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ABSTRACT

Single-cell RNA sequencing, which quantifies cell transcriptomes, has seen widespread
adoption, accompanied by proliferation of analysis methods. However, there has
been relatively little systematic investigation of its best practices and their underlying
assumptions, leading to challenges and discrepancies in interpretation. I present a
set of generic, principled strategies for modeling the biological and technical com-
ponents of sequencing experiments and use case studies to motivate their application
to sequencing data.
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to narrow down the range of consistent models. b. Overdispersed
regimes are not mutually identifiable given a single modality (like-
lihood computed using nascent RNA data for 200 simulated cells;
Γ-OU ground truth; red point: true parameter set in the mixture-
like regime; color: log-likelihood of data, yellow is higher, 90th
percentile marked with magenta hatching; blue: an illustrative pa-
rameter set in a burst-like parameter regime with a similar nascent
marginal but drastically different joint structure). c. The mixture-like
and burst-like regimes become mutually identifiable with multimodal
data (likelihood computed using bivariate RNA data for 200 simu-
lated cells; all other conventions as in b). d. Nascent marginal and
joint distributions at the points indicated in b and c. Nascent distri-
butions nearly overlap. e.-f. Given a location in parameter space,
models are easier to distinguish using multiple modalities. However,
the performance varies widely based on the location in parameter
space and the specific candidate models, and decreases with drop-out
(Γ-OU Akaike weights under Γ-OU ground truth, average of 𝑛 = 50
replicates using 200 simulated cells; color: Akaike weight of correct
model, yellow is higher, regions with weight < 0.5 marked with black
hatching; large circles: illustrative parameter sets; smaller circles:
distributions obtained by applying 𝑝 = 50%, 75%, and 85% dropout
to illustrative parameter sets while keeping the averages constant). g.
The telegraph model has a well-distinguishable bimodal limit when
the process autocorrelation is slower than RNA dynamics, which im-
proves its identifiability (lines: the three candidate models’ nascent
marginal distributions at the olive point in e and f). h. In the bursty
limit, the three models look qualitatively similar, limiting identifiabil-
ity (lines: the three candidate models’ nascent marginal distributions
at the pink point in e and f). . . . . . . . . . . . . . . . . . . . . . . 83
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7.2 Genes from comparable single-cell RNA sequencing datasets can be
consistently assigned to a particular biophysical model of transcrip-
tion. a. By fitting models in the limiting regimes and calculating
model Akaike weights, visualized on a ternary diagram, we can ob-
tain coarse gene model assignments (colors: regimes predicted by
the partial fit; red: Γ-OU-like genes; blue: CIR-like genes; violet:
mixture-like genes; gray: genes not consistently assigned to a limiting
regime). b. Likelihood ratios for selected genes are consistent across
biological replicates, and favor categories consistent with predictions
(colors: regimes predicted by the partial fit; points: likelihood ra-
tios; horizontal line markers: Bayes factors; vertical lines: Bayes
factor ranges; Bayes factor values beyond the plot bounds have been
omitted. 𝑛 = 4 biologically independent animals, with 5,343, 6,604,
5,892, and 4,497 cells per animal). c. The differences between
model best fits are reflected in raw count data (title colors: pre-
dicted regimes; lines: model fits at maximum likelihood parameter
estimates; line colors: models; histograms: count data). d. Non-
distinguishable genes tend to lie in the slow-reversion and high-gain
parameter regime; distinguishable genes vary more, but tend to have
relatively high gain (colors: predicted regimes, large dots: genes il-
lustrated in panel c. Genes with absolute log-likelihood ratios above
150 have been excluded). . . . . . . . . . . . . . . . . . . . . . . . 89
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7.3 The comparison of stochastic model predictions facilitates the iden-
tification of RNA processing mechanisms compatible with data. a.
An outline of the experimental differences between single-cell and
single-nucleus sequencing technologies. b. The reaction schema
of the considered models: DNA generates nascent RNA with tran-
scriptional burst frequency 𝑘 and burst size 𝑏, the nascent RNA are
converted to mature RNA; the mature RNA are removed from the
system, either by nuclear transport or by cytoplasmic degradation.
c. In whole-cell data, likelihood ratios do not systematically favor
either the Markovian or the deterministically delayed efflux model
(colors: cell types; red: Allen data; blue-green: Andrews data; lines:
kernel density estimates). d. In nuclear data, likelihood ratios do
not systematically favor either the Markovian or the deterministically
delayed efflux model (conventions as in c). e. In whole-cell data,
likelihood ratios typically favor the Markovian model over the de-
terministically delayed splicing model (conventions as in c). f. In
nuclear data, likelihood ratios typically favor the Markovian model
over the deterministically delayed splicing model (conventions as in
c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
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8.1 The pseudo-bulk model of background noise is quantitatively consis-
tent with counts from a human blood cell dataset. a. The simplest
explanatory model for background noise invokes the lysis of cells
(green), which creates a pool of RNA that reflects the overall tran-
scriptome composition but retains none of the cell-level information.
If the loose RNA molecules diffuse into droplets (blue) according to
a memoryless and independent arrival process, the resulting back-
ground distribution (purple: higher probability mass; white: lower
probability mass) observed in empty droplets should be a series of
mutually independent Poisson distributions, with the mean controlled
by the composition in non-empty droplets. b. The mature transcrip-
tome in empty droplets has a mean-variance relationship near iden-
tity (gray points, 𝑛 = 12, 298), consistent with Poisson statistics (blue
line); the non-empty droplets demonstrate considerable overdisper-
sion (red points, 𝑛 = 17, 393). c. The mature and nascent tran-
scripts in empty droplets have sample correlation coefficients 𝜌 near
zero, consistent with distributional independence (gray histogram,
𝑛 = 9, 362); the non-empty droplets demonstrate nontrivial statistical
relationships (red histogram, 𝑛 = 14, 365). d. The mature transcripts
of different genes in empty droplets have sample correlation coeffi-
cients 𝜌 near zero, consistent with distributional independence (gray
histogram, 𝑛 = 75, 614, 253); the non-empty droplets demonstrate
nontrivial statistical relationships (red histogram, 𝑛 = 151, 249, 528).
e. When both are nonzero, the mature count mean in empty droplets
is highly correlated with the mean in the non-empty droplets, consis-
tent with the pseudo-bulk interpretation (black points, 𝑛 = 12, 107;
dashed line: identity). . . . . . . . . . . . . . . . . . . . . . . . . . 96
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8.2 Trends in inferred transcriptional parameters allow us to distinguish
between models of technical noise, and explain a pervasive length
bias in molecule counts by length-dependent sequencing rates. a. A
variety of single-cell datasets produce consistent and counterintuitive
length-dependent trends in nascent RNA observations (lines: aver-
age per-species gene expression, binned by gene length; red: nascent
RNA observations; gray: mature RNA statistics; data for 2,500 genes
shown for each dataset). b. Two explanatory models for the trend
in a: the species-independent bias model for length dependence in
averages, which proposes nascent and mature RNA are sampled with
equal probabilities, and the species-dependent bias model, which
proposes nascent RNA sampling rate scales with length (top, gold:
kinetics of species-independent model; bottom, blue: kinetics of
species-dependent model; center, green: the source RNA molecules
used to template cDNA). c. Fits to the species-independent model
show a strong positive gene length dependence for inferred burst sizes,
whereas fits to the species-dependent model show a modest negative
gene length dependence, which is more coherent with orthogonal
data (lines: average per-gene burst size inferred by Monod, binned by
gene length; gold: results for species-independent model; blue: re-
sults for species-dependent model; only genes that passed goodness-
of-fit testing shown) d. The likelihood over sampling parameters can
be optimized to infer the parameters, which are consistent among
datasets (dark teal: lower, light teal: higher total Kullback-Leibler
divergence between fit and blood cell data; highlighted yellow region:
5% quantile region for the displayed landscape; orange cross: opti-
mal sampling parameter fit for the displayed landscape; orange points:
optimal sampling parameter fits for other analyzed v3 datasets). e.
Biological replicates show largely concordant inferred parameter val-
ues (orange dashed line: identity; gold: lower bounds on 99% confi-
dence intervals; gray: fits rejected by statistical testing; splicing and
degradation rates are reported in units of burst frequency). . . . . . . 99
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8.3 The technical noise model fits can be interpreted to analyze exper-
imental effects. a. 10x v2 and v3 scRNA-seq replicates generated
from a single sample demonstrate discordant RNA count distribu-
tions: the v2 datasets have lower mean values (orange dashed line:
identity; black: genes). b. The v2 datasets have higher CV2 val-
ues (conventions as in a). c. The v2 datasets’ distributional dif-
ferences can be tentatively explained by a combination of identical
biological parameters and lower technical noise parameters (𝐶𝑁 : co-
efficient for length-dependent unspliced capture rate; 𝜆𝑀 : spliced
capture rate; colors: dataset categories; intersections of grid lines in-
dicate the sampling parameter sets evaluated in the inference process).
d. Counterintuitively, representative paired mouse brain single-cell
and single-nucleus datasets exhibit similar mature RNA levels (gray
points: genes; dashed black line: line of identity; green line: the
approximate average offset observed for single-nucleus data). e. The
single-nucleus dataset consistently has considerably higher nascent
RNA counts, which suggests the presence of a technical effect be-
tween the two technologies (conventions as in d). f. The single-
nucleus dataset demonstrates slightly lower noise levels for mature
count data (gray points: genes; dashed black line: line of identity).
g. The single-nucleus dataset demonstrates considerably lower noise
levels for nascent count data (conventions as in f). h.-i. By fitting
mechanistic models to both datasets, we can identify technical noise
parameters that produce consistent burst and splicing parameters be-
tween the technologies (points: maximum likelihood estimates for
burst sizes and splicing rates; error bars: conditional 99% confidence
intervals for inferred parameters; dashed black line: line of iden-
tity). j. At the discovered technical noise parameters, the mature
RNA efflux or turnover is considerably higher for the single-nucleus
dataset, consistent with this parameter’s interpretation as the rapid
export from the nucleus (conventions as in h-i). . . . . . . . . . . . . 101
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8.4 Normalization and dimensionality reduction distort and underesti-
mate biological variation, especially in high-expression genes. a.
A proposed baseline for the analysis of residual variation after data
transformation: the fraction of biological variability can be bounded
by a theoretical baseline, which is computed from the variation in av-
erage subpopulation expression. If this baseline is violated, the data
transformation has discarded some biophysically meaningful varia-
tion. b. High-expression genes have high variance (gray points:
genes below the 95th percentile by mature RNA expression; red
points: genes above the 95th percentile by mean mature RNA ex-
pression, red line: percentile threshold). c. Proportional fitting size
normalization (PF), log-transformation (log), and principal compo-
nent analysis (PCA) globally deflate the squared coefficient of vari-
ation (CV2), whereas Uniform Manifold Approximation and Projec-
tion (UMAP) globally inflates it (gray and red points: as in b). d.-g.
All four of the steps substantially deflate high-expression genes’ CV2

relative to raw data, implicitly attributing their variability to nuisance
technical effects (gray and red points: as in b). h.-k. The deflation
of variability results in the violation of the theoretical lower bound
computed from cell subpopulation differences, particularly for high-
expression genes (gray and red points: as in b; curved teal line:
identity baseline, below which biological variability is removed; hor-
izontal teal line: threshold, above which variability is inflated relative
to raw data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.5 The Monod mechanistic analysis of biological and technical variabil-
ity produces coherent results. a. The baseline introduced in Figure
8.4a may be compared to point estimates of the biological variabil-
ity fractions, which follow immediately from a fit to a parametric
model of transcription and sequencing. b. The Monod fits explicitly
attribute the variability in high-expression genes to biological phe-
nomena (gray and red points: as in Figure 8.4b). c. The Monod
results lie entirely within the admissible region (gray and red points:
as in b; curved teal line: identity baseline, below which inferred
biological variability is lower than inter-cell population variability;
horizontal teal line: threshold, above which inferred biological vari-
ability exceeds that of raw data). . . . . . . . . . . . . . . . . . . . . 106
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9.1 The Monod mechanistic framework generalizes differential expres-
sion testing to the identification of genes with distributional differ-
ences, without requiring substantial changes in average expression.
a. Mouse neuron cell types show strong co-variation in normalized
splicing and degradation rate differences, suggesting potential burst
frequency modulation (orange dashed line: identity; black: genes
retained after statistical testing; red: known glutamatergic markers;
light teal: known GABAergic markers). b. Differential expres-
sion analysis identifies genes that exhibit consistent inter-cell type
parameter modulation in neuron populations (gray: parameters for
genes not identified as differentially expressed by the 𝑡-test and a
fold change (FC) criterion; light red: parameters identified as higher
in the glutamatergic cell type; light teal: parameters identified as
higher in the GABAergic cell type). c. The differences between
mouse glutamatergic and GABAergic cell types, computed from four
independent replicates, include genes with substantial noise enhance-
ment but little to no change in average expression, which may reflect
biophysically important compensation mechanisms (light red points:
genes with significantly higher noise in glutamatergic cells; light teal
points: genes with significantly higher noise in GABAergic cells; gray
points: all other genes; solid diagonal line: parameter combinations
where burst size and frequency differences compensate to maintain a
constant average expression; dashed diagonal lines: ±1 log2 expres-
sion fold change region about the constant-average expression line;
vertical and horizontal lines: parameter combinations where burst
size and frequency, respectively, do not change). d. Differences
in inferred noise behaviors reflect differences in distribution shapes
(light red: glutamatergic cell type; light teal: GABAergic cell type;
histograms: raw counts; lines: Monod fits; top row: mature RNA
marginal; bottom row: nascent RNA marginal). e. Perturbation
by IdU, which triggers DNA damage and repair, rarely changes ex-
pression levels, but induces genome-wide noise enhancement [40]
detectable by Monod (lines and gray points: as in c; red points
and labels: well-fit, moderate-expression genes identified as highly
noise-enhanced). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
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10.1 The synchronized-burst model can be leveraged to constrain transcript-
transcript correlations. a. By inspecting exon co-expression struc-
tures in long-read sequencing data, we can split genes into elementary
intervals. b. Although sequencing data are not sufficient to identify
the relationships between various transcripts, they can provide infor-
mation about “roots” of the splicing graph (highlighted in orange),
which must be produced from the parent transcript by mutually ex-
clusive pathways. c. The root transcript copy number distributions
are well-described by negative binomial laws (gray histograms: raw
marginal count data; red lines: fits). d. The co-bursting model is
not sufficient to accurately predict transcript-transcript correlations,
but does serve as a nontrivial upper bound: few sample correlations
exceed the model-based predictions obtained from Equation 10.8
(points: transcript-transcript correlation matrix entries for mutually
exclusive “root” transcripts of a single gene; error bars: bootstrap
95% confidence intervals; red line: theory/experiment identity line).
e. The highest-expressed transcripts across the top 500 genes show
distinctive, and generally positive, correlation patterns. f. We can
use an analogous model to predict and reconstruct the gene–gene
correlation matrix based solely on marginal data. g. As before, the
model is not sufficient to accurately predict gene–gene correlations,
but provides an effective and nontrivial upper bound (points: gene–
gene correlation matrix entries; error bars: bootstrap 95% confidence
intervals; red line: theory/experiment identity line). . . . . . . . . . . 123

10.2 biVI reinterprets and extends scVI to infer biophysical parameters.
a. scVI can take in concatenated nascent (𝑋𝑁 ) and mature (𝑋𝑀)
RNA count matrices, encode each cell to a low-dimensional space
z, and learn per-cell parameters 𝜇𝑁 and 𝜇𝑀 and per-gene parameters
𝜈𝑁 and 𝜈𝑀 for independent nascent and mature count distributions.
This approach is not motivated by any specific biophysical model. b.
Operating conditional on the bursty model of transcription, biVI can
take in nascent and mature count matrices, produce a low-dimensional
representation for each cell, and output per-cell parameters 𝑏 and
𝛾/𝑘 , as well as the per-gene parameters 𝛽/𝑘 , for a mechanistically
motivated joint distribution of nascent and mature counts. . . . . . . 126
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10.3 biVI successfully fits single-cell neuron data and suggests the bio-
physical basis for expression differences. a.-b. Observed, scVI, and
biVI reconstructed distributions of Foxp2, a marker gene for L6 CT
(layer 6 corticothalamic) cells, and Rorb, a marker gene for L5 IT
(layer 5 intratelencephalic) cells, restricted to respective cell type.
c.-d. Cell-specific parameters inferred for Foxp2 and Rorb demon-
strate identifiable differences in means and parameters in the marked
cell types. e. Cell subclasses show different modulation patterns,
with especially pronounced distinctions in non-neuronal cells (top:
fractions of genes exhibiting differences in each parameter; bottom:
number of cells in each subclass). f. biVI allows the identification
of cells which exhibit differences in burst size or relative degrada-
tion rate, without necessarily demonstrating differences in mature
mean expression. Hundreds of genes demonstrate this modulation
behavior, with variation across cell subclasses. g. Histograms of
biVI parameters and scVI mature means for two genes that exhibit
parameter modulation without identifiable mature mean modulation.
Trem2 (top) shows differences in the degradation rate in L5 IT cells,
whereas Ndnf (bottom) shows differences in burst size in L6 CT cells. 129

B.1 Potential sources of short-read sequencing ambiguity in a hypotheti-
cal one-intron, two-exon transcript. a. Possible splicing information
conveyed by reads in the hypothetical transcript (magenta: reads that
only contain exonic information; dark gray: reads that contain in-
tronic information; dark blue: reads that overlap a splice junction.
Blue block: exon; gray block: present intron; line: excised intron. 3′

end is toward the left). b. Categories of reads that can be obtained
by sequencing the transcript, assuming no endogenous poly(A) con-
tent (cyan block: technical reads and indices; dotted lines: residual
inserts not observed by sequencing; red block: poly(A) sequence). c.
Categories of reads that can be obtained by capturing a transcript at
an endogenous, intronic poly(A) sequence (conventions as in a and b). 216
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C h a p t e r 1

INTRODUCTION AND OUTLINE

Truth is in a well.

Democritus
via Diogenes Laërtius

via Robert Drew Hicks

The past decade has seen enormous investment in the development and application
of single-cell RNA sequencing, driven by inexpensive sequencing and advances
in microfluidics. This widespread adoption of the technology has been matched
by a profusion of analysis methods. Yet, in my view, the experimental advances
have far outstripped the theory and interpretation: typical analyses use data science
approaches, which are somewhat ad hoc and motivated by computational conve-
nience. Although this approach is not an impediment in principle, in practice it has
led to a crisis of best practices: different analyses produce different results, with
no straightforward way to decide on the “best” strategy. I argue that these tensions
stem from a reliance on data science at the expense of physical modeling. Whatever
the analyses do, they should be coherent with known biophysics; conversely, if they
violate physical constraints, they can catastrophically fail. Although this principle
of this strategy is deceptively simple, its adoption has been surprisingly limited,
in spite of the arsenal of plausible and tractable models previously developed for
fluorescence transcriptomics.

The thesis attempts to unify these fields, and develop sequencing analyses that encode
physical models. This project requires fairly extensive mathematical machinery, as
well as a sound intuition for the physics of gene expression and sequencing. In
Chapter 2, I motivate the need for mechanistic models and delineate their scope. In
Chapter 3, I introduce fundamental mathematical tools. In Chapter 4, I use these
tools to define a set of tractable models that combine biological and technical phe-
nomena. In Chapter 5, I discuss strategies and challenges surrounding the practical
implementation of these models. In Chapter 6, I review a common workflow, ana-
lyze its weaknesses, and use its pitfalls as a case study to motivate a more principled
alternative. In Chapters 7–9, I treat the questions of model identification, inference,
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and interpretation using a combination of real and simulated data. In Chapters 10
and 11, I consider the models’ compatibility with gene co-expression and further
experimental modalities. Finally, in Chapter 12, I summarize promising avenues for
further research. Throughout the thesis, I occasionally refer to Appendix A, which
contains certain useful derivations too tedious or detailed for the body of the text,
and Appendix B, which discusses some of the caveats of modeling sequencing data.
Very occasionally, I provide endnotes, which explicate certain qualitative insights
that are only obliquely or implicitly referenced in the underlying articles.

Although broad, this thesis is not meant to be exhaustive. It is not and cannot
be a review of single-cell RNA sequencing analysis methods. I have attempted
to dedicate sufficient space to certain key touchpoints, but the field changes by the
week, and a full survey cannot stay relevant. Worse: a review risks meeting methods
on their own terms, accepting their premises, and equivocating. I have found it more
fruitful to question narrow foundational assumptions; when these assumptions fail,
analyses that rely on them become suspect. The thesis does not and cannot review
the sprawling fields of biophysics or quantitative cell biology. It does not strive to
serve as a first-principles treatment of stochastic transcriptional biophysics; I treat
many deep results as a fait accompli, and elide the usual theoretical niceties, leaving
some pedagogical gaps.

It is not even a comprehensive account of my Ph.D. work. As I have generally
attempted to be thorough, and fully treat the minutiae of derivations for my own and
readers’ benefit, the body of the work summarized here covers, at last count, over six
hundred pages across a dozen reports. Although the theoretical investigations have
culminated in a common mathematical framework, which admits the individual
projects as special cases, the technical details of implementation cannot be so
summarized. Therefore, the thesis is not self-contained, except insofar as I unify
the idiosyncrasies of my evolving notation and outline the occasionally non-obvious
connections between the projects’ goals. These projects, in turn, represent only a
sampling of scientific questions; many others, as deserving, are omitted or given
merely passing mention. But the Ph.D. is finite, and I am satisfied that the questions
this thesis raises will eventually be considered and answered, either by my colleagues
or by other researchers at the emerging interface of physics and bioinformatics.
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C h a p t e r 2

TECHNOLOGIES, DESIDERATA, AND AXIOMS

And should I then presume?
And how should I begin?

The Love Song of J. Alfred Prufrock
T.S. Eliot

To begin, we need to understand what questions the current analyses attempt to treat,
and how they answer them using the data at hand. Given a methodology, we can
analyze or reverse-engineer its logic, “problematize” the assumptions by explicitly
acknowledging them [14, 163], then investigate whether we could improve, validate,
or falsify these assumptions to enhance the workflow.

2.1 The two perspectives on the negative binomial distribution
This section adapts portions of [115] by G.G., J.J.V., and L.P., [113] by G.G.∗, J.J.V.∗,
M.F., and L.P., and [112] by G.G., M.F., T.C., and L.P. This perspective on the
relationship between sequence census and mechanistic methods was conceptualized
by G.G., J.J.V., and L.P.

This high-level course of action is, of course, far too generic, and requires an il-
lustration. To that end, we introduce single-cell RNA sequencing (scRNA-seq) and
present a case study to motivate mechanistic modeling. This motivation is one of
many, but we find this one to be particularly compelling. Nevertheless, it does rely
on some background knowledge of statistics and single-cell RNA sequencing anal-
yses, and the reader from outside the field can skip to Section 2.2 for a qualitative
summary if the case study proves too technical.

2.1.1 The negative binomial distribution as an effective data summary
When we perform a single-cell sequencing experiment, we obtain a collection of
reads, which represent a selection of the RNA content in living cells [332]. These
reads are barcoded; by judiciously using the barcodes and the sequence information,
the reads can be converted to a collection of molecule counts, integer numbers 𝑥cg

for each cell c and gene g [196, 197]. To accomplish the goals of the downstream
analysis — the typical systems biology tasks of identifying of cell types, aggregating
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them into trajectories, discovering gene modules that consistently differ between cell
types or throughout a differentiation trajectory, and visualizing low-dimensional
summaries reflecting some component of the data structure — we manipulate the
data in a way that reveals the “signal,” while eliminating or controlling for the
“noise” of the sequencing procedure.

There is a dizzying variety of approaches to this problem. For example, we could
build a graph that encodes distances between the observed cell states xc, then
use community detection algorithms to find cliques that coarsely represent cell
types, shortest traversal paths that can correspond to trajectories, and neighborhood-
preserving embeddings that summarize the graph structure in a low-dimensional
visualization. Yet a naïve application of graph algorithms — essentially, a purely
non-parametric, “data scientific” approach that attempts to summarize the count
matrix — can be misled by the variability and noise in the data: a graph is a
discrete, deterministic structure and does not “know” which data points are reliable,
or how heterogeneity is to be treated. In addition, this approach restricts statistical
interpretability: we can certainly claim that two cliques correspond to distinct cell
types, but to justify this claim, we need to construct some measure of statistical
confidence. In its simplest Platonic form, this amounts to computing an effect size
(how distinct are these cell types?) and a 𝑝-value (would we plausibly see such a
difference even if the cells were from a single cell type?). We are forced, then, to
wrestle with uncomfortable questions like “what, precisely, do we mean by ‘cell
type?”’ and “what is the correct noise model for the 𝑝-value computation?”

These uncomfortable questions lead us to adopt the methods of statistics. For ex-
ample, we can axiomatize a cell type as an internally homogeneous population with
a particular average expression, then use the central limit theorem [154] to compare
the averages of discovered subpopulations and draw statistical conclusions [187].
This approach — which is ostensibly parametric, but does not make particularly
strong assumptions about the RNA count distribution — is sensible, but its appli-
cation may create further challenges. Single-cell RNA sequencing data are discrete
and sparse; even if the central limit theorem holds in the limit, it may perform very
poorly for realistic dataset sizes [206]. In addition, merely comparing averages
prevents the discovery of biologically interesting cases where the RNA distributions
change while keeping the mean constant [205]. Other strategies, such as “binariz-
ing” the data — considering only the presence or absence of molecules, rather than
the precise count value [36, 230] — are mathematically distinct, but conceptually
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similar, as they also discard the vast majority of the data, potentially sacrificing
some signal in the process.

If the central limit theorem and analogous approaches are insufficient, we can move
on to parametric statistics, and improve the statistical power at the expense of
possibly introducing model misspecification. Many options are available, but the
discrete, positive nature of count data are a particularly natural fit for distributions
on the natural numbers N0. For example, we attempt to represent an observation as
a draw from a Poisson distribution:

𝑃Poiss(𝑥cg; 𝜇cg) =
1
𝑥cg!

𝜇
𝑥cg
cg 𝑒
−𝜇cg . (2.1)

The Poisson distribution is straightforward to evaluate as long as we know 𝜇cg. Of
course, the problem of identifying this mean parameter is grossly underspecified: if
every cell c can have an different mean, and we place no restrictions on its variation,
we are unable to learn anything meaningful. We can constrain the problem further,
in the most extreme case by proposing that

𝜇cg = 𝜇g, (2.2)

which implies that all of the cells are independent and identically distributed draws
from a common distribution. This model is insufficient to summarize real datasets:
the Poisson distribution has a variance equal to the mean (𝜇 = 𝜎2), whereas gene
count data typically have a variance higher than the mean (𝜎2 > 𝜇). This “overdis-
persion” is ubiquitous and does not seem to be explainable by, e.g., the presence of
multiple cell subpopulations, because the subpopulations are, in turn, also overdis-
persed (as in Fig. 1a of [160]).

The next simplest model is the negative binomial:

𝑃NB(𝑥cg; 𝜈cg, 𝜇cg) =
Γ(𝜈cg + 𝑥cg)
𝑥cg!Γ(𝜈cg)

(
𝜈cg

𝜈cg + 𝜇cg

)𝜈cg (
𝜇cg

𝜈cg + 𝜇cg

)𝑥cg

. (2.3)

This distribution gives us the correct support and distribution shape: the variance is

𝜎2 = 𝜇 + 𝜇
2

𝜈
> 𝜇, (2.4)

which is strictly higher than the Poisson distribution with the same mean, and can,
in fact, be made arbitrarily high by tuning 𝜈.

Equation 2.3 is still overparametrized, and needs to be constrained to actually
summarize data. There does not seem to be an obvious way to do so from first
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principles, but analyses of pre-barcode sequencing technologies [9] have proposed
that the 𝜇 term of Equation 2.4, which coincides with the Poisson variance, should
be attributed to purely technical Poisson “shot noise,” whereas the residual overdis-
persion should be attributed to a combination of technical and biological effects,
which produce a gamma distribution of molecule concentrations. This approach
commonly parametrizes 𝜇 as the product of a large, sample-dependent, technical
“library size” parameter and a small, compositional, sample and g-dependent “frac-
tional abundance” parameter. The g-dependent “dispersion” parameter 𝜈 is typically
heavily constrained by 𝜇 or set to a constant [9, 238].

Throughout the adoption of single-cell and single-molecule barcoding technologies,
this approach has persisted with only minor modifications: there are compositional
abundance and “library size” parameters, now unique to a particular cell c rather than
the entire sample; there is a “dispersion” parameter, which varies less arbitrarily,
if at all; if we assume the compositional gene expression is Gamma-distributed,
we can summarize the dataset by using a Poisson model for the technical effects.
This set of assumptions produces a tractable negative binomial distribution for the
RNA copy number. The specifics of the procedure vary — for example, some
studies augment the basic framework with more or less complex noise terms and
linking functions, and this summary is nowhere near comprehensive — but despite
these numerous variations on the theme, the basic points show up time and again
[52, 116, 123, 186, 191, 247, 308].

It is useful to keep in mind that the parametric approach is only one of many. The
specter of the negative binomial distribution haunts the non-parametric methods
nevertheless. Very few analyses are run on raw data; typically, a workflow nor-
malizes the data with respect to the total per-cell molecule count to account for
“library size” variability; afterward, some flavor of log-transformation is applied
to abundance matrix to bring the gene expression values, which vary over many
orders of magnitude, to a common scale [134]. These transformations are optimal
for a stabilizing high-𝜇, uniform-𝜈 negative binomial distributions [4, 34] under the
assumptions outlined above, although they may fail elsewhere [32].

2.1.2 The negative binomial distribution as the consequence of a biophysical
model

Although the foregoing description is tremendously oversimplified, it is conceptually
in line with the picture presented in reviews [4, 134, 187]. Yet, by presenting it, we
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have engaged in some sleight of hand: what, precisely, does the negative binomial
model mean? What biophysical and chemical phenomena do its gamma and Poisson
components represent? What biological assumptions do we make when we suppose
that, e.g., 𝜈 is constant across all cells, whereas 𝜇 can vary? And can we justify
these assumptions based on data external to the sequencing experiment?

To answer these questions, we can turn to the field of fluorescence transcriptomics,
which uses fluorescent probes that light up when they bind to RNA, allowing us to
count individual molecules [102, 233]. Yet we do not observe the gamma distri-
butions implied by the sequencing analyses: fluorescence data are overwhelmingly
overdispersed [16, 89, 102, 214, 232, 244], and negative binomial-like distributions
effectively fit the observed counts [72, 91, 121, 233]. This immediately implies a
problem with our interpretation of Equation 2.4: if the Poisson component 𝜇 were a
purely technical consequence of the sequencing technology, we should not observe
it using fluorescence imaging. Yet we do, which suggests that it is a fundamental
component of the biology.

Indeed, the fluorescence transcriptomics field typically explains the overdisper-
sion by appealing to the bursting behavior observed in live-cell measurements:
transcription is discontinuous and intermittent; the production of RNA is rela-
tively rare; however, when it does take place, it produces many molecules at once
[65, 92, 161, 170, 210, 293]. The effort to fully characterize these behaviors has led
to mechanistic models such as

∅ 𝑘−→ 𝐵 × X
𝛾
−→ ∅, (2.5)

i.e., at each transcriptional event generates a random number 𝐵 of molecules X;
after some delay, the molecules are degraded. These two reactions happen at
rates 𝑘 and 𝛾 (Section A.8.1). Although this model is highly abstracted, it can
represent a variety of mechanisms, such as the switching between active and inactive
transcriptional states due to activator binding [219, 233]. By setting up and solving
a stochastic formulation of Equation 2.5, we obtain precisely the same negative
binomial distribution as in Equation 2.3. Of course, transcriptional bursting is only
a part of the whole picture, and even non-bursty genes may be overdispersed due to
cell-to-cell differences in transcription rates:

∅ 𝑘 ∼ 𝐾−−−−→ X
𝛾
−→ ∅, (2.6)

where 𝐾 is a random variable. If 𝐾 is gamma, the stationary distribution of X is
negative binomial yet again, although its parameters have a different interpretation.
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Such models have been used to describe the variability in transcription rates observed
across cell sizes [150, 214, 272, 283]. There is no reason why these phenomena
should be mutually exclusive, and it appears fair to suppose that both bursting and
cell-to-cell variability have some role in the control of expression.

2.2 Motivations for mechanistic models
This section adapts portions of [115] by G.G., J.J.V., and L.P., [113] by G.G.∗,
J.J.V.∗, M.F., and L.P., and [112] by G.G., M.F., T.C., and L.P. This review of
motivations was conceptualized by G.G. and L.P.

The essential take-away from Section 2.1 is that sequencing and fluorescence tran-
scriptomics analyses are concerned with the same problem: the summary and
interpretation of noisy RNA copy number datasets. To treat this problem, they even
use similar tools, such as the negative binomial distribution. However, these super-
ficial similarities hide profound conceptual differences: the meaning attributed to
these tools is different in the two subfields; single-molecule stochasticity is front and
center in fluorescence transcriptomics, but sidelined and treated as purely technical
in sequencing transcriptomics.

This observation is somewhat troubling: single-molecule stochasticity is ubiquitous
[244], and its omission makes sequencing analyses incoherent with known biol-
ogy. That said, in spite of these discrepancies, it is not accurate to claim that the
scRNA-seq field has entirely neglected the results from fluorescence transcriptomics.
Several articles explicitly point to transcriptional variation as a source of biological
variability, and either directly use the solutions to mechanistic models [8, 69, 124]
or augment them with a model of technical noise [37, 116, 159, 278, 279, 308].
However, this approach is comparatively rare, and has not yet gained traction as part
of typical pipelines.

Here, it is reasonable to ask: why do the theoretical foundations matter? So far,
all we have demonstrated is that both subfields use similar tools, e.g., the negative
binomial distribution. Even if their bases and interpretations are subtly different, the
end result is much the same. What is the actual impact of adopting one or another
worldview?

It turns out that these latent problems come to a head when we attempt to treat broader
questions and types of data. For example, typical single-cell analyses use the mature
transcriptome, i.e., only the counts corresponding to exonic regions. Yet it is also
possible to align to intronic regions to obtain two data matrices: the usual mature
RNA matrix, as well as a nascent RNA matrix, containing all counts associated



9

with intronic regions; as introns are typically removed during RNA processing,
the nascent molecules represent an earlier stage in the RNA life-cycle. The usual
descriptive analyses do not have a prescription for simultaneously treating these data
types: single-cell analyses omit the nascent RNA; single-nucleus analyses add the
two matrices; the “best” approach is controversial, and there does not appear to be
a straightforward basis for choosing between the two (Section 8.3).

Yet, in the mechanistic worldview, the solution is almost trivial. There is a causal
relationship between the two modalities: nascent RNA are eventually converted to
mature RNA. If are confident in the premise that transcription is bursty, we can
immediately write down a reasonable model that unifies the two data types:

∅ 𝑘−→ 𝐵 × X𝑁
𝛽
−→ X𝑀

𝛾
−→ ∅. (2.7)

Of course, this model is simplistic — the binary assignment may be overly reductive
(Section B.1). Further, we have omitted ambiguities; for example, purely exonic
reads may arise from either nascent or mature molecules (Section B.2). Neverthe-
less, we have successfully encoded the transcriptional biophysics and the causal
relationship between the two species, and created a theoretical substrate for rep-
resenting more sophisticated phenomena, such as technical variability. Indeed, a
principled approach to “data integration” is only one of the benefits of adopting
the mechanistic worldview, and there is a multi-faceted variety of arguments for its
broader adoption.

The biological motivation. By investigating data through the lens of biophysical
parameters, we can learn something about the mechanisms that give rise to the data,
going beyond data summary to characterize the underlying biological processes.
For example, finding that a gene’s burst size has changed is more interpretable and
actionable than finding that a negative binomial distribution’s scale parameter has
changed, even if these discoveries are mathematically identical: the former proposes
a specific transcriptional mechanism. Just as valuably, this perspective allows us to
falsify models: if the observed distributions cannot be reproduced by a mathematical
model, our conceptualization of the underlying physics is somehow incomplete and
must be adjusted.

The physical motivation. The discovery, design, and falsification of biophysical
laws deserves special mention: it is part of a broad, interdisciplinary effort to
ground the study of biology in physical foundations. Its origins date back to the
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mid-twentieth century [24, 25, 145], and recent work in this direction [201, 221]
can be bolstered by the integration of genome-wide data.

The statistical motivation, pt. I. As discussed above, to make confident sum-
maries and predictions, accounting for uncertainty is mandatory. Although certain
alternatives, such as the central limit theorem and binarization, can help, discrete
models produce more statistical power in the sparse, low-copy number limit relevant
to scRNA-seq data.

The statistical motivation, pt. II. The statistical advantages of parametric, mech-
anistic models range beyond loss function book-keeping. By instantiating models
and performing a thorough mathematical analysis, we can discover which features
are readily identifiable, which are more challenging to infer, and which are entirely
impossible to characterize given a particular type of data. For example, the models
in Equations 2.5 and 2.6 produce identical distributions at steady state, so attempting
to distinguish them purely based on counts of X is futile.

The experimental motivation. We can use the results of statistical investigations
to design readouts or control experiments that answer questions of interest. For
instance, the aforementioned negative binomial models can be distinguished with
two-species data (in the vein of Equation 2.7, and as discussed in Section 7.1).
In addition, the explicit modeling of technical artifacts can provide a quantitative
understanding of the differences between experimental workflows (Chapter 8).

The synthesis motivation. As alluded to elsewhere, if we wish to compare se-
quencing data to other modalities, such as fluorescence transcriptomics, we need to,
on one hand, encode the premise that the underlying biology is identical, and, on
the other, attribute any differences to specific technical artifacts (Section 8.2). This
is easiest done through biophysical modeling.

The control motivation. Even if we choose not to invest all of our efforts into the
analysis of mechanistic models, an understanding of common axioms lets us gen-
erate realistic simulated data to benchmark sequencing workflows. In addition, the
mathematical framework allows us to systematically investigate implicit limitations
and contradictions of common data analysis procedures (Sections 6.1 and 8.4).
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The financial motivation. Experiments are expensive; computational data anal-
ysis is less so, but still requires non-negligible investment; theory is cheap. It is
financially responsible to understand the limitations of experiments and analyses
— i.e., which questions can we confidently answer based on a particular dataset?
— before collecting any data, instead of discovering these limitations post hoc.
In addition, a thorough, physically grounded investigation of production pipelines
can help identify otherwise obscure technical artifacts and prevent target-oriented
industry investigations from pursuing dead ends.

The ethical motivation. The collection of sequencing data is necessarily invasive:
it requires the isolation and destruction of living cells. In a scientific context, this
entails raising and euthanizing animal test subjects. In a therapeutic context, this
entails collecting samples from severely ill or deceased patients. Both of these
scenarios involve complicated ethical questions, but it appears most justifiable to
strive to minimize invasive procedures by making the most of fewer and smaller
datasets.

The synthetic biology motivation. The characterization of transcriptional kinet-
ics has an additional, longer-term perspective: the design of synthetic gene circuits.
To design a system, it is essential to understand the physics of its constituent parts;
for transcriptional systems, an understanding of single-molecule stochasticity is
mandatory.

2.3 Technologies and axioms
We are primarily interested in fitting readily available data from the commercial
10x Genomics platform [332]. We largely focus on the single-cell v3 version of
the technology, which offers high-throughput short-read sequencing; however, we
occasionally consider the older, lower-throughput v2 technology and the single-
nucleus variant of v3 (Sections 8.3 and 9.3). We provide a conceptual overview
of the 10x workflow in Sections 4.4.2 and 4.4.3. Nevertheless, we anticipate that
the theoretical framework outlined here is applicable to other modalities that can be
collected through sequencing, and we outline the prospects in Chapter 11.

We particularly focus on nascent and mature molecule counts. As discussed in
Section B.1, this terminology is somewhat non-standard, and intended to emphasize
that the modeling approach represents a generic two-stage RNA life-cycle. We adopt
the bioinformatic conventions of [168, 197] to identify RNA with intronic content
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as “nascent” and RNA without intronic content as “mature.” This identification is
necessarily imperfect, but helpful, as bioinformatic pipelines for distinguishing and
counting these molecular species are readily available [168, 197, 264]. In one case
study, we use data from a nanopore-based technology that provides considerably
more resolution and a way forward for more detailed models (Section 10.2). How-
ever, this technology has not yet seen widespread adoption, so we operate with the
most readily available data types at the time. We omit the treatment of ambiguity,
largely for computational purposes, but we express our reservations in Section B.2.
We speculate that, in many cases, ambiguity can be elided because many nominally
ambiguous purely exonic reads lie in the 3′ untranslated region, which suggests they
arise from fully processed, poly(A)-capped molecules [131, 217].

It remains to define a set of modeling principles and axioms. Of course, a wide
variety of options are available to represent the underlying biology: we can track
individual RNA bases; we can treat each molecule as continuous and track its length
during production and degradation; we can treat each molecule as an interchangeable
discrete entity with no internal structure; we can even take a wider view and consider
molecule concentrations instead of counts. Due to the considerable success of
discrete stochastic models of biology, as well as the concerning points raised in
Section 2.1, we adopt the third axiom: molecules have no internal structure, and
are instantaneously produced and degraded. Under certain assumptions, this can
be viewed as a simplified representation of a model that does represent the internal
structure, focusing on a single molecular region (in the vein of 5′ and 3′ probes in
[319]). However, the choice is mostly motivated by theoretical and computational
facility. We adopt the same framework for the experimental components of the
systems we study, taking advantage of the barcodes to identify individual molecules.
Again, various other options exist — such as treating reads, or even accounting for
the uncertainty in sequencing individual bases — but this level of detail seems
somewhat excessive at this preliminary stage.

We almost exclusively consider Markov models, whose future behavior only depends
on the current state, rather than any past states. The framework we set up turns out
to easily generalize to non-Markov models (Section 4.3.2), and we briefly consider
and compare them against some Markov candidates (Section 7.3). However, we find
that the considerably simpler Markov models largely suffice, and attempt to avoid
introducing additional complexity when it does not appear to be required by the
data.
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In spite of their popularity (as outlined in Section 2.1), we do not generally consider
“cell size” or “library size” models that couple the distributions of different genes.
The sole exception is the preliminary investigation in Section 10.3, which proposes
one possible basis for such variation. This choice necessarily limits our ability to
describe systematic variation in molecular copy numbers, as well as co-variation
between genes. However, the current theoretical understanding of these phenomena
is somewhat limited, and we hesitate to make any specific modeling assumptions
about them. This aspect is also somewhat beside the point. The models we
present here are the base case, where we assume these sources of variability can
be neglected; if desired, this assumption can be relaxed, and the models can be
augmented accordingly by conditioning on some distribution. In other words, if
there is some coupling variable Θ, we marginalize over Θ to compute distributions
𝑃(𝑥):

𝑃(𝑥) =
∫
Θ

𝑃(𝑥;Θ)𝑃(Θ)𝑑Θ, (2.8)

which still requires computing 𝑃(𝑥;Θ) at some stage. This is the component of
the problem we consider here. We anticipate that a detailed understanding of these
phenomena will require considerable further work.
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C h a p t e r 3

MATHEMATICAL TOOLS AND PRELIMINARIES

3.1 Common mathematical objects, distributions, and identities
3.1.1 Mathematical objects and key notation
We generally operate with the following hierarchy of variable spaces:

N0 ⊂ Z ⊂ R ⊂ C, (3.1)

where N0 denotes the non-negative natural numbers 0, 1, 2, ...; Z denotes the in-
tegers; R denotes the real numbers; and C denotes the complex numbers. We
occasionally use R≥0 to denote the non-negative real numbers and R+ to denote the
positive real numbers. We typically denote variables on N0 and Z by 𝑥, on R by 𝑦,
and on C by 𝑔, 𝑢, or ℎ, giving the domains explicitly where necessary. In the context
of stochastic processes, the real-valued variables represent the “spatial” degrees of
freedom, i.e., the value of the process at a given instant. 𝑧 is a generic variable. The
variable 𝑡 ∈ R denotes the process time.

Vector quantities are typically set in boldface, e.g., x = [𝑥1, . . . , 𝑥𝑛]T ∈ N𝑛0. Matrices
are typically represented by uppercase letters, e.g.,

𝐴 =

[
𝛼01

𝛼11

]
∈ R2×1

≥0 . (3.2)

We use calligraphic fonts for generic mathematical objects; for example, F is used
for neural functions, andH represents an operator. L always represents a likelihood,
and D always represents some collection of data. Molecular species are also set
in calligraphic fonts. Thus, for example, mature mRNA species are defined as
X𝑀 , their microstates are written as 𝑥𝑀 , and their actual observed amounts, or the
associated random variable, are written as 𝑋𝑀 ; the underlying mean may be reported
as 𝜇𝑀 and the sample mean as 𝑋𝑀 .

In a statistical context, Θ represents generic parameters or parameter vectors. Nota-
tion to the effect of Θ̂ represents an estimate of Θ; such estimates are typically, but
not always, data-derived (for a counterexample, see Section 5.3). 𝜋 or 𝝅 represents
compositional quantities, such as cell type fractions. 𝜅 indexes over cell types or
subpopulations.
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I represents the identity function, which returns unity if its argument is true and zero
otherwise. 𝛿 represents the relevant (discrete or continuous) flavor of degenerate
function.

𝑖, 𝑗 , and 𝑘 are generic indexing subscripts. 𝑘 is occasionally used to denote
transcriptional burst frequencies, interchangeably with 𝛼. Nc denotes the total
number of cells, indexed by c. Ng denotes the total number of genes, indexed by g.
N denotes the total number of approximating terms, indexed by n. Nk denotes the
total number of simulations, indexed by k.

Graph edges and reaction rates are always defined in the source–sink notation, i.e.,
a rate 𝑐𝑖 𝑗 always represents a species X𝑖 giving rise to species X𝑗 .

𝑃 represents a probability density or mass function used to define a master equation.
𝑝 represents probability distributions auxiliary to the master equation, e.g., the burst
size distribution. 𝑓 represents generic probability densities.

3.1.2 Stochastic process framework
In the most general case, we study processes that evolve in time over a domain
𝑁 × N𝑛0 × R

𝑚
≥0. The instantaneous state of such a process is given by a collection

of variables (𝑠, x, y, 𝑡). Thus, at time 𝑡, 𝑠 gives the component of the state on a
size-𝑁 finite lattice, x on an 𝑛-dimensional discrete infinite lattice, and y on an
𝑚-dimensional continuous space.

The evolution of the state over time may or may not be perfectly predictable at a time
𝑡 given a set of prescribed initial conditions {(𝑠0, x0, y0, 𝑡0)}, and a set of physical
laws governing the state transitions. Out of physical realism, we typically impose
the condition that all of {𝑡0} ≤ 𝑡. If the physical laws are deterministic, we can
study the system’s evolution using dynamical systems approaches. However, if they
are non-deterministic, we need to invoke the machinery of stochastic processes, and
treat the system probabilistically, such that

1 =

∫
y

∑︁
x

∑︁
𝑠

𝑃

(
𝑠, x, y, 𝑡; {(𝑠0, x0, y0, 𝑡0)}

)
𝑑y, (3.3)

where 𝑃 is a probability distribution that generates realizations through the random
variables {𝑆, 𝑋1, . . . , 𝑋𝑛, 𝑌1, . . . , 𝑌𝑚}.

A particularly tractable subset of stochastic processes has the Markov property,
where

𝑃

(
𝑠, x, y, 𝑡; {(𝑠0, x0, y0, 𝑡0)}

)
= 𝑃

(
𝑠, x, y, 𝑡; 𝑠0, x0, y0, 𝑡0

)
, (3.4)
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where 𝑡0 is the largest value in the collection {𝑡0}, and 𝑠0, x0, y0 is the associated
state. If the Markov property holds, we need only specify the initial condition at a
single time 𝑡0 to obtain the system’s statistical behavior for all 𝑡 > 𝑡0; we use 𝑡0 = 0
with no loss of generality. It is occasionally helpful to go one step further and define
a probabilistic rather than deterministic initial condition 𝑃0:

𝑃

(
𝑠, x, y, 𝑡; 𝑃0, 0

)
:=

∫
y0

∑︁
x0

∑︁
𝑠0

𝑃

(
𝑠, x, y, 𝑡; 𝑠0, x0, y0, 0

)
𝑃0(𝑠0, x0, y0, 0)𝑑y0.

(3.5)

In the current context, it turns out to be mathematically simpler to use a length-𝑁
probability vector, such that

(P)𝑠 (·) := 𝑃(𝑠, ·). (3.6)

3.1.3 Generating functions
This section summarizes the mathematical machinery formalized in [115] by G.G.,
J.J.V., and L.P. G.G. developed this approach as a generalization of the framework
constructed by J.J.V. in [113] by G.G.∗, J.J.V.∗, M.F., and L.P.

The analysis of stochastic processes typically proceeds through generating functions
[95]. In the general case, the generating function (GF) is a length-𝑁 vector G, such
that

𝐺𝑠 (g, h) =
∫ ∞

0
· · ·

∫ ∞

0

∞∑︁
𝑥1=0
· · ·

∞∑︁
𝑥𝑛=0

(
𝑛∏
𝑖=1

𝑔
𝑥𝑖
𝑖

) (
𝑚∏
𝑖=1

𝑒ℎ𝑖𝑦𝑖

)
𝑃(𝑠, x, y)𝑑𝑦𝑚 . . . 𝑑𝑦1

G(g, h) :=
∫

y

∑︁
x

gx𝑒hTyP 𝑑y,

(3.7)

where the second line is an abbreviated shorthand for the first. We elide the
dependence on time and initial conditions for notational simplicity. The arguments
g ∈ C𝑛 and h ∈ C𝑚 are spectral variables. It is frequently easier to treat the
shifted coordinate u := g − 1. Strictly speaking, the mathematical object G is the
combination of a probability-generating function (PGF) in the discrete dimensions
and a moment-generating function (MGF) in the continuous dimensions. The
generic discrete-only PGF is defined and condensed as follows:

𝐺 (g) =
∞∑︁
𝑥1=0
· · ·

∞∑︁
𝑥𝑛=0

(
𝑛∏
𝑖=1

𝑔
𝑥𝑖
𝑖

)
𝑃(x) :=

∑︁
x

gx𝑃(x), (3.8)
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where 𝑃 is a probability mass function (PMF).

The generic continuous-only MGF is defined and condensed as follows:

𝑀 (h) =
∫ ∞

0
· · ·

∫ ∞

0

(
𝑚∏
𝑖=1

𝑒ℎ𝑖𝑦𝑖

)
𝑃(y)𝑑y :=

∫
y
𝑒hTy𝑃(y)𝑑y, (3.9)

where 𝑃 is a probability density function (PDF). It is straightforward to see that the
MGF can be obtained by evaluating the PGF at arguments 𝑔𝑖 = 𝑒ℎ𝑖 . The converse
does not hold, because the PGF is only defined for random variables on N0.

When it exists, the generating function allows us to reconstruct properties of the
original distribution. First, evaluating a component of the PGF at 𝑔𝑖 = 1 (or the
MGF at ℎ𝑖 = 0) marginalizes over dimension 𝑖. Second, evaluating the derivatives
of the PGF at 𝑔𝑖 = 1 produces the factorial moments, such that

𝜕𝑘𝐺

𝜕𝑔𝑘
𝑖

�����
𝑔𝑖=1

= E[𝑋𝑖 (𝑋𝑖 − 1) . . . (𝑋𝑖 − 𝑘 + 1)], (3.10)

where 𝑋𝑖 denotes the random variable with values reported in 𝑥𝑖; similarly, the cross-
moments can be obtained by taking mixed derivatives. Analogously, evaluating the
derivatives of the MGF at ℎ𝑖 = 0 produces the raw moments:

𝜕𝑘𝑀

𝜕ℎ𝑘
𝑖

�����
ℎ𝑖=0

= E[𝑌 𝑘𝑖 ] . (3.11)

Third, evaluating the derivatives of the PGF at 𝑔𝑖 = 0 recovers the probability mass
function:

1
𝑥𝑖!

