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ABSTRACT

There has been dramatic growth in the space industry over the past 20 years. Around
the same time, robotics and autonomy research has advanced significantly, result-
ing in a plethora of new mission concepts employing autonomy, such as on-orbit
inspection, mission extension, space structure assembly, and orbital debris removal
becoming within the realm of possibility. Two of the key autonomous technologies
that are critical to the success of these missions are (1) advanced coordination of
multi-agent systems and (2) robust vision-based navigation for on-orbit servicing
in close proximity. However, there are challenges to simply applying the existing
technology to space systems. First, there are domain-specific challenges that are
unique to space, such as orbital mechanics and harsh lighting conditions. Second,
even at a theoretical level, previous works in the controls and robotics literature
are limited when applied to large-scale, locally coupled systems such as spacecraft
swarms. To this end, this thesis develops novel algorithms for addressing these gaps.

In the first part of the thesis, we present a decentralized, scalable algorithm for swarm
localization, called the Decentralized Pose Estimation (DPE) algorithm. With the
DPE algorithm, each spacecraft computes relative navigation estimates with re-
spect to others in the swarm but achieves higher performance through the benefit
of multi-agent coordination. The DPE algorithm considers both communication
and relative sensing graphs and defines an observable local formation. Each space-
craft jointly localizes its local subset of spacecraft using direct and communicated
measurements. Since the algorithm is local, the algorithm complexity does not
grow with the number of spacecraft in the swarm. As part of the DPE, we present
the Swarm Reference Frame Estimation (SRFE) algorithm, a distributed consensus
algorithm to co-estimate a common Local-Vertical, Local-Horizontal frame. The
DPE combined with the SRFE provides a scalable, fully-decentralized navigation
solution that improves the estimation accuracy compared to when without multi-
agent coordination. Numerical simulations and experiments using Caltech’s robotic
spacecraft simulators are presented to validate the effectiveness and scalability of
the DPE algorithm. We show that DPE has much higher accuracy than the best
possible estimate without any coordination, while simultaneously being scalable to
an arbitrarily large number of agents.

In the second part of the thesis, we propose a novel computer vision algorithm to
track the pose of an unknown and uncooperative target using multiple decentralized
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observers. Vision-based pose determination of an unknown target is challenging due
to factors such as lack of cooperative visual markers and harsh lighting conditions
of space, and the problem is even harder for distributed observers. To address
this challenge, we develop the algorithm called the Multi-Spacecraft Simultaneous
Estimation of Pose and Shape algorithm or MSEPS. Within MSEPS, a team of
chaser spacecraft, each equipped with a monocular camera, exchange information
over a local network to jointly estimate the relative kinematic state of the target and
its sparse shape landmarks. In this approach, each spacecraft processes its images
and extracts its own set of visual keypoints in parallel. Then, the team uses the
local network to jointly estimate the target pose and shape in a distributed fashion by
applying the consensus algorithm over the inter-spacecraft communication links. To
the best of the authors’ knowledge, this is the first cooperative vision-based algorithm
for estimating the pose and shape of a space object by means of an arbitrary number
of spacecraft. We validate our algorithm using simulations of relative orbits and
observations captured by each chaser spacecraft and show the multiple observers
successfully agree on a consistent estimate and track the target pose accurately.

In the third part of the thesis, we develop some new simulation tools that bridge the
gap between robotics and space technology. When developing robotics algorithms
for on-orbit systems such as DPE and MSEPS, we identified a need for new sim-
ulation tools that tightly integrate robotics algorithms with high-fidelity models of
space environments such as astrodynamics effects and visual conditions. To this
end, we first develop a ROS2-compatible software interface for Basilisk, the open-
source astrodynamics simulation software. This tool allows running Basilisk in
parallel with ROS2 in real-time and translates messages between Basilisk modules
and ROS2 modules, such that control algorithms implemented in ROS2 can interact
with the high-fidelity dynamics within Basilisk in a closed-loop fashion. Second,
we develop a ROS2-compatible camera simulation module that uses the Neural
Radiance Fields (NeRF) to rapidly generate novel images. These synthetic images
are used as inputs to validate the vision-based navigation algorithm in a closed-loop
fashion. To validate these simulation tools, we also developed a set of autonomous
algorithms for on-orbit inspection and use the simulated measurements as inputs
to the algorithm. The real-time numerical simulations demonstrate that our tools
can be integrated with autonomy algorithms implemented in ROS2 in a closed-loop
fashion to validate the feasibility of the mission.

In the process of addressing some lessons learned from DPE and MSEPS works,
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we identified that there is a gap in general frameworks for solving the optimal
estimation problems for probabilistic inference of large-scale problems involving
networked systems. This gap is not just applicable to spacecraft swarms, but also
to a general class of large-scale, multi-agent problems in robotics and controls such
as localization and mapping, wireless sensor networks, and electrical power grids.
Therefore, in the fourth part of the thesis, we address this fundamental gap by
developing novel algorithms for Distributed Factor Graph Optimization (DFGO)
problems that arise in large-scale networked systems. We develop algorithms for
both batch and real-time problems. First, for the batch DFGO problem, we derive
a type of the Alternating Direction Method of Multipliers (ADMM) algorithm
called the Local Consensus ADMM (LC-ADMM). LC-ADMM is fully localized;
therefore, the computational effort, communication bandwidth, and memory for
each agent scale like 𝑜(1) with respect to the network size. We establish two new
theoretical results for LC-ADMM: (1) exponential convergence when the objective is
strongly convex and has a Lipschitz continuous subdifferential, and (2) 𝑜(1/𝑘) when
the objective is convex and has a unique solution. We also show that LC-ADMM
allows the use of non-quadratic loss functions, such as ℓ1-norm and Huber loss.
Second, we also develop the Incremental DFGO algorithm (iDFGO) for real-time
problems by combining the ideas from LC-ADMM and the Bayes tree. To derive
a time-scalable algorithm, we exploit the temporal sparsity of the real-time factor
graph and the convergence of the augmented factors of LC-ADMM. The iDFGO
algorithm incrementally recomputes estimates when new factors are added to the
graph and is scalable with respect to both network size and time. We validate LC-
ADMM and iDFGO in simulations with examples from multi-agent Simultaneous
Localization and Mapping (SLAM) and power grids.
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C h a p t e r 1

INTRODUCTION

1.1 Background
In recent years, there has been dramatic growth in the commercial space industry.
As the interest in space exploration increases, so does the demand for basic infras-
tructures in space to support such activities. These infrastructures include on-orbit
inspection, spacecraft refueling, on-orbit construction and assembly of structures,
space debris removal, and formation flying spacecraft. To enable such missions,
autonomy and robotics play an increasingly important role as they can perform time-
critical collision safety maneuvers during proximity operations, keep operation costs
low, and scale to a large number of spacecraft.

While robotics has been applied to some space applications in the past, their usage in
orbit has been much more limited. Many state-of-the-art missions rely on monolithic
systems with expensive sensor suits and largely required humans in the loop. As we
aim to miniaturize the spacecraft and reduce cost while also improving performance,
more advanced autonomy is necessary. Advanced autonomy algorithms will also
enable missions involving a large number of relatively inexpensive spacecraft, and
thereby expanding the capabilities of new mission concepts.

Among the various technology gaps, there are two robotics technologies that are
crucial to advancing the level of autonomy for on-orbit infrastructures. The first
is scalable, multi-agent coordination in orbit. Multi-agent coordination refers to
multiple agents collaboratively solving a joint problem. Such capabilities are rele-
vant when a team of spacecraft aims to achieve estimation and controls performance
not possible by operating each agent independently. While some existing missions
such as Starlink have demonstrated the power of a large number of spacecraft, the
controls and estimation problems of each agent in the constellation are largely solved
independently. By enabling real-time and onboard autonomous coordination with a
swarm of systems, one can deploy a large number of systems for more time-critical
operations at a much closer distance with increased performance. Scalable multi-
agent coordination will exploit the advantages of the swarm to its fullest potential
and meet ever more demanding mission requirements.

The second technology that plays an important role in on-orbit space infrastructure
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is vision-based navigation for proximity operations. This technology is relevant for
tasks such as on-orbit inspection, servicing, and debris removal. The information-
rich nature of vision-based systems requires a fundamentally different set of algo-
rithms compared to traditional spacecraft navigation systems, which rely on star
trackers and GPS. While there is a substantial amount of advancement in com-
puter vision research for terrestrial applications, there are several domain-specific
challenges that make it difficult to apply them directly to space systems. For ex-
ample, harsh lighting conditions make robust vision-based navigation challenging.
In space, one must also consider relative orbital dynamics and attitude dynamics of
the target with unknown inertia. Algorithm development is further hampered by the
lack of publicly available datasets and simulation tools for testing and validation.
Moreover, at the theoretical level, algorithms in robotics and control literature do not
fully address the challenge of optimal estimation in a manner that scales well with
swarm size. These technology gaps for on-orbit space infrastructure and robotics
motivated the various research projects presented in this thesis.

1.2 Problem Statements
This thesis aims to address the following problems of using autonomous capabilities
in space.

Scalable Relative Navigation of Spacecraft Swarm

Suppose a large number of spacecraft is formation-flying in a planetary orbit. In
the presence of relative measurements and inter-spacecraft communications, the
estimation accuracy of the spacecraft swarm may improve through coordination.
The challenge is designing a distributed and localized estimation algorithm that
has improved performance (e.g., in terms of estimation accuracy and situational
awareness) through information sharing among agents while also ensuring that the
algorithm is scalable to a large number of spacecraft.

Vision-based Pose Tracking of An Unknown, Uncooperative Target Using Mul-
tiple Spacecraft Observers

A team of multiple observer spacecraft uses computer vision to track an uncoop-
erative and unknown target. “Uncooperative” targets do not communicate with the
other spacecraft or feature any aid such as visual markers. “Unknown” is used to
mean that the key information about the target such as geometry, appearance, or
mass properties are not known a priori. For example, one can consider the appli-
cation of a team of spacecraft tasked with visually inspecting and removing space
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debris. The challenge is to develop a distributed algorithm that computes an optimal
solution while ensuring the consistency of estimates between spacecraft.

High Fidelity Simulation Tools for Robotics in Orbit

There is a lack of simulation tools for developing and testing autonomy algorithms
for orbital space applications, such as vision-based navigation for on-orbit servicing.
We need numerical simulation tools that bridge the gap between space systems and
robotics. For this problem, we tackle the challenge of developing fast and accurate
tools that can (1) model the motion of orbiting spacecraft, (2) render simulated
images from onboard sensors, and (3) interface with other robotics algorithms
implemented in the standardized robotics middleware Robot Operation System 2.
Such simulation tools are essential for testing the autonomous algorithms for on-
orbit servicing in real-time and closed-loop without requiring access to space or
expensive experimental setups.

Swarm-Scalable, Time-Scalable Optimal Estimation Algorithm for Networked
Systems

For this problem, we consider the optimal estimation problems for probabilistic
inference of large-scale problems involving networked systems. The scope of this
problem is not just spacecraft swarms, but also a class of general large-scale, locally-
coupled networked systems, such as multi-agent localization and mapping, wireless
sensor networks, and electrical power grids. The goal is to develop an estimation
algorithm that computes the optimal solution to the centralized probabilistic infer-
ence problem in a distributed and localized fashion. The algorithm shall be scalable
with both the number of agents and the length of the time horizon.

1.3 Thesis Contributions
This thesis presents our work towards advancing the multi-agent coordination and
vision-based navigation of formation-flying spacecraft swarms as well as a more
general class of large-scale networked systems. We briefly summarize the major
contributions of each research project in this section.

Chapter 3
This chapter presents a novel algorithm for the relative positioning of a spacecraft
swarm, referred to as the Decentralized Pose Estimation (DPE) algorithm. Ex-
ploiting multi-agent coordination with local neighbors, DPE improves estimation
accuracy, observability, and situational awareness compared to independent systems.



4

Each spacecraft estimates the states of only a local subset of spacecraft; therefore,
the algorithm complexity on each spacecraft does not grow with the swarm size.
Based on the ad hoc relative sensing and communication graphs, the DPE uses
the observability criteria to determine the local subset of observable spacecraft.
To define a common frame for the spacecraft in DPE, we also develop the Swarm
Reference Frame Estimation (SRFE) algorithm, which estimates a common Local
Vertical Local Horizontal coordinate system using a distributed information con-
sensus filter. Using these techniques, DPE is able to simultaneously achieve high
estimation accuracy and scalability for spacecraft swarm estimation problems. We
validate the scalability of the DPE and SRFE algorithms in numerical simulations
and in a first-of-a-kind hardware experiment involving 3 spacecraft simulators, each
of which is equipped with a camera.

Chapter 4
This chapter describes our work on Multi-spacecraft Simultaneous Estimation of
Pose and Shape or MSEPS. MSEPS addresses the vision-based pose tracking of
an unknown, uncooperative target using multiple spacecraft observers. To the best
of the authors’ knowledge, MSEPS is the first algorithm aimed to compute the
centralized optimal estimate in a fully decentralized fashion. The goal of MSEPS
is to estimate both the attitude and center of gravity (CG) of the target object using
vision sensors on multiple chaser spacecraft. We propose a computer vision pipeline
that is suitable for tracking a target without visual fiducial markers or any a priori
model of geometry or appearance of the target. The use of multiple observers
provides a virtual stereo configuration. For the back-end estimation problem of
MSEPS, we develop a distributed algorithm based on the extended decentralized
information filter. The back-end algorithm computes the approximate solution of a
centralized minimum variance estimation problem, except computation is distributed
and each spacecraft only communicate with neighbors. We validate the algorithm
architecture through numerical simulations of relative orbits, measurements, and
inter-spacecraft communications between multiple spacecraft.

Chapter 5
To validate robotics algorithms, capabilities such as modeling spacecraft motion
and sensor data are crucial. In this chapter, we address the lack of simulation
tools for space environments by developing two new tools: ROS-Basilisk and ROS-
NeRF. ROS-Basilisk is a lightweight software that interfaces between ROS2 and
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the open-source astrodynamics simulation software Basilisk. This enables robotics
algorithms to use the simulated dynamics from Basilisk and allows Basilisk to
reflect the control commands from the ROS2 algorithm in a real-time fashion. The
ROS-NeRF module provides a method to simulate the sensor output from on-board
cameras. Since ROS-NeRF relies on neural networks trained on one specific scene,
the rendering is much faster than traditional methods, making this module suitable
for real-time, closed-loop, or Monte Carlo simulations. For space applications, the
relative motion of the target with respect to light sources causes varying lighting
directions and must be accounted for. Together, these ROS-Basilisk and ROS-
NeRF allow us to validate autonomy and robotics algorithms for space without
requiring external hardware. We demonstrate their utility in an example mission
of autonomous proximity operations that require vision-based relative navigation,
attitude, and formation control. We performed numerical experiments to validate
both simulation tools and the autonomy algorithms and to test all the components
in a real-time and closed-loop simulation.

Chapter 6
This chapter tackles the challenge of developing an optimal estimation algorithm
for networked dynamical systems that scale with swarm size and time. We propose
a new approach where we formulate the estimation problem as Distributed Factor
Graph Optimization (DFGO) and then solve it using the Local Consensus ADMM
(LC-ADMM). In addition to scalability with respect to the number of agents, LC-
ADMM has various advantages. The algorithm can naturally incorporate robust loss
functions such as ℓ1 and Huber losses; agents do not need to know information about
global graph topology; and there is an intuitive interpretation of the LC-ADMM
algorithm steps in terms of factor graphs.

Using LC-ADMM as a backbone, we develop the Incremental Distributed Factor
Graph Optimization (iDFGO) algorithm for real-time problems. The iDFGO algo-
rithm can incrementally recompute a subset of the local problem rather than solving
the optimization over the whole trajectory. The iDFGO algorithm is scalable both
in network size and time.

We show two new theoretical results on the convergence rate of LC-ADMM. The first
theorem shows 𝑜(1/𝑘) convergence when the objective is convex and has a unique
solution. The second theorem shows LC-ADMM converges exponentially when the
objective function is strongly convex and has a Lipschitz continuous subgradient.
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These convergence rates are shown to hold even in the presence of additional local
affine equality constraints. Finally, we perform numerical validations of LC-ADMM
and iDFGO using examples from power grid monitoring and multi-agent PGO. To
the best of the author’s knowledge, a unified formulation of the distributed outlier
rejection problem for a networked dynamical system with more than a hundred
agents is demonstrated for the first time. We also empirically validate LC-ADMM
and iDFGO for multi-agent PGO problems using a benchmark data set and compare
our results against the state-of-the-art distributed PGO algorithm.

1.4 Related Works
We now discuss the previous works on multi-agent systems in the literature that
are particularly relevant to this thesis. Multi-agent systems have the potential to be
robust against loss and improved science return [4], [5]. Algorithms for multi-agent
systems have been studied in different contexts such as controls, robotics, and space
systems literature. Here, we review prior work on distributed estimation algorithms
for large-scale systems and the role of autonomy in space applications.

Distributed Estimation
An estimation problem deals with determining the state of a system given a set of
observations. While there are multiple ways to classify various types of estimation
algorithms in the literature, the two classification schemes that are relevant to this
thesis are centralized vs. distributed, and small- vs. large-scale. These classifica-
tions can be visualized in Fig. 1.1. The estimation algorithm is centralized when
a single agent has access to all the measurements in the system, and it is primarily
responsible for the computation. In contrast, distributed problems involve multiple
observers that collectively estimate the states, and there is no single agent that is
coordinating the collective effort. Small- and large-scale refers to the algorithm’s
scalability with respect to the number of state variables to be estimated. In large-scale
problems, the number of variables typically grows with some system parameters,
such as spatial coverage, the number of objects of interest, and time. Large-scale
estimation algorithms explicitly address some specific scalability issue(s) of the
problem and ensure that computation, memory storage, and information exchange
(if any) are tractable. In contrast, small-scale estimation algorithms are those that
do not (need to) make explicit considerations. In this thesis, we are interested in
distributed estimation problems.

The early works in distributed estimation literature addressed the problem for small-
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Figure 1.1: Classification of observer design problems. The two rows differentiate
single observer vs. distributed problems. The two columns differentiate small- vs.
large-scale problems.

scale systems [6]–[8]. Some authors developed the distributed minimum variance
estimate for LTI systems [9] while others generalized the solution to nonlinear
dynamical systems with non-Gaussian distribution [10]. However, while these
algorithms work well for small-scale systems, they do not extend well to large-
scale. One of the primary reasons is that these works employ a recursive algorithm
approach, and the prior distribution is densely correlated in the recursive formulation
in general. Due to this dense correlation, a pair of agents that are geospatially far
from each other need to collaboratively compute their cross terms, and this becomes
intractable for large-scale networks. For large-scale systems with an 𝑛-dimensional
state vector, each agent needs to (1) have a vector of size 𝑛; (2) communicate
an 𝑛 × 𝑛 matrix for the covariance inverse (or sometimes more for non-Gaussian
distribution [10]); and (3) run a computation that scales with 𝑂 (𝑛3) at each time
step [11]. Therefore, as the network size increases, the necessary computation and
communication of recursive estimators become intractable.

Distributed and Large-Scale Estimation Problems
A smaller number of prior works in the literature aim to address the large-scale
distributed observer problem, which is the bottom right category in Fig. 1.1. Large-
scale problems are common in a wide variety of engineering applications, such
as localization of wireless sensor networks [12], [13], tracking of electrical power
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grids [14], swarm robotics [15]–[17], and multi-agent Simultaneous Localization
and Mapping (SLAM) [3], [18]. In distributed and large-scale problems, observers
are often distributed spatially and observe a part of the overall system. The main
paradigm for addressing this class of problems is to accomplish local decomposition
such that each agent’s algorithm is localized. That is to say, each agent only
tracks a small subset of variables that are in proximity such that local computation,
communication, and memory are all scalable with network size.

There are some works in the control literature that address this class of problem.
Authors of [11] take a recursive estimation approach and developed a localized algo-
rithm that approximates the optimal solution through iterative information exchange
between neighbors. This algorithm exploits the L-banded structure of sparsely
coupled information matrices to circumvent the need to directly compute the dense
covariance matrix. However, this approach is specialized to linear Gaussian sys-
tems and also requires computing a good ordering of variables based on the global
network topology so that one can compute a “good” L-banded information matrix.
The need to have sorted variables is a relatively strong assumption and the algorithm
is impractical for swarm robotics where the network topology might not be known
a priori or could change over time.

Instead of recursive algorithms, an alternative approach is to estimate the trajectories
of dynamical systems in a batch over some time horizon. Among the works in the
controls literature, the line of works by System-Level Synthesis (SLS) [19] is notable
for large-scale networked systems. SLS was originally motivated by optimal control
of large-scale networked systems, but they extend to the estimation problems[20]
which is a dual of the controls problem. SLS decomposes the generally dense,
optimal LQR gains 𝐾 into a product of two sparse and localized matrices Φ𝑢,Φ𝑥

such that 𝐾 = Φ𝑢Φ
−1
𝑥 . SLS achieves the local decomposition by first computing the

solution in a batch over a time horizon, which preserves the sparsity of the network
graph. However, the assumption of linear systems is baked into the derivation of
SLS algorithms, and it is currently unclear how well the framework extends to
general nonlinear systems. Thus, there exists a gap for distributed estimation for
large-scale systems that can handle nonlinear systems or non-gaussian noise that
arise in robotics problems.
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Single-Agent and Multi-Agent SLAM
In parallel to the development of distributed algorithms for large-scale systems
in control literature, there was also a development of estimation for large-scale
problems in robotics literature. However, its motivation was slightly different from
scalability to an arbitrary number of locally coupled agents. Instead, the works in
robotics literature were primarily motivated to address the curse of dimensionality
that arose from Simultaneous Localization And Mapping (SLAM) problems. SLAM
involves estimating the state of a robot equipped with sensors while simultaneously
also constructing the environment that the sensors are perceiving [21]. Since the
size of the map grows as the robot traverses the environment, the problem becomes
large-scale even for the single-agent problem. This is the top right category of
Fig. 1.1. Thus, the challenge is to develop a scalable algorithm whose complexity
does not grow with the size.

To address the curse of dimensionality, an efficient algorithm typically exploits the
sparsity that arises from the spatial structure of the mapping problem [22]. In
particular, factor graphs have become a key mathematical tool for exploiting this
sparsity [2], [3], [23]–[25]. Factor graphs are a family of graphical models that
represent the joint probability distribution, and they effectively model the spatial
sparsity structure necessary for localized algorithms [26]. Factor Graph Optimiza-
tion (FGO) is the problem of computing the Maximum A Posteriori (MAP) estimate
of the joint probability distribution that is modeled as a factor graph. There have been
substantial theoretical advancements to single-agent FGO. For example, iSAM2 [23]
addresses the time-scalability issue1 of the batch optimization approach by using
incremental factor graph update by reformulating the original factor graph to a Bayes
Tree. SE-Sync [2] solves a subset of FGO called Pose Graph Optimization (PGO).
In PGO, all the decision variables are SE(𝑑) and the observations consist of relative
poses. SE-Sync addressed the challenges of the non-convexity of SLAM problems
by developing a specialized algorithm that solves PGO with a certain global conver-
gence guarantee. There exist well-established FGO software such as GTSAM [26]
and g2o [27] to solve FGO efficiently.

There has also been some work on FGO involving multiple agents [3], [18], [25].
We refer to the problem of solving multi-agent FGO in a distributed fashion as Dis-

1Use of batch optimization approach, instead of recursive formulation like Kalman filter, enabled
scalability to problems with a large dimensionality. However, it also re-introduced the issue of time-
scalability. With the exponential advancement of onboard computing capabilities, the computation
and memory requirements of batch algorithms have become much more tolerable for real systems.
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tributed Factor Graph Optimization or DFGO. The algorithm in [25] uses distributed
successive over-relaxation on a quadratic approximation of FGO. The DDF-SAM
2.0 algorithm in [18] exchanges “summarized graph” of each agent with neighbors.
The DC2-PGO algorithm in [3] extends SE-Sync [2] to the multi-agent system and
solves the pose graph optimization in a localized fashion with global convergence.
Riemannian Block Coordinate Descent in [3] is a localized algorithm that provides
a convergence guarantee to the first-order optimal solution. All of these algorithms
feature local decomposition. However, these algorithms also have some limitations.
For example, [25] assumes linearization and Gaussian noise. Computing the sum-
marized graph in DDF-SAM 2.0 [18] is relatively expensive and it uses conservative
approximations to make the problem tractable. The computation also requires “anti-
factors” to negate the effect of factors from the previous epoch. DC2-PGO [3] is
specialized to pose graph optimization. And RBCD [3] is not parallel and it is only
fast enough or swarm-scalable with its “accelerated” version that requires solving
the global graph coloring problem a priori. While there exist incremental methods
for solving FGO for single-agent scenarios (e.g., iSAM2 [23]), there are no efficient
incremental methods for DFGO2. In summary, the design of efficient algorithms to
solve DFGO suitable for large-scale robotic swarms is still an active area of research.

In the context of these previous works on FGO, our work in Chapter 6 can be
viewed as a new approach to solving the DFGO in batch. Our algorithm is also fully
localized similarly to [3], [18], but additionally, all the agents run the algorithm
in parallel. Our approach does not require a prior knowledge of the global graph
topology so it is suitable for ad hoc networks. We also develop an incremental
version of the algorithm to solve DFGO that also scales with time, in addition to
network size.

Finally, we can make some connections between robotics and control literature re-
garding their respective approaches to solving multi-agent, large-scale problems.
For example, algorithms to solve DFGO are not only relevant to robotics literature
(e.g., multi-agent SLAM) but they have the potential to be applicable to the estima-
tion problems of locally coupled systems involving a large number of agents that
were previously studied in controls literature [11], [20]. To the best of the author’s
knowledge, this connection between DFGO and optimal estimation for large-scale
systems was not widely known previously in the literature. With this connection

2The authors of DDF-SAM2 [18] briefly mention that their local FGO problems can be solved
using iSAM2 on each agent; however, in general, simply combining an iSAM2 with a distributed
algorithm does not actually scale well in time overall, as we discuss in Chapter 6.
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in mind, our development of a novel algorithm to solve DFGO is partly motivated
by its application to networked systems with an arbitrary number of agents, and
we ensure every aspect of the algorithm is scalable to the network size. Another
connection is that most of the approaches that resulted in local decomposition (i.e.,
SLS of controls literature and DFGO variants of robotics literature) also share the
similarity in formulating the estimation of a dynamical system in batch over a certain
time horizon. The batch approach preserves the spatial sparsity structure which is
a key ingredient for deriving a localized algorithm. In summary, these connec-
tions between controls and robotics literature provided additional insights to better
understand the problems addressed in this thesis.

Alternating Direction Method of Multipliers
In Chapter 6, we present a method of solving the DFGO using the Alternating
Direction Method of Multipliers (ADMM) algorithm. In distributed optimization
problems, agents collectively compute the solution to a coupled objective function
in a distributed fashion[3], [28]–[31]. While various algorithms exist in the litera-
ture [32]–[35], ADMM has become a popular tool as it converges for a broad class of
problems [36]–[38]. In particular, the Decentralized Consensus ADMM algorithm
(DC-ADMM) [37] has been shown to be applicable to multi-agent systems [39].
However, DC-ADMM assumes that all the agents have copies of the same state
vector and is therefore not scalable with the size of the state vector.

Other works [40]–[42] extended DC-ADMM to localized settings where each agent’s
objective only depends on a small subset of decision variables. These works were
scalable to large-scale problems but had some limitations. The algorithm in [40]
required the graph coloring to be known. The Separable Optimization Variable
ADMM (SOVA) algorithm [41], [42] removed the coloring requirement of [40],
making its application to multi-agent robotics much more suitable. However, the
theoretical convergence rate guarantees were limited to asymptotic convergence [43].
Because SOVA is an ADMM of decentralized consensus type, many of the existing
results in the other ADMM literature do not apply directly [37]. Therefore the
convergence rates and conditions under which these algorithms converge remained
unknown. Some works applied ADMM to solve real-time problems by [39].

Our work on Localized Consensus ADMM (LC-ADMM) extends the results from
DC-ADMM [37] and SOVA [41], [42] in two ways. First, we establish the new
theoretical results convergence rate of LC-ADMM under two different sets of as-
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sumptions. We show LC-ADMM converges to the optimal solution at 𝑜(1/𝑘) rate
when the objective function is convex and the problem has a unique solution (The-
orem 4) and at an exponential rate when the objective is strongly convex and has a
Lipschitz continuous subdifferential (Theorem 5). In both cases, the objective may
be non-differentiable and the same convergence is given in the presence of local
affine equality constraints. Theorem 5 is a generalization of the result of [37] to
localized, non-differentiable, and affine equality-constrained settings and both The-
orems 4 and 5 provide, with additional assumptions, faster rates than the asymptotic
convergence given in [41]. Second, our work also provides new perspectives on
LC-ADMM in the context of DFGO. During the LC-ADMM step in which each
agent solves its local optimization in parallel, the local optimization problem has
an intuitive interpretation as FGO. This perspective enables the development of
efficient algorithms using tools from the FGO literature.

The Role of Autonomy for Orbital Space Systems
Finally, we review the role of robotics and autonomy for space systems in or-
bits. Recent space missions demonstrated increasingly advanced capabilities for
autonomous on-orbit servicing and formation flying. For example, Orbital Express
by DARPA and NASA demonstrated autonomous docking with a demo target space-
craft [44]. Years later, Mission Extension Vehicle by Northrop Grumman performed
docking with a client spacecraft that is an actual commercial vehicle [45]. Other
missions performed satellite-to-satellite inspection (PRISMA by ESA [46], Ae-
roCube10 by Aerospace Corporation [47]) and proposed to perform debris removal
(ELSA-d by Astroscale [48]). For these on-orbit servicing missions, vision-based
navigation in proximity is critical to estimating the relative state of targets, a piece of
information needed to perform precise and collision-free operations. Another type
of orbital mission that requires advanced autonomy is formation flying. For example,
some mission concepts use a team of formation-flying spacecraft to perform radar-
based Earth observation science such as forest and cloud tomogrpahy [49], [50].
In formation flying, the control strategy of multiple spacecraft is coupled through
a common control law[51], [52]. As the number of agents in a team of formation-
flying spacecraft increase, the scalability of many of the existing algorithms for a
coupled team of spacecraft becomes intractable quickly.

The following sections discuss the related works in these two key space robotics tech-
nologies needed to enable the advanced mission concepts: vision-based navigation
and scalable estimation strategy for large-scale spacecraft swarms.
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Vision-Based Navigation

One of the key technology for on-orbit servicing is a vision-based navigation algo-
rithm for tracking the pose of the target space objects in proximity. Compared to
LiDAR-based methods, the cameras have lower mass, cost, and power consump-
tion, which makes them suitable relative navigation sensors for small spacecraft.
However, vision-based navigation in space also comes with some challenges, such
as harsh lighting conditions, reflective appearance, repetitive patterns of artificial
satellites, and a wide range of focal distances. The properties of the target can also
impact the pose estimation problem.

The complexity of the vision-based pose estimation problem depends on whether
the target is cooperative or uncooperative and known or unknown. Pose estimation is
easier when the target is cooperative or known. Cooperative space objects may have
visual fiducial markers or be able to communicate their own information [53]–[55].
Pose estimation of uncooperative but known objects assumes that some critical
information about the target is known, such as geometry, appearance, and mass
properties. Examples of this category of algorithms include [56], [57]. In contrast,
for uncooperative and unknown targets, there is no a priori information about the
object, and the target does not communicate with the algorithm. As a result, vision-
based pose estimation of uncooperative and unknown is much more challenging.

Vision-based pose estimation algorithms for uncooperative and unknown targets
rely on model-free perception techniques such as SLAM or Structure from Motion
(SfM) to infer the geometry of the target. While SLAM and SfM in terrestrial
applications share similarities with vision-based pose estimation for spacecraft,
there are some unique challenges for orbital systems. First, target spacecraft attitude
dynamics are difficult to estimate and predict. On terrestrial SLAM, the mapped
landmarks are directly attached to the inertial frame; however, on pose tracking,
the landmarks on the target are attached to the target frame, which is rotating with
respect to an inertial frame. Target also may have an unknown inertia matrix or active
control which may need to be taken into account when formulating the pose tracking
problem. Second, the visual conditions experienced in space are harsh compared to
conditions commonly encountered in terrestrial SLAM problems. Adversarial visual
conditions include high contrast, reflections, and repetitive features. The vision-
based pose estimation algorithm for space systems must address these challenges.

Some previous work in the literature aimed to address the pose tracking of unknown
targets, but they were primarily focused on using a single observer. In [58], authors
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developed an algorithm that uses SLAM for mapping and estimation of the pose,
the center of gravity (CG), and the inertia properties of an unknown uncooperative
space target and conducted experiments inside the International Space Station. The
problem of estimating the CG and inertia properties and mapping was also investi-
gated in [59] and [60]. Others presented a real-time algorithm for pose estimation
based on monocular SfM [61], where a Bayesian filter is adopted to estimate the
relative rotational dynamics. Some investigated the problem of feature extraction
[62] and matching [63]. Some developed Simultaneous Estimation of Pose and
Shape or SEPS proposed a pipeline for vision-based navigation using optical flow,
and sequential filtering. Some developed SLAM-based terrain relative navigation
algorithms with respect to asteroids [64]. While these works in the literature have
certainly advanced the state-of-the-art of vision-based tracking by a single observer,
similar research using multiple observers has been limited. Vision-based tracking
of unknown targets using multiple observers can address some fundamental limita-
tions of single-observer problems such as persistent tracking under harsh lighting
conditions and harsh lighting conditions. To this end, Chapter 4 of this thesis discuss
a multi-observer approach to vision-based pose tracking of an unknown target.

When evaluating the applicability of some relative navigation algorithms using
proximity operation sensors, an important aspect to consider is the validation of
the algorithm in a realistic, space-like environment. While there are numerous
algorithms proposed in the literature, the actual number of flight missions that
demonstrated these algorithms in orbit has been limited. Orbital Express demon-
strated autonomous docking and undocking with a free-flying target spacecraft using
a robot arm using visual servo [44]. Mission Extension Vehicle also demonstrated
docking with commercial spacecraft in GEO [45], but it involved a monolithic ser-
vicing vehicle, with a collection of high-cost sensors, and a known target. Some
robotic experiments such as SPHERES VERTIGO [65] and Astrobee [66] tested
model-free vision-based navigation within the International Space Station (ISS),
but the illumination condition inside the ISS is not an accurate representation of
the harsh visual conditions of targets free-flying in orbit. Several other missions
such as PRISMA [46] and AeroCube10 [47] have taken satellite-to-satellite images
with sufficient proximity to possibly resolve poses, but these missions did not use
the vision-based pose estimate for controlling the relative motion. Instead of flight
experiments, many vision-based pose estimation algorithms proposed in the liter-
ature typically rely on validation through numerical simulations [56] or hardware
experiments on the ground [64]. In Chapter 5 of this thesis, we discuss some new
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numerical simulation tools for validating vision-based navigation algorithms in a
real-time, closed-loop fashion.

Spacecraft Swarm

Another key technology is the scalable distributed algorithms for formation flying
and spacecraft swarms. A spacecraft swarm is a collection of a large number of
spacecraft performing some cooperative task [67], [68]. Spacecraft swarms have
the potential to revolutionize the space industry by enabling missions such as dis-
tributed aperture telescopes, space structure assemblies, and cooperative deep space
explorations [69]–[71]. The mission concepts using spacecraft swarms have sev-
eral advantages over monolithic satellite missions, such as robustness to individual
spacecraft loss and improved science return [4], [5]. However, since it is opera-
tionally prohibitive to control all the agents in the swarm with ground-in-the-loop
control, the spacecraft swarm must operate largely autonomously. Moreover, in
many of the mission concepts, spacecraft swarms must fly in close proximity and in
specific relative orbits, requiring them to perform controls for formation flying [51],
[52] which require accurate localization knowledge. This motivates the development
of accurate relative navigation strategies for spacecraft swarms such as the scalable
distributed estimation algorithm for localization of spacecraft swarms discussed in
Chapter 3.

ROS2 for Robotics in Space

There has been an increased interest in using the Robotics Operating System 2
(ROS2) as a middleware suit for deploying autonomous algorithms in space. ROS2
has a real-time and distributed architecture and it has been widely adopted as a
standard in the robotics industry [72]. ROS/ROS2 has been implemented in a
select few applications such as a lunar rover (VIPER [72]), flying robotic exper-
iment platforms inside ISS (Astrobee [66]), a humanoid robot at ISS (Spacenaut
[73]). The highly modular design, extensive features for real-time systems, and
distributed communication protocols of ROS2 are all well-suited for onboard, real-
time autonomous operations in orbit, even including multiple cooperative spacecraft.
However, while the use of ROS2 for planetary rovers or ISS has become a reality,
the use of ROS/ROS2 in orbit on free-flying spacecraft has been limited. One of
the main challenges with developing autonomy in orbit using ROS2 is that there
were previously no publicly accessible simulation tools such as ROS2-compatible
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astrodynamics simulation or highly realistic image rendering tools for proximity
operation. In Chapter 5, we develop new simulation tools specifically for on-orbit
servicing to bridge this gap.

1.5 Thesis Organization
The rest of this thesis is organized as follows. In this Chapter, we described
the motivation, problem statements, and summary of contributions of this thesis.
Chapter 2 continues by introducing preliminary concepts and mathematical notation
that will be relevant for understanding the main contributions of this thesis. In
Chapters 3 through 6, we discuss each of the thesis contributions in more detail.
Finally, Chapter 7, provides concluding remarks.
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C h a p t e r 2

PRELIMINARIES

In this chapter, we introduce general concepts and notations that will be used
throughout the thesis. First, we introduce the definitions from graph theory, which
is used to describe locally coupled dynamical systems and factor graphs.

