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Abstract

Open questions in fundamental physics, such as the cosmological origins of the observed imbalance
of matter and antimatter, motivate the search for fundamental symmetry violating physics beyond
the Standard Model (BSM). Recent measurements of heavy, polar, diatomic molecules constrain
the existence of new, Parity (𝑃) and Time-reversal (𝑇) violating physics at ∼10 TeV energy scales,
exceeding the reach of particle colliders. The power of existing molecular measurements motivates
us to pursue the next-generation of searches for symmetry violation. By adopting polyatomic
molecules as an experimental platform, we can generically combine laser-cooling and trapping,
BSM sensitivity, and exquisite quantum control over 𝑃 and/or 𝑇 violating energy shifts. These
improvements are projected to increase the sensitivity of measurements to the PeV energy scale.
In this thesis, we develop the foundations for new physics searches using cold and ultracold, linear
triatomic molecules. These molecules have long-lived vibrational bending modes with closely
spaced, opposite parity doublets, a key structure that aids polarizability, molecule control, state
engineering, and systematic suppression. We produce a cryogenic buffer gas beam of cold YbOH
molecules, using laser-enhanced chemical reactions to increase molecular yield by an order of mag-
nitude. As a prerequisite for precision measurements, we perform high-resolution spectroscopic
characterization of both the ground and excited bending modes of YbOH. Next, we present detailed
tests of quantum state preparation and readout protocols in a YbOH beam, successfully demon-
strating Ramsey interferometry using two-photon transitions. Finally, as part of the PolyEDM
collaboration, we illustrate the power of polyatomic molecules by combining laser cooling and
optical trapping with quantum state engineering to perform proof-of-principle measurements of
𝑃,𝑇 violating physics in magnetically-insensitive states of ultracold CaOH molecules at Harvard
University. Our results open the door to a wide range of quantum-enhanced symmetry violation
searches benefiting from the unique structural features of polyatomic molecules.
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4.1 Diagram of the rotational structure in the �̃�2Σ+(000) (left) and �̃�2Σ+(010) (right)
states of YbOH. The different values of 𝑁 are first split by the rotational energy,
𝐵 ∼ 7.5 GHz. For �̃� (000), the value of 𝑁 uniquely determines the state parity. Then,
on a smaller scale, the spin-rotation interaction, parameterized by 𝛾 ∼ −100 MHz,
causes splittings of different 𝐽 levels. In the �̃� (010) state, we have an additional fine
structure, given by parity-doubling Coriolis interactions on the 20 MHz scale. For
brevity, we have not included asymmetries that occur in the parity splittings. Finally,
hyperfine couplings between 𝐼 and 𝑆 cause ∼4 MHz splittings for different values
of 𝐹. We note that �̃� (000) goes through a hyperfine “resonance”, such that the
ordering of hyperfine states reverses between 𝑁 = 1 and 𝑁 = 2. Such a reversal does
not occur in �̃� (010), owing to the different internuclear orientations of the spins
in the symmetric top like bending mode compared to the linear rotor-like absolute
ground state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.2 Experimental schematic of the �̃� (010) → �̃�(000) spectroscopy. (a) YbOH molecules
are produced in the 4 K cryogenic buffer gas cell (brown box) by laser ablation (dark
green triangle) of a solid pressed target. The molecules are thermalized by collisions
with He buffer gas continuously flowed into the cell. The production of YbOH
is enhanced by exciting Yb atoms using a laser (light green line) resonant with the
1𝑆0 → 3𝑃1 atomic Yb transition. Some of the molecules are produced in the �̃� (010)
bending mode. The molecules are entrained in the He gas flow and extracted out of
the cell. We detect the molecule number density in the �̃� state via absorption spec-
troscopy (yellow lines) both in the cell (i) and in front of the cell (ii). The molecular
beam is collimated by a skimmer and collimators before entering the probe region
with electric and magnetic fields. We apply magnetic fields using coils outside the
vacuum chamber, and apply electric fields using ITO coated glass electrodes inside
the vacuum chamber. In the center of the fields, molecules in the �̃� (010) state are
excited by a laser (orange line) and their fluorescence is collected through a light
pipe to a PMT (iii). (b) Sample signals from the CBGB. (i) In-cell absorption on
the 𝑅𝑅11(0) line of YbOH �̃� (000) → �̃�(000). The peak optical depth corresponds
to a molecule density of ∼5×109 cm−3 in the �̃� (000), 𝑁 = 0 state. (ii) Front of
cell absorption on the same 𝑅𝑅11(0) line. The peak optical depth corresponds to a
molecule density of ∼2×109 cm−3. (iii) Fluorescence after excitation of the bending
mode on a strong �̃� (010) → �̃�(000) line. The integrated signal corresponds to
∼8300 photons detected on the PMT. . . . . . . . . . . . . . . . . . . . . . . . . . 115
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4.3 Field-free spectrum over a ∼9 cm−1 range. Orange upper part is experimental
observation and blue lower part is theory prediction. Prediction is using effective
model detailed in section 4.2.3.3 with coefficients (𝑐𝜇 = 0.28, 𝑐𝜅 = −0.49, 𝑐𝐵 =

0.83) and a temperature of 𝑇 = 2 K. Lines marked with * are unassigned and could
arise from other isotopologues or bands. . . . . . . . . . . . . . . . . . . . . . . . . 118

4.4 Field-free level structure of the 𝑁 = 1 manifold in the �̃� (010) state. States are
arranged vertically by energy and horizontally by their 𝑀𝐹 angular momentum
projection. States are labeled in the parity basis. The hyperfine structure was not
resolved in our work, and is instead approximated using parameters from a study of
the �̃� state [290]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.5 Zeeman spectroscopy of the �̃� (010) state. The main plot shows the transition fre-
quency shift (with subtracted offset) in a magnetic field, the blue lines are optimized
model predictions, and the orange circles are experimental measurements. Error
bars are 1-𝜎 measured peak widths, set by a combination of radiative broadening
and unresolved hyperfine structure, limiting the ability to resolve closely-spaced
lines. Lower subplots are slices of the spectra at various magnetic field values,
with experimental data in orange and predicted line locations indicated with vertical
dashed blue lines. On the left, we show the field-free level structure of the transitions
studied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.6 Stark spectroscopy of the �̃� (010) state. The main plot shows the transition frequency
shift (with subtracted offset) in an electric field, the blue lines are optimized model
predictions, and the orange circles are experimental measurements. The blue color
gradient represents parity forbidden transitions that gain strength at finite electric
field. Error bars are 1-𝜎 peak widths, set by a combination of radiative broadening
and unresolved hyperfine structure, limiting the ability to resolve closely-spaced
lines. Lower subplots are slices of the spectra at various electric field values,
with experimental data in orange and predicted line locations indicated with vertical
dashed blue lines. On the left, we show the field-free level structure of the transitions
studied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
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4.7 Level schematic for relevant states and perturbations in YbOH. Levels are labeled
by their vibronic term symbol. We detect the �̃� (010) bending state (which is a
vibronic 2Π state) by laser excitation (orange line) up to the �̃�2Π1/2(000) state and
observe the fluorescence from decays to the ground �̃� (000) state (yellow wavy line).
This excitation is a forbidden E1 transition, however, it acquires intensity by mixing
of the excited �̃�2Π1/2(000) state with other |ℓ | = 1 states. Mixing with �̃�(010)
occurs via first-order (blue) Renner-Teller (RT) interactions, and mixing with the
𝜇, 𝜅(010) states occurs via second-order (purple) cross terms between RT and spin-
orbit (SO) (red) interactions. Not shown for simplicity are similar SO interactions
between �̃�2Π1/2(000) and �̃�(000) and similar RT interactions between 𝜇, 𝜅(010)
and �̃�(000), which also contribute to state mixing. . . . . . . . . . . . . . . . . . . 126

4.8 Level diagram showing the splittings of a 2Π electronic state in 𝑣2 = 0, 1 vibrational
states. We label states with vibronic term symbol notation, 2𝑆+1𝐾𝑃. The spin-orbit
strength is 𝐴, and the Renner-Teller (RT) interaction is given by 𝜖 . Dotted lines
show the correlation of states as spin-orbit and RT interactions are turned on and off.
We choose to show 𝜖 < 0 and 𝐴 > 0 to match the sign of these parameters in the
M-OH molecules we consider. Diagram adapted from Ref. [295]. Thanks to Jane
Panangaden for helping make the diagram. . . . . . . . . . . . . . . . . . . . . . . 133

4.9 Schematic diagram of the beamline used for pump probe experiments to study the
�̃� (000) → �̃�(010) transition. Upstream, the pump light is scanned. Downstream,
the probe light monitors a single rotational level in �̃� (000). If the pump laser hits a
resonance, we will see fluorescence in the pump region. Furthermore, if the pump
addresses the same ground state as the probe, then we will observe correlated loss
of the probe fluorescence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.10 Sample LIF spectra obtained from excitation of the �̃� (000) → �̃�(010) transition. a)
The two largest features correspond to𝑄11(1) and 𝑅12(1) lines addressing the upper
𝐽′ = 3/2+ state. b) The two largest features correspond to a second pair of 𝑄11(1)
and 𝑅12(1) lines addressing the lower 𝐽′ = 3/2+ state. . . . . . . . . . . . . . . . . 142

4.11 Sample depletion spectra obtained from pump-probe spectroscopy. The upstream
pump laser is scanned over the �̃� (000) → �̃�(010) features shown in Fig. 4.10b,
with LIF plotted in blue. Meanwhile, the downstream probe is fixed on a �̃� (000) →
𝐴(000) line probing 𝑁′′ = 1, 𝐽′′ = 1/2−, with LIF plotted in orange. The depletion
signal at 17651.37 cm−1 shows both pump and probe share a common ground state. 142
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4.12 2-D confidence interval plots of correlated parameters from the �̃�(010) effective
Hamiltonian fits. See main text for details on parameters. Confidence intervals
calculated using F-tests. The star indicates the best-fit parameter values. Though
we observe strong correlations, overall the range of fit parameters have physically
reasonable values, see main text for discussion. . . . . . . . . . . . . . . . . . . . . 147

4.13 Energy level diagram for the �̃�2Π1/2(010) manifold of YbOH. Assignemnts are
given in terms of 𝐽 and parity P quantum numbers. P = ±1 levels are separated
horizontally for clarity. The center of the diagram shows the levels observed in the
experiment, while the dashed lines on the side shows the levels obtained from diag-
onalizing the Hamiltonian from Table 4.2 with the parameters provided in Table 4.4.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
4.14 Deperturbation diagram of the �̃�2Π1/2(010) state of YbOH. The levels are obtained

by diagonalizing Tab. 4.2 using the parameters in Tab. 4.4. We have grouped the
levels on the right/left sides according to their rotationless 𝑒/ 𝑓 parity [332], where
𝑒 levels have P = (−1)𝐽−𝑆−𝑙 and 𝑓 levels have P = −(−1)𝐽−𝑆−𝑙 . . . . . . . . . . . . 150

4.15 Schematic of the beamline used for tests of optical pumping into the �̃� (010) state and
characterization of �̃� (010) → �̃�(010) lines. Upstream, the molecules are pumped
out of �̃� (000) through the excited �̃�(010) state, decaying into �̃� (010). Downstream,
we probe the increased fluorescence in the �̃� (010) state using the diagonal transition
to �̃�(010). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.16 Sample LIF spectrum obtained from excitation of the �̃� (010) → �̃�(010) transition,
driving the 𝐽 = 1/2, 3/2 components of 𝑁′′ = 1− to the lower 𝐽′ = 3/2+ state.
The zero frequency offset is 17331.7093 cm−1, and the line centers are fit to be
17331.7083 cm−1 and 17331.7098 cm−1. a) Optical pumping into the bending mode
is visible by comparing the blue (pump on) and orange (pump off) signals. The
salmon lines are two Lorentzian fits. The optical pumping is performed with 265
mW of power, retroreflected, on the �̃� (000) → �̃�(010) line at 17651.3740 cm−1,
addressing the lower (𝑁′ = 1) 𝐽′ = 3/2+ state. As mentioned in the main text,
the probe power of 465 µW in 1.1 mm diameter beam results in power broadening.
b) The same spectrum taken with smaller frequency steps and 70 µW power. The
optical pumping light is always on, and the salmon line is once again a two Lorentzian
fit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
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4.17 Saturation signals obtained by fixing the laser frequencies on a pump-probe pair
of lines and scanning the pump power. In both plots, the probe was fixed on the
𝑁′′ = 1, 𝐽′′ = 1/2− → 𝐽′ = 3/2+, 𝑁′ = 2 transition of the �̃� (010) → �̃�(010) band,
while the pump was varied. In both plots, orange squares (blue circles) indicate the
pump addresses the upper, 𝑁′ = 2 (lower, 𝑁′ = 1) 𝐽′ = 3/2+ state in �̃�(010). a)
The ratio of pump on vs pump off population probed in the bending mode. The
different excited states for pumping have different pumping efficiencies and saturate
to different values. b) The fluorescence detected in the pump region when driving the
�̃� (000) → �̃�(010) transitions at 17651.3740 cm−1 (lower) and 17652.1465 cm−1

(upper). The traces indicate both a difference in saturation intensity and saturation
fluorescence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4.18 An energy level diagram of the lowest lying bending levels of the �̃� , �̃�, and
[17.73](Ω = 1/2) manifolds. Diagram not to scale. The splitting of �̃� (020) in-
dicates the anharmonic splitting of the ℓ = 0, 2 levels. Lines marked with “?” are
potential re-assignments. See main text for details. . . . . . . . . . . . . . . . . . . 164

5.1 Rabi and Ramsey lineshapes, plotted as a function of unitless detuning Δ𝜏, where 𝜏
is the interaction time. For the Rabi lineshape, we fix the condition Ω𝑅𝑎𝑏𝜏 = 𝜋. For
the Ramsey case, we fix Ω𝑅𝑎𝑚𝑡𝑝 = 𝜋/2, and set 𝜏 = 𝜂𝑡𝑝, with 𝜂 = 0.1. Plots (a) and
(b) are with no velocity dispersion. For plots (c) and (d), we add velocity dispersion
given by 𝜎𝑣/𝑣 = 0.1, which is a conservative estimate. Dispersion is modeled by
random sampling from a Gaussian distribution. We use light shading to indicate
1-𝜎 variation of the readout signal. . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.2 A comparison of Rabi and Ramsey lineshapes Rabi and Ramsey lineshapes, plotted
as a function of unitless detuning Δ𝜏. We use the same parameters as Fig. 5.1
and explicitly set the interaction times equal. (a) Rabi and Ramsey lineshapes
with velocity dispersion 𝜎𝑣/𝑣 = 0.1, which is a conservative estimate. The line
widths indicating 1-𝜎 variation. (b) Derivatives of the lineshapes, representing
differential sensitivities, normalized by the maximum value of the Rabi sensitivity.
With dispersion, the maximum Ramsey sensitivity is ≈0.54 and the maximum Rabi
sensitivity is ≈0.29. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.3 The angular momentum probability distribution for the |𝑋⟩ and |𝑌⟩ states used for
the ACME measurement, see main text for details. The distributions are plots of
⟨𝐽, 𝐽 (𝜃, 𝜙) |𝜌 |𝐽, 𝐽 (𝜃, 𝜙) = 𝐽⟩, where 𝑀 (𝜃, 𝜙) = 𝐽 describes the state with maximum
projection in an arbitrary direction. Figures are made using the AtomicDensityMa-
trix package in Mathematica. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
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5.4 A schematic diagram describing coherent population trapping. On the left, we have
two ground states |𝑔1⟩, |𝑔2⟩, connected to the excited state |𝑒⟩ by arbitrary TDMs.
We can perform a change of ground state basis (detailed in the main text) to transform
to the optically bright/dark basis, shown on the right. The bright state |𝐵⟩ is coupled
to the excited state, while the dark state |𝐷⟩ is not. Excited state decays can either
repopulate the bright/dark manifold, or they can decay to different level manifolds
dark to the laser, represented by |𝜂⟩. . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5.5 Schematic diagram describing CPT linkages in multi-level transitions. Laser cou-
plings are indicated with full red and dashed green arrows to clearly indicate the
various linkages. In both cases the light is transversely polarized. Rotating to �̂�
polarization makes the dark states self-evident. (a) A 𝐽 = 3/2→ 3/2 transition. In
this case we do not have any dark states. (b) A 𝐽 = 2 → 𝐽 = 1 transition. Now
we have two dark states. The first results from the “M” linkage, indicated with red
arrows. The other dark state results from the Λ linkage, indicated with green dashed
arrows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.6 A photo of the home-made magnetic shielding around the six-way KF50 cross. See
main text for details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.7 A schematic diagram of the ground and excited states in the 𝐽′′ = 1/2 → 𝐽′ =

1/2 transition driven by linearly polarized light. We consider two bases that both
describe equivalent physics. (a) Excitation by transversely polarized light in the
quantization axis defining 𝑀𝐹 . (b) Performing a basis rotation, we can consider a
rotated quantization axis defining 𝑀′

𝐹
. Now the excitation light is parallel polarized,

showing all ground states are coupled to a unique excited state. . . . . . . . . . . . 185
5.8 A schematic diagram of the ground and excited states in the 𝐽′′ = 1/2 → 𝐽′ = 1/2

transition driven by transverse polarized light. The hyperfine states are written in
the decoupled |𝑀𝐽 , 𝑀𝐼⟩ basis. In this basis, E1 selection rules enforce Δ𝑀𝐼 = 0,
and with transverse polarization we have Δ𝑀𝐽 = ±1. The TDM phase for optical
coupling depends on the excited state Clebsch-Gordan coefficients. We have colored
the excitation laser according to the TDM phase, where red is positive and blue
is negative. We see the two Λ systems have opposite relative phase on the two
excitation arms, resulting in destructive interference of dark states. . . . . . . . . . 186

5.9 Oriented states used to implement spin precession using circularly polarized light.
The notation 𝑀𝑌 = 𝐹 · 𝑌 indicates our quantization axis is along 𝑌 . These states
are dark states of 𝜎± beams, and rotate into each other by the action of transverse
magnetic fields along �̂� or �̂� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
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5.10 Schematic diagram of dynamics with the circularly polarized spin precession scheme.
The left side of the diagram has𝑌 as the quantization axis, while the right side has �̂� as
the quantization axis. (i) The molecules are initially optically pumped into |𝑀𝑌 = 1⟩
using 𝜎+ light. We work with a 𝑄 line, and therefore 𝑀𝑌 = 1 is dark to 𝜎+. (ii)
With a Wigner rotation, we can write |𝑀𝑌 = 1⟩ in a rotated basis as a superposition
of 𝑀𝑍 = −1, 0, +1 states. (iii) In the �̂� frame, the application of a 𝐵𝑍 magnetic field
causes the 𝑀𝑍 levels to split by the Larmour frequency 𝜔𝐵 = 𝑔𝜇𝐵𝑀𝑍 , where 𝑔 is
the state 𝑔-factor. (iv) Alternatively, in the 𝑌 frame, the 𝐵𝑍 field is transverse and
causes Δ𝑀𝑌 = ±1 couplings that move population between states. (v) After half a
Larmour period, in the �̂� frame, the two 𝑀𝑍 = ±1 have reversed their sign relative
to the 𝑀𝑍 = 0 state. (vi) In the 𝑌 frame, which can be obtained from (v) by an
inverse Wigner rotation or directly time-evolved from (iv), we see the state has now
evolved into the |𝑀𝑌 = −1⟩ configuration. The spin has now reversed direction, and
this state can now be probed by 𝜎+ light. . . . . . . . . . . . . . . . . . . . . . . . 191

5.11 A diagram detailing the circular polarization spin precession scheme. (a) A level
diagram of the 𝑄 line is shown schematically in the 𝑀𝑌 basis. The green arrows
indicate optical pumping into the stretched state by 𝜎+ light propagating along 𝑌 .
(b) Schematic diagram of the beam line, with the �̂� axis coming out of the page. The
molecules exit the CBGB, enter the magnetically shielded region, and encounter the
prep beam. Then, they precess freely for ≈ 25 µs before being probed by the readout
beam. We have shown the prep and readout beams with the same polarization, but
they can in principle be made opposite to change the spin precession phase, similar
to the ACME polarization switch. . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

5.12 Spin precession data obtained using oriented stretched states. Here, the prep and
readout beams both had the same circular polarization handedness. The y-axis plots
the ratio of the fluorescence with and without the readout beam. When 𝐵 ≈ 0, the
initial dark state does not precess and remains dark, and the fluorescence ratio is
at a minimum. As we vary the magnetic field, the stretched state is rotated into
bright states, which can fluoresce and give us signals.The functional form of the fit
is cos4 𝜔𝐵/2 + 𝜙, where 𝜔 = 𝑔𝜇𝐵𝜏/2. Using 𝑔 = 2, we obtain 𝜏 = 14.8 µs. . . . . . 193

5.13 A photo of the beamline used for the two-photon tests. The molecule beam exits the
beam source on the right and travels toward the left. The region wrapped in magnetic
shielding contains the upstream KF50 cross and the 3-axis square magnetic field
coils, and is where the two-photon tests occur. The downstream octagon is where
we perform state readout and collect LIF. The 6 inch scale indicated is approximate. 196
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5.14 A schematic of the two-photon experiments performed in this section. In the first
stage, the population in 𝜓1 = |𝑁 = 1, 𝐽 = 1/2+⟩ is depleted using �̃� (010) → �̃�(000)
light. Then, the molecules encounter the two-photon light, in either CPT or detuned
Raman configurations. When the two-photon resonance matches the spin-rotation
splitting, there is population transfer from 𝜓2 = |𝑁 = 1, 𝐽 = 3/2+⟩ to 𝜓1. In the final
stage, the population revival in 𝜓1 is readout with the same light that was used for
depletion, and we collect the fluorescence. . . . . . . . . . . . . . . . . . . . . . . 198

5.15 The annotated acousto-optic modulator (AOM) setup used to generate two-photon
light. White arrows label optical path directions for the double-pass setup. Parts
are labeled as follows: VRFA, visible Raman fiber amplifier; HWP, half waveplate;
QWP, quarter waveplate; PBS polarizing beam-splitter; BS, 50/50 beam-splitter;
H/V, horizontal/vertical polarization; L/R, left/right handed circular polarization.
See main text for details. We thank Yi Zeng for setting up the breadboard. . . . . . . 200

5.16 Three level toy models for AOM and EOM two-photon setups. The two ground
states are 𝜓1 and 𝜓2, split by 𝜔12, and the excited state is 𝑒, separated from the
ground states be 𝜔𝑒2 and 𝜔𝑒1. (a) With an AOM, we generate two laser beams, 𝐿1
and 𝐿2, that can address either ground state. The one photon detuning is given by
Δ = 𝜔𝐿2 − 𝜔𝑒2 , and the two-photon detuning is 𝛿 = 𝜔𝐿2 − 𝜔𝐿1 − 𝜔12. (b) With
an EOM, we generate three frequencies: the carrier 𝜔0, and two sidebands 𝜔+1 and
𝜔−1. The diagram shows the resonant two-photon case when |𝜔0 − 𝜔±1 | = 𝜔12.
On resonance, we have two separate two-photon linkages, 𝜔0𝜔−1 and 𝜔+1𝜔0. The
relative phase of -1 between the sidebands results in destructive interference of the
total 𝜓1 ↔ 𝜓2 transition amplitude, see main text for details. (b) is adapted from
Ref. [398] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

5.17 A schematic diagram of the �̃� (010) and �̃�(010) states involved in the two-photon
experiments with orthogonal polarizations. The diagram is applicable to both CPT
and detuned Raman transitions. Here, we show the case of |𝜓1⟩ = |𝐽 = 1/2+⟩ and
|𝜓2⟩ = |𝐽 = 3/2+⟩. The two AOM sidebands are 𝐿1 and 𝐿2, and we indicate the one
photon detuning Δ and the two-photon detuning 𝛿 (see main text for more details).
Here, we have only shown one of the possible linkages between 𝐹 = 2 and 𝐹 = 1.
In general there will also be linkages involving 𝐹 = 2, 𝑀𝐹 = ±1 states, not shown. . 210
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5.18 Coherent population trapping (CPT) features obtained with Δ = 0 scanning the
two-photon frequency 𝛿 across the 𝑁 = 1+ spin-rotation splitting. The signal is
the population read out from the 𝐽 = 1/2 level, denoted 𝜓1 in the main text. All
model curves are calculated with 𝑠1 = 0.5, 𝑠2 = 10, taking into account the AOM
scanning efficiency with 𝜎 = 2.5 MHz, and using a 10 MHz excited state Doppler
broadened width. Both data curves have slopes due to target decay and heating. (a)
CPT signals obtained with perpendicular polarization on the two sidebands 𝐿1 and
𝐿2. The feature in the middle is a dark state formed by connecting 𝐽 = 3/2, 𝐹2 =

2↔ 𝐽 = 1/2, 𝐹 = 1. (b) The CPT feature is absent when using parallel polarization
on 𝐿1 and 𝐿2, a result of hyperfine interference. . . . . . . . . . . . . . . . . . . . 211

5.19 Detuned Raman transitions between 𝑁 = 1, 𝐽2 = 3/2+ and 𝑁 = 1, 𝐽1 = 1/2+ hy-
perfine states, driven by perpendicular two-photon beams. The hyperfine transitions
are labeled as 𝐹2 ↔ 𝐹1. The inset in the top right shows a diagram of the levels
involved, not to scale. The data correspond to the LIF signal characterizing popu-
lation revival in 𝜓1. The two-photon laser beam has 22.5 mW of total power split
evenly between both sidebands. The beam is cylindrical with 𝑑𝑋 = 2 mm along the
molecule travel direction and 𝑑𝑍 = 5.2 mm along the transverse direction. Model
curves are obtained using 𝑠1 = 𝑠2 = 220, and 𝑏𝐹 = 4.07 MHz and 𝑐 = 3.49 MHz, see
main text for details. The model curve is offset by 700 kHz to account for unknown
light shifts and inaccuracies in the optically determined spin-rotation parameters. . . 215

5.20 A schematic diagram of the �̃� (010) and �̃�(010) states involved in the Ramsey
interferometry tests with 𝐵𝑍 = 320 mG. Level positions are representative only and
not to scale. The states of interest, 𝑀𝐹 = 2 and 𝑀𝐹 = 1, are detailed in the main
text, and their total 𝑔-factors (in terms of 𝜇𝐵) are also indicated. The other states
are off-resonant and/or depleted. The two AOM sidebands are 𝐿1 and 𝐿2, and with
polarizations �̂� and �̂� , respectively. Levels are labeled according to their free-field
quantum numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

5.21 A schematic of the two-photon experiments performed in this section. In the De-
pletion stage, we first apply polarization pumping to collect population in |𝜓2⟩ =
|𝐽 = 3/2+, 𝐹 = 2, 𝑀 = 2⟩. Then, we apply depletion pumping to deplete |𝜓1⟩ =
|𝐽 = 1/2+, 𝐹 = 1, 𝑀 = 1⟩. Next, in the Prep stage, we apply a 𝜋/2 pulse between
𝜓1 and 𝜓2 using a detuned two-photon transition. After a free evolution time 𝜏, we
then apply another 𝜋/2 pulse in the Readout stage, mapping the superposition phase
evolution onto 𝜓1 and 𝜓2 populations. Finally, in the Probe stage we use resonant
light to probe the 𝜓1 population. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
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5.22 A photo of the laser beams used to perform Ramsey interferometry. The beams
are cylindrically shaped to cover the entire molecular beam. The molecules first
encounter polarization pumping, followed by depletion, and then Ramsey beams.
See main text for details. Readout is not pictured. The retroreflecting prism used to
generate the second Ramsey beam is visible. . . . . . . . . . . . . . . . . . . . . . 220
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Introduction

Luminous beings are we, not this
crude matter.

–Yoda

1.1 Overview
Fundamental physics research currently lies at a paradoxical juncture. On one hand, the last

50 years have seen the development and validation of the most successful description thus far
of Nature’s fundamental building blocks—the Standard Model of particle physics. Built on the
mathematical foundations of quantum field theory (QFT), the Standard Model has consistently
demonstrated its accuracy in experimental tests, such as the discovery of the Higgs boson particle
at the Large Hadron Collider (LHC) [1, 2], or the one part per trillion agreement of theoretical
predictions with experimental measurements of the electron’s magnetic moment [3].

On the other hand, the Standard Model is a deeply incomplete theory. First, though we observe
four fundamental forces in nature1, the Standard Model only describes three—gravity is missing.
Second, the Standard Model has major inaccuracies when compared to cosmological observations,
failing to provide an origin for dark matter or dark energy. Third, the Standard Model does
not explain the observed imbalance of matter and antimatter in the universe [4]. Fourth, while
experiments have determined neutrinos have finite mass, the Standard Model describes them as

1The strong nuclear force, the weak nuclear force, electromagnetism, and gravity.
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massless. Finally, the Standard Model has 19 free parameters2 that must be provided as an input to
the model. These parameters are not derived, can only be obtained experimentally, and their origin
is not understood, giving rise to the flavor [5] and hierarchy problems [6]. To address these issues
and more, we require new physics beyond the Standard Model (BSM).

The silver lining is that the new physics is out there; we simply have to discover it. The
experimental program searching for new physics has two complimentary approaches—one can
either precisely measure properties of exotic objects, or one can take a magnifying glass to so-
called ordinary matter, and precisely search for exotic properties. The former approach motivates
experiments detecting gravitational waves or colliding particles at high energy, while the latter
approach motivates tabletop experiments performing measurements on our ubiquitous constituents,
atoms and molecules. In this thesis, we focus on the low energy, tabletop approach, though we
emphasize that both approaches are complimentary, and their combination is necessary to cover
the vast parameter space of possible BSM physics.

A fruitful approach to searching for new physics is to perform a “background-free” mea-
surement. To ensure a low energy observable is background-free, we can look for violations of
fundamental symmetries that are expected to be very weak in the Standard Model. Fundamental
symmetry violation can generically manifest as “exotic” electromagnetic moments that have not yet
been observed in Nature [7]. A textbook example is the permanent electric dipole moment (EDM)
of a fundamental particle, which would violate fundamental Parity (𝑃) and Time-reversal (𝑇) sym-
metries, and is highly suppressed in the Standard Model [8]. In general, vacuum fluctuations of
symmetry violating BSM particles at high energy scales can interact with fundamental particles,
such as the electron, and induce permanent EDMs at the atomic or molecular scale. Any nonzero
measurement of an EDM would constitute an exciting new realm of exploration in physics, while
a null result can place tighter bounds on proposed theories of BSM physics, such as models of
supersymmetry or extra dimensions [9]. As an example, current state-of-the-art searches for the
electron’s EDM in diatomic molecules [10, 11] have sensitivity to symmetry violating new physics
at ∼50 TeV energy scales, beyond the current reach of particle colliders [12].

It may seem odd that measurements of atoms or molecules at low energies can provide us
information on the inner-workings of high energy particle physics [13–15]. After all, the center of
mass energies of LHC experiments are at ∼13 TeV, while the temperature of the cold molecules
in our experiments are orders-of-magnitude away at ∼100 µeV. However, the electromagnetic
environment inside an atom or molecule is actually quite extreme. For example, electrons orbiting
a heavy nucleus can travel at near light speed through the inside of the nucleus. These electrons

2Without neutrino masses and mixing, we get: 6 quark masses, 4 angles for the CKM matrix, 3 lepton masses,
3 gauge coupling constants, 2 Higgs constants, and the QCD vacuum angle. Neutrinos add 4 angles for the PMNS
matrix and 3 masses.
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experience relativistically-enhanced electric fields, on the order ∼30 GV/cm, that are 105 times
stronger than what we can produce in a lab! Measurements of these relativistic, core-penetrating
orbits can have amplified sensitivity to the subtle effects of permanent EDMs. Core-penetrating
electrons can also provide sensitive probes of Standard Model nuclear properties, and we direct the
curious reader to Ref. [16] for more details.

The powerful reach of existing molecular EDM measurements motivates us to pursue the next-
generation of BSM searches. By adopting polyatomic molecules as an experimental platform, we
can generically combine laser-cooling and trapping, BSM sensitivity, and exquisite quantum control
over EDM interactions [17]. This will enable significant synergy with the toolbox of atomic physics
techniques developed for quantum information, simulation, and metrology [18]. However, before
we can reach the promised land of quantum-enhanced measurements, we must first understand and
control the additional complexity present in polyatomics molecules.

The work described in this thesis develops the foundations for precision measurements of
symmetry violating physics in polyatomic molecules. While the majority of this work focuses
on YbOH molecules, the results are extendable to other linear triatomic molecules of the M-
OH form (M=Ca, Sr, Ba, Yb, Ra). Before presenting results, we provide useful background
in the introduction. In Section 1.2, we introduce fundamental symmetries, motivate searches
for their violation, and discuss their manifestation as exotic electromagnetic moments. Then, in
Section 1.3, we discuss symmetry violation in atoms and molecules, including mechanisms for
their enhancement, and connections to high energy theory. Finally, in Section 1.4, we conclude the
introduction by answering the question, “Why polyatomic molecules?”

The rest of the thesis is divided as follows. Chapter 2 provides a foundational understanding
of molecules and the electromagnetic interactions used to control them. In Chapter 3, we describe
our beam source used to generate high fluxes of cold YbOH molecules, and we present a novel
scheme for enhancing molecule production using laser light. In Chapter 4, we present results
on spectroscopy of YbOH, in particular the study of the molecule’s fundamental bending mode,
unique to polyatomics. In Chapter 5, we discuss methods for performing precision measurements
in polyatomic molecules, including results from prototype measurements in both a cold YbOH
beam and a trap of ultracold CaOH molecules. We conclude with an outlook on an ongoing search
for symmetry violation in 173YbOH, and discuss the future of polyatomic molecules for precision
measurements.
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1.2 Fundamental Symmetry Violation
1.2.1 Background

A symmetry describes a transformation of an object that leaves the physical properties of the
object unchanged. The study of symmetry can simplify a complex problem and classify emergent
behavior. Symmetries help us understand what properties are redundancies of our reference frame,
and what properties have physical consequences independent of our basis. For example, the
rotational states of polyatomic molecules can be very complicated, as we will see. However, in the
language of symmetry, we can understand and classify the many states of a molecule in terms of
their behavior under transformations (rotations, reflections) performed in the molecule’s rotating
frame. If we further understand the symmetries of interactions, we can develop an accurate theory
of the molecule’s physical behavior in external electric and magnetic fields. Further, we can use
our understanding of molecular symmetry to predict emergent behaviors and to engineer specific
quantum states with favorable properties. Ironically, we use our understanding of symmetries in
molecules to look for violations of fundamental symmetries in physics!

The same principles of symmetry classification can be found all over physics, including at the
fundamental level in describing subatomic particles. The laws of physics as we construct them are
imbued with various spacetime symmetries. Theories of fundamental physics can trace a lineage
to Copernicus’s insight that as observers, we do not occupy a privileged position in the universe. In
other words, the law of physics should be independent of our frame of reference in in space and time.
Of course, there is a program of new physics looking for violations of even these symmetries [14].
However, to date, we have not found evidence for variation of the laws of physics in different regions
of space or different points in time.

The complete group of spacetime symmetries is the Poincare group [19], consisting of the
following transformations: translations, rotations, and Lorentz boosts. Particles in our theories are
defined as objects that retain characteristic physical properties even when we transform our reference
frame. Wigner put this concept on mathematical grounds in 1939 [20] by defining particles as the
irreducible representations of the Poincare group, classified by two properties: an intrinsic spin
that must take on integer or half-integer values, 𝑆 = 0, 1

2 , 1,
3
2 , . . . and an intrinsic mass 𝑚 ≥ 0.

For 𝑚 > 0, what we call a particle is a collection of 2𝑆 + 1 spin orientation states that transform
into each other upon rotations of physical space. This is just a statement of angular momentum
conservation: while the spin of an electron may point in different directions in different reference
frames, its magnitude 𝑆 = 1

2 must be conserved. The transformation properties of an arbitrary spin
𝑆 under rotations are given by the Wigner D-matrices, D (𝑆) , which we will repeatedly encounter
later in this thesis in the context of the symmetric top eigenstates that describe molecular rotation.
Finally, Wigner also showed for 𝑚 = 0, we can only have 2 orientations, which correspond to the
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two polarizations of light. We do not observe 𝑚 < 0 states in nature.

So far, the spacetime symmetries we have discussed are continuous in nature. We can also
investigate the behavior of physical systems under discrete symmetries, essentially generalizations
of the concept of a reflection. In QFT, dynamic quantities such as momenta or currents are
described in terms of relativistic four-vectors. For example, we can consider the electromagnetic
current 𝑗𝜇 = (𝜌, ®𝑗), where 𝜌 is the charge density and ®𝑗 describes standard three dimensional charge
currents. We consider a generalized reflection operation, consisting of 𝑗𝜇 → − 𝑗𝜇. This turns out
to be a deep symmetry transformation that is connected to Lorentz invariance, and it is known as
Charge-Parity-Time (𝐶𝑃𝑇) symmetry. 𝐶𝑃𝑇 is postulated to be an exact symmetry of the universe
by the CPT theorem, a cornerstone of QFT. Observations of 𝐶𝑃𝑇 violation would require major
reworkings of the theoretical framework underpinning the Standard Model. Of course, there are
experiments searching for 𝐶𝑃𝑇 violation, detailed in a recent review [14]. But as with Lorentz
invariance, no evidence has yet to be discovered for the violation of 𝐶𝑃𝑇 , and we take it to be an
exact symmetry in this thesis.

As the name suggests, a 𝐶𝑃𝑇 transformation can be factored into three separate discrete
symmetry operations: Charge reversal (𝐶), Parity reversal (𝑃), and Time reversal3 (𝑇). The effect
of these transformations in QFT is derived in textbooks, and here we simply provide an intuitive
physical explanation. Performing a 𝐶 transformation reverses electromagnetic charges, swapping
matter with antimatter. Performing a 𝑃 transformation inverts spatial coordinates, ®𝑟 = (𝑥, 𝑦, 𝑧) →
−®𝑟 = (−𝑥,−𝑦,−𝑧). This operation is equivalent to a mirror reflection, followed by a 180◦ rotation
along an axis perpendicular to the mirror plane. Finally, performing a 𝑇 transformation reverses
the sign of all motion, such as momenta or currents, swaps initial and final states, and performs
complex conjugation, i.e. takes 𝑖 → −𝑖. For convenience, we have provided a table of the 𝐶, 𝑃,𝑇
symmetry properties of various common physical quantities in 1.1.

Intriguingly, while the combination of𝐶𝑃𝑇 is a good symmetry, all three individual symmetries
have been found to be violated separately in Nature. The details depend on the specific fundamental
force in question. Gravity is expected to be fully symmetric under𝐶, 𝑃, and𝑇 , though only recently
are gravitational wave experiments able to place bounds. Thus far, electromagnetism and the strong
nuclear force have been observed to be fully symmetric under any of 𝐶, 𝑃, or 𝑇 , applied together
or individually, but as we shall see, there could still be symmetry violation at scales we have yet to
probe. On the other hand, the weak nuclear force explicitly violates 𝑃, 𝑇 , and 𝐶𝑃 symmetries [21],
and we note the various violations are all in agreement with the 𝐶𝑃𝑇 theorem4. To date, the weak

3We note that we are discussing microscopic 𝑇-symmetry—while we observe a clear asymmetry in the flow of
time in our everyday life, this applies only to macroscopic phenomena that statistically will always evolve from low
entropy initial states to high entropy final states.

4Technically, if 𝐶𝑃𝑇 = −1, then 𝑇 = −𝐶𝑃, but overall phases are not distinguishable.
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Table 1.1: Table of useful symmetry relations. To be explicit, we have included spin in its own
row, but there is no reason for it to behave differently from an ordinary angular momentum 𝐽.

Symbol Description 𝐶 𝑃 𝑇

®𝑟 Position + − +
®𝑝 Momentum + − −
®𝐽 Angular momentum + + −
®𝑆 Spin + + −
®𝐸 Electric field − − +
®𝐵 Magnetic field − + −
®𝑗 Electric current − − −
𝜌 Charge density − + +

nuclear force is the only fundamental force that has been observed to violate discrete symmetries5.

1.2.2 Cosmological Motivation
Is there any reason to expect Nature to violate fundamental symmetries? Originally, scientists

believed that Nature should be symmetric by principle. However, fundamental symmetry violation
can have drastic consequences for Cosmology, the study of the origins of the universe. In this
section, we motivate the existence of fundamental symmetry violation on cosmological grounds.

Astronomical observations indicate the universe is dominated by matter, with virtually no free
antimatter [4, 22]. While antimatter is produced in physical processes, such as radioactive decays
or high energy collisions, once antimatter encounters its equivalent ordinary matter partner, both
masses annihilate into photons. This is indeed how we know the universe is matter dominated—
if there were a region of antimatter in the universe, the boundary of interstellar space would
generate enough annihilation events to be observable [4, 22]. A special region of antimatter in
the universe would also violate the cosmological isotropy principle, which states the universe
should be statistically homogeneous on large scales [23–25]. The observed imbalance of matter
and antimatter is known as the Baryon6 Asymmetry of the Universe (BAU). The BAU is often
parameterized in terms of the asymmetry parameter 𝜂𝐵 =

𝑛𝐵−𝑛�̄�
𝑛𝛾
∼ 10−10, where 𝑛𝐵 (𝑛�̄�) is the

number density of baryons (antibaryons) observed in the universe, and 𝑛𝛾 is the number density
of cosmic microwave background (CMB) photons, which represent the photons produced by
matter/antimatter annihilation in the early universe7. The asymmetry parameter 𝜂𝐵 can be obtained

5Curiously, the weak force is also the only force that violates flavor symmetry. Among other things, flavor violation
is essential for the proton-proton chain, the dominant fusion reaction in the sun and other stars with similar or smaller
mass.

6Baryons are composite particles, in particular protons and neutrons, which are made of three quarks.
7Since the CMB photon density changes over time in an expanding universe, some authors prefer instead to

normalize by the total entropy density of the universe 𝑠, which remains constant. We note 𝑠 and 𝑛𝛾 are proportional to
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experimentally from many sources, such as analysis of studies of the CMB, or the observed
abundances of light elements [21, 22, 26]. Interestingly, the asymmetry we see now actually began
as a relatively small one in the early universe.

In 1967, Sakharov showed [27] that three conditions must be satisfied to generate the BAU: 1)
The existence of 𝐶 and 𝐶𝑃 (= 𝑇) violation; 2) The violation of baryon number; and 3) Departure
from thermal equilibrium. As it turns out, the Standard Model can have all three ingredients,
though not at sufficient scales for the latter two. The violation of baryon number can occur via
non-perturbative processes known as sphaleron transitions [4, 7, 19] that violate baryon number but
preserve the difference of baryon number minus lepton number. The Standard Model can also satisfy
departure from thermal equilibrium if the electroweak phase transition of the Higgs vacuum is a
first order transition. However, the measurement of the Higgs mass at 𝑚𝐻 ≈ 125 GeV indicates the
electroweak phase transition is likely a second order transition [28], which cannot generate sufficient
deviation from equilibrium [7, 22], requiring new physics. Finally, we mentioned earlier that the
electroweak force violates𝐶𝑃 and𝐶 symmetries. However, it turns out this violation is too weak to
physically cause the BAU [4, 7, 22], even if we had sufficient departure from thermal equilibrium.
Essentially, the processes that result in 𝐶𝑃 violation happen at many loops in perturbation theory
that must involve all three quark generations8, suppressing their dynamical contribution. Typically,
the “strength” of 𝐶𝑃 violation is parameterized by the Jarlskog determinant [22, 29], in invariant
product of quark masses and mixing angles. The Jarlskog determinant is much smaller than
the energy scale of sphaleron processes, making it difficult to develop a model for electroweak
baryogenesis [22].

In general, electroweak baryogenesis models require new physics to explain the BAU. There
are of course other possible explanations, such as leptogenesis [9, 30–32], where 𝐶𝑃 violation in
neutrinos first generates a lepton asymmetry, and sphaleron transitions convert this to a baryon
asymmetry. Another possible explanation is violations of 𝐶𝑃𝑇 symmetry [33], though this would
have drastic consequences on the rest of our understanding of nature. Further details on the baryon
asymmetry of the universe can be found in Refs. [4, 7, 22], as well as the pedagogical review given
in Ref. [34].

1.2.3 P, T Violating Moments
Since we know Nature can violate symmetries, and we have cosmological motivations for

symmetry violation, we have reason to expect electromagnetism and/or the strong force have their
discrete symmetries broken on a a subatomic scale. Generically, both forces can admit interactions
and terms that violate 𝑃 and 𝑇 symmetries, but so far no such interactions have been observed

each other.
8If fewer than 3 generations are invovled, the CKM phase is trivial can be transformed away by a unitary operation.
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in Nature. In this section we provide a discussion of how such symmetry violation manifests in
electromagnetic interactions.

𝑃 and𝑇-violation can can result in symmetry violating electromagnetic moments of fundamen-
tal particles. These moments can be derived generally, either from a standard multipole expansion
of charge and current, or from a decomposition of the electromagnetic current operator, 𝑗𝜇, into
Lorentz invariant form factors. The latter approach is detailed in Refs. [35–38], and we outline it
here schematically. Consider the matrix element of 𝑗𝜇 connecting generic initial and final particle
states with a given spin 𝑆 and momenta 𝑘, 𝑘′. The matrix element ⟨𝑘′, 𝑆 | 𝑗𝜇 |𝑘, 𝑆⟩ can be factored
into its Lorentz invariant constituents, known as form factors, labeled as 𝐹1(𝑞2), 𝐹2(𝑞2), . . ., and
parameterized in terms of the 4-momentum transfer 𝑞2 = (𝑘′ − 𝑘)2. There are generically 6𝑆 + 1
form factors for a given spin 𝑆.

For now, we consider the case of a fundamental spin-1
2 particle, such as the electron, giving

us four separate terms. In the non-relativistic rest frame, 𝑞2 → 0, and the form factors can be
identified9 with various properties of our spin-1

2 particle, some more familiar than others:

𝐹1(0) = 𝑄 (charge) (1.1)
1

2𝑚
(𝐹1(0) + 𝐹2(0)) = 𝜇 (magnetic dipole moment) (1.2)

− 1
2𝑚

𝐹3(0) = 𝑑 (electric dipole moment) (1.3)

1
𝑚2𝐹4(0) = 𝑎 (anapole moment). (1.4)

The first two quantities, the charge 𝑄 and magnetic moment 𝜇, are familiar properties of all
subatomic particles, including electrons. The electric dipole moment has a clear classical analogue,
and the anapole moment describes a “torodial” magnetic moment. We note all of these quantities
are intrinsic. Of these quantities, only 𝑄 is invariant under rotations. While the magnitude of the
moments (including the anapole) are fixed, they are vector observables that must be oriented along
the same axis as the spin: ®𝜇 = 𝜇 ®𝑆, ®𝑑 = 𝑑 ®𝑆, and ®𝑎 = 𝑎 ®𝑆. We now give some reasons for such a
constraint.

First, recall our spin-1
2 particle transforms under rotations according to the Wigner D-matrices,

D (𝑆= 1
2 ) , and this was obtained by demanding our particle properties remain invariant under changes

to our reference frame. Imagine we were to add another, second physical axis to describe our particle,
describing 2𝑆′ + 1 hypothetical orientations of some dipole moment ®𝑑. To maintain invariance
under rotations, we demand this second axis also transform according to the D-matrices10, and our

9For composite particles such as protons or neutrons, the form factors besides 𝐹1 are generally hard to compute.
10If we did not do this, then ®𝑑 would pick out an absolute direction in space, which is Lorentz violating.



9

particle’s rotation properties are now given byD ( 1
2 ) ⊕D (𝑆′) = D ( |𝑆′− 1

2 |) ⊗D ( |𝑆′− 1
2+1|) ⊗ . . .D (𝑆′+ 1

2 ) .
Our simple spin-1

2 particle has turned into a coupled angular momentum problem consisting of
(2( 12 ) + 1) (2𝑆′ + 1) orientations, contradicting our initial classification of the particle’s rotational
symmetries. If we tried to use this two-axis state to describe a wavefunction of identical electrons in
the same spatial state, we would conclude that we have (2𝑆′+1) times more configurations available
than what we physically observe with electrons under the Pauli exclusion principle. Furthermore,
we run into a deeper issue—by the spin-statistics theorem, if 𝑆′ is half-integer, then our combined
two-axis particle is now a boson, and Pauli exclusion does not apply at all! In Nature, we observe
spin-1

2 electrons that only have 2-fold internal degrees of freedom, which is only consistent with
the case that ®𝑑 ∝ ®𝑆.

For the sake of argument, let us proceed as if ®𝑑 can point at an arbitrary angle relative to ®𝑆. If
we try to measure ®𝑑, we will run into problems. Since our particle has angular momentum, any
components of ®𝑑 perpendicular to ®𝑆 will be averaged away by the spin, leaving only the projection
®𝑑 · ®𝑆. Since ®𝑆 only has 𝑆𝑧 defined due to the commutation relationships of angular momenta, the
transverse components of ®𝑆 and ®𝑑 vanish, and we can only measure 𝑑𝑧 ∝ 𝑆𝑧. This argument can
be generalized to angular momenta larger than 𝑆 = 1

2 via the Wigner-Eckart theorem, presented
in Sec. 2.1.2. In the language of spherical tensor operators [39], all electromagnetic moments of
a given rank are therefore proportional to the angular momentum tensor of the same rank, which
classifies the rotational symmetries of our particle.

Now we move on to considering the symmetry behaviors of these moments interacting with
external fields. One approach is to consider the coupling of 𝑗𝜇 to the photon field in the QED
Lagrangian [35]. Instead, we pursue the low energy equivalent, considering the Hamiltonian
derived from the non-relativistic limit of the Lagrangian [19, 38]. If the Hamiltonian is left changed
by our symmetry operation, then the symmetry is broken. First, we consider the charge 𝑄. While
𝑄

𝐶−→ −𝑄, the Couloumb interaction scales as 𝐻𝑄 ∝ 𝑄𝜙, where 𝜙 is the charge-dependent electric
potential, and therefore 𝐻𝑄

𝐶−→ 𝐻𝑄 . Similarly, for the magnetic moment, we have 𝜇
𝐶−→ −𝜇 𝑇−→ 𝜇,

recalling that ®𝜇 ∝ 𝑄 ®𝑆. But also, the interaction Hamiltonian is 𝐻𝜇 = − ®𝜇 · ®𝐵, and magnetic fields
are generated by currents which are 𝐶- and 𝑇-odd (see Table 1.1), so we have 𝐻𝜇

𝑇−→ 𝐻𝜇, and a
similar argument shows 𝐻𝜇 is also 𝐶-symmetric.

The anapole moment 𝑎 has a non-relativistic interaction Hamiltonian given by [37, 38] 𝐻𝑎 ∝
𝑎 ®𝑆 · (∇ × ®𝐵 − 𝜕𝐸

𝜕𝑡
). Note the anapole only interacts with electromagnetic sources or sinks, which

means it is only nonzero in matter. Since ∇ is 𝑃-odd and 𝜕𝑡 is 𝑇-odd, we see the term in the
parentheses is 𝐶-odd, 𝑃-odd and 𝑇-odd. The spin is 𝑇-odd as well, so the resulting anapole
Hamiltonian is 𝐶-odd, 𝑃-odd, and 𝑇-even, and satisfies 𝐶𝑃𝑇 invariance as expected. The 𝐶-odd
nature of the anapole means it cannot have long-distance effects [35]. Finally, we consider the
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Table 1.2: Table denoting the 𝐶, 𝑃,𝑇 symmetry properties of the 6𝑆 + 1 electromagnetic moments
obtained from the form factor decomposition of the electromagnetic current. When two values are
given separated by the semi-colon, the left value refers to half-integer 𝑆; the right refers to integer
𝑆. Table reproduced from Ref. [35].

𝐶 𝑃 𝑇 Number of moments

+ + + 2𝑆 + 1
− − + 𝑆 + 1

2 ; 𝑆
− + − 𝑆 − 1

2 ; 𝑆
+ − − 2𝑆

electric dipole moment, given by 𝐻𝑑 = −𝑑 ®𝑆 · ®𝐸 . The spin 𝑆 is 𝑇-odd, while the electric field,
generated by charge distributions, is 𝑃-odd and 𝐶-odd. By intuition (and by 𝐶𝑃𝑇) 𝑑 is 𝐶-odd, and
we therefore have that 𝐻𝑑 is 𝑃-odd, 𝑇-odd, 𝐶-even.

We emphasize that in the above discussion, 𝑑 refers to a permanent moment, and is not taken to
be 𝑃-odd, though often it is presented as such when hand-waving. The permanent dipole moment
®𝑑 ∝ ®𝑆 of a point particle is not the same as a composite dipole moment ®𝐷 ∝ ®𝑟 that we will encounter
in atoms and molecules, distinguished by capital 𝐷. Since ®𝐷 is explicitly 𝑃-odd and 𝑇-even, its
interaction with the 𝑃-odd 𝐸 field is 𝑃-even, 𝑇-even. Further, one can show that ⟨𝐷⟩ must vanish
for states with well-defined parity [40, 41], and therefore there are no permanent dipole moments
of atoms and molecules at zero field, which are good parity eigenstates. For an atom this makes
sense given its spherical symmetry. For a simple diatomic molecule, the spherical symmetry is
reduced to cylindrical symmetry, with ®𝐷 pointing along the symmetry axis. However, the molecule
eigenstate still has well-defined parity. We can think of the molecule as constantly rotating, causing
⟨ ®𝐷⟩ = 0 in the lab frame. As we shall see later, only by applying an external field and breaking the
𝑃 symmetry of the molecule do we begin to an induce a dipole moment in the system. The total
dipole moment can then be decomposed into 𝑇-even contributions and 𝑇-odd contributions, and
we search for the latter.

We finally return to the case of an arbitrary spin-𝑆 particle, with 6𝑆 + 1 total invariant form
factors. In Ref. [35], these form factors are tabulated according to their total interaction symmetry
under 𝐶, 𝑃, and 𝑇 , and we reproduce their results in Table 1.2. For this thesis, we will only focus
on the 𝑃,𝑇-odd moments. The 𝐶-odd moments are discussed further in Refs. [42–44].

If we have a particle with spin 𝑆 ≥ 1, we can now support additional 𝑃,𝑇-violating moments,
which correspond to higher order multipoles. Of particular interest is the magnetic quadrupole
moment (MQM) M, which is 𝑃,𝑇-odd and has never been observed, in contrast to the electric
quadrupole moment (EQM) Q, which is 𝑃,𝑇-even, and a commonly observed property of nuclei.



11

Similar to how 𝑑 and 𝜇 have analogous mathematical forms, so too can we draw comparisons
betweenM and Q.

The EQM and MQM are both rank 2 moments, which means they are described by two spatial
indices, and referred to as tensors. To obtain a rotationally invariant interaction Hamiltonian, these
moments must be contracted with tensor quantities that also have two indices. The EQM naturally
interacts with electric field gradients, 𝐻Q ∝ Q𝑖 𝑗∇𝑖𝐸 𝑗 , while the MQM interacts with magnetic field
gradients, 𝐻M ∝ M𝑖 𝑗∇𝑖𝐵 𝑗 . As with the EDM, the MQM must point along the spin 𝑆, but since
it is a tensor quantity, we must construct a rank 2 representation of 𝑆. The common choice is the
irreducible, traceless tensor, given by:

M𝑖 𝑗 =M
3

2𝑆(2𝑆 − 1)𝑇𝑖 𝑗 . (1.5)

Here, we have defined the tensor 𝑇𝑖 𝑗 = {𝑆𝑖, 𝑆 𝑗 } − 2
3𝛿𝑖 𝑗𝑆(𝑆 + 1), where {𝐴, 𝐵} = 𝐴𝐵 + 𝐵𝐴 is the

anti-commutator, and 𝛿𝑖 𝑗 is the Kronecker delta, with 𝛿𝑖 𝑗 = 1 if 𝑖 = 𝑗 and 0 otherwise. The 2𝑆 − 1
factor in the denominator means the MQM is only well-defined for 𝑆 ≥ 1. The quantityM BM𝑧𝑧

is the “magnitude” of the MQM, which can be seen by evaluating eq. 1.5 for a polarized spin,
𝑆𝑧 = 𝑆. The M𝑖 𝑗 form is given in Cartesian coordinates. In the language of spherical tensor
operators (discussed in Sec. 2.1.2 and Ch. 5 of Ref. [39]), we can write the MQM as:

𝑇2
𝑝 (M) =

√
6

𝑆(2𝑆 − 1)𝑇
2
𝑝 (𝑆, 𝑆) (1.6)

where 𝑝 is the index labeling the 5 components in the spherical basis, running from 𝑝 =

−2,−1, 0, 1, 2. Returning to the form of 𝐻M , we have an odd number of 𝑇-odd quantities (2
spin components inM, and one from the magnetic field 𝐵), and the dependence on the gradient
results in 𝑃-odd behavior as well, and therefore the MQM interaction is 𝑃,𝑇-odd, 𝐶-even.

Classically, we can think of an MQM as two opposite current loops, with magnetic moments
± 𝑗𝑎, separated by a distance 𝑟, where 𝑗 is electric current and 𝑎 is area. Using atomic units, the
MQM is given by M ∝ 𝜇𝐵𝑎0, or alternatively with nuclear units, 𝜇𝑁 fm. Clearly, the MQM is
the mangnetic dipole analogue of the EDM, with units of dipole × distance instead of charge ×
distance. The SI units of the MQM are current × volume, or A m3. We note some papers write the
MQM by factoring out the speed of light and setting 𝑐 = 1, resulting in the same units for MQMs
and EQMs, charge × area.

Finally, for completeness, we provide the classical formula for the MQM. The classical form
of the MQM multipole is given by [45, 46]:

←→
M =

1
2

∫
d®𝑟

(
®𝑟 (®𝑟 × ®𝐽) + ( ®𝐽 × ®𝑟)®𝑟

)
(1.7)
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where the notation
←→
M indicates we are dealing with a tensor quantity. Like the previous forms we

provided of the MQM, this form is also traceless and symmetric. Further, classical vector potential
generated by

←→
M is given by:

®𝐴(®𝑟) = 𝜇0

4𝜋
𝑟 ×
←→
M × 𝑟
𝑟3 (1.8)

and the magnetic field can be obtained by the usual relation, ®𝐵 = ∇× ®𝐴. A generalization to higher
order moments can be found in Jackson [47].

So far, our discussion has focused on permanent 𝑃,𝑇 violating moments of fundamental
particles. Early on, physicists realized that these permanent moments can also manifest in composite
systems. The first example was the work of Ramsey and Purcell in 1957 [48], where they placed the
first limits on the EDM of the neutron (𝑑𝑛 < 10−20 𝑒 cm). We might naively expect a nonzero neutron
EDM, given the neutron is made up of oppositely charged quarks. However, no EDM has been
found so far, with current experimental bounds limiting the neutron EDM to 𝑑𝑛 < 1.8×10−26 𝑒 cm,
and even more sensitive experiments currently underway [49]. The neutron EDM is explicitly a
probe of 𝑃,𝑇 violation in the strong force, which manifests in the quantum chromodynamics (QCD)
vacuum angle, parameterized by the 𝜃 parameter. The experimental neutron EDM bound translates
to a limit of 𝜃 ≲ 10−10 [7], though the exact value can vary in the literature as the calculation is
challenging. The question of the small or zero value of 𝜃 constitutes the strong-CP problem, a
rich field of physics that has given rise to the theory of axion-like particles, a potential dark matter
candidate. We do not discuss this further, but direct the reader to the excellent review in Ref. [50]
for more information.

1.3 Atoms and Molecules
1.3.1 Electronic Enhancements

Permanent 𝑃,𝑇 violating moments can also arise in atoms and molecules. An excellent and
comprehensive discussion is given in Ch. 5 of Ref. [14] as well as Refs. [7, 51, 52]. Furthermore,
the white paper in Ref. [12] describes the state of the field at the time of this thesis.

The existence of 𝑃,𝑇 violation in composite systems actually non-trivial—in a neutral, non-
relativistic collection of point charges, Schiff’s theorem [53] states that there can be no permanent
EDM of the composite system, as the constituent charges will re-arrange themselves to “screen”
EDMs. However, Schiff also showed this screening breaks down for magnetic interactions [54]
(there are no magnetic charges to screen with) and if there is a finite charge distribution that is offset
from the spin distribution (as can happen in generically a nucleus with different proton and neutron
distributions). This gives rise to the following nuclear 𝑃,𝑇 violating nuclear moments: the nuclear
Schiff moment (NSM) [55, 56], which is a partially screened dipole moment, and the nuclear
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magnetic quadrupole moment (NMQM) [57, 58], which is essentially the composite equivalent
of the MQM discussed earlier. We note there is also an electric octupole moment [59], but this
effect is supressed in atoms and molecules and is usually not considered. Further, Sandars [60] first
showed that relativistic effects can also result in evasion of Schiff’s theorem, adding the electron
EDM (eEDM) as another possible observable in a composite atom or molecule. Ref. [61] explains
the relativistic evasion directly in terms of the Lorentz contraction of the eEDM (which has units
of charge distance) when viewed from the frame of the stationary nucleus. An additional result
is that for both electrons and nuclei, 𝑃,𝑇 violation can actually be amplified by relativistic effects
compared to the bare particle value [14]. For example, the eEDM is enhanced by a factor of
roughly 𝑍3, while the NMQM is enhanced by roughly 𝑍2, where 𝑍 is the number of protons in the
heavy nucleus. These scalings motivate us to perform measurements in systems with high 𝑍 and
core-penetrating, relativistic electron orbitals with 𝑠 character.

There are many different enhancement factors at play in measurements of 𝑃,𝑇 violation in
atoms and molecules. First we discuss “electronic” enhancement. Since the 𝑃,𝑇 violating effects
are strongest near the heavy nucleus, we can think of their effect as causing mixing between opposite
parity electronic orbitals, i.e. mixing 𝑠1/2 and 𝑝1/2 orbitals11, where the letter denotes the orbital
angular momentum 𝑙, and the subscript labels total spin and orbital angular momentum 𝑗 . For
example, with the eEDM, the mixing is generated by the relativistic interaction [63] of the spin with
the electric field inside the atom or molecule. As a result, the eEDM interaction scales like ∼𝛼2𝑍3,
originating from the overlap integral of the 𝑠1/2 and 𝑝1/2 wavefunctions near the nucleus [14, 51,
57, 58, 60].

For the NMQM, the interaction is now between the nucleus and the gradient of the magnetic
field generated by the electron spin [35, 52, 57]. Imagining the NMQM as two opposite current
loops oriented along the nuclear spin, we see a traveling electron will either be deflected upwards or
downwards depending on its spin, generating a spin-dependent charge distribution (manifestly 𝑃,𝑇
odd) of the whole system. Because the NMQM interacts with the electron spin, it is only observable
in systems with unpaired valence electrons (paramagnetic). Additionally, since the NMQM is a
tensor operator, it only arises in nuclei with 𝐼 ≥ 1. Further, by the Wigner-Eckart theorem, the rank
2 NMQM mixes the 𝑠1/2 and 𝑝3/2 relativistic electron wavefunctions, resulting in ∼𝑍2 scaling [57,
58]. This is also why the rank 3 electric octupole moment is so small [64], as it must now mix 𝑠1/2

and 𝑓5/2, or 𝑝1/2 and 𝑑5/2, all which have small mutual overlap at the nucleus.

Finally, considering the NSM, the offset of charge and spin distributions results in an effective
electric field that is nonzero inside the nucleus, and points collinear with the nuclear spin [51,

11If the mixing coefficient is imaginary, we obtain a 𝑃 odd, 𝑇 even effect, and if the coefficient is real, we obtain a
𝑃,𝑇 violating effect, see Ref. [62].
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55]. The NSM distribution arises at third order in the nuclear radius [51, 56], similar to the
octupole [64], though the NSM is still a rank 1 moment. Similar to the case of the NMQM, the
internal field caused by the NSM deflects electrons dependent on the nuclear orientation, generating
a 𝑃,𝑇 odd charge distribution. However, now the interaction is independent of electron spin, and so
the NSM can be measured in systems with paired off valence electrons (diamagnetic). Due to the
partial cancellation of the NSM and the strong relativistic enhancement of the eEDM and NMQM
interactions, the electronic enhancement of the NSM is typically weaker than the paramagnetic
moments by an order-of-magnitude or more [51, 57].

1.3.2 Atoms
The manifestation of 𝑃,𝑇 violation has significant differences between the atomic and molecular

case. In the case of atoms, the 𝑠 and 𝑝 wavefunctions are well separated in energy by ∼eV or more.
As a result, in free-field, the 𝑃,𝑇 violating interaction, 𝐻𝑃𝑇 , will only slightly mix the opposite
parity levels, inducing a small dipole moment along the direction of the total atomic angular
momentum ®𝐽. We should always remember the orientation of a spatial vector (dipole) along an
angular momentum vector (𝐽) is manifestly 𝑃,𝑇 violating. Continuing, if we evaluate the dipole
moment ®𝐷 = 𝑒®𝑟 of the atom in perturbation theory, we find the induced 𝑃,𝑇 violating EDM in
free-field as [51]:

⟨ ®𝐷𝑃𝑇 ⟩atom = 2
⟨𝑠 | ®𝐷 |𝑝⟩⟨𝑝 |𝐻𝑃𝑇 |𝑠⟩

𝐸𝑠 − 𝐸𝑝
∝

®𝐽√︁
𝐽 (𝐽 + 1)

(1.9)

If we apply an external electric field, ®𝐸lab, we expect to observe very small first-order Stark shifts
from ®𝐷𝑃𝑇 · ®𝐸lab. Crucially, in atoms the 𝑃,𝑇 violating effect scales with 𝐸lab, motivating the use
of very large fields [65]. In atoms, there will also be a 𝑃,𝑇 even effect resulting from the ordinary
induced dipole moment, ®𝐷 = 𝛼 ®𝐸lab, where 𝛼 is the DC polarizability. This results in quadratic
Stark shifts on top of the hypothetical linear Stark shifts. Of course, these two effects can be
disentangled by comparing their shifts for 𝑇-reversed states.

In the literature, the concept of an internal electric field of the atom, Eeff, is provided as heuristic
picture for the 𝑃,𝑇 violating effects of the eEDM [14, 35]. We can see that in free-field, the atom is
spherically symmetric, and so the interaction of Eeff with the eEDM, 𝑑𝑒, will mostly average away.
As we show in eq. 1.9, any intrinsic 𝑃,𝑇 violation will result in a slight orientation of Eeff along 𝐽,
suppressed by the separation of atomic opposite parity levels. By applying an external field 𝐸lab, we
polarize the atom ever so slightly, shifting the electron cloud center slightly relative to the positive
nucleus. This provides a preferential axis for orienting Eeff. Unfortunately, even with 100 kV/cm
external electric fields, atoms always remain in the induced dipole moment regime, limiting the
orientation of Eeff in the lab frame, which limits our ability to access the full enhancement of EDM
effects. Molecules, however, have their spherical symmetry broken down to cylindrical symmetry,
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which naturally provides an orientation for Eeff. This has very important consequences that make
molecules significantly more sensitive than atoms to 𝑃,𝑇 violating effects.

1.3.3 Molecules
In molecules, the electronic wavefunctions localized on the heavy nucleus are now strongly

modified by the electric field from the ligand. For polar molecules in particular, the molecule now
has a molecule frame electric dipole moment ®𝐷mol, indicating a separation of charge across the
molecule. This dipole moment is on the order of 𝑒𝑎0 ≈ 2.54 D, where D is the preferred unit of
dipole moment, the Debye. The dipole moment lies along the axis drawn from the heavy nucleus
to the ligand, which defines the internuclear axis12 �̂�. Often �̂� is taken to lie along the 𝑧 axis of
the molecule frame coordinate system. We note that 𝐷mol is not symmetry violating, as it reverses
under 𝑃 and remains invariant under 𝑇 , and therefore the overall interaction ®𝐷mol · ®𝐸lab is 𝑃,𝑇 even.
Since the ligand field causes Stark mixing of states with different orbital angular momenta 𝑙, only
the projection of 𝑙 given by 𝜆 = ®𝑙 · �̂� is well-defined. As a result, the molecular electronic state
can be expressed as a combination of atomic orbitals, for example 𝑎𝑠𝑠𝜎 + 𝑎𝑝𝑝𝜎 + . . ., where the
𝑎 values are wavefunction amplitudes. Here, we use molecular orbital notation, where 𝜎 means
𝜆 = 0. Therefore, in the molecule frame, 𝑃,𝑇 violating interactions can directly connect the 𝑠 and
𝑝 orbitals, without suppression by the Δ𝐸−1

𝑠𝑝 factor we encountered in atoms [35]. Connecting to
the atomic picture, we can think of ®Eeff ∝ �̂� in the molecule.

However, since molecular eigenstates still have well-defined parity to very good degree, there
are still no 𝑃,𝑇 violating shifts in free-field13, in other words ⟨�̂�⟩ = 0. We can think of this as the
molecular rotation averaging away 𝐷mol in the lab frame, such that ®Eeff has no preferred orientation.
More rigorously, free-field molecular eigenstates are always written as symmetric or anti-symmetric
combinations: |𝜓mol⟩ ∝ |𝜂, �̂�⟩ ± |𝜂′,−�̂�⟩, where ± is connected to the parity of the molecular state,
and 𝜂(′) encodes additional quantum numbers. The key strength of molecules is that the opposite
parity levels arise from molecular rotation, with energy separations of Δ𝐸 ≲ 50 µeV ∼ ℎ×10 GHz.
As a result, compared to atoms, polarizing a molecule and orienting �̂� in the lab frame is a
manageable task, achieved with 𝐸lab ≳ 10 kV/cm fields by mixing rotational states. As we shall see,
certain molecules can have nearly degenerate opposite parity levels, known as parity doublets [17],
separated by Δ𝐸 ≲ 50 neV ∼ ℎ × 10 MHz, which can be polarized in fields 𝐸lab ≲ 100 V/cm.
In parity doublets, the states |𝜓mol⟩ are written with 𝜂 = 𝜂′, that is all the quantum numbers are
the same in parity doublet superpositions except for the direction of the internuclear axis. A good
discussion of polarization by mixing opposite parity levels is given in Ch. 2 of Ref. [41], as well

12We take �̂� to point along ®𝐷𝑚𝑜𝑙 , that is pointing from − → +. In M-OH molecules, ®𝐷mol points from O to M in
the physics convention for dipole moment.

13Technically, similar to atoms, there will be a small, induced 𝑃,𝑇 violating dipole moment [52, 66], but we can do
much better than this as we shall see.
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as in Ch. 2 of Ref. [67]. Sandars was the first to realize [68] that by orienting the molecule in
the lab frame, we have effectively aligned ®Eeff, allowing us to access the full relativistic EDM
enhancements available. Indeed, modern molecular EDM experiments have shown the power of
this enhancement, setting very strong limits on the eEDM [10, 11], |𝑑𝑒 | < 4.1 × 10−30 𝑒 cm.

Fundamentally, in molecular experiments searching for 𝑃,𝑇 violating moments, we are mea-
suring an interaction Hamiltonian of the form:

𝐻𝑃𝑇𝑉 = 𝜉𝑃𝑇𝑉 𝑊elec ( ®𝐽odd · �̂�). (1.10)

Here · indicates the dot-product. The quantity 𝜉𝑃𝑇𝑉 represents the magnitude of the 𝑃,𝑇 violating
electromagnetic moment, which can be connected to the high-energy physics scale. For example,
this could be the eEDM, 𝑑𝑒. For nuclear observables, there can be additional enhancements in
𝜉𝑃𝑇𝑉 , discussed later. The quantity 𝑊elec encodes the aforementioned relativistic enhancement of
𝑃,𝑇 violating observables in the electromagnetic environment near a heavy nucleus. This quantity
must be calculated from electronic structure theory, and the calculation accuracy can be gauged
by also calculating hyperfine interaction parameters and comparing against experiment. For the
eEDM, 𝑊elec can be directly related to the notion of an internal effective field, Eeff. Continuing,
the quantity ®𝐽odd represents the rank 1 operator formed by coupling together an odd number of
angular momenta in the atom or molecule, which is explicitly 𝑇-odd. The form of ®𝐽odd varies for
different moments. However, regardless of the interaction, 𝜉𝑃𝑇𝑉 must lie along ®𝐽odd, as we discussed
earlier. Finally, we measure the projection of ®𝐽odd onto the internuclear axis of the molecule, �̂�.
The dependence on �̂� explicitly makes the interaction 𝑃 odd, and requires us to apply an external
field to polarize the system. Since our goal is to measure the shifts from 𝐻𝑃𝑇𝑉 , we can go about
measuring frequency differences between states with various orientations of 𝐽odd relative to �̂�. In
an atom experiment, we can use a similar Hamiltonian, just replacing �̂� with the applied field ®𝐸lab.
Finally, we note there are proposed schemes to measure 𝑃,𝑇 violating couplings between opposite
parity states by using AC fields, see Ref. [69], however we do not discuss the details here.

We now discuss the form of ®𝐽odd for different 𝑃,𝑇 violating interactions. For the eEDM,
we have ®𝐽odd = ®𝑆, which means the EDM shift is just the projection of the electron spin on the
internuclear axis of the molecule, as expected. For the NSM, we recall that the physical mechanism
of the interaction results in an electric field internal to the nucleus that points along the spin 𝐼.
Therefore, for the NSM we have ®𝐽odd = ®𝐼. Finally, for the NMQM, the situation is more complicated
because we are dealing with a rank 2 tensor,M, interacting with a rank 1 vector, the electron spin 𝑆.
Since 𝐽odd must be rank 1 in order to be contracted with �̂�, we surmise the form of 𝐽odd is obtained
by coupling 𝐼 to itself, and then coupling with 𝑆. Indeed, up to some constants, this gives us the
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effective the form of the NMQM interaction [57, 58, 70]:

𝐻MQM = 𝑊𝑀M ®𝐽odd · �̂� = −
M

2𝐼 (2𝐼 − 1)
®𝑆 · ←→𝑇 · �̂�

=
M

2𝐼 (2𝐼 − 1)

√︂
20
3
𝑇1(𝑆, 𝑇2(𝐼, 𝐼)) · �̂�.

(1.11)

Here,𝑊𝑀 is the electronic enhancement factor, andM ≔M𝑧𝑧, where 𝑧 = �̂�. In the second line we
have written the interaction in terms of spherical tensor operators (see Ch.5 of Ref. [39] for details).
The tensor

←→
𝑇 is the same as 𝑇𝑖 𝑗 in eq. 1.5, and is written as 𝑇𝑖 𝑗 = {𝐼𝑖, 𝐼 𝑗 }− 2

3𝛿𝑖 𝑗 𝐼 (𝐼 +1) = 2𝑇2(𝐼, 𝐼).
Using the same arguments, we see that the effective interaction of an electric octupole moment
should be written as ®𝐽odd · �̂� ∝ 𝑇1(𝐼, 𝐼, 𝐼) · �̂�.

1.3.4 Nuclear Enhancements
Finally, we discuss the nuclear enhancements of 𝜉𝑃𝑇𝑉 , which are relevant for the nuclear

moments. The enhancements of nuclear moments have been discussed in many references [51,
57, 70–84], though we caution that nuclear structure calculations are intrinsically challenging.
Of these, Refs. [81] treats the nuclear theory with particular care. Fundamentally, all of the
nuclear enhancement mechanisms relate to the existence of deformed nuclei [85], which arise from
collective proton-neutron interactions14 [86]. The collective states of deformed nuclei are described
by the Nilsson model [86], and the wavefunctions describing the rotation of the deformed nucleus
are the same symmetric top wavefunctions that we use to describe rotating molecules.

In general, there are two types of relevant nuclear deformations: quadrupole and octupole
deformations. A quadrupole deformed nucleus is shaped like an ellipse, with the deformation
either along 𝐼 (prolate) or perpendicular to 𝐼 (oblate). Quadrupole deformed nuclei can be though
of like a homonuclear linear molecule, as the deformation is symmetric upon reflection through
a plane perpendicular to 𝐼. Just like homonuclear molecules, quadrupole deformed nuclei have
rotational ladders of same parity states. In quadrupole deformed nuclei, there are many nucleons
in the valence shell, and the total NMQM is enhanced by an order-of-magnitude by summing all
of the individual nucleon contributions [57, 70, 80]. Note, however, these estimates tend to ignore
configuration mixing effects, which could modify the overall NMQM magnitude [80].

On the other hand, octupole deformed nuclei are pear-shaped with a cylindrical symmetry
axis, and have intrinsic reflection asymmetry when reflected about a plane perpendicular to the
symmetry axis [85, 87–89]. Several nuclei, including isotopes of Thorium [90] and Radium [91],
have been observed15 to exhibit octupole deformations, which are classified as either static (intrinsic

14It is interesting to observe that the simplest proton-neutron system, deuterium, has a quadrupole deformation.
15In Thorium, Ref. [90] observes the E1 (electric dipole) matrix elements, a sign of reflection asymmetry, and uses

that to estimate the octupole deformation. In Radium, the E3 (octupole) matrix elements are directly observed.
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deformation) or dynamic (arising via vibrations). Their reflection asymmetry means they are
the nuclear analogue of heteronuclear molecular states, which naturally have rotational ladders
containing opposite parity states. In fact, because the nucleus can have angular momentum projected
on the cylindrical symmetry axis, octupole deformed nuclei are actually analogues of parity doublet
states in heteronuclear molecules. As a result, octupole deformed nuclei can have closely spaced
opposite parity levels that split due to Coriolis interactions. For example, 223Ra and 225Ra have
parity doublets separated by 50 keV [92] and 55 keV [93], respectively, which are “close” by nuclear
standards. Similar to the earlier discussion of 𝑃,𝑇 violation in atoms, any interaction 𝐻𝑃𝑇 in the
nucleus can mix these opposite parity levels, inducing a small overall orientation (dipole moment)
of the nuclear pear shape along the nuclear spin 𝐼. Such a correlation of orientation with angular
momentum is 𝑃,𝑇 odd. The mixing of opposite parity nuclear states is expected to significantly
increase the value of the NSM and NMQM by over an order-of-magnitude [74–78, 81, 83]. Further,
the NSM receives an additional increase from the 𝑟3 nuclear radius dependence of the NSM, which
correlates with the octupole matrix element [81] (recall an octupole deformation is proportional
to rank 3 spherical harmonics). As a result, NMQMs can be 1-2 orders-of-magnitude higher
in octupole deformed nuclei, while the NSM can be 2-3 orders-of-magnitude higher [83]. This
provides strong motivation for performing 𝑃,𝑇 violation measurements on molecules containing
Radium nuclei [94].

1.3.5 Connection to High Energy Physics
Interpreting EDM bounds in terms of high energy physics requires the framework of the

Standard Model effective field theory (SMEFT) [7, 15, 95–97]. Theorists can use the SMEFT
to match low energy observable to high energy models, deriving model-dependent constraints.
Ref. [98] provides an excellent example by interpreting the high energy consequences of recent
molecule EDM experiments. The basic idea of SMEFT is similar to the effective Hamiltonians we
use later for modeling molecular physics. Further, one of the first examples of an EFT is the Fermi
electroweak theory, which was developed before the discovery of the𝑊 and 𝑍 bosons. Fermi used
an effective constant 𝐺𝐹 (equivalent to a Wilson operator) to encode all of the unknown physics
at high energy scales, and was able to write an effective model for beta decay that only invovled
particles known at the time.

In SMEFT, the Standard Model is taken to be an effective theory that is only accurate at “low
energies” below a cut-off scale, Λ, which encodes the high energy scale of new physics beyond the
Standard Model (BSM). The new physics effects are accounted for at low energies using a series
of effective operators that only involve the Standard Model degrees of freedom. The coefficients
that scale these operators are known as Wilson coefficients, and they encode all of the new physics
information. To construct the effective theory, in addition to the Standard Model, we write down
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any additional terms that satisfy physically relevant constraints. Examples of such constraints
include Lorentz invariance, gauge symmetry, 𝑇 symmetry (=𝐶𝑃), and locality. For searches for
𝑃,𝑇 violation, we can relax the 𝑇 symmetry constraint. The terms encoding BSM physics are
written as:

L𝐵𝑆𝑀 =
∑︁
𝑘,𝑑

𝛼
(𝑑)
𝑘

(
1
Λ

)2
O (𝑑)
𝑘
. (1.12)

Here, the O (𝑑)
𝑘

are the 𝑘 different operators of a given dimension16 𝑑 that satisfy our constraints.
The operators essentially describe a vertex of the Lagrangian, with certain particles going into the
vertex and certain particles coming out. The 𝑑 sum begins at 𝑑 ≥ 4. The 𝛼(𝑑)

𝑘
are the Wilson

coefficients that encode all the BSM physics we have integrated out. And Λ is the scale of the new
physics. We note these effective operators are not renormalizable, and are only meant to be applied
to low energy scales.

For 𝑇 violating observables, the only relevant term at 𝑑 = 4 is the 𝜃 QCD vacuum angle. At
dimension 𝑑 = 5 we have the operators that generate fermion EDMs in the electroweak force via the
CKM matrix. We will return to the EDMs generated by CKM later. Then, at 𝑑 = 6, we have a host
of 15 operators that encode 𝑇 violating effective interactions between the first-generation Standard
Model fermions and bosons. Typically other generations of particles are not considered. These
operators are listed in Refs. [7, 95, 96]. The 𝑇 violating terms can be grouped into the following
categories: fermion EDMs, four-quark couplings, three gluon couplings, quark Higgs couplings,
lepton quark couplings, and quark chromo-EDMs. An example is the operator encoding a fermion
EDM 𝑑 𝑓 , given by:

LEDM = −𝑖
𝑑 𝑓

2
�̄�𝜎𝜇𝜈𝛾5𝐹𝜇𝜈𝜓. (1.13)

Here, 𝑑 𝑓 = 𝛼 𝑓Λ−2 is the fermion EDM Wilson coefficient including the high energy mass scaling,
𝜎𝜇𝜈 = 𝑖

2 [𝛾
𝜇, 𝛾𝜈] represents the fermion spin, sums are performed over repeated indices, 𝛾𝜇 are

Dirac gamma matrices, 𝛾5 causes 𝑃-odd behavior, 𝐹𝜇𝜈 is the electromagnetic field strength tensor,
and the combination of �̄� and 𝜓 encode the fermion wavefunction, indicating the operator vertex
has the fermion 𝜓 in both the initial and final states.

To connect from the SMEFT scale to our low energy atomic and molecular scale, theorists
must go from working with quarks to working with hadrons, which are bound states of the strong
force with no color charge. This involves the application of further EFTs, such as chiral EFT,
which we will not discuss. In the end, the result is a series of contributions to our low energy
𝑃,𝑇 violating moments of interest. In general, multiple Wilson coefficients will contribute to
interpreting any 𝑃,𝑇 violating moment. The nuclear 𝑃,𝑇 violating moments in particular receive

16In high energy physics, energy = mass = length−1, so we can think of everything as having energy dimension.
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Figure 1.1: Schematic diagram illustrating some sources, not exhaustive, of 𝑃,𝑇 violating physics
in atoms and molecules. The interactions displayed are: the electron electric dipole moment
(EDM), the electron-nucleon scalar-pseudoscalar coupling 𝐶𝑆, quark EDMs, quark chromo-EDMs
(CEDM), overall nucleon EDMs (NEDM), and 𝑃,𝑇 violating pion exchange (𝜋NN), representing
internal nuclear forces. Figure created by N. Hutzler.

numerous contributions. This would make it not possible to determine the source of 𝑃,𝑇 violation
from one positive measurement alone, requiring measurements in many different systems. In
Figure 1.1, we show the various contributions to 𝑇 violation in atomic and molecular systems at
the hadronic scale.

Even the electron EDM receives multiple contributions in EFT. At the hadronic scale, the ®𝑆 · ®Eeff

eEDM interaction receives contribtuions from both the fermion EDM of the electron, 𝑑𝑒, and from
the scalar-pseudoscalar nucleon-electron coupling, denoted 𝐶𝑆. In the hadronic picture, the 𝐶𝑆
interaction given by 𝑒𝑖𝛾5𝑒�̄�𝑁 , where 𝑁 is a nucleon wavefunction, 𝑒 is the electron wavefunction,
and 𝑖𝛾5 is 𝑃,𝑇 odd. This is essentially an interaction of the electron spin with the scalar nucleon
density that arises from the quark-lepton interactions in the SMEFT. Essentially, when we interpret
an eEDM experiment as a constraint on 𝑑𝑒, we are performing a single-source assumption, and
setting 𝐶𝑆 = 0 implicitly. Technically, an EDM constraint from a single experiment consists of
bounding 𝑃,𝑇 violation to a diagonal line of some width in the entire 2-D parameter space spanned
by𝐶𝑆 and 𝑑𝑒. Only by performing measurements in multiple systems, which naturally have different
slopes in the𝐶𝑆, 𝑑𝑒 space, can we obtain a finite constraint region. For example, only by combining
the EDM constraint from the JILA experiment in Ref. [10] and the constraint from the ACME
experiment in Ref. [11], do we obtain tight bound on both variables: |𝑑𝑒 | < 2.1 × 10−29 𝑒 cm
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Figure 1.2: Diagram of the leading order contributions to the 𝐶𝑆 interaction resulting in an
equivalent eEDM of∼10−35 𝑒 cm, adapted from Ref. [99]. The interaction is a 3rd order electroweak
interaction involving all three quark generations, which is necessary to generate a non-trivial CKM
phase. The particle exchanged between the electron and neutron is a Kaon. The upper electron
vertex is 𝑇-odd, 𝑃-even, while the lower nulceon vertex is 𝑇-even, 𝑃-odd, resulting in an overall
𝑃,𝑇-odd interaction. Thanks to Jane Panangaden for creating this figure.

and |𝐶𝑆 | < 1.9 × 10−9 𝑒 cm [10]. This is a reason why having many different EDM searches is
complimentary.

We must also consider multiple eEDM sources when we ask the very relevant question, “What
is the eEDM prediction of the Standard Model?” The Standard Model is known to violate 𝑇
symmetry in the electroweak force via the complex phase of the CKM matrix that converts quark
mass eigenstates to electroweak eigenstates. It turns out the Standard Model contributions to 𝑑𝑒
are considerably weaker than the contribtions to 𝐶𝑆. While the pure 𝑑𝑒 contribution is estimated
at ∼ 6 × 10−40 𝑒 cm, the 𝐶𝑆 term was previously estimated to contribute at the ∼ 10−38 𝑒 cm [8]
equivalent scale. A very recent calculation from Ref. [99] has considered a novel mechanism that
contributes to 𝐶𝑆 at third order in the electroweak force. The Feynman diagram for this interaction
is reproduced in Figure 1.2. The interaction results in 𝐶𝑆 ∼ 7 × 10−16, corresponding to an an
equivalent Standard Model eEDM at the 10−35 𝑒 cm scale, much larger than any previous estimate.
While this is still ∼5− 6 orders-of-magnitude smaller than the current best eEDM bounds, it raises
the possibility that future order-of-magnitude improvements in EDM experiments could measure
the Standard Model value. While this would mean eEDM measurements would no longer be
background-free, is an exciting prospect nonetheless. Measurements of the eEDM in different
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systems could be used to extensively benchmark our theoretical understanding of nature, all the
way from the high energy scale to the nuclear scale to the atomic scale.

Finally, we note that by using dimensional arguments, we can estimate model-independent
constraints on high energy physics [7, 12, 98]. These estimates are expected to be accurate to
within an order-of-magnitude. This allows us to connect an experimental EDM bound to the high
energy scale in a simple manner. For example, for the eEDM, the estimate is given by [10, 11, 98]:

𝑑𝑒

𝑒
∼ (ℏ𝑐) sin 𝜙𝑇𝑉

(𝛼BSM

4𝜋

)𝑛 𝑚𝑒𝑐2

Λ2 . (1.14)

Here, 𝑒 is the electron charge, 𝜙𝑇𝑉 is the 𝑇 violating phase angle, 𝛼BSM is the coupling strength of
BSM physics to the electron, 𝑛 is the number of loops involved in generating the eEDM, 𝑚𝑒 is the
electron mass, and Λ is the energy scale of the BSM physics. Typically, estimates set 𝛼𝐵𝑆𝑀 ∼ 𝛼𝐸𝑀 ,
and 𝜙𝑇𝑉 ∼ 𝜋/2. For example, the constraint of Ref. [10] corresponds to a limit of Λ ≳ 40 TeV for 1-
loop processes andΛ ≳ 1 TeV for 2-loop processes. Even if we introduce additional caveats that pull
these constraints down by a factor of 10, we see they are still competative with the direct constraints
from the LHC. Furthermore, regardless of our caveats, order-of-magnitude improvements in EDM
bounds result in order-of-magnitude increases in high-energy physics.

1.4 Why Polyatomic Molecules?
1.4.1 Long Term Vision

So far, we have provided an overview of searches for fundamental symmetry violation in atoms
and molecules. We have shown why molecules with heavy nuclei are extremely sensitive probes of
new physics. We now provide the final motivation for why we seek to perform EDM measurements
in polyatomic molecules.

Current state-of-the-art eEDM experiments are broadly sensitive to T-violating physics at
energies much greater than 1 TeV [10–12, 100, 101]. Molecular beam experiments have achieved
high statistical sensitivity by measuring a large number of molecules over a ≈ 1 ms coherence
time [11, 100]. While there are further improvements that can increase sensitivity, beams of
neutral molecules are ultimately limited by their interaction time. To achieve orders-of-magnitude
improvement in sensitivity, we must slow, cool, and trap the molecules. Already, molecular ion
experiments obtain seconds long coherence times [10, 101, 102], though the number of ions in their
traps are limited by Coloumb repulsion. Measurements with trapped neutral polyatomic molecules
can potentially combine the best features of each approach to achieve orders-of-magnitude improved
statistical sensitivity [17].

Additionally, precision measurements in trapped atoms and molecules have significant synergy
with the toolbox of techniques developed for studies of quantum information, quantum simulation,
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and quantum metrology. In these fields, state-of-the-art quantum control techniques allow for
bottom-up control of quantum states, their interactions, and their entanglement. Precise entan-
glement control in atoms has already been demonstrated to provide metrological advantages. By
harnessing these techniques for EDM searches, we can push the energy reach of EDM experiments
to PeV energy scales or higher.

The starting point for ground-up quantum control of neutral atoms is laser cooling and trapping.
While atomic laser cooling is now decades old, molecular laser cooling was first demonstrated in
2010 with SrF molecules [103], with the first magneto-optical trap following a few years later [104].
Since then, the field has made significant strides, with laser cooling and/or trapping having been
demonstrated for many diatomic species. Further, laser cooling and/or trapping has recently
extended to several species of polyatomic molecules [105–111]. These advances have been made
possible by the development of a recipe of the primary ingredients necessary for molecular laser
cooling [112, 113]. Most importantly, the molecule must be chosen such that the laser cooling
valence electron is decoupled from chemical bonds. This decoupling is achieved by choosing
molecules formed by an alkaline-earth(-like) atom with two valence electrons, designated M, that
is single-bonded to an electronegative ligand. The ligand can be a halogen (F, Cl, etc.) in the case
of diatomic molecules, or, in the case of polyatomic molecules, can have the form -O-R, with R
serving as a placeholder ranging from a simple H atom to complicated functional groups [112].
We can think of the bond in the ionic picture, where the metal atom readily gives up an electron
that bonds with the ligand, giving us a simple picture of the charge distribution in the molecule:
M+−O−−R. The remaining un-bonded electron on the metal atom is pushed away from the bonding
region, and is described as having atomic character. Though the M-O-R motif may not be absolutely
necessary for laser cooling [114], it certainly guarantees, to good degree, that the valence electron
of the molecule is largely independent of of the bond. This allows for many photon scatters with
minimal vibrational repumping lasers [115].

On the other hand, the success of existing molecule EDM experiments has demonstrated the
power of parity doublets. When polarized, parity doublets allow for reversal of 𝑃,𝑇 violating
interactions without modifying laboratory fields. This is a huge aid for systematic error rejection
in precision measurements [10, 11]. Further, parity doublets allow for coherent control of the
orientation of the internuclear axis in the lab frame. It is difficult to generically find a diatomic
molecule that satisfies all three of the following constraints: laser-coolable, containing parity
doublets, and containing core-penetrating orbitals centered on a heavy nucleus. The difficulty
is largely because we are relying on the electronic structure of the molecule to satisfy three
requirements at once, resulting in conflicting demands. This motivates moving toward polyatomic
molecules for the future of molecular EDM experiments.
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Polyatomic molecules generically have parity doublets arising from internal rotations of nuclei
about the molecule axis. Since this structure results from rotations of nuclei, and since we have
chosen a molecule with an electron decoupled from the bonds, the electronic structure for laser-
cooling can generically co-exist with the parity doublet structure for EDM measurements. This
lays the foundation for a future vision of laser cooled and trapped polyatomic atomic molecules,
entangled together to perform an EDM measurement with quantum enhanced metrology [18].

1.4.2 Molecular Orientation Control
Molecules with parity doublets have free-field eigenstates with parity P that can be generically

written as:
|𝜓,P = ±⟩ = 1

√
2

(���𝐽, 𝐾, 𝑀〉
±

���𝐽,−𝐾, 𝑀〉)
. (1.15)

Here, ± represents the state parity (up to a 𝐽 dependent phase for simplicity), 𝐽 is the total angular
momentum of the state, 𝑀 = ®𝐽 · �̂� is the projection of 𝐽 on the lab �̂� axis, and 𝐾 = ®𝐽 · �̂� is the
projection of 𝐽 on the intermolecular axis. For a given value of 𝐽, we see that molecular eigenstates
are labeled by two projection quantum numbers, 𝑀 and 𝐾 , that desribe the orientation of 𝐽 in
both the lab and molecule frames. The separation of the ± parity states can vary depending on the
choice of polyatomic molecule, allowing for some tuning. In the bending modes of linear triatomic
molecules, the parity states can be separated by ∼10 MHz, while in symmetric top molecules, the
splitting can be even smaller, ∼300 kHz [116].

While ordinary angular momentum states, |𝐽, 𝑀⟩, have 2𝐽 +1 degeneracy in free field, describ-
ing the different orientations of 𝐽, we see molecular eigenstates have 2(2𝐽 + 1) near-degenerate
states, describing both the orientations of 𝐽 and the two orientations ±𝐾 of the internuclear axis.
For certain molecules, like bending modes of linear triatomics, we are restricted to have a single
value of |𝐾 | in a given electronic and vibrational state. However, if we generalize our consideration
to asymmetric rotors, we find there are actually (2𝐽 + 1) (2𝐽 + 1) states, though they are no longer
necessarily near degenerate. One factor corresponding to the spatial orientations of 𝐽 on �̂� , and the
other factor corresponds to the internal orientations of 𝐽 on the molecular axis �̂� = 𝑧. However, we
note we are typically interested in the maximally projected states, 𝐽 = |𝐾 |.

Regardless of the specific polyatomic molecule, by creating superpositions of different 𝑀 and
𝐾 states, we have available to us many different orientations of the molecular axis in space. The
orientation of the molecule axis in the lab frame is given by ⟨�̂�⟩ ∝ ⟨𝑀𝐾⟩, with ⟨�̂�⟩ = 0 at free
field. However, since parity doublet states in polyatomic molecules are separated by ≲10 MHz,
and since them have 𝐷mol ∼ 𝑒𝑎0, we can mix these states and polarize the molecule by applying
an external field 𝐸lab ∼ 100 V/cm. In Figure 1.3, as a function of the applied electric field, we
compare the orientation ⟨�̂�⟩ of a linear triatomic molecule with parity doubling with the orientation
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Figure 1.3: Plot of ⟨�̂�⟩, labeled “Dipole Orientation,” as a function of the applied electric field
(note the log scale), in a polyatomic molecule with parity doubling (blue lines) with 𝑁 = 1 (𝑁
labels rotational quanta), compared to a diatomic molecule without parity doubling (dashed red
lines) with 𝑁 = 0, 1, 2. Not only do parity doublets polarize at order-of-magnitude lower fields,
but they generically provide states with collinear orientation and transverse alignment with respect
to the electric field. We note the orientation for parity doublets saturates at |�̂�| = 0.5 because the
projection on the laboratory axis is given by ℓ𝑀𝑁/(𝑁 (𝑁 + 1)) = 1/2 for a Hund’s case (b) (see
Ch. 2) molecule with 𝑁 = 𝑀𝑁 = ℓ = 1 [117]. We can think of this as the molecular rotation being
split between overall rotation and rotation about the �̂� axis. At large fields, the parity doublet in
𝑁 = 1 mixes with higher 𝑁 , causing an overall orientation behavior of the polyatomic similar to
the diatomic.

of a diatomic molecule without parity doublets. Not only does the polyatomic molecule polarize
more quickly, it also has states available that correspond three possible lab orientations: aligned
with the applied field, perpendicular to the applied field, and anti-aligned to the applied field. Here,
we only have 3 orientations as we considered a 𝐽 = 1 state. In general, when the molecule is fully
polarized, we have 2𝐽 +1 orientations of the internuclear axis, corresponding to the different values
of 𝑀 in the expectation value ⟨𝑀𝐾⟩.