𝜕𝑥𝑖𝐺

𝜕𝑔
𝑥𝑖
𝑖

����
𝑔𝑖=0

= 𝑃(𝑥𝑖), (3.12)

where we have assumed that all other dimensions have been marginalized out; joint
distributions can be obtained by taking partial derivatives with respect to multiple
dimensions.

As generating functions are spectral transforms of the original probability distribu-
tions, they inherit many other generic properties of the Fourier transform. These
properties are summarized in standard texts [154, 155], and we report them as
necessary for derivations.
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3.1.4 Special functions
To introduce specific functional forms of stochastic processes and their solutions, it
is helpful to be aware of special functions commonly encountered in the field. We
reproduce their definitions from the standard text by Abramowitz and Stegun [2]
without delving into the derivations or functional analysis properties.

The factorial 𝑥! over 𝑥 ∈ N0 is defined as follows:

𝑥! =
𝑥∏
𝑘=1

𝑘, (3.13)

such that 0! = 1.

A generalization of the factorial, the gamma function, is defined over 𝑧 ∈ C:

Γ(𝑧) =
∫ ∞

0
𝑡𝑧−1𝑒−𝑡𝑑𝑡, (3.14)

such that Γ(𝑥 + 1) = 𝑥! for 𝑥 ∈ N0.

The Pochhammer symbol, or rising factorial, is defined over 𝑧 ∈ C and 𝑛 ∈ N0:

(𝑧)𝑛 =
𝑛−1∏
𝑘=0
(𝑧 + 𝑘) = Γ(𝑧 + 𝑛)

Γ(𝑛) . (3.15)

The binomial coefficient is defined over 𝑧, 𝑥 ∈ C:(
𝑧

𝑥

)
=

Γ(𝑧 + 1)
Γ(𝑥 + 1)Γ(𝑧 − 𝑥 + 1) =

𝑧!
𝑥!(𝑧 − 𝑥)! , (3.16)

where the second identity holds for 𝑧, 𝑥 ∈ N0 such that 𝑧 ≥ 𝑥.

The upper incomplete gamma function is defined over 𝑧, 𝑥 ∈ C:

Γ(𝑧, 𝑥) =
∫ ∞

𝑥

𝑡𝑧−1𝑒−𝑡𝑑𝑡, (3.17)

such that Γ(𝑧, 0) = Γ(𝑧). Usefully, at integer arguments,

Γ(𝑛 + 1, 𝑥) = 𝑛!𝑒−𝑥
∞∑︁
𝑘=0

𝑥𝑘

𝑘!
. (3.18)

Kummer’s confluent hypergeometric function is defined over 𝑎, 𝑏, 𝑧 ∈ C:

𝑀 (𝑎, 𝑏, 𝑧) := 1𝐹1(𝑎; 𝑏; 𝑧) =
∞∑︁
𝑛=0

(𝑎)𝑛𝑧𝑛
(𝑏)𝑛𝑛!

. (3.19)
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When −𝑎 ∈ N, this function can be expressed as a polynomial with a finite number
of terms.

The hypergeometric function, or Gauss’s hypergeometric function, is defined over
𝑎, 𝑏, 𝑐, 𝑧 ∈ C:

2𝐹1(𝑎, 𝑏; 𝑐; 𝑧) =
∞∑︁
𝑛=0

(𝑎)𝑛 (𝑏)𝑛
(𝑐)𝑛

𝑧𝑛

𝑛!
. (3.20)

Usefully, at negative integer arguments, the summation terminates:

2𝐹1(−𝑚, 𝑏; 𝑐; 𝑧) =
𝑚∑︁
𝑛=0

(
𝑚

𝑛

)
(−1)𝑛 (𝑏)𝑛(𝑐)𝑛

𝑧𝑛

𝑛!
. (3.21)

The beta function is defined over 𝑧, 𝑥 ∈ C:

𝐵(𝑧, 𝑥) =
∫ 1

0
𝑡𝑧−1(1 − 𝑡)𝑥−1𝑑𝑡 =

Γ(𝑧)Γ(𝑥)
Γ(𝑧 + 𝑥) .

(3.22)

It is essential to notice that these functions can be defined by recurrence relations; for
example, Γ(𝑛 + 1) = 𝑛Γ(𝑛). This deceptively simple form suggests a fundamental
computational challenge: we would typically like the evaluation to be independent
of the particular value of 𝑛, requiring methods more sophisticated than applying the
definition.

Finally, the principal branch of the Lambert 𝑊 function, which does not take a
combinatorial form, is implicitly defined over 𝑥 ∈ R+:

if 𝑦𝑒𝑦 = 𝑥, then𝑊 (𝑥) = 𝑦. (3.23)

3.1.5 Continuous distributions
The current section defines the conventions for common continuous probability
distributions. Here, we report the probability density functions and other salient
properties. The definitions in this and following sections are largely reproduced
from the Johnson texts [154, 155].

The normal, or Gaussian, distribution over 𝑦 ∈ R is parametrized by its mean 𝜇 ∈ R
and standard deviation 𝜎 ∈ R+:

𝑓 (𝑦) =
[
2𝜋𝜎2]−1/2 exp

(
− 1
𝜎2 [𝑦 − 𝜇]

2
)
. (3.24)

The normal distribution is ubiquitous in statistical inference, where it arises as a
consequence of the central limit theorem [154], and the study of continuous-valued
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stochastic processes, where it is used to construct Gaussian processes [265]. In
addition, a wide variety of data exploration, analysis, and summary techniques, such
as principal component analysis, are tailored to normally-distributed variation [259].
The cumulative distribution function of the standard normal distribution with 𝜇 = 0
and 𝜎 = 1 is defined to be Φ(𝑦).

The lognormal distribution over 𝑦 ∈ R+ is parametrized by the mean 𝜇𝑙 ∈ R and
standard deviation 𝜎𝑙 ∈ R+ of the underlying exponentiated normal distribution
[51]. With some abuse of terminology, we refer to these parameters as the log-mean
and the log-standard deviation.

𝑓 (𝑦; 𝜇𝑙 , 𝜎𝑙) =
1

𝑦𝜎𝑙
√

2𝜋
exp

(
− (log 𝑦 − 𝜇𝑙)2

2𝜎2
𝑙

)
. (3.25)

This distribution has the following mean 𝜇 and standard deviation 𝜎:

𝜇 = exp
(
𝜇𝑙 +

1
2
𝜎2
𝑙

)
𝜎 = 𝜇

√︃
exp𝜎2

𝑙
− 1.

(3.26)

Usefully, we can set the parameters to produce a specified set of moments:

𝜇𝑙 = log
𝜇2√︁

𝜎2 + 𝜇2

𝜎𝑙 =

√︄
log

𝜎2 + 𝜇2

𝜇2 .

(3.27)

The quantile function of the lognormal distribution have the following form:

𝐹−1(𝑝; 𝜇𝑙 , 𝜎𝑙) = exp
(
𝜇𝑙 + 𝜎𝑙Φ−1(𝑝)

)
. (3.28)

The bivariate lognormal distribution over 𝑦1, 𝑦2 ∈ R+ is parametrized by the means
𝜇1𝑙 , 𝜇2𝑙 ∈ R, standard deviations 𝜎1𝑙 , 𝜎2𝑙 ∈ R+, and correlation 𝜌𝑙 ∈ [−1, 1] of the
underlying bivariate normal distribution [51]:

𝐴 :=
log 𝑦1 − 𝜇1𝑙

𝜎1𝑙

𝐵 :=
log 𝑦2 − 𝜇2𝑙

𝜎2𝑙

𝑓 (𝑦1, 𝑦2; 𝜇1𝑙 , 𝜇2𝑙 , 𝜎1𝑙 , 𝜎2𝑙 , 𝜌𝑙) =
1

2𝜋𝜎1𝑙𝜎2𝑙𝑦1𝑦2

√︃
1 − 𝜌2

𝑙

exp

(
−𝐴

2 + 𝐵2 − 2𝜌𝑙𝐴𝐵
2(1 − 𝜌2

𝑙
)

)
.

(3.29)
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The marginal distributions are lognormal with the appropriate parameters. Usefully,
we can set the 𝜌𝑙 to produce a desired correlation 𝜌:

𝜌𝑙 =
1

𝜎1𝑙𝜎2𝑙
log

(
𝜌𝜎1𝜎2𝑒

𝜇1𝑙+𝜇2𝑙+ 1
2 (𝜎1𝑙+𝜎2𝑙) + 1

)
. (3.30)

In addition, the conditional distribution over 𝑦2, given a particular 𝑦1, is lognormal
with parameters

𝜇2𝑙 |𝑦1 = 𝜇2𝑙 + 𝜌𝑙
𝜎2𝑙

𝜎1𝑙
(log 𝑦1 − 𝜇2𝑙)

𝜎2𝑙 |𝑦1 = 𝜎2𝑙

√︃
1 − 𝜌2

𝑙
.

(3.31)

The exponential distribution over 𝑦 ∈ R+ is parametrized by its scale 𝜃 ∈ R+ or its
rate 𝜂 = 𝜃−1:

𝑓 (𝑦; 𝜃) = 1
𝜃
𝑒−𝑦/𝜃

𝑓 (𝑦; 𝜂) = 𝜂𝑒−𝜂𝑦 .
(3.32)

The former parametrization is less common, but more convenient for representing
its MGF:

𝑀 (𝑧; 𝜃) = 1
1 − 𝜃𝑧 .

(3.33)

The mean of the exponential distribution is 𝜃. This distribution is ubiquitous in the
study of Markovian stochastic processes, because exponentially-distributed waiting
times are memoryless.

The gamma distribution over 𝑦 ∈ R+ is parametrized by its shape 𝜈 ∈ R+ and its
scale 𝜃 or rate 𝜂 = 𝜃−1:

𝑓 (𝑦; 𝜈, 𝜃) = 1
Γ(𝜈)𝜃𝜈 𝑦

𝜈−1𝑒−𝑦/𝜃

𝑓 (𝑦; 𝜈, 𝜂) = 𝜂𝜈

Γ(𝜈) 𝑦
𝜈−1𝑒−𝜂𝑦 .

(3.34)

The former parametrization is convenient for representing its MGF:

𝑀 (𝑧; 𝜈, 𝜃) =
(

1
1 − 𝜃𝑧

)𝜈
(3.35)

The mean of the gamma distribution is 𝜈𝜃. The exponential distribution is a special
case of the gamma distribution (𝜈 = 1). The Erlang distribution is another special
case (𝜈 ∈ N).
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The continuous uniform distribution over 𝑦 ∈ [𝑎, 𝑏] is parametrized by its bounds:

𝑓 (𝑦; 𝑎, 𝑏) = 1
𝑏 − 𝑎 .

(3.36)

The inverse Gaussian distribution over 𝑦 ∈ R+ is parametrized by parameters 𝑎, 𝑏 ∈
R+ [248]:

𝑓 (𝑦; 𝑎, 𝑏) = 𝑎√︁
2𝜋𝑦3

𝑒𝑎𝑏 exp
(
−1

2
[𝑎2𝑦−1 + 𝑏2𝑦]

)
. (3.37)

The Dirac delta, or continuous degenerate, distribution over 𝑦 ∈ R is defined as
follows: ∫ ∞

−∞
𝑓 (𝑡)𝛿(𝑡)𝑑𝑡 = 𝑓 (0) (3.38)

for any function 𝑓 . Therefore, the delta function’s probability density is a point
mass at zero. Translating this function and integrating 𝛿(𝑡 − 𝑎) returns 𝑓 (𝑎).

3.1.6 Discrete distributions
Here, we report the probability mass functions of common discrete distributions.

The Poisson distribution over 𝑥 ∈ N0 is parametrized by its mean 𝜇:

𝑃Poiss(𝑥; 𝜇) =
1
𝑥!
𝜇𝑥𝑒−𝜇 . (3.39)

Many common discrete distributions arise as Poisson-𝐷 mixtures, where 𝐷 is a
mixing distribution that controls the mean. Conceptually,

𝑃(𝑥;𝐷) =
∫ ∞

0

1
𝑥!
𝜇𝑥𝑒−𝜇 𝑓𝐷 (𝜇)𝑑𝜇. (3.40)

Usefully, to obtain the PGF of the Poisson mixture at spectral argument 𝑔, we can
simply evaluate the MGF of the mixing distribution at 𝑔 − 1. Standard texts report
further relationships between the underlying and mixed distributions, which we do
not reproduce here [157, 215].

The geometric distribution on 𝑥 ∈ N0 is a Poisson-exponential mixture. It is
parametrized by the scale 𝜃 ∈ R+ of the underlying exponential distribution:

𝑃(𝑥; 𝜃) =
(
𝜃

1 + 𝜃

)𝑥 (
1

1 + 𝜃

)
. (3.41)

This parametrization is convenient for representing its PGF. The mean of the geo-
metric distribution is 𝜃.
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The negative binomial distribution on 𝑥 ∈ N0 is a Poisson-gamma mixture. It can
be parametrized by the form of the underlying distribution or by the resulting shape
and mean (𝜇 = 𝜈𝜃):

𝑃NB(𝑥; 𝜈, 𝜃) =
Γ(𝜈 + 𝑥)
𝑥!Γ(𝜈)

(
1

1 + 𝜃

)𝜈 (
𝜃

1 + 𝜃

)𝑥
𝑃NB(𝑥; 𝜈, 𝜇) =

Γ(𝜈 + 𝑥)
𝑥!Γ(𝜈)

(
𝜈

𝜈 + 𝜇

)𝜈 (
𝜇

𝜈 + 𝜇

)𝑥
.

(3.42)

The discrete degenerate distribution supported solely on 𝑥 = 𝑗 and zero elsewhere
can be represented by a Kronecker delta:

𝑃(𝑥; 𝑗) = 𝛿𝑥 𝑗 . (3.43)

3.2 Model selection criteria
The likelihood of parameters Θ under a proposed distribution 𝑃 and a data distribu-
tion D is simply the total probability of the data:

L(Θ;D) = 𝑃(D;Θ)
=

∏
c
𝑃(Dc;Θc)

=
∏

c
𝑃(Dc;Θ),

(3.44)

where we obtain the second line by assuming observations are independent and
the third line by assuming they are independent and identically distributed (i.i.d.)
[208]. Much of statistical inference consists of investigating and characterizing the
behavior of L as a function of Θ, and many of the associated challenges stem from
L not being available in closed form.

The likelihood ratio (LR) compares the strength of evidence for various parameters
or models Θ𝐴 and Θ𝐵, which are treated as point estimates [208]:

LR =
L(Θ𝐴;D)
L(Θ𝐵;D) =

𝑃(D;Θ𝐴)
𝑃(D;Θ𝐵)

. (3.45)

The Bayes factor (BF) is used to compare models𝑀𝐴 and𝑀𝐵, and takes into account
the uncertainty in their associated parameters Θ𝐴 and Θ𝐵 [38]:

BF =
𝑃(D;𝑀𝐴)
𝑃(D;𝑀𝐵)

=

∫
Θ𝐴
𝑃(D;𝑀𝐴,Θ𝐴) 𝑓 (Θ𝐴;𝑀𝐴)𝑑Θ𝐴∫

Θ𝐵
𝑃(D;𝑀𝐵,Θ𝐵) 𝑓 (Θ𝐵;𝑀𝐵)𝑑Θ𝐵

. (3.46)
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In this case, 𝑃(D; ·) is the data likelihood and 𝑓 is the prior. If the prior or the
likelihood is Dirac-like, i.e., the parameters are deterministic, the Bayes factor is
equivalent to the likelihood ratio.

The Akaike information criterion (AIC) is a penalized likelihood used to compare
point estimates of models 𝑘 at their optimal parameter estimates Θ̂𝑘 [38]:

AIC𝑘 = −2 logL𝑘 (Θ̂𝑘 ) + 2𝜍𝑘 , (3.47)

where 𝜍𝑘 is the number of estimated model parameters. Usefully, the AIC can be
used to compute posterior probabilities for a set of models:

AICmin = min𝑘AIC𝑘

Δ𝑘 = AIC𝑘 − AICmin

𝑤𝜛 =
𝑒−

1
2Δ𝜛∑

𝑘 𝑒
− 1

2Δ𝑘

,

(3.48)

where 𝑤𝜛 is the Akaike weight of the model 𝜛 [38].

3.3 Distance measures
The Kullback-Leibler divergence (KLD) between a discrete data distributionD, i.e.,
a normalized histogram over microstates x, and a proposed distribution 𝑃 is defined
as follows:

𝐷 (D ∥ 𝑃) =
∑︁

x
D(x) log

D(x)
𝑃(x) . (3.49)

Evidently, only the observed microstates, withD(x) > 0, contribute to this quantity.
The KLD generalizes to continuous distributions, with an integral replacing the
summation. If the KLD is high, the distributions are dissimilar. In a statistical
context, minimizing the KLD is equivalent to maximizing the likelihood of data
under the proposed distribution.

The Jaccard distance 𝑑𝐽 is defined as follows:

𝑑𝐽 =
|𝐴 ∪ 𝐵 | − |𝐴 ∩ 𝐵 |

|𝐴 ∪ 𝐵| , (3.50)

where 𝐴 and 𝐵 are sets and | · | represents the set size. If the Jaccard distance is high,
the sets have little overlap. Many other distances are discussed in further detail in
[73].
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C h a p t e r 4

STOCHASTIC MODELS AND SOLUTIONS

...as one judge said to the other,
‘Be just and if you can’t be just be arbitrary.’

Naked Lunch
William S. Burroughs

4.1 Motivations for model classes
This section adapts a portion of [115] by G.G., J.J.V., and L.P. This motivating
discussion was written by G.G.

We begin by defining the biological variables of interest. We seek to develop a the-
oretical framework that can accommodate a wide variety of biological phenomena.
This is a modeling challenge that involves a series of trade-offs. On one hand, we
would like to represent a broad range of phenomena; on the other, if the scope is
too broad, the mathematical form becomes intractable. We restrict our analysis to
a fairly general class of systems which afford a reasonably compact representation
and can be solved by quadrature.

In brief, we care about models with interacting microscopic, mesoscopic, and macro-
scopic degrees of freedom. These “model scales” are defined with respect to their
treatment of stochasticity. Microscopic models account for the flow of probability
between discrete states, and are formalized by chemical master equations (CMEs).
Mesoscopic models approximate the discrete states by a continuum, and are for-
malized by equivalent stochastic differential equations (SDEs) or Fokker-Planck
equations (FPEs). Macroscopic models omit stochasticity altogether, and are for-
malized by ordinary differential equations (ODEs). As discussed in [236, 294],
certain regimes of microscopic models can be effectively approximated by meso-
and macroscopic dynamics. These approximations rely on strong assumptions re-
garding the “important” sources of stochasticity in the system, and can often be
derived through perturbative approximations [297].
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Figure 4.1: The biophysical and chemical phenomena of interest, as well as the
relationships between their generating functions.
a. The biological phenomena of interest: cell influx and efflux into a tissue observed
by sequencing; the time-dependent transcriptional regulation of one or more genes;
downstream continuous and discrete processes.
b. The technical phenomena of interest: the encapsulation of cells and cell debris;
cDNA library construction; the loss of information in transcript identification (GF:
generating function).
c. The structure of the full generating function of the system in a and b: to obtain
the solution, we variously compose, integrate, and multiply the generating functions
of the constituent processes.

4.2 Models of RNA processing and transcriptional noise
This section summarizes the mathematical machinery formalized in [115] by G.G.,
J.J.V., and L.P. G.G. developed this approach as a generalization of the framework
constructed by G.G. and J.J.V. in [113] by G.G.∗, J.J.V.∗, M.F., and L.P., as well as
by J.J.V. in [299], among other publications. The description was written by G.G.
and J.J.V.

Our treatment of stochastic systems considers gene state interconversion, as well as
the production and processing of macromolecules such as RNA and proteins, which
could treated as discrete or continuous variables depending on their concentra-
tion. We allow zero- and first-order reactions, including state-dependent bursting,
interconversion, degradation, and catalysis. However, we disallow higher-order re-
actions, including feedback regulation. In addition, we allow various macro- and
mesoscopic layers of regulation, such as state- and time-dependent variation in
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transcription rates.

By setting up and writing out the relevant master equations, it turns out to be most
natural by far to formalize the systems in terms of 𝑁 categorical degrees of freedom,
corresponding to gene states, 𝑛 discrete ones, corresponding to low-copy number
molecular species, and 𝑚 continuous ones, corresponding to transcription rates
or high-concentration species. By omitting regulation, we can split the systems
into distinct “upstream” and “downstream” components. As a consequence of
the Poisson representation, which establishes isomorphisms between discrete and
continuous stochastic processes [94], the precise meaning of the “downstream”
components ceases to matter: discrete and continuous degrees of freedom can be
treated using the same mathematical tools. Formally, the discrete components are
Poisson mixtures of the continuous processes (as in Equation 3.40).

This conceptualization happens to be particularly useful under a particular combi-
nation of assumptions (mass action kinetics, no regulation) and goals (computing
dataset likelihoods). However, others alternatives are available. For example, the
discrete degrees of freedom have been studied in the language of queuing theory
[166, 257]. The analysis of continuous stochastic processes owes a great deal to
mathematical finance [265]. The distinctions between model scales may even be
translated into the language of quantum physics [5, 211, 299]: categorical states
are mutually exclusive and follow fermion-like statistics; discrete states are un-
constrained and follow boson-like statistics; continuous states are fundamentally
classical. This conceptualization is in its nascence, but may well lead to useful
and widespread mathematical tools in the future. Under the assumptions and goals
we adopt, we have found that the Poisson representation approach we adopt, which
exploits the properties of partial differential equations, provides the best balance of
computational and analytical tractability in the multi-modal context.

4.2.1 Master equation definitions
The categorical variable, denoted by 𝑠 ∈ {1, ..., 𝑁}, represents the instantaneous
state of a multi-state gene. By assuming that the state interconversions are Markovian
and independent of all other components of the system, we can define 𝐻𝑖 𝑗 , the rates
of transitioning from state 𝑖 to state 𝑗 :

S𝑖
𝐻𝑖 𝑗−−→ S 𝑗 . (4.1)

These rates can be summarized in the state transition matrix 𝐻 ∈ R𝑁×𝑁≥0 , such that
𝐻𝑖𝑖 = −

∑
𝑗≠𝑖 𝐻𝑖 𝑗 and

∑
𝑗 𝐻𝑖 𝑗 = 0 to enforce the conservation of probability. This
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set of transitions can be represented by a finite master equation, which tracks the
probabilities of each state 𝑠 at a time 𝑡:

𝜕𝑃(𝑠, 𝑡)
𝜕𝑡

=

𝑁∑︁
𝑖=1

𝐻𝑖𝑠𝑃(𝑖, 𝑡), or more compactly

𝜕P(𝑡)
𝜕𝑡

= 𝐻TP.

(4.2)

As this system is expressed in terms of a differential equation for an arbitrary
time 𝑡, the relation holds for time-dependent 𝐻. For simplicity, we assume that
𝐻 is deterministic and independent of other variables. For a review of CMEs, we
recommend [95, 295, 297, 315, 336].

The nonnegative discrete variables, denoted by x ∈ N𝑛0, represent molecular copy
numbers. We assume that 𝑛 molecular species participate in four classes of tran-
sitions, and can summarize their effect by considering their reaction schema and
effect on 𝑥𝑖, the number of molecules of species 𝑖:

X𝑖
𝑐𝑖 𝑗−−→ X𝑗

X𝑖
𝑐𝑖0−−→ ∅

X𝑖
𝑞𝑖 𝑗−−→ X𝑖 + X𝑗

∅
𝛼𝑑
𝜔−−→ 𝐵𝑖1X𝑖1 + · · · + 𝐵𝑖ℓ𝜔X𝑖ℓ𝜔 .

(4.3)

First, species 𝑖 can be converted to species 𝑗 with rate 𝑐𝑖 𝑗𝑥𝑖. Second, species 𝑖 can
spontaneously degrade with rate 𝑐𝑖0𝑥𝑖. These classes of monomolecular transitions,
which either maintain or reduce the total number of molecules in the system, can be
summarized in the matrix𝐶𝑑𝑑 ∈ R𝑛×𝑛, such that𝐶𝑑𝑑

𝑖 𝑗
= 𝑐𝑖 𝑗 and𝐶𝑑𝑑

𝑖𝑖
= −𝑐𝑖0−

∑
𝑗≠𝑖 𝑐𝑖 𝑗 ;

(𝐶𝑑𝑑)T is the matrix governing the associated reaction rate equations [146]. Third,
species 𝑖 participate in autocatalysis at the rate 𝑞𝑖𝑖, or catalysis of species 𝑗 at the
rate 𝑞𝑖 𝑗 . These reactions can be summarized by the matrix 𝑄𝑑 ∈ R𝑛×𝑛≥0 , such that
𝑄𝑑
𝑖 𝑗
= 𝑞𝑖 𝑗 .

Finally, molecules can be produced through a variety of reaction channels, indexed
by𝜔. In the general case, a transcriptional event — a burst of production — simulta-
neously creates molecules of ℓ𝜔 discrete species {𝑖1, ..., 𝑖ℓ𝜔 }. We assume bursts are
described by a Poisson arrival process, with burst frequency 𝛼𝑑𝜔 and the nontrivial
ℓ𝜔-variate joint distribution 𝑝𝑑𝜔 (z) of non-negative burst sizes {𝐵𝑖1 , · · · , 𝐵ℓ𝜔 }. In
other words, 𝑝𝑑𝜔 (z) is well-defined over all non-negative z, but its value is identically
zero whenever any component 𝑧𝑖 > 0, for all 𝑖 ∉ {𝑖1, ..., 𝑖ℓ𝜔 }. The burst frequency
and distribution may vary with gene state 𝑠.
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This formulation includes the trivial case of Poisson point process production of
species 𝑖, for which ℓ𝜔 = 1 and 𝑝𝑑𝜔 (z) = 𝛿𝑖 𝑗 , the degenerate distribution located at
unity for species 𝑖 and zero for all other species.

This mass action model, which tracks molecule counts, can be represented by an
equivalent discrete chemical master equation, which tracks the probability of each
microstate x:

𝜕𝑃(x, 𝑡)
𝜕𝑡

=

𝑛∑︁
𝑖=1

𝑐𝑖0 [(𝑥𝑖 + 1)𝑃(𝑥𝑖 + 1, 𝑡) − 𝑥𝑖𝑃(x, 𝑡)]

+
𝑛∑︁

𝑖, 𝑗=1
𝑐𝑖 𝑗

[
(𝑥𝑖 + 1)𝑃(𝑥𝑖 + 1, 𝑥 𝑗 − 1, 𝑡) − 𝑥𝑖𝑃(x, 𝑡)

]
+

𝑛∑︁
𝑖=1

𝑞𝑑𝑖𝑖 [(𝑥𝑖 − 1)𝑃(𝑥𝑖 − 1, 𝑡) − 𝑥𝑖𝑃(x, 𝑡)]

+
𝑛∑︁

𝑖, 𝑗=1
𝑞𝑑𝑖 𝑗

[
𝑥𝑖𝑃(𝑥 𝑗 − 1, 𝑡) − 𝑥𝑖𝑃(x, 𝑡)

]
+

∑︁
𝜔

𝛼𝑑𝜔

[∑︁
z
𝑝𝑑𝜔 (z)𝑃(x − z, 𝑡) − 𝑃(x, 𝑡)

]
.

(4.4)

For simplicity of notation, species that do not occur in a reaction are elided from the
master equation probability terms.

As in Equation 4.2, this master equation holds even if the rates are time-dependent.
For tractability, we assume only 𝛼𝑑𝜔 and 𝑝𝑑𝜔 can vary over time. Since the form of
these functions is arbitrary deterministic, the dynamics of these variables represent
unspecified macroscopic processes.

The nonnegative continuous variables, denoted by y ∈ R𝑚≥0, represent mesoscopic
concentrations or coarsely-modeled noise sources. We assume that these variables
are governed by Ornstein–Uhlenbeck-type stochastic differential equations:

𝑑y𝑡 = (𝐶𝑐𝑐)Ty𝑡𝑑𝑡 + Q𝑐 (y𝑡)𝑑W𝑡 +
∑︁
𝜔

𝑑L𝜔 (𝑡), (4.5)

where y𝑡 is a realization of the process, W𝑡 is an w-dimensional Brownian motion,
and L𝜔 is a subordinator. For a review of SDEs, we recommend [23, 57, 95, 236,
295, 297, 336].

The matrix 𝐶𝑐𝑐 ∈ R𝑚×𝑚 sets the mean-reversion terms. In other words, a nonzero
entry 𝐶𝑐𝑐

𝑖 𝑗
implies that the level of species 𝑖 is proportional to influx into species

𝑗 . The operator Q𝑐 (y𝑡) : R𝑚≥0 → R
𝑚×w
≥0 sets the level of noise. For simplicity, we
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assume the noise term takes the form of an uncoupled square-root diffusion, such
that w = 𝑚 and Q𝑐 (y𝑡) = diag(𝝈 ⊙ √y𝑡). The symbol ⊙ denotes the elementwise,
or Hadamard, product of two vectors, the square root should be interpreted as
elementwise, and all elements of the constant volatility vector 𝝈 are non-negative.
Although this choice of Q𝑐 is somewhat restrictive, it produces a particularly simple
diffusion tensor Σ:

Σ(y) :=
1
2
Q𝑐 (y)Q𝑐 (y)T =

1
2

diag(𝝈2 ⊙ y), (4.6)

where the square 𝝈2 should be interpreted as elementwise.

We assume that each L𝜔 only includes drift or compound Poisson terms. The drift
terms have the form 𝛼𝑐

𝑖
𝛿𝑖 𝑗 𝑡. To slightly lighten the notation, we can aggregate all

drift terms under 𝜔 = 1, · · · , 𝑚 as {𝛼𝑐1𝑑𝑡, · · · , 𝛼
𝑐
𝑚𝑑𝑡}; some of these entries may be

zero. The compound Poisson terms have the form
∑N𝜔 (𝑡)
𝑘=0 (B𝜔)𝑘 [43], such that N𝜔 (𝑡)

is a Poisson random variable with mean 𝛼𝑐𝜔𝑡 and {(B𝜔)𝑘 } is a set of independent
and identically distributed realizations of the random variable B𝜔. This random
variable has a nontrivial ℓ𝜔-variate joint density 𝑝𝑐𝜔 (z) on R𝑚≥0, with the remaining
𝑚 − ℓ𝜔 dimensions concentrated at zero. We note that this formulation entails a
slight abuse of notation, as 𝜔 is used to index over discrete burst processes as well
as continuous drift and jump components.

This formulation can be reframed as a Fokker-Planck equation [236], which tracks
the probability density of each microstate y:

𝜕𝑃(y, 𝑡)
𝜕𝑡

= −
𝑚∑︁

𝑖, 𝑗=1
𝐶𝑐𝑐𝑖 𝑗

𝜕

𝜕𝑦 𝑗
[𝑦𝑖𝑃(y, 𝑡)] +

1
2

𝑚∑︁
𝑖=1

𝜎2
𝑖

𝜕2

𝜕𝑦2
𝑖

[𝑦𝑖𝑃(y, 𝑡)]

−
𝑚∑︁
𝑖=1

𝛼𝑐𝑖
𝜕𝑃(y, 𝑡)
𝜕𝑦𝑖

+
∑︁
𝜔>𝑚

𝛼𝑐𝜔

[∫
z
𝑝𝑐𝜔 (z)𝑃(y − z, 𝑡)𝑑z − 𝑃(y, 𝑡)

]
.

(4.7)

As above, we assume that only the components of L𝜔 can vary in time.

In addition to these discrete- and continuous-only terms, we need to account for
these components’ interactions. For example, we may want to represent the produc-
tion of a discrete species controlled by a continuous variable, e.g., a time-varying
transcription rate:

∅
𝑦𝑖𝐶

𝑐𝑑
𝑖 𝑗−−−−→ X𝑗 . (4.8)

This reaction has the rate 𝑦𝑖𝐶𝑐𝑑𝑖 𝑗 . This class of reactions can be summarized in the
matrix 𝐶𝑐𝑑 ∈ R𝑚×𝑛≥0 . In other words, this class of reactions contributes the following
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terms to the overall master equation:

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1
𝐶𝑐𝑑𝑖 𝑗

[
𝑦𝑖𝑃(𝑥 𝑗 − 1, y, 𝑡) − 𝑦𝑖𝑃(x, y, 𝑡)

]
. (4.9)

Finally, we may want to represent the production of a continuous species from
a discrete one, e.g., the rapid translation of high-abundance protein from low-
abundance RNA [31]. This class of reactions simply adds a term proportional to
(𝐶𝑑𝑐)Tx 𝑑𝑡 to the expression for 𝑑y𝑡 . The matrix 𝐶𝑑𝑐 ∈ R𝑛×𝑚≥0 contains the relevant
rates, such that 𝐶𝑑𝑐

𝑖 𝑗
is the rate of producing the continuous species 𝑗 from discrete

species 𝑖. Therefore, we append a set of drift-like terms to the Fokker-Planck
equation:

−
𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1
𝐶𝑑𝑐𝑖 𝑗 𝑥𝑖

𝜕𝑃(x, y, 𝑡)
𝜕𝑦 𝑗

. (4.10)

To construct the full master equation, we need to define a system of 𝑁 coupled
equations. To do so, we essentially add Equations 4.2, 4.4, 4.7, 4.9, and 4.10,
replacing all instances of 𝑃 with P(𝑠, x, y, 𝑡). However, to account for differences in
transcription between gene states, we allow the 𝜔-associated terms to vary with 𝑠.
The full master equation is reported in Equation A.1.

4.2.2 Approaches to solution
We have defined a class of master equations. To evaluate likelihoods and statistically
characterize data, we need to calculate the probabilities of observations under a
particular model and set of parameters. There are essentially four approaches to this
problem.

4.2.2.1 Simulation

In principle, we can approximate solutions by simulation, as discussed in Section 5.5.
If 𝑚 = 0, we can use the usual form of Gillespie’s stochastic simulation algorithm
[98] (as in Section 5.5.1); if𝑚 > 0, we can use somewhat more sophisticated schema
(Section 5.5.2). If we perform Nk simulations of a fully discrete system, indexed by
k, the probability 𝑃(𝑠, x) can be approximated by

1
Nk

Nk∑︁
k=1
I ((𝑆, 𝑋1, . . . , 𝑋𝑛)k = (𝑠, 𝑥1, . . . , 𝑥𝑛)) , (4.11)



32

where I is the indicator function and (𝑆, 𝑋1, . . . , 𝑋𝑛)k are the process values at time 𝑡
in the kth realization. Although this method can be used when no other alternatives
exist [110], it converges with the usual Monte Carlo rate of Nk

−1/2 [193], which
is generally unacceptably slow, and impractical even for modest 𝑛. In addition,
the Gillespie approach is fundamentally “coupled”: if we are interested in a subset
of downstream distributions, we need to simulate the entire system, including the
upstream reactions.

4.2.2.2 Matrix algorithms

Instead of considering trajectories, we can exploit the fact that the discrete terms of
the master equation (Equation A.1) can be represented by matrix multiplication:

𝑑P
𝑑𝑡

= 𝐴P

P = 𝑒𝐴𝑡P0,

(4.12)

where 𝐴 is infinite-dimensional and P now contains entries for all 𝑠 and x. By
truncating 𝐴 to a finite-dimensional matrix �̃�, we can obtain a reasonably accurate
approximation to P:

P̃ = 𝑒 �̃�𝑡P̃0. (4.13)

This is the finite state projection (FSP) algorithm [203]. If only the stationary
distribution is of interest, the determination of P̃ is equivalent to the determination
of the nullspace of �̃� [118].

This approach is generic, and works for any combination of reactions. However,
the matrix �̃� tends to be fairly large, and making the procedure tractable often
involves a considerable degree of computational design [304]; in addition, the
matrix operations have cubic time complexity, which is somewhat restrictive. More
fundamentally, the FSP approach retains the “coupling” feature of the stochastic
simulation algorithm: even if we only care about a certain marginal, we may need to
explicitly represent all species and reactions. Finally, the probability distributions are
somewhat challenging to integrate with other stochastic phenomena: for example,
FSP cannot directly represent technical noise that occurs in the sequencing process,
as in Section 4.4, and requires dedicated manipulation of P̃.

4.2.2.3 Exact analysis

In some very narrow cases, the CME can be exactly solved by sheer ingenuity, e.g.,
by using an ansatz for the probability mass function [299]. For example, if we are
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interested in the steady state of the simple birth–death process

∅ 𝛼−→ X
𝛾
−→ ∅, (4.14)

we can write down its master equation

𝑑𝑃(𝑥, 𝑡)
𝑑𝑡

= 𝛼[𝑃(𝑥 − 1, 𝑡) − 𝑃(𝑥, 𝑡)] + 𝛾 [(𝑥 + 1)𝑃(𝑥 + 1, 𝑡) − 𝑥𝑃(𝑥, 𝑡)], (4.15)

and notice that the steady-state probability flux equation

0 = 𝛼[𝑃(𝑥 − 1, 𝑡) − 𝑃(𝑥, 𝑡)] + 𝛾 [(𝑥 + 1)𝑃(𝑥 + 1, 𝑡) − 𝑃(𝑥, 𝑡)] (4.16)

can be satisfied by substituting 𝑃 with the Poisson distribution. For more com-
plicated processes, we can obtain a partial differential equation equivalent to the
master equation (Appendix A) and exactly solve it, either by using an ansatz [31],
a perturbative expansion [301], or somewhat brute-force calculation and judicious
use of special functions [125, 144, 299]. This approach is, however, typically only
practical for some combination of 𝑁 = 2, 𝑛 = 1, or 𝑡 →∞. It is also challenging to
apply systematically: for example, even if 𝑛 = 1 is tractable, 𝑛 > 1 is typically not.

4.2.3 Semi-analytical spectral solution
We would like a more generic strategy. It turns out that the most straightforward
way to evaluate the CME is to almost solve it, obtain a numerically tractable ODE,
then use standard numerical packages to solve this ODE [299].

The master equation is fairly cumbersome and challenging to analyze directly.
Therefore, analysis has to proceed by spectral methods (Section 3.1.3), which recast
the probabilistic master equation into a deterministic partial differential equation
(PDE) with respect to categorical variable 𝑠, discrete spectral variables g, and
continuous spectral variables h. By computing the generating function of both sides
of Equation A.1 (Appendix A), we find that the master equation is equivalent to a
much more compact PDE system:

𝜕G
𝜕𝑡

= 𝐻TG +G ⊙ A(u) + 𝐽 [𝐶u + diag u 𝐷u] . (4.17)

This formulation relies on defining the unified variables encoded in a vector u:

u :=

[
g − 1

h

]
and Jacobian 𝐽𝑠𝑖 =

𝜕𝐺𝑠

𝜕𝑢𝑖
, (4.18)
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as well as unified matrices:

𝐶 :=

[
𝐶𝑑𝑑 +𝑄𝑑 𝐶𝑑𝑐

𝐶𝑐𝑑 𝐶𝑐𝑐

]
and 𝐷 :=

[
𝑄𝑑 𝐶𝑑𝑐

0 1
2diag 𝝈2

]
. (4.19)

By way of analogy, we sometimes use 𝑄𝑐 to indicate the diffusion tensor 1
2diag 𝝈2.

Each entry of the length-𝑁 vector function A consists of the burst and drift terms:

(A)𝑠 = (𝜶𝑑)T𝑠 (F𝑠 (u + 1) − 1) + (𝜶𝑐)T𝑠 (M𝑠 (u) − 1)
:= 𝜶T

𝑠 (M𝑠 (u) − 1).
(4.20)

The vector 𝜶𝑑𝑠 contains the frequencies of all discrete burst processes for state 𝑠.
The first 𝑚 entries of 𝜶𝑐𝑠 contain the continuous species’ drifts in state 𝑠. The
remaining entries contain the corresponding rates of continuous burst processes.
𝜶𝑠 aggregates these quantities. The vector function F𝑠 contains the joint PGFs of
the discrete burst processes, and only depends on the first 𝑛 variables. The vector
function M𝑠 contains the drift terms, as well as the joint MGFs of the continuous
burst processes, and only depends on the last 𝑚 variables. The parameters of the
M𝑠 operator may vary in time.

To obtain the generating function at 𝑡, we apply the method of characteristics. First,
we calculate the characteristics parametrized by the scalar variable s:

𝑇 (s) = 𝑡 − s
𝑑U(s)
𝑑s

= 𝐶U(s) + diag U(s) 𝐷U(s) such that U(s = 0) = u.
(4.21)

This is the “downstream” ODE, which governs abundances in isolation from pro-
duction and regulation.

Therefore, G is governed by the following system of ordinary differential equations:

𝑑G(U(s), 𝑇 (s))
𝑑s

= −𝐻 (𝑇 (s))TG −G ⊙ A(U(s), 𝑇 (s)) := H(U, 𝑇) G. (4.22)

To obtain G at 𝑡, we integrate this system from s = 𝑡 to s = 0. We use G0(U(𝑡)) as
the initial condition, where G0 is the generating function of the initial distribution.
This is the “upstream” ODE, which governs the full generating function.

In the general case, evaluating this system requires two applications of quadrature:
first, solving the 𝑛 + 𝑚-dimensional downstream system to obtain the values of
characteristics U at a set of grid points over [0, 𝑡], and then solving the𝑁-dimensional
upstream system to obtain the value of the generating function.
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4.2.3.1 Implications

The unified treatment of continuous and discrete variables warrants dedicated men-
tion. As discussed above, it represents an application of the Poisson representation;
we can readily interconvert between equivalent continuous and discrete processes.
Although the resulting problems are equally challenging, we can occasionally use
standard results from the study of continuous processes in finance to solve seemingly
unrelated biological problems without performing any new calculations. We use
three case studies to illustrate the capabilities of this approach in Section A.8.3.

Some special cases afford simpler solutions. If 𝐷 ≠ 0, the downstream ODE takes
a Riccati-like form and generally resists exact analysis [200]. However, if 𝐷 = 0,
the system takes the tractable linear form

𝑑U(s)
𝑑s

= 𝐶U(s) := 𝑉−1Λ𝑉U(s), with the solution

U(s) = 𝑒𝐶su = 𝑉𝑒Λs𝑉−1u,
(4.23)

where the columns of 𝑉 contain the eigenvectors of 𝐶. This identity holds only
when all eigenvalues of 𝐶 are distinct. When they are not, U can be obtained
analogously using generalized eigenvectors, which are a combination of polynomial
and exponential functions [280]. Practically, this case only requires one application
of quadrature.

If, in addition, 𝑁 = 1, the upstream ODE reduces to a single integral:

𝜙(𝑡) =
∫ 0

𝑡

𝑑𝜙(U(s), 𝑇 (s))
𝑑s

𝑑s = 𝜙0(U(𝑡)) +
∫ 𝑡

0
A(U(s), 𝑇 (s))𝑑s, (4.24)

where 𝜙 := log𝐺, 𝜙0 = log𝐺0, and the generating function𝐺 is no longer boldfaced
because only a single gene state exists.

Finally, ifA is a linear operator 𝑎1𝑢1+ · · ·+𝑎𝑛+𝑚𝑢𝑛+𝑚, the system is in the drift-only
regime; no bursting occurs. In this case, the system reduces to

𝜙(𝑡) = 𝜙0(U(𝑡)) +
𝑛+𝑚∑︁
𝑖=1

∫ 𝑡

0
𝑎𝑖 (𝑡 − s)𝑈𝑖 (s)𝑑s, (4.25)

where 𝑈𝑖 are the components of U. As each 𝑈𝑖 is, in turn, a weighted sum of 𝑢𝑖,
the second term of the log-generating function is given by a sum of fairly simple
convolutions that scale as

∫ 𝑡

0 𝑎𝑖 (𝑡 − s)𝑒−𝜆 𝑗s𝑑s. This system corresponds to the
constitutive transcription process.
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Finally, in the simplest case, if all eigenvalues of𝐶 are negative, the transient part of
Equation 4.25 vanishes as 𝑡 →∞ and the stationary log-generating function is a lin-
ear combination of 𝑢𝑖. This implies that the discrete distributions of the constitutive
transcription process converge to multivariate independent Poisson [146].

4.3 Challenges of broader model classes
4.3.1 Regulation
This section summarizes some investigations undertaken during the writing of [115]
by G.G., J.J.V., and L.P. This derivation was performed by G.G.

Thus far, we have omitted regulation. We can begin with fairly simple schema of
the following form:

S𝑖
𝑥𝑘𝑅𝑘,𝑖 𝑗−−−−−→ S 𝑗 , (4.26)

i.e., state transitions catalyzed by species X𝑘 . 𝑅𝑘 is a stochastic regulation matrix
analogous to 𝐻. This class of reactions leads to the following partial differential
equation system, quite similar to Equation 4.17:

𝜕G
𝜕𝑡

= 𝐻TG +G ⊙ A(u) + 𝐽 [𝐶u + diag u 𝐷u] +
𝑛∑︁
𝑘=1
(𝑢𝑘 + 1)𝑅T

𝑘

𝜕G
𝜕𝑢𝑘

. (4.27)

As discussed in Section A.7, the coupling of “upstream” and “downstream” degrees
of freedom through the regulation matrices 𝑅𝑘 renders this problem intractable.
Although this class of systems has been studied previously [141, 143, 301], and
considerable ingenuity has been applied to obtain exact solutions, it is as of yet
unclear whether generic strategies for solving regulation problems exist.

4.3.2 Non-Markov processes
This section is based on unpublished revisions to [114] by G.G., S.Y., and L.P. This
theoretical discussion was derived and written by G.G.

In the discrete context, the vector function U is not arbitrary: it “correctly” propa-
gates the initial molecule distribution into the future. In other words, if the initial
condition of Equation 4.22 is degenerate, with G0(u) = 𝛿𝑖 𝑗 (𝑢 𝑗 + 1), there exists a
single molecule of species X𝑖 at 𝑡 = 0. If, in addition, no production occurs and
H = 0, the generating function is trivial, and yields

𝐺 (u, 𝑡) = 𝑈𝑖 (u, 𝑡) + 1, (4.28)

i.e., U is simply the shifted generating function of the system distribution, conditional
on having a single molecule at 𝑡 = 0. In the special case of 𝐷 = 0, the entries of U
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are generalized survival functions:

𝐺 (u, 𝑡) =
∑︁
𝑗

𝑔 𝑗𝑃(𝑥 𝑗 = 1, 𝑡 |𝑥𝑖 = 1, 0)

=
∑︁
𝑗

𝑢 𝑗𝑃(𝑥 𝑗 = 1, 𝑡 |𝑥𝑖 = 1, 0) + 1

= 𝑈𝑖 (u, 𝑡) + 1.

(4.29)

In other words, each 𝑈𝑖 is a weighted sum of 𝑢 𝑗 ; the weights are precisely the
time-dependent conditional distributions 𝑃(𝑥 𝑗 = 1, 𝑡 |𝑥𝑖 = 1, 0).

It turns out that we the formulation is modular: we can use any U that represents
such a conditional distribution to encode non-Markovian downstream dynamics. To
do so, we define an integral operator C with the following non-Markovian cases:

U(u, s) = C(U), such that

C(U)𝑖 = 𝑢𝑖𝐹′𝑖 (s) for degradation and

= 𝑢𝑖𝐹
′
𝑖 (s) +

∫ s

0
𝑈 𝑗 (u, 𝑡∗) 𝑓𝑖 (s − 𝑡∗)𝑑𝑡∗ for conversion to X𝑗 .

(4.30)

In this notation, 𝐹′
𝑖

is the survival function ofX𝑖 and 𝑓𝑖 is the waiting time probability
density function [154]. The variable 𝑡∗ indicates the time at which the reaction fires.
In the Markovian case, the degradation characteristic is identical, but multiple
conversion routes may compete1, yielding

C(U)𝑖 = 𝑢𝑖𝐹′𝑖 (s) +
∑︁
𝑗

∫ s

0
𝑈 𝑗 (u, 𝑡∗) 𝑓𝑖, 𝑗 (s − 𝑡∗)𝑑𝑡∗, (4.31)

where 𝑗 indexes over the products of isomerization. When the reaction network
comprises a directed acyclic graph, Equation 4.30 can be applied to compute char-
acteristics directly2.

Usefully, when the species X𝑖 remains in the system for a deterministic duration 𝜏
before being converted toX𝑗 , we find that its characteristic is given by the remarkably
simple equation

𝑈𝑖 (u, s) = 𝑢𝑖I(s < 𝜏) +𝑈 𝑗 (u, s − 𝜏). (4.32)

Although this approach produces the correct solutions, the simplest way to prove it
is far from clear. In addition, conceptualizing U as a collection of survival functions
is useful when 𝐷 = 0 but misleading when 𝐷 ≠ 0; however, the catalytic case does
not afford a simple solution strategy, and we do not consider it further.
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4.4 Models of the experimental process
This section summarizes the mathematical machinery formalized in [115] by G.G.,
J.J.V., and L.P. G.G. developed this approach as a generalization of the framework
constructed by G.G. in [112] by G.G., M.F., T.C., and L.P., and by G.G. in [107] by
G.G. and L.P.

4.4.1 Snapshot sampling
To rigorously fit transient data, we need to posit just how a snapshot of cells may
capture multiple cell states, such that some states are the progenitors of others. The
solution is not yet clear, and multiple reasonable explanations exist; for example,
we may suppose that the differentiation process “lags” in certain cells (in the vein
of the models of variability proposed in [270] for development and in [220, 245]
for the cell cycle). In other words, all cells are captured at a time 𝑡 since the
beginning of a process, but 𝐻 and A have different time dependence for different
cells. Although such an explanatory model can be instantiated, it may be too
challenging to fit. Further, it does not appear to be compatible with processes that
operate continuously; the choice of 𝑡 becomes somewhat challenging to motivate.

We propose that the simplest model for observations relies on minimal synchro-
nization between the biology and the experimental process. To mathematically
formalize it, we take inspiration from the theory of reactor modeling in chemical
engineering [88, 237]. A cell enters a medium; this entrance triggers a chemical
signal that begins a transient process. The dynamics of this transient process are
only dependent on time since receiving the signal, and identical between cells. After
a delay, the cells exit the medium. In this framework, sequencing is the uniform
random sampling of cells present within this medium. Although this formulation
is admittedly simplistic — it excludes the cell cycle and stochastic driving — it
allows us to take the first steps with a systematic study of using snapshot data to
fit transient stochastic processes. This toy model is numerically tractable, which
is useful for its simulation and characterization, and possesses a stationary state
invariant with the time at which the experiment is performed, which is useful for
biological admissibility and realism.

