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ABSTRACT

This thesis covers two separate projects which both use ultrasound to measure a
form of blood pressure in very different ways. The first project focuses on the
noninvasive measurement of continuous arterial blood pressure via the previously
unstudied phenomenon of arterial resonance. While prior research efforts have
attempted many methods of noninvasive blood pressure measurement, none has
been able to generate continuous, calibration-free measurements based on a first-
principles physical model. This work describes the derivation of this resonance-
based model, its in vitro validation, and its in vivo testing on 60 subjects. This
testing resulted in robust resonance detection and accurate calculation of BP in the
large majority of evaluated subjects, representing very promising performance for
the first test of a new biomedical technology. The second study changes focus to
the measurement of blood pressure in the right atrium of the heart, an important
clinical indicator in heart disease patients. Rather than developing a new physical
approach, this project used machine learning to model the existing assessments
made by cardiologists. Comparison to gold standard invasive catheter measurements
showed that model predictions were statistically indistinguishable from cardiologist
measurements. Both of these projects represent significant advances in expanding
precise blood pressure measurements beyond critical care units and expanding access
to a much broader population.
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C h a p t e r 1

INTRODUCTION

1.1 Ultrasound and Its Clinical Uses
Ever since the invention of the medical X-ray over 100 years ago, engineers have
devoted great effort to developing methods of peering inside the human body without
breaching the skin. Modern-day X-ray instruments using computational tomography
are capable of creating extremely detailed pictures of our bodies’ inner workings.
However, these machines are not only large and expensive, but they also require
exposure of the subject to potentially harmful radiation which must be applied in
controlled doses. The drive to develop an alternative to the X-ray led to the creation
of ultrasound, which uses audio signals rather than light waves to image the body.

At its core, ultrasound is the measure of acoustic impedances. The measurement
begins with the emission of an audio pulse of ∼ 1 − 50 MHz directed into the
body. This range of audio frequencies propagates well in uniform, soft tissue with
a relatively low acoustic impedance. However, denser tissues, such as bone, cysts,
or the muscular walls of blood vessels and heart chambers have significantly higher
acoustic impedance. When the ultrasound pulse hits a boundary with one of these
tissues, the impedance mismatch causes a portion of the the pulse’s energy to be
reflected. Carefully listening for the strength and time delay of these reflected
echoes allows for the reconstruction of where these impedance mismatches exist in
the tissue.

The key advantage of early ultrasound scanners over X-ray imaging was the lack
of harmful radiation. This led to the early adoption of ultrasound technology by
obstetricians for prenatal imaging, as even low doses of X-ray exposure could be
harmful to a developing fetus. Because early medical ultrasound instruments were
large, expensive, and hard to operate, most other physicians initially preferred to stick
with X-rays, stethoscopes, and physical exams. Over time, however, the technology
gradually improved, yielding higher-quality images from smaller instruments that
could be wheeled to a patient’s bedside. Physicians began to find a wide variety of
diagnostic use cases for ultrasound which could not be easily replicated with X-ray,
such as localizing bleeding in trauma patients, looking for signs of cirrhosis in the
liver, or distinguishing a malignant tumor from a benign cyst. Modern ultrasound
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machines range from high-powered devices which can create detailed 3D renderings
of entire organs to ultra-portable devices which are operated from a smartphone.
This versatility has made ultrasound a standard part of any doctor’s training and an
indispensable tool in any hospital.

Among its many uses, ultrasound is particularly well-suited for imaging the cardio-
vascular system. The boundary between the muscular walls of arteries and heart
chambers and the blood contained within creates a significant acoustic impedance
discontinuity, leading to bright and detailed images. The continuous nature of ultra-
sound imaging allows doctors to investigate the dynamics of the heartbeat, including
valve function, cardiac chamber outputs, and artery distention. 3D ultrasound imag-
ing allows for accurate measurement of heart chamber volume. Doppler ultrasound
allows for direct visualization of blood flow, providing even deeper insight into
system behavior. Recent research efforts have moved beyond simple imaging, har-
nessing the power of ultrasound in innovative ways to measure previously invisible
mechanical properties such as shear wave speed in arterial walls [1] or stress in mus-
cle fibers [2]. This thesis continues along this line of inquiry, using ultrasound to
measure one of the most important parameters in the cardiovascular system: blood
pressure.

1.2 Thesis Outline
The bulk of this thesis focuses on the noninvasive measurement of continuous blood
pressure via the previously unstudied phenomenon of arterial resonance. Chapter
2 begins with an overview of blood pressure measurement technology, including
both modern clinical standards and the myriad of other research approaches which
have attempted to replace these standards, so far without much success. It then
provides a first-principles derivation of the arterial resonance approach to blood
pressure measurement, as well as an analysis of its feasibility and sensitivity. Chap-
ter 3 describes the prototype device and analysis methods designed conduct arterial
resonance measurements, and demonstrates that the physical equations we derived
very accurately describe behavior in an idealized in vitro model artery. Chapter 4
describes the additional analysis procedures needed to enable real-time blood pres-
sure measurement and shows initial feasibility results demonstrating that resonance
can be stimulated and measured in real human arteries. It then presents the results
of a 60-subject clinical study, demonstrating that arterial resonance can lead to ac-
curate BP measurements across a wide variety of physiologies and demographics.
Chapter 5 describes how arterial resonance also enables the measurement of arterial
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stiffness, which is recognized as an important indicator of cardiovascular health but
has been difficult to measure in an accurate, localized way.

The final section of the thesis, Chapter 6, changes focus from measuring blood
pressure in arteries to measuring pressure in the right atrium of the heart. It begins
by describing the clinical importance of this parameter for care management in heart
failure patients and how it is currently assessed using ultrasound imaging. Rather
than developing a new method of conducting this measurement, we instead leverage a
large dataset from the University of California, San Francisco cardiology department
which combines ultrasound scans of the heart with cardiologists’ measurements of
right atrial pressure based on these scans. Using machine learning, we develop
a model which can replicate and even improve upon the pressure measurements
generated by cardiologists. This model could allow for more robust and accurate
measurements of right atrial pressure, particularly in settings without regular access
to experienced cardiologists.
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C h a p t e r 2

BIOPHYSICS OF BLOOD PRESSURE AND ARTERIAL
RESONANCE

Blood pressure (BP) is one of the most important vital metrics for clinicians when
assessing patient health. Elevated BP, or hypertension, can be caused by either
chronic underlying conditions or acute stress and afflicts an estimated 31% of adults
worldwide [3]. It is associated with heart disease as well as a wide spectrum of
disorders from dementia to stroke, making it the global leading cause of premature
death [3], [4]. Depressed BP, or hypotension, is usually caused by acute events such
as shock or trauma, and it can also have severe consequences. Severe hypotension
results in insufficient blood circulation throughout the body, potentially leading to
organ damage and loss of life [5]. The risks associated with both hypertension and
hypotension make BP measurement a regular procedure in any medical setting, from
primary care checkups to intensive care units and operating rooms.

Measuring fluid pressure in a pipeline is generally not considered an engineering
challenge, as designers of artificial systems can easily place a pressure transducer
inside the pipeline during construction. Biological systems, however, do not come
with any measurement devices built-in. This has led engineers to explore dozens of
methods of BP measurement, but none has matched the standard set by transducers in
artifical pipelines: providing real-time, continuous pressure measurements without
breaching the arterial wall or performing calibration to an external source. This
chapter will provide an overview of current clinical standards for BP measurement
as well as the wide variety of research that has attempted to improve upon these
standards. It will then provide a theoretical derivation and feasibility analysis of our
novel approach to BP measurement: arterial resonance.

2.1 Background: Clinical Standards of Blood Pressure Measurement
The gold standard of clinical BP measurement is the arterial catheter, or A-line.
The catheter is inserted into the subject’s artery of interest (most often the radial
artery in the wrist), and BP is continuously recorded via a pressure transducer.
Because the measurement is taken directly from inside the artery, this is considered
the most accurate way to measure blood pressure. The continuous nature of the
measurement means that acute events leading to rapid BP changes can be identified
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immediately, which is of particular importance in critical care units and operating
rooms. Additionally, the A-line is able to measure the full shape of the blood
pressure waveform, rather than just maximum and minimum values. This shape
can provide significant clinical value beyond diagnosis of hypertension, such as
diagnosis of arterial valve stiffening [6], measurement of cardiac efficiency [7],
early identification of hypotensive crises [8], and assessment of vascular health [9].

Despite the value provided by A-lines, they are relatively rarely used due to a
number of limitations. Inserting a needle through the muscular wall of an artery is
significantly more difficult than the venous insertions typically used for blood draws.
The process requires at least two personnel with special training, and even then it
can take up to an hour to complete and may fail entirely up to 25% of the time due
to muscle spasms in the artery [10]. Successful A-line placements can still cause
significant discomfort for the patients, and they carry additional risks of infection,
hemorrhage, and ischemia (clot formation) [11]. As a result, A-lines are typically
only applied to a high-risk subset of patients in hospitals and are almost never used
in outpatient settings.

In almost all other scenarios, BP measurements are performed using an inflatable
cuff, or sphygmomanometer, placed on the upper arm over the brachial artery. To
perform a measurement the cuff is first inflated to a pressure well above the subject’s
systolic (maximum) blood pressure, or SBP, which cuts off all blood flow. The
pressure is then gradually reduced until blood flow is once again detectable, either
manually using a stethoscope or automatically using vibration sensors in the cuff.
The highest pressure at which blood flow is intermittently detected is recorded
as SBP, and the highest pressure at which blood flow is continuously detected is
recorded as diastolic (minimum) blood pressure, or DBP.

BP cuffs have gained widespread usage because they are easy to apply, noninvasive,
inexpensive, and generate results within minutes. However, they also come with
a variety of drawbacks. The primary limitation is that cuff measurements are
intermittent; gradually increasing and decreasing cuff pressure takes significant time,
and patients will generally not tolerate frequent re-measurements due to discomfort.
This response time may be substantially too slow for patients at risk of rapid health
deterioration, such as those in critical care units. Furthermore, these intermittent
measurements only provide maximum and minimum values for BP, removing the
diagnostic value of analyzing full BP waveform shapes. Finally, cuff use in practice
often results in wide measurement variability due to a number of factors, including
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cuff size, body positioning, drug and alcohol use, and cold exposure [12]. As
determined in a recent meta-analysis by Dankel, Kang, Abe, et al. [13], this variation
leads to BP cuff measurement errors of up to 15.5mmHg for DBP and 20.2mmHg for
SBP when compared to A-line measurements. Patients and doctors would benefit
significantly from a technology which could provide the continuous and accurate
BP readings of an A-line but with convenience and non-invasiveness of an inflatable
cuff.

2.2 Background: Prior Work in the Field
The gap in performance and utility left by the two available clinical standards for
BP measurement has inspired a wide variety of approaches to the problem of non-
invasive blood pressure measurement, or NIBPM. This section will briefly review
the body of prior work and examine why none of these methods has achieved
widespread clinical acceptance.

The most established method of NIBPM is vascular unloading, which uses an inflat-
able cuff placed over the subject’s fingertip [14]. The cuff continuously measures
the level of blood perfusion in the finger on each heartbeat based on infrared light
transmission through the fingertip, and a control loop varies pressure in the inflatable
finger cuff to keep this perfusion volume constant. The variable pressure required
to maintain this constant volume is used to calculate a BP reading. Commercial
devices based on vascular unloading have gained regulatory approval and seen some
limited use in hospitals, but have not gained widespread acceptance.

The key limitation of vascular unloading is that it does not actually measure pressure
in an artery of interest; instead it measures a proxy (in this case perfusion force
in the capillary beds of the fingertip) and extrapolates from this value back to a
clinically useful BP number. While arterial BP is correlated to this proxy variable,
there is not a 1:1 physical relationship between the two, or even an empirical
relationship that is consistent across all subjects. Instead, the proxy-BP relationship
is generally calibrated for each patient individually based on a standard inflatable
BP cuff, and even then periodic re-calibration is often required to correct for drift
and can result in data blackouts [15]. These calibration steps and the uncertain
proxy-BP relationship create significant potential sources of error, and studies have
frequently found errors between finger cuffs and A-lines of over 25 mmHg [16],
[17]. Futhermore, commercially available vascular unloading devices typically cost
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upwards of $30,000, making them infeasible for widespread deployment beyond
well-funded hospitals.

Dozens of research groups have pursued NIBPM techniques using a variety of other
physical signals, including (but not limited to) light reflectance from blood (photo-
plethysmography) [18]–[27], pressure signals at the surface of the skin (tonometry)
[28]–[30], electrical conductivity of blood (bioimpedance) [31]–[34], pressure wave
velocity (pulse transit time) [21], [33], [35]–[37], reactive forces from cardiac ejec-
tion (ballistocardiography) [38]–[40], and millimeter-wave radar for waveform mea-
surement [41]. A more detailed summary of these methods is provided in Appendix
Table A1.1. Despite the wide variation in these techniques, they all share the same
common limitation as vascular unloading; they are only able to measure a proxy
variable that is correlated with, but not directly mapped to, true blood pressure.

Most of the above methods establish the proxy-BP relationship via calibration to
an inflatable cuff. However, even once calibration is performed, changes in subject
BP may not always lead to consistent changes in proxies. For example, Avolio et
al. [42] found that BP increases due to cycling stress tests significantly increased
pulse transit time, but similar BP increases from ice water immersion or hand grip
stress tests did not. Thus, these devices suffer from a compounding of errors due to
inherent measurement noise, inaccuracy in the cuff calibration reference, and drift
in calibration validity over time. Some methods have attempted to remove the need
for direct calibration by applying machine learning models which predict BP from
the measured proxies and other factors like subject demographics and heart rate
[19], [22]–[25], [39]. However, the accuracy of these empirically trained models
is limited by the diversity of training data, which could be especially problematic
for patients with extreme BPs or uncommon pathologies [43]. Such accuracy
concerns have prevented these various NIBPM devices from gaining significant
clinical acceptance.

Ultrasound-Based Approaches
In addition to the above work, some research groups have approached NIBPM
using ultrasound as a measurement modality [44]–[48]. A significant advantage of
ultrasound is that it is able to directly measure properties such as arterial radius,
distention, and blood velocity which can only be assessed in relative terms (if at all)
by other techniques. Furthermore, while traditional ultrasound devices are bulky
and require manual operation, recent advances have led to the design of flexbile,
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wearable ultrasound patches that can measure arterial characteristics [47], [49], [50].
By combining measurements of arterial cross-sectional area (𝐴) and volumetric
blood flow rate (𝑄) over time, it is possible to measure changes in pressure via the
"QA" equation: [46]

𝑑𝑃

𝑑𝑡
= 𝜌𝑏𝑙𝑜𝑜𝑑

(
𝑑𝑄

𝑑𝐴

)2
𝐴
𝑑𝐴

𝑑𝑡
. (2.1)

This equation represents a direct physical relation between measured parameters and
blood pressure, in contrast to all of the correlated proxies described above. However,
it is still only able to measure relative changes in pressure over time; the absolute
baseline pressure must still be determined by calibration to a cuff. Furthermore,
since only 𝑑𝑃/𝑑𝑡 is measured, small errors in each measurement can quickly add
up and cause significant drift in inferred 𝑃 if re-calibration is not performed. As a
result, the QA method has not yet seen clinical utility.

An alternative ultrasound-based approach which does attempt to extract absolute BP
is described by Zakrzewski, Huang, Zubajlo, et al. [51]. With this method, a force
gauge is attached to a standard ultrasound probe, and the user images their carotid
artery while pressing the probe into their neck with a gradually increasing force over
time. The observed distention of the artery and surrounding tissue is then matched
up with a pre-computed library of finite element models to extract DBP and SBP.
While this measurement technique does have a connection to absolute BP through
physics-based modeling, the actual data acquisition method is practically infeasible
in a clinical setting, and atypical patients whose anatomies do not match up with the
pre-computed model library could cause problems.

2.3 Arterial Resonance: A First-Order Approach
The focus this project was developing a model for continuous, absolute BP mea-
surement which calculates pressure directly from observables rather than relying on
correlated proxies or trained models. Both clinical standards for BP measurement
rely on reference to a known stimulus; the BP cuff measures the collapse of the artery
in response to a known external compression, and the arterial catheter measures the
reaction of a transducer with a known response function to the pressure exerted
by the blood itself. In contrast, almost none of the NIBPM methods described
above incorporate a known external stimulus. Instead, they rely on the subject’s
own heartbeat to perturb the artery and perform passive observation to measure the
artery’s response. The central problem with such methods is that the magnitude
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of pressure exerted by the heartbeat is unknown, so the system is left undercon-
strained; we know how it responded but not what exactly it was responding to. As a
result, such methods can measure how blood pressure changes relatively over time,
but they cannot establish an absolute pressure baseline. It is telling that the only
NIBPM method described above which does involve external stimulus application
(Zakrzewski, Huang, Zubajlo, et al. [51]) is also the only one which can measure
baseline absolute BP without inferring it via machine learning, albeit after the appli-
cation of an empirically tuned tissue model. This suggests that stimulus application
is the key missing ingredient in the development of calibration-free NIBPM.

Our novel approach to the NIBPM problem is Controlled Arterial Resonance for
Direct Identification of Blood Pressure, or CARDI-BP. The inspiration for this
method is the guitar string. If one simply walks up to a guitar that has already been
strung, there is no way to tell how much tension any given string is under just by
looking at it. However, the tension can be measured by plucking the guitar string
and measuring the frequency 𝑓 at which it resonates. Specifically, because the string
is an elastic system its tension 𝑇 is directly related to its wave velocity 𝑣𝑤 and linear
mass density 𝛾 as 𝑇 = 𝛾𝑣2

𝑤. Because the string is fixed at both ends its baseline
wavelength will be _ = 2𝐿, and the wave equation dictates that 𝑣𝑤 = _ 𝑓 . Putting
this all together gives us 𝑇 = 4𝛾𝐿2 𝑓 2; by measuring the string’s density, length, and
resonance frequency we can determine the absolute amount of tension it is under.

The key to extending this logic to blood vessels is Laplace’s Law, as illustrated in
Figure 2.1a. This states that for an elastic cylindrical vessel of radius 𝑎, the absolute
internal fluid pressure 𝑃 and wall tension 𝑇 are related as

𝑃 = 𝑇/𝑎. (2.2)

Passive observation is not capable of measuring an absolute value for 𝑇 any more
than it can measure 𝑃. However, if we apply an external stimulus and resonate the
artery, we can apply guitar string physics to convert resonant frequency to tension
and thereby measure pressure. Because the arterial wall is a closed loop, its lowest-
order vibrational mode will contain two full wavelengths around its circumference,
as illustrated in Figure 2.1b. Substituting _ = 𝜋𝑎 and 𝛾 = 𝜌ℎ for wall volumetric
density 𝜌 and thickness ℎ, we get

𝑇 = 𝜋2𝜌ℎ𝑎2 𝑓 2 (2.3)

𝑃 = 𝜋2𝜌ℎ𝑎 𝑓 2. (2.4)
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This equation provides the core of the CARDI-BP method; if we can stimulate
the artery to measure its resonant frequency while simultaneously measuring other
properties like dimensions and density, we can obtain an absolute measurement of
blood pressure without any external calibration or reference.

Figure 2.1: Physical concepts underlying arterial resonance. a) An illustration of
Laplace’s Law, which relates the fluid pressure inside a cylinder (𝑃) to the resultant
circumferential tension in the wall needed to contain that pressure (𝑇). Because
blood pressure places the arterial wall under tension, we expect the wall to exhibit
resonant behavior. b) The lowest order resonant mode which can be excited around
the circumference of an artery, with the scale of deformation exaggerated. Colored
arrows represent velocities which would be detectable via Doppler ultrasound if the
probe were placed at the top of the page.

2.4 Arterial Resonance: A Detailed Approach
The result in Equation 2.4 is illustrative of the system’s general behavior, but it is far
too simple to be of practical use. Accurate BP measurement requires a more detailed
analysis of the system’s behavior. The physical model underlying CARDI-BP draws
from two disparate lines of analysis: one from aerospace engineering and the other
from biomechanics. The first set of analyses deals with vibrational resonance
modes in thin-walled cylindrical shells for large-scale industrial applications such
as fuel tanks and pipelines [52]. The second set of analyses examines the dynamics
of in vivo arterial walls by modeling them as long, thin-walled cylindrical shells
and using structural and fluid mechanics to calculate how these shells respond to
changes in pressure [53], [54]. While these two lines of analysis share fundamental
commonalities and assumptions, no work has combined them to create a model
of the resonant modes in pressurized arteries. Furthermore, all of these analyses
focused on deriving expected responses based on a known applied pressure. We
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show that by combining and inverting these relationships, it is possible to calculate
in vivo arterial blood pressure from measurements of its resonant response.

In order to extend the analysis of Arnold and Warburton [52] to the in vivo context,
their model must be modified using additional mechanical analyses to account for
various physical complexities which had previously only been analyzed in isolation.
These include the presence of a pressurized fluid inside the artery [55] and inertial
damping due to fluid mass inside and outside the artery [56], [57]. Furthermore,
we integrate established biomechanical analysis to account for effects such as the
significant distention of the artery as pressure changes and the nonlinear character
of its elasticity [53], [54].

Assumptions
We begin by making some simplifying assumptions to make analysis of this system
tractable:

1. The artery is a cylindrical shell with length 𝐿 and a constant radius 𝑎, thickness
ℎ, density 𝜌𝑆, Poisson’s ratio a, and circumferential Young’s modulus 𝐸 along
its entire length.

2. The artery is long and thin-walled, i.e., 𝐿 ≫ 𝑎 and 𝑎 ≫ ℎ.

3. The artery is surrounded by an incompressible fluid of constant density 𝜌𝐿
both inside and out.

4. All circumferential tension in the arterial wall is from either the internal blood
pressure or the wall’s inherent stiffness; no additional tensile or shearing forces
are exerted by, e.g., attached tendons or muscle fibers.

5. All induced vibrations can be treated as infinitesimal displacements, with
the associated wall displacements much less than 𝑎. Damping effects due to
viscosity of the internal or external media or viscoelasticity of the wall itself
can be modeled as a linear effect for the range of displacements induced by
the stimulus.

6. The circumferential Young’s Modulus of the arterial wall (𝐸) behaves in a
linearly elastic manner in response to the small radius perturbations induced
by the stimulus. Such an assumption does not preclude changes in 𝐸 over the
course of a cardiac cycle; it only asserts that changes in radius induced by
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the stimulus are small enough compared to heartbeat-induced radius variation
such that the vibrations do not change 𝐸 .

These assumptions invalidate the model in some circumstances, such as when an
artery branches or turns sharply. However, they should hold reasonably true for
major arteries far from branch points and joints, such as the carotid artery in the
neck and the brachial artery in the bicep.

Mechanics of Cylindrical Shell Resonance
A cylindrical shell will support many natural modes of wall motion, each composed
of a superposition of an axial component consisting of 𝑚/2 wavelengths along the
length of the cylinder and a circumferential component consisting of 𝑛 wavelengths
around the circumference of the cylinder, where 𝑚 is an integer equal to or greater
than 1 and 𝑛 is an integer greater than 1. In cylindrical coordinates of axial location
𝑧 and azimuthal angle \, the radial displacement 𝑤 of each point on the surface at
any given time 𝑡 can be expressed as a superposition of sinusoidal basis functions
given by

𝑤(𝑧, \, 𝑡) =
∑︁
𝑚,𝑛

𝐴𝑚𝑛 sin
𝑚𝜋𝑧

𝐿
cos 𝑛\ cos 2𝜋 𝑓 𝑡 (2.5)

for some scalar amplitude 𝐴𝑚𝑛. The general solutions for the equations of motion of
this system are quite complex for arbitrary system and depend on both circumferential
wavenumber 𝑛 and axial wavenumber _𝑚 = 𝑚𝜋𝑎/𝐿. In a system with 𝐿 ≫ 𝑎,
however, we have 𝑛 ≫ _𝑚, so the contributions of the axial modes are greatly
suppressed compared to the circumferential ones. Neglecting terms proportional to
_𝑚, the resonant frequencies take the form of roots of a cubic polynomial: [55]

0 = ^3 − 𝐾2^
2 + 𝐾1^ − 𝐾0 (2.6)

^ =
4𝜋2𝜌𝑆𝑎

2(1 − a2)
𝐸

𝑓 2 (2.7)

𝐾0 =
ℎ2(1 − a)

24𝑎2

(
𝑛8 − 2𝑛6 + 𝑛4

)
+ 𝑃𝑎
𝐸ℎ

𝛼1 (2.8)

𝐾1 =
1 − a

2

(
𝑛4 + 𝑛2

)
+ ℎ2

12𝑎2𝛼2 +
𝑃𝑎

𝐸ℎ
𝛼3 (2.9)

𝐾2 = 1 + 3 − a
2

𝑛2 + ℎ2

12𝑎2

(
𝑛4 + 𝑛2

)
+ 𝑛2

1 − a2
𝑃𝑎

𝐸ℎ
(2.10)
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𝛼1 =
1 − a

2

[(
1 − ℎ2

12𝑎2

)
𝑛6 − 𝑛4

]
(2.11)

𝛼2 =
3 − a

2
𝑛6 − 3 + a

2
𝑛4 + 𝑛2 (2.12)

𝛼3 =

(
3 − a

2
− ℎ2

12𝑎2

)
𝑛4 − 𝑛2 (2.13)

where ^, 𝐾𝑖, and 𝛼𝑖 are dimensionless parameters. In a damped system the lowest
frequency resonant mode is generally the easiest to excite as first-order damping
forces will increase with frequency for a given magnitude of displacement; thus, we
focus our attention on the 𝑛 = 2 mode. Finding the smallest real root of Equation
2.6 and converting from ^ back to 𝑓 with 𝑛 = 2 yields

𝑓 2
𝑣𝑎𝑐 =

𝐶0 −
√︃
𝐶2

0 − 𝐶1

24𝜋2(1 − a2)ℎ𝑎4𝜌𝑆
(2.14)

𝐶0 = 5𝐸ℎ(3𝑎2 + ℎ2) + 12𝑎3𝑃 (2.15)

𝐶1 = 12𝐸𝑎2ℎ(36𝑎3𝑃 − 4𝑎ℎ2𝑃 + 9𝐸ℎ3). (2.16)

Inertial Contribution of the Surrounding Medium
The above resonant frequency is written as 𝑓𝑣𝑎𝑐 because the analysis of Fung,
Sechler, and Kaplan [55] is only valid when the shell is in an environment where
the mass of the surrounding medium can be neglected, so all inertial contributions
come from the shell itself. This makes sense for metal pipelines or tanks containing
pressurized gasses, but it is clearly invalid for arteries where the surrounding blood
and tissue have a similar density to the arterial wall itself. To account for this, we
incorporate the work of Lindholm, Kana, and Abramson [56] and Warburton [57].
These works show that the unstable pressure exerted by the internal and external
fluids at the fluid-wall boundary each affect resonant behavior by adding an effective
inertial mass term:

𝑚𝐿,𝑖𝑛𝑡 = 𝑎𝜌𝐿
𝐼𝑛 (_𝑚)
_𝑚 𝐼

′
𝑛 (_𝑚)

(2.17)

𝑚𝐿,𝑒𝑥𝑡 = 𝑎𝜌𝐿
𝐾𝑛 (_𝑚)
_𝑚𝐾

′
𝑛 (_𝑚)