2.1 Graph Theory
In many of the chapters, graphs are used to model the network of agents. Suppose
V = {1, . . . , 𝑁} is the set of 𝑁 vertices in the network. The set of undirected
edges, denoted as E ⊆ {(𝑖, 𝑗) | 𝑖, 𝑗 ∈ V, 𝑖 ≠ 𝑗}, is defined such that (𝑖, 𝑗) ∈ E
if and only if the 𝑖-th and the 𝑗-th vertices are connected. An undirected graph is
given by G = (V, E). The set of neighbors of the 𝑖-th vertex, 𝑖 ∈ V, is given by
N𝑖 = { 𝑗 ∈ V | (𝑖, 𝑗) ∈ E}. The neighborhood, or the set of inclusive neighbors, of
the 𝑖-th vertex is defined as N̄𝑖 = N𝑖 ∪ {𝑖}.

The adjacency matrix 𝐴 ∈ R𝑁×𝑁 of a graph G is defined such that

𝐴𝑖 𝑗 =


1, if (𝑖, 𝑗) ∈ E,

0, otherwise.
(2.1)

The degree of the 𝑖-th vertex is defined as 𝑑𝑖 =
∑𝑁
𝑗=1 𝐴𝑖 𝑗 where 𝐴 is the adjacency

matrix of the graph and the maximum degreeΔ of a graph is defined asΔ = max (𝑑𝑖).

2.2 Locally Coupled Dynamical System
A class of systems that motivates the development of the scalable algorithms pre-
sented in this thesis is the network of locally coupled dynamical systems. Sup-
pose a network of agents is modeled as an undirected graph G = (A, E) where
A = {1, . . . , 𝑁} is the set of agents. We denote the state of the 𝑖-th agent as
𝑟𝑖 ∈ R𝑝𝑖 and the set of states by the agents in the 𝑖-th agent’s neighborhood as
𝑟N̄ 𝑖 = {𝑟 𝑗 | 𝑗 ∈ N̄ 𝑖}. The dynamics and measurement equations of the 𝑖-th agent are
given by

¤𝑟𝑖 (𝑡) =𝑎𝑖 (𝑟N̄ 𝑖 (𝑡), 𝑡) + 𝑤𝑖 (𝑡), 𝑖 ∈ A,
𝑦𝑖 (𝑡) =𝑐𝑖 (𝑟N̄ 𝑖 (𝑡), 𝑡) + 𝑣𝑖 (𝑡), 𝑖 ∈ A,

(2.2)

where 𝑎𝑖 :
∏

𝑗∈N̄ 𝑖 R𝑝 𝑗 → R𝑝𝑖 . The evolution of the 𝑖-th agent’s state depends on
the states of its neighboring agents. 𝑦𝑖 describes the measurement equation of the
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Figure 2.1: Illustration of locally coupled dynamics (left) and observations (right).

𝑖-th agent, where 𝑐𝑖 :
∏

𝑗∈N̄ 𝑖 R𝑝 𝑗 → R𝑞𝑖 . Similar to the dynamics equation, the
observations made by the 𝑖-th agent may involve the neighbors’ states. Additional
noise terms to account for are denoted by 𝑤𝑖 (𝑡) ∈ R𝑝𝑖 for process noise and 𝑣𝑖 (𝑡) ∈
R𝑞𝑖 for measurement noise. The aggregated state vector of the overall system is
written as 𝑥 = [𝑟1; . . . ; 𝑟𝑁 ].

The dynamical system described in (2.2) models the interactions of a variety of
networked dynamical systems. Examples of locally coupled dynamics include the
aerodynamics interaction between quadcopters [74] and electrical power grid [19],
and examples of locally coupled measurements include range and bearing observa-
tion between agents. These notions of local coupling are illustrated in Fig. 2.1.

In this thesis, we develop distributed observer algorithms to collaboratively estimate
the states of the systems including (2.2). The main challenge of the observer design
problem is that the locally coupled dynamical systems described in (2.2) are typically
large-scale problems where the dimension of the state vector grows with network
size. Suppose the dimension of the overall state vector is 𝑝 ≜

∑
𝑖∈A 𝑝𝑖. If we were

to employ a classical distributed estimation algorithm such as distributed consensus
Kalman filter whose algorithm complexity scales like 𝑂 (𝑝3), the problem becomes
quickly intractable as the number of agents in the network increase. In this thesis,
we show in Chapter 3 and 6 that the key to making the algorithm tractable is to
develop a localized algorithm where each agent only maintains the information of
the small subset of the state pertaining to its neighborhood.

2.3 Factor Graph Optimization
One of the mathematical tools used in robotics estimation problems is Factor Graph
Optimization or FGO. Factor Graphs can be used to model the spatiotemporal
sparsity of the estimation, which results in scalability in large-scale problems. Later
in Chapter 6, we introduce novel algorithms to solve the FGO problem involving
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𝑥1 𝑥2 𝑥3

𝑙1 𝑙2

Figure 2.2: An example of a factor graph involving robot state at three time steps
and two landmarks.

multi-agent systems. This section introduces the basic concept of factor graphs. For
a more detailed background on factor graphs, readers are directed to [26].

To motivate the discussion of factor graphs, consider an example estimation prob-
lem where there is a state for a robot at three different time steps and two landmark
variables, as illustrated in Fig. 2.2. The objective is to estimate the set of un-
knowns X = {𝑥1, 𝑥2, 𝑥3, 𝑙1, 𝑙2} given a set of independent random observations
Y = {𝑦1, . . . , 𝑦6} and other information such as priors and dynamics. One way
to estimate the unknown variables is to formulate the problem as a maximum a
posteriori (MAP) estimation problem. The MAP estimator computes an estimate
XMAP such that it maximizes the posterior probability distribution, as follows:

XMAP = arg max
X

𝑝(X | Y)

= arg max
X

𝑝(Y | X)𝑝(X)
𝑝(Y)

= arg max
X

𝑙 (X;Y)𝑝(X).

(2.3)

In the manipulation above, the second equality uses the Bayes rule, and the third
equality uses the fact that (a) the set of measurementsY is given, and (b) 𝑝(Y | X) ∝
𝑙 (X;Y). Oftentimes, the probability distribution in the objective function of (2.3)
can be further factorized into a product of independent probability distributions.
For example, in the toy problem illustrated in Fig. 2.2, this factorization is given by

𝑝(X|Y) ∝ 𝑝(𝑥1)𝑝(𝑥2 |𝑥1)𝑝(𝑥3 |𝑥2)
× 𝑙 (𝑥1; 𝑦1)𝑙 (𝑥3; 𝑦2)
× 𝑙 (𝑥1, 𝑙1; 𝑦3)𝑙 (𝑥2, 𝑙1; 𝑦4)𝑙 (𝑥2, 𝑙2; 𝑦5)𝑙 (𝑥3, 𝑙2; 𝑦6).

(2.4)
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Each term in the factorization is called a factor. The equation (2.4) contains different
types of factors such as

1. Markov chain 𝑝(𝑥1)𝑝(𝑥2 |𝑥1)𝑝(𝑥3 |𝑥2),

2. Likelihood function corresponding to absolute measurements 𝑙 (𝑥1; 𝑦1) and
𝑙 (𝑥3; 𝑦2), and

3. Relative measurements of landmarks 𝑙 (𝑥1, 𝑙1; 𝑦3), 𝑙 (𝑥2, 𝑙1; 𝑦4), 𝑙 (𝑥2, 𝑙2; 𝑦5),
and 𝑙 (𝑥3, 𝑙2; 𝑦6).

Factor graphs are a family of sparse graphical models that describe the factorization
of joint probability distributions. Formally, a factor graph is defined as a bipartite
graph G𝐹 = (X, F , E𝐹) where X is the set of variables, F is the set of factors, and
E𝐹 is the set of edges. An edge 𝑒𝑖 𝑗 ∈ E𝐹 always connect one variable 𝑥𝑖 ∈ X and
one factor 𝜙 𝑗 ∈ F . Coming back to our example, a factor graph representation of
the joint probability distribution is depicted in Fig. 2.2. The circles correspond toX,
the squares correspond to F , and the lines connecting them correspond to E𝐹 in the
figure. Factor graph optimization is the problem of computing the MAP estimate
in (2.3) by exploiting the sparse structure of factor graphs.

We can make some connection between the Factor Graph Optimization and recursive
estimator such as Kalman Filter. Consider the following dynamical system.

𝑥𝑡+1 = 𝑓 (𝑥𝑡) + 𝑤𝑡 , 𝑡 = [0, 𝑇 − 1],
𝑦𝑡 = ℎ(𝑥𝑡) + 𝑣𝑡 , 𝑡 = [0, 𝑇] .

(2.5)

The process noise 𝑤𝑡 ∼ N(0,𝑊) and measurement noise 𝑣𝑡 ∼ N(0, 𝑉) are given
by zero-mean, Gaussian, i.i.d. random noise. The set of state variables is X =

{𝑥𝑡 | 𝑡 = [0, 𝑇]} and the set of measurements is Y = {𝑦𝑡 | 𝑡 = [0, 𝑇]}. Given
a zero-mean, independent, Gaussian random prior information on 𝑥0, denoted as
𝑥0 ∼ N(0, 𝑃0), the factor graph representation of the joint probability distribution
is shown as Fig. 2.3, and the MAP estimation is given by

XMAP = arg min
X
∥𝑥0 − 𝑥0∥𝑃0 +

𝑇−1∑︁
𝑡=0
∥𝑥𝑡+1 − 𝑓 (𝑥𝑡)∥𝑊 +

𝑇∑︁
𝑡=0
∥𝑦𝑡 − ℎ(𝑥𝑡)∥𝑉 (2.6)

For a linear system with Gaussian noise, the solution to the Kalman filter coincides
with (2.6). The advantage of the Kalman Filter is that the optimal solution is
computed in a recursive fashion and therefore algorithm is scalable in time. On
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𝑥0 𝑥2

𝑦0

𝑥𝑡

𝑦𝑡𝑦𝑡

ҧ𝑥0

Figure 2.3: A factor graph for the dynamical system in (2.5).

the other hand, factor graph optimization solves (2.6) in batch, so the problem size
increases as the time horizon increases. In Chapter 6, we discuss how a batch
optimization approach preserves the sparsity structure of factor graph which is
critical to deriving distributed and localized algorithms. Then, we overcome the
time scalability by proposing an incremental approach to solving the distributed
factor graph optimization problem.

2.4 Chapter Summary
In this chapter, we introduced some notation and concepts in graph theory, locally
coupled dynamical systems, and factor graph optimization. In the following chap-
ters, we use these concepts in the description and development of our theory and
algorithms.
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C h a p t e r 3

DECENTRALIZED POSE ESTIMATION

This chapter contains material from the following publications:

[1] K. Matsuka, A. O. Feldman, E. S. Lupu, S.-J. Chung, and F. Y. Hadaegh,
“Decentralized formation pose estimation for spacecraft swarms,” Advances
in Space Research, vol. 67, no. 11, pp. 3527–3545, 2021. doi: 10.1016/j.
asr.2020.06.016,

[2] K. Matsuka, E. S. Lupu, Y. K. Nakka, R. Foust, S.-J. Chung, and F. Hadaegh,
“Distributed multi-target relative pose estimation for cooperative spacecraft
swarm,” in Proc. 10th International Workshop on Satellite Constellations
and Formation Flying, 2019,

3.1 Introduction
In this chapter, we develop a distributed and localized relative navigation algorithm
for spacecraft swarms called the Decentralized Pose Estimation (DPE) algorithm.
This is the first work in this thesis towards addressing the challenge of scalability in
cooperative estimation problems for locally coupled systems.

Cooperative localization of spacecraft swarm is challenging. First, in some multi-
agent localization algorithms for small-scale swarms, the time complexity scales
at least linearly with the formation size [75], [76]. Hence, these algorithms are
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Figure 3.1: A spacecraft swarm and its relative sensing and communication net-
works. The DPE estimates the spacecraft poses in the local observable subset with
respect to the common Local-Horizontal, Local-Vertical (LVLH) frame.
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not suitable for large-scale swarms. Another challenge is the requirement that each
spacecraft must estimate the absolute orbit of a reference spacecraft in order to define
a common Local-Horizontal, Local-Vertical (LVLH) frame estimate (see Fig. 3.1).
This estimation is challenging for large-scale swarms as some of the spacecraft in
the swarm may not make a direct measurement of this reference spacecraft [10],
[77]. Any algorithm suitable for swarm localization requires a novel approach that
explicitly addresses these challenges.

DPE addresses the issue of scalability by being a distributed and localized estima-
tion algorithm. Using the DPE, each spacecraft estimates the states of only a local
subset of the swarm. Neighbor spacecraft cooperate to improve the pose estimates
by sharing their measurements. The DPE algorithm uses the result of nonlinear
observability analysis to determine the local observable subset of spacecraft given
the ad hoc relative sensing and communication graphs for each spacecraft. Then, it
jointly localizes the spacecraft in the local observable subset by fusing the measure-
ments that are collected over the communication network. Since each spacecraft
only requires a local subset of information, DPE is easily scalable to larger swarm
sizes. DPE also offers some advantages over algorithms without collaboration by
improving the estimation accuracy and increasing the number of observable space-
craft.

For our specific implementation, we represent the attitude of the spacecraft with a
quaternion and use an Extended Kalman Filter (EKF) to estimate the error in the
attitude state at each time step. As part of the DPE, we also present the Swarm
Reference Frame Estimation (SRFE) algorithm, which allows each spacecraft to
co-estimate the common LVLH frame of the swarm in a decentralized manner. The
SRFE applies the decentralized consensus filter [9], [10] to estimate the reference
spacecraft that may be visible to only a subset of the spacecraft. The DPE combined
with the SRFE provides a fully decentralized navigation solution that can be used
in swarm motion planning.

The DPE algorithm was verified in simulations and in real-time robotic experiments.
The DPE performance was compared against that of an Individual EKF, wherein
each spacecraft uses only its measurements to estimate only those spacecraft it di-
rectly measures, and a Centralized EKF, which has access to all the information
in the swarm. The robotic experiment was conducted on Caltech’s robotic space-
craft dynamics simulators, the Multi-Spacecraft Testbed for Autonomy Research
(M-STAR) [78], [79]. The relative pose of each spacecraft was estimated using
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vision on-board each spacecraft. We validated the DPE estimate against the ground
truth obtained from a motion capture system. In summary, this chapter presents
a scalable, decentralized algorithm for swarm localization that is appropriate for
onboard implementation.

3.2 Problem Statement
Prior to describing our DPE algorithm, we first provide a brief summary of the
mathematical notations used in our work, as well as some relevant background
information on orbital dynamics and error state estimation.

Let Gs = (A, Es) denote a directed graph that describes the relative sensing graph,
with A = {1, . . . , 𝑁} the set of agents (spacecraft) and Es the set of edges. An
edge (𝑖, 𝑗) is in Es when the 𝑖-th spacecraft measures the relative pose of the 𝑗-
th spacecraft. Similarly, let Gc = (A, Ec) denote the communication graph, an
undirected graph for the communication topology. We say (𝑖, 𝑗) ∈ Ec if there
is a communication link between the 𝑖-th and the 𝑗-th spacecraft. Note that the
measurement graph and the communication graph may be different in general. The
out-neighbors of a node 𝑖 in a graph G are defined asN𝑖 = { 𝑗 ∈ A | (𝑖, 𝑗) ∈ E(G)}
and we use subscripts 𝑠 and 𝑐 to distinguish the neighbors for relative sensing and
communication graphs, respectively. The neighborhood of node 𝑖 is defined as
N̄𝑖 = N𝑖 ∪ {𝑖}. The degree of a node in a graph is defined as 𝑑𝑖 =

∑𝑁
𝑗=1 𝐴𝑖 𝑗 where

𝐴 is the adjacency matrix of the graph and the maximum degree Δ of a graph is
defined as Δ = max (𝑑𝑖).

A column concatenation of vectors 𝑥1, . . . , 𝑥𝑛 is written as 𝑥 = [𝑥1; . . . ; 𝑥𝑛] or
𝑥 = ∥𝑖=1,...,𝑛𝑥𝑖, where the bar over the variable denotes an augmented variable
defined as a concatenation of variables. The positions and velocities of an object
𝑎 in frame 𝑏 are denoted 𝑝𝑎,𝑏, 𝑣𝑎,𝑏. The attitude and angular rate of the frame 𝑎
with respect to the frame 𝑏 are denoted 𝑞𝑎,𝑏 and 𝜔𝑎,𝑏. The function 𝑅(·) maps a
quaternion onto a rotation matrix such that 𝑥𝑏 = 𝑅(𝑞𝑎,𝑏)𝑥𝑎 where 𝑥𝑎, 𝑥𝑏 are vectors
expressed in frame 𝑎 and 𝑏, respectively. We use ˆ above variables to denote their
estimates.

Relative Orbital Dynamics
This section reviews the equation of motion for the relative orbital dynamics. For the
rest of the paper, we assume that each spacecraft is in a near-circular orbit, there are no
perturbations, and that all the spacecraft are in proximity such that the relative orbital
dynamics can be linearized to the Hill-Clohessy-Wiltshire (HCW) equations [80].
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There exist some dynamics models that include eccentricity or other perturbation
effects [67], [81], [82]; however, we choose the HCW model dynamics to illustrate
more clearly the decentralized aspects of the algorithm. Suppose 𝑝𝑖,𝐿 , 𝑣𝑖,𝐿 are the
position and velocity vectors of the 𝑖-th spacecraft with respect to an LVLH frame
that is commonly known among all the spacecraft in the swarm. The dynamics of
translational states using the HCW equations are described by[

¤𝑝𝑖,𝐿
¤𝑣𝑖,𝐿

]
= 𝐴𝑡

[
𝑝𝑖,𝐿

𝑣𝑖,𝐿

]
+ 𝐵𝑡𝑤𝑡 (3.1)

where state matrix 𝐴𝑡 and actuation matrix 𝐵𝑡 are given by

𝐴𝑡 =

[
03×3 𝐼3

𝐴𝑣𝑝 𝐴𝑣𝑣

]
, 𝐵𝑡 =

[
03×3

𝐼3

]

𝐴𝑣𝑝 =


3𝑛2 0 0
0 0 0
0 0 −𝑛2

 , 𝐴𝑣𝑣 =


0 2𝑛 0
−2𝑛 0 0

0 0 0


(3.2)

where 𝑛 is the mean anomaly of the reference spacecraft orbit and 𝑤𝑡 ∼ N(03×1,𝑊𝑡)
is assumed to be a zero mean Gaussian process noise.

Attitude Dynamics
For DPE, we choose to represent the attitude components of the spacecraft state as
quaternions [83]. A quaternion is defined as 𝑞 = [𝑞𝑣; 𝑞𝑠] where 𝑞𝑣 ∈ R3 is the
vector and 𝑞𝑠 ∈ R is the scalar components of the quaternion, respectively. A unit
quaternion 𝑞 ∈ 𝑆3 satisfies the constraint 𝑞⊤𝑞 = 1. Quaternion multiplication is
denoted with the group operator ⊗ and is defined as

𝑞′ ⊗ 𝑞 =

[
𝑞′𝑠𝑞𝑣 + 𝑞𝑠𝑞′𝑣 − 𝑞′𝑣 × 𝑞𝑣

𝑞′𝑠𝑞𝑠 − 𝑞′𝑣 · 𝑞𝑣

]
. (3.3)

The inverse of a quaternion is defined as

𝑞−1 =
1
| |𝑞 | |

[
−𝑞𝑣
𝑞𝑠

]
. (3.4)

A small attitude perturbation 𝛿𝑞 ∈ 𝑆3 can be represented in a minimal coordinate
𝑎 ∈ R3 where the mapping from 𝑎 ∈ R3 to 𝛿𝑞 is defined as follows

𝛿𝑞(𝑎) = 1
2

[
𝑎√

4 − 𝑎⊤𝑎

]
. (3.5)
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Suppose 𝑞𝑖,𝐼 and 𝑞ref
𝑖,𝐼

denote the true and reference attitude for the 𝑖-th spacecraft,
respectively. Then, the attitude error 𝑎𝑖,𝐼 and angular rate error 𝛿𝜔𝑖,𝐼 are defined
such that

𝛿𝑞(𝑎𝑖,𝐼) =𝑞𝑖,𝐼 ⊗ (𝑞ref
𝑖,𝐼 )
−1, (3.6)

𝛿𝜔𝑖,𝐼 =𝜔𝑖,𝐼 − 𝜔ref
𝑖,𝐼 . (3.7)

The kinematic differential equation for the attitude quaternion for the 𝑖-th spacecraft
body frame can be expressed in the following two equivalent forms:

¤𝑞𝑖,𝐼 =
1
2
Ω(𝜔𝑖,𝐼)𝑞𝑖,𝐼 =

1
2
Θ(𝑞𝑖,𝐼)𝜔𝑖,𝐼 (3.8)

where Ω(𝜔) and Θ(𝑞) are matrices defined as

Ω(𝜔) =
[
−𝜔× 𝜔

−𝜔⊤ 0

]
, Θ(𝑞) =

[
𝑞𝑠 𝐼3 + 𝑞×𝑣
−𝑞⊤𝑣

]
. (3.9)

The superscript × denotes a skew-symmetric matrix. The attitude rate of the 𝑖-th
spacecraft is propagated via the following equation

¤𝜔𝑖,𝐼 = −𝐽−1𝜔𝑖,𝐼
×𝐽𝜔𝑖,𝐼 + 𝐽−1𝑤𝑎 (3.10)

where 𝐽 is the inertia tensor of the spacecraft in the body frame, and 𝑤𝑎 ∼
N(03×1,𝑊𝑎) is the attitude process noise modeled as a torque perturbation with
zero-mean white Gaussian noise.

Review of Error State Estimation
Because the standard EKF does not strictly enforce the manifold constraint for
quaternions, we estimate the error state for the attitude components. This is similar to
conventional attitude estimation techniques such as the Multiplicative EKF (MEKF)
[84]. The main idea is to estimate attitude error in a minimal coordinate at each step
while using a quaternion to provide a non-singular attitude representation overall.
The algorithm involves three steps: time update, measurement update, and reset.
This section reviews the time update of the error state and its covariance, as well as
the reset step.

The state variables of the 𝑖-th spacecraft 𝑥𝑖 are defined as

𝑥𝑖 = [𝑝𝑖,𝐿; 𝑣𝑖,𝐿; 𝑞𝑖,𝐼 ; 𝜔𝑖,𝐼] (3.11)

where 𝑝𝑖,𝐿 and 𝑣𝑖,𝐿 are relative positions and velocities of the 𝑖-th spacecraft with
respect to the swarm reference LVLH frame. Attitude parameters 𝑞𝑖,𝐼 and 𝜔𝑖,𝐼 are
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the quaternion and the angular rate of the 𝑖-th spacecraft with respect to the Earth-
Centered Inertial (ECI) frame, respectively. Precisely speaking, translational states
and rotational states are expressed with respect to different frames (i.e., the LVLH
and the ECI frames). This is a convenient choice that was made in order to simplify
the relative orbital and attitude dynamics models.

Following the definitions in (3.6) and (3.7), the attitude parameters are decomposed
into reference and error terms: 𝑞𝑖,𝐼 = 𝛿𝑞(𝑎𝑖,𝐼) ⊗ 𝑞ref

𝑖,𝐼
and 𝜔𝑖,𝐼 = 𝜔ref

𝑖,𝐼
+ 𝛿𝜔𝑖,𝐼 .

Non-singular representation of 𝑥𝑖 is denoted by the reference state vector

𝑥ref
𝑖 = [𝑝𝑖,𝐿; 𝑣𝑖,𝐿; 𝑞ref

𝑖,𝐼 ; 𝜔ref
𝑖,𝐼 ] . (3.12)

At each filtering time step, the actual state to be estimated is the minimal coordinate
representation of state with respect to 𝑞ref

𝑖,𝐼
and 𝜔ref

𝑖,𝐼
defined as

𝑥min
𝑖 = [𝑝𝑖,𝐿; 𝑣𝑖,𝐿; 𝑎𝑖,𝐼 ; 𝛿𝜔𝑖,𝐼] . (3.13)

We refer to this as the minimal state vector of the 𝑖-th spacecraft, denoted by the
superscript min. At each step, 𝑞ref

𝑖,𝐼
and 𝜔ref

𝑖,𝐼
are selected such that the prior estimate

of 𝑎𝑖,𝐼 and 𝛿𝜔𝑖,𝐼 are identically zero.

The state vector 𝑥𝑖 resides on a manifoldM = R6 × 𝑆3 × R3 and we can extend the
notion of group operator to states inM as follows. Suppose 𝑥′, 𝑥 ∈ M. Then the
group operator ⊞ is defined as

𝑥′ ⊞ 𝑥 =


𝑝′ + 𝑝
𝑣′ + 𝑣
𝑞′ ⊗ 𝑞
𝜔′ + 𝜔


. (3.14)

Suppose the error state between two states is defined as Δ𝑥 = 𝑥′ ⊞ 𝑥−1 ∈ M, whose
components are denoted by Δ𝑥 = [Δ𝑝; Δ𝑣; Δ𝑞; Δ𝜔]. This error state can be
parameterized by a minimal state error Δ𝜒 ∈ R12 defined as

Δ𝜒 = [Δ𝑝; Δ𝑣; 𝑎(Δ𝑞); Δ𝜔] . (3.15)

Finally, the two states, 𝑥 and 𝑥′, and the state error Δ𝜒 are related by

𝑥′ = Δ𝑥(Δ𝜒) ⊞ 𝑥 (3.16)

where Δ𝑥(·) : R12 → M is the map from Δ𝜒 to Δ𝑥. To obtain the posterior state
vector for each spacecraft, the DPE evaluates (3.16) at each reset step to apply the
correction Δ𝜒, which is expressed in minimal coordinates.
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Next, we derive the equation of motion for attitude error states, which is necessary
for computing the covariance time update. Taking the time derivative of the error
quaternion given by (3.6) and substituting (3.8), one can obtain

2 ¤𝛿𝑞(𝑎𝑖,𝐼) =
[
𝜔𝑖,𝐼

0

]
⊗ 𝛿𝑞(𝑎𝑖,𝐼) − 𝛿𝑞(𝑎𝑖,𝐼) ⊗

[
𝜔ref
𝑖,𝐼

0

]
. (3.17)

Substituting this into (3.5) leads to the equation of motion for attitude error

¤𝑎𝑖,𝐼 =
(
2 ¤𝛿𝑞(𝑎𝑖,𝐼)

)
1:3 =

1
2

(
(4 − 𝑎⊤𝑖,𝐼𝑎𝑖,𝐼)

1
2 𝛿𝜔𝑖,𝐼 − (2𝜔ref

𝑖,𝐼 + 𝛿𝜔𝑖,𝐼) × 𝑎𝑖,𝐼
)
. (3.18)

Similarly, the equation of motion for angular rate error can be derived from (3.7)
and (3.10)

¤𝛿𝜔𝑖,𝐼 = −𝐽−1
(
𝛿𝜔×𝑖,𝐼𝐽 (𝜔ref

𝑖,𝐼 + 𝛿𝜔𝑖,𝐼) + 𝜔
ref
𝑖,𝐼

×
𝐽𝛿𝜔𝑖,𝐼

)
+ 𝐽−1𝑤𝑎 . (3.19)

(3.18) and (3.19) together represent the attitude error dynamics. The Jacobian of
error attitude dynamics in (3.18) and (3.19) with respect to error attitude variables
is given by

𝜕 ¤𝑎𝑖,𝐼
𝜕𝑎𝑖,𝐼

����
𝑎𝑖,𝐼 ,𝛿𝜔𝑖,𝐼=0

=
©«
−𝛿𝜔⊤

𝑖,𝐼
𝑎𝑖,𝐼

2(4 − 𝑎⊤
𝑖,𝐼
𝑎𝑖,𝐼)

1
2
− 𝜔ref

𝑖,𝐼

× − 1
2
𝛿𝜔×𝑖,𝐼

ª®¬
����
𝑎𝑖,𝐼 ,𝛿𝜔𝑖,𝐼=0

= −𝜔ref
𝑖,𝐼

× (3.20)

𝜕 ¤𝑎𝑖,𝐼
𝜕𝛿𝜔𝑖,𝐼

����
𝑎𝑖,𝐼=0

=

(
1
2
(4 − 𝑎⊤𝑖,𝐼𝑎𝑖,𝐼)

1
2 𝐼3 + 𝑎×𝑖,𝐼

) ����
𝑎𝑖,𝐼=0

= 𝐼3 (3.21)

𝜕 ¤𝛿𝜔𝑖,𝐼
𝜕𝑎𝑖,𝐼

= 03×3 (3.22)

𝜕 ¤𝛿𝜔𝑖,𝐼
𝜕𝛿𝜔𝑖,𝐼

����
𝛿𝜔𝑖,𝐼=0

= −𝐽−1
(
𝛿𝜔×𝑖,𝐼𝐽 − (𝐽 (𝜔ref

𝑖,𝐼 + 𝛿𝜔𝑖,𝐼))
× + 𝜔ref

𝑖,𝐼

×
𝐽

) ����
𝛿𝜔𝑖,𝐼=0

= 𝐽−1
(
(𝐽𝜔ref

𝑖,𝐼 )
× − 𝜔ref

𝑖,𝐼

×
𝐽

)
.

(3.23)

Finally, the covariance can be computed by solving the differential Lyapunov equa-
tion

¤𝑃 = 𝐴𝑃 + 𝑃𝐴⊤ + 𝐵𝑊𝐵⊤ (3.24)

where 𝐴 is Jacobian of propagation of states.

𝐴 =

[
𝐴𝑡 06×6

06×6 𝐴𝑎

]
, 𝐵 =

[
𝐵𝑡 06×3

06×3 𝐵𝑎

]
, 𝑊 =

[
𝑊𝑡 03×3

03×3 𝑊𝑎

]
(3.25)

where 𝐴𝑡 and 𝐵𝑡 are given by HCW equations in (3.2) and 𝐴𝑎 and 𝐵𝑎 are given by

𝐴𝑎 =

[
−𝜔ref

𝑖,𝐼

×
𝐼3

03×3 𝐽−1
(
(𝐽𝜔ref

𝑖,𝐼
)× − 𝜔ref

𝑖,𝐼

×
𝐽

) ]
, 𝐵𝑎 =

[
03×3

𝐽−1

]
. (3.26)
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Because the translational and rotational dynamics are decoupled, the state matrix
preserves a block diagonal structure.

In this section, we briefly described various mathematical notations and background
knowledge on orbital dynamics and error state estimation. This information was
foundational in the development of our DPE algorithm, which we describe in the
next section.

3.3 Decentralized Pose Estimation Algorithm
In this section, we describe the DPE algorithm. The DPE estimates the poses
of a local observable subset of spacecraft in a swarm, given the relative sensing
and communication network topologies. First, each spacecraft measures the poses
of itself and its neighbors. Each spacecraft then communicates its measurements
and the associated measurement noise covariances to its communication neighbors
𝑗 ∈ N c

𝑖
. Based on the available communication and relative sensing networks at the

given time, the augmented state vector is modified to add newly detected spacecraft
and subtract the spacecraft that became unobservable. Finally, each spacecraft
jointly estimates the poses of the local spacecraft. This algorithm is summarized in
Algorithm 1 and the following sections explain the steps in detail. A copy of the
same algorithm is implemented on each spacecraft.

First, we clearly define the set of spacecraft to be estimated by the 𝑖-th spacecraft.

Definition 1. The local observable setV𝑖 ⊂ A for the 𝑖-th spacecraft is defined as
the union of the sensing neighborhood over the communication neighborhood. That
is

V𝑖 :=
⋃
𝑗∈N̄ c

𝑖

N̄ s
𝑗 . (3.27)

This is the set of agents detected by the 𝑖-th spacecraft either via communication
or via relative sensing in one communication step. The goal of DPE is for each
spacecraft 𝑖 ∈ A to estimate the state of each detected spacecraft 𝑗 ∈ V𝑖. Suppose
the cardinality of the local observable set is 𝑁𝑖 = card(V𝑖). We define the reference
augmented state vector 𝑥ref

𝑖 ∈ M𝑁𝑖 and the minimal state augmented vector 𝑥min
𝑖 ∈

R12𝑁𝑖 for the 𝑖-th spacecraft as the column concatenation of all states for 𝑗 ∈ V𝑖.
That is

𝑥ref
𝑖 = ∥ 𝑗∈V𝑖

𝑥ref
𝑗 , 𝑥min

𝑖 := ∥ 𝑗∈V𝑖
𝑥min
𝑗 (3.28)

where 𝑥ref
𝑗

and 𝑥min
𝑗

correspond to the full and minimal state for the 𝑗-th spacecraft
as defined in (3.11) and (3.13).
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Absolute and Relative Measurement Models
Each spacecraft 𝑖 ∈ A is assumed to have an absolute pose measurement 𝑦𝑖 with
respect to the Earth-Centered Inertial (ECI) frame.

𝑦𝑖 = ℎ
a(𝑥𝑖, 𝑝𝐿,𝐼 , 𝑞𝐿,𝐼) + 𝜓a

𝑖 =

[
𝑅(𝑞𝐿,𝐼)𝑝𝑖,𝐿 + 𝑝𝐿,𝐼

𝑞𝑖,𝐼

]
+ 𝜓a

𝑖 (3.29)

where 𝜓a
𝑖

denotes measurement noise. 𝑝𝐿,𝐼 and 𝑞𝐿,𝐼 describe the LVLH to ECI
transformation and are treated as fixed parameters known from the SRFE algorithm.
This measurement is available from GPS and a star tracker. We denote the position
and the attitude components of this observation as 𝑦𝑖 = [𝑝obs

𝑖,𝐼
; 𝑞obs

𝑖,𝐼
]. Since the

attitude measurement is given as a quaternion, it is convenient to transform the
observation to a pseudo-measurement form [84]

�̃�𝑖 =


𝑅(𝑞𝐿,𝐼) (𝑝obs

𝑖,𝐼
− 𝑝𝐿,𝐼)

2
(
𝑞obs
𝑖,𝐼
⊗ (𝑞𝑖,𝐼)−1

)
1:3

 . (3.30)

Then this measurement can be modeled as

�̃�𝑖 = ℎ̃
a(𝑥min

𝑖 ) + �̃�a
𝑖 =

[
𝑝𝑖,𝐿

𝑎𝑖,𝐼

]
+ �̃�a

𝑖 (3.31)

where �̃�a
𝑖
∼ N(06×, Ψ̃𝑖) is the absolute pseudo-measurement noise vector.

In addition to its absolute measurement, each spacecraft may have relative measure-
ments, possibly multiple at a given time. Each relative measurement is assumed
to be a pose measurement provided by a monocular camera. The availability of
relative measurements depends on the physical constraints of the given sensors such
as range, field-of-view (FOV), and lighting. This information is captured by the
edges in the relative sensing graph G𝑠. The relative measurement is assumed to
give the relative pose of the observed spacecraft with respect to the observer. Let
𝑦 𝑗 ,𝑖 = [𝑝obs

𝑗 ,𝑖
; 𝑞obs

𝑗 ,𝑖
] denote the pose of the 𝑗-th spacecraft relative to the 𝑖-th space-

craft. The relative attitude can be written in terms of reference and error attitude as
follows

𝑞 𝑗 ,𝑖 = 𝑞 𝑗 ,𝐼 ⊗
(
𝑞𝑖,𝐼

)−1

= 𝛿𝑞(𝑎 𝑗 ,𝐼) ⊗ 𝑞ref
𝑗 ,𝑖 ⊗ 𝛿𝑞(−𝑎𝑖,𝐼)

(3.32)

where 𝑞ref
𝑗 ,𝑖

= 𝑞ref
𝑗 ,𝐼
⊗
(
𝑞ref
𝑖,𝐼

)−1
. In the same way as absolute measurement, it is more

convenient to transform the relative measurement to a minimal parameterization.
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We define the relative pseudo measurement by

�̃� 𝑗 ,𝑖 =

[
𝑝obs
𝑗 ,𝑖

𝑎obs
𝑗 ,𝑖

]
(3.33)

where 𝑎obs
𝑗 ,𝑖

= 2
(
𝑞obs
𝑗 ,𝑖
⊗
(
𝑞ref
𝑗 ,𝑖

)−1
)

1:3
. Therefore, the minimal relative pose measure-

ment of the 𝑗-th spacecraft with respect to the 𝑖-th spacecraft is given by

�̃� 𝑗 ,𝑖 = ℎ̃
r
(
𝑥min
𝑖 , 𝑥min

𝑗 , 𝑥ref
𝑖

)
+ �̃�r

𝑗 ,𝑖 . (3.34)

where �̃�r
𝑗 ,𝑖

is relative pseudo-measurement noise and the measurement model is
given by

ℎ̃r
(
𝑥min
𝑖 , 𝑥min

𝑗 , 𝑥ref
𝑖

)
=


𝑅(𝛿𝑞(𝑎𝑖,𝐼))𝑅(𝑞ref

𝑖,𝐼
)𝑅(𝑞𝐿,𝐼)⊤(𝑝 𝑗 ,𝐿 − 𝑝𝑖,𝐿)

2
(
𝛿𝑞(𝑎 𝑗 ,𝐼) ⊗ 𝑞ref

𝑗 ,𝐼
⊗ 𝛿𝑞(−𝑎𝑖,𝐼) ⊗

(
𝑞ref
𝑗 ,𝐼

)−1
)

1:3

 . (3.35)

From this, the Jacobian of relative pseudo-measurement with respect to each minimal
state variable can be computed as follows

𝜕ℎ̃r

𝜕𝑝𝑖,𝐿
=

[
−𝑅(𝑞ref

𝑖,𝐼
)𝑅(𝑞𝐿,𝐼)⊤

03×3

]
(3.36)

𝜕ℎ̃r

𝜕𝑝 𝑗 ,𝐿
=

[
𝑅(𝑞ref

𝑖,𝐼
)𝑅(𝑞𝐿,𝐼)⊤

03×3

]
(3.37)

𝜕ℎ̃r

𝜕𝑎𝑖,𝐼
=


[
𝑅(𝑞ref

𝑖,𝐼
)𝑅(𝑞𝐿,𝐼)⊤(𝑝 𝑗 ,𝐿 − 𝑝𝑖,𝐿)

]×
−𝑅(𝑞ref

𝑗 ,𝑖
)

 (3.38)

𝜕ℎ̃r

𝜕𝑎 𝑗 ,𝐼
=

[
03×3

𝐼3

]
. (3.39)

Communication and Augmented Sensing
At every communication step, each spacecraft broadcasts its sensing information,
including both its absolute and relative measurements. Absolute sensing information
is defined asMa

𝑖
= (𝑦𝑖,Ψ𝑖, 𝑖). For each edge in the relative sensing graph G𝑠, the

relative sensing information is defined as (𝑦 𝑗 ,𝑖,Ψ 𝑗 ,𝑖, (𝑖, 𝑗)). We define the setMr
𝑖

to
be the set of relative sensing information for all of the direct measurements the 𝑖-th
spacecraft makes:

Mr
𝑖 = {(𝑦 𝑗 ,𝑖,Ψ 𝑗 ,𝑖, (𝑖, 𝑗)) | 𝑗 ∈ N s

𝑖 } (3.40)

where N s
𝑖

denotes the neighbors of the 𝑖-th spacecraft in the relative sensing graph
Gs. At each communication time step, each spacecraft broadcastsMa

𝑖
andMr

𝑖
to

its communication neighbors.
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Each spacecraft also collects the information broadcasted by its neighbors. The set
of all of the relative sensing edges collected by the 𝑖-th spacecraft is

Ēs
𝑖 := {( 𝑗 , 𝑘) ∈ Es | 𝑗 ∈ N̄ c

𝑖 }. (3.41)

The augmented relative observation, measurement model, and noise are defined as

𝑦r
𝑖 := ∥ ( 𝑗 ,𝑘)∈Ēs

𝑖
�̃�𝑘, 𝑗 , ℎ

r
𝑖 (𝑥min

𝑖 , 𝑥ref
𝑖 ) := ∥ ( 𝑗 ,𝑘)∈Ēs

𝑖
ℎ̃r(𝑥min

𝑗 , 𝑥min
𝑘 , 𝑥ref

𝑗 )

𝜓
r
𝑖 := ∥ ( 𝑗 ,𝑘)∈Ēs

𝑖
�̃�r
𝑘, 𝑗

(3.42)

which are column concatenations over all of the relative sensing edges available to the
𝑖-th spacecraft. Similarly, each spacecraft collects all of the absolute measurements

𝑦a
𝑖 := ∥ 𝑗∈N̄ c

𝑖
�̃� 𝑗 , ℎ

a
𝑖 (𝑥min

𝑖 ) := ∥ 𝑗∈N̄ c
𝑖
ℎ̃a(𝑥min

𝑗 ), 𝜓
a
𝑖 := ∥ 𝑗∈N̄ c

𝑖
�̃�a
𝑗 . (3.43)

The total augmented measurement is the collection of all of the relative and absolute
measurements. That is, 𝑦𝑖 = [𝑦a

𝑖 ; 𝑦
r
𝑖], ℎ𝑖 = [ℎ

a
𝑖 ; ℎ

r
𝑖], and 𝜓𝑖 = [𝜓

a
𝑖 ;𝜓

r
𝑖], such that the

augmented measurement equation becomes

𝑦𝑖 = ℎ𝑖 (𝑥min
𝑖 , 𝑥ref

𝑖 ) + 𝜓𝑖 . (3.44)

The corresponding Jacobian linearized around the estimates ˆ̄𝑥min
𝑖

and ˆ̄𝑥ref
𝑖

becomes

𝐻𝑖 =
𝜕ℎ𝑖 (𝑥min

𝑖 , ˆ̄𝑥ref
𝑖
)

𝜕𝑥min
𝑖

�����
𝑥min
𝑖 = ˆ̄𝑥min

𝑖

. (3.45)

Since all of the measurement models depend only on one or two spacecraft states at
a time, each row of 𝐻𝑖 will be sparse.

