight
modification of the ‘randn’ matrices in MATLAB. These matrices tend to be

more rank-one alike and not to have distributed bad points, which may be more

typical of physical problems.

There are many ways to improve the bound, for instance, applying off-centered
cuts or multiple linear cuts to capture bad regions more efficiently or to approxi-
mate the level set more accurately, or developing global optimization techniques
to achieve a better bound for p with linear cuts. And finally, if none of the above
schemes work, branch and bound type of algorithms will be necessary to mini-

mize the hard upper bound in an iterative fashion.

55
6.2 Numerical Experiments

6.2.1 Rank-one Matrices

Rank-one problems are the motivation of doing linear cuts for probabilistic p. So
random rank-one matrices were used to test the effectiveness of the LC algorithm.
The upper bounds achieved are exact just as the theory predicts, i.e., hubrc = P(7).
This gives us hope for good quality of the bounds for problems that are close to

rank-one near their worst cases.

6.2.2 Random Decaying Matrices

The LC algorithm was tested on 60 random decaying matrices. The ratio of the soft
bound sb? ; to the hard upper bound hubf . is denoted by rt¢ ., where the superscript
‘d’ indicates the results was obtained on random decaying matrices. The ratios for
all the problems are shown in Figure 6.1. Again set v =1 X ua(M) and n = 0.9 .
For n = 2, rt;¢c is mostly very close to 1; for n = 4, all the problems have the ratio
above 0.1 except for one; for n = 6, 17 out of 20 problems have the ratio above 0.1.
So the algorithm performs reasonably well for most problems. (See [79] for a typical
example.) However, there always exist a few bad problems like the other 3 of size 6
for which the gap between sbrc and hubpc is too big for the bounds to be useful.
To compare the performance of the LC algorithm with the BNB algorithm on

random decaying matrices, the BNB algorithm was also run on the same 60 problems

as above. The results were obtained after branching 100 times. Let rt4,; = s
Then the ratio of rty ¢ to rt4yp is shown in Figure 6.2. It is easy to see that the
LC algorithm beats the BNB algorithm on most random decaying matrices, and the
advantage becomes more significant as n increases. This result is not so surprising
because random decaying matrices are similar to rank-one matrices in some sense,

and the LC algorithm is specifically designed to deal with rank-one problems.

Fi 6.1: rtd¢ , = sbic
igure 6.1: 1t} o Rabl

vs. problem size for 60 random decaying matrices, with 20
matrices of each size.

rtd

Figure 6.2: —~% vs. problem size for the same 60 random decaying matrices.
BNEB

57
6.2.3 General Random Matrices

Since the LC algorithm implements only a single linear cut, it is not suitable for
general random matrices for which R;, tends to spread out in the parameter set BA,
which was verified by testing the LC algorithm on the same 80 random matrices
tested under the BNB algorithm. Again set n = 0.9. Except for n = 2, there are
always problems for which the LC algorithm failed to get any hard bounds, because
a single linear cut cannot separate Ry from R4. The number of problems for which
the algorithm was able to compute a hubrc is 20, 14, 4 and 4 for size 2, 4, 6 and 8,
respectively. And the average rt;c for these problems are 0.9265, 0.3256, 0.0120 and
0.0021, respectively, slightly better than the average ratios achieved using the BNB
algorithm. The intuition is that each of these problems has only one bad corner in
BA, which can be isolated using a single linear cut. In the neighborhood of this bad
corner, the problem is closer to rank-one so that a hyperplane is a relatively better
approximation of the separating surface than the boundary of a union of hypercubes.
However, even for these relatively “easier” problems the gap between hubrc and sbrc
increases very quickly with the problem size. Although random matrices may not
be good representatives of real physical systems, an algorithm that suits not only

rank-one like problems is desirable, which will be the focus of the next chapter.

o8

Chapter 7 The Mixed LC-BNB
Algorithm

In the previous chapters we described two methods that have been used to compute
hard upper bounds and soft bounds for probabilistic y, in particular, P(). The BNB
algorithm is straightforward to understand and implement. The resulting branches
are hyperrectangles in R". It is easy to keep track of them, to compute their volumes,
and to generate random samples in them. But it is not an efficient way to approximate
a complex surface in a high dimensional space unless this surface happens to be aligned
with the axes. On the other hand, a linear cut approximates the separating surface
S, with a hyperplane, which is more efficient if the problem is close to rank-one.
However, for the problems that are far from rank-one, either multiple bad corners
exist or the shape of S, is complicated, then multiple linear cuts would be required.
But one linear cut on top of another is hard to track analytically. Moreover, before
implementing the linear cut, the worst vertex needs to be identified, which involves
worst-case 1 computation, where a branch and bound type of algorithm is often
required to get a sufficiently accurate answer. Although the BNB algorithm alone
is not enough to provide a good hard upper bound on P(v), it does reveal some
information about the distribution of the bad events in the parameter space during
the branching process. Therefore, it is natural to combine the LC algorithm with the

BNB algorithm to compute bounds for P(vy) [80].

7.1 The Algorithm

The idea is to take advantages of both algorithms by using a simple branch and bound
scheme with axial cuts to compute bounds on ua (M), divide BA into smaller regions

to separate bad corners from each other, while using the LC algorithm to compute a

59

hard upper bound (hub) and a soft bound (sb) for P(~y) for each region. There are two

objectives: first, the global upper bound (U) and lower bound (L) on pa (M) are close
enough, i.e., —U~§£ < TOL; second, the ratio of sb to hub on P(v) is above RTOB.J.

Keep branching until both goals are reached, or the step number reaches M AX STEP.

The resulting algorithm is called the LC-BNB algorithm. The following parameter
values are used: TOL = 0.01, RTOBJ = 0.95, MAXSTEP = 200, n = 0.9.

1.

. Call the LC algorithm to compute huby and sby for P(v). If rt, = Sk

Initialization: Let By = BA = B(0,1), vy = V(By) = 1.

. Compute upper bound (uby) and lower bound (Iby) for pa (M) on By without

branching, which also gives a candidate for the worst vertex P,. Let U = ubq,

L = lby, and v = nL.

>
huby —
RTOBJ and Yz < TOL, stop; otherwise, define the set of branches Sp =

{By}, step = 0.

Branching: step = step + 1. If % > TOL, pick B € Sg with the maximum

Tt
hub-v "

cut, divide B by half into By = B(Ay, ;) and By = B(A,,73). Make sure that

ub; otherwise, pick B € S with the minimum Choose a parameter to
u(M,Ay) < v and p(M,Ay) < +; if not, change the location of the cut until
the above criterion is satisfied. Compute v; = V(B;),i=1,2. Sg = Sp\{B}.

For v = 1,2, compute u upper and lower bounds in B;, get ub;, lb;, P;. Update
U, L, and ~.

For i = 1,2, if ub; < v, throw away B;; otherwise, call the LC algorithm to
compute hub; and sb; in B;. If hub; = 0, throw away B;; otherwise, rt; = 24

=
Sp = Sp U{B,;}.

Compute the current overall ratio of sb to hub: rt = %ﬁbz}; Ifrt >= RTOBJ

and Qgi <TOL, go to step 8; otherwise, go to step 4.

Compute the overall hard upper bound hub,c_pyp = Y, hub;-v; and determine

the total sample size N. For each B; € Spg, sample the corner isolated by the

60
linear cut with sample size np; = hub; x v; X N, calculate sb;, then the overall

soft bound sbrc_pyg = D_. sb; - v;.

Some technical details are left out since they are not crucial elements of the algo-
rithm. One thing to be pointed out is that during the branching process, each call to
the LC algorithm involves a sampling in the corresponding branch, which is just an
intermediate step to estimate sb for that branch so that the next step can pick the
particularly problematic branch to cut. A fixed small sample size np = 100 is used for
this estimation in each step so that the computation time is reasonable. In the end,
resampling is required since to make the samples uniformly distributed in BA, the
sample size for each isolated region should be proportional to its volume, as imple-
mented in Step 8. And since a large portion of the parameter set has been excluded
by the hard bound computation, a relatively small sample size in the potentially bad
regions R, is equivalent to an effective sample size several orders of magnitude larger
in the whole set BA, which makes it possible to track the probability of extremely

rare events.

7.2 Numerical Experiments

The test results of the LC-BNB algorithm on the same 80 random matrices as those
used for the BNB and the LC algorithms are displayed in Figure 7.1 and Figure 7.2.
On all the problems the LC-BNB algorithm was able to compute a hard upper bound
and a positive soft bound. The average number of steps taken is 0.5, 64.3, 193.9 and
200 for size 2, 4, 6 and 8 respectively. For n = 2 the mean step number is smaller than
1 since for most problems a single linear cut is enough and so no branching is required,
while for n = 8 rt;c_pnp never achieves the objective 0.95, so for every problem the
step number reaches the maximum, which is 200. In Figure 7.1 hubrc_pnyp follows
quite closely the decay of sby,c_ gy p with the problem size, which means the algorithm
was able to identify most of the benign regions and exclude them from the sampling.
Figure 7.2 shows the ratio of the two bounds for each problem versus the problem

size. The average rt.c_pnp is 0.9938, 0.9306, 0.6402 and 0.2471 for size 2, 4, 6 and

61
8, respectively. For n = 2 all the problems achieve a ratio higher than 0.99 except
one problem, for which the ratio is 0.94. For n = 8 all the problems get a ratio higher
than 0.1 except for 3 of them. So the performance of the algorithm does degrade

when n increases, but the decay is much slower than for the previous two methods.

Figure 7.1: hubpo_pnp(’x’) and sbpc_pnp(’0’) for 80 general random matrices.

7.3 Comparison of Three Methods

To compare all three methods (BNB, LC and LC-BNB), the average ratios achieved
with the three different algorithms versus problem sizes are displayed in Table 7.1.
The higher the ratio, the tighter the hard upper bound and the soft bound. Note
that the average is calculated on those problems for which the corresponding ratio is
nonzero, which happens when a hard upper bound is available and the soft bound is
positive. The numbers of such problems are listed in the column labeled ‘#’ under
each problem size. It is easy to see that the average performance of the mixed LC-BNB
algorithm is much greater than the other two, in terms of the number of problems

for which the algorithm was able to compute useful bounds, the absolute values of

i B
... B]
.. O8]
: Q
S S 8 ,,,,,,,,,,,,
8
... e

SO --@

IOg‘IO(SbLC—BNB / hUDLC—BNB)

S s ; i ; ; , ;

n

sbLo-BNB

E_ for the same 80 random matrices.
hubrc-BNB

Figure 7.2: rtpc_pnp =

the ratios which indicate the tightness of the two bounds, and the relative decay of
the performance with the size of the problem. The intuition behind the effectiveness
of the LC-BNB algorithm follows. The use of the axially aligned branching scheme
divides the parameter set into smaller regions to improve the worst-case p and the
probabilistic ;1 computation at the same time. Meanwhile, if the region of bad events
R, spreads out in the whole parameter space, it will be contained in different branches
so that one does not interfere with another, which makes it possible for a single linear
cut to isolate the bad corner in each branch. If this is not feasible for some branch,
the branching simply continues, trying to turn the complex branch into easy ones.
The same ratios are again shown in Figure 7.3, which is a clearer demonstration of

the relative performance of these three algorithms.

63

Size n=2 n=4 n==6 n =28
Algorithm | # | avg. rt | # | avg. 1t | # | avg. rt | # | avg. 1t
BNB 20 | 0.8001 | 20 | 0.1986 | 20 | 0.0090 | 18 | 0.0004
LC 20| 0.9265 | 14 | 0.3256 | 4 | 0.0120 | 4 | 0.0021
LC-BNB | 20 | 0.9938 | 20 | 0.9306 | 20 | 0.6402 | 20 | 0.2471

Table 7.1: Comparison of average ratios obtained by three different algorithms.

&\] e . T
~ T~ “‘*\\
~ ~ - ~
~ - ~ -
~ . ~% -
~ N -*
SN
N
\\\
0 -1F N b
38 E NN]
£ AN
@ N
= N
£ T
[N
- N ok
e 2 Q> - e
= SR]
= N ~
c N ~
g SR
N
£ N -
9 ~
[
S 3l * ——— LC-BNB N -
N
r + ———LC N
N
o —— BNB ©
-4 i i P 1 L 1
2 4 6 8

Figure 7.3: Average rt = E%E Vs

. problem size with three different algorithms.

64
7.4 The LC-BNB Algorithm vs. Standard Monte-

Carlo

After examining the relative performance of the three methods for computing bounds
on probabilistic ;1 and concluding that the LC-BNB algorithm is the best based on
numerical experiment results, we may want to go back and ask the question that how
is the performance of the LC-BNB algorithm compared to that of standard Monte-
Carlo simulations. Although Monte-Carlo simulations do not provide hard bounds
that can be given using the LC-BNB algorithm, the former has the advantage of being
easy to implement and probably requiring less computation to get a similar estimate.
Here we use one particular example to illustrate that this is not the case when the
probability to be estimated is extremely small.

The following is a random matrix of size 6:

0.9442 1.5210 0.5869 2.3093 0.4855 0.1034]
—2.1204 —-0.0384 —0.2512 0.5246 -0.0050 -0.8076
—0.6447 1.2274 0.4801 —-0.0118 -0.2762 0.6804
—0.7043 —0.6962 0.6682 0.9131 1.2765 -—2.3646
—1.0181 0.0075 —0.0783 0.0559 1.8634 0.9901
—0.1821 —0.7829 0.8892 —1.1071 —0.5226 0.2189

The LC-BNB algorithm was run for 200 steps, which required approximately
6.39 x 10® flops (floating point operations) in computation. The upper and lower
bounds achieved on pa (M) were U = 2.2032 and L = 2.2027, respectively. Together
they guarantee that the performance in the worst case is as least as bad as 2.2027
but definitely no worse than 2.2032. The error between these two bounds is within
0.013% of the lower bound, which is small enough for practical purposes. So we can
take the lower bound as the value of the worst performance. Suppose this value is
really bad for this particular system, we would like to know how probable it is. In

the other words, we want to estimate the probability of the performance function

65
being near the worst-case. Since this question cannot be answered by the worst-case
computation, a naive Monte-Carlo sampling algorithm was run to estimate P(v) with
v = 0.9%2.2027 = 1.9824. Out of the 100, 000 samples tested, 10 of them hit the region
of bad events Ry, so the estimate of P(v) is 1 x 1071, The number of flops required
for this estimate was around 8.36 x 10®. So the Monte-Carlo simulation tells us that
bad events are highly unlikely to occur. However, the confidence level with respect
to 10% accuracy calculated using the Chernoff bound [17] is only 0.002%, which
basically means no confidence. This is because the probability we want to estimate is
so small that a much larger sample size is required to get a useful confidence level. In
fact, to achieve 80% confidence that the real probability is within #10% of 1 x 107,
the required sample size is around 8.05 x 10°, which is equivalent to approximately
6.73 x 10'® flops of computation, or approximately 12,000 hours of CPU time on
a SUN Ultra workstation. At the same time, the LC-BNB algorithm gave a hard
upper bound of 1.19 x 107* and a soft bound of 9.57 x 10™® on P(v) in about 12
minutes. The hard bound guarantees that P(v) is definitely below 1.19 x 10™*, which
is fairly small in most situations. The soft bound is about 80% of the hard upper
bound, with a confidence level of virtually 100% that the real value of P(y) is within
+10%. Besides the benefit of having a much larger effective sample size (8.37 x 107)
in the whole parameter set BA by excluding most of the benign region (99.988%
of BA), sampling only in a small subset of BA leads to a lower variance in the
resulting estimate. This example clearly demonstrates that in the case of estimating
the probability of extremely rare events, the LC-BNB algorithm is much more effective

than a naive Monte-Carlo simulation.