(2.18)

where 𝐼𝑛 and 𝐾𝑛 are modified Bessel functions of the first and second kind and 𝐼′𝑛, 𝐾′
𝑛

are their derivatives. In general we know that the acceleration of a system under a
given force is inversely proportional to its mass, and taking the second derivative of
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Equation 2.5 we can see that 𝜕2𝑤/𝜕𝑡2 ∝ 𝑓 2. Thus, the addition of effective mass
from the surrounding medium will scale down our result from Equation 2.14:

𝑓 2
𝑣𝑎𝑐

𝑓 2 =
𝜌𝑆ℎ + 𝑚𝐿,𝑖𝑛𝑡 + 𝑚𝐿,𝑒𝑥𝑡

𝜌𝑆ℎ
(2.19)

= 1 + 𝜌𝐿
𝜌𝑆

𝑎

ℎ

[
𝐼𝑛 (_𝑚)
_𝑚 𝐼

′
𝑛 (_𝑚)

+ 𝐾𝑛 (_𝑚)
_𝑚𝐾

′
𝑛 (_𝑚)

]
. (2.20)

Applying the previous assumption of 𝐿 ≫ 𝑎 (and thus _𝑚 = 𝑚𝜋𝑎/𝐿 ≈ 0) and
plugging in 𝑛 = 2, we can take the limit of these Bessel function ratios as _𝑚 → 0,
yielding

𝑓 2
𝑣𝑎𝑐

𝑓 2 = 1 + 2𝑛
𝑛2 + 1

𝜌𝐿

𝜌𝑆

𝑎

ℎ
(2.21)

= 1 + 4
5
𝜌𝐿

𝜌𝑆

𝑎

ℎ
. (2.22)

Solving for Pressure
We now have everything we need to solve for pressure. The proper resonant fre-
quency, accounting for inertial mass, can be written as

𝑓 2 =
𝐶0 −

√︃
𝐶2

0 − 𝐶1

24𝜋2(1 − a2)𝑎3𝛿
(2.23)

𝛿 = 𝑎ℎ𝜌𝑆 +
4
5
𝑎2𝜌𝐿 . (2.24)

Inverting this equation to solve for pressure yields

𝑃 =
9𝛼4 − 5

(
3𝛼 + 𝛼3) 𝐷 + 3𝐷2

−4(9𝛼 − 𝛼3) + 12𝐷
𝐸 (2.25)

𝛼 = ℎ/𝑎 (2.26)

𝐷 = 4𝜋2(1 − a2) 𝜌𝑎
2 𝑓 2

𝐸
(2.27)

𝜌 = 𝛼𝜌𝑆 +
4
5
𝜌𝐿 (2.28)

where 𝛼 and 𝐷 are dimensionless parameters and 𝜌 has units of volumetric mass
density. Following Fung, Sechler, and Kaplan [55], Equation 2.6 can be simplified
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by neglecting tangential inertial forces in the cylinder, yielding a linear relationship
between ^ and 𝑃:

^ ≈ ℎ2

12𝑎2𝑛
4 + 𝑃𝑎

𝐸ℎ
𝑛2(1 − a2) (2.29)

𝑓 2
𝑣𝑎𝑐 ≈

ℎ2

3𝜋2𝜌𝑆 (1 − a2)𝑎4𝐸 + 1
𝜋2𝜌𝑆𝑎ℎ

𝑃 (2.30)

𝑓 2 ≈ ℎ3

3𝜋2𝜌(1 − a2)𝑎5𝐸 + 1
𝜋2𝜌𝑎2𝑃 (2.31)

𝑃 ≈ 𝜋2𝜌𝑎2 𝑓 2 − ℎ3

3(1 − a2)𝑎3𝐸 . (2.32)

This linearization exactly recovers our original behavior from Equation 2.4 if 𝜌𝐿 =

𝐸 = 0, reflecting the fact that this original simplification ignored the inertial mass
contribution of the surrounding medium and tensile forces due to the material’s
inherent stiffness. Equations 2.25 and 2.32 are the key pressure calculation formulae
underlying CARDI-BP and will be used throughout the rest of this work, depending
on whether working with the full or linearized equation is more tractable.

2.5 Parameter Measurement
Using either of our equations for pressure requires determining the values of seven
parameters:

1. 𝑓 : Arterial resonant frequency

2. 𝑎: Arterial radius

3. ℎ: Arterial wall thickness

4. 𝜌𝑆: Density of the arterial wall

5. 𝜌𝐿: Density of the fluid surrounding the arterial wall

6. a: Poisson’s ratio of the arterial wall

7. 𝐸 : Young’s modulus of the arterial wall.

These can be broken into three categories; those that are directly measured (1-3),
those whose values can be assumed constant (4-6), and those which must be inferred
based on arterial dynamics (7).
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Directly Measured Parameters
In order to embody CARDI-BP into a device, we must pick a measurement modal-
ity which is able to simultaneously measure arterial radius, thickness, and resonant
frequency. The obvious choice for measuring arterial dimensions is ultrasound.
While ultrasound is less precise than methods like computational tomography and
magnetic resonance imaging, it is far less expensive, portable, and free from harm-
ful radiation. For these reasons, clinical studies which assess arterial dimensions
primarily rely on ultrasound to make these measurements, even for small features
like wall thickness [58]–[60].

Selecting a method of measuring arterial resonant frequency is less obvious, as such
measurements have never been performed. Fortunately, previous work in related
areas like shear wave elastography (SWE) has shown that ultrasound is capable of
detecting very small displacements in arterial walls generated by an audio stimulus
[2], [61]. If we stimulate the artery at various frequencies and measure its response,
the resulting magnitude and phase curves should show characteristics of resonance,
i.e., a peak in magnitude and sigmoidal transition in phase. Thus, using ultrasound
as our sole measurement modality should allow us to simultaneously assess radius,
thickness, and resonant frequency. An embodiment of this device is illustrated below
in Figure 2.2, which consists of two separate components; a speaker to stimulate
arterial resonance and an ultrasound wand to measure both the resonant response and
arterial dimensions. Further details on exactly how the device and measurements
are implemented are provided in Chapters 3 and 4.

Assumed Parameters
Ultrasound cannot be used to directly measure material density or Poisson’s ratio.
Fortunately, these parameters can be assumed to hold constant across individuals.
The IT’IS database of tissue properties shows that arterial walls and blood have
fairly stable densities of 1102 kg/m3 and 1050 kg/m3, respectively [62]. The density
of the tissue surrounding the artery is a bit less well-defined, as it depends on the
artery’s location and surrounding physiology. However, most soft tissue types in
the IT’IS database have densities between 1000 and 1100 kg/m3, so we assume an
average density of 1050 kg/m3 for the surrounding tissue as well. Finally, prior
studies have shown that the arterial wall is very nearly incompressible [63]–[65], so
we can assume its Poisson’s ratio will be a = 0.5.
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Figure 2.2: An illustration of a device embodiment which uses the CARDI-BP
method to measure blood pressure in the carotid artery. The device consists of
two attached components; an audio-frequency speaker which stimulates arterial
resonance, and an ultrasound probe which measures both the resonant response and
arterial dimensions. While this version of the device requires handheld operation,
future versions could incorporate the speaker and ultrasound probe into a wearable
form factor.

Young’s Modulus Measurement
The only remaining parameter to be measured is Young’s modulus, which is a
measure of the stiffness of the arterial wall. The value of this stiffness can vary
substantially between individuals due to differences age, pathologies, and vascular
muscle tone, so assuming a constant value is not feasible. Furthermore, within
a given artery the Young’s modulus changes significantly over the course of a
heartbeat, with stiffness starting at a minimum in diastole and rapidly increasing
during systole [66], [67]. Thus, we need a way to measure stiffness continuously
over the course of a heartbeat. Prior studies have used ultrasound to conduct
this measurement based on a combination of the Moens-Kortweg [53] (first term)
and Bramwell-Hill [54] (last term) equations, which are related but independent
measures of pulse wave velocity down the length of the artery: [44]

𝑐 =

√︄
𝐸ℎ

2𝜌𝐿𝑎
=

√︄
𝐴

𝜌𝐿

𝑑𝑃

𝑑𝐴
(2.33)
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where 𝑐 is pulse wave velocity and 𝐴 is arterial cross-sectional area. Rearranging
the latter two terms and substituting 𝐴 = 𝜋𝑎2 yields a useful equation for calculating
Young’s modulus based on changes in pressure:

𝐸ℎ

2𝑎
=
𝜋𝑎2

2𝜋𝑎
𝑑𝑃

𝑑𝑎
(2.34)

𝐸 =
𝑎2

ℎ

𝑑𝑃

𝑑𝑎
. (2.35)

Prior studies which utilized this relationship measured 𝑎 and ℎ with ultrasound, but
relied on an external reference such as a cuff or tonometer to measure pressure. We
replace this external reference with pressure measurements generated by Equation
2.25. This creates a recursive relationship, as these pressure measurements are
themselves dependent on the value of 𝐸 I’m measuring. This interdependency can
be resolved using the Gauss-Seidel method. First, a physiologically reasonable value
for 𝐸 is chosen as a starting point, and 𝑃 is calculated at all radii based on this value
using Equation 2.25. These 𝑃 values are then used to calculate 𝐸 using Equation
2.35. By repeating these two steps, both 𝑃 and 𝐸 converge on a self-consistent set
of values that satisfy both Equations 2.25 and 2.35. Importantly, this method does
not require 𝐸 to be constant at different times. Instead, it provides instantaneous 𝐸
estimates at the same rate that pressure and radius measurements are generated. A
more detailed investigation of the convergence of this method and its results is the
focus of Chapter 5.

2.6 Feasibility and Sensitivity Analysis
We have now established that it should be possible, in theory, to generate blood
pressures based on the measurement of arterial resonance. However, this does not
guarantee that such measurements will be practically obtainable in real arteries.
This section is focused on investigating these practicalities.

Expected Resonance Frequencies
The first question to answer is what frequencies real arteries should be expected
to resonate at. The parameters of our system dictate a "sweet spot" of frequencies
which can reasonably be measured. This sweet spot is bounded on the low end
by heart rate, which can range up to ∼4Hz in humans. If the resonance is not
significantly faster than this heart rate we will get at best an averaged resonance
behavior that cannot distinguish systole from diastole. On the high end, the sweet
spot is bounded by the rate of measurements attainable with ultrasound. Standard
ultrasound techniques for measuring target velocity have a minimum period dictated
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by the round-trip time for sound to travel from the probe to the target and back.
For artery depths up to 4cm under the surface of the skin, the fastest possible
measurement rate is ∼20kHz; if the resonance is not significantly slower than this,
we will run into undersampling problems.

Table 2.1 shows expected resonance frequencies for three different arteries where
BP measurement would be of clinical interest; the carotid artery (in the neck), the
brachial artery (in the bicep), and the radial artery (in the wrist). Each artery is
analyzed under low-frequency (i.e., low pressure, high radius) and high-frequency
(i.e., high pressure, low radius) conditions to get an idea for the range of expected
resonance frequencies which may be measured in the artery. Listed parameters are
taken from prior literature to represent the range of what might commonly be seen
in adult patients under non-extreme conditions [68]–[70]. All of these frequencies
fall in the range of 100-1500 Hz, and fortunately this lies squarely within our sweet
spot. This indicates that it should be possible to measure arterial resonance with
ultrasound and that this resonance should vary quickly enough to track BP changes
over the course of a heartbeat.

Artery
Predicted
Resonant

Frequency (Hz)

Pressure
(mmHg)

Radius
(mm)

Thickness
(mm)

Young’s
Modulus (MPa)

Carotid
(Low 𝑓 ) 122 40 5 0.5 0.1

Carotid
(High 𝑓 ) 459 180 3 0.3 1

Brachial
(Low 𝑓 ) 245 40 2.5 0.25 0.1

Brachial
(High 𝑓 ) 918 180 1.5 0.15 1

Radial
(Low 𝑓 ) 382 40 1.6 0.16 0.1

Radial
(High 𝑓 ) 1378 180 1.0 0.1 1

Table 2.1: Expected resonance frequencies for three different arteries that would be
likely clinical targets for measurement. Each artery is analyzed in a low-frequency
state (i.e., low pressure, high radius) and a high-frequency state (i.e., high pressure,
low radius). The predicted range of frequencies falls significantly above human
heart rate (∼4 Hz) and significantly below the sampling limit of ultrasound (∼20
kHz), making CARDI-BP potentially viable on any of these three arteries.
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Sensitivity Analysis
Another important practical consideration is the sensitivity of the final pressure
output to its various input parameters. We begin with the standard formula for
propagation of error under the assumption that errors in various parameters are in-
dependent and uncorrelated, where𝜎𝑖 represents the standard deviation of parameter
𝑖 and |0 denotes the measurement reference state:

𝜎2
𝑃 ≈

(
𝜕𝑃

𝜕 𝑓

����
0
𝜎 𝑓

)2
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(
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����
0
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)2
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(
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����
0
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0
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. (2.36)

In order to make the derivatives tractable to gain intuition for system behavior, we
start with the linearized equation 2.32, yielding(

𝜕𝑃

𝜕 𝑓

����
0

)2
=
𝑃2

0

𝑓 2
0

[
4 + O

(
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Note that we have expanded each error term about small values of the parameter
𝛼 = ℎ/𝑎 to give intuition about the relative scale of the uncertainties, since 𝛼 is
assumed to be a relatively small parameter for our system. The terms 𝑓 , 𝑎, and 𝜌𝐿
all have order-unity leading terms, indicating that they will be relatively important
in contributing error. In contrast, the terms ℎ, 𝐸 , 𝜌𝑆, and a have order-𝛼2 or higher
leading terms, indicating that they will be relatively unimportant in the total error
budget.
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We can substitute representative values into the above equation to quantify how
much each term contributes to the overall error budget. Assigning values to each
parameter corresponding to a typical carotid artery (𝑎0 = 4 mm, 𝑓0 = 270 Hz,
ℎ0 = 0.6 mm, 𝐸0 = 0.385 MPa, 𝜌𝑆 = 1102 kg/m3, 𝜌𝐿 = 1050 kg/m3, and a = 0.5)
gives:

𝜎𝑃

𝑃0
≈

[
4.4

(
𝜎 𝑓

𝑓0

)2
+ 4.4

(
𝜎𝑎
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+ 0.00024
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𝜎ℎ

ℎ0

)2
+ 0.0028

(
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𝐸0

)2
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𝜎𝜌𝑆

𝜌𝑆0

)2
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(
𝜎𝜌𝐿

𝜌𝐿0

)2
+ 0.0012

(
𝜎a

a0

)2
]1/2

. (2.44)

The numerical coefficients in Equation 2.44 are broadly in line with expectations
from leading-order scaling in Equations 2.37 to 2.43, with error terms for 𝑓 , 𝑎, and
𝜌𝐿 over 10x more prevalent in the final error budget than error terms for ℎ, 𝐸 , 𝜌𝑆,
and a.

Variability of Measured Parameters
Equations 2.37 to 2.40 indicate that errors in thickness and stiffness will propagate
very weakly into our final pressure estimate, but we will be significantly sensitive to
errors in resonant frequency and radius. For either of these parameters, a measure-
ment error of 5% (corresponding to 13.5Hz in frequency or 200`m in radius in the
above example) would lead to over a 10% error in pressure, which could be prob-
lematic in a clinical setting. As we shall see in Chapter 4, it is practical to measure
arterial stimulus response in 20Hz increments, which is not enough precision on its
own to yield acceptable accuracy in pressure; getting past this precision limit re-
quires the use of curve fitting techniques. For radius, running ultrasound with pulses
at 5MHz (roughly the value used in this work) can yield raw spatial resolution of up
to 300`m when analyzing a single return channel; once again, this is insufficiently
precise on its own. Attaining higher resolution requires dynamic focusing of the
image using multiple channels of return information as well as image analysis and
denoising processes. The techniques we implemented for resonant curve fitting and
image analysis will be described in Chapter 3.

Variability of Assumed Parameters
Equations 2.41 to 2.43 indicate that error in arterial wall density and Poisson’s ratio
will propagate very weakly into our final pressure estimate, but we will be sensitive
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to errors in fluid density. Since this parameter is given an assumed value, we need
to obtain an estimate for what the underlying variance around this assumption might
be.

The IT’IS database lists the density of blood as 1050 ± 17 kg/m3, so it may be
expected to vary by about 1.6%. However, blood only constitutes half of the total
inertial mass contribution from the artery’s surroundings; the other half comes from
the surrounding tissue. This component is harder to quantify, since we do not know
exactly what tissue the artery will be embedded in. Most types of soft and connective
tissue in the IT’IS database have densities of roughly 1050 kg/m3 as well, which
is why we use blood density to represent the total surrounding medium. If we are
5% off in our estimate of external medium density (i.e., the tissue in which the
artery is embedded has a density close to 1000 or 1100 kg/m3, towards the extreme
of soft tissue densities in IT’IS), this would translate to a roughly 2% error in the
final pressure estimate based on equation 2.44. An outlier in soft tissue density
is fat deposits, which have a density of only 911 kg/m3. Central arteries such as
the carotid are generally not surrounded by fat deposits except in mordibly obese
patients with poor muscle tone; for such patients, a special correction to the density
term may be necessary.

Even though our pressure equation is not directly very sensitive to Poisson’s ratio,
at multiple points later in this research we will assume arterial incompressibility
(i.e., a = 0.5), in line with common arterial models in the literature [71]. Thus,
it is relevant here to consider how robustly this assumption can be expected to
hold. Multiple groups have compressed ex vivo arterial tissue and measured its
volumetric strain Δ𝑉/𝑉 , finding values between 0.2% and 2% [63]–[65]. This
implies true values for Poisson’s ratio between 0.49 and 0.499 and indicates that our
assumption of arterial incompressibility is a safe one.

A final assumed parameter to consider is the speed of sound. While this does not
appear explicitly in our pressure equations, it is implicitly involved in the calculation
of arterial dimensions. In particular, arterial radius is calculated by taking the time
delay in echoes between the top and bottom arterial walls and converting this travel
time into a distance using the speed of sound in blood. Ultrasound processing
techniques generally assume a constant sound speed of 1540 m/s, regardless of
tissue type [72]. This assumption of a constant speed is necessary for generating
coherent images without a priori knowledge of the spatial distribution of tissue types
that will be imaged. However, the speed of sound in blood has been measured as
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1578 ± 11 m/s [62]. To account for this, during in vivo data analysis all B-mode
images were generated using the standard sound speed of 1540 m/s, but all calculated
radii were scaled up by a factor of 38/1540 ≈ 2.5% to account for the speed of sound
difference.



24

C h a p t e r 3

IN VITRO TESTING

The physics model we have derived for the CARDI-BP method has not previously
been described or tested. Thus, before applying the model to human arteries it was
important to test it on an idealized system which matched the assumptions of Section
2.4 as closely as possible. This chapter will describe the measurement device and
data analysis procedures which were used to perform CARDI-BP measurements, as
well as the setup and results of our idealized in vitro testing.

3.1 Measurement Device
The measurements we need to perform in order to obtain pressure can be done with
standard ultrasound acquisition modes, namely B-mode (for arterial dimensions)
and Doppler (for resonant response). However, performing analysis requires both
access to raw data from ultrasound returns and precise synchronization between
the ultrasound pulses and our audio stimulus source; neither of these is possible
with standard commercial ultrasound devices. Instead, we constructed our own
ultrasound system consisting of an off-the-shelf Acuson 6L3 ultrasound imaging
probe (Acuson, Mountain View, CA) with a custom backend.

Interfacing between a control computer and the backend is performed via two
software-defined radios (USRP N210 from National Instruments, Austin, TX). The
first powered the ultrasound transmit and receive chains. The transmit chain used
a bipolar high-voltage pulse generator (MAX4940 from Maxim Electronics, San
Jose, CA) to generate ultrasound pulses from one of 16 piezoelectric elements on
the probe, selected via a multiplexer. Returns from these elements were routed to a
low-noise amplifier (AD8336, Analog Devices, Wilmington, MA) via an automatic
transmit/receive switch (MD0100 from Microchip, Chandler, AZ) and sampled by
the N210’s analog-digital converter, which operated at 25 MHz. The receive chain
was linked to an additional 16 elements via a separate amplifier for a total of 32
receive elements, of which 2 could be recorded simultaneously. Raw returns from
the receive chain were recorded for both real-time and post-processing.

The additional component needed to enable our resonance measurements was an
audio stimulus driver, which was controlled by the second software-defined radio.
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In principle, we could have used high-intensity focused ultrasound (HIFU) to drive
arterial displacements using the ultrasound probe[61]; however, this would have
required more complicated engineering in our transmit chain and would have also
raised potential safety concerns[73]. Fortunately, the resonant frequencies we ex-
pected to drive were in the range of 100-1500 Hz (see section 2.6), which is well
within the range of commodity speakers. Standard speakers are designed to broad-
cast sound into air, which has an acoustic impedance of roughly 400 kg*m−2*s−1,
while skin has an acoustic impedance of roughly 1.6 × 106 kg*m−2*s−1 [62]. As a
result, audio energy broadcast from standard speakers is almost entirely reflected at
the air-skin boundary and very little stimulus reaches the artery. Instead, we gener-
ated our audio stimulus using moving-coil drivers (BC-10 from Ortofon, Nakskov,
Denmark), which are designed to transmit acoustic energy directly into tissue and
typically employed in bone-conduction headphones. For symmetry, one driver was
attached to each side of the ultrasound probe via epoxy with the broadcast surfaces
leveled such that the probe and both drivers could all be placed in simultaneous
contact with the subject’s skin. The form factors of the device and in vitro target are
illustrated below in Figure 3.1.

Figure 3.1: An illustration of both the measurement device and the phantom used for
in vitro testing. The device consists of a commercial ultrasound probe with attached
speakers, which simultaneously conduct imaging and stimulate vibrations in the
target. The phantom consists of rubber tubing suspended in a tissue-mimicking
medium, with a syringe at one end to apply internal fluid pressure and a gauge at
the other to precisely measure this pressure.
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3.2 Signal Processing
Ultrasound Pulse Chirping
Forming a 2D cross-sectional image of the volume being assessed by the ultrasound
probe, referred to as "B-mode" imaging, is essential for measuring arterial dimen-
sions. An important consideration for this imaging is the shape of the pulse used.
When an emitted pulse reflects off of a point source, the receiving element will see
the same scaled pulse shape scaled down by some attenuation factor. The location
of the reflector is then localized by correlating the received signal with the original
pulse. As shown in Figure 3.2a-b, applying this procedure to a single-frequency
signal leads to a very wide autocorrelation, which in turn would lead to blurry im-
ages after autocorrelation is applied. This behavior can be substantially improved
by using a pulse with a linearly time-varying frequency, more commonly referred
to as a chirp [74]:

𝑥(𝑡) = sin
(𝜔1 − 𝜔0

2𝑇
𝑡2 + 𝜔0𝑡

)
(3.1)

where angular frequency sweeps from𝜔0 to𝜔1 and 𝑇 is the total length of the pulse.
Figure 3.2c-d shows autocorrelation results for a chirp spanning 3 to 6 MHz, which
is the response range of our 6L3 ultrasound probe. This autocorrelation shows a
significantly sharper peak, leading to more precise localization of reflection sources.

Synthetic Aperture Imaging
Almost all commercial ultrasound instruments use beamforming to focus transmitted
ultrasound pulses onto an area of interest; however, this was not possible with our
device as we could only transmit from one pixel at a time. Instead, we used synthetic
aperture (SA) imaging [74], a family of imaging algorithms which synthesize returns
from a series of single-pixel transmissions to create a full image which is focused
everywhere. The most basic SA algorithm, referred to as Delay-And-Sum (DAS),
begins by converting each individual ultrasound return into an image. This is done
by converting each pixel location in the image into a time delay based on the distance
from the pixel to the transmit/receive elements and the speed of sound in the medium.
Each pixel is then assigned an value equivalent to the intensity of the ultrasound
return at the corresponding delay time. This can be summarized mathematically as

𝑆𝐷𝐴𝑆 (𝑡, 𝑗) =
1
𝑁

𝑁∑︁
𝑖=1

𝑠𝑖
(
𝑡 + Δ𝑡𝑖 𝑗

)
(3.2)

Δ𝑡𝑖 𝑗 = 𝛿𝑖 𝑗/𝑐 (3.3)
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Figure 3.2: The benefits of using a chirped pulse. a) A single-frequency pulse at the
center frequency of our transducer. b) The autocorrelation of this single-frequency
pulse. The significant spread in energy far from the central peak would lead to blurry
images. c) A chirp pulse with frequency linearly ramping across the bandwidth of
our transducer. d) The autocorrelation of this chirp pulse. The energy in this
autocorrelation is significantly suppressed away from the central peak, leading to
sharper images.

where 𝑆𝐷𝐴𝑆 is pixel intensity, 𝑡 is the starting time for image construction, 𝑗 indexes
pixel location, 𝑖 indexes transmit/receive element combination, Δ𝑡𝑖 𝑗 is the time delay
factor for element combination 𝑖 and pixel 𝑗 , 𝑠𝑖 (𝑡 + Δ𝑡) is the measured ultrasound
return from transmit/receive combo 𝑖 at time 𝑡+Δ𝑡, 𝛿𝑖 𝑗 is the round-trip distance from
the transmit element to pixel 𝑗 and back to the receive element, and 𝑐 is the speed
of sound in the medium. Since any pixel with the same 𝛿𝑖 𝑗 corresponds to the same
delay, a point-source reflector will be "imaged" by a single return as an elliptical
arc with foci at the transmit and receive elements. When many delay-based images
from many transmit-receive pairs are added together (the "sum" part of DAS), the
areas of the image with actual reflector sources will constructively reinforce while
arcing artifacts in other areas will, on average, cancel each other out.

In practice, DAS imaging requires averaging across many elements to suppress arc-
ing artifacts and attain a useful lateral resolution; this makes it unsuitable for our
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device with 16 transmit and 32 receive elements (see Figure 3.3a,b). Multiple im-
proved SA methods have been proposed to increase imaging performance with fewer
elements by utilizing phase information from returns in addition to magnitude. The
most successful method for our application was CF-DMAS [75], which combines
CF-DAS (delay-and-sum with a coherence factor) with DMAS (delay, multiply, and
sum):

𝑆𝐶𝐹−𝐷𝑀𝐴𝑆 (𝑡, 𝑗) =

[(∑𝑁
𝑖=1

√︃
𝑠′
𝑖

(
𝑡 + Δ𝑡𝑖 𝑗

) )2
− ∑𝑁

𝑖=1 𝑠
′
𝑖

(
𝑡 + Δ𝑡𝑖 𝑗

) ]3

(∑𝑁
𝑖=1

��𝑠′
𝑖

(
𝑡 + Δ𝑡𝑖 𝑗

) ��)2
− ∑𝑁

𝑖=1
��𝑠′
𝑖

(
𝑡 + Δ𝑡𝑖 𝑗

) ��2 (3.4)

𝑠′𝑖
(
𝑡 + Δ𝑡𝑖 𝑗

)
= 𝑎𝑖 𝑗 𝑠𝑖

(
𝑡 + Δ𝑡𝑖 𝑗

)
(3.5)

where 𝑎𝑖 𝑗 is an apodization factor. This factor stems from the fact that piezoelectric
elements are most sensitive to signals which arrive normal to their face, and this
sensitivity falls off as the angle from normal increases; thus, returns for pixels with
extreme angles to a transducer element are suppressed. Rather than the approximate
Hanning window used in Jeon, Park, Choi, et al. [75], we used a more exact form
derived in Selfridge, Kino, and Khuri-Yakub [76]:

𝑎𝑖 𝑗 = 𝑓 (\𝑡) 𝑓 (\𝑟) (3.6)

𝑓 (\) = sin(𝜋𝑑/_ sin \)
𝜋𝑑/_ sin \

cos \ (3.7)

where \𝑡 and \𝑟 are the angles from normal between pixel 𝑗 and the transmit
and receive elements of combination 𝑖, respectively, 𝑑 is the element width in the
transducer, and _ is the average wavelength of the transmitted ultrasound pulse.
We also modified the procedure of Jeon, Park, Choi, et al. [75] by converting real-
valued ultrasound returns into their complex equivalents using a Hilbert transform,
generating more accurate phase information. As shown in Figure 3.3c, the CF-
DMAS procedure generated significantly better images of point targets than simple
DAS; examples of in vivo images of arteries using CF-DMAS are shown in Chapter
4. A flowchart summary of the CF-DMAS procedure is provided in Appendix
Figure A2.2. Final images were generated with a pixel size of 100`m and a total
size of 2.8cm wide by 4cm deep.