In molecules with parity doublets, we can provide a simple intuitive picture of such states in the
fully polarized limit. For now, we consider just a space of four states, formed by the combinations
of ±𝑀 with ±𝐾 , given by |𝐽, 𝑀, 𝐾⟩. These states are shown in Figure 1.4, which encapsulates
the basic idea of any molecule EDM experiment with parity doublets. Recall from eq. 1.10, we
can think of any 𝑃,𝑇 violating interaction as 𝐻𝑃𝑇𝑉 ∝ ®𝐽odd · �̂�. For this discussion, we will use
𝐽 to generically represent 𝐽odd, such that 𝐻𝑃𝑇𝑉 ∝ 𝐾 , as the basic picture is agnostic about the
specific 𝑃,𝑇 violating interaction in question. Each |𝐽, 𝑀, 𝐾⟩ state has a unique set of shifts under
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Figure 1.4: Diagram showing schematic energy shifts for measurements of 𝑃,𝑇 violation (PTV)
in a fully polarized molecule with parity doublets. Dotted lines show energies in absence of PTV.
𝑀 = ± describes the lab frame projection of 𝐽odd (see main text), while 𝑀𝐾 = ± describes the lab
frame orientation of the internuclear axis �̂�. The PTV shift is given by 𝐻𝑃𝑇𝑉 ∝ 𝐾 , where 𝐾 is the
projection of 𝐽odd on �̂�. Energy shifts from external 𝐸 and 𝐵 fields are also indicated.

𝐸 fields, 𝐵 fields, and 𝑃,𝑇 violating interactions. When comparing the energy shifts of states
with ±𝑀 and fixed 𝑀𝐾 , we are probing 𝑇 violation, which can result from either 𝐵 or 𝐻𝑃𝑇𝑉 .
On the other hand, if we compare ±𝑀𝐾 states with fixed 𝑀 , we are probing 𝑃 violation, which
can result from either 𝐸 or 𝐻𝑃𝑇𝑉 . By comparing both ±𝑀 and ±𝑀𝐾 states, we can uniquely
distinguish 𝐻𝑃𝑇𝑉 from 𝐸 or 𝐵 effects. Since this manifold of four states exists generically at any
value of 𝐸lab that polarizes the molecules, we see we have access to all combinations of 𝑃 and
𝑇 violation without changing the orientation of any laboratory fields! In reality, the electric and
magnetic sensitivities of the upper and lower 𝑀𝐾 manifolds will not be exactly identical, which
can mimic an EDM. However, we can then perform additional reversals of laboratory fields to help
disentangle real EDM shifts from differential sensitivities. Therefore, a major goal of any EDM
experiment is to reduce systematics and false signals that can arise from interactions with external
fields, particularly non-reversing fields. In this regard, the near-complete reversal of 𝑃,𝑇 violating
effects afforded by parity doublets have proved to be an extremely useful tool for systematic error
rejection in molecular eEDM searches [10, 11].

As we have seen, not only do parity doublets allow for easy molecular polarization, they allow
for exquisite control of the orientation of both 𝑇 odd angular momenta and the 𝑃 odd internuclear
axis vector �̂�. It should come as no surprise that such a structure is very desirable for experiments
seeking to measure 𝑃,𝑇 violation. Furthermore, if we can one day harness quantum entanglement
for a metrological advantage, it will be very useful to have the toolbox of |𝐽, 𝑀, 𝐾⟩ states available
to develop novel EDM measurement techniques that evade sources of noise and systematic errors
that typically plague experiments.
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1.4.3 Quantum Projection Noise
Fundamentally, the precision of an EDM measurement is limited by quantum projection noise

(QPN), which is a quantum mechanical effect arising from non-commutation of operators. In this
section, we discuss how QPN limits EDM experiments, motivating us to move toward trapped
neutral molecules for precision measurements.

For detailed discussion on QPN, see Refs. [118, 119]. Consider repeated measurements of the
phase of a two level superposition state, |𝜓(𝜏)⟩ ∝ |0⟩ + 𝑒𝑖𝜙 |1⟩. If we project this state onto the
|0⟩ ± |1⟩ basis, we obtain a spread of results with some width. For 𝑁 independent measurements
of a phase 𝜙, irrespective of other noise sources, the QPN limit is given by [119]:

𝛿𝜙 =
1

2C
√
𝑁
. (1.16)

Here, C ≤ 1 is the contrast of our measurement, which encapsulates deviations resulting from
decoherence as well as imperfect state preparation and readout.

The QPN limit can be recast into a limit on our ability to measure a frequency 𝜔, by scaling it
by the measurement interaction time 𝜏. For experiments that operate in a pulsed fashion, we can
also expand 𝑁 as 𝑁 = 𝑁𝑝𝑅𝑝𝑇𝑡𝑜𝑡 , where 𝑁𝑝 is the number of measurements obtained in a pulse, 𝑅𝑝
is the rate of pulses per time, and 𝑇𝑡𝑜𝑡 is the total time that we run the experiment. We then obtain:

𝛿𝜔 =
1

2C𝜏
√︁
𝑁𝑝𝑅𝑝𝑇tot

. (1.17)

We can make some rough estimates for a beam source. With 𝜏 = 1 ms, C = 0.5, 𝑁𝑝 = 106,
𝑅𝑝 = 10 Hz, we obtain a frequency QPN limit of 𝛿𝜔 = 2𝜋 × 1 mHz for 𝑇tot = 1 day.

The scaling of 𝛿𝜔 ∝ 𝜏−1 motivates us to consider the effect of extending the interaction time
by using a trap. Consider now the value 𝜏 = 1 s, limited by the lifetime of a bending mode in a
polyatomic molecule, and a trapped number of 𝑁𝑝 = 104 molecules17. We note that we can no
longer run at 10 Hz, however, as the entire experiment takes at minimum 1 second. To encapsulate
the connection between increasing measurement time and decreasing measurement rate, we write
𝑁 = 𝑁𝑝𝐷𝜏

−1𝑇 , where 𝐷 is the duty cycle of the experiment. The full frequency QPN limit for a
duty cycle limited experiment is given by:

𝛿𝜔 =
1

2C
√
𝜏
√︁
𝑁𝑝𝐷𝑇tot

. (1.18)

Continuing with our estimate, for a 104 trapped molecules, 1 s coherence, and a 𝐷 = 50% duty
cycle, we obtain 𝛿𝜔 = 2𝜋 × 0.02 mHz for 𝑇tot = 1 day.

17A factor of 2 higher number was trapped in a CaOH MOT in Ref. [108]. While the EDM measurement cannot
proceed in a MOT, we use this as an initial estimate.
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While two orders-of-magnitude is already quite good, we provide further discussion on why
traps are the future of molecular EDM experiments. First, there is a pathway towards increasing both
the number of trapped molecules [120–122] and toward increasing the lifetime of the species [123].
Next, an experiment may not always be quantum projection noise limited. If other noise sources
are not adequately controlled, we will have to contend with them first. Therefore it is attractive to
develop methods for suppressing sensitivity to external noise.

Noise reduction can be classified as passive, active, or “quantum.” Magnetic shielding is an
example of passive noise cancellation, whereby we redirect ambient magnetic fields away from the
experiment. It is certainly easier to shield a small trapped volume compared to a large beamline.
We can also use active compensation to measure and feedback on the ambient field to cancel its
fluctuations, which is also easier to perform for a small volume.

We use “quantum” to refer to techniques that utilize quantum control to improve sensitivity to
noise. An example of this is state engineering in molecules, where we tune the noise sensitivities
of measurement states using external control fields. We demonstrate this technique in trapped
CaOH molecules in Ch. 5, Sec. 5.4. Further, in Ref. [124], it was shown that transitions between
molecular states can also be tuned with external fields to have suppressed noise sensitivity. All of
these techniques are more easily implemented in a trap, where we can precisely control applied
fields. Finally, we note that there are protocols that achieve metrological gain in isotope shifts of
trapped ions by using entangled states in a decoherence free subspace [125, 126]. Generalization
of these techniques to EDM measurements would be very useful.

Finally, we add that quantum control can also be used to make a state more sensitive to
the interaction of interest, by going beyond the QPN limit. Using spin-squeezed states [127],
measurements can approach the ultimate Heisenberg limit, ∝ 1/𝑁 , instead of 1/𝑁−1/2 [18]. A
spin-squeezed state is essentially an ensemble of entangled spins. For an un-entangled state, the
minimum uncertainty noise is symmetric in all observables. For a spin squeezed state, the noise
from an observable of interest, is transferred to another observable. For example, spin-squeezing
of a superposition along the 𝑋𝑌 plane of the bloch sphere can reduce quantum uncertainty of the
𝑋𝑌 phase observable, which is sensitive to 𝑍 rotations, at the expense of increased uncertainty
in the phase along the 𝑋𝑍 or 𝑌𝑍 planes. However, the observable with reduced uncertainty will
be more sensitive to noise from other sources that were previously unresolved, for example from
stray magnetic fields. Furthermore, entangled states are difficult to produce and keep coherent,
necessitating the use of a trap. Nonetheless, quantum metrology is the final frontier for achieving
significant EDM sensitivity gains in the future, with many different entangled states available that
can offer unique advantages [128].
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2
Molecules

This is where the fun begins.

–Anakin Skywalker

2.1 Molecular Structure
Most atomic and molecular systems, beyond hydrogen and H+2 , constitute a many-body quantum

Hamiltonian that is too complicated to be described analytically, and requires extensive theoretical
tools to approach from a purely computational perspective. How then are we to perform a precision
measurement in such a complicated system? We rely on the fact that atomic and molecular systems
have degrees of freedom that remain relatively well-conserved as the system state evolves. We refer
to these conserved or approximately conserved quantities as good quantum numbers.

Quantum numbers are eigenvalues of a state associated with the action of an operator of interest
on the state. A perfect quantum number is associated with an operator that commutes with the
Hamiltonian. Since the Hamiltonian generates time evolution, a commuting operator corresponds
to a conserved quantity. By Noether’s theorem, perfect quantum numbers correspond to symmetries
of the Hamiltonian. In the matrix representation of the Hamiltonian, these conserved quantities
allow us to represent the Hamiltonian in a diagonal basis. Examples of quantum numbers in free
space, which, as far as we know, are perfect, include: the total energy 𝐸 , which is the eigenvalue
of the operator 𝐻; the total angular momentum 𝐹, associated with the operator 𝐹2 with eigenvalue
𝐹 (𝐹 + 1); and the projection of 𝐹 on the lab Z-axis, ®𝑀𝐹 = ⟨ ®𝐹 · 𝑍⟩. These operators are conserved
by virtue of time-reversal symmetry and 3D rotational invariance of the atomic or molecular
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Hamiltonian.

Now, imagine we break the spherical symmetry of space by applying an electromagnetic field
along the �̂� axis. If this field couples to the atom or molecule, we no longer have 𝐹 as a perfect
quantum number, as the system can exchange momentum with the field. However, there still exists
cylindrical symmetry around the applied field vector, and therefore 𝑀𝐹 is conserved. If the applied
field interaction is weak compared to the energy separation of different 𝐹 levels, then the coupling
of different 𝐹 levels is perturbatively small, and we say 𝐹 is an approximately good quantum
number.

Of course, this discussion need not be restricted to interactions with an external field, as the
notion of approximately good quantum numbers can apply to individual operators in a constituent
system as well. If there is a separation of energy scales, then we can have approximately good
quantum numbers that are only slightly mixed by off-diagonal matrix elements of the Hamiltonian.
These good quantum numbers are only good to some approximation, and the collection of good
quantum numbers can vary among eigenstates separated by large energy scales (i.e., large in the
atomic scale, ∼ eV). A given collection of good quantum numbers can be used to construct a basis
to describe the molecule or atom. In the systems we study, there are often electronic states with
internal structure that is well described with a single basis.

There are also poor quantum numbers, associated with operators with completely undefined
expectation values. This can apply when there are strong interactions between angular momenta
that make them indistinguishable from each other. For example, the intuitive end-over-end rotation
of the molecule, 𝑅, interacts with the angular momentum of the electrons, 𝐿, and as a result only
their combination is well-defined. The separation of energy scales and perturbative treatments of
off-diagonal operators is essential to make the molecular problem tractable. Connecting various
physical scenarios to a choice of a quantum number basis is at the heart of the effective Hamiltonian
treatment of molecular states. We will discuss the effective Hamiltonian in Sec. 2.2 in detail, along
with Hund’s cases (Sec. 2.1.5), which correspond to different bases used to describe molecules
in different physical regimes. However, first we will establish the foundations of describing with
molecules, which is first describing atoms.

2.1.1 Angular Momentum and Spherical Tensors
There are many good references on angular momentum algebra, such as Brown and Carrington

Ch. 5 [39], Hirota [129], or Zare [130]. Here we simply present a few foundational concepts.
We define the lab frame with axes written as �̂�,𝑌 , �̂� , and we note these are unit vectors, not
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operators. In quantum mechanics, the angular momentum vector1 ®𝐽 has lab-frame components
(i.e., 𝐽𝑋 = ®𝐽 · �̂�) that satisfy the essential commutation relations [𝐽𝑖, 𝐽 𝑗 ] = 𝑖𝜖𝑖 𝑗 𝑘𝐽𝑘 , where 𝜖𝑖 𝑗 𝑘 is the
Levi-Civita symbol, and the index 𝑖, 𝑗 , 𝑘 runs over 𝑋,𝑌, 𝑍 .

The total angular momentum magnitude ®𝐽2 commutes with any of its components. Picking 𝐽𝑍
as is convention, we can define quantum states of angular momentum, written as |𝐽, 𝑀⟩. These
states are eigenstates of the the operators ®𝐽2 and 𝐽𝑍 = ®𝐽 · �̂� , with respective eigenvalues 𝐽 (𝐽 + 1)
and 𝑀 . Each of the 2𝐽 + 1 values of 𝑀 specifies an orientation of the vector ®𝐽, with 𝑀 running
from −𝐽,−𝐽 + 1, . . . , 𝐽. The remaining components, 𝐽𝑋 and 𝐽𝑌 , are written in terms of raising
and lowering operators: 𝐽± = 𝐽𝑋 ± 𝑖𝐽𝑌 . As the name implies, 𝐽± can change the orientation of the
angular momentum vector, 𝑀 → 𝑀 ± 1, while preserving the magnitude 𝐽. The matrix elements
of 𝐽± can be found in the literature. These definitions encode an accepted phase convention choice,
the Condon and Shorltey phase, such that the matrix elements of 𝐽𝑋 are real.

All of the atoms and molecules we are interested in consist of multiple composite angular
momenta coupled together by internal interactions. Mathematically, different angular momenta, 𝐽1

and 𝐽2, belong to different Hilbert spaces, and the combined state is written |𝐽1, 𝑀1⟩ ⊗ |𝐽2, 𝑀2⟩,
though often we and others abbreviate this as |𝐽1, 𝑀1⟩|𝐽2, 𝑀2⟩. Under interactions coupling
two or more angular momenta, the combined angular momentum is conserved, and written as
®𝐽 = ®𝐽1 ⊗ 𝐼2 + 𝐼1 ⊗ ®𝐽2, with 𝐼1/2 representing the identity operator, and once again often the tensor
product notation is usually dropped in practice. Mathematically, one can show that 𝐽 can take on
quantity 2 × min(𝐽1, 𝐽2) + 1 values, given by |𝐽1 − 𝐽2 |, |𝐽1 − 𝐽2 | + 1, . . . , 𝐽1 + 𝐽2. Much like the
individual angular momentum eigenstates, each 𝐽 value has 2𝐽 + 1 orientations with well-defined
lab frame projection 𝑀 = ®𝐽 · �̂� .

We can therefore define a new basis, defined by eigenstates of the coupled angular momentum
𝐽. The change of basis is given by:

|𝐽, 𝑀⟩ =
∑︁
𝑀1,𝑀2

|𝐽1, 𝑀1⟩|𝐽2, 𝑀2⟩ ⟨𝐽1, 𝑀1; 𝐽2, 𝑀2 |𝐽, 𝑀⟩

= (−1)𝐽1−𝐽2+𝑀
√

2𝐽 + 1
∑︁
𝑀1,𝑀2

(
𝐽1 𝐽2 𝐽

𝑀1 𝑀2 −𝑀

)
|𝐽1, 𝑀1; 𝐽2, 𝑀2⟩.

(2.1)

Here, ⟨𝐽, 𝑀 |𝐽1, 𝑀1; 𝐽2, 𝑀2 |𝐽, 𝑀⟩ is a real number known as a Clebsch-Gordan coefficient, and will
show up very often in manipulations of angular momenta. In the second line, we have written
the Clebsch-Gordan coefficient in terms of the symbol in parentheses, known as the Wigner 3j
symbol. The 3j symbol encodes all of the information in the Clebsch-Gordan coefficient, and has

1Note, in this entire thesis, we work with dimensionless angular momentum operators, and the physical value of
an angular momentum is given in the correct units by ®𝐽ℏ.
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certain selection rules. Namely, the symbol is zero unless 𝐽2, 𝐽2, 𝐽3 satisfy a triangle inequality and
𝑀1 +𝑀2 +𝑀3 = 0. Further symmetry details and identities of the 3j symbol are given in Ref. [39].

This procedure can be generalized to sequentially couple multiple angular momenta, labeled
𝐽1, 𝐽2, 𝐽3, . . . etc. We note there is a choice of coupling sequence–we can either couple 𝐽1 and
𝐽2 to form 𝐽12, which we then couple to 𝐽3 to obtain 𝐽tot, or we can follow another path. These
different coupling schemes represent different bases that span the same space, and are related
by unitary transformations to each other. Further information on coupling schemes of multiple
angular momenta can be found in Ref. [39]. We will write coupled states with the following
notation: | (𝐽1, 𝐽2)𝐽12⟩. In the case where we have multiple sequential couplings, we will write the
states as: | (𝐽1, 𝐽2)𝐽12; (𝐽12, 𝐽3)𝐽tot⟩. This can be extended for arbitrary number of couplings.

We note that it is typically convenient to begin by coupling the angular momenta that interact
most strongly and incorporating the more weakly coupled angular momenta after. This allows us
to express the Hamiltonian of interest with larger on-diagonal elements compared to off-diagonal
elements, and to effectively encapsulate the effects of the off-diagonal elements via perturbation
theory.

2.1.2 Spherical Tensors and the Wigner-Eckart Theorem
We are often interested in the behavior of angular momentum states and operators under

rotations. This is certainly the case in molecules, where various molecular properties, such as the
molecule frame dipole moment, are most naturally defined in the frame rotating with the nuclear
framework. Further, because the physics of interest remains invariant under coordinate frame
rotations, considering a physical problem in multiple frames can provide helpful insights. In this
section we provide an overview of angular momentum rotations, culminating in the presentation of
the Wigner-Eckart theorem, which will be indispensable for the work in this thesis.

We can parameterize a rotation about an axis �̂� by an angle 𝜃 as 𝑅�̂� (𝜃). We note that rotations
can either be active, applied to the angular momentum state, or passive, applied to the coordinate
frame. Any active rotation by an angle 𝜃 can be written as a passive rotation by the inverse angle−𝜃.
In this thesis, we follow the rotation conventions in Ref. [39], where angular momenta 𝐽𝑋 , 𝐽𝑌 , 𝐽𝑍 are
generators of active rotations2. Therefore a rotation about a single axis is written as 𝑅�̂� (𝜃) = 𝑒−𝑖𝜃𝐽�̂� ,
where 𝐽�̂� generates rotations about the �̂� axis.

We require three angles, known as Euler angles, to fully parameterize arbitrary rotations of
the coordinate axes. In this thesis, we denote the Euler angles as 𝜔 = (𝜙, 𝜃, 𝜒), following the
definitions of Ref. [39]. The full rotation that relates one coordinate frame (“the lab frame”) to a

2We note that this is opposite of the convention followed by Ref. [131].
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second frame (“the molecule frame”) is given by:

𝑅(𝜔) = 𝑅𝑍 (𝜙)𝑅𝑌 (𝜃)𝑅𝑍 (𝜒) = 𝑒−𝑖𝜙𝐽𝑍 𝑒−𝑖𝜃𝐽𝑌 𝑒−𝑖𝜒𝐽𝑍 . (2.2)

We emphasize all of the above rotations are defined by the lab frame axes. We note the operations
are performed from right to left, and the rotation angles have the ranges 0 ≤ 𝜙 ≤ 2𝜋, 0 ≤ 𝜃 ≤ 𝜋,
and 0 ≤ 𝜒 ≤ 2𝜋. Since the angular momentum states are diagonal under 𝐽𝑍 , we see that the 𝐽𝑌
rotation is the operation that couples different 𝑀 states. We also note the inverse rotation is given
by 𝑅−1(𝜙, 𝜃, 𝜒) = 𝑅(−𝜒,−𝜃,−𝜙).

We may write the effect of the rotation 𝑅(𝜔) of an angular momentum state as a unitary
operator D(𝜔) that acts on Hilbert space. Physically, a rotation should preserve the length of the
angular momentum 𝐽, so the matrix representation of D(𝜔) for all angular momentum states will
be block diagonal in 𝐽, and we can denote a single 𝐽 block as D (𝐽) (𝜔). We expect the D (𝐽) (𝜔)
matrices to mix the 𝑀 values for a given 𝐽, because we rotations generically change the orientation
of 𝐽 relative to �̂� . The angular momentum states transform under rotations as follows:

|𝐽, 𝑀⟩
𝑅(𝜔)
−−−−→ D (𝐽) (𝜔) |𝐽, 𝑀⟩ (2.3)

D (𝐽) (𝜔) |𝐽, 𝑀⟩ =
∑︁
𝑀 ′
|𝐽, 𝑀′⟩D (𝐽)

𝑀 ′,𝑀 (𝜔). (2.4)

Here, D (𝐽)
𝑀 ′,𝑀 (𝜔) = ⟨𝐽, 𝑀

′|D (𝐽) (𝜔) |𝐽, 𝑀⟩ are the matrix elements of the unitary operator repre-
senting rotations, known as the Wigner rotation matrix or Wigner D-matrix. It turns out these
D-matrices are very useful, being the irreducible representations of both the group of 3D rotations,
SO(3), and the group of unitary 2x2 matrices, SU(2), which are used to describe spins and two
level systems. We shall see the D-matrices again again in our section discussing of molecular states,
which can have angular momentum about both lab and molecule axes.

Finally, we also summarize the concept of spherical tensor operators. The decomposition of
vectors and operators into the spherical basis is extremely convenient for performing calculations
with angular momentum states. Essentially, spherical tensor operators transform under rotations
akin to angular momentum states, as described by the D-matrices. For any vector operator ®𝐴 with
rank 𝑘 , we write the spherical tensor components of 𝐴 as 𝑇 𝑘𝑝 (𝐴). These transform under coordinate
rotations as:

𝑇 𝑘𝑝 (𝐴) =
∑︁
𝑝′
𝑇 𝑘𝑝′ (𝐴)D

(𝑘)
𝑝′,𝑝 (𝜔) (2.5)

The properties of spherical tensor operators are summarized in the literature [39]. We can draw
an intuitive analogy with angular momentum states. The rank 𝑘 corresponds to the magnitude 𝐽,
and encodes the number of possible orientations as 2𝑘 + 1. We note that unlike 𝐽, the rank of a
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spherical tensor 𝑘 must be an integer. The orientations of the operator are denoted by 𝑝, in analogy
to the 𝑀 projection of an angular momentum.

We can now introduce a very important theorem known as the Wigner-Eckart Theorem. This
theorem allows us to write the matrix elements of spherical tensor operators on angular momentum
states as:

⟨𝜂, 𝐽, 𝑀 |𝑇 𝑘𝑝 (𝐴) |𝜂′, 𝐽′, 𝑀′⟩ = (−1)𝐽−𝑀
(

𝐽 𝑘 𝐽′

−𝑀 𝑝 𝑀′

)
⟨𝜂, 𝐽 | |𝑇 𝑘 (𝐴) | |𝜂′, 𝐽′⟩. (2.6)

We use 𝜂 to denote all other quantum numbers, for example those related to the electronic or
vibrational state of a molecule. The box is for emphasis, as we will use this eq. 2.6 over and over
again.

The Wigner-Eckart theorem essentially factorizes the matrix element into a factor dependent
on orientations 𝑀 , which we can look up in a table or on a computer, and a factor independent
of orientation in physical space, known as the reduced matrix element ⟨𝜂, 𝐽 | |𝑇 𝑘 (𝐴) | |𝜂′, 𝐽′⟩. If the
operator 𝐴 is an angular momentum operator, then the reduced matrix element can be obtained
analytically [39]. Otherwise, calculating the reduced matrix element is typically a hard problem,
and often one actually compares to experiment to obtain the value of the reduced matrix element as
a fit to data. This is the case for example when ®𝐴 = ®𝑟, the position operator acting on the electronic
wavefunction.

Using the Wigner-Eckart theorem and the theory of angular momentum coupling, we can
effectively evaluate the matrix elements of any operator acting on a composite molecular angular
momentum state. In Appendix A, we provide a recipe for evaluating matrix elements in molecules.
Many important formulae, identities, and results are provided in Refs. [39, 129]. Chapter 2 of
Ref. [132] is also an excellent introduction to evaluating angular momentum matrix elements.
Now, with basic angular momentum machinery in hand, we now proceed to describing the physical
content of atomic and molecular states.

2.1.3 Atomic States
There are many fantastic textbooks detailing the atomic Hamiltonian, so here we just mention

some relevant aspects that have parallels in molecules. First and foremost, the energy scales of the
atomic problem are far smaller than those involved in the nucleus. Therefore the nuclear degrees of
freedom are frozen out, and we only deal with the nuclear ground state. This is a somewhat trivial
example of using separations of energy scales to simplify a problem, which we will encounter later
with molecules. By the same logic, when working with multi-electron atoms, we typically only
care about the valence electron, as the lower shells are tightly bound and not accessed by our energy
scales of interest.
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In multi-electron atoms, the “Hydrogenic” quantum numbers (particularly the orbital angular
momenta 𝑙 and spins 𝑠) are coupled, and we must introduce new quantum numbers. The quantum
numbers used depend on the basis that renders the Hamiltonian most diagonal, which depends on
the scale of the physical interactions present. We can categorize the energy scales of interest as
Δ𝐸elec, representing the electrostatic separation of states due to the central Coloumb potential, and
Δ𝐸SO, representing the scale of the splitting of spin-orbit states. We note that the ratio between
relativistic 𝐸SO interaction and the electrostatic energy is given by 𝐸SO/𝐸elec ∼ 𝛼2𝑍2 [133], where
𝛼 is the fine structure constant, and 𝑍 is the atomic number of the nucleus. Therefore we expect
spin orbit to dominate for heavy atoms. A similar situation will hold in molecules as well.

In the regime with Δ𝐸elec > Δ𝐸SO, we are dominated by the central field potential, and we use
the Russell-Saunders coupling scheme. In this coupling scheme, all the electron orbital angular
momenta first couple together to form the total electronic orbital angular momentum ®𝐿 =

∑
𝑖
®𝑙𝑖,

where 𝑖 runs over electrons in the valence orbital. Similarly, the electron spins also initially couple
to each other first, forming the total electron spin angular momentum ®𝑆 =

∑
𝑖 ®𝑠𝑖. Finally, spin-orbit

interactions couple the 𝐿 and 𝑆 together to form the total angular momentum ®𝐽 = ®𝐿 + ®𝑆. If the
atom has non-zero nuclear spin, it couples to 𝐽 at the very end to obtain the grand total angular
momentum, ®𝐹 = ®𝐽 + ®𝐼.

To succinctly describe the good quantum numbers describing a system of interest, we use
term symbols. The notation of these symbols dates back to the early days of quantum mechanics,
and initially they may seem difficult to interpret. However, after becoming familiar with term
symbols, they can be used to succinctly label different electronic states of an atom or molecule.
For Russell-Saunders coupling in atoms, the term symbol is given by:

2𝑆+1𝐿𝐽 (2.7)

where we have already defined the angular momenta 𝐿,𝑆, amd 𝐽. For historical reasons, the spin 𝑆
is labeled by its multiplicity of 𝑀𝑆 orientations (i.e., singlet, doublet, triplet,...), while the orbital
angular momentum 𝐿 = 0, 1, 2, 3, 4, . . . is represented by the capital letters 𝑆, 𝑃, 𝐷, 𝐹, 𝐺, . . .. We
note sometimes the term symbol is also written with a ◦ subscript to denote a state of opposite
parity from the ground state.

In the other regime, Δ𝐸SO > Δ𝐸elec, and we are dominated by spin-orbit coupling. The
Hamiltonian now contains large off-diagonal matrix elements in the basis denoted by the Russell-
Saunders coupling scheme. Instead of the orbital and spin angular momenta initially coupling
separately amongst themselves, we now first couple each electron’s orbit and spin together first,
before coupling all the electrons together. We therefore have the good quantum number ®𝑗𝑖 = ®𝑙𝑖 + ®𝑠𝑖
defined for each electron indexed by 𝑖. Then the individual 𝑗𝑖 are coupled together to form the total
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angular momentum ®𝐽 =
∑
𝑖
®𝑗𝑖. Essentially, 𝐽 is the only good quantum number, with 𝐿 and 𝑆 so

strongly coupled that they are indistinguishable. This is known as the 𝑗 𝑗-coupling scheme, and is
particularly relevant for heavy atoms where spin-orbit interactions cannot be treated perturbatively.
We note there are further variations on atomic coupling schemes related to configurations where
multiple valence shells may be active.

We shall soon see that while we have more degrees of freedom to contend with in molecules,
the description of their states follows as a natural generalization of atomic term symbols.

2.1.4 The Simplest Molecule
Now we move on to adding another nucleus to the atom and forming a diatomic molecule. By

no means will we give a comprehensive discussion of the chemical bonds holding the molecule
together. For details, we direct the curious reader to Pauling’s introduction on the subject [134].

Just as we turn to the hydrogen atom initially to gain insight in the case of atoms, so too can
we turn to the H+2 cation to gain insight into molecules. The case of infinitely rigid H+2 , fixed
in place, can be solved analytically by introducing elliptical coordinates [39, 135], allowing the
wavefunction to be separated, much like the case with the hydrogen atom. We simply quote the
result: the eigenstates 𝜓𝑛,𝑙,𝜆 are now labeled by three good quantum numbers, 𝑛, 𝑙, 𝜆. The first two
quantum numbers are familiar from the atomic case, and have similar interpretations–𝑛 describes
the “radial” wavefunction, now in terms of constant ellipsoidal surfaces, while 𝑙 describes the
electronic angular momentum. The quantum number 𝜆 = 𝑙 · �̂� can be interpreted as the projection
of 𝑙 on the internuclear axis �̂� pointing from one nucleus to the other. Given the cylindrical
symmetry of the problem, it is natural that the projection 𝜆 can be defined.

In an approach known as Ligand Field Theory (LFT) [136–138], we can consider constructing
the 𝜓𝑛,𝑙,𝜆 states by beginning with an isolated 𝐻 atom, and bringing closer a proton initially
separated at infinite distance. Here, the proton represents a “ligand.” The electric field between the
orbiting electron and the distant proton creates an interaction analogous to the Stark effect in atoms
and molecules. Essentially, the states of the isolated atom, designated by 𝑛 and 𝑙, with degenerate
orientations 𝑚𝑙 , are now split by the ligand according to different projections of 𝑚𝑙 along �̂�, which
is the definition of 𝜆.

Indeed, we note the eigenvalues depend only on 𝜆2, and therefore we have a double degeneracy
of ±𝜆. Additional interactions, such as molecular rotation, will inevitably couple ±𝜆 states, causing
them to split into states written as symmetric and anti-symmetric combinations of ±𝜆. Such
combinations are actually necessary to preserve parity symmetry, as we shall see. Indeed, the weak
mixing of nominally degenerate projection states is the mechanism behind parity doubling, which
is present in certain diatomic molecules, generic in polyatomic molecules, and absent in atoms.
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Though our molecule neither rotates nor vibrates thus far, we have already seen the emergence
of key properties in considering the simplest case. Similar to atoms, we have 𝑛 ≥ 𝑙 ≥ 𝜆. The
molecular quantum numbers can be written in terms of molecular orbitals, with 𝑛 designated
by an integer, 𝑙 designated by lowercase Latin characters (𝑠, 𝑝, 𝑑, 𝑓 , . . .) and |𝜆 | designated by
lower Greek characters (𝜎, 𝜋, 𝛿, 𝜙, . . .). In general, lowercase symbols are used to designate single
electron properties.

As we add more electrons and possibly more nuclei, the molecular problem rapidly increases
in complexity. In general, we sidestep a great deal of the multi-electron complexity in molecules by
working with systems with one valence electron. The molecules we focus on follow a motif that has
been identified to produce laser coolable molecules, by engineering favorable vibrational decays,
discussed further in Sec. 2.1.7. A good discussion of the electronic structure of laser-coolable
molecules is given in Ch. 2.2 of Ref. [139].

2.1.5 Separation of Energy Scales and Hund’s Cases
Molecules can vibrate and rotate, in addition to their electronic degrees of freedom. We provide

a sense of the energy scales involved. In molecular spectroscopy, it is customary to describe energy
as a wavenumber, 𝐸 = ℎ𝑐𝑘 , with 𝑘 given in units of cm−1. While these units may seem odd, they
encapsulate the many orders-of-magnitude of energy scales present in molecules. For the molecules
we consider here, electronic energies are typically order ∼104 cm−1, vibrational energies are on the
scale of 100 − 1000 cm−1, rotational splittings are on the 0.1 − 1 cm−1 scale, and rotational fine
and hyperfine structure (encoding interactions of rotation with other angular momenta) are on the
scale of ≤ 0.1 cm−1.

The significant variation of the energy scales of the problem translates to significant differences
in the timescales of molecular dynamics. The electronic dynamics are the fastest in the problem,
followed by vibration, then rotation. As a result, we are motivated to perform an approximate
separation of the wavefunction, known as the Born-Oppenheimer approximation, which is treated
in detail in many textbooks. Here we provide a brief summary, following Refs. [39, 135].

We denote the full molecular wavefunction as Ψ𝑟𝑣𝑒, which is a function of the electron spatial
coordinates ®𝑟𝑖 with electron index 𝑖, the electronic spins ®𝑠𝑖, the nuclear coordinates ®𝑅𝑘 with nuclear
index 𝑘 , and the Euler angles 𝜔 := (𝜙, 𝜃, 𝜒) describing the orientation of the molecular frame
relative to the lab frame. Prior to performing the approximations, the total Hamiltonian can be
written as:

(𝐻elec + 𝐻nucl)Ψ𝑟𝑣𝑒 = 𝐸𝑟𝑣𝑒Ψ𝑟𝑣𝑒 . (2.8)

Here, 𝐻elec has been factored such that it does not contain any effects of nuclear motion. On the
other hand, 𝐻nucl contains angular momentum operators that can couple different electronic states.
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The first step, not yet an approximation, is to expand the total wavefunction in a complete basis
spanned by products of electronic and nuclear wavefunctions:

Ψ𝑟𝑣𝑒 =
∑︁
𝑛

𝜓𝑛𝑒 (®𝑟𝑖, ®𝑅𝑘 )𝜓𝑛𝑟𝑣 ( ®𝑅𝑘 , 𝜔). (2.9)

Here, 𝑛 is an index labeling different wavefunctions correlated with electronic states of the rigid
molecule, and we have dropped the spin interactions for convenience, as they will be very weak in
comparison. At this point, we note the electronic wavefunctions are defined as eigenstates of the
electronic Hamiltonian, 𝐻elec𝜓

𝑛
𝑒 (®𝑟𝑖, 𝑅𝑘 ) = 𝐸𝑛𝑒 (𝑅𝑘 )𝜓𝑛𝑒 (®𝑟𝑖, 𝑅𝑘 ).

We now perform the adiabatic approximation, writing the wavefunction as:

Ψ0
𝑟𝑣𝑒 = 𝜓

𝑛
𝑒 (®𝑟𝑖, 𝑅𝑘 )𝜙𝑛𝑟𝑣 (𝑅𝑘 , 𝜔). (2.10)

Here, 𝜙𝑛𝑟𝑣 is an appoximation of a single 𝜓𝑛𝑟𝑣 vibrational state, which means we are neglecting
terms that mix different 𝑛 states. As the name “adiabatic” implies, in this approximation the
electrons instantaneously adjust their dynamics to track the vibrating and rotating nuclei, which
move slowly in comparison. This approximation is motivated by the separation of electronic and
nuclear timescales observed in molecules. The electronic wavefunction depends parametrically on
the nuclear coordinates, ®𝑅𝑘 , but is independent of the nuclear momenta or operators. We imagine
we can fix the nuclei in place, solve for the electronic Hamiltonian, then vary the fixed nuclear
position, re-solve the electronic energies, and so on, obtaining a potential energy surface describing
the electronic state as a function of the nuclear coordinates. For diatomic molecules, this potential
energy surface is one dimensional, as there is only one nuclear “coordinate,” the relative separation
of the nuclei 𝑅. For polyatomic molecules, the potential energy surface is multi-dimensional, which
can have consequences such as allowing certain crossings known as conical intersections, where
the approximations discussed break down completely, though we do not discuss the matter further
in this work.

Finally, to complete the Born-Oppenheimer (BO) approximation, we neglect all couplings of
electronic and nuclear motions when determining 𝜙𝑛𝑟𝑣. By using Euler angles to describing the
molecular rotation in relation to the molecule body-fixed axes, we can further separate the rotation-
vibration wavefunction into separate vibrational and rotation parts. For the complete molecular
wavefunction in the BO approximation, we therefore have completed a full separation of electronic,
vibrational, and rotational degrees of freedom:

Ψ0
𝑟𝑣𝑒 = 𝜓𝑒𝜓𝑣𝜓𝑟 . (2.11)

We note that the procedure of quantizing the molecule rotation in terms of the body-fixed axes will
have consequences for how we handle 𝜓𝑟 , discussed in the next section. This separation of the
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molecular wavefunction is at the heart of how we can perform physics experiments with molecules
in a tractable manner. In essence, the BO approximation expands the molecular energy 𝐸 in terms
of the BO parameter, 𝜅 = (𝑚/𝑀)1/4, where 𝑚 is the electron mass, and 𝑀 is the nuclear mass.
Very approximately, we have 𝐸𝑚𝑜𝑙 ≈ 𝐸elec(𝜅0) + 𝐸𝑣𝑖𝑏 (𝜅2) + 𝐸Rot(𝜅4). However, we shall see that
even in the molecules we consider, we will encounter breakdowns of the approximations we have
introduced. For example, we shall see later that vibration-rotation couplings will be relevant for
bending polyatomic molecules. Nonetheless, we will be able to treat the relevant interactions
perturbatively in the case of the variations from BO wavefunctions that we encounter.

2.1.6 Rotation and Symmetric Top States
In this section we provide a detailed discussion the rotational states of the molecule, denoted

𝜓𝑟 in eq. 2.11. In this section we will denote the total rotational angular momentum of the molecule
generically as ®𝐽. In later sections, we will discuss the specific composition of this rotation in terms
of spin, nuclear framework, etc., but for this discussion we remain agnostic about the specifics. We
introduce the notion of the molecular frame, labeled by axes 𝑥, �̂�, 𝑧. We use lowercase letters to
denote the molecule frame components, while we reserve the uppercase letters �̂�,𝑌 , �̂� to denote
the lab frame components. In a linear molecule, 𝑧 is taken along the axis of cylindrical symmetry,
and often referred to as the internuclear axis �̂�. For symmetric and asymmetric rotors, we follow
the convention of aligning 𝑧 to the principal axis with the largest moment of inertia.

We discuss further what we meant in the previous section by “quantizing” the rotational angular
momentum in the molecule body-fixed frame. We can convert back and forth between the lab and
molecule frames by using rotations parameterize by the Euler angles, defined in eq. 2.2. The
rotations that transforms lab frame vector to the molecule frame and vice versa can be written as a
unitary matrix𝑈 that acts on 3D vectors. That is, if ®𝑉𝐿 is in the lab frame and ®𝑣𝑚 is in the molecule
frame, ®𝑉𝐿 = 𝑈®𝑣𝑚. The matrix 𝑈 is always 3x3, resulting from the dimension of physical space.
The matrix elements of𝑈 are referred to as the direction cosines in the literature [39, 129], and the
explicit form of𝑈 is given in eq. 2.39 of Ref. [39].

We can use the direction cosines to define the rotational angular momentum of the molecule,
𝐽, in the molecule frame, which allows us to separate 𝜓𝑟 and 𝜓𝑣. The body-fixed angular momenta
𝐽𝑥 , 𝐽𝑦, 𝐽𝑧 generate rotations in the molecule frame. Further, it can be shown that the space-fixed
Euler rotation in eq. 2.2 is equivalent to a series of body-fixed rotations performed in the reverse
order:

𝑅𝑍 (𝜙)𝑅𝑌 (𝜃)𝑅𝑍 (𝜒) = 𝑅𝑧 (𝜒)𝑅𝑦 (𝜃)𝑅𝑧 (𝜙). (2.12)

The rotations on the right hand side are generated by the angular momenta quantized along the
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molecule frame axes3. While rotations of the molecule body may be easier to conceptualize, the
associated angular momenta are difficult to work with as the molecule axes are changing in space
as we perform the rotations, causing complications.

The biggest issue with the molecule rotation 𝐽 being quantized in the molecule frame is that
the components 𝐽𝑥 , 𝐽𝑦, 𝐽𝑧 have anomalous commutation relations. Explicitly, we have [𝐽𝑎, 𝐽𝑏] =
−𝑖𝐽𝑐𝜖𝑎𝑏𝑐, where 𝑎, 𝑏, 𝑐 are indices for the molecule axes, and the sign of −𝑖 is anomalous. This
means if, in analogy with the lab frame, we were to naively construct a “raising” 𝐽 (𝑚)+ = 𝐽𝑥 + 𝑖𝐽𝑦
operator in the molecule frame and act it on the molecule state, it would actually lower the projection
𝐽𝑧 in the molecule frame! This means we cannot apply the machinery of spherical tensor operators
presented earlier. We note the anomalous commutation only applies to operators that contain the
molecule body rotation, which will either be denoted by 𝐽 or 𝑁 , depending on the coupling scheme.
Other operators such as 𝐿 and 𝑆 are not anomalous in either the lab or molecule frame [39].

To deal with the anomalous commutation relations, we always transform operators coupled
with the molecule rotation from the molecule frame to the lab frame. We consider an operator
𝐴 represented in the lab frame with spherical tensor form 𝑇 𝑘𝑝 (𝐴). We use 𝑝 to refer lab frame
components. We can also define the same operator 𝐴 in the molecule frame as 𝑇 𝑘𝑞 (𝐴), where we
use 𝑞 to refer to molecule frame components. Using the D-matrices, we can transform the operator
𝐴 between the two frames as follows:

𝑇 𝑘𝑝 (𝐴) =
∑︁
𝑞

D (𝑘)𝑝,𝑞 (𝜔)∗𝑇 𝑘𝑞 (𝐴) (2.13)

𝑇 𝑘𝑞 (𝐴) =
∑︁
𝑝

(−1)𝑝−𝑞D (𝑘)−𝑝,−𝑞 (𝜔)∗𝑇 𝑘𝑝 (𝐴). (2.14)

The advantage of this approach is that the matrix elements of the D-matrix can be found in the
literature [39, 129, 130]. Essentially, when we calculate matrix elements involving D (𝑘)𝑝,𝑞 (𝜔),
we are integrating over the space of all possible molecular orientations with a measure given by
d𝜔 = 𝑠𝑖𝑛𝜃 d𝜙 d𝜃 d𝜒. For more details on matrix element calculations, see Appendix A.

We now introduce the eigenstates that generically describe the molecular rotation 𝐽 in both
the molecule and lab frames. The rotational Hamiltonian can take many forms, depending on the
symmetries of the principal axes that diagonalize the moment of inertia matrix, which is constructed
from the nuclear masses and bond geometries. On one hand, the simplest rotational Hamiltonian
is that of a diatomic molecule with zero angular momentum about the internuclear axis �̂�, that is
𝐽𝑧 = 𝐽 · �̂� = 0. Such a molecule has infinite rotational symmetry about �̂� = 𝑧, and is described
by only one moment of inertia, 𝐼, describing rotation perpendicular to �̂� (i.e., only 𝐽𝑥 and 𝐽𝑦 are

3Technically the angular momenta are quantized along lab frame axes that are always rotated to be instantaneously
coincident with the molecule body axes, see Ref. [39] and references therein.
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non-zero). The Hamiltonian is referred to as the rigid rotor Hamiltonian, given by:

𝐻 = 𝐵 ®𝐽2. (2.15)

Here, 𝐵 ∝ 𝐼−1 is the energy scaling of the moment of inertia in wavenumber units. The eigenstates
of the rigid rotor Hamiltonian are described by spherical harmonics, with eigenvalue 𝐽 (𝐽 + 1), and
degenerate 𝑀 = ®𝐽 · �̂� sublevels.

On the other end of the rotational complexity scale, we have an asymmetric rotor, which is a
molecule without any symmetry axis. Here, ®𝐽 is described by three unique moments of inertia, one
for each component. The Hamiltonian is given by:

𝐻 = 𝐴𝐽2
𝑎 + 𝐵𝐽2

𝑏 + 𝐶𝐽
2
𝑐 . (2.16)

Here, A, B, and C denote the three principle axes of the moment of inertia, and the usual convention4

has 𝐼𝑎 < 𝐼𝑏 < 𝐼𝑐 (𝐴 > 𝐵 > 𝐶), with the 𝑎, 𝑏, 𝑐 identified with 𝑧, 𝑥, �̂�. The eigenstates of
this Hamiltonian are typically complicated, with the rotation Hamiltonian mixing states with by
Δ𝐽𝑧 = ±2. Therefore 𝐽𝑧 is not well-defined, and only 𝐽 and its lab frame projection 𝑀 are good
quantum numbers. More information can be found in Refs. [39, 135, 140, 141].

It turns out that we can describe the molecular rotation eigenstates in a single basis that will let
us interpolate between the asymmetric rotor on one hand, and the diatomic molecule on the other
hand. This basis is referred to as the symmetric top basis, which describes rotors with two equal
moments of inertia. For example, setting 𝐵 = 𝐶 equal in eq. 2.16, we obtain the symmetric top
Hamiltonian:

𝐻 = 𝐵( ®𝐽2 − 𝐽2
𝑧 ) + 𝐴𝐽2

𝑧 . (2.17)

This is specifically the Hamiltonian for a prolate symmetric top, with 𝐼𝑎 < 𝐼𝑏 = 𝐼𝑐 (and therefore
𝐴 > 𝐵 = 𝐶), and 𝑧 identified with the 𝑎 axis. Pictorally, such a system can be thought of as a
football or an egg like shape5. A symmetric top can also be oblate, and convention then is to label
𝑧 with the 𝑐 axis, with 𝐼𝑐 > 𝐼𝑏 = 𝐼𝑎 (and therefore 𝐶 < 𝐴 = 𝐵). Pictorally, oblate rotors are shaped
like a disk or frisbee. Given we often have a heavy atomic mass on the symmetry axis, we consider
only prolate tops.

The Hamiltonian in eq. 2.17 can be shown to commute with ®𝐽2, 𝐽𝑧 B 𝐾 , and 𝐽𝑍 B 𝑀 . The
symmetric top eigenstates are therefore labeled with three quantum numbers, written as |𝐽, 𝐾, 𝑀⟩.
In the basis of Euler angles, the normalized wavefunction can be written in terms of the D-matrix:

Ψ𝐽𝐾𝑀 = ⟨𝜔|𝐽𝐾𝑀⟩ =
√︂

2𝐽 + 1
8𝜋2 D

(𝐽)
𝑀,𝐾
(𝜔)∗ (2.18)

4The convention we present for identifiying 𝑎, 𝑏, 𝑐 with 𝑧, 𝑥, 𝑦 is known as 𝐼𝑟 .
5The mass quadrupole is positive for prolate and negative for oblate.
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where the normalization is defined such that
∫

d𝜔Ψ = 1. The eigenvalues of the three good
operators have their usual values. The spherical harmonics are a special case of the symmetric top
wavefunction when 𝐾 = 0.

We can intuitively understand the symmetric top wavefunctions as describing the amplitude
for finding the molecule fixed angular momentum state |𝐽, 𝐾⟩ projected onto the lab-frame state
|𝐽, 𝑀⟩. Indeed, using the properties of the D-matrices, we can write:

D (𝐽)
𝑀,𝐾
(𝜔)∗ = ⟨𝐽, 𝑀 |D (𝐽) (𝜔) |𝐽, 𝐾⟩∗

= ⟨𝐽, 𝐾 |D (𝐽) (𝜔−1) |𝐽, 𝑀⟩
(2.19)

Where 𝜔−1 = (−𝜒,−𝜃,−𝜙) denotes the Euler rotation inverse to 𝜔. Alternatively, 𝜔−1 denotes
the passive rotation of the axes equivalent to the active rotation 𝜔 of the body. We therefore see
the symmetric top wavefunctions describe a rotation of the lab-frame angular momentum state into
the molecule frame given by an Euler rotation 𝜔−1 of the lab-frame coordinates. We finally note
that |𝐽𝐾𝑀⟩ can also describe half integer 𝐽, which can occur if 𝐽 contains contributions from the
electron spin. We also note that the symmetric top wavefunction can have significant impact on
the matrix elements of operators evaluated in the molecule frame, for example causing hyperfine
shifts to differ between 𝐾 = 0 and 𝐾 = 1 states.

2.1.7 Vibrational States
In this section, we discuss the vibrational part of the molecule wavefunction, denoted 𝜓𝑣 in

eq. 2.11. In the discussion of rotation, we considered the molecule as being rigid. However, in
reality the bond distances can deform as the molecule vibrates. Large molecules can have large
amplitude, “floppy” vibrations, and we do not consider them here. Instead, we work with molecules
where the vibrational displacements can be considered as small variations of the equilibrium nuclear
framework.

For a diatomic molecule, the vibration is relatively simple, with the only vibrational coordinate
being the variation of the bond distance 𝑅 about the equilibrium value 𝑅𝑒. The potential for
𝑅 − 𝑅𝑒 can be approximated as that of a simple harmonic oscillator, with anharmonicities being
included perturbatively, either with additional higher order terms or with the Morse potential. The
vibrational energy for a single vibrational mode is written as [39]:

𝐸𝑣𝑖𝑏 = 𝜔𝑒

(
𝑣 + 1

2

)
− 𝜔𝑒𝑥𝑒

(
𝑣 + 1

2

)2
+ 𝜔𝑒𝑦𝑒

(
𝑣 + 1

2

)3
+ . . . (2.20)

Here, 𝑣 is the number of vibrational quanta, 𝑥𝑒 and 𝑦𝑒 are small corrections representing deviations
from the harmonic oscillator potential, and 𝜔𝑒 is the equilibrium vibrational constant. We note the
vibration contributes zero point energy to the total molecular energy.
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Since the rotation of the molecule is much slower than the vibration, we can consider the
rotational constant as averaged over the vibrational motion. Therefore, the rotational constant
measured in a given vibrational level 𝑣 can be written as [129]:

𝐵𝑣 = 𝐵𝑒 − 𝛼
(
𝑣 + 1

2

)
+ . . . (2.21)

Here, 𝐵𝑒 is the rotational constant obtained from the equilibrium bond distance, and 𝛼 represents
the correction to the rotational constant from vibration.

Often, we are interested in electronic transitions between different molecular states. Such
transitions can also be accompanied by a change in the vibrational coordinates, Δ𝑣 = 𝑣′− 𝑣′′. In the
Condon approximation, we assume the electronic transition happens instantaneously compared to
vibrational timescales, and so the ground vibrational wavefunction |𝑣′′⟩ is projected onto the excited
state wavefunction |𝑣′⟩. The strength of the electronic transition for a given Δ𝑣 is scaled by the
overlap integral of the two states, known as the Franck-Condon Factor (FCF), given by |⟨𝑣′|𝑣′′⟩|2.
We note the FCFs must be scaled by the electronic transition frequency 𝜔3

𝑒𝑔 to obtain branching
ratios for the transition, see Ch. 3, Sec. 3.2.4.1 for details.

We can imagine writing the FCFs as a matrix where the diagonal entries of the matrix denote
Δ𝑣 = 0 transitions. For a generic molecule, we expect large values off-diagonal elements of the
FCF matrix. However, for a class of carefully selected molecules, the FCF matrix is dominated by
the on-diagonal entries. In a so-called “diagonal” molecule, the majority of spontaneous decays
for a given excited state have Δ𝑣 = 0, with increasingly smaller branching ratios for transitions with
|Δ𝑣 | = 1, 2, . . ..

Molecules that have diagonal FCFs can be laser-coolable, requiring only a modest number6 of
additional of lasers to address all relevant vibrational decays from the excited state. The number of
vibrational states that need addressing depend on the number of photons we would like to scatter.
In general, scattering 𝑁𝑝ℎ photons requires addressing all vibrational decays that occur at the ∼𝑁−1

𝑝ℎ

branching level. For example, to scatter 𝑁𝑝ℎ = 104, we must ensure the sum of all unaddressed
branching is < 10−4. At this point there is an established motif for choosing molecules with
near-diagonal FCFs by bonding an alkaline-earth (like) metal atom with an electronegative ligand,
such has OH [112, 113, 123]. We discussed some relevant details earlier in Ch. 1, Sec. 1.4. The
details of weak vibrational branching and establishing nearly closed optical cycles in polyatomic
molecules are discussed further in Refs. [139, 143, 144].

In this thesis, we are interested in polyatomic molecules, which have additional vibrational
degrees of freedom. For a molecule with 𝑁 nuclei, we will have 3𝑁 − 6 vibrational degrees

6∼3 lasers for a diatomic [142], ∼10 lasers for a linear triatomic [108].
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of freedom (3𝑁 − 5 for a linear molecule7). We note the cartesian vibrational coordinates will
generically be coupled to each other. This motivates the transformation into orthogonal vibrational
coordinates, known as normal modes denoted𝑄𝑖. The procedure to obtain normal modes is known
as the GF matrix approach, and is detailed in Refs. [145, 146]. We do not discuss the GF matrix
approach, and merely assume that we begin with a series of normal modes for the molecule.

For a linear triatomic molecule such as YbOH, the normal modes of vibration associated with
two stretching vibrations, denoted 𝑣1 to describe the Yb-O stretch and 𝑣3 to describe the O-H stretch,
and one bending vibration, denoted 𝑣2. Owing to the large mass asymmetry of Yb compared to
H, the bend can be interpreted physically as the bending of the H atom off the axis defined by the
Yb-O bond [146, 147]. The stretching modes are treated similarly to the case of vibrations in a
diatomic molecule. The total vibrational wavefunction is written as a product of the individual
wavefunctions for the 𝑣𝑖, and often we will designate the vibrational state as (𝑣1, 𝑣

ℓ
2, 𝑣3). Here,

ℓ is the angular momentum associated with the doubly-degenerate bending mode, which we will
investigate further.

We concern ourselves with the normal coordinate 𝑄2 describing the bending mode of the
molecule, which is doubly-degenerate. In a non-rotating molecule, there is no difference between
displacements along𝑄2𝑥 and𝑄2𝑦, and so the eigenstates are linear combinations of the two motions,
resulting in the emergence of vibrational angular momentum ®𝐺ℓ with projection ®𝐺ℓ · 𝑧 = ℓ on the
symmetry axis. Physically, we can picture the molecule in a bent configuration, rotating around
its former symmetry axis. The degeneracy of ℓ then refers to a degeneracy in the direction of the
molecule axis orientation. Of course, higher order electron-vibration couplings and Coriolis effects
will lift this degeneracy, resulting in small splittings of opposite parity levels in doubly-degenerate
bending modes.

The vibrational eigenstates of the bending mode are denoted |𝑣2, ℓ⟩, where 𝑣2 is the number
of vibrational quanta, and ℓ is the angular momentum projection. The possible eigenvalues of ℓ
are obtained by considering aligned or anti-aligned combinations of the vibrational quanta. For
example, 𝑣2 = 1 only has ℓ = 1, while 𝑣2 = 2 can support an aligned, ℓ = 2 configuration, and
an-antialigned, ℓ = 0 configuration. Continuing, 𝑣2 = 3 will have available ℓ = 1, 3, 𝑣2 = 4 has
ℓ = 0, 2, 4, and so on.

To obtain a form of |𝑣2, ℓ⟩, we consider the case of a two-dimensional harmonic oscillator
discussed in detail in the Appendix of Ref. [145]. We can write the normal mode in dimensionless
units as 𝑞2 = 𝛾1/2𝑄2, where 𝛾 = 2𝜋𝑐𝜔2/ℏ, with 𝜔2 the harmonic bending frequency. The

7𝑁 nuclei have 3𝑁 degrees of freedom. We subtract 3 for translational motion and 3 for rotation for non-linear
molecules, or 2 for rotation in a linear molecule.
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eigenstates of the two dimensional harmonic oscillator can be written as [145, 148, 149]:

|𝑣2, ℓ⟩ =
1
√

2𝜋
𝑒𝑖ℓ𝜙Ψ𝑣2,ℓ (𝑞). (2.22)

Here, 𝑞 = 𝑞2 =
√︃
𝑞2

2𝑥 + 𝑞
2
2𝑦, where (𝑞2𝑥 , 𝑞2𝑦) are the dimensionless normal coordinates of the

bending mode, and 𝜙 = tan−1(𝑞2/𝑞1) is the bending angle associated with the normal mode8. The
function Ψ𝑣2,ℓ is given by [148]:

Ψ𝑣,ℓ (𝑞) = (−1) (𝑣+|ℓ |)/2𝑁𝑣,ℓ𝑞 |ℓ |𝑒−𝑞
2/2𝐿 |ℓ |(𝑣+|ℓ |)/2(𝑞

2). (2.23)

Here, 𝑁𝑣,ℓ is a normalization factor defined up to an overall phase, i.e., 𝑁𝑣,ℓ = 𝑒𝑖2𝛿ℓ |𝑁𝑣,ℓ |, and 𝐿𝑘𝑛 (𝑥)
is an associated Laguerre polynomial. The phase 𝛿ℓ can be chosen according to two conventions;
either 𝛿ℓ = 0, and |𝑣, ℓ⟩ = |𝑣,−ℓ⟩, or 𝛿ℓ = 𝜋/2, and |𝑣, ℓ⟩ = −|𝑣,−ℓ⟩. While this sign is just a
convention and cannot affect the eigenstate energies, differences in phase can result in disagreements
over the sign of off-diagonal matrix elements in the Hamiltonian. We discuss phase conventions in
detail in Appendix A, Sec. A.2, where we discuss parity symmetries of molecular states.

Further, we can also define ladder operators for the bending mode as 𝑞± = 𝑞2𝑒
±𝑖𝜙 = 𝑞2𝑥 ± 𝑖𝑞2𝑦.

The matrix elements of these operators is given in Refs. [129, 148, 151], all using the 𝛿ℓ = 0 phase
convention. The result is:

𝑞± |𝑣2, ℓ⟩ =
√︂
𝑣2 + 2 ± 𝑙

2
|𝑣2 + 1, ℓ ± 1⟩ +

√︂
𝑣2 ∓ ℓ

2
|𝑣2 − 1, ℓ ± 1⟩. (2.24)

Interestingly, 𝑞+must raise ℓ, but it can either raise or lower 𝑣2, and vice versa for 𝑞−. This is because
the “true” ladder operators of both 𝑣2 and ℓ involve not just 𝑞 but also 𝑝, the momenta conjugate to
the bending normal coordinate [148, 149, 152, 153]. If we analogously define 𝑝± = 𝑝2𝑥±𝑖𝑝2𝑦, then
we can write total ladder operators 𝐹±(±) = 𝑞 (±) ∓ 𝑖𝑝 (±) , which cause Δ𝑣2 = ±1 and Δℓ = (±)1,
and have matrix elements provided in Ref. [148, 152]. We note Ref. [149] defines their ladder
operators 𝑅±(±) with an additional factor of ∓𝑖, such that 𝐹±(±) = ∓𝑖𝑅±(±) .

We often do not consider 𝑝, but it shows up in the Coriolis couplings of the vibrational angular
momentum. We also note that both 𝑞 and 𝑝 are used to define the bending angular momentum ®𝐺ℓ,
according to [129]:

®𝐺ℓ =
∑︁
𝑖

∑︁
𝑗

𝜁𝑖 𝑗𝑄𝑖𝑃 𝑗 (2.25)

where the indices 𝑖 and 𝑗 run over all normal modes, including both modes for a degenerate
vibration (i.e., 𝑄2𝑥 and 𝑄2𝑦 in the linear triatomic case), 𝑄𝑖 and 𝑃𝑖 are pairs of conjugate position
and momenta, and 𝜁𝑖 𝑗 are the Coriolis coupling constants defined in Refs. [129, 154], which satisfy

8It is not so simple to interpret this as the physical bending coordinate. See Ref. [150]
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𝜁𝑖 𝑗 = −𝜁 𝑗𝑖 in general, and specifically for linear molecules we have the relation
∑
𝑖 𝜁

2
𝑖 𝑗
= 1 [154].

These Coriolis coupling constants arise when we write the bending rotation in the molecule
frame [155].

We now return to the total vibrational energy of the polyatomic molecule. In general, the
vibrations will have anharmonic corrections, and there will also be anharmonic cross-couplings
between different vibrational modes. The total vibrational energy for a polyatomic molecule with
𝑛 = 𝑠 + 𝑡 total vibrational modes, with 𝑠 symmetric stretching modes and 𝑡 degenerate bending
modes, is given by [135, 145, 155]:

𝐸 (𝑣𝑠; 𝑣𝑡 , ℓ𝑡 , . . .) =
𝑛∑︁
𝑖

𝜔𝑖

(
𝑣𝑖 +

𝑑𝑖

2

)
+

𝑛∑︁
𝑖≤ 𝑗

(
𝑣𝑖 +

𝑑𝑖

2

) (
𝑣 𝑗 +

𝑑 𝑗

2

)
+

𝑡∑︁
𝑘≤𝑘 ′

𝑔𝑘𝑘 ′ℓ𝑘ℓ𝑘 ′ + . . . (2.26)

Here, 𝑑𝑖 is the degeneracy of a vibrational mode, with 𝑑𝑠 = 1 and 𝑑𝑡 = 2. The sums over 𝑖
are taken for all modes, while the sums over 𝑘 are only taken for the 𝑡 degenerate modes. The
term 𝑔𝑘𝑘 ′ℓ𝑘ℓ𝑘 ′ generates the anharmonic splitting between the different values of ℓ possible for
a degenerate bending mode 𝑣𝑘 , and can also include cross couplings of 𝑣𝑘 and 𝑣′

𝑘
. The ellipses

indicate we can always add higher order terms to the expansion. Similar to a diatomic molecule,
the vibrations also affect the rotational constant of a polyatomic molecule [129, 135]:

𝐵𝑣 = 𝐵𝑒 −
∑︁
𝑖

𝛼𝑖

(
𝑣𝑖 +

𝑑𝑖

2

)
+ . . . (2.27)

Many higher order corrections are discussed in Hirota [129].

2.1.8 Electronic States and Hund’s Cases
We now follow the same path as our discussion of atoms, and define bases of good quantum

numbers that can label molecules in different regimes of competing physical interactions. Once
we have a basis, we can write the term symbols for molecules. The different bases for representing
molecular states are known as Hund’s cases [39, 129]. The relevant physical interactions we
consider are Δ𝐸elec, Δ𝐸SO, and Δ𝐸Rot, representing the energy of the electrostatic interaction with
the ligand field, spin-orbit interactions, and the rotation of the molecule. Once again, we refer to the
molecule frame, labeled by axes 𝑥, �̂�, 𝑧. In a linear molecule, 𝑧 is taken along the axis of cylindrical
symmetry, and often referred to as the internuclear axis �̂�. For symmetric and asymmetric rotors,
we follow the convention of aligning 𝑧 to the principal axis with the smallest moment of inertia.

We now write down all of the angular momenta of a linear polyatomic molecule; some quantities
will end up being well-defined, while others will be poor quantum numbers. Similar to the atomic
case, we define ®𝐿 =

∑
𝑖
®𝜆𝑖 and ®𝑆 =

∑
𝑖 ®𝜎𝑖, where 𝑖 is a sum over valence electrons, and 𝜆 and 𝜎

represent values associated with molecular orbitals. Novel in the molecular case, we can also define
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an operator ®𝑅 to describe the end-over-end rotation or tumbling motion of the bare nuclei. Further,
in the case of polyatomic molecules, as we discussed earlier the nuclei can exhibit vibrational
bending motions that constitute orbits about the molecular symmetry axis, and we will denote this
angular momentum as ®𝐺ℓ with projection ℓ on the internuclear axis. We will see that none of 𝐿, 𝑅,
or 𝐺ℓ are well-defined, and so instead we introduce the combined electronic and nuclear rotation
without spin, ®𝑁 = ®𝐿 + ®𝑅 + ®𝐺ℓ. Depending on the molecule, if spin-orbit interactions are large, 𝑁
may also be a poor quantum number, with the well-defined quantity being the total electronic and
nuclear angular momentum including spin, ®𝐽 = ®𝑁 + ®𝑆. Finally, as in the case of atoms, if we have
a nuclear spin 𝐼, then we must form the grand total angular momentum ®𝐹 = ®𝐽 + ®𝐼. The various
symbols are summarized in Table 2.1.

The Hund’s cases are first classified according to the coupling scheme of the electron spin, and
then subclassified according to the hyperfine coupling scheme of the nuclear spin. Beginning with
the electron spin ®𝑆, we can describe the spin components in the molecule frame, which describes
Hund’s case (a) and (c), or in the lab frame, which describes Hund’s case (b). Cases (a) and (c) are
distinguished from one another by the strength of spin-orbit coupling. As we shall see, in case (c)
we cannot even separate the electron’s spin from its orbital angular momentum 𝐿. Meanwhile, the
hyperfine subclassifications are added as subscripts and denote how strong the electron spin-nuclear
spin coupling is compared to the electron spin-rotation or electron spin-orbit couplings. Often the
case of strong hyperfine coupling only arises in case (b), and by default when we omit subscripts
we describe weak hyperfine coupling. We now present the cases in more detail.

First, we consider Hund’s case (a), which corresponds to the hierarchy Δ𝐸elec ≫ Δ𝐸SO ≫
Δ𝐸Rot. The strong electrostatic interaction couples the angular momenta to the internuclear axis
�̂�, and therefore only the projections on �̂� are good quantum numbers, denoted by Λ = 𝐿 · �̂� and
𝛴 = 𝑆 · �̂�. Semiclassically, we can think of the angular momenta 𝐿 and 𝑆 as precessing around the
internuclear axis, a result of the torque exerted by electrostatic forces. Conversely, the operators ®𝐿
and ®𝑅 are poorly-defined in case (a), and we do not use their eigenvalues to label the states. Instead
we write ®𝑅 = ®𝐽 − ®𝐿 − ®𝑆, first considering diatomic molecules. States with different magnitudes of
|Λ| are split in energy by the electrostatic interaction Δ𝐸elec. At smaller energy scale, on-diagonal
spin-orbit terms cause splittings of states with the same value |Λ| but different orientations of
𝛴. The off-diagonal terms can also cause small mixings of Λ. Overall, the spin-orbit interaction
preserves the magnitude of Ω = Λ + 𝛴, and this is therefore a good quantum number as well that
can be used to label the states. In Hund’s case (a), we label electronic states with term symbols
using the following notation:

2𝑆+1Λ(±)
Ω
. (2.28)

We note that the values of Ω and Λ are taken to be unsigned for the term symbol. As in the case
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Table 2.1: The various angular momenta relevant to the linear polyatomic molecules we consider.
The column “Anomalous?” indicates if the angular momentum has anomalous commutation
relationships. The columns labeled (a), (b𝛽J), (b𝛽S), (c) each correspond to the respective Hund’s
case. A checkmark ✓ indicates the angular momentum is a good quantum number in this basis.
An x-mark ✗ indicates the angular momentum is not well-defined in this basis, and must be written
in terms of good angular momenta. For example, in case (a), we must write ®𝑁 = ®𝐽 − ®𝑆.

Symbol Description Anomalous? a b𝛽J b𝛽S c
®𝑅 Rotation of the nuclear framework Yes ✗ ✗ ✗ ✗
®𝐺ℓ Vibrational angular momentum No ✗ ✗ ✗ ✗

ℓ = ®𝐺ℓ · �̂� Projection of 𝐺 − ✓ ✓ ✓ ✓
®𝐿 Electronic orbital angular momentum No ✗ ✗ ✗ ✗

Λ = ®𝐿 · �̂� Projection of 𝐿 − ✓ ✓ ✓ ✗
®𝑁 = ®𝑅 + ®𝐿 + ®𝐺ℓ Nuclear and electronic rotation Yes ✗ ✓ ✓ ✗

𝐾 = Λ + ℓ Projection of 𝑁 − ✓ ✓ ✓ ✗
®𝑆 Total electron spin No ✓ ✓ ✓ ✗

𝛴 = 𝑆 · �̂� Projection of 𝑆 − ✓ ✗ ✗ ✗

Ω = Λ + 𝛴 Projection of electronic momentum − ✓ ✗ ✗ ✓
®𝐽 = ®𝑁 + ®𝑆 Total angular momentum Yes ✓ ✓ ✗ ✓

𝑃 = Λ + ℓ + 𝛴 Projection of 𝐽 − ✓ ✗ ✗ ✓
®𝐼 Nuclear spin No ✓ ✓ ✓ ✓
®𝐺 𝐼 = ®𝑆 + ®𝐼 Total hyperfine spin No ✗ ✗ ✓ ✗
®𝐹 = ®𝐽 + ®𝐼 = ®𝑁 + ®𝐺 𝐼 Grand total angular momentum Yes ✓ ✓ ✓ ✓

Table 2.2: The various Hund’s cases relevant to this work and their corresponding basis states.
Here we include hyperfine interactions with a nuclear spin 𝐼, and we have defined the total spin
quantum number ®𝐺 𝐼 = ®𝑆 + ®𝐼. The second column indicates the energy hierarchy implied by the
basis of interest, where 𝐸SO, 𝐸SR, and 𝐸Hyp are scale of the spin-orbit, spin-rotation, and hyperfine
interactions, respectively. A full list of Hund’s cases, including other hyperfine coupling scenarios,
can be found in Ref. [39] and Ref. [129].

Hund’s Case Energy Scales Basis States1,2

(𝑎𝛽) 𝐸SO > 𝐸SR > 𝐸Hyp |𝑣, ℓ⟩ |𝜂,Λ⟩ |𝑆, 𝛴⟩ |𝐽, 𝑃; (𝐽, 𝐼)𝐹, 𝑀𝐹⟩
(𝑏𝛽𝐽) 𝐸SR > 𝐸Hyp > 𝐸SO |𝑣, ℓ⟩ |𝜂,Λ⟩ |𝑁, 𝐾; (𝑁, 𝑆)𝐽; (𝐽, 𝐼)𝐹, 𝑀𝐹⟩
(𝑏𝛽𝑆) 𝐸Hyp > 𝐸SR > 𝐸SO |𝑣, ℓ⟩ |𝜂,Λ⟩ |𝑁, 𝐾; (𝑆, 𝐼)𝐺 𝐼 ; (𝑁,𝐺 𝐼)𝐹, 𝑀𝐹⟩
1 We use the notation | (𝐽1, 𝐽2)𝐽12⟩ to denote coupled angular momenta.
2 𝜂 represents all other possible quantum numbers labeling the electronic state.
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of atoms, 2𝑆 + 1 labels the spin multiplicity. The values of Λ are designated with capital Greek
letters9, with Λ = 0, 1, 2, 3, 4, . . . . . . corresponding to Σ,Π,Δ,Φ, . . .. States with Λ > 0 exhibit a
double degeneracy of ±Λ states, which is lifted by higher order Coriolis couplings in the molecule,
resulting in parity doubling. The ± superscript is only used for Σ states (Λ = 0) to denote the
symmetry of the electronic wavefunction upon reflection in a plane containing �̂�. Practically, this
has the consequence of determining the parity of the lowest rotational state. For example, in a
state where two 𝜆 = 𝜋 molecular orbitals anti-align to form a Λ = 0 state, the electronic state is
an anti-symmetric singlet state designated Σ−. It is also conventional to drop the Ω value when
writing the term symbol for a Σ state.

The above discussion can be easily generalized to linear polyatomic molecules. Here, the only
addition we need to consider is the vibrational angular momentum ®𝐺ℓ that can result from doubly
degenerate bending modes. The bending motion has well-defined projection angular momentum
ℓ = ®𝐺ℓ · �̂�. The projection ℓ can be added to Λ to form the combined orbital and bending angular
momentum𝐾 = Λ+ℓ. Interactions in the molecule between the bending vibration and the electronic
angular momentum can cause “vibronic” splittings for different values of 𝐾 . These interactions
are known as Renner-Teller interactions and we discuss them in Sec. 2.2.4. Continuing, in Hund’s
case (a) we can combine 𝛴 with 𝐾 to obtain the total projection quantum number 𝑃 = Λ + 𝛴 + ℓ.
This allows us to describe the molecular state using a vibronic term symbol:

2𝑆+1𝐾 (±)
𝑃
. (2.29)

We can see this term symbol is the polyatomic analogue to the electronic term symbol for diatomic
molecules. In a similar fashion, 𝐾 is given by Σ,Π, . . ., and ± only applies to Σ vibronic states.
Now, we will have parity doubling interaction from both the degeneracy of ±Λ and the degeneracy
of ±ℓ. Their combination can result in very rich and interesting molecular structure, as we shall
see in Ch. 4, Sec. 4.3.2.

We do not consider Hund’s case (a) for more complicated molecules (symmetric tops, asym-
metric rotors) in detail, other than to comment on two effects that occur as the molecule deviates
further from cylindrical symmetry. First, anisotropic spin-orbit and rotational interactions result in
a reduction (a.k.a quenching) of the electronic orbital angular momentum, such that ⟨𝐿𝑧⟩ = 𝜁𝑒 ob-
tains a fractional value [123]. The increase in molecular asymmetry means the internal projection
axis is no longer fully well-defined. Furthermore, symmetric tops we can have rotational angular
momenta about the top axis, and in Hund’s case (a), this quantity is denoted 𝐾 = 𝑁 = 𝑃 − 𝛴. For
asymmetric rotors, we can have angular momentum about all three axes: 𝐾𝑎, 𝐾𝑏, and 𝐾𝑐. Typically

9There is an unfortunate overuse of notation. We use italic 𝛴 to denote the spin projection in the molecule frame,
and upper case Σ to denote the electronic value of the term symbol.
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one picks one axis as a basis to help write the asynmmetric rotor states as mixtures of symmetric
top wavefunctions [141].

In case (c), we have the hierarchy Δ𝐸SO ≫ Δ𝐸elec ≫ Δ𝐸Rot. The spin-orbit interaction
overpowers all the other splittings in the molecule, causing mixing of Λ and Σ. Hund’s case (c)
is similar to the 𝑗 𝑗-coupling scheme in atoms, as now we cannot talk about 𝐿 or 𝑆 separately, but
must discuss 𝐽𝑒, the total electronic angular momentum. Further, because of strong coupling to the
internuclear axis, only the projection of 𝐽𝑒 is well-defined, given by Ω = Λ + 𝛴 = ®𝐽𝑒 · �̂�. Case (c)
is the most general approach one can take to a molecular state, only labeling the state in terms of
Ω. The total angular momentum of the molecule is still given by 𝐽, we just cannot divide it among
𝑁 and 𝑆.

Finally, we now consider Hund’s case (b), corresponding to the hierarchy Δ𝐸elec ≫ Δ𝐸Rot ≫
Δ𝐸SO. Here, the spin-orbit interaction is weak or non-existent, and case (b) is valid either for Σ
electronic states or light molecules with very strong rotational couplings. In Hund’s case (b), the
spin 𝑆 is not strongly coupled to the molecule frame, and so we write it in the lab frame with
projection 𝑀𝑆. In terms of 𝛴, the 𝑀𝑆 eigenstates can be written as symmetric or anti-symmetric
superpositions, and vice versa. Further, the combined orbital and rotational angular momentum,
excluding spin, is a good quantum number, given by ®𝑁 = ®𝐿+ ®𝑅+ ®𝐺ℓ. However, we note the individual
angular momenta that make up ®𝑁 are not well-defined. Finally, the spin-rotation interaction couples
the spin to the molecule rotation to form well-defined ®𝐽 = ®𝑁 + ®𝑆.

We note that 𝐽 is a good quantum number in both case (a) and (b), even though they describe
very different coupling schemes. We can go back and forth between the two bases using a unitary
transformation, derived by Brown in Ref. [156], and also provided in Hirota [129]. The change of
basis is given by:

|𝑁, 𝐾; (𝑁, 𝑆)𝐽, 𝑀⟩ =
∑︁
Σ,𝑃

(−1)𝑁−𝑆+𝑃
√

2𝑁 + 1

(
𝐽 𝑆 𝑁

𝑃 −Σ −𝐾

)
|𝑆, Σ⟩|𝐽, 𝑃, 𝑀⟩. (2.30)

Here, 𝑃 = Λ + Σ + ℓ, and 𝐾 = Λ + ℓ. We note the formula in Ref. [39] has a typo. We use this
formula extensively to calculate transition dipole moments in molecules by expressing all states in
Hund’s case (a) for convenience.

We now consider the hyperfine subdivisisions, provided in Table 2.2. We focus on Hund’s
case (b) subdesignations, denoted (b𝛽J) and (b𝛽S). The 𝛽J case describes the situation when the
hyperfine energy splittings from nuclear spin interactions, Δ𝐸Hyp, are smaller than the spin-rotation
splittings Δ𝐸SR between different 𝐽 states. As a result we couple the nuclear spin 𝐼 to 𝐽 as the last
step in our coupling scheme to obtain the grand total angular momentum 𝐹. This is the “default”
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case in atoms and molecules, and the equivalent scenario in case (a) is denoted (a𝛽)10.

Meanwhile, the 𝛽S coupling scheme describes the hierarchy Δ𝐸Hyp > Δ𝐸SR. This coupling
scheme can arise with core-penetrating orbitals, and is particularly relevant for precision measure-
ment searches in odd-isotopes of molecules. In case 𝛽S, we first couple 𝐼 and 𝑆 together to form
the total hyperfine spin ®𝐺 𝐼 = ®𝑆 + ®𝐼, where we use the subscript to distinguish this quantity from ®𝐺ℓ.
Then, the rotation 𝑁 is coupled to 𝐺 to form the grand total angular momentum ®𝐹 = ®𝑁 + ®𝐼. We
note 𝐽 is not well-defined, in contrast to the other cases. Finally, if there are multiple spins, they
can be coupled sequentially according to the hierarchy of their interaction strengths. For example,
in the 2Σ+ ground state of 171/173YbOH, we first couple ®𝐺Yb = ®𝑆 + ®𝐼𝑌𝑏, where 𝐼Yb is the nuclear
spin of the Yb atom, then we couple ®𝐹1 = ®𝑁 + ®𝐺Yb, and then finally we couple ®𝐹 = ®𝐹1 + ®𝐼H, where
𝐼H is the hydrogen nuclear spin.

The unitary change of basis to convert from (b𝛽J) to (b𝛽S) is given by the Clebsch-Gordan
coefficients. We may write this in terms of Wigner 6j-symbols as follows [39]:

|𝑁, 𝐾; (𝑁, 𝑆)𝐽; (𝐽, 𝐼)𝐹, 𝑀𝐹⟩ =
∑︁
𝐺 𝐼

(−1) 𝐼+𝑆+𝐹+𝑁
√︁
(2𝐺 𝐼 + 1) (2𝐽 + 1)

×
{
𝐼 𝑆 𝐺 𝐼

𝑁 𝐹 𝐽

}
|𝑁, 𝐾; (𝑆, 𝐼)𝐺 𝐼 ; (𝑁,𝐺 𝐼)𝐹, 𝑀𝐹⟩

(2.31)

where the quantity in curly brackets is the Wigner 6j-symbol [39]. We include this formula for
completeness, noting that throughout this thesis, we use Hund’s case (b𝛽J), which we simply
abbreviate to case (b), or Hund’s case (a𝛽), which we abbreviate to case (b).

2.2 Effective Hamiltonians
2.2.1 Basic Principle

The effective Hamiltonian arises out of the need to model the complicated quantum states
of molecules with high precision, in a self-contained, modular fashion. In fact the effective
Hamiltonians we use for molecules are very similar to the effective field theories (EFTs) in high
energy physics, discussed in Ch. 1. The goal of the effective Hamiltonian program in molecules
is to reduce the effects of electronic, vibrational, and rotational interactions to a single, finite
Hamiltonian, expressed within a basis of good quantum numbers that specify the relevant angular
momenta present in the molecule. Regardless of the interaction present in the molecule, we can
always encapsulate its effects in the effective Hamiltonian. Crucially for precision measurements,
effective Hamiltonians can also be used to accurately model the behavior of molecules in applied
electric and magnetic fields, aiding much of the work on measurement protocols for polyatomic
molecules presented in Ch. 5.

10The (a𝛼) coupling describes strong coupling of 𝐼 to �̂�, which is not common.
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However, there is a price to be paid for this level of accuracy and precision—we require a series
of experimentally determined parameters to construct the effective Hamiltonian. Essentially, these
parameters are obtained from fits to the spectral data, and the resulting effective Hamiltonian is only
as accurate as the residuals of the fit. These parameters are like the Wilson coefficients in EFTs,
in that they encode all of the complicated physics that we have “integrated out” in order to obtain
a simple model. Therefore, the measured effective Hamiltonian parameters provide a connection
to the theory describing the underlying molecular dynamics, allowing us to gain intuition for
the molecule’s behavior. Furthermore, effective parameters are crucial for benchmarking theory
computations. For example, the hyperfine parameters are used to gauge the accuracy of calculations
determining molecular sensitivities to symmetry violation [157]. The experimental process of
determining effective Hamiltonian parameters from data is the work of molecular spectroscopy, the
topic of Ch. 4. In this section, we lay out some foundations for modeling molecules with effective
Hamiltonians.

Effective Hamiltonians are discussed extensively in Brown and Carrington [39], particularly
Ch. 7. While the textbook is quite comprehensive, it also suffers from the fact that useful and
relevant information is scattered throughout the book. Another good textbook is Hirota [129],
particularly when dealing with polyatomic molecules. Brown originally derived effective Hamil-
tonians for diatomic molecules in Ref. [158], and included the vibronic interaction of triatomic
molecules in Refs. [151, 156, 159]. Furthermore, there is good discussion of how to deal with
anomalous commutation of molecule rotation operators in Ref. [160], Hirota [129], and Brown
and Carrington [39]. There is also good discussion of effective Hamiltonians and matrix element
calculations in Nick Hutzler’s thesis [41] and Nick Pilgram’s thesis [161]. Finally, in Ref. [141],
Sears provides the effective Hamiltonian for an asymmetric top molecule, including Zeeman effects
from an applied magnetic field.

2.2.2 Details of the Effective Hamiltonian
We wish to study and model the rotational states belonging to a single vibrational and electronic

configuration of the molecule. We generically denote this state |𝜓 (0) , 𝑖⟩ = |𝑃(0); 𝑣 (0); 𝜂, 𝐽⟩. Here,
𝑖 is simply an index labeling the quantum numbers defining our state. We use 𝑃(0) to denote
the collection of projection quantum numbers relevant to our state. For example, for a diatomic
molecule in Hund’s case (a), 𝑃(0) = (Λ, Σ), while for Hund’s case (b), 𝑃(0) = (Λ). Since we
are most interested in interactions internal to the molecule frame, it is easier to use case (a)
representations, though we will try to keep the discussion as generic as possible. Continuing,
we use 𝑣 (0) to denote the vibrational state of the molecule, for example 𝑣 (0) = (𝑣1, 𝑣2, 𝑣3) in a
triatomic molecule. Finally, we use 𝐽 to characterize the total angular momentum of our state, and
𝜂 to represent all other relevant quantum numbers, such electronic or nuclear spins, which we will
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often suppress for brevity. Since total angular momentum is conserved by internal interactions,
we will consider dynamics that re-orient 𝐽 and change its projections, but never that change the
magnitude of 𝐽. Of course, when we apply an external electromagnetic field, the total molecule
angular momentum will no longer be conserved, as the interaction with the field can exchange
angular momenta.

There are many interactions in the molecule that will necessarily couple our state of interest to
other vibronic states. We use the index 𝛼 to label the space of all states not within our vibronic
manifold of interest, characterized by their own values of 𝑃(𝛼) and 𝑣 (𝛼) . In reality, the true
molecular state |𝜓, 𝑖⟩ is actually a mixture of |𝜓 (0) , 𝑖⟩ and many other contributions |𝜓 (𝛼) , 𝑘⟩, with
potentially different quantum numbers represented by the index 𝑘 . When the admixtures of other
states are comparable to the admixture for 𝜓 (0) , it is an indication that we have not used a good
basis of approximate quantum numbers. However, it is often the case that the mixtures of other
states are perturbative, owing to the large separation of electronic and vibrational energy scales
from the rotational energy scale. In such a case, to deal with mixings outside of our vibronic
state, we do not have to consider the whole, “true” wavefunction. Instead, we work only with
|𝜓 (0) , 𝑖⟩, and we incorporate the effects of interactions external to our subspace in a source-agnostic
manner by simply adding additional, effective terms to the Hamiltonian. These effective terms
must be consistent with the symmetries of our Hamiltonian (rotation, parity), so in free-field they
are written as scalar products of possibly many angular momenta. There is also the constraint from
the Wigner-Eckart theorem that any operator involving the spin 𝑆 can only be allowed if its rank
𝑘 satisfies 2𝑆 ≥ 𝑘 [39]. For example, when working with a state with a single unpaired valence
electron spin, we do not need to worry about considering spin-spin interactions. We caution this
may not be the case if there is strong configuration mixing (for example, strong mixing with state
that has extra valence spin excitation). As a related point, the situation is also quite complicated in
multi-electron systems, which must be written in terms of Slater determinants [39]. However, in
the single valence electron molecules we consider (often the case for laser coolable molecules), the
effective Hamiltonian approach is applicable and quite powerful.

The primary interactions that we would like to “integrate out” are those that involve the
electronic angular momentum 𝐿. Later, we will also discuss the very similar procedure for dealing
with operators that couple the vibrational angular momentum 𝐺ℓ present in triatomic molecules.
Returning to 𝐿, we specifically do not want to deal with the transverse components 𝐿⊥ = 𝐿𝑥,𝑦, which
can be written in terms of raising and lowering operators 𝐿±. Determining the matrix elements of
these ladder operators is a hard computational task, as 𝐿 is not well-defined in the molecule due to
the breaking of spherical symmetry. We can see that two essential molecular interactions will have
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𝐿± operators: spin-orbit (𝐻SO) and rotation 𝐻Rot. Writing these out in Hund’s case (a), we have:

𝐻Rot = 𝐵
(
®𝐽 − ®𝐿 − ®𝑆

)2

= 𝐵

(
®𝐽2 + ®𝐿2 + ®𝑆2 − 2 ®𝐽 · ®𝐿 − 2 ®𝐽 · ®𝑆 − 2®𝐿 · ®𝑆

)
= 𝐵

(
®𝐽2 + ®𝐿2 + ®𝑆2 − 2𝐽𝑧 (𝐿𝑧 + 𝑆𝑧) − 2𝐿𝑧𝑆𝑧

− 𝐽+𝐿− − 𝐽−𝐿+ − 𝐽+𝑆− − 𝐽−𝑆+ − 𝐿+𝑆− − 𝐿−𝑆+
)

(2.32)

𝐻Rot = 𝐴( ®𝐿 · ®𝑆)

= 𝐴

(
𝐿𝑧𝑆𝑧 +

1
2
(𝐿+𝑆− + 𝐿−𝑆+)

)
.

(2.33)

Here, we have written the nuclear rotation as ®𝑅 = ®𝐽 − ®𝐿 − ®𝑆, and 𝐵 and 𝐴 are “bare” constants that
will not be the parameters we fit in the effective Hamiltonian. We note this can be generalized to a
triatomic molecule by writing ®𝑅 = ®𝐽 − ®𝐿 − ®𝐺ℓ − ®𝑆, as was done in Ref. [162], for example. The dot
products have been expanded in the molecular frame, and we emphasize that the matrix elements
of 𝐽± have anomalous commutation relations, and care must be taken to transform them to the lab
frame before evaluation [39, 160]. Keeping this in mind, the operators 𝑆± and 𝐽± can be dealt with
using the Wigner-Eckart theorem, but the 𝐿± and 𝐿2 operators, as we mentioned before, are not
easy to compute. We note there is an approximate method for estimating their matrix elements,
described further in Appendix A.3.2.

The effective Hamiltonian approach actually does not require us to evaluate any matrix elements
of 𝐿⊥ or 𝐿2. Instead, we recognize that the operators in eqs. 2.32 and 2.33 can be grouped into three
classes. First, we have operators that are well-defined to act among two states 𝑖 and 𝑗 belonging
to 𝜓 (0) , for example the operators ®𝐽2 = 𝐽 (𝐽 + 1) or 𝐽+𝑆−. Their matrix elements can be calculated
within 𝜓 (0) using angular momentum algebra [39]. Then we have operators whose form is identical
for all the different states in 𝜓 (0) , for example ®𝑆2. These operators are simply absorbed into an
overall energy offset of the electronic state, known as the “origin.” We note the distinction between
which operators are diagonal shifts and which operators are origin contributions is somewhat
arbitrary—for example, 𝐿𝑧𝑆𝑧 can be taken as a diagonal energy shift if our basis of interest contains
multiple Ω states, or it can just be taken as a contribution to the origin if we consider just a single
Ω state. Further, here we have shown rotational contributions to the origin, but we note that there
are also vibrational contributions, such as the zero point energy.

Continuing, we have operators that contain 𝐿± and connect us to different electronic states
|𝜓 (0) , 𝑖⟩ → ∥𝜓 (𝛼) , 𝑘⟩. These operators only have an impact on the energies of 𝜓 (0) state when
they connect back, that is when we also consider |𝜓 (𝛼) , 𝑘⟩ → |𝜓 (0) , 𝑗⟩ at some higher order of
perturbation theory. For example, separate terms in the spin-orbit and rotational Hamiltonians can
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(a) (b)

(c)

(d)
Figure 2.1: Diagram of second order interactions that arise in the effective Hamiltonian when we
trace out 𝐿, the electronic orbital angular momentum. (a) This diagram describes contributions to
an effective spin-rotation interaction. We note that depending on the states involved, this interaction
can either generate parity doubling, or be parity preserving, see main text for details. (b) Effective
contribution to the electron spin-nuclear spin interaction. (c) Effective contribution to the 𝑅2

rotational interaction, showing how even the rotational constant becomes an effective parameter.
(d) An applied magnetic field 𝐵 can also couple to the orbital angular momentum 𝐿, and when we
form the effective Hamiltonian we can end up with additional interactions between 𝐵 and 𝑆. See
main text for further details.

take us to another state and back—if we combine 𝐽+𝐿− with 𝐿+𝑆−, we obtain an overall interaction
that looks like 𝐽+𝑆−. This term looks like a term in the rotational Hamiltonian, and the two effects
are actually indistinguishable. We note we have swept under the rug the possibility of combining
𝐽+𝐿− and 𝐿−𝑆+. Such a possibility is allowed, but can result instead in parity doubling interactions,
where the signs of the projections in 𝑃(0) are flipped. We discuss parity doubling more later on.
In general, once we begin to consider the effective Hamiltonian expansion, the original parameters
of the theory, such as 𝐵 and 𝐴, are mixed up, and all we can determine are effective parameters
that receive contributions at various orders of perturbation theory. In Appendix A.3.3, we provide
further information about the mathematical formulation of the effective Hamiltonian.
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To gain an intuition, we illustrate the situation diagrammatically in Figure 2.1. We consider
four relevant angular momenta of the molecule, 𝐿, the electronic orbit, 𝑆, the electronic spin, 𝑅,
the molecular rotation, and 𝐼, the nuclear spin. We also consider the possible coupling of an
external magnetic field 𝐵, which we elaborate on soon. In the effective Hamiltonian, we are free
to write down symmetry conserving terms involving interactions of any of these angular momenta.
However, once we reduce the Hamiltonian to act only within the subspace of a given vibronic state
by “tracing out” 𝐿, we may end up with different effective interactions, shown at second order in
Fig. 2.1. If the traced out interactions involve flips of Λ, they will result in parity doubling, which
we discuss in Sec. 2.2.3.

As a further concrete example, we consider the contributions to the spin-rotation operator,
𝛾 ®𝐽 · ®𝑆 in case (a), and 𝛾 ®𝑁 · ®𝑆 in case (b)11. In the effective Hamiltonian approach, the spin-rotation
parameter receives contributions from various orders of perturbation theory, 𝛾 = 𝛾 (1) + 𝛾 (2) +
· · · [39]. The first order term 𝛾 (1) results from the magnetic interaction between the electron
spin and the magnetic dipole moment of the rotating molecule [163]. In heavy molecules, the
first order term is small compared to the dominant second order contribution 𝛾 (2) , arising from
off-diagonal spin-orbit and rotational perturbations, i.e., combinations of 𝐵𝐽+𝐿− and 𝐴𝐿+𝑆−. The
resulting contribution to 𝛾 (2) is provided in 7.122 of Ref. [39], and more discussion can be found
in Ref. [161].

If we now consider the application of a magnetic field to the molecule, we will have terms that
look like ®𝐵 · ®𝐿. The evaluation of this operator requires rotating ®𝐵 into the molecule frame, where
𝐿𝑧 is good and 𝐿⊥ is undesirable. We deal with the 𝐿⊥ terms by using the effective Hamiltonian
approach. We can now obtain effective interactions of the form 𝐵𝑥𝑆𝑥 +𝐵𝑦𝑆𝑦, where 𝑥, 𝑦 are defined
in the molecule frame. This term encodes electronic mixing of Λ, and the interaction represents
the anisotropic response of the electron g-factor in a molecule, compared to the usual isotropic
response in an atom. See Ref. [164] for an excellent discussion of magnetic effects in molecules.
We can also obtain parity dependent Zeeman effects, which we will return to when discussing parity
doubling. Curiously, there are no effective Stark terms in the effective Hamiltonian. However, we
can understand why simply; such terms would involve a coupling of the internuclear axis �̂�, which
is 𝑃-odd 𝑇-even, to an angular momentum of the molecule, ®𝐿, which 𝑃-even 𝑇-odd. This would
be a 𝑃,𝑇 violating effect—exactly what we are searching for!

Finally, as was mentioned earlier, the effective Hamiltonian approach can also be generalized
for polyatomic molecules, eliminating the components of ®𝐺ℓ that couple outside of our vibronic
subspace to other vibrational states. When tracing out𝐺⊥, we obtain additional effective terms that
can contribute just like the effective operators obtained by tracing out 𝐿⊥. However, the scale of

11See Appendix A.3.1 for the use of 𝑁 vs. 𝑅 in effective Hamiltonians.
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the contribution from ®𝐺ℓ effects is typically smaller compared to spin-orbit effects. For example,
there is usually not a strong coupling of ℓ and 𝛴. However, this is not always the case, particularly
if ℓ is actually mixed with Λ, resulting in effective spin-orbit interactions, as we shall see in the
bending mode of YbOH in Ch. 4. Finally, we note different effective Hamiltonians are useful for
different molecular states and bases. For example, we will use a different Hamiltonian to describe
a Hund’s case (b) molecule with little to no spin-orbit interactions, compared to a Hund’s case (a)
molecule with strong spin-orbit. Further, we will have additional terms when dealing with bending
modes of polyatomics, or spin-spin interactions in triplet systems.

2.2.3 Parity Doubling
Many molecules contain states of both parities, P = ±, with the same values of rotational

angular momenta. As we saw in Ch. 1, in Hund’s case (a) these states can be written as:���𝐽, 𝑀,P = ±
〉
=

1
√

2

(���𝐽, 𝑃, 𝑀〉
± (−1)𝑝

���𝐽,−𝑃, 𝑀〉)
. (2.34)

Here, (−1)𝑝 represents a 𝐽 dependent phase factor, given by the action of the parity operator
P|𝐽, 𝑃, 𝑀⟩ = (−1)𝑝 |𝐽,−𝑃, 𝑀⟩. We discuss this phase factor in Appendix A, Sec. A.2, and in this
thesis we take 𝑝 = 𝐽 − 𝑆 − ℓ for Hund’s case (a) and 𝑝 = 𝑁 − ℓ for Hund’s case (b).

We now provide an explanation for how such eigenstates arise from the effective Hamiltonian
constructed in the un-symmetrized case (a) or case (b) basis states given in Table 2.2. Recall that
in the construction of the effective Hamiltonian, we traced out terms involving 𝐿±. While doing
so, we saw that terms like 𝐽+𝐿− and 𝐿+𝑆− can combine to give us 𝐽+𝑆− terms, which really are
just the spin-rotation interaction, ®𝐽 · ®𝑆. In the full Hamiltonian, such a term encodes the combined
effect of an operator proportional to 𝐽+𝐿+𝐿−𝑆−. However, we also saw that we could combine
𝐽+𝐿− and 𝐿−𝑆+ terms. This now gives us the combined effect of 𝐽+𝐿2

−𝑆+. For a state 𝑖 in 𝜓 (0)

with Λ = 1, such an operator would connect us back to a state 𝑗 in 𝜓 (0) with Λ′ = −Λ = −1. We
see the interaction has flipped Λ! If all the other terms in the Hamiltonian respect the degeneracy
±Λ, it is clear that the off-diagonal matrix elements that connect Λ ↔ −Λ will therefore lift the
±Λ degeneracy, and the resulting eigenstates will be symmetric and anti-symmetric superpositions
of ±Λ. If we generalize Λ → 𝑃, we see this is exactly the sort of mechanism that can give us the
symmetrized parity state shown earlier. These states are also referred to as Wang combinations in
the literature.