66

Chapter 8 Concluding Remarks

To conclude, we first summarize the main results in this thesis, then discuss possible

future research directions.

8.1 Summary

This thesis explores the computational complexity involved in computing both hard
and soft bounds in probabilistic robustness analysis. As an extension to the stan-
dard p framework reviewed in Chapter 2, probabilistic u was defined in Chapter 3
as some probability measure of a system’s stability or performance, assuming that
the probability distribution on the uncertainty associated with the system is given.
This general framework was further simplified to purely probabilistic p, which only
concerns real parametric uncertainty, but we believe still reveals the intrinsic diffi-
culty associated with more general settings. Faced with the intractability implied by
the NP-hardness of the exact computation, branch and bound type of methods are
needed to obtain approximations of purely probabilistic u. Three different algorithms
have been investigated in this thesis.

The BNB algorithm introduced in Chapter 4 was a direct application of a naive
branch and bound algorithm that has proven successful in worst-case p computation.
However, it did not claim the same success in computing bounds for probabilistic .
Unlike for the worst-case, for probabilistic computation, exploring more intelligent
branching schemes seems to be more critical than improving the quality of the orig-
inal bounds. The intuition is that exponential growth in the number of branches is
inevitable if the branching is not appropriately aligned with the separating surface
of the good and bad regions in the parameter space. As one extreme of the space
of examples, rank-one problems have a separating surface being a hyperplane, which

would be much better captured by a linear cut in the uncertain parameters. This

67

observation was the motivation to develop the second algorithm — the LC algorithm.

The machinery needed for performing linear cuts in the parameter space is 4 with
linear cuts, a framework that permits linear constraints on the uncertain parameters,
which was reviewed in Chapter 5. Among the three upper bounds on p with linear
cuts that were discussed, the upper bound by the implicit method demonstrated the
best average quality on numerical examples. This was the basis for the LC algorithm
presented in Chapter 6 for computing a hard upper bound on probabilistic u. The
use of a single linear cut in the LC algorithm determines that it is only suitable for
problems that have only one bad corner in the parameter set and are close to rank-
one in the neighborhood of this bad corner. For problems that have multiple bad
corners or have complicated shaped separating surface, more sophisticated branching
schemes are required to isolate the bad region from the rest of the parameter set.

Chapter 7 explored the above idea and proposed a new algorithm based on the
two existing algorithms. It was is referred to as the mixed LC-BNB algorithm. It
uses standard branch and bound algorithms with axially aligned cuts to divide the
parameter set in order for the bad corners to be separated from each other so that a
linear cut in each branch can isolate the bad corner easily. This algorithm combined
the advantages of both the BNB and the LC algorithms in producing tighter hard
and soft bounds for probabilistic . The effectiveness of this combination has been
demonstrated by numerical experiments. Compared to standard Monte-Carlo simu-
lations, the LC-BNB algorithm greatly reduces the variance in the resulting estimates

by excluding benign regions and increasing effective sample size.

8.2 Future Directions

The results in this thesis are far from being conclusive and there are many open
questions which can be the subjects of future research.

As suggested by the numerical experiment results, even with the mixed LC-BNB
algorithm, the ratio of the soft bound to the hard upper bound decays fairly quickly

with the size of the problem. It is foreseeable that the performance will become even

68
worse when the problem size keeps increasing. To get tolerable performance for larger
problems, the computation effort involved will be much greater. It remains an open
question how to deal with these higher dimensional problems with reasonable growth
rate of the computation.

Another interesting direction is how to extend this type of computation from the
simplest setting addressed in this thesis to more general frameworks. Many pos-
sible extensions exist. The most straightforward one is to the case when the real
parameters are repeated, or when the matrix M is not real. In either case, the fact
that the worst-case is achieved on vertices ceases to hold, but the parameter space
stays the same and branch and bound algorithms can still be applied to get similar
bounds on probabilist u. Another possibility is to allow probability distributions on
complex scalars and complex full blocks, which will result in a tremendous increase
in the dimension of the parameter space. If a branch and bound algorithm is to
be implemented on these parameters, the number of branches blows up very quickly
without necessarily significant improvement of the computation, therefore this exten-
sion seems less attractive from a practical point of view. The more interesting case is
when the mixed probabilistic u is concerned, for instance, probabilistic performance
with guaranteed stability. We may be able to apply similar branch and bound tech-
niques as the ones we used for the purely probabilistic ;1 to compute hard bounds on
the mixed probabilistic x. But the computational complexity involved needs further
investigation through extensive numerical experiments.

Most importantly, it is desirable to apply the probabilistic p framework to robust-
ness analysis of more physically motivated problems. Random matrices in general
may not be good representatives of real physical systems. It will be beneficial to take
advantage of special structures present in many engineering systems so that more

efficient computation schemes can be developed.

69

Part 11

Generalized Source Coding and

Optimal Web Layout Design

70

Chapter 9 Introduction

The emergence of the Internet over the past twenty vears has turned computer net-
works from sets of locally connected host computers and terminals into a globally
distributed information exchanging and processing system. To people throughout the
world, the influence of the Internet is tremendous. Communications become easier
and faster, information stored in a fragmented manner is now accessible to a global
audience, and businesses are conducted in new and more efficient ways. Personal
computers have evolved from pure computing devices sitting on people’s desks, into
windows of communication that connect each individual to the rest of the world. All
of these are enabled by the increasing power of the Internet.

On the other hand, as a large-scale, heterogeneous, complex interconnected sys-
tem, the Internet demonstrates many features that are unparalleled by other engineer-
ing systems, and confronts network researchers with immensely challenging problems.
One such feature is the unprecedented growth rate in the scale of the Internet. While
there were only about 1.3 million Internet hosts in January 1993, the number increased
to approximately 72.4 million in January 2000. It has been increasing exponentially
with a growth rate of around 80%/year,! and there is no evidence indicating that this
growth will slow down in the near future. Another important feature of the Internet
is its enormous heterogeneity that exists on many levels, including the underlying
physical links that carry the information, the protocols that inter-operate over the
links and manage the traffic, the mix of applications run at end systems, and the de-
grees of congestion at different times and locations. Moreover, the dramatic change
of the Internet over time lies not only in its scale, but also in the ways it is used.
Increasing processor speed and network bandwidth continue spurring development of
new applications, such as, multimedia, real-time video and audio, distributed com-

puting, multi-player network gaming, and the World Wide Web. In the meantime,

ISource: Internet Software Consortium (http://www.isc.org/)

71
the ascending popularity of these applications has in turn driven the need for more
powerful computers and higher speed networks. In particular, the World Wide Web,
or the Web for short, originally prototyped in 1991, has quickly become the dominant
force that is driving the explosive growth of the Internet [61].

The enormous number of users and rich class of applications on the Internet
have made its robustness a highly desirable property, even more important than its
efficiency. We have all experienced system break downs, “requested URL not found”,
broken pipes, slow downloads, and so on. In particular, for the Web users, a survey
in 1997 showed that slow access and inability to find relevant information are the
two most frequently reported problems [62]. And network congestion is at least
partially responsible for the slow access problem. Congestion control has become the
most challenging task that is facing network researchers today. It has many facets,
including modeling of Internet traffic, generation of synthetic traffic traces that can
be used in simulations, analysis of queueing and network performance under different
traffic patterns, and design of network protocols both for the end systems and at
the network level. All these problems are intimately related. As a consequence,
understanding the characteristics of network traffic becomes more and more critical
to designing robust and reliable networks and network services.

Since WWW connections currently dominate Internet traffic, the Web traffic is
chosen as the object of study in this thesis. The goal is to provide a plausible physical
explanation for the empirically observed characteristics in measured Web traffic based

on the theory of robust design of uncertain systems.

9.1 Related Work

High quality measurements have been carried out on traffic in various computer net-
works since early 1990s. Statistical analysis on the empirical data has shown strong in-
dication of the self-similar nature of the traffic in both local area networks(LANs) [41]
and wide area networks(WANSs) [60], quite unlike the traditionally assumed Poisson

traffic models. This means that real traffic data exhibits long-range dependence and

72
high burstiness over a wide range of time scales. In contrast, Poisson models have a
characteristic burst length that would be smoothed out by averaging [72].

These discoveries have inspired extensive and interesting research in the modeling
of network traffic, its relationship to network protocols and its impact on network per-
formance [42, 59, 37, 21, 3|. For instance, analysis and simulation results have shown
a significant difference in queueing performance between traditional traffic models
and self-similar models [55, 13, 26, 28]. As a consequence, ignoring the self-similar
nature of the traffic at the modeling stage may lead to overly optimistic performance
predictions and thus cause potential problems for buffer design and admission control
in real high speed networks.

Moreover, evidence was presented in [19] that the subset of network traffic due
to WWW transfers, recorded using NCSA Mosaic in early 1995, also demonstrated
characteristics of self-similarity. Based on a mechanism of constructing self-similar
traffic using a large number of ON/OFF sources that have period lengths drawn
from heavy-tailed distributions [45, 73, 68|, the authors in [19] traced the statistical
properties of WWW traffic back to the distribution of Web transmission times, which
in turn, is closely related to the distribution of the sizes of files transferred. Both
distributions from measurement data exhibit heavy tails which decline like power
laws with exponents close to 1. A newer data set collected in the same computing
environment in 1998 exhibited similar characteristics, except that the power law tail
became relatively lighter with an exponent at approximately 1.4 [9].

Although the recognition of heavy-tailed distributions in Web traffic was relatively
new, there exists a rich body of literature on power laws in many complex bio-/eco-
/techno-/socio-logical systems (CBETS). They have been found in power outages,
forest fires, deaths and dollars lost due to man-made and natural disasters, income
and wealth distribution of individuals and companies, variations in stock prices and
federal budgets, and many other phenomena (see [14, 15] and the references therein).
In addition to Web file transfers, more examples of heavy tails in networks and com-
puter systems have been discovered, including sizes of files in a file system [35], CPU

times consumed by UNIX processes [40], inter-keystroke times for typing [21], frame

73
sizes for variable-bit-rate video [32], TELNET inter-packet times and lengths of FTP
bursts [60], and sizes and durations of bursts and idle periods of individual Ether-
net connections [48]. This ubiquity of power laws has motivated some researchers
to suggest that they have a common origin in self-organized criticality [6]. It has
also been suggested that it is possible to describe many of the features of computer
networks in terms familiar in information theory, statistical physics, and the “new
science of complexity” such as information, entropy, phase transitions, fractals, self-
similarity, power laws, chaos, and so on. The hope is that these insights may lead to
new approaches to network protocol design.

Ideas such as self-organized criticality have received much promotion in the last
decade, but there have been as yet no convincing examples outside of carefully con-
structed laboratory experiments. Furthermore, while the “new science of complexity”
has provided intriguing metaphors and popularized the notion that there are limits
to reductionism, there has been little deep theoretical insights or practical applica-
tions. Recently, Carlson and Doyle [14] introduced a radically different theory for the
nature of complexity and the origin of power laws and “phase transitions” in com-
plex systems called Highly Optimized Tolerance (HOT). HOT systems arise when
deliberate robust design aims for a specific level of tolerance to uncertainty, which
is traded off against the cost of the compensating resources. Optimization of this
tradeoff may be associated with some mixture of explicit planning as in engineering,
or mutation and natural selection as in biology, but the word “design” is used loosely
to encompass both. HOT systems in biology and engineering share many common
features, including (1) high efficiency, performance, and robustness to uncertainties
the systems are designed to deal with, (2) potential hypersensitivity to design flaws
and unanticipated perturbations, (3) nongeneric, specialized, structured, and modular
configurations, and (4) power laws.

The most important feature of the HOT theory for this thesis is in providing an
alternative explanation for the origin of power laws in Web traffic. The connection
between HOT and WWW files was first discussed in [14], and the connections with

source coding were first made explicit in [25], which also looked at forest fires and

74
compared HOT with standard SOC results. In this thesis a variety of more detailed
models of varying tractability will be introduced, which present a consistent and
coherent application of the HOT ideas to Web file layout. This approach, hopefully,

can be applied to study power laws in other HOT systems as well.

9.2 OQOutline of Part 11

Chapter 10 begins with a review of the nature of self-similar random processes and
heavy-tailed distributions as a foundation for understanding the basic statistical
framework behind self-similar network traffic. It then takes a further look into the pfe-
vious work that established the connection between self-similar aggregate traffic and
individual ON/OFF sources whose periods exhibit heavy-tailed distributions [73, 68].
The most relevant work to this thesis was the application of the above theory to
WWW traffic and the observation of a similar connection in empirical data [19]. This
study emphasized the importance of the heavy tails in Web file transfers, because they
can be used to explain the self-similarity in WWW traffic, the largest contributor to
the overall Internet traffic nowadays.

Now comes the central question: Where do heavy-tailed distributions of WWW
file transfers come from? To answer this question, this thesis takes the basic ap-
proach of viewing the design of Web layout as a source coding problem, much like in
standard information theory [18, 66], but with a new twist. A classical application
for source coding is data compression. The model introduced in [25] that captures
important elements common to both data compression and WWW design is reviewed
in Chapter 11. It is referred to as the PLR model because it contains probabilities(P),
losses(L) and resources(R). The interesting part is: what makes the Web layout de-
sign different from data compression? In data compression the aim in the design is
to minimize the average length of codewords in order to reduce the cost of storage or
transmission, subject to the constraint of decodability. Similarly, an important goal
in Web layout is to minimize the delay in download times and latency, but the design

variable is not the selection of codewords, but is instead the layout of the Web site

75

itself. This would of course be in addition to any data compression that would be
done to individual files. Such layout can be optimized for a given distribution of user
interest, and a constraint, say, on the total number of files. As expected, average
download times are minimized by having the high hits be small files, allowing larger
files for rarely requested portions of the Web site. The resulting optimal distributions
are very unlike those in standard Shannon theory and exhibit power law tails. The
comparison between the prediction from the PLR model and the 1995 data is also
shown in Chapter 11.

While the above PLR model provides some insights into the origin of power law
distributions, it requires several rather unrealistic assumptions, which can be relaxed
in various ways with some loss in the transparency of the solutions. With this spirit a
more general PLR model is introduced at the beginning Chapter 12. It is this general
model and its application to Web layout design that are the focus of this thesis.
With the general PLR model the optimization problem is typically combinatoric.
The global optimum can be achieved analytically or numerically on a special and
simplified setting, or suboptimal solutions can be obtained using heuristics on more
complex models. Chapter 12 takes the first approach, while the second approach
is pursued in Chapter 13. We try to connect to the 1995 data first in Chapter 12.
In 1995 the Web was in a nascent form, where much of the Web content was the
result of putting preexisting documents on the Web. Since most such documents are
essentially one-dimensional objects, Web layout in this context can be thought of to a
first approximation simply as the problem of chopping up a document into pieces with
links between. Design of such a Web layout can again be formulated as a generalized
source coding problem, but the model is slightly more realistic than the PLR model
with some additional features of a real Web site. However, focusing initially on
the simple setting of one-dimensional documents that do not make extensive use of
hyperlinks keeps the model still analytically tractable. The results are quite consistent
with the simpler PLR model, as well as with the 1995 data.

In Chapter 13 we explore numerically the changes that would be expected as doc-

uments are designed specifically for the Web, including more complex layout for Web

76

sites, more effective use of hyperlinks, and more internal structure in individual Web
pages. To maximize the throughput, such a Web layout can be modified by splitting
or merging files, with a tradeoff between ease of navigation, which would favor fewer
files, and having small files to download. A heuristic optimization on random graphs
is formulated, with user navigation modeled as Markov chains. Simulations on differ-
ent classes of graphs always suggest that a Web site optimally designed to minimize
the average latency a user experiences in browsing leads to power law distributions
in the sizes of file transfers. In addition, the exponents of the power law tails are
usually higher than those from the one-dimensional model, which is consistent with
the difference found between the 1995 and 1998 data sets. Possible improvements on
the graph-based Web layout models are proposed at the end of the chapter.