Doppler Velocity Measurement
The first step in measuring the resonant response of an artery (or arterial phantom)
is measuring its wall velocity. This was done using single-element pulsed Doppler
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Figure 3.3: The benefits of CF-DMAS image synthesis. a) The layout of a commer-
cial ultrasound phantom used for this test, which uses thin nylon threads to simulate
ideal point targets. b) An image from our device with DAS image synthesis. While
the point targets can be made out, there are many wide arcing artifacts that signif-
icantly clutter the image. c) An image from our device using the same ultrasound
parameters but with CF-DMAS image synthesis. While noisy artifacts have not
been entirely eliminated, they have been drastically suppressed compared to DAS
imaging.

ultrasound [77] which, despite its name, does not actually rely on the Doppler
effect. Instead, the target of interest is interrogated at a high rate using repeated
ultrasound pulses from the same element. If the target is stationary, these pulses will
all generate the same return. However, if the target moves slightly between pulses
its return will keep the same shape but shift slightly in time. This shift is measured
by taking the difference in return phase (as determined via the Hilbert transform)
across consecutive returns; a higher velocity will lead to a larger shift in the return
and thus a larger change in phase. The conversion factor between phase change and
physical velocity units of m/s depends on factors such as the ultrasound pulse shape,
speed of sound, and Doppler pulse repetition frequency. We determined this factor
by simulating returns from a perfect point reflector moved by controlled amounts.

Applying this velocity extraction to an entire Doppler return will generate a separate
velocity for every return sample at every pulse interval. These velocities were first
bandpass-filtered in the time domain using a 4th-order Butterworth filter with cutoffs
at 50 and 1000 Hz to suppress signal far from our range of stimulus. To isolate
the velocity of an arterial wall, we started with a user-defined window centered on
the wall of interest. The darkest 75% of samples in this window (as measured by
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magnitude of the chirp-correlated return) were discarded, and the velocities of all
remaining samples were averaged with weights proportional to the magnitude of
return of each pixel. This procedure was applied separately to the top and bottom
wall of the artery, generating a velocity vs. time measurement for each. Summary
flowcharts of this process are provided in Appendix Figures A2.3 and A2.4.

Resonance Extraction
The 𝑛 = 2 resonance mode we hoped to stimulate and measure is characterized by
the top and bottom walls moving opposite from each other (see Figure 2.1b); thus,
the velocities of the top and bottom walls were subtracted to generate a differential
velocity measure. A digital lock-in amplifier was then applied to this differential
velocity to extract the magnitude and phase of its response at each stimulus frequency
(Figure 3.4). While the phase of this differential response should follow a sigmoid
characteristic of resonance, the magnitude will be determined by both the artery’s
resonant response and the response function of the audio transducer. To account
for this, the differential response magnitude at every frequency was divided by
the common (i.e., adding the wall velocities) response magnitude at that frequency
(Figure 3.4a). This was based on the assumption that there was no resonant behavior
in the common mode response, which meant that variation in magnitude at different
frequencies was due solely to the response function of the audio transducer; this
assumption was supported by the nearly flat phase response of the common mode
signal (Figure 3.4b).

As mentioned in section 2.6, final pressure determination is significantly sensitive
to error in resonant frequency, so simply taking the frequency of maximum re-
sponse was not sufficient. Thus, we performed curve fitting on the response to
improve precision beyond the granularity of the individual stimulus frequencies.
The functional form of this fitted curve would ideally be determined from physical
analysis of the system; however, the unknown nature of damping forces made this
intractable. Instead we applied the vector fitting algorithm [78], which models an
arbitrary complex frequency response 𝐻 ( 𝑓 ) as a sum of rational functions:

𝐻 ( 𝑓 ) = Σ𝑁𝑚=1
𝑟𝑚

𝑖 𝑓 − 𝑎𝑚
+ 𝑑 + 𝑓 𝑒 (3.8)

where 𝑓 is frequency, 𝑎𝑚 and 𝑟𝑚 are complex poles and residues, respectively, and
𝑑 and 𝑒 are real linear offset parameters. In particular, a resonant system will have a
complex conjugate pair of poles. Vector fitting is an algorithm which uses iterative
least-squares fitting to find an optimal set of values for (𝑟𝑚, 𝑎𝑚, 𝑑, 𝑒) which best
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Figure 3.4: Example of a resonant response in the phantom. a) Magnitude response
for differential, common, and normalized wall motion in the small phantom at 135
mmHg. Differential magnitude shows a sharp peak characteristic of resonance,
while common magnitude shows a gradual change due to non-flat response of
the stimulus speaker. To normalize the resonant response we divide differential
magnitude by common magnitude, removing the effect of speaker response and
leading to a sharper resonant peak. b) Phase response for differential and common
wall motion. Differential phase shows a drop of 𝜋 radians centered around the peak
in magnitude response, characteristic of resonance. Common phase, in contrast,
barely changes, as expected due to lack of common wall motion in the 𝑛 = 2
resonance mode.

match the observed frequency response of the system. The final fitted resonant
frequency of the system is represented by the magnitude of our complex conjugate
pair of poles; if resonance was not present, the vector fitting algorithm would return
a set of purely real poles. In principle this method can match any response function
given a sufficient number of poles. For the in vitro data only one pairs of pole was
necessary, but for the in vivo data fit fidelity was improved by adding a second pair
of poles, and the pole with maximum response was chosen as the "true" resonance
frequency. Examples of the resulting fits are shown in Results, and a summary
flowchart of the frequency fitting process is provided in Appendix Figure A2.5.



32

Timing
An important consideration underlying all of the above methods is timing, as mea-
surements must be taken frequently enough to appropriately sample the behavior we
are trying to measure. As we discussed above, the sampling rate on our ADC (25
MHz) is fast enough to capture the highest frequency component of our ultrasound
pulses (6 MHz). The remaining concerns were imaging frequency and velocity
measurement frequency.

The fundamental limit on how quickly ultrasound measurements can be repeated is
the travel time of sound, as we need to wait for an emitted pulse to return before
moving onto the next pulse. The arteries we wished to image may have bottom walls
up to 5cm deep beneath the skin, which means sound waves have to travel about
10cm round trip. Given that the speed of sound in tissue is 1540 m/s [72], the round
trip travel time was 130 `s, implying a maximum possible pulse repitition rate of
about 15.4 kHz. In practice, we limited our rate to 10 kHz to allow for a safety
buffer.

The pulses we emitted needed to be allocated to provide both B-mode imaging
and Doppler velocity measurements. Analyzing frequency components in Doppler
response is easiest if measurements are obtained at constant intervals, so we allocated
B-mode and Doppler acquisitions to alternating pulses such that each was performed
at a constant rate of 5 kHz. For Doppler measurements the same transmit element
was used every time, so we obtained velocity measurements at 5 kHz. For larger
arteries such as the carotid and brachial we expected resonant frequencies to be
under 1 kHz (see Table 2.1), so this sampling rate was more than sufficient; for
future device iterations that target smaller arteries such as the radial, it may need to
be increased. For B-mode measurements, forming a full image required performing
one pulse cycle from each of our 16 transmit elements, so the effective rate of image
formation was 312.5 Hz. When imaging a human artery the only factor causing
significant image variation will be heartbeats, which occur no faster than 4 Hz; thus,
this imaging rate was also more than sufficient.

A further consideration was the maximum velocity measurable using this method,
which depends on the conversion factor between phase change and physical units
as well as the Doppler pulse repetition frequency. For our particular chirp, a phase
change of 1 radian corresponded to physical motion of 27.4 `m. The maximum shift
we could reliably measure was a motion of 𝜋 radians between consecutive Doppler
pulses, which occurred at a rate of 5 kHz. This yielded a maximum measurable
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velocity of (27.4 ∗ 10−6 m) × 𝜋 × (5000 s−1) = 0.43 m/s; system velocities higher
than this would result in aliasing. Even for a very fast heartrate of ∼4 Hz, the
distention of the artery from systolic rise will not take less than 1/40 s and each wall
will not move by more than 1 mm; thus, we could be confident that wall velocity
due to the heartbeat would not exceed 0.04 m/s, well below our aliasing limit. The
frequency of motion from our audio stimulus may be 20 times higher than this (i.e.,
motion occurring in ∼ 1/800 s), but the magnitude of displacement excited by our
stimulus was far lower than displacement from the heartbeat. This indicated that the
audio stimulus would also not generate wall velocities nearing our aliasing limit.

3.3 Experimental Methods
Phantom Target
To construct a synthetic artery analogue we used compliant, thin-walled rubber
tubing sourced from latex rubber balloons (Qualatex 160Q or similar). Ultrasound
phantoms (tissue-mimicking mock-ups) consisting of fluid-filled rubber tubing sus-
pended in gelatin are often used as ultrasound teaching aids as they provide similar
imaging properties to blood vessels embedded in tissue [79], [80]. We chose to
substitute a water/psyllium fiber (Metamucil) mixture [81] for the gelatin/psyllium
fiber mixture, as tubing can disbond from the gelatin as pressure (and thus also the
tubing’s radius) is changed, leading to air pockets and behavior disparate from real
anatomy. Commercial ultrasound tissue models were unsuitable for these experi-
ments as they do not have similar elasticity in their vessel analogues; several vendors
we investigated used rigid tubing, and all were flow-only (no pressure simulation).

For our experiments we used two sizes of tubing: 2.18mm radius ("small") and
3.23mm radius (“large”). The wall thicknesses of each were 0.25mm and 0.28mm,
with a density of 1930 kg/m3 measured for both. The tubing was submerged to a
depth of 2-3 cm in the water/psyllium fiber bath, modeling a depth similar to that of
the human carotid artery. Psyllium fiber was used as a tissue-mimicking scattering
medium to disperse ultrasound echoes reflected from the edges of the container. The
tubing was filled with water and inflated using a syringe to add pressure.

Experimental Procedure
Each scan on the small phantom consisted of a stimulus sweep from 200 to 600
Hz in 10 Hz steps with simultaneous measurement using the ultrasound transducer.
Five scans were performed at each pressure, and pressure was swept from 60 to
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150 mmHg (targeting a physiologically-relevant range) in 5 mmHg increments, for
a total of 95 scans. Pressure was held constant for the course of a scan.

The experiment was repeated using the larger diameter tubing to confirm that the
model held across different vessel sizes. Pressures were swept from 60 to 150 mmHg
in 10 mmHg increments. Above 130mmHg, we found that sections of the tubing
entered elastic failure and expanded rapidly in an uneven manner, as normally seen
during inflation of a balloon. As this behavior is not seen in healthy arteries, we
discarded data above 130mmHg, for a total of 40 scans.

Data Analysis
For each individual scan, radius was calculated from the average delay in echo
timings between the brightest points in the top and bottom walls, and resonant
frequency was calculated using the vector fitting method described above. Because
the tubing walls were significantly thinner than those of in vivo arteries, thickness
could not be determined accurately from our ultrasound imaging due to limited
resolution. Instead, we used high-precision calipers to measure the unpressurized
radius and thickness of the tubing (𝑎0 and ℎ0). Because the tubing was assumed to
be incompressible (a = 0.5), a pressure-dependent thickness could be calculated as
ℎ = ℎ0 ∗ (𝑟0/𝑟). These caliper measurements along with the weight of the tubing
were also used to calculate its density.

The Young’s modulus of the tubing was calculated by comparing radius and resonant
frequency measurements across multiple scans at different pressures using equation
2.35. We assumed that the tubing was linearly elastic, so a single value of 𝐸
was calculated which minimized the relative error in pressure as determined by
Equations 2.25 and 2.35; this value came out to 1.16 MPa. The balloon material
was later analyzed with a tensile strength measurement instrument from Instron
(Norwood, MA). This test yielded an average stiffness of 1.10 MPa which held
nearly constant across our strain range, validating both our calculated value and our
linearity assumption.

Measured radii were adjusted for each scan based on this fixed 𝐸 value to generate
agreement with Equation 2.35. For the larger tubing, obtaining alignment with
theory required adding ℎ/2 to all radii; this would be explained if peak echoes
from this system corresponded to the inner rather than average radius of the tube.
The measured values for radius, thickness, resonant frequency, and stiffness were



35

combined with prior values for wall density, fluid density, and wall Poisson ratio in
Equation 2.25 to generate the final calculated pressure values.

3.4 Results and Discussion
Figure 3.4 shows the measured frequency response of our small phantom at a single
pressure, and it demonstrates the classic signatures of resonance, i.e., a peak in
magnitude space and a co-located sigmoidal rolloff in phase with height 𝜋 radians.
This indicates that our measurement device was able to both stimulate and detect
resonance in an artery-like system. The next step was to assess whether or not
this resonant behavior varied in the way predicted by the physical model. Figure
3.5 shows the measured response of the small phantom at five different internal
pressures from 95 to 135 mmHg, as well as best fit functions obtained from vector
fitting. The resonant frequency shifted steadily upwards as pressure was increased,
in line with our physical model.

Figure 3.5: Plots showing the (a) magnitude and (b) phase responses of the small
phantom as pressure is increased from 95 to 135 mmHg. Points represent individual
values (measured in 10 Hz intervals), and lines represent best-fit curves obtained
via vector fitting. The resonant frequency clearly moves up as pressure increases, in
line with the physical model.
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We next combined all of our in vitro scans to quantitatively assess the accuracy of
our physical model. Because our tubing was inflated with a controlled pressure, we
began by using equation 2.23 to predict resonant frequencies and compared with
experimental results. Overnight storage of our phantoms at pressure caused some
plastic deformation partway through the experiments, so each phantom had a differ-
ent pressure vs. radius relationship between the two days of data collection. Despite
this, the predicted curves very closely matched the observed resonant frequencies
across all scans, as shown in figure 3.6a. The measured resonance frequencies were
then used to predict internal pressure in the phantoms using equation 2.25, as shown
in figure 3.6b.

Comparison of predicted to actual phantom pressure shows that our physical model
produced consistently accurate predictions, with a correlation of 𝑟 > 0.995 for
both the small and large phantoms. The residual errors are shown in the inset
of 3.6b; across all measurements, the mean error was −1.09 ± 1.98 mmHg. The
residual errors did not show any obvious pattern when comparing day 1 to day 2
measurements (as indicated in figure 3.6a) despite the plastic deformation, indicating
that the change in radius trend was correctly accounted for. Our mean error compares
favorably with standards for BP cuff accuracy set by the International Organization
for Standardization (ISO), which limit the mean and standard deviation of BP
measurement error to 5mmHg and 8mmHg, respectively [82]. These results indicate
that, at least in an idealized system, the physical model and measurement device are
more than capable of producing BP measurements with clinically useful accuracy
and precision over a range of pressure values and artery sizes.
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Figure 3.6: In Vitro phantom testing results. a) Predicted and measured resonant
frequencies for the small and large phantoms across a range of pressures. Measured
values (points) were generated via vector fitting on frequency responses, and error
bars represent spread across 5 replicate measurements. Physical model predictions
(dashed lines) were calculated from measured parameters using equation 2.23. The
phantoms experienced some plastic deformation overnight between measurements,
leading to two different pressure-frequency curves for each phantom. b) Measured
vs. true fluid pressure for the small and large phantoms (main plot), along with
residual errors (inset). Measured pressure values were calculated from equation
2.25, and true values were taken directly from the pressure gauge. The close
agreement between measurements and true values indicates that our resonance
model is an accurate description of the physical system.
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C h a p t e r 4

IN VIVO TESTING

Chapter 3 demonstrated that our physical model is very accurate at matching resonant
behavior to pressure in a static artificial system that matches all of our assumptions.
However, real arteries are made up of a multi-layered wall structure embedded in
inhomogeneous surrounding tissue, and both the pressure and dimensions change
continuously due to heartbeats. This chapter will demonstrate that, despite these
complexities, CARDI-BP is able to generate continuous and accurate blood pressure
measurements in human arteries. It will first describe the modifications to stimulus
and data analysis necessary to provide robust real-time measurements, and then
show initial measurements demonstrating that resonance could be measured in a
small sample size of human arteries. It will then show the results of our 𝑁 = 60
clinical study, which directly compared the performance of CARDI-BP against a
gold-standard arterial catheter to provide a quantitative test of accuracy.

4.1 Real-Time Signal Processing
Because our phantoms were maintained at a static pressure for the duration of a
scan, measurements could be taken by stimulating the system with one frequency at
a time over many steps and compiling the results together afterwards. In addition to
simplifying the stimulus protocol, the long measurement time allowed for significant
noise suppression through averaging. In vivo measurements demand a much faster
response time, as pressure changes rapidly due to heartbeats; thus, making these
measurements work required modifications to both stimulus and signal processing.

Multisine Stimulus
The first step was developing a way to stimulate the artery with many frequencies
at once. A multi-frequency stimulus, which we term "multisine," can easily be con-
structed via linear superposition of many single-frequency signals, and the response
of the artery to each individual frequency can be extracted via a Fourier transform.
The primary challenge lies in crafting an effective superposition. Any arbitrary
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superposition with period 𝑇 and finite bandwidth can be expressed in the following
way:

𝑆(𝑡) =
𝑁∑︁
𝑘=1

𝑝𝑘 sin
(
2𝜋𝑘𝑡
𝑇

+ \𝑘
)

(4.1)

where 𝑝𝑘 is the power of the kth harmonic (normalized such that
∑
𝑝𝑘 = 1) and

\𝑘 is its phase angle. Since we were measuring velocity rather than displacement,
we set 𝑝𝑘 ∝ 1/𝑘 such that 𝑑𝑆(𝑡)/𝑑𝑡 had a flat frequency content. Commercial
vital sign monitors which process A-line data generally apply a lowpass filter with
a cutoff frequency of 12 to 20 Hz [83], so we infered that there is not important BP
information at frequency bands above 20 Hz. Thus, we set our period to 𝑇 = 50ms,
which led to a 20 Hz discretization in our stimulus frequencies. Based on the
analysis in Table 2.1, we set the bandwidth of our stimulus to 140-440 Hz when
measuring the carotid artery to capture all but the most extreme cases (this range
was shifted as appropriate for measurements on other arteries).

The simplest way to generate a multisine signal with these parameters is to set all
\𝑘 = 0, which leads to the stimulus waveform shown in Figure 4.1a. If our audio
transducer and velocity measurements had unlimited dynamic range and sensitivity,
this stimulus would have worked fine. However, in reality our audio transducer had
a maximum displacement, so the actual output of our stimulus waveform was always
normalized to the waveform’s peak value. While a single-frequency sine wave has
an average output power (defined as the integral of its square) of 0.5 over one period,
the normalized waveform of Figure 4.1a has a very low average output power of
0.047. Using this stimulus would have significantly reduced the signal-to-noise ratio
of our measurements.

It was clear that we could achieve better average power in our stimulus with appro-
priate phase shifts in the various components. Solving for the optimum phases to
maximize average power is an unsolved problem for the general case. Fortunately,
however, Schroeder [84] provides a useful heuristic for making a multisine signal
with relatively good average power:

\𝑘 = 𝜋

⌊
𝑘−1∑︁
𝑖=1

(𝑖 − 𝑘)𝑝𝑖

⌋
. (4.2)

Applying these phases resulted in the stimulus waveform shown in Figure 4.1b.
This stimulus has an average power of 0.312, over 6 times higher than the \𝑘 = 0



40

Figure 4.1: The benefits of multisine phase optimization. a) A multisine stimulus
covering 140-440Hz in 20Hz steps, with all components starting at 0 phase at time 0.
Because the peak of the signal is normalized to 1 (the maximum output displacement
of the audio transducer), the total energy contained in the signal is relatively small.
b) A multisine stimulus covering the same frequencies, but with component phases
optimized according to Equation 4.2. Because the peak is much less prominent, the
total energy of the signal is significantly higher.

waveform and approaching the single-frequency limit of 0.5. Equation 4.2 was used
to generate stimulus waveforms for all in vivo experiments.

The arterial wall velocities produced by the multisine stimulus were analyzed using
a spectrogram, which applies a sliding window FFT to generate a complex frequency
response function at each time step. Because our stimulus function was periodic and
smooth, any time window could be used for analysis; this theoretically capped our
response measurement rate at the rate of Doppler velocity acquisitions, or 5 kHz.
In order to reduce computational overhead we limited the response measurement
rate to 200 Hz, or 10x higher than the highest expected frequency content of the
waveform we were trying to measure.

Artery Identification and Dimension Extraction
In our in vitro experiments we were guaranteed a clean environment with no sig-
nificant ultrasound returns from anything other than the thin wall of the tubing.
Unfortunately, real arteries are embedded in messy environments with other nearby
reflectors. This necessitated new image analysis techniques to extract artery radius
and wall thickness from our images.

To begin the process, the user was shown a live view of the B-mode images generated
by the ultrasound probe using synthetic aperture processing (see Section 3.2). This
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allowed the user to find the artery and position the probe to obtain a longitudinal
view of both walls of the artery, as shown in Figure 4.2a. The user then drew two
region of interest (ROI) boxes, one encompassing the center of each wall (see Figure
4.2b). This ensured that all subsequent analysis was performed on the artery of
interest rather than a neighboring structure such as a vein.

Figure 4.2: Artery identification and annotation. a) An example of an un-annotated
artery image. We can see the artery walls as two bright horizontal features, along
with some dimmer neighboring features which we want to ignore. b) The same
artery image annotated with user-defined top and bottom wall ROIs (red dashed
boxes) and computed wall centers of mass (orange dots). The distance between the
wall centers of mass (orange line) was used to measure artery radius.

Within each wall ROI, the dimmest 75% of pixels were zeroed, and the remaining
brightest pixel locations were used to determine a brightness-weighted center of
mass (COM) location for each wall. The radius of the artery was measured as half
of the vertical distance between the two wall COMs. A brightness curve was then
determined above and below each COM point using cubic interpolation, and the
thickness of each wall was measured as the full width at half max of the brightness
peak surrounding the COM. The single thickness parameter for the artery as a whole
was taken to be the average of the computed top and bottom thicknesses.

An additional correction was made based on the angle of the artery in the image, as
a non-horizontal artery would result in over-estimation of radius and wall thickness
and under-estimation of wall velocity. This was done by taking the brightness-
weighted COM of each pixel column in each wall ROI and then performing a linear
regression through these column COMs to find a slope. The total angle of the artery
away from horizontal, \, was measured as the average angle from the two artery
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walls, and radius, thickness, and wall velocity were corrected by factors of cos \,
cos \, and 1/cos \, respectively.

Unscented Kalman Filter
The three system parameters we measured in order calculate BP (frequency, radius,
and thickness) all had their own noise characteristics. The easiest approach to
denoising these measurements would have been to simply apply a separate lowpass
filter to each one. However, this would have discarded significant information we had
about how the various system parameters evolved in relation to each other. This sort
of knowledge about interrelated parameters in a nonlinear system is often integrated
via an Unscented Kalman Filter (UKF) [85], [86]. With any type of Kalman filter, the
system is paramaterized according to its underlying state ®𝑥𝑘 and a set of observations
®𝑧𝑘 which are somehow related to the underlying state. Defining the filter requires
specifying the state transition function 𝑓𝑘 (®𝑥𝑘−1), the observation function ℎ𝑘 (®𝑥𝑘 ),
the process noise covariance Q𝑘 , and the observation noise covariance R𝑘 such that

®𝑥𝑘 = 𝑓 (®𝑥𝑘−1) + ®𝑤𝑘 (4.3)

®𝑧𝑘 = ℎ(®𝑥𝑘 ) + ®𝑣𝑘 (4.4)

®𝑤𝑘 ∼ N(0,Q𝑘 ) (4.5)

®𝑣𝑘 ∼ N(0,R𝑘 ) (4.6)

where ®𝑤𝑘 and ®𝑣𝑘 and process and observation noise parameters drawn from a 0-mean
multivariate normal distribution. These equations describe the observations which
are expected from a system which is evolving under its own internal dynamics. In a
noisy system, observations and expectations will not exactly match; the goal of the
Kalman filter is to determine the optimal evolution of state vectors which minimizes
the residual between observations and expectations. The UKF is an extension of
the original Kalman filter which able to handle nonlinear systems. For this project,
the UKF was implemented using the UnscentedKalmanFilter module in the filterpy
package [87].