Therefore, the breaking of projection degeneracy, the degeneracy of ±𝑃, ±Λ, ±ℓ, ±𝛴, . . ., is
caused by parity doubling terms in the effective Hamiltonian that mix the opposite projections
with each other. These effective operators are actually encoding mixings with other electronic or
vibrational states outside of our subspace. At second order, we will always get interactions that
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can flip an integer projection, i.e., we can take 𝑃 = 1 → −1. However, the situation can be more
complicated if we consider for example 𝑃 = 2, as now we require four effective operators to connect
with 𝑃′ = −2. Therefore, the parity doubling is much weaker in higher magnitudes of projection
quantum numbers. Furthermore, the situation is complicated when 𝛴 is half integer. In a 2Π1/2

electronic state, we can connect 𝑃 = Ω = 1/2→ −1/2 by interactions that flipΛ = 1→ −1 and also
flip 𝛴 = −1/2→ 1/2. These interactions involve spin-orbit interactions with nearby 2Σ perturbing
states. However, if we now consider a 2Π3/2 state, we see such an interaction cannot take us from
Ω = 3/2→ −3/2. Instead, we actually require the combination of two effective Hamiltonian terms.
The first is an effective ΔΛ = 2, ΔΣ = 0 interaction that is generated by rotational terms coupling
outside of our subspace, and within our subspace has the effect of coupling 2Π3/2 and 2Π1/2 states.
The second is the parity-preserving ®𝐽 · ®𝑆 term of the rotational Hamiltonian in eq. 2.32, which
has Δ𝛴 = 1 and ΔΛ = 0. As a result, through two effective Hamiltonian terms, effectively a four
operator interaction, we can mix ΔΩ = 3, causing a much smaller parity splitting in the Ω = 3/2
states compared to the Ω = 1/2 states.

Parity doubling is discussed further in Ref. [39], in particular Sections 7.4.5 and 9.7.1. Addi-
tionally, Ref. [165] discusses parity doubling in 3Π states, Ref. [166] discusses parity doubling in Δ

electronic states, and Refs. [162, 167] have some discussion of parity doubling effects that combine
from rotation and vibrational angular momenta. We also discuss vibrational angular momenta
doubling in Ch. 4, Sec. 4.2.

Finally, in the same way we generate parity doubling from the effective Hamiltonian, so too
can we generate parity-dependent Zeeman interactions. These terms are manifestations of ®𝐵 · ®𝐿
terms that combine in the effective Hamiltonian with various internal interactions involving ®𝐿,
from spin-orbit to rotation to hyperfine. Such parity dependent magnetic effects result in a g-factor
that depends on parity. A similar effect can be achieved from parity dependent spin-rotation terms
in the effective Hamiltonian, which we will encounter in Ch. 4, Sec. 4.2. Refs. [39, 164] discuss
parity dependent magnetic interactions further.

We make a note on the phase convention of the (−1)𝑝 term introduced at the beginning
of this section. We discuss phase conventions in detail in Appendix A, Sec. A.2. Essentially,
parity doubling is generated by off-diagonal matrix elements, and the phase of off-diagonal matrix
elements does not impact the eigenvalues we obtain from diagonalization. However, what the
phase does control is the phase of the symmetric and anti-symmetric parity combinations of the
case (a) or case (b) states. One can see this very simply by diagonalizing a 2 × 2 toy Hamiltonian
with degenerate diagonal terms and non-zero off-diagonal terms. When the off-diagonal terms
are positive, the lower-energy eigenvector is the anti-symmetric combination of our basis states.
Continuing, this means the phase factor of (−1)𝑝 in the symmetrized parity states is connected to
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the phase factor of the parity doubling operators that flip angular momentum projections. With the
phase 𝑝 = 𝐽 − 𝑆 − ℓ in case (a) and 𝑝 = 𝑁 − ℓ in case (b), the operators that flip Λ → −Λ and
ℓ → −ℓ have opposite phase conventions [151, 159, 168, 169]:

⟨Λ = ±1|𝑒±2𝑖𝜃 |Λ = ∓1⟩ = −1 (2.35)

⟨ℓ = ±1|𝑒±2𝑖𝜙 |ℓ = ∓1⟩ = 1. (2.36)

Here, 𝜃 is the azimuthal electronic angle, with |Λ⟩ ∝ 𝑒𝑖Λ𝜃 , and 𝜙 is the azimuthal bending angle,
with |𝑣, ℓ⟩ ∝ 𝑒𝑖ℓ𝜙. By writing the wavefunctions in terms of their phase angles, we see how the
operators above flip angular momenta. We derive these relations in Appendix A.

2.2.4 Renner-Teller Effects
In linear molecules with both ℓ ≠ 0 and Λ ≠ 0, there will be couplings between the bending

motion and the electronic angular momentum, referred to as Renner-Teller interactions. These
interactions are discussed extensively in Refs. [129, 135, 140, 151, 155], which is not an exhaustive
list by any means. We will discuss Renner-Teller interactions further in Ch. 4, Sec. 4.3.2. In this
section, we provide a heuristic overview on how these interactions arise physically.

Intuitively, Renner-Teller (RT) couplings can be understood as arising from the electrostatic
interaction between the electron charge distribution and the electric dipole moment induced by the
bending molecule [129, 151, 170, 171]. We restrict our consideration to a single electron, with
azimuthal angle 𝜃, orbiting a bending molecule, with bending azimuthal angle 𝜙 defining the plane
that the bent molecule lies in. The interaction between the electron and the molecule depends
on the relative angle (𝜃 − 𝜙). For small displacements of the bending normal coordinate 𝑞2, it
is standard to perform a double Taylor expansion in 𝑞2 and cos 𝜃 − 𝜙. Often the terms with only
𝑞2 depedence are dropped, as they are the same for all rotational states, and are absorbed into the
overall vibrational energy origin. The remaining Hamiltonian is then given by [129, 151]:

𝐻𝑅𝑇 = 𝑉11𝑞2 cos (𝜃 − 𝜙) +𝑉22𝑞
2
2 cos2 (𝜃 − 𝜙) + . . . (2.37)

Here, we have introduce the dipolar RT parameter, 𝑉11, and the quadrupolar RT parameter, 𝑉22.
In Hirota [129], these parameters are given in terms of the physical electron coordinates, such as
distance from �̂�, nuclear charge, etc. Meanwhile, Brown [151, 156] provides interpretations of
these constants in terms of effective Hamiltonian parameters. We note that while we have presented
RT effects as electrostatic effects in the linear molecule limit, the RT effect was considered as
arising from Coriolis interactions in the bent molecule limit in Ref. [172], and both approaches are
identical.

To better understand the above Hamiltonian, we can rewrite it as follows:

𝐻𝑅𝑇 =
𝑉11

2
𝑞2(𝑒𝑖(𝜃−𝜙) + 𝑒−𝑖(𝜃−𝜙)) +

𝑉22

4
𝑞2

2(𝑒
𝑖2(𝜃−𝜙) + 𝑒−𝑖2(𝜃−𝜙)) + . . . (2.38)
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We now immediately recognize the exponential operators that raise and lower ℓ and Λ. We see
that the dipolar interaction has operators of the form 𝐿±𝑞∓, while the quadrupolar interaction has
operators of the form 𝐿2

±𝑞
2
∓. The quadrupolar Hamiltonian can directly act within our effective

Hamiltonian subspace, acting as a parity doubling term. Meanwhile, the dipolar term encodes
mixings of ℓ and Λ, such that only their combination 𝐾 is conserved. If we consider a bending
mode in a 2Π electronic state, we see the dipolar operator connects us to 2Σ and 2Δ states. As the
molecule bends, Λ is no longer integer valued, and instead our electronic wavefunction is mixed
with other Λ states by the electrostatic interaction with the dipole moment of the bending molecule.
This is what provides weak transition strength toΔℓ ≠ 0 transitions, as we will see in Ch. 4, Sec. 4.2.
Finally, we note that since the dipolar terms take us out of the effective Hamiltonian subspace, they
must be traced out. The result is that the dipolar interaction 𝑉11 will also contribute to an effective
Hamiltonian operator that looks just like the quadrupolar term. Therefore, the overall Renner-Teller
effect in the effective Hamiltonian is a combination of both dipolar and quadrupolar effects.

The resulting contribution of RT effects to the effective Hamiltonian is given by [151, 159]:

𝐻𝑅𝑇 =
1
2
𝜖𝜔2

(
𝑞2
+𝑒
−2𝑖𝜃 + 𝑞2

−𝑒
2𝑖𝜃

)
+ 𝑔𝐾 (𝐺𝑧 + 𝐿𝑧)𝐿𝑧

+ 1
2
𝜖𝜔2,𝐷

(
𝑞2
+𝑒
−2𝑖𝜃 + 𝑞2

−𝑒
2𝑖𝜃

)
®𝑁2.

(2.39)

Here, 𝜃 is the electronic azimuthal coordinate, and 𝑞± are dimensionless raising and lowering
operators for the vibrational angular momentum ®𝐺ℓ, with matrix elements available in the litera-
ture [129, 143, 151, 173]. The term 𝜖𝜔2 is the Renner-Teller coupling strength, which can be related
to 𝑉11 and 𝑉22, 𝑔𝐾 is a correction derived by Brown [156] that encodes the change in Λ caused by
bending-induced mixing with other electronic states, and we note 𝐺𝑧 = ℓ and 𝐿𝑧 = Λ. Finally,
𝜖𝜔2,𝐷 is the centrifugal correction to the Renner-Teller interaction, derived by Brown [159], which
we do not consider further but have included for completeness.

We now discuss RT effects from a symmetry perspective. For a linear molecule in the 𝐶∞
symmetry group, the electronic wavefunction is symmetric under all rotations around the molecule 𝑧
axis. This is natural for the cylindrical symmetry of the molecule, and this enforces the conservation
of Λ as a good quantum number (in the absence of spin-orbit). When Λ ≠ 0, the wavefunction
is doubly degenerate between the values ±Λ. However, once the molecule bends, the cylindrical
symmetry is broken, lifting the electronic degeneracy. For a bent XYZ triatomic molecule, the
symmetry group is now 𝐶𝑠, and the electronic state splits into two electronic states of differing
symmetries. In the language of group theory, the two electronic states have 𝐴′ and 𝐴′′ symmetry,
corresponding to the electronic wavefunction being symmetric and anti-symmetric, respectively,
about reflection in the 𝑥, 𝑧 plane (i.e., the plane of the bending molecule). The splitting of the
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electronic degeneracy corresponds to a splitting of the harmonic bending potential into two curves,
𝑉 ′ and 𝑉 ′′.

For small displacements of the bending normal coordinate 𝑞2, the bending potential remains
harmonic, and the Renner-Teller interactions are in the 10 − 100 cm−1 scale. The two curves are
degenerate at 𝑞 = 0, when cylindrical symmetry is restored. We can write the harmonic bending
potential in the absence of RT effects as 𝑉0 = 1

2 𝑘2𝑞2, with 𝑘2 a harmonic force constant. Upon
turning on RT interactions, this curve is split into two potentials, written as𝑉 ′, 𝑉 ′′ = 𝑉0(1± 𝜖), with
𝜖 the RT parameter given above, and 1± 𝜖 corresponding to the symmetric (𝑉 ′) and anti-symmetric
(𝑉 ′′) electronic states. Each potential now has its own force constant, 𝑘′ and 𝑘′′. In terms of these
force constants, we can write the 𝜖 RT parameter as:

𝜖 =
𝑘′ − 𝑘′′
𝑘′ + 𝑘′′ . (2.40)

We see that when 𝜖 < 0, as it is in the triatomic molecules we consider, it means the electronic
state that is symmetric upon reflection in the bending plane is lower in energy.

Finally, we provide relations for 𝜖 , 𝑘′, and 𝑘′′, in terms of the 2nd order RT contribution12,
𝜖1, form the dipolar 𝑉11 parameter, and the first order contribution 𝜖2 from the quadrupolar 𝑉22

parameter. These relations are given in Refs. [129, 151, 172]. We reproduce them here, noting that
our form 𝐻𝑅𝑇 is expressed in terms of dimensionless coordinates 𝑞. Furthermore, In terms of the
harmonic bending frequency 𝜔2 we have:

𝜖𝜔2 = (𝜖1 + 𝜖2)𝜔2 (2.41)

𝜖2𝜔2 = ⟨𝜂 |𝑉22 |𝜂⟩ (2.42)

𝜖1𝜔2 = −
∑︁
𝜂⊂Σ
(−1)𝑠 |⟨𝜂 |𝑉11 |𝜂′⟩|2

2Δ𝐸

(
1 +

( 𝜔2

Δ𝐸

)2
)

(2.43)

𝑔𝐾 =
𝜔2

4

∑︁
𝜂⊂Σ,Δ

(−1)𝑝 |⟨𝜂 |𝑉11 |𝜂′⟩|2
(Δ𝐸)2

. (2.44)

Here 𝜂 and 𝜂′ represent different electronic states. We have defined Δ𝐸 = 𝐸 (𝜂′) − 𝐸 (𝜂). In the
sum over Σ states, 𝑠 = 0 for Σ+ states and 𝑠 = 1 for Σ− states. Further, in the sum over Σ,Δ states,
𝑝 = 0 for Σ states and 𝑝 = 1 for Δ states. We note that Ref. [172] disagrees on the form of eq. 2.42
compared to Refs. [129, 151]. In Ref. [172], the authors write 𝜖 = (𝜖1 + 𝜖2) (1 + 𝜖1)−1. Ref. [172]
also has slightly different forms for the other equations as well. They do, however, provide a form
for the anharmonic correction 𝑔22 in terms of 𝜖1 and 𝜖2.

12There can be some confusion as to the use of 𝜖1 vs. 𝜖 (1) in the literature. The subscript version represents
the dipolar contribtuion, while the superscript version represents the 1st order contribution, which is actually the
quadrupolar term, i.e., 𝜖2 = 𝜖 (1) and vice versa.
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3
Producing Cold Molecules

There’s always a bigger fish.

–Qui-Gon Jinn

3.1 Introduction
This chapter overviews the production, study, control, and applications of cold molecular

beams. First, we motivate the need to produce cold samples of molecules. Then, in Section 3.2,
we discuss the primary workhorse of our experiments, the cryogenic buffer gas beam (CBGB). We
provide both specific details on the beam source used for much of this thesis, as well as providing an
overview of relevant information on cryogenic buffer gas cooling. We also provide a discussion of
beam diagnostics, namely absorption and fluorescence spectroscopy, including relevant equations.

Then, in Section 3.3, we discuss novel work performed in this thesis on driving chemical
reactions with laser excitation. This results in an order of magnitude enhancement of the molecular
yield in our CBGBs. We characterize the chemical enhancement in detail, and discuss applications.
Optically driven chemical enhancement is an invaluable tool in our lab and in other labs working
with cold alkaline-earth (like) metal hydroxide molecules.

3.1.1 Molecules are Entropically Hard
The presence of molecular degrees of freedom, namely rotation and vibration, mean that

molecules typically have more entropy than atoms, by virtue of having a higher density of states.
This introduces the need for additional steps to remove entropy from the molecular system to
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Figure 3.1: Visualization of rigid rotor Botlzmann probabilities at various temperatures. The rotor
energy is given by 𝐵𝑁 (𝑁 + 1) with 𝐵 = 10 GHz, and the occupation fraction is the fraction of the
total population in a given 𝑁 , taking into account the 2𝑁 + 1 degeneracy of each level. The inset in
the upper left is a zoom in on the lowest rotational states with population plotted on a linear scale.
By cooling down to 5 K, we have order unity population in the lowest rotational levels.

concentrate population and enable coherent quantum manipulation. For example, experiments
with cold atoms typically begin with an oven source or dispenser, which is heated to ∼500− 1, 000
K to produce an effusive source of hot atoms. Since electronic degrees of freedom in atoms are
typically at energy scales of order ∼ℎ × 10, 000 K, the majority of the atoms produced are in
the absolute ground state, allowing for the now standard pipeline of laser cooling, slowing, and
magneto-optical trapping to proceed.

In contrast, a molecular oven source will produce molecules distributed among numerous rota-
tional states and a few vibrational states. For example, we can consider a sample of rigid rotors at
1,000 K, with a rotational constant 𝐵 ∼ ℎ × 10 GHz ∼ 𝑘𝐵 × 0.5 K. We calculate occupation prob-
abilities using the standard Boltzmann probability distribution, 𝑃(𝑁) = 𝑔(𝑁)𝑒−𝐵𝑁 (𝑁+1)/(𝑘𝐵𝑇)/𝑍 ,
where 𝑍 is the partition function, and 𝑔(𝑁) = 2𝑁 + 1 is the orientation degeneracy for a given 𝑁
level. Neglecting vibration, a 1,000 K sample would have peak occupation of around 𝑁 = 44 and a
large tail occupation up to 𝑁 = 100. In general, a sample with population distributed from 𝑁 = 0 to
𝑁 = 𝑁max will occupy

∑𝑁max
𝑁=0 (2𝑁 +1) = (𝑁max +1)2 sublevels. When population is spread amongst

so many levels, i.e., the entropy is high, it becomes difficult to perform state resolved quantum
operations with adequate signal to noise ratio. For 𝑇 = 1, 000 K, population is spread amongst
quantity ∼104 levels; for 𝑇 = 300 K, ∼ 103 levels; and for 𝑇 = 5 K, ∼50 levels. A comparison of
Boltzmann populations for cryogenic, room temperature, and oven temperatures is given in Fig. 3.1.

Furthermore, when producing molecules, we must contend with chemistry. Many species of
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interest for optical cycling and precision measurements involve molecules with unpaired valence
electrons in anti-bonding orbitals, referred to as free radicals by chemists. These molecules will
have very low vapor pressure in equilibrium and cannot be easily sourced, for example from a
commercial gas cylinder. Instead, free radicals must be formed by chemical reactions.

Older spectroscopy papers studied molecules in a heated oven, boiling off a solid reactant while
simultaneously introducing reagent gas for reactions. Subsequent chemistry typically exhibits
chemiluminiscence, sometimes at atomic transition wavelengths. Spectroscopists realized that
chemistry can be made more favorable by introducing a high-voltage discharge, or by using laser
excitation on an atomic transition. This concept of excited state chemistry formed the basis for
techniques for improving molecule production that we will describe later in this chapter.

An alternative technique to oven chemistry is to produce the molecules in a high temperature
(𝑇 > 1, 000 K) plasma formed by focusing a nanosecond pulsed laser onto a solid target, known
as laser ablation. The targets are typically either a solid piece of metal ablated in the presence
of a reagent gas, or a pressed powder target containing all molecular constituents. This is the
approach we will use to produce molecules in all subsequent discussions and chapters. However,
after formation, the molecules must be cooled further, both for high-resolution spectroscopy, and
for coherent quantum control.

There are currently two primary methods for producing cold (∼1 − 10 K) samples of free
radicals: supersonic expansion and cryogenic buffer gas cooling. Both methods are typically
used to produce cold molecular beams as a starting point for a wide variety of experiments, from
spectroscopy to quantum control. In this thesis, we will be concerned primarily with cryogenic
buffer gas cooling. Though we will only review it briefly, supersonic expansion is an effective
method for producing cold beams of free radicals [174–176], and is the method of choice for many
spectroscopists1.

A great deal of science has been done using supersonic beams, such as molecular spectroscopy
and collisional studies. Supersonic beams are formed by pulsing a vacuum valve in a vacuum
chamber, with the line upstream of the valve filled with (usually) room temperature gas at some
pressure. Often the pulse of gas is an inert, monatomic carrier gas, i.e., a Noble gas, and the
expansion occurs presence of laser ablation to produce free radicals of interest. If the valve
diameter is much larger than the mean free path of the expanding gas, there will be many collisions
during the expansion, forming a supersonic jet. This process has three consequences: 1) the
velocity is boosted to ∼300 − 500 m/s and the velocity distribution narrows, as a result of the

1For example, our collaborator Tim Steimle has used supersonic sources to characterize countless numbers of
small molecules.
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quadratic velocity scaling of kinetic energy2, 2) A majority of the gas is directed along the center
line, resulting in much higher intensity than an effusive beam, and 3) The supersonic expansion
is approximately isentropic, meaning the internal degrees of freedom are in equilibrium with the
translational degrees of freedom, which are cooled by expansion and boosting. Supersonic beams
operating at room temperature achieve rotational temperatures in the 5−20 K range and vibrational
temperatures in the 30 − 100 K range. Vibrational cooling is less efficient, a fact that we will
encounter again with cryogenic buffer gas beams.

Supersonic beams require good electronics timing and the right pulsed valve, but can have
the advantage of rapid prototyping, owing to the room temperature beam line and modest vacuum
requirements. This makes them ideally suited to spectroscopy, including high-resolution and/or
dispersed laser-induced fluorescence studies, double-resonance rf/microwave/optical techniques,
and Stark/Zeeman spectroscopy. Nonetheless, their fast forward velocity and ∼10 K internal
temperature means they are not the best suited for precision measurements, molecular laser-cooling,
and coherent quantum manipulation. To produce slow and bright beams of free radicals, we instead
work with cryogenic buffer gas beams.

3.2 Cryogenic Buffer Gas Beam Sources
Cryogenic buffer gas beam (CBGB) sources are a versatile and essential starting point for many

cold molecule experiments [178], including precision measurements [11, 100, 179] and ultracold
molecule production through direct laser cooling [104, 108, 180–185]. While CBGBs are reviewed
in detail in the literature [178, 184], I will provide a brief summary here.

CBGB sources produce bright, slow molecular beams that are both translationally (𝑇) and
internally cold (𝑇𝑖𝑛𝑡), typically with temperatures of 𝑇 ≈ 𝑇𝑖𝑛𝑡 ≈ 4 K. In such sources, the molecular
species of interest is introduced into a cryogenic cell containing a density-tuned, inert buffer gas
(nearly always He or Ne). The species of interest is introduced via either a heated fill-line or laser
ablation of a solid target. The resulting hot molecules, typically introduced at 𝑇 > 1, 000 K, are
subsequently cooled by collisions with the buffer gas. Once thermalized, the molecular species
is entrained within the cell in the buffer gas flow, and carried out of the cell through an aperture,
forming a beam. Alternatively, the cell can be completely closed, allowing for long interaction
times and isolation of the molecular sample, which can be useful when dealing with a radioactive
species or when trying to recapture gas, i.e., 3He. The cryogenic buffer gas cooling method is quite
generic and can be applied to many species, from atoms to small bio-molecules [186], including
highly reactive or refractory species.

2The same energy (temperature) distribution will have a much narrower velocity width at higher velocities:
𝛿𝐸 ≈ 𝑚𝑣𝛿𝑣, which was recently used to perform spectroscopy on hot and fast radioactive beams of molecules [177].
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Figure 3.2: A photo of the 4 K CBGB source with labeled components. This photo was taken after
the cryo-pumping upgrades described in the section on cryopumping. The cell sits in the middle of
the photo, anchored with vertical bars to the top of the 4 K shields, which is connected to the cold
head (not visible). See main text for more details.

In the lab we have two CBGB sources, the 4 K (a.k.a. “orange”) beam source and the 1 K (a.k.a.
“red”) beam source, as well as a closed cryogenic buffer gas cell, known as the “mini-fridge.” The
work in this thesis performed at Caltech was primarily performed in the 4 K source. Details of
the source design and construction, including technical drawings, are presented in Nick Pilgram’s
thesis [161]. My main focus here will be on providing a heuristic discussion of the 4 K source and
its operation.

3.2.1 The 4 K Source
A photo of the 4 K CBGB source is shown in Fig. 3.2, with relevant components labeled.

The source is inspired by the ACME experiment [41], and follows general design principles that
are reasonably well established for CBGBs. The 4 K source consists of a copper3 cell that is
cryogenically cooled4 to ∼4 K, and surrounded by radiation shields. The shields provide insulation

3The alloy should be C10100 for optimal thermal conductivity at cryogenic temperatures.
4We use a Cryomech PT415 pulse tube cooler, with a cooling capacity of 1.5 W/K at 4 K and 40 W/K at 45 K.
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from blackbody radiation at 300 K, which generates a 460 W/m2 heat load. The entire 300 K
vacuum chamber is mounted to an aluminum 80-20 structure. To help reduce vibration noise from
the top-heavy structure, we fill the legs of the 3× 1.5-in2 80-20 struts with copper-coated lead shot.
This improved the vibration noise of the experiment considerably.

From outside in, after the 300 K vacuum chamber, we have the 50 K aluminum shields,
which are hung from the 300 K top plate via stainless steel threaded rods to help isolate from
the mechanical vibrations of the cold head. To provide a thermal connection, the 50 K shields
are connected via copper braids to the 50 K cold head5. This cooling stage has over an order of
magnitude more cooling power compared to the 4 K stage, and can sink the blackbody heat load.
To increase reflectivity and reduce thermal loads, the radiation shields are covered in a layer of
aluminized mylar superinsulation. The 50 K shields have windows on the side plates that allow
for optical access to the cell, and the front 50 K plate has a 3/8-in diameter hole that collimates
the molecular beam exiting the source. Inside the 50 K shields, we have the 4 K copper6 shields,
which are also suspended from the 50 K shields via threaded stainless steel rods, and thermally
anchored to the 4 K cold head via copper braids. The 4 K side plates (removed for the photo)
do not have windows, but instead have a 3 × 2-in2 open area for optical access. To deal with the
issue of differential thermal contraction, all parts that cool down to cryogenic temperatures are held
together with brass screws and Belleville washers. The copper threads are helicoiled to prevent
them from stripping.

The cell was designed in a modular fashion, which allows for design changes and length
adjustments. Here we describe the “final” iteration that was used for much of the work in Chapters 4
and 5. The cell is essentially an 0.5-in diameter bore inside a series of modular copper blocks
connected together to form a single cylindrical volume. The cell parts are sandwiched together
with Belleville washers and brass nuts on stainless steel threaded rods running down the cell length.
From back to front, the cell components are as follows, with each part characterized by the length it
adds to the cell volume. First, we have the gas inlet, consisting of a 0.125-in diameter copper tube
braised on to a copper plate with a matching entrance hole for the gas. Then there is a 0.125-in
spacer, followed by a 0.125-in diffuser plate that helps even the He flow distribution. Then we have
a 0.5-in spacer, followed by a 1-in long ablation stage, which also has 0.75-in diameter ports on
the sides. On one side port, we mount the targets, which are glued onto a copper plate with Stycast
2850 FT Black with catalyst 24 LV, and are described in detail in a later section. The reverse port
from the targets provides optical access for the pulsed laser used to ablate the targets. Ablation is
described later, and for now we simply mention the ablation laser enters through a non-AR coated
window, mounted on a copper tube (“snorkel”) that helps reduce the amount of material deposited

5Not the most accurate name, as it actually cools down to 40 K.
6Also C10100.
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on the window. Following the ablation stage, we have a 0.5-in spacer, and then a 0.5-in wide
absorption window stage, which has 0.25-in diameter ports for optical access, where we mount
0.5-in diameter windows. Finally, there is the front plate, which adds 0.1875-in of length to the
cell, and terminates in a 5-mm diameter aperture. The total length of the cell, excluding the He
diffuser stage, is nominally 2.6875 in.

We are able to run the source cold for months at a time without needing to warm up. When the
targets are sufficiently spent, we warm up the source. Once warm, we replace the targets, as well
as the ablation window, as it becomes opaque and coated with ablated material over the course of
normal operation, in spite of the snorkel. The absorption windows can be cleaned with solvent and
re-used a few times before needing replacement. We also perform a simple clean the inside of the
cell, which is often covered in powder resulting from target ablation. Using heaters to warm up, if
all the parts are ready in advance, the entire warmup and cooldown procedure can take a few days
at most.

3.2.1.1 The Beam Extension

After the molecules leave the cell, they encounter a 4 K conical skimmer 1.875 in downstream, with
a 0.25-in diameter collimating hole. Following the skimmer, the molecules travel another 2.625 in
before encountering the 50 K collimating hole, with 0.375-in diameter. Then the molecules travel
another ≈2 in before exiting the 300 K vacuum chamber entirely. The front plate of the 300 K
chamber has a KF50 port for a 70 L/s turbo pump to pump out background gas. After the work
described in this thesis, we installed an ion-sweeper at the exit of the 300 K chamber7. Following
the 300 K vacuum chamber, there is a gate valve that can be used to isolate the CBGB source from
the downstream beamline, also known as the beam extension.

The beam extension is where much of the work described in Chs. 4 and 5 was performed. A
photo of the beam extension is shown in Fig. 3.3. The molecules travel ballistically down the beam
extension through a series of vacuum chambers assembled by KF50 connections. The ability to
probe the molecules upstream and downstream in the beam is very useful for both spectroscopy
and coherent control. The beam extension is modular and has undergone multiple iterations over
the course of the experiment. Here we describe the setup used for much of the work described in
Chs. 4 and 5. We note that at the time of writing, the beam extension has been disassembled, to be
replaced with an upstream pumping region (using the KF50 octagon described below) followed by
the MQM science chamber.

After the gate valve, the molecules encounter a six-way KF50 cross, with the cross center at a
distance of ≈42 cm downstream from the cell aperture. The cross has optical axis with AR-coated

7Essentially a pair of wires with a voltage applied across them used to deflect ions.
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Figure 3.3: The beam extension downstream from the CBGB source. This photo was taken with
many electronics, optics, and detectors removed.

windows along one of the arm axes transverse to the molecule beam. The windows are mounted
with a custom mount8. The final arm axis (up/down) has a window on the top for fluorescence
collection, and the bottom is connected to a 300 L/s turbo9.

Following the six-way cross, the molecules then enter the octagon, essentially an 8-way KF50
cross10. The octagon center is located ≈60 cm downstream from the cell. The octagon has 4 arm
axes transverse to the molecule beam, with one of the arm axes in the up/down direction, and the
other 3 axes contained in a plane orthogonal to the up/down axis. The bottom port is connected
to a 70 L/s turbo pump, and the top port has a feedthrough for a 19-mm diameter light pipe for
fluorescence collection. The remaining 3 arms provide optical access for perpendicular probing of
the molecule beam as well as 45◦probes, which are useful for Doppler measurements.

The entire beam extension is supported by an aluminum 80-20 structure, which is secured to
the 80-20 structure holding up the source via connections at two points. This structure is also useful
for mounting optical breadboards, mounting equipment, and securing the vacuum chamber when
performing modifications.

8The windows sit on an aluminum flange, essentially a KF50 stub with a hole in the center. The flange also has a
radial o-ring groove that houses an o-ring that creates a seal against the window glass. The window is pressed down
onto the o-ring by a 3-D printed plastic clamp held with fasteners that screws into the aluminum flange.

9Agilent TwisTorr 304 FS
10The part was made by ANCORP
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3.2.2 Buffer Gas Dynamics
The buffer gas dynamics inside and in front of the cell can have drastic effects on the properties

and yield of a CBGB source. In this thesis, we will focus on the use of helium buffer gas in
sources near 4 K. We note that CBGB sources have also been operated with neon, for example
in the ACME experiment. Refs. [41, 179] have detailed discussions on the difference between
helium and neon sources. For our purposes, the primary differences are two-fold: 1) helium CBGB
sources can achieve lower temperatures and forward velocities, and 2) while neon simply freezes
when contacting a cold surfaces, helium gas does not freeze, and instead can be adsorbed by porous
materials.

As a function of the gas flow through the cell, CBGB sources can operate in three flow regimes:
nearly effusive, intermediate, and hydrodynamic. These regimes are characterized by the number
of collisions within roughly one aperture diameter distance from the aperture. For on few (<1)
collisions on average, the beam produced from the aperture is effusive, and samples the thermal
velocity of the molecules inside the cell. While such beams are slow, the fraction of molecules
exiting the cell can be low, and the subsequent beam has large divergence. Meanwhile, when there
are many (≫1) collisions, the gas flow is fluid-like, and the beam is hydrodynamic. In this regime,
the beam velocity is boosted by collisions at the aperture, and saturates at a supersonic velocity
of ∼200 m/s. This boosting can also result in expansion cooling [179], which can further cool
the rotational distribution of the molecules. This expansion cooling is what allows neon sources
that run at hotter temperatures (i.e., ∼15 K) to achieve cold rotational temperatures, comparable
to helium sources (i.e., ∼5 K). Finally, in the intermediate regime, there are ∼1 − 10 buffer gas
collisions on average near the aperture, and the flow cannot be easily modeled. There has been some
progress in using computational simulations to model gas flow in this intermediate regime [187].
In this work, we typically operate with intermediate regime gas flows.

For a cell with an exit aperture, the helium density can be approximated by making a steady
state assumption, see Ref. [178] for equations. Typically we operate with gas flows in the regime
of 3 standard cubic centimeters per minute (SCCM) (1 SCCM = 4.5×1017 atoms/sec [178]), and
with a 5 mm diameter aperture, resulting in typical He densities on the order of ∼1015/cm3. At this
density, the mean free path of the species of interest is ∼0.1 mm, and after about ∼100 collisions,
the molecules thermalize translationally and rotationally. Therefore the buffer gas cell dimensions
are typically at least ∼1 cm.

The helium density inside the cell must be high enough to thermalize the molecules after
ablation. If the density is too low, the majority of molecules formed by ablation will rapidly expand
without stopping, eventually colliding with the cell walls. The few molecules that survive will be
hot and fast. Conversely, if the density is too high, a few undesired dynamics occur. First, the
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focused ablation laser can form a plasma that dissipates energy and shields the target from ablation,
known as plasma shielding [188, 189]. Second, the high helium density prevents the expansion
of the initial ablation plume, limiting the spatial extent of the molecules. Detailed investigation of
ablation and thermalization dynamics in a closed buffer gas cell were performed in Ref. [190].

Finally, with too much helium gas, the ablation energy can “ring up” the cell, causing the
propagation of helium pressure waves. A quick estimate indicates that the speed of sound of helium
at 4 K is ∼118 m/s. For a 3-in long cell, this results in a fundamental longitudinal mode with
a ∼1 ms period. This sloshing of the helium gas can result in a modulation of the output beam
intensity at roughly this timescale. We have observed this multi-pulse behavior when ablating at
energies > 30 mJ/pulse. Typically, the first molecular pulses that exit are fastest, and the last pulse
to exit is the slowest, having interacted with the buffer gas for longer time.

We note the assumption of steady state does not hold in helium based CBGBs operating with
porous targets, for example pressed powder targets. In such sources, it has been observed that
helium can be cryo-pumped, a.k.a. adsorbed, by the target. This is supported by two pieces of
evidence: 1) in open buffer gas cells (that is, cells with an exit aperture), if helium is flowed for
some time, and then stopped, molecular beams may still be produced when ablating without gas
flow [41, 184]. In our source, such beams without gas flow persist for ∼10 shots or so before the
signal degrades significantly. This effect is not observed if, after flowing gas, the cell is heated up to
above the desorption temperature of helium (∼10 K) before being cooled back down and ablated. 2)
In experiments with closed buffer gas cells, when the cell is loaded with helium gas in the presence
of porous targets, the pressure will drop as the helium gas is adsorbed by the target. Subsequent
ablation of the target liberates the adsorbed helium. This has been observed in Ref. [190] and in
experiments in our lab with the mini-fridge.

The cell geometry and aperture characterize an extraction time, roughly the time scale for
molecules to leave the cell. The net flow of the buffer gas inside our 0.5-in diameter cell has a
velocity on the order of ∼30 m/s, which can be estimated from conservation of flux inside the cell
compared to flux outside by the aperture, where the velocity is ∼200 m/s. We can then approximate
the extraction time as the time it takes the molecules to travel down the cell to the aperture, roughly
∼1 ms for the dimensions of our cell (∼1.5-in distance from ablation to aperture). We can also use
the extraction time to characterize the spatial extent of the CBGB. Assuming a 200 m/s velocity
upon leaving the cell, this gives a spatial extent of ∼20 cm, possibly more if the extraction time is
increased. We note for larger cells, the extraction time can be longer, ∼ 10 ms or more, which can
result in ∼1 m long beams.

The extraction rate must be balanced with the thermalization and diffusion times of the
molecules. The diffusion time refers to the timescale for diffusion to the walls, which results
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in loss. If the diffusion time is too short, the molecules will hit the cell wall before being extracted.
But if the extraction time is too short, the molecules may not properly thermalize. For our cell
geometry, the extraction fraction is roughly on the order of 10−20%. We note all of these estimates
are subject to caveats and deviations, given the complicated nature of the buffer gas dynamics.

We now consider the divergence and velocity distribution of the molecules exiting the cell.
These quantities are discussed in detail in Ref. [178, 179, 191], here we simply provide estimates
and values. The forward velocity distribution can be characterized as a 1D Maxwell-Boltzmann
distribution, with an estimated FWHM ofΔ𝑣∥ ≈ 30 m/s for YbOH at 4 K. Meanwhile, the transverse
velocity spread can be larger as a result of collisions by the aperture, with Δ𝑣⊥ ≈ 60 − 80 m/s in
the flow regimes we consider. Finally a crucial figure of merit is the angular spread and divergence
of the beam, which, in the intermediate flow regime, can be less than an effusive or supersonic
beam. We expect an angular FWHM of Δ𝜃 ≈ 35◦, resulting in a solid angle of ΔΩ ≈ 0.3 sr. We
can use this quantity to estimate the loss from beam divergence downstream as follows. We model
the aperture as a point source, and we estimate the distance to the “science region” of the beamline
as 0.5 m. Then a 1 cm laser beam will probe a solid angle that is approximately 10−3 times smaller
than that at the aperture, resulting in roughly 3 orders of magnitude of loss from beam divergence.

Finally, the molecule-helium collision process is characterized by the cross-section for elastic
and inelastic collisions. However, vibrational degrees of freedom have significantly smaller inelastic
cross-section, and therefore vibrational thermalization occurs inefficiently and slowly [192]. In
CBGB sources, the molecules are often extracted out of the cell by the helium flow before the
vibration can thermalize, and the vibrational populations are therefore athermal, with distributions
on the order of 300 K or more. The existence of excited vibrational population can be beneficial
for the study and spectroscopy of vibrational states in molecules.

3.2.2.1 Background Gas and Cryopumping

The brightness of a CBGB source is strongly dependent on the vacuum environment after leaving the
cell. Since we are flowing buffer gas constantly, residual gas atoms present after the cell can knock
molecules out of the beam. This was investigated in simulations [193], where it was found that this
effect particularly harms slow velocity classes, which take longer to travel the same distance. To
deal with this problem, in helium CBGB sources the region outside the cell is filled with charcoal
surfaces at 4 K. The charcoal is epoxied to sanded copper plates using Stycast 2850 FT. The charcoal
is very porous, and serves as a reservoir that can adsorb and trap helium gas, acting as a pump at
cold temperatures. Eventually, these charcoal “sorbs” can fill up with helium, and must then be
heated to above ∼10 K. At such temperatures the sorbs will release their trapped helium, which can
be pumped out with standard vacuum pumps. This procedure is known as desorbing, and must be
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Figure 3.4: A photo of the charcoal sorb fins after installation. The fins are mounted to the bottom
of the 4 K radiation shields. The cell is visible, along with the exit aperture and the ablation snorkel,
which is used to prevent the ablation plume from coating the ablation window. Charcoal sorbs on
the sides of the 4 K chamber are also visible.

performed occasionally to refresh the cryo-pumping capacity of the sorbs.

As we continued to work on the 4 K source, we realized the importance of background gas
collisions on beam signals downstream. When operating with approximately 280 in2 of charcoal
surfaces, a 70 L/s turbo pump11 downstream in the beamline, and a gauge in the beamline reading
a pressure of 1 − 7 × 10−7 Torr when flowing 1 − 9 SCCM in the cell, we saw loss of molecule
fluorescence ∼50 cm downstream that scaled linearly with the increased gas flow. An increase in
gas flow from 1 to 3 SCCM roughly resulted in a factor of 2 loss in fluorescence signal downstream.

As a result, we performed a significant upgrade on our CBGB source. We first installed a
series of 8 sorb fins, shown in Fig. 3.4. These copper fins are covered with charcoal on both
sides (attached with Stycast), significantly increasing both the surface area for cryo-pumping and

11Agilent TwisTorr 84 FS.
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the overall capacity for storing helium. The installed fins represent an additional surface area of
≈312 in2. The fins are mounted such that the charcoal faces are parallel to the molecular beam axis.
Finally, we replaced the sorbs by the 4 K collimator with a skimmer (a metal cone facing toward the
buffer gas cell). The sorbs had been completely coated in dust that we could not remove; instead of
constantly replacing the collimator sorbs, we instead opted for a skimmer, which has no charcoal,
and simply provides an angled surface to redirect gas12.

Additionally, we must efficiently pump out helium that makes it out of the 4 K stage, as it no
longer experiences cryo-pumping. If this helium is trapped between the beam box layers and the
vacuum chamber, it can collide with and attenuate the molecular beam. Therefore, we installed
an additional 70 L/s turbo pump on the front plate of our 300 K stage. This turbo has the added
benefit of preventing back-flow into the vacuum chamber when cryo-pumping is active. Prior
to the installation of this turbo, the vacuum chamber was pumped on with a dry scroll pump13.
Because cryo-pumping is extremely effective at pulling vacuum, the scroll was exposed to a very
low vacuum, and was unable to maintain the compression ratio with the exhaust at atmosphere. Air
would back-flow through the scroll pump into the vacuum, causing ice to form on our windows.
Installing a turbo, backed by the scroll pump, directly on the source, solved this problem, as the
turbo can maintain the compression ratio between the cryo-pumped chamber and the scroll inlet.

After performing the sorb upgrade and turbo upgrade, the molecular signals in the beamline
no longer degraded with increased gas flow. The pressure gauge on the beam extension reads
∼1 × 10−7 Torr, even when flowing up to 9 SCCM of gas. Not only did our overall fluorescence
signals increase, but we can now vary the gas flow, which impacts properties such as buffer gas
density inside the cell, extraction of molecules out of the cell, and beam velocity.

3.2.3 Ablation Targets and Chemistry
Modeling cryogenic buffer gas sources with laser ablation is a hard problem. The plasma

dynamics alone are an active field of research [188, 189, 195–198], with shockwave speeds reaching
up to 50 km/s and plasma energies on the order of 104 K. In our source, we ablate with a pulsed,
nanosecond Nd:YAG laser14, frequency doubled to 532 nm. The pulse energy can be varied from
1 mJ up to ∼50 − 100 mJ, with a repetition rate as high as 50 Hz, though we often operate with
< 10 Hz, both to avoid excess heating of the cell from the ablation, and due to constraints of other
equipment, such as mechanical shutters. We typically focus the laser from a ∼6-mm collimated
beam using a 300−400-mm lens, resulting in a∼100-µm spot size, limited primarily by aberrations.

12Note that Helium surface dynamics are non-trivial at low temperatures. There is a high change the incident
Helium adsorbs to the cryogenic surface [194], and can later be desorbed with a non-trivial angular distribution [194].

13Agilent IDP-10.
14Big-Sky/Quantel YAG laser from Anderson Lasers.
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For molecular beam production, optimizing ablation targets can result in significantly improved
yield and consistency. Typically, metals, sintered ceramics, and high-density targets ablate well,
while soft or crumbly targets tend to rapidly degrade in ablation yield [193, 199, 200]. Yb metal
is a great ablation target and often used to characterize CBGB performance. Other metals, like Sr
or Ba, can oxidize quickly, which can result in rapid target deterioration. Ablation yield typically
increases with pulse energy, up to a point. Further, targets with lower melting and/or boiling points
experience more melting/boiling in the wings of the intensity distribution of the ablation laser. This
can result in more material removed per pulse [189]. However, ablation yield eventually plateaus
due to plasma shielding effects, where the focused laser creates a plasma in front of the target that
reduces the efficiency of energy transfer from the laser to the surface [188, 189].

To produce YbOH molecules, we ablate pressed powder targets containing Yb, O, and H
atoms. The targets are formed by first mixing Yb powder (200 mesh, ground and passed through
230 mesh) with Yb(OH)3 powder (ground/milled and passed through 230 mesh). The powders
are combined, often with the addition of 4% polyethylene glycol (PEG 8000) by mass acting as a
binder, and pressed in an 8-mm hydraulic die press with 6 metric tons of pressing force for ≳15
minutes. The press and the target are lubricated with dry molybdenum spray. We found YbOH
target yield improved by nearly an order of magnitude when mixing Yb and Yb(OH)3 to achieve a
stoichiometric Yb:OH ratio, compared to targets that are predominantly Yb(OH)3. Ablation yield
can exhibit significant variation from shot to shot on the same targe location, as well as when
comparing different locations. Overall, the ablation signal decays over time, with pressed powder
targets decaying more quickly (each spot provides ∼ 1,000 shots) compared to metal targets. In
another experiment in the lab, the addition of Yb powder improved the ablation consistency of
potassium salt targets used to produce K atoms, suggesting Yb metal can be used to stabilize target
performance.

We have experimented with various recipes, and typically find similar results amongst different
targets. To produce YbOH, we have tested targets with polyvinyl alcohol, telluric acid, D-sorbital,
aluminum hydroxide, and epsom salt, and all have worked to some degree. Some photos of targets
are shown in Fig. 3.5. Target testing can be challenging due to the slow turn around with cryogenic
sources and the large parameter space for investigation, including target composition, pulse energy,
repetition rate, ablation focus, etc. We have found that for our pressed Yb targets, there is typically
an onset of YbOH production after an energy threshold of ∼15 mJ/pulse. This is possibly tied to
the energy threshold required to produce significant energized excited states in the ablation plume,
and/or possibly related to the melting dynamics of the ablated surface.



76

Figure 3.5: Some examples of targets we have used for ablation. (a) Yb metal target with stoichio-
metric Yb+Yb(OH)3 targets, the bottom one having been cold sintered (see main text for details).
(b) Targets after ablation. Pale coloration occurs from oxidization. (c) Target used for double
ablation tests. In addition to the Yb and Yb + Yb(OH)3 targets, this plate has a well sealed off with
kapton and stycast. Inside the well is water containing gold nanoparticles that possibly help with
532 nm absorption. (d) In addition to the usual Yb and Yb + Yb(OH)3 targets, this plate had a
mixture of Yb + polyvinyl alcohol, the target on the right.

3.2.3.1 Heated Fill Line

Metal ablation is generally superior to pressed target ablation [193, 200], motivating the introduction
of reagents not via laser ablation, but via a heated fill line. The ablation yield and consistency of
metal targets is excellent, particularly for Yb metal. Further, with metal targets the ablation energy
can be lowered to 5−10 mJ/pulse, which can help reduce the beam velocity for applications such as
laser cooling. To produce molecules, a heated fill line can be connected to the cell and used to flow
in reagent gases that must be held at high temperature to have sufficient vapor pressure. Examples
include water [108, 200] and methanol [106, 139] for hydroxide production, or SF6 [184, 193] for
fluoride production.

There are a few drawbacks to use of a heated fill line. Difficulties include the thermal en-
gineering challenges of having a >250 K gas line running through <50 K cryogenic regions. It
is therefore helpful to have the heated fill line follow a path that is separate from the rest of the
gas lines and electronics. The heated fill line must have heaters along its length, used to keep the
temperature high. Some thermal engineering is required to make sure the rigid connection of the
cell to the heated fill line is thermally insulating, and this is typically achieved with teflon spacers.
Nonetheless, operation of a heated fill line typically raises cell temperatures by ∼1 K. This can
also be a challenge for systems designed to reach 1 K or lower, which can be sensitive to added
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heat loads. The heated fill line nozzle is inserted through a hole in the cell that has a much wider
diameter and does not contact the fill line. The nozzle must not stick too far into the cell such that
its tip freezes over, but also not be too recessed such that an ice bridge can form from the nozzle
to the hole in the cell. Diagnosing such issues at cryogenic temperatures is also difficult, requiring
constant warmup and cooldown cycles. Finally, the reagents that are flowed into the cell coat the
walls of the cell, creating a layer of ice or snow after a week or so of operation [139, 184]. This
ice is correlated with a speed up of the molecular beam, requiring a warmup and cooldown cycle
to remove the ice and return the beam to its original properties.

We attempted to install a heated fill line in our source, but it ended up being less effective
in our source compared to working with pressed targets instead. Briefly, we designed an 0.75-in
diameter cell, with the inner bore expanded to allow for the introduction of both a heated fill line
and a helium gas line into the cell. Around this time, we ran into significant cell failures that
caused the production of both YbOH molecules and Yb atoms to be uncharacteristically weak. For
example, our Yb absorption signals, which typically are optically thick when probing the 3P1 line
(∼99% absorption, see Sec. 3.2.4.2), were noticeably weaker with 10− 50% absorption, depending
on ambient conditions. YbOH signals, which are ∼10% or more (depending on the rotational line)
in our 0.5-in cell, were ≲1% in size with the 0.75-in cell. Some possible failure mechanisms were
investigated, and we did indeed find braise joint leaks in the He gas line, but even still we were
unable to make the 0.75-in diameter cell work.

We suspect the issue was related to insufficient Helium gas density. It is possible we had a
leak at the connection of the He line to the cell, which we could not leak test. Furthermore, it
is possible there were additional leaks at cell connections or the windows that resulted in loss of
He density. In all of our cell designs on the 4 K source, the windows are mounted to the cell by
pressing the glass against a kapton “gasket” on the copper surface, and the modular cell parts are
“sealed” by pressing them together with nuts and Belleville washers on threaded rods, with apiezon
grease applied between the surfaces. We note that leak tests on closed cells in our lab have shown
that these sealing methods are inadequate to hold vacuum, and can be leaky at the >10−6 mbar L/s
level. Only by using indium seals can we lower this leak rate to ≲ 10−9 mbar L/s. Though there
have been no detailed studies of the effect of leaky vs sealed cells, there is anecdotal evidence that
the puff of desorbed He liberated by ablation has an impact on the cell dynamics, and such a puff
could have different non-equilibrium densities depending on how leak-tight the cell is. It is also
possible that a He film forms on the surfaces at low temperature, further increasing sensitivity to
leaks. Unfortunately we can offer no conclusions from our experience with the 0.75-in cell, only
conjectures.

When we returned to the 0.5-in cell design, we were able to recover our typical Yb and YbOH
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signals. To install a heated fill line, we then replaced the spacer upstream of the ablation region
with an inlet for the heated fill line, with the nozzle spraying gas into the cell at an angle. We
tested this configuration with methanol reagent, and we were able to observe molecule production.
However, the signals were noticeably weaker than those from the mixed powder targets, so we
abandoned the heated fill line. The reason for weaker signals could be due to issues with our heated
fill line design. For example, the heated fill line passed through much of the 4 K and 50 K stages,
causing 1 K additional heat load when operated, which can reduce signals. Furthermore, due to
space constraints, our heated fill line had a large bend right before the cell, instead of coming in
straight, which could affect the flow. Finally, we note the aspect ratio of our cell design (≈ 1 × 5)
is quite different from those in other experiments using heated fill lines (closer to 1 × 1) [106, 139,
193, 200].

3.2.3.2 Cold Sintering

Target density is correlated with improved yield and target consistency. Some experiments have
had success in creating ceramic targets for ablation via sintering [201]. Typically, sintering involves
raising the temperature of a sample to ∼1,000 K or higher to transform a pressed powder into a
dense ceramic. We attempted sintering tests15 of YbOH early on, but after heating beyond 300◦ C,
the targets showed some weight loss, with one target dissolving slightly. X-ray diffraction analysis
indicated one target formed a new Yb2O3 phase. We surmised that the hydroxide breaks apart at
high temperatures and is driven off, resulting in weight loss and the formation of oxide phases.
Therefore, high temperature sintering is not useful for M-OH targets.

Recently, a technique has been developed in materials science called cold sintering [202–208].
The basic idea of cold sintering is to heat the target to ≲ 300◦ C while applying pressure either
in an open or closed environment. Often an aqueous solution is added to promote diffusion and
re-arrangement, such as water. There are also variants, such as flash sintering which utilizes
electric current [209, 210], or hydroflux sintering using ionic salts with sparing quantities of water
to depress their melting point [211]. A recent demonstration of cold sintering produced a dense
pellet of 𝛾-AlOOH after starting with aluminum hydroxide percursor [212].

We have experimented with cold sintering by adding ∼10− 40% by mass of water to the target
mixture before pressing, and wrapping the die press in heating tape to bring the temperature to
150 − 200 ◦C when pressing. If the pressed material is sufficiently aqueous, we use tape to cover
the cracks in the press and prevent the liquid from spilling out. The resulting targets have improved
density compared to the un-sintered case, and anecdotally have better ablation yield consistency,

15Thanks to Xiaomei Zeng and Katherine Faber for assistance with the sintering tests and subsequent analysis.
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particularly at high (≳40 mJ/pulse) ablation energies. More investigation is needed to determine
optimal target recipes and techniques.

3.2.3.3 Double Ablation

Another approach is to ablate two separate targets containing constituents of the molecule of interest,
known as “double ablation.” For example, instead of using a heated fill line to introduce water
and produce YbOH, one can co-ablate a Yb metal target and another target containing hydroxides.
This can be useful if the metal is difficult to obtain in powder form to make mixed targets with,
for example for trace or radioactive species. In our lab, tests in other experiments show that co-
ablation of metal and solid hydroxide targets is effective at producing molecules, with similar yields
compared to ablation of a single mixed target. Separating metal and reagant targets can also be
useful for studying reaction dynamics, for example by varying relative ablation powers, or delaying
one shot relative to the other if they are sourced from separate lasers. Alternatively, double ablation
can be performed with a single YAG laser, split with a beam splitter into two paths with different
alignments. For optimal molecular yield, the power balance in double ablation must be adjusted by
monitoring production signals.

We have also experimented with frozen ice targets to produce water in the cell for double
ablation. If water can be sealed in a well in the target plate, then when the plate is cooled down, the
water freezes and can be ablated. The target well was formed by drilling a hole in a copper plate,
sanding it down, filling it with water containg gold nanoparticles that absorb 532 nm light16, and
sealing the hole with a combination of kapton (polyamide) tape and stycast 2850 FT at the edges
of the tape. The target is shown in Fig. 3.5. Though this maintained a seal that retained water even
after pulling a modest vacuum, the kapton did slightly buldge, and the target was not weighed to
assess material loss.

We were able to successfully produce YbOH molecules when co-ablating a Yb metal target and
the frozen water target. The overall yield was a factor of ∼5−10×worse for water + metal ablation,
compared to typical stochiometric pressed powder abaltion yields. Nonetheless the scheme worked,
and has potential room for improvement; for example, the water can be covered with gold foil to
create a stronger seal, and the target can be frozen in advance, before pulling a vacuum. A thermo-
electric cooler (TEC) mounted to the back of the target plate could be used to keep the water frozen
during pump out and initial cooldown. Further testing is needed to improving ablation yield and
consistency with frozen liquid targets.

16Water has poor absorption at 532 nm otherwise.
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3.2.4 Diagnostics
When operating a CBGB source, we want to monitor and study molecule production and beam

properties. There are two primary ways of obtaining signals from the CBGB—absorption and
fluorescence spectroscopy. Here we provide a brief overview of these two approaches. Absorption
measurements are most useful in the cell or in front of the cell, and can be related to molecule
density in a relatively straightforward manner. Fluorescence spectroscopy, on the other hand, is
better suited for measurements downstream in the beam, and can have excellent signal-to-noise
ratio (SNR).

All of our diagnostic tools involve studying the interaction of light with the atoms or molecules.
Therefore it is useful to first introduce some relevant quantities related to excitation and decay rates,
and cross sections.

3.2.4.1 Decay Rates, Branching Ratios, and Cross Sections

This section will follow Refs. [131, 213, 214]. We note that Ref. [131] is in cgs units17, while
Ref. [213] uses a different reduced matrix element convention18. Throughout this section, we
discuss orientation averaging, which consists of averaging over initial state orientations (a.k.a. 𝑀
sublevels) and summing over final state orientations. We use double primes to indicate ground
state quantum numbers, and single primes to indicate the excited state. We will denote orientation
averaged quantities with a tilde, e.g., �̃�. This is in contrast to quantities without a tilde, e.g., 𝜎,
which refer to a situation where we do not assume spherical symmetry and therefore perform no
additional sums or averages.

In the dipole (a.k.a. E1) approximation for describing the light-matter interaction, the spatial
gradient of the light field over the extent of the atom or molecule is neglected. As a result, the
interaction operator can be written as 𝐻𝑖𝑛𝑡 = − ®𝑑 · ®𝐸 , where 𝑑 is the transition dipole moment
operator and 𝐸 is the ambient or applied oscillating electric field. Technically, the interaction is
− ®𝑑 · ®𝐸 for photon emission, and − ®𝑑 · ®𝐸∗ for photon absorption [67, 215, 216].

We begin by considering a single component of the dipole operator, written 𝑇1
𝑝 (𝑑) in spherical

tensor notation, which couples to a single spherical component of the light polarization vector. This
situation corresponds to polarized emission, |𝑒, 𝐽′, 𝑀′⟩ ⇝ |𝑔, 𝐽′′, 𝑀′′⟩, where we do not perform
any averages or sums over initial or final𝑀 sublevels. In this case, the decay rate for the polarization
component 𝑝 is given by [131, 213, 215–217]:

𝛾𝑖 𝑗 =
𝜔3

0
3𝜋𝜖0ℏ𝑐3 |⟨𝑔, 𝑖 |𝑇

1
𝑝 (𝑑) |𝑒, 𝑗⟩|2 (3.1)

17To convert to SI, we take 𝑑2
cgs → 𝑑2

SI/(4𝜋𝜖0)
18We follow the definition in Ref. [39].
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where we have introduced the abbreviated labels 𝑖 = 𝑔, 𝐽′′, 𝑀′′ and 𝑗 = 𝑒, 𝐽′, 𝑀′. Here, 𝜔0

represents the transition frequency of the decay in question.

We can also define the branching ratio specific to the 𝑀 sublevels of interest as follows:

𝑟𝑖 𝑗 =
|⟨𝑔, 𝑖 |𝑇1

𝑝 (𝑑) |𝑒, 𝑗⟩|2

|⟨𝑔 | |𝑇1(𝑑) | |𝑒⟩|2
=
|⟨𝑔, 𝑖 |𝑇1

𝑝 (𝑑) |𝑒, 𝑗⟩|2

𝐷2
𝑔𝑒

. (3.2)

The factor in the denominator is the 𝐽-independent reduced matrix element19 for 𝑇1(𝑑) that couples
𝑔 and 𝑒, which we have written as 𝐷𝑔𝑒. This is related to the 𝐽-dependent reduced matrix element
by ⟨𝑔, 𝐽′′| |𝑇1(𝑑) | |𝑒, 𝐽′⟩ = 𝑐(𝐽′′, 𝐽′)𝐷𝑔𝑒, where 𝑐(𝐽′′, 𝐽′) is a coefficient obtained from angular
momentum algebra (see Appendix A for details). For molecules, 𝐷𝑔𝑒 corresponds to the reduced
matrix element in the molecule frame, 𝑇1

𝑞 (𝑑). The quantity 𝑟𝑖 𝑗 describes the branching for 𝑖 ← 𝑗 ,
although since the matrix element is squared, the order of the label makes little difference.

We now consider performing an orientation average by averaging over initial states (𝑀′ for
emission), summing over final states (𝑀′′), and summing over all polarizations (p). This cor-
responds to spontaneous emission for an excited, unpolarized atom or molecule emitting in all
directions, |𝑒, 𝐽′⟩⇝ |𝑔, 𝐽′′⟩. Though we do not consider hyperfine structure for now, the approach
in this section can be generalized. We expand eq. 3.1 using the Wigner-Eckart theorem, and
the subsequent sum over 𝑀 , 𝑀′, and 𝑝 allows us to simplify the Wigner 3j-symbols using their
orthogonality relations [39]. We therefore have:

�̃�𝐽′′,𝐽′ =
∑︁

𝑀 ′′,𝑀 ′,𝑝

𝛾𝑖 𝑗

2𝐽′ + 1
=

𝜔3
0

3𝜋𝜖0ℏ𝑐3
|⟨𝑔, 𝐽′′| |𝑇1(𝑑) | |𝑒, 𝐽′⟩|2

2𝐽′ + 1
. (3.3)

This form agrees with Refs. [131, 213, 215, 216]. Here we have assumed 𝜔3
𝑖 𝑗
≈ 𝜔3

0 for all ground
and excited states in consideration. The orientation averaged quantity �̃�𝐽′′𝐽′ is often referred to as
the partial width of a transition. The factor of (2𝐽′ + 1)−1 arises from the average over initial states.
Alternatively, we can derive eq. 3.3 in the following way: we fix a given initial state 𝑀′, and sum
𝛾𝑖 𝑗 over the final state 𝑀′′ and the polarizations 𝑝. The orthogonality of the 3j-symbols then gives
1/(2𝐽′ + 1), and since there is no preferred excited state orientation for spontaneous emission, this
applies equally to all excited 𝑀′ levels, and we obtain the same result as eq. 3.3. Finally, we note
that the quantity 𝑆 =

∑
𝑀 ′′,𝑀 ′,𝑝 |⟨𝑔, 𝑖 |𝑇1

𝑝 (𝑑) |𝑒, 𝑗⟩|2 is often referred to as the “line strength” of a
transition.

Often in the case of molecules and CBGBs, there are multiple 𝐽′′ states, and we are interested in
unpolarized branching ratios. Analogous to eq. 3.2, we define the orientation averaged rotational

19Note the reduced matrix element satisfies the property (𝐷𝑔𝑒)∗ = (−1)𝐽 ′−𝐽 ′′𝐷𝑒𝑔, see Ref. [131] and Ref. [130].
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branching ratio, 𝑟 , as:

𝑟𝐽′′,𝐽′ =
|⟨𝑔, 𝐽′′

𝑖
| |𝑑 | |𝑒, 𝐽′⟩|2

(2𝐽′ + 1)𝐷2
𝑔𝑒

. (3.4)

The orientation averaged branching ratios are normalized such that
∑
𝐽′′ 𝑟𝐽′,𝐽′′ = 1. In terms of 𝑟

and 𝐷𝑔𝑒, we may rewrite the partial width as:

�̃�𝐽′𝐽′′ =
𝜔3

0
3𝜋𝜖0ℏ𝑐3 𝑟𝐽

′,𝐽′′𝐷
2
𝑔𝑒 . (3.5)

If we now take the sum over all 𝐽′′, we obtain the following formula for the total radiative decay
rate of the excited state, in the absence of vibrational branching:

𝛾 =
∑︁
𝐽′′
�̃�𝐽′𝐽′′ =

𝜔3
0

3𝜋𝜖0ℏ𝑐3𝐷
2
𝑔𝑒 . (3.6)

This also agrees with Refs. [131, 213], as well as Ref. [217], where TDMs were determined for
YbOH. After summing over all ground states, we see the total decay rate looks like that of a two-level
system with transition dipole moment 𝐷𝑔𝑒. The individual rates can therefore be parameterized in
as 𝛾𝑖 𝑗 = 𝑟𝑖 𝑗𝛾, and similarly for �̃�𝐽′𝐽′′ . This means we can treat our multi-level system as a two-level
system scaled by the appropriate branching ratio.

If we expand our discussion to include multiple vibrational states as well then we must scale 𝑟
by the Franck-Condon factors of the vibrational transitions involved. We note that if the vibrational
transitions have very different frequencies, the approximation 𝜔3

𝑖 𝑗
≈ 𝜔3

0 may no longer hold20, and
we have to consider a sum over𝜔3

𝑖 𝑗
values. If we are just interested in a partial width, we can simply

scale the partial width of interest by the vibrational branching ratio. If we want the total width, the
sum in eq. 3.6 must be expanded to include a sum over vibrational ground states 𝑣′′ as well. An
example of calculations with vibronic TDMs can be found in Ref. [217].

Now that we have discussed emission, we consider absorption when applying resonant light
onto the atom or molecule in question. We can describe the light as having intensity 𝐼 = 1

2𝜖0𝑐𝐸
2
0 ,

where 𝐸0 is the amplitude of the applied field. We wish to describe the interaction between the
light and the species in terms of an interaction cross section 𝜎(𝜔). We first consider the case of
resonance. The cross section can be written as follows [131]:

𝜎 =
𝑊𝑒𝑔

Φ
. (3.7)

Here,𝑊𝑒𝑔 is the excitation rate for stimulated absorption and Φ = 𝐼/(ℏ𝜔0) is flux of photons. From
time-reversal symmetry, 𝑊𝑒𝑔 = 𝑊𝑔𝑒 for just one ground and excited state. Without performing an

20For example, for YbOH, considering just 𝑣′1 = 0⇝ 𝑣′′1 = 0, 1, we have 𝜔3
𝑣′′=1/𝜔

3
𝑣′′=0 ≈ 0.92.
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orientation average,𝑊𝑒𝑔 on resonance can be obtained from Fermi’s Golden Rule [131] as:

𝑊 𝑗𝑖 =
1
𝛾tot

|⟨𝑔, 𝑖 |𝑇1
𝑝 (𝑑) |𝑒, 𝑗⟩|2𝐸2

0

ℏ2 =
1
𝛾tot

𝑟𝑖 𝑗
𝐷2
𝑔𝑒𝐸

2
0

ℏ2 =
Ω2
𝑖 𝑗

𝛾tot
(3.8)

where we have introduced the Rabi frequency, defined as Ω = 𝐸0𝑑𝑖 𝑗/ℏ, and 𝑑𝑖 𝑗 = 𝑟𝑖 𝑗𝐷𝑔𝑒 =

⟨𝑖 |𝑇1
𝑝 (𝑑) | 𝑗⟩ is the matrix element connecting the state 𝑖 to 𝑗 . The matrix element is defined for a

given polarization of the laser light that selects out the TDM component 𝑝. We note eq. 3.8 also
agrees with the form given in Ref. [214] (there,𝑊𝑒𝑔 is written as 𝑅).

The cross section on resonance, without orientation averaging, is then obtained by substituting
3.8 into 3.7. We obtain:

𝜎0,𝑖 𝑗 =
2
𝜖0ℏ𝑐

𝜔0

𝛾tot
𝑟𝑖 𝑗𝐷

2
𝑔𝑒 . (3.9)

This form agrees with the Appendix of Ref. [218].

Meanwhile, the orientation averaged form of𝑊𝑔𝑒, denoted with a tilde, is given by [131]:

�̃�𝐽′𝐽′′ =
1
𝛾tot

(2𝐽′ + 1)
3(2𝐽′′ + 1) 𝑟𝐽

′′𝐽′
𝐷2
𝑔𝑒𝐸

2
0

ℏ2 . (3.10)

The extra degeneracy factors arise from various averages over ground and excited state sublevels.
We note that we still have �̃�𝑒𝑔 = �̃�𝑔𝑒, shown in Ref. [131]. We substitute 3.10 into 3.7, and simplify
with 3.5 to obtain:

�̃�0,𝐽′′𝐽′ =
𝜆2

2𝜋
2𝐽′ + 1
2𝐽′′ + 1

𝛾𝐽′′𝐽′

𝛾tot
(3.11)

which is the same form as Ref. [131].

We note that eqs. 3.9 and 3.11 hold for situations where 𝛾tot describes a total Lorentzian
width that can receives contributions from multiple decay pathways, power broadening, or pressure
broadening. The cross sections also hold for higher order transitions (M1, E2, etc.).

The cross sections here are derived for the resonant case. For off-resonant interactions, the
cross section generalizes to have a frequency dependence, characterized by a lineshape function,
𝑔(𝜔 − 𝜔0) = 𝑔(Δ), with units of inverse frequency. Here Δ is the detuning of the laser light from
the resonance. We can normalize the lineshape such that

∫
𝑔(𝜔 − 𝜔0)d𝜔 = 1. We can derive the

general form by noting the derivation in the resonant case from Ref. [131] involved multiplication
by 𝑔𝐿 (0) = 2/(𝜋𝛾tot), where 𝑔𝐿 (Δ) is a Lorentzian lineshape. Therefore we can multiply by
𝑔(Δ)/𝑔𝐿 (0) to obtain the general lineshape.

Without orientation averaging, we obtain:

𝜎0,𝑖 𝑗 (Δ) =
𝜋𝜔0

𝜖0ℏ𝑐
𝑟𝑖 𝑗𝐷

2
𝑔𝑒 𝑔(Δ). (3.12)
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For the orientation averaged cross section, we obtain:

�̃�0,𝐽′′𝐽′ (Δ) =
𝜆2

4
2𝐽′ + 1
2𝐽′′ + 1

𝛾𝐽′′𝐽′ 𝑔(Δ). (3.13)

Since 𝑔(Δ) is normalized, the integral of the cross section is always constant, which explains
why the resonant value decreases with increasing width. When the natural linewidth dominates,
𝑔(Δ) is a normalized Lorentzian, and the resonant value reduces to eq. 3.11. We note that in some
cases, it may be convenient to introduce the lineshape function, denoted �̂�(Δ), with a different
normalization, such that �̂�(0) = 1. This allows everything to be expressed in terms of the resonant
cross section, i.e., 𝜎(Δ) = 𝜎0 �̂�(Δ).

Often we are interested in the scenario where we are dominated by Doppler broadening. In
such a case, the distribution of resonance frequencies is given by a Gaussian function:

𝑔𝐷 (𝜔 − 𝜔0) =
1

Γstd,𝐷
√

2𝜋
𝑒
−(𝜔−𝜔0)2/(2Γ2

std,𝐷) . (3.14)

Here, we have written the Doppler “width” as a standard deviation. This can be converted to
FWHM by ΓFWHM = 2

√
2 ln 2Γstd. The Doppler standard deviation is given by [131]:

Γstd,𝐷 =
𝜔0

𝑐

√︂
𝑘𝐵𝑇

𝑀
(3.15)

where 𝑀 is the mass of the species and 𝑇 is its temperature. For YbOH at 4 K, the Doppler width
is approximately ΓFWHM,𝐷/2𝜋 ≈ 54 MHz. However, we will find the lines are broader than this in
the cell, partially a result of unresolved hyperfine structure.

We consider power broadening in a later section discussing fluorescence signals. In the
case when multiple broadening mechanism are at an equivalent scale, we must represent the total
lineshape as a convolution of the various lineshapes involved. In the case when the two mechanisms
are Doppler and radiative broadening, the convolution of a Lorentzian with a Gaussian results in a
Voigt distribution.

3.2.4.2 Absorption

Absorption spectroscopy measures the attenuation of laser radiation passing through a cloud of
absorbing molecules (or atoms). The probability of a photon interacting with a molecule is encoded
in the cross section 𝜎(𝜔 − 𝜔0), where 𝜔 is the laser frequency and 𝜔0 is the separation of two
energy levels interest. The cross section is maximized when the laser is on resonance with a
transition, and the width of the cross-section is influenced by a combination of environmental
and internal factors. Mechanisms that increase (“broaden”) the cross-section width in CBGB
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sources are usually Doppler broadening (∼1 − 100 MHz), radiative linewidths (∼ 10 MHz), and
power broadening (0 − 100 MHz). Inhomogeneous electric and magnetic fields can also result in
broadening, but we will not discuss that here. Details about cross sections are given in the previous
section.

Interaction with a resonant photon can result in stimulated absorption or stimulated emission in
the molecules. These two processes can be thought of as a time-reversal pair (𝑎 and 𝑎† in a quantum
picture), although we caution that this analogy is not technically exact due to differences in level
degeneracies. Nonetheless, the two processes can be identified with the Einstein 𝐵 coefficient.
Indeed, in the absence of decoherence mechanisms, the cycle of emission and absorption is
analogous to Rabi oscillations.

For stimulated absorption, a laser photon is incident on a molecule initially in a ground state.
The energy and momentum of the photon is transferred to the molecule, promoting it to an excited
state. This process can only occur if there are ground state molecules present. The cross section
for such a process is given by eq. 3.11 for the case independent of 𝑀 sublevels, and by eq. 3.9 for
the case dependent on 𝑀 sublevels.

If the laser propagates along the 𝑥-axis, absorption causes attenuation of the laser beam when
measured at a location 𝐼 (𝑥 + 𝑑𝑥) compared to 𝐼 (𝑥). The absorption, 𝑑𝐼, depends on the number
density of absorbers in their ground state, 𝑛𝑔, their frequency dependent cross section 𝜎𝑒𝑔 (𝜔), and
the flux of incident photons, 𝐼. Explicitly, we have:

d𝐼 = −𝑛𝑔𝜎𝑒𝑔 (𝜔)𝐼d𝑥 (3.16)

where the sign indicates the intensity is attenuating as it passes through the sample. If we make
the assumption that the absorber density is uniform, we can integrate the above equation over some
length 𝑙, and then exponentiate, to obtain

𝐼 = 𝐼0𝑒
−𝑛𝑔𝜎𝑒𝑔𝑙 . (3.17)

This equation is sometimes referred to as the Beer-Lambert law. Here, 𝐼 is the intensity transmitted
through the absorbing sample, and 𝐼0 is a reference intensity before encountering the sample.
The quantity 𝑂𝐷 = 𝑛𝜎𝑙 is often known as the optical depth (OD). Note that the optical depth is a
logarithmic quantity, and can be related to the “linear” absorption fraction 𝐼/𝐼0 by𝑂𝐷 = log (𝐼0/𝐼).
In the limit of small absorption, this can be expanded as𝑂𝐷 ≈ 1− 𝐼/𝐼0, and the absorption fraction
is linear in the number density of absorbers. We note all of these relationships hold for power of a
transmitted laser beam as well.

On the other hand, if OD approaches 1, a majority of the light will be attenuated, and the
sample is said to be “optically thick.” In this regime, the transmitted intensity is exponentially
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small, making it critical to calibrate any zero offsets of the detector used to measure the transmitted
light. Furthermore, the sensitivity 𝑑𝐼/𝑑 (𝑂𝐷) is exponentially small, running into the limits of
detector sensitivity. Therefore, absorption measurements are not very useful with optically thick
samples. Often this is not an issue in practice if your goal is to make large quantities of a species
of interest.

For stimulated emission, a laser photon is incident on a molecule initially in the excited state.
The interaction with the light causes the molecule to emit an identical photon in energy and
momentum, and the molecule transitions to a ground state. This process can only occur if there are
excited molecules present. Using similar arguments to those for absorption, the effect of stimulated
emission can be encapsulated as

𝐼 = 𝐼0𝑒
𝑛𝑒𝜎𝑔𝑒𝑙 . (3.18)

Here, the intensity increases proportional to the number of excited state molecules 𝑛𝑒. This is the
same mechanism responsible for lasers, which leverage non-equilibrium 𝑛𝑒 (“pumped gain media”)
to amplify light.

Two crucial factors remain: there are a finite number of absorbers present in a sample, and the
excited state has a finite lifetime. The finite number of absorbers means a sample can be “saturated,”
and we shall run into this in the discussion of fluorescence as well. Consider a case where we
perform absorption with what is initially a low light intensity. Most of the absorbers remain in the
ground state, and their occasional excitation causes attentuation of the transmitted light according
to eq. 3.17. As we increase the flux of the incident light, we increase the number of absorbers
promoted to the excited state. Now, the transmission of the light is described by both stimulated
absorption and emission:

𝐼 = 𝐼0𝑒
(𝑛𝑒𝜎𝑔𝑒−𝑛𝑔𝜎𝑒𝑔)𝑙 . (3.19)

When 𝑛𝑔𝜎𝑒𝑔 ≈ 𝑛𝑒𝜎𝑔𝑒, then an incident photon is just as likely to encounter an excited state molecule
compared to a ground state molecule. This will result in stimulated emission occuring at the same
rate as absorption, increasing the transmitted light and counter-acting the attenuation. In the limit
of very high photon flux, the two rates are balanced, and the absorption signal can disappear. We
note that, from the previous section, 𝜎𝑒𝑔 = 𝜎𝑔𝑒.

In practice, because the excited state can decay, population will naturally return from excited
states to ground states. If the transition under consideration is “open,” the excited state can decay
to other ground states unaddressed by the laser. This population is lost, having been optically
pumped to a dark state with large detuning to the excitation laser21. On the other hand, if the

21This is in contrast to coherent dark states, where the detuning can be small, but the state is dark as a result of
interference.
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transition is “closed” and all decays are addressed, then in steady state the molecules are distributed
equally amoung the the ground and excited states. This has important consequences for molecule
laser cooling, when we almost always have more ground states than excited states–even population
distribution results in a smaller overall excited state fraction [115]. In the limit of high incident
light flux, where the stimulated absorption/emission rate is much faster than the excited decay rate,
the molecules are just as likely to be in the ground or excited state. Just as in the case of high photon
intensity without decay, the transmitted light is unattenuated. In this case, the addition of excited
state decay scrambles the phase of the excitation/de-excitation cycle throughout the sample.

We typically use absorption spectroscopy to monitor production of atoms and molecules in
our CBGB sources. We measure absorption both inside the buffer gas cell and just in front of the
buffer gas cell. For atomic species, densities can be high enough in the beam to perform absorption
measurements downstream as well. We operate in the low saturation intensity (𝑠 ≪ 1) limit to
ensure the OD is linear in the ground state number density.

The absorption signals we obtain are time-dependent, and vary as the molecular cloud moves
across the probe beam. Often we wish to integrate the signal to obtain a total number of molecules.
If we assume the number density 𝑛 is uniform across the length of the probe beam, then at a time
𝑡, the number of absorbers seen by the laser in a time increment d𝑡 is given by d𝑁 = 𝐴𝑎𝑏𝑠𝑣𝑛(𝑡)d𝑡,
where 𝐴𝑎𝑏𝑠 is the total area of the absorber cloud, for example the cross sectional area of the cell,
and 𝑣 is the speed of the absorbers moving through the laser. We can integrate this over the duration
of the molecule pulse, from 𝑡𝑖 to 𝑡 𝑓 , to obtain the total number of absorbers interrogated:

𝑁𝑡𝑜𝑡 =
𝐴𝑎𝑏𝑠𝑣

𝜎𝑒𝑔𝑙

∫ 𝑡 𝑓

𝑡𝑖

d𝑡 𝑂𝐷 (𝑡). (3.20)

We will often refer to the quantity
∫

d𝑡 𝑂𝐷 (𝑡) as the integrated OD.

Since absorption is a fractional effect, it is robust to losses incurred along the beam path, such
as from finite reflections or beam divergence/clipping. However, the sensitivity of absorption for
measuring small signals is limited by the intensity noise of the transmitted background intensity.

To give some perspective on signal sizes, consider absorption of a 1 cm path length, with the
Doppler broadened cross section for a strong transition on the order of ∼10−14 m2 for atoms and
∼10−15 m2 for molecules. Consider a photodetector with a dynamic range of 3 orders of magnitude,
in other words a detector that can measure signals up to 5 V with 5 mV resolution. This is roughly
the situation we have with standard photodiodes in lab. Such a detector is limited to measuring 0.1%
fractional absorption, which corresponds to a number density of 107 − 108 cm−3. Achieving even
this limit requires reducing both electronics noise and laser intensity noise to < 0.1%. Furthermore,
since our beam sources produce pulses of molecules, the absorption signal is pulsed with typical
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timescales in the ∼1 − 10 ms range. This means we are most sensitive to intensity noise ≲ 1 kHz,
which can be caused by mechanical vibrations, polarization noise (converted to amplitude noise by
birefringent optics), or electronics noise in the signal chain.

A simple solution to improving the sensitivity of an absorption measurement is to perform
multipass absorption, reflecting the laser beam many times through the sample before measuring
attenuation. In the spectroscopy community, Herriott cells are used for such a purpose. Another
approach is saturated absorption spectroscopy, which can be combined with lock-in techniques.
This forms the basis of a setup used in our lab to calibrate absolute laser wavelength by comparing
to co-recorded iodine spectra [219]. In general, lock-in techniques are powerful, as they encode
the signal at a carrier frequency 𝑓𝑐 ≫ kHz. This often moves the signal out of the bandwidth of
significant 1/ 𝑓 noise, allowing for improved SNR. This is the basis of the frequency-modulated (FM)
absorption technique, which was led by Nick Pilgram in our lab to perform sensitive absorption
spectroscopy on vibrational excited states in a buffer gas cell [220]. The details of FM absorption
are provided in his thesis [161] and in Refs. [221–225].

3.2.4.3 Fluorescence

As we discussed in the previous section, DC absorption spectroscopy is limited in sensitivity, and
works best with a strong line and/or high number density. When the molecules enter the beam
extension, the densities are reduced by nearly three orders of magnitude from the beam divergence,
and therefore absorption spectroscopy no longer has adequate SNR. It is possible that sensitive
absorption spectroscopy [220] could still observe the molecules downstream, but instead we turn
to fluorescence spectroscopy, which has certain advantages over FM absorption, such as reduced
complexity and easier interpretation.

Fluorescence spectroscopy is the process of using a laser to excite the molecules, and subse-
quently collecting the fluorescence decays, also known as laser-induced fluorescence (LIF). LIF
detection can be very sensitive, a result of both the ∼10% quantum efficiency of photon multiplier
tubes (PMTs), as well as the ability to eliminate backgrounds by measuring LIF at a different
wavelength than the excitation light. Such a scheme is referred to as off-diagonal detection, and
is commonplace in molecules, as excited states can decay to other vibrational levels separated by
≳10 nm or more. Typically the excitation and signal light is separated by a series of filters22.
Usually, fluorescence collection efficiencies are on the order of a few percent in our setups, with
the possibility of reaching order ∼10% when using large in vacuum collection optics.

We can estimate the SNR capability of fluorescence detection as follows. Assume we have
effectively filtered out the excitation light and our SNR is detector limited. A typical PMT model

22It is best to use a combination of both interference and colored glass filters.
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we utilize is a Hamamatsu H13543-300, with a spec of ∼0.2 nA of RMS current noise when
operated with a cathode to anode gain of 2 × 106. The PMT has a radiant cathode sensitivity of
∼40 mA/W at the 577 nm, a wavelength of interest for YbOH. Therefore the PMT current noise can
be translated to an RMS photon intensity noise of ∼2.5 fW, or equivalently a noise of ∼10 photons
at this wavelength for a ∼1 ms temporal pulse of molecules with constant scattering rate. Typical
fluorescence collection efficiencies are on the order of ∼1% of all emitted photons, and assuming
each molecule only emits one detected photon, we obtain a molecule number noise floor of ≈1,000
molecules. Of course, there will be other non-idealities in the system, such as added noise from
electronics, or non-ideal filtering resulting in the appearance of laser intensity noise, but this rough
estimate shows the power of fluorescence detection.

Fluorescence from a closed optical cycle has two characteristic regimes, characterized by the
balance between the excitation rate, which depends on light intensity, and the decay rate, which is
constant23. When illuminating a species with resonant light, if the intensity is “low enough,” the
LIF signal will increase linearly with increasing intensity. This is the regime when the decay rate
is much faster than the excitation rate. However, as we increase the intensity further, at some point
response of the system becomes non-linear or saturated, and the LIF signal no longer increases.
In this case the excitation rate matches or exceeds the decay rate, and the population is balanced
between ground and excited states. As was mentioned in the absorption section, an incident photon
is just as likely to stimulate emission than to be absorbed.

Actually, there are two mechanisms for saturation of fluorescence. All of the preceding
discussion is relevant to atoms or molecules with closed optical cycles. However, as we often
encounter with molecules, the excited state can decay to ground states unaddressed by the laser. In
such a case, if the ground states are long-lived, they represent loss, the fluorescence will saturate
as a result of the molecules being optically pumped away. Ref. [214] investigated the interplay of
these two fluorescence mechanisms in the saturation of CaF fluorescence.

For quantitative analysis, we first consider the case of a closed optical cycle. It is convenient to
define the saturation parameter on resonance, 𝑠0, that allows us to characterize the cross over from
linear to non-linear behavior of the atoms or molecules. The saturation parameter is defined by
the relation 𝑠0 = 𝐼/𝐼𝑠 = 2Ω2/𝛾2. Here, 𝐼𝑠 is the saturation intensity, and Ω = Ω𝑖 𝑗 = 𝐸0𝑑𝑖 𝑗/ℏ, and
𝑑𝑖 𝑗 = ⟨𝑖 |𝑇1

𝑝 (𝑑) | 𝑗⟩ is the matrix element connecting the state 𝑖 to 𝑗 for a given polarization of the
laser light that selects out the TDM component 𝑝. We may write ℏ2Ω2 = 𝑟𝑖 𝑗𝐷

2
𝑒𝑔𝐸

2
0 , where 𝑟𝑖 𝑗 can

generically include vibrational branching. Further, by writing 𝐸2
0 = 2𝐼/(𝑐𝜖0), we can use eq. 3.6

23Unless the density of states is engineered. See the Purcell effect for details.
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to solve for 𝐼𝑠, obtaining:

𝐼𝑠,𝑖 𝑗 =
𝜋ℎ𝑐

3𝜆3𝜏

1
𝑟𝑖 𝑗
. (3.21)

Here, 𝑟𝑖 𝑗 is the branching ratio for the 𝑗 → 𝑖 transition, including both rotational and vibrational
branching. As a sanity check, it makes sense that 𝑟𝑖 𝑗 is in the denominator, as it means we must
drive with more intensity before we saturate a transition with weak branching. The orientation
averaged (i.e., summed over 𝑀 sublevels) form of eq. 3.21 is obtained by substituting 𝑟𝑖 𝑗 →
𝑟𝐽′′𝐽′ (2𝐽′+1)/(2𝐽′′+1). We note the factor of 3 in the denominator of eq. 3.21 can be confusing–it
arises from the fact that the total decay rate is averaged over orientations, but the excitation rate is
not. Finally, we can connect eq. 3.21 to the saturation intensity for an ideal two level system with
excited lifetime 𝜏 as follows: 𝐼𝑠 = 𝐼𝑠,𝑖 𝑗𝑟𝑖 𝑗 .

The scattering rate of the molecules (or atoms), 𝑅, is directly proportional to the excited state
population, 𝑅 = 𝛾𝜌𝑒𝑒. Here, 𝛾 = 1/𝜏 is the decay rate of the excited state summed over all ground
levels. Since we are interested in timescales longer than 𝜏 ∼ 20 ns, we employ a steady state
approximation. If we were interested in the coherences of the system, we would need to use optical
Bloch equations, see Ch. 5. In steady state, we can write 𝜌𝑒𝑒 in terms of the detuning Δ = 𝜔 − 𝜔0

as follows:

𝜌𝑒𝑒 =
𝑠0/2

1 + 𝑠0 + 4Δ2/𝛾2 (3.22)

=
𝑠(Δ)/2

1 + 𝑠(Δ) (3.23)

=
𝑠0/2

1 + 𝑠0

1
1 + 4Δ2/𝛾2

𝑝

. (3.24)

We have written 𝜌𝑒𝑒 in three equivalent forms to highlight different aspects. In eq. 3.23, we have
defined the frequency dependent saturation parameter, 𝑠(Δ) = 𝑠0/(1 + 4Δ2/𝛾2). Meanwhile in
eq. 3.24, we have defined 𝛾𝑝 = 𝛾

√
1 + 𝑠0, which is known as the power broadened width. We

note the equations provided here must be modified in the case of multiple ground states coupled to
multiple excited states, as is the case with molecular laser cooling, see Refs. [115, 226] for details.

We now consider some limits of interest. We see that on resonance, Δ = 0, for 𝑠0 ≪ 1, we have
𝜌𝑒𝑒 ∝ 𝑠0, and the excited state fraction (and therefore the scattering rate) is linear with intensity.
The intermediate value of 𝑠0 = 1 characterizes the cross over to saturation, and corresponds to
𝑅 = 𝛾/4. At the other limit, with 𝑠0 → ∞, we have 𝜌𝑒𝑒 = 1/2, and the excited state fraction is
independent of intensity. The value of 1/2 can be understood intuitively as the atom or molecule
being driven so rapidly that it spends equal amounts of time in the ground and excited states. As
a result, the scattering rate on resonance will also saturate to 𝑅 = 𝛾/2. Off-resonance, however,
the width will increase as 𝛾𝑝 ∝

√
𝑠0. The population off-resonance can still saturate at 𝑅 ≈ 𝛾/2,

provided we have Δ2 ≪ 𝛾2𝑠0.
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Now we consider the mechanism of saturation resulting from loss to “dark states” not addressed
by the excitation laser, referred to as loss-induced saturation. If dark state decays occur with
probability 𝑝, and the molecules interact with the laser for total time 𝑇 , then we are dominated by
loss-induced saturation when 𝑅𝑇 ≫ 1/𝑝. For a molecule with ≈10% decays out of the cycling
manifold and a lifetime of 𝜏 = 20 ns, we will encounter saturation for 𝑇 ≫ 400 ns, which is quite a
short period of time, equivalent to 80 µm of travel for a 200 m/s fast molecular beam. Loss-induced
saturation has the effect of increasing the width of a fluorescence lineshape, as even off-resonance
molecules potentially do not require many scatters before they are pumped out. For a beam, loss-
induced fluorescence can be modeled by a rate equation model that incorporates information about
molecule travel time and laser intensity distributions, as was done in Ref. [214].

Finally, we note fluorescence measurements can be used to characterize atomic or molecular
velocities using the Doppler shift. Consider a molecule, traveling with velocity ®𝑣, that encounters
laser light at frequency𝜔0 and described by a wavevector ®𝑘 . In the frame moving with the molecule,
the laser radiation appears shifted in frequency according to according to:

𝜔 = 𝜔0 − ®𝑘 · ®𝑣. (3.25)

Here, if 𝜔 is given in angular frequency, we have 𝑘 = 2𝜋/𝜆, and if we work instead with linear
frequency, then 𝑘 = 1/𝜆. For a molecule moving at 200 m/s with 𝜆 = 577 nm, we see the maximum
scale of the Doppler shift is ∼350 MHz. The Doppler shift is used in atoms and molecules to
perform cooling, by red-detuning the excitation laser such that photons with counter-propagating
momentum are preferentially absorbed. For a detailed review of molecular laser cooling, see
Ref. [115].

The Doppler shift of a resonance can be used to determine the velocity of a CBGB. Naively,
one might send the laser beam counter-propagating to the molecular beam to achieve the maximum
Doppler shift scaling with velocity. However, this is not practical for a molecule beam, as the light
will interact with the molecules usptream and optically pump them into dark states, long before
the molecules reach the photon detector. Pusling the laser beam is difficult given for large spatial
extent (∼1 m) of the molecualr beam. Even for atoms with closed cycles, longitudinal Doppler
probes are also not ideal, as the laser beam can cause slowing, interferring with the interpretation
of velocity. Therefore, we use probes with ®𝑘 at 45◦relative to the CBGB in order to characterize
velocities. While this reduces the Doppler shift by 1/

√
2, it has the benefit of having a well defined

interaction region.

3.3 Order of Magnitude Improvement in Molecule Production
The work in this section was previously published in Ref. [227].
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Molecular experiments with CBGB sources are limited by the achievable molecular flux, and
stand to benefit from generic methods to make more cold molecules. In this section, we discuss a
method for achieving an order of magnitude increase in the molecular yield from a CBGB source
by using laser light to excite a metal atom precursor. Specifically, we greatly increase the yield of
polyatomic YbOH from our CBGB source by resonantly driving the 1S0 →3P1 atomic Yb transition
inside the buffer gas cell. The metastable 3P1 state has a lifetime of 𝜏 ≈ 871 ns [228], long enough
for the atoms to engage in reactive collisions before radiatively decaying, while also short enough
to allow for rapid laser excitation. Our results establish laser-induced chemical enhancement
via metastable excited states as a promising tool for significantly improving the production of
cold molecules in CBGB sources, with significant implications for a broad range of precision
measurement experiments.

3.3.1 Excited State Chemistry
The study of reactive collisions involving excited species is a very active area within the

chemical physics community. Depending on the species, promoting reactants to excited states can
considerably modify the reaction dynamics and the product state distributions [229–231], with con-
sequences for a wide range of fields, from astrophysics [232–234] to atmospheric chemistry [235–
237]. In many cases, the additional energy made available by electronic excitation of reactants can
convert an endothermic reaction to an exothermic one. Additionally, the reaction mechanism on
the excited potential energy surface can differ considerably from the mechanism for ground state
reactants. As a result, excited states can access more pathways and transition states that yield the
product of interest, as was seen in a recent study of Be+ reactions [238].

In addition to modifying chemical yield, excited state chemistry has been used to study the
collisional physics of atoms and molecules. In the case of atoms isoelectronic to Yb, such as Ca, Sr,
Ba, and Hg, excitation of reactants to metastable states was used for molecular spectroscopy [239,
240] and investigations of reactions in ovens or beams with gases such as SF6 [230, 241], H2 [241,
242], H2O [243–245], H2O2 [246, 247], alcohols [230, 243, 245], halogens [230, 241], halogenated
alkanes [230, 242, 248–250], and hydrogen halides [230, 241, 248, 251, 252]. More recently, the
ability to trap and cool species to ultracold temperatures has enabled research of reaction dynamics
between excited ions, atoms, and molecules [238, 253–255].

Here, we considered the the chemistry between Yb, in both the ground and metastable 3P state,
reacting with H2O and H2O2, two reactants likely produced during laser ablation of solid targets
containing Yb(OH)3 [256–258]. These reactants are also of interest as they can be flowed into the
cell via a capillary [108, 259]. Finally, previous studies with analogous metallic atoms, such as
Ca, Sr, and Ba, reacting with H2O and H2O2 [244–247] have shown that the reaction of the ground
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state alkaline-earth atoms leads mostly to formation of the metal oxides, whereas the metastable
atoms produce the metal hydroxides.

We first provide a simple thermochemistry estimate of the importance of excited state chemistry.
Consider the reaction Δ𝐸 + Yb(1S0) + H2O → YbOH(2Σ) +H, motivated by the use of water
as CBGB reagent introduced via a heated fill line. Here, Δ𝐸 is the energy difference of the
reaction, with Δ𝐸 > 0 indicating an endothermic reaction, and Δ𝐸 < 0 an exothermic reaction.
In Ref. [260], the dissociation energy of the Yb-OH bond was experimentally determined to
be 322 ± 12 kJ/mol 3.3 eV, and the atomic heat of formation for YbOH was determined to be
746 ± 12 kJ/mol = 7.7 eV. We can compute Δ𝐸 either by taking the difference between initial and
final heats of formation, or by considering the energy required to break and form bonds. We take
the latter approach, though the two approaches typically agree, as they should.

Bond dissociation energies can be found in the Argonne Active Thermochemical Tables online
database24, and also in an old NIST reference [261]. The H2O→H + OH process has Δ𝐸 = 5.1 eV.
The net energy required to break the H2O bond and form YbOH is then endothermic, Δ = 1.8 eV =

14500 cm−1. This motivates the use to promote Yb to the3P1 excited state, which has ≈18000 cm−1

of energy, enough to make the reaction exothermic. We note the 1P1 state also provides enough
energy in theory, however we suspect the short lifetime of the excited state is too fast compared to
the mean time between collisions in the buffer gas cell. We were not able to observe enhancement
when using ∼5 mW of 1P1 laser power.

Performing a similar analysis for H2O2 + Yb(1S0)→ YbOH(2Σ)+OH, we find Δ𝐸 = −1.2 eV,
and the reaction is exothermic. Clearly the choice of reagent matters considerably. However
hydrogen peroxide is somewhat impractical–it has 5 times lower vapor pressure than water at 25◦C,
it thermally decomposes when heated, and it is difficult to work with at high concentrations.

To investigate more quantitatively, our chemistry collaborators, Svetlana Kotochigova and Jacek
Kłos, performed quantum chemistry calculations of electronic structure and molecular dynamics.
Their calculations show the back of the envelope estimates hold some merit. We direct the reader
to our paper for the full details [227]. Here we provide an overview of the results.

Critical points on the high-dimensional potential energy surface of the reacting states are
shown in correlation diagrams given in Fig. 3.6 and Fig. 3.7, obtained with Density Func-
tional Theory (DFT) techniques. The intermediate complexes formed along the reaction paths
of Yb(1S)+H2O/H2O2 and Yb(3P)+H2O/H2O2 correspond to minima or saddle points, and are
referred to as transition states.

24 https://atct.anl.gov/

https://atct.anl.gov/
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Figure 3.6: Energy profile for the Yb(1S)+H2O and Yb(3P)+H2O reactions leading to
YbOH(�̃�2Σ+)+H(2S) products calculated calculated with DFT and drawn with Gauss View 5.
The molecular models represent the system geometries at critical points, and were drawn in the
Gauss View 5 program. The Yb, O, and H atoms are represented by green, red and white spheres,
respectively. Solid and dashed lines connecting the atoms correspond to 𝜎 bonds and temporary
connections the transition states, respectively. These calculations are performed by Svetlana Ko-
tochigova and Jacek Kłos, and are published in Ref. [227].
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Figure 3.7: Energies and molecular geometries at critical points for the Yb(1S)+H2O2 collision and
Yb(3P)+H2O2 reaction leading to either YbO(𝑋1Σ+)+OH(𝑋2Π) and YbOH(�̃�2Σ+)+H calculated
with DFT and drawn with Gauss View 5. The Yb, O, and H atoms are represented by green, red and
white spheres, respectively. Solid and dashed lines connecting the atoms correspond to 𝜎 bonds
and temporary connections the transition states, respectively. These calculations are performed by
Svetlana Kotochigova and Jacek Kłos, and are published in Ref. [227].
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The calculations demonstrate that the reaction between a ground state Yb(1S) atom and an
H2O molecule is endothermic, requiring 𝐸/ℎ𝑐 = 12020 cm−1 of relative kinetic energy to proceed
and form the product YbOH(�̃�2Σ+)+H(2S). Secondly, this singlet potential energy surface has a
transition state, or saddle point, that lies at 8741 cm−1 above the entrance channel. It separates a
local minimum corresponding to a symmetric-top molecule, where none of the bonds within H2O
are significantly affected by Yb, and the global minimum, where one of the hydrogen atoms has
broken from the water molecule and the Yb atom is inserted.