Therefore, to marginalize over 𝑡, we need to augment the model with an additional
property: the relationship between time along a transient process and the probability
of capturing a cell. In the parlance of reactor engineering, this relationship is given
by the internal-age distribution 𝑓 . The simulations of transient processes in [29, 168]
implicitly adopt this model and assume a particular functional form of 𝑓 . We might
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suppose cells enter the observation window at 𝑡 = 0 and leave it at 𝑡 = 𝑇 , with a Dirac
residence time distribution 𝛿(𝑡 −𝑇) and uniform sampling throughout this window.
The resulting age distribution is uniform, with 𝑓 = 𝑇−1, and formally corresponds
to the ideal plug flow reactor (PFR) architecture [88]. As 𝑇 → ∞, we obtain the
𝑡 → ∞ ergodic limit, if such a limit exists. On the other hand, if 𝑓 → 𝛿(𝑡 − 𝑇), we
recover the instantaneous distribution at time 𝑇 ; this limit formally corresponds to
the batch reactor (BR).

To obtain the generating function for the cells inside a tissue, we represent the
tissue as a reactor, specify its influx and efflux properties, and solve for the internal-
age distribution 𝑓 . This internal-age distribution yields the occupation measure of
the process times, as discussed in [112], and induces the following reactor-wide
generating function:

𝐺 =

∫
𝑡

𝐺 (𝑡) 𝑓 (𝑡)𝑑𝑡, where

𝐺 (𝑡) =
∑︁
𝑠

𝐺𝑠 (𝑡).
(4.33)

We have marginalized over the instantaneous gene state 𝑠 because this variable is
typically not observable.

4.4.2 Droplet encapsulation noise
The generating function 𝐺 describes the biological variability due to molecular
processes, transcriptional driving, and the capture of cells from a reaction medium.
However, single-cell RNA sequencing does not quantify cells — it quantifies bar-
codes. Cells are randomly encapsulated into droplets with barcoded beads; to avoid
the formation of “doublets,” with two cells per droplet, the microfluidic protocols
typically have a fairly low encapsulation rate. If we assume that a droplet may
have either zero or one cells, we obtain the following generating function for the
distribution of RNA on a per-barcode level:

𝐺enc = 𝑝1𝐺 + 𝑝0 = 𝑝𝐺 + (1 − 𝑝) = 𝐺bc(𝐺), (4.34)

where 𝐺bc is the PGF of the Bernoulli distribution, with 𝑝1 = 𝑝 the probability of
capturing a single cell and 𝑝0 = 1 − 𝑝 that of capturing none. Analogously, if we
assume that doublets can occur, and the encapsulation of cells is i.i.d., we find

𝐺enc = 𝑝2𝐺
2 + 𝑝1𝐺 + 𝑝0 = 𝑝2𝐺2 + 2𝑝(1 − 𝑝)𝐺 + (1 − 𝑝)2

= [𝑝𝐺 + (1 − 𝑝)]2 = 𝐺bc(𝐺),
(4.35)
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where 𝐺bc is now the PGF of the binomial distribution. It is straightforward to
extend this to the unconstrained case, with per-cell encapsulation rate 𝜆, and obtain
the analogous expression

𝐺enc = 𝑝0 + 𝑝1𝐺 + 𝑝2𝐺
2 + 𝑝3𝐺

3 + ...
= 𝑒𝜆(𝐺−1) = 𝐺bc(𝐺),

(4.36)

where 𝐺bc is the PGF of the Poisson distribution.

However, even empty droplets typically contain some “background” molecules.
Removing the empty droplets by filtering for cells with relatively high expression, as
well as correcting for the background, is a standard part of sequencing workflows [87,
187, 256, 322, 323]. To model the joint distribution of biological and background
RNA, we need to instantiate a mechanistic hypothesis about its source. The simplest
hypothesis consists of two parts. First, we impose the pseudobulk interpretation of
background: we assume that a fraction of the cells loaded in the library construction
step are lysed, and produce a pool of loose molecules. Next, we assume that these
molecules are free to be encapsulated into the droplets in an i.i.d. fashion. This
implies the Poisson functional form for the distribution of debris entering each
droplet:

𝐺bg = exp

(
𝑐
∑︁
𝑖

𝜇𝑖𝑢𝑖

)
, (4.37)

where 𝑐 is some shared constant that reflects the pool size and the rate of diffusion,
whereas 𝜇𝑖 = 𝜕𝐺

𝜕𝑢𝑖

���
𝑢𝑖=0

is the expectation of species 𝑖 over the entire cell population.
This simplest model assumes that all cells are equally likely to lyse and release their
contents; if this assumption is violated, 𝜇𝑖 needs to be obtained by computing an
expectation with respect to a measure biased toward the less stable cells. Finally,
the full per-droplet distribution of molecules is

𝐺 tot = 𝐺bc(𝐺)𝐺bg(𝐺), (4.38)

i.e., each droplet contains contributions from the encapsulated cells, as well as the
background. With some abuse of notation, we note that the first argument denotes
composition, whereas the second denotes functional dependence.

4.4.3 Library construction and sequencing noise
We cannot observe the biological molecule content of each droplet: we are restricted
to analyzing counts of complementary DNA (cDNA). In a typical dual-index 3′ mi-
crofluidic workflow (e.g., the commercialized 10x chemistry [332]), these cDNA are
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quantified by the following sequence of reactions. First, a synthetic primer captures
a poly(A) stretch in RNA, which may be an endogenous molecule or a synthetic
tag [268]. The primer contains a poly(dT) oligonucleotide, a sequencing primer, a
cell barcode, and a unique molecular identifier (UMI). Next, reverse transcriptase
(RTase) attaches to the RNA-primer complex and synthesizes the complementary
strand. When the first strand is complete, a template-switching oligonucleotide
(TSO) attaches to the end, allowing RT to synthesize the second strand of cDNA.
After library construction, the droplet emulsion is broken, producing a pool of long
cDNA; polymerase chain reaction (PCR) is used to amplify this pool. The long
cDNA molecules are enzymatically fragmented, and another sequencing primer is
attached at the end of the molecule that formerly contained the TSO. Finally, another
round of PCR amplifies the pool and appends sample indices and Illumina adaptors
to both sides of the molecule. The pool of cDNA is loaded onto a sequencing ma-
chine and sequenced from both sides, producing two reads. One read contains the
barcode and UMI bases, whereas the other contains partial information about the 3′

end of the molecule, beginning at the fragmentation site. This sequence of reactions
represents the ideal-case scenario, and the products may well include artifacts due
to off-target reactions [1].

To understand the effect of technical variability on the per-barcode distributions, we
need to summarize this workflow in a mechanistic model. First, we assume that the
library preparation reactions occur in an i.i.d. fashion relative to each RNA molecule
in the droplet, allowing us to construct a separate description of technical noise for
each discrete molecular species indexed by 𝑖. At this stage, we omit the modeling
of continuous species. As we quantify the number of UMIs, we can considerably
simplify the description by splitting the workflow into the initial cDNA synthesis
and all downstream steps. For the cDNA synthesis, we may choose one of two
models:

X𝑖 → X𝑖 + T𝑖 or

X𝑖 → T𝑖 .
(4.39)

In the first model, the formation of a UMI-tagged cDNA T𝑖 is non-sequestering, and
the template RNA X𝑖 can participate in further cDNA synthesis. In other words,
a single RNA molecule can produce more than one cDNA with distinct UMIs. In
the second model, the cDNA synthesis is sequestering, and each RNA can template
at most one cDNA with a particular UMI. For the downstream steps, if we assume
the PCR and sequencing steps produce results that are reasonably faithful to their
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templates, we are essentially restricted to a single model:

T𝑖 → ∅. (4.40)

In other words, the sequence of steps after the formation of cDNA T𝑖 may lose
some UMIs, but it cannot create them. Aggregating these steps, we find the shifted
per-molecule generating function for technical noise:

𝐺∗𝑡𝑖 = 𝐺 𝑡𝑖 − 1 = 𝑒𝜆𝑖 (𝑔𝑖−1) − 1 = 𝑒𝜆𝑖𝑢𝑖 − 1 in the non-sequestering case and

= 𝑝𝑖𝑔𝑖 + (1 − 𝑝𝑖) − 1 = 𝑝𝑖𝑢𝑖 in the sequestering case,
(4.41)

where 𝜆𝑖 = 𝜆𝑖,𝑐𝑝𝑖,𝑝 and 𝑝𝑖 = 𝑝𝑖,𝑐𝑝𝑖,𝑝. 𝜆𝑖,𝑐 is the overall Poisson rate of the catalytic
production of cDNA T𝑖 with distinct UMIs, 𝑝𝑖,𝑐 is the probability of producing a
single cDNA T𝑖 in a non-catalytic fashion, and 𝑝𝑖,𝑝 is the probability of retaining a
molecule of T𝑖 through the PCR steps. It is straightforward to use a Taylor expansion
to observe that the limit 𝜆𝑖,𝑐 ≪ 1 yields the Bernoulli form: if non-sequestering
sequencing is relatively slow or inefficient, the probability of obtaining multiple
cDNA from a single RNA is low, and the mathematically simpler Bernoulli noise
form approximately holds.

Using the properties of PGFs, we find that the overall generating function is given
by a simple composition, plugging in 𝐺 𝑡𝑖 for 𝑔𝑖:

𝐺 tot,t = 𝐺 tot(G∗𝑡 ), (4.42)

where we use the 𝐺 tot(u) parametrization, and each entry of G∗𝑡 contains the shifted
generating function 𝐺∗

𝑡𝑖
for a particular species 𝑖.

Finally, the reads associated with each cDNA T are not always uniquely identifiable:
for example, the sequence content is typically sufficient to identify the gene, but if
a read only covers an exonic portion of the gene, it is impossible to distinguish
whether or not the original molecule has been spliced [80]. To correctly represent
this ambiguity, we need to transform the arguments of the generating function from
a length-𝑛 vector to a length 𝓃-vector, such that 𝓃 is the total number of mutually
distinguishable classes of molecules. The simplest form of this transformation is a
linear categorical partition:

g = 𝒫𝑎
𝓰, (4.43)

where𝒫𝑎 is an 𝑛×𝓃 ambiguity matrix with𝒫𝑎
𝑖,𝒾

giving the probability of molecule
𝑖 being identifiable in the equivalence class 𝒾. We assume that each molecule can be
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assigned to at least one class, implying
∑
𝒾𝒫

𝑎
𝑖,𝒾

= 1. In principle, only the constraint∑
𝒾𝒫

𝑎
𝑖,𝒾
≤ 1 is mandatory, but the loss of molecules can be equivalently reframed

as a technical noise component in G∗𝑡 .

We discuss the general case of this model component in Section B.2. In summary,
the entries of 𝒫𝑎 are challenging to identify, but it may be possible to exploit
genomic information, polymer physics, and orthogonal long-read sequencing data
to construct it from first principles. This formulation admits several special cases.
For example, if we cannot distinguish any distinct species at all and can only quantify
the total RNA content, 𝓃 = 1 and𝒫𝑎

𝑖,𝒾
= 1 for each 𝑖. Then we yield

(g)𝑖 = ℊ for all 𝑖 and

𝐺 (ℊ) = 𝐺
©«

ℊ

...

ℊ


ª®®®¬ .

(4.44)

On the other hand, if all species are perfectly identifiable, we yield 𝓃 = 𝑛 and
𝒫
𝑎 = 𝐼𝑛, the 𝑛-dimensional identity matrix. If, say, we have 𝑛 = 2 but 𝓃 = 3, as

in the case of nascent, mature, and ambiguous molecules described in [80, 168], we
yield

𝐺 (𝓰) = 𝐺
([
𝒫
𝑎
1,1ℊ1 +𝒫𝑎

1,3ℊ3

𝒫
𝑎
2,2ℊ2 +𝒫𝑎

2,3ℊ3

])
, (4.45)

where ℊ1 and ℊ2 correspond to two unambiguously identifiable species, whereas
ℊ3 corresponds to ambiguous cDNA which may have come from either source. In
the general case, we find

u = 𝒫𝑎
𝓰 − 1

= 𝒫𝑎 (𝓾 + 1) − 1

= 𝒫𝑎
𝓾

= G𝑎 (𝓾) − 1 := G∗𝑎 (𝓾),

(4.46)

where each entry of the vector G𝑎 contains the generating function of the rele-
vant categorical distribution that governs how species 𝑖 is parsed as one of the 𝓃
identifiable species:

(G𝑎 (𝓾))𝑖 =
∑︁
𝒾

𝒫
𝑎
𝑖,𝒾ℊ𝒾 . (4.47)

Therefore, the overall GF takes the following form:

𝐺 tot,ta = 𝐺 tot,t(G∗𝑎 (𝓾)). (4.48)
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4.5 A unified framework for scRNA-seq stochasticity
We can summarize this entire theoretical machinery for Markovian processes as
follows:

𝐺 tot,ta(𝓾) = 𝐺bc (𝐺 (𝓾))𝐺bg(𝐺), where

𝐺 (𝓾) =
∫
𝑡

𝑓 (𝑡)
∑︁
𝑠

𝐺𝑠 (𝓾, 𝑡)𝑑𝑡,

𝑑G
𝑑s

= −𝐻T(𝑡 − s)G −G ⊙ A(U(𝓾, s), 𝑡 − s), and

𝑑U
𝑑s

= 𝐶U + diag U 𝐷U with the initial condition

U(s = 0) = G∗𝑡 (𝒫𝑎
𝓾).

(4.49)

In the non-Markovian case, we use the methods in Section 4.3.2 to compute U.

4.6 Commonly encountered processes
This section is a brief summary of the supplement of [106] by G.G. and L.P. G.G.
performed the derivations.

Although this framework is quite generic, we typically focus on the stationary distri-
butions of a small number of two-stage memoryless processes. These processes are
hypotheses which attempt to represent the joint nascent and mature distributions in
single-cell RNA sequencing datasets. These models have 𝑁 = 1, 𝑛 = 2, and 𝑚 = 0,
and may optionally be endowed with technical noise. Here, we report their kinetics
and distributions.

4.6.1 Constitutive model
The constitutive transcription model is the simplest nontrivial two-stage representa-
tion of RNA generation and processing. It includes the following kinetics:

∅ 𝑘−→ X𝑁
𝛽
−→ X𝑀

𝛾
−→ ∅, (4.50)

where 𝑘 is the transcription rate, 𝛽 is the splicing rate, and 𝛾 is the degradation rate.
This yields the operators and characteristics

u =

[
𝑢𝑁

𝑢𝑀

]
𝐶𝑑𝑑 =

[
−𝛽 𝛽

0 −𝛾

]
U =

[
𝑈𝑁

𝑈𝑀

]
=

[
𝑢𝑁𝑒

−𝛽s + 𝑢𝑀 𝛽

𝛽−𝛾 (𝑒
−𝛾s − 𝑒−𝛽s)

𝑢𝑀𝑒
−𝛾s

]
A(u) = 𝑘𝑢𝑁 ,

(4.51)
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with all other operators set to zero. If 𝛾 = 𝛽, the system degenerates and yields
𝑈𝑁 (u, s) = 𝑒−𝛾s(𝑢𝑁 + 𝛾𝑢𝑀s). This formulation induces the following stationary
generating function:

log𝐺 (u) =
∫ ∞

0
A(U(s))𝑑s = 𝑘

∫ ∞

0

[
𝑢𝑁𝑒

−𝛽s + 𝑢𝑀 𝛽
𝛽 − 𝛾 (𝑒

−𝛾s − 𝑒−𝛽s)
]
𝑑s.

= 𝑢𝑁
𝑘

𝛽
+ 𝑢𝑀

𝑘

𝛾
.

(4.52)

The joint distribution of this model is bivariate Poisson:

𝑃(𝑥𝑁 , 𝑥𝑀) = 𝑃Poiss(𝑥𝑁 ; 𝜇𝑁 ) × 𝑃Poiss(𝑥𝑀 ; 𝜇𝑀), (4.53)

where 𝜇𝑁 = 𝑘/𝛽 and 𝜇𝑀 = 𝑘/𝛾. At steady state, we can set 𝑘 to unity with no loss
of generality.

4.6.2 Bursty model
The two-stage bursty transcription model includes the following kinetics [261]:

∅ 𝑘−→ 𝐵 × X𝑁
𝛽
−→ X𝑀

𝛾
−→ ∅, (4.54)

with stochastic burst sizes 𝐵 drawn from a geometric distribution with scale 𝑏:

u =

[
𝑢𝑁

𝑢𝑀

]
𝐶𝑑𝑑 =

[
−𝛽 0
𝛽 −𝛾

]
U =

[
𝑈𝑁

𝑈𝑀

]
=

[
𝑢𝑁𝑒

−𝛽s + 𝑢𝑀 𝛽

𝛽−𝛾 (𝑒
−𝛾s − 𝑒−𝛽s)

𝑢𝑀𝑒
−𝛾s

]
A(u) = 𝑘

[
1

1 − 𝑏𝑢𝑁
− 1

]
.

(4.55)

This formulation induces the following stationary generating function:

log𝐺 (u) =
∫ ∞

0
A(U(s))𝑑s = 𝑘

∫ ∞

0

[
1

1 − 𝑏𝑈𝑁 (u, s)
− 1

]
𝑑s. (4.56)

This integral is not available in closed form, but it is easy to show that the nascent
marginal has negative binomial distribution with shape 𝑘/𝛽 and scale 𝑏. At steady
state, we can set 𝑘 to unity with no loss of generality.

4.6.3 Extrinsic noise model
The extrinsic transcription model accounts for non-Poisson statistics by proposing
that the transcription rate varies between cells3. It includes the following kinetics:

∅ 𝑘 ∼ 𝐾−−−−→ X𝑁
𝛽
−→ X𝑀

𝛾
−→ ∅, (4.57)
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where 𝑘 is the transcription rate drawn from a gamma distribution with shape 𝜈 and
scale 𝜃, 𝛽 is the splicing rate, and 𝛾 is the degradation rate. This yields the operators
and characteristics

u =

[
𝑢𝑁

𝑢𝑀

]
𝐶𝑑𝑑 =

[
−𝛽 𝛽

0 −𝛾

]
U =

[
𝑈𝑁

𝑈𝑀

]
=

[
𝑢𝑁𝑒

−𝛽s + 𝑢𝑀 𝛽

𝛽−𝛾 (𝑒
−𝛾s − 𝑒−𝛽s)

𝑢𝑀𝑒
−𝛾s

]
A(u) = 𝑘𝑢𝑁 ,

(4.58)

with all others set to zero. This formulation induces the constitutive stationary
generating function conditional on a particular value of 𝑘:

log𝐺 (u|𝑘) = 𝑢𝑁
𝑘

𝛽
+ 𝑢𝑀

𝑘

𝛾
; marginalizing, we find

𝐺 (u) =
∫
𝐾

𝐺 (u|𝑘) 𝑓𝐾 (𝑘)𝑑𝑘

=

∫ ∞

0
𝑒
𝑘

(
𝑢𝑁

1
𝛽
+𝑢𝑀 1

𝛾

)
𝑓𝐾 (𝑘)𝑑𝑘

= 𝑀𝐾

(
𝑢𝑁

1
𝛽
+ 𝑢𝑀

1
𝛾

)
=

(
1

1 − 𝑢𝑁 𝜃𝛽 − 𝑢𝑀
𝜃
𝛾

)𝜈
,

(4.59)

where the fourth line follows from recognizing the third line is the moment-
generating function of the mixing distribution 𝑓𝐾 , evaluated at a particular argument.

The joint distribution of this model is bivariate negative binomial [83]:

𝑃(𝑥𝑁 , 𝑥𝑀) =
Γ(𝜈 + 𝑥𝑁 + 𝑥𝑀)
Γ(𝜈) 𝑥𝑁 !𝑥𝑀!

𝜈𝜈𝜇
𝑥𝑁
𝑁
𝜇
𝑥𝑀
𝑀

(𝜈 + 𝜇𝑁 + 𝜇𝑀)𝜈+𝑥𝑁+𝑥𝑀
, (4.60)

where 𝜇𝐾 = 𝜈𝜃, 𝜇𝑁 = 𝜇𝐾/𝛽, and 𝜇𝑀 = 𝜇𝐾/𝛾. In addition, each marginal follows
the negative binomial distribution with shape 𝜈 and the corresponding mean. At
steady state, we can set 𝜃 to unity with no loss of generality.

4.6.4 Technical noise models
To compute the distributions under the sequestering Bernoulli model of library
construction, we make the substitutions

𝑢𝑁 ← 𝑝𝑁𝑢𝑁

𝑢𝑀 ← 𝑝𝑁𝑢𝑀 .
(4.61)
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Model 𝜇𝑁 𝜇𝑀 𝐹′
𝑁

𝐹′
𝑀

Cov𝑁𝑀
Constitutive 1

𝛽
1
𝛾

0 0 0
Bursty 𝑏

𝛽
𝑏
𝛾

𝑏
𝑏𝛽

𝛽+𝛾
𝑏2

𝛽+𝛾
Extrinsic 𝜈

𝛽
𝜈
𝛾

1
𝛽

1
𝛾

𝜈
𝛽𝛾

Table 4.1: Lower moments of the three common models without technical noise.

Model 𝜇𝑁 𝜇𝑀 𝐹′
𝑁

𝐹′
𝑀

Cov𝑁𝑀
Constitutive 𝜆𝑁

𝛽
𝜆𝑀
𝛾

𝜆𝑁 𝜆𝑀 0

Bursty 𝑏𝜆𝑁
𝛽

𝑏𝜆𝑀
𝛾

𝜆𝑁 (1 + 𝑏) 𝜆𝑀

(
1 + 𝑏𝛽

𝛽+𝛾

)
𝑏2𝜆𝑁𝜆𝑀
𝛽+𝛾

Extrinsic 𝜈𝜆𝑁
𝛽

𝜈𝜆𝑀
𝛾

𝜆𝑁

(
1 + 1

𝛽

)
𝜆𝑀

(
1 + 1

𝛾

)
𝜈𝜆𝑁𝜆𝑀
𝛽𝛾

Table 4.2: Lower moments of the three models under Poisson noise.

To compute the distributions under the non-sequestering Poisson model of library
construction, we make the substitutions

𝑢𝑁 ← 𝑒𝜆𝑁𝑢𝑁 − 1

𝑢𝑀 ← 𝑒𝜆𝑀𝑢𝑀 − 1.
(4.62)

4.6.5 Moment identities
By differentiating the generating functions, it is straightforward to obtain the lower
moments of the resulting distributions (Section 3.1.3). In Tables 4.1 and 4.2, we
report the lower moments for the underlying biological distributions and the noise-
corrupted distributions. The variances are reported in terms of the shifted Fano
factor 𝐹′

𝑖
:= 𝜎2

𝑖
/𝜇𝑖 − 1, which produces the most compact representations.
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C h a p t e r 5

COMPUTATIONAL CONSIDERATIONS

5.1 Key challenges
The generating function procedure described in Chapter 4 offers some useful ad-
vantages: under some fairly restrictive, but physically realistic assumptions, it lets
us evaluate joint and marginal distributions by computing integrals and inverse
Fourier transforms. These distributions are approximate. The integrals are typically
intractable and require numerical quadrature, which is computationally intensive
and inexact. However, even when analytical solutions are available, some error is
introduced by truncation: the probabilities are evaluated on a 𝑁 × 𝔰1 × · · · × 𝔰𝑛 grid
of total size 𝔰 = 𝑁

∏
𝑖 𝔰𝑖, where each 𝔰𝑖 is a non-negative integer that represents the

species-specific grid dimension. The grid is restricted to have a total probability that
sums to unity; therefore, errors arise when a significant portion of the probability
mass lies outside the evaluation bound.

To obtain accurate estimates, we need a sufficiently large grid. Here, a more
formidable challenge arises: if we seek the generating function for a fairly large
number of species, increasing the grid grows 𝔰 exponentially in 𝑛. This problem
grows more acute, and lowers the efficiency, when the number of cells Nc ≪ 𝔰.
This limit is easy to achieve: for example, if we have 𝑁 = 2, 𝑛 = 3, and a very
modest 𝔰𝑖 = 10 for all three species, we yield 𝔰 = 2, 000, which is comparable to
a moderate to high-abundance cell type in a single-cell dataset. In other words, if
we have Nc = 1, 000 cells, we generate 2,000 probabilities, then throw away more
than half, because the computation of probabilities is coupled through the Fourier
transform.

This problem is by no means restricted to generating function methods. Finite state
projection also requires evaluating a grid of probabilities and discarding a large
fraction of the computed values: as the observed states are coupled to non-observed
ones, their probabilities are mathematically related. We are perhaps justified in
saying that this problem is intrinsic to discrete distributions more broadly. Even the
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simplest distributions on N0 implicitly require recursion:

𝑃(𝑥; 𝜇) = 1
𝑥!
𝜇𝑥𝑒−𝜇 =

𝜇

𝑥
𝑃(𝑥 − 1; 𝜇) for Poisson and

𝑃(𝑥; 𝜃) =
(
𝜃

1 + 𝜃

)𝑥 (
1

1 + 𝜃

)
=

(
𝜃

1 + 𝜃

)
𝑃(𝑥 − 1; 𝜃) for geometric.

(5.1)

On one hand, it is somewhat obvious that we need to multiply 𝑥 factors to compute
𝑥! or 𝑝𝑥 . On the other, it reflects a profoundly important statistical property: the
evaluation time for the likelihood of a dataset under the Poisson model is a function
of the highest value, 𝔰, rather than the dataset size Nc, because we can “recycle”
probabilities for any observed 𝑥 < 𝔰. Even if Nc is small, a large 𝔰 will create
problems in evaluation. From this perspective, we may reasonably say that the
foundation of discrete probability was laid by Bernoulli, Poisson, and de Moivre
[266], but made practical by Stirling [78] and consequent work on the approximation
of special functions [188]. For the Poisson distribution,

log 𝑃(𝑥; 𝜇) = − log Γ(𝑥 + 1) + 𝑥 log 𝜇 − 𝜇. (5.2)

If log Γ can be evaluated reasonably efficiently throughout its domain, this approach
breaks the tyranny of recursion and removes the dependence on 𝔰.

In sum, despite the generating function methods’ advantages, they have fundamental
limitations: integrals are typically intractable, and we are forced to evaluate them
on a grid of spectral coordinates. In this section, we outline some strategies for
implementing or bypassing these challenges.

5.2 Special function approximations
This section summarizes the content of [104] by G.G. and L.P. The special function
approximations were conceptualized, designed, and implemented by G.G.

As discussed in Section 4.6.2, the bivariate PMF of the bursty model is not available
in closed form, because the integral in Equation 4.56 is not analytically tractable.
Therefore, if we would like to evaluate this PMF, the vast majority of the computa-
tional burden involves numerically approximating this integral by quadrature.

We can eliminate quadrature altogether by approximating A(U(s)) = 1
1−𝑏𝑈𝑁

− 1
by a series and analytically integrating the terms over (0,∞). We have set 𝑘 to
unity with no loss of generality at steady state. This function affords the following
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expansions:

1
1 − 𝑏𝑈𝑁

− 1 =

∞∑︁
n=1

1
2n+1 (1 + 𝑏𝑈𝑁 )

n − 1
2

whenever |1 + 𝑏𝑈𝑁 | < 2 and

= −
∞∑︁

n=0

1
(𝑏𝑈𝑁 )n

whenever |𝑏𝑈𝑁 > 1|.
(5.3)

The first line reports the Taylor expansion about −1, whereas the second reports
the Laurent expansion. This choice of expansion produces an overlapping region
of convergence; if we had selected, for instance, the simpler Taylor expansion∑∞

n=0(𝑏𝑈𝑁 )n, integrals up to s such that |𝑏𝑈𝑁 (u, s) | = 1 would diverge. We
choose 𝔲 = 1

2𝑏 (1 +
√

3) as the |𝑈𝑁 | threshold for switching from the inner Taylor
approximation to the outer Laurent approximation, as it maximizes the distance
from the bounds of the region of convergence for non-positive complex u (Figure
5.1a).

All positive and negative integer powers of 𝑈𝑁 have closed-form antiderivatives.
We can exploit this property as follows. First, we compute all threshold values
of s such that |𝑈𝑁 (u, s) | = 𝔲 using numerical root-finding. Next, we partition
the domain s ∈ [0,∞) into disjoint sets of intervals {S𝑇 } and {S𝐿}, such that
|𝑈𝑁 (u, s) | < 𝔲 ∀ s ∈ S𝑇 and |𝑈𝑁 (u, s) | ≥ 𝔲 ∀ s ∈ S𝐿 . The form of 𝑈𝑁 guarantees
that there is are at most two domains in each set, and at least one Taylor domain S𝑇 .

Next, we calculate the antiderivatives of the powers of𝑈𝑁 . For 𝛽 = 𝛾, we find

𝑇n(s) :=
∫
𝑈𝑁 (u, s)n𝑑s = −

𝑒n𝑢𝑁 /𝑢𝑀𝑢n
𝑀

𝛾n1+n Γ

(
1 + n,

n
𝑢𝑀
(𝑢𝑁 + 𝛾𝑢𝑀s)

)
𝐿n(s) =

∫
𝑈𝑁 (u, s)−n𝑑s = −𝑒

n𝑢𝑁 /𝑢𝑀 (−1)n
𝛾𝑢n

𝑀
n1−n Γ

(
1 − n,− n

𝑢𝑀
(𝑢𝑁 + 𝛾𝑢𝑀s)

)
.

(5.4)

Per Equation 3.18, 𝑇n can be computed by an sum of elementary functions. Sim-
ilarly, 𝐿n can be computed by the sum of a single exponential integral and several
elementary functions.
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For the non-degenerate case 𝛽 ≠ 𝛾, we find

𝑧 :=
(
1 − (𝛽 − 𝛾)𝑢𝑁

𝛽𝑢𝑀

)
𝑒(𝛾−𝛽)s

𝑇n(s) = −
(𝛽 − 𝛾)𝑒𝛾s

𝛽𝛾n𝑢𝑀
𝑈1+n
𝑁 2𝐹1

(
1, 1 + 𝛽n

𝛽 − 𝛾 ; 1 + 𝛾n
𝛽 − 𝛾 ; 𝑧

)
= − (𝛽 − 𝛾)𝑒𝛾s

𝛽𝛾n𝑢𝑀 (1 − 𝑧)1+n
𝑈1+n
𝑁 2𝐹1

(
−n,

𝛾n
𝛽 − 𝛾 ; 1 + 𝛾n

𝛽 − 𝛾 ; 𝑧
)

𝐿n(s) = −
n(𝛽 − 𝛾)𝑒𝛾s

𝛽𝛾𝑢𝑀 (1 − 𝑧)1−n𝑈
1−n
𝑁 2𝐹1

(
n,− 𝛾n

𝛽 − 𝛾 ; 1 − 𝛾n
𝛽 − 𝛾 ; 𝑧

)
.

(5.5)

Per Equation 3.21, 𝑇𝑛 can be computed by a sum of elementary functions. Such
a decomposition is not available for 𝐿𝑛. For completeness, we note that the an-
tiderivatives in Equations 5.4 and 5.5 are not well-defined when 𝑢𝑀 = 0, which is
the trivial negative binomial case that does not require approximation.

Next, we truncate the summation in Equation 5.3 to upper limits N𝑇 and N𝐿 and
compute the weights of each𝑈n

𝑁
term:

𝑤𝑇,n = 𝑏n
N𝑇∑︁
𝑘=n

1
2𝑘+1

(
𝑘

n

)
𝑤𝐿,n = 𝑏−n.

(5.6)

Next, we obtain the approximations for the intervals:∫
𝑆𝑇

[
1

1 − 𝑏𝑈𝑁
− 1

]
𝑑s ≈

N𝑇∑︁
n=1

𝑤𝑇,n [𝑇n(sup 𝑆𝑇 ) − 𝑇n(inf 𝑆𝑇 )]∫
𝑆𝐿

[
1

1 − 𝑏𝑈𝑁
− 1

]
𝑑s ≈

N𝐿∑︁
n=0

𝑤𝐿,n [𝐿n(sup 𝑆𝐿) − 𝐿n(inf 𝑆𝐿)] .
(5.7)

As shown in Figure 5.1b, even low-order approximations can accurately recapitulate
distribution shapes. To quantify the performance as a function of approximation
order, we used a variant of the Kolmogorov-Smirnov distance. As the generating
function is not guaranteed to produce a true PMF, probabilities can be negative and
this distance can exceed 1. We find that the error is largely controlled by the Taylor
approximation order (Figure 5.1c), whereas the runtime is largely controlled by the
Laurent approximation order (Figure 5.1d). By decreasing the Laurent order and
increasing the Taylor order, we can improve the time performance while keeping the
error fairly low.
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Figure 5.1: The special function approximation procedure for the two-species bursty
model.
a. Taylor and Laurent approximation criterion (orange: approximations’ common
region of convergence; purple: threshold value of |𝑈𝑁 |).
b. Comparison of marginal mature copy number distributions for a range of approxi-
mation orders (#, # tuple and plot location: Laurent and Taylor approximation order;
gray: histogram from 105 stochastic simulations; red line: distribution calculated
from approximation; 𝑏 = 19, 𝛽 = 𝛾 = 0.4).
c. Kolmogorov-Smirnov error between quadrature- and expansion-based joint dis-
tributions for 2,500 𝛽 = 𝛾 parameter sets on a uniform grid with log10 𝑏 ∈ [0.1, 2]
and log10 𝛾 ∈ [−1, 1], calculated for combinations of Taylor and Laurent orders up
to 7 (black point: single parameter set; uniform jitter added).
d. Runtimes to compute approximations in c (black point: single parameter set
computed using expansions; orange point: single parameter set computed using
numerical quadrature; uniform jitter added).
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As it stands, this approach is unsuited for large-scale computation. The method
essentially substitutes integration with the calculation of special functions, which
is helpful if these special functions can be easily approximated. We developed a
bespoke algorithm for the exponential integral to implement the degenerate case
𝛽 = 𝛾 case, and did not implement the 𝛽 ≠ 𝛾 case. It appears unlikely that useful
approximations are forthcoming for the considerably more complicated hyperge-
ometric function. In addition, in spite of runtime improvements, the procedure
inherits the usual reliance on dense grid sampling (Section 5.1).

Nevertheless, the mathematical approach has some useful lessons for the develop-
ment of solvers. With extensive prior understanding of the behaviors of functions
and distributions, it is possible to develop approximators that take advantage of
their properties, optimizing for features of interest while discarding others. These
approximators do not generalize, and require considerable up-front work, but can
outperform more naïve approaches for certain purposes.

5.3 Neural approximations
This section summarizes the content of [111] by G.G.★, M.C.★, T.C., and L.P. The
MMNB and KWR approximations were conceptualized and designed by G.G. The
nnNB approximation was conceptualized by G.G. and designed by M.C. The DR
approximation was conceptualized and designed by M.C. All approximations were
implemented by M.C. The quadrature methods were designed and implemented by
G.G.

We apply these lessons to develop a solver that bypasses the grid evaluation proce-
dure, taking inspiration from the discussion of the Stirling approximation in Section
5.1 to develop an approximator for the bursty system (Section 4.6.2). First, we
recall that the nascent RNA distribution 𝑃(𝑥𝑁 ) is negative binomial. To compute
the probability of a given microstate, we can apply the definition of conditional
probability to find 𝑃(𝑥𝑀 , 𝑥𝑁 ) = 𝑃(𝑥𝑁 )𝑃(𝑥𝑀 |𝑥𝑁 ).

This conditional is, of course, not available in closed form. Nevertheless, we have
a qualitative understanding of its properties: 𝑃(𝑥𝑀 |𝑥𝑁 ) is unimodal, overdispersed
relative to Poisson, and supported on N0. Thus, we may be able to construct an
approximation �̂�(𝑥𝑀 ; Θ̂) ≈ 𝑃(𝑥𝑀 |𝑥𝑁 ). To ensure that �̂� is in a reasonable class
of approximators, we require it to have the qualitative properties of 𝑃(𝑥𝑀 |𝑥𝑁 ). To
ensure that it improves the computational tractability of the problem, we require that
it be a closed-form parametric distribution that can be computed in a non-recursive
way for any 𝑥𝑀 . The challenge is, then, to construct such a �̂� and to produce a
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mapping from Θ = {𝑥𝑁 , 𝑏, 𝛽, 𝛾} to Θ̂.

The most obvious candidate for an approximator is �̂� = 𝑃NB, which has the correct
distributional support and shape. It remains to specify the map F : Θ → Θ̂. The
conditional moments of the system are intractable. However, we know that those of
the bivariate lognormal distribution are tractable; this five-parameter law (Equation
3.29) can be specified by defining the expectations, variances, and correlation of the
two dimensions (Equations 3.27 and 3.30). If we proceed in this direction, we find
that the conditional distribution is given by Equation 3.31, which is not defined at
𝑦1 = 0 but produces a finite value elsewhere. Therefore, by noting that the lognormal
distribution is unimodal, right-skewed, and has a strictly positive support, we can,
in principle, obtain a moment-matched negative binomial (MMNB) approximation
for the conditional distribution:

�̂�(𝑥𝑀) = 𝑃NB(𝑥𝑀 ; �̂�, �̂�). (5.8)

First, we compute the parameters for the approximating bivariate lognormal distri-
bution by applying Equations 3.27 and 3.30 to the moments in Table 4.1. Given
this law, we compute the parameters (�̂�𝑙 and �̂�𝑙) and moments (�̂� and �̂�) of the
conditional lognormal distribution at 𝑦1 = 𝑥𝑀 + 1 using Equations 3.31 and 3.26.
We shift the argument to ensure the conditional is well-defined for 𝑥𝑀 = 0. Next,
we calculate the shape parameter �̂� using the following identity:

�̂� =
�̂�2

�̂�2 − �̂�
. (5.9)

To ensure the approximating conditional distribution is well-defined, we use Equa-
tion 5.8 only when �̂� only when �̂�2 > �̂�; otherwise, we fall back to

�̂�(𝑥𝑀) = 𝑃Poiss(𝑥𝑀 ; �̂�). (5.10)

This procedure comprises the function F used to convert 𝑥𝑁 and biophysical pa-
rameters to the parameters of the approximating distribution.

With this coarse approximation, we can produce PMFs that roughly recapitulate the
qualitative properties of the true PMF. The probabilities so obtained are unsuited to
the computation of data likelihoods. Taking a broader view, we are part of the way
to a usable approximation. It seems reasonable to suppose that we can get further
by making minor corrections to the MMNB procedure.

Neural networks are good function approximators, and have previously been used
to summarize the dynamics of physical systems [47, 179]. We take inspiration
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from this approach to propose two improvements. First, we can use the procedure
described above, correcting the conditional lognormal moments �̂� and �̂�2:

�̂�∗ = �̂�𝑐𝜇 s.t. 𝑐𝜇 = 𝑠1
(
𝐶1 − 𝐶−1

1

)
+ 𝐶−1

1

(�̂�∗)2 = �̂�2𝑐𝜎2 s.t. 𝑐𝜎2 = 𝑠2

(
𝐶2 − 𝐶−1

2

)
+ 𝐶−1

2 ,
(5.11)

where 𝑠1, 𝑠2 ∈ (0, 1) are variables output by a neural network function F of Θ,
whereas 𝐶1 and 𝐶2 are global (Θ-independent) scaling factors learned by the net-
work. The corrected parameters �̂�∗ and �̂�∗ so computed can be transformed into �̂�∗

using Equation 5.9, then substituted into Equations 5.8 and 5.10 to obtain probabil-
ity estimates. By generating high-quality conditional distributions from a standard
quadrature procedure, and updating F , 𝐶1 and 𝐶2, we can produce a finer ap-
proximation to the true PMF. To train the network, we optimize the KLD between
conditional distributions. These distributions are defined for all 𝑥𝑀 ∈ N0, so we
truncate them at 𝔰𝑀 = 𝜇𝑀+4𝜎𝑀 and normalize to yield strictly positive divergences.
This is the neural network negative binomial (nnNB) procedure. The resulting ap-
proximations are fairly close to the true distributions, and can be improved further
by tuning the neural network.

The nnNB procedure has the desired qualitative and statistical properties: it produces
overdispersed bivariate distributions that bypass the Fourier grid evaluation. With a
pre-trained network, to obtain the approximate likelihood �̂�(𝑥𝑁 , 𝑥𝑀) for a parameter
set {𝑏, 𝛽, 𝛾}, we need to calculate F only once. Nevertheless, the true conditionals
are not negative binomial, and we can achieve better quantitative agreement by
generalizing the approximator while retaining its key computational features.

To develop a better approximator, we note that finite Poisson and negative binomial
mixtures can also be easily computed in a non-recursive fashion. In other words,
we can propose the following functional form:

�̂�(𝑥𝑀) =
N∑︁

n=1
𝑤n�̂�ker(𝑥𝑀 ; �̂�n, �̂�n), where

�̂�ker(𝑥𝑀 ; �̂�, �̂�) = 𝑃NB(𝑥𝑀 ; �̂�, �̂�) if �̂� > 0 and

= 𝑃Poiss(𝑥𝑀 ; �̂�) otherwise.

(5.12)

This approach essentially approximates the true distribution by a weighted sum of
basis functions, or kernels of the appropriate functional form. It remains to specify
or learn the weights and distributional parameters of these kernels. The Nessie
framework [271], seeking to fit fairly complicated univariate distributions, learns all
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of these parameters simultaneously. However, as we have some qualitative insights
into the distribution shape, we can simplify the procedure by judiciously placing
the kernels. To improve performance in the high-probability regions, we place
the approximators at the Chebyshev nodes of the lognormal quantile function 𝐹−1

(Equation 3.28):

𝑝n =
1
2

[
cos

(
𝜋

2n − 1
2N

)
+ 1

]
�̂�n = 𝐹−1(𝑝n; �̂�𝑙 , �̂�𝑙),

(5.13)

where the conditional lognormal �̂�𝑙 and �̂�𝑙 are obtained as in the MMNB procedure.
Usefully, Φ−1(𝑝n) need only be computed once. Knowing that �̂� should be uni-
modal, we control the standard deviation of each kernel �̂�∗n by the spacing between
adjacent kernels:

�̂�∗n = 𝑐𝜎 ( �̂�n+1 − �̂�n) s.t. 𝑐𝜎 = 𝐶1 + 𝑠𝐶2, (5.14)

where 𝑠 ∈ (0, 1) is output by a neural function, 𝐶1 = 1, and 𝐶2 = 5. We somewhat
arbitrarily set �̂�∗N to

√︁
�̂�N, meaning the Nth kernel is Poisson. Therefore, we can

effectively approximate distributions by training a neural network function F of Θ,
which outputs the weights 𝑤1, . . . , 𝑤N, 𝑐𝜎, precisely as in the nnNB case. This is
the kernel weight regression (KWR) procedure.

In sum, by judiciously constructing kernel functions, then combining them using
weights from a pre-trained neural network function, we can approximate conditional
distributions for an intractable PMF (Figure 5.2a). To evaluate likelihoods, we can
combine these conditional distributions with marginal distributions (Figure 5.2b).
We used an adaptive quadrature generating function method as our training data
and ground truth (QV20, evaluated using 𝔰𝑖 = 𝜇𝑖 + 20𝜎𝑖 and truncated to 𝜇𝑖 + 4𝜎𝑖
for benchmarking). The accuracy of the KWR approximator was comparable to
that of practical generating function methods (QV10, QV4, and FQ, or order-60
Gaussian quadrature), with runtimes per 𝔰 comparable to FQ. We additionally
trained a direct regression (DR) method, which uses a neural function to map from
𝑥𝑁 , 𝑥𝑀 , 𝑏, 𝛽, 𝛾 to �̂�(𝑥𝑁 , 𝑥𝑀), in the spirit of [310]; at comparable neural network
sizes, this approach yielded fairly poor performance. The differences are evident
by inspection of reconstructed distributions: KWR and nnNB produce fair matches
to ground truth, MMNB recapitulates the rough distribution shape, and DR suffers
from extreme distortions (Figure 5.2d). Comparisons using a non-𝔰-normalized
metric confirm these results: KWR produces results far better than a random-𝑤n

control and generally better than the other approximation strategies.
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Figure 5.2: The neural network approximation procedure for the two-species bursty
model.
a. Univariate conditional distributions are approximated by summing a set of kernel
functions with neural network-learned weights (red dashed line: approximation;
black line: ground truth distribution).
b. Bivariate distributions are reconstructed by multiplying conditional mature RNA
probabilities by marginal nascent RNA probabilities (red dashed lines: approxima-
tions; black lines: ground truth distributions; heatmap: bivariate probability mass
function, lighter is higher probability).
c. Runtime and accuracy of predictions, both normalized by grid size, for 256 test
parameter sets, comparing three generating function-based methods (QV10, QV4,
and FQ), direct regression (DR), the moment-matched negative binomial (MMNB)
approximation, and kernel weight regression (KWR) to ground truth (QV20).
d. Typical distributions obtained by generating function inversion (QV20, leftmost
column, ground truth) and various approximation methods.
e. Non-normalized grid reconstruction accuracy for 768 test parameter sets.

This approach appears to be quite promising and generalizable: given some prior
knowledge distribution shapes, we can design a coarse approximation that exhibits
the correct qualitative properties, then augment it with a neural correction. It is
unlikely that this approach can generalize to arbitrary distributional dimensionality
𝑛: we are still constrained by generating high-quality training data, and the high-𝑛
cases require simulation. Nevertheless, some relevant classes of models appear to
be immediately tractable. For example, although the case of 𝑛 = 1 and 𝑁 = 2
can produce bimodal distributions, the conditionals with respect to 𝑠 are typically
unimodal, suggesting the approximation

�̂�(𝑥) = �̂�(𝑠 = 0, 𝑥)𝑃(𝑠 = 0) + �̂�(𝑠 = 1, 𝑥)𝑃(𝑠 = 1). (5.15)
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As it stands, the design advantages of the neural network procedures are essential
for variational inference, where each cell c may have a different set of biological
parameters and evaluating Nc Fourier transforms is impractical (Section 10.3). Even
when the cells’ copy number distributions are assumed to be identical, the proce-
dure provides more stable likelihood functions. Due to the truncation implicit in
defining data-based 𝔰𝑖 for generating function evaluation, parameter sets far from the
optimum, with a large fraction of probability mass outside this bound, will produce
artificially inflated likelihoods.

Nevertheless, we do not yet use the KWR solver to fit parameters when FQ is prac-
tical, for three reasons. First, likelihood inflation is a minor problem for parameter
inference: method of moments estimates typically place us quite near the likelihood
optimum. Second, FQ empirically shows a runtime advantage when the grid sizes
are fairly small. Third, the neural approach does not allow us to easily integrate
technical noise phenomena; to represent, e.g., the loss of molecules in the sequenc-
ing process, we need to retrain the network. For the Bernoulli noise model, we can
partially exploit the statistical properties of distributions to forego designing a new
solver. For example, the retention probabilities of nascent and mature molecules 𝑝𝑁
and 𝑝𝑀 are identical, we can directly use the neural solvers with 𝑏 rescaled by 𝑝𝑁 to
evaluate distributions. We can similarly adapt the nnNB procedure when 𝑝𝑀 < 𝑝𝑁 ,
which amounts to computing the nascent marginal and conditional approximator for
burst size 𝑏𝑝𝑁 , then weighing the conditional negative binomial scale parameter by
𝑝𝑀/𝑝𝑁 . However, this approach does not generalize to other noise behaviors, and
considerable further work is necessary to implement them.

5.4 Monod
This section summarizes the supplementary content of [107] and [106] by G.G. and
L.P. The method was conceptualized, designed, and implemented by G.G.

If we operate with bivariate data and assume that observations are independent
and arise from a common distribution, it is by far easiest to numerically integrate
generating functions. To this end, we developed Monod, a Python package for the
inference of biophysical parameters.

At its heart, Monod is a wrapper around a SciPy L-BFGS-B optimizer [302]. To
find the optimal parameters for a particular gene, we minimize the divergence
between proposed distributions and observations. We calculate bivariate theoretical
distributions by applying the inverse Fourier transform method described in [31,
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261]. Specifically, we define a grid of 𝑔𝑁 and 𝑔𝑀 , such that

(𝑔𝑁 ) 𝑗 = 𝑒−
2𝑖 𝜋𝑖
𝔰𝑁 for 𝑗 = 0, . . . , 𝔰𝑁 − 1 and

(𝑔𝑀)𝑘 = 𝑒−
2𝑖 𝜋𝑖
𝔰𝑀 for 𝑗 = 0, . . . , ⌊𝔰𝑀⌋ + 1,

(5.16)

where 𝑖 denotes the unit imaginary number. Next, we define the matrix 𝐺 𝑗 𝑘 , such
that

𝐺 𝑗 𝑘 = 𝐺
(
(𝑔𝑁 ) 𝑗 − 1, (𝑔𝑀)𝑘 − 1

)
, (5.17)

where the function 𝐺 (𝑢𝑁 , 𝑢𝑀) is the distribution’s generating function. To approxi-
mate the PMF on a 𝔰𝑁 × 𝔰𝑀 grid, we compute the inverse real fast Fourier transform
of the matrix 𝐺:

𝑃 = IRFFT(𝐺). (5.18)

We use this form of the transform and truncate 𝔰𝑀 for evaluation because a prob-
ability mass function is a real-valued signal with a Hermitian Fourier transform
[31].

To find the closed-form generating functions, we directly evaluate them. To find
the generating functions only available in integral form, we use order-60 Gaussian
quadrature [302] up to the upper bound

𝑡 = 10(1 + 𝛽−1 + 𝛾−1); (5.19)

this scaling ensures all reactions have equilibrated.

Once we have a proposed distribution 𝑃, we optimize the Kullback-Leibler diver-
gence (Equation 3.49) to obtain a point estimate of the biological parameters. To
simplify this procedure, we begin at the method of moments estimate, if available.
For numerical stability, we use the log10 versions of the parameters.

The usual bursty transcription model (Section 4.6.2) has three biological parameters
per gene, which can be fit using the procedure outlined above. However, we would
also like to learn the technical noise parameters, such as 𝜆𝑁 and 𝜆𝑀 for the Poisson
sequencing model (Section 4.6.4). The evaluation of the generating function under
this model amounts to applying Equation 4.62.

A naïve approach to this problem is typically futile: if we separately fit 𝑏, 𝛽, 𝛾, 𝜆𝑁 ,
𝜆𝑀 for each gene, the parameters turn out to be poorly distinguishable. However,
we can use a physical argument to simplify the problem. 𝜆𝑁 and 𝜆𝑀 are chemical,
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not biological parameters; we can reasonably suppose that they only depend on the
extant molecules’ properties, rather than obscure biological factors. Therefore, we
make the simplest nontrivial assumption that mature molecules are all alike (i.e.,
have the same 𝜆𝑀,g = 𝜆𝑀), whereas the sequencing of nascent molecules is largely
controlled by the overall gene length 𝐿g (i.e., 𝜆𝑁,g = 𝐿g𝐶𝑁 ). Although this model
is fairly crude, it turns out to produce apparently reasonable biological parameter
trends (Section 8.2) and provides a foundation for constructing and testing more
sophisticated hypotheses.

It remains to simultaneously obtain estimates of parameters

Θ = {Θ1, . . . ,ΘNg ,Θ𝑡}, such that

Θg = {𝑏g, 𝛽g, 𝛾g} and

Θ𝑡 = {𝐶𝑁 , 𝜆𝑀},

(5.20)

such that the dataset likelihood is maximized. Formally, this is an optimization
problem in 3Ng + 2 dimensions. Even if we assume the cell population is com-
prised of independent samples from a common distribution, the problem is not
only intractable, but underspecified, and we need to make two assumptions to make
inference practical.

Although the bursty model provides us with a way to evaluate the likelihood of
the data Dg for a particular gene, we formally need to optimize the KLD for a
2Ng-dimensional distribution that encodes potential patterns of co-regulation. In
other words, if we independently fit each gene’s data, we are intrinsically unable
to reproduce correlations between between genes, because those correlations are
not part of the model. In Section 10.1, we take the first tentative theoretical steps
toward filling this lacuna. However, in the Monod implementation, we sacrifice the
gene–gene relationships in favor of tractability.