Applying the UKF to the full nonlinear physics model of Equation 2.25 tended
to result in unstable behavior, presumably because the evaluation points used to
estimate the system’s mean and covariance could stray too close to the poles inherent
in the equation’s denominator. However, the filter did perform very well with the
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approximate version of the physics model from Equation 2.32 (which lacks any
poles). The system state and observation vectors were defined as

®𝑥 = [𝑎, 𝑣, 𝑞, 𝐸, 𝑃] (4.7)

®𝑧 = [�̂�, �̂�, ℎ̂, �̂� , 𝑓 ] (4.8)

where 𝑎 is radius (in m), 𝑣 is half of total differential wall velocity (in m/s), 𝑞 is the
radius-thickness product (in m2), 𝐸 is Young’s Modulus (in Pa), 𝑃 is blood pressure
(in Pa), ℎ is wall thickness (in m), and 𝑓 is resonant frequency (in Hz), and the hat
is used to denote an observed (as opposed to a system state) quantity. The state
transitions were defined as

𝑎𝑘 = 𝑎𝑘−1 + 𝑣𝑘−1𝑑𝑡 (4.9)

𝑣𝑘 = 𝑣𝑘−1 (4.10)

𝑞𝑘 = 𝑞𝑘−1 (4.11)

𝐸𝑘 = 𝐸𝑘−1 +
𝑑𝐸

𝑑𝑎

����
𝑎𝑘−1

𝑑𝑎

𝑑𝑡

����
𝑡𝑘−1

𝑑𝑡 (4.12)

= 𝐸𝑘−1 +
𝑑𝐸

𝑑𝑎

����
𝑎𝑘−1

𝑣𝑘−1𝑑𝑡 (4.13)

𝑃𝑘 = 𝑃𝑘−1 +
𝑑𝑃

𝑑𝑎

����
𝑎𝑘−1

𝑑𝑎

𝑑𝑡

����
𝑡𝑘−1

𝑑𝑡 (4.14)

= 𝑃𝑘−1 +
𝑞𝑘−1𝐸𝑘−1

𝑎3
𝑘−1

𝑣𝑘−1𝑑𝑡 (4.15)

where we have used Equation 2.35 to express 𝑑𝑃/𝑑𝑎 in terms of our other state
parameters. In Equation 4.10 we know that the actual wall velocity will be far from
constant as heartbeats go through, but at any given time step we do not have a good
prior for whether the wall’s motion will accelerate or decelerate in the next time
step. In kinematic KFs this is normally addressed by giving velocity a constant state
transition with a relatively high process noise and relatively low measurement noise.
The expected observation functions were defined as

�̂�𝑘 = 𝑎𝑘 (4.16)

�̂�𝑘 = 𝑣𝑘 (4.17)

ℎ̂𝑘 = 𝑞𝑘/𝑎𝑘 (4.18)

�̂�𝑘 = 𝐸𝑘 (4.19)

𝑓𝑘 =


1

𝜋2
(
𝑞𝑘𝜌𝑆 + 4

5𝜌𝐿

)
𝑎2
𝑘

(
𝑃 +

𝑞3
𝑘

3(1 − a2)𝑎6
𝑘

𝐸𝑘

)
1/2

. (4.20)
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The measurement of 𝐸 and 𝑑𝐸/𝑑𝑎 relied on an iterative convergence process to
simultaneously satisfy Equations 2.32 and 2.35; further details are provided in
Section 5.3. The process noise matrix was defined as

Q𝑘 =



𝑑𝑡2

40 𝑣
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𝑑𝑡2 (4.21)

where 𝑥 is the mean value of 𝑥 across the scan. The relative covariance relationship
between 𝑎 and 𝑣 was taken from the standard first-order kinematic filter setup in
Labbe [87], and the process noise associated with this 𝑣𝑘−1𝑑𝑡 transition term was
added into off-diagonal terms for 𝐸 and 𝑃 as well. The process noise variances
for 𝑞 and 𝑃 were set relatively low as we expected them to follow our predicted
behavior quite well, while variance for 𝐸 was set relatively high because its short-
term estimates can be relatively noise (see Chapter 5). The observation noise matrix
was defined as

R𝑘 =



�̄�2/1000 0 0 0 0
0 𝑣2/1000 0 0 0
0 0 ℎ̄2 0 0
0 0 0 105 0
0 0 0 0 25 ∗ 𝜖 𝑓


(4.22)

where 𝜖 𝑓 is an error modification term that was normally 1, but was set to 100 if
vector fitting did not converge properly (indicating that the final pole location was
unreliable).

The application of a filter that integrates information from multiple sources can pro-
duce powerful results. Figure 4.3 shows an example result snippet from our clinical
study data (see Section 4.5). The top panels show measurements of resonant fre-
quency and radius, which are the two most sensitive parameters in the BP calculation
(see section 2.6). In this case the measured resonant frequency was fairly stable in
its range but highly noisy, making it difficult to pick out a pulsatile pattern. The
measured radius was more pulsatile but still showed significant noise. As shown
in Figure 4.3c, simply combining these inputs using our formula and applying a
lowpass filter to the result produced a substantially noisy BP output. However, the
UKF was able to incorporate information from other measured parameters, such as
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velocity, to denoise the output and produce a BP measurement curve which looked
much more physiologically reasonable.

Figure 4.3: An example of unscented Kalman filter (UKF) performance. a) Mea-
sured resonant frequency over a∼4 heartbeat period. The values stay in a reasonably
stable range but are noisy, showing only a weak pulsatile pattern. b) Measured ra-
dius over the same period. The behavior is more pulsatile than that of frequency,
but it still shows substantial noise. c) BP over the same period after passing through
a 12Hz lowpass filter vs the UKF. After lowpass filtering alone the output BP is
still significantly noisy, reflecting the noise in its input parameters. The UKF, how-
ever, is able to effectively denoise by synthesizing multiple streams of measurement
information, producing a far more physically plausible BP curve with more stable
systolic and diastolic values.

The determination of optimal Q and R matrices is in general an area of open
research, particularly for nonlinear systems. The matrix values listed above were
chosen to yield good stability on this dataset via a combination of system knowledge,
inspection of noise in some representative scans, and trial and error. Future work
may experiment with methods of estimating Q and R dynamically from observed
data [88].
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Data Collection Software
All of the signal processing and analysis tasks described above were integrated into a
real-time BP measurement interface, as shown in Figure 4.4. This allowed us to get
immediate feedback on whether or not we were appropriately imaging the artery and
obtaining a resonance signal. The full flow of data through the software pipeline is
illustrated in Appendix Figure A2.1. Although our timing setup allowed a maximum
B-mode imaging rate of just over 300 Hz, the computation required for SA image
generation limited the effective frame rate to roughly 60 Hz. Cubic interpolation
was performed on extracted dimensions to upsample them to the 200Hz rate of
resonant frequency calculation, allowing for final BP outputs at 200Hz.

Figure 4.4: A screenshot of the software used for real-time BP data acquisition.
Blue box: B-mode image of the target artery with wall ROIs drawn. Green boxes:
ultrasound parameter controls. Red box: real-time output of measured BP curve,
along with inferred heartrate and systolic/diastolic pressures. The numerical values
and y-axis scale were omitted during data collection to avoid bias. Purple box: Real-
time output of frequency response and wall velocities to allow for troubleshooting.

4.2 Feasibility Study: Methods
An initial feasibility study was conducted on 𝑁 = 6 human subjects to determine
whether the resonance underlying the CARDI-BP method could be detected in
human arteries. As a first target, we elected to study the common carotid artery in
the neck. This artery is relatively large, shallow, and can be easily accessed without
any disrobing, making it an ideal target for manually operated ultrasound. The neck
is also relatively broad and flat, allowing the ultrasound probe and attached speakers
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to simultaneously make good skin contact. Subjects also had their BP measured
with a traditional oscillometric cuff which reported diastolic BP (DIA), systolic BP
(SYS), and mean arterial pressure (MAP). These data were obtained under guidelines
for self-experimentation [89], and written, informed consent was obtained prior to
data collection. Data collection from each subject consisted of 6 separate 30-second
scans using the prototype device, along with cuff BP measurements before any
scans, at the halfway point, and after all scans.

It was observed that successfully obtaining a BP waveform required careful posi-
tioning of the probe directly over the center of the artery, and slight shifts from either
the operator or subject could easily disrupt the measurement. Furthermore, data
were processed without the unscented Kalman filtering described above; instead, a
simple low-pass filter was applied. Due to these factors and the relative inexperience
of the ultrasound operators, much of the data obtained was not usable. As a screen
to identify segments of data likely to contain useful information, we selected for
5-second time spans with a correlation of 𝑟 > 0.63 between measured arterial ra-
dius and fitted resonance frequency; if all aspects of the measurement were working
properly, both parameters should have varied synchronously with the heartbeat. This
limit was determined by inspection to filter out unphysical data while maintaining
a reasonable amount of passing data for all subjects. We also rejected any 5-second
windows where the pulse pressure (i.e., systolic minus diastolic pressure) exceeded
150 mmHg, a threshold that has been used in prior literature to exclude unfeasible
results [90]. These two metrics were found to be sufficient for removing unphysical
results resulting from poor image and/or resonance quality. Statistics (e.g., mean
arterial pressure) for the present method were computed over the valid time frames
and the standard deviations of each statistic was determined using the number of
heartbeats as the population size.

We also wished to investigate whether or not the CARDI-BP method could be
applied to other arteries beyond the carotid. From various attempts on a single
subject, we were able to obtain results from the brachial artery in the bicep, the
axillary artery in the shoulder, and the femoral artery in the leg. We also attempted
to measure BP in the radial artery in the wrist, but this artery was too small and
superficial to be effectively imaged with the 6L3 ultrasound probe.
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4.3 Feasibility Study: Results and Discussion
The primary result from the feasibility study was that, despite the complexities
of the in vivo system, we were able to stimulate and detect the same kind of
resonance that was measured in the idealized phantom experiments. An example is
shown in Figure 4.5: both the phase and magnitude of the differential wall velocity
followed the expected resonance pattern, with phase showing a sigmoidal decrease
and magnitude showing a peak near the midpoint of this sigmoid. While the width
of these resonance features was significantly wider than the resonance features from
the phantom (presumably due to much higher damping in real tissue), we were
still able to recover a precise resonance frequency via vector fitting. Importantly,
the resonance was not just present, it also shifted quickly to match changes in
arterial dimensions and BP due to the heartbeat. This responsiveness was critical
for measuring the full shape of the BP waveform rather than just assessing averaged
characteristics.

A similar resonant response pattern was measured in all 6 subjects in the study.
The measured resonant frequencies were combined with arterial dimensions via
Equation 2.25 to generate continuous BP waveforms. An example trace from each
subject is shown in Figure 4.6, along with systolic and diastolic BPs measured by the
inflatable cuff. In all cases, the CARDI-BP measurements followed a heartbeat-like
pattern and were broadly in line with measurements from the cuff. In some cases,
the curves exhibited low enough noise that we were able to pick out smaller-scale
features such as the dicrotic notch.

As mentioned above, CARDI-BP data from each subject were filtered based on
criteria of physically reasonable pulse pressure and strong radius-frequency correla-
tion, and measurements were broken up into individual heartbeats to generate mean
and standard deviation statistics (see Table 4.1). While this dataset was too small to
generate statistically powerful conclusions regarding accuracy, we can make some
general observations. Overall, mean CARDI-BP measurements lined up fairly well
with BP measurements from the cuff. This alone represents a significant step for-
ward in the NIBPM field. Every other NIBPM method is effectively guaranteed
to produce a biologically normal range of BP values, as they are either directly
calibrated against a cuff measurement or indirectly referenced to cuff measurements
via a machine learning model. In contrast, the CARDI-BP method has no such
inherent guarantee; Equation 2.25 could easily produce pressure measurements of
500 mmHg or even -50 mmHg if given a resonant frequency value that was far from
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Figure 4.5: An example of resonant behavior observed in vivo in a carotid artery. a)
The phase component of the spectrogram of differential wall velocity over time. The
color map shows a gradient with a center which shifts in time with the heartbeat. The
overlaid best fit frequency (black line) confirms that the resonant frequency is moving
in a heartbeat pattern. b) The magnitude component of the same spectrogram from
(a), showing the same type of synchronized shifts with heartbeat. c, d) Individual
point-in-time curves of the magnitude and phase of frequency response; colors
correspond to the times indicated by vertical dashed lines in (a) and (b). As 𝑃
increases, we see the magnitude and phase curves both shift to the right while
maintaining roughly the same shape. e) Fitted resonance frequency plotted on top
of measured arterial radius. This makes it clear that the frequency and radius are
both changing synchronously with the heartbeat, as predicted by our physical model.

expectations. Thus, obtaining BP values roughly in line the cuff directly from our
physical model, without the need for any empirical fudge factors, is a strong result
that supports the potential viability of the CARDI-BP method.

There are also more specific observations we can make from Table 4.1. First, the
number of heartbeats that passed our QC thresholds varied significantly from subject
to subject. A primary reason for this was most likely the manual operation of the
device. Finding an ultrasound probe position which yielded a clean, longitudinal
image in the middle of the carotid artery while maintaining skin contact for the
speakers was more challenging for some subjects compared to others. Even once
a good spot was found, the ultrasound gel made it easy to slip off of this position.



50

Figure 4.6: A selection of computed BP waveforms from subjects in the initial
𝑁 = 6 feasibility study (solid lines), along with corresponding BP cuff measurements
(dashed lines). These BP traces have roughly the expected shape and have systolic
and diastolic pressures broadly in line with the cuff readings. In segments with
relatively low noise we also have sufficient temporal resolution to pick out smaller-
scale waveform features such as the dicrotic notch.

Value Method Subj A Subj B Subj C Subj D Subj E Subj F
No.

Samples
CARDI-BP 83 22 145 22 55 141

Cuff 6 6 6 6 6 6

DIA
(mmHg)

CARDI-BP 68 ± 10.5 90 ± 3.6 63 ± 9.2 71 ± 2.9 74 ± 10.4 68 ± 4.1
Cuff 90 ± 6.2 83 ± 3.2 58 ± 5.7 70 ± 6.1 74 ± 2.7 74 ± 5.0

MAP
(mmHg)

CARDI-BP 86 ± 7.8 102 ± 3.6 79 ± 10.4 85 ± 4.0 85 ± 9.7 77 ± 4.1
Cuff 101 ± 5.0 93 ± 3.3 73 ± 3.8 78 ± 5.3 82 ± 1.8 83 ± 3.8

SYS
(mmHg)

CARDI-BP 105 ± 10.3 116 ± 5.2 99 ± 17.4 103 ± 15 98 ± 9.7 88 ± 4.9
Cuff 140 ± 3.4 130 ± 4.9 121 ± 4.0 101 ± 4.0 110 ± 7.0 116 ± 7.7

Table 4.1: Summary statistics from the 𝑁 = 6 initial feasibility study, comparing
CARDI-BP to the cuff for measurements of diastolic BP (DIA), mean arterial
pressure (MAP), and systolic BP (SYS).

Second, some subjects (particularly B, D, and F) had variance in CARDI-BP mea-
surements that was similar to or even lower than variance in cuff measurements, but
other subjects had relatively high CARDI-BP measurement variance. This indicated
a need for better data QC procedures to identify reliable low-noise measurements,
which will be discussed in section 4.4. Finally, while DIA and MAP mean mea-
surements tended to be roughly the same between CARDI-BP and the cuff, SYS
measurents from CARDI-BP tend to be systematically lower than those from the
cuff. This was expected due to site-specific BP differences between the brachial and
carotid arteries [91], and will also be discussed further in section 4.4.
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BP from Other Ateries
In addition to the carotid artery, we also applied CARDI-BP to three more peripheral
arteries on a single subject: the axillary (in the shoulder), brachial (in the bicep),
and femoral (in the thigh). Snapshot of results are shown below in Figure 4.7. In
all three arteries we were able to stimulate and measure a resonant frequency in the
same manner as in the carotid. Because all measurement sites were roughly level
with the heart (femoral measurements were taken with the subject lying down), we
should expect to obtain BPs close to those of the cuff. Indeed, the systolic and
diastolic values in Figure 4.7a,c,e align well with those of the BP cuff. We can also
see in Figure 4.7b,d,f that as arterial radius got smaller, resonant frequency increased
to compensate, in line with the physical model. This indicates that the CARDI-BP
method is not limited only to the carotid artery and can be applied elsewhere around
the body. The waveforms themselves are somewhat noisier than those obtained in
the carotid due to a combination of smaller arterial dimensions and greater difficulty
of probe positioning, particularly for the femoral. Future device implementations
targeting these arteries would likely need a combination of a wearable form-factor
and higher-frequency ultrasound to obtain more consistent measurements.

4.4 Clinical Study: Methods
The initial feasibility study convinced us that arterial resonance, and by extension
BP, could be measured in human arteries. However, this study represented a small
and fairly demographically homogeneous subject pool with an imperfect reference
pressure from an inflatable cuff. To more rigorously assess CARDI-BP’s accuracy
in a broader set of subjects, we contracted with ARK Clinical Research (Tustin, CA)
to conduct a 60-subject clinical study comparing CARDI-BP performance to a gold
standard arterial catheter.

Study Design and Subject Recruitment
The research protocol was approved by Advarra Institutional Review Board (protocol
#: Pro00063289) and all test subjects gave written informed consent for participa-
tion. The study design was a prospective observational feasibility study evaluating
the correlation, accuracy, and precision of the CARDI-BP prototype device as com-
pared to an arterial catheter. A brachial cuff was used to ensure the consistency of
measurements from the arterial catheter. Appendix Figure A3.1 outlines the study
population and inclusion/exclusion criteria. Healthy volunteers were recruited by
Ark Clinical Research with attention to recruiting a diverse subset of the population
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Figure 4.7: Example blood pressure (left) and resonant frequency/radius (right)
measurements from three other sites: the axillary (shoulder) artery (a,b), the brachial
(bicep) artery (c,d), and the femoral (thigh) artery (e, f). The CARDI-BP prototype
device was able to detect resonance and measure BP values in general agreement
with those of a cuff in all three arteries, indicating that the method is not just limited
to the carotid.

with varying ages, ethnicities, genders, body mass indices (BMI), and underlying
health conditions. Because the subjects were recruited from a generally healthy
population, critically low and critically high BPs were not evaluated in this study.
Sixty-eight subjects were screened and 60 subjects completed the study. A summary
of subject demographics is included in Appendix Table A3.1.

Data Collection
Subjects were interviewed to assess their medical and surgical histories, allergies,
demographics, height, weight, and body mass index (BMI). After subjects had
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satisfied all inclusion and exclusion criteria, and signed informed consent, the subject
had a 20-G arterial catheter (Arrow NA-04020-1A) inserted into the radial artery.
The pressure line was flushed with normal saline, the transducer (Edwards TruWave
PX260) was calibrated at the level of the right atrium, and the subject was allowed
to choose a seated or reclined position which was kept consistent across scans.
The approximate angle of reclination was recorded for each subject. After arterial
catheter placement, arterial catheter data and all monitor outputs were recorded
continuously throughout the study with a Philips Intellivue MP70 monitor with a
M3001A measurement pack (Holland). An oscillometric cuff (Philips M1877A
or Orantech BP-50BS) was placed on the contralateral arm to the arterial catheter.
To ensure consistency of measurements, catheter diastolic values needed to be
within 10 mmHg and catheter systolic values needed to be within 20 mmHg of
the cuff measurement. Due to difficulty maintaining a difference of less than
10mmHg in diastolic pressures, the allowable limit of diastolic pressure difference
was amended to 20mmHg partway through the study. Additional vital sign data
were recorded, including oscillometric cuff, pulse rate, respirations, pulse oximetry,
and oral temperature.

After initial setup, 15 one-minute scans were taken with the CARDI-BP prototype
device from the subject’s carotid artery ipsilateral to the arterial catheter (Figure
4.8). After 15 scans, all vital signs were recorded and then 15 additional scans were
taken from the carotid artery for a total of 30 one-minute scans per subject. Vital
sign data were then recorded again at the end of the study and the arterial catheter
was removed. 16 scans were discarded due to failure of A-line data recording,
leaving 1784 total scans available for analysis across all subjects. Researchers were
blinded to the magnitude of CARDI-BP prototype outputs for the duration of the
study; they could see waveform shape in order to assess whether quality data was
being obtained, but could not see the actual BP values (see Figure 4.4). All raw
ultrasound data from the CARDI-BP prototype was recorded for post-processing.

Development and Validation Subjects
Prior to this study, CARDI-BP had never been tested in a clinical setting across a
range of blood pressures and physiologies. Thus, the analysis and quality control
algorithms needed to be tuned during the course of the study in order to ensure
correct identification of arterial walls for radius and thickness measurements and
robust analysis of stimulus response for calculating resonant frequency. In order
to avoid overtuning, the data were split into 40 “development” subjects and 20
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Figure 4.8: An illustration of the data capture setup for the clinical study. BP
was simultaneously measured using the CARDI-BP prototype ("Device") on the
carotid artery and an arterial catheter on the ipsalateral radial artery, and intermittent
measurements were acquired using an oscillometric BP cuff on the contralateral
brachial artery. Inset graphs show expected example BP curves from CARDI-BP
and the A-line; note that CARDI-BP is expected to produce lower systolic peaks
than the A-line, as systolic BP is systematically lower in the carotid artery compared
to the radial. All vertical axes are in units of mmHg.

“validation” subjects. This split was determined before any data from validation
subjects had been analyzed and was chosen based on demographic data to create
roughly equal representation across demographic groups for the two datasets. All
algorithm and quality control criteria tuning was performed solely on data from the
development subjects. Once tuning was complete the final algorithm was applied
to data from the validation subjects.

After data analysis, average CARDI-BP performance was found to be statistically
equivalent between the development and validation subjects, indicating that we did
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not overfit the training data through algorithm or QC tuning (see Appendix Table
A3.2 for details). Thus, all results are presented for the full 60-subject cohort.

Data Analysis and QC
BP measurements from CARDI-BP were processed using standard methods from
the literature that are consistent with those employed by vital sign monitors [90].
First, measurements were passed through an interquartile range filter and a 12
Hz lowpass filter. To convert continuous measurements into clinically relevant
metrics of diastolic blood pressure (DBP), systolic blood pressure (SBP) , and mean
arterial pressure (MAP), data were divided into non-overlapping time windows with
a length of six seconds, rounded down to the nearest heartbeat interval. For each
window, DBP and SBP were calculated as the average of peak minima and maxima,
respectively, and MAP was calculated as the average of all BP values. A-line data
were analyzed in the same way during the same time windows for comparison.

The current iteration of the device is sensitive to motion-induced operator error,
including shifts due to operator fatigue, as well as test subject movement. As a
result, signal was lost and these data were deemed unusable and excluded from the
final analysis. These exclusions proceeded in the following steps:

1. For each scan, take the difference between the 90th and 10th percentiles of
calculated radius. If this span is greater than 0.4mm, discard the scan.

2. For each scan, take the difference between the 90th and 10th percentiles of
fitted resonant frequency. If this span is greater than 75 Hz, discard the entire
scan.

3. Any individual measurements below 0 mmHg or above 250 mmHg are marked
as invalid and cannot be included in a window [90] (this check is performed
after our IQR and lowpass filtering)

4. Search data in the scan using a rolling window. Reject the window if MAP
is outside of the range (40, 160) or pulse pressure is outside of the range (20,
150) [90]. If a window is rejected, roll forward by 0.1s and check again.

5. Also reject window if the correlation between radius and resonant frequency
is below 0.5
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6. Any window that makes it this far is accepted, and the rolling window search
skips forward so that windows cannot overlap. All accepted windows are
included in the final results.

The first two criteria filtered for scan stability. The thresholds of 0.4 mm and 75
Hz were chosen as being higher than the span of radius or frequency seen in any
high-quality training scan. Breaking either of these thresholds indicated that there
was a significant disruption for a large portion of the scan (likely due to subject or
operator motion), leading to loss of arterial wall imaging, resonance signal, or both.
The most robust way to deal with such a disruption was to discard the entire scan.
Criteria 3 and 4 were taken from the literature as thresholds commonly used to filter
out unphysical BP data from healthy individuals. Finally, criterion 5 was used to
filter out minor scan disruptions where either arterial wall imaging or resonance
signal was briefly lost.

Site-Specific BP Differences
One limitation of this study is that our CARDI-BP prototype device measurements
were obtained from a central (carotid) artery, while cuff measurements were ob-
tained from a somewhat peripheral (brachial) artery and A-Line measurements were
obtained from a very peripheral (radial) artery. Prior studies have shown that BP
changes as the pressure pulse wave moves through the arterial tree, meaning that
even if CARDI-BP was functioning perfectly it would not be expected to measure
the exact same BP as the A-line [91]–[95]. The largest effect comes from pressure
wave reflections, which are more prominent in peripheral arteries due to their closer
proximity to terminal capillary beds. These reflections tend to amplify systolic
pressure, with the upshot that SBP becomes higher and peak features become more
pronounced as one moves from central to peripheral arteries. This peripheral sys-
tolic amplification is subject-specific and cannot be fully corrected with a simple
population-wide scaling factor. On the other hand, both DBP and MAP have been
found to stay relatively consistent between central and peripheral arteries. Due to
these effects, when comparing BP traces between CARDI-BP and the A-Line we
expected that CARDI-BP curves would have significantly lower SBP values, similar
DBP and MAP values, and less pronounced waveform features than A-line curves
(as illustrated in the inset of Figure 4.8). Thus, our discussion of CARDI-BP perfor-
mance will primarily focus on comparisons of DBP and MAP, with SBP understood
to be non-representative of performance due to large site-specific differences.
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Another factor to consider is hydrostatic offset due to gravity. The pressure trans-
ducer for the arterial catheter was aligned to the level of the subject’s right atrium
(in line with clinical practice). However, because the subjects were not laying flat,
the CARDI-BP measurement site was higher than the A-line transducer, so the force
of gravity over this vertical separation would be expected to lower true BP at the
CARDI-BP measurement site. While precise measurements of heart to neck dis-
tance were not taken during the study, standard clinical practice assumes an average
distance of 7cm when the subject is upright [96], corresponding to a pressure offset
of roughly 5.2 mmHg. This pressure was added to all CARDI-BP outputs to correct
for hydrostatic effects, scaled by a factor of sin \ for subjects who were reclined.

4.5 Clinical Study: Results and Discussion
Overall Performance
The data QC procedures described above yielded a total of 6794 data windows,
including at least one window from 59 out of 60 subjects. Each data window was
converted into values of DIA, MAP, and SYS within that timeframe for both CARDI-
BP and the A-line. These window values, along with linear regression results, are
shown in Figure 4.9a-c. We can see that see that CARDI-BP predictions align fairly
well with A-line measurements, showing correlations (as measured by Pearson’s 𝑟)
of 𝑟 > 0.6 for all metrics and regression lines close to the 1:1 line for DBP and
MAP. Figure 4.9d-f show the same statistics, but grouped by averaging all window
BP values for each subject (yielding 𝑁 = 59 points). Performing this averaging
decreased overall CARDI-BP measurement noise and increased correlations by
roughly 0.07 for each metric.

In isolation, it is difficult to say whether or not these statistics constitute "good"
BP measurement performance. A useful point of comparison is the BP cuff mea-
surements that were taken for all subjects, which represent the current standard of
BP measurement in hospitals outside of critical care situations. Table 4.2 shows
correlation and linear regression slope statistics for CARDI-BP and the cuff, along
with two other metrics commonly used to assess the clinical performance of BP
devices; mean difference between the measurement and the A-line (accuracy) and
standard deviation of differences beween the measurement and the A-line (preci-
sion). The latest approved standards for BP measurement device evaluation defined
by the International Organization for Standardization, ISO 81060-2:2018 [82], set
clinically acceptable limits for accuracy and precision at ±5mmHg and ±8mmHg,
respectively.
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Figure 4.9: Plots showing overall correlation results for CARDI-BP measurements
in the clinical study. The top row shows results for a) diastolic pressure, b) mean
pressure, and c) systolic pressure across all individual data windows, as well as a
linear regression. For both DIA and MAP the regression line lies close to the 1:1
line, and in every case we get a fairly strong correlation of 𝑟 > 0.6. The bottom row
shows the same results, but with all windows for each subject averaged together to
generate one data point per subject. This averaging suppresses noise and increases
correlations to 𝑟 > 0.7.