In contrast, the collision between the excited Yb(3P) state and H2O is exothermic by 5760 cm−1.
Moreover, the corresponding triplet potential energy surface has a transition state that lies below
its asymptotic channel energies. Such a submerged reaction barrier is indicative of large reaction
rates. For both singlet and triplet channels, the product YbO+H2 is energetically inaccessible, lying
27233 cm−1 above the Yb(1S)+H2O reaction channel.

We now consider the relevant spin singlet and triplet Yb+H2O2 reactions. For both Yb(1S)+H2O2

and Yb(3P)+H2O2 collisions, the product molecules have a lower electronic energy than the initial
reactants. In fact, both YbO(𝑋1Σ+) + H2O and YbOH(�̃�2Σ+) + OH(𝑋2Π) products are energetically
accessible, in contrast to the reaction with H2O.

The relative kinetic energy of the product molecules is significantly larger than that for the
product in the Yb(3P)+H2O reaction. The transition state on the spin singlet potential surface is
submerged, and its global minimum corresponds to a deeply-bound (OH)-Yb-(OH) molecule. We
thus expect strong reactivity along this pathway. Finally, the calculations did not find a transition
state on the spin triplet surface, and spin conservation implies that only YbOH(�̃�2Σ+) + OH(𝑋2Π)
can be formed. However, we note that strong spin-orbit coupling is expected due to the large proton
number of the Yb nucleus, and this will break spin conservation.

Our collaborators additionally performed classical Born-Oppenheimer Molecular Dynam-
ics (BOMD) [262] calculations to investigate reaction kinetics. The simulations show that the
Yb(1S)+H2O system forms a YbH2O complex, without reacting and producing YbOH product
molecules. For the Yb(3P)+H2O collision, the HYbOH intermediate forms immediately, after
which the hydrogen atom attached to the Yb quickly flies away, leaving the YbOH product. The
simulations are in agreement with previous studies of Ca(3P), Sr(3P), and Ba(1D) reacting with
H2O and preferentially forming metal hydroxides [244, 245].

Meanwhile, for the Yb(1S)+H2O2 simulations, we observe YbO and H2O products, which have
the lowest internal energy. The Yb(1S)+H2O2 reaction occurs 4 times more slowly than Yb(3P)
reacting with H2O2. This contrast may indicate a difference in reaction mechanism between the two
atomic states, which was previously suggested in prior work studying reactions of Ca and Sr with
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(b)

(c) (a)T~4 K

Yb+Yb(OH)₃ YbOH

He

Absorption probes

Figure 3.8: Depictions of the enhancement light geometries investigated. The enhancement light
is depicted by the thick green arrows. The thin arrows indicate the absorption probes, which are
fixed in position. (a) Transverse geometry: the enhancement light is introduced through a window
∼ 25 mm away from the ablation target and ∼ 12 mm away from the cell aperture. (b) Longitudinal
geometry: the enhancement light is introduced through the cell aperture. (c) Collinear geometry:
the enhancement light is sent through the ablation window, collinear with the YAG pulse.

H2O2 [246, 247]. Many more trajectories initialized with Yb(1S)+H2O2 are needed to determine
the branching ratio between the YbO and YbOH products, which were both found to form.

As a qualitative aside, we have experimentally looked for YbO and YbOCH3 production in our
source when ablating pressed Yb+Yb(OH)3 targets and simultaneously exciting the Yb atoms to
the 3P1 state. From absorption measurements in cell, we estimate that our yields are ≳ 100× lower
for YbO and YbOCH3 compared to YbOH.

3.3.2 Enhancement Tests
We now discuss experimental tests of optically driven chemical enhancement to produce YbOH

molecules. First, we describe the specific configuration of the 4 K source used for this work. Then
we move on to describing the various parameters we varied and optimized. First, we discuss the
tests of the properties of the enhancement laser: geometry, frequency, power, and timing. Then we
examine properties of the cryogenic buffer gas cell environment: gas flow and YAG energy. We
then move on to gauging the effect of the enhancement on rotation, vibration, and velocity. We
then investigate the effect of varying the Yb isotope that is optically excited. We conclude with
applications of the technique.

3.3.2.1 Apparatus

As discussed earlier, the source consists of a cryogenically cooled copper cell at ∼4 K, depicted
in Figure 3.8, which has an internal cylindrical bore with a diameter of 12.7 mm and a length
of ∼70 mm. The cell has windows that allow optical access for laser ablation and absorption
spectroscopy. Helium buffer gas enters the cell through a fill line at one end of the cell, and exits at
the other end through an aperture 5 mm in diameter. The source is typically operated with a helium
flow rate of 3 SCCM, equivalent to a steady-state helium density in the cell of∼ 2×1015 cm−3 [178].
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YbOH molecules are produced by laser ablation of a solid target with a pulsed nanosecond
Nd:YAG laser at 532 nm. Unless stated otherwise, the data in this section were taken with ∼ 15 mJ
of energy at a repetition rate of 1-3 Hz. The enhancement persists at repetition rates up to 10 Hz,
though above this repetition rate the cell temperature begins to increase. The data were obtained
from targets of pressed Yb(OH)3 powder in a stoichiometric mixture with Yb powder, described
in Section 3.2. The behavior of the laser-induced enhancement was found to be similar for variety
of other targets with slightly different compositions. From such targets, a single ablation shot
typically produces ∼1014 thermalized Yb atoms25, orders of magnitude more than typical yields of
molecular YbOH.

We can provide a basic picture of the in-cell dynamic based on previous work [179, 190]. At the
helium densities considered here, the ablated material (atoms molecules, and reactants) ballistically
expands to fill the cell in the first ∼ 𝜇s after ablation. Buffer gas collisions then thermalize the
molecules in ≲ 1 ms, and carry them out of the cell, through the aperture. At the flow rates
considered here, roughly ∼10% of the molecules are extracted, with the rest lost to the cell walls.

To study molecular production, we use a 577 nm laser to perform absorption spectroscopy on
the 𝑄𝑄11(2) line of the �̃�2Σ+(000) → �̃�2Π1/2(000) transition in 174YbOH. Here, (𝑣1𝑣2𝑣3) denote
the vibrational quanta in the Yb-O stretch, O bend, and O-H stretch, respectively. For 174YbOH
transitions, we use the labeling scheme described in Refs. [263, 264], as well as in Sec 4.1.3. The
laser light is produced by doubling a 1154 nm ECDL using a PPLN waveguide. Absorption of the
probe was used to determine the number density of molecules both inside the cell and immediately
in front of the cell aperture. Unless stated otherwise, Yb refers to 174Yb for both atomic Yb and
YbOH.

To enhance the production of molecules, we excite the 556 nm 1S0 → 3P1 transition in atomic
Yb. The light is derived by sum-frequency generation of a CW Ti:Saph with a 1550 nm fiber
laser, and has a linewidth of < 50 kHz 26. The light is pulsed on and off with a combination of
an acousto-optical modulator (AOM) and mechanical shutter, allowing us to study the effect of the
excitation timing relative to the ablation pulse. The mechanical shutter passes the light into the cell
∼4 ms before the ablation pulse, and blocks the light again ∼8 ms after the ablation, in order to
keep the cell from being heated unnecessarily. The AOM is used in conjunction with the shutter
to perform more precise measurements of the effects of pulse timing, to be discussed later. The
shutter stays closed for every other molecule pulse, in order to normalize against drifts in molecular
yield as the ablation spot degrades. Specifically, when ablating the same spot over time, we observe
a decay in molecular yield, which has been previously observed in other CBGB sources [178, 191,

25We produce so many atoms this is a difficult number to gauge, as the absorption is optically thick. This estimate
was based on looking at less abundant isotpologues of Yb.

26Sirah Mattise Ti:Saph and NKT ADJUSTIK+BOOSTIK combined in a Sirah MixTrain.
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Figure 3.9: Log scale absorption spectroscopy of YbOH density in the 𝑁 = 2, �̃�2Σ+(000) state,
both in-cell and front-of-cell. This data was taken with the enhancement light in the transverse
geometry. (a): In-cell un-enhanced yield of 4 × 1010 molecules, enhanced yield of 3 × 1011

molecules. (b): Front-of-cell un-enhanced yield of 7 × 109 molecules, enhanced yield of 8 × 1010

molecules. The difference in noise floors can be attributed to different photodiodes operating with
different gains.

265], particularly when ablating pressed targets made from mixed powders [180]. This decay is
present for both enhanced and unenhanced molecular pulses.

To determine the molecular yield inside the cell and the molecular flux leaving the cell, we
integrate the optical depth (OD) over the duration of the resulting ∼ ms long molecule pulse. We
compute the enhancement factor, or fractional increase in the number of molecules, by taking the
ratio of the integrated OD with and without the enhancement light. Since the probe light is always
fixed at the same molecule transition, common factors such as cross section divide out, making
the OD ratio directly sensitive to changes in molecule number density induced by the enhancement
light. When ablating a single spot over time, the enhancement factor does not exhibit the same
decay present in the absolute molecular yield.

Typically, in-cell YbOH population in the 𝑁 = 2, �̃�2Σ+(000) state was enhanced from ∼1010

to ∼1011, with front-of-cell numbers similarly enhanced, from ∼109 to ∼1010 molecules. Figure
3.9 shows a representative absorption signal from a single ablation shot, both with and without the
enhancement light present. The enhancement factor depends on a number of parameters, such as
laser power, detuning, timing, and geometry, which we will now discuss.
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3.3.2.2 Geometry

We investigated three geometries for introducing the enhancement light into the cell, indicated in
Figure 3.8. The 556 nm light was typically collimated to a beam diameter of ∼ 2.5 mm.

The largest enhancement signals were observed when the light was sent through the window
in the cell used for absorption spectroscopy, shown in Figure 3.8(a). For a given target, the
enhancement effect was repeatable for different ablation sites. For the second geometry, shown
in Figure 3.8(b), the light entered the cell longitudinally through the circular, 5 mm diameter
cell aperture. The resulting enhancement magnitude was reduced by a factor of ∼2, with the
effect somewhat independent of the ablation site. In the final geometry involved the enhancement
light overlapped with the path of the ablation laser, shown in Figure 3.8(c). When compared
to the aforementioned geometries, this collinear geometry resulted in smaller and less consistent
enhancement.

Unless stated otherwise, the data in the rest of this section, and in fact this entire thesis, are from
the first geometry, with the enhancement light sent through the spectroscopy window. Note that in
this configuration, excited state atoms and reactions should be present only in the region where the
laser is propagating, due to their short radiative lifetimes relative to the timescales associated with
the buffer gas flow.

3.3.2.3 Frequency

To characterize the frequency dependence of the enhancement, we scanned the enhancement laser
frequency across the atomic Yb line while monitoring the YbOH yield with a resonant absorption
probe. The resulting enhancement magnitude for such scans at varied powers is shown in Fig-
ure 3.10, demonstrating the resonant nature of the enhancement. Since we apply sufficient laser
power to power broaden the transition by an amount comparable to the Doppler broadening, we suc-
cessfully fit the shape to a Voigt distribution. The extracted full-widths-at-half-maximum (FWHM),
obtained from frequency scans in the longitudinal geometry, are plotted against enhancement power
in the inset of Figure 3.10.

The observed enhancement widths indicate a broader reactant Yb frequency distribution than
that expected from Doppler broadening at ∼4 K and power broadening from ∼200 mW of resonant
light. A similarly broad distribution is observed from low intensity scans of the atomic line shape
alone, shown for example in Fig. 3.11. At ablation energies of ∼15 mJ, the first < 1 ms of the Yb
absorption trace contribute to significant broadening, indicating the presence of an early, athermal
Yb population [190]. The remaining population present after 1 ms are consistent with a Doppler
broadening at𝑇 ∼ 4 K. Because the enhancement light can excite this early athermal Yb population,
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Figure 3.10: Enhancement line shapes, data taken with the longitudinal geometry. Left: Frequency
scans and Voigt fits, demonstrating the variation of YbOH enhancement with detuning of the Yb
laser at different powers. Right: Full widths at half maximum for the enhancement line shape as a
function of the power sent into the cell. The Doppler width for the Yb atomic transition averaged
over the entire ablation pulse is ∼150 MHz.
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approximately 15 mJ/pulse.
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we expect the atoms to react, providing the additional broadening we observe in the enhancement
line shape. A typical value for the FWHM of a Doppler-broadened Yb atomic absorption line
(in the limit of low saturation parameter) is ∼ 70 MHz if the athermal component is excluded.
Meanwhile the athermal features have ∼250 MHz FWHM, corresponding to a Doppler temperature
of ∼60 K.

3.3.2.4 Power

The enhancement factor has a nonlinear dependence on the power of the enhancement light. This
relationship is illustrated in Figure 3.12, showing the transition of the enhancement magnitude
from linear behavior at low powers to saturation at high power. The crossover typically occurs
between 100 and 300 mW for a ∼ 2.5 mm beam, corresponding to an intensity range of ∼ 10
W/cm2. Such behavior is indicative of driving an optical resonance, and supports a simple model
where the enhancement magnitude is proportional to the steady state excited Yb population. Notice
that this cross-over intensity is considerably higher than the saturation intensity of the transition
(0.14 mW/cm2), which is due to the fact that the transition is Doppler broadened [131]. We expect
the effect to saturate when the power broadening is comparable to the Doppler broadening [131].
The power broadened radiative width is 𝛾𝑡𝑜𝑡 ≈ 𝛾𝑟𝑎𝑑

√
𝑠, where 𝛾𝑟𝑎𝑑 ≈ 180 kHz is the natural width

and 𝑠 is the saturation parameter. The broadened width becomes comparable to the Doppler width
𝛿𝐷 ≈ 70 MHz when 𝑠 ≈ (𝛿𝐷/𝛾𝑟𝑎𝑑)2 ≈ 105, or 𝐼 ≈ 10 W/cm2, consistent with our measurements.

3.3.2.5 Timing

By using an AOM switch to pulse the atomic transition light for sub-ms duration, we determined
the majority of the enhancement occurs in the first few ms after ablation, corresponding to the
duration when the cell is filled with atomic Yb. Data from timing tests is shown in Fig. 3.13. The
pulses have 0.5 ms width, and are switched on at a variable time relative to ablation.

Notably, the enhancement is largest ∼1 ms after the ablation, after the hot atoms have thermal-
ized with the buffer gas. This observation, combined with the effect of geometry on enhancement,
provides evidence that the enhancement occurs throughout the cell, rather than immediately in the
region of the ablation plume. Furthermore, we observe a small revival in enhancement at late times,
possibly indicative of pressure waves propagating through the cell.

3.3.2.6 Gas Flow

The enhancement magnitude was not found to have any significant dependence on He flow into cell,
which was varied from 1 to 10 SCCM, equivalent to varying the stagnation He density in the cell
from 6 × 1014 to 6 × 1015cm−3 [178]. The enhancement magnitude was unaffected by the ablation
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?

Figure 3.14: Enhancement of rotational and vibrational states in 174YbOH, and hypefine states
of 173YbOH. Error bars represent the standard deviation of measured enhancement factors. (a),
(b): Enhancement of 174YbOH as a function of ground state rotational level (a) and ground state
vibrational level (b). The rotational population was probed using 𝑄𝑄11(𝑁) lines. (𝑣1𝑣2𝑣3) denote
the vibrational quanta in the Yb-O stretch, O bend, and O-H stretch, respectively. The (000) data
point is an average of the 𝑁 = 0 through 𝑁 = 4 rotational enhancements. The excited vibrational
population was probed with diagonal transitions to the �̃� state with Δ𝑣1,2 = 0. We note the (020)
transition assignment is not definitive, hence the question mark. (c): Enhancement of the molecular
hyperfine levels in the odd 173YbOH isotopologue, resulting from driving 𝐹 = 5/2→ 𝐹′ hyperfine
transitions in atomic 173Yb. The molecular quantum number 𝐺 results from coupling of 𝑆 to 𝐼𝑌𝑏,
𝐺 = 𝑆 + 𝐼𝑌𝑏.

energy used in the ablation pulse, which was varied from 5 to 25 mJ/pulse. In fact, for low ablation
energies, YbOH was observed only with the aid of enhancement, as long as the ablation energy
was above the threshold necessary to produce atomic Yb. This is encouraging for laser-cooling
experiments, where lower energy ablation is useful for producing slow beams of molecules [182].

3.3.2.7 Rotational Distribution

We also investigated the effect of the enhancement light on the population of YbOH in different
internal states. Since the energy scales of the chemical reactions involved are on the order of
∼10,000 cm−1, much larger than those of molecular vibration (∼100 − 1000 cm−1) or rotation
(∼0.1 − 1 cm−1), we expect that the molecules created by chemical reactions will populate many
rotational and vibrational states after decaying to the ground electronic state. These distributions
have been studied in excited state reactions producing molecules containing Ca and Sr, and they
support the expectation that the released energy is distributed among the internal modes [245, 247].

Because rotational state-changing cross sections between molecules and helium are comparable
to elastic collision cross sections [178], we expect this broad rotational distribution to rapidly
thermalize in the buffer gas cell. By measuring the enhancement on 𝑄𝑄11(𝑁) transitions that
address different rotational levels in the ground vibronic state, we indeed observe such rotational
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thermalization, as shown in Figure 3.14(a). Each rotational transition demonstrates approximately
the same enhancement, indicating that the rotational distribution is essentially unchanged by the
increased chemical production.

3.3.2.8 Velocity Properties

Since buffer gas collisions are also effective at thermalizing translational degrees of freedom, we
expect the enhanced and un-enhanced molecule beams to have similar velocity properties. We
verified this by monitoring the transverse velocity distribution of YbOH exiting the cell using an
absorption probe in front of the cell aperture. The width of the resulting line shapes did not exhibit a
measurable difference with and without the enhancement. Similarly, we monitored Doppler shifted
fluorescence of the molecular beam ∼ 60 cm downstream, after a series of collimating apertures,
and found the both the mean and width of the forward velocity distribution were unaffected by the
enhanced molecular yield.

Intriguingly, we have noticed that the enhanced YbOH pulse usually arrives at the PMT later
than the atomic Yb pulse produced from the ablation. We attribute this to the fact that a majority
of the enhancement occurs ∼1 ms after ablation, which means the enhanced molecules leave the
cell later than the Yb atoms produced immediately upon ablation.

3.3.2.9 Vibrational Distribution

Conversely, vibration-quenching cross sections are typically smaller than those for other degrees of
freedom, resulting in observations of non-thermal vibrational distributions in CBGB sources [178,
192, 266]. The efficiency of vibrational thermalization can vary for different molecular species,
as well as for different modes of the same molecule [192]. In our source, we observe non-thermal
vibrational distributions, probed by absorption of diagonal transitions (Δ𝑣 = 0) from excited
vibrational states in �̃� to the same vibrational state in �̃�. We used the �̃� (100) → �̃�(100) line at
17378.58 cm−1 to probe the Yb-O stretch mode. Without enhancement, the population we observe
in the �̃� (100) state ∼ 1 ms after ablation corresponds to a temperature of𝑇𝑣1 ≈ 280 K, in agreement
with observations of athermal vibration in a recent study of SrOH in a closed cell [192].

Additionally, we used a line at 17345.09 cm−1 to attempt to probe the population in the excited
bending mode. In Ref. [227], we tentatively assigned this line as �̃� (010) → �̃�(010), which we now
know is an incorrect assignment (see Ch. 4, Sec. 4.3.1). This line is currently unknown, though we
can possibly re-assign it to a transition originating from �̃� (020), see Ch. 4, Sec. 4.4 for details.

The vibrationally excited molecule population in the cell was also significantly enhanced by
laser excitation of Yb. In Figure 3.14(b) we compare the enhancement for the (000), (100), and
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(020)? vibrational levels of the �̃� ground electronic state. We find the enhancement factor to be
consistent across these vibrational states, indicating buffer gas collisions do not efficiently quench
the vibrational states populated by the excited state chemistry. Enhanced yield in vibrational states
can be desirable, as excited vibrational levels may have little population in a typical beam source,
but are required for laser cooling, spectroscopy, and precision measurements [17]. Furthermore,
these vibrational populations can be easily “re-pumped” back into the ground state, e.g., using the
same lasers that would already be available for laser cooling, resulting in further increases to beam
brightness.

Indeed, we utilize the enhanced vibrational population to characterize the bending mode in
Ch. 4. The enhanced vibrational population was also used for FM absorption spectroscopy of
repumping transitions performed in our lab [220].

3.3.2.10 Studies with Different Isotopologues

Finally, we characterize the enhancement in the 173YbOH isotopologue, which has high sensitivity to
the symmetry-violating nuclear Magnetic Quadrupole Moment (NMQM)[17, 267], by investigating
the enhancement of different 173YbOH hyperfine states when driving hyperfine transitions in atomic
173Yb (𝐼 = 5/2). The results are shown in Figure 3.14(c). We separately drive each of the three
1S0 → 3P1 hyperfine transitions in 173Yb (𝐹 = 5/2 → 𝐹′ = 3/2, 5/2, 7/2) and monitor the
enhancement in either the 𝐺 = 2 or 𝐺 = 3 hyperfine state of 173YbOH. Here, analogous to the
case of 173YbF [268], the coupled angular momentum 𝐺 = 𝑆 + 𝐼Yb results from the strong electric
quadrupole interaction between the Yb-centered electron, with spin 𝑆 = 1/2, and the non-spherical
Yb nucleus, with spin 𝐼Yb = 5/2. The molecule population was probed via absorption spectroscopy
on the 𝑂𝑃12(2) and 𝑂𝑃13(2) lines of the �̃� → �̃� transition, where we label the odd isotopologue
transitions using the convention from Ref. [268].

The enhancement in the 𝐺 = 2 and 𝐺 = 3 states is equivalent for each driven 173Yb hyperfine
transition, which is expected in a thermalized ensemble. While thermalization should also result
in enhancement independent of the excited hyperfine 𝐹′ state driven in 173Yb, we find smaller
enhancement for 𝐹′ = 3/2 compared to 𝐹′ = 5/2 and 𝐹′ = 7/2. We attribute this to overlap of
the 173Yb(𝐹 = 5/2 → 𝐹′ = 3/2) transition with the 171Yb(𝐹 = 1/2 → 𝐹′ = 3/2) transition,
which differ by ∼ 3 MHz [269], much less than the Doppler broadening in the cell. This overlap
can explain lower enhancement rates, as the production of 171YbOH will deplete the available
population of other reactants.

We used the isotope selectivity of the enhancement to perform spectroscopy on the odd iso-
topologues of YbOH, presented in Refs. [124, 157]. While driving the 3P1 line in various isotopes,
we noticed that we observe cross-isotope enhancement as well. That is, when we drive the 3P1
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transition in one isotope, we observe a resonant enhancement of YbOH population in not just the
corresponding isotopologue, but also other isotopologues as well. The enhancement factor of other
isotopologues is less by approximately ∼2-3×. We attribute this cross-isotope enhancement to
excitation transfer via collisions between different Yb isotopes, though this warrants further study.

3.3.3 Applications
By driving an electronic transition from Yb(1S0) to Yb(3P1), we have demonstrated significantly

improved yield of molecular YbOH from a CBGB source. The resonant nature of the effect, as
well as saturation at high power, confirms that the excited atomic population is responsible for
the observed enhancement. Furthermore, we found that the cryogenic buffer gas environment is
well suited to cooling the products from the resulting exothermic reactions. Buffer gas collisions
effectively thermalized the translational and rotational energies of the resulting product molecules,
while still maintaining an athermal vibrational population, which is useful for many applications.

By performing computational studies, we are able to provide insight into the reaction channels
made possible by excited Yb(3P) atoms. From our DFT simulations, we conclude that when Yb is
in its ground state, only collisions with H2O2 produce ground state YbOH molecules. When Yb is
excited to its triplet metastable state, collisions with both H2O and H2O2 react to form ground state
YbOH.

Our approach suggests a number of new directions for both improvements to molecular yield in
future experiments and continued studies of cold chemical reactions. From our studies of geometry
and timing, the enhancement can occur throughout the cell and over the entire duration of the
molecular pulse, suggesting an optimal arrangement where the cell is evenly illuminated with
resonant light. This could for example be achieved by shining the light onto a high scatter surface,
or introducing the light into the cell using a fiber with large NA.

Although we used only a solid precursor in the studies presented here, another approach is
to use reactant gases flowed into the buffer gas cell via a capillary [108, 180, 182, 259]. These
molecular precursors react with ablated metal, providing a way to tune the reactant species. While
the enhancement we report here is a compound effect, possibly involving several different reactants
formed in ablation, our calculations suggest the possibility of finding the optimal reactant and
optimal excited states for both the atom and molecule. Additionally, compared to using mixed
targets, metal ablation can provide more consistent signals with slower decay [180]. Finally,
enhancing reaction rates would allow for reduction of ablation energy without also compromising
molecular flux.

While we have restricted our measurements to YbOH, it is likely that this method can be
used to enhance CBGB production of many interesting species, both diatomic and polyatomic.
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The chemical similarity of Yb with alkaline earth atoms, and the success of excited state chemical
reactions producing a variety of Ca-, Sr-, and Ba- molecules with numerous ligands [240, 244, 245],
suggests that CBGBs of alkaline-earth atoms with monovalent and ionic bonds (conveniently, those
which can be generically laser cooled [113]) could benefit from this approach. Note, however, that
the power requirements become higher for lighter species, since the radiative width of the metastable
states arises from spin-orbit coupling, which is larger in heavier species [270]. Nonetheless,
resonant excitation of the metal precursor could be especially helpful for experiments with rare
isotopes where efficiency is critical, such as radioactive 225Ra, which is a component of molecules
with extremely high sensitivity to physics BSM [271, 272], or 26Al, which is of astrophysical
relevance [273]. While we have mostly focused on alkaline-earth or similar metals, CBGBs of
other molecules of experimental importance, such as ThO [11], may also benefit from this approach
by exciting the metal [274] or oxygen [241] produced in the ablation to a reactive, metastable state.

In addition to increasing CBGB yield, chemical enhancement can also serve as a resource for
spectroscopy of dynamics inside the buffer gas cell. The dependence of the molecular yield on the
application of enhancement light at a specific time and place can help study the distribution of the
reactive dynamics in the cell. When compounded with probes monitoring the flux exiting the cell,
or monitoring fluorescence downstream, this allows for study of beam properties, conditioned on
where or when the molecules were produced. The ability to perform such spectroscopy could aid
in understanding and optimizing buffer gas cell geometries.

Our enhancement method can also be used to disentangle complex spectroscopic data by
comparing enhanced and normal spectral features, taking into account the enhancement dependence
on the excited atomic state, as well as the molecular vibrational, rotational, and hyperfine state.
Indeed, we have used this very technique to perform odd isotopologue YbOH spectroscopy in
our lab [124, 157]. As another example, the spectra of hypermetallic species [275] could be
uniquely distinguished from other molecules by their dependence on the chemical enhancement
of the individual metal centers. Additionally, because the molecules resulting from enhancement
can possibly populate vibrational states non-thermally, yet still yield translationally cold beams,
enhancement is be useful for studying transitions out of excited vibrational modes, as we do in
Chapter 4. The increased vibrational population is favorable for studies of vibration-quenching
collisions in cryogenic environments [192].

Finally, for precision measurements relying on CBGBs, increased molecular flux directly
translates to increased sensitivity to new, symmetry-violating physics beyond the Standard Model.
Specifically, the enhancement we demonstrate for both the 174YbOH and 173YbOH isotopologues
are directly applicable to experiments sensitive to new physics in both the leptonic and hadronic
sectors [17, 267, 276–278].
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YbOH Spectroscopy

In my experience, there’s no such
thing as luck.

–Obi-Wan Kenobi

This chapter covers work done on the molecular spectroscopy of YbOH, in the service of
precision measurements. In order to perform precision measurements on a molecule, we need to
understand the molecule’s energy levels and their behavior in electric and magnetic fields. This
allows us to implement and calibrate our measurement, essentially testing for new physics by
comparing to the physics we can model, e.g. electromagnetism. Though first principles theoretical
treatments have increasingly impressive accuracy, they still fall short of the 10−8 precision needed to
transitions at optical linewidths, let alone for precision measurements, which have ≲mHz sensitivity.
Therefore, we turn to experimental molecular spectroscopy techniques to understand and model the
behavior of the molecule, both in free field as a prerequisite, and in electromagnetic fields.

Additionally, high resolution spectroscopy is also a prerequisite to laser cooling and slowing
molecules, which can aid future measurements. In order to establish a nearly closed optical cycle,
we must understand the branching of spontaneous decays from the excited cycling state(s) to the
various metastable and ground states present. This can involve identifying decays at anywhere
from the 10−1 to 10−5 level, with higher precision required for applications requiring more photon
scatters, such as optical slowing or magneto-optical trapping. To repump the decays, we must
first spectroscopically identify, at 10−8 or better frequency precision, all the relevant rotational and
hyperfine transitions involved. The states are then repumped with either laser radiation, as is the
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case for unwanted vibrational decays, or microwave radiation, as is the case for unwanted parity
decays (i.e., two photon decays, see YO [279] for details).

In this chapter, we present spectroscopy efforts to enable precision measurements with YbOH
molecules. In particular, we focus on the “science state”—the doubly-degenerate bending mode,
denoted �̃�2Σ+(010). We often abbreviate �̃�2Σ+(010) as �̃� (010). We present a complete character-
ization of the science state at high-resolution, including its behavior in electromagnetic fields. Ad-
ditionally, we characterize the bending mode in the electronic excited state, denoted �̃�2Π1/2(010),
which we will often abbreviate to �̃�(010). We identify a case of a spectroscopic 𝐾-resonance in
�̃�(010) state, use the excited state to optically pump into �̃� (010), and determine �̃� (010) → �̃�(010)
transitions useful for manipulating and probing the science state. The work in this chapter enables
us to perform prototype Ramsey interferometry measurements in YbOH in the next chapter, Ch. 5.

The �̃� (010) work presented in this section was published in Ref. [280]. The �̃�(010) work is
not currently published.

4.1 YbOH Overview
In this section we give a brief summary of the spectroscopic characterization of YbOH per-

formed by others. We present the structure of the ground electronic, ground vibrational state,
denoted �̃� (000). We also present the Stark and Zeeman parameters for �̃� (000). We then present a
brief overview of the excited state structure of YbOH. We then summarize the prospects for photon
cycling in YbOH.

4.1.1 Ground States
The �̃� state was studied at microwave resolution using the PPMODR technique in Ref. [281],

and at optical resolution with laser induced fluorescence [264]. The optical study also determined
Stark and Zeeman tuning parameters. We show the low-𝑁 structure of �̃� (000) in Figure 4.1.
The ground state of YbOH is best described by a Hund’s case (b) basis, owing to the absence of
spin-orbit coupling (Λ = 0). The structure is similar to that of isoelectric diatomic fluorides, such
as YbF or SrF, with the exception of the ligand hyperfine structure, which is much smaller in the
hydroxides. Similar to YbF, YbOH exhibits a negative spin-rotation constant in the ground state,
owing to perturbations from low-lying levels, discussed in Sec. 4.4.

The vibrational structure of the �̃� electronic manifold has been characterized in dispersed laser
induced fluorescence (DLIF) measurements [144] at ∼5 cm−1 accuracy. The location of the optical
cycling states (i.e., 𝑁′′ = 1) has been determined at high-resolution (∼10 MHz) in the following
ground states [106, 139, 220, 280]: �̃� (000), �̃� (100), �̃� (200), �̃� (0200), �̃� (010),and �̃� (300).

We are most interested in the bending mode, the �̃�2Σ+(010) state, abbreviated as �̃� (010). A
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Figure 4.1: Diagram of the rotational structure in the �̃�2Σ+(000) (left) and �̃�2Σ+(010) (right)
states of YbOH. The different values of 𝑁 are first split by the rotational energy, 𝐵 ∼ 7.5 GHz. For
�̃� (000), the value of 𝑁 uniquely determines the state parity. Then, on a smaller scale, the spin-
rotation interaction, parameterized by 𝛾 ∼ −100 MHz, causes splittings of different 𝐽 levels. In the
�̃� (010) state, we have an additional fine structure, given by parity-doubling Coriolis interactions on
the 20 MHz scale. For brevity, we have not included asymmetries that occur in the parity splittings.
Finally, hyperfine couplings between 𝐼 and 𝑆 cause ∼4 MHz splittings for different values of 𝐹.
We note that �̃� (000) goes through a hyperfine “resonance”, such that the ordering of hyperfine
states reverses between 𝑁 = 1 and 𝑁 = 2. Such a reversal does not occur in �̃� (010), owing to the
different internuclear orientations of the spins in the symmetric top like bending mode compared
to the linear rotor-like absolute ground state.
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schematic level structure of this state is given in Fig. 4.1. We note the major difference between
�̃� (000) and �̃� (010) is the parity doubling structure in the bending mode. In the bending mode, we
now have two opposite parities for identical values of 𝑁 and 𝐽. This additional degree of freedom
associated with the molecular orientation will prove very useful in Ch. 5, Sec. 5.4, when we use
applied fields to engineer useful quantum states for EDM measurements.

4.1.2 Excited States
The 2Π electronic excited state is split by spin-orbit into an Ω = 1/2 and Ω = 3/2 manifold.

Only the Ω = 1/2 component has been definitively assigned, having being identified at 17323.5
cm−1 (577.2 nm) above the ground state. Characterization of the �̃�2Π1/2(000) state, including
Stark and Zeeman tuning, was performed in an optical study of a supersonic molecular beam [264].
The Zeeman constants of the excited state were further refined in a subsequent work [282]. In
Ref. [217], the lifetime of the �̃� state was found to be 𝜏 = 20(2) ns. The �̃� (000) → �̃�2Π1/2(000)
transition is often referred to as the “origin” band.

In addition to the �̃�2Π1/2(000) excited state, survey DLIF spectroscopy of YbOH identified
numerous other transitions [217]. Many of these transitions were either tentatively assigned or not
assigned at all, owing to the complicated and congested spectrum. Later work showed the YbOH
bands near 17640 cm−1 and 17680 cm−1 may have be overlapped with features from YbOCH3. In
this chapter we have investigated and determined the nature of the [17.33] band1, assigning it to
the �̃�2Σ+(010) → �̃�2Π1/2(010) transition. We also conducted high-resolution spectroscopy of
the [17.68] and [17.64]2 bands, but we were not able to perform a conclusive assignment. Our
investigations cast doubt on the ground state of these bands being �̃� (000), and are detailed further
in Ref. [161]. Some of the many unassigned YbOH bands are thought to arise from excited states
with holes in the inner 4 𝑓 shell. Further discussion of unassigned bands and the general state of
YbOH spectroscopy, including 4 𝑓 states, is provided at the end of this chapter.

4.1.3 Transition Notation
We denote rotational lines with notation similar to Ref. [264]. Ground state quantum numbers

are denoted with a double prime, e.g. 𝑁′′, and excited states with a single prime, e.g. 𝐽′. We define
Δ𝐽 = 𝐽′ − 𝐽′′ and similarly for Δ𝑁 . The most general notation is to label transitions according
to their value of Δ𝐽, such that Δ𝐽 = −1, 0, 1 maps on to Δ𝐽 = 𝑃,𝑄, 𝑅. This can be extended to
|Δ𝐽 | > 1 by continuing along the alphabet (i.e., Δ𝐽 = 2/−2→ 𝑆/𝑂). The Δ𝐽 label, combined with
information about either 𝐽′′ or 𝐽′, provides us information about the excited state as well.

1The bands are labeled with a notation corresponding to their energy in cm−1/1000, i.e., the origin band at
17323 cm−1 would be called the [17.32] band.

2This band was assigned as two separate features ([17.637] and [17.643]) in Ref. [217], but it is possible one band
was YbOCH3 contaminant.
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Furthermore, molecules that have non-zero electron spin, such as YbOH, will have multiple 𝐽
states for a given rotational manifold. These 𝐽 levels group themselves differently depending on
if we are in Hund’s case (a) or Hund’s case (b). Restricting our attention to doublet molecules
(𝑆=1/2), we can introduce the pattern forming label 𝐹𝑖 = 1, 2, applicable in both case (a) and case
(b). The notation 𝐹𝑖 is used for historical reasons, and is not to be confused with the grand total
angular momentum 𝐹. In Hund’s case (b), the value 𝐹𝑖 labels the spin rotation component of a
state—𝐹𝑖 = 1 corresponds to the state with 𝐽 = 𝑁 + 𝑆, while 𝐹𝑖 = 2 corresponds to the state with
𝐽 = 𝑁 − 𝑆. Meanwhile, in Hund’s case (a), the value of 𝐹𝑖 denotes the spin-orbit component of a
state, with 𝐹𝑖 = 1 corresponding to |Ω| = |Λ| − |𝛴 |, e.g. Ω = 1/2 for the YbOH �̃� state, and 𝐹𝑖 = 2
corresponding to |Ω| = |Λ| + |𝛴 |. The values of 𝐹𝑖 can be generalized to label higher spin states.

In molecules such as YbOH, we often deal with transitions from a Hund’s case (b) ground state
to a Hund’s case (a) excited state. These transitions are labeled with the following notation:

Δ𝑁Δ𝐽𝐹′
𝑖
,𝐹′′

𝑖
(𝑁′′) (4.1)

where we have introduced the relevant quantities previously. Even though 𝑁′ is not a good number,
we obtain Δ𝑁 by associating 𝑁′ = 0 with 𝐽′ = 1/2 (which only exists in 𝐹𝑖 = 1), 𝑁′ = 1 with
𝐽′ = 3/2, etc. Example lines and their quantum numbers can be found in Ref. [264].

In the above notation, the parity of the lines is determined by the rotational level of the ground
state, 𝑁′′. This works for ground states without parity doubling, where the state parity is given by
(−1)𝑁 for a Σ+ state. However, we also encounter ground states with parity doubling, such as the
bending mode, in which case 𝑁′′ alone is insufficient for determining the parity of the involved
states. Therefore, for labeling transitions out of �̃� (010), we adopt a modified labeling scheme,
given by:

Δ𝑁Δ𝐽P
′′

𝐹′
𝑖
,𝐹′′

𝑖
(𝑁′′). (4.2)

Here, we have added the subscript P′′ = ±, which denotes the ground state parity explicitly.

4.2 The Science State
After the YbOH vibrational structure was analyzed in medium-resolution dispersed laser in-

duced flourescence (DLIF) [144], we were able to use the reported location of �̃� (010), 319(5)
cm−1, as a starting point for high-resolution optical studies. We realized that we can directly
probe the �̃� (010) state by driving the reverse of the laser cooling leakage transition back to the �̃�
state. This transition has the added benefit of giving mostly off-diagonal decays to the blue of the
excitation light, which is very easy to separate with interference filters. The transition is nominally
“forbidden”, but can still be driven with enough laser power.
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In YbOH, the �̃�(000) ⇝ �̃� (010) decay has a vibrational branching ratio of 𝑟010 = 0.054(4)% [144],
and the lifetime of the �̃�2Π1/2 state is 𝜏 = 20(2) ns [217]. The excited state population primarily
decays to the vibrational ground state, �̃� (000), with 𝑟000 = 89.44% branching. Therefore, in our
experiment, the fluorescence signal will saturate after roughly one photon scatter as the molecules
are optically pumped out of the bending mode and mostly into the ground state. With a ∼1 mm
Gaussian laser beam intersecting a ∼200 m/s molecular beam, we can estimate the saturation
parameter required for a single photon scatter as 𝑠 ≈ 1× 10−2. Using eq. 3.21 for the saturation in-
tensity, and estimating the rotational branching at 1/3, we compute an intensity of 𝐼 ≈ 300 mW/cm2

required to optically pump the forbidden transition �̃� (010) → �̃�(000). For a 1 mm diameter
Gaussian laser beam, this requires ≳ 1 mW of optical power. While this simple estimate neglects
experimental imperfections, it shows that the power requirements needed to produce fluorescence
on such a forbidden line are feasible.

4.2.1 Apparatus
The cryogenic buffer gas beam (CBGB) apparatus is shown in Fig. 4.2a, and is described in

Ch. 3, Sec. 3.2. We emphasize that we increase YbOH yield by around an order of magnitude
by exciting atomic Yb to the excited 3𝑃1 state, as described in Ch. 3, Sec. 3.3. Specifically, this
technique significantly increases the quantity of YbOH in excited vibrational states, including the
�̃� (010) state, whose population is increased by a factor of ∼10.

A few milliseconds after ablation, the He gas flow extracts the molecules out of the cell through
the aperture. Molecule density is monitored both in the cell and outside the cell aperture with
577 nm absorption probes resonant with the 𝑅𝑅11(0) line of the �̃� (000) → �̃�(000) transition at
17325.0365 cm−1 [264]. The extracted beam is rotationally and translationally cold, but can have
significant excited vibrational population, a result of inefficient vibrational thermalization from
buffer gas collisions [192]. This provides a significant advantage, as we obtain ∼109 molecules
exiting the cell in the excited bending mode as a result. The molecular beam is collimated by a
6.4 mm diameter skimmer 4.8 cm downstream from the cell aperture, a 9.5 mm diameter hole
11.4 cm downstream from the cell aperture, and a 5 mm diameter hole 23.7 cm downstream from
the cell aperture. The beam travels at 150 − 200 m/s toward the laser-induced fluorescence (LIF)
measurement region located ∼60 cm downstream from the cell. The region is pumped by multiple
turbomolecular pumps, and typical pressures when flowing He gas are 1 − 5 × 10−7 Torr.

Downstream in the LIF region, molecules in the �̃� (010) bending mode are excited by a 588 nm
laser resonant with the nominally forbidden �̃� (010) → �̃�(000) transition. The laser beam, with a
∼1 mm diameter and ∼40 mW of power, is sent perpendicular to the molecular beam (see Fig 4.2a)
through windows at Brewster’s angle. The resulting 577 nm fluorescence from decays to the �̃� (000)
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state is collected with a 19.4 mm diameter fused-quartz light pipe. A 25.4 mm diameter, 19 mm
focal length retroreflecting concave mirror opposite the light pipe improves collection efficiency.
We filter out the 588 nm scattered background light using a combination of interference and colored
glass filters on the exit of the light pipe, obtaining a signal-to-noise ratio of >10. The fluorescence
signal is incident on a photomultiplier tube (PMT) module (Hamamatsu H13543-300), and the
resulting photocurrent is amplified with a 10−8 A/V trans-impedance amplifier with a 1.5 kHz low
pass filter.

To obtain the field-free spectrum, we scan the 588 nm probe laser and record its frequency using
a wavelength meter (HighFinesse WS7-30) with an absolute accuracy of 30 MHz and a measurement
resolution of 1 MHz. To improve the absolute accuracy, we use the probe light to co-record sub-
Doppler I2 spectra, obtained with amplitude modulated saturated absorption spectroscopy [219].
Calibration of the laser frequency using the I2 spectra results in one standard deviation error of
2.35 MHz in absolute frequency accuracy.

Figure 4.2b shows typical absorption and LIF signals obtained in a single shot. The LIF signal
size typically varies from shot to shot due to ablation yield fluctuations. To construct the field-free
spectrum, we scan the laser at approximately 1-2 MHz per shot, average the LIF signal for 4 shots,
integrate over the molecule pulse duration, and plot the data against the calibrated probe frequency.
The observed peaks are fit well by a Lorentzian function, with fitting errors < 3 MHz. For the
Stark and Zeeman spectra, we step the laser in 3 MHz increments, and average the LIF signal for
10 shots at each step.

For Stark spectroscopy, we use two indium tin oxide (ITO) coated glass plates separated by a
4.99(3) mm gap to apply fields up to 265 V/cm in the LIF region. Before entering the field region,
the molecular beam is further collimated with a 3 mm hole in a grounded aluminum plate. The
molecules traveling through the ITO plates are then excited by the 588 nm laser (see Fig. 4.2a).
The resulting fluorescence is collected through the glass plates with the setup described earlier.
For Zeeman spectroscopy, we generate magnetic fields of 0 − 70 Gauss using two pairs of wire
coils outside the vacuum chamber (see Fig. 4.2a). The two coil pairs have a diameter of 21.4 cm
with 500 windings each, and are each symmetrically spaced from the LIF region with distances of
7.5(1) cm and 11.3(1) cm to the molecules.

4.2.2 Modeling and Theory
We model the ground �̃� (010) state using a Hund’s case (b) effective Hamiltonian describing a

2Π vibronic state. This approach has provided an accurate description of the vibrational bending
modes in other metal hydroxide molecules, such as CaOH and SrOH in optical [147] and millimeter
wave [283] studies. The lack of first-order spin-orbit interaction means the electron spin 𝑆 is largely
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Figure 4.2: Experimental schematic of the �̃� (010) → �̃�(000) spectroscopy. (a) YbOH molecules
are produced in the 4 K cryogenic buffer gas cell (brown box) by laser ablation (dark green
triangle) of a solid pressed target. The molecules are thermalized by collisions with He buffer
gas continuously flowed into the cell. The production of YbOH is enhanced by exciting Yb atoms
using a laser (light green line) resonant with the 1𝑆0 → 3𝑃1 atomic Yb transition. Some of the
molecules are produced in the �̃� (010) bending mode. The molecules are entrained in the He
gas flow and extracted out of the cell. We detect the molecule number density in the �̃� state via
absorption spectroscopy (yellow lines) both in the cell (i) and in front of the cell (ii). The molecular
beam is collimated by a skimmer and collimators before entering the probe region with electric
and magnetic fields. We apply magnetic fields using coils outside the vacuum chamber, and apply
electric fields using ITO coated glass electrodes inside the vacuum chamber. In the center of the
fields, molecules in the �̃� (010) state are excited by a laser (orange line) and their fluorescence
is collected through a light pipe to a PMT (iii). (b) Sample signals from the CBGB. (i) In-cell
absorption on the 𝑅𝑅11(0) line of YbOH �̃� (000) → �̃�(000). The peak optical depth corresponds
to a molecule density of ∼5×109 cm−3 in the �̃� (000), 𝑁 = 0 state. (ii) Front of cell absorption on
the same 𝑅𝑅11(0) line. The peak optical depth corresponds to a molecule density of ∼2×109 cm−3.
(iii) Fluorescence after excitation of the bending mode on a strong �̃� (010) → �̃�(000) line. The
integrated signal corresponds to ∼8300 photons detected on the PMT.
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independent of the internuclear axis, and therefore both Σ and 𝑃 are undefined. Hund’s case (b)
is the natural basis, with 𝑁 and its projection ℓ as good quantum numbers. The spin-rotation
interaction then couples 𝑁 with 𝑆 to form well-defined 𝐽. Higher-order perturbations give rise to
the ℓ-doubling interaction, and the �̃� eigenstates of good parity are written as:

|ℓ; 𝑁, 𝑆, 𝐽, 𝑀,P = ±⟩ = 1
√

2
( |ℓ; 𝑁, 𝑆, 𝐽, 𝑀⟩ ± (−1)𝑝𝑏 | − ℓ; 𝑁, 𝑆, 𝐽, 𝑀⟩). (4.3)

The phase factor in Hund’s case (b) is defined as 𝑝𝑏 = (−1)𝑁−ℓ. The additional factor of ℓ = 1
means the action of the parity operator on a singly excited bending mode is similar to that of a
Σ− electronic state. We discuss this phase convention in detail in Ch. 2, Sec. A.2. Here, we
note this convention has been used in the literature [129, 151, 167–169], though the choice is not
universal. The parity phase and the sign of the ℓ-doubling Hamiltonian (which we take to match
the Λ-doubling Hamiltonian) together determine if the lowest energy eigenstate of the effective
Hamiltonian has positive or negative parity.

We use an effective Hamiltonian for the �̃� (010) state given by

𝐻�̃� (010) = 𝐵( ®𝑁2 − ℓ2) + 𝛾( ®𝑁 · ®𝑆 − 𝑁𝑧𝑆𝑧) + 𝛾𝐺𝑁𝑧𝑆𝑧

+ 𝑝𝐺
2

(
𝑁+𝑆+𝑒

−𝑖2𝜙 + 𝑁−𝑆−𝑒𝑖2𝜙
)
− 𝑞𝐺

2

(
𝑁2
+𝑒
−𝑖2𝜙 + 𝑁2

−𝑒
𝑖2𝜙

)
.

(4.4)

This form was first derived in Ref. [162] and is presented in detail in Refs. [159, 168, 169]. Here,
all subscripts on angular momenta (𝑧,±) denote molecule-frame quantities. The azimuthal angle
of the bending nuclear framework is given by 𝜙. The first term gives the rotational energy of a
symmetric top. The next two terms describe the spin-rotation interaction coupling 𝑁 and 𝑆 to
form 𝐽. The last two terms describe ℓ-type parity doubling caused by terms off-diagonal in the
vibrational angular momentum 𝐺, and cause splittings of opposite parity states. For convenience,
the spherical tensor [39] form of the Hamiltonian is provided below. Note the 𝑝 and 𝑞 subscripts
denote lab frame and molecule frame components, respectively.

𝐻�̃� = 𝑇0 + 𝐵(𝑁2 − ℓ2) + 𝛾
(
𝑁 · 𝑆 − 𝑇1

𝑞=0(𝑁)𝑇
1
𝑞=0(𝑆)

)
+ 𝛾𝐺𝑇1

𝑞=0(𝑁)𝑇
1
𝑞=0(𝑆) +

∑︁
𝑞=±1

𝑒−2𝑖𝑞𝜙
(
𝑝𝐺𝑇

2
2𝑞 (𝑁, 𝑆) − 𝑞𝐺𝑇

2
2𝑞 (𝑁, 𝑁)

)
.

(4.5)

For the spin-rotation interaction we have modified the usual expression, 𝛾𝑁 · 𝑆, by subtracting
𝛾𝑁𝑧𝑆𝑧 to account for the bending motion. This modification is crucial for accurate description
of low-𝑁 spectra. For linear molecules with 𝑁𝑧 = 0, the spin-rotation term 𝑁 · 𝑆 implicitly only
contains contributions from 𝑁𝑥𝑆𝑥 and 𝑁𝑦𝑆𝑦. However for a bending molecule, since 𝑁𝑧 ≠ 0, we
explicitly subtract away 𝑁𝑧𝑆𝑧. The effect of this modification is only noticeable at low 𝑁 , and
further information is provided in Appendix A.6 of Ref. [139].
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Other perturbations can reintroduce the 𝑁𝑧𝑆𝑧 term, referred to as axial spin-rotation, into the
Hamiltonian. The term is labeled in the literature with the coefficient 𝛾′ [162] or 𝛾𝐺 [159, 169],
in this work we use the latter label. The first order contribution to 𝛾𝐺 arises from magnetic dipole
interactions [163] and is negligible for the Yb-centered electron in YbOH. At higher order, a
combination of vibronic coupling and spin-orbit interactions can contribute to 𝛾𝐺 by mixing states
with Π electronic character, as observed in NCO [284], CCH [285], and FeCO [286].

In Eq. 4.4, the 𝑞𝐺 parity-doubling term is standard for a bending molecule in a 2Σ electronic
state. This term arises from Coriolis effects at second order, similar to the 𝑞 term in Λ-doubling.
The 𝑝𝐺 term, also in analogy with Λ-doubling, is equivalent to a parity-dependent spin-rotation
interaction. Owing to the weak coupling of the spin to the internuclear axis inΣ electronic states, this
term is small and has only been observed in submillimeter spectroscopy of metal hydroxides [283,
287], ZnCN [288], and CrCN [289]. As with 𝛾𝐺 , this term receives higher-order contributions
from vibronic mixing with electronic Π states.

We are using a sign convention for the ℓ-type doubling Hamiltonian outlined by Brown [159,
167], where the ℓ-type doubling Hamiltonian mirrors that used for Λ-doubling. However matrix
elements of ℓ involve different phases than Λ. As a result of the (−1)ℓ factor in our parity phase,
we have the matrix elements ⟨ℓ = ±1|𝑒±2𝑖𝜙 |ℓ′ = ∓1⟩ = 1, differing from the azimuthal matrix
elements for Λ-doubling. Matrix elements and complete details of the effective Hamiltonian and
conventions used are provided in Appendix A.

We construct the predicted spectrum by first separately diagonalizing the effective Hamiltonians
for the ground and excited states. The Hamiltonian basis is truncated at 𝑁′′ = 6 for the �̃� (010)
state and 𝐽′ = 15/2 for the �̃� state. Following Ref. [264], we include the 𝑃 = 3/2 manifold
when diagonalizing �̃�. After obtaining eigenvectors and eigenvalues, we convert all eigenvectors
to Hund’s case (a) and compute matrix elements of the transition dipole moment (TDM) operator.
Details of the TDM operator are given in section 4.2.3.3 and in Appendix A. For transitions
with non-zero TDM, we compute the line position by taking the difference of excited and ground
eigenvalues.

4.2.3 Results
4.2.3.1 Field-Free Spectrum

The observed spectrum (Fig 4.3) exhibits large splittings that match the excited state Λ-doubling
and rotational separation. We perform combination-difference tests [39] with these splittings to
obtain initial quantum number assignments of transitions. With these assignments, we compute
initial guesses for the 𝐵, 𝛾, and 𝑞𝐺 Hamiltonian parameters for the �̃� (010) state. Using these values
and fixing the excited state parameters, we construct a predicted spectrum and perform further line



118

*

** *

Figure 4.3: Field-free spectrum over a ∼9 cm−1 range. Orange upper part is experimental
observation and blue lower part is theory prediction. Prediction is using effective model detailed
in section 4.2.3.3 with coefficients (𝑐𝜇 = 0.28, 𝑐𝜅 = −0.49, 𝑐𝐵 = 0.83) and a temperature of 𝑇 = 2
K. Lines marked with * are unassigned and could arise from other isotopologues or bands.

assignments. With this analysis, we determined the need for additional parameters 𝑝𝐺 and 𝛾𝐺 to
accurately describe the full spectrum.

Without the 𝑝𝐺 term, various 𝑅 and 𝑃 branch features deviate from the prediction by a
magnitude >20 MHz, much larger than our frequency error. Specifically, in the region scanned in
Fig. 4.3, without 𝑝𝐺 , lines with significant residuals are: 𝑅𝑅+11(2),

𝑅𝑅−11(3),
𝑂𝑃+12(4),

𝑃𝑄+12(5), and
𝑃𝑃+11(5). The magnitude and parity behavior of these residuals cannot be explained by centrifugal
distortion, but can be explained by a parity-dependent spin-rotation interaction, namely 𝑝𝐺 . By
introducing 𝑝𝐺 into the prediction, all of these residuals are reduced to values commensurate with
the experimental error. Furthermore, using the fit value of 𝑝𝐺 , we predicted and found the 𝑅𝑅+11(4)
and 𝑅𝑅−11(5) lines (not visible in Fig. 4.3). These additional lines are added to the final fit and
confirm the need for a 𝑝𝐺 term to accurately model the full spectrum.

Unlike 𝑝𝐺 , the 𝛾𝐺 term does not scale with 𝑁′′. However, we find this term necessary to
describe the 𝑁′′ = 1 structure, which was crucial for accurate Stark and Zeeman analysis in section
4.2.3.2. In particular, we recorded multiple field-free calibration scans of the 𝑄𝑄+11(1) and 𝑄𝑅+12(1)
lines. Since these lines share the same excited state, their separation is insensitive to error in the
�̃� state parameters. We use the separation of these lines to determine the 𝑁′′ = 1+ spin-rotation
splitting to be 61.8(20) MHz, and we add this value as an additional data point for our analysis.
By including the 𝛾𝐺 term in the spectral prediction, were we obtain an accurate prediction of the
𝑁′′ = 1+ splitting commensurate with our measurement error.

In total, we assigned 38 of the observed lines to 39 transitions originating from the 𝑁′′ = 1
through 𝑁′′ = 5 levels of the �̃� (010) state. Note the 𝑄𝑅−12(1) and 𝑃𝑄−12(5) lines are overlapped.
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Table 4.1: Spectroscopic parameters for the low-lying vibrational states of
the �̃�2Σ+ manifold. The �̃� (010) parameters are obtained from the current
work.

Parameter �̃� (000) [290] �̃� (010) �̃� (100) [264]
𝑇0/cm−1 0 319.90901(6) 529.3269(3)
𝐵/MHz 7348.4005(3) 7328.64(15) 7305.37(24)
𝛾/MHz −81.15(6) −88.7(9) −110.6(21)
𝛾𝐺 /MHz − 16(2) −
𝑞𝐺 /MHz − −12.0(2) −
𝑝𝐺 /MHz − −11(1) −

To obtain optimal effective Hamiltonian parameters, we vary the �̃� (010) state parameters and hold
fixed the �̃� state parameters to the values given in Ref. [264]. We construct predicted spectra and
perform nonlinear least-squares minimization of the residuals between the observed and predicted
positions of all 39 assigned lines and the 𝑁′′ = 1+ spin-rotation splitting. A full list of lines and
assignments is provided in Appendix D.

The best fit parameters are presented in Table 4.1. The fit residuals have a standard deviation
of 6.1 MHz, consistent to order unity with the error reported in the previous optical study of the �̃�
state [264]. The rotational and spin rotational �̃� (010) parameters are in good agreement with those
for �̃� (000) and �̃� (100), also collected in Table 4.1. The location of the origin 𝑇0 is in excellent
agreement with previous dispersed fluorescence studies [144, 217]. The rotational constant 𝐵
decreases in �̃� (010) as a result of vibrational corrections. The increasingly negative spin-rotation
parameter 𝛾 between the three vibrational states is a result of second order spin-orbit perturbations
from low-lying electronic states with 4f 136s2 electronic configuration for the Yb centered electron,
known as “4f hole” states [290, 291].

Vibronic mixing with electronic 2Π states can also explain the observed 𝛾𝐺 and 𝑝𝐺 parameters,
which are not typical for the bending mode of an isolated electronic 2Σ state. Vibronic mixing
exchanges ℓ and Λ while preserving 𝐾 . As a result, the �̃� (010) state can acquire some Λ >

0 electronic character, inheriting spin-orbit and Λ-doubling interactions from neighboring 2Π

states. Specifically, in the effective Hamiltonian, these interactions can arise at third-order via a
combination of linear vibronic coupling and spin-orbit effects. This term was first described by
Brown in the context of spin-orbit corrections to electronic 2Π states as a result of mixing with
other 2Σ or 2Δ states [156]. Neighboring states that can contribute to 𝛾𝐺 and 𝑝𝐺 include both the
�̃� manifold and the 4f hole states. The exact nature of the 4f hole states and their vibronic mixing
in YbOH is currently unknown and merits further study. However, their proximity to the ground
state and their large spin-orbit interactions could explain the significant magnitude of 𝑝𝐺 and 𝛾𝐺
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Figure 4.4: Field-free level structure of the 𝑁 = 1 manifold in the �̃� (010) state. States are
arranged vertically by energy and horizontally by their 𝑀𝐹 angular momentum projection. States
are labeled in the parity basis. The hyperfine structure was not resolved in our work, and is instead
approximated using parameters from a study of the �̃� state [290].

in YbOH compared to other metal hydroxides [283].

The ℓ-type doubling parameter 𝑞𝐺 is a similar magnitude to that of other metal-hydroxide
�̃� (010) states [147, 283], and is in agreement with a recent theoretical calculation [292]. The param-
eter 𝑞𝐺 can be interpreted in terms of the Coriolis coupling constants of a triatomic molecule [147,
154]:

𝑞𝐺 = −(𝑣2 + 1) 𝐵
2

𝜔2

(
1 +

∑︁
𝑛=1,3

𝜁2
2𝑛

4𝜔2
2

𝜔2
𝑛 − 𝜔2

2

)
. (4.6)

Here, 𝑣2 is the number of quanta in the bending vibration 𝜔2, and 𝜁2𝑛 is the Coriolis coupling
constant between the bending mode and the 𝑣𝑛 stretch modes. To estimate 𝜁21, we can estimate the
value of 𝜔3 (O-H stretch) using the CaOH value of 3778 cm−1 [293], and we set 𝑣2 = 1, 𝜔2 ≈ 𝑇0,
and 𝜔1 ≈ 529.3 cm−1 [264]. Furthermore, we can use the relationship 𝜁2

21 + 𝜁
2
23 = 1 [154] to

eliminate 𝜁2
23. Using our values of 𝐵 and 𝑞𝐺 , we then obtain a value of 𝜁21 ≈ 0.137, slightly smaller

than in CaOH (0.1969) [147] and SrOH (0.179) [294]. This is likely due to the break down of the
harmonic approximation 𝜔2 ≈ 𝑇0 and the approximation of 𝐵𝑒 ≈ 𝐵. Further work is needed for a
complete vibrational characterization.

Using the parameters obtained from our analysis, we construct a field-free level diagram for the
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𝑁 = 1 manifold of the �̃� (010) state, shown in Figure 4.4. As stated previously, 𝑁 = 1 is the lowest
rotational manifold in the �̃� (010) state, as we always have | ®𝑁 · �̂�| = 1. Due to their small parity
splittings, 𝑁 = 1 states are easily polarized, making them useful for precision measurements [17].
The effect of the parity-dependent spin-rotation term, 𝑝𝐺 , is apparent in the asymmetric parity-
doubling of the 𝐽 = 1/2 and 𝐽 = 3/2 manifolds. Though we are not sensitive to hyperfine splittings,
for completeness we have included the H hyperfine structure using the parameters obtained for the
�̃� state in a previous study [290]. The hyperfine structure is not expected to change significantly in
the bending mode.

The recorded spectrum has lines present that could not be assigned with combination-differences
using the �̃�(000) structure, and are not observed in the prediction using the best-fit parameters.
The lines are marked with * in Fig. 4.3. We conclude that some of these lines are indeed from
174YbOH by comparing their chemical enhancement [227] when using 1𝑆0 → 3𝑃1 transitions for
different Yb isotopes. These lines could be unthermalized rotational states, or possibly another
overlapping Δℓ = ±1 band, such as the �̃�2Σ+(020,20) → �̃�2Π1/2(010) bands.

The additional 𝛾𝐺 and 𝑝𝐺 terms mean that we can draw an analogy between picturing �̃� (010)
as a dynamically bending linear molecule and a bent asymmetric molecule. We detail this corre-
spondence further in Appendix C, and use it to make estimates of the bending angle 𝜃 indicating the
displacement of the H atom from the internuclear axis3. Our rough estimates indicate 𝜃 ≈ 20◦−30◦.
We caution that these Cartesian estimates do not correspond to large deviations of the normal co-
ordinate 𝑞2, which is expected to remain harmonic.

4.2.3.2 Stark and Zeeman Spectra

After fitting the molecular structure with the field-free spectrum, we study the Stark and Zeeman
spectra of the molecule in the presence of static (DC) electric and magnetic fields, using the
experimental setup described in 4.2.1. We obtain the spectra by scanning the 588 nm probe laser
across two lines corresponding to the field-free 𝑁′′ = 1+ → 𝐽′ = 3

2
− transition, 𝑄𝑄+11(1) and

𝑄𝑅+12(1). The applied DC fields point along 𝑧, while the laser polarization is along 𝑥. Spectra are
taken with the E-field varied from 0− 264 V/cm and with the applied B-field varied from 0− 70 G.
Calibration spectra are taken with 𝐸𝑍 = 0 V/cm and 𝐵𝑍 < 0.5 G, and the observed line positions
are compared to the I2-corrected field-free positions to calibrate for frequency offsets.

The lines of interest are relatively well-isolated from other features, and the small 𝑁′′ = 1
parity doubling allows us to enter the linear stark regime with modest laboratory fields ≳100 V/cm.
Since the parity splittings of the excited �̃�2Π1/2 state are >13 GHz, and its molecule frame dipole

3We define 𝜃 as the deviation from linearity, i.e., 𝜃 = 0 is the nominally linear YbOH configuration.
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Figure 4.5: Zeeman spectroscopy of the �̃� (010) state. The main plot shows the transition frequency
shift (with subtracted offset) in a magnetic field, the blue lines are optimized model predictions,
and the orange circles are experimental measurements. Error bars are 1-𝜎 measured peak widths,
set by a combination of radiative broadening and unresolved hyperfine structure, limiting the ability
to resolve closely-spaced lines. Lower subplots are slices of the spectra at various magnetic field
values, with experimental data in orange and predicted line locations indicated with vertical dashed
blue lines. On the left, we show the field-free level structure of the transitions studied.

moment is 𝐷Ã = 0.43(10) D [264], at the fields we consider the excited state Stark shifts are
negligible. Furthermore, given our frequency resolution and the natural linewidth, we are only
sensitive to the isotropic interaction of 𝐵𝑍 with the electron spin magnetic moment. Curl-type
relationships [168] estimate anisotropic spin interactions at 6 × 10−3𝜇𝐵, and the nuclear magnetic
moment is also suppressed at a similar level, with both effects giving shifts below our resolution.

To obtain energy levels and predicted lines, we fix the field-free parameters and diagonalize
the combined Stark, Zeeman, and field-free Hamiltonian. We obtain optimal estimates for free
Stark and Zeeman parameters by least-squares minimization of the residuals between observed and
predicted line positions.

Both ground and excited levels are magnetically sensitive. The Zeeman shifts of the �̃�2Π1/2(000)
and �̃�2Σ+(000) states were previously studied at similar magnetic field strengths in Ref. [264], and
recently at high fields (∼1 T) in Ref. [282]. Following these references, we use the following
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Figure 4.6: Stark spectroscopy of the �̃� (010) state. The main plot shows the transition frequency
shift (with subtracted offset) in an electric field, the blue lines are optimized model predictions,
and the orange circles are experimental measurements. The blue color gradient represents parity
forbidden transitions that gain strength at finite electric field. Error bars are 1-𝜎 peak widths, set
by a combination of radiative broadening and unresolved hyperfine structure, limiting the ability
to resolve closely-spaced lines. Lower subplots are slices of the spectra at various electric field
values, with experimental data in orange and predicted line locations indicated with vertical dashed
blue lines. On the left, we show the field-free level structure of the transitions studied.

effective Zeeman Hamiltonians for the ground and excited states:

𝐻𝑍𝑒𝑒
𝑋 = 𝑔𝑆𝜇𝐵𝑆𝑍𝐵𝑍 (4.7a)

𝐻𝑍𝑒𝑒
𝐴 = 𝑔′𝑆𝜇𝐵𝑆𝑍𝐵𝑍 + 𝑔𝐿𝐿𝑍𝐵𝑍 + 𝑔

′
𝑙𝜇𝐵

(
𝑒−2𝑖𝜃𝑆+𝐵+ + 𝑒2𝑖𝜃𝑆−𝐵−

)
. (4.7b)

Here, 𝑍 refers to the lab-frame projection, ± refer to the molecule frame projections, and 𝜃 is the
electronic azimuthal coordinate. For the excited state, we use the values from Ref. [282], fixing
𝑔′
𝑆
= 1.860, 𝑔𝐿 = 1.0, and 𝑔′

𝑙
= −0.724. For the ground state, we allow 𝑔𝑆 to vary in the fits to find an

effective value that accurately describes the Zeeman shifts. While we do not include them here, at
higher resolution or at higher field values, additional terms are expected to contribute in the effective
Zeeman Hamiltonian, including terms associated with the bending angular momentum [168].

The Zeeman fits prefer a value of 𝑔𝑆 = 2.07(2), deviating from the free electron g-factor of
2.0023. The experimental Zeeman shifts and the prediction from the optimized model are shown
in Fig. 4.5. Corrections to 𝑔𝑆 can arise from mixing involving other states with different Zeeman
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tuning. For example, the Zeeman shifts of the �̃� state were fit to 𝑔′
𝑆
= 1.860 in a recent high-field

study [282], owing to perturbing 4f 136s2 states. Since we observe perturbations from these 4f states
in the field-free structure of the �̃� (010) state, it is natural to also find their effects in the Zeeman
shifts. Furthermore, the 4f states are split into a higher energy spin-orbit anti-aligned manifold and
a lower energy spin-orbit aligned manifold [291]. Due to energy proximity, while �̃� predominantly
interacts with the 4f hole anti-aligned manifold, �̃� (010) will be perturbed more strongly by the
aligned manifold. The difference in electron orientation of the two spin-orbit 4f manifolds can
explain the difference between �̃� (010) and �̃� in the sign of the deviation of 𝑔𝑆 from its nominal
value.

To describe the Stark shifts, for the both ground and excited states we use the Hamiltonian
𝐻𝐸 = − ®𝐷mol · ®𝐸 . The molecule frame dipole moment 𝐷mol is kept as a free parameter, and obtained
from spectra where 𝐸𝑍 is scanned with 𝐵𝑍 < 0.5 G. The optimal fit value is 𝐷mol = 2.16(1) D =
1.09 ℎ MHz/(V/cm). This value is in good agreement with the measured �̃� (000) dipole moment
of 1.9(2) D. In Figure 4.6, we plot the theoretical prediction based on the optimal fit against the
observed line positions.

The Stark shifts confirm the assignment of the �̃� (010) state and demonstrate the orientation
control afforded by parity doublets. In the bending mode, the projection of the molecular axis on
the lab-frame4 �̂�-axis is given by �̂� · �̂� =

( ®𝑁 · ®𝑍) ( ®𝑁 ·�̂�)
𝑁 (𝑁+1) ∝ 𝑀𝑁ℓ. For field-free states, ⟨𝑀𝑁ℓ⟩ = 0, and

the molecule is unpolarized. In the presence of an electric field fully mixing parity doublets, the
Stark shifts are linear, and the eigenstates are diagonal in the the decoupled basis |ℓ;𝑀𝑁 , 𝑀𝑆⟩. In
this regime, the levels split into 2𝑁 + 1 dipole moment orientations pointing along 𝑀𝑁 ℓ

𝑁 (𝑁+1) , and
splittings within each orientation manifold are due to the spin-rotation interaction.

4.2.3.3 Perturbations and Quantum Interference

Since the �̃� state has been previously fully characterized [264], the assignment of energy levels in
�̃� (010) is fairly straightforward using the effective Hamiltonian approach. However, because this
transition is nominally forbidden, interpreting the line intensities is a challenge. Electric dipole
(E1) transitions involving Δℓ ≠ 0 are forbidden in the Condon approximation, which separates
electronic and vibrational degrees of freedom [135, 295]. These nominally forbidden vibronic
transitions have been observed spectroscopically in many species of linear triatomic molecules,
including NCO [296], NCS [297], MgNC [298], CaOH [147, 299, 300], SrOH [294, 301, 302],
and YbOH [217], though modeling of the intensities is less common.

4As always, we use �̂�, 𝑌 , �̂� to denote lab-frame axes and 𝑥, �̂�, 𝑧 to denote the molecule-frame. The molecule 𝑧 axis
and dipole moment 𝐷mol both point from O to Yb.
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These transitions borrow intensity from E1-allowed bands through a combination of vibronic
and spin-orbit perturbations [143, 144]. Branching ratios involving forbidden vibronic transitions
in YbOH were measured in a previous study [144] examining dispersed fluorescence from the
�̃�(000) state, with resolution at the 10−5 level. The experimentally observed vibrational branching
was in good agreement with a theoretical study published in the same work [144]. While these
transitions are of interest as leakage channels for photon cycling, they can also be a resource for
spectroscopy, as we show in the current work.

The observed spectrum exhibits anomalous rotational line intensities, with certain transitions
completely missing at our level of sensitivity. For example, despite their expected thermal occupa-
tion (𝑁′′ ≤ 3), the 𝑃𝑄+12(1),

𝑃𝑃+11(2),
𝑄𝑄+11(2),

𝑃𝑃−11(3),
𝑄𝑃−11(3), and 𝑄𝑅−12(3) lines are missing

(see Appendix C for a full list of lines). Anomalous line intensities for forbidden transitions have
been previously observed in other molecules with vibronic mixing [147, 294, 298, 300, 301]. By
considering the intensity-borrowing that gives transition strength to these forbidden transitions, we
develop a model that qualitatively explains the observed line strengths.

In an E1 transition, the transition strength is proportional to the square of the transition dipole
moment between the ground and excited state, |⟨�̃�|𝑇1

𝑝 (𝑑) | �̃�⟩|2. We are using spherical tensor
notation, where 𝑝 denotes the component of the spherical tensor in the lab-frame and 𝑞 in the
molecule-frame. Using a Wigner D matrix, we can write the lab frame dipole moment in terms
of its molecule frame projections: 𝑇1

𝑝 (𝑑) =
∑
𝑞D

(1)
𝑝,𝑞 (𝜔)∗𝑇1

𝑞 (𝑑). In the E1 approximation, ΔΣ = 0,
and the molecule-frame projection 𝑞 of the transition dipole moment determines the selection rule
for Λ. The perpendicular 𝑞 = ±1 components drive ΔΛ = ±1 transitions, for example the allowed
�̃� − �̃� band, while parallel 𝑞 = 0 component drives ΔΛ = 0, for example the allowed �̃� − �̃� band.

In the limit of very large vibronic interaction, Λ and ℓ are fully mixed, and one might consider
the �̃� (010) → �̃�(000) transition as a vibronic 2Π − 2Π parallel band, with Δ𝐾 = 0. In reality, the
vibronic mixing is perturbative in the ground and excited states, and Λ and ℓ are well-defined. As
a result, the observed line intensities are completely inconsistent with a solely parallel transition
model.

Instead, we model the �̃� (010) → �̃�(000) transition as a mixture of perpendicular and parallel
bands. We consider the effects of vibronic perturbations with the selection rule Δℓ = ±1, which can
result in intensity borrowing. At first order, we have the dipolar Renner-Teller (RT) Hamiltonian,
also referred to as Herzberg-Teller coupling [129, 151, 296],

𝐻𝑅𝑇 =
𝑉11

2

(
𝐿+𝑞−𝑒

𝑖(𝜃−𝜙) + 𝐿−𝑞+𝑒−𝑖(𝜃−𝜙)
)
. (4.8)

This interaction is a form of linear vibronic coupling [303]. Here,𝑉11 parameterizes the interaction
strength, 𝜃 is the electronic azimuthal coordinate, 𝜙 is the bending azimuthal coordinate as before,
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Figure 4.7: Level schematic for relevant states and perturbations in YbOH. Levels are labeled by
their vibronic term symbol. We detect the �̃� (010) bending state (which is a vibronic 2Π state)
by laser excitation (orange line) up to the �̃�2Π1/2(000) state and observe the fluorescence from
decays to the ground �̃� (000) state (yellow wavy line). This excitation is a forbidden E1 transition,
however, it acquires intensity by mixing of the excited �̃�2Π1/2(000) state with other |ℓ | = 1 states.
Mixing with �̃�(010) occurs via first-order (blue) Renner-Teller (RT) interactions, and mixing with
the 𝜇, 𝜅(010) states occurs via second-order (purple) cross terms between RT and spin-orbit (SO)
(red) interactions. Not shown for simplicity are similar SO interactions between �̃�2Π1/2(000) and
�̃�(000) and similar RT interactions between 𝜇, 𝜅(010) and �̃�(000), which also contribute to state
mixing.

𝐿± is a raising/lowering operator with ΔΛ = ±1, and 𝑞± is a dimensionless raising/lowering
operator with Δℓ = ±1. Physically, this interaction can be interpreted as the electrostatic interaction
between the displaced bending dipole moment and the electron cloud. The interaction preserves
the composite projection number 𝐾 = Λ + ℓ.

At second order, the dipolar RT Hamiltonian can combine with the perpendicular spin-orbit
Hamiltonian,

𝐻𝑆𝑂 =
𝐴⊥
2
(𝐿+𝑆− + 𝐿−𝑆+) (4.9)

where 𝐿± is defined as before, 𝐴⊥ is the off-diagonal spin-orbit coupling, and 𝑆± is the rais-
ing/lowering operator with ΔΣ = ±1. The combination of 𝐻 (1)

𝑅𝑇
× 𝐻⊥

𝑆𝑂
is an effective interaction

with terms 𝑞±𝑆∓. This interaction has Δ𝐾 = −ΔΣ = ±1, but preserves the total angular momentum
projection number 𝑃 = Λ + Σ + ℓ.
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Denote the unperturbed excited state as | �̃�2Π1/2(000)⟩0 and the true, perturbed eigenstate as
| �̃�2Π1/2(000)⟩. We can then expand the perturbed eigenstate in terms of dominant ℓ = 1 vibronic
contributions [143, 144]:

| �̃�2Π1/2(000)⟩ ∝
| �̃�2Π1/2(000)⟩0 + 𝑐𝜇 |𝜇2Σ

(+)
1/2(010)⟩0 + 𝑐𝜅 |𝜅2Σ

(−)
1/2 (010)⟩0 + 𝑐𝐵 |�̃�2Π(010)⟩0.

(4.10)

The perturbative coefficients 𝑐𝜇, 𝑐𝜅, 𝑐𝐵 represent the relative admixture of the intensity-borrowing
states. The relevant states and perturbations are shown schematically in Fig. 4.7. The 𝜇2Σ

(+)
1/2 state

is the 𝑃 = 1/2 component of the Ω = 1/2, 𝑣2 = 1, �̃� manifold, and the 𝜅2Σ
(−)
1/2 state is the 𝑃 = 1/2

component in the Ω = 3/2, 𝑣2 = 1, �̃� manifold. These two states are connected to �̃�2Π1/2(000) by
the second-order perturbation 𝐻𝑅𝑇 × 𝐻𝑆𝑂 . The �̃�2Π vibronic state is the 𝑣2 = 1 component of the
�̃�2Σ+1/2 electronic state, and is connected to �̃�2Π1/2(000) state via the first-order perturbation 𝐻𝑅𝑇 .

Each of these perturbing states contribute to different molecule-frame components of the
transition dipole moment (TDM). For example, the transition �̃�2Π → �̃�2Π is generated by the
𝑞 = 0, 𝑧 component of the TDM, with Δ𝐾 = Δ𝑃 = 0. The other transitions to 𝜇 and 𝜅 have
Π → Σ vibronic character, and couple via the 𝑞 = ±1, 𝑥, 𝑦 TDM components. The perturbing
𝜇 and 𝜅 states have opposite spin orientation compared to the original �̃�2Π1/2 state. This means
the intensity-borrowing states have mixed spin projection Σ, and the ΔΣ = 0 selection rule is not
well-defined.

The transition was modeled by first diagonalizing the �̃�2Π1/2(000) and �̃�2Σ(010) states sep-
arately to obtain the level positions of both states. The eigenstates of �̃� (010) are best described
by Hund’s case (b) wavefunctions, while the eigenstates of �̃� are described by Hund’s case (a)
wavefunctions. To calculate transitions, we convert between the two cases using the following
formula from Brown [160]:

|𝑁, 𝐾, 𝑆, 𝐽, 𝑀⟩ =
∑︁
Σ,𝑃

(−1)𝑁−𝑆+𝑃
√

2𝑁 + 1

(
𝐽 𝑆 𝑁

𝑃 −Σ −𝐾

)
|𝑆, Σ; 𝐽, 𝑃, 𝑀⟩. (4.11)

Here, 𝑃 = Λ + Σ + ℓ, and 𝐾 = Λ + ℓ. Note this form is equivalent to that given by Hirota in Ref.
[129].

Next, to evaluate the TDM, we perform a change of basis to transform the �̃�2Π1/2(000) effective
Hamiltonian eigenvectors into eigenvectors of the admixed states with |ℓ | = 1. The change of basis
from must use appropriate selection rules for vibronic mixing and preserve parity. The states of
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interest with |ℓ | = 1 are �̃�𝜇2Σ
(+)
1/2(010), �̃�𝜅2Σ

(−)
1/2 (010), and �̃�2Π(010), where we are using vibronic

term symbols 2𝑆+1𝐾𝑃. Each eigenvector of �̃�(000) is transformed into a linear combination of
eigenvectors from the admixed states, with amplitudes 𝑐𝜇, 𝑐𝜅, 𝑐𝐵.

The mixing between �̃�2Π1/2(000) and �̃�2Π(010) occurs at first order due to 𝐻𝑅𝑇 . Since this
interaction preserves 𝐾 and 𝑃, it simply exchanges one quanta between ℓ andΛ. Since �̃�2Π1/2(000)
has 𝑃 = 1/2, we only consider mixing other 𝑃 = 1/2 states. We perform the following change of
basis:

⟨�̃�(010),Λ = 0, ℓ, Σ, 𝑃 | �̃�(000),Λ′, ℓ′ = 0, Σ′, 𝑃′ = ±1/2⟩
= 𝛿ℓ,Λ′𝛿𝑃,𝑃′𝛿Σ,Σ′ (−1)𝑃−1/2 (4.12)

Note the phase factor (−1)𝑃−1/2 is explicitly included to preserve parity5. This factor accounts for
the extra (−1)ℓ phase factor in the parity of an ℓ ≠ 0 state compared to an ℓ = 0 state. This basis
transformation can be succinctly represented in the space of a single 𝐽 state and ±𝑃 states as being
proportional to the Pauli matrix 𝜎𝑧.

The admixture of the 𝜇 and 𝜅 states occurs via a second-order combination of 𝐻𝑅𝑇 and 𝐻𝑆𝑂 .
These interactions preserve 𝑃 but can change 𝐾 . For 𝜇(010) we obtain the following change of
basis:

⟨𝜇(010),Λ, ℓ, Σ, 𝑃 | �̃�(000),Λ′, ℓ′ = 0, Σ′, 𝑃′ = ±1/2⟩
= 𝛿Λ,−Λ′𝛿ℓ,Λ′𝛿Σ,−Σ′ (−1)𝑃−1/2 (4.13)

And for 𝜅(010):

⟨𝜅(010),Λ, ℓ, Σ, 𝑃 | �̃�(000),Λ′, ℓ′ = 0, Σ′, 𝑃′ = ±1/2⟩
= 𝛿Λ,Λ′𝛿ℓ,−Λ′𝛿Σ,−Σ′ (−1)𝑃−1/2.

(4.14)

We note that all of these change of basis formulae can be derived from the Hamiltonian if we
write the Herztberg-Teller interaction as ∝ sin (𝜃 − 𝜙). Instead of using imaginary numbers, we
have instead opted to encode the hermitian conjugate’s sign flip by hand to preserve the state parity.

The total TDM is the sum over the individual TDMs evaluated between �̃� (010) and the
intensity-borrowing states. The transition dipole moment (TDM) matrix element is evaluated in

5This factor is only valid for 𝑃 = 1/2.
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Hund’s case (a):

⟨ℓ;Λ; 𝑆, Σ; 𝐽, 𝑃, 𝑀 |𝑇1
𝑝 (𝑑) |ℓ′;Λ′; 𝑆, Σ′; 𝐽′, 𝑃′, 𝑀′⟩

= 𝛿Σ,Σ′𝛿ℓ,ℓ′

× (−1)𝐽−𝑀
(

𝐽 1 𝐽′

−𝑀 𝑝 𝑀′

)
×

√︁
(2𝐽 + 1) (2𝐽′ + 1) (−1)𝐽−𝑀

×
∑︁
𝑞

(
𝐽 1 𝐽′

−𝑃 𝑞 𝑃′

)
𝛿Λ,Λ′+𝑞

× ⟨Λ| |𝑇1
𝑞 (𝑑) | |Λ′⟩.

(4.15)

The last term is the reduced matrix element encoding the transition dipole integral between two
electronic states. The Δℓ = 0 selection rule is explicit in the above matrix element. This means
we can only drive �̃� (010) to admixtures in �̃�(000) with |ℓ | = 1. These admixed states provide the
transition intensity and non-zero transition dipole moment. To obtain the transition intensity, the
TDM is squared after the sum, allowing TDMs from different states to interfere with each other.
This interference is the source of the anomalous line intensities.

After changing basis to states with |ℓ | = 1, we compute the transition dipole matrix element
using equation 4.15. The transition amplitudes for the different state admixtures are added together,
and the resulting interference depends on the mixing coefficients 𝑐𝜇, 𝑐𝜅, 𝑐𝐵. Finally, to obtain
relative intensities, we square the total transition amplitude.

The mixing coefficients, 𝑐𝜇, 𝑐𝜅, 𝑐𝐵 could not be modeled with a deperturbation Hamiltonian,
since neither the 𝜇, 𝜅, or �̃� state have been extensively studied or modeled, and both states are
expected to be affected by perturbations from nearby states with 4f 136s2 Yb character [291]. Instead,
the mixing coefficients are kept as free parameters and their ratios were fit to the experimentally
observed, relative field-free intensities. For the intensity fits, the rotational temperature is fixed at
𝑇 = 2 K (the molecule beam is cooled by expansion out of the cell aperture), and since only relative
intensities were fit, the 𝑐𝐵 parameter is held fixed. The normalized best fit mixing coefficients
are found to be (𝑐𝜇, 𝑐𝜅, 𝑐𝐵) = (0.28,−0.49, 0.83). This implies ∼69% of the ℓ = 1 character in
�̃�2Π1/2(000) arises from mixing with �̃�(010), ∼24% from 𝜅(010), and ∼7% from 𝜇(010). This
is in good agreement with recent theory work on intensity borrowing in YbOH, which attributed
70% of the intensity borrowing to mixing with �̃�(010) [144]. However, it is important to note that
due to interference effects, relative amplitudes of the coefficients, not their squares, are important
for determining rotational line intensities.

We find that using these parameters to model the transition provides good qualitative under-
standing of the observed spectrum, as evidenced by the theory and experiment comparison in Figure
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4.3. Further studies of the excited state perturbations would be required to improve the fit; however,
as the exact intensities are not critical for future experiments with this molecule, this model is
sufficient to provide physical understanding of the intensities and behavior of this transition.

4.2.4 Summary
In this work, we performed high-resolution optical spectroscopy on the rovibrationally for-

bidden �̃�2Σ+(010) → �̃�2Π1/2(000) transition of 174YbOH. In total, we observed 39 transitions
out of low rotational states with 𝑁′′ ≤ 5. The �̃� (010) structure is well-described by a Hund’s
case (b) 2Π effective Hamiltonian, and the ℓ-type parity doubling is described by two constants,
𝑞ℓ = −12.0(2) MHz and 𝑝ℓ = −11(1) MHz. We modeled the anomalous line intensities of the
forbidden band with mixing coefficients representing vibronic perturbations in the excited state.
The anomalous intensities arise from quantum interference between TDMs from the perturbing
�̃�(010), 𝜇(010), and 𝜅(010) states. From the Zeeman spectra, we found the magnetic tuning of
�̃� (010) is consistent with an effective isotropic electron spin g-factor, 𝑔𝑆 = 2.07(2). From the
Stark spectra, we extracted the molecule-frame dipole moment of 2.16(1) D. These values are in
good agreement with the parameters of the �̃� state.

In our study, the hyperfine structure and higher-order Zeeman g-factors were unresolved. Our
work provides a basis for future studies with narrow-linewidth methods, such as RF, microwave,
and two-photon spectroscopy, to precisely determine these properties.

This work is an essential step towards measurements of CP-violating physics in YbOH [17], as
well as other metal hydroxide molecules proposed for CP violation and parity violation searches
that utilize the parity doublets in the bending mode. We showed the �̃� (010) state ℓ-doubling
offers spectroscopically resolvable states of molecule polarization pointing along, against, and
perpendicular to the applied electric field, over a wide range of field values. This orientation
control over the dipole moment offers robust systematic error rejection without compromising laser
cooling. The combination of these features make linear polyatomics a promising platform for
new physics searches. With our measured data, we can compute the EDM sensitivity, which is
proportional to the electron spin projection on the internuclear axis, Σ. We find a local maximum
value of ⟨Σ⟩ = 0.40 in the 𝑁 = 1, 𝐽 = 1

2
+ state at 𝐸 = 101 V/cm, similar to what was predicted

in prior theoretical work [117, 139]. Furthermore, understanding the structure of 174YbOH is
a step toward characterizing the more complicated structure of the odd isotopologues 171YbOH
and 173YbOH, which have sensitivity to parity violation [304] and hadronic CP violation [57],
respectively.

Lastly, our determination of the �̃� (010) location and structure is crucial for understanding the
complicated excited state structure in YbOH. For example, with our knowledge of the bending
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frequency, we can tentatively assign the unknown [17.33] band in Ref. [217] to the �̃�2Σ+(010) →
�̃�2Π1/2(010) band. This would put the excited �̃�2Π1/2(010)manifold at approximately 17652 cm−1.
This state is an excellent candidate for optically pumping population from �̃� into �̃� (010), an
important step for signal-to-noise-ratio improvements in precision measurements using the bending
mode. Furthermore, the location of �̃� (010) is necessary for the determination of repumping
pathways for laser cooling, slowing, and trapping of YbOH, toward next-generation CP violation
searches.

4.3 The Bending Excited State
4.3.1 Introduction

With the ground state bending mode characterized, we moved on to finding optical pumping
pathways to further populate the state and perform coherent manipulations. Since YbOH has fairly
diagonal FCFs, the majority of spontaneous decays conserve the vibrational state, i.e., ∼90% of
decays satisfy Δ𝑣1,2,3 = 0. This makes the bending states of the �̃�2Π1/2 manifold ideal for optical
pumping from �̃� (000) into the ground bending state, �̃� (010). In related fashion, the bend-to-
bend transitions will have strong optical TDMs, greatly aiding our �̃� (010) state preparation and
readout efforts in Ch. 5 Sec. 5.3. In particular, we are interested in the Ω = 1/2 excited states
with 𝑣2 = 1, |ℓ | = 1. We will often abbreviate the label �̃�2Π1/2(010) to just �̃�(010), with the
understanding that we are not discussing the |Ω| = 3/2 states.

The interactions of orbital electronic angular momentum 𝐿 with vibrational angular momentum
ℓ, known as Renner-Teller [170] (RT) or vibronic interactions, are the subject of many experimental
and theoretical works. As the molecule bends, Λ can deviate from integer values, though in practice
we set |Λ| = 1 and consider RT effects as perturbative corrections. RT interactions are discussed
in various molecular physics textbooks, including: Herzberg [295, 305], Hirota [129], Bunker and
Jensen [140], Demotroder [135], and Duxbury [306], to name a few. Additionally, Ref. [307]
provides an excellent historical review on the Renner-Teller effect.

For experimentalists working with effective Hamiltonians, we will provide an overview of
useful references here. First, Ref. [151] by Brown provides both a pedagogical overview and a
concise summary of the relevant information. Brown originally derived the effective Hamiltonian
for RT effects in Ref. [156], and added centrifugal effects in Ref [159]. Brown and Jørgenson
provide a detailed discussion of the RT effect in Ref. [173], including a comparison of multiple
approaches to the problem. Jungen and Merer also provide extensive discussion in Ref. [308],
where they model RT effects with both linear and bent molecule limits. Anharmonic effects are
considered in Refs. [309] and [172].

For theorists performing first principles calculations, vibronic coupling refers to derivative
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couplings in the Hamiltonian, 𝜕𝐻𝑒/𝜕𝑞, where 𝑞 is a normal vibrational coordinate, and 𝐻𝑒 is the
electronic Hamiltonian [135]. This interaction is non-adiabatic, i.e., couples the electronic and
nuclear degrees of freedom, and is neglected under the Born-Oppenheimer approximation. For
calculations with vibronic coupling, theorists use quasi-adiabatic states and the KDC Hamiltonian,
first presented in Ref. [303]. This formalism was used in Ref. [144] to perform first principles
vibronic calculations for M-OH molecules and obtain predictions for vibrational branching ratios.
Furthermore, we also note the theory work of Refs. [310, 311], where the authors derive a vibronic
spin-orbit term that can couple ℓ and 𝛴, in other words mixing Ω = 1/2 and Ω = 3/2. They
argue this effect is most prominent in when spin-orbit and vibrational splittings are approximately
equal, such as in the GeCH molecule [312]. In the effective Hamiltonian picture, this interaction is
referred to as a Sears resonance [312]. Since our |Ω| states are well separated in YbOH, we do not
concern ourselves with this interaction, but we mention it for completeness.

Often it is useful to consult papers where effective Hamiltonians were used to model experimen-
tal molecular spectra. RT effects have been studied in many molecules, and here we provide a brief
list of possibly useful references: CuCl2 [313], BS2 [314], BO2 [315], CO2 [316], CaOH [147, 317],
SrOH [301, 318], GeCH [312], SiCH [319], NCS [320], NCO [171, 321], NCN [169], CCN [168],
CaCCH [322], and HCCS [323]. Many of these papers provide effective Hamiltonians. In particu-
lar, while we focus on 𝑣2 = 1, we note Ref. [321] has effective Hamiltonians (written with analytic
matrix elements) for arbitrary 𝑣2. Meanwhile Ref. [312] “shows their work” when constructing the
effective Hamiltonian, which can be instructive.

In the 𝑣2 = 1 manifold, RT interactions coupleΛ and ℓ together to form the composite projection
𝐾 = Λ + ℓ = ®𝑁 · �̂�. If we add spin-orbit coupling, then it is useful to consider the total projection
𝑃 = Λ + ℓ + 𝛴 = ®𝐽 · �̂�. If we just consider interactions within the 𝑣2 = 1 manifold, then 𝑃 is a good
quantum number. However, we shall see that parity doubling interactions can mix both 𝐾 and 𝑃
values. This makes sense, as parity doubling in the effective Hamiltonian actually encodes off-
diagonal interactions with other vibrational or electronic manifolds, which generally have different
projection quantum numbers.

In Figure 4.8, we provide a schematic diagram of the energy levels of a 𝑆 = 1/2, |Λ| = 1
electronic state in both 𝑣2 = 0 and 𝑣2 = 1 vibrational states. We label states with vibronic term
symbol notation, 2𝑆+1𝐾𝑃, with 𝐾 = Σ,Π,Δ,Φ, . . .. The spin-orbit interaction strength is given
by 𝐴, and the RT interaction is parameterized by the constant 𝜖 . The behavior of the 𝑣2 = 0
manifold is familiar to us from the �̃�(000) state. Meanwhile, in the 𝑣2 = 1 manifold, with just
Renner-Teller coupling active, we obtain three vibronic states: 2Σ+, 2Σ−, and 2Δ. Here, the Σ±

label distinguishes 𝐾 = 0 states obtained by a symmetric (+) or anti-symmetric (−) combination
of states with Λ = −ℓ. Adding spin-orbit causes the 2Δ state to split into Ω = 1/2, 𝑃 = 3/2 and
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Figure 4.8: Level diagram showing the splittings of a 2Π electronic state in 𝑣2 = 0, 1 vibrational
states. We label states with vibronic term symbol notation, 2𝑆+1𝐾𝑃. The spin-orbit strength is 𝐴,
and the Renner-Teller (RT) interaction is given by 𝜖 . Dotted lines show the correlation of states
as spin-orbit and RT interactions are turned on and off. We choose to show 𝜖 < 0 and 𝐴 > 0 to
match the sign of these parameters in the M-OH molecules we consider. Diagram adapted from
Ref. [295]. Thanks to Jane Panangaden for helping make the diagram.

Ω = 3/2, 𝑃 = 5/2 components. Spin-orbit also mixes the Σ± states, causing them to transition from
case (b) to case (a) such that the ± label is no longer appropriate. Instead, these states are denoted
as 𝜇2Σ

(+)
1/2 and 𝜅2Σ

(−)
1/2, though often we will drop the (±) superscript. We note Fig. 4.8 is drawn for

𝜖 < 0, which is the case for M-OH molecules. This sign causes the 2Σ+ state to be lower in energy
than 2Σ−. For 𝜖 > 0, the energy ordering of the 2Σ± states is reversed.

4.3.2 Modeling Renner-Teller Effects
We will model the states using the Hund’s case (a), parity-symmetrized basis:���Λ; 𝑣2, ℓ; 𝑆, Σ; 𝐽, 𝑃, 𝑀,P = ±

〉
=

1
√

2

(���Λ; ℓ;Σ; 𝐽, 𝑃, 𝑀
〉
± (−1)𝑝𝑎

��� − Λ;−ℓ;−Σ; 𝐽,−𝑃, 𝑀
〉)
.

(4.16)

Here, P = ± refers to positive/negative parity, and the Hund’s case (a) parity phase factor is given
by 𝑝𝑎 = 𝐽 − 𝑆 − ℓ, in accordance with the phase conventions of Hirota [129] and Brown [151, 159].
This phase factor has consequences the matrix elements that raise or lower ℓ, and therefore parity
doubling parameters.
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Since we have three projections (ΛℓΣ) and each projection can take on two oppositely signed
values, we will have to deal with 8 levels. To stay consistent, we will write states using a rule where
the first state in superposition of eq. 4.16 has Λ = 1. Then we can write all the other quantum
numbers if we know the 𝐾 value of the state. For example, the |Ω| = 1/2 states are written as:���2Δ3/2,P = ±

〉
=

1
√

2

(���Λ = 1; ℓ = 1;Σ = −1
2

; 𝑃 =
3
2

〉
± (−1)𝑝𝑎

���Λ = −1; ℓ = −1;Σ =
1
2

; 𝑃 = −3
2

〉) (4.17)

���𝜇2Σ−1/2,P = ±
〉
=

1
√

2

(���Λ = 1; ℓ = −1;Σ = −1
2

; 𝑃 = −1
2

〉
± (−1)𝑝𝑎

���Λ = −1; ℓ = 1;Σ =
1
2

; 𝑃 =
1
2

〉)
.

