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ABSTRACT

Quantum cryptography leverages unique features of quantum mechanics in order to construct
cryptographic primitives which are oftentimes impossible for digital computers. Cryptographic
applications of quantum computers therefore have the potential for useful quantum advantage—
entirely without computational speed-ups. Can we use the power of quantum states to address
fundamental limitations in the world of classical cryptography, such as the intricate problem of
“revoking” information from an untrusted party? This thesis undertakes a systematic study of how
to delegate and revoke privileges in a world in which quantum computers become widely available.
As part of a single framework we call revocable cryptography, we show how to revoke programs,
encrypted data, and even cryptographic keys under standard assumptions.

In the first part of this thesis, we focus on the following question: can we use the no-cloning
principle of quantum mechanics and encode a program in such a way that it can be evaluated, yet
it cannot be pirated? Naturally, we would also like to ensure that, once the program is “returned,”
the recipient loses its ability to evaluate it. While this quantum notion of secure software leasing
(SSL) was shown to be impossible for general programs by Ananth and La Placa (Eurocrypt 2021),
their work left open the possibility that it is achievable for more primitive classes of programs. We
construct an SSL scheme for a large class of evasive functions known as compute-and-compare
programs—a more expressive generalization of point functions. Our scheme can be instantiated
with any cryptographic hash function, and we prove its security in the quantum random oracle
model. As a complementary result, we also construct a quantum copy-protection scheme for multi-
bit point functions, which achieves a related but stronger notion of software protection previously
introduced by Aaronson (CCC 2009).

In the second part of this thesis, we ask: is it possible to provably delete information by leveraging
the laws of quantum mechanics? We revisit a cryptographic notion called certified deletion,
which was proposed by Broadbent and Islam (TCC 2020). While this remarkable notion allows
a classical verifier to be convinced that quantum ciphertext has been deleted by an untrusted
party, it offers no additional layer of functionality. We use Gaussian superpositions over lattices
to construct the first fully homomorphic encryption scheme with certified deletion – a protocol
which allows an untrusted quantum server to compute on encrypted data and to also prove data
deletion to a client. Our scheme has the desirable property that verification of a deletion certificate
is public; meaning anyone can verify whether deletion has taken place. Assuming the quantum
subexponential hardness of the learning with errors problem (Regev, STOC 2005), we can prove
that our scheme achieves a particularly strong information-theoretic deletion guarantee; namely,
once a valid deletion certificate is presented, the plaintext remains hidden even if the adversary is
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subsequently allowed to run in unbounded time.

In the final part of this thesis, we ask: is it possible to revoke a crytographic key by using the power
of quantum information? We give an affirmative answer to this question and design cryptosys-
tems with key-revocation capabilities; specifically, we consider schemes with the guarantee that,
once the secret key (represented as a quantum state) is successfully revoked from a user, they no
longer have the ability to perform the same functionality as before. We define and construct sev-
eral fundamental cryptographic primitives with key-revocation capabilities, namely pseudorandom
functions, secret-key and public-key encryption, and even fully homomorphic encryption, assuming
the subexponential hardness of the learning with errors problem. Central to all our constructions is
our approach for making the Dual-Regev encryption scheme (Gentry, Peikert and Vaikuntanathan,
STOC 2008) revocable.
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C h a p t e r 1

INTRODUCTION

Quantum computers have the potential to completely transform disciplines such as physics and
material science [47, 95]. While large-scale quantum computing is at least several decades away,
the promise of quantum advantage has spurred an interest in developing quantum algorithms for
problems in quantum chemistry, optimization, and machine learning. To this day, however, it is still
unclear whether these areas admit exponential speed-ups for practically relevant problems [1, 94].
Moreover, due to the massive overhead required for quantum error-correction, it seems that mere
polynomial speed-ups will not be of practical relevance for perhaps several decades to come [124].

Quantum cryptography has also received significant attention by both industry and academia in the
advent of quantum key distribution (QKD) [29], which enables secure communication from the laws
of physics alone. This is in contrast with conventional public-key encryption systems that require
computational assumptions, such as the hardness of factoring, discrete log or worst-case lattice
problems. While QKD is frequently criticised [118] for being less practical compared to classical
post-quantum alternatives, recent advances in quantum cryptography have also given rise to entirely
new primitives which have no classical counterpart. At the heart of these new primitives lies the
no-cloning principle of quantum mechanics [135, 56] which stipulates that it is fundamentally
impossible to copy an unknown quantum state. In his seminal work from the 1970s, Wiesner [132]
proposed a quantum money scheme, wherein quantum states are used to construct banknotes that
can be verified but cannot be counterfeited. Ever since this watershed moment, and especially so in
recent years, a wide variety of so-called unclonable primitives [2, 4, 128, 27, 41, 40, 17, 70] have
been studied and constructed. Due to its quantum nature, unclonable cryptography seems to offer
an alternative path towards quantum advantage—entirely without computational speed-ups.

Following Wiesner’s work, Aaronson [2] introduced the idea of public-key quantum money as a
means of generating unforgeable quantumbanknotes that anyone (not just the bank) can verify. In the
very same work, Aaronson also proposed the idea of quantum copy-protection to prevent software
piracy. Ananth and La Placa [17] later introduced a weaker form of software protection called
secure software leasing in which the quantum program is eventually returned and verified. Another
line of work [75, 128, 40, 41] exploits no-cloning to protect ciphertexts from being replicated.
Gottesman [75] proposed the notion of unclonable encryption—aconcept thatwas recently revisited
by Broadbent and Lord [41]. Unruh [128] gave a quantum timed-release encryption scheme that
is revocable: it enables a user to return a timed-release encryption before some fixed amount of
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time has passed, thereby losing all access to the data. Broadbent and Islam [40] constructed a
quantum encryption scheme with certified deletion which is inspired by the QKD protocol [29,
122]. This cryptographic notion is made possible by the principle of complementarity of quantum
mechanics, which ensures that one cannot measure two mutually incompatible observables at the
same time. Contrary to Unruh’s [127] notion of revocable quantum ciphertexts, certificates of
deletion are entirely classical. The security definition requires that, once a valid certificate is
presented, the plaintext remains hidden even if the secret key is later revealed. Hiroka et al. [83]
later constructedmore advanced primitiveswith certified deletion; namely, public-key and attribute-
based encryption. In later work, Bartusek and Khurana [23] considered generic transformations
for encryption schemes with certified deletion. Building on the work of Broadbent and Islam [41],
they use Wiesner’s conjugate coding to construct advanced encryption systems with the stronger
notion of certified everlasting security, which allows the adversary to be unbounded once deletion is
successful. A similar notion of everlasting security was previously considered by Hiroka et al. [82]
who studied certified everlasting zero-knowledge proofs for QMA.

A recent series of works studied unclonable primitives in the context of advanced functionalities,
such as digital signatures, decryption and pseudorandom functions. Ben-David and Sattath [27]
proposed quantum signature tokens that prevent a recipient from signing more than one message
at a time. Georgiou and Zhandry [70] considered unclonable decryption keys. Coladangelo et
al. [53] constructed a copy-protection scheme for pseudorandom functions using subspace coset
states, which can be seen as an extension of Wiesner’s conjugate coding technique.

Unlike in classical cryptography, where many fundamental (and even advanced) cryptographic
primitives can be based solely on the hardness of lattice problems, primarily in the form of the
learning with errors assumption [112], the situation is quite different in the world of unclonable
cryptography. While some unclonable primitives are achievable information-theoretically in re-
stricted settings, such as in the private-key setting [41, 40, 70, 23, 88] or with respect to weaker
notions of software protection [52, 89, 42], most advanced primitives either require strong crypto-
graphic assumptions [70, 54, 119], or rely on unproven conjectures [4, 136]. This is especially the
case for unclonable primitives with strong functionalities, such as public-key quantum money [4,
136, 119], copy-protection of pseudorandom functions and digital signatures [54, 96] or unclonable
decryption keys [70, 54] which require non-standard assumptions such as indistinguishability ob-
fuscation [22] or extractable witness encryption [64]. On the contrary, unclonbable primitives with
more limited functionalities, such as weaker variants of public-key quantum money [110, 116],
unclonable public-key encryption schemes [14] or public-key encryption schemes with certified
deletion [23, 84] are achievable under standard assumptions, such as in the quantum random oracle
model [34] or from the learning with errors assumption [112].
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To this day, many unclonable primitives are still either directly [40, 41, 70] or indirectly [90, 82,
53] rooted in Wiesner’s conjugate coding technique, and can only achieve advanced functionalities
when combined with strong building blocks from the world of classical cryptography. In particular,
constructing advanced primitives such as public-key quantum money or copy-protection schemes
from lattices remains a fundamental open problem in cryptography. This raises the following ques-
tions: Can we design advanced unclonable primitives using techniques that go beyond Wiesner’s
conjugate coding approach? If so, is it possible to base these primitives on standard assumptions,
such as the hardness of worst-case lattice problems? And lastly, is it possible to use quantum
information to introduce new features to cryptographic primitives, beyond unclonability?

This thesis
In the past few decades, we have witnessed the birth of remarkable cryptographic primitives, such
as secure multi-party computation [28], zero-knowledge proof systems [74, 98], and even fully
homomorphic encryption [113, 66, 37]. However, despite a lot progress, several fundamental
problems still seem remain out of reach for classical cryptography. For instance, can we use
cryptography to prevent software piracy—a problem that accounts for billions of dollars of losses
every year? Can we revoke decryption priviliges from a network of users? Can we certify that user
data stored on a remote cloud server has been deleted? Data protection, in particular, has become
a major challenge in today’s age of cloud computing and artificial intelligence. Collectively, all of
these problems amount to a single fundamental question, namely: how can we “revoke” sensitive
information from an untrusted party? If the information at hand is represented in terms of classical
bits, then such a task is clearly impossible to achieve on conventional digital computers.

The central goal of this thesis is to understand how to delegate and revoke privileges in a world in
which quantum computers become widely available. We make progress on the following questions,
in particular: Can we use the power of quantum states in order to encode useful information that
can later be revoked? How can we go about formalizing the notion that certain privileges have been
revoked? Is it possible to provide meaningful guarantees for revocation, particularly in the context
of programs and decryption keys which offer additional functionalities? We show that quantum
computers are uniquely capable at addressing all of these questions.

The framework: Revocable cryptography
This thesis continues a recent line of work in quantum cryptography dealing with revoking and
certifiably deleting states in the form of ciphertexts and programs [127, 40, 70, 17, 82, 90, 23].
As part of a single unified framework which we call revocable cryptography, we show how to use
quantum information to revoke large classes of programs, encrypted data, and even cryptographic
keys under standard cryptographic assumptions, such as the worst-case hardness of lattice problems.



4

Outline
Let us now give a brief overview over each chapter and its contributions. We begin with Chapter 2,
where we introduce some relevant background on quantum computing and lattices. The latter will
especially be relevant for Chapter 4 and Chapter 5.

Revocable programs. In Chapter 3, we focus on the task of revoking programs. Here, we
mainly consider the notion of secure software leasing (SSL) which was proposed by Ananth and
La Placa [17] and captures the following scenario: an authority wishes to “lease” a program 5 (in
the form of a quantum state r 5 ) to a user who is supposed to “return” the program at a later point
in time. Once the supposed copy is returned and verified, the security property requires that the
recipient can no longer compute 5 . Our contributions in this chapter are the following. First, we
introduce a new operational security definition for SSL (Section 3.5) by means of a cryptographic
security game which does not limit the adversary to performing the honest evaluation procedure.
This allows us to significantly strengthen the original security definition introduced by Ananth
and La Placa [17]. Second, we give an affirmative answer to a question which was posed by the
authors; namely, is it possible to construct an SSL scheme for a simple class of programs from
standard cryptographic assumptions? Our main result is an SSL scheme for a large class of evasive
functions known as compute-and-compare programs. Here, we consider programs CC[ 5 , H] which
are specified by a function 5 and a string H within its range: on input G, CC[ 5 , H] outputs 1, if
5 (G) = H, and 0 otherwise. Our construction is based on Wiesner’s conjugate coding technique,
and can be instantiated with any cryptographic hash function. To prove the security of our SSL
scheme, we have to resolve several technical hurdles; in particular, we have to show that the
monogamy of entanglement persists, even if the adversary is allowed to interact with a random
oracle (which may reveal additional information about the underlying quantum state). Finally, as
a complementary result, we make a conceptual connection between unclonable encryption and
quantum copy-protection; specifically, we show that we can generically convert any unclonable
encryption scheme into a quantum copy-protection scheme for multi-bit point functions, provided
it has a mechanism for wrong-key detection. We observe that the latter property can easily be
achieved by simply outputting a hash of the secret key.

Encryption with publicly-verifiable deletion. In Chapter 4, we focus on the problem of revoking
encrypted data. Our results build on a cryptographic notion called certified deletion, which was
proposed by Broadbent and Islam [40]. While this remarkable notion allows one to certify that
a quantum ciphertext was deleted by an untrusted party, it offers no additional functionality. The
following question, in particular, was left as open problem: can we enable a cloud server to compute
on encrypted data, while also allowing the server to prove data deletion to a client? It is not obvious
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Figure 1.1: Primal Gaussian state. Figure 1.2: Dual Gaussian state.

that such a primitive even exists; for all we know, the server could just homomorphically compute
a (secret) classical copy of the encrypted data. We give an affirmative answer to this question
and construct the first fully homomorphic encryption scheme with certified deletion, assuming the
subexponential hardness of learning with errors [112]. Our scheme has the desirable property that
verification of a deletion certificate is completely public; meaning that anyone can verify whether
deletion has taken place. Central to our construction is the (classical) Dual-Regev encryption
scheme (and its variants), which was introduced by Gentry, Peikert and Vaikuntanathan [68]. Our
techniques for constructing encryption schemeswith certified deletion deviate significantly from the
conjugate coding approach used by Broadbent and Islam [40]. Inspired by Regev’s reduction from
worst-case lattice problems [112], we make use of so-called Gaussian superpositions over lattices,
and apply them in the context of certified deletion. Our ciphertext consists of a superposition of
Gaussian balls around “random” lattice points. We refer to this superposition as the primal state
(see Figure 1.1). Depending on whether we encrypt 1 = 0 or 1 = 1, we additionally shift each noisy
lattice point by an appropriate vector of large norm. By the learning with errors assumption, this
computationally hides 1. Moreover, using trapdoor information, it is also possible to detect whether
such a shift has occurred—thereby allowing one to “decrypt” and to recover the original bit. To
enable certified deletion, we make use of the rich structure of Gaussian superpositions. We observe
that, when applying the quantum Fourier transform to the primal state, we obtain a superposition
over Gaussian-weighted vectors in the dual lattice. We call this superposition the dual state (see
Figure 1.2). Moreover, by equipping the primal state with an appropriate complex phase, we can
additionally guarantee that a measurement of the dual state produces a short vector in a shift of the
dual lattice. We then ask: can such a short vector serve as a deletion certificate? At first sight,
it seems as if the principle of complementarity in quantum mechanics would immediately prevent
an adversary from being able to measure such a quantum state in two incompatible bases, say the
computational basis and the Fourier basis. In our case, however, we are dealing with computational
assumptions which further complicates the matter. We introduce several new proof techniques that
generalize the notion of collapsing hashes [125] and allow us to prove a strong notion of certified
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deletion. Finally, as a simple extension of our homomorphic encryption scheme, we describe a
four-message protocol for FHEwith simultaneous data deletion, which allows an untrusted quantum
server to compute on encrypted data and to simultaneously prove data deletion to a client—all in a
single interactive protocol.

Revoking cryptographic keys. In Chapter 5, we build on the no-cloning principle of quantum
mechanics and design cryptosystems with key-revocation capabilities. Our contributions are the
following. First, we present formal definitions of what it means to “return” a cryptographic key.
Broadly speaking, our security notion guarantees that, once the secret key (in the form of quantum
states) is revoked from a user, they no longer have the ability to perform the same functionality
as before. Second, we construct several fundamental cryptographic primitives with key-revocation
capabilities, namely pseudorandom functions, secret-key and public-key encryption, and even fully
homomorphic encryption, assuming the hardness of lattice problems. To this end, we adopt many
of the techniques we already used in Chapter 4. In particular, we use Gaussian superpositions to
generate quantum decryption keys which are naturally compatible with the Dual-Regev public-key
encryption scheme. To prove the revocation security of our schemes, we have to overcome multiple
technical hurdles. First, how can we efficiently check whether a state corresponds to a particular
Gaussian superposition? This task is notoriously difficult and has remained a major bottleneck in
previous attempts at constructing public-key quantummoney schemes from lattices. Fortunately, in
the context of key-revocation, we can perform such a verification check in private using appropriate
trapdoor information (which is not known to the recipient of the decryption key). We construct an
algorithm that allows one to project onto particular Gaussian state with access to a lattice trapdoor.
Our procedure can be thought of as an explicit quantum reduction between the inhomogenous short
integer solution problem [9] and the learning with errors problem [112]. Second, how can we use
an adversary that can simultaneously pass revocation and still retain decryption privileges in order
to break a computational assumption? During the reduction, we must necessarily simulate the
entire security experiment; this includes the revocation phase as well. However, checking whether
the returned state is valid requires a trapdoor which is not available during the reduction. It appears
the security proof is stuck. We show how to overcome this barrier using techniques from the theory
of quantum rewinding [100, 138]. Our main result is a simultaneous search-to-decision reduction
with quantum auxiliary input, which is tailored towards the Dual-Regev scheme. Informally, our
theorem says the following: any strategy that passes revocation (with overwhelming probability)
and simultaneously retains its decryption privileges can be converted into an efficient extractor that
can “extract” a decryption key from the adversary’s state. This crucial insight allows us to complete
the reduction, and to base the security of our schemes on the hardness of the short integer solution
and learning with errors problems—provided revocation succeeds with high probability.
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C h a p t e r 2

PRELIMINARIES

2.1 Notation.
We write negl(·) to denote any negligible function, which is a non-negative function 5 with the
property that, for every constant 2 ∈ N, there exists # ∈ N such that for all = > # , 5 (=) < =−2.
Similarly, we write poly(·) to denote any polynomially bounded function 5 such that 5 (=) < =2.

We use the following norms:

• For x ∈ C=, we denote the ℓ2 norm by ‖x‖.

• For M ∈ C=×<, we denote by ‖M‖ the ℓ2 norm of the longest column of M.

• For M ∈ C=×<, we denote by ‖M‖2 = sup‖x‖=1 ‖Mx‖ the operator norm.

• For M ∈ C=×<, we denote the trace norm by ‖M‖1 = Tr[
√

M†M].

The Hellinger distance between two discrete probability distributions % and & over a finite domain
Ω is defined as the quantity,

�2(%,&) = 1 −
∑
l∈Ω

√
%(l)&(l).

The total variation distance between two random variables - and . with domain Ω is defined as

‖- − . ‖TV =
1
2

∑
l∈Ω
| Pr[- = l] − Pr[. = l] |.

We denote the expectation value of a random variable - with domain X by

E[-] =
∑
G∈X

G Pr[- = G] .

The notation G $← Ω denotes sampling of G uniformly at random from a domain Ω, whereas G ∼ �
denotes sampling of an element G according to the distribution �.

Given < ∈ N and an integer modulus @ ≥ 2, we represent elements in the ring Z<@ as integers in
the range Z< ∩ (− @2 ,

@

2 ]
<. Let ? ∈ N. The rounding operation for @ ≥ ? ≥ 2 is the function

b·c ? : Z@ → Z? : G ↦→ b(?/@) · Gc (mod ?).
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2.2 Quantum Computation
For a comprehensive overview of quantum computation, we refer to the introductory texts [105,
133]. We denote a finite-dimensional complex Hilbert space by H , and we use subscripts to
distinguish between different systems (or registers). For example, we let H� be the Hilbert space
corresponding to a system �. The tensor product of two Hilbert spaces H� and H� is another
Hilbert space denoted by H�� = H� ⊗ H�. The Euclidean norm of a vector |k〉 ∈ H over the
finite-dimensional complex Hilbert space H is denoted as ‖k‖ =

√
〈k |k〉. Let ! (H) denote the

set of linear operators over H . A quantum system over the 2-dimensional Hilbert space H = C2

is called a qubit. For = ∈ N, we refer to quantum registers over the Hilbert space H =
(
C2)⊗=

as =-qubit states. More generally, we associate qudits of dimension 3 ≥ 2 with a 3-dimensional
Hilbert space H = C3 . For brevity, we sometimes write H =

3
= H⊗=

3
, where H3 is 3-dimensional.

We use the word quantum state to refer to both pure states (unit vectors |k〉 ∈ H ) and density
matrices r ∈ D(H), where we use the notationD(H) to refer to the space of positive semidefinite
matrices of unit trace acting onH . For convenience, we frequently consider subnormalized states,
i.e., states in the space of positive semidefinite operators overH with trace norm not exceeding 1,
denoted by S≤ (H). The trace distance of two density matrices r, f ∈ D(H) is given by

‖r − f‖tr =
1
2

Tr
[√
(r − f)†(r − f)

]
.

We frequently use the compact notation r ≈Y f which means that there exists some Y ∈ [0, 1] such
that ‖r − f‖tr ≤ Y. A classical-quantum (CQ) state r ∈ D(H-�) depends on a classical variable
in system - which is correlated with a quantum system �. If the classical system - is distributed
according to a probability distribution %X over the set X, then all possible joint states r-� can be
expressed as

r-� =
∑
G∈X

%X (G) |G〉〈G |- ⊗ rG�.

Quantum channels and measurements. A quantum channel Φ : ! (H�) → ! (H�) is a linear
map between linear operators over the Hilbert spaces H� and H�. We use the compact notation
Φ�→� to denote a quantum channel between ! (H�) and ! (H�). We say that a channel Φ is
completely positive if, for a reference system ' of arbitrary size, the induced mapΦ⊗1' is positive,
and we call it trace-preserving if Tr[Φ(-)] = Tr[-], for all - ∈ ! (H). A quantum channel that
is both completely positive and trace-preserving is called a quantum CPTP channel. A unitary
* : ! (H�) → ! (H�) is a special case of a quantum channel that satisfies *†* = **† = 1�.
An isometry is a linear map + : ! (H�) → ! (H�) with dim(H�) ≥ dim(H�) and +†+ = 1. A
projector � is a Hermitian operator such that�2 = �, and a projective measurement is a collection
of projectors {�8}8 such that

∑
8 �8 = 1. A positive-operator valued measure (POVM) is a set of
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Hermitian positive semidefinite operators {M8} acting on a Hilbert space H such that
∑
8 M8 = 1.

The diamond norm of a quantum channel Φ : ! (H�) → ! (H�) is defined by

‖Φ‖� = max
r
‖(Φ�→� ⊗ 1') (r)‖1,

where the maximization is over all r ∈ D(H� ⊗ H') and where ' is an arbitrary register.

Quantum algorithms. By a polynomial-time quantum algorithm (or QPT algorithm) we mean a
polynomial-time uniform family of quantum circuits given by C = ⋃

=∈N�=, where each circuit� ∈
C is described by a sequence of unitary gates andmeasurements. Similarly, we also define (classical)
probabilistic polynomial-time (PPT) algorithms. A quantum algorithm may, in general, receive
(mixed) quantum states as inputs and produce (mixed) quantum states as outputs. Occasionally, we
restrict QPT algorithms implicitly. For example, if we write Pr[A(1_) = 1] for a QPT algorithm
A, it is implicit that A is a QPT algorithm that outputs a single classical bit.

We extend the notion of QPT algorithms to CPTP channels via the following definition.

Definition 1 (Efficient CPTP maps). A family of CPTP maps {Φ_ : ! (H�_) → ! (H�_)}_∈N is
called efficient, if there exists a polynomial-time uniformly generated family of circuits {�_}_∈N
acting on the Hilbert spaceH�_ ⊗ H�_ ⊗ H�_ such that, for all _ ∈ N and for all r ∈ H�_ ,

Φ_ (r_) = Tr�_�_ [�_ (r_ ⊗ |0〉〈0|�_�_)] .

Definition 2 (Indistinguishability of ensembles of quantum states, [129]). Let ? : N → N be
a polynomially bounded function, and let r_ and f_ be ?(_)-qubit quantum states. We say that
{r_}_∈N and {f_}_∈N are quantum computationally indistinguishable ensembles of quantum states,
denoted by r_ ≈2 f_ , if, for any QPT distinguisher D with single-bit output, any polynomially
bounded @ : N→ N, any family of @(_)-qubit auxiliary states {a_}_∈N, and every _ ∈ N,�� Pr[D(1_, r_ ⊗ a_) = 1] − Pr[D(1_, f_ ⊗ a_) = 1]

�� ≤ negl(_) .

We frequently use the following lemma.

Lemma 1 (“Almost As Good As New” Lemma, [3]). Let r ∈ D(H) be a density matrix over a
Hilbert space H . Let * be an arbitrary unitary and let (�0,�1 = 1 − �0) be projectors acting
on H ⊗ Haux. We interpret (*,�0,�1) as a measurement performed by appending an ancillary
system in the state |0〉〈0|aux, applying the unitary* and then performing the measurement {�0,�1}
on the larger system. Suppose that the outcome corresponding to �0 occurs with probability 1− Y,
for some Y ∈ [0, 1]. In other words, it holds that Tr[�0(*r ⊗ |0〉〈0|aux*†)] = 1 − Y. Then,

‖ r̃ − r‖tr ≤
√
Y,
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where r̃ is the state after performing the measurement and applying*†, and after tracing outHaux:

r̃ = Traux
[
*†

(
�0* (r ⊗ |0〉〈0|aux)*†�0 +�1* (r ⊗ |0〉〈0|aux)*†�1

)
*

]
.

The following lemma is a quantum analogue of the standard union bound.

Lemma 2 (Quantum Union Bound, [62]). Let r ∈ D(H) be a state and let �1, . . . ,�= ≥ 0 be
sequence of (orthogonal) projections acting on H . Suppose that, for every 8 ∈ [=], it holds that
Tr[�8 r] = 1− Y8, for Y8 ∈ [0, 1]. Then, if we sequentially measure r with projective measurements
{�1, I −�1}, . . . , {�=, I −�=}, the probability that all measurements succeed is at least

Tr[�= · · ·�1r�1 · · ·�=] ≥ 1 − 4
=∑
8=1

Y8 .

We also use the following lemma on the closeness to ideal states:

Lemma 3 ([Unruh2013], Lemma 10). Let � be an arbitrary projector and let r be density matrix
with Tr[�r] = 1 − Y, for some Y ≥ 0. Then, there exists an ideal state rid with the properties that

• ‖r − rid‖tr ≤
√
n

• rid is a mixture in the image of �, i.e., rid =
∑
8 ?8 |k8〉〈k8 | is a normalized state with

|k8〉 ∈ im(�), ∑8 ?8 = 1 and ?8 ≥ 0, for all 8.

In other words, rid is within trace distance Y ≥ 0 of the state r and lies in the image of �.

2.3 Classical and Quantum Entropies
We introduce a few basic notions of entropy – both in the classical and and the quantum setting.

Classical entropies. Let - be a randomvariable with an arbitrary distribution %X over an alphabet
X. The min-entropy of - , denoted by �min(-), is defined by the following quantity

�min(-) = − log
(
max
G∈X

Pr
-∼%X
[- = G]

)
.

The conditional min-entropy of - conditioned on a correlated random variable . is defined by

�min(- |. ) = − log
(
E
H←.

[
max
G∈X

Pr
-∼%X
[- = G |. = H]

] )
.

Lemma 4 (Leftover Hash Lemma, [80]). Let =, < ∈ N and @ ≥ 2 a prime. Let % be a distribution
over Z<@ and suppose that �min(-) ≥ = log @ + 2 log(1/Y) + $ (1) for Y > 0, where - denotes a
random variable with distribution %. Then, the following two distributions are within total variance
distance Y:

(A,A · x (mod @)) ≈Y (A, u) : A $← Z=×<@ , u $← Z=@ .
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Quantum Entropies.

Definition 3 (Quantummin-entropy). Let � and � be two quantum systems and let r�� ∈ S≤ (H��)
be any bipartite state. The min-entropy of � conditioned on � of the state r�� is defined as

�min(� | �)r = max
f∈(≤ (H�)

sup
{
_ ∈ R : r�� ≤ 2−_1� ⊗ f�

}
.

The conditional min-entropy of a CQ state r-� captures the difficulty of guessing the content of a
classical register - given quantum side information �. This motivates the following definition.

Definition 4 (Guessing probability). Let r-� ∈ D(H- ⊗H�) be a CQ state, where - is a classical
register over an alphabet X and � is a quantum system. Then, the guessing probability of - given
� is defined as

?guess(- |�)r = sup
MG

∑
G∈X

Pr[- = G] r · Tr [MG r�] ,

where {MG}G∈X is a POVM acting onH�.

The following operational meaning of min-entropy is due to Koenig, Renner and Schaffner [92].

Theorem 1 ([92], Theorem 1). Let r-� ∈ D(H- ⊗ H�) be a CQ state, where - is a classical
register over an alphabet X and � is a quantum system. Then, it holds that

�min(- | �)r = − log
(
?guess(- |�)r

)
.

2.4 Fourier Analysis
Let @ ≥ 2 be an integer modulus and let < ∈ N. The @-ary (discrete) Fourier transform takes as
input a function 5 : Z< → C and produces a function 5̂ : Z<@ → C (the Fourier transform of 5 )
defined by

5̂ (y) =
∑

x∈Z<
5 (x) · 4

2c8
@
〈y,x〉

.

For brevity, we oftentimes write l@ = 4
2c8
@ ∈ C to denote the primitive @-th root of unity. The

<-qudit @-ary quantum Fourier transform over the ring Z<@ is defined by the operation,

FT@ : |x〉 ↦→
√
@−<

∑
y∈Z=@

4
2c8
@
〈y,x〉 |y〉 , ∀x ∈ Z<@ .

It is well known that the @-ary quantum Fourier transform can be efficiently performed on a quantum
computer for anymodulus @ ≥ 2 [79]. Note the quantumFourier transformof a normalized quantum
state

|Ψ〉 =
∑

x∈Z<
5 (x) |x〉 with

∑
x∈Z<
| 5 (x) |2 = 1,
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for a function 5 : Z< → C, results in the state (the Fourier transform of |Ψ〉) given by

FT@ |Ψ〉 =
√
@−<

∑
y∈Z=@

( ∑
x∈Z<

5 (x) · 4
2c8
@
〈y,x〉

)
|y〉

=
√
@−<

∑
y∈Z=@

5̂ (y) |y〉 .

Notice that the Fourier transform of |Ψ〉 is unitary if supp( 5 ) ⊆ Z< ∩ (− @2 ,
@

2 ]
<. We frequently

make use of the following standard identity for Fourier characters.

Lemma 5 (Orthogonality of Fourier characters). Let @ ≥ 2 be any integer modulus and let
l@ = 4

2c8
@ ∈ C denote the primitive @-th root of unity. Then, for arbitrary G, H ∈ Z@:∑

E∈Z@
lE·G@ l

−E·H
@ = @ XG,H .

2.5 Generalized Pauli Operators

Definition 5 (Generalized Pauli operators). Let @ ≥ 2 be amodulus andl@ = 42c8/@ be the primitive
@-th root of unity. The generalized @-ary Pauli operators {X1

@}1∈Z@ and {Z1
@}1∈Z@ are given by

X1
@ =

∑
0∈Z@
|0 + 1 (mod @)〉 〈0 | , and

Z1
@ =

∑
0∈Z@

l0·1@ |0〉 〈0 | .

For b = (11, . . . , 1<) ∈ Z<@ , we use the notation Xb
@ = X11

@ ⊗ · · · ⊗ X1<
@ and Zb

@ = Z11
@ ⊗ · · · ⊗ Z1<

@ .

Lemma 6. Let @ ≥ 2 be an integer modulus. Then, for all 1 ∈ Z@, it holds that

Z1
@ = FT@ X1

@ FT
†
@

X1
@ = FT†@ Z1

@ FT@ .

Proof. It suffices to show the first identity only as the second identity follows by conjugation with
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FT@. Using the orthogonality of Fourier characters over Z@ (Lemma 5), we find that

Z1
@ =

∑
G∈Z@

lG·1@ |G〉〈G |

=
∑

G,H′∈Z@
lG·1@

©«1
@

∑
0∈Z@

lG·0@ l
−0·H′
@

ª®¬ |G〉〈H′|
=

1
@

∑
G,H∈Z@

∑
G ′,H′∈Z@

∑
0∈Z@

l
G·H
@ l

−G ′·H′
@ 〈H |0 + 1 (mod @)〉 · 〈0 |G′〉 |G〉〈H′|

=
1
@

©«
∑
G,H∈Z@

l
G·H
@ |G〉〈H |

ª®¬
∑
0∈Z@
|0 + 1 (mod @)〉 〈0 | ©«

∑
G ′,H′∈Z@

l
−G ′·H′
@ |x′〉〈y′|ª®¬

= FT@ X1
@ FT

†
@ .

Definition 6 (Pauli-Z dephasing channel). Let @ ≥ 2 be an integer modulus and let < ∈ N. Let
p be a probability distribution over Z<@ . Then, the Pauli-Z dephasing channel with respect to p is
defined as

Zp(r) =
∑
z∈Z<@

?z Zz
@ rZ−z

@ , ∀r ∈ ! ((C@)⊗<).

We useZ to denote the uniform Pauli-Z channel for which p is the uniform distribution over Z<@ .

The following well-known lemma states that the uniform Pauli-Z channel on input r returns
a diagonal state which consists of diagonal elements of r encoded in the standard basis. For
completeness, we give a proof of the statement below.

Lemma 7 (Pauli-Z twirl). Let <, @ ∈ N. Then, the uniform Pauli-Z dephasing channel satsifies,

Z(r) = @−<
∑
z∈Z<@

Zz
@ rZ−z

@ =
∑

x∈Z<@

Tr[|x〉〈x| r] |x〉〈x| , ∀r ∈ ! ((C@)⊗<).

Proof. Suppose that the state r has the following form in the standard basis,

r =
∑

x,y∈Z<@

Ux,y |x〉〈y| ∈ ! ((C@)⊗<).
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Using the orthogonality of Fourier characters over Z@ (Lemma 5), we obtain

Z(r) = @−<
∑
z∈Z<@

Zz
@ rZ−z

@

= @−<
∑
z∈Z<@

∑
x,y∈Z<@

Ux,y Zz
@ |x〉〈y| Z−z

@

=
∑

x,y∈Z<@

Ux,y
©«@−<

∑
z∈Z<@

l
〈x,z〉
@ l

−〈y,z〉
@

ª®¬ |x〉〈y|
=

∑
x∈Z<@

Ux,x |x〉〈x|

=
∑

x∈Z<@

Tr[|x〉〈x| r] |x〉〈x| .

2.6 Lattices and the Gaussian Mass
A latticeΛ ⊂ R< is a discrete subgroup ofR<. Wewill exclusively consider integer latticesΛ ⊆ Z<

throughout this thesis. The dual of a lattice Λ ⊂ R<, denoted by Λ∗, is the lattice of all vectors
H ∈ R< that satisfy 〈y, x〉 ∈ Z, for all vectors x ∈ Λ. In other words, we define

Λ∗ = {y ∈ R< : 〈y, x〉 ∈ Z, for all x ∈ Λ} .

Given a lattice Λ ⊂ R< and a vector t ∈ R<, we define the coset with respect to t as the lattice shift
Λ − t = {x ∈ R< : x + t ∈ Λ}. Note that many different shifts t can define the same coset.

@-ary lattices. In this thesis, we mainly consider @-ary latticesΛ that that satisfy @Z< ⊆ Λ ⊆ Z<,
for some integer modulus @ ≥ 2. Specifically, we consider lattices generated by a matrix A ∈ Z=×<@

for some =, < ∈ N. The first lattice consists of all vectors which are perpendicular to the rows of
A, namely

Λ⊥@ (A) = {x ∈ Z< : A · x = 0 (mod @)}.

Note that Λ⊥@ (A) contains @Z<; in particular, it contains the identity 0 ∈ Z<. For any syndrome
y ∈ Z=@ in the column span of A, we also consider the lattice coset Λy

@ (A) given by

Λ
y
@ (A) = {x ∈ Z< : A · x = y (mod @)} = Λ⊥@ (A) + u,

where u ∈ Z< is an arbitrary integer solution to the equation Au = y (mod @).

The second lattice is the lattice generated by Aᵀ and is defined by

Λ@ (A) = {y ∈ Z< : y = Aᵀ · s (mod @), for some s ∈ Z=}.
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The @-ary lattices Λ@ (A) and Λ⊥@ (A) are dual to each other (up to scaling). Specifically, we have

@ · Λ⊥@ (A)∗ = Λ@ (A) and @ · Λ@ (A)∗ = Λ⊥@ (A).

Whenever A ∈ Z=×<@ is full-rank, i.e., the subset-sums of the columns of A generate Z=@, then
det(Λ⊥@ (A)) = @=. We use the following facts due to Gentry, Peikert and Vaikuntanathan [68].

Lemma 8 ([68], Lemma 5.1). Let = ∈ N and let @ ≥ 2 be a prime modulus with < ≥ 2= log @.
Then, for all but a @−= fraction of A ∈ Z=×<@ , the subset-sums of the columns of A generate Z=@. In

other words, a uniformly random matrix A $← Z=×<@ is full-rank with overwhelming probability.

Gaussians. The Gaussian measure rf with parameter f > 0 is defined as the function

rf (x) = exp(−c‖x‖2/f2), ∀x ∈ R< .

A simple calculation shows that the Fourier transform of the Gaussian measure is another Gaussian
with r̂f (x) = f< r1/f (x). The Gaussian mass of Λ − t is defined as the quantity

rf (Λ − t) =
∑
y∈Λ

rf (y − t).

The discrete Gaussian distribution �Λ−t,f assigns probability proportional to 4−c‖x‖2/f2 to every
vector x ∈ Λ − t. In other words, we have

�Λ−t,f (x) =
rf (x)

rf (Λ − t) , ∀x ∈ Λ − t.

In particular, for any cosetΛy
@ (A) with y ∈ Z=@, the discrete Gaussian �Λy

@ (A),f (centered around the
origin) assigns probability proportional to 4−c‖x‖2/f2 to every vector x ∈ Λy

@ (A), and 0 otherwise.

The following lemma follows from [106, Lemma 2.11] and [68, Lemma 5.3].

Lemma 9 ([68], Corollary 5.4). Let = ∈ N and @ ≥ 2 be a prime with < ≥ 2= log @. Then,
for all but a 2@−= fraction of A ∈ Z=×<@ and f = l(

√
log<), the distribution of the syndrome

A · e = u (mod @) is within negligible total variation distance of the uniform distribution over Z=@,
where e ∼ �Z<,f.

Lemma 10. Let = ∈ N and let @ be a prime with < ≥ 2= log @. Let A ∈ Z=×<@ be a matrix whose
columns generate Z=@. Let y ∈ Z=@ be arbitrary. Then, for any f ≥ l(

√
log<), there exists a

negligible function Y(<) such that

�Λy
@ (A),f (x) ≤ 2−< · 1 + Y

1 − Y , ∀x ∈ Λy
@ (A).
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We make use of the following tail bound for the Gaussian mass of a lattice [20, Lemma 1.5 (ii)].

Lemma 11. For any <-dimensional lattice Λ and shift t ∈ R< and for all f > 0, 2 ≥ (2c)− 1
2 it

holds that
rf

(
(Λ − t) \ B< (0, 2

√
<f)

)
≤ (2c422) <2 4−c22< rf (Λ),

where �< (0, B) = {x ∈ R< : ‖x‖ ≤ B} denotes the <-dimensional ball of radius B > 0.

The following lemma is a consequence of [101, Lemma 4.4] and [68, Lemma 5.3].

Lemma 12. Let = ∈ N and let @ ≥ 2 be a prime modulus with < ≥ 2= log @. Let A ∈ Z=×<@ be a
matrix whose columns generate Z=@. Then, for any f = l(

√
log<) and for any syndrome y ∈ Z=@:

Pr
x∼�

Λ
y
@ (A) ,f

[
‖x‖ ≥

√
<f

]
≤ negl(=).

Definition 7 (Periodic Gaussian). Let< ∈ N, let @ ≥ 2 be a modulus and let f > 0. The @-periodic
Gaussian rf,@ function is the periodic continuation of the Gaussian measure rf, where

rf,@ (x) = rf (x + @Z<), ∀x ∈ R< .

For any complex-valued function 5 : Z< → C and integer lattice Λ ⊆ Z<, the well-known Poisson
summation formula relates 5 (Λ) to its Fourier transform 5̂ over the dual lattice, i.e.,

5 (Λ) = det(Λ∗) 5̂ (Λ∗).

We use the following variant of the formula which applies to Gaussians and @-ary lattices.

Lemma 13 (Poisson summation for Gaussians over @-ary lattices). Let @ be a prime modulus and
let A ∈ Z=×<@ be any matrix whose columns generate Z=@. Let v,w ∈ Z<@ and f > 0. Then,∑

x∈Λv
@ (A)

rf (x) · 4−
2c8
@
〈w,x〉

=
f<

@=
·
∑
y∈Z=@

r@/f,@ (w + Aᵀy) · 4
2c8
@
〈y,v〉

.

Proof. Because A ∈ Z=×<@ is a full-rank matrix, it holds that det(Λ⊥@ (A)) = @=. Let Λv
@ (A) be the

lattice coset given byΛ⊥@ (A) +u, for some arbitrary solution u ∈ Z< with A ·u = v (mod @). Recall
that the Fourier transform of the Gaussian measure satisfies

r̂f (x) = f< r1/f (x), ∀x ∈ R< .
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Therefore, it follows from the Poisson summation formula that∑
x∈Λv

@ (A)
rf (x) · 4−

2c8
@
〈w,x〉

=
∑

x∈Λ⊥@ (A)+u
rf (x) · 4−

2c8
@
〈w,x〉

=
f<

det(Λ⊥@ (A))
∑

y∈ 1
@
Λ@ (A)

r1/f (w + @ · y) · 42c8〈y,u〉

=
f<

@=

∑
y∈Λ@ (A)

r@/f (w + y) · 4
2c8
@
〈y,u〉

=
f<

@=

∑
y∈Z=@

r@/f (w + Aᵀy + @ · Z<) · 4
2c8
@
〈Aᵀy,u〉

=
f<

@=
·
∑
y∈Z=@

r@/f,@ (w + Aᵀy) · 4
2c8
@
〈y,v〉

.

Weuse the following lemma due to Brakerski [36] which says that, wheneverf is much smaller than
the modulus @, the periodic Gaussian rf,@ is close to the non-periodic (but truncated) Gaussian.

Lemma 14 ([36]). Let @ ≥ 2 be a modulus and x ∈ Z< ∩ (− @2 ,
@

2 ]
<. Let f > 0. Then,

1 ≤
rf,@ (x)
rf (x)

≤ 1 + 2−(
1
2 (@/f)

2−<) .

A consequence of the tail bound in Lemma 11 is that the Gaussian distribution �Z<,f is essentially
only supported on the finite set {x ∈ Z< : ‖x‖ ≤ f

√
<}, which suggests the use of truncation.

Definition 8 (Truncated discrete Gaussian distribution). Let < ∈ N, @ ≥ 2 be an integer modulus
and let f > 0 be a parameter. Then, the truncated discrete Gaussian distribution �Z<@ ,f with finite
support {x ∈ Z< ∩ (− @2 ,

@

2 ]
< : ‖x‖ ≤ f

√
<} is defined as the density

�Z<@ ,f (x) =
rf (x)∑

y∈Z<@ ,‖y‖≤f
√
<

rf (y)
.

We use the following noise smudging property of the discrete Gaussian.

Lemma 15 (Noise smudging, [57]). Let H, f > 0. Then, the total variation distance between the
distribution �Z,f and �Z,f+H is at most H/f.

Occasionally, we also use the following variant of noise smudging which allows us to bound the
total variation distance between a truncated discrete Gaussian �Z<@ ,f and its perturbation by a fixed
vector e0 ∈ Z<.
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Lemma 16 ([38], Lemma 2.4). Let @ ≥ 2 be a modulus, < ∈ N and f > 0. Then, for any e0 ∈ Z<,

‖�Z<@ ,f − (�Z<@ ,f + e0)‖TV ≤ 2 ·
(
1 − 4

−2c
√
<‖e0 ‖
f

)
.

We use the following technical lemma on the min-entropy of the truncated discrete Gaussian
distribution, which we prove below.

Lemma 17. Let = ∈ N and let @ be a prime with < ≥ 2= log @. Let A ∈ Z=×<@ be a matrix whose
columns generate Z=@. Then, for any f ≥ l(

√
log<), there exists a negligible Y(<) such that

max
y∈Z=@

max
x∈Z<@ , ‖x‖≤f

√
<

Ax=y (mod @)


rf (x)∑

z∈Z<@ ,‖z‖≤f
√
<

Az=y (mod @)

rf (z)


≤ 2−<+1 · 1 + Y

1 − Y .

Proof. Suppose that A ∈ Z=×<@ is a matrix whose columns generate Z=@, i.e., A is full-rank. Then,

max
y∈Z=@

max
x∈Z<@ , ‖x‖≤f

√
<

Ax=y (mod @)


rf (x)∑

z∈Z<@ ,‖z‖≤f
√
<

Az=y (mod @)

rf (z)


≤ max

y∈Z=@
sup

x∈Λy
@ (A)

�Λy
@ (A),f (x)

+max
y∈Z=@

max
x∈Z<@ , ‖x‖≤f

√
<

Ax=y (mod @)

������������
rf (x)∑

z∈Z<@ ,‖z‖≤f
√
<

Az=y (mod @)

rf (z)
− rf (x)∑

z∈Z<
Az=y (mod @)

rf (z)

������������
≤ max

y∈Z=@
sup

x∈Λy
@ (A)

�Λy
@ (A),f (x)

+max
y∈Z=@

max
x∈Z<@ , ‖x‖≤f

√
<

Ax=y (mod @)

rf (x)∑
z∈Z<@ ,‖z‖≤f

√
<

Az=y (mod @)

rf (z)
·
rf (Λy

@ (A) \ B< (0, f
√
<))

rf (Λy
@ (A))

where �< (0, A) = {x ∈ R< : ‖x‖ ≤ A}. Using the fact that
rf (x)∑

z∈Z<@ ,‖z‖≤f
√
<

Az=y (mod @)

rf (z)
≤ 1,
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for x ∈ Z<@ with Ax = y (mod @), and the fact that

Pr
v∼�

Λ
y
@ (A) ,f

[
‖v‖ > f

√
<

]
=
rf (Λy

@ (A) \ B< (0, f
√
<))

rf (Λy
@ (A))

we get that

max
y∈Z=@

max
x∈Z<@ , ‖x‖≤f

√
<

Ax=y (mod @)


rf (x)∑

z∈Z<@ ,‖z‖≤f
√
<

Az=y (mod @)

rf (z)


≤ max

y∈Z=@

{
sup

x∈Λy
@ (A)

�Λy
@ (A),f (x) + Pr

v∼�
Λ

y
@ (A) ,f

[
‖v‖ > f

√
<

]}
.

Because f ≥ l(
√

log<), the claim then follows from Lemma 10 and Lemma 12.

2.7 Cryptography
In this section, we review several definitions in cryptography.

Public-key encryption

Definition 9 (Public-key encryption). Apublic-key encryption (PKE) schemeΣ = (KeyGen,Enc,Dec)
with plaintext space M is a triple of QPT algorithms consisting of a key generation algorithm
KeyGen, an encryption algorithm Enc, and a decryption algorithm Dec.

KeyGen(1_) → (pk, sk) : takes as input 1_ and outputs a public key pk and secret key sk.

Enc(pk, <) → CT : on input the public key pk and plaintext < ∈ M, outputs a ciphertext CT.

Dec(sk,CT) → <′ or⊥ : on input the secret key sk and ciphertext CT, outputs <′ ∈ M or ⊥.

Definition 10 (Correctness of PKE). For any _ ∈ N, and for any < ∈ M:

Pr
[
Dec(sk,CT) ≠ <

���� (pk,sk)←KeyGen(1_)
CT←Enc(pk,<)

]
≤ negl(_).

Definition 11 (IND-CPA security). Let Σ = (KeyGen,Enc,Dec) be a PKE scheme andA be a QPT
adversary. We define the security experiment Expind-cpa

Σ,A,_ (1) betweenA and a challenger as follows:

1. The challenger generates a pair (pk, sk) ← KeyGen(1_), and sends pk to A.
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2. A sends a plaintext pair (<0, <1) ∈ M ×M to the challenger.

3. The challenger computes CT1 ← Enc(pk, <1), and sends CT1 to A.

4. A outputs a bit 1′ ∈ {0, 1}, which is also the output of the experiment.

We say that the scheme Σ is IND-CPA-secure if, for any QPT adversary A, it holds that

AdvΣ,A (_) := | Pr[Expind-cpa
Σ,A,_ (0) = 1] − Pr[Expind-cpa

Σ,A,_ (1) = 1] | ≤ negl(_).

The Short Integer Solution problem
The (inhomogenous) SIS problem was introduced by Ajtai [9] in his seminal work on average-case
lattice problems. The problem is defined as follows.

Definition 12 (Inhomogenous SIS problem,[9]). Let =, < ∈ N be integers, let @ ≥ 2 be a modulus
and let V > 0 be a parameter. The Inhomogenous Short Integer Solution problem (ISIS) problem
is to find a short solution x ∈ Z< with ‖x‖2 ≤ V such that A · x = y (mod @) given as input a tuple
(A $← Z=×<@ , y $← Z=@). The Short Integer Solution (SIS) problem is a homogenous variant of ISIS

with input (A $← Z=×<@ , 0 ∈ Z=@).

Micciancio and Regev [103] showed that the SIS problem is, on the average, as hard as ap-
proximating worst-case lattice problems to within small factors. Subsequently, Gentry, Peikert
and Vaikuntanathan [68] gave an improved reduction showing that, for parameters < = poly(=),
V = poly(=) and prime @ ≥ V · l(

√
= log @), the average-case SIS<

=,@,V
problem is as hard as ap-

proximating the shortest independent vector problem (SIVP) problem in the worst case to within a
factor W = V · $̃ (

√
=). We assume that SIS<

=,@,V
, for < = Ω(= log @), V = 2>(=) and @ = 2>(=) , is hard

against quantum adversaries running in time poly(@) with success probability poly(1/@).

The Learning with Errors problem
The Learning with Errors problem was introduced by Regev [112] and serves as the primary basis
of hardness of post-quantum cryptosystems. The problem is defined as follows.

Definition 13 (“Search” LWE, [112]). Let =, < ∈ N, let @ ≥ 2 be a modulus and let U ∈ (0, 1) be
a parameter. The Learning with Errors (LWE) problem is to find a secret vector s given as input a
sample (A, sᵀA + eᵀ (mod @)) from the distribution LWE<=,@,U@, where A $← Z=×<@ and s $← Z=@ are
uniformly random, and where e ∼ �Z<,U@ is sampled from the discrete Gaussian distribution.

Definition 14 (“Decisional” LWE, [112]). Let =, < ∈ N be integers, let @ ≥ 2 be a modulus and let
U ∈ (0, 1) be a parameter. The “decision” Learning with Errors (DLWE) problem is to distinguish
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between
(A $← Z=×<@ , sᵀA + eᵀ (mod @)) and (A $← Z=×<@ , u $← Z<@ ),

where s $← Z=@ is uniformly random and where e ∼ �Z<,U@ is a discrete Gaussian noise vector.

As shown in [112], the LWE<=,@,U@ problem with parameter U@ ≥ 2
√
= is at least as hard as

approximating the shortest independent vector problem (SIVP) to within a factor of W = $̃ (=/U) in
worst case lattices of dimension =. In this workwe assume the subexponential hardness of LWE<=,@,U@
which relies on the worst case hardness of approximating short vector problems in lattices to within
a subexponential factor. We assume that the LWE<=,@,U@ problem, for < = Ω(= log @), @ = 2>(=) ,
U = 1/2>(=) , is hard against quantum adversaries running in time poly(@). We note that this
parameter regime implies SIS<

=,@,V
[120].

Trapdoors for lattices
We use the following trapdoor property for the LWE problem.

Theorem 2 ([102], Theorem 5.1). Let =, < ∈ N and @ ∈ N be a prime with < = Ω(= log @). There
exists a randomized algorithms with the following properties:

• GenTrap(1=, 1<, @): on input 1=, 1< and @, returns a matrix A ∈ Z=×<@ and a trapdoor tdA

such that the distribution of A is negligibly (in the parameter =) close to uniform.

• Invert(A, tdA, b): on input A, tdA and b = sᵀ ·A+ eᵀ (mod @), where ‖e‖ ≤ @/(�)
√
= log @)

and �) > 0 is a universal constant, returns s and e with overwhelming probability over
(A, tdA) ← GenTrap(1=, 1<, @).
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C h a p t e r 3

REVOKING UNCLONABLE PROGRAMS

In this chapter, we investigate the following question: can we use the no-cloning principle of
quantum mechanics and encode a program in such a way that it can be evaluated, yet it cannot be
pirated? Naturally, we would also like to ensure that, once the program is “returned,” the recipient
loses its ability to evaluate it. Our main result is secure software leasing (SSL) scheme for a large
class of evasive functions known as compute-and-compare programs.

Organization. First, we focus our attention on the notion of quantum copy-protection which was
proposed by Aaronson [2] as a means of software protection. In Section 3.3, we present a formal
definition of what a copy-protection scheme is. Then, in Section 3.4, we construct a quantum copy-
protection scheme for multi-bit point functions. In the second half of the chapter, we consider the
weaker notion of secure software leasing (SSL) which was proposed by Ananth and La Placa [17].
In Section 3.5, we give a formal defintion of what an SSL scheme is. Then, in Section 3.6, we
construct an SSL scheme for single-bit point functions. Finally, in Section 3.6, we prove our main
result; namely, we give an SSL scheme for compute-and-compare programs as a simple extension
of our SSL scheme for single-bit point functions.

3.1 Introduction
Aaronson [2] initiated the formal study of quantum copy-protection schemes, and speculated that
quantum cryptography could offer a solution to software piracy thanks to the no-cloning theorem.
Copy-protection captures the following cryptographic task. A vendor wishes to encode a program
in such a way that a user who receives the encoded program is able to run it on arbitrary inputs.
However, the recipient should not be able to create functionally equivalent “pirated” copies of the
original program. More concretely, no user should be able to process the encoded program so
as to split it into two parts, each of which allows for the evaluation of the function implemented
by the original program. Rigorous copy-protection of any kind is trivially impossible to achieve
classically. This is because any information that the user receives can simply be copied. In the
quantum realm, however, the no-cloning theorem prevents any naive copying strategy fromworking
unconditionally, and copy-protection seems, at least in principle, possible. The key question then
becomes: Is it possible to encode functionality into a quantum state while at the same time
preserving the no-cloning property?

To be precise, we are not satisfied with preventing an adversary from copying the state that encodes
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the program (this is certainly a necessary condition), but we also require that there is no other way
for a (computationally bounded) user to process the state into two parts (not necessarily a copy of
the original) so as to allow each half to recover the input-output behaviour of the encoded program.