The results in Table 4.2 show that CARDI-BP measurements met clinical standards
for accuracy in DBP and MAP measurements and were not far off of clinical stan-
dards for precision, especially when subject averaging was applied. For comparison,
the BP cuff did meet clinical standards for precision by a narrow margin and failed
to meet the standard for MAP accuracy. Our measured values for cuff performance
are in line with those found by a meta-analysis of cuff performance in Dankel, Kang,
Abe, et al. [13], which found a mean and standard deviation of errors in cuff DBP
measurements of 6.2mmHg and 8.0mmHg, respectively; this indicates that the ob-
served cuff errors were not a product of incorrect cuff usage in our study. CARDI-BP
also compared favorably to the cuff in terms of regression slope; in particular, the
cuff tended to overestimate low DBP values and underestimate high DBP values (a
trend also reflected in prior literature [13]), while CARDI-BP showed no such trend
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Device Measurement Correlation Slope Mean Diff
(mmHg)

Std. Dev. of
Diff (mmHg)

CARDI-BP
(Window)

DIA 0.64 0.98 3.49 15.33
MAP 0.68 0.98 -1.22 15.81
SYS 0.66 0.78 -25.50 19.53

CARDI-BP
(Subject)

DIA 0.71 0.91 3.96 10.89
MAP 0.74 0.90 -0.14 11.17
SYS 0.73 0.73 -24.77 13.43

Cuff
DIA 0.81 0.79 3.3 7.7
MAP 0.85 0.73 -7.4 7.4
SYS 0.84 0.68 -15.1 10.2

Table 4.2: An overall statistical performance summary for CARBI-BP (both across
all windows and across subject-averaged values), as well as equivalent performance
statistics from the BP cuff for comparison. While CARDI-BP does show somewhat
lower correlation and higher variance than the cuff, it is not far off, especially when
subject averaging is applied. In some statistics, such as slope of the linear fit and
bias of MAP measurements, CARDI-BP actually out-performs the cuff.

with a slope very close to 1. Appendix Table A1.2 provides a further comparison
of CARDI-BP performance to other NIBPM methods in the literature which have
been evaluated against an A-Line reference. This shows that CARDI-BP’s precision
was better than that of some commercially available NIBPM devices, particularly
for devices which also attempted to provide calibration-free measurements. All
of these comparisons indicate that, while CARDI-BP is not yet ready for clinical
deployment, its performance is quite promising for the first ever test of a novel and
unique BP measurement modality.

Continuous BP Traces
Aside from overall statistics, another important indicator of CARDI-BP’s perfor-
mance is its ability to measure continuous BP traces rather than simply getting the
maximum and minimum. As mentioned above, we expected the height and shape
of continuous BP waveforms to differ significantly between the CARDI-BP and
A-line measurement locations, so we could not directly compare them to assess
concordance. However, there are other ways to indirectly look at continuous BP
performance. One example is respiration signal. It has long been established that
breathing causes sinusoidal variations in blood pressure [97], which are detectable
with A-lines but averaged over and obscured by BP cuffs. Figure 4.10 shows ex-
ample 30-second BP traces from the A-line and CARDI-BP, along with an overlay
of beat-to-beat mean arterial pressure calculated from each. Both the A-line and
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CARDI-BP show synchronous oscillations in MAP at a rate consistent with normal
resting respiration (period ≈ 12s), indicating that CARDI-BP was able to measure
these subtle continuous BP changes.

Figure 4.10: Aligned 30s traces of continuous BP from the A-line and CARDI-BP.
We see that CARDI-BP is capable of generating stable outputs when the operator
and subject remain still. The graph also shows continuous MAP measurements
from each device, calculated once per heartbeat. MAP in the A-line shows slow
sinusoidal variation at the subject’s respiration rate, a pattern expected from prior
literature. This pattern is also evident in the CARDI-BP readings, indicating that
the method is picking up on BP changes over time.

A much more clinically valuable use of continuous BP information is the identifica-
tion of waveform features indicative of various diseases. The subject pool recruited
for the clinical study was generally healthy, and almost all showed typical arterial
BP waveforms. However, the A-line readings for one subject showed a distinctive
anacrotic notch, which is a sloped bump just before the systolic peak. This shape
difference is evident in Figure 4.11a, which compares an example A-line waveform
from this subject with a more standard A-line waveform from another subject with-
out an anacrotic notch. This anacrotic notch is often characteristic of aortic stenosis
(AS)[6], i.e., a thickening and narrowing of the aortic valve which prevents blood
from flowing normally. While the subject did not report known AS and a definitive
diagnosis would require follow-up examination, a consulted physician confirmed
that this A-line waveform was a likely signature of moderate AS. As shown in Fig-
ure 4.11b, this distinctive anacrotic notch shape was also distinctly observable in the
corresponding CARDI-BP waveform. This indicates that CARDI-BP has sufficient
time resolution in measuring continuous BP waveforms to allow for the diagnosis
of vascular diseases which could not be identified from cuff readings alone.
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Figure 4.11: Evidence of a cardiovascular disease from the BP waveform shape. a)
Example A-line traces from two different subjects, one showing a typical healthy
waveform and one showing possible aortic stenosis (AS). A primary indicator of
aortic stenosis is a prominent anacrotic notch (a sloped bump just before the systolic
peak), which is evident in the red waveform. b) CARDI-BP traces for the same
subjects in the same time windows. Just as in the A-line, CARDI-BP waveforms
show an anacrotic notch in the red waveform but not in the blue waveform. This
indicates that CARDI-BP is capable of measuring subtle features in BP waveform
shape, not just maximum and minimum pressure values.

Availability
Another factor to consider is how often we were able to successfully obtain CARDI-
BP measurements that passed QC, which is often referred to in clinical circles
as "availability." Overall, we were able to successfully stimulate resonance and
measure blood pressure in 59 out of 60 tested subjects. These subjects covered a
range of demographics (see Appendix Table A3.1), indicating that resonance-based
measurement is viable across a variety of anatomies. It is worth noting that this
59/60 success rate significantly exceeded that of arterial catheter placement, which
failed in 8 out of the 68 screended subjects (see Appendix Figure A3.1). For the
subject which failed to pass QC, it was observed that they had a very pronounced
jugular vein immediately overlaying their carotid artery, and pulsation in the vein
visibly pressed on and moved the artery. While we cannot be sure, it seems likely that
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this strong coupling of the artery to a neighboring vessel interfered with resonance
measurements.

In addition to subject availability we can consider total availability, or the fraction
of all collected data that made it into final analysis. Figure 4.12 presents a flowchart
of the QC steps and the fraction of data rejected at each step. We can see that
almost half of all scans were rejected in their entirety due to instability. This reflects
the difficulty of maintaining the measurement probe in a nearly constant position
and orientation for a full 60s scan; subject motion or operator fatigue could easily
throw off positioning, especially since ultrasound gel made the probe-skin interface
slippery. Out of the remaining scans, on average about 30% of the scan was rejected
due to locally poor measurement quality; this was likely due to minor motions,
such as the subject swallowing or small shifts by the operator. In total, 35.6% of
all data originally collected made it into the final results. Future iterations could
significantly improve this rate by removing the need for manual operation.

Figure 4.12: A depiction of the data QC chain for the clinical study and how much
data was rejected at each step. QC steps 4 and 5 from the text are grouped into
the "Window Check" box since both checks wer performed simultaneously during
rolling window selection. Overall, 35.6% of all collected data was included in the
final results. Almost 50% of data were rejected due to insufficient scan stability,
as it was difficult for both the subject and operator to stay sufficiently still for 60
seconds. If a scan passed the variance checks, on average about 70% of that scan
was included in the final data.

Sources of Error
The sources of error in our measurements can generally be broken down into 3
possible categories:

1. Systematic error in the underlying physical model and/or data processing
which affected measurements from all subjects.
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2. Systematic error due to subject-specific factors, such as anatomy or position-
ing, which affected all measurements for a given subject.

3. Various forms of measurement noise which led to varying errors across mea-
surements on the same subject.

We can approximately tease apart the relative contributions of these error types via
averaging. Figure 4.13 shows the window statistics from Figure 4.9a-c with overlaid
bin averages. The bin for each point was determined based on A-line values with
boundaries at even 4mmHg spacing, and the y-values for each bin represent the
average of all CARDI-BP measurements in that bin. For both DBP and MAP these
bin averages consistently land close to the 1:1 line, with a correlation of 𝑟 = 0.98
for both and no obvious pattern in deviation from the linear fit. Even for systolic
measurements, which we expect to be noiser due to variable site-specific differences,
the binned averages still achieve a correlation of 𝑟 = 0.96. This indicates that the
underlying physical model and data processing algorithms were very accurate when
averaged across all subjects, so type 1 error was likely not a significant contributor
to our overall variability.

Figure 4.13: Plots with the same window statistics from Figure 4.9, but with binned
averages and linear regressions of these binned averages overlaid. Data were divided
into even 4mmHg-wide bins based on A-line pressures, and each point represents
the aveage of all CARDI-BP measurements in that bin. The fact that the binned
averages are well aligned along a linear regression, without an obvious nonlinear
pattern, indicates that our underlying physical model and measurement techniques
are, on average, working quite well.

Error types 2 and 3 can be roughly separated by comparing variability in window
results to variability in subject-averaged results. If we assume that these errors
were independent and added in quadrature, the results in Table 4.2 indicate that
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both error types had roughly equal contribution. Type 3 errors are relatively easy
to explain due to noise in our underlying measurements: artery dimensions and
frequency. Because our imaging probe had just 32 active elements and could only
transmit from one element at a time, imaging quality was significantly worse than
what could be obtained from commercial instruments which can use hundreds of
active elements with complex beamforming patterns; this inherently increased noise
in radius and thickness measurements. Radius measurements were also sensitive
to slight shifts in probe or subject positioning, which could cause the artery to be
imaged along a chord rather than along its true diameter. Future device iterations
could mitigate these problems using a wearable form factor and a better ultrasound
imaging array. For frequency, we used a constant wide stimulus bandwidth of
140-440 Hz for all measurements in order to ensure that all subjects were covered.
This spread out stimulus power over many frequency bins, hurting the SNR of any
one bin. Future implementations could dynamically narrow the stimulus bandwidth
once an approximate resonance is identified, increasing SNR in the relevant range.
More sophisticated speakers could also potentially focus the stimulus energy onto
the artery rather than broadly insonating the whole tissue volume, which would be
particularly helpful for subjects with deeper arteries.

A portion of the type 2 error also came from errors in radius and frequency mea-
surements. Some subjects had very acoustically bright anatomical features just
outside of their arterial walls which were often confused with the walls themselves
by dimension extraction algorithms, leading to overestimation of arterial radius.
This could be addressed in future iterations via better imaging and image analysis
algorithms. For resonant frequency, we fit the frequency response with a generalized
2-pole linear response function rather than using a specific functional form derived
from the physical model. This caused some degree of error in true resonance esti-
mation, which could have varied by subject based on factors like degree of damping.
Further work in biophysical analysis or computational modeling could lead to more
accurate resonance analysis. There could have also been some error in the A-line
reference due to factors like improper transducer leveling or greater-than-expected
site-specific differences in DBP or MAP. Future experimental designs could remove
these factors by taking CARDI-BP and reference measurements at the same site.

The trickiest potential source of type 2 error is subject-specific deviation from the
physical model due to the underlying anatomy. As described in Chapter 2, our phys-
ical model assumes that the artery is an infinitely long cylinder with constant radius,
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thickness, and stiffness. Deviations from this ideal, such as tapering, branching,
bending, uneven wall thickness and stiffness due to plaque buildup, etc. could all
lead to varying degrees of error in model BP outputs. Future work could predict the
relative severity of these various non-idealities via computational modeling, which
could also potentially lead to empirical corrections for these effects. Resonant be-
havior could also be affected by neighboring anatomical structures that impinge
upon the arterial wall, as was likely the case for the one subject that had no data
passing QC. Dealing with such issues could potentially require selecting a different
measurement site; fortunately, our initial data suggest that CARDI-BP is applicable
to a variety of arteries, so many options should be available.

Effect of Tuning QC Criteria
Another way to examine our experimental error is to tune our QC to be more or less
permissive and see how it affects our various metrics. The most obvious parameter
to adjust is the radius/frequency correlation cutoff, which effectively determined
how much type 3 noise was allowable in a measurement window. Figure 4.14
below shows correlation, bias, variance, and number of windows passing QC as the
correlation cutoff was varied from 0.05 up to 0.9. We can see that increasing the
stringency of this criterion did indeed increase correlation and decrease variance,
at the cost of fewer windows of "valid" data making it through. The value of 0.5
used to compile the results presented above seems to represent a reasonable middle
ground between performance and availability.

An interesting effect to observe is that tightening radius/frequency correlation QC
slightly decreased our bias for both DBP and MAP, indicating that CARDI-BP
tended to produce slightly lower BP values for less noisy windows. This could
plausibly be explained by bright features next to arterial walls. These features tend
to increase noise in radius measurement, as the detected "center" point of the wall
may vary between the true wall and the neighboring feature. This type of noise
can only increase radius values, and therefore increase measured BP. Even with
very tight QC, both DIA and MAP biases still fall within the ±5mmHg ISO limit,
indicating that our accuracy was not an accidental by-product of one-sided noise.

Figure 4.15 presents the same results as Figure 4.14, but averaged into per-subject
values. In contrast to the window performance, both correlation and variance
remain relatively flat for most of the QC range before getting sharply worse at the
very tight end of the QC spectrum past a cutoff of 0.8. This flatness indicates that,
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Figure 4.14: Plots of various statistics for CARDI-BP measurements of DIA, MAP,
and SYS compared to the A-line as the radius/frequency correlation QC threshold
is varied from 0.05 (very permissive) to 0.9 (very strict). Presented statistics are
a) Correlation, b) Bias (average of differences betwen CARDI-BP and A-Line), c)
Variance (standard deviation of differences betwen CARDI-BP and A-Line), and d)
The number of windows passing QC. Black dots represent the QC threshold chosen
for results presented above. We can see that tightening QC leads to significant
improvement in correlation and variance, at the cost of fewer passing windows.

as expected, the radius-frequency correlation QC suppressed type 3 error but did
not substantially affect type 2 error. The drastic shift at the tight end is likely a
product of small-number statistics rather than a real effect, as indicated by the fact
that by-subject performance for correlation and variance actually gets worse than
by-window performance.

4.6 Conclusion
Despite the inherent complexities of human physiology and the assumption of a
simple geometric configuration, the CARDI-BP model still produced results that
were consistent with gold-standard arterial catheter measurements. The strength
of this method lies in the small number of observables required: arterial radius,
thickness, and resonant frequency. The accuracy of the results generated from these
observables over a varied set of subjects suggests the independence of the method
to demographics and physiology, as the pressure curves were created utilizing only
information collected by the device in real-time, without cuff information, prior
training data, or any input of demographic information. Future improvements to
device accuracy to meet clinical standards will likely come from a combination
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Figure 4.15: A replication of plots from Figure 4.14, but with BP values averaged
for each subject. In contrast to the window statistics, subject statistics do not show
any consistent improvement as QC is tightened, and indeed sharply worsen at the
very strict end of the spectrum. This lack of improvement indicates that this QC
parameter is affecting type 3 but not type 2 error. The sharp drop-off at the end is
likely an artifact of small-number statistics.

of two factors; integration into a wearable form factor with more sophisticated
ultrasound imaging, and integration of blood velocity measurements.

The most important factor for improving clinical usability as well as accuracy is
integration into a wearable form factor. The manual operation required by the current
prototype iteration introduced error in radius measurements, and continuous manual
operation would not be feasible in a clinical setting even if the radius issue was
resolved. A logical next iteration would be integration of the system into a wearable
strap which could be wrapped around an arm, leg, or wrist. A combination of more
stable imaging from a fixed probe along with improvements to image quality from
a better ultrasound array should significantly improve the consistency and accuracy
of radius measurements. Further in the future, the CARDI-BP method could be
combined with recently described advancements that allow the incorporation of an
ultrasound imaging array into an adhesive patch [49], [50]. Such a form factor
would enable wearable measurement of central BP in the carotid artery, which is
not measurable at all using a BP cuff.

Another significant improvement could come from integration of blood velocity
measurements, which are commonly performed using ultrasound arrays capable of
beam steering. It has been shown that a combination of blood velocity and arterial
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radius measurements can be used to calculate pulse pressure in human arteries via the
QA relationship (equation 2.1)[46]. This would provide an orthogonal measurement
of pressure that is independent of resonance characteristics, which would make our
system overspecified; this could allow for error correction if the pulse pressures
generated by CARDI-BP and the QA method disagree. Importantly, the only
assumed parameter in equation 2.1 is blood density, which is very consistently
known (see section 2.6). Thus, comparing CARDI-BP and QA pulse pressures
could allow us to correct for inaccuracies in the other assumed parameters underlying
CARDI-BP, namely the densities of the arterial wall and its surrounding medium
and the Poisson’s ratio of the arterial wall.

Integration of CARDI-BP technology into a product will provide significant clinical
benefits. In critical care situations where A-lines are currently deployed, replace-
ment of these catheters with a robust, non-invasive monitoring solution would carry
the same benefits of immediate identification of cardiac crises without the risks,
difficulties, and costs associated with an invasive procedure. However, the greatest
benefits would come from expanding continuous BP measurement beyond critical
care units, making it available to every patient in a hospital and even those visiting
a primary care physician. The analysis of continuous BP waveforms would allow
for the early diagnosis of a variety of conditions that cannot be identified from a
cuff measurement alone, such as arterial valve stiffening (aortic stenosis), back-
flow (aortic regurgitation), or thickening of heart muscles (hypertrophic obstructive
cardiomyopathy) [6], [98]. CARDI-BP also allows for the direct measurement of
central blood pressure, which has been found to have greater clinical value than
peripheral BP for the diagnosis of a variety of conditions [99]. Central BP cannot be
accessed at all with cuffs, and it is rarely measured even with A-lines due to increased
risks from catheterization on more central arteries. CARDI-BP will drastically ex-
pand access to non-invasive and continuous central BP monitoring, enabling early
outpatient diagnosis of a variety of diseases and improving the overall standard of
care for our cardiovascular system.
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C h a p t e r 5

ARTERIAL STIFFNESS MEASUREMENT

5.1 Background
In addition to blood pressure, the CARDI-BP method produces another measure
of arterial dynamics: the circumferential Young’s modulus of the arterial wall,
more commonly referred to as arterial stiffness. Young people typically have low
arterial stiffness, and this stiffness tends to increase naturally as arteries age. If
a subject presents an abnormally high arterial stiffness for their age it may be a
warning sign of various pathologies. While elevated blood pressure has long been
recognized as an indicator of various health risks, arterial stiffness has more recently
gained recognition as a valuable prognostic indicator in its own right [100]. In the
last 20 years, stiffness measurements of central arteries have been shown to be an
indicator for risk of coronary artery disease [101], stroke [102], atherosclerosis
[103], vascular damage [104], and chronic kidney disease [105]. As commercial
stiffness assessment devices become more widely available, the breadth of these
stiffness-related clinical indications will likely continue to expand.

Modern measurements of arterial stiffness almost all rely on the surrogate parameter
of pulse wave velocity, or PWV, which measures how quickly a blood pressure pulse
moves down the length of the artery [106], [107]. PWV is directly related to arterial
stiffness via the Moens-Korteweg equation [53], and it is relatively easy to measure
using cheap sensor technology such as ECGs and inflatable cuffs. As a result, there
are over a dozen commercial devices which measure PWV in various ways [107].
However, these devices come with some key limitations. Common implementations
measure the difference in pulse arrival time between distant sites on the body (such
as the carotid and femoral arteries) and assume a constant PWV for the entire path of
the pulse wave, ignoring local variation. Even when measuring a single artery these
methods can only calculate an averaged PWV over the cardiac cycle, even though
arterial stiffness (and thus PWV) is known to vary substantially between systole
and diastole [66], [67]. Both of these averaging assumptions have the potential to
obscure important information.

Multiple recent methods have been proposed to generate local, continuous measure-
ments of PWV or stiffness [107]. The most prominent is shear wave elastography
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(SWE), which uses high intensity focused ultrasound (HIFU) to perturb a section
of the arterial wall and generate shear waves down its length [1]. The shear waves
are tracked using ultrafast ultrasound imaging at a rate of up to 10 kHz in order to
determine their velocity; this can be repeated quickly enough to track PWV as it
changes throughout the cardiac cycle. The main limitation of SWE is that it requires
expensive, specialized ultrasound equipment capable of both HIFU and ultrafast
imaging, limiting its application mainly to research centers. Furthermore, HIFU
creates safety risks not typically present with ultrasound, as turning the intensity too
high can potentially cause tissue damage [73].

The closest method of stiffness measurement to CARDI-BP is that of Khamdaeng,
Luo, Vappou, et al. [67], which directly measures circumferential arterial stiffness as
a function of BP and radius. Their technique measures continuous changes in arterial
radius using ultrasound while simultaneously measuring continuous blood pressure
at a neighboring site using an applanation tonometer. In contrast to SWE, this method
requires neither HIFU nor ultrafast imaging, making it viable on standard ultrasound
systems. However, in addition to ultrasound it also relies on a separate tonometer,
which in turn must be calibrated against an inflatable cuff. This extra equipment
makes the method inconvenient to apply and introduces significant potential sources
of error, including inaccuracies in the tonometer and cuff and site-specific BP
differences between the brachial artery and the artery of interest [108].

The CARDI-BP method for BP and stiffness measurement combines the best of both
of these methods; it provides a direct, local, real-time measurement of arterial stiff-
ness in a self-contained device without relying on high-end ultrasound equipment.
This chapter will begin by presenting an analysis of the reliability of this stiffness
estimate, and will then present and discuss stiffness measurements obtained from
the clinical study.

5.2 Convergence of the Stiffness Estimate
As described in Chapter 2.3, stiffness is not measured directly as an observed
parameter. Instead, we define a recursive relationship between blood pressure and
stiffness and use Gauss-Seidel iteration to converge on an solution which satisfies
the physical equations for both parameters. An important consideration for this
approach is that there is no guarantee that Gauss-Seidel iteration will converge to
a unique solution for an arbitrary system of equations. This is particularly relevant
because the true Young’s modulus of the carotid artery may vary by at least an order



71

of magnitude between a young, healthy artery at diastole and an atherosclerotic
artery at systole [67]; thus, we cannot guarantee that a constant initial condition
for stiffness will be close to the final answer. Here we show that, despite this wide
variation, we do obtain robust convergence to a unique solution from any reasonable
initial conditions.

Empirical Approach
To do this, we first performed an empirical analysis of convergence on data gathered
from the carotid arteries of the 6 initial subjects in the in vivo feasibility study (see
Chapter 4). Data was randomly sampled at 600 time steps from these subjects (100
from each subject). Prior work has shown that circumferential Young’s modulus
for the carotid artery varies from 0.1 MPa to 1 MPa in healthy adult subjects
[67]. To account for potential variations due to age or pathologies, we extended our
analysis by a full order of magnitude in either direction, starting the iterative solver
with seven initial values for Young’s modulus ranging from 0.01 MPa to 10 MPa in
geometric steps of

√
10. Gauss-Seidel iteration was performed for 5 steps from each

starting value, and the seven final results for each of blood pressure (𝑃) and Young’s
modulus (𝐸) were compiled to compute coefficients of variation (CV, defined as the
standard deviation divided by mean) for each sampled time step. Results for all 6
subjects are outlined in Table 5.1; the median𝐶𝑉 was less than 0.11% for 𝐸 and less
than 0.01% for 𝑃 in all cases, indicating robust convergence to a unique solution for
any reasonable starting value of Young’s modulus.

Subject Median Blood Pressure CV Median Young’s Modulus CV
A 1.0e-4 1.1e-3
B 5.5e-5 5.0e-4
C 4.3e-5 4.9e-4
D 1.4e-5 1.4e-4
E 2.2e-5 2.4e-4
F 2.8e-5 3.9e-4

Table 5.1: Summary of the empirical investigation into the convergence of pressure
and stiffness estimates from a range of initial conditions. The small coefficients of
variation (CVs) for both pressure and stiffness indicate that our iterative method for
determining pressure and stiffness robustly converges to a unique answer for a wide
range of initial conditions.

Figure 5.1 shows representative plots of how this iterative convergence looked in
practice for the various initial values. In all of these examples we see that the
iteration converges very nearly to its final answer within 3 Gauss-Seidel steps, even
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for far-off initial values for stiffness. The iteration could be caused to diverge with
extreme initial values, such as 𝐸 < 0 or 𝐸 > 100 MPa, and unphysical inputs, such
as 𝑑𝑃/𝑑𝑎 < 0. However, this analysis indicates that convergence should be expected
for physically reasonable initial values and parameters.

Figure 5.1: Demonstration of convergent behavior in the iterative stiffness estima-
tion approach. Each panel shows pressure/stiffness iteration tracks for a randomly
selected time step from a specified subject in the initial 𝑁 = 6 in vivo feasibility
study (circular scatter points and dashed lines). Even though the iterations begin
from initial conditions differing by 3 orders of magnitude in stiffness, they consis-
tently converge to the same final answer after only a few rounds of iteration. This
final answer is also consistently close to the initial linearized estimation (triangular
points) from Equations 5.13 and 5.14.