(4.18)

Here, we have explicitly written the 𝜇 state as 2Σ−1/2. This notation makes it clear the (−1)𝑝𝑎 phase
factor is on the 𝑃 > 0 ket, unlike the case in 2Δ when (−1)𝑝𝑎 multiplies the 𝑃 < 0 ket.

For completeness, we mention that our method of writing states needs modification if we
consider other 𝑣2 states. For 𝑣2 = 1, the |𝐾 | > 0 states all have |𝐾 | = |ℓ | + |Λ|. In the literature,
these states are referred to as “unique” states [151]. However, if we were to consider higher 𝑣2,
for example 𝑣2 = 3, we could have states with |𝐾 | > 0 that are written |𝐾 | = |ℓ | − |Λ|. In such
a case, thinking again in the example of 𝑣2 = 3, we have two ways of writing |𝐾 | = 2, one as
|ℓ2 | − |Λ| with |ℓ2 | = 3, and the other as |ℓ1 | + |Λ| with |ℓ1 | = 1. To distinguish these two states in
general, we can modify our rule to write ℓ1 states with Λ = 1 in the first ket of the superposition
(the one not multiplied by the parity phase), and write the ℓ2 states with Λ = −1 as the first ket in
the superposition.

As stated earlier, the effective Hamiltonian for the Renner-Teller effect was first derived by
Brown in 1977 [156], and subsequently refined upon in later contemporary works [151, 159] that
provide comprehensive summaries. The Renner-Teller interaction contributes the following terms
to the effective Hamiltonian:

𝐻𝑅𝑇 =
1
2
𝜖𝜔2

(
𝑞2
+𝑒
−2𝑖𝜃 + 𝑞2

−𝑒
2𝑖𝜃

)
+ 𝑔𝐾 (𝐺𝑧 + 𝐿𝑧)𝐿𝑧 +

1
2
𝜖𝜔2,𝐷

(
𝑞2
+𝑒
−2𝑖𝜃 + 𝑞2

−𝑒
2𝑖𝜃

)
®𝑁2 (4.19)

Here, 𝜃 is the electronic azimuthal coordinate, and 𝑞± are dimensionless raising and lowering oper-
ators for the vibrational angular momentum𝐺, with matrix elements available in the literature [129,
143, 151, 173]. The term 𝜖𝜔2 is the Renner-Teller coupling term derived originally by Renner [170],
𝑔𝐾 is a correction derived by Brown [156] that encodes the change in Λ caused by bending-induced
mixing with other electronic states, and 𝜖𝜔2,𝐷 is the centrifugal correction to the Renner-Teller
interaction [159], which we do not consider further but have included for completeness.
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The 𝜖𝜔2 term in 𝐻𝑅𝑇 has the following selection rules: ΔΛ = −Δℓ = ±2,Δ𝑣2 = 0,±2,Δ𝐾 =

0,ΔΣ = 0,Δ𝑃 = 0. From these selection rules, it is clear that for a 2Π(010) state, the RT interaction
within a 𝑣2 manifold only has non-zero off-diagonal matrix elements among the 𝐾 = 0 states. There
will be matrix elements connecting to other vibrational states, and these can be taken into account
using perturbation theory for |𝜖 | ≪ 1 (i.e., in the harmonic approximation, anharmonic correcitons
are discussed elsewhere [309]). Refs. [151, 156, 312] discuss effective Hamiltonian perturbation
theory for RT effects in detail.

The main parameters that define our vibronic state are the spin-orbit splitting 𝐴, harmonic bend-
ing energy 𝜔2, and Renner-Teller parameter 𝜖 . For YbOH, we are interested in the regime when
𝐴 ≫ |𝜖𝜔2 |. This is the case for certain triatomic molecules studied in the literature–CaOH [147],
SrOH [301], GeCH [312], CuCl2 [313], OCS+ [324], BrCN+ [325–329], and ICN+ [330, 331]. In
these molecules, the vibronic states are split by the Renner-Teller interaction and grouped by com-
mon values of |Ω|. In particular, both BrCN+ and ICN+ additionally satisfy 𝐴 > 𝜔2, which means
spin-orbit effects must be considered at zeroth order in the derivation of the effective Hamiltonian,
when considering off-diagonal vibrational perturbations. The two |Ω| groups essentially become
separate electronic states, and the vibronic states are pushed together and heavily mixed by the
parity-doubling interactions, with 𝐾 no longer a good quantum number.

We can gain further insight by considering an effective Hamiltonian matrix derived by
Brown and coworkers considering spin-orbit at zeroth order, explicitly presented in analytic form
Refs. [313] and [151]. The same effective Hamiltonian is presented in operator form in Refs. [168,
169]. We note that Ref. [313], ± refers to 𝑒/ 𝑓 parity [332], while in Ref. [151], ± refers to overall
parity. As an aside, for perturbative spin-orbit, analytic formulae are given in Ref. [315]. We repro-
duce the effective Hamiltonian matrix for strong spin-orbit below in Table 4.2, correcting for minor
typos, but dropping all centrifugal distortion terms for convenience. For the origin, we replace 2𝜔
with 𝑇0 + 𝜔, where 𝑇0 is the origin of the �̃�(000) manifold, including zero-point harmonic energy.
The Hamiltonian is block diagonal in 𝐽 in the absence of hyperfine effects. Because no state can
exist with |𝑃 | > 𝐽, the Hamiltonian is 2x2 for 𝐽 = 1/2, 3x3 for 𝐽 = 3/2, and 4x4 for 𝐽 ≥ 5/2.

We now discuss the matrix elements. As expected, the diagonal energies receive dominant
contributions from spin-orbit 𝐴, and the 𝑔𝐾 term offsets the origin of the 2Δ states. The terms
with 2𝜔 ± 𝐴 in the denominator contribute to the Δ and Σ splittings within each |Ω| manifold. To
estimate this splitting, we first note that we expect YbOH to have similar vibronic coupling strength
to CaOH [144], providing an estimate of 𝜖 ∼ −0.1. The value of 𝑔𝐾 is harder to approximate, as it
encodes mixings with distant Δ and Σ electronic states that occur as the molecule bends. In CaOH,
𝑔𝐾 ≈ 0.5 cm−1 [147], but in other molecules with nearby perturbers, it has been observed to be
larger, 𝑔𝐾 ∼ 10 cm−1 [312, 319]. It is likely the 𝑔𝐾 value of YbOH is influenced by mixing with
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(2𝑆+1)𝐾𝑃

Λ, ℓ, Σ,±

2Δ5/2
1, 1, 1/2

2Δ3/2
1, 1,−1/2

𝜅2Σ1/2
1,−1, 1/2

𝜇2Σ−1/2
1,−1,−1/2

2Δ5/2
1, 1, 1/2

𝑇0 + 𝜔 + 2𝑔𝐾

− 3(𝜖𝜔)2
2(2𝜔 − 𝐴)

+ 𝐴
2
+ 𝐵(𝑧 − 4)

−(𝑧 − 3) 1
2𝐵∗ −𝑞𝐺

2
(𝑧2 − 𝑧) 1

2
±(−1)𝑝𝑎 𝑞𝑒

2
×(𝑧2 − 3𝑧) 1

2

2Δ3/2
1, 1,−1/2

𝑇0 + 𝜔 + 2𝑔𝐾

− 3(𝜖𝜔)2
2(2𝜔 + 𝐴)

− 𝐴
2
− 𝛾 + 𝐵𝑧

± (−1)𝑝 𝑞𝑒
2

× (𝑧2 + 𝑧) 1
2

+ 𝑝𝐺 + 2𝑞𝐺
2

𝑧
1
2

∓ (−1)𝑝

× 𝑝𝑒 + 2𝑞𝑒
2

𝑧
1
2

− 𝑞𝐺
2
(𝑧2 + 𝑧) 1

2

𝜅2Σ1/2
1,−1, 1/2

𝑇0 + 𝜔

− (𝜖𝜔)2
2(2𝜔 − 𝐴)

+ 𝐴
2
+ 𝐵(𝑧 + 2)

− (𝑧 + 1)1/2𝐵∗

∓ (−1)𝑝𝜖corr𝜔

𝜇2Σ−1/2
1,−1,−1/2

𝑇0 + 𝜔

− (𝜖𝜔)2
2(2𝜔 + 𝐴)

− 𝐴
2
− 𝛾

+ 𝐵(𝑧 + 2)

Table 4.2: The effective Hamiltonian within the �̃�(010) manifold. The matrix is symmetric about
the diagonal. For 𝐽 = 1/2, the matrix is only the bottom right 2x2 block and for 𝐽 = 3/2, only
the bottom right 3x3 block. The upper/lower signs refer to ± overall parity. The parity phase is
𝑝 = 𝐽 − 𝑆 − ℓ. For brevity we write: 𝑧 = (𝐽 + 1/2)2 − 1 = 𝐽 (𝐽 + 1) − 3/4; 𝐵∗ = 𝐵 − 𝛾/2;
𝜔 = 𝜔2; and 𝜖corr = 𝜖

(
1 + (𝜖𝜔)

2

4
8𝜔2−6𝐴2

(4𝜔2−𝐴2)2

)
.

4 𝑓 states as well as the �̃�Σ+1/2 state. Nonetheless, by taking 𝑔𝐾 ∼ 0.5 cm−1 and 𝐴 ∼ 1350 cm−1, we
find that the splitting of vibronic states is approximated as 𝐸ΔΣ ∼ −10−2𝜖𝜔2 + 2𝑔𝐾 ≲ 1 cm−1 for
large spin-orbit coupling. However, when the Δ and Σ vibronic states are pushed so close together,
they will be mixed by any interaction that can couple them at the ∼ 0.01 − 1 cm−1 level, namely
rotation and parity-doubling/coriolis effects. We must therefore investigate the off diagonal entries
of 4.2.

The off-diagonal elements of the matrix encode interactions that can flip molecule frame
angular momentum projections, as discussed in Ch. 2, Sec. 2.2.3. When these interactions couple
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the two reversed projections (i.e., +Λ and −Λ) of a parity state, we obtain parity factors of (−1)𝑝

and factors of ∓ arising from the phase convention for matrix elements of the electronic angle 𝑒2𝑖𝜃 .
The term 𝐵∗ = 𝐵 − 𝛾/2 arises from the ®𝐽 · ®𝑆 spin-uncoupling terms from both the rotational and
spin-rotational Hamiltonians. The remaining terms of interest are all the 𝑝 and 𝑞 parity-doubling
terms, as well as the off-diagonal Renner-Teller coupling 𝜖corr𝜔2, which also has parity dependence.
Note, both references [151, 313] have minor typos in the expression for 𝜖corr, which is a sort of
spin-orbit correction the Renner-Teller parameter (analogous to the Renner-Teller correction to
spin-orbit in the perturbative spin-orbit treatment). The effect of this correction is minor, as for
large 𝐴, we have 𝜖corr ≈ 1.

The parity-doubling effects are grouped into purely rotational effects, represented by 𝑞𝐺 and
𝑞𝑒, and spin-orbit-rotational effects, represented by 𝑝𝐺 and 𝑝𝑒 in case (b) and the combination
𝑝 + 2𝑞 in case (a). All of these terms arise at second order in the effective Hamiltonian and involve
couplings to a different electronic state and back. In the limit of mixing with a unique perturber,
the Curl relations relate the scale of the two effects by 𝑞 ∼ 𝑝𝐵/𝐴 [167], noting that the 𝑝 effects are
dominant with large spin-orbit. For this reason, and because we focus on the |Ω| = 1/2 manifold,
we can neglect the 2Δ5/2 state, which is only coupled off-diagonally by 𝑞 terms.

All parity doubling Hamiltonians have Δ𝐽 = 0 selection rules. We are most interested in the
electronic doubling 𝐻Λ, given by:

𝐻Λ =
1
2
(𝑝𝑒 + 2𝑞𝑒)

(
𝐽+𝑆+𝑒

−2𝑖𝜃 + 𝐽−𝑆−𝑒2𝑖𝜃
)
− 𝑞𝑒

2

(
𝐽2
+𝑒
−2𝑖𝜃 + 𝐽2

−𝑒
2𝑖𝜃

)
= (𝑝𝑒 + 2𝑞𝑒)

∑︁
𝑞=±1

𝑒−2𝑖𝑞𝜃𝑇2
2𝑞 (𝐽, 𝑆) − 𝑞𝑒

∑︁
𝑞=±1

𝑒−2𝑖𝑞𝜃𝑇2
2𝑞 (𝐽, 𝐽)

(4.20)

where 𝑞 = ±1 subscripts are in the moelcule frame, 𝜃 is the azimuthal electronical angle, and the
second line is written with spherical tensor notation. Recall terms such as 𝑒±2𝑖𝜃 are raising/lowering
operators for the angular momentum 𝐿𝑧 = −𝑖 𝜕𝜕𝜃 . Further,𝐻Λ has the following selection rules [147]:
Δℓ = 0,ΔΛ = ±2,ΔΣ = 0,∓1, and Δ𝑃 = ±2,±1. We note the pairs of selection rules correspond
to the two different Λ-doubling interactions, purely rotational (𝐽2

+) and spin-orbit-rotational (𝐽+𝑆+).

The vibrational doubling Hamiltonian, 𝐻ℓ, can be obtained eq. 4.20 by making the following
replacements: 𝑝𝑒 → 𝑝𝐺 , 𝑞𝑒 → 𝑞𝐺 , 𝜃 → 𝜃. As a result, 𝐻ℓ has similar selection rules [147]:
Δℓ = ±2,ΔΛ = 0,ΔΣ = 0,∓1, and Δ𝑃 = ±2,±1. Once again, the pairs of selection rules refer to
the two different doubling interactions, 𝑞𝐺 and 𝑝𝐺 + 2𝑞𝐺 type6.

To be explicit, in this section, we use the phase conventions from Refs. [39, 151, 159, 168,
6We use the 𝐺 subscript to maintain consistency with Sec. 4.2, and with Refs. [151, 169, 333]. In Ref. [147], the

subscript 𝑣 is used instead.
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169]:

⟨Λ = ±1|𝑒±2𝑖𝜃 |Λ = ∓1⟩ = −1 (4.21)

⟨ℓ = ±1|𝑒±2𝑖𝜙 |ℓ = ∓1⟩ = 1. (4.22)

By examining the selection rules and Table 4.2, we see bothΛ-type and ℓ-type doubling can mix
the 2Σ and 2Δ states, in what is called a “𝐾-resonance” in the literature. 𝐾-resonances have been
observed previously in many of the molecules mentioned earlier in this section. These resonances
can manifest as level repulsion or even avoided-level crossings. The full 𝐾-resonance Hamiltonian,
𝐻𝐾 = 𝐻Λ + 𝐻ℓ, has many off-diagonal couplings, requiring full diagonalization of the effective
Hamiltonian.

We consider the scale of the parity splittings of levels in �̃�(010), which can provide information
on the degree of 𝐾-resonance present. An isolated |𝑃 | > 1 state, such as the 2Δ3/2 state, is expected
to have small parity splitting, as the doubling interactions we consider have Δ𝑃 = ±2,±1 selection
rules. Therefore, any parity interaction with |Δ𝑃 | > 2, which is required to connect 𝑃 and −𝑃 levels
with |𝑃 | > 1, must occur at second order in the effective Hamiltonian7 or higher. Incidentally, this
provides an intuitive understanding of why parity splittings are small in a spin-orbit split, electronic
2Π3/2 state (𝐸3/2± ≲ MHz). In such a case, the 𝑃 = 3/2 state must be connected to 𝑃 = −3/2 via
the 2Π1/2 state, and the coupling is mediated by 𝑞𝑒 and 𝐵. This provides an overall parity splitting
of Δ𝐸3/2± ∼ 𝑞𝑒𝐵/𝐴. We can compare this to the 𝑝𝑒 dominated parity splitting of the 𝑃 = 1/2 state
by recalling the approximate relation 𝑞𝑒 ∝ 𝑝𝑒𝐵/𝐴 [39]. Therefore, the Δ𝐸3/2± splitting is smaller
than the Δ𝐸1/2± splitting by a factor of 𝐵2/𝐴2 ≲ 10−7. By the same logic, if the vibronic 2Δ3/2 state
is isolated, its parity splitting is expected to be quite small, with relevant contributions to become
parity-dependence in other off-diagonal couplings, or in neglected higher order terms, such as the
centrifugal Renner-Teller correction [159].

The parity splitting of the 𝜇 and 𝜅 2Σ1/2 states also arises from off-diagonal terms, but is
expected to be larger than for the 2Δ states. Consider the case of 𝐽 = 1/2, when we only have the
2Σ − 1/2 states active in the model. The primary8 parity-dependent contribution arises from the
∓(−1)𝑝𝜖corr𝜔2 term mixing the two Σ states. Depending on the sign, 𝐵∗ ≈ 𝐵 adds constructively
or destructively. This provides a rough scale for the parity splitting:

Δ𝐸± ≈
(𝐵 + 𝜖𝜔2)2

𝐴
− (𝐵 − 𝜖𝜔2)2

𝐴

= 4
𝐵𝜖𝜔2

𝐴
.

(4.23)

7Note that effective Hamiltonian terms like 𝐻Λ or 𝐻ℓ are already themselves actually higher-order combinations
of other interactions in the full molecular Hamiltonian.

8There is explicit diagonal parity-dependence in the centrifugal distortion term 𝜖𝜔2𝐷 . This term is ∼ 10−3 cm−1

in CaOH, so we do not consider it further.
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For YbOH, this splitting is expected to be ∼ 700 MHz, which is spectrally resolvable, and results in
very different dc polarizability when compared to the case of <MHz splitting. Therefore the parity
splitting of the levels we observe can give us insight into the degree of mixing present between
different vibronic levels. Crucially, the 𝐽 = 1/2 Σ states cannot be mixed with Δ states, as the parity
couplings satisfy Δ𝐽 = 0 and the states must satisfy 𝐽 ≥ |𝐽 · �̂�| = |𝑃 |.

Since we are spin-orbit dominated, the 𝑝𝑒 + 2𝑞𝑒 electronic Λ doubling term is primarily
responsible for the 𝐾 mixing of the |Ω| = 1/2 manifold. This was the case in CaOH [147] and
SrOH [301], where the vibronic states are initially separated by ∼ 10 cm−1, and have an avoided
level crossing at higher 𝐽. However, in YbOH, the vibronic levels are expected to be much closer.
In the 𝑣2 = 0 state of YbOH, we have 𝑝𝑒+2𝑞𝑒 ≈ −0.44 cm−1 (−13 GHz), which is of the same order
of the Δ and Σ state splitting we estimated earlier. If the vibronic levels are right on top of each
other, they will be fully mixed for all 𝐽. Intuitively, we can think of this new state configuration as
having ⟨|𝐾 |⟩ ≈ 1. In such a case the energies look like that of a case (b) 2Π state, with both 𝑃 = 3/2
and 𝑃 = 1/2 components present. We can think of the combination of spin-orbit and rotational
effects, encapsulated in 𝐻Λ, as “quenching” the electronic angular momentum, resulting in only
the bending degree of freedom. This is similar in spirit to the case of asymmetric molecules, where
the electronic angular momentum can be smaller than its maximum possible projection due to
anisotropic spin-rotation and spin-orbit effects [123]. We will discuss K-resonances further when
we examine the energy level structure observed in the experiment.

4.3.3 Apparatus
The setup is similar to that described in Sec. 4.2.1, with an identical CBGB source. However,

the beamline now has two interaction regions, an upstream “pump” region, to deplete the ground
state, and a donwstream “probe” region, to probe the depletion. After the collimated molecule
beam exits the source, it enters the pump region: a 6-way KF50 cross, ∼40 cm downstream from
the cell aperture. There, the molecules encounter the pump beam, which travels transverse to
the molecule beam, is cylindrically shaped (∼1 × 3 mm), and is retroreflected with orthogonal
polarization. The fluorescence is monitored using a stack of collection optics mounted 125 mm
away from the molecules, outside the vacuum chamber.

After being pumped, molecules then travel further downstream to the probe region ∼60 cm
away from the cell. The region is a KF50 octagon, the same from Sec. 4.2.1. As described there,
the molecules first travel through a metal collimator plate before entering an interaction region
between two ITO-coated glass electrodes. We can also apply magnetic fields to this region using
coils mounted outside the vacuum chamber. The molecules in the interaction region encounter a
probe laser (∼1 mm diameter, single pass), and their fluorescence is collected with an in-vacuum
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Figure 4.9: Schematic diagram of the beamline used for pump probe experiments to study the
�̃� (000) → �̃�(010) transition. Upstream, the pump light is scanned. Downstream, the probe
light monitors a single rotational level in �̃� (000). If the pump laser hits a resonance, we will see
fluorescence in the pump region. Furthermore, if the pump addresses the same ground state as the
probe, then we will observe correlated loss of the probe fluorescence.

light pipe and an in-vacuum retroreflecting mirror.

In both regions, the collected fluorescence passes through optical filter stacks consisting of
both interference and colored glass filters, before arriving at a Hamamatsu H13543 PMT module.
The filters are setup to detect light off-diagonally, as there is too much on-diagonal light scatter.
In the pump region, the PMT photocurrent is amplified and low pass filtered with an SRS SR570
current preamplifier, while in the probe region, the photocurrent is amplified and low pass filtered
with a Pluto Instruments PCG-380F current preamplifier.

The setup was designed to look for correlated fluorescence. Typically, the upstream pump
beam is scanned, while the downstream probe is held fixed on a line of interest. Correlation of
increased upstream fluorescence with loss of downstream fluorescence indicates both transitions
share a common ground state.

4.3.4 Observations
We began by searching for the �̃�2Σ+ → �̃�2Π1/2(010) transition in the upstream pump region.

Depletion caused by the pump was probed downstream using the �̃�2Σ+ − �̃�2Π1/2(000) transition
at 577 nm and detecting the off diagonal fluorescence to (100) at 595 nm. The schematic setup is
shown in Figure 4.9.

Though the excited �̃�2Π1/2(010) state had not yet been assigned, we were able to estimate its
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location. Motivated by the similarity of the spectra for the [17.33] band and the origin band, we
assigned the [17.33] transition to �̃�2Σ+(010) → �̃�2Π1/2(010). This was previously assigned as
a transition out of �̃�2Σ+ [217]. With our reassignemnt, and using the origin of the �̃�2Σ+(010)
state determined in this work, we were able to estimate the location of the excited �̃�2Π1/2(010)
state to be ∼17652 cm−1. We used a Sirah MixTrain to generate the required 567 nm light,
and the fluorescence collection filters were chosen to detect off diagonal fluorescence at 577 nm,
corresponding to �̃�2Π1/2(010) ⇝ �̃�2Σ+(010) decays.

The first scan immediately found two strong lines near 17652.14 cm−1, shown in Figure 4.10.
These lines were split by ∼ 122 MHz, matching the 𝑁′′ = 1 spin-rotation splitting in �̃� (000). This
splitting provided strong evidence that we had observed transitions originating from the ground
state. This assignment was verified by observing depletion of the 𝑁′′ = 1 states of �̃� (000),
downstream in the probe region, only when the pump was on resonance. Note that depletion was
only observed after increasing power in the pump beam from ∼ 10 mW to ∼ 100 mW, indicative
of the forbidden nature of the non-bend to bend transition. A similar set of lines, split again by the
𝑁′′ = 1 spin-rotation splitting, were also found near 17651.37 cm−1, shown in Figure 4.10. Further
depletion tests confirmed these lines also originated from 𝑁′′ = 1 in �̃� .

Since the observed lines originate from 𝑁′′ = 1−, consisting of both a 𝐽′′ = 1/2− and 𝐽′′ = 3/2−

state, the excited state must be either 𝐽′ = 1/2+ or 𝐽′ = 3/2+, in accordance to the parity selection
rule and the Δ𝐽 = ±1, 0 selection rule9. To identify the excited state 𝐽 quantum number, we
searched for a 𝑃 line that could only arise from a 𝐽′′ = 5/2− → 𝐽′ = 3/2+ transition. Since the
levels of the �̃� state are well known, searching for this 𝑃 line is simply a matter of detuning the
pump laser by the energy difference between 𝑁′′ = 3, 𝐽′′ = 5/2− state and the 𝑁′′ = 1, 𝐽′′ = 3/2−

state.

To our surprise, we observed 𝑃 lines corresponding to both the excited state of the 17652.14
cm−1 lines and the excited state of the 17651.37 cm−1 lines. The ground state assignment of these
𝑃 lines was confirmed by observing depletion of an 𝑁′′ = 3, 𝐽′′ = 5/2− probe downstream. This
meant we had observed two 𝐽′ = 3/2+ excited states, separated by ∼23 GHz. The large energy
separation rules out the possibility that these two states arise from hyperfine mixing of 𝐽. Since
each vibronic state should only have one state with a given 𝐽 and parity, we arrived at the conclusion
that we had observed the 𝐽′ = 3/2+ components of two separate vibronic states, namely the 𝜇2Σ

(+)
1/2

and 2Δ3/2 states in the �̃�2Π1/2(010) manifold. Such an arrangement of 2Σ and 2Δ vibronic states,
separated by ≲ 1 cm−1, may arise in the context of large spin-orbit coupling and relatively weak
Renner-Teller coupling.

9We do not consider Δ𝐽 = ±2 transitions in the even isotopologues, as they would only receive strength from weak
mixing from the distant hydrogen hyperfine interaction. In the odd isotopologues, large hyperfine mixing from the Yb
nuclear spin makes the appropriate selection rule Δ𝐹 = ±1, 0.
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Figure 4.10: Sample LIF spectra obtained from excitation of the �̃� (000) → �̃�(010) transition.
a) The two largest features correspond to 𝑄11(1) and 𝑅12(1) lines addressing the upper 𝐽′ = 3/2+
state. b) The two largest features correspond to a second pair of𝑄11(1) and 𝑅12(1) lines addressing
the lower 𝐽′ = 3/2+ state.
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Figure 4.11: Sample depletion spectra obtained from pump-probe spectroscopy. The upstream
pump laser is scanned over the �̃� (000) → �̃�(010) features shown in Fig. 4.10b, with LIF plotted
in blue. Meanwhile, the downstream probe is fixed on a �̃� (000) → 𝐴(000) line probing 𝑁′′ =
1, 𝐽′′=1/2−, with LIF plotted in orange. The depletion signal at 17651.37 cm−1 shows both pump
and probe share a common ground state.
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The pump-probe technique that we used to identify the �̃�2Π1/2(010), 𝐽′ = 3/2+ states was
readily applicable to the rest of the �̃�2Σ+ → �̃�2Π1/2(010) band. A benefit of this approach is that
it is agnostic to the vibronic character of the excited states. The downstream probe was parked
on a known �̃�2Σ+ → �̃�2Π1/2(000) transition, usually in the 𝑄 branch for technical convenience.
Meanwhile, the upstream �̃�2Σ+ → �̃�2Π1/2(010) pump was scanned across lines of interest. LIF
was monitored from both the upstream pump and downstream probe regions. Downstream depletion
correlated with upstream signal provides a definitive assignment of the ground state. An example
of a depletion spectrum is shown in Fig. 4.11.

The observed lines and their assignments are presented in Table 4.3. Definitive excited assign-
ments were made for excited states where all three 𝑃, 𝑄, and 𝑅 lines were observed. However, the
lack of observation of one of these lines cannot be interpreted as an indication that such a line does
not exist. The TDM for the unobserved line could simply be weak due to transition interference
from intensity borrowing, as was seen in the �̃�2Σ+(010) → �̃�2Π1/2(000) spectrum. Nonetheless,
many lines could be definitively assigned. In Table 4.3, we also show the �̃�(010) state energy
obtained by subtracting the energy of the �̃� (000) from the observed transition energy.

When the �̃�2Π1/2(010) energies are plotted (Fig. 4.13, a clear rotational structure is present. By
comparing the expected rotational constant (𝐵 ∼ 0.25 cm−1 ∼ 7.5 GHz) to the observed energies,
we can refine our initial 𝐽 assignments for ambiguous lines. State assignments in Tab. 4.3 marked
with an asterisk (∗) represent assignments made based on rotational pattern matching, as opposed
to definitive assignment based on observation of all three 𝑃,𝑄, 𝑅 features. Our dataset therefore
consists of 10 levels, 5 of each parity, with 2x degeneracy of a given parity for 𝐽 > 1/2.

The parity doublet structure of the excited state is on the scale of ∼ 500 MHz (0.017 cm-1)
for all observed states. While this is in contrast to what would naively be expected for an isolated
𝑃 = 3/2 state, it is in good agreement with the ∼ 700 MHz parity doubling scale estimated earlier
in Sec. 4.3.2. The fact that all observed levels indicate similar parity splitting is further indication
of the strong mixing between Δ and Σ vibronic states.

4.3.5 Hamiltonian Fit and Discussion
With the location of 10 levels in �̃�2Π1/2(010) known to ∼0.001 cm−1 (30 MHz) precision, we

move on to modeling the state by fitting to the effective Hamiltonian in Table 4.2. First, we reduce
the number of fit parameters, using approximations and constraints informed by trends in other
similar molecules. We fix 𝑝𝑒 to the value obtained for the �̃�2Π1/2(000) state, 𝑝𝑒 = −0.4378 cm−1.
This approximation holds well in both CaOH [147] and SrOH [301]. However, while most
references fix 𝑝𝐺 = 0, we do not, as we generically expect 𝑝𝐺 ≠ 0 in �̃�(010), considering we
found 𝑝𝐺 ≠ 0 in �̃� (010). Further, by inspection of the effective Hamiltonian, we see the 𝑞𝐺 and
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Table 4.3: Characterized �̃�2Σ+(000) − �̃�2Π1/2(010) lines. Wavenumber readings are taken
obtained from a HighFinesse WS7-30 wavemeter, which has an absolute frequency error of 0.001
cm−1. Lines are grouped by common excited state. The excited state energy is obtained by adding
the observed transition wavenumber with the energy of the �̃�2Σ+ ground state, which obtained
from exact diagonalization without hyperfine. The final excited state energy is reported as an
average of the excited state energies obtained from all common lines. The variation of the energy
obtained from each line is on the order of ∼0.0005 cm−1 or less. The “Evidence” column reports
the basis behind the ground state assignment. “Depletion” means the ground state was observed to
be depleted by the transition of interest. “Splitting” means the splitting of the transition from other
lines matches the energy splitting expected in the ground state.

Observed Line (cm−1) 𝑁′′, 𝐽′′,P′′ 𝐽′,P′ Excited State (cm−1) Evidence
17 650.9630 1, 3/2,− 1/2∗, + 17651.4518 Splitting
17 650.9588 1, 1/2,− 1/2∗, + Splitting

17 649.9938 1, 1/2,− 1/2∗,− 17 651.4685 Depletion

17 651.8464 0, 1/2, +
3/2,− 17651.8466

Depletion
17 650.3787 2, 5/2, + Depletion
17 650.3719 2, 3/2, + Splitting

17 651.3741 1, 3/2,−
3/2, + 17651.8628

Depletion
17 651.3700 1, 1/2,− Depletion
17 648.9158 3, 5/2,− Depletion

17 652.6182 0, 1/2, + 3/2∗,− 17 652.6182 Depletion

17 652.1465 1, 3/2,−
3/2, + 17652.6353

Depletion
17 652.1424 1, 1/2,− Depletion
17 649.6884 3, 5/2,− Depletion

17 649.9157 3, 5/2,−
5/2, + 17652.8624

Depletion
17 649.9251 3, 7/2,− Splitting
17 652.3733 1, 3/2,− Splitting

17 651.4165 2, 5/2, +
5/2,− 17652.8845

Depletion
17 651.4096 2, 3/2, + Depletion
17 647.9756 4, 7/2, + Depletion

17 653.6298 1, 3/2,−
5/2, + 17654.1210

Depletion
17 649.9251 3, 5/2,− Splitting
17 652.3733 3, 7/2,− Splitting

17 651.6782 2, 5/2, + 5/2∗,− 17654.1462 Splitting
17 650.6716 2, 3/2, + Splitting

* The excited state assignment is more tentative in the case when multiple lines are not observed, in which case the
assignment is marked with an asterisk ∗.
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Table 4.4: Effective Hamiltonian parameters used to model
the �̃�(010) state of YbOH. See main text for details.

Parameter∗ YbOH �̃�(010)
𝜔2 327.83(1)
𝐴 1350†
𝐵 0.2527(5)
𝑔𝐾 0.22(1)
𝜖 −0.066(7)
𝜖𝜔2 −21.6(11)
𝑝𝑒 −0.4378†
𝑞𝑒 0†
𝑝𝐺 −0.46(8)
𝑞𝐺 0†
𝛾 0†

∗ All parameters are given in cm−1, except for 𝜖 , which is unitless.
Parentheses represent 2𝜎 errors (68% confidence interval). 𝜖𝜔2 is
obtained by multiplication and propagation of errors.

† These values were fixed, see main text for details.

𝑞𝑒 terms have independent contributions only between the Ω = 3/2 and Ω = 1/2 manifolds. Since
our measurements are only of the Ω = 1/2 manifold, the effects of 𝑞𝑒 and 𝑞𝐺 are drowned out
by 𝑝𝑒 and 𝑝𝐺 terms, and therefore we set 𝑞𝑒 = 𝑞𝐺 = 0. For 𝑞𝑒, this approximation is justified
by the unique perturber relation [39, 167], 𝑞𝑒 ≈ 𝑝𝑒𝐵/𝐴 ≈ 2 × 10−4𝑝𝑒, which is beyond our level
of sensitivity. For 𝑞𝐺 , the approximation is justified by the small value of 𝑞𝐺 = −0.0004 cm−1

obtained for the �̃� (010) state. In general we expect 𝑞𝐺 to be similarly small in �̃�(010) as it arises
predominantly from Coriolis effects that only depend on the vibrational state [147, 167, 301]. As
is usual for YbOH, we fix 𝐴 = 1350 cm−1, and we also fix 𝑇0 = 17998.5875 cm−1, corresponding
to the �̃�2Π1/2(000) origin10 [264]. Finally, we fix 𝛾 = 0, which is justified by the form of the
Hamiltonian in Table 4.2, where the effects of 𝛾 are largely indistinguishable from 𝐵 and origin
offsets. Empirically, the predictions were not very sensitive to 𝛾, justifying our approximation.

The remaining fit parameters are then𝜔2, 𝜖 , 𝐵, 𝑔𝐾 , and 𝑝𝐺 . For initial values of the parameters,
we used 𝜔2 = 330, we approximate 𝑝𝐺 = 𝑝𝐸 , and the rest of the initial values were taken either
from CaOH �̃�(010) (𝜖, 𝑔𝐾) or YbOH �̃�(000) (𝐵, 𝛾). With these initial values, we use Nelder-Mead
optimization to determine a first set of fit parameters, and then use those parameters as initial values
for Levenberg-Marquardt non-linear least-squares fitting to obtain final parameters.

The fits are able to accurately model the observed energy levels with a residual standard
deviation of ≈0.0012 cm−1 (36 MHz), in good agreement with the experimental errors. However,

10This is in the 𝑅2 formalism, see Ref. [39] 7.5.3 for details.
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due to our limited dataset and many fit parameters, there are strong correlations (> 90%) between
𝜔2, 𝜖 , and 𝑔𝐾 , moderate correlation (∼60%) of those parameters with 𝑝𝐺 , and little correlation
(∼15%) with 𝐵. While the strong correlations could be removed by fixing 𝜔2, we decided not to,
as this results in parameter uncertainties that were unreasonably small. Instead, in Fig. 4.12, we
provide a plot of parameter confidence intervals, obtained from F-tests. The confidence intervals
show the correlated nature of the parameters and provide a sense of our true uncertainties. As we
will discuss, all of the parameter intervals correspond to physically reasonable values.

From the final fits, we obtain the parameter values shown in Table 4.4. A comparison of the
model energy levels and the observed experimental energy levels is shown in Figure 4.13. Our
value of 𝜖𝜔2 ≈ −22 cm−1 is in good agreement with the CaOH value of −36 cm−1 [147] and the
SrOH value of −31 cm−1 [301]. The Renner-Teller coupling is expected to decrease with increasing
mass [147, 151]. According to the supplemental information of Ref. [144], the vibronic couplings
(⟨ 𝜕𝐻𝑒

𝜕𝑞
⟩) are of similar size when comparing CaOH to YbOH. However, the separation of vibronic

states increases with larger spin-orbit, and therefore we receive weaker contributions to the effective
Hamiltonian parameters from mixing with other vibronic states.

The value of 𝜔2 ≈ 328 cm−1 is in good agreement with the frequency in the �̃� (010) state,
where we found 𝜔2 ≈ 320 cm−1. We note in our approximate treatment, we have not distinguished
between harmonic and overall bending frequencies. In general, the bending frequency will receive
anharmonic contributions, neglected here. A good discussion can be found in Ref. [309], and
further Ch. 7 of Ref. [317] discusses various calculations of harmonic and anharmonic frequencies
for CaOH.

Using 𝜖𝜔2 ≈ −22 cm−1, we can estimate the scale of mixings between the �̃� (010) and
�̃�(000) states. These mixings were relevant for the earlier discussion (Sec. 4.2) of perturbations
to �̃� (010). For example, contributions to axial spin-rotation, 𝛾𝐺 , can occur at third order: 𝛾𝐺 ∼
(𝜖𝜔2)2𝐴/(Δ𝐸ΠΣ)2 ∼ 0.002 cm−1 (65 MHz). This is slightly too large to explain the observed
value, but we note the Renner-Teller parameter 𝜖 actually receives two contributions in the effective
Hamiltonian [143, 173, 200, 312, 319, 334]: 𝜖 ≈ 𝜖1+𝜖2. These are the dipolar (𝜖1) and quadrupolar
(𝜖2) contributions11. In CaOH, both of these terms were found to both be negative [200], and we
expect a similar situation here. Only the dipolar 𝜖1 term is responsible for Σ − Π mixing. This
means we expect our earlier estimate using 𝜖𝜔 to be too high. Further, its very possible there are
multiple states contributing to the the axial spin-rotation effect, for example the 4 𝑓 states. On the
other hand, application of a similar estimate to obtain 𝑝𝐺 from third order contributions of 𝑝𝑒 is

11There can be some confusion, as some references instead use 𝜖 (2) to instead refer to the dipolar contribution,
since this term contributes to the effective Hamiltonian at 2nd order, and vice versa for 𝜖 (1) . Also, Ref. [172] has an
extra factor of (1 + 𝜖1)−1, as mentioned at the end of Ch. 2.
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wildly inaccurate, as 𝐴 ≫ 𝑝𝑒. However, it is possible 𝑝𝐺 receives contributions from 4 𝑓 mixing
as well, which can have very different matrix elements than what we estimate with 𝜖𝜔2.

Finally, we can set 𝐻𝐾 = 0 in the model, essentially turning off the 𝐾 resonance. This allows
us to visualize the effects of the K-resonance. In Figure 4.14, compare the actual and deperturbed
eigenvalues of the effective Hamiltonian. As we can see, the deperturbed Σ and Δ states are
near degenrate. Turning on 𝐻𝐾 mixes and splits the levels, with separation roughly given by
Δ𝐸 ≈ (𝑝𝑒 + 2𝑞𝑒) (𝐽 (𝐽 + 1) − 3/4)1/2.

To very good approximation, the resulting eigenstates are full mixtures of 2Δ and 2Σ, and as
alluded to earlier, the mixed eigenstates have ⟨|𝐾 |⟩ = 1. The resulting level pattern is similar to that
of a case (b) 2Π state, with large scale rotational structure characterized by 𝑁 , and smaller scale
spin-rotational splittings characterized by 𝐽. The “emergent” spin rotation splitting, on the order
of 𝛾 ∼ 0.3 cm−1 for the states we observe, is set by the combination of Λ-type doubling and overall
rotation, very reminiscent of quenching of electronic angular momentum in non-linear polyatomic
molecules [123]. We can compare this emergent 𝛾 value to an estimate of the contribution to
the spin-rotation parameter in the �̃�2Π1/2 state from second order mixing with the �̃�2Σ+ state,
given in [39], eq. 7.122. Using 602 cm−1 for the spin-orbit matrix element [144], 3152 cm−1 for
the splitting between �̃�2Π1/2 and �̃� [335], and using the pure precession hypothesis to evaluate
𝐿2
⊥ ∼ 𝜆(𝜆 +1) = 2, we obtain 𝛾 ∼ 0.38 cm−1. This is reasonable agreement, especially if we recall

the spin-rotation splitting is 3
4𝛾 for a bending 𝑁 = 1 state.

To make the energy structure manifest for mixed vibronic character, we consider just the
|Ω| = 1/2 matrix elements in 4.2, obtaining a 2x2 matrix for all 𝐽 > 1/2. We neglect the
contributions at second order and higher from mixing with the distant |Ω| = 3/2 states; these
contributions can be taken into account via perturbation theory, if necessary. Then, we rewrite
the 2x2 matrix in terms of a new basis, |2Δ3/2⟩ ± (−1)𝑝 |𝜇2Σ1/2⟩, implemented with the unitary

matrix 𝑈 = 1√
2

(
1 1
(−1)𝑝 −(−1)𝑝

)
. Finally, we drop 𝑞𝐺 , owing to its smaller magnitude compared

to 𝑝𝑒 + 2𝑞𝑒. We then have:

𝐻eff = 𝐸0 + 𝐵𝐽 (𝐽 + 1)

+
©«
∓ 𝑝𝑒 + 2𝑞𝑒

2

(
𝐽 (𝐽 + 1) − 3

4

) 1
2

𝑔𝐾 − 𝐵 −
(𝜖𝜔)2

2(2𝜔 + 𝐴)

𝑔𝐾 − 𝐵 −
(𝜖𝜔)2

2(2𝜔 + 𝐴) ± 𝑝𝑒 + 2𝑞𝑒
2

(
𝐽 (𝐽 + 1) − 3

4

) 1
2

ª®®®®¬
(4.24)

where 𝐸0 = 𝑇0 +𝜔 − 𝐴
2 + 𝑔𝐾 +

𝐵
4 − 𝛾 −

(𝜖𝜔)2
2𝜔+𝐴 , and the upper/lower signs refer to overall parity. Now

the Λ doubling terms contribute to the splitting of the two states, while the Renner-Teller effects
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cause mixing that attempts to restore the original vibronic basis. Using our fit parameters, we see
the off-diagonal elements are fixed at ∼ −0.3 cm−1 magnitude, while the on-diagonal elements
scale like (𝑝𝑒 + 2𝑞𝑒)

√︁
𝐽2 + 𝐽 − 3/4, which becomes ∼ (𝑝𝑒 + 2𝑞𝑒) (𝐽 + 1/2) for large 𝐽.

In conclusion, the �̃�(010) level of YbOH exhibits a rich and unique structure. To our knowledge,
this is the first observation of a 𝐾-resonance severe enough that it changes the energy level pattern
from case (a) to case (b). Using an effective Hamiltonian model, we have been able to provide an
approximate, physical picture of the �̃�(010) state behavior, though further investigation is need to
confirm our spectroscopic interpretation. In particular, it would help to identify higher 𝐽 lines, and
to determine the location of the Ω = 3/2 manifold.

4.3.6 Bend to Bend Transitions
With the excited state energies characterized to reasonable accuracy, we moved on to identifying

diagonal Δ𝑣2 = 0 transitions out of �̃� (010). This band, designated �̃�2Σ+(010) → �̃�2Π1/2(010), is
useful for bending mode manipulation. Due to the quasi-diagonal FCFs, the vibrational potential
energy surface is similar between �̃� and �̃�2Π1/2. Therefore the diagonal �̃� (010) → �̃�(010) band
shares many characteristics in common with its �̃� (000) → �̃�(000) counterpart. The wavelength
of the �̃� (010) transition is only 0.3 nm away from the �̃� (000) transition, allowing us to use the
same lasers to generate diagonal 𝛿𝑣2 = 0 light. Furthermore, fluorescence decays are expected to
be roughly similar: ∼ 90% of decays should have Δ𝑣2 = 0 and∼ 9% should have Δ𝑣2 = 1, with the
remaining 1% emitted to many possible states [144, 217].

We obtained �̃� (010) → �̃�(010) line predictions by subtracting the �̃� (010) energies (obtained
via diagonalization) from the �̃�(010) energies listed in Table 4.3. The resulting lines for the lowest
𝑁′′ states are around 17331 − 17332 cm−1. This is right where the so-called [17.33] band was
observed in Ref. [217]—however, it had previously been assigned as a transition from �̃� (000) to
an unknown excited state. Our work definitively re-assigns this band as originating from �̃� (010).
Both Refs. [217, 335] have also observed features further blue around 17338 cm−1 and 17345 cm−1.
These could possibly be diagonal transitions involving 𝑣′′2 = 2 or higher states.

The apparatus is the same as that described in Sec. 4.3.3. In Figure 4.15, we provide a schematic
diagram of the beamline. We now tune the upstream pump laser to the �̃� → �̃�(010) transition
at 567 nm, detecting off diagonal decays to �̃� (010) at 577 nm. This optically pumps molecules
from the ground state into the bending mode. Then in downstream region, we tune the probe
laser to the �̃� (010) → �̃�(010) transition at 577 nm, detecting off diagonal 595 nm decays to the
�̃� (110) state (see Ref. [144] for vibrational energies). Because we know the energies of all states
involved—�̃� (000), �̃� (010), and �̃�(010)—we did not need to take extensive spectra, and simply
performed 100 MHz scale scans to confirm the line positions at high resolution.
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Figure 4.15: Schematic of the beamline used for tests of optical pumping into the �̃� (010) state and
characterization of �̃� (010) → �̃�(010) lines. Upstream, the molecules are pumped out of �̃� (000)
through the excited �̃�(010) state, decaying into �̃� (010). Downstream, we probe the increased
fluorescence in the �̃� (010) state using the diagonal transition to �̃�(010).

We were able to identify multiple transitions from 𝑁′′ = 1, 2 in �̃� (010) up to 𝐽′ = 1/2, 3/2
in �̃�(010). The lines exhibit anomalous intensities that can be attributed to TDM interference
caused by the 𝐾 resonance. All transitions visible above the noise floor were found close to
their predictions, giving faith in the excited state energies and assignments. In this pump-probe
configuration, we can alternate pump on/off to characterize the optical pumping into �̃� (010).

In Fig. 4.16(a), we show an example of a scan over the 𝑁′′ = 1− spin-rotation features when
exciting up to the 𝐽′ = 3/2+ in the “𝑁′ = 1” manifold. We compare signals with and without
265 mW (before retro-reflection) of optical pumping light upstream. The optical pumping on
�̃� (000) → �̃�(010) causes an increase of ∼8x in the �̃� (010) population. The two spin-rotation
features are blended, in part due to the small parity doubling, and in part due to power broadening
by the 465 µW downstream probe (𝐼0 ≈ 98 mW/cm2, 𝑠 ∼ 20 for 𝐼𝑠 ≈ 5 mW/cm2). On the other
hand, the spectrum in Fig. 4.16(b) is taken with a 70 µW beam (𝐼0 ≈ 14 mW/cm2, 𝑠 ∼ 3), and the
spin-rotation splitting is resolved to be 44.7 ± 3 MHz, another confirmation of the bending mode
spectroscopy. The apparently low (∼10 mW/cm2) saturation intensity matches that for the diagonal
�̃� (000) → �̃�(000) transition, which is another confirmation of the transition assignment. The
low power requirements for saturation are a demonstration of the strong optical TDMs afforded by
quasi-diagonal FCFs.

To further study the saturation intensity, we can fix the pump and probe frequencies at resonant
values, and scan the pump power. The resulting data is shown in Fig. 4.17(a). The probe line
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Figure 4.16: Sample LIF spectrum obtained from excitation of the �̃� (010) → �̃�(010) transition,
driving the 𝐽 = 1/2, 3/2 components of 𝑁′′ = 1− to the lower 𝐽′ = 3/2+ state. The zero frequency
offset is 17331.7093 cm−1, and the line centers are fit to be 17331.7083 cm−1 and 17331.7098
cm−1. a) Optical pumping into the bending mode is visible by comparing the blue (pump on)
and orange (pump off) signals. The salmon lines are two Lorentzian fits. The optical pumping is
performed with 265 mW of power, retroreflected, on the �̃� (000) → �̃�(010) line at 17651.3740
cm−1, addressing the lower (𝑁′ = 1) 𝐽′ = 3/2+ state. As mentioned in the main text, the probe
power of 465 µW in 1.1 mm diameter beam results in power broadening. b) The same spectrum
taken with smaller frequency steps and 70 µW power. The optical pumping light is always on, and
the salmon line is once again a two Lorentzian fit.

here is fixed 17331.4810 cm−1, corresponding to the 𝑁′′ = 1, 𝐽′′ = 1/2− → 𝐽′ = 3/2+ transition
for the “𝑁′ = 2” manifold. We compare optical pumping results when addressing both the upper
𝑁′ = 2, 𝐽 = 3/2+ state, and the lower 𝑁′ = 1, 𝐽′ = 3/2+ state. Optical pumping into the bending
mode is clearly visible, with the effect saturating around ∼100 mW, corresponding to 𝐼 ∼ 4 W/cm2.
We note the pumping efficiency varies with the 𝐽′ state used. Furthermore, the transitions with
larger bending mode pumping efficiency can actually demonstrate less overall LIF from the pump
beam, shown in Fig 4.17(b). This can be understood due to different branching ratios and TDMs
of the excited states.

The optical pumping we demonstrate will be an invaluable tool for experiments using YbOH.
We note that the pumping efficiency can be further optimized with technical modifications. In-
creasing the number of laser passes will increase the interaction time and aid pumping efficiencies.
Furthermore, applying microwaves in the pumping region can mix rotational states and increase
the quantity of pumped molecules, a technique that was applied in ThO [67].

We also briefly performed Stark spectroscopy on the �̃� (010) → 𝐴(010) transition, using the
same apparatus outlined in Sec. 4.2.1. We specifically examined the lines shown in Fig. 4.16 at
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Figure 4.17: Saturation signals obtained by fixing the laser frequencies on a pump-probe pair
of lines and scanning the pump power. In both plots, the probe was fixed on the 𝑁′′ = 1, 𝐽′′ =
1/2− → 𝐽′ = 3/2+, 𝑁′ = 2 transition of the �̃� (010) → �̃�(010) band, while the pump was varied.
In both plots, orange squares (blue circles) indicate the pump addresses the upper, 𝑁′ = 2 (lower,
𝑁′ = 1) 𝐽′ = 3/2+ state in �̃�(010). a) The ratio of pump on vs pump off population probed in
the bending mode. The different excited states for pumping have different pumping efficiencies
and saturate to different values. b) The fluorescence detected in the pump region when driving the
�̃� (000) → �̃�(010) transitions at 17651.3740 cm−1 (lower) and 17652.1465 cm−1 (upper). The
traces indicate both a difference in saturation intensity and saturation fluorescence.

different DC electric field values, up to 244 V/cm. The Stark behavior matched the spectra taken
on the �̃� (010) → �̃�(000) band in Sec. 4.2.3.2. This is a confirmation that the excited state parity
splittings are somewhat large. For example, using the 0.43 D dipole moment of �̃�(000), and
estimating the parity splitting of �̃�(010) at Δ𝐸 ≈ 500 MHz, we find the second order energy shift
from the 𝐸 = 244 V/cm applied field to be (𝐷mol𝐸/2)2/Δ𝐸 ∼ 1 MHz, too small for us to resolve.

4.3.7 Transition Dipole Moments
While studying the optical pumping, we observed significant variation of the rotational branch-

ing ratios describing �̃�(010) decays to �̃� (010). For example, some excited states resulted in little
to no pumping into 𝑁′′ = 1, while others exhibited no pumping into 𝑁′′ = 2. This is a result of
transition dipole moment (TDM) interference from the 𝐾 mixing of the excited vibronic states.
Determination of TDMs on the �̃� (010) → 𝐴(010) transition is of importance to science state
preparation and readout schemes. Therefore we performed an investigation of the optical pumping
efficiency of various �̃�(010) levels. Our characterization is not exhaustive, as the goal of our
work is not a detailed determination of exact TDMs, but rather a heuristic understanding of useful
transitions for optical pumping and science state control.
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The lines we investigated are shown in Table 4.5. Typically, the pump was parked on a given
excited state, driving �̃� (000) → �̃�(010), and the probe scanned across the �̃� (010) → �̃�(010)
line. By sitting on the same probe and comparing different excited states, we can qualitatively
assess which excited state has stronger TDMs with the ground state in question. In this way, we use
the decay strength from �̃�(010) obtain TDM estimates for transitions that we have not explicitly
observed in excitation on the probe spectrum (those marked with ∗ in the table).

Some interesting patterns emerge in the TDMs. First, we observe that the Δ𝐽 = 0 lines
addressing 𝐽′ = 1/2± are completely missing. These lines were not observed in either probe
fluorescence or optical pumping. Actually, the explanation for these missing lines is somewhat
straightforward, given the 𝐽′ = 1/2 states are pure 2Σ1/2 vibronic states, as the 2Δ3/2 and 2Δ5/2

states cannot support 𝐽 = 1/2. Therefore, we can consider the matrix elements for the transition in
a straightforward manner. The ground state can be parameterized in Hund’s case a) as symmetric
and anti-symmetric combinations of case a) states:����̃� (010), 𝑁′′ = 1, 𝐽′′ =

1
2
,P = ±

〉
=

1
√

2

(���ℓ = 1, Σ = −1
2
, 𝑃 =

1
2

〉
± (−1)𝑝

���ℓ = −1, Σ =
1
2
, 𝑃 = −1

2

〉)
.

(4.25)

Here, we use ± to denote the state parity, with the parity phase given by 𝑝. We have also suppressed
Λ = 0 in the kets for brevity. The excited state can be written in a similar fashion:���𝜇2Σ1/2(010), 𝐽′ = 1

2
,P = ±

〉
=

1
√

2

(���Λ = 1, ℓ = −1, Σ = −1
2
, 𝑃 = −1

2

〉
± (−1)𝑝

���Λ = −1, ℓ = 1, Σ =
1
2
, 𝑃 =

1
2

〉)
.

(4.26)

Note we always must have |Ω| = 1/2, as we are dealing with a strongly spin-orbit coupled molecule.
Finally, because we are considering a Δ𝐽 = 0 transition, the two 𝑝 phase factors are identical, and
we can drop the (−1)𝑝 factor.

Now we consider the selection rules for E1 transitions. The parity selection rule couples + ↔ −
parity states. We will also have 𝛿Σ′Σ′′ = 𝛿ℓ′ℓ′′ = 0, owing to the properties of the TDM operator in
the approximation of separated electronic, vibrational, and spin degrees of freedom. To evaluate
the selection rules onΛ, recall the matrix element in the molecule frame, ⟨Λ′|𝑇1

𝑞 (𝑑) |Λ′′⟩, is nonzero
only ifΛ′−Λ′′ = 𝑞. In other words, the transverse TDM components (𝑑𝑥 , 𝑑𝑦) generate perpendicular
bands with ΔΛ = ±1, and 𝑑𝑧 generates parallel bands with ΔΛ = 0. Since we are considering
a transition from Λ′′ = 0 → Λ′ = ±1, we are coupling to the perpendicular components of the
molecule frame TDM. Finally, from the rotation of 𝑇1(𝑑) from the lab frame into the molecule
frame, we obtain a 3j-symbol that constrains Δ𝑃 = ΔΛ (we could have also derived this by noting
Σ and ℓ do not change).
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Table 4.5: Characterized �̃�2Σ+(010) − �̃�2Π1/2(010) lines. Wavenumber readings are taken
obtained from a HighFinesse WS7-30 wavemeter, which has an absolute frequency error of 0.001
cm−1. Lines are grouped by ground 𝑁′′ manifold and excited 𝐽′ manifold. The excited states are
also labeled by their emergent 𝑁′ value (see main text). The qualitative TDM characterization has
the following meanings: “Strong” means the ground state population downstream was increased
by optical pumping upstream on a �̃� (000) → �̃�(010) transition addressing 𝐽′; “Weak” means
the ground state population was not significantly increased by pumping; “Moderate” characterizes
an intermediate pumping efficiency regime; “Unclear” means the data was inconclusive or not
taken in our study; “Missing” means the probe line was looked for but not observed. Missing line
frequencies are explicitly denoted with −.

Observed Line∗ (cm−1) 𝑁′′, 𝐽′′,P′′ 𝑁′, 𝐽′,P′ TDM Strength
17 331.2998 1, 3/2,− 1, 1/2, + Strong

− 1, 1/2,− 1, 1/2, + Missing
17 331.3145 1, 3/2, + 1, 1/2,− Unclear

− 1, 1/2, + 1, 1/2,− Missing

17 331.7098 1, 3/2,− 1, 3/2, + Strong
17 331.7083 1, 1/2,− 1, 3/2, + Strong
17 331.6929 1, 3/2, + 1, 3/2,− Strong
17 331.6908 1, 1/2, + 1, 3/2,− Strong

− 1, 3/2,− 2, 3/2, + Missing
17 332.4810 1, 1/2,− 2, 3/2, + Moderate
17332.4650∗ 1, 3/2, + 2, 3/2,− Weak
17332.4630∗ 1, 1/2, + 2, 3/2,− Weak

17330.7187∗ 2, 5/2, + 1, 3/2,− Unclear
17330.7130∗ 2, 3/2, + 1, 3/2,− Unclear
17330.7329∗ 2, 5/2,− 1, 3/2, + Weak
17330.7265∗ 2, 3/2,− 1, 3/2, + Weak

17 331.4900 2, 5/2, + 2, 3/2,− Strong
17 331.4845 2, 3/2, + 2, 3/2,− Strong
17 331.5048 2, 5/2,− 2, 3/2, + Strong
17 331.4984 2, 3/2,− 2, 3/2, + Strong

* Lines marked with ∗ are theory values. The lines are not necessarily missing, but simply were
not searched for.
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Now we consider the possible transitions. We could try, for example, to couple 𝑃′′ = ±1/2→
𝑃′ = ∓1/2 states. However, we observe that this would involve coupling ℓ′′ = ±1 → ℓ′ = ∓1
states, which is explicitly forbidden for an E1 transition. Therefore, within the E1 selection rule, the
transition 𝐽′′ = 1/2→ 𝐽′ = 1/2 for the �̃� (010) → 𝜇2Σ1/2(010) band is forbidden. We can see this
clearly by considering a quantum number Ωℓ = ℓ + Σ, which is invariant under E1 transitions, and
captures the spin-bending alignment of a state. The excited state has |Ω′

ℓ
| = 3/2, while the ground

state has |Ω′′
ℓ
| = 1/2. Because the two states have opposite spin-bending alignment, they cannot

be connected by an E1 transition. Further, we can surmise the 𝐽′′ = 1/2 → 𝐽′ = 1/2 transition
should be allowed when addressing the 𝜅2Σ1/2(010) excited state, which has ℓ and Λ flipped, and
therefore has |Ωℓ | = 1/2.

The remaining TDMs for 𝐽′ > 1/2 are more complicated, as we must now consider 𝐾-
mixing between the Σ and Δ vibronic states, which will also mix |Ωℓ |. We consider the excited
state as admixtures of 2Σ−1/2 and 2Δ3/2, which can be treated as a coupled two level system,
with superposition eigenstates characterized by a mixing angle 𝜃 [213]. For resonant 𝐾-mixing,
cos 𝜃 ≈ 1/

√
2, and we have:����̃�2Π1/2(010), 𝐽, (±),±

〉
=

1
√

2

(���2Σ−1/2,±
〉
(±)

���2Δ3/2
〉)

=
1
2

(���Λ = 1, ℓ = −1, Σ = −1
2

〉
±

���Λ = −1, ℓ = 1, Σ =
1
2

〉)
(±)1

2

(���Λ = 1, ℓ = 1, Σ = −1
2

〉
±

���Λ = −1, ℓ = −1, Σ =
1
2

〉)
.

(4.27)

Here, we use (±) to denote the phase of the 𝐾 mixture, which is determined by the Λ-doubling
interaction. Meanwhile ±without parentheses denotes the rotationless 𝑒/ 𝑓 parity of the state [332],
where 𝑒 states are + combinations and 𝑓 states are − combinations. We have used the convention
where all states are written with Λ = 1 as the first element of the superposition [151]. We note these
states are reminiscent of the states of a Hund’s case (b) ket, |𝑁𝑆𝐽𝐾⟩, written in terms of Hund’s
case (a). We can make this more manifest by rewriting the states using Ω = Λ + Σ.����̃�2Π1/2(010), 𝐽, (±),±

〉
=

1
2

(���ℓ = −1,Ω =
1
2

〉
± (±)

���ℓ = −1,Ω = −1
2

〉)
± 1

2

(���ℓ = 1,Ω = −1
2

〉
± (±)

���ℓ = 1,Ω =
1
2

〉)
.

(4.28)

The spin-orbit coupling is so strong that the vibronic 𝑃 = 1/2, 3/2 states are mixed and the state
actually resembles a case (b) 2Π state, which has both orientations Ω relative to ℓ. Indeed, if we
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write out the bending ground state, we see it has a similar form:����̃�2Σ+(010), 𝑁, 𝐽,±
〉
=

1
2

(
𝛼

���ℓ = 1, Σ =
1
2

〉
+ 𝛽

���ℓ = 1, Σ = −1
2

〉)
± 1

2

(
𝛼

���ℓ = −1, Σ = −1
2

〉
+ 𝛽

���ℓ = −1, Σ =
1
2

〉) (4.29)

Here, 𝛼 and 𝛽 are the real, normalized coefficients obtained form the Hund’s case (a) to (b) unitary
basis change, and generically depend on 𝑁, 𝐽, ℓ, Σ,Λ [129, 156]. The relative phase of 𝛼 and
𝛽, along with their magnitudes, encodes the difference between the 𝑁 = 𝐽 − 𝑆 and 𝑁 = 𝐽 + 𝑆
components of a given 𝐽 state. We can see the (±) mixing phase mimics the effect of the relative
sign between 𝛼 and 𝛽, and maps on to the extra quantum number 𝑁 in the case (b) limit.

While our resonant mixing assumption results in equal admixtures of the two vibronic states,
the coefficients 𝛼 and 𝛽 are generically not of the same magnitude for a given case (b) state. For
example, a 𝑁 = 1, 𝐽 = 3/2 state contains more 𝑃 = 3/2 admixture than the 𝑁 = 2, 𝐽 = 3/2 state,
which can be intuitively understood as a consequence of spin-rotation alignment or anti-alignment.
If the eigenstates are equal vibronic mixtures, then the transition will not exactly follow Hund’s case
(b) patterns. For example, for a 2Π(𝑏) −2Π(𝑏) transition, Herzberg [336] mentions an approximate
selection rule, Δ𝑁 = Δ𝐽. This selection rule results from the fact that an E1 transition cannot flip
a spin, so the spin-rotation state is preserved, and 𝐽 only changes when 𝑁 does. However, we are
dealing with a perpendicular transition that nonetheless approaches a case (b) limit, and therefore
we do not expect such a selection rule to hold. In particular, if spin-orbit is large, we cannot
distinguish 𝐿 from 𝑆, and we do not have the same notion of a “spin-flip.”

Empirically, we find there is a Δ𝑁 = 0 selection rule. This can be rationalized in the following
way—in a transition, the photon angular momentum is transmitted to the electron orbit, while the
bending rotation remains decoupled. Unfortunately, we did not take sufficient data to make further
inferences. In particular data on whether or not such a selection rule holds for higher 𝑁 states
would be interesting. We are confident that with further investigation, the transition interference in
the excited bending mode can be accurately modeled.

4.4 The State of YbOH
The YbOH spectroscopy necessary to perform a precision measurement of 𝑃,𝑇 violation in

a beam has been completed. Nonethless, there still remain several outstanding spectroscopic
questions regarding YbOH. Further investigation of these questions will be necessary to enable
efficient laser cooling and magneto-optical trapping of YbOH for the next-generation of new physics
searches. In this section, we outline the outstanding spectroscopic questions in YbOH.
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4.4.1 4f States and Laser Cooling Prospects
YbF and YbOH are both affected by the existence of states corresponding to an electron being

excited out of the inner-shell 4 𝑓 orbital localized on the Yb atom. The study of these so-called
4 𝑓 hole states is underway in YbF [291, 337]. These states both perturb the excited states and
provide leakage pathways for optical cycling. In YbOH, evidence for perturbation from 4 𝑓 states
is present in many aspects of the spectroscopy already summarized, such as negative ground state
spin-rotation constants [281], congested excited state spectra, with some states having ∼100 ns
lifetimes [217], and the value of 𝑔𝑆 = 1.86 for the effective electron g-factor in the �̃�2Π1/2(000)
state [282].

The existence of 4 𝑓 hole states can be intuitively connected to the electronic configurations of
the Yb+ ion. In ligand field theory [137, 138], Yb containing molecules can be modeled as Yb+

X− (X=F, OH, etc.), with the atomic 6𝑠 valence electron remaining localized on Yb. The ground
state configuration of the Yb+ ion is 2𝑆1/2, and there is an excited state 2𝑃1/2 with opposite parity,
analogous to the �̃� and �̃� states. However, the Yb+ ion also has metastable states that arise from the
4 𝑓 136𝑠2 configuration, with term symbols 2𝐹𝐽𝑒 , with two spin-orbit states with electronic angular
momentum 𝐽𝑒 = 5/2, 7/2, split by ∼10000 cm−1. These are the ionic counterpart to the 4 𝑓 states in
YbF and YbOH. We also note there are more 4 𝑓 states in the Yb+ ion, corresponding to 4 𝑓 136𝑠5𝑑
excitations (as well as 6𝑠6𝑝, 5𝑑2, etc.). It is not currently known where such configurations are
located in the molecule.

The ligand electric field splits the 𝐽𝑒 = 5/2 manifold into |Ω| = 1/2, 3/2, and 5/2 states, each
separated by ∼1000 cm−1. Because we are now discussing a valence hole, the spin-orbit interaction
has opposite sign compared to the �̃� states, and therefore the anti-aligned 𝐽𝑒 = 5/2 is higher in
energy. These 𝐽𝑒 = 5/2 states are expected to overlap with the “normal” (i.e., E1 allowed) excited
states in the region ranging from 17600− 20000 cm−1. One such perturbing state has already been
identified in YbOH at 17731 cm−1, denoted as [17.73] [217]. The 𝐽𝑒 = 5/2 states in YbF have been
characterized more thoroughly, summarized in a recent deperturbation analysis [291]. We expect
their findings to generalize to YbOH, which would mean the �̃� and �̃� states are mixed with 4 𝑓
states by a two-electron interaction with magnitude of roughly 50− 100 cm−1. Further, there is the
added extra complexity of the bending modes in YbOH, which result in a higher density of states,
and in the possibility of vibronic mixing with the 4 𝑓 states, which can mix Ω.

The lower 𝐽𝑒 = 7/2 manifold is also split by the ligand field into |Ω| = 1/2, 3/2, 5/2, and
7/2 states. These states are expected to lie in the ∼7500 − 10000 cm−1 range, which means they
can be directly populated by decays from �̃�2Π1/2(000). The intensity borrowing for this decay is
primarily caused by mixing of the 𝐽𝑒 = 7/2 states with the �̃� manifold [291]. These low-lying
leakage states have lifetimes in the ∼1− 10 ms range, too slow to wait for population to decay back
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down to �̃� (000). However optically pumping these states is also a challenge, as transitions back to
the manifold of �̃� and �̃� states are two-electron transitions with weak transition dipole moments.

Currently, decays to the 4 𝑓 manifold are expected to arise at the ∼0.05% level, limiting photon
cycling of YbF and YbOH molecules to 1 − 2 × 103 photon scatters. While this is insufficient
for laser cooling, slowing, and magneto-optical trapping, it is still adequate for 2D cooling [106],
as well as for cycling in state preparation and readout. Therefore, in the medium term, beam
experiments utilizing YbOH will be able to leverage optical cycling techniques to increase beam
density, reduce divergence, and perform efficient state preparation/readout. However, in the long
term, characterization of repumping schemes for the 4 𝑓 states is necessary to realize precision
measurements on laser-cooled and trapped YbOH molecules. Depending on the strength of the
repumping transition, significant laser power may be necessary, although we note that weaker decay
branches in the optical cycle do not need to be saturated in order to achieve adequate repumping.

Methods that can be used to identify the low-lying, 𝐽𝑒 = 7/2 manifold of 4 𝑓 states include:

1) Detection of DLIF from decays that populate the 4 𝑓 states. For example, decays from the
�̃�2Π1/2(000) manifold are expected to populate 4 𝑓 states with ∼ 0.05% branching. Detecting this
scale of DLIF is additionally challenging as quantum efficiencies for cameras are typically worse
in the infrared. Nonetheless, the Doyle group at Harvard has observed12 a weak �̃�2Π1/2(000)
DLIF feature at 1033 nm, corresponding to decays populating a low-lying 4 𝑓 state. Based on
comparisons with theory, this decay is thought to be down to the Ω = 1/2 state, but the vibrational
level is unclear. For YbF, the DLIF method was used to observe 4 𝑓 states in Ref. [337]. They
proceeded by first exciting to high-lying, 4 𝑓 character electronic states around 31000−33000 cm−1,
and then detecting subsequent visible wavelength fluorescence, which has higher camera efficiency.
While the ionization energy in YbOH is lower, a similar approach could still work by monitoring
fluorescence from a high-lying excited state with 4 𝑓 character, pushing the decays of interest into
visible wavelengths.

2) Direct detection of transitions involving 4 𝑓 states using FM absorption spectroscopy. FM
absorption techniques can significantly increase the absorption detection threshold [220, 222]
with standard experiments reaching sensitivities on the order of 10−4, and advanced techniques
pushing sensitivities to 10−6 [225, 338]. Infrared laser generation and detection technology is well
developed, large molecular densities are present in the cell, and multi-pass absorption can help
boost signal sizes. The standard approach would be to look for transitions from �̃� (000) → 4 𝑓 .
Alternatively, it is possible there is enough natural 4 𝑓 population in the cell, after laser ablation and
enhancement, to search for transitions from 4 𝑓 states up to a known excited state, such as �̃� or �̃�.

12This information was obtained in a private communication with Alex Frenett.
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3) Optical cycling to populate 4 𝑓 states, and then performing direct LIF detection of 4 𝑓
repumping transitions. This typically would occur in a beam. First the molecules undergo optical
cycling upstream. After sufficient interaction time, they will decay to the unaddressed 4 𝑓 states.
Then, downstream, a repump laser is scanned across a possible transition from 4 𝑓 states to some
excited state. Upon successful repumping, the 4 𝑓 population returns to the ground state, and
cycling can be performed again further downstream. This technique has been used to determine
repumpers in YbOH [139] and CaOH [200], and is most effective when the rough location of the
line is already known (to < 10 cm−1). Direct detection of absorption has advantages is in contrast
with optical cycling techniques; for example, in YbOH, pumping into the 4 𝑓 states would require
∼ 7 lasers.

4.4.2 Unassigned Bands
In this section, we overview the many transitions that have been observed in YbOH in the

range from 17300 − 19000 cm−1. Ref. [217] performed initial survey spectroscopy with DLIF and
excited state lifetime measurements. Meanwhile, in Ref. [335], REMPI spectroscopy was used to
distinguish YbOH features from overlapped YbOCH3 lines, and to perform spectroscopy on YbOD.
In both references, the transitions are labeled according to their wavenumber in cm−1, divided by
1000. For example, the �̃� − �̃� band at 17323 cm−1 would be labeled as [17.32].

Transitions between the �̃� and �̃� vibrational manifolds can be grouped into various frequency
ranges according to the change in vibrational quantum numbers. In an approximately harmonic
approximation, Δ𝑣1 = Δ𝑣2 = 0 transitions are found in the∼17300−17400 cm−1range. Meanwhile,
Δ𝑣1 = 1 transitions are found around 17900 cm−1, and Δ𝑣2 = 1 transitions around ∼17600− 17700
cm−1, and so on. The proximity of different transitions with the same Δ𝑣 indicates roughly similar
ground and excited state vibrational energies, which is related to the diagonal nature of the FCFs.

We begin discussion of the states of YbOH with the [17.73] state. This is an Ω = 1/2 excited
state at 17731 cm−1 that has been identified to have significant 4 𝑓 character [217]. The assignment
is made both due to its ∼5 times longer lifetime compared to the �̃�2Π1/2(000) state, and due to
its rotational splittings in high-resolution spectra13. This state has also been successfully used for
repumping population during laser cooling [106], confirming its assignment. Finally, this state was
observed in a recent REMPI study [335], which studied the spectra of YbOD. The replacement
of H with D, known as deuteration, can help better understand vibrational structure, with prior
application in CaOH/CaOD [147] and GeCH/GeCD [312]. Continuing, the YbOD spectra in
Ref. [335] exhibited a feature shifted to the blue by 6 cm−1. This shift was taken as an indication
that the state does not have significant bending content. For comparison, the origin band is also

13Private communication with Tim Steimle.
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shifted by a small amount upon deuteration, roughly 5 cm−1 to the red [335].

At Caltech, we have performed high-resolution FM spectroscopy on two unassigned bands,
denoted [17.64] and [17.68]. These bands were observed in both Ref. [217] and Ref. [335]. Our
characterization of these bands, including observed transition frequencies, is provided in Ref. [161].
We were unable to correlate these bands to the ground �̃� (000) state using depletion tests. However,
we mention a few relevant observations. First, the [17.68] spectra exhibits a significant gap in
the center of the spectra, ∼1 cm−1 wide. This could correspond to a Σ − Σ transition, which is
expected to have a “𝑄 gap” with size given by 4𝐵′, where 𝐵′ is the excited state rotational constant.
Furthermore, Ref. [335] found the [17.68] transition was blue-shifted by 19 cm−1, and concluded
the state does not have significant bending content.

In Ref. [335], the deuterated counterpart to the [17.64] transition could not be observed at
all. The authors of Ref. [335] postulate this could mean the [17.64] excited state has bending
character. As they explain, it is possible the band borrows intensity in YbOH via an accidental
near-degeneracy that is not present in YbOD. Here, we expand on their explanation. The bending
frequency shift upon deuteration for an XY-H molecule is given in Ref [312], which is in turn taken
from Herzberg [305]. The ratio is:

𝜔2,D

𝜔2,H
=

√√√√√ 𝑟2
YbO
𝑚𝐷
+ 𝜉

𝑟2
YbO
𝑚H
+ 𝜉

(4.30)

𝜉 =
𝑟2

OH
𝑚Yb
+ (𝑟YbO + 𝑟OH)2

𝑚O
. (4.31)

Using the parameters for the YbOH ground state [290], we obtain 𝜔𝐷/𝜔𝐻 = 0.748. Note this is
similar to the naive scaling of the reduced mass as 1/

√
2. We can therefore use the 𝜔2 value of

YbOH to estimate the YbOD value as 𝜔2,D ≈ 240 cm−1. In addition to changing the vibrational
ladder spacings, deuteration also affects zero point energies. For diagonal 𝛿𝑣2 = 0 transitions,
the effect of deuteration is largely common mode between the ground and excited states, which is
why the origin shift is only ∼5 cm−1. However, if the transition in question is off-diagonal, with
Δ𝑣2 = ±1, then we expect deuteration to have a significant effect. If the ground state has larger
𝑣2 than the excited state, then the transition should shift to the blue by ∼80 cm−1. On the other
hand, if the excited state has larger 𝑣2, then the transition will shift to the red by roughly the same
amount. In the spectra of Ref. [335], the region 80 cm−1 to the blue is explicitly shown as having
no features. However, the region to the red is not shown. If the deuterated shift were to pull the
transition 80 cm−1 to the red, this would mean the [17.68] is a 𝛿𝑣2 = +1 line that connects to an
excited state with 1 more bending quanta than the ground state. These arguments also give us
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reason to believe that the transitions in Ref. [335] observed with relatively small deuterated shifts
are likely Δ𝑣2 = 0.

We briefly mention two other bands here that have observed in our source at Caltech. We
have observed lines in high-resolution in the following ranges: 17345 − 17346 cm−1, denoted
[17.34] and 17394 − 17395 cm−1, denoted [17.39]. Originally, the [17.34] was thought to be the
�̃� (010) → �̃�(010) line, though now we know that is definitely not the case. This could instead
by another diagonal transition involving other bending ground and excited states. Meanwhile,
the [17.39] band was originally thought to be the �̃� (010) → [17.73] transition. However, with
our determination of the bending mode frequency, such a band should instead be at 17411 cm−1,
which makes the [17.39] assignment a mystery. We note the [17.39] band has a 𝑄-branch like
structure, and the absorption signal was experimentally found to saturate with a saturation intensity
of ≈88 mW/cm2. This is ∼10× is weaker than the origin band, indicating this excited state could
have mixed 4 𝑓 character.

We also mention two more un-assigned transitions from Ref. [217]: the weak [17.71] band, and
a reasonably strong transition at 17900 cm−1, labeled [17.90]. The only information we have about
[17.71] is that it is weak and has a long vibrational progression in the DLIF. On the other hand, the
[17.90] transition is very close to the �̃� (000) → �̃�(100) band at 17908 cm−1, and was observed
to have similar lifetimes and DLIF as the �̃�(100) state. This transition was not observed in the
deuterated spectra of Ref. [335], attributed to the signal being below the noise floor. Nonetheless,
the observation of the [17.90] band so close to the Δ𝑣1 = 1 line out of �̃� (000) could indicate
[17.90] is also a Δ𝑣1 = 1 transition, but originating instead out of 𝑋 (100).

Additionally, another excited state has been observed in fluorescence at ∼18577 cm−1 [339].
This state has been attributed to have Ω = 3/2 character, suggesting assignment as the 2Π3/2

component of the �̃� state. This would put the spin-orbit splitting at ∼1254 cm−1. However,
Zeeman tuning indicates a reduced g-factor from expectation [339], indicating the possibility of
mixing with another state, possibly a Δ3/2 state with 4 𝑓 character. This band is overlapped with
excitation of the [557] band in YbF (labeled according to different convention) [291, 340].

Recently, the �̃�2Σ+1/2(000) state was observed in REMPI spectroscopy [337]. The origin of the
state was found to be 20473 cm−1, and the lifetime was 31(5) ns. The state was perturbed, limiting
the accuracy of the medium-resolution spectral fit.

4.4.3 Reassignment
Here, we suggest an avenue for re-assignment of the YbOH excited state spectrum. We focus

on the interpretation of the [17.34], [17.39], [17.64], [17.68], and [17.71] features. We propose
these transitions arise out of the excited bending modes of �̃�2Σ+. Indeed, this was the case with
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Figure 4.18: An energy level diagram of the lowest lying bending levels of the �̃� , �̃�, and [17.73](Ω =

1/2) manifolds. Diagram not to scale. The splitting of �̃� (020) indicates the anharmonic splitting
of the ℓ = 0, 2 levels. Lines marked with “?” are potential re-assignments. See main text for
details.

the previously unknown [17.33] band. Further, we propose the excited state they connect to is a
mixture of bending states with combined �̃�2Π1/2(020) and [17.73](010) character.

The situation is illustrated schematically in Fig. 4.18. For now, we only consider bending modes,
so we abbreviate (0𝑣20) as simply 𝑣2. The 𝑣2 = 0 origin of �̃�2Π1/2 is located at 17323 cm−1. In
this chapter, we identified the 𝑣2 = 1 state of �̃�2Π1/2 at 17651 cm−1. Naturally, the 𝑣2 = 2 state
should be located higher by approximately one quanta, at approximately ∼17980 cm−1. This state
will be split into three Ω = 1/2 vibronic components [295], designated 𝜇2Π1/2, 𝜇2Π3/2, and 2Φ5/2.
The origins of the states can be understood as follows: the Φ state is the “stretched” configuration
corresponding to ℓ = 2 and Λ = 1 fully aligned. We can also imagine an anti-aligned state with
with ℓ = 2 and Λ = −1, giving us 2Π3/2 by virtue of our Ω = 3/2 restriction. To obtain the 2Π1/2

state, recall that the two bending quanta in 𝑣2 = 2 can be anti-aligned as well14, which gives us
14“Projection quanta” must always be aligned or anti-aligned with the internuclear axis, unlike an ordinary 𝐽 = 1
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ℓ = 0. In such a case, our vibronic state just looks like the 2Π1/2 origin, except shifted up by the
vibrational energy 2𝜔2.

We expect all of the �̃�2Π1/2(020) states to be scattered around ∼17960−18000 cm−1. Inciden-
tally, this range is overlapped with the very strong 3𝑃1 atomic Yb feature at 17992 cm−1. Atomic
Yb emission was a contaminant in the DLIF taken in Ref. [217]. As a result, it is very possible that
any blue YbOH decays near the Yb line would have been drowned out and missed. Therefore we
suggest retaking the YbOH excited state spectrum in the 17960 − 18000 cm−1 region, making sure
to account for Yb emission.

Now we consider the [17.73], Ω = 1/2 perturbing state with a hole in the 4 𝑓 orbital. Though
Λ is not a good quantum number in Hund’s case (c), this state can be thought of as deriving from
the 2Π1/2 configuration. The origin of this state is at 17731 cm−1. The first excited bending state,
very naively, would be at ∼ 17731 + 330 = 18061. Recall in YbF, the interaction that mixes 4 𝑓
states with the �̃�manifold has ∼100 cm−1 strength. Since YbOH is isoelectronic to YbF, we expect
a similar coupling strength. Therefore the �̃�2Π1/2(020) manifold will be perturbed by the 𝑣2 = 1
states of [17.73]. Further, we note if we think of [17.73] as a 2Π1/2 state, then in 𝑣2 = 1 we obtain
two states, 2Σ1/2 and 2Δ3/2. Of course, since Λ is strongly mixed in 4 𝑓 states, we will also have
some mixture of Λ = Δ and Φ as well.

We therefore expect a total of 5 vibronic states in the approximate region given by ∼17950 −
18050 cm−1. Three states derive from �̃�, 𝑣2 = 2, while two derive form [17.73], 𝑣2 = 1. The
mixing between these vibrational manifolds means 𝑣2 is no longer well-defined. As a result, if we
consider driving transitions to these vibronic states from the ground 𝑣′′2 = 1, 2 states, we expect
transition strength for both Δ𝑣2 = 0 and Δ𝑣2 = 1. This would explain why the transitions from
𝑣′′2 = 0 would be weak in comparison.

Earlier in Sec. 4.3.1, we mentioned Refs. [310, 311] had developed a theoretical treatment
of the Renner-Teller effect that includes a linear relativistic coupling term. They connected their
term to the mixing interaction causing Sears resonances in experimental studies of GeCH [312]. A
Sears resonance refers to an effective operator of the form 𝑞±𝑆∓, where ± denote the usual ladder
operators in the molecule frame, 𝑞 is the normal coordinate of the bending mode, and 𝑆 is the
electron spin. Effectively, the form of this interaction mimics the 𝐿±𝑆± form of the transverse
spin-orbit interaction, but with the bending angular momentum instead. This makes sense in the
relativistic limit, as we can no longer distinguish Λ from 𝛴, and we are already familiar with 𝐿±𝑞∓
terms from the dipolar Renner-Teller Hamiltonian. The coupling of 𝛴 and ℓ preserves 𝑃, so the
interaction will occur when states with the same 𝑃 come near degeneracy. In GeCH, this happens
when the manifolds separated by Δ𝑣2 = ±1 are pushed together by the spin-orbit interaction.
that has an 𝑀 = 0 projection.
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However, in YbOH, this can occur due to the overlap of two different vibrational manifolds in two
separate electronic states, �̃�2Π1/2 and [17.73]. Therefore we expect relativistic vibronic mixing
between [17.73]2Δ3/2 ↔ �̃�𝜇2Π3/2 and [17.73]2Σ1/2 ↔ �̃�𝜇2Π1/2. This is on top of whatever
resonances and mixings may occur within the vibronic manifolds of a given electronic state, such
as the 𝐾-resonance we observed in �̃�2Π1/2(010).

We now consider the lowest ground states with excited bending vibration, �̃� (010) (𝐸 =

320 cm−1, experiment), �̃� (0200) (𝐸 = 627 cm−1, experiment), and �̃� (0220) (𝐸 = 654 cm−1,
theory). If we perform combination differences of these vibrational levels with the transition
frequencies of the [17.64], [17.68], [17.71], [17.34], and [17.39] bands, we notice a pattern. If
the [17.64], [17.68], and [17.71] bands originate from �̃� (010), their true excited state origins
(compared to the absolute ground state) are at 17960 cm−1, 18000 cm−1, and 18030 cm−1. This is
right in the region where the �̃�2Π1/2(020) manifold and [17.73] (010) manifolds are expected to
lie. Additionally, if the [17.34] and [17.39] bands are taken to originate from �̃� (0200), their origins
are then at 17972 cm−1 and 18021 cm−1. Once again this is the region of interest with the 𝑣2 = 2
and 𝑣2 = 1 overlap. It is very possible that all of these bands are addressing a cluster of states near
∼18000 cm−1, which was not observed in the original DLIF studies due to Yb atom contaminant.

We caution that this discussion is speculative. Nonetheless, if we can better determine the
location of the �̃�2Π1/2(020) manifold, we can begin the task of deperturbing the 4 𝑓 state mixing
in YbOH, similar to that which has been done in YbF [291]. The spectra of YbOH is interesting in
its own right from a spectroscopy perspective, owing to strong mixings and the emergence of new
patterns and degrees of freedom, much as we saw with orbital angular momenutm quenching in the
�̃�2Π1/2(010) 𝐾-resonance. Addititionally, the deperturbation of YbOH is an important step toward
repumping the 4 𝑓 state decays, and eventually trapping YbOH molecules for EDM measurements
with orders-of-magnitude improved sensitivity to BSM physics.
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5
State Preparation and Measurement

Now this is podracing!

–Anakin Skywalker

5.1 Introduction
In this chapter, we discuss the development of state preparation and readout schemes for

precision measurements on linear polyatomic molecules. Any quantum precision measurement
experiment requires such protocols. As usual, molecules present unique challenges for coherent
control, but also they provide numerous additional handles for control that are lacking in atoms.
In particular, arguably the most important handle afforded by molecules is control over the ori-
entation of the body-fixed rotation of the molecule. Indeed, this is the primary draw of working
with polyatomics—the projection of angular momentum on the internuclear axis provides natural
opposite parity states. As a result of angular momentum coupling, the internuclear axis can be
coupled to external fields, allowing for manipulation, control, and state engineering.

We begin with an introduction of relevant concepts for precision measurements with molecules.
In Section 5.1.1, we first overview of two essential techniques for performing quantum measure-
ments, namely Rabi and Ramsey interferometry. We then briefly review the schemes used by
existing molecule experiments, namely ACME [11] and JILA [10], to perform state preparation
and readout.

In Section 5.2 we move on to describing initial state preparation tests in YbOH using coherent
population trapping (CPT). We first overview the connection of CPT to dark states. We discuss
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difficulties with CPT that arise when working with species with unresolved hyperfine structure in
the ground and excited states. We demonstrate a method for circumventing this issue by using
circularly polarized light to perform spin precession in the �̃� (000) ground state of YbOH.

Then, in Section 5.3, we present state preparation and readout tests performed on the �̃� (010)
state in YbOH. For these tests, we use two-photon resonances, which encompass both resonant
CPT and detuned Raman transitions. We demonstrate the power of two-photon transitions by
performing hyperfine resolved spectroscopy on the 𝑁 = 1 manifold of the �̃� (010) state. Finally,
we conclude by using two-photon transitions to perform Ramsey interferometry in the �̃� (010) state
in the presence of a magnetic field. The results of this section can be immediately generalized to
precision measurements of 𝑃,𝑇 violating physics in YbOH.

Finally, in Section 5.4, we present prototype electron EDM (eEDM) sensitive measurements
in optically trapped CaOH. For these results, we collaborate with the Doyle group at Harvard.
Trapped polyatomic molecules are particularly promising avenue for next-generation searches for
𝑃,𝑇 violation. We prepare ultracold CaOH molecules in a single quantum state, polarize them
in an electric field, and use microwaves to perform Ramsey interferometry in an eEDM sensitive
state. To extend the coherence time of the measurement, we utilize eEDM sensitive states with
tunable, near-zero magnetic field sensitivity. Such “zero 𝑔-factor” states are generic in polyatomic
molecules with parity doubling. Our results demonstrate the power of quantum state engineering for
EDM searches, and provide a clear pathway towards orders-of-magnitude improved experimental
sensitivity to 𝑃,𝑇 violating physics.

5.1.1 Rabi and Ramsey Interferometry
There are two techniques primary techniques for perfomring measurements of the frequency

difference between two quantum mechanical levels: Rabi and Ramsey measurements. We breifly
review these techniques, with a focus on Ramsey measurements.

We consider a two-level system. We note in advance that some of the factors of 2 in our
discussion will need to be modified to deal with an arbitrary multi-level system, see Ref. [67] for
details. Proceeding, we denote the states |0⟩ and |1⟩, with the bare Hamiltonian 𝐻0 = −1

2𝜔01𝜎𝑧.
We wish to measure the frequency splitting 𝜔01. In both Ramsey and Rabi schemes, we have two
tools available: the action of unitary operators that couple |0⟩ ↔ |1⟩, and the ability to perform
projective measurements in the {|0⟩, |1⟩} basis. As a result of our ability to perform projective
measurements, we can generically take the initial state to be |0⟩. The special case of 𝜔01 ∼ 𝜏−1 is
that of spin precession measurements. In general, when 𝜔01 ≫ 𝜏−1, we have a situation analogous
to that in atomic clocks. The difference is simply whether the spin precession occurs in the lab
frame (precession) or rotating frame (clocks). In practice this distinction is not consequential, and
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we may refer to time evolution in either case as “precession.”

In the Rabi scheme, we apply a near-resonant AC coupling at a frequency 𝜔 = 𝜔01 + Δ, where
we have defined the detuning Δ. The Hamiltonian is now given by

𝐻 = 𝐻0 + 𝐻𝑖𝑛𝑡 = −
1
2
𝜔01𝜎𝑧 +

1
2
𝑒−𝑖𝜔𝑡Ω𝜎𝑦 (5.1)

with Ω the Rabi frequency for the drive oscillating at frequency 𝜔. We have chosen the phase of Ω
such that it aligns along 𝜎𝑦 for convenience. In the frame rotating at 𝜔, the Hamiltonian becomes

𝐻𝑅 = −1
2
Δ𝜎𝑧 +

1
2
Ω𝜎𝑦 . (5.2)

We can either solve the time-dependent Schrodinger equation for |𝜓(𝑡 = 0)⟩, or we can diagonalize
𝐻𝑅 and expand |𝜓(𝑡 = 0)⟩ in terms of eigenstates with time evolution given by an energy dependent
phase factor. Either way, we find that the population undergoes Rabi oscillations between the two
states, |0⟩ ↔ |1⟩. In the Bloch sphere, we can think of the state vector as undergoing rotations
about some vector with polar angle 𝜃 = arctan (Ω/Δ). This reduces to 𝜃 = 𝜋/2 in the resonant limit,
indicating rotations about the 𝑦 axis of the Bloch sphere (the choice of rotation axis is arbitrary and
determined by the drive phase).

We stop applying the coupling after an interaction time 𝜏, and then perform a projective
measurement of |𝜓(𝑡 = 𝜏)⟩ in the |0⟩, |1⟩ basis. The probability of measuring the population in
state |1⟩ is given by [213]:

𝑃1(Δ, 𝜏) =
Ω2

Ω̃2
sin2

(
Ω̃𝜏

2

)
(5.3)

where we have defined the generalized Rabi frequency Ω̃ =
√
Ω2 + Δ2. The function defined by

eq. 5.3 is plotted in Fig. 5.1 as a function of Δ. The width of the lineshape is given by ∼ Ω, and the
oscillations of 𝑃1 that occur with varying Δ are known as Rabi fringes. Various inhomogeneities
and imperfections will result in broadening of this Rabi lineshape. For an EDM measurement, we
perform a differential measurement, and so we care about the slope of the lineshape.

To elaborate further, we write 𝜔01 → 𝜔01 ± 𝜖 , where 𝜖 ≪ 𝜔01 represents a small energy shift
we would like to measure, such as an EDM shift. The ± sign represents our ability to reverse the
EDM interaction. If we keep the frequency of the coupling interaction fixed at 𝜔, then the EDM
shift shows up as modifications to the detuning, which we parameterize as Δ ∓ 𝜖 . We are therefore
interested in the population difference represented by 𝛿𝑃1 = 𝑃1(Δ + 𝜖, 𝜏) − 𝑃1(Δ− 𝜖, 𝜏). For small
𝜖 , this is essentially the derivative, scaled by 𝜖 , and we can write the measurement sensitivity as
𝜖 |𝜕𝑃1/𝜕Δ|. We have written the absolute value to indicate we are agnostic about the sign of the ±𝜖
shift.



170

To maximize measurement sensitivity, we want to choose the drive detuning such that we are
sitting on one of the Rabi fringes where the slope is large. We choose Ω𝜏 = 𝜋, which corresponds
to a single “Rabi flop” on resonance. This turns out to maximize the slope, and is technically
convenient as we do not have to deal with dispersion from many Rabi flops. The sensitivity is then
maximized by detuning the drive by Δ ∼ Ω.

There are some drawbacks to the Rabi measurement scheme, however. The applied fields are
always on during the interaction time, and so the measurement is sensitive to fluctuations of Ω and
Δ in the bandwidth given by 1/𝜏. For long 𝜏, we become more and more sensitive to 1/ 𝑓 noise.
Maintaining homogeneity in Δ is a matter of controlling ambient fields and field sensitivities, and
we will have to deal with this in the Ramsey scheme as well. However, maintaining Ω, which
is often the coupling of an oscillating field, can be challenging, as it requires control over the
amplitude and polarization of an oscillating field. Further, near resonant fields such as Ω can cause
light-shifts of the transition we wish to measure, compounding the results. Finally, when𝜔01 ≈ 𝜏−1

as in the case of spin precession measurements, we may be hard pressed to find amplitude stable
sources of oscillating fields at frequencies of ∼1 kHz for a beam and ≲1 Hz for a trap.

In the scheme of Ramsey interferometry, we no longer apply the resonant coupling during the
interaction time 𝜏, and the measurement is said to “happen in the dark.” Instead, we split the
application of the resonant field to two short “Ramsey” pulses, with pulse time 𝑡𝑝 ≪ 𝜏. One pulse
begins the measurement at 𝑡 = 0, and one pulse ends the measurement at 𝑡 = 𝜏.

As with before, the molecules begin in state |0⟩. At 𝑡 = 0, we apply the first Ramsey
pulse, turning on the same resonant coupling 𝐻𝑖𝑛𝑡 ∝ 𝜎𝑦 as before, and performing the same
transformation into the rotating frame. Unlike the Rabi case, we choose the drive frequency 𝜔 to be
close to resonance, Δ/𝜔01 ≪ 1, and we optimize the pulse strength, Ω, such that Ω𝑡𝑝 = 𝜋/2. This
implements a 𝜋/2-pulse, a rotation of the state from |0⟩ to the superposition |𝜓⟩ = 1√

2
( |0⟩ + |1⟩).

In the Bloch sphere, the rotation occurs about the 𝑦 axis. We note we can choose the phase of the
initial superposition with the appropriate choice of the Ω drive phase.

As an aside, we note that the intial preparation Ramsey pulse need not be a dynamic 𝜋/2-pulse.
In the case of the ACME experiment, for example, the preparation pulse is instead a projection of
the state onto a basis of optical bright and dark states. After a few photon scatters, the bright state is
pumped out, and the remaining dark state can be used for Ramsey measurements. We will further
discuss such a scheme later in this chapter.

With the initial Ramsey pulse over, the molecules now evolve according to 𝐻0 alone. In the
lab frame, the superposition |𝜓⟩ undergoes oscillations at the 𝜔01 frequency, with time evolution
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given by:

|𝜓(𝑡)⟩ = |0⟩ + 𝑒
−𝑖𝜔01𝑡 |1⟩
√

2
. (5.4)

Here we have used the global phase invariance of quantum mechanics to rewrite the phase evolution
all on the |1⟩ for convenience. This is where a spin precession measurement diverges from a clock
measurement. For spin precession, we recall 𝜔01 ≈ 𝜏−1, and we seek to measure the phase accrued
in the lab frame. In the case of a clock, however, 𝜔01 ≫ 𝜏−1, and the state |𝜓(𝑡)⟩ evolves rapidly
in the lab frame. In such a case, the drive phase, which is initially coincident with |𝜓(0)⟩, is also
rotating, but at a frequency 𝜔.

Therefore, by transforming into in the frame rotating at 𝜔, the time evolution is determined by
the detuning instead:

|𝜓(𝑡)⟩𝑅 =
|0⟩ + 𝑒−𝑖Δ𝑡 |1⟩
√

2
(5.5)

where we use the subscript 𝑅 to explicitly denote the rotating frame. We see that the rotating frame
allows us to simplify the picture of the dynamics. In general, the evolution of the state is governed
by the detuning Δ, which can be controlled in the experiment to good degree. If we somehow have
Δ = 0, then the state actually does not undergo phase evolution in the rotating frame at all!

Now, after 𝑡 = 𝜏, we re-apply the same 𝜋/2-pulse as we did in the prep Ramsey beam, denoted
as the readout Ramsey pulse. We then perform a projective measurement in the |0⟩, |1⟩ basis. For
zero detuning, the prep 𝜋/2 and readout 𝜋/2 pulses combine to transfer all population to the |1⟩
state.