Quantum copy-protection was first formalized by Aaronson [2]. One of the first observations
there is that families of learnable functions cannot be copy-protected: access to a copy-protected
program, and hence its input-output behaviour, allows one to recover a classical description of
the program itself, which can be copied. In [2], Aaronson provides some formal definitions and
constructions of copy-protection schemes. More precisely, Aaronson describes:

• A provably secure scheme to copy-protect any family of efficiently computable functions
which is not quantumly learnable, assuming a quantum oracle implementing a certain family
of unitaries.

• Two candidate schemes to copy-protect point functions in the plain model, although neither
of the two features a proof of security.

In recent work [5], Aaronson et al provide a scheme to copy-protect any family of efficiently
computable functions which is not quantumly learnable, assuming access to a classical oracle,
i.e., an oracle (which can be queried in superposition) that implements a classical function. We
emphasize, however, that this classical function is dependent on the function that one wishes to
copy-protect. In particular, the oracle is impossible to realize in general, as it implies an ideal
obfuscator for the function 5 that is being copy-protected, and is thus very strong. In particular, the
following questions were left open in [2]: Does there exist a scheme to copy-protect any non-trivial
family of functions (the simplest example being point functions) with provable security in the plain
model using standard assumptions? What about larger classes of programs?

On the negative side, aside from the impossibility of copy protecting families of learnable functions,
it has remained an open question to determine whether a more general impossibility result applies.
In a recent result, Ananth and La Placa [17] prove that a universal copy-protection scheme cannot
exist, assuming the quantum hardness of the learning with errors problem [111] and the existence
of quantum fully homomorphic encryption.

On top of proving the impossibility of a general copy-protection scheme for all unlearnable func-
tions, Ananth and La Placa introduce in [17] a weaker notion of copy-protection, which they call
“secure software leasing” (SSL). The sense in which the latter is weaker than copy-protection is
that one assumes that the freeloaders B and C (now a single adversary) are limited to performing
the honest evaluation procedure only. Rather than emphasizing the impossibility of simultaneous
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evaluation on inputs chosen by a challenger, SSL captures the essence of quantum copy-protection
in the following scenario. An authority (the lessor) wishes to lease a copy r 5 of a function 5 ∈ F_
to a user (the lessee) who is supposed to return back r 5 at a later point in time, as specified by
the lease agreement. Once the program copy is “revoked” and verified by the lessor, the security
property requires that the adversary can no longer compute 5 . More formally, no adversary should
be able to produce a (possibly entangled) quantum state such that:

• One half of the state is deemed valid by the lessor, once it is returned.

• The other half can be used to honestly evaluate 5 on every input of the adversary’s choosing.

Surprisingly, Ananth and La Placa were able to show in [17] that a general SSL scheme is also
impossible, despite having weaker security requirements compared to copy-protection. On the pos-
itive side, the authors describe an SSL scheme for general evasive circuits assuming the existence
of subspace-hiding obfuscators [137] and the quantum hardness of the learning with errors prob-
lem [111]. Because subspace-hiding obfuscators are only known to exist under indistinguishability
obfuscation [137, 117], the same applies to the security of the scheme proposed in [17]. A key
question, in particular, which their work left open is the possibility that one can construct SSL for
more primitive classes of programs under standard cryptographic assumptions.

Our contributions
Let us now give an overview of our results.

Quantum copy-protection. We approach the task of quantum copy-protection from the positive
side; specifically, we give a copy-protection scheme for multi-bit point functions and we prove its
security in the so-called quantum random oracle model – a standard cryptographic assumption. Our
construction can be instantiated with any cryptographic hash function, for example using SHA-3.

A desirable feature of our scheme is that the copy-protected program does not involve multi-
qubit entanglement – in fact it only involves BB84 states and computational and Hadamard basis
measurements. This is in contrast to previous candidate schemes for point functions in [2], whose
security is only conjectured, and which employ highly entangled states. The simple structure of
the copy-protected program is advantageous for, e.g., error-corrected storage of the copy-protected
program. We point out, however, that in a practical implementation of our scheme, where the
oracle is replaced by a hash function, evaluation of the copy-protected program on an input requires
coherently computing the hash function in an auxiliary register. This operation requires universal
quantum computation.
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Our scheme is not in the plain model. The (quantum) random oracle model, however, enjoys
widespread acceptance and popularity in (post-quantum/quantum) cryptography, andmany schemes
designed for, and deployed in, practical applications enjoy provable security in that model only.
Our security definition is essentially analogous to the original definition in [2] but differs more
significantly from the more recent definition in [5], which is weaker. In Section 3.3, we give a more
detailed comparison of our definition with the ones in [2] and [5].

Our techniques and construction are inspired by recent work on unclonable encryption byBroadbent
and Lord [41]. The main technical ingredient on which their construction relies are monogamy
of entanglement games, introduced and studied extensively in [123], which they combine with an
adaption of the one-way-to-hiding (O2H) lemma of [127] for a security analysis in the quantum
random oracle model. In a nutshell, (a special case of) the latter lemma allows one to upper bound
the probability that an algorithm outputs � (G), where � is a random oracle and G is any string
in the domain, in terms of the probability that the algorithm “queries” at G at some point during
its execution. The adaption of [41] extends the applicability of the O2H lemma to a setting that
involves two players, and upper bounds the probability that the two (possibly entangled) players
simultaneously guess � (G) by the probability that they both query at G at some point during the
execution of their respective strategies.

A sketch of our copy-protection scheme

Our quantum copy-protection scheme allows a software vendor to encode a multi-bit point function
in such a way that it can be evaluated on any input, yet it cannot be pirated. More specifically, we
consider the class of functions of the form %H,<, for some strings H, < ∈ {0, 1}_ with

%H,< (G) =

< if G = H ,

0_ if G ≠ H .

Multi-bit point functions can potentially serve as password authentication programs, since the
recipient of the program can easily check whether a given input matches a hidden password H,
and additionally learn a message < if the password is correct. Naturally, we require that both the
password and the message have sufficient amounts of entropy.

Our construction is inspired by recent work on unclonable encryption by Broadbent and Lord
[41] which revisits the cryptographic notion first proposed by Gottesman [75]. In an unclonable
encryption scheme, one encrypts a classical message in a quantum ciphertext, in such a way that
the latter cannot be processed and split into two parts such that each half, together with a classical
secret key, enables decryption. The setting of unclonable encryption is very similar to that of copy-
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protection, the main difference being that there is no “functionality” associated to the quantum
ciphertext, other than it being used for recovering the encrypted message.

Our simple observation is that any unclonable encryption scheme can be generically turned into
a quantum copy-protection scheme for multi-bit point functions as follows. To copy-protect a
function %H,<, simply encrypt the message < with the secret key H. Then, provided there exists a
mechanism for wrong-key detection, this already achieves our goal: to evaluate at point G, attempt
to decrypt using G; if decryption succeeds output the decrypted message, if decryption fails, output
0_. We observe that any unclonable encryption scheme can be easily upgraded to achieve wrong-
key detection in the QROM, thereby yielding the desired copy-protection scheme. Our notion of
wrong-key detection for quantum encryption schemes is inspired by the work of Canetti et al. [46]
who previously introduced a similar property for classical encryption schemes.

To illustrate how we can construct a copy-protection scheme for multi-bit point functions from
any unclonable encryption, we now consider a concrete example. This follows the unclonable
encryption scheme from Broadbent and Lord [41] which itself is rooted in Wiesner’s conjugate
coding scheme [132]. The basic idea is that it is possible to encrypt a message < ∈ {0, 1}_ by
sampling a random string A $← {0, 1}_ and by making _ uniformly random choices of basis (either
computational or Hadamard) which we denote by \ ∈ {0, 1}_. Then, one can encode each bit of
the one-time padded message < ⊕ A either in the computational or the Hadamard basis, according
to \. Formally, letting : = (A, \) denote the secret key, this amounts to preparing the following
quantum ciphertext on _ many qubits:

Enc: (<) = | (< ⊕ A)\〉〈(< ⊕ A)\ | ,

where we use the notation |G\〉 = �\1 |G1〉 ⊗ . . . �\_ |G_〉 and |1B〉 = �B |1〉, for 1, B ∈ {0, 1}.
Given the key : = (A, \) and ciphertext, one can easily “decrypt” and recover the string < by first
measuring each qubit of Enc: (<) in the basis specified by \, and then uncomputing the one-time
pad specified by A. We now show how to bootstrap such an encryption scheme into a copy-protection
scheme for multi-bit point functions as follows. The basic idea is the following. To copy-protect
%H,<, simply hand out EncH (<) with H = : = (A, \) together with some classical information that
enables an evaluator to “recognize” an incorrect key. One can take the latter information to be� (H),
for some hash function � (or a uniformly random function �, if one works in the random oracle
model). Then, to evaluate the program on some input G, the evaluator first checks whether � (G)
matches the hash � (H). If not, the evaluator will conclude that the output is 0_. Otherwise, if true,
the evaluator can simply “decrypt” EncH (<) as before. If the output length of the hash function �
is sufficiently large, say 2_, the resulting scheme achieves the aforementioned wrong-key detection
property with overwhelming probability by a standard birthday bound.
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Copy-protection security. Before we expand on the technical hurdles we encounter when proving
the security of our copy-protection scheme, let us first formalize the property in a bit more detail.
We say that a quantum copy-protection scheme is secure for a family of functions F_ (as well as a
distribution D over F_) if no adversary (A,B, C)—consisting of a triple of quantum polynomial
time algorithms: a “pirate”A, sayAlice, and two “freeloaders”B andC, sayBob andCharlie)—can
succeed with sufficiently high (i.e., non-trivial) probability at the following game:

• A receives a copy-protected program r 5 from the challenger (where the program 5 ∈ F_) is
sampled from some distributionDF_). Next,A creates a bipartite state on registers B and C,
and sends B to B and C to C.

• The challenger samples a pair (G1, G2) of inputs to 5 from a suitable challenge distribution
(which is allowed to depend on 5 ), and sends G1 to B and G2 to C.

• B and C, who are not allowed to communicate, return bits 11 and 12, respectively.

• (A,B, C) win if 11 = 5 (G1) and 12 = 5 (G2).

The security of the aforementioned unclonable encryption scheme (and, by implication, the security
of our copy-protection scheme) crucially leverages the following property: it is impossible for any
pirate who has the ciphertext but does not know \ nor A, to produce a state on two registers BC such
that two “freeloaders,” say Bob and Charlie, with access to registers B and C, respectively, as well
as access to \ and A, can simultaneously recover <. Note that the latter property crucially holds
even when both Bob and Charlie are simultaneously receiving \ and A. This property is essentially
a consequence of themonogamy of entanglement and is captured formally in [123, 41] via the study
of monogamy of entanglement games. In particular, a rephrasing of the results of [123] is that, for
any (unbounded) strategy of Alice, Bob and Charlie, the probability that both Bob and Charlie are
able to simultaneously recover < is exponentially small in _.

Unfortunately, our proof of security does not immediately follow from the security of the underlying
unclonable encryption scheme, mainly due to the fact that the encoded program EncH (<) also
consists of the classical hash � (H) which further complicates the matter. To show security of our
scheme, it suffices to argue that the security of the underlying unclonable encryption scheme is
preserved, even if the adversary additionally receives as input a classical hash � (H) which depends
on the key of the quantum ciphertext. To carry out the security reduction, we use a variant of the
so-called one-way-to-hiding (O2H) lemma [127] due to Unruh. This allows us to obtain an upper
bound on the probability that an adversary distinguishes � (H) from a uniformly random string in
the co-domain of �, in terms of the probability that such an adversary queries the oracle at H.
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We prove the following result, which is a consequence of Lemma 18 and Theorem 3.

Theorem (Informal). Assuming unclonable-secure quantum encryption schemes exist, there exists
a quantum copy-protection scheme for multi-point functions which is secure against arbitrary
challenge distributions in the quantum random oracle model.

Next, we consider the notion of secure software leasing.

Secure software leasing

As we mentioned earlier, the original definition of secure software leasing in [17] is a weaker
version of copy-protection in the following two ways:

• The lessor performs a prescribed verification procedure on a register returned by the lessee.

• The lessee is required to perform the honest evaluation procedure with respect to any post-
verification registers in the lessee’s possession.

We revisit the notion of secure software leasing from a similar perspective as in our copy-protection
definition. Our main contributions are the following. First, we introduce a new and intuitive
SSL definition (Section 3.5) by means of a cryptographic security game which does not limit
the adversary to performing the honest evaluation on any post-verification registers.1 Informally,
any SSL scheme (SSL.Gen,SSL.Lease,SSL.Eval,SSL.Verify) according to our definition should
satisfy the following property. After receiving a leased copy of 5 , denoted by r 5 (and generated
using SSL.Lease), and a circuit for SSL.Eval, no adversary should be able to produce a (possibly
entangled) quantum state f on two registers R1 and R2 such that:

• SSL.Verify deems the contents of register R1 of fR1R2 to be valid, and

• the adversary can predict the output of circuit 5 (on challenge inputs chosen by the lessor)
using an arbitrary measurement of the post-verification state in register R2.

Our definition remains faithful to the idea of secure software leasing from [17], while at the same
time offering a stronger security guarantee.

Second, we show that our definition of security is achievable with a standard negligible security
bound in the quantum random oracle model for the class of compute-and-compare programs [131,

1The SSL definition in [17] is not “operational” and cannot be directly phrased as a security game.
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76]. A compute-and-compare program CC[ 5 , H] is specified by an efficiently computable function
5 : {0, 1}= → {0, 1}< and a string H ∈ {0, 1}< in its range, where

CC[ 5 , H] (G) =


1 if 5 (G) = H ,

0 if 5 (G) ≠ H .

Note that point functions are a special case of compute-and-compare programs where the function
5 is the identity map. we show how to lease CC[ 5 , H] in the following simple way: the encoded
program consists of (a description of) a function 5 in the clear, together with a quantumly encoded
version of the point function with marked input H. The intuition is that it is enough to protect
the marked input H in order to render CC[ 5 , H] unclonable. At first, it might seem surprising that
one can give 5 in the clear while preserving unclonability, as the encoded program now leaks
significantly more information than its input/output behavior alone. At a second thought, however,
it is in fact quite natural that one can render a functionality “unclonable” by just making some
sufficiently important component of it unclonable. Indeed, it is straightforward to show that the
SSL security of the extended construction reduces to the SSL security of the underlying point
function scheme.

In Section 3.5 we show the following key property about our SSL scheme in Construction 4: once a
leased copy is successfully returned to the lessor, no adversary can distinguish the marked input of
a compute-and-compare program from a random (non-marked) input with probability better than
1/2, except for a negligible advantage. We prove the following in Theorem 5.

Theorem (Informal). There exists an SSL scheme for compute-and-compare programs which is
secure against a natural class of input challenge distributions in the quantum random oracle model.

The result follows from a standard application of the O2H lemma and a particular “uncertainty rela-
tion” variant of the monogamy of entanglement property which appeared in a work of Unruh [127].
The latter appears in similar contexts in the quantum key-distribution literature. Note that the
technical complications arising in the proof of security of our original copy-protection scheme do
not appear in the SSL security proof. Crucially, this is because we can leverage the fact that the
lessor is performing a prescribed verification procedure.

Related work
Unclonable encryption. This cryptographic functionality was formalized recently by Broadbent
and Lord [41], and informally introduced earlier by Gottesman [75]. In an unclonable encryption
scheme, one encrypts a classical message in a quantum ciphertext, in such a way that the latter
cannot be processed and split into two parts, each of which, together with a classical secret key,
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enables decryption. The setting of unclonable encryption is very similar to that of copy-protection,
the main difference being that there is no “functionality” associated to the quantum ciphertext,
other than it being used for recovering the encrypted message. As we mentioned earlier, our
copy-protection scheme is inspired by the unclonable encryption scheme in [41], and our analysis
extends some of the techniques developed there.

Revocable quantum timed-release encryption. Timed-release encryption (also known as time-
lock puzzles) is an encryption scheme that allows a recipient to decrypt only after a specified
amount time, say ) , has passed. Unruh [127] gave the first quantum timed-release encryption
scheme that is “revocable” in the sense that a user can return the timed-release encryption before
time ) , thereby losing all access to the data. It is easy to see that this notion is impossible to
achieve classically for precisely the same reason copy-protection is impossible: any adversary can
simply generate copies of the classical ciphertext or source code, respectively. From a technical
point of view, revocable quantum timed-release encryption shares many similarities with the notion
of “secure software leasing” in [17]. Besides the fact that the former encodes a plaintext and the
latter encodes a program, the security property essentially remains the same: once a quantum state
is returned and successfully verified, the user is supposed to lose all relevant information. Our
proof of security for the SSL scheme in Construction 3 is inspired by Unruh’s proof for revocable
one-way timed-release quantum encryption in [127].

Open questions
Our work is the first to construct a copy-protection scheme in a standard cryptographic model (the
QROM). It leaves several questions open. The most pressing ones are the following.

• First, is it possible to extend the security of quantum copy-protection schemes towards
multiple copies? In other words, the pirate receives : copy-protected copies of a program,
and we ask : + 1 freeloaders to succeed. We believe that our scheme can achieve such
a notion, but with a security that becomes worse as : grows. Providing a scheme where
security does not depend on : is an interesting open question.

• Second, is it possible to remove the requirement of a random oracle, and to achieve a scheme
with non-trivial security against malicious adversary in the plain model? We think that this
would require fundamentally different techniques.

Subsequent work
We remark that a series of subsequent works have meanwhile improved on some of our results on
copy-protection and secure software leasing. Broadbent et al. [42] showed how to construct an
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information-theoretic SSL scheme for compute-and-compare programs from any quantummessage
authentication code. This improves on our SSL scheme in Construction 3 which relies on the
quantum random oracle heuristic. Using subspace coset states rather than BB84 states, Ananth et
al. [18] obtained a quantum copy-protection for single-bit point functionwhich achieves the standard
notion of negligible adversarial security in the QROM. This is significantly more challenging to
achieve and involves advanced techniques.

3.2 Preliminaries
We now review some technical background which is required for our constructions.

Monogamy of entanglement games
For a detailed introduction to monogamy-of-entanglement games, we refer the reader to the seminal
paper on the topic [123], where they were introduced and studied extensively. In this section, we
limit ourselves to introducing a version of a monogamy-of-entanglement game that suffices for
our purpose. Let _ ∈ N. The game is between a challenger and an adversary, specified by a
triple of interactive quantum machines (A,B, C) (for a formal definition of interactive quantum
machine we refer the reader to [126]). For brevity, we use the notation |G\〉 = �\ |G〉, where
�\ = �\1 ⊗ . . . ⊗ �\_ and \, G ∈ {0, 1}_. The game takes place as follows:

1. The challenger samples G, \ ← {0, 1}_ and sends the state |G\〉 to A.

2. A sends a quantum register to B and one to C.

3. The challenger sends \ to both B and C.

4. B and C return strings G′ and G′′ to the challenger.

The players A, B and C are not allowed to communicate other than where specified by the game.
Finally, A,B, C win if G = G′ = G′′.

The following lemma, from [123], upper bounds the winning probability of an adversary in the
game. As stated in the form below, this lemma appears in [41].

Lemma 1 ([41], Theorem 1). Let _ ∈ N be a parameter. For any Hilbert spacesHB andHC, any
families of POVMs on these Hilbert spaces, respectively,{{

�G\

}
G∈{0,1}_

}
\∈{0,1}_

and
{{
�G\

}
G∈{0,1}_

}
\∈{0,1}_

,

and any CPTP map Φ : D
(
(C2)⊗_

)
→ D(HB ⊗ HC), we have:

E\∈{0,1}_EG∈{0,1}_Tr
[
(�G\ ⊗ �

G
\ )Φ

(
|G\〉〈G\ |

) ]
≤

(
1
2
+ 1

2
√

2

)_
. (3.1)
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The quantum random oracle model
Oracles with quantum access have been studied extensively, for example in [30, 34]. We say that a
quantum algorithm A has oracle access to a classical function � : {0, 1}_ → {0, 1}<, denoted by
A� , if A is allowed to use a unitary gate $� at unit cost in time. The unitary $� acts as follows
on the computational basis states of a Hilbert spaceHA ⊗ HB of _ + < qubits:

$� : |G〉A ⊗ |H〉B −→ |G〉A ⊗ |H ⊕ � (G)〉B ,

where the operation ⊕ denotes bit-wise addition modulo 2. In general, we can model the interaction
of a quantum algorithm that makes @ queries to an oracle � as (*$�)@, i.e., alternating unitary
computations and queries to the oracle�, where* is some operator acting onHA⊗HB⊗HC, where
HC is some auxiliary Hilbert space [30, 34, 127]2. We call a (possibly super-polynomial-time)
quantum algorithmA with access to an oracle $ query-bounded ifA makes at most polynomially
many (in the size of its input) queries to $. The random oracle model refers to a setting in
which the function � : {0, 1}_ → {0, 1}< is sampled uniformly at random. Random oracles
play an important role in cryptography as models for cryptographic hash functions in the so-called
random oracle model (ROM) [26]. For post-quantum and quantum cryptography, random oracles
modelling hash functions need to be quantum accessible (i.e., accessible as a unitary gate, and
thus in superposition), resulting in what is known as the quantum random oracle model (QROM)
[34]. Despite being uninstantiable in principle [44, 60], modeling hash functions in the (Q)ROM
is considered a standard assumption in cryptography.

Some technical lemmas

Below, we denote by Bool(_, <) the set of functions from {0, 1}_ to {0, 1}<.

Lemma 2. Let 5 : Bool(_, <) → R, and G ∈ {0, 1}_. For � ∈ Bool(_, <) and H ∈ {0, 1}<, let
�G,H ∈ Bool(_, <) be such that

�G,H (B) =

� (B) if B ≠ G ,

H if B = G .

Then,
E� 5 (�) = E�EH 5 (�G,H) .

Proof. The proof is straightforward, and can be found in Lemma 19 of [41].
2We can chose the algorithm’s unitaries between oracle calls to be all the same by introducing a “clock register”

that keeps track of the number of oracle calls made so far.
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The following is a technical lemma about a quantum adversary not being able to distinguish
between samples from � (*_) and from *<, even when given oracle access to �, where the
function � : {0, 1}_ → {0, 1}< is sampled uniformly at random.

Consider the following game between a challenger and a quantum adversary A, specified by
_, < ∈ N, and a distribution - over {0, 1}_,

• The challenger samples a uniformly random function � : {0, 1}_ → {0, 1}< and 1 ← {0, 1}.

• If 1 = 0: the challenger samples G ← - , sends � (G) to A.
If 1 = 1: the challenger samples uniformly I ← {0, 1}<, sends I to A.

• A additionally gets oracle access to �. A returns a bit 1′ to the challenger.

A wins if 1 = 1′. Let Dist(A, _, <, -) be a random variable for the outcome of the game.

Lemma 3. For any adversaryA making @ oracle queries, any family of distributions {-_ : _ ∈ N}
where for all _, -_ is a distribution over {0, 1}_, for any polynomially bounded function< : N→ N,
there exists a negligible function ` such that, for any _ ∈ N, the following holds:

Pr[Dist(A, _, <(_), -_) = 1] ≤ 1
2
+ (3@ + 2)@" + `(_) ,

where " is a quantity that is negligible in _ if 2−Hmin (-_)/2 is negligible in _.

Corollary 1. For any query-bounded adversaryA, any n > 0, any family of distributions {-_ : _ ∈
N}, where -_ is a distribution over {0, 1}_ with Hmin(-_) > _n for every _, for any polynomially
bounded function < : N → N, there exists a negligible function ` such that, for any _ ∈ N, the
following holds:

Pr[Dist(A, _, <(_), -_) = 1] ≤ 1
2
+ `(_) .

The key step in the proof of Lemma 3 is captured by the one-way-to-hiding lemma [127, 12]3.
We restate it here following our notation (and provide a proof a for completeness). Informally,
the lemma gives an upper bound on an adversary’s advantage (when given access to a uniformly
random function � : {0, 1}= → {0, 1}<) at distinguishing between a sample drawn from � (*=)
and a sample drawn from *<. The upper bound is in terms of the probability that the adversary
queries the oracle at the pre-image of the sample at some point during its execution. Equivalently,
given two oracles that are identical except on a single input (or more generally on a subset of the

3While additional improved variants of the one-way to hiding lemma were developed [31, 93], any of them suffices
for our asymptotic analysis.
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inputs), the advantage of an adversary at distinguishing the two oracles is bounded above in terms
of the probability that the adversary queries at the differing point (or at a point in the subset where
they differ) at some point during its execution.

Lemma 4. Let _, < ∈ N. For any @ ∈ N, any unitaries *, any family of states {|kG〉}G∈X , any
complete pair of orthogonal projectors (Π0,Π1) and any distribution - on {0, 1}_, it holds that:

1
2
E�EG←- ‖Π0(*$�)@ ( |� (G)〉 ⊗ |kG〉) ‖2 +

1
2
E�EI←{0,1}< ‖Π1(*$�)@ ( |I〉 ⊗ |kG〉) ‖2

≤ 1
2
+ (3@ + 2)@" , (3.2)

where $� is the oracle unitary for � : {0, 1}_ → {0, 1}<, and " is given by

" =
1
2
E�EG←-EI←{0,1}<E: ‖ |G〉 〈G | (*$�G,I ): |I〉 ⊗ |kG〉 ‖

+1
2
E�EG←-EI←{0,1}<E: ‖ |G〉 〈G | (*$�): |I〉 ⊗ |kG〉 ‖ . (3.3)

Moreover, " is negligible if and only if the second term in " is negligible.

The lemma holds also when the states |kG〉 are not necessarily pure (but we write them as pure
states for ease of notation).

Proof. For any G ∈ {0, 1}_, define +�G =
(
*$� (� − |G〉 〈G |)

)@ and define,�
G = *$� −+�G . Then,

1
2
E�EG←- ‖Π0(*$�)@ ( |� (G)〉 ⊗ |kG〉) ‖2 +

1
2
E�EI←{0,1}< ‖Π1(*$�)@ ( |I〉 ⊗ |kG〉) ‖2

=
1
2
E�EG←-EI←{0,1}< ‖Π0(*$�G,I )@ ( |I〉 ⊗ |kG〉) ‖2 +

1
2
E�EI←{0,1}< ‖Π1(*$�)@ ( |I〉 ⊗ |kG〉) ‖2

=
1
2
E�EG←-EI←{0,1}< ‖Π0(+�G,IG +,�G,I

G ) ( |I〉 ⊗ |kG〉) ‖2

+ 1
2
E�EG←-EI←{0,1}< ‖Π1(+�G +,�

G ) ( |I〉 ⊗ |kG〉) ‖2

≤1
2
E�EG←-EI←{0,1}< ‖Π0+

�G,I
G ( |I〉 ⊗ |kG〉) ‖2 +

1
2
E�EG←-EI←{0,1}< ‖Π1+�G ( |I〉 ⊗ |kG〉) ‖2

+1
2
(3@ + 2)@ E�EG←-EI←{0,1}<E: ‖ |G〉 〈G | (*$�G,I ): |I〉 ⊗ |kG〉 ‖

+1
2
(3@ + 2)@ E�EG←-EI←{0,1}<E: ‖ |G〉 〈G | (*$�): |I〉 ⊗ |kG〉 ‖

=
1
2
E�EG←-EI←{0,1}< ‖Π0+

�G,I
G ( |I〉 ⊗ |kG〉) ‖2 +

1
2
E�EG←-EI←{0,1}< ‖Π1+�G ( |I〉 ⊗ |kG〉) ‖2

+(3@ + 2)@ " (3.4)

where the first equality uses Lemma 2, and the inequality uses Lemma 18 in [41].
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In order to prove the desired inequality, it is sufficient to show that

1
2
E�EG←-EI←{0,1}< ‖Π0+

�G,I
G ( |I〉 ⊗ |kG〉) ‖2 +

1
2
E�EG←-EI←{0,1}< ‖Π1+�G ( |I〉 ⊗ |kG〉) ‖2 ≤

1
2
.

(3.5)
Notice that +�G,IG = +�G , since +�G projects onto the subspace orthogonal to G before every query to
�. This implies that the LHS simplifies as

1
2
E�EG←-EI←{0,1}< ‖Π0+

�G,I
G ( |I〉 ⊗ |kG〉) ‖2 +

1
2
E�EG←-EI←{0,1}< ‖Π1+�G ( |I〉 ⊗ |kG〉) ‖2

=
1
2
E�EG←-EI←{0,1}< ‖Π0+�G ( |I〉 ⊗ |kG〉) ‖2 +

1
2
E�EG∈-EI←{0,1}< ‖Π1+�G ( |I〉 ⊗ |kG〉) ‖2

=
1
2
E�EG∈-EI←{0,1}< ‖+�G ( |I〉 ⊗ |kG〉) ‖2 ≤

1
2
, (3.6)

where to get the third line, we used the fact thatΠ0,Π1 are a complete pair of orthogonal projectors,
and to get the last line we exploited properties of the Euclidean norm.

Combining (3.4) and (3.6) gives the desired inequality.

With a little extra work, one can show that " is negligible if and only if

1
2
E�EG←-EI←{0,1}< ‖Π1+�G ( |I〉 ⊗ |kG〉) ‖2

is negligible. We refer the reader to the proof of Theorem 3 in [12] for the full details.

Proof of Lemma 3. Without loss of generality, letA be specified by a unitary*, the oracle unitary
$� and a measurement given by projectors Π0 and Π1 = 1 − Π0, so that the unitary part of A’s
algorithm is (*$�)@, where @ the number of oracle queries made by A. Then, A’s winning
probability is precisely given by,

Pr[Dist(A, _, <, -_) = 1]

=
1
2
E�EG←-_ ‖Π0(*$�)@ |� (G)〉 ‖2 + 1

2
E�EI←{0,1}< ‖Π1(*$�)@ |I〉 ‖2 , (3.7)

where we omit writing ancilla qubits initialized in the zero state that (*$�)@ might be acting on.

Then, by Lemma 4, we have

Pr[Dist(A, _, <, -_) = 1] ≤ 1
2
+ (3@ + 2)@ " (3.8)

where " is the quantity given by

" =
1
2
E�EG←-_EI←{0,1}<E: ‖ |G〉 〈G | (*$�G,I ): |I〉 ‖

+ 1
2
E�EG←-_EI←{0,1}<E: ‖ |G〉 〈G | (*$�): |I〉 ‖ . (3.9)
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Moreover, by Lemma 4, " is negligible if and only if the second term,

E�EG←-_EI←{0,1}<E: ‖ |G〉 〈G | (*$�): |I〉 ‖,

is negligible. Hence, it suffices to bound the above term. Notice that for any fixed �, I and : ,

EG←-_ ‖ |G〉 〈G | (*$�): |I〉 ‖

≤
√
EG←-_ ‖ |G〉 〈G | (*$�): |I〉 ‖2

≤ 2−Hmin (-_)/2 , (3.10)

where the first inequality follows from Jensen’s inequality (for concave functions), and the second
inequality uses the fact that the state (*$�): |I〉 does not depend on G, and hence the quantity
under the square root is bounded above by the optimal probability of correctly predicting a sample
from - , which is, by definition, 2−Hmin (-) . Therefore, " is negligible so long as 2−Hmin (-_) is
negligible.

Finally, we define the notion of indistinguishability of ensembles of quantum states in the QROM.
This is similar to Definition 2.

Definition 15 (Indistinguishability of ensembles of quantum states in the QROM). Let < : N→ N
and ? : N → N be polynomially bounded functions, and let r�

_
and f�

_
be ?(_)-qubit states, for

� ∈ Bool(_, <(_)). We say that {r�
_
}_∈N,�∈Bool(_,<(_)) and {f�_ }_∈N,�∈Bool(_,<(_)) are quantum

computationally indistinguishable ensembles of quantum states, denoted by r�
_
≈2 f�_ , if, for any

QPT distinguisherD� with single-bit output, any polynomially bounded @ : N→ N, any family of
@(_)-qubit auxiliary states {a_}_∈N, and every _ ∈ N,

E�
�� Pr[D� (r�_ ⊗ a_) = 1] − Pr[D� (f�_ ⊗ a_) = 1]

�� ≤ negl(_) .

3.3 Quantum Copy-Protection
Our definition of a secure copy-protection scheme is essentially identical to the notion in [2]. We
elaborate on the differences in Section 3.3.

Definition 16 (Quantum copy-protection scheme). Let F =
⋃
_∈N F_ be a class of efficiently

computable functions 5 : X → Y with domainX and rangeY. A quantum copy-protection (QCP)
scheme for the class F is a pair of QPT algorithms QCP = (Protect,Eval) defined as follows:

QCP.Protect(1_, 3 5 ) → r : takes as input the security parameter 1_ and a classical description
3 5 of a function 5 ∈ F_, and outputs a (possibly mixed) quantum state r.
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QCP.Eval(1_, r, G) → r′ ⊗ |H〉〈H | : takes as input the security parameter 1_, a quantum state r
and an input G ∈ X, and outputs a bipartite state r′ ⊗ |H〉〈H | with H ∈ Y.

Slightly abusing notation, we occasionally ignore the post-evaluation state r′ and simply identify
the output of the procedure QCP.Eval(1_, r, G) with a classical outcome denoted by H ∈ Y.

We say that a QCP scheme is n-correct if, for any _ ∈ N, any 5 ∈ F_, and any input G ∈ X to 5 :

Pr
[
QCP.Eval(1_, r, G) = 5 (G) : r ← QCP.Protect(1_, 3 5 )

]
≥ 1 − n (_).

Note that the probability above comes from the procedure QCP.Eval of the QCP scheme. If
n (_) = negl(_), we simply call a copy-protection scheme correct. By the Gentle Measurement
Lemma [134] it is easy to see that a n-correct scheme is reusable in the following sense: after
performing QCP.Eval to r it is possible to rewind the procedure to obtain a state that is within trace
distance

√
n of the original state r.

Informally, we say that a QCP scheme QCP = (Protect,Eval) is secure if no QPT adversary can
produce two “copies” of a copy-protected program r ← QCP.Protect(1_, 3 5 ) that can both be used
to evaluate 5 . We formalise the security of copy-protection schemes by means of the following
security experiment.

Definition 17 (Piracy experiment). Let QCP = (Protect,Eval) be a copy-protection scheme for a
class of functions F=

⋃
_∈N F_ with domainX and rangeY. LetDF = {DF_}_∈N be an ensemble

of distributions over F_ and letDX = {DX ( 5 )} 5 ∈F_ be an ensemble of challenge distributions over
function inputs X. The security game (which we call the piracy experiment) takes place between a
challenger and an adversary consisting of a triplet of QPT algorithms (A,B, C):

1. The challenger samples 5 ← DF_ and sends the program r ← QCP.Protect(1_, 3 5 ) to A.

2. A applies an efficient CPTP map to map r into a bipartite state r�� on systems ��, and
sends system � to B and system � to C (who are not allowed to communicate from this step
onward).

3. The challenger samples a pair (G�, G�) ← DX ( 5 ) ×DX ( 5 ), and sends G� to B and G� to C.

4. B and C output values H� ∈ Y and H� ∈ Y, respectively, and send them to the challenger.
The challenger outputs 1, if H� = 5 (G�) and H� = 5 (G�) (i.e., the adversary has succeeded)
and 0, otherwise (i.e., the adversary has failed).

We let the random variable PiracyExpQCP
DF,DX

(
1_, (A,B, C)

)
denote the output bit of the challenger.
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Definition 18 (Secure quantum copy-protection). Let QCP = (Protect,Eval) be a QCP scheme for
a class of functions F=

⋃
_∈N F_. Let DF = {DF_}_∈N be an ensemble of distributions over F_

and let DX = {DX ( 5 )} 5 ∈F_ be an ensemble of distributions over X. Then, QCP = (Protect,Eval)
is called (DF,DX)-secure if, for any triplet of QPT algorithms (A,B, C), it holds that

Pr
[
PiracyExpQCP

DF,DX
(
1_, (A,B, C)

)
= 1

]
≤ ?triv

DF,DX + negl(_),

where ?triv
DF,DX is the trivial winning probability that is always possible due to correctness: A

forwards the original copy-protected program to one of the parties, say B (who then evaluates it to
obtain the correct output), and the other party, say C, has to guess at random.

Finally, we conclude this section a brief discussion regarding prior definitions of security.

Comparison with existing definitions of copy-protection
Our definition is very similar to the original security definition first proposed by Aaronson [2]. The
only difference is the following. In [2], a scheme is X-secure if for any bounded adversary who
tries to create : + 1 programs upon receiving : copy-protected copies the average number of input
challenges answered correctly is : (1 + X). In contrast, in our definition we say that the scheme
is secure if no adversary can succeed with non-negligible advantage beyond the trivial guessing
probability. In our work, we exclusively focus on the case of : = 1.

3.4 Quantum Copy-Protection of Multi-Bit Point Functions
In this section, we make a conceptual connection between unclonable quantum encryption and
quantum copy-protection. Our main result is a quantum copy-protection scheme for multi-bit point
functions which we obtain from any unclonable encryption scheme with a so-called “wrong-key
detection mechanism.” Canetti et al. [46] previously introduced a similar property for classical
encryption in the context of point function obfuscation.

A private-key quantum encryption of classical messages (QECM) scheme is a procedure that takes
as input a key and a plaintext in the form of a classical bit string in a quantum register, and produces
a ciphertext in the form of a quantum state. We formalise this notion in Definition 19.

Definition 19 (Quantum encryption scheme of classical messages). Let _ ∈ N be the security
parameter. A quantum encryption of classical messages (QECM) scheme with key space K and
plaintext spaceM is a triplet QECM = (KeyGen,Enc,Dec) consisting of QPT algorithms:

• KeyGen(1_) → :: takes as input the security parameter and outputs a key : ∈ K.

• Enc(:, <) → r: takes as input a key : and a message < ∈ M and outputs r ∈ D(H�).
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• Dec(:, r) → f: takes as input a key : and a quantum ciphertext r ∈ D(H�), and outputs
a plaintext in the form of a state f ∈ D(H"), whereH" = span{|<〉 : < ∈ M}.

We use the notation Enc: for the map < ↦→ Enc(:, <), and likewise for Dec: . Note that Enc: can
naturally be extended to quantum inputs f ∈ D(H") withH" = span{|<〉 : < ∈ M} via

Enc: (f) =
∑
<∈M

Tr[|<〉〈< | f] Enc: ( |<〉〈< |) .

A QECM scheme is called correct if, for all < ∈ M and : ∈ suppKeyGen(1_),

Tr|<〉〈< | Dec: ◦ Enc: (<) ≥ 1 − negl(_).

Note that we typically assume that the key space is given byK = {0, 1}_ and that the plaintext space
M and ciphertext space consist of inputs of at most poly(_) many bits and qubits, respectively.

We use the following notion of indistinguishable encryptions for general symmetric-key quantum
encryption schemes introduced by Alagic et al. [10].

Definition 20 (Indistinguishable security). A QECM scheme Σ = (KeyGen,Enc,Dec) has indis-
tinguishable encryptions (or is IND-secure) if, for every QPT adversary A = (MA ,D) consisting
of an (adversarial) message sampling procedureMA and a distinguisher D,��� Pr

[
D

(
(Enc: ⊗ 1� )r"�

)
= 1

]
− Pr

[
D

(
(Enc: ⊗ 1� ) ( |0〉〈0|" ⊗ r� )

)
= 1

] ��� ≤ negl(_) ,

where we assume that : ← KeyGen(1_), r"� ← MA (1_) with r� = tr" [r"� ], and where
|0〉〈0|" is the all-0 string in the plaintext register " .

Informally, we say that a quantum encryption scheme is unclonable if noQPT adversary can produce
two “copies” of a quantum ciphertext which can each be decrypted with access to the private key.
Beforewemake the notion of unclonable ciphertextsmore precise, let us first introduce the following
definition of a cloning attack due to Broadbent and Lord [41].

Definition 21 (Cloning attack). Let _ ∈ N be the security parameter. A cloning attack (A,B, C)
against a QECM scheme Σ = (KeyGen,Enc,Dec) consists of the following QPT algorithms (which
are parameterised by _)

• (cloning map) A : D(H�) → D(H� ⊗ H�)

• (1st decoder) B : K × D(H�) → D(H")

• (2nd decoder) C : K × D(H�) → D(H")
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where K and H� are defined by the quantum encryption scheme Σ, i.e., K is the set of keys and
H� is the ciphertext system.

We remark that we only consider efficient cloning attacks throughout this work. This is in contrast
with the definition of Broadbent and Lord [41] who consider CPTP maps more generally.

Definition 22 (Cloning experiment). Let Σ = (KeyGen,Enc,Dec) be a QECM scheme and let
_ ∈ N be a parameter. We define the following security game, called the cloning experiment, which
takes place between a challenger and a QPT adversary who executes a cloning attack (A,B, C):

1. The challenger samples : ← KeyGen(1_) and < $←M, and sends r� ← Enc: (<) to A.

2. A maps r� into a bipartite state r�� on systems ��, and sends r�� to the challenger together
with descriptions of ensembles of efficient quantum algorithms {B^}^∈K and {C^}^∈K .

3. The challenger runs B: on system � and C: on system � of r�� , measures the output states
in the computational basis to obtain outcomes <� and <� , and outputs 1 if < = <� = <� ,
and 0 otherwise.

We let the random variable CloneExpΣ
(
1_, (A,B, C)

)
denote the output bit of the challenger.

Building on the cloning experiment in 22, we then define unclonable security as follows.

Definition 23 (Unclonable Security). Let _ ∈ N be the security parameter. We say that a QECM
scheme Σ = (KeyGen,Enc,Dec) with message space {0, 1}=(_) is C (_)-unclonable secure if, for all
cloning attacks (A,B, C), it holds that

Pr
[
CloneExpΣ

(
1_, (A,B, C)

)
= 1

]
≤ 2−=(_)+C (_) + negl(_).

Quantum encryption with wrong-key detection
Let us first formalize the “wrong-key detection mechanism” for quantum encryption schemes.

Definition 24 (Wrong-Key Detection). Let (KeyGen,Enc,Dec) be a SKQES. We say that the
scheme satisfies the wrong-key detection (WKD) property if, for every :′ ≠ : ← KeyGen(1_):

‖Dec: ′ ◦ Enc: − 〈|⊥〉 〈⊥|〉‖� ≤ negl(_).

Here, 〈|⊥〉 〈⊥|〉(·) = |⊥〉 〈⊥| Tr[·].

Next, we give a simple transformation that achieves WKD in the QROM.
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Construction 1 (Generic Transformation for WKD in the QROM). Let _ ∈ N be the security
parameter andΠ = (KeyGen,Enc,Dec) be a QECM scheme. Fix a function � : {0, 1}_ → {0, 1}ℓ.
The QECM Π� = (KeyGen′,Enc′,Dec′) scheme is defined by the following QPT algorithms:

• KeyGen′: on input 1_, run KeyGen(1_) to output : ∈ K, with K = {0, 1}_.

• Enc′: on input <, run Enc : K × D(H") → D(H�) and output (Enc: ( |<〉〈< |), � (:)).

• Dec′: on input (r, 2), first check whether � (:) = 2. Output |⊥〉〈⊥|, if false. Otherwise, run
Dec : K × D(H�) → D(H") and output Dec: (r).

Lemma 18. Let Π be any C (_)-unclonable secure QECM and let � : {0, 1}_ → {0, 1}ℓ be a hash
function, for ℓ = 2_. Then, Construction 1 yields an C (_)-unclonable secure QECM scheme Π�
with WKD in the QROM.

Proof. Correctness is clearly preserved. Let us first verify the WKD property of the scheme
Π� = (KeyGen′,Enc′,Dec′) in the QROM. Let : ← KeyGen′(1_). It is not hard to see that the
WKD property depends on the collision probability for the event that � (:) = � (:′), for some
:′ ∈ {0, 1}_ \ {:}. In fact, we can express the quantum channel Dec′

: ′ ◦ Enc
′
:
as follows:

Dec′: ′ ◦ Enc
′
: = Pr[Coll]Dec: ′ ◦ Enc: + (1 − Pr[Coll])〈|⊥〉 〈⊥|〉.

Moreover, by the birthday bound, we have

Pr[Coll] = Pr
�
[∃:′ ∈ {0, 1}_ \ {:} : � (:) = � (:′)]

≤
∑

: ′∈{0,1}_\{:}
Pr
�
[� (:) = � (:′)] = 2_ − 1

22_ .

Hence, we can readily verify the WKD property as follows:

‖Dec′: ′ ◦ Enc
′
: − 〈|⊥〉 〈⊥|〉‖�

= max
r"" ′
‖(Dec′: ′ ◦ Enc

′
: ⊗ 1" ′) (r"" ′) − (〈|⊥〉 〈⊥|〉 ⊗ 1" ′) (r"" ′)‖1

≤ max
r"" ′

‖Pr[Coll]Dec: ′ ◦ Enc: (r"" ′) − Pr[Coll] (〈|⊥〉 〈⊥|〉 ⊗ 1" ′) (r"" ′)‖1

≤ Pr[Coll]max
r"" ′

(
‖r"" ′‖1 + ‖(〈|⊥〉 〈⊥|〉 ⊗ 1" ′) (r"" ′)‖1

)
≤ 2_ − 1

22_−1 = negl(_).

For security, let Π = (KeyGen,Enc,Dec) and recall that Enc′
:
( |<〉〈< |) = (Enc: ( |<〉〈< |), � (:))

according to Constr. 1. Let (A,B, C) be an adversary against the unclonable security game with
respect to Π� . We give a reduction from the unclonable security of Π. Suppose that A receives



42

access to a re-programmed oracle �:,I, where � (:) = I, and that A makes at most @ = poly(_)
queries in total. Without loss of generality, we assume that A is specified by (*$�)@, for some
unitary*. It suffices to argue that the following global states are negligibly close in trace distance:

E�E:EI |�〉 〈� | ⊗ |:〉 〈: | ⊗
(
(*$�:,I )@Enc: ( |<〉 〈< |) ⊗ |I〉 〈I |

(
(*$�:,I )@

)†)
≈E�E:EI |�〉〈� | ⊗ |:〉〈: | ⊗

(
(*$�)@Enc: ( |<〉〈< |) ⊗ |I〉〈I |

(
(*$�)@

)†)
. (3.11)

We use the one-way-to-hiding (Lemma 4) to deduce that the above distance is negligible, so long
as the following quantity is negligible:

E�E:EIEaTr|:〉〈: | (*$�)aEnc: ( |<〉〈< |) ⊗ |I〉〈I |
(
(*$�)a

)†
. (3.12)

Suppose for the sake of contradiction that the latter is non-negligible. Then, we can construct an
adversary that wins at the unlconable security game againstΠ. The reduction is straightforward: the
adversary for the unlconable security game runsA (by simulating the random oracle�) to extract : .
The adversary then decrypts the challenge ciphertext using : , and forwards the appropriate message
< to the decoders B and C. By the assumption that the adversary succeeds with non-negligible
probability, so does the adversary against the unclonable security of Π, yielding a contradiction.

Using Eq. 3.11, Lemma 6 and that Π is C (_)-unclonable secure it follows that, for all QPT cloning
attacks A = (A,B, C) against Π� , there exists a negligible function `(_) such that:

E
<
E

:←K
Tr( |<〉〈< | ⊗ |<〉〈< |) (B: ⊗ C: ) ◦ A ◦ Enc: ( |<〉〈< |) ≤ 2−_+C (_) + `(_).

We conclude that Π� is C (_)-unclonable secure.

Quantum copy-protection of multi-bit point functions from unclonable encryption schemes
with wrong-key detection
We are now ready to state our quantum copy-protection scheme for multi-bit point functions which
we obtain from any unclonable encryption scheme with the aforementioned “wrong-key detection
mechanism.” Here, we consider multi-bit point functions %H,< of the form

%H,< (G) =

< if G = H ,

0_ if G ≠ H ,

where H, < ∈ {0, 1}_. Our construction is the following:

Construction 2 (Quantum copy-protection scheme for multi-bit point functions).
To construct a QCP scheme for multi-bit point functions with input and output sizes _, respectively,
let Π = (KeyGen,Enc,Dec) be a QECM with WKD, with security parameter and message length
equal to _. We define the QCP scheme QCP = (Protect,Eval) as follows:
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• QCP.Protect(1_, %H,<): Takes as input a security parameter _ and a multi-bit point function
%H,<, succinctly specified by the marked input H (of size _) and message < (of size _), and
outputs the quantum ciphertext given by EncH (<).

• QCP.Eval(1_, r; G): Takes as input a security parameter _, an alleged copy-protected pro-
gram r, and a string G ∈ {0, 1}_ (the input on which the program is to be evaluated). Appends
an ancillary qubit in the |0〉 state. Then, coherently4 performs a two-outcome measurement
to check whether DecG (r) is in the state |⊥〉 〈⊥|, or not, and stores the resulting bit in the
ancilla. If true, output 0_. Otherwise, rewind the procedure and measure in the standard
basis to obtain a message <′.

Before stating our main theorem on the security of Construction 2, we define the following two
classes of distributions with respect to multi-bit point functions %H,< of the form

%H,< (G) =

< if G = H ,

0_ if G ≠ H .

First, we letD = {�_} be an ensemble of distributions �_ over multi-bit point functions %H,< over
{0, 1}_ that sample a marked input H as well an output message< uniformly at random with respect
to {0, 1}_. Further, by D′ = {�H} we denote an arbitrary ensemble of challenge distributions,
where each �H is a distribution of challenge input pairs to the program.

We prove the following theorem on the security of Construction 2:

Theorem 3. Let Π = (KeyGen,Enc,Dec) be any C (_)-unclonable secure QECM with WKD such
that _ − C = l(log_). Then, Construction 2 yields a secure quantum copy-protection scheme QCP
for multi-bit point functions with respect to the pair of ensembles (D,D′), against computationally-
bounded adversaries.

Proof. The correctness of the QCP scheme QCP = (Protect,Eval) follows directly from the WKD
property of theQECM. Let Adv = (A,B, C) denote the adversary for PiracyExpQCP

�_,�H
. We consider

two cases, namely when ?triv
�_,�H

= 1 and when ?triv
�_,�H

< 1 (depending on the challenge distribution
D′ = {�H}). In the former case, the scheme is trivially secure by definition and we are done.
Hence, we will assume that ?triv

�_,�H
< 1 for the remainder of the proof. Note that, in this case, the

distribution �H has non-zero weight on the marked input H.
4If Dec is not unitary, performing this measurement coherently requires purifying it.
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Let (G1, G2) ← �H denote the inputs received by the freeloaders B and C during the challenge
phase. We can express the probability that Adv succeeds at PiracyExpQCP

�_,�H
as follows:

Pr[Adv wins]
=Pr[Adv wins | G1≠ H≠G2] ·Pr[G1≠ H≠G2]+Pr[Adv wins | G1= H≠G2] ·Pr[G1= H≠G2]
+Pr[Adv wins | G1≠ H=G2] ·Pr[G1≠ H=G2]+Pr[Adv wins | G1= H=G2] ·Pr[G1= H=G2] . (3.13)

Without loss of generality, we assume that Pr[G1 = H≠G2] ≤ Pr[G1≠ H = G2]. Hence,

Pr[Adv wins] ≤ Pr[Adv wins | G1≠ H≠G2] · Pr[G1≠ H≠G2]
+

(
Pr[Adv wins | G1 = H≠G2] + Pr[Adv wins | G1≠ H = G2]

)
· Pr[G1≠ H = G2]

+ Pr[Adv wins | G1 = H = G2] · Pr[G1 = H = G2] . (3.14)

Let us now state the following simple inequality. By first applying the union bound and then using
that B and C are non-signalling, we find that:

Pr[Adv wins | G1 = H = G2]
= Pr[B succeeds ∧ C succeeds | G1 = H = G2]
≥ Pr[B succeeds | G1 = H = G2] + Pr[C succeeds | G1 = H = G2] − 1

= Pr[B succeeds | G1 = H ≠ G2] + Pr[C succeeds | G1 ≠ H = G2] − 1

≥ Pr[Adv wins | G1 = H ≠ G2] + Pr[Adv wins | G1 ≠ H = G2] − 1. (3.15)

Plugging this into Eq. (3.14), we obtain the following upper bound:

Pr[Adv wins] ≤ Pr[Adv wins | G1 ≠ H ≠ G2] · Pr[G1 ≠ H ≠ G2]
+

(
1 + Pr[Adv wins | G1 = H = G2]

)
· Pr[G1 ≠ H = G2]

+ Pr[Adv wins | G1 = H = G2] · Pr[G1 = H = G2]
≤ Pr[G1 ≠ H ≠ G2] + Pr[G1 ≠ H = G2] + 2 Pr[Adv wins | G1 = H = G2]
= ?triv

�_,�H
+ 2 Pr[Adv wins | G1 = H = G2] . (3.16)

In the last line, we used the assumption that Pr[G1 = H ≠ G2] ≤ Pr[G1 ≠ H = G2] together with the
following simple identity for the trivial guessing probability:

?triv
�_,�H

= Pr[G1 ≠ H ≠ G2] +max
{

Pr[G1 ≠ H = G2], Pr[G1 = H ≠ G2]
}
.

We complete the proof by showing that Pr[Adv wins | G1 = H = G2] ≤ negl(_). This implies that

Pr[Adv wins] ≤ ?triv
�_,�H

+ negl(_). (3.17)
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Suppose that Adv = (A,B, C) succeeds with probability ? = Pr[Adv wins | G1 = H = G2] on the
challenge pair consisting of G1 = H and G2 = H. We will use Adv to construct an adversary against
the unclonable security of the QECM scheme Π. Consider the QPT adversary Adv′ = (A′,B′, C′)
against Π, which we define as follows:

• A′ receives the state r = EncH ( |<〉〈< |) and runs the pirateA on r. Next,A′ passes the two
registers output by A to the decoders B′ and C′.

• The decoders B′ and C′ each receive the marked input H and then run the freeloaders B
and C, respectively, on the two registers prepared by A′. Finally, the decoders output the
outcomes obtained from running the freeloaders.

Since Π is C (_)-unclonable secure, there exists a negligible `(_) such that:

E
<
E
H

Tr( |<〉 〈< | ⊗ |<〉 〈< |) (B′H ⊗ C′H) ◦ A′ ◦ Enc: ( |<〉〈< |) ≤ 2−_+C (_) + `(_).

Since _ − C = l(log_), we conclude that Adv′ succeeds with probability ? ≤ negl(_). This
completes the proof of Eq. (3.17), and thus the proof of Thm. 3.

Finally, when applying the WKD transformation from Construction 1 to the log2(9)-unclonable
encryption scheme by Broadbent and Lord [41], we obtain the following theorem:

Theorem 4. There exists a log2(9)-unclonable secure QECM scheme with WKD for which Con-
struction 2 yields a secure QCP scheme for multi-bit point functions with respect to the pair of
ensembles (D,D′), against query-bounded (computationally bounded) adversaries in the QROM.

3.5 Secure Software Leasing
In this section, consider a weaker notion of quantum copy-protection called “secure software
leasing” (SSL) which was introduced in [17]. The crucial difference between the two notions lies
in the fact that the scheme comes with a prescribed verification routine.

The syntax of a secure software leasing scheme is as follows.