For each spacecraft 𝑖 ∈ A, we have propagation models for the full and minimal
state vectors

¤𝑥ref
𝑖 = 𝑓 (𝑥ref

𝑖 ) (3.46)

¤𝑥min
𝑖 = 𝑓 min(𝑥min

𝑖 , 𝑥ref
𝑖 ) (3.47)

where the reference state model is given by collecting (3.2), (3.8), and (3.10) and
the minimal propagation model is given by (3.2), (3.18), and (3.19). Recall the
augmented state for the 𝑖-th spacecraft is 𝑥ref

𝑖 . Then, the augmented dynamical
system for all spacecraft 𝑗 ∈ V𝑖 is given by

¤𝑥ref
𝑖 = 𝑓 𝑖 (𝑥ref

𝑖 ) := ∥ 𝑗∈V𝑖
𝑓 (𝑥ref

𝑗 ) (3.48)

¤𝑥min
𝑖 = 𝑓

min
𝑖 (𝑥min

𝑖 , 𝑥ref
𝑖 ) := ∥ 𝑗∈V𝑖

𝑓 min(𝑥min
𝑗 , 𝑥ref

𝑗 ). (3.49)
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Integrating (3.48) propagates the previous prior estimate �̂�
ref+
𝑖 (𝑡 − 1) to the current

posterior estimate �̂�
ref−
𝑖 (𝑡), where the superscript− and + denotes prior and posterior,

respectively. (3.49), instead, is used to define the augmented Jacobian

𝐴𝑖 =
𝜕 𝑓

min
𝑖 (𝑥min

𝑖 , ˆ̄𝑥ref
𝑖
)

𝜕𝑥min
𝑖


𝑥min
𝑖 = ˆ̄𝑥min

𝑖

. (3.50)

Since the propagation of each state is decoupled, (3.50) is a block diagonal where
the diagonal block corresponding to 𝑗 ∈ V𝑖 is given by 𝐴(𝑥ref

𝑗
) from (3.26). Using

these equations, the augmented posterior covariance from the previous step can be
updated to the current prior covariance using

¤
𝑃𝑖 = 𝐴𝑖𝑃𝑖 + 𝑃𝑖𝐴

⊤
𝑖 + 𝐵𝑖𝑊 𝑖𝐵

⊤
𝑖 . (3.51)

While the augmented state matrix 𝐴𝑖 and the process noise covariance term 𝐵𝑖𝑊 𝑖𝐵
⊤
𝑖

are block diagonal, (3.51) has to be solved simultaneously because 𝑃𝑖 is not diagonal.

At the measurement update of the DPE, the Kalman gain, the posterior covariance,
and the state correction terms are computed similarly to the standard EKF:

𝐾𝑖 = 𝑃
−
𝑖 𝐻
⊤
𝑖

(
𝐻𝑖𝑃

−
𝑖 𝐻
⊤
𝑖 + Ψ𝑖

)−1
(3.52)

𝑃
+
𝑖 =

(
𝐼 − 𝐾𝑖𝐻𝑖

)
𝑃
−
𝑖 (3.53)

Δ�̄�𝑖 = 𝐾𝑖 (𝑦𝑖 − ℎ𝑖 (𝑥min
𝑖 , 𝑥ref

𝑖 )). (3.54)

Because the correction term Δ�̄�𝑖 is expressed in the minimal coordinate R12𝑁𝑖 , we
apply the reset step to the augmented reference state to recover the posterior estimate
of the state

𝑥ref
𝑖

+
= Δ𝑥𝑖 (Δ�̄�𝑖) ⊞ 𝑥ref

𝑖

−
. (3.55)

The definition of the group operator ⊞ and the mapping between the tangent space
are extended to those for the augmented vector by simply applying the operations
for each of 𝑗 ∈ V𝑖.

For this chapter, we implemented the DPE algorithm with specific definitions for
the state, measurement, and dynamics models. However, the strategy of defining the
augmented state vector and measurements can be extended to different scenarios.

Adding and Subtracting Nodes to SetV𝑖
The local observable set V𝑖 from (3.27) may vary at each time step, based on the
relative sensing and communication graphs Gs and Gc at the given time. The DPE
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modifies the augmented state vector 𝑥ref
𝑖 and its associated covariance 𝑃𝑖 if the set

V𝑖 has changed over time.

A new spacecraft 𝑗 is added toV𝑖 at time 𝑡 if a measurement of the new spacecraft
becomes available at the new time step. A new measurement becomes available
to an agent either when (i) the agent itself or one of its communication neighbors
detects a new spacecraft or (ii) the measurement becomes available through the
addition of a new communication link. The DPE waits for two consecutive pose
measurements, such that the velocities of the new spacecraft are computed by
numerical differentiation of the two pose measurements.

DPE adds the new spacecraft states for 𝑗 ∈ V𝑖 to �̂�𝑖 by adding a new state 𝑥ref
𝑗

directly
computed from the positions and velocities. A block column and a block row are
added to the covariance matrix when initializing the state. Assuming that 𝑥ref

𝑗
is

independent of �̂�𝑖 at the previous time state, the augmented covariance matrix is
created by adding a new set of rows and columns with a prescribed specified initial
uncertainty. The off-diagonals are zeros since 𝑥ref

𝑗
and �̂�𝑖 are independent.

The observer spacecraft may also stop estimating a spacecraft if a previously esti-
mated spacecraft becomes unobservable. Depending on the application, the dynam-
ics of the unobservable states may be propagated by the dynamics model without the
measurement updates for a fixed maximum number of rounds. If a new measure-
ment becomes available for the spacecraft before the maximum number of rounds,
the measurement update is applied and the count is reset. The spacecraft state and
associated covariance blocks are deleted if the count exceeds the specified maximum
number.

The DPE algorithms explained in the above sections can be summarized in Algo-
rithm 1.

Nonlinear Observability
Assuming that the swarm has limited sensing and limited communication, it is
important to determine which subset of spacecraft in the swarm is observable. The
observer system for the 𝑖-th spacecraft in terms of 𝑥𝑖 is constructed from (3.44) and
(3.48). As usual, the following observability analysis assumes the deterministic
nonlinear observer system. 

¤𝑥𝑖 = 𝑓 𝑖 (𝑥𝑖)

𝑦𝑖 = ℎ𝑖 (𝑥𝑖)
(3.56)
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Algorithm 1: The DPE Algorithm.

Result: Estimate �̂�
ref+
𝑖 (𝑡) and 𝑃+𝑖 (𝑡)

Initialize �̂�
ref+
𝑖 (0) and 𝑃+𝑖 (0)

while true do
�̂�

ref+
𝑖 (𝑡 − 1), 𝑃+𝑖 (𝑡 − 1) = Reassign(�̂�

ref+
𝑖 (𝑡), 𝑃

+
𝑖 (𝑡))

Get measurementsMa
𝑖
,Mr

𝑖

for 𝑗 ∈ N c
𝑖

do
Exchange measurements (Ma

𝑖
,Mr

𝑖
) and (Ma

𝑗
,Mr

𝑗
)

end
Collect measurements: M̄a

𝑖
=
⋃
𝑗∈N̄ c

𝑖
Ma

𝑗
, M̄r

𝑖
=
⋃
𝑗∈N̄ c

𝑖
Mr

𝑗

Update (�̂�
ref+
𝑖 (𝑡 − 1), 𝑃+𝑖 (𝑡 − 1)) according toV𝑖

�̂�
ref−
𝑖 (𝑡), 𝑃−𝑖 (𝑡) = Time Update(�̂�

ref+
𝑖 (𝑡 − 1), 𝑃+𝑖 (𝑡 − 1))

Δ�̄�𝑖, 𝑃
+
𝑖 (𝑡) = Measurement Update(�̂�

−
𝑖 , 𝑃−𝑖 , M̄a

𝑖
, M̄r

𝑖
)

�̂�
ref+
𝑖 (𝑡) = Reset(Δ�̄�𝑖, �̂�

ref−
𝑖 )

end

We analyze (3.56) to determine its nonlinear observability. First, we define the
terminology to make the discussion more concrete.

Definition 2. Suppose 𝑖, 𝑗 ∈ A. We say agent 𝑗 is observable to agent 𝑖 if 𝑗 ∈ V𝑖
and 𝑥 𝑗 , a subset of state vector 𝑥𝑖, is observable to 𝑖.

Definition 3. We say a set of agents S𝑖 ⊆ A is an observable set with respect to
agent 𝑖 if agent 𝑗 is observable to agent 𝑖 for all 𝑗 ∈ S𝑖

Recall that 𝑥𝑖 = ∥ 𝑗∈V𝑖
𝑥 𝑗 where V𝑖 ⊆ A. Any agent 𝑗 ∉ V𝑖 is not observable to

agent 𝑖 because it is not a part of the local dynamical system. Therefore 𝑗 ∈ V𝑖 is
a necessary condition for agent 𝑗 to be observable to agent 𝑖. Using this definition,
we have the following proposition.

Proposition 1. Suppose 𝑗 ∈ N̄ c
𝑖

and 𝑘 ∈ N̄ s
𝑗

for some 𝑖 ∈ A. Then agents 𝑗 and 𝑘
are observable to agent 𝑖.

Proof. We have that 𝑗 , 𝑘 ∈ V𝑖 by Definition 1, so 𝑥 𝑗 and 𝑥𝑘 are both parts of the
state 𝑥𝑖 estimated by 𝑖-th agent in the nonlinear system (3.56). Now we consider the
part of (3.56) pertaining to agents 𝑗 and 𝑘 . We define 𝑤 = [𝑥 𝑗 ; 𝑥𝑘 ].

¤𝑤 = 𝑓 𝑝 (𝑤)

𝑧 = ℎ𝑝 (𝑤)
(3.57)
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where 𝑓 𝑝 (𝑤) = [ 𝑓 (𝑥 𝑗 ); 𝑓 (𝑥𝑘 )] and ℎ𝑝 (𝑤) = [ℎa(𝑥 𝑗 ); ℎr(𝑥 𝑗 , 𝑥𝑘 )]. The measure-
ment model can be written as

ℎ𝑝 (𝑤) =


𝑅(𝑞𝐿,𝐼)⊤𝑝 𝑗 ,𝐿 + 𝑝𝐿,𝐼

𝑞 𝑗 ,𝐼

𝑅(𝑞 𝑗 ,𝐼)𝑅(𝑞𝐿,𝐼)⊤(𝑝𝑘,𝐿 − 𝑝 𝑗 ,𝐿)
𝑞𝑘,𝐼 ⊗

(
𝑞 𝑗 ,𝐼

)−1


(3.58)

where 𝑞𝐿,𝐼 and 𝑝𝐿,𝐼 are known fixed parameters. The zeroth- and first-order Lie
derivatives of ℎ𝑝 are given by

𝔏0ℎ𝑝 (𝑤) = ℎ𝑝 (𝑤), (3.59)

𝔏1
𝑓 𝑝ℎ

𝑝 (𝑤) = ∇𝑤ℎ𝑝 (𝑤) · 𝑓 𝑝 (𝑤). (3.60)

Based on the Lie derivatives above, the observability matrix is defined as follows

𝑂 =

{
∇𝑤𝔏𝑙𝑓 𝑝ℎ

𝑝 (𝑤) | 𝑙 ∈ N
}
. (3.61)

The observability rank condition [85] states that if the observability matrix𝑂 is full
column rank, the nonlinear system (3.57) is locally weakly observable. One can
compute the gradient of the zeroth-order Lie derivative to get

∇𝑤𝔏0ℎ𝑝 (𝑤) = ∇𝑤ℎ𝑝 (𝑤)

=


𝑅(𝑞𝐿,𝐼)⊤ 03×3 03×4 03×3 03×3 03×3 03×4 03×3

04×3 04×3 𝐼4 04×3 04×3 04×3 04×4 04×3

−𝑅(𝑞𝑖,𝐼)𝑅(𝑞𝐿,𝐼)⊤ 03×3 Φ1 03×3 𝑅(𝑞𝑖,𝐼)𝑅(𝑞𝐿,𝐼)⊤ 03×3 03×4 03×3

04×3 04×3 Φ2 04×3 04×3 04×3 Φ3 04×3


(3.62)

where Φ1(𝑝 𝑗 ,𝐿 , 𝑝𝑘,𝐿 , 𝑞 𝑗 ,𝐼) and Φ2(𝑞𝑘,𝐼) are some functions that are generally non-
zero and Φ3 = Φ3(𝑞 𝑗 ,𝐼) is given by

Φ3(𝑞) =
[
𝑞𝑠 𝐼3 + 𝑞×𝑣 −𝑞𝑣

𝑞⊤𝑣 𝑞𝑠

]
. (3.63)

The gradient of the first-order Lie derivative is

∇𝑤𝔏1
𝑓 𝑝ℎ

𝑝

=


03×3 𝑅(𝑞𝐿,𝐼)⊤ 03×3 03×3 03×3 03×3 03×3 03×3

03×3 03×3 ∗ 1
2Θ(𝑞 𝑗 ,𝐼) 03×3 03×3 03×3 03×3

∗ ∗ ∗ ∗ ∗ 𝑅(𝑞 𝑗 ,𝐼)𝑅(𝑞𝐿,𝐼)𝑇 03×3 03×3

03×3 03×3 ∗ ∗ 03×3 03×3 ∗ 1
2Φ3(𝑞 𝑗 ,𝐼)Θ(𝑞𝑘,𝐼)


(3.64)
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where an asterisk denotes some non-zero block element of matched dimensions.
Because the nonlinear system (3.57) is infinitely smooth, 𝑂 has an infinite number
of rows in general. However, it is sufficient to show that a finite number of rows are
linearly independent to determine local weak observability. With this in mind, we
consider only the rows corresponding to the zeroth and first Lie derivatives.

𝑂 =

[
∇𝑤𝔏0ℎ𝑝

∇𝑤𝔏1
𝑓 𝑝
ℎ𝑝

]
(3.65)

After applying block row elimination, 𝑂 reduces to

𝑅(𝑞𝐿,𝐼)⊤ 03×3 03×4 03×3 03×3 03×3 03×4 03×3

04×3 04×3 𝐼4 04×3 04×3 04×3 04×4 04×3

03×3 03×3 03×4 03×3 𝑅(𝑞 𝑗 ,𝐼)𝑅(𝑞𝐿,𝐼)⊤ 03×3 03×4 03×3

04×3 04×3 04×4 04×3 04×3 04×3 Φ3(𝑞 𝑗 ,𝐼) 04×3

03×3 𝑅(𝑞𝐿,𝐼)⊤ 03×4 03×3 03×3 03×3 03×4 03×3

04×3 04×3 04×4
1
2Θ(𝑞 𝑗 ,𝐼) 04×3 04×3 04×4 04×3

03×3 03×3 03×4 03×3 03×3 𝑅(𝑞 𝑗 ,𝐼)𝑅(𝑞𝐿,𝐼)⊤ 03×4 03×3

04×3 04×3 04×4 04×3 04×3 04×3 04×4
1
2Φ3(𝑞 𝑗 ,𝐼)Θ(𝑞𝑘,𝐼)



.

(3.66)
Given | |𝑞 | | = 1, 𝑅(𝑞), Φ3(𝑞), and Θ(𝑞) have full column rank. Therefore𝑂 has full
column rank for arbitrary 𝑗 ∈ N̄ c

𝑖
and 𝑘 ∈ N̄ s

𝑗
. The observability rank condition [85]

tells that the nonlinear system from (3.57) is locally weakly observable.

Finally, we arrive at the following theorem.

Theorem 1. Suppose the detected set of agentsV𝑖 ⊆ A for agent 𝑖 is defined as in
(3.27). ThenV𝑖 is the largest observable set in A.

Proof. Suppose 𝑗 ∈ N̄ c
𝑖
. Proposition 1 implies that N̄ s

𝑗
is an observable set with

respect to the agent 𝑖. Moreover since V𝑖 is defined as the union of all N̄ s
𝑗

over
∀ 𝑗 ∈ N̄ c

𝑖
, V𝑖 is also an observable set with respect to agent 𝑖. Recall that 𝑗 ∈ V𝑖

is a necessary condition for agent 𝑗 to be observable to agent 𝑖 because it has no
information on 𝑙 ∈ A \ V𝑖. Therefore, we conclude that 𝑗 ∈ V𝑖 is a necessary and
sufficient condition for agent 𝑗 to be observable to agent 𝑖.

Theorem 1 states that all the detected sets of spacecraft V𝑖 are observable in this
problem formulation. Moreover, no other spacecraft 𝑗 ∈ A \ V𝑖 is observable to
the 𝑖-th spacecraft, given the measurement models and the one-hop communication
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limitation assumed in this problem. In other words, the DPE algorithm estimates
the states for all the agents in the largest local observable subset 𝑗 ∈ V𝑖.

3.4 Consensus Estimation of Swarm Reference Frame
This section details the Swarm Reference Frame Estimation (SRFE) algorithm. So-
phisticated motion planning algorithms typically require a common local reference
(e.g., LVLH frame); however, finding such a reference frame is a non-trivial es-
timation task. All of the spacecraft in the swarm must have an estimate, and the
swarm must reach a consensus on the common local reference frame. We apply an
information consensus filter [9], [10], which is a decentralized algorithm where a
sensor network co-estimates a state vector using the consensus algorithm [86].

In the development of the SRFE algorithm, we make the following assumptions:

• the communication graph G = (A, Ec) is undirected and connected at each
time step;

• the subset of agents in the swarm has the measurements of the absolute pose
of the reference spacecraft;

• the degree of the communication graph is upper bounded by a finite bound
𝑑max. That is Card(N c

𝑖
) < 𝑑max for all 𝑖 ∈ A for some 𝑑max < +∞.

The assumption that the communication graph is undirected may be relaxed so long
as the graph is balanced [10], [86]. To estimate the common LVLH frame, the
state that needs to be estimated is the absolute position and velocity of a reference
spacecraft in the ECI frame. Denote 𝜉 to be the reference spacecraft translational
state where 𝜉 = [𝑝𝐿,𝐼 ; 𝑣𝐿,𝐼] and 𝑝𝐿,𝐼 and 𝑣𝐿,𝐼 are the position and velocity of the
reference spacecraft in the ECI. Suppose a subset of spacecraftW ⊆ A measures
the absolute pose of the reference spacecraft. These absolute pose measurements
may be obtained by combining GPS and relative pose measurements, which are
assumed to be available for the DPE. Then, the discrete-time dynamics for the
whole swarm are given by the following set of equations

𝜉 (𝑡 + 1) = 𝑓 𝑠 (𝜉 (𝑡)) + 𝑤𝑠, 𝑡 = 1, 2, . . . 𝜉 (0) = 𝜉0 (3.67)

𝜂𝑖 (𝑡) =𝐻𝑠𝜉 + 𝜓𝑠𝑖 , 𝑖 ∈ W, (3.68)

where 𝐻𝑠 = [𝐼3 03×3] is the absolute measurement model for measurement 𝜂𝑖.
Propagation is modeled by a nonlinear function 𝑓 𝑠. The process and measurement
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noises are denoted as 𝑤𝑠 ∼ N(06×1,𝑊
𝑠) and 𝜓𝑠

𝑖
∼ N(03×1,Ψ

𝑠), respectively, and
they are assumed to be independent. We define the estimate of 𝜉 by 𝜉𝑖 for a spacecraft
𝑖 ∈ A. The objective of the SRFE is to estimate 𝜉𝑖 in an optimal fashion for all
the spacecraft. To this end, we apply the information consensus filter [9] to the
distributed dynamical system given by (3.67)) and (3.68).

The SRFE first computes the proposal information vector 𝑢0
𝑖

and the proposal
information matrix 𝑈0

𝑖
, according to (3.71) and (3.72). 𝑁 denotes the size of the

swarm 𝑁 = Card(A). This is computed on each spacecraft 𝑖 ∈ A from the prior
estimate 𝜉−

𝑖
and the information matrix 𝐽−

𝑖
. Next, the swarm communicates the

consensus proposals to its neighbors and iteratively applies consensus 𝐾 times. For
each iteration 𝑘 , the SRFE uses the consensus to compute a posterior information
vector and information matrix according to (3.73) and (3.74), respectively. The
consensus coefficient 𝜖 must satisfy a stable upper bound 𝜖 < 1/𝑑 where 𝑑 (Gc)
is the maximum degree of the communication graph. By the assumption that the
communication graph has a finite degree, we have 𝑑 (Gc) < 𝑑max. Then, we choose
𝜖 such that 𝜖 < 1/𝑑max to guarantee convergence. A posteriori information state
and information matrix are computed according to (3.75) and (3.76). The algorithm
is modified such that it uses nonlinear dynamics for time propagation of state. The
Jacobian of 𝑓 𝑠 (𝜉) around 𝜉𝑖 is defined to be 𝐹𝑖 = 𝜕 𝑓 𝑠 (𝜉)

𝜕𝜉

���
𝜉=𝜉𝑖

and this is used for the
covariance time propagation. The SRFE algorithm is summarized in Algorithm 2.

The SRFE has multiple properties that make it advantageous for the common LVLH
estimation. First, the information consensus filter asymptotically approaches the
optimal centralized estimate as𝐾 →∞, assuming the dynamical system is linear [9].
The optimal centralized estimate refers to the Kalman filter solution given that the
centralized nodes have access to all the measurements (3.68), where 𝑓 𝑠 in (3.67) is
linear. In practice, it is known that the information consensus filter achieves near-
optimal value even if𝐾 is small [9]. The algorithm is strictly local and decentralized,
such that the spacecraft only requires local information exchange. Each of the
agents has an estimate of the reference trajectory even if some of the spacecraft
do not make a direct measurement. Also, this approach is agnostic to whether the
reference spacecraft or target is cooperative or uncooperative, so long as some of
the spacecraft in the swarm can measure the absolute position of the reference in
the ECI frame. In addition, the LVLH estimation has a unique requirement that the
reference trajectory obeys the orbital dynamics. This is because the relative orbital
dynamics such as HCW assume that the reference trajectory follows the modeled
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Algorithm 2: The SRFE Algorithm.
Result: Estimate 𝜉+

𝑖
and 𝐽+

𝑖
for each 𝑖 ∈ A

Input: 𝜉𝑖 (0) = 𝜉𝑖0, 𝐽𝑖 (0) = 𝐽𝑖0
while true do

Propagate dynamics

𝜉−𝑖 (𝑡) = 𝑓 𝑠 (𝜉+𝑖 (𝑡 − 1)) (3.69)

𝐽−𝑖 (𝑡) =
(
𝐹𝑖 (𝐽+𝑖 (𝑡 − 1))−1𝐹⊤𝑖 +𝑊 𝑠

)−1
(3.70)

Get measurements 𝜂𝑖
Compute consensus proposal vector 𝑢0

𝑖
and matrix𝑈0

𝑖

𝑢0
𝑖 =

1
𝑁
𝐽−𝑖 (𝑡)𝜉−𝑖 + 𝐻𝑠⊤Ψ𝑠𝜂𝑖 (3.71)

𝑈0
𝑖 =

1
𝑁
𝐽−𝑖 (𝑡) + 𝐻𝑠⊤Ψ𝑠𝐻𝑠 (3.72)

Perform consensus on 𝑢0
𝑖

and𝑈0
𝑖

for 𝑘 = 1 to 𝐾 do
Communicate 𝑢𝑘

𝑖
and𝑈𝑘

𝑖
to all neighbors 𝑗 ∈ N c

𝑖

Update:

𝑢𝑘𝑖 = 𝑢𝑘−1
𝑖 + 𝜖

∑︁
𝑗∈N c

𝑖

(𝑢𝑘−1
𝑗 − 𝑢𝑘−1

𝑖 ) (3.73)

𝑈𝑘
𝑖 = 𝑈𝑘−1

𝑖 + 𝜖
∑︁
𝑗∈N c

𝑖

(𝑈𝑘−1
𝑗 −𝑈𝑘−1

𝑖 ) (3.74)

end
Compute a posteriori state and information matrix

𝜉+𝑖 (𝑡) = (𝑈𝐾
𝑖 )−1𝑢𝐾𝑖 (3.75)

𝐽+𝑖 (𝑡) = 𝑁𝑈𝐾
𝑖 (3.76)

end
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dynamics. The SRFE algorithm estimates the orbital states of an actual orbiting
body; therefore, an unbiased estimate of 𝜉 will also approximately satisfy the orbital
dynamics.

3.5 Validation of DPE and SRFE by Numerical Simulations
In the following three subsections, we discuss how the performance of the DPE
and the SRFE was verified. Using a satellite inspection mission scenario as an
example, we first illustrate the estimator convergence. Second, we quantitatively
compare the computational time and the estimation error for an increasing number of
spacecraft in the swarm. Finally, the DPE was implemented in a robotic experiment
using Caltech’s robotic spacecraft simulators called the Multi-spacecraft Testbed for
Autonomy Research (M-STAR). The experiment considers time-varying relative
sensing and communication graphs.

Numerical Simulation Example
This section verifies the performance of the DPE algorithm in a 6DOF numerical
simulation example. We consider an example mission scenario in a circular, Low
Earth Orbit (LEO) where three spacecraft cooperatively inspect one target spacecraft,
such as a defunct satellite. The target is uncooperative in the sense that it does not
communicate any information with the other spacecraft in the swarm. The three
inspector spacecraft are placed in periodic, thrust-free relative spacecraft trajectories
referred to as Passive Relative Orbits (PROs) [51] such that the centers of the PROs
coincide with the target. Each spacecraft has an elliptical relative orbit with radii
of 10 × 20 meters. All the spacecraft are initialized in the same orbital plane. The
ground truth dynamics of each spacecraft were modeled using (nonlinear) Keplerian
dynamics with no perturbations. The DPE uses the linearized HCW dynamics as the
propagation model for the relative dynamics and the SRFE integrates the Keplerian
dynamics to propagate the target state. For the attitude motion, the spacecraft
follow a constant slew rate matching the negative of the mean motion, such that
the attitude makes one rotation with one orbit. The absolute sensing uncertainties
are selected to be 5 meters in position and 1 degree in attitude. The relative
measurement uncertainties are 0.1 meters in position and 0.1 degrees in attitude.
The simulation is run for one orbit. We assume that each spacecraft has the relative
measurements of the target and the other spacecraft, and that all of the inspecting
spacecraft communicate with each other. The sensing and communication graphs
are fixed in this simulation example; the dynamic graphs are considered in the
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Figure 3.2: DPE and Individual EKF pose estimates and relative sensing and com-
munication graphs.

robotic experiment. The relative sensing and communication graphs are shown in
Fig. 3.2.

The inspector spacecraft first uses the SRFE to estimate the target spacecraft orbit
state in the ECI frame. Since the target is uncooperative, the team of inspector
spacecraft uses the SRFE to collectively estimate the target trajectory, which is then
used to define the LVLH frame. Each inspector spacecraft uses its absolute mea-
surement and the relative measurement of the target to create a pseudo-measurement
of the target absolute position. The maximum degree of the communication graph
is 𝑑 = 2, so the consensus coefficient is selected to be 𝜖 = 0.49. Each spacecraft
uses the target estimate from the SRFE to define the LVLH frame. Next, the DPE
estimates the formation pose with respect to the common LVLH frame. The absolute
pose measurements are transformed from the ECI frame to the LVLH frame.

As a point of comparison, we also implement the Individual EKF where each
spacecraft estimates poses only using its own absolute and relative measurements.
For the estimation parameters such as measurement and process noise, the same
parameters were used for the Individual EKF as those of the DPE. This represents
the case where there is no communication between the spacecraft.

Fig. 3.2 shows the formation pose estimate obtained in the DPE after one orbit.
The triangles represent the poses of the spacecraft in the swarm: black for ground
truth, blue for the DPE estimate, and yellow for the Individual EKF estimate. The
corresponding error ellipse represents the 99.7 percent confidence of the respective
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Figure 3.3: Position estimation error of DPE and SRFE in 6DOF numerical simu-
lations.

position estimates. Fig. 3.2 shows that the position error covariance for the DPE is
much smaller than that of the Individual EKF. The local relative sensing graph of
the DPE can be viewed as a pose graph. In this example, the DPE can estimate the
states for all of the spacecraft in the swarm even though there are only two direct
relative measurements available to each spacecraft.

In order to compare the Individual EKF and the DPE, the error metric was defined
as the Euclidean norm of the position estimation error: | |𝑝𝑖,𝐿 − 𝑝𝑖,𝐿 | |. Fig. 3.3a
shows the time history of the position estimation error for an inspector spacecraft
estimated by another inspector spacecraft. The position error for the DPE is smaller
compared to that of the Individual EKF at a steady state. Fig. 3.3a also shows that
the estimate converges quickly.

Fig. 3.3b shows the performance of the SRFE algorithm for each of the three
inspector spacecraft. The figure plots the error metric | |𝑝𝐿,𝐼 − 𝑝𝐿,𝐼 | | which is the
norm of the position estimation error of the reference spacecraft with respect to
the inertial frame. The figure shows that the SRFE estimates quickly converge to
the true trajectory for all the spacecraft. The high correlation between the three
estimate errors is due to the fact that the three estimates converge to a commonly
agreed estimate.

Scalability Analysis
We verify the scalability of the DPE in numerical simulations for an increasing
number of spacecraft in the swarm. The swarm sizes considered are 5, 100, 150,
200, 250, and 300 spacecraft. For each simulation, we study the estimation accuracy
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and the computational time of the DPE on each spacecraft. The performance of the
DPE is compared against two other filters: the Centralized EKF, which has access
to all of the measurements by all of the spacecraft, and the Individual EKF, where
each individual spacecraft estimates the states only using its own measurements.
The same parameters as those of the DPE were used for the Individual EKF and the
Centralized EKF, except for the assumption on the communication. This scalability
analysis does not include the computational time of obtaining the measurements.
Because the scalability of the SRFE algorithm is established in prior work [9], [10],
we assume the absolute reference state of the SRFE is given for this section only.

Given the relative positions, the relative velocities are selected such that all of
the spacecraft have a concentric PRO. The relative measurements are obtained as
described by (3.34). The simulation is run for 3,000 sec, which is approximately
half of an orbit.

The relative positions of spacecraft are initialized randomly. We specify a minimum
separation distance between spacecraft. The spatial density of the swarm is kept
constant for a varying number of spacecraft. The graph edges between spacecraft
are created if the Euclidean distance between each pair of spacecraft is below the
detection threshold. The relative sensing and communication networks are given
by the same graph. We enforce a maximum degree on each agent by pruning
edges off the nodes with too many edges. A limited degree physically corresponds
to each spacecraft having a restricted number of communication links. With this
assumption, the DPE has a bounded number of elements in the augmented state
vector regardless of the total number of spacecraft in the swarm. Moreover, we
ensure that the communication graph is fully connected in all of the scenarios
considered. Fig. 3.4a through 3.4c show the example graphs for 5, 100 and 300
spacecraft.

The performance of DPE is compared against the Centralized and Individual EKFs.
The Centralized EKF is a global observer which has access to all of the measurements
available in the swarm. While the Centralized EKF is prohibitive for large formations
in terms of communication and computation, it represents the best possible estimate
given all the information available in the network. The performance of DPE, the
Centralized EKF, and the Individual EKF are compared in Fig. 3.5a and 3.5c.

Fig. 3.5a shows the standard deviation of the position estimation error for differ-
ent numbers of spacecraft in the swarm. The position estimation error, which
is computed once the steady state has been achieved, is the time-averaged and
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Figure 3.4: The spatial distribution of teams of 5, 100, and 300 spacecraft in the
LVLH frame and their connectivity.

swarm-averaged standard deviation of the absolute position estimate. The position
estimation error has significantly improved compared to the Individual EKF case. It
is not surprising that multi-agent coordination improves estimation accuracy com-
pared to a baseline without information exchange, but the amount of improvement
is illuminating. The fact that estimation accuracy improves so much by including
measurements only from the immediate neighborhood implies that the majority of
all the relevant information is concentrated in the neighborhood of the agent. In
other words, the incremental information gain due to an additional spacecraft is
diluted by uncertainties accumulated over the relative sensing graph hops.

Fig. 3.5a also shows that the DPE estimation is not as accurate as that of Centralized
EKF. This is because DPE only uses information from the local observable subset.
However, this raises a follow-up research question: is there a localized and scalable
algorithm that coincides with the centralized optimal solution? Later in Chapter 6,
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we develop a new algorithm to address this optimality gap.

Fig. 3.5b shows the computation time required by each spacecraft for the DPE,
the Centralized EKF, and the Individual EKF. For DPE and the Individual EKF,
the computation time is averaged over all of the spacecraft in the swarm. The
computation time for DPE remains constant as the number of spacecraft in the
swarm increases. This is expected as DPE is a local algorithm, and the graphs have
a fixed degree; therefore, the size of the state to be estimated is bounded. Fig. 3.5c
compares the number of spacecraft estimated by each estimation algorithm. For
DPE, this is the number of spacecraft that is included in the local relative sensing
graph. For the Individual EKF, this is the size of the relative sensing neighborhood.
The bars represent the minimum and maximum number of neighbors among all of
the spacecraft in the swarm. Note that DPE has a significantly larger (but bounded)
number of spacecraft observed by each spacecraft. On average, the number of
estimated spacecraft increases by more than a factor of two. The maximum number
of spacecraft observed is high for DPE. This occurs at the part of the swarm
where many spacecraft are close to each other. In this example, we restricted the
communication and relative sensing graphs to have a maximum degree of 𝑑max = 6.
This ensures that the number of nodes in the local relative sensing graph is bounded.
The impact of the restriction is also empirically confirmed by the fact that the
maximum size of the local sensing graph does not grow as the overall swarm size
increases. Note that this maximum size can be reduced by choosing a smaller
upper bound for the maximum degree of the graph. Also, the simulation did not
include the time required to obtain the pose measurements. While the computational
complexity for vision-based pose extraction likely has a larger constant than the DPE
algorithm, it is also constant with respect to the swarm size.

3.6 Experimental Validation Using Spacecraft Simulators
The DPE algorithm was implemented on-board Caltech’s robotic spacecraft sim-
ulators, the M-STAR. In the experiment, each spacecraft obtained relative pose
measurements using a monocular camera and a computer vision algorithm. This
experiment tested the real-time performance of the DPE with time-varying graphs,
where the relative sensing graph changed depending on which spacecraft were in the
camera’s field-of-view (FOV). Because the experiment was constrained to planar
motions, the DPE algorithm formulation was modified from the 6-DOF to its 3-DOF
analog. With the 3-DOF formulation, the state for the 𝑖-th spacecraft is selected to
be 𝑥𝑖 = [𝑝𝑖,𝐿; 𝑣𝑖,𝐿; 𝜃𝑖,𝐿;𝜔𝑖,𝐿] where 𝑝𝑖,𝐿 and 𝑣𝑖,𝐿 denote 2D position and velocity
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Figure 3.5: The performance of DPE as the number of vehicles in swarm increases
from 5 to 300 spacecraft.

vectors with respect to the LVLH frame and 𝜃𝑖,𝐿 and 𝜔𝑖,𝐿 denote the 1D attitude
and rotation rate of the spacecraft. The time-varying communication graph was
simulated by masking part of the available communication packages.