Even under this implicit assumption of biological gene–gene independence, we
retain coupling through the two technical noise parameters 𝐶𝑁 and 𝜆𝑀 , which
control all genes’ likelihoods, and need to be fit simultaneously with the biological
parameters (Equation 5.20). Therefore, we adopt the following schema, which is
reminiscent of coordinate descent. We iterate over values of Θ𝑡 on a grid. For a
given set of Θ𝑡 , we independently obtain gene-specific estimates Θ̂g, i.e., solve Ng

relatively simple three-dimensional optimization problems. We store the resulting
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parameter optima Θ̂𝑔 (Θ𝑡). Next, we assign

Θ̂𝑡 = argminΘ𝑡

∑︁
g
𝐷 (Dg ∥ 𝑃(Θ̂𝑔 (Θ𝑡))), (5.21)

where 𝑃(Θ̂𝑔 (Θ𝑡)) is the model probability distribution under parameters Θ̂𝑔 (Θ𝑡). In
other words, whichever Θ𝑡 produces the lowest overall divergence is our optimum.

Although this approach is somewhat ad hoc, it provides certain advantages. For
example, we can perform goodness-of-fit testing to focus on genes that fairly well
recapitulate the data distributions. If we had simultaneously optimized all entries
of Θ̂, we would need to re-run the optimization to account for the removal of some
of the data. Monod uses three criteria for goodness-of-fit testing. First, we remove
all genes whose parameters are near the search bounds, which usually represent
failure to converge, excessive data sparsity, or model misspecification. Although
these parameters may recapitulate distributions fairly well, they cannot be easily
interpreted. Second, we remove all genes which simultaneously exceed pre-set
chi-squared and Hellinger distance bounds, i.e., have unlikely and high-magnitude
deviations from the proposed distribution. Typically, some 10% of the genes are
discarded under the bursty model, upward of 50% under the extrinsic model, and
nearly all under the constitutive model.

In addition, Monod allows the computation of uncertainties in Θ̂g. To bypass the
problem of degeneracy with respect to the technical noise parameters, we compute
these uncertainties conditional on the value of Θ̂𝑡 . The uncertainties so derived
are necessarily underestimates. Specifically, we use an approach based on the
Fisher information matrix (FIM). Given a set of inferred parameters Θ̂g, the Fisher
information matrix I is given by the Hessian of the Kullback-Leibler divergence:

I𝑖 𝑗 =
𝜕2

𝜕Θ̂g,𝑖 𝜕Θ̂g, 𝑗
𝐷 (Dg ∥ 𝑃(Θ̂𝑔 (Θ̂𝑡))), (5.22)

where 𝑖 and 𝑗 index over the inferred parameters log10 𝑏, log10 𝛽, and log10 𝛾 [312].
The standard deviation of parameter 𝑖 can be obtained from the diagonal entries of
the inverse of the FIM:

𝜎𝑖 =

√︂(
Nc
−1I−1

)
𝑖𝑖

. (5.23)

With these standard deviations, we use the 𝑧-score to estimate 99% confidence
intervals as 2.576𝜎𝑖 [208].
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Given a set of fits, we can compare biological and technical noise parameters for cell
populations. This procedure is somewhat limited by the precision of the inferred
technical noise parameters, which are degenerate with respect to the burst size.
However, we can make some progress by operating with matched samples. For
example, if two cell populations are cell types collected in a single experiment, it
appears reasonable to suppose they should have the same Θ𝑡 , and any differences
are purely biological, on the level of Θg. If we, in addition, strongly believe that
the biological differences should be restricted to a handful of genes, rather than
genome-wide, we can further “correct” inferred parameter values by subtracting any
inter-dataset biases. We take this approach in Chapter 9. On the other hand, if
they represent the same tissue processed using two different technologies, it seems
reasonable to propose the Θg are identical, whereas Θ𝑡 are different. We take this
approach in Sections 8.3 and 8.4.

Although these procedures allow us to analyze data and draw interesting conclusions
regarding the chemical and biophysical bases of transcriptome differences, the fits
are only meaningful if the data meet the fairly restrictive assumptions of the model.
For example, Monod does not include the encapsulation phenomena described in
Section 4.4.2 or cell type heterogeneity. To account for the former, we remove
all low-copy number barcodes, typically by the combination of the bustools filter
[197] and knee plot thresholds. To account for the latter, we use two approaches.
In the simplest one, we adopt the “marker gene” hypothesis, which supposes that
intra-sample cell type differences can largely be attributed to a small number of
genes, fit the datasets, and use goodness-of-fit testing to remove poorly fit genes
post hoc. In the slightly more sophisticated one, we use pre-existing annotations
to fit cell types separately. However, all of these methods represent uncomfortable
compromises, and a truly comprehensive methodology should simultaneously and
probabilistically account for the biological and technical effects.

To ensure the fits are informative, we further restrict our analysis to a relatively
small set of genes with at least modest expression of both nascent and mature tran-
scripts. In addition, we remove genes with excessive expression, as their likelihoods
are numerically challenging to compute. This procedure typically retains several
thousand genes. When we are interested in making comparisons between datasets,
we restrict analysis to the genes that pass this filter in as many datasets as possible.
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5.5 Simulations
In addition to numerically evaluating distributions, we frequently need to simulate
from stochastic systems. In the context of data analysis, simulation provides us with
a fully characterized ground truth for benchmarking various data transformations.
However, this approach may be overly simplistic, as the simulation may not accu-
rately represent all features of the underlying data-generating process. In the context
of model development, simulations allow us to ensure that analytical or numerical
solutions are correct.

The former use case is typically fairly straightforward. If we would like to generate
realizations from a Markovian system with a particular set of physical phenomena,
we either use a version of Gillespie’s stochastic simulation algorithm (SSA) [98,
99] or sample directly from a numerically tractable PMF. If we seek to include
other phenomena, we augment the simulator appropriately. For example, if we are
interested in generating an observation from a system with cell type heterogeneity,
we define cell type-specific parameters, randomly select a cell type, then generate a
microstate, or molecular copy number, under the relevant parameters. Although the
simulation of such Markovian systems is by no means trivial, it is well-understood,
and we do not cover it in any further detail here. Instead, we report two algorithms
for the exact stochastic simulation of non-Markovian systems, used to validate their
numerical solutions.

5.5.1 Review of the SSA
This section extends a portion of [114] by G.G., S.Y., and L.P. The outline was
written by S.Y. and G.G.

The Markovian SSA for a system with time-independent parameters takes the fol-
lowing form:

1. Initialize the system at time 𝑡 = 𝑡0 and state x = x0.
2. Compute the instantaneous reaction rates of the 𝜇th reaction, 𝜙𝜇 (x) and the

net state efflux rate, 𝜙(x) = ∑
𝜇 𝜙𝜇 (x).

3. Generate 𝑢1 and 𝑢2, random variables uniformly distributed over (0, 1).
4. Transform 𝑢1 to obtain the exponentially distributed residence time Δ𝑡 =

− 1
𝜙(x) log 𝑢1.

5. Use 𝑢2 to compute the reaction index 𝜇, such that
∑𝜇−1
𝑘=1

𝜙𝑘 (x)
𝜙(x) < 𝑢2 ≤∑𝜇

𝑘=1
𝜙𝑘 (x)
𝜙(x) .

6. Advance system to time 𝑡 ← 𝑡 + Δ𝑡 and state x← x + Δx𝜇.
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7. Return to step 2 or terminate simulation.

The instantaneous propensity function for zero-order reactions, such as ∅ 𝑐−→ X𝑖, is
𝜙𝜇 (x) = 𝑐, a constant. The propensity function for first-order reactions, such as
X𝑖

𝑐−→ ∅, is 𝜙𝜇 (x) = 𝑐𝑥𝑖. Higher-order propensity functions are reported in Table
2.1 of [299].

The update vector Δx𝜇 consists of the entries of the stoichiometry matrix corre-
sponding to reaction 𝜇. This quantity can be random; for example, to simulate the
bursty system in Section 4.6.2, we would generate a realization of the geometric
distribution with mean 𝑏 whenever a transcriptional event occurs, and add it to 𝑥𝑖. In
addition, a stochastic burst size can be easily made time-dependent. However, time
dependence in reaction rates, as well as non-Markovian dynamics, require slightly
more elaborate adjustments.

5.5.2 SDE–CME systems
This section summarizes a portion of the supplement of [113] by G.G.∗, J.J.V.∗,
M.F., and L.P. The method was conceptualized, designed, and implemented by G.G.

Hybrid continuous–discrete stochastic systems (with 𝑛, 𝑚 > 0 and 𝐶𝑐𝑑 ≠ 0) are
popular for representing extrinsic variability in reaction rates, such as time-varying
environments. However, in general, the simulation of these systems requires ap-
proximate schema. The computation of propensities in Section 5.5.1 belies the fact
that the more fundamental variable is the flux 𝜙(x, 𝑡∗):

− log 𝑢1 =
∑︁
𝜇

∫ 𝑡+Δ𝑡

𝑡

𝜙𝜇 (x, 𝑡∗)𝑑𝑡∗

=
∑︁
𝜇

∫ 𝑡+Δ𝑡

𝑡

𝜙𝜇 (x)𝑑𝑡∗

=
∑︁
𝜇

𝜙𝜇 (x)Δ𝑡 = Δ𝑡𝜙(x),

(5.24)

where the first equality holds generally [227], whereas the second holds only if
all 𝜙𝜇 are time-independent. To compute Δ𝑡 if 𝜙𝜇 is time-dependent, we typically
need to use a numerical solver to find the root Δ𝑡 where the first line of Equation
5.24 holds. Finally, the reaction index 𝜇 is drawn from the appropriate categorical
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distribution, such that

𝜇−1∑︁
𝜈=1

𝜙𝜇 (x)
𝜙(x) < 𝑢2 ≤

𝜇∑︁
𝜈=1

𝜙𝜇 (x)
𝜙(x) , with

𝜙𝜇 (x) :=
∫ 𝑡+Δ𝑡

𝑡

𝜙𝜇 (x)𝑑𝑡∗

𝜙(x) :=
∑︁
𝜇

𝜙𝜇 (x).

(5.25)

This task is particularly challenging when rates are time-dependent in a stochastic
fashion. For example, Brownian motion is fractal, and does not afford exact roots.
Therefore, a system with a Brownian motion component must be solved by sampling
the process on a grid, then using interpolation to approximate fluxes [254, 305]. This
may lead to errors if the grid is insufficiently fine, or excessive evaluation times if it
is too fine.

Curiously, certain non-Brownian extrinsic noise sources do afford exact simula-
tion routines. Specifically, if the stochastic driver 𝑦𝑡 = 𝑦(𝑡) is a jump Ornstein–
Uhlenbeck process, it has a non-fractal, fully specified structure [43, 57]:

𝑑𝑦𝑡 = −𝜅𝑦𝑡 + 𝑑𝐿𝑡 such that

𝐿𝑡 =

N(𝑡)∑︁
𝑘=0

𝐵𝑘 ,
(5.26)

such that N(𝑡) is a Poisson random variable with mean 𝑎𝑡. {𝐵𝑘 } is a set of indepen-
dent and identically distributed realizations of the positive-valued random variable
𝐵. This process has the exact solution [241]

𝑦𝑡 =

N(𝑡)∑︁
𝑘=0

𝐵𝑘𝑒
−𝜅(𝑡−𝑡𝑘) , (5.27)

where 𝑡𝑘 are the arrival times of N(𝑡). To account for the initial condition, we
set 𝑡0 = 0 and 𝐵0 = 𝑦0. This class of processes has been exhaustively studied by
Barndorff-Nielsen and colleagues in the context of mathematical finance [21, 22].

To generate a single realization of the arrival process on [0, 𝑇], we draw a Poisson
random variable N(𝑇) with mean 𝑎𝑇 . To generate the jump times, we draw N(𝑇)
uniform random variables on [0, 𝑇] and sort them. To generate the jump sizes, we
draw N(𝑇) random variables from the jump distribution. Equation 5.27 immediately
yields the time-dependent trajectory 𝑦𝑡 .
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If 𝑦𝑡 drives a transcription process, such that the production of some species 𝑥𝑖 occurs
at the rate 𝑦𝑡 , the instantaneous propensity of this reaction is simply 𝜙𝑦 (x, 𝑡) = 𝑦𝑡 .
Usefully, we can integrate it:

Φ𝑦 (𝑡) :=
∫ 𝑡

0
𝑦(𝑡∗)𝑑𝑡∗ = Φ𝑦 (𝑡𝑘 ) +

∫ 𝑡

𝑡𝑘

𝑦(𝑡∗)𝑑𝑡∗

= Φ𝑦 (𝑡𝑘 ) +
𝑦(𝑡𝑘 )
𝜅

(
1 − 𝑒−𝜅(𝑡−𝑡𝑘)

)
,

(5.28)

where 𝑡𝑘 < 𝑡 but 𝑡𝑘+1 ≥ 𝑡, if one exists. This identity holds because no arrivals
take place between 𝑡𝑘 and 𝑡𝑘+1: in this region, the dynamics of 𝑦𝑡 are a simple
deterministic exponential decay. Therefore, we can immediately compute Φ𝑦 (𝑡𝑘 )
for all 𝑘 .

Therefore, to simulate the system, we need to solve the following equation:

− log 𝑢1 =
∑︁
𝜇≠𝑦

∫ 𝑡+Δ𝑡

𝑡

𝜙𝜇 (x, 𝑡∗)𝑑𝑡∗ +
∫ 𝑡+Δ𝑡

𝑡

𝜙𝑦 (x, 𝑡∗)𝑑𝑡∗

= Δ𝑡
∑︁
𝜇≠𝑦

𝜙𝜇 (x) +Φ𝑦 (𝑡 + Δ𝑡) −Φ𝑦 (𝑡),
(5.29)

where the second line holds because we have assumed all but one of the reactions
have time-independent propensities.

First, suppose that 𝑡 > 𝑡𝑘 for all 𝑘 . In this case, we need to solve the following
root-finding problem:

− log 𝑢1 = Δ𝑡
∑︁
𝜇≠𝑦

𝜙𝜇 (x) +
𝑦(𝑡)
𝜅

(
1 − 𝑒−𝜅Δ𝑡

)
, (5.30)

which has an analytical solution in terms of the Lambert W function (Equation
3.23):

𝐶1 =
∑︁
𝜇≠𝑦

𝜙𝜇 (x), 𝐶2 =
𝑦(𝑡)
𝜅
, 𝐶3 = 𝐶2 − log 𝑢1

Δ𝑡 =
1
𝜅
𝑊

(
𝜅𝐶2

𝐶1
𝑒𝜅𝐶3/𝐶1

)
− 𝐶3

𝐶1
whenever 𝐶1 > 0, and

= −1
𝜅

log
(
𝐶3

𝐶2

)
otherwise.

(5.31)
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In the nontrivial case, we use the pre-computed values of Φ𝑦 to bound Δ𝑡. Specifi-
cally, we find the highest 𝑘 such that

Δ𝑡
∑︁
𝜇≠𝑦

𝜙𝜇 (x) +Φ𝑦 (𝑡𝑘+1) −Φ𝑦 (𝑡) > − log 𝑢1 but

Δ𝑡
∑︁
𝜇≠𝑦

𝜙𝜇 (x) +Φ𝑦 (𝑡𝑘 ) −Φ𝑦 (𝑡) < − log 𝑢1.
(5.32)

We immediately find that Δ𝑡 = 𝑡𝑘 − 𝑡 + Δ𝑡∗. Δ𝑡∗ is the waiting time between 𝑡𝑘 and
the reaction firing time, and is computed analogously to Equation 5.31:

𝐶1 =
∑︁
𝜇≠𝑦

𝜙𝜇 (x)

𝐶2 =
𝑦(𝑡𝑘 )
𝜅

𝐶3 = 𝐶2 − log 𝑢1 − (𝑡𝑘 − 𝑡)
∑︁
𝜇≠𝑦

𝜙𝜇 (x) −Φ𝑦 (𝑡𝑘 ) +Φ𝑦 (𝑡)

Δ𝑡∗ =
1
𝜅
𝑊

(
𝜅𝐶2

𝐶1
𝑒𝜅𝐶3/𝐶1

)
− 𝐶3

𝐶1
whenever 𝐶1 > 0, and

= −1
𝜅

log
(
𝐶3

𝐶2

)
otherwise.

(5.33)

In other words, the deterministic behavior of the trajectories between jump arrivals
events allows us to pre-compute and constrain the reaction times. Once we know
the region where the reaction time lies, computing it is as simple as subtracting the
total flux up to the jump arrival time (the correction to 𝐶3 in Equation 5.33) and
solving a root-finding problem using a special function. The reaction index is then
selected according to Equation 5.25, with

𝜙𝑦 (x) = Φ𝑦 (𝑡 + Δ𝑡) −Φ𝑦 (𝑡). (5.34)

Attention must be paid to certain edge cases, as well as the numerical stability of
the 𝑊 calculation. However, overall, this approach provides a generalizable, exact
strategy for simulating discrete processes driven by a jump Ornstein–Uhlenbeck
process, and can be applied to a broad variety of systems that are not tractable by
analytical approaches.

5.5.3 Delay master equations
This section summarizes a portion of [114] by G.G., S.Y., and L.P. The method was
conceptualized, designed, and implemented for the case of deterministically delayed
degradation by S.Y. and extended to the case of arbitrary delayed degradation and
interconversion by G.G. The outline was written by S.Y. and G.G.

To adapt the procedure in Section 5.5.1 to the case of non-Markovian degradation
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and interconversion, we make the following adjustments.

The first modification treats removal events of delayed species, i.e, transcripts that
undergo reactions with non-exponential waiting times. Two empty queues are
initialized: one for times and one for reaction indices. Then, if the reaction index
generated in step 5 is the creation of a delayed species, the queues are populated
with the time and reaction index of the removal of that species. This time is simply
𝑡 + Δ𝑡, where Δ𝑡 is drawn from any distribution on R+. If the system is initialized
with delayed species, the queues of times and reaction indices must be pre-defined
accordingly. For simplicity, we always assume that existing delayed species were
created at 𝑡 = 0.

The second modification alters the calculation of flux, specifically accounting for
the contributions of species that don’t yet exist, but will after some delay. The total
flux, 𝜙(x), is computed at each queued reaction event, producing a monotonically
increasing, piecewise linear function of Δ𝑡. Then, the residence time corresponding
to the random flux generated by − log 𝑢1 is found analytically. The computation of
the residence time is essentially equivalent to the direct method outlined in [39], and
amounts to linear interpolation between the arrival times of queued reactions.

The third modification ensures that all reactions happen in the correct order. After
step 5, the reaction time and event are stored, and before advancing the system in
step 6, all queued reactions that are to happen before the stored reaction event are
sequentially applied and stored. The resulting ordered list is then converted into
system times and states.
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C h a p t e r 6

SNAPSHOT INFERENCE

Technology does everything possible so that we lose sight
of the chain of cause and effect.

Turning Back the Clock: Hot Wars and Media Populism
Umberto Eco

This chapter is essentially complete, but I will need to ensure that the literature
review is up to date.

6.1 Critical analysis of RNA velocity
This section summarizes the content of [112] by G.G., M.F., T.C., and L.P. The
critique was conceptualized by G.G. and L.P. and implemented by G.G., M.F., and
T.C.

The method of RNA velocity [168] aims to infer directed differentiation trajectories
from snapshot single-cell transcriptomic data. Although we cannot observe the
transcription rate, we can count molecules of spliced and unspliced mRNA. The
unspliced mRNA content is a leading indicator of spliced mRNA, meaning that it
is a predictor of the spliced mRNA content in the cell’s near future. This causal
relationship can be usefully exploited to identify directions of differentiation path-
ways without prior information about cell type relationships: “depletion” of nascent
RNA suggests the gene is downregulated, whereas “accumulation” suggests it is
upregulated. This qualitative premise has profound implications for the analysis
of scRNA-seq data. The experimentally observed transcriptome is a snapshot of a
biological process. By carefully combining snapshot data with a causal model, it is
for the first time possible to reconstruct the dynamics and direction of this process
without prior knowledge or dedicated experiments.

The bioinformatics field has recognized this potential, widely adopting the method
and generating numerous variations on the theme. The roots of the theoretical ap-
proach date to 2011 [326], but the two most popular implementations for scRNA-seq
were released in 2017–2018: velocyto by La Manno et al. [168], which introduced
the method, and scVelo by Bergen et al. [29], which extended it to fit a more sophis-
ticated dynamical model. Aside from these packages, a dizzying variety of auxiliary
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methods and extensions have been developed [13, 41, 63, 77, 120, 130, 135, 171,
175, 183, 192, 229, 246, 249, 281, 311, 314, 330, 331] to incorporate additional
modalities, build more complex dynamical and statistical models, and construct low-
dimensional visualizations. This profusion of computational extensions has been
accompanied by a much smaller volume of analytical work, including discussions
of potential extensions and pitfalls [30, 50, 275, 291], as well as theoretical studies
based on optimal transport [173, 329] and stochastic differential equations [178].
However, at their core, these auxiliary methods are built on top of the theory and
code base from velocyto or scVelo.

Despite the popularity of RNA velocity [264, 311] and increasingly sophisti-
cated attempts to combine it with more traditional methods for trajectory inference
[171, 330], there has been little comprehensive investigation of the modeling as-
sumptions that underlie the seemingly simple user-facing workflow (Figure 6.1a-b).
The few dedicated critiques to date have largely focused on limitations of the in-
ference and embedding steps [30, 192, 333], without questioning the foundational
assumptions. This is an impediment to applying, interpreting, and refining the
methods, as problems arise even in the simplest cases. Consider, for example, the
result displayed in Figure 6.1b, where the outputs of the two most popular RNA
velocity programs applied to exemplar human embryonic forebrain data [168] are
qualitatively different. The inferred directions in the example should recapitulate
a known differentiation trajectory from radial glia to mature neurons. However,
scVelo, which “generalizes” velocyto, fails to identify, and even reverses the tra-
jectory, suggesting totally different causal relationships between cell types. This
type of problematic result has been reported elsewhere [29, 30, 120, 171, 175, 231],
and typically used to motivate the development of new implementations. Nev-
ertheless, the methods have produced plausible trajectories in biological studies
[26, 61, 117, 126, 147, 182, 263, 317, 324], suggesting that they can identify some-
thing nontrivial about the underlying signal.

Motivated by such discrepancies, we systematically investigated the method’s the-
oretical foundations, assumptions, and implementations, using a combination of
simulated and biological datasets. The RNA velocity procedure combines numer-
ous steps of data processing, reviewed in Section 6.1.1. Some are justified under
a particular, very restrictive, physical model of transcription, whereas others are
purely ad hoc. We conclude that the variable performance is, in large part, an
intrinsic consequence of incompatibility between these two worldviews. An ad hoc



71

data transformation assumes some system dynamics or distributional form, which
are generally incompatible with the physical model. Occasionally, the assumptions
approximately hold, yielding results consistent with known biology. However, it is a
priori impossible to predict whether they hold. The presence of somewhat arbitrary
tunable hyperparameters at each step of the analysis provides an opportunity for
confirmation bias to overrule the data, exacerbating the reliability problems.

6.1.1 Brief review of RNA velocity
To characterize the challenges, we briefly outline the steps of a typical velocity
workflow. First, raw reads are converted to unspliced (nascent) and spliced (mature)
RNA count matrices, based on the presence or absence of intronic content. After
the usual filtering and normalization steps, the mature count matrix is projected to a
lower-dimensional space with principal component analysis (PCA). This projection
is used to construct a nearest-neighbor graph over cells, and “impute” the data
matrices by replacing each cell’s normalized counts with the average of its neighbors’
values. In other words, the preliminary data processing effects a transformation
𝑥𝑖 → 𝑦𝑖, where 𝑥𝑖 is discrete and 𝑦𝑖 is continuous. Then, the following model is
instantiated:

∅
𝛼(𝑡)
−−−→ 𝑦𝑁

𝛽
−→ 𝑦𝑀

𝛾
−→ ∅. (6.1)

The functional form of 𝛼(𝑡) is not precisely specified. velocyto assumes that 𝛼(𝑡) has
fairly generic dynamics, but evolves slowly enough relative to 𝛽 and 𝛾 to produce
identifiable near-equilibrium high-expression and low-expression states. scVelo
relaxes the assumption of equilibrium, but restricts the dynamics of 𝛼(𝑡) to a much
simpler function with a single step increase and decrease. In addition, the precise
meaning of 𝑦𝑖 differs by source: velocyto treats it as 𝜇𝑖, such that 𝑥𝑖 is drawn from a
Poisson distribution with mean 𝜇𝑖, whereas scVelo treats it as a true 𝑦𝑡 , a continuous
quantity that happens to be corrupted by isotropic noise.

Regardless of the interpretation, the following identity holds:

𝑑𝑦𝑀 (𝑡)
𝑑𝑡

= 𝛽𝑦𝑁 (𝑡) − 𝛾𝑦𝑀 (𝑡). (6.2)

This time derivative is the “RNA velocity,” the rate of change of the mature RNA
abundance. By fitting a model — either extracting the 𝑦𝑁 , 𝑦𝑀 values at equilibria
and fitting a line (velocyto), or using all of the data and fitting a curve (scVelo) — it
is possible to identify 𝛾/𝛽 and compute instantaneous velocity values for each cell.
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Figure 6.1: The RNA velocity workflow and its limitations.
a. A summary of the user-facing components of a typical RNA velocity workflow.
Initial processing of sequencing reads produces nascent and mature counts for every
cell, across all genes. Inference procedures fit a model of transcription and predict
cell-level velocities, ascribing accumulation or depletion of RNA to induction or
repression of the transcriptional driver (visualizations adapted from [129], forebrain
data from [168]).
b. At the final stage of the workflows, cell and embedding velocities are displayed
in the top two principal component dimensions, but different software implementa-
tions may disagree.
c. Smoothing and imputation introduce distortions into the simulated data, and do
not recapitulate the simulated ground truth process average 𝜇𝑁 .
d. Normalization and dimensionality reduction distort local cell neighborhood iden-
tities (eCDF: empirical cumulative distribution function; Jaccard distance: Equation
3.50, lower is better).
e. The nonlinear UMAP embedding distorts the global cell type structure, separat-
ing cell types along a continuous trajectory.
f. Nonlinear transformations and modulation of neighborhood sizes introduce distor-
tions in the arrow directions with respect to the simplest PCA projection (histograms:
distribution of cell-specific angle deviations under different pooling neighborhood
sizes).
g. Nonlinear embeddings of cell-specific velocities into PCA space, computed from
simulated data, do not appear to substantially change if only the velocity signs are
used.
h. If a parametric fit to the dataset is available, it can be summarized by projecting
the inferred time-dependent process average into a low-dimensional space.
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Next, the velocity values are summarized in a low-dimensional representation. An
embedding is constructed from the PCA projection, and each cell’s neighbors in
that embedding are identified. The low-dimensional “direction” of the mature
transcriptome is computed by calculating the degree of alignment between the RNA
velocity of each cell and the directions to its embedding neighbors by passing
these quantities through a kernel function. Finally, a low-dimensional, cell-specific
velocity vector is produced by averaging the directions to the neighbors.

6.1.2 The velocity dynamical model is unphysical
The procedure ultimately relies on the transformation from 𝑥𝑖 to 𝑦𝑖 producing a
quantity that follows Equation 6.2. This premise is merely asserted, never proven or
quantitatively tested by the method developers, and fails on five levels.

The transformation is not theoretically founded. There is no particular reason to be-
lieve that averaging over neighbors should eliminate biological or technical stochas-
ticity. In addition, the space used to identify the nearest neighbors is constructed
from the data, and incorporates its noise sources. The premise of obtaining a better
estimate by aggregating noisy data is superficially plausible; for example, such “lo-
cal averages” are ubiquitous in time series analysis, including transcriptomics [102].
However, a data-based projection is not an externally determined experiment time,
and the imputation of data is fundamentally circular in a way that a moving average
is not. These, and other, pitfalls of imputation have been characterized elsewhere
[10], and we describe further theoretical issues in Section B.3.

Regardless of its theoretical basis, the transformation does not actually accomplish
its goals. Even in the best-case scenario, in discrete simulated data generated from
a model that matches the velocyto assumptions, with no normalization needed, the
procedure only recapitulates the true expectation 𝜇𝑀 on average, and is unreliable
for any specific cell (Figure 6.1c). The performance is particularly poor for cells
that are strongly out of equilibrium, i.e., those of the most interest for the procedure.

The alternative continuous model is inappropriate and unphysical. Although con-
tinuous approximations are reasonable in the high-concentration regime, typical
scRNA-seq experiments have very low copy numbers across the genome; for the
vast majority of genes, only a small fraction of cells have nonzero RNA counts.
This regime contradicts the assumptions of the approximations. Making matters
worse, the additive noise term used for this model in scVelo does not even match the
multiplicative, abundance-dependent noise term that emerges from typical approx-
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imations [100].

Even if we adopt the discrete model with instantaneous Poisson noise, we contra-
dict numerous sources that suggest transcriptional activity varies with time even
in stationary cell populations [16, 65, 161, 172, 205, 210, 233, 239, 244], and is
effectively described by a telegraph model that stochastically switches between ac-
tive and inactive states [218, 219]. Although it is possible that certain genes key
to transient differentiation and development processes exhibit time-varying consti-
tutive transcription, using this assumption to fit thousands of genes is questionable.
Therefore, some variant of the bursty model appears more physically founded.

Finally, these concerns, which collectively motivate using a statistically and phys-
ically appropriate 𝑃(x, 𝑡), lead us to a more fundamental question: which 𝑡? In
other words, we a priori know that scRNA-seq datasets are snapshots, and contain
cells “earlier” and “later” in the differentiation process. Previous reports reasonably
assume that 𝑡 varies between cells, but do not propose a mechanism to explain how
simultaneously collected cells can reside at different times along a process.

The range of these omissions and problems fundamentally speaks to an uneasy
compromise between the descriptive and mechanistic worldviews, described in more
detail in Section 2.1. Although RNA velocity uses the language of stochastic
biophysics, its underlying assumptions, obscured by the user-friendly software and
informal, equivocal theory, have a complex and often contradictory relationship with
well-attested physical phenomena.

6.1.3 The embedding procedure is unreliable
Even outside the context of RNA velocity, linear as well as nonlinear embeddings
distort local and global data relationships or suggest new ones not present in the
underlying data (cf. Section 8.4 and [49, 58]). Nonlinear embeddings utilize sensi-
tive hyperparameters that can be tuned, but do not provide well-defined criteria for
an “optimal” choice [58, 162]. Tuning algorithm parameters can slightly improve
some distortion metrics, though often at the expense of others [162]. In Figure 6.1d,
we demonstrate the neighborhood preservation behavior of transformations used to
construct low-dimensional embeddings. By the time the data have been summarized
a two-dimensional embedding (gold and yellow lines), some 70–80% of the neigh-
borhood relationships have been lost on average, largely in the initial normalization
step (red line). In addition to these local distortions, which put into question the
computation of directions to embedding neighbors, global distortions can occur. In
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Figure 6.1e, we illustrate this point with a Uniform Manifold Approximation and
Projection (UMAP) projection of the forebrain dataset, which introduces disconti-
nuities between cell types (cf. Figure 6.1a-b). In other words, if the projection itself
erases cell type relationships, RNA velocity cannot recover them.

The procedure for embedding RNA velocity in a two-dimensional space introduces
further challenges, which are challenging to deconvolve. Beyond the mismatch in
neighborhoods, the directions produced by the kernel-based procedure in the PCA
space do not align with directions obtained by simply projecting the cell-specific
velocity vectors (distribution of angle deviations shown in Figure 6.1f). Most
strikingly, the embedding procedure appears to eliminate nearly all of the quantitative
information obtained by the inference and velocity computation procedures: as
shown using simulated data in Figure 6.1g, the results obtained using the standard
velocyto kernel are nearly identical to those obtained using a custom kernel that only
uses the signs of the direction and velocity vectors. Finally, the “Markov chains”
over cells generated by the procedure are ad hoc and not motivated by any particular
model of physiology; as discussed in full detail in Section B.4, they implicitly
contradict the mechanism used to perform inference.

6.1.4 Conclusions
The standard RNA velocity framework presupposes that the evolution of every
gene’s transcriptional activity throughout a differentiation transient process can be
described by a continuous model. It proceeds to normalize and smooth the data
until the rough edges of single-molecule noise are filed off, and fits a continuous
model of transcription and turnover assuming Gaussian residuals.

In the process, the stochastic dynamics that predominate in the low-copy number
regime, and that characterize nearly all of mammalian transcription, are lost and
cannot be recovered. Although parameters can be fit, they are distorted to an un-
known extent, due to a combination of data transformation, suboptimal inference,
and model misspecification. In scVelo, parameters are estimated under a highly
restrictive model, yet applied to make broad claims about complex topologies. In
velocyto, only the sign of the velocity is physically interpretable; if we discard every-
thing else, we still obtain fairly consistent results, suggesting that the method fails
to fully utilize valuable quantitative information. Finally, the embedding process,
which produces human-interpretable visualizations, is not based on biophysics, and
is not guaranteed to be stable or robust.
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Nevertheless, sometimes RNA velocity works, and produces results consistent with
biological intuition and orthogonal data. From the review above, the performance
appears to rely on a combination of factors. First, the “signal” needs to be strong
enough that the flaws in the dynamical model can be sufficiently “smoothed out”
by the data processing. Second, the cell embedding needs to be faithful enough
to recapitulate the features of interest. Third, the velocity embedding procedure
needs to produce approximately correct results. These conditions are by no means
guaranteed, and fair performance in any particular case may be attributable to
hyperparameter tuning and confirmation bias. Therefore, the workflow does not yet
appear to be sufficiently reliable to be used for biological discovery.
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6.2 Self-consistent snapshot inference
This section unifies portions of [112] by G.G., M.F., T.C., and L.P., as well as
[115] by G.G., J.J.V., and L.P. G.G., M.F., and L.P. conceptualized the theoretical
alternatives to RNA velocity. G.G. conceptualized, designed, and implemented the
case study shown here.

Is there no balm in Gilead? Given the foundational issues we have raised, how can
the RNA velocity framework be reformulated to provide meaningful, biophysically
interpretable insights? Fortunately, the natural match between stochastic models and
UMI-aided molecule counting offers hope for quantitative and interpretable trajec-
tory inference. We propose that discrete Markov modeling can directly and naturally
address the fundamental issues. In particular, transient and stationary physiological
models can be defined and solved via the approach in Chapter 4, which describes the
time evolution of a discrete stochastic process. Since the “noise” is the data of inter-
est, smoothing is not required. Rather, technical and extrinsic noise sources can be
treated as stochastic processes in their own right, and explicit modeling of them can
improve the understanding of batch and heterogeneity effects. Finally, within this
framework, parameters can be inferred using standard and well-developed statistical
machinery. Once these parameters are available — and only then — we may op-
tionally summarize the findings in terms of typical low-dimensional visualizations,
as with our visualization of the projection of the true 𝜇𝑀 in Figure 6.1h.

The inference of transient dynamics from snapshot data is a formidable problem
due to a combination of theoretical and practical factors. Most fundamentally, it
is not precisely clear what a snapshot is: how does a single measurement simul-
taneously capture the early and late states in a differentiation process? To develop
an explanatory model, we take inspiration from the existing work on cyclostation-
ary processes [66, 67], cell cycle ensemble measurement modeling [28, 220, 282],
Markov chain occupation measure theory [167, 225, 320], and chemical reactor
engineering [88, 237]. In the typical stochastic modeling context, we fit count data
using stationary distributions 𝑃(x), obtained as the limit lim𝑡→∞ 𝑃(x, 𝑡) of a tran-
sient distribution. By the ergodic theorem [95], this distribution, when it exists,
coincides with the occupation measure lim𝑇→∞

1
𝑇

∫ 𝑇
0 𝑃(x, 𝑡)𝑑𝑡, i.e., observations

drawn from a single trajectory over a sufficiently long time horizon, rather than
from multiple trajectories at once. Conveniently, the ergodic limit has time sym-
metry with respect to measurement: the distribution does not depend on the timing
of the experiment. In the transient case, we cannot take these limits. However, we
can retain time symmetry by proposing that the experiment samples cells at almost
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surely finite times 𝑡 since the beginning of the process. Therefore, we conceptualize
data as coming from a set of independent cells, such that each cell’s time 𝑡c is
sampled from 𝑓 (𝑡), and counts are drawn from some distribution 𝑃(x, 𝑡c)4. To fit a
set of data, we need to specify and motivate the distribution 𝑓 .

We illustrate some of the challenges and implications of this framework using the
model system shown at the bottom of Figure 6.2a. The underlying transient structure
involves transitions through three cell types, each characterized by a particular
transcriptional burst size. This model is more realistic but less tractable than the
constitutive model implied by RNA velocity. The transient transcription process
produces nascent and mature RNA trajectories for each cell; however, we only
obtain a single data point per trajectory. Formally, to infer the parameters, we
simultaneously need to find Θ, the biological parameters, as well as 𝑡c, all of the cell
times. The full data likelihood for a single gene takes the following form:

L(Θ, {𝑡c};D) =
∏

c
𝑃(Dc, 𝑡c;Θ)

L(Θ;D) =
∏

c

∫ ∞

0
𝑃(Dc, 𝑡c;Θ) 𝑓 (𝑡c)𝑑𝑡c,

(6.3)

where we obtain the second line by marginalizing over {𝑡c}. If multiple genes are
present, but their transcriptional events are not synchronized, 𝑃 can be decomposed
into the product of gene-specific probabilities (Section 10.1). The integral is in-
tractable. Several approaches are available. First, we can reframe the problem as a
combinatorial optimization. In this case, we can define an ordering of cell times 𝜎,
approximate the continuous distribution 𝑓 by a uniform-weight discrete distribution
placed at Nc quantiles 𝑡∗c, and perform the following combinatorial optimization:

Θ̂ = argmax𝜎 argmaxΘ
∑︁

c
log 𝑃(Dc, 𝑡

∗
c;Θ). (6.4)

As Nc grows, the quantile approximation to 𝑓 improves. However, the combinatorial
optimization becomes rather challenging, as its complexity grows exponentially in
Nc. Therefore, a more practical approach may involve the expectation–maximization
(EM) algorithm. Such an implementation would iterate between updating the pa-
rameter estimate Θ̂ and cell-specific time distributions 𝑓c, defined over a discrete
grid [64, 70].

Nevertheless, even this approach requires some careful theoretical work and simu-
lated benchmarking. Even if we have perfect information about the cell times, it is
far from clear that we can accurately reconstruct the transcriptional dynamics from
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snapshot data (center of Figure 6.2a). This question is essential, as it controls our
ability to compute estimates Θ̂ in a given EM step.

In addition, we wish to know whether we can identify the mechanism of the snapshot
collection. We can imagine cells entering and exiting the observed tissue in multiple
ways, which correspond to different choices of 𝑓 (𝑡). Some natural choices are
uniform, which implies the cells stay in the tissue for a deterministic time [168];
decreasing over time, so cells can exit immediately; or uniform, then decreasing, so
cells must stay in the tissue for some duration but are free to leave afterward. These
choices can be modeled by Dirac, exponential, and Pareto residence distributions.
In the parlance of chemical reactor engineering, these configurations are known as
the plug flow reactor (PFR), the continuously-stirred tank reactor (CSTR), and the
laminar flow reactor (LFR), respectively. Their 𝑓 (𝑡), which are the reactor internal-
age distributions, are well-known in the chemical engineering literature [88, 237],
and shown at the top of Figure 6.2a. It is not a priori obvious the configurations
are mutually distinguishable from count data. If they are not, the choice of 𝑓 (𝑡) is
immaterial for inference.

We generated snapshot data from the PFR model and fit it under all three models.
To efficiently evaluate snapshot distributions, we designed an algorithm which es-
sentially “recycles” 𝑡c for trapezoidal quadrature. As shown in Figure 6.2b, despite
only having access to a single observation per time point, all models yield results
visually close to the true marginals. However, despite these superficial similarities,
quantitative model identification is possible. To quantify identifiability, we use the
Akaike weight 𝑤𝜛 (Equation 3.48), which transforms log-likelihood differences
into model probabilities [38]. For example, if all Akaike weights are near 1/3, the
models are indistinguishable; if the correct model’s weight is near 1, we can confi-
dently identify the model from the data. For the simulated dataset shown, the true
PFR model achieves an Akaike weight of 𝑤𝜛 ≈ 79%, whereas the CSTR and LFR
both achieve ≈ 10%. Decreasing the dataset size substantially degrades the identifi-
ability. Even at higher sizes, spread is considerable; for example, a 150-cell dataset
gives approximately even odds (𝑤𝜛 > 1/2) on average, but individual realizations
vary from confidently correct (𝑤𝜛 ≈ 1) to confidently wrong (𝑤𝜛 ≈ 0).

To understand the robustness of model identifiability, we generated synthetic datasets
at random parameter values, constrained to have fairly low expression. We observed
poor identifiability, with even or better odds for the correct model in only 20% of
the cases (Figure 6.2d). This performance appears to be attributable to quantitative
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Figure 6.2: The inference of biophysical parameters and reactor configurations from
snapshot data.
b. In spite of the considerable differences between the reactor architectures, they
produce nearly identical molecular count marginals (histogram: data simulated from
the PFR model, 200 cells; colored lines: analytical distributions at the maximum
likelihood transcriptional parameter fits for each of the three reactor models. Ana-
lytical distributions nearly overlap).
a. A minimal model that accounts for the observation of transient differentiation
processes in scRNA-seq: cells enter a “reactor” and receive a signal to begin transi-
tioning from cell type A through B and to C. The change in cell type is accompanied
by a step change in the burst size, which leads to variation in the nascent and mature
RNA copy numbers over time. Given information about the cell type abundances
and the cells’ time along the process, we may fit a dynamic process to snapshot data
and attempt to identify the underlying reactor type, which determines the probability
of observing a cell at a particular time since the beginning of the process.
c. The true reactor model may be identified from molecule count data, but statistical
performance is typically poor (points: Akaike weight values for 𝑛 = 50 independent
rounds of simulation and inference under a single set of parameters; blue markers
and vertical lines: mean and standard deviation at each number of cells; blue line
connects markers to summarize the trends; red lines: the Akaike weight values 1/3,
which contains no information for model selection, and 1/2, which gives even odds
for the correct model; two-species data generated from the PFR model; uniform
horizontal jitter added).
d. The reactor models are poorly identifiable across a range of parameters, and rarely
produce Akaike weights above 1/2 (histogram: Akaike weight values for 𝑛 = 200
independent rounds of parameter generation, simulation, and inference under the
true PFR model; red line: the Akaike weight values 1/3 and 1/2; two-species data
for 200 cells generated from the PFR model).
e. The challenges in reaction identification arise because all three models produce
similar likelihoods (histograms: likelihood differences between candidate models
and the true PFR model for 𝑛 = 200 independent rounds of parameter generation,
simulation, and inference; red line: no likelihood difference; two-species data for
200 cells generated from the PFR model).
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similarities between all three models’ likelihoods. As shown in Figure 6.2e, given
data of this quality, we cannot even narrow the scope down to two models, as
neither of the candidate models performs conspicuously worse than the true PFR
configuration. Therefore, it is possible to fit snapshot data approximately equally
well using a variety of models; candidates for 𝑓 (𝑡) are identifiable in principle,
but challenging to distinguish from any particular dataset. This simulated analysis
implies that the details of the reactor configuration may not matter much, providing
a basis for omitting this model identification problem for real data.
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C h a p t e r 7

MODEL IDENTIFICATION AND SELECTION

A considerable fraction of the variability in single-cell datasets arises from cell-
to-cell and time-dependent variation in the transcription rates. These sources of
variation control distribution shapes. We seek to apply the models developed in
Chapter 4 to obtain insights into this variability and explain distributional differences
through mechanisms. By carefully analyzing candidate models, we can characterize
the prospects for model selection: for example, if different transcriptional models
produce nearly identical distributions, selection is impossible and the choice of
model is somewhat arbitrary.

Therefore, the probabilistic analysis of transcriptomic data entails two key chal-
lenges: the identification of parameters consistent with the data under a particular
model (statistical inference) and the discrimination between distinct hypotheses
(model selection). To understand how well we can distinguish different parameter
regimes and models, we analyze the models’ distributions and compare them using
simulated and biological data.

7.1 The role of multimodal data in inference
This section adapts a portion of [115] by G.G., J.J.V., and L.P. The descriptions and
mathematical foundations adapt a portion of [113] by G.G.∗, J.J.V.∗, M.F., and L.P.
G.G. and J.J.V. performed the model development and mathematical analysis. G.G.
conceptualized, designed, and implemented the case study shown here.
Portions of this case study recapitulate the methods and conclusions of [103] by G.G.
and L.P. G.G. and L.P. conceptualized this study. G.G. designed and implemented
the analysis.

More interestingly, such analysis can guide the design of experiments: models may
be indistinguishable based on some kinds of data, but not others. This perspective
has guided the interest in characterizing noise behaviors [204, 205]: distributions
provide strictly more information than averages, and allow us to distinguish between
regulatory behaviors. Similarly, multivariate distributions provide more information
than marginal distributions. Obtaining different data (multiple molecular modalities)
is qualitatively more useful than obtaining more data (a larger number of cells) or
better data (observations less corrupted by noise).
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Figure 7.1: The stochastic analysis of biological and technical phenomena facilitates the identifica-
tion and inference of transcriptional models.
a. A minimal model that accounts for intrinsic (single-molecule), extrinsic (cell-to-cell), and tech-
nical (experimental) variability: one of three time-varying transcriptional processes 𝐾 generates
molecules, which are spliced with rate 𝛽, degraded with rate 𝛾, and observed with probability 𝑝.
Given a set of observations, we can use statistics to narrow down the range of consistent models.
b. Overdispersed regimes are not mutually identifiable given a single modality (likelihood computed
using nascent RNA data for 200 simulated cells; Γ-OU ground truth; red point: true parameter set in
the mixture-like regime; color: log-likelihood of data, yellow is higher, 90th percentile marked with
magenta hatching; blue: an illustrative parameter set in a burst-like parameter regime with a similar
nascent marginal but drastically different joint structure).
c. The mixture-like and burst-like regimes become mutually identifiable with multimodal data (like-
lihood computed using bivariate RNA data for 200 simulated cells; all other conventions as in b).
d. Nascent marginal and joint distributions at the points indicated in b and c. Nascent distributions
nearly overlap.
e.-f. Given a location in parameter space, models are easier to distinguish using multiple modalities.
However, the performance varies widely based on the location in parameter space and the specific
candidate models, and decreases with drop-out (Γ-OU Akaike weights under Γ-OU ground truth,
average of 𝑛 = 50 replicates using 200 simulated cells; color: Akaike weight of correct model,
yellow is higher, regions with weight < 0.5 marked with black hatching; large circles: illustrative
parameter sets; smaller circles: distributions obtained by applying 𝑝 = 50%, 75%, and 85% dropout
to illustrative parameter sets while keeping the averages constant).
g. The telegraph model has a well-distinguishable bimodal limit when the process autocorrelation
is slower than RNA dynamics, which improves its identifiability (lines: the three candidate models’
nascent marginal distributions at the olive point in e and f).
h. In the bursty limit, the three models look qualitatively similar, limiting identifiability (lines: the
three candidate models’ nascent marginal distributions at the pink point in e and f).
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We illustrate this key point by considering three transcriptional drivers coupled to
a two-stage RNA process (𝑛 = 2). The transcription rate is time-varying, with rate
𝐾 . Each biological molecule has a probability 𝑝 of being observed in the final
dataset, which amounts to evaluating the generating functions at 𝑝𝑢𝑁 and 𝑝𝑢𝑀 . The
processes and their physical interpretations are shown in Figure 7.1a.

First, we consider two models that provide an explanatory framework for the ex-
trinsic noise model described in Section 4.6.3. As biological distributions are
overdispersed, it appears reasonable to propose that transcription rates 𝐾 vary be-
tween cells, and the gamma model for 𝐾 produces plausible negative binomial count
distributions. However, this approach has some gaps in its physical motivation: what
is the biological meaning of this distribution’s parameters? And is it really reason-
able to assume that the rates are “frozen,” and remain as they are for all time in a
given cell?

To account for possible time variation, we introduce a class of transcriptional models
that balance interpretability and tractability, and generalize the mixture model.
Although various biological details underlying transcription may be complicated,
we assume they can be captured by an effective transcription rate 𝐾𝑡 , which is
stochastic and varies with time. This transcription rate randomly fluctuates about
its mean value, with the precise nature of its fluctuations dependent upon the fine
biophysical details of transcription. To guarantee that they can recapitulate the
mixture model, we consider stochastic differential equation 𝐾𝑡 with a gamma steady-
state distribution.

These models’ functional forms have previously been used in biology [89, 140, 228,
242, 325], but a key point has been underexplored: the resulting RNA distributions
are not generally Poisson-gamma, and directly depend on the details of the transcrip-
tional process dynamics. In other words, the trajectory shapes matter a great deal,
and to accurately represent this form of “extrinsic” stochasticity, we need to specify
the precise functional form for 𝐾𝑡 . Conversely, given a set of candidate models, we
may be able to distinguish them on the basis of RNA count distributions. As the
stochastic differential equation driver models have identical count expectations and
variances, we need to bring to bear the theoretical framework laid out in Chapter 4
to compute full probability mass functions.

The first candidate model is the gamma Ornstein–Uhlenbeck (Γ-OU) process (𝑁 = 1,
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𝑚 = 1) [241]:

𝑑𝑦𝑡 = −𝜅𝑦𝑡𝑑𝑡 + 𝑑𝐿𝑡 , (7.1)

where the mean-reversion term −𝜅𝑦𝑡 represents DNA winding, which makes RNA
polymerase binding less favorable and causes the transcription rate to decrease,
whereas the compound Poisson process jump term 𝐿𝑡 represents the arrivals of
topoisomerases, which increase propensity for transcription by exponentially dis-
tributed jumps. In the parlance of Chapter 4,

u =


𝑢𝑁

𝑢𝑀

𝑢𝐾

 , 𝐶
𝑐𝑐 = −𝜅, 𝐶𝑐𝑑 =

[
1 0

]
, and A(u) = 𝑎

[
1

1 − 𝜃𝑢𝐾
− 1

]
, (7.2)

where 𝑎 is the arrival frequency and 𝜃 is the average jump size.

The second candidate model is the Cox–Ingersoll–Ross (CIR) process (𝑁 = 1,
𝑚 = 1) [62]:

𝑑𝑦𝑡 = (𝑎𝜃 − 𝜅𝑦𝑡)𝑑𝑡 +
√︁

2𝜅𝜃𝑦𝑡𝑑𝑊𝑡 , (7.3)

where 𝑊𝑡 denotes the Brownian motion, the drift term 𝑎 is the production rate of a
regulator, 𝜅 is its degradation rate, and 𝜃 — essentially, a “process gain” — relates
the concentration of the regulator to the activity of the promoter. To derive this
identity, we assume that the regulator is present at high concentration and rapidly
equilibrates with the bound species. This system is characterized by the parameters
and operators

u =


𝑢𝑁

𝑢𝑀

𝑢𝐾

 , 𝐶
𝑐𝑐 = −𝜅, 𝐶𝑐𝑑 =

[
1 0

]
, 𝑄𝑐 = 𝜅𝜃, and A(u) = 𝑎𝜃𝑢𝐾 . (7.4)

The stationary distribution of the Γ-OU and CIR processes is gamma, with shape 𝑎/𝜅
and scale 𝜃, i.e., mean 𝑎𝜃/𝜅 and variance 𝑎𝜃2/𝜅. In addition, their autocorrelation
function is 𝑒−𝜅𝑡 .