Definition 25 (Secure software leasing). Let F =
⋃
_∈N F_ be a class of efficiently computable

functions 5 : X → Y with domain X and rangeY. A secure software leasing (SSL) scheme for F
consists of QPT algorithms SSL = (Gen, Lease,Eval,Verify) defined as follows:

• SSL.Gen(1_) takes as input the security parameter _ and outputs a secret key sk.

• SSL.Lease(sk, 5 ) takes as input a secret key sk and a function 5 ∈ F_, and outputs a
quantum state r 5 .
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• SSL.Eval(G, r 5 ) takes a string G as input to 5 together with a state r 5 , and outputs H′ and a
post-evaluation state r̃ 5 .

• SSL.Verify(sk, 5 , f) takes as input the secret key sk, the function 5 ∈ F_ and a state f, and
outputs 1, if f is a valid lease state for 5 , and 0 otherwise.

There exists a negligible function ` such that the scheme satisfies:

• Correctness of evaluation: for all _ ∈ N, for all 5 ∈ F_, and for all G in the domain of 5 ,

Pr
[
SSL.Eval(G, r) = 5 (G) : r ← SSL.Lease(sk, 5 ), sk← SSL.Gen(1_)

]
≥ 1−`(_).

• Correctness of verification: for all _ ∈ N and for all 5 ∈ F_,

Pr
[
SSL.Verify(sk, 5 , r) = 1 : r ← SSL.Lease(sk, 5 ), sk← SSL.Gen(1_)

]
≥ 1 − `(_).

Security is defined in terms of a security game between a lessor and an adversary A (the lessee).
Informally, any secure software leasing (SSL) scheme should satisfy the following key property.
After receiving a leased copy of 5 denoted by r 5 (generated using SSL.Lease), the adversary
should not be able to produce a quantum state f on registers R1 and R2 such that:

• SSL.Verify deems the contents of register R1 of fR1R2 to be valid, once it is returned.

• The adversary can still compute 5 (on inputs chosen by the lessor) from the post-measurement
state in register R2 given by f∗R2

∝ TrR1

[
Π1

[ (
SSL.Verify(·)R1 ⊗ 1R2

)
fR1R2

] ]
.

As in the case of quantum copy-protection schemes, we consider a program ensemble distribution
D = {�F_}_∈N and an input challenge ensemble of distributions {DX ( 5 )} 5 ∈F_ . To formalize the
security of SSL schemes, we consider the following experiment.

Definition 26 (Piracy experiment for secure software leasing). LetSSL = (Gen, Lease,Eval,Verify)
be a secure software leasing scheme for a class of functionsF=

⋃
_∈N F_ with domainX and range

Y. Let DF = {DF_}_∈N be an ensemble of distributions over F_ and let DX = {DX ( 5 )} 5 ∈F_ be
an ensemble of challenge distributions over function inputs X. The security game (which we call
piracy experiment) takes place as follows between a lessor and a QPT adversary A:

1. The lessor samples a function 5 ← F_ and runs sk ← SSL.Gen(1_). Then, the lessor runs
r ← SSL.Lease(sk, 5 ). The lessor sends r to A.
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2. A outputs a (possibly entangled) state f on two registers R1 and R2, and then sends the first
register R1 to the lessor.

3. For verification, the lessor runs SSL.Verify on input the secret key sk, a function 5 ∈ F_ and
the register R1 of the state fR1R2 . If SSL.Verify accepts, the lessor outputs ok = 1 and lets
the game continue, otherwise, the lessor outputs ok = 0 and A loses.

4. The lessor samples G ← DX , and sends G to the adversary A.

5. A responds with a bit 1. If 1 = 5 (G), the lessor outputs 1. Otherwise, the lessor outputs 0.

We let the random variable PiracyExpSSLDF,DX
(
1_,A

)
denote the output bit of the challenger.

We now give a formal definition of security.

Definition 27 (Security). Let SSL = (Gen, Lease,Eval,Verify) be an SSL scheme for a class of
functions F =

⋃
_∈N F_. Let DF = {DF_}_∈N be an ensemble of distributions over F_ and let

DX = {DX ( 5 )} 5 ∈F_ be an ensemble of distributions overX. Then, SSL is called (DF,DX)-secure
if, for any QPT algorithm A, it holds that

Pr
[
PiracyExpSSLDF,DX

(
1_,A

)
= 1

]
≤ ?triv,SSL

DF,DX + negl(_),

Here, ?triv,SSL
DF,DX is the trivial winning probability which corresponds to the guessing probability of

the challenge distribution DX . In other words,

?
triv,SSL
DF,DX = max

G∈X
E 5←DF_ �̂ 5 (G),

where �̂ 5 (G) is the probability that the correct answer to a challenge sampled from DF_ is G.

3.6 Secure Software Leasing for Compute-and-Compare Programs
In this section, we show how to obtain an SSL scheme for a general class of compute-and-compare
programs [131, 76]. A compute-and-compare program CC[ 5 , H] is specified by an efficiently
computable function 5 : {0, 1}= → {0, 1}< and a string H ∈ {0, 1}< in its range, where

CC[ 5 , H] (G) =


1 if 5 (G) = H ,

0 if 5 (G) ≠ H .
Note that point functions are a special case of compute-and-compare programs where the function
5 is the identity map.

In this section, we show how to lease CC[ 5 , H] in the following simple way: the encoded program
consists of (a description of) a function 5 in the clear, together with a quantumly encoded version
of the point function with marked input H. In fact, it is straightforward to show that the SSL security
of the extended construction reduces to the SSL security of the original point function scheme.
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Secure software leasing for single-bit point functions
First, we show how to obtain an SSL scheme for single-bit point functions {%H}H∈{0,1}_ of the form

%H (G) =


1 if G = H ,

0 if G ≠ H .

Specifically, we will focus on our attention on unpredictable point function distributions consisting
of a distribution �_ over point functions on {0, 1}_ such that %H ← �_ satisfies Hmin(H) ≥ _n for
some n > 0. We will now state our SSL scheme for single-bit point functions. In the following, we
omit the procedure SSL.Gen as we do not require it in our construction.

Construction 3 (SSL scheme for point functions). Let _ be the security parameter, and let � :
{0, 1}<(_) → {0, 1}_ and � : {0, 1}= → {0, 1}<(_) be hash functions, where <(_) ≥ _. Consider
the following secure software leasing (SSL) scheme (SSL.Lease,SSL.Eval,SSL.Verify) for point
functions %H with marked input H ∈ {0, 1}=:

• SSL.Lease(1_, H): Takes as input a security parameter _ and a point function %H, succinctly
specified by the marked input H (of size =)

– Set \ = � (H).
– Sample E ← {0, 1}<(_) uniformly at random and let I = � (E).
– Output ( |E\〉 , I).

• SSL.Eval(1_, (r, I); G): Takes as input a security parameter _, a program (r, I), and a string
G ∈ {0, 1}= (the input on which the program is to be evaluated).

– Set \′ = � (G).
– Apply Hadamards �\ ′ = �\ ′1 ⊗ · · · ⊗ �\ ′

_ to r. Append = + 1 ancillary qubits, all in
state |0〉, and compute the hash function � with input r into the first = of them (possibly
making use of additional ancillary qubits). Then, coherently measure whether the first
= ancilla qubits are in state |I〉, recording the result in the last ancilla qubit, uncompute
the hash function � and undo the Hadamards �\ ′. Finally, measure the last ancilla
qubit to obtain a bit 1 as output.

• SSL.Verify(1_, H, I, f): Apply �\ to the input state f, where \ = � (H), and measure in the
standard basis. Output 1 if the result is E such that � (E) = I, and 0 otherwise.

The correctness property of Construction 3 according to Definition 25 is immediate to verify.
Before stating our main theorem on the security of Construction 3, we introduce a few classes of
distributions over point functions and input challenges.
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• DPF-UNP. The class of unpredictable point function distributionsDPF-UNP consists of ensem-
bles � = {�_} where �_ is a distribution over point functions on {0, 1}_ such that %H ← �_

satisfies Hmin(H) ≥ _n for some n > 0.

We also define the following class of distributions over input challenges.

• DPF-Chall-SSL. An ensemble � = {�H}, where each �H is a distribution over {0, 1} |H |, belongs
to the classDPF-Chall-SSL if there exists an efficiently sampleable family {-_} of distributions
over {0, 1}_ with Hmin(-_) ≥ _n , for some n > 0, such that �H is the following distribution
(where _ = |H |):

– with probability 1/2, output H.

– with probability 1/2, sample G ← -_, and output G.

We say the ensemble � is specified by the ensemble -_.

We finally define two classes of distributions over pairs of programs and challenges.

• DPF-pairs-stat-SSL. This consists of pairs of ensembles
(
� = {�_}, �′ = {�′H}

)
where � ∈

DPF-UNP and �′ ∈ DPF-Chall-SSL satisfying the following. Let �′ be parametrized by the
family {-_} (following the notation introduced above), and denote by MarkedInput(�_) the
distribution over marked points in {0, 1}_ induced by �_. Then, the families {-_} and
{MarkedInput(�_)} are statistically indistinguishable.

• DPF-pairs-comp-SSL. This is defined in the same way as DPF-pairs-stat-SSL, except that we only
require {-_} and {MarkedInput(�_)} to be computationally indistinguishable.

The following is our main result on the security of Construction 3.

Theorem 5. The scheme of Construction 3, with <(_) = poly(_), is a secure software leasing
scheme for point functions with respect to any pair of ensembles (D,D′) ∈ DPF-pairs-stat-SSL (∈
DPF-pairs-comp-SSL), against query-bounded (computationally bounded) adversaries in the quantum
random oracle model.

Theorem 5 implies that, once a leased copy is successfully returned to the lessor, no adversary can
distinguish the marked input of a point function from a random (non-marked) input with probability
better than 1/2, except for a negligible advantage (in the parameter _).

We give a proof of Theorem 5 in the next section.
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Proof of security
To prove the theorem, we rely on a few technical results.

Lemma 5. Let U ∈ C= and �1, . . . , �= ∈ C<×<. Then, it holds that

Tr
[ =∑
8=1

U8�8

]
≤ ‖U‖1 ·

=∑
8=1
|Tr[�8] |.

Proof. Using the Cauchy-Schwarz inequality, we have

Tr
[ =∑
8=1

U8�8

]
=

=∑
8=1

U8Tr
[
�8

]
≤

√√
=∑
8=1
|U8 |2 ·

√√
=∑
8=1
|Tr

[
�8

]
|2.

The claim follows from the norm inequality ‖G‖2 ≤ ‖G‖1, for all G ∈ C=.

Lemma 6. Let 0 ≤ Π ≤ 1 and let r and f be states such that TD(r, f) ≤ W. Then,

Tr[Πr] − W ≤ Tr[Πf] ≤ Tr[Πr] + W.

Proof. By the standard identity TD(f, r) = max
0≤Λ≤1

Tr[Λ(f − r)], it follows that:

Tr[Πf] = Tr[Πr] + Tr[Π(f − r)]
≤ Tr[Πr] + max

0≤Λ≤1
Tr[Λ(f − r)]

= Tr[Πr] + TD(f, r)
≤ Tr[Πr] + W.

The other inequality can be shown by reversing the role of r and f.

Lemma 7 ([127], Lemma 18). Let \ ∈ {0, 1}< and define Πeq
\
=

∑
E∈{0,1}< �

\ |E〉 〈E | �\ ⊗
�\ |E〉 〈E | �\ (i.e., the projector that checks if two registers yield the same outcome if measured in
the �\ basis). Then, the following is true for every C ∈ [<]. For any approximate EPR state,

|q+01〉 =
1
√

2<
∑

E∈{0,1}<
|E〉 ⊗ -0/1 |E〉 ,

where 0, 1 ∈ {0, 1}< have Hamming weight at most C, it follows that:

• Πeq
\
|q+
01
〉 = |q+

01
〉 holds if and only if for all 8 ∈ [<]:

(\8 = 0 ∧ 08 = 0) ∨ (\8 = 1 ∧ 18 = 0).

• Πeq
\
|q+
01
〉 = 0 holds for all other cases.
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We also rely on the next lemma which is based on a result by Unruh [127, Lemma 15]. To state the
lemma, we define the projector onto the subspace spanned by EPR-pairs in registers XY with up to
C ∈ N single-qubit Pauli operators applied to register Y:

ΠEPR
C =

∑
0,1∈{0,1}<
F(0),F(1)≤C

|q+01〉 〈q
+
01 | , |q+01〉 =

1
√

2<
∑

E∈{0,1}<
|E〉 ⊗ -0/1 |E〉 ,

where F(0), F(1) denote the Hamming weights of the strings 0 and 1. Since
{
|q+
01
〉 : 0, 1 ∈

{0, 1}<
}
forms an orthogonal basis of XY, any state r such that

(
ΠEPR
C ⊗ 1R

)
rXYR = rXYR on

registers X,Y and R can be written as follows (where 0, 1 of weight greater than C have probability
zero):

rXYR =
∑

0,1∈{0,1}<
F(0),F(1)≤C

?01

(
|q+01〉 〈q

+
01 |XY ⊗ f

0,1

R

)
, (3.18)

for some arbitrary states f0,1 and indices 0, 1 ∈ {0, 1}<. We show the following lemma:

Lemma 8 (Monogamy uncertainty relation). Fix a parameter C ∈ N and string \ ∈ {0, 1}<. Let r
be a density matrix on registers X,Y and R with(

ΠEPR
C ⊗ 1R

)
rXYR

(
ΠEPR
C ⊗ 1R

)
= rXYR.

Let {ΠE′}E′∈{0,1}< be a POVM acting on register R and suppose that a measurement according to
the set

{
�\ |E〉 〈E |X �\ ⊗ 1Y ⊗ ΠE′R

}
E′∈{0,1}< is performed on systems XYR. Then,

Pr[E′ = E] =
∑

E∈{0,1}<
Tr

[ (
�\ |E〉 〈E |X �\ ⊗ 1Y ⊗ ΠER

)
rXYR

]
≤ 2−< (< + 1)2C .

Hence, the min-entropy of the random variable + (with outcome E) given register R is at least

Hmin(+ |R)r ≥ < − 2C log(< + 1).

Proof. For brevity, we define a family of projectors {Λ\D}D acting on registers X and Y, where

Λ\D =
(
�\ |D〉 〈D |X �\ ⊗ 1Y

)
.

Let ) be the set of all possible indices of weight less or equal than C. Now, using decomposition
(3.18), we can bound the success probability of measuring E′ = E using the information in the
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ancilla register R as follows:

Pr[E′ = E]

=
∑

E∈{0,1}<
Tr

[ (
�\ |E〉 〈E |X �\ ⊗ 1Y ⊗ ΠER

)
rXYR

]
=

∑
E∈{0,1}<

Tr
[ ∑
0,1∈{0,1}<
F(0),F(1)≤C

?01

(
Λ\E |q+01〉 〈q

+
01 |XY Λ

\
E

)
⊗

(
ΠEf

0,1

R

) ]
(by def.)

≤
∑

E∈{0,1}<

( ∑
0,1∈{0,1}<
F(0),F(1)≤C

?01

)
·
( ∑
0,1∈{0,1}<
F(0),F(1)≤C

‖Λ\E |q+01〉 ‖
2 · Tr

[
ΠEf

0,1

R
] )

(Lem. 5)

=
∑

E∈{0,1}<

∑
0,1∈{0,1}<
F(0),F(1)≤C

‖�\ |E〉 〈E |X �\ ⊗ 1Y |q+01〉 ‖
2 · Tr

[
ΠEf

0,1

R
]

(by def.)

=
∑

E∈{0,1}<

∑
0,1∈{0,1}<
F(0),F(1)≤C

‖�\ |E〉 〈E |X �\ ⊗ -0/1Y |q
+〉 ‖2 · Tr

[
ΠEf

0,1

R
]

=
∑

E∈{0,1}<

∑
0,1∈{0,1}<
F(0),F(1)≤C

‖�\ ⊗ -0/1�\
(
|E〉 〈E |X ⊗ 1Y

)
|q+〉 ‖2 · Tr

[
ΠEf

0,1

R
]

=
∑

E∈{0,1}<

∑
0,1∈{0,1}<
F(0),F(1)≤C

Tr
[
ΠEf

0,1

R
]

2<
=

∑
0,1∈{0,1}<
F(0),F(1)≤C

Tr
[
f
0,1

R
]

2<
=
|) |
2<
,

where in the second-to-last step we used the completeness property that
∑
E ΠE = 1, and in the last

step we use that the f0,1 have unit trace, for every 0, 1 ∈ {0, 1}<. It now suffices to bound |) |, the
number of error indices of weight less or equal to C. In total we have C indices to assign to < + 1
possible choices (we add an additional degree of freedom to account for when there are no errors
assigned). Since we have two independent indices 0, 1 ∈ {0, 1}<, we get:

Pr[E′ = E] ≤ 2−< |) | ≤ 2−< (< + 1)2C .

This proves the claim.

Let us now proceed with the security proof. We consider the following sequence of hybrids of
SSLGame. We will show that the optimal winning probability in each successive hybrid changes
at most negligibly. We will then bound the optimal winning probability in the final hybrid.

�0: This is the original game SSLGame in Section 3.5:

• The lessor runsSSL.Lease(1_, H ∈ {0, 1}_) to sample E ← {0, 1}< and \ ← � (H) ∈ {0, 1}<,
and sends ( |E\〉 , � (E)) together with a circuit for SSL.Eval to the adversary A.
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• Having access to the random oracles� and�, the adversaryA outputs a (possibly entangled)
state f on two registers Y and R, and sends the register Y to the lessor.

• For verification, the lessor runs SSL.Verify(H,Y): Measure the register Y in the �\ basis
according to \ = � (H). If the outcome is equal to E such that � (E) = I, the lessor outputs
ok = 1 and lets the game continue, otherwise, the lessor outputs ok = 0 and A loses.

• Conditioning on ok = 1, the lessor sends the adversary a sample G ← DH to which A
responds with a bit (we refer to this phase of the security game as the “input challenge
phase”). Using the string H given as input, the lessor outputs 1, if the bit is equal to %H (G),
and 0 otherwise.

�1: The game is the same as before, except that in the input challenge phase the lessor samples
G ← �H, and sends � (G) to A, (instead of sending G directly).

�2: The game is the same as before, except for the input challenge phase. The lessor sam-
ples G ← �H. Then, if G ≠ H, the lessor chooses \′← {0, 1}< and sends \′ toA (instead of � (G)).

�3: The game is the same as before, except that the lessor samples \ ← {0, 1}< (instead of
\ ← � (H)). Then, in the input challenge phase, the lessor samples G ← �H. If G = H, the lessor
sends \ to A.

�4: The game is identical to the game before, except that we replace � (E) with a uniformly
random string I ← {0, 1}_.

First, we show that the advantage of any adversary in �4 is negligible. In the rest of the section, we
denote by ?(�8) the optimal winning probability in hybrid �8.

Lemma 9. ?(�4) ≤ 1
2 .

Proof. First, the optimal probability of the adversary winning the game can only increase if we
remove the verification portion of the game, and the lessor directly executes the input challenge
phase.

Then, we consider the state received by the adversary in the two distinct cases of the input challenge
phase.
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• The lessor samples the marked point. In this case, the state received by the adversary is the
following, which is completely independent of the oracle �:

E\,E

(
|E\〉 〈E\ | ⊗ |\〉 〈\ |

)
⊗ EI |I〉 〈I | .

Notice that the latter state is maximally mixed.

• The lessor samples a point other than the marked point. In this case, the adversary receives
the following state, which is again independent of the oracle:

E\,\ ′,E

(
|E\〉 〈E\ | ⊗ |\′〉 〈\′|

)
⊗ EI |I〉 〈I | .

The latter state is again maximally mixed.

Thus, an adversary can win the game �4 with probability at most 1
2 .

We will now show that the optimal success probabilities in successive hybrids do not deviate by
more than a negligible amount.

Lemma 10. |?(�1) − ?(�0) | = negl(_).

Proof. The proof follows immediately from the fact that � is a random oracle, and hence the
pre-image G does not help the adversary and can be simulated.

Lemma 11. |?(�2) − ?(�1) | = negl(_).

Proof. This follows immediately from the following observation: Any adversary that wins with
non-negligible difference in �2 and �1 immediately yields a distinguisher for � (-_) and *<(_) .
This violates Corollary 1.

Lemma 12. |?(�3) − ?(�2) | = negl(_).

Proof. The proof is analogous as in the previous lemma, where an adversary that wins with
probabilities that differ non-negligibly in�3 and�2 yields a distinguisher for� (-_) and*<(_) .

The crux of the security proof is showing that ?(�3) and ?(�4) are negligibly close.

Lemma 13. |?(�4) − ?(�3) | = negl(_) .

The rest of the section is devoted to proving this lemma. At a high level, the proof has two parts:
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• For any adversary making @ queries to the oracle, we bound the difference between the
winning probability in �3 and in �4 by poly(@) · " , where " is a quantity related to the
probability that the adversary queries the oracle at the encoded string E.

• Then, we show that the quantity " is negligible.

Lemma 14. Let A be an adversary for �3 and �4, making poly(_) oracle queries (pre and post
verification). Suppose that A passes the verification step with probability at least 1

2 − negl(_) in
�3. Let A be specified by the unitary * (i.e. A alternates oracles calls with applications of *).
Let ?E,\,I,� ∈ [0, 1], and let rE,\,I,�R be density matrices, for all E, \, I, �. Let

fLR = EE,\,I,� ?E,\,I,� ( |�〉 〈� | ⊗ |E〉 〈E | ⊗ |\〉 〈\ | ⊗ |I〉 〈I |)L ⊗ rE,\,I,�R

be the post-verification state of the lessor and A in �4 conditioned on A passing the verification
step. Let g\ = 1

2 |\〉 〈\ | +
1
2E\ ′ |\

′〉 〈\′|. Then,

| Pr[A wins in �3] − Pr[A wins in �4] | ≤ poly(_) · " + negl(_) ,

where

" =
1
2
E�EEE\EIE: ?E,\,I,�Tr|E〉 〈E | (*$�E,I ):

(
r
E,\,I,�

R ⊗ g\
) (
*$�E,I ):

)†
+ 1

2
E�EEE\EIE: ?E,\,I,�Tr|E〉 〈E | (*$�):

(
r
E,\,I,�

R ⊗ g\
) (
*$�):

)†
.

Proof. As we have done in several earlier proofs, we can recast �3 as follows: A receives a
uniformly random I, and gets access to a the reprogrammed oracle �E,I. Let |E\〉 denote the
encoding of string E using basis \. Let @1 and @2 denote the number of queries made by the
adversary, respectively, before and after the verification phase.

First notice that the global states of the lessor and adversary right before the verification is executed
are negligibly close in trace distance in �3 and �4.

E�EEE\EI |�〉 〈� | ⊗ |E〉 〈E | ⊗ |\〉 〈\ | ⊗
(
(*$�E,I )@1 |E\〉 〈E\ | ⊗ |I〉 〈I |

(
(*$�E,I′ )@1

)†)
≈E�EEE\EI |�〉 〈� | ⊗ |E〉 〈E | ⊗ |\〉 〈\ | ⊗

(
(*$�)@1 |E\〉 〈E\ | ⊗ |I〉 〈I |

(
(*$�)@1

)†)
. (3.19)

Here we have stored the complete function � in an additional register, the quantum way of
formulating indistinguishability of the joint distribution of � and the adversary’s state.

Equation (3.19) follows from the one-way-to-hiding lemma (Lemma 4), and the fact that A only
queries at E with negligible probability (otherwise A would straightforwardly imply an adversary
that wins the monogamy game (more precisely the variant of Lemma 1).
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It follows that:

• The probabilities of A passing the verification step in �3 and in �4 are negligibly close.

• The post-verification states, conditioned on passing verification must be negligibly close (this
uses (3.19) together with the fact that, by hypothesis, A passes verification with probability
at least 1

2 − negl(_)).

By definition, the joint state of lessor and adversary post-verification state in �4 conditioned onA
passing verification is

fLR = EE,\,I,� ?E,\,I,� ( |�〉 〈� | ⊗ |E〉 〈E | ⊗ |\〉 〈\ | ⊗ |I〉 〈I |)L ⊗ rE,\,I,�R .

Let the analogous state in �3 be

f̃LR = EE,\,I,� ?E,\,I,� ( |�〉 〈� | ⊗ |E〉 〈E | ⊗ |\〉 〈\ | ⊗ |I〉 〈I |)L ⊗ r̃E,\,I,�R .

Then fL,R ≈ f̃L,R. Now, denote by {Π0,Π1} the projective measurement performed by A to guess
the answer to the input challenge phase. Then,

Pr[A wins in �4 |verification is passed]

= EE,\,I,� ?E,\,I,�

[
1
2

TrΠ1(*$�)@2 r
E,\,I,�

R ⊗ |\〉 〈\ |
(
(*$�)@2

)†
+ 1

2
E\ ′TrΠ0(*$�)@2 r

E,\,I,�

R ⊗ |\′〉 〈\′|
(
(*$�)@2

)†]
. (3.20)

And, similarly,

Pr[A wins in �3 |verification is passed]

= EE,\,I,� ?E,\,I,�

[
1
2

TrΠ1(*$�E,I )@2 r̃
E,\,I,�

R ⊗ |\〉 〈\ |
(
(*$�E,I )@2

)†
+ 1

2
E\ ′TrΠ0(*$�E,I )@2 r̃

E,\,I,�

R ⊗ |\′〉 〈\′|
(
(*$�E,I )@2

)†]
≈ EE,\,I,� ?E,\,I,�

[
1
2

TrΠ1(*$�E,I )@2 r
E,\,I,�

R ⊗ |\〉 〈\ |
(
(*$�E,I )@2

)†
+ 1

2
E\ ′TrΠ0(*$�E,I )@2 r

E,\,I,�

R ⊗ |\′〉 〈\′|
(
(*$�E,I )@2

)†]
. (3.21)
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Using equations (3.20) and (3.21), and applying the O2H lemma twice (once to bound the distance
between the first terms in expressions (3.20) and (3.21), and once to bound the distance between
the second terms in (3.20) and (3.21)), we obtain:

|Pr[A wins in �4 |verification is passed] − Pr[A wins in �3 |verification is passed] |

≤ poly(_) · 1
2
EE,\,I,� ?E,\,I,�Tr|E〉 〈E | (*$�):

(
r
E,\,I,�

R ⊗ |\〉 〈\ |
) (
*$�):

)†
+ poly(_) · 1

2
EE,\,I,� ?E,\,I,�Tr|E〉 〈E | (*$�E,I ):

(
r
E,\,I,�

R ⊗ |\〉 〈\ |
) (
*$�E,I ):

)†
+ poly(_) · 1

2
EE,\,I,�,\ ′ ?E,\,I,�Tr|E〉 〈E | (*$�):

(
r
E,\,I,�

R ⊗ |\′〉 〈\′|
) (
*$�):

)†
+ poly(_) · 1

2
EE,\,I,�,\ ′ ?E,\,I,�Tr|E〉 〈E | (*$�E,I ):

(
r
E,\,I,�

R ⊗ |\′〉 〈\′|
) (
*$�E,I ):

)†
+ negl(_)

= poly(_) · 1
2
EE,\,I,� ?E,\,I,�Tr|E〉 〈E | (*$�):

(
r
E,\,I,�

R ⊗ g\
) (
*$�):

)†
+ poly(_) · 1

2
EE,\,I,� ?E,\,I,�Tr|E〉 〈E | (*$�E,I ):

(
r
E,\,I,�

R ⊗ g\
) (
*$�E,I ):

)†
+ negl(_)

= poly(_) · " + negl(_) , (3.22)

where to get two equalities we used the definition of g\ and " . This is the desired bound.

In the rest of the section, we show that the quantity " from Lemma 14 is negligible. First of all,
notice that " is negligible if and only if the second term in " is negligible, i.e., if and only if,

E�EEE\EIE: ?E,\Tr|E〉 〈E | (*$�):
(
r
E,\,I,�

R ⊗ g\
) (
*$�):

)†
= negl(_) . (3.23)

where we are using the same notation as in Lemma 14. Thus, what we wish to show is equivalent
to showing that, for any adversary A in �4 who passes verification with probability at least
1
2 − negl(_), the probability of querying the oracle at the encoded string E at any point after a
successful verification is negligible.

Thus, we will show that (3.23) is negligible. First, notice that an adversary A which passes
verification in �4 with probability at least 1

2 − negl(_) and violates (3.23) immediately implies an
adversary which succeeds at the following game �̃0 with non-negligible probability.

�̃0: This is identical to �4 except we ask the adversary to return a guess

E′ for the encoded string E, instead of a bit. A wins if E′ = E.

The reduction crucially uses the hypothesis that A passes verification with probability at least
1
2 −negl(_). We will show through another sequence of hybrids (which we denote using tildes) that
the optimal winning probability in �̃0 is negligible. This will complete the proof that the quantity
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in (3.23), and thus " is negligible, for any adversary A who passes verification with probability
at least 1

2 − negl(_). Since the optimal winning probability in �3 and �4 is at least 1
2 (the honest

strategy followed by random guessing achieves 1
2 ), this concludes the proof of Lemma 13, and

hence that the optimal winning probability in �0 is at most 1
2 + negl(_). The following are the

hybrids.

�̃1: Instead of sampling E ← {0, 1}< and \ ← {0, 1}< at the beginning of the game, the lessor now
prepares an EPR pair on two registers X and Y, and sends the registers YZ of the state |q+〉XY ⊗ |I〉Z
toA. Rather than running SSL.Verify for verification and measuring the register Y, the lessor now
measures both registers X and Y in the �\ basis for a random \ ← {0, 1}<, and checks if the
outcomes result in the same string, which we denote by E.

�̃2: This game is identical to the one before, except that we change the verification procedure as
follows. Instead of measuring each of the registers X and Y in the �\ basis, the lessor nowmeasures
a bipartite projector Πeq

\
in order to check if the registers XY yield the same outcome if measured

in the �\ basis. We define the projector as follows:

Π
eq
\
=

∑
E∈{0,1}<

�\ |E〉 〈E |X �\ ⊗ �\ |E〉 〈E |Y �\ .

Afterwards, the lessor measures register X in the �\ basis to determine E.

We will denote these hybrids using a tilde to distinguish them from the original sequence of hybrids.

Lemma 15. ?(�̃1) = ?(�̃0).

Proof. The argument is fairly standard. We consider the following two statements:

• sample E ← {0, 1}<, let \ ∈ {0, 1}<, and output
⊗<

8=1 |E
\8
8
〉Y.

• create an <-qubit EPR pair |q+〉XY, measure X in the �\ basis, and output register Y.

It is evident that the equivalence of the two statements implies that ?(�̃1) and ?(�̃0) are identical.
Note that we omit the register |I〉 in the proof, since it is independent of the EPR registers and thus
does not affect the argument. Consider the following family of projectors given by

{
(
�\ |E〉 〈E | �\ ⊗ 1Y

)
}E∈{0,1}< .
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Let us now analyze the post-measurement state |kE〉 /
√
〈kE | kE〉 with respect to the state given by

|kE〉 =
(
�\ |E〉 〈E |X �\ ⊗ 1Y

)
|q+〉. We have,

|kE〉XY =
(
�\ |E〉 〈E | �\ ⊗ 1

)
|q+〉XY

=

( (
�\ ⊗ 1

) (
|E〉 〈E | ⊗ 1

) (
�\ ⊗ 1

) )
|q+〉XY

=

( (
�\ ⊗ 1

) (
|E〉 〈E | ⊗ 1

) (
1 ⊗ �\

) )
|q+〉XY (ricochet property)

= 2−</2
∑

E′∈{0,1}<

( (
�\ ⊗ 1

) (
|E〉 〈E | ⊗ 1

) (
1 ⊗ �\

) )
|E′〉X ⊗ |E′〉Y

= 2−</2
∑

E′∈{0,1}<
�\ |E〉X 〈E | E′〉 ⊗ �\ |E′〉Y

= 2−</2�\ |E〉X ⊗ �\ |E〉Y .

This proves the claim, since the Y register of |kE〉 /
√
〈kE | kE〉 is identical to

⊗<

8=1 |E
\8
8
〉.

Lemma 16. ?(�̃2) = ?(�̃1)

Proof. The lemma is immediate as the measurement in �̃2 is a coarse-graining of the measurement
in �̃1, with the acceptance condition remaining the same.

In the remaining part of the proof, we will show that ?(�̃2) is negligible. The following is an
important technical lemma, which is inspired by Lemma 16 and Lemma 19 in [127].

Lemma 17. ?(�̃2) = negl(_) .

Proof. Let A be an adversary for �̃2. Denote by E′ the final guess returned by the adversary, and
by E the encoded string. Let ok be a random variable for whether the verification passes. Then, the
winning probability of A in �̃2 is given by:

Pr
[
E′ = E ∧ ok = 1] .

We show that, for any C ∈ [<],

Pr
[
E′ = E ∧ ok = 1] ≤ 2−< (< + 1)2C + 2

−C−1
2 . (3.24)

Picking C ≈
√
< then gives the desired result, as the RHS becomes negligible in _.

Fix a basis choice \ ∈ {0, 1}<. Let r\ be the state on registers X,Y andR in �̃2 after the verification,
where R is the leftover register held onto by A that also includes the challenge g\ (where g\ was
defined in Lemma 14) sent by the lessor after verification.
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In the analysis that follows, it is convenient to approximate r\ by an ideal state that is diagonal in a
basis for the image of ΠEPR

C ⊗ 1R, where ΠEPR
C is as defined in Lemma 8. Recall that ΠEPR

C projects
onto the subspace spanned by EPR pairs with up to C Pauli errors, i.e., onto the space spanned by
the orthogonal basis states

{
|q+
01
〉 : 0, 1 ∈ {0, 1}<

}
, where

|q+01〉 =
1
√

2<
∑

E∈{0,1}<
|E〉 ⊗ -0/1 |E〉 . (3.25)

We can use Lemma 3 to argue that there exists such an ideal state rid
\
, and that the trace distance

between the two states satisfies:

‖r\ − rid\ ‖tr ≤
√

1 − Tr
[ (
ΠEPR
C ⊗ 1R

)
r\

]
.

We can represent the adversary’s strategy in guessing E, after verification, by a projective measure-
ment {ΠE′}E′.

We are now ready to bound the probability Pr
[
E′ = E ∧ ok = 1]. Let Θ be a random variable for

the basis choice made by the lessor. Then, by marginalizing over Θ, we get:

Pr
[
E′ = E ∧ ok = 1

]
=

∑
\∈{0,1}<

2−< · Pr
[
E′ = E | ok = 1 ∧ Θ = \

]
· Pr[ok = 1|Θ = \]

≤
∑

\∈{0,1}<
2−< · Pr

[
E′ = E | ok = 1 ∧ Θ = \

]
= E\ Pr[E′ = E | ok = 1 ∧ Θ = \] . (3.26)

Fix any \. Using Lemma 6 and Lemma 8 we obtain:

Pr
[
E′ = E | ok = 1 ∧ Θ = \

]
≤ 2−< (< + 1)2C + TD(r\ , rid\ )

≤ 2−< (< + 1)2C +
√

1 − Tr
[ (
ΠEPR
C ⊗ 1R

)
r\

]
. (3.27)

Now, averaging over \ in the above inequality gives:

E\ Pr[E′ = E | ok = 1 ∧ Θ = \] ≤ 2−< (< + 1)2C + E\
√

1 − Tr
[ (
ΠEPR
C ⊗ 1R

)
r\

]
≤ 2−< (< + 1)2C +

√
E\Tr

[( (
1 − ΠEPR

C

)
⊗ 1R

)
r\

]
. (3.28)

where the last inequality follows from Jensen’s inequality. We will proceed to bound the above
term E\Tr

[ ( (
1 − ΠEPR

C

)
⊗ 1R

)
r\

]
by 2−C−1. Let us first show that for any 0, 1 ∈ {0, 1}<:

?01
def
=

∑
\∈{0,1}<

2−<Tr
[ (
1 − ΠEPR

C

)
Π

eq
\
|q+01〉 〈q

+
01 |XY

]
≤ 2−C−1. (3.29)

This follows from considering the following two cases:
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• F(0), F(1) ≤ C: Using Lemma 7 we find that one of the following is true. Depending on
\, either Πeq

\
|q+
01
〉 = 0 or Πeq

\
|q+
01
〉 = |q+

01
〉. We also get that

(
1 − ΠEPR

C

)
|q+
01
〉 = 0, since

ΠEPR
C |q+

01
〉 = |q+

01
〉, and thus it follows that ?01 = 0.

• max
(
F(0), F(1)

)
≥ C + 1: Here, Lemma 7 implies that there are at most 2</2C+1 many

values of \ for which it holds that Πeq
\
|q+
01
〉 ≠ 0, and thus ?01 ≤ 2−< · 2</2C+1 = 2−C−1.

Observe now thatΠEPR
C and |q+

01
〉 〈q+

01
| are diagonal in the Bell basis, hence they commute. Lemma

7 implies that the same is also true for the projector Πeq
\
. For any fixed \ ∈ {0, 1}<, we express r\

as a generic density operator on registers X, Y and R such that, for a finite index set �\ , coefficients
@8 9 and an orthogonal basis {|k8,\〉 : 8 ∈ �\} the registers X and Y:

r\ =
∑
8, 9∈� \

@8 9 |k 9 ,\〉〈k 9 ,\ |XY ⊗ f
8, 9 ,\

R , (3.30)

where f8, 9 ,\ are matrices for indices 8, 9 ∈ �\ . Since we assumed that r\ is the state conditioned on
the verification being successful for some \, we have the property that(

Π
eq
\
⊗ 1R

)
r\

(
Π

eq
\
⊗ 1R

)
= r\ , ∀\ ∈ {0, 1}< . (3.31)

In other words, r\ on is invariant under the action of the projector Πeq
\
⊗ 1R. Then,

E\Tr
[ (
1 − ΠEPR

C

)
⊗ 1R r\

]
=

∑
\∈{0,1}<

2−<Tr
[ (
1 − ΠEPR

C

)
⊗ 1R r\

]
=

∑
\∈{0,1}<

2−<Tr
[ (
1 − ΠEPR

C

)
⊗ 1R

(
Π

eq
\
⊗ 1R

)
r\

(
Π

eq
\
⊗ 1R

) ]
(Eq. (3.31))

=
∑

\∈{0,1}<
2−<Tr

[( (
1 − ΠEPR

C

)
Π

eq
\
⊗ 1R

)
r\

]
=

∑
\∈{0,1}<

2−<Tr
[( ∑

0,1∈{0,1}<
|q+01〉 〈q

+
01 |

) (
1 − ΠEPR

C

)
Π

eq
\
⊗ 1R r\

]
=

∑
\∈{0,1}<

∑
0,1∈{0,1}<

2−< Tr
[
|q+01〉 〈q

+
01 |

(
1 − ΠEPR

C

)
Π

eq
\
⊗ 1R r\

]
=

∑
\∈{0,1}<

∑
0,1∈{0,1}<

2−< Tr
[ (
1 − ΠEPR

C

)
Π

eq
\
⊗ 1R

(
|q+01〉〈q

+
01 | ⊗ 1R

)
r\

(
|q+01〉〈q

+
01 | ⊗ 1R

) ]
.

In the third to last line, we inserted the complete set
∑
0,1 |q+01〉〈q

+
01
| = 1. Then, using the definition
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of r in Eq.(3.30), we can continue to expand the expression above as follows:∑
\∈{0,1}<

∑
0,1∈{0,1}<

2−< Tr
[ (
1 − ΠEPR

C

)
Π

eq
\
⊗ 1R

(
|q+01〉〈q

+
01 | ⊗ 1R

)
r\

(
|q+01〉〈q

+
01 | ⊗ 1R

) ]
=

∑
\∈{0,1}<

∑
0,1∈{0,1}<

2−<
∑
8, 9∈� \

@8 9 Tr
[ (
1 − ΠEPR

C

)
Π

eq
\
|q+01〉 〈q

+
01 |k

8,\〉 〈k 9 ,\ |q+01〉 〈q
+
01 | ⊗ f

8, 9 ,\

R

]
=

∑
0,1∈{0,1}<

∑
8, 9∈� \

?01 @8 9 〈q+01 |k
8,\〉 〈k 9 ,\ |q+01〉 Tr

[
f
8, 9 ,\

R
]

(by def.)

≤ 2−C−1
∑
8, 9∈� \

@8 9

∑
0,1∈{0,1}<

〈q+01 |k
8,\〉 〈k 9 ,\ |q+01〉 Tr

[
f
8, 9 ,\

R
]

(Eq. (3.29))

= 2−C−1
∑
8, 9∈� \

@8 9Tr
[
|k 9 ,\〉〈k 9 ,\ |XY

]
Tr

[
f
8, 9 ,\

R
]

= 2−C−1 Tr
[
r\

]
= 2−C−1.

In the last line, we used that
{
|q+
01
〉 : 0, 1 ∈ {0, 1}<

}
is an orthogonal basis for XY. Thus, we get

E\Tr
[ (
1 − ΠEPR

C

)
⊗ 1R r\

]
≤ 2−C−1.

Plugging this bound in (3.28) and then into (3.26) gives

Pr
[
E′ = E ∧ ok = 1

]
≤ 2−< (< + 1)2C + 2

−C−1
2 . (3.32)

Choosing C ≈
√
< makes the RHS negligible.

Corollary 1. ?(�̃0) = negl(_).

As we argued earlier, this concludes the proof of Lemma (13), and thus of Theorem 5.

Extension to compute-and-compare programs
In this section, we show that an SSL scheme for point functions, which is secure with respect to the
appropriate program and challenge ensembles, implies an SSL scheme for compute-and-compare
programs with the same level of security.

The idea is simple: to lease the compute-and-compare program CC[ 5 , H], we lease a a program
for the point function %H, and hand out 5 in the clear. By leasing %H we are protecting the portion
of the compute-and-compare program which checks equality with H. The intuition is that this is
sufficient to make the functionality unclonable since its output is not already determined by 5 . More
generally, one might conjecture that, to obtain an SSL scheme for the function � = 51 ◦ 52... ◦ 5ℓ,
it is sufficient to lease any of the functions 58 that is sufficiently non-constant within its context.

Let (SSL-PF.Gen,SSL-PF.Lease,SSL-PF.Eval,SSL-PF.Verify) be anySSL scheme for point func-
tions. The compute-and-compare program scheme is defined as follows:



63

Construction 4 (SSL scheme for compute-and-compare programs). Let _ ∈ N be the security
parameter. The secure software leasing scheme SSL-CC = (Gen, Lease,Eval,Verify) for compute-
and-compare programs is defined by the following QPT algorithms:

• SSL-CC.Gen(1_): Takes as input the security parameter _. Then,

– Let sk← SSL-PF.Gen(1_). Output sk.

• SSL-CC.Lease(1_, sk, ( 5 , H)): Takes as input a security parameter _, a secret key B: , and a
compute-and-compare program CC[ 5 , H], specified succinctly by 5 and H. Then,

– Let r = SSL-PF.Lease(1_, sk, H)). Output ( 5 , r).

• SSL-CC.Eval(1_, ( 5 , r); G): Takes as input a security parameter _, an alleged program copy
( 5 , r), and a string G ∈ {0, 1}= (where = is the size of the inputs to 5 ). Then,

– Compute H′ = 5 (G).

– Let 1 ← SSL-PF.Eval(r; H′). Output 1.

• SSL-CC.Verify(1_, sk, ( 5 , r);f):

– Let 1′← SSL-PF.Verify(1_, sk, H;f). Output 1′.

Before we state the theorem, we first introduce several classes of distributions over compute-and-
compare programs and input challenges. First, we define the distribution DCC-UNP as follows.

• DCC-UNP. We refer to this class as the class of unpredictable compute-and-compare programs.
This consists of ensembles � = {�_} where �_ is a distribution over compute-and-compare
programs such that CC[ 5 , H] ← �_ satisfies Hmin(H | 5 ) ≥ _n for some n > 0, and where the
input length of 5 is _ and the output length is bounded by some polynomial C (_).

We also define the following class of distributions over input challenges:

• DCC-Chall-SSL. An ensemble � = {� 5 ,H}, where each � 5 ,H is a distribution over the domain
of 5 , belongs to the classDCC-Chall-SSL if there exists an efficiently sampleable family {-_} of
distributions over {0, 1}_ with Hmin(-_) ≥ _n , for some n > 0, and an efficiently sampleable
family {/ 5 ,H}, where / 5 ,H is a distribution over the set 5 −1(H), such that � 5 ,H is the following
distribution (where _ is the size of inputs to 5 ):

– with probability 1/2, sample I ← / 5 ,H and output I.
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– with probability 1/2, sample G ← -_, and output G.

We say the ensemble � is specified by the families {-_} and {/ 5 ,H}.

We also define two classes of distributions over pairs of programs and challenges.

• DCC-pairs-stat-SSL. This consists of pairs of ensembles
(
� = {�_}, �′ = {�′5 ,H}

)
where � ∈

DCC-UNP and �′ ∈ DCC-Chall-SSL satisfying the following. Let �′ be specified by the
families {-_} and {/ 5 ,H}, and denote by MarkedInput

(
�_, {/ 5 ,H}

)
the distribution over

{0, 1}_ induced by �_ and {/ 5 ,H}, i.e.:

– Sample ( 5 , H) ← �_, then output I ← / 5 ,H.

For any fixed 5∗ with domain {0, 1}_ such that ( 5∗, H∗) is in the support of �_ for some H∗,
denote byMarkedInput(�_, {/ 5 ,H}) | 5∗ , the distributionMarkedInput(�_, {/ 5 ,H}) conditioned
on �_ sampling 5∗. Then, we require that, for any sequence { 5 (_)∗ } (where, for all _, ( 5 (_)∗ , H∗)
is in the support of �_ for some H∗) the families {-_} and {MarkedInput(�_, {/ 5 ,H}) | 5 (_)∗ }
are statistically indistinguishable.

• DCC-pairs-comp-SSL. This is defined in the same way as DCC-pairs-stat-SSL, except that we only
require {-_} and {MarkedInput(�_, {/ 5 ,H}) | 5 (_)∗ } to be computationally indistinguishable.

Theorem6. Let (SSL-PF.Gen,SSL-PF.Lease,SSL-PF.Eval,SSL-PF.Verify) be anSSL scheme for
point functions that is securewith respect to all pairs (D,D′) ∈ DPF-pairs-stat-SSL (∈ DPF-pairs-comp-SSL).
Then, the scheme of Construction 4 is a secure SSL scheme for compute-and-compare programs
with respect to all pairs (�, �′) ∈ DCC-pairs-stat-SSL (∈ DCC-pairs-comp-SSL). The same conclusion
holds relative to any oracle, i.e., when all algorithms have access to the same oracle, with respect
to query-bounded (computationally bounded) adversaries.

We now give a proof of Theorem 6 via a reduction to the point function security experiment.

Proof of Theorem 6. We prove the claim for
(
{�_}, {� 5 ,H}

)
∈ DCC-pairs-stat-SSL only, since the

case of
(
{�_}, {� 5 ,H}

)
∈ DCC-pairs-comp-SSL is virtually identical. Let C (_) be the length of strings

in the range of 5 ’s sampled from �_ and let the ensemble {� 5 ,H} be specified by {-_} and {/ 5 ,H}
(using the notation introduced above for ensembles in DCC-Chall-SSL).

Let A be an adversary for the compute-and-compare SSL scheme of Construction 4 with respect
to ensembles {�_} and {� 5 ,H} who wins at the SSL security game with probability ?(_) > 0. It
then follows that for each _ there exists 5 (_)∗ such that ( 5 (_)∗ , H) is in the support of �_ for some
H, and such that the probability that A wins is at least ?(_), conditioned on 5

(_)
∗ being sampled.
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We will construct an adversary A′ that wins with probability ?(_) − negl(_) in the point function
security game with respect to the distributions {�′

C (_)} and {�
′
H}, defined as follows:

• �′
C (_): sample G ← -_ and output the point function % 5 (_)∗ (G) .

• �′H: sample G ← �
5
(_)
∗ ,H

and output 5 (_)∗ (G).

The adversary A′ against the point function SSL game acts as follows:

• A′ receives a state r from the lessor, and then forwards ( 5 (_)∗ , r) to adversary A.

• A returns a supposed program copy f for the point function toA′ who then sends it back to
the lessor for verification.

• Conditioning on the verification being successful, the lessor replies with a challenge input
G ← �′H. A′ then samples G′← / 5 ,G , and runs A with input challenge G′.

• Let 1 be the bit returned by A. The adversary A′ replies with the same 1 to the lessor.

It is straightforward to check that the game “simulated” byA′ forA is statistically indistinguishable
from a security game with respect to {�_} and {� 5 ,H}, conditioned on 5

(_)
∗ . Thus, we deduce,

by hypothesis, that A passes verification and returns the correct bit with probability at least
?(_) − negl(_), and thus A′ wins with probability at least ?(_) − negl(_). Crucially, note that(
{�′

C (_)}, {�
′
H}

)
∈ DPF-pairs-stat-SSL. It follows that if the SSL is secure, then the compute-and-

compare scheme must also be secure.

We remark that the proof of the theorem statement relative to any oracle is analogous.
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C h a p t e r 4

REVOKING ENCRYPTED DATA: PUBLICLY-VERIFIABLE DELETION

Quantum information has the property that measurement is an inherently destructive process. This
feature ismost apparent in the principle of complementarity, which states thatmutually incompatible
observables cannot be measured at the same time. Broadbent and Islam [40] recently built on this
aspect of quantum mechanics to realize a cryptographic notion called certified deletion. While this
remarkable notion enables a classical verifier to be convinced that a quantum ciphertext has been
deleted by an untrusted party, it offers no additional layer of functionality.

In this chapter, we use Gaussian superpositions over lattices to construct the first fully homomorphic
encryption scheme with certified deletion—a protocol that enables an untrusted quantum server to
compute on encrypted data and to also prove data deletion to a client.

Organization. First, we prove some basic facts about Gaussian superpositions in Section 4.2.
Next, in Section 4.3, we generalize the notion of collapsing hashes and prove the strong Gaussian-
collapsing property of the Ajtai hash function; this marks the main technical result of this chapter.
In Section 4.4 we define the syntax and security of public-key encryption schemes with publicly-
verifiable deletion. Then, in Section 4.5, we construct a Dual-Regev public-key encryption scheme
with publicly-verifiable deletion and prove its security. In Section 4.6, we define the syntax and
security of homomorphic encryption schemes with publicly-verifiable deletion, which is analogous
as in the public-key setting. In Section 4.7, we give the main construction of this chapter; namely,
our Dual-Regev (leveled) fully homomorphic encryption scheme with publicly-verifiable deletion.
We prove that it achieves certified deletion security using a similar proof as for our public-key
scheme. Finally, in Section 4.8, we describe a four-message protocol for FHE with simultaneous
data deletion, which allows an untrusted quantum server to compute on encrypted data and to
simultaneously prove data deletion to a client – all in a single interactive protocol.

4.1 Introduction
Data protection has become a major challenge in the age of cloud computing and artificial intel-
ligence. The European Union, Argentina, and California recently introduced new data privacy
regulations which grant individuals the right to request the deletion of their personal data by media
companies and other data collectors—a legal concept that is commonly referred to as the right
to be forgotten [63]. While new data privacy regulations have been put into practice in several
jurisdictions, formalizing data deletion remains a fundamental challenge for classical cryptography.
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A key question, in particular, prevails:

How can we certify that user data stored on a remote cloud server has been deleted?

Without any further assumptions, the task is clearly impossible to realize in conventional cloud
computing. This is due to the fact that there is no way of preventing the data collector from
generating and distributing additional copies of the user data. Although it impossible to achieve
in general, proofs-of-secure-erasure [108, 59] can achieve a limited notion of data deletion under
bounded memory assumptions. Recently, Garg, Goldwasser and Vasudevan [63] proposed rigorous
definitions that attempt to formalize the right to be forgotten from the perspective of classical
cryptography. However, a fundamental challenge in the work of Garg et al. [63] lies in the fact that
the data collector is always assumed to be honest, which clearly limits the scope of the formalism.

A recent exciting idea is to use quantum information in the context of data privacy [51, 41].
Contrary to classical data, it is fundamentally impossible to create copies of an unknown quan-
tum state thanks to the quantum no-cloning theorem [135]. Broadbent and Islam [41] proposed
a quantum encryption scheme which enables a user to certify the deletion of a quantum cipher-
text. Unlike classical proofs-of-secure-erasure, this cryptographic notion of certified deletion is
achievable unconditionally in a fully malicious adversarial setting [41]. All prior protocols for
certified deletion enable a client to delegate data in the form of plaintexts and ciphertexts with no
additional layer of functionality. A key question raised by Broadbent and Islam [41] is the following:

Can we enable a remote cloud server to compute on encrypted data, while simultaneously al-
lowing the server to prove data deletion to a client?

This cryptographic notion can be seen as an extension of homomorphic encryption schemes [113,
66, 37] which allow for arbitrary computations over encrypted data. Prior work on certified deletion
makes use of very specific encryption schemes that seem incompatible with such a functionality;
for example, the private-key encryption scheme of Broadbent and Islam [41] requires a classical
one-time pad, whereas the authors in [83] use a particular hybrid encryption scheme in the context
of public-key cryptography. While homomorphic encryption enables a wide range of applica-
tions including private queries to a search engine and machine learning classification on encrypted
data [35], a fundamental limitation remains: once the protocol is complete, the cloud server is still
in possession of the client’s encrypted data. This may allow a malicious adversary to break the
encryption scheme retrospectively – long after the execution of the protocol. Long-term security
is especially relevant for data which is required to remain confidential for many years; for example,
such as private medical records or sensitive government secrets.



68

Fully homomorphic encryption with certified deletion seeks to address this limitation as it allows
a quantum cloud server to compute on encrypted data while also enabling the server to prove data
deletion to a client, thus effectively achieving a form of everlasting security [104, 82].

Technical overview
How can we certify that sensitive information has been deleted by an untrusted party? Quantum
information allows us to achieve a cryptographic notion called certified deletion [51, 61, 41]. The
main idea behind this concept is the principle of complementarity. This feature allows us to encode
information in mutually incompatible bases—a notion that has no counterpart in a classical world.

Broadbent and Islam [41] construct a private-key quantum encryption schemewith certified deletion
using a BB84-type protocol that closely resembles the standard quantum key distribution (QKD)
protocol [29, 122]. The crucial idea behind the scheme is that the information which is necessary to
decrypt is encoded in the computational basis, whereas certifying deletion requires a measurement
in the incompatible Hadamard basis. The scheme in [41] achieves a rigorous notion of certified
deletion security: once the ciphertext is successfully deleted, the plaintext < remains hidden even
if the private key is later revealed. Using a standard hybrid encryption scheme, Hiroka, Morimae,
Nishimaki and Yamakawa [83] extended the scheme in [41] to both public-key and attribute-based
encryption with certified deletion via the notion of receiver non-committing (RNC) encryption [87,
45]. The security proof in[83] relies heavily on the fact that the classical public-key encryption is
non-committing, i.e., it comes with the ability to equivocate ciphertexts to encryptions of arbitrary
plaintexts. As a complementary result, the authors also gave a public-key encryption scheme with
certified deletion which is publicly verifiable assuming the existence of one-shot signatures and
extractable witness encryption. This property enables anyone to verify a deletion certificate using
a publicly available verification key.