Finally, Chapter 14 summarizes the main results and suggests future research

directions.

77

Chapter 10 Self-Similar Network Traffic
and Heavy-Tailed Distributions

Measured network traffic can be characterized by discrete-time random processes, or
time series X = {X;}3°,. Typically the time line is uniformly divided into successive,
nonoverlapping intervals of period At, and each random variable X represents the
number of event occurrences during each time interval. For a Poisson process where
independent events occur at random instants of time at an average rate of A events
per unit time, the above X is the increment process of the corresponding Poisson
counting process with period A¢. All X are independent and identically distributed
(i.i.d.) with
(AAE)™

PlXy =n|= —ni——e“)‘m, n > 0. (10.1)

The Poisson process model has been successfully applied to describe call arrivals
in the public switched telephone networks (PSTN) for at least fifty years, which led
to the development of modern queueing theory for performance analysis and capacity
planning. However, the Poisson framework is no longer valid for modeling traffic in
the quickly emerging data networks, which exhibits high burstiness over a wide range
of time scales. Instead, self-similar process models were proposed by many researchers
to characterize traffic traces from a variety of packet-switching networks, including
LANs [41], WANs [60], and WWW [19].

To understand self-similar network traffic and its possible causes, the next few
sections review the theory of self-similar random processes and a-stable distributions,
as well as the notion of heavy-tailed distributions, which attempts to draw a clear
picture of the connections between self-similarity and power laws. All the theorems

and lemmas are given without proofs. See [65] for an extensive and in-depth analysis.

78
10.1 Self-Similar Random Processes

The definition of self-similarity varies with the class of random processes it deals with.
The standard one is for continuous-time nonstationary processes that have stationary
increments, which will not be discussed here. The one that is more relevant to the
traffic sequences defined above is for stationary time series. The define it, we need to

first define renormalization group transformations.

Definition 10.1 Let X = {X;}3°, be a discrete-time random process. Fiz a number
H > 0. For any n > 1, define the transformation T, : X — T, X = {(T, X))},

where

1
(TX)e=— Y. Xi, foralkeN (10.2)
i=(k—1)n-+1
The transformations T,,n > 1, are called renormalization group transforma-

tions with critical exponent H.

The family of transformations {7,,}°°, forms a semi-group since T, = T,/ Ty,
with 7., T, being the transformation 7,, followed by the transformation 7,,. It is
called the renormalization group with exponent H. A time series X = {X;}2, is

said to be a fized point of the renormalization group if for all n > 1,

4

T,X £ X, (10.3)

where “£” denotes equality in finite-dimensional distributions.

Definition 10.2 A discrete-time, zero-mean, stationary random process X = { X},
is called (exactly) self-similar or fractal with scaling parameter H if it is a fived-
point of the renormalization group {T,,}52, with exponent H € [0.5,1). It is said to
be asymptotically self-similar if (10.3) only holds as n — oc.

The scaling parameter H is a measure of the degree of self-similarity. The higher
the H, the “more” self-similar the process. The reason will become clear in the

following example.

79

Example 10.3 Fractional Gaussian noise: A stalionary Gaussian random process
X = {X,}$2, with mean zero and variance 0® is called a fractional Gaussian noise

with Hurst parameter H € [0.5,1) if the autocorrelation satisfies

2

R(k) = B[X;Xix] = %(;k + 12 2k PH 4 |k — 1P, (10.4)

Fractional Gaussian noise is the stationary increment process of fractional Brow-
nian motion, a continuous-time self-similar process. For H = 0.5, fractional Gaussian
noise reduces to Gaussian white noise. For 0.5 < H < 1, we have the following

lemma.

Lemma 10.4 Let R(k) and S(\) be the autocorrelation function and the spectral

density of a fractional Gaussian noise with Hurst parameter 0.5 < H < 1. Then

R(k) ~ 0?H(2H — 1)K*H=Y g5 k — oo,

(10.5)
S(A) ~ a2Cy| N2 as |Al =0,

where f(z) ~ g(z) denotes lim,_,o0/0 f(x)/g(x) = 1, and Cy is a constant for fived
H, independent of \.

The above lemma tells us both R(k) as k — oo and S(A) as |A\| — 0 behave like
power laws, whose exponents are determined by the Hurst parameter H. The higher
the H, the slower the decay of the autocorrelation R(k) as k — oo. In fact, with
05 < H <1, _ R(k) = oo, in which case we say that the random process X
has long-range dependence, a phenomenon referred to by Mandelbrot as the “Joseph
Effect.” [47] Accordingly, the spectral density S()) diverges at the origin.

Is fractional Gaussian noise a self-similar process? The answer is yes based on the

following lemma.

Lemma 10.5 Fractional Gaussian noise is the only Gaussian fized point of the renor-

malization group, with the critical exponent equal to the Hurst parameter H.

80
Another set of fixed-points of the renormalization group involve sequences of i.i.d.
random variables with a-stable distributions, which will be discussed in the next

section.

10.2 «-Stable Distributions

Definition 10.6 A random variable X is said to have a stable distribution if for

any n € N, there exist C, € R and D,, € R such that
Xi+Xo+ -+ X, £CX + Dy, (10.6)

where X1, Xo, ..., X, are independent copies of X. Moreover, X is called strictly
stable if D, = 0. For any stable random variable, there is a number o € (0,2]
such that C,, = na. The number « is called the index of stability or characteristic

exponent. A stable random variable X with index o is called o-stable.

Example 10.7 The Gaussian distribution N(u,0?) is an a-stable distribution with

o = 2. The Cauchy distribution with the density function W—J-Q—QQ—) s an «-stable

T—p1)

distribution with o = 1.

Lemma 10.8 The sequence X = {X}3°, of i.i.d. strictly a-stable random variables

is a fized point of the renormalization group {T,,}5°, with critical exponent H = é

As shown in the previous section, if nontrivial correlations between X are allowed,
we obtain another set of fixed points of {7}, which are fractional Gaussian noises

with Hurst parameter H € [0.5,1). The intersection of these two cases is Gaussian

white noise with o = 2 and H = 3.
We have seen that both Gaussian (a = 2) and non-Gaussian (a < 2) stable dis-
tributions can produce self-similarity or long-range dependence in random processes.

The follow lemmas explain the differences between these two distributions.

81

Lemma 10.9 Let X be an a-stable random variable. Then as x — oo,

PlIX|> z] ~ 2 e“ff‘?, or «=2;
I]~ et 0
Pl X| > z] ~ Ayx™", Jor 0<a<2,

where A, > 0 is a constant for fized o, independent of x.

The above lemma says the tail of an a-stable distribution with 0 < a < 2 behaves
like a power law (z~?), which indicates much higher variability than the Gaussian

case with o = 2.
Lemma 10.10 Let X be an «-stable random variable with 0 < o < 2. Then

E|XP<oo, forany 0<p<aq;

E|X|P =00, forany p> .

A direct result of the above lemma is that an a-stable random variable has infinite
variance when 0 < a < 2, and infinite mean when 0 < o < 1, which again is in sharp
contrast to the Gaussian case where both mean and variance are finite.

Stable distributions can be generated through the central limit theorem. In fact,
stable distributions are the only distributions that can be obtained as limits of nor-

malized sums of i.i.d. random variables, as stated in the following theorem.

Theorem 10.11 A random variable X has a stable distribution if and only if there
is a sequence of i.i.d. random variables {Yi}52,, dn > 0, and a, € R, for alln > 1,

such that

-

Yi+Yot-+Y,
1+2; LU 'S (10.8)

d o
where = denotes convergence in distribution.

The special case of the limit being a Gaussian distribution (o« = 2) occurs when

the Y} have finite variance, which is also known as the ordinary central limit theorem.

82
When Y} have infinite variance, their normalized sums converge to an a-stable dis-
tribution with 0 < o < 2, which, as we have seen, exhibits a power law tail, or high

variability. The distributions with infinite variance are discussed in the next section.

10.3 Heavy-Tailed Distributions

We use the term heavy-tailed distributions for the general class of distributions with

hyperbolic (power law) tails, i.e.,
PIX > x] ~cx™?, as xT—00, 0<a<?2, (10.9)

where ¢ > 0 is a constant independent of z, regardless of the behavior of the distribu-
tions at small scales. This kind of distributions have infinite variance, a phenomenon
that Mandelbrot referred to as the “Noah Effect” [46]. In practice, it means that the
corresponding random variable can take on extremely large values with nonnegligible
probability.

The best way to visualize a heavy-tailed distribution is to plot its complementary
cumulative distribution on a log-log scale and look for approximately linear behavior
in the upper tail. The slope of the straight line —a measures the “heaviness” of the
tail, or the intensity of the “Noah Effect.”

As we have seen in the previous section, a-stable distributions with 0 < o < 2 are
heavy-tailed distributions. The converse is not necessarily true. One counter example
is the Pareto distribution which is hyperbolic over its entire range. Its probability

density function (PDF) is
p(z) = ak®z™* 1, a k>0, x>k, (10.10)
and its complementary cumulative distribution function (CCDF) is given by

PIX > 2] = (%)—a, (10.11)

83
where k is the location parameter corresponding to the minimum value for X. The
above distribution is heavy-tailed when o < 2.
A well-known result about the Pareto distribution is that it is the only distribution

that satisfies the following scaling property [46, 4]:

PIX > 2|X > m) = (5-)*&, z > . (10.12)
0

The above relation means that the distribution conditioned on X > x4 is also a
Pareto distribution with the same index « and a different location parameter zy. For
general heavy-tailed distributions, (10.12) is only satisfied asymptotically, as x and
xo become large enough. This appealing property guarantees that the distribution is
robust with respect to truncation from below.

Although heavy-tailed distributions may not be a-stable in general, properly nor-
malized sums of i.i.d. heavy-tailed distributions converge to a-stable distributions
with 0 < a < 2 through the central limit theorem. The latter, can in turn, give rise to
random processes that are long-range dependent, or bursty over a wide range of time
scales. Hence, possible links exist between heavy-tailed distributions and self-similar
network traffic through a-stable distributions with infinite variance. Connections can
also be made between fractional Gaussian noise traffic that is also self-similar and
heavy-tailed distributions at the source level, as has been observed through empirical

studies, which will be reviewed in the next two sections.

10.4 Self-Similarity Through High-Variability

In the previous sections, we discussed random processes that are self-similar or long-
range dependent (the “Joseph Effect”) and heavy-tailed distributions with high vari-
ability or infinite variance (the “Noah Effect”). The former has been observed in
empirical studies of a large collection of Internet traffic measurements. The latter
can be found in a rich body of literature on networks and computer systems.

In the search for possible physical causes of self-similar Internet traffic, an interest-

84
ing connection between the above two phenomena was established by Willinger and
Taqqu et al. in [73]. Based on a model originally introduced by Mandelbrot in [45],
this paper claimed that the superposition of a large number of ON/OFF sources (also
known as “packet trains” [36]) whose ON-periods (“train lengths”) and OFF-periods
(“intertrain distances”) exhibit heavy tails produces aggregate network traffic that
exhibits self-similarity. In fact, as both the number of sources and the block aggrega-
tion size become large enough, the cumulative traffic approaches a fractional Gaussian
noise, the only stationary Gaussian process that is self-similar. Moreover, a simple
relation exists between the exponent of the heavy tail (1 < @ < 2) and the Hurst

parameter (0.5 < H < 1) of the self-similar traffic, that is

(10.13)

Generalizations of this result to more realistic settings were discussed in [68] and a
rigorous proof was given. Validated by the Ethernet LAN traffic data collected at
the source level, the above theory provided a plausible and simple explanation for the
occurrence of self-similarity in measured network traffic in terms of the heavy-tailed
nature of the traffic generated by individual sources or source-destination pairs. In
contrast, traditional ON/OFF source models typically assume exponential or geo-
metric distributions (or more generally, distributions with finite variance) for their
ON- and OFF-periods. It was only in recent years when people discovered the dis-
crepancy between the aggregate traffic generated by multiplexing a large number of
these sources and the real traffic measured from various working networks. Therefore,
the recognition of heavy-tailed distributions is indeed the essential point of departure

from traditional to self-similar traffic modeling.

10.5 Heavy Tails in WWW File Transfers

Empirical studies on the subset of Internet traffic due to WWW transfers have also

found evidence indicating self-similarity. One of the earliest works was presented by

85

Crovella et al. in [19], where a simple explanation for the self-similarity of WWW
traffic was proposed, using the mechanism discussed in the previous section. In
fact, the aggregate traffic can be viewed as the superposition of many ON/OFF
processes, whose ON-periods correspond to transmission times of individual Web
files and OFF-periods correspond to quite times in between. Measurement data from
130,140 such file transfers to 591 users on 37 machines at Boston University in early
1995 showed that the distribution of the transmission times of individual files (ON-
periods) has an upper tail which declines like a power law with exponent close to 1,
demonstrating extremely high variability. Moreover, the distribution of the sizes of
files transferred is also heavy-tailed with a similar exponent, which is not surprising
since the transmission time of a document can be roughly modeled as the sum of
a cost proportional to the document size plus a fixed overhead, the latter of which
can be neglected for large documents. Meanwhile, the quite times (OFF-periods) in
the same data, mainly due to user think time, also exhibited heavy-tailed behavior,
but with a higher exponent o &~ 1.5. Based on the result in [68] which claimed that
between the distributions of the ON- and OFF- periods, the one with the heavier tail
actually determines the degree of self-similarity in aggregate traffic, the authors in [19]
concluded that the distribution of Web file transfers is more likely to be responsible
for the observed level of traffic self-similarity. Therefore, the focus of this thesis
is to develop a series of analytical and simulation models which provide plausible
explanations for the origin of heavy-tailed distributions of Web file transfers, which
in turn, may be the cause for self-similar network traffic. In addition, we neglect the
difference between the file sizes and the corresponding transmission times to simplify
the models. The term “Web file transfers” is used in general to refer to the sizes of
files transferred during Web sessions.

In Figure 10.1 the data set for the WWW file transfers mentioned above is dis-
played on a log-log scale (base 10), along with a data set for codewords from data
compression of a file using standard methods, which we will explain in the next chap-
ter. A line of slope o = —1 is shown for comparison. Each data set consists of (I;, P;)

pairs of individual events with sizes ordered as [; > ;1 and the cumulative frequencies

86
P, = P[l > I;]. l; can be thought of as the loss or cost proportional to the sizes of files
(WWW) or lengths of codewords (DC) to be transmitted on the Internet. In sharp
contrast to the data from data compression, which has an exponential distribution
(P, oc e7?i), the WWW data exhibits a heavy-tailed distribution (P; o< I;*, a & 1).
Since the Web workloads and user behavior have changed significantly since early
1995, a new set of data was collected in 1998 in the same computing environment
with 306 users on 29 machines. Again the distribution of the file transfers displays a
heavy tail, although the exponent for the power law increased from approximately 1
in 1995 to 1.4 in 1998 [9]. These two data sets will be referred to as “the 1995 data”

and “the 1998 data”, respectively, in later chapters.

O 1 L 1 ‘R(M
-5 -3 -1 1
I

Figure 10.1: Cumulative distributions P; vs. [; of Web file transfers (in megabytes)
and codewords from data compression.