For small non-zero detuning, such that the Ramsey pulses are still approximately good 𝜋/2
pulses, |𝜓(𝜏)⟩𝑅 is rotated in the Bloch sphere by an angle 𝜙 = Δ𝜏 relative to its starting point along
𝑥. If the drive is taken to be along the 𝑦 axis of the rotating frame Bloch sphere, then we see it
can only rotate the component of |𝜓(𝜏)⟩𝑅 that remains along the on the 𝑥 axis. For example, when
Δ𝑡 = ±𝜋/2, the readout pulse does not rotate the state at all. Generalizing, we see the readout Ramsey
pulse therefore maps the projection remaining along |𝜓(0)⟩ onto the |0⟩, |1⟩. We can compute the
probability of measuring |1⟩ by considering the projection |⟨𝜓(0) |𝜓(𝜏)⟩|2 = cos2 Δ𝑡/2.

For the case of arbitrary detuning Δ, we can generalize these arguments to obtain:

𝑃1(Δ, 𝑡𝑝, 𝜏) = 4
Ω2

Ω̃2
sin2

(
Ω̃𝑡𝑝

2

) [
cos

(
Δ𝜏

2

)
cos

(
Ω̃𝑡𝑝

2

)
− Δ

Ω̃
sin

(
Δ𝜏

2

)
sin

(
Ω̃𝑡𝑝

2

)]2

(5.6)

where we have defined Ω̃ =
√
Δ2 +Ω2 as before, 𝑡𝑝 are the Ramsey pulse times, and 𝜏 is the

interaction time. We will find it convenient to parameterize the ratio of pulse time to interaction
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Figure 5.1: Rabi and Ramsey lineshapes, plotted as a function of unitless detuning Δ𝜏, where 𝜏
is the interaction time. For the Rabi lineshape, we fix the condition Ω𝑅𝑎𝑏𝜏 = 𝜋. For the Ramsey
case, we fix Ω𝑅𝑎𝑚𝑡𝑝 = 𝜋/2, and set 𝜏 = 𝜂𝑡𝑝, with 𝜂 = 0.1. Plots (a) and (b) are with no velocity
dispersion. For plots (c) and (d), we add velocity dispersion given by 𝜎𝑣/𝑣 = 0.1, which is a
conservative estimate. Dispersion is modeled by random sampling from a Gaussian distribution.
We use light shading to indicate 1-𝜎 variation of the readout signal.
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time, 𝑡𝑝 = 𝜂𝜏. For a 200 m/s molecule beam with 𝜏 = 1 ms and a 1 cm pulse region, we have
𝜂 ≈ 0.05.

We compare the Ramsey and Rabi lineshapes, plotted in Fig. 5.1 as a function of Δ 𝜏. The
Ramsey lineshape 𝜂 = 0.1, a conservative estimate. We note both measurements have zero slope
at zero detuning, requiring us to move off resonance to obtain differential sensitivity. This can be
achieved either by purposefully applying a detuning to𝜔, or, unique to the Ramsey case, by applying
a 𝜋/2 phase shift to the readout Ramsey pulse compared to the prep Ramsey pulse. Additionally,
we can see the Ramsey lineshape has many more fringes available for measurement compared to
the Rabi lineshape. The Ramsey lineshape is noticeably plotted on a different detuning scale than
the Rabi lineshape–the Δ scaling, and therefore the width of the overall Ramsey feature, is set by the
size of 𝜂, the ratio of the pulse time to the interaction time. At very large Δ, the contrast decreases,
as now the Ramsey pulses barely rotate the state. However, we caution that the picture changes if
we incorporate velocity dispersion, which impacts Ramsey measurements more significantly than
Rabi measurements.

So far, our discussion has been generic to a beam or a trap, and now we discuss differences in the
two approaches. In a beam, we must contend with spatial field inhomogeneities, velocity dispersion,
and finite molecule pulse width. Our beams are characterized by mean velocity 𝑣 ∼ 200 m/s and
dispersion 𝜎𝑣 ∼ 10 m/s, with interaction times of order 𝜏 ∼ 1 ms. Further, the molecular beam
itself is ≳20 cm long, making it challenging to pulse on/off state preparation and readout–instead,
we must apply our operations in a continuous-wave fashion, manipulating the molecules as they fly
through radiation fields. The case of a trap is more straightforward, as we can simply pulse on and
off state manipulations. Also, it is easier to control ambient fields in a trap than a beam, owing to
the much smaller spatial extent of the trap (≲ mm3).

We focus on velocity dispersion, which causes a variation of the interaction time 𝛿𝜏 = −𝜏𝛿𝑣/𝑣
in both Rabi and Ramsey cases. In the Ramsey case, velocity dispersion will also result in similar
variation of 𝑡𝑝, though this effect will be minor in comparison. We model this dispersion by
sampling values for 𝛿𝜏 taken from a Gaussian distribution with variance 𝜎𝑣/𝑣 = 0.1, which we note
is a conservative estimate for a CBGB1. The effects of velocity dispersion are shown in Fig. 5.1.
The Rabi shape is only slightly broadened, while the Ramsey shape changes significantly. For large
detunings, the measurement results have large spread, and upon averaging the fringes are reduced
in size. We can understand the loss of fringe contrast as resulting from dephasing, which will be
significant when Δ𝛿𝜏 ≳ 𝜋.

Finally, in Fig. 5.2, we directly compare the two methods on the same detuning scale using equal
1Our velocity dispersion is closer to 𝜎𝑣/𝑣 ≈ 0.05.
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Figure 5.2: A comparison of Rabi and Ramsey lineshapes Rabi and Ramsey lineshapes, plotted
as a function of unitless detuning Δ𝜏. We use the same parameters as Fig. 5.1 and explicitly set
the interaction times equal. (a) Rabi and Ramsey lineshapes with velocity dispersion 𝜎𝑣/𝑣 = 0.1,
which is a conservative estimate. The line widths indicating 1-𝜎 variation. (b) Derivatives of the
lineshapes, representing differential sensitivities, normalized by the maximum value of the Rabi
sensitivity. With dispersion, the maximum Ramsey sensitivity is ≈0.54 and the maximum Rabi
sensitivity is ≈0.29.

interaction times2. Even with the velocity dispersion, the lineshapes are not affected significantly
near the resonance. Furthermore, the Ramsey slope is clearly larger than the Rabi slope, resulting
in improved measurement sensitivity. In passing, we mention the spin-echo technique [213, 341],
which can be used to improve sensitivity to dispersion in a Ramsey measurement.

The choice of Rabi or Ramsey is unique to each experiment. In the discussion presented in
this section, we see that Ramsey is more sensitive, but only by a factor of order unity. Finally,
in our analysis, we have neglected another, intrinsic source of noise–quantum projection noise
(QPN), which is discussed in Ch. 1. Unless we use entangled states [342], the precision of a
phase measurement with either Ramsey or Rabi will scale like 𝑁−1/2, where 𝑁 is the number of
independent measurements.

5.1.2 Molecular EDM Experiments
To measure an EDM in any system, experiments proceed by first applying an electric field

to the system in question, breaking parity symmetry. As discussed in Ch. 1, this is necessary to
make the 𝑃 violating EDM shifts observable. The free-field Hamiltonian 𝐻 commutes with the

2For equal 𝜏, we obtain the relationship between the optimal Rabi rates as Ω𝑅𝑎𝑚𝑠𝑒𝑦 = Ω𝑅𝑎𝑏𝑖/(2𝜂).
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parity operator P, and therefore EDM shifts, which are parity-odd, vanish in free-field. This can
be seen, for example, by explicitly writing a given parity state in Hund’s case (a), where it forms
superposition of±Σ states (Σ = 𝑆 · �̂�), which have opposite EDM shifts and cancel. By mixing these
projection states, we break parity symmetry and create states of the molecule with well defined
orientation in the lab frame. In solid state systems [343], this polarization occurs via the crystal
lattice, while in molecular gas measurements, we typically apply an external electric field.

The choice of “science state” in a molecule is motivated by the desire for good EDM sensitivity
as well as favorable molecular structure. The 3Δ1 states in ThO and HfF+, for example, both provide
two important features: 1) the states have g-factor cancellation arising from the anti-alignment of
Λ and Σ, resulting in 𝑔 ∼ 𝜇𝐵/50. 2) The states have small parity-doublets from the Ω-doubling,
with the parity splitting measured to be ≈400 kHz in the lowest 𝐽 = 1 state of ThO [344]. The
parity doublets allows for full polarization in low fields, as well as control over the sign of the
EDM interaction (Σ) without changing external fields. Both of these features have proven crucial
for state-of-the-art EDM measurements [10, 11, 17].

In the Advanced Cold Molecule Experiment (ACME), an eEDM measurement is performed
via Ramsey interferometry on opposite electron spin states in a beam of polarized ThO molecules
in the metastable 𝐻3Δ1 state. Details can be found elsewhere [11, 41, 67, 100]. Here, we focus on
the state preparation and measurement scheme to motivate our work with YbOH.

The molecule beam flies downstream, passing through various laser beams and electromagnetic
fields, implementing a sequence of preparation, measurement, and readout. The molecules begin
in the 𝑋1Σ ground state and are first optically pumped into the 𝐻3Δ1 state, similar to how we have
to populate the science state in metal hydroxides with optical pumping. Then, the molecule beam
enters an interaction region with magnetic and electric fields pointing along �̂� , and lasers beams in
two regions, one for preparation usptream, and the other downstream for readout.

The EDM measurement state in the ACME experiment is a superposition of 𝑀 = ±1 levels in
a 𝐽 = 1 state with well-defined molecule dipole orientation. This superposition is sensitive to 𝑇
violating effects, which shift ±𝑀 levels oppositely. We may write the state as

|𝜓(𝜙)⟩ = 1
√

2

(
|𝑀 = 1⟩ + 𝑒𝑖𝜙 |𝑀 = −1⟩

)
. (5.7)

The quantization axis here is taken to lie along �̂� , in the direction of the applied polarizing electric
field. The ACME experiment works in the basis [67] given by |𝑋⟩ B |𝜓(0)⟩ and |𝑌⟩ B |𝜓(𝜋)⟩.
In the language of angular momentum polarization, |𝑋/𝑌⟩ is an aligned state, lying in a plane
containing �̂� and one of �̂� or 𝑌 , depending on the ± sign. In Figure 5.3, we visualize these states
using the angular momentum probability surfaces, discussed in Appendix E. These visualizations
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Figure 5.3: The angular momentum probability distribution for the |𝑋⟩ and |𝑌⟩ states used
for the ACME measurement, see main text for details. The distributions are plots of
⟨𝐽, 𝐽 (𝜃, 𝜙) |𝜌 |𝐽, 𝐽 (𝜃, 𝜙) = 𝐽⟩, where 𝑀 (𝜃, 𝜙) = 𝐽 describes the state with maximum projection
in an arbitrary direction. Figures are made using the AtomicDensityMatrix package in Mathemat-
ica.

plot the probability distribution for measuring the maximum angular momentum projection along
a given quantization axis.

The effect of the EDM is to create a differential phase in the superposition, proportional to
the splitting of the T-reversed ±𝑀 states. In terms of the angular momentum distribution, an
EDM means the electric field of the molecule, pointing along �̂� , causes rotation of the probability
distribution about �̂� . The T-violating nature of the EDM is immediately apparent, as a magnetic field
applied along �̂� will also cause the same rotation of the superposition state. We see the superposition
of time-reverse states offers insensitivity to electric field shifts, at the cost of “maximal” magnetic
field sensitivity. Of course, the suppression of the g-factor in the𝐻3Δ1 state aids in this aspect [345].

With the spin precession scheme occuring in the space of ±𝑀 states, the only thing remaining
is to prepare and readout such an aligned state in a Ramsey style measurement. The ACME
experiment prepares the superposition state implementing Coherent Population Trapping (CPT)
with linearly polarized light. We discuss CPT in detail later in Sec. 5.1.3. Here, we will intuitively
explain the connection of linear polarization to the distributions in Fig. 5.3.

Consider the application of �̂� polarized light on a 𝐽′′ = 1 → 𝐽′ = 1 transition. Due to the
selection rules from the Wigner-Eckart theorem, the 𝑀′′ = 0 ground state is not coupled to the
excited state and is a dark state (the photon’s momentum must go somewhere!). On the other hand,
the 𝑀 = ±1 are coupled to the excited state and are optically pumped away. If we visualize the
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angular momentum probability surface of just the 𝑀 = 0 state that remains, we see it looks exactly
like the surfaces in Fig. 5.3, except rotated such that the torus lies in the �̂�𝑌 plane. This makes
sense, as 𝑀 = 0 should have no probability density along �̂� . Due to rotational invariance, this
means the |𝑋⟩ and |𝑌⟩ states are also dark states generated by the application of linearly polarized
light, but this time light polarized perpendicular to the quantization axis. The linear polarization
axis runs through the center of the torii, determining the angle of the dark state superposition. We
can think of the light polarization as coupling to all co-aligned transition dipoles, pumping them
away and leaving behind dark states that lie perpendicular to the polarization axis.

The ACME experiment begins with the |𝑋⟩ state, prepared by the application of 𝑌 polarized
light3 As spin precession occurs, the applied bias magnetic field rotates the angular momentum
distribution along �̂� , and the state |𝑋⟩ goes from being aligned in the �̂� �̂� plane to aligned the 𝑌 �̂�
plane, transforming into |𝑌⟩. Now, application of the same linearly polarized 𝑌 light will project
the formerly dark superposition partially onto the bright state, causing the emission of fluorescence
containing information about the precession phase. As a technical detail, the ACME experiment
rapidly switches the polarization of the readout beam, ensuring each molecule is illuminated by
both polarization and allowing for normalized readout in each shot.

In summary, the ACME experiment implements a Ramsey measurement using CPT for state
preparation and readout. The JILA experiment performs state preparation in an entirely different
way, essentially using a rotating electric field to implement 𝜋/2-pulses that prepare an EDM
sensitive superposition [346]. The Ramsey measurement then proceeds as usual. We do not
discuss their scheme further, as it leverages aspects unique to their experiment. We do however
note there is an equivalent scheme in a non-rotating frame, using transverse DC magnetic fields
to engineer higher order couplings that implement 𝜋/2 pulses between states of interest, discussed
further in Ref [70].

Naturally, we first attempted to perform state preparation using CPT in YbOH. However, we
soon ran into difficulties from that are absent in ThO and other similar diatomics. The issues in
particular stem from the unresolved hyperfine structure in M-OH molecules. Before we can discuss
our results, we first overview CPT in detail.

5.1.3 CPT and Dark States
First, we present a more detailed quantum mechanical treatment of CPT. We consider a system

with multiple ground and/or excited states. The concept of a rotating frame for a two level system
can be generalized to a multi-level system by appropriate choice of the rotation matrix [347]. In
general, each state in the Hamiltonian can be transformed into a state rotating at some arbitrary

3𝑌 light generating |𝑋⟩ makes sense if we remember |𝑋⟩ is dark to 𝑌 .
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Figure 5.4: A schematic diagram describing coherent population trapping. On the left, we have
two ground states |𝑔1⟩, |𝑔2⟩, connected to the excited state |𝑒⟩ by arbitrary TDMs. We can perform
a change of ground state basis (detailed in the main text) to transform to the optically bright/dark
basis, shown on the right. The bright state |𝐵⟩ is coupled to the excited state, while the dark state
|𝐷⟩ is not. Excited state decays can either repopulate the bright/dark manifold, or they can decay
to different level manifolds dark to the laser, represented by |𝜂⟩.

frequency 𝜔𝑅, which does not necessarily have to be the same for the different states. It is often
most convenient to chose the values of 𝜔𝑅 to coincide with the optical frequencies of the lasers in
the problem, removing the time dependence associated with fast oscillations.

When laser light drives a resonant atomic or molecular transition, depending on the couplings
and degeneracy of the ground |𝑔⟩ and excited |𝑒⟩ states, it is possible to obtain dark states, denoted
|𝐷⟩. Remarkably, despite the presence of resonant radiation, such states are decoupled from the
excited state: ⟨𝑒 |𝐻 |𝐷⟩ = 0. As we shall see, this decoupling occurs as a result of interference
between transition amplitudes from different ground states to a common excited state. Because of
the requirement of common couplings, dark states arise when the number of degenerate ground
states is greater than the number of degenerate excited states, 𝑛𝑔 > 𝑛𝑒. In some cases, depending
on the couplings of ground and excited states, we can also have dark states when 𝑛𝑔 = 𝑛𝑒. Finally,
when 𝑛𝑒 > 𝑛𝑔, all ground states are coupled to excited states, and all eigenstates are “bright states,”
denoted |𝐵⟩.

Dark states provide a resource4 for quantum control via coherent population trapping (CPT) [350].
By projecting a mixed state onto a dark/bright basis, we can purify the mixed state by pumping
out the bright states and retaining the dark states. In addition to its use in state preparation for the
ACME experiment, CPT is used in many different atomic physics experiments [351–356]. CPT
in multi-level atomic systems is discussed in detail in Refs. [357–364]. Further, Refs. [365–369]
discuss/demonstrate CPT using elliptically polarized light, which could possibly be applied to
advanced CPT schemes in molecules to deal with the issues we will encounter in this section.
Dark states also form the foundation for certain adiabatic transfer techniques, such as Stimulated
Adiabatic Rapid Passage (STIRAP) [370, 371].

4In contrast, dark states are an issue for optical cycling in molecules, see Refs. [348, 349].
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We provide a heuristic derivation of dark states in a 3 level system. Consider a Λ system, with
ground states |𝑔1⟩.|𝑔2⟩, and excited state |𝑒⟩, shown in Figure Ṡuppose we couple the ground and
excited states with resonant radiation described by coupling matrix elements Ω1 and Ω2. If we
write the dark state in terms of arbitrary coefficients, |𝐷⟩ = 𝑐1 |𝑔1⟩ + 𝑐2 |𝑔2⟩, we can then consider
the condition ⟨𝑒 |𝐻 |𝐷⟩ = 0, where the Hamiltonian 𝐻 includes the light couplings. In the rotating
frame, we find that |𝐷⟩ is dark if the coefficients satisfy 𝑐1Ω1 + 𝑐2Ω2 = 0. We can now write the
dark state as:

|𝐷⟩ = Ω2 |𝑔1⟩ −Ω1 |𝑔2⟩√︃
Ω2

1 +Ω
2
2

. (5.8)

If the coupling strengths are taken to be equal in magnitude, then the dark state is an equal
superposition of the ground states. In general, such a superposition dark state is referred to as
a coherent dark state. By switching the relative sign of Ω1 and Ω2, we can change the phase of
the coherent dark state, a useful trick employed by the ACME experiment. If we take Ω1 ≫ Ω2,
then we see the dark state is dominated by |𝑔2⟩, and vice versa if Ω1 ≪ Ω2. In any event, we can
always perform a unitary change of basis from the 𝑔1, 𝑔2 basis into the 𝐷, 𝐵 basis, where 𝐵 is the
bright superposition with opposite phase compared to 𝐷. In such a basis, the dark state is explicitly
decoupled from the excited state.

We take a moment to examine in further detail the couplings Ω. Explicitly, these couplings are
Rabi rates, written as ℏΩ𝑖 𝑗 = ⟨𝑖 | ®𝑑 · ®𝐸 | 𝑗⟩, where ®𝐸 is the oscillating electric field. Expanding the dot
product in the spherical tensor basis and pulling out ®𝐸 , we have ℏΩ =

∑
𝑝 (−1)𝑝 ⟨𝑖 |𝑇1

𝑝 (𝑑) | 𝑗⟩𝑇1
−𝑝 (𝐸).

We therefore see that the phase of the coupling arises from two sources: the transition dipole
moment (TDM) matrix element connecting the two states, and the phase of the applied AC laser
field, which is connected to the polarization of the light. This will be an important distinction
later, when we consider the formation of multiple simultaneous Λ-systems with the same light
polarization but different TDMs.

We now expand our discussion from a 3 level system to a case with multiple ground states
coupled to multiple excited states, with 𝑛𝑔 < 𝑛𝑒. As an example, we consider a 𝐽 = 2 → 1
system driven by �̂� polarized light, shown in Figure 5.5(b). We now have have two independent
“linkages”—aΛ system between𝑀 = ±1 in the ground state, and an “M” system between𝑀 = ±2, 0
in the ground state. The Λ-system is the same linkage we encountered earlier. Meanwhile, the dark
states in the M system are superpositions of all the involved ground states. We note we could have
also reached these conclusions by rotating our basis to make our light �̂� polarized.

Earlier, we pointed out that the condition 𝑛𝑔 = 𝑛𝑒 requires specific care. Consider a 𝐽 = 1 →
𝐽 = 1 transition. Recall from Sec. 5.1.2, if we apply light linearly polarized along �̂� , we now have
a single 𝑀 = 0 dark state as a result of selection rules. However, we now consider another 𝑛𝑔 = 𝑛𝑒
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Figure 5.5: Schematic diagram describing CPT linkages in multi-level transitions. Laser couplings
are indicated with full red and dashed green arrows to clearly indicate the various linkages. In
both cases the light is transversely polarized. Rotating to �̂� polarization makes the dark states
self-evident. (a) A 𝐽 = 3/2 → 3/2 transition. In this case we do not have any dark states. (b) A
𝐽 = 2 → 𝐽 = 1 transition. Now we have two dark states. The first results from the “M” linkage,
indicated with red arrows. The other dark state results from the Λ linkage, indicated with green
dashed arrows.

system, this time a 𝐽 = 3/2 → 3/2 transition, indicated in Fig. 5.5(a). We can see that for either
�̂� or �̂� light, all ground states are coupled to multiple excited states, and therefore there will be no
dark states with linearly polarized light. On the other hand, circularly polarized 𝜎± light has trivial
dark states, as we shall see later. In general, the existence of dark states with 𝑛𝑔 = 𝑛𝑒 requires care
in the analysis5. Finally, it is straightforward to show that when 𝑛𝑒 > 𝑛𝑔, there are no dark states.

For multi-level systems, we see the linkages increase in complexity. For more complicated
systems, we can always take the “brute force” approach to finding the dark states by directly
diagonalizing the full Hamiltonian of our system, keeping track of all the various TDM phases.
However, direct diagonalization has difficulty treating degenerate states, requiring us to add small
detunings to enforce the 𝑀 sublevel basis. An alternative approach is to use the Morris-Shore
transformation, which is a generic method for converting a 𝑛𝑔 → 𝑛𝑒 excitation into a series of
bright and dark states. This approach is discussed further in Refs. [349, 357, 373].

We conclude with a discussion of CPT when the ground state degeneracy is lifted. We consider
the scenario from Fig. 5.4, but now we imagine the ground states degeneracy is lifted by a splitting
Δ𝐸𝑔1,𝑔2 = Δ. As with before, we couple the two ground states to 𝑒 with a shared laser beam at a
single frequency. If our laser is resonant with 𝑔1 ↔ 𝑒, then it will be detuned from 𝑔2 ↔ 𝑒 by
the splitting Δ. If we rotate into the bright/dark basis, we find once again that the dark state with
interfering transition amplitudes is not coupled to 𝑒 by the laser interaction. However, in the frame
rotating at the laser frequency, the detuning Δ couples the dark state to the bright state6. Essentially,

5In reality there is no such thing as a pure 𝐽 = 3/2 system that interacts with a photon, as half integer angular
momenta can always be traced back to electronic or nuclear spins that are decoupled from the light in the E1
approximation. This point is discussed further in Ref. [372], and we return to it later. Finally, we also note that the E1
approximation of a decoupled spin can break down with strong spin-orbit coupling.

6This is identical to the mechanism for magnetic remixing of dark states [348].
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the dark state now contains some excited state admixture, proportional to Δ/Ω. We refer to such
a dark state as a gray state. For the states we consider, Δ is often caused by hyperfine splittings.
Finally, we note that in the above discussion, a single laser field was used to couple both ground
states. If we have one laser field resonantly addressing just 𝑔1 and another resonant laser field
addressing just 𝑔2, the dark state is stabilized, as there are no detunings from the rotating frames
of the independently chosen frequencies. However, if cross-excitation is possible, we will need
to consider the possibility of “off-resonant” scattering of one state by the laser resonant with the
other state. Generalization of the Morris-Shore transformation to dark states with weak detunings
is discussed in Ref. [374].

So far, all of our discussion has invovled individual, optically resolved levels. However, this is
distinctly not the case in M-OH molecules.

5.1.4 Unresolved Hyperfine Structure
In alkaline-earth(-like) hydroxides, if the metal atom has no nuclear spin, the only hyperfine

structure arises from the distant hydrogen nucleus. In YbOH, the Yb to H distance is ∼3 Å, and
since the valence electron is Yb-centered, the resulting hyperfine effects are suppressed. In fact,
spectroscopic confirmation of small hyperfine in hydroxides was initially used as a confirmation of
the metal-localized nature of the valence electron orbital [375].

Note that in this section, we only consider the hyperfine interaction with the hydrogen in the -
OH ligand. This means we consider even isotopologues, e.g., 174YbOH. The Yb hyperfine structure
of the odd isotopologues of YbOH is resolved and has been characterized in Ref. [157]. For weak
hyperfine interactions in 2Σ+ states, the hyperfine interaction is generically given by:

𝐻hyp = 𝑏𝐹 ®𝐼 · ®𝑆 +
𝑐

3

(
3𝐼𝑧𝑆𝑧 − ®𝐼 · 𝑆

)
. (5.9)

The full hyperfine Hamiltonian includes additional terms not relevant here but discussed in Ch. 2.
The Fermi contact interaction strength, 𝑏𝐹 , is proportional to the magnitude of the electron wave
function overlap at the hydrogen nucleus, |𝜓(𝑟𝐻) |2. For YbOH, SrOH, and CaOH, 𝑏𝐹 has been
measured to be 4.80 MHz [290], 1.67 MHz [376], and 2.60 MHz [375], resulting in splittings
smaller than the typical excited state linewidths (∼8 MHz). Therefore the hyperfine structure is
optically unresolved, and these constants are obtained by using a combination of optical-radio-
frequency or optical-microwave double resonance techniques. The other relevant interaction is
the dipolar hyperfine term, 𝑐, is measured in the same references to be 2.46/1.67/2.05 MHz. In
general, the angular momentum matrix elements associated with 𝑐 are smaller than those for 𝑏𝐹 .
By contrast, in a diatomic molecule such as YbF, the 19𝐹 nucleus (𝐼 = 1/2) is closer to the metal-
centered electron, and consequently the hyperfine structure is much larger. For example, in the
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ground state of YbF, the hyperfine parameters are 𝑏𝐹 = 170 MHz and 𝑐 = 85 MHz [377], with
similarly large values in CaF and SrF [378].

On the other hand, in both the hydroxides and fluorides considered, the excited state hyperfine
structure is very small, and there are not many reliable measurements. The smaller interaction is
a result of the electron being further polarized away from the bonding region (and therefore away
from the other nuclei). This is also reflected in the smaller excited state molecular frame dipole
moments. In the ionic picture, the molecule can be thought of as Yb+ OH−. Upon excitation, if
the negatively charged valence electron is polarized further toward Yb+, the dipole moment will
be lowered, as is observed (𝐷𝑋 = 1.9 D → 𝐷𝐴 = 0.43 D). In CaF, the lowest lying excited states
were found to have a hyperfine splitting of 4.8 ± 1.1 MHz [214], but there has not been a full
characterization. In YbOH, the excited state hyperfine splitting is unknown and expected to be even
smaller, owing to the larger Yb to H distance.

The unresolved hyperfine in hydroxides means the selection rules for transitions follows a Δ𝐽 =
±1, 0 pattern, even though the states are technically characterized by 𝐹. The hyperfine interaction
causes very weak 𝐽 mixing, which results in very small intensity borrowing for Δ𝐽 = ±2 transitions.
Magnetic tuning beyond ∼ 1 G uncouples the electron spin from the hyperfine interaction and the
Zeeman shifts deviate from linear behavior, which has consequences for accurate modeling of
magneto-optical trapping [120]. For photon cycling and calculations of effective scattering rates,
the unresolved hyperfine is also important for state counting.

The inability to optically resolve the hyperfine structure is a challenge for coherent quantum
control and precision measurement. Typically, coherent operations are performed after collecting
population into one or two quantum states. This reduces entropy and increases SNR. For example,
recent work with CaF in optical tweezers [379, 380] proceeds first by using lasers to optically pump
into the 𝐹 = 0, 𝑁 = 0 state. Such a scheme is not possible in metal hydroxides as the ground state
hyperfine is unresolved. Furthermore, because the excited state structure is unresolved, selective
optical depletion of the ground state is not possible. In Sec. 5.4, we utilize microwaves to prepare
a pure initial state.

Finally, the unresolved hyperfine structure has drastic consequences for CPT, causing destruc-
tive interference of dark states. This interference effect was first studied experimentally in Ref. [381].
There, the authors investigated CPT with linearly polarized light on the 𝐷1 line (𝐽 = 1/2 → 1/2)
of 87Rb in a room temperature buffer gas cell. The excited 2𝑃1/2 state has a ∼800 MHz hyper-
fine splitting7, and their experiment had 540 MHz Doppler broadening. When operating with a
detuning approximately half way between the two excited states, the authors observed a 40 times

7Note there is a typo in the paper when describing the excited state hyperfine splitting. The correct values can be
found at https://steck.us/alkalidata/rubidium87numbers.1.6.pdf.

https://steck.us/alkalidata/rubidium87numbers.1.6.pdf
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weaker CPT resonance when using a lin ∥ lin polarization configuration compared to a using a
𝜎-𝜎 configuration.

We too shall encounter the issue of destructive hyperfine interference when performing CPT
on YbOH molecules. Later, we will also show that CPT can still be achieved if we make the correct
choice of polarization and excited state. In these cases, just like Ref. [381], we will see the strength
of the CPT resonance is polarization sensitive.

5.2 Initial State Preparation Tests
5.2.1 CPT Difficulties

We initially attempted to perform prototype spin precession in �̃�2Σ+(000) using the same
scheme as ACME, described in Sec. 5.1.2. We used two linearly polarized laser beams, one for
Ramsey prep, one for Ramsey read out, focused down to ∼300 µm spots separated by 3 mm.
Both beams were resonant with the �̃�2Σ+(000) → �̃�2Π1/2(000) transition, specifically driving the
𝑄𝑄11(0) transition. The prep beam was intended to project the states onto a bright dark basis, and
the read out beam would project either on the same or different basis, depending on the relative
angle between prep and readout polarizations.

The ambient magnetic field in the precession region was reduced to ∼ 10 mG using 3 axis
square coil pairs and homemade magnetic shielding. The shielding consisted of mumetal plates
cut with scissors and mounted on a mini-8020 frame around the vacuum chamber, which is a KF50
six way cross. Strips of metglas were taped and wrapped around the mumetal to cover up gaps and
improve the shielding performance. A photo of the setup is shown in Fig. 5.6.

The magnetic field magnitude was calibrated with a magnetometer8 when the vacuum chamber
was vented. Additionally, when under vacuum, we were able to use atomic Yb atoms in our
CBGB to zero the magnetic field. Specifically, we used the directional Hanle effect in the excited
3𝑃1 state [382]. Briefly, the Hanle effect [383, 384] uses the rotation of angular momentum
polarization, either in the ground or excited state, to perform magnetometry [385, 386] or to
measure lifetimes/decoherence rates. Incidentally, Hanle effect has actually been used to study the
magnetic fields of the sun [387]. Semiclassically, the Hanle effect in the excited state understood as
the magnetic rotation of the excited state angular momentum, manifested in spatial and polarization
anisotropy of the decay fluorescence. We note that Ref. [388] compares the Hanle effect with other
atomic magnetometry techniques, which may also find use in CBGBs. For further details on the
magnetic calibration using the Hanle effect, see Appendix B. In summary, we were able to use Yb
atoms to calibrate our residual fields down to ≲10 mG.

8AlphaLab Inc. MR3
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Figure 5.6: A photo of the home-made magnetic shielding around the six-way KF50 cross. See
main text for details.

Nonetheless, we were unable to observe spin precession using linearly polarized light. In
addition to controlling stray fields, we tried focusing the precession laser beams to increase intensity
and reduce the effect of optical pumping in the beam intensity tails. We also designed an optical
setup to selectively detect fluorescence from solely the readout beam. We used off-the-shelf lenses
to focus the fluorescence light into a 400 𝜇m multimode fiber, which was fed into a photomultiplier
tube (PMT). Using this setup, we were able to observe ∼60% depletion of the readout fluorescence
when the prep beam was unblocked. This depletion was independent of the polarization angle
between the readout and prep beams, which indicates a lack of coherent population trapping.
Instead, the depletion is attributable to standard optical pumping of molecules out of the 𝐽′′ = 1/2
state.

Upon further examination, we realized that the unresolved hyperfine structure of the excited
state was interfering with the formation of dark states. To understand this effect, we consider
the case of dark states formed by linearly polarized light exciting the 𝑄𝑄11(0) line. This is a
𝐹′′ = 0, 1 → 𝐹′ = 0, 1 transition. The situation is shown schematically in Figure 5.7. Since the
linewidth of optical excitation is larger than the hyperfine splitting, all allowed hyperfine transitions
are excited.
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Figure 5.7: A schematic diagram of the ground and excited states in the 𝐽′′ = 1/2 → 𝐽′ = 1/2
transition driven by linearly polarized light. We consider two bases that both describe equivalent
physics. (a) Excitation by transversely polarized light in the quantization axis defining 𝑀𝐹 . (b)
Performing a basis rotation, we can consider a rotated quantization axis defining 𝑀′

𝐹
. Now the

excitation light is parallel polarized, showing all ground states are coupled to a unique excited state.

First, consider the case where the light is �̂� polarized and we have excitation of Π-type
transitions, shown in Fig. 5.7(b). The selection rules forbid 𝑀′′ = 0 → 𝑀′ = 0 transitions unless
Δ𝐹 ≠ 0. Therefore the 𝑀 = ±1 states are excited and optically pumped away. Meanwhile the
𝐹′′ = 0 state is excited only to 𝐹′ = 1, 𝑀′ = 0, and similarly the 𝐹′′ = 1, 𝑀′′ = 0 is excited
only to 𝐹′ = 1, 𝑀′ = 0. Each ground state therefore is connected to an excited state that can
decay elsewhere, causing optical pumping out of the 𝐽 = 1/2 ground state. Even if the excited
molecule decays back to the same manifold, it can be re-excited, and after a few scatters will almost
certainly be pumped elsewhere. As long as the magnetic field splitting is small compared to optical
linewidths, we are justified in the choice of quantization axis along the light polarization. However,
it is instructive to consider the problem in a rotated quantization axis as well.

Consider now the case when the light is �̂� polarized, and the excited transitions are a linear
combination of 𝜎+ and 𝜎− transitions, shown in Fig. 5.7(a). The 𝑀′′ = 0 ground state is excited to
a linear superposition of 𝑀′ = ±1 excited states. This superposition promptly decays in ∼ 20 ns,
resulting in optical pumping and loss. However, the 𝑀′′ = ±1 states can connect to the same
𝑀′ = 0 excited state. Because of the unresolved excited state hyperfine, both the 𝐹′ = 1 and 𝐹′ = 0
are coupled to the 𝑀′′ = ±1 ground states, forming two distinct Λ-systems. For an isolated 𝐹′ = 1
or 𝐹′ = 0 excited state, this would result in coherent population trapping in a dark state, as there
are more ground states.

However, when both excited states are simultaneously addressed, the two Λ systems have
orthogonal dark states. This is a result of the Clebsch-Gordan coefficients used to couple 𝐽 and 𝐼
together to form 𝐹. We can see this by writing the states in the decoupled 𝑀𝐽 , 𝑀𝐼 basis, shown in
Figure 5.8. The Clebsch-Gordan coefficients tell us the 𝑀𝐹 = 0 components of the singlet 𝐹 = 0
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Figure 5.8: A schematic diagram of the ground and excited states in the 𝐽′′ = 1/2 → 𝐽′ = 1/2
transition driven by transverse polarized light. The hyperfine states are written in the decoupled
|𝑀𝐽 , 𝑀𝐼⟩ basis. In this basis, E1 selection rules enforce Δ𝑀𝐼 = 0, and with transverse polarization
we have Δ𝑀𝐽 = ±1. The TDM phase for optical coupling depends on the excited state Clebsch-
Gordan coefficients. We have colored the excitation laser according to the TDM phase, where red
is positive and blue is negative. We see the two Λ systems have opposite relative phase on the two
excitation arms, resulting in destructive interference of dark states.

and triplet 𝐹 = 1 manifolds must be written with an opposite relative sign. This sign controls the
relative phase of the TDMs in the two Λ-systems, which in turn controls the dark state phase, see
Sec. 5.1.3 for details. In this case, the dark state of one Λ-system is the bright state of the other
Λ-system, and the dark states are destabilized. As a result of destructive interference, all states are
bright. This sign difference is generic to hyperfine 𝑀𝐹 = 0 states, and persists even in the presence
of an electric field.

Magnetic fields will mix and split the 𝑀𝐹 = 0 states, but this is usually inconvenient for
spin precession measurements. Still, we can consider the application of a magnetic field strong
enough to decouple the hyperfine structure by mixing the excited 𝑀′

𝐹
= 0 states and increasing

their separation. To avoid optical excitation, the splitting needs to be increased to > 20 MHz. This
requires >15 G magnetic fields, causing rapid spin precession. While this is hard to measure with
“DC” spin precession, we could in principle use clock methods. However, the transition dipole
moments used to form coherent dark states also lose their 𝑇-symmetry, requiring finely tuned
elliptical beam polarizations to achieve balanced superposition amplitudes.

One solution is to use optical dressing of an excited state with a separate ground state to split
the excited states with light shifts. However, in YbOH and other metal hydroxides, the inability to
optical address individual hyperfine ground states causes further complications with such a scheme.
Any transition with Δ𝐽 = ±1 will have at least two pairs of hyperfine states coupled by an optical
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laser, resulting in level separations of the excited state given by differential light shifts. This requires
large amounts of power to sufficiently split the levels, and if the beams are off resonant, the effect
is even more difficult to achieve.

Another effect we have neglected is the existence of so-called gray states, introduced in
Sec. 5.1.3. These are dark states created from superpositions of states with differing laser de-
tunings. For example, a single power broadened laser can address multiple unresolved ground
states, coupling them to a shared excited state. These unresolved hyperfine states nonetheless have
some energy splitting, and this hyperfine splitting causes a rotation of the dark state into the bright
state. The hyperfine interaction performs remixing, much as applied magnetic fields remix dark
states for molecular laser cooling experiments. The instability of these dark states is why we refer
to them as gray states.

We see that unresolved hyperfine structure limits the coherences that can be generated or
observed using conventional techniques. In Ref. [372], this result was formalized using the theory of
density matrix polarization moments. The authors considered single photon methods for producing
atomic polarization, namely depopulation pumping (i.e., absorption removing population from
certain ground states) and repopulation pumping (i.e., decay returning population to certain ground
states). Unresolved hyperfine structure places limits on the atomic polarization that can be produced
with lasers at “low power.” Somewhat intuitively, polarization moments are limited by electronic
angular momentum. In the case of molecules, this corresponds to 𝐽. We note there is a key
distinction with molecules—while atoms can reach a steady state optical pumping configuration,
in molecules if there is any excited state coupling for a ground state, it will eventually scatter into a
dark vibrational state and be lost (unless we apply repumping light).

According to Ref. [372], the limit on ground state polarization moments depends on the method
used. Depopulation pumping with unresolved excited state hyperfine structure is limited to produce
moments with rank 𝜅 ≤ 2𝐽′′ (i.e., limited by ground state 𝐽). Meanwhile repopulation pumping
with unresolved ground state hyperfine structure is limited to produce moments with rank 𝜅 ≤ 2𝐽′

(i.e., limited by excited state 𝐽). Furthermore, because a photon is a spin-1 particle, a single
photon process can change polarization moments by |Δ𝜅 | ≤ 2. Additionally, fluorescence and
absorption detection methods are limited by unresolved hyperfine structure. Absorption is limited
by unresolved excited state hyperfine to only detect moments with 𝜅 ≤ 2𝐽′′, while regardless of
resolved hyperfine, fluorescence is limited to detecting moments with 𝜅 ≤ 2𝐽′ and 𝜅 ≤ 2. Note the
second restriction on fluorescence arises from the spin-1 nature of the photon and the single photon
nature of spontaneous decay.

YbOH has unresolved hyperfine structure in the both ground and excited states, and both
depopulation and repopulation pumping are thus limited. Note, CPT can be considered a form
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of depopulation pumping (limited by unresolved excited hyperfine), as the initial mixed state is
polarized by pumping out the bright state. For the 𝑄𝑄11(0) we tried for initial testing, both ground
and excited states have 𝐽 = 1/2, and therefore we can only produce rank 1 (orientation) moments
with any type of pumping. The CPT scheme from ACME requires the creation of rank 2 (alignment)
moments. For further information on orientation vs alignment, see Appendix E for details.

We can now consider states with higher 𝐽. For example, we can drive 𝐽′′ = 3/2 → 𝐽′ =

1/2, 3/2, 5/2, corresponding to 𝑃, 𝑄, and 𝑅 lines. We note the arguments we make are actually
generic to any 𝐽. For the 𝑅 lines, the number of excited states outnumbers the number of ground
states, and there are no dark states generically. Meanwhile, for a 𝑃 line, with linearly polarized
light there is optical pumping into the stretched states, which are manifestly dark to the laser. We
now consider the 𝑄 line. Due to the selection rule preventing 𝑀′′ = 0 ↛ 𝑀′ = 0 for Δ𝐹 = 0, the
𝑀′′ = 0 states are pumped out by the |Δ𝐹 | = 1 transitions. Similarly, the stretched states are also
pumped out. Meanwhile, the non-stretched states can be considered in a manifold of 4 states, two
ground, two excited. Whether or not we obtain dark states now depends on the nature of the TDMs
involved. It turns out such a transition actually does have dark states in the |𝑀 | = 1 states, as the
excited state TDMs have the same relative phase. Due to the hyperfine splitting, these states are
gray states, and the differential laser detuning will cause differential phase evolution that turns the
dark state bright.

We can generalize this analysis by examining the matrix element for optical TDMs. We
approximate the states as having 𝐽 as a perfect quantum number. Such an approximation works
well in our case when 𝐽 mixing is weak and the hyperfine is unresolved. Since we only care about
differential properties within a 𝐽 manifold, we also ignore all quantum numbers comprising 𝐽. In
this case, the treatment of atoms and molecules proceeds identically. We then write the TDM as
follows:

⟨𝐽𝐼𝐹𝑀 |𝑇1
𝑝 (𝑑) |𝐽′𝐼𝐹′𝑀′⟩ =

× (−1)𝐹−𝑀
(
𝐹 1 𝐹′

−𝑀 𝑝 𝑀′

)
× (−1)𝐹′+𝐽+𝐼+1

√︁
(2𝐹 + 1) (2𝐹′ + 1)

{
𝐽′ 𝐹′ 𝐼

𝐹 𝐽 1

}
× ⟨𝐽 | |𝑇1(𝑑) | |𝐽⟩.

(5.10)

Here, the reduced matrix element ⟨𝐽 | |𝑇1(𝑑) | |𝐽⟩ encodes all TDM properties that are identical for all
hyperfine states under consideration, including transformations into the molecule’s rotating frame.
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Figure 5.9: Oriented states used to implement spin precession using circularly polarized light. The
notation 𝑀𝑌 = 𝐹 · 𝑌 indicates our quantization axis is along 𝑌 . These states are dark states of 𝜎±
beams, and rotate into each other by the action of transverse magnetic fields along �̂� or �̂� .

5.2.2 Spin Precession with Circularly Polarized Light
We have seen that CPT schemes can encounter difficulties with unresolved hyperfine structure.

Therefore, we next turned to measuring spin precession using angular momentum orientation
instead of alignment (see Appendix E for details). We were inspired by Ref. [389], which used
circular polarization to perform spin precession of a beam of Lithium atoms in a ficticious magnetic
field generated by off-resonant laser light.

The application of circularly polarized light can optically pump molecules into a stretched state,
which can be intuited as a transfer of angular momentum from the light to the molecules. Consider
a 𝜎+ transition on a 𝑄 line. The 𝑀′′ = 𝐽 stretched state is dark to the excitation laser, while all
other ground states are addressed. For an atomic sample, the excited population can rain back down
and continue to be pumped in a closed cycle until it is transferred to the stretched state. However,
in a molecule most of the polarization occurs via depopulation, as excited molecules tend to decay
elsewhere after one or two scatters. In any event, for the molecules remaining, the final state is a
pure stretched state, which is dark on a 𝑄 line. We now show to this dark state can be used for spin
precession.

We consider the following coordinate frame: the molecule beam propagates along the +�̂�
direction, the light is right hand circularly polarized along +𝑌 , and the magnetic field points along
the +�̂� axis. Consider light resonant with the 𝑄𝑄11(0) line. To understand the optical pumping of
the light, we consider a quantization axis aligned along +𝑌 . By conservation of angular momentum,
this drives 𝜎+ transitions with Δ𝑀𝑌 = 1, and addresses both the 𝐹 = 0 and 𝐹 = 1 ground states.
After a few light scatters, population is concentrated in the dark 𝑀𝑌 = 𝐹 · 𝑌 = +1 stretched state.
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The angular momentum probability surface for this stretched state is shown in Figure 5.9. As
expected, the state exhibits orientation along 𝑌 . Since magnetic fields cause rotation of angular
momentum polarization, fields along 𝑌 have no effect due to distribution’s 𝑌 symmetry. Another
way to say this is the magnetic field interaction is diagonal in the 𝑀𝑌 basis and simply causes phase
evolution. However, as we saw in the Hanle effect, transverse fields can rotate the polarization
distribution. The situation here is analogous: the 𝐵𝑍 field rotates our stretched state. After half a
Larmour period, the polarization will point along −𝑌 , and the state has been rotated to the 𝑀𝑌 = −1
stretched state, shown also in Fig. 5.9. In between, the state amplitude is distributed among the
non-stretched states.

By using left or right hand circular light to drive 𝜎+ or 𝜎− transitions, the population can be
effectively projected onto a bright/dark basis consisting of one of the stretched states as the dark state.
In a sense, our measurement scheme is a form of magnetically sensitive optical dichroism. This
scheme allows us to implement a precession similar to that of the ACME experiment described
earlier. However, unlike the aligned ACME state, our oriented spin states precess at half the
frequency. As we shall see, this is because we are measuring the energy difference relative to the
𝑀 = 0 state.

We provide a more quantitative picture of the 𝐵𝑍 dynamics in Figure 5.10. First, we begin with
the 𝑀𝑌 = +1 state, and rotate our quantization axis to point along �̂� . We implement this using a
Wigner D-matrix, D ((𝐹))

𝑀,𝑀 ′ (𝜔), where 𝜔 = (0, 𝜋2 ,
𝜋
2 ). The 𝑀𝑌 = 1 state in the 𝑀𝑍 basis at time 𝑡 = 0

is given by:

|𝜓(𝑡 = 0)⟩ = |𝑀𝑌 = 1⟩ = 1
2
|𝑀𝑍 = −1⟩ − 1

√
2
|𝑀𝑍 = 0⟩ + 1

2
|𝑀𝑍 = 1⟩ (5.11)

Now, we consider the application of the magnetic field, which generates time evolution according
to the operator 𝑈 = 𝑒−𝑖𝐻𝑡 . Since 𝐵𝑍 is diagonal in the 𝑀𝑍 basis, time evolution just consists of
phase evolution at the Larmour frequency, 𝜔𝐵 = 𝑔𝜇𝐵𝑀𝑍 , where 𝑔 is the 𝑔-factor of the state. After
half a period, 𝜏 = 𝜋/𝜔𝐵, has passed, the state is now given by:

|𝜓(𝑡 = 𝜏)⟩ = −1
2
|𝑀𝑍 = −1⟩ − 1

√
2
|𝑀𝑍 = 0⟩ − 1

2
|𝑀𝑍 = 1⟩. (5.12)

Crucially, the relative phase between the the 𝑀𝑍 = ±1 and 𝑀𝑍 = 0 states have reversed. We now
rotate the time evolved state back to the 𝑀𝑌 basis using the inverse Wigner rotation, D ((𝐹))

𝑀,𝑀 ′ (−𝜔).
The time evolved state now maps on to the 𝑀𝑌 = −1 state, |𝜓(𝑡 = 𝜏)⟩ = |𝑀𝑌 = −1⟩. If we had
instead considered 𝜋/2 precession in the �̂� frame, we would have had an imaginary phase relative
phase, which maps on to the state pointing along �̂� . We have now reached the same conclusion
on the dynamics via two separate paths: one by using basis rotations of angular momentum states,
and by considering dynamics of angular momentum probability distributions.
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Figure 5.10: Schematic diagram of dynamics with the circularly polarized spin precession scheme.
The left side of the diagram has 𝑌 as the quantization axis, while the right side has �̂� as the
quantization axis. (i) The molecules are initially optically pumped into |𝑀𝑌 = 1⟩ using 𝜎+ light.
We work with a 𝑄 line, and therefore 𝑀𝑌 = 1 is dark to 𝜎+. (ii) With a Wigner rotation, we can
write |𝑀𝑌 = 1⟩ in a rotated basis as a superposition of 𝑀𝑍 = −1, 0, +1 states. (iii) In the �̂� frame,
the application of a 𝐵𝑍 magnetic field causes the 𝑀𝑍 levels to split by the Larmour frequency
𝜔𝐵 = 𝑔𝜇𝐵𝑀𝑍 , where 𝑔 is the state 𝑔-factor. (iv) Alternatively, in the 𝑌 frame, the 𝐵𝑍 field is
transverse and causes Δ𝑀𝑌 = ±1 couplings that move population between states. (v) After half a
Larmour period, in the �̂� frame, the two 𝑀𝑍 = ±1 have reversed their sign relative to the 𝑀𝑍 = 0
state. (vi) In the 𝑌 frame, which can be obtained from (v) by an inverse Wigner rotation or directly
time-evolved from (iv), we see the state has now evolved into the |𝑀𝑌 = −1⟩ configuration. The
spin has now reversed direction, and this state can now be probed by 𝜎+ light.

5.2.3 Experimental Tests with Circularly Polarized Light
We now describe experimental tests. The experimental schematic is shown in Figure 5.11. The

experiment takes place 40 cm downstream from the cryogenic buffer gas cell. The magnetic field
is generated by 3-axis pairs of square coils able to generate fields up to ∼1 G. The prep and readout
beams are sent along the +𝑌 axis, and they are separated in the +�̂� direction by 1-5 mm. The two
beams are split with a non-polarizing 50/50 beam splitter, separately focused with a 1000 mm focal
length lenses, and recombined in another non-polarizing beam splitter. Adjustment of one beam
path relative to the other allows for precise positioning of the two beams.

By setting up two circularly polarized laser beams along the molecule beam path, the upstream
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laser beam acts as a preparation beam, while the downstream laser beam is the readout beam.
Since the sample begins as unpolarized, the initial fluorescence of the prep beam is independent of
polarization. After being polarized, the oriented molecules may or may not precess, depending on
the 𝐵𝑧 field magnitude. Upon encountering the readout beam, the molecules are projected onto the
bright/dark stretched state basis. If the readout and prep handedness are the same, then the readout
beam projects back on the initial stretched state. If the handedness is different, the readout beam
probes the oppositely oriented stretched state. Therefore, the fluorescence of the readout beam has
oscillatory dependence on the magnitude of 𝐵𝑧. Specifically, projection of the final population on
the initial state is given by:

|⟨𝜓(𝑡) |𝑀𝑌 = 1⟩|2 = cos4 𝜔𝐵𝑡

2
. (5.13)

The non-sinusoidal form is a result of the population dispersing throughout the non-stretched states,
before rephasing at the stretched state. For states with 𝐹 ≫ 1, the population spends a large extent
of time in other non-stretched states before rephasing.

The circularly polarized spin precession data is shown in Figure 5.12. To obtain the data, we
switch the readout beam on and off for alternate shots, and plot the ratio of the fluorescence. This
accounts for the constant prep beam fluorescence, which is relatively similar for adjacent shots
(especially after averaging). If we use 𝑔 = 2, which is accurate for a stretched state, we obtain
a precession time of 𝜏 = 14.8 µs. For a 200 m/s beam, this corresponds to a ≈3 mm precession
length.

Thus far, all of the presented data was taken with the �̃� (000) ground state. This state behaves
like a diatomic molecule, and in particular requires fields > 1 kV/cm to obtain appreciable Stark
shifts. Therefore, we did not perform circularly polarized spin precession in the presence of an
electric field on the �̃� (000) state. However, there are technical reasons that make such a spin
precession scheme challenging.

Primarily, the Stark effect from the electric field will shift levels according to their value of |𝑀 |,
causing rapid phase evolution of 𝑀 = ±1 states with respect to 𝑀 = 0. In the angular momentum
probability picture, the 𝐸 field results in rapid inversions of the stretched state through the origin,
on top of the slow rotation from the magnetic field. If we average over these oscillations, the
oriented state looks more like an aligned state that points in both directions. This rotating state
still generates an oscillating fluorescence signal, but with reduced contrast. Finally, all of these
discussion apply only to integer states: for half-integer states, the lack of an 𝑀 = 0 state means the
Stark oscillations do not fully wash out the state orientation. Nonetheless, a reduction in contrast
still occurs. In theory, with a fast enough detection setup, one could use the Stark modulation of the
fluorescence signal to perform a lock-in measurement. However, this is not practical for a beam, so
we did not pursue it further.
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Figure 5.11: A diagram detailing the circular polarization spin precession scheme. (a) A level
diagram of the 𝑄 line is shown schematically in the 𝑀𝑌 basis. The green arrows indicate optical
pumping into the stretched state by 𝜎+ light propagating along 𝑌 . (b) Schematic diagram of the
beam line, with the �̂� axis coming out of the page. The molecules exit the CBGB, enter the
magnetically shielded region, and encounter the prep beam. Then, they precess freely for ≈ 25 µs
before being probed by the readout beam. We have shown the prep and readout beams with the
same polarization, but they can in principle be made opposite to change the spin precession phase,
similar to the ACME polarization switch.

Figure 5.12: Spin precession data obtained using oriented stretched states. Here, the prep and
readout beams both had the same circular polarization handedness. The y-axis plots the ratio of the
fluorescence with and without the readout beam. When 𝐵 ≈ 0, the initial dark state does not precess
and remains dark, and the fluorescence ratio is at a minimum. As we vary the magnetic field, the
stretched state is rotated into bright states, which can fluoresce and give us signals.The functional
form of the fit is cos4 𝜔𝐵/2 + 𝜙, where 𝜔 = 𝑔𝜇𝐵𝜏/2. Using 𝑔 = 2, we obtain 𝜏 = 14.8 µs.
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After taking the data shown in this section, we discovered and characterized the �̃� (010) bending
mode in YbOH [280]. Therefore, all of the following data is from tests in the �̃� (010) state.

5.3 Ramsey Interferometry in a YbOH Beam
In this section, we discuss Ramsey tests performed using two-photon schemes. All of these

measurements are performed in the �̃� (010) state of YbOH using population in the CBGB present
after chemical enhancement [227].

An alternative to “projection-based” state preparation schemes, such as coherent population
trapping (CPT), is to resonantly prepare superpositions using 𝜋/2 pulses between states of interest.
This requires coupling between two states in the bending mode that can be switched on and off.
Ideally, this coupling can select out single states, can be localized to specific regions in the beamline,
and is continuous-wave in nature.

Coupling can be performed with radi-frequency radiation, microwave radiation, or two-photon
optical radiation. Each technique has its associated advantages and disadvantages. Microwave
radiation is primarily used in Section 5.4, which discusses prototype measurements in a trap. For a
beam, microwaves can be challenging in terms of obtaining spatial and polarization homogeneity
over the long molecule cloud, while also preventing leakage into the interaction region for Ramsey
measurements. The CeNTreX experiment, a search for T-violation in 205TlF molecules [390]
uses microwaves for adiabatic state transfer pulses, but not for preparing the Ramsey states for
measurement. For Ramsey state preparation, they use radio-frequency (RF) magnetic fields, which
we discuss in Sec. 5.3.1.

Finally, we introduce optical two-photon methods, which include both resonant processes,
like CPT, as well as detuned processes, such as Raman transitions. The benefit of optical two-
photon approaches is that the light can be very well localized spatially, the polarization can be well
controlled, and there are many technologies available for modulating light and applying sidebands.
We performed extensive work with two-photon transitions in YbOH. In Sec. 5.3.3.2, we lay out the
foundations for simulating two-photon physics using master equations. In Sec. 5.3.3.2 we present
tests implementing two-photon CPT in a YbOH beam. In Sec. 5.3.5 we present tests driving
two-photon detuned Raman transitions in a YbOH beam. We also use the resulting two-photon
spectra to determine the hyperfine constants of the �̃� (010), 𝑁 = 1 state. Finally, in Sec. 5.3.6, we
use detuned Raman transitions to implement Ramsey interferometry on single quantum states in
YbOH. We conclude with an outlook on performing EDM sensitive measurements in YbOH.
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5.3.1 Radio-Frequency Electric Field Tests
When using radio-frequency (RF) techniques, the radiation is usually generated in the near-

field regime. For example, RF radiation can be engineered by applying time-varying voltages or
currents to antennae such as plates or coils, which can also source DC fields. This was the method
used by the YbF beam experiment [391]. In both YbF and TlF, magnetic RF radiation is used
to drive transitions between same parity states. In molecules with ∼MHz parity doubling, such
as bending modes of polyatomics, we can also use ∼MHz RF electric fields to drive transitions
between opposite parity states. We note the selection rules for electric dipole RF transitions varies
for polarized molecules compared to non-polarized molecules. Specifically, polarized molecules
with lab frame orientation ⟨𝑀𝑁𝐾⟩ = 1 can only be strongly coupled to 𝑀𝑁 = 0 states via transverse
RF radiation, as parallel RF radiation coupling for oriented molecules is suppressed. Additionally,
flipping the orientation to ⟨𝑀𝑁⟩ = −1 requires coupling via the intermediate 𝑀𝑁 = 0 states. Such
transitions can be driven by multiphoton RF techniques [392, 393].

We briefly looked for RF transitions among �̃� (010) levels our beam source. Using the same
apparatus reported for the bending mode Stark spectroscopy in Ch. 4, Sec. 4.2.1, we applied an
RF drive to the Stark electrodes, corresponding to 𝑉𝑟𝑚𝑠 ≈ 3.5 V/cm. When the molecules passed
through the RF field, they were simultaneously excited by a laser resonant with the 𝑄𝑄11(1) line
of the �̃� (010) → �̃�(000) transition, and we collect the resulting LIF. Interpreting signals with
simultaneous drives is challenging, as it depends on the ratio of the two drives. For very strong
RF drive, we expect the molecule states to be dressed by the RF field, resulting in Autler-Townes
splitting9 of the optical line. We are not in this regime, however, and rather we expect the RF to
mix parity states, which would have the effect of increasing LIF.

We observed a correlated increase in molecular fluorescence by ∼18% when driving the RF
drive at 25.53 MHz. At the time we did not have an assignment for this RF resonance, though now
we believe this might have been the 𝐽 = 3/2+, 𝐹 = 2↔ 𝐽 = 1/2−, 𝐹 = 1 resonance, in agreement
with the ground state of the optical transition.

We then tried amplifying the RF drive into the plates, generating an RF amplitude of∼15 V/cm.
In this configuration, by contrast, we observed ∼50% depletion of the molecule LIF, correlated
with the RF drive being on. The depletion was broadly located around 30 MHz with at least ∼1
MHz width, though our RF signal generator was limited to a maximum frequency of 30.2 MHz. At
the time, we thought this might be strong Autler-Townes splitting causing the optical resonances to
shift. The RF correlated LIF depletion was observed when probing both 𝐽′′ = 1/2+ and 𝐽′′ = 3/2±

ground states of the bending mode. However, after replacing the wire pair sourcing the RF with
9Incidentally first observed in bending modes of triatomic molecules! See Ref. [394].
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Figure 5.13: A photo of the beamline used for the two-photon tests. The molecule beam exits the
beam source on the right and travels toward the left. The region wrapped in magnetic shielding
contains the upstream KF50 cross and the 3-axis square magnetic field coils, and is where the
two-photon tests occur. The downstream octagon is where we perform state readout and collect
LIF. The 6 inch scale indicated is approximate.

coax cable, we were unable to recover the effect. We suspect stray inductances from the wire pair
may have been causing resonant behavior, driving the fields with large amplitude rf.

Having encountered difficulty with the repeatability and interpretation of direct RF driving, we
turned instead to two-photon Raman transitions. In a way, the optical two-photon scheme generates
an effective RF field via the beat note of two optical frequencies. However the two techniques have
very different selection rules, as we shall see.

5.3.2 Apparatus
5.3.2.1 Beamline

We performed two-photon transition tests on the 4 K source, performing both projective CPT tests
and detuned Raman transition tests. YbOH beams were produced with the cell and source design
described in Ch. 4, Sec. 4.2.1, as well as earlier in Ch. 3, Sec. 3.2. We describe now the setup for
the beam extension for these tests.

After the 4 K CBGB source, we have two downstream interaction regions. Let 𝑋 denote the
distance from the cell aperture along the molecule beam axis. In the lab, this physically corresponds
to the North/South axis. The cell aperture is at 𝑋 = 0. The first, the “upstream” region of the
beam extension is a six-way KF50 cross centered at 𝑋 ≈ 42 cm. The interior of the cross and all
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arms are blackened with Alion MH2200 paint. The transverse arms of the cross run parallel to the
ground (𝑌 axis, East/West) and perpendicular to the ground (�̂� axis, Top/Bottom). The −�̂� arm of
the cross adapts to CF 6-in, connecting to a 300 L/s turbo pump10, and the +�̂� arm of the cross
terminates in a KF50 window. Attached to this window is a collection optics stack that sends light
through spectral filters into a PMT. The collection optics were optimized for 125 mm distance with
an NA of ≈0.2. The ±𝑌 arms of the cross are adapted from KF50 to KF40 and connected to KF40
nipples terminated in AR-coated windows.

The upstream cross is surrounded by a cubic frame made from mini-8020 parts. The cube
has 16.3 cm side length, making it roughly the same size as the six way cross. Each cube face is
wound with square coils with 3 windings for each coil. The coil pairs allow for 3-axis control of
the magnetic field inside the cross. To help with passive stability, the cubic frame is surrounded
by mumetal plates, cut to size with shears, and attached to XE25 framing with clamps made from
L-brackets. This mumetal functions as rudimentary magnetic shielding, particularly assisting with
variations from lab activity and drift. To improve the shielding, we wrapped the mumetal with
metglas strips, to help cover gaps and to provide magnetic continuity between the cube faces. With
a magnetometer, we verified that the internal field was at the ≲ 20 mG level. Fig. 5.13 shows photo
of the shielding on the beamline.

We performed field-free tests of both two-photon Raman transitions and CPT in a 174YbOH
molecular beam. Both schemes share similarities in setup and apparatus—the main difference
is simply the one-photon detuning and the optimal powers involved. All tests were performed
on the �̃� (010) state, using the athermal vibrational population present after laser enhancement.
Absorption tests in front of cell on the �̃� (010) → �̃�(010) line at 17331.7130 cm−1 indicate that
∼4 × 109 bending mode molecules exit the cell each shot.

A schematic of the beamline is shown in Fig. 5.14. To summarize, we provide a brief
overview before diving into details. First, the molecules encounter �̃� (010) → �̃�(000) light that
depletes a specific hyperfine-spin-rotation level in �̃� (010) with parity P, denoted 𝜓1 = |P, 𝑁𝐽𝐹⟩.
Then, we apply two-photon light on the �̃� (010) → �̃�(010) transition to couple 𝜓1 ↔ 𝜓2,
where 𝜓2 = |P, 𝑁𝐽′𝐹′⟩ is a different hyperfine-spin-rotation level in �̃� (010). Either via diabatic
projection (a.k.a CPT) or detuned Raman Rabi oscillations, population will be transferred from 𝜓2

to 𝜓1. Finally, at the end of the experiment, we measure the 𝜓1 population via LIF, using a ∼10%
pickoff of the upstream depletion light.

In detail, consider two spin-rotation manifolds, 𝐽 = 𝑁 ± 1/2, in a given rotational state 𝑁 ,
denoted 𝜓1 and 𝜓2. The two-photon resonances we wish to study are essentially couplings between
𝜓1 and 𝜓2, causing population transfer. If the coupling is unitary, which it is in the absence of

10Agilent TwisTorr 304 FS.
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Figure 5.14: A schematic of the two-photon experiments performed in this section. In the first
stage, the population in 𝜓1 = |𝑁 = 1, 𝐽 = 1/2+⟩ is depleted using �̃� (010) → �̃�(000) light. Then,
the molecules encounter the two-photon light, in either CPT or detuned Raman configurations.
When the two-photon resonance matches the spin-rotation splitting, there is population transfer
from 𝜓2 = |𝑁 = 1, 𝐽 = 3/2+⟩ to 𝜓1. In the final stage, the population revival in 𝜓1 is readout with
the same light that was used for depletion, and we collect the fluorescence.

spontaneous emission, the reverse process will also occur, and we have 𝜓1 ↔ 𝜓2. This means
measurements of population contrast are limited by the population difference between 𝜓1 and 𝜓2.
Since spin-rotation states are separated by ∼ 100 MHz, they will have similar thermal occupation at
the temperatures we consider (∼ 1 K), and we must instead rely on optical pumping to first prepare
an ensemble with large population imbalance between 𝜓1 and 𝜓2.

Since we can optically resolve the levels𝜓1 and𝜓2, we can selectively deplete just one level with
a resonant laser beam. We consider depletion of 𝜓1, achieved by driving the �̃� (010) → �̃�(000)
transition using resonant light at 588 nm. To avoid optical dark states or gray states (see Sec. 5.1.3),
we use an 𝑅 line to perform pumping. We further ensure that the 𝜓1 depletion line is not power
broadened to the point where pumping of 𝜓2 also occurs, though this was not a regime we could
access with the laser power available, given the nominally forbidden nature of the transition. We
use cylindrical lenses to expand the beam in the vertical direction transverse to the molecule beam,
ensuring we address a majority of the molecules. The laser beam travels along𝑌 , and has a diameter
of ∼ 3 mm in the vertical 𝑍 direction and ∼ 1 mm in the 𝑋 direction, which is the direction of the
molecule beam forward velocity.

After achieving population imbalance between 𝜓1 and 𝜓2, we apply light downstream to drive
the two-photon resonance. This couples 𝜓1 ↔ 𝜓2 and causes Rabi oscillations between the levels.
After the molecules leave the two-photon light, they travel downstream to the detection region, where
a pickoff of the 588 nm light is used to probe the initially depleted level, 𝜓1. Rabi oscillations can
cause a revival of population in 𝜓1, which is detected in the LIF obtained in the detection region. If
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the depletion is efficient and the Rabi oscillations are coherent, the variation of population in 𝜓1 can
be nearly 100% of the total population. In practice, experimental imperfections reduce contrast;
for example, the depletion power is limited, there is velocity dispersion of the molecules, etc. For
initial tests, decoherence is not a concern—even if the oscillations decohere quickly, there will still
be an overall population transfer from 𝜓2 → 𝜓1 as population is split between the two manifolds.
Finally, by using a shutter to block and unblock the two-photon light in subsequent shots, even
small population signals can be observed.

The two-photon light, either sourced by the EOM or AOMs, is fiber coupled over to the
experiment with a PM fiber. After launching the beam, we use cylindrical beam shaping optics
to expand the beam to roughly a 3 mm by 1 mm shape, and we use metal mirrors to ensure the
polarization state of the light remains unperturbed. We also installed a mechanical shutter to turn
the light on and off, which was useful for initial tests before optimizing SNR. The two-photon light
intersects the molecules downstream of the depletion light, but still inside the six way cross. Since
the two-photon light is at 577 nm, we wanted to separate it from the detection region in the octagon,
where we look for 577 nm decays after probing the �̃� (010) → �̃�2Π1/2(000) transition.

5.3.2.2 Generating Two-Photon Light

We performed tests with two-photon light generated from both AOMs and EOMs. In both setups,
we begin with a Raman fiber amplifier (RFA) that amplifies a seed laser operating at 1154 nm. When
doubled with SHG, this turns into 577 nm light near relevant lines in �̃�2Σ+(010) → �̃�2Π1/2(010).
For the EOM setup, we used in-fiber EOMs11 inserted in the fiber path from the 1154 nm IR seed
and the RFA. The modulation of the seed is directly mapped over to the RFA output. When the
amplifier IR light is passed through an SHG crystal, the sideband frequencies do not change, but
the modulation depth is doubled. This can be shown mathematically [395] but also understood
intuitively—the SHG crystal is like a mixer, generating photons by multiplying any two sidebands
(including the carrier). As a result, we optimize the EOM power by using a scanning cavity to
examine a pickoff of the 577 nm light exiting the doubler.

For the AOM setup, we do not modulate the IR seed, and instead work directly with the 577 nm
visible output of the SHG crystal, referred to as the VRFA output (visible RFA). This light is fiber
coupled and sent to an optics breadboard with two AOMs, labeled 1 and 2. As the names suggest,
AOM 1 generates laser beam 𝐿1 primarily addressing 𝜓1, and AOM 2 generates 𝐿2 primarily
addressing 𝜓2.

The AOM optics setup is shown in Fig. 5.15. The light is split with a polarizing beam-splitter
(PBS) and sent through two arms, one containing AOM 1 in a single pass configuration, resulting

11 EOSPACE PM-0S5-10-PFA-PFA-1154-UL-SOP125mW.
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Figure 5.15: The annotated acousto-optic modulator (AOM) setup used to generate two-photon
light. White arrows label optical path directions for the double-pass setup. Parts are labeled as
follows: VRFA, visible Raman fiber amplifier; HWP, half waveplate; QWP, quarter waveplate;
PBS polarizing beam-splitter; BS, 50/50 beam-splitter; H/V, horizontal/vertical polarization; L/R,
left/right handed circular polarization. See main text for details. We thank Yi Zeng for setting up
the breadboard.

in a frequency shift 𝑓1, the other containing AOM 2 in a double pass configuration, resulting
in a frequency shift 2 𝑓2. The resulting beams are then recombined with a non-polarizing 50/50
beam-splitter (BS) and coupled into an optical fiber, to be sent over to the experiment. We use
separate half waveplates (HWPs) on the A and B paths to independently adjust the polarization of
each beam. A final HWP at the fiber couple, combined with separate quarter waveplates (QWPs)
for each beam to remove ellipticity, allows us to perform effective polarization alignmnent to the
fiber.

By tuning the diffraction order used, we can generate sidebands separated by | 𝑓1 + 2 𝑓2 | or
| 𝑓1 − 2 𝑓2 |, allowing us to overcome limitations on AOM dynamic range. Further, the double pass
configuration of AOM B allows us to scan 𝑓2 without significantly changing the beam pointing.
Our AOMs have a 100 MHz center and 25 MHz bandwidth. To generate sidebands seprarated by
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∼ 60 MHz, the scale of 𝑁 = 1+ spin-rotation splittings, we use 𝑓1 = −120 MHz, and 𝑓2 = −90
MHz, resulting frequency splittings of | 𝑓1 − 2 𝑓2 | = 60 MHz.

The double pass AOM 2 setup is implemented with standard techniques [396]. In brief, the
light incident on AOM 2 is linearly polarized by a PBS. The first order diffracted beam exiting
AOM 2 passes through a QWP, transforming linear polarization to circular. The beam is then
focused with a 30 mm lens onto a retro-reflecting flat mirror, creating a cat-eye retro-reflector that
is robust to variations in beam pointing. Another variation of this scheme is to center the AOM at
the focus of a Keplerian telescope. In either setup, the retro-reflected beam has reversed circular
polarization, which is converted to opposite linear polarization by the second pass through the
QWP before re-entering AOM 2. Upon exiting and diffracting once again, this beam is now shifted
by 2 𝑓2, and, because the polarization is opposite, is now reflected by the initial PBS and separated
from the input beam.

The setup alignment is optimized at a central value 𝑓2,0. We characterized the power variations
about this central value by scanning 𝑓2 and monitoring the power out of the fiber couple. We were
able to fit the power efficiency to a Gaussian curve with a FWHM of ≈17.5 MHz. Since the two-
photon frequency difference is proportional to 2 𝑓2, this results in a two-photon scan range with a
FWHM of ≈35 MHz. This setup can be further improved by using a curved retro-reflecting mirror,
and with other improvements detailed elsewhere [396]. We note for the 𝑁 = 1 measurements
detailed in Sec. 5.3.4, we had not yet implemented the lens for the double pass setup, and therefore
our two-photon frequency efficiency range was limited to a FWHM of ≈5.8 MHz.

5.3.3 Two-Photon Physics
A two-photon transition essentially uses the beat note formed by two interfering lasers to drive

a transition in an atom or molecule. In the E1 dipole approximation, single photon transitions
are parity odd, and therefore two-photon transitions can only connect same parity states. Conve-
niently, the parity dependent spin-rotation term 𝑝𝐺 in the �̃� (010) Hamiltonian ensures transitions
correspond to the two parities are not overlapped. Additionally, two-photon transitions also have
different 𝐹 and 𝑀 selection rules—transitions can now occur with |Δ𝐹 | = 2 and |Δ𝑀 | = 2. These
selection rules can be derived by considering the selection rules of two back-to-back single-photon
transitions.

Two-photon transitions are not limited by the excited state lifetime, making it possible to obtain
very-high resolution spectra and address individual hyperfine states. The width of the two-photon
resonance can depend on many factors, such as power-broadening, background field variation and
inhomogeneity, and time-of-flight broadening. In practice, since fields in the region were limited to
the ∼10 mG level, at lower powers the resolution is limited primarily by time-of-flight broadening,
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which is on the order of ∼200 kHz for a 200 m/s molecule beam traversing a 1 mm wide laser beam.
This is narrow enough to resolve the hydrogen hyperfine structure common to metal hydroxides,
which is on the order of 1 − 10 MHz for low-𝑁 states.

For the discussion to follow, we will find it useful to introduce a toy model consisting of a
three level Λ-system, shown in Fig. 5.16a. The ground states, 𝜓1 and 𝜓2, will be typically taken to
represent the two same parity spin-rotation states of �̃� (010) in a single 𝑁 manifold. The excited
state represents an excited state 𝐽′ in �̃�(010) with opposite parity to the ground states. In our
toy model, we have drawn two lasers, 𝐿1 and 𝐿2 addressing 𝜓1 and 𝜓2. While this is accurate
for the AOM scheme, in the EOM scheme there will generically be more frequencies, shown in
Fig. 5.16b, and discussed later. Continuing in the AOM picture, we define the one photon detuning
Δ as Δ = 𝜔𝐿2 − 𝜔𝑒2, where 𝜔𝑒2 is the resonant transition energy to excite 𝜓2. Meanwhile, the
two-photon detuning is defined as 𝛿 = 𝜔𝐿2−𝜔𝐿1−𝜔12, where𝜔12 is the energy difference between
𝜓1 and 𝜓2. This definition of the two-photon detuning is convenient as the two-photon resonance
occurs at 𝛿 = 0. However, in the experiment we control the value 𝛿′ = 𝜔𝐿1 − 𝜔𝐿2, and so later we
will switch to this definition of the two-photon detuning.

In Ref. [397], the authors show that in the limit of large Δ, the three level system in Fig. 5.16(a)
can be reduced to a two level system described by the following effective Hamiltonian in frame
rotating at 𝜔12:

�̃�eff/ℏ =

(
−𝛿/2 − |Ω1 |2

4Δ −Ω∗eff

−Ωeff 𝛿/2 − |Ω2 |2
4Δ

)
. (5.14)

On the diagonals we have the AC Stark shifts, and on the off-diagonals we have coupling driven by
Ωeff, the effective Raman Rabi frequency, given by:

Ωeff =
Ω∗1Ω2

4Δ
. (5.15)

We can estimate the power needed to drive two-photon transitions. We assume Ω1 = Ω2 = Ω,
and write Ω = 𝛾

√︁
𝑟𝑖 𝑗 𝑠/2, where 𝑟𝑖 𝑗 is the branching ratio for the transition, defined in eq. 3.2. We

approximate 𝑟𝑖 𝑗 ∼ 1/2 and use 𝐼𝑠 ≈ 5 mW/cm2 as in YbOH. With Δ = 2𝜋 × 1 GHz, we obtain
Ωeff ≈ 𝑠 × 2𝜋 × 2.4 kHz. We see we need to operate with 𝑠 ≈ 80 to obtain Ωeff ≈ 200 kHz, on
the order of the time of flight broadening. Luckily, we are working with quasi-diagonal FCFs on a
strong transition, so we can achieve this saturation parameter with ∼12 mW in each sideband for a
1 mm × 3 mm cylindrical beam.

To generate the two-photon light, we need to create coherent sidebands in the frequency
spectrum of the laser. Two approaches were available to us: electro-optic modulators (EOMs)
and acousto-optic modulators (AOMs). Though both have advantages and disadvantages, we ran
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Figure 5.16: Three level toy models for AOM and EOM two-photon setups. The two ground states
are 𝜓1 and 𝜓2, split by 𝜔12, and the excited state is 𝑒, separated from the ground states be 𝜔𝑒2
and 𝜔𝑒1. (a) With an AOM, we generate two laser beams, 𝐿1 and 𝐿2, that can address either
ground state. The one photon detuning is given by Δ = 𝜔𝐿2 − 𝜔𝑒2 , and the two-photon detuning is
𝛿 = 𝜔𝐿2 − 𝜔𝐿1 − 𝜔12. (b) With an EOM, we generate three frequencies: the carrier 𝜔0, and two
sidebands 𝜔+1 and 𝜔−1. The diagram shows the resonant two-photon case when |𝜔0 −𝜔±1 | = 𝜔12.
On resonance, we have two separate two-photon linkages, 𝜔0𝜔−1 and 𝜔+1𝜔0. The relative phase
of -1 between the sidebands results in destructive interference of the total 𝜓1 ↔ 𝜓2 transition
amplitude, see main text for details. (b) is adapted from Ref. [398]

into two key distinctions that made AOMs more favorable to EOMs for generating two-photon
light. First, the AOM produces a sideband that has a different 𝑘 vector from the carrier, allowing
independent control of the two polarizations, while the EOM produces two or more sidebands, all
with the same 𝑘 vector as the carrier, and same polarization properties. Second, the EOM produces
positive and negative sidebands symmetric about the carrier, with a phase relationship of (−1)𝑛

between the 𝑛th and −𝑛th sideband. This phase relationship results in destructive interference
between the various carrier-sideband combinations that satisfy the two-photon resonance.

5.3.3.1 EOM Interference

Destructive interference when using an EOM to implement a two-photon transition is discussed in
detail in Refs. [398, 399]. Consider an electric field oscillating at 𝜔0 subject to sinusoidal phase
modulation with modulation index 𝛽:

𝐸 (𝑡) = 𝐸0 cos (𝜔0𝑡 + 𝛽 sin𝜔𝑡) = 𝐸0

2
𝑒𝑖(𝜔0𝑡+𝛽 sin𝜔𝑡) + c.c. (5.16)

We now drop the 𝜔0 oscillation as well as the complex conjugate term, equivalent to performing
a rotating frame transformation and rotating wave approximation. We can expand the remaining
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exponetial using the Jacobi-Anger expansion as follows:

𝐸0

2
𝑒𝑖𝛽 sin (𝜔𝑡) =

𝐸0

2

∞∑︁
𝑛=−∞

𝐽𝑛 (𝛽)𝑒𝑖𝑛𝜔𝑡 . (5.17)

The sum describes sidebands separated by 𝜔, where each sideband amplitude is proportional to
𝐽𝑛 (𝛽), which is a Bessel function of the first kind. We can then define a Rabi frequency for each
sideband as ℏΩ𝑛 = 𝐷𝑒𝑔𝐸0𝐽𝑛 (𝛽). For now we ignore branching ratios and complex phases. In the
case when sideband 𝑛 and 𝑛′ form a two-photon resonance at (𝑛 − 𝑛′)𝜔, we can then write the
effective Rabi frequency as Ω𝑛,𝑛′ = Ω𝑛Ω𝑛′/(4Δ).

First, we consider the case with low modulation depth, where the prominent signals are the
carrier (𝑛 = 0) and first order sidebands (𝑛 = ±1). When the modulation frequency is resonant
with the ground state splitting, we have the situation shown in Fig. 5.16b. We see there are two
separate two-photon resonances that can occur, and we write the total transition amplitude as
Ωtot = Ω0,−1 +Ω0,+1. Now, we recall that Ω𝑛 ∝ 𝐽𝑛 (𝛽), and 𝐽𝑛 (𝛽) = (−1)𝑛𝐽−𝑛 (𝛽). Therefore the two
terms contributing to Ωtot are opposite in phase, causing destructive interference of the transition
amplitude. To see how severe the cancellation is, we write Ω+1 = −Ω−1 = Ω1, and expand the
transition amplitude:

Ωtot =
Ω0Ω1

4Δ
− Ω0Ω1

4(Δ + 𝜔12)
(5.18)

=
𝜔12

Δ + 𝜔12

Ω0Ω1

4Δ
. (5.19)

We see that the effective Rabi frequency is supressed by the ratio 𝜔12/Δ for Δ ≪ 𝜔12.

We now revisit our earlier power estimate. We take Δ = 2𝜋 × 1 GHz and 𝜔12 ∼ 2𝜋 × 100 MHz,
which means our effective two-photon frequency is now at least 10× weaker. Furthermore, if we
increase the power, we have to contend with more off-resonant scattering. Normally, the scattering
rate scales with intensity as 𝑅𝑠𝑐 ∝ 𝐼/Δ2, while Ωeff ∝ 𝐼/Δ, and we can just move to larger detuning
to improve the ratio Ωeff/𝑅𝑠𝑐. However, with EOM interference, the extra factor of 𝜔/Δ in eq. 5.18
now means Ωeff ∝ 𝐼/Δ2 has the same detuning dependence as 𝑅𝑠𝑐, and we no longer win by going
to larger detuning.

This interference can motivate us to try driving two-photon transitions with larger frequency
spacings, for example by modulating at 𝜔mod/2, such that the +1,−1 sidebands form a resonance.
However, we recall that the sideband intensities are given by Bessel functions 𝐽𝑛 (𝛽). As we increase
𝛽 to make the |𝑛| = 1 sidebands larger, appreciable |𝑛| = 2 sideband intensity will form. Therefore,
we will also have resonances that form between the 0,±2 sidebands, and these resonances have
opposite phase to the +1,−1 sideband resonance, resulting in further destructive interference.
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Mathematically, one can show that no matter what sidebands we use, as long as the amplitudes
are given by eq. 5.17, there will be destructive interference. The relatively straightforward proof is
provided in Appendix F of Ref. [399]. The end result is the following statement:

∞∑︁
𝑛=−∞

𝐽𝑛 (𝛽)𝐽𝑛′ (𝛽) = 𝛿𝑛,𝑛′ (5.20)

where 𝛿𝑛,𝑛′ is the Kronecker-Delta function. The cross terms represent amplitude modulation at
(𝑛 − 𝑛′)𝜔, and they vanish because we are performing pure phase modulation. As we showed
earlier, the cancellation is not complete, as the sum we consider is also weighted in the denominator
by the detuning Δ, which will have small variation for different sideband combinations. However,
the cancellation is still severe, and we cannot improve the situation by using higher order sidebands.

In Ref. [398], the authors circumvent this issue by separating the𝜔0 carrier with interferometric
techniques, and deliberately applying an extra frequency shift to just 𝜔0 before recombining with
the sidebands. Meanwhile, in Ref. [395], the authors present three methods: one uses a Mach-
Zender interferometer to add differential phase shift, the second approach purposefully introduces
sideband asymmetry by parking on the efficiency slope of a SHG gain curve, and the third approach
uses a cavity to filter out unwanted sidebands. We note the second approach is very similar to our
setup, where we perform phase modulation before a doubling crystal. Finally, in Ref. [399], the
authors use a dispersive element to convert phase modulation to amplitude modulation.

As shown in the references above, we can circumvent the interference issue if we purposefully
introduce amplitude modulation into the problem, equivalent to breaking the symmetry of the
EOM sidebands. Asymmetric sidebands are actually somewhat common and usually unwanted,
and can result from driving an EOM with harmonics of the modulation frequency. Therefore,
we can purposefully drive the EOM with additional tones at harmonic frequencies, adjusting their
amplitude and phase by optimizing for asymmetry in the sideband spectrum.

In the experiment, we tried performing detuned Raman transitions using two-photon light
derived from an EOM. We were unable to see any effect at low powers, thought at sufficiently high
power we did see some weak signals correlated with the EOM being on. Unfortunately the SNR was
very poor and the power required was >100 mW, resulting in noticeable off-resonant scattering at a
detuning of 1 GHz. Finally, we tried generating asymmetric sidebands by driving the EOM with a
waveform at 2𝜔 in addition to 𝜔. By adjusting the amplitude and phase of the two waveforms, we
were able to create a 1:4 asymmetry ratio of 𝑛 and −𝑛 sidebands. However, because we did not use
a doubler but instead used two different output channels, we had relative frequency offsets between
our 𝜔 and 2𝜔 tones that caused sideband asymmetry drift over timescales of seconds.

Even if the destructive interference from opposite phase sidebands was not an issue, EOMs
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are still limited to generate sidebands with identical polarization to the carrier12. This can result in
interference issues when combined with unresolved hyperfine structure. We previously encountered
this issue in Sec. 5.2, where for certain transitions, hyperfine doubling destabilized dark states.

In both AOM and EOM based approaches, hyperfine doubling results in two contributions to
the two-photon transition amplitude, one from each excited 𝐹 state for a given 𝑀𝐹 . The specific
TDM couplings depend on Wigner-6j and 3j symbols. The two hyperfine contributions generally
have opposite sign, though not opposite magnitude, and this has different consequences for CPT
compared to detuned Raman transitions. For CPT, the dark states are proportional to the transition
amplitudes and their phases. The presence of two oppositely signed two-photon couplings means
there is wavefunction overlap with the bright state of one coupling and the dark state of the other
coupling, resulting in optical pumping and loss. This is the same mechanism that is detailed in
Sec. 5.2. Meanwhile, in the case of detuned Raman transitions, the transition amplitudes for the
different two-photon paths are added together. Because the matrix elements betweenΔ𝐹 = −1, 0, +1
states are generically different, there is not an exact cancellation of transition amplitudes, and the
total amplitude can retain a decent fraction of its nominal value.

Further, CPT can still be pursued if there is no hyperfine doubling in the excited state. This
is the case whenever addressing transitions to stretched excited states, as they correspond to a
unique 𝑀𝐼 = 𝐼 · �̂� configuration in the decoupled nuclear spin basis. The existence of a single,
unique excited state means only one dark state forms, and is orthogonal to any other bright states.
Indeed, later we achieve a successful CPT resonance using an EOM to couple stretched states.
Stretched states also do not have order unity reduction of the transition amplitude in detuned
Raman transitions. In order to leverage stretched excited states for two-photon resonances, we must
consider the level degeneracies of the ground and excited states, as well as the optical linkages
formed by our polarizations of choice.

5.3.3.2 Master Equation Simulations

In addition to experimental tests, we model the two-photon dynamics using a Lindblad master
equation (a.k.a. optical Bloch equations), implemented in QuTiP13. For specific details on modeling
dynamics with master equations, see Ch. 4 of Ref. [349] as well as Refs. [120, 400, 401]. Master
equations are powerful tools that allow us to combine unitary dynamics (entropy preserving)
with dissipative dynamics (entropy increasing). In our case, unitary dynamics are implemented by
optical couplings, while dissipation results from spontaneous emission. Therefore a master equation
describes the evolution of a density matrix 𝜌, which can describe both coherent superpositions and

12There are clever and complicated techniques that can be leveraged to split a carrier and its sidebands, see Ref. [398]
which used this to avoid EOM interference.

13 https://qutip.org/

https://qutip.org/
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statistical mixtures. Though we do not pursue it here, the master equation approach can also be
generalized to generate quantum state trajectories [402].

The Lindblad master equation describes the time evolution of the density matrix 𝜌 subject to
both coherent operations and dissipation. The master equation is given by [213, 402]:

d𝜌
d𝑡

= − 𝑖
ℏ
[𝐻, 𝜌] +

∑︁
𝑖 𝑗

𝛾𝑖 𝑗D[𝑐𝑖 𝑗 ]𝜌. (5.21)

The master equation is the same in the rotating frame14, so long as we substitute �̃� for 𝐻 and �̃�
for 𝜌. The commutator [𝐻, 𝜌] generates unitary dynamics, while the “superoperator”D generates
dissipative dynamics. Meanwhile, the sum is taken over the ground states 𝑖 and excited states 𝑗 ,
with the partial width 𝛾𝑖 𝑗 given in eq. 3.1. The operator 𝑐𝑖 𝑗 = |𝑖⟩⟨ 𝑗 | represents the multi-level
equivalent of 𝜎− that transfers population from 𝑒⇝ 𝑔. Finally, the dissipation superoperator D is
defined as D[𝑐]𝜌 = 𝑐𝜌𝑐† − 1

2 {𝑐
†𝑐, 𝜌}, where {𝐴, 𝐵} = 𝐴𝐵 + 𝐵𝐴 is the anti-commutator.

To represent the ground state manifold, we use the eigenstates obtained by diagonalizing
the �̃� (010) effective Hamiltonian obtained in Ch. 4. To model the excited state, we use the
eigenstates obtained by diagonalization of the �̃�2Π1/2(000) state, and when calculating the E1
TDM, we substitute Λ → ℓ, i.e., we treat the state as a 2Π1/2 vibronic state where Λ and ℓ are
indistinguishable. In such an approximation, transitions are generated by the parallel 𝑇1

𝑞=0(𝑑)
component of the molecule frame transition dipole. This is not strictly accurate, as we know from
Ch. 4 that the E1 transition up to �̃� should couple via 𝑇1

𝑞=±1(𝑑) components. Nonetheless, accurate
modeling of the bend-to-bend TDMs is significantly complicated by the 𝐾-resonance, and was
beyond the scope of our work. Further, the approximation is not necessarily a bad one considering
the 𝐾-resonance makes the �̃�(010) state look like a 2Π(b) state. We will refer to our approximated
state as �̃�(010) for convenience, though the reader should remember we are not treating the exact
TDMs with detail.

For the coherent dynamics, we use a total Hamiltonian consisting of the eigenvalues of direct
diagonalization on the diagonals, and the computed TDMs for the off diagonals. We setup the
problem in a basis containing all �̃� (010) states of parity P in a single rotational manifold 𝑁 ,
including all 𝐽, 𝐹, 𝑀 states. For the excited states, we include in the basis all �̃�(010) states of
opposite parity, P′ = −P, in a single excited state 𝐽′ manifold, including hyperfine parameters that
are deliberately set to be ∼100× smaller than the �̃� (000) hyperfine.

We treat the two-photon light generated by the AOMs as consisting of two light fields,
𝜖1𝐸1 cos (𝜔𝐿1𝑡) and 𝜖2𝐸2 cos (𝜔𝐿2𝑡), where 𝐸𝑖 is the electric field amplitude and 𝜖𝑖 is the po-
larization. We take 𝐿1 to address 𝜓1, the ground 𝐽 manifold that is initially depleted. Then 𝐿2

14Diagonal values of 𝜌 and �̃� are also the same, but the off-diagonal entries can be different.
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addresses the undepleted ground manifold 𝜓2. The two-photon detuning is given by 𝛿 = 𝜔𝐿2−𝜔𝐿1,
and the one photon detuning is given by Δ = 𝜔𝐿2 − 𝜔𝑒𝜓1 , where 𝜔𝑒𝜓1 is the transition energy from
the excited state to the 𝜓1 manifold. Fig. 5.17 shows a schematic of relevant transitions and levels
when considering the 𝑁 = 1 ground state manifold.

Transition dipole moments are written as Ω
(𝑖)
𝑔𝑒 = ⟨𝑔 |𝑇1(𝑑) · 𝑇1(𝜖𝑖) |𝑒⟩𝐸𝑖/ℏ, where 𝑖 denotes

𝐿1, 𝐿2, and 𝑒, 𝑔 denote arbitrary ground and excited states. We connect Ω to experiment via the
saturation parameter, 𝑠 = 𝐼/𝐼𝑠 = 2Ω2/𝛾2, where 𝛾 = 1/𝜏 and 𝐼𝑠 = 𝜋ℎ𝑐

3𝜆3𝜏
. Rewriting in terms of

branching ratios the line strength 𝑚𝑖 𝑗 = ⟨𝑖 |𝑇1
𝑝 (𝑑) | 𝑗⟩/𝐷𝑒𝑔, we have Ω𝑒𝑔 = 𝛾𝑚𝑖 𝑗

√︁
𝑠/2. We note

that the saturation parameters should be interpreted very approximately, as we do not model the
Gaussian extent of the laser beam, nor do we know the excited state TDMs accurately.

Suppressing 𝑀 sublevels and hyperfine quantum numbers for convenience, we can write the
Hamiltonian in a basis given by {���𝑒, 𝐽′〉, ���𝜓1, 𝐽1

〉
,

���𝜓2, 𝐽2

〉}
. (5.22)

We transform into the rotating frame defined by 𝑅 = 𝑒𝑖𝜉𝑡 , with 𝜉 a diagonal matrix with diagonal
entries given by {𝜔𝐿2, 𝛿, 0}. In this choice of rotating frame15, the 𝐽1 spin-rotation manifold energy
is defined relative to frame rotating at the two-photon frequency 𝛿. We also define the spin-rotation
splitting as 𝐸𝑆𝑅 as the energy separation between 𝐽1 and 𝐽2. We can then write the rotating frame
Hamiltonian as:

�̃� =

©«
−Δ 1

2Ω
(1)
𝐽′𝐽1
+ 1

2𝑒
−𝑖𝛿𝑡Ω(2)

𝐽′𝐽2
1
2𝑒
𝑖𝛿𝑡Ω

(1)
𝐽′𝐽1
+ 1

2Ω
(2)
𝐽′𝐽2

h.c. −𝛿 + 𝐸𝑆𝑅 0
h.c. h.c. 0

ª®®®¬ . (5.23)

where h.c. denotes Hermitian conjugate of the upper half diagonal. For convenience, have taken
the Rabi frequencies Ω to be real, as we only consider light linearly polarized along �̂� and �̂� . The
form of the Hamiltonian sheds some light on how detuned Raman transitions work.

To generalize the above matrix to the full basis, one can add the hyperfine energies to the
diagonal elements, and take into account the hyperfine state quantum numbers when computing the
Rabi frequency matrix elements. Finally, we note with the �̃� (010) parameters from Ch. 4, there
are two separate values of 𝐸𝑆𝑅 in 𝑁 = 1, one for each parity, calculated to be 𝐸 (−)

𝑆𝑅
= 45.3 MHz and

𝐸
(+)
𝑆𝑅

= 62.1 MHz.

Finally, we implement a few phenomenological additions to the simulations. First, we add an
extra ground state that is uncoupled by coherent manipulations, but can be populated by excited
state decays. This “dump” state is meant to model leakage to other vibrational states dark to the

15An alternative parameterization is {𝜔𝐿2, 𝛿, 0}, which is easier for comparison to the effective Hamiltonian
eigenvalues, as the diagonal entries are just state energies.
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laser, and its branching ratio is obtained by assuming the Δ𝑣 = 0 decay from �̃�(010) has the same
vibrational branching ratio (89.44%) as the equivalent decay from �̃�(000) [144, 217]. Secondly, to
phenomenologically model Doppler broadening of the excited state, for CPT simulations only we
add excited state dephasing using

∑
𝐽 𝛾𝐷D[𝑑 𝑗 ]𝜌, where 𝛾𝐷 is the Doppler width (∼10 MHz) and

𝑑 𝑗 = | 𝑗⟩⟨ 𝑗 | is the excited state projector. This can be thought of as the multi-level equivalent of a 𝜎𝑧
dephasing operator, which eliminates off-diagonal coherences. This approximation is fine so long
as we are not interested in coherent physics on time scales shorter than the excited state lifetime.
Otherwise we must average the master equation solutions over one-photon detuning values (the
sidebands are co-propagating and the two-photon detuning is Doppler free).

Simulations are performed with a 1.2 ns timestep. Such a short timestep is necessary because
we are directly simulating the phase oscillation of the off-diagonal matrix elements, which have a
period of 𝐸−1

𝑆𝑅
≈ 17 ns. On one hand, this allows us to use the same simulation for resonant CPT

and detuned Raman processes, just changing the one photon detuning. If we were just interested
in detumed Raman transitions, we could have instead developed an effective model that eliminates
the excited state in favor of an effective two-photon Rabi rate. See Ref. [397] for a discussion of
what “eliminating” the excited state means.

5.3.4 Two-Photon CPT Tests
First, we performed experiments on resonance, using transition interference between the two

AOM sidebands to implement coherent population trapping (CPT). We label the two laser sidebands
as 𝐿1, addressing the depleted state𝜓1, and 𝐿2, addressing the undepleted state𝜓2. The two-photon
detuning is given by 𝛿 = 𝜔𝐿2 − 𝜔𝐿1, the one photon detuning is given by Δ = 𝜔𝐿2 − 𝜔𝑒𝜓2 , and the
spin-rotation splitting is given by 𝐸𝑆𝑅. See the previous section for details on notation.