All prior protocols for certified deletion enable a client to delegate data in the form of ciphertexts
with no additional layer of functionality. In this chapter, we answer a question raised by Broadbent
and Islam [41] affirmatively, namely whether it is possible to construct a homomorphic quantum
encryption scheme with certified deletion. This cryptographic notion is remarkably powerful as it
would allow a quantum cloud server to compute on encrypted data, while simultaneously enabling
the server to prove data deletion to a client. So far, however, none of the encryption schemes
with certified deletion can enable such a functionality. Worse yet, the hybrid encryption paradigm
appears insufficient in order to construct homomorphic encryption with publicly-verifiable deletion,
and thus an entirely new approach is necessary.

Our techniques deviate from the hybrid encryption paradigm of previous works [41, 82] and allow
us to construct the first homomorphic quantum encryption scheme with certified deletion which
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has the desirable feature of being publicly verifiable. The main technical ingredient of our scheme
is a protocol by which a quantum prover can convince a classical verifier that a sample from the
Learning with Errors [112] distribution in the form of a quantum state was deleted.

Quantum superpositions of LWE samples. The Learning with Errors (LWE) problem was
introduced by Regev [112] and has given rise to numerous cryptographic applications, including
public-key encryption [68], homomorphic encryption [37, 69] and attribute-based encryption [33].

The problem is described as follows. Let =, < ∈ N and @ ≥ 2 be a prime modulus, and U ∈ (0, 1)
be a noise ratio parameter. In its decisional formulation, the LWE<=,@,U@ problem asks to distinguish

between a sample (A $← Z=×<@ , sᵀA+eᵀ (mod @)) from the LWE distribution and a uniformly random

sample (A $← Z=×<@ , u $← Z<@ ). Here, s $← Z=@ is a uniformly random vector and e ∼ �Z<,U@ is a
vector which is sampled according to the discrete Gaussian distribution �Z<,U@. The latter assigns
probability proportional to rA (x) = 4−c‖x‖

2/A2 to every lattice point x ∈ Z<, for A = U@ > 0.

How can we certify whether a malicious party has deleted a sample from the LWE distribution?
Our main technical insight is that one can encode LWE samples as quantum superpositions for the
purpose of certified deletion while simultaneously preserving their full cryptographic functionality.
Superpositions of LWE samples have been considered by Grilo, Kerenidis, and Zĳlstra [77] in the
context of quantum learning theory and by Alagic, Jeffery, Ozols, and Poremba [11], as well as by
Chen, Liu, and Zhandry [48], in the context of quantum cryptanalysis of LWE-based cryptosystems.
Let us now describe the main idea behind our constructions. Consider the Gaussian superposition,1

|k̂〉-. =
∑

x∈Z<@

rf (x) |x〉- ⊗ |A · x (mod @)〉. .

Here, we let f = 1/U and use Z<@ to represent Z< ∩ (− @2 ,
@

2 ]
<. By measuring system . in the

computational basis with outcome y ∈ Z=@, the state |k̂〉 collapses into the quantum superposition

|k̂y〉 =
∑

x∈Z<@ :
Ax=y (mod @)

rf (x) |x〉 . (4.1)

Note that the state |k̂y〉 is now a superposition of short Gaussian-weighted solutions x ∈ Z<@
subject to the constraint A · x = y (mod @). In other words, by measuring the above state in the
computational basis, we obtain a solution to the so-called (inhomogenous) short integer solution
(ISIS) problem specified by (A, y) (see Definition 12). The quantum state |k̂y〉 in Eq. (4.1) has the

1A tail bound shows that �Z< ,f is essentially only supported on {x ∈ Z< : ‖x‖ ≤ f
√
<}. We choose f � @/

√
<

and consider the domain Z< ∩ (− @2 ,
@

2 ]
< instead. For simplicity, we also ignore that |k̂〉 is not normalized.
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following duality property; namely, by applying the (inverse) @-ary quantum Fourier transform, we
obtain the state

|ky〉 =
∑
s∈Z=@

∑
e∈Z<@

r @

f
(e) l−〈s,y〉@ |sᵀA + eᵀ (mod @)〉 , (4.2)

where l@ = 42c8/@ is the primitive @-th root of unity. We make this statement more precise in
Lemma 20. Throughout this work, we will refer to |ky〉 and |k̂y〉 as the primal and dual Gaussian
state, respectively. Notice that the resulting state |ky〉 is now a quantum superposition of samples
from the LWE distribution. This relationship was first observed in the work of Stehlé et al. [120]
who gave quantum reduction from SIS to LWE based on Regev’s reduction [112], and was later
implicitly used by Roberts [115] and Kitagawa et al. [90] to construct quantum money and secure
software leasing schemes.

Our quantum encryption schemes with certified deletion exploit the fact that a measurement of |ky〉
in theFourier basis yields a short solution to the ISIS problem specified by (A, y), whereas ciphertext
informationwhich is necessary to decrypt is encoded using LWE samples in the computational basis.

Dual-Regev public-key encryption with publicly-verifiable deletion. The key ingredient of our
homomorphic encryption scheme with certified deletion is the Dual-Regev public-key encryption
scheme introduced by Gentry, Peikert, and Vaikuntanathan [68]. Using Gaussian states, we can
encodeDual-Regev ciphertexts for the purpose of certified deletionwhile simultaneously preserving
their full cryptographic functionality. Our scheme consists of the following efficient algorithms:

• To generate a pair of keys (sk, pk), sample a random A ∈ Z=×(<+1)@ together with a particular
short trapdoor vector t ∈ Z<+1 such that A · t = 0 (mod @). Let pk = A and sk = t.

• To encrypt 1 ∈ {0, 1} using pk = A, generate the following for a random y ∈ Z=@:

vk← (A, y), |CT〉 ←
∑
s∈Z=@

∑
e∈Z<+1@

r@/f (e) l−〈s,y〉@ |sᵀA + eᵀ + 1 · (0, . . . , 0, b@
2
c)〉 ,

where vk is a public verification key and |CT〉 is the quantum ciphertext for f > 0.

• To decrypt |CT〉 using sk, measure in the computational basis to obtain c ∈ Z<+1@ , and output
0, if cᵀ · sk ∈ Z@ is closer to 0 than to b @2 c, and output 1, otherwise. Here sk = t is chosen
such that cᵀ · sk yields an approximation of 1 · b @2 c from which we can recover 1.
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To delete the ciphertext |CT〉, we simply perform measurement in the Fourier basis. In Corollary 2,
we show that the Fourier transform of the ciphertext |CT〉 results in the dual quantum state

|ĈT〉 =
∑

x∈Z<+1@ :
Ax=y (mod @)

rf (x) l
〈x,1·(0,...,0,b @2 c)〉
@ |x〉 . (4.3)

Notice that a Fourier basis measurement of |CT〉 necessarily erases all information about the
plaintext 1 ∈ {0, 1} and results in a short vector c ∈ Z<+1@ such that A · c = y (mod @). In other
words, to verify a deletion certificate we can simply check whether it is a solution to the ISIS
problem specified by the verification key vk = (A, y). Our scheme has the desirable property that
verification of a certificate c is public; meaning anyone in possession of (A, y) can verify that |CT〉
has been successfully deleted. Moreover, due to the tight connection between worst-case lattice
problems and the average-case ISIS problem [103, 68], it is computationally difficult to produce a
valid deletion certificate from (A, y) alone.

To formalize security, we consider the notion of (everlasting) certified deletion security (i.e., EV-CD
security)whichwas proposed byBartusek andKhurana [23] as a strengthening of the original notion
by Broadbent and Islam [40]. Roughly speaking, EV-CD security guarantees that, once deletion
of the ciphertext is successful, the plaintext remains hidden even if the adversary is subsequently
allowed to run in unbounded time (see Definition 34). We prove the security of our schemes by
exploiting a strong collapsing-type property of the Ajtai hash function which we show under the
quantum hardness of LWE and SIS. This is our main technical result in this chapter.

Gaussian-collapsing hash functions. Unruh [125] introduced the notion of collapsing hash
functions in his seminal work on computationally binding quantum commitments. Informally,
a hash function ℎ is called collapsing if it is computationally difficult to distinguish between a
superposition of pre-images, i.e.,

∑
x: ℎ(x)=y Ux |x〉, and a single measured pre-image |x0〉 such that

ℎ(x0) = y. Motivated by the properties of the dual Gaussian state in Eq. (4.1), we consider a special
class of hash functions which are collapsing with respect to Gaussian superpositions. We say that
a hash function ℎ is f-Gaussian-collapsing (formally defined in Definition 30), for some f > 0, if
the following states are computationally indistinguishable:∑

x: ℎ(x)=y
rf (x) |x〉 ≈2 |x0〉 , s.t. ℎ(x0) = y.

Here, x0 is the result of a computational basis measurement of the the Gaussian superposition (on
the left). Notice that any collapsing hash function ℎ is necessarily also Gaussian-collapsing, since
a superposition of Gaussian-weighted vectors constitutes a special class of inputs to ℎ. Liu and
Zhandry [97] implicitly showed that the Ajtai hash function ℎA(x) = A · x (mod @) is collapsing—
and thus Gaussian-collapsing—via the notion of lossy functions and (decisional) LWE. As a first
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∑
x∈Z<@

Ax=y (mod @)

rf (x) |x〉 |x0〉, x0 ∼ �Λy
@ (A), f√2

∑
s∈Z=@

∑
e∈Z<@

r @

f
(e) l−〈s,y〉@ |sᵀA + eᵀ〉

≈2

≈2
∑

u∈Z<@

l
−〈u,x0〉
@ |u〉

FT@ FT@(Lem. 20)

(Thm. 8)

(Thm. 9)

Figure 4.1: Technical overview of Gaussian superposition states and their properties used through-
out this work. The computational indistinguishability property holds under the (subexponential)
hardness of the LWE assumption (Definition 14). Here, Λy

@ (A) = {x ∈ Z< : A · x = y (mod @)}
denotes a coset of the lattice Λ⊥@ (A) = {x ∈ Z< : A · x = 0 (mod @)} defined in Section 2.6.

preliminary result, we give a simple and direct proof (Theorem 8) of the Gaussian-collapsing
property assuming the hardness of decisional LWE, which might be of independent interest.

The fact Ajtai’s hash function is Gaussian-collapsing has several implications for the security of
our schemes. Because our Dual-Regev ciphertext corresponds to the Fourier transform of the state
in Eq. (4.3), the Gaussian-collapsing property immediately implies the semantic (i.e., IND-CPA)
security under decisional LWE (see Theorem 9). We refer to Figure 4.1 for an overview of our
Gaussian states and their properties.

To prove the stronger notion of EV-CD security of our Dual-Regev scheme with publicly-verifiable
deletion, we have to show that, once deletion has taken place, the plaintext remains information-
theoretically hidden from the view of the adversary. We observe that it is sufficient to show that
Ajtai’s hash function satisfies a particular strong Gaussian-collapsing property; namely, once an
adversary A produces a valid short certificate c with the property that A · c = y (mod @), then A
cannot tell whether the input at the beginning of the experiment it received a Gaussian superposition
of pre-images or a single (measured) pre-image, even if A is now allowed to run in unbounded
time. Here, it is crucial that A is unbounded only after A provides a valid pre-image witness
c, otherwise A could trivially distinguish the two states by applying the Fourier transform and
distinguishing between a superposition of LWE samples and a uniform superposition. We prove
the strong Gaussian-collapsing property in Theorem 10, assuming the hardness of LWE and SIS.
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We then go on to prove the following result in Theorem 12:

Theorem (Informal). Our Dual-Regev encryption scheme with publicly-verifiable deletion (see
Construction 5) is EV-CD-secure, assuming the quantum subexponential hardness of LWE and SIS.

Togain some intuition forwhy the strongGaussian-collapsing property holds, consider the following
natural attack. Given as input either a Gaussian superposition of pre-images or a single (measured)
pre-image, we perform the quantum Fourier transform, reversibly shift the outcome by a fresh LWE
sample2 and store the result in an auxiliary register. If the input corresponds to a superposition, we
obtain a separate LWE sample which is re-randomized, whereas if the input is a single (measured)
pre-image, the outcome remains random. Hence, if the aforementioned procedure succeeded
without disturbing the initial quantum state, we could potentially provide a valid certificate c
and also distinguish the auxiliary system once we are allowed to be computationally unbounded.
However, by shifting the state by another LWE sample, we have necessarily entangled the two
systems in a way that prevents us from finding a valid certificate via a Fourier basis measurement.
We give a formal proof of the strong Gaussian-collapsing property in Theorem 10.

Next, we extend our Dual-Regev scheme towards a (leveled) FHE scheme with certified deletion.

Dual-Regev fully homomorphic encryption with publicly-verifiable deletion. Our (leveled)
FHE scheme with certified deletion is based on the (classical) Dual-Regev leveled FHE scheme
used by Mahadev [99]—a variant of the scheme due to Gentry, Sahai and Waters [69]. Let
=, < ∈ N, let @ ≥ 2 be a prime modulus, and let U ∈ (0, 1) be the noise ratio with f = 1/U. Let
# = (< + 1) dlog @e and let G ∈ Z(<+1)×#@ denote the so-called power-of-2 gadget matrix (defined
in Section 4.7). The scheme consists of the following efficient algorithms:

• To generate a pair of keys (sk, pk), sample A ∈ Z(<+1)×=@ together with a particular short
trapdoor vector t ∈ Z<+1 such that t · A = 0 (mod @), and let pk = A and sk = t.

• To encrypt a bit G ∈ {0, 1} using the public key A ∈ Z(<+1)×=@ , generate the following pair
consisting of a classical verification key and quantum ciphertext for a random Y ∈ Z=×#@ with
columns y1, . . . , y# ∈ Z=@:

vk← (A,Y), |CT〉 ←
∑

S∈Z=×#@

∑
E∈Z(<+1)×#@

r@/f (E) l−Tr[S)Y]
@ |A · S + E + G ·G〉 ,

where G ∈ Z(<+1)×#@ denotes the gadget matrix and where f = 1/U.
2To smudge the Gaussian error of the initial superposition, we can choose an error from a discrete Gaussian

distribution which has a significantly larger standard deviation.
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• To decrypt a quantum ciphertext |CT〉 using the secret key sk, measure in the computational
basis to obtain an outcome C ∈ Z(<+1)×#@ and compute 2 = sk) · c# ∈ Z@, where c# ∈ Z<+1@

is the #-th column of C, and then output 0, if 2 is closer to 0 than to b @2 c, and output 1,
otherwise.

Deletion and verification take place exactly as in our Dual-Regev scheme with certified deletion.

In Theorem 15, we prove that our scheme satisfies the same notion of certified deletion security
which we previously considered in the context of (regular) public-key encryption.

Theorem. OurDual-Regev (leveled) FHE schemewith publicly-verifiable deletion (Construction 7)
is EV-CD-secure, assuming the quantum subexponential hardness of LWE and SIS.

Our FHE scheme supports the evaluation of polynomial-sized Boolean circuits consisting entirely of
NAND gates, which are universal for classical computation. Inspired by the classical homomorphic
NAND operation of the Dual-Regev scheme [69, 99], we define an analogous quantum operation
*NAND in Definition 38 which allows us to apply a NAND gate directly onto Gaussian states. When
applying homomorphic operations, the new ciphertext maintains the form of an LWE sample with
respect to the same public key pk, albeit for a new LWE secret and a new (non-necessarily Gaussian)
noise term of bounded magnitude. Notice, however, that the resulting ciphertext is now a highly
entangled state since the unitary operation *NAND induces entanglement between the LWE secrets
and Gaussian error terms of the superposition. This raises the following question: How can a server
perform homomorphic computations and, if requested, to also prove data deletion to a client? In
some sense, applying a single homomorphic NAND gates breaks the structure of the Gaussian states
in a way that prevents us from obtaining a valid deletion certificate via a Fourier basis measurement.
At first sight, it seems as if applying homomorphic operations and proving data deletion are two
mutually exclusive properties. Indeed, our basic Dual-Regev encryption scheme in Construction 7
only supports homomorphic operations and publicly-verifiable deletion as separate properties.

It is natural to ask whether it is possible to achieve both tasks simultaneously, say in a protocol
between a client and an untrusted server. Remarkably, such a protocol would allow an untrusted
server to compute on private data and, if requested, to simultaneously prove data deletion to a
client. We show that such a protocol is indeed possible, albeit with a few important caveats which
we explain in Section 4.8. In Protocol 1, we describe a four-message protocol for FHE with
simultaneous data deletion which is based on our Dual-Regev FHE scheme in Construction 7. To
resolve the aforementioned technical issue, we introduce additional interaction between the server
and the client (which is not required for a conventional homomorphic encryption scheme). After
performing a Boolean circuit � via a sequence of *NAND gates starting from the ciphertext |CT〉 =
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|CT1〉 ⊗ · · · ⊗ |CTℓ〉 in system �in corresponding to an encryption of G = (G1, . . . , Gℓ) ∈ {0, 1}ℓ,
the server simply sends the quantum system �out containing an encryption of � (G) to the client.
Then, using the secret key sk (i.e., a trapdoor for the public matrix pk), it is possible for the
client to extract the outcome � (G) from the system �out with overwhelming probability without
significantly damaging the state. We show that it is possible to rewind the procedure in a way that
results in a state which is negligibly close to the original state in system �out. At this step of the
protocol, the client has learned the outcome of the homomorphic application of the circuit � while
the server is still in possession of a large number of auxiliary systems (denoted by �aux) which
mark intermediate applications of the gate *NAND. We remark that this is where the standard FHE
protocol ends. In order to enable certified deletion, the client must now return the system�out to the
server. Having access to all three systems �in�aux�out, the server is then able to undo the sequence
of homomorphic NAND gates in order to return to the original product state in system �in (up to
negligible trace distance). Since the ciphertext in the server’s possession is now approximately a
simple product of Gaussian states, the server can perform a Fourier basis measurement of systems
�in, as required. Once the protocol is complete, it is therefore possible for the client to know
� (G) and to be convinced that data deletion has taken place. In Section 4.8, we show that our
four-message protocol indeed achieves certified deletion, provided that the server is honest during
the homomorphic evaluation phase of the protocol.

Related work
The first work to formalize a notion resembling certified deletion is due to Unruh [127] who
proposed a quantum timed-release encryption scheme that is revocable. The protocol allows
a user to return the ciphertext of a quantum timed-release encryption scheme, thereby losing
all access to the data. Unruh’s security proof exploits the monogamy of entanglement in order
to guarantee that the quantum revocation process necessarily erases all information about the
plaintext. Fu and Miller [61] gave the first quantum protocol that proves deletion of a single bit
using classical interaction alone. Subsequently, Coiteux-Roy and Wolf [51] proposed a QKD-like
conjugate coding protocol that enables certified deletion of a classical plaintext, albeit without a
complete security proof. Independently of [51], Broadbent and Islam [41] construct a private-key
quantum encryption scheme with a rigorous definition of certified deletion using a BB84-type
protocol that closely resembles the standard quantum key distribution protocol [29, 122]. There,
the ciphertext (without the optional quantum error correction part) consists of random BB84
states |G\〉 = �\1 |G1〉 ⊗ · · · ⊗ �\= |G=〉 together with a one-time pad encryption of the form
5 (G |\8=0) ⊕ < ⊕ D, where D is a random string (i.e., a one-time pad key), 5 is a two-universal hash
function and G |\8=0 is the substring of G to which no Hadamard gate is applied. The main idea behind
the scheme is that the information which is necessary to decrypt is encoded in the computational
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basis, whereas certifying deletion requires a Hadamard basis measurement. Therefore, if the
verification of a deletion certificate is successful, G |\8=0 must have high entropy, and thus 5 (G |\8=0)
is statistically close to uniform (i.e., 5 serves as an extractor). The private-key quantum encryption
scheme of Broadbent and Islam [41] achieves the notion of certified deletion security: once the
ciphertext is successfully deleted, the plaintext < remains hidden even if the private key (\, 5 , D)
is later revealed. Using a standard hybrid encryption scheme, Hiroka, Morimae, Nishimaki and
Yamakawa [83] extended the scheme in [41] to both public-key and attribute-based encryption
with certified deletion via the notion of receiver non-committing (RNC) encryption [87, 45]; for
example, to obtain a public-key encryption scheme with certified deletion, one simply outputs
a quantum ciphertext of the [41] scheme together with a classical (non-committing) public-key
encryption of its private key. Given access to the RNC secret key, it is therefore possible to
decrypt the quantum ciphertext. Crucially, the hybrid encryption scheme also inherits the certified
deletion property of the [41] scheme; namely, once deletion has taken place, the plaintext remains
hidden even if the RNC secret key is later revealed. The security proof in [83] relies heavily
on the fact that the classical public-key encryption is non-committing, i.e. it comes with the
ability to equivocate ciphertexts to encryptions of arbitrary plaintexts. To obtain a homomorphic
encryption scheme with certified deletion, one would have to instantiate the hybrid encryption
scheme with a classical (non-committing) homomorphic encryption scheme which is not known to
exist. While generic transformations for non-committing encryption have been studied [91], they
tend to be incompatible with basic homomorphic computations. Moreover, it is unclear whether
the candidate hybrid approach for homomorphic encryption is even secure: for all we know, a
malicious adversary could use homomorphic evaluation to decouple the quantum part from the
classical part of the ciphertext in order to obtain a classical encryption of the plaintext, thereby
violating certified deletion security.

Hiroka, Morimae, Nishimaki and Yamakawa [82] studied certified everlasting zero-knowledge
proofs for QMA via the notion of everlasting security which was first formalized by Müller-Quade
and Unruh [104]. A recent paper by Coladangelo, Liu, Liu, and Zhandry [53] introduces subspace
coset states in the context of unclonable crytography in a way that loosely resembles our use
of primal and dual Gaussian states. In concurrent work, Bartusek and Khurana [23] consider
generic transformations for encryption schemes with certified deletion. Similar to Broadbent and
Islam [41], they use a hybrid approach via BB84 states to construct public-key, attribute-based and
homomorphic encryption schemes with certified everlasting security: once deletion is successful,
the security notion guarantees that the plaintext remains hidden even if the adversary is henceforth
computationally unbounded. However, in contrast with our results, their notion only considers
deletion certificates which are privately verifiable. Finally, we remark that subsequent follow-up
work by Bartusek et al. [25] has since constructed encryption schemes with public verification
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(assuming the existence of post-quantum indistinguishability obfuscation) as well as maliciously
secure bind delegation protocol with certified deletion via succinct non-interactive arguments
(SNARGs) for polynomial-time computation, which can be constructed from LWE.

4.2 Primal and Dual Gaussian States
Gaussian superpositions first appeared in Regev’s quantum reduction from worst-case lattice prob-
lems to LWE, and have also been used by Stehlé et al. [120] who gave a quantum reduction from
the SIS problem to the LWE problem. Given @ ∈ N, < ∈ N and

√
8< < f < @/

√
8<, a Gaussian

superposition over Z< ∩ (− @2 ,
@

2 ]
< is a pure state of the form

|k〉 =
∑

x∈Z<@

rf (x) |x〉 .

Note that the state |k〉 is not normalized for convenience and ease of notation. The tail bound
in Lemma 11 implies that (the normalized variant of) |k〉 is within negligible trace distance of a
truncated discrete Gaussian superposition |k̃〉 with support {x ∈ Z<@ : ‖x‖ ≤ f

√
<
2 }, where

|k̃〉 =
∑

x∈Z<@

√
�Z<@ , f√2

(x) |x〉 =
©«

∑
z∈Z<@ ,‖z‖≤f

√
<
2

r f√
2
(z)

ª®®¬
− 1

2 ∑
x∈Z<@ :‖x‖≤f

√
<
2

rf (x) |x〉 .

In this section, we consider Gaussian superpositions with parameter f = Ω(
√
<) which can be

efficiently implemented using standard quantum state preparation techniques; for example using
quantum rejection sampling and the Grover-Rudolph algorithm [78, 112, 36, 38].

Our Dual-Regev-type encryption schemes with certified deletion in Section 4.5 and Section 4.7
rely on two types of Gaussian superpositions, which we call primal and dual Gaussian states. The
former (i.e., primal) state corresponds to a quantum superposition of LWE samples with respect
to a matrix A ∈ Z=×<@ , and (up to a phase) can be thought of as a superposition of Gaussian balls
around random lattice vectors in Λ@ (A). The latter (i.e., dual) state corresponds to a Gaussian
superposition over a particular coset,

Λ
y
@ (A) = {x ∈ Z< : A · x = y (mod @)},

of the @-ary lattice Λ⊥@ (A) = {x ∈ Z< : A · x = 0 (mod @)} defined in Section 2.6.

Our terminology regarding which state is primal and which state is dual is completely arbitrary. In
fact, the @-ary lattices Λ@ (A) and Λ⊥@ (A) are both dual to each other (up to scaling), and satisfy

@ · Λ⊥@ (A)∗ = Λ@ (A) and @ · Λ@ (A)∗ = Λ⊥@ (A).
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We choose to refer to the superposition of LWE samples as the primal Gaussian state because it
corresponds directly to the ciphertexts of our encryption scheme, whereas the dual Fourier mode
is only used in order to prove deletion.

We define primal and dual Gaussian states as follows.

Definition 28 (Gaussian states). Let < ∈ N, @ ≥ 2 be an integer modulus and f > 0. Then,

• (primal Gaussian state:) for all A ∈ Z=×<@ and y ∈ Z<@ , we let

|kA,y〉 =
∑
s∈Z=@

∑
e∈Z<@

r@/f (e) l−〈s,y〉@ |sᵀA + eᵀ (mod @)〉 ;

• (dual Gaussian state:) for all A ∈ Z=×<@ and y ∈ Z<@ , we let

|k̂A,y〉 =
∑

x∈Z<@
Ax=y (mod @)

rf (x) |x〉 .

For simplicity, we oftentimes drop the subscript on A and write |ky〉 and |k̂y〉, respectively.

Duality lemma
In this section, we prove a lemma which states that, up to negligible trace distance, the primal and
dual Gaussian states in Definition 28 are related via the @-ary quantum Fourier transform.

First, we show the following technical result.

Lemma 19. Let < ∈ N, @ ≥ 2 a modulus and let f > 0. Consider the quantum states,

|k〉 =
∑

x∈Z<@

rf (x) |x〉 and |q〉 =
∑

x∈Z<@

rf,@ (x) |x〉 ,

where rf,@ is the periodic Gaussian from Definition 7. Then, the normalized variants of the
Gaussian superpositions |k〉 and |q〉 above satisfy

‖|k〉〈k | − |q〉〈q|‖tr ≤
√

1 −
(
1 + 2−( 1

2 (@/f)2−<)
)−1
.

Proof. We consider the following two distributions over Z< ∩ (− @2 ,
@

2 ]
< given by

�f (x) =
rf (x)∑

y∈Z<@ rf (y)
and �f,@ (x) =

rf,@ (x)∑
y∈Z<@ rf,@ (y)

. (4.4)



79

We first bound the Hellinger distance,

�2(�f, �f,@) = 1 −
√
/−1
f · /−1

f,@

∑
x∈Z<@

√
rf (x) · rf,@ (x), (4.5)

where we define the two normalization factors

/f =
∑

y∈Z<@

rf (y) and /f,@ =
∑

y∈Z<@

rf,@ (y). (4.6)

From Lemma 14, it follows for any x ∈ Z< ∩ (− @2 ,
@

2 ]
< that

r2
f,@ (x) ·

(
1 + 2−(

1
2 (@/f)

2−<)
)−1
≤ rf (x) · rf,@ (x). (4.7)

Plugging in Eq. (4.7), we can bound the Hellinger distance as follows:

�2(�f, �f,@) = 1 −
∑

x∈Z<@

√
�f (x) · �f,@ (x)

= 1 −
√
/−1
f · /−1

f,@

∑
x∈Z<@

√
rf (x) · rf,@ (x)

≤ 1 −

√
/−1
f · /−1

f,@

1 + 2−( 1
2 (@/f)2−<)

∑
x∈Z<@

rf,@ (x)

≤ 1 −
(
1 + 2−(

1
2 (@/f)

2−<)
)−1/2

.

Therefore, it holds that

‖|k〉〈k | − |q〉〈q |‖tr ≤
√

1 − (1 − �2(�f, �f,@))2

≤
√

1 −
(
1 + 2−( 1

2 (@/f)2−<)
)−1
.

We are now ready to prove the so-called duality lemma.

Lemma20 (Duality lemma). Let< ∈ N and @ ≥ 2 be a primemodulus and let @/
√

8< > f >
√

8<.
Let A ∈ Z=×<@ be a matrix whose columns generate Z=@ and let y ∈ Z=@ be an arbitrary vector. Then,
up to negligible trace distance, the (normalized variants of the) primal and dual Gaussian states
are related via the quantum Fourier transform:

FT@ |ky〉 ≈Y |k̂y〉 =
∑

x∈Z<@
Ax=y (mod @)

rf (x) |x〉 ;

FT†@ |k̂y〉 ≈Y |ky〉 =
∑
s∈Z=@

∑
e∈Z<@

r@/f (e) l−〈s,y〉@ |sᵀA + eᵀ (mod @)〉 ,

where Y : N→ R+ is a negligible function in the parameter < ∈ N.
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Proof. Let y ∈ Z=@ be an arbitrary vector and recall that the dual Gaussian coset |k̂y〉 is given by

|k̂y〉 =
∑

x∈Z<@
Ax=y (mod @)

rf (x) |x〉 . (4.8)

We denote by Λy
@ (A) = {x ∈ Z< : Ax = y (mod @)} be the associated coset of the lattice Λ⊥@ (A).

Consider now the Gaussian superposition over the entire lattice coset Λy
@ (A) formally defined by

|q̂y〉 =
∑

x∈Λy
@ (A)

rf (x) |x〉 . (4.9)

Since f < @/
√

8<, it follows from the tail bound in Lemma 12 that the state in (4.8) is within
negligible trace distance of the state in Eq. (4.9). Applying the (inverse) Fourier transform, we get

|qy〉
def
= FT†@ |q̂y〉 =

∑
z∈Z<@

( ∑
x∈Λy

@ (A)

rf (x) · l−〈x,z〉@

)
|z〉 . (4.10)

From the Poisson summation formula (Lemma 13) and a subsequent change of variables, we get

|qy〉 =
∑
z∈Z<@

( ∑
s∈Z=@

r@/f,@ (z + Aᵀs) · l〈s,y〉@

)
|z〉

=
∑
s∈Z=@

∑
e∈/<@

r@/f,@ (e) · l−〈s,y〉@ |sᵀA + eᵀ (mod @)〉 . (4.11)

Because f >
√

8< it follows from Lemma 19 that there exists

^(<) =
√

1 −
(
1 + 2−3< )−1 ≥ 0

such that

|qy〉 ≈^
∑
s∈Z=@

∑
e∈/<@

r@/f (e) · l−〈s,y〉@ |sᵀA + eᵀ (mod @)〉 . (4.12)

Putting everything together, it follows from the triangle inequality that

FT†@ |k̂y〉 ≈Y |ky〉 =
∑
s∈Z=@

∑
e∈Z<@

r@/f (e) l−〈s,y〉@ |sᵀA + eᵀ〉 ,

where Y(<) = negl(<) + ^(<). Using that
√

1 − 1/(1 + G) ≤
√
G for all G > 0, we have

Y(<) = negl(<) +
√

1 −
(
1 + 2−3< )−1

≤ negl(<) + 2−
3<
2 .

Thus, we have that Y(<) ≤ negl(<). This proves the claim.
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Corollary 2. Let < ∈ N and @ ≥ 2 be a prime modulus and let @/
√

8< > f >
√

8<. Let A ∈ Z=×<@

be a matrix whose columns generate Z=@ and let y ∈ Z=@ be an arbitrary vector. Then, there exists a
negligible function Y : N→ R+ such that

FT@Xv
@ |ky〉 ≈Y Zv

@ |k̂y〉 , ∀v ∈ Z<@ .

Proof. From Lemma 6 it follows that FT@Xv
@ = Zv

@FT@, for all v ∈ Z<@ . Moreover, Lemma 20
implies that FT@ |ky〉 is within negligible trace distance of |k̂y〉. This proves the claim.

Efficient state preparation
In this section, we give two algorithms that prepare the primal and dual Gaussian states from
Definition 28. We remark that Gaussian superpositions over Z<@ with parameter f = Ω(

√
<) can

be efficiently implemented using standard quantum state preparation techniques, for example using
rejection sampling and theGrover-Rudolph algorithm. We refer to [78, 112, 36, 38]) for a reference.

Our first algorithm (see Algorithm 1 in Figure 4.2) prepares the dual Gaussian state from Defini-
tion 28 with respect to an input matrix A ∈ Z=×<@ and parameter f = Ω(

√
<), and is defined as

follows.

Our second algorithm (see Algorithm 2 in Figure 4.3) prepares the primal Gaussian state with
respect to an input matrix A ∈ Z=×<@ and parameter f = Ω(

√
<). Here, in order for Lemma 20 to

apply, it is crucial that the columns of A generate Z=@. Fortunately, it follows from Lemma 8 that a

uniformly random matrix A $← Z=×<@ satisfies this property with overwhelming probability.

Invariance under Pauli-Z dephasing
In this section, we prove a surprising property about the dual Gaussian state from Definition 28.
We prove Theorem 7, which says that the Pauli-Z dephasing channel with respect to the LWE
distribution leaves the dual Gaussian state approximately invariant.

Theorem 7. Let =, < ∈ N and @ ≥ 2 be a prime modulus, each parameterized by the security
parameter _ ∈ N. Let f be a parameter with @/

√
8< > f >

√
8<. Let y ∈ Z=@ be arbitrary and

A ∈ Z=×<@ be any matrix whose columns generate Z=@, and let |k̂y〉 be the dual Gaussian state,

|k̂y〉 =
∑

x∈Z<@
Ax=y (mod @)

rf (x) |x〉 .

Let ZLWE<=,@,U@ be the Pauli-Z dephasing channel with respect to the LWE<=,@,U@ distribution for
A ∈ Z=×<@ and a noise ratio U ∈ (0, 1) with relative noise magnitude 1/U = f · 2>(=) , i.e.,

ZLWE<=,@,U@ (r) =
∑
ŝ∈Z=@

∑
ê∈Z<@

@−=�Z<@ ,U@ (ê) ZŝᵀA+êᵀ
@ rZ−(ŝ

ᵀA+êᵀ)
@ , ∀r ∈ ! ((C@)⊗<).
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Algorithm 1: GenDual(A, f)

Input: Matrix A ∈ Z=×<@ and parameter f = Ω(
√
<).

Output: Gaussian state |k̂y〉 and y ∈ Z=@.

1 Prepare a Gaussian superposition in system - with parameter f > 0:

|k̂〉-. =
∑

x∈Z<@

rf (x) |x〉- ⊗ |0〉. .

2 Apply the unitary*A : |x〉 |0〉 → |x〉 |A · x (mod @)〉 on systems - and . :

|k̂〉-. =
∑

x∈Z<@

rf (x) |x〉- ⊗ |A · x (mod @)〉. .

3 Measure system . in the computational basis, resulting in the state

|k̂y〉-. =
∑

x∈Z<@ :
Ax=y

rf (x) |x〉- ⊗ |y〉. .

4 Output the state |k̂y〉 in system - and the outcome y ∈ Z=@ in system . .

Figure 4.2: Quantum algorithm which takes as input a matrix A ∈ Z=×<@ and a width parameter
f = Ω(

√
<), and outputs the dual Gaussian state in Definition 28.

Then, there exists a negligible function Y(_) such that

ZLWE<=,@,U@ (
��k̂y

〉〈
k̂y

��) ≈Y ��k̂y
〉〈
k̂y

�� .
In other words, the Pauli-Z dephasing channel with respect to the LWE distribution leaves the dual
Gaussian state approximately invariant.

Proof. Let y ∈ Z=@ be an arbitrary vector and recall that the dual Gaussian state |k̂y〉 is given by

|k̂y〉 =
∑

x∈Z<@
Ax=y (mod @)

rf (x) |x〉 . (4.13)
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Algorithm 2: GenPrimal(A, f)

Input: Matrix A ∈ Z=×<@ whose columns generate Z=@, and a parameter f = Ω(
√
<).

Output: Gaussian state |ky〉 and y ∈ Z=@.

1 Run GenDual(A, f), resulting in the state

|k̂y〉-. =
∑

x∈Z<@ :
Ax=y

rf (x) |x〉- ⊗ |y〉. .

2 Apply the quantum Fourier transform FT@ to system - .

3 Output the state in system - , denoted by |ky〉, and the outcome y ∈ Z=@ in system . .

Figure 4.3: Quantum algorithm which takes as input a matrix A ∈ Z=×<@ and a real parameter
f = Ω(

√
<), and outputs the primal Gaussian state in Definition 28.

Consider a sample b = ŝᵀA + êᵀ (mod @)) ∼ LWE<=,@,U@ with ŝ $← Z=@ and ê ∼ �Z<@ ,U@. Because
@/
√

8< > f >
√

8< and 1/U = f · 2>(=) , there exist negligible [(_) and ^(_) such that

ZŝᵀA+êᵀ
@ |k̂y〉 = FT@ XŝᵀA+êᵀ

@ FT†@ |k̂y〉 (Lemma 6)
≈[ FT@ XŝᵀA+êᵀ

@ |ky〉 (Lemma 20)
≈^ l

〈ŝ,y〉
@ FT@ |ky〉 (Lemma 15)

≈[ l
〈ŝ,y〉
@ |k̂y〉 . (Lemma 20)

Here, |ky〉 is the primal Gaussian state given by

|ky〉 =
∑
s∈Z=@

∑
e∈Z<@

r@/f (e) l−〈s,y〉@ |sᵀA + eᵀ (mod @)〉 .

In other words, |k̂y〉 in Eq. (4.13) is an approximate eigenvector of the generalized Pauli operator
ZŝᵀA+êᵀ
@ with respect to the same matrix A ∈ Z=×<@ . Note that we can simply discard l〈ŝ,y〉@ ∈ C

because it serves as a global phase. Hence, there exists a negligible function Y(_) such that

ZLWE<=,@,U@ (
��k̂y

〉〈
k̂y

��) = ∑
ŝ∈Z=@

∑
ê∈Z<@

@−=�Z<@ ,U@ (ê) ZŝᵀA+êᵀ
@

��k̂y
〉〈
k̂y

�� Z−(ŝᵀA+êᵀ)
@

≈Y

( ∑
ŝ∈Z=@

@−=
)
· ©«

∑
ê∈Z<@

�Z<@ ,U@ (ê)
ª®¬

��k̂y
〉〈
k̂y

��
=

��k̂y
〉〈
k̂y

�� .
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4.3 Gaussian-Collapsing Hash Functions
Unruh [125] introduced the notion of collapsing hash functions in his seminal work on computa-
tionally binding quantum commitments. This property is captured by the following definition.

Definition 29 (Collapsing hash function, [125]). Let _ ∈ N be the security parameter. A hash
function familyH = {�_}_∈N is called collapsing if, for every QPT adversary A,

| Pr[CollapseExpH ,A,_ (0) = 1] − Pr[CollapseExpH ,A,_ (1) = 1] | ≤ negl(_).

Here, the experiment CollapseExpH ,A,_ (1) is defined as follows:

1. The challenger samples a random hash function ℎ $← �_, and sends a description of ℎ toA.

2. A responds with a (classical) string H ∈ {0, 1}=(_) and an <(_)-qubit quantum state in
system - .

3. The challenger coherently computes ℎ (into an auxiliary system . ) given the state in system
- , and then performs a two-outcome measurement on . indicating whether the output of ℎ
equals H. If ℎ does not equal H the challenger aborts and outputs ⊥.

4. If 1 = 0, the challenger does nothing. Else, if 1 = 1, the challenge measures the <(_)-qubit
system - in the computational basis. Finally, the challenger returns the system - to A.

5. A returns a bit 1′, which we define as the output of the experiment.

Motivated by the properties of the dual Gaussian state from Definition 28, we consider a special
class of hash functions which are collapsing with respect to Gaussian superpositions. Informally,
we say that a hash function ℎ is Gaussian-collapsing if it is computationally difficult to distinguish
between a Gaussian superposition of pre-images and a single (measured) Gaussian pre-image (of
ℎ). We formalize this below.

Definition 30 (Gaussian-collapsing hash function). Let_ ∈ Nbe the security parameter,<(_), =(_) ∈
N and let @(_) ≥ 2 be a modulus. Let f > 0. A hash function family H = {�_}_∈N with domain
X = Z<@ and range Y = Z=@ is called f-Gaussian-collapsing if, for every QPT adversary A,

| Pr[GaussCollapseExpH ,A,_ (0) = 1] − Pr[GaussCollapseExpH ,A,_ (1) = 1] | ≤ negl(_).

Here, the experiment GaussCollapseExpH ,A,_ (1) is defined as follows:

1. The challenger samples a random hash function ℎ $← �_ and prepares the quantum state

|k̂〉-. =
∑

x∈Z<@

rf (x) |x〉- ⊗ |ℎ(x)〉. .
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2. The challenger measures system . in the computational basis, resulting in the state

|k̂y〉-. =
∑

x∈Z<@ :
ℎ(x)=y

rf (x) |x〉- ⊗ |y〉. .

3. If 1 = 0, the challenger does nothing. Else, if 1 = 1, the challenger measures system - of
the quantum state |k̂y〉 in the computational basis. Finally, the challenger sends the outcome
state in systems - to A, together with the string y ∈ Z=@ and a classical description of the
hash function ℎ.

4. A returns a bit 1′, which we define as the output of the experiment.

Ajtai’s hash function
In this section, we give a simple and direct proof that the Ajtai hash function is Gaussian-collapsing
assuming (decisional) LWE.

Theorem 8. Let = ∈ N and @ ≥ 2 be a prime with < ≥ 2= log @, each parameterized by _ ∈ N. Let
f be a such that @/

√
8< > f >

√
8<. Then, the Ajtai hash function familyH = {�_}_∈N with

�_ =
{
ℎA : Z<@ → Z=@ s.t. ℎA(x) = A · x (mod @); A ∈ Z=×<@

}
is f-Gaussian-collapsing assuming the quantum hardness of the decisional LWE<=,@,U@ problem, for
any parameter U ∈ (0, 1) with relative noise magnitude 1/U = f · 2>(=) .

Proof. Let A denote the QPT adversary in the experiment GaussCollapseExpH ,A,_ (1) for some
1 ∈ {0, 1}. To prove the claim, we give a reduction from the decisional LWE<=,@,U@ assumption. We

are given as input a sample (A, b) with A $← Z<×=@ , where b = ŝᵀA+ êᵀ) is either a sample from the

LWE distribution with ŝ $← Z=@ and ê ∼ �Z<,U@, or where b is a uniformly random string u $← Z<@ .

Consider the distinguisher D that acts as follows on input 1_ and (A, b):

1. D prepares a bipartite quantum state on systems - and . with

|k̂〉-. =
∑

x∈Z<@

rf (x) |x〉- ⊗ |A · x (mod @)〉. .

2. D measures system . in the computational basis, resulting in the state

|k̂y〉-. =
∑

x∈Z<@ :
Ax=y

rf (x) |x〉- ⊗ |y〉. .
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3. D applies the generalized Pauli-Z operator Zb
@ on system - , resulting in the state

(Zb
@ ⊗ 1. ) |k̂y〉-. =

∑
x∈Z<@ :
Ax=y

rf (x)
(
Zb
@ |x〉-

)
⊗ |y〉. .

4. D runs the adversary A on input system - and classical descriptions of A ∈ Z=×<@ and
y ∈ Z=@.

5. D outputs whatever bit 1′ ∈ {0, 1} the adversary A outputs.

Suppose that, for every _ ∈ N, there exists a polynomial ?(_) such that

| Pr[GaussCollapseExpH ,A,_ (0) = 1] − Pr[GaussCollapseExpH ,A,_ (1) = 1] | ≥ 1
?(_) .

We now show that this implies that D succeeds at the decisional LWE<=,@,U@ experiment with
advantage at least 1/?(_) − negl(_). We distinguish between the following two cases.

If (A, b) is a sample from the LWE distribution with b = ŝᵀA + êᵀ (mod @)), then the adversaryA
receives as input the following quantum state in system -:

ZLWE<=,@,U@ (
��k̂y

〉〈
k̂y

��
-
) =

∑
ŝ∈Z=@

∑
ê∈Z<

@−=�Z<,U@ (ê) ZŝᵀA+êᵀ
@

��k̂y
〉〈
k̂y

��
-

Z−(ŝ
ᵀA+êᵀ)

@ .

From Theorem 7 it follows that there exists a negligible function Y(_) such that

ZLWE<=,@,U@ (
��k̂y

〉〈
k̂y

��
-
) ≈Y

��k̂y
〉〈
k̂y

��
-
.

In otherwords,A receives as input a state in system - which iswithin negligible trace distance of the
dual Gaussian state |k̂y〉, which corresponds precisely to the input in GaussCollapseExpH ,A,_ (0).

If (A, b) is a uniformly random sample, where b is a random string u $← Z<@ , then the adversaryA
receives as input the following quantum state in system -:

Z(
��k̂y

〉〈
k̂y

��
-
) = @−<

∑
u∈Z<@

Zu
@

��k̂y
〉〈
k̂y

��
-

Z−u
@ .

BecauseZ corresponds to the uniform Pauli-Z dephasing channel, it follows from Lemma 7 that

Z(
��k̂y

〉〈
k̂y

��
-
) =

∑
x∈Z<@

��〈x|k̂y〉
��2 |x〉〈x|- .

In other words, A receives as input a mixed state which is the result of a computational basis
measurement of the Gaussian state |k̂y〉. Note that this corresponds precisely to the input in
GaussCollapseExpH ,A,_ (1).

By assumption, A succeeds with advantage at least 1/?(_). Therefore, the distinguisher D
succeeds at the decisional LWE<=,@,U@ experiment with probability at least 1/?(_) − negl(_).
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Theorem 9. Let = ∈ N and @ ≥ 2 be a prime modulus with < ≥ 2= log @, each parameterized
by _ ∈ N. Let f be a such that @/

√
8< > f >

√
8< and let A $← Z=×<@ be a matrix. Then,

the following states are computationally indistinguishable assuming the quantum hardness of
decisional LWE<=,@,U@, for any parameter U ∈ (0, 1) with relative noise magnitude 1/U = f · 2>(=):

• For any ( |k̂y〉 , y) ← GenDual(A, f) in Algorithm 1:

|k̂y〉 =
∑

x∈Z<@
Ax=y (mod @)

rf (x) |x〉 ≈2 |x0〉 : x0 ∼ �Λy
@ (A), f√2

.

• For any ( |ky〉 , y) ← GenPrimal(A, f) in Algorithm 2:

|ky〉 =
∑
s∈Z=@

∑
e∈Z<@

r @

f
(e) l−〈s,y〉@ |sᵀA + eᵀ〉 ≈2

∑
u∈Z<@

l
−〈u,x0〉
@ |u〉 : x0 ∼ �Λy

@ (A), f√2
.

Moreover, the distribution of y ∈ Z=@ is negligibly close to the uniform distribution over Z=@. Here,
Λ

y
@ (A) = {x ∈ Z< : Ax = y (mod @)} denotes the lattice coset of Λ⊥@ (A).

Proof. Let A $← Z=×<@ be a random matrix. From Lemma 8 it follows that the columns of A
generate Z=@ with overwhelming probability. Let us also recall the following simple facts about the
discrete Gaussian. According to Lemma 9, the distribution of the syndrome A · x = y (mod @) is
statistically close to the uniform distribution over Z=@, whenever x ∼ �Z<,f and f = l(

√
log<).

Moreover, the conditional distribution of x ∼ �Z<,f given the syndrome y ∈ Z=@ is a discrete
Gaussian distribution �Λy

@ (A),f.

Let us now show the first statement. Recall that in Theorem 8 we show that the Ajtai hash function
ℎA(x) = A · x (mod @) is f-Gaussian-collapsing assuming the decisional LWE<=,@,U@ assumption
and a noise ratio 1/U = f · 2>(=) . Therefore, for y ∈ Z=@, the (normalized variant of the) dual
Gaussian state,

|k̂y〉 =
∑

x∈Z<@ :
Ax=y (mod @)

rf (x) |x〉

is computationally indistinguishable from the (normalized) classical mixture,

∑
x∈Z<@

��〈x|k̂y〉
��2 |x〉〈x| = ©«

∑
z∈Z<@ :

Az=y (mod @)

r
f/
√

2(z)
ª®®®®¬
−1 ∑

x∈Z<@ :
Ax=y (mod @)

r
f/
√

2(x) |x〉〈x| ,
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which is the result of a computational basis measurement of |k̂y〉.3 Since @/
√

8< > f >
√

8<,
Lemma 12 implies that the above mixture is statistically close to the discrete Gaussian �Λy

@ (A), f√2
.

The second statement follows immediately by applying the (inverse) Fourier transform to both of
the states above. Note that in Lemma 20 we showed that the primal Gaussian state

|ky〉 =
∑
s∈Z=@

∑
e∈Z<@

r @

f
(e) l−〈s,y〉@ |sᵀA + eᵀ〉

is within negligible trace distance of FT†@ |k̂y〉. This proves the claim.

Strong Gaussian-collapsing property of the Ajtai hash function
In this section, we show our main technical result of this chapter. Specifically, we show that Ajtai’s
hash function satisfies a particular strong Gaussian-collapsing property; namely, once an adversary
A produces a valid short certificate c with the property that A · c = y (mod @), then A cannot
tell whether the input at the beginning of the experiment it received a Gaussian superposition of
pre-images or a single (measured) pre-image, even if A is now allowed to run in unbounded time.

Theorem 10 (Strong (everlasting) Gaussian collapsing property of the Ajtai hash). Let = ∈ N and @
be a prime modulus with @ = 2>(=) and< ≥ 2= log @, each parameterized by the security parameter
_ ∈ N. Let f be a such that @/

√
8< > f >

√
8< and let U ∈ (0, 1) be a noise ratio such that

1/U = 2>(=) · f. LetH = {�_}_∈N be the Ajtai hash function family with

�_ =
{
ℎA : Z<@ → Z=@ s.t. ℎA(x) = A · x (mod @); A ∈ Z=×<@

}
.

Then, assuming the hardness of the LWE<=,@,U@ and SIS<
=,@,f

√
2<
, it holds for any pair of adversaries

A = (A0,A1) consisting of a QPT algorithm A0 and an unbounded algorithm A1:

| Pr[StrongGaussCollapseExpH ,A,_ (0) = 1]−Pr[StrongGaussCollapseExpH ,A,_ (1) = 1] ≤ negl(_)

Here, the experiment StrongGaussCollapseExpH ,A,_ (1) is defined as follows:

1. The challenger first chooses a random hash function ℎA
$← �_ by sampling A $← Z=×<@ and

then generates a Gaussian superposition state ( |ky〉 , y ∈ Z=@) ← GenGauss(A, f), with

|ky〉 =
∑

x∈Z<@
Ax=y

rf (x) |x〉 .

3Here, the additional factor 1/
√

2 arises from the normalization of the dual Gaussian state |k̂y〉.
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2. If 1 = 0, the challenger does nothing. Else, if 1 = 1, the challenger measures the state in the
computational basis. Next, the challenger sends the resulting state together with A, y to A0.

3. A0 sends a classical certificate 0 ∈ Z<@ to the challenger and initializesA1 with its residual
(internal) state.

4. The challenger checks if 0 satisfies A · 0 = y (mod @) and ‖0‖ ≤ f
√
</2. If true,A1 is run

until it outputs a bit 1′. Otherwise, 1′← {0, 1} is sampled uniformly at random. The output
of the experiment is 1′.

Proof. Let A = (A0,A1) be an adversary consisting of a QPT algorithm A0 and an unbounded
algorithm A1. To prove the statement, we consider the following hybrids.

Hyb0(1): This is the original experiment StrongGaussCollapseExpH ,A,_ (1):

1. The challenger samples a random matrix A $← Z=×<@ and then generates a Gaussian
superposition state ( |ky〉 , y ∈ Z=@) ← GenGauss(A, f), with

|ky〉 =
∑

x∈Z<@
Ax=y

rf (x) |x〉 .

2. If 1 = 0, the challenger does nothing. Else, if 1 = 1, the challenger measures the state
in the computational basis. Next, the challenger sends the resulting state together with
A and y to the adversary A0.

3. A0 sends a classical certificate 0 ∈ Z<@ to the challenger and initializes A1 with its
residual (internal) state.

4. The challenger checks if 0 satisfies A · 0 = y (mod @) and ‖0‖ ≤ f
√
</2. If true, A1

is run until it outputs a bit 1′. Otherwise, 1′← {0, 1} is sampled uniformly at random.
The output of the experiment is 1′.

Hyb1(1): This is the following experiment.

1. The challenger samples a random matrix A $← Z=×<@ and then generates a Gaussian
superposition state ( |ky〉 , y ∈ Z=@) ← GenGauss(A, f), with

|ky〉 =
∑

x∈Z<@
Ax=y

rf (x) |x〉 .
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2. The challenger samples a random string, z $← Z<@ , prepares a |+〉 state in system � and
applies a controlled-Zz

@ operation, resulting in the state

|kz
y〉�� =

1
√

2

∑
2∈{0,1}

|2〉� ⊗ Z2·z@ |ky〉-

and sends system - together with A, y to the adversary A0.

3. A0 replies with a certificate c, and initializes A1 with its residual (internal) state.

4. The challenger checks if 0 satisfies A · 0 = y (mod @) and ‖0‖ ≤ f
√
</2. Then, the

challenger measures system � to obtain 2′ ∈ {0, 1} and checks that 2′ = 1. If both
checks are true, A1 is run until it outputs a bit 1′. Otherwise, 1′ ← {0, 1} is sampled
uniformly at random. The output of the experiment is 1′.

Hyb2(1): This is the following experiment.

1. The challenger samples a random matrix A $← Z=×<@ and then generates a Gaussian
superposition state ( |ky〉 , y ∈ Z=@) ← GenGauss(A, f), with

|ky〉 =
∑

x∈Z<@
Ax=y

rf (x) |x〉 .

2. The challenger samples a random string, z $← Z<@ , prepares a |+〉 state in system � and
applies a controlled-Zz

@ operation, resulting in the state

|kz
y〉�� =

1
√

2

∑
2∈{0,1}

|2〉� ⊗ Z2·z@ |ky〉-

and sends system - together with A, y to the adversary A0.

3. A0 replies with a certificate c, and initializes A1 with its residual (internal) state.

4. The challenger checks if 0 satisfies A · 0 = y (mod @) and ‖0‖ ≤ f
√
</2. Then, the

challenger applies the projective measurement{
|kz
c〉〈kz

c | ,1 − |kz
c〉〈kz

c |
}

with |kz
c〉 =

1
√

2
( |0〉 + l〈c,z〉@ |1〉)

and checks that the first outcome is observed. Finally, the challenger measures system
� to obtain 2′ ∈ {0, 1} and checks that 2′ = 1. If all three checks are true, A1 is run
until it outputs a bit 1′. Otherwise, 1′ ← {0, 1} is sampled uniformly at random. The
output of the experiment is 1′.
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Finally, we also use the following hybrid which is convenient for the sake of the proof.

Hyb′2(1): This is the following experiment.