It is worth pointing out that all the “cumulative distribution” plots in this the-
sis are complementary cumulative distributions on a log-log scale (base 10) for the
convenience of studying heavy tails. The y-axis can be cumulative probabilities or

cumulative frequencies, in the latter case max; F; > 1, like in Figure 10.1.

87

Chapter 11 Generalized Source Coding

Standard source coding can be generalized using an abstract model, called the PLR
model, where resources are allocated to limit average loss, e.g., the average file down-
load time, subject to uncertainties in file content (DC) and file access (WWW),
modeled probabilistically. First the PLR setup will be described abstractly, follow-
ing [25], and then it is specialized to the data compression and WWW cases. For
more details, implications for more general complex systems, and comparison with
self-organized criticality, see [25].

For a set of abstract events with index 7, 1 < ¢ < N, whose probabilities of oc-
currence are p;, we assume there is a relationship /; = f(r;), which describes how
the allocation of resources r; limits the sizes [; of events. The only coupling oc-
curs through an overall constraint on the resources available: > r; < R, which only
coarsely accounts for the connectivity and spatial structure of real design problems. A
natural design objective in data compression and WWW is to minimize the following

expected cost

T={)_pili | li=f(r), > r <R} (11.1)

11.1 Data Compression

While our results are completely standard and well-known in the data compression
case, we will briefly review them anyway, as our notation is nonstandard to allow for
generalizations to the WWW case, and otherwise could lead to some confusion. A
message is a vector X, composed of a sequence of symbols X = X X,.... The X, are
independent, identically distributed random variables, chosen from N source symbols,
which occur with probabilities p;, > .p; = 1, and 1 < i < N. An optimized code,

consisting of codewords of length [;, minimizes the expected length of transmission J

88
given in equation (11.1). For data compression the resource limitation > ,27% < 1is
just Kraft’s inequality [18], which is equivalent to unique decodability. In the PLR
formulation, this becomes I; = f(r;) = —logy(r;), and > r; = R = 1. The optimal
solution is r; = p;, l; = —log,(p;), and the optimal cost is the Shannon-Kolmogorov
entropy Jo = — > p;ilog,(p:) [18].

In the context of more general design problems, what is special about data com-
pression is that p; = 27% does not have heavy tails. “Small” resource allocations are
associated with long codewords, but since the number of codewords grows exponen-
tially with length, rare symbols have codewords that grow in size only logarithmically.
The data in Figure 10.1 uses standard Huffman coding [18] to compress the postscript
file of [14]. The comparison between the data and the prediction from the PLR model

will be shown in Section 11.4.

11.2 Generalized Source Coding

A more general resource versus loss function [; = fz(r;) of the following form

Folrs) = o8(r) & (11.2)
%(Tz‘mﬁ — 1), 6 >0

allows treatment of more general design problems. This choice reduces to data com-
pression (3 = 0, ¢ = 1), and keeps fz(1) = 0 and f5'(r;) = —er;7#~1, V3 > 0. Note
that these conditions uniquely determine fs(r;) to within the constant ¢, which re-
flects a choice of units in the event sizes. The f3(1) = 0 normalizes the loss/resource
so that devoting a full unit resource eliminates loss. The choice of R reflects the total
resources and the units in which resources are measured. The key quantity is the
exponent 3 characterizing the relationship for large [; and small ;. It is easy to show

using Lagrange multipliers that the optimal solution is

-1
1 1
r; = Rp;*’ (Zp;”) , (11.3)
J

89

or

—log(Rp;) + log(3_; pj), 8=0;
L \A N (11.4)
<sz-1+ﬁ> <Z] p;") — 1} : B> 0.

And the optimal cost is given by

o

— > pilog(Rp:) + (32, pi) log(X_, pi), 8 =0;

Js = L\ (11.5)
RF (ZipiHB) -2 pi} ; 8>0.

c
B

In the special case when R =c¢=1and > _.p; = 1, the above cost function becomes

— >, pilog(ps), B =0;
Js = L\ 148 (11.6)
% |:<Zipil+ﬂ> —1}) B8 >0

which reduces to the Shannon-Kolmogorov entropy for 8 = 0.
Without loss of generality we assume 7; < 1, since events with r; = 1 ([; = 0) do
not contribute to the cost and can be eliminated, reducing R by 1. Inverting (11.4)

yields the (noncumulative) probabilities of events of size [;
pi(li) = (l; + 62>_(1+1/m (11.7)

for 3 > 0, where ¢; and ¢, are unit-dependent constants depending on ¢ and R.

Just as Shannon theory represents an idealized approximation to realistic data
compression problems, applications of the PLR model to WWW represent very coarse
descriptions of the underlying phenomena. The PLR WWW model is even more ide-
alized than data compression, so we will later explore more complete WWW models.
Nonetheless, in each case there are natural interpretations of the fundamental PLR

quantities.

90
11.3 Application to WWW

In WWW models, we associate design with subdivision of large documents into files.
The [; are file lengths, and the p; are determined by user interest in the files. The
cost J = > p;l; is the average delay a user experiences in downloading files because
the transmission time of each reasonably large file is approximately proportional to
the file size. For really small files this may not be true due to the nonnegligible fixed
overhead for the transmission, so there is a small scale cutoff on [;. The resources
r; divide the document into files, where large r; correspond to small files and small
r; correspond to large files. The tradeoff between the lower cost of shorter files, and
the need for efficient Web management and user navigability which favors larger files
leads to a resource constraint on the number of files.

The most subtle aspect of the PLR model is determining 3 to reflect the resource
versus loss tradeoff. We begin by assuming that a Web site is created by taking a one-
dimensional document and splitting it into files which are then connected by links.

Subdividing a one dimensional document into files with zero dimensional cuts leads

1
)

to an inverse relationship between the file size and the resource density, I; o r;~
so that 5 = 1. To go beyond this rough dimensional argument and construct a
microscopic model for which the PLR formalism (and ultimately also the dimensional
argument) applies exactly, we must also insure that the p; are not changed by varying
the ;. Suppose we split the document into N regions of equal size L and assume a
fixed probability p; of a user hit occurring in the i** region. We then design cuts to
subdivide the i region into n; equal files each of size ;. Thus, the size is [; = n; 'r,
while the resource allocation in the i region is r; o< n;, where proportionality reflects
possibly differing units. This yields /; o< r;}, again giving 8 = 1. In [25], the more
general case where 3 = d is considered, which reflects the natural relationship between
the size of d — 1 dimensional resources traded off against the size of the resulting d

dimensional events.

91
11.4 Comparison with Data

The data sets for data compression and WWW shown in Figure 10.1 are replotted
in Figure 11.1 for comparison with the PLR model. Each data point (l;, P;) shows
the cumulative frequency P; versus the event size [;, where [; are ordered as [; > l;41.
To generate corresponding data (li,f’i) for the PLR model, we choose 3 based on
the resource vs. loss relationship for a given system (5 = 0,1 for DC and WWW,
respectively). To relate the noncumulative p; for the model to the cumulative P; for

the data, we evaluate (11.7) for each [; in the data set. The difference approximation

to p = dP/dl

pi = (Piy1 — B) /(L = li) (11.8)

can be inverted to approximate each P, in terms of all the p; and [;, i.e.,

Py = > il — i)

J<i
= Z ci(l + 02)“(”1/5)% —lj11). (11.9)
J<t
The constants ¢; and ¢y in (11.9) (equivalently R and ¢) are set by the cutoff size of
the smallest events in the data set, and the total frequency of events, and thus effect
the position but not the general shape of the curves. The data compression problem
has only the constant ¢, since for DC ¢y = 0.
In Figure 11.1 the data sets (I;, P;), i > 2 from the PLR model (dashed line) for
= 0, 1 are compared directly and unambiguously with the original data (I;, P;)
(grey circles). The agreement is excellent, especially for the WWW data. The slight
discrepancy in the DC case is a consequence of finite block sizes (in this case 16 bits)
and integer codeword lengths. Both are essential practical issues not captured in the
idealized Shannon theory discussed in Section 11.1.
The PLR model provides some insights into the origin of power laws in HOT

systems [14, 15] in general, and the special characteristic in data compression that

92

% 3 i 1
/

Figure 11.1: Comparison of DC and WWW data (I;, P;) with the results of the PLR
model (I;, F;), 1 > 2.

leads to nonheavy-tailed optimal distributions. Its application to Web file transfers
provides a plausible explanation for the self-similar behavior of WWW traffic, given
the results discussed in the previous chapter. On the other hand, due to its simplicity,
the PLR model is an extreme abstraction of the complicated Web design process in the
real world. Of course, it is unlikely that individual Web sites in 1995 were optimally
designed, so the agreement of model with data could be coincidental. This issue will
be discussed at the end of the thesis, after we examine more realistic Web layout

models and see if similar agreement still holds.

93

Chapter 12 A More General PLR Model
and Optimal Web Layout Design

The PLR model defined in (11.1) assumes that only the loss /; depends on the resource
r;, while the probability of each event p; remains fixed, which allows an analytical
solution to be obtained from the optimization. This constraint is rather restrictive,
which may be violated in more practical Web layout design. The following PLR

model

T = _pili | li=f(r), pi=g(r:), Y _ri < R} (12.1)

generalizes (11.1) to the cases where the probability p, may also be affected by the
resource allocation r;. This fairly broad setting makes the optimization problem
extremely hard to solve analytically. However, this model can also be simplified by
making some further assumptions. In these special cases, optimal solutions for (12.1)
can be calculated either numerically or even analytically. The one-dimensional Web
layout model introduced in this chapter is an example of this specialization. More
complicated and realistic models of Web site design can be built on top of this, in
which case global solutions to (12.1) are not guaranteed to be found. Simulations
of the optimization procedure using heuristic algorithms on graph-based Web layout
models will be presented in the next chapter.

The model proposed in this chapter is motivated by the PLR model for WWW
reviewed in the previous chapter, but is actually closer in detail to the models studied
in [14]. By focusing on the simplest possible setting—a one-dimensional Web layout
problem, the model allows for analytical treatment. At the same time, it captures
some additional features of a real Web site beyond what is in the PLR model in [25].

In particular, this new model includes a hierarchical structure for the Web site and

94
a more reasonable model of user navigation behavior. We begin with the case of
building a Web site out of a single document, then discuss the more complex scenario

with multiple documents.

12.1 One-Dimensional Web Layout Model

The one-dimensional Web layout model considers the early stage of Web site design
when people basically just put preexisting documents onto the Web. When such a
document is fairly big, it is unlikely that all users are interested in every portion
of the document. Then it is necessary to split the document into smaller files and
connect them in a simple way so that the average latency a user experiences while
downloading the relevant information is minimized.

A real random variable X with the sample space [0, L] can be used to model
user interest in various portion of the document, where L is to total length of the
document with certain units, e.g., bytes. The PDF p(x) indicates the popularity of
the information at location . The specific functional form of p(x) may vary with each
individual document. Here we would make a reasonably generic assumption that the
document is organized in such a way that more popular information is placed before
less popular information, which means p(z) is strictly decreasing with z, as shown in

Figure 12.1.

p(x)

0 N L

Figure 12.1: Document of size L.

Now divide the document into N files, with the locations of the cuts being

€1,Cq,. .. ,cn-1. Denote the size of each file as [; and the average popularity of each

95

file as p;. Then for any ¢, we have

li =c¢i— ¢,

| (12.2)
pi = fciz_] p(x)dxa

where ¢y = 0, cy = L. This division is illustrated in Figure 12.2. Note that
SN h=L,and Y pi=1.

p P p. P

o, 1 I N

TR AR RO AR AL TR R
Y lcl G €y l Cy € N-1 l L
file #1 file #1 file #N

Figure 12.2: Dividing the document.

A one-dimensional Web site can be made by sequentially linking the above N files,
so that each file corresponds to a Web page, as shown in Figure 12.3. The design
problem is to minimize the average download time of the Web site by optimally di-
viding the original document, which can be modeled using the general framework in
(12.1), but in a simplified setting. At one extreme, it is always desirable to divide
the document into as many small files as possible to lower the cost, which, however,
sacrifices the ease of manageability and navigability of the Web site. It also causes
the Web server to process more requests for the same amount of information. More-
over, when a file is sufficiently small, the overhead associated with the transmission
dominates the time required to transfer the file, which diminishes the advantage of
making small files. So the number of files N is assumed to be fixed as a constraint on
limited resources, like the constraint » .7, < R in the PLR model. When N is not too
large, we assume all the resulting files are big enough that the download time of each
file can be approximated by the file size, with proper arrangement of the units. To
take into account the navigation behavior of users, we also assume that any user who
visits the Web site has to start from the first page, and go through pages in ascending

order. This means a user interested in page #i must access pages #1 through #:.

96

starting point of every visit

page #i page #N

page #1 page#2

Figure 12.3: A one-dimensional Web site.

In summary, page #i will be targeted with probability p; from each user’s visit.
Then all the pages from #1 through #i are transferred, with the total download time
equal to the total size of the files, which is Z;:] l; = ¢;. Thus, minimizing the average

download means minimizing the following cost function

N
J1 = szCL (123)
i=1

with respect to the cut locations ¢y,... ,cy_1.

An equivalent way to formulate the problem is the following. Denote the hit rate
of file #4i among all file transfers as pt, then pt = Z;\;L p;, because file #¢ will be
transferred whenever a user is interested in file #; with j > 7. Note that p! are not
probabilities since sz\il p; # 1. However, we can say that for each file transfer, the

download time is [; with frequency p!. Hence, the average download time becomes

]\T
J=Y_pll; (12.4)
i=1
which can be minimized with respect to the sizes of individual files l,... ,ly.

It is easy to show that J; = J,. So the above two optimization problems are
exactly the same. To derive the optimality condition, let %‘g% =0,:=1,... ,N—1.

Then the following recursion relations hold:
p(Ci)li+1 = Di, 1= 1, e 7]\7 - 1. (125)

Since p(x) is a strictly decreasing function, it is easy to verify that [; < [;;, based

97
on (12.2), which means the optimal file sizes will strictly increase with the index.
Unfortunately the exact values of the optimal /; can only be solved numerically for
general p(x). For analysis purposes we need to make further assumptions on p(z),
for instance, we can assume p(z) belongs to certain classes of distributions that are
plausible for modeling user interest and have distinct characteristics. One such class is
the exponential distribution. This occurs when users navigate through the document
with a memoryless process, i.e., P[X > g + z|X > o] = P[X > z]. It means that
the probability of a user going through a segment of length 2 is independent of the
starting point, and the exponential function is the only continuous PDF that meets
this criterion. It will be interesting to see what the distribution of file transfers looks

like on an optimized Web site. So assume that
p(z) = ke ™" (12.6)

where 0 < x < L, and k = 1—_—2%@ Let L be big enough so that e ** < 1, and k = A.
By substituting (12.6) into (12.5), we get the recursion equations for the optimal file
lengths:

)\li_l
L) = & —, i=l..,N-L (12.7)

The above relation indicates that the sizes of the files grow exponentially towards
the end of the document. It is predictable that the last file in the sequence will
be significantly larger than the first file. Obviously it is beneficial to group less
popular information into big files while keeping the sizes of popular files small. The
above equations can be solved numerically with the constraint Zfil [; = L. With
the optimal solutions for l;, we can compute ¢; = Z;Zl l;, and furthermore, p} =
fcf_lp(m)dx = ¢~*-1 — ¢ Now normalize p! such that S~ pt = 1. If we
consider the size of the file transferred as a random variable [, then the sample space
is {l1,1z,...,Ix}, and p! is the probability mass function(PMF) of [over each sample.
The cumulative probability P} = P[l > [;] vs. the size [; is shown in Figure 12.4, with

98

e}

10‘8 L 1 L 1 1
10° 10" 192 10° 10*

Figure 12.4: P! vs. [; for Web file transfers. (p(x) is exponential.)