To understand how a dark state can result in population transfer, we imagine the bright and dark
states are given by |𝐵/𝐷⟩ ∝ |𝜓1⟩ ± |𝜓2⟩. Now we expand the initial state, 𝜓2, in the bright/dark
basis, as |𝜓2⟩ ∝ |𝐵⟩ − |𝐷⟩. As the molecule enters the light field, the coupling |𝐵⟩ → |𝑒⟩
increases, while |𝐷⟩ remains dark. After a few photon scatters, the bright state is pumped away,
but the dark state remains, and the population is spread between 𝜓1 and 𝜓2. We can also think of
the transitions between the two ground states as occurring via stimulated absorption followed by
stimulated emission.

In the experiment, we fix𝜔𝐿2 on resonance, Δ ≈ 0, and we scan𝜔𝐿1 by varying the AOM drive.
We can adjust the relative polarization angle between 𝐿1 and 𝐿2 using a half waveplate, as detailed
in the apparatus section. Based on the issues with hyperfine interference discussed in Sec. 5.2, we
expect that if 𝐿1 and 𝐿2 are both polarized along the same direction, we will have destabilized dark
states. We can see this by choosing the polarization direction to be �̂� , which makes the hyperfine
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Figure 5.17: A schematic diagram of the �̃� (010) and �̃�(010) states involved in the two-photon
experiments with orthogonal polarizations. The diagram is applicable to both CPT and detuned
Raman transitions. Here, we show the case of |𝜓1⟩ = |𝐽 = 1/2+⟩ and |𝜓2⟩ = |𝐽 = 3/2+⟩. The two
AOM sidebands are 𝐿1 and 𝐿2, and we indicate the one photon detuning Δ and the two-photon
detuning 𝛿 (see main text for more details). Here, we have only shown one of the possible linkages
between 𝐹 = 2 and 𝐹 = 1. In general there will also be linkages involving 𝐹 = 2, 𝑀𝐹 = ±1 states,
not shown.

interference clear. On the other hand, we expect that with orthogonal polarizations, dark states will
exist. We can obtain these conclusions by examining the linkages (two-photon resonances) formed
by the two optical couplings, shown in Fig. 5.17. If a linkage has more ground states than excited
states, then a dark state will exist. If the number of states is equal between ground and excited, then
given the hyperfine doubling, we expect the dark states to be destabilized by resonant bright state
scattering via the hyperfine doubled excited state.

We first investigated CPT resonance for the 𝑁 = 1,P = +1 manifold of the ground state, where
we identify |𝜓1⟩ = |𝐽 = 1/2⟩ and |𝜓2⟩ = |𝐽 = 3/2⟩. We deplete the 𝐽 = 1/2 manifold using the
strong 𝑄𝑅+12(1) line of the �̃� (010) → �̃�(000) transition. The two-photon laser 𝐿2 is fixed on the
transition from �̃� (010), 𝐽 = 3/2 up to �̃�(010), specifically the lower 𝐽′ = 3/2+ state (“𝑁′ = 1”)
of �̃�(010) at 17331.7010 cm−1. We then scan the frequency of 𝜔𝐿1 via by changing the RF
frequency driving our double-pass AOM detailed earlier in the apparatus section. Figure 5.18(a)
shows both data and theory for the CPT resonance with perpendicular polarizations for 𝐿1 and 𝐿2.
The lineshape is similar to that obtained in electromagnetically-induced transparency. We note the
CPT data shown was taken with a limited AOM double-pass configuration, resulting in extinction
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Figure 5.18: Coherent population trapping (CPT) features obtained with Δ = 0 scanning the two-
photon frequency 𝛿 across the 𝑁 = 1+ spin-rotation splitting. The signal is the population read out
from the 𝐽 = 1/2 level, denoted 𝜓1 in the main text. All model curves are calculated with 𝑠1 = 0.5,
𝑠2 = 10, taking into account the AOM scanning efficiency with 𝜎 = 2.5 MHz, and using a 10 MHz
excited state Doppler broadened width. Both data curves have slopes due to target decay and
heating. (a) CPT signals obtained with perpendicular polarization on the two sidebands 𝐿1 and 𝐿2.
The feature in the middle is a dark state formed by connecting 𝐽 = 3/2, 𝐹2 = 2↔ 𝐽 = 1/2, 𝐹 = 1.
(b) The CPT feature is absent when using parallel polarization on 𝐿1 and 𝐿2, a result of hyperfine
interference.

of 𝐿1 power when 55 MHz < 𝛿 < 65 MHz, see the apparatus Section 5.3.2.2 for details. The
theory curves take into account this power variation. We now explain the general lineshape of the
feature.

When 𝜔𝐿1 is far off resonance (or extinguished), there is no two-photon resonance. Instead,
we will only have a “one-photon resonance” from 𝜔𝐿2, which optically pumps population from
𝜓2 to 𝜓1 via the pathway 𝜓2 → 𝑒 ⇝ 𝜓1. In our downstream probe of 𝜓1 shown in Fig. 5.18,
this looks like an increase in population compared to when 𝜔𝐿2 is blocked. Now we consider the
case when 𝜔𝐿1 is detuned from the 𝜓1 resonance (and therefore from the two-photon resonance)
by ≳ 1 MHz. The interference of 𝐿1 and 𝐿2 results in a dark state, but it is not stable. In the
frame rotating at 𝐸𝑆𝑅, the dark state phase is oscillating at a frequency 𝐸𝑆𝑅 − 𝛿 ≳ 1 MHz, and
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therefore within 1 µm or faster it transforms to a bright state that is pumped out by the lasers.
Therefore, any population that decays into 𝜓1 via optical pumping will inevitably be pumped back
out, and we see the signal representing the 𝜓1 population drops accordingly. This large dip should
be as wide as the total width of the one photon fluorescence feature, but in the experiment we are
limited by loss of 𝐿1 power as we scan 𝛿. Finally, in the middle of the large depletion dip, we see
a narrow feature, corresponding to the two-photon CPT resonance. The interference between 𝐿1
and 𝐿2 is on resonance with the spin-rotation splitting, 𝐸𝑆𝑅 − 𝛿 ≈ 0, and therefore the dark state
phases remain stable in the frame rotating at 𝛿. We note that we can also observe the population
in the 𝐽 = 3/2, 𝜓2 state in the simulations, which indicates the exact opposite lineshape—a wide
one photon pumping feature corresponding to increased 𝜓2 population, and a series of narrow CPT
resonant dips corresponding to dark state transfer to 𝜓1.

The simulations agree with the data well, although they require us to modify the saturation
parameters 𝑠1 and 𝑠2 from the naive expectation. This should not be a surprise, considering we do
not know the exact excited state TDMs. The simulations indicate the other hyperfine components
are buried under the noise floor of the depletion signal, combined with the loss of light from
technical imperfections in the initial AOM setup.

We now discuss the width of the feature. Since magnetic fields in the region are controlled
down to ≲30 mG levels, this can give a Zeeman broadened width of at most 50 kHz. In the
absence of power broadening, we expect the dominant contribution to the width to be time-of-flight
broadening. The molecules are traveling at 200 m/s, and the laser beam is ∼1 mm wide, resulting in
a 𝑡𝑇𝑂𝐹 = 5 µs time-of-flight, and a broadening of ∼𝑡−1

𝑇𝑂𝐹
= 200 kHz. We can intuitively understand

time-of-flight broadening as limiting the number oscillations, experienced by the molecules, of the
RF beat note between the two sidebands. The width observed in the data is larger than expected,
possibly due to uncompensated stray fields.

The data in Fig. 5.18(a) was taken with balanced power in both sidebands, approximately
500 µW split between both beams. Using 𝐼𝑠 = 5.4 mW/cm2, as is the case for the �̃� (000) − �̃�(000)
band in YbOH, this would nominally correspond to 𝑠 ≈ 1.5. However, the middle CPT feature is
too strong to be explained by such a value in the simulations. We note this discrepancy could be
due to 𝑠1 being lower as a result of the AOM fiber couple issues mentoned earlier.

We also studied the effect of varying the power in the beams. Generically, the dark states
that form are may be as Ω2 |𝜓1⟩ − Ω1 |𝜓2⟩ assuming all positive Ω. We therefore see that we can
increase the amount of population returned to 𝜓1 (and therefore the contrast of the CPT lineshape)
by increasing the intensity of the 𝐿2 laser addressing 𝜓2. Finally, due to the fact that 𝐸𝑆𝑅 ≈ 6𝛾,
where 𝛾 is the radiative linewidth, if we increase the power of either beam such that 𝐸𝑆𝑅 ∼ 𝛾

√
1 + 𝑠,

then the power broadened resonance results in off-resonant scattering of 𝜓1 by 𝐿2 and vice-versa,
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which can destroy the dark state via optical pumping. Indeed, if we increase the powers too high,
we observe loss of the CPT resonance in the experiment.

We also investigated the configuration where both AOM sidebands have the same polariza-
tion orientation. The data and simulation results for parallel optical polarizations are shown in
Fig. 5.18(b). While the depletion dip is still present, we see the CPT resonance has been reduced
to below the noise floor. As discussed earlier, this is a result of hyperfine doubling in the excited
state, which is easiest to see if we consider both beams as �̂� polarized, and thus the lasers only
connect states with Δ𝑀𝐹 = 0. Then there are two excited hyperfine states that each form a Λ-
system for a given pair of ground 𝑀𝐹 states. The dark state of one system is the bright state of
the other, and resulting in optical pumping and depletion of the dark state. The only excited states
sublevels without hyperfine doubling are the 𝑀′

𝐹
= ±2 stretched states, and these cannot connect

via Δ𝑀𝐹 = 0 transition to both spin-rotation manifolds in the ground state, as only 𝐽 = 3/2 has
𝑀𝐹 = ±2 stretched states.

Though we do not go into detail here, we additionally performed two-photon CPT on the
𝑁 = 2,P = +1 manifold of the �̃� (010) state. Now we identify |𝜓1⟩ = |𝑁 = 2, 𝐽 = 3/2−⟩ and
|𝜓2⟩ = |𝑁 = 2, 𝐽 = 5/2−⟩. We performed upstream depletion and downstream probing with the
𝑄𝑅−12(2) line of the �̃� (010) → �̃�(010) transition. For the two-photon light, we couple to the upper
𝐽′ = 3/2+ state (𝑁 = 2) in �̃�(010). The resonant line corresponding to the 𝐽′′ = 5/2− → 𝐽′ = 3/2+

transition is located at approximately 17331.5050 cm−1. The spin rotation splitting in 𝑁 = 1− is
192.5 MHz, which was too far for our AOMs.

For the 𝑁 = 2 CPT tests, we generated the two-photon light using an EOM. Since we are on
resonance (Δ = 0), we do not have to worry about the destructive interference discussed earlier.
Further, we now have stretched 𝑀′

𝐹
= ±2 states in the excited 𝐽′ = 3/2 state. These levels can

be connected via �̂� polarized light to the 𝑀𝐹 = ±2 levels avialable in both ground states 𝜓1 and
𝜓2. Therefore, we expect to have have dark states in spite of the hyperfine doubling. Indeed, we
successfully observed a CPT feature, similar to those seen for 𝑁 = 1, when using an EOM with
parallel polarizations.

A benefit of the CPT approach is that the resonance is not subject to light shifts. Unfortunately,
CPT occurs in the presence of a one-photon background dip with a center value that depends on the
one photon detuning Δ. Therefore frequency noise on the laser causes variation of the one photon
depletion background, making small hyperfine features difficult to distinguish. We therefore moved
on to try detuned two-photon Raman transitions, which are background free at the expense of light
shifts.
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5.3.5 Two-Photon Detuned Raman Spectroscopy
In the detuned Raman case, we operate with non-zero one-photon detuning Δ = 2𝜋 × 1 GHz.

This should suppress the scattering rate by a factor of∼𝛾2(1+𝑠)/(4Δ2) ≈ 10−5×(1+𝑠) compared to
the resonance. However, we will now have light shifts, also known as AC Stark shifts. These shifts
originate from the off-resonant, “dispersive” interaction of the transition dipole with the oscillating
field, and we discuss them in detail later in this section.

To perform the experiment, we fix 𝜔𝐿2 and scan 𝜔𝐿1 over the two-photon resonance by varying
the AOM RF drive frequency16. The two-photon resonances will be split by hyperfine structure,
and on resonance the coupling 𝜓1 ↔ 𝜓2 causes Rabi oscillations. As we vary the power in the two-
photon beams, we vary the number of oscillations undergone for a single velocity class. In general,
the population will be spread between 𝜓1 and 𝜓2, and we will observe revival of 𝜓1 population
downstream. Similar to the CPT case, we expect the resonances to be time of flight broadened.

In Fig. 5.19, we show both experimental and simulation results for detuned two-photon Raman
resonances of the 𝑁 = 1,P = +1 manifold, using perpendicularly polarized sidebands to drive
transitions between spin rotation states. We can clearly resolve the hyperfine structure of the
�̃� (010) bending mode. We distinguish the two hyperfine 𝐹 = 1 levels by writing 𝐹 = 1+ for the
upper level in 𝐽 = 1/2 and 𝐹 = 1− for the lower level in 𝐽 = 3/2. We assign the four peaks as
corresponding to all possible 𝜓2, 𝐹 ↔ 𝜓1, 𝐹 features: 2 ↔ 1+, 2 ↔ 0, 1− ↔ 1+, and 1− ↔ 0.
To perform the assignment of the hyperfine levels, we use an initial guess based on the �̃� (000)
hyperfine parameters. The observed transition frequencies and their assignments are given in
Table 5.1.

We note Δ𝐹 = 2 transitions are possible because we are performing a two-photon transition,
and each photon can give us Δ𝐹 = 1. However, we add that in the parallel polarization case, the
1− ↔ 0 transition has zero amplitude, owing to the 𝑀 = 0 selection rule on 1 → 1 transitions.
To perform the assignment of the hyperfine levels, we use an initial guess based on the �̃� (000)
hyperfine parameters. This is a good initial guess, as constants of the weak hyperfine interaction
from the H spin are expected to be similar for states in the same electronic manifold.

We also performed similar two-photon spectroscopy in the 𝑁 = 1,P = −1 manifold. Because
𝐸𝑆𝑅 is now smaller by ≈17 MHz, we had to slightly tweak our AOM setup to be centered at
𝐸
(−)
𝑆𝑅
≈ 43 MHz. The fact that we saw the negative parity two-photon transitions here is another

testament to the accuracy of the �̃� (010) spectroscopy in Ch. 4. We were able to identify the
equivalent four hyperfine transitions in the negative parity level as well, shown in Table 5.1.

In general, the SNR was worse when operating with the negative parity 𝑁 = 1 manifold
16By this point we improved the AOM scanning using the lens described in Sec. 5.3.2.2
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Figure 5.19: Detuned Raman transitions between 𝑁 = 1, 𝐽2 = 3/2+ and 𝑁 = 1, 𝐽1 = 1/2+
hyperfine states, driven by perpendicular two-photon beams. The hyperfine transitions are labeled
as 𝐹2 ↔ 𝐹1. The inset in the top right shows a diagram of the levels involved, not to scale. The data
correspond to the LIF signal characterizing population revival in 𝜓1. The two-photon laser beam
has 22.5 mW of total power split evenly between both sidebands. The beam is cylindrical with
𝑑𝑋 = 2 mm along the molecule travel direction and 𝑑𝑍 = 5.2 mm along the transverse direction.
Model curves are obtained using 𝑠1 = 𝑠2 = 220, and 𝑏𝐹 = 4.07 MHz and 𝑐 = 3.49 MHz, see main
text for details. The model curve is offset by 700 kHz to account for unknown light shifts and
inaccuracies in the optically determined spin-rotation parameters.

compared to the positive parity manifold. This is attributable to parity-dependent nature of the
intensity borrowing that gives strength to the �̃� (010) → �̃�(000) transitions we use for depletion
and signal readout. The 𝑄𝑅−12(1) line is too weak for depletion pumping, so instead we used the
𝑅𝑅−11(1) transition, and depleted the 𝐽 = 3/2− level, which becomes our equivalent of 𝜓1. In that
case, the 𝜓2 level is 𝐽 = 1/2−, and because this has lower degeneracy and therefore less population,
we had weaker readout signals.

As the intensity of the two-photon light is increased, the off-resonant dispersive interaction
generates light shifts that modify the energies of the levels of interest. The light shift is given as:

𝛿𝐿𝑆 =
Ω2

4Δ
= 𝑟𝑖 𝑗 𝑠

𝛾2

8Δ
≈ 𝑟𝑖 𝑗 𝑠 × 8 kHz × 2𝜋 (5.24)

where we have used the relationships for Ω that we discuss in the simulation discussion in Sec. 5.21.
Further, the light shifts can be decomposed into shifts that are common for all levels of a given 𝑁
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Table 5.1: Observed �̃� (010) − �̃� (010), 𝑁 = 1 spin-rotation-hyperfine lines obtained from detuned
Raman spectroscopy. Radiofrequency (RF) values correspond to two-photon resonances, and are
obtained from Lorentzian peak fits of data. We use 𝐹 = 1± to denote the upper/lower 𝐹 = 1 state
in the 𝑁 = 1 manifold. Parentheses are 2-𝜎 errors.

Observed Line (MHz) 𝐽′′, 𝐹′′,P′′ 𝐽′, 𝐹′,P′

60.42(14) 3/2, 2, + 1/2, 1+, +
62.40(10) 3/2, 2, + 1/2, 0, +
63.29(13) 3/2, 1−, + 1/2, 1+, +
65.40(10) 3/2, 1−, + 1/2, 0, +
43.48(12) 3/2, 2,− 1/2, 1+,−
45.50(23) 3/2, 2,− 1/2, 0,−
46.30(15) 3/2, 1−,− 1/2, 1+,−
48.50(17) 3/2, 1−,− 1/2, 0,−

and shifts that are differential among levels with different 𝐽. We are insensitive to shifts common
to all states, and the shifts differential in 𝐽 simply change the 𝛿 location of the center of mass of the
lines. The hyperfine splittings we measure will however be sensitive to shifts that are differential
among the hyperfine levels. In analogy to differential AC Stark shifts in a trap, the differential light
shifts will be smaller by a factor of differences in branching ratios 𝑟𝑖 𝑗 , which are determined by
subtracting various Clebsch-Gordan coefficients.

Experimentally, we can measure AC Stark shifts by monitoring the frequency of a two-photon
resonance as a function of light intensity. Specifically, we studied absolute frequency shifts of the
𝐹 = 2 ↔ 1+ transition as a function of total two-photon light power balanced between 𝐿1 and
𝐿2. This transition is sensitive to 𝐽-dependent and 𝐹-dependent shifts. The AC Stark shifts were
found to depend linearly on the total laser beam power, as expected from eq. 5.24. The shifts for
the P = +1 level are −2.6(7) kHz/mW, while the shifts for the P = −1 level are −2.0(8) kHz/mW,
and in both cases parentheses denote 2-𝜎 error bars. The laser beam is cylindrical, with diameters
𝑑𝑋 ≈ 2 mm and 𝑑𝑍 ≈ 5.2 mm. The data in Fig. 5.19 was taken with 22.5 mW in both sidebands,
resulting in ∼50 kHz shifts. So long as we do not operate in the significantly power broadened
regime, we see that our line uncertainties are dominated by the time-of-flight broadening and target
decay, compared to differential AC Stark shifts.

Finally, we can use the measured hyperfine splittings and uncertainties (𝜎 ∼ 100 kHz) to
determine the hyperfine parameters of the �̃� (010) state. We only fit the line splittings17, not the
line locations, and therefore we are insensitive to 𝐽-differential AC Stark shifts. At our level of

17Even if we fit 𝐽 splittings, we find the 𝑝𝐺 and 𝛾𝐺 parameters from Ch. 4 are optimized to values within their
reported error bars.
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resolution, we do not find evidence for parity-dependent hyperfine effects, i.e., the Frosch and Foley
𝑑 term[39]. The least-squares fit obtains the following optimal hyperfine parameters for �̃� (010):
𝑏𝐹 = 4.07(18) MHz and 𝑐 = 3.49(38) MHz, where 2-𝜎 uncertainties are given in parentheses.
The fit residuals are 𝜎𝑆𝑇𝐷 = 86 kHz, and the reduced chi-squared is 𝜒2

𝑟 = 1.07. The residuals are
in good agreement with our uncertainty from time-of-flight broadening.

We can compare the �̃� (010) parameters to the parameters of the �̃� (000) state, which will
allow us to estimate the bend angle of the H atom. Hyperfine parameters for �̃� (000) were obtained
in Ref. [290], with 𝑏𝐹 = 4.80(18) MHz and 𝑐 = 2.46(48) MHz. Upon excitation of the bending
mode, 𝑏𝐹 decreases by 15%, while 𝑐 increases by 42%. A similar pattern was observed in the
hyperfine parameters of �̃� (010) in CaOH in Ref. [403].

The reduction of 𝑏𝐹 implies the valence electron has proportionally less probability density at
the distant H nucleus in the bending mode. This could be due to the displacement of the H nucleus
away from the internuclear axis. On the other hand, the 𝑐 value is somewhat significantly larger in
the bending mode. This term encodes the isotropic dipole-dipole interaction, and in the molecule
frame, we can write it as [39, 157]:

𝑐 ∝
〈3 cos 𝜃2 − 1

𝑟3

〉
(5.25)

Here, 𝑟 is the magnitude of the separation between the electron and nuclear spin, and 𝜃 is the angle18
between the separation ®𝑟 and the internuclear axis. For the bending mode, we expect 𝜃 to increase
slightly, but we note this will be accompanied by a decrease in 𝑟 as the H nucleus is closer to the
Yb nucleus in the bent molecule. In Appendix C, we estimate the effect of bending angle on the
variation of the 𝑐 parameter with a simple model, and find the results inconclusive. Nonetheless,
the observation of an increase of the bending 𝑐 value in both CaOH and YbOH �̃� (010) indicates
the bending atom is displaced from the internuclear axis.

With a solid understanding of both resonant and detuned two-photon processes in the bending
mode, we moved on to perform tests of Ramsey interference, described in the next section.

5.3.6 Ramsey Tests
With field-free tests of two-photon transitions complete, we next performed proof-of-principle

Ramsey interferometry between two specific levels in �̃� (010). For this test, the specific states we
targeted were |𝜓1⟩ = |𝑁 = 1, 𝐽 = 1/2+, 𝐹 = 1, 𝑀𝐹 = 1⟩ and |𝜓2⟩ = |𝑁 = 1, 𝐽 = 3/2+, 𝐹 = 2, 𝑀𝐹 =

2⟩. Application of a bias field of 𝐵𝑍 ≈ 320 mG lifts the Zeeman degeneracy of the 𝑀𝐹 states by the
shift Δ𝐸 = 𝑔𝐹𝑀𝐹𝜇𝐵𝐵𝑍 B 𝑔𝜇𝐵𝐵𝑍 , while still remaining in the coupled basis with linear Zeeman
shifts. A level diagram showing the states of interest is provided in Figure 5.20.

18Caution, this is not the bending H angle!
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Figure 5.20: A schematic diagram of the �̃� (010) and �̃�(010) states involved in the Ramsey
interferometry tests with 𝐵𝑍 = 320 mG. Level positions are representative only and not to scale.
The states of interest, 𝑀𝐹 = 2 and 𝑀𝐹 = 1, are detailed in the main text, and their total 𝑔-factors
(in terms of 𝜇𝐵) are also indicated. The other states are off-resonant and/or depleted. The two
AOM sidebands are 𝐿1 and 𝐿2, and with polarizations �̂� and �̂� , respectively. Levels are labeled
according to their free-field quantum numbers.

The 𝑔𝐹-factor of the 𝜓2 state is given by 𝑔𝐹 ≈ 1/2, while the 𝜓1 state has 𝑔𝐹 ≈ −1/3, resulting
in a total differential 𝑔-factor of 𝑔total ≈ −4/3, where we have absorbed the factors of 𝑀𝐹 . We
note the exact values obtained from diagonalization19 differ slightly, a result of hyperfine mixing,
𝐵𝑍 mixing, and the value 𝑔𝑆 = 2.07. Due to the opposite g-factor sign, the two-photon resonance
between 𝜓1 and 𝜓2 is always the lowest frequency resonance, and can be isolated from other
resonances with magnetic tuning. Interference with overlapping resonances is an issue if looking
at the opposite 𝐹 = 2, 𝑀𝐹 = −2 and 𝐹 = 1, 𝑀𝐹 = −1 resonance. In such a case, since the magnetic
shifts are on the same order as the ground state hyperfine splittings, multiple transitions to other
𝑀𝐹 states can cause transition interference, causing Fano lineshapes.

Another advantage of using the 𝑀𝐹 = 2 stretched state in 𝐹 = 2 is our ability to increase this
state’s population using optical pumping. By applying light linearly polarized along �̂� and resonant
with a 𝑃 line (Δ𝐽 = −1) of the �̃� (010) → �̃�(010) transition, we can optically pump population
into a mixed state of the stretched 𝐹 = 2, 𝑀 = ±2 states. Essentially, we are using light to produce
angular momentum polarization alignment, so we will refer to this as “polarization pumping.”
Since the excited state branching is not fully understood, there is likely a combination of increased

19At 320 mG (0 mG), we obtain 𝑔𝐹 = 0.517 (𝑔𝐹 = 0.517) for 𝜓2, and 𝑔𝐹 = −0.302 (𝑔𝐹 = −0.317) for 𝜓1.
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stretched state population from decays, as well as depletion of population from the middle 𝑀 states.
The polarization pumping not only provides increased SNR, but also reduces congestion of the
two-photon spectra obtained in the presence of Zeeman shifts.

We implemented polarization pumping using an infrared external cavity diode laser that is
frequency doubled to 577 nm in a waveguide SHG module. The light is resonant with the
�̃� (010) → �̃�(010) band, and the excited state can decay back to the bending mode—therefore, we
perform this pumping step before depleting 𝜓1. The pumping light addresses the 𝐽′′ = 3/2+ →
𝐽′ = 1/2− transition located at 17331.3143 cm−1. The line location was optimized by looking
for 𝐽′′ = 3/2+ depletion downstream. The polarization of the pumping light was optimized by
rotating the linear light polarization and maximizing the magnitude of the two-photon resonance
corresponding to transitions out of the stretched 𝑀𝐹 = 2 state.

A full schematic of the Ramsey beamline is shown in Figure 5.21. The molecules first encounter
optical pumping light, followed by depletion light, a prep Ramsey pulse, a variable distance for time
evolution, a readout Ramsey pulse, and finally a probe laser. To perform Ramsey interferometry,
we use a 90 degree prism to retroreflect the two-photon light back through the molecule beam,
displaced by some distance in the �̂� axis (the axis collinear with the molecular beam). This means
our two Ramsey beams naturally have relatively balanced powers. By mounting the prism on a
micrometer stage, we can adjust the distance between the initial and retroreflected beams, which
implement the prep and readout Ramsey pulses, respectively. The molecule beam velocity converts
this distance to an interaction time, 𝜏. Figure 5.22 shows a photograph of the laser beams exiting the
window on the vacuum chamber. All experimental stages are visible except for the final population
readout, which is performed downstream.

The Ramsey sequence follows the general outline discussed in Section 5.1.1. The first Ramsey
beam the molecules encounter implements a 𝜋/2 pulse, mapping the initial |𝐹 = 2, 𝑀 = 2⟩
population onto the supersuperposition state ∝ |𝐹 = 2, 𝑀 = 2⟩ + |𝐹 = 1, 𝑀 = 1⟩. As the molecules
cross the distance from the first beam to the second beam, the superposition phase evolves under the
influence of the applied magnetic field. The detuning between the magnetically tuned molecular
energy splitting 𝜔12 and the two-photon frequency 𝛿 causes spin precession in the rotating frame,
given by 𝜔 = 𝛿 − 𝜔12. If we parameterize 𝜔12 = 𝜔

(0)
12 + 𝑔tot𝜇𝐵𝐵𝑍 , where 𝜔(0)12 is the free-field

frequency, we may write 𝜔 = 𝛿′ − 𝑔tot𝜇𝐵𝐵𝑍 , where 𝛿′ = 𝛿 − 𝜔(0)12 . The precession time is ∼50 µs
for molecules traveling a distance of distance of ∼1 cm with ∼200 m/s velocity. Note that the
velocity dispersion in the molecular beam will cause variation in precession time, as discussed in
Section 5.1.1.

Upon re-encountering the retro-reflected two-photon beam, the molecules undergo another 𝜋/2
pulse, and the superposition phase is mapped back onto populations in the 𝑀𝐹 sublevels. Due to
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Figure 5.21: A schematic of the two-photon experiments performed in this section. In the Depletion
stage, we first apply polarization pumping to collect population in |𝜓2⟩ = |𝐽 = 3/2+, 𝐹 = 2, 𝑀 = 2⟩.
Then, we apply depletion pumping to deplete |𝜓1⟩ = |𝐽 = 1/2+, 𝐹 = 1, 𝑀 = 1⟩. Next, in the Prep
stage, we apply a 𝜋/2 pulse between 𝜓1 and 𝜓2 using a detuned two-photon transition. After a free
evolution time 𝜏, we then apply another 𝜋/2 pulse in the Readout stage, mapping the superposition
phase evolution onto 𝜓1 and 𝜓2 populations. Finally, in the Probe stage we use resonant light to
probe the 𝜓1 population.

Figure 5.22: A photo of the laser beams used to perform Ramsey interferometry. The beams are
cylindrically shaped to cover the entire molecular beam. The molecules first encounter polarization
pumping, followed by depletion, and then Ramsey beams. See main text for details. Readout is not
pictured. The retroreflecting prism used to generate the second Ramsey beam is visible.
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the cyclical nature of phase evolution, the populations of 𝑀𝐹 = 1 and 𝑀𝐹 = 2 will oscillate as the
precession time or frequency are varied, as given in eq. 5.6. By using the micrometer stage to adjust
the distance between the two Ramsey beams, we effectively change the spin precession time for
each velocity class. We can also scan the RF frequency driving the two-photon AOM, effectively
varying the detuning in the rotating frame.

After the molecules exit the second Ramsey beam, they travel downstream to the detection
region in the KF50 octagon. The detection here is similar to what has been detailed in previous
sections. The molecules encounter a pick-off of the 588 nm depletion light, this time acting as a
fluorescence probe of the population in |𝜓1⟩ = 𝐽′′ = 1/2+, including the oscillating population in
|𝐹 = 1, 𝑀𝐹 = 1⟩. We collect LIF emitted at 577 nm using the same setup described previously.

To optimize the Ramsey pulses, we first block the return Ramsey beam. In this configuration,
the readout fluorescence is proportional to the population transfer from 𝑀𝐹 = 1 to 𝑀𝐹 = 2. The
overall total power of the Ramsey light was varied while monitoring the detection fluorescence,
and the final Ramsey power fixed at the halfway point between the fluorescence minimum and
maximum. This value was 13.5 mW in both sidbenads, and the laser beam was cylindrical with
with diameters 𝑑𝑋 ≈ 2 mm and 𝑑𝑍 ≈ 5.2 mm.

The optimization of 𝜋/2-pulses is complicated by AC Stark shifts characterized in the previous
section. If the two-photon frequency is fixed and the power scanned, these shifts cause an effective
detuning that modifies the Rabi frequency of the 𝜋/2-pulse. However, due to velocity dispersion,
there will always be a variation of the 𝜋/2-pulse interaction time, limiting the utility of pulse
optimization in the prototype apparatus.

We observed a clear spin precession signal by varying the distance between the two Ramsey
beams. Figure 5.23 shows the spin precession signals for different time-of-flight velocity groups,
with Ramsey oscillations clearly visible. We use time-of-flight to select different velocity classes.
In detail, the molecule pulse has extended temporal width, in our case a total of 6 ms. By restricting
our analysis region to 1 ms wide time windows, we only analyze signals from molecules that arrived
in that window, acting as a velocity filter. Unfortunately, because molecules exit the cell at different
times, multiple velocity classes can have the same arrival time. However, we can also estimate the
exit time of the molecular pulse by examining the absorption data taken in front of the cell. Both
the absorption upstream and fluorescence downstream have similar temporal profiles; by matching
their pulse shapes, we can assign each class of arrival times a corresponding exit time from the
cell. By taking the difference between arrival time and exit time, we obtain the total time of flight,
which is converted to velocity using the 60 cm distance from the cell to the detection region.

We then use the velocity class values to convert the ∼1 cm Ramsey distance to a variable
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Figure 5.23: Ramsey oscillations for various velocity classes in the molecular beam, denoted 𝑣.
The time axis is obtained from 𝑑/𝑣, where 𝑑 is the spacing between Ramsey beams. Error bars are
1-𝜎 standard deviations of the data. The data are fit to a sinusoid with frequency 𝑓 , representing
the detuning, included above each plot, along with standard fit errors.
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Ramsey evolution time, obtaining the plots shown in Fig. 5.23. The slowest molecules undergo
more oscillations than the fastest molecules, as expected. Further, we see the detuning is independent
of velocity, as expected. The best fit precession frequencies, 𝑓 = 𝜔/2𝜋, agree among all the velocity
classes, with a mean value of 𝑓 = 71.5 ± 1.1 kHz. Additionally, we see the phases of the sinusoid
fits vary with velocity. This is expected, as different velocity classes are rotated by different angles
during the initial and final Ramsey pulses.

In addition to scanning the spin precession time, we can also fix the interaction distance and
scan the two-photon RF frequency. Since we are changing the detuning, this is equivalent to
scanning the magnetic field. The resulting interference lineshapes are plotted in Figure 5.24. The
signals clearly show multiple Ramsey fringes, and are very similar to the two level system model
results in Sec. 5.1.1, Fig. 5.1. Over the whole 4 ms wide molecular pulse, shown in inset 5.24(ii),
velocity dispersion washes out the fringes after a few oscillations. On the other hand, if we select
a 1 ms wide arrival window of molecules centered at 200 m/s, we observe coherent oscillations
even at larger detunings, shown in the main plot of Fig. 5.24(ii). If we compare different velocity
classes, the middle peak at 𝑓0 = 59.536 MHz does not shift, indicating it corresponds to the true
resonance. Finally, the inset 5.24(i) zooms in on the region near the resonance, where we fit the
data to eq. 5.6, with velocity dispersion included by random sampling from a Gaussian distribution.
The fit parameters are provided in the figure caption, and their values barely deviate from our
expectations. For example, the micrometer position corresponds to a 9.1 mm evolution distance,
giving us a 46 µs precession time for 200 m/s molecules. The fit indicates values closer to 42 µs
are more accurate, which is nonetheless excellent agreement. Similarly, the fit favors a velocity
dispersion of 𝜎𝑣 = 13.2 m/s, in line with our expectation of CBGBs [178], and a pulse interaction
time of 4.2 µs, in excellent agreement with our estimates of ≈1 mm FWHM Ramsey beams.

Finally, we were unable to observe CPT on the 𝐹 = 2, 𝑀𝐹 = 2↔ 𝐹 = 1, 𝑀𝐹 = 1 two-photon
resonance with this setup. In general, the SNR was worse for CPT tests, as we must deal with
the background from “one photon” depletion. Furthermore, there are technical issues that may
have prevented CPT. For example, the bias magnetic field may have not been exactly aligned to
the light polarization axis. In such a case, the dark state fidelity can be compromised by scattering
from unwanted polarization components. An equivalent model for transverse fields is that they can
couple nearby levels, causing the dark state to mix with bright levels. In principle, such a problem
could be solved with elliptically polarized beams, but that was beyond the scope of our work.

These experiments demonstrated the power of two-photon transitions for high-resolution Ram-
sey interferometry and precision spectroscopy in a molecular beam. We showed that the velocity
dispersion in the beam does not wash out contrast, and with time of flight selection we can observe
the differences in precession time. Further, the local nature of two-photon manipulation allows
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Figure 5.24: Ramsey interferometry on the 𝐹 = 2, 𝑀𝐹 = 2 ↔ 𝐹 = 1, 𝑀𝐹 = 1 transition. The
main plot shows data from a 1 ms wide arrival window of molecules with 200 m/s mean velocity.
(i) A zoom in on the region near zero detuning. Data given by orange markers with error bars
representing standard error. The blue line is a fit using eq. 5.6 with velocity averaging. Parameters
are center frequency 𝑓0 = 59.536 MHz, interaction time 𝜏 = 41.7 µs, Ω𝑡𝑝 = 𝜋/2, 𝑡𝑝 = 𝜏/10, and
𝜎𝑣 = 13.2 m/s. (ii) The interference lineshape obtained by integrating all arrival times over the
4 ms wide pulse. Fewer fringes are visible due to larger velocity dispersion.
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for well-defined preparation and readout regions, and by using a bending excited state, our power
requirements (∼10-20 mW) are reasonable.

5.3.7 Outlook
We have achieved coherent control of polyatomic molecules using two-photon resonances.

We demonstrate both resonant CPT effects and detuned Raman transitions, and we use the latter
to perform Ramsey interferometry on spin-rotation-hyperfine states. Our results have excellent
agreement with simulations and modeling. We note that throughout our tests, quasi-diagonal FCFs
were useful for performing state manipulation and readout. Our results are immediately applicable
to searches for 𝑃,𝑇 violating moments in YbOH, such as the electron EDM search in 174YbOH [17],
nuclear Schiff moment or parity violation searches [404] in 171YbOH, and the nuclear magnetic
quadrupole moment (MQM) search in 173YbOH [57, 405–407]. Further, our results are generally
useful to the broad class of polyatomic molecules that follow the M-OH motif, including SrOH [302]
and RaOH [272, 408].

The next step from this work is to perform Ramsey interferometry in an electric field 𝐸𝑍 , which
would constitute a 𝑃,𝑇-violation-sensitive signal. There are a few choices for Ramsey states 𝜓1

and 𝜓2. One possibility is to use two stretched states with the same 𝑀𝐹 but opposite molecule
orientations 𝑀𝑁ℓ. Such states are maximally sensitive to variations of the electric field, but polarize
quickly, offer good 𝑃𝑇 violating sensitivities, and are easy to populate with optical pumping. By
performing measurements in both ±𝑀𝐹 states, we can disentangle electric field fluctuations from
𝑃,𝑇 violating effects. The details of implementation will depend on the excited states available,
and their polarization regime in the presence of an E-field. For example, if both ground and excited
states are fully polarized, then we must consider Δ𝑀𝑁 selection rules. Finally, if there are stretched
states available in the excited state, we can use CPT methods for state preparation and readout, as
well as detuned Raman transitions.

Another option is to use so-called zero 𝑔-factor states, which are time-reversal pairs of𝑀𝐹 = ±1
states with highly suppressed magnetic sensitivity and large 𝑃,𝑇 violating sensitivity, discussed
in detail in the upcoming section. In 174YbOH, we expect zero 𝑔-factor states to generically exist
in 𝑁 = 1 at 45 V/cm (𝐽 = 1/2−, 𝐹 = 1) and 62 V/cm (𝐽 = 3/2−, 𝐹 = 2), as well as in 𝑁 = 2 at
299 V/cm (𝐽 = 3/2+, 𝐹 = 1), 318 V/cm (𝐽 = 3/2+, 𝐹 = 2), 350 V/cm (𝐽 = 5/2−, 𝐹 = 3), and
372 V/cm (𝐽 = 5/2+). Preparation could be performed by a combination of optical pumping into
stretched states and two-photon transitions to 𝑀𝐹 = 0 states, followed by two-photon transfer to
𝑀𝐹 = ±1 states.

Zero 𝑔-factor states are an example of state engineering using applied fields. In Ref. [124], we
showed that one can also use external fields to engineer favorable transitions with noise insensitivity
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and 𝑃𝑇 violating sensitivity. In the various isotpologues of YbOH, there are many field-insensitive
transitions possible, and we direct the reader to Ref. [124] for more details.

5.4 Prototype Measurement with Trapped CaOH Molecules
Parts of this section are adapted from Ref. [403]. This work was performed as part of the

PolyEDM collaboration with the Doyle group at Harvard. I spent 2 months working on-site on the
project, and continued collaborating virtually for approximately 6 months afterwards.

5.4.1 Overview
Trapped molecules have many advantages for measurements—the most obvious is the increased

coherence time, which is on the order of ≳ 1 s. Another benefit to a trap is easier requirements
on field control, as uniformity must be achieved over a small volume ≲ 1 mm3. A third benefit
is the lack of velocity dispersion, providing the ability to apply pulses of optical, microwave, or
RF radiation with well defined interaction time. Furthermore, particularly for microwave and RF
radiation, there is no concern about the fields leaking into later steps of the experiment, unlike a
beam where spatial leakage of a field to different parts of the beamline corresponds to temporal
leakage of operations in the sequence. Finally, trapping molecules also provides the possibility of
using quantum control and entanglement techniques to improve EDM measurements.

In this Section, we report coherent control of individual quantum states in a polyatomic
molecule, calcium monohydroxide (CaOH), and use these techniques to demonstrate a method
for searching for the electron electric dipole moment (eEDM). The method starts with preparing
ultracold, optically trapped CaOH molecules in a single hyperfine level, after which a static electric
field is applied to polarize the molecules. The strength of the polarizing electric field is tuned
to obtain near-zero 𝑔-factor spin states, which have strongly suppressed sensitivity to magnetic
field noise while retaining eEDM sensitivity. Microwave pulses are applied to create a coherent
superposition of these zero g-factor spin states that precess under the influence of an external
magnetic field. The precession phase is then read out by a combination of microwave pulses and
optical cycling.

We observe spin precession over a range of electric and magnetic fields and characterize the
current limitations to the coherence time of the measurement. With readily attainable experimental
parameters, coherence times on the order of the state lifetime (>100 ms) could be realistically
achieved. We therefore realize the key components of an eEDM measurement in this system.
Although the light mass of CaOH precludes a competitive eEDM measurement [408], the protocol
demonstrated here is directly transferable to heavier laser-cooled alkaline earth monohydroxides
with identical internal level structures, such as SrOH, YbOH, and RaOH, which have significantly
enhanced sensitivity to the eEDM [17, 105, 106, 272, 408].
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Figure 5.25: Schematic diagram of the CaOH experimental apparatus at Harvard. First, molecules
are produced in a 2 stage buffer gas cell by laser ablation of a solid Ca target in the presence of
He buffer gas flow. A heated fill line introduced H2O reagents, and chemical enhancement light
stimulates reactions that form CaOH. The molecules exit the cell in a beam, are slowed by lasers,
and are trapped in an RF magneto-optical trap (MOT). The molecules are cooled further via sub-
Doppler methods, and then loaded into an optical dipole trap (ODT). In the ODT, the molecules are
polarized by an electric field, and we perform spin precession using microwave pulse sequences.
The left half of the diagram (CBGB, slowing, MOT) was adapted from the CaOH team.

Current EDM bounds rely on specific states in diatomic molecules that have an unusually
small g-factor, reducing sensitivity to stray magnetic fields [100, 101]. However, CaOH, like other
laser-coolable molecules with structure amenable to eEDM searches [17, 113, 272, 409], has a
single valence electron, which results in large magnetic g-factors. In the prototype measurement
discussed here, we engineer reduced magnetic sensitivity by using an applied electric field 𝐸𝑍 to
tune 𝑀𝑆 to a zero-crossing, while maintaining significant eEDM sensitivity Σ. This technique is
generic to polyatomic molecules with parity-doublets.

5.4.2 CaOH Apparatus
The CaOH apparatus at Harvard is described in detail in Refs. [108, 200], and here we

summarize relevant details. A basic schematic of the experiment is shown in Figure The experiment
starts with a CBGB source cooled to 2 K. The buffer gas cell design is a two-stage cell [410],
consisting of a “production” cell where ablation and thermalization occur, and a “slowing” cell,
which can help reduce the velocity of the resulting molecular beam. While the 4 K cell at Caltech
has a rectangular aspect ratio, the CaOH cell is close to a square aspect ratio, with 1-in diameter.
Finally, the cell has a ∼ 5 mm diameter hole in the back to allow the slowing beams to exit without
adding additional heat load. Chemical reactions are enhanced [227] by sending ∼800 mW of light
into the cell resonant with the 1𝑆0 → 3𝑃1 transition in Ca atoms20.

20Additionally, during testing, it was found that pre-firing the target with a separate infrared laser, in advance of
the ablation, helped with source signal and velocity stability when going to longer repetition rates. This is attributed
to desorption of helium by the pre-fired laser, as the optimal time scale for prefiring is approximately after one or two
cell emptying times. The removal of helium via pre-firing is thought to help reduce the background gas present that
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After exiting the second stage of the cell, the molecules encounter slowing light, which is
switched on at an optimized time. This light contains primary cycling light (the �̃� (000) → �̃�(000)
transition) and 11 repumping transitions to return vibrational decays to the optical cycle [108]. The
repumps are all spectrally broadened with EOMs to address all velocity classes, and polarization
modulated at roughly ∼MHz time scale by Pockels cells, to help remix dark states. Downstream is
the stainless steel MOT chamber with an RF MOT setup [120, 193, 411]. In the CaOH experiment
at Harvard [108], approximately 20,000 molecules are trapped in the MOT, with an RMS size of
0.75 mm and peak number density of 3×106/cm3. We note the MOT magnetic RF coils will later
be repurposed to apply electric fields to polarize the molecules. In the MOT, the molecules are at
∼1 mK.

The temperature can be lowered further using sub-Doppler cooling methods [115, 120, 400,
412–417]. The CaOH experiment uses two sub-Doppler techniques [109] that are in general
complicated and difficult to model. The first technique is Λ-enhanced gray molasses cooling [418–
421], which utilizes counter propagating lasers to engineer two-photon resonances that result in
velocity selective dark states [412, 416, 417]. Slow and cold molecules are trapped in dark states,
while hot and fast molecules perform non-adiabatic transitions to bright states and are further
cooled. In CaOH, this technique lowers the free space temperature to 50 µK, and is primarily
limited by off-resonant scattering. Next, the cooling light is switched to a different sub-Doppler
configuration called single frequency cooling [422], which also relies on dark states. This technique
further reduces the scattering rate, resulting in a minimum free space temperature of 20 µK.

Next, the molecules are transferred to an optical dipole trap (ODT) [423]. ODTs are preferable
to MOTs, as they apply conservative forces and do not involve constant spontaneous emission. In
the CaOH experiment, the ODT is generated by focusing 15 W of off-resonant, 1064 nm light
down to a 25 µm waist. Since the laser is red-detuned from relevant electronic transitions, it will
generate attractive light shifts at its intensity maxima. Essentially the red-detuned ODT generates
an induced dipole that follows the oscillations of the laser field. The ODT loading is performed
with the sub-Doppler cooling light still activewhich actually assists with loading molecules into the
trap [420, 421]. Further, the cooling light can be used to non-destructively image the molecules
(i.e., without losing them from the trap), allowing for shot-to-shot normalization and post-selection.

The ODT light will generally cause differential AC Stark shifts of the molecule levels, similar
to the light shifts we encountered with detuned Raman transitions. AC Stark shifts can be calculated

can boost the molecular beam as it exits the aperture. On the 4 K experiment at Caltech, we tested pre-firing with
the enhancement laser, and it had little impact on molecular production. On the 1 K experiment at Caltech, pre-firing
improved signals by a factor of a factor of a few. It is possible the differences are related to cell geometry, temperature,
or the helium dynamics of the cell. For example, the emptying times in the 4 K cell are much faster (∼1 ms) than the
1 K cell (∼10 ms).
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using the electric polarizability tensor 𝛼, given by:

←→𝛼 =
2
ℏ

∑︁
𝑗≠𝜓

𝜔𝐽
®𝑑 | 𝑗⟩⟨ 𝑗 |
𝜔2
𝑗
− 𝜔2

(5.26)

where 𝜓 is the ground state of interest, 𝜔 is the frequency of the ODT light, and the sum runs over
all excited states 𝑗 . The light shifts are given by the following Hamiltonian:

𝐻𝐿𝑆 = −
1
2
®𝐸 (𝑡) · ←→𝛼 · ®𝐸 (𝑡). (5.27)

In general, there will be scalar (rank 0), vector (rank 1), and tensor (rank 2) shifts. The scalar shifts
are common mode and used to trap the molecules in the 12 MHz deep ODT (the differential shifts
are typically 1-10% of this value). The vector shifts arise only in the presence of circular light,
and they generate ficticious magnetic fields along the 𝑘 vector of the light. We will operate with
linearly polarized beams, so we ignore this term. Finally, tensor shifts will mimic quadratic Stark
shifts from induced dipole moments, shifting ±𝑀 states identically. The formula for scalar and
tensor light shifts can be recast into a useful spherical tensor form:

𝐻𝐿𝑆 = −
1
4

∑︁
𝑘=0,2

𝑇 𝑘 (𝛼) · 𝑇 𝑘 (𝐸, 𝐸) (5.28)

where we have excluded 𝑘 = 1 vector light shifts from the sum as their term requires more care.
For details on AC Stark shifts and their calculation, we direct the reader to Refs. [424, 425].

Approximately 300 molecules are trapped in the ODT after loading for 80 ms with cooling
light [109]. The peak density is 3×109/cm3, and the in-trap temperature is 57 µK. This temperature
is higher than cooling in free space, as the AC Stark shifts destabilize the dark states that enable
effective sub-Doppler cooling.

Finally, when holding the molecules at such low temperature for close to a second, we have to
contend with thermal blackbody radiation and the natural lifetime of the �̃� (010) state. Ref. [426]
discusses these effects in a detailed investigation of the lifetime of polyatomic molecules in an ODT.
They find 300 K blackbody effects limit the total bending mode lifetime at the ∼1 s level. They
also measure the lifetime from spontaneous emission alone to be 𝜏 = 720 ms in CaOH.

5.4.3 State Preparation
The ODT is linearly polarized and its polarization vector ®𝜖ODT defines the �̂� axis, along which

we also apply magnetic and electric fields, ®𝐵 = 𝐵𝑍 �̂� and ®𝐸 = 𝐸𝑍 �̂� , respectively, as depicted in
Figure 1(a). We first non-destructively image the molecules in the ODT for 10 ms as normalization
against variation in the number of trapped molecules. The molecules are then optically pumped
into the 𝑁 = 1− levels of the �̃�2Σ+(010) vibrational bending mode [109] (Figure 1(c)), and the trap
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Figure 5.26: Information about the zero 𝑔-factor experiment at Harvard University. (a) A geometric
picture of the bending molecule at the zero g-factor crossing, showing the electron spin ( ®𝑆) has
a finite projection on the molecule axis (�̂�), giving eEDM sensitivity. However, the electron spin
( ®𝑆) is orthogonal to the magnetic field ( ®𝐵), resulting in suppressed magnetic field insensitivity. (b)
The magnetic sensitivity (upper plot) and eEDM sensitivity (lower plot) for a pair of zero g-factor
states (𝑁 = 1, 𝐽 = 1/2+, 𝐹 = 1, 𝑀𝐹 = ±1) are shown as a function of the applied electric field.
(c) Experimental sequence to prepare the eEDM sensitive state. First, the molecules are pumped
into a single quantum state (𝑁 = 1, 𝐽 = 1/2−, 𝐹 = 0) with a combination of microwave drives and
optical pumping (I). Next, a microwave 𝜋-pulse drives the molecules into the 𝑁 = 2, 𝐽 = 3/2−, 𝐹 =

2, 𝑀𝐹 = 0 state (II). Lastly, the eEDM measurement state is prepared as a coherent superposition
of the 𝑁 = 1, 𝐽 = 1/2−, 𝐹 = 1 𝑀𝐹 = ±1 states with a microwave 𝜋-pulse (III). The states which are
optically detectable with the detection light are shown in black, while those not addressed by the
detection light are in gray. Figure reproduced from Ref. [403].

depth is adiabatically lowered by 3.5× to reduce the effect of AC Stark shifts from the trap light
and to lower the temperature of the molecules to 34 𝜇K. Any molecules that were not pumped into
𝑁 = 1− levels of the bending mode are heated out of the trap with a pulse of resonant laser light.

Once the ODT is loaded, the molecule population is in the 𝑁 = 1− manifold of the �̃�2Σ+(000)
state. Population transfer to the �̃�2Σ+(010) state proceeds by optical cycling with one repumper
removed [109]. In detail, the sub-Doppler cooling light is turned on with only the 𝑁′′ = 1−

repumper addressing �̃�2Σ+(010) is turned off. We note there is also a repumper addressing
�̃�2Σ+(010) 𝑁′′ = 2− that stays on. This repumper is required because the excited state in cycling
is always 𝐽′ = 1/2+ in character, therefore E1 decays are only permitted to ground states with
𝐽′′ = 1/2− and 3/2− character. For ground states with parity doubling, such as bending modes, this
means both 𝑁′′ = 1− and 𝑁′′ = 2, 𝐽′′ = 3/2− manifolds must be addressed during cycling.

Transfer to the bending mode proceeds within 1200 photon scatters, equivalent to ∼26 ms at
the single frequency scattering rate. The decay pathways into the bending mode are ∼80% through
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the excited �̃� state and ∼20% through the excited �̃� state. We calculate the rotational branching
ratio of the decays to the states within 𝑁 = 1 as 21.6% to 𝐽 = 3/2− and 78% to 𝐽 = 1/2−.

Following transfer to the �̃�2Σ+(010) (𝑁 = 1−) state, the molecular population is initially spread
across twelve hyperfine Zeeman sublevels in the spin-rotation components 𝐽 = 1/2 and 𝐽 = 3/2.
The mixed state describing the ensemble has statistical weights given by the rotational branching
of the excited states. To perform coherent quantum operations, the initial density matrix must be
purified. A dissipative process is required to decrease the entropy of the density matrix, and the
simplest approach is to use optical pumping, either to remove unwanted population, and/or to gather
population in a single state. We also seek a scheme that requires minimal photon scatters, as each
photon recoil imparts ∼500 nK of energy. In experiments with trapped diatomic metal fluorides,
such as CaF, the hyperfine structure is optically resolved, and pumping proceeds by addressing all
states but 𝐹 = 0. In metal hydroxides hyperfine structure is not optically resolvable, as discussed
in Sec. 5.2. If we solely address 𝐽 = 3/2− optically, we would still leave population spread out over
the 𝑀𝐹 sublevels in 𝐽′′ = 1/2−, 𝐹′′ = 1, 0. Additionally, the two spin-rotation states in 𝑁 = 1 are
separated by ≈2.5× the optical linewidth, making off-resonant pumping difficult to avoid.

By adding in microwaves to couple the molecules between rotational states, we solve our
problems. Microwave linewidths are significantly narrower compared to optical linewidths, often
dominated by power broadening. Therefore, with microwaves we can separately resolve the hyper-
fine states. Further, since microwaves couple population to another rotational state, we can perform
our optical pumping there, without worrying about off-resonant excitation of 𝑁 = 1. We note there
is no 𝑁 = 0 state as we have |ℓ | = 1. The nearest rotational level, 𝑁 = 2, is 40 GHz away.

To prepare the molecules in a single hyperfine state, we use a combination of optical pumping
and microwave pulses, as shown in Figure 5.26(c). We first apply microwaves from the (𝑁 =

1, 𝐽 = 3/2−) state up to the (𝑁 = 2, 𝐽 = 3/2−) state. As this transition is parity-forbidden, we
apply a small electric field 𝐸𝑍 = 7.5 V/cm to slightly mix the parity of the 𝑁 = 1 levels and
provide transition strength. From the 𝑁 = 2 state, we drive an optical transition to the excited
�̃�2Π(010)𝜅2Σ(−) , 𝐽 = 1/2+ state. This state predominately decays to both 𝐹 = 0 (the target
state) and 𝐹 = 1 states in the 𝑁 = 1, 𝐽 = 1/2− manifold. After 3 ms of optical pumping, the
microwaves are switched to drive the accumulated 𝑁 = 1, 𝐽 = 1/2−, 𝐹 = 1 population to the same
𝑁 = 2, 𝐽 = 3/2− state in �̃� (010), where they are excited by the optical light and pumped into
the target 𝐹 = 0 state. Once this optical pumping sequence is complete, we adiabatically ramp
the electric field to 𝐸𝑍 =150 V/cm to significantly mix parity, then drive population up to the
𝑁 = 2, 𝐽 = 3/2−, 𝐹 = 2, 𝑀 = 0 state with a microwave 𝜋-pulse (Figure 5.26(c)(II)). We clean out
any remaining population in the 𝑁 = 1 state with a depletion laser that resonantly drives population
to undetected rotational levels.
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Figure 5.27: Electric field tuning of 𝑁 = 1 zero g-factor states near 𝐵𝑍 = 0 in the absence of trap
shifts. Blue lines denote 𝑀𝐹 = +1 states and red lines 𝑀𝐹 = −1. Solid traces denote the 𝐽 = 1/2
state pair and dashed traces denote the 𝐽 = 3/2 pair. The dotted vertical lines mark the electric field
value of the zero g-factor crossing without trap shifts, ≈60.5 V/cm for 𝐽 = 1/2 and ≈64.4 V/cm
for 𝐽 = 3/2. Grayed out traces are other states in the 𝑁 = 1 manifold. (a) The g-factor 𝑔𝑆𝜇𝐵⟨𝑀𝑆⟩
as a function of the applied electric field. (b) eEDM sensitivity ⟨Σ⟩ as a function of the applied
electric field. A consequence of the Hund’s case (b) coupling scheme is that Σ asymptotes to a
maximum magnitude of 𝑆/(𝑁 (𝑁 + 1)) = 1/4 for fields where the parity doublets are fully mixed
but rotational mixing is negligible [117]. For fields where 𝐽 is not fully mixed, some states can
exhibit |Σ | > 1/4. Figure reproduced from Ref. [403].

5.4.4 Engineering Zero g-Factor States
In 2Σ electronic states of linear polyatomic molecules, the spin-rotation interaction, 𝛾 ®𝑁 · ®𝑆,

couples the molecular rotation 𝑁 and the electron spin 𝑆 to form the total angular momentum 𝐽.
These states are well described in the Hund’s case (b) coupled basis. An applied electric field 𝐸𝑍
will interact with the molecular-frame electric dipole moment 𝜇𝐸 , connecting states with opposite
parity, Δ𝑀𝐹 = 0, and Δ𝐽 ≤ 1. When 𝜇𝐸𝐸𝑍 ≫ 𝛾, 𝑁 and 𝑆 are uncoupled and well described by
their lab frame projections 𝑀𝑁 and 𝑀𝑆. However, in the intermediate field regime with 𝜇𝐸𝐸𝑍 ∼ 𝛾,
the molecular eigenstates are mixed in both the Hund’s case (b) coupled basis and the decoupled
basis. 𝑀𝐹 remains a good quantum number in the absence of transverse fields. In this regime,
𝑀𝐹 ≠ 0 states with ⟨𝑀𝑆⟩ = 0 can arise at specific field values. These states have no first order
electron spin magnetic sensitivity, and, unlike 𝑀𝐹 = 0 clock states, have large eEDM sensitivity
near 𝐵𝑍 = 0. We refer to these states as zero g-factor states [17].

Zero g-factor states arise from avoided level crossings as free field states are mixed by the
electric field. One of the crossing states has ⟨𝑀𝑆⟩ < 0, the other state has ⟨𝑀𝑆⟩ > 0, and both
have mixed 𝑀𝑁 . The spin-rotation interaction couples the states and lifts the crossing degeneracy,
resulting in eigenstates that are superpositions of electron spin up and down with ⟨𝑀𝑆⟩ = 0, while
retaining non-zero molecular orientation with ⟨�̂�⟩ = ⟨𝑀𝑁ℓ⟩ ≠ 0. The lab frame projection of �̂�
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ensures that the eEDM interaction in the molecule frame does not rotationally average away, i.e.,
the eEDM shifts are diagonal.

Zero g-factor states are generically present in the Stark tuning of polyatomic molecules. The
reduction of symmetry in a polyatomic molecule allows for rotation about the internuclear axis,
resulting in closely spaced doublets of opposite parity. When these doublets are mixed by an
applied electric field, they split into 2𝑁 +1 groups of levels representing the values of the molecular
orientation ⟨𝑀𝑁ℓ⟩. For each 𝑁 manifold with parity doubling, avoided level crossings generically
occur between an 𝑀𝑁ℓ = ±1 Stark manifold and an 𝑀𝑁ℓ = 0 Stark manifold.

In diatomic molecules without parity-doubling, the existence of zero g-factor states requires an
inverted spin rotation structure (𝛾 < 0), such that the two 𝐽 states are tuned closer to each other by
an electric field. For example, the YbF molecule (𝛾 = −13.4 MHz [377, 427]) has zero g-factor
states at 𝐸 ≈ 866 V/cm in the 𝑁 = 1 manifold, while CaF does not. However, since |𝛾 |/𝐵 ≪ 1 for
most 2Σ diatomic molecules, the electric fields that mix spin-rotation states are much less than those
that polarize the molecule. Therefore, zero g-factor states occur when the molecule has negligible
lab-frame polarization, limiting eEDM sensitivity. For example, the aforementioned states in YbF
have |⟨Σ⟩| ≈ 0.006, which is ∼3% the value of Σ in the zero 𝑔-factor states used in this work.

To locate zero g-factor crossings and calculate eEDM sensitivities, we model the �̃� (010) level
structure using an effective Hamiltonian approach [39, 129, 162]:

𝐻eff = 𝐻Rot + 𝐻SR + 𝐻ℓ + 𝐻Hyp + 𝐻Zeeman + 𝐻Stark + 𝐻ODT (5.29a)

𝐻Rot = 𝐵
(
®𝑁2 − ℓ2

)
(5.29b)

𝐻SR = 𝛾

(
®𝑁 · ®𝑆 − 𝑁𝑧𝑆𝑧

)
(5.29c)

𝐻ℓ = −𝑞ℓ
(
𝑁2
+𝑒
−𝑖2𝜙 + 𝑁2

−𝑒
𝑖2𝜙

)
(5.29d)

𝐻Hyp = 𝑏𝐹 ®𝐼 · ®𝑆 +
𝑐

3

(
3𝐼𝑧𝑆𝑧 − ®𝐼 · ®𝑆

)
(5.29e)

𝐻Zeeman = 𝑔𝑆𝜇𝐵𝐵𝑍𝑆𝑍 (5.29f)

𝐻Stark = −𝜇𝑍𝐸𝑍 (5.29g)

𝐻ODT = − ®𝑑 · ®𝐸ODT. (5.29h)

Here, we use a similar Hamilton as Ref. [146]. 𝐻Rot is the rotational energy; 𝐻SR is the spin-rotation
interaction accurate for low-𝑁 bending mode levels, with 𝑧 defined in the molecule frame; 𝐻ℓ is
the ℓ-type doubling Hamiltonian, with ± defined in the molecule frame, 𝜙 as the nuclear bending
coordinate, and using the same phase convention as Ref. [159]; 𝐻Hyp is the hyperfine Fermi-contact
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and dipolar spin interactions, defined in the molecule frame; 𝐻Zeeman describes the interaction of
the electron spin magnetic moment with the lab-frame magnetic field; 𝐻Stark is the interaction of
the 𝑍-component of molecule-frame electric dipole moment 𝜇𝐸 with the lab frame DC electric
field, 𝐸𝑍 ; and 𝐻ODT is the interaction of the molecular dipole moment operator ®𝑑 with the electric
field of the ODT laser, ®𝐸ODT = E0/2(𝜖ODT𝑒

−𝑖𝜔𝑡 + c.c.).

To evaluate the molecule frame matrix elements, we follow the techniques outlined in Refs. [39,
129] to transform into the lab frame. The field-free Hamiltonian parameters are taken from
Ref. [147], except for the hyperfine parameters, which were determined by the observed line
positions to be 𝑏𝐹 = 2.45 MHz and 𝑐 = 2.6 MHz, similar to those of the �̃� (000) state [375]. We
use the same dipole moment, |𝜇 | = 1.47 D, as the �̃� (000) state, determined in Ref. [428]. Matrix
elements of 𝐻ODT are calculated following Ref. [424] using the 1064 nm dynamic polarizabilities
reported in Ref. [109].

For all calculations discussed the ODT is polarized along the laboratory 𝑍 axis and the
molecules sit at a fixed trap depth of 160 𝜇K (corresponding to the average trap intensity seen by
the molecules in the experiment). As detailed in the main text, when the trapping light is aligned
with 𝐸𝑍 , it acts like a weak electric field, shifting the zero g-factor crossing by ∼ 1 V/cm from
the field-free value. If the trapping light polarization is rotated relative to 𝐸𝑍 , tensor light shifts
can couple states with Δ𝑀𝐹 = ±2 or ±1 (the linearity of the light ensures there are no Δ𝑀𝐹 = ±1
vector shifts) [424]. The effects of this coupling are similar to those of transverse magnetic fields,
which we discuss below.

In the current work, we ignore nuclear and rotational Zeeman effects. Specifically, the magnetic
sensitivity of CaOH receives small contributions from nuclear spin of the H atom and the rotational
magnetic moment of both the electrons and the nuclear framework. While they have not yet been
fully characterized, all of these effects will contribute at the 10−3𝜇𝐵 level or less. These additional
g-factors do not depend strongly on the applied electric field, and result in a small shift of the zero
g-factor crossing location. Future work characterizing rotational magnetic moments of �̃� (010)
states of laser-coolable metal hydroxides can enable more accurate predictions of zero g-factor field
values.

In CaOH, each rotational state 𝑁 supports multiple 𝑀 = ±1 pairs of zero g-factor states.
The states at finite electric field can be labeled in terms of their adiabatically correlated zero-
field quantum numbers |𝑁, 𝐽′, 𝐹, 𝑀⟩. In the presence of trap shifts, the zero g-factor states for
𝑁 = 1 occur at 𝐸 = 59.6 V/cm for |𝐽 = 1/2+, 𝐹 = 1, 𝑀 = ±1⟩ and at 𝐸 = 64.1 V/cm for
|𝐽 = 3/2+, 𝐹 = 1, 𝑀 = ±1⟩. The 𝐽 = 1/2, 𝑀 = 1 state is a superposition of 47% 𝑀𝑁ℓ = −1, 50%
𝑀𝑁ℓ = 0, and 3% 𝑀𝑁ℓ = 1, while the 𝐽 = 3/2, 𝑀 = 1 state is 43% 𝑀𝑁ℓ = −1, 48% 𝑀𝑁 = 0,
and 9% 𝑀𝑁ℓ = 1. Both states are weak-electric-field seekers, yet the opposite molecule frame



235
(a) (b)

(d)(c)

Figure 5.28: Full electric and magnetic characterization of zero g-factor states in the 𝑁 = 1
manifold of CaOH, without trap shifts. (a, b) 2D plots of the effective g-factor difference between
two 𝑀 = ±1 states, defined by 𝑔eff = 𝑔𝑆𝜇𝐵 (⟨𝑀𝑆⟩𝑀=+1 − ⟨𝑀𝑆⟩𝑀=−1). The plotted g-factor is
normalized by 𝑔𝑆𝜇𝐵. The black line represents the contour where the 𝑀 = ±1 levels are nominally
degenerate. (c, d) 2D plots of the eEDM sensitivity, ⟨Σ⟩𝑀=+1 − ⟨Σ⟩𝑀=−1. The black line represents
the 𝑔eff = 0 contour.

orientation of the spin results in differences in the value of Σ and the g-factor slope. For CaOH, the
magnetic sensitivity and eEDM sensitivity of 𝑁 = 1 zero g-factor states are shown in Fig. 5.27.

By diagonalizing 𝐻eff over a grid of (𝐸𝑍 , 𝐵𝑍 ) values, we can obtain 2D plots of g-factors and
eEDM sensitivities shown in Fig. 5.28. For generality, we consider the molecular structure in the
absence of trap shifts. Using the 𝑍-symmetry of the Hamiltonian, we separately diagonalize each
𝑀𝐹 block to avoid degeneracies at 𝐵𝑍 = 0. Continuous 2D surfaces for eigenvalues and eigenvec-
tors are obtained by ordering eigenstates at each value of (𝐸, 𝐵) according to their adiabatically
correlated free field state. The application of an external magnetic field parallel to the electric field
results in ⟨𝑀𝑆⟩ ≠ 0 for an individual zero g-factor state, but the differential value between a zero
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g-factor pair can still have Δ⟨𝑀𝑆⟩ = 0. This differential value means the superposition of a zero
g-factor pair can maintain magnetic insensitivity and EDM sensitivity over a range of fields, for
example up to ∼5 G for the 𝐽 = 1/2, 𝑁 = 1 pair.

The procedure we use here for identifying zero g-factor states can be generically extended
to searching for favorable transitions between states with differing eEDM sensitivities, similar to
what has been already demonstrated in a recent proposal to search for ultra-light dark matter using
SrOH [146]. In addition, there are also fields of 𝐵𝑍 ≈ 10− 20 G and 𝐸𝑍 ≈ 0 where opposite parity
states are tuned to near degeneracy. This is the field regime that has been proposed for precision
measurements of parity-violation in optically trapped polyatomic molecules [304].

We note that zero g-factor pairs also occur in 𝑁 = 2−. The crossings occur around 400 − 500
V/cm for states correlated with the negative parity manifold. Since many interactions increase
in magnitude with larger 𝑁 , the overall electric field scale of the intermediate regime increases.
Additionally, the robustness of zero g-factor states also improves, with some pairs able to maintain
Δ⟨𝑀𝑆⟩ = 0 for magnetic fields up to 40 G. These 𝑁 = 2 pairs also have non-zero eEDM sensitivity
for a wide range of magnetic field values.

5.4.4.1 Transverse Field Sensitivity

We now expand our discussion to include the effect of transverse magnetic fields. Their effects can
be modeled by adding 𝐵𝑋𝑆𝑋 and 𝐵𝑌𝑆𝑌 terms to the effective Hamiltonian, which have the selection
rule Δ𝑀𝐹 = ±1. For this discussion, we focus on the level structure of the 𝑁 = 1, 𝐽 = 1/2+

manifold in CaOH near the zero g-factor crossing at 60.5 V/cm in the absence of trap shifts, shown
in Figure 5.29. We note if there were no nuclear spin 𝐼, the two zero g-factor states would be
𝑀𝐽 = ±1/2 states separated by Δ𝑀 = 1. In such a case these degenerate states would be directly
sensitive to transverse fields at first order, thereby reducing the g-factor suppression.

Due to the hyperfine structure from the nuclear spin of the H atom in CaOH, the degenerate
𝑀𝐹 = ±1 states in a zero g-factor pair are coupled by second order transverse field interactions.
These interactions are mediated via the 𝑀𝐹 = 0± states, where ± denotes the upper or lower
states. Using a Schrieffer–Wolff (a.k.a. Van-Vleck) transformation, we can express the effective
Hamiltonian matrix for second order coupling between the 𝑀𝐹 = ±1 states. We write the states as
|𝑀𝐹⟩, and for convenience we take the transverse field to point along 𝑋:

𝐻+1,−1 = −(𝑔𝑆𝜇𝐵𝐵𝑋)2
(
⟨−1|𝑆𝑋 |0+⟩⟨0+ |𝑆𝑋 | + 1⟩

Δ𝐸0+
+ ⟨−1|𝑆𝑋 |0−⟩⟨0− |𝑆𝑋 | + 1⟩

Δ𝐸0−

)
. (5.30)

Here, Δ𝐸0± is the energy difference of the 𝑀𝐹 = 0± levels from the 𝑀𝐹 = ±1 levels. Our model
provides the following values: ⟨0− |𝑆𝑋 | + 1⟩ = ⟨0− |𝑆𝑋 | − 1⟩ = −0.18, ⟨0+ |𝑆𝑋 | + 1⟩ = −0.16, and
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Figure 5.29: Zoomed in diagram of the zero 𝑔-factor manifold and its transverse couplings. (a)
Stark shifts for the 𝑁 = 1 states in CaOH. The 𝐽 = 1/2+ zero g-factor states are shown with a solid
green line, while the 𝐽 = 3/2+ zero g-factor states are indicated with a dashed green line. All other
levels are grayed out. A vertical dotted line indicates the location of the 𝐽 = 1/2+ zero g-factor
crossing. (b) A zoomed in level diagram of the 𝐽 = 1/2+ zero g-factor hyperfine manifold. The
bias field splitting 𝑔eff𝐵𝑍 is not to scale. Transverse field couplings are shown with double sided
arrows, with blue (red) indicating negative (positive) 𝑆𝑋 matrix element.

⟨0+ |𝑆𝑋 | − 1⟩ = 0.16. The difference in sign is a result of Clebsh-Gordon coefficient phases, and
only the relative phase is relevant. We also have Δ𝐸0+ = 0.98 MHz and Δ𝐸0− = −0.54 MHz. The
combination of phases precludes the possibility of destructive interference. With these parameters
and defining 𝑔⊥ = 𝐻+1,−1/𝐵𝑋 , then eqn. 5.30 evaluates to (𝑔𝑆𝜇𝐵𝐵𝑋)2(0.086/MHz) ≈ (0.68
MHz/G2)𝐵2

𝑋
. Our model estimates the transverse sensitivity at 𝐵𝑋 ∼ 1 mG to be 𝑔⊥𝜇𝐵 ∼ 7 × 10−4

MHz/G, of the same order as the neglected nuclear and rotational Zeeman terms. The suppressed
transverse field sensitivity bounds the magnitude of 𝐵𝑍 , which must be large enough to define a
quantization axis for the spin, 𝑔eff𝐵𝑍 ≫ 𝑔⊥𝐵⊥.

5.4.4.2 Imperfect Field Reversal

We briefly present a systematic effect involving non-reversing fields in eEDM measurements with
zero g-factor states and discuss methods for its mitigation. The electric field dependence of 𝑔eff

can mimic an eEDM signal when combined with other systematic effects, very much like in 3Δ1

molecules [11, 101]. When the sign of 𝐸𝑍 is switched, a non-reversing electric field 𝐸NR will
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cause a g-factor difference of 𝑔NR = (d𝑔eff/d𝐸𝑍 )𝐸NR. This will give an additional spin precession
signal 𝑔NR𝐵𝑍 . By perfectly reversing 𝐵𝑍 as well, this precession signal can be distinguished
from a true EDM signal. However, if there is also a non-reversing magnetic field 𝐵NR, there
will still be a residual EDM signal given by (d𝑔/d𝐸)𝐸NR𝐵NR. Using the measured slope of ∼0.03
(MHz/G)/(V/cm), and using conservative estimates of 𝐸NR ∼ 1 mV/cm and 𝐵NR ∼ 1 𝜇G, we obtain
an estimate precession frequency of ∼30 𝜇Hz. While this is an order of magnitude smaller than
the statistical error for the current best eEDM measurement measurement [67], it is still desirable
to devise methods to reduce the effect further.

Performing eEDM measurements at different zero g-factor states can help suppress systematic
errors resulting from the above mechanism. For example, the 𝑁 = 1, 𝐽 = 3/2 zero crossing has a
different magnitude for Σ, which can be used to distinguish a true eEDM from a systematic effect.
Both 𝑁 = 1 crossings are only separated by ∼4 V/cm. Furthermore, the zero g-factor states in
𝑁 = 2− can also be used for systematic checks, as they additionally offer different 𝑔eff vs 𝐸𝑍 slopes
as well as different Σ values. The 𝑁 = 2− states can be populated directly by the photon-cycling
used to pump into the bending mode.

5.4.5 Ramsey Measurements with Zero g-Factor States
In eEDM measurements with polarized molecules, the electron spin ®𝑆 precesses under the

influence of an external magnetic field 𝐵𝑍 and the internal electric field of the molecule, Eeff, which
can be large due to relativistic effects. Time evolution is described by the Hamiltonian

𝐻 = 𝑔𝑆𝜇𝐵𝐵𝑍 ®𝑆 · �̂� − 𝑑𝑒Eeff ®𝑆 · �̂�
= 𝑔𝑆𝜇𝐵𝐵𝑍𝑀𝑆 − 𝑑𝑒EeffΣ. (5.31)

Here, 𝑔𝑆 ≈ 2 is the electron spin g-factor, 𝜇𝐵 is the Bohr magneton, 𝐵𝑍 points along the lab �̂�
axis, and the internal field Eeff points along the molecule’s internuclear axis �̂�. We define the
quantities 𝑀𝑆 = ®𝑆 · �̂� and Σ = ®𝑆 · �̂� to describe the electron’s magnetic sensitivity and EDM
sensitivity, respectively. The effect of the eEDM can be isolated by switching the orientation of the
applied magnetic field or, alternatively, by switching internal states to change the sign of 𝑀𝑆 or Σ.
Performing both switches is a powerful technique for suppressing systematic errors [11, 101].

To perform spin precession in the eEDM sensitive state, we first adiabatically ramp the electric
field to a value 𝐸𝑍 , then turn on a small bias magnetic field 𝐵𝑍 . We measure the electron
spin precession frequency using a procedure analogous to Ramsey spectroscopy [11, 100]. The
molecules are prepared by driving a 𝜋-pulse (2.5 𝜇s), with microwaves linearly polarized along
the lab �̂� axis, into the “bright” superposition state |𝐵⟩ = ( |𝑀 = 1⟩ + |𝑀 = −1⟩)/

√
2 within the
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𝑁 = 1, 𝐽 = 1/2+, 𝐹 = 1, 𝑀 = ±1 eEDM sensitive manifold (Figure 5.26(c)). The state begins to
oscillate between the bright state and the “dark” state |𝐷⟩ = ( |𝑀 = 1⟩ − |𝑀 = −1⟩)/

√
2 at a rate

𝜔SP = 𝜇eff𝐵𝑍 , where the effective magnetic moment 𝜇eff = 𝜇𝐵𝑔eff = 𝑔𝑆𝜇𝐵 (⟨𝑀𝑆⟩𝑀=1 − ⟨𝑀𝑆⟩𝑀=−1)
is tuned via the applied electric field 𝐸Z (Figure 5.26(b)). The contribution from the 𝑑𝑒Eeff term
in eqn. 5.31 is negligible in CaOH, but could be measured in heavier molecules with much larger
Eeff. After a given time, a second 𝜋-pulse is applied to stop spin precession and transfer the bright
state to the optically detectable 𝑁 = 2, 𝐽 = 3/2− level. Once the electric field is ramped down,
the population remaining in the eEDM manifold, which has the opposite parity, is not optically
detectable. We then image the ODT again and take the ratio of the first and second images. At
long spin precession times (> 10 ms), losses from background gas collisions (∼1 sec), blackbody
excitation (∼1 sec), and the spontaneous lifetime of the bending mode (∼0.7 sec) lead to an overall
loss of signal, as characterized in Ref. [109]. This effect is mitigated with a fixed duration between
the first and second images, making the loss independent of the precession time.

To map out the location of the zero g-factor crossing, we perform spin precession measurements
at a fixed magnetic field 𝐵𝑍 = 110 mG for different electric fields. The spin precession frequency
corresponds to an effective g-factor at that electric field. We find that the zero g-factor crossing
within the 𝑁 = 1, 𝐽 = 1/2+, 𝐹 = 1, 𝑀 = ±1 eEDM manifold occurs at an electric field of 59.6
V/cm, in agreement with theory calculations described in the Supplemental Material. We note that
there is another zero g-factor crossing for the 𝑁 = 1, 𝐽 = 3/2+, 𝐹 = 1 manifold at ≈ 64 V/cm, which
has a smaller eEDM sensitivity but the opposite slope of 𝑔eff vs. 𝐸𝑍 , thereby providing a powerful
resource to reject systematic errors related to imperfect field reversals. We emphasize that while
the location of these crossings is dependent on the structure of a specific molecule, their existence
is generic in polyatomic molecules, which naturally have parity-doublet structure [17].

A critical component of the spin precession measurement is the coherence time, which sets
the sensitivity of an eEDM search. We characterize two dominant limitations that wash out
oscillations at long times. Variations in the spin precession frequency can be linearly expanded
as 𝛿𝜔SP = 𝜇eff(𝛿𝐵𝑍 ) + (𝛿𝜇eff)𝐵𝑍 . The first term describes magnetic field noise and drift of the
applied bias field, given by 𝛿𝐵𝑍 . The second term describes noise and drifts in the 𝑔-factor, 𝛿𝑔eff,
which can arise from instability in the applied electric field, 𝐸𝑍 , or from AC Stark shifts (described
below). Drifts in the bias electric field 𝐸𝑍 are found to be negligible in the apparatus.

Decoherence due to magnetic field noise, 𝛿𝐵𝑍 , is independent of the applied magnetic field
but is proportional to 𝜇eff, and can be mitigated by operating near the zero g-factor crossing. At
an electric field of 90 V/cm, corresponding to a large magnetic moment of 𝜇eff = 1.0 MHz/G, we
realize a magnetic field noise-limited coherence time of 0.5 ms at 𝐵𝑍 ≈ 15 mG. At an electric field
of 61.5 V/cm, corresponding to 𝜇eff = 0.06 MHz/G, much closer to the zero g-factor location, we
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find a coherence time of 4 ms at the same 𝐵𝑍 .

At higher magnetic fields, the primary limitation to the coherence time is due to AC stark shifts
from the optical trapping light. The intense 𝑍-polarized ODT light leads to a shift in the electric field
at which the zero g-factor crossing occurs. Due to the finite temperature of the molecules within
the trap, they will explore different intensities of trap light and hence have different values of 𝑔eff.
The spread 𝛿𝑔eff causes variation of 𝜔SP, which leads to decoherence. In contrast to the magnetic
field noise term, this effect is independent of the electric field 𝐸𝑍 but decreases monotonically with
𝐵𝑍 , which scales the frequency sensitivity to g-factor variations, 𝛿𝜔SP = 𝐵𝑍𝛿𝜇eff. The effect of
g-factor broadening is insensitive to the exact value of 𝑔eff. Decoherence due to AC Stark shifts
can be reduced by cooling the molecules to lower temperatures or by decreasing 𝐵𝑍 . The bias
magnetic field can be reduced arbitrarily far until either transverse magnetic fields or magnetic field
noise become dominant. From the decoherence rates measured in this work, it is expected that AC
Stark shift-limited coherence times ∼1 s could be achieved at bias fields of 𝐵𝑍 ∼ 100 𝜇G. If the
molecules could be cooled to a temperature significantly less than the trap depth, this effect would
be greatly reduced. Additionally, since the 𝛿𝑔eff term is scaled by 𝐵𝑍 , this decoherence can also be
reduced by lowering the magnetic field. As the bias magnetic field is reduced, however, the effect
of unwanted transverse magnetic fields is increased.

When transverse magnetic fields are dominant, the electron will be quantized along the trans-
verse axis and there is minimal spin precession by the bias 𝐵𝑍 field. The transverse coupling results
in eigenstates given by ( |𝑀𝐹 = 1⟩ ± 𝑒𝑖𝜙 |𝑀𝐹 = −1⟩)/

√
2, where the phase 𝜙 is set by the direction

of ®𝐵 in the transverse plane. If 𝜙 = 0 or 𝜋, only one of these states is bright to the �̂�-polarized state
preparation microwaves, which means the initial state is stationary under the transverse fields. For
all other orientations, the transverse field causes spin precession with varying contrast, depending
on the specific value of 𝜙.

We are able to use transverse spin precesion to measure and zero transverse fields to the mG
level. We do so by operating with minimal bias field 𝐵𝑍 ≈ 0 and operating 𝐸𝑍 near the zero g-factor
crossing, such that 𝑔eff𝐵𝑍 < 𝑔⊥𝐵⊥. We then apply a small transverse magnetic field to perform
transverse spin precession. Here, the dynamics are dominated by the transverse fields rather than
the 𝑍 fields. We obtain field zeros by iteratively minimizing the precession frequency by tuning
the bias fields 𝐵𝑋 and 𝐵𝑌 .

It is expected that the longest achievable coherence times will occur for very small g-factors,
𝑔eff ≈ 0, and very small bias fields, 𝐵𝑍 ≈ 0. Minimizing 𝐵𝑍 requires reducing the effects of both
magnetic field noise and transverse magnetic fields to well below the level of the bias field energy
shifts. We cancel the transverse magnetic fields to below 1 mG by maximizing the spin precession
period under the influence of transverse 𝐵 fields only, and actively monitor and feedback on the
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magnetic field along each axis to minimize noise and drifts in 𝐵𝑍 . Note that the stainless steel
vacuum chamber has no magnetic shielding, leading to high levels of magnetic field noise which
would not be present in an apparatus designed for an eEDM search. Even under these conditions,
we achieve a coherence time of 30 ms at an electric field of 60.3 V/cm (corresponding to 𝜇eff = 0.02
MHz/G) and a bias field of 𝐵𝑍 ≈ 2 mG. However, at such a low bias field, the molecules are sensitive
to 60 Hz magnetic field noise present in the unshielded apparatus, which is on the same order as
the bias field. Since the experiment is phase stable with respect to the AC line frequency, this 60
Hz magnetic field fluctuation causes a time-dependent spin precession frequency. Nevertheless,
our prototype experiment confirms that long coherence times are possible, and any future eEDM
experiment would have magnetic shielding that would greatly suppress nefarious magnetic fields
from the environment. Such shielding could readily enable coherence times exceeding that of the
∼ 0.5 s lifetime of the bending modes of similar linear polyatomic molecules with larger eEDM
sensitivity [109].

5.4.6 Conclusion
In summary, we have realized coherent control of optically trapped polyatomic molecules and

demonstrated a realistic experimental roadmap for future eEDM measurements. By leveraging the
unique features of the quantum levels in polyatomic molecules, we achieve a coherence time of
30 ms for paramagnetic molecules in a stainless steel chamber with no magnetic shielding. With
common shielding techniques employed in past EDM experiments, there is a clear path to reducing
stray fields and extending coherence times to > 100 ms. At such a level, the dominant limitation
becomes the finite lifetime of the bending mode [109]. Even longer coherence times are possible
with the right choice of parity doublet states, as found in symmetric or asymmetric top molecules
[17, 107, 123, 429].

Following our established roadmap with heavier trapped polyatomic molecules has the potential
to provide orders-of-magnitude improvements to current bounds on T violating physics. Using the
�̃� (010) study of YbOH from Sec. 4.2, we have identified similar 𝑁 = 1 zero g-factor states for
eEDM measurements with significantly improved sensitivity. In addition to the g-factor tuning
demonstrated in this work, polyatomic molecules provide the ability to reverse the sign of Σ

without reversing 𝑀𝑆 - a crucial feature of recent experiments that have greatly improved the limit
on the eEDM [10, 11]. For example, in the 𝑁 = 1 manifold of CaOH, there is another zero
g-factor crossing at a nearby electric field value, with 69% smaller values of Σ and opposite sign.
Since the ratio of eEDM sensitivity to g-factor vs. 𝐸𝑍 slope differs between these two crossings,
measurements at both points could be used to suppress systematics due to non-reversing fields
coupling to the electric field dependence of the g-factor [11].



242

We have provided the first experimental demonstration of the advantages of the rich level
structure of polyatomic molecules for precision measurements. While we have focused here on
spin precession with𝑇-reversed states (𝑀 = ±1), many levels of interest can be favorably engineered
for precision measurement experiments. In a recent proposal [304], parity-doublets, magnetically
tuned to degeneracy in optically trapped polyatomic molecules, were shown to be advantageous
for searches for parity violating physics. In another recent work [146], a microwave clock between
rovibrational states in SrOH was proposed as a sensitive probe of ultra-light dark matter, utilizing
transitions tuned to electric and/or magnetic insensitivity. Finally, in Ref. [124], we show that EDM
sensitive transitions with reduced sensitivity to stray fields can be engineered with application of
external fields. In these proposals, and now experimentally demonstrated in our work, coherent
control and state engineering in polyatomic molecules can mitigate systematic errors and enable
robust searches for new physics.
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6
Conclusions

Do, or do not. There is no try.

–Yoda

6.1 Overview of Results
This thesis has made major advances to the platform of polyatomic molecules for new physics

searches. In polyatomic molecules, angular momentum states 𝐽 are characterized by a projection
in the molecule frame, 𝐾 , and a projection in the lab frame, 𝑀 . Both of these projections are
odd under time-reversal (𝑇), while the 𝐾 projection internal to the molecule is odd under parity
reversal (𝑃). Therefore, the oriented states of polyatomic molecules offer us intrinsic control over
both the 𝑃-odd and 𝑇-odd degrees of freedom of the system. This is useful when engineering
differential measurements to search for effects that violate symmetries, allowing us to perform
numerous systematic checks by reversing and reorienting the 𝑃,𝑇 violating signal (internal co-
magnetometry). Indeed, parity doublets are a key feature behind both the ACME and JILA
experiments that currently set the best bounds on a possible 𝑃,𝑇 violating electron electric dipole
moment. The power of polyatomic molecules is they can generically combine the parity doublet
feature with laser cooling.

Our work focused on YbOH, a linear triatomic molecule with significant new physics sensitivity
owing to the heavy Yb nucleus. We have shown that polyatomic YbOH molecules can be produced
in large quantities at low temperatures. By optically exciting reactant atoms, we were able to
chemically enhance our molecular yield by an order of magnitude [227]. With this chemical
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enhancement light, our cryogenic buffer gas beam (CBGB) source produces ∼ 1011 ground state
YbOH molecules inside the cell at ∼4 K. The buffer gas flow extracts ∼ 1010 molecules into a
beam traveling at ∼200 m/s. Downstream in the beam, we can interrogate ∼ 107 molecules per
pulse, with repetition rates up to 10 Hz. Additionally, our CBGB has natural �̃� (010) science state
population, with about 106 molecules downstream, without optical pumping.

Before we began this work, YbOH had only been characterized in a high temperature study from
2001 [430], with many speculative assignments. In this work, we made significant spectroscopy
progress, essentially determining all the necessary spectroscopic information to perform precision
measurements with YbOH. We fully characterized the science state of YbOH, the �̃�2Σ+(010)
fundamental bending mode of the ground state [280]. We determined effective Hamiltonian
parameters that allow us to accurately model the quantum levels of the �̃� (010) state, in both
free-field and in the presence of applied electromagnetic fields. In particular, our study of level
tuning by the electric fields illustrates the orientation control over the 𝑃,𝑇 violating interactions
that is afforded by polyatomic molecules. Furthermore, we also characterized the �̃�(010) bending
excited state of YbOH. This state shows a rich interplay of spin-orbit and vibronic interactions that
results in an emergent level pattern reminiscent of a bent molecule with quenched orbital electronic
angular momentum. Finally, we determined optimal states to use for optical pumping into �̃� (010)
and for coherently manipulating quantum states in �̃� (010).

We also made significant progress in state preparation and readout schemes for precision
measurements with polyatomic molecules. We demonstrated coherent quantum control of YbOH
using detuned two-photon transitions, and on the way we re-discovered lessons in atomic physics
regarding destructive interference from unresolved hyperfine structure. We showed that control
issues related to unresolved hyperfine can be overcome with the appropriate choice of laser po-
larizations and optical sideband generation scheme. Using our spectroscopy knowledge, we were
able to perform a prototype Ramsey interferometry sequence, measuring spin precession between
individual quantum states in the presence of a magnetic field. The next step beyond this work is to
generalize our Ramsey interferometry protocol to YbOH molecules in the presence of a polarizing
electric field. Achieving this milestone would finalize the transition of the YbOH experiment from
the prototyping phase to the precision measurement phase.

This work is also broadly applicable beyond YbOH to other linear triatomic molecules useful for
precision measurements, such as SrOH [302] and RaOH [272, 431]. The laser induced chemical
enhancement we demonstrate is expected to apply to both SrOH and RaOH, given it works for
YbOH and CaOH. Further, the path we laid for science state spectroscopy will be the same for
other hydroxides. Finally, the two-photon techniques we demonstrate can be generalized to other
polyatomic molecules as well, as we do not need to worry about fine-tuning of frequencies.
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Additionally, as part of the PolyEDM collaboration, we performed a proof-of-principle Ramsey
measurement of ultracold, optically trapped CaOH molecules in the �̃� (010) science state. This
work demonstrated the power afforded by laser cooling and trapping polyatomic molecules for
precision emasurements. We showed that the parity doublet structure of polyatomic molecules
generically gives rise to zero 𝑔-factor states with magnetic insensitivity while still retaining new
physics sensitivity. We have found these states also exist in YbOH and other linear triatomic
molecules. In CaOH, we used zero 𝑔-factor states to achieve a nearly 70× reduction of magnetic
sensitivity compared to the electron’s typical 𝑔-factor. In a magnetically unshielded stainless
steel chamber, we were able to reach coherence times of order 30 ms, with clear next steps for
improvement.

Zero 𝑔-factor states are just the tip of the iceberg when it comes to quantum state enegineering of
polyatomic molecules precision measurements. In Ref. [124], we showed that we can generically
find transitions in polyatomc and diatomic molecules that have favorable magnetic and electric
insensitivities. These transitions arise with the application of increasing electric field, as the
molecular angular momenta transition from being internally coupled to being decoupled and aligned
along the external field. These field insensitive transitions can be driven with RF, microwave, of
two-photon techniques, and can retain strong sensitivity to 𝑃,𝑇 violating effects.

Field insensitive transitions are a generalization of EDM measurements to the rotating frame.
The EDM causes differential evolution of ±𝑀 states relative to an oscillating reference clock or
drive. When we perform a Ramsey measurement, we work in a rotated basis, where the diagonal
EDM shifts now become off-diagonal couplings between spin precession states. EDMs also cause
off-diagonal couplings in free field. As a result, we can imagine working in a rotated basis, taking
superpositions of opposite parity states.

In free field, the eigenstates are symmetrized, |𝐽𝑀±P⟩, and have well defined parity. Therefore,
EDM matrix elements are present on the off diagonals of the Hamiltonian connecting opposite
parity states, ⟨𝐽𝑀 ±P|𝐻𝑃𝑇 |𝐽𝑀 ∓P⟩ = 𝐸𝑃𝑇 . This is similar to the matrix element for the ordinary
molecule frame dipole interaction, 𝐻𝐸 = ®𝐷 · ®𝐸lab, with the difference being the behavior of 𝐻𝑃𝑇
under time-reversal. On the other hand, in the presence of an electric field, the parity basis is mixed,
and we instead consider the un-symmetrized symmetric top wavefunctions, |𝐽𝐾𝑀⟩. In this basis
the EDM is diagonal: ⟨𝐽 ± 𝐾𝑀 |𝐻𝑃𝑇 |𝐽 ± 𝐾𝑀⟩ = ±𝐸𝑃𝑇 .

By the Wigner-Eckart theorem, the EDM matrix elements connect Δ𝑀 = 0 and Δ𝐽 = 0, and
induce a small, 𝑃,𝑇 violating permanent dipole moment in free field. The 𝑇 odd behavior of the
EDM appears when we compare +𝑀𝐾 and −𝑀𝐾 states, which have opposite 𝑃𝑇-odd coupling
matrix element. It is also instructive to consider the diagonal EDM matrix element 𝐻𝑃𝑇 , as
well as the Stark interaction 𝐻𝐸 , in the decoupled basis, defined by 𝑀𝑁 , 𝑀𝑆, and 𝐾 . We have
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𝐻𝑃𝑇 ∝ 𝑀𝑁𝑀𝑆𝐾 , while 𝐻𝐸 ∝ 𝑀𝑁𝐾 . Since only 𝐾 flips under a parity transformation, both matrix
elements are 𝑃-odd. However, since 𝐾 and 𝑀 flip under a time-reversal transformation, we see
only the EDM interaction is also 𝑇-odd. In a sense, an EDM measurement is observing the T-odd
interference between the parity-odd couplings, 𝐻𝑃𝑇 and 𝐻𝐸 .

In free field, the effect of the EDM coupling between opposite parity states is suppressed by
the overall parity splitting 𝜔P of the molecule. However, in the frame rotating at the parity energy
splitting, denoted 𝜔P , the EDM interaction could be observed as a coupling in the rotating frame.
The catch is that the spin, which is defined in the lab-frame, must also be brought into the rotating
frame, such that the EDM interaction does not average out. This is similar to Ref. [69], where the
authors propose a rotating frame measurement between hyperfine states driven by an RF magnetic
field, with the molecule orientation adiabatically following an applied in phase RF electric field.
One can also consider the electric field analogue of this technique, where an RF electric field
prepares an opposite parity superposition, and adiabatic following of an RF magnetic field brings
the spin into the rotating frame. Such a scheme could have the benefit of not requiring DC electric
fields, and only being sensitive to noise in the rotating frame.

6.2 Outlook for YbOH
The odd isotopologue 173YbOH can support a nuclear magnetic quadrupole moment (NMQM)

on the Yb nucleus with 𝐼 = 3/2. The NMQM provides us an avenue for sensitivity to hadronic
𝑃,𝑇 violating physics in paramagnetic systems. Aside from special cases of octupole deformed
nuclei, the NMQM is expected to provide a stronger symmetry violating signal than the nuclear
Schiff moment, which is partially screened. Currently, the best limit on the MQM of a nucleus is
from a measurement of atomic Cs performed in 1989 [432], corresponding to a 95% upper limit of
M < 2.6 × 10−7𝜇𝑁𝑅Cs = 1.5 × 10−44 A m3 = 3 × 10−3𝜇𝑄 . In the last equality we have defined the
nuclear unit for an MQM, 𝜇𝑄 = fm 𝜇𝑁 .

In our lab, a science beamline is currently under construction to perform a measurement of
the NMQM in 173YbOH. All of the parts have been designed, ordered, assembled, and tested. The
electric field plates, fluorescence collection optics, and beamline layout are detailed in Appendix F.
The three layers of magnetic shields for the experiment have also been assembled, complete
with degaussing electronics. Initial shielding tests indicate a shielding factor of > 100, with the
measurement thus far limited primarily by magnetometer zero offsets. Progress is now underway to
assemble the beamline within the magnetic shielding. Once closed up, the beamline will allow us
to perform Ramsey measurements with a coherence time of 𝜏 = 1 ms, limited only by time-of-flight
across the 20 cm long interaction region.