Experimental Setup
Each spacecraft simulator used air-bearing and on-board air-based thrusters to simu-
late frictionless dynamics similar to that in space. We used the 3-DOF configuration
where the simulators translate and rotate only in a planar motion. Each spacecraft
was equipped with a Jetson TX2 computer, a monocular camera with a high FOV
lens, and ArUco visual markers [87] on each side as seen in Fig. 3.6. Example
images of the detected markers are shown in Fig. 3.7.
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Figure 3.6: M-STAR with the ArUco markers on the flat epoxy floor.

Figure 3.7: Detected markers as seen from the cameras on the spacecraft simulators.

Each spacecraft simulator used a thruster-based controller to follow a prescribed
HCW trajectory using the ground truth pose from the motion capture system. We
implemented the same formation as the numerical simulation case, where three
inspector spacecraft (labeled 1 through 3) orbiting around an uncooperative target
spacecraft (labeled 4). The attitude dynamics again assume that the spacecraft rotate
at the rate of the negative of the mean motion. The resulting trajectories were such
that each spacecraft measured at least two spacecraft persistently throughout the
trajectory. The time of each orbit was scaled to 262 sec, short enough so that the
experiment would be completed without depleting compressed-air for the thrusters
used to follow the trajectory.

The images from the monocular camera were processed on board each spacecraft
using a standard computer vision algorithm [87] to detect the ArUco markers and
estimate their full pose. While the ArUco-based algorithm does not address some of
the relative pose estimation challenges that result from using electro-optical sensors
in a space environment [88], there exist various other vision-based relative pose
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estimation algorithms [89]–[91] that implement application-specific solutions. Be-
cause DPE has a decentralized architecture for abstract communication and sensing
networks, DPE can be used in conjunction with most vision-based algorithms avail-
able. For this reason, we simplified the experiments by using the ArUco markers
and focus on the aspects relevant to DPE.

The absolute pose measurement [𝑝𝑖,𝐿; 𝜃𝑖,𝐿] is given from a motion capture system.
The motion capture system is typically used to provide the ground truth position
of the spacecraft to a sub-millimeter level accuracy; therefore, additional noise was
artificially added to make the absolute measurement more realistic. The noise was
modeled as zero-mean Gaussian with 0.2 meters standard deviation in translation
and 2 degrees standard deviation in rotation.

The on-board computers sent and received information over a wireless network to
simulate inter-spacecraft communication. In order to test the DPE’s performance
under a time-varying communication graph, some shared information was artificially
masked to simulate time-varying inter-satellite communication links. Specifically,
we prescribed the edges of the undirected communication graph to be

Ec =


∅, if 𝑡 < 20 sec

{(1, 2), (1, 3)}, if 20 sec ≤ 𝑡 < 50 sec

{(1, 2), (1, 3), (2, 3)}, if 50 sec ≤ 𝑡.

(3.77)

The measurement graph was also allowed to vary between time steps, depending on
whether a neighbor spacecraft was visible in the FOV or not.

Table 3.1 includes information about the parameters used by the DPE in the exper-
iment. The relative measurement covariance is scaled with the squared Euclidean
distance between spacecraft centers to model a larger uncertainty for relative mea-
surement at a large separation distance.

Software Architecture
The Robot Operating System (ROS) was used for interfacing with the sensors and
communicating measurements across robots. A block diagram of the software archi-
tecture can be seen in Fig. 3.8. After obtaining the pose of the ArUco markers in the
camera’s FOV, each marker pose was transformed into the corresponding spacecraft
body frame. This frame transformation was estimated by an extrinsic calibration
procedure described in next section. The relative and absolute measurements and
their covariances were then communicated to the prescribed neighbors over the



50

Table 3.1: Parameters specified in the DPE.

Parameters Values
Process noise std dev

Translation 0.03 m, 0.01 m/sec
Attitude 0.2 deg, 0.05 deg/sec

Absolute measurement std dev
Translation 0.2 m
Attitude 2 deg

Relative measurement std dev
Translation 0.1 m
Attitude 10 deg

Initial uncertainty std dev
Translation 2 m, 0.03 m/sec
Attitude 15 deg, 2 deg/sec

Control interval 1 sec

Image sampling from FLIR camera

ArUco detection algorithm

Relative pose estimations of the 

visible neighboring spacecraft

Decentralized Pose Estimation 

(DPE) algorithm

Spacecraft 1 Software

Handling time-varying graphs

Spacecraft 2 Software

Spacecraft 3 Software

Spacecraft N Software

Relative Sensing

WiFi Communication

Figure 3.8: DPE software architecture.

wireless network. When the set of observable agents changed due to time-varying
measurement or communication graphs, the method described in Section 3.3 was
used to modify the augmented states and covariances.

Camera Calibration
We performed intrinsic and extrinsic calibrations for each pairing of a monocular
camera and a spacecraft simulator. For the intrinsic calibrations, a pinhole camera
model with 6 radial distortion coefficients, 2 tangential distortion coefficients, and
4 thin prism distortion coefficients was used to model the high FOV lens camera.
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A checkerboard pattern was used as a visual target, and a motion capture system
collected the camera and the target poses.

Extrinsic calibration was performed to determine the relative pose between the
camera frame and the spacecraft body frame. The camera was rigidly attached to
the spacecraft body. The camera frame was defined such that its origin coincided
with the camera optical center. To perform this calibration, we first used a monocular
camera and a computer vision algorithm to extract the relative pose of the ArUco
targets. Sufficient pose measurements were collected while the ArUco target was
moved around the workspace. At each time step, the relative pose between the
spacecraft and the ArUco target was also obtained using the motion capture system.
We solved a least-square optimization to retrieve the camera to spacecraft body
calibration.

For each relative sensing edge, the relative pose measurement error was computed
as detected pose minus the ground truth from the motion capture system. After
camera calibration, the standard deviation of relative measurement error was 3.0 cm
along the line of sight, 2.3 cm in the in-plane perpendicular direction, and 2.9 deg
for attitude.

Table 3.1 includes information about the parameters used by the DPE in the exper-
iment. The relative measurement covariance is scaled with the squared Euclidean
distance between spacecraft centers to model a larger uncertainty for relative mea-
surement at a large separation distance.

Experimental Results
The three inspector spacecraft, shown in Fig. 3.6, ran the DPE algorithm in synchro-
nized rounds once every 1 sec, of which the ArUco detection took approximately
0.1 sec. Measurement collection and communication were allotted 0.3 sec. After
the measurement was collected, the DPE step took approximately 10−3 sec. Fig. 3.9
shows the varying sensing and communication network used by Spacecraft 2 for
estimation in the experiments. The orange edges correspond to the relative sensing
graph, while the green edges correspond to the communication graph. Initially,
there is no communication between any of the spacecraft, and Spacecraft 2 only
has access to the measurements it collects: relative measurements obtained using
ArUco pose estimation and a measurement of its own absolute pose. At 𝑡 = 20 sec,
Spacecraft 2 begins to communicate with Spacecraft 1. This allows Spacecraft 2
to have additional relative and absolute measurements. At 𝑡 = 50 sec, Spacecraft
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2 starts communicating with Spacecraft 3, adding more measurements to its graph.
Fig. 3.10 shows the estimation error as a function of time during the experiment. A
2-𝜎 uncertainty envelope is plotted around the error, using the covariance matrix.
The dashed vertical lines indicate that new communication links are introduced at
𝑡 = 20 sec and 𝑡 = 50 sec. For every additional communication link, the covariance
size decreases, confirming that added relative and absolute measurements provided
by communication reduce uncertainty.

Fig. 3.10 also shows that, even when the communication graph remains unchanged,
the measurement graph also changes due to some spacecraft entering and exiting the
camera FOV. Time-varying relative sensing topologies are representative of realistic
sensing constraints for a spacecraft swarm. For instance, at 𝑡 = 37 sec an edge is lost
and then regained at 𝑡 = 40 sec. Fig. 3.10 shows that there is a temporary increase
in the uncertainty during this period, followed by a decrease when the measurement
is restored. This observation supports that additional relative measurements gen-
erally help the DPE reduce the estimate uncertainty. There are some other events
where relative sensing edges are added and lost (after the second communication
link is established at 𝑡 = 50 sec), but the covariance did not change noticeably. This
is likely explained by the added measurements available to Spacecraft 2 after the
communication links to both Spacecraft 1 and 3 are established. These extra mea-
surements provide more observation paths from Spacecraft 1 to Spacecraft 4, adding
redundancy so that the loss of a single measurement is not as impactful. These re-
dundant measurements from communication are another advantage of cooperative
estimation using the DPE.

3.7 Chapter Summary
We present the Decentralized Pose Estimation (DPE) algorithm that solves the
swarm localization problem for the formation flying spacecraft. The DPE considers
ad hoc relative sensing and communication networks to determine a set of observable
spacecraft and shares these spacecraft’s measurements to jointly estimate their poses
with respect to the LVLH frame at each time step. As a part of the DPE, the Swarm
Reference Frame Estimation (SRFE) algorithm applies the information consensus
filter to estimate the common LVLH frame in a decentralized fashion. The DPE
is a local, decentralized algorithm that has a constant complexity with respect to
the swarm size. Numerical simulations verify that the estimation errors of the DPE
are improved compared to those for no cooperation cases and that the computation
time remains constant as the swarm size increases. An experimental result using
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Figure 3.9: The relative sensing and communication edges as seen by the observer
(Spacecraft 2) at different times during the experiment.
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air-bearing spacecraft simulators demonstrates good DPE performance using vision-
based relative pose measurements with ad hoc networks.

While we demonstrated that DPE improves estimation accuracy through coordina-
tion with neighbors in the local subset, the optimality analysis (Fig. 3.5a in Sec-
tion 3.5) also identified that the DPE estimate is not as accurate as the best possible
estimation from a centralized, but not scalable, estimator. This insight motivated
our follow-up work in Chapter 6 where we address the question: can we develop
a distributed and localized estimation algorithm that computes centralized optimal
estimation algorithm? In Chapter 6, we tackle this optimality gap by utilizing a new
theoretical framework for Distributed Factor Graph Optimization.
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C h a p t e r 4

MULTI-SPACECRAFT SIMULTANEOUS ESTIMATION OF
POSE AND SHAPE

This chapter contains material from the following publication:

[1] K. Matsuka, A. Santamaria-Navarro, V. Capuano, A. Harvard, A. Rahmani,
and S.-J. Chung, “Collaborative pose estimation of an unknown target using
multiple spacecraft,” in 2021 IEEE Aerospace Conference, IEEE, 2021,
pp. 1–11. doi: 10.1109/AERO50100.2021.9438352,

In this chapter, we tackle the second key technology with robotics in orbit; robust
vision-based navigation. Previously in Chapter 3, the hardware experiment for DPE
used vision to compute the relative pose of neighbor spacecraft, but it used fiducial
markers which made the pose estimation problem much simpler. However, the target
objects are often unknown and uncooperative in real on-orbit servicing missions;
we do not know the geometry or appearance of the target a priori, and there is
no information sharing between the target and observers. Vision-based navigation
is more challenging in this case, as it requires more complex robotics perception
techniques such as Simultaneous Localization And Mapping (SLAM). In addition,
previous works in the literature focused on a single observer; leaving multi-agent
observer problems largely unexplored.

In this chapter, we develop the Multi-spacecraft Simultaneous Estimation of Pose
and Shape (MSEPS) algorithm. MSEPS is designed to track the pose of unknown,
uncooperative spacecraft with multiple observers. MSEPS estimates CG of the
target object using vision sensors on multiple chaser spacecraft. tackle the problem
in the distributed sensor network paradigm where the team of chaser spacecraft can
exchange information over the local inter-spacecraft communication links. MSEPS
can be viewed as a multi-observer extension of SEPS algorithm [90].

We exploit the recent development in distributed estimation theory [9], [10] where
the approximate solution of a minimum variance estimate given the global informa-
tion is computed in a distributed, iterative fashion. We highlight that the framework
for a distributed sensor network is distinct from that of the cooperative SLAM in ter-
restrial applications, which assumes infrequent, event-based information exchange
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Figure 4.1: Target shape reconstructed from three cooperative spacecraft with
monocular cameras. The bottom left image shows the keypoints seen by one of
the chasers.

upon rendezvous. Distributed Kalman information filter, which poses clear advan-
tages for multi-agent robotics perception, thus we adopt the same strategy in this
work.

The contributions of this chapter are as follows: a) We present the first-of-the-
kind multi-spacecraft algorithm architecture for the cooperative vision-based pose
estimation of the uncooperative and unknown target, b) we apply the distributed es-
timation of sensor networks to develop the extended decentralized information filter
for the MSEPS, we propose an improvement in dynamics update of the information
matrix, leveraging the special structure that arises in the MSEPS problem, and d) we
validate the algorithm architecture through numerical simulations of relative orbits,
measurements, and inter-spacecraft communications.

The rest of the paper is organized as follows. The estimation problem is formally
stated in Section 4.1. Section 4.2 discusses the overall architecture of the MSEPS,
which includes keypoint extraction, matching, and optical flow components. Sec-
tion 4.3 discusses the decentralized information filter algorithm, which is a back-end
filter that fuses distributed sensing information. Section 4.4 presents the validation
of the approach through a simulation setup. Finally, conclusions are drawn in
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Figure 4.2: Example images seen by chasers and their relative orbit with respect to
the target.

Section 4.5.

4.1 Problem Statement
The use of multiple observers has multiple advantages. First, the chasers produce
larger coverage of the target when they are placed in well spatially distributed
relative orbits. The group of spacecraft can maintain a formation such that a
persistent estimate can be produced. In this way, a virtual distributed camera
system is created. This is of special interest in those cases where some of the
chasers cannot have good visual conditions but receive reasonable updates from the
other chasers. The observations from different perspectives also improve the depth
estimation, convergence rate, and accuracy. Moreover, if one of the chasers fails
during the mission, the inspection task can still be completed by the other chasers.
We present a cooperative strategy that generalizes to an arbitrary number of the



58

ECI

LVLH

Target Body 
Frame

Chaser 1
(Reference)

Chaser 2

Chaser 3

Figure 4.3: Local-Vertical Local-Horizontal (LVLH) frame, defined on the reference
spacecraft, and target’s and chasers’ body coordinate frames.

chaser spacecraft.

Fig. 4.3 illustrates the conventions for the reference frames used in this chapter. The
absolute orbital motion of each chaser and target is described with respect to the
Earth-Centered Inertial (ECI) frame. One of the chasers is chosen as a reference
spacecraft, which defines a local-vertical local-horizontal (LVLH) coordinate frame.
The target body frame is defined such that its origin coincides with its center of
gravity (CG), which is to be estimated by MSEPS. The orientation of the target
frame is arbitrarily selected during the initialization since the target is unknown, and
the attitude trajectory is described in terms of the relative attitude.

The MSEPS estimates the state vector

𝑥 = [𝑥𝑇 ; 𝑙1; · · · ; 𝑙𝑁 ]

where 𝑥𝑇 is the target state and 𝑙𝑖 is the landmark states for the 𝑖-th chaser. The
target state is defined as 𝑥𝑇 ≜ [𝑝𝑇/𝐿; 𝑣𝑇/𝐿; 𝑞𝑇/𝐼] includes the relative positions and
velocities of the target expressed in the LVLH frame, and its attitude in ECI frame.
The angular velocity of the target is not a part of the state vector. Instead, they are
obtained from the optical flow module explained in Section 4.2. The 𝑖-th chaser’s
landmark state is defined as 𝑙𝑖 = [𝑝𝑖1/𝑇 ; · · · ; 𝑝𝑖

𝑛𝑖/𝑇 ] where 𝑝𝑖
𝑗/𝑇 is the 𝑗-th landmark

visible to the 𝑖-th chaser, expressed in the target body frame. The resulting nonlinear
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chaser system is written as

𝑥𝑇 𝑘 = 𝑓𝑇 (𝑥𝑇 𝑘−1, 𝑘) + 𝑤𝑇 𝑘 , (4.1)

𝑝𝑖
𝑗/𝑇 𝑘

= 𝑝𝑖
𝑗/𝑇 𝑘−1

, ∀𝑖 ∈ A, 𝑗 ∈ {1, . . . , 𝑛𝑖}, (4.2)

𝑦𝑖,𝑘 = 𝑐𝑖 (𝑥𝑇 𝑘 , 𝑙𝑖𝑘 ) + 𝑣𝑖,𝑘 , ∀𝑖 ∈ A. (4.3)

The nonlinear discrete-time target dynamics model 𝑓𝑇 may include any relevant
environmental forces and control actuation. In this chapter, we assume the coupling
between the relative orbital mechanics and the attitude dynamics are negligible.
The relative orbital propagation model includes the fully nonlinear equations for the
Earth’s point gravity and we assume torque-free attitude dynamics for the attitude
propagation. The measurement 𝑦𝑖,𝑘 are pixel coordinates of keypoints extracted from
the image taken by the 𝑖-th spacecraft at 𝑘 using the computer vision algorithms.
The measurement model 𝑐𝑖 projects the 3D landmarks to image plane and it is a
function of the chaser pose (even though they are not included as the arguments
to the function in (4.3) because these parameters are assumed to be known). The
standard pinhole camera model is used for the camera projection model throughout
this chapter. 𝑤𝑇 𝑘 ∼ N(0,𝑊𝑇 𝑘 ) and 𝑣𝑖,𝑘 ∼ N(0, 𝑉 𝑖𝑘 ) for ∀𝑖 ∈ A are process
noise for target dynamics and measurement noise for each keypoint measurements,
respectively.

Equations (4.1)-(4.3) can be equivalently written as a general nonlinear dynamical
system, in terms of the full state vector 𝑥, as follows

𝑥𝑘 = 𝑓 (𝑥𝑘−1, 𝑘 − 1) + 𝑤𝑘 , (4.4)

𝑦𝑘 = 𝑐(𝑥𝑘 , 𝑘) + 𝑣𝑘 . (4.5)

where𝑤𝑘 = [𝑤𝑇 𝑘 ; 0; . . . ; 0] and 𝑣𝑘 = [𝑣1
𝑘
; . . . ; 𝑣𝑁

𝑘
] are the augmented noise vectors.

If this process was to be estimated in a centralized algorithm, one can design a
straightforward nonlinear observer such as EKF. The challenge of the distributed
system is that each measurement 𝑦𝑖 is only available on the 𝑖-th chaser. The goal of
the MSEPS is to approximate the minimum variance posterior estimate 𝑥+

𝑘
using the

local communication network in a distributed fashion.

To simplify the formulation, we make the following assumptions. Each chaser
is equipped with a star tracker and a Global Navigation Satellite System (GNSS)
receiver [92] and all chaser poses relative to the reference spacecraft are known.
In order to have access to the real-time position of the reference spacecraft posi-
tion, we assume an external estimation approach specifically designed for tracking
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Figure 4.4: The collaborative pose estimation algorithm architecture. Each chaser
has its own copy of the decentralized algorithm.

formation. Next, we assume that the target is not applying relative translational
maneuvers or such maneuver is negligible compared to the assumed process noise.
Finally, we assume the chaser spacecraft have a connected but possibly time-varying
communication graph.

4.2 MSEPS Architecture Overview
The Multi-spacecraft Simultaneous Estimation of Pose and Shape (MSEPS) consists
of multiple algorithm modules as shown in Fig. 4.4. This section describes each of
these modules, except the decentralized back-end filter, which is discussed in more
detail in Section 4.3.

The MSEPS can be primarily separated into Initialization Mode and Filtering Mode
which are shown as two columns in Fig. 4.4. We assume that the target CG and
geometry are unknown or only partially known prior to the Initialization Mode.
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Therefore, Initialization Mode calculates both the initial set of landmarks and the
target pose from a small batch of images. Also, the target body coordinate frame
is initialized such that its origin is coincident with the estimated CG and it has an
arbitrary orientation fixed with the target. During Filtering Mode, the state at the new
time step is predicted by propagating the target dynamics and comparing it against
the new observations. The Filtering Mode will continuously provide the relative
pose estimate of the target such that a guidance and control module can use the
product to proximity operation maneuvers in real-time. The modules with asterisks
in Fig. 4.4 are part of the extended decentralized information filter described in
Section 4.3.

The algorithms in each Initialization and Filtering Modes are also split between
the pre-communication, communication, and post-communication steps, where the
communication aggregates information shared across multiple spacecraft. The
following sections visit each module and discuss its functionality.

Keypoint Extraction and Correspondence
The strategies for keypoint correspondences are different for Initialization and Fil-
tering Modes. During the Initialization Mode, the two sets of extracted keypoints
from two different epochs are matched by all-to-all, brute force matching, followed
by ratio-test. In addition, we apply a random sample consensus (RANSAC) algo-
rithm with a 5-point Stewenius algorithm to compute the 3D landmark position,
which is discussed in the next section. During the Filtering Mode, the extracted
keypoints are matched with projected landmarks. The search region is reduced by
using the predicted keypoint location and covariance of the landmarks. We assume
the standard pinhole camera model to describe the projection of the 3D landmarks
onto the image plane.

Each chaser searches for correspondences only among images taken by itself and
not across the multiple spacecraft. This architectural choice is motivated by a few
reasons. First, finding correspondences of descriptors across multiple spacecraft
requires communicating the set of descriptors, which increases the bandwidth.
Second, even with feasible communication, the chance of detecting a correspondence
is small across multiple spacecraft, given the large variation in the visual conditions
when the chasers are spatially well distributed.
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Target Frame Initialization
The primary function of the Initialization Mode is to initialize the target frame,
which involves selecting the origin and orientation of the frame consistent among
all chasers and defining all the detected inliers in the target frame. The target
frame initialization involves three steps: individual initialization, communication,
and transformation into a common frame.

First, individual spacecraft initialize the respective landmarks expressed in its camera
frame prior to the communication step. Given the camera pose in ECI at each epoch is
known from GNSS and the star tracker, the target pose trajectory is solved along with
their landmarks. To solve this, the 5-point Stewenius algorithm [93] with random
sample consensus (RANSAC) is used to determine inliers, followed by least-square
optimization. With relative pose transformation from the chaser’s camera to the
reference’s camera, the landmark positions are initialized in the reference spacecraft
frame. At this time, the reference spacecraft also initializes the target frame by
selecting an arbitrary attitude and a coarse estimate of the target CG. The coarse
estimate of the target CG is defined as one of the landmark features observed.

Second, spacecraft exchange information in the communication step. The land-
marks estimated from each chaser and the target initial frame from the reference
spacecraft are shared with all the spacecraft. Finally, each spacecraft applies the
pose transformation to obtain landmarks in the target reference frame.

Optical Flow
The optical flow module uses the sequence of images to compute the angular velocity
in a similar way as done in the previous work [90]. When the initial frame and the
inertia matrix of the target are unknown, direct observation of angular measurement
has advantages such as simpler propagation of attitude quaternion and avoiding esti-
mation of the inertia matrix. The optical flow may be obtained by classical methods
such as Lucas-Kanade [94] or more recent methods such as using a convolutional
neural network trained with sequences of images [95].

Communication
The information shared among neighbor spacecraft is different for Initialization and
Filtering Modes. The communication module manages the information exchange
between neighboring spacecraft. Given the edges in the communication graph E𝑘 ,
the communication link is established between (𝑖, 𝑗) ∈ E𝑘 . We assume that the
communication rate is higher than the estimation rate, i.e., there may be multiple
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communication exchanges at each filter time epoch.

Landmark Initialization
If there is a new keypoint correspondence that was not previously tracked, the land-
mark state is added to the filter. First, individual spacecraft detects new landmarks
prior to the communication step. The new landmarks’ 3D positions are broadcast
to all the spacecraft, and finally, all the new landmarks from the epoch are added to
the state. This step is implemented in a similar way to SEPS [90].

4.3 Extended Decentralized Information Filter
Section 4.2 provided an overview of sub-modules that enable the computer vision
pipeline for MSEPS. This section discusses the back-end filter extended decentral-
ized information filter (EDIF), a nonlinear extension of the decentralized information
filter.

Should there be a centralized node that has access to all the measurements in
the network, a standard extended information filter in Algorithm 3 is sufficient to
fuse measurements from multiple sensors. In Algorithm 3, 𝑗𝑘 and 𝐽𝑘 denote the
information vector and information matrix at time 𝑘 and 𝐹𝑘 and 𝐻𝑘 are Jacobians
of dynamics and measurement functions. 𝑊𝑘 and 𝑉𝑘 are covariance matrices for
the process noise and the measurement noise, respectively. The superscript “+” and
“−” denotes posterior and prior estimates. Notice that the information filter form of
the Kalman filter admits a simple summation form for the measurement equations
((4.9) and (4.10)) facilitating a distributed implementation.

Algorithm 3 in the current form has some disadvantages, however. First, the algo-
rithm is still not distributed. Second, the matrix inverse operation of the information
matrix is computationally intensive as the state vector size becomes large. This
is a particular concern for MSEPS where the state includes landmark states. We
will exploit the Decentralized Information Filter [10] which obtains the approximate
solution to the minimum variance estimate for a linear system. EDIF will extend
this result to nonlinear dynamics and measurement models. The following sections
discuss how to distribute the measurement update. We also develop an improve-
ment to the dynamics update of the information matrix which leverages the special
structure of the MSEPS problem.
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Algorithm 3: Extended Information Filter.
Result: 𝑥+

𝑘
, 𝐽+

𝑘

Prediction step

𝑥−𝑘 = 𝑓 (𝑥+𝑘−1, 𝑘), (4.6)

(𝐽−𝑘 )
−1 = 𝐹𝑘 (𝐽+𝑘−1)

−1
𝐹⊤𝑘 +𝑊𝑘 , (4.7)

Compute the information vector

𝑗−𝑘 = 𝐽−𝑘 𝑥
−
𝑘 (4.8)

Get measurement 𝑦𝑘
Measurement update

𝑗+𝑘 = 𝑗−𝑘 + 𝐻
⊤
𝑘 𝑉
−1
𝑘

(
𝑦𝑘 − 𝑐(𝑥−𝑘 , 𝑘) + 𝐻𝑘𝑥

−
𝑘

)
, (4.9)

𝐽+𝑘 = 𝐽−𝑘 + 𝐻
⊤
𝑘 𝑉
−1
𝑘 𝐻𝑘 (4.10)

Recover the state vector
𝑥+𝑘 = (𝐽

+
𝑘 )
−1
𝑗+𝑘 (4.11)

Measurement Update and Consensus
When the overall measurement 𝑦𝑘 consists of independent measurements, the mea-
surement update becomes a simple sum of the measurement contributions from all
the observations.

𝑗+𝑘 = 𝑗−𝑘 +
∑︁
𝑖∈A

𝐻𝑖𝑘
⊤
𝑉 𝑖𝑘
−1(𝑦𝑖 − 𝑐𝑖 (𝑥−𝑘 , 𝑘) + 𝐻

𝑖
𝑘𝑥), (4.12)

𝐽+𝑘 =𝐽−𝑘 +
∑︁
𝑖∈A

𝐻𝑖𝑘
⊤
𝑉 𝑖𝑘
−1
𝐻𝑖𝑘 , (4.13)

where 𝑦𝑖 and 𝑐𝑖 denote the measurement and measurement model of the keypoints
as seen by the 𝑖-th chaser. The information update has a block-sparse structure
that allows further simplifications. Recall that the state vector is divided into sub-
blocks 𝑥 = [𝑥𝑇 ; 𝑙1; · · · ; 𝑙𝑁 ]. After sub-dividing the information vector and matrix
into corresponding block elements, we can equivalently write (4.12) and (4.13) as
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following. For simplicity, we drop the subscript 𝑘 which denoted the time.

𝐽+𝑇𝑇 = 𝐽−𝑇𝑇 +
∑︁
𝑖∈A

𝐻⊤𝑖𝑇𝑉
𝑖
𝑘

−1
𝐻𝑖𝑇 , (4.14)

𝐽+𝑖𝑖 = 𝐽
−
𝑖𝑖 + 𝐻⊤𝑖𝑖𝑉 𝑖𝑘

−1
𝐻𝑖𝑖, ∀𝑖 ∈ A, (4.15)

𝐽+𝑖𝑇 = 𝐽−𝑖𝑇 + 𝐻⊤𝑖𝑖𝑉 𝑖𝑘
−1
𝐻𝑖𝑇 , ∀𝑖 ∈ A, (4.16)

𝐽+𝑖 𝑗 = 𝐽
−
𝑖 𝑗 , ∀𝑖, 𝑗 ∈ A, 𝑖 ≠ 𝑗 . (4.17)

The linear form of the measurement update in the information filter leads to the
distributed implementation. For a formation with a small number of chasers, (4.12)-
(4.13) may be implemented by simply relaying the contributions from individual
terms. For a formation with a large number of spacecraft, a consensus algorithm
may be used to iteratively converge to average. To see this, we manipulate the
measurement update equation to

𝑗+𝑘 =
1
𝑁

∑︁
𝑖∈A

(
𝑗−𝑘 + 𝑁𝐻

𝑖
𝑘

⊤
𝑉 𝑖𝑘
−1(𝑦𝑖 − 𝑐𝑖 (𝑥−𝑘 , 𝑘) + 𝐻

𝑖
𝑘𝑥)

)
, (4.18)

𝐽+𝑘 =
1
𝑁

∑︁
𝑖∈A

(
𝐽−𝑘 + 𝑁𝐻

𝑖
𝑘

⊤
𝑉 𝑖𝑘
−1
𝐻𝑖𝑘

)
, (4.19)

where 𝑁 = card(A). Assuming an undirected graph for the communication topol-
ogy, the decentralized information filter applies the following consensus protocol to
compute the above equations.

𝑢𝑖𝑐+1 = 𝑢𝑖𝑐 + 𝜖
∑︁
𝑗∈N (𝑖)

(
𝑢
𝑗
𝑐 − 𝑢𝑖𝑐

)
, (4.20)

𝑈𝑖𝑐+1 = 𝑈𝑖𝑐 + 𝜖
∑︁
𝑗∈N (𝑖)

(
𝑈
𝑗
𝑐 −𝑈𝑖𝑐

)
, (4.21)

where 𝜖 is the constant design parameter called the consensus coefficient. Later,
Theorem 2 shows that 𝜖 must be sufficiently small to guarantee convergence. At the
first iteration of consensus, the 𝑢𝑖𝑐 and𝑈𝑖𝑐 are initialized as

𝑢𝑖0 = 𝑗−𝑘 + 𝑁𝐻
𝑖
𝑘

⊤
𝑉 𝑖𝑘
−1(𝑦𝑖 − 𝑐𝑖 (𝑥−𝑘 , 𝑘) + 𝐻

𝑖
𝑘𝑥), (4.22)

𝑈𝑖0 = 𝐽−𝑘 + 𝑁𝐻
𝑖
𝑘

⊤
𝑉 𝑖𝑘
−1
𝐻𝑖𝑘 . (4.23)

The following theorem guarantees the convergence of the consensus protocol given
that 𝜖 is bounded by a function of the degree of the graph.

Theorem 2 (Convergence of consensus protocol [96]). Consider a network of agents
with communication graphG applying the consensus algorithms (4.20)-(4.21) where
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0 < 𝜖 < 1
Δ

and Δ is the maximum degree of the network. If the digraph is balanced,
an average-consensus is asymptotically reached. That is lim𝑐→∞ 𝑢𝑖𝑐 =

1
𝑁

∑
𝑗∈A 𝑢

𝑗

for ∀𝑖 ∈ A.

The maximum degree of the network may be controlled by specifying the maximum
degree for each node, such that 𝜖 may be selected prior to the mission. Also, in
practice, such a consensus algorithm has been shown to have sufficient convergence
with finite iterations [17].

Information Time-Update
One drawback of using the information filter as opposed to the Kalman filter is
the time-update of the information matrix requires the additional inversion of the
covariance matrix. The computational complexity of inverse scales with 𝑂 (𝑛3) in
a fully dense matrix where 𝑛 is the dimension of the state vector. For a large scale
problem like MSEPS where 𝑛 is large, reducing the inversion operation is desirable.
With this in mind, we introduce the following proposition in which the structure of
the MSEPS problem is used to reduce the complexity of computation.

Proposition 2. Assume 𝐽+
𝑘−1 and 𝑊𝑇 𝑘 are positive definite matrices. Suppose 𝐹𝑇 𝑘

and 𝐹𝑘 corresponds to Jacobians of 𝑓𝑇 and 𝑓 , respectively, and 𝑊𝑘 is the process
noise covariance at 𝑘 . Then, the time-update step of the information matrix can be
re-written as

𝐽−𝑘 = 𝐽 − 𝐽𝜔(𝐼 + 𝜔⊤𝐽𝜔)−1𝜔⊤𝐽 (4.24)

where

𝐽 := 𝐹−⊤𝑘 𝐽+𝑘−1𝐹
−1
𝑘 , (4.25)

𝜔 := [(𝑊𝑇 𝑘 )
1
2 ; 0; · · · ; 0] . (4.26)

Proof. The most general time-update equation of the information matrix is given by

(𝐽−𝑘 )
−1 = 𝐹𝑘 (𝐽+𝑘−1)

−1𝐹⊤𝑘 +𝑊𝑘 (4.27)

where 𝐹 is the Jacobian of the overall dynamics 𝑓 (𝑥). We leverage that the process
noise is introduced only to the target state 𝑥𝑇 and not on the landmarks. Suppose𝑊𝑇

is the process noise covariance corresponding to the target propagation. Then, the
process noise covariance for overall dynamics may be written as 𝑊 = 𝜔𝜔⊤ where
𝜔 is defined above with zero matrices, appropriately sized. Let 𝐽 = 𝐹−⊤𝐽+

𝑘−1𝐹
−1,
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where dynamics of Jacobian has block diagonal structure 𝐹 = diag(𝐹𝑇 , 𝐼, · · · , 𝐼).
Using the definitions of 𝜔 and 𝐽, (4.27) may be equivalently written as

𝐽−𝑘 = (𝐽−1 + 𝜔𝜔⊤)−1

= 𝐽 − 𝐽𝜔(𝐼 + 𝜔⊤𝐽𝜔)−1𝜔⊤𝐽.
(4.28)

The second equality holds by using the matrix inversion lemma.

We note that the computational complexity of (4.24) with respect to landmark size
scales better than (4.27). Jacobian 𝐹 has a block diagonal structure with mostly
identity elements, so the inverse of Jacobian is simply 𝐹−1 = diag(𝐹−1

𝑇
; 𝐼; · · · ; 𝐼).

The computation of 𝜔 does not depend 𝑛, and computation 𝐽 and 𝐽𝜔 both scales
linearly, i.e., 𝑂 (𝑛). The matrix inversion (𝐼 + 𝜔⊤𝐽𝜔)−1 is order of 𝑛𝑇 × 𝑛𝑇 matrix
and does not depend on 𝑛. The operation that requires most computation is 𝜔(𝐼 +
𝜔⊤𝐽𝜔)−1𝜔⊤𝐽 which requires 𝑂 (𝑛2) computation. Therefore this manipulation
eliminates the inversion of the full information matrix.

State Recovery
Once the information vector and the information matrix are computed, we need to
compute the state vector, which involves the inversion of the information matrix

𝑥 = (𝐽+)−1 𝑗+. (4.29)

Tracked Landmarks
The newly discovered landmark states and respective covariances are initialized
after the measurement update step. This takes place after the communication step,
ensuring that new landmarks detected by any of the chasers are included in the
new state vector and the information matrix. The information matrix is updated by
placing the inverse of the initial covariance of the new landmarks on the extended
diagonal block.

This completes the discussion of all the necessary components of the EDIF algo-
rithm. EDIF algorithm is summarized in Algorithm 4 for clarity. In the context of
the overall architecture shown in Fig. 4.4, the modules that are primarily involved
with the EDIF are denoted with asterisks.

4.4 Simulation
The part of the MSEPS architecture described in Section 4.2-4.3 is validated in
a computer simulation. The purpose of the simulation is to validate the multi-
spacecraft architecture, the distributed algorithm, and the dynamic allocation of
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Algorithm 4: Extended Decentralized Information Filter.
Result: 𝑥+

𝑘
, 𝐽+

𝑘

Prediction step

𝑥𝑇
−
𝑘 = 𝑓𝑇 (𝑥𝑇+𝑘−1), 𝑙−𝑖,𝑘 = 𝑙

+
𝑖,𝑘−1 (4.30)

𝐽 = 𝐹−⊤𝐽+𝑘−1𝐹
−1 (4.31)

𝐽−𝑘 = 𝐽 − 𝐽𝜔(𝐼 + 𝜔⊤𝐽𝜔)−1𝜔⊤𝐽 (4.32)

Get measurement 𝑦𝑖
Compute consensus proposals

𝑢𝑖0 = 𝑗 𝑖
− + 𝑁𝐻𝑖𝑘

⊤
𝑉−1
𝑖 (𝑦𝑖 − 𝑐𝑖 (𝑥−𝑘 , 𝑘) + 𝐻

𝑖
𝑘𝑥
−
𝑘 ) (4.33)

𝑈𝑖0 = 𝐽𝑖
− + 𝑁𝐻𝑖𝑘

⊤
𝑉−1
𝑖 𝐻𝑖𝑘 (4.34)

while 𝑐 ≤ 𝐶 do
Perform consensus

𝑢𝑖𝑐 = 𝑢
𝑖
𝑐−1 + 𝜖

∑︁
𝑗∈N𝑖

(
𝑢
𝑗

𝑐−1 − 𝑢
𝑖
𝑐−1

)
(4.35)

𝑈𝑖𝑐 = 𝑈
𝑖
𝑐−1 + 𝜖

∑︁
𝑗∈N𝑖

(
𝑈
𝑗

𝑐−1 −𝑈
𝑖
𝑐−1

)
(4.36)

end
Compute the posterior state and information matrix

𝑥+𝑘 =
(
𝑈𝑖𝐶

)−1
𝑢𝑖𝐶 (4.37)

𝐽+ = 𝑈𝑖𝐶 (4.38)

Add new landmark states and covariances

landmark states and covariances. As such, we do not use the images to extract
the keypoints and synthetic images are only used for visualization purposes. We
assume that the keypoints extraction, keypoint correspondence, and optical flow
are solved by functional sub-modules. We refer the reader to [90], [95] for further
implementation details. Future work includes validation of the algorithm with the
computer vision algorithm in the loop using the realistic synthetic images.