L =10*, N=20and A =0.1.

The cumulative distribution of transferred file sizes displays an asymptotic be-
havior that is consistent with a heavy-tailed distribution. The slope of the curve in
a log-log scale increases as the file size [; grows bigger, and approaches —1 asymp-
totically as I; becomes sufficiently large. This characteristic of the distribution is
quite robust with respect to different parameter values N and A as long as L is large
enough.

To prove this asymptotic behavior analytically, we need to consider the limit case
where L = co. Then the probability of transferring file #i becomes p! = e~*¢-1. It

follows that as [; — oo,

logpt,, —logp; loge % —loge A —Al; —Al;

loglin —logh log 2=t —logl, log(e — 1) —log Al TN —log Mg

_.._17

where f(x) ~ g(x) denotes lim,_ CI 1, as defined in Chapter 10. The above
. 9(z)

argument shows that the slope of pt vs. [; in a log-log plot approaches —1 as I;

approaches infinity, which means p} ~ ¢l ! where ¢ is a constant. So the probability

99
of transferred file size has a heavy tail with exponent 1. In reality the file sizes are
always finite. But we can view each [; as being infinite when [; > [;. Even for medium
sized [;, the slope E{T)(\{lgi\”f is fairly close to —1. And because l; < l;;1, pt > pl_;, the
cumulative distribution of transferred file sizes P} has exactly the same asymptotic
behavior, which is verified by the numerical result demonstrated in Figure 12.4.
Some people may argue that user navigation of a Web site is not necessarily mem-

oryless, which means p(x) may not be exponential. So two other commonly used dis-

tribution functions were also tested: the Gaussian distribution (p(z) = ﬁ#e 202
) and the Cauchy distribution (p(z) = ﬁ%%)—) These two were chosen because they

are representative of distributions with different types of tails. Both are a-stable
distributions. The Gaussian distribution has o = 2 implying a finite variance, while
the Cauchy distribution has infinite variance and infinite mean with o = 1. So the
Cauchy distribution is itself heavy-tailed, while the Gaussian distribution is far from
being heavy-tailed. With these distributions, a simple recursion relation between [;
as the one in (12.7) is not available. However, similar asymptotic results on the tail
of the probability of file transfers can be shown. See Appendix A for the proof of
these results. Here we solve the optimization numerically using equation (12.5).

Again, we set L = 10% and N = 20. In both cases, the resulting cumulative
distributions P! vs. [; display heavy tails, as shown in Figure 12.5. The Gaussian
case is similar to the exponential one, where most of the resulting /; cluster around
size 1 and a few bigger ones spread out quickly towards L. Again the distribution
is not exactly a power law, but the slope of the curve approaches —1.4 in the region
of large ;. With the Cauchy distribution the resulting /; are evenly distributed on a
logarithmic scale and their cumulative probabilities can be very well approximated
by a power law with exponent 1.

To summarize, the above results suggest that the optimal layout of a one-dimensional
Web site with the objective of minimizing the average download time subject to a
constraint on the number of files leads to the heavy-tailed distribution of transferred
file sizes with exponent a ~ 1. This confirms the observation from the PLR model

in Chapter 11, and is consistent with the 1995 data. The result is quite robust with

100

1
@

10° 10" 102 10° 10*

PLI>I]

sl " s gl . o oaasaal n ErEET | i s v il . T | " Lo oeey
1072 107 10° |101 10° 10° 104

i

Figure 12.5: P! vs. I; for Web file transfers. (Top: p(x) is Gaussian, y = —30,

)

o = 20; Bottom: p(z) is Cauchy, A = 100.)

respect to the specific choice of the initial p(x) and whether it is heavy-tailed or not.
Although the behavior of the model under distributions other than those tested above
is subject to verification, we do believe that the link between the heavy-tailed distri-
bution of Web file transfers and the optimization behind Web layout design and the
tradeoff between performance objective and resource constraints is fairly generic. Of
course the above study is not conclusive since the model of Web site layout and user

behavior is so simplified. The rest of the thesis addresses the issue of investigating

more complex models for Web layout design.

12.2 'Web Sites of Multiple Documents

It is possible to extend the model in the previous section to Web sites consisting of

multiple documents. Imagine such a Web site is designed by dividing each document

101
into a one-dimensional chain in the optimal way described in the previous section. The
goal is to study the statistics of the overall traffic from all the documents. Assume
that each document is equally likely to be visited. And because previous study
indicates that the optimal design for each document is qualitatively quite independent
of the specific choice for the initial p(x), for simplicity we would further assume that
the popularity of the information in each document is i.i.d. with an exponential
distribution p(z) = Ape **. The analysis of a single document has shown that the
key to the resulting heavy-tailed distribution is the recursion relation (12.7) between
sizes of subsequent files. Therefore, if the distribution of the smallest file /; in each
chain is known, it can be propagated through the recursion equation and obtain the
overall distribution of all the files. In general the sizes of small files do not have
heavy-tailed distributions, so the distribution of /; is assumed to be an exponential
function on an interval I; with parameter \,! i.e., its PDF fi(l)) = kie=™h [, € 1.

Let h(z) = 9@;0;1 Then [; = h(l;_1) = h*"}(ly), for all i > 1, where A""(-) denotes

the my, composite function of h(-). The inverse function of h(z) is g(z) = LO_&(.’YT-T&7
so l; = g(ly) = ¢~ '(I;). Then the PDF of [;(i > 1) is
ol i— dg" ' (li
filly) = f1(l1)5% = filg l(li))——ajf(-—), (12.8)

which is a highly complicated function of ;. However, because each /; is an exponential
function of the previous one, it is conceivable that the cumulative distributions of /;
spread out exponentially as ¢ increases.

The size of the file transferred from this Web site can be considered as a new
random variable [,,, whose distribution will be a mixture of all the distributions
fi(l). And the mixing probability p} is also a function of the particular value of I;,
which can be calculated as we described in the previous section. By the theory of

mixture probability [29], the cumulative distribution P, (z) = P[l,, > z] is given by

INote that \; is for the distribution of [; while A is for the distribution of user interests in each
document.

102

N 00
Pale) =Y / PL(L) fo(00) s (12.9)

The above distribution is computed numerically and the resulting P, vs. {,, is
displayed in Figure 12.6 (dashed line). The upper tail of the distribution is very well
approximated by a power law with exponent 1.1. To illustrate the cause of this heavy
tail, the cumulative distributions of /; conditioned on transferring file #: in the chain
are also shown (solid lines). The plot is cut off at z = 10'° to show to details of how
the solid curves add up to give the dashed curve. Here we used N = 10, Ay = 0:25,
and A\; = 1. The shape of the distribution is quite insensitive to the choice of N
and \;. As)\ gets bigger, the distributions of [;(> 1) spread out more so that the
exponent of the power law tail gets closer to 1. If X¢ is too small, no big files will be

generated from this iteration, which is of no interest to this study.

(]

10

10 -
%
A
_E
o
. \\;.\\
. lN \\\\\
-1 0_15 I l 1 1 - ?
10° 10° 10* 10° 10° 10"

Figure 12.6: Cumulative distribution of /.

103

Chapter 13 Simulations of Graph-Based
Web Layout Models

The one-dimensional Web site model is good for analytical study, but is only rep-
resentative of fairly primitive Web layout design. Recently, the layout of Web sites
has become much more complicated and versatile and the design process has gone far
beyond just organizing a single document, which means the one-dimensional assump-
tion is no longer suitable. The objective of this chapter is to build a series of models
with increasing details of real Web layout and minimize the average download time,

ie.,
J= Zpili (13.1)

where [; are the sizes of individual files on a Web site, and p; are the corresponding
probabilities that each file gets downloaded. Again constraints are posed due to
limited resources. The resulting optimization problem fits into the general PLR model
in (12.1). Its combinatoric nature implies that analytical solutions will typically
not be available. Instead, heuristic optimization schemes have been developed and
are presented in this chapter, which mimic some aspects of the tuning and refining
involved in real Web site design, and suggest simple methods by which this could be
made more systematic.

The next section introduces random graphs as more realistic models for general
Web sites. Graph-based models have been employed by many other researchers for
topologies of computer networks [71, 23] and the WWW [8, 49, 34, 70]. In [8] the
Web was viewed as a large directed graph whose vertices are documents and edges are
links pointing from one document to another. In [34] the graph model was applied on

a single Web site, which is closer to its application in this chapter — the study of the

104
layout of each individual Web site. The optimization of the average download time
is done by heuristically reorganizing (splitting and merging) files based on statistics
of user interest. Simulations of different classes of graphs including chains, trees, and
incrementally generated networks are described in Section 13.2. In Section 13.3 a
more sophisticated model with geometries in individual Web pages is presented as

well as simulations with a slightly more involved optimization procedure.

13.1 Web Sites as Random Graphs

Consider a Web site modeled as a directed graph (V, E), where each node Vj(i =
1,...,N) represents a Web page and each directed edge E;; represents a hyperlink
pointing from page V; to page V;. This model still contains a fair amount of simplifi-

cation from real Web sites, for instance,

1. The geometry inside each file is ignored, so each file is an abstract node in the

graph;

2. Each Web page contains only a single file. All the embedded objects (e.g.,
images) are considered to be part of that file. Hence, no distinction will be

made between a file and a Web page;

3. The effect of caching is not taken into account so that every hit on a Web page

leads to a transfer of the corresponding file.

All these assumptions can be removed by adding more complexity to the model. The
model described in Section 13.3 is an example of relaxing the first condition. The
implication of the no caching assumption will be discussed later along with simulation

results.

13.1.1 The Markov Chain Model

A discrete-time Markov chain is used to model user navigation behavior, where all the

nodes in the graph are considered as possible states for the random process, and the

105
probability of going from V; to V; defines the transition probability p;;. Let M = [p;;]
be the transition probability matrix, then M™ = [p;;(n)] gives the n-step transition

probabilities. The following theorem is from the standard theory of Markov chains.

Theorem 13.1 [43] For an irreducible, aperiodic, and positive recurrent Markov

chain,
lim pyi(n) = pj, for all j,

where p; are the unique nonnegative solutions of the following equations:

pj = Zpi * Dijs (13.2)

d_opi=1 (13.3)

A Markov chain that satisfies the conditions stated in the theorem is called ergodic,
which is true for the Markov chains defined in all the models in this chapter. Asymp-
totically, an ergodic Markov chain settles into a stationary random process with state
probabilities p; independent of the time instant n. Each p; also corresponds to the
long-term proportion of time spent on state V;, in other words, the probability of page
V; being accessed, or downloaded, which is exactly the p; in the cost function (13.1).
Suppose the transition probability matrix M is know, then p;, can be computed by
solving equations (13.2) and (13.3). More specifically, let p = [p1,... ,pn]" (column

vector), we can write (13.2) in its vector form, which is
p=pM or p=DMp. (13.4)

This means p is the right eigenvector of M’ with an eigenvalue 1. For real Web
sites, p; can be directly calculated from log data with sufficiently large sample size.
More advanced technology even allows the server to trace every link that a user

follows, which provides information on the transition probabilities p;;, or, the matrix

106
M, from which p; can be obtained.

To further define the Markov process, page V; is set as the entry point of every
user’s navigation, assuming that a user starts from the front page and then proceeds
to subsequent pages through hyperlinks. So after downloading page V;, the user
follows hyperlink Ej; to visit page V; with probability p;;. All p;i (i > 1) are viewed as
probabilities of exiting the Web site from page V;, which means the user either stops
navigating or goes on to other Web sites. Here instead of defining another node as
the exiting state, we let all users go to node V; when they exit because the overall
statistics are an aggregation of many users’ navigation behavior, and there is no way
to tell the difference between user A going back to V; and starting over again and

user B entering at V; and beginning to navigate.

13.1.2 Optimization through Splitting and Merging

Suppose the original Web layout has NV files connected as a graph. The length of
each file is /;, and the probability of each file being downloaded is p;. A naive way to
reduce the average download time is to split high hit files and merge unpopular ones.
In particular, if a file is popular and large at the same time, split it into two smaller
files. Repeatedly doing this will certainly lower the cost defined in (13.1). However,
the total number of files N increases by 1 with every split. Eventually the number
of files becomes too large, which leaves the Web site too hard to manage and users
frustrated by going through too many clicks. Therefore, as a coarse approximation
of the tradeoff between the cost and the above concerns, an upper limit is posed on
the total number of files, as in the one-dimensional Web layout model. To meet this
constraint, every time one file gets split up, two other files that neighbor! each other
and are rarely visited are chosen to be merged into a larger file. This is the basic idea
behind the heuristics used in the optimization. Either splitting or merging changes
the topology of the graph, the corresponding Markov chain, and the distribution of

the file sizes. The details involved in splitting and merging depend on individual

'Two nodes are called “neighbors” if they are connected by hyperlinks.

107

models, and will be discussed in the next section on specific simulations.

13.2 Simulations on Random Graphs

13.2.1 Initialization of the Graph Model

The first step of the simulation is to create the initial topology of the graph. Two
parameters are chosen to provide simple control over the key structural characteristics
of a Web site: N4, the number of nodes in the graph, determines the scale of the
Web site under study, and Nj;nx, the number of incoming links at each node, governs
the degree of connectivity between the Web pages. The graph model is built in an
incremental way to mimic the generation of real Web sites, where people initially put
up some Web pages with hyperlinks in between, then gradually add more pages and
connect them with the existing pages, and keep growing the Web site in an iterative
fashion. Each node V; has coordinates (z;,y;), which are generated uniformly in a
10 x 10 square in R?. This is for the convenience of modeling the logic relation
between different pages. The relevance of information between pages V; and Vj is
represented by their distance in Euclidean space, the same idea used in Waxman’s
network model [71]. Each graph usually starts with a few nodes. Every time a new
node is generated, it is connected with Ny, of the existing nodes that are closest to it
with bidirectional links. This process is repeated until all N, nodes are generated
and connected. Figure 13.1 shows one graph model generated by the above scheme.
V) corresponds to the starting point of the navigation.

Notice that most nodes are linked to nearby neighbors, while there are occasionally
rather long links connecting neighbors that are distant from each other on the graph.
This property is similar to the small world phenomena present in the WWW, discussed
in [1]. The reason is that the graph is built incrementally. So these neighbors that
are far away are those generated earlier when there were only a few nodes on the
graph, while all the others were generated subsequently. This indicates some intrinsic

hierarchy that is present in many Web sites, where the front page connects to a small

Figure 13.1: Graph model of a random Web site with Vo4, = 1000 and Nypp = 2.

number of key pages with higher level information, each of them surrounded locally
by a large number of lower level pages with more detailed information.

Real Web site layout could be fairly different from one to another. Besides the two
parameters N, o4 and Ny, chosen to control the scale and connectivity of a Web site,
the randomness in the locations of the nodes and consequently the connections be-
tween them are used to provide the degree of freedom in the topology. The difference
in the degree of connectivity between Ny, = 1 and Nyjni = 3 is clearly demonstrated
in Figure 13.2.

After interconnections between the Web pages are determined, the user navigation
pattern is modeled by assigning the initial transition probabilities p;; of the Markov
chain. For each node Vj, simply assume that there is one common exiting probability
p. except for V,, i.e., p;; = pe(i > 1). The remaining probability 1 — p. will be
evenly distributed among all the outgoing links Ej;(j > 1). Set p; = 0 if there
is no link between two nodes V; and V. Note that the particular Markov chains
defined here do not have self-loops, i.e. p; = 0. After uniquely determining the

whole transition probability matrix M, the download probabilities p; can be computed

109

Figure 13.2: Graph models of two random Web sites with N,,q. = 500 and different
degrees of connectivity. Left: Ny, = 1; Right: Ny, = 3.

through eigenvalue decomposition, or solving (13.4).