Finally, the third candidate model is the more conventional telegraph process (𝑁 = 2,
𝑚 = 0) [219], which describes the Markovian activation and deactivation of a gene.
This system is characterized by

u =

[
𝑢𝑁

𝑢𝑀

]
, 𝐻 =

[
−𝑘on 𝑘on

𝑘off −𝑘off

]
, and A(u) =

[
0
𝛼𝑢𝑁

]
. (7.5)
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The stationary distribution of this process is Bernoulli scaled by 𝑘 init, with mean
𝑘on𝑘 init
𝑘on+𝑘off

and variance 𝑘on𝑘off𝑘
2
init

(𝑘on+𝑘off)2
. Its autocorrelation function is 𝑒−(𝑘on+𝑘off)𝑡 [95].

Even if the true averages of the transcriptional strength and molecular abundances
are fixed, the systems can exhibit a wide variety of distribution shapes and statistical
behaviors. This variety can be summarized by a two-dimensional parameter space,
ranging over (0, 1). The “timescale separation” governs the relative timescales of
the transcriptional and molecular processes; if it is high, the transcriptional process
is faster than RNA turnover. The “noise intensity” governs the variability in the
transcriptional process: if it is high, the process exhibits substantial variability
that translates to overdispersion in the RNA distributions. The bottom edge of this
parameter space produces Poisson distributions of RNA, the top left corner produces
Poisson mixtures of the law of 𝐾 , and the top right corner yields bursty dynamics
that do not typically have simple analytical solutions [113].

For the two-species SDE driver models, the reduced parameters take the following
form:

timescale separation := x =
𝜅

𝜅 + 𝛽 + 𝛾 and noise intensity := y =
𝜃

𝑎 + 𝜃 . (7.6)

Equation 7.6 is defined with reference to the process parameters of the Γ-OU and
CIR drivers [113]. It remains to define 𝜅, 𝜃, and 𝑎 in terms of 𝑘on, 𝑘off, and 𝑘 init for
the telegraph process. The correct identification is:

𝜅 = 𝑘on + 𝑘off is the autocorrelation timescale,

𝑎 =
𝑘on𝜅

𝑘off
is the process scaling, and

𝜃 =
𝑘off𝑘 init

𝜅
is the gain.

(7.7)

These definitions are not arbitrary, as they endow the system with lower moments that
match the SDE formulation: autocorrelation function 𝑒−𝜅𝑡 , mean 𝑎𝜃/𝜅, and variance
𝜃𝜇𝐾 . In addition, the system has the correct geometric burst limit (𝑘 init, 𝑘off → ∞)
with burst size 𝜃/𝜅 → 𝑘 init/𝑘off and burst frequency 𝑎 → 𝑘on [233]; this limit
matches the Γ-OU one. Therefore, given x, y, 𝜇𝐾 , 𝛽, and 𝛾, we can construct the
parameters of the underlying transcriptional driver.

Although different x, y regimes reflect very different transcriptional kinetics, they
can produce indistinguishable distributions. Figure 7.1b demonstrates the likelihood
landscape of a dataset generated from the Γ-OU transcriptional model, evaluated



87

using the nascent marginal and 𝑝 = 1 (no technical noise). The mixture-like
true parameters are indicated by a red point and the top decile of likelihoods is
indicated by hatching. The Γ-OU model has a gamma stationary distribution, which
produces approximately Poisson-gamma, or negative binomial, RNA marginals in
this regime. However, the bursty regime, indicated by a blue point, also yields
a negative binomial-like marginal (reported in Equation 7.8), preventing us from
identifying the kinetics. On the other hand, if we evaluate likelihoods using the
entire two-species dataset, we obtain the landscape in Figure 7.1c: the symmetry
is broken, and the parameters can be localized to the mixture-like regime. The
source of this improved performance is evident from examining the distributions,
shown in Figure 7.1d. The nascent marginals are essentially identical; no amount
of purely nascent count data can distinguish between them. However, the bivariate
distributions show subtle differences, such as higher nascent/mature correlations in
the true regime, which can be used for inference.

In addition, the timescale separation and noise intensity determine the model dis-
tinguishability. Figure 7.1e demonstrates the average Akaike weight landscape of
datasets generated from the Γ-OU model, computed using the nascent distribution at
the same coordinate. We indicate the region 𝑤𝜛 > 1/2 by hatching. As the Akaike
weight may be interpreted as a posterior model probability [38], this threshold gives
even odds for choosing the correct model, on average. The intermediate regime,
indicated by a large olive green point, tends to yield fairly high Akaike weights,
translating to good model identifiability. On the other hand, the burst-like regime,
indicated by a large pink point, provides considerably less ability to distinguish the
models. As expected, the situation improves somewhat when using bivariate data
(Figure 7.1f): the Akaike weights increase throughout the parameter space, and
the bursty regime data move closer to even odds for model selection. To illustrate
the source of the identifiability challenges, we plot the nascent marginals of the
models at the two points. In the intermediate regime, the Γ-OU and CIR models
yield moderately different distributions, whereas the telegraph model is immediately
distinguishable by its bimodality (Figure 7.1g). In contrast, in the bursty regime,
the distributions are all unimodal and less identifiable (Figure 7.1h); the Γ-OU and
telegraph marginals are particularly similar, as they converge to the same negative
binomial limit.

Interestingly, this formulation fully characterizes the effect of certain forms of tech-
nical noise. If the transcriptional and observed molecular averages are fixed, but
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the experiment fails to capture some molecules, the distributions are identical to
those obtained by deflating the transcriptional noise intensity. In other words, even
though technical noise affects the molecules, its theoretical effects are indistinguish-
able from decreasing the variability of the transcriptional process. As the noise
levels increase, the RNA distributions are pushed toward the indistinguishable Pois-
son limit at the bottom edge of the reduced parameter space. We quantify how
rapidly the information degrades by plotting smaller circles in Figure 7.1e-f to in-
dicate the effect of 50%, 75%, and 85% dropout, in that order from top to bottom.
This result is an extremely general and fundamental consequence of the form of the
solution (Section A.8.4).

In sum, in certain overdispersed regimes, candidate drivers are mutually distinguish-
able, and the identification of transcriptional models is qualitatively and quantita-
tively facilitated by the collection of multimodal data. In addition, by exploiting the
mathematical structure of the ODEs defining the transcriptional processes, we find
that the impact of the simplest form of drop-out noise can be conceptualized as the
reduction of the transcription rate scale, rendering these parameters non-identifiable.

7.2 The identification of transcriptional driving processes
This section adapts a portion of [113] by G.G.∗, J.J.V.∗, M.F., and L.P. The analysis
was conceptualized by J.J.V. and G.G., designed by J.J.V., M.F., and G.G., and
implemented by G.G. and M.F.

Even if the Γ-OU and CIR models can be distinguished and fit to data in principle,
can they be distinguished and fit in practice? Real transcriptomic data feature
additional noise due to technical errors, and possibly confounding influences due to
phenomena like cell growth and division [283]. One can also face serious model
misspecification problems, where one finds that even though one model fits better
than others, none of them fit particularly well.

To show that these models may be observed and distinguished in real datasets, we
analyzed single-cell transcriptomic data with tens of thousands of genes from the
glutamatergic neurons of four mice [321]. Because neurons generally do not grow
or divide, their gene expression dynamics should not be confounded by the effects
of cell growth and division. To guard against spurious conclusions related to both
technical noise and model misspecification, we used a multi-step filtering procedure
based on a neuron subtypes from single mouse dataset to choose genes to examine.

As we are primarily interested in demonstrating whether the novel solutions for
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Figure 7.2: Genes from comparable single-cell RNA sequencing datasets can be
consistently assigned to a particular biophysical model of transcription.
a. By fitting models in the limiting regimes and calculating model Akaike weights,
visualized on a ternary diagram, we can obtain coarse gene model assignments
(colors: regimes predicted by the partial fit; red: Γ-OU-like genes; blue: CIR-like
genes; violet: mixture-like genes; gray: genes not consistently assigned to a limiting
regime).
b. Likelihood ratios for selected genes are consistent across biological replicates,
and favor categories consistent with predictions (colors: regimes predicted by the
partial fit; points: likelihood ratios; horizontal line markers: Bayes factors; vertical
lines: Bayes factor ranges; Bayes factor values beyond the plot bounds have been
omitted. 𝑛 = 4 biologically independent animals, with 5,343, 6,604, 5,892, and
4,497 cells per animal).
c. The differences between model best fits are reflected in raw count data (title
colors: predicted regimes; lines: model fits at maximum likelihood parameter esti-
mates; line colors: models; histograms: count data).
d. Non-distinguishable genes tend to lie in the slow-reversion and high-gain pa-
rameter regime; distinguishable genes vary more, but tend to have relatively high
gain (colors: predicted regimes, large dots: genes illustrated in panel c. Genes with
absolute log-likelihood ratios above 150 have been excluded).
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Γ-OU and CIR models can be supported by data, we fit the two models’ (distinct)
burst-like limits, where x, y → 1 and (identical) mixture-like limits, where x → 0
and y→ 1, using Monod, assuming no technical noise, to five glutamatergic neuron
subtypes from a single mouse. The burst-like limit of the Γ-OU model is given in
Section 4.6.2, the mixture-like limit is given in Section 4.6.3, while the burst-like
limit of the CIR model has the following generating function:

log𝐺 (u) = 1
2

∫ ∞

0

[
1 −

√︁
1 − 4𝑏𝑈𝑁 (u, s)

]
𝑑s, (7.8)

where 𝑏 = 𝜃/𝜅 and 𝑈𝑁 takes the usual form in Equation 4.55 (Section A.8.2). This
somewhat degenerate5 limit describes driving by a process with infinitely many
jumps in each finite time interval. Although this driver has been encountered before
in the mathematical finance literature [292], the solution does not appear to have
been previously reported [20, 22].

We computed the Akaike weights of the three limits for all genes (results for one
subtype shown in Figure 7.2a). Finally, we selected genes that most consistently
agreed with the distributions in these limits (colored points in Figure 7.2a), and
extracted the genes with the best fits to the optimal models.

We fit the Γ-OU and CIR models to the 80 genes that passed the filtering step
to glutamatergic neuron data from four mice, using gradient descent to find the
maximum likelihood parameter set, and computed the likelihood ratios for the
models (Equation 3.45), discarding poorly fit genes. The likelihood ratios for the
remaining 73 genes are depicted in Figure 7.2b (points). To ensure that the likelihood
ratios we obtained were not distorted by the omission of uncertainty in estimates,
or potentially suboptimal fits, we further fit twelve of the genes using a Bayesian
procedure, displaying the distribution of Bayes factors (Equation 3.46) in the same
axes (horizontal markers).

The predictions from the coarse filter were largely concordant with the results
from the full model, suggesting that it is effective for selecting genes of interest
from transcriptome-wide data. The model assignments were typically consistent
among datasets. Although orthogonal targeted experiments are necessary to iden-
tify whether the proposed models effectively recapitulate the live-cell transcriptional
dynamics, the reproducibility of the findings suggests directions and candidate genes
for such investigations. Finally, the Bayes factors were largely quantitatively con-
sistent with the likelihood ratios, suggesting that the approximations made in the
gradient descent procedure do not substantially degrade the quality of the statis-



91

tical results. However, we did observe several discrepancies between likelihood
ratios and Bayes factors, confirming that the more computationally facile gradient
descent procedure does not perfectly recapitulate the full Bayesian fit (cf. results for
Ccdc39 and Birc6), possibly due to substantial omitted uncertainty in some genes’
parameters.

Five example fits are depicted in Figure 7.2c, with the corresponding gene names
color-coded according to the best-fit model (red: Γ-OU, blue: CIR, purple: mix-
ture). Model distinctions mostly appear to be due to differences in probability
near distribution peaks. Interestingly, only either the nascent marginal or mature
marginal exhibits obvious visual differences between model fits in some of the genes
depicted here, further motivating the use of multimodal data.

The location of each best-fit parameter set in the qualitative regimes space is shown
in Figure 7.2d. Most Γ-OU fits exist in the top right corner, suggesting we are
effectively fitting a standard geometric burst model in these cases. Nonetheless,
there are a number of genes for which the parameter sets reside somewhere in the
center, indicating that the full complexity of the Γ-OU or CIR models is necessary
to describe the corresponding data.

Despite the models’ simplicity, the results suggest that single-cell RNA sequenc-
ing data may be sufficiently rich to enable Bayesian model discrimination between
superficially similar regulatory schema. Certain genes demonstrate reproducible
differences between the two considered SDE drivers, which may imply differences
in the underlying regulatory motifs. Interpreting the specific biochemical mean-
ing of the findings is challenging without accounting for features which have been
omitted in the discussion thus far, such as technical noise and additional complex-
ities in downstream processing of RNA. Nevertheless, fine details of transcription
— including DNA mechanics and gene regulation — appear to have signatures in
single-cell data, and a model-based, hypothesis-driven paradigm can help identify
them. Further, these fine details can be probed using a range of tools, some more ap-
proximate and suited to genome-wide exploratory analysis, others more statistically
rigorous and suited to detailed study of gene targets.

7.3 RNA processing
This section adapts a portion of [114] by G.G., S.Y., and L.P. The theoretical results
and data analyses were conceptualized, designed, and implemented by G.G.

Although we have largely considered Markovian processes, this model class may
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not be sufficient to describe biology. On one hand, there is considerable evi-
dence that bacterial and mammalian transcription is typically Markovian and bursty
[65, 92, 170, 239, 244], although more sophisticated extensions have been proposed
and applied [125, 170, 334]. Similarly, the results of genome-wide inhibition exper-
iments are largely consistent with Markovian RNA degradation, with exponentially
decaying RNA levels over time [255].

On the other hand, the kinetics of splicing and export are rather less well-characterized.
For computational and mathematical tractability, we typically assume that splicing
is a single-step Markovian process, whereas export is rapid enough to neglect. These
assumptions appear sufficient to fit data generated by single-cell RNA sequencing,
but they have not been studied in detail. Indeed, they are counterintuitive: nuclear
retention is important [16], and previous studies have used fairly sophisticated mod-
els to describe it [86], although others have achieved reasonable results under a
Markovian hypothesis [16, 127, 206]. In addition, we have elided a considerable
amount of complexity by identifying nascent RNA with intron-containing molecules
and mature RNA with all others (Section B.1). Indeed, we may reasonably expect
that splicing often [60] occurs co-transcriptionally [74], such that intron-containing
molecules are in the process of elongation. In this case, a Markovian model is a
priori incorrect, because elongation needs to complete before the molecule can be
released and degraded [59].

These assumptions are testable using single-cell and single-nucleus RNA sequencing
(snRNA-seq) datasets and the suite of models in Chapter 4. Conversely, testing them
allows us to understand the qualitative differences, if any, between these data types.
The splicing dynamics are relevant for all datasets, but the transport dynamics are
motivated by the narrower goal of interpreting single-nucleus datasets. In single-
cell datasets, we can, in principle, suppose that nuclear transport dynamics are
rapid and the degradation is approximately Markovian. However, single-nucleus
technologies isolate individual nuclei (Figure 7.3a), so we need to explicitly model
the transport term to construct a stochastic model. First, we seek to understand
whether single-nucleus data require models that are substantially different from
single-cell data, whether the Markovian efflux hypothesis is sufficient to describe
the removal of mature molecules from nuclei. Second, we seek to characterize
whether the Markovian splicing hypothesis holds. Finally, we seek to understand
the extent to which single-cell and single-nucleus data allow for model identification.

We consider the standard bursty model discussed in Section 4.6.2, as well as the
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two models shown in Figure 7.3b, which replace one or the other of the downstream
Markovian processes with a deterministic one. By applying the methods in Section
4.3.2, we find that the process with delayed efflux has the log-generating function

log𝐺 (u) = 𝑘/𝛽
1 − 𝑏𝑢𝑀

log
(
𝑏𝑈 (𝜏) − 1
𝑏𝑢𝑁 − 1

)
+ 𝑘𝜏 𝑏𝑢𝑀

1 − 𝑏𝑢𝑀
− 𝑘
𝛽

log (1 − 𝑏𝑈 (𝜏)) , where

𝑈 (𝑡) := 𝑢𝑀 + (𝑢𝑁 − 𝑢𝑀)𝑒−𝛽𝑡 .
(7.9)

This fairly complex expression produces the expected negative binomial nascent
marginal.

On the other hand, the process with delayed splicing has the log-generating function

log𝐺 (u) = 𝑘𝜏𝑏𝑢𝑁

1 − 𝑏𝑢𝑁
− 𝑘
𝛾

log(1 − 𝑏𝑢𝑀). (7.10)

This generating function is separable with respect to 𝑢𝑁 and 𝑢𝑀 , which implies that
the nascent and mature distributions are statistically independent. The mature count
distribution is negative binomial, whereas the nascent one is geometric-Poisson or
Pólya–Aeppli. This result generalizes the single-species case reported in [151].

We fit the three models using Monod, omitting technical noise. The models were
separately fit to GABAergic and glutamatergic cell types from two mouse brain
samples [321], one generated using single-cell sequencing and one generated us-
ing single-nucleus sequencing, as well as single-cell and single-nucleus data from
pericentral, periportal, and interzonal hepatocytes from a single human liver sample
[11]. Upon fitting the MLEs, we computed the models’ likelihood ratios relative to
the Markovian model.

We did not observe a systematic bias toward the delayed efflux model in either the
whole-cell (Figure 7.3c) or the nuclear data (Figure 7.3d). The log-likelihood ratios
were symmetric and near zero in all considered cases, suggesting the data were
insufficient to strongly favor either model in any of the datasets. This result suggests
that the Markovian model is broadly reasonable for nuclear transport.

In contrast, the delayed splicing model was considerably less favored, with log-
likelihood ratios tending to be negative (Figure 7.3e-f). The strength of evidence
against the models was lower in the single-nucleus data. This loss of statistical
identifiability concords with intuition: the bursty Markovian and delayed-efflux
models afford identical negative binomial nascent RNA marginals, requiring a large
amount of mature RNA to distinguish the models, which the nuclear sequencing
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Figure 7.3: The comparison of stochastic model predictions facilitates the identifi-
cation of RNA processing mechanisms compatible with data.
a. An outline of the experimental differences between single-cell and single-nucleus
sequencing technologies.
b. The reaction schema of the considered models: DNA generates nascent RNA
with transcriptional burst frequency 𝑘 and burst size 𝑏, the nascent RNA are con-
verted to mature RNA; the mature RNA are removed from the system, either by
nuclear transport or by cytoplasmic degradation.
c. In whole-cell data, likelihood ratios do not systematically favor either the Marko-
vian or the deterministically delayed efflux model (colors: cell types; red: Allen
data; blue-green: Andrews data; lines: kernel density estimates).
d. In nuclear data, likelihood ratios do not systematically favor either the Markovian
or the deterministically delayed efflux model (conventions as in c).
e. In whole-cell data, likelihood ratios typically favor the Markovian model over the
deterministically delayed splicing model (conventions as in c).
f. In nuclear data, likelihood ratios typically favor the Markovian model over the
deterministically delayed splicing model (conventions as in c).

protocol lacks. The delayed splicing model has a different nascent marginal, and
appeared to be more distinguishable from the negative binomial.

Overall, the hypothesis of Markovian, one-step splicing is useful despite its simplic-
ity and apparent conflict with the understanding of transcriptional elongation. The
simplest converse assumption — that splicing has a deterministic waiting time —
produces substantially worse fits across a variety of data. On the other hand, the
nucleus transport dynamics are consistent with either model, and we can say very
little about them because the single-nucleus data have low mature RNA content.
Nevertheless, the Markovian model appears to suffice.
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C h a p t e r 8

SEQUENCING MODEL SPECIFICATION

In spite of our assumptions throughout Chapter 7, real datasets do have various
technical noise sources, which need to be accounted for. Unfortunately, even the
relatively simple treatment of this topic in Section 4.4 is not tractable on a genome-
wide level: a fully satisfactory explanation of the multifaceted variability in single-
cell datasets remains out of reach. Nevertheless, we can fruitfully attempt to treat the
phenomena one at a time, assuming all others have been satisfactorily accounted for,
and use biophysical hypotheses to characterize the technical noise behaviors. This
incremental approach allows us to develop a more grounded alternative to typical
ad hoc approaches to “denoising” sequencing data.

8.1 Empty droplets
This section adapts a portion of [115] by G.G., J.J.V., and L.P. G.G. conceptualized,
designed, and implemented the analysis.

One of the first steps in scRNA-seq data analysis is cell quality control, which
excludes cell barcodes that appear to originate from empty droplets from further
analysis [187]. For computational tractability, this procedure typically uses “hard”
assignment, such that barcodes associated with a total molecule count above some
threshold are treated as cells, whereas barcodes below the threshold are treated as
empty droplets. Threshold selection is necessary because even “empty” droplets
contain ambient RNA. This ambient RNA appears to originate from cells lysed in
the preparation process, and contaminates empty and cell-containing droplets alike
[187]. The observation of ambient counts has led to the development of statistical
methods for removing this source of noise, either by estimating and subtracting
it [323] or incorporating it into a stochastic model [87, 256, 322]. Conceptually,
Equation 4.38 reflects the latter approach: each droplet contains one or more cells,
each with biological generating function 𝐺, and background, with a generating
function 𝐺bg that depends on 𝐺. To accurately model the background counts,
we need to propose and justify a specific functional form for 𝐺bg. Thus, under
the assumption that empty and cell-containing droplets are similarly susceptible to
contamination, the former provide a reasonable estimate of ambient distributions in
the latter [323].
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Figure 8.1: The pseudo-bulk model of background noise is quantitatively consistent
with counts from a human blood cell dataset.
a. The simplest explanatory model for background noise invokes the lysis of cells
(green), which creates a pool of RNA that reflects the overall transcriptome com-
position but retains none of the cell-level information. If the loose RNA molecules
diffuse into droplets (blue) according to a memoryless and independent arrival pro-
cess, the resulting background distribution (purple: higher probability mass; white:
lower probability mass) observed in empty droplets should be a series of mutually
independent Poisson distributions, with the mean controlled by the composition in
non-empty droplets.
b. The mature transcriptome in empty droplets has a mean-variance relationship
near identity (gray points, 𝑛 = 12, 298), consistent with Poisson statistics (blue
line); the non-empty droplets demonstrate considerable overdispersion (red points,
𝑛 = 17, 393).
c. The mature and nascent transcripts in empty droplets have sample correlation co-
efficients 𝜌 near zero, consistent with distributional independence (gray histogram,
𝑛 = 9, 362); the non-empty droplets demonstrate nontrivial statistical relationships
(red histogram, 𝑛 = 14, 365).
d. The mature transcripts of different genes in empty droplets have sample cor-
relation coefficients 𝜌 near zero, consistent with distributional independence (gray
histogram, 𝑛 = 75, 614, 253); the non-empty droplets demonstrate nontrivial statis-
tical relationships (red histogram, 𝑛 = 151, 249, 528).
e. When both are nonzero, the mature count mean in empty droplets is highly cor-
related with the mean in the non-empty droplets, consistent with the pseudo-bulk
interpretation (black points, 𝑛 = 12, 107; dashed line: identity).
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The simplest model holds 𝐺bg to be equivalent to a “pseudobulk” experiment, with
molecules randomly sampled from the lysed cell population. If each cell is equally
likely to contribute to the pool of free RNA, and diffusion occurs by a simple
independent arrival process, we find that the distribution of background should be
Poisson, with the mean for each species proportional to its mean in original cell
population, as in, e.g., [87]. This functional form immediately induces a set of
testable predictions: not only are the distributions Poisson, but they are independent
Poisson, with no meaningful statistical structure remaining between transcripts of a
single gene, as well as between different genes, as illustrated in Fig. 8.1a.

To characterize the accuracy of these predictions, we inspected datasets pseu-
doaligned with kallisto | bustools [197], and compared the data for barcodes passing
bustools quality control to data for barcodes which were filtered out. As a short-
hand, we call the former “non-empty” and the latter “empty” droplets, keeping in
mind that this identification is approximate. We illustrate the results for a human
blood dataset generated by 10x Genomics. As shown in Figure 8.1b, data from
non-empty droplets are substantially overdispersed relative to Poisson, whereas data
from empty droplets are largely consistent with the Poisson identity mean–variance
relationship. However, a small number of relatively high-expression genes demon-
strate overdispersion. In addition, intra-gene (Figure 8.1c) and inter-gene (Figure
8.1d) correlations are typically nontrivial in non-empty droplets, but consistently
near zero for empty droplets, supporting distributional independence of the back-
ground counts. Finally, the mean expression in empty droplets is highly correlated
with mean expression in non-empty droplets, albeit lowered by approximately four
orders of magnitude (Figure 8.1e), supporting the assumption that the original cells
are lysed in a uniform fashion.

To characterize the deviations from the pseudo-bulk model, we identified the genes
that demonstrated overdispersion in empty droplets. A considerable fraction of
these genes were associated with mitochondria or blood cells. For example, of the
21 annotated genes overdispersed in the empty droplets of a 10x Genomics mouse
neuron dataset, nine were mitochondrial (mt-Nd1, mt-Nd2, mt-Co1, mt-Co2, mt-
Atp6, mt-Co3, mt-Nd3, mt-Nd4, and mt-Cytb), three coded for hemoglobin subunits
(Hba-a1, Hba-a2, and Hbb-bs), and two coded for blood cell-specific proteins (Bsg,
Vwf ) [189, 209]. On the other hand, of the 10 annotated genes overdispersed in
the empty droplets of dataset generated from cultured mouse embryonic stem cells
[72], six (mt-Nd1, mt-Co2, mt-Atp6, mt-Co3, mt-Nd4, mt-Cytb) were mitochondrial
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and none were blood cell-specific [209].

Since overdispersion implies that contamination involves non-independent arrivals
of these molecules, the results suggest that the cell-free debris contain, among other
structures, entire mitochondria or erythrocytes, when they are present in the source
tissue. These membrane-bound structures may diffuse into droplets, then lyse and
release all of their contents at once. In other words, empty droplets do not merely
have disproportionally high mitochondrial content, as has been noted previously
[87, 133, 139]; they have nontrivially distributed mitochondrial content, which can
suggest the mechanism of its incorporation and improve interpretation where simple
thresholds may be misleading [139]. We speculate that cases where the model fails
can be leveraged to discover more complicated forms of contamination, such as
molecular aggregates [322].

In addition, we examined the total UMI counts in empty droplets, which should be
Poisson (Fano = 1) if each individual gene’s distribution is Poisson. For the human
blood dataset demonstrated in Figure 8.1, the empty droplets had fairly significant
overdispersion (Fano ≈ 43), which decreased, but did not disappear (Fano ≈ 7.6),
once the 53 significantly overdispersed genes were excluded. This result suggests
that, although the pseudo-bulk model is approximately valid, some residual variance,
possibly due to variability in per-droplet capture rates, is present and needs to be
modeled to fully describe the stochasticity in single-cell datasets.

8.2 Length biases
This section summarizes the content of [107] by G.G. and L.P. The initial interest
in length bias was due to L.P. and V.S.; the model was conceptualized by L.P. and
G.G.; the model was designed and implemented by G.G.

In a wide variety of 10x single-cell RNA sequencing datasets, average spliced mRNA
counts do not seem to show a length dependence (Fig. 8.2a, gray lines), which is
consistent with previous studies of UMI-based protocols [222]. On the other hand,
unspliced mRNA counts strongly correlate with gene length [119] (Fig. 8.2a, red
lines). This observation prompted us to investigate whether the discrepancy has
biological origins, and raised questions about the consequences of ignoring this
bias.

This bias may be explained by several models (Figure 8.2b). The first has identical,
gene-specific observation probabilities 𝑝 for nascent and mature species. In this
model, the inferred burst size is 𝑏𝑝, as these two parameters are not mutually
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Figure 8.2: Trends in inferred transcriptional parameters allow us to distinguish between models
of technical noise, and explain a pervasive length bias in molecule counts by length-dependent se-
quencing rates.
a. A variety of single-cell datasets produce consistent and counterintuitive length-dependent trends
in nascent RNA observations (lines: average per-species gene expression, binned by gene length;
red: nascent RNA observations; gray: mature RNA statistics; data for 2,500 genes shown for each
dataset).
b. Two explanatory models for the trend in a: the species-independent bias model for length depen-
dence in averages, which proposes nascent and mature RNA are sampled with equal probabilities, and
the species-dependent bias model, which proposes nascent RNA sampling rate scales with length
(top, gold: kinetics of species-independent model; bottom, blue: kinetics of species-dependent
model; center, green: the source RNA molecules used to template cDNA).
c. Fits to the species-independent model show a strong positive gene length dependence for inferred
burst sizes, whereas fits to the species-dependent model show a modest negative gene length de-
pendence, which is more coherent with orthogonal data (lines: average per-gene burst size inferred
by Monod, binned by gene length; gold: results for species-independent model; blue: results for
species-dependent model; only genes that passed goodness-of-fit testing shown)
d. The likelihood over sampling parameters can be optimized to infer the parameters, which are
consistent among datasets (dark teal: lower, light teal: higher total Kullback-Leibler divergence
between fit and blood cell data; highlighted yellow region: 5% quantile region for the displayed
landscape; orange cross: optimal sampling parameter fit for the displayed landscape; orange points:
optimal sampling parameter fits for other analyzed v3 datasets).
e. Biological replicates show largely concordant inferred parameter values (orange dashed line:
identity; gold: lower bounds on 99% confidence intervals; gray: fits rejected by statistical testing;
splicing and degradation rates are reported in units of burst frequency).
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identifiable. The second has with a gene length 𝐿-dependent technical noise term
for the nascent species, coarsely representing a higher rate of priming for long
molecules with abundant intronic poly(A) tracts [119, 168, 207], and a shared
genome-wide term for the mature species, representing priming at the poly(A) tail
(Section 4.4.3). In this model, the inferred burst size is 𝑏. Both models produce fair
fits to the data.

However, the trends in the parameters inferred by Monod (Section 5.4) under the
two models are strikingly different: the species-independent bias model predicts
that longer genes have higher 𝑏𝑝 (Figure 8.2c, gold lines). Ascribing this trend to
the 𝑏 term — longer genes have higher burst sizes — contradicts burst size trends
from fluorescence microscopy [172]. Ascribing it to the 𝑝 term — longer genes
have higher sampling probabilities — is physically unrealistic, because mature RNA
molecules are depleted of the internal poly(A) tracts necessary for priming [217].

On the other hand, the species-dependent model predicts a modest negative rela-
tionship between length and burst size, which is more coherent with orthogonal data
(Figure 8.2c, blue lines). We observe similar trends for the turnover parameters
𝛽 and 𝛾: striking length dependence under the species-independent model, which
vanishes when using length as a scaling factor for the sampling rate6. We find that
the sampling parameter optima are similar for a wide variety of datasets obtained
from comparable experiments (Figure 8.2d). In addition, biological replicates [321]
produce similar parameter values (Figure 8.2e).

This technical noise model is a relatively simplistic low-order approximation —
all genes have the same mature molecule capture rate 𝜆𝑀 and length scaling 𝐶𝑁 .
Nevertheless, it foregrounds a key modeling principle: in the absence of prior
information, biological parameters need to be fit on a gene-by-gene basis, but
technical noise should be constructed using a common genome-wide model that
varies in a mechanistic, rather than arbitrary way. In sum, the mathematics enable
us to define and fit systems, but to understand whether the fits are sensible, we need
to contextualize and compare them with previous results and physical intuition.

8.3 Technology differences
This section summarizes part of the content of [106] and [107] G.G. and L.P. The
analysis was conceptualized and designed by G.G. and L.P, and implemented by
G.G.

The explicit parametrization of biophysical models allows us to explain and account
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Figure 8.3: The technical noise model fits can be interpreted to analyze experimental
effects.
a. 10x v2 and v3 scRNA-seq replicates generated from a single sample demonstrate
discordant RNA count distributions: the v2 datasets have lower mean values (orange
dashed line: identity; black: genes).
b. The v2 datasets have higher CV2 values (conventions as in a).
c. The v2 datasets’ distributional differences can be tentatively explained by a com-
bination of identical biological parameters and lower technical noise parameters
(𝐶𝑁 : coefficient for length-dependent unspliced capture rate; 𝜆𝑀 : spliced capture
rate; colors: dataset categories; intersections of grid lines indicate the sampling
parameter sets evaluated in the inference process).
d. Counterintuitively, representative paired mouse brain single-cell and single-
nucleus datasets exhibit similar mature RNA levels (gray points: genes; dashed
black line: line of identity; green line: the approximate average offset observed for
single-nucleus data).
e. The single-nucleus dataset consistently has considerably higher nascent RNA
counts, which suggests the presence of a technical effect between the two technolo-
gies (conventions as in d).
f. The single-nucleus dataset demonstrates slightly lower noise levels for mature
count data (gray points: genes; dashed black line: line of identity).
g. The single-nucleus dataset demonstrates considerably lower noise levels for
nascent count data (conventions as in f).
h.-i. By fitting mechanistic models to both datasets, we can identify technical noise
parameters that produce consistent burst and splicing parameters between the tech-
nologies (points: maximum likelihood estimates for burst sizes and splicing rates;
error bars: conditional 99% confidence intervals for inferred parameters; dashed
black line: line of identity).
j. At the discovered technical noise parameters, the mature RNA efflux or turnover is
considerably higher for the single-nucleus dataset, consistent with this parameter’s
interpretation as the rapid export from the nucleus (conventions as in h-i).
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for differences between technologies. By themselves, technical noise parameters
demonstrate limited identifiability. However, we can investigate the technical ef-
fects more systematically by treating replicates generated by different sequencing
technologies and adopting stronger priors. We found that count data generated by
the higher-efficiency v3 chemistry consistently yielded higher mean levels and lower
noise (CV2) levels than those generated by the older v2 chemistry (Fig. 8.3a-b).
Intuitively, these differences should be appropriately attributed to technical effects,
as the source tissues were similar or identical.

Imposing the belief that the underlying biological parameters should be the iden-
tical between all technical replicates, and treating the results for large v3 samples
as a putative ground truth, we identified the set of sampling parameters for the v2
datasets that produced the best agreement to these biological parameter values. The
resulting inferred sampling parameter optima are shown in Figure 8.3c: as expected,
v2 datasets have lower sampling parameter values. These values are somewhat chal-
lenging to identify without enforcing the consistency criterion between transcrip-
tional parameters: the v2 KLD landscapes are more susceptible to noise than the v3
KLD landscapes, preventing de novo inference. Although the current comparison is
mostly relative, the framework provides a quantitative explanatory mechanism for
the technical effect of sequencing chemistry.

Similarly, we can apply this approach to the analysis of single-nucleus data. The
interest in single-nucleus sequencing, as well as the recognition of systematic differ-
ences in the findings from the two technologies [11, 19, 71, 286], has motivated the
analysis of these differences [46] and the development of more or less ad hoc data
integration methods [11, 169]. At least some discrepancies appears to stem from
a fundamental methodological difference: single-cell analyses typically only use
exonic reads, whereas single-nucleus combine intronic and exonic reads [71, 75].

We propose that scRNA-seq and snRNA-seq data may be more analyzed in a more
principled way through a mechanistic lens. For single-nucleus data, we use the
results in Section 7.3 to justify the bursty model (Section 4.6.2). For single-cell data,
we adopt the same model, making the usual assumption that export is sufficiently
rapid enough relative to degradation. Under this pair of models, the nascent RNA
dynamics — i.e., transcription and splicing — should be identical for the two
technologies, as the nascent RNA are confined to the nucleus.

This axiom provides a foundation for the joint analysis of the technologies. For
example, Figure 8.3d-e compares the average counts for 2,000 genes in scRNA-



103

seq and snRNA-seq datasets generated from a single mouse brain tissue sample by
10x Genomics. Surprisingly, in spite of the depletion of cytoplasmic RNA, the
mature count averages were visually similar, whereas the nuclear count averages
were approximately half an order of magnitude higher in the single-nucleus dataset.
Quantitatively, 83% of the mature and over 99% of the nascent averages were higher
in the snRNA-seq sample. To explain this difference, we adopt the usual “marker
gene” paradigm, i.e., that closely related cell types typically differ in the expression
of a small number of genes [187], whereas the other genes have similar distributions.
Under this assumption, we are immediately led to conclude that the difference is
purely technical, and cannot be attributed to enrichment of certain cell types in
one or the other technology. In other words, due to the details of the nuclear
sequencing protocol, the procedure retains considerably more RNA of both types.
This assumption appears to be supported by Figure 8.3f-g: both species exhibited an
overall decrease in the noise levels (66% of the mature and 98% of the nascent CV2

values), which is consistent with decreased molecule loss. The difference in mature
RNA amounts should, then, be explained by the combination of two competing
effects: the depletion of cytoplasmic RNA, as well as more effective capture of
remaining molecules, in the single-nucleus protocol.

To quantify the efflux rates, we fit the datasets using Monod and inferred the technical
noise parameters for the single-cell dataset. Next, we identified the set of single-
nucleus technical noise parameters that provided the best match to the burst size
and splicing rate parameters (Figure 8.3h-i); the discovered set of technical noise
parameters had higher (more effective) sampling rates. The inferred efflux rates at
this set were considerably higher for the single-nucleus dataset, both visually (Figure
8.3j) and statistically: the 𝑡-test {𝑡, 𝑝} values were {−2.7, 7.3 × 10−3} for the burst
size, {1.6, 0.11} for the splicing rate, and {−11, 2.1 × 10−27} for the efflux rate.

The procedure we have outlined has significant limitations: for example, we have
neglected nuclear efflux in the single-cell data and cell type heterogeneity, both of
which are physiologically important [17, 321] likely contributors to deviations in
Figure 8.3h-i. In addition, single-nucleus sequencing may harbor as of yet poorly-
understood technical noise phenomena particular to the technology. Nevertheless,
the model formulation provides a foundation for the incorporation of more sophis-
ticated nuclear retention phenomena [85] jointly with technical noise. In addition,
the strategy provides a principled solution to the dilemma of incorporating intronic
reads: all the available data should be used, with species differences encoded in a
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multivariate mechanistic model. If its assumptions are explicitly formulated, the
model can be fit, or extended to account for violations, based on experimental data.

8.4 Limitations of normalization procedures
This section summarizes part of the content of [106] by G.G. and L.P. The control
was conceptualized and designed by L.P.; the derivation was performed by G.G.
The method was implemented by G.G.

The modeling framework provides an appealing and self-consistent alternative to
typical methods for the treatment of technical variability. Due to the scale of
scRNA-seq data, standard analyses heavily use data transformation and dimension-
ality reduction to produce a version of the data more amenable to statistics [187]. For
example, a typical analysis of cell type heterogeneity may apply size normalization
(e.g, proportional fitting or PF, which treats RNA counts as compositional quan-
tities [34]), log-transformation, principal component analysis (PCA), and Uniform
Manifold Approximation and Projection (UMAP) [187, 195]. Each of these steps
has a specific purpose; for the four steps above, the purposes are, in turn, to remove
variability due to technical heterogeneity, to obtain easily tractable normal-like log-
abundance distributions, to select the latent data dimensions that contain the most
variability, and to visualize the cell type structure [187]. These transformations
rely on implicit assumptions about the structure of the data; these assumptions may
be mutually contradictory, and their violation may produce results that range from
suboptimal to catastrophically incorrect.

These limitations and failure modes have previously been investigated. Size nor-
malization privileges relative, rather than absolute RNA species abundance; occa-
sionally, this approach produces inconsistent results across the genome [123] and
retains apparently technical variation [34, 56]. Log-transformation is optimal for
homogeneous, high-expression, approximately negative binomial data [4, 34, 187],
and relies on an arbitrary genome-wide “pseudocount” hyperparameter that can
distort the distributions [4, 34, 123, 290]. PCA is optimal for multivariate normal
data, and can be misled by the large zero fractions observed in single-cell data [290].
Finally, UMAP appears to be optimal for data with uniform, low-noise coverage of
a latent manifold, with risk of distortions due to violated assumptions and stochastic
initialization [49, 58] (Section 6.1.3). A comprehensive treatment of the distortions
induced or ameliorated by each step appears, however, to be out of reach, as the
transformations’ results are heavily data-dependent and elude theoretical analysis.
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Figure 8.4: Normalization and dimensionality reduction distort and underestimate biological varia-
tion, especially in high-expression genes.
a. A proposed baseline for the analysis of residual variation after data transformation: the fraction
of biological variability can be bounded by a theoretical baseline, which is computed from the vari-
ation in average subpopulation expression. If this baseline is violated, the data transformation has
discarded some biophysically meaningful variation.
b. High-expression genes have high variance (gray points: genes below the 95th percentile by mature
RNA expression; red points: genes above the 95th percentile by mean mature RNA expression, red
line: percentile threshold).
c. Proportional fitting size normalization (PF), log-transformation (log), and principal component
analysis (PCA) globally deflate the squared coefficient of variation (CV2), whereas Uniform Manifold
Approximation and Projection (UMAP) globally inflates it (gray and red points: as in b).
d.-g. All four of the steps substantially deflate high-expression genes’ CV2 relative to raw data,
implicitly attributing their variability to nuisance technical effects (gray and red points: as in b).
h.-k. The deflation of variability results in the violation of the theoretical lower bound computed
from cell subpopulation differences, particularly for high-expression genes (gray and red points: as
in b; curved teal line: identity baseline, below which biological variability is removed; horizontal
teal line: threshold, above which variability is inflated relative to raw data).
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Figure 8.5: The Monod mechanistic analysis of biological and technical variability
produces coherent results.
a. The baseline introduced in Figure 8.4a may be compared to point estimates of the
biological variability fractions, which follow immediately from a fit to a parametric
model of transcription and sequencing.
b. The Monod fits explicitly attribute the variability in high-expression genes to
biological phenomena (gray and red points: as in Figure 8.4b).
c. The Monod results lie entirely within the admissible region (gray and red points:
as in b; curved teal line: identity baseline, below which inferred biological variability
is lower than inter-cell population variability; horizontal teal line: threshold, above
which inferred biological variability exceeds that of raw data).
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In Figure 8.4a, we propose a procedure for the quantitative benchmarking of data
transformations relative to an internal baseline. Each step transforms the data
distribution, purportedly retaining relevant biological variability — such as cell
type differences — and removing incidental or technical variability, quantified by
the squared coefficient of variation (CV2). Therefore, by removing some fraction of
variability, a data transformation implies this component is immaterial to analysis,
whereas the residual fraction of variation — the CV2 ratio for the distribution
after and prior to transformation, denoted by 𝜂2/𝜂2 — is attributed to biology.
For dimensionality reduction techniques, this procedure involves some subtleties,
and requires the existence of an inverse transformation that can map the lower-
dimensional representation back to the high-dimensional space.

This residual fraction should not vary arbitrarily; under mild assumptions, we can
bound the biological fraction of CV2 from below by the variability in cell subpopula-
tion averages. Specifically, we can write down the following identities for biological
lower moments:
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where 𝝅 consists of the cell subpopulation proportions. If we assume sequencing
samples evenly from the subpopulation, and rescales the mean and variance by
scalars 𝜉𝜅 and Ξ𝜅, we obtain the observed moments
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(8.2)

We further assume that 𝜉𝜅 = 𝜉 for all 𝜅. In other words, we suppose that, for
a particular gene and on average, all cell types are chemically and statistically
identical with respect to the sequencing process. We find that the lower moments
of the observed distributions can be rewritten in terms of the lower moments of the
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biological distributions:
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Using the definition of the squared coefficient of variation (CV2 = 𝜎2/𝜇2 := 𝜂2),
we find that the fraction of CV2 due to biology can be bounded from below:
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i.e., the fraction of biological variability is at least as high as the fraction of vari-
ability attributable to the inter-population mean differences. The bound affords the
consistent estimator
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1
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𝜅
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(
(𝑋𝑀)𝜅 − 𝑋𝑀
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where 𝑆2 is the sample variance over all Nc cells, (𝑋𝑀)𝜅 is the average expression
in cell subpopulation 𝜅, and (Nc)𝜅 is the number of cells in that subpopulation.

To compare the results of the transformation procedures to this baseline, we ana-
lyzed a mouse glutamatergic neuron dataset [321], using pre-annotated subtypes to
produce a lower bound. We considered several thousand genes, emphasizing the
top 5% by dataset-wide average; these high-variability genes are typically of most
interest in single-cell analyses (Figure 8.4b). The iterative application of trans-
formations up to PCA typically deflated the gene-specific CV2 values, particularly
for the high-expression genes and in the log-transformation step. However, the
application of UMAP inflated CV2 throughout. We found that the high-expression
genes’ variability was typically deflated relative to the raw data, suggesting that the
data transformations attribute overdispersion to nuisance technical effects (Figure
8.4d-g).

Log-transformation, PCA, and UMAP violated the baseline computed from inter-
subtype variation, particularly for the high-expression genes. In addition, a con-
siderable fraction of genes demonstrated variability exceeding that of the original
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data after PF and UMAP. After the final step, more than a third of the genes in
the dataset had, at some point in the analysis, gone below the lower bound. This
result suggests that ubiquitous transformations efface meaningful biological signal.
UMAP attempts to recover it by inflating cell type differences; however, since this
inflation is genome-wide, it does not restore the quantitative information lost in
previous steps, and may generate false findings.

We propose that a mechanistic approach provides a more reliable avenue for the
analysis of sequencing data. In this worldview, all assumptions about the noise
behaviors are explicit rather than implicit; count data are not to be denoised, but fit
to a first-principles model that includes biological and technical noise terms. Once
a satisfactory parametric fit is available, the fractions of biological and technical
variability follow immediately (Section 4.6.5, using the bursty model in Section
4.6.2). This approach is outlined schematically in Figure 8.5a: given annotations,
we can separately fit cell subtypes, obtain their biophysical parameters, and aggregate
them to obtain the fraction of biological variability. The details of the calculation
amount to applying the following definitions:
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E𝝅 [𝜇𝜅]2

,

(8.6)

inserting the plug-in estimates of the subtype-specific means and variances with
(Table 4.2) and without (Table 4.1) technical noise. The fit, implemented in Monod,
attributes overdispersion in high-expression genes to biological variability (Figure
8.5b), in striking contrast to the non-parametric transformations. As a consequence,
the inferred fraction of biological variability coheres with the baseline (Figure 8.5c).

Interestingly, this agreement is not merely a consequence of independently fitting
cell subtypes and aggregating the variance. We used Monod to fit the entire gluta-
matergic dataset, introducing some error due to the neglect of subtype heterogeneity.
Quantitatively, this approach simply compares the coefficients of variation implied
by Tables 4.1 and 4.2, without using 𝝅. We obtain similar results, with a single
violation of the bound. This control suggests that the mechanistic procedure largely
explains biological variability by transcriptional bursting, rather than subtype dif-
ferences.
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C h a p t e r 9

DETERMINATION OF BIOLOGICAL DIFFERENCES

The theoretical (Section 8.2) and numerical (Section 5.4) tools we have introduced
provide a relatively simple framework for the determination of biophysical and tech-
nical parameters consistent with data under a particular set of hypotheses about the
biophysics of transcription and chemistry of sequencing. Although the parameters
are often challenging to identify precisely, we have shown technical differences can
be satisfactorily accounted for by assuming that that biological differences between
paired samples are minimal (Section 8.3).

A probabilistic understanding of technical noise is mandatory, and omitting it leads
to the serious problems outlined in Sections 8.4 and B.3. Yet it is, in many impor-
tant ways, secondary: we perform experiments to learn something about the biology
of living cells, rather than nuisance technical effects. To that end, the promise
of the mechanistic worldview consists of providing a biophysical, rather than phe-
nomenological, alternative to analyses of biological heterogeneity. Once we have
accounted for technical effects, we can ascribe differences in expression to specific
mechanisms of regulation. These insights are necessarily incomplete: we may be
able to find that certain biophysical parameters have changed, but cannot determine
how. Nevertheless, this approach is promising in light of orthogonal work studying
the relationship between regulatory mechanisms and affected parameters [210]. In
addition, the biophysical approach provides an avenue to probe subtle differences in
copy number distributions that would not be identifiable using standard statistical
methods [72].

9.1 The role of multimodal data in differential expression
This section summarizes principles originally introduced in [107] and elaborated
upon in [106] by G.G. and L.P. The approach was conceptualized by G.G.

The collection of multimodal data, such as nascent and mature RNA counts, pro-
vides qualitatively different and more actionable information than the quantification
of a single modality, and deserves particular attention. In Section 7.1, we found that
bivariate data improve the identifiability of models and distinct parameter regimes.
In the context of differential expression testing, the availability of multimodal data
allows us to distinguish regulation trends that would otherwise be ambiguous.
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To see why, we can compare the single-species and two-species cases. The single-
species model of bursty transcription

∅ 𝑘−→ 𝐵 × X
𝛾
−→ ∅ (9.1)

yields a negative binomial distribution with shape 𝑘/𝛾 and scale 𝑏. Therefore, we
can identify these two parameters and no more based on steady-state measurements,
regardless of the amount of data. If we observe a difference in 𝑏 between conditions,
we can confidently attribute it to a change in the burst size. However, if we observe
a difference in 𝑘/𝛾, we cannot uniquely attribute it to the turnover rate 𝛾 or the burst
frequency 𝑘 . We can assume that turnover is less likely to be modulated than the
transcription rate [201], but this assumption is impossible to justify based on the
data alone.

If we fit the two-species model in Section 4.6.2, we obtain estimates of 𝑘/𝛽, 𝑘/𝛾,
and 𝑏. Superficially, these estimates suffer from the same problem: we cannot
uniquely identify 𝑘 , 𝛽, and 𝛾. However, this scenario is fundamentally different: it
is implausible that 𝛽 and 𝛾 are simultaneously modulated, because these processes
occur in distinct compartments. This assumption is quite a bit milder than exclud-
ing the modulation of turnover altogether. Therefore, if we observe synchronized
changes in 𝑘/𝛽 and 𝑘/𝛾, with the same sign and similar magnitudes, we may treat
them as evidence for the modulation of the burst frequency.

Indeed, differences in inferred normalized splicing and degradation rates demon-
strate striking and pervasive correlations (third panel of Figure 9.1a), suggesting
that they should appropriately be attributed to burst frequency modulation. Certain
genes lie off the diagonal, suggesting that turnover modulation has a role to play in
certain narrow cases. Therefore, if the approximate equality Δ log10

𝛽

𝑘
≈ Δ log10

𝛾

𝑘

holds, we generally assume that Δ log10 𝑘 has a similar magnitude, but the opposite
sign. We average the two to estimate the burst frequency modulation:

Δ log10 𝑘 ≈ −
1
2

(
Δ log10

𝛽

𝑘
+ Δ log10

𝛾

𝑘

)
(9.2)

9.2 Mechanistic differential expression
This section summarizes a portion of [107] and [106] by G.G. and L.P. The analysis
was conceptualized by G.G. and L.P. and designed and implemented by G.G.