Extracted keypoints in this simulation are obtained by projecting a set of pre-defined
3D landmarks attached to the exterior of the spacecraft model to each chaser’s image
plane. A set of keypoints was simulated for each chaser based on the relative pose
between the chaser and the target at the time. Only the landmarks that have line-
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Orbital Parameter Value
Semi-major axis 42167.0 km

Eccentricity 2.9E-4
Inclination 8.1E-2 deg

Argument of perigee 354.2 deg
RAAN 68.8 deg

True anomaly 240.8 deg

Table 4.1: Geostationary orbital parameters.

Relative State Chaser 1 Chaser 2 Chaser 3

Position [m]
20.0 -10.0 -10.0
0.0 -34.6 34.6
34.6 -17.3 -17.3

Velocity [mm/s]
0.0 -1.26 1.26

-2.92 -1.46 1.46
0.0 -2.19 2.19

Table 4.2: Chaser initial states in target-LVLH frame.

of-sight are considered visible. The keypoints corresponding to the same landmark
have the same descriptors at different epoch, but the descriptors are different across
different spacecraft. At each epoch, each chaser processes the observation and runs
an iteration of the filter. The swarm of spacecraft only shared the variables over
the simulated inter-spacecraft communication. The algorithms on all the chaser
spacecraft are assumed to run in a synchronized fashion via clock synchronization
obtained from the GNSS. The differential GNSS and the star tracker measurements
used in the formation flight estimation are simulated by the ground truth relative
state.

Orbital Mechanics and Attitude Dynamics
The target and chaser spacecraft are placed in geostationary orbits and the target’s
initial orbital parameters are tabulated in Table 4.1. The initial positions and veloc-
ities of the chaser spacecraft were selected such that they are in a formation with
respect to the target and each other, as shown in Table 4.2. The resulting trajectories
of the chasers form concentric circular orbits with respect to the target as shown
in Fig. 4.2d. The absolute orbit for each spacecraft was computed by propagating
the respective spacecraft in the Earth-Centered Inertial (ECI) frame. The target
spacecraft simulated for this validation has a slight tumble which makes the CG
position in spin-parallel direction still observable over a longer period of time.
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The target’s initial angular velocity is 1 degree per second. While the target attitude
is numerically propagated by torque-free dynamics, each chaser is assumed to track
a smooth attitude trajectory that satisfies its pointing requirement. Specifically,
each chaser points its camera optical axis towards the target spacecraft such that the
target is always entirely within the field of view. We assume that reaction wheels
will provide the necessary slew maneuvers. Note that because chaser spacecraft
inertial poses are assumed to be known from the GNSS and the star tracker, the
MSEPS does not need to model the chasers’ dynamics on-board.

Simulated Measurements
Each chaser receives the GPS and star tracker measurements as the pose with respect
to the ECI frame. These measurements are simulated as the ground truth positions.
Note that this is not a strong assumption, as in GEO and above, although above
the GPS constellation, it is possible to track GPS signals for navigation using high
sensitivity receivers [97]. Millimeter accuracy has been proved in LEO filtering
differential GPS observations with a model of the spacecraft dynamics. The same
accuracy is theoretically also possible in higher orbits, such as in GEO, by tightly
fusing the GPS observations with measurements of another sensor [92].

We also assume that the keypoint detection and correspondence are solved by
the front-end computer vision algorithm, instead of extracting the keypoints from
synthetic images using the computer vision algorithms.

A set of keypoints are simulated by projecting the landmark to the camera origin
given the relative pose of the target with respect to the camera at each time epoch. A
set of pre-defined 3D landmarks are placed on the exterior of the spacecraft model.
A pinhole camera model is used and the landmarks are only visible when there is
no obstruction on their line of sight. We artificially add Gaussian noise to each
keypoint observation at each epoch. The image size is 1024-by-1280 pixels and the
focal length is 𝑓 = 2400 pixels.

Results
The reconstructed shape of the target is shown as a 3D point cloud in Fig. 4.5. Even
though the target spacecraft (Cygnus) has a complex geometry including deployed
solar panels, the reconstructed point cloud closely resembles the target shape. The
red, blue, and green markers denote the landmarks that are visible by Chaser 1, 2,
and 3, respectively at the epoch. Because three spacecraft are spatially distributed,
they cover different surfaces of the Cygnus, showing the advantage of the multi-
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Figure 4.5: Reconstructed shape obtained from the tracked landmarks. Red, blue,
and green markers denote landmarks seen by Chasers 1, 2, and 3, respectively.

spacecraft approach. Fig. 4.1 shows the same reconstructed shape from another
perspective. The figure also includes the camera pose trajectory expressed in the
estimated target reference frame. Even though the relative trajectories of the chasers
were designed to be concentric circular orbit in the LVLH frame (Fig. 4.2d), the
chaser trajectories are more complex when expressed in the target reference frame
due to the target’s own rotation.

The projected keypoints of Chaser 1 is shown along with the synthetic image in
Fig. 4.6. For each keypoint, the corresponding landmark covariance projected onto
the image plane is shown as a circle around the keypoint. Green color indicates
that the keypoint was tracked for 10 or more consecutive frames, while orange color
indicates the point was tracked for less. The figure shows that the landmarks with
longer tracks have smaller covariances as expected.

The results of target pose tracking are shown in Fig. 4.7 and 4.8. Fig. 4.7 shows
the quaternion values of both truth and estimated target attitude, with respect to the
initial frame. The estimated attitude quaternion follows closely of the true attitude.
It also shows that the estimate obtained by all chasers agree with each other. Fig. 4.8
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Figure 4.6: Tracked landmark overlaid on the synthetic image. Circles around each
landmark indicate the size of uncertainties. Green landmarks indicate states that are
tracked for more than 10 consecutive frames.

shows the estimation error for target’s CG. The error is defined with respect to the
ground truth target CG which was used to generate the simulation. The CG location
estimation errors are described in terms of the parallel and perpendicular directions
to the target spin-axis. This projection is selected because the observability of the CG
location in the perpendicular direction is expected to be higher than the direction
parallel for any rotating object with constant or slowly varying angular velocity
vector. Fig. 4.8 verifies these behaviors where it shows a quick initial convergence
in both parallel and perpendicular directions. Then the position estimate continues
to converge (approach towards zero) with higher error in the parallel direction. The
CG position estimate remains bounded over time.

4.5 Chapter Summary
We presented the cooperative vision-based pose estimation algorithm called Multi-
spacecraft Simultaneous Estimation of Pose and Shape (MSEPS). MSEPS is posed
as a distributed sensor network paradigm. Using inter-spacecraft communication,
MSEPS tightly integrates the vision-based feature tracking problem with a dis-
tributed estimation framework. We provided an overview of the multi-spacecraft



73

Figure 4.7: Target attitude quaternion tracking result.

Figure 4.8: Target center of gravity estimation error.
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algorithm architecture that consists of the computer vision pipeline, communication,
and back-end filtering. We proposed the extended decentralized information filter
that approximately solves the minimum variance estimate of the global information
in a distributed fashion. We made algorithm improvement that exploits the special
structure of the MSEPS problem. We validated the distributed algorithm and some
of the algorithm pipelines using the simulation.
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C h a p t e r 5

HIGH-FIDELITY SIMULATION TOOLS FOR SPACECRAFT
VISION-BASED RELATIVE NAVIGATION

This chapter contains material from the following publications:

[1] K. Matsuka, L. Zhang, I. Ragheb, C. Ohenzuwa, and S.-J. Chung, “High-
fidelity, closed-loop simulation of spacecraft vision-based relative naviga-
tion in ros2,” in 2023 33rd AAS/AIAA Space Flight Mechanics Meeting,
AIAA, 2023,

[2] K. Matsuka, C. Ohenzuwa, and S.-J. Chung, “Rapid synthetic image gener-
ation using neural radiance fields for vision-based formation flying space-
craft,” in 2023 33rd AAS/AIAA Space Flight Mechanics Meeting, AIAA,
2023,

The previous two chapters presented the DPE and MSEPS algorithms which are de-
signed to enable spacecraft to perform robotics operations in orbit. As we developed
new algorithms that bridge the gap between robotics and space systems, we noticed
the lack of publicly available simulation tools that integrated robotics technologies
with space systems, such as those used to test vision-based navigation algorithms.
When developing robotics applications, it is helpful to utilize Robot Operating Sys-
tem 2 (ROS2) which is a standardized, open-source, software development kit with
a rich algorithm library. However, ROS2 currently does not have much support
for high-fidelity simulations of space environments. On the other hand, there exist
high-fidelity astrodynamics simulation tools for guidance, navigation, and control
flight software for spacecraft; however, these tools do not have support to inter-
act with robotics software such as those implemented ROS2. To address this gap
between robotics and space systems, we developed new simulation tools that help
with the development of vision-based navigation algorithms and proximity opera-
tions. These tools allow us to test autonomous algorithms implemented in ROS2
in real-time and closed-loop fashion without requiring access to space or expensive
experimental setups.

This chapter presents two new simulation tools. First, we present ROS-Basilisk, a
ROS2-compatible software interface for Basilisk [98]. Basilisk is an open-source
software that is capable of performing real-time astrodynamics simulation and is use-
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ful for guidance, navigation, and control in aerospace applications. While Basilisk
provides a rich framework for astrodynamics simulation, it does not currently inter-
face with ROS, which would be required to validate the real-time performance of
algorithms. We designed our ROS-Basilisk interface in a manner that preserved the
flexibility and computational efficiency of Basilisk while also allowing algorithms
implemented in ROS2 to interact with the dynamics simulation in Basilisk.

Second, we also developed ROS-NeRF, which takes the simulated spacecraft poses
of the observer and target spacecraft and simulates the images of the target that the
observer’s relative navigation camera would acquire. ROS-NeRF is implemented
based on Neural Radiance Fields or NeRF [99], a recent technique for learning-
based 3D view synthesis. ROS-NeRF rapidly renders high-fidelity images of target
spacecraft from novel viewpoints based on the relative position and orientation of the
target and observer spacecraft. ROS-NeRF also expands NeRF to be applicable to
variable lighting directions, where the target direction of the sun relative to the target
may change due to the target’s rotational motion. We do this by explicitly incorpo-
rating the lighting direction as an input parameter in neural network architecture.
During an offline phase, we first train NeRF on high-fidelity synthetic images of
spacecraft. During the online phase, the trained model is used to generate synthetic
images from a new camera, and this online part is implemented as a ROS2 node.
With this approach, ROS-NeRF can rapidly render high-quality images of target
spacecraft and publish them to other ROS2 nodes, such as vision-based navigation
algorithms.

To demonstrate the use cases of these simulation tools, we also develop an integrated
set of autonomy algorithms for on-orbit inspection and formation flying scenarios.
We demonstrate that ROS-Basilisk and ROS-NeRF can be used to validate the
performance of autonomy algorithms that are implemented in ROS2.

The rest of the chapter is organized as follows. Section 5.1 discusses the motiva-
tion for developing the new simulation tools. Section 5.2 discusses the details of
ROS-Basilisk. Section 5.3 describes the details of ROS-NeRF. Section 5.4 briefly
describes the set of autonomous algorithms we developed for on-orbit inspection sce-
narios. Section 5.5 discusses the numerical simulation results. Finally, Section 5.6
makes concluding remarks about this chapter.
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Figure 5.1: Characterization of common verification and validation strategies for on-
orbit inspection systems vs. ideal simulation tool that was developed in Chapter 5.

5.1 Motivation
In order to validate vision-based navigation algorithms for on-orbit inspection, peo-
ple commonly perform either numerical simulations, hardware experiments on the
ground, or some combination of both. However, common verification techniques
have some disadvantages as illustrated in the Venn diagram in Fig. 5.1. For example,
even though traditional GNC simulation tools (e.g., Basilisk [98]) are capable of
performing closed-loop simulations with realistic dynamics, they have previously
lacked the ability to simulate information-rich sensors (e.g., camera) rapidly and at
high fidelity. Hardware experiments involving real cameras and platforms, such as
robotic arms [100] or air-bearing robots [78], can perform closed-loop simulations
with real images. However, these experimental platforms are often limited in their
range of motion, costs, and feasible simulation duration. Pre-computing a trajectory
and rendering a set of synthetic images can be made as realistic as the accuracy of
models, but the simulations are not closed-loop as it does not reflect the controls
computed based on the vision-based navigation estimates. In order to reduce en-
gineering time and cost, an ideal tool should model realistic orbital motions and
synthetic images and be able to perform closed-loop simulations.

5.2 ROS-Basilisk: Astrodynamics Simulation
This section discusses ROS-Basilisk, a software layer that bridges ROS2 and
Basilisk [98]. Basilisk features a large library of high-fidelity force models, hardware
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Figure 5.2: Diagram of ROS-Basilisk interacting with other modules via ROS2
messaging.

components, visualization tools, an efficient back-end implementation in C/C++,
and a user-friendly Python interface for astrodynamics simulation. Basilisk can
be used to perform closed-loop simulations of space mission scenarios with G&C
algorithms, such as formation flying [101]. ROS-Basilisk acts as a lightweight
interface software such that ROS2 and Basilisk can run side-by-side, and modules
implemented in ROS2 can interact with dynamics simulations in Basilisk.

The architecture of ROS-Basilisk and its interaction with ROS2 and Basilisk is
shown in Fig. 5.2. From the ROS2 perspective, ROS-Basilisk is a ROS2 node that
simulates spacecraft dynamics and actuators. ROS-Basilisk “subscribes” to control
messages (eg. thruster burn time, reaction wheel torques), simulates the actuation
and spacecraft dynamics, and “publishes” the resulting states (eg. spacecraft poses).
Other ROS2 modules can use the ground truth states from ROS-Basilisk to simulate
sensors (e.g., camera, GPS, star tracker), which are in turn used by other naviga-
tion and control algorithms implemented in ROS2. From Basilisk’s perspective,
there is a custom Basilisk module (ROS-BSK Bridge in Fig. 5.2) that interacts with
the spacecraft dynamics and actuator models. ROS-BSK Bridge translates from
Basilisk messages to ROS2 messages and vice versa. From the rest of the Basilisk
modules’ point of view, ROS-BSK Bridge is a Basilisk node that handles sensor
simulations and autonomy algorithms. With this lightweight interface implementa-
tion, simulations within Basilisk and autonomy algorithms within ROS2 can interact
with each other.

ROS-Basilisk also runs ROS2 and Basilisk simultaneously in parallel. More specifi-
cally, ROS-Basilisk is implemented as a ROS2 node with a timer-based callback, and
it propagates the Basilisk simulation for one simulation step at a time at each callback
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to emulate real-time simulation. ROS-Basilisk uses timestamps on ROS2 messages
to handle synchronization. Running one simulation at a time using timer-callback
coarsely aligns Basilisk and ROS simulations; however, the exact timestamps may
not be aligned precisely due to possible delays such as the time it takes to compute
the simulation. We address this synchronization issue by appending each ROS2
message with a timestamp from the Basilisk simulation time.

In summary, ROS-Basilisk enables high-fidelity astrodynamics simulation capa-
bilities for robotics applications with a bi-directional ability to interact with other
ROS2 modules. ROS-Basilisk preserves the flexibility and extensive capabilities
of Basilisk and can accommodate various mission scenarios beyond the example
considered in this chapter. Since the interface only deals with translating between
ROS and Basilisk messages, one can incorporate various actuator models and high-
fidelity environmental forces in the Basilisk simulation scenario. The next section
presents an example of using the simulation output from ROS-Basilisk where the
relative navigation camera simulation module computes the image of the target
based on the spacecraft poses.

5.3 ROS-NeRF: Fast Camera Rendering via Neural Radiance Fields
In addition to ROS-Basilisk, we also developed ROS-NeRF, a separate ROS2 module
based on Neural Radiance Fields (NeRF) [102] that rapidly renders synthetic images
of target spacecraft in real-time along with ROS2. NeRF is a learning-based, novel-
view synthesis technique. In NeRF, a neural network is first trained from a relatively
small number of images. This trained model can then be used to render images from
novel views. Since NeRF was first published, various extensions to NeRF have been
explored. For example, some extensions aim to improve the training and rendering
speed [103]–[105], scale up to large scenes [106], [107], accommodate lighting
variation [108], enable multi-resolution rendering [103], [109], and estimate the
camera pose jointly [110]. In ROS-NeRF, we applied NeRF to spacecraft target
simulation applications by training it on a custom dataset of high-fidelity, synthetic
images of spacecraft. We also developed a ROS2 software interface so other vision-
based navigation algorithms implemented in ROS2 can utilize the images rendered
from NeRF in real time. One challenge with applying NeRF to space applications
is that the spacecraft target can move relative to the light sources in the scene; to
address this, we also present a strategy to specify lighting variations that exploits
the conditions expected in the orbital environment.
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To learn a 3D scene from a set of 2D images, NeRF uses Multilayer Perceptron
(MLP) to model the mapping from a 5D coordinate (i.e., a spatial position 𝑥 ∈ R3

and viewing direction 𝑑𝑣 ∈ S2) to a volume density 𝜎(𝑥) ∈ R and view-dependent
emitted radiance 𝑐(𝑥, 𝑑𝑣) ∈ R3 at each location. Given the neural network weights
Θ, we can write the mapping that is learned by the neural network as

𝐹Θ : (𝑥, 𝑑𝑣) → (𝜎, 𝑐), (5.1)

where the mapping 𝐹Θ is modeled by a Multi-Layer Perceptron (MLP). Once NeRF
memorizes the mapping to 𝜎(𝑥) and 𝑐(𝑥, 𝑑𝑣), the image from a new pose can be
reconstructed.

The rendered image is computed by evaluating the volume density and emitted
radiance along the camera ray. Suppose a ray 𝑟 : R → R3, 𝑟 (𝑡) = 𝑜 + 𝑝𝑡 has the
origin 𝑜 ∈ R3 and ray direction 𝑝 ∈ R3. The values of 𝜎(𝑟 (𝑡)) and 𝑐(𝑟 (𝑡), 𝑑𝑣)
are sampled between the near and far bounds 𝑡 ∈ [𝑡𝑛, 𝑡 𝑓 ] along the ray. Then, the
expected color along the ray is computed by the following integral:

𝐶 (𝑟) =
∫ 𝑡 𝑓

𝑡𝑛

𝑇 (𝑡)𝜎(𝑟 (𝑡))𝑐(𝑟 (𝑡), 𝑑𝑣)𝑑𝑡, (5.2)

where
𝑇 (𝑡) = exp

(
−
∫ 𝑡

𝑡𝑛

𝜎(𝑟 (𝑠))𝑑𝑠
)
. (5.3)

The color value 𝐶 (𝑟) is computed for each pixel to generate an image from a novel
view.

The mapping 𝐹Θ in (5.1) as formulated in the original NeRF paper [102] is suitable
for modeling a static scene with time-invariant lighting conditions. In relative
navigation applications for spacecraft, however, the lighting conditions with respect
to the target body frame may change rapidly due to the rotation of the target.
There are some prior works in the literature that addressed the time-varying lighting
conditions by additionally including hidden variables which can be trained to capture
non-static effects [72]. This is a relatively generalizable approach where the variation
of lighting source is unknown. In contrast, there are additional exploitable structures
when considering the lighting variation for spacecraft relative navigation. These
exploitable structures include (1) the primary source of illumination in orbit is the
sun; (2) the sun’s position is well-known; and (3) the ray from the sun is mostly
collimated and constant. When these assumptions hold, we can modify NeRF such
that we train the MLP for explicit mapping from the lighting direction 𝑑𝑙 ∈ S2 to
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view-dependent, lighting-dependent emitted radiance 𝑐(𝑥, 𝑑𝑣, 𝑑𝑙). That is to define
the modified mapping �̃�Θ as

�̃�Θ : (𝑥, 𝑑𝑣, 𝑑𝑙) → (𝜎, 𝑐). (5.4)

Note that the density 𝜎(𝑥) is still invariant to lighting direction 𝑑𝑙 . Explicitly
incorporating known structures to the neural network makes the training more
efficient and results more accurate. Therefore, ROS-NeRF trains for the mapping in
(5.4).

The workflow of ROS-NeRF is divided into two phases: an offline training phase
and an online rendering phase. In the offline phase, we first generate a set of high-
fidelity images of a target spacecraft with varying poses and lighting conditions
using Blender. We then train the neural network using a sparse set of generated
images with ground truth poses and lighting conditions. In the online phase, ROS-
NeRF uses the pre-trained, neural-network weights to render synthetic images of the
target spacecraft. Given a ground truth spacecraft pose for the target and servicing
spacecraft in an inertial frame at a particular time step, NeRF renders an image of
the target spacecraft. This online rendering part of the algorithm is implemented
as a ROS2 node. In this work, ROS-NeRF is implemented with NVIDIA’s Neural
Graphics Primitives (instant-NGP) [103]. We chose instant-NGP due to its speed and
usability; however, the basic idea behind using NeRF for online image rendering
tools can be implemented with other NeRF variants in the literature. Next, we
discuss the implementation details of ROS-NeRF in the following sections.

Offline Phase – Data Generation and Training
The offline phase of ROS-NeRF includes data generation and neural network train-
ing. A sparse set of realistic synthetic images of the target spacecraft are generated
using the conventional ray-tracing rendering software Blender [111]. For each im-
age, a camera pose 𝑇 and a lighting direction 𝑑𝑙 are randomly sampled. The camera
pose is expressed in the target body frame and is sampled randomly from the uni-
form distribution on a sphere with a radius 𝑅 with the camera pointing at the target
object. The lighting direction 𝑑𝑙 is sampled uniformly from a unit sphere. The set
of training images has 4 channels (RGBA), where the alpha-channel specifies the
transparency. The background of the synthetic images is set to be transparent, as
this helps improve the training of NeRF. Generally, this training dataset generation
step is slow and computationally intensive, and that is acceptable. The idea is to
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generate a set of highly realistic images based on physics-based rendering only once
in an offline phase.

Once the dataset generation is completed, we then train the NeRF neural network
with a sparse set of synthetic images. This set of images sparsely samples the 3D
scene. Each image has a known camera pose and lighting direction as trainable
parameters. After 𝑁 iterations, we store the trained weights of the neural network.
These weights represent the 3D scene of the target spacecraft.

Online Phase – Rendering
In the online phase, ROS-NeRF uses the pre-trained weights to render synthetic
images of the target spacecraft. Given a ground-truth pose for the target and servic-
ing spacecraft and a lighting direction, ROS-NeRF renders an image of the target
spacecraft as seen by a relative navigation camera. For each pair of target and
camera poses, we render a 4-channel, RGBA image using the previously trained
NeRF model. Since the background of the rendered image is transparent, a different
background can be incorporated to generate a 3-channel RGB image. The output
of ROS-NeRF is a synthesized image of the target spacecraft from an arbitrary
viewpoint at a particular time. The online portion of the algorithm is packaged as a
ROS2 node so that the rendered images can be published as ROS2 messages.

ROS-NeRF can also be used in scenarios where there are multiple objects to be
simulated. When there are multiple objects in the view, our approach can be extended
by simply using multiple NeRF models to render individual targets in parallel. Using
information from the alpha channel, which specifies transparency, these images
can then be combined into a single composite image containing possibly multiple
objects. This approach may be a reasonable approximation when the interactions of
light between objects are negligible compared to the light from the sun. The online
portion of the ROS-NeRF pipeline is illustrated in Fig. 5.3.

In the next section, we describe experiments to evaluate the performance of the
images rendered via NeRF on some basic computer vision tasks such as object
detection and keypoint matching.

Evaluation of NeRF-Rendered Images
This section provides the evaluation results for ROS-NeRF. For each of the following
experiments, images were rendered using both Blender and ROS-NeRF. We first
present qualitative comparisons of the images. Next, we evaluate the rendering
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Figure 5.3: The architecture of ROS-NeRF.

fidelity by comparing the performance of object detection and keypoint matching
algorithms applied to the rendered images.

The experiments were carried out on a desktop with a CPU of Intel i7-8700 @
3.20GHz and a GPU of GTX 1070 (8GB memory). The rendering speed depends
on the image size and relative size of the object in the image. For a 640 by 512 pixel
image, the average rendering time per image was 10.1 sec for Blender and 2.2 sec
for instant-NGP. We also note that the rendering speed of Blender could be much
slower depending on the complexity of the 3D rendering model.

Qualitative Comparison Between NeRF And Blender

First, we qualitatively compare the synthetic images generated from Blender and
NeRF. Figures 5.4a and 5.4b provide a comparison of images rendered by Blender
and NeRF with the same camera pose and lighting direction. The image is generated
under a previously unseen view and lighting; i.e., the specific image from Blender
was not included as a part of the dataset for training NeRF. Despite some subtle
differences in appearance, overall, NeRF renders an image that very is similar to the
physics-based rendering given by Blender.

Next, Fig. 5.5 shows images rendered by Blender and NeRF while varying lighting
conditions. The figure shows the network successfully renders high-quality images
of the spacecraft from the same viewpoint but with varying lighting conditions. With
our approach to explicitly incorporate lighting direction in the neural networks, the
model learns the variation in appearance well.
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(a) Blender (b) NeRF

Figure 5.4: Comparison of target spacecraft images rendered via Blender and NeRF.

Figure 5.5: Images of a target spacecraft from the same camera pose but 4 different
lighting conditions. Images by Blender are on the top row and images from NeRF
are on the bottom row.

Object Detection on NeRF-rendered Images

For this evaluation, we applied an object detection algorithm for spacecraft on images
rendered via NeRF and Blender and compared their results. The object detection
algorithm uses the network architecture of YOLOv5 [112] and is specifically trained
for detecting spacecraft. The detection algorithm is described in more detail in the
“Vision-Based Spacecraft Detection” section. An example of an object detection
result is shown in Fig. 5.6. To compose the image, the target CubeSat was rendered
by NeRF, and then overlayed with a background image of the earth. The object
detection algorithm correctly identified the object in a scene as a spacecraft with
95% probability.

We compared the performance of the object detection algorithm on two sets of
images; one generated by NeRF and the other generated by Blender. For each
method, we generate a target spacecraft image with randomized camera pose and
lighting. The background image may randomly have Earth either fully or partially
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Figure 5.6: An example of the spacecraft detection algorithm. The image of
CubeSat, minus the background image, was rendered by NeRF.

in the view, or not in the view at all. The placement of the satellite in the image,
in terms of position, orientation, and scale, was also randomized. The scale of
the spacecraft varied anywhere from 2% to 80% of the overall image, making the
detection task challenging for some of the images. The two sets of images—one
by Blender and one by NeRF—were generated using the same seed for the pseudo-
random number generator. In other words, both sets of images have the same
randomization; therefore the only differences between the two sets of images are the
fact that spacecraft images were rendered by Blender or NeRF. Each set contains
500 images.

Based on the object detection results, we compute the precision and recall rates
of the object detection algorithm. The resulting precision-recall curves are shown
in Fig. 5.7. While there are small differences between the two curves, the object
detection algorithm was able to detect the target object similarly for both sets of data.
This suggests that NeRF-generated images are a suitable alternative for validating
object detection tasks.

Keypoint Detection and Matching of NeRF-derived Images

In the next experiment, we applied visual keypoint detection and matching on a
sequence of NeRF-rendered images. Visual keypoints serve as a basic building block
for the computer vision pipeline when applying Simultaneous Localization And
Mapping (SLAM)-like approaches to the spacecraft pose estimation problem [113]–
[116]. The objective of this experiment was to evaluate the performance of keypoint
matching on the spacecraft images rendered by NeRF. To generate the set of images,
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Figure 5.7: Precision vs. recall for the same spacecraft detection algorithm run on
images rendered by Blender and NeRF.

Figure 5.8: Sequence of camera views with respect to the target in frame-to-frame
visual feature matching experiment. In this scenario, each camera view is separated
by 6 degrees separation.

the camera trajectory was designed such that the camera moves around the target
in a circular motion at a specified separation angle while pointed at the target. An
example camera trajectory is shown in Fig. 5.8. We also applied the same keypoint
detection and matching to an almost identical set of images generated by Blender
for comparison.

At each step in the camera trajectory, we applied the keypoint matching between the
pair of images from two consecutive camera poses. The Scale-Invariant-Feature-
Transform (SIFT) algorithm was used for keypoint detection, and standard filtering
methods such as Lowe’s ratio test and RANSAC were applied to remove outliers.
An example of keypoint matching is shown in Fig. 5.9.
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Figure 5.9: Keypoint match between two successive NeRF images.

(a) No filtering based on keypoint size (b) Keypoint size greater than 4 pixels

Figure 5.10: Number of good keypoint matches between images rendered via NeRF
and Blender.

To quantitatively evaluate the performance of the keypoint matching algorithm, we
plotted the number of matches at each time step as the camera pose advances along
the trajectory. We ran experiments for different separation angles of 2, 4, and 6
degrees between each frame. Fig. 5.10 provides plots that show the number of
detected matches as a function of the time step for two different filtering schemes.
The different separation angles are shown in different colors, with results for Blender
and NeRF in solid and dashed line types, respectively. For Fig. 5.10a, the keypoint
matching process was implemented according to the above description. The NeRF
images had a larger number of matched features in comparison to the Blender images.
This is partly because the algorithm detected more keypoints in the NeRF-rendered
images. These additional keypoints were often small in size. The hypothesis for
the additional detected keypoints is due to the difference in the rendering of texture-
less surfaces (e.g., smooth metal)—Blender results are relatively smooth and do
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not exhibit much variation in intensity, whereas NeRF results contain minor local
variations due to the imprecision in the learned model. Because the artifacts learned
as a part of the NeRF model have consistent appearances when viewed from a similar
perspective, they are detected and matched as coherent keypoints.

Since many of these additional detected features were small, we additionally filtered
keypoints based on a minimum threshold size of 4. The number of matched keypoints
after applying this filter is shown in Fig. 5.10b. With this filter in place, the number of
matched keypoints is more similar between NeRF-based and Blender-based images.

Discussion

Overall, the images generated via ROS-NeRF appear reasonably photo-realistic and
have the potential to be used as tools to validate vision-based navigation algorithms
in space. The appearance variations due to lighting variations can be specified and
accurately rendered by augmenting the inputs of the MLP with lighting direction.
When we compared the ROS-NeRF-based images against Blender-based “ground
truth” images, vision-based navigation tasks performed similarly for both sets of
images.

When comparing the object detection and keypoint matching tasks, the object detec-
tion algorithm performed better on the ROS-NeRF images. The results of the object
detection performed on ROS-NeRF-based images were on par with those performed
on ground truth images. Conversely, keypoint matching algorithm results showed
some differences between ROS-NeRF-based and Blender-based images. This is
likely explained by the fact that the object detection task infers an object from larger
patches of the input image than keypoint detection. Because keypoint matching
is more sensitive to local appearance variation, the algorithm is more affected by
minor imprecisions from the ROS-NeRF model.

Finally, while ROS-NeRF has the potential to be used as a camera rendering module
for vision-based navigation tasks (and more generally to be used as a part of vision-
based navigation and mapping tasks), there are still challenges to overcome with
this approach. For example, some rendered images may contain “floaters”—artifacts
that are not part of the actual 3D scene and often look like they are floating in space.
One can also incorporate various NeRF extensions for faster training and rendering
speed [104] and multi-resolution [109] support.
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Figure 5.11: Closed-loop simulation for on-orbit inspection scenario.

5.4 Autonomous Algorithm Stack for On-Orbit Inspection
In the previous section, we described two new simulation tools: ROS-Basilisk
(Section 5.2) and ROS-NeRF (Section 5.3). In this next section, we demonstrate
how these tools can be applied to aid in the development of autonomy algorithms
for orbital space systems. We do this by developing an example algorithm pipeline
for on-orbit inspection mission scenarios and testing the algorithms in simulations
using ROS-Basilisk and ROS-NeRF in a closed-loop fashion. The high-level idea
of this fully integrated simulation is shown Fig. 5.11.

The example mission scenario we consider is the following. An observer spacecraft
is inspecting another uncooperative, free-orbiting CubeSat in Low Earth Orbit. The
observer spacecraft is equipped with a camera, a GPS, a star tracker, a thruster, and
a set of three-axis reaction wheels. The observer uses a relative navigation camera
sensor to visually track the target. The observer also uses the thruster to maneuver
and maintain a tight formation at a 30 m separation distance.

The autonomous on-orbit inspection algorithm consists of the following compo-
nents. First, the vision-based spacecraft detection module detects the target space-
craft. The outputs of the spacecraft detection, GPS, and star tracker measurements
are fused in an Extended Kalman Filter (EKF) to estimate the 3D positions and ve-
locities of the servicing and target spacecraft. Then, a formation-keeping controller
uses the navigation estimate and Linear Quadratic Regulator (LQR) to maintain
formation. The attitude guidance module switches between two tasks: pointing
a camera to the target and pointing the thruster to the delta-V axis. The attitude
controller tracks the desired pointing. All of these algorithms are packaged in ROS2
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modules.

The following sections describe the implementation details for vision-based space-
craft detection, relative and absolute navigation module, and formation keeping and
attitude control.

Vision-based Spacecraft Detection
We apply a CNN-based object detection technique to spacecraft detection task. We
use the state-of-the-art object detection network YOLOv5 [112] and train it on a
custom dataset specialized for spacecraft detection tasks. For more efficient training,
we apply transfer learning, where we initialize the neural network training with the
weights pre-trained on a generic object detection dataset.

The vision-based spacecraft detection algorithms used consists of an offline and
online phase. In the offline phase, we applied transfer learning; that is we additionally
trained a pre-trained neural network for spacecraft detection tasks using a custom
dataset. In the online phase, we used the trained neural network to detect the
uncooperative target spacecraft in the real-time stream of images obtained from
the (simulated) camera sensor. The pre-trained neural network was provided by
standard object detection tools from computer vision.

To train the object detection algorithm for spacecraft detection tasks, we generated
a custom-labeled dataset. First, we generated a set of synthetic images of spacecraft
with transparent backgrounds. They are generated in part using ray-tracing software,
and in part by augmenting images of generic spacecraft scraped from the internet.
Second, we render a set of background images of Earth using Blender, with a variety
of camera poses, lighting conditions, and cloud appearances in Low Earth Orbit.
Then, we overlay the spacecraft image onto the background image, with randomly
determined spacecraft size and position. A total of 2000 images were generated,
each having the spacecraft labeled with a tight bounding box. Fig. 5.12 summarizes
the process of generating the labeled dataset. We consider a single classification
category of “spacecraft” for detection.

Next, the YOLOv5 network is trained with the labeled dataset of spacecraft. We
initialize the training with weights pre-trained on the COCO dataset [117]. After
the neural network was trained, the model was validated on an unseen validation
dataset, including some real images obtained from previous missions. For instance,
Fig. 5.13 shows the object detection results on a real, space-borne image of MinXSS
and CADRE spacecraft being deployed from ISS.
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Figure 5.12: Generating a labeled dataset for training the spacecraft detection
algorithm.

Finally, we implemented the spacecraft detection algorithm with the ROS2 interface.
Module subscribes to the images (either from a real camera or from a simulated
camera module like ROS-NeRF) and publishes the bounding boxes corresponding
to detected spacecraft.

Relative and Absolute Navigation Module
After the object is correctly detected, the next step of the autonomy algorithm is to
estimate the 3D positions and velocities of the spacecraft. The navigation module
jointly estimates the 3D positions and velocities of both the servicing and the
target spacecraft via an Extended Kalman Filter (EKF). The available information
is the noisy GPS measurements of the servicing spacecraft and the object detection
results. The navigation module uses the noisy star-tracker measurements to estimate
the servicing spacecraft’s attitude. Assuming that a priori information on the
target spacecraft scale is available, we used the size of the detected bounding box
to compute the coarse range estimate while the center of the bounding box is
for bearing. Since the likelihood of error in object detection is non-trivial, we
heuristically rejected the outliers by thresholding at a confidence bound calculated
by projecting covariance estimates onto bearing measurement space.

Formation Keeping and Attitude and Control
The position and velocity estimates from the navigation module were inputted into
the formation keeping and attitude control. The module is responsible for (1)
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Figure 5.13: Spacecraft detection algorithm classifying MinXSS (bottom) and
CADRE spacecraft (top) from the real images taken from the International Space
Station.

maintaining along-track formation with respect to the target spacecraft by applying
periodic burns and (2) pointing the camera at the target whenever possible. For
translational positions and velocities control, we applied a Linear Quadratic Regu-
lator (LQR) with linearized relative orbital dynamics at a low rate of every 200 sec.
Since the servicing spacecraft had a single thruster, the attitude controller had to
reorient the spacecraft to align the thrust vector to the desired direction during the
burn phase. Given the desired delta-V maneuvers, the attitude control system bal-
anced between pointing the camera at the target spacecraft and pointing the thruster
in the delta-V direction. The main idea is that the spacecraft briefly “looks away”
from the target for the delta-V maneuver and returns to pointing the camera once
the burn is complete. This attitude-pointing schedule strategy is shown in the table
in Fig. 5.14. Finally, given the attitude-pointing commands and the current attitude
estimate from the navigation module, the attitude controller computed the desired
torque using attitude error feedback and allocated torque to each of the three reaction
wheels.

The formation-keeping and attitude control system algorithm was implemented as
the G&C module in a ROS2 node. The G&C module subscribes to navigation
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Figure 5.14: Attitude pointing schedule for alternating between delta-v maneuvers
and visual tracking of the target.

estimates and publishes the duration of thruster burns and the torque commands on
each of the reaction wheels. These outgoing messages are sent to ROS-Basilisk
which propagates dynamics based on these commands.