1. The challenger samples a random matrix A $← Z=×<@ and Gaussian vector x0 ∼ �Z<@ , f√2

and lets y = A · x0 (mod @).

2. The challenger samples a random string, z $← Z<@ , prepares a |+〉 state in system � and
applies a controlled-Zz

@ operation, resulting in the state

|kz
y〉�� =

1
√

2

∑
2∈{0,1}

|2〉� ⊗ Z2·z@ |x0〉-

and sends system - together with A, y to the adversary A0.

3. A0 replies with a certificate c, and initializes A1 with its residual (internal) state.

4. The challenger checks if 0 satisfies A · 0 = y (mod @) and ‖0‖ ≤ f
√
</2. Then, the

challenger applies the projective measurement{
|kz
c〉〈kz

c | ,1 − |kz
c〉〈kz

c |
}

with |kz
c〉 =

1
√

2
( |0〉 + l〈c,z〉@ |1〉)

and checks that the first outcome is observed. Finally, the challenger measures system
� to obtain 2′ ∈ {0, 1} and checks that 2′ = 1. If all three checks are true, A1 is run
until it outputs a bit 1′. Otherwise, 1′ ← {0, 1} is sampled uniformly at random. The
output of the experiment is 1′.

Before we analyze the probability of distinguishing between the consecutive hybrids, we first show
that the following statements hold for the final experiment Hyb′2:

Claim1. The following statement holds assuming the quantumhardness of theSIS<
=,@,f

√
2<

problem:
With overwhelming probability, the certificate c returned by the adversary in Step 3 in Hyb3 is
identical to the pre-image x0 produced by the challenger. In other words,

Pr


A·0=y (mod @) s.t. ‖0‖≤f
√
</2∧

c ≠ x0

x0 ∼�Z<@ , f√2
y=A·x0 (mod @)

c←A0 (A,y,|x0〉〈x0 |- )

 ≤ negl(_),

where |x0〉〈x0 | in system - is the reduced state with respect to the bipartite state

|kz
y〉�- =

1
√

2

∑
2∈{0,1}

|2〉� ⊗ l
2·〈x0,z〉
@ |x0〉- .

Proof. Suppose for the sake of contradiction that the probability is at least 1/poly(_). We show
that we can use A0 to break SIS<

=,@,f
√

2<
. On input A $← Z=×<@ , our reduction proceeds as follows:
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1. Sample x0 ∼ �Z<@ , f√2
and let y = A · x0 (mod @).

2. Run A0 on input (A, y, |x0〉〈x0 |) to obtain a vector c ∈ Z=@.

3. Output the vector (x0 − c) ∈ Z=@.

By assumption,A0 outputs a valid certificate c ≠ x0 with ‖c‖ ≤ f
√
</2 such thatA·c = y (mod @)

with probability at least 1/poly(_). Because x0 ∼ �Z<@ , f√2
is sampled from the truncated discrete

Gaussian, we have ‖x0‖ ≤ f
√
</2, and thus it holds that

A · (x0 − c) = 0 (mod @) with ‖x0 − c‖ ≤ f
√

2<.

Hence, our reduction succeeds at breaking SIS<
=,@,f

√
2<

with probability at least 1/poly(_).

Claim 2. The probability that the challenger accepts the certificate c in Step 4 of Hyb2(1) and the
subsequent projective measurement on system � fails (returns the second outcome) is negligible.

Proof. This follows directly from Claim 1, which implies that except with negligible probability,
the register � is in the state

|kz
c〉 =

1
√

2
( |0〉 + l〈c,z〉@ |1〉)

at the time the challenger applies the projective measurement.

For any experiment Hyb8 (1), we define the advantage

Adv(Hyb8) B | Pr [Hyb8 (0) = 1] − Pr [Hyb8 (1) = 1] |.

Claim 3.
Adv(Hyb2) = 0.

Proof. We now consider the following case analysis. First, note that in the case that the challenger
rejects because either the certificate is invalid or their projection fails, the experiment does not
involve 1, and thus the advantage of the adversary is 0. Second, in the case that the challenger’s
projection succeeds, the register � is either in the state

1
√

2
( |0〉 + l〈c,z〉@ |1〉) or

1
√

2
( |0〉 − l〈c,z〉@ |1〉)

for some I $← Z<@ , and thereby completely unentangled from the rest of the system. Notice that the
challenger’s measurement of system � with outcome 2′ results in a uniformly random bit, which
completely masks 1. Therefore, the experiment is also independent of 1 in this case, and thus the
adversary’s overall advantage in Hyb2 is 0.
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Next, we invoke the Gaussian-collapsing property from Theorem 8 to argue the following.

Claim 4.
|Adv(Exp2) − Adv(Exp1) | ≤ negl(_).

Proof. Recall that Claim 2 shows that the projective measurement performed by the challenger in
Step 4 of Hyb′2 succeeds with overwhelming probability. We now argue that the same is also true
in Hyb2. Suppose for the sake of contradiction that there is a non-negligible difference between
the success probabilities of the measurement. We now show that this implies the existence of an
efficient distinguisher A′ that breaks the Gaussian-collapsing property of the Ajtai hash function
familyH = {�_}_∈N which we showed in Theorem 8. Our reduction proceeds as follows:

A′ receives (A, y) and a state on register - from its challenger. Next, it samples a random string
I

$← Z<@ , prepares a |+〉 state in system �, applies a controlled-ZI
@ operation from � to - . Then,

it runs A0 on (A, y, -), which outputs a certificate c. Finally, A′ applies the following projective
measurement to system �:{

|kz
c〉〈kz

c | ,1 − |kz
c〉〈kz

c |
}

with |kz
c〉 =

1
√

2
( |0〉 + l〈c,z〉@ |1〉).

and outputs 1 if the measurement succeeds and 0 otherwise. If there is a non-negligible difference
in success probabilities of this measurement between Hyb′2(1) and Hyb2(1) (for any 1 ∈ {0, 1}),
then A′ breaks the Gaussian-collapsing property of the Ajtai hash function.

Now, recall that Hyb2(1) is identical to Hyb1(1), except that the challenger applies an additional
a measurement in Step 4. Because the measurement succeeds with overwhelming probability, it
follows from the “Almost As Good As New Lemma” (Lemma 1) that the advantage of the adversary
must remain the same up to a negligible amount. This proves the claim.

Claim 5.
Adv(Hyb1) = Adv(Hyb0)/2.

Proof. First note that in Hyb1(1), we can imagine measuring register � to obtain 2′ and aborting if
2′ ≠ 1 before the challenger sends any information to the adversary. This follows because register
� is disjoint from the adversary’s registers. Next, by the Pauli-Z twirl property in Lemma 7, we
have the following guarantees about the state on system - given to the adversary in Hyb1(1).

• In the case 2′ = 1 = 0, the reduced state on register - is |ky〉.

• In the case that 2′ = 1 = 1, the reduced state on register - is a mixture over x0 ∼ �Z<@ , f√2

with y = A · x0 (mod @), where x0 results from measuring - in the computational basis.
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Thus, this experiment is identical to Hyb0(1), except that we decide to abort and output a uniformly
random bit 1′ with probability 1/2 at the beginning of the experiment.

Putting everything together, we have that Adv(Hyb0) ≤ negl(_), which completes the proof.

4.4 Public-Key Encryption with Publicly-Verifiable Deletion
In this section, we formalize the cryptographic notion of public-key encryption with publicly-
verifiable deletion (PVD). Let us first introduce some relevant definitions.

Definition
We consider public-key encryption schemes with certified deletion for which verification of a
deletion certificate is public; meaning anyone with access to the verification key can verify that
deletion has taken place. The syntax is as follows.

Definition 31 (Public-key encryption with publicly-verifiable deletion). A public-key encryption
scheme with publicly-verifiable deletion (PKEPVD) Σ = (KeyGen,Enc,Dec,Del,Vrfy) with plaintext
spaceM consists of the following tuple of QPT algorithms:

KeyGen(1_) → (pk, sk) : takes as input 1_ and outputs a public key pk and secret key sk.

Enc(pk, <) → (vk,CT) : takes as input the public key pk and a plaintext < ∈ M, and outputs a
classical (public) verification key vk together with a quantum ciphertext CT.

Dec(sk,CT) → <′ or⊥ : takes as input the key sk and ciphertext CT, and outputs <′ ∈ M or ⊥.

Del(CT) → c : takes as input a ciphertext CT and outputs a classical certificate c.

Vrfy(vk, c) → > or⊥ : takes as input the key vk and certificate c, and outputs > or ⊥.

Definition 32 (Correctness of PKEPVD). We require two separate kinds of correctness properties,
one for decryption and one for verification.

(Decryption correctness:) For any _ ∈ N, and for any < ∈ M:

Pr
[
Dec(sk,CT) ≠ <

���� (pk,sk)←KeyGen(1_)
CT←Enc(pk,<)

]
≤ negl(_).

(Verification correctness:) For any _ ∈ N, and for any < ∈ M:

Pr
[
Vrfy(vk, c) = ⊥

���� (pk,sk)←KeyGen(1_)
(vk,CT)←Enc(pk,<)

c←Del(CT)

]
≤ negl(_).
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(Everlasting) certified deletion security
In terms of security, we adopt the following definition introduced in [23, 24].

Definition 33 ((Everlasting certified deletion security). Let _ ∈ N be the security parameter and
let Σ = (KeyGen,Enc,Dec,Del,Vrfy) be a PKEPVD scheme. Let A = (A0,A1) be an adversary.
We define the security experiment EvExpΣ,A,_ (1) between A and a challenger as follows:

1. The challenger generates a pair (pk, sk) ← KeyGen(1_), and sends pk to A.

2. A sends a plaintext pair (<0, <1) ∈ M ×M to the challenger.

3. The challenger computes (vk,CT1) ← Enc(pk, <1), and sends CT1 to A.

4. At some point in time,A sends the certificate c to the challenger, and initializes the algorithm
A1 with its internal state.

5. The challenger computes Vrfy(vk, c). If the output is >,A1 is run until it outputs 1′ which is
also the output of the experiment. Otherwise, the challenger aborts and A loses.

We say that the scheme Σ is EV-CD-secure if, for any adversaryA = (A0,A1) consisting of a QPT
algorithm A0 and a computationally unbounded algorithm A1, it holds that

AdvΣ,A (_) := | Pr[EvExpΣ,A,_ (0) = 1] − Pr[EvExpΣ,A,_ (1) = 1] | ≤ negl(_).

4.5 Dual-Regev Public-Key Encryption with Publicly-Verifiable Deletion
In this section, we consider the Dual-Regev PKE scheme due to Gentry, Peikert and Vaikuntanathan
[68]. Unlike Regev’s original PKE scheme in [112], the Dual-Regev PKE scheme has the useful
property that the ciphertext takes the form of a regular sample from the LWE distribution together
with an additive shift which depends on the plaintext.

Construction
Parameters. Let _ ∈ N be the security parameter. We choose the following set of parameters for
our Dual-Regev PKE scheme with certified deletion (each parameterized by _).

• an integer = ∈ N.

• a prime modulus @ ≥ 2.

• an integer < ≥ 2= log @.

• a noise ratio U ∈ (0, 1) such that
√

8(< + 1) ≤ 1
U
≤ @√

8(<+1)
.
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Construction 5 (Dual-Regev PKE with Publicly-Verifiable Deletion). Let _ ∈ N. The Dual-Regev
PKE scheme DualPKEPVD = (KeyGen,Enc,Dec,Del,Vrfy) with PVD is defined as follows:

KeyGen(1_) → (pk, sk) : sample Ā $← Z=×<@ and a vector x̄ $← {0, 1}< and choose A =

[Ā|Ā · x̄ (mod @)]. Output (pk, sk), where pk = A ∈ Z=×(<+1)@ and sk = (−x̄, 1)ᵀ ∈ Z<+1@ .

Enc(pk, G) → (vk, |CT〉): parseA← pk and run ( |ky〉 , y) ← GenPrimal(A, 1/U) in Algorithm 2,
where y ∈ Z=@. To encrypt a single bit 1 ∈ {0, 1}, output the pair(

vk← (A ∈ Z=×(<+1)@ , y ∈ Z=@), |CT〉 ← X(0,...,0,1·b
@

2 c)
@ |ky〉

)
,

where vk is the public verification key and |CT〉 is an (< + 1)-qudit quantum ciphertext.

Dec(sk, |CT〉) → {0, 1} : to decrypt, measure the ciphertext |CT〉 in the computational basis with
outcome c ∈ Z<@ . Compute cᵀ · sk ∈ Z@ and output 0, if it is closer to 0 than to b @2 c, and
output 1, otherwise.

Del( |CT〉) → c : Measure |CT〉 in the Fourier basis and output the outcome c ∈ Z<+1@ .

Vrfy(vk, c) → {>,⊥} : to verify a deletion certificate c ∈ Z<+1@ , parse (A, y) ← vk and output >,
if A · c = y (mod @) and ‖c‖ ≤

√
< + 1/

√
2U, and output ⊥, otherwise.

Proof of correctness. Let us now establish the correctness of decryption and verification of the
scheme DualPKEPVD in Construction 5.

Lemma 21 (Correctness of decryption). Let = ∈ N and @ ≥ 2 be a prime with < ≥ 2= log @, each
parameterized by _ ∈ N. Let U be a ratio with

√
8(< + 1) ≤ 1

U
≤ @√

8(<+1)
. Then, for 1 ∈ {0, 1},

the scheme DualPKEPVD = (KeyGen,Enc,Dec,Del,Vrfy) in Construction 5 satisfies:

Pr
[
Dec(sk, |CT〉) = 1

���� (pk,sk)←KeyGen(1_)
(vk,|CT〉)←Enc(pk,1)

]
≥ 1 − negl(_).

Proof. By the Leftover Hash Lemma (Lemma 4), the distribution of A = [Ā|Ā · x̄ (mod @)] is
within negligible total variation distance of the uniform distribution over Z=×(<+1)@ . Moreover, from
Lemma 8 it follows that the columns of A generate Z=@ with overwhelming probability. Since the
noise ratio U ∈ (0, 1) satisfies

√
8(< + 1) ≤ 1

U
≤ @√

8(<+1)
, it then follows from Corollary 2 that the

ciphertext |CT〉 is within negligible trace distance of the state∑
s∈Z=@

∑
e∈Z<+1@

rU@ (e) l−〈s,y〉@ |sᵀA + eᵀ + (0, . . . , 0, 1 · b@
2
c)〉 .
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A measurement in computational basis yields an outcome c such that

cᵀ = ŝᵀA + êᵀ + (0, . . . , 0, 1 · b@
2
c) ∈ Z<+1@ ,

where ŝ $← Z=@ and where ê ∼ �Z<+1@ ,
U@√

2
is a sample from the (truncated) discrete Gaussian such

that ‖ê‖ ≤ U@
√
<+1

2 < b @4 c. Since Dec(sk, |CT〉) computes cᵀ · sk ∈ Z ∩ (− @2 ,
@

2 ] and outputs 0, if
it is closer to 0 than to b @2 c over , and 1 otherwise, it succeeds with overwhelming probability.

Let us now prove the following property.

Lemma 22 (Correctness of verification). Let = ∈ N and @ ≥ 2 be prime with < ≥ 2= log @, each
parameterized by _ ∈ N. Let U be a ratio with

√
8(< + 1) ≤ 1

U
≤ @√

8(<+1)
. Then, for 1 ∈ {0, 1},

the scheme DualPKEPVD = (KeyGen,Enc,Dec,Del,Vrfy) in Construction 5 satisfies:

Pr
[
Verify(vk, c) = >

���� (pk,sk)←KeyGen(1_)
(vk,|CT〉)←Enc(pk,1)

c←Del( |CT〉)

]
≥ 1 − negl(_).

Proof. By the Leftover Hash Lemma (Lemma 4), the distribution of A = [Ā|Ā · x̄ (mod @)] is
within negligible total variation distance of the uniform distribution over Z=×(<+1)@ . From Lemma 8
it follows that the columns of A generate Z=@ with overwhelming probability. Since U ∈ (0, 1) is a
ratio parameter with

√
8(< + 1) ≤ 1

U
≤ @√

8(<+1)
, Corollary 2 implies that the Fourier transform of

the ciphertext |CT〉 is within negligible trace distance of the dual state

|ĈT〉 =
∑

x∈Z<+1@ :
Ax=y (mod @)

r1/U (x) l
〈x,(0,...,0,1·b @2 c)〉
@ |x〉 .

From Lemma 12, it follows that the distribution of computational basis measurement outcomes is
within negligible total variation distance of c ∼ �Λy

@ (A), 1√
2U

with ‖c‖ ≤
√
< + 1/

√
2U.

Proof of security
Let us now prove the everlasting certified deletion security of our Dual-Regev PKE scheme with
PVD in Construction 5.

IND-CPA security ofDualPKEPVD. Wefirst prove that our public-key encryption schemeDualPKEPVD

in Construction 5 satisfies the notion IND-CPA security according to Definition 11. The proof fol-
lows from Theorem 9 and assumes the hardness of (decisional) LWE (Definition 14). We add it for
completeness.
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Theorem 11. Let = ∈ N and @ ≥ 2 be prime with < ≥ 2= log @, each parameterized by _ ∈ N.
Let U ∈ (0, 1) be a noise ratio parameter with

√
8(< + 1) ≤ 1

U
≤ @√

8(<+1)
. Then, the scheme

DualPKEPVD in Construction 5 is IND-CPA-secure assuming the quantum hardness of the decisional
LWE<+1

=,@,V@
problem, for any V ∈ (0, 1) with U/V = 2>(=) .

Proof. Let Σ = DualPKEPVD. We need to show that, for any QPT adversary A, it holds that

AdvΣ,A (_) := | Pr[Expind-cpa
Σ,A,_ (0) = 1] − Pr[Expind-cpa

Σ,A,_ (1) = 1] | ≤ negl(_).

Consider the experiment Expind-cpa
Σ,A,_ (1) between A and a challenger taking place as follows:

1. The challenger generates a pair (pk, sk) ← KeyGen(1_), and sends pk to A.

2. A sends a distinct plaintext pair (<0, <1) ∈ {0, 1} × {0, 1} to the challenger.

3. The challenger computes (vk,CT1) ← Enc(pk, <1), and sends |CT1〉 to A.

4. A outputs a guess 1′ ∈ {0, 1}, which is also the output of the experiment.

Recall that Enc(pk, <1) outputs a pair (vk, |CT1〉), where (A ∈ Z=×(<+1)@ , y ∈ Z=@) ← vk is the
verification key and where the ciphertext |CT1〉 is within negligible trace distance of∑

s∈Z=@

∑
e∈Z<+1@

rU@ (e) l−〈s,y〉@ |sᵀA + eᵀ + (0, . . . , 0, <1 · b@/2c) (mod @)〉 . (4.14)

Let V ∈ (0, 1) be such that U/V = 2>(=) . From Theorem 9 it follows that, under the LWE<
=,@,V@

assumption, the quantum ciphertext |CT1〉 is computationally indistinguishable from the state∑
u∈Z<+1@

l
−〈u,x0〉
@ |u〉 , x0 ∼ �Λy

@ (A), 1√
2U
. (4.15)

Because the state in Eq. (4.17) is completely independent of 1 ∈ {0, 1}, it follows that

AdvΣ,A (_) := | Pr[Expind-cpa
Σ,A,_ (0) = 1] − Pr[Expind-cpa

Σ,A,_ (1) = 1] | ≤ negl(_).

This proves the claim.

EV-CD security of DualPKEPVD. In this section, we prove that our public-key encryption scheme
DualPKEPVD in Construction 5 satisfies the notion of everlasting certified deletion security assuming
the quantum hardness of LWE and SIS. Our proof makes use of the strengthening of the Gaussian-
collapsing property which we proved in Theorem 10.
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Theorem 12. Let = ∈ N and @ ≥ 2 be a prime with< ≥ 2= log @, each parameterized by _ ∈ N. Let
U be a ratio with

√
8(< + 1) ≤ 1

U
≤ @√

8(<+1)
. Then,DualPKEPVD in Construction 5 isEV-CD-secure

assuming the hardness of LWE<+1
=,@,V@

and SIS<+1
=,@,
√

2</U
, for any V ∈ (0, 1) with U/V = 2>(=) .

Proof. Let Σ = DualPKEPVD = (KeyGen,Enc,Dec,Del,Vrfy). We need to show that, for any
A = (A0,A1) consisting of a QPT algorithm A0 and an unbounded algorithm A1, it holds that

AdvΣ,A (_) := | Pr[EvExpΣ,A,_ (0) = 1] − Pr[EvExpΣ,A,_ (1) = 1] | ≤ negl(_).

Without loss of generality, it suffices to show that the scheme Σ̂ = (KeyGen, ˆEnc,Dec,Del,Vrfy)
is EV-CD-secure. Here, ˆEnc is the same as Enc, except that it additionally applies the Fourier
transform to the ciphertext which is output by Enc. We consider the following sequence of hybrids:

H0 : This is the experiment EvExpΣ̂,A,_ (0) between A and a challenger:

1. The challenger samples a random matrix Ā $← Z=×<@ and a vector x̄ $← {0, 1}< and
chooses A = [Ā|Ā · x̄ (mod @)]. Then, the challenger assigns sk ← (−x̄, 1) ∈ Z<+1@ as
the secret key and pk← A ∈ Z=×(<+1)@ as the public key.

2. A0 sends a distinct plaintext pair (<0, <1) ∈ {0, 1} × {0, 1} to the challenger. (Note:
Without loss of generality, we can just assume that <0 = 0 and <1 = 1).

3. The challenger runs ( |ky〉 , y) ← GenPrimal(A, 1/U) in Algorithm 2, and outputs(
vk← (A ∈ Z=×(<+1)@ , y ∈ Z=@), |CT0〉 ← FT@ |ky〉

)
.

4. At some point in time, A0 returns a certificate c to the challenger, and initializes A1

with its internal state.

5. The challenger verifies c and outputs >, if A · c = y (mod @) and ‖c‖ ≤
√
< + 1/

√
2U.

If the output is>,A1 is run until it outputs 1′which is also the output of the experiment.
Otherwise, the challenger aborts and A loses.

H1 : This is same experiment as in H0, except that (in Step 3) the challenger also measures the
ciphertext |CT0〉 in the computational basis before it is send to A0.

H2 : This is the experiment EvExpΣ̂,A,_ (1) between A and a challenger:

1. The challenger samples a random matrix Ā $← Z=×<@ and a vector x̄ $← {0, 1}< and
chooses A = [Ā|Ā · x̄ (mod @)]. Then, the challenger assigns sk ← (−x̄, 1) ∈ Z<+1@ as
the secret key and pk← A ∈ Z=×(<+1)@ as the public key.
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2. A0 sends a distinct plaintext pair (<0, <1) ∈ {0, 1} × {0, 1} to the challenger. (Note:
Without loss of generality, we can just assume that <0 = 0 and <1 = 1).

3. The challenger runs ( |ky〉 , y) ← GenPrimal(A, 1/U) in Algorithm 2, and outputs(
vk← (A ∈ Z=×(<+1)@ , y ∈ Z=@), |CT1〉 ← FT@X

(0,...,0,b @2 c)
@ |ky〉

)
.

4. At some point in time, A0 returns a certificate c to the challenger, and initializes A1

with its internal state.

5. The challenger verifies c and outputs >, if A · c = y (mod @) and ‖c‖ ≤
√
< + 1/

√
2U.

If the output is>,A1 is run until it outputs 1′which is also the output of the experiment.
Otherwise, the challenger aborts and A loses.

We now show that the hybrids are indistinguishable.

Claim 6.
| Pr[EvExpΣ̂,A,_ (0) = 1] − Pr[H1 = 1] | ≤ negl(_).

Proof. By the Leftover Hash Lemma (Lemma 4), the distribution of A = [Ā|Ā · x̄ (mod @)] is
within negligible total variation distance of the uniform distribution over Z=×(<+1)@ . From Lemma 8
it follows that the columns of A generate Z=@ with overwhelming probability. Since U ∈ (0, 1) is a
ratio parameter with

√
8(< + 1) ≤ 1

U
≤ @√

8(<+1)
, Corollary 2 implies that the Fourier transform of

FT@ |ky〉 with ( |ky〉 , y) ← GenPrimal(A, 1/U) is within negligible trace distance of the dual state

|k̂y〉 =
∑

x∈Z<+1@ :
Ax=y (mod @)

r1/U (x) |x〉 .

Therefore, the claim follows immediately from the (everlasting) strongGaussian-collapsing property
in Theorem 10, which implies that the measurement in the computational basis is undetectable.

Next, we show the following.

Claim 7.
| Pr[H1 = 1] − Pr[EvExpΣ̂,A,_ (1) = 1] | ≤ negl(_).

Proof. First, recall from Lemma 6 that FT@Xv
@ = Zv

@FT@, for all v ∈ Z<@ . Therefore, the proof is the
same as in Claim 6, except that the ciphertext output by the challenger in EvExpΣ̂,A,_ (1) is within
negligible trace distance of the quantum state

Z〈x,(0,...,0,b
@

2 c)〉
@ |k̂y〉 =

∑
x∈Z<+1@ :

Ax=y (mod @)

r1/U (x)l
〈x,(0,...,0,b @2 c)〉
@ |x〉 .
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Therefore, the claim follows from the (everlasting) strong Gaussian-collapsing property in Theo-
rem 10, since applying the phase operator Z(0,...,0,b

@

2 c)
@ before the measurement does not affect the

measurement outcome in the computational basis.

Because the hybrids H0 and H2 are indistinguishable, this implies that

AdvΣ̂,A (_) ≤ negl(_).

This proves the claim.

Next, we show how to extend our Dual-Regev PKE scheme with certified deletion in Construction 5
to a fully homomorphic encryption scheme of the same type.

4.6 Fully Homomorphic Encryption with Publicly-Verifiable Deletion
In this section, we formalize the notion of homomorphic encryptionwith publicly-verifiable deletion
which enables an untrusted quantum server to compute on encrypted data and to also prove data
deletion to a client. Let us first introduce some relevant definitions.

Definition
We begin with the following definition.

Definition 34 (Homomorphic encryption with publicly-verifiable deletion). Let _ ∈ N be the
security parameter. A homomorphic encryption scheme with publicly-verifiable deletion is a tuple
HEPVD = (KeyGen,Enc,Dec,Eval,Del,Vrfy) of QPT algorithms:

KeyGen(1_) → (pk, sk) : takes as input 1_ and outputs a public key pk and secret key sk.

Enc(pk, G) → (vk,CT) : takes as input the public key pk and a plaintext G ∈ {0, 1}, and outputs
a public verification key vk together with a quantum ciphertext CT.

Dec(sk,CT) → G′ or⊥ : takes as input a key sk and ciphertext CT, and outputs G′ ∈ {0, 1} or ⊥.

Eval(�,CT, pk) → C̃T: takes as input a key pk and applies a circuit � : {0, 1}ℓ → {0, 1} to a
product of quantum ciphertexts CT = CT1 ⊗ · · · ⊗ CTℓ resulting in a state C̃T.

Del(CT) → c : takes as input a ciphertext CT and outputs a classical certificate c.

Vrfy(vk, c) → > or⊥ : takes as input a key vk and certificate c, and outputs > or ⊥.

We remark thatwe frequently overload the functionality of the encryption and decryption procedures
by allowing both procedures to take multi-bit messages as input, and to generate or decrypt a
sequence of quantum ciphertexts bit-by-bit.
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Definition 35 (Compactness and full homomorphism). Let _ ∈ N be the security parameter.
A homomorphic encryption scheme HEPVD = (KeyGen,Enc,Dec,Eval,Del,Vrfy) with publicly-
verifiable deletion is fully homomorphic if, for any efficienty (in _ ∈ N) computable circuit � :
{0, 1}ℓ → {0, 1} and any set of inputs G = (G1, . . . , Gℓ) ∈ {0, 1}ℓ, it holds that

Pr
[
Dec(sk, C̃T) ≠ � (G1, . . . , Gℓ)

���� (pk,sk)←KeyGen(1_)
(vk,CT)←Enc(pk,G)
C̃T←Eval(�,CT,pk)

]
≤ negl(_).

We say that a fully homomorphic encryption scheme with certified deletion (FHEPVD) is compact
if its decryption circuit is independent of the circuit �. The scheme is leveled fully homomorphic
if it takes 1! as an additional input for its key generation procedure and can only evaluate depth !
Boolean circuits.

Definition 36 (Correctness of verification). A homomorphic encryption scheme with certified
deletionHEPVD = (KeyGen,Enc,Dec,Eval,Del,Vrfy) has correctness of verification if the following
property holds for any integer _ ∈ N and any set of inputs G = (G1, . . . , Gℓ) ∈ {0, 1}ℓ

Pr
[
Vrfy(vk, c) = ⊥

���� (pk,sk)←KeyGen(1_)
(vk,CT)←Enc(pk,G)

c←Del(CT)

]
≤ negl(_).

(Everlasting) certified deletion security
Our notion of certified deletion security for homomorphic encryption (HE) schemes is identical to
the notion of EV-CD security for public-key encryption schemes in Definition 33.

Definition 37 ((Everlasting certified deletion security). Let _ ∈ N be the security parameter and
let Σ = (KeyGen,Enc,Dec,Eval,Del,Vrfy) be a homomorphic encryption scheme with publicly-
verifiable deletion. Let A = (A0,A1) be an adversary. We define the security experiment
EvExpΣ,A,_ (1) between A and a challenger as follows:

1. The challenger generates a pair (pk, sk) ← KeyGen(1_), and sends pk to A.

2. A sends a plaintext pair (<0, <1) ∈ M ×M to the challenger.

3. The challenger computes (vk,CT1) ← Enc(pk, <1), and sends CT1 to A.

4. At some point in time,A sends the certificate c to the challenger, and initializes the algorithm
A1 with its internal state.

5. The challenger computes Vrfy(vk, c). If the output is >,A1 is run until it outputs 1′ which is
also the output of the experiment. Otherwise, the challenger aborts and A loses.
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We say that the scheme Σ is EV-CD-secure if, for any adversaryA = (A0,A1) consisting of a QPT
algorithm A0 and a computationally unbounded algorithm A1, it holds that

AdvΣ,A (_) := | Pr[EvExpΣ,A,_ (0) = 1] − Pr[EvExpΣ,A,_ (1) = 1] | ≤ negl(_).

4.7 Dual-Regev Fully Homomorphic Encryption with Publicly-Verifiable Deletion
In this section, we describe a protocol that allows an untrusted quantum server to perform homo-
morphic operations on encrypted data and to also prove data deletion to a client.

Our FHE scheme with certified deletion supports the evaluation of polynomial-sized Boolean
circuits composed entirely of NAND gates (see Figure 4.4) – an assumption we can make without
loss of generality, since the NAND operation is universal for classical computation. Note that, for
0, 1 ∈ {0, 1}, the logical NOT-AND (NAND) operation is defined by

NAND(0, 1) = 0 ∧ 1 = 1 − 0 · 1.

Recall also that a Boolean circuit with input G ∈ {0, 1}= is a directed acyclic graph � = (+, �) in

0 1

Figure 4.4: NAND gate.

which each node in + is either an input node (corresponding to an input bit G8), an AND (∧) gate,
an OR (∨) gate, or a NOT (¬) gate. We can naturally identify a Boolean circuit with a function
5 : {0, 1}= → {0, 1} which it computes. Due to the universality of the NAND operation, we can
represent every Boolean circuit (and the function it computes) with an equivalent circuit consisting
entirely of NAND gates. In Figure 4.5, we give an example of a Boolean circuit composed of three
NAND gates that takes as input a string G ∈ {0, 1}4.

Construction
In this section, we describe our fully homomorphic encryption scheme with certified deletion. In
order to define our construction, we require a so-called flattening operation first introduced by
Gentry, Sahai and Waters [69] in the context of homomorphic encryption and is also featured in the
Dual-Regev FHE scheme ofMahadev [99]. Let = ∈ N, @ ≥ 2 be a primemodulus and< ≥ 2= log @.
Then, for # = (< + 1) · dlog @e, we let 1 be the (< + 1) × (< + 1) identity matrix and

G = [1 ‖ 21 ‖ . . . ‖ 2dlog @e−11] ∈ Z(<+1)×#@
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G1 G2 G3 G4

� (G)

Figure 4.5: A Boolean circuit � made up of three NAND gates which takes as input a binary string
of the form G ∈ {0, 1}4. The top-most NAND gate is the designated output node with outcome
� (G) ∈ {0, 1}.

denote the so-called gadget matrix which converts a binary representation of a vector back to
its original vector representation over the field Z@. Note that the associated (non-linear) inverse
operation G−1 converts vectors in Z<+1@ to their binary representation in {0, 1}# . In other words,
we have that G ◦G−1 acts as the identity operator.

Our (leveled) FHE scheme with certified deletion is based on the (leveled) Dual-Regev FHE scheme
introduced by Mahadev [99] which is a variant of the LWE-based FHE scheme proposed by Gentry,
Sahai and Waters [69]. We base our choice of parameters on the aforementioned two works.

Let us first recall the Dual-Regev FHE scheme below.

Construction 6 (Dual-Regev leveled FHE). Let _ ∈ N be the security parameter and let ! be an
upper bound on the NAND depth of the circuit which is to be evaluated. The Dual-Regev leveled
FHE scheme DualFHE = (KeyGen,Enc,Dec,Eval) consists of the following PPT algorithms:

KeyGen(1_, 1!) → (pk, sk) : sample Ā $← Z=×<@ and x̄ $← {0, 1}< and letA = [Ā|Ā·x̄ (mod @)]ᵀ.
Output (pk, sk), where pk = A ∈ Z(<+1)×=@ and sk = (−x̄, 1) ∈ Z<+1@ .

Enc(pk, G) : to encrypt G ∈ {0, 1}, parse A ∈ Z(<+1)×=@ ← pk, sample S $← Z=×#@ and an error
E ∼ �Z(<+1)×# , U@ and output CT = A · S + E + G · G (mod @) ∈ Z(<+1)×#@ , where G is the
power-of-two gadget matrix in Eq. (4.7).

Eval(�,CT) : apply the circuit � composed of NAND gates on a ciphertext tuple CT as follows:

• parse the ciphertext tuple as (CT1, . . . ,CTℓ) ← CT.

• repeat for everyNAND gate in�: to apply a NAND gate on a ciphertext pair (CT8,CT 9 ),
parse matrices C8 ← CT8 and C 9 ← CT 9 with C8,C 9 ∈ Z(<+1)×#@ and generate

C8 9 = G − C8 ·G−1(C 9 ) (mod @).
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Let CT8 9 ← C8 9 denote the outcome ciphertext.

Dec(sk,CT) : parse C ∈ Z(<+1)×#@ ← CT and compute 2 = skᵀ · c# ∈ Z ∩ (− @2 ,
@

2 ], where
c# ∈ Z<+1@ is the #-th column of C, and then output 0, if 2 is closer to 0 than to b @2 c, and
output 1, otherwise.

TheDual-Regev FHE scheme supports the homomorphic evaluation of aNAND gate in the following
sense. If CT0 and CT1 are ciphertexts that encrypt two bits G0 and G1, respectively, then the resulting
outcomeCT = G−CT0 ·G−1(CT1) (mod @) is an encryption ofNAND(G0, G1) = 1−G0 ·G1, whereG is
the gadget matrix that converts a binary representation of a vector back to its original representation
over the ring Z@. Moreover, the new ciphertext CT maintains the form of an LWE sample with
respect to the same public key pk, albeit for a new LWE secret and a new (non-necessarily Gaussian)
noise term of bounded magnitude. This property is crucial, as knowledge of the secret key sk (i.e.,
a short trapdoor vector) still allows for the decryption of the ciphertext CT once a NAND gate has
been applied.

The following result is implicit in the work of Mahadev [99, Theorem 5.1].

Theorem 13 ([99]). Let _ ∈ N be the security parameter. Let = ∈ N, let @ ≥ 2 be a prime modulus
and < ≥ 2= log @, each parameterized by _. Let # = (< + 1) · dlog @e be an integer and let ! be
an upper bound on the depth of the polynomial-sized Boolean circuit which is to be evaluated. Let
U ∈ (0, 1) be a ratio such that

2
√
= ≤ U@ ≤ @

4(< + 1) · (# + 1)!
.

Then, the scheme in Construction 6 is an IND-CPA-secure leveled fully homomorphic encryption
scheme under the LWE<+1=,@,U@ assumption.

Note that the Dual-Regev FHE scheme is leveled in the sense that an apriori upper bound ! on the
NAND-depth of the circuit is required to set the parameters appropriately. We remark that a proper
(non-leveled) FHE scheme can be obtained under an additional circular security assumption [37].

The leveled Dual-Regev FHE scheme inherits a crucial property from its public-key counterpart.
Namely, in contrast to the FHE scheme in [69], the ciphertext takes the form of a regular sample from
the LWE distribution together with an additive shift G · G that depends on the plaintext G ∈ {0, 1}.
In particular, if a Boolean circuit � of polynomial NAND-depth ! is applied to the ciphertext
corresponding to a plaintext G ∈ {0, 1}ℓ in Construction 6, then the resulting final ciphertext is of
the form A · S + E + � (G)G, where S ∈ Z=×#@ , E ∈ Z(<+1)×#@ and ‖E‖ ≤ U@

√
(< + 1) · (# + 1)!

(see [69] for details). Choosing 1/U to be sub-exponential in # as in [69], we can therefore allow
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for homomorphic computations of arbitrary polynomial-sized Boolean circuits of NAND-depth at
most !. It is easy to see that the decryption procedure of the leveled Dual-Regev FHE scheme is
successful as long as the cumulative error E satisfies the condition ‖E‖ ≤ @

4
√
(<+1)

.

This property is essential as it allows us to extend Dual-Regev PKE scheme with certified deletion
towards a leveled FHE scheme, which we denote by FHEPVD. Using Gaussian coset states, we can
again encode Dual-Regev ciphertexts for the purpose of certified deletion while simultaneously
preserving their cryptographic functionality.

Dual-Regev leveled FHE with certified deletion. Let us now describe our (leveled) FHE scheme
with certified deletion. We base our choice of parameters on the Dual-Regev FHE scheme of
Mahadev [99] which is a variant of the scheme due to Gentry, Sahai and Waters [69].

Parameters. Let _ ∈ N be the security parameter and let = ∈ N. Let ! be an upper bound on the
depth of the polynomial-sized Boolean circuit which is to be evaluated. We choose the following
set of parameters for the Dual-Regev leveled FHE scheme (each parameterized by _).

• a prime modulus @ ≥ 2.

• an integer < ≥ 2= log @.

• an integer # = (< + 1) · dlog @e.

• a noise ratio U ∈ (0, 1) such that√
8(< + 1) ≤ U@ ≤ @

√
8(< + 1) · (# + 1)!

.

Construction 7 (Dual-Regev leveled FHE scheme with publicly-verifiable deletion). Let _ ∈ N be
a parameter and DualFHE = (KeyGen,Enc,Dec,Eval) be the scheme in Construction 6. The Dual-
Regev (leveled) FHE scheme DualFHEPVD = (KeyGen,Enc,Dec,Eval,Del,Vrfy) with publicly-
verifiable deletion is defined by the following QPT algorithms:

KeyGen(1_) → (pk, sk) : generate (pk, sk) ← DualFHE.KeyGen(1_) and output (pk, sk).

Enc(pk, G) → (vk, |CT〉) : to encrypt a bit G ∈ {0, 1}, parse A ∈ Z(<+1)×=@ ← pk and, for 8 ∈ [#],
run ( |ky8〉 , y8) ← GenPrimal(Aᵀ, 1/U) in Algorithm 2, where y8 ∈ Z=@, and output the pair(

vk← (A ∈ Z(<+1)×=@ , (y1 | . . . |y# ) ∈ Z=×#@ ), |CT〉 ← XG·g1
@ |ky1〉 ⊗ · · · ⊗ XG·g#

@ |ky# 〉
)
,

where (g1, . . . , g# ) are the columns of the gadget matrix G ∈ Z(<+1)×#@ in Eq. (4.7).
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Eval(�, |CT〉) → |C̃T〉: apply the Boolean circuit � composed of NAND gates to the ciphertext
|CT〉 in system �in = �1 · · ·�ℓ as follows: For every gate NAND8 9 in the circuit � between a
ciphertext pair in systems �8 and � 9 , repeat the following two steps:

• apply *NAND from Definition 38 to systems �8� 9 of the ciphertext CT by appending
an auxiliary system �8 9 . This results in a new ciphertext state CT which contains the
additional system �8 9 .

Output |C̃T〉, where |C̃T〉 is the final post-evaluation state in systems �in�aux�out and

• �in = �1 · · ·�ℓ denotes the initial ciphertext systems of |CT1〉 ⊗ · · · ⊗ |CTℓ〉.

• �aux denotes all intermediate auxiliary ciphertext systems.

• �out denotes the final ciphertext system corresponding to the output of the circuit �.

Dec(sk, |CT〉) → {0, 1}` or⊥ : measure the ciphertext |CT〉 in the computational basis to obtain
an outcome C and output G′← DualFHE.Dec(sk,C).

Del( |CT〉) → c : measure |CT〉 in the Fourier basis with outcomes c = (c1 | . . . |c# ) ∈ Z(<+1)×#@ .

Vrfy(vk, pk, c) → {0, 1} : to verify the deletion certificate c = (c1 | . . . |c# ) ∈ Z(<+1)×#@ , parse
(A ∈ Z(<+1)×=@ , (y1 | . . . |y# ) ∈ Z=×#@ ) ← vk and output >, if both Aᵀ · c8 = y8 (mod @) and
‖c8‖ ≤

√
< + 1/

√
2U for every 8 ∈ [#], and output ⊥, otherwise.

Let us now define how to perform the homomorphic NAND gate in Construction 7 in more detail.

Definition 38 (Homomorphic NAND gate). Let @ ≥ 2 be a modulus, and let <, # ∈ N. Let
X,Y,Z ∈ Z(<+1)×#@ be arbitrary matrices. We define the homomorphic NAND gate as the unitary

*NAND : |X〉- ⊗ |Y〉. ⊗ |Z〉/ → |X〉- ⊗ |Y〉. ⊗ |Z +G − X ·G−1(Y) (mod @)〉/ ,

where G ∈ Z(<+1)×#@ is the gadget matrix in Eq. (4.7).

To illustrate the action of our homomorphic NAND gate, we consider a simple example.

Example. Consider a pair of ciphertexts |CT8〉 ⊗ |CT 9 〉 which encrypt two bits G8, G 9 ∈ {0, 1} as in
Construction 7. Let*NAND8 9 denote the homomorphic NAND gate applied to systems �8� 9 . Then,

*NAND8 9 : |CT8〉�8 ⊗ |CT 9 〉� 9 ⊗ |0〉�8 9 → |CT8 9 〉�8� 9�8 9 .
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Here, |CT8 9 〉 is the resulting ciphertext in systems �8� 9�8 9 . Note that *NAND8 9 is reversible in the
sense that

*
†
NAND8 9 : |CT8 9 〉�8� 9�8 9 → |CT8〉�8 ⊗ |CT 9 〉� 9 ⊗ |0〉�8 9 .

Let us now analyze how *NAND acts on the basis states of a pair of ciphertexts |CT8〉 ⊗ |CT 9 〉
that encode LWE samples as in Construction 7. In the following, E8,E 9 ∼ �Z(<+1)×#@ ,

U@√
2
have a

(truncated) discrete Gaussian distribution as part of the superposition. Then,

*NAND8 9 : |AS8 + E8 + G8G〉�8 ⊗ |AS 9 + E 9 + G 9G〉� 9 ⊗ |0〉�8 9
→ |AS8 + E8 + G8G〉�8 ⊗ |AS 9 + E 9 + G 9G〉� 9 ⊗ |AS8 9 + E8 9 + (1 − G8G 9 )G〉�8 9 ,

where introduced the following matrices

S8 9 := −S8 ·G−1(AS 9 + E 9 + G 9G) − G8S8 (mod @)
E8 9 := −E8 ·G−1(AS 9 + E 9 + G 9G) − G8E 9 (mod @).

Because the initial error terms have the property that ‖E8‖, ‖E 9 ‖ ≤ U@
√
(< + 1)/2, it follows that

the resulting error after a single NAND gate is at most (see also [69, 99] for more details)

‖E8 9 ‖ ≤ U@
√
(< + 1)

2
.

In other words, the cumulative error term remains short relative to the modulus @ after every appli-
cation of a homomorphic NAND gate, exactly as in the Dual-Regev FHE scheme of Mahadev [99].

Proof of correctness. Let us now verify the correctness of decryption and verification of Con-
struction 7.

Lemma 23 (Compactness and full homomorphism of DualFHEPVD). Let _ ∈ N be the security
parameter. Let = ∈ N, let @ ≥ 2 be a prime and < ≥ 2= log @, each parameterized by _. Let
# = (< + 1) · dlog @e and let ! be an upper bound on the depth of the polynomial-sized Boolean
circuit which is to be evaluated. Let U ∈ (0, 1) be a ratio with√

8(< + 1)# ≤ U@ ≤ @
√

8(< + 1) · (# + 1)!
.

Then, the schemeDualFHEPVD = (KeyGen,Enc,Dec,Eval,Del,Vrfy) in Construction 7 is a compact
and fully homomorphic encryption scheme with publicly-verifiable deletion. In other words, for any
efficienty computable circuit � : {0, 1}ℓ → {0, 1} and any set of inputs G = (G1, . . . , Gℓ) ∈ {0, 1}ℓ,
it holds that:

Pr
[
DualFHEPVD.Dec(sk, |C̃T〉) ≠ � (G1, . . . , Gℓ)

���� (pk,sk)←DualFHEPVD.KeyGen(1_,1!)
(vk,|CT〉)←DualFHEPVD.Enc(pk,G)
|C̃T〉←DualFHEPVD.Eval(�,|CT〉,pk)

]
≤ negl(_).
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|CT1〉�1 |CT2〉�2 |CT3〉�3 |CT4〉�4

|CT12〉�1�2�12 |CT34〉�3�4�34

|CT12,34〉�1�2�3�4�12�34�12,34

*NAND

*NAND

*NAND

�in = �1�2�3�4

�aux = �12�34

�out = �12,34

Figure 4.6: Homomorphic evaluation of aBoolean circuit� composed entirely of threeNAND gates.
Here, the input is the quantum ciphertext |CT1〉 ⊗ |CT2〉 ⊗ |CT3〉 ⊗ |CT4〉 which corresponds to an
encryption of the plaintext G = (G1, . . . , G4) ∈ {0, 1}4 as in Construction 7. The resulting ciphertext
|CT12,34〉 lives on a system �1�2�3�4�12�34�12,34 of which the last system �12,34 contains an
encryption of � (G) ∈ {0, 1}.

Proof. Let |CT〉 be the ciphertext output by DualFHEPVD.Enc(pk, G), where G ∈ {0, 1}ℓ denotes
the plaintext, and let ( |C̃T〉 , C�) ← DualFHEPVD.Eval(�, |CT〉) be the output of the evaluation
procedure. Let us first consider the case when C� = ∅, i.e., not a single NAND gate has been
applied to the ciphertext. In this case, the claim follows from the fact that the truncated discrete
Gaussian �

Z
(<+1)×#
@ ,

U@√
2
is supported on {X ∈ Z(<+1)×#@ : ‖X‖ ≤ U@

√
(< + 1)/2}. Recall that

DualFHEPVD.Dec(sk, |C̃T〉) measures the ciphertext |C̃T〉 in the computational basis with outcome
C = (C1, . . . ,Cℓ), where C8 ∈ Z(<+1)×#@ is a matrix, and outputs G′ ← DualFHE.Dec(sk,C). By
our choice of parameters, each error term satisfies

‖E8‖ ≤ U@
√
(< + 1)

2
<

@

4
√
(< + 1)

, ∀8 ∈ [ℓ] .

Hence, decryption correctness is preserved if C� = ∅. Let us now consider the case when C� ≠ ∅,
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i.e. the Boolean circuit � consists of at least one NAND gate which has been applied to the
ciphertext |CT〉. In this case, the cumulative error in system �out after ! applications of *NAND

in Definition 38 is at most U@
√
(< + 1)/2(# + 1)! , which is less than @

4
√
(<+1)

by our choice
of parameters. Therefore, the procedure DualFHE.Decsk decrypts a computational basis state in
system�out of the state |C̃T〉 correctly with probability at least 1−negl(_). Furthermore, because the
procedureDualFHEPVD.Dec is independent of the circuit� and its depth !, the schemeDualFHEPVD

is compact. This proves the claim.

Let us now verify the correctness of verification of the scheme DualFHEPVD in Construction 7
according to Definition 36. We show the following.

Lemma 24 (Correctness of verification). Let _ ∈ N be the security parameter. Let = ∈ N, let @ ≥ 2
be a prime modulus and < ≥ 2= log @. Let # = (< + 1) · dlog @e be an integer and let ! be an
upper bound on the depth of the polynomial-sized Boolean circuit which is to be evaluated. Let
U ∈ (0, 1) be a ratio with √

8(< + 1) ≤ U@ ≤ @
√

8(< + 1) · (# + 1)!
.

Then, theDual-RegevFHE schemeDualFHEPVD = (KeyGen,Enc,Dec,Eval,Del,Vrfy) with certified
deletion in Construction 7 satisfies verification correctness. In other words, for any _ ∈ N, any
plaintext G ∈ {0, 1}ℓ and any polynomial-sized Boolean circuit � entirely composed of NAND
gates:

Pr
[
Verify(vk, c) = 1

���� (pk,sk)←KeyGen(1_)
(vk,|CT〉)←Enc(pk,G)

c←Del( |CT〉)

]
≥ 1 − negl(_).

Proof. Consider a bit G ∈ {0, 1} and a public key pk given by A = [Ā|Ā · x̄ (mod @)] ∈ Z(<+1)×=@ ,

for x̄ $← {0, 1}<. By the Leftover Hash Lemma (Lemma 4), the distribution of A is within
negligible total variation distance of the uniform distribution over Z(<+1)×=@ . Lemma 8 implies that
the columns of A generate Z=@ with overwhelming probability. We consider the ciphertext |CT〉
output by Enc(pk, G), where

|CT〉 ← XG·g1
@ |k̂y1〉 ⊗ · · · ⊗ XG·g#

@ |k̂y# 〉 ,

and where (g1, . . . , g# ) are the columns of the gadget matrix G ∈ Z(<+1)×#@ in Eq. (4.7). Given our
choice, √

8(< + 1) ≤ U@ ≤ @
√

8(< + 1) · (# + 1)!
,

Corollary 2 implies that the Fourier transform of |CT〉 is within negligible trace distance of the state

|ĈT〉 =
∑

x1∈Z<+1@ :
Ax1=y1 (mod @)

r 1
U
(x1) l〈x1,G·g1〉

@ |x1〉 ⊗ · · · ⊗
∑

x# ∈Z<+1@ :
Ax#=y# (mod @)

r 1
U
(x# ) l〈x# ,G·g# 〉@ |x#〉 .
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From Lemma 12, it follows that the distribution of computational basis measurement outcomes is
within negligible total variation distance of the sample

c = (c1, . . . , c# ) ∼ �Λy1
@ (A), 1√

2U
× · · · × �

Λ
y#
@ (A), 1√

2U
,

where ‖c8‖ ≤
√
< + 1/

√
2U for every 8 ∈ [#]. This proves the claim.

Proof of security
Let us now analyze the security of our FHE scheme with publicly-verifiable deletion in Construc-
tion 7. Note that the results in this section all essentially carry over from Section 4.5, where we
analyzed the security of our Dual-Regev PKE scheme with publicly-verifiable deletion.

IND-CPA security of DualFHEPVD. We first prove that our scheme FHEPVD in Construction 7
satisfies the notion IND-CPA security according to Definition 11. The proof is identical to the proof
of IND-CPA-security of our DualPKE scheme in Theorem 11. We add it for completeness.

Theorem 14. Let = ∈ N, let @ ≥ 2 be a modulus, let < ≥ 2= log @ and let # = (< + 1) dlog @e, each
parameterized by the security parameter _ ∈ N. Let U ∈ (0, 1) be a noise ratio parameter such that√

8(< + 1) ≤ 1
U
≤ @√

8(<+1)
. Then, the scheme DualFHEPVD in Construction 7 is IND-CPA-secure

assuming the quantum hardness of LWE<+1
=,@,V@

, for any V ∈ (0, 1) with U/V = 2>(=) .

Proof. Let Σ = DualFHEPVD. We need to show that, for any QPT adversary A, it holds that

AdvΣ,A (_) := | Pr[Expind-cpa
Σ,A,_ (0) = 1] − Pr[Expind-cpa

Σ,A,_ (1) = 1] | ≤ negl(_).

Consider the experiment Expind-cpa
Σ,A,_ (1) between the adversary A and a challenger taking place as

follows:

1. The challenger generates a pair (pk, sk) ← KeyGen(1_), and sends pk to A.

2. A sends a distinct plaintext pair (<0, <1) ∈ {0, 1}ℓ × {0, 1}ℓ to the challenger.

3. The challenger computes (vk,CT1) ← DualFHEPVD.Enc(pk, <1), and sends |CT1〉 to A.

4. A outputs a guess 1′ ∈ {0, 1}, which is also the output of the experiment.

Recall that the procedure Enc(pk, <1) outputs a pair (vk, |CT1〉), where(
A ∈ Z(<+1)×=@ , (y1 | . . . |y# ) ∈ Z=×#@

)
← vk
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is the verification key and where the ciphertext |CT1〉 is within negligible trace distance of∑
S∈Z=×#@

∑
E∈Z(<+1)×#@

rU@ (E) l−Tr[S)Y]
@ |A · S + E + <1 ·G (mod @)〉 . (4.16)

Here, Y ∈ Z=×#@ is the matrix composed of the columns y1, . . . , y# . Let V ∈ (0, 1) be any
parameter with U/V = 2>(=) . Then, it follows from Theorem 9 that, under the (decisional) LWE<+1

=,@,V@

assumption, |CT1〉 is computationally indistinguishable from the state∑
U∈Z(<+1)×#@

l
Tr[U) X̄]
@ |U〉 , X̄ = (x̄1, . . . , x̄# ) ∼ �Λy1

@ (A), 1√
2U
× · · · × �

Λ
y#
@ (A), 1√

2U
. (4.17)

Here (x̄1, . . . , x̄# ) refer to the columns of the matrix X̄ ∈ Z(<+1)×#@ . Finally, because the state in
Eq. (4.17) is completely independent of the bit 1 ∈ {0, 1}, it follows that

AdvΣ,A (_) := | Pr[Expind-cpa
Σ,A,_ (0) = 1] − Pr[Expind-cpa

Σ,A,_ (1) = 1] | ≤ negl(_).

This proves the claim.

EV-CD security ofDualFHEPVD. Let us now analyze the security of ourDual-Regev homomorphic
encryption scheme DualFHEPVD in Construction 7. The proof is similar to the proof of Theorem 12.
We add it for completeness.

Theorem 15. Let _ ∈ N be the security parameter. Let = ∈ N, let @ ≥ 2 be a prime and
< ≥ 2= log @. Let # = (< + 1) · dlog @e and let ! be an upper bound on the depth of the
poly(_)-sized Boolean circuit which is to be evaluated. Let U ∈ (0, 1) be a noise ratio such that√

8(< + 1)# ≤ U@ ≤ @
√

8(< + 1) · (# + 1)!
.