We now estimate the new physics sensitivity of YbOH measurements in our apparatus in the
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near future. With an optimized source using enriched isotope targets and optical pumping, but also
taking into account finite state preparation efficiencies, we assume have available ∼106 bending
mode 173YbOH molecules downstream in the beam in a single quantum state. Furthermore, we
assume 20% optics collection efficiency and 10% PMT efficiency, resulting in 𝑁meas = 2×104. We
additionally assume a repetition rate of 10 Hz and a coherence time of 𝜏 = 1 ms. Furthermore, we
estimate the differential NMQM energy shift as as Δ𝐸 = ℎ𝑊MM × 0.2 [407]. From Refs. [267,
406], we have 𝑊𝑀 ≈ −1.07 × 1033 Hz/(e cm2)/c = −2.3 × 1044 Hz/(A m3) = −1.13 × 106 Hz/𝜇𝑄 .
We can then calculate the MQM sensitivity using the quantum projection noise limit:

𝛿M =
ℏ

2(0.2 × ℎ𝑊M)𝜏
√︁
𝑁𝑝𝑅𝑝𝑇𝑡𝑜𝑡

(6.1)

For the estimates given above, we obtain 𝛿M ≈ 1.4 × 10−50 A m3/
√︁

day = 2.7 × 10−9 𝜇𝑄/
√︁

day.
We see that we can improve on the Cs limit quite drastically. Even with just 1 hour of data taking,
we stand to beat the Cs limit by nearly 6 orders of magnitude.

Since Yb and Cs are different nuclei, such a comparison is not quite accurate. Rather, we
must consider the sensitivity of the Yb nucleus to potential 𝑃,𝑇 violating effects, as discussed in
Ref. [267]. There, the authors considered the magnitude of a NMQM in 173YbOH originating
from two different 𝑃,𝑇 violating hadronic effects: the QCD vacuum angle,M(𝜃) = 𝜃 × 0.95𝜇𝑄 ,
and the difference in up and down quark chromo-EDMs, M(𝑑) = 3.1𝜇𝐵 × (𝑑𝑢 − 𝑑𝑝). On the
other hand, current limits [433] are given by |𝜃 | < 2.4 × 10−10 and |𝑑𝑢 − 𝑑𝑝 | < 6 × 10−27 cm.
Putting all of these together, in YbOH 𝑃,𝑇 violating effects should result in values no larger than
M(𝜃) < 2.3×10−10 𝜇𝑄 andM(𝑑) < 3.4×10−10 𝜇𝑄 . Therefore we see our 1 day sensitivity is about
an order of magnitude away from being competative with existing limits. While the estimates given
have been approximate, they provide excellent motivation to pursue a measurement in 173YbOH.
We note we have not discussed potential improvements that could help increase sensitivity, such
as implementing laser cooling to reduce beam divergence, using laser slowing to increase the
interaction time, and using optical cycling for efficient state preparation and readout.
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ix A
Matrix Elements

I should think that you Jedi would
have more respect for the
difference between knowledge
and...wisdom.

–Dexter Jettster

In this section we provide some helpful information for factorizing and evaluating matrix ele-
ments of composite angular momenta in rotating molecules. We follow Brown and Carrington [39]
and Hirota [129] primarily, and rely on some of the basic molecular structure discussions from
Ch. 2.

A.1 Basis States
The basis vectors are labeled by a series of quantum numbers, which describe the eigenvalue

of an associated operator. The basis vectors are tensor products across the electronic, vibrational,
and rotational degrees of freedom:

|𝜓elec⟩ ⊗ |𝜓vib⟩ ⊗ |𝜓rot⟩. (A.1)

The electronic state is approximated by a sum over the spherical harmonics:

|𝜓elec⟩ = |Λ⟩ =
∑︁
𝐿

𝐹𝐿𝑌𝐿,Λ(𝜃, 𝜙). (A.2)
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Here, 𝜃 ∈ [0, 𝜋] and 𝜙 ∈ [0, 2𝜋) are spherical coordinates angles defined in the molecule frame,
and 𝐹𝐿 are wavefunction amplitudes. For example, a Σ+ state can be a linear combination of
𝑐1𝑠𝜎 + 𝑐2𝑝𝜎 + . . . with amplitudes 𝑐1, 𝑐2, etc.

For a linear triatomic molecule, the vibrational state is written as:

|𝜓vib⟩ = |𝑣1, 𝑣
ℓ
2, 𝑣3⟩ = |𝑣1⟩ ⊗ |𝑣2, ℓ⟩ ⊗ |𝑣3⟩. (A.3)

The states of the symmetric stretching vibrations, 𝑣1 and 𝑣3, are described, to first order, by the
1-D harmonic oscillator wavefunctions. Meanwhile, the eigenstates of the 2-D harmonic oscillator
wavefunction are provided in Ch 2, Sec. 2.1.7. The relevant form is given by:

|𝑣2, ℓ⟩ =
1
√

2𝜋
𝑒𝑖ℓ𝜙Ψ𝑣2,ℓ (𝑞). (A.4)

Here, ℓ = ®𝐺 · �̂�, and 𝑞 = 𝑞2 =
√︃
𝑞2

2𝑥 + 𝑞
2
2𝑦, where (𝑞2𝑥 , 𝑞2𝑦) are the dimensionless normal

coordinates of the bending mode, and 𝜙 = tan−1(𝑞2/𝑞1) is the bending angle associated with the
normal mode. The function Ψ𝑣2,ℓ is given in the main text. Using the phase convention 𝛿ℓ = 0 (see
Sec. A.2), we have Ψ𝑣2,ℓ = Ψ𝑣2,−ℓ.

Finally, the rotational state is given in term of the symmetric top wavefunctions. The choice of
symmetric top wavefunction depends on the Hund’s case in use. For Hund’s case (a), we have:

|𝜓rot⟩(a) = |𝑆, 𝛴⟩ ⊗ |𝐽, 𝑃, 𝑀⟩ (A.5)

where 𝑃 = Σ + Λ + ℓ = ®𝐽 · �̂�, and the spin 𝛴 = ®𝑆 · �̂� is defined in the molecule frame. The
projection 𝑀 = 𝐽 · �̂� is defined in the lab frame. We note 𝐽 and all angular momenta containing
𝐽 have anomalous commutation relations when evaluated in the molecule frame, while 𝑆 is not
anomalous.

For Hund’s case (b), we instead have the symmetric top states |𝑁, 𝑀𝑁 , 𝐾⟩, with𝐾 = Λ+ℓ = ®𝑁 ·�̂�
for linear molecules. This state is then coupled (using Clebsch-Gordan coefficients) to the space-
fixed (a.k.a. defined in the lab frame) spin state |𝑆, 𝑀𝑆⟩ to obtain the Hund’s case (b) states [160]:

|𝜓rot⟩(b) = |𝑁, 𝐾, 𝑆, 𝐽, 𝑀⟩

=
∑︁

𝑀𝑁 ,𝑀𝑆

(−1)𝑁−𝑆+𝑀
√

2𝐽 + 1

(
𝑁 𝑆 𝐽

𝑀𝑁 𝑀𝑆 −𝑀

)
|𝑁, 𝑀𝑁 , 𝐾⟩|𝑆, 𝑀𝑆⟩.

(A.6)

The molecule frame components of 𝑁 and all angular momenta containing 𝑁 have anomalous
commutation relations.
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Special care must be taken when converting between the two bases, as the molecule frame
defined components of ®𝑁 and ®𝑆 do not commute in case (b). The conversion is derived in
Ref. [160], and we provide it here for reference:

|𝑁, 𝐾, 𝑆, 𝐽, 𝑀⟩ =
∑︁
Σ,𝑃

(−1)𝑁−𝑆+𝑃
√

2𝑁 + 1

(
𝐽 𝑆 𝑁

𝑃 −Σ −𝐾

)
|𝑆, Σ⟩|𝐽, 𝑃, 𝑀⟩. (A.7)

Nuclear spins can be added using standard coupling of angular momenta with Clebsch-Gordan
coefficients. Their molecule frame quantities are never anomalous. The total angular momentum
is then generically written as 𝐹. For example, in Hund’s case (b𝛽S), we have:

|𝑁, 𝐾, 𝑆, 𝐽, 𝐼, 𝐹, 𝑀⟩ = (−1) 𝐼−𝐽+𝑀
√

2𝐹 + 1

×
∑︁
𝑀𝐽 ,𝑀𝐼

(
𝐽 𝐼 𝐹

𝑀𝐽 𝑀𝐼 −𝑀𝐹

)
|𝑁, 𝐾, 𝑆, 𝐽, 𝑀𝐽⟩|𝐼, 𝑀𝐼⟩.

(A.8)

A.2 Parity, Time-Reversal, and Phase Conventions
We now describe the symmetry properties of molecular states transforming under discrete

symmetries of Parity (P) and Time-reversal (T ) symmetries1. These transformation properties
are very useful, not only for symmetry violation searches, but also to understand the behavior
the molecular state in general. In particular, the electric dipole operator, involved in electronic
transitions as well as the Stark effect, is P odd. Throughout this section, we deal with various
choices of phase conventions, resulting in factors such as 𝑒𝑖𝛿. We note these phases 𝛿 are always
chosen such that the factor is real (𝛿 = 𝑛𝜋, 𝑛 integer), and they only affect the off-diagonal matrix
elements. Therefore the phases have no impact on the eigenenergies, however they can change the
phase of Hamiltonian parameters or relative phases of wavefunctions.

A.2.1 Parity
We begin the total molecular state, given in Hund’s case (a) by:

ΨΛ,ℓ,𝛴,𝑃 = |Λ; 𝑣, ℓ; 𝑆, 𝛴; 𝐽, 𝑃, 𝑀⟩. (A.9)

Later we can generalize to include the hyperfine spins. Generalization to Hund’s case (b) is
performed by dropping the 𝑆, 𝛴 ket and performing the replacements 𝑃→ 𝐾 , 𝐽 → 𝑁 .

First, we discuss the behavior of Ψ under a parity transformation, P : 𝑓 (𝑋,𝑌, 𝑍) →
𝑓 (−𝑋,−𝑌,−𝑍), where 𝑓 is a function of the space-fixed axes 𝑋,𝑌, 𝑍 . This operator is also
referred to as space-fixed inversion, denoted 𝐸∗. For this section, we will use 𝐸∗ to avoid confusing
the projection quantum number 𝑃 with the parity operator P. Continuing, we have a few properties

1We denote these operations with different scripts to help distinguish from other symbols we use in this section.
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of the parity operation: first, (𝐸∗)2 = 1, which means for a state of well-defined parity, 𝐸∗Ψ = ±Ψ.
Further, we notice that we can obtain 𝐸∗ by first reflecting about a plane in space, and then rotating
by 𝜋 about an axis perpendicular to the reflection plane. In the language of group theory, we can
write 𝐸∗ = 𝜎𝑖 𝑗𝑅𝑘 (𝜋), where 𝜎 is the reflection through the plane defined by axes 𝑖, 𝑗 , and 𝑅𝑘 (𝜋)
is a 𝜋 rotation about the third axis 𝑘 . Often, we are interested in the effect of 𝐸∗ on the molecule
frame wavefunctions, which are functions of the molecule frame 𝑓 (𝑥, 𝑦, 𝑧), and naturally have the
symmetry axis �̂� = 𝑧. We note that while the angular momenta ®𝐽 are invariant under 𝐸∗, their
projections on �̂� will generically flip under 𝐸∗, as �̂� is parity odd. The action of 𝐸∗ is to reflect
the electronic and vibrational coordinates about a plane containing �̂�, and then rotate the molecule
frame by 𝜋 about an axis perpendicular to the reflection plane.

At this point we pause to note there are multiple conventions for defining the action of 𝐸∗

on molecular states. One convention, followed by Brown and Carrington [39] and Hirota [129],
is to define 𝐸∗ = 𝜎𝑥𝑧𝑅𝑦 (𝜋). This is the convention we use in this thesis, and is also used in
Ref. [149]. These authors show that the effect of 𝐸∗ on the Euler angles defining the molecule
frame is given by (𝜙, 𝜃, 𝜉) 𝐸∗−−→ (𝜋+𝜙, 𝜋−𝜃, 𝜋−𝜉). Further, they go on to show that for a function 𝑓
defined in the molecule frame, such as the electronic or vibrational wavefunction, 𝐸∗ is equivalent
to 𝑓 (𝑥, 𝑦, 𝑧) 𝐸∗−−→ 𝑓 (𝑥,−, 𝑦, 𝑧). Since these authors are interested in the behavior of the internal
molecule frame wavefunctions, which do not depend on the orientation of the molecule frame,
these authors just consider the action of 𝜎𝑥𝑧 when considering 𝐸∗.

Meanwhile, there is a separate convention given in Bunker and Jensen [140] and Zare [130].
In this convention, 𝐸∗ = 𝜎𝑦𝑧𝑅𝑥 (𝜋). The resulting effect on functions of the molecule frame axes is

given by 𝑓 (𝑥, 𝑦, 𝑧) 𝐸∗−−→ 𝑓 (−𝑥, 𝑦, 𝑧). We do not use this convention, but provide it for completeness.

We now present how the individual molecular wavefunction components transform under 𝐸∗.
First, we begin with the symmetric top wavefunction |𝐽, 𝑃, 𝑀⟩. The most general form of the
transformation includes a phase factor 𝑒𝑖𝑃𝛿𝑃 , which we will return to shortly. In general we
have [39, 129, 140, 149, 152, 153, 434, 435]:

𝑅𝑥 (𝜋) |𝐽, 𝑃, 𝑀⟩ = (−1)𝐽𝑒−2𝑖𝑃𝛿𝑃 |𝐽,−𝑃, 𝑀⟩ (A.10)

𝑅𝑦 (𝜋) |𝐽, 𝑃, 𝑀⟩ = (−1)𝐽−𝑃𝑒−2𝑖𝑃𝛿𝑃 |𝐽,−𝑃, 𝑀⟩. (A.11)

We see that 𝑀 does not change, as ®𝐽 is parity even (see Ch. 1) and remains fixed in space. However,
since �̂� is just a vector, it will reverse under 𝐸∗, and causing the projection 𝑃 to also reverse. Now
we discuss the phase convention 𝛿𝑃. This phase is related to the convention used to define the
symmetric top wavefunctions and the action of the ladder operators 𝐽𝑋,𝑌 in the lab frame and 𝐽𝑥,𝑦 in
the molecule frame. The overwhelmingly accepted phase choice is that the matrix elements of 𝐽𝑋
and 𝐽𝑥 are real and positive, known as the Condon and Shortley phase, which takes 𝛿𝑃 = 0. We use
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this phase choice everywhere in this thesis. As a result, since we use 𝑅𝑦 (𝜋), we have the following

behavior under space-fixed inversion: |𝐽, 𝑃, 𝑀⟩ 𝐸∗−−→ (−1)𝐽−𝑃 |𝐽,−𝑃, 𝑀⟩, agreeing with Refs. [39,
129].

Now we move on to considering the transformation properties of the vibrational state |𝑣, ℓ⟩
under 𝐸∗. We follow closely the discussion in Refs. [129, 148, 149, 152, 153, 434]. We note that
Ref. [149] is very helpful, but unfortunately defines the vibrational ladder operators containing both
𝑞 and 𝑝 with an extra factor of ∓𝑖 compared to all other references. Continuing, the action of 𝐸∗ is
equivalent to just considering the reflection of the vibrational coordinates in a plane containing �̂�.
We therefore have:

𝜎𝑥𝑧 |𝑣, ℓ⟩ = 𝑒−2𝑖ℓ𝛿ℓ |𝑣,−ℓ⟩
𝜎𝑦𝑧 |𝑣, ℓ⟩ = −𝑒−2𝑖ℓ𝛿ℓ |𝑣,−ℓ⟩.

(A.12)

Here we have introduced the the phase factor 𝛿ℓ = 𝑛𝜋/2 for 𝑛 integer2. This phase factor has
consequences for the raising and lowering operators 𝑞± as well. In this thesis, we follow Brown [151]
and Hirota [129], who take 𝛿ℓ = 0. As a result, using 𝜎𝑥𝑧 for space-fixed inversion, we have
𝐸∗ |𝑣, ℓ⟩ = |𝑣,−ℓ⟩.

Continuing, we finally consider the effect of 𝐸∗ on |𝑆, 𝛴⟩ and |Λ⟩. Following Refs. [39, 129,
130], we have:

𝜎𝑥𝑧 |𝑆, 𝛴⟩ = (−1)𝑆−𝛴 |𝑆,−𝛴⟩
𝜎𝑦𝑧 |𝑆, 𝛴⟩ = (−1)𝑆 |𝑆,−𝛴⟩

(A.13)

where we have used the Condon and Shortley phase convention. Finally, for |Λ⟩, we follow
Refs. [39, 129], where the Λ wavefunction is written as a sum over spherical harmonics. This
results in the following transformation properties under 𝐸∗:

𝜎𝑥𝑧 |Λ⟩ = (−1)𝑠+Λ |𝑆,−Λ⟩
𝜎𝑦𝑧 |𝑆, 𝛴⟩ = (−1)𝑠 |𝑆,−Λ⟩

(A.14)

where 𝑠 = 1 for Σ− states and 𝑠 = 0 for all other states.

Putting everything together, and taking 𝛿𝑃 = 0 but leaving 𝛿ℓ, we obtain the full behavior of Ψ
under space-fixed inversion 𝐸∗ = 𝜎𝑥𝑧𝑅𝑦 (𝜋) as [39, 129, 434]:

𝐸∗ΨΛ,ℓ,𝛴,𝑃 = (−1)𝐽−𝑃 (−1)𝑆−𝛴 (−1)Λ+𝑠𝑒−2𝑖ℓ𝛿ℓΨ−Λ,−ℓ,−𝛴,−𝑃

= (−1)𝐽−𝑆−ℓ+𝑠Ψ−Λ,−ℓ,−𝛴,−𝑃
(A.15)

where in the second line we write 𝑃 = 𝛴 + ℓ + Λ, set 𝛿ℓ = 0, and using 𝑆 = |𝛴 |, we rewrite
𝑆 − 2𝛴 = −𝑆. This is the parity phase factor we use throughout this thesis, and is used by

2Comparing to the notation in Ref. [149], we have 2𝛿ℓ = 𝜉 − 𝜂 − 𝜋.
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Brown [151] and Hirota [129]. Unfortunately, this choice means the definition of parity changes
upon exciting odd number of ℓ quanta, and interactions that cause Δℓ = ±1 will mix symmetric
and anti-symmetric parity superpositions, which we deal with in Ch. 4, Sec. 4.2. An alternative
parity convention that does not mix symmetric and anti-symmetric levels is provided in Ref. [434].
The authors there propose taking 𝛿ℓ = 𝜋/2, which would cancel the extra factor of ℓ in the phase
factor, making the definition of parity independent of of ℓ. However, we note that such a choice
would modify the behavior of the 𝑞± matrix elements. We end our parity discussion by noting that
the behavior of the wavefunction under a parity transformation is intimately related to the sign of
off-diagonal parity doubling operators that can flip projection quantum numbers and cause parity
splittings. We return to this point in Sec. 2.2.3.

A.2.2 Time-Reversal
Now we briefly mention the transformation properties under time-reversal, T . Often, this

operator is written as 𝜃 in the literature. We note that T is anti-unitary [19, 130, 133, 135, 140,
152, 435], which means it performs complex conjugation. For a general angular momentum state
|𝐽, 𝑀⟩, we have [133, 140, 436]:

T |𝐽, 𝑀⟩ = (−1)𝑀 |𝐽,−𝑀⟩ (A.16)

T 2 |𝐽, 𝑀⟩ = (−1)2𝑀 |𝐽, 𝑀⟩. (A.17)

These results can be applied to both |𝑆, 𝛴⟩ and |Λ⟩. We see that half-integer angular mo-
menta have T 2 = −1, while integer angular momenta have T 2 = +1. We note there is a
phase choice hidden here for half-integer systems, and the general form is actually given by
T |𝐽, 𝑀⟩ = 𝜂𝑇 (−1)𝐽−𝑀 |𝐽,−𝑀⟩. Authors take 𝜂𝑇 = 𝑖2𝐽 to establish correspondence with the integer
case, where T |𝐽, 𝑀⟩ = (−1)𝑀 |𝐽,−𝑀⟩, which can be derived from the properties of the spherical
harmonics upon complex conjugation. An alternative choice is 𝜂𝑇 = 1, which results in the phase
factor (−1)𝐽−𝑀 . In the end the difference is just a factor of (−1)𝐽 .

For the symmetric top wavefunctions, both 𝑃 and 𝑀 reverse under T , giving us [39, 152, 435,
436]:

T |𝐽, 𝑃, 𝑀⟩ = (−1)𝑀−𝑃𝑒2𝑖𝐽𝜂𝐽 |𝐽,−𝑃,−𝑀⟩. (A.18)

We note there is yet another phase choice made here, the factor of 𝜂𝐽 . Following Brown and
Carrington [39], we always choose 𝜂𝐽 = 0.

Finally, for the vibrational state, we have [152, 435]:

T |𝑣, ℓ⟩ = 𝑒2𝑖𝑣𝛿𝑣 |𝑣,−ℓ⟩ (A.19)

where we have encountered another phase factor, 𝛿𝑣. It turns out both 𝛿𝑣 and 𝛿ℓ determine the
phase relations of the 𝑞± ladder operators [149, 152]. Our choice of 𝛿ℓ = 0 and use of real, positive
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𝑞± matrix elements means we take 𝛿𝑣 = 0 as well, and so T |𝑣, ℓ⟩ = |𝑣,−ℓ⟩. If we were to follow
the alternative phase convention in Ref. [434] with 𝛿ℓ = 𝜋/2, we would also have to take 𝛿𝑣 = 𝜋/2
to ensure the action of the 𝐹±(±) vibrational ladder operators are real. This would also have the
consequence of adding a (−1)𝑣 phase factor in the time-reversal of |𝑣, ℓ⟩. We do not follow this
convention, but mention it for completeness.

Finally, we mention the time-reversal property of spherical tensor operators 𝑇 𝑘𝑝 (𝐴), with 𝐴

some operator, which is derived in Ref. [130] by considering the Hermitian conjugate (𝑇 𝑘𝑞 )†. We
obtain:

T𝑇 𝑘𝑝 (𝐴)T = (−1)𝑝𝑇 𝑘−𝑝 (𝐴). (A.20)

We see the spherical tensors transform analogously to the spherical harmonics under T . This
shows that raising and lowering ladder operators are not Hermitian, as they transform into each
other under T . This also gives us an intuition for the anomalous commutation relations of the
molecule, where 𝐽 (𝑚𝑜𝑙)± seem to be reversed in their behavior. In the fixed lab frame, we see the
molecule rotating one way, but in the fixed molecule frame, the lab seems to rotate in the opposite
direction. Finally, Zare shows that the above relation implies ⟨𝐽 | |𝑇 𝑘 | |𝐽′⟩∗ = (−1)𝐽′−𝐽 ⟨𝐽′| |𝑇 𝑘 | |𝐽⟩.

A.2.3 Electronic Parity Doubling
There is an accepted convention for Λ-doubling, which was laid out by Mulliken and Christy

[437]. The convention is reiterated by Brown in [165] and Brown and Carrington in [39]. This
convention is given by

⟨Λ = ±1|𝑒±2𝑖𝜙𝑒 |Λ′ = ∓1⟩ = −1 × 𝛿Λ,Λ′±2. (A.21)

Here, 𝑒±𝑖𝜙𝑒 is a raising/lowering operator with 𝜙𝑒 the azimuthal angle of the electrons. In this
convention, a positive 𝑞𝑒 electronic Λ-doubling parameter in a 1Π state corresponds to the (−1)𝐽

parity level lying above the (−1)𝐽+1 parity level. In other words, the + parity state is below the −
parity state for 𝐽 = 1. In the YbOH �̃� state, 𝑝𝑒 + 2𝑞𝑒 is negative, and the − parity state is below
the + parity state. This phase choice also manifests in the signs of the Λ-doubling Hamiltonian.
When written in Hund’s case (a), the 𝐽±𝑆± terms have a positive prefactor, and the 𝐽±𝐽± terms have
a negative prefactor. For this work, we drop the 𝐽±𝐽± term in �̃� as its contribution is negligible.

Now we derive the Λ phase convention, following arguments from [129] and [39]. We begin
by expanding |Λ⟩ in terms of spherical harmonics:

|Λ⟩ =
∑︁
𝐿

𝐹𝐿𝑌𝐿Λ(𝜃𝑒, 𝜙𝑒) =
∑︁
𝐿

𝐹𝐿√
2𝜋
𝑒𝑖Λ𝜙𝑒Θ𝐿Λ(𝜃𝑒). (A.22)
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Here,
∑
𝐿 |𝐹𝐿 |2 = 1, and Θ𝐿Λ(𝜃𝑒) is proportional to the associated Legendre functions 𝑃Λ

𝐿
(cos 𝜃𝑒).

Θ𝑙,𝑚 (𝜃) = (−1)𝑚
√︄

2𝑙 + 1
2
(𝑙 − 𝑚)!
(𝑙 + 𝑚)!𝑃

𝑚
𝑙 (cos 𝜃) for 𝑚 ≥ 0

= (−1)𝑚Θ𝑙,−𝑚 (𝜃) for 𝑚 < 0.

(A.23)

Note the function Θ𝐿Λ satisfies Θ𝐿,−|Λ| = (−1)ΛΘ𝐿,|Λ|. This is the origin of this specific phase-
convention.

Now we can evaluate the left hand side of eqn. A.21

⟨Λ|𝑒±2𝑖𝜙𝑒 |Λ′⟩ =
∫

sin 𝜃𝑒d𝜃𝑒d𝜙𝑒
∑︁
𝐿,𝐿′

𝐹∗𝐿𝐹𝐿′𝑌𝐿Λ(𝜃𝑒, 𝜙𝑒)∗𝑒±2𝑖𝜙𝑒𝑌𝐿′Λ′ (𝜃𝑒, 𝜙𝑒)

=
∑︁
𝐿,𝐿′

𝐹∗𝐿𝐹𝐿′𝛿Λ,Λ′±2

∫
sin 𝜃𝑒d𝜃𝑒 (−1)Λ′±2Θ𝐿,−Λ′∓2(𝜃𝑒)Θ𝐿′,Λ′ (𝜃𝑒)

(A.24)

where we substitute 𝑌𝐿,Λ(𝜃𝑒, 𝜙𝑒)∗ = (−1)Λ𝑌𝐿,−Λ(𝜃𝑒, 𝜙𝑒) and performed the 𝜙𝑒 integral taking
advantage of the orthogonality of exponential functions.

Now we simplify the integrand by noting we are interested in Λ = ±1,Λ′ = ∓1. This allows us
to write −Λ′∓ 2 = Λ′. Then the remaining 𝜃𝑒 integral can be performed by using the orthogonality
relations of the associated Legendre polynomials, which results in

⟨Λ = ±1|𝑒±2𝑖𝜙𝑒 |Λ′ = ∓1⟩ = 𝛿Λ,Λ′±2
∑︁
𝐿

|𝐹𝐿 |2(−1)Λ′ = −1 × 𝛿Λ,Λ′±2 (A.25)

where we have substituted |Λ| = 1 in the last line and used the fact that |𝐹𝐿 |2 is normalized.

We also note that the behavior of 𝑌𝐿Λ upon the transformation Λ → −Λ gives the parity
properties of |Λ⟩. The action of space-fixed inversion, i.e. the parity operator P, is equivalent to
a reflection 𝜎𝑥𝑧 of the 𝑥𝑧 plane of the molecule. This can be derived by considering the effect of
space-fixed inversion on the Euler angles relating the molecule and lab frames. Therefore we have:

P𝑌𝐿,Λ(𝜃𝑒, 𝜙𝑒) = 𝜎𝑥𝑧𝑌𝐿,Λ(𝜃𝑒, 𝜙𝑒)
= 𝑌𝐿,Λ(𝜃𝑒, 2𝜋 − 𝜙𝑒)
= 𝑌𝐿,Λ(𝜃𝑒, 𝜙𝑒)∗

= (−1)Λ𝑌𝐿,−Λ(𝜃𝑒, 𝜙𝑒).

(A.26)

This recovers the result P|Λ⟩ = (−1)Λ | −Λ⟩ (note a Σ− state has an extra factor of (−1) that we do
not consider).

For the full parity of the rotational wavefunction, the action of P must also be computed
on the spin and rotational wavefunctions, which also reverse the projection quantum numbers and
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contribute parity phases of (−1)𝑆−Σ and (−1)𝐽−Ω respectively. The combination of all phase factors
gives the complete case (a) parity phase without bending motion: (−1)Λ+𝑆−Σ+𝐽−Ω = (−1)𝐽−𝑆, where
we have used |Σ | = 𝑆 and Ω = Λ + Σ to simplify the exponent.

A.2.4 Vibrational Parity Doubling
For the derivation of the parity phase and matrix elements involving ℓ, we follow Ref. [129],

which uses the vibrational phase conventions established by by Di Lauro and Mills [148].

The wavefunction for an isotropic 2D harmonic oscillator may be written as:

|𝑣2, ℓ⟩ =
1
√

2𝜋
𝑒𝑖ℓ𝜙𝑛Ψ𝑣2,ℓ (𝑞). (A.27)

Here, 𝑞 =

√︃
𝑞2

1 + 𝑞
2
2, where (𝑞1, 𝑞2) are the dimensionless, doubly-degenerate normal coordinates

of the bending mode, and 𝜙𝑛 = tan−1(𝑞2/𝑞1) is the azimuthal angle of the bending nuclear
framework. The function Ψ𝑣2,ℓ is given by [148]:

Ψ𝑣,ℓ (𝑞) = (−1) (𝑣+|ℓ |)/2𝑁𝑣,ℓ𝑞 |ℓ |𝑒−𝑞
2/2𝐿 |ℓ |(𝑣+|ℓ |)/2(𝑞

2). (A.28)

Here, 𝑁𝑣,ℓ is a normalization factor and 𝐿𝑘𝑛 (𝑥) is an associated Laguerre polynomial.

The function satisfies 𝜎𝑥𝑧Ψ𝑣2,|ℓ | = 𝑒−2𝑖ℓ𝛿ℓΨ𝑣2,−|ℓ |. We now take 𝛿ℓ = 0 to obtain the result at
the end of this section. If we were to take 𝛿ℓ = 𝜋/2, we would instead obtain the same result as for
Λ doubling.

With 𝛿ℓ = 0 and Ψ𝑣2,|ℓ | = Ψ𝑣2,−|ℓ |, we now consider the matrix elements between ℓ = ±1 states:

⟨ℓ |𝑒±2𝑖𝜙𝑛 |ℓ′⟩ =
∫

d𝑞d𝜙
1

2𝜋
𝑒−𝑖ℓ𝜙𝑛Ψ𝑣,ℓ (𝑞)𝑒±2𝑖𝜙𝑛𝑒𝑖ℓ

′𝜙𝑛Ψ𝑣,ℓ′ (𝑞). (A.29)

The integration bounds are taken for 𝑞 ≥ 0 and 2𝜋 > 𝑞 ≥ 0. The 𝜙𝑛 integral is evaluated with the
orthogonality of complex exponential functions and enforces 𝛿ℓ,ℓ′+2.

Restricting our attention to ℓ = ±1 states, the Ψ𝑣,ℓ (𝑞) functions depend only on |ℓ |, and do
not add an additional phase. As a result we can evaluate the remaining d𝑞 integral using the
orthogonality relations of the associated Laguerre polynomials. We are left with

⟨ℓ |𝑒±2𝑖𝜙𝑛 |ℓ′⟩ = 1 × 𝛿ℓ,ℓ′±2. (A.30)

The difference between parity phase factors for ℓ and Λ can be traced to the difference in phase
between Ψ𝑣ℓ (𝑞) and Θ𝐿Λ(𝜃𝑒) upon space-fixed inversion. By considering the behavior of the
wavefunctions under 𝜙𝑛 → 2𝜋 − 𝜙𝑛, we see the radial 𝑞 part is unaffected, giving us P|𝑣2, ℓ⟩ =
|𝑣2,−ℓ⟩. When combined with rotational and spin parity phase factors, we then obtain the complete
parity phase (−1)𝐽−𝑆−ℓ.
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A.3 Additional Effective Hamiltonian Details
A.3.1 N and R Formalisms

The next discussion is inspired by Section 7.5.3 of Ref. [39]. In the effective Hamiltonian
picture, we sometimes use 𝑅 to represent the rotation of the molecules. However, 𝑅 contains
matrix elements of 𝐿⊥ and 𝐿2

⊥, as well as 𝐺ℓ⊥ and 𝐺2
ℓ⊥. Using the effective Hamiltonian, we can

deal with the 𝐿⊥ like terms, and in practice spectroscopists simply drop the 𝐿2
⊥ like terms. This is

called the “𝑅2 formalism.” Another approach is also possible, called the “𝑁2 formalism.” Once we
have performed a transformation to an effective Hamiltonian, we can instead consider ®𝑁 = ®𝐽 − ®𝑆,
which has no contributions from 𝐿 or 𝐺ℓ, and therefore all the matrix elements act within our
subspace 𝜓 (0) . The rotational Hamiltonian in Hund’s case (b) then becomes just 𝐵 ®𝑁2, while in
case (a) we have 𝐵( ®𝐽 − ®𝑆)2.

The two formalisms describe equivalent physics. However, their energy origins differ, as a
result of different offsets from the rotational Hamiltonian. This means there are also differences in
the centrifugal correction terms as well between the two formalisms. Consider the case (a) rotation
Hamiltonian, 𝐵( ®𝐽− ®𝑆)2. If we expand this out, we obtain almost the same form as the 𝑅2 approach in
eq. 2.32, if we drop the 𝐿⊥ and 𝐿2

⊥ terms in the 𝑅2 approach. However, we see there is still a different
energy offset between the two formulations. Specifically, in the ®𝑁2 formulation, we have a rotational
energy offset of−2𝐽𝑧𝑆𝑧, while in the ®𝑅2 formulation the offset is−2𝐽2

𝑧 −2𝛴2 = −2𝐽𝑧𝑆𝑧−(𝐿𝑧+𝐺ℓ𝑧)2.
Therefore, the two Hamiltonians differ in their electronic origins by the value −(𝐿𝑧 +𝐺ℓ𝑧)2 = −𝐾2.
We can connect the two formalisms by writing ®𝑅 = 𝑁𝑥𝑥 +𝑁𝑦 �̂�+ (𝑁𝑧 −𝐾)𝑧. For formulae on how to
convert the centrifugal and higher distortion parameters between the two approaches, see Ref. [39],
Sec. 7.5.3.

In this thesis, we use the 𝑅2 formalism. This is primarily because the paper performing
spectroscopy on the YbOH origin band, �̃�2Σ+(000) → �̃�2Π1/2(000), used the 𝑅2 form, with
matrix elements3 taken from the Appendix of Ref. [438]. As an aside, we note the 𝑅2 formalism in
case (b) generates a rotational Hamiltonian of the form 𝐵( ®𝑁2 − 𝐾2), which satisfyingly correlates
with the form of the symmetric top Hamiltonian in eq. 2.17.

A.3.2 Pure Precession
Here we describe a method for estimating the off-diagonal matrix elements of 𝐿𝑥 and 𝐿𝑦, known

as the Van Vleck pure precession hypothesis [39]. Essentially, if our molecular orbital has strong
atomic character, we can think of the electronic wavefunction as a linear combination of spherical
harmonics, |Λ⟩ = ∑

𝐿 𝑐𝐿𝑌𝐿,Λ, with coefficients 𝑐𝐿 . These spherical harmonics are taken to represent
atomic orbitals with principle quantum number 𝑛, angular momentum 𝑙, and projection 𝜆. In such a

3Note there is a typo in the 𝐻sr matrix element in the Appendix. The authors have written 𝛴2 − 𝑆(𝑆 + 1), but the
correct form is Ω𝛴 − 𝑆(𝑆 + 1) for a diatomic. For a 2Σ state with Ω = 𝛴, the typo has no effect.
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case, the matrix elements of 𝐿⊥ can be approximated as 𝑙± |𝑛, 𝑙, 𝜆⟩ =
√︁
𝑙 (𝑙 + 1) − 𝜆(𝜆±)||𝑛, 𝑙, 𝜆±1⟩.

The pure precession hypothesis has been shown to be a reasonable approximation in CaOH [147],
SrOH [301], and even non-linear CaNH2 [439]; it is no coincidence that such atom-like electronic
orbitals have been found to be laser-coolable. We note the pure precession approximation will
always break down at some level, and it is least applicable is when there is significant mixing of
the electronic configuration of the molecule.

A.3.3 Hamiltonian Transformations
The mathematical formulation of the effective Hamiltonian derivation is that of degenerate

perturbation theory with a Hamiltonian 𝐻 = 𝐻 (0) + 𝑉 , with 𝑉 a perturbation. In a sense, we
consider all of the states within 𝜓 (0) to be a degenerate subspace governed by 𝐻 (0) , and consider
couplings by 𝑉 to states outside of our subspace at various orders of perturbation theory. The
external subspaces are labeled as 𝜓 (𝛼) . The procedure is detailed in Ref. [39], Ch. 7, and is
reproduced in Ref. [161]. The degenerate perturbation theory approach is equivalent up to third
order with the contact transformation approach, also referred to as Van Vleck transformations [39],
or Schrieffer-Wolff transformations. Essentially, these transformations all amount to performing
a unitary transformation on the Hamiltonian given by 𝑈 = 𝑒𝑖𝑆, where 𝑆 is Hermitian, and can be
chosen such that the transformed Hamiltonian is only has diagonal matrix elements of𝑉 to first order.
By repeated application of unitaries 𝑒𝑖𝑆𝑛 , we can chose the 𝑆𝑛 such that the Hamiltonian is diagonal
in𝑉 up to order 𝑛. We denote the various orders of the Hamiltonian after the contact transformations
as �̃�1, �̃�2, . . .. Matrix elements of these transformed Hamiltonians have the following forms [39]
between two states 𝑖, 𝑗 within 𝜓 (0):

⟨𝜓 (0) , 𝑖 |�̃�0 |𝜓 (0) , 𝑗⟩ = 𝐸 (0) (A.31)

⟨𝜓 (0) , 𝑖 |�̃�1 |𝜓 (0) , 𝑗⟩ = ⟨𝜓 (0) , 𝑖 |𝑉 |𝜓 (0) , 𝑗⟩ (A.32)

⟨𝜓 (0) , 𝑖 |�̃�2 |𝜓 (0) , 𝑗⟩ =
∑︁

𝜓 (𝛼)≠𝜓 (0)

∑︁
𝑘

⟨𝜓 (0) , 𝑖 |𝑉 |𝜓 (𝛼) , 𝑘⟩⟨𝜓 (𝛼) , 𝑘 |𝑉 |𝜓 (0) , 𝑗⟩
𝐸 (0) − 𝐸 (𝛼)

. (A.33)

Here, 𝐸 (0) is the vibronic origin of 𝜓 (0) , only dependent on the electronic and vibrational state,
while 𝐸 (𝛼) is the vibronic origin of a distant state 𝜓 (𝛼) that perturbs our subspace of interest. The
index 𝑘 labels states in other subspaces. We note that 𝑉 can contain many different terms that can
all contribute cross-interactions. In other words, for 𝑉 =

∑
𝑚 𝑉𝑚, at second order we must consider

⟨𝑉𝑚⟩⟨𝑉𝑛⟩ for all 𝑚 and 𝑛. The third order and higher forms can be found in Ch. 7 of Ref. [39].

A.4 Evaluating Matrix Elements
Matrix elements are most easily evaluated for spherical tensor operators. These operators can

be defined in the lab frame, denoted with a subscript 𝑝 (𝑇 𝑘𝑝 ) or the molecule frame, denoted with
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subscript 𝑞 (𝑇 𝑘𝑞 ). For operators involving anomalous commutation, such as ®𝐽 or ®𝑁 , we evaluate
the operator in the lab frame. Depending on our basis, operators involving spin are more easily
evaluated in the lab or molecule frame. To transform between the two frames for some operator 𝐴,
we use the following formulae:

𝑇 𝑘𝑝 (𝐴) =
∑︁
𝑞

D (𝑘)𝑝,𝑞 (𝜔)∗𝑇 𝑘𝑞 (𝐴)

𝑇 𝑘𝑞 (𝐴) =
∑︁
𝑝

(−1)𝑝−𝑞D (𝑘)−𝑝,−𝑞 (𝜔)∗𝑇 𝑘𝑝 (𝐴)

= (−1)𝑞
∑︁
𝑝

(−1)𝑝D (𝑘)−𝑝,−𝑞 (𝜔)∗𝑇 𝑘−𝑝 (𝐴)

= (−1)𝑞D (𝑘).,−𝑞 (𝜔)∗ · 𝑇 𝑘 (𝐴).

(A.34)

In the last line, we have introduced notation D (𝑘).,−𝑞 (𝜔)∗, which represents a tensor that is reduced
in the lab-frame and not the molecule-frame. This notation informs us that the dot product sum
is taken over the lab components, 𝑝. Writing the Wigner rotation as a dot product is useful when
dealing with Hamiltonian operators expressed in the molecule frame.

Every matrix element begins unfactorized in both lab and molecule frames. The first step is
to use the Wigner-Eckart theorem to factorize out the lab frame angular momentum projection, 𝑀 .
For example, if the total angular momentum is 𝐹, for any arbitrary operator, we have:

⟨. . . , 𝐹, 𝑀 |𝑇 𝑘𝑝 (𝐴1, 𝐴2, . . .) |𝐹′, 𝑀′, . . .⟩ =

(−1)𝐹−𝑀
(
𝐹 𝑘 𝐹′

−𝑀 𝑝 −𝑀′

)
⟨. . . , 𝐹 | |𝑇 𝑘 (𝐴1, 𝐴2, . . .) | |𝐹′, . . .⟩

(A.35)

Here, ⟨. . . 𝐹 | |𝑇 𝑘 | |𝐹′ . . .⟩ is the reduced matrix element, which does not dependent on 𝑀 . The
selection rules of the 3j symbol are useful for determining the action of an operator at a glance. For
example, rank 𝑘 > 0 can mix Δ𝐹 ≠ 0. In free-field, we have rotational symmetry, which means 𝐹
is conserved and the 𝑀 sublevels are degenerate. Therefore, all free-field matrix element operators
are scalars, 𝑘 = 0, and represented as dot products. The molecule frame quantities are given as
dot products with the D-matrices, as written above. Dot products can be written as a rank 𝑘 = 0
composite spherical tensor operator:

𝑇
𝑘12=0
𝑝=0 (𝐴1, 𝐴2) =

(−1)𝑘
√

2𝑘 + 1
𝑇 𝑘 (𝐴1) · 𝑇 𝑘 (𝐴2) (A.36)

The dot product is the rank 𝑘 = 0 example of a composite spherical tensor operator. Such
operators can be constructed from other operators using Clebsch-Gordan coefficients, essentially
analogous to coupling two angular momenta. The formula for their construction is given in Brown
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and Carrington eq. 5.165. The equivalent formula in Hirota (tab. 2.4, 2) has a typo in the 3j
symbol’s lower row.

The Wigner-Eckart theorem can be used for any rank to factorize the 𝑀 dependence of the
operator. For a rank 𝑘 = 0 operator such as the dot product, the form after the Wigner-Eckart
theorem can be simplified further:

⟨. . . 𝐹, 𝑀 |𝑇 𝑘=0
𝑝=0 (𝐴1, 𝐴2) | . . . 𝐹′, 𝑀′⟩ = (−1)𝐹−𝑀

(
𝐹 0 𝐹′

−𝑀 0 𝑀′

)
= 𝛿𝐹,𝐹′𝛿𝑀,𝑀 ′

1
√

2𝐹 + 1
× ⟨. . . 𝐹 | |𝑇0(𝐴1, 𝐴2) | |𝐹′ . . .⟩

(A.37)

Where we have expanded the Wigner 3j symbol using its analytic form. We have simplified
(−1)2𝐹−2𝑀 = 1, as even though 𝐹 and 𝑀 can be half-integer, their difference is always an integer,
and such a phase factor squared is always positive. In general, we have to be careful with half-
integer angular momenta in phase factors, which can arise when coupling 𝐼 or 𝑆. Some quantities
are always integer valued, such as anything to do with orbital angular momentum: 𝑁 , Λ, ℓ. Also
the rank 𝑘 of a spherical tensor operator is an integer.

When the spin 𝑆 is defined in the molecule frame (Hund’s case (a)), we can also use the
Wigner-Eckart theorem to evaluate the spin matrix elements in the molecule frame, as the operators
𝑇1(𝑆)𝑞=±1 follow normal commutation relations. Applying the Wigner-Eckart theorem on the spin
in the molecule frame factorizes out the dependence of the projection 𝛴. As always, we caution
that a similar evaluation of the molecule frame 𝑇1

𝑞=±1(𝐽) operators will give the wrong answer due
to anomalous commutation. The solution for these operators is to transform them to the lab-frame.

When we apply electromagnetic fields, we break the rotational symmetry of space. If the
fields are only in one direction, we can take that direction to be the �̂� axis. The operators can be
generically of higher rank, 𝑘 ≥ 1. By the Wigner-Eckart theorem, higher rank operators can mix
𝐹. However, if we maintain cylindrical symmetry about �̂� , the projection of our applied field is
always 𝑝 = 0, and the operators will not mix 𝑀 . Only when we have field projections 𝑝 ≠ 0 do we
also mix 𝑀 sublevels.

Now that we have factored out the 𝑀 sublevel dependence, all that is left is to deal with the
reduced matrix element. Eventually, we want to arrive at the form ⟨𝐽𝑖 | |𝑇 𝑘 (𝐴𝑖) | |𝐽′𝑖 ⟩, where the
subscript indicates the operator 𝐴𝑖 acts on 𝐽𝑖. However, often the angular momentum states are
composite states of coupled angular momenta, and look like: | (𝐽1, 𝐽2)𝐽3, . . . (𝐽𝑖, 𝐽 𝑗 )𝐽𝑘 . . .⟩. In
order to evaluate an operator acting on an 𝐽𝑖, we must first factor out the dependence on 𝐽𝑘 . To
factorize these matrix elements, we use tools from angular momentum algebra.
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1) Matrix elements of a composite tensor operator acting on two different systems (Brown and
Carrington eq. 5.169, Hirota tab. 2.4, 6ii). One system is 𝐽1 with operator 𝐴1, the other is 𝐽2

with operator 𝐴2, and the total angular momentum is ®𝐽3 = ®𝐽1 + ®𝐽2, and the combiend operator is
𝑇 𝑘12(𝐴1, 𝐴2) = 𝑇 𝑘1 (𝐴1) × 𝑇 𝑘2 (𝐴2). The factorization is then given by:

⟨𝐽1, 𝐽2, 𝐽12 | |𝑇 𝑘12(𝐴1, 𝐴2) | |𝐽′1, 𝐽
′
2, 𝐽
′
12⟩ =√︃

(2𝐽12 + 1) (2𝐽′12 + 1) (2𝑘12 + 1)

×


𝐽12 𝐽′12 𝑘12

𝐽1 𝐽′1 𝑘1

𝐽2 𝐽′2 𝑘2


× ⟨𝐽1 | |𝑇 𝑘1 (𝐴1) | |𝐽′1⟩⟨𝐽2 | |𝑇 𝑘2 (𝐴2) | |𝐽′2⟩.

(A.38)

This formula uses the Wigner 9j symbol (see Ref. [39], Ch. 5), which, like the 3j and 6j symbols,
is just a way of keeping track of Clebsch-Gordan coefficients and angular momentum coupling.
Many other formulae can be obtained from eq. A.38, as the 9j symbol reduces to a 6j symbol when
one of its arguments is zero (see Brown and Carrington eq. 5.94). When comparing formulae, we
emphasize it is important to be aware that the 3j, 6j, and 9j symbols have certain symmetries that
allow for certain interchanges of rows and columns–for details, see Ref. [39].

2) The Spectator Theorem (Brown and Carrington eq. 5.174, Hirota tab. 2.4, iv), a name first
coined in Ref. [440]. This formula factorizes a matrix element that only acts on one component of
a coupled angular momentum, for example 𝐴1 acting only on 𝐽1. The formula can be obtained4 by
setting 𝑇 𝑘2 (𝐴2) = 1 and 𝑘2 = 0 in eq. A.38. The spectator theorem for 𝐴1 is given by:

⟨𝐽1, 𝐽2, 𝐽12 | |𝑇 𝑘 (𝐴1) | |𝐽′1𝐽
′
2𝐽
′
12⟩ = 𝛿𝐽2,𝐽

′
2
(−1)𝐽′12+𝐽1+𝐽2+𝑘

√︃
(2𝐽12 + 1) (2𝐽′12 + 1)

×
{
𝐽′1 𝐽′12 𝐽2

𝐽12 𝐽1 𝑘

}
⟨𝐽1 | |𝑇 𝑘 (𝐴1) | |𝐽1⟩

(A.39)

On the other hand, if the operator of interest is 𝐴2, and acts on 𝐽2, we instead have (Brown and
Carrington eq. 5.175, Hirota tab. 2.4, iv):

⟨𝐽1, 𝐽2, 𝐽12 | |𝑇 𝑘 (𝐴2) | |𝐽′1𝐽
′
2𝐽
′
12⟩ = 𝛿𝐽1,𝐽

′
2
(−1)𝐽12+𝐽1+𝐽′2+𝑘

√︃
(2𝐽12 + 1) (2𝐽′12 + 1)

×
{
𝐽′2 𝐽′12 𝐽1

𝐽12 𝐽2 𝑘

}
⟨𝐽2 | |𝑇 𝑘 (𝐴2) | |𝐽2⟩

(A.40)

Notice the difference in phase factor compared to the 𝐽1 case. This distinction is important when
combining multiple terms that act on different components of the coupled angular momentum, i.e.

4The reduced matrix element for 1 is given by ⟨ 𝑗 | |1| | 𝑗 ′⟩ = 𝛿 𝑗 , 𝑗′
√︁

2 𝑗 + 1.
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studying the Zeeman effect in hyperfine coupled states. As long as we are always consistent with
which angular momenta is 𝐽1 and which is 𝐽2, the order of coupling does not matter for the end
result.

3) Matrix element of a dot product acting on two different systems (Brown and Carrington eq.
5.140). This is the special case of eq. A.38 with 𝑘12 = 0 and keeping track of the difference in
normalization between 𝑇0(𝐴1, 𝐴2) and 𝑇 𝑘 (𝐴1) · 𝑇 𝑘 (𝐴2). The formula is given by:

⟨𝐽1, 𝐽2, 𝐽12 | |𝑇 𝑘 (𝐴1) · 𝑇 𝑘 (𝐴2) | |𝐽′1, 𝐽
′
2, 𝐽
′
12⟩ =

𝛿𝐽12,𝐽
′
12

√︁
2𝐽12 + 1(−1)𝐽′1+𝐽2+𝐽12

{
𝐽′1 𝐽′2 𝐽

𝐽2 𝐽1 𝑘

}
× ⟨𝐽1 | |𝑇 𝑘 (𝐴1) | |𝐽′1⟩⟨𝐽2 | |𝑇 𝑘 (𝐴2) | |𝐽′2⟩.

(A.41)

We can combine this equation with the Wigner-Eckart theorem (eq. A.41) to obtain the same
formula as Brown and Carrington eq. 5.173.

4) Matrix element of a composite tensor operator formed from non-commuting operators acting
on the same system (Brown and Carrington eq. 5.142, Hirota tab. 2.4, 6i). So far we have worked
with operators 𝐴1 and 𝐴2 acting on separate systems, which commute with each other. However,
sometimes we must work with coupled operators 𝑇 𝑘1 (𝐴1) and 𝑇 𝑘2 (𝐵1), which both act on the same
subsystem 𝐽, and may not commute with each other. We can use the following formula to factorize
the matrix element:

⟨𝐽 | |𝑇 𝑘 (𝐴1, 𝐵1) | |𝐽′⟩ =
√

2𝑘 + 1(−1)𝐽+𝐽′+𝑘
∑︁
𝜂′′,𝐽′′

{
𝑘1 𝑘2 𝑘

𝐽 𝐽′ 𝐽′′

}
⟨𝜂, 𝐽 | |𝑇 𝑘1 (𝐴1) | |𝜂′′, 𝐽′′⟩⟨𝜂′′, 𝐽′′| |𝑇 𝑘2 (𝐵1) | |𝜂′, 𝐽′⟩

(A.42)

Here, 𝜂 represents all other quantum numbers. This formula can be used in combination with the
spectator theorem to deal with𝑇 𝑘 (𝐴1, 𝐵1) acting on one part (𝐽1) of a combined angular momentum
(𝐽3). We caution the reader from using Brown and Carrington eq. 5.177, which seems to be missing
the extra factors from the spectator theorem. However, using the normalization of the dot product as
a tensor operator and simplifying the 6j symbols analytically (Appendix D of Ref. [39]), we obtain
Brown and Carrington eq. 5.178 by combining Wigner-Eckart, Spectator Theorem, and eq. A.42.

5) Switching the coupling scheme of a composite operator. Often it is useful to rewrite a
composite operator in terms of a different coupling scheme. We imagine we have three spherical
tensor operators, 𝑇1(𝐴), 𝑇1(𝐵), and 𝑇2(𝐶). These operators can be combined to form a scalar
𝑘 = 0 composite operator in multiple ways, which can be related to each other as follows:

𝑇2(𝐶) · 𝑇2(𝐴, 𝐵) = −
√︂

5
3
𝑇1(𝐴) · 𝑇1(𝐶2, 𝐵) (A.43)
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Here, 𝑇1(𝐶2, 𝐵) is the rank 1 tensor formed by coupling 𝑇2(𝐶) and 𝑇1(𝐵). This result is derived
in Brown and Carrington eq. 8.459. We use this relationship when evaluating hyperfine matrix
elements, as well as matrix elements involving the MQM [70].

6) Evaluating reduced matrix elements. The goal of factorizing the matrix element is to obtain
terms of the form ⟨𝐽 | |𝑇 𝑘 (𝐽) | |𝐽′⟩, with 𝐽 an arbitrary angular momentum. These terms can be
evaluated by looking up their form, given for arbitrary 𝑘 in Brown and Carrington eq. 5.134.
However it is instructive to run through the derivation of the reduced matrix element (provided in
both Brown and Carrington and Hirota), for example for 𝑇1(𝐽). Using the Wigner-Eckart theorem,
we have:

⟨𝐽, 𝑀 |𝑇1
𝑝 (𝐽) |𝐽′, 𝑀′⟩ = (−1)𝐽−𝑀

(
𝐽 1 𝐽′

−𝑀 𝑝 𝑀′

)
⟨𝐽 | |𝑇 𝑘 (𝐽) | |𝐽′⟩. (A.44)

We now consider the specific case when 𝑝 = 0, where the operator becomes 𝑇1
0 (𝐽) = 𝐽𝑍 . Our states

are eigenstates of 𝐽𝑍 , so we can evaluate the matrix element as ⟨𝐽, 𝑀 |𝐽𝑍 |𝐽′, 𝑀′⟩ = 𝛿𝐽,𝐽′𝛿𝑀.𝑀 ′𝑀 .
Setting this equal to the form obtained from the Wigner-Eckart theorem, simplifying the 3j with
analytic formulae (see Appendix C of Ref. [39]), we can then solve for the reduced matrix element
as:

⟨𝐽 | |𝑇1(𝐽) | |𝐽′⟩ = 𝛿𝐽,𝐽′
√︁
𝐽 (𝐽 + 1) (2𝐽 + 1). (A.45)

This approach can be generalized to higher rank 𝑘 . For example, for 𝑇2(𝐽), we obtain:

⟨𝐽 | |𝑇2(𝐽) | |𝐽′⟩ = 𝛿𝐽,𝐽′
(2𝐽 − 1)𝐽

√
6

(
𝐽 2 𝐽

𝐽 0 𝐽

) . (A.46)

Deriving reduced matrix elements shows how the unfactorized matrix element for all 2𝑘 + 1
components of a spherical tensor operator is proportional to a single value, the matrix element of
the operator along the �̂� axis. This allows for the matrix element of different operators, 𝐴 and 𝐵,
to be related by the ratio of their reduced matrix elements, known as the replacement theorem (see
Brown and Carrington eq. 5.135).

Finally, we will often encounter the reduced matrix element of the Wigner D-matrix,D (𝑘)𝑝,𝑞 (𝜔)∗.
The D-matrix acts on both the lab and molecule frame projections of the symmetric top state. Since
we have used the Wigner-Eckart theorem to factorize out the 𝑀 dependence, the matrix element is
written as ⟨𝐽, 𝑃 | |D (𝑘).,𝑞 | |𝐽′, 𝑃⟩ and is referred to as “reduced in the lab-frame” [440]. Here, 𝑃 = ®𝐽 · �̂�,
and indicates the molecule-frame projection of the symmetric top wavefunction. The reduced
matrix element is given by (Brown and Carrington eq. 5.186):

⟨𝐽, 𝑃 | |D (𝑘).,𝑞 | |𝐽′, 𝑃′⟩ = (−1)𝐽−𝑃
√︁
(2𝐽 + 1) (2𝐽′ + 1)

(
𝐽 𝑘 𝐽′

−𝑃 𝑞 𝑃′

)
. (A.47)
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Here we have provided the reduced matrix element for Hund’s case (a) symmetric top states. The
form for Hund’s case (b) is analogous, and obtained by replacing 𝐽 → 𝑁 and 𝑃→ 𝐾 .

A.5 Sample Matrix Elements
This section provides a non-exhaustive list of some sample matrix elements. We use the phase

factors detailed in the earlier section on phase conventions. Many other matrix elements can be
found in Brown and Carrington [39], Hirota [129], and the Appendix of Ref. [438].

A.5.1 Without Hyperfine
The following matrix elements are given without hyperfine structure in Hund’s case (b), which

is relevant for the �̃� (010) bending mode with optical resolution.

The operator associated with 𝛾𝐺 , axial spin-rotation:

⟨ℓ; 𝑁, 𝑆, 𝐽, 𝑀 |𝑇1
𝑞=0(𝑁)𝑇

1
𝑞=0(𝑆) |ℓ

′; 𝑁′, 𝑆, 𝐽′, 𝑀′⟩

= 𝛿𝐽,𝐽′𝛿𝑁,𝑁 ′𝛿𝑀,𝑀 ′𝛿ℓ,ℓ′ × ℓ

× (−1)𝐽+𝑁 ′+𝑆
{
𝑁 𝑆 𝐽

𝑆 𝑁 1

}
× (−1)𝑁−ℓ

(
𝑁 1 𝑁

−ℓ 0 ℓ

)
(2𝑁 + 1)

×
√︁
𝑆(𝑆 + 1) (2𝑆 + 1)

(A.48)

The operator associated with 𝑝𝐺 , parity-dependent spin-rotation:

⟨ℓ; 𝑁, 𝑆, 𝐽, 𝑀 |𝑇2
2𝑞 (𝑁, 𝑆)𝑒

−2𝑖𝑞𝜙 |ℓ′; 𝑁′, 𝑆, 𝐽′, 𝑀′⟩

= 𝛿𝐽,𝐽′𝛿𝑁,𝑁 ′𝛿𝑀,𝑀 ′𝛿ℓ,ℓ′+2𝑞

× (−1)𝐽+𝑁+𝑆
√︂

5
2

{
𝑁 𝑆 𝐽

𝑆 𝑁 1

}
×

√︁
𝑆(𝑆 + 1) (2𝑆 + 1)

×
√

3

{
2 1 1
𝑁 𝑁 𝑁

} √︁
𝑁 (𝑁 + 1) (2𝑁 + 1)

× (−1)𝑁−ℓ
(
𝑁 2 𝑁

−ℓ 2𝑞 ℓ

)
(2𝑁 + 1)

×
√︁
𝑆(𝑆 + 1) (2𝑆 + 1)

(A.49)



299

The operator associated with 𝑞𝐺 , rotational ℓ-doubling:

⟨ℓ; 𝑁, 𝑆, 𝐽, 𝑀 |𝑇2
2𝑞 (𝑁, 𝑁)𝑒

−2𝑖𝑞𝜙 |ℓ′; 𝑁′, 𝑆, 𝐽′, 𝑀′⟩

= 𝛿𝐽,𝐽′𝛿𝑁,𝑁 ′𝛿𝑀,𝑀 ′𝛿ℓ,ℓ′+2𝑞

× (−1)𝐽+𝑁+𝑆
{
𝑁 𝐽 𝑆

𝐽 𝑁 0

}
×
√

5

{
2 2 0
𝑁 𝑁 𝑁

}
× 1

2
√

6

√︁
(2𝑁 − 1) (2𝑁) (2𝑁 + 1) (2𝑁 + 2) (2𝑁 + 3)

× (−1)𝑁−ℓ
(
𝑁 2 𝑁

−ℓ 2𝑞 ℓ

)
(2𝑁 + 1)

(A.50)

The operator associated with the lab-frame projection molecule frame dipole moment (𝐷mol =

⟨ℓ; 𝑁 | |𝑇1
𝑞=0(𝑑) | |ℓ; 𝑁⟩), useful for Stark shifts:

⟨ℓ; 𝑁, 𝑆, 𝐽, 𝑀 |𝑇1
𝑝 (𝑑) |ℓ′; 𝑁′, 𝑆, 𝐽′, 𝑀′⟩

= (−1)𝐽−𝑀
(

𝐽 1 𝐽′

−𝑀 𝑝 𝑀′

)
× (−1)𝐽′+𝑁+𝑆+1

√︁
(2𝐽 + 1) (2𝐽′ + 1)

{
𝑁′ 𝐽′ 𝑆

𝐽 𝑁 1

}
× (−1)𝑁−ℓ

√︁
(2𝑁 + 1) (2𝑁′ + 1)

(
𝑁 1 𝑁′

−ℓ 0 ℓ′

)
× ⟨ℓ; 𝑁 | |𝑇1

𝑞=0(𝑑) | |ℓ; 𝑁⟩

(A.51)

The operator associated with the lab-frame projection of the spin, useful for Zeeman shifts:

⟨ℓ; 𝑁, 𝑆, 𝐽, 𝑀 |𝑇1
𝑝 (𝑆) |ℓ′; 𝑁′, 𝑆, 𝐽′, 𝑀′⟩

= 𝛿ℓ,ℓ′ (−1)𝐽−𝑀
(

𝐽 1 𝐽′

−𝑀 𝑝 𝑀′

)
× (−1)𝐽+𝑁+𝑆+1

√︁
(2𝐽 + 1) (2𝐽′ + 1)

{
𝑆 𝐽′ 𝑁

𝐽 𝑆 1

}
×

√︁
𝑆(𝑆 + 1) (2𝑆 + 1)

(A.52)

The following matrix element is given in Hund’s case (a), and describes the electronic Λ-
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doubling term, 𝑝𝑒 + 2𝑞𝑒:

⟨Λ; 𝑆, Σ; 𝐽,Ω, 𝑀 |𝑒2𝑖𝑞𝜃𝑇2
2𝑞 (𝐽, 𝑆) |Λ

′; 𝑆, Σ′; 𝐽′,Ω′, 𝑀′⟩

= 𝛿𝐽,𝐽′𝛿𝑀,𝑀 ′𝛿Λ+2𝑞,Λ′

× (−1)𝐽−Ω
(
𝐽 1 𝐽

−Ω −𝑞 Ω′

) √︁
𝐽 (𝐽 + 1) (2𝐽 + 1)

× (−1)𝑆−Σ
(
𝑆 1 𝑆

−Σ 𝑞 Σ′

) √︁
𝑆(𝑆 + 1) (2𝑆 + 1)

(A.53)

Finally, we reproduce the Hund’s case (a) formula for the transition dipole moment (TDM) in
the E1 (dipole) approximation:

⟨ℓ;Λ; 𝑆, Σ; 𝐽, 𝑃, 𝑀 |𝑇1
𝑝 (𝑑) |ℓ′;Λ′; 𝑆, Σ′; 𝐽′, 𝑃′, 𝑀′⟩

= 𝛿Σ,Σ′𝛿ℓ,ℓ′

× (−1)𝐽−𝑀
(

𝐽 1 𝐽′

−𝑀 𝑝 𝑀′

)
×

√︁
(2𝐽 + 1) (2𝐽′ + 1) (−1)𝐽−𝑀

×
∑︁
𝑞

(
𝐽 1 𝐽′

−𝑃 𝑞 𝑃′

)
𝛿Λ,Λ′+𝑞

× ⟨Λ| |𝑇1
𝑞 (𝑑) | |Λ′⟩

(A.54)

The last term is the reduced matrix element encoding the transition dipole integral between two
electronic states.

A.5.2 With Hyperfine
We provide some example matrix elements in Hund’s case (b𝛽J), relevant to hyperfine interac-

tions. When evaluating these matrix elements, we emphasize we must be consistent with the order
of coupling 𝑁 and 𝑆 to form 𝐽.

The matrix element for the Fermi contact interaction, proportional to the constant 𝑏𝐹 :

⟨𝐾; 𝑁, 𝑆, 𝐽, 𝐼, 𝐹, 𝑀 |𝑇1(𝐼) · 𝑇1(𝑆) |𝐾′; 𝑁′, 𝑆, 𝐽′, 𝐼, 𝐹′, 𝑀′⟩ =
𝛿𝐹,𝐹′𝛿𝑀,𝑀 ′𝛿𝑁,𝑁 ′𝛿𝐾,𝐾 ′

× (−1)𝐽′+𝐹+𝐼
{
𝐽′ 𝐼 𝐹

𝐼 𝐽 1

}
× (−1)𝐽+𝑁+𝑆+1

√︁
(2𝐽′ + 1) (2𝐽 + 1)

{
𝑆 𝐽′ 𝑁

𝐽 𝑆 1

}
×

√︁
𝑆(𝑆 + 1) (2𝑆 + 1)𝐼 (𝐼 + 1) (2𝐼 + 1)

(A.55)
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The matrix element for the isotropic electron spin-nuclear spin dipolar interaction, proportional
to the constant 𝑐:

⟨𝐾; 𝑁, 𝑆, 𝐽, 𝐼, 𝐹, 𝑀 |𝑇2
𝑞=0(𝐼, 𝑆) |𝐾

′; 𝑁′, 𝑆, 𝐽′, 𝐼, 𝐹′, 𝑀′⟩ =

− 𝛿𝐹,𝐹′𝛿𝑀,𝑀 ′
√︂

5
3
(−1)𝐹+𝐼+𝐽+𝑁−𝐾

{
𝐼 𝐽′ 𝐹

𝐽 𝐼 1

}
×

√︁
(2𝐼 + 1) (𝐼 + 1)𝐼

√︁
(2𝑆 + 1) (𝑆 + 1)𝑆

×
√︁

3(2𝐽 + 1) (2𝐽′ + 1)


𝑆 𝑁′ 𝐽′

1 2 1
𝑆 𝑁 𝐽


×

(
𝑁 2 𝑁′

−𝐾 0 𝐾′

) √︁
(2𝑁 + 1) (2𝑁′ + 1)

(A.56)

We note the electron spin magnitude 𝑆 and nuclear spin magnitude 𝐼 do not change in the effective
Hamiltonian for a single vibronic state.

The matrix element for the electron spin projection on the lab-frame, useful for modeling the
Zeeman interaction:

⟨𝐾; 𝑁, 𝑆, 𝐽, 𝐼, 𝐹, 𝑀 |𝑇1
𝑝=0(𝑆) |𝐾

′; 𝑁′, 𝑆, 𝐽′, 𝐼, 𝐹′, 𝑀′⟩ =

= 𝛿𝐾,𝐾 ′𝛿𝑀,𝑀 ′𝛿𝑁,𝑁 ′ (−1)𝐹−𝑀
(
𝐹 1 𝐹′

−𝑀 0 𝑀′

)
× (−1)𝐹′+𝐽+𝐼+1

√︁
(2𝐹 + 1) (2𝐹′ + 1)

{
𝐽′ 𝐹′ 𝐼

𝐹 𝐽 1

}
× (−1)𝐽+𝑁+𝑆+1

√︁
(2𝐽 + 1) (2𝐽′ + 1)

{
𝑆 𝐽′ 𝑁

𝐽 𝑆 1

}
×

√︁
𝑆(𝑆 + 1) (2𝑆 + 1)

(A.57)

And finally, the matrix element for the molecule frame dipole moment projection on the
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lab-frame, useful for modeling Stark shifts:

⟨𝐾; 𝑁, 𝑆, 𝐽, 𝐼, 𝐹, 𝑀 |𝑇1
𝑝=0(𝑑) |𝐾

′; 𝑁′, 𝑆, 𝐽′, 𝐼, 𝐹′, 𝑀′⟩ =

= 𝛿𝐾,𝐾 ′𝛿𝑀,𝑀 ′ (−1)𝐹−𝑀
(
𝐹 1 𝐹′

−𝑀 0 𝑀′

)
× (−1)𝐹′+𝐽+𝐼+1

√︁
(2𝐹 + 1) (2𝐹′ + 1)

{
𝐽′ 𝐹′ 𝐼

𝐹 𝐽 1

}
× (−1)𝐽′+𝑁+𝑆+1

√︁
(2𝐽 + 1) (2𝐽′ + 1)

{
𝑁′ 𝐽′ 𝑆

𝐽 𝑁 1

}
× (−1)𝑁−𝐾

√︁
(2𝑁 + 1) (2𝑁′ + 1)

(
𝑁 1 𝑁′

−𝐾 0 𝐾′

)
(A.58)
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ix B
Magnetic Field Calibration with the

Hanle Effect

Well if droids could think, there’d
be none of us here, would there?

–Obi-Wan Kenobi

We often wish to characterize and calibrate the magnetic field magnitude in the beamline. We
do this by both measuring the field with a magnetometer when the vacuum chamber is vented, and
by using the response of atomic Yb in the cryogenic buffer gas beam (CBGB). Specifically, we
use the Hanle effect in the excited 3𝑃1 state. Briefly, the Hanle effect uses the rotation of angular
momentum polarization, either in the ground or excited state, to perform magnetometry [382, 385].
Semiclassically, the excited state Hanle effect can be thought of as observing the magnetic rotation
of the excited state magnetic dipole using the spatial and polarization anisotropy of the decay
fluorescence. Therefore, as we will see, excited state magnetometry is limited in resolution by the
excited state lifetime.

To perform magnetometry, we first excite Yb atoms on the 1𝑆0 →3 𝑃1 transition, with a∼870 ns
lifetime. The even isotopes of Yb lack hyperfine structure in their ground state, and the population
initially begins entirely in a pure 𝐽 = 0, 𝑀 = 0 state. Therefore the polarization of the excitation
light uniquely determines the excited state sublevel. By time reversal symmetry, the polarization
of the decay fluorescence is also indicative of the excited state sublevel.
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Consider excitation with linearly polarized light. In the quantization axis aligned with the light,
the atom is excited to the 𝐽 = 1, 𝑀 = 0 sublevel. In the language of density matrix polarization
moments, the excited state has angular momentum alignment. Since the 3𝑃1 state has a ≈ 1.5𝜇𝐵
magnetic dipole moment, this alignment can interact with ambient magnetic fields.

Magnetic fields along the excitation light polarization only cause phase evolution of the excited
state. This phase has no physical impact in the case we consider here. However, magnetic fields
transverse to the light polarization axis couple states with Δ𝑀 = ±1, causing population transfer
to other 𝑀 levels. In the angular momentum probability surface picture, magnetic fields cause
angular momentum rotation about the field axis, which can rotate the transition dipole and change
the allowed fluorescence decays.

Due to the existence of a single𝑀 = 0 ground state, the excited𝑀 = 0 and𝑀 = ±1 levels exhibit
significantly different angular fluorescence distributions. In particular, the 𝑀 = 0 excited state can
only decay by emission of linearly polarized photon. The emission pattern for a Δ𝑀 = 0 decay
mirrors that of a linearly oscillating charge. We can semi-classically understand this connection by
considering the superposition of an 𝑠 and 𝑝𝑧 atomic orbitals, with projection 𝑀 = 0 for both states.
The resulting superposition has an oscillating dipole moment, which generates optical radiation.
In particular, there is no emission along the transition dipole oscillation axis, as light can only
have transverse polarization. In the case of the radiating atom, the excited 𝑀 = 0 state does not
emit fluorescence along the quantization axis, which we have chosen to coincide with the light
polarization axis.

In the absence of ambient magnetic fields, a PMT or camera placed along the axis of the light
polarization should not detect any fluorescence photons. It is important to emphasize this effect
is particularly clear in the special case of states with a single ground state. For example, the odd
isotopes of Yb have additional ground states due to nuclear spin orientation, and so the value
of Δ𝑀 for fluorescence decays is not as tightly constrained. This effect is important to consider
when performing isotope spectroscopy on Yb atoms, as well as other 1𝑆0 states without hyperfine
structure.

The presence of transverse fields causes the excited state angular momentum polarization to
rotate before decaying. This rotation, equivalently population transfer to other 𝑀 ≠ 0 states, makes
possible the emission of fluorescence along the axis of the excitation light polarization. Therefore,
when exciting an𝑀 = 0 state, the magnitude of fluorescence detected by a PMT along the excitation
polarization axis serves as a proxy for the strength of transverse magnetic fields.

The sensitivity of this method is proportional to the lifetime and magnetic moment of the
excited state. The magnetic interaction sets a timescale for Lamor precession of the excited state,
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𝜔𝐿 = 𝑔𝜇𝐵𝐵. If this timescale is shorter than the excited state radiative decay rate, 𝛾 = 1/𝜏, the
fluorescence decays will not be very sensitive to the magnetic field. On the other hand, if the field
interaction is too fast, 𝜔𝐿 ≫ 𝛾, the oscillating excited states will dephase due to the variation in
the exact decay times, and the fluorescence becomes de-polarized. When 𝜔𝐿 ∼ 𝛾, we can observe
magnetic rotation of the excited state in the fluorescence polarization.

In the directional Hanle effect, we observe a fluorescence feature as we scan the applied
magnetic field. The feature is described by a Lorentzian with a full-width half maximum (FWHM)
of [382, 385]

𝐵FWHM =
𝛾

𝜔𝐿
=

1
𝜏𝑔𝜇𝐵

. (B.1)

Therefore, with longer lifetimes or with larger g-factors, we can achieve more sensitive magnetome-
try. However, for a beam experiment, if the lifetime is too long, the atoms will travel an appreciable
distance while in the excited state, sampling a large and inhomogenous ambient field distribution.

For Yb, the ∼870 ns lifetime of the 3𝑃1 state and the g-factor 𝑔 = 1.5 means the FWHM of the
Hanle feature is 𝐵 ≈ 87 mG. In practice, the center of this Hanle feature can be determined to an
accuracy of roughly ∼10 mG.
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ix C
Bending Angle Estimates

Luke, you’re going to find that
many of the truths we cling to
depend greatly on our own point of
view.

–Obi-Wan Kenobi

C.1 From Parity Doubling
As mentioned in Ch. 4, the additional 𝛾𝐺 and 𝑝𝐺 terms describing �̃� (010) mean that we can

draw an analogy between picturing �̃� (010) as a dynamically bending linear molecule and a bent
asymmetric molecule. This correspondence is possible in cases with significant vibronic mixing,
and is detailed in Ref. [441], where HCCN in the 𝑣5 bending mode was modeled as an asymmetric
rotor. Ignoring centrifugal corrections, we have the following correspondence: 𝐵 → 1

2 (𝐵𝑏 + 𝐵𝑐),
𝑞𝐺 → −1

2 (𝐵𝑏 − 𝐵𝑐), 𝛾𝐺 → 𝜖𝑎𝑎, 𝛾 → 1
2 (𝜖𝑏𝑏 + 𝜖𝑐𝑐), 𝑝𝐺 →

1
2 (𝜖𝑏𝑏 − 𝜖𝑐𝑐). Here, 𝜖𝛼𝛽 is the

generalized spin-rotation tensor, 𝐵𝑏 and 𝐵𝑐 represent the rotational constants of the 𝑏 and 𝑐 axes of
the asymmetric rotor, with 𝑐 = 𝑦 pointing out of the plane of the bent molecule and 𝑏 = 𝑥 pointing
perpendicular to the Yb-O bond and in the plane of the bent molecule. The remaining axis 𝑎 is
identified with the 𝑧 axis of the molecule, pointing along the Yb-O bond.

Using this correspondence, we can estimate the H bending angle 𝜃 relative to the Yb-O bond.
We define this angle as the deviation from linearity, i.e. 𝜃 = 0 is the nominally linear YbOH
configuration.
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First, we fix 𝑟YbO = 2.0397 Å and 𝑟OH = 0.9270 Å as in the ground �̃� (000) state [290], and we
assume the O atom does not bend. These approximations treat the bonds as infinitely stiff, which
is reasonable for the O-H bond with high stretching frequency, but will likely breakdown for the
Yb-O bond. We then construct and diagonalize the moment of inertia tensor for the three masses,
and solve for the value of 𝜃 that satisfies 𝑞𝐺 = −1

2 (𝐵𝑏 − 𝐵𝑐). We obtain ⟨𝜃⟩ ≈ 32◦ for the bending
angle in YbOH �̃� (010).

Alternatively, the bending angle can be approximated by equating the vibrational bending
energy of the linear molecule to the rotational energy about the 𝑎 = 𝑧 axis of a nearly prolate bent
rotor: 𝜔2 ≈ 2𝐵𝑎. Making the harmonic approximation 𝜔2 ≈ 𝑇0 and diagonalizing the moment of
inertia tensor, we obtain ⟨𝜃⟩ ≈ 22◦.

These two approximations provide a picture of bending YbOH with ⟨𝜃⟩ ≈ 22◦−32◦. In
comparison, in CaOH approximating the bending potential as harmonic and using the Virial
theorem, we obtain a bending angle of ⟨𝜃⟩ ≈ 10◦ [147]. We note that in all of these cases, a large
bending angle may not correspond to a large normal coordinate deviation 𝑞–that is, the potential is
expected to remain harmonic.

C.2 From Hyperfine
We use the value obtained in Ch. 5, 𝑐(010) = 3.49(38) MHz, and the value from Ref. [290],

𝑐(000) = 2.46(48) MHz, with parentheses indicating 2-𝜎 error bars. Recall the 𝑐 term can be
written as [39, 157]:

𝑐 ∝
〈3 cos 𝜃′2 − 1

𝑟3

〉
(C.1)

Here, 𝑟 is the separation between the electron and nuclear spin, and 𝜃′ is the angle between the
separation vector and the internuclear axis. We use a prime to distinguish this angle from the
bending angle, 𝜃.

To make an estimate, we fix the bond lengths and assume the bending motion only consists of
only the H bending off axis. We will parameterize the bending angle relative to the internuclear
axis as 𝜃, where 𝜃 = 0 corresponds to the linear limit. Further, we assume the electron spin is fixed
at the Yb nucleus. We can then compute the ratio of 𝑐 values as:

𝑐(010)
𝑐(000)

≈
(𝑟YbO + 𝑟OH)3

(
4𝑟2

YbO + 𝑟
2
OH + 8𝑟YbO𝑟OH cos 𝜃 + 3𝑟2

OH cos (2𝜃)
)

4
(
𝑟2

YbO + 𝑟
2
OH + 2𝑟YbO𝑟OH cos 𝜃

)5/2 (C.2)

We fix the bond lengths to the �̃� (000) values1 from Ref. [290], which are 𝑟Yb−O = 2.0397 Å and
𝑟O−H = 0.9270 Å. Using the experimentally determined ratio 𝑐(010)/𝑐(000) ≈ 1.42±0.18, we obtain

1Only the Yb-O bond distance is determined from data. The O-H bond distance is assumed to be the same as
BaOH.
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𝜃 ≈ 75◦+10◦
−15◦ . This corresponds to quite a significant bending angle, and we caution the reader from

interpreting this number further. Clearly our approximations of stiff bonds and non-bending O
atom are breaking down.
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ix D
Line List

What about the Droid attack on the
Wookiees?

–Ki-Adi-Mundi

D.1 Science State Lines
The lines are listed in Tables D.1 and D.2. Transition notation is given in Sec. 4.1.3.
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Table D.1: Observed lines, ground states quantum numbers (𝑁′′, 𝐽′′,P′′), excited states quantum
numbers (𝐽′,P′), observed positions, and residuals of �̃�2Σ+(010) → �̃�2Π1/2(000) band of YbOH.
Line notation is described in Sec. 4.1.3. There are in total 38 lines assigned to 39 transitions as the
𝑄𝑅−12(1) and 𝑃𝑄−12(5) lines are overlapped. The 𝑅 lines are on the next page. The fit residual is 6.1
MHz.

Line 𝑁′′, 𝐽′′,P′′ 𝐽′,P′ Obs. (cm−1) Obs. - Calc. (MHz)
𝑂𝑃+12 2, 3/2, + 1/2, − 17002.4883 4.4

3, 5/2, + 3/2, − 17002.4312 −7.4
4, 7/2, + 5/2, − 17000.6512 −2.7

𝑂𝑃−12 2, 3/2, − 1/2, + 17002.9232 −0.1
3, 5/2, − 3/2, + 17001.5614 14.9

𝑃𝑃+11 1, 3/2, + 1/2, − 17003.4683 −0.2
3, 7/2, + 5/2, − 17002.6114 1.7
5, 11/2, + 9/2, − 17001.8212 12.2

𝑃𝑃−11 1, 3/2, − 1/2, + 17003.9070 −2.2
2, 5/2, − 3/2, + 17003.0314 −3.6
4, 9/2, − 7/2, + 17002.2076 −4.8

𝑃𝑄+12 2, 3/2, + 3/2, − 17003.9039 −8.8
3, 5/2, + 5/2, − 17002.6012 −5.8
5, 9/2, + 9/2, − 17001.8046 12.7

𝑃𝑄−12 1, 1/2, − 1/2, + 17003.9053 −5.8
2, 3/2, − 3/2, + 17003.0250 −5.0
3, 5/2, − 5/2, + 17003.9208 −5.3
5, 9/2, − 9/2, + 17004.0076 13.3

𝑄𝑄+11 1, 3/2, + 3/2, − 17004.8846 3.3
3, 7/2, + 7/2, − 17005.9150 −13.0
5, 11/2, + 11/2, − 17007.0123 −3.5

𝑄𝑄−11 1, 3/2, − 3/2, + 17004.0091 5.5
2, 5/2, − 5/2, + 17005.3917 −0.7
4, 9/2, − 9/2, + 17006.4556 −1.6



311

Table D.2: Observed lines, ground states quantum numbers (𝑁′′, 𝐽′′,P′′), excited states quantum
numbers (𝐽′,P′), observed positions, and residuals of �̃�2Σ+(010) → �̃�2Π1/2(000) band of YbOH.
There are in total 38 lines assigned to 39 transitions as the𝑄𝑅−12(1) and 𝑃𝑄−12(5) lines are overlapped.
The 𝑃 and 𝑄 lines are on the previous page. The fit residual is 6.1 MHz.

Line 𝑁′′, 𝐽′′,P′′ 𝐽′,P′ Obs. (cm−1) Obs. - Calc. (MHz)
𝑄𝑅+12 1, 1/2, + 3/2, − 17004.8824 1.3

2, 3/2, + 5/2, − 17004.0743 5.1
3, 5/2, + 7/2, − 17005.9052 −5.8

𝑄𝑅−12 1, 1/2, − 3/2, + 17004.0076 7.3
2, 3/2, − 5/2, + 17005.3853 0.9
4, 7/2, − 9/2, + 17006.4421 −6.9

𝑅𝑅+11 1, 3/2, + 5/2, − 17005.0543 −1.5
2, 5/2, + 7/2, − 17007.3837 −0.7
3, 7/2, + 9/2, − 17006.2215 2.3
4, 9/2, + 11/2, − 17009.4646 −2.9

𝑅𝑅−11 1, 3/2, − 5/2, + 17006.3695 12.7
2, 5/2, − 7/2, + 17005.6298 6.1
3, 7/2, − 9/2, + 17008.4157 3.7
4, 9/2, − 11/2, + 17006.8298 −0.6
5, 11/2, − 13/2, + 17010.5312 −0.9
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ix E
Polarization Moments

Chewie! Take the professor in the
back and plug him into the
hyperdrive.

–Han Solo

This discussion follows Ref. [216]. Angular momentum polarization refers to the creation of
an anisotropic distribution for the direction of an angular momentum 𝐽 in space. For now, consider
a single 𝐽 level with degenerate sublevels, 𝑀 . The molecular state is described by a density matrix:

𝜌 = 𝜌𝑖 𝑗

∑︁
𝑖 𝑗

|𝐽, 𝑀𝑖⟩⟨𝐽, 𝑀 𝑗 | (E.1)

Note, we use a density matrix to allow us to incorporate coherent and incoherent polarization,
in other words to consider both pure and mixed states. We also note that the density matrix can be
represented in real space as an angular distribution, 𝜌(𝜃, 𝜙). Physically, such a distribution encodes
the probability of measuring the angular momentum 𝐽 pointing along a given direction, (𝜃, 𝜙).

The state vectors |𝐽, 𝑀⟩ transform under rotations according to the Wigner D-matrices, typically
as trigonometric functions of the Euler rotation angles. Naturally, we can instead cast the density
matrix in terms of spherical tensor operators, which transform in a standard manner under rotations
(in particular, 𝑧 rotations just add a phase). This is equivalent to performing a multipole expansion
of the density matrix 𝜌(𝜃, 𝜙). The density matrix can therefore be written in a spherical form:
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𝜌𝑘𝑞 ∝
𝐽∑︁

𝑀𝑖 ,𝑀 𝑗=−𝐽
⟨𝐽, 𝑀𝑖; 𝑘, 𝑞 |𝐽𝑀 𝑗 ⟩𝜌𝑖 𝑗 (E.2)

The various 𝜌𝑘𝑞 components in the multipole expansion of the density matrix are referred to as
the polarization moments. The interpretation of these moments is useful in understanding angular
momentum polarization.

Consider first the lowest order multipole, 𝜌0
0. This is proportional to the total population

summed over all the 𝑀 states; essentially the scaled trace of the density matrix. If a molecular
state occupies an equal distribution of all 𝑀 , the angular momentum distribution is isotropic as the
spherical harmonics are complete. This is referred to as an unpolarized sample, and it only has
non-zero 𝜌0

0.

The next multipole, 𝜌1
𝑞, describes the angular momentum orientation. An oriented angular

momentum behaves like a single headed arrow, in analogy with a magnetic dipole moment: if
the angular momentum is fixed to an associated magnetic dipole moment, a non-zero orientation
is analogous to a non-zero magnetization, i.e. there is some axis 𝑛 with ⟨𝐽𝑛⟩ ≠ 0. The quantity
𝜌1

0 describes longitudinal orientation, while the 𝜌1
±1 components describe transverse orientations.

Typically, oriented states can be formed by absorption/optical pumping of a sample using circularly
polarized light, the polarization vector of which can be naturally decomposed into a spherical basis.

The last multipole we will consider is 𝜌2
𝑞, which describes the angular momentum alignment

(also referred to as a quadrupole moment). Whereas orientation describes a vector direction in
space, alignment describes a plane in space along which the angular momentum probability is
distributed, and an aligned angular momentum behaves like a double headed arrow. Alignment
describes population in equal mixtures of ±𝑀 sublevels, while orientation describes an asymmetry
in the 𝑀 population distribution. The superposition state used by the ACME and JILA experiments
is a state with non-zero alignment but zero orientation: in other words for some axis 𝑛, ⟨𝐽𝑛⟩ = 0,
but ⟨𝐽2

𝑛⟩ ≠ 0.

There are of course higher order moments, but for our purposes we will not consider them.
We will only note that the existence of a given rank 𝑘 of angular momentum polarization requires
coherence between states separated by Δ𝑀 = 𝑘 when written in any rotated frame. This is
another way to think of the multipole moments: they characterize the spatial coherence of angular
momentum states that is invariant under rotation.

Finally, we often visualize the density matrix using an angular momentum probability surface.
This 3-D probability surface is defined as 𝑃𝜌 (𝜃, 𝜙) = ⟨𝐽, 𝑀(𝜃,𝜙) = 𝐽 |𝜌(𝜃, 𝜙) |𝐽, 𝑀(𝜃,𝜙) = 𝐽⟩, where
𝑀(𝜃,𝜙) = ®𝐽 · 𝑟, where 𝑟 is the unit vector pointing along (𝜃, 𝜙). This expectation value represents
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the probability of measuring the largest possible angular momentum projection, 𝐽, pointing along
a given direction 𝑟. The distribution 𝑃𝜌 provides powerful, intuitive insight into the behavior of
angular momenta under applied fields. For example, a magnetic field simply rotates 𝑃𝜌 about
the field axis. Meanwhile electric fields cause inversion of any orientation in 𝑃𝜌, and converting
angular momentum orientation to alignment. Further details can be found in Ref. [216].
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ix F
MQM Science Chamber Designs

Who’s more foolish, the fool or the
fool who follows him?

–Obi-Wan Kenobi

In this appendix we provide information about the science chamber made to perform measure-
ments of the nuclear magnetic quadrupole moment (NMQM) in 173YbOH.

F.1 Layout
The science chamber is constructed by connecting together two 9x9x9 inch, IdealVacuum

modular, cubic vacuum chambers. Each cube consists of an aluminum frame with titanium helicoils,
and each exterior face of the frame has an aluminum plate attached with titanium fasteners and
sealed with an o-ring. Some plates have feedthroughs to allow for molecule beam access, optical
access, and electrical access. The use of titanium fasteners and helicoils ensures no residual
magnetism1. Unlike most of the prototype vacuum chambers used in this thesis, the interior of the
MQM science chamber is not painted black with Alion MH2200, as it contains manganese ferrite
and is measurably magnetic.

An annotated render of the chamber design is shown in Figure F.1. We provide information here
on the components inside the science chamber, namely the electric field plates and the fluorescence
collection optics.

1We initially tried brass C260 fasteners, which are also non-magnetic, but Yuiki Takahashi and Chi Zhang found
the chamber was leaky.
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Figure F.1: Annotated render of a cut-away view of the MQM science chamber. The molecule
beam travels from left to right. Unless stated otherwise, all parts are aluminum 6061 construction.
The bottom collection optics retroreflects the fluorescence light. The top collection optics focuses
the light into a light pipe, not pictured.

The field plates themselves are Pilkington Optiwhite glass, with dimensions 4-inch wide, 12-
inch long, and 0.118-inch (3 mm) thick. One side of the plates is coated with a ∼30.2 nm layer of
Indium Tin Oxide (ITO), which is a conductor. The ITO layer has a specified sheet resistance of
100 Ω. According to the manufacturer, Delta Technologies, the ITO transmission is ≈87% around
577 nm. The conductor sides of the plates are separated by 1 inch in the design.

To secure the plates, they are sandwiched between an interior and exterior guard ring. The
interior guard ring is of copper construction. Since copper can oxidize, the copper is coated with
a 1 µ-inch thick layer of gold2. The gold-coated interior guard ring presents a smooth conductive
surface for the molecule beam passing through the chamber3. The ITO side of the glass plate rests
on the lip of the interior guard ring, and is secured via PEEK set screws pushing down on the
non-conductive glass side. The set screws are threaded through the PEEK exterior guard ring.

The PEEK exterior guard ring is attached to the interior guard ring via PEEK fasteners that
screw into the copper. We used PEEK for the exterior guard ring construction to avoid large
fields at corners and near the collection optics. Other than the set screws securing the glass, there
is no direct contact of the PEEK exterior guard ring with the glass plate. While most of the
fasteners connecting the interior and exterior guard rings are PEEK, at least two fasteners per plate

2Coating performed by AOTCO inc. with no intermediate nickel layer.
3We avoid line of sight from the molecules to insulating surfaces, which can build up patch potentials.
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are titanium, providing a conductive path that allows us to apply voltages to the ITO glass and
separately monitor the voltage.

The exterior guard ring has threaded holes on the sides used to connect and affix the guard
ring to the chamber. On the short sides of the exterior guard ring, we attach a PEEK holder using
titanium fasteners. Initially, we used vented PEEK fasteners, but the PEEK on PEEK contact was
too slippery and did not provide sufficient rigidity. Since the titanium fasteners are not vented, we
vented the threads by drilling small vent holes into the top of the PEEK guard ring4. The PEEK
holders have counterbored holes for spacer rods to fix the distance between the two plates, as well
as support rods holding up the entire two-plate apparatus. For these connections, we also reverted
to titanium fasteners, and added vent holes in the spacer and support rods after the fact.

The spacer rods and the PEEK holders set the interior distance between the two ITO coated
plates to be 1 inch. The PEEK holders have a handedness (left/right), owing to the different
diameters of the support and spacer rods; the spacer rods are connected to the exterior holes, while
the support rods are connected to the interior holes. The support rods have fillets to reduce stray
electric fields from corners, and are designed to center the molecule beam between the two glass
plates. The support rods connect to the hole pattern of the IdealVac chamber via PEEK set screws
threading into aluminum adapter plates, which have 1/8-inch thickness.

In the front of the plate assembly, the molecule beam is collimated by a collimating plate with
a 3/8-inch diameter collimating hole. The hole is countersunk to redirect colliding gas particles
away from the interaction region. The collimator plate is attached via slotted holes to commercial
aluminum shaft collars that clamp onto the spacer rods. The combination of slotted holes and
movable shaft collars allow the adjustments of the collimator position.

While the plates are separated by a 1-inch vertical distance, the clear space between the plates
is limited to 0.75 inch by the interior guard rings. This clear aperture allows us to send laser beams,
through the gap between the plates, to prepare and readout the molecules. There are two regions
for transverse laser access, separated by a horizontal distance of 9 inches. For a 200 m/s molecule
beam, this gives us a coherence time of ≈1.1 ms.

In the downstream optical region, we will readout the molecules with laser-induced fluores-
cence. We have two collection optics stacks to collect as much of the fluorescence as possible.
All lenses are anti-reflection (AR)-coated. The bottom optics stack5 consists of a 𝑓 = 52 mm
aspheric lens with a 50 mm diameter, and an 𝑓 = 150 mm concave retro-reflecting mirror with a
75 mm diameter. The aim of the bottom stack is to reflect fluorescence back through the top optics

4The holes are not shown in the technical drawing. They were made with a no. 50 drill bit.
5Asphere: CVI LAG-52.0-33.0-C -SLMF-400-700; Mirror: ThorLabs CM750-150-E02.
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stack. The top optics stack6 consists of the same 𝑓 = 52 mm asphere, but followed by two 75-inch
diameter plano-convex lenses, a 𝑓 = 100 mm lens and a 𝑓 = 85 mm lens. The lenses focus the
collected fluorescence into a 3/4-inch diameter light pipe (not shown), which transports the light
out of the chamber and eventually to a photo-multiplier tube.

The aspheric lenses are held in a custom PEEK lens tube, secured via EPO-TEK 302-3M
optical epoxy. We use PEEK for this lens tube to reduce stray electric fields that would arise when
bringing metal parts close to the field plates. The flat face of the aspheric lens is 3.5 mm away
from the exterior face of the glass plates. The PEEK lens tube is then secured to a commercial,
aluminum lens tube7 with 3-inch diameter. The aluminum lens tube is unanodized to prevent
trapped volumes. The PEEK lens tube and the rest of the optics are secured inside the aluminum
lens tube using anodized retaining rings, which prevent galling with the unanodized threads. Small
holes are drilled into the side of the aluminum lens tube to prevent trapped volumes. The 3-inch lens
tube is connected to IdealVacuum chamber using two unanodized aluminum adapters8, followed
by a custom, 1/8-inch thick aluminum adapter to connect to the IdealVac plate hole pattern. This
adapter is similar to that used to connect the support rod to the chamber.

To simulate the collection optics performance, we use the ray-tracing software LightTools.
Optics part designs are obtained either from the internal LightTools library or by downloading 3-D
CAD files from vendors and setting the appropriate materials composition to obtain the correct
index of refraction. We model the molecules as a uniform cylindrical volume of emitters, with
3/8-inch diameter and 3/8-inch length, representing the size of the laser beam cross section with
the molecular beam. The collection efficiency is defined as the fraction of emitted rays that make
it to the exit face of the 3/4-in diameter light pipe. Simulations indicate the collection efficiency
is 19.4% with an optimal light pipe distance of 24.6 mm, measured from the light pipe entrance
face to the flat side of the LA1740-A lens in the top collection optics stack9. The final simulations
track both transmitted and reflected rays, and include quarter-wave AR coating, Fresnel losses,
finite ITO transmission with angle dependence10 and finite apertures from the lens tube mounting.
Without the retro-reflecting optics, the simulated efficiency is 13.6%. We can compare these values
to the efficiencies for collecting the fluorescence from a point source, which are 22.1% with the
retro-reflector and 14.4% without. Sample simulation results are shown in Figure F.2

F.2 Technical Drawings

6Asphere: CVI LAG-52.0-33.0-C -SLMF-400-700; PCX lenses: ThorLabs LA1238-A, ThorLabs LA1740-A.
7ThorLabs SM3L20, unanodized. The retaining rings are SM3RR.
8ThorLabs SM3A2 and SM2F1.
9Alternatively, a distance of 7.3 mm (in the exterior direction) from the face of the IdealVacuum frame.

10We use the internal LightTools coating library to model the ITO surface, which has ∼82% transmission on normal
incidence at 577 nm.
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Figure F.2: Simulations of the fluorescence collection setup for the science chamber. Simulations
were performed using LightTools. The diagram here only shows transmitted and totally-internally
reflected rays. See main text for details.
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