With this physical and statistical machinery in hand, we strive to generalize the
identification of expression differences and ascribe them to specific mechanisms.
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Figure 9.1: The Monod mechanistic framework generalizes differential expression
testing to the identification of genes with distributional differences, without requir-
ing substantial changes in average expression.
a. Mouse neuron cell types show strong co-variation in normalized splicing and
degradation rate differences, suggesting potential burst frequency modulation (or-
ange dashed line: identity; black: genes retained after statistical testing; red: known
glutamatergic markers; light teal: known GABAergic markers).
b. Differential expression analysis identifies genes that exhibit consistent inter-cell
type parameter modulation in neuron populations (gray: parameters for genes not
identified as differentially expressed by the 𝑡-test and a fold change (FC) criterion;
light red: parameters identified as higher in the glutamatergic cell type; light teal:
parameters identified as higher in the GABAergic cell type).
c. The differences between mouse glutamatergic and GABAergic cell types, com-
puted from four independent replicates, include genes with substantial noise en-
hancement but little to no change in average expression, which may reflect biophysi-
cally important compensation mechanisms (light red points: genes with significantly
higher noise in glutamatergic cells; light teal points: genes with significantly higher
noise in GABAergic cells; gray points: all other genes; solid diagonal line: pa-
rameter combinations where burst size and frequency differences compensate to
maintain a constant average expression; dashed diagonal lines: ±1 log2 expression
fold change region about the constant-average expression line; vertical and horizon-
tal lines: parameter combinations where burst size and frequency, respectively, do
not change).
d. Differences in inferred noise behaviors reflect differences in distribution shapes
(light red: glutamatergic cell type; light teal: GABAergic cell type; histograms: raw
counts; lines: Monod fits; top row: mature RNA marginal; bottom row: nascent
RNA marginal).
e. Perturbation by IdU, which triggers DNA damage and repair, rarely changes
expression levels, but induces genome-wide noise enhancement [40] detectable by
Monod (lines and gray points: as in c; red points and labels: well-fit, moderate-
expression genes identified as highly noise-enhanced).
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In typical transcriptomics workflows, the determination of differences between cell
types or conditions often reduces to the determination of differentially expressed
(DE) genes, which exhibit statistically significant differences in their average copy
numbers. However, the identification of DE genes requires careful accounting
for technical covariates [187]. In addition, the data may exhibit compensating
mechanistic effects that change the distribution while keeping the averages constant,
which would not be identifiable by standard statistical methods [69, 72, 205].

We propose that differential expression testing should be generalized to the identi-
fication of modulated parameters. We use the notation “DE-Θ” to denote criteria
using Θ — which may be a data moment or an inferred biophysical parameter —
as a test statistic. The mechanistic DE approach is reminiscent of negative binomial
regression methods previously proposed for scRNA-seq data [9, 123, 186], but has
key distinctions: the model is not assumed to be closed-form or univariate, and the
differences are explained in terms of specific regulatory mechanisms rather than
descriptive parameters.

If we do not have any replicates — for example, if we seek to compare the dif-
ferences between cell types in a single tissue — we can essentially use outlier
calling procedures on the distributions of parameter differences (the marginals of
panels of Figure 9.1a) to propose DE-Θ genes. This approach complements, rather
than substitutes typical statistical procedures: in the demonstrated example, many
well-known marker genes for the GABAergic and glutamatergic cell types (red:
glutamatergic; light teal: GABAergic) exhibit such low expression outside their
characteristic cell types that their parameters cannot be accurately identified, and
the differences are uninterpretable.

If we do have have independent biological replicates, we can use standard statistical
procedures, such as the 𝑡-test. We illustrate DE-𝑏, DE-𝛽/𝑘 , and DE-𝛾/𝑘 genes
with consistent parameter differences between GABAergic and glutamatergic cell
types, computed from four mouse neuron datasets, in Figure 9.1b. Per Section 9.1,
these differences can be particularly naturally summarized in terms of burst size and
frequency differences (Figure 9.1c), in the spirit of [65, 172].

Most interestingly, we found several genes that consistently exhibited transcriptional
parameter modulation but exhibited approximately constant mean mature RNA
expression between cell types, and would not be identifiable by standard statistical
procedures (colored points in Figure 9.1c). The discovered genes are indicated
according to the cell type differences’ effect on noise: genes highlighted in red exhibit
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more overdispersion in the glutamatergic population, whereas genes highlighted in
light teal exhibit more overdispersion in the GABAergic population. These genes
exhibit only minor differences in average expression, and fall fairly close to the line
of expression identity (solid diagonal line in Figure 9.1c), where an increase in burst
size is precisely compensated by a decrease in the burst frequency.

The differences in parameters are reflected in the data distributions and the model
fits. For example, Nin and Bach2 visually exhibit higher noise in the glutamatergic
and GABAergic populations, respectively (Figure 9.1d). The mature count averages
are, on the other hand, fairly close (Nin Glu: 1.7, GABA: 0.98; Bach2 Glu: 0.87,
GABA: 1.4).

Many of the genes identified by this procedure were associated with neuronal struc-
ture and development. Socs2, Igf1r, Itga4, and Dpysl3 are involved in differentiation
and neurite outgrowth [152, 164, 250, 284]. Bach2 and Cxxc4 induce feedback
in neuronal development, apparently to maintain differentiated status in neurons
[93, 258]. Mid2 and Nin are associated with neural development regulation through
microtubule organization [18, 273]. Egln1 is linked to neuronal apoptosis [174].
Fam174a is involved in lipid metabolism and membrane structure [142]. Rnf152 and
Rgmb are broadly implicated in neural development [55, 212, 243]. Scg3 appears
to have a functional role in secretory granule biogenesis [177].

Some identified genes have less clear mechanistic connections to brain structure and
function. Ankrd40 is uncharacterized and is not known to have neural functions
[82], but the similar gene product Ankrd6 has an obscure neurodevelopmental role
[288]. Stx4a is localized on synaptic membranes [6]. Slc39a11 is a zinc transporter,
involved in brain function [68]. Mblac2 codes for an obscure protein that may have
enzymatic activity [190]. Ccdc136 appears to have a DNA regulatory role [194],
but may be involved in neural speech pathology [3]. The role of Crtc3 in the rodent
brain appears to be restricted to stress response [240]. Il34 is a microglial marker;
microglia have immune and regulatory functions in the brain [15].

Although these distinctions are statistically identifiable, the import and basis of
cell type differences in distribution rather than average expression is as of yet
obscure. These differences appear to be associated with compensatory mechanisms
and motivate further study of the role of noise in biophysical systems.
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9.3 Genome-wide noise modulation
This section summarizes a portion of [106] by G.G. and L.P. The analysis was
conceptualized, designed, and implemented by G.G.

Such compensatory mechanisms, where substantial distributional changes are as-
sociated with only minor average expression changes, have long been explored
using theoretical tools [205]. These theoretical studies have come to fruition:
recent studies have found that the introduction of the modified nucleotide 5-iodo-2′-
deoxyuridine (IdU) to a culture medium enhances transcriptional noise, but keeps
average expression constant, hinting at a genome-wide mechanism for compensation
[40, 72].

The mechanistic approach also enables the summary of such far-reaching perturba-
tions, which move beyond the usual marker gene paradigm. Although the model
required to fully recapitulate the dynamics of DNA damage repair involved in this
process is sophisticated, we found that we could characterize the effects of IdU
using a simple bursty model. We fit the nascent and mature data from control and
IdU datasets using Monod. As in Section 8.3, technical noise parameters were not
readily identifiable from the 10x v2 sequencing data. We assumed the parameters
were in a region we previously discovered for this technology (Figure 8.3c), and
analyzed biophysical parameters under that assumption.

We found that the IdU-perturbed cell culture exhibited striking noise amplification,
with very limited differences in mean expression (Figure 9.1e). This result strongly
contrasts, e.g., Figure 9.1c, which shows fairly symmetric noise amplification and
reduction between cell types. The asymmetry in the findings are consistent with the
authors’ conclusions and orthogonal validation, which likewise found that burst size
increases and burst frequency decreases in the IdU condition [40].

We selected a set of well-fit genes that exhibited particularly high modulation and
had average expression greater than 1 in at least one of the conditions for further
analysis, identifying Stx7, Washc5, Apod, Eif2ak2, Ubr2, Cnnm2, Dram2, Zfp110,
Cul4a, Ddx19b, and Yap1 (red points in Figure 9.1c). Interestingly, two of these
genes are directly related to the DNA damage activity of IdU: Dram2 is involved
in the autophagic response to DNA damage repair, whereas Cul4a is involved in
the turnover of DNA repair proteins. Several other genes more generally mediate
the cellular stress response: Zfp110, Eif2ak2, and Yap1 regulate apoptosis, whereas
Ddx19b may be active in stress granules. The role of the remaining genes is
obscure: Stx7 and Washc5 are related to vesicular function, Apod is involved in lipid
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metabolism, Ubr2 controls ubiquitination, and Cnnm2 appears to be involved in ion
transport [209].

We were able to partially compare our results for Sox2, Nanog, and Mtpap, whose
transcriptional parameters were computed from fluorescence data in [40, 72]. We
did not observe Sox2 expression in either dataset. Nanog was rejected by our
goodness-of-fit procedure. This is, in principle, consistent with the results in Table
S2 of [72], which report gene on fractions near 30-55%; this regime violates the
assumptions of the bursty model (gene on fraction tending to zero). The inferred
signs for Mtpap parameter modulation agreed with Figure S4 of [40], although we
obtained rather different magnitudes (log2 fold changes of ≈ −0.3 by smFISH vs.
≈ −1.5 by Monod for burst frequency; ≈ 2 by smFISH vs. ≈ 1.3 by Monod for
burst size). Therefore, although the genome-wide trends broadly recapitulate the
mechanistic explanations provided by the authors, and some of the high-noise genes
appear to be implicated in DNA repair and stress, the quantitative comparison of
fluorescence and sequencing data requires further analytical work.

In sum, the mechanistic DE framework offers several avenues for the identification of
biophysical mechanisms. Substantial differences in expression can be quantitatively
explained by the effects of transcriptional burst size and frequency modulation.
In addition, differences in distributions can be explained by simultaneous, and
counteracting, modulation of both parameters, revealing complexity that would be
lost by a simple consideration of the averages and suggesting directions for further
experiments.
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C h a p t e r 10

MODELING MULTI-GENE SYSTEMS

10.1 Key goals and context
This section summarizes a portion of [115] by G.G., J.J.V. and L.P. The analysis was
conceptualized, designed, and implemented by G.G. The models proposed originate
from [112] by G.G., M.F., T.C., and L.P., [105] by G.G. and L.P., [44] by M.C.★,
G.G.★, Y.C., T.C., and L.P., [113] by G.G.∗, J.J.V.∗, M.F., and L.P., and unpublished
research undertaken by C.F. and G.G.

In Chapters 8 and 9, we have shown that fitting fairly simple, two-species models
can provide some insight into the biophysics of transcription and the chemistry of
single-cell sequencing. However, throughout the process, we have essentially fo-
cused on statistically homogeneous populations, treating cells as independent and
identically distributed draws from a common distribution and treating the genes as
independent. As discussed in Section 5.4, this approach omits all gene–gene rela-
tionships by design, and breaks with standard analyses, which use these relationships
to characterize dataset structure [187].

For a multitude of reasons, we cannot build a comprehensive model using the tools
in Chapter 4. To do so, we would need to explicitly represent regulation, which is
excluded from these models (as discussed in Section 4.3.1). In addition, regulation
typically proceeds through protein signaling cascades; as we do not have protein
data, a regulation model would be woefully underdetermined for a sequencing
assay. The construction, parametrization, and inference of such models falls under
the purview of the whole-cell modeling and systems biology fields [260, 269, 303].
We anticipate that a full synthesis of systems biology, bioinformatics, and stochastic
biophysics, if not altogether futile, will require some decades of interdisciplinary
work.

Nevertheless, certain kinds of co-regulation can be represented in this framework.
To leverage the master equation models outlined in Chapter 4 to describe correlations
between genes, we need to specify how upstream interactions lead to co-expression.
As the simplest illustrative model system, we can consider the co-regulation of two
genes, indexed by 𝑗 , with𝑈 𝑗 = 𝑢 𝑗𝑒

−𝛾 𝑗s. We outline several relatively simple classes
of candidate models which induce expression coupling.
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In the simplest case, H(u, 𝑡) = ∑
𝑗 H 𝑗 (𝑢 𝑗 , 𝑡). In other words, the genes’ dynamics

are fully separable, and produce solutions in the form 𝐺 (u, 𝑡) =
∏

𝑗 𝐺 𝑗 (𝑢 𝑗 , 𝑡).
This formulation produces independent distributions at each 𝑡, but the trajectories
may possess nontrivial statistical relationships. For example, if both genes start at
𝑥1 = 𝑥2 = 0, their trajectories will be correlated over a finite timespan [0, 𝑇], with
the correlation decaying as 𝑇 →∞. This is the model implicit in the RNA velocity
framework (Chapter 6). Therefore, this model class ascribes gene–gene relationships
to transient phenomena, but cannot produce nontrivial stationary correlations.

In the next simplest case, co-regulation is the consequence of parameter differences
in subpopulations. For example, the full cell population may consist of cell types
indexed by 𝜅. If we suppose each cell type has the abundance 𝜋𝜅 and transcriptional
parameters Θ𝜅, we yield

𝐺 (u, 𝑡) =
∑︁
𝜅

𝜋𝜅𝐺 (u, 𝑡;Θ𝜅) =
∑︁
𝜅

𝜋𝜅

∏
𝑗

𝐺 𝑗 (𝑢 𝑗 , 𝑡;Θ 𝑗 ,𝜅); (10.1)

i.e., the generating function decomposes into a product of independent generating
functions conditional on a particular cell type, but not globally. In other words, even
if transcriptional processes are independent, cell type structure can produce nontriv-
ial relationships between genes. However, this model cannot produce correlations
within a cell type.

Equation 10.1 is immediately recognizable as the special discrete case of a more
general mixture model:

𝐺 (u, 𝑡) =
∫
Θ

𝐺 (u, 𝑡;Θ)𝑑𝑓Θ =

∫
Θ

∏
𝑗

𝐺 𝑗 (𝑢 𝑗 , 𝑡;Θ 𝑗 )𝑑𝑓Θ. (10.2)

In other words, the cell types do not have to be point masses: the variation of
parameters throughout the cell population may well be continuous, with higher-
𝑓Θ regions corresponding to “cell states.” This is the model implicit in the scVI
variational autoencoder framework [185].

Alternatively, we can propose a model of co-regulation by the categorical variables.
For example, two neighboring genes may prefer to have the same or opposite
accessibility, depending on the polymeric properties of DNA. Assuming, for the
purposes of illustration, that the system is symmetric, we yield the following 𝑁 = 4
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form:
𝑠 ∈ {both off, gene 1 on, gene 2 on, both on}

𝐻 =


−2𝑘on 𝑘on 𝑘on 0
𝜀−1𝑘off −𝜀−1(𝑘on + 𝑘off) 0 𝜀−1𝑘on

𝜀−1𝑘off 0 −𝜀−1(𝑘on + 𝑘off) 𝜀−1𝑘on

0 𝑘off 𝑘off −2𝑘off


A =


0

𝑘 init𝑢1

𝑘 init𝑢2

𝑘 init(𝑢1 + 𝑢2)


.

(10.3)

This form encodes the co-regulation of two genes. If 𝜀 ≪ 1, the intermediate states
are unstable and the genes tend to be either both on or both off. If 𝜀 ≫ 1, the
intermediate states are particularly stable, and only one of the genes tends to be on
at a time. If 𝜀 = 1, we recover the independent case.

We can define a similar model for co-regulation by a continuous variable 𝑦1, as
an extension of Chapter 7.2 or the paired activation motif discussed in [205]. For
example, there may be a latent regulator, such as the concentration of an activator,
that controls multiple loci: if it is high, both have a high transcription rate; otherwise,
both are inactive. This amounts to appending the following reactions to the master
equation:

𝐶𝑐𝑑1j 𝑦1 [𝑃(𝑥 𝑗 − 1) − 𝑃(𝑥 𝑗 )], (10.4)

where the 𝐶𝑐𝑑 matrix encodes the relationship between the concentration and the
transcription rate. Therefore, the genes become mutually correlated through the
trajectory of 𝑦1, although the extent of correlation depends on the dynamics.

If the categorical or continuous driving process is bursty, we can approximate it by a
co-bursting module. For example, in the limit of 𝜀 → 0, the dynamics of the system
in Equation 10.3 converge to the 𝑁 = 2 formulation

𝐻 =

[
−𝑘∗on 𝑘∗on

𝑘∗off −𝑘∗off

]
and A =

[
0

𝑘 init(𝑢1 + 𝑢2)

]
, where

𝑘∗on =
2𝑘2

on
𝑘on + 𝑘off

and 𝑘∗off =
2𝑘2

off
𝑘on + 𝑘off

.

(10.5)

If, in addition, 𝑘∗off, 𝑘 init →∞, we obtain the 𝑁 = 1 module characterized by

A = 𝑘∗on

[
1

1 − 𝑏(𝑢1 + 𝑢2)
− 1

]
, (10.6)
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where 𝑏 := 𝑘 init/𝑘∗off. This is the bursty limit of Equation 10.3, which possesses the
more general form

A = 𝛼

[
1

1 −∑
𝑖 𝑏 𝑗𝑢 𝑗

− 1
]
, (10.7)

where each transcription event produces 𝐵 𝑗 molecules of X𝑗 , with 𝐵 𝑗 drawn from a
geometric distribution with mean 𝑏 𝑗 . Due to the structure of the burst distribution,
the different gene products’ burst sizes are correlated.

Interestingly, that mechanism also possesses a slow mixture limit. If 𝜀 → ∞ while
𝑘on, 𝑘off → 0, we obtain a special case of Equation 10.1, with 𝜋𝜅 = 1/2 and mutually
exclusive expression in the “cell types,” or long-lived gene states.

Even when we restrict our analysis to simple feed-forward regulation, this outline of
motifs is nowhere near exhaustive. Nevertheless, the “mixture” and “bursty” limits
are particularly natural starting points, as their distributions are straightforward to
construct. In other words, we speculate that the careful analysis of co-expression
models can distinguish relationships due to “slow” variation between cell types and
“fast” variation due to coupled transcriptional events.

10.2 Biophysical constraints on “fast” transcript–transcript covariation
This section summarizes a portion of [105] by G.G. and L.P. The data analysis was
conceptualized, designed, and implemented by G.G.

We cannot directly fit the “fast” variation models, as they are severely underspecified:
we do not know which genes are co-regulated in this fashion. However, we can treat
certain closely related problems and use the functional form of Equation 10.7 to
constrain gene–gene relationships. In other words, although we cannot possibly fit
all genes, if a particular pair of genes were expressed in simultaneous bursts, their
expression must meet certain constraints. It turns out that the correlation between
the two species has the correlation coefficient

𝜌 =
2
√︁
𝛾1/𝛾2

1 + 𝛾1/𝛾2

√︄
1

(1 + 𝑏−1
1 ) (1 + 𝑏

−1
2 )

. (10.8)

As the marginals are negative binomial, we could easily estimate 𝑏𝑖 and 𝛾𝑖 from
the marginals, without having to fit the full distribution. Once we have these
estimates, we could predict the correlation between the genes. Interestingly, this
equation is invariant under Bernoulli technical noise, with 𝑝 𝑗𝑏 𝑗 taking the place of
𝑏 𝑗 . Nevertheless, as the set of assumptions is fairly severe, Equation 10.8 should be
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treated as the upper bound on correlation coefficients between genes for this model
class, in the spirit of [137, 138]. If real genes routinely violate this upper bound,
the co-bursting model is insufficient to describe the gene–gene relationships in the
dataset, and other model components need to be invoked.

This class of models can also describe intra-gene correlations. Specifically, a single
“parent” transcript X0 can give rise to multiple downstream transcripts X𝑗 :

∅ 𝛼−→ 𝐵 × X0

X0
𝛽 𝑗−−→ X𝑗

X𝑗
𝛾 𝑗−−→ ∅,

(10.9)

where the first line represents the bursty transcription of X0, the second encodes
multiple splicing routes, and the third represents the degradation or isomerization
to secondary transcript forms, which we do not consider. If all 𝛽 𝑗 are high relative
to all 𝛾 𝑗 , the distribution of each X𝑗 is negative binomial with shape 𝛼/𝛾 𝑗 and scale
𝑏𝛽 𝑗/𝛽, where 𝛽 :=

∑
𝑗 𝛽 𝑗 is the total efflux rate fromX0. In addition, the correlation

between any two transcripts is given by Equation 10.8, with 𝑏𝛽 𝑗/𝛽 taking the place
of 𝑏 𝑗 .

To understand whether real systems actually follow this bound on transcript–
transcript correlations, we obtained data from the recent FLT-seq (full-length tran-
script sequencing by sampling) protocol [287], which uses nanopore technology to
obtain long reads amenable to the identification of transient transcripts. As this ex-
perimental technique has molecular and cellular barcodes, the data are interpretable
as discrete transcript counts sampled from a distribution. To minimize transient
effects, such as cell cycling and differentiation, we selected a dataset generated from
cultured mouse stem cells. To limit biological heterogeneity due to discrete cell
subpopulations (as in Equation 10.1), we filtered for cell barcodes corresponding to
the activated cell subset (136 barcodes) according to the authors’ annotations. In all
downstream analyses, we treated this filtered dataset as biologically homogeneous
up to endogenous stochasticity.

The FLT-seq protocol produces full-length reads, which can be used to discover
new isoforms, but does not reveal causal relationships between those isoforms.
Nevertheless, we can use the tools of discrete mathematics to partially infer these
relationships. Splicing removes introns, but cannot insert them. We can use this
relationship to constrain the splicing graph: if transcript X𝑗 can be obtained by
removing part of the sequence in transcript X𝑖, there must be a path from X𝑖 to X𝑗 .
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On the other hand, if X𝑖 contains the sequence 𝐼𝑖 but omits the sequence 𝐼 𝑗 , whereas
X𝑗 contains the sequence 𝐼 𝑗 but omits the sequence 𝐼𝑖, the transcripts are mutually
exclusive and must be generated from the parent transcript by distinct pathways.

For each gene, we enumerate the transcripts observed in the data and split them
into elementary intervals, contiguous stretches that are either present or absent in
each transcript (denoted by the colors in Figure 10.1a). These elementary intervals
constrain the relationships between transcripts, and we can use their presence or
absence in each transcript to construct an accessibility graph. The internal structure
of this graph is underspecified, but immaterial: the negative binomial model implied
by the operator in Equation 10.7 describes the roots, mutually exclusive transcripts
that must be generated directly from the parent transcript (indicated in orange in
Figure 10.1b). We fit the distributions of these roots, discarding any data that are
underdispersed, overly sparse, or fail to converge to a fit. The satisfactory fits for
the sample gene Rpl13 are shown in Figure 10.1c.

The negative binomial fit yields burst sizes 𝑏𝑖 and non-dimensionalized efflux rates
𝛾𝑖. We substitute these quantities into Equation 10.8, compute hypothetical correla-
tions 𝜌theo, and compare them to sample correlations 𝜌samp in Figure 10.1d. These
results represent the 4,885 nontrivial correlation matrix entries between 1,978 tran-
scripts from 500 genes. 302 transcripts were rejected due to underdispersion, 542
due to sparsity, and 100 due to poor fits. The theoretical constraint (sample corre-
lation equal to or lower than predicted correlation) was met in 4,606 cases (94.3%).

The results suggest that the model is not sufficient to recapitulate the full dynamics,
but does provide an effective, and nontrivial, theoretical constraint. We hypothesize
that the “consistent” regime (𝜌samp ∈ (0, 𝜌theo), 3,856 entries) represents the degra-
dation of correlations due to technical noise in the sequencing process and stochastic
intermediates. The “inconsistent” regime (𝜌samp ∈ (𝜌theo, 1), 279 entries) may stem
from model misidentification, and could be explained by coupling between splicing
events. Some of these apparently inconsistent correlations may also be due to the
small sample sizes, as the bootstrap 95% confidence intervals only rarely lie outside
the theoretical bound (29 entries). Finally, the “negative” regime (𝜌samp < 0, 750
entries) technically meets the constraint, but cannot actually be reproduced by the
model. This does not appear to be an artifact of sample sizes. Instead, we speculate
that enrichment in negative correlations is the signature of a more complicated reg-
ulatory schema which preferentially synthesizes some isoforms to the exclusion of
others, rather than choosing the splicing pathway randomly.
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Figure 10.1: The synchronized-burst model can be leveraged to constrain transcript-
transcript correlations.
a. By inspecting exon co-expression structures in long-read sequencing data, we
can split genes into elementary intervals.
b. Although sequencing data are not sufficient to identify the relationships between
various transcripts, they can provide information about “roots” of the splicing graph
(highlighted in orange), which must be produced from the parent transcript by mu-
tually exclusive pathways.
c. The root transcript copy number distributions are well-described by negative
binomial laws (gray histograms: raw marginal count data; red lines: fits).
d. The co-bursting model is not sufficient to accurately predict transcript-transcript
correlations, but does serve as a nontrivial upper bound: few sample correla-
tions exceed the model-based predictions obtained from Equation 10.8 (points:
transcript-transcript correlation matrix entries for mutually exclusive “root” tran-
scripts of a single gene; error bars: bootstrap 95% confidence intervals; red line:
theory/experiment identity line).
e. The highest-expressed transcripts across the top 500 genes show distinctive, and
generally positive, correlation patterns.
f. We can use an analogous model to predict and reconstruct the gene–gene corre-
lation matrix based solely on marginal data.
g. As before, the model is not sufficient to accurately predict gene–gene corre-
lations, but provides an effective and nontrivial upper bound (points: gene–gene
correlation matrix entries; error bars: bootstrap 95% confidence intervals; red line:
theory/experiment identity line).



124

Analogously, we can exploit the inter-gene model encoded in Equation 10.7 to predict
the gene-gene correlation matrix (Figure 10.1e) based solely on the marginals,
supposing all pairs of 500 highest-expressed genes fire simultaneously as a limiting
case. For each gene, we consider the highest-abundance root transcript that can
be fit by a negative binomial distribution, and identify its marginal burst size and
efflux rate. Substituting these parameter estimates into Equation 10.8, we obtain
theoretical correlations 𝜌theo and reconstruct the correlation matrix (Figure 10.1f).
Finally, we compare the intra-gene sample correlations 𝜌samp to the theoretical values
in Figure 10.1g. These results represent the 119,805 nontrivial correlation matrix
entries based on the 490 genes with well-fit roots. The theoretical constraint (sample
correlation equal to or lower than predicted correlation) was met in 119,503 cases
(99.7%), with only five confidence intervals above the bound.

Yet again, the model provides a nontrivial bound. We hypothesize that the “con-
sistent” regime (𝜌samp ∈ (0, 𝜌theo), 117,542 entries) represents the degradation of
correlations due to stochastic effects outside the model, much as before. The corre-
lations in the “inconsistent” regime (𝜌samp ∈ (𝜌theo, 1), 302 entries) lie very close to
the identity line, so we hypothesize they are mostly explained by small sample sizes.
Finally, the “negative” regime (𝜌samp < 0, 1,961 entries) is rare, and we expect these
observations also emerge from small sample sizes.

This model is extremely simple: we have largely omitted the realistic description of
technical noise, the modeling of transient intermediates, and the accurate inference
of parameters. Nevertheless, for nearly every pair of transcripts we observe, the
distribution shapes are consistent with the nontrivial bound obtained by assuming
the co-bursting model holds. This model cannot recapitulate the precise quantitative
details; such an effort would require considerably more involved modeling and
statistics. Nevertheless, it does suggest that the conception of “fast” gene–gene
variation has some predictive value, and provides a foundation for developing more
sophisticated models. In addition, the analytical procedure provides a framework for
testing the consistency of models prior to performing a computationally intensive
full fit.

10.3 Multimodal variational autoencoder models for “slow” covariation
This section summarizes the content of [44] by M.C.★, G.G.★, Y.C., T.C., and L.P.
The biVI approach was conceptualized by G.G., designed by G.G., M.C., Y.C.,
and T.C., and implemented by M.C., Y.C., and T.C. The statistical derivations were
performed by G.G. and M.C.
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Alternatively, we may explain co-variation in gene expression by cell type differences
within a sample. This approach may be as simple as fitting a mixture model to
Equation 10.1, but one promising alternative direction has used neural networks to
approximate the more general mixture in Equation 10.2. For example, the popular
tool scVI is a variational autoencoder (VAE) that uses neural networks to encode
scRNA-seq counts to a low-dimensional representation. This representation is
decoded by another neural network to a set of cell- and gene- specific parameters for
conditional likelihood distributions of observed counts. These Poisson or negative
binomial7 distributions are chosen post hoc to be consistent with the discrete, over-
dispersed nature of scRNA-seq counts, but can be derived from biophysical models
(Sections 2.1 and 4.6).

Extensions of scVI to bimodal data have been attempted for protein [96] and chro-
matin measurements [12] by jointly encoding data modalities to a single latent space,
then employing two decoding networks to produce parameters for independent
conditional likelihoods specific to each datatype. Nascent and mature transcripts
[168, 197] could be similarly treated (Figure 10.2a). However, using independent
conditional likelihoods for bimodal measurements derived from the same gene ig-
nores the inherent causality between observations and has no biophysical basis: the
generative model is merely part of a neural “black box” used to summarize data.

Nevertheless, good causal model candidates for the nascent–mature distributions
are available, such as the extensively validated [65, 233, 244] bursty model of
transcription (Section 4.6.2). While the joint steady-state distribution induced by
the bursty model is analytically intractable [261], we have previously shown that it
can be approximated by a set of basis functions with neural-network learned weights
(Section 5.3). To that end, we introduce biVI, a strategy that adapts scVI to work
with well-characterized stochastic models of transcription.

First, we propose a parameterization of the bursty process that could give rise to bi-
variate count distributions for nascent and mature transcripts, such that the univariate
case matches the scVI assumptions. Specifically, scVI assumes that the conditional
distribution represents contributions from a gene-specific dispersion parameter 𝜈g,
a cell-specific “size” parameter ℓc, and cell- and gene-specific compositional pa-
rameter 𝜌cg, such that the distribution is negative binomial with shape 𝜈g and mean
𝜇cg = ℓc𝜌cg.

Formalizing this descriptive model requires specifying the precise mechanistic
meaning of ℓg. Previous reports equivocate [96], appealing to a combination of
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Figure 10.2: biVI reinterprets and extends scVI to infer biophysical parameters.
a. scVI can take in concatenated nascent (𝑋𝑁 ) and mature (𝑋𝑀) RNA count matri-
ces, encode each cell to a low-dimensional space z, and learn per-cell parameters
𝜇𝑁 and 𝜇𝑀 and per-gene parameters 𝜈𝑁 and 𝜈𝑀 for independent nascent and mature
count distributions. This approach is not motivated by any specific biophysical
model.
b. Operating conditional on the bursty model of transcription, biVI can take in
nascent and mature count matrices, produce a low-dimensional representation for
each cell, and output per-cell parameters 𝑏 and 𝛾/𝑘 , as well as the per-gene param-
eters 𝛽/𝑘 , for a mechanistically motivated joint distribution of nascent and mature
counts.

“cell size,” cell-wide effects on the biology (in the spirit of [81, 124]), or “sequenc-
ing depth,” technical variability in the sequencing process (in the spirit of [308]).
In other words, the former scenario represents, e.g., systematic differences in the
concentrations of relevant macromolecules, such as RNA polymerase, whereas the
latter scenario represents random differences in the amount of sequencing primers
between 10x beads.

For simplicity, we only treat the first case here, although either one may be used
as the basis for a mechanistic formulation. If we introduce a genome-wide scaling
factor 𝐶 and recall the basis of the bursty model (Section A.8.1), we find that the
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following interpretation of the parameters matches scVI for a univariate model:

𝜇cg =
𝑘g𝑏cg

𝛾g

𝜈g :=
𝑘g

𝛾g

𝑏cg := 𝑏cg,RNAP [RNAP]c

=
𝑏cg,RNAP

𝐶
× 𝐶 [RNAP]c

:=
𝜌cgℓc

𝜈g
.

(10.10)

In other words, the burst size consists of a cell- and gene-specific term, which
describes the scaling of the burst size with respect with respect to the polymerase
concentration [RNAP]c, as well as a cell-specific term, which encodes this concen-
tration. The dependence on c encodes the mixture model in Equation 10.2. By
setting the units appropriately and making 𝐶 fairly large, we can find small 𝜌cg

and large ℓc that produce acceptable fits to the data under the usual scVI priors and
functional assumptions. The rest of the variability is encoded in 𝜈g, and implicitly
assumes that the burst frequency and degradation rate do not change between cells.

Next, we construct a two-species bursty model that retains these assumptions. The
simplest one, with no technical noise, takes the following form:

𝜇
(𝑁)
cg =

𝑘g𝑏cg

𝛽g

𝜇
(𝑀)
cg =

𝑘g𝑏cg

𝛾cg

𝜈g =
𝑘g

𝛽g
,

(10.11)

and 𝑏cg defined as in Equation 10.10. We have somewhat arbitrarily assumed that
the fixed 𝜈 should correspond to a fixed nascent negative binomial marginal shape
parameter in the bivariate case. This yields the following parameter definitions:

𝜌
(𝑁)
cg = 𝜈g

𝑏cg,RNAP

𝐶

𝜌
(𝑀)
cg = 𝜈g

𝛽g

𝛾cg𝐶
𝑏cg,RNAP

ℓc = 𝐶 [RNAP]c.

(10.12)
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Given a particular set of 𝜈g, 𝜌(𝑁)cg , 𝜌(𝑀)cg , and ℓc, we can immediately compute the
cell- and gene-specific parameters:

𝛽g

𝑘g
=

1
𝜈g

𝑏cg =
𝜌
(𝑁)
cg ℓc

𝜈g

𝛾cg

𝑘g
=

𝜌
(𝑁)
cg

𝜈g𝜌
(𝑀)
cg

.

(10.13)

Using the neural solver in Section 5.3, we can compute distributions and incre-
mentally increasing the likelihood of data Dcg under the model by training the
network and updating the parameters; 𝜈 values are treated as deterministic, while
ℓ values may treated as probabilistic or simply use the total molecule count as a
plug-in estimate. Each latent vector zc is decoded to a pair of 𝜌(𝑁)cg , 𝜌

(𝑀)
cg , such that∑

g

[
𝜌
(𝑁)
cg + 𝜌

(𝑀)
cg

]
= 1.

Per Equation 10.13, the inferred likelihood parameters have biophysical interpre-
tations under a specific mechanistic model of transcriptional dynamics. Although
we focus on the bursty model, biVI also implements the closed-form constitutive
(Section 4.6.1) and extrinsic (Section 4.6.3) noise models [81, 124].
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Figure 10.3: biVI successfully fits single-cell neuron data and suggests the biophys-
ical basis for expression differences.
a.-b. Observed, scVI, and biVI reconstructed distributions of Foxp2, a marker gene
for L6 CT (layer 6 corticothalamic) cells, and Rorb, a marker gene for L5 IT (layer
5 intratelencephalic) cells, restricted to respective cell type.
c.-d. Cell-specific parameters inferred for Foxp2 and Rorb demonstrate identifiable
differences in means and parameters in the marked cell types.
e. Cell subclasses show different modulation patterns, with especially pronounced
distinctions in non-neuronal cells (top: fractions of genes exhibiting differences in
each parameter; bottom: number of cells in each subclass).
f. biVI allows the identification of cells which exhibit differences in burst size or
relative degradation rate, without necessarily demonstrating differences in mature
mean expression. Hundreds of genes demonstrate this modulation behavior, with
variation across cell subclasses.
g. Histograms of biVI parameters and scVI mature means for two genes that exhibit
parameter modulation without identifiable mature mean modulation. Trem2 (top)
shows differences in the degradation rate in L5 IT cells, whereas Ndnf (bottom)
shows differences in burst size in L6 CT cells.
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Under comparable conditions, biVI recapitulates observed bivariate RNA distri-
butions better than scVI (Figure 10.3a-b). In addition, the latent space structure
effectively recapitulates cell subtypes from existing annotations of the mouse neu-
ron dataset under consideration [321]. Beyond this empirical agreement, it allows
us to interpret differences in the generative model parameters in terms of biophysics,
in the spirit of Section 9.2. For example, in Figure 10.3c-d, we illustrate that the
upregulation of markers Foxp2 and Rorb can be ascribed to an increase in burst size;
these differences are starkly evident in the distribution of parameters but much less
so in the distribution of averages.

We extend and exploit this approach to find “marker genes” that demonstrate sub-
stantial modulation in the values of 𝑏cg,RNAP and 𝛾cg/𝑘g between cell types using
a Bayesian procedure analogous to the approach in [96]. The results are visualized
in Figure 10.3e. Surprisingly, even in this high-level summary, variation between
cell types is quite considerable: neuronal cells appear to regulate gene expression
via a mix of regulatory strategies, while non-neuronal cells seem to preferentially
modulate burst size.

As in Section 9.2, many genes that demonstrated substantial parameter differences
did not demonstrate strong differences in the mature RNA averages. For some cell
subclasses, there were several hundred such genes (Figure 10.3f). For example, the
relative degradation rate of the gene coding for the triggering receptor expressed on
myeloid cells-2 (TREM2), variants of which are strongly associated with increased
risk of Alzheimer’s disease [296], was found to be greater in L5 IT neurons than in
other subclasses (Figure 10.3g, top row). Similarly, the gene Ndnf, which codes for
the neuron derived neurotrophic factor NDNF and promotes the growth, migration,
and survival of neurons [165], demonstrated a statistically significant difference in
the biVI inferred burst size, but not scVI inferred mature mean, in L6 CT neurons
(Figure 10.3g, bottom row).

Such a mechanistic description provides a framework for characterizing the connec-
tion between a gene’s role and a cell’s regulatory strategies beyond a mere change in
mean expression [204, 206]. The neural framework enables us to relax many of the
assumptions of simple mechanistic models, treat non-homogeneous cell populations,
and discover internal differences. This marriage of the neural and the mechanis-
tic provides an actionable implementation of the themes developed in [137, 156]:
the known physics are represented explicitly; the obscure unspecified networks and
parameters are relegated to a neural network “black box.” This network can, in
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turn, be made more “transparent” by using a linear, rather than neural decoder to
map from the low-dimensional latent space to the biophysical parameters, and we
obtained reasonable results by implementing such an architecture [276].

We believe that the design of variational autoencoders with neural and mechanistic
components presents an exciting avenue for single-cell data analysis: this approach
already scales to hundreds of thousands of cells [97] and can easily be extended to
more sophisticated models by working through the necessary mathematics. How-
ever, the construction of compatible likelihood functions (Section 5.3 and [271, 310])
is no trivial task, and typically requires developing bespoke routines and training
approximators anew with each addition. We anticipate that the development of more
realistic technical noise models is necessary, especially in light of Section 8.2.

On the other hand, the conclusions we can draw are only as good as the models. The
bursty model of transcription is fairly well-attested, but other assumptions we have
made may not be. The first implementation of biVI strives to be consistent with
scVI; in this quest for consistency, it sacrifices the ability to describe variation in
burst frequencies, which are surely important to the differences between cell types
(Chapter 9 and [65]). We could, for example, conceptualize a model that allows the
transcriptional parameters to vary while keeping the turnover rates constant:

𝜇
(𝑁)
cg =

𝑘cg𝑏cg

𝛽g

𝜇
(𝑀)
cg =

𝑘cg𝑏cg

𝛾g
,

(10.14)

keeping 𝛽g/𝛾g constant. In this case, we may be able to interpret the “cell size”
scaling as mass constraint. In a “strong” mass constraint, we would not allow the total
number of molecules to exceed some preset bound; this form of constraint gives rise
to intractable distributions. Instead, we would impose a “weak” mass constraint,
such that genes cannot have simultaneously have arbitrarily high averages. This
implies the following form:

𝑘cg𝑏cg = 𝜌
𝜇
cgℓc

𝑘cg = 𝜌𝑘cg𝜌
𝜇
cgℓc

𝑏cg = (1 − 𝜌𝑘cg)𝜌
𝜇
cgℓc,

(10.15)

such that
∑

g 𝜌
𝜇
cg = 1, whereas 𝜌𝑏cg ∈ (0, 1) but not otherwise constrained. It remains

to learn or specify 𝛽g and 𝛾g, which may not be mutually identifiable. Overall, the
“correct” way to implement such a constraint is far from clear, and this direction
remains an area of active research.
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In addition to representing more realistic biological phenomena, we anticipate that
the VAE framework can be relatively straightforwardly integrated with technical
noise phenomena discussed in Sections 4.4.2 and 8.1. Specifically, if the biological
RNA distribution is negative binomial with shape 𝜈 and scale 𝜃, whereas the back-
ground distribution is Poisson with mean 𝜇, the PGF of the overall distribution is
given by the product of the individual PGFs:

𝐺 (𝑢) =
(

1
1 − 𝜃𝑢

)𝜈
𝑒𝜇𝑢 . (10.16)

By directly applying Equation 3.12 and the definition of Kummer’s confluent hy-
pergeometric function 𝑀 in Equation 3.19, we find that the molecule generative
distribution is

𝑃(𝑥) = Γ(𝜈 + 𝑥)
𝑥!Γ(𝜈)

𝑒−𝜇𝜃𝑥

(1 + 𝜃)𝜈+𝑥𝑀
(
−𝑥, 1 − 𝑥 − 𝜈, 𝜇𝜃

1 + 𝜃

)
. (10.17)

Whenever 𝜇 = 0, the hypergeometric and exponential terms are unity, yielding the
expected negative binomial distribution. We expect that a reasonable estimate for
𝜇 can be obtained by rescaling the dataset-wide average expression. However, the
optimal way to implement Equation 10.17 is somewhat obscure. Although Kum-
mer’s function 𝑀 can be written down in closed form for 𝑥 ∈ N0, the expression
is somewhat unwieldy; to integrate this form of variation into a VAE, it may be
more fruitful to use an approximation of the function tailored to the low-𝜇 regime.
Whatever the implementation, the design of such a generative model requires care-
ful consideration of the basis and meaning of “cell size” effects, and remains a
compelling target for future investigations.
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C h a p t e r 11

MODELING FURTHER CLASSES OF MULTIOMIC DATA

There was set before me a mighty hill,
And long days I climbed
Through regions of snow.
When I had before me the summit-view,
It seemed that my labour
Had been to see gardens
Lying at impossible distances.

The Black Riders and Other Lines, XXVI
Stephen Crane

Technology hardly stands still, and recent years have seen the development of assays
that quantify RNA alongside other modalities, such as chromatin accessibility,
epigenetic modifications, and protein content [213]. These technological advances
have been accompanied by a variety of more or less ad hoc methods for data
integration [12, 96, 128, 180]. Although these methods produce correlated results,
they are not perfect proxies for each other [198], nor should they be treated as such:
their sources of technical and biological stochasticity are fundamentally different.

There is some hope that we can “integrate” these data types by appealing to the
central dogma, and treating observations as realizations of a common process. This
strategy extends our discussion thus far: there are conventional models for a single
RNA species; to represent nascent and mature RNA, we merely append another
reaction; to represent other modalities, we can extend the stochastic systems further,
by appending chromatin state transitions to represent DNA states and translation
reactions to represent proteins. However, although this conceptual picture is very
much in line with the rest of the thesis, the details — i.e., the “correct” ways to
represent these phenomena — are as of yet obscure. In this chapter, we speculate
about some promising directions for modeling and data analysis.

11.1 Protein velocity and acceleration
This section summarizes the content of [109] by G.G., V.S., and L.P. The method
was conceptualized by V.S. and L.P., and designed and implemented by G.G.
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The RNA velocity pipeline, reviewed in Section 6.1.1, can be easily, and self-
consistently, extended to protein species with abundance 𝑦𝑃 [275]:

𝑑𝑦𝑀 (𝑡)
𝑑𝑡

= 𝛽𝑦𝑁 (𝑡) − 𝛾𝑦𝑀 (𝑡)
𝑑𝑦𝑃 (𝑡)
𝑑𝑡

= 𝛽𝑃𝑦𝑀 (𝑡) − 𝛾𝑃𝑦𝑃 (𝑡),
(11.1)

where 𝛽𝑃 is the translation rate and 𝛾𝑃 is the protein degradation rate. In other
words, if we have protein observations, we can define an “RNA velocity” and
a “protein velocity.” The key distinction involves the interpretation. The RNA
velocity allows us to extrapolate into the future, because the current nascent RNA
content is a leading indicator of the mature RNA content. On the other hand, the
protein velocity allows us to extrapolate into the past, because the current protein
content is a lagging indicator of the mature RNA content.

Thus, in the standard implementation of RNA velocity, we extrapolate the mature
RNA matrix into the future, compare the direction of the extrapolation vector to
the directions of the embedding neighbors in mature RNA space, and use this
comparison to build a low-dimensional projection of the “future.” In the case of
proteins — treating this as more of an analogy then a rigorous derivation — we
extrapolate the protein matrix into the past, compare the direction to the directions of
the embedding neighbors in protein space, and construct another low-dimensional
projection, now reflecting the “past” of the system. We obtain two vectors per
cell, whose directions may not match. If they are particularly misaligned, the
system exhibits high “acceleration,” which is a second-order, mostly qualitative,
characterization of changes in the mature transcriptome.

This approach is theoretically consistent with RNA velocity, easily generalizes, and
produces apparently reproducible trends across a variety of datasets. Although
our description extends the velocyto assumptions, this line of argument appears
to have inspired an alternative, scVelo-based approach to such trivariate models
[313]. However, the usual pitfalls of these techniques apply (Section 6.1). The data
processing and inference procedures are ad hoc, although the simplistic noise and
dynamics assumptions may actually be more legitimate for high-abundance proteins
than for low-abundance RNA. The embedding procedure is arbitrary in much the
same ways as elsewhere.

More problematically, there is somewhat of a mismatch between the modalities.
RNA sequencing captures genome-wide, endogenous nuclear and cytoplasmic RNA,
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as well as various background noise. On the other hand, the protein quantification
technologies built on top of scRNA-seq exploit synthetic, oligo-tagged antibodies
bound to membrane proteins. Therefore, key features of the system, such as the
cytoplasmic protein content and the precise stoichiometry of antibody binding, are
obscure and apparently impossible to determine from the data. In addition to these
factors, previous attempts to model this data type have found that proteins exhibit
unique and fairly complicated technical artifacts [96, 322]. Much more fundamen-
tally, the process chemistry restricts the approach to a priori well-characterized
cell types with commercially available antibodies, i.e., blood cell immune profiling,
which somewhat limits the breadth of investigations.

The strategy set out in [31, 253] and outlined in Chapter 4 may hold more promise:
RNA and proteins have a causal relationship, so fitting a model of transcription
and translation may tell us about the underlying biophysics. However, given the
considerable difficulties of solving such models, we anticipate that a study of model
behaviors and feasibility would be more appropriate at these early stages, in the
spirit of [138].

11.2 Chromatin accessibility
This section summarizes unpublished research undertaken by C.F. and G.G. The
form of the model is due to C.F.; the overarching motivation and connection to
Glauber dynamics is due to G.G.

In addition to molecular modalities, we would like to self-consistently “integrate”
DNA measurements, such as epigenetic markers or chromatin accessibility. For
example, if we are interested in the latter, we need to propose a model that defines
the dynamics of chromatin opening and closing, and endow it with realistic technical
noise. Thus far, statistical approaches to this problem have been largely descriptive
[12, 181], with limited use of mechanistic models.

In Section 10.1, we discussed potentially promising ways to model multi-gene
systems. In particular, a cursory examination of Equation 10.3 reveals that co-
regulation by categorical variables, with a parameter 𝜀 controlling the strength
of neighbor interactions, is essentially identical to the continuous-time Glauber
formulation [101, 132] of the Ising model of lattice spins [48, 234]. The Ising
model is familiar from statistical thermodynamics, and encodes interacting spins on
a lattice. At equilibrium, the distribution of states is Boltzmann:

𝑃(𝜎) ∼ 𝑒−𝛽𝐻 (𝜎) , (11.2)
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where 𝜎 is a particular combination of spin states, 𝛽 is the inverse temperature,
and 𝐻 (𝜎) is the energy associated with 𝜎, encoded in the Hamiltonian. The
Hamiltonian, in turn, encodes the interactions between adjacent spins, which drive
them to align in a parallel or anti-parallel way, and the field strength, which drives
them to align with to the field. Although the Ising model is typically studied at steady
state, the Glauber formulation constructs a continuous-time Markov chain with the
correct steady state, and allows us to couple the spin dynamics to downstream
transcription processes. With some algebra, it is straightforward to see that 𝑘on

and 𝑘off control the field strength, whereas 𝜀 controls the interactions. Therefore,
it seems legitimate to associate the “on” state with open chromatin and the “off”
state with closed chromatin, and attempt to fit joint distributions of RNA counts and
DNA states.

Ising-style models are appealing and provide certain advantages. The model struc-
ture is simple, but encodes two key ideas: on one hand, neighboring genes are
co-regulated [84]; on the other, they are bursty when considered individually. The
statistics of the Ising model are well-understood, and it is likely that we can obtain
important properties of the RNA distributions in terms of the underlying state kinet-
ics. Although the technical noise behaviors for ATAC and RNA-seq technologies
are likely quite different, we can begin to construct simple hypotheses. For example,
if 00110 denotes a state vector with three occluded and two exposed sites, we should
be able to obtain measurements of 00110, 00100, 00010, and 00000, where the
exposed sites are erroneously reported as occluded due to stochastic loss of reads;
on the other hand, we should not obtain measurements like 10110. However, the
details are somewhat obscure and require further study; for example, it is likely that
polymerase and transcription factor occupancy can interfere with ATAC readouts,
and systematically lead to active sites being reported as occluded.

Usefully, the approach generalizes: the Ising approach has intuitive “knobs” that
can be “tuned” to incorporate more sophisticated phenomena. If the model is too
simplistic to fit data, we can easily relax certain assumptions, e.g., allow the field
or interaction strengths to vary between sites. Most interestingly, once we have
begun to operate in the Ising framework, we are not restricted to simple lattice
models: we may be able to leverage chromatin structure measurements, such as Hi-
C [176], to construct generic gene–gene interaction graphs and model co-regulation
accordingly.

Although rare, this class of models is precedented in bioinformatics, and has been
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applied to the study of methylation [148] and DNA–protein interactions [199].
Ultimately, however, this direction is very much in its nascence, and considerable
further research will be necessary to understand whether Glauber-like dynamics are
at all consistent with real data.

11.3 Spatial transcriptomics
This section summarizes unpublished research undertaken by K.J. and G.G.

Finally, it is worthwhile to discuss the compatibility between the mechanistic ap-
proach and the recent spate of sequencing-based spatial transcriptomics technologies
[202]. Essentially, the commercial methods provide a grid, rather than suspension,
of barcoded beads; a tissue is placed on a grid and its RNA is reverse-transcribed and
sequenced; the barcode design allows for the reconstruction of the original spatial
configuration of the beads. We can begin to construct a model by proposing that a
single cell’s RNA content, for a particular gene g, is drawn from a negative binomial
distribution with shape 𝑘g/𝛾g and scale 𝑏g𝑝. All of these parameters vary with two-
dimensional location z, but in different fashions: intuitively, we should expect the
endogenous parameters 𝑘g, 𝛾g, and 𝑏g to depend on the cell type, and the technical
parameter 𝑝 to only depend on the grid. Of course, some beads may be associated
with more than one cell, in which case the molecule distribution per barcode would
be a sum of negative binomials. In addition, if RNA freely diffuse and contaminate
non-cell-associated regions, we may also append a Poisson technical noise term,
in the spirit of Section 4.4.2. Therefore, the full generating function may take the
following form:

𝐺 tot,t = 𝐺bc (𝐺 (z, 𝑝(z)), z) × 𝐺bg(z, 𝑝(z)), (11.3)

where 𝐺bg(z) encodes the background at the grid point z, 𝐺bc encodes the density
of cells captured per bead at z (where we have assumed that a single bead can only
capture cells from a single cell type), 𝑝(z) is the local molecule capture probability,
and 𝐺 is the negative binomial PGF. This formula is fairly generic, but can be used
to, e.g., generate synthetic spatial data by making assumptions about the biological
and technical components of variability. For example, we can make 𝐺bc degenerate
(one cell per barcode), 𝑝(z) a low-frequency Gaussian process transformed to be
within (0, 1), 𝐺bg the usual pseudobulk Poisson distribution (Section 8.1), and 𝐺
the negative binomial PGF, with parameters that are piecewise constant functions
of z.
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The extension of the modeling framework to spatial transcriptomic data is an active
area of research, and the optimal way to actually fit distributions is far from clear
for now. However, we note that the use of the notation z, matching Section 10.3, is
not incidental: we may be able to treat the location as a predictor, then use a generic
neural function to learn the parameters’ dependence on z, hopefully recapitulating
the cell types. Further, the underlying assumption of cell–cell independence appears
to be somewhat restrictive in this context, and it is plausible that agent-based models,
in the spirit of [283, 285] are more appropriate for spatial data.
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C h a p t e r 12

DISCUSSION AND CONCLUSION

But a poem is never actually finished.
It just stops moving.