Then, the Dual-Regev homomorphic encryption scheme DualFHEPVD in Construction 7 is EV-CD-
secure assuming the hardness of LWE<+1

=,@,V@
and SIS<+1

=,@,
√

2</U
, for any V ∈ (0, 1) with U/V = 2>(=) .

Proof. Let Σ = DualFHEPVD = (KeyGen,Enc,Dec,Eval,Del,Vrfy). We need to show that, for any
A = (A0,A1) consisting of a QPT algorithm A0 and an unbounded algorithm A1, it holds that

AdvΣ,A (_) := | Pr[EvExpΣ,A,_ (0) = 1] − Pr[EvExpΣ,A,_ (1) = 1] | ≤ negl(_).

Without loss of generality, it suffices to show that the scheme Σ̂ = (KeyGen, ˆEnc,Dec,Del,Vrfy)
is EV-CD-secure. Here, ˆEnc is the same as Enc, except that it additionally applies the Fourier
transform to the ciphertext which is output by Enc. We consider the following sequence of hybrids:
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H0 : This is the experiment EvExpΣ̂,A,_ (0) between A and a challenger:

1. The challenger samples a random matrix Ā $← Z=×<@ and a vector x̄ $← {0, 1}< and
chooses A = [Ā|Ā · x̄ (mod @)]ᵀ. The challenger then assigns sk← (−x̄, 1) ∈ Z<+1@ as
the secret key and pk← A ∈ Z(<+1)×=@ as the public key.

2. A sends a distinct plaintext pair (<0, <1) ∈ {0, 1} × {0, 1} to the challenger. (Note:
Without loss of generality, we can just assume that <0 = 0 and <1 = 1).

3. The challenger generates a sequence of pairs ( |ky8〉 , y8) ← GenPrimal(Aᵀ, 1/U) in
Algorithm 2, for each 8 ∈ [#], and sends the following to the adversary A0:

vk← (A ∈ Z(<+1)×=@ , (y1 | . . . |y# ) ∈ Z=×#@

|CT0〉 ← FT@ |ky1〉 ⊗ · · · ⊗ FT@ |ky# 〉 .

4. At some point in time, A returns a certificate c = (c1, . . . , c# ) to the challenger, and
initializes A1 with its internal state.

5. The challenger checks if Aᵀ · c8 = y8 (mod @) and ‖c8‖ ≤
√
< + 1/

√
2U for 8 ∈ [#]. If

the output is > for each 8 ∈ [#], A1 is run until it outputs 1′ which is also the output
of the experiment. Otherwise, the challenger aborts and A loses.

H1 : This is same experiment as in H0, except that (in Step 3) the challenger also measures the
ciphertext |CT0〉 in the computational basis before it is send to A0.

H2 : This is the experiment EvExpΣ̂,A,_ (1) between A and a challenger:

1. The challenger samples a random matrix Ā $← Z=×<@ and a vector x̄ $← {0, 1}< and
chooses A = [Ā|Ā · x̄ (mod @)]ᵀ. The challenger then assigns sk← (−x̄, 1) ∈ Z<+1@ as
the secret key and pk← A ∈ Z(<+1)×=@ as the public key.

2. A sends a distinct plaintext pair (<0, <1) ∈ {0, 1} × {0, 1} to the challenger. (Note:
Without loss of generality, we can just assume that <0 = 0 and <1 = 1).

3. The challenger generates a sequence of pairs ( |ky8〉 , y8) ← GenPrimal(Aᵀ, 1/U) in
Algorithm 2, for each 8 ∈ [#], and sends the following pair to the adversary A0:

vk← (A ∈ Z(<+1)×=@ , (y1 | . . . |y# ) ∈ Z=×#@

|CT1〉 ← FT@Xg1
@ |ky1〉 ⊗ · · · ⊗ FT@Xg#

@ |ky# 〉 .

4. At some point in time, A returns a certificate c = (c1, . . . , c# ) to the challenger, and
initializes A1 with its internal state.
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5. The challenger checks if Aᵀ · c8 = y8 (mod @) and ‖c8‖ ≤
√
< + 1/

√
2U for 8 ∈ [#]. If

the output is > for each 8 ∈ [#], A1 is run until it outputs 1′ which is also the output
of the experiment. Otherwise, the challenger aborts and A loses.

We now show that the hybrids are indistinguishable.

Claim 8.
| Pr[EvExpΣ̂,A,_ (0) = 1] − Pr[H1 = 1] | ≤ negl(_).

Proof. By the Leftover Hash Lemma (Lemma 4), the distribution of A = [Ā|Ā · x̄ (mod @)]ᵀ is
within negligible total variation distance of the uniform distribution over Z(<+1)×=@ . From Lemma 8
it follows that the columns of A generate Z=@ with overwhelming probability. Since U ∈ (0, 1) is a
noise ratio parameter with√

8(< + 1)# ≤ U@ ≤ @
√

8(< + 1) · (# + 1)!
,

Corollary 2 implies that the Fourier transformof ( |ky8〉 , y8) ← GenPrimal(Aᵀ, 1/U) inAlgorithm2,
for each 8 ∈ [#], is within negligible trace distance of the dual state∑

x1∈Z<+1@ :
Ax1=y1 (mod @)

r 1
U
(x1) |x1〉 ⊗ · · · ⊗

∑
x# ∈Z<+1@ :

Ax#=y# (mod @)

r 1
U
(x# ) |x#〉 .

Therefore, the claim follows immediately from the (everlasting) strongGaussian-collapsing property
in Theorem 10, which implies that the measurement in the computational basis is undetectable.

Next, we show the following.

Claim 9.
| Pr[H1 = 1] − Pr[EvExpΣ̂,A,_ (1) = 1] | ≤ negl(_).

Proof. First, recall from Lemma 6 that FT@Xv
@ = Zv

@FT@, for all v ∈ Z<@ . Therefore, the proof is the
same as in Claim 8, except that the ciphertext output by the challenger in EvExpΣ̂,A,_ (1) is within
negligible trace distance of the quantum state∑

x1∈Z<+1@ :
Ax1=y1 (mod @)

r 1
U
(x1) l〈x1,g1〉

@ |x1〉 ⊗ · · · ⊗
∑

x# ∈Z<+1@ :
Ax#=y# (mod @)

r 1
U
(x# ) l〈x# ,g# 〉@ |x#〉 .

Therefore, the claim follows from the (everlasting) strong Gaussian-collapsing property in Theo-
rem 10, since applying the phase operators Zg8

@ , for 8 ∈ [#], before the measurement does not affect
the measurement outcome in the computational basis.



115

Because the hybrids H0 and H2 are indistinguishable, this implies that

AdvΣ̂,A (_) ≤ negl(_).

This proves the claim.

4.8 Four-Message Protocol for FHE with Simultaneous Data Deletion
Our Dual-Regev encryption scheme in Construction 7 separately supports both homomorphic
operations as well as publicly-verifiable deletion. It is therefore natural to ask whether it is possible
to achieve both tasks simultaneously, say in a protocol between a client and an untrusted server.
Remarkably, such a protocol would allow an untrusted server to compute on private data and, if
requested, to simultaneously also prove data deletion to a client. We now show that such a protocol
is indeed possible, albeit with a few important caveats which we explain below.

Recall that Construction 7 has the property that when applying homomorphic operations, the
resulting ciphertext maintains the form of an LWE sample with respect to the same public key
pk, albeit for a new LWE secret and a new (non-necessarily Gaussian) noise term of bounded
magnitude. Unfortunately, the resulting ciphertext is now a highly entangled state since the unitary
operation *NAND induces entanglement between the LWE secrets and Gaussian error terms of the
superposition. This raises the following question: How can a server perform both homomorphic
computations and, if requested, to later prove data deletion to a client? In some sense, applying a
single homomorphic NAND gates breaks the structure of the Gaussian states in a way that prevents
us from obtaining a valid deletion certificate via a Fourier basis measurement. Our solution to
the problem involves one additional round of interaction (as compared to a regular homomorphic
encryption protocol) between the quantum server and the client in order to certify deletion.

In Protocol 1, we describe a four-message protocol for FHE with simultaneous data deletion which
is based on our Dual-Regev (leveled) fully homomorphic encryption scheme in Construction 7.
This is a four-message interactive protocol which enables an untrusted quantum server to compute
on encrypted data and, if requested, to simultaneously prove data deletion to a client. The basic
idea behind our approach for certified deletion is the following: After performing a Boolean circuit
� via a sequence of *NAND gates starting from the ciphertext |CT〉 in system �in corresponding
to an encryption of G ∈ {0, 1}ℓ, the server simply sends the quantum system �out containing an
encryption of � (G) to the client. Then, using the secret key sk (i.e., a trapdoor for the public matrix
pk), it is possible for the client to extract the outcome� (G) from the system�out with overwhelming
probability without significantly damaging the state. In Lemma 25, we show that it is possible to
rewind the procedure in a way that it results in a state which is negligibly close to the original state
in system �out. At this step of the protocol, the client has learned the outcome of the homomorphic
application of the circuit � while the server is still in possession of a large number of auxiliary
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systems (denoted by �aux) which mark intermediate applications of the gate *NAND. In order to
enable certified deletion, the client must now return the system �out to the server. Having access to
all three systems �in�aux�out, the server is then able to undo the sequence of homomorphic NAND
gates in order to return to the original product state in system �in (up to negligible trace distance).
Since the ciphertext in the server’s possession is now approximately a simple product of Gaussian
states, the server can perform a Fourier basis measurement of systems �in, as required. Once the
protcol is complete, it is therefore possible for the client to know � (G) and to be convinced that
data deletion has taken place. Crucially, this requires that the server is honest during the evaluation
phase of the protocol. We further elaborate on this important caveat of our protocol towards the
end of this section.

Let us now describe our four-message protocol for FHE with simultaneous data deletion, which is
based on our Dual-Regev homomorphic encryption scheme in Construction 7.

Protocol 1 (Four-Message Protocol for FHE with Simultaneous Data Deletion).
Let _ ∈ N be the security parameter and let DualFHEPVD = (KeyGen,Enc,Dec,Eval,Del,Vrfy)
be the Dual-Regev (leveled) FHE scheme with publicly-verifiable deletion in Construction 7.
Consider the following quantum interactive protocol Π = 〈C(1_, G),S(1_)〉 between a quantum
client C with data G ∈ {0, 1}ℓ and a quantum server S:

Setup phase:

1. C runs (pk, sk) ← DualFHEPVD.KeyGen(1_, 1!) to generate a pair of keys, where !
is an upper bound on the depth of the Boolean circuit which is to be evaluated.

Encryption phase:

1. C runs the procedure ( |CT〉 , vk) ← DualFHEPVD.Enc(pk, G) to obtain a quantum
ciphertext |CT〉 and a public verification key vk.

2. C sends the public key pk and ciphertext |CT〉 to the quantum server S.

Evaluation phase:

1. S runs the evaluation procedure |C̃T〉 ← DualFHEPVD.Eval(�, |CT〉), for some clas-
sical Boolean circuit �, which results in a quantum ciphertext |C̃T〉 in systems
�in�aux�out.

2. S sends the register �out to C.
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3. C appends an ancilla register |0〉" and then runs the procedureDualFHEPVD.Dec(sk, ·)
coherently on register �out. Then, C measures system " to obtain a bit H ∈ {0, 1}
(the supposed output of the Boolean circuit �).

4. C returns the post-measurement register �̃out to S.

5. S applies the previous evaluation procedure DualFHEPVD.Eval(�, ·) in reverse on
input the registers �in�aux�̃out. Let ĈT denote the resulting ciphertext.

Deletion phase:

• S runs the procedure c ← DualFHEPVD.Del(ĈT).

• C runs flag← DualFHEPVD.Vrfy(vk, c) and outputs flag ∈ {>,⊥}.

Correctness
Recall that the procedure DualFHEPVD.Eval in Construction 7 produces a highly entangled state
since the unitary operation*NAND induces entanglement between the Gaussian noise terms. In the
next lemma, we show that it is possible to rewind the evaluation procedure in order to allow the
server to subsequently prove data deletion to a client.

Lemma 25 (Rewinding lemma). Let _ ∈ N. Let = ∈ N, let @ ≥ 2 be a prime modulus and
< ≥ 2= log @. Let # = (< + 1) · dlog @e be an integer and let ! be an upper bound on the depth of
the polynomial-sized Boolean circuit which is to be evaluated. Let U ∈ (0, 1) be a ratio such that√

8(< + 1)# ≤ U@ ≤ @
√

8(< + 1) · (# + 1)!
.

Let DualFHEPVD = (KeyGen,Enc,Dec,Eval,Del,Vrfy) be the Dual-Regev (leveled) FHE scheme
with publicly-verifiable deletion in Construction 7 and letΠ be the interactive protocol in Protocol 1.
Then, the following holds for any parameter _ ∈ N, plaintext G ∈ {0, 1}ℓ and any polynomial-sized
Boolean circuit �: After the evaluation phase of the protocol Π = 〈C(1_, G),S(1_)〉 is complete,
the server S is in possession of a quantum state ĈT in system �in that satisfies

‖ĈT − |CT〉〈CT| ‖tr ≤ negl(_),

where |CT〉 ← DualFHEPVD.Enc(pk, G) is the initial quantum ciphertext in systems �in�aux�out for
the pair of keys (pk, sk) ← DualFHEPVD.KeyGen(1_, 1!).

Proof. Let _ ∈ N, G ∈ {0, 1}ℓ be a plaintext and � be any Boolean circuit of NAND-depth
! = poly(_). Let |C̃T〉 ← DualFHEPVD.Eval(�, |CT〉) be the post-evaluation state |C̃T〉 in
systems �in�aux�out and let ĈT be the state at the end of the evaluation phase of the protocol
Π = 〈C(1_, G),S(1_)〉. Recall that, in Lemma 23, we established that there exists a negligible
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Y(_) such that DualFHE.Decsk decrypts system �out of |C̃T〉 with probability at least 1 − Y. By the
“Almost As Good As New Lemma” (Lemma 1), performing the operation*DualFHE.Decsk , measuring
the ancillary register " and rewinding the computation, results in a mixed state r that is within
trace distance

√
Y of the post-evaluation state |C̃T〉. Let *C� be sequence of homomorphic NAND

gates which are applied according to the circuit �. Notice that, by reversing the sequence of NAND
gates which are applied to |C̃T〉, we recover the initial ciphertext |CT〉〈CT| = *†C� |C̃T〉〈C̃T| *C� in
system �in. By definition, we also have that ĈT = *†C� r*C� . Therefore,

‖ĈT − |CT〉〈CT| ‖tr = ‖*†C� r*C� −*
†
C�
|C̃T〉〈C̃T| *C� ‖tr = ‖ r̃ − |C̃T〉〈C̃T| ‖tr ≤

√
Y(_),

since the trace distance is unitarily invariant. Thus, Y(_) = negl(_) which proves the claim.

Security. Our four-message protocol for FHE with simultaneous data deletion in Protocol 1
immediately inherits the following security guarantees from the underlying Dual-Regev homorphic
encryption scheme Construction 7:

• Privacy: This ensures that the data is computationally hidden from the view of the server,
once the encryption phase ends. In other words, for any pair of messages G0, G1 ∈ {0, 1}ℓ

(selectively chosen by the server), the following are computationally indistinguishable,

DualFHEPVD.Enc(pk, G0) ≈2 DualFHEPVD.Enc(pk, G1),

where pk is the public key output by KeyGen(1_, 1!). This follows from the semantic security
of our Dual-Regev scheme which we proved in Theorem 14.

• Certified deletion: This ensures the following: Once the evaluation phase is completed and
deletion phase is successful, the data G ∈ {0, 1}ℓ is information-theoretically deleted from the
view of the server once a valid certificate is presented – provided the server is honest during the
evaluation phase. This is essentially a consequence of Lemma 25 which guarantees that, once
the evaluation phase is completed (and the server has performed the prescribed evaluation
procedure), the leftover state is negligibly close to the original ciphertext. Therefore, the
EV-CD security of our Dual-Regev scheme from Theorem 15 applies.

Therefore, our protocol only achieves a meaningful security guarantee in the so-called semi-honest
setting [81], which requires that the adversary is honest during the evaluation phase of the protocol,
butmay later choose tomaliciously analyze any leftover informationwhichwas collected throughout
the protocol. A quantum analogue of the semi-honest adversarial model was also studied in [58]
who consider so-called specious adversaries more generally. We leave the task of improving
Protocol 1 as to allow for a possibly malicious server as an interesting open problem.
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C h a p t e r 5

REVOKING CRYPTOGRAPHIC KEYS

In this chapter, we build on the no-cloning principle of quantummechanics and design cryptographic
schemes with key-revocation capabilities. We consider several primitives with the guarantee that,
once the secret key (represented as a quantum state) is successfully revoked from a user, they no
longer have the ability to perform the same functionality as before. We define and construct several
key-revocable cryptographic primitives; namely, pseudorandom functions, secret-key and public-
key encryption, and even fully homomorphic encryption, assuming the quantum subexponential
hardness of the learning with errors problem. Central to all of the constructions in this chapter is
our key-revocable Dual-Regev public-key encryption scheme.

Organization. In Section 5.2, we show how to obtain a quantum discrete Gaussian sampler. This
is a crucial subroutine which allows us to efficiently verify whether a given state corresponds to
a particular Gaussian superposition. In Section 5.3 we prove the first quantum Goldreich-Levin
theorem for large fields. Here, we rely on recent results on post-quantum reductions and quantum
rewinding, which we also review in this section. Next, in Section 5.4, we describe the syntax of
what a key-revocable public-key (as well as homomorphic) encryption scheme is. In Section 5.5,
we introduce our key-revocable Dual-Regev scheme, which is the main section of this chapter.
Our main technical result is a simultaneous search-to-decision reduction with quantum auxiliary
input. In the subsequent section, we describe how to extend key-revocation capabilities towards
homomorphic encryption schemes. Finally, in Section 5.7, we construct revocable pseudorandom
functions by means of our key-revocable Dual-Regev scheme.

5.1 Introduction
Delegation and recovation of privilege are problems of great importance in cryptography. The
problem of revocation in the context of digital signatures and certificates in the classical world is an
especially thorny problem [121, 114]. As amotivating example, consider the setting of an employee
at a company who takes a vacation and wishes to authorize a colleague to perform certain tasks on
her behalf, tasks that involve handling sensitive data. Since the sensitive data is (required to be)
encrypted, the employee must necessarily share her decryption keys with her colleague. When she
returns from vacation, she would like to have her decryption key back; naturally, one would like
to ensure that her colleague should not be able to decrypt future ciphertexts (which are encrypted
under the same public key) once the key is “returned.” Evidently, if the decryption key is a classical
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object, this is impossible to achieve.

In key-revocable cryptography, we associate a cryptographic functionality, such as decryption using
a secret key, with a quantum state in such a way that a user can compute this functionality if and
only if they are in possession of the quantum state. We then design a revocation algorithm which
enables the user to certifiably return the quantum state to the owner. Security requires that once the
user returns the state (via our revocation algorithm), they should not have the ability to evaluate the
functionality (e.g., decrypt ciphertexts) anymore. We refer to this new security notion as revocation
security.

Another, possibly non-obvious, application is to detecting malware attacks. Consider a malicious
party who hacks into an electronic device and manages to steal a user’s decryption keys. If
cryptographic keys are represented by classical bits, it is inherently challenging to detect phishing
attacks that compromise user keys. For all we know, the intruder could have stolen the user’s
decryption keys without leaving a trace. Indeed, a few years ago, decryption keys which were
used to protect cell-phone communications [85] were successfully stolen by spies without being
detected. With revocable cryptography, a malicious user successfully stealing a user key would
invariably revoke the decryption capability from the user. This latter event can be detected.

Our Results in a Nutshell. We construct revocable cryptographic objects under standard cryp-
tographic assumptions. This chapter features two main results. Our first main result constructs a
key-revocable public-key encryption scheme, and our secondmain result constructs a key-revocable
pseudorandom function. We obtain several corollaries and extensions, including key-revocable
secret-key encryption and key-revocable fully homomorphic encryption. In all these primitives,
secret keys are represented as quantum states that retain the functionality of the original secret
keys. We design revocation procedures and guarantee that once a user successfully passes the pro-
cedure, they cannot compute the functionality any more. All our constructions are secure under the
quantum subexponential hardness of learning with errors [112]—provided that revocation succeeds
with high probability. At the heart of all of our contributions lies our result which shows that the
Dual-Regev public-key encryption scheme of [68] satisfies revocation security.

Related Notions. There are several recent notions in quantum cryptography that are related
to revocability. Of particular relevance is the stronger notion of copy-protection introduced by
Aaronson [2]. Breaking the revocable security of a task gives the adversary away tomake two copies
of a (possibly different) state both of which are capable of computing the same functionality. Thus,
uncloneability is a stronger notion. However, the only known constructions of copy-protection [54,
96] rely on the heavy hammer of post-quantum secure indistinguishability obfuscation for which
there are no known constructions based onwell-studied assumptions. Our constructions, in contrast,
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rely on the post-quantum hardness of the standard learning with errors problem. Another related
notion is the significantly weaker definition of secure software leasing [17] which guarantees that
once the quantum state computing a functionality is returned, the honest evaluation algorithm
cannot compute the original functionality. Yet another orthogonal notion is that of certifiably
deleting ciphertexts, originating from the works of Unruh [127] and Broadbent and Islam [40]. In
contrast, our goal is to delegate and revoke cryptographic capabilities enabled by private keys. For
detailed comparisons, we refer the reader to Section 5.1.

Our Contributions in More Detail
We present our results in more detail below. First, we introduce the notion of key-revocable public-
key encryption. Our main result is that dual-Regev public-key encryption scheme [68] satisfies
revocation security. After that, we study revocation security in the context of fully homomorphic
encryption and pseudorandom functions.

Key-Revocable Public-Key Encryption. We consider public-key encryption schemes where the
decryption key, modeled as a quantum state, can be delegated to a third party and can later be
revoked [70]. The syntax of a key-revocable public-key scheme (Definition 39) is as follows:

• KeyGen(1_): this is a setup procedure which outputs a public key pk, a master secret key
msk and a decryption key rsk. While the master secret key is typically a classical string, the
decryption key is modeled as a quantum state. (The use cases of msk and rsk are different,
as will be evident below.)

• Enc(pk, G): this is the regular classical encryption algorithm which outputs a ciphertext CT.

• Dec(rsk,CT): this is a quantum algorithm which takes as input the quantum decryption key
sk and a classical ciphertext, and produces a plaintext.

• Revoke(pk,msk, f): this is the revocation procedure that outputs Valid or Invalid. If f equals
the decryption key sk, then Revoke is expected to output Valid with high probability.

After the decryption key is returned, we require that the sender loses its ability to decrypt ciphertexts.
This is formalized as follows (see Definition 40): conditioned on revocation being successful, the
adversary should not be able to distinguish whether it is given an encryption of a message versus
uniform distribution over the ciphertext space with more than negligible advantage. Moreover, we
require that revocation succeeds with a probability negligibly close to 1 (more on this later).

We prove the following in Theorem 24.
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Theorem (Informal). Assuming that the LWE and SIS problems with subexponential modulus are
hard against quantum adversaries running in subexponential time (see Section 2.6), there exists a
key-revocable public-key encryption scheme.

Due to the quantum reduction from SIS to LWE [120], the two assumptions are, in some sense,
equivalent. Therefore, we can in principle rely on the subexponential hardness of LWE alone.

Our results improve upon prior works, which either use post-quantum secure indistinguishability
obfuscation [70, 54] or consider the weaker private-key setting [88].

Key-Revocable Fully Homomorphic Encryption. We go beyond the traditional public-key set-
ting and design the first fully homomorphic encryption (FHE) scheme [67, 37] with key-revocation
capabilities. Our construction is based on a variant of the (leveled) FHE scheme of Gentry, Sahai
and Waters [69], which we extend to a key-revocable encryption scheme using Gaussian superpo-
sitions. The syntax of a key-revocable FHE scheme is the same as in the key-revocable public-key
setting from before (Definition 39), except for the additional algorithm Eval which is the same as
in a regular FHE scheme. We prove the following in Theorem 33.

Theorem (Informal). Assuming that the LWE and SIS problems with subexponential modulus are
hard against quantum adversaries running in subexponential time (see Section 2.6), there exists a
key-revocable (leveled) fully homomorphic encryption scheme.

We prove the theorem by invoking the security of our key-revocable Dual-Regev public-key en-
cryption scheme in Section 5.5.

(Key-)Revocable Pseudorandom Functions. We consider other cryptographic primitives with
key-revocation capabilities that go beyond decryption functionalities; specifically, we introduce the
notion of key-revocable pseudorandom functions (PRFs) with the following syntax:

• Gen(1_): outputs a PRF key : , a quantum key r: and a master secret key msk.

• PRF(:; G): on key : and input G, output a value H. This is a deterministic algorithm.

• Eval(r: , G): on input a state r: and an input G, output a value H.

• Revoke(msk, f): on input verification msk and state f, outputs Valid or Invalid.

After the quantum key r: is successfully returned, we require that the sender loses its ability to
evaluate the PRF. This is formalized as follows (see Definition 44): any efficient adversary can
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simultaneously pass the revocation phase and succeed in predicting the output of a pseudorandom
function on a challenge input G∗ versus uniformwith advantage at most negl(_). In fact, we consider
a more general definition where the adversary receives many challenge inputs instead of just one
challenge input.

We give the first construction of key-revocable pseudorandom functions (PRFs) from standard
assumptions. Previous schemes implicit in [54] either require indistinguishability obfuscation, or
considered weaker notions of revocable PRFs in the form of secure software leasing [17, 89], which
merely prevents the possiblity of honestly evaluating the PRF once the key is revoked.

Since in the context of pseudorandom functions, it is clear what is being revoked, we instead simply
call the notion revocable pseudorandom functions. We prove the following:

Theorem (Informal). Assuming that the LWE and SIS problems with subexponential modulus are
hard against quantum adversaries running in subexponential time (see Section 2.6), there exist
key-revocable pseudorandom functions.

Revocable pseudorandom functions immediately give us key-revocable (many time secure) secret-
key encrypton schemes.

Inverse polynomial revocation based on SDRE conjectures. In all the results above, we assume
that the probability of revocation is negligibly close to 1. Even in this restrictive setting, our proofs
turn out to be highly non-trivial and require careful use of a diverse set of techniques! Moreover,
to date, no constructions of key-revocable PRFs or FHE were known based on assumptions weaker
than post-quantum iO.

A natural question to explore is whether we can achieve the following stronger security notion of
revocable public-key encryption: if the adversary successfully revokes with inverse polynomial
probability then semantic security of revocable PKE still holds. If we can achieve this stronger
notion of revocablePKE thenwewould also achieve the corresponding stronger notions of revocable
PRFs and FHE based on the same computational assumptions.

We show how to achieve all of our results based on a conjecture, that we call Simultaneous Dual-
Regev Extraction (SDRE) conjecture. Informally, the conjecture states that if Dual-Regev PKE is
not key-revocable then there exists a QPT adversary who given a Gaussian superposition |ky〉 of
short preimages mapping a random matrix A to a vector y can simultaneously produce |ky〉 and a
short vector in the support of |ky〉 with non-negligible probability.
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In more detail, the SDRE conjecture states the following: suppose the Dual-Regev PKE is not
key-revocable (according to the above stronger definition) then there exists a QPT adversary A =

(A1,A2) such that the following holds:

• A1 is given (A, y, |ky〉), where A $←− Z=×<@ and |ky〉 is a Gaussian superposition of all the
short vectors mapping A to y. It produces a bipartite state on two registers R and AUX.

• A projective measurement on R is applied that projects onto the state
��ky

〉〈
ky

��, and A2 is
run on AUX. We require that the (simultaneous) probability that the projective measurement
succeeds and A2 outputs a short preimage mapping A to y should be inverse polynomial.

The difficulty in proving the conjecture lies in the fact that one needs to invoke the LWE assumption
with respect toA2 who holdsAUX, while at the same time guaranteeing that an inefficient projective
measurement succeeds on a separate registerR. We leave proving (or refuting) the above conjecture
to future works.

Discussion: Unclonable Cryptography from LWE. Over the years, the existence of many
fundamental cryptographic primitives such as pseudorandom functions [21], fully homomorphic
encryption [37], attribute-based encryption [33] and succinct argument systems [50] have been
based on the existence of learning with errors. In fact, as far as we know, there are only a few
foundational primitives remaining (indistinguishability obfuscation is one such example) whose
existence is not (yet) known to be based on learning with errors.

This situation is quite different in the world of unclonable cryptography. Most of the prominent
results have information-theoretic guarantees but restricted functionalities [40, 41] or are based on
the existence of post-quantum indistinguishability obfuscation [137, 54]. While there areworks [90]
that do propose lattice-based constructions of unclonable primitives, there are still many primitives,
such as quantum money and quantum copy-protection, whose feasibility we would like to establish
based on the existence of learning with errors. We hope that our work presents new toolkits towards
building more unclonable primitives from LWE.

Independent and Concurrent Work. Independently and concurrently, Agrawal et al. [8] ex-
plored the notion of public-key encryption with secure leasing which is related to key-revocable
public-key encryption. They achieve a generic construction based on any post-quantum secure
public-key encryption whereas our notion is based on the post-quantum hardness of learning with
errors. They also explore other notions of advanced encryption with secure leasing including
attribute-based encryption and functional encryption, which are not explored in our work.
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On the other hand, their construction of revocable public-key encryption involves many abstractions
whereas our construction is based on the versatile Dual-Regev public-key encryption scheme. Addi-
tionally, we obtain key-revocable fully homomorphic encryption and key-revocable pseudorandom
functions which are unique to our work.

• Advanced notions: We obtain key-revocable fully homomorphic encryption and key-revocable
pseudorandom functions which are unique to our work. They explore other notions of
advanced encryption with secure leasing including attribute-based encryption and functional
encryption, which are not explored in our work.

• Public-key encryption: They achieve a generic construction based on any post-quantum
secure public-key encryption1 whereas our notion is based on the post-quantum hardness of
the learning with errors problem or the SDRE conjecture. Their construction of revocable
public-key encryption involves many complex abstractions whereas our construction is based
on the versatile Dual-Regev public-key encryption scheme.

Overview
We now give a technical overview of our constructions and their high level proof ideas. We begin
with the key-revocable public-key encryption construction. A natural idea would be to start with
Regev’s public-key encryption scheme [112] and to then upgrade the construction in order tomake it
revocable. However, natural attempts to associate an unclonable quantum state with the decryption
key fail and thus, we instead consider the Dual-Regev public-key encryption scheme and make it
key-revocable. We describe the scheme below.

Key-RevocableDual-RegevPublic-KeyEncryption. Our first construction is based on theDual-
Regev public-key encryption scheme [68] and makes use of Gaussian superpositions which serve
as a quantum decryption key. We give an overview of Construction 8 below.

• KeyGen(1=): sample a matrix A ∈ Z=×<@ along with a short trapdoor basis tdA. To generate
the decryption key, we employ the following procedure2: Using the matrix A as input, first
create a Gaussian superposition of short vectors in Z< ∩ (− @2 ,

@

2 ]
<, denoted by3

|k〉 =
∑

x∈Z<@

rf (x) |x〉 ⊗ |A · x (mod @)〉

1Their construction achieves the stronger definition where the revocation only needs to succeed with inverse
polynomial probability.

2In Section 5.2, this is formalized as the procedure GenGauss (see Algorithm 3).
3Note that the state is not normalized for convenience.
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where rf (x) = exp(−c‖x‖2/f2) is the Gaussian measure, for some f > 0. Next, measure
the second register which partially collapses the superposition and results in the coset state

|ky〉 =
∑

x∈Z<@ :
Ax=y (mod @)

rf (x) |x〉

for some outcome y ∈ Z=@. Finally, we let |ky〉 be the decryption key |sk〉, (A, y) be the public
key pk, and we let the trapdoor tdA serve as the master secret key msk.

• Enc(pk, `): to encrypt a bit ` ∈ {0, 1}, sample a random string s $←− Z=@ together with discrete
Gaussian errors e ∈ Z< and 4′ ∈ Z, and output the (classical) ciphertext CT given by

CT = (sᵀA + eᵀ, sᵀy + 4′ + ` · b@
2
c) ∈ Z<@ × Z@ .

• Dec( |sk〉 ,CT): to decrypt a ciphertext CT using the decryption key sk = |ky〉, first apply
the unitary * : |x〉 |0〉 → |x〉 |CT · (−x, 1)ᵀ〉 on input |ky〉 |0〉, and then measure the second
register in the computational basis. Because |ky〉 is a superposition of short vectors x subject
to A · x = y (mod @), we obtain an approximation of ` · b @2 c from which we can recover `.4

• Revoke(pk,msk, r): to verify the returned state r given as input the public key (A, y) and
master secret key tdA, apply the projective measurement {|ky〉〈ky | ,1 − |ky〉〈ky |} onto r.
Output Valid, if the measurement succeeds, and output Invalid, otherwise.

Implementing revocation, efficiently. Note that performing a projective measurement onto a
fixed Gaussian state |ky〉 is, in general, computationally infeasible. In fact, if it were to be possible
to efficiently perform this projection using (A, y) alone, then one could easily use such a procedure
to solve the short integer solution (SIS) problem. Fortunately, we additionally have the trapdoor
for A at our disposal in order to perform such a projection.

One of our contributions is to design a quantum discrete Gaussian sampler for @-ary lattices5
which, given as input (A, y, tdA, f), implements a unitary that efficiently prepares the Gaussian
superposition |ky〉 from scratch with access to the trapdoor tdA. At a high level, our Gaussian
sampler can be alternately thought of as an explicit quantum reduction from the inhomogenous SIS
problem [9] to the search variant of the LWE problem (see Section 5.2).

4For approriate choices of parameters, decryption via rounding succeeds at outputting ` with overwhelming
probability and hence we can invoke the “Almost as Good as New Lemma” [3] to recover the original state |ky〉.

5In Section 5.2, this is formalized as the procedure QSampGauss (see Algorithm 4).
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Insight: Reduction to SIS. Our goal is to use the state returned by the adversary and to leverage
the indistinguishability guarantee in order to break some computational problem. It should seem
suspicious whether such a reduction is even possible: after all the adversary is returning the state
we gave them! How could this possibly help? Our main insight lies in the following observation:
while the adversary does eventually return the state we give them, the only way it can later succeed
in breaking the semantic security of dual Regev PKE is if it retains useful information about the
state. If we could somehow extract this information from the adversary, then using the extracted
information alongside the returned state, we could hope to break some computational assumption.
For instance, suppose we can extract a short vector x such that A · x = y (mod @). By measuring
the state returned by the adversary, we could then hope to get a second short vector x′ such that
A · x′ = y (mod @), and from this, we can recover a short solution in the kernel of A ∈ Z=×<@ .

Even if, for a moment, we disregard the issue of being able to extract x from the adversary, there
are still some important missing steps in the above proof template:

• Firstly, measuring the returned state should give a vector different from x with non-negligible
probability. In order to prove this, we need to argue that the squared ampltidue of every term
is bounded away from 1. We prove this statement (Lemma 17) holds as long as A is full rank.

• Secondly, the reduction to SIS would only get as input A and not a trapdoor for A. This
means that it will no longer be possible for the reduction to actually check whether the state
returned by the adversary is valid. We observe that, instead of first verifying whether the
returned state is valid and then measuring in the computational basis, we can in fact skip
verification and immediately go ahead and measure the state in the computational basis; this
is implicit in the analysis in the proof of Lemma 29.

• Finally, the adversary could have entangled the returned state with its residual state in such
a way that measuring the returned state always yields the same vector x as the one extracted
from the adversary. In the same analysis in the proof of Lemma 29, we prove that, even if the
adversary entangles its state with the returned state, with non-negligible probability we get
two distinct short vectors mapping A to y.

All that is left is to argue that one can extract x from the adversary while simultaneously verifying
whether the returned state is correct or not. To show that we can indeed extract another short pre-
image from the adversary’s quantum side information, we make use of what we call a simultaneous
search-to-decision reduction with quantum auxiliary input for the Dual-Regev scheme.

Main contribution: Simultaneous search-to-decision reduction with quantum advice. In-
formally, our theorem says the following: any successful Dual-Regev distinguisher with access to
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quantum side information Aux (which depends on the decryption key) can be converted into a
successful extractor that finds a key on input Aux—even conditioned on Revoke succeeding on a
seperate register R. We now present some intuition behind our proof.

Suppose there exists a successful Dual-Regev distinguisher D (as part of the adversary A) that,
given quantum auxiliary informationAux, can distinguish between (sᵀA+eᵀ, sᵀy+4′) and uniform
(u, A) ∈ Z<@ × Z@ with advantage n .

Ignoring register R: For now, let us ignore the fact that Revoke is simultaneously applied on
system '. Inspired by techniques from the leakage resilience literature [57], we now make the
following observation. Letting y = A · x0 (mod @), for some Gaussian vector x0 with distribution
proportional to rf (x0), the former sample can be written as (sᵀA + eᵀ, (sᵀA + eᵀ) · x0 + 4′). Here,
we assume a noise flooding regime in which the noise magnitude of 4′ is significantly larger than
that of eᵀ · x0. Because the distributions are statistically close, the distinguisherD must succeed at
distinguishing the sample from uniform with probability negligibly close to n . Finally, we invoke
the LWE assumption and claim that the same distinguishing advantage persists, even if we replace
(sᵀA + eᵀ) with a random string u ∈ Z<@ . Here, we rely on the fact that the underlying LWE sample
is, in some sense, independent of the auxiliary input Aux handed to the distinguisher D. To show
that this is the case, we need to argue that the reduction can generate the appropriate inputs to D
on input A; in particular it should be able to generate the auxiliary input Aux (which depends on
a state |ky〉), while simultaneously producing a Gaussian vector x0 such that A · x0 = y (mod @).
Note that this seems to violate the SIS assumption, since the ability to produce both a superposition
|ky〉 of pre-images and a single pre-image x0 would allow one to obtain a collision for y.

Invoking Gaussian-collapsing: To overcome this issue, we ask the reduction to generate the quan-
tum auxiliary input in a different way; rather than computingAux as a function of |ky〉, we compute
it as a function of |x0〉, where x0 results from collapsing the state |ky〉 via a measurement in the
computational basis. By invoking the Gaussian collapsing property [109], we can show that the
auxiliary information computed using |ky〉 is computationally indistinguishable from the auxiliary
information computed using |x0〉. Once we invoke the collapsed version of |ky〉, we can carry out
the reduction and conclude thatD can distinguish between the samples (u, uᵀx0) and (u, A), where
u and A are random and x0 is Gaussian, with advantage negligibly close to n .6 Notice that D now
resembles a so-called Goldreich-Levin distinguisher [71].

6Technically, D can distinguish between (u, uᵀx0 + 4′) and (u, A) for a Gaussian error 4′. However, by defining a
distinguisher D̃ that first shifts u by a Gaussian vector 4′ and then runs D, we obtain the desired distinguisher.
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Reduction to Goldreich-Levin: Assuming the existence of a quantum Goldreich-Levin theorem for
the field Z@, one could then convertD into an extractor that extracts x0 with high probability. Prior
to our work, a quantum Goldreich-Levin theorem was only known for Z2 [7, 54]. In particular, it
is unclear how to extend prior work towards higher order fields Z@ because the interference pattern
in the analysis of the quantum extractor does not seem to generalize beyond the case when @ = 2.
Fortunately, we can rely on the classical Goldreich-Levin theorem for finite fields due to Dodis et
al. [57], as well as recent work by Bitansky, Brakerski and Kalai. [32] which shows that a large class
of classical reductions can be generically converted into a quantum reductions. This allows us to
obtain the first quantum Goldreich-Levin theorem for large fields, which we prove in Section 5.3.
Specifically, we can show that a distinguisher D that, given auxiliary input Aux, can distinguish
between (u, uᵀx0) and (u, A) with advantage Y can be converted into a quantum extractor that can
extract x0 given Aux in time poly(1/Y, @) with probability poly(Y, 1/@).

Incorporating the revoked register R: To complete the security proof behind our key-revocable
Dual-Regev scheme, we need to show something stronger; namely, we need to argue that the
Goldreich-Levin extractor succeeds on input Aux – even conditioned on the fact that Revoke
outputs Valid when applied on a separate register R (which may be entangled with Aux). We can
consider two cases based on the security definition.

• Revocation succeeds with probability negligibly close to 1: in this case, applying the revoca-
tion or not does not make a difference since the state before applying revocation is negligibly
close (in trace distance) to the state after applying revocation. Thus, the analysis is essentially
the same as the setting where we ignore the register R.

• Revocation is only required to succeed with probability 1/poly(_): in this case, we do not
know how to formally prove that the extractor and Revoke simultaneously succeed with
probability 1/poly(_). Thus, we state this as a conjecture (see Construction 1) and leave the
investigation of this conjecture to future works.

Applications
We leverage our result of key-revocable Dual-Regev encryption to get key-revocable fully homo-
morphic encryption and revocable pseudorandom functions.

Key-Revocable Dual-Regev Fully Homomorphic Encryption. Our first application of our key-
revocable public-key encryption concerns fully homomorphic encryption schemes. We extend our
key-revocable Dual-Regev scheme towards a (leveled) FHE scheme in Construction 9 by using the
DualGSW variant of the FHE scheme by Gentry, Sahai, and Waters [69, 99].
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To encrypt a bit ` ∈ {0, 1} with respect to the public-key (A, y), sample a matrix S $← Z=×#@

together with a Gaussian error matrix E ∈ Z<×# and row vector e ∈ Z# , and output the ciphertext

CT =
[AᵀS+E

yᵀS+e

]
+ ` ·G (mod @) ∈ Z(<+1)×#@ .

Here, G is the gadget matrix which converts a binary vector in into its field representation over Z@.
As before, the decryption key consists of a Gaussian superposition |ky〉 of pre-images of y.

Note that the DualGSW ciphertext can be thought of as a column-wise concatenation of #-many
independent Dual-Regev ciphertexts. In Theorem 33, we prove the security of our construction by
invoking the security of our key-revocable Dual-Regev scheme.

Revocable Pseudorandom Functions. Our next focus is on leveraging the techniques behind
key-revocable public-key encryption to obtain revocable pseudorandom functions. Recall that the
revocation security of pseudorandom functions stipulates the following: any efficient adversary
(after successfully revoking the state that enables it to evaluate pseudorandom functions) cannot
distinguish whether it receives pseudorandom outputs on many challenge inputs versus strings
picked uniformly at random with more than negl(_) advantage. An astute reader might notice that
revocation security does not even imply the traditional pseudorandomness guarantee! Hence, we
need to additionally impose the requirement that a revocable pseudorandom function should also
satisfy the traditional pseudorandomness guarantee.

Towards realizing a construction satisfying our definitions, we consider the following template:

1. First show that there exists a `-revocable pseudorandom function for ` = 1. Here, `-
revocation security means the adversary receives `-many random inputs after revocation.

2. Next, we show that any 1-revocable pseudorandom function also satisfies the stronger notion
of revocation security where there is no a priori bound on the number of challenge inputs
received by the adversary.

3. Finally, we show that we can generically upgrade any revocable PRF in such a way that it
also satisfies the traditional pseudorandomness property.

The second bullet is proven using a hybrid argument. The third bullet is realized by combining a
revocable PRF with a post-quantum secure PRF (not necessarily satisfying revocation security).

Hence, we focus the rest of our attention on proving the first bullet.
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1-revocation security. Westart with the followingwarmup construction. The secret key : comprises
of matrices A, {S8,0,S8,1}8∈[ℓ],1∈{0,1}, where A $←− Z=×<@ , S8,1 ∈ Z=×=@ such that all S8,1 are sampled
from some error distribution and the output of the pseudorandom function on G is denoted to be
b∑8∈[ℓ] S8,G8Ae ?, where @ � ? and b·e ? refers to a particular rounding operation modulo ?.

In addition to handing out a regular PRF key : , we also need to generate a quantum key r: such
that, given r: and any input G, we can efficiently compute PRF(:, G). Moreover, r: can be revoked
such that any efficient adversary after revocation loses the ability to evaluate the pseudorandom
function. To enable the generation of r: , we first modify the above construction. We generate
y ∈ Z=@ and include this as part of the key. The modified pseudorandom function, on input G,
outputs b∑8∈[ℓ] S8,G8ye ?. We denote

∑
8∈[ℓ] S8,G8 by SG and, with this new notation, the output of the

pseudorandom function can be written as bSGye ?.

With this modified construction, we now describe the elements as part of the quantum key r: :

• For every 8 ∈ [ℓ], include S8,1A + E8,1 in r: , where 8 ∈ [ℓ] and 1 ∈ {0, 1}. We sample S8,1
and E8,1 from a discrete Gaussian distribution with appropriate standard deviation f > 0.

• Include |ky〉 which, as defined in the key-revocable Dual-Regev construction, is a Gaussian
superposition of short solutions mapping A to y.

To evaluate on an input G using r: , compute
∑
8 S8,G8A+E8,G8 and then using the state |ky〉, map this

to
∑
8 S8,G8y + E8,G8 . Finally, perform the rounding operation to get the desired result.

Our goal is to show that after the adversary revokes |ky〉, on input a challenge input G∗ picked
uniformly at random, it cannot predict whether it has received b∑8∈[#] S8,G∗8 ye ? or a uniformly
random vector in Z=?.

Challenges in proving security: We would like to argue that when the state |ky〉 is revoked, the
adversary loses its ability to evaluate the pseudorandom function. Unfortunately, this is not com-
pletely true. For all we know, the adversary could have computed the pseudorandom function
on many inputs of its choice before the revocation phase and it could leverage this to break the
security after revocation. For instance, suppose say the input is of length$ (log_) then in this case,
the adversary could evaluate the pseudorandom function on all possible inputs before revocation.
After revocation, on any challenge input G∗, the adversary can then successfully predict whether it
receives a pseudorandom output or a uniformly chosen random output. Indeed, a pseudorandom
function with $ (log_)-length input is learnable and hence, there should be no hope of proving it
to be key-revocable. This suggests that, at the very least, we need to explicitly incorporate the fact
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that G∗ is of length l(log_), and more importantly, should have enough entropy, in order to prove
security.

Our insight: Our insight is to reduce the security of revocable pseudorandom function to the
security of key-revocable Dual-Regev public-key encryption. At a high level, our goal is to set up
the parameters in such a way that the following holds:

• (A, y), defined above, is set to be the public key corresponding to the Dual-Regev public-key
encryption scheme,

• |ky〉, which is part of the pseudorandom function key, is set to be the decryption key of the
Dual Regev scheme,

• Suppose that the challenge ciphertext, denoted by CT∗, comprises of two parts: CT∗1 ∈ Z=×<@

and CT∗2 ∈ Z=@. Note that if CT
∗
1 ≈ sᵀA and CT∗2 ≈ sᵀy, for some LWE secret vector s, then

CT∗1 can be mapped onto CT∗2 using the state |ky〉. We use CT∗1 to set the challenge input G∗

in such a way that CT∗2 is the output of the pseudorandom function on G∗. This implicitly
resolves the entropy issue we discussed above; by the semantic security of Dual-Regev, there
should be enough entropy in CT∗1 which translates to the entropy of G

∗.

It turns our goal is quite ambitious: in particular, it is unclear how to set up the parameters in such
that the output of the pseudorandom function on G is exactly CT∗2. Fortunately, this will not be a
deterrant, we can set up the parameters such that the output is ≈ CT∗2 + u, where u is a vector that
is known to reduction.

Once we set up the parameters, we can then reduce the security of revocable pseudorandom func-
tions to revocable Dual Regev.

Implementation details: So far we established the proof template should work but the implementa-
tion details of the proof need to be fleshed out. Firstly, we set up the parameters in such a way that
ℓ = =<dlog @e. This means that there is a bĳective function mapping [=] × [<] × [dlog @e] to [ℓ].
As a result, the quantum key r: can be alternately viewed as follows:

• For every 8 ∈ [=], 9 ∈ [<], g ∈ [dlog @e], 1 ∈ {0, 1}, include S(8, 9 ,g)
1

A + E(8, 9 ,g)
1

in r: . We
sample S(8, 9 ,g)

1
and E(8, 9 ,g)

1
from a discrete Gaussian with appropriate parameter f > 0.
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The output of the pseudorandom function on input G can now be interpreted as

PRF(:, G) =


∑

8∈[=], 9∈[<]
g∈[dlog @e]

S(8, 9 ,g)G8 y

 ?
Next, we modify r: as follows: instead of generating, S(8, 9 ,g)

1
A + E(8, 9 ,g)

1
, we instead generate

S(8, 9 ,g)
1

A+E(8, 9 ,g)
1

+M(8, 9 ,:)
1

, for any set of matrices {M(8, 9 ,g)
1
}. The change should be undetectable to

a computationally bounded adversary, thanks to the quantum hardness of learningwith errors. In the
security proof, we set up the challenge input G∗ in such a way that summing up the matrices M(8, 9 ,g)

G∗
8

corresponds to CT∗1, where CT∗1 is part of the key-revocable Dual-Regev challenge ciphertext as
discussed above. With this modification, when r: is evaluated on G∗, we get an output that is close to
CT∗2 + u, where u ≈ ∑

8∈[=], 9∈[<],g∈[dlog(@)e] y is known to the reduction (discussed above)—thereby
violating the security of key-revocable Dual-Regev scheme.

Related Work
Let us now briefly mention related work.

Copy-Protection. Ofparticular relevance to ourwork is the foundational notion of copy-protection
introduced byAaronson [2]. Informally speaking, a copy-protection scheme is a compiler that trans-
forms programs into quantum states in such a way that using the resulting states, one can run the
original program. Yet, the security guarantee stipulates that any adversary given one copy of the
state cannot produce a bipartite state wherein both parts compute the original program.

While copy-protection is known to be impossible for arbitrary unlearnable functions [17, 13], iden-
tifying interesting functionalities for which copy-protection is feasible has been an active research
direction [52, 18, 16]. Of particular significance is the problem of copy-protecting cryptographic
functionalities, such as decryption and signing functionalities. Coladangelo et al. [54] took the first
step in this direction and showed that it is feasible to copy-protect decryption functionalities and
pseudorandom functions assuming the existence of post-quantum indistinguishability obfuscation.
While a very significant first step, the assumption of post-quantum iO is unsatisfactory: there have
been numerous post-quantum iO candidate proposals [19, 49, 39, 55, 65, 130], but not one of them
have been based on well-studied assumptions7.

Our work can be viewed as copy-protecting cryptographic functionalities based on learning with
errors under a weaker yet meaningful security guarantee.

7We remark that, there do exist post-quantum-insecure iO schemes based on well-founded assumptions [86].
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Secure Software Leasing. Another primitive relavent to revocable cryptography is secure soft-
ware leasing [17]. The notion of secure software leasing states that any program can be compiled
into a functionally equivalent program, represented as a quantum state, in such a way that once the
compiled program is returned back8, the honest evaluation algorithm on the residual state cannot
compute the original functionality. Key-revocable encryption can be viewed as secure software
leasing for decryption algorithms. However, unlike secure software leasing, key-revocable encryp-
tion satisfies a much stronger security guarantee, where there is no restriction on the adversary to
run honestly after returning back the software. Secure leasing for different functionalities, namely,
point functions [52, 43], evasive functions [17, 90] and pseudorandom functions [6] have been
studied by recent works.

Encryption Schemes with Revocable Ciphertexts. Unruh [127] proposed a (private-key) quan-
tum timed-release encryption scheme that is revocable, i.e., it allows a user to return the ciphertext
of a quantum timed-release encryption scheme, thereby losing all access to the data. Unruh’s
scheme uses conjugate coding [132, 29] and relies on the monogamy of entanglement in order
to guarantee that revocation necessarily erases information about the plaintext. Broadbent and
Islam [40] introduced the notion of certified deletion9 and constructed a private-key quantum en-
cryption scheme with the aforementioned feature which is inspired by the quantum key distribution
protocol [29, 122]. In contrast with Unruh’s [127] notion of revocable quantum ciphertexts which
are eventually returned and verified, Broadbent and Islam [40] consider certificates which are en-
tirely classical. Moreover, the security definition requires that, once the certificate is successfully
verified, the plaintext remains hidden even if the secret key is later revealed.

Using a hybrid encryption scheme, Hiroka, Morimae, Nishimaki, and Yamakawa [83] extended
the scheme in [41] to both public-key and attribute-based encryption with certified deletion via
receiver non-committing encryption [87, 45]. As a complementary result, the authors also gave
a public-key encryption scheme with certified deletion which is publicly verifiable assuming the
existence of one-shot signatures and extractable witness encryption. Bartusek and Khurana [23]
revisited the notion of certified deletion and presented a unified approach for how to generically
convert any public-key, attribute-based, fully-homomorphic, timed-release or witness encryption
scheme into an equivalent quantum encryption scheme with certified deletion. In particular, they
considered a stronger notion called certified everlasting security which allows the adversary to be
computationally unbounded once a valid deletion certificate is submitted.

8According to the terminology of [17], this refers to finite term secure software leasing.
9This notion is incomparable with another related notion called unclonable encryption [41, 15, 18], which

informally guarantees that it should be infeasible to clone quantum ciphertexts without losing information about the
encrypted message.
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5.2 Quantum Discrete Gaussian Sampling for @-ary Lattices
In this section, we review some basic facts about Gaussian superpositions and present our quantum
discrete Gaussian sampler which is used to revoke the decryption keys for our schemes.

Gaussian Superpositions
In this section, we review some basic facts about Gaussian superpositions. Given @ ∈ N, < ∈ N
and
√

8< < f < @/
√

8<, we consider Gaussian superpositions over Z< ∩ (− @2 ,
@

2 ]
< of the form

|k〉 =
∑

x∈Z<@

rf (x) |x〉 .

Note that the state |k〉 is not normalized for convenience and ease of notation. The tail bound
in Lemma 11 implies that (the normalized variant of) |k〉 is within negligible trace distance of a
truncated discrete Gaussian superposition |k̃〉 with support {x ∈ Z<@ : ‖x‖ ≤ f

√
<
2 }, where

|k̃〉 =
∑

x∈Z<@

√
�Z<@ , f√2

(x) |x〉 =
©«

∑
z∈Z<@ ,‖z‖≤f

√
<
2

r f√
2
(z)

ª®®¬
− 1

2 ∑
x∈Z<@ :‖x‖≤f

√
<
2

rf (x) |x〉 .

In this work, we consider Gaussian superpositions with parameter f = Ω(
√
<) which can be

efficiently implemented using standard quantum state preparation techniques; for example using
quantum rejection sampling and the Grover-Rudolph algorithm [78, 112, 36, 38].

Gaussian coset states. Our key-revocable encryption schemes in Section 5.5 and Section 5.6 rely
on Gaussian superpositions over x ∈ Z<@ subject to a constraint of the form A · x = y (mod @), for
some matrix A ∈ Z=×<@ and image y ∈ Z=@. In Algorithm 3, we give a procedure called GenGauss
that, on input A and f > 0, generates a Gaussian superposition state of the form

|ky〉 =
∑

x∈Z<@ :
Ax=y

rf (x) |x〉 ,

for some y ∈ Z=@ which is statistically close to uniform whenever< ≥ 2= log @ and f ≥ l(
√

log<).
Because |ky〉 corresponds to a (truncated) Gaussian superposition over a particular lattice coset,

Λ
y
@ (A) = {x ∈ Z< : A · x = y (mod @)},

of the @-ary lattice Λ⊥@ (A) = {x ∈ Z< : A · x = 0 (mod @)}, we refer to it as a Gaussian coset state.