Analytical Approach
The above empirical analysis shows that our iterative procedure robustly converges
for a wide range of initial values for 𝐸 encompassing the physiologically relevant
range, even if the starting point is orders of magnitude off from the final value.
However, we do not need to rely on random initial values for 𝐸 ; instead, we can use
an approximate solution to the system of equations and improve the accuracy of the
starting value. The physical model consists of Equations 2.25 and 2.35 (reproduced
below as Equations 5.1-5.2), which represent a system of differential equations
which we must solve in order to determine 𝑃 and 𝐸 :
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𝑃 =
9𝛼4 − 5

(
3𝛼 + 𝛼3) 𝐷 + 3𝐷2

−4(9𝛼 − 𝛼3) + 12𝐷
𝐸 (5.1)

𝐸 =
𝑎

𝛼

𝑑𝑃

𝑑𝑎
. (5.2)

Such systems may, in principle, generate a family of many different solutions, in
which case 𝑃 would not be uniquely determined. We wish to show that, for this
particular system, the solution (𝑃, 𝐸) which satisfies these equations at any given
instant is uniquely determined. From an analytical standpoint, the full equation 5.1
is intractable; however, we can analyze its linearized version from Equation 2.32:

𝑃 ≈ 𝜋2𝜌𝑎2 𝑓 2 − ℎ3

3(1 − a2)𝑎3𝐸 (5.3)

= 𝜋2𝜌𝑎2 𝑓 2 − 𝛾3

3(1 − a2)𝑎6𝐸 (5.4)

𝐸 =
𝑎3

𝛾

𝑑𝑃

𝑑𝑎
. (5.5)

The product 𝑎ℎ has been replaced with 𝛾 because prior studies have found the
arterial wall to be very nearly incompressible [63], [64]. This means that for a
fixed length of the arterial wall, its cross-sectional area must remain constant even
as pressure changes; thus, 𝛾 is a constant independent of changes in 𝑎. To analyze
this system, we make the common assumption that it behaves smoothly as radius
changes without sharp discontinuities in pressure, stiffness, or frequency. Take two
consecutive measurements where the radius has changed by a small quantity 𝜖 .
These will generate a system of four equations:

𝑃(𝑎) = 𝜋2
(
𝛾𝜌𝑆 +

4
5
𝑎2𝜌𝐿

)
𝑓 2 − 𝛾3

3(1 − a2)𝑎6𝐸 (𝑎) (5.6)

𝑃(𝑎 + 𝜖) = 𝜋2
(
𝛾𝜌𝑆 +

4
5
(𝑎 + 𝜖)2𝜌𝐿

) (
𝑓 + 𝜖 𝑑𝑓

𝑑𝑎

)2
− 𝛾3

3(1 − a2) (𝑎 + 𝜖)6𝐸 (𝑎 + 𝜖)

(5.7)

𝐸 (𝑎) = 𝑎3

𝛾

𝑃(𝑎 + 𝜖) − 𝑃(𝑎)
𝜖

(5.8)

𝐸 (𝑎 + 𝜖) = (𝑎 + 𝜖)3

𝛾

𝑃(𝑎 + 𝜖) − 𝑃(𝑎)
𝜖

(5.9)
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where 𝑑𝑓

𝑑𝑎
=

𝑓 (𝑎+𝜖)− 𝑓 (𝑎)
𝜖

. Note that we have used the smoothness assumption to
neglect terms of the order 𝜖 𝑑

2 𝑓

𝑑𝑎2 , 𝜖 𝑑
2𝑃
𝑑𝑎2 , or 𝜖 𝑑

2𝐸
𝑑𝑎2 . Given that the device is able to

measure 𝑎 and 𝑓 (and thus 𝜖 and 𝑑𝑓 /𝑑𝑎) at each time step, the system of 4 equations
has only 4 unknowns. Rewriting in linear algebra form, we get


𝐶1

𝐶2

0
0


=


1 0 𝛾3

3(1−a2)𝑎6 0

0 1 0 𝛾3

3(1−a2) (𝑎+𝜖)6

𝑎3

𝛾𝜖
−𝑎3

𝛾𝜖
1 0

(𝑎+𝜖)3

𝛾𝜖

−(𝑎+𝜖)3

𝛾𝜖
0 1




𝑃(𝑎)

𝑃(𝑎 + 𝜖)
𝐸 (𝑎)

𝐸 (𝑎 + 𝜖)


(5.10)

𝐶1 = 𝜋2
(
𝛾𝜌𝑆 +

4
5
𝑎2𝜌𝐿

)
𝑓 2 (5.11)

𝐶2 = 𝜋2
(
𝛾𝜌𝑆 +

4
5
(𝑎 + 𝜖)2𝜌𝐿

) (
𝑓 + 𝜖 𝑑𝑓

𝑑𝑎

)2
. (5.12)

Solving this system and applying the limit of 𝜖 → 0 to simplify yields the unique
solution

𝑃(𝑎) = 𝜋2𝜌𝑎2 𝑓 2

1 − 𝛼2/(1 − a2)

[
1 − 𝛼2

1 − a2

(
1 + 2𝑎

3 𝑓
𝑑𝑓

𝑑𝑎
+ 8

15
𝜌𝐿

𝜌

)]
(5.13)

𝐸 (𝑎) = 2
𝛼

𝜋2𝜌𝑎2 𝑓 2

1 − 𝛼2/(1 − a2)

[
𝑎

𝑓

𝑑𝑓

𝑑𝑎
+ 4

5
𝜌𝐿

𝜌

]
. (5.14)

This solution is not exact, as it was generated from a linearized version of the full
equations; however, it should represent a close approximation of the true values of
𝐸 and 𝑃. It has been shown that for any twice continuously differentiable nonlinear
system, Gauss-Seidel iteration is guaranteed to converge to the ideal solution given
initial values reasonably close to this solution [109]. Thus, by using our approximate
analytical solution as a starting point we can have even greater confidence that
numerically solving the nonlinear system through iteration will converge to the
true solution. As shown in Figure 5.1 above, this linearized estimate does indeed
consistently come close to the final values for 𝑃 and 𝐸 .

5.3 Methods
In principle, the equations described above could be used to measure stiffness
instantaneously at every time step. In practice, however, these instantaneous stiffness
estimates are highly sensitive to measurement noise due to their dependence on a
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derivative. In particular, if 𝑑𝑎 ≈ 0 between consecutive time steps the estimates for
𝑑𝑓 /𝑑𝑎 or 𝑑𝑃/𝑑𝑎 can be huge, throwing off any simple lowpass filtering scheme.
Fortunately, even though stiffness can change significantly over the course of a
cardiac cycle, stiffness at any given radius within the cardiac cycle should hold
approximately constant from heartbeat to heartbeat over a short time frame. This
allows us to denoise stiffness estimates by averaging data over multiple heartbeats.
The following procedure was applied to obtain stiffness for in vivo data:

1. Calculate initial pressure estimates based on an assumed stiffness of 0.4 MPa.
For this dataset, this was found to yield stable convergence without needing
to apply Equation 5.14; however, for future applications on more unhealthy
arteries the initial approximation may be necessary.

2. Pass measured radius, thickness, and pressure values through a 20Hz low-
pass filter, and calculate 𝑑𝑃 and 𝑑𝑎 by taking the differences of consecutive
measurements. Use these values to generate a time series of instantaneous
stiffness estimates using Equation 5.5.

3. Identify time series points where |𝑑𝑎 | was in the bottom 20th percentile, and
discard all of these 𝐸 estimates due to derivative instability.

4. Divide all remaining time series points into 20 evenly spaced bins based on
radius value. Generate an 𝐸 estimate for each bin based on the median of all
instantaneous estimates with a radius in that bin. This yields 20 points, each
with a coordinate (𝑎, 𝐸).

5. To further increase stability, fit these binned (𝑎, 𝐸) points with a generic
sigmoid function. This functional form can be used to get a value for 𝐸 at
every radius.

6. Calculate a new set of pressure values based on 𝐸 values from this sigmoid
function; this constitutes the first pass of Gauss-Seidel iteration. Repeat steps
2-6 for three more iterations.

7. By the final pass, we have obtained fairly stable 𝐸 estimates. Replace the
sigmoid with a cubic spline to allow it to take on non-sigmoidal behavior.

For real-time BP measurement, this process was performed over a time window of
the previous 5 seconds of data. For post-processing to generate the results presented
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in Chapter 4, the process was performed over all data in the scan which passed the
QC check of falling into a physical pressure range. The interpolated stiffness values
from our fitted funtion (either sigmoid or spline) were used to generate the 𝐸 and
𝑑𝐸/𝑑𝑎 values required by out Kalman filter (see Equation 4.14).

5.4 Results and Discussion
The clinical study was not designed to measure any form of reference stiffness value,
so we cannot compare our stiffness measurements against a ground truth to gauge
accuracy. However, we can examine the results for overall trends. Figure 5.2 shows
distributions of diastolic and systolic stiffness values, as well as their ratio. Diastolic
and systolic values were calculated as the median stiffness in the lower and upper
3 radius bins, respectively. We see that the large majority of stiffness values fell
between 0.1 and 1 MPa, roughly matching the range reported in Khamdaeng, Luo,
Vappou, et al. [67]. As expected, the systolic stiffness distribution is shifted upwards
relative to the diastolic distribution, and most scans had a systolic to diastolic stiffness
ratio greater than 1.

Figure 5.2: Overall distribution of stiffness results. a) Histograms showing the
distribution of diastolic and systolic stiffness values. Both values show similarly
shaped distributions, with the systolic distribution shifted upwards. b) Histogram
showing the distribution of systolic/diastolic stiffness ratios. The large majority of
scans showed higher stiffness at systole than at diastole, as expected.

We can also inspect our data for another predicted trend, which is that arterial
stiffness tends to increase with age. Figure 5.3 shows the age and averaged diastolic
and systolic stiffness for each of the 59 subjects that passed QC, along with a linear
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regression for each. For both diastolic and systolic stiffness we do indeed see
significant positive correlations of 𝑟 = 0.51 and 𝑟 = 0.69, respectively (𝑝 < 0.001
for both). The higher correlation for the systolic stiffnesses suggests that age-related
arterial stiffening may be dominated by stiffening of collagen networks in arterial
walls, as these are thought to be the dominant contributor to the increase in stiffness
at systole [71].

Figure 5.3: Averaged values of diastolic and systolic stiffness for each of the 59
clinical study subjects that passed QC, plotted against the subject’s age. Physiologi-
cally, we expect vascular stiffness to increase with age. This trend is reflected in the
data, with significant positive correlations for both diastolic and systolic stiffness.

A more specific facet to consider is the shape of the stiffness vs. radius curve. Prior
studies have come to differing results; Johnson and Tarbell [66] reports that stiffness
increases roughly linearly with radius, while Khamdaeng, Luo, Vappou, et al. [67]
reports that stiffness increases sharply at the early onset of systole but then levels
out, forming a sigmoidal curve with respect to radius. These studies were based off
of relatively small samples of 19 rabbits and 7 healthy young men, respectively, so
they may have each correctly identified behavior in specific sub-populations. The
broader subject population covered by the clinical study offers the opportunity to
investigate the 𝐸 vs 𝑟 relationship more broadly.

Figure 5.4 below shows some examples of 𝐸 vs 𝑟 relationships observed in 12 dif-
ferent subjects in the clinical study, which have been manually assigned to different
shape categories. The majority of inspected scans roughly followed either a linear
or sigmoidal shape, in line with expectations from literature. Even for scans with
similar shapes, the magnitude of stiffness change between diastole and systole varied
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significantly; for some scans the difference was as low as 20%, while for others the
difference was well over 200%. For some other scans stiffness was roughly constant
through the whole cardiac cycle, changing by less than 10% from diastole to systole.
The final category, irregular shapes, was the least often observed but also the most
interesting to consider.

Figure 5.4: Examples of different types of stiffness vs. radius shapes observed in
clinical data. For ease of comparison, the x-axis represents the radius of the scan
normalized from 0 to 1, and the y-axis represents the stiffness of the scan normalized
such that its diastolic value is 1. Each panel shows representative stiffness curves
of a given shape class, obtained from 3 different subjects. The most common types
observed were linear (a) or sigmoidal (b), which are shapes that have been seen in
prior literature. In some scans stiffness was roughly constant (c) and did not vary
by more than 10% from diastole to systole. Some scans exhibited more irregular
behavior (d), suggesting unexpected arterial dynamics.

Studies of arterial wall stiffness generally model the wall as a combination of low-
stiffness elastin and high-stifness collagen fibers [66], [67], [71]. Near diastole the
collagen is in a relaxed state, so wall tension is dominated by elastin and stiffness is
relatively low. However, as the artery expands collagen becomes engaged, increasing
stiffness. Modeling of this form has been used to explain linear [66] and sigmoidal
[67] 𝐸 vs. 𝑟 relationships, and a constant shape could also be explained if the
entire cardiac cycle stays in the elastin-dominated or collagen-dominated regime.
However, such models would not easily be able to explain the shapes seen in Figure
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5.4d, which include features such as double sigmoids or are non-monotonic. This
suggests that some mechanism other than simple elastin-collagen interaction is
likely at play, at least in some subset of arteries; one possible contributor is the
smooth muscle sheathing the wall, which can has the capability to dynamically
relax and contract to change its stiffness [71]. Future studies using CARDI-BP
could yield further examples of irregular stress-strain relationships, enabling more
detailed investigation into arterial wall mechanics.

5.5 Conclusion
Arterial stiffness measurement is a relatively new field, and doctors are still re-
searching new diagnostic uses for it. One factor limiting in this research has been
deficiencies in stiffness measurement devices, which often yield one overall value
averaged across many major arteries for the entire cardiac cycle. CARDI-BP is
the first self-contained method which can provide real-time, local measurement of
arterial stiffness as it varies over the course of a heartbeat. This has the potential
to enable novel stiffness-based diagnostics that have not been possible with current
measurement methods. For example, the results in Figure 5.3 suggest that systolic
stiffness may be more indicative of vascular age than overall averaged stiffness due
to its higher correlation. The results in Figure 5.4 show that there is not a one-size-
fits-all model for the shape of the stiffness vs. radius relationship, and the nature
of this shape for a particular patient could also contain as-yet-unknown diagnostic
value. Widespread deployment of CARDI-BP would drastically increase our level of
knowledge of arterial stiffness dynamics across wide ranges of patients, potentially
leading to broad improvements in patient care.
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C h a p t e r 6

CLINICAL APPLICATION OF MACHINE LEARNING TO
ULTRASOUND DATA

While arterial blood pressure is the most well-known and commonly measured
form of BP, there are also other forms of blood pressure which can be useful in
various medical contexts. Amongst the myriad of parameters that can affect cardiac
function are intracardiac filling pressures, which represent measurements of the
diastolic pressure in a each chamber of the heart. Measurement of intracardiac
filling pressures provides important quantitative clinical information that can aid in
the diagnosis and management of patients with a spectrum of different pathologies
including heart failure, a condition that results from a weakened heart muscle’s
inability to pump enough blood to the rest of the body. This condition is associated
with fluid retention and volume overload, a diagnosis that requires inpatient hospital
admission and fluid removal via aggressive diuresis. Heart failure afflicts over 20
million people worldwide [110], and related hospitalizations represent one of the
greatest burdens to the healthcare system, driving up cost and resource utilization
in wealthy and poor economies alike.

This work deals with intracardiac filling pressure in the right atrium, or right atrial
pressure (RAP). In many ways, the clinical status of RAP measurement is quite
similar to that of arterial BP measurement. Physicians must choose between two
measurement methods: a catheter-based approach which is highly accurate but also
difficult and invasive, or a non-invasive approach which is prone to inaccuracy. In
contrast to the BP cuff, however, even the noninvasive assessment of RAP is relatively
difficult to perform, requiring time from specially trained physicians to interpret the
results. The goal of this study is not to create an entirely new measurement method
as we did for arterial blood pressure, but rather to replicate and potentially improve
the existing non-invasive measurement method using machine learning.

6.1 Background: Right Atrial Pressure and the Sniff Test
Volume overload (VO) is one of the most common complications in patients with
heart failure. VO results from the inability of the heart to adequately circulate blood
throughout the body, causing fluid backup and leading to elevation in intracardiac
filling pressures. The symptoms of VO associated with heart failure can manifest
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as multi-system organ damage, including fluid buildup in the lungs and difficulty
breathing, delerium and raised intra-cranial pressure, acute kidney failure, liver
damage, and a generally higher risk of mortality [111]. As outlined above, patients
with heart failure suffer from frequent exacerbations of their disease, often prompted
by dietary indiscretion, medication non-adherence, or progression of their underly-
ing cardiac dysfunction. Early identification of VO allows for effective management
of patient care through treatments such as diuretic therapy [112] which, if initiated
early in the disease course, can be managed with oral medications and avoid costly
hospitalizations. In contrast, if VO goes unidentified, its negative effects on organ
systems can progress and may even be aggravated if extra fluid is administered for
other concomitant indications such as septic shock [111], [113]. As a result, there is
significant clinical interest in methods of easily and accurately identifying volume
status.

Overall volume load in the circulatory system is closely related to RAP. The right
atrium collects deoxygenated blood from the body, after almost all of the blood
pressure originally generated by the heartbeat (i.e., left ventricle contraction) has
been dissipated in capillary beds. When the heart is healthy and fluid volume in the
body is normal, RAP is generally quite low (∼3 mmHg). However, for patients with
VO there is an increase in the amount of fluid within the venous system, leading to
an elevated RAP in the range of ∼15 mmHg [114]. This relationship makes RAP
assessment one of the most common methods for screening for VO [111], and it can
also be used as a more general indicator of cumulative cardiac burden in patients
with heart failure [115].

The gold standard for RAP measurement is right heart catheterization, or RHC. In
this procedure, a doctor inserts a flexible catheter with a pressure transducer at its
tip into a vein in the neck, groin, or arm. The catheter is then gradually advanced
through the venous system until it reaches the right side of the heart. This procedure
yields highly accurate pressure measurements in the right atrium, right ventricle,
and pulmonary artery. However, the process of RHC is time-consuming, difficult,
and costly, requiring a specialized cardiac catheterization laboratory and roughly an
hour of time from a team of specialists. The invasive nature of the procedure also
carries risk of various side effects, such as bleeding, infection, heart valve damage,
or pulmonary artery perforation [116]. As a result, RHC is only conducted when
physicians have an appropriate indication and is generally reserved for hospitalized
patients who are critically ill. Non-invasive estimation of RAP can be performed via
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physical examination of the jugular vein, but this process is qualitative, subjective,
and can be sensitive to factors such as operator experience and patient positioning.

A more quantitative way to non-invasively assess cardiac structure and function
is the transthoracic echocardiogram, or TTE. A TTE study consists of a series
of ultrasound scans of the heart and its surrounding vessels from many different
viewpoints in order to gain an overall picture of its behavior and health. Various
views can be used for the diagnosis of many different cardiac conditions, from
cardiomyopathy to valvular regurgitation or stenosis [117]. The TTE component
which is of particular interest for our study is the assessment of the interior vena cava
(IVC), which is the major vein that returns blood to the right atrium. The behavior
of the IVC is connected to RAP measurement via the "sniff test."

The idea behind the sniff test is that blood pressure in the IVC near its juncture with
the right atrium is very similar to pressure within the right atrium. In a healthy patient
RAP is quite low (∼3 mmHg), so pressure in the IVC is low as well. Compared to
arteries, venous blood vessels have thin walls with very little stiffness; the only thing
holding them open is a positive pressure differential between the blood they contain
and surrounding tissue. Thus, in healthy patients the IVC is relatively narrow, and a
mild increase in external pressure (in this case pressure within the thoracic cavity)
is sufficient to make the vessel collapse. However, in patients with high RAP (∼15
mmHg) there is greater internal pressure in the IVC, leading to a larger IVC diameter
and little to no collapse with elevation in intrathoracic pressure. To take advantage
of this, sonographers first image the IVC at rest to determine its diameter, as shown
in Figure 6.1a,c. They then perform a sniff test by asking the patient to sharply inhale
(thereby acutely increasing intrathoracic pressure) while their IVC is being imaged,
resulting in a compressive force on the vessel. For patients with a healthly RAP, this
pressure spike is usually sufficient to almost entirely collapse the IVC (Figure 6.1b),
while in patients with an elevated RAP the sniff may barely collapse the IVC at all
(Figure 6.1d). The ratio of decrease in IVC diameter during a sniff to its resting
diameter is defined as the collapsibility index (CI); a CI of 100% represents full
collapse, while a CI of 0% represents no collapse.

The method of assessing RAP based on the sniff test has been codified by Rudski,
Lai, Afilalo, et al. [118], and further recommended by the American Society for
Echocardiography and European Association of Cardiovascular Imaging in Lang,
Badano, Mor-Avi, et al. [117]. This standard breaks the assessment into two criteria:
1) is the resting diameter of the IVC below 21 mm, and 2) is the CI greater than
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Figure 6.1: Sniff test illustration. a) An ultrasound view of the inferior vena cava
(IVC) and right atrium at a resting state. The IVC tends to curve in starting from
the top left of the field of view. Towards the bottom right, the IVC expands and
flows into the right atrium of the heart. This IVC has a relatively small diameter
of 18 mm. b) Another view of the IVC in (a), from a different frame in the same
video showing the sniff. The high degree of collapse, combined with the low resting
diameter, indicates that this patient likely has a normal RAP. c) A view of another
IVC at rest, this one with a relatively large diameter of 24 mm. d) Another frame of
the IVC in (c), showing a sniff. The low degree of collapse, combined with the high
resting diameter, indicates that this patient likely has an elevated RAP.

50% (see Table 6.1). An answer of "yes" to both criteria gives an RAP estimate
of between 0 and 5 mmHg; for convenience, this is generally simply written as a
pressure of 3 mmHg. An answer of "no" to both criteria gives an RAP estimate
of 10-30 mmHg, commonly written as 15 mmHg. A split of one "yes" and one
"no" gives an RAP estimate of 5-10mmHg, commonly written as 8 mmHg. This
relatively quick and easy assessment of RAP as either 3, 8, or 15 (low, medium, or
high) can be used to guide clinical decision-making. An RAP of 3 indicates that
the patient likely does not have VO, while an RAP of 15 indicates that the patient
likely does have VO and should be directed to additional treatment. A value of 8 is
considered indeterminate, and other metrics may be used in concert with the RAP
estimate to determine whether further tests or treatment for VO are appropriate.
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Criterion IVC Diameter
< 21 mm

IVC Diameter
> 21 mm

IVC CI > 50% 3 mmHg 8 mmHg
IVC CI < 50% 8 mmHg 15 mmHg

Table 6.1: Summary of the "sniff test" standard for estimating RAP from an ul-
trasound scan of the IVC. If the IVC has a small resting diameter and significant
collapse during a sniff it is labeled as low RAP (∼3 mmHg), and if it has a large
resting diameter and little collapse during a sniff it is labeled as high RAP (∼15
mmHg). Scans with split results between these two criteria are labeled as having an
intermediate RAP (∼8 mmHg).

While conducting a sniff test according to Table 6.1 may seem straightforward, in
practice there are many potential sources of error [119]. For example, operators
are advised to measure IVC diameter between 0.5 and 3 cm from the junction with
the right atrium [118]. Since the IVC tends to flare as it approaches this junction,
the chosen point of measurement can impact the measured diameter significantly.
Diameter and CI can also be mis-estimated if the imaging plane is not perfectly in
line with the IVC, especially if the sniff causes the IVC to move out of the original
imaging plane. In some cases the IVC can even be confused with the abdominal
aorta, which is located near the IVC and looks very similar in some patients but
does not collapse significantly during a sniff regardless of RAP.

Navigating these uncertainties to obtain robust RAP estimates requires experienced
sonographers and interpreters. Indeed, multiple studies have found significant inter-
operator variability amongst medical trainees, fellows, and emergency physicians
when assessing IVC diameter and collapsibility, even after dozens of hours of
training [120]–[122]. The most reliable interpreters are generally considered to
be experienced cardiologists, who have spent years evaluating many thousands of
TTEs. However, while there is widespread access to ultrasound equipment capable
of imaging the IVC for a sniff test, many medical centers do not have 24/7 access
to cardiologists capable of making an assessment. Even at large medical centers
with significant resources and staffing in cardiology, the availability of expert TTE
assessment for volume status is not always immediately feasible.

Study Goals
The rapid proliferation in recent years of machine learning (ML) models capable
of analyzing video data, and particularly ultrasound video data [123], [124], makes
ML an obvious approach to this problem. If an ML model could be trained to
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automatically analyze sniff tests with the proficiency of a veteran cardiologist, quick
and non-invasive RAP assessment could be expanded from cardiology departments
and democratized to anyone with access to an ultrasound machine and a competent
sonographer. The goal of this study is to train such an ML model, and to compare its
performance to both expert cardiologist assessments and the gold standard of RHC.

Multiple prior studies have attempted to use machine learning to analyze ultrasound
scans of the IVC and use it to predict parameters such as RAP and overall fluid
responsiveness [125]–[128]. However, these studies only had access to relatively
small datasets of between 41 and 175 patients. After most of the data was allo-
cated for model training and validation there was very little left for out-of-sample
testing, increasing the chances of overfitting. Furthermore, these datasets were
mostly collected under controlled conditions, with all scans obtained using the same
ultrasound instrument and assessed by the same interpreter. This would lead to
significant generalization concerns if a model trained on such a dataset were applied
to data from different hospitals using different ultrasound machines.

Through a collaboration with the cardiology division at the University of California,
San Francisco (UCSF) Medical Center, we obtained access to a large database of
over 16,000 individual TTE studies and associated 3/8/15 RAP assessments made
by expertly trained and board certified UCSF cardiologists. This represents a nearly
100x increase in dataset size over any previous study which used ML to predict RAP,
enabling far more robust training and testing. Furthermore, the dataset covers TTEs
collected over a period of 4 years by dozens of operators using 4 different models
of ultrasound machine, encompassing all of the messiness inherent in real-world
medical data. As a result, this study represents a significant opportunity to both
train an accurate ML model and robustly evaluate its real-world performance.

6.2 Dataset and Data Screening
The database underlying this project covered a significant portion of all echocar-
diograms performed in the UCSF cardiology division from 2012-2020, along with
associated measurements, metadata, and doctors’ notes. The high-level unit of data
was the TTE study, which consists of up to 200 individual scans which are taken in
sequence on the same patient to gain many views of the heart and its surrounding
vessels from different angles. Interpretations of these studies, such as RAP esti-
mates, were made for the study as a whole. The information relevant to this research
was split among three separate datasets with varying degrees of mutual overlap:
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• Dataset 1: Raw video data and associated metadata from echocardiogram
studies. This covered 182077 studies on 48481 different patients, for a total
of over 11 million individual scans. Video data from the scans was already
pre-processed to remove patient information, doctor’s notes, Doppler velocity
traces, etc. so only the actual ultrasound video remained.

• Dataset 2: RAP estimates made by cardiologists based on the sniff test. This
covered 51324 studies on 35003 different patients.

• Dataset 3: Gold-standard RAP measurements from right heart catheteriza-
tion. This contained 9001 individual readings from 5585 different patients.
These catheter measurements were independent of ultrasound measurements,
and each patient may or may not have received a TTE.

Data Exclusion Criteria
TTE studies were removed from data sets 1 and 2 in their entirety if they met any of
the following criteria:

• Multiple different sniff-based RAP estimates were recorded for the same study.

• The recorded study type noted a stress test, pediatric or fetal subject, trans-
esophageal or intracardiac scanning, or patient on a ventilator. None of these
study types are representative of how a normal sniff test would be evaluated.

• 99.7% of remaining studies were conducted on one of 4 models of ultrasound
machine; the remaining 0.3% of studies were eliminated.

Furthermore, individual scans were removed from dataset 1 if they met any of the
following criteria:

• Video pre-processing failed.

• The scan was less than 20 frames long. Such video clips are too short to
contain a full sniff.

• Physical pixel size was not recorded in metadata. This made it impossible to
measure IVC diameter in real units.

• Physical pixel size was in the lower or upper 5th percentile of pixel scale. This
narrowed the total range of pixel scales from (0.002, 5.2) centimeters to (0.074,
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0.168) centimeters. Extreme pixel sizes imply extreme ultrasound settings for
parameters like scanning frequency and depth, which would generally not be
used for viewing the IVC.

• Color Doppler mode was enabled. Sniff scans are rarely taken with Color
Doppler enabled, and extra splashes of color in a small subset of data would
be likely to confuse ML models.

Finally, RHC measurements were excluded from dataset 3 if they were less than 0
or greater than 30mmHg, as these represent non-physical values that would have
resulted from bad setup or calibration of the catheter.

RAP Estimate Data
Dataset 2 covered RAP estimates from 2012 to 2020, but these estimates were not
always made in the same way. The standard described in Table 6.1 was officially
recommended by the American Society of Echocardiography in 2015 [117], so the
large majority of RAP estimates in 2016 and later were recorded in the 3/8/15 format.
Prior to this, UCSF cardiologists primarily used a different standard to estimate RAP
as either 5, 10, 15, or 20 mmHg. Because these two standards were based on different
sets of measurements and thresholds, they were not inter-convertible. The frequency
of these standards in dataset 2 broke down as follows:

1. Year >= 2016, Pressure in (3, 8, 15): 29863 Studies,

2. Year <= 2015, Pressure in (5, 10, 15, 20): 18116 Studies,

3. Other: 3345 Studies.

We chose to focus exclusively on the first category, as it was both the largest and
aligned with modern clinical practice. A study was only useful for ML training if it
was associated with both input data (raw ultrasound video) and target data (an RAP
value). Thus, we needed to see how many studies were contained in the intersection
of our various datasets in order to determine how much useful data was available.
Of the 29863 studies for which we had valid RAP estimates, 19047 of them were
associated with raw video data. After applying the data exclusion criteria described
above, 16823 studies remained; this represented the full breadth of our possible
training data.