Sayori, Doki Doki Literature Club
Dan Salvato

12.1 Future challenges
The work presented here is only the first step toward a physical treatment of se-
quencing data. Much work remains.

Although the modeling framework is fairly generic, the connections to real data are
still obscure. I have operated with “nascent” and “mature” matrices, using counts
aligning to intronic and exonic counts. But this binary is questionable, and I raise
many potential counterpoints in Sections B.1 and B.2. Ultimately, a comprehensive
model should represent transcript elongation and splicing and imperfect capture and
ambiguities in assignment and stochasticity in all of the above. In the same vein,
I have alluded to the construction of more sophisticated models for RNA capture,
but have not attempted this. Therefore, although the fits to real data are at least fair,
many fundamental questions are still outstanding.

The “feed-forward” systems I have outlined afford fairly simple solution strategies.
Explicit regulation does not. Aside from the very brief discussions in Sections 4.3.1
and A.7, I have essentially ignored this key part of biology: the mathematics are
intractable, and the (usually protein-based) mechanisms cannot be constrained using
(RNA) data. However, further theoretical study is certainly worthwhile.

The solutions I have outlined rely on generating functions, and can, at least in
principle, be combined to represent transcription genome-wide, using the toolbox in
Section 10.1 to “couple” gene modules. However, in practice, computing, inverting,
and discarding the vast majority of enormous 𝑛-dimensional arrays is impractical,
and new solvers are necessary. It is possible that the methods outlined in Sections 5.3
and 10.3 can be used to this end. However, my feeling is that the current approach
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is still far too bespoke and reliant on brute force, and alternative strategies need to
be invented.

Although I have used a handful of statistical techniques, the core of the thesis
is not about statistics. Instead, it represents foundational work meant to enable
rigorous investigations by trained statisticians. Although the results thus far may
have frustrating limitations, I believe that the general outline of the mechanistic
approach provides a more promising foundation for future work than the “data
science” methods critiqued at length in Sections 6.1, 8.4, and B.3, and B.4. These
critiques, in turn, are still incomplete, and many other methods used in single-
cell sequencing data analysis — thermodynamic, landscape, and graph analogies8,
nearest-neighbor graphs, various clustering algorithms — give me pause; their
compatibility with single-molecule noise is obscure. However, the comprehensive
analysis of these methods is a substantial undertaking pursuing a rapidly moving
target.

12.2 Concluding notes
The stochastic worldview offers us a principled way to ask questions of single-cell
RNA sequencing data. Even though the conclusions are limited, and do not add
up to a grand theory of biology, on having read (or written) this thesis, we are not
Goethe’s Faust, who “...here, poor fool! with all [his] lore... stand[s], no wiser
than before” [306]. We have learned something. We know how to solve certain
seemingly imposing equations, considerably reducing the mathematical ingenuity
necessary to model biophysical phenomena. We have gained a healthy unease with
standard practices. We have learned to think about single-cell technologies in a way
that brings them closer to “full communion” with the tradition of transcriptomics.

What do I hope to actually accomplish with this thesis?

In the near term, I have raised doubts about standard analysis procedures (nor-
malization, RNA velocity), and proposed a (flawed, limited, but precedented and
principled) alternative. Where this will lead is unclear. Every week, a new velocity,
graph analysis, normalization, machine learning method is released. Perhaps the
critiques reported here will counteract some of the momentum and lead to more
carefully weighed claims, models, and benchmarks. Per Samuel Karlin, modeling
lets us “sharpen the questions” about data [289], and the critiques and hypotheses I
have outlined here are intended to illustrate the power of this worldview.

In the medium term, I have attempted to draw connections across disciplines and en-
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courage researchers in related fields — chemical engineering, physics, fluorescence
transcriptomics, finance, machine learning — to seriously consider lending their
experience in stochastic modeling to the single-cell RNA sequencing field. Time
will tell whether this will lead to the transfer of expertise. A few people in the right
places, asking the right questions, may make all the necessary difference.

In the long term, nature is a forest at dawn, veiled in mist; all of research is a stream
flowing through this forest; this stream is in flux; some patches of its surface reflect
the forest, some are murky, some are opaque, placid and isolated against the current,
but for all that no less a part of it; and this work is a drop in the stream, painstakingly
made discrete and unified for a brief moment, here clarifying its surroundings, here
obscuring, but from here on ultimately dissipating at the will of the stream.
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A p p e n d i x A

SUPPLEMENTARY GENERATING FUNCTION DERIVATIONS

Most of this appendix summarizes the mathematical machinery outlined in the
supplement to [115] by G.G., J.J.V., and L.P. G.G. developed this approach as a
generalization of the framework constructed by G.G. and J.J.V. in [113] by G.G.∗,
J.J.V.∗, M.F., and L.P., as well as by J.J.V. in [299], among other publications. The
description was written by G.G. and J.J.V.
Section A.8.2 was adapted by G.G. from a derivation by J.J.V. and G.G. in [113] by
G.G.∗, J.J.V.∗, M.F., and L.P.
Section A.8.3.1 was adapted from [105] by G.G. and L.P. The derivation was
performed by G.G.
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A.1 The full master equation
The full master equation for each 𝑠 takes the following form:

𝜕𝑃(𝑠, x, y, 𝑡)
𝜕𝑡

=

𝑁∑︁
𝑖=1

𝐻𝑖𝑠 (𝑡)𝑃(𝑖, x, y, 𝑡)

+
𝑛∑︁
𝑖=1

𝑐𝑖0 [(𝑥𝑖 + 1)𝑃(𝑠, 𝑥𝑖 + 1, y, 𝑡) − 𝑥𝑖𝑃(𝑠, x, y, 𝑡)]

+
𝑛∑︁

𝑖, 𝑗=1
𝑐𝑖 𝑗

[
(𝑥𝑖 + 1)𝑃(𝑠, 𝑥𝑖 + 1, 𝑥 𝑗 − 1, y, 𝑡) − 𝑥𝑖𝑃(𝑠, x, y, 𝑡)

]
+

𝑛∑︁
𝑖=1

𝑄𝑑
𝑖𝑖 [(𝑥𝑖 − 1)𝑃(𝑠, 𝑥𝑖 − 1, y, 𝑡) − 𝑥𝑖𝑃(𝑠, x, y, 𝑡)]

+
𝑛∑︁

𝑖, 𝑗=1
𝑄𝑑
𝑖 𝑗

[
𝑥𝑖𝑃(𝑠, 𝑥 𝑗 − 1, y, 𝑡) − 𝑥𝑖𝑃(𝑠, x, y, 𝑡)

]
+

∑︁
𝜔

𝛼𝑑𝑠,𝜔 (𝑡)
[∑︁

z
𝑝𝑑𝑠,𝜔 (z, 𝑡)𝑃(𝑠, x − z, y, 𝑡) − 𝑃(𝑠, x, y, 𝑡)

]
−

𝑚∑︁
𝑖, 𝑗=1

𝐶𝑐𝑐𝑖 𝑗
𝜕

𝜕𝑦 𝑗
[𝑦𝑖𝑃(𝑠, x, y, 𝑡)]

+ 1
2

𝑚∑︁
𝑖=1

𝜎2
𝑖

𝜕2

𝜕𝑦2
𝑖

[𝑦𝑖𝑃(𝑠, x, y, 𝑡)]

−
𝑚∑︁
𝑖=1

𝛼𝑐𝑠,𝑖 (𝑡)
𝜕𝑃(𝑠, x, y, 𝑡)

𝜕𝑦𝑖

+
∑︁
𝜔>𝑚

𝛼𝑐𝑠,𝜔 (𝑡)
[∫

z
𝑝𝑐𝑠,𝜔 (z, 𝑡)𝑃(𝑠, x, y − z, 𝑡)𝑑z − 𝑃(𝑠, x, y, 𝑡)

]
+

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1
𝐶𝑐𝑑𝑖 𝑗

[
𝑦𝑖𝑃(𝑠, 𝑥 𝑗 − 1, y, 𝑡) − 𝑦𝑖𝑃(𝑠, x, y, 𝑡)

]
−

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1
𝐶𝑑𝑐𝑖 𝑗 𝑥𝑖

𝜕𝑃(𝑠, x, y, 𝑡)
𝜕𝑦 𝑗

.

(A.1)

We annotate the terms in Table A.1, eliding the arguments that do not explicitly
appear in the reactions.

To convert the master equation into a partial differential equation, we need to
enumerate the functional forms of master equations terms and their generating
functions. We begin with the definition of the generating function at time 𝑡. In the
current derivation, whenever the argument of 𝑃 is not explicitly specified, it consists
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Term Interpretation
𝐻𝑖𝑠 (𝑡)𝑃(𝑖) Transition from categorical state 𝑖 to 𝑠

𝑐𝑖0 [(𝑥𝑖 + 1)𝑃(𝑥𝑖 + 1) − 𝑥𝑖𝑃(𝑠, x, y, 𝑡)] Degradation of discrete species 𝑖
𝑐𝑖 𝑗

[
(𝑥𝑖 + 1)𝑃(𝑥𝑖 + 1, 𝑥 𝑗 − 1) − 𝑥𝑖𝑃

]
Conversion of discrete species 𝑖 to 𝑗

𝑄𝑑
𝑖𝑖
[(𝑥𝑖 − 1)𝑃(𝑥𝑖 − 1) − 𝑥𝑖𝑃] Autocatalysis of discrete species 𝑖
𝑄𝑑
𝑖 𝑗

[
𝑥𝑖𝑃(𝑥 𝑗 − 1) − 𝑥𝑖𝑃

]
Catalysis of discrete species 𝑗 by 𝑖

𝛼𝑑𝑠,𝜔 (𝑡)
[∑

z 𝑝
𝑑
𝑠,𝜔 (z, 𝑡)𝑃(x − z) − 𝑃

]
Bursty production of discrete species

−𝐶𝑐𝑐
𝑖 𝑗

𝜕
𝜕𝑦 𝑗
[𝑦𝑖𝑃]

Increase in continuous species 𝑗
proportional to level of continuous species 𝑖

𝜎2
𝑖
𝜕2

𝜕𝑦2
𝑖

[𝑦𝑖𝑃] Square-root noise in continuous species 𝑖
−𝛼𝑐

𝑠,𝑖
(𝑡) 𝜕𝑃

𝜕𝑦𝑖
Drift in continuous species 𝑖

𝛼𝑐𝑠,𝜔 (𝑡)
[∫

z 𝑝
𝑐
𝑠,𝜔 (z, 𝑡)𝑃(y − z)𝑑z − 𝑃

]
Bursting in continuous species

𝐶𝑐𝑑
𝑖 𝑗

[
𝑦𝑖𝑃(𝑥 𝑗 − 1) − 𝑦𝑖𝑃

] Production of discrete species 𝑗
proportional to level of continuous species 𝑖

−𝐶𝑑𝑐
𝑖 𝑗
𝑥𝑖
𝜕𝑃
𝜕𝑦 𝑗

Drift in continuous species 𝑗
proportional to number of discrete species 𝑖

Table A.1: Components of the full master equation.

of 𝑠, x, and y. Analogously, whenever the argument of 𝐺 is not explicitly specified,
it consists of 𝑠, g, and h.

𝐺 =

∫
y

∑︁
x

gx𝑒hTy𝑃𝑑y. (A.2)

Evidently, the generating function of all terms in Equation A.1 that scale as 𝑃 is 𝐺.

A.2 Fully discrete master equation terms
Multiplying 𝐺 through by 𝑔𝑖, we obtain:

𝑔𝑖𝐺 =

∫
y

∑︁
x

gx𝑒hTy𝑔𝑖𝑃𝑑y =

∫
y

∑︁
x

gx𝑒hTy𝑃(𝑥𝑖 − 1)𝑑y. (A.3)

This follows from rewriting
∑∞
𝑥𝑖=0 𝑔

𝑥𝑖+1
𝑖

𝑃(𝑥𝑖) as
∑∞
𝑥𝑖=−1 𝑔

𝑥𝑖+1
𝑖

𝑃(𝑥𝑖), noting that𝑃(𝑥𝑖) =
0 whenever 𝑥𝑖 < 0, and reindexing to obtain the equivalent sum

∑∞
𝑥𝑖=0 𝑔

𝑥𝑖
𝑖
𝑃(𝑥𝑖 − 1).

Therefore, the generating function of all terms that scale as 𝑃(𝑥𝑖 − 1) is 𝑔𝑖𝐺.

Differentiating with respect to 𝑔𝑖:

𝜕𝐺

𝜕𝑔𝑖
=

∫
y

∑︁
x

gx𝑒hTy𝑥𝑖𝑔
−1
𝑖 𝑃𝑑y, i.e.,

𝑔𝑖
𝜕𝐺

𝜕𝑔𝑖
=

∫
y

∑︁
x

gx𝑒hTy𝑥𝑖𝑃𝑑y.
(A.4)
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Therefore, the generating function of all terms that scale as 𝑥𝑖𝑃 is 𝑔𝑖 𝜕𝐺𝑠

𝜕𝑔𝑖
.

Alternatively, we can note that the 𝑥𝑖 = 0 term of
∑∞
𝑥𝑖=0 𝑔

𝑥𝑖−1
𝑖

𝑥𝑖𝑃(𝑥𝑖) is zero, and
rewrite as the equivalent expression

∑∞
𝑥𝑖=0 𝑔

𝑥𝑖
𝑖
(𝑥𝑖 + 1)𝑃(𝑥𝑖 + 1). Therefore, the

generating function of all terms that scale as (𝑥𝑖 + 1)𝑃(𝑥𝑖 + 1) is 𝜕𝐺𝑠

𝜕𝑔𝑖
.

Multiplying this equation through by 𝑔 𝑗 :

𝑔 𝑗
𝜕𝐺

𝜕𝑔𝑖
=

∫
y

∑︁
x

gx𝑒hTy𝑔 𝑗 (𝑥𝑖 + 1)𝑃(𝑥𝑖 + 1)𝑑y

=

∫
y

∑︁
x

gx𝑒hTy(𝑥𝑖 + 1)𝑃(𝑥𝑖 + 1, 𝑥 𝑗 − 1)𝑑y.
(A.5)

This follows from rewriting
∑∞
𝑥 𝑗=0 𝑔

𝑥 𝑗+1
𝑗

𝑃(𝑥𝑖 + 1, 𝑗) as
∑∞
𝑥 𝑗=−1 𝑔

𝑥 𝑗+1
𝑗

𝑃(𝑥𝑖 + 1, 𝑥 𝑗 ),
noting that 𝑃(𝑥 𝑗 ) = 0 whenever 𝑥 𝑗 < 0, and reindexing to obtain the equivalent sum∑∞
𝑥 𝑗=0 𝑔

𝑥 𝑗

𝑗
𝑃(𝑥𝑖 + 1, 𝑥 𝑗 − 1). Therefore, the generating function of all terms that scale

as (𝑥𝑖 + 1)𝑃(𝑥𝑖 + 1, 𝑥 𝑗 − 1) is 𝑔 𝑗 𝜕𝐺𝜕𝑔𝑖 .

Multiplying the derivative by 𝑔𝑖 twice:

𝑔2
𝑖

𝜕𝐺

𝜕𝑔𝑖
=

∫
y

∑︁
x

gx𝑒hTy𝑥𝑖𝑔𝑖𝑃𝑑y

=

∫
y

∑︁
x

gx𝑒hTy(𝑥𝑖 − 1)𝑃(𝑥𝑖 − 1)𝑑y.
(A.6)

This follows from rewriting
∑∞
𝑥𝑖=0 𝑔

𝑥𝑖+1
𝑖

𝑥𝑖𝑃(𝑥𝑖) as
∑∞
𝑥𝑖=−1 𝑔

𝑥𝑖+1
𝑖

𝑥𝑖𝑃(𝑥𝑖), noting that
𝑃(𝑥𝑖) = 0 whenever 𝑥𝑖 < 0, and reindexing to obtain the equivalent sum

∑∞
𝑥𝑖=0 𝑔

𝑥𝑖
𝑖
(𝑥𝑖−

1)𝑃(𝑥𝑖−1). Therefore, the generating function of all terms that scale as (𝑥𝑖−1)𝑃(𝑥𝑖−
1) is 𝑔2

𝑖
𝜕𝐺
𝜕𝑔𝑖

.

Multiplying the derivative by 𝑔𝑖𝑔 𝑗 :

𝑔𝑖𝑔 𝑗
𝜕𝐺

𝜕𝑔𝑖
= 𝑔 𝑗

∫
y

∑︁
x

gx𝑒hTy𝑥𝑖𝑃𝑑y

=

∫
y

∑︁
x

gx𝑒hTy𝑥𝑖𝑔 𝑗𝑃𝑑y

=

∫
y

∑︁
x

gx𝑒hTy𝑥𝑖𝑃(𝑥 𝑗 − 1)𝑑y.

(A.7)

This follows from rewriting
∑∞
𝑥𝑖=0 𝑔

𝑥 𝑗+1
𝑗

𝑃(𝑥 𝑗 ) as
∑∞
𝑥 𝑗=−1 𝑔

𝑥 𝑗+1
𝑗

𝑃(𝑥 𝑗 ), noting that
𝑃(𝑥 𝑗 ) = 0 whenever 𝑥 𝑗 < 0, and reindexing to obtain the equivalent sum

∑∞
𝑥 𝑗=0 𝑔

𝑥 𝑗

𝑗
𝑃(𝑥 𝑗 ).

Therefore, the generating function of all terms that scale as 𝑥𝑖𝑃(𝑥 𝑗 − 1) is 𝑔𝑖𝑔 𝑗 𝜕𝐺𝜕𝑔𝑖 .



190

Multiplying the generating function by a probability-generating function 𝐹 of a
discrete burst distribution 𝑝:

𝐹𝐺 =

∫
y

∑︁
x

gx𝑒hTy𝐹𝑃𝑑y

=

∫
y

∑︁
x

gx𝑒hTy
∑︁

z
𝑝(z)𝑃(x − z)𝑑y.

(A.8)

This identity may be derived from three equivalent directions. Most simply, it is a
statement of the convolution theorem. Alternatively, it may be proven directly using
the repeated (𝑛-fold) application of Cauchy products. Finally, the master equation
term essentially aggregates two independent random variables – the process values
and the burst sizes – whose sum is equal to x. The generating function of the sum
of independent variates is the product of their generating functions. Therefore, the
generating function of all terms that scale as

∑
z 𝑝(z)𝑃(x − z) is 𝐹𝐺.

A.3 Fully continuous master equation terms
Multiplying 𝐺 through by ℎ𝑖, we obtain:

ℎ𝑖𝐺 =

∫
y

∑︁
x

gx𝑒hTyℎ𝑖𝑃𝑑y =

∫
y

∑︁
x

gx 𝜕

𝜕𝑦𝑖

[
𝑒hTy

]
[𝑃] 𝑑y

= −
∫

y

∑︁
x

gx𝑒hTy 𝜕𝑃

𝜕𝑦𝑖
𝑑y.

(A.9)

This follows from integrating by parts. The product term 𝑒hTy𝑃 does not contribute
to this expression because 𝑃 is a density with zero mass at any particular value of y.
Therefore, the generating function of all terms that scale as 𝜕𝑃

𝜕𝑦𝑖
is −ℎ𝑖𝐺.

Differentiating with respect to ℎ𝑖:

𝜕𝐺

𝜕ℎ𝑖
=

∫
y

∑︁
x

gx𝑒hTy𝑦𝑖𝑃𝑑y. (A.10)

Therefore, the generating function of all terms that scale as 𝑦𝑖𝑃 is 𝜕𝐺𝑠

𝜕ℎ𝑖
.

Multiplying through by ℎ 𝑗 :

ℎ 𝑗
𝜕𝐺

𝜕ℎ𝑖
=

∫
y

∑︁
x

gx𝑒hTyℎ 𝑗 𝑦𝑖𝑃𝑑y =

∫
y

∑︁
x

gx 𝜕

𝜕𝑦 𝑗

[
𝑒hTy

]
[𝑦𝑖𝑃] 𝑑y

= −
∫

y

∑︁
x

gx𝑒hTy 𝜕 [𝑦𝑖𝑃]
𝜕𝑦 𝑗

𝑑y.
(A.11)
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This follows from integrating by parts. The product term 𝑒hTy𝑦𝑖𝑃 does not contribute
to this expression because it is identically zero at 𝑦𝑖 = 0 and 𝑃 vanishes as 𝑦𝑖 →∞.
Therefore, the generating function of all terms that scale as 𝜕 [𝑦𝑖𝑃]

𝜕𝑦 𝑗
is −ℎ 𝑗 𝜕𝐺𝜕ℎ𝑖 .

Multiplying the derivative by ℎ𝑖 twice:

ℎ2
𝑖

𝜕𝐺

𝜕ℎ𝑖
= −ℎ𝑖

∫
y

∑︁
x

gx𝑒hTy 𝜕 [𝑦𝑖𝑃]
𝜕𝑦𝑖

𝑑y

= −
∫

y

∑︁
x

gx 𝜕

𝜕𝑦𝑖

[
𝑒hTy

] 𝜕 [𝑦𝑖𝑃]
𝜕𝑦𝑖

𝑑y

=

∫
y

∑︁
x

gx𝑒hTy 𝜕
2 [𝑦𝑖𝑃]
𝜕𝑦2

𝑖

𝑑y.

(A.12)

This follows from integrating by parts. Again, the product term 𝑒hTy 𝜕 [𝑦𝑖𝑃]
𝜕𝑦𝑖

=

𝑒hTy𝑦𝑖
𝜕𝑃
𝜕𝑦𝑖
+ 𝑒hTy𝑃 does not contribute to this expression because 𝑃 is a density that

vanishes as 𝑦𝑖 → ∞. Therefore, the generating function of all terms that scale as
𝜕2 [𝑦𝑖𝑃]
𝜕𝑦2

𝑖

is ℎ2
𝑖
𝜕𝐺
𝜕ℎ𝑖

.

Multiplying the generating function by a moment-generating function 𝑀 of contin-
uous burst distribution 𝑝:

𝑀𝐺 =

∫
y

∑︁
x

gx𝑒hTy𝑀𝑃𝑑y =

∫
y

∑︁
x

gx𝑒hTy
∫

z
𝑝(z)𝑃(y − z)𝑑z𝑑y, (A.13)

which may be derived from the convolution theorem, or MGF identities, identically
to Equation A.8. Therefore, the generating function of all terms that scale as
𝑝(z)𝑃(y − z)𝑑z is 𝑀𝐺.

A.4 Mixed master equation terms
Considering the case where a continuous process drives a discrete one, and multi-
plying 𝜕𝐺

𝜕ℎ𝑖
by 𝑔 𝑗 :

𝑔 𝑗
𝜕𝐺

𝜕ℎ𝑖
=

∫
y

∑︁
x

gx𝑒hTy𝑦𝑖𝑔 𝑗𝑃𝑑y

=

∫
y

∑︁
x

gx𝑒hTy𝑦𝑖𝑃(𝑥 𝑗 − 1)𝑑y.
(A.14)

The derivation is identical to Equation A.3. Therefore, the generating function of
all terms that scale as 𝑦𝑖𝑃(𝑥 𝑗 − 1) is 𝑔 𝑗 𝜕𝐺𝜕ℎ𝑖 .
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Considering the case where a discrete process drives a continuous one, and multi-
plying 𝑔𝑖 𝜕𝐺𝜕𝑔𝑖 by ℎ 𝑗 :

ℎ 𝑗𝑔𝑖
𝜕𝐺

𝜕𝑔𝑖
=

∫
y

∑︁
x

gx𝑒hTy𝑥𝑖ℎ 𝑗𝑃𝑑y

=

∫
y

∑︁
x

gx 𝜕

𝜕𝑦 𝑗

[
𝑒hTy

]
[𝑥𝑖𝑃] 𝑑y

= −
∫

y

∑︁
x

gx𝑒hTy 𝜕 [𝑥𝑖𝑃]
𝜕𝑦 𝑗

𝑑y.

(A.15)

This follows from integrating by parts; as before, the product term does not appear
because 𝑃 is a density. Therefore, the generating function of all terms that scale as
𝜕 [𝑥𝑖𝑃]
𝜕𝑦 𝑗

= 𝑥𝑖
𝜕𝑃
𝜕𝑦 𝑗

is −ℎ 𝑗𝑔𝑖 𝜕𝐺𝜕𝑔𝑖 . This concludes the enumeration of generating function
identities.

A.5 Converting the master equation to a partial differential equation
By exploiting the identities derived above and the linearity of the generating function,
we can represent Equation A.1 by an equivalent deterministic partial differential
equation. We begin by considering the expressions for each entry of G separately,
eliding the gene state 𝑠.

Each entry of the second term on the right-hand side, which represents degradation
of the discrete species, takes the form∫

y

∑︁
x

gx𝑒hTy [(𝑥𝑖 + 1)𝑃(𝑥𝑖 + 1) − 𝑥𝑖𝑃] 𝑑y

=
𝜕𝐺

𝜕𝑔𝑖
− 𝑔𝑖

𝜕𝐺

𝜕𝑔𝑖
= (1 − 𝑔𝑖)

𝜕𝐺

𝜕𝑔𝑖
, yielding

𝑛∑︁
𝑖=1

𝑐𝑖0(1 − 𝑔𝑖)
𝜕𝐺

𝜕𝑔𝑖
.

(A.16)

Each entry of the third term, which represents interconversion of the discrete species,
takes the form ∫

y

∑︁
x

gx𝑒hTy [
(𝑥𝑖 + 1)𝑃(𝑥𝑖 + 1, 𝑥 𝑗 − 1) − 𝑥𝑖𝑃

]
𝑑y

= 𝑔 𝑗
𝜕𝐺

𝜕𝑔𝑖
− 𝑔𝑖

𝜕𝐺

𝜕𝑔𝑖
= (𝑔 𝑗 − 𝑔𝑖)

𝜕𝐺

𝜕𝑔𝑖
, yielding

𝑛∑︁
𝑖, 𝑗=1

𝑐𝑖 𝑗 (𝑔 𝑗 − 𝑔𝑖)
𝜕𝐺

𝜕𝑔𝑖
.

(A.17)
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Each entry of the fourth term, which represents autocatalysis of the discrete species,
takes the form ∫

y

∑︁
x

gx𝑒hTy [(𝑥𝑖 − 1)𝑃(𝑥𝑖 − 1) − 𝑥𝑖𝑃] 𝑑y

= 𝑔2
𝑖

𝜕𝐺

𝜕𝑔𝑖
− 𝑔𝑖

𝜕𝐺

𝜕𝑔𝑖
= (𝑔𝑖 − 1)𝑔𝑖

𝜕𝐺

𝜕𝑔𝑖
, yielding

𝑛∑︁
𝑖=1

𝑄𝑑
𝑖𝑖 (𝑔𝑖 − 1)𝑔𝑖

𝜕𝐺

𝜕𝑔𝑖
.

(A.18)

Each entry of the fifth term, which represents catalysis of the discrete species, takes
the form ∫

y

∑︁
x

gx𝑒hTy [
𝑥𝑖𝑃(𝑥 𝑗 − 1) − 𝑥𝑖𝑃

]
𝑑y

= 𝑔𝑖𝑔 𝑗
𝜕𝐺

𝜕𝑔𝑖
− 𝑔𝑖

𝜕𝐺

𝜕𝑔𝑖
= (𝑔 𝑗 − 1)𝑔𝑖

𝜕𝐺

𝜕𝑔𝑖
, yielding

𝑛∑︁
𝑖, 𝑗=1

𝑄𝑑
𝑖 𝑗 (𝑔 𝑗 − 1)𝑔𝑖

𝜕𝐺

𝜕𝑔𝑖
.

(A.19)

Each entry of the sixth term, which represents bursty production of the discrete
species, takes the form∫

y

∑︁
x

gx𝑒hTy

[∑︁
z
𝑝𝑑𝑠,𝜔 (z, 𝑡)𝑃(x − z) − 𝑃

]
𝑑y

= 𝐹𝐺 − 𝐺 = (𝐹 − 1)𝐺, yielding∑︁
𝜔

𝛼𝑑𝑠,𝜔 (𝑡) (𝐹𝑠,𝜔 − 1)𝐺.

(A.20)

Each entry of the seventh term, which represents the deterministic dynamics of the
continuous species, takes the form∫

y

∑︁
x

gx𝑒hTy 𝜕

𝜕𝑦 𝑗
[𝑦𝑖𝑃] 𝑑y

= −ℎ 𝑗
𝜕𝐺

𝜕ℎ𝑖
, yielding

𝑚∑︁
𝑖, 𝑗=1

𝐶𝑐𝑐𝑖 𝑗 ℎ 𝑗
𝜕𝐺

𝜕ℎ𝑖
.

(A.21)
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Each entry of the eighth term, which represents the diffusion dynamics of the
continuous species, takes the form∫

y

∑︁
x

gx𝑒hTy 𝜕
2

𝜕𝑦2
𝑖

[𝑦𝑖𝑃] 𝑑y

= ℎ2
𝑖

𝜕𝐺

𝜕ℎ𝑖
, yielding

1
2

𝑚∑︁
𝑖=1

𝜎2
𝑖 ℎ

2
𝑖

𝜕𝐺

𝜕ℎ𝑖
.

(A.22)

Each entry of the ninth term, which represents the drift of the continuous species,
takes the form ∫

y

∑︁
x

gx𝑒hTy 𝜕𝑃

𝜕𝑦𝑖
𝑑y

= −ℎ𝑖𝐺, yielding
𝑚∑︁
𝑖=1

𝛼𝑐𝑠,𝑖ℎ𝑖𝐺.

(A.23)

Each entry of the tenth term, which represents the bursty production of the contin-
uous species, takes the form∫

y

∑︁
x

gx𝑒hTy
[∫

z
𝑝𝑐𝜔 (z)𝑃(y − z, 𝑡)𝑑z − 𝑃

]
𝑑y

= 𝑀𝐺 − 𝐺 = (𝑀 − 1)𝐺, yielding∑︁
𝜔>𝑚

𝛼𝑐𝑠,𝜔 (𝑀𝑠,𝜔 − 1)𝐺.

(A.24)

Each entry of the eleventh term, which represents a continuous species driving a
discrete one, takes the form∫

y

∑︁
x

gx𝑒hTy [
𝑦𝑖𝑃(𝑥 𝑗 − 1) − 𝑦𝑖𝑃

]
𝑑y

= 𝑔 𝑗
𝜕𝐺

𝜕ℎ𝑖
− 𝜕𝐺
𝜕ℎ𝑖

= (𝑔 𝑗 − 1) 𝜕𝐺
𝜕ℎ𝑖

, yielding
𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1
𝐶𝑐𝑑𝑖 𝑗 (𝑔 𝑗 − 1) 𝜕𝐺

𝜕ℎ𝑖
.

(A.25)
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Each entry of the twelfth term, which represents a discrete species driving a contin-
uous one, takes the form ∫

y

∑︁
x

gx𝑒hTy𝑥𝑖
𝜕𝑃

𝜕𝑦 𝑗
𝑑y

= ℎ 𝑗𝑔𝑖
𝜕𝐺

𝜕𝑔𝑖
, yielding

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1
𝐶𝑑𝑐𝑖 𝑗 ℎ 𝑗𝑔𝑖

𝜕𝐺

𝜕𝑔𝑖
.

(A.26)

Therefore, the PDE form of the master equation is

𝜕𝐺

𝜕𝑡
=

𝑁∑︁
𝑖=1

𝐻𝑖𝑠𝐺𝑖 +
𝑛∑︁
𝑖=1

𝑐𝑖0(1 − 𝑔𝑖)
𝜕𝐺

𝜕𝑔𝑖
+

𝑛∑︁
𝑖, 𝑗=1

𝑐𝑖 𝑗 (𝑔 𝑗 − 𝑔𝑖)
𝜕𝐺

𝜕𝑔𝑖

+
𝑛∑︁
𝑖=1

𝑄𝑑
𝑖𝑖 (𝑔𝑖 − 1)𝑔𝑖

𝜕𝐺

𝜕𝑔𝑖
+

𝑛∑︁
𝑖, 𝑗=1

𝑄𝑑
𝑖 𝑗 (𝑔 𝑗 − 1)𝑔𝑖

𝜕𝐺

𝜕𝑔𝑖
+

∑︁
𝜔

𝛼𝑑𝑠,𝜔 (𝐹𝑠,𝜔 − 1)𝐺

+
𝑚∑︁

𝑖, 𝑗=1
𝐶𝑐𝑐𝑖 𝑗 ℎ 𝑗

𝜕𝐺

𝜕ℎ𝑖
+ 1

2

𝑚∑︁
𝑖=1

𝜎2
𝑖 ℎ

2
𝑖

𝜕𝐺

𝜕ℎ𝑖
+

𝑚∑︁
𝑖=1

𝛼𝑐𝑠,𝑖ℎ𝑖𝐺 +
∑︁
𝜔>𝑚

𝛼𝑐𝑠,𝜔 (𝑀𝑠,𝜔 − 1)𝐺

+
𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1
𝐶𝑐𝑑𝑖 𝑗 (𝑔 𝑗 − 1) 𝜕𝐺

𝜕ℎ𝑖
+

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1
𝐶𝑑𝑐𝑖 𝑗 ℎ 𝑗𝑔𝑖

𝜕𝐺

𝜕𝑔𝑖
.

(A.27)

This equation governs the dynamics of 𝐺𝑠, one of 𝑁 coupled PDEs. We elide this
subscript when it does not directly factor into the calculation. As in Equation A.1,
the terms that scale with 𝐺, rather than one of its derivatives, may be time- and
𝑠-dependent.

A.6 Representing the PDE in matrix form
This formulation in Equation A.27 is somewhat more compact, but may be simplified
further. First, we note that the second and third terms on the right-hand side can be
represented by the matrix equation

(∇𝑑𝐺)T𝐶𝑑𝑑 (g − 1), (A.28)

where ∇𝑑 is the length-𝑛 column vector gradient with respect to entries of g.

Next, the fourth and fifth terms can be represented by

(∇𝑑𝐺)T(diag g)𝑄𝑑 (g − 1). (A.29)
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The sixth term can be represented by constructing the vector 𝜶𝑑 and vector function
F, indexed by 𝜔, with elided dependence on 𝑠:

𝐺 (𝜶𝑑)T(F(g) − 1). (A.30)

The seventh term can be represented similarly to second and third:

(∇𝑐𝐺)T𝐶𝑐𝑐h, (A.31)

where ∇𝑐 is the gradient with respect to entries of h.

The eighth term can be represented analogously to the fourth and fifth:

(∇𝑐𝐺)T(diag h)
(
1
2

diag 𝝈2
)

h. (A.32)

The ninth and tenth term can be represented analogously to the sixth; we construct
vector 𝜶𝑐 and vector function M, indexed by 𝜔, with elided dependence on 𝑠:

𝐺 (𝜶𝑐)T(M(h) − 1), (A.33)

The first 𝑚 entries of 𝜶𝑐 contain the 𝑚 scalar drift rates, whereas the other entries
contain jump rates, i.e., (M)𝑖 := ℎ𝑖 + 1 for 𝑖 ≤ 𝑚.

The eleventh term takes a form analogous to those for second, third, and seventh:

(∇𝑐𝐺)T𝐶𝑐𝑑 (g − 1). (A.34)

Finally, the twelfth is analogous to fourth and fifth:

(∇𝑑𝐺)T(diag g) 𝐶𝑑𝑐 h. (A.35)

Therefore, Equation A.27 can be condensed further for a particular 𝑠:

𝜕𝐺

𝜕𝑡
=

𝑁∑︁
𝑖=1

𝐻𝑖𝑠𝐺𝑖

+ (∇𝑑𝐺)T𝐶𝑑𝑑 (g − 1) + (∇𝑑𝐺)T(diag g) 𝑄𝑑 (g − 1) + 𝐺 (𝜶𝑑)T(F(g) − 1)

+ (∇𝑐𝐺)T𝐶𝑐𝑐h + (∇𝑐𝐺)T(diag h)
(
1
2

diag 𝝈2
)

h + 𝐺 (𝜶𝑐)T(M(h) − 1)

+ (∇𝑐𝐺)T𝐶𝑐𝑑 (g − 1) + (∇𝑑𝐺)T(diag g) 𝐶𝑑𝑐 h.
(A.36)
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Collecting terms:

𝜕𝐺

𝜕𝑡
= (∇𝑑𝐺)T

[
𝐶𝑑𝑑 (g − 1) + (diag g) 𝑄𝑑 (g − 1) + (diag g) 𝐶𝑑𝑐 h

]
+ (∇𝑐𝐺)T

[
𝐶𝑐𝑐h + (diag h)

(
1
2

diag 𝝈2
)

h + 𝐶𝑐𝑑 (g − 1)
]

+ 𝐺
[
(𝜶𝑑)T(F(g) − 1) + (𝜶𝑐)T(M(h) − 1)

]
+

𝑁∑︁
𝑖=1

𝐻𝑖𝑠𝐺𝑖 .

(A.37)

In other words, the PDE separates into the usual first-order linear form, with terms
corresponding to 𝐺, ∇𝑑𝐺, and ∇𝑐𝐺.

A.6.1 Unifying the discrete and continuous species
However, analyzing Equation A.37 as is obfuscates the mathematical similarities of
the discrete and continuous species.

To exploit them, we first introduce the variable u, which is a shifted version of g
concatenated to h:

u :=

[
u𝑑
u𝑐

]
=

[
g − 1

h

]
. (A.38)

This yields the following form for the gradient-dependent terms:

(∇𝑑𝐺)T
[
𝐶𝑑𝑑u𝑑 + (diag u𝑑 + 𝐼)𝑄𝑑u𝑑 + (diag u𝑑 + 𝐼)𝐶𝑑𝑐u𝑐

]
+ (∇𝑐𝐺)T

[
𝐶𝑐𝑐u𝑐 + (diag u𝑐)

(
1
2

diag 𝝈2
)

u𝑐 + 𝐶𝑐𝑑u𝑑
]

= (∇𝑑𝐺)T
[(
𝐶𝑑𝑑 +𝑄𝑑

)
u𝑑 + 𝐶𝑑𝑐u𝑐 + (diag u𝑑)𝑄𝑑u𝑑 + (diag u𝑑)𝐶𝑑𝑐u𝑐

]
+ (∇𝑐𝐺)T

[
𝐶𝑐𝑑u𝑑 + 𝐶𝑐𝑐u𝑐 + (diag u𝑐)

(
1
2

diag 𝝈2
)

u𝑐
]
.

(A.39)

Next, we define the full gradient of 𝐺, such that ∇𝐺 contains the derivatives with
respect to all entries of u. We define common jump rates and generating functions:

𝜶 :=

[
𝜶𝑑

𝜶𝑐

]
M(u) :=

[
F(1 + u1,··· ,𝑛)

M(u𝑛+1,··· ,𝑛+𝑚)

]
.

(A.40)

This notation emphasizes thatM is formally defined over all values of u; however,
each entry, which corresponds to a specific influx process (i.e., a burst, drift, or jump
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term) possesses nontrivial dependence only on the relevant (discrete or continuous)
indices.

We define the common interconversion matrix:

𝐶 :=

[
𝐶𝑑𝑑 +𝑄𝑑 𝐶𝑑𝑐

𝐶𝑐𝑑 𝐶𝑐𝑐

]
, (A.41)

as well as the common diffusion matrix:

𝐷 :=

[
𝑄𝑑 𝐶𝑑𝑐

0 1
2diag 𝝈2

]
:=

[
𝑄𝑑 𝐶𝑑𝑐

0 𝑄𝑐

]
. (A.42)

This yields the following unified expression for a single state:

𝜕𝐺

𝜕𝑡
= (∇𝐺)T [𝐶u + diag u 𝐷u] + 𝐺

[
𝜶T(M(u) − 1)

]
+

𝑁∑︁
𝑖=1

𝐻𝑖𝑠𝐺𝑖 . (A.43)

In this equation, ∇𝐺 is the gradient of 𝐺 with respect to u. It remains to generalize
this expression to multiple states. Of the biological parameters, only the entries of
𝐻, 𝜶, and M depend on gene state. To specify the influx dynamics, we need to
define the full bursting operator, which is a length-𝑁 vector function:

A(u) =

𝜶T

1 (M1(u) − 1)
· · ·

𝜶T
𝑁
(M𝑁 (u) − 1)

 , (A.44)

where the subscripts of 𝜶 and M now indicate the gene state. Finally, recalling
that the full Jacobian has entries 𝐽𝑠𝑖 = 𝜕𝐺𝑠

𝜕𝑢𝑖
, the full PDE system takes the following

form:

𝜕G
𝜕𝑡

= 𝐻TG +G ⊙ A(u) + 𝐽 [𝐶u + diag u 𝐷u] . (A.45)

A.6.2 Solving the partial differential equation
We seek to integrate this PDE to obtain the generating function at an arbitrary time
𝑡. The form is conducive to applying the method of characteristics. First, we define
the characteristic variable s. By taking a total derivative with respect to s, we obtain

𝑑𝐺𝑠

𝑑s
=
𝜕𝐺𝑠

𝜕𝑇

𝑑𝑇

𝑑s
+
𝑛+𝑚∑︁
𝑖=1

𝜕𝐺𝑠

𝜕𝑈𝑖

𝑑𝑈𝑖

𝑑s
. (A.46)
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Next, we rewrite the PDE to match the form of the total derivative:

−𝐻𝑇G −G ⊙ A(u) = −𝜕G
𝜕𝑡
+ 𝐽 [𝐶u + diag u 𝐷u] . (A.47)

The characteristic curves emanating from (𝑡, u) that satisfy the PDE are given by:

𝑑𝑇 (s)
𝑑s

= −1 such that 𝑇 (s = 0) = 𝑡, i.e., 𝑇 (s) = 𝑡 − s and

𝑑𝑈𝑖 (s)
𝑑s

= (𝐶U(s) + diag U(s) 𝐷U(s))𝑖 such that𝑈𝑖 (s = 0) = 𝑢𝑖, i.e.,

𝑑U(s)
𝑑s

= 𝐶U(s) + diag U(s) 𝐷U(s) such that U(s = 0) = u.

(A.48)

This is the “downstream” ODE, which governs abundances in isolation from pro-
duction and regulation.

Therefore, G is governed by the following system of ordinary differential equations:

𝑑G(U(s), 𝑇 (s))
𝑑s

= −𝐻 (𝑇 (s))𝑇G −G ⊙ A(U(s), 𝑇 (s)) := H(U, 𝑇) G. (A.49)

To obtain G at 𝑡, we integrate this matrix system from s = 𝑡 to s = 0. We
use G0(U(𝑡)) as the initial condition, where G0 is the generating function of the
initial distribution. This is the “upstream” ODE, which governs the full generating
function.
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A.7 Regulation extensions
This section summarizes some investigations undertaken during the writing of [115]
by G.G., J.J.V., and L.P. This derivation was performed by G.G.

We have summarized a considerable breadth of biological phenomena in a common
framework. Yet the really “interesting” ones, such as regulation, are still elusive.
To see why, we can formalize the challenges of feedback, using the 𝑚 = 0, 𝑁 > 1,
𝑛 > 0 case as an example.

First, we write down the master equation. We are interested in non-sequestering
catalysis of state switching, such that reactions of the form

S𝑖
𝑥𝑘𝑅𝑘,𝑖 𝑗−−−−−→ S 𝑗 (A.50)

are allowed, whereas reactions of the form

S𝑖 + 𝑅𝑘,𝑖 𝑗
𝑥𝑘𝑅𝑘,𝑖 𝑗−−−−−→ S 𝑗 (A.51)

are disallowed. This is mostly a mathematical convenience: in addition to catalysis,
we would like to retain the usual non-catalytic switching (encoded in a matrix 𝐻),
and restricting the allowed reactions in this way avoid strange and nonphysical edge
cases in the vein of

S𝑖 → S 𝑗 → S𝑖 + X𝑘 , (A.52)

i.e., the spontaneous generation of molecules9.

The master equation terms corresponding to the switching reactions are

𝑛∑︁
𝑘=1

𝑥𝑘

[
𝑁∑︁
𝑖=1

𝑅𝑘,𝑖𝑠𝑃(𝑖, x, 𝑡) −
𝑁∑︁
𝑖=1

𝑅𝑘,𝑠𝑖𝑃(𝑠, x, 𝑡)
]
, (A.53)

i.e., any species, indexed by 𝑘 , can, in principle, catalyze any transition between
states. Ostensibly, the summation excludes self-transitions. From Equation A.4, we
immediately obtain that the corresponding generating function terms are

𝑛∑︁
𝑘=1

𝑔𝑘

[
𝑁∑︁
𝑖=1

𝑅𝑘,𝑖𝑠
𝜕𝐺𝑖

𝜕𝑔𝑘
−

𝑁∑︁
𝑖=1

𝑅𝑘,𝑠𝑖
𝜕𝐺𝑠

𝜕𝑔𝑘

]
. (A.54)

Defining the diagonal elements of 𝑅𝑘 in the usual fashion, such that 𝑅𝑘,𝑠𝑠 :=∑
𝑖≠𝑠 𝑅𝑘,𝑠𝑖, we yield the matrix form

𝑛∑︁
𝑘=1

𝑔𝑘𝑅
T
𝑘

𝜕G
𝜕𝑔𝑘

, (A.55)
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where the partial derivative is elementwise. In the case of 𝑛 = 1, this reduces to the
somewhat simpler case

𝑔𝑅T𝐽, yielding the full expression
𝜕G
𝜕𝑡

= 𝐻TG +G ⊙ A(𝑢) + 𝐽
[
𝐶𝑢 + 𝐷𝑢2] + (𝑢 + 1)𝑅T𝐽.

(A.56)

The right-multiplication by the Jacobian matrix 𝐽 makes all the difference: the
system ceases to be tractable by the method of characteristics, as we cannot specify
a “downstream” component.

We can illustrate this point more easily by considering the usual 𝑁 = 2, 𝐷 = 0 case
with Poisson process transcription in the on state [301]. This yields

𝜕G
𝜕𝑡

= 𝐻TG + 𝜶 ⊙ G𝑢 + 𝐽𝐶𝑢 + (𝑢 + 1)𝑅T𝐽

=

[
−𝑘on 𝑘off

𝑘on −𝑘off

] [
𝐺off

𝐺on

]
+

[
0

𝑘 init𝐺on

]
𝑢 − 𝛾𝑢

[
𝜕𝐺off
𝜕𝑢
𝜕𝐺on
𝜕𝑢

]
+ (𝑢 + 1)

[
−𝑅on 𝑅off

𝑅on −𝑅off

] [
𝜕𝐺off
𝜕𝑢
𝜕𝐺on
𝜕𝑢

]
,

(A.57)

where 𝑅on and 𝑅off are the mass action rates of transition catalysis. This matrix
equation is equivalent to the system

𝜕𝐺off

𝜕𝑡
= −𝑘on𝐺off + 𝑘off𝐺on − 𝛾𝑢

𝜕𝐺off

𝜕𝑢

− 𝑅on(𝑢 + 1) 𝜕𝐺off

𝜕𝑢
+ 𝑅off(𝑢 + 1) 𝜕𝐺on

𝜕𝑢
𝜕𝐺on

𝜕𝑡
= 𝑘on𝐺off − 𝑘off𝐺on − 𝛾𝑢

𝜕𝐺on

𝜕𝑢
+ 𝑘 init𝑢𝐺on

+ 𝑅on(𝑢 + 1) 𝜕𝐺off

𝜕𝑢
− 𝑅off(𝑢 + 1) 𝜕𝐺on

𝜕𝑢
,

(A.58)

which combines the autoactivation and autorepression cases in Equations 2.7 and
2.8 of [301]. Parenthetically, we question the authors’ justification for treating
these phenomena as mutually exclusive because they “cancel out.” For example, if
𝑅on = 𝑅off, but both are both extremely high, we obtain a trivial Poisson distribution
of RNA, which is qualitatively different from the possibly bimodal 𝑅on = 𝑅off = 0
case. In addition, this justification ceases to hold when considering 𝑁 > 2.
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Let us treat the simplest case, with 𝑘on = 𝑘off = 𝛾 = 0. Then we obtain

𝜕𝐺off

𝜕𝑡
= −𝑅on(𝑢 + 1) 𝜕𝐺off

𝜕𝑢
+ 𝑅off(𝑢 + 1) 𝜕𝐺on

𝜕𝑢
𝜕𝐺on

𝜕𝑡
= 𝑘 init𝑢𝐺on + 𝑅on(𝑢 + 1) 𝜕𝐺off

𝜕𝑢
− 𝑅off(𝑢 + 1) 𝜕𝐺on

𝜕𝑢
, i.e.,

0 =
𝜕G
𝜕𝑡
− (𝑢 + 1)𝑅T 𝜕G

𝜕𝑢
− diag 𝜶 G𝑢.

(A.59)

The next steps are somewhat obscure. We can use eigendecomposition:

−(𝑢 + 1)𝑅T = 𝑉Λ𝑉−1

𝑉 =

[
v1 v2

]
=

[
𝑅off −1
𝑅on 1

]
Λ =

[
0 0
0 (𝑅on + 𝑅off) (𝑢 + 1)

]
.

(A.60)

Defining 𝑉G̃ := G, we obtain

0 = 𝑉
𝜕G̃
𝜕𝑡
+𝑉Λ𝑉−1𝑉

𝜕G̃
𝜕𝑢
− 𝑢 diag 𝜶𝑉G̃, (A.61)

and multiplying by 𝑉−1 from the left,

0 =
𝜕G̃
𝜕𝑡
+ Λ𝜕G̃

𝜕𝑢
− 𝑢𝑉−1 diag 𝜶𝑉G̃

:=
𝜕G̃
𝜕𝑡
+ Λ𝜕G̃

𝜕𝑢
− 𝐴G̃.

(A.62)

This produces two characteristic curves, defined by

𝜕𝑈1

𝜕s
= 0→ 𝑈1 = 𝑢

𝜕𝑈2

𝜕s
= (𝑅on + 𝑅off) (𝑈2 + 1) → 𝑈2 = (𝑢 + 1)𝑒(𝑅on+𝑅off)s − 1.

(A.63)

Although this functional form is certainly precedented in the study of partial differ-
ential equations (see, e.g., Section 22.4 of [79] and Section 2.5 of [153]), it does
not appear to lead to a closed-form solution, and the development of a reasonably
generic procedure for treating regulation in the same framework remains out of
reach for now. Although we do not treat the more general cases with nontrivial 𝐻
and 𝛾, they produce largely the same challenges.
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A.8 Stochastic process identities
In this section, we outline some useful identities and demonstrate the mathematical
capabilities of the current approach.