Finally, we recall an important property of Gaussian coset states.
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Gaussian-collapsing hash functions. We recall the following variant of the Gaussian-collapsing
property of the Ajtai hash function which we previously showed in Theorem 9.

Corollary 3 (Gaussian-collapsing property). Let = ∈ N and @ be a prime with < ≥ 2= log @,
each parameterized by _ ∈ N. Let

√
8< < f < @/

√
8<. Then, the following samples are

computationally indistinguishable assuming the quantum hardness of decisional LWE<=,@,U@, for any
noise ratio U ∈ (0, 1) with relative noise magnitude 1/U = f · 2>(=) :(

A $← Z=×<@ , |ky〉 =
∑

x∈Z<@
Ax=y

rf (x) |x〉 , y ∈ Z=@

)
≈2

(
A $← Z=×<@ , |x0〉 , A · x0 ∈ Z=@

)
where ( |ky〉 , y) ← GenGauss(A, f) and where x0 ∼ �Z<@ , f√2

is a discrete Gaussian error.

Algorithm: GenGauss
The state preparation procedure GenGauss(A, f) is defined as follows.

Algorithm 3: GenGauss(A, f)

Input: Matrix A ∈ Z=×<@ and parameter f = Ω(
√
<).

Output: Gaussian state |ky〉 and y ∈ Z=@.

1 Prepare a Gaussian superposition in system - with parameter f > 0:

|k〉-. =
∑

x∈Z<@

rf (x) |x〉- ⊗ |0〉. .

2 Apply the unitary*A : |x〉 |0〉 → |x〉 |A · x (mod @)〉 on systems - and . :

|k〉-. =
∑

x∈Z<@

rf (x) |x〉- ⊗ |A · x (mod @)〉. .

3 Measure system . in the computational basis, resulting in the state

|ky〉-. =
∑

x∈Z<@ :
Ax=y

rf (x) |x〉- ⊗ |y〉. .

4 Output the state |ky〉 in system - and the outcome y ∈ Z=@ in system . .
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Algorithm: QSampGauss
Recall that, in Algorithm 3, we gave a procedure called GenGauss(A, f) that prepares a Gaussian
coset state |ky〉, for a randomly generated y ∈ Z=@. In general, however, generating a specific
Gaussian coset state on input (A, y) requires a short trapdoor basis tdA for the matrix A. This task
can be thought of as a quantum analogue of the discrete Gaussian sampling problem [68], where
the goal is to output a sample x ∼ �/<,f such that A · x = y (mod @) on input (A, y) and f > 0.

In Algorithm 4, we give a procedure called QSampGauss which, on input (A, tdA, y, f) generates
a specific Gaussian coset state |ky〉 of the form

|ky〉 =
∑

x∈Z<@
Ax=y

rf (x) |x〉 .

Our procedure QSampGauss in Algorithm 4 can be thought of as an explicit quantum reduction
from ISIS<

=,@,f
√
</2

to LWE<
=,@,@/

√
2f

which is inspired by the quantum reduction of Stehlé et al. [120]

which reduces SIS to LWE. To obtain the aforementioned reduction, one simply needs to replace
the procedure Invert(A, tdA, ·) in Step 4 in Algorithm 4 with a solver for the LWE<

=,@,@/
√

2f
problem.

In Theorem 16, we prove the correctness of Algorithm 4. As a technical ingredient, we rely on a
duality lemma from Lemma 20 that characterizes the Fourier transform of a Gaussian coset state in
terms of its dual state. Note that |ky〉 corresponds to a Gaussian superposition over a lattice coset,

Λ
y
@ (A) = {x ∈ Z< : A · x = y (mod @)},

of the @-ary lattice Λ⊥@ (A) = {x ∈ Z< : A · x = 0 (mod @)}. Here, the dual of Λ⊥@ (A) satisfies
@ · Λ⊥@ (A)∗ = Λ@ (A), where Λ@ (A) corresponds to the lattice generated by Aᵀ, i.e.,

Λ@ (A) = {z ∈ Z< : z = Aᵀ · s (mod @), for some s ∈ Z=}.

The procedure QSampGauss(A, tdA, y, f) is defined as follows.
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Algorithm 4: QSampGauss(A, tdA, y, f)

Input: Matrix A ∈ Z=×<@ , a trapdoor tdA, an image y ∈ Z=@ and parameter f = $ ( @√
<
).

Output: Gaussian state |ky〉.

1 Prepare the following superposition with parameter @/f > 0:∑
s∈Z=@

|s〉 ⊗
∑
e∈Z<@

r@/f (e) |e〉 ⊗ |0〉

2 Apply the generalized Pauli operator Z−y
@ on the first register, resulting in the state∑

s∈Z=@

l
−〈s,y〉
@ |s〉 ⊗

∑
e∈Z<@

r@/f (e) |e〉 ⊗ |0〉

3 Apply the unitary*A : |s〉 |e〉 |0〉 → |s〉 |e〉 |sᵀA + eᵀ (mod @)〉, resulting in the state∑
s∈Z=@

∑
e∈Z<@

r@/f (e) l−〈s,y〉@ |s〉 |e〉 |sᵀA + eᵀ (mod @)〉

4 Coherently run Invert(A, tdA, ·) on the third register in order to uncompute the first and the
second register, resulting in a state that is close in trace distance to the following state:∑

s∈Z=@

∑
e∈Z<@

r@/f (e) l−〈s,y〉@ |0〉 |0〉 |sᵀA + eᵀ (mod @)〉

5 Discard the first two registers. Apply the (inverse) quantum Fourier transform and output the
resulting state.

Let us now prove the correctness of Algorithm 4.

Theorem 16 (Quantum Discrete Gaussian Sampler). Let = ∈ N, @ be a prime with < ≥ 2= log @
and
√

8< < f < @/
√

8<. Let (A, tdA) ← GenTrap(1=, 1<, @) be sampled as in Theorem 2 and
let y ∈ Z=@ be arbitrary. Then, with overwhelming probability, QSampGauss(A, tdA, y, f) in
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Algorithm 4 outputs a state which is within negligible trace distance of the (normalized variant of
the) state,

|ky〉 =
∑

x∈Z<@
Ax=y (mod @)

rf (x) |x〉 .

Proof. From Lemma 8 and Theorem 2, it follows that (A, tdA) ← GenTrap(1=, 1<, @) yields
a matrix A ∈ Z=×<@ be a matrix whose columns generate Z=@ with overwhelming probability.
Moreover, since

√
8< < f < @/

√
8<, the inversion procedure Invert(A, tdA, ·) from Theorem 2 in

Step 4 in Algorithm 4 succeeds with overwhelming probability at generating the Gaussian state

|k̂y〉 =
∑
s∈Z=@

∑
e∈Z<@

r@/f (e) l−〈s,y〉@ |sᵀA + eᵀ (mod @)〉 .

Applying the (inverse) quantum Fourier transform FT†@, the claim then follows from Lemma 20.

5.3 Quantum Goldreich-Levin Theorem for Large Fields
In this section, we give a proof of the first quantum Goldreich-Levin theorem for large fields Z@.

Post-Quantum Reductions and Quantum Rewinding
We first review some recent work by Bitansky, Brakerski and Kalai [32] that enables us to convert a
wide range of classical reductions into post-quantum reductions (which allow for quantum auxiliary
input) in a constructive manner. We first review some basic terminology from [32].

Let _ ∈ N be a parameter. A non-interactive assumption P = (G,V, 2) with respect to a set of
polynomials 3 (_), =(_) and <(_) is characterized as follows:

• The generator G takes as input 1_ and A ∈ {0, 1}3 , and returns G ∈ {0, 1}=.

• The verifier V takes as input 1_ and (A, H) ∈ {0, 1}3 × {0, 1}<, and returns a single bit output.

• 2(_) is the threshold associated with the assumption.

Given a (possibly randomized) solver, we characterize the advantage in solving an assumption P in
terms of the absolute distance between the solving probability (or, value) and the threshold 2; for
example, for a decision assumption P (with < = 1) we characterize the value in solving P in terms
of 1

2 + Y, where the threshold is given by 2(_) = 1
2 and Y > 0 is corresponds to the advantage. We

say that a reduction is black-box if it is oblivious to the representation and inner workings of the
solver that is being used. Moreover, we say that a reduction is non-adaptive if all queries to the
solver are known ahead of time.

We use the following theorem.
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Theorem 17 ([32], adapted from Theorem 7.1). Let 2 ∈ R. Suppose that there exists a classical
reduction from solving a non-interactive assumption Q to solving a non-interactive assumption P
such that the following holds: if the P-solver has advantage Y > 0 then the Q-solver has advantage
2 (independent of Y) with running time poly(1/Y, 2, _).

Then, there exists a quantum reduction from solving Q to quantumly solving P such that the
following holds: if the quantum P-solver (with non-uniform quantum advice) has an advantage
given by Y > 0, then the Q-solver has advantage 2 (the same as the classical reduction) with
running time poly(1/Y, 2, _).

Remark 18. We note that [32] consider a more general theorem where the advantage of the
classical Q-solver can depend on the advantage of the P-solver. But in the case when the classical
Q-solver’s advantage is independent of the P-solver’s advantage then, as reflected in the above
theorem, it turns out the advantage of the quantum Q-solver is the same as the classical Q-solver.

Goldreich-Levin Theorems for Large Fields
The following result is implicit in the work of Dodis et al. [57].

Theorem 19 (Classical Goldreich-Levin Theorem for Finite Fields, [57], Theorem 1). Let @ be a
prime and < ∈ N. Let � = {x ∈ Z<@ : ‖x‖ ≤ f

√
<} be a subset of Z<@ , for some f > 0. Let

5 : � → {0, 1}∗ be any (possibly randomized) function. Suppose there exists a distinguisher D
that runs in time ) (D) and has the property that

Pr

[
D(u, uᵀx, aux) = 1 :

u $←Z<@
x∼�Z<@ ,f
aux← 5 (x)

]
− Pr

[
D(u, A, aux) = 1 :

u $←Z<@ , A
$←Z@

x∼�Z<@ ,f
aux← 5 (x)

]
= Y.

Then, there exists a (classical) non-adaptive black-box extractor E whose running time is given by
) (E) = ) (D) · poly(<, f, 1/Y) and succeeds with probability at least

Pr
[
E
(
aux

)
= x : aux← 5 (x)

]
≥ Y3

512 · < · @2 .

Using the constructive post-quantum reduction from Theorem 17, we can convert Theorem 19 into
a quantum Goldreich-Levin Theorem for finite fields, and obtain the following.

Theorem 20 (Quantum Goldreich-Levin Theorem for Large Fields). Let @ be a prime and < ∈ N.
Let � = {x ∈ Z<@ : ‖x‖ ≤ f

√
<} be a subset of Z<@ , for some f > 0. LetΦ : L(H<

@ ) → L(HAux)
be any CPTP map with auxiliary system HAux. Suppose there exists a quantum distinguisher D
that runs in time ) (D) and has the property that

Pr

[
D(u, uᵀx, aux) = 1 :

u $←Z<@
x∼�Z<@ ,f

aux←Φ( |x〉〈x|)

]
− Pr

[
D(u, A, aux) = 1 :

u $←Z<@ , A
$←Z@

x∼�Z<@ ,f
aux←Φ( |x〉〈x|)

]
= Y.
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Then, there exists a quantum extractor E whose running time is given by ) (E) = ) (D) ·
poly(<, f, 1/Y) and that succeeds with probability at least

Pr
[
E
(
aux

)
= x : aux← Φ( |x〉〈x|)

]
≥ poly(Y, 1/<, 1/f, 1/@).

Proof. The proof follows immediately by combining Theorem 19 and Theorem 17.

5.4 Definition: Key-Revocable Public-Key Encryption
Let us now give a formal definition of key-revocable public-key encryption schemes.

Definition 39 (Key-Revocable Public-Key Encryption). A key-revocable public-key encryption
scheme consists efficient algorithms (KeyGen,Enc,Dec,Revoke), where Enc is a PPT algorithm
and KeyGen,Dec and Revoke are QPT algorithms defined as follows:

• KeyGen(1_): given as input a security parameter _, output a public key pk, a master secret
key msk and a quantum decryption key rsk.

• Enc(pk, G): given a public key pk and plaintext G ∈ {0, 1}ℓ, output a ciphertext CT.

• Dec(rsk,CT): given a decryption key rsk and ciphertext CT, output a message H.

• Revoke (pk,msk, f): given as input a master secret key msk, a public key pk and quantum
state f, output Valid or Invalid.

Correctness of Decryption. For every G ∈ {0, 1}ℓ, the following holds:

Pr
[
G ← Dec(rsk,CT) : (pk,msk,rsk)←KeyGen(1_)

CT←Enc(pk,G)

]
≥ 1 − a(_),

where a(·) is a negligible function.

Correctness of Revocation. The following holds:

Pr
[
Valid← Revoke (pk,msk, rsk) : (pk,msk, rsk) ← KeyGen(1_)

]
≥ 1 − a(_),

where a(·) is a negligible function.

Remark 21. Using the “Almost As Good As New” Lemma (Lemma 1), the procedure Dec can
easily be purified to obtain another quantum circuit D̃ec such that D̃ec(rsk,CT) yields (G, r′sk) with
probability at least 1 − a(_) and, moreover, CT is an encryption of G and ‖r′sk − rsk‖tr ≤ a

′(_),
where a′(_) is another negligible function.
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ExptΣ,A
(
1_, 1

)
:

Initialization Phase:

• The challenger runs (pk,msk, rsk) ← KeyGen(1_) and sends (pk, rsk) to A.

Revocation Phase:

• The challenger sends the message REVOKE to A.

• The adversary A returns a state f.

• The challenger aborts if Revoke(pk,msk, f) outputs Invalid.

Guessing Phase:

• A submits a plaintext G ∈ {0, 1}ℓ to the challenger.

• If 1 = 0: The challenger sends CT ← Enc(pk, G) to A. Else, if 1 = 1, the
challenger sends CT $←− C, where C is the ciphertext space of ℓ bit messages.

• Output 1A if the output of A is 1A .

Figure 5.1: Security Experiment.

Security Definition
Our security definition for key-revocable public-key encryption is as follows.

Definition 40. A key-revocable public-key encryption scheme Σ = (KeyGen,Enc,Dec,Revoke) is
(n, X)-secure if, for every QPT adversary A with

Pr[Invalid← ExptΣ,A (1_, 1)] ≤ X(_)

for 1 ∈ {0, 1}, it holds that��Pr
[
1← ExptΣ,A (1_, 0)

]
− Pr

[
1← ExptΣ,A (1_, 1)

] �� ≤ Y(_),
where ExptΣ,A (1_, 1) is as defined in Figure 5.1. If X(_) = 1 − 1/poly(_) and Y(_) = negl(_), we
simply say the key-revocable public-key encryption scheme is secure.

Remark 22. Our security definition is similar to the one proposed by Agrawal et al. [8] in the
context of public-key encryption with secure leasing.
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Key-Revocable Public-Key Fully Homomorphic Encryption
A key-revocable public-key fully homomorphic encryption scheme defined for a class of functions
F , in addition to (KeyGen,Enc,Dec,Revoke), consists of the following PPT algorithm:

• Eval(pk, 5 ,CT): on input a public key pk, function 5 ∈ F , ciphertext CT, outputs another
ciphertext CT′.

Remark 23. Sometimes we allow KeyGen to additionally take as input different parameters asso-
ciated with the implementations of the functions in F . For example, we allow KeyGen to take as
input a parameter ! in such a way that all the parameters in the system depend on ! and moreover,
the homomorphic evaluation is only supported on circuits (in F ) of depth at most !.

Correctness ofEvaluation andDecryption. For every 5 ∈ F with ℓ-bit inputs, every G ∈ {0, 1}ℓ,
the following holds:

Pr

[
5 (G) ← Dec(rsk,CT′) :

(pk,msk,sk)←KeyGen(1_)
CT←Enc(pk,G)

CT′←Eval(pk, 5 ,CT)

]
≥ 1 − a(_),

where a(·) is a negligible function.

Correctness of Revocation. Defined as before.

Security. Defined as before (Definition 40).

5.5 Key-Revocable Dual-Regev Encryption
In this section, we present the first construction of key-revocable public-key encryption from
standard assumptions. Our construction involves making the Dual Regev public-key encryption of
Gentry, Peikert and Vaikuntanathan [68] key revocable.

Construction
We define our Dual-Regev construction below.

Construction 8 (Key-Revocable Dual-Regev Encryption). Let = ∈ N be the security parameter
and < ∈ N. Let @ ≥ 2 be a prime and let U, V, f > 0 be parameters. The key-revocable public-key
scheme RevDual = (KeyGen,Enc,Dec,Revoke) consists of the following QPT algorithms:
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• KeyGen(1_) → (pk, sk,msk) : sample (A ∈ Z=×<@ , tdA) ← GenTrap(1=, 1<, @) and generate
a Gaussian superposition ( |ky〉 , y) ← GenGauss(A, f) with

|ky〉 =
∑

x∈Z<@
Ax=y

rf (x) |x〉 ,

for some y ∈ Z=@. Output pk = (A, y), |sk〉 = |ky〉 and msk = tdA.

• Enc(pk, `) → CT : to encrypt a bit ` ∈ {0, 1}, sample a random vector s $← Z=@ and errors
e ∼ �Z<, U@ and 4′ ∼ �Z, V@, and output the ciphertext pair

CT =
(
sᵀA + eᵀ (mod @), sᵀy + 4′ + ` · b@

2
c (mod @)

)
∈ Z<@ × Z@ .

• Dec( |sk〉 ,CT) → {0, 1} : to decrypt CT, apply the unitary* : |x〉 |0〉 → |x〉 |CT · (−x, 1)ᵀ〉
on input |ky〉 |0〉, where |sk〉 = |ky〉, and measure the second register in the computational
basis. Output 0, if the measurement outcome is closer to 0 than to b @2 c, and output 1,
otherwise.

• Revoke(msk, pk, r) → {>,⊥}: on input tdA ← msk and (A, y) ← pk, apply the measure-
ment {

��ky
〉〈
ky

�� ,1−��ky
〉〈
ky

��} onto the state r using the procedureQSampGauss(A, tdA, y, f)
in Algorithm 4. Output >, if the measurement is successful, and output ⊥ otherwise.

Correctness of Decryption. Follows from the correctness of Dual-Regev public-key encryption.

Correctness of Revocation.

Correctness of Revocation. This follows from Theorem 16.

Let us now prove the security of our key-revocable Dual-Regev scheme in Construction 8. Our
first result concerns (negl(_), negl(_))-security, i.e., we assume that revocation succeeds with
overwhelming probability.

Theorem24. Let = ∈ N and @ be a primemoduluswith @ = 2>(=) and< ≥ 2= log @, each parameter-
ized by the security parameter _ ∈ N. Let

√
8< < f < @/

√
8< and let U, V ∈ (0, 1) be noise ratios

chosen such that V/U = 2>(=) and 1/U = 2>(=) · f. Then, assuming the subexponential hardness
of the LWE<=,@,U@ and SIS<

=,@,f
√

2<
problems, the scheme RevDual = (KeyGen,Enc,Dec,Revoke) in

Construction 8 is a (negl(_), negl(_))-secure key-revocable public-key encryption scheme accord-
ing to Definition 40.
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To prove the stronger variant of (negl(_), 1 − 1/poly(_))-security, i.e., where we do not make any
requirements about the success probability of revocation, we need to invoke Conjecture 1.

Theorem 25. Let = ∈ N and @ be a prime modulus with @ = 2>(=) and < ≥ 2= log @, each
parameterized by the security parameter _ ∈ N. Let

√
8< < f < @/

√
8< and let U, V ∈ (0, 1)

be noise ratios chosen such that V/U = 2>(=) and 1/U = 2>(=) · f. Assuming Construction 1, the
scheme RevDual = (KeyGen,Enc,Dec,Revoke) in Construction 8 is a (negl(_), 1 − 1/poly(_))-
secure key-revocable public-key encryption scheme according to Definition 40.

Guide for proving Theorem 24 and Theorem 25.

• First, we prove a technical lemma (Lemma 28) that helps us remove the condition that revo-
cation succeeds when analyzing the advantage of a distinguisher. Our proof uses projective
implementations which allow us to estimate the success probability of quantum programs.

• The next step towards proving Theorem 24 is a search-to-decision reduction with quantum
auxiliary input for the Dual-Regev scheme (Theorem 30). Here, we show how to extract a
short vector mapping A to y from an efficient adversary who has a non-negligible distin-
guishing advantage at distinguishing Dual-Regev ciphertexts from uniform.

• Next, we state the Simultaneous Dual-Regev Extraction conjecture in Conjecture 1, which
is a strengthening of our search-to-decision reduction in Theorem 30. Informally, it says
that extraction of a short vector mapping A to y succeeds, even if we apply revocation on a
separate register. We prove that Conjecture 1 holds assuming LWE/SIS in the special case
when revocation succeeds with overwhelming probability. This is captured by Theorem 31.

• Next, we prove technical lemma which exploits the search-to-reduction to extract two distinct
short vectors mapping A to y. This is proven in Section 5.5.

• Finally, we put all the pieces together in Section 5.5 and show how to use the result from Sec-
tion 5.5 in order to break the SIS assumption.

Threshold Implementations
In this section, we prove Lemma 28. This is a key ingredient in the proof of our main theorem, i.e.,
our simultaneous search-to-decision reduction with quantum auxiliary information in Conjecture 1.

First, we review some recent techniques that allow us to measure the success probability of quantum
programs. In the classical setting, this task is fairly straightforward: simply execute a given
program on samples from a test distribution, and check how many times the program succeeds.
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Using standard concentration inequalities, one can then estimate the success probability to inverse
polymonial precision. In the quantum realm, however, this task is non-trivial if the quantum
program is run with respect to quantum auxiliary inputs.

Inspired by the work of Marriott and Watrous [100], Zhandry [138] introduced the notion of
projective implementations which allow us to accomplish this task efficiently. Below, we introduce
some relevant definitions and results from the original work of Zhandry [138], as well as subsequent
follow-up works [6, 54, 18]. First, we discuss inefficientmeasurement techniques for measuring the
success probability of a quantum program. Next, we move onto efficient measurement techniques
that allow us to obtain such estimates approximately.

Inefficient measurements. Suppose we we have quantum program, say consisting of a quantum
circuit and some quantum auxiliary input, and we wish to estimate its success probability. A
natural starting point is to consider a two-outcome POVM P = (%,&) over the two outcomes
0 (success) and 1 (failure). Zhandry [138] showed that for any such P, there exists a natural
projective measurement (called a projective implementation) such that the post-measurement state
corresponds precisely to an eigenvector of %. Moreover, there exists a projective measurement E
that measures the success probability with respect to P on some auxiliary input state; specifically,

• E outputs a probability ? ∈ [0, 1] (i.e., a real number) from the set of eigenvalues of %.

• The post-measurement state after obtaining outcome ? corresponds to an eigenvector of %
with eigenvalue ?; similarly, it is an eigenvector of & = 1 − % with eigenvalue 1 − ?.

The measurement E is projective in the following sense: whenever we apply the same measurement
E on the post-measurement state, we obtain precisely the same outcome. The following theorem is
implicit in [138, Lemma 1], but we rely on the presentation from [18, Theorem 2.5].

Theorem 26 (Projective implementation). Let P = (%,&) be a two-outcome POVM and let
D be the distribution over the eigenvalues of %. Then, there exists a projective measurement
E = {�?}?∈D with index set D such that: for every quantum state r, where we let r? = �? r�?
denote the sub-normalized post-measurement state after measuring r via �?, it holds that

• For every ? ∈ D, the state r? is an eigenvector of % with eigenvaue ?, and

• the probability of r when measured with respect to % is equal to Tr[%r] = ∑
?∈D Tr[%r?].

Remark 27. Suppose that P = (%,&) is a two-outcome POVM and that % has an eigenbasis {|k8〉}
with associated eigenvalues {_8}. Because % and & commute, they share a common eigenbasis. In
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this case, there exists a natural measurement E that corresponds to a projective implementation of
the POVM P; namely, for any input |k〉, which can express as |k〉 = ∑

8 U8 |k8〉, the measurement
E = {�_8 } will result in outcome _8 and a leftover eigenstate |k8〉 with probabiliy |U8 |2.

Next, we use a generalization of projective implementations introduced in [6]. Rather than estimat-
ing the success probability directly, we can instead measure whether it is above or below a certain
threshold. This gives rise to the following notion of threshold implementations.

Theorem 28 (Threshold implementation). Let W ∈ (0, 1) be a parameter and let P = (%,&) be
a two-outcome POVM, where % has an eigenbasis {|k8〉} with associated eigenvalues {_8}. Then,
there exists a projective threshold implementation (TIW (P),1 − TIW (P)) such that

• TIW (P) projects a quantum state into the subspace spanned by {|k8〉} whose eigenvalues _8
satisfy the property _8 ≤ W.

• 1− TIW (P) projects a quantum state into the subspace spanned by {|k8〉} whose eigenvalues
_8 satisfy the property _8 > W.

The proof of the theorem above follows directly from Theorem 26 by considering the projective
measurements TIW (P) =

∑
8:_8≤W �_8 and 1 − TIW (P) = 1 −

∑
8:_8>W �_8 .

Finally, we also use the following symmetric variant of threshold implementations which were
considered in [18, Theorem 2.6]. Here, the projective measurement determines whether the
success probability is either close to 1/2 or far from 1/2.

Theorem 29 (Symmetric threshold implementation). Let W ∈ (0, 1/2) be a parameter and let
P = (%,&) be a two-outcome POVM, where % has an eigenbasis {|k8〉}with associated eigenvalues
{_8}. Then, there exists a projective threshold implementation (STIW (P),1 − STIW (P)) such that

• STIW (P) projects a quantum state into the subspace spanned by {|k8〉} whose eigenvalues _8
satisfy the property |_8 − 1

2 | ≤ W.

• 1−STIW (P) projects a quantum state into the subspace spanned by {|k8〉} whose eigenvalues
_8 satisfy the property |_8 − 1

2 | > W.

The proof of the theorem above follows directly from Theorem 26 by considering the projective
measurements STIW (P) =

∑
8:|_8− 1

2 |≤W
�_8 and 1 − STIW (P) = 1 −

∑
8:|_8− 1

2 |>W
�_8 .
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Efficient measurements. The quantum measurements we described above can, in general, not
be implemented efficiently. However, Zhandry [138] showed that there exist so-called efficient
approximate implementations which allow one to obtain approximate estimates of the success
probability of a quantum program. In this section, we review some basic definitions and results
that allow us to perform such measurmenents efficiently.

Definition 41 (Mixture of projective measurements). Let P = {P8}8∈I be a collection of binary
outcome projective measurements P8 = (%8, &8) over the same Hilbert spaceH , and suppose that
%8 corresponds to outcome 1 and &8 corresponds to outcome 0. Let � be a distribution over the
the index set I. Then, P� = (%� , &�) is the following mixture of pojective measurements:

%� =
∑
8∈I

Pr[8 ← �] %8 and &� =
∑
8∈I

Pr[8 ← �] &8 .

The following result is adapted from [138, Theorem 6.2] and [6, Corollary 1].

Lemma 26 (Approximate threshold implementation). Let P� = (%� , &�) be a binary outcome
POVM over Hilbert spaceH that is a mixture of projective measurements over some distribution �.
Let Y, X, W ∈ (0, 1). Then, there exists an efficient binary-outcome quantum algorithm SATIn,XP,�,W,
interpreted as the POVM element corresponding to outcome 1, such that the following holds:

• For all quantum states r, Tr[SATIn,XP,�,W−n r] ≥ Tr[TIW (P�) r] − X.

• For all quantum states r, it holds that Tr[TIW−2Y (P�) r′] ≥ 1 − 2X, where r′ is the post-
measurement state which results from applying the measurement SATIn,XP,�,W to r.

• The expected running time to implement SATIn,XP,�,W is proportional to poly(1/Y, log(1/X)),
the time it takes to implement %� , and the time it takes to sample from �.

Finally, we use the following symmetric version of the approximate threshold implementation
Lemma 26 which is a variant of [18, Theorem 2.8].

Lemma 27 (Symmetric approximate threshold implementation). Let P� = (%� , &�) be a binary
outcome POVM over Hilbert space H that is a mixture of projective measurements over some
distribution �. Let W ∈ (0, 1/2) and Y ∈ (0, W/2), and let X ∈ (0, 1). Let � be a distribution. Then,
there exists an efficient binary-outcome quantum algorithm SATIn,XP,�,W, interpreted as the POVM
element corresponding to outcome 1, such that the following holds:

• For all quantum states r, Tr[SATIn,XP,�,W−n r] ≥ Tr[STIW (P�) r] − X.
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• For all quantum states r, it holds that Tr[STIW−2Y (P�) r′] ≥ 1 − 2X, where r′ is the post-
measurement state which results from applying the measurement STIn,XP,�,W to r.

• The expected running time to implement SATIn,XP,�,W is proportional to poly(1/Y, log(1/X)),
the time it takes to implement %� , and the time it takes to sample from �.

Proof of Lemma 28. We are now ready to prove the main result of this subsection.

Lemma 28. Let _ ∈ N be a parameter and let rR,Aux be a quantum state on systems R and Aux of
at most poly(_) many qubits. Let �0, �1 be two efficiently samplable distributions with support X.
Let D be a QPT algorithm. Suppose that the following two properties hold:

• A (possibly inefficient) two-outcome POVM M = {"1, "0} succeeds on system R with
probability at least

Tr[("1 ⊗ 1Aux)r] ≥
1
?(_)

for some polynomial ?(_).

• the algorithm D succeeds at distinguishing �0 from �1 with advantage����Pr
[
D(G,Aux) = 1 : 1

$←{0,1}
G∼�1

1←M(R)

]
− 1

2

���� ≥ 1
@(_) .

for some polynomial @(_) conditioned on the measurementM succeeding on register R.

Then, there exists aQPT algorithm D̃ and a polynomial `(_) such that D̃ succeeds at distinguishing
�0 and �1 with advantage at least 1/`(_) on the reduced system alone, i.e.,����Pr

[
D̃(G,Aux) = 1 : 1

$←{0,1}
G∼�1

]
− 1

2

���� ≥ 1
`(_) ,

where system Aux corresponds to the reduced state rAux = TrR [rR,Aux].

Proof. Consider the binary outcome POVM P = (%(�0,�1) , & (�0,�1)) with& (�0,�1) = 1−%(�0,�1)

which is the following mixture of projective measurents such that

%(�0,�1) =
Π0 + Π1

2

whereΠ0,Π1 are mixtures of two-outcome POVMs {PG} that correspond to runningD on samples
G from �0, �1 and system Aux, and then measuring whether the output is 0 or 1, i.e.,

Π0 =
∑
G∈X

Pr[G ← �0] PG and Π1 =
∑
G∈X

Pr[G ← �1] PG .
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Let P have an eigenbasis {|k8〉} with eigenvalues {_8}. Without loss of generality we can assume
that r',Aux is a pure state |k〉 = ∑

8 U8 |k〉 in systems ' and Aux. Moreover, we can write |k〉 as

|k〉 =
∑

8: |_8− 1
2 |≥

1
@

U8 |k8〉 +
∑

8: |_8− 1
2 |<

1
@

U8 |k8〉 .

Let Y = 1/8?, X = 2−_ and W = 1/2? be parameters. Consider the following distinguisher D̃:

• Run the efficient approximate threshold implementation SATIn,XP,(�0,�1),W from Lemma 27 on
system Aux for the binary-outcome POVM given by P.

• If the outcome of SATIn,XP,(�0,�1),W is 1, then runD on the post-measurement system Aux, and
output whatever D outputs. Otherwise, output a random bit.

Let us now analyze the success probability of D̃. Because the two-outcome POVMM succeeds on
system R with probability at least 1

?
and because D succeeds with advantage at least 1

@
on system

Aux conditioned onM outputting 1, we have that |k〉 has weight at least 1
?
on eigenvectors with

eigenvalues _8 such that |_8 − 1
2 | ≥

1
@
. In other words,∑
8: |_8− 1

2 |≥
1
@

|U8 |2 ≥
1
?
.

Therefore, the probability that SATIn,XP,(�0,�1),W outputs 1 on system Aux is at least

Tr
[
SATIn,XP,(�0,�1),W (Aux)

]
≥ 1
?
− 2X = $ (1/?) .

Moreover, the post-measurement state in system ˜Aux after getting outcome 1 has weight 1 − 2X
on eigenvectors {|k8〉} such that |_8 − 1

2 | > W − 2n . Therefore, with probability at least 1 − 2X,
D has an advantage of at least W − 2n at outputting the correct bit when run on the collapsed
post-measurement system ˜Aux.

However, if the measurement SATIn,XP,(�0,�1),W on system Aux fails and outputs 0, then D̃ succeeds
with probability 1/2. Therefore, with overwhelming probability, D̃ has advantage at least

Pr
[
D̃(G,Aux) = 1 : 1

$←{0,1}
G∼�1

]
− 1

2
= Pr

[
D(G, ˜Aux) = 1 : 1

$←{0,1}
G∼�1

]
· Tr

[
SATIn,XP,(�0,�1),W (Aux)

]
+ 1

2

(
1 − Tr

[
SATIn,XP,(�0,�1),W (Aux)

] )
− 1

2

= Tr
[
SATIn,XP,(�0,�1),W (Aux)

]
· Pr

[
D(G, ˜Aux) = 1 : 1

$←{0,1}
G∼�1

]
− 1

2
≥ (1/? − 2X) · (W − 2Y) ≥ 1/poly(_).
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Finally, we remark that the running time of the distinguisher D̃ is proportional to the running time
of D and poly(1/Y, log(1/X)), and hence it is efficient.

Simultaneous Search-to-Decision Reduction with Quantum Auxiliary Input
Our first result concerns distinguishers with quantum auxiliary input that can distinguish between
Dual-Regev samples and uniformly random samples with high probability. In Theorem 30, we give
a search-to-decision reduction: we show that such distinguishers can be converted into a quantum
extractor that can obtain a Dual-Regev secret key with overwhelming probability. We then state a
strenghtening of this extraction property (which we call Simultaneous Dual-Regev Extraction) in
Conjecture 1. Informally, this property states that extraction is possible even if additionally require
that a revocation procedure succeeds on a separate register.

While we do not know how to prove Construction 1 under standard assumptions, we prove that
Simultaneous Dual-Regev Extraction holds assuming LWE/SIS in the special case when revocation
succeeds with overwhelming probability. This is captured by Theorem 31.

We first show the following result.

Theorem 30 (Search-to-Decision Reduction with Quantum Auxiliary Input). Let = ∈ N and @ be a
prime modulus with @ = 2>(=) and let < ≥ 2= log @, each parameterized by the security parameter
_ ∈ N. Let

√
8< < f < @/

√
8< and let U, V ∈ (0, 1) be noise ratios with V/U = 2>(=) and

1/U = 2>(=) · f. Let A = {(A_,A,y, a_)}_∈N be any non-uniform quantum algorithm consisting of
a family of polynomial-sized quantum circuits{

A_,A,y : L(H<
@ ⊗ H�_) → L(H'_ ⊗ Haux_)

}
A∈Z=×<@ , y∈Z=@

and polynomial-sized advice states a_ ∈ D(H�_) which are independent of A. Then, assuming the
quantum hardness of the LWE<=,@,U@ assumption, the following holds for every QPT distinguisher
D. Suppose that there exists a function Y(_) = 1/poly(_) such that

Pr
[
1← SearchToDecisionExptA,D (1_, 0)

]
− Pr

[
1← SearchToDecisionExptA,D (1_, 1)

]
= Y(_).

Then, there exists a quantum extractor E that takes as input A, y and system Aux of the state rR,Aux

and outputs a short vector in the coset Λy
@ (A) in time poly(_, <, f, @, 1/Y) such that

Pr

[
Pr

[
E(A,y,rAux)=x∧

x ∈ Λy
@ (A) ∩B< (0,f

√
<
2 )

]
≥ 1 − negl(_) :

A $←Z=×<@

( |ky〉,y)←GenGauss(A,f)
rR,Aux←A_,A,y ( |ky〉〈ky |⊗a_)

]
≥ 1/poly(_).
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SearchToDecisionExptA,D
(
1_, 1

)
:

• If 1 = 0: output lF4.D8BCA,D
(
1_

)
defined in Figure 5.3.

• If 1 = 1: output u=8 5 .D8BCA,D
(
1_

)
defined in Figure 5.4.

Figure 5.2: The experiment SearchToDecisionExptA,D
(
1_, 1

)
.

Proof. Let _ ∈ N be the security parameter and let A = {(A_,A,y, a_)}A∈Z=×<@
be a non-uniform

quantum algorithm. Suppose that D is a QPT distinguisher with advantage Y = 1/poly(_).

To prove the claim, we consider the following sequence of hybrid distributions.

H0: This is the distribution lF4.D8BCA,D
(
1_

)
in Figure 5.3.

lF4.D8BCA,D
(
1_

)
:

1. Sample A $← Z=×<@ .
2. Generate ( |ky〉 , y) ← GenGauss(A, f).
3. Generate r',Aux ← A_,A,y( |ky〉〈ky | ⊗ a_).

4. Sample s $← Z=@, e ∼ �Z<,U@ and 4′ ∼ �Z,V@.
5. Generate rR,Aux ← A_,A,y( |ky〉〈ky | ⊗ a_).
6. Run 1′← D(A, y, sᵀA + eᵀ, sᵀy + 4′, rAux) on the reduced state. Output 1′.

Figure 5.3: The distribution lF4.D8BCA,D
(
1_

)
.

H1: This is the following distribution:

1. Sample a random matrix A $← Z=×<@ .

2. Sample s $← Z=@, e ∼ �Z<,U@ and 4′ ∼ �Z,V@.

3. Sample a Gaussian vector x0 ∼ �Z<@ , f√2
and let y = A · x0 (mod @).

4. Run A_,A,y( |x0〉〈x0 | ⊗ a_) to generate a state rR,aux in systems R and aux.
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5. Run the distinguisher D(A, y, sᵀA + eᵀ, sᵀy + 4′, raux) on the reduced state raux.

H2 : This is the following distribution:

1. Sample a uniformly random matrix A $← Z=×<@ .

2. Sample s $← Z=@, e ∼ �Z<,U@ and 4′ ∼ �Z,V@. Let u = Aᵀs + e.

3. Sample a Gaussian vector x0 ∼ �Z<@ , f√2
and let y = A · x0 (mod @).

4. Run A_,A,y( |x0〉〈x0 | ⊗ a_) to generate a state r',aux in systems R and aux.

5. Run the distinguisher D(A, y, u, uᵀx0 + 4′, raux) on the reduced state raux.

H3 : This is the following distribution:

1. Sample a uniformly random matrix A $← Z=×<@ .

2. Sample u $← Z<@ and 4′ ∼ �Z,V@.

3. Sample a Gaussian vector x0 ∼ �Z<@ , f√2
and let y = A · x0 (mod @).

4. Run A_,A,y( |x0〉〈x0 | ⊗ a_) to generate a state r',aux in systems R and aux.

5. Run the distinguisher D(A, y, u, uᵀx0 + 4′, raux) on the reduced state raux.

H4: This is the following distribution:

1. Sample a uniformly random matrix A $← Z=×<@ .

2. Sample u $← Z<@ and A $← Z@.

3. Sample a Gaussian vector x0 ∼ �Z<@ , f√2
and let y = A · x0 (mod @).

4. Run A_,A,y( |x0〉〈x0 | ⊗ a_) to generate a state r',aux in systems R and aux.

5. Run the distinguisher D(A, y, u, A, raux) on the reduced state raux.

H5: This is the distribution u=8 5 .D8BCA,D
(
1_

)
in Figure 5.4.

We now show the following:

Claim 10. Assuming LWE<=,@,U@, the hybrids H0 and H1 are computationally indistinguishable,

H0 ≈2 H1.
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u=8 5 .D8BCA,D
(
1_

)
:

1. Sample A $← Z=×<@ .

2. Sample u $← Z<@ and A $← Z@.
3. Run ( |ky〉 , y) ← GenGauss(A, f).
4. Generate r',Aux ← A_,A,y( |ky〉〈ky | ⊗ a_).
5. Run 1′← D(A, y, u, A, rAux) on the reduced state. Output 1′.

Figure 5.4: The distribution u=8 5 .D8BCA,D
(
1_

)
.

Proof. Here, we invoke the Gaussian-collapsing property in Corollary 3 which states that the
following samples are indistinguishable under LWE<=,@,U@,(

A $← Z=×<@ , |ky〉 =
∑

x∈Z<@
Ax=y

rf (x) |x〉 , y ∈ Z=@
)
≈2

(
A $← Z=×<@ , |x0〉 , A · x0 ∈ Z=@

)
where ( |ky〉 , y) ← GenGauss(A, f) andwhere x0 ∼ �Z<@ , f√2

is a sample from the discreteGaussian
distribution. Because A_,A,y is a family efficient quantum algorithms, this implies that

A_,A,y( |ky〉〈ky | ⊗ a_) ≈2 A_,A,y( |x0〉〈x0 | ⊗ a_),

for any polynomial-sized advice state a_ ∈ D(H�_) which is independent of A.

Claim 11. Hybrids H1 and H2 are statistically indistinguishable. In other words,

H1 ≈B H2.

Proof. Here, we invoke the noise flooding property in Lemma 15 to argue that eᵀx0 � 4′ holds
with overwhelming probability for our choice of parameters. Therefore, the distributions in H1 and
H2 are computationally indistinguishable.

Claim 12. Assuming LWE<=,@,U@, the hybrids H2 and H3 are computationally indistinguishable,

H2 ≈2 H3.

Proof. This follows from the LWE<=,@,U@ assumption since the reduction can sample x0 ∼ �Z<, f√
2

itself and generate r',aux ← A_,A,y( |x0〉〈x0 | ⊗ a_) on input A ∈ Z=×<@ and a_.
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Finally, we show the following:

Claim 13. Assuming LWE<=,@,U@, the hybrids H4 and H5 are computationally indistinguishable,

H4 ≈2 H5.

Proof. Here, we invoke the Gaussian-collapsing property in Corollary 3 again.

Recall that H0 and H5 can be distinguished with probability Y = 1/poly(_). We proved that the
hybrids H0 and H3 are computationally indistinguishable and moreover, hybrids H4 and H5 are
computationally indistinguishable. As a consequence, it holds that hybrids H3 and H4 can be
distinguished with probability at least Y − negl(_).

We leverage this to obtain a Goldreich-Levin reduction. Consider the following distinguisher.

D̃
(
A, y, u, E, r

)
:

Input: A ∈ Z=×<@ , y ∈ Z=@, u ∈ Z=@, E ∈ Z@ and r ∈ ! (HAux).
Output: A bit 1′ ∈ {0, 1}.

Procedure:

1. Sample 4′ ∼ �Z,V@.

2. Output 1′← D
(
A, y, u, E + 4′, r

)
.

Figure 5.5: The distinguisher D̃
(
A, y, u, E, r

)
.

Note that A + 4′ (mod @) is uniform whenever A $← Z@ and 4′ ∼ �Z,V@. Therefore, our previous
argument shows that there exists a negligible function [ such that:

Pr
D̃(A, y, u, uᵀx0, raux) = 1 :

A $←Z=×<@ , u $←Z<@
x0∼�Z<@ , f√2

, y←A·x0 (mod @)

r' aux←A_,A,y ( |x0〉〈x0 |⊗a_)


− Pr

D̃(A, y, u, r, raux) = 1 :

A $←Z=×<@

u $←Z<@ , A
$←Z@

x0∼�Z<@ , f√2
, y←A·x0 (mod @)

r' aux←A_,A,y ( |x0〉〈x0 |⊗a_)

 ≥ Y − [(_).
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From Theorem 20, it follows that there exists a Goldreich-Levin extractor E running in time
) (E) = poly(_, =, <, f, @, 1/Y) that outputs a short vector in Λy

@ (A) with probability at least

Pr

[
E(A,y,rAux)=x∧

x ∈ Λy
@ (A) ∩B< (0,f

√
<
2 )

:
A $←Z=×<@ , x0∼�Z<@ , f√2

y←A·x0 (mod @)
rR,Aux←A_,A,y ( |x0〉〈x0 |⊗a_)

]
≥ poly(Y, 1/@).

Assuming the LWE<=,@,U@ assumption, we can invoke theGaussian-collapsing property in Corollary 3
once again which implies that the quantum extractor E satisfies

Pr

[
E(A,y,rAux)=x∧

x ∈ Λy
@ (A) ∩B< (0,f

√
<
2 )

:
A $←Z=×<@

( |ky〉,y)←GenGauss(A,f)
rR,Aux←A_,A,y ( |ky〉〈ky |⊗a_)

]
≥ poly(Y, 1/@).

This proves the claim.

Next, we give a strengthening of our result in Theorem 30 and state a simultaneous search-to-
decision reduction with quantum auxiliary input which holds even if additionally require that a
revocation procedure succeeds on a separate register.

To formalize the notion that revocation is applied on a separate register, we introduce the following
procedure called IneffRevoke which is defined below.

We use the following conjecture. We refer the reader to the introduction for an informal explanation
of the conjecture below.

Conjecture 1 (Simultaneous Dual-Regev Extraction (SDRE)). Let = ∈ N be the security parameter.
There exist parameters (each parameterized by _), where @ is a prime modulus with @ = 2>(=) ,
< ≥ 2= log @,

√
8< < f < @/

√
8<, U, V ∈ (0, 1) with V/U = 2>(=) , and 1/U = 2>(=) · f, such that

the following holds: LetA = {(A_,A,y, a_)}_∈N be any non-uniform quantum algorithm consisting
of a family of polynomial-sized quantum circuits{

A_,A,y : L(H<
@ ⊗ H�_) → L(H'_ ⊗ Haux_)

}
A∈Z=×<@ , y∈Z=@

and polynomial-sized advice states a_ ∈ D(H�_) which are independent of A. Then, the following
holds for every QPT distinguisher D. Suppose there exists a function Y(_) = 1/poly(_) such that

Pr
[
1← SimultSearchToDecisionExptA,D (1_, 0)

]
−

Pr
[
1← SimultSearchToDecisionExptA,D (1_, 1)

]
= Y(_).
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IneffRevoke(A, y, f, rR):

Input: A ∈ Z=×<@ , y ∈ Z=@ and r ∈ ! (HR).
Output: Accept (>) or reject (⊥).

Procedure:

1. Apply the (inefficient) projective measurement{
|ky〉〈ky | , � − |ky〉〈ky |

}
where |ky〉 is the Gaussian coset state

|ky〉 =
∑

x∈Z<@ :
Ax=y (mod @)

rf (x) |x〉 .

2. If the measurement succeeds, output >. Else, output ⊥.

Figure 5.6: The procedure IneffRevoke(A, y, f, rR).

SimultSearchToDecisionExptA,D
(
1_, 1

)
:

• If 1 = 0: output s8<D;C.lF4.D8BCA,D
(
1_

)
defined in Figure 5.8.

• If 1 = 1: output s8<D;C.u=8 5 .D8BCA,D
(
1_

)
defined in Figure 5.9.

Figure 5.7: The experiment SimultSearchToDecisionExptA,D
(
1_, 1

)
.

Then, there exists a quantum extractor E that takes as input A, y and system Aux of the state rR,Aux

and outputs a short vector in the coset Λy
@ (A) in time poly(_, <, f, @, 1/Y) such that

Pr

[
IneffRevoke(A,y,f,R)=>∧

E(A,y,Aux) ∈ Λy
@ (A) ∩B< (0,f

√
<
2 )

:
A $←Z=×<@

( |ky〉,y)←GenGauss(A,f)
rR,Aux←A_,A,y ( |ky〉〈ky |⊗a_)

]
≥ poly(Y, 1/@).

Towards a proof of the conjecture. We now give a proof of Simultaneous Dual-Regev Extraction
(Construction 1) in the special case when revocation succeeds with overwhelming probability.
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s8<D;C.lF4.D8BCA,D
(
1_

)
:

1. Sample A $← Z=×<@ .

2. Generate ( |ky〉 , y) ← GenGauss(A, f).

3. Generate r',Aux ← A_,A,y( |ky〉〈ky | ⊗ a_).

4. Sample s $← Z=@, e ∼ �Z<,U@ and 4′ ∼ �Z,V@.

5. Generate rR,Aux ← A_,A,y( |ky〉〈ky | ⊗ a_).

6. Run IneffRevoke(A, y, f, ·) on systemR. If it outputs>, continue. Otherwise,
output Invalid.

7. Run 1′← D(A, y, sᵀA + eᵀ, sᵀy + 4′, ·) on system Aux. Output 1′.

Figure 5.8: The distribution s8<D;C.lF4.D8BCA,D
(
1_

)
.

s8<D;C.u=8 5 .D8BCA,D
(
1_

)
:

1. Sample A $← Z=×<@ .

2. Generate ( |ky〉 , y) ← GenGauss(A, f).

3. Sample u $← Z<@ and A $← Z@.

4. Generate r',Aux ← A_,A,y( |ky〉〈ky | ⊗ a_).

5. Run IneffRevoke(A, y, f, ·) on systemR. If it outputs>, continue. Otherwise,
output Invalid.

6. Run 1′← D(A, y, u, A, ·) on system Aux. Output 1′.

Figure 5.9: The distribution s8<D;C.u=8 5 .D8BCA,D
(
1_

)
.

Theorem 31. Let = ∈ N. Let @ be a prime with @ = 2>(=) , < ≥ 2= log @,
√

8< < f < @/
√

8<,
and let U, V ∈ (0, 1) with V/U = 2>(=) with 1/U = 2>(=) · f. Let A = {(A_,A,y, a_)}_∈N be any
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non-uniform quantum algorithm consisting of a family of polynomial-sized quantum circuits{
A_,A,y : L(H<

@ ⊗ H�_) → L(H'_ ⊗ Haux_)
}

A∈Z=×<@ , y∈Z=@

and polynomial-sized advice states a_ ∈ D(H�_) which are independent of A such that

Pr

[
IneffRevoke(A, y, f, rR) = > :

A $←Z=×<@

( |ky〉,y)←GenGauss(A,f)
rR,Aux←A_,A,y ( |ky〉〈ky |⊗a_)

]
= 1 − a(_),

for some negligle function a(_). Then, assuming the quantum hardness of the LWE<=,@,U@ assumption,
the following holds for every QPT distinguisher D. Suppose that there exists a function Y(_) =
1/poly(_) such that

Pr
[
1← SimultSearchToDecisionExptA,D (1_, 0)

]
−

Pr
[
1← SimultSearchToDecisionExptA,D (1_, 1)

]
= Y(_).

Then, there exists a quantum extractor E that takes as input A, y and system Aux of the state rR,Aux

and outputs a short vector in the coset Λy
@ (A) in time poly(_, <, f, @, 1/Y) such that

Pr

[
IneffRevoke(A,y,f,R)=>∧

E(A,y,Aux) ∈ Λy
@ (A) ∩B< (0,f

√
<
2 )

:
A $←Z=×<@

( |ky〉,y)←GenGauss(A,f)
rR,Aux←A_,A,y ( |ky〉〈ky |⊗a_)

]
≥ poly(Y, 1/@).

Proof. By assumption, there exists an adversary (A,D) such that Adv(A,D) = Y(_), where

Adv(A,D) = Pr


IneffRevoke(A,y,f,R)=>∧
D(A,y,sᵀA+eᵀ ,sᵀy+4′,Aux)=1

:
A $←Z=×<@ , s $←Z=@

e∼�Z<, U@ , 4′∼�Z, V@
( |ky〉,y)←GenGauss(A,f)
rR,Aux←A_,A,y ( |ky〉〈ky |⊗a_)

 −
Pr


IneffRevoke(A,y,f,R)=>∧
D(A,y,u,A,Aux)=1

:
A $←Z=×<@

u $←Z<@ ,A
$←Z@

( |ky〉,y)←GenGauss(A,f)
rR,Aux←A_,A,y ( |ky〉〈ky |⊗a_)

 .
We can now invoke Lemma 28 to argue that there exists aQPT distinguisher D̃ (that internally runs
D) and succeeds on the reduced system Aux alone, i.e.

Pr
D̃(A, y, sᵀA + eᵀ, sᵀy + 4′, rAux) = 1 :

A $←Z=×<@ , s $←Z=@
e∼�Z<, U@ , 4′∼�Z, V@
( |ky〉,y)←GenGauss(A,f)
rR,Aux←A_,A,y ( |ky〉〈ky |⊗a_)

 −
Pr

D̃(A, y, u, A, rAux) = 1 :
A $←Z=×<@

u $←Z<@ ,A
$←Z@

( |ky〉,y)←GenGauss(A,f)
rR,Aux←A_,A,y ( |ky〉〈ky |⊗a_)

 = Ȳ(_),
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for some Ȳ = 1/poly(_). In other words, the QPT algorithm D̃ can successfully predict whether it
has received a Dual-Regev sample or a uniformly random sample. Therefore, we can now invoke
Theorem 30 to argue there exists an extractor E that takes as input A, y and system Aux of the state
rR,Aux and outputs a short vector in the coset Λy

@ (A) in time poly(_, <, f, @, 1/Ȳ) such that

Pr

[
E(A,y,rAux)=x∧

x ∈ Λy
@ (A) ∩B< (0,f

√
<
2 )

:
A $←Z=×<@

( |ky〉,y)←GenGauss(A,f)
rR,Aux←A_,A,y ( |ky〉〈ky |⊗a_)

]
≥ poly(Ȳ, 1/@).

Recall also that, by assumption, revocation succeeds with overwhelming probability, i.e.,

Pr

[
IneffRevoke(A, y, f, rR) = > :

A $←Z=×<@

( |ky〉,y)←GenGauss(A,f)
rR,Aux←A_,A,y ( |ky〉〈ky |⊗a_)

]
= 1 − negl(_).

Using Bonferroni’s inequality, we can argue that

Pr

[
IneffRevoke(A,y,f,R)=>∧

E(A,y,Aux) ∈ Λy
@ (A) ∩B< (0,f

√
<
2 )

:
A $←Z=×<@

( |ky〉,y)←GenGauss(A,f)
rR,Aux←A_,A,y ( |ky〉〈ky |⊗a_)

]
≥ Pr

[
IneffRevoke(A, y, f, rR) = > :

A $←Z=×<@

( |ky〉,y)←GenGauss(A,f)
rR,Aux←A_,A,y ( |ky〉〈ky |⊗a_)

]
+ Pr

[
E(A, y, rAux) ∈ Λ

y
@ (A) ∩ B< (0, f

√
</2) :

A $←Z=×<@

( |ky〉,y)←GenGauss(A,f)
rR,Aux←A_,A,y ( |ky〉〈ky |⊗a_)

]
− 1

≥ Pr

[
E(A, y, rAux) ∈ Λ

y
@ (A) ∩ B< (0, f

√
</2) :

A $←Z=×<@

( |ky〉,y)←GenGauss(A,f)
rR,Aux←A_,A,y ( |ky〉〈ky |⊗a_)

]
− negl(_)

≥ poly(Y, 1/@).