5.5 Simulation Results
We now integrate all the components we discussed in previous sections—ROS-
Basilisk, ROS-NeRF, and autonomous on-orbit inspection algorithms—in an on-
orbit inspection mission scenario. In this simulation, ROS-Basilisk was responsible
for modeling spacecraft dynamics and actuation hardware (i.e., thrusters and reaction
wheels). The simulated ground truth states of spacecraft are sent to the sensor
modules, such as ROS-NeRF, star tracker, and GPS sensors. The image and noisy
GPS and star tracker measurements are sent to the navigation module which includes
object detection and Extended Kalman Filtering. The navigation estimates of the
target and observer spacecraft, are sent to the G&C module which calculates the
necessary maneuvers for pointing and formation-keeping. The commands for the
thruster and reaction wheels are sent from G&C modules back to the ROS-Basilisk
module, which applies the actuation to spacecraft simulation, closing the loop. This
loop is visualized in Fig. 5.11.

For this scenario, a servicing spacecraft was tasked to visually track an uncooperative
target spacecraft and maintain a close formation 30 m distance. The two spacecraft
were initially separated by 50 m. Spacecraft dynamics and attitude control ran at
a high rate of 5 Hz. Image rendering, image detection, position EKF, and attitude
guidance ran at 1Hz. The simulation was carried out on a desktop computer with
Intel i7-8700 @ 3.20GHz as CPU and GTX 1070 (8GB memory) as GPU.

Bearing and range observations computed from the object detection algorithm are
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(a) Bearing measurements (unit vector) (b) Range measurements

Figure 5.15: Bearing and range measurements derived from the bounding box
computed from the vision-based spacecraft detection algorithm.

shown in Fig. 5.15. There are measurements drop out seen between 50-220 seconds
and 360-440 seconds; these are due to the intentional “look away” maneuvers where
the observer is prioritizing pointing the thruster for the delta-v maneuvers instead
of pointing the camera to the target. As soon as the observer points the camera back
to the target (around 220 and 440 sec), the observations for the target spacecraft are
re-acquired. The range observation indicates that the observer spacecraft begins to
approach closer to the target after the first maneuver, and maintains approximately
30 m separation after the second maneuver.

Next, Fig. 5.16 shows the 3D position estimation errors for both the target and
servicing spacecraft. The figures show that the positions of both the servicing
and target spacecraft are accurately estimated within a few meters. The 3-sigma
bounds for the target position estimate show that every 200 sec, the uncertainty
of the estimate grows during the look-away maneuvers. As soon as the camera is
pointed back to the target and the spacecraft is detected, the estimation uncertainty
reduces back to a nominal value. Even though the servicing spacecraft loses sight
of the target temporarily, the navigation module propagates the last known states
with sufficient accuracy to visually acquire the target spacecraft.

Finally, Fig. 5.17 shows the relative position control tracking error with respect to
the desired formation. Initially, the spacecraft is separated by approximately 50 m
but the formation-keeping control reduces the error to 30 m.

In summary, the numerical simulation demonstrated an autonomous on-orbit in-
spection mission. Using dynamics from ROS-Basilisk and images generated by
ROS-NeRF, we validated the autonomous algorithm can perform relative naviga-
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Figure 5.16: Position estimation error of target (left) and servicing (right) and 3-
sigma bound.

Figure 5.17: Relative position of the target with respect to the servicing spacecraft
in LVLH frame. Blue is the estimated position, orange is the ground truth from the
simulation and green is the desired formation.
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tion and formation control while visually inspecting the target spacecraft.

5.6 Chapter Summary
In this chapter, we described two, new simulation tools for validating autonomy
algorithms in space applications—ROS-Basilisk and ROS-NeRF. For the dynam-
ics, we developed ROS-Basilisk, a ROS2 software interface that wraps Basilisk, an
open-source astrodynamics simulation software. ROS-Basilisk allows flight soft-
ware written in ROS2 to interact with high-fidelity spacecraft dynamics simulation
in the loop. For the camera sensor, we integrated ROS-NeRF which uses the Neural
Radiance Fields to rapidly render, in real-time, spacecraft images from the provided
perspective and lighting conditions. We validated these simulation tools by consid-
ering an example mission scenario where an observer spacecraft uses vision-based
navigating to maintain tight formation with respect to an uncooperative target space-
craft. We developed an autonomous on-orbit inspection algorithm pipeline, which
included vision-based object detection, relative and absolute navigation, pointing,
and formation-keeping controls. Finally, we integrated all of the ROS-Basilisk and
ROS-NeRF simulation tools along with autonomous inspection algorithms in a sin-
gle ROS2 simulation in a closed-loop fashion. We demonstrated that the simulation
tools we developed can effectively validate the autonomous algorithms for on-orbit
inspection.
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C h a p t e r 6

DISTRIBUTED FACTOR GRAPH OPTIMIZATION

This chapter contains material from the following publication:

[1] K. Matsuka and S.-J. Chung, “Localized and incremental probabilistic in-
ference for large-scale networked dynamical systems,” IEEE Transactions
on Robotics (Conditionally accepted for publication), 2023,

6.1 Introduction
While DPE in Chapter 3 solved the scalability with the number of agents in the
swarm, it was not the optimal solution (i.e., the estimate did not coincide with the
optimal solution of the centralized problem). In this chapter, we take a step back
from the spacecraft-specific applications and address the limitations of existing
estimation algorithms in a more general class of locally coupled dynamical systems.
We develop novel algorithms that are both scalable and optimal for locally-coupled
dynamical systems with an arbitrarily large number of agents. We achieve this by
modeling the estimation problem as a distributed factor graph optimization (DFGO)
and developing a novel algorithm to solve it in a scalable fashion.

To solve the DFGO, we first apply a type of Alternating Direction Method of
Multipliers (ADMM) algorithms [43], [118], [119] called the Local Consensus
ADMM (LC-ADMM). LC-ADMM extends the Separable Optimization Variable
ADMM (SOVA) [41], [42] which is a distributed and localized algorithm for large-
scale optimization. We provide new theoretical results for explicit convergence rates
under certain convex assumptions as well as provide useful interpretations of the
algorithm in terms of factor graphs.

LC-ADMM has multiple properties that are useful to DFGO. First, LC-ADMM
naturally allows the use of various types of convex loss functions such as ℓ1 and Huber
loss for sparse outlier rejection. Second, LC-ADMM does not require computing
any global topology information (e.g., graph coloring), making it suitable for ad-hoc
or large networks. Third, LC-ADMM does not need to compute a summarized graph
or exchange probability distribution parameters such as covariances [18]. Finally,
all agents run their algorithms in parallel simultaneously rather than taking turns [3],
thereby improving computational speed. While some of these properties can be seen
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Figure 6.1: Our approach to solving the locally coupled, multi-agent factor graph
optimization problem of large-scale networks. The LC-ADMM algorithm solves
the distributed factor graph optimization problem in a localized fashion in batch.
The iDFGO algorithm solves the real-time problem in an incremental fashion.

in previous approaches to DFGO [3], [25], [120], they have not simultaneously been
applied in a single framework. By applying the ideas from the ADMM literature
[41], [42], we provide a new approach that has these properties.

In addition to LC-ADMM, we also develop the Incremental DFGO (iDFGO) algo-
rithm to solve the scalability of DFGO with respect to time horizon. The iDFGO
algorithm builds upon LC-ADMM and leverages the tools we have for the single-
agent incremental FGO (i.e., iSAM2 [23]). Simply applying iSAM2 to the local
FGO update step of DFGO algorithms does not actually lead to a time-scalable
algorithm. Instead, our iDFGO algorithm makes some unique extensions to iSAM2
such that each local FGO update step is computed in a way that is scalable in time.
In numerical simulations, we simulate LC-ADMM/iDFGO on hundreds of agents
and on multi-agent pose graph optimization problems to validate their scalability,
convergence, optimality, and other properties.

The main concepts for our approach are summarized in Fig. 6.1. Given a networked
dynamical system with a large number of agents, solving a centralized problem may
be prohibitively computationally expensive. Our approach spatially decomposes the
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start

finish

Figure 6.2: Multi-agent pose graph optimization solved via iDFGO. Left: Sim-
ulated trajectories of 9 robots traversing the environment in a formation. Noisy
data contains odometry (grey), inter-agent observations at a given time (red), and
self/inter-agent loop closure constraints (blue). Center: Individual estimates without
any collaboration result in large errors. Right: Nine robots collaboratively estimate
the trajectories using iDFGO (colored). The filled dots represent poses that are
recomputed incrementally in this time frame and non-filled dots represent poses that
were not modified. Updating only a subset of the trajectory facilitates scalability
with respect to time.

problem into smaller, localized factor graphs. The agents iteratively (1) solve their
local graphs in parallel and (2) exchange information, to arrive at the solution to
the original centralized problem. This approach allows us to solve the problem in a
localized and scalable fashion.

Summary of Contributions and Paper Organization
The rest of the paper is organized as follows. Section 6.2 considers the distributed
factor graph optimization problem for one particular time horizon and derives the
LC-ADMM algorithm. Section 6.3 establishes theoretical guarantees of conver-
gence as well as some of the other mathematical properties of LC-ADMM. Sec-
tion 6.4 extends LC-ADMM to real-time problems and develops the Incremental
iDFGO algorithm. Section 6.5 gives the numerical validation of the algorithms in
practical examples. Finally, Section 6.6 presents concluding remarks.
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6.2 Problem Statement
Prior to defining the problem statement, we first introduce some of the notations that
will be used throughout the paper. The norm notation ∥ · ∥ without any subscript
denotes the ℓ2-norm. ∥ · ∥𝐹 denotes the Frobenius norm. The weighted norm for
some square matrix 𝑄 ∈ R𝑛×𝑛 is defined as ∥𝑥∥𝑄 = 𝑥⊤𝑄𝑥. The maximum singular
value of the matrix 𝑄 ∈ R𝑚×𝑛 is denoted as 𝜎max(𝑄) and the minimum non-zero
singular value is denoted as �̃�min(𝑄). The identity matrix of dimension 𝑁 × 𝑁 is
denoted as 𝐼𝑁 . The set of positive integers is denoted as Z+. Given a set S, its index
set is denoted by I(S), such that S = {𝑠𝑖 | 𝑖 ∈ I(S)}. The cardinality of a set S is
denoted as |S|. A Cartesian product of sets is denoted as S1 × S2 or

∏
𝑖 S𝑖.

A network of agents is modeled as an undirected graph G = (A, E) whereA is the
set of agents and E ⊆ A×A is the set of edges. We say (𝑖, 𝑗) is in the set of edges E
iff the 𝑖-th and the 𝑗-th agents are connected. The set of neighbors for the 𝑖-th agent
is given by N 𝑖 = { 𝑗 ∈ A | (𝑖, 𝑗) ∈ E} and the closed set of neighbors is defined as
N̄ 𝑖 ≜ N 𝑖 ∪ {𝑖}. We refer to G as the physical graph, in order to distinguish it from
the other types of graphs used in this thesis.

Motivating Example
A class of problems that motivates the development of LC-ADMM and iDFGO is
estimating the state of a network of robots or locally coupled dynamical systems as
described in Section 2.2. For example, consider the multi-agent SLAM problem
where a group of robots is tasked to collectively map an unknown environment with
partial overlaps. Another example is the localization of swarms of agents, where
the relative measurements locally couple the neighboring agents. In such scenarios,
the challenge is to find an optimal solution in a distributed and scalable fashion.

Suppose the state of agent 𝑖 at time 𝜏 is denoted as 𝑟𝑖,𝜏, and agent 𝑖makes observations
𝑦𝑖,𝜏 ∈ R𝑚𝑖 . The dynamical system of a group of locally coupled robots is given by:

𝑟𝑖,𝜏 =𝑎𝑖,𝜏 (𝑟N̄ 𝑖 ,𝜏−1) + 𝑤𝑖,𝜏, 𝜏 ∈ Z+, 𝑖 ∈ A,
𝑦𝑖,𝜏 =𝑐𝑖,𝜏 (𝑟N̄ 𝑖 ,𝜏) + 𝑣𝑖,𝜏, 𝜏 ∈ Z+, 𝑖 ∈ A,

(D1)

where 𝑟N̄ 𝑖 ,𝜏 ≜ {𝑟 𝑗 ,𝜏 | 𝑗 ∈ N̄ 𝑖} denotes the set of states at time 𝜏 in the closed
neighborhood and the random noise 𝑤𝑖,𝜏 ∈ R𝑝𝑖 and 𝑣𝑖,𝜏 ∈ R𝑞𝑖 are assumed to be
independent. Each agent’s dynamics and measurement (𝑎𝑖,𝜏 and 𝑐𝑖,𝜏, respectively)
depend on its states as well as those of its neighbors. The system in (D1) models a
variety of local interactions such as the downwash interaction of quadcopters [74]
or relative range and bearing between robots.
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Figure 6.3: Visual representation of factor graphs for an estimation problem involv-
ing three robots: orange, green, and blue. Left: The locally-coupled multi-agent
FGO in (P1). Center: local consensus optimization problem (P2) replaces local
coupling with equality constraints (black double lines), which adds augmented fac-
tors. Right: LC-ADMM solves (P2) by iterating between: (1) all robots solve the
local augmented FGO in parallel and (2) neighboring robots exchange information
and update the pseudo measurements of the augmented factors.

The team of robots is tasked with collaboratively computing the Maximum A Poste-
riori (MAP) estimate given the set of all the observations available up to the current
time 𝑡. In this example, the set of the state to be estimated is X𝑡 = {𝑟𝑖,𝜏 | 𝑖 ∈ A, 𝜏 =

[0, 𝑡]} and the set of measurements available is Y𝑡 = {𝑦𝑖,𝜏 | 𝑖 ∈ A, 𝜏 = [0, 𝑡]}. The
MAP estimate at 𝑡 is given by

X𝑡,∗ ≜ arg max
X𝑡

𝑝(X𝑡 |Y𝑡) = arg max
X𝑡

𝑝(Y𝑡 |X𝑡)𝑝(X𝑡), (6.1)

where 𝑝(X𝑡) is the prior distribution and 𝑝(Y𝑡 |X𝑡) is the likelihood function. The
prior distribution represents the probabilistic relations according to the dynamics
of the system, while the likelihood function describes the observations made by the
network. The remainder of Sections 6.2 and 6.3 focus on solving (6.1) for a fixed
time horizon T (𝑡) using LC-ADMM. For readability, the subscript 𝑡 from X𝑡 and
Y𝑡 are dropped in these sections.

Factor Graph Optimization of Multi-agent Systems
The optimization in (6.1) can be viewed a factor graph optimization problem. Let
X = {𝑥𝑠} be the variables to be estimated and Y = ∪𝑖∈AY𝑖 be the set of measure-
ments where Y𝑖 is the 𝑖-th agent’s observations. The definitions of X and Y𝑖 here
can be more general than those we considered in example (D1).1 Each element 𝑥𝑠
is referred to as a variable node where the subscript 𝑠 is used to index the variable
nodes in X throughout this chapter.

1For example, X may include non-robot states such as landmarks or time-varying target states
and Y may include loop closure observations.
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We assume that the joint probability distribution in (6.1) can be factored as

𝑝(X,Y) =
∏
𝑖∈A

∏
𝜙 𝑓 ∈F𝑖

𝜙 𝑓 (X𝜙 𝑓 ),

where each 𝜙 𝑓 is an independent probability distribution depending on a subset of
variables X𝜙 𝑓 ⊂ X. The set F𝑖 = {𝜙 𝑓 } is the set of local factors corresponding to
the 𝑖-th agent. It contains the probability distributions pertaining to the 𝑖-th agent
and we assume F𝑖 ∩ F𝑗 = ∅ for ∀𝑖, 𝑗 ∈ A, 𝑖 ≠ 𝑗 . The set of all the factors in
the network is defined as F ≜ ∪𝑖∈AF𝑖. The factor graph modeling the distribution
𝑝(X,Y) is defined as the bipartite graph G𝐹 = (X, F , E𝐹) consisting of variable
nodes X, factor nodes F , and edges E𝐹 . The graph G𝐹 is said to have an edge
(𝜙 𝑓 , 𝑥𝑠) ∈ E𝐹 iff 𝜙 𝑓 ∈ F depends on 𝑥𝑠 ∈ X.

An example factor graph for the locally coupled dynamical system in (D1) is shown
on the left in Fig. 6.3. Note that factor graphs are often characterized by both spatial
and temporal sparsity. As we reformulate the DFGO and derive LC-ADMM, we
will refer to Fig. 6.3.

The local factors for the 𝑖-th agent, F𝑖, depend on the local subset of variable nodes,
which is defined as

X (𝑖) ≜
{
𝑥𝑠 ∈ X | (𝜙 𝑓 , 𝑥𝑠) ∈ E𝐹 for some 𝜙 𝑓 ∈ F𝑖

}
⊆ X.

Using this definition, the MAP estimation problem in (6.1) can be re-written as

min
X

∑︁
𝑖∈A

𝑓𝑖

(
X (𝑖)

)
(P1)

where each 𝑓𝑖 (X (𝑖)) ≜ −
∑
𝑓 ∈I(F𝑖) log

(
𝜙 𝑓 (X𝜙 𝑓 )

)
is the objective. For large-scale

estimation problems that involve many agents, we often have |X (𝑖) | ≪ |X|, and |X (𝑖) |
is independent of the network size. In other words, if the optimization problem in
(P1) could be decoupled, the problem that each agent solves will be small. However,
the objective in (P1) is still locally coupled because X (𝑖) ∩ X ( 𝑗) is not empty for
𝑖 ≠ 𝑗 in general.

The local coupling of the factor graph for (P1) can be visualized on the left diagram
of Fig. 6.3. Variables are shown in circles and factors relating to variables are shown
in squares. Local coupling is introduced by a subset of variables that are shared by
the factors of multiple robots. If one was to solve (P1) jointly using standard FGO
solvers (i.e., g2o[27], GTSAM[23]), it will not scale with respect to the number of
robots in the network.
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Local Consensus Reformulation
Instead of solving (P1) directly, we solve a closely related local consensus opti-
mization problem (P2) that allows us to partially decouple (P1) which can be later
solved by LC-ADMM. As we shall see, (P1) and (P2) are equivalent under certain
conditions. To develop (P2), let us first denote the 𝑖-th agent’s estimate for a variable
node 𝑥𝑠 as 𝑥 (𝑖)𝑠 and define the set of local estimates2 with respect to agent 𝑖 as

X̂ (𝑖) ≜ {𝑥 (𝑖)𝑠 | 𝑠 ∈ I(X (𝑖))}. (6.2)

Then, the local consensus optimization problem is written as

min
𝑋,𝑍

∑︁
𝑖∈A

𝑓𝑖 (X̂ (𝑖)) (P2)

subject to
𝑥
(𝑖)
𝑠 − 𝑧(𝑖 𝑗)𝑠 = 0,

𝑥
( 𝑗)
𝑠 − 𝑧(𝑖 𝑗)𝑠 = 0,

∀𝑠 ∈ I𝑖 𝑗 , (𝑖, 𝑗) ∈ E .

Each 𝑧(𝑖 𝑗)𝑠 is shared between agents 𝑖 and 𝑗 only and its role is to enforce the equality
between 𝑥 (𝑖)𝑠 and 𝑥 ( 𝑗)𝑠 . The set I𝑖 𝑗 ≜ I(X̂ (𝑖)) ∩ I(X̂ ( 𝑗)) is the index set for all the
variables shared between agents 𝑖 and 𝑗 . In the new problem, the decision variables
are

𝑋 ≜ ∪𝑖∈AX̂ (𝑖) = {𝑥 (𝑖)𝑠 | ∀𝑥 (𝑖)𝑠 ∈ X̂ (𝑖) ,∀𝑖 ∈ A},
𝑍 ≜ {𝑧(𝑖 𝑗)𝑠 | 𝑠 ∈ I𝑖 𝑗 , (𝑖, 𝑗) ∈ E}.

The visual representation of (P2) can be seen in the center diagram of Fig. 6.3.
Compared to the factor graph representation of (P1) shown on the left, each agent
now has copies of the shared variables. For each shared variable, the consistency
between the multiple copies is enforced by the equality constraints as given in (P2).

Problems (P1) and (P2) are equivalent when a condition called variable connectivity
[40] is satisfied. For each 𝑠 ∈ I(X), we define the set of co-dependent agents as

A𝑠 ≜ {𝑖 ∈ A | 𝑥 (𝑖)𝑠 ∈ X̂ (𝑖)}.

In other words, agent 𝑖 ∈ A is part of A𝑠 iff it has a local estimate for 𝑥𝑠. The
induced subgraph of the physical graph G with respect to the variable node 𝑥𝑠 is the
undirected graph G𝑠 ≜ (A𝑠, E𝑠), where E𝑠 ⊆ E is given by

E𝑠 ≜ {(𝑖, 𝑗) ∈ E | 𝑖 ∈ A𝑠 and 𝑗 ∈ A𝑠}.
2Later, we discuss how the definition of X̂ (𝑖) can be optionally modified to include additional

variables. However, unless mentioned otherwise, we assume the definition of X̂ (𝑖) is as given in
(6.2) (i.e., I(X̂ (𝑖) ) = I(X (𝑖) )).
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To establish the equivalence of (P1) and (P2), we make the following assumption
on the connectivity of the network.

Assumption 1 (Variable Connectivity [40]). For all 𝑥𝑠 ∈ X, the corresponding
undirected induced subgraph G𝑠 is connected.

Later, we discuss the various implications of Assumption 1. Equipped with As-
sumption 1, we have the following lemma.

Lemma 1 (Equivalence of (P1) and (P2)). Suppose Assumption 1 holds. Suppose
𝑋∗ = ∪𝑖∈AX̂ (𝑖)∗ , where X̂ (𝑖)∗ = {𝑥 (𝑖)𝑠,∗ | 𝑠 ∈ I(X̂ (𝑖))}, and 𝑍∗ = {𝑧(𝑖 𝑗)𝑠,∗ | 𝑠 ∈ I𝑖 𝑗 , (𝑖, 𝑗) ∈
E} are the feasible solutions of (P2). Then there exists a feasible solution X∗ =
{𝑥𝑠,∗ | 𝑠 ∈ I(X)} to (P1), such that

𝑥𝑠,∗ = 𝑥
(𝑖)
𝑠,∗, ∀𝑠 ∈ I(X̂ (𝑖)), 𝑖 ∈ A,

𝑥𝑠,∗ = 𝑧
(𝑖 𝑗)
𝑠,∗ , ∀𝑠 ∈ I𝑖 𝑗 , (𝑖, 𝑗) ∈ E .

Proof. Consider 𝑥𝑠 ∈ X for which multiple agents are co-dependent agents (|A𝑠 | ≥
2). The feasible solution to (P2) satisfies the equality constraints in (P2), we have
𝑥
(𝑖)
𝑠,∗ = 𝑥

( 𝑗)
𝑠,∗ = 𝑧

(𝑖 𝑗)
𝑠,∗ for each (𝑖, 𝑗) ∈ E, 𝑖, 𝑗 ∈ A𝑠. We also have that the induced

subgraph G𝑠 = (A𝑠, E𝑠) is connected for variable 𝑥𝑠 by Assumption 1, so all the
local estimates for 𝑥𝑠 have identical values. This holds true for an arbitrary 𝑥𝑠 ∈ X
with |A𝑠 | ≥ 2. By renaming 𝑥 (𝑖)𝑠 → 𝑥𝑠 for ∀𝑖 ∈ A𝑠 for each 𝑥𝑠 ∈ X, we have that
(P2) is equivalent to (P1).

Lemma 1 shows that if we solve (P2), then each solution X̂ (𝑖)∗ is a subset of the
solution to the original centralized MAP estimation problem (P1). The next section
discusses how to solve (P2) in a distributed fashion using LC-ADMM.

LC-ADMM Algorithm
We now introduce the LC-ADMM algorithm which is shown to converge to the
global optimal solution (P2) in convex settings. We consider a generalized version
of (P2) that additionally includes local affine equality constraints on each X̂ (𝑖) .

min
𝑋,𝑍

∑︁
𝑖∈A

𝑓𝑖 (X̂ (𝑖)) (P2a)

subject to 𝐷𝑖X̂ (𝑖) = 𝐸𝑖, ∀𝑖 ∈ A

𝑥
(𝑖)
𝑠 − 𝑧(𝑖 𝑗)𝑠 = 0,

𝑥
( 𝑗)
𝑠 − 𝑧(𝑖 𝑗)𝑠 = 0,

∀𝑠 ∈ I𝑖 𝑗 , (𝑖, 𝑗) ∈ E
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This can be written more succinctly as an ADMM form [43]

min
𝑋, 𝑍

𝐹 (𝑋)

subject to 𝐴𝑋 + 𝐵𝑍 = 𝐶

(P2b)

where 𝐹 (𝑋) ≜ ∑
𝑖∈A 𝑓𝑖 (X̂ (𝑖)). Matrices 𝐴, 𝐵, and𝐶 are given by 𝐴 ≜ [𝐴1; 𝐴2; 𝐴3],

𝐵 ≜ [−𝐼;−𝐼; 0], and 𝐶 ≜ [0; 0;𝐶3]. The matrix 𝐴1 (resp. 𝐴2) is defined such that
the equality constraint 𝐴1𝑋 −𝑍 = 0 (resp. 𝐴2𝑋 −𝑍 = 0) is a collection of consensus
constraints where each block row corresponds to 𝑥 (𝑖)𝑠 = 𝑧

(𝑖 𝑗)
𝑠 (resp. 𝑥 ( 𝑗)𝑠 = 𝑧

(𝑖 𝑗)
𝑠 ) for

some 𝑠 ∈ I𝑖 𝑗 and (𝑖, 𝑗) ∈ E. 𝐴3𝑋 = 𝐶3 is defined such that the 𝑖-th block row
corresponds to 𝐷𝑖X (𝑖) = 𝐸𝑖 for agent 𝑖.

The augmented Lagrangian function for (P2b) is defined as

𝐿𝛽 (𝑋, 𝑍,𝑊) =

𝐹 (𝑋) + ⟨𝑊, 𝐴𝑋 + 𝐵𝑍 − 𝐶⟩ + 𝛽
2
∥𝐴𝑋 + 𝐵𝑍 − 𝐶∥2

where 𝑊 is the Lagrange multiplier and 𝛽 > 0 is the scalar coefficient of the
augmented terms[43]. Then, ADMM attempts to solve (P2b) using the following
iterative algorithm:

𝑋𝑘+1 = arg min
𝑋

𝐿𝛽 (𝑋, 𝑍𝑘 ,𝑊𝑘 ),

𝑍𝑘+1 = arg min
𝑍

𝐿𝛽 (𝑋𝑘+1, 𝑍,𝑊𝑘 ),

𝑊𝑘+1 = 𝑊𝑘 + 𝛽(𝐴𝑋𝑘+1 + 𝐵𝑍𝑘+1 − 𝐶).

(6.3)

The Lagrange multiplier 𝑊 can be split into three blocks: 𝑊 = [𝑌 ;𝑌 ′;𝑉]. If
𝑤
(𝑖 𝑗 ,𝑖)
𝑠 (resp. 𝑤 (𝑖 𝑗 , 𝑗)𝑠 ) is the Lagrange multiplier corresponding to 𝑥 (𝑖)𝑠 = 𝑧

(𝑖 𝑗)
𝑠 (resp.

𝑥
( 𝑗)
𝑠 = 𝑧

(𝑖 𝑗)
𝑠 ), then 𝑌 consists of all 𝑤 (𝑖 𝑗 ,𝑖)𝑠 (resp. 𝑌 ′ consists of all 𝑤 (𝑖 𝑗 , 𝑗)𝑠 ) for

∀𝑠 ∈ I𝑖 𝑗 ,∀(𝑖, 𝑗) ∈ E. Similarly, ifV (𝑖) is the Lagrange multiplier corresponding to
𝐷𝑖X̂ (𝑖) = 𝐸𝑖, 𝑉 consists ofV (𝑖) for ∀𝑖 ∈ A. The iterations (6.3) can be rewritten in
terms of their block components.

X̂ (𝑖)
𝑘+1 = arg min

X̂ (𝑖)
𝑓𝑖 (X̂ (𝑖)) +

𝛽

2
∥𝐷𝑖X̂ (𝑖) − 𝐸𝑖 +

1
𝛽
V (𝑖)
𝑘
∥2

+
∑︁
𝑗∈N 𝑖

∑︁
𝑠∈I𝑖 𝑗

𝛽

2
∥𝑥 (𝑖)𝑠 − 𝑧(𝑖 𝑗)𝑠,𝑘

+ 1
𝛽
𝑤
(𝑖 𝑗 ,𝑖)
𝑠,𝑘
∥2,

(6.4)

𝑧
(𝑖 𝑗)
𝑠,𝑘+1 =

1
2

(
𝑥
(𝑖)
𝑠,𝑘+1 +

1
𝛽
𝑤
(𝑖 𝑗 ,𝑖)
𝑠,𝑘
+ 𝑥 ( 𝑗)

𝑠,𝑘+1 +
1
𝛽
𝑤
(𝑖 𝑗 , 𝑗)
𝑠,𝑘

)
, (6.5)
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𝑤
(𝑖 𝑗 ,𝑖)
𝑠,𝑘+1 = 𝑤

(𝑖 𝑗 ,𝑖)
𝑠,𝑘
+ 𝛽(𝑥 (𝑖)

𝑠,𝑘+1 − 𝑧
(𝑖 𝑗)
𝑠,𝑘+1), (6.6)

V (𝑖)
𝑘+1 = V (𝑖)

𝑘
+ 𝛽(𝐷𝑖X̂ (𝑖)𝑘+1 − 𝐸𝑖). (6.7)

Similar to other consensus ADMM algorithms such as [37], [43], it is easy to show
that 𝑧(𝑖 𝑗)

𝑠,𝑘
= 𝑥
(𝑖 𝑗)
𝑠,𝑘

= 1
2 (𝑥
(𝑖)
𝑠,𝑘
+ 𝑥 ( 𝑗)

𝑠,𝑘
), ∀𝑘 if we select the initial value of 𝑤 (𝑖 𝑗 ,𝑖)𝑠 and 𝑤 (𝑖 𝑗 , 𝑗)𝑠

to be 𝑤 (𝑖 𝑗 ,𝑖)
𝑠,0 = −𝑤 (𝑖 𝑗 , 𝑗)

𝑠,0 [43]. Using this, the iterations (6.4)-(6.7) can be further
simplified to the following form for implementation.

X̂ (𝑖)
𝑘+1 = arg min

X̂ (𝑖)
𝑓𝑖 (X̂ (𝑖)) +

𝛽

2
∥𝐷𝑖X̂ (𝑖) − 𝐸𝑖 +

1
𝛽
V (𝑖)
𝑘
∥2

+
∑︁
𝑗∈N 𝑖

∑︁
𝑠∈I𝑖 𝑗

𝛽

2
∥𝑥 (𝑖)𝑠 − 𝑥 (𝑖 𝑗)𝑠,𝑘

+ 1
𝛽
𝑤
(𝑖 𝑗 ,𝑖)
𝑠,𝑘
∥2,

(6.8)

𝑤
(𝑖 𝑗 ,𝑖)
𝑠,𝑘+1 =𝑤

(𝑖 𝑗 ,𝑖)
𝑠,𝑘
+ 𝛽(𝑥 (𝑖)

𝑠,𝑘+1 − 𝑥
(𝑖 𝑗)
𝑠,𝑘+1), (6.9)

V (𝑖)
𝑘+1 =V (𝑖)

𝑘
+ 𝛽(𝐷𝑖X̂ (𝑖)𝑘+1 − 𝐸𝑖). (6.10)

Remark. These LC-ADMM iterations have a natural interpretation in terms of
factor graphs. Recall that each term within 𝑓𝑖 (X̂ (𝑖)) corresponds to a factor in the
local factor graph G𝐹𝑖 = (X̂ (𝑖) , F𝑖, E𝐹𝑖). Similarly, one can view the other terms in
(6.8) as the augmented factors that softly penalize the constraints. The terms such as
𝐸𝑖 − 1

𝛽
V (𝑖)
𝑘

and 𝑥 (𝑖 𝑗)
𝑠,𝑘
− 1
𝛽
𝑤
(𝑖 𝑗 ,𝑖)
𝑠,𝑘

represent the pseudo measurement of the augmented
factors, and the values of the pseudo measurements are modified by (6.9)–(6.10) at
each 𝑘 .

With this perspective, the first part of LC-ADMM iteration (6.8) is referred to as
the local FGO update. This update can be implemented as a standard factor graph
optimization using single-agent solvers such as g2o or GTSAM. The second part of
LC-ADMM iteration (6.9)-(6.10) is referred to as the augmented factor update. This
step only involves information exchange and summation which can be implemented
easily. We can visualize these LC-ADMM iterations in terms of the factor graph in
the right diagram in Fig. 6.3.

One can execute the LC-ADMM iterations in a fully localized fashion as summarized
in Algorithm 5. First, each agent independently solves the local FGO update in
parallel as (6.8). Next, each agent broadcasts the shared variables 𝑥 (𝑖)

𝑠,𝑘+1 to the
neighbors who need that information. Once the neighbors’ estimates are received,
the average 𝑥 (𝑖 𝑗)

𝑠,𝑘+1 is computed and the augmented factor update (6.9) and (6.10)
modify the pseudo measurements. The augmented factor update also takes place
locally on each agent.
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Algorithm 5: Localized Consensus ADMM
Result: X̂ (𝑖)

𝑘
, 𝑖 ∈ A

Each agent initializes X̂ (𝑖)
𝑘

and {𝑤 (𝑖 𝑗 ,𝑖)
𝑠,𝑘
| 𝑠 ∈ I(X̂ (𝑖)) ∩ I(X̂ ( 𝑗)), (𝑖, 𝑗) ∈ E} for

𝑘 = 0;
while 𝑘 < 𝐾 do

Each 𝑖 ∈ A solves its sub-problem: X̂ (𝑖)
𝑘+1 =

arg min
X̂ (𝑖)

𝑓𝑖 (X̂ (𝑖)) +
𝛽

2
∥𝐷𝑖X̂ (𝑖) − 𝐸𝑖 +

1
𝛽
V (𝑖)
𝑘
∥2

+
∑︁
𝑗∈N 𝑖

∑︁
𝑠∈I𝑖 𝑗

𝛽

2
∥𝑥 (𝑖)𝑠 − 𝑥 (𝑖 𝑗)𝑠,𝑘

+ 1
𝛽
𝑤
(𝑖 𝑗 ,𝑖)
𝑠,𝑘
∥2;

For each neighboring pair (𝑖, 𝑗) ∈ E, the agents exchange 𝑥 (𝑖)
𝑠,𝑘+1 and 𝑥 ( 𝑗)

𝑠,𝑘+1
for ∀𝑠 ∈ I𝑖 𝑗 ;

Each 𝑖 ∈ A locally computes the average ∀𝑠 ∈ I𝑖 𝑗 , ∀ 𝑗 ∈ N 𝑖:

𝑥
(𝑖 𝑗)
𝑠,𝑘+1 =

1
2

(
𝑥
(𝑖)
𝑠,𝑘+1 + 𝑥

( 𝑗)
𝑠,𝑘+1

)
;

Each 𝑖 ∈ A updates its Lagrange multipliers:

𝑤
(𝑖 𝑗 ,𝑖)
𝑠,𝑘+1 = 𝑤

(𝑖 𝑗 ,𝑖)
𝑠,𝑘
+ 𝛽(𝑥 (𝑖)

𝑠,𝑘+1 − 𝑥
(𝑖 𝑗)
𝑠,𝑘+1);

V (𝑖)
𝑘+1 = V (𝑖)

𝑘
+ 𝛽(𝐷𝑖X̂ (𝑖)𝑘+1 − 𝐸𝑖));

Iterate: 𝑘 ← 𝑘 + 1
end

Algorithmic Complexity of LC-ADMM
The LC-ADMM algorithm has several properties that make it suitable for a broad
class of problems involving networked systems. First, the computational effort,
communication bandwidth, and memory requirements of LC-ADMM have constant
complexity with respect to the size of the network, so long as the |X (𝑖) | ∼ 𝑂 (1)
assumption holds. Taking (D1) as an example, the communication bandwidth scales
like 𝑂 (𝑛𝑇 |N̄ 𝑖 |), where 𝑛 ≜ dim(𝑥𝑠) and 𝑇 ≜ |T (𝑡) |, and is independent of |A|.
Second, the agents do not need to share the probability distribution parameters (e.g.,
covariance matrix); therefore, the communication bandwidth scales only linearly
with 𝑛𝑇 , not 𝑛2𝑇2. This is an advantage compared to other distributed optimal
estimation algorithms that require sharing the full probability distributions such as
[9], [10].
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Variable Connectivity and Augmenting Set X̂ (𝑖)

In some instances, the variable connectivity assumption in Assumption 1 may not be
satisfied (i.e., the agents that have the local estimate for some 𝑥𝑠 are not connected).
Consider the SLAM-like example in Fig. 6.4. The two landmarks (shown as black
circles) at the top are shared between the orange and blue robots but are not directly
visible to the green robot. Since X (𝑖) for the green robot does not include these
two landmarks and there is no direct communication link between the orange and
blue robots, the variable connectivity assumption in Assumption 1 does not hold for
those two landmarks.

One way to address this type of scenario is to augment the local estimate set X̂ (𝑖)

with additional variables. While minimizing the number of variables in X̂ (𝑖) is
desirable, the only requirement on the membership of the set X̂ (𝑖) is that it satisfies
I(X (𝑖)) ⊆ I(X̂ (𝑖)) ⊆ I(X). In this example, the variable connectivity is satisfied
by adding the two landmarks as part of X̂ (𝑖) for the green robot, as shown at the
bottom of Fig. 6.4.

Another approach is to accept that Assumption 1 is not fully satisfied. The equality
constraints for the multiple local estimates for a variable 𝑥𝑠 are only enforced among
the connected components of the induced subgraph G𝑠. While (P1) and (P2) may
not be strictly equivalent, the solutions for (P2) partially agree with the solution for
(P1) and may still be acceptable depending on the application.