88

Out of the 16823 remaining studies, 78.5% had an estimated RAP of 3mmHg, 13.8%
had 8mmHg, and 7.8% had 15mmHg. This indicates that a substantial majority of
patients assessed with the sniff test had a healthy RAP. The large imbalance between
these classes required special treatment when training ML models, as described in
section 6.4.

RHC Measurement Data
Datasets 1 and 2 were relatively easy to align, as they were both based on the data
unit of a TTE study. Right heart catheterization, however, is an entirely separate
procedure; patients who receive a TTE study may never receive an RHC (and vice
versa), and patients that do receive both measurements will generally not have them
taken simultaneously or even on the same day. Thus, we needed to take special care
when aligning dataset 3 to the rest of our data.

Out of the 5585 patients represented in dataset 3, 2299 of them had at least one
TTE study in dataset 1 (which may have been from any date). We paired up TTE
studies and RHC measurements in a 1:1 mapping such that only the closest-in-time
RHC measurement for each TTE study was kept; this left a total of 3483 RHC/TTE
data pairs. After applying the data exclusion criteria described above, 2586 of these
studies remained.

The next factor to consider was time separation between the echo and RHC mea-
surements. Since the two measurements were not taken at the same time, there was
some chance that the patient’s true RAP changed significantly during the interven-
ing time. If the two measurements were taken on the same day, this was relatively
unlikely; if they were taken years apart it was significantly more likely. To narrow
the data, we needed to decide on a maximum allowable interval between the RHC
and echo measurements in order to be considered a valid data point. Based on
analysis of cardiologist accuracy at different time intervals (see section 6.5), we
settled on a cutoff of 1 month (30 days), which left a total of 1739 studies which
could be possibly used for RHC training data. Of these, 527 were labeled with an
RAP estimate by cardiologists. The remaining 1212 were not, which could indicate
that either a) a sniff test was not performed, or b) a sniff test was performed, but
for unknown reasons a corresponding RAP estimate was not recorded. This will be
investigated further in section 6.4.

A final consideration was how to determine the "accuracy" of cardiologist or ma-
chine learning RAP estimations (which are categorical) when comparing to RHC
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measurements (which are continuous). We could make a direct comparison by
binning the RHC values according to the ranges in Lang, Badano, Mor-Avi, et al.
[117]. However, these ranges have a bit of ambiguity; in principle, an RHC value of
5 could be binned as "3" or "8," and an RHC value of 10 could be binned as "8" or
"15." Since RHC measurements are reported as integers rather than floating points,
these ambiguous situations were fairly common. Upon consultation with UCSF
cardiologists, we elected to put these edge case readings into the lower of the two
possible bins. Thus, an RHC value in the range [0, 5] was binned as "3," a value in
the range (5, 10] was binned as "8," and a value in the range (10, 30] was binned as
"15." Continuous outputs from regression ML models were binned in the same way.
This allowed for direct accuracy comparisons between any combination of outputs
from RHCs, cardiologist estimations, categorical ML models, and regression ML
models.

Making Use of RHC Data
Training a model to reproduce cardiologist estimates of RAP can, at best, reproduce
the performance of these cardiologists. Prior studies have found that physicians
using the sniff test can often make errors in predicting RAP, as compared to gold-
standard RHC measurements [119], [129]. These errors must stem from one of
three sources:

1. The interpreter made an error in evaluating the sniff test.

2. The sniff scan contained sufficient information to accurately estimate RAP,
but the measurements and thresholds from Table 6.1 were not the correct way
to perform this estimate.

3. The sniff scan did not contain sufficient information to accurately estimate
RAP, no matter what analysis was performed.

Training on a large body of sniff scans paired with cardiologist RAP estimates
may partly mitigate type (1) error by averaging operator variability over many
interpreters; however, no amount of such data could address type (2) or (3) errors.
Making use of RHC data eliminates type (1) and (2) errors by removing human
interpretation variability as well as potential issues with the standards of Table 6.1.
Thus, we combined training on cardiologist RAP estimates as well as ground-truth
RHC values in an attempt to surpass cardiologist performance at predicting true



90

RAP. Mitigating type (3) error would require bringing in additional information
from other TTE views or non-TTE data, which is beyond the scope of this study.

6.3 IVC/Sniff Identification
A full TTE study may contain up to 200 individual scans, but in general only 2-4
scans show the IVC and only 1-2 of these contain a sniff. Unfortunately, even
though the ultrasound technician knew which scans contained a sniff at the time of
acquisition, these labels (or any other labels related to what was being viewed in
each scan) were not recorded in dataset 1. Thus, we needed an initial screening
process to isolate the sniff scans in each study. The 16823 studies mentioned above
contained a total of over 800,000 scans which passed the exclusion criteria and could
potentially be sniffs. This was far too many scans to screen manually, so we instead
trained a front-end ML model to screen for sniff scans.

Developing an IVC/sniff identification model still required generation of a manually
labeled set of scans for training. We began with a set of 1243 scans that had been
marked as "subcostal" for a different study; this label included both IVC scans and
other non-IVC views of the surrounding area. With guidance from a cardiologist,
this first set of scans was reviewed to identify 420 which contained an IVC. Using this
dataset, we trained an initial binary classification ML model to identify IVCs using
the X3D-M architecture with default hyperparameters [130], which had previously
been found to perform well for other ultrasound image classification tasks by other
members of the research group. To further build the training set, we used this initial
model to classify many additional random scans out of the remaining 800,000 and
selected 2757 which were identified by the model (either correctly or incorrectly)
as IVCs to add to the dataset.

This set of 4000 scans was manually reviewed and labeled each as either 1) not a
view of an IVC (2453 scans), 2) a view of an IVC without an obvious sniff (708
scans), or 3) a view of an IVC with a sniff (839 scans). Because most of the training
videos were scans which had been classified as an IVC by the initial model, many
of the type (1) scans were views which shared similarities to IVCs that caused them
to be mis-classified. The goal of this was to present the final IVC/sniff classification
models with many challenging training cases, enhancing their ability to distinguish
true IVCs from look-alikes (see examples in Figure 6.2).

To use this larger labeled dataset, we divided the 4000 scans into 2800 for training
and 600 each for validation and testing. A binary classification X3D-M architecture
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Figure 6.2: Examples of scans that could be confused with an IVC, or that are in
fact IVCs but are hard to identify. a) This is a vessel sloping in the correct direction
with a darker space to the right, but it is the abdominal aorta rather than the IVC.
b) This is from another region of the heart, but the dark area in the middle right
happens to resemble an IVC starting to expand into the right atrium. c) This is an
IVC, but the scan is quite noisy and a lot of the vessel and atrium are obscured. d)
This is an IVC with an artery next to it. This artery would not collapse during a
sniff, which could confuse the sniff classifier.

was trained to distinguish type (3) scans from types (1) and (2). Training scans were
augmented by random rotation and random scaling of brightness, saturation, and
contrast on each epoch. Multiple training runs were conducted while varying the
hyperparameters of optimizer type, learning rate, number of sampled frames, degree
of augmentation, and dropout rate. The final model was chosen by maximizing
validation accuracy. The out-of-sample performance results are shown below in
Table 6.2.

Despite the relatively small training set and deliberate selection of challenging
training and test cases, the sniff classification model still performed well when
presented with out-of-sample scans. However, analysis of the results showed that
the model was more likely to classify true sniffs as non-sniff scans when the degree
of collapse induced by the sniff was small. This made intuitive sense, as a full
collapse of the IVC could be seen very easily while a slight collapse may have been
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Confusion
Matrix

Predicted
No Sniff

Predicted
Sniff

True No Sniff 439 41
True Sniff 25 95
Accuracy 89%

Table 6.2: Out-of-sample performance of the sniff/no sniff binary classification
model. Green/red cells represent the raw count of correct/incorrect predictions.

easier to miss and could potentially have been confused with a simple shift in probe
positioning or fidgeting of the subject. While understandable, this bias created a
problem; sniffs with low collapse were more likely to come from patients with high
RAP, so the model would be biased against identifying sniffs in such patients even
though RAP was not part of the training data. Patients with an RAP estimate of 15
mmHg already made up only 7.8% of our total training set, so we could not afford
to disproportionately exclude them.

Our solution to this problem was to train a separate binary classification X3D-M
model to identify IVC views without regard to whether or not a sniff was present
(i.e., distinguishing type (1) from types (2) and (3)). The out-of-sample results of
this model were similar to those of the sniff classifier, as shown in Table 6.3.

Confusion
Matrix

Predicted
No IVC

Predicted
IVC

True No IVC 308 51
True IVC 25 216
Accuracy 87.3%

Table 6.3: Out-of-sample performance of the IVC/no IVC binary classification
model. Green/red cells represent the raw count of correct/incorrect predictions.

The results of these classifier models were combined to identify sniffs in a 2-step
procedure:

1. Run the IVC classifier on all scans in a study. Identify a scan as an IVC
"candidate" if the classifier’s probability output is at least 20%. If no IVC
candidates are found, reject the study.

2. Run the Sniff classifier on all IVC candidates from the study. The candidate
with the highest probability output from the sniff classifier is identified as the
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representative sniff scan for the study, even if that sniff probability is quite
low.

Out of the 16823 studies remaining from our initial data selection procedure, 993
were excluded as having no IVC candidates. The remaining 15830 studies were
assigned a representative sniff scan and represented the full dataset used for model
training and evaluation. Of these studies, 79.1% had an estimated RAP of 3mmHg,
13.4% had 8mmHg, and 7.5% had 15mmHg. This is very similar to the original
split of 78.5%/13.8%/7.8%, indicating that we did not introduce a substantial bias
towards any particular class of RAP in our sniff identification procedure.

It is worth taking a moment to examine the diversity of this dataset. The 15830
studies include data from 11869 patients using one of 4 different models of ultra-
sound machine. Patients ranged from 18 to 102 years old and spanned a wide range
of medical conditions. Study evaluations were conducted by a total of 45 different
physicians, and 20 of these physicians evaluated over 100 studies. This diversity of
data is the main strength of this study; rather than training to match the judgement
of a single physician reading off of a single ultrasound machine under controlled
conditions, our training incorporated the full complexity of real-world medical data,
making it far more likely to generalize to future real-world applications.

Inspection of a random subset the 15830 selected "sniff" scans revealed that a sub-
stantial majority did appear to be clear IVC scans, but roughly 25% were either
low-quality IVC scans (where a significant portion of the vessel was noisy or ob-
scured) or mis-selected scans which were not views of the IVC at all. To get a
sense for the impact of these scans on model performance, we also compiled a
"high-quality" dataset via the same procedure described above, with the difference
that the cutoff for IVC classification probability was 90%. This cutoff eliminated
roughly 65% of studies in the original dataset; out of what was left, inspection of
a subset found that 98% of scans seemed to be high-quality IVC images. While
this rate of data discarding was too high to be useful for training, it was useful for
evaluating model test performance on a closer-to-ideal dataset.

Sniff Selection for RHC Data
The same sniff selection described above was also applied to the 1739 TTE studies
with an associated RHC measurement within 30 days of the study date. This yielded
932 studies where were identified as containing an IVC. This relatively low IVC
identification rate is likely due to the fact that 1212 out of the original 1739 studies
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did not have a recorded echo-based RAP estimate, indicating that many of these
studies likely did not contain a sniff. The 932 identified "sniff" scans were manually
screened to remove any non-IVC views (IVC views without an obvious sniff were
left in), leaving 866 studies remaining. This 93% success rate indicates that our
sniff identification process performed fairly robustly. For these studies, 35% had a
catheter pressure in the range [0,5], 29% were in (5,10], and 36% were in (10, 30].
This indicates, unsurprisingly, that patients who underwent RHC were significantly
more likely to have elevated RAP compared to the broader population that received
a TTE.

Of the 866 remaining studies, 319 had a recorded echo-based RAP estimate. These
studies studies represented our "golden" data for which we had a matched set of a
sniff video, a cardiologist’s RAP estimate based on this sniff, and a ground-truth
RAP measurement from right heart catheterization. These scans were always kept
in the test set for all model training to avoid contamination. The 547 studies with
a sniff scan and an RHC measurement but no RAP estimate were used as training
and validation data for model fine-tuning, as described below.

6.4 Methods
RAP Classification
The set of 15830 studies with a cardiologist-generated RAP estimate was divided
into 12664 training studies, 1583 validation studies, and 1583 test studies. As men-
tioned above, we ensured that all 319 "golden" studies with RHC measurements
were included in the test set; otherwise, allocation was random. All models were
constructed with a length-3 output layer and softmax activation to generate proba-
bilities for 3 classes: 3 mmHg, 8 mmHg, and 15 mmHg. Training was performed
on an NVIDIA RTX 6000 Ada graphics card.

We began by applying multiple modern video processing ML architectures to the
problem, including X3D [130], SlowFast [131], MoViNet [132], TimeSformer
[133], STAM [134], and ViViT [135]. The model type which generated the highest
validation performance within GPU memory constraints was SlowFast R50, so this
architecture was selected for further tuning and evaluation (see Appendix D.1 for
discussion of other models and model aggregation). SlowFast works by dividing the
flow of data into "slow" and "fast" lanes. The slow lane is only shown a fraction of
frames in the full video and has a high number of convolutional channels. The high
channel count gives the model a lot of power to identify relatively static features,



95

while the downsampling in frame count keeps computational load at a tractable level.
The fast lane, in contrast, is shown the full set of video frames but has a relatively
low number of convolutional channels. Seeing all frames allows this section of
the model to detect quicker motions in the video, while the low channel count
controls computational load. This architecture is particularly suited for our task,
which requires identifying both slow features (IVC location and resting diameter)
and fast features (sniff-induced collapse) to make an accurate classification. Model
implementation was performed using the PyTorchVideo package [136].

When training the model, input pre-processing was applied in the following steps:

1. Standardize data length by selecting 64 frames evenly spaced throughout the
length of the video. For a 10 second clip length (which is relatively long
for this dataset) this will provide over 6 frames per second, which should
guarantee catching a sniff. If the video is less than 64 frames long, pad at the
end with empty frames.

2. Rescale each frame in the video such that the physical size of each pixel is
0.122 cm (the median for the whole dataset). If we need to zoom in, center
crop. If we need to zoom out, pad the edges with the mean brightness of the
image. The final size of all frames was kept at 224x224 pixels.

3. Apply random rotation and brightness/contrast adjustment transforms.

4. Convert the video to grayscale. Since we have excluded color Doppler scans
the underlying data is already grayscale, so going from 3 color channels to 1
cuts down on data size without losing information.

5. Normalize each frame in the video to have mean intensity 0 and standard
deviation 1.

Regularization was performed via data augmentation as well as the architecture
default parameters of batch normalization and 50% dropout in the final classification
layer. In addition, we applied label smoothing to the output targets [137]. With this
scheme, the targeted probability distribution is no longer 100% on the single correct
answer; instead, some percentage is redistributed to the other categories. In noisy
systems such as this one, label smoothing discourages the model from assigning
unrealistically high certainty to any one answer. Typically, the smoothed probability
is distributed evenly to all non-target classes. However, in this system we had some
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domain knowledge about which forms of noise were most likely; a scan labeled as
3 may properly have been an 8, but it was almost certainly not a 15. Thus, if label
smoothing strength was 0.1, target probability distributions for 3, 8, and 15 were
assigned as (0.9, 0.1, 0.0), (0.05, 0.9, 0.05), and (0.0, 0.1, 0.9), respectively.

Hyperparameter optimization was performed over number of frames, frame sam-
pling stride, slow lane downsampling ratio, optimizer type, whether or not to apply
grayscale, data augmentation strength, and label smoothing strength. Final pa-
rameters selected were: 64 frames, even sampling throughout the video, 8x slow
lane downsampling, RAdam optimization [138], grayscale application, 5◦/10% data
augmentation strength, and 0.1 label smoothing strength. Further discussion of the
range of values tested and performance evolution is provided in Appendix D.2.

Models were trained for 100 epochs with categorical cross-entropy loss. Loss for
each target class was weighted inversely to the frequency of that class in the dataset;
e.g., loss for a video with target class 15 was multiplied by roughly 10 compared to
loss for a video with target class 3. This encouraged the model to evenly distribute
probabilities across the 3 classes if it was unsure, rather than guessing the most com-
mon class; without this scaling, models tended to get stuck in a local minimum of
assigning label 3 to everything. The epoch which produced the highest validation ac-
curacy was selected as the best model state, and these validation performances were
compared to select the best set of hyperparameters. Out-of-sample performance
from the best model was not measured until after hyperparameter optimization was
completed.

Fine-Tuning to Catheter Data
As mentioned above, training a model to replicate cardiologist estimates of RAP can
only hope to match human performance; RHC data gives us the potential to surpass
human performance. However, our dataset of 438 train scans and 109 validation
scans with associated RHC data was too small to train a new ML model from scratch.
Instead, we utilized transfer learning to take advantage of all of the information
about processing sniff scans that had already been learned from training to match
cardiologist evaluations. To do this, the best classification model from the previous
section was modified by replacing its output layer with a 1-dimensional output with
no activation in order to convert it into a regression model. This new model was
then trained to match RHC measurements. The optimized hyperparameters from
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before were kept, but there were two more factors to tweak; layer freezing and loss
function.

The first consideration was layer freezing. The goal of transfer learning is to get
the model to utilize its prior information about common features in the system to
generate answers in new ways. If the entire model is trained normally, instability in
the new randomly initialized output layer may propagate backwards and erase feature
knowledge in earlier layers. The extreme solution to this is to freeze all pre-existing
layers, such that only the weights of the final output layer can be changed. However,
in our system which had been pre-trained to replicate the sniff test as defined in Table
6.1, this type of freeze would have prevented any discovery of new useful features
not related to existing standards. After testing various compromises between these
two extremes, the strategy which produced the best validation error was training
the whole model, but assigning a 3x lower learning rate to all pre-existing layers
compared to that of the output layer. This allowed the model to learn to make
use of existing features without erasing them while maintaining the possibility of
morphing these features to better fit the new data.

The second consideration was the loss function. The standard loss function for
regression tasks is mean squared error, or L2. However, this loss function was not
well suited for our problem. To see why, consider a data point with a target of 11
mmHg and two different predictions; 4 mmHg or 21 mmHg. L2 loss would penalize
the second prediction twice as strongly as the first, as the squared error would be
100 mmHg2 compared to 49 mmHg2. However, from a clinical standpoint, the
first error is quite significant as someone with a problematic RAP has been given
a healthy prediction. The second error, in contrast, is less significant, as both
the prediction and target are unhealthly pressures that would likely lead to similar
courses of treatment. To address this, we first applied a LeakyReLU transform to
soft-cap outputs and targets to the (2, 15) mmHg range; beyond that, being extra-
low or extra-high does not have much clinical significance. We then applied a log
transform to the outputs and targets before getting L2 loss, reflecting the fact that
each incremental increase in pressure is more clinically significant at the lower end
of the spectrum.

With these adjustments in place, RHC-based training of the model was performed
for 50 epochs, with early stopping based on best validation accuracy when con-
verting predictions and targets back into 3/8/15 bins. To reduce noise in validation
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performance, the 109 validation scans were augmented 5x with random rotations
and brightness/contrast scaling.

6.5 Results and Discussion
Echo-Only Results
The first phase of model training and evaluation relied only on TTE videos of sniff
tests and cardiologists’ interpretations of those sniff tests. The model with the
best validation performance, as measured by average classification accuracy across
the three target classes, was run on the 1583 test scans to gauge out-of-sample
performance. The average model accuracy, weighted by the frequency of each
target category in the overall dataset, was 77.3% (see Table 6.4). Looking at the
off-target predictions, it is worth noting that mis-classifying a targeted 3 as an 8 was
significantly more likely that mis-classifying a targeted 3 as a 15, and similarly the
15→8 mis-call rate was higher than the 15→3 mis-call rate. This indicates that the
model was able to learn that category 3 is "closer" to 8 than it is to 15, despite the
fact that the model architecture treated all categories equally and independently with
no inherent encoding of which ones were closer to each other. A similar pattern
persisted even if label smoothing, the only bit of category-asymmetric information
in the training procedure, was turned off.

RAP Prediction Performance: Full Test Set

Confusion Matrix Predicted
3mmHg

Predicted
8mmHg

Predicted
15mmHg

Cardiologist 3mmHg 952 167 29

Cardiologist 8mmHg 77 132 37

Cardiologist 15mmHg 31 44 113

Accuracy 77.3%

False Negative 16.5%

Table 6.4: Out-of-sample performance of the echo-based RAP classification model,
evaluated on the full test set of 1583 scans. Green boxes represent correct predic-
tions, and the red box represents a clinically problematic false negative prediction.
The overall accuracy of 77.3% represents a weighted average of accuracy in each
target class, with weights based on observed frequency of each class across the
dataset. False negative rate represents the percentage of patients classified as 15
mmHg by cardiologists (7.5% of the patient population) which the model classified
as 3 mmHg.
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For performance evaluation, it is also worth considering that not all wrong answers
carry the same clinical significance. If a model like this were deployed as a screening
tool in a clinical setting, the most problematic error would be a false negative, i.e.,
analyzing a scan from a patient who truly had an RAP in the 15 mmHg range
and placing that patient in the 3 mmHg category. This could result in a patient
who needed immediate treatment for volume overload instead being evaluated as
healthy and not given follow-up testing or treatment. From this perspective, these
results show a false negative rate 16.5%. The ideal screening model would have a
higher sensitivity for 15mmHg predictions and a correspondingly high specificity
for 3mmHg predictions.

As mentioned above, roughly 25% of this test set consisted of scans in which the
IVC was either obscured or not present at all. For obscured IVCs the model may
have been able to extract some information, but for scans with no IVC at all the
model was essentially forced to guess at the answer. We hypothesized that these
guesses could be a significant contributor to model errors, particularly the false
negative rate. We tested this hypothesis by evaluating model performance on both
a manually trimmed test set, which eliminated these 25% of scans without a clear
IVC, and the strictly filtered "high-quality" set (described above) which only kept
the 35% of scans with the highest scores from the IVC classification model. Test
performance from both of these datasets is shown below in Table 6.5.

Increasing stringency on the test set only slightly increased overall accuracy. How-
ever, even an initial trimming to remove the worst data from the test set dropped
the clinically problematic false negative rate by almost half (from 16.5% to 9.3%),
and applying the strict high-quality IVC threshold dropped this rate even further to
5.6%. Both dataset reduction procedures were blinded to any RAP information (ei-
ther cardiologist estimates or model predictions), so this should accurately represent
the performance we could expect from higher-quality data inputs. Obtaining this
higher-quality data would be possible in a clinical setting, as the operator could trig-
ger ML-based RAP classification only once the IVC classification model indicated
that a good view of the IVC had been obtained.

Further examination of the confusion matrices in Table 6.5 shows that the extreme
false positive rate (true 3mmHg classified as 15mmHg by the model) also fell as
data quality increased. As a result, in the high-quality test set only 6% of incorrect
predictions were in the 3→15 or 15→3 categories; the remaining 94% were off by
1. Some portion of these "errors" were likely due to human variability in generating
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RAP Prediction Performance: Manually Trimmed Test Set

Confusion Matrix Predicted
3mmHg

Predicted
8mmHg

Predicted
15mmHg

Cardiologist 3mmHg 678 130 17

Cardiologist 8mmHg 60 116 35

Cardiologist 15mmHg 14 34 103

Accuracy 77.5%

False Negative 9.3%

RAP Prediction Performance: High-Quality IVC Test Set

Cardiologist 3mmHg 328 44 4

Cardiologist 8mmHg 41 58 7

Cardiologist 15mmHg 4 30 38

Accuracy 80.3%

False Negative 5.6%

Table 6.5: Out-of-sample performance of the echo-based RAP classification model,
evaluated on the manually trimmed test set of 1187 scans and the high-quality IVC
test set of 554 scans. The overall accuracy only increased slightly, from 77.3%
originally to 77.5% on the trimmed set and 80.3% on the high-quality set. However,
the clinically problematic false negative rate went down substantially, from 16.5%
originally to 9.3% on the trimmed set and 5.6% on the high-quality set.

the target estimates rather than underlying deficiencies in the model. For example,
as mentioned in the introduction, guidelines give a range of possible locations for
measuring the diameter of the IVC, but the IVC generally does not have a constant
diameter over this range. If the diameter changed from 20 mm at one end to 22
mm at the other, the "correct" RAP classification based on Table 6.1 is not clear,
and different doctors may reasonably come to different conclusions. Indeed, prior
studies which had the same IVC scans independently analyzed by multiple trained
physicians to assess diameter and CI have found significant inter-operator variability
[139], [140], and those that specifically looked at inter-operator agreement rates for
RAP assessment found agreement rates of 70-75% [141], [142]. These studies were
not performed under identical conditions to those at UCSF, but if we assume that the
conditions leading to this variability are broadly similar between different medical
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centers it seems plausible that our model performance is nearing the limit set by
underlying uncertainty in the target data.

RHC Results
Right heart catheter measurements provided us with a means of assessing model
performance in a way that was independent of human interpreter variability. One
limitation of our RHC data, as discussed above, is that the RHC and TTE measure-
ments were generally not taken on the same day, and the patient’s true RAP may have
changed in the intervening time. We can get a picture of the effect of this variance by
analyzing the accuracy of cardiologists’ sniff-based assessments of RAP compared
to RHC measurements with different thresholds of allowed time separation between
the two measurements, as shown in Figure 6.3. As expected, widening the allowable
time window significantly increased the total number of data points, from 85 which
occurred on the same day to 596 which occurred within 30 days of each other.
Somewhat surprisingly, however, accuracy did not drop very sharply as we widened
our time window, going from 49.4% for same-day measurements to 48.2% for all
measurements with any time separation. This seems to indicate that variation in true
RAP between RHC and TTE measurements was not a significant error contributor
in our dataset. Based on consultation with UCSF cariologists about the tradeoff
between dataset size and accuracy, we chose a 30-day time window. While the
width of this window created some risk of inaccuracy in the gold standard reference,
errors should be reflected equally in both cardiologist and model predictions since
they were both made based on the same TTE data.

We can also evaluate our dataset in comparison to a prior study which was specifically
designed to evaluate the accuracy of the sniff test. In Magnino, Omede, Avenatti,
et al. [129], 153 patients had their RAP measured by both RHC and a sniff test in
quick succession. The sniff test was used to generate an RAP estimate based on
multiple different standards which have previously been proposed, including the one
in Table 6.1. A summary of the results of this study, compared to RHC and TTE
data from UCSF with a 30-day time window applied, is shown below in Table 6.6.
We may expect the Magnino et al. dataset to yield better results, as the sniff test and
RHC were always conducted in quick succession in a single standardized manner.
Suprisingly, however, the UCSF dataset actually showed higher overall accuracy
and an effectively equivalent false negative rate, despite the time gap between sniff
test and RHC measurements. This could plausibly be due to differences in patient
populations or greater experience of UCSF cardiologists in applying the specific
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Figure 6.3: Accuracy of cardiologist RAP estimates compared to true RAP values
from right heart catheterization, with various time windows allowed between car-
diologist and RHC measurements: a) unlimited time, b) 1 month, c) 1 week, or d)
same day. Blue circle represent individual measurement pairs, and green boxes are
the "correct" prediction ranges. Reducing the time window significantly reduced
the amount of data available, but surprisingly only moderately increased prediction
accuracy.

sniff test standards from Table 6.1, as compared to physicians in Magnino et al. who
were evaluating multiple different sniff test standards. Regardless of the reasons, the
favorable accuracy levels of the UCSF dataset compared to prior literature provide
further evidence that this dataset can be effectively used for evaluating ML model
performance.