A.8.1 The telegraph process converges to the jump subordinator
This section adapts a portion of the supplement of [105] by G.G. and L.P. This
derivation was performed by G.G.

In Equation 4.22, we have summarized the “upstream” degrees of freedom in terms
of a state interconversion matrix 𝐻 and a state-dependent transcription operator
A. The entries of the operator essentially encode the distribution of a memoryless
Poisson arrival process. This process, in turn, arises as the approximation of a
timescale-separated process; for example, it is well-understood [233, 267] that the
reaction schema

Soff
𝑘on−−→ Son

Son
𝑘off−−→ Soff

Son
𝑘 init−−−→ Son + X

(A.64)

is equivalent to

∅ 𝑘on−−→ 𝐵 × X (A.65)

with 𝐵 a geometrically-distributed random variable with mean 𝑏, whenever 𝑘off,
𝑘 init → ∞ with 𝑘 init

𝑘off
:= 𝑏 finite. There are a number of ways to prove this. For

example, it is straightforward to consider the case with degradation of X, find its
distribution [143], then take the relevant limit and show that the transient distribu-
tions match the bursty case. However, this procedure relies on somewhat tedious
manipulation of special functions.

The easiest approach being with noticing that this process affords a representation
in terms of the instantaneous transcription rate 𝐾 (𝑡), which is equal to zero when
𝑠 = Soff and 𝑘 init when 𝑠 = Son. This process’s value depends on its past, implying
that it is not a subordinator10 (contradicting [7, 8]). The duration of each on period
is exponential with scale 𝑘−1

off . The total transcriptional intensity of each on period
is exponential with scale 𝑘−1

off𝑘 init = 𝑏. The number of molecules generated per on
period is Poisson, with a mean given by the intensity, i.e., geometric with scale 𝑏.
As 𝑘off →∞, the on periods become infinitesimally short, and the process becomes
memoryless, producing a jump subordinator.
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A.8.2 The CIR process converges to the inverse Gaussian subordinator
This section adapts a portion of [113] by G.G.∗, J.J.V.∗, M.F., and L.P. This analysis
was performed by J.J.V. and G.G.

Consider, now, the case of the Cox–Ingersoll–Ross transcriptional driver (Equations
7.3 and 7.4) coupled to unspecified downstream dynamics. We have some charac-
teristic𝑈 corresponding to downstream species and the following ODE for the CIR
characteristic𝑈𝐾 (s):

𝑑𝑈𝐾 (s)
𝑑s

= −𝜅𝑈𝐾 + 𝜅𝜃𝑈2
𝐾 +𝑈. (A.66)

For 𝜅 → ∞, both sides of the equation are approximately zero: 𝑈𝐾 rapidly equili-
brates. Applying the quadratic formula:

0 ≈ 𝜅𝜃𝑈2
𝐾 − 𝜅𝑈𝐾 +𝑈

𝑈𝐾 ≈
1

2𝜅𝜃

[
𝜅 ±

√︁
𝜅2 − 4𝜅𝜃𝑈

]
=

1
2𝜃

[
1 ±

√︂
1 − 4

𝜃

𝜅
𝑈

]
:=

1
2𝜃

[
1 ±
√

1 − 4𝑏𝑈
]
.

(A.67)

We have assumed 𝑏 is finite, so 𝜃 → ∞. Therefore, we find that the transcription
operator A(𝑈𝐾 (s)) takes the form

𝑎𝜃

2𝜃

[
1 ±
√

1 − 4𝑏𝑈
]
=
𝑎

2

[
1 ±
√

1 − 4𝑏𝑈
]

=
𝑎

2

[
1 −
√

1 − 4𝑏𝑈
]
.

(A.68)

We have chosen the negative sign because otherwise 𝑈𝐾 (s) does not converge to
zero, and does not produces a steady-state solution when integrated. This expression
is the moment-generating function of the inverse Gaussian subordinator. Interest-
ingly, even though this process is memoryless, it is not a compound Poisson process:
it has infinitely many jumps in each finite interval. Although this limit is somewhat
degenerate, it is useful to consider, as it fills an apparent lacuna in the finance lit-
erature [20, 22]: when 𝑈 = 𝑒−𝛾s, we find that the stationary distribution has the
relatively simple closed-form log-PGF:

log𝐺 (𝑢) = 𝑎

𝛾

(
1 −
√

1 − 4𝑏𝑢
)
+ 𝑎
𝛾

log

(
1 +
√

1 − 4𝑏𝑢
2

)
. (A.69)

In our understanding, this is the solution to the “OU-IG” case listed as “Not known”
in Table 2 of [22].
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A.8.3 The Poisson representation facilitates adaptation of finance results
A.8.3.1 Time-dependent bursty processes

This section adapts a portion of [105] by G.G. and L.P. This derivation was performed
by G.G.

We can use the isomorphisms between continuous and discrete processes to bypass
tedious calculations. For example, mixture models are fairly popular for represent-
ing differentiation trajectories: each latent time is associated with a set of parameters
for the negative binomial distribution; these parameters smoothly evolve throughout
the trajectory [77, 216], representing modulation of bursty transcription. We can
reasonably ask whether this framework can be used to represent “RNA velocity”-
like trajectories, with meaningful transient effects (Section 6.1.1). This question is
interesting given that this holds true for non-bursty processes: the distribution of a
process with constitutive production, coupled to some isomerization and degradation
reactions, is Poisson with a time-dependent mean (a trivial consequence of Equation
4.25, but explored in further detail in [146]). Is it possible that a time-dependent
negative binomial can represent a transient process in the same fashion?

This intuition turns out to be incorrect even in the simplest case with 𝑛 = 1. The
discrete bursty process is a Poisson mixture of the Γ-OU process (Equations 7.1 and
7.2). Therefore, its transient PGF coincides with the transient MGF of the Γ-OU
process, which is well-known [241]:

𝐺 (𝑢, 𝑡) =
(
1 − 𝑏𝑢𝑒−𝛾𝑡

1 − 𝑏𝑢

) 𝑘/𝛾
. (A.70)

For finite 𝑡, Equation A.70 is not the PGF of a negative binomial distribution. In other
words, a “pseudotime”-dependent negative binomial distribution simply emulates a
collection of local steady states, rather than any transient processes, in the vein of
Equation 10.2.

A.8.3.2 Autocatalysis

This section adapts a portion of [115] by G.G., J.J.V., and L.P. This derivation was
performed by G.G.

Interestingly, this approach generalizes to cases with 𝐷 ≠ 0. Suppose we are
interested in a 1-species system with 𝑁 = 1, 𝑛 = 1, 𝑚 = 0, involving birth at 𝛼,
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death at 𝛾, and autocatalysis at 𝑞:

∅ 𝛼−→ X

X
𝑞
−→ X + X

X
𝛾
−→ ∅.

(A.71)

This system was introduced, but not treated, by Jahnke and Huisinga [146], and, to
our knowledge, first solved with master equation and generating function calculations
in [300]. However, we can also solve it merely by matching terms, without any new
calculations.

This reaction schema yields the following PDE terms:

A(𝑢) = 𝛼𝑢
𝐶 = −𝛾 + 𝑞
𝐷 = 𝑞.

(A.72)

The same form can be obtained by defining a system with 𝑁 = 1, 𝑛 = 0, and
𝑚 = 1, with drift 𝛼, mean-reversion at rate 𝛾 − 𝑞, and diffusion 𝑞. This system
matches the functional form of a Cox–Ingersoll–Ross (CIR) process with drift 𝑎𝑏,
mean-reversion rate 𝑎 and square-root noise with intensity 𝜎 [62]:

𝑑𝑦𝑡 = 𝑎(𝑏 − 𝑦𝑡)𝑑𝑡 + 𝜎
√
𝑦𝑡𝑑𝑊𝑡

𝐷 =
1
2
𝜎2 = 𝑞 =⇒ 𝜎 =

√︁
2𝑞

𝑎𝑏 = 𝛼

𝐶 = −𝑎 = −𝛾 + 𝑞.

(A.73)

As 𝑡 → ∞, the CIR process approaches the gamma distribution with shape 𝜈 and
scale 𝜃:

𝑃(𝑦; 𝜈, 𝜃) = 1
Γ(𝜈)𝜃𝜈 𝑦

𝜈𝑒−𝑦/𝜃

𝜈 =
2𝑎𝑏
𝜎2 =

𝛼

𝑞

𝜃 =
𝜎2

2𝑎
=

𝑞

𝛾 − 𝑞 ,

(A.74)

which follows from standard identities [62]. The distribution has the MGF

𝑀 =

(
1

1 − 𝜃ℎ

)𝜈
,

implying the Poisson mixture PGF 𝐺 =

(
1

1 − 𝜃𝑢

)𝜈
.

(A.75)
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This is the probability generating function of a negative binomial distribution with
the shape 𝜈 = 𝛼/𝑞 and mean 𝜈𝜃 = 𝛼

𝛾−𝑞 . With some algebra, we can rewrite the PGF
as (

𝛾 − 𝑐
𝛾

)𝛼/𝑞 (
1

1 − 𝑞𝑔

𝛾

)𝛼/𝑞
, (A.76)

which is the analytical solution reported in the second line of Eq. 4.47 of [299]
under the assumption 𝛾 > 𝑞. We find, then, that autocatalysis with constitutive
transcription yields a stationary distribution equivalent to bursty transcription with
no autocatalysis.

A.8.3.3 Autocatalysis with bursty production

This section adapts a portion of [115] by G.G., J.J.V., and L.P. This derivation was
performed by G.G.

Obtaining this result, we may ask how the distribution changes if the molecules are
produced in geometric bursts 𝐵 with mean size 𝑏:

∅ 𝛼−→ 𝐵 × X

X
𝑞
−→ X + X

X
𝛾
−→ ∅.

(A.77)

These reactions yield the following PDE terms:

A(𝑢) = 𝛼
[

1
1 − 𝑏𝑢 − 1

]
𝐶 = −𝛾 + 𝑞
𝐷 = 𝑞.

(A.78)

To solve the system, we first find the solution to the Bernoulli-type differential
equation, defining 𝑐 = −𝐶 = 𝛾 − 𝑞 for convenience:

𝑑𝑈

𝑑s
= −𝑐𝑈 + 𝑞𝑈2 such that𝑈 (s = 0) = 𝑢 yields

𝑈 (s) = 𝑐𝑢𝑒−𝑐s

𝑐 + 𝑞𝑢(𝑒−𝑐s − 1) .
(A.79)
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Then the log-generating function of the stationary distribution is given by the integral
of A(𝑈 (s)):

1
1 − 𝑏𝑈 − 1 =

𝑏 𝑐𝑢𝑒−𝑐s

𝑐+𝑞𝑢(𝑒−𝑐s−1)

1 − 𝑏 𝑐𝑢𝑒−𝑐s

𝑐+𝑞𝑢(𝑒−𝑐s−1)
=

𝑏𝑐𝑢𝑒−𝑐s

𝑐 + 𝑞𝑢(𝑒−𝑐s − 1) − 𝑏𝑐𝑢𝑒−𝑐s

=
𝑏𝑐𝑢𝑒−𝑐s

(𝑐 − 𝑞𝑢) − (𝑏𝑐 − 𝑞)𝑢𝑒−𝑐s =
𝑏𝑐𝑢

𝑐 − 𝑞𝑢
𝑒−𝑐s

1 − (𝑏𝑐−𝑞)𝑢
𝑐−𝑞𝑢 𝑒−𝑐s

log𝐺 =

∫ ∞

0
A(𝑈 (s))𝑑s =

𝛼𝑏𝑐𝑢

𝑐 − 𝑞𝑢

∫ ∞

0

𝑒−𝑐s

1 − (𝑏𝑐−𝑞)𝑢
𝑐−𝑞𝑢 𝑒−𝑐s

𝑑s

= − 𝛼𝑏

𝑏𝑐 − 𝑞 log
(
𝑐 − 𝑞𝑢 − (𝑏𝑐 − 𝑞)𝑢

𝑐 − 𝑞𝑢

)
=

𝛼𝑏

𝑏𝑐 − 𝑞 log
( 𝑐 − 𝑞𝑢
𝑐 − 𝑏𝑐𝑢

)
=

𝛼𝑏

𝑏𝑐 − 𝑞 log
(
1 − 𝑞𝑐−1𝑢

1 − 𝑏𝑢

)
=

𝛼𝑏

𝑏𝑐 − 𝑞 log
(
𝑏−1 − (𝑏𝑐)−1𝑞𝑢

𝑏−1 − 𝑢

)
𝐺 =

(
𝑏−1 − (𝑏𝑐)−1𝑞𝑢

𝑏−1 − 𝑢

)𝜈
=

(
1 − 𝑞𝑐−1𝑢

1 − 𝑏𝑢

)𝜈
, such that

𝜈 =
𝛼𝑏

𝑏𝑐 − 𝑞 .

(A.80)

To achieve a positive 𝜈, we must have

𝑏𝑐 − 𝑞 > 0

𝑏(𝛾 − 𝑞) > 𝑞
𝑏𝛾 > 𝑞(1 + 𝑏)

𝛾 > 𝑞
1 + 𝑏
𝑏

,

(A.81)

i.e., whereas in the non-bursty case, a steady state was guaranteed by having 𝛾 > 𝑞, in
the bursty case we must impose a more restrictive condition. The second inequality
implies that the coefficient of 𝑢 in the numerator

𝑞

𝑏𝑐
=

𝑞

𝑏(𝛾 − 𝑞) < 1; (A.82)

in other words, (𝑏𝑐)−1𝑞 ∈ (0, 1) can be represented by 𝑒−𝜅𝜏 for some positive 𝜅 and
𝜏. Therefore, the GF

𝐺 =

(
𝑏−1 − 𝑢𝑒−𝜅𝜏
𝑏−1 − 𝑢

)𝜈
(A.83)

matches the functional form of the time-dependent MGF of the gamma Ornstein–
Uhlenbeck process started at 𝑦 = 0 [241], and the PGF of the bursty transcrip-
tion/degradation process started at 𝑥 = 0, precisely as discussed in Section A.8.3.1.
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Finally, we define 𝑎 = 𝑒−𝜅𝜏 and rewrite 𝐺 again:

𝐺 =

(
1 − 𝑎𝑏𝑢
1 − 𝑏𝑢

)𝜈
=

(
𝑎(1 − 𝑎𝑏𝑢)
𝑎(1 − 𝑏𝑢)

)𝜈
=

(
𝑎(1 − 𝑎𝑏𝑢)

1 − 𝑎𝑏𝑢 − (1 − 𝑎))

)𝜈
=

(
𝑎

1 − (1 − 𝑎) 1
1−𝑎𝑏𝑢

)𝜈
= 𝐺NB

(
1

1 − 𝑎𝑏𝑢

)
=

∞∑︁
𝑘=0

𝑃NB(𝑘)
(

1
1 − 𝑎𝑏𝑢

) 𝑘
.

(A.84)

This is a negative binomial–negative binomial mixture. In other words, the distri-
bution is equivalent to that of a negative binomial distribution with scale parameter
𝑎𝑏 and stochastic shape parameter 𝑘 , with 𝑘 in turn drawn from a negative binomial
distribution with the shape 𝜈 and success probability 𝑎. We can confirm this result
through a direct calculation:

𝑃(𝑥) =
∞∑︁
𝑘=0

𝑃(𝑘)𝑃(𝑥 |𝑘), with PGF

𝐺 (𝑔) =
∞∑︁
𝑥=0

𝑔𝑥
∞∑︁
𝑘=0

𝑃(𝑘)𝑃(𝑥 |𝑘) =
∞∑︁
𝑘=0

∞∑︁
𝑥=0

𝑔𝑥𝑃(𝑘)𝑃(𝑥 |𝑘), and assuming NB 𝑃,

=

∞∑︁
𝑘=0

∞∑︁
𝑥=0

𝑔𝑥
Γ(𝜈 + 𝑘)
𝑘!Γ(𝜈) (𝑎)

𝜈 (1 − 𝑎)𝑘 × Γ(𝑘 + 𝑥)
𝑥!Γ(𝑘)

(
𝑘

𝑘 + 𝑘𝑎𝑏

) 𝑘 (
𝑘𝑎𝑏

𝑘 + 𝑘𝑎𝑏

)𝑥
=

∞∑︁
𝑘=0

[ ∞∑︁
𝑥=0

Γ(𝑘 + 𝑥)
𝑥!Γ(𝑘)

(
𝑔𝑎𝑏

1 + 𝑎𝑏

)𝑥]
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This expression uses the shape-mean parametrization for the conditional probability
𝑃(𝑥 |𝑘) and the shape-probability parametrization for the mixing probability 𝑃(𝑘).

However, is is considerably easier to notice that the analysis of the Γ-OU model by
Sabino and Petroni [241] states that the transient process law is equivalent to that
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of an Erlang distribution with scale parameter 𝑎𝑏 and stochastic shape parameter
𝑘 , with 𝑘 in turn drawn from a negative binomial distribution with the shape 𝜈 and
success probability 𝑎, or scale 1

1+𝑎 . This immediately implies that the distribution of
the corresponding discrete process is a negative binomial-negative binomial mixture
with equivalent parameters.

Although this distribution cannot be expressed in closed form, its construction
makes the simulation of the bursty transient and stationary autocatalytic processes
trivial, and suggests that simple finite approximations (i.e., up to a modest 𝑘) may
be developed.

A.8.4 Many processes are closed under species-independent, sequestering
sampling

This section adapts and extends a portion of [115] by G.G., J.J.V., and L.P. This
derivation was performed by G.G.

Consider a sequestering, species-independent technical noise model, such that the
probability of retaining a molecules of any species X𝑖 is 𝑝. Assume 𝐷 = 0. The set
of downstream characteristics U(s) is a linear combination of the entries of u. Since
integrating sampling amounts to substituting 𝑢𝑖 ← 𝑝𝑢𝑖, this procedure effectively
rescales the entire function U by 𝑝. If the upstream generation process has a scale
parameter, such thatA(u) involves multiplication by 𝜃𝑢𝑖, sampling is equivalent to
rescaling 𝜃 by 𝑝. For the common processes, we obtain the rescaling

𝑘 𝑝𝑈 for constitutive production or drift and

𝑘

[
1

1 − 𝑏𝑝𝑈 − 1
]

for bursting or jumps,
(A.86)

for each component indexed by𝜔. This holds if the constitutive production parameter
𝑘 is stochastic; for example, sampling amounts to rescaling the parameter 𝜃 of the
usual extrinsic noise model. This also holds with no loss of generality if the burst
or drift processes are state-dependent.

It is unclear whether this result generally holds for 𝐷 ≠ 0. It very well might: the
CIR driver coupled to two downstream species has this property, which we exploit
in Section 7.1. However, the derivation is somewhat subtle and requires the direct
manipulation of differential equations, so the generalization will require further
investigation.

For the bursty model with 𝑛 = 1, the resulting distribution is negative binomial with
shape 𝑘/𝛾 and scale 𝑝𝑏. This justifies treating the parameter 𝜈 in Equation 2.4 as
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purely biological: the negative binomial shape is invariant under downsampling.
However, there is no particular reason to think it is uniform, because the burst size
may differ between cell subpopulations11.

This result does not hold in its full generality when the sampling probabilities are
species-dependent; for example, when 𝑝𝑁 and 𝑝𝑀 are distinct, we can identify 𝑏𝑝𝑁
and 𝑝𝑁/𝑝𝑀 . The result does not hold when non-sequestering noise models are used.



212

A p p e n d i x B

QUALITATIVE DISCUSSION OF SEQUENCING PROCEDURES
AND THEIR CAVEATS

B.1 Notes on nomenclature and binary assignment
This section summarizes and unifies a portion of [112] by G.G., M.F., T.C., and L.P.,
as well as [44] by M.C.★, G.G.★, Y.C., T.C., and L.P. This theoretical discussion was
written by G.G.

In the field of microbiology, “nascent” RNA is often, but not always, used to char-
acterize the mRNA molecules in the process of synthesis, associated to a DNA
strand via an RNA polymerase complex [53, 54, 239, 319]. In this framework, the
“mature” transcriptome is simply the complement of the nascent transcriptome, i.e.,
all molecules that are not chemically associated to a DNA strand. Therefore, the
canonical definition of “nascent” RNA is equivalent to transcribing RNA, which is
a polymeric structure with a particular sequence.

Transcribing RNA can be observed directly through electron micrography [54].
However, more typically, it is investigated through more or less direct experimental
proxies that can be scaled to many genes and cells at a time. In the single-cell
fluorescence subfield, DNA or membrane staining can be used to identify bright
spots localized to the nucleus, which is treated as signal from RNA at the transcrip-
tion site [121, 206]; this signal may include contributions from RNA incidentally,
or mechanistically, retained at a DNA locus [319]. In this strategy, “nascent”
molecules are DNA-associated. Alternatively, and perhaps more commonly, tran-
scribing molecules have been studied by using probes targeted to the 5′ and 3′

regions [251, 309, 318, 327], or to intronic and exonic regions [16, 252, 262, 307].
In this strategy, “nascent” molecules contain a particular region, either synthesized
earlier or removed later in the RNA life-cycle.

The use of intron data as a proxy for active transcription is reminiscent of, but distinct
from sequence census [316] strategies that directly study RNA sequences. These
strategies, in turn, typically use chemical methods to enrich for newly transcribed
RNA. For example, Reimer et al. isolate chromatin, then deplete sequences that
have been post-transcriptionally poly(A) tailed [235]. Analogously, Drexler et al.
use 4-thiouridine (4sU) labeling to enrich for newly synthesized molecules [76].
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These approaches may produce conflicting results; for example, introns may be rich
both in poly(A) handles [168] and 4sU targets [235], giving rise to obscure technical
effects. Therefore, these “processed” or “temporally labeled” proxies are coarsely
representative of transcriptional dynamics, and their quantitative interpretability is
unclear as of yet.

The sequence content may be used more directly, by conceding that DNA asso-
ciation or localization are not easily accessible by sequence census methods, and
treating splicing per se. This approach has a fairly long history. Intronic quan-
tification has been used to characterize transcriptional mechanisms in microarray
datasets [326], and to characterize differentiation programs in RNA sequencing
[223, 224]. In single-cell RNA sequencing, intronic content has been leveraged to
identify transient behaviors from snapshot data [168], albeit with some outstanding
theoretical concerns and caveats (Section 6.1). Briefly, it is, in principle, possible
to coarsely classify molecules with intronic content as “unspliced” or “pre-mRNA”
and aggregate all others as “spliced,” “mature,” or simply “mRNA.”

The quantification of transcripts so classified is a relatively straightforward genomic
alignment problem. The multiple available implementations [80, 168, 197, 264]
tend to disagree on the appropriate assignment of ambiguous sequencing reads
[112, 264], obscuring a more fundamental problem: the binary classification is
somewhat arbitrary [33, 76, 158, 194], and it is likely that detailed splicing graph
models will be necessary in the future (as proposed Section 10.2).

We can illustrate the problem using the simplest example of a three-exon, two-intron
gene, with a “parent” transcript 𝐸1𝐼1𝐸2𝐼2𝐸3. It seems reasonable enough to call
𝐸1𝐼1𝐸2𝐼2𝐸3 “unspliced” and to call “terminal” transcript 𝐸1𝐸2𝐸3 “spliced.” But
what of the “intermediate” transcripts 𝐸1𝐸2𝐼2𝐸3 and 𝐸1𝐼1𝐸2𝐸3? Even if we have
perfect information about the sequence content, by placing intronic reads into the
“unspliced” category, we conflate the parent and intermediate transcripts. On the
other hand, if we place all barcodes with splice junctions into the “spliced” category,
we conflate the intermediate and terminal transcripts. Adding more complexity,
some isoforms may retain introns through alternative splicing mechanisms; for
example, the intermediate transcripts may be exported, translated, and degraded
alongside the terminal one. Of course, in practice, the “parent” transcript may
not actually exist as a distinct species if 𝐼1 is removed before the transcription of
𝐸3 is completed. The focus on sequence is yet another step removed from the
transcriptional dynamics, particularly since some of the splicing processes may
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occur after transcriptional elongation is complete [60].

Adding yet more complexity to the modeling, “mature” — whether “off-template,”
“spliced,” or “processed” — molecules are not immediately available for degrada-
tion; first, the process of nuclear export must take place. Studies that presuppose
access to imaging data tend to model it explicitly [27, 86, 127, 206, 261]. However,
this approach has not been applied in sequencing assays, as current technologies do
not distinguish nuclear and cytoplasmic molecules. Furthermore, comparisons of
paired single-cell and single-nucleus datasets are hampered by the limited charac-
terization of the noise sources in the latter technology.

Pending the development of more sophisticated sequencing and alignment tech-
nologies, as well as the implementation of tractable models of biology, the data
exploration portion of our study focuses on the “spliced” and “unspliced” matrices
generated by kallisto | bustools [197]. This choice is a compromise, and we adopt
it after considering the following factors:

• Availability of quantification workflows: spliced and unspliced matrices are
straightforward to generate.

• Model tractability: the two-stage models can be evaluated; more sophisticated
models require new algorithms, because they involve underspecified, high-
dimensional distributions (as alluded to in Chapter 5 and Section 10.2).

• The scope of sequencing data: single-cell protocols do not yet give access
to sub-cellular information, so inference of elongation or nuclear retention
dynamics is acutely underspecified.

We use the terms “nascent” and “mature” to identify the unspliced and spliced
RNA matrices. This choice of nomenclature is deliberate. Although it somewhat
conflicts with the established microbiology literature, this terminology is intended to
emphasize the models’ generality. The two-stage Markovian process is axiomatic.
The specific identities assigned to the mathematical objects may range beyond
counts identified by sequence census methods. They may represent the discretized
and subtracted intensities of 3′, 5′, intron, or exon fluorescent probes, the counts of
molecules within and outside the nuclear envelope, or polymerase counts obtained
by micrography. Therefore, the terminology should be taken in the sense used for
similar non-delayed models in [42, 86, 90, 91].
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In sum, we cannot justify the two-stage model from first principles: the biology is far
too complicated, and we cannot possibly assert that this simplistic model accurately
represents the complex polymeric phenomena occurring in living cells. Instead, we
emphasize two points.

1. The theoretical framework does not depend on these assumptions and identi-
fications, and can be extended to account for other phenomena.

2. The two-stage model typically produces at least fair fits to the data.

This appears to be sufficient to provide a fair first-order treatment of the data at hand.

B.2 Notes on ambiguity
This section reproduces a portion of the supplement to [115] by G.G., J.J.V., and
L.P. This theoretical discussion was largely written by G.G., with some essential
background research by J.J.V.

The binary assignment problems outlined above arise even with perfect data — but
we do not typically have perfect data. In Section 4.4.3, we mathematically formalized
potential ambiguities in the quantification of different transcripts, mentioning two
special cases of perfect identifiability and perfect ambiguity. We did not elaborate
on this model component further, as it is, at this time, less immediately actionable
than other components, and requires fairly considerable bioinformatic infrastructure
to integrate with analysis. In the current section, we explore this model in more
detail.

Even the simplest system, shown in Figure B.1a, can contain ambiguity that limits or
prevents the identification of transcriptional dynamics. In this illustrative example,
we consider a gene with only one intron and two flanking exonic sequences. We
suppose that quantification and assignment only consider whether the read overlaps
an intron or splice junction. An intron-containing read uniquely identifies the tran-
script as nascent, whereas a junction-spanning read uniquely identifies the transcript
as mature. On the other hand, a fully exonic read does not provide any informa-
tion about the source molecule. For the sake of completeness, we use “read” as a
shorthand for the union of all reads corresponding to a particular UMI: since frag-
mentation is random, a given UMI will be associated with reads that cover slightly
different regions.

The abundance of fully exonic reads depends on the structure and poly(A) content of
the source transcript, as well as the sequencing technology. For example, in Figure
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Figure B.1: Potential sources of short-read sequencing ambiguity in a hypothetical
one-intron, two-exon transcript.
a. Possible splicing information conveyed by reads in the hypothetical transcript
(magenta: reads that only contain exonic information; dark gray: reads that contain
intronic information; dark blue: reads that overlap a splice junction. Blue block:
exon; gray block: present intron; line: excised intron. 3′ end is toward the left).
b. Categories of reads that can be obtained by sequencing the transcript, assuming
no endogenous poly(A) content (cyan block: technical reads and indices; dotted
lines: residual inserts not observed by sequencing; red block: poly(A) sequence).
c. Categories of reads that can be obtained by capturing a transcript at an endoge-
nous, intronic poly(A) sequence (conventions as in a and b).

B.1b, we consider reads that can be obtained from a gene that has little to no genomic
poly(A) content (red). The unspliced molecules, as well as spliced molecules that
have not yet been capped (top), cannot be observed at all. Therefore, their kinetics
are not identifiable. On the other hand, the fully mature, poly(A)-tailed transcript
(bottom) can be captured at the tail. This capture pattern can give rise to junction
reads or formally non-identifiable exonic reads. If the 3′ exon is particularly long
relative to fragment length, sequenced fragments will be enriched for purely exonic
reads in the 3′ exon. Analogously, if fragment length and the 3′ exon are long relative
to read length, sequenced fragments will be enriched for exonic reads in the 3′ exon.
In Figure B.1c, we illustrate the analogous patterns that can emerge if the unspliced
molecule has a single intronic poly(A) region. If the intron and read length are short
relative to fragment length, sequencing will produce reads in the 3′ exon.

To characterize transcriptional kinetics, we seek to quantify transient transcripts,
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which may or may not be mutually identifiable. This is infeasible to optimize on
an experimental level. Even in the simple example we provided for illustration, to
characterize the source transcript, the transcript region, fragment, and read lengths
need to reside in a regime that produces unambiguous reads. To identify the splice
junction in Figure B.1b, we require fragments that are slightly longer than the 3′ exon
and reads that can cover the distance to the junction. However, read length cannot be
changed without switching technologies; longer reads typically mean sacrificing the
number of sampled cells [122, 226, 328]. In the same vein, fragmentation protocols
cannot be easily interchanged, as they are optimized for a particular sequencing
chemistry. Finally, even if these technical constraints were no object, it would still
be impossible to optimize for unambiguous capture genome-wide: intron and exon
length vary over many orders of magnitude [184, 335] and require different read and
fragment length regimes for different genes.

Hypothetically, it may be possible to parametrize the𝒫𝑎 matrix as in Section 4.4.3,
and fit it alongside the biological noise parameters. This approach may not be
entirely futile. For example, Equation 4.46 demonstrates the relevant generating
function for two biological species and three identifiable equivalence classes: 1,
unambiguous nascent, 2, unambiguous mature, 3, ambiguous. The marginal of the
nascent species has a functional form distinct from the marginal of the mature species
[261], which immediately implies that 𝒫𝑎

1,3 = 0, 𝒫𝑎
2,3 > 0 produces distributions

functionally distinct from𝒫𝑎
2,3 = 0,𝒫𝑎

1,3 > 0. In other words, we ought to be able to
distinguish the case where all ambiguous counts originate from nascent RNA from
the case where they originate from mature RNA, at least in the limit of immaculate
and infinite data. We do not, however, expect this approach to be practical for real
datasets.

We speculate that it may be more productive to use genomic information to constrain
the ambiguity properties, in a similar spirit to [131]. For example, if a read lies in
the 3′ untranslated region, and we know there is little endogenous poly(A) content
3′ of the read, then we should conclude the read is generated by priming at the
poly(A) tail of a capped molecule. In other words, it may be possible to exploit
the base information from the genome annotation, the fragment size distributions
from orthogonal experiments, and the read size characteristic of the technology to
directly construct the𝒫𝑎 matrix for each transcript.

We may illustrate this point in a more quantitative way. Consider the simplest case
shown in Figure B.1, and further assume that poly(A) capping is rapid. Using
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the notation in Equation 4.46, we find that 𝒫𝑎
1,3 = 𝑝(𝒻 |1), i.e., the probability of

sequencing a nascent molecule to obtain a read with an insert from the 3′ exon.
Analogously, 𝒫𝑎

2,3 = 𝑝(𝒶|2) + 𝑝(𝒸|2), i.e., the probability of sequencing a mature
molecule to obtain a read with an insert from the 3′ or 3′ exon. It appears legitimate to
propose that these probabilities are only dependent on the sequence and experimental
conditions, and may be effectively approximated by exploiting polymer physics or
long-read data.

On one hand, this example is somewhat trivial by design. On the other, even
this simplified picture of splicing omits important features. First, we presuppose
that annotations exist for all downstream transcripts. As alluded to in Section
10.2, this is not typically the case, and the identities of and causal relationships
between intermediate transcripts are obscure without dedicated study. Second, we
presuppose that transcripts can be described as some combination of introns and
exons, which transform by the excision of introns. However, even this seemingly
reasonable latent assumption ignores elongation, which has been the subject of
considerable study elsewhere. For example, a “nascent” transcript may not exist
as a physical object, because splicing may complete before the 3′ exon is fully
transcribed. A more biophysically realistic picture should take into account the fact
that splicing occurs during and after elongation. In addition to these biological
challenges, there is a variety of technical ones. For example, introns that have
already been spliced out may, in principle, be captured and sequenced. If splicing
is Markovian, this would be represented as a splitting reaction X → Y +Z, which
is a splitting reaction not immediately tractable using our framework. Finally, due
to a variety of technical effects, the reads themselves may have a more complex
relationship to the source transcripts. These effects include strand invasion and
aberrant priming, and may lead to reads containing antisense and template switch
oligo sequences [1]. Formally, all of these effects can be integrated into a sufficiently
complicated stochastic model. In practice, we recommend introducing complexity
only when simpler models fail.

B.3 Notes on imputation and reconstruction
This section reproduces a portion of the supplement to [112] by G.G., M.F., T.C.,
and L.P. This theoretical discussion was written by G.G.

In the current supplement, we point out that count “correction” through imputation
can produce arbitrarily incorrect results. Although this result is fairly elementary, it
does not appear to have been applied in the single-cell sequencing field, and raises
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questions regarding standard imputation methods. Suppose we have a data point
Dcg and the corresponding true mRNA abundance 𝑥cg for a particular molecular
species, cell c, and gene g. Sequencing is not perfect: the data pointDcg is generated
from 𝑥cg according to a non-deterministic schema, with an unknown probability law
𝑃(Dcg |𝑥cg).

Two problems emerge. First, a point estimate of 𝑥cg based on observed Dcg is
necessarily incomplete: the sequencing process induces an entire distribution of
possible 𝑥cg. This conditional distribution is given by Bayes’ formula:

𝑃(𝑥cg |Dcg) =
𝑃(Dcg |𝑥cg)𝑃(𝑛cg)

𝑃(Dcg)
. (B.1)

Assigning a single value is questionable, and downplays the effects of uncertainty.
This remains a problem even if a theoretically optimal choice is taken, such as the
point estimate

𝑥cg = argmax𝑥cg𝑃(𝑥cg |Dcg). (B.2)

Second, the conditional distribution depends on 𝑃(𝑥cg), the actual ground truth
distribution. This distribution is unknown and needs to be identified and fit based
on the data. Therefore, any imputation procedure that assigns a point estimate
without considering the underlying distribution is a priori distortive.

In other words, this Bayesian argument illustrates that meaningful count correction is
impossible without identifying and fitting the data-generating model, which encodes
biological effects in 𝑃(𝑥cg) and technical effects in 𝑃(𝑥cg |Dcg). Count correction
is strictly less powerful than parameter estimation for the biological and technical
models, because count correction requires those parameters, whereas knowledge
of the parameters immediately implies the entire distribution of the biological and
observed variables.

This critique does not appear to apply to, e.g., the probabilistic “imputation” in
scVI, as the autoencoder framework reports a distribution of 𝜇cg, rather than a point
estimate 𝑥cg. This approach is somewhat more coherent, as it explicitly represents
stochasticity.

B.4 Notes on graph methods
This section reproduces a portion of the supplement of [112] by G.G., M.F., T.C.,
and L.P. This theoretical discussion was written by G.G.
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Throughout Section 6.1, we have discussed 𝑘-nearest neighbor (𝑘-NN) graphs in the
context of RNA velocity and embeddings. As 𝑘-NN is ubiquitous in scRNA-seq,
and its applications are manifold, a full analysis is not feasible. In this supple-
ment, we discuss a set of purely theoretical pitfalls which may limit the utility or
interpretability of such graphs, leaving validation on simulated data to future work.

A 𝑘-NN graph purports to reflect relationships between cells based on similar-
ity between their transcriptomic “states.” These states are typically mature RNA
copy numbers that have undergone several steps of count processing, including
size-normalization, log-transformation, filtering, and projection onto the top few
principal components. The determination of neighbors in this space represents an
uncomfortable compromise: if there are too few dimensions, the projection may
be unrepresentative of the underlying data matrix; if there are too many, it may be
skewed by the “curse of dimensionality.” Such distortions are evident in Figure
6.1d.

More subtly, it is unclear that observed transcriptomic similarity between barcodes
should imply similarity between cells. In silico UMI counts have been filtered
through the random process of sequencing; the true underlying transcriptomic state
is unknown, and cannot be precisely reconstructed (as outlined above, in Section
B.3). We anticipate that certain narrow problems, such as cell type identification,
may be insensitive to this source of error. For example, it is possible that simulated
benchmarks can provide empirical results in the vein of “assuming transcriptional
dynamics are bursty, cell types are distinguished by at least ten marker genes, these
marker genes have an expression differential of at least one order of magnitude,
and each cell type comprises 10–20% of the entire dataset, a community detection-
based algorithm has a 80% classification accuracy according to a particular metric,
which falls to 75% if a particular noise model is imposed.” However, at this time,
constructing undirected 𝑘-NN graphs based on imperfectly observed data appears
to have limited theoretical or empirical justification.

The construction of directed 𝑘-NN graphs, as proposed in the original RNA velocity
publication [168] and extended elsewhere [171], is considerably more problematic.
A directed graph implies a causal relationship between observed cell states; in the
implementations of RNA velocity, this causal relationship is Markovian, with a
transition rate governed by the alignment between velocities and neighbor direc-
tions. We can analyze potential issues in this reasoning by gradually increasing the
complexity of the system under analysis.
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First, suppose that the RNA dynamics and the chemistry of sequencing are non-
random, whereas the cell observations are independent draws of 𝑦𝑁 (𝑡), 𝑦𝑀 (𝑡) from
an underlying (deterministic and perfectly known) trajectory, using the notation
in Section 6.1.1. Intuitively, building a directed graph raises questions: one cell
is not the “descendant” of another, as both cells were captured and sequenced
simultaneously. In this model formulation, the observed cells do not have causal
relationships at all. We can build a graph that connects each cell to the neighbors of
its position at Δ𝑡; at this point, the function used to define the graph is deliberately
left generic. Even in this ideal-case scenario, this graph is highly dependent on the
value of Δ𝑡 and strictly less informative than the dynamical system parameters, as
its construction requires those parameters.

Next, suppose that RNA dynamics are still deterministic, but sequencing injects
noise into the observations. In the ideal case, where the dynamical system and
sequencing noise parameters are perfectly known, extrapolating from the current
state is impossible: the true RNA abundance is unknown. At best, we may instantiate
a set of trajectories conditional on all possible unobserved biological states. As
before, these trajectories depend on the time horizonΔ𝑡. Aggregating the trajectories
by assigning a weight to a single graph edge is strictly less informative than reporting
the trajectories; that, in turn, is less informative than reporting the system parameters.
The question of the amount of error incurred by this approach is coarsely equivalent
to the question of a hidden Markov model’s approximability by a Markov model.
Omitting uncertainty due to technical noise is equivalent to assuming a hidden
Markov model can be effectively described without latent states. This assumption
may be approximately valid (e.g., in the limit of perfect sequencing), or grossly
incorrect, with no apparent a priori way of constraining error.

Suppose now that RNA dynamics of 𝑛 molecular species are stochastic on the state
space Ω = N𝑛0, with no observation noise. If we sample Nc cells, the microstates
corresponding to these data make up a subset Ω𝐷 , such that |Ω𝐷 | ≤ Nc. If the
data are generated by a biological Markov process on Ω, a process truncated to Ω𝐷

will either not be Markov, or fail to recapitulate features of the biological process.
This generally holds when |Ω𝐷 | < |Ω|. The extent of incurred error may vary from
minimal to egregious, and cannot be constrained without further knowledge of the
system.

This argument has fairly severe consequences and foundations. Defining a directed
graph onΩ𝐷 is superfluous: Ω𝐷 is itself constructed out of samples from the traversal
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of a directed graph isomorphic to the biological continuous-time Markov chain. This
CTMC is isomorphic to the CME. If states x𝑖, x 𝑗 ⊆ Ω𝐷 ⊆ Ω have the nonzero rate
𝑘𝑖 𝑗 for the x𝑖 → x 𝑗 transition, it is possible to construct an approximating CTMC
on Ω𝐷 merely by setting the rate of the corresponding transition to 𝑘𝑖 𝑗 . However,
if either one of those states is not in Ω𝐷 , some dynamics are lost. The question
of the amount of error incurred by truncation is roughly equivalent to the question
of a given infinite CTMC’s approximability on a finite subdomain. For broad
classes of CME models, finite approximations can do arbitrarily well: truncation
to a finite subdomain Ω𝐷 incurs an error governed by the amount of probability
flux to and from states outside this domain, and converges (in distribution) to the
true CTMC as |Ω𝐷 | → ∞. The finite state projection algorithm [203] exploits
this approach to evaluate CME solutions (Section 4.2.2.2). However, the FSP is
adaptive, and expands Ω𝐷 on a grid until a desired precision is achieved, rather than
using a relatively small set of points which do not necessarily have transitions in the
underlying CTMC.

The lack of these direct transitions between observed states in Ω𝐷 implies that a
CTMC on Ω cannot be projected down to Ω𝐷 . This principle can be demonstrated
using a striking trivial case. Consider a three-state Markov chain:

0
𝑘01−−→ 1

𝑘12−−→ 2. (B.3)

The full state space is Ω = {0, 1, 2}. Consider a case where states 0 and 2 are
observed in multiple independent chains at some time 𝑡, i.e., Ω𝐷 = {0, 2}. We wish
to define a neighborhood relationship between observations in state 0 and those
in state 2, and summarize it as a CTMC on Ω𝐷 . The following results emerge
immediately.

Even with perfect knowledge of the original CTMC, a truncated CTMC will
not fully recapitulate its dynamics. The residence time in state 0 is exponentially
distributed:

𝑓 (𝜏) = 𝑘01𝑒
−𝜏𝑘01 . (B.4)

The true transition from 0 to 2 has a hitting time distribution described by a hypo-
exponential law:

𝑓 (𝜏) = 𝑘01𝑘12

𝑘01 − 𝑘12

[
𝑒−𝜏𝑘12 − 𝑒−𝜏𝑘01

]
. (B.5)
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The transition from 0 to 2 on Ω𝐷 — equivalent to the residence time in state 0 — is
constrained to be exponentially distributed:

𝑓 (𝜏) = 𝑘02𝑒
−𝜏𝑘02 . (B.6)

As the exponential distribution has one parameter, it can match the true residence
time distribution, or a single moment of the hitting time distribution, but not both.
If we match the residence time distribution, the approximation becomes arbitrarily
good as 𝑘12 →∞ and arbitrarily poor as 𝑘12 → 0. The latter case makes not observ-
ing the long-lived state 1 somewhat improbable. However, as system dimensionality
grows — e.g., if multiple independent CTMCs are started — the intermediate state
will be unobserved in at least one of those chains almost surely.

Even with perfect knowledge of the original CTMC, a generic stochastic process
will not fully recapitulate its dynamics. We can define a non-Markovian process
on Ω𝐷 that will have a hitting time distribution given by Equation B.5. However,
its residence time will fail to be distributed per Equation B.4. By constraining
the process to traverse only observed states, the contributions from unobserved
intermediate states are omitted, with error that cannot be easily bounded.

This inability to “compress” CTMCs into a smaller domain can also be treated in
a more generic way. To define transitions between states, we must assign a single
number — the rate — to the transition. Intuitively, we expect that the rates of
CTMCs on Ω𝐷 should reflect the relative probabilities of transitions between states
in the original CTMC on Ω. Thus, given three states x𝑖, x 𝑗 , and x𝑙 , we would like to
impose the following criterion:

𝑃(x 𝑗 , 𝑡; x𝑖, 0) > 𝑃(x𝑙 , 𝑡; x𝑖, 0) ∀ 𝑡 ∈ R+ =⇒ 𝑘𝑖 𝑗 > 𝑘𝑖𝑙 , (B.7)

where 𝑃 refers to full CTMC’s probability of being in a state x 𝑗 or x𝑙 at time 𝑡,
conditional on being in state x𝑖 at time 0, and 𝑘 are rates in the “compressed”
CTMC. This criterion appears to be the only “natural” one, and it induces a partially
ordered set, which is insufficient to even order the transition rates in the CTMC on
Ω𝐷 .

In conclusion, graph-based methods are problematic for representing relationships
between cells. They can represent certain aspects of dynamics, but inevitably
contradict the underlying graph that governs the biophysical CTMC. It is possible to
make them agree, albeit only by considerably expanding the graph beyond observed
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states, recapitulating the CME. In other words, the only cell–cell graph which can
quantitatively summarize Markovian biological processes is the graph underlying
the CME, with an infinite number of states, remaining forever out of reach and
recalling Borges’s and Carroll’s dichotomy of the map and the territory [35, 45]:
“...we now use the country itself, as its own map, and I assure you it does nearly as
well.”
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1Note that we do not explicitly allow competing reaction pathways for species with non-Markovian
efflux. The precise justification for this is somewhat subtle. In the Markovian case, setting up multiple
reaction channels and choosing between them based on a categorical distribution over reactions is
equivalent to simply seeing which reaction fires first. But in the non-Markovian case, these things
are distinct: obviously, a reaction with deterministic waiting time 𝜏1 < 𝜏2 will always fire before
a reaction with waiting time 𝜏2. This is, however, no obstacle: we can simply prepend a virtual
Markovian species that is rapidly converted into species that follow one of the two waiting time
distributions, and use a common generating function argument for all three species to obtain the sum
of these species.

2To encode the dynamics of non-catalytic, non-Markovian processes, we exploit the isomorphism
between characteristics and survival functions. This is most relevant for discrete systems, but Equa-
tion 4.30 suggests the correct way to connect this framework to continuous systems: Markovian
interconversion is essentially an exponentially weighted moving average; deterministically-timed in-
terconversion is a simple delay (a degenerate single-point “moving average”); generic non-Markovian
interconversion maps to a generic moving average kernel. However, at this point, this framing is
largely a mathematical curiosity.

3This nomenclature is somewhat at odds with the usual usage in [81, 277, 298]. Here, we use it to
mean this particular noise model, in the spirit of, but with a narrow meaning than [124]. Elsewhere
throughout the thesis, we somewhat loosely use it to indicate biological variability attributable to
cell-to-cell differences, as in [136]. The nomenclature has evolved somewhat in the constituent
reports, and by, e.g., [113], we converged on the following arbitrary but intuitive convention: in a
distribution induced by a purely biological process, “intrinsic” noise is the Poisson component of
variance or CV2, “extrinsic” noise is everything else.

4Here, a particularly imaginative reader of [112] and [115] will exclaim: “Hold on, if this entire
formalization just amounts to fitting Equation 4.33, why do we need joint nascent and mature RNA
data at all?” They will be correct: this even works for 𝑛 = 1. The key idea is that distributions of
stochastic systems exhibit exponential convergence to their steady state, so near-equilibrium states
will be more “condensed” and far-from-equilibrium states will be more “dispersed,” because they
are less stable, hence fewer cells will be sampled from them. Having multivariate data provides the
advantage of disambiguating the dynamics when multiple attractors exist, e.g., the trajectories above
and below the equilibrium line showcased in [168], which encode this exponential convergence to
the high- and low-expression attractors, and would be difficult to impossible to distinguish based on
a single modality.

5Here, an extraordinarily careful and attentive reader of [113] may raise a very natural question.
The CIR model is derived under the assumption the regulator is present at high concentrations
and largely resides near the mean. Why should we consider this limit, which is typically near
zero and exhibits jump behavior? The justification is fourfold. First, there may be other systems
that lead to CIR driving behavior without the approximation we have made, perhaps relating to
membrane transport rather than production and degradation of regulators. Second, although the
limit is nonphysical, the convergence is relatively rapid, so there are large portions of parameter
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space where the limiting behavior is an approximately valid description of the dynamics without
violating the assumptions too harshly. Interestingly, the convergence to the extrinsic noise model
is considerably slower. Third, it motivates the consideration of relatively “exotic” drivers that are
otherwise ignored throughout this thesis: elsewhere, we assume all jump processes are compound
Poisson. Fourth, the the continuous CIR process is equivalent to discrete autocatalysis, per Section
A.8.3.2, so there may be an analogous fully discrete multi-stage process that follows the same
statistics; however, we have not investigated this direction further.

6A careful reader of [107] may raise the concern: if we observe high expression of short
nascent transcripts, does this mean these transcripts are present at even higher abundance in the
cell, potentially in the thousands or tens of thousands of copies? The answer is unclear, and will
require dedicated study of specific genes. This is likely a combination of effects: real high biological
expression, limitations in the choice of reference, limitations of the constant-𝐶𝑁 assumption, obscure
technical artifacts like priming of spliced-out introns.

7More strictly, the zero-inflated negative binomial (ZINB) distribution is most popular for scVI.
However, its meaning is unclear; the distribution appears to be an obsolete [274] holdover from
pre-single-cell and single-molecule sequencing technology analyses. I am aware of one publication
that attempts to provide a basis for this model [149], but it conflates a technical effect (dropout)
with a biological one (promoter state switching) without any apparent justification. Ultimately, the
problem with using a ZINB model to describe technical variation is that there is no mechanistic
motivation for a process that leads to the loss of all of a gene’s molecules, nor an explanation for
why it should choose that gene without depleting others. That said, the ZINB distribution can be
immediately obtained in the slow limit of an 𝑁 = 2 model with a bursty and an inactive state.

8Here, a subtlety emerges. I do not believe that, e.g., landscapes or gradients are a helpful
way to conceptualize discrete molecule counts, because forcing a discrete object into a Procrustean
bed of continuous models appears to be questionable modeling practice. That said, they may be
effective for the underlying continuous parameters. For example, the model I simulate from in
Section 6.2 is precisely a (non-Markovian) graph traversal that represents transitions between cell
types, and the time-varying H operator introduced in Chapter 4 indicates some generic transient
process, which may, in turn, be reasonably well-approximated by a simple function. This function
could be axiomatic (i.e., “a cell type is a point mass with respect to a set of parameter distributions”)
or reflect a specific biophysical process. The key idea is that we have to operate on a slightly higher
level of abstraction if we want to use these models, because the layers of single-molecule biological
and technical stochasticity are inherent and non-negotiable. Considerable further work remains to
determine whether this approach is promising, whether it leads to intractable problems, or whether
it amounts to kicking the can down the road without providing any useful scientific insights.

9We can, of course, define dedicated bound states that are only accessible through molecule
interactions, but this makes no difference to the mathematical challenges.

10This point is explored in substantial detail in [108].

11A naïve reading of this result might suggest that we have spent a considerable amount of
theoretical effort to recapitulate something that is already fairly accepted practice. This reading is
grossly incorrect, and the fact that the terms happen to match in this simplest of cases should only
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encourage us to be more vigilant and thorough about developing and disclosing explicit mechanistic
models, as they can provide insights about the basis for the success of procedures which are, at first
glance, ad hoc. Further, the result does not fully agree with the standard description: for example,
the interpretation of the Poisson variance term as purely technical does not hold under this model.