The last step of the initialization is to decide the file size [; for each page. Three
cases have been tested: the exponential distribution, the uniform distribution in
[lmins lmaz], and the degenerate case where [; = L, for all 7. In the next section, the
simulation results with initial exponential distributions for I; are shown. The results

with the other two kinds of distributions are fairly similar, hence will be omitted here.

13.2.2 Heuristic Optimization and Simulation Results

The heuristic optimization algorithm goes as follows:

Splitting Pick page V;- with the highest p;/;. Cut the page in the middle to produce
two new pages Vi and Vj» with sizes ly = l;; = [;/2. Any outgoing link Ej;
becomes Ej; and Ej; without changing the outgoing probability, i.e., py; =
pir; = pij. Meanwhile, any incoming link Ej; becomes Ejy and Ej» with half
incoming probability, i.e., pj# = pj» = pj;/2. The download probability vector
p remains almost the same except that py = p;» = p;/2. It is easy to prove that

the updated M and p still satisfy equation (13.4).

110
Merging After splitting one page, find page Vj- with the lowest pj and its least
popular neighbor V«-. Combine them into one page Vi with size Iy = lp- + lp+-.
Copy all the the outgoing links and incoming links for Vj- and Vi« into the

new page, then merge redundant links and combine probabilities, i.e., pj =

Dik + Djg=, and pgj = —F—pp.; +

Pre +Pes

Ppxx
Prx TP+

pi~j. The self-loop produced by
merging should be removed and all py;, j # k need to be adjusted appropriately
so that each row of M still sums up to 1. Recompute the download probability

vector p using equation (13.4).

Iteration Update J = >, p;l;. Repeat the above splitting-merging procedure un-
til the improvement of .J is within a certain tolerance level or the number of

iterations reaches a preset maximum.

The algorithm described above is the most naive version so that it contains the
key operations and is easy to understand. The real implementation involves a fair
number of variations of the above algorithm. For example, the criterion for choosing
the page to split or the pages to merge can be different; while splitting, the location
of the cut does not have to be in the middle, instead, it can be chosen at random,;
there are other ways to reconfigure the hyperlinks after splitting or merging the pages;
parameter values can be varied from one test to another; etc..

Simulations on a large number of random graph models with different implemen-
tations of the proposed algorithm have shown that the simple optimization scheme
works quite well in continuously improving the cost J. To study the distribution of
file transfers, let L! be the random variable representing the transferred file sizes.
Then for every data set (I;, p;), calculate the cumulative probability P} = ngipj,
with sizes of individual files ordered as I; > [;,1, i.e. P! = P[L* > 1;].

The simulation results on a random Web site model with N, 4. = 1000 and Nyjpi =
2 is shown in Figure 13.3, Figure 13.4 and Figure 13.5. Figure 13.3 illustrates the
effectiveness of the naive splitting-merging heuristic in reducing the cost J iteration
by iteration. The improvement is quite dramatic at the beginning, then it slows down

and finally reaches some steady state after 350 iterations.

111

1000, T T T T T T

900} -

400

300

1 1 L i 1 L
200O 50 100 150 200 250 300 350

no. of iterations

Figure 13.3: Cost function J vs. no of iterations, Npoge = 1000, Nyjpp, = 2.

Figure 13.4 shows the cumulative distribution of file transfers P! vs. [; before and
after the optimization. Motivated by the model (11.7) for the noncumulative p; in

Chapter 11, the following hyperbolic function
P = ¢ (l; + ¢cp)7V/P (13.5)

was used to fit the cumulative distribution P! after the optimization. Note that
the exponent in the equation becomes —1/3 instead of —(1 4 1/3) in (11.7) due to
the integration. The resulting model (dashed line in Figure 13.4) with ¢; = 7.85 x
10%, ¢y = 318.28 and 3 = 0.42 well approximates the simulation result over many
orders of magnitude in the file size, which verifies that the distribution after the
optimization displays a power law tail. Although the resulting value for 3 implies an
exponent & = 1/3 > 2, which means the distribution is not really heavy-tailed as
defined in Chapter 10, it does have an upper tail that is much heavier than the initial
distribution before the optimization, which drops off exponentially at large /;. In

fact, the optimization process pushes the whole distribution curve down at small and

medium file sizes to reduce the average download time. As a tradeoff, the optimized

112

Web site would produce more large file transfers than the original Web site.

10%

107}

_10% 1
=
e |
a.

10k .

N H
o: before optimization N
A
15 . after optimization o \i, |
i -~ it from model A
1 0—5 | I i H
10° 10' 10° 10° 10* 10°

Figure 13.4: P! vs. [; for Web file transfers before optimization and after 350 iterations,
Nyode = 1000, Nlink = 2.

Interestingly, we find that the distribution of the sizes of unique files on the Web
site, as opposed to the traffic from the Web site, also has a nice power-law tail after
the optimization, as displayed in Figure 13.5. Let L* denote the random variable
of unique file size on the Web site, then P denotes its complementary cumulative
distribution, i.e., P* = P[L* > [;]. Again the model in (13.5) can be used to fit P
vs. I;. The resulting parameters are ¢; = 1.40 x 10, ¢, = 1.04 x 103, and 3 = 0.49,
indicating a “heavier” tail than the distribution for the transferred files. The heavy-
tailed distribution for unique file sizes has also been observed from both the 1995
data and the 1998 data in [19, 9]. In [19] it was shown that the set of file transfers is
intermediate in characteristics between the set of file requests and the set of unique
files. This is due to the use of caching in Web applications. At one extreme, if no
caching is provided, then the set of transferred files should be the same as the set of
files that are requested, which is a simplification taken in this thesis. On the other
hand, in the case of perfect (infinite) caching, the set of files transferred should be

identical to the set of unique files. In reality, caching does exist but is never infinite,

113

10%; ,
10_‘ - B
=
24
a.
vy
10°- Vi 4
A
\'A
v,
\v
. data from simulation ‘,\
-~ fit from model .
10—3 I I i 1
10° 10" 10? 10° 10* 10°

Figure 13.5: P} vs. l; for unique files after 350 iterations, Nyoge = 1000, Nyjnp = 2.

so the distribution of resulting file transfers should be between the distributions of
file requests and unique files. Back to the simulation results shown in Figure 13.4
and Figure 13.5, the distribution of Lf is less heavy-tailed than the distribution of L*
because small files get requested more often than large files. If caching is taken into
account, then the distribution of file transfers should have a § value between 0.42 and
0.49 for this particular example. The effect of caching is not the focus of this thesis,
but will be an interesting subject for future research.

These simulation results are quite robust with respect to the choices that can
be made during the implementation of the optimization algorithm, as was discussed
earlier in this subsection. Of course the objective function J may decay in different
trajectories, and the resulting exponents of the power law tails can be slightly dif-
ferent, but the qualitative behavior of the same example of the Web layout model is
fairly consistent in all the simulations.

Since the above example was generated at random, it may not be representative
of the general characteristics of Web layouts of similar structure, say with the same

number of Npoge and Nyni. Therefore, the above design and optimization proce-

114

dure was also simulated on a subnet consisting of K random Web sites, each with
Nyode = 1000 and Njjpi = 2. All the Web sites are considered equally probable to be
accessed. So the overall statistics are just the average of those for individual ones.
After the simulation all K data sets of (I;, p;) were mixed together and the total cu-
mulative distributions P! of transferred files and P of unique files were computed.
Both distributions contain power law tails, which are shown in the top two plots of
Figure 13.6, compared with the distributions before the optimization that have expo-
nential drop off at large file sizes. Again the hyperbolic model (13.5) was used to fit
the simulation results, giving 3 = 0.44 for P! and § = 0.55 for P¥. This means the
distribution of transferred files has an exponent « slightly above 2 and the distribu-
tion of unique files has an exponent « slightly below 2. Comparing these exponents
with the exponents obtained from the PLR model (o = 1) and the one-dimensional
Web layout model in Chapter 12 (« & 1), it is easy to see that the distributions of file
transfers from these graph models are less heavy-tailed than those from simpler mod-
els. This difference is consistent with the change in the empirically observed behavior
of Web file transfers from the 1995 data to the 1998 data. A plausible explanation
will be provided after more simulation results are presented.

The algorithm was also tested with different choices of Ny, Only the cumulative
distributions of the transferred files L' for Ny, = 1(left) and Ny,r = 3(right) are
displayed at the bottom of Figure 13.6. The distributions of the unique files L* are
not shown, but they have similar shape as in the Ny, = 2 case (top right), and
also are more heavy-tailed than the distributions of L with the same Nj,,. In the
Nini = 1 case, P! after the optimization can also be nicely fit using (13.5) with
8 = 0.52, indicating a power law tail that is heavier than that for Ny, = 2 (top left).
However, for P! with Ny, = 3, no perfect fit using (13.5) can be obtained since the
distribution starts to drop off more quickly after ; ~ 10°. The best fit found leads to
(3 = 0.42. This implies that the distribution for file transfers is even less heavy-tailed
than for Nj,, = 2.

Comparison of these three cases suggests that as Ny, becomes higher and higher,

the tails of the cumulative distributions of transferred files become less and less heavy-

115

2)

fink ~

link ~ i

Pf vs. 1 (N

2) Pi“ vs. I (N

5}

107

2 4 6

10 10 ? ¥ &

10 10 10

Figure 13.6: Mixed P! vs. [; for transferred files and mixed P! vs. I; for unique files
from 10 random Web sites, each with N,,,4. = 1000, before and after the optimization.

tailed. The parameter Ny, captures the degree of connectivity of a Web site layout.
The higher the Ny, the more connected the Web site. The consequence is the
parameter 3 that fits the power law distribution of file transfers varies with the
degree of connectivity. The PLR model characterizes one-dimensional Web layout
with a very low degree of connectivity, § = 1; while the graph model for more
connected Web layouts gives § = 0.5, and 5 becomes smaller as /Vj;,; increases. This
observation provides a possible explanation for why the power law tail from the 1998
data was steeper than that from the 1995 data. The reason could be that from 1995
to 1998 the design of Web layout became more and more mature and sophisticated,
including more extensive use of hyperlinks that led to greater connectivity in resulting
Web sites, which, in turn, would demonstrate less heavy-tailed distributions in file

transfers.

116
13.2.3 Two Special Cases

In the previous subsection, Web site topologies were modeled as incrementally gener-
ated graphs. This subsection studies two special cases of random graphs: chains and

trees.

Chains

The simplest possible layout for a Web site is a chain-like structure, where all the Web
pages are sequentially connected by unidirectional links, like the one in Figure 12.3.
As in the general case, each Web page V; contains a single file with length /;, and
the user enters the Web site at the first page V;. At each page V;, he has the choice
of either leaving the Web site with probability p, or following the hyperlink F; ;. to
browse the next page V., with probability 1 — p..

The splitting-merging iteration is quite trivial to implement in this special case.
And the chain structure is preserved during the operations. Again small variations can
be added to the standard algorithm, like in the case of general graphs. For example,
split a file at a random location instead of in the middle, or pick p, randomly in
a certain range instead of at a fixed value. Simulations of different combinations
of the above choices all give similar results. An example is demonstrated in Figure
13.7, where the cumulative distributions of the sizes of file transfers P} vs. I; before
and after the optimization are shown. The distribution from the optimized Web site
displays a very nice power law decay with an exponent a ~ 1 in the whole range of
I;. Experiments of different N,,4. and p. show that this slope is fairly independent of
the parameter values, which validates the theoretical result from the one-dimensional

Web layout model in Chapter 12.

Trees

Another special topology is the rooted-tree. It is a simplification of the implicit hier-
archical structure that is present in many Web sites nowadays. The same incremental

scheme for generating the initial topology in the random graph case is used for the

117

Q
10 v T Ko gy T O T O OO OCROCRES:
N AN

*
107 * .
10% i
=
=
B qo°L 4
107 . N . 4
o: before the optimization 3
.. after the optimization
107} E
1 i 1) 1.

Figure 13.7: P! vs. [; for file transfers in a chain-like Web site before and after the
optimization, N4 = 100.

tree structure, except that Ny, = 1 and one more parameter needs to be specified:
the maximum out-degree M,,, for all the nodes. Note that M, and Npe4 together
determine the depth and the degree of connectivity of the initial tree.

The standard splitting-merging algorithm for the general graphs has to be modified
so that the tree structure can be preserved during the optimization. The simulation
result from one example is shown in Figure 13.8, which contains the cumulative
distribution of sizes of file transfers P! vs. [; before and after the optimization. The
distribution from the optimized Web site has a little curvature. It follows a power law
with « close to 1 for small /;, and the slope becomes steeper as the file size increases.
A linear fit to the curve in the large [; region gives o = 1.53, which still suggests a
heavy tail. Again this result in general does not depend on the specific values of the
parameters Nyoq. and M, although smaller M,,,, usually produces a heavier tail. A
possible explanation for this is when N4 is fixed, a tree with smaller M,,; spreads
out less and goes down more deeply, which is closer to the one-dimensional chain case

that produces a power law tail with o ~ 1.

118

100 - ; . - WW
107k g
Y
"\
N
104 M, 4
A

>11
5
T
@O0
o)
I

10
10
o: before the optimization
6
10 E . after the optimization
107} , .

aad i

1072 107 10° 10" 10° 10° 10*

1

Figure 13.8: Pf vs. [; of file transfers from a tree-like Web site before and after the
optimization, Nyeg. = 500, M,,; = 25.

13.2.4 Summary

Comparison of the simulation results from chains, trees, and more general random
graphs with different Ny, suggests that the exponent of the power law tail in the
distribution of file transfers from the optimized Web site is highly correlated with the
initial degree of connectivity of the Web site. Among the three topologies that were
studied, the chain structure has the least connectivity, the random graph with large
Niing has the greatest connectivity, while the tree, similar to the random graph with
Niing = 1,% is between those two extremes. At the same time, the exponents of the
tails show a similar pattern. We could conclude that the more connected the graphs,

the less heavy-tailed are the resulting distributions.

“The slight difference between these two is that in the tree case, the Nynr = 1 property is
preserved throughout the optimization.

119
13.3 A More Realistic Model

13.3.1 Generation of Web Page Geometry

The Web layout models presented in the previous section treat every Web page as
an abstract node in a random graph without any geometry in it. Real Web pages
are (mostly) HTML files containing embedded objects (images, etc.), distributed
hyperlinks, and complicated layout. In this section a more realistic Web site model is
introduced, which takes into account the internal structure of each Web page. Since
it is based on the random graph model, only the new features that are not in the
previous model are described here. So each page V; still contains a single file with
length /;, but each file is divided into one or more paragraphs to coarsely capture the
logical connection between information. Different paragraphs are considered relatively
independent, and it is ok to split them and move them into different pages when
necessary. The number of paragraphs in each file and the locations of the paragraph
breaks are generated randomly. In addition, the hyperlinks that point out of this
page can be located anywhere in the file. To avoid confusion, the model used in the
previous section is referred to as the graph model, while the new model used in this
section will be referred to as the geometric model.

Similar to the graph model, user navigation of the Web site always starts at page
Vi. Inside each page V;, assume that the user reads the file from top down. Again
user interest p(z) is assumed to be an exponential function of the location of the
information z, with parameter A, as has been studied in Chapter 12. X can be easily
adjusted to change the decay of user interest. When ;1* > [;, then user interest is
distributed almost uniformly throughout the whole page. If there is a hyperlink E;;
at location zg, the user either follows the link to visit page V; with probability P, or
keeps going in V;. P, is defined as the navigation probability, and treated as a constant
throughout the whole Web site. Suppose there are k hyperlinks £;; , ... , E;;, in page
Vi, and the probabilities of following these links are p;;,, ... ,p;j;, respectively. Then
pin =1— 3" p;, is defined to be the exiting probability.