This proves the claim.

Distinct Pair Extraction
The following lemma allows us to analyze the probability of simultaneously extracting two distinct
preimages in terms of the success probability of revocation and the success probability of extracting
a preimage from the adversary’s state.

Lemma 29 (Distinct pair extraction). Let r ∈ D(H- ⊗ H. ) be an any density matrix, for some
Hilbert spaces H- and H. . Let |k〉 = ∑

G∈S UG |G〉 ∈ H- be any state supported on a subset
S ⊆ X, and let � = |k〉〈k | denote its associated projection. Let �S be the projector onto S with

�S =
∑
G∈S
|G〉〈G | .
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Let E : L(H. ) → L(H- ′) be any CPTP map of the form

E.→- ′ (f) = Tr�
[
+.→- ′� f+

†
.→- ′�

]
, ∀f ∈ D(H. ),

for some isometry +.→- ′� . Consider the measurement specified by

� =
∑

G,G ′∈S:G≠G ′
|G〉〈G |- ⊗ +†.→- ′� ( |G

′〉〈G′|- ′ ⊗ 1� )+.→- ′� .

Let r- = Tr. [r-. ] denote the reduced state. Then, it holds that

Tr[�r] ≥
(
1 −max

G∈S
|UG |2

)
· Tr[�r-] · Tr [�S E.→- ′ (f)] ,

where f = Tr[(� ⊗ 1)r]−1 · Tr- [(� ⊗ 1)r] is a reduced state in system . .

Proof. Because the order in which we apply � and (� ⊗ 1) does not matter, we have the inequality

Tr [�r] ≥ Tr [(� ⊗ 1) �r] = Tr [(� ⊗ 1) �r (� ⊗ 1)] = Tr [�(� ⊗ 1)r (� ⊗ 1)] . (5.1)

Notice also that (� ⊗ 1)r(� ⊗ 1) lies in the image of (� ⊗ 1) with � = |k〉〈k |, and thus

(� ⊗ 1)r(� ⊗ 1) = Tr[(� ⊗ 1)r] · ( |k〉〈k | ⊗ f), (5.2)

for some f ∈ D(H. ). Putting everything together, we get that

Tr [�r] ≥ Tr [�(� ⊗ 1)r (� ⊗ 1)] (using inequality (5.1))

= Tr[(� ⊗ 1)r] · Tr [� ( |k〉〈k | ⊗ f)] (using equation (5.2))

= Tr[�r-] · Tr

[ ∑
G,G′∈S:G≠G ′

|G〉〈G |- ⊗ +†.→- ′� ( |G
′〉〈G′|- ′ ⊗ 1� )+.→- ′� ( |k〉〈k | ⊗ f)

]
= Tr[�r-] ·

∑
G ′∈S

( ∑
G∈S:G≠G ′

|〈G |k〉|2
)

Tr
[
+
†
.→- ′� ( |G

′〉〈G′|- ′ ⊗ 1� )+.→- ′� f
]

= Tr[�r-] ·
∑
G ′∈S

(
1 − |UG ′ |2

)
Tr

[
( |G′〉〈G′|- ′ ⊗ 1� )+.→- ′� f+†.→- ′�

]
≥ Tr[�r-] ·

(
1 −max

G∈S
|UG |2

)
·
∑
G ′∈S

Tr
[
( |G′〉〈G′|- ′ ⊗ 1� )+.→- ′� f+†.→- ′�

]
= Tr[�r-] ·

(
1 −max

G∈S
|UG |2

)
·
∑
G ′∈S

Tr
[
|G′〉〈G′|- ′ Tr�

[
+.→- ′� f+

†
.→- ′�

] ]
= Tr[�r-] ·

(
1 −max

G∈S
|UG |2

)
· Tr [�S E.→- ′ (f)] .

This proves the claim.
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ExptA (1_, 1):

1. The challenger samples (A ∈ Z=×<@ , tdA) ← GenTrap(1=, 1<, @) and generates

|ky〉 =
∑

x∈Z<@
Ax=y (mod @)

rf (x) |x〉 ,

for some y ∈ Z=@, by running ( |ky〉 , y) ← GenGauss(A, f). The challenger
lets msk← tdA and pk← (A, y) and sends sk← |ky〉 to the adversary A.

2. A generates a (possibly entangled) bipartite state r',aux in systemsH'⊗HAux
withH' = H<

@ , returns system ' and holds onto the auxiliary system Aux.

3. The challenger runs Revoke(pk,msk, r'), where r' is the reduced state in
system '. If the outcome is >, the game continues. Otherwise, output Invalid.

4. A submits a plaintext bit ` ∈ {0, 1}.

5. The challenger does the following depending on 1 ∈ {0, 1}:

• if 1 = 0: the challenger samples a vector s $← Z=@ and errors e ∼ �Z<, U@
and 4′ ∼ �Z, V@, and sends a Dual-Regev encryption of ` ∈ {0, 1} toA:

CT =
(
sᵀA + eᵀ, sᵀy + 4′ + ` · b@

2
c
)
∈ Z<@ × Z@ .

• if 1 = 1: the challenger samples u $← Z<@ and A $← Z@ uniformly at
random and sends the following pair to A:

(u, A) ∈ Z<@ × Z@ .

6. A returns a bit 1′ ∈ {0, 1}.

Figure 5.10: The key-revocable security experiment according to Definition 40.

Proof of Theorem 24
Proof. Let A be a QPT adversary and suppose that��Pr

[
1← ExptA (1_, 0)

]
− Pr

[
1← ExptA (1_, 1)

] �� = Y(_),
for some Y(_) with respect to ExptA (1_, 1) in Figure 5.10. We show that Y(_) is negligible.

Suppose for the sake of contradiction that n (_) is non-negligible. Using the equivalence between



163

prediction advantage and distinguishing advantage, we can write

2 ·
����Pr

[
1 ← ExptA (1_, 1) : 1 $← {0, 1}

]
− 1

2

���� = Y(_).
We show that we can use A to break the SIS<

=,@,f
√

2<
problem. Without loss of generality, we

assume that A submits the plaintext G = 0. By the assumption that revocation succeeds with
overwhelming probability and since n (_) ≥ 1/poly(_), we can use Theorem 31 to argue that there
exists a quantum Goldreich-Levin extractor E that takes as input A, y and system Aux of the state
r',Aux and outputs a short vector in the coset Λy

@ (A) in time poly(_, <, f, @, 1/Y) such that

Pr

[
IneffRevoke(A,y,f,R)=>∧

E(A,y,Aux) ∈ Λy
@ (A) ∩B< (0,f

√
<
2 )

:
A $←Z=×<@

( |ky〉,y)←GenGauss(A,f)
r',Aux←A_,A,y ( |ky〉〈ky |)

]
≥ poly(Y, 1/@).

Here, we rely on the correctness of GenTrap in Theorem 2 and QSampGauss in Theorem 16.

Consider the following procedure in Algorithm 5.

Algorithm 5: SIS_Solver(A)

Input: Matrix A ∈ Z=×<@ .

Output: Vector x ∈ Z<.

1 Generate a Gaussian state ( |ky〉 , y) ← GenGauss(A, f) with

|ky〉 =
∑

x∈Z<@
Ax=y (mod @)

rf (x) |x〉

for some vector y ∈ Z=@.

2 Run A to generate a bipartite state r'Aux in systemsHR ⊗ Haux withHR = H<
@ .

3 Measure system R in the computational basis, and let x0 ∈ Z=@ denote the outcome.

4 Run the quantum Goldreich-Levin extractor E(A, y, raux) from Conjecture 1, where rAux is
the reduced state in systemHAux, and let x1 ∈ Z=@ denote the outcome.

5 Output the vector x = x1 − x0.

To conclude the proof, we show that SIS_Solver(A) in Algorithm 5 breaks the SIS<
=,@,f

√
2<

problem
whenever Y(_) = 1/poly(_). In order to guarantee that SIS_Solver(A) is successful, we use the
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distinct pair extraction result of Lemma 29. This allows us to analyze the probability of simultane-
ously extracting two distinct short pre-images x0 ≠ x1 such that Ax0 = y = Ax1 (mod @) – both in
terms of the success probability of revocation and the success probability of extracting a pre-image
from the adversary’s state rAux in systemHAux. Assuming that x0, x1 are distinct short pre-images
such that ‖x0‖ ≤ f

√
<
2 and ‖x1‖ ≤ f

√
<
2 , it then follows that the vector x = x1 − x0 output by

SIS_Solver(A) has norm at most f
√

2<, and thus yields a solution to SIS<
=,@,f

√
2<
.

We remark that the state |ky〉 prepared by Algorithm 5 is not normalized for ease of notation. Note
that the tail bound in Lemma 11 implies that (the normalized variant of) |ky〉 is within negligible
trace distance of the state with support {x ∈ Z<@ : ‖x‖ ≤ f

√
<
2 }. Therefore, for the sake of

Lemma 29, we can assume that |ky〉 is a normalized state of the form

|ky〉 =

©«
∑

z∈Z<@ ,‖z‖≤f
√
<
2

Az=y (mod @)

r f√
2
(z)

ª®®®®®¬

− 1
2 ∑

x∈Z<@ ,‖x‖≤f
√
<
2

Ax=y (mod @)

rf (x) |x〉 .

Before we analyze Algorithm 5, we first make two technical remarks. First, since f ≥ l(
√

log<),
it follows from Lemma 17 that, for any full-rank A ∈ Z=×<@ and for any y ∈ Z=@, we have

max
x∈Z<@ , ‖x‖≤f

√
<
2

Ax=y (mod @)


r f√

2
(x)∑

z∈Z<@ ,‖z‖≤f
√
<
2

Az=y (mod @)

r f√
2
(z)


≤ 2−Ω(<) .

Second, we can replace the procedure Revoke(A, tdA, y, r') by an (inefficient) projective mea-
surement {|ky〉〈ky | , � − |ky〉〈ky |}, since they produce statistically close outcomes. This follows
from the fact that Revoke(A, tdA, y, rR) applies the procedure QSampGauss in Algorithm 4 as a
subroutine, which is correct with overwhelming probability acccording to Theorem 16.
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Let us now analyze the success probability of Algorithm 5. Putting everything together, we get

Pr

[
x←SIS_Solver(A)∧

x≠0 s.t. ‖x‖≤f
√

2<
: A $← Z=×<@

]

≥

©«
1 − max

x∈Z<@ , ‖x‖≤f
√
<
2

Ax=y (mod @)


r f√

2
(x)∑

z∈Z<@ ,‖z‖≤f
√
<
2

Az=y (mod @)

r f√
2
(z)



ª®®®®®®®®¬
· Pr

[
IneffRevoke(A, y, r') = > :

A $←Z=×<@ s.t. A is full-rank
( |ky〉,y)←GenGauss(A,f)
rR,Aux←A_,A,y ( |ky〉〈ky |)

]
· Pr

E
(
A, y, rAux

)
∈ Λ

y
@ (A) ∩ B< (0, f

√
</2) :

A $←Z=×<@ s.t. A is full-rank
( |ky〉,y)←GenGauss(A,f)
rR,Aux←A_,A,y ( |ky〉〈ky |)
>←IneffRevoke(A,y,rR)


≥

(
1 − 2−Ω(<)

)
· Pr

[
IneffRevoke(A,y,f,R)=>∧

E(A,y,Aux) ∈ Λy
@ (A) ∩B< (0,f

√
<
2 )

:
A $←Z=×<@ s.t. A is full-rank
( |ky〉,y)←GenGauss(A,f)
rR,Aux←A_,A,y ( |ky〉〈ky |)

]
≥

(
1 − 2−Ω(<)

)
·
(
poly(Y, 1/@) − @−=

)
≥ poly(Y, 1/@).

In the last line, we applied the simultaneous search-to-decision reduction from Theorem 31
and Lemma 8. Therefore, SIS_Solver(A) in Algorithm 5 runs in time poly(@, 1/Y) and solves
SIS<

=,@,f
√

2<
whenever Y = 1/poly(_). Therefore, we conclude that Y(_) must be negligible.

Proof of Theorem 25

Proof. The proof is the same as in Theorem 24, except that we invoke Conjecture 1 instead of
Theorem 31 to argue that simultaneous extraction succeeds with sufficiently high probability.

5.6 Key-Revocable Fully Homomorphic Encryption
In this section, we describe our key-revocable (leveled) fully homomorphic encryption scheme
from LWE which is based on the so-called DualGSW scheme used by Mahadev [99] which itself is
a variant of the homomorphic encryption scheme by Gentry, Sahai, and Waters [69].

Let _ ∈ N be the security parameter. Suppose we would like to evaluate !-depth circuits consisting
of NAND gates. We choose =(_, !) � ! and a prime @ = 2>(=) . Then, for integer parameters
< ≥ 2= log @ and # = (< + 1) · dlog @e, we let 1 be the (< + 1) × (< + 1) identity matrix and
let G = [1 ‖ 21 ‖ . . . ‖ 2dlog @e−11] ∈ Z(<+1)×#@ denote the so-called gadget matrix which converts
a binary representation of a vector back to its original vector representation over the field Z@.
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Note that the associated (non-linear) inverse operation G−1 converts vectors in Z<+1@ to their binary
representation in {0, 1}# . In other words, we have that G ◦G−1 acts as the identity operator.

Construction
Let us now describe our key-revocable fully homomorphic encryption scheme.

ExptA (1_, 1):

1. The challenger samples (A ∈ Z=×<@ , tdA) ← GenTrap(1=, 1<, @) and generates

|ky〉 =
∑

x∈Z<@
Ax=y (mod @)

rf (x) |x〉 ,

for some y ∈ Z=@, by running ( |ky〉 , y) ← GenGauss(A, f). The challenger
lets msk← tdA and pk← (A, y) and sends |sk〉 ← |ky〉 to the adversary A.

2. A generates a (possibly entangled) bipartite state r',aux in systemsH'⊗HAux
withH' = H<

@ , returns system ' and holds onto the auxiliary system Aux.

3. The challenger runs Revoke(msk, pk, r'), where r' is the reduced state in
system '. If the outcome is >, the game continues. Otherwise, output Invalid.

4. A submits a plaintext bit ` ∈ {0, 1}.

5. The challenger does the following depending on 1 ∈ {0, 1}:

• if 1 = 0: The challenger samples a random matrix S $← Z=×#@ and errors
E ∼ �Z<×# , U@ and row vector e ∼ �Z# , V@, and outputs the ciphertext

CT =
[AᵀS+E

yᵀS+e

]
+ ` ·G ∈ Z(<+1)×#@ .

• if 1 = 1: the challenger samples a matrix U $← Z<×#@ and row vector

A
$← Z#@ uniformly at random, and sends the following to A:[

U
r

]
∈ Z(<+1)×#@ .

6. A returns a bit 1′ ∈ {0, 1}.

Figure 5.11: The key-revocable security experiment according to Definition 40.
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Construction 9 (Key-Revocable DualGSW encryption). Let _ ∈ N be a parameter. The scheme
RevDualGSW = (KeyGen,Enc,Dec,Eval,Revoke) consists of the following QPT algorithms:

KeyGen(1_, 1!) → (pk, sk) : sample a pair (A ∈ Z=×<@ , tdA) ← GenTrap(1=, 1<, @) and generate
a Gaussian superposition ( |ky〉 , y) ← GenGauss(A, f) with

|ky〉 =
∑

x∈Z<@
Ax=y

rf (x) |x〉 ,

for some y ∈ Z=@. Output pk = (A, y), |sk〉 = |ky〉 and msk = tdA.

Enc(pk, `) : to encrypt ` ∈ {0, 1}, parse (A, y) ← pk, sample a random matrix S $← Z=×#@ and
E ∼ �Z<×# , U@ and row vector e ∼ �Z# , V@, and output the ciphertext

CT =
[AᵀS+E

yᵀS+e

]
+ ` ·G (mod @) ∈ Z(<+1)×#@ .

Eval(CT0,CT1) : to apply a NAND gate on a ciphertext pair CT0 and CT1, output the matrix

G − CT0 ·G−1(CT1) (mod @) ∈ Z(<+1)×#@ .

Dec( |sk〉 ,CT) → {0, 1} : to decrypt CT, apply the unitary * : |x〉 |0〉 → |x〉 |(−x, 1) · CT#〉 on
input |ky〉 ← sk, where CT# ∈ Z<+1@ is the #-th column of CT, and measure the second
register in the computational basis. Output 0, if the measurement outcome is closer to 0 than
to b @2 c, and output 1, otherwise.

Revoke(msk, pk, r) → {>,⊥}: on input tdA ← msk and (A, y) ← pk, apply the projective
measurement {

��ky
〉〈
ky

�� ,1 − ��ky
〉〈
ky

��} onto r using SampGauss(A, tdA, y, f) in Algorithm
4. Output > if the measurement is successful, and output ⊥ otherwise.

Proof of security
Our first result on the security of Construction 9 concerns (negl(_), negl(_))-security, i.e., we
assume that revocation succeeds with overwhelming probability.

Theorem 32. Let ! be an upper bound on the NAND-depth of the circuit which is to be evaluated.
Let = ∈ N and @ be a prime modulus with = = =(_, !) � !, @ = 2>(=) and < ≥ 2= log @, each
parameterized by the security parameter _ ∈ N. Let # = (< + 1) · dlog @e be an integer. Let
@/
√

8< > f >
√

8< and let U, V ∈ (0, 1) be parameters such that V/U = 2>(=) and 1/U = 2>(=) ·f.
Then, assuming the subexponential hardness of the LWE<=,@,U@ andSIS<=,@,f√2<

problems, the scheme
RevDualGSW = (KeyGen,Enc,Dec,Eval,Revoke) inConstruction 9 is a (negl(_), negl(_))-secure
key-revocable (leveled) fully homomorphic encryption scheme according to Definition 40.
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ExptA (1_, 1):

1. The challenger samples (A ∈ Z=×<@ , tdA) ← GenTrap(1=, 1<, @) and generates

|ky〉 =
∑

x∈Z<@
Ax=y (mod @)

rf (x) |x〉 ,

for some y ∈ Z=@, by running ( |ky〉 , y) ← GenGauss(A, f). The challenger
lets msk← tdA and pk← (A, y) and sends sk← |ky〉 to the adversary A.

2. A generates a (possibly entangled) bipartite state r',aux in systemsH'⊗HAux
withH' = H<

@ , returns system ' and holds onto the auxiliary system Aux.

3. The challenger runs Revoke(msk, pk, r'), where r' is the reduced state in
system '. If the outcome is >, the game continues. Otherwise, output Invalid.

4. A submits a plaintext bit ` ∈ {0, 1}.

5. The challenger does the following depending on 1 ∈ {0, 1}:

• if 1 = 0: The challenger samples a random matrix S $← Z=×#@ and errors
E ∼ �Z<×# , U@ and row vector e ∼ �Z# , V@, and outputs the ciphertext

CT =
[AᵀS+E

yᵀS+e

]
+ ` ·G ∈ Z(<+1)×#@ .

• if 1 = 1: the challenger samples a matrix U $← Z<×#@ and row vector

A
$← Z#@ uniformly at random, and sends the following to A:[

U
r

]
∈ Z(<+1)×#@ .

6. A returns a bit 1′ ∈ {0, 1}.

Figure 5.12: The key-revocable security experiment according to Definition 40.

Proof. Let A be a QPT adversary and suppose that

Pr
[
1← ExptA (1_, 0)

]
− Pr

[
1← ExptA (1_, 1)

]
= n (_),

for some Y(_) with respect to ExptA (1_, 1) in Figure 5.12. Note that the RevDualGSW ciphertext
can (up to an additive shift) be thought of as a column-wise concatenation of #-many independent
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ciphertexts of our key-revocable Dual-Regev scheme in Construction 8. Therefore, we can invoke
Theorem 24 in order to argue that Y(_) is at most negligible.

Our second result concerns (negl(_), 1−1/poly(_))-security, i.e., we do not make any requirements
on the success probability of revocation. Here, we need to invoke Conjecture 1.

Theorem 33. Let ! be an upper bound on the NAND-depth of the circuit which is to be evaluated.
Let = ∈ N and @ be a prime modulus with = = =(_, !) � !, @ = 2>(=) and < ≥ 2= log @, each
parameterized by the security parameter_ ∈ N. Let# = (<+1)·dlog @e be an integer. Let @/

√
8< >

f >
√

8< and let U, V ∈ (0, 1) be parameters such that V/U = 2>(=) and 1/U = 2>(=) · f. Then,
assuming assuming Conjecture 1, the scheme RevDualGSW = (KeyGen,Enc,Dec,Eval,Revoke)
in Construction 9 is a (negl(_), 1 − 1/poly(_))-secure key-revocable (leveled) fully homomorphic
encryption scheme according to Definition 40.

Proof. The proof is the same as in the theorem before, except that we invoke Theorem 25 instead
of Theorem 24 in order to argue security.

5.7 Revocable Pseudorandom Functions
In this section, we introduce the notion of key-revocable pseudorandom functions (or simply, called
revocable) and present the first construction from (quantum hardness of) learning with errors.

Definition
Let us first recall the traditional notion of PRF security [73], defined as follows.

Definition 42 (Pseudorandom Function). Let _ ∈ N and ^(_), ℓ(_) and ℓ′(_) be polynomials. A
(post-quantum) pseudorandom function (pqPRF) is a pair (Gen,PRF) of PPT algorithms given by

• Gen(1_) : On input 1_, it outputs a key : ∈ {0, 1}^.

• PRF(:, G) : On input : ∈ {0, 1}^ and G ∈ {0, 1}ℓ, it outputs a value H ∈ {0, 1}ℓ′.

with the property that, for any QPT distinguisher D, we have

Pr
[
DPRF(:,·) (1_) = 1] : : ← Gen(1_)

]
− Pr

[
D� (·) (1_) = 1] : � $← F ℓ,ℓ′

]
≤ negl(_),

where F ℓ,ℓ′ is the set of all functions with domain {0, 1}ℓ and range {0, 1}ℓ′.

We now present a formal definition of revocable pseudorandom functions below.
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Definition 43 (Revocable Pseudorandom Function). Let _ ∈ N be the security parameter and let
^(_), ℓ(_) and ℓ′(_) be polynomials. A revocable pseudorandom function (rPRF) is a scheme
(Gen,PRF,Eval,Revoke) consisting of the following efficient algorithms:

• Gen(1_): on input the security parameter _ ∈ N, it outputs a PRF key : ∈ {0, 1}^, a quantum
state r: and a master secret key msk.

• PRF(:, G): on input a key : ∈ {0, 1}^ and an input string G ∈ {0, 1}ℓ, it outputs a value
H ∈ {0, 1}ℓ′. This is a deterministic algorithm.

• Eval(r: , G): on input a state r: and an input G ∈ {0, 1}ℓ, it outputs a value H ∈ {0, 1}ℓ
′.

• Revoke(msk, f): on input key msk and a state f, it outputs Valid or Invalid.

We additionally require that the following holds:

Correctness. For each (:, r: ,msk) in the support of Gen(1_) and for every G ∈ {0, 1}ℓ:

• (Correctness of evaluation:)

Pr [PRF(:, G) = Eval(r: , G)] ≥ 1 − negl(_).

• (Correctness of revocation:)

Pr [Valid← Revoke(msk, r: )] ≥ 1 − negl(_).

Security
We define revocable PRF security below.

Definition 44 (Revocable PRF Security). A revocable pseudorandom function (rPRF) consisting
of a tuple of QPT algorithms (Gen,PRF,Eval,Revoke) has (Y, X, `) revocable PRF security if, for
every QPT adversary A with

Pr[Invalid← ExptA,` (1_, 1)] ≤ X(_)

for 1 ∈ {0, 1}, it holds that��Pr
[
1← ExptA,` (1_, 0)

]
− Pr

[
1← ExptA,` (1_, 1)

] �� ≤ Y(_),
where ExptA,` is as defined in Figure 5.13. If X(_) = 1 − 1/poly(_), Y(_) = negl(_) we oftentimes
drop (X, Y) and simply refer to it as rPRF satisfies `-revocable PRF security.
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ExptA,` (1_, 1):

Initialization Phase:

• The challenger computes (:, r: ,msk) ← Gen(1_) and sends r: to A.

Revocation Phase:

• The challenger sends the message REVOKE to A.

• The adversary A sends a state f to the challenger.

• The challenger aborts if Revoke (msk, f) outputs Invalid.

Guessing Phase:

• The challenger samples bit 1 ← {0, 1}.

• The challenger samples random inputs G1, . . . , G`
$← {0, 1}ℓ and then sends

the values (G1, . . . , G`) and (H1, . . . , H`) to A, where:

– If 1 = 0, set H1 = PRF(:, G1), . . . , H` = PRF(:, G`) and,

– If 1 = 1, set H1, . . . , H`
$← {0, 1}ℓ′.

• A outputs a bit 1′ and wins if 1′ = 1.

Figure 5.13: Revocable PRF security

From one-query to multi-query security. We show that proving security with respect to ` = 1
is sufficient. That is, we show the following.

Claim 14. Supoose an rPRF scheme (Gen,PRF,Eval,Revoke) satisfies 1-revocable PRF security.
Then, rPRF also satisfies the stronger notion of (multi-query) revocable PRF security.

Proof. Let A be a QPT adversary that participating in the revocable PRF security experiment
defined in Figure 5.13 and let (G1, H1), . . . , (G`, H`) denote the challenge input-output pairs, for
some polynomial ` = `(_). In the following, we denote by : the PRF key sampled using Gen by
the challenger in Figure 5.13. We consider a sequence of hybrids defined as follows.

H8, for 8 ∈ [` + 1]: In this hybrid, H1, . . . , H8−1 are sampled uniformly at random from {0, 1}ℓ′ and
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H8, . . . , H` are generated as follows: H 9 = PRF(:, G 9 ) for 9 ≥ 8.

We claim that A cannot distinguish between hybrids H8 and H8+1, for all 8 ∈ [`], with more than
negligible advantage. Suppose for the sake of contradiction that the claim is not true, and that A
can distinguish H8 and H8+1, for some index 8 ∈ [`], with advantage at least Y(_) = 1/poly(_). We
will now show that we can use the adversary A to break the 1-revocation security of rPRF.

Consider a reduction B that does the following:

1. Receive the state r: from the challenger.

2. Sample G8+1, . . . , G` uniformly at random from {0, 1}ℓ. Denote r(8+1)
:

= r: . Do the following
for 9 = 8 + 1, . . . , `: Eval(r( 9)

:
, G 9 ) to obtain H 9 . Using the “Almost As Good As New” [3],

recover r( 9+1)
:

, where r( 9+1)
:

is negligibly10 close to r: in trace distance.

3. Forward the state r(`+1)
:

to A.

4. When the challenger submits the message REVOKE, forward the same message to A.

5. If A sends f, then forward the same state f to the challenger.

6. If the revocation did not fail, the guessing phase begins. The challenger sends (G∗, H∗). Then,
sample G1, . . . , G8−1 uniformly at random from {0, 1}ℓ and H1, . . . , H8−1 uniformly at random
from {0, 1}ℓ′. Set G8 = G∗ and H8 = H∗. Send (G1, H1), . . . , (G`, H`) to A.

7. Output 1, where 1 is the output of A.

From the quantum union bound (Lemma 2), the “Almost As Good As New” lemma (Lemma 1)
and the correctness of rPRF, it follows that TD(r: , r(`+1):

) ≤ negl(_) and thus, the advantage of
A when given r(`+1)

:
instead of r: is now at least Y − negl(_). Moreover, by the design of B, it

follows that the success probability of B in breaking 1-revocation security of rPRF is exactly the
same as the success probability ofA in breaking revocation security of rPRF. This contradicts the
fact that rPRF satisfies 1-revocation security.

Remark 34. Our notion of revocable PRF security from Definition 44 does not directly imply
traditional notion of pqPRF security11 from Definition 42. The reason is that the definition does not

10Technically, this depends on the correctness error and we start with a rPRF that is correct with probability
negligibly close to 1.

11Although any revocable PRF is a weak PRF. Recall that a weak PRF is one where the adversary receives as input
(G1, H1), . . . , (G`, H`), where G8s are picked uniformly at random. The goal of the adversary is to distinguish the two
cases: all H8s are pseudorandom or all H8s are picked uniformly at random.
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preclude the possibility of there being an input G (say an all zeroes string) on which, PRF outputs
G itself (or the first bit of G if the output of PRF is a single bit).

Motivated by Theorem 34, we now introduce the following notion of a strong rPRF.

Definition 45 (Strong rPRF). We say that a scheme (Gen,PRF,Eval,Revoke) is a strong revocable
pseudorandom function (or, strong rPRF) if the following two properties hold:

1. (Gen,PRF,Eval,Revoke) satisfy revocable PRF security according to Definition 44, and

2. (Gen,PRF) satisfy pqPRF security according to Definition 42.

Remark 35. When instantiating pseudorandom functions in the textbook construction of private-
key encryption [72] from revocable pseudorandom functions, we immediately obtain a revocable
private-key encryption scheme.

We show that the issue raised in Theorem 34 is not inherent. In fact, we give a simple generic
transformation that allows us to obtain strong rPRFs by making use of traditional pqPRFs.

Claim 15 (Generic Transformation for Strong rPRFs). Let (Gen,PRF,Eval,Revoke) be an rPRF
scheme which satisfies revocable PRF security, and let (Gen,PRF) be a pqPRF. Then, the scheme
(G̃en, P̃RF, Ẽval,�Revoke) is a strong rPRF which consists of the following algorithms:

• G̃en(1_): on input the security parameter 1_, first run (:, r: ,msk) ← Gen(1_) and then
output (( , :), ( , r: ),msk), where  ← Gen(1_) is a pqPRF key.

• P̃RF(( , :), G): on input a key ( , :) and string G ∈ {0, 1}ℓ, output PRF( , G) ⊕PRF(:, G).

• Ẽval(( , r: ), G): on input ( , r: ) and G ∈ {0, 1}ℓ, output PRF( , G) ⊕ Eval(r: , G).

• �Revoke(msk, ( , f)): on input a master secret key msk and a pair ( , r: ), first discard the
key  and then run Revoke(msk, f).

Proof. Let us first show that the scheme (G̃en, P̃RF, Ẽval,�Revoke) maintains revocable PRF secu-
rity. Suppose there exists a QPT adversary A and a polynomial ` = `(_) ∈ N such that��Pr

[
1← ExptA,` (1_, 0)

]
− Pr

[
1← ExptA,` (1_, 1)

] �� = n (_),
for some function n (_) = 1/poly(_), and where ExptA,` is the experiment from Figure 5.13 with
respect to the scheme (G̃en, P̃RF, Ẽval,�Revoke). We show that this implies the existence of a QPT
distinguisher D that breaks the revocable PRF security of the scheme (Gen,PRF,Eval,Revoke).

The distinguisher D proceeds as follows:
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1. D receives as input a quantum state r: , where (:, r: ,msk) ← Gen(1_) is generated by the
challenger. Then, D generates a pqPRF key  ← Gen(1_) and sends ( , r: ) to A.

2. When A returns a state r, D forwards it to the challenger as part of the revocation phase.

3. When D receives the challenge input (G1, . . . , G`) and (H1, . . . , H`) from the challenger, D
sends (G1, . . . , G`) and (PRF( , G1) ⊕ H1, . . . ,PRF( , G`) ⊕ H`) to A.

4. When A outputs 1′, so does the distinguisher D.

Note that the simulated challenge distribution above precisely matches the challenge distribution
from the experiment ExptA,` from Figure 5.13. Therefore, ifA succeeds with inverse polynomial
advantage n (_) = 1/poly(_), so does D – thereby breaking the revocable PRF security of the
scheme (Gen,PRF,Eval,Revoke). Consequently, (G̃en, P̃RF, Ẽval,�Revoke) satisfies revocable
PRF security.

To see why (G̃en, P̃RF) satisfy pqPRF security according to Definition 42, we can follow a similar
argument as above to break the pqPRF security of (Gen,PRF). Here, we rely on the fact that the
keys (:, r: ,msk) ← Gen(1_) and  ← Gen(1_) are sampled independently from another.

Remark 36. Previous works [54, 90] do not explicitly require in their definitions that either
secure software leasing or copy-protection of pseudorandom functions must necessarily preserve
the pseudorandomness property (although their constructions could still satisfy such a traditional
pseudorandomness property).

Construction
We construct a PRF satisfying 1-revocation security (Definition 44).

Shift-Hiding Construction. We construct a shift-hiding function which is loosely inspired by
shift-hiding shiftable functions introduced by Peikert and Shiehian [107].

Let =, < ∈ N, @ ∈ N be a modulus and let ℓ = =<dlog @e. In the following, we consider
matrix-valued functions � : {0, 1}ℓ → Z=×<@ , where � is one of the following functions:

• Z : {0, 1}ℓ → Z=×<@ which, on input G ∈ {0, 1}ℓ, outputs an all zeroes matrix 0 ∈ Z=×<@ , or:

• �A : {0, 1}ℓ → Z=×<@ which, on input G ∈ {0, 1}ℓ, outputs M ∈ Z=×<@ , where A ∈ {0, 1}ℓ

and G = A ⊕ bindecomp(M), where M ∈ Z=×<@ and bindecomp(·) takes as input a matrix and
outputs a binary string that is obtained by concatenating the binary decompositions of all the
elements in the matrix (in some order).
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We show that there exist PPT algorithms (KG, E) (formally defined in Construction 10) with the
following properties:

• KG(1=, 1<, @,A, �): on input 1=, 1<, a modulus @ ∈ N, a matrix A ∈ Z=×<@ and a function
� ∈ {Z} ∪ {�A : A ∈ {0, 1}ℓ}, it outputs a pair of keys (?:� , B:�).

• E(?:� , G): on input ?:� , G ∈ {0, 1}ℓ, it outputs SGA + EG + � (G), where SG ∈ Z=×=@ and
EG ∈ Z=×<@ , where | |EG | | ≤ =<2fdlog(@)e. Moreover, there is an efficient algorithm that
recovers SG given B:� and G.

We show that (KG, E) satisfies a shift-hiding property; namely, for any A ∈ {0, 1}ℓ,

{?:Z} ≈2 {?:�A },

for any ?:� with (?:� , B:�) ← KG(1=, 1<, @,A, �), where A $←− Z=×<@ , and � ∈ {Z, �A}.

In the construction below, we consider a bĳective function q : [=] × [<] × [dlog(@)e] → [ℓ].

Construction 10. Consider the PPT algorithms (KG, E) defined as follows:

• KG(1=, 1<, @,A, �): on input 1=, 1<, a modulus @ ∈ N, a matrix A ∈ Z=×<@ and function
� ∈ {Z}∪{�A : A ∈ {0, 1}ℓ}, it outputs a pair of keys ^� = (?:� , B:�) generated as follows:

1. For every 8, 9 ∈ [=], g ∈ [dlog(@)e], define {M(8, 9 ,g)
1
} as follows:

– If � = Z, then for every 8 ∈ [=], 9 ∈ [<], g ∈ [dlog(@)e], let

M(8, 9 ,g)
1

= 0 ∈ Z=×=@ ,

– If � = �A , then for every 8 ∈ [=], 9 ∈ [<], g ∈ [dlog(@)e], let

M(8, 9 ,g)
1

= (1 ⊕ Aq(8, 9 ,g)) · I=×=.

2. For every 8 ∈ [=], 9 ∈ [<], g ∈ [dlog(@)e], 1 ∈ {0, 1}, compute:

?:
(8, 9 ,g)
1

= S(8, 9 ,g)
1

A + E(8, 9 ,g)
1

+M(8, 9 ,g)
1

,

B:
(8, 9 ,g)
1

=

({
S(8, 9 ,g)
1

,E(8, 9 ,g)
1

})
,

where for every 8 ∈ [=], 9 ∈ [<], g ∈ [dlog(@)e], 1 ∈ {0, 1}:

– S(8, 9 ,g)
1

← �=×=
Z@ ,f

,

– E(8, 9 ,g)
1

← �=×<
Z@ ,f

.
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3. Output ?:� =

(
A,

{
?:
(8, 9 ,g)
1

}
8∈[=], 9∈[<],

g∈[dlog(@)e],1∈{0,1}

)
and B:� =

{
B:
(8, 9 ,g)
1

}
8∈[=], 9∈[<],

g∈[dlog(@)e],1∈{0,1}
.

• E(?:� , G): on input ?:� and G ∈ {0, 1}ℓ, proceed as follows:

1. Parse ?:� =

(
A

{
?:
(8, 9 ,g)
1

}
8∈[=], 9∈[<],

g∈[dlog(@)e],1∈{0,1}

)
2. Output

∑
8∈[=], 9∈[<],
g∈[dlog(@)e]

?:
(8, 9 ,g)
Gq (8, 9 ,g) .

Claim 16 (Correctness). Let (KG, E) be the pair of PPT algorithms in Construction 10. Let
(?:� , B:�) ← KG(1=, 1<, @,A, �) with � ∈ {Z} ∪ {�A : A ∈ {0, 1}ℓ}. Then, the output of
E(?:� , G) is of the form:

E(?:� , G) = SGA + EG + � (G),

where SG ∈ Z=×=@ and EG ∈ Z=×<@ with | |EG | | ≤ =<2fdlog(@)e. Moreover, there is an efficient
algorithm that recovers SG given (?:� , B:�).

Proof. Let (?:� , B:�) ← KG(1=, 1<, @,A, �). Parse ?:� =
(
A,

{
?:
(8, 9 ,g)
1

}
8∈[=], 9∈[<],

g∈[dlog(@)e],1∈{0,1}

)
and

B:� =

{
B:
(8, 9 ,g)
1

}
8∈[=], 9∈[<],

g∈[dlog(@)e],1∈{0,1}
, where:

?:
(8, 9 ,g)
1

= S(8, 9 ,g)
1

A + E(8, 9 ,g)
1

+M(8, 9 ,g)
1

,

B:
(8, 9 ,g)
1

=

(
{S(8, 9 ,g)

1
,E(8, 9 ,g)

1
}
)
.

There are two cases to consider here:

Case 1. � = Z: in this case, M(8, 9 ,g)
1

= 0, for every 8 ∈ [=], 9 ∈ [<], g ∈ [dlog(@)e], 1 ∈ {0, 1}.
Thus, the following holds:

∑
8∈[=], 9∈[<],
g∈[dlog(@)e]

?:
(8, 9 ,g)
Gq (8, 9 ,g) =

©«
∑

8∈[=], 9∈[<],
g∈[dlog(@)e]

S(8, 9 ,g)Gq (8, 9 ,g)

ª®®®¬︸                    ︷︷                    ︸
SG

A +
©«

∑
8∈[=], 9∈[<],
g∈[dlog(@)e]

E(8, 9 ,g)Gq (8, 9 ,g)

ª®®®¬︸                    ︷︷                    ︸
EG

+
©«

∑
8∈[=], 9∈[<],
g∈[dlog(@)e]

M(8, 9 ,g)Gq (8, 9 ,g)

ª®®®¬
= SGA + EG + Z(G).

Moreover, we have that | |E(8, 9 ,g)
1
| | ≤ <f and thus, | |EG | | ≤ =<2fdlog(@)e.
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Case 2. � = �A :

∑
8∈[=], 9∈[<],
g∈[dlog(@)e]

?:
(8, 9 ,g)
Gq (8, 9 ,g) = SGA + EG +

©«
∑

8∈[=], 9∈[<],
g∈[dlog(@)e]

M(8, 9 ,g)Gq (8, 9 ,g)

ª®®®¬
= SGA + EG + �A (G),

where SG and EG are as defined above. The second equality holds because of the fact that M(8, 9 ,g)Gq (8, 9 ,g)

has the value (1 ⊕ Aq(8, 9 ,g)) · 2g in the (8, 9)Cℎ position and zero, everywhere else. Thus, summing
up all the M(8, 9 ,g)Gq (8, 9 ,g) matrices results in the matrix M, where G ⊕ A is the binary decomposition of M.

Finally, it is clear that SG can be efficiently recovered from B:� and G.

Claim 17 (Shift-hiding property). Assuming the quantum hardness of learning with errors, the
pair (KG, E) in Construction 10 has the property that

{?:Z} ≈2 {?:�A },

for any ?:� with (?:� , B:�) ← KG(1=, 1<, @,A, �), where A $←− Z=×<@ , A ∈ {0, 1}ℓ and for any
� ∈ {Z, �A}.

Proof. For every 8 ∈ [=], 9 ∈ [<], g ∈ [dlog(@)e], 1 ∈ {0, 1}, let M(8, 9 ,g)
1

= (1 ⊕ Aq(8, 9 ,g)) · I=×=.
Then from the quantum hardness of learning with errors, the following holds for every (8, 9 , g) and
1 ∈ {0, 1}:

{S(8, 9 ,g)
1

A + E(8, 9 ,g)
1
} ≈2 {S(8, 9 ,g)1

A + E(8, 9 ,g)
1

+M(8, 9 ,g)
1
}.

Since {S(8, 9 ,g)
1
} and {E(8, 9 ,g)

1
} are sampled independently for every (8, 9 , g) and 1 ∈ {0, 1}, the proof

of the claim follows.

Remark 37. When consider the all-zeroes function Z, we drop the notation from the parameters.
For instance, we denote ?:Z to be simply ?: .

Construction. We consider the following parameters which are relevant to our PRF construction.
Let =, < ∈ N and let @ ∈ N be a modulus with @ = 2>(=) , and let ℓ = =<dlog @e. Let f be a
parameter with

√
8< < f < @/

√
8< and let ? � @ be a sufficiently large rounding parameter with

= · <3f2dlog @e = (@/?) · 2−>(=) .

We describe our construction below.
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Construction 11 (Revocable PRF scheme). Let = ∈ N be the security parameter and < ∈ N. Let
@ ≥ 2 be a prime and let f > 0 be a parameter. Let (KG, E) be the procedure in Construction 10.
Our revocable PRF scheme is defined as follows:

• Gen(1_): This is the following key generation procedure:

1. Sample (A, tdA) ← GenTrap(1=, 1<, @).

2. Compute ^Z ← KG(1=, 1<, @,A,Z), whereZ : {0, 1}ℓ → Z=×<@ is the such thatZ(G)
outputs an all zero matrix for every G ∈ {0, 1}ℓ. Parse ^Z as (?:, B:).

3. Generate a Gaussian superposition ( |ky〉 , y ∈ Z=@) ← GenGauss(A, f) with

|ky〉 =
∑

x∈Z<@
Ax=y

rf (x) |x〉 .

Output : = (?:, B:, y), r: = (?:, |ky〉) and msk = tdA.

• PRF(:, G): this is the following procedure:

1. Parse the key : as a tuple (?:, B:), y).

2. Output bSGye ?. Here, SG ∈ Z=×=@ is a matrix that can be efficiently recovered from B:

as stated in Claim 16.

• Eval(r: , G): this is the following evaluation algorithm:

1. Parse r: as (?:, r).

2. Compute MG ← E(?:, G).

3. Measure the register Aux of the state* (r⊗ |0〉〈0|Aux)*†. Denote the resulting outcome
to be z, where* is defined as follows:

* |t〉 |0〉Aux → |t〉 | bMG · te ?〉Aux .

4. Output z.

• Revoke(msk, r): given as input the trapdoor tdA ← msk, apply the projective measurement
{
��ky

〉〈
ky

�� , � − ��ky
〉〈
ky

��} onto the state r using the procedure QSampGauss(A, tdA, y, f) in
Algorithm 4. Output Valid if the measurement is successful, and Invalid otherwise.

Lemma 30. The above scheme satisfies correctness for our choice of parameters.
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Proof. The correctness of revocation follows immediately from the correctness of QSampGauss
in Algorithm 4, which we showed in Theorem 16. Next, we show the correctness of evaluation.
Let ^Z ← KG(1=, 1<, @,A,Z) with ^Z = (pk,SK). From Claim 16, we have for any G ∈ {0, 1}ℓ:

E(pk, G) = SGA + EG (mod @),

where SG ∈ Z=×=@ and EG ∈ Z=×<@ with | |EG | | ≤ =<2fdlog(@)e. Recall that GenGauss(A, f)
outputs a state |ky〉 that is overwhelmingly supported on vectors t ∈ Z<@ such that ‖t‖ ≤ f

√
<
2 with

A · t = y (mod @). Therefore, we have for any input G ∈ {0, 1}ℓ:

bE(pk, G) · te ? = bSGA · t + EG · te ? = bSG · y + EG · te ? = bSG · ye ? ,

where the last equality follows from the fact that

‖EG · t‖2 ≤ ‖EG ‖2 · ‖t‖2 ≤
√
< · ‖EG ‖ · ‖t‖2 ≤ =

√
<<2fdlog(@)e · f

√
</2.

and = · <3f2dlog @e = (@/?) · 2−>(=) for our choice of parameters.

Proof of security. Ourfirst result on the security ofConstruction 11 concerns (negl(_), negl(_), 1)-
security, i.e., we assume that revocation succeeds with overwhelming probability.

Theorem 38. Let = ∈ N and @ be a prime modulus with @ = 2>(=) and < ≥ 2= log @, each
parameterized by _ ∈ N. Let ℓ = =<dlog @e. Let

√
8< < f < @/

√
8< and U ∈ (0, 1) be any noise

ratio with 1/U = f · 2>(=) , and let ? � @ be a sufficiently large rounding parameter with

= · <3f2dlog @e = (@/?) · 2−>(=) .

Then, assuming the quantum subexponential hardness of LWE<=,@,U@ and SIS<
=,@,f

√
2<
, our revocable

PRF scheme (Gen,PRF,Eval,Revoke) defined in Construction 11 satisfies (negl(_), negl(_), 1)-
revocation security according to Definition 44.

Proof. Let A be a QPT adversary and suppose that

Pr
[
1← ExptA (1_, 0)

]
− Pr

[
1← ExptA (1_, 1)

]
= n (_),

for some function Y(_) with respect to security experiment ExptA (1_, 1) from Figure 5.14. To
complete the proof, it suffices to show that Y(_) is negligible.

Suppose for the sake of contradition that n (_) = 1/poly(_). Let us now introduce a sequence of
hybrid experiments which will be relevant for the remainder of the proof.
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ExptA (1_, 1):

Initialization Phase:

• The challenger runs the procedure Gen(1_):

1. Sample (A, tdA) ← GenTrap(1=, 1<, @).

2. Generate A# ∈ Z(=+<)×<@ with A#

$←− Z<×<@ and A# = A.
3. Compute ^Z ← KG(1=, 1<, 1@,A# ,Z), where KG is as defined

in Construction 10 and Z : {0, 1}ℓ → Z=×<@ is such that Z(G)
outputs an all zero matrix for every G ∈ {0, 1}ℓ. Parse ^Z as
(?:, B:).

4. Generate ( |ky〉 , y ∈ Z=@) ← GenGauss(A, f) with

|ky〉 =
∑

x∈Z<@
Ax=y (mod @)

rf (x) |x〉 .

5. Let : = (?:, B:, y), r: = (?:, |ky〉) and msk = tdA.

• The challenger sends r: = (?:, |ky〉) to A.

Revocation Phase:

• The challenger sends the message REVOKE to A.

• A generates a (possibly entangled) bipartite quantum state r',aux in
systems H' ⊗ HAux with H' = H<

@ , returns system ' and holds onto
the auxiliary system Aux.

• The challenger runs Revoke(msk, r'), where r' is the reduced state in
system '. If the outcome is Invalid, the challenger aborts.

Guessing Phase:

• The challenger samples G ← {0, 1}ℓ and sends (G, H) to A, where

– If 1 = 0: compute SG from B: as in Claim 16. Set H = bSGye ?.
– If 1 = 1: sample H ← {0, 1}=.

• A outputs a string 1′ and wins if 1′ = 1.

Figure 5.14: The revocable PRF experiment ExptA (1_, 1) for Construction 11.
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Let RevDual = (KeyGen,Enc,Dec,Revoke) be the =-bit key-revocable Dual-Regev scheme from
Construction 8. Fix ` = 0=, where ` is the challengemessage in the dual-Regev encryption security.

H0: This is ExptA (1_, 0) in Figure 5.14.

H1: This is the same experiment as ExptA (1_, 0), except for the following changes:

• Sample a random string A ← {0, 1}ℓ.

• Run the procedureRevDual.KeyGen(1_) instead ofGenTrap(1=, 1<, @) andGenGauss(A, f)
to obtain (A ∈ Z=×<@ , y ∈ Z=@,msk, sk).

• Compute (CT1,CT2) ← RevDual.Enc(A, y, `), where CT1 ∈ Z=×<@ and CT2 ∈ Z=@.

• Set G = A ⊕ bindecomp(CT1).

The rest of the hybrid is the same as before.

Note that Hybrids H0 and H1 are identically distributed.

H2: This is the same experiment as before, except that the challenger now uses an alternative
key-generation algorithm:

• Asbefore, run the procedureRevDual.KeyGen(1_) instead ofGenTrap(1=, 1<, @) andGenGauss(A, f)
to obtain (A ∈ Z=×<@ , y ∈ Z=@,msk, sk). Sample A ← {0, 1}ℓ.

• Let �A : {0, 1}ℓ → Z=×<@ be as defined in the beginning of Section 5.7.

• Run the alternate algorithm ^� ← KG(1=, 1<, 1@,A, �A) instead of ^Z ← KG(1=, 1<, 1@,A,Z).

• Compute the ciphertext (CT∗1,CT
∗
2) ← RevDual.Enc(A, y, `), where CT∗1 ∈ Z=×<@ . Then, set

G∗ = A ⊕ bindecomp(CT∗1). Send G∗ to the adversary in the guessing phase.

H3: This is the same hybrid as before, except that we choose CT∗1
$← Z=×<@ and CT∗2

$← Z=@.

H4: This is the ExptA (1_, 1) in Figure 5.14.

Note that hybrids H3 and H4 are identically distributed.

We now show the following.
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Claim 18. By the shift-hiding property of (KG, E) in Claim 17, we have that the two hybrids H1

and H2 are computationally indistinguishable, i.e.,

H1 ≈2 H2.

Proof. Suppose for the sake of contradiction that there exists a non-negligble difference in the
advantage of the adversary A in the two hybrids H1 and H2.

We now design a reduction B that violates the shift-hiding property as follows.

1. Sample A $←− {0, 1}ℓ. Send (Z, �A) to the challenger.

2. The challenger responds with ?: =

(
A,

{
CT(8, 9 ,g)

1

}
8∈[=], 9∈[<]

g∈[dlog(@)e],1∈{0,1}

)
3. Compute ( |ky〉 , y ∈ Z=@) ← GenGauss(A, f) from the challenger.

4. Set r: = (?:, r).

5. Compute (CT1,CT2) ← RevDual.Enc(A, y, `), where CT1 ∈ Z=×<@ and CT2 ∈ Z=@. Then, set
G∗ = A ⊕ bindecomp(CT1).

6. Compute Eval(r: , G∗) to obtain H∗ while recovering r∗: (using the “Almost as Good As New”
Lemma, Lemma 1) such that T� (r∗

:
, r: ) ≤ negl(_).

7. Send r∗
:
to A.

8. A computes a state on two registers ' and aux. It returns the state on the register '.

9. A, on input the register aux and (G∗, H∗), outputs a bit 1′.

10. Output 1′.

If ?: is generated using KG(1=, 1<, @,A,Z) then we are precisely in H1 (except that Revoke is
not performed). Moreover, if ?: is generated usingKG(1=, 1<, @,A, �A), then we are in hybrid H2

(except thatRevoke is not performed). Therefore, the reductionB has a non-negligible advantage at
distinguishing H1 and H2 whenever Revoke outputs > on system R. By Lemma 28, this implies that
we can use B to break the shift-hiding property with non-negligible advantage – thereby yielding
a contradiction. This proves the claim.

Next, we invoke the security of the =-bit variant of our key-revocable Dual-Regev scheme (which
is implied by Theorem 24) to show the following.
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Claim 19. By the security of our =-bit key-revocable Dual-Regev encryption scheme, we have that
the two hybrids H2 and H3 are computationally indistinguishable, i.e.,

H2 ≈2 H3.

Proof. Suppose for the sake of contradiction that there exists a non-negligble difference in the
advantage of A in H2 and H3. Using A, we can now design a reduction B that violates the
revocation security of our =-bit revocable Dual-Regev scheme which is implicit in Theorem 25.

The reduction B proceeds as follows.

1. First, it receives as input A, y and a quantum state

|ky〉 =
∑

x∈Z<@
Ax=y

rf (x) |x〉 .

2. The reduction generates a quantum state r: as follows:

• Sample a random string A $← {0, 1}ℓ.

• Let �A : {0, 1}ℓ → Z=×<@ be as defined in the beginning of Section 5.7.

• Run the algorithm ^� ← KG(1=, 1<, 1@,A, �A) and parse ^� as (?:, B:).

• Set r: = (?:, |ky〉).

Send r: to A.

3. A outputs a state on two registers ' and aux. The register ' is returned. The reduction
forwards the register ' to the challenger.

4. The reduction then gets the challenge ciphertext CT = [CT1,CT2]ᵀ ∈ Z=×<@ × Z=@. The
reduction then sets

G∗ = A ⊕ bindecomp(CT1)

and sends G∗ toA in the guessing phase, together with H = bSG∗y+CT2e ? which is computed
using the secret key SK (c.f. Claim 16).

5. A outputs a bit 1′. B outputs 1′.

There are two cases to consider here. In the first case, we have CT = [CT1,CT2]ᵀ ∈ Z=×<@ × Z=@
is a Dual-Regev ciphertext. Here, H = bSG∗y + CT2e ? precisely corresponds to the output of the
pseudorandom function on r: and G. In the second case, we have CT = [CT1,CT2]ᵀ, where
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CT1
$←− Z=×<@ and CT2

$←− Z<@ . Therefore, the resulting string H = bSG∗y + CT2e ? is negligibly close
(in total variation distance) to a uniform distribution on Z<? .

Putting everything together, we find that the first case corresponds precisely to H2, whereas the
second case corresponds to H3. As a result, B violates the revocation security of our =-bit revocable
Dual-Regev scheme which is implicit in Theorem 24.This completes the proof.

Putting everything together, we have shown that

Pr
[
1← ExptA (1_, 0)

]
− Pr

[
1← ExptA (1_, 1)

]
≤ negl(_).

Finally, we prove that Construction 11 achieves the stronger notion of (negl(_), 1 − 1/poly(_), 1)-
security assuming Conjecture 1.

Theorem 39. Let = ∈ N and @ be a prime modulus with @ = 2>(=) and < ≥ 2= log @, each
parameterized by _ ∈ N. Let ℓ = =<dlog @e. Let

√
8< < f < @/

√
8< and U ∈ (0, 1) be any noise

ratio with 1/U = f · 2>(=) , and let ? � @ be a sufficiently large rounding parameter with

= · <3f2dlog @e = (@/?) · 2−>(=) .

Then, assuming Conjecture 1, our revocable PRF scheme (Gen,PRF,Eval,Revoke) defined in
Construction 11 has (negl(_), 1 − 1/poly(_), 1)-revocation security according to Definition 44.

Proof. The proof is the same as in Theorem 38, except that we invoke Theorem 25 instead of
Theorem 24 for Dual-Regev security.
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