Before using the RHC data for further model training, we evaluated the performance
of the best echo-only model on our "golden" test set which had echo video data, a
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Data from Magnino et al. 2017

RHC Value Range Cardiologist Estimate

N 3mmHg 8mmHg 15mmHg

[0, 5] mmHg 17 8 6 3

(5, 10] mmHg 68 31 27 10

(10, 30] mmHg 68 19 19 30

Accuracy (Scaled) 43.8%

False Negative 27.9%

UCSF Data, 30-day Window

N 3mmHg 8mmHg 15mmHg

[0, 5] mmHg 118 84 24 10

(5, 10] mmHg 104 56 28 20

(10, 30] mmHg 97 26 27 44

Accuracy (Scaled) 48.9%

False Negative 26.8%

Table 6.6: Accuracy of sniff-based estimates of RAP compared to RHC measure-
ments of RAP from Magnino et al. 2017 (left) [129] and our UCSF dataset (right).
Scaled accuracy for both datasets calculated as a weighted average of accuracy in
each target class, with weights for both classes determined by frequency of each
class in the UCSF dataset. Magnino et al. may have been expected to yield better
results as the sniff test and RHC were always performed in quick succession, while
in the UCSF data they may have been performed up to a month apart. However,
we see that the UCSF data actually yielded better overall accuracy and effectively
equivalent false negative rate.

sniff-based RAP estimate from a UCSF cardiologist, and an associated RHC mea-
surement within 30 days. This performance is summarized in Table 6.7. We can
see that, even though the model only agreed with cardiologist predictions roughly
77% of the time in the original test set (see Table 6.4), the performance of the
model with respect to RHC results was effectively equivalent to that of the cardi-
ologists, both in terms of overall accuracy and the false negative rate. Applying
a categorical chi-squared test with 8 degrees of freedom to compare the distri-
bution of predictions between the cardiologists and echo-only ML model (using
scipy.stats.chi2_contingency) yielded 𝑝 = 0.98, indicating that the two distributions
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are statistically indistinguishable. These results provide strong evidence that the
ML model effectively replicated the performance of cardiologists in analyzing sniff
tests.

RAP Prediction Performance: Echo-Only ML Model

RHC Value Range Predicted
3mmHg

Predicted
8mmHg

Predicted
15mmHg

[0, 5] mmHg 78 30 10

(5, 10] mmHg 50 35 19

(10, 30] mmHg 27 25 45

Accuracy 49.5%

False Negative 27.8%

RAP Prediction Performance: Fine-Tuned ML Model

[0, 5] mmHg 42 62 14

(5, 10] mmHg 17 59 28

(10, 30] mmHg 7 32 58

Accuracy 49.8%

False Negative 7.2%

Table 6.7: Accuracy of RAP measurements from ML models vs. RHC. The top
table shows performance for the "Echo-Only" model, which was trained to match
cardiologist estimates. The performance of this model is effectively equivalent to
that of cardiologists, in terms of both overall accuracy and false negative rate. The
bottom table shows performance for the "Fine-Tuned" model, which was also trained
to match RHC measurements. This model maintains an equivalent overall accuracy,
but shows a drastically reduced false negative rate.

We also attempted to push performance further by taking the best echo-only model
and fine-tuning it using our smaller set of training data with RHC measurements.
The results from this fine-tuned model are shown in the lower half of Table 6.7. We
can see that the fine-tuning had little effect on overall accuracy; however, there was
a drastic change in the false negative rate, which dropped by over 70% compared
to either cardiologist estimates or the echo-only ML model. This led to an overall
improvement in the accuracy of classifying patients in the 15 mmHg category,
which went from 45.4% with cardiologist estimates to 59.8% with the fine-tuned
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ML model. Such an improvement would represent a substantial decrease in the
number of patients with elevated RA pressure being falsely given a clean bill of
health.

Another way to look at the results is to consider how often each measurement method
yielded results of 3, 8, or 15 mmHg, as shown in Table 6.8. The true distribution
for the UCSF patient population can be read from the RHC results, which showed
a roughly equal proportion across the three classes. We can see that cardiologists
tended to underestimate RAP from the sniff test, with over half of patients assessed
as 3 mmHg and fewer than a quarter assessed as 15 mmHg. This pattern of
underestimation was replicated in the Magnino et al. results, indicating that it is
not just an artifact of our dataset. The Echo-Only ML model which was trained
to match cardiologist predictions, unsurprisingly, exhibited an equivalent tendency
towards underestimation. The Fine-Tuned ML model, in contrast, over-corrected a
bit, exhibiting underprediction of 3 mmHg and overprediction of 8 mmHg. If such
an ML model were used as an initial patient screening tool upon admission this
tendency towards overestimation may be preferable, as an overly high RAP estimate
from the model would be resolved after the patient was referred for further testing
while an underestimate may go undetected if the patient is deemed healthy and not
referred for further testing.

Measurement Type 3 mmHg
Frequency

8 mmHg
Frequency

15 mmHg
Frequency

RHC 37.0% 32.6% 30.4%
UCSF Cardiologist 52.0% 24.8% 23.2%

Echo-Only ML 48.6% 28.2% 23.2%
Fine-Tuned ML 20.7% 48.0% 31.3%

RHC (Magnino et al. 2017) 11.1% 44.4% 44.4%
Cardiologist (Magnino et al. 2017) 37.9% 34.0% 28.1%

Table 6.8: The frequency of different RAP range measurements across different
measurement methods, including both the current study (top section) and Magnino
et al. (bottom section). Cardiologists tended to underestimate true RAP in both
the UCSF and Magnino et al. data, and this pattern was reflected in the echo-only
model which was trainined on cardiologist predictions. The fine-tuned model, in
contrast, over-corrected a bit and tended to overestimate true RAP.

6.6 Conclusion
Our results indicate that our ML model was able to effectively replicate the cardi-
ologist interpretations on which it was trained, and fine-tuning on RHC data may
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have even allowed it to surpass human performance in identifying elevated RAP. The
diversity of the training and testing datasets used for these models, covering multiple
years of scans by many doctors across a wide array of patients, make these results
likely to generalize well to future applications. Integration of this tool into existing
ultrasound machines could allow for more consistent and rapid assessment of RAP in
medical centers with limited access to cardiologists. Further integration of the IVC
and Sniff identification models as well could improve the process by automatically
identifying high-quality sniff scans in real time, improving model performance and
potentially allowing measurements to be performed even by relatively inexperienced
ultrasound operators. These advancements would allow for faster and more accurate
identification of volume overload in a range of medical settings, improving patient
care and reducing the health burden associated with heart failure.

There are multiple avenues to further improve upon this work. Obtaining more
RHC data in particular could allow for more extensive training against this gold
standard, allowing the model to push further past current levels of human perfor-
mance. Performance improvements could also potentially be obtained by integrating
other sources of data, such as TTE scans of other heart regions or other measure-
ment modalities such as electrocardiograms. Such improvements could reveal new
indicators for elevated RAP outside of the sniff test, potentially improving clinical
evaluations and patient care even when ML is not applied. Finally, improvements
to model analysis and architecture could attempt to make the model’s predictions
explainable, allowing for easier identification of edge cases which cause errors and
increasing physician trust.
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C h a p t e r 7

CONCLUSION

The development of ultrasound imaging technology has provided huge benefits to
many forms of medical care. No other technology can provide precise, real-time
views under a patient’s skin in a form that can be carted to the patient’s bedside
or even, in some modern iterations, operated from an iPad. Throughout its history
ultrasound has primarily been viewed as a tool for generating images, relying on
human interpretation to translate what is seen into medically useful information.
However, recent advances have shown that ultrasound is also capable of much more,
providing insight into a variety of biophysical parameters that are invisible to the
human eye. My work has advanced this line of inquiry by applying ultrasound across
two separate projects to the measurement of one of the most important human vital
signs: blood pressure.

The first project focused on the development of CARDI-BP, an entirely new concept
for arterial blood pressure measurement. While much prior research has been
devoted to continuous non-invasive blood pressure measurement through many
different means, all of these efforts have measured some proxy for blood pressure and
used an empirically calibrated mapping to create an approximate BP measurement.
This is the first work to describe a first-principles physics model which converts
observed parameters into an absolute, calibration-free BP measurement. The core
of this model is the measurement of circumferential resonance, which had never been
observed in real arteries and was not guaranteed to persist in these more complex in
vivo systems. Despite this, in a clinical study covering a demographically diverse
cohort we were able to detect resonance in 59 out of 60 subjects. Our physics model
was able to convert these resonance measurements into clinically relevant blood
pressure and stiffness measurements, and the BP measurements had a favorable
level of accuracy compared to the gold standard invasive catheter. Further work
to embody CARDI-BP into a commercially viable form factor will greatly expand
access to outpatient diagnosis of cardiovascular problems by revealing continuous,
central BP information that has previously only been measured for those in critical
care.
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The second project focused on the noninvasive measurement of blood pressure in
the right atrium (RAP), an important indicator for managing care in patients with
heart failure. In this case, there is already a clinically accepted ultrasound-based
method of non-invasively assessing RAP, but results are difficult to interpret and can
yield inconsistent measurements even from trained physicians. This project applied
machine learning techniques to a UCSF database of over 15000 expert cardiologist
assessments of RAP, a dataset drastically larger and more diverse than any previously
used to address this problem. When compared to gold standard measurements from
invasive cathethers, the machine learning model yielded RAP measurements that
were statistically indistinguishable from those of UCSF cardiologists. Deployment
of this technology could democratize access to expert RAP measurements beyond
large medical centers with cardiology departments to anywhere with an ultrasound
machine, improving care for tens of millions of people worldwide suffering from
heart failure.

The common thread underlying both of these projects is the development of new
ways of looking at biomedical measurement through interdisciplinary research.
The first project combined biomechanical models of the arterial wall with pipe
resonance models from aerospace engineering, leading to a new model of resonance-
based pressure measurement unique to the arterial system. The second project
combined the medical intuition of physicians with the pattern recognition power of
machine learning, leading to model-based measurement ability on par with expert
cardiologists. It is my hope that these results prove useful to the scientific community
and inspire more research that approaches biological problems from a new angle.
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A p p e n d i x A

SUMMARY OF PRIOR NIBPM STUDIES

Dozens of prior studies have attempted to produce continuous non-invasive blood
pressure measurements using may different methods, but none has yet gained
widespread clinical usage in replacing arterial catheters. To see why, we can
consider four different aspects that relate to whether or not an NIBPM measurement
method can be considered equivalent to an A-line:

• Is calibration required? Many NIBPM methods rely on an initial calibra-
tion against a reference BP measurement device, most commonly a standard
brachial cuff. Variations in underlying physiology, such as the constriction or
relaxation of vascular smooth muscle, also necessitate periodic re-calibration
for long-term monitoring. This calibration reduces convenience, increases
cost, and introduces potential errors from inaccuracy in the reference cuff.

• Is machine learning used? Some NIBPM methods attempt to replace direct
calibration with indirect calibration via machine learning. This increases
convenience, but also introduces significant risks. Limitations in the training
data limit the generalization of model performance, particularly for extreme
BPs or uncommon pathologies.

• Is a full BP waveform generated? One of the advantages of an A-line over
a cuff is that variations in the full BP waveform shape can be indicative of
cardiovascular pathologies that could not be identified from simple SYS/DIA
readings. NIBPM methods that cannot produce full BP waveforms sacrifice
this clinically valuable information.

• Is there a physical relationship between BP and what is measured? A-lines
are considered highly reliable because they directly measure pressure inside
of a blood vessel. In contrast, most NIBPM methods measure some form of
proxy information which is generally correlated to BP but does not have a
direct 1:1 physical relationship. Identifying such a physics-based relationship
between observables and outputs would increase reliability of measurements.
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Table A1.1 shows the CARDI-BP method in comparison to many other prior NIBPM
studies on these four points. CARDI-BP is the only method in the literature that
satisfies 1) no calibration, 2) no machine learning, 3) full waveform output, and 4) a
full physical model relating observables to BP. Table A1.2 compares the performance
of CARDI-BP in our𝑁 = 60 clinical study with some past studies that have compared
NIBPM devices against an A-line. CARDI-BP compares favorably to many of these
methods, including some commercially available devices.
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Method Modality As presented by... Calibration source
Full
wave-
form?

Uses
machine
learning

Physical
model?

Additional drawbacks/remarks

CARDI-BP

Ultrasound

This manuscript None Yes No

Yes
(fully
deter-
mined)

Radius tracking Wang et al. [47] Brachial cuff Yes No No
Core exponential equation is
empirical

Pulse-wave
velocity (QA
method)

Seo, Lee, and Sodini
[46], Beulen et al.
[44], Vappou, Luo,
Okajima, et al. [45]

Finger cuff (Seo,
Lee, and Sodini
[46]), brachial cuff
(others)

Yes No Yes
Physical model uses
Moens-Korteweg/Bramwell-Hill

WFA
Jana, Oswal, Mitra, et
al. [48]

None / Brachial
cuff (for training)

No No* No*

*Wendkessel provides
underlying model, but feature
extraction relies on linear
regression.

Force-measured
distension

Zakrzewski, Huang,
Zubajlo, et al. [51]

None No No* Yes
*Requires steady manual
applantation pressure and
empirical model matching
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Volume clamp
Finger Cuff

Imholz, Wieling,
Montfrans, et al. [14]

Brachial cuff
(optional but
recommended)

Yes No Yes

Difficult to measure BP on
patients with low perfusion in
extremities, periodic Physiocal
self-calibration results in lower
data availability

Volume control
+ PPG

Fortin et al. [26] Brachial cuff Yes No No
Difficult to measure BP on
patients with low perfusion in
extremities

WFA
PPG

Shaltis, Reisner, and
Asada [18] and Shin
and Min [20]

Finger cuff
(Shaltis), Wrist
Cuff (Shin)

No No No*

*Shin has an approximate
physical model for a "pressure
index" which must be converted
to BP via empirical regression

WFA + PTT
Yoon, Cho, and Yoon
[21]

Brachial Cuff No No No

WFA + ML PPG

Samimi and Dajani
[19], Kurylyak,
Lamonaca, and
Grimaldi [22],
Mousavi, Firouzmand,
Charmi, et al. [23],
Zhang and Feng [24],
and Panwar, Gautam,
Biswas, et al. [25]

None / A-Line or
Brachial Cuff* (for
training)

No Yes No
*BP data obtained from
third-party databases of
multi-signal vital sign data
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Proprietary
WFA

PPG
Pellaton, Vybornova,
Fallet, et al. [27]

A-Line No Unclear Unclear
30% of subjects excluded due to
low signal quality, including all
subjects with darker skin

WFA
Tonometry

Takazawa, Kobayashi,
Shindo, et al. [28]

Brachial cuff No No No
Sensitive to noise and
movement artifacts

WFA + ML Quan et al. [29] Brachial cuff No Yes No
Proprietary
WFA

Radar
Liao, Shay, Gomes, et
al. [41]

Finger Cuff Yes Unclear Unclear

WFA
Bioimpedance

Huynh, Jafari, and
Chung [32]

Brachial Cuff No No No

WFA + ML
Ibrahim and Jafari
[31] and Kireev, Sel,
Ibrahim, et al. [34]

Finger cuff No Yes No

PTT
Bioimpedance
+ Radar

Buxi, Redouté, and
Yuce [33]

Brachial cuff No No No

PTT ECG + PPG
Gesche, Grosskurth,
Küchler, et al. [35]

Brachial Cuff No No* No
*Best fit to an empirically
determined nonlinear function

PTT ECG + PPG Poon and Zhang [36] Brachial Cuff No No Yes
Uses the Moens-Korteweg
formula to convert PTT to BP
differences

Ballistocardiog-
raphy

Force Plate
Kim, Carek, Inan, et
al. [38]

Finger cuff No No No
Requires patient to stand/sit on
force plate, not appropriate for
ambulatory use



128

Ballistocardiog-
raphy + ML

Force Plate
Seok, Lee, Cho, et al.
[39]

Brachial Cuff No Yes No
Requires patient to stand/sit on
force plate, not appropriate for
ambulatory use

Ballistocardiog-
raphy + PTT

Force Plate +
PPG

Liu, Zhang, Chen, et
al. [40]

Brachial Cuff No No No

Table A1.1: Comparison of noninvasive blood pressure measurement methods previously described in the literature.
Acronyms used are: PPG (photoplethysmography), ECG (electrocardiogram), WFA (waveform feature analysis), and PTT
(pulse transit time).
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Study Method # Subjects Standard Deviation Of
Differences vs A-Line (mmHg)

Pearson’s Correlation
Coefficient

Commercial
Device

Externally
Calibrated

Data
Collected

Passed
QC DBP MAP SBP DBP MAP SBP

Present Work Arterial
Resonance

60 59 10.9 11.2 13.4 0.71 0.74 0.73 No No

Bugarini, Young,
Griessenauer, et al.

[17]

Volume Clamp
(ClearSight)

24 24 14.6 17.9 21.5 0.29 0.35 0.47 Yes No

Eley, Christensen,
Guy, et al. [16]

Volume Clamp
(ClearSight)

32 30 10.8 10.9 14.1 - - - Yes No

Chou et al. [143] Capacitance
(Vena Vitals)

32 17 12.2 - 12.6 0.57 - 0.83 No Yes

Harju, Vehkaoja,
Kumpulainen, et

al. [144]
Tonometry

(BPro)
38 28 9.4 11.6 19.9 0.72 0.64 0.61 Yes Yes

Kim et al. [145]
(Meta-Analysis)

Various - 919 8.3 8.4 12.2 - - - - -

Kim et al. [145]
(Meta-Analysis)

Various
(Commercially

Available)
- - 8.6 8.7 12.4 - - - Yes -

Table A1.2: Comparison between 𝑁 = 60 clinical study statistics and other A-line–to–NIBPM studies in the literature.
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A p p e n d i x B

FLOWCHARTS OF DATA ANALYSIS PROCEDURES

Figure A2.1: Flowchart describing the high-level data flow for BP measurement,
from raw ultrasound data acquisition to final outputs.
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Figure A2.2: Flowchart describing the data flow for generating B-mode images from
raw ultrasound returns using the CF-DMAS synthetic aperture algorithm.
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Figure A2.3: Flowchart describing the data flow for converting raw pulsed Doppler
ultrasound returns into velocities.
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Figure A2.4: Flowchart describing data flow for converting full-column Doppler
ultrasound velocities into arterial wall velocities, both "baseline" (due to the heart-
beat) and "multisine" (due to the audio stimulus).
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Figure A2.5: Flowchart describing the data flow for converting multisine wall
velocities into a frequency response spectrum, and fitting this spectrum to obtain a
resonant frequency.
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Figure A2.6: Flowchart describing the data flow for combining synthesized B-mode
images and user-defined wall ROIs to measure arterial dimensions.



136

Figure A2.7: Flowchart describing the data flow for interpolating wall dimension
measurements and combining with baseline wall velocity measurements to generate
values at the appropriate rate for feeding into the Unscented Kalman Filter for BP
generation.
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A p p e n d i x C

FURTHER DATA FROM CLINICAL STUDY

Figure A3.1: Subject inclusion and exclusion for the clinical study. It is worth
noting that the rate of subject exclusion due to arterial catheter placement (6/68)
significantly exceeded the rate of subject exclusion due to failure of quality control
for CARDI-BP data (1/60).
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Characteristic Combined
(N=68)

Excluded
(N=8)

QC
Included
(N=58)

QC
Excluded

(N=2)

Develop-
ment

(N=40)

Validation
(N=20)

Age Mean (range)
33 (19-55) 39 (27-53) 32 (19-55) 24 (22-26) 32 (19-55) 32 (19-48)

Gender 𝑛 (%)
Female 28 (41.2%) 6 (75.0%) 20 (34.5%) 2 (100%) 14 (35%) 8 (40%)
Male 39 (57.3%) 2 (25.0% ) 37 (63.8%) 0 (0%) 25 (62.5%) 12 (60%)
Transgender 1 (1.5%) 0 (0%) 1 (1.7%) 0 (0%) 1 (2.5%) 0 (0%)
Race 𝑛 (%)
Latinx White 33 (48.5%) 4 (50.0%) 28 (48.3%) 1 (50%) 19 (47.5%) 10 (50%)
Asian 22 (32.4%) 4 (50.0%) 18 (31.0%) 0 (0%) 12 (30%) 6 (30%)
Non-Latinx White 9 (13.2%) 0 (0%) 9 (15.5%) 0 (0%) 6 (15%) 3 (15%)
Non-Latinx Black 3 (4.4%) 0 (0%) 3 (5.2%) 0 (0%) 2 (5%) 1 (5%)
Mutliracial 1 (1.5%) 0 (0%) 0 (0%) 1 (50%) 1 (2.5%) 0 (0%)
BMI Mean (range)

28.8
(19.3-44.3)

31.6
(22.8-44.3)

28.5
(19.3-43.1)

28.5
(24.1-32.8)

28.4
(19.3-43.1)

28.6
(20.4-43.0)

Medical Condi-
tions 𝑛(%)
Hypertension 7 (10.3%) 2 (25%) 4 (6.9%) 1 (50.0%) 3 (7.5%) 2 (10%)
Diabetes Mellitus 1 (1.5%) 0 (0%) 1 (1.7%) 0 (0%) 1 (2.5%) 0 (0%)
Hyperlipidemia 4 (5.9%) 1 (12.5%) 3 (5.2%) 0 (0%) 2 (5%) 1 (5%)
Heart murmur 5 (7.4%) 0 (0) 4 (6.9%) 1 (50.0) 4 (10%) 1 (5%)
Cardiac Arrhyth-
mia

1 (1.5%) 0 (0) 1 (1.7%) 0 (0%) 1 (2.5%) 0 (0%)

Table A3.1: Demographic data for clinical study population.

Development (N=39) Validation (N=20)

Statistic Mean
(mmHg)

Std. Dev.
(mmHg)

Mean
(mmHg)

Std. Dev.
(mmHg) 𝑝-value

DBP 2.5 10.9 6.9 10.8 0.144
MAP -1.1 10.5 1.8 12.6 0.375
SBP -23.4 11.9 -27.4 16.3 0.339

Table A3.2: BP statistics for the “development” and “validation” populations. Mean
differences between the arterial catheter and present method and standard deviation
of differences are computed for DBP, MAP, and SBP for each population. 𝑝-
values from a two-sample Welch’s t-test for each population exceed 0.1 in all cases.
Statistics are computed per subject, since these represent independent data points.
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A p p e n d i x D

FURTHER DETAILS FROM RAP ESTIMATION STUDY

D.1 Other Model Architectures and Aggregation
We tested six modern video-processing ML architectures for this study: X3D [130],
SlowFast [131], MoViNet [132], TimeSformer [133], STAM [134], and ViViT
[135]. The three transformer-based models (TimeSformer, STAM, and ViViT) were
relatively computationally intensive did not yield promising results within 72 hours
of training time, so they were discarded. The first three models, however, all yielded
promising results when trained to match cardiologist RAP estimations. The results
of these models when evaluated against the test set of cardiologist estimates and the
test set of RHC measurements are shown in Table A4.1. The predictions of the three
models were also compiled to create an aggregated prediction based on majority vote
(if the three models gave 3 different answers, the consensus answer was considered
to be 8). On the left of the table we can see that SlowFast outperformed either of
the other models and the aggregrate predictions when gauged against cardiologist
predictions. However, when gauged against RHC measurements the three models
all performed similarly well, and the aggregate predictions slightly outperformed
any individual model. We did not pursue the fine-tuning of other other model
architectures and evaluation of fine-tuned aggregate performance in this study due
to the required computational time investment. However, these results suggest that
model aggregation could be a future avenue of research for further improvement.

Accuracy
vs Cardiologist

False Negative
vs Cardiologist

Accuracy
vs RHC

False Negative
vs RHC

Cardiologist - - 48.9% 26.8%
SlowFast 77.3% 16.5% 49.5% 27.8%

X3D 71.2% 19.7% 46.7% 25.8%
MoViNet 72.3% 16.5% 49.8% 25.8%
Aggregate 74.7% 17.6% 51.1% 25.8%

Table A4.1: Performance from the three promising model architectures as well
as their aggregation, gauged against cariologist estimates and RHC measurements.
SlowFast alone was the best at matching cardiologist estimates, but model aggrega-
tion could provide a future route to improving performance against RHC measure-
ments.
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D.2 Progressive Analysis of Hyperparameter Optimization
During the process of hyperparameter optimization, we identified 6 hyperparam-
eters which increased performance when changed from their default values. In
decreasing order of importance, they were: # of sampled video frames, type of op-
timizer, whether or not to randomly augment data, period of video frame sampling,
application of grayscale, and label smoothing. After generating final optimized test
results, we reran models with progressive degrees of hyperparameter tuning on the
test set to gauge whether or not hyperparameters had been overtuned. The model
stages tested were:

• Stage 1: 16 video frames, SGD optimization, no data augmentation, fixed
period 2 frame sampling, no grayscale, no label smoothing.

• Stage 2: 64 video frames, RAdam optimization, no data augmentation, fixed
period 2 frame sampling, no grayscale, no label smoothing.

• Stage 3: 64 video frames, RAdam optimization, random data augmentation,
evenly spaced frame sampling, no grayscale, no label smoothing.

• Final: 64 video frames, RAdam optimization, random data augmentation,
evenly spaced frame sampling, grayscale, label smoothing.

Each intermediate model stage was tested against cardiologist estimates on the full
untrimmed dataset, tested against RHC measurements, and then fine-tuned and
retested against RHC measurements. The results are summarized below in Table
A4.2. We can see that test performance against cardiologist predictions steadily
increased as hyperparameters were optimized, in line with validation performance.
This indicates that we did not overtune our hyperparameters for the initial training
phase, which consisted of the bulk of model learning. Performance against RHC
measurements showed a similar trend, although it was not strictly monotonic (poten-
tially due to the smaller test set size). The absolute highest accuracy vs RHC came
from the stage 1 model without fine-tuning, but was accompanied by a high false
negative rate. The absolute best false negative rate (discounting Stage 0 FT, which
just made predictions in the 8mmHg range for everything) came from the fine-tuned
stage 2 model, but this had a relatively low overall accuracy. The best combination of
high overall accuracy and low false negative rate did come from the final fine-tuned
model, further indicating that we did not overtune our hyperparameters.
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Accuracy
vs Cardiologist

False Negative
vs Cardiologist

Accuracy
vs RHC

False Negative
vs RHC

Cardiologist - - 48.9% 26.8%
Stage 1 59.1% 36.7% 42.3% 33.0%

Stage 1 FT - - 32.0% 0.0%
Stage 2 72.9% 18.6% 51.5% 21.6%

Stage 2 FT - - 42.6% 7.2%
Stage 3 74.2% 19.7% 47.6% 23.7%

Stage 3 FT - - 44.8% 6.2%
Final 77.3% 16.5% 49.5% 27.8%

Final FT - - 49.8% 7.2%

Table A4.2: Model performance at various stages of hyperparameter optimization,
before and after fine-tuning to RHC data (FT models). Overall best test performance
is obtained in the final stage, indicating that we did not overtune our hyperparameters.