The optimization algorithm for the geometric model is more involved than for

120
the graph model, because we need to keep track of the paragraph structure and the
locations of the hyperlinks in the original Web pages. Also locations of the cuts while
splitting files are determined by assumptions on user interests, more specifically, on
the parameter A and how -}\— is compared to [;. Moreover, unless there is only one
paragraph, the splitting point has to be between paragraphs. The relative locations
of the hyperlinks in each paragraph will be preserved whenever files are split or
merged. Every iteration of the splitting-merging procedure produces a new Markov
chain, and there are no simple ways to obtain the new stationary probabilities p; just
by updating the old ones. So p; will be recomputed using the updated transition
probability matrix M at each iteration, which makes the computational cost higher

than that of the graph model.

13.3.2 Simulation Results

A large number of simulations of the geometric model with different parameter set-
tings have proven the effectiveness of the simple splitting-merging heuristic in reducing
the cost function J, i.e., the average file download time from the Web site. One ex-

ample of a Web site with 1000 nodes and Ny, = 2 is demonstrated in Figure 13.9.

Figure 13.10 and Figure 13.11 show the cumulative distributions of sizes of trans-
ferred files (L') and unique files (L") from the same simulation as in Figure 13.9.
Both distributions display power law tails, with 3 = 0.52 for P} and 3 = 0.81 for
P by fitting the hyperbolic model (13.5) to the simulation data. The fit here is not
as good as those for the graph model because the distributions from the geometric
model are less smooth than the previous ones. In addition, the 3 values from the
fit are lower than those from the graph model, indicating that the distributions are
more heavy-tailed. However, the qualitative behavior of the two models are fairly
similar. In particular, the optimization process always reshapes the distribution of

file transfers and results in a more heavy-tailed distribution than the original one

without the optimization. Moreover, the distribution for the unique files is always

121

1200 T T T T T T T T T

1000 1

800 N

600~ b

sum { iIi)

J=

4001 A

200+ b

O | i ! L L i H L 1
0 50 100 150 200 250 300 350 400 450 500

no. of iterations

Figure 13.9: Cost function J vs. no. of iterations, N4 = 1000, Nyjpp = 2.

more heavy-tailed than the distribution for the transferred files. And as was discussed
in the previous section, if caching is taken into account, then the real distribution of
the transferred files should be something between the P} and P* obtained from this
model.

The simulation was also conducted on a subnet consisting of K random Web sites
with page geometries, where each Web site has Npoge = 500 and Ny, = 2. The
probabilities of visiting individual Web sites are assumed to be equal. The results are
shown on the top two plots of Figure 13.12. Again both cumulative distributions for
the mixed L and L* contain power law tails and the tail of P (3 = 0.89) is heavier
than that of P! (3 = 0.58). The cumulative distributions of the transferred files from
two other simulations with Nynx = 1 and Ny, = 3 are shown in the bottom two plots
of Figure 13.12. Both have power law tails with 8 = 0.58 and # = 0.56 respectively.
Although the fit using (13.5) is not as good as those for the graph model, as with the
single Web site case, it still captures the basic shape of the distributions. However,
with the geometric model, the value of 3 from the fit is fairly stable for Web layouts
with different Ny, which is not the case with the graph model. It seems that the

122

o: before optimization TN
159 .: after optimization T
F —~: fit from model AN]
1 67 - L 1 i i "
10° 10' 10* | 10° 10° 10°

Figure 13.10: P} vs. l; for Web file transfers before optimization and after 470 itera-
tiOﬂS7]\'Tnode = 1000, jvlink = 2.

100 s peus S M L T T T T T
r T N]
10_1 - 3
~ 1
2
o
1*
AN
102k N e
M 1
N
AYS
.: data from simulation N
Ay
——: fit from model \
N
N\
10—3 . L L N i $.
10° 10' 102 10° 10* 10°

Figure 13.11: P* vs. l; for Web file transfers after 470 iterations, Ny, = 1000,
Nijnk = 2.

123
internal structure of individual Web pages blurred the difference in the connectivity
caused by the difference in the number of links. A full understanding of its causes
and implications will require more simulations with different kinds of Web layout
models, and more importantly, a combination of simulations and an empirical study
of real Web sites. What is consistent between the graph model and the geometric
model is that the resulting distributions for Web file transfers all have power law tails
with exponent o ~ 2, or 3 &~ 0.5 in the hyperbolic model (13.5). This is much less
heavy-tailed than the distributions from the PLR model or the one-dimensional Web
layout model where § ~ 1. The relation between this simulation result and empirical
data from [19, 9] as well as a possible explanation have been given in the previous

section with the graph model, hence will not be repeated here.

fink = 2)

P} vs. I (N

2 4 6 2 4

10 10 10 10 10

Figure 13.12: Mixed P vs. ; for transferred files and mixed P! vs. [; for unique files
from 10 random Web sites, each with V.4 = 500, before and after the optimization.

124
13.4 Future Improvements of Graph-Based Mod-

els

Although the geometric model has a higher level of realism than the simple graph
model, it is still an abstraction of real Web sites nowadays. Although we do believe
that these models capture some important features of Web layout design that provide
a plausible explanation of the origin of heavy-tailed distributions of Web file transfers,
there are many more structures and characteristics of real Web sites that are not yet
included in our abstract models. The following are some of the issues that are worth
looking into.

First of all, the Markov chain model for user navigation, which assumes that the
probability a user takes a certain hyperlink E;; from page V; is independent of the
pages the user has visited before V;, is a simplification of perhaps more intricate
user behavior. The validity of this approximation needs to be verified by empirical
studies of user access patterns on real Web sites. In the case when user navigation
demonstrates strong memory so that the Markov chain assumption cannot be used,
the idea proposed in [34] that the average probability that a user visits the next
page decays with the number of pages this user has already visited during each Web
session can be adopted to modify our model. With this assumption a fixed transition
probability matrix M does not exist, so the probabilities p; of each Web page being
visited cannot be calculated directly. However, by repeatedly simulating user access
to the Web site, p; can be well approximated by the average hit rate p; of each page
as long as the number of simulations run is sufficiently large.

Second, both of the graph models we have discussed did not distinguish between
text (HTML) files and multimedia such as images, audio and video files. When these
files are embedded in the HTML files, they are treated as part of a large file so
that they can be reorganized during the splitting and merging procedure. However,
multimedia files are hard to split and merge. The paragraph structure in the geometric
model captures this feature to certain degree. But since each embedded object has

a unique URL and contributes to the Web traffic as an individual file, it is desirable

125

to incorporate them into our graph model so that their impact on the heavy-tailed
distributions of Web file transfers can be evaluated. This is especially important since
the traffic generated by real-time multimedia applications has become an increasingly
larger contributor to the overall Web traffic. One thing worth pointing out is that
according to a study by Crovella et al. in [19] on the relationship between distributions
of different types of files, although the presence of multimedia formats does add to
the weight of the tail in the overall distribution, the distribution of text files itself is
heavy-tailed.

Finally, so far we have taken a relatively static view of files on the Web. With
the fast development in Web technologies, Web contents nowadays become more and
more dynamic. Many Web files are generated on real time when a user is browsing the
Web site. It will be a challenging and interesting task for future research to study the

impact of dynamic contents on Web site layout design and heavy-tailed Web traffic.

126

Chapter 14 Concluding Remarks

14.1 Summary and Discussion

This thesis has presented a series of models of Web design which treated the layout
of a Web site as an optimal design problem. The design objective was assumed to
be the minimization of the average latency that the user experiences in download-
ing files while browsing the Web site, subject to constraints on the total number of
files. For simplicity and to make contact with the data collected by Crovella et al.
in 1995, when the WWW just started to take off, it was assumed that Web sites
in their earlier stage consisted of preexisting one-dimensional documents that were
simply split into files and linked trivially. With either the PLR model in Chapter 11
or the one-dimensional Web layout model in Chapter 12, it was found consistently
that the resulting distribution of Web file transfers had a power law tail with expo-
nent o ~ 1. In Chapter 13 more sophisticated Web layouts were explored, which
viewed general Web sites as random graphs and simulated the design process using
heuristic optimization schemes. Again the resulting distribution of transferred files
from the optimized Web site displays a power law tail with exponent o ~ 2. The
observation that the distributions of Web file transfers become less heavy-tailed with
more complex Web layouts is also consistent with the change from the 1995 data to
the new data collected in 1998. An implication of this result is that optimal Web
layouts and more effective use of hyperlinks may tend to produce much less bursty
network traffic, which will be an interesting subject in our future study.

Does the idealized problem described here actually explain the data, or is the
remarkable agreement simply a coincidence? Even more important questions are
what are the implications of these results for Web design, network traffic, network
performance, and protocol design? We will attempt to give tentative answers, but

since this work is relatively new, we must caution that any answers are necessarily

127
fairly speculative.

It is unlikely that early (or current) Web designers had any explicit intent to
optimally design the layout of their Web sites, so we would expect individual Web
sites to deviate from optimal to varying degrees. It is likely however that even the
most ad hoc approach to Web layout would naturally make small home pages, with
links to increasingly larger files as one moved deeper into the Web site. Furthermore,
the natural layout of documents that predates the Web involves hierarchical structures
with heavy tails, with titles, abstracts, introductions, summaries, reviews, chapters,
appendices, and so on. The 1995 data was an aggregation of a large number of file
downloads from a variety of Web sites, none of which are necessarily optimal, but most
of which are probably reasonably well designed. Thus it is not surprising that the
aggregate behavior might have statistics that appear optimal even if the individual
Web sites are not. Furthermore, users would tend to avoid very poorly designed Web
sites, adding an element of selection to the data.

Most importantly, even if the agreement with data is entirely coincidental, it is
still true that Web sites should have these statistics if they are designed to minimize
average file download times. This has more serious implications than the agreement
with data. In particular, heavy tailed distributions can be viewed as the inevitable
outcome of a very natural optimal “source coding” problem that is analogous to
standard data compression, but with very different resulting distributions. Given
the connection of heavy tails in Web sites and bursty network traffic, this can be
thought of as bringing some initial closure to the origins of such traffic, but raises
new questions. Bursty traffic is thus not an artifice of user behavior, but has some
aspects which are intrinsic to at least the current dominant application, the WWW,
and may be even more intrinsic to any application which organizes information for

human consumption.

128
14.2 Future Directions

As discussed at the end of Chapter 13, the Web layout models studied in this thesis are
still at a high level of abstraction from real Web sites today. More realistic models of
Web layouts with increasing levels of complexity can be built on top of these relatively
simplified models. It is worth the effort to gather empirical data of real Web site
topology and user access patterns so that the truthfulness of the simulation models
can be tested and enhanced. Moreover, there are many more design objectives and
resource constraints other than minimizing the average download time and limiting
the total number of files on a Web site. Alternative settings for the optimization
problem need to be explored to see whether similar conclusions can be drawn.
Additionally, if Web site layout can be viewed as “source coding” albeit with many
strange and unfamiliar properties, then network protocol design and congestion con-
trol might profitably be viewed as a form of channel coding, but also presumably
with strange and unfamiliar properties. There may be some advantages in exploiting
the specific features of the resulting source, as well as advantages in some joint de-
sign where the source coding reflects the nature of the network on which it must be
transmitted. Recent work along these lines include designing new scheduling policies
on Web servers for specifically dealing with heavy-tailed workloads [33, 20]. It may
also be possible to utilize the knowledge of the heavy-tailed Web traffic by making
more effective use of caching and prefetching at the Web application level. A good
example of combining source coding with channel coding is the rate distortion theory
in data compression [27]. There is great potential in combining rate distortion tech-
niques and Web layout design for more efficient transmission of information over the
Internet. Another promising direction is to integrate generalized source coding with
Low et al.’s optimization flow control theory [44, 5] so that joint source and channel
coding can be viewed as a global optimization problem. Hopefully this mixed frame-
work can facilitate a new look into different TCP congestion control algorithms under
self-similar network traffic in order for possible updates of existing protocols or design

of new protocols to be explored.

129

Appendix A Proof of the Asymptotic
Results in Chapter 12

Consider the ideal case where L = oo. Let F(x) be the CCDF corresponding to the
PDF p(z), i.e., F(z) = [p(z)dz. The probability of transferring file #i, whose size
is l; = ¢; — ¢;_1, is pt = F(c;_1). Based on the recursion relation p(c;)li+1 = p;, where

pi= [p(z)dr, we want to show that

i—1

pl o~ kl;l (A.1)

as l; — oo for certain p(x), where k > 0 is a constant independent of ;. This is
equivalent to

log pi,, — log p}

~ —1. A2
logliy1 — logl; (4.2)

In general, we have

log pt., — logpt _log F(¢;) —log F(ci1) log F'(c;) — log F(eiq)

logliyn —logli — log P —logl; log He=rle) (ci;(lc)i;f (cx)
Therefore, for any p(z) that satisfies
lOg F(CZ> — 10g F(Ci_l)
log flei=1)=F(ci) ~ -1 (A-3)
& ple)l

as l; — oo (¢, ¢i—1 — 00), (A.1) holds. Although it is hard to find the exact
class of distributions that satisfy (A.3), we can use this condition to test individual
distributions. The case where p(z) is an exponential distribution was shown in Chap-
ter 12. Next we prove that (A.3) holds for the normal distribution and the Cauchy

distribution as well.

130
A.1 For the Gaussian Distribution

We assume that p(x) is one side of a normal distribution, and we only show for the

standardized case. For more general cases, a similar argument holds. Here p(z) =

2
e

\/LQ—WG_T,ZL‘ZO.
As z — oo, we have F(z) ~ -2~ 7. Then as [; = o0,
yigs

1
log F'(¢;) — log F'(¢i—1) ~ 10% —(cf — ¢)) +1og ey —log e,

e
V2T cz 2V, 27rci_1

and
Fle) = Ple) LT o et g
Ci— G TC;— we; 5 i %1
log :] gﬁ ! 2\/? = log[—(G o7 —1)] — log!;
p(ei)ls Le_%l Ci Ci-1
e t
o2
~log 2 —logl; = =(c¢f — ¢/_) — log¢;_y — logl;
1—1
Hence

log F(c;) —log Flciy) —3(ct—¢
F(Ci_l)—F(CZ‘) ~
plei)li

)+ loge;i_1 — logg;)

-1
log >) —loge;_y — logl;

A.2 TFor the Cauchy Distribution

Again for simplicity assume A = 1. So p(z) = x> 0.

(z?)’
As 7 — oo, we have p(z) ~ 2272, and F(x) 1 — Zarctanz ~ 227!, Then as

Ciy Ci—1 —7 OQ,

Hence,
log F(c;) —log F(ci-1) _ log F'(¢;) —log F(ci-1)

log F(Ci;(lc)i;lf(q) - logc; —logc;y

131

A by-product of this proof is the following:

i lipn citlin _ cn
li C; — 1 lZ Ci—1 -+ lz C; '
Additionally
livo cina
li—i—l C; ’
therefore,
{; l;
A2 = constant.
l; liv1

The above argument explains why the optimal /; in the Cauchy case are distributed

uniformly on a logarithmic scale, as shown in Figure 12.5.

A.3 Properties of the Operator ‘~’

The operator ‘~’ defines an equivalent class of functions. In particular, if f(z) ~ g(z)

as £ — a, then lim,_,, —g—% =1, where a = 0, or co. [65]

The following are some useful properties of the equivalent class defined by ‘~’.

L f(z) ~glo) = {4 ~ 1.