Lastly, one may consider augmenting X̂ (𝑖) for reasons other than ensuring the vari-
able connectivity assumption holds. Consider an example where a distributed sensor
network is tasked to track a common target. In this case, all the agents may include
the local estimate of the target state in X̂ (𝑖) , even if not all the agents make a direct
observation of the target so that all agents have a copy of the target state estimate.
Therefore choosing what variables to be included X̂ (𝑖) gives users additional choices
of how to constrain the problem.

6.3 Mathematical Properties of LC-ADMM
This section details some theoretical guarantees on the convergence rate of LC-
ADMM and some properties when applied to example systems. Before discussing
our results, we note that it is well known that ADMM has (relatively slow) asymptotic
convergence guarantee for a general class of convex problems without additional
assumptions [43]. Since LC-ADMM is a type of ADMM, this result applies to
LC-ADMM as well.
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Communication 
Topology

Ground Truth

Estimates

Variable subscripts/superscripts 
are updated

Figure 6.4: Illustration of the definitions of X, X (𝑖) , X̂ (𝑖) , and 𝑋 . Colored circles
represent the robot poses and the gray circles represent the landmarks. In this
example, we have I(X (𝑖)) = I(X̂ (𝑖)) for 𝑖 = “orange” while I(X (𝑖)) ⊂ I(X̂ (𝑖)) for
𝑖 = “green.”.
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Theorem 3 (Asymptotic convergence of ADMM [43]). Consider (P2) where the
objective 𝐹 is a closed, proper, convex function (not necessarily strongly convex)
and the constraint 𝑆(𝑖) is a convex set. Assume the unaugmented Lagrangian has a
saddle point. Then we have

• Residual convergence: 𝐴𝑋𝑘 + 𝐵𝑍𝑘 → 0 as 𝑘 →∞,

• Objective convergence: 𝐹 (𝑋𝑘 ) → 𝐹 (𝑋∗) as 𝑘 →∞,

• Dual variable convergence: 𝑊𝑘 → 𝑊∗ as 𝑘 →∞.

Proof. The proof is given in [43].

In the next sections, we establish two stronger results under additional assumptions,
as follows: (1) LC-ADMM converges at the rate of 𝑜(1/𝑘) when the problem has
a unique solution (Theorem 4); and (2) LC-ADMM converges exponentially when
the overall objective is strongly convex and has a Lipschitz continuous subgradient
(Theorem 5). Theorem 5 can be viewed as a generalization of the previous result in
the literature [37] to problems that are localized, non-differentiable, and have local
equality constraints. Next, we apply Theorem 5 to a locally coupled dynamical
system given in (D1) and show the relationship between observability and conver-
gence. Finally, we discuss applying LC-ADMM to problems that involve inequality
constraints and pose graph optimization problems.

First, we introduce some definitions needed for establishing the convergence results.

Definition 4 (Subdifferential). The subdifferential of 𝐹 at 𝑋 is a closed convex set
defined as

𝜕𝐹 (𝑋) ≜
⋂

𝑋 ′∈dom𝐹
{𝑔 | 𝐹 (𝑋′) ≥ 𝐹 (𝑥) + 𝑔⊤(𝑋′ − 𝑋)}. (6.11)

Definition 5 (Lipschitz Continuous Subdifferential). The subdifferential of a convex
function 𝐹 is Lipschitz continuous with parameter 𝐿𝐹 > 0 iff for all 𝑋, 𝑋′ ∈ dom𝐹
and for all 𝑔 ∈ 𝜕𝐹 (𝑋) and 𝑔′ ∈ 𝜕𝐹 (𝑋′), we have

𝐿𝐹 ∥𝑋 − 𝑋′∥ ≥ ∥𝑔 − 𝑔′∥. (6.12)

Definition 6 (Strong convexity). A convex function 𝐹 is strongly convex with pa-
rameter 𝑚𝐹 > 0 if for all 𝑋, 𝑋′ ∈ dom𝐹 and 𝑔 ∈ 𝜕𝐹 (𝑋) and 𝑔′ ∈ 𝜕𝐹 (𝑋′), we
have

𝑚𝐹 ∥𝑋 − 𝑋′∥2 ≤ ⟨𝑋 − 𝑋′, 𝑔 − 𝑔′⟩. (6.13)
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Convergence Guarantees of LC-ADMM
To prove the convergence rates of LC-ADMM, we first rewrite the algorithm in a
series of equivalent forms. Using the subgradient optimality condition, 𝑥-update
(6.4) can be written as

0 ∈ 𝜕𝑋𝑘+1 (𝐹 (𝑋𝑘+1) +
𝛽

2
∥𝐴𝑋𝑘+1 + 𝐵𝑍𝑘 − 𝐶 +

1
𝛽
𝑊𝑘 ∥2)

⇐⇒ −𝐴⊤ [𝑊𝑘 + 𝛽(𝐴𝑋𝑘+1 + 𝐵𝑍𝑘 − 𝐶)] ∈ 𝜕𝐹 (𝑋𝑘+1).

If we define 𝑔𝑘+1 ≜ −𝐴⊤ [𝑊𝑘 + 𝛽(𝐴𝑋𝑘+1 + 𝐵𝑍𝑘 − 𝐶)], the ADMM iteration in
(6.4)-(6.7) can be written as

𝑔𝑘+1 ∈ 𝜕𝐹 (𝑋𝑘+1) (6.14)

𝐵⊤ [𝑊𝑘 + 𝛽(𝐴𝑋𝑘+1 + 𝐵𝑍𝑘+1 − 𝐶)] = 0, (6.15)

𝑊𝑘+1 −𝑊𝑘 − 𝛽(𝐴𝑋𝑘+1 + 𝐵𝑍𝑘+1 − 𝐶) = 0. (6.16)

By left-multiplying (6.16) by 𝐴⊤ (resp. with 𝐵⊤) and subtracting from the definition
of 𝑔𝑘+1 (resp. from (6.15)), we have

𝑔𝑘+1 + 𝐴⊤ [𝑊𝑘+1 + 𝛽𝐵(𝑍𝑘 − 𝑍𝑘+1)] = 0, (6.17)

𝐵⊤𝑊𝑘+1 = 0. (6.18)

Since 𝑊𝑘 = [𝑌𝑘 ;𝑌 ′𝑘 ;𝑉𝑘 ] and 𝐵 = [−𝐼;−𝐼; 0], (6.18) implies 𝑌𝑘+1 = −𝑌 ′
𝑘+1. Recall

𝐴 ≜ [𝐴1; 𝐴2; 𝐴3]. If we define 𝑀 ≜ 𝐴1 + 𝐴2 and 𝑀 ≜ 𝐴1 − 𝐴2, then (6.17) can be
written as

𝑔𝑘+1 + 𝑀⊤𝑌𝑘+1 + 𝐴⊤3𝑉𝑘+1
− 𝛽𝑀⊤(𝑍𝑘 − 𝑍𝑘+1) = 0.

(6.19)

Equation (6.16) can be split into three blocks of equations by using𝑊𝑘 = [𝑌𝑘 ;𝑌 ′𝑘 ;𝑉𝑘 ]
again. Adding and subtracting the first and second blocks of (6.16) from each other,
we get

1
2
𝑀𝑋𝑘+1 − 𝑍𝑘+1 = 0, (6.20)

𝑌𝑘+1 − 𝑌𝑘 −
𝛽

2
𝑀𝑋𝑘+1 = 0, (6.21)

𝑉𝑘+1 −𝑉𝑘 − 𝛽(𝐴3𝑋𝑘+1 − 𝐶3) = 0. (6.22)

Assume that there exist 𝑋∗ and 𝑍∗ that are the unique solution3 to (P2b). Since (P2b)
is convex, closed, and proper, we also have that (𝑌𝑘 , 𝑉𝑘 ) → (𝑌∗, 𝑉∗) as 𝑘 → ∞ and

3This is automatically satisfied if 𝐹 is strongly convex as is the case for Theorem 5.
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(𝑌∗, 𝑉∗) is a stationary point [43]; i.e., 𝜕𝐿𝛽 (𝑋∗, 𝑍∗, 𝑌∗, 𝑉∗) ∋ 0. Then (6.17), (6.20),
(6.21), and (6.22) evaluated at this point is

𝑔∗ = −𝑀⊤𝑌∗ + 𝐴⊤3𝑉∗, 𝑔∗ ∈ 𝜕𝐹 (𝑋∗) (6.23)
1
2
𝑀𝑋∗ − 𝑍∗ = 0, (6.24)

𝛽

2
𝑀𝑋∗ = 0, (6.25)

𝐴3𝑋∗ − 𝐶3 = 0. (6.26)

Subtracting (6.23)-(6.26) from (6.19)-(6.22), the ADMM iteration in terms of
(𝑋𝑘 , 𝑍𝑘 , 𝑌𝑘 , 𝑉𝑘 ) can be written as:

𝑔𝑘+1 − 𝑔∗ + 𝑀⊤(𝑌𝑘+1 − 𝑌∗)
+ 𝐴⊤3 (𝑉𝑘+1 −𝑉∗) − 𝛽𝑀

⊤(𝑍𝑘 − 𝑍𝑘+1) = 0

𝑔𝑘+1 ∈ 𝜕𝐹 (𝑋𝑘+1), 𝑔∗ ∈ 𝜕𝐹 (𝑋∗) (6.27)
1
2
𝑀 (𝑋𝑘+1 − 𝑋∗) − (𝑍𝑘+1 − 𝑍∗) = 0, (6.28)

𝑌𝑘+1 − 𝑌𝑘 −
𝛽

2
𝑀 (𝑋𝑘+1 − 𝑋∗) = 0. (6.29)

𝑉𝑘+1 −𝑉𝑘 − 𝛽𝐴3(𝑋𝑘+1 − 𝑋∗) = 0. (6.30)

We use these equations to prove the convergence rate of LC-ADMM. For conve-
nience, we define the subset of the variables as𝑈𝑘 ≜ [𝑍𝑘 ;𝑌𝑘 ;𝑉𝑘 ]. Two lemmas that
establish the main theorem are the following.

Lemma 2 (Contractive sequence𝑈𝑘 ). Suppose that 𝐹 is convex, closed, and proper
and that the sequence (𝑋𝑘 , 𝑍𝑘 , 𝑌𝑘 , 𝑉𝑘 ) is generated by the ADMM algorithm in (6.3).
If there exists a unique solution 𝑋∗ and 𝑍∗ to (P2b) then𝑈𝑘 = [𝑍𝑘 ;𝑌𝑘 ;𝑉𝑘 ] satisfies

∥𝑈𝑘 −𝑈𝑘+1∥2𝐺 ≤ ∥𝑈𝑘 −𝑈∗∥
2
𝐺 − ∥𝑈𝑘+1 −𝑈∗∥

2
𝐺 , (6.31)

where the matrix 𝐺 ≻ 0 is given by

𝐺 ≜


𝛽𝐼 0 0
0 1

𝛽
𝐼 0

0 0 1
2𝛽 𝐼

 . (6.32)

Additionally, if 𝐹 is strongly convex, then we have

𝑚𝐹 ∥𝑋𝑘+1 − 𝑋∗∥2 + ∥𝑈𝑘 −𝑈𝑘+1∥2𝐺
≤ ∥𝑈𝑘 −𝑈∗∥2𝐺 − ∥𝑈𝑘+1 −𝑈∗∥

2
𝐺 ,

(6.33)

where 𝑚𝐹 > 0 was defined in Definition 6.
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Proof of Lemma 2. The proof outline is similar to [37] with some notable differ-
ences: we generalize the result to the localized consensus case I(X̂ (𝑖)) ⊂ I(X);
we include local equality constraints; and we allow non-differentiable objective
functions.

If 𝐹 is convex, we have ⟨𝑋𝑘+1 − 𝑋∗, 𝑔𝑘+1 − 𝑔∗⟩ ≥ 0. Using (6.27)-(6.30), we may
rewrite the left hand side as Substituting (6.27) to ⟨𝑋𝑘+1 − 𝑋∗, 𝑔𝑘+1 − 𝑔∗⟩, we get

⟨𝑋𝑘+1 − 𝑋∗, 𝑔𝑘+1 − 𝑔∗⟩
= ⟨𝑋𝑘+1 − 𝑋∗,−𝑀⊤(𝑌𝑘+1 − 𝑌∗) − 𝐴⊤3 (𝑉𝑘+1 −𝑉∗)⟩
+ 𝛽⟨𝑋𝑘+1 − 𝑋∗, 𝑀

⊤(𝑍𝑘 − 𝑍𝑘+1)⟩.

=
2
𝛽
⟨𝑌𝑘 − 𝑌𝑘+1, 𝑌𝑘+1 − 𝑌∗⟩ +

1
𝛽
⟨𝑉𝑘 −𝑉𝑘+1, 𝑉𝑘+1 −𝑉∗⟩

+ 2𝛽⟨𝑍𝑘+1 − 𝑍∗, 𝑍𝑘 − 𝑍𝑘+1⟩
= 2(𝑈𝑘+1 −𝑈∗)⊤𝐺 (𝑈𝑘 −𝑈𝑘+1)
= ∥𝑈𝑘 −𝑈∗∥2𝐺 − ∥𝑈𝑘+1 −𝑈∗∥

2
𝐺 − ∥𝑈𝑘 −𝑈𝑘+1∥

2
𝐺 .

This proves (6.31). Because 𝐹 is convex, we have ⟨𝑋𝑘+1 − 𝑋∗, 𝑔𝑘+1 − 𝑔∗⟩ ≥ 0 and
therefore (6.31) holds. When 𝐹 is strongly convex, we automatically have 𝑋∗ (and
thus 𝑍∗) are unique. Additionally, by Definition 6, we have

𝑚𝐹 ∥𝑋𝑘+1 − 𝑋∗∥2 ≤ ⟨𝑋𝑘+1 − 𝑋∗, 𝑔𝑘+1 − 𝑔∗⟩.

and therefore (6.33) holds.

Equation (6.31) in Lemma 2 shows that the sequence ∥𝑈𝑘 −𝑈∗∥2𝐺 is monotonically
non-increasing and converging because it is lower bounded by 0. This implies
∥𝑈𝑘+1 − 𝑈𝑘 ∥2𝐺 → 0 as 𝑘 → ∞. Then, 𝑈𝑘 → 𝑈∗ follows the standard analysis of
contraction methods.

We show the 𝑜(1/𝑘) convergence by making a summable, nonnegative, monotonic
sequence argument. The proof for the following Lemma is readily available in other
ADMM literature such as [36], [121], so it is omitted for brevity.

Lemma 3. If a sequence {𝑎𝑘 } ⊆ R satisfies: (1) 𝑎𝑘 ≥ 0; (2)
∑∞
𝑘=1 𝑎𝑘 < +∞; and

(3) 𝑎𝑘 is monotonically non-increasing, then we have 𝑎𝑘 = 𝑜(1/𝑘).

The next theorem establishes the 𝑜(1/𝑘) convergence for LC-ADMM.



114

Theorem 4 (𝑜(1/𝑘) convergence of LC-ADMM). Assume that 𝐹 is convex, closed,
and proper, and that 𝐹 has a unique solution. The sequence generated by (6.3)
converges (𝑋𝑘 ,𝑈𝑘 ) → (𝑋∗,𝑈∗) and its convergence rate is given by ∥𝑈𝑘−𝑈𝑘+1∥2𝐺 =

𝑜(1/𝑘).

Proof. Using the first-order optimality conditions (6.19)-(6.22) for 𝑘 and 𝑘 + 1, one
can follow the same manipulations as in the proof for Lemma 2 to show that

⟨𝑋𝑘+1 − 𝑋𝑘 , 𝑔𝑘+1 − 𝑔𝑘⟩ = −2(𝑈𝑘+1 −𝑈𝑘 )⊤𝐺 (𝑈𝑘+1 −𝑈𝑘−1).

Given 𝐹 is convex, it follows that

∥𝑈𝑘 −𝑈𝑘−1∥2𝐺 − ∥𝑈𝑘+1 −𝑈𝑘 ∥
2
𝐺 ≥ ∥𝑈𝑘+1 −𝑈𝑘−1∥2𝐺 ≥ 0.

Therefore ∥𝑈𝑘+1 −𝑈𝑘 ∥2𝐺 is monotonically non-increasing.
Next, we have that ∥𝑈𝑘+1 − 𝑈𝑘 ∥2𝐺 is summable by (6.31) of Lemma 2. Indeed,
summing both the left- and right-hand sides of (6.31), we have

∞∑︁
𝑘=0
∥𝑈𝑘 −𝑈𝑘+1∥2𝐺 ≤ ∥𝑈0 −𝑈∗∥2𝐺 < +∞. (6.34)

Because ∥𝑈𝑘−𝑈𝑘+1∥2𝐺 is non-negative, monotonically non-increasing, and summable,
we have ∥𝑈𝑘 − 𝑈𝑘+1∥2𝐺 = 𝑜(1/𝑘) by Lemma 3. Because 𝑍∗ satisfies the equality
constraint and 𝐹 has a unique solution we also have 𝑋𝑘 → 𝑋∗.

Theorem 4 states that 𝑈𝑘 → 𝑈∗ at the rate of 𝑜(1/𝑘) when the objective is convex
and has a unique solution. Next, we show that LC-ADMM converges exponentially
if we additionally assume that 𝐹 is strongly convex and has Lipschitz continuous
subdifferential. Before we present the result in Theorem 5, we show Lemma 4.

Lemma 4. Suppose 𝐹 is strongly convex and its subdifferential is Lipschitz contin-
uous. For any 𝜇 > 1, define a constant 𝑐 such that

𝑐 ≜ min

{
(𝜇 − 1)�̃�2

min(𝑀)
𝜇𝜎2

max(𝑀)
,

𝑚𝐹

𝛽

4𝜎
2
max(𝑀) + 𝜇

𝛽
𝐿2
𝐹
�̃�−2

min(𝑀)

}
> 0

(6.35)

where 𝐿𝐹 > 0 and 𝑚𝐹 > 0 are defined in Definitions 5 and 6, respectively. Then,
we have

𝑐∥𝑈𝑘+1 −𝑈∗∥2𝐺 ≤ 𝑚𝐹 ∥𝑋𝑘+1 − 𝑋∗∥2 + ∥𝑈𝑘 −𝑈𝑘+1∥2𝐺 . (6.36)



115

Proof of Lemma 4. The proof is similar to [37] with a few notable differences: we
generalize the result to the localized consensus case I(X̂ (𝑖)) ⊂ I(X); we include
local equality constraints; and we allow non-differentiable objective functions.

We start by considering the following inequality which holds true for ∀𝜇 > 0 [37]:

∥𝑎1 + 𝑎2∥2 + (𝜇 − 1)∥𝑎1∥2 ≥ (1 − 1/𝜇)∥𝑎2∥2. (6.37)

We select 𝜇 > 1 so that all the terms are positive and it results in a meaningful
bound. If we let 𝑎1 = 𝑔𝑘+1 − 𝑔∗, 𝑎2 = 𝑀⊤(𝑌𝑘+1 − 𝑌∗) + 𝐴⊤3 (𝑉𝑘+1 − 𝑉∗), we have
𝑎1 + 𝑎2 = 𝛽𝑀

⊤(𝑍𝑘 − 𝑍𝑘+1) by (6.27). The left-hand side of (6.37) is upper bounded
by

∥𝛽𝑀 (𝑍𝑘+1 − 𝑍𝑘 )∥2 + (𝜇 − 1)∥𝑔𝑘+1 − 𝑔∗∥2

≤ 𝛽2𝜎2
max(𝑀)∥𝑍𝑘+1 − 𝑍𝑘 ∥2 + (𝜇 − 1)𝐿2

𝐹 ∥𝑋𝑘+1 − 𝑋∗∥2,
(6.38)

where we used (6.12) from Lipschitz continuous subdifferential assumption. Next,
we have that 𝑌𝑘 ∈ Im(𝑀) and 𝑉𝑘 ∈ Im(𝐴3), ∀𝑘 > 0 by (6.22) and (6.21). Therefore
the right-hand side of (6.37) can be lower bound by

∥𝑀⊤(𝑌𝑘+1 − 𝑌∗) + 𝐴⊤3 (𝑉𝑘+1 −𝑉∗)∥
2

=


[
𝑀

𝐴3

]⊤ [
𝑌𝑘+1 − 𝑌∗
𝑉𝑘+1 −𝑉∗

]
2

≥ �̃�2
min(𝑀)


[
𝑌𝑘+1 − 𝑌∗
𝑉𝑘+1 −𝑉∗

]2

= �̃�2
min(𝑀) (∥𝑌𝑘+1 − 𝑌∗∥

2 + ∥𝑉𝑘+1 −𝑉∗∥2)

(6.39)

where 𝑀 ≜ [𝑀; 𝐴3]⊤ and �̃�min(𝑀) is the minimum non-zero singular value of 𝑀 .
Therefore we have

𝛽2𝜎2
max(𝑀)∥𝑍𝑘+1 − 𝑍𝑘 ∥2 + (𝜇 − 1)𝐿2

𝐹 ∥𝑋𝑘+1 − 𝑋∗∥2

≥
(
1 − 1

𝜇

)
�̃�2

min(𝑀) (∥𝑌𝑘+1 − 𝑌∗∥
2 + ∥𝑉𝑘+1 −𝑉∗∥2).

This is further rearranged to

𝛽𝐶1∥𝑍𝑘+1 − 𝑍𝑘 ∥2 +
𝐶2

𝛽
∥𝑋𝑘+1 − 𝑋∗∥2

≥ 1
𝛽
∥𝑌𝑘+1 − 𝑌∗∥2 +

1
𝛽
∥𝑉𝑘+1 −𝑉∗∥2
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where

𝐶1 =
𝜇𝜎2

max(𝑀)
(𝜇 − 1)�̃�2

min(𝑀)
, 𝐶2 =

𝜇𝐿2
𝐹

�̃�2
min(𝑀)

.

Using ∥𝑍𝑘+1 − 𝑍∗∥ ≤ 1
2𝜎max(𝑀)∥𝑋𝑘+1 − 𝑋∗∥, we get

𝛽𝐶1∥𝑍𝑘+1 − 𝑍𝑘 ∥2 +
(
𝐶2

𝛽
+ 𝛽

4
𝜎2

max(𝑀)
)
∥𝑋𝑘+1 − 𝑋∗∥2

≥ 𝛽∥𝑍𝑘+1 − 𝑍∗∥2 +
1
𝛽
∥𝑌𝑘+1 − 𝑌∗∥2 +

1
𝛽
∥𝑉𝑘+1 −𝑉∗∥2.

Then, 𝑐 > 0 as defined in (6.35) satisfies

𝛽∥𝑍𝑘+1 − 𝑍𝑘 ∥2 + 𝑚𝐹 ∥𝑋𝑘+1 − 𝑋∗∥2

≥ 𝑐𝛽∥𝑍𝑘+1 − 𝑍∗∥2 +
𝑐

𝛽
∥𝑌𝑘+1 − 𝑌∗∥2 +

𝑐

𝛽
∥𝑉𝑘+1 −𝑉∗∥2.

This further satisfies (6.36).

The proof of Lemma 4 uses the optimality of the ADMM update equations and the
additional assumptions introduced. By using Lemmas 2 and 4, it is straightforward
to prove the exponential stability of𝑈∗.

Theorem 5 (Exponential convergence of LC-ADMM). Consider the LC-ADMM
that solves (P2a). Assume 𝐹 is convex, closed, and proper. If 𝐹 is strongly
convex and its subdifferential is Lipschitz continuous, 𝑈𝑘 → 𝑈∗ and 𝑋𝑘 → 𝑋∗

exponentially. Additionally, if Assumption 1 is satisfied, the obtained solutions X̂ (𝑖)∗
for each 𝑖 ∈ A are the subset of X∗ which is the solution to (P1).

Proof. Define 𝑐 > 0 as (6.35) for any 𝜇 > 1. After combining (6.33) in Lemma 2
and (6.36) in Lemma 4, we can write

∥𝑈𝑘+1 −𝑈∗∥2𝐺 ≤ 𝑐2∥𝑈𝑘 −𝑈∗∥2𝐺 , (6.40)

where 𝑐2 ≜
1

1+𝑐 . Since 0 < 𝑐2 < 1, 𝑈𝑘 converges exponentially to 𝑈∗. Next, we
observe from (6.33) that

∥𝑋𝑘+1 − 𝑋∗∥2 ≤
1
𝑚𝐹

∥𝑈𝑘 −𝑈∗∥2𝐺 . (6.41)

Since ∥𝑈𝑘 −𝑈∗∥2𝐺 exponentially converges to zero, 𝑋𝑘+1 exponentially converges to
𝑋∗.
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Theorem 5 is a generalization of the convergence rate of DC-ADMM in [37]. The
result is extended to problems that may involve localized consensus, local affine
equality constraints, and non-differentiable objective functions. DC-ADMM is a
special case of LC-ADMM where X̂ (𝑖) = {𝑥 (𝑖)𝑠 | 𝑠 ∈ I(X)}. The exponential conver-
gence of DC-ADMM assumes that all the agents in the network are connected. This
connectivity assumption in DC-ADMM is replaced with the variable connectivity
assumption (Assumption 1) in LC-ADMM which required that variable connectivity
is satisfied per variable.

Finally, we remark on some properties of LC-ADMM. First, LC-ADMM converges
to the optimal solution even when considering other convex loss functions such as
the Huber norm. This is a contrast to other distributed algorithms such as [18]
whose derivation explicitly assumes specific noise distributions. Moreover, in LC-
ADMM, all the agents can update in parallel and the agents do not need global
network topology information such as graph coloring. This is an especially desirable
property for ad hoc networks. LC-ADMM preserves privacy in the sense that each
agent only needs to share the coupled variables with the neighbors who need that
information. Agents only need to reveal the augmented factor information to their
neighbors.

Large-Scale Networked Dynamical System
We revisit the estimation problem of large-scale networked dynamical systems
(D1) and consider the convergence guarantees that are further specialized for these
systems. To facilitate the discussion pertaining to observability, let us assume that
the noise distribution is given by independent, zero-mean Gaussian distributions and
that 𝑎𝑡 and 𝑐𝑡 are twice differentiable and their gradients are Lipschitz continuous.
Let 𝑟𝜏 ≜ [𝑟1,𝜏; . . . , 𝑟 |A|,𝜏] be the state vector of the network at 𝜏 andX = [𝑟0; . . . ; 𝑟𝑡]
be the trajectory of the network state up to time 𝑡. The linearized observability of
(D1) at some reference trajectory 𝑋 can be analyzed using the following linearized
observability matrix:

𝑂 (X) =


𝜕𝑐0(𝑟0)

𝜕𝑐1(𝑟1)𝜕𝑎1(𝑟0)
...

𝜕𝑐𝑡 (𝑟𝑡)𝜕𝑎𝑡 (𝑟𝑡−1) · · · 𝜕𝑎1(𝑟0)


. (6.42)

For this example, we have the following corollary.
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Corollary 1. Suppose the dynamics model 𝑎𝑖 and the measurement model 𝑐𝑖 of
(D1) are twice differentiable and their gradients are Lipschitz continuous. Also,
suppose the noise models are given by 𝑤𝑖,𝑡 ∼ N(0,𝑊−1

𝑖
) and 𝑣𝑖 ∼ N(0, 𝑉−1

𝑖
) where

𝑊𝑖, 𝑉𝑖 ≻ 0. Suppose an optimal solution to (P2a) is given by 𝑋∗ = [𝑟0∗; . . . ; 𝑟𝑇∗]
and the matrix 𝑂 (X∗) has a full column rank for at X∗. Then the objective 𝐹 (𝑋) is
locally strongly convex ∀𝑋 ∈ B𝜌 (𝑋∗) with some 𝜌 > 0. Moreover, any trajectories
starting within B𝜌 (𝑋∗) exponentially converge to 𝑋∗.

Proof of Corollary 1. The objective function in (P1) is given by

𝐹 (𝑋) =
𝑇∑︁
𝑡=1
∥𝑟𝑡 − 𝑎𝑡 (𝑟𝑡−1)∥2𝑊𝑡

+
𝑇∑︁
𝑡=0
∥𝑦𝑡 − 𝑐𝑡 (𝑟𝑡)∥2𝑉𝑡

=𝑅⊤(𝑋)Σ𝑅(𝑋),

where Σ = diag(𝑊1, . . . ,𝑊𝑇 , 𝑉0, . . . , 𝑉𝑇 ) and 𝑅(𝑋) = [𝑟1 − 𝑎1(𝑟0); . . . ; 𝑟𝑇 −
𝑎𝑇 (𝑟𝑇−1), 𝑦0 − 𝑐0(𝑟0), . . . , 𝑦𝑇 − 𝑐𝑇 (𝑟𝑇 )]. Since Σ is a positive definite matrix,
the Hessian of 𝐹 (𝑋) is strictly positive definite at each 𝑋 ∈ B𝜌 (𝑋∗) if and only if
𝜕𝑅(𝑋) has a full column rank at 𝑋 .

The residual Jacobian can be written as 𝜕𝑅(𝑋) equals to

−



𝜕𝑎1(𝑟0) 𝐼 0 · · · 0

0 𝜕𝑎2(𝑟1) 𝐼
...

...
. . .

. . . 0
0 · · · 0 𝜕𝑎𝑇 (𝑟𝑇−1) 𝐼

𝜕𝑐0(𝑟0) 0 · · · 0

0 . . .
...

...
. . . 0

0 · · · 0 𝜕𝑐𝑇 (𝑟𝑇 )



.

Applying block Gauss eliminations, one can write the first column as

[0; . . . ; 0; 𝜕𝑐0; 𝜕𝑐1𝜕𝑎1; . . . ; 𝜕𝑐𝑇𝜕𝑎𝑇 · · · 𝜕𝑎1] .

Since 𝑋∗ is a feasible solution to (P2a), there exists a solution X∗ for (P1) such that
𝑥
(𝑖)
𝑠,∗ = 𝑥𝑠,∗ for ∀𝑠 ∈ I(X), ∀𝑖 ∈ A by Lemma 1. Since the system is observable at
X∗, i.e., 𝑂 (X∗), the first column of 𝜕𝑅(𝑋∗) after the Gauss elimination has a full
column rank. One can see that other block columns of 𝜕𝑅(𝑋∗) are also linearly
independent by noting their identity block elements. Therefore 𝜕𝑅(𝑋∗) has a full
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column rank and the Hessian of 𝐹 (𝑋∗) is positive definite. Since 𝑎𝑡 and 𝑐𝑡 are twice
differentiable, there exists a local neighborhoodB𝜌 (𝑋∗)with sufficiently small 𝜌 > 0
in which 𝐹 (𝑋) is strongly convex for ∀𝑋 ∈ B𝜌 (𝑋∗) with the local coefficient of
strong convexity 𝑚𝐹 > 0 is given by:

𝑚𝐹 = min
𝑋∈B𝜌 (𝑋∗)

𝜎min(𝐻𝐹 (𝑋)), (6.43)

where 𝜎min(·) is the smallest eigenvalue of the matrix. Therefore Assumption 6 is
satisfied locally.

The objective 𝐹 (𝑋) is also Lipschitz continuous subgradient, given that 𝑎𝑡 (𝑟𝑡−1)
and 𝑐𝑡 (𝑟𝑡) are Lipschitz continuous. This satisfies Assumption 5. Finally, we have
that LC-ADMM is locally exponentially stable at 𝑋∗ by Theorem 5.

An important implication of Corollary 1 is that LC-ADMM only requires that the
network as a whole is observable. Each agent, when considered in isolation from
the other agents, need not be observable for LC-ADMM to work. We validate this
point later in numerical simulation experiments. Additionally, if (D1) is a linear,
time-varying (LTV) system with Gaussian noise, the exponential convergence is
guaranteed globally.

Corollary 2 (Convergence for LTV systems). In addition to the assumptions in
Corollary 1, further assume that the dynamical system in (D1) is LTV. Then, LC-
ADMM is globally exponentially convergent to the unique solution. Moreover,
each sub-problem in (6.8) simplifies to an unconstrained, quadratic program, for
which the analytical solution is given by the matrix multiplication of form X̂ (𝑖)

𝑘+1 =

(𝐻 (𝑖)⊤𝐻 (𝑖))−1𝐻 (𝑖)⊤𝑏𝑘 . The matrix (𝐻 (𝑖)⊤𝐻 (𝑖))−1𝐻 (𝑖)⊤ is only computed once at the
beginning of LC-ADMM on agent 𝑖, and 𝑏𝑘 is an affine function of 𝑍𝑘 and𝑊𝑘 .

Proof. The proof is similar to that of Corollary 1. The observability implies that
𝐹 (𝑋) is strongly convexity and 𝐹 (𝑋) is Lipschitz continuous subgradient. By
Theorem 5, we have that LC-ADMM globally converges exponentially to the global
minimum.

Corollary 2 shows that each computation of LC-ADMM is quite inexpensive for
linear systems once (𝐻 (𝑖)⊤𝐻 (𝑖))−1𝐻 (𝑖)⊤ is computed for each agent 𝑖.
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LC-ADMM for Problems with Weaker Assumptions
We consider the application of LC-ADMM with weaker assumptions. First, con-
sider a case where the original problem (P2) additionally involves local inequality
constraints X̂ (𝑖) ∈ 𝑆(𝑖) , where 𝑆(𝑖) is a convex set. In this case, one can modify the
objective function (P2) to also include the indicator function

𝑓𝑖 (X̂ (𝑖)) ← 𝑓𝑖 (X̂ (𝑖)) + I𝑆 (𝑖) (X̂ (𝑖)).

Then, the LC-ADMM iterations in (6.8) and (6.9) can be written as

X̂ (𝑖)
𝑘+1 = arg min

X̂ (𝑖)∈𝑆 (𝑖)
𝑓𝑖 (X̂ (𝑖))

+
∑︁
𝑗∈N 𝑖

∑︁
𝑠∈I𝑖 𝑗

𝛽

2
∥𝑥 (𝑖)𝑠 − 𝑥 (𝑖 𝑗)𝑠,𝑘+1 +

1
𝛽
𝑤
(𝑖 𝑗 ,𝑖)
𝑠,𝑘
∥2,

(6.44)

𝑤
(𝑖 𝑗 ,𝑖)
𝑠,𝑘+1 = 𝑤

(𝑖 𝑗 ,𝑖)
𝑠,𝑘
+ 𝛽(𝑥 (𝑖)

𝑠,𝑘+1 − 𝑥
(𝑖 𝑗)
𝑠,𝑘+1). (6.45)

Even though the additional inequality constraints can model a broader class of prob-
lems, the exponential convergence proof for Theorem 5 would not work anymore,
so it was not included in the problem definition (P2a).

Next, we consider non-convex optimization problems such as PGO for which The-
orems 4 and 5 do not hold. While prior works in the literature showed that ADMM
converges for a certain class of non-convex problems [36], (P2) does not satisfy
all the assumptions of [36]. Therefore, it remains a future work to determine
whether LC-ADMM converges for a certain class of non-convex problems. Instead,
we demonstrate that LC-ADMM can still be derived for non-convex problems and
empirically show that LC-ADMM converges in some simulation examples.

We consider the problems involving manifold-constrained variables such as PGO.
Suppose a pose state in 𝑑-dimensional space is given by 𝑇 = [𝑅, 𝑡] ∈ SE(𝑑) where
𝑅 ∈ SO(𝑑) is the rotation component and 𝑡 ∈ R𝑑 is the translation component of
𝑇 . If 𝑇𝑝, 𝑇𝑞 ∈ X are the variables involving some factor 𝜙 ∈ F with noisy relative
pose observation 𝑇𝑝𝑞, we can write the local consensus reformulation of the PGO
problem as

min
𝑋,𝑍

∑︁
𝑖∈A

∑︁
𝜙∈F𝑖

𝐿 (𝑇 (𝑖)𝑝 , 𝑇 (𝑖)𝑞 , 𝑇𝑝𝑞) (6.46)

subject to
𝑇
(𝑖)
𝑠 = 𝑇

(𝑖 𝑗)
𝑠 ,

𝑇
( 𝑗)
𝑠 = 𝑇

(𝑖 𝑗)
𝑠 ,

∀𝑠 ∈ I(X̂𝑖 𝑗 ), (𝑖, 𝑗) ∈ E,

𝑇
(𝑖)
𝑠 ∈ 𝑆𝐸 (𝑑), ∀𝑠 ∈ I(X (𝑖)), 𝑖 ∈ A



121

where 𝐿 (𝑇𝑝, 𝑇𝑞, 𝑇𝑝𝑞) represents some loss function on a relative pose. Like we
did in (6.44), one can simply incorporate the manifold constraint in the local FGO
update equation. The manifold constraint 𝑇𝑠 ∈ SE(𝑑) introduces the non-convex
constraints.

In practice, there are some heuristic strategies to mitigate the risks of being stuck at
a local minimum. First, the local FGO update step of LC-ADMM does not preclude
the use of optimization techniques that guarantee convergence to the global minimum
for PGO (i.e., SE-Sync [2]). Therefore, loop-closure constraints within the agent
itself are remedied. Second, we develop iDFGO, an incremental version of LC-
ADMM, in Section 6.4 where agents build the map incrementally. This incremental
approach, combined with the ability to resolve the loop closures with self, makes the
algorithm more robust against local minima. We also demonstrate empirically in
simulations that LC-ADMM and iDFGO converge quickly to the optimal solution.

6.4 Incremental DFGO
In the previous sections, we applied LC-ADMM to the multi-agent MAP problem
(6.1) over some fixed time horizon. If we take the system in (D1) as an example,
LC-ADMM estimates X𝑡 = {𝑟𝑖,𝜏 | 𝑖 ∈ A, 𝜏 ∈ T (𝑡)} where T (𝑡) ≜ [0, 𝑡] is the
time horizon at 𝑡. In real-time applications, however, the distributed optimization
problem needs to be recomputed at each time step 𝑡 as new factors are added to
the graph. As the length of the time horizon increases, the size of the problem in
LC-ADMM also grows.

To address this challenge, we further extend LC-ADMM and derive the Incremental
DFGO (iDFGO) algorithm that is scalable with respect to the increasing time
horizon. The main idea is to combine a single-agent incremental probabilistic
inference algorithm (i.e., iSAM2 [23]) with the local FGO update step of LC-ADMM
such that only a recent subset of the factor graph needs to be recomputed. It turns
out that simply applying an incremental algorithm to solve the local FGO problem
does not result in an algorithm that is scalable with respect to time. To derive a time-
scalable algorithm, we exploit the temporal sparsity of the real-time factor graph
and the convergence of the augmented factors of LC-ADMM. The computation and
communication bandwidth of the overall algorithm is both scalable in size of the
network and in time.

For this section, we also additionally assume Gaussian distributions as they do in
the derivation of iSAM2 [18], [23]. For problems with non-Gaussian distributions,
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one may consider using the moving time horizon approach where the width of the
time horizon is kept constant.

Fluid Augmented Factor Update in Bayes Tree
One of the most prominent works for incremental probabilistic inference for a single
robot is iSAM2 [23] which reformulates factor graphs as Bayes trees. The primary
benefit of reformulating the original factor graphs as Bayes trees is that it permits
an incremental update of the FGO solution. In the Bayes tree, the joint probability
of the original factor graph is refactored as the product of conditional probabilities∏
𝑝(𝛿𝐹 |𝛿𝑆) that is modeled as a chordal tree [23]. Each node is a conditional

probability 𝑝(𝛿𝐹 |𝛿𝑆) for a clique of the original factor graph and one can obtain this
set of conditional probabilities by eliminating one variable at a time. Suppose the
factor 𝑓joint depends on 𝛿𝐹 and 𝛿𝑆 where 𝛿𝑆 is the separator variables and 𝛿𝐹 is the
frontal variables.

𝑓joint(𝛿𝐹 , 𝛿𝑆) ∝ exp
(
−1

2
∥𝐴𝐹𝛿𝐹 + 𝐴𝑆𝛿𝑆 − 𝑏∥2

)
(6.47)

The separator variables are those shared with its parent node and they are eliminated
from the node [23]. The probability distribution can be written as 𝑓joint(𝛿𝐹 , 𝛿𝑆) =
𝑃(𝛿𝐹 |𝛿𝑆) 𝑓𝑛𝑒𝑤 (𝛿𝑆) where

𝑃(𝛿𝐹 |𝛿𝑆) ∝ exp
(
−1

2
∥𝛿𝐹 + 𝑅𝛿𝑆 − 𝑑∥2

)
, (6.48)

𝑓new(𝛿𝑆) ∝ exp
(
−1

2
∥𝐴′𝛿𝑆 − 𝑏′∥2

)
. (6.49)

Here we have 𝑅 = 𝐴
†
𝐹
𝐴𝑆, 𝑑 = 𝐴

†
𝐹
𝑏, 𝐴′ = 𝐴𝑆 − 𝐴𝐹𝑅, and 𝑏′ = 𝑏 − 𝐴𝐹𝑑 and

𝐴
†
𝐹
= (𝐴⊤

𝐹
𝐴𝐹)−1𝐴⊤

𝐹
is the pseudo-inverse of 𝐴𝐹 . Finally, after the elimination, we

have parent factor 𝑓new(𝛿𝑆) and child factor 𝑃(𝛿𝐹 |𝛿𝑆). This elimination process is
repeatedly applied to the top portion of the Bayes tree until only one parent factor
remains as the root of the tree.

In iSAM2, the 𝐴′ and 𝑏′ terms for the parent are recomputed only when the lin-
earization point changes sufficiently. Therefore, so long as the linearization point
does not change too much, only the root of the tree needs to be modified in an in-
cremental fashion when new factors are added. One of the assumptions that iSAM2
has is that the measurement values of the nonlinear factors (i.e., 𝑏 term) are fixed
in their lifetime. While this assumption holds true in the nominal single-agent FGO
scenario, in which each measurement is observed once and does not change, we
need to revisit the assumption for iDFGO.
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Figure 6.5: Consensus error ∥𝑥 (𝑖)𝑠 − 𝑥 ( 𝑗)𝑠 ∥ for 5 sample variables converges over
time in the real-time electrical grid example. New factors are added per time step
(indicated by black dotted lines) and 𝐾 = 30 LC-ADMM iterations are applied in
batch at each time step. The consensus errors converge to zero over time.

Since iSAM2 scales well with respect to time, we extend it to distributed estimation
problems. One naive attempt would be to simply solve the local FGO update step of
LC-ADMM using iSAM2; however, this does not immediately result in a scalable
algorithm. Because each augmented factor modifies its pseudo measurement at each
LC-ADMM iteration, the assumption that the measurement term is fixed does not
hold anymore. To compute the correct optimal MAP solution using the Bayes tree,
every time 𝑏 changes in a clique, the value of 𝑏′ term in its parent node must be
modified. This recursively affects the ancestors of the node, all the way up to the
root of the tree. If there is an augmented factor near the bottom of the tree and it
modifies its pseudo measurement, a large number of variables are affected in each
update. Therefore, simply applying iSAM2 to the update step of LC-ADMM does
not result in an algorithm that scales well with time.

We exploit the temporal structure of the real-time problem to address this issue.
To this end, we make an important observation on the convergence of consensus
errors. Recall that in LC-ADMM, the role of the augmented factors is to enforce



124

0 50 100 150 200 250 300 350
Time

0

100

200

300

400
Nu

m
be

r o
f r

el
in

ea
riz

ed
 v

ar
ia

bl
es

IDFGO
0
1
2
3
4
5
6
7
8

Batch
0
1
2
3
4
5
6
7
8

Figure 6.6: Number of variables updated at each time step of iDFGO for the multi-
agent SLAM example. As the size of the factor graph grows, the computational
complexity of iDFGO remains bounded.

the consistency between a pair of variable estimates 𝑥 (𝑖)𝑠 and 𝑥 ( 𝑗)𝑠 for a variable 𝑥𝑠
and agents 𝑖 and 𝑗 . In real-time applications, the effects of newer factors on older
variables 𝑥 (𝑖)𝑠 and 𝑥 ( 𝑗)𝑠 diminish in comparison to those of augmented factors and
the two estimates converge over time. Figure 6.5 shows some sample trajectories
of the consensus error ∥𝑥 (𝑖)𝑠 − 𝑥 ( 𝑗)𝑠 ∥ as a function of time from an electrical power
grid example. At each time step, new factors are added to the graph and 𝐾 = 30
LC-ADMM iterations are applied in a batch. Even though new factors are added to
the graph, the error between each pair of estimates converges to zero around 𝑡 = 30
after the augmented factor was created in this example.

We exploit this convergence of consensus error and propose the fluid augmented
factor update where each augmented factor pair terminates its update once the
consensus is achieved to some threshold. The fluid augmented factor update is
summarized in Algorithm 6. If older augmented factors that reached consensus
do not modify their pseudo measurements, the Bayes tree update only needs to
recompute the more recent subset of the augmented factors. Figure 6.6 shows the
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number of variables recomputed in a multi-agent PGO example described later in
Section 6.5. Even though the number of factors in the graph grows over time, the
number of affected variables remains bounded in iDFGO. In addition to reducing
the computational effort, fluid augmented factor update also improves the com-
munication bandwidth. While the pair of augmented factors are converged, the
neighboring robots do not need to continuously exchange the pseudo measurements
for those factors. Therefore fluid augmented factor update improves computation
and communication simultaneously.

For the augmented factors that have not converged yet, the change in the value of
pseudo measurements must be reflected recursively up to the root of the Bayes tree.
We implement this similarly to the fluid relinearization step of iSAM2. We mark all
the affected cliques and their ancestors in the tree and redo their variable elimination.
Compared to the single-agent iSAM2 case, the number of affected variables during
redoing the top of the Bayes tree is typically larger because some augmented factors
from the past have not yet converged. However, because these factors are involved
in the cliques near the top of the Bayes tree, the number of variables involved in
the update step is still reduced compared to optimizing the whole factor graph in a
batch.

Algorithm 6: Fluid augmented factor update for agent 𝑖, neighbor 𝑗 , variable
𝑥𝑠, time 𝑡, and iteration 𝑘
Result: Updated {𝑤 (𝑖 𝑗 ,𝑖)

𝑠,𝑘,𝑡
}, {𝑥 (𝑖 𝑗)

𝑠,𝑘,𝑡
} and marked variable set 𝑀′

for each 𝑠 ∈ I𝑖 𝑗 and 𝑗 ∈ N 𝑖 do
if not converged then

𝑥
(𝑖 𝑗)
𝑠,𝑘,𝑡

= 1
2

(
𝑥
(𝑖)
𝑠,𝑘,𝑡
+ 𝑥 ( 𝑗)

𝑠,𝑘,𝑡

)
;

𝑤
(𝑖 𝑗 ,𝑖)
𝑠,𝑘,𝑡

= 𝑤
(𝑖 𝑗 ,𝑖)
𝑠,𝑘−1,𝑡 +

1
𝛽

(
𝑥
(𝑖)
𝑠,𝑘,𝑡
− 𝑥 (𝑖 𝑗)

𝑠,𝑘,𝑡

)
;

Update the pseudo measurement to 𝑥 (𝑖)
𝑠,𝑘,𝑡
− 1

𝛽
𝑤
(𝑖 𝑗 ,𝑖)
𝑠,𝑘,𝑡

;
Add variable 𝑥 (𝑖)𝑠 to the set 𝑀′;

end
else

𝑥
(𝑖 𝑗)
𝑠,𝑘,𝑡

= 𝑥
(𝑖 𝑗)
𝑠,𝑘−1,𝑡 ;

𝑤
(𝑖 𝑗 ,𝑖)
𝑠,𝑘,𝑡

= 𝑤
(𝑖 𝑗 ,𝑖)
𝑠,𝑘−1,𝑡 ;

end
end
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Variable Ordering
An important aspect to consider in developing the Bayes tree is the order of vari-
able elimination. The iSAM2 algorithm uses the constrained column approximate
minimum degree (constrained COLAMD) algorithm to compute the order of elimi-
nation such that it reduces the sparsity fill-ins in the presence of loop closures. This
heuristic algorithm works well in improving computational efficiency for single-
agent mapping problems in the presence of loop closures. However, it actually
leads to a large number of recomputed variables when used in conjunction with the
augmented factor updates of iDFGO. Instead, we choose a temporal ordering for
variable elimination, where the newer variables are placed closer to the root of the
tree. This approach preserves the temporal structure in the Bayes tree and so, the
fluid augmented factor update only affects the top part of the tree. Fig. 6.7 shows a
set of example Bayes trees obtained by this variable ordering scheme in a multi-agent
PGO example where the highlighted nodes are the cliques that are affected during
the particular update.

iDFGO Algorithm
The overall algorithm for iDFGO is summarized in Alg. 7. The local FGO update
part of iDFGO can be seen as an extension of iSAM2, and some of its subroutines
are reused. First, at each time step, new factors and variables are added to the
local factors. Second, the fluid augmented factor update step modifies some of the
pseudo measurement of augmented factors as described in Alg. 6. All the variables
related to the updated augmented factors are marked and stored in a set 𝑀 in this
step. Next, if there are new augmented factors at any 𝑘 , they are also added to
the factor graph and the involved variables are also added to the set 𝑀 . The fluid
relinearization step of iSAM2 (Alg. 5 in [23]) may relinearize some of the nonlinear
factors and returns its own set of marked keys. These marked keys are also added
to the set 𝑀 . Afterward, we redo the top of the Bayes tree in a similar way as Alg.
6 in [23] with the exception of two modifications. The first modification is that we
use the modified marked key 𝑀 which contains the variables affected by both fluid
relinearization and fluid augmented factor update. We use this set to mark all the
affected cliques in the Bayes tree and their ancestors. The second modification is the
variable elimination order. After redoing the Bayes tree, neighboring agents locally
exchange the new estimate. The iDFGO iterates this for 𝐾 steps per each time step
𝑡. To promote an efficient implementation, the iDFGO algorithm is implemented in
C++ using iSAM2 in the GTSAM library. We refer readers to [23] for details of the
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Figure 6.7: The top of the Bayes trees (left) and the bottom (right) for the 9 agents
running iDFGO for real-time PGO example. The blue nodes show the variables
whose nodes are modified by the incremental update.

iSAM2 algorithm.

Scalability with Time
We discuss the complexity of the iDFGO algorithm with respect to the size of the
trajectory. First, for an estimation of a dynamical system (e.g., system considered in
(D1)), only the recent subset of nodes in the Bayes tree is updated instead of solving
the optimization problem over the whole trajectory in a batch (Fig. 6.7). The number
of variables involved in the update has the complexity of 𝑂 (1) with respect to time.

In the presence of loop closures, the computational effort of the iDFGO algorithm
adapts as necessary. Suppose a newly added loop closure constraint affects variables
from 𝜏′ time steps ago in the past. The variables directly involved in the loop closure
(up to 𝑡−𝜏′) as well as variables in its proximity are affected by the loop closure. If the
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Algorithm 7: Incremental DFGO
Result: X̂ (𝑖)

𝑡,𝑘
, 𝑖 ∈ A

Each agent 𝑖 ∈ A locally initializes X̂ (𝑖)0,𝐾 = ∅ and 𝑡 = 0;
while true do

Add any new factors;
Initialize any new variables and add them to X̂ (𝑖)

𝑡,0 ;
for k=[0,K-1] do

Fluid augmented factor update (Alg. 6) yields marked variables 𝑀;
Create any new augmented factors and add their variables to set 𝑀;
Apply fluid relinearization (Alg. 5 in [23]). The marked variables from
Alg 5 are also added to 𝑀;

Taking 𝑀 as input, redo the top of Bayes tree (Alg. 6 of [23]) that is
modified to eliminate variables in a temporal ordering;

Solve for delta Δ (Alg. 7 in [23]);
The current estimate is given by X̂ (𝑖)

𝑡,𝑘+1 = X̂ (𝑖)
𝑡,𝑘
⊕ Δ;

Exchange shared variable estimates with neighbors;
end
𝑡 → 𝑡 + 1;

end

change in the estimate is sufficiently large, the variables may have a large consensus
error compared to the neighbors and may be required to apply the augmented factor
update. The estimates of the distributed agents will converge again sometime after
the loop closure is added, but the augmented factor continues to update until the
consensus error converges sufficiently. In terms of algorithm complexity, suppose
there is an upper bound 𝑇 ′ > 0 to the time lag on loop closure (e.g., 𝜏′ ≤ 𝑇 ′ for all
loop closure). Then, the most general bound on the number of variables involved in
each iDFGO update scales like 𝑜(𝑇 ′3) and it is constant complexity with respect to
the length of the whole trajectory.

6.5 Numerical Evaluation
We evaluate various aspects of LC-ADMM and iDFGO on multiple networked-
system models using numerical simulations. First, we validate scalability, optimal-
ity, and convergence. Second, we demonstrate the application of LC-ADMM to
a distributed outlier rejection problem. Finally, we compare the performance of
LC-ADMM and iDFGO against other PGO algorithms. We use the Levenberg-
Marquardt algorithm to solve each agent’s individual FGO update step of LC-
ADMM, and we implement this using the GTSAM library in C++. The iDFGO
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Figure 6.8: Electrical power grid example. Dynamics is given by (6.50). a) The
network size 𝑁 is varied by changing the number of columns in the grid. b) The
average computation time per node per iteration as a function of time. Each color
shows one simulation with a different network size. As the network size increases,
the local computational effort remains the same. c) The optimality gap of iDFGO
at steady-state vs. the number of LC-ADMM iterations 𝐾 .

algorithm is implemented using a modified version of iSAM2 [23] as described in
Algorithm 7. The ground truth simulation and iDFGO are run on a single computer
and the inter-agent communication is simulated by providing each agent with only
its neighbors’ information. All the timing results are obtained on a laptop with Intel
2.5 GHz i9-11900H processor.

Scalability, Convergence, and Optimality
Consider an example of a large-scale networked dynamical system (D1) given as
a network of electrical power grids [20] involving hundreds of agents. Each plant
is tasked to monitor its own state given the local measurement and the information
exchanged with the neighboring plants. The dynamics and measurement models for
each agent 𝑖 ∈ A are given by

𝑟𝑖,𝑡+1 =
∑︁
𝑗∈N̄ 𝑖

𝐴𝑖 𝑗𝑟 𝑗 ,𝑡 + 𝑤𝑖,𝑡 , 𝑦𝑖,𝑡 = 𝐶𝑖𝑟𝑖,𝑡 + 𝑣𝑖,𝑡 , (6.50)

𝐴𝑖𝑖 =

[
1 Δ𝑡

− 𝑘𝑖
𝑚𝑖
Δ𝑡 1 − 𝑑𝑖

𝑚𝑖
Δ𝑡

]
, 𝐴𝑖 𝑗 =

[
0 0

𝑘𝑖 𝑗
𝑚𝑖
Δ𝑡 0

]
,

𝐶𝑖 = [ 1 0 ] .
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The dynamics are locally coupled by 𝐴𝑖 𝑗 terms, and the noise terms 𝑤𝑖,𝑡 and 𝑣𝑖,𝑡 are
sampled from their respective i.i.d., zero-mean Gaussian distributions. The system
parameters 𝑘𝑖 𝑗 , 𝑑𝑖, 𝑚−1

𝑖
and Δ𝑡 are set to 0.2, and 𝑘𝑖 =

∑
(𝑖, 𝑗)∈E 𝑘𝑖 𝑗 . The grid network

has 𝑅 rows and 𝐶 columns with 𝑁 = 𝑅 × 𝐶 agents in total, as shown in Fig. 6.8(a).
The static network topology is defined such that each pair of adjacent agents have a
70% chance of having an edge between them. Because this system is linear, time-
invariant, and observable, the convergence of LC-ADMM is globally exponential
by Theorem 5 and Corollary 2.

We study the convergence of the consensus errors of LC-ADMM in Fig. 6.5. To
isolate the effect of variable-wise consensus, for Fig. 6.5 and this paragraph only, we
apply LC-ADMM in batch at each time step instead of iDFGO. Five samples of agent
state 𝑟𝑖,𝜏 are randomly selected, and the consensus error between 𝑟 (𝑖)

𝑖,𝜏,𝑘
and 𝑟 ( 𝑗)

𝑖,𝜏,𝑘
for a

pair of neighbors 𝑖 and 𝑗 is tracked over each consensus iteration 𝑘 = [0, . . . , 𝐾 − 1]
and each time step since 𝜏 (i.e., 𝑡 = [𝜏, 𝜏 + 1, 𝜏 + 2, . . .]). Each time step is indicated
by the black vertical lines in Fig. 6.5 while there are 𝐾 = 30 consensus iterations
in between each time step. The new factors are added to the local factor graph at
every time step. The figure shows that consensus error converges over 𝑘 between
each time update, but the error increases each time the new factors are added to
the graph. This is because the local estimate (i.e., 𝑟 (𝑖)

𝑖,𝜏,𝑘
) changes based on the new

information obtained from the augmented factor. Figure 6.5 also shows that the
magnitude of the error jumps at each time step decays over time. This is because
𝑡 − 𝜏 is increasing and the effects of new factors on variable 𝑟𝑖,𝜏 diminish over time.
For all the variables sampled, neighbors reach a steady agreement (i.e., 𝑟 (𝑖)

𝑖,𝜏,𝑘
= 𝑟
( 𝑗)
𝑖,𝜏,𝑘

)
within 30 time steps since 𝜏.

Next, we verify the scalability of iDFGO in network size and in time. The size
of the grid network is varied from N=25 to N=150 agents as shown in Fig. 6.8(a).
For each simulation, 𝐾 = 30 iterations are applied per time step. Figure 6.8(b)
shows the network-averaged computation time per LC-ADMM update as a function
of time in a real-time scenario. The sharp drop in computation time near 𝑡 ≈ 30
is due to the internal mechanism within the Bayes tree update of the iSAM2 where
it switches from calling a batch update to an incremental update. This switch
happens because the ratio between the number of variables affected and the total
number of variables in the problem goes under a threshold value. After 𝑡 ≈ 30 the
computation time remains mostly constant even as the network size increases due to
the locality property of LC-ADMM. We observe the average computation time are
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similar among various network sizes. These plots confirm the scalability of iDFGO
in both the size of the network as well as time.

Finally, we study the trade-off between the convergence error and communication
bandwidth for iDFGO. We run iDFGO for various numbers of ADMM iterations per
time step𝐾 where larger𝐾 means higher bandwidth. Suppose a ground truth state of
agent 𝑖 time step 𝑡 is denoted as 𝑟𝑖,𝑡 and the real-time estimate by agent 𝑖 is denoted
as 𝑟 (𝑖)

𝑖,𝜏,𝐾
where 𝜏 = 𝑡 and 𝐾 is the total number of consensus iteration per time

step. Then, the tracking error is defined as
∑
𝑖∈A ∥𝑟

(𝑖)
𝑖,𝜏,𝐾
− 𝑟𝑖,𝑡 ∥. For comparison, we

also compute the centralized optimal estimation solution using a batch optimization
method at each time horizon. This solution serves as the best possible error that the
iDFGO algorithm could get. The results are shown in Fig. 6.8(c). The figure shows
the iDFGO tracks the true trajectory 𝐾 = 2, 5, 10, 30 while the algorithm diverges
for 𝐾 = 1 because not enough consensus is applied at each time step. The more
frequent the communication is, the faster the algorithm converges to the centralized
optimal solution. Over time, however, the iDFGO approximates the centralized
optimal solution even with a relatively small number of communication per time
step.

Distributed Outlier Rejection on Locally-Coupled System
Next, we demonstrate that non-Gaussian noise models can be used with LC-ADMM
to solve distributed outlier rejection problems. Continuing with the power grid
example, suppose now that the observations model in (6.50) is further corrupted by
some sparse outlier noise

𝑦𝑖,𝑡 = 𝐶𝑖𝑟𝑖,𝑡 + 𝑣𝑖,𝑡 + 𝜓𝑖,𝑡

where 𝜓𝑖,𝑡 is a sparse but large noise. This type of outlier is particularly relevant for
large-scale networks that are low-cost but have a higher risk of failure and makes
accurate estimation more challenging. Unfortunately, algorithms that explicitly
assume Gaussian distribution perform poorly under spurious outliers.

Our approach is to alternatively use convex loss functions that correspond to proba-
bility distributions with fatter tails. This modification can be incorporated naturally
in iDFGO since the derivation of LC-ADMM does not assume a specific type of
noise model. One example of an alternative loss function that models a fatter tail is



132

Figure 6.9: Distributed outlier rejection in an power grid example using 𝛼 = 1.35
[1], 𝛽 = 1, and 𝐾=10. The raw observation error (blue), robust estimate (yellow),
and quadratic estimate (green) are shown for nine randomly selected agents out of
400. Errors are defined with respect to the ground truth from the simulation. The
robust algorithm successfully rejects the spurious noises that otherwise affect the
quadratic estimate.

the Huber loss function [1], which is defined as

𝐿𝛼 (𝑥) ≜

𝑥2 for |𝑥 | ≤ 𝛼,

𝛼(2|𝑥 | − 𝛼), otherwise
(6.51)

for some 𝛼 > 0. The individual agent’s objective using the Huber loss function can
be written as

𝑓𝑖 (X̂ (𝑖)) =∑︁
𝑡

𝐿𝛼 (∥𝑟𝑖,𝑡 − 𝐴𝑖𝑟N̄ 𝑖 ,𝑡−1∥𝑊 𝑡
𝑖
) + 𝐿𝛼 (∥𝑦𝑖,𝑡 − 𝐶𝑖𝑟N̄ 𝑖 ,𝑡 ∥𝑉 𝑡

𝑖
).

The resulting sub-problem can be written in Quadratic Program (QP) form for which
efficient algorithms exist. Because the Huber loss is convex, 𝑜(1/𝑘) convergence
by Theorem 4 holds.
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The simulation considers 400 agents in a connected 20 × 20 grid. If the nominal
observation noise has standard deviation 𝜎, the sparse outlier noise is simulated
by setting 𝜓𝑡

𝑖
= ±20𝜎 with 2.5% probability of occurrence, and otherwise 𝜓𝑡

𝑖
= 0.

Even though the chance of having each outlier is small, there are several outliers
somewhere in the network at each time step. We compare the results of applying
LC-ADMM with two different loss functions: a 2-norm loss function (baseline)
and a Huber loss function (robust estimation). Since the iDFGO assumes Gaussian
noise (like iSAM2 does), we apply LC-ADMM over a sliding time horizon of width
𝑇 = 30 for this simulation example only.

Figure 6.9 shows the measurement errors with respect to the first state variable as
well as the estimation errors for the baseline and robust estimation algorithms. The
figure shows the tracking errors for 9 randomly selected agents out of 400. The
baseline algorithm is significantly impacted by the outlier-corrupted signal, while
the robust estimation algorithm rejects the outlier well, maintaining low estimation
error. To the best of the authors’ knowledge, this is the first demonstration of
the distributed and localized estimation algorithm that can explicitly reject sparse
outliers in a unified framework.

Multi-Agent PGO via LC-ADMM
Next, we apply LC-ADMM and iDFGO to the multi-agent PGO problems (6.46).
This section evaluates LC-ADMM on a batch multi-agent PGO while the next
section evaluates iDFGO on a real-time problem. We note that LC-ADMM does
not show a theoretical guarantee for convergence in non-convex problems such as
PGO. However, instead, we empirically show that LC-ADMM locally converges to
the centralized optimal solution in these examples. The batch PGO problem was
validated on numerical simulations using a benchmark SLAM data set Manhattan
3500 [122], split into 5 segments to emulate multi-agent scenarios.

We compare the estimates computed by LC-ADMM with two state-of-the-art PGO
algorithms SE-Sync [2] and DC2-PGO [3]. SE-Sync is a centralized algorithm that
is known to converge globally under mild conditions. We solve the centralized PGO
problem using SE-Sync and refer to this solution as the centralized optimal solution.
The DC2-PGO algorithm is a certifiably correct distributed PGO algorithm (for
batch problems). DC2-PGO algorithm is implemented for comparison against LC-
ADMM. We use the accelerated version of DC2-PGO and the rank is initialized as
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𝑟 = 2. Note that DC2-PGO optimizes a loss function defined as 𝐿 (𝑇𝑞, 𝑇𝑝, 𝑇𝑝𝑞) =

𝜅𝑝𝑞 ∥𝑅𝑞 − 𝑅𝑝 �̃�𝑝𝑞 ∥2𝐹 + 𝜏𝑝𝑞 ∥𝑡𝑝 − 𝑡𝑞 − 𝑅𝑝𝑡𝑝𝑞 ∥2 (6.52)

for some 𝜅𝑝𝑞 > 0, 𝜏𝑝𝑞 > 0, while the loss function for LC-ADMM is defined as
𝐿 (𝑇𝑞, 𝑇𝑝, 𝑇𝑝𝑞) =

𝜅𝑝𝑞 ∥ log (𝑅−1
𝑞 𝑅𝑝 �̃�𝑝𝑞)

∧∥2 + 𝜏𝑝𝑞 ∥𝑡𝑝 − 𝑡𝑞 − 𝑅𝑝𝑡𝑝𝑞 ∥2. (6.53)

We denote log : SE(𝑑) → 𝔰𝔢(𝑑) as the logarithm map and (·)∧ : R𝑑×𝑑 → R𝑑 is the
inverse of the skew-symmetric matrix operator.

Once both estimates are computed using their respective loss functions, we use (6.52)
to quantify the estimation error for evaluation purposes only. Both algorithms are
initialized with the optimal solution to the single-agent PGO using the observations
available only to itself (computed using a certifiably correct single-agent PGO
algorithm [2]).

First, the colored trajectories in Fig. 6.10 show the LC-ADMM estimate by the five
agents after 𝑘 = 10 iterations. Only after a small number of iterations, LC-ADMM
converges to the centralized optimal solution (grey, computed by SE-Sync). The
figure also qualitatively confirms that LC-ADMM is not stuck at some local minima.
Next, Fig. 6.11 shows the convergence rates of LC-ADMM and DC2-PGO4. Each
agent only contributes its own poses and not a copy of the other agents’ poses.
The cost is defined as the centralized PGO objective function with (6.52) as the
loss function and evaluated at X̃. The optimal cost 𝑓 ∗ is evaluated at the globally
optimal solution to the centralized PGO computed by [2] and the normalized cost is
defined as 𝑓 / 𝑓 ∗. The normalized cost for both algorithms is shown as a function of
iterations in Fig. 6.11. While LC-ADMM does not have any guarantees to converge
to the correct global optimal solution for a general non-convex problem, Fig. 6.11
shows that LC-ADMM converged to the optimal solution in this specific example.
LC-ADMM also converged faster than DC2-PGO even though both algorithms start
from the same initial trajectories. This result empirically suggests the applicability
of LC-ADMM when provided with an initial guess that is good enough to avoid the
local minimum.

4In a general multi-agent PGO, the outer loop of DC2-PGO iterates on possible ranks of the
low-rank Semi-Definite Programming. In this example, DC2-PGO only iterates this outer loop once
before convergence. Therefore, the convergence of DC2-PGO in Fig. 6.11 equivalently represents
the convergence of its inner loop, the Riemannian Block Coordinated Descent algorithm (RBCD)[3].
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Figure 6.10: Five agents cooperatively solve the distributed PGO problem. The
pose estimates are shown for LC-ADMM only after 𝑘 = 10 iterations (colored) and
for the optimal solution (gray) computed by a centralized method (SE-Sync [2]).

Multi-Agent PGO via iDFGO
Next, we evaluate iDFGO in a real-time multi-agent PGO example. In this example,
9 robots traverse an environment in a formation. The trajectories of the 9 agents are
shown on the left in Fig. 6.2. The task is to maintain both a good global map as well
as good relative estimates. The dataset contains noisy observations for (1) odometry,
(2) relative pose between neighbor robots at a given time (shown in red), and (3)
loop closures with some nearby poses (shown in blue). Without any inter-agent
cooperation, the estimate that each agent computes will have a large drift as well as
a large relative pose estimation error (shown in the center of Fig. 6.2). We set the
number of consensus iterations applied at each time step to be 𝐾 = 5.

A snapshot of the trajectory estimates computed by the iDFGO algorithm at time
𝑡 = 320, 𝑘 = 0 is shown on the right in Figure 6.2. Each color corresponds to a
different agent’s trajectory estimate and the gray plot shows the centralized optimal
solution computed SE-Sync [2]. It shows that the trajectories estimated by iDFGO
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Figure 6.11: Normalized cost vs. number of iterations for LC-ADMM and DC2-
PGO [3] on M3500 dataset.

match the optimal solution. The darker color in each agent’s trajectory denotes
variables that were affected by the iDFGO update at step, while the lighter color
denotes unaffected variables. The figure shows that iDFGO successfully updates
the recent subset of the factor graph in an incremental fashion. Some of the agents
have a larger number of affected variables than others. This is explained by the loop
closure constraints on those agents affecting more variables from the past.

More details of the number of affected variables over the trajectory are shown in
Fig. 6.6. The solid lines show the time history of the number of affected variables
at the given time while the dotted line shows the total number of variables updated
if the whole trajectory of each agent is estimated in a batch. While the problem size
increases for the batch case time increases, the size remains bounded for the iDFGO
algorithm.

This simulation demonstrated that the iDFGO algorithm solves the multi-agent PGO
for a team of robots traversing an environment in a formation. The estimate matches
the centralized optimal solution well. The algorithm is efficient as it involves a small
number of consensus iterations per time step and the factor graphs are updated in
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an incremental fashion, leading to a more time-scalable algorithm.

6.6 Chapter Summary
This chapter presented new algorithms to solve certain classes of Distributed Fac-
tor Graph Optimization (DFGO) problems. The Maximum A Posteriori estimation
problem was formulated as a spatially-decomposable factor graph optimization prob-
lem by exploiting the sparsity structure of locally-coupled systems. First, showed
the Localized Consensus ADMM (LC-ADMM) algorithm has various advantages
when solving DFGO in a batch over a fixed time horizon. LC-ADMM scales well
with the number of agents, incorporates robust convex loss objectives, solves prob-
lems fully in parallel, and does not need information about global graph topology.
We have two new theoretical convergence results on LC-ADMM: (1) it converges
at 𝑜(1/𝑘) rate if the objective function is convex and has a unique solution, and (2)
it converges exponentially if the objective is strongly convex and its subdifferential
is Lipschitz continuous. Next, using LC-ADMM as a backbone, we derived the In-
cremental Distributed Factor Graph Optimization algorithm (iDFGO) for real-time
problems. The iDFGO algorithm integrates LC-ADMM with an extended version
of iSAM2 to incrementally recompute the local factor graph optimization problem.
The iDFGO is scalable both in the number of agents and in time.

The performance of LC-ADMM and iDFGO was evaluated in numerical simu-
lations with examples from the electrical power grid and multi-agent pose graph
optimization. The simulation results verified scalability properties and illustrated
the trade-offs between optimality and communication. The multi-agent pose graph
optimization examples showed that the algorithm converged to the correct optimal
solution despite problems being non-convex, indicating the possible applicability to
a broad class of problems.

In the overall road map of this thesis, LC-ADMM and iDFGO address the short-
comings identified in DPE (Chapter 3) and MSEPS (Chapter 4). DPE was 𝑂 (1)
scalable with respect to the size of the network but there was a gap when compared
to the centralized optimal solution. MSEPS used Decentralized Extended Informa-
tion Filter which approximates the centralized optimal solution; however, it was not
scalable with respect to a number of landmarks, as they were not localized. On the
other hand, LC-ADMM addresses both optimality and scalability simultaneously
for large-scale problems. In comparison to DPE, iDFGO is a preferred choice when
estimation accuracy is a high priority in the system design process. While both DPE



138

and iDFGO are scalable in memory, computation, and communication exchange,
iDFGO requires more overhead on each of these resources due to the complexity
of the optimization-based algorithm. Therefore, it is possible that DPE is preferred
over iDFGO in some scenarios; e.g., when the system is extremely resource-limited
and DPE provides sufficient estimation accuracy. However, because the compu-
tational effort needed for iDFGO is comparable to single-agent SLAM algorithms
which have been shown to run on small, low-cost edge computing devices available
today (e.g., NVIDIA Jetson TX2), iDFGO is suitable in many multi-agent robotic
platforms, including spacecraft swarms.
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C h a p t e r 7

CONCLUSION

In Chapter 3, we presented the Decentralized Pose Estimation (DPE) algorithm that
solves the swarm localization problem for formation flying spacecraft. The DPE
considers ad hoc relative sensing and communication networks to determine a set of
observable spacecraft and shares these spacecraft’s measurements to jointly estimate
their poses with respect to the LVLH frame at each time step. As a part of the DPE,
the Swarm Reference Frame Estimation (SRFE) algorithm applies the information
consensus filter to estimate the common LVLH frame in a decentralized fashion. The
DPE is a local, decentralized algorithm that has a constant complexity with respect to
the swarm size. Numerical simulations verify that the estimation errors of the DPE
are improved compared to those for no cooperation cases and that the computation
time remains constant as the swarm size increases. An experimental result using
the air-bearing spacecraft simulators demonstrates good DPE performance using
vision-based relative pose measurements with ad hoc networks.

In Chapter 4, we presented the cooperative vision-based pose estimation algo-
rithm called Multi-spacecraft Simultaneous Estimation of Pose and Shape (MSEPS).
MSEPS is posed as a distributed sensor network paradigm. Using inter-spacecraft
communication, MSEPS tightly integrates the vision-based feature tracking prob-
lem with a distributed estimation framework. We provided an overview of the
multi-spacecraft algorithm architecture that consists of the computer vision pipeline,
communication, and back-end filtering. We proposed the extended decentralized
information filtering that approximately solves the minimum variance estimate of
the global information but is implemented in a distributed fashion, and proposed an
improvement in computation that exploits the special structure of the MSEPS prob-
lem. We validated the distributed algorithm and some of the algorithm pipelines
using the simulation.

In Chapter 5, we developed new high-fidelity simulation tools to aid the development
and testing of robotics algorithms for on-orbit servicing. First, we developed ROS-
Basilisk, a software that enables the astrodynamics simulation software Basilisk
to run in real-time alongside ROS2. ROS-Basilisk software translates messages
between Basilisk and ROS2 such that it allows autonomy algorithms implemented
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in ROS2 to interact with high-fidelity spacecraft dynamics simulation of Basilisk
in a closed-loop fashion. Second, we present a camera simulation module named
ROS-NeRF which uses the Neural Radiance Fields to rapidly render spacecraft
images in real time. Because the neural network only needs to learn the specific
3D scene (i.e., target spacecraft), this approach can rapidly generate realistic images
much faster than high-fidelity rendering methods such as Blender. We evaluated
the performance of ROS-NeRF by applying basic computer vision tasks of relative
navigation such as object detection and keypoint matching to the NeRF-rendered
images. Finally, we integrated these simulation tools along with an example on-orbit
inspection algorithm that involves spacecraft object detection, formation control, and
attitude control to demonstrate a closed-loop simulation in ROS2.

In Chapter 6, we presented new algorithms to solve certain classes of Distributed
Factor Graph Optimization (DFGO) problems. The Maximum A Posteriori estima-
tion problem was formulated as a spatially-decomposable factor graph optimization
problem by exploiting the sparsity structure of locally-coupled systems. First,
showed the Localized Consensus ADMM (LC-ADMM) algorithm has various ad-
vantages when solving DFGO in a batch over a fixed time horizon. LC-ADMM
scales well with the number of agents, incorporates robust convex loss objectives,
solves problems fully in parallel, and does not need information about global graph
topology. We have two new theoretical convergence results on LC-ADMM: (1)
it converges at 𝑜(1/𝑘) rate if the objective function is convex and has a unique
solution, and (2) it converges exponentially if the objective is strongly convex and
its subdifferential is Lipschitz continuous. Next, using LC-ADMM as a backbone,
we derived the Incremental Distributed Factor Graph Optimization algorithm (iD-
FGO) for real-time problems. The iDFGO algorithm integrates LC-ADMM with
an extended version of iSAM2 to incrementally recompute the local factor graph
optimization problem. The iDFGO is scalable both in the number of agents and in
time.

Finally, the performance of LC-ADMM and iDFGO was evaluated in numerical
simulations with examples from the electrical power grid and multi-agent pose graph
optimization. The simulation results verified scalability properties and illustrated
the trade-offs between optimality and communication. The multi-agent pose graph
optimization examples showed that the algorithm converged to the correct optimal
solution despite problems being non-convex, indicating the possible applicability to
a broad class of problems.
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