2. f(x) ~ g(x) = g(x) ~ f(2).
3. f(z) ~ g(z) and g(z) ~ h(z) = [(z) ~ h(z).
4. f(x) ~ g(z) = h(x)f(x) ~ hz)g(z), for h(z) # 0.

5. fi(z) ~ gi(z) and fo(z) ~ go(x) => L ~ 20

6. If f1(x) ~ g1(z) and fao(x) ~ go(z), g1(x) + g2(x) # 0, and either lim,_,, %% or

limg, ., gfgg exists, then fi(z) + fo(z) ~ g1(z) + g2(x).

7. If f(z) ~ g(x), and Jc > 0, such that |log g(z)| > ¢, then log f(z) ~ log g(z).

132

Bibliography

1]

R. Albert, H. Jeong, and A.-L. Barabdsi. Diameter of the World-Wide Web. In
Nature, volume 401(6749), pages 130-131, 1999.

G. Apostolakis. The concept of probability in safety assessments of technological

systems. In Science, volume 250(4986), pages 1359-1364, 1990.

M.F. Arlitt and C.L. Williamson. Web server workload characterization: The
search for incariants. In Proceedings of ACM SIGMETRICS Conference on Mea-
surement and Modeling of Computer Systems, pages 126-137, 1996.

B. Arnold. Pareto Distributions. International Cooperative Publishing House,

Maryland, 1983.

S. Athuraliya, D.E. Lapsley, and S.H. Low. An enhanced random early marking
algorithm for Internet flow control. In Proceedings of Infocom 2000, Isreal, 2000.
To appear.

P. Bak. How Nature Works: The Science of Self-Organized Criticality. Coperni-
cus, New York, 1996.

V. Balakrishnean, S. Boyd, and S. Balemi. Branch and bound algorithm for
computing the minimum stability degree of parameter-dependent linear systems.
In International Journal of Robust and Nonlinear Control, volume 1, pages 295—

317, 1991.

A.-L. Barabdsi, R. Albert, and H. Jeong. Scale-free characteristics of random
networks: The topology of the world wide web. In Preprint submitted to Elsevier
Preprint, 1999.

P. Barford, A. Bestavros, A. Bradley, and M.E. Crovella. Changes in web client

access patterns: Characteristics and caching implications,. In World Wide Web:

[10]

[11]

[13]

[14]

[16]

[17]

133
Special Issue on Characterization and Performance Evaluation, volume 12, pages

15-18, 1999.

B. R. Barmish and C. M. Lagoa. The uniform distribution: A rigorous justifica-
tion for its use in robustness analysis. In Mathematics of Control, Signals and

Systems, volume 10, pages 203-222, 1997.

C. Beck and J.C. Doyle. Mixed p upper bound computation. In Proceedings
of the IEEE Conference on Decision and Control, volume 4, pages 3187-3192,
1992.

R.P. Braatz, P.M. Young, J.C. Doyle, and M. Morari. Computational complexity
of u calculation. In IEEE Transactions on Automatic Control, volume 39, pages

1000-1002, 1994.

F. Brichet, J. Roberts, A. Simonian, and D. Veitch. Heavy traffic analysis of a
storage model with long range dependent on/off sources. In Queueing Systems,

volume 23(1-4), pages 197-215, 1996.

J.M. Carlson and J.C. Doyle. Highly Optimized Tolerance: A mechanism for
power laws in designed systems. In Physics Review E, volume 60, pages 1412-

1428, 1999.

J.M. Carlson and J.C. Doyle. Highly Optimized Tolerance: Robustness and
design in complex systems. In Physics Review Letters, volume 84(11), pages

25292532, 2000.

J. Chen, M.K.H. Fan, and C.N. Nett. Structured singular values and stability
analysis of uncertain polynomials (Part I): The generalized p. In Systems and

Control Letters, volume 23, pages 53-65, 1994.

H. Chernoff. A measure of asymptotic efficiency for test of hypothesis based on
the sum of observations. In Annals of Mathematical Statistics, volume 23, pages

493-507, 1952.

[18]

[19]

[20]

21]

[22]

23]

[24]

[25]

[26]

[27]

134

T.M. Cover and J.A. Thomas. Elements of Information Theory. John Wiley and
Sons, New York, 1991.

M.E. Crovella and A. Bestavros. Self-similarity in World Wide Web traffic:
Evidence and possible causes. In IEEE/ACM Transactions on Networking, vol-
ume 5(6), pages 835-846, 1997.

M.E. Crovella, R. Frangioso, and M. Harchol-Balter. Connection scheduling
in Web servers. In Proceedings of the 1999 USENIX Symposium on Internet
Technologies and Systems, Boulder, Coloraro, 1999.

P. Danzig, S. Jamin, R. Cédceres, D. Mitzel, and D. Estrin. An empirical workload
model for driving wide-area TCP/IP network simulations. In Internetworking:

Research and Experience, volume 3, pages 1-26, 1992.

R.R.E. de Gaston and M.G. Safanov. Exact calculation of the multiloop stability
margin. In IEEE Transactions on Automatic Control, volume 33, pages 156-171,
1988.

M.B. Doar. A better model for generating test networks. In Proceedings of

Globecom 96, 1996.

J.C. Doyle. Analysis of feedback systems with structured uncertainty. In IEE
Proceedings, volume Part D, 129(6), pages 242-250, 1982.

J.C. Doyle and J.M. Carlson. Highly Optimized Tolerance and generalized source
coding. In Physics Review Letters, 2000. submitted.

N.G. Duffield and N. O’Connell. Large deviations and overflow probabilities for
the general single-server queue, with applications. In Mathematical Proceedings

of the Cambridge Philosophical Society, volume 118, pages 363-374, 1995.

M. Effros. Distortion-rate bounds for fixed- and variable-rate multiresolution
source codes. In IEEE Transactions on Information Theory, volume 45(6),

pages 1887-1910, 1999.

[28]

[29]

[30]

[31]

32]

33]

[35]

[36]

37]

135
A. Erramilli, O. Narayan, and W. Willinger. Experimental queueing analysis with

long-range dependent packet traffic. In IEEE/ACM Transactions on Networking,
volume 4(2), pages 209-223, 1996.

B.S. Everitt and D.J. Hand. Finite Mizture Distributions. Chapman and Hall,
London, New York, 1981.

M.K.H. Fan, A.L. Tits, and J.C. Doyle. Robustness in the presence of mixed
parametric uncertainty and unmodeled dynamics. In IEEE Transactions on

Automatic Control, volume 36, pages 25-38, 1991.

M Fu. The real structured singular value is hardly approximable. In IEEE
Transactions on Automatic Control, volume 42(9), pages 1286-1288, 1997.

M. Garrett and W. Willinger. Analysis, modeling, and generation of self-similar

VBR video traffic. In Proceedings of SIGCOMM ’94, pages 269-280, 1994.

M. Harcol-Balter, M. Crovella, and S.-S. Park. The case for SRPT scheduling in
Web servers. In MIT-LCS-TR-767, 1998.

B.A. Huberman, P.L.T. Pirolli, J.E. Pitkow, and R.M. Lukose. Strong regular-
ities in World Wide Web surfing. In Science, volume 280(5360), pages 95-97,
1998.

G. Irlam. ufs'93 [Updated file size survey results]. In USENET newsgroup
comp.os.research, message 2ddp3b$ins@darkstar.ucsc.edu, Nov. 29, 1993.

R. Jain and S.A. Routhier. Packet trains: Measurements and a new model for
computer network traffic. In IEEE Journal on Selected Areas in Communica-

tions, volume 4, pages 986-995, 1986.

Park K., G.T. Kim, and M.E. Crovella. On the relationship between file sizes,
transport protocols, and self-similar network traffic. In Proceedings of 4th Inter-

national Conference in Network Protocols, pages 171-180, 1996.

[38]

[39]

[40]

[41]

[42]

[46]

[47]

136
S. Khatri and P. Parrilo. Guaranteed bounds for probabilistic u. In Proceedings
of the IEEE Conference on Decision and Control, pages 3349-3354, 1998.

S. Khatri and P. Parrilo. Spherical p. In Proceedings of the American Control
Conference, pages 2314-2318, 1998.

W.E. Leland and T.J. Ott. Unix process behavior and load balancing among
loosely-coupled computers. In O.J. Boxman, J.-W. Cohen, and H.C. Tijms,
editors, Teletraffic Analysis and Computer Performance Fvaluation, pages 191—

208, Amsterdam, 1986. Elsevier Science Publishers B. V.

W.E. Leland, M.S. Taqqu, W. Willinger, and D.V. Wilson. On the self-similar
nature of Ethernet traffic (extended version). In IEEE/ACM Transactions on

Networking, volume 2(1), pages 1-15, 1994.

W.E. Leland and D.V. Wilson. High time-resolution measurement and analysis
of LAN traffic: Implications for LAN interconnection. In Proceedings of IEEE
INFOCOM, Bal Harbour, FL, pages 1360-1366, 1991.

A. Leon-Garcia. Probability and Random Processes for Electrical Engineering.

Addison-Wesley, 1994.

S.H. Low and D.E. Lapsley. Optimization flow control I: Basic algorithm and
convergence. In IEEE/ACM Transactions on Networking, volume 7(6), pages
861-874, 1999.

B.B. Mandelbrot. Long-run linearity, locally gaussian processed, h-spectra and

infinite variances. In International Economic Review, volume 10, pages 82—113,

1969.
B.B. Mandelbrot. The Fractal Geometry of Nature. Freeman, New York, 1983.

B.B. Mandelbrot and J.R. Wallis. Noah, Joseph, and operational hydrology. In
Water Resources Research, volume 4, pages 909-918, 1968.

(48]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

137
K. Meier-Hellstern, P.E. Wirth, Y.-L. Yan, and D.A. Hoeflin. Traffic models for
ISDN data users: Office automation application. In A. Jensen and V.B. Iversen,
editors, Teletraffic and Datatraffic in a Period of Change, Proc. of ITC13, Copen-
hagen, pages 167-172, Amsterdam, 1991. Elsevier Science Publishers B. V.

A.O. Mendelzon and T. Milo. Formal models of Web queries. In Proceedings
of the Sizteenth ACM Symposium on Principles of Database Systems, Tucson,
Arizona, 1997.

Moore N., D. Ebbeler, and M. Creager. A methodology for probabilis-
tic prediction of structural failures of launch vehicle propulsion systems. In

AIAA/ASME/ASCE/AHS/ASC 31st Annual Structures, Structural Dynamics
and Materials Conference, Long Beach, 1990.

Y. Nesterov and A. Nemirovskii. Interior-Point Polynomial Algorithms in Con-

vex Programming. STAM publications, 1994.

M.P. Newlin. Model Validation, Control, and Computation. PhD thesis, Califor-
nia Institute of Technology, 1996.

M.P. Newlin and S. Glavaski. Advances in the computation of the y lower bound.

In Proceedings of the American Control Conference, pages 442-446, 1995.

M.P. Newlin and P.M. Young. Mixed p problems and branch and bound tech-
niques. In Proceedings of the IEEE Conference on Decision and Control, pages

3175-3180, 1992.

I. Norros. A storage model with self-similar input. In Queueing Systems, vol-

ume 16, pages 387-396, 1994.

A K. Packard and J.C. Doyle. The complex structured singular value. In Auto-
matica, volume 29, pages 71-109, 1993.

F. Paganini. Sets and Constraints in the Analysis of Uncertain Systems. PhD
thesis, California Institute of Technology, 1996.

[58]

[64]

[65]

138
P. Parrilo and S. Khatri. Closed form solutions for a class of lmis. In Proceedings

of the American Control Conference, pages 87-91, 1998.

V. Paxson. Empirically-Derived analytic models of wide-area TCP connections.

In IEEE/ACM Transactions on Networking, volume 2, pages 316-336, 1994.

V. Paxson and S. Floyd. Wide-area traffic: the failure of poisson modeling. In
IEEE/ACM Transactions on Networking, volume 3(3), pages 226-244, 1995.

V. Paxson and S. Floyd. Why we don’t know how to simulate the Internet. In
Proceedings of the 1997 Winter Simulation Conference, 1997.

J.E. Pitkow and C.M. Kehoe. GVU’'s WWW Users Surveys [online]. 1997.

Available at www.gvu.gatech.edu/user_surveys.

L.R. Ray and R.F. Stengel. A Monte Carlo approach to the analysis of control
systems robustness. In Automatica, volume 29, pages 229-236, 1993.

M.G. Safonov. Stability margins of diagonally perturbed multivariable feedback
systems. In IEE Proceedings, volume Part D, 129(6), pages 251-256, 1982.

. Samorodnitski and M.S. Taqqu. Stable Non-Gaussian Random Process:
Stochastic Models with Infinite Variance. Chapman and Hall, New York, 1994.

C.E. Shannon. A mathematical theory of communication. In Bell System Tech-

nical Journal, volume 27(3), pages 379-423, 623-656, 1948.

A. Sideris and R.S. Sdnchez Pena. Robustness margin calculations with dynamic
and real parametric uncertainty. In IEEE Transactions on Automatic Control,

volume 35, pages 970-974, 1990.

M.S. Taqqu, W. Willinger, and R. Sherman. Proof of a fundamental result in
self-similar traffic modeling. In Computer Communication Review, volume 27,

pages 5-23, 1997.

[69]

[70]

[71]

[72]

[73]

[76]

[77]

139
R. Tempo, E.W. Bai, and F. Dabbene. Probabilistic robustness analysis: Explicit

bounds for the minimum number of samples. In Systems and Control Letters,

volume 30, pages 237242, 1997.

H.A. Wan and C.-W. Chang. Web page design and network analysis. In Internet
Research: FElectronic Networking Applications and Policy, volume 8(2), pages
115-122, 1998.

B.M. Waxman. Routing of multipoint connections. In IEEE Journal on Selected

Areas in Communications, pages 1617-1622, 1988.

W. Willinger and V. Paxson. When mathematics meets the Internet. In Notices

of the AMS, volume 45(8), pages 961-970, 1998.

W. Willinger, M.S. Taqqu, R. Sherman, and D.V. Wilson. Self-similarity through
high variability: statistical analysis of Ethernet LAN traffic at the source level.
In IEEE/ACM Transactions on Networking, volume 5(1), pages 71-86, 1997.

P.M. Young. Robustness with Parametric and Dynamic Uncertainty. PhD thesis,
California Institute of Technology, 1993.

P.M. Young, M.P. Newlin, and J.C. Doyle. Practical computation of the mixed p
problem. In Proceedings of the American Control Conference, pages 2190-2194,
1992.

P.M. Young, M.P. Newlin, and J.C. Doyle. Let’s get real. In IMA Proceedings
of Robust Control Theory, volume 66, pages 143-173, 1995.

G. Zames. On the input-output stability of nonlinear time-varying feedback
systems, parts i and ii. In IEEE Transactions on Automatic Control, volume 11,

pages 228-238 and 465-476, 1966.

K. Zhou, K. Glove, and J.C. Doyle. Robust and Optimal Control. Prentice Hall,
New Jersey, 1995.

140
[79] X. Zhu. Probabilistic upper bound using linear cuts. In Proceedings of the
14th IFAC World Congress, pages 389-394, 1999.

[80] X. Zhu. Improved bounds computation for probabilistic p. In Proceedings of the

American Control Conference, 2000. To appear.

[81] X. Zhu, Y. Huang, and J.C. Doyle. Soft vs. hard bounds in probabilistic robust-
ness analysis. In Proceedings of the IEEE Conference on Decision and Control,

pages 3412-3417, 1996.

[82] X. Zhu, S. Khatri, and P. Parrilo. p with linear cuts: Upper bound computation.
In Proceedings of the American Control Conference, pages 2370-2374, 1